

Algorithm Design & Analysis of Multi-Scale

Meshing in Surgical Simulators

Zou Chunzhong

(B. Eng., Chongqing University, P. R. China)

(M. Eng., Huazhong University of Science & Technology, P. R. China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48633102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

i

Acknowledgement

The author is grateful for getting a chance to do research with his supervisors: Prof.

Teo Chee Leong and Dr. Etienne Burdet. It is great to learn from them: their passion

for research, their insights to the key issues of a research topic and their

straightforward ways in discussion. Also, the author appreciates their patience.

The author is in great debts to Dr. Tim Poston and Dr. Lim Kian Meng for offering

guidance and sharing their expertise. Also, it is helpful to discuss with Liu Bing Feng,

Zhang Li and other colleagues. Especially, Wang Fei offered his help in OpenGL

programming. The author owes his special thanks to Madam Leow, Mrs Ooi, Miss

Tshin, Mr. Yee and Mr. Zhang for offering help and services.

Finally, the author owes very much to his family and friends for their encouragement

and financial help: his wife, Zhou Rong, his daughter, Zou Yi, Catherine, his mother-

in-law, He Yu Ru and his friends, especially, Yan Li, Lu Yiqiang, Gao Xingsen and

Tong Zhipeng.

Table of Contents

ii

Table of Contents

ACKNOWLEDGEMENT .. I

TABLE OF CONTENTS...II

SUMMARY...VII

NOMENCLATURE .. IX

LIST OF FIGURES... XI

LIST OF TABLES ...XV

1 INTRODUCTION .. 1

1.1 Background and motivation... 1

1.2 Contributions... 4

1.3 Organization of the thesis .. 5

2 LITERATURE REVIEW.. 7

2.1 Introduction... 7

2.2 Haptics: definitions, historical issues and its significance................................. 7

2.2.1 Definitions of haptics and haptic interface .. 7

2.2.2 Historical origins about Haptics ..9

2.2.3 Applications of Haptics or specifically real-time force feedback 10

Table of Contents

iii

2.2.4 Benefits from the use of haptics .. 10

2.3 Haptics: challenges and strategies.. 11

2.3.1 Challenges .. 11

2.3.2 Strategies .. 12

2.4 Surgical simulation systems and models for deformable tissues 13

2.4.1 Typical surgical simulation systems.. 13

2.4.2 Models for deformable objects.. 15

2.5 Summary... 16

3 FUNDAMENTALS OF MULTI-SCALE FEM .. 18

3.1 Introduction... 18

3.2 Principles of FEM or multi-scale FEM .. 18

3.3 FEM: concepts and the process of solving ... 19

3.3.1 Basic concepts .. 19

3.3.2 Determination of single element stiffness matrix KE............................... 21

3.3.3 Overall stiffness matrix... 23

3.3.4 Solution characteristics for 1D linear elastic case.................................... 23

3.4 The process of FEM - an example.. 26

3.5 The motivation for multi-scale FEM.. 30

3.6 Some basic scenarios and further speeding up.. 32

3.7 Summary... 33

4 KEY ISSUES FOR MULTI-SCALE MESHING .. 34

4.1 Introduction... 34

4.2 Object-oriented (OO) programming... 34

4.3 Standard Template Library .. 35

Table of Contents

iv

4.4 Perfect binary tree and doubly linked list ... 35

4.5 Topology of a binary division structure.. 38

4.6 Fineness function, its calculation and significance ... 40

4.6.1 Fineness function at the deepest level.. 41

4.6.2 Fineness initialization for the whole perfect binary tree........................... 42

4.7 The schematic descriptions of data structures... 43

4.8 Flow-charts of the execution.. 44

4.8.1 Flow chart of initialization: construct a perfect binary tree 44

4.8.2 Flow chart for generating a rough mesh during initialization................... 44

4.8.3 Post-processing originated from Division algorithm................................ 50

4.9 Summary... 52

5 ALGORITHMS OF MULTI-SCALE MESHING ... 54

5.1 Introduction... 54

5.2 Criteria for Division algorithm and Merging algorithm.................................. 54

5.3 Division algorithm and its post-processing .. 57

5.3.1 Basic procedures... 57

5.3.2 Critical criteria and a typical example ... 58

5.3.3 Discussion .. 62

5.4 Merging... 64

5.4.1 Basic procedures... 64

5.4.2 Basic criteria... 65

5.4.3 Discussion .. 67

5.5 Comparisons between Merging and Division algorithms 67

5.5.1 The different strategies ... 67

Table of Contents

v

5.5.2 The identical multi-scale mesh.. 68

5.5.3 Performance comparison... 68

5.6 Dynamic algorithm.. 70

5.6.1 Introduction .. 70

5.6.2 Assumptions and performance measures... 71

5.6.3 Validation of Dynamic algorithm.. 71

5.6.4 Basic procedures... 72

5.6.5 Examples .. 74

5.6.6 Discussions... 78

5.7 Summary... 80

6 SIMULATION RESULTS & DISCUSSIONS.. 81

6.1 Introduction... 81

6.2 Simulation environments and conventions ... 81

6.3 Simulation results and comparisons ... 82

6.3.1 Identical meshes obtained using Merging and Division algorithms 82

6.3.2 Time comparisons between Merging and Division algorithms 84

6.3.3 Time comparisons of the three algorithms... 88

6.3.4 Evolution of Dynamic algorithm... 95

6.4 Discussions ... 96

6.5 Summary... 97

7 CONCLUSIONS AND FUTURE WORK .. 99

7.1 Conclusions and discussions.. 99

7.2 Future works ... 101

Table of Contents

vi

REFERENCES.. 102

APPENDIX: SOLVER AND REAL-TIME SIMULATION 108

I. Introduction... 108

II. Solution of linear algebraic equations .. 108

III. Simulation results and discussions ...114

IV. Summary... 117

Summary

vii

Summary

Surgical training simulators with real-time force feedback have become one of the

most important applications of robotic systems. It is due to many factors such as 1)

the training of an experienced surgeon is time-costly and expensive; 2) situations

faced by surgeons are varied and complex, and 3) other constraints such as the

availability of subjects and ethical issues involved in vivo-tests. Therefore, computer-

based simulations and simulators are of great values. Most importantly, many medical

procedures are intrinsically haptic, which means, in addition to visual and auditory

feedbacks, it is critical for a surgeon to “feel” the touch, control, manipulation,

kinesthetic perception under the effect of forces, torques and other sensory feedbacks

resulting from tool-tissue interactions. Thus, the modeled or simulated systems must

be physically real and provide surgeons with “true” real-time haptic feedback.

Unfortunately, “physically real” and “real-time haptic feedback” are contradictory

requirements - a physically real system in surgical simulations is often non-linear and

computationally expensive and “true” real-time haptic force feedback always requires

a very high update rate (>1000Hz) for an operator to get the “feel” of touch and

manipulation in real-time. It is crucial to get a simplified but still sufficiently real

simulation model. One method is to use multi-scale meshing. Compared with

conventional FEM (Finite Element Method), where all areas are modeled using

evenly fine meshes, a so-called multi-scale meshing scheme, where some areas are

modeled using fine meshes and other areas are modeled using coarse meshes, seems

attractive and promising.

Summary

viii

In order to speed up the computation, this thesis investigates three different ways

to get multi-scale mesh and their relative efficiency. The primary focus is to

investigate if the Dynamic algorithm is used in modeling some simple interaction

between tool tip and tissue when only slight change happens. That is to say, if the

system evolves slightly from one state to another, thus, can we only need to make

relatively small adjustments to the existing mesh to get the new mesh. Using a

fineness function to reflect the meshing requirements in different areas and adopting

an array-based perfect tree (for 1D case), the author implements three different multi-

scale meshing, namely, Division algorithm, Merging algorithm and Dynamic. In great

details, the author illustrates how each algorithm is implemented with the same

criterion.

The comparison of algorithms and real experiments show that, in 1D case, multi-

scale meshing can achieve real-time haptic feedback and the Dynamical algorithm is

more efficient when the simulated interaction between tool tip and tissue changes

slightly. During the development, the author finds the solver for D tridiagonal linear

equations can be divided smaller systems for simplification and an improved solver is

implemented. The ideas such as fineness function and Dynamic algorithm developed

in this thesis can be served as the base for 2D and 3D cases.

Nomenclature

ix

Nomenclature

∆ Spring deformation (units: length)

f Spring force (units: force)

fE Elemental force vector

∑ xf Summation of external forces in x-axis

F External force applied at a node

k Spring constant (units: force/length)

K Overall stiffness matrix

KE Element stiffness matrix

h The height of a perfect binary tree (the number of links from root to the leaf)

m The number of vertices at the deepest level

m_bQua A Boolean value to show if an element’s division meets the fineness

requirements

m_eChg An integer to reflect an element’s new state after the element’s

fineness value is changed

m_iFLev The fineness integer of an element in the full element map

m_iDLev The division level of an element in the full element map

M, N, K An element’s division level in a binary tree

n The number of vertices in a perfect binary tree

nN The index of an element in array-based binary tree

NL The left child index of an element (nN)

Nomenclature

x

NP The parent element’s index of an element (nN)

NR The right child index of an element (nN)

uE Elemental displacement vector

U Nodal displacement vector

x Horizontal displacement (units: length)

X The leftward division times of post-processing

Y The rightward division times of post-processing

List of Figures

xi

List of Figures

Fig. 2.1 Conventional interaction loop and interaction with a haptic device [17] 8

Fig. 3.1 A spring element with two DOFs.. 19

Fig. 3.2 Spring law .. 20

Fig. 3.3 Sign convention .. 20

Fig. 3.4 A separated spring element ... 22

Fig. 3.5 Axial displacement distribution... 24

Fig. 3.6 Deformation of neighboring elements ... 25

Fig. 3.7 Internal forces among adjacent elements... 26

Fig. 3.8 Three linear springs in series... 26

Fig. 3.9 Separate equations of elements ... 27

Fig. 3.10 Overall linear equations of the mesh ... 28

Fig. 3.11 Cross out terms to solve linear equations...29

Fig. 3.12Axial displacement verse position along the entire mesh............................ 29

Fig. 3.13 Axial elemental forces versus position along mesh.................................... 30

Fig. 3.14 Axial deformation of elements versus position along mesh 30

Fig. 3.15 A typical haptic system with real-time force feedback and visual feedback32

Fig. 4.1 Messages-based communication mechanism... 34

Fig. 4.2 A binary tree... 36

Fig. 4.3 A perfect binary tree ... 36

Fig. 4.4 A node of a binary tree and its left pointer and right pointer 37

List of Figures

xii

Fig. 4.5 A doubly linked list .. 37

Fig. 4.6 Four steps to add a new node .. 37

Fig. 4.7 Delete an old node from the list .. 38

Fig. 4.8 Binary division and its topology.. 39

Fig. 4.9 Fineness function of a five-level division.. 42

Fig. 4.10 Fineness initialization of a perfect binary tree ... 43

Fig. 4.11 Flowchart of the initialization of a binary tree... 44

Fig. 4.12 Get a rough mesh while initializing... 45

Fig. 4.13 Build up a perfect binary tree .. 46

Fig. 4.14 Assign m_bQua = “T” to all leafs ... 47

Fig. 4.15 Scan the elements at the second division level... 47

Fig. 4.16 Scan the elements at the first division level ...48

Fig. 4.17 Scan the first element [00] .. 48

Fig. 4.18 Reap a rough mesh with the In-Order traversal.. 49

Fig. 4.19 Final multi-scale mesh after post-processing ... 49

Fig. 4.20 Too-big elements exist .. 50

Fig. 4.21 Flow chart of a recursive post-processing.. 52

Fig. 5.1 Merge siblings or randomly merge neighboring elements............................ 55

Fig. 5.2 The level difference of neighboring elements should not be greater than 1 .. 55

Fig. 5.3 Criteria for merging or division... 57

Fig. 5.4 Put [00] into the list .. 59

Fig. 5.5 Delete [00] and insert [01] and [02] .. 60

List of Figures

xiii

Fig. 5.6 Delete [01], insert [03] and [04], and keep [02]... 60

Fig. 5.7 Keep [03], replace [04] using [09] and [10], and keep [02].......................... 61

Fig. 5.8 [02] is further divided through a so-called “Shorten” post-processing 61

Fig. 5.9 [04] is constrained by [38] and [23] ... 63

Fig. 5.10 [10] is directly divided according to [42].. 63

Fig. 5.11 Post-process a big head element.. 64

Fig. 5.12 Post-process a big tail element .. 64

Fig. 5.13 Start merging .. 66

Fig. 5.14 Delete [05], [06] and insert [02] .. 67

Fig. 5.15 Linear fineness function.. 68

Fig. 5.16 Gauss fineness function .. 69

Fig. 5.17 Original fineness distribution and its initial mesh 75

Fig. 5.18 New and old fineness values of each element.. 75

Fig. 5.19 Qualified elements are marked out in the tree.. 76

Fig. 5.20 Elements with changed values (the old mesh) ... 76

Fig. 5.21 Qualified elements after [24] is excluded (the old mesh) 76

Fig. 5.22 Dynamically evolve from the initial mesh to the new one.......................... 77

Fig. 5.23 New fineness function & new mesh initialization...................................... 78

Fig. 5.24 The merging process using the new function... 79

Fig. 5.25 The division process to get the new mesh.. 79

Fig. 6.1 Gaussian fineness function & the initialization.. 82

Fig. 6.2 The final multi-scale mesh with Division level: 6.. 83

List of Figures

xiv

Fig. 6.3 Fineness function with three max positions (X-axis is position) 83

Fig. 6.4 The same mesh results using Division and Merging (Division: 5) 83

Fig. 6.5 Fineness function with five max positions (X-axis is position) 83

Fig. 6.6 Identical meshing results using Division and Merging (Division: 20).......... 84

Fig. 6.7 Five different fineness distributions over the bar (X-axis is position) 86

Fig. 6.8 Left (AM): All max case, Right (AZ): All zero case.................................... 87

Fig. 6.9 Mid max case.. 87

Fig. 6.10 Left (MR): Right max case, Right (ML): Left max case 87

Fig. 6.11 Linear fineness function.. 89

Fig. 6.12 Bi-linear fineness function .. 89

Fig. 6.13 Time comparisons of the three algorithms (Linear fineness function) 90

Fig. 6.14 Time comparisons of the three algorithms (Bi-linear fineness function) 92

Fig. 6.15 Gaussian fineness function.. 92

Fig. 6.16 Time comparisons of the three algorithms (Gaussian fineness function) 94

Fig. 6.17 Mesh evolves with fineness function drifting rightward 95

List of Tables

xv

List of Tables

Table 3.1Boundary conditions ... 28

Table 6.1 Abbreviations of different fineness functions ... 85

Table 6.2 Time comparisons between Division and Merging algorithms.................. 86

Table 6.3 Time comparisons (Linear function) of the three algorithms..................... 90

Table 6.4 Time comparisons (Bi-linear function) of the three algorithms 91

Table 6.5 Time comparisons (Gaussian function) of the three algorithms................. 93

Chapter 1: Introduction

1

1 Introduction

1.1 Background and motivation

In the Control and Mechatronics lab of the Department of Mechanical Engineering,

National University of Singapore, researchers are trying to work out some surgical

training systems to help train new surgeons. The reasons to develop such surgical

training systems are as follows.

1. In traditional microsurgery, it takes a long time for surgeons to gain the necessary

skills needed for conducting complex operations such as stitching blood vessels.

2. It requires many exercises for novices to master different hand-eye coordination

under conditions where angles are rotated and distances are magnified by the

microscope.

3. For highly risky operations such as cutting living animals or cadavers, in order to

gain real experiences, “physically” real environments are often needed to train

surgeons. However, such operations are often constrained by factors such as the

availability of the subjects, ethical problems and others.

4. Generally, it is hard for surgeons to apply his experiences gained from training for

one situation to another situation. Therefore, different kinds of “physically” real

systems are needed for surgeons to practice.

In short, it is of great value if we can develop surgical training systems to

overcome the above-mentioned limitations of the real world. And, in fact, much

research has been done for the simulation of the physical behavior of deformable

Chapter 1: Introduction

2

tissues and organs [23][28] as well as the virtual surgical training system with the

integration of visual feedback, real-time force feedback and computer geometry.

In the simulation of the physical behavior of deformable tissue and organs, many

methods have been used. In particular, the Finite Element Method [23], the Mass-

Spring-Damper system [28], the Boundary Element Method, and the Finite Difference

Method are often preferred. Whichever method is used, the same dilemma should be

solved. That is, how to balance contradictory requirements among physical accuracy,

real-time constraints and limited computer resources. Since a traditional Finite

Element Method is often not able to meet the real-time requirements, researchers have

to design sufficiently simplified physical models in order to provide an operator with

real-time force feedback.

However, a crucial challenge originates from the intrinsic nature of haptic sense.

In a typical robotic surgical system, both visual and haptic loops are involved while

the haptic loop imposes a greater challenge for real-time force feedback. In a sharp

contrast to human’s visual sense which requires only 20 to 30 frame/second or higher

update rate [20], haptic sense requires a much higher update rate of at least 200 to 300

frame/second [20] if an operator wants to have a feeling of force. According to

R.Chung et al. [53], unlike the 30-60 update rates for visually presented VR systems,

haptic simulation places more stringent demands where a rate of 1 kHz is typically

cited as desirable for stable and responsive haptic interaction.

In response to the requirements of high haptic update rates, simplified schemes

such as multi-resolution, multi-rate and multi-scale methods are designed

([9][11][19][21][25][29][40][50][53]). Though different names are used, all of them

focus on simplifying meshing scale in order to provide real-time force feedback.

Chapter 1: Introduction

3

Compared with a conventional FEM where all areas are modeled with equally high

resolution, such multi-scale models can dramatically reduce the order of a physical

system and thus greatly reduce the computation burdens.

Thus different algorithms based upon multi-scale FEM methods are developed in

order to improve the efficiency of our robotic surgical simulation system. Also, some

important new ideas used in multi-scale FEM algorithms are introduced as follows.

Firstly, a so-called fineness function is adopted to assign weights to different areas.

In any multi-scale meshing scheme, a basic but difficult problem is how to set

reasonable criteria to decide whether fine elements or coarse elements should be used

in different areas and situations. For example, in the domain where interaction

between a tool and tissue occurs, fine elements must be used while coarse elements

might not be acceptable. Meanwhile, many other factors such as curvatures, the

geometry of a physical system, loading conditions and visual rendering also need

careful consideration. In order to reflect all these different factors involved in the

modeling of a physical system, a universal fineness function is used to express the

relative importance of different areas.

Secondly, we desire to investigate how the systems evolve from one state to

another and how we can save processing time and storage through the understandings

of the dynamic natures of robotic systems, which include two types of great interests.

One is the dynamic evolution of meshing and the other is the dynamic solving process,

by which a system’s previous results can be effectively re-used.

In this study, the one-dimension linear elastic case is used, which can prevent us

from being distracted from important issues and pave the way for higher dimensional

situations.

Chapter 1: Introduction

4

1.2 Contributions

The applications of a fineness function and three algorithms are the main

contributions of the current study.

a. A fineness function

In order to quantify fuzzy information in meshing and re-meshing, a fineness function

is creatively used to reflect all factors involved in decision-making. It is rather general

and adaptive for different application occasions.

b. Division algorithm

This algorithm is based on the idea that coarse elements are first used in order to

approximate a physical system. If the coarse elements are sufficient to meet preset

criteria, a multi-scale mesh can be established using coarse elements. Otherwise, the

coarse elements are recursively divided into smaller ones until all criteria are met.

This approach is efficient in the situations where coarse meshes are sufficient.

c. Merging algorithm

In contrast to the above-mentioned Division algorithm, Merging algorithm starts from

the opposite direction. The finest elements are first used to model a physical system,

then, the process will proceed to check whether small elements can be replaced by big

elements in re-meshing. To be exact, if two sibling elements can be replaced by their

common parent element, then, the parent element will be used. The final multi-scale

mesh should be the same as that obtained through Division algorithm. The Merging

algorithm is preferred in situations when more fine meshes are needed.

Chapter 1: Introduction

5

d. Dynamic algorithm

In an interactive real-time haptic system, dynamically changing configurations push

us to develop Dynamic algorithm to investigate how a new mesh can be obtained

from a previous one. When only minor changes occur in a system, a small portion

needs to be re-meshed while the majority of the meshes can remain unchanged. The

ideas of Division algorithm and Merging algorithm are combined to form this new

algorithm. After re-meshing, some areas become finer and some other areas become

coarser.

e. The significance of the algorithms

The significances of the above-mentioned algorithms are presented below. 1)

Dynamic meshing can really save computation time under conditions where a system

only changes slightly. This algorithm may be suitable for some medical applications.

2) All of the three multi-scale meshing algorithms are implemented and they can be

regarded as a skeleton research work. The author proposes and implements these

basic ideas and paves the ways for further research and applications in real systems. 3)

Algorithms are implemented using object-oriented programming method.

Besides the above contributions, a new and improved solver for tridiagonal equation

systems is discovered and implemented. Furthermore, interesting issues related to the

array-based binary tree are also discussed

1.3 Organization of the thesis

There are totally eight chapters and the rest of the thesis is organized as follows. A

literature review on real-time force feedback systems is given in chapter 2. Topics like

the meshing of simulated physical systems, schemes for haptic surgical simulators,

Chapter 1: Introduction

6

and Internet-based tele-operational haptic systems are reviewed. The fundamentals of

the process of solving typical FEM problems and the reasons for adopting multi-scale

methods are presented in chapter 3. In chapter 4, key issues related to the three

proposed algorithms such as the data structure and program schemes are described. In

chapter 5, detailed implementations of the three multi-scale meshing algorithms are

given. Comparisons of simulation results and the validation of the performances of

the algorithms are made in chapter 6. Finally, conclusions for the thesis are made in

chapter 7. In the Appendix, A new solver is introduced and the implementation of

three algorithms in a real-time workstation is presented.

Chapter 2: Literature Review

7

2 Literature Review

2.1 Introduction

This chapter gives a literature review on historical interests, mainstream research

areas, some widely used models, and strategies in haptic systems. Among the current

research areas, the following three attract a lot of attention [47].

1. The physiological or anatomical experiments and analysis in order to discover the

intrinsic reasons of haptic senses of human being (especially, haptic force sense).

2. The strategies or schemes of real-time force feedback simulation systems

(especially medical or surgical simulation systems) in terms of software, hardware

and workstation sites (local systems or tele-operation systems over Internet).

3. The meshing and algorithms in modeling physically real systems.

The following paragraphs will give a survey about haptics (section 2.2),

challenges and strategies of haptics (section 2.3), and typical surgical systems and

models in real-time medical simulation (section 2.4). The summary is presented in

section 2.5.

2.2 Haptics: definitions, historical issues and its significance

2.2.1 Definitions of haptics and haptic interface

Many researchers give the descriptions or definitions for haptics and haptic interface

[12][17][34]. For some of them, haptics refers to the modality of touch and the

associated sensory feedback while others think that it refers to taction and kinesthesia

Chapter 2: Literature Review

8

(the sense of body position and motion) [12]. When coupled with a computer, haptics

is regarded as the art and science of developing software algorithms that synthesize

computer generated forces/torques to be displayed for users to perceive and

manipulate through interacting with virtual objects.

The goal of haptic rendering is to enable a user to touch, feel, and manipulate

virtual objects through a haptic interface [34]. By now, the technology is relatively

mature for net force/torque feedback (the weight of grasped virtual objects, their

mechanical compliance, inertia, as well as motion constraints) but not so for tactile

feedback. This is because tactile feedback includes other feedbacks (for example, the

rugosity of virtual surfaces, their edges, temperature, or slippage) as well as

force/torque feedback [20].

A typical haptic system has five major parts [49]: human operator, haptic

measurement device, haptic feedback device, virtual environments and virtual

coupling. And haptic interface is a human-computer interface with information input

and output that allow users to touch, feel, and manipulate objects simulated by virtual

environments. With a haptic interface, human-computer interaction is different from

its conventional counterpart (Fig. 2.1).

Fig. 2.1 Conventional interaction loop and interaction with a haptic device [17]

Chapter 2: Literature Review

9

2.2.2 Historical origins about Haptics

It is widely accepted that Iwata laid the foundation of modern VR system with visual

and haptic feedback through his research in [2]. However, according to Gillespie’s

comprehensive survey in [12], Haptics as an academic discipline dates back to the

time of Aristotle. In Aristotle’s view according to his treatise De Anima (On the soul),

touch was the most essential of human’s five senses. By 1749, Denis Diderot

published his “Letter on the blind”, and thus laid the foundation for our understanding

of sensory substitution. He pointed out that one sense gains in power with use or loss

of another. In 1834, Ernst H. Weber (widely deemed to be the founder of the field of

psychophysics) introduced systematic experimental procedures to the study of haptics.

According to the influential book Der Aufbau Der Tastwelt published in 1925, David

Katz investigated many aspects of the sense of touch and he maintained that touch is a

far sense like vision and hearing that not necessarily requires direction impression on

the skin by an object. In a real sense, a tool becomes an extension of one’s body, and

the sensory site moves out to the tool tip, which underlines the claim that

understanding haptics has important implications for the effective use and design of

tools. Geza Rvesz did research in the development of haptic perception in the blind

and the coding of spatial information. James Gibson fostered a more ecological

approach to research in sensory processes and perception. Now, people tend to think

haptics is not subservient to vision and audition and it has attracted much interests.

Compared with visual and audition, Haptics is more complex in that its function is

coupled to movement and active participation of the subject.

Chapter 2: Literature Review

10

2.2.3 Applications of Haptics or specifically real-time force feedback

Nowadays, haptic force feedback systems are widely used in many situations. And its

typical applications include: surgical simulation, medical training [44] by providing

the real-time force feedback, scientific visualization [44] for virtual reality, painting

and handwriting [42][45][46], sculpting [24], hologram [15], CAD and mechanical

assembly and grasping [16][22] to provide realistic training, micromanipulation [26],

nano-manipulation [52], musical learning [12], Tele-monitoring, Tele-master-slave

system [3][4][31], Tele-assistance [10][29], Tele-operation or networked robotic

systems [3][4][10][14][29][31][33][47][51][53], systems purely for augment [41][48]

[52] and Graphical User Interface [39], autonomic robotics [5][10], Java-Based Tele-

robotics [14][33][51] and others, among which surgical simulation and medical

training have been a primary application area [53]. All these systems are trying to

model some kind of force feedback to simulate the physical situations to help

operators get realistic training and valuable skills.

2.2.4 Benefits from the use of haptics

Human beings are intrinsically multi-modal systems and Haptics represents the next

logical evolution of digit displays [24]. Its significance can be described from the

following descriptions.

a) In contrast to vision and hearing, Haptics permits bi-directional information

transfer between the user and virtual environments (Fig. 2.1) [47], which is crucial

in tasks such as surgical simulation in order to simulate the interaction with the

organs.

Chapter 2: Literature Review

11

b) The force feedback is extremely important for medical training, minimally

invasive surgery, remote diagnosis and aids for the disabled as the operators must

depend on using forces to complete control and make decisions.

c) With the adding of real-time force feedback, it is possible for an operator to feel

the properties of simulated objects [53].

d) Distributed users can improve their communication through the use of haptics by

improving their awareness of others’ activities and intentions over Internet [18] as

participants can “sense” the existence of others and “interact” with each other.

e) A graphical user interface integrated with haptic feedback will greatly change the

interaction between computer and human being [7] because such interaction

models the real-world interaction.

f) Systems [26][43] with real-time force feedback can provide augmented reality and

visuomotor skills in nano-manipulation [13][52].

g) Haptics even plays an important role in the process of learning to play an

instrument [12].

h) A prototyping system with haptic force-feedback display can save the cost and

time and facilitates the modification while the model is still in a computer [11].

2.3 Haptics: challenges and strategies

2.3.1 Challenges

It is challenging to build a haptic system. Firstly, haptic computation is expensive [53]

because it involves detecting collision, computing the contact manifold, estimating the

penetration depth, and computing restoring forces and torques. Secondly, haptic

Chapter 2: Literature Review

12

hardware is difficult to design. If we focus on a typical surgical simulator, there are

several challenging issues [53] as follows.

a) Time limitation from real-time requirements.

b) High-fidelity force rendering and self-induced oscillations and instability.

c) Costly modeling of complex objects and computational complexity of simulating

the nonlinear dynamics of tool-tissue interaction.

d) Complex haptics hardware and control design of haptic interface [17]: force

control, non-linearity of environments such as impedance and admittance

characteristics and the inclusion of human operators.

2.3.2 Strategies

In this section, we will investigate the strategies used in some medical simulators to

deal with the challenges discussed in section 2.3.1. To meet the requirements of real-

time force feedback, the simplification of deformable objects and effective haptic

rendering algorithms [34] are indispensable. Also, different software and hardware

schemes are used to lessen the computation burden as follows:

a) A server/client scheme is used for haptic rendering framework [6][29][42] in

order to distribute the computation burden. It consists of a haptic server for haptic

rendering and a graphical client application for visual feedback.

b) Special controllers are designed in master-slave system over Internet for high-

fidelity force rendering [3] [4].

Chapter 2: Literature Review

13

c) Physics-based models of soft issues are replaced by simplified models such as:

network of point masses model, springs and dampers model, and finite spheres

model [28].

d) Efficient algorithms are coded. For example, in minimally invasive surgical

procedures, Kim et al. [38] design a collision prediction algorithm in order to

achieve real-time force feedback.

e) Special numerical methods are adapted. In [38], a set of finite spheres are used

instead of traditional FEM meshes. Thus, computation time is tremendously

reduced. A simulation of palpation is reportedly achieved with 1000 Hz for force

update and 30 Hz for visual update.

f) Hybrid physical models can be used. In [32], in order to reduce computation, a

FEM model is used to simulate the flexible dynamics of the duct and a particle

model is used for the catheter.

2.4 Surgical simulation systems and models for deformable tissues

2.4.1 Typical surgical simulation systems

As our main focus is on haptic surgical trainer, it is helpful to know what others have

done in the relevant areas, so some representative applications are listed [30][54]:

a) In 1997, Langrana et al. [54] used the Rutgers Master II haptic device in a training

simulation for palpation of subsurface liver tumors. Tumors are modeled as

comparatively harder spheres within larger and softer spheres. Realistic

interaction forces are calculated with FEM and the graphical display showed

tissue deformation. Thus, real-time force feedback is achieved.

Chapter 2: Literature Review

14

b) In 1998, Mor [54] in Carnegie Mellon University built up an arthroscopic surgery

simulation.

c) In 2000, Balaniuk et al. [54] (Stanford University) simulated fluid-filled objects

suitable for interactive deformation such as “cutting”, “suturing” and so on.

d) In 1998, De et al. (MIT) developed simplified models and efficient algorithms for

tool-tissue interactions. They modeled soft tissue as thin-walled membranes filled

with fluid and the final force-displace response is comparable to that obtained in

in vivo experiments.

e) In 2001, Sastry et al. [54] (UC, Berkeley) built complex robots for the surgery of

laparoscopic and endoscopic cannulas.

f) In 1999, Aviles et al. [54] developed VR-based dental training simulator.

g) In 1998, Giess et al. [54] integrated haptic volume rendering using the PHANToM

into the pre-surgical process of classifying liver parenchyma, vessel trees, and

tumors.

h) Surgeons [54] at the Penn State University built a system in which residents

passed simulated needles through blood vessels, allowing them to collect baseline

data on the surgical skills of new trainees.

i) In 1998, Iwato et al. [54] reported the development of a surgical simulator with

“free form tissue” which can be “cut” like real tissues.

j) G. Picinbono et al. [30] presented the minimally invasive haptic surgery simulator

prototype. The system is to provide a realistic training test-bed for performing

Chapter 2: Literature Review

15

laparoscopic procedures through the simulation of the deformation and cutting of

3-D anatomic model.

2.4.2 Models for deformable objects

In a surgical simulation system, modeling deformable objects and reducing intensive

computation are crucial. The idea of using variable multi-scale meshing for modeling

and the ways to reduce computation attract much attention. Here, we list some

representative schemes.

K.M. Lim et al. [40][50] have developed a fast multi-scale FEM algorithm for a

VR-based microsurgery training system to offer novices realistic surgical training.

Like other surgical systems, the time saving comes from the reduction of the order of

the simulated system because fine and coarse meshes are introduced instead of using

evenly fine mesh.

Rynson et al. [9] introduced a multi-resolution method to model arbitrary topology

(only triangular elements are used). First, each vertex is given a visual importance

value used to determine the visual importance value of each edge and then the visual

importance value of each triangle. Then, during runtime, the system will decide how

many triangles should be removed from the model according to the render time

available and the distance of the object from the viewer at a particular frame. Such a

method considers the computation time and also preserves the geometry of the model

as much as possible.

Çavusoglu et al. [19] proposed a multi-rate simulation method that uses a local

linear approximation. The purpose is to deal with the difference between the high

update rate (1kHz) of haptic interfaces and the significantly lower update rates (10Hz)

Chapter 2: Literature Review

16

of the physical models being manipulated. First, the inter-sample behavior is first

modeled as a linear approximation of the full order model. Then, a local linear model

is directly derived from the full-order model. So the system has a full-order model

running at the very low rates (10Hz) and a local linear model is running at haptic rate

(1kHz) to model the inter-sample behavior of the physical model.

F.Ganovelli et al. [25] introduced another multi-resolution model to simulate a

tissue cutting. The system not only uses a multi-resolution triangular mesh, but also

allows changing the system’s topological structure. So, when the cut is intersected,

topological structures are dynamically changed.

Wu et al. [23] presented a nonlinear FEM using mass lumping to produce a

diagonal mass matrix that allows real time computation. A dynamic progressive

meshing can provide sufficient details where required for the real-time surgical

simulation.

K. Hirota et al. [27] used a linear FEM to model the elasticity of an object in VE.

In their model, two processes are executed asynchronously. One process is pre-

computation of the inverse stiffness matrix, and, the other is the interpolation of

forces in order to get a smooth interaction force feedback.

J. Kim et al. [53] used a coarse global model as well as local subdivision and

smoothening in their simulation. Such a multi-resolution method is used to simulate

laparoscopic surgical procedures when real-time force feedback is needed.

2.5 Summary

This chapter gives a brief literature survey about the haptics: its challenges and

strategies, and its typical usage in surgical simulators. Several multi-resolution

Chapter 2: Literature Review

17

meshing models are investigated according to the survey. In any interactive VR-based

surgical simulation with force feedback (1kHz) and visual feedback (30Hz), it is

critical to reduce the model in order to save computation time. The coming chapters

will expand around this key issue.

Chapter 3: Fundamentals of Multi-Scale FEM

18

3 Fundamentals of Multi-Scale FEM

3.1 Introduction

As the processes for both multi-scale FEM and conventional FEM are identical, this

chapter will introduce only the fundamental issues of finite element analysis. Zhang et

al. [60] developed a way to model multi-scale FEM, however, the author wants to

develop different algorithms and investigate more fundamental issues involved in

multi-scale FEM and explain the difficult research areas.

The introduction of FEM is first presented in section 3.2; the process of FEM and

an example are described in section 3.3 and 3.4 respectively. Then, the reasons for

using multi-scale FEM are presented in section 3.5. Two important issues relevant to

the project are discussed in section 3.6. Finally, a summary for the whole chapter is

given in section 3.7.

3.2 Principles of FEM or multi-scale FEM

As a universal engineering analysis method, FEM is widely used in engineering

analysis where a continuous problem with countless DOFs is approximated by a

discrete model with finite DOFs and interpolation functions (normally interpolation

polynomials) are used to describe the behaviors of points between its end points

(nodes).

FEM formulae can be established in several ways. For 1D FEM, they can be

directly inferred from the approximation of the differential equation with boundary

conditions [55]. However, it is also preferred to start from the natural laws governing

the behaviors of a system and then to establish their institutional relationships in order

Chapter 3: Fundamentals of Multi-Scale FEM

19

to solve the problems. Other more general methods include minimum energy method,

variation principle, or, functional analysis and etc. No matter what methods are used,

the FEM process means a lot of unknowns and a lot of equations used to solve

unknowns.

Because a physical way is often instructive and intuitive, one-dimensional linear

elastic mass-spring system is used to illustrate the most basic concepts and the most

fundamental issues involved in FEM will be discussed. The specific solvers and skills

for solving assembled equations will be discussed in the Appendix.

3.3 FEM: concepts and the process of solving

Here, we will demonstrate the basic ideas in 1D linear elastic cases. Some simple but

instructive examples will be used to help expound basic and important concepts.

3.3.1 Basic concepts

Degrees of freedom (DOFs) are defined as the number of independent variables (or

here, the coordinates) that are necessary to completely specify the configuration of a

system. Figure 3.1 below shows a spring that needs two degrees of freedom at nodes I

and J in order to specify its positions.

Fig. 3.1 A spring element with two DOFs

A spring element is defined as a deformable element under one-dimensional (x-axis)

tensile or compressive loads that produce axial displacements at each node.

A node is defined as a rigid point connecting adjacent elements and bearing forces.

Chapter 3: Fundamentals of Multi-Scale FEM

20

The physical law: for a linear elastic spring, the nodal deflection in a spring is

directly proportional to the spring force applied (Fig.3.2).

f = k ∆ = k (xI - xJ)

f - Spring force (units: force)

k - Spring constant k>0 (units: force/length)

∆ - Spring deformation (units: length)

xI – Horizontal displacement at node I

xJ - Horizontal displacement at node J

Fig. 3.2 Spring law

Fig. 3.3 Sign convention

The following sign conventiosn will be assumed (Fig. 3.3):

a) Nodal displacement (u): positive to the right.

Chapter 3: Fundamentals of Multi-Scale FEM

21

b) Nodal axial force (f): positive to the right.

c) Axial deformation (∆): positive for elongation.

3.3.2 Determination of single element stiffness matrix KE

For the stress-strain analysis of a statically indeterminate problem, three conditions

are stipulated:

a) Equilibrium: forces acting on each separated element must be in equilibrium. That

is expressed as: ∑ fx = 0.

b) Compatibility: the structure must remain continuous, no geometrical gaps or

overlaps must exist;

c) Physical law (stress-strain law): in this case, a linear spring formula that connects

the forces in the equilibrium equation to the deformations in the compatibility

equation.

The variables defined for the spring element are:

fI - Axial force of local node I uI - Axial displacement of local node I.

fJ - Axial force of local node J uJ - Axial displacement of local node J

k - Spring constant

Each element has two nodes and thus has two DOFs. Nodal forces (fI, fJ) and

nodal displacements (uI, uJ) are all assumed to be positive. We will know that the

stiffness matrix will be a 2x2 matrix.

fE = KE * uE

Chapter 3: Fundamentals of Multi-Scale FEM

22

=

J

I

J

I

u

u

kk

kk

f

f

2221

1211 (3.1)

The task at hand is to determine unknown terms k11, k12, k21, & k22. Fig. 3.4

illustrates a separated spring element.

Fig. 3.4 A separated spring element

Applying the physical law at the node J (elongation is assumed.), we have:

Jf = k * ∆ = k * (Ju - Iu) = - k Iu +k Ju

Applying the equilibrium to the free-body element, we have:

Jf + If = 0

If = k Iu - k Ju (3.2)

Jf = - k Iu +k Ju (3.3)

Thus,

KE =

2221

1211

kk

kk
=

−

−
kk

kk
 (3.4)

In a compact matrix form, the equation for the spring element is:

fE = KE * uE (3.5)

−

−=

J

I

J

I

u

u
k

f

f

11

11
 (3.5*)

Chapter 3: Fundamentals of Multi-Scale FEM

23

More about the stiffness matrix KE

We have used a "direct method" to derive KE, and the characteristics of KE are listed

as follows.

a) Square matrix.

b) Symmetric matrix.

c) Diagonal terms are always positive.

3.3.3 Overall stiffness matrix

After we get the formula (3.5) for each element, we can rearrange both known and

unknown variables. Thus, we are able to compute the whole system through

specialized equation solvers. Instead of using energy or weighted residual methods,

which are deemed complex and general, we use a direct assembly method to get the

overall stiffness matrix. That is, all element stiffness matrixes (KE) are assembled to

the overall stiffness matrix (K). The contribution of each (KE) is directly added into

the overall stiffness matrix (K) according to their configurations.

3.3.4 Solution characteristics for 1D linear elastic case

In FEM, a so-called shape function (normally polynomial) is used to describe the

deformation of each geometrical point within an element. For any point within an

element (1D here), its displacement can be represented by u (x) = a * x + b where a

and b are constants and can be decided by boundary conditions. At the boundaries I, J,

Iu and Ju are both known, so, a and b can be determined. Thus u can be uniquely

determined for each given position x. Through this, we can get the distribution field of

Chapter 3: Fundamentals of Multi-Scale FEM

24

displacement within an element and consequently, stress distribution. Before we start

our case study, theoretical analysis of system behaviors are helpful.

a) At element level

The continuity of axial displacement

Since the axial displacement is described by a linear polynomial, u (x) = a * x + b

which is a continuous function, the axial displacement must also be continuous for the

entire length of the element. This means that a graph of the axial displacement will be

continuous and have no gaps (cracks) or overlaps (see Fig. 3.5).

The interpretation of axial displacement distribution

An axial displacement indicates the distance that each point within the element has

moved from its non-loaded position along the x-axis. A FEM solution will only give

us a value for the axial displacement at each node and displacement distribution can

be obtained from the shape function (see Fig.3.5).

Fig. 3.5 Axial displacement distribution

Chapter 3: Fundamentals of Multi-Scale FEM

25

b) At assembly level

Deformation discontinuities among adjacent elements

For 1D linear case, the deformation (∆) is a constant used to describe the overall

deformation of the element. At the assembled mesh, the deformations of neighboring

elements normally vary because each element may have different spring constant (k),

external loading and constraints in spite of the fact that the deformation (∆) is a

constant within each element. Thus, the deformations among adjacent elements will

generally not be continuous (see Fig. 3.6).

Fig. 3.6 Deformation of neighboring elements

Internal axial force (f)

The internal axial force (f) within each element is described by a constant. Any two

adjacent elements, which have different spring constant, loadings or constraints, will

generally have different internal axial force (see Fig. 3.7).

Chapter 3: Fundamentals of Multi-Scale FEM

26

Fig. 3.7 Internal forces among adjacent elements

3.4 The process of FEM - an example

It is helpful to use an example to illustrate the solving process and the analysis of

numerical solutions. The configuration of the example is as follows. Three springs are

assembled in series as shown in Fig.3.8. An external force (F2) is applied at node 2,

assuming k1 = k3 = 10,000N/m, k 2 = 20,000N/m and F2 = 450 N. So, there are 3

elements and 4 nodes (thus 4 DOFs, 1 & 4 are constrained, 2 & 3 are unconstrained).

Fig. 3.8 Three linear springs in series

Such a system is statically indeterminate since there are two unknown reactions

(both ends) with one equilibrium equation. The unknowns we need to find include

nodal displacements (2 & 3), reactions at nodes 1 and 4, element forces, and element

deformation. Its solving process is illustrated as follows.

1) Obtain equations

According to the Direct Assembly Method, we can get f = K * u, where f represents 4

by 1 force vector; u is 4 by 1 displacement vector; and K is 4 by 4 stiffness matrix.

Chapter 3: Fundamentals of Multi-Scale FEM

27

According to the formulae (3.5*), we can write the following three equations for three

elements (Fig 3.9).

−

−=

2

1

2

1

11

11
*000,10

u

u

f

f
 (#1)

−

−=

3

2

3

2

22

22
*000,10

u

u

f

f
 (#2)

−

−=

4

3

4

3

11

11
*000,10

u

u

f

f
 (#3)

Fig. 3.9 Separate equations of elements

2) Assemble the overall stiffness matrix

We use the direct method to get the overall stiffness matrix (see Fig.3.10). The

contributions of each element in the overall matrix are described as follows. The KE of

element #1 will fill a 2x2 sub-matrix (rows 1-2, columns 1-2) in the K. Similarly,

element #2 is for rows 2-3 & columns 2-3, and element #3 is for rows 3-4 & columns

3-4. The resulting matrix K is a banded (tridiagonal) matrix with the width of 3 and

other terms are all zeros. 22k and 33k are resulted from two terms since each of node 2

and node 3 connects two elements. After applying boundary conditions (Table 3.1),

we get Fig 3.10.

Chapter 3: Fundamentals of Multi-Scale FEM

28

Table 3.1Boundary conditions

Known Unknown

u1 = 0 (rigid wall); F1 = ? (wall reaction)

u4 = 0 (rigid wall); u2 = ?

F2 = 450N; u3 = ?

F3 = 0 (no external force); F4 = ? (wall reaction)

Node #: 1 2 3 4

 F1, F2, F3 and F4: external nodal load

Fig. 3.10 Overall linear equations of the mesh

3) Solve the system of linear equations

Here, we need to solve unknowns: u2, u3, F1, F4. In Fig.3.10, since there are four

equations for four unknowns, it is a determinate problem unless it is a degenerated

system. There are two ways to solve the equations:

1) Re-arranging the known terms and the unknowns, we can get K* u = f, where K

and f are known, u is an unknown vector.

2) After crossing out rows and columns in K, f and u as illustrated in Fig.3.11, we

can solve a smaller system of equations to get u2 (0.027m) and u3 (0.018 m).

=

4

3

2

1

44434241

34333231

24232221

14131211

4

3

2

1

u
u

u

u

kkkk

kkkk

kkkk

kkkk

F
F

F

F

Chapter 3: Fundamentals of Multi-Scale FEM

29

Fig. 3.11 Cross out terms to solve linear equations

4) Calculate axial displacement distribution

Fig. 3.12Axial displacement verse position along the entire mesh

From the displacement distribution (Fig. 3.12), we find:

1. Over an element, displacement varies linearly.

2. Over the mesh, displacement is piecewise linear.

3. Displacement is single valued at nodes (compatibility).

5) Compute reaction forces

Theoretically, we can directly replace the known terms in Fig.3.10 to get all the

unknowns. However, in actual numerical analysis, the original stiffness matrix is

generally destroyed. So, some housekeeping is needed in order to get the final results.

The reaction forces F1 and F4 can be otherwise numerically computed as F1= -270N,

and F4 = -180N.

Chapter 3: Fundamentals of Multi-Scale FEM

30

6) Determine spring forces and deformation of elements

Since all nodal displacements are now known, we can calculate elemental forces

using the force-displacement relation and deformation of each element (Fig.3.13 and

Fig.3.14).

(Above x-axis: tensile; below x-axis: compressive)

Fig. 3.13 Axial elemental forces versus position along mesh

(Above x-axis: elongation; below x-axis: compression)

Fig. 3.14 Axial deformation of elements versus position along mesh

3.5 The motivation for multi-scale FEM

Using the same process of the above-discussed FEM, we can solve a multi-scale FEM

problem. However, though the process is identical, the meshing schemes are different.

It is necessary to discuss why a multi-scale meshing scheme is a better choice.

 Our ultimate aim is to develop a haptic surgical trainer to help novices. A surgical

simulation system is complex as many issues are involved. Firstly, we need to model

Chapter 3: Fundamentals of Multi-Scale FEM

31

complex tissue and organs. Secondly, we need to simulate real-time tool-tissue

interaction which is intrinsically non-linear. Thirdly, we need to compute collisions,

the contact manifold, forces and torques. Furthermore, we might need to model

complex behaviors such as suturing, cutting and others (Fig.3.15 shows the haptic

loop in a surgical trainer). Lastly, the most challenging issue is that, in order to get the

“real-time haptic feedback”, we must get a very high update rate (>1000Hz). And all

of these factors are involved in each loop, thus, the overall simulation is

computationally demanding. So, how to simplify the models is crucial to reduce the

order of computation. Under current computer resources and schemes, it is hard to

model the system using traditional FEM because, in a traditional FEM, all areas are

modeled with equally high resolution which demands high computational load, and

thus it often cannot meet the real-time requirements required of surgical simulation. In

contrast, a multi-scale meshing scheme, where some areas are modeled using

relatively high resolution while other areas are modeled using lower resolutions, such

a so-called multi-scale meshing scheme ([9][11][19][21][25][29][40][50][53]) can

dramatically reduce the order of the simulated system and thus greatly reduce the

order of computation. In short, simplified models and efficient algorithms are crucial

to develop a surgical simulator. The basic scenarios and further possible speeding up

[56] will be discussed in the next section.

Chapter 3: Fundamentals of Multi-Scale FEM

32

Fig. 3.15 A typical haptic system with real-time force feedback and visual feedback

3.6 Some basic scenarios and further speeding up

In this section, some basic scenarios for our algorithms are first introduced. Then,

further reduction of computation overhead is discussed.

In [1], Poston describes tool tip-tissue interaction and suggests that using

traditional FEM to model such behaviors would be expensive and inefficient.

Therefore, a multi-scale meshing in modeling is suggested. Particularly, since the

intrinsic topology of the binary division exists in 1D case, a perfect binary tree data

structure is suggested to express the different levels of divisions, which precisely

explains why a perfect binary tree data structure is used in our multi-scale algorithms

in later chapters. As for the forces, typical force-delivering devices like the

PHANToM [57] and torque-delivering haptic devices like the Lausanne system [58]

Read Haptic Position

Solution to Equilibrium
Point

Haptic Force + User
Reactions

Device Delivers ForcesSolution to Haptic Force

Update the Graphics

> = 50ms

no

yes

Chapter 3: Fundamentals of Multi-Scale FEM

33

can be used. The following will discuss another important issue: dynamic

computation.

Although much computation time can be reduced by linearization and using

coarse mesh, further speeding up can be achieved as described by Lim [56].

1) We can reduce repeated computation if we understand the mechanism how the

solving process evolves, especially, when only minor changes occur. That means

the reduction of the repeated computations of matrices K and f and u incurred in

each solution process. Even the previous solutions of u may be used as the initial

guess if the iterative matrix equation solver scheme is used.

2) Use parallel computation schemes and let the fine model to share common

reusable parts with the coarse model so that their results can update each other

mutually.

3.7 Summary

This chapter describes some basic and fundamental concepts. The solving procedures

required of a FEM are also given in details. Such procedures are applicable in our

multi-scale scheme. Also the motives of using multi-scale mesh and developing

efficient algorithms are described. Finally, some scenarios and ideas for possible

speeding up relevant to our project are discussed.

Chapter 4: Key Issues for Multi-Scale Meshing

34

4 Key Issues for Multi-Scale Meshing

4.1 Introduction

Some key issues involved in the proposed multi-scale meshing algorithms are

introduced in this chapter. They include: 1) object-oriented techniques and basic data

structures being used (sections 4.2, 4.3, 4.4, and 4.5); 2) the reasons to use fineness

function (section 4.6); 3) classes being used to express the topology of the data

structures (section 4.7) and 4) special topics such as initialization and post-processing

(section 4.8). All of these issues are indispensable for the proposed multi-scale

meshing. However, among them, the applications of the array-based binary tree and

the fineness function are crucial and creative. Finally, a summary is given in section

4.9.

4.2 Object-oriented (OO) programming

We design and code the algorithms using OO technology because it can provide

advantages for modeling a complex system which includes data abstraction,

encapsulation, information hiding and messages-based communication mechanism

(Fig. 4.1.)

Fig. 4.1 Messages-based communication mechanism

Object
4

Object
1

Object
3

O bject
2

Chapter 4: Key Issues for Multi-Scale Meshing

35

4.3 Standard Template Library

In our program, we borrow the idea of Standard Template Library (STL) and design

classes such as iterators and containers. We develop a set of standard traversal

operations for standard data structures - doubly linked list and binary tree. Thus, it is

necessary to introduce STL here. STL is a set of C++ template classes that provide

common programming data structures and functions and it is the most important

section of the Standard Library used to reduce the unnecessary programming of

standard data structure and algorithms. Among STL techniques, containers and

iterators are crucial.

Container classes are classes whose purpose is to contain other objects. That means

each container class is a collection class used to contain other objects.

Iterators are the mechanism that makes it possible to decouple algorithms from

containers. In STL, algorithms are templates and can be parameterized by the type of

iterator. Subsequently, iterators are not restricted to a single type of container.

In [35], Ford and Topp introduce object-oriented data structures and their

interfaces using STL. They unify the study of data structures around the concepts of

containers and iterators and develop algorithms. The ideas about containers and

iterators are directly adopted and necessary alterations are made in the coding.

4.4 Perfect binary tree and doubly linked list

a) Perfect binary tree

The algorithms developed here are based on a so-called perfect binary tree structure,

and the discussion of its characteristics will show that such a structure perfectly

expresses our world map of nodes.

A binary tree is a tree with at most two children for each node. Fig. 4.2 illustrates

concepts such as nodes, root, leaves, left child tree and right child tree.

Chapter 4: Key Issues for Multi-Scale Meshing

36

Fig. 4.2 A binary tree

A perfect binary tree is a binary tree with all leaf nodes at the same depth. All

internal nodes have two children nodes (Fig. 4.3).

Fig. 4.3 A perfect binary tree

The height of a tree is defined as the number of links from the root to the deepest

leaf. A perfect binary tree has an important characteristic about the number of nodes:

n. If we set the height of a tree equal to h (Fig. 4.3, h = 3), then, we have:

n = 1 + 21 + 22 + ... + 2h,

So, n = 2h+1 – 1 (4.1)

And conversely, h = floor (log2n) (4.2)

Typical operations such as deletion or addition of nodes are implemented through

the access and modifications of defined node pointers (in C/C++, memory address).

Fig.4.4 shows how three nodes are topologically linked.

Chapter 4: Key Issues for Multi-Scale Meshing

37

Fig. 4.4 A node of a binary tree and its left pointer and right pointer

b) Doubly linked list

A doubly linked list (see Fig.4.5) is a variant of a linked list in which each item has a

link to both its previous item and its next one. This facilitates the convenient access of

the linked items backwardly and forwardly.

Fig. 4.5 A doubly linked list

A doubly linked list has two basic operations: adding a node and deleting a node.

To add a new node (p), four steps are needed (as shown in Fig. 4.6):

1) Let the previous pointer of the new node (p) point to its due predecessor (q).

2) Let the next pointer of the new node point (p) to its due successor.

3) Let the next pointer of its predecessor (q) point to the new node.

4) Let the previous pointer of its successor point to the new node

Fig. 4.6 Four steps to add a new node

To delete a node (p), however, only two steps are necessary (shown in Fig. 4.7):

item 1 item 2

item 4

item 3

p

q

(1) (2)(3) (4)

item 1 item 2 item 3

Chapter 4: Key Issues for Multi-Scale Meshing

38

1) Let the next pointer of its predecessor point to its successor.

2) Let the previous pointer of its successor point to its predecessor.

Fig. 4.7 Delete an old node from the list

4.5 Topology of a binary division structure

In order to reduce the order of a full FEM model to a reasonable scale by using a

multi-scale mesh, we first need to build up a structure with different levels of

elements. For 1D case, we recursively bi-divide the model into different levels of

elements and a map of all elements can be formed, which topologically builds up a

perfect binary tree (Fig. 4.3). As there are no operations such as addition of new nodes

or deletion of old nodes, we can infer from such a structure the following points.

1) The relationships between a node and its children nodes, or, its parent node are

fixed, which makes it easy for us to express it using an array.

2) Once we use an array (in C/C++) to express a perfect binary tree (numbering

elements in different levels in a suitable order), a fixed mathematical relationship

can be inferred between any two nodes.

3) Most importantly, such an array-based expression can completely free us from

operations of pointers and thus save us much time and memory.

The following is the process about how we can build up our perfect binary tree

A. First, we sequentially number all the elements as shown in Fig.4.8

item 1 item 2 item 3

p
(1)

(2)

Chapter 4: Key Issues for Multi-Scale Meshing

39

Fig. 4.8 Binary division and its topology

[00]

[01] [02]

 [03] [04] [05] [06]

 [07] [08] [09] [10] [11] [12] [13] [14]

B. Then, we use an array structure to sequentially store these elements as

[00][01][02][03][04][05][06][07][08][09][10][11][12][13][14]

In this way, we successfully use an array to express a perfect binary tree without any

redundancy and any memory waste. Thus, we can not only greatly simplify the

establishment and initialization of a perfect binary tree, but also tremendously

improve the efficiency because we can use array operations instead of pointers. In

summary, all elements are topologically organized in a form of a perfect binary tree,

but they are stored in an array structure and traversed using indices.

After we know how to build up an array-based perfect binary tree, it is helpful to

further list its characteristics. If n represents the number of elements, h represents

division level h and m represents vertices. We have:

1) Using formulae (4.1), the relationship between n and h is:

n = 2h+1 – 1

2) The relationship between m and h is:

At the deepest level, the number of vertices is:

Chapter 4: Key Issues for Multi-Scale Meshing

40

m = 2h + 1 = Number of Leaf Elements + 1; (4.3)

This is the number needed by the leaf elements, however, these vertices are also

shared by those elements at higher levels.

3) There exists an explicit parent/children relationship

The following shows how we can access an element’s parent and its children or vice

versa.

a) For the root node, no parent node.

b) For all the leaf nodes, no children nodes.

c) For internal nodes, if its sequence number in the array is nN , then, we have:

Left child: NL = 2 * nN + 1 (4.4)

Right child: NR = 2 * nN + 2 (4.5)

Parent node: NP = Integer Part of (nN – 1) / 2 (4.6)

Or: NP = Integer Part of (nN - 2) / 2 (4.6*)

4.6 Fineness function, its calculation and significance

After an array-based perfect binary tree is built, a fineness function is used to reflect

relative fineness requirements of different areas in order to get a multi-scale mesh. By

this way, fineness requirements are quantified.

In haptic simulation, many factors need to be considered in order to describe

relative fineness requirements in different areas. For example, in simple situations,

fine meshes are typically used in areas where a haptic tool-tissue interaction occurs or

constraints or external forces are applied. However, we also need to consider other

factors such as follows:

a) Interactions at several places

b) Different kinds of interactions

Chapter 4: Key Issues for Multi-Scale Meshing

41

c) High curvature for precise visual rendering

d) Complex loading conditions

e) Complex geometric shape and other constraints, etc.

How can we distinguish and quantify (digitize) their relative influences in order to

choose whether fine or coarse meshes should be used at different areas? A good

answer is to adopt a so-called weight-based method, which often need experts’

knowledge accumulated from experiences and lessons. The fineness function plays

such crucial role.

4.6.1 Fineness function at the deepest level

How a fineness function is used can be described as follows. Firstly, we assign a

fineness function to the whole area of interest. Then, we calculate a fineness value for

each element at the finest level. Finally, we use those fineness values calculated at the

deepest level to initialize other elements at higher levels. It needs to be pointed out

that the fineness values of elements are the results of integer approximation of real

values. That is, a fineness value for each element at the deepest level is calculated

according to the specified function and then the number will be rounded up to the

nearest integer. For example, given the highest division level as 3, the range [0, 80],

and the fineness function Y = 0.25 * X (where Y is fineness and X is coordinate), the

average fineness for the first element [0, 10] is (0 + 2.5) / 2 = 1.25, which can be

rounded to 1. Similar procedure continues untill each element at the deepest level gets

its fineness value. Furthermore, all the values have to be normalized within the range

[0, h] where h is the division level. For example, in Fig.4.9, a Gauss function is

specified in the meshing area and the division level is five (h = 5). There are two cases:

Chapter 4: Key Issues for Multi-Scale Meshing

42

1) For a leaf element, it should be assigned a fineness integer according to its

geometric position. However, the fineness function needs to be normalized within

the range of [0, 5] if the maximum final fineness value is greater than 5.

2) For a non-leaf element, its fineness value is the largest of its left or right child’s

value through an initialization process (in section 4.6.2).

meshing
position

fineness
value

Fig. 4.9 Fineness function of a five-level division

4.6.2 Fineness initialization for the whole perfect binary tree

For all non-leaf nodes at higher levels, a fineness value is assigned according to the

following iterative process. From the second deepest level, we “scan” each element

and compare the fineness integers of both its left child and right child. The larger of

both is chosen as the fineness integer of the current element. The process continues

till the root of the tree is traversed. Finally, each element gets a fineness integer that

explicitly indicates its fineness requirement. Fig.4.10 shows the whole process.

Chapter 4: Key Issues for Multi-Scale Meshing

43

Step 0: Initialization at the 3rd level Step 1: Initialization at the 2nd level

Step 2: Initialization at the 1st level Step 3: Initialization at the 0th level

Fig. 4.10 Fineness initialization of a perfect binary tree

The fineness value is the most important criterion in multi-scale meshing. Once

we finish the process of initialization we can start to discuss our algorithms.

4.7 The schematic descriptions of data structures

We will introduce the hierarchical data structures used in representing the perfect

binary tree.

Vertex class: used to define the vertices.

Element class: used to define an element.

Doubly linked list class: used in the operations involved in algorithms.

Container class of a doubly linked list: used to maintain a doubly linked list.

Iterator class for doubly linked list container: used to provide a set of standard

operations for the objects contained a doubly linked list container.

Binary search tree class: defined as a container class to implement all the operations

such as: building up a binary tree, constructing a multi-scale mesh using different

algorithms.

Chapter 4: Key Issues for Multi-Scale Meshing

44

4.8 Flow-charts of the execution

4.8.1 Flow chart of initialization: construct a perfect binary tree

Fig. 4.11 Flowchart of the initialization of a binary tree

4.8.2 Flow chart for generating a rough mesh during initialization

Two very important issues in the proposed algorithms are discussed here. One is on

how to quickly get an initial multi-scale mesh and the other is on post-processing. In

order to get a rough mesh during initialization, two data members defined in the

element class need to be discussed here: m_bQua and m_eChg. m_bQua indicates if

the fineness requirement of an element is met and m_eChg is used to reflect the new

state after the fineness value of an element is changed, which ultimately determines

whether an element is qualified for merging or division.

 For all the following discussions and figures, m_iDLev stands for an element’s

actual division level, and m_iFLev stands for an element’s fineness value. Fig.4.12.

shows the whole process on how we can get a rough mesh and each of six steps is

Calculate fineness for each element

Specify the division level:h
Specify fineness funct ion

Allocate memory for the vertex array
Allocate memory for the element array
Create an empty doubly-linked list

Assign coordinates to each vertex
Assign vertex indices to elements
Calculate each element's division level
Establish a binary t ree

A fully init ialized perfect binary t ree

Chapter 4: Key Issues for Multi-Scale Meshing

45

further explained sequentially from Fig. 4.13 to 4.18. In Fig.4.12, Div.Level

(m_iDLev) is the division level of an element, and Fine.Level(m_iFLev) stands for an

element’s fineness value. The criteria Div.Level >= Fine.Level means the current

element is small enough to meet the required precision measured using the current

element’s fineness value. First, all the leaf elements are labeled as

“qualified”(m_bQua = “T”), then, we recursively check each element if an element is

too “fine”, if it is the case, and the current element is labeled as qualified (m_bQua =

“T”) and its two children are labeled as “not qualified”(m_bQua = “F”), this process

continues till we reach to the root element. That is what Fig. 4.12 shows.

First , set all leaf elements: m_bQua = "T "

Div.Level >=
Fine.Level?

Root?

Scan level by level
(bottom-up)

n
o

Set it to "T"
Set its Children to "F"

End

Set it to "F"

ye
s

yes

n
o

(Div.Level: division level of an element, Fine.Level: an element’s fineness value)

Fig. 4.12 Get a rough mesh while initializing

Chapter 4: Key Issues for Multi-Scale Meshing

46

From figures 4.13 to 4.18, the numbers at the left end of each line are the calculation

sequence number and each number at the right end of each line stands for the division

level of the all elements drawn on that line. The number immediately below an

element is the element’s division level; the number immediately above an element is the

element’s final fineness level which can be rounded up and normalized if necessary.

We can properly collect the “qualified” elements as our rough mesh after we

recursively (In-Order) “traverse” the whole tree. Then proper post-processing (section

4.8.3) can be carried out to get the initial multi-scale mesh. The detailed process can

be demonstrated as follows.

1) Build up and initialize the perfect binary tree.

Fig. 4.13 Build up a perfect binary tree

[00] - [14] stand for elements while numbers of 0, 1, 2 and 3 on the right stand for

division levels. Lines connecting two nodes stand for parent-children relationships.

The perfect binary tree can be initialized as illustrated in Fig. 4.13.

2) Set m_bQua of all leafs at level 3 to “T” (TRUE). See Fig. 4.14, the states of

elements [07], [08], [09], [10], [11], [12], [13] and [14] are set to “T”.

Chapter 4: Key Issues for Multi-Scale Meshing

47

Fig. 4.14 Assign m_bQua = “T” to all leafs

3) Scan the elements at level 2. According to the criterion of m_iDLev >= m_iFLev,

[03], [05] and [06] are set to “T”, their corresponding children [07] & [08], [11] &

[12], [13] & [14] are set to “F”. However, its children [09] & [10] are untouched

since [04] is already set to “F”. The result is shown in Fig. 4.15.

Fig. 4.15 Scan the elements at the second division level

4) Similarly, the elements at level 1 are scanned and [01] is set to “F” with its

children untouched; [02] is set to “T” and its children [04] & [05] to “F”. See

Fig.4.16.

Chapter 4: Key Issues for Multi-Scale Meshing

48

Fig. 4.16 Scan the elements at the first division level

5) We scan the element at level 0 and set its m_bQua = “F”. See Fig.4.17.

Fig. 4.17 Scan the first element [00]

6) Now if we scan from level 0 to level 3, we can find that all the elements with “T”

are just qualified to meet the fineness requirements. Besides, any element

(excluding leaf ones) with “T” must have their descendants to be set “F”. With

these observations and starting from the first element [00], which is the only

element of a double-linked list, the scan procedure stops if element [00] is “T”;

otherwise, element [00] should be deleted from the double-linked list and replaced

Chapter 4: Key Issues for Multi-Scale Meshing

49

by its immediate children (from left child to right child). This is a typical recursive

process.

After this process reaches the deepest division level, it is guaranteed that all the

elements in the double-linked list are with “T” and these elements consist of the mesh

area without overlapping. Such a doubly-linked list stands for the roughest mesh

because each element in the list stands for the roughest mesh for its mesh area. Thus,

the roughest multi-scale mesh for the whole area is obtained as the initial multi-scale

mesh. In fact, In-Order Traversal works perfectly to traverse the perfect binary tree

and the rough mesh comprised of elements [03][09][10][02] is reaped for further

processing.

Fig.4.18 illustrates the post-processing to shorten some big elements according to

other requirements. For example, neighboring elements cannot go beyond two levels.

As [02]’s m_iDLev is 3 and [10]’s m_iDLev is 1, thus, the final mesh:

[03][09][10][05][06] can be obtained after [02] is divided to [05] and [06]. See

Fig.4.19.

Fig. 4.18 Reap a rough mesh with the In-Order traversal

Numbers (top down): m_bQua, m_iFLev, m_iDLev and the element’s index

Fig. 4.19 Final multi-scale mesh after post-processing

Chapter 4: Key Issues for Multi-Scale Meshing

50

4.8.3 Post-processing originated from Division algorithm

The rough multi-scale mesh generated from the above initialization should be further

processed in order to get the correct multi-scale mesh because there may be “big”

level difference between neighboring elements as the results of initializing a rough

mesh. For example, big elements appear after division method is applied (Fig. 4.20).

Fig. 4.20 Too-big elements exist

Efficient methods are needed to process such big elements. The post-processing

procedure adopted in the current study can be illustrated as follows.

a) The procedures of post-processing

As each element’s division level and fineness level are known, the following post-

processing steps can be carried out after a rough multi-scale mesh is obtained through

the above-mentioned division process.

 Check if the level difference between neighboring elements is bigger than 1. If so,

the bigger element is divided until the difference is not bigger than one. The formula

about how many divisions are needed from a general case can be inferred as follows.

Here M, N and K are used to express division levels of elements in a binary tree (Fig.

4.20), we need to know how many sub-division times are needed to meet the

boundaries, we assume X times are needed for the left, and Y times for the right.

1. Assume: M >= K > N, M – N > 1, and K – N > 1.

Chapter 4: Key Issues for Multi-Scale Meshing

51

2. From the left side of the big element (N level), to meet the left boundary, N is

sub-divided X times to reach M-1, we have the sequence: N+1, N+2, …, M-1,

so we reach a formulae: M-1 = N+1 + (X-1) * 1, thus X = M – N – 1.

3. From the right side of the big element (N level), to meet the right boundary, N

is sub-divided Y times to reach K-1, we have the sequence: N+1, N+2, …, K-1,

so we reach a formulae: K - 1 = N + 1 + (Y - 1) * 1, thus Y = K – N – 1.

4. We list the above two formula together, thus:

 X = M - N – 1 (4.7)

 Y = K – N – 1 (4.8)

X >= Y

5. The division pointing to the element at the M level moves leftward (each

division from N+1, only the left element is sub-divided) and the division

pointing to the element at the K level moves rightward (each division from

N+1, only the right element is sub-divided). These division procedures at both

directions share the same division times: Y. Through this division process, the

big element is sub-divided into a sub-mesh with bigger elements in the mid

and finer elements at both ends. Thus we can get the roughest possible sub-

mesh that can still smoothly connect the left and right boundaries.

b) The flowchart of post-processing

The post-processing can be illustrated in a schematic flow-chart (Fig. 4.21), which

represents an interesting recursive process.

Chapter 4: Key Issues for Multi-Scale Meshing

52

Fig. 4.21 Flow chart of a recursive post-processing

4.9 Summary

Some key issues are introduced in this chapter. They include:

1) Basic ideas about OO programming

2) Standard Template Library

3) Topology of a perfect binary tree

4) The basic characteristics of a doubly linked list

5) The hierarchical topology of the binary division structure used in multi-scale

meshing

6) Fineness distribution and its significance in multi-scale meshing

7) Data structure of the proposed algorithms,

Get to the start of the rough mesh

Level Diff >= 2?

yes

The last?

Left?

Right?

Point to an element

n
o

Right Division
yes

no

Right Division
yes

no

yes

no

End

Chapter 4: Key Issues for Multi-Scale Meshing

53

8) And schematic flow-charts of key procedures.

These issues lay a solid and necessary foundation for the algorithms that will be

developed in the coming chapters.

Chapter 5: Algorithms of Multi-Scale Meshing

54

5 Algorithms of Multi-Scale Meshing

5.1 Introduction

In this chapter, detailed description of the three multi-scale algorithms, e.g. Division,

Merging and Dynamic and their comparisons are presented. A 1D example is used to

illustrate the most fundamental issues on 1) how a multi-scale mesh can be generated

in different ways; 2) how each algorithm can be used for different purposes; and 3)

what their fundamental differences are. The chapter is organized as follows. In section

5.2, the criteria used in algorithms are discussed. In section 5.3, Division algorithm

and its post-processing are explained. In section 5.4, Merging algorithm is developed.

In section 5.5, Merging algorithm and Division algorithm will be compared. In

section 5.6, Dynamic algorithm is developed and discussed. And, finally, a summary

is given in section 5.7.

5.2 Criteria for Division algorithm and Merging algorit hm

In the process of a multi-scale meshing, when an element is divided or two elements

are to be merged, the following criteria should be used.

a) When two elements are to be merged, only sibling elements can be combined.

That is to say, only the elements that have the same parent element in the perfect

binary tree can be merged. Such a criterion can effectively prevent algorithms

from creating those meshes that meet the requirements of fineness or level

difference but are not optimal in maximally reducing the order of the modeled

system. It can be shown in Fig. 5.1. If only sibling elements might be merged, a

multi-scale mesh labeled with “GOOD ONE” can be uniquely obtained. Without

Chapter 5: Algorithms of Multi-Scale Meshing

55

such a criterion, the mesh might not be unique and a multi-scale mesh labeled

with “BAD ONE” in Fig.5.1 could be obtained,

Fig. 5.1 Merge siblings or randomly merge neighboring elements

b) When a multi-scale mesh is built, the level difference of any two neighboring

elements cannot go beyond one. That is, the level difference between any two of

neighboring elements should not be greater than one. The basic purpose of this

constraint is to avoid over-drastic changes. For example, in Fig. 5.2, the mesh in

the second row is not good according to criterion (b).

Fig. 5.2 The level difference of neighboring elements should not be greater than 1

With such a criterion, it doesn’t matter whether a continuous or a discrete

fineness function is used to describe the fineness requirements of neighboring

Chapter 5: Algorithms of Multi-Scale Meshing

56

elements. The smoothness of the final mesh can always be guaranteed by this

criterion.

c) The decision to divide an element or merge two sibling elements is based upon the

following criteria. Here, m_iDLev stands for the division level of the current

element and m_iFLev stands for the fineness value of the current element. Given a

fineness function, the value of m_iFLev is calculated according to section 4.6).

There are two cases.

1) If the division level of the current element is greater than its fineness value,

e.g., m_iDLev > m_iFLev, the element is qualified to be merged with its

sibling element. The idea can be illustrated in Fig. 5.3, where the number in

parenthesis denotes the element index.

i) At level 0 (the first row), element [00] is not qualified as its division level

value (m_iDLev = 0), which is indicated at the end of each line, is smaller

than its fineness value (m_iFLev = 3) indicated right below the line.

ii) At level 1 (the second row), element [02] is qualified as m_iDLev = 1 >

m_iFLev = 0; element [01] is not qualified as m_iDLev = 1 < m_iFLev =

3.

iii) Similarly, at level 2 (the third row), elements [04], [05], [06] are qualified

but [03] is not because m_iDLev = 2 < m_iFLev = 3.

iv) At level 3 (the fourth row), only [07] is not qualified for merging.

Chapter 5: Algorithms of Multi-Scale Meshing

57

[n]: element index, n = 00, 01, …, 14

m: fineness value (m_iFLev), m = 00 or 03

k: division level (m_iDLev), k = 0, 1, 2, 3

Fig. 5.3 Criteria for merging or division

2) If the division level of the current element is less than its fineness value, the

element must be divided. For example (see Fig.5.3):

i) At level 0 (the first row), element [00] must be divided as its m_iDLev = 0

< m_iFLev = 3.

ii) At level 1 (the second row), element [01] must be divided as its m_iDLev

= 1 < m_iFLev = 3.

iii) Similarly, at level 2 (the third row), element [03] must be divided as its

m_iDLev = 2 < m_iFLev = 3.

iv) At level 3 (the deepest level), no division is possible or needed.

5.3 Division algorithm and its post-processing

5.3.1 Basic procedures

According to the above-stipulated criteria, the Division algorithm is described as

follows using a perfect binary tree with a division of four.

1. Specify the division limit and build up the perfect binary tree;

2. Specify a fineness function;

3. Calculate a fineness value for each element in the deepest level;

Chapter 5: Algorithms of Multi-Scale Meshing

58

4. Iteratively calculate and assign a fineness value for all other elements;

5. Push the first element [00] into the doubly linked list as the initial mesh and check

if all the criteria are met:

A. If so, finish the process and get a mesh with only one element;

B. If not, locate the element [00] and pop it out (delete it) from the list and

sequentially (from left to right) insert its two children elements [01] & [02] in

the list.

6. Scan the newly updated double-link list from the first element till the last one

(from left to right) to check:

A. If the current element needs no division, move to the next;

B. If the current element needs division, delete it from the list and sequentially

(from left to right) insert its two children elements into the original position of

the element.

7. The process of step 6 is repeatedly carried out until neither deletion nor addition

operation can be further applied to the list.

8. The element sequence in the doubly linked list constitutes the initial mesh.

9. Post-process the rough multi-scale mesh.

10. Finish the process and get the final mesh stored in the doubly linked list.

5.3.2 Critical criteria and a typical example

The core criteria used here are:

a) If the element is at the deepest level or its division level (m_iDLev) is greater than

its fineness value (m_iFLev), no division is needed and the element is left

untouched in the list.

Chapter 5: Algorithms of Multi-Scale Meshing

59

b) If an element’s fineness value is greater than its division level, the element must

be divided and its two children will sequentially replace it in the list.

c) Post-processing should be started if either of the following two situations is met:

1. The list has been scanned exactly h times.

2. No deletion or insertion occurs during the whole process of scanning. If this

happens, it shows that all elements in the list have already met the division

requirements even if the scanning times are less than h.

An example of Division algorithm is illustrated in figures 5.4 to 5.8.

a) Put the first element [00] with a fineness value of 03 into the list. An initial mesh

with only one element of [00] is thus generated.

Fig. 5.4 Put [00] into the list

b) Division must be performed because m_iDLev = 0 is less than m_iFLev = 3. Thus

[00] is replaced by its two children: [01] & [02]. After the left-to-right scanning is

finished, the new mesh with [01][02] is shown in Fig. 5.5.

Chapter 5: Algorithms of Multi-Scale Meshing

60

Fig. 5.5 Delete [00] and insert [01] and [02]

c) Scanning procedure starts from the leftmost element of the list. Element [01] is

replaced by [03] & [04] because its m_iDLev = 1 is smaller than its m_iFLev = 3;

element [02] remains unchanged. The updated mesh [03][04][02] is thus

generated as shown in Fig.5.6.

Fig. 5.6 Delete [01], insert [03] and [04], and keep [02]

d) The updated list is scanned again from the leftmost element.

1) Check [03] and it remains unchanged.

2) For [04], there exists m_iDLev = 2 < m_iFLev =3; [04] is deleted from the list

and its two children [09] & [10] are sequentially inserted.

3) Check [02] and it remains unchanged. Finally, a new mesh [03][09][10][02] is

generated in Fig.5.7.

Chapter 5: Algorithms of Multi-Scale Meshing

61

Fig. 5.7 Keep [03], replace [04] using [09] and [10], and keep [02]

Since the next level will be the deepest level, scanning procedure must stop. Thus,

the process moves to post-processing.

e) For the post-processing, the generated list is re-scanned. A so-called “Shorten”

procedure is applied to all of those elements that might be too “big” when

compared with their neighboring elements. For example, since the level difference

(absolute value) between [02] and [10] is bigger than one, element [02] is deleted

from the list and its children [05] and [06] are sequentially inserted into the list.

Post-processing stops when neither deletion nor insertion can be made. Finally,

we get the final multi-scale mesh [03][09][10][05][06] as shown in Fig. 5.8.

Fig. 5.8 [02] is further divided through a so-called “Shorten” post-processing

Chapter 5: Algorithms of Multi-Scale Meshing

62

5.3.3 Discussion

The Division algorithm reveals the basic idea on how to construct a multi-scale mesh

through coarse elements while the smoothness of the mesh is guaranteed by the

continuity of the used fineness function and the above-mentioned post-processing.

That means two things:

1. The fineness requirement of each element must be met.

2. Big elements are further divided through post-processing.

The post-processing in different situations can be discussed in more details. Let us

assume that the scan direction can be carried out either from left to right or from right

to left, five situations may occur to a big element.

1) If a big element is constrained between two smaller elements in deeper levels, the

division action will proceed in two directions until the level difference

requirements of its neighbors are meet. The case is illustrated in Fig. 5.9, where

the element: [04] is constrained by two much smaller neighbors, [38] and [23]. In

Fig.5.8, the first row stands for the fineness distribution; the second row is the

initial mesh obtained before post-processing; the third row is the final mesh after

post-processing. The post-processing is described as follows.

a) Firstly, [04] is divided leftward and rightward.

b) The leftward division continues until the mesh adapts to [38], and the

rightward division carries on until the mesh adapts to [23].

Chapter 5: Algorithms of Multi-Scale Meshing

63

Fig. 5.9 [04] is constrained by [38] and [23]

2) If an element needs division according to its left neighbor but its right neighbor

(an even big element) prevents the division, the current element must be divided

to meet the requirements of its left neighbor. And the right neighbor will be

further divided to meet the newly updated mesh in the same run of the scanning of

the post-processing procedure. The case is shown in Fig. 5.10, where [10] is

constrained by a much smaller left neighbor [42] and an even bigger right

neighbor [02]. Here, the first row stands for the fineness distribution; the second

row is the initial mesh before post-processing; the third row is the result before

post-processing of [10]; and the fourth row is the result after post-processing [02].

a) First, [10] is divided to adapt to [42].

b) Then, [02] is further divided until it adapts to [22].

Fig. 5.10 [10] is directly divided according to [42]

Chapter 5: Algorithms of Multi-Scale Meshing

64

3) If an element needs division according to its right neighbor but its left neighbor

(an even bigger left element) prevents this division, the current element needs to

be divided to meet the requirements of the right neighbor. The left neighbor will

be further divided to meet the newly updated mesh through post-processing. It is

similar to the case shown in Fig. 5.10.

4) If the leftmost element needs to be divided according to its right neighbor, the

division should be carried on from the left to the right. Such a case is shown in

Fig.5.11.

Fig. 5.11 Post-process a big head element

5) If the rightmost element needs division according to its left element, the division

should be carried on from the right to the left. The procedure is shown in Fig.12.

Fig. 5.12 Post-process a big tail element

5.4 Merging

5.4.1 Basic procedures

The Merging algorithm can be described based on the criteria stipulated in section 5.2.

Chapter 5: Algorithms of Multi-Scale Meshing

65

1) Specify the division limit and build up the perfect binary tree

2) Specify a fineness function

3) Calculate a fineness value for each element in the deepest level

4) Iteratively initialize all other elements till the root element [00].

5) Theoretically, all the leaf elements at the deepest level should be sequentially

pushed into the doubly linked list and be checked. However, this operation is very

time consuming. Thus, the process of merging (from left to right) directly starts

from the deepest level. This strategy can save much time and memory because the

number of elements at the deepest level is more than half of the total number of

the elements in the perfect binary tree. The procedure is described as follows.

a) If the current element can be combined with its sibling, their parent element

should be put into the list instead of the current element and its sibling.

b) If the current element cannot be merged with its sibling, the current element

and its sibling should be sequentially inserted into the list.

6) After the first run of merging, re-check the mesh.

a) If the current element can be merged with its sibling, the current element and

its sibling are deleted and their parent element will be inserted.

b) If no merging happens to the current element, then, move one position when

the next element is not its sibling or two positions if the next is its sibling.

7) Repeat step 6) until no any deletion or addition operation is applicable to the list.

8) Get the multi-scale mesh.

5.4.2 Basic criteria

The following criteria are essential to guarantee the correctness of the final multi-

scale mesh.

Chapter 5: Algorithms of Multi-Scale Meshing

66

a) The whole list should be scanned completely from the first to the last element.

b) Only siblings can be merged.

c) At any time, the difference of the division level of the neighboring elements must

not go beyond 1. That means that when two siblings are about to be replaced by

their parent, the level difference between their parent element and the predecessor

of the left sibling or the successor of the right sibling is either zero or 1. Two

special cases occur here:

1. If two siblings are the first two elements (head), only successor is considered.

2. If they are the last two elements, only predecessor needs to be considered.

An example is used to illustrate the merging process. After the initialization of a

perfect binary tree, the elements at the deepest level are sequentially checked and

the merging operation starts simultaneously. With the above-mentioned criteria:

1) [07], [08] are directly inserted into the list;

2) [09], [10] can be merged and thus, their parent [04] is inserted into the list;

3) Similarly, [05], [06] are inserted the list.

4) An initial multi-scale mesh is generated from the first run of merging as shown in

Fig.5.13.

Fig. 5.13 Start merging

5) Scan the newly generated mesh from left to right. [05], and [06] are merged and

thus deleted from the list but their parent [02] is inserted. See Fig.5.14.

Chapter 5: Algorithms of Multi-Scale Meshing

67

6) Repeat step 5 until no deletion or insertion is carried out. And the final multi-scale

mesh will be generated as shown in Fig.5.14. The stop conditions for merging

include 1) neither deletion nor insertion occurs; 2) h (the division limit or the

height of the tree) times of merging have been performed.

Fig. 5.14 Delete [05], [06] and insert [02]

5.4.3 Discussion

The Merging algorithm is very straightforward as it can guarantees the mesh

smoothness and correctness by using all criteria at each step of merging. When

merging happens, smoothness and fineness requirements are strictly satisfied. So, any

element in the final multi-scale mesh will be the neighbor of either its sibling or an

element with division level exactly one level higher or lower.

5.5 Comparisons between Merging and Division algorithms

5.5.1 The different strategies

A crucial criterion in Merging algorithm is that when the condition (m_iDLev =

m_iFLev) is satisfied, the merging process must be stopped no matter whether other

criteria permit or not. Furthermore, all criteria must be satisfied simultaneously in

order to merge two siblings and each element can reach at most to the level where the

condition (m_iDLev = m_iFLev) is satisfied.

Chapter 5: Algorithms of Multi-Scale Meshing

68

In Division algorithm, an element must be divided until at least m_iDLev =

m_iFLev is satisfied. Division should never be stopped when m_iDLev < m_iFLev

maintains. However, division is actually stopped once m_iFLev = m_iDLev is met

unless other criteria require for deeper division.

5.5.2 The identical multi-scale mesh

Both algorithms achieve the same purpose - building up a multi-scale mesh to reduce

the order of the model. Now that the same function is used to describe the fineness

requirements of our domain of interest and other criteria are the same, the final multi-

scale mesh obtained using these two algorithms should be identical although their

computation time and the required computing resources are different.

5.5.3 Performance comparison

The reason to develop different algorithms for the same problem is that different

optimal goals may be required in different situations. For a multi-scale mesh, the

dominating factor is the time needed to get and update a multi-scale mesh. And the

efficiency of algorithms is greatly influenced by the fineness distribution. Two typical

kinds of functions are used for the purpose of comparison.

1. Linear fineness function

Assuming a linear fineness function is required, some special cases which will

directly lead to even FEM meshes are illustrated as A, B, C and D in Fig.5.15.

Fig. 5.15 Linear fineness function

Chapter 5: Algorithms of Multi-Scale Meshing

69

a) For case A, all elements require the finest division and a conventional finite

element mesh will be obtained. Merging algorithm shows the best performance

while Division algorithm performs worst. In this case, a multi-scale mesh

degenerates to a conventional FEM mesh. It also reflects the general idea that a

fineness function can be adopted for different situations.

b) For case B, an even FEM mesh with middle-scaled mesh can be constructed.

There should be no obvious advantages/disadvantages between two algorithms.

c) For case C, an even FEM mesh with only one element will be constructed. It is the

best case for Division algorithm and the worst case for Merging algorithm.

d) For case D, it is a general linear case. The efficiency depends upon the density of

fine elements. If fine elements dominate, Merging algorithm will be a better

choice. Otherwise, Division algorithm will be better.

2. Gauss fineness function

Special cases assuming Gauss fineness function are illustrated in Fig. 5.16 as cases A,

B, and C.

Fig. 5.16 Gauss fineness function

a) For case A, the elements having relatively high fineness requirements constitute

the majority, so Merging algorithm is supposed to be of some advantages over

Division algorithm.

Chapter 5: Algorithms of Multi-Scale Meshing

70

b) For case B, neither the elements with relatively high fineness requirements nor the

elements with low fineness requirements dominate, so two algorithms are

supposed to be equally applicable.

c) For case C, Division algorithm should have some advantages over Merging

algorithm as the elements with low fineness requirements dominate.

3. Other fineness functions

For other fineness functions, the performance of algorithms depends on real situations

although the main criterion is the relative ratio of fine and coarse elements.

5.6 Dynamic algorithm

5.6.1 Introduction

The main reason for developing multi-scale algorithms is to reduce the order of a

system and thus save valuable time in real-time haptic simulation. In some surgical

training systems, when a surgeon is slowly operating on tissues, a change from one

state to another is often minor. This observation inspires a new idea of dynamically

generating a new mesh from the previous one according to the changed fineness

requirements with less time or resources.

When a system slightly changes from one state to another, two fineness functions

are needed to reflect these two states. But, there are two totally different ways to view

such a change:

a) Firstly, we might think that now that we have already gotten the old mesh and

fineness function changes only slightly, it is natural for us to infer if we can get

our new mesh from the previous one. Such an idea leads to our Dynamic

algorithm: a new mesh evolves from a previous mesh.

b) Also, we could think that two situations have nothing to do with each other. So we

could get our mesh by Division algorithm or Merging algorithm, and a new mesh

Chapter 5: Algorithms of Multi-Scale Meshing

71

is solely generated out of the new fineness function and has nothing to do with its

previous one.

5.6.2 Assumptions and performance measures

Some assumptions are made to validate the proposed Dynamic algorithm.

1. The algorithm is applied to the situation where the change from one state to

another is minor (less than 1% or 5% or 10%).

2. An algorithm can be validated through comparing its results to the ones from

known correct algorithms. That is, the meshes obtained using Dynamic algorithm

should be the same as the ones obtained using either Merging algorithm or

Division algorithm.

3. The advantages of the new algorithm should include its efficiency in computation

time, at least in the applied situations.

5.6.3 Validation of Dynamic algorithm

Since a new mesh evolves from the old one, it typically involves the process of

merging or dividing some elements in the old mesh. Ultimately, such Dynamic

algorithm should combine the ideas that are used in both Division and Merging

algorithms.

Whichever algorithm is used, under the stipulated criteria, different algorithms

should produce the same mesh. The principle of Dynamic algorithm is rather

straightforward: if we check the old multi-scale mesh, we will find that with the

updates of the fineness values of the elements, some elements are qualified to be

merged with its sibling (if exists) and some have to be further divided into smaller

elements. For any element in the final mesh, there are only two cases for any element

in an old mesh:

Chapter 5: Algorithms of Multi-Scale Meshing

72

1. For a leaf element at the deepest level, its final fineness value should directly be

updated according to the new fineness function. For a non-leaf element, its value

should be updated to reflect its new fineness values of its two descendants.

However, whether the current element needs division or not depends on the

following condition. If m_iFLev is still less than m_iDLev, the current element

should remain the same; otherwise, it should be further divided. This is

determined from the recursive process of fineness value update.

2. If there is an element whose two descendants get new fineness values that are less

than their old values, then the new fineness value of the element will get less.

Again, whether the current element will be merged depends on other factors.

In summary, if the previous multi-scale mesh cannot meet the new requirements

of the updated fineness function, m_iFLev <= m_iDLev will ultimately not be hold

for some elements. A new multi-scale mesh can be generated from the old one

according to the changed fineness values. The approach is advantageous if it can

effectively save computation time.

5.6.4 Basic procedures

The criteria are exactly the same as those discussed in section 5.2. The procedures of

Dynamic algorithm are described as follows.

1) Specify the division level and build up the perfect binary tree.

2) Specify a fineness function to be used.

3) Calculate a fineness value for each leaf element.

4) Iteratively calculate a fineness value for all other elements till the first element.

5) Choose Division or Merging algorithm to build up an initial mesh. The choice of

algorithms is decided by the actual situations.

Chapter 5: Algorithms of Multi-Scale Meshing

73

6) When the fineness function is slightly changed, we need to calculate the updated

fineness values and mark out elements with a new value. Whether an element is

qualified for merging or division depends on four situations. Here m_eChg is used

to record a new state.

a) If a new value is less than the old one and m_iDLev is greater than the new

value, its m_eChg will be set to COARSER, which means the element could

be merged. If it is the element [00], its m_eChg will be set to TOP (no more

merging).

b) If the new value is greater than the old one and m_iDLev is less than the new

fineness value, its m_eChg will be set to FINER, which means it must be

further divided. However, if the current element is a leaf, its m_eChg will be

set to BOTTOM (no more division).

c) In other cases, though the value is changed, however, if it is neither case A nor

case B, its m_eChg should be only set to CHGD which means the value is

changed but no explicit decision can be made so far.

d) If the value doesn’t change in two states, m_eChg keeps the value: “SAME”.

7) Once each element of the tree is checked and marked, the elements in the old

mesh should be checked according to two situations.

a) If the m_eChg of an element is COARSER, we immediately check whether it

can be merged with its sibling (if exists in the mesh). If so, both the element

and its sibling should be deleted from the list and their parent is inserted into

the same position. In practice, it is usual to merge this element with its sibling

first and temporarily ignore other criteria. The post-processing will ultimately

be used to treat possible big elements.

Chapter 5: Algorithms of Multi-Scale Meshing

74

b) If m_eChg of an element is FINER, is must be immediately further divided.

And, step 7) should be repeated until no insertion or deletion operations occur.

8) Post-process big elements. The big elements should be divided if they are adjacent

to small elements.

5.6.5 Examples

A perfect binary tree with division limit 4 is used to illustrate the intrinsic process of

Dynamic algorithm.

A. First, a mesh is generated according to the fineness distribution by Merging or

Division algorithm. It is [03][09][21][22][23][24][12][06] as shown in Fig.5.17.

B. Then, the fineness function is slightly changed (we exaggerate the change for the

purpose of illustration) and the fineness distribution of the perfect binary tree is

updated. The process is reflected in Fig.5.18.

C. After comparing the old and new values of each element, all the affected elements

are marked in the whole perfect binary tree, which is shown in Fig.5.19.

D. If the change of fineness distribution will result in a new multi-scale mesh, this

change will be certainly reflected in the fineness values of the initial mesh: some

must be further divided and some can be merged. Fig.5.20 is used to show the

fineness changes and how these changes are reflected in the values of the initial

mesh. In Fig.5.20, [24] is at the deepest level and no further division is possible,

so [24] is not qualified for division. Fig.5.21 shows that, in the initial mesh, some

elements must be divided and some could be merged.

Chapter 5: Algorithms of Multi-Scale Meshing

75

(The number above en element: fineness value)

(The number below en element: element index)

Fig. 5.17 Original fineness distribution and its initial mesh

(Old value: the number in magenta and above en element)

 (New value: the number in black and above the old)

Fig. 5.18 New and old fineness values of each element

Chapter 5: Algorithms of Multi-Scale Meshing

76

Fig. 5.19 Qualified elements are marked out in the tree

Fig. 5.20 Elements with changed values (the old mesh)

Fig. 5.21 Qualified elements after [24] is excluded (the old mesh)

E. Once the tree is updated with markers. Scanning process starts and merging or

dividing operations are applied to appropriate elements.

1) Merge an element with its sibling if it is marked with COARSER. Elements

[21], [22] are merged to [10] as shown in the second row of Fig.5.22.

Chapter 5: Algorithms of Multi-Scale Meshing

77

2) Divide an element if it is marked with FINER. The element [12] is divided

into [25] and [26] as shown in the second row of Fig.5.22.

3) Repeat steps 1) and 2) until no deletion or insertion operations can be applied

(the third row of Fig.5.22).

4) Perform post-processing until there is no deletion or insertion operation.

Element [06] is further divided into [13], [14] as shown in the fourth row of

Fig.5.22.

5) Finally, a new mesh that reflects the new fineness distribution is generated and

the m_eChg should be reset.

Fig. 5.22 Dynamically evolve from the initial mesh to the new one

From the above-mentioned steps and what is shown in Fig.5.22, it should be noted:

1) for the “COARSER” case, it simply indicates a possibility for merging; 2) but for

the “FINER” case, it requires the immediate division operation. This suggests that

slight different Dynamic algorithms can be further differentiated. For example, we

can also do the following to obtain the same mesh.

1. First, scan the list and divide all elements marked with “FINER” until no deletion

or insertion can be applied.

Chapter 5: Algorithms of Multi-Scale Meshing

78

2. Scan the latest list and merge qualified elements marked with “COARSER” and

temporarily ignore other criteria.

3. Perform post-processing until no deletion or insertion can be applied.

5.6.6 Discussions

The following situations may be encountered during the above-mentioned process.

a) If the change is very small, it is possible that neither merging process nor division

process is needed.

b) Normally, with minor changes to the system, the operations in Dynamic algorithm

are less than those if Merging or Division algorithm is used.

c) The correctness of one algorithm can be validated through comparing its results

with those obtained using known correct algorithms. The following example

shows that the same results can be obtained through either Merging or Division

algorithm.

Use Merging algorithm to get the same new multi-scale mesh.

a) Fig.5.23 shows the result of the initialization of the perfect binary tree using a new

fineness distribution.

Fig. 5.23 New fineness function & new mesh initialization

Chapter 5: Algorithms of Multi-Scale Meshing

79

b) Fig.5.24 illustrates the merging process by which a new mesh is obtained.

Fig. 5.24 The merging process using the new function

Use Division algorithm to get the same new multi-scale mesh.

1) Firstly, initialize a mesh as shown in Fig.5.23.

2) Apply Division algorithm to obtain a new mesh as shown in Fig.5.25.

Fig. 5.25 The division process to get the new mesh

From the examples shown above, the same multi-scale mesh can be obtained from

three fundamentally different algorithms - Dynamic, Merging and Division algorithms.

The comparison of their performance will be presented in Chapter 6.

Chapter 5: Algorithms of Multi-Scale Meshing

80

5.7 Summary

In this chapter, the procedures of three algorithms are illustrated in detail. They are

Merging, Division and Dynamic algorithms. The basic ideas and criteria used to

obtain a multi-scale mesh are explained and validated. Two special techniques used in

the above algorithms are also presented. They are post-processing used in Division

algorithm and Dynamic algorithm and fineness function used to reflect the relative

fineness requirements. All of the three algorithms can generate the same result.

Chapter 6: Simulation Results & Discussions

81

6 Simulation Results & Discussions

6.1 Introduction

In the previous chapters, the basic ideas of all three algorithms are presented and the

detailed processes to get a multi-scale mesh are described. In this chapter, the

simulation results are shown to 1) verify whether the multi-scale meshes are identical

using merging, division, and dynamic algorithms, 2) investigate the crucial role of

fineness function in deciding which algorithm should be applied, and 3) compare

computation times used for different fineness functions.

The organization of this chapter is as follows. In section 6.2, the simulation

environments and conventions are defined. Then, simulation results and their

comparisons are presented in section 6.3. Next, some comments about the

significances of all three algorithms are presented in section 6.4. Finally, a summary

is made in section 6.5.

6.2 Simulation environments and conventions

All the results are obtained using the computer with a 1.9Ghz Pentium 4 Processor

CPU and 256MB memory. Also, we use the following conventions:

1. When a division is denoted as X, it stands for two to the power of X. For example,

if the division is 5, that means the number of elements is 32 (25) at the deepest

level.

Chapter 6: Simulation Results & Discussions

82

2. A slim and horizontal bar with a length of 1000.0 (mm) is used to illustrate the

one-dimension fineness function distribution.

6.3 Simulation results and comparisons

In sections 6.3.1 and 6.3.2, it is verified that Merging and Division algorithms can

give identical multi-scale meshes. Their efficiency is compared. The efficiency

comparisons of three algorithms are made in section 6.3.3 when the fineness functions

are only changing slightly.

6.3.1 Identical meshes obtained using Merging and Division algorithms

In Fig.6.1, a Gaussian fineness function is used and the elements at the deepest level

are initialized with fineness integers assuming the division limit is 6. The same multi-

scale mesh shown in Fig.6.2 can be generated using Merging and Division algorithms.

The result reflects what is anticipated: the distribution of meshes correspond to the

function distribution.

(X-axis: element distribution Y-axis: division level)

(Left: exponential fineness function Right: discretized distribution)

Fig. 6.1 Gaussian fineness function & the initialization

Chapter 6: Simulation Results & Discussions

83

Fig. 6.2 The final multi-scale mesh with Division level: 6

The fineness value will be the greatest both in the middle and at the two ends if a

discrete fineness distribution shown in Fig.6.3 is used. Subsequently, the fine

elements are used in these areas. The same meshes can be obtained using Merging

and Division algorithms (Fig.6.4). The projection in y-axis reflects the size of an

element. Fine elements are located at points with greatest fineness value.

 Fig. 6.3 Fineness function with three max positions (X-axis is position)

(X-Axis: sequential numbering of elements, Y-Axis: the length of each element)

 Fig. 6.4 The same mesh results using Division and Merging (Division: 5)

 Fig. 6.5 Fineness function with five max positions (X-axis is position)

Chapter 6: Simulation Results & Discussions

84

(X-Axis: sequential numbering of elements, Y-Axis: the length of each element)

 Fig. 6.6 Identical meshing results using Division and Merging (Division: 20)

Another discrete fineness function is used as shown in Fig.6.5. Here, five discrete

points with greatest fineness value divides the bar into four equal segments. In Fig.

6.6, the same meshes can be obtained using Merging and Division algorithms (The

division level is 20. That means there are 1,048,576 elements at the finest level).

6.3.2 Time comparisons between Merging and Division algorithms

The computation time of Merging and Division algorithms is systematically compared

in this section. Some extreme cases are used to compare their computation efficiency.

From Table 6.1, we list all the abbreviations that will be used in other figures.

Division

Merging

Chapter 6: Simulation Results & Discussions

85

Table 6.1 Abbreviations of different fineness functions

Fun. No. Description Algorithms Description
AM All Max M.A Merging Algorithm
AZ All Zero D.A Division Algorithm
MM Max in Mid
MR Max at the Right
ML Max at the Left

1. AM refers to the case where all the elements at the deepest level are required to

have the highest fineness. This stands for a typical FEM, which demands finest

meshing throughout the whole domain.

2. AZ refers to the case where all elements at the deepest level require the least

fineness, which is 0 in fineness value. Division algorithm performs well under this

situation, which is only used as an extreme case for comparison.

3. MM refers to the case where only the middle element at the deepest level is

required the highest fineness. It is the case when only one haptic interaction is

applied in the middle.

4. ML refers to the case where only the leftmost element at the deepest level is

required the highest fineness. It is the case when only one haptic interaction is

applied at the left end.

5. MR refers to the case where only the rightmost element at the deepest level is

required the highest fineness. It is the case when only one haptic interaction is

applied at the right end.

These five situations correspond to the cases 1-5 shown in Fig.6.7

Chapter 6: Simulation Results & Discussions

86

Fig. 6.7 Five different fineness distributions over the bar (X-axis is position)

Table 6.2 Time comparisons between Division and Merging algorithms

Fun. No.

AM

(ms)

AZ

(ms)

MM

(ms)

ML

(ms)

MR

(ms)

Finest
Div. M.A D.A M.A D.A M.A D.A M.A D.A M.A D.A

28 0 0 10 0 0 0 0 0 0 0

29 0 0 10 0 0 0 0 0 0 0

210 0 0 10 0 10 0 0 0 0 0

211 0 0 10 0 10 0 0 0 0 0

212 10 0 20 0 10 0 20 0 20 0

213 30 10 30 0 30 0 30 0 30 0

214 50 20 70 0 60 0 70 0 70 0

215 111 40 151 0 141 10 140 10 140 10

216 210 70 311 0 280 10 270 10 290 10

217 441 150 781 10 590 10 561 10 611 20

218 901 310 1352 20 1231 20 1172 20 1272 30

219 4877 580 4867 30 2583 50 2433 40 2654 51

220 Nil 721

221 Nil 103000

Table 6.2 lists the simulation results. In the table, there are many zeros because

when the division level is low, the resolution of CPU clock is not precise enough to

reflect that. It is also obvious that Division algorithm is much more efficient. And

their comparisons are shown from Fig.6.8 to Fig.6.10. In those figures, the x-axis

Chapter 6: Simulation Results & Discussions

87

represents division limits. For example, the number 12 means the case where there are

212 elements in the finest level.

Fig. 6.8 Left (AM): All max case, Right (AZ): All zero case

Fig. 6.9 Mid max case

Fig. 6.10 Left (MR): Right max case, Right (ML): Left max case

Chapter 6: Simulation Results & Discussions

88

1) For All Max (AM) case, the result is shown in Fig.6.8 (left). The Division

algorithm is more efficient than the Merging algorithm although this superiority is

not significant.

2) For All Zero (AZ) case, the result is shown in Fig.6.8 (right). The Division

algorithm is significantly more efficient than the Merging algorithm.

3) For Middle Max (MM) case, the result is shown in Fig.6.9. Division is still much

more efficient. It can also been inferred that the time needed by early steps takes

the majority of the overall computational time.

4) For Right Max (MR) case, the result is shown in Fig.6.10 (the left figure). This

case and the left MAX case are typical cases and the results show that Division

algorithm is much more efficient than Merging algorithm in these situations.

5) For Left Max (ML) case, the result is shown in Fig.6.10 (the right figure) and is

explained in case 4).

From Fig.6.8 to Fig.6.10, it is obvious that, in all these five situations, when

division moves to 10 levels, Division algorithm consumes significantly less time; but

when the division level is below 10, the difference is not so significant.

6.3.3 Time comparisons of the three algorithms

From the previous section, it shows that Division algorithm can save more time when

the division level moves above 10. We still need to compare the computation time of

the three algorithms when the fineness function is slightly changed, which simulates a

typical situation where a surgeon slightly moves his tool-tip on tissues and tool-tissue

interaction points change only slightly and slowly.

Chapter 6: Simulation Results & Discussions

89

(X-axis is position)

Fig. 6.11 Linear fineness function

(X-axis is position)

Fig. 6.12 Bi-linear fineness function

To represent a “slight” change, three kinds of functions are used and through

shifting these functions, the effect of a “slight” change can be achieved.

For the first case, a single linear fineness function (Fig.6.11) is adopted and then

shifted step by step. At each small step, only a small proportion of the elements have

their fineness values changed. The simulation results are shown in Table 6.3 and the

results are also graphically presented in Fig. 6.13.

Chapter 6: Simulation Results & Discussions

90

Table 6.3 Time comparisons (Linear function) of the three algorithms

The Linear Function (Shift)
Finest
Div.

Dynamic
(ms)

Division
(ms)

Merge
(ms) *

Non-

Queue
Non-

Queue
23 20 0 0
24 0 10 0
25 10 0 50
26 10 10 70
27 20 20 80
28 40 40 250
29 80 91 480
210 170 190 1011
211 341 400 2250
212 681 881 1943
213 1382 1913 5020
214 2483 4006 9020
215 4687 8242 14280
216 9044 17636 24080
217 17625 39617 43000
218 34680 Nil Nil
219 68760 Nil Nil

Fig. 6.13 Time comparisons of the three algorithms (Linear fineness function)

Fig.6.13 reveals that Dynamic algorithm is the fastest one in this situation;

Division algorithm is the second and merging is the slowest. This shows that Dynamic

algorithm consumes relatively less computer resources. If the division level moves to

Chapter 6: Simulation Results & Discussions

91

very high (above 18), while Dynamic algorithm is still computing, the other two

either run out of memory or run too slowly (see Tables 6.3, 6.4 and 6.5).

In the second case, a bi-linear function (see Fig.6.12) is adopted. To guarantee that

only a small proportion of the elements can get changed fineness values, the fineness

distribution needs to be shifted with small steps. The simulation result is shown in

Table 6.4 and graphically presented in Fig.6.14.

Table 6.4 Time comparisons (Bi-linear function) of the three algorithms

The Bi—linear Function (Shift)

Div.
Dynamic
(ms)

Sub-Division
(ms) Merge (ms)

 Queue Non-Queue Non-Queue
21 0 0 10
22 0 0 10
23 0 10 0
24 10 0 10
25 10 10 0
26 20 10 20
27 41 20 20
28 70 40 60
29 130 100 121

210 360 280 360
211 621 541 741
212 1452 1192 1612
213 2073 1762 2754
214 5248 4627 6149
215 7391 6820 14271
216 17826 21170 30624
217 27440 32738 64313
218 69130 105964 Nil

219 102589 173131 Nil

Chapter 6: Simulation Results & Discussions

92

Fig. 6.14 Time comparisons of the three algorithms (Bi-linear fineness function)

Fig. 6.15 Gaussian fineness function

In the third case, a Gaussian function (see Fig.6.15) is adopted as the fineness

function. Again, the fineness function moves rightward along the bar with small steps.

The simulation result is shown in Table.6.5 and graphically presented in Fig.6.16.

It needs to be pointed out that all above-mentioned three functions are designed to

shift in small steps in order to simulate the realistic surgery environments where the

relative position and the interaction between tissue and tool tip change smoothly and

slightly. Thus, in such situations, only a small proportion of elements (< 5% elements)

have their fineness values changed per re-meshing. Mathematically, this is reflected

Chapter 6: Simulation Results & Discussions

93

through some slight shift of the fineness function (so-called small steps) whenever we

re-mesh. Such small steps (slight shift of the fineness functions) can be realized

through assigning the left element’s m_iFLev value to its neighbor on the right side

one by one. That is why the procedure is called “shift” (see Fig. 6.15).

Table 6.5 Time comparisons (Gaussian function) of the three algorithms

The Exponential Function (Shift)

Div.
Dynamic

(ms)
Sub-Division

(ms) Merge (ms)

 Queue Non-Queue Non-Queue
21 10 10 0
22 0 0 0
23 0 0 0
24 10 10 10
25 10 0 10
26 20 20 10
27 30 20 30
28 60 50 60
29 140 120 140
210 371 311 381
211 951 751 991
212 1782 1442 1882
213 3264 2694 3665
214 6059 6209 8052
215 11827 14521 18346
216 22653 25106 35722
217 46066 86645 84923

218 87937 170747 314926

219 165760
Out of

Memory Nil

Chapter 6: Simulation Results & Discussions

94

Fig. 6.16 Time comparisons of the three algorithms (Gaussian fineness function)

Discussion

From the three cases above, Dynamic algorithm can save more time in re-meshing. It

is true that Dynamic algorithm can also employ merging and division operations.

However, Dynamic algorithm is different from Merging and Division algorithms in its

way to re-mesh. Dynamic algorithm starts from an almost-finished initial mesh and

re-meshes only the areas that changes occur while both Division and Merging

algorithms initiate the whole re-meshing procedure from scratch whenever a change

occurs; no matter it is big or small. Subsequently, the overall operations for Dynamic

algorithm are significantly fewer than those needed in Merging or Division algorithm.

That enables Dynamic algorithm to speed up the process of re-meshing. Besides, the

updated multi-scale mesh is similar to the previous one in Dynamic algorithm. The

result suggests that Dynamic algorithm should be preferred when only minor changes

occur to the system. However, Dynamic algorithm will lose this advantage if the

system is changing drastically.

Chapter 6: Simulation Results & Discussions

95

6.3.4 Evolution of Dynamic algorithm

How the multi-scale meshes evolve from one stage to the next one and how meshes

evolve under minor changes will be shown in this section using the same fineness

function shown in Fig.6.15. Generally, the fineness value of an element is replaced by

the value of its left neighboring element while the function is directly shifted to the

right direction. The value of zero is applied to the leftmost element. Fig.6.17 clearly

shows how a multi-scale mesh evolves to a new one (with the division level 6).

During the evolution, only minor change occurs between adjacent results sequentially

obtained. Two observations can be identified as follows.

X-Axis: nodes coordinates, Y-Axis: multi-scale mesh evolution (bottom-up)

Fineness function drifts rightward with each step: 20

Fig. 6.17 Mesh evolves with fineness function drifting rightward

A. The multi-scale mesh reflects the fineness change;

Chapter 6: Simulation Results & Discussions

96

B. It is true that meshes evolve slowly if only minor changes occur. So Dynamic

algorithm should be the first choice in practice in such situations.

6.4 Discussions

After these comparisons, some general conclusions can be reached.

A. Generally, Dynamic algorithm can save time and also achieve a more efficient

memory usage if only very small changes occur.

B. Dynamic, Division and Merging algorithms can all serve as general methods of

choice in different situations. Whether it is in one-dimensional situation or two- or

three-dimensional situations, the basic idea is the same. They represent different

kinds of ideas and different ways of thinking.

C. If we include other factors such as reusable intermediate results that are only

possible for Dynamic algorithm, it can be expected that the Dynamic algorithm

will save even more time because only the changed parts need to be recalculated.

That is, if only minor changes occur, there is no need to build a multi-scale

meshing from scratch and recalculate a big matrix in real medical simulation.

D. These algorithms are important to mutually verify the correctness of the final

multi-scale mesh.

E. The fineness function plays a crucial role in order to decide where to generate fine

or coarse meshes. It is a generic method and can be applied in other situations.

The method purely based on fineness functions provides us flexibility to simulate

and model the real cases. That is to say, fuzzy concepts are described

quantitatively.

Chapter 6: Simulation Results & Discussions

97

Further discussions and comparisons:

1. If only one-dimensional mesh is considered, all operations of Division algorithm

or Merging algorithm can be implemented through setting and changing the tag of

each element in the binary tree (actually in an array). In this way, operations such

as deletion or insertion of a node can be avoided. Since all the operations are

performed on an array at the sacrifice of a few data items, the computation is fast.

Meanwhile, the queue-based algorithm is also coded.

2. For one-dimensional situation, though we can develop queue-based (list) Division

algorithm and Merging algorithm and non queue-based Division algorithm and

Merging algorithm. However, non queue-based method is not of general interests

for two-dimensional problems or for problems that cannot be defined by a perfect

binary tree (actually is organized in an array.)

3. For non queue-based algorithms in one-dimensional situation, only a set of rules

and communication procedures are used to dynamically update the state of each

element in the tree (in the array). More future work is expected.

6.5 Summary

In this chapter, it is verified that any of the three algorithms can be used to arrive at

the same multi-scale mesh although their relative efficiencies of time are significantly

different. Generally speaking, Division algorithm is more efficient than Merging

algorithm. However, Dynamic algorithm is preferred when a system changes slowly.

Division algorithm is preferred when a coarse mesh is applicable while Merging

algorithm performs well when a fine mesh is needed.

Chapter 6: Simulation Results & Discussions

98

However, it deserves our special attention that the comparisons are only based on

these simple fineness functions, thus the graphs and tables listed here cannot be

generalized without conditions.

Chapter 7: Conclusions and Future Work

99

7 Conclusions and Future Work

Based on the previous studies and discussions, several important conclusions are

drawn in this chapter. This is followed by the author’s recommendations of future

works.

7.1 Conclusions and discussions

This dissertation focuses on the algorithm design and analysis of multi-scale meshing

in the context of surgical simulators. Division algorithm, Merge algorithm and

Dynamic algorithm are investigated, implemented and compared in the one-

dimension situation.

Firstly, the idea of a fineness function has been adopted to provide a

comprehensive and general expression of criteria in order to reflect the dynamically

changing nature of the simulated interaction. All related factors can be taken into

consideration in the fineness function, which plays a key role in representing the

influences from curvature, force and visual presentation.

Secondly, the process and criteria used to develop three algorithms are also

carefully explained. The basic process is to calculate a fineness value for each element

through the current fineness function. Then the principles of “as coarse as possible”

and “smoothing” are applied to determine the elements for further merging or division.

The procedure continues until a final smooth mesh satisfying the fineness

requirements is achieved. Three different algorithms are developed basing on this

process.

Chapter 7: Conclusions and Future Work

100

Thirdly, the relative efficiency and applicability of algorithms are compared in

order to find the best algorithm for different situations. The experimental results show

that Dynamic algorithm always has greater efficiency over the other two algorithms

and thus has better potential applicability in surgical simulations where physically real

and better visual presentation are always desired. Such requirements are also from the

higher resolution of meshing and the faster computation. This is not contradictory. On

the one hand, a high resolution of even meshing in traditional FEM is computationally

expensive and a multi-scale meshing must specifically be developed to reduce the

computational cost; on the other hand, Dynamic algorithm (multi-scale) can be used

to improve the meshing resolution with the similar computational cost.

Fourthly, experiments are done through a robot to verify the applicability and

efficiency of these three algorithms. People can feel the physically real force through

the robot which has haptic feedback. All three algorithms can achieve similar meshing

and re-meshing behaviors as expected. Moreover, the experimental results also show

that relative efficiencies of three algorithms can be shown from the significantly

differences in force feedbacks perceivable by an operator as the meshing resolution

increases. This can verify the previous analysis that Dynamic algorithm is more

efficient when the meshing resolution reaches to a threshold point.

Furthermore, an array-based data-structure is used in all three algorithms

instead of the linked list data-structure to significantly reduce the computational time

as the operations for array index are much more efficient than pointer operations in

C/C++. A perfect binary tree data-structure is adopted to provide such efficient

indexing operations for the one-dimension case considered.

Chapter 7: Conclusions and Future Work

101

 Finally, the author finds that the final linear equations can be divided into

several smaller linear equations during and an improved solver for 2D linear elastic

system has been developed.

7.2 Future works

As mentioned previously, all the algorithms and experiments in this dissertation are

based on the one-dimensional case. However, two-dimensional or three-dimensional

models as well as algorithms are inevitable in real surgical simulations where the

deformation of real tissues and organs can occur in two or three dimensions. The

ideas applied in the current one-dimension modeling and the developments of three

algorithms can be extended to two- or three-dimension situations although the data

structure, merging or division criteria, and fineness functions may become more

complex. Furthermore, It is worthwhile to the investigation on how the intermediate

terms evolves and how the intermediate results can be reused in the whole process of

solving equations in order to reduce the computational effort of the 3D algorithms in

the surgical simulation.

References

102

References

[1] Poston, T., 2000. “Geometric curve dynamics”, Digital Medicine Laboratory,
Johns Hopkins Singapore (not published).

[2] Iwata, H., 1990. "Artificial Reality with Force-Feedback: Development of

Desktop Virtual Space with Compact Master Manipulator". Computer Graphics,
Vol. 24, No.4, pp. 165-170.

[3] Hannaford, B., Wood, L., McAffee, D.A., and Zak, H., 1991. “Performance

evaluation of a six-axis generalized force reflecting teleoperator” IEEE
Transactions on Systems, Man, and Cybernetics, 21(3): 620—633.

[4] Lee, S. and Lee, H.S., 1993. “Modeling, Design, and Evaluation of Advanced

Teleoperator Control Systems with Short Time Delay” IEEE Transactions on
Robotics and Automation, 9(5): 607—623.

[5] Buttazzo, G. C., 1993. “HARTIK: A real-time kernel for robotics applications”

In Proceedings of the Real-Time Systems Symposium, pages 201-205. IEEE
Computer Society Press.

[6] Ruspini, D., Kolarov, K, and Khatib, O. 1997. "Haptic Interaction in Virtual

Environments" IEEE/RSJ International Conference on Intelligent Robots and
Systems: IROS'97, Genoble, France.
http://robotics.stanford.edu/users/ruspini/haptic.html

[7] Münch, S. and Dillmann, R., 1997. “Haptic output in multimodal user

interfaces” Proceedings of IUI’97: International Conference on Intelligent User
Interfaces, 105–112.

[8] Steve, T., 1998. C++ Iostreams Handbook, S. l. Addison Wesley Longman,

Incorporated.

[9] Lau, R.W.H., Green, M., To, D. and Wong, J. 1998. “Real-Time Continuous

Multiresolution Method for Models of Arbitrary Topology” Presence, 7(1): 2-35.
http://www.cs.cityu.edu.hk/~rynson/papers/presence98.pdf

[10] Charoenseang, S., Srikaew, A., Wilkes, D.M. and Kawamura, K. 1998.

"Integrating Visual Feedback and Force Feedback in 3-D Collision Avoidance
for a Dual-Arm Humanoid Robot" 1998 International Conference on Systems,
Man and Cybernetics, California, USA, pp. 3406-3411.
http://fibo.kmutt.ac.th/publication/thai/conference/conference_thai.html

[11] Ruspini, D. and Khatib, O. 1999. “Haptics for Multi-scale Virtual Prototyping”

RECENT ADVANCES IN MECHATRONICS, ICRAM’99, Turkey, Springer
Press, Edited by Okyay Kaynak, Marcelo H. Ang Jr., Sabri Tosunoglu.

References

103

[12] Perry R.C. (editor), 1999. Music, cognition, and computerized sound: an

introduction to psychoacoustics, Cambridge, Mass.: MIT Press, Chapters 18 and
19 (by Brent Gillespie)

[13] Yokokohji, Y., Hollis, R.L. and Kanade, T., 1999. WYSIWYF Display: A

Visual/Haptic Interface to Virtual Environment, PRESENCE, Teleoperators and
Virtual Environments, Vol.8, No.4, pp.412 – 434.

[14] Oboe, R. and Piovan, S., 1999. Sensorless force reflecting teleoperation for low

cost web-interfaced systems, IEEE Symposium on Industrial Electronics – Bled,
Slovenia.

[15] Plesniak, W., Pappu, R., 1999. Spatial interaction with haptic hologram,

Proceedings of the IEEE International Conference on Multimedia Computing
and Systems (ICMCS'99).
http://web.media.mit.edu/~wjp/htmFiles/publications.htm

[16] Namiki, A., Nakabo, Y., Ishii, I. and Ishikawa, M., 1999. High Speed Grasping

Using Visual and Force Feedback, Proc. IEEE Int. Conf. on Robotics and
Automation, Detroit.

[17] Hayward, V., 2000. Haptics: A Key To Fast Paced Interactivity, Human

Friendly Mechatronics. Selected Papers of the International Conference on
Machine Automation, 25-27 Sep, 2000, Osaka, Japan. By M. Takano, E. Arai
and T. Arai, Elsevier Science. http://www.cim.mcgill.ca/~haptic/pub/VH-HFM-
01.pdf

[18] Oakley, I, Brewster, S., and Gray, P.D., 2000. Communication with Feeling,

Proceedings of First Workshop on Haptic Human-Computer Interaction,
Glasgow, Scotland. http://www.dcs.gla.ac.uk/~stephen/papers/HHCI-ian.pdf

[19] Çavusoglu, M. C., and Tendick, F., 2000. Multirate simulation for high fidelity

haptic interaction with deformable objects in virtual environments, Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA 2000),
pp. 2458-2465.
http://itsa.ucsf.edu/~frankt/Cavusoglu_ICRA_2000.pdf

[20] Burdea, G., 2000. “Haptics Issues in Virtual Environments” Proceedings of

Computer Graphics International 2000, Geneva, Switzerland, pp. 295-302.
http://www.caip.rutgers.edu/vrlab/publications/papers_2000.html

[21] Pajarola, R. and Rossignac, J. 2000. SQUEEZE: Fast and Progressive

Decompression of Triangle Meshes, Proceedings of Computer Graphics
International CGI 2000, Pages 173–182. IEEE Computer Society Press.
http://www.ics.uci.edu/~pajarola/pub/SQUEEZE.pdf

[22] FrÄohlich, B., Tramberend, H., Agrawala, M. and Bara, D., 2000. Physically-

Based Manipulation on the Responsive Workbench, Proc. of IEEE VR
Conference, 2000, pp. 5-12.

References

104

[23] WU, X., DOWNES, M. S., GOKTEKIN, T., AND TENDICK, F., 2001.

Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using
Dynamic Progressive Meshes, Computer Graphics Forum 20, 3, 349-358.
http://itsa.ucsf.edu/~frankt/Wu_EG2001.pdf

[24] Lewis, F. and Street, R., 2001. Touch: graphic design with tactile appeal,

Gloucester, Mass.: Rockport Publishers. Chapter 5: The future of Touch

[25] Ganovelli, F., Cignoni, P., Montani, C. and Scopigno, R. 2001. Enabling Cuts

on Multiresolution Representation, The Visual Computer, Springer International,
Vol. 17 (5), 274-286. http://vcg.isti.cnr.it/publications/papers/enablingcuts.pdf

[26] Eisinberg, A., Scalari, G., Mazzoni, M., Menciassi, A., and Dario, P., 2001.

Force-feedback Sensorized Microgrippers for a Micromanipulation Workstation,
Proceedings of AISEM 2001, 6th National Conference on Sensors and
Microsystems.
http://www-crim.sssup.it/download/papers/default.htm

[27] Hirota, K. and Kaneko, T., 2001. Haptic Representation of Elastic Objects”,

Presence: Teleoperators and Virtual Environments, Vol. 10, Iss.5, 525-536.

[28] Mahal, B.S., Clark, D.E.R., and Simmons, J.E.L., 2001. Mass-Spring Simulation

of Deformation in Elastic Sheet Structures, Presence-Teleoperators and Virtual
Environments, Vol. 10, Iss. 3, pp. 331-342.

[29] To, D., Lau, R.W.H. and Green, M., 2001 “An Adaptive Multiresolution Method

for Progressive Model Transmission” Presence, Vol. 10, No. 1, pp 62–74.
http://www.cs.cityu.edu.hk/~rynson/papers/presence01.pdf

[30] Picinbono, G., Lombardo, J.C., Delingette, H., and Ayache, N., 2000.

Anisotropic elasticity and force extrapolation to improve realism of surgery
simulation, IEEE International Conference on Robotics and Automation: ICRA
2000, San Francisco, CA, pp. 596-602.

[31] Elhajj, I., Hummert, H., Xi, N., Liu, Y. H., and Li, W. J., 2001. Synchronization

and control of supermedia transmission via the Internet, International
Symposium on Intelligent Multimedia, Video and Speech, Kowloon, Hong
Kong, pp. 320-323.

[32] Basdogan, C., Ho, C.-H., and Srinivasan, M.A., 2001. "Virtual environments for

medical training: graphical and haptic simulation of laparoscopic common bile
duct exploration” Mechatronics, IEEE/ASME Transactions on Vol. 6, Issue 3,
Page(s): 269-285.

[33] Oboe, R., 2001. Web-Interfaced, Force-Reflecting Teleoperation Systems, IEEE

Transactions on Industrial Electronics, 48:6, pp. 1257-1265.

[34] Basdogan, C., Srinivasan, M.A., 2001. Haptic Rendering In Virtual

Environments, Virtual Environments HandBook, pp. 117-134.

References

105

http://network.ku.edu.tr/~cbasdogan/publications02.html

[35] Ford, W. and Topp, W., 2002. Data structures with C++ using STL, Upper

Saddle River, NJ: Prentice Hall.
[36] Liu, B. F., 2002. Design of A Virtual Reality Workstation With 3-Dimensional

Visual and Haptic Feedback, Master Thesis, National University of Singapore,
2002

[37] Rovers, A. F. 2002. Haptic Feedback --A literature study on the present-day use

of haptic feedback in medical robotics September 2002 DCT Report nr. 2002.57.

http://www.bmt.tue.nl/biorobotics/Publications/DCT_2002_57_TReport_-
_AFRovers.pdf

[38] Kim, J., De, S., and Srinivasan, M.A, 2002. Computationally efficient

techniques for real time surgical simulation with force feedback, 10th
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, Orlando, US, p51-57.

[39] Oakley, I, Adams, A., Brewster, S., and Gray, P., 2002. Guidelines for the

design of haptic widgets, Proceedings of BCS HCI 2002 (London, UK), pp.
195-212.
http://www.dcs.gla.ac.uk/~stephen/papers/HCI2002-oakley.pdf

[40] Lim, K.M., Poston, T., Zhang, L., Liu, B.F., Teo, C.L., and Burdet, E., 2002.

“MULTI-SCALE SIMULATION FOR A ROBOTIC SURGICAL TRAINER” The
Bio-Era: New Challenges, New Frontiers, Singapore.
http://guppy.mpe.nus.edu.sg/~eburdet/papers/ICME_FULLPAPER5.pdf

[41] Nojima, T., Sekiguchi, D., Inami, M., and Tachi, S., 2002. The SmartTool: a

system for augmented reality of haptics, Proceedings of IEEE VR 2002, pp.67-
72.
http://www.star.t.u-tokyo.ac.jp/~tnojima/Achievements/pdf/IEEEVR2002.pdf

[42] Foskey, M., Otaduy, M.A. and Lin, M.C., 2002. “ArtNova: Touch-Enabled 3D

Model Design” Proceedings of IEEE VR 2002, pages 119–126.
http://www.cs.unc.edu/~geom/ArtNova/artnova.pdf

[43] Yamada, T., Tsubouchi, D., Ogi, T., and Hirose, M., 2002. Desk-Sized

Immersive Workplace Using Force Feedback Grid Interface, VR 2002: 135-
142.

[44] Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., and Zorcolo, A., 2002. Real–

time haptic and visual simulation of bone dissection, IEEE Virtual Reality
Conference, pages 209–216, IEEE Computer Society Press.
http://www.crs4.it/vic/data/papers/vr2002-burr.pdf

[45] Teo, C.L., Burdet, E., and Lim, H.P., 2002. A Robotic Teacher of Chinese

Handwriting, Proceedings of 10th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems (HAPTICS’02), pp. 335-
341.

References

106

[46] Yeh, J.S., Lien, T.Y., and Ouhyoung, M., 2002. "On the Effects of Haptic

Display in Brush and Ink Simulation for Chinese Painting and Calligraphy”
Proc. of the 10th Pacific Conference on Computer Graphics and Applications
(PG02), pp. 439-441, Beijing, China, IEEE Press.
http://3dsite.dhs.org/pg02/pg02_jsyeh_painting.pdf

[47] Biggs, J. and Srinivasan, M.A. 2002. Haptic Interfaces: Handbook of Virtual
Environments, by K. Stanney. London, Lawrence Earlbaum, Inc.: Chapter 5, pp.
93-116. http://www.mit.edu/people/jbiggs/

[48] Kim, S., Hasegawa, S., Koike, Y., and Sato, M. 2002. Tension Based 7-DOF
Force Feedback Device: SPIDAR-G, Virtual Reality 2002 Conference.
http://sklab-www.pi.titech.ac.jp/~hase/index.en.php

[49] Ye, Z.M. and Auner, G., 2003. Haptic interface prototype for feedback control

on robotic integration of smart sensors, Proceedings of 2003 IEEE Conference
on Control Applications, page(s): 995- 1000 vol. 2.

[50] Lim, K.M., Wang, F., Poston, T., Zhang, L., Teo, C.L. and Burdet, E. 2004.

Multi-Scale Simulation For Microsurgery Train, 2004 IEEE International
Conference on Robotics and Automation, in press.
http://guppy.mpe.nus.edu.sg/~eburdet/VR/vr.html

[51] Oboe, R., 2003. Force-reflecting teleoperation over the Internet: the JBIT

project,
Special issue on networked intelligent robots through the internet, Vol. 91, No. 3,
Page(s):449-462.
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=26724&puNumber=5

[52] Li, G.Y., Xi, N., Yu M., and Fung, W.K. 2003. Augmented Reality System for

Real-time Nanomanipulation, Proceeding of the 2003 IEEE Nanotechnology,
San Francisco, CA, US.

[53] Kim, J., De, S., and Srinivasan, M. A., 2003. An Integral Equation Based

Multiresolution Modeling Scheme for Multimodal Medical Simulations, Proc. of
the IEEE VR2003 Conference, Los Angeles, California.

[54] McLaughlin, M. L., Hespanha, J. P., and Sukhatme, G. S., 2001. Touch in

Virtual Environments: Haptics and the Design of Interactive Systems,
PRENTICE HALL, Upper Saddle River, NJ.

[55] Buchanan, G. R., 1995. Schaum’s Outline of Theory and Problems of Finite

Element Analysis, New York: McGraw-Hill.

[56] Lim K. M., “Multi-scale Simulation for Haptic Applications Preliminary

Investigations” (Proposal)

[57] http://www.sensable.com/

References

107

[58] http://www.forcedimension.com/

[59] http://www.nist.gov/dads/

[60] http://www.nist.gov/dads/

[61] Zhang L., 2003. “Multi-Scale Simulation For Real-Time Haptic Feedback”

Master’s Thesis, National University of Singapore, 2003

[62] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 2003.

Numerical recipes in C++ : the art of scientific computing, imprint New York :
Cambridge University Press.

Appendix: Solver and Real-Time Simulation

108

Appendix: Solver and Real-Time

Simulation

I. Introduction

In this appendix, a brief introduction of the solution of linear algebraic equations is

first given. Then an improved solver for tridiagonal equations system is illustrated.

Finally, proposed algorithms are applied in some real-time situations, and the

simulation results are presented.

II. Solution of linear algebraic equations

In the earlier chapters, a fineness function is used for multi-scale meshing (the idea

applies to one-dimensional, two-dimensional, and three-dimensional situations). As a

result, the conventional finite element meshing becomes a special case, in which the

finest division is governed everywhere throughout the whole domain. After meshing,

linear algebraic equations can be built up and the system’s unknowns should be

solved. A discrete fineness function with four constraint points (two fixed ends and

two haptic tips) is used to test whether all of the proposed algorithms can result in

consistent multi-scale meshes. The performance of algorithms is also studied.

In the current linear-elastic system, K* u = f always maintains no matter whether it

is obtained from a pure mathematical analysis, physical laws such as the minimal

potential principle or the minimal virtual work principle. While some variables are

pre-specified, other unknowns have to be solved. For a one-dimension case, a

tridiagonal linear equation set should be obtained. An assembled stiffness matrix K

Appendix: Solver and Real-Time Simulation

109

(Fig.1b) can be obtained for a very small tridiagonal equations system in Fig.1a. As

similar but bigger equations system with more DOFs can be obtained.

u1 u2 u3

F1 F2 F3

[k]1 [k]2

element 1 element 2

Fig. 1a A simple spring system

−
−+−

−
=

22

2211

11

0

0

kk

kkkk

kk

K

Fig. 1b Assembled matrix of a simple spring system

The numerical analysis for a system with huge DOFs, the inverse matrix of K is

never computed. Instead, LU -decomposition method is often used to solve linear

equation systems. There are many established methods to transform a common matrix

into the multiplication between a lower tridiagonal matrix and an upper tridiagonal

matrix, which is K = L * U . For a 4 by 4 matrix K, it can be shown in Fig. 2.

Fig. 2 L-U decomposition [62]

Once L and U are known, we have:

K = L * U (1)

K * u = (L * U) * u = L * (U * u) = f (2)

L* Y = f (3)

U * u = Y (4)

For (3), a forward substitution is used to get Y; and for (4), a back substitution is

used to get u after Y is obtained. There are two possible cases:

Appendix: Solver and Real-Time Simulation

110

(1) f is fully specified, only u need to be solved, or

(2) Both u and f are only partially specified.

The first case can be directly solved with a suitable solver. However, some

adjustments are needed for solving the second case (our current case). In a system in

Fig.3, at certain interaction position, it has unknowns such as [1u 2u … 1−iu 1+iu …

1−Mu Mu] and f , but [1f 2f … 1−if 1+if … 1−Mf Mf] and U are unknown. The

original system needs to be adjusted to a final form as shown in Fig. 4 to be solved.

=

−

+

−

−

+

−

M

M

i

i

M

M

i

i

MMMM

iMii

M

f

f

f

f

f

f

f

u

u

u

U

u

u

u

KKK

KKK

KKK

1

1

1

1

1

1

2

1

21

21

11211

2

1

Μ

Μ

Μ

Μ

Λ
ΜΜΜ

Λ
ΜΜΜ

Λ

Fig. 3 The original system

−=

−

+

−

−

+

−

+−

+++−++

−+−−−−

+−

Mi

iM

ii

ii

i

i

M

M

i

i

MMiMiMN

Miiiiii

Miiiiii

Mii

K

K

K

K

K

K

U

u

u

u

u

u

u

KKKK

KKKK

KKKK

KKKK

)1(

)1(

)1(

2

1

1

1

1

2

1

)1()1(1

)1()1)(1()1)(1(1)1(

)1()1)(1()1)(1(1)1(

1)1(1)1(111

Μ

Μ

Μ

Μ

ΛΛ
ΜΜ

ΛΛ
ΛΛ

ΜΜ
ΛΛ

+

−

+

−

M

M

i

i

f

f

f

f

f

f

1

1

1

2

1

Μ

Μ

Fig. 4 The transformed system

After all the unknown displacements are known the force at the interaction

position can be calculated by (5).

Appendix: Solver and Real-Time Simulation

111

[] fUKKKK iMMiii =
−

*)1(21 Λ (5)

In more complex cases, several displacements are specified and the forces at those

positions need to be calculated while forces are known as zeros by default at other

positions. Other unknown displacements can be obtained through systematically

adjusting the original linear equation system. While the required forces can be

computed using good “house-keeping”, a “divide and conquer” method is adopted

here to solve the tridiagonal equation system. Such a solver greatly reduces the

necessity of burdensome housekeeping and the whole equation system structure

remains unchanged.

Conventionally, the original system in Table 1 can be changed to a final form as

shown in Table 2 after matrix transformations. Then the unknown displacements and

the forces can be solved. Since all the elements of the matrices are re-shuffled,

systematic ways are needed to track and record changes. Furthermore, only five

vectors are used to store lower entries, diagonal entries, upper entries, input

displacement, and output forces as matrix storage is concerned.

The above-mentioned housekeeping can be made simple, especially, when both

some displacements and forces are partially specified. For example, in the system

shown in Table 3, [u0, u3, u9] and [F1, F2, F4, F5, F6, F7, F8] are known; but [u1, u2,

u4, u5, u6, u7, u8] and [F0, F3, F9] are to be found.

Appendix: Solver and Real-Time Simulation

112

Table 1 The original system of equations (conventional)

A11 a12 0 F1
A21 a22 A23 u2 0

 a32 A33 a34 U3 F3
 A43 a44 a45 u4 0

 a54 a55 a56 u5 = 0
 a65 a66 a67 u6 0
 a76 a77 a78 U7 F7
 a87 a88 a89 u8 0
 a98 a99 a9,10 u9 0
 a10,9 a10,10 0 F10

Table 2 The transformed system of equations (conventional)

a22 0 u2 V2
0 a44 a45 u4 V4

 a54 a55 a56 u5 = V5
 a65 a66 0 u6 V6
 0 a88 a89 u8 V8
 a98 a99 u9 V9

Table 3 The original system of equations (new)

a00 a01 U0 F0

a10 a11 a12 U1 F1

 a21 a22 a23 U2 F2

 a32 a33 a34 U3 F3

 a43 a44 a45 U4 = F4

 a54 a55 a56 U5 F5

 a65 a66 a67 U6 F6

 a76 a77 a78 U7 F7

 a87 a88 a89 U8 F8

 a98 a99 U9 F9

Table 4 The adjusted system of equations (new)

a00 a01 0 F0 a00 0 0
a10 a11 a12 U1 F1 a10 0 0

 a21 a22 a23 U2 F2 0 0 a23
 a32 a33 A34 0 F3 -u0* 0 -u9* 0 -u3 a33

 a43 A44 a45 U4 = F4 0 0 a43
 A54 a55 a56 U5 F5 0 0 0

 a65 a66 a67 U6 F6 0 0 0
 a76 a77 a78 U7 F7 0 0 0
 a87 a88 a89 U8 F8 0 a89 0
 a98 a99 0 F9 0 a99 0

If both input force vector and displacement vector are adjusted as shown in Table

4, two smaller tridiagonal systems will be obtained and be solved easily. Thus [u1, u2,

u4, u5, u6, u7, u8] is obtained with u0 = 0, u3 = 0, and u9 = 0 being unchanged.

Appendix: Solver and Real-Time Simulation

113

However, house-keeping should be used to obtain forces since displacement vector is

not the original one any more. Since the zero positions in the displacement vector are

not used during the solving process, they can be used to keep the original values in

these places. Finally, required forces [F0, F3, F9] can be solved directly after we get

[u1, u2, u4, u5, u6, u7, u8].

In the beginning, the original F0, F3 and F9 can be assigned with random values

since they will be overridden later.

In the whole process, the K matrix (three vectors) is kept untouched; the

displacement vector and the force vector keep their original forms. Only the values

are changed as the system proceeds. Besides, the process of re-assembling the original

system is completely avoided by separately solving several smaller tridiagonal

systems(see Table 5). Thus, a new solver could be developed through making some

minor and wise adjustment to the typical algorithm for a tridiagonal system ([62]).

Table 5 The actual system of equations (new)

a00 a01 U1 F0 a00 0 0

a10 a11 a12 U1 F1 a10 0 0

 a21 a22 a23 U2 F2 0 0 a23

 a32 a33 a34 U3 F3 -u0 0 -u9 0 -u3 a33

 a43 a44 a45 U4 != F4 0 0 a43

 a54 a55 a56 U5 F5 0 0 0

 a65 a66 a67 U6 F6 0 0 0

 a76 a77 a78 U7 F7 0 0 0

 a87 a88 a89 U8 F8 0 a89 0

 a98 a99 U9 F9 0 a99 0

In summary, after initialization, the solver first divides a big problem into many

smaller ones. Subsequently, it solves all smaller tridiagonal systems with less effort

and finally obtains all the unknowns. The whole process can be termed as divide and

conquer.

Appendix: Solver and Real-Time Simulation

114

The process of meshing and re-meshing is a relatively independent process, which

1) builds up a multi-scale mesh according to the input fineness function and 2)

calculates the absolute positions of interaction points (haptic tips) in the finest

division and the corresponding positions in a multi-scale mesh. At these interaction

points, the displacements are pre-specified or input by the user. Once the mesh has

changed, it will pass data to the solver. The solver then starts a new round of solution.

As for the positions in the finest level that are not included in the multi-scale mesh, an

interpolation method is used to calculate their displacements. The whole process is

shown in Fig. 5.

Fig. 5 The whole process

III. Simulation results and discussions

The simulations are conducted to: 1) show the correctness of the final mesh using

Dynamic algorithm, Merging algorithm and Division algorithm, 2) show if these three

algorithms are efficient enough to let the operator feel the real-time force feedback

when an operator changes the interaction point slightly, and thus changes the fineness

Haptic Device:
1. Input Real-Time
Positions for
Fineness Function.
2. Output Real-Time
Forces

Build up the Whole Binary Tree and Calculate Each
Element's Stiffness in the Whole Tree

According to the Input Fineness Function, Choose
Any of Three Algorithms to Establish a Multi-Scale
Mesh.

Calculate All Relative Positions for Interaction
Points in the Multi-Scale Mesh

Prepare All the Required Vectors and Other Data
for the Solver. And Solve the Tridag System and
Get All the Values. Do Interpolations.

Appendix: Solver and Real-Time Simulation

115

function, and 3) graphically show the force distribution, displacement distribution,

and the elements consisting of a multi-scale mesh.

In Fig.6, both ends are constrained and displacements are specified at the

interaction points. All the displacements and forces are in the horizontal direction but

are shown in the Y-axis for better presentation. The red arrow stands for negative X-

axis and the blue one for positive X-axis.

 1

 2

 3

 4

(X-axis: position, Y-axis: magnitude of values)

 1: The displacement distribution of all nodes at the finest level

 2: The fineness function distribution at the finest level

 3: The displacement distribution of a multi-scale mesh

 4: The actual positions of a multi-scale mesh and the forces

Fig. 6 Simulation results (Division: 6)

During the simulation experiments, all three algorithms get the same multi-scale

mesh as the user moves the intermediate interaction points and the final results are

shown in Fig. 6. Here, the part labeled with 1 shows the displacement distribution of

all elements in the deepest level; the part labeled with 2 specifies the fineness function

(two constraints at both ends and two interaction points in the mid require fine

meshing); the part labeled with 3 shows the displacement distribution of a multi-scale

Appendix: Solver and Real-Time Simulation

116

mesh where the position is before deformation; and the part labeled with 4 shows the

calculated forces at both ends and two interaction points and they are presented at the

actual nodes (after deformation).

During the simulation, an operator can use all three algorithms to feel the real-

time force computed in the Delta system.

.

Fig. 7 The fineness function at the finest level

 Fig.7 shows the process of how the fineness function is calculated and propagated

from the deepest level (6) t the top level (0). At level 6, a fineness value is calculated

for each element using the specified fineness function: here, for the whole area of

interest, the fineness function consists of four discrete points with the fineness value

of 6, then, each element at level 5 is assigned a fineness value: the bigger of the two

fineness values of its two children elements. This process continues until all elements

get their values. Fig.7 also shows the whole element map of our data-structure.

Appendix: Solver and Real-Time Simulation

117

 All the red rectangles in Fig. 8 constitute the multi-scale mesh under the

specified fineness function. From left to right, it can be seen that the level difference

of any two neighboring elements can go beyond 1.

Fig. 8 The distribution of elements consisting of the final multi-scale mesh

IV. Summary

This appendix explained a solver for the tridiagonal equation system and introduced

an improved solver. Also, the simulation results in a real-time workstation are

presented.

