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Summary

Bandlimited wavelets are members from a finite set Ψ := {ψi ∈ L2(R) : i =

1, . . . , n} of bandlimited functions for which the collection X(Ψ) := {ψi(2
j · −k) :

j, k ∈ Z, i = 1, . . . , n} forms a frame for L2(R). Classical examples are the Shannon

and Meyer’s wavelets. However for the past decade, the emphasis is on the construction

of compactly supported wavelets and not bandlimited ones, so little is known about

the systematic construction of bandlimited wavelets. Thus the main objective of this

thesis is to provide relatively simple ways in constructing large families of bandlimited

wavelets so that the resulting collections of X(Ψ) form orthonormal bases, Riesz bases,

tight frames or dual frames of L2(R).

In the first chapter, some preliminary results regarding the fundamentals of wavelet

theory are given. They provide foundation materials for the thesis.

Subsequently in Chapter 2, we first characterize the generation of bandlimited

scaling functions via a special class of even real-valued 2π-periodic functions Aδ,Ω,

where on the interval [−π, π], the functions are supported on [−Ω, Ω] ⊆ [−2π/3, 2π/3]

and take the value 1 on [−δ, δ], δ > 0. Next, we provide characterizations of a function

â ∈ Aδ,Ω such that the integer shifts of the resulting scaling function φ form (a) an

orthonormal basis for V0, (b) a Riesz basis for V0, (c) a frame for V0, where V0 :=

span{φ(· − k) ; k ∈ Z}. Several examples are given to illustrate the theory in this

chapter.

Regularity and decay of functions in L2(R) as well as interpolatory properties of

scaling functions and wavelet functions are discussed in Chapter 3. This is to facil-

itate subsequent construction of bandlimited wavelets with good time and frequency
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localization.

A study of bell functions and orthonormal bandlimited wavelets is made in Chapter

4. In particular, we illustrate the construction of Meyer’s wavelets through the use of

bell functions and the class Aδ,Ω, 0 < δ ≤ Ω ≤ 2π/3.

In Chapter 5, we utilize two special setups based on the Mixed Unitary Extension

Principle (Mixed UEP) as mentioned in [5], [7] and [9] to explicitly create bandlimited

dual frames and bandlimited tight frames. Moreover, these wavelets can be constructed

using bell functions such that they belong to the Schwartz class.

Finally, in the last chapter, we adapt a method used in [15] to construct bandlimited

biorthogonal wavelets. Technical proofs are also adapted carefully from [6] and [8]. The

chapter ends with examples of bandlimited biorthogonal interpolatory wavelets.



Notations

Lp(E) The space of all complex-valued p-integrable functions on a measurable set E.

supp The closure of the set for which the associated function takes nonzero values.

δjk The Kronecker delta function.

1E(·) The characteristic function over the set E.

Ck(R) The set of all complex-valued functions whose kth derivative is continuous

over the real line.

ℓp(Z) The set of all p-summable infinite complex sequences.

≡ Equality of two functions pointwise up to a set of Lebesgue measure zero. sense.

⌈x⌉ The smallest integer greater than or equal to x.

Z The set of all integers.

N The set of all natural numbers.

R The set of all real numbers.

C The set of all complex numbers.

Dk The kth derivative of a function.

sgn(x) The sign of the variable x.

m(E) The Lebesgue measure of the measurable set E.
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Chapter 1

Introduction to Wavelet Theory

1.1 Introduction to Fourier analysis

The reader is assumed to be familiar with basic concepts of Lebesgue measure,

integration theory, normed spaces and Hilbert spaces. In particular, the Lebesgue

dominated convergence theorem will be used several times throughout this thesis. Since

the thesis also requires background knowledge of Fourier analysis and wavelet theory,

let us present some basic concepts of these areas here. The space L2(R) is a Hilbert

space with inner product defined as

〈f, g〉 :=

∫

x∈R

f(x)g(x) dx, f, g ∈ L2(R).

Its norm is given by

‖ f‖2 := 〈f, f〉1/2, f ∈ L2(R).

We consider the Fourier transform in the following.

Theorem 1.1.1 Let f ∈ L1(R). The Fourier transform F̃ of f , f 7→ f̂ , defined as

(F̃(f))(ξ) := f̂(ξ) =

∫

R

e−ixξf(x) dx,

has the following properties.

(1) The function f̂ is bounded and continuous.

2



CHAPTER 1. INTRODUCTION TO WAVELET THEORY 3

(2) Extending the Fourier transform F̃ on L1(R) ∩ L2(R) by taking closure, the

extended operator F : L2(R) → L2(R), f 7→ f̂ is a continuous linear bijection.

(3) (F−1(f̂))(x) := f(x) =
1

2π

∫

R

eixξf̂(ξ) dξ a.e. if f̂ ∈ L1(R).

The extension of the operator F̃ is based on the fact that L1(R) ∩ L2(R) is dense

in L2(R). By applying appropriate Cauchy limits, we get the extended operator F
which will be referred to as the Fourier transform. Details about the proof of this

theorem can be found in [6]. There are some minor variations of the definition of the

Fourier and inverse Fourier transforms. For consistency, the version above will be used

throughout this thesis. Next, we have two important results, namely, the Plancherel’s

theorem and Parseval’s identity given below respectively.

Theorem 1.1.2 For all f , g ∈ L2(R), the following relation holds:

〈f, g〉 =
1

2π
〈f̂ , ĝ〉.

In particular, ‖ f‖2 =
1√
2π

‖ f̂‖2.

We will now state some basic properties of the Fourier transform.

Proposition 1.1.1 The Fourier transform F has the following properties:

(1) F(f(α·))(ξ) = 1
|α| f̂( ξ

α
), where α ∈ R, α 6= 0.

(2) F(f(· − x0))(ξ) = f̂(ξ)e−iξx0, where x0 ∈ R.

(3) F(feiξ0·)(ξ) = f̂(ξ − ξ0), where ξ0 ∈ R.

(4) F(f)(ξ) = f̂(−ξ).

1.2 Fundamental wavelet theory

Now we introduce some fundamental concepts in wavelet theory. We say that a

sequence of functions {vn}n∈Z in L2(R) is a frame for L2(R) if there exist constants A,
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B > 0 such that

A‖f‖2
2 ≤

∑

n∈Z

|〈f, vn〉|2 ≤ B‖f‖2
2, (1.2.1)

for all f ∈ L2(R). A frame is a special case of a Bessel system, i.e. the right inequality

of (1.2.1) holds for every f ∈ L2(R). The supremum of A and the infimum of B for

(1.2.1) to hold are called frame bounds. A frame {vn}n∈Z is said to be tight if we may

take A = B = 1. Such a frame is sometimes referred to as a normalized tight frame in

the literature. A tight frame for L2(R) becomes an orthonormal basis when ‖vn‖2 = 1

for every n ∈ Z. More information about the theory of frames can be found in the

book [5].

We say that {vn}n∈Z is a Riesz sequence in L2(R) if there exist constants A, B > 0

such that

A
∑

n∈Z

|cn|2 ≤ ‖
∑

n∈Z

cnvn‖2
2 ≤ B

∑

n∈Z

|cn|2

for all {cn}n∈Z ∈ ℓ2(Z). If in addition, the linear span of {vn}n∈Z is dense in L2(R),

then {vn}n∈Z is said to be a Riesz basis for L2(R). In particular, if A = B = 1, we say

that {vn}n∈Z forms an orthonormal basis for L2(R).

Define the affine system X(Ψ) := {2j/2ψi(2
j · −k) : j, k ∈ Z, i = 1, . . . , n}, where

Ψ = {ψi ∈ L2(R) : i = 1, . . . , n}. If X(Ψ) forms a frame or Riesz basis for L2(R),

then Ψ is commonly referred to as a set of wavelets or mother wavelets for L2(R).

Next, it is well known that wavelets are usually constructed by means of a mul-

tiresolution analysis (MRA).

Definition 1.2.1 A multiresolution analysis (MRA) of L2(R) with dilation factor 2

is a doubly infinite nested sequence of closed subspaces of L2(R),

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

with the following properties:

(M1)
⋃
j∈Z

Vj is dense in L2(R).

(M2) f ∈ Vj if and only if f(2·) ∈ Vj+1 , for every j ∈ Z.
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(M3) f ∈ Vj if and only if f(· − 2−jk) ∈ Vj, for every j, k ∈ Z.

(M4) There exists a function φ ∈ L2(R) such that

span{φ(· − k) : k ∈ Z} = V0.

The function φ is called a scaling function and V0 is called an integer shift-invariant

subspace of L2(R).

We say that a function φ ∈ L2(R) is refinable if it satisfies the following two-scale

relation: there exists a coefficient sequence {hk}k∈Z ∈ ℓ2(Z) such that

φ(x) =
√

2
∑

k∈Z

hkφ(2x− k) a.e. (1.2.2)

It is well known that if φ ∈ L2(R) and is refinable, then the subspaces {Vj}j∈Z

defined by

Vj = span{φ(2j · −k) : k ∈ Z} (1.2.3)

satisfies properties (M2), (M3), (M4) in Definition 1.2.1 automatically. The subspaces

{Vj}j∈Z are usually termed as shift-invariant subspaces of L2(R). The interested reader

can refer to the book [23] for details. Lastly, we require three results regarding the

characterizations of integer shift-invariant subspaces, refinability and the density of

union of shift-invariant subspaces in L2(R).

Theorem 1.2.1 Given that f , φ ∈ L2(R) and span{φ(· − k) : k ∈ Z} = V , f ∈ V if

and only if there exists a 2π-periodic measurable function m̂ such that f̂ = m̂φ̂ a.e.

This characterization is proved by deBoor, DeVore and Ron in [4]. Consequently,

we have a characterization of the refinability of a function φ ∈ L2(R).

Theorem 1.2.2 Given that φ ∈ L2(R), φ is refinable if and only if there exists a

2π-periodic measurable function â such that

φ̂(2ξ) = â(ξ)φ̂(ξ) a.e., (1.2.4)

where â(ξ) =
∑
k∈Z

hke
−ikξ and {hk}k∈Z is the coefficient sequence in (1.2.2).



CHAPTER 1. INTRODUCTION TO WAVELET THEORY 6

Note that â is usually referred to as the mask of the scaling function φ. We now state

a characterization of the density of the union of shift-invariant subspaces in L2(R).

Theorem 1.2.3 Let φ ∈ L2(R) be refinable and {Vj}j∈Z be a sequence of closed sub-

spaces of L2(R) defined by φ as in (1.2.3). We have

⋃

j∈Z

Vj = L2(R)

if and only if
⋂
j∈Z

Zj(φ̂) has Lebesgue measure zero where

Zj(φ̂) := {ξ ∈ R : φ̂(2−jξ) = 0}.

In particular, if φ̂(0) 6= 0 and φ̂ is continuous at the origin, then

⋃

j∈Z

Vj = L2(R).

For details of the proof, the interested reader can refer to [4]. We will now proceed

to the next chapter where we define and investigate bandlimited scaling functions and

their masks.



Chapter 2

Analysis on Bandlimited Scaling

Functions

2.1 Masks of bandlimited scaling functions

In this section, we first characterize refinability of a large class of bandlimited func-

tions. A function φ is bandlimited if φ ∈ L2(R) and its Fourier transform φ̂ has compact

support in some interval [−Ω, Ω], where Ω > 0. Subsequently, we will investigate the

generation of bandlimited scaling functions through a product involving bandlimited

2π-periodic functions. With some abuse of notation, we say a 2π-periodic function â is

2π-bandlimited if supp â1[−π, π] ⊆ [−Ω, Ω] for some positive Ω < π. First, we introduce

special classes of 2π-bandlimited 2π-periodic functions and bandlimited functions to

facilitate the discussion.

Definition 2.1.1 For 0 < δ ≤ Ω < π, let Aδ,Ω be the set of all 2π-periodic, bounded,

even, nonnegative functions â with the following properties:

(a) â is continuous everywhere except possibly at the set of points {Ω+2πl, −Ω+2πl :

l ∈ Z}.

(b) â(ξ) = 0 for ξ ∈ [−π, π]\[−Ω, Ω].

(c) â is totally positive in the following sense: â(ξ) > 0 for ξ ∈ (−Ω, Ω).

7
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(d) â has an interval of constancy (IOC), i.e. â(ξ) = 1 for ξ ∈ [−δ, δ].

Here, we mention two possibilities of the function â which will be useful in subse-

quent sections. In fact, due to the special structure of the function â ∈ Aδ,Ω, we have

the following characterizations.

(1) lim
ξ→Ω−

â(ξ) > 0 if and only if â is discontinuous at the point Ω.

(2) lim
ξ→Ω−

â(ξ) = 0 if and only if â is continuous everywhere.

These two properties can be easily shown by standard calculus techniques, so we

will omit the proof here. Analogously, we define another special class of functions in

L2(R).

Definition 2.1.2 For 0 < δ ≤ Ω < π, let Bδ,Ω consist of all functions φ ∈ L2(R) such

that the following hold.

(a) Its Fourier transform φ̂ is bounded, even, nonnegative and continuous every-

where except possibly at the points ±2Ω.

(b) φ̂(ξ) = 0 for ξ ∈ R\[−2Ω, 2Ω].

(c) φ̂ is totally positive in the following sense: φ̂(ξ) > 0 for ξ ∈ (−2Ω, 2Ω).

(d) φ̂ has an interval of constancy (IOC), i.e. φ̂(ξ) = 1 for ξ ∈ [−2δ, 2δ].

Similarly, we have the following.

(1) lim
ξ→2Ω−

φ̂(ξ) > 0 if and only if φ̂ is discontinuous at the point 2Ω.

(2) lim
ξ→2Ω−

φ̂(ξ) = 0 if and only if φ̂ is continuous everywhere.

While the properties of Aδ,Ω and Bδ,Ω look cumbersome, it shall be shown that they

are in fact mild and natural assumptions by providing a large class of examples at

the end of this chapter. We shall see later that many well-known bandlimited scaling

functions like the Shannon’s scaling function and the Meyer’s scaling function arise

from appropriate functions in Aδ,Ω for some δ and Ω.
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In the literature, properties about scaling functions are often discussed in terms of

bracket product and spectrum which we define below. For f , g ∈ L2(R), define

[f, g](ξ) :=
∑

l∈Z

f(ξ + 2πl)g(ξ + 2πl),

which is known to be a well-defined L1[−π, π] function. Then for a scaling function φ,

its bracket product is defined as

[φ̂, φ̂](ξ) :=
∑

l∈Z

|φ̂(ξ + 2πl)|2

and its spectrum is

σ(φ) := {ξ ∈ [−π, π] : [φ̂, φ̂](ξ) > 0}.

It is interesting and easy to note that for 0 < δ ≤ Ω < π and φ ∈ Bδ,Ω, σ(φ) =

[−π, π] if and only if Ω ≥ π/2, where equality of the sets is up to a set of measure zero.

Indeed, if Ω ≥ π/2, it follows easily from the definition of Bδ,Ω that σ(φ) = [−π, π].

Conversely, if σ(φ) = [−π, π], suppose on the contrary that Ω < π/2. Then [φ̂, φ̂](ξ) =

|φ̂(ξ)|2 = 0 for ξ ∈ [−π,−Ω] ∪ [Ω, π], which is a contradiction. In fact,

σ(φ) =





[−2Ω, 2Ω], if Ω < π/2,

[−π, π], if π/2 ≤ Ω < π.
(2.1.1)

This chapter is organized as follows:

(1) Characterize Aδ,Ω in terms of Bδ,Ω when 0 < δ ≤ Ω ≤ 2π/3.

(2) Show that for any â ∈ Aδ,Ω with 0 < δ ≤ Ω ≤ 2π/3, the resulting scaling

function φ generates an MRA of L2(R).

(3) Find characterizations of functions â ∈ Aδ,Ω such that they give scaling functions

with orthonormal shifts, shifts that form a frame for V0 and a Riesz sequence in

L2(R), where V0 is defined by φ as in (1.2.3).

(4) Provide examples of functions â ∈ Aδ,Ω which generate classical examples of

scaling functions like the Shannon and Meyer’s scaling functions.
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Before we start to characterize Aδ,Ω in terms of Bδ,Ω when 0 < δ ≤ Ω ≤ 2π/3, we

require a theorem from [22] for one of the uniqueness results in Proposition 2.1.1.

Theorem 2.1.1 Let φ ∈ L2(R) satisfy (1.2.4) and lim
ξ→0

φ̂(ξ) = φ̂(0) 6= 0. Then any

solution ϕ ∈ L2(R) with lim
ξ→0

ϕ̂(ξ) = ϕ̂(0) satisfying (1.2.4) can be written as

ϕ(x) =
ϕ̂(0)

φ̂(0)
φ(x).

Proposition 2.1.1 Let 0 < δ ≤ Ω ≤ 2π/3. Then for every â ∈ Aδ,Ω, there exists a

unique function φ ∈ Bδ,Ω such that (1.2.4) holds. Conversely, for every φ ∈ Bδ,Ω, there

exists a function â which is unique up to a set of measure zero in the class Aδ,Ω such

that (1.2.4) holds. Furthermore â is continuous if and only if φ̂ is continuous.

Proof: Let â ∈ Aδ,Ω and we define φ by its Fourier transform φ̂ given by

φ̂(ξ) :=
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ), (2.1.2)

where

N :=





⌈log2(Ω/δ)⌉, if δ < Ω,

1, if δ = Ω.
(2.1.3)

First we consider the function

q(ξ) :=
φ̂(2ξ)

φ̂(ξ)
1[−Ω,Ω](ξ) =

â(ξ)

â(2−Nξ)
1[−Ω,Ω](ξ) = â(ξ)1[−Ω,Ω](ξ) = â(ξ)1[−π,π](ξ)

because â(2−Nξ) = 1 for |ξ| ≤ Ω. This arises from the following: 2−N |ξ| ≤ δ for

|ξ| ≤ Ω, and â(ξ) = 1 for |ξ| ≤ δ. Note that the function q is well defined since

φ̂(ξ) > 0 for |ξ| ≤ Ω. Observe that â is the 2π-periodic extension of the function q in

the sense that,

â(ξ) =
∑

l∈Z

q(ξ + 2πl).

We claim that φ, defined in (2.1.2) by â, is a solution to the refinement equation

(1.2.4) and furthermore, φ ∈ Bδ,Ω. For almost all ξ ∈ R,

â(ξ)φ̂(ξ) =
∑

l∈Z

q(ξ + 2πl)φ̂(ξ)

= [q(ξ)φ̂(ξ)]1[−Ω,Ω](ξ) = φ̂(2ξ)1[−Ω,Ω](ξ) = φ̂(2ξ),
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because the functions â and φ̂ has supports
⋃
l∈Z

[−Ω + 2πl, Ω + 2πl] and [−2Ω, 2Ω]

respectively and

( ⋃

l∈Z

[−Ω + 2πl, Ω + 2πl]
)⋂

[−2Ω, 2Ω] = [−Ω, Ω]

up to a set of measure zero since Ω ≤ 2π/3. Thus φ̂ is a solution to the refinement

equation (1.2.4).

To show that φ ∈ Bδ,Ω, first notice that the product function φ̂ in (2.1.2) can be

written as φ̂(ξ) =
N∏

j=1

wj(ξ) where wj(ξ) = â(2−jξ)1[−Ω,Ω](2
−jξ), j = 1, . . . , N . Now,

wj(ξ) is continuous everywhere except possibly at the points ±2jΩ. Since the product

function is identically zero outside the interval [−2Ω, 2Ω], it follows that the product

function φ̂ is continuous everywhere except possibly at ±2Ω. Next, φ̂(ξ) = 1 for

|ξ| ≤ 2δ because â(2−jξ) = 1 for |ξ| ≤ 2δ and every j ∈ N.

We also have φ̂(ξ) > 0 for |ξ| < 2Ω because â(2−jξ) > 0 for |ξ| < 2Ω, and all j ∈ N.

It is clear from the definition of φ̂ in (2.1.2) that φ̂ is bounded everywhere whenever â

is bounded everywhere. Lastly, note that if â is an even function, then φ̂ is also even

because

φ̂(−ξ) =
[ N∏

j=1

â(−2−jξ)
]
1[−2Ω, 2Ω](−ξ) = [

N∏

j=1

â(2−jξ)]1[−2Ω, 2Ω](ξ) = φ̂(ξ)

for almost everywhere ξ ∈ R. We conclude that φ ∈ Bδ,Ω.

Furthermore if â is continuous everywhere, then â(Ω) = 0 = â(−Ω) and so â1[−Ω,Ω]

is also continuous everywhere. Now note that

φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ) =

N∏

j=1

[
â(2−jξ)1[−Ω,Ω](2

−jξ)
]
,

and thus φ̂ must be continuous everywhere.

To show uniqueness, let ϕ be another function in Bδ,Ω such that (1.2.4) holds. Then

by Theorem 2.1.1,

ϕ(x) =
ϕ̂(0)

φ̂(0)
φ(x) = φ(x)

since φ, ϕ ∈ Bδ,Ω and ϕ̂(0) = 1 = φ̂(0).
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Conversely, if φ ∈ Bδ,Ω, consider the function

p(ξ) :=





φ̂(2ξ)

φ̂(ξ)
, if ξ ∈ [−Ω, Ω],

0, otherwise,
(2.1.4)

which is well defined because φ̂(ξ) > 0 for |ξ| ≤ Ω. Define â(ξ) :=
∑
l∈Z

p(ξ + 2πl)

which is also the 2π-periodic extension of the function p because the support of p is

[−Ω, Ω] ⊂ [−π, π]. We shall show that â is a solution to the refinement equation

(1.2.4) and indeed â ∈ Aδ,Ω.

Now, for almost everywhere ξ ∈ R,

â(ξ)φ̂(ξ) =
∑

l∈Z

p(ξ + 2πl)φ̂(ξ) = [
∑

l∈Z

p(ξ + 2πl)φ̂(ξ)]1[−Ω,Ω](ξ)

= [p(ξ)φ̂(ξ)]1[−Ω,Ω](ξ) = φ̂(2ξ)1[−Ω,Ω](ξ) = φ̂(2ξ),

because the functions â and φ̂ has supports
⋃
l∈Z

[−Ω + 2πl, Ω + 2πl] and [−2Ω, 2Ω]

respectively and
( ⋃

l∈Z

[−Ω + 2πl, Ω + 2πl]
)⋂

[−2Ω, 2Ω] = [−Ω, Ω]

up to a set of measure zero since Ω ≤ 2π/3. Thus â is a solution to the refinement

equation (1.2.4).

Since φ̂ is an even function with φ̂(ξ) > 0 and continuous for |ξ| ≤ Ω, then 1/φ̂(ξ)

is also continuous, bounded, even and strictly positive for |ξ| ≤ Ω. Thus by the

definition of the function p in (2.1.4), p is also an even, bounded function which is

strictly positive and continuous whenever ξ ∈ (−Ω, Ω). Lastly, since both φ̂(ξ) and

φ̂(2ξ) equal 1 whenever ξ ∈ [−δ, δ], again by (2.1.4), p(ξ) = 1 for ξ ∈ [−δ, δ]. As â is

the 2π-periodic extension of the function p, it follows that â ∈ Aδ,Ω.

If furthermore, φ̂ is continuous everywhere, φ̂(2Ω) = 0 = φ̂(−2Ω) and by the

definition of p in (2.1.4), this implies that p(Ω) = 0 = p(−Ω) . Since p is continuous

in (−Ω, Ω) and p(ξ) = 0 for |ξ| > Ω, p must be continuous everywhere. This makes

its 2π-periodic extension function â continuous everywhere as well.

To show uniqueness, let ã ∈ Aδ,Ω be another solution to (1.2.4). We claim that

ã(ξ) = φ̂(2ξ)/φ̂(ξ) for |ξ| ≤ Ω, for otherwise it violates the refinement equation (1.2.4)
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on the interval [−Ω, Ω]. Furthermore, by the definition of Aδ,Ω, ã(ξ) = 0 for Ω < |ξ| ≤
π. Thus ã1[−π, π] = p. By the periodicity of ã, we have ã ≡ â. This finishes the proof

of the proposition.

It is known in the wavelet literature (see [2]) that for a scaling function φ, if σ(φ) 6=
[−π, π], then φ has infinitely many masks which satisfy the refinement equation. For

example, define φΩ by its Fourier transform φ̂Ω := 1[−2Ω,2Ω](ξ) where Ω < π/2. Then

the family of masks {âc}c defined by the 2π-periodic extension of the functions q̂c(ξ) :=

1[−Ω,Ω](ξ) + 1[−2Ω,−c](ξ) + 1[c,2Ω](ξ), π/2 < c ≤ 2Ω, satisfy the refinement equation.

However these masks do not lie in Aδ,Ω.

Masks with good low-pass properties are desired in applications, take for instance,

the Shannon’s ideal low-pass filter and the masks corresponding to Meyer’s scaling

functions (see [19]). Incidentally, such masks belong to Aδ,Ω for some 0 < δ ≤ Ω ≤
2π/3, which motivates us to only consider masks belonging to Aδ,Ω for a bandlimited

scaling function φ in Bδ,Ω. Furthermore, the uniqueness result proved in Proposition

2.1.1 leaves no ambiguities when we discuss the associated mask â in Aδ,Ω for a given

φ ∈ Bδ,Ω.

For â ∈ Aδ,Ω, we have constructed a scaling function φ ∈ Bδ,Ω in the proof of

Proposition 2.1.1. We shall next show that this scaling function φ actually coincides

with the conventional scaling function ϕ defined by the infinite product

ϕ̂(ξ) :=

∞∏

j=1

â(2−jξ). (2.1.5)

In doing so, we also illustrate the importance of the interval of constancy [−δ, δ] of the

mask â and the number N as defined in (2.1.3).

Proposition 2.1.2 For 0 < δ ≤ Ω ≤ 2π/3, if â ∈ Aδ,Ω, then ϕ defined by â as in the

conventional infinite product in (2.1.5) coincides almost everywhere with φ defined by

â as in the finite product (2.1.2).

Proof: For ν ≥ 1, define gν(ξ) :=
ν∏

j=1

â(2−jξ). We have ϕ̂(ξ) =
∞∏

j=1

â(2−jξ) =

lim
ν→∞

gν(ξ). We shall analyze the behavior of ϕ̂(ξ) = lim
ν→∞

gν(ξ) on the following subin-
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tervals of R: [−2Ω, 2Ω] and [−2Ω, 2Ω]c and thus show the pointwise equality almost

everywhere between ϕ̂ and φ̂ on each subinterval.

For |ξ| ≤ 2Ω and j ≥ N + 1, â(2−jξ) = 1, where N is as defined in (2.1.3). Then

for |ξ| ≤ 2Ω and ν ≥ N + 1, gν(ξ) =
ν∏

j=1

â(2−jξ) =
N∏

j=1

â(2−jξ). Thus, for |ξ| ≤ 2Ω,

lim
ν→∞

gν(ξ) =
N∏

j=1

â(2−jξ) and this means that ϕ̂(ξ) = φ̂(ξ).

Next, we show that for almost everywhere |ξ| > 2Ω, lim
ν→∞

gν(ξ) = 0. Since Ω ≤ 2π/3

and â ∈ Aδ,Ω, â(2−jξ) = 0 for |ξ| ∈ (2jΩ, 2j(−Ω + 2π)) ⊇ (2jΩ, 2j+1Ω). So for ν ∈ N,

gν(ξ) =
ν∏

j=1

â(2−jξ) = 0, |ξ| ∈
ν⋃

j=1

(2jΩ, 2j+1Ω). Then

ϕ̂(ξ) = lim
ν→∞

gν(ξ) = 0, |ξ| ∈ (2Ω,∞) a.e.,

which means that for |ξ| > 2Ω, ϕ̂(ξ) = φ̂(ξ) almost everywhere. This concludes the

proof.

We emphasize that from the proof of Proposition 2.1.2, global pointwise equality

between the functions φ̂ and ϕ̂ can be achieved if either of the following conditions

holds:

(1) Ω < 2π/3,

(2) â is continuous everywhere.

Indeed, Condition (1) implies that â(2−jξ) = 0 for ξ ∈ (2jΩ, 2j(−Ω+2π)) ⊃ [2j2π/3, 2j+12π/3].

Thus, from the proof of Proposition 2.1.2, ϕ̂(ξ) = lim
ν→∞

gν(ξ) = 0 for |ξ| ∈ (2Ω,∞) ev-

erywhere, which gives the desired result. If Condition (2) holds, then â(±Ω) = 0. Given

this and the proof of Proposition 2.1.2, we see that for ν ∈ N, gν(ξ) =
ν∏

j=1

â(2−jξ) = 0,

|ξ| ∈
ν⋃

j=1

[2jΩ, 2j+1Ω]. Then

ϕ̂(ξ) = lim
ν→∞

gν(ξ) = 0, |ξ| ∈ (2Ω,∞),

which means that for |ξ| > 2Ω, ϕ̂(ξ) = φ̂(ξ) everywhere.

Proposition 2.1.1 means that if Ω ≤ 2π/3, a function â ∈ Aδ,Ω uniquely determines

a scaling function φ ∈ Bδ,Ω satisfying (1.2.4) and vice-versa. A natural question arising
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from Proposition 2.1.1 is that whether the assumption Ω ≤ 2π/3 could be relaxed. We

shall show in the following that it cannot be the case.

Proposition 2.1.3 For 0 < δ ≤ Ω < π, let φ ∈ Bδ,Ω. Then φ is refinable if and only

if Ω ≤ 2π/3.

Proof: The sufficiency statement is clear from Proposition 2.1.1. It suffices to prove

the necessity. Suppose that Ω > 2π/3 and assume on the contrary that φ is refinable.

Then there exists a 2π-periodic function â such that φ̂(2ξ) = â(ξ)φ̂(ξ) a.e. Furthermore,

from the proof of Proposition 2.1.1, â must necessarily take the following form

â(ξ) =
φ̂(2ξ)

φ̂(ξ)
6= 0, |ξ| < Ω.

Thus [−Ω + 2πl,Ω + 2πl] ⊆ supp â for all l ∈ Z.

On the other hand, since Ω > 2π/3,

supp â ∩ supp φ̂ ⊇ [−2Ω, Ω − 2π] ∪ [−Ω, Ω] ∪ [2π − Ω, 2Ω],

which contradicts the fact that supp φ̂(2·) = [−Ω, Ω].

In view of Proposition 2.1.3, we may only consider the generation of bandlimited

refinable functions φ by functions â ∈ Aδ,Ω when 0 < δ ≤ Ω ≤ 2π/3. Due to Proposi-

tions 2.1.1 and 2.1.3, throughout this thesis, for 0 < δ ≤ Ω ≤ 2π/3, given â ∈ Aδ,Ω, we

can always define a scaling function φ by

φ̂(ξ) = [

N∏

j=1

â(2−jξ)]1[−2Ω, 2Ω](ξ) =

N∏

j=1

[
â(2−jξ)1[−Ω,Ω](2

−jξ)
]
, (2.1.6)

where 0 < δ ≤ Ω ≤ 2π/3, supp â1[−π,π] = [−Ω, Ω], â(ξ) = 1 for |ξ| ≤ δ and

N =






⌈log2(Ω/δ)⌉, if δ < Ω,

1, if δ = Ω,
(2.1.7)

and we can refer â as the mask of φ. Finally we have the following theorem which

essentially says that whenever 0 < δ ≤ Ω ≤ 2π/3, functions in Aδ,Ω generate an MRA

of L2(R).
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Theorem 2.1.2 Let â ∈ Aδ,Ω, and let φ be defined by â as in (2.1.6) and (2.1.7).

Suppose that {Vj}j∈Z is the sequence of subspaces generated by φ as in (1.2.3). Then

{Vj}j∈Z forms an MRA of L2(R).

Proof: By Proposition 2.1.1, â ∈ Aδ,Ω generates a scaling function φ ∈ Bδ,Ω which is

a refinable function. Furthermore, lim
ξ→0

φ̂(ξ) = φ̂(0) = 1 6= 0. Thus by Theorem 1.2.3,

property (M1) of Definition 1.2.1 is satisfied. Since φ is refinable, the other properties

(M2), (M3), (M4) are automatically satisfied by the definition of {Vj}j∈Z, thus giving

us the desired conclusion.

2.2 Characterizations of frames, orthonormal and

Riesz bases

We shall characterize the functions â ∈ Aδ,Ω where 0 < δ ≤ Ω ≤ 2π/3, so that the

integer shifts of the resulting scaling function φ form (a) an orthonormal basis for V0 ,

(b) a Riesz basis for V0, or (c) a frame for V0, where

V0 = span{φ(· − k) : k ∈ Z}. (2.2.1)

Before we do so, we require general characterizations of the integer shifts of a scaling

function φ satisfying (a), (b), (c) respectively in terms of its bracket product [φ̂, φ̂].

It is not hard to observe that if φ̂ is compactly supported and bounded everywhere,

then [φ̂, φ̂] must be bounded everywhere. As [φ̂, φ̂] is a 2π-periodic function, it suffices

to consider [φ̂, φ̂] on the interval [−π, π]. Then, on [−π, π], the summation
∑
l∈Z

|φ̂(· +

2πl)|2 involves only a finite number of bounded terms due to the compact support of φ̂.

Thus [φ̂, φ̂] is bounded everywhere on [−π, π] and thus [φ̂, φ̂] is bounded everywhere

on R.

Proposition 2.2.1 Let φ, φ̃ ∈ L2(R). Then we have the following.

(a) 〈φ, φ̃(· − k)〉 = δ0k for all k ∈ Z if and only if [φ̂, ˆ̃φ] ≡ 1. In particular, setting

φ = φ̃, 〈φ, φ(· − k)〉 = δ0k for all k ∈ Z if and only if [φ̂, φ̂] ≡ 1.
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(b) The integer shifts of φ form a Riesz sequence i.e. there exist constants A, B > 0

such that

A‖c‖2
ℓ2 ≤ ‖

∑

k∈Z

ckφ(· − k)‖2
L2 ≤ B‖c‖2

ℓ2

for c = {ck}k∈Z ∈ ℓ2(Z) if and only if A ≤ [φ̂, φ̂] ≤ B a.e.

(c) The integer shifts of φ form a frame for V0 i.e. there exist constants A, B > 0

such that

A‖f‖2
L2 ≤

∑

k∈Z

|〈f, φ(· − k)〉|2 ≤ B‖f‖2
L2

for all f ∈ V0, if and only if A ≤ [φ̂, φ̂] ≤ B a.e. in σ(φ), where V0 is defined

by φ in (1.2.3).

This is a well-known result in wavelet theory and the interested reader can refer to [5]

for detailed proofs.

Lemma 2.2.1 For 0 < δ ≤ Ω ≤ 2π/3, 0 < δ̃ ≤ Ω̃ ≤ 2π/3, let â, ˆ̃a belong to Aδ,Ω and

Aδ̃,Ω̃ respectively. If âˆ̃a(·) + âˆ̃a(· + π) ≡ 1, then Ω, Ω̃ ≥ π/2 and δ, δ̃ ≥ π/3.

Proof: Let k(ξ) := âˆ̃a(ξ). Then k ∈ Aδ0,Ω0
where δ0 := min{δ, δ̃}, Ω0 := min{Ω, Ω̃}.

Suppose on the contrary that Ω0 < π/2. Then on [−π/2, π/2], âˆ̃a(ξ) + âˆ̃a(ξ + π) = 0

for |ξ| ∈ [Ω0, π/2] which is a contradiction. Thus Ω0 ≥ π/2 and so Ω, Ω̃ ≥ π/2.

Recall that the 2π-periodic functions â and ˆ̃a have compact supports [−Ω, Ω] and

[−Ω̃, Ω̃] respectively when they are restricted to the fundamental interval [−π, π].

Thus the function k has compact support [−Ω0, Ω0] when it is restricted to [−π, π],

where Ω0 = min{Ω, Ω̃} ≤ 2π/3. Let g(ξ) := k1[−π, π](ξ) = k1[−Ω0,Ω0](ξ). As Ω0 ≤
2π/3, it follows that k(ξ) + k(ξ + π) = g(ξ) on (−π/3, π/3). Since k(·) + k(·+ π) ≡ 1,

g(ξ) = 1 for ξ ∈ (−π/3, π/3), which means that k = g1[−π,π] has an interval of

constancy [−δ0, δ0] ⊇ (−π/3, π/3). Thus δ0 ≥ π/3 and so δ, δ̃ ≥ π/3.

Corollary 2.2.1 For 0 < δ ≤ Ω ≤ 2π/3, 0 < δ̃ ≤ Ω̃ ≤ 2π/3, let â, ˆ̃a belong to Aδ,Ω

and Aδ̃,Ω̃ respectively. Define φ, φ̃ by â and ˆ̃a respectively as in (2.1.6) and (2.1.7). If

[φ̂,
ˆ̃
φ] ≡ 1, then Ω, Ω̃ ≥ π/2, δ, δ̃ ≥ π/3, and N , Ñ defined by (2.1.7) are both 1.
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Proof: By standard arguments provided in [6] regarding the biorthogonality of dual

scaling functions and duality of their masks, [φ̂,
ˆ̃
φ] ≡ 1 implies that

â(·)ˆ̃a(·) + â(· + π)ˆ̃a(· + π) ≡ 1.

Henceforth we apply Lemma 2.2.1 to get Ω, Ω̃ ≥ π/2, δ, δ̃ ≥ π/3. Lastly, as Ω,

Ω̃ ≤ 2π/3 and δ, δ̃ ≥ π/3, it follows that from (2.1.7) that N = 1 = Ñ .

Next, we derive an interesting consequence of orthonormal scaling functions and

interpolatory functions in Bδ,Ω. Recall that a scaling function φ ∈ L2(R) is said to be

interpolatory if

φ(j) = δ0j , j ∈ Z. (2.2.2)

It is widely known that this definition is equivalent to the condition

∑

l∈Z

φ̂(ξ + 2πl) ≡ 1. (2.2.3)

The consequence is the following.

Corollary 2.2.2 For 0 < δ ≤ Ω ≤ 2π/3, if φ ∈ Bδ,Ω has orthonormal shifts or is

interpolatory, then Ω ≥ π/2, δ ≥ π/3 and N defined by (2.1.7) is 1.

Proof: For the case of the orthonormal shifts, we simply apply Proposition 2.2.1 and

Corollary 2.2.1. As for the other case, consider φ ∈ Bδ,Ω which is interpolatory. Define

ϕ by its Fourier transform ϕ̂(ξ) := φ̂1/2(ξ). One can easily check that ϕ ∈ Bδ,Ω and

[ϕ̂, ϕ̂] ≡ 1. Applying Corollary 2.2.1 then gives the result.

With the information given by Corollary 2.2.1, for Ω ≥ π/2 and δ ≥ π/3, we

provide the following useful characterization between masks in Aδ,Ω and corresponding

scaling functions in Bδ,Ω. It should be emphasized that characterization of this type

need not hold for masks in general.

Lemma 2.2.2 For π/3 ≤ δ ≤ Ω ≤ 2π/3, π/3 ≤ δ̃ ≤ Ω̃ ≤ 2π/3 with Ω, Ω̃ ≥ π/2, let

â ∈ Aδ,Ω, ˆ̃a ∈ Aδ̃,Ω̃ and φ, φ̃ be defined by â and ˆ̃a respectively as in (2.1.6) and (2.1.7),

where N and Ñ defined by (2.1.7) are both 1. Then [φ̂, ˆ̃φ] ≡ 1 if and only if

â(·)ˆ̃a(·) + â(· + π)ˆ̃a(· + π) ≡ 1.
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Furthermore, for each m > 0,
∑
l∈Z

φ̂m(·+ 2πl) ≡ 1 if and only if âm(·) + âm(·+ π) ≡ 1.

Proof: As noted in the proof of Corollary 2.2.1, standard arguments show that [φ̂, φ̂] ≡
1 gives âˆ̃a(·) + âˆ̃a(· + π) ≡ 1.

Conversely, we first denote k(ξ) := â(ξ)ˆ̃a(ξ), g(ξ) := k(ξ)1[−Ω0,Ω0](ξ), where Ω0 =

min{Ω, Ω̃}. As N = Ñ = 1, the function ϕ defined by ϕ̂(ξ) := φ̂(ξ)
ˆ̃
φ(ξ) simplifies to

ϕ̂(ξ) = k(ξ/2)1[−2Ω0,2Ω0](ξ) = g(ξ/2). Due to the bandlimited structures of the masks

â, ˆ̃a, one can write g(ξ) = âˆ̃a(ξ)1[−Ω0,Ω0](ξ) = âˆ̃a(ξ)1[−π,π](ξ) and âˆ̃a(ξ) =
∑
l∈Z

g(ξ+2πl).

Note that [φ̂,
ˆ̃
φ](ξ) =

∑
l∈Z

ϕ̂(ξ + 2πl) and thus

∑

l∈Z

ϕ̂(2ξ + 2πl) =
∑

l∈Z

g(ξ + πl)

=
∑

l∈Z

g(ξ + 2πl) +
∑

l∈Z

g(ξ + π + 2πl)

= âˆ̃a(ξ) + âˆ̃a(ξ + π) ≡ 1,

which gives the desired result.

To show the second part of this lemma, we simply replace both â and ˆ̃a by âm/2 in

the first part. Note that by the definition of Aδ,Ω, for m > 0, â ∈ Aδ,Ω if and only if

âm/2 ∈ Aδ,Ω. In view of (2.1.6) and (2.1.7), the corresponding scaling function φm of

each âm/2 is given exactly by

φ̂m(ξ) = âm/2(2−jξ)1[−2Ω, 2Ω](ξ) = φ̂m/2(ξ).

This concludes the proof of the lemma.

There are three important consequences of Lemma 2.2.2. It gives characterizations

of the relation between dual masks and dual scaling functions, the relation between

interpolatory masks and interpolatory scaling functions and lastly, the relation between

conjugate quadrature filters and scaling functions with orthonormal shifts. These will

be explained in subsequent chapters. Next, we establish another useful lemma.

Lemma 2.2.3 For 0 < δ ≤ Ω ≤ 2π/3, let â ∈ Aδ,Ω and φ be defined by â as in (2.1.6)

and (2.1.7). Then the following are equivalent.
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(a) lim
ξ→2Ω−

φ̂(ξ) > 0.

(b) lim
ξ→Ω−

â(ξ) > 0.

(c) There exists a constant M > 0 such that M ≤ â(ξ) for all ξ ∈ (−Ω,Ω).

(d) There exists a constant A > 0 such that A ≤ φ̂(ξ) for all ξ ∈ (−2Ω, 2Ω).

Proof: Recall from (2.1.6) that φ̂(ξ) = [
N∏

j=1

â(2−jξ)]1[−2Ω, 2Ω](ξ), where â ∈ Aδ,Ω and

N is as defined in (2.1.7). We shall prove this lemma in the following order: (a) ⇒ (b)

⇒ (c) ⇒ (d) ⇒ (a).

Firstly, we show that statement (a) implies statement (b). Assume that lim
ξ→2Ω−

φ̂(ξ) >

0. Since â(ξ) > 0 and continuous for ξ ∈ (−2Ω, 2Ω) , this implies that lim
ξ→2Ω−

â(2−jξ) =

â(2−j2Ω) > 0 for j ≥ 2. Then by (2.1.6), this means that

lim
ξ→Ω−

â(ξ)1[−Ω,Ω](ξ) =
[

lim
ξ→2Ω−

φ̂(ξ)/

N∏

j=2

â(2−j2Ω)
]
1[−Ω,Ω](ξ) > 0.

Now we prove statement (b) implies statement (c). Assume lim
ξ→Ω−

â(ξ) > 0. Then by

the definition of Aδ,Ω, we know that â is continuous and positive on [−Ω, Ω] and â > 0

on [−Ω, Ω]. For the last part, suppose on the contrary that for every A > 0, there

exists ξA ∈ (−Ω, Ω) such that A > â(ξA). Choose A = 1
n
, n ≥ 1. Then there exists

ξn ∈ (−Ω, Ω) such that

0 < â(ξn) <
1

n
. (2.2.4)

Note that {ξn}∞n=1 is a sequence in (−Ω, Ω). Letting n→ ∞ in (2.2.4), we have

0 ≤ lim
n→∞

â(ξn) ≤ lim
n→∞

1

n
,

so lim
n→∞

â(ξn) = 0. Since {ξn}∞n=1 ⊆ (−Ω,Ω) ⊂ [−Ω, Ω], there exists a subsequence

{ξnk
}∞k=1 that converges to ξ∗ in [−Ω, Ω]. Since {â(ξn)}∞n=1 converges, its subse-

quence {â(ξnk
)}∞k=1 also converges and indeed lim

k→∞
â(ξnk

) = 0. If ξ∗ ∈ (−Ω, Ω), then

â( lim
k→∞

ξnk
) = â(ξ∗) = 0 which is impossible. So ξ∗ = ±Ω.
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Since â is an even function, lim
ξ→Ω−

â(ξ) > 0 if and only if lim
ξ→−Ω+

â(ξ) > 0. So it

suffices to consider the case where ξ∗ = Ω. Since lim
k→∞

ξnk
= ξ∗ = Ω, it follows that

0 = lim
k→∞

â(ξnk
) = lim

ξ→Ω−

â(ξ) > 0,

which is a contradiction.

To show that statement (c) implies statement (d), we simply deduce from the

structure of φ̂ in (2.1.6) that whenever statement (c) holds, we have 0 < MN ≤ φ̂(ξ)

for all ξ ∈ (−2Ω, 2Ω).

We see that statement (d) implies statement (a) by simply taking considering the

left-hand limit lim
ξ→2Ω−

φ̂(ξ). This is justifiable as φ̂ is continuous on (−2Ω, 2Ω) and this

concludes the proof of the lemma.

Finally, we are ready to begin the characterization and we shall find the two previous

lemmas handy.

Theorem 2.2.1 For 0 < δ ≤ Ω ≤ 2π/3, let â ∈ Aδ,Ω and φ be defined by â as in

(2.1.6) and (2.1.7). Define V0 as in (2.2.1). We have the following.

(a) For Ω ≥ π/2,

(i) the integer shifts of φ form a Riesz basis for V0 if and only if either

Ω > π/2 or Ω = π/2 and lim
ξ→π/2−

â(ξ) > 0,

(ii) under the assumption that δ ≥ π/3, the integer shifts of φ form an or-

thonormal basis for V0 if and only if the Conjugate Quadrature Filter

(CQF) condition is satisfied, i.e.

â2(·) + â2(· + π) ≡ 1.

(b) For Ω < π/2,

(i) the integer shifts of φ form a frame for V0 if and only if lim
ξ→Ω−

â(ξ) > 0,

(ii) the integer shifts of φ cannot form a Riesz basis for V0.
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Proof: To prove statement (a)(i), we first show that, if the integer shifts of φ form a

Riesz basis for V0, then Ω ≥ π/2. If the integer shifts of φ form a Riesz basis for V0,

by statement (b) in Proposition 2.2.1, there exist constants A, B > 0 such that

A ≤ [φ̂, φ̂](ξ) ≤ B

for ξ a.e in R. It then follows from standard arguments which can be found in [6] that

there exist constants C, D > 0 such that

C ≤ |â(ξ)|2 + |â(ξ + π)|2 ≤ D (2.2.5)

for ξ a.e in R. Suppose on the contrary that Ω < π/2. Then on the interval [−π/2, π/2],

we have

|â(ξ)|2 + |â(ξ + π)|2 =






0, ξ ∈ [−π/2, −Ω),

â2(ξ), ξ ∈ [−Ω, Ω],

0, ξ ∈ (Ω, π/2],

(2.2.6)

which contradicts (2.2.5). Therefore Ω ≥ π/2. Furthermore, if Ω = π/2, then (2.2.6)

gives

(|â(ξ)|2 + |â(ξ + π)|2)1/21[−π/2, π/2](ξ) = â(ξ)1[−π/2, π/2](ξ). (2.2.7)

On (−π/2, π/2), by (2.2.5), C ≤ â(ξ) ≤ D a.e. Now since â is continuous on

(−π/2, π/2), C ≤ â(ξ) ≤ D everywhere on (−π/2, π/2). Taking limit as ξ → Ω = π/2,

lim
ξ→Ω−

â(ξ) ≥ C > 0.

For the converse, first consider the case when Ω > π/2. Since â ∈ Aδ,Ω, it follows

from Proposition 2.1.1, that φ̂ > 0 and is continuous on the interval (−2Ω, 2Ω). Since

Ω > π/2, φ̂ is continuous on [−π, π]. This means that there exist constants A , B > 0

for which

A ≤ φ̂(ξ) ≤ B

for all ξ ∈ [−π, π]. Next we show the bracket product [φ̂, φ̂] must be bounded above

and below by positive constants everywhere. Since [φ̂, φ̂] is a 2π-periodic function, it

suffices to analyze its behavior on the interval [−π, π]. Now Ω > π/2 implies that

[−π, π] ⊂ [−2Ω, 2Ω], and on the interval [−π, π], we have

[φ̂, φ̂](ξ) ≥ φ̂2(ξ) ≥ A
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Since [φ̂, φ̂](ξ) involves a sum of at most two positive and bounded functions in each

on subintervals of [−π, π] above, then [φ̂, φ̂] must be bounded on [−π, π]. Since [φ̂, φ̂]

is 2π-periodic, we get the result.

When Ω = π/2 and lim
ξ→Ω−

â(ξ) > 0, the function

(∑

l∈Z

|φ̂(ξ + 2πl)|2
)1/2

· 1[−π, π](ξ) = φ̂(ξ)1[−2Ω,2Ω](ξ) = φ̂(ξ)1[−π,π](ξ)

is bounded below everywhere on (−π, π) by some constant A > 0 by invoking Lemma

2.2.3 with Ω = π/2. The upper bound of [φ̂, φ̂] follows from the boundedness of φ̂.

Thus by periodicity again, we get the result.

The proof for statement (a)(ii) follows from Lemma 2.2.2.

Next we will settle statement (b)(i). Since Ω < π/2, on the interval [−π, π], we

have

[φ̂, φ̂]1/2(ξ) = φ̂(ξ)

and the spectrum of φ, σ(φ) = [−2Ω, 2Ω] ( [−π, π]. Recall that the integer shifts of

φ form a frame if and only if there exist constants A, B > 0 such that

A ≤ φ̂(ξ) ≤ B

a.e. on σ(φ). Note that φ̂ is bounded on [−2Ω, 2Ω]. We will only consider the part for

the lower bound. As by Lemma 2.2.3, we see that this is equivalent to lim
ξ→Ω−

â(ξ) > 0,

establishing statement (b)(i).

Statement (b)(ii) is shown earlier by the proof of (a)(i) and this finishes the proof

of the proposition.

We will show some immediate consequences arising from the proposition. In fact,

the characterization in Proposition 2.2.1 becomes simpler if we further allow continuity

of the function â ∈ Aδ,Ω.

Corollary 2.2.3 For 0 < δ ≤ Ω ≤ 2π/3, let â ∈ Aδ,Ω ∩ C(R) and φ be defined by â

as in (2.1.6) and (2.1.7). Define V0 as in (2.2.1). Then the following are equivalent.

(a) Ω > π/2.
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(b) The integer shifts of φ form a Riesz basis for V0.

(c) For any positive m, there exist constants A,B > 0 such that

A ≤
∑

l∈Z

φ̂m(ξ + 2πl) ≤ B

for all ξ ∈ R.

(d) For any positive m, there exists constants A, B > 0 such that

A ≤ âm(ξ) + âm(ξ + π) ≤ B

for all ξ ∈ R.

(e) There exist constants A, B > 0 such that

A ≤ â(ξ) + â(ξ + π) ≤ B

for all ξ ∈ R.

Proof: Since â ∈ Aδ,Ω is continuous everywhere, it is necessary that lim
ξ→Ω−

â(ξ) = 0.

For any m > 0, we define φm by its Fourier transform φ̂m = φ̂m/2. Since φ ∈ Bδ,Ω

for some positive δ and Ω and φ̂ is even and continuous, by the definition of Bδ,Ω and

φm, it follows that φm ∈ Bδ,Ω with φ̂m continuous and even. Note that by the proof in

Lemma 2.2.2, φm has a corresponding mask âm = âm/2 ∈ Aδ,Ω.

We shall prove this corollary in the following order: (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒
(e) ⇒ (a). From Theorem 2.2.1, since lim

ξ→Ω−

â(ξ) = 0, statement (a) is equivalent to

statement (b).

Suppose that statement (b) holds, then by the equivalence of statements (a) and

(b) shown earlier, Ω > π/2. Next, recall from Proposition 2.1.1 that φm ∈ Bδ,Ω if

and only if âm ∈ Aδ,Ω. Furthermore âm = âm/2 is also even, bounded and continuous

because â is. So âm satisfies the assumptions of this corollary with Ω > π/2, thus we

invoke statement (b) of this corollary by replacing φ by φm in statement (b) which
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gives us statement (c). This is because if φm satisfies statement (b), it follows from

Proposition 2.2.1 that there exist constants A, B > 0 for which

A ≤
∑

l∈Z

|φ̂m(ξ + 2πl)|2 ≤ B (2.2.8)

for ξ a.e in R. As illustrated in the proof of Proposition 2.2.1,

∑

l∈Z

|φ̂m(ξ + 2πl)|2 =
∑

l∈Z

φ̂m(ξ + 2πl)

is a finite sum of continuous functions on the fundamental interval [−π, π]. Hence,

(2.2.8) must hold for all ξ ∈ [−π, π]. Since the function
∑
l∈Z

φ̂m(ξ + 2πl) is 2π-periodic,

then (2.2.8) must hold for all ξ ∈ R.

As mentioned above, the refinable function φm has a corresponding refinement mask

âm = âm/2 ∈ Aδ,Ω, for any positive m. Note that

∑

l∈Z

φ̂m(ξ + 2πl) =
∑

l∈Z

|φ̂m/2(ξ + 2πl)|2 = [φ̂m/2, φ̂m/2](ξ) = [φ̂m, φ̂m](ξ)

and |âm|2 = âm. So, if for any positive m, statement (c) holds, then Proposition 2.2.1

implies that there exist constants A, B > 0 such that

A ≤ [φ̂m, φ̂m] ≤ B

for all ξ ∈ R. Since âm is the refinement mask of φ̂m, it is well-known that there exist

constants C, D > 0 such that

C ≤ |âm(ξ)|2 + |âm(ξ + π)|2 ≤ D

for all ξ ∈ R. One can check [23] for the details. Thus statement (c) implies statement

(d).

By setting m = 1 in statement (d), we get statement (e).

Now let us show that statement (e) implies statement (a). Assume statement (e)

and let ξ = π/2. Then taking m = 1, we have

â(π/2) + â(3π/2) = â(π/2) + â(−π/2) = 2â(π/2),
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due to the 2π-periodicity and symmetry about the origin of the function â. From

statement (d), we see that â(π/2) > 0. Suppose on the contrary that Ω ≤ π/2. Since

â ∈ Aδ,Ω ∩ C(R), â(ξ) = 0 for ξ ∈ [−π, π]\(−Ω, Ω) ⊇ [−π, −π/2] ∪ [π/2, π]. This

contradicts the fact that â(π/2) > 0, and ends the proof.

In the next section, we shall show some examples to illustrate our results.

2.3 Some examples

We introduce two important categories of functions â ∈ Aδ,Ω where 0 < δ ≤ Ω ≤
2π/3. Under appropriate conditions, these functions â generate scaling functions φ

whose integer shifts form either a frame or Riesz basis for V0, where V0 is as defined in

(2.2.1).

The first category of functions is the set of functions {âΩ}, where âΩ is the 2π-

periodic extension of the function

ŝΩ(ξ) := 1[−Ω,Ω](ξ)

with 0 < Ω ≤ 2π/3. Define φΩ by âΩ as in (2.1.6) and (2.1.7). Then explicitly, we get

φ̂Ω(ξ) = 1[−2Ω,2Ω](ξ)

and

φΩ(x) =





sin 2Ωx
2Ωx

, if x 6= 0,

1, if x = 0.

Clearly â ∈ AΩ,Ω. Using the characterization provided in Theorem 2.2.1, we have

the following.

(1) If Ω < π/2, the integer shifts of φΩ form a frame but not a Riesz basis for V0.

In fact, [φ̂Ω, φ̂Ω] = 1 in σ(φΩ) which implies that it is a tight frame.

(2) If Ω = π/2, the integer shifts of φπ/2 form an orthonormal basis for V0 since the

CQF condition is satisfied. In fact, φπ/2 is the well-known sinc function in the

Shannon’s sampling theorem.
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Figure 2.1: Graphs of φ̂π
2

and φ̂π
6
.

(3) If Ω > π/2, the integer shifts of φΩ form a Riesz basis for V0. In fact, the lower

and upper Riesz bounds are 1 and 2 respectively. This is because on the interval

[−π, π],

∑

l∈Z

φ̂2(ξ + 2πl) =





2, if ξ ∈ [−π, Ω − 2π] ∪ [2π − Ω, π],

1, if ξ ∈ (−Ω + 2π, 2π − Ω).

Figure 2.1 illustrates φ̂Ω when Ω = π/2 and Ω = π/6 respectively. However, φ̂Ω

is discontinuous and we shall see later that this discontinuity gives φΩ poor decay in

the time domain, i.e. φΩ(x) decays in the order of 1
x
. Thus it is natural to seek other

bandlimited functions φ which are well-localized in both time and frequency domains.

The second category of functions shows us that this is certainly possible.

Let {âδ,Ω,m} be the 2π-periodic extension of the bell functions

bδ,Ω,m(ξ) := cosm(
π

2
g(

1

Ω − δ
(|ξ| − δ))),

where 0 < δ < Ω ≤ 2π/3, m ∈ N and g is a continuous function satisfying the following

properties:

(a) g(x) = 0 for all x ≤ 0 and g(x) = 1 for all x ≥ 1.

(b) g(x) + g(1 − x) = 1 for all x ∈ R.

(c) g(x) is strictly increasing on the interval (0, 1).
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,1.

For simplicity, let 2δ ≥ Ω. We shall see in Chapters 3 and 4 that âδ,Ω,m ∈ Aδ,Ω ∩
C(R) for each m ∈ N. Define φδ,Ω,m by âδ,Ω,m(ξ) as in (2.1.6) and (2.1.7). Since

2δ ≥ Ω, N as defined in (2.1.7) and φ̂δ,Ω,m(ξ) = bδ,Ω,m(ξ/2). Using the characterization

in Theorem 2.2.1, we have the following.

(1) If Ω ≤ π/2, the integer shifts of φδ,Ω,m neither form a frame nor a Riesz basis

for V0.

(2) If Ω > π/2, the integer shifts of φδ,Ω,m form a Riesz basis for V0.

(3) If δ = π/2−ǫ/2, Ω = π/2+ǫ/2 and m = 1 with 0 < ǫ ≤ π/3, then âδ,Ω,m satisfies

the CQF condition and the integer shifts of φδ,Ω,m form an orthonormal basis

for V0. In fact, when ǫ ≤ π/3, we have 2δ ≥ Ω and thus φ̂δ,Ω,m(ξ) = bδ,Ω,m(ξ/2).

For g = p1 ∈ C1(R) where p1 is defined in Theorem 4.1.2, Figure 2.1 illustrates

the two cases of φ̂δ,Ω,1 where the first case has δ = π
3
, Ω = 2π

3
and the second case has

δ = π
6

and Ω = π
3
. The wavelets constructed from the scaling functions in statement

(3) are called the Meyer’s wavelets. We will see in Chapters 3 and 4 that the function

g can be constructed so that it belongs to C∞(R). Consequently, the function φδ,Ω,m

has excellent time and frequency localization, i.e. φδ,Ω,m decays faster than any inverse

polynomial and φ̂δ,Ω,m is compactly supported. Although statement (1) looks rather

useless at first glance, they are in fact crucial in constructing bandlimited tight frames

and biframes of L2(R)! Details will be provided in Chapter 5. In fact, it is later
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discovered in [11] that it is possible to construct scaling functions with subexponential

decay that is far better than any previous decay rate! The interested reader can refer

to [11] for details.



Chapter 3

Regularity and Interpolatory

Properties

In this chapter, we will discuss some technical properties about regularity and de-

cay of functions in L2(R), as well as interpolatory properties of scaling functions and

wavelet functions. Before we review some well known properties regarding regular-

ity and decay of functions in L2(R), we start with a definition of a special class of

differentiable functions.

3.1 Regularity properties

The Schwartz class S is defined as follows.

Definition 3.1.1 A function f : R → C lies in the Schwartz class S if it is a C∞(R)-

function and for any nonnegative integers k and l, there exists a constant C = C(k, l) >

0 such that ∣∣∣(Dkf)(x)
∣∣∣ ≤ C(1 + |x|)−l

for all x ∈ R.

We proceed to give sufficient conditions for a function to lie in S. Firstly, we have

the following theorem.

30
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Theorem 3.1.1 If f ∈ L2(R) such that f̂ is compactly supported and bounded, then

f ∈ C∞(R) and Dkf ∈ L2(R) for all k ∈ N ∪ {0}. Furthermore, for k ∈ N, if

f̂ ∈ Ck(R), then xlf(·) ∈ L2(R) for all l ≤ k and there exists a constant M = M(k)

such that

|f(x)| ≤ M(1 + |x|)−k

for all x ∈ R.

Proof: Firstly, from standard techniques in Fourier analysis, if f ∈ L2(R) and f̂ ∈
L1(R), then f is bounded everywhere and continuous. Define f̂k(ξ) := (iξ)kf̂(ξ),

k ∈ N ∪ {0}. Then we have

∫

R

|f̂k(ξ)|2 dξ =

∫ Ω

−Ω

|ξ|2k|f̂(ξ)|2 dξ ≤ P

∫ Ω

−Ω

ξ2k dξ <∞

for all k ∈ N ∪ {0}, where Ω and P are some positive constants. By the theory of

the Fourier transform on Sobolev spaces as given on page 45 of [13], we conclude that

f ∈ C∞(R) and Dkf ∈ L2(R) for all k ∈ N ∪ {0}. Due to the compact support

and boundedness of f̂ , f̂ ∈ L1(R) and it follows that f is continuous and bounded

everywhere.

Furthermore, if f̂ ∈ Ck(R), for k ∈ N, we define for l ≤ k, fl(x) := (−ix)lf(x).

Note that Dlf̂ is continuous and compactly supported for all l ≤ k, thus Dlf̂ must be

bounded on its compact support which means that Dlf̂ ∈ L1(R)∩L2(R). Once again,

by an analogous argument given in page 45 of [13], the inverse Fourier transform of

the function Dlf̂ is given by fl where fl ∈ L2(R). Thus fl = xlf(·) ∈ L2(R) and is

bounded and continuous everywhere for all l ≤ k.

Finally, setting f0 = f and with some simple manipulation,

(1 + |x|)k|f(x)| =
k∑

l=0

(
k

l

)
|fl(x)| ≤M(k)

for all x ∈ R. This completes the proof.

Corollary 3.1.1 If f ∈ L2(R) such that f̂ is compactly supported and lies in C∞(R),

then f ∈ S.
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Proof: From Theorem 3.1.1, it suffices to show that (−iξ)kf̂ ∈ L1(R)∩L2(R)∩C∞(R)

for all k ∈ N ∪ {0}. This is certainly true since f̂ is compactly supported and lies in

C∞(R). Hence we conclude that f ∈ S.

Next, we present a simple and yet useful lemma on Ck(R)-functions, where 1 ≤
k ≤ ∞.

Lemma 3.1.1 If h, t ∈ Ck(R), 1 ≤ k ≤ ∞, k ∈ N, then

(a) h · t ∈ Ck(R),

(b) h+ t ∈ Ck(R),

(c) h ◦ t ∈ Ck(R) if h ◦ t is well defined,

(d) 1
h
∈ Ck(R) if h never vanishes.

We shall now pause to comment on the regularity of scaling functions φ ∈ Bδ,Ω,

where 0 < δ ≤ Ω < π/2. In this case, the integer shifts of φ form a frame for V0, where

V0 is as defined in (2.2.1). By Lemma 2.2.3, one can see that lim
ξ→2Ω−

φ̂(ξ) 6= 0 which

means that φ̂ is necessarily discontinuous. Then φ cannot have decay rate better

than this rate in the following sense: xlf(·) /∈ L2(R) for l ≥ 1 because otherwise,

DLf̂ ∈ L2(R) for some L ≥ 1 which contradicts the discontinuity of f̂ . The details

can be checked in [13] as well. This reinforces the comment in Chapter 2 that most

bandlimited frames constructed from frame MRAs do not have good decay in the time

domain. Next, we prove a proposition which would be useful in subsequent chapters.

Proposition 3.1.1 For 0 < δ ≤ Ω ≤ 2π/3, let â ∈ Aδ,Ω and φ be defined by â as in

(2.1.6) and (2.1.7). Then â ∈ Ck(R) if and only if φ̂ ∈ Ck(R), where 1 ≤ k ≤ ∞,

k ∈ N.

Proof: Firstly, we observe that

φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ) =

N∏

j=1

[
â(2−jξ)1[−π,π](2

−jξ)
]

=
N∏

j=1

q(2−jξ),



CHAPTER 3. REGULARITY AND INTERPOLATORY PROPERTIES 33

where N is as defined in (2.1.7) and q(ξ) = â(ξ)1[−π,π](ξ). With this setup, we are

ready to prove the result.

For k ∈ N, assuming â ∈ Ck(R), to show that φ̂ ∈ Ck(R), it suffices to establish

that q ∈ Ck(R) due to the finite product structure of φ̂. Since â ∈ Ck(R), it follows

that q(ξ) = â(ξ)1[−π,π](ξ) ∈ Ck[−π, π]. However, since supp â1[−π, π] = [−Ω, Ω] with

Ω < π, this means that q ∈ Ck(R).

Conversely, if φ̂ ∈ Ck(R), then from the proof of Proposition 2.1.1,

â(ξ) =





φ̂(2ξ)

φ̂(ξ)
, if ξ ∈ [−Ω, Ω],

0, if ξ ∈ [−π, π]\[−Ω, Ω],

Since φ̂ ∈ Ck(R), φ̂(ξ) > 0 for ξ ∈ (−2Ω, 2Ω) and supp φ̂ = [−2Ω, 2Ω], by Lemma

3.1.1, we deduce that â1[−π, π] ∈ Ck[−π, π]. By periodicity and the fact that â(ξ) = 0

for ξ ∈ (Ω, π] ∪ (−π, −Ω), it can be concluded that â ∈ Ck(R).

In the next section, we will present some results on the interpolatory properties

of scaling and wavelet functions. We will also show that interpolatory properties are

related to sampling formulae.

3.2 Interpolatory properties and sampling formu-

lae

In (2.2.2), we introduce the notion of an interpolatory scaling function. Analogously,

for a wavelet ψ in L2(R), we say that ψ is an interpolatory wavelet if

ψ(s+ 1/2) = δ0s, j ∈ Z.

We say that a 2π-periodic function â is an interpolatory mask if

â(ξ) + â(ξ + π) ≡ 1. (3.2.1)

If φ is refinable and interpolatory, then it is necessary that its corresponding mask â

satisfies (3.2.1).

We have the following characterization on our class of bandlimited scaling functions.
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Theorem 3.2.1 Let â ∈ Aδ,Ω with π/3 ≤ δ ≤ Ω ≤ 2π/3, Ω ≥ π/2 and φ be defined

by â as in (2.1.6) and (2.1.7). Then â is an interpolatory mask if and only if φ is an

interpolatory function.

Proof: We note that from Theorem 3.1.1 that since φ̂ is compactly supported and

bounded everywhere, φ ∈ C∞(R). This ensures pointwise values of φ are well-defined

everywhere and the result follows from Lemma 2.2.2 as mentioned in Chapter 2.

Proposition 3.2.1 Let â ∈ Aδ,Ω∩C(R) with π/3 ≤ δ ≤ Ω ≤ 2π/3, Ω ≥ π/2 and φ be

defined by â as in (2.1.6) and (2.1.7). If â is an interpolatory mask, then the integer

shifts of φ form a Riesz sequence and so Ω > π/2.

Proof: By Theorem 3.2.1, if â is interpolatory, then φ is interpolatory which means

equivalently that (2.2.3) holds. Then by Proposition 2.2.1 and Corollary 2.2.3, there

exist constants A, B > 0 such that

A ≤ [φ̂, φ̂](ξ) ≤ B

a.e. This is equivalent to the integer shifts of φ forming a Riesz sequence. As a result,

Ω > π/2.

Now interpolatory properties of scaling functions are connected to sampling recon-

struction forumlae. Take for instance, it is well known that the scaling function φ(x) =

sinc x is an interpolatory scaling function with orthonormal integer shifts, where

sinc x :=






sin πx

πx
, if x 6= 0,

1, if x = 0.

One can easily verify that φ(j) = δ0j for j ∈ Z. Define

PW [Ω1, Ω2] := {f ∈ L2(R) : suppf̂ ⊆ [Ω1, Ω2]}.

We quote the famous Shannon-Whittaker’s sampling theorem in the following.
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Theorem 3.2.2 For any f ∈ PW [−π, π],

f(x) =
∑

n∈Z

f(n)φ(x− n) a.e., (3.2.2)

where φ(x) = sinc x.

We wonder whether there are other functions φ ∈ L2(R) such that sampling formu-

lae similar to (3.2.2) hold? Furthermore, can φ be an interpolatory scaling function?

We answer both questions in the affirmative. The following theorem not only answers

both questions, but also illustrates the usefulness of having a scaling function φ whose

Fourier transform φ̂ possesses an interval of constancy. Indeed, the following theorem

is a generalization of the Shannon-Whittaker’s sampling theorem.

Theorem 3.2.3 Let φ̂ ∈ Bδ,Ω where 0 < δ ≤ Ω ≤ 2π/3 and Ω + δ ≤ π. Then the

following reconstruction formula holds.

f(x) =
∑

n∈Z

f(n)φ(x− n) a.e. (3.2.3)

for all f ∈ PW [−2δ, 2δ]. In particular, if δ = Ω = π/2, then φ(x) = sincx and we get

the Shannon-Whittaker’s sampling theorem. Furthermore,

(a) There exist constants A, B > 0 such that

A
∑

n∈Z

|f(n)|2 ≤ ‖f‖2
2 ≤ B

∑

n∈Z

|f(n)|2, (3.2.4)

for all f ∈ PW [−2δ, 2δ] if and only if either Ω > π/2 or Ω = π/2 and

lim
ξ→π−

φ̂(ξ) > 0.

(b) The following equality
∑

n∈Z

|f(n)|2 = ‖f‖2
2

holds for all f ∈ PW [−2δ, 2δ] if and only if [φ̂, φ̂] ≡ 1.

(c) For δ ≥ π/3, Ω ≥ π/2, if
∑
l∈Z

φ̂(ξ + 2πl) ≡ 1, then (3.2.4) holds and φ is an

interpolatory scaling function.
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Proof: Firstly, we note that 2δ ≤ δ + Ω ≤ π implies that δ ≤ π/2. With φ ∈ Bδ,Ω

satisfying Ω + δ ≤ π, we claim that we can always find a 2π-periodic function m̂ such

that

f̂(ξ) = m̂(ξ)φ̂(ξ) a.e., (3.2.5)

for f ∈ PW [−2δ, 2δ] and in fact, m̂(ξ) =
∑
l∈Z

f̂(ξ + 2πl).

Let

g(ξ) :=






f̂(ξ)/φ̂(ξ), if ξ ∈ [−2δ, 2δ],

0, otherwise,
=






f̂(ξ), if ξ ∈ [−2δ, 2δ],

0, otherwise,

because φ̂(ξ) = 1 for |ξ| ≤ 2δ. We set m̂(ξ) :=
∑
l∈Z

g(ξ + 2πl) =
∑
l∈Z

f̂(ξ + 2πl). Now

since Ω + δ ≤ π, this implies that 2Ω ≤ −2δ + 2πl for all l ≥ 1. Consequently,

supp m̂ ∩ suppφ̂ =
⋃

l∈Z

[−2δ + 2πl, 2δ + 2πl] ∩ [−2Ω, 2Ω] = [−2δ, 2δ] (3.2.6)

up to a null set whenever 2Ω ≤ −2δ + 2πl for all l ≥ 1.

Thus,

m̂(ξ)φ̂(ξ) = ĝ(ξ)φ̂(ξ) =
f̂(ξ)

φ̂(ξ)
φ̂(ξ) = f̂(ξ) (3.2.7)

and (3.2.5) holds a.e. Note that since supp f̂ = [−2δ, 2δ] ⊆ [−π, π] implies that

[−2δ + 2πl, 2δ + 2πl] ∩ [−2δ + 2πk, 2δ + 2πk] = ∅

if l 6= k, where l, k ∈ Z. This explains why (3.2.6) and (3.2.7) hold whenever Ω+δ ≤ π.

Next we show that m̂ ∈ L2[−π, π]. Since f ∈ PW [−2δ, 2δ] ⊂ PW [−π, π], by

periodization and Parseval’s identity, we get
∫ π

−π

|m̂(ξ)|2 dξ =

∫ π

−π

|
∑

l∈Z

f̂(ξ + 2πl)|2 dξ =

∫ π

−π

|f̂(ξ)|2 dξ = ‖f̂‖2
2 <∞.

Let {m(n)}n∈Z be the Fourier coefficients of m̂. Then {m(n)}n∈Z ∈ ℓ2(Z) and further-

more,

m(n) =
1

2π

∫ π

−π

m̂(ξ)einξ dξ =
1

2π

∫ π

−π

∑

l∈Z

f̂(ξ + 2πl)einξ dξ

=
1

2π

∫

R

f̂(ξ)einξ dξ = f(n).
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Taking the inverse Fourier transform on (3.2.5), we get f(x) =
∑
n∈Z

f(n)φ(x − n) a.e.

Since φ ∈ Bδ,Ω, by previous arguments, there exists a constant B > 0 such that

[φ̂, φ̂](ξ) ≤ B a.e. As {f(n)}n∈Z ∈ ℓ2(Z),

‖f‖2
2 = ‖

∑

n∈Z

f(n)φ(· − n)‖2
2 ≤ B

∑

n∈Z

|f(n)|2 <∞,

which makes the reconstruction formula well-defined with respect to the L2(R)-norm.

If δ = π/2, then Ω+δ ≤ π and δ ≤ Ω imply that Ω = π/2 = δ. Then since φ ∈ Bδ,Ω,

this forces φ̂(ξ) = 1[−π, π](ξ). Therefore by taking the inverse Fourier transform, we get

φ(x) = sincx and (3.2.3) reduces to the Shannon-Whittaker’s sampling theorem.

Taking L2(R) norm on (3.2.3) and using the characterization of Riesz sequences in

Theorem 2.2.1, we get the result for statement (a).

Similarly, we impose L2(R) norm on (3.2.3) and using the characterization of or-

thonormal sequences in Theorem 2.2.1, and by Lemma 2.2.2, the CQF condition implies

that [φ̂, φ̂] ≡ 1. This proves statement (b).

It is clear that φ is an interpolatory scaling function in view of the equivalent con-

ditions stated at the start of this section. To show (3.2.4) holds, we invoke Proposition

3.2.1. Thus the theorem is proved.

We show that if â ∈ Aδ,Ω ∩ Ck(R), 1 ≤ k ≤ ∞, then it is quite easy to get an

interpolatory mask with the same regularity. This is shown in the following.

Lemma 3.2.1 Suppose that â ∈ Aδ,Ω ∩ Ck(R), where 0 < δ ≤ Ω ≤ 2π/3, 1 ≤ k ≤ ∞.

Let Ω > π/2 or Ω = π/2 and lim
ξ→π/2−

â(ξ) > 0. Define

ˆ̃a(ξ) :=
â(ξ)

â(ξ) + â(ξ + π)
.

Then ˆ̃a is an interpolatory mask and lies in Aδ̃,Ω ∩ Ck(R), for some δ̃ ≥ π/3.

Proof: Now since Ω > π/2 or Ω = π/2 with lim
ξ→π/2−

â(ξ) > 0, by Theorem 2.2.1 and

Corollary 2.2.3, there exist constants A, B > 0 such that

A ≤ â(ξ) + â(ξ + π) ≤ B a.e. (3.2.8)
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Then we verify that ˆ̃a is an interpolatory mask:

ˆ̃a(ξ) + ˆ̃a(ξ + π) =
â(ξ) + â(ξ + π)

â(ξ) + â(ξ + π)
= 1

for almost everywhere ξ ∈ R. Since (3.2.8) holds and â(·)+ â(·+π) ∈ Ck(R) whenever

â ∈ Ck(R), by Lemma 3.1.1, we see that ˆ̃a must be in Ck(R).

Moreover, if (3.2.8) holds, then supp ˆ̃a1[−π, π] = [−Ω, Ω]. Thus, to see that ˆ̃a ∈ Aδ̃,Ω

where δ̃ ≥ π/3, we first show that indeed there exists some δ̃ > 0 such that ˆ̃a(ξ) = 1

on [−δ̃, δ̃]. Suppose on the contrary that such a δ̃ does not exist. We can write

ˆ̃a(ξ) =
∑
l∈Z

q̂(ξ + 2πl) where supp q̂ = [−Ω, Ω]. Then on the interval [Ω − π, π − Ω],

ˆ̃a(ξ) + ˆ̃a(ξ + π) = q̂(ξ)

which leads to ˆ̃a(ξ) = 1 on the interval [Ω−π, π−Ω]. That is a contradiction. Lastly,

we invoke Corollary 2.2.2 to conclude that δ̃ ≥ π/3.

Lastly, we will provide a characterization of MRA interpolatory wavelets and pro-

vide some easy formulae to always get an interpolatory wavelet from an interpolatory

scaling function.

Theorem 3.2.4 Suppose that φ is an refinable interpolatory continuous function in

L2(R). Define ψ by its Fourier transform ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2) where b̂ is a 2π-periodic

function whose Fourier coefficients {bn}n∈Z ∈ ℓ1(Z). Then ψ(s+j/2) = δ0s if and only

if b̂(ξ) − b̂(ξ + π) = e−ijξ for j = 0, 1.

Proof: Since ψ is defined by the wavelet mask b̂, we have

ψ(x) =
∑

n∈Z

bnφ(2x− n),

where {bn}n∈Z are the Fourier coefficient sequence of b̂. It follows from the Weiestrass

M-test that ψ ∈ C(R) as φ(2 · −n) ∈ C(R) for all n ∈ Z and {bn}n∈Z ∈ ℓ1(Z). If

ψ(s+ j/2) = δ0s for j = 0, 1 and φ(s) = δ0s, then substituting x = s, we get

ψ(s+ j/2) =
∑

n∈Z

bnφ(2s+ j − n) =
∑

n∈Z

bnδ2s+j,n = b2s+j .
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Thus b2s+j = δ0s for j = 0, 1. Next we consider

b̂(ξ) − b̂(ξ + π) =
1

2

[ ∑

n∈Z

bne
−inξ −

∑

n∈Z

bn(−1)ne−inξ
]

=
∑

n∈Z

b2n+1e
−i(2n+1)ξ = e−ijξ.

for j = 0, 1. Conversely, if b̂(ξ) − b̂(ξ + π) = e−ijξ for j = 0, 1, then this implies that
∑
n∈Z

b2n+1e
−i(2n+1)ξ = e−ijξ for j = 0, 1. By the uniqueness of the Fourier coefficients,

b2s+j = δ0s for j = 0, 1. Thus ψ(s+ j/2) = b2s+j = δ0s for j = 0, 1.

We note that there is no bandlimited assumption regarding the functions φ and ψ

and the conditions are rather generic. We will illustrate the usefulness of this theorem

in the next section by generating several examples of interpolatory wavelets.

3.3 Examples

First, we provide an example to illustrate Theorem 3.2.3.

Example 3.3.1 Let φǫ,m be defined by its Fourier transform

φ̂ǫ,m(ξ) = cosm
(π

2
g(

1

2ǫ
(|ξ| − π + ǫ))

)

where 0 < ǫ ≤ π/3, m ∈ N, and g is a Ck(R)-function (0 ≤ k ≤ ∞) satisfying the

following properties.

(a)

g(ξ) = 0, ξ ≤ 0 and g(ξ) = 1, ξ ≥ 1. (3.3.1)

(b)

g is strictly increasing on the interval (0, 1). (3.3.2)

(c)

g(ξ) + g(1 − ξ) ≡ 1. (3.3.3)

It will be shown later in Chapter 4 that supp φ̂ǫ,m = [−2Ωǫ, 2Ωǫ] = [−π − ǫ, π + ǫ] ⊆
[−2π/3, 2π/3] and φ̂ǫ,m has an IOC [−2δǫ, 2δǫ] = [−π+ǫ, π−ǫ]. Then Ωǫ = π/2+ǫ/2,
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δǫ = π/2 − ǫ. Thus, φǫ,m ∈ Bδǫ,Ωǫ
∩ Ck(R). Furthermore, Ωǫ + δǫ = π for every

0 < ǫ ≤ π/3. So we invoke Theorem 3.2.3 to get the reconstruction formula

f(x) =
∑

n∈Z

f(n)φǫ,m(x− n) a.e.

for all m ∈ N, if f ∈ PW [−π+ǫ, π−ǫ], 0 < ǫ ≤ π/3. Note that since Ωǫ = π/2+ǫ/2 >

π/2, there exist positive constants A = A(ǫ, m), B = B(ǫ, m) such that

A
∑

n∈Z

|f(n)|2 ≤ ‖f‖2
2 ≤ B

∑

n∈Z

|f(n)|2

for any f ∈ PW [−π + ǫ, π − ǫ].

Furthermore, if m = 1, it will be shown in Chapter 4 that [φ̂ǫ,1, φ̂ǫ,1] ≡ 1 and thus

{φǫ,1} forms a family of scaling functions with orthonormal integer shifts with

‖f‖2
2 =

∑

n∈Z

|f(n)|2

for any f ∈ PW [−π + ǫ, π − ǫ].

If m = 2, it will be similarly shown in Chapter 4 that
∑
l∈Z

φ̂ǫ,2(ξ+2πl) ≡ 1 and thus

{φǫ,2} forms a family of interpolatory scaling functions.

Next, we provide explicit constructions of bandlimited interpolatory wavelets.

Example 3.3.2 Let â ∈ Aδ,Ω ∩ C2(R), π/3 ≤ δ ≤ Ω ≤ 2π/3, Ω ≥ π/2 and suppose

that â is an interpolatory mask. Then by Theorem 3.2.1, φ defined by â as in (2.1.6)

and (2.1.7) is a bandlimited interpolatory scaling function. For 0 < δ0 ≤ Ω0 ≤ 2π/3,

let â0 ∈ Aδ0,Ω0
∩ C2(R) be an interpolatory mask. Then it can be shown that the

Fourier coefficients {an}n∈Z, {yn}n∈Z of â and â0 have the following decay rate: |an|,
|yn| ≤ C(1 + |n|)−2. This ensures {an}n∈Z, {yn}n∈Z ∈ ℓ1(Z). Define ψ by its Fourier

transform

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2),

where b̂(ξ) = e−iξâ0(ξ + π). Then we can see that

b̂(ξ)−b̂(ξ+π) = e−iξâ0(ξ + π)−(−e−iξ â0(ξ)) = e−iξ(â0(ξ) + â0(ξ + π)) = e−iξ. (3.3.4)
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It will be shown in Chapter 6 that X(Ψ) always forms a Riesz basis for L2(R). Thus

ψ is an interpolatory wavelet by Theorem 3.2.4.

In particular, if we use the alternating flip formula, i.e.

b̂(ξ) = eiξâ(ξ + π),

this automatically ensures that â0 = â ∈ Aδ,Ω, 0 < δ ≤ Ω ≤ 2π/3 and â0 = â is

an interpolatory mask. Thus the alternating flip formula will always get ourselves an

interpolatory wavelet for L2(R).

More explicitly, let âǫ be the 2π-periodic extension of the function

bǫ(ξ) = cos2
(π

2
g(

1

ǫ
(|ξ| − π

2
+
ǫ

2
))

)

where 0 < ǫ ≤ π/3 and g is a Ck(R)-function (2 ≤ k ≤ ∞) satisfying (3.3.1), (3.3.2),

(3.3.3).

It can be checked that âǫ ∈ Aδǫ,Ωǫ
where δǫ = π/2 − ǫ/2 and Ωǫ = π/2 + ǫ/2,

0 < ǫ ≤ π/3. In fact, âǫ is an interpolatory mask for every 0 < ǫ ≤ π/3. Since

Ωǫ ≤ 2π/3 and 2δǫ ≤ Ωǫ for 0 < ǫ ≤ π/3, âǫ has a corresponding scaling function φǫ

defined by its Fourier transform as

φ̂ǫ(ξ) = bǫ(ξ/2).

Define b̂ǫ(ξ) = e−iξâǫ(ξ + π) and thus ψǫ defined by its Fourier transform

ψ̂ǫ(ξ) = b̂ǫ(ξ/2)φ̂ǫ(ξ/2) = e−iξ/2[bǫ(ξ/2 + π) + bǫ(ξ/2 − π)]bǫ(ξ/4) (3.3.5)

is an interpolatory wavelet for L2(R). In particular, if g ∈ C∞(R), then ψǫ ∈ S for

every 0 < ǫ ≤ π/3.

Theorem 3.2.4 is also useful in the construction of compactly supported dual inter-

polatory wavelets. We recall that Ji and Shen have constructed compactly supported

dual scaling functions which are both interpolatory and symmetric in [18]. Define the

dual wavelet masks as b̂(ξ) = e−iξ ˆ̃a(ξ + π) and ˆ̃b(ξ) = e−iξâ(ξ + π). By the result we

have proved in (3.3.4), we can easily see that ψ and ψ̃ are both interpolatory wavelets.
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Figure 3.1: Graphs of φ̂π
3

and |ψ̂π
3
|.

The bandlimited case has certain advantage and disadvantage in constructing in-

terpolatory wavelets. We will show in Chapter 6 that unlike the case of constructing

compactly supported wavelets , the alternating flip formula always works in the case of

creating a bandlimited interpolatory wavelet so that it forms an affine Riesz basis for

L2(R). In fact, we have shown above that there are explicit constructions of interpo-

latory scaling functions and wavelets with the Schwartz class. The downside is that it

is quite difficult to create dual interpolatory wavelets both with good decay from two

dual interpolatory masks â and ˆ̃a in Aδ,Ω. This will be illustrated in Chapter 6. This

chapter ends off by depicting φ̂ ǫ
3

and |ψ̂π
3
| from (3.3.5) in Figure 3.1.



Chapter 4

Bell Functions and Orthonormal

Wavelets

In this chapter, we will be focusing on the explicit constructions of bell functions and

bandlimited orthonormal wavelets. Roughly speaking, a bell function is a compactly

supported hump like function. It will be shown in later chapters that we can also adapt

these bell functions to construct bandlimited framelets and biorthogonal wavelets with

explicit expressions. We note that a family of bell functions was used by Meyer in

[19] to prove the existence of bandlimited orthonormal wavelets lying in the Schwartz

class. However, we need to discuss the properties of bell functions in detail before the

adaptations can take place.

4.1 Construction of bell functions

In this section, we show that it is possible to construct bell functions with arbitrary

support, interval of constancy and order of continuous derivatives explicitly. We begin

by proving the following theorem on general constructions of bell functions.

Theorem 4.1.1 Let I := (a1, a2), J := (b1, b2). Define

bI,J(ξ) := sin
(π

2
g(

1

a2 − a1

(ξ − a1))
)
· cos

(π
2
g(

1

b2 − b1
(ξ − b1))

)
,

43
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where a1 < a2 ≤ b1 < b2 and g is a Ck(R)-function (0 ≤ k ≤ ∞) satisfying the

properties:

(i)

g(ξ) = 0, ξ ≤ 0 and g(ξ) = 1, ξ ≥ 1. (4.1.1)

(ii)

g is strictly increasing on the interval (0, 1). (4.1.2)

(iii)

g(ξ) + g(1 − ξ) ≡ 1. (4.1.3)

Then we have the following.

(1) bI,J has support on [a1, b2] and belongs to Ck(R).

(2) When a2 < b1, bI,J(ξ) has an IOC [a2, b1], i.e.

bI,J(ξ) = 1, ξ ∈ [a2, b1].

(3) bI,J(ξ) is strictly increasing on (a1, a2) and strictly decreasing on (b1, b2).

(4) If b2 − b1 = a2 − a1, then bI,J(ξ) is symmetric about the point ξ∗ = a2+b1
2

and

consequently, we can write

bI,J(ξ) = cos
(π

2
g(

1

b2 − b1
|ξ − (

a2 + b1
2

)| − (
b1 − a2

2
))

)
.

Proof: Properties (1) and (2) follow from [1].

To see that bI,J(ξ) is strictly increasing on (a1, a2) and strictly decreasing on (b1, b2),

we first observe that since g is a strictly increasing function in the interval (0, 1),

g( 1
a2−a1

(ξ−a1)) is strictly increasing in (a1, a2) and g( 1
b2−b1

(ξ−b1)) is strictly increasing

on (b1, b2). Secondly, note that sin(π
2
x) and cos(π

2
x) is strictly increasing and decreasing

respectively on the interval (0, 1). Since g( 1
a2−a1

(ξ − a1)) = 0 when ξ = a1 and
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g( 1
a2−a1

(ξ−a1)) = 1 when ξ = a2 and g is strictly increasing on (a1, a2), it follows that

the range of the function g( 1
a2−a1

(· − a1)) on (a1, a2) is (0, 1). Moreover,

sin
(π

2
g(

1

a2 − a1

(ξ − a1))
)

= 1, ξ ≥ a2, (4.1.4)

and

cos
(π

2
g(

1

b2 − b1
(ξ − b1))

)
= 1, ξ ≤ b1. (4.1.5)

We can then conclude that sin
(

π
2
g( 1

a2−a1
(ξ − a1))

)
is strictly increasing on (a1, a2)

and similarly cos
(

π
2
g( 1

b2−b1
(ξ − b1))

)
is strictly decreasing on (b1, b2). Since a2 ≤ b1,

we obtain the result in statement (3).

For b2 − b1 = a2 − a1, we want to show that bI,J(ξ) is symmetric about the point

ξ∗ = a2+b1
2

, i.e.

bI,J(
a2 + b1

2
+ ξ) = bI,J(

a2 + b1
2

− ξ) for all ξ ∈ R.

Consider

bI,J(
a2 + b1

2
+ ξ)

= sin
(π

2
g(

1

a2 − a1
(
a2 + b1

2
+ ξ − a1))

)
· cos

(π
2
g(

1

b2 − b1
(
a2 + b1

2
+ ξ − b1))

)

= sin
(π

2
g(

1

a2 − a1
(
a2 + b1

2
+ ξ − a1))

)
· cos

(π
2
g(

1

a2 − a1
(ξ +

a2 − b1
2

))
)
.

Similarly,

bI,J(
a2 + b1

2
− ξ)

= sin
(π

2
g(

1

a2 − a1
(
a2 + b1

2
− ξ − a1))

)
· cos

(π
2
g(

1

a2 − a1
(−ξ +

a2 + b1
2

− b1))
)
.

Note that since g(ξ) + g(1 − ξ) ≡ 1, then

cos(
π

2
g(ξ)) = cos(

π

2
(1 − g(1 − ξ))) = sin(

π

2
g(1 − ξ)),

and replacing ξ by 1 − ξ, we obtain

sin(
π

2
g(ξ)) = cos(

π

2
g(1 − ξ)).
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Applying these two identities on bI,J(a2+b1
2

− ξ), we get

b(
a2 + b1

2
− ξ)

= cos
(π

2
g(1 − 1

a2 − a1
(
a2 + b1

2
− ξ − a1))

)
· sin

(π
2
g(1 − 1

a2 − a1
(−ξ +

a2 + b1
2

− b1))
)

= cos
(π

2
g(

1

a2 − a1
(
a2

2
− b1

2
+ ξ))

)
· sin

(π
2
g(

1

a2 − a1
(ξ +

a2

2
+
b1
2
− a1))

)

= bI,J(
a2 + b1

2
+ ξ),

for all ξ ∈ R.

Lastly, in view of property (2) in this proposition and (4.1.4), (4.1.5), we can write

bI,J(ξ) =






sin
(

π
2
g( 1

a2−a1
(ξ − a1))

)
, if ξ < a2,

1, if a2 ≤ ξ ≤ b1,

cos
(

π
2
g( 1

b2−b1
(ξ − b1))

)
, if ξ ≥ b1,

=






sin
(

π
2
g( 1

a2−a1
(ξ − a1))

)
, if ξ < a2+b1

2
,

cos
(

π
2
g( 1

b2−b1
(ξ − b1))

)
, if ξ > a2+b1

2
,

=





cos
(

π
2
g(1 − 1

a2−a1
(ξ − a1))

)
, if ξ ≤ a2+b1

2
,

cos
(

π
2
g( 1

b2−b1
(ξ − a2+b1

2
− b1−a2

2
))

)
, if ξ > a2+b1

2
,

=





cos
(

π
2
g( 1

b2−1
(−ξ + a2+b1

2
− b1−a2

2
))

)
, if ξ ≤ a2+b1

2
,

cos
(

π
2
g( 1

b2−b1
(ξ − a2+b1

2
− b1−a2

2
))

)
, if ξ > a2+b1

2
,

= cos
(π

2
g(

1

b2 − b1
|ξ − (

a2 + b1
2

)| − (
b1 − a2

2
))

)
.

This ends the proof.

In particular, when a2+b1
2

= 0, bI,J may be written as cos(π
2
g(|ξ| − b1)). This is

because when a2 = −b1, b1−a2

2
= 2b1

2
= b1 and thus

cos
(π

2
g(|ξ − (

a2 + b1
2

)| − (
b1 − a2

2
))

)
= cos

(π
2
g(|ξ| − b1)

)

For convenience, we will call bI,J bell functions due to their bell-like structure.
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Two key features of this construction not explicitly mentioned in the statement of

the above theorem but equally important are

sin2(
π

2
g(ξ)) + cos2(

π

2
g(ξ)) ≡ 1, (4.1.6)

cos(
π

2
g(ξ)) = cos(

π

2
(1 − g(1 − ξ))) = sin(

π

2
g(1 − ξ)). (4.1.7)

The property in (4.1.6) is essential in enabling us to construct the bandlimited or-

thonormal wavelets, tight frames, biframes and biorthogonal wavelets later on. The

property in (4.1.7) allows us to determine simple conditions for symmetry of the bell

functions. Note that we have assumed the existence of a function g with certain prop-

erties in Theorem 4.1.1. Thus the natural questions are that whether such functions

exist in the first place, and furthermore could such functions be explicitly written

down? We shall answer in the affirmative and see that such explicit functions not only

exist, but also available as a family of with arbitrary order of continuous derivatives.

To this end, we prove the following theorem.

Theorem 4.1.2 Define a sequence of splines {pk}k∈N by

pk(ξ) :=





0, if ξ < 0,

vk(ξ), if 0 ≤ ξ ≤ 1,

1, if ξ > 1,

where Ak :=
( k∑

j=0

(
k
j

)
(−1)j 1

2k−j+1

)−1

and vk(ξ) := Ak

( k∑
j=0

(
k
j

)
(−1)j 1

2k−j+1
ξ2k−j+1

)
,

k ∈ N, then the following hold.

(a) pk ∈ Ck(R).

(b) pk(ξ) + pk(1 − ξ) ≡ 1.

(c) p
(1)
k (ξ) > 0, ξ ∈ (0, 1) and sgn (Ak) = (−1)k.

Proof: We first show that Ak is well defined for all k ∈ N. It suffices to show that( k∑
j=0

(
k
j

)
(−1)j 1

2k−j+1

)
6= 0 for all k ∈ N. Suppose there exists some K ∈ N such
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that
( K∑

j=0

(
K
j

)
(−1)j 1

2K−j+1

)
= 0. Define wK(ξ) :=

( K∑
j=0

(
K
j

)
(−1)j 1

2K−j+1
ξ2K−j+1

)
.

Then we have wK(0) = 0 = wK(1). Clearly wK is differentiable everywhere and

thus by Rolle’s Theorem, there exists some ξ′ ∈ (0, 1) such that w
(1)
K (ξ′) = 0. On

the other hand, differentiating the polynomial wK with some simplification, we get

w
(1)
K (ξ) = ξK(ξ−1)K which never vanishes on the interval (0, 1) giving a contradiction.

Thus
( k∑

j=0

(
k
j

)
(−1)j 1

2k−j+1

)
6= 0 and Ak is well defined for all k ∈ N.

To prove statement (a), we show that p
(i)
k ∈ C(R), 1 ≤ i ≤ k. Since vk is a

polynomial, it is infinitely differentiable and thus it suffices to show p
(i)
k is continuous

at the two points ξ = 0 and ξ = 1. This amounts to proving that

lim
ξ→0−

p
(i)
k (ξ) = lim

ξ→0+
p

(i)
k (ξ) <∞

and

lim
ξ→1−

p
(i)
k (ξ) = lim

ξ→1+
p

(i)
k (ξ) <∞

for each 1 ≤ i ≤ k.

We consider

lim
ξ→0+

v
(1)
k (ξ) = lim

ξ→0+
Akξ

k(ξ − 1)k = 0 = lim
ξ→0−

v
(1)
k (ξ),

and similarly

lim
ξ→1−

v
(1)
k (ξ) = lim

ξ→1−
Akξ

k(ξ − 1)k = 0 = lim
ξ→1+

v
(1)
k (ξ).

Then we get

p
(1)
k (ξ) =






0, if ξ < 0 or ξ > 1,

Akξ
k(ξ − 1)k, if 0 ≤ ξ ≤ 1,

By the basic differentiation properties of chain rule and product rule, it is not hard to

see that

p
(i)
k (ξ) =






0, if ξ < 0 or ξ > 1,

v
(i)
k (ξ), if 0 ≤ ξ ≤ 1,
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where v
(i)
k , 1 ≤ i ≤ k, can be written as a finite sum of polynomials with each polyno-

mial having roots 0 and 1. Thus,

lim
ξ→0+

v
(i)
k (ξ) = 0 = lim

ξ→0−
v

(i)
k (ξ),

and similarly

lim
ξ→1−

v
(i)
k (ξ) = 0 = lim

ξ→1+
v

(i)
k (ξ).

for each 1 ≤ i ≤ k. This completes the proof for statement (a).

By the structure of pk, to show that pk(ξ) + pk(1− ξ) ≡ 1 is equivalent to showing

that vk(ξ) + vk(1 − ξ) ≡ 1, ξ ∈ [0, 1]. Recall that

v
(1)
k (ξ) = Akξ

k(ξ − 1)k, for all ξ ∈ R.

Then

d

dξ
(vk(ξ) + vk(1 − ξ)) = v

(1)
k (ξ) − v

(1)
k (1 − ξ) = Ak[ξ

k(ξ − 1)k − (1 − ξ)k(−ξ)k] = 0

for all ξ ∈ R and all k ∈ N. Thus vk(ξ) + vk(1 − ξ) ≡ C for some constant C. Letting

ξ = 0, C = vk(0) + vk(1) = 1. Thus vk(ξ) + vk(1 − ξ) = 1 for all ξ ∈ [0, 1].

Note that v
(1)
k (ξ) = Akξ

k(ξ − 1)k is either strictly positive or negative on (0, 1).

We thus conclude that v
(1)
k (ξ) > 0 on (0, 1), for otherwise the continuity of pk will

be violated as vk(0) = 0 and vk(1) = 1. Lastly, note that sgn (ξk(ξ − 1)k) = (−1)k

whenever ξ ∈ (0, 1). Since v
(1)
k (ξ) > 0 in (0, 1), it follows that sgn (Ak) = (−1)k as

well. This concludes the proof of Theorem 4.1.2.

It is relatively simple to implement computation of bell functions when we choose

g = pk due to their simplistic expressions. However, Theorem 4.1.2 has a slight draw-

back in the sense that we can only obtain a sequence of splines {pk}k∈N where each

pk ∈ Ck(R) and k is arbitrary but finite. It is desirable that the function g involved in

Theorem 4.1.1 belongs to C∞(R). As a matter of fact, we will show in Theorem 4.1.3

that there indeed exists a family of functions qa,s in C∞(R) that satisfy properties of

the function g in Theorem 4.1.1.
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Theorem 4.1.3 Define

fa,s(ξ) :=





e
− a

ξ2s , if ξ > 0

0, if ξ ≤ 0

where a > 0 and s ∈ Z+. Let ha,s(ξ) := fa,s(ξ) ·fa,s(1−ξ) and qa,s(ξ) :=

∫ ξ

−∞ ha,s(t) dt∫ ∞
−∞ ha,s(t) dt

.

Then the following hold.

(a) qa,s ∈ C∞(R) for all a > 0, s ∈ Z+.

(b) qa,s(ξ) + qa,s(1 − ξ) ≡ 1 for all a > 0, s ∈ Z+.

(c) q
(1)
a,s(ξ) > 0, ξ ∈ (0, 1).

(d) qa,s(ξ) = 0 for ξ ≤ 0 and qa,s(ξ) = 1 for ξ ≥ 1.

Theorem 4.1.3 is proved in [23] so we shall omit the proof here.

Example 4.1.1 Let k = 3 in Theorem 4.1.2, Then we get A3 = −140 < 0 and

v3(ξ) = −20ξ7 + 70ξ6 − 84ξ5 + 35ξ4.

The spline

p3(ξ) =






0, if ξ < 0,

v3(ξ), if 0 ≤ ξ ≤ 1,

1, if ξ > 1,

satisfies (4.1.1), (4.1.2), (4.1.3) in Theorem 4.1.1.

Example 4.1.2 Let a = 1, s = 1 in Theorem 4.1.3. Then we get the function

f1,1(ξ) =





e
− 1

ξ2 , if ξ > 0,

0, if ξ ≤ 0,

and the function q1,1 satisfies (4.1.1), (4.1.2), (4.1.3) in Theorem 4.1.3.
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We note that such constructions are not exhaustive. For all we know, there could

exist other families which provide better properties like subexponential decay which

is faster than the decay of the Meyer’s wavelets. The author notes that construction

of bandlimited wavelets with subexponential decay has been discussed in [11] by Dz-

iubánski and Hernández. However, due to time constraint and the unavailability of

explicit construction, we will not discuss it in this thesis, and the interested reader can

refer to [11] for details.

In the next section, we will use the bell functions to construct bandlimited or-

thonormal wavelets commonly referred to as Meyer’s wavelets.

4.2 Bandlimited orthornormal wavelets

A reader familiar with the Meyer’s wavelets would hardly be surprised with the

constructions involved in this section. Nevertheless, there are several key techniques

useful for later chapters in the underlying constructions. We shall construct Meyer’s

wavelets in a different and yet equivalent way. We begin by defining a function â ∈ Aδ,Ω

with π/3 ≤ δ ≤ Ω ≤ 2π
3

, Ω ≥ π/2, satisfying the CQF condition, i.e.

|â(·)|2 + |â(· + π)|2 ≡ 1.

Then by (2.1.6), (2.1.7) in Chapter 2, its corresponding scaling function φ defined by

its Fourier transform

φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ)

satisfies
∑

l∈Z

|φ̂(· + 2πl)|2 ≡ 1.

Consequently, defining

ψ̂(ξ) = e
iξ

2 â(
ξ

2
+ π)φ̂(

ξ

2
), (4.2.1)

the theory of multiresolution analysis ensures us that X(Ψ) forms an orthonormal

wavelet basis for L2(R). The following proposition lists formal properties of the wavelet

ψ defined by (4.2.1) which most of the proof will be quoted from [23] without proof.
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Proposition 4.2.1 For any function â ∈ Aδ,Ω with π/3 ≤ δ ≤ Ω ≤ 2π
3

, Ω ≥ π/2,

satisfying the CQF condition, one can associate an orthonormal wavelet given by (4.2.1)

which has the following properties:

(a) supp ψ̂ ⊆ [−8π
3
, −2π

3
] ∪ [2π

3
, 8π

3
].

(b) ψ is a real-valued C∞(R)-function.

(c) ψ(−1
2
− x) = ψ(−1

2
+ x) for all x ∈ R.

Proof: By the characterization of the functions â ∈ Aδ,Ω with π/3 ≤ δ ≤ Ω ≤ 2π
3

,

Ω ≥ π/2, satisfying the CQF condition in Proposition 2.2.1, [φ̂, φ̂] ≡ 1. We note that

â ≡ 1 in the set of intervals
⋃
l∈Z

[Ω− π+ 2πl, π −Ω + 2πl]. Furthermore, 2(π−Ω) ≥ Ω

because Ω ≤ 2π
3

. Thus

φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ) = â(

ξ

2
) 1[−2Ω, 2Ω](ξ)

and obviously, supp φ̂ = [−2Ω, 2Ω] ⊆ [−4π
3
, 4π

3
]. Thus φ satisfies the conditions of

Proposition 3.2 in [23] (up to a difference of a scalar constant 1√
2π

) and this proves our

result.

The most important special case of the above construction is when the function â,

in addition to being in class Aδ,Ω with π/3 ≤ δ ≤ Ω ≤ 2π
3

, Ω ≥ π/2 and the CQF

condition, also lies in C∞(R). In fact, in the following theorem, we shall give explicit

constructions of such a function â.

Theorem 4.2.2 There exist real-valued wavelets ψǫ, 0 < ǫ ≤ π/3, such that the fol-

lowing hold.

(a) Each ψǫ is in the Schwartz class.

(b) Each ψǫ(−1
2

+ x) = ψǫ(−1
2
− x) for all x ∈ R.

(c) supp ψ̂ǫ ⊆ [−8π
3
, −2π

3
] ∪ [2π

3
, 8π

3
].
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Proof: For 0 < ǫ ≤ π/3, define Iǫ := [−π
2
− ǫ

2
, −π

2
+ ǫ

2
] and Jǫ := [π

2
− ǫ

2
, π

2
+ ǫ

2
]. Let

âǫ be the 2π-periodic extension of the bell function bǫ, where

bǫ(ξ) = bIǫ,Jǫ
(ξ) = cos

(π
2
g(

1

ǫ
(|ξ| − π

2
+
ǫ

2
))

)
, (4.2.2)

and g = qa,s ∈ C∞(R) as in Theorem 4.1.3. Since b2− b1 = ǫ = a2−a1, bǫ is symmetric

about the point ξ∗ = [(−π
2

+ ǫ
2
) + (π

2
− ǫ

2
)] = 0. Thus bǫ is an even function and so is

âǫ. Note that âǫ ∈ Aδǫ,Ωǫ
, where 0 < δǫ = π

2
− ǫ

2
< π

2
+ ǫ

2
= Ωǫ ≤ 2π

3
. Thus we can

define the corresponding scaling function φǫ ∈ Bπ−ǫ,π+ǫ by its Fourier transform

φ̂ǫ(ξ) =
[ N∏

j=1

âǫ(2
−jξ)

]
1[−π−ǫ, π+ǫ](ξ) = âǫ(

ξ

2
)1[−π−ǫ, π+ǫ](ξ) = bǫ(ξ/2) (4.2.3)

because N as defined in (2.1.7) is equal to 1 since 2δǫ ≥ Ωǫ whenever 0 < ǫ ≤ π/3.

Next, the support of âǫ =
⋃
l∈Z

[−π
2
− ǫ

2
+2πl, π

2
+ ǫ

2
+2πl] ⊆ ⋃

l∈Z

[−2π
3

+2πl, 2π
3

+2πl],

since 0 < ǫ ≤ π
3
. Note that it suffices to verify that âǫ satisfies the CQF condition

in order to apply the results in Proposition 4.2.1 to get properties (b) and (c) in this

theorem. Property (a) is easily verified as g = qa,s ∈ C∞(R), âǫ, φ̂ǫ ∈ C∞(R) and

consequently ψ̂ǫ = e−i·/2âǫ(·/2 + π)φ̂ǫ(·/2) ∈ C∞(R) by Lemma 3.1.1. It is shown in

[1] and [23] that indeed âǫ satisfies the CQF condition.

Now âǫ(ξ+π) =
∑
l∈Z

bǫ(ξ+π+2πl) where supp bǫ(·+π+2πl) ⊆ [−5π/3+2πl, −π/3+

2πl]. Note that supp φ̂ǫ ⊆ [−4π/3, 4π/3] and supp bǫ(· + π + 2πl)∩ supp φ̂ǫ is a set

of measure zero if and only if l ≤ −2 or l ≥ 1. Consider bǫ(−ξ/2 + π) = bǫ(ξ/2 − π)

because bǫ is even. Therefore bǫ(ξ/2 + π) + bǫ(ξ/2 − π) = bǫ(−ξ/2 − π) + bǫ(ξ/2 − π).

Since supp bǫ(· − π) ⊆ [π/3, 5π/3] and [π/3, 5π/3] ∩ R− = ∅, then we can write

bǫ(|ξ|/2− π) = bǫ(−ξ/2 − π) + bǫ(ξ/2 − π). In view of all these, we have

ψ̂ǫ(ξ) = eiξ/2âǫ(ξ/2 + π)φ̂ǫ(ξ/2) = eiξ/2[bǫ(
ξ

2
− π) + bǫ(

ξ

2
+ π)]φ̂ǫ(

ξ

2
), (4.2.4)

where its support is [π− ǫ, 2π+2ǫ]∪ [−2π− 2ǫ, −π+ ǫ] ⊆ [2π
3
, 8π

3
]∪ [−8π

3
, −2π

3
]. Note

that the argument used in showing (4.2.4) will be used repeatedly in other chapters.

This concludes the proof of the theorem.

In fact, if one replaces the function g to be any one of the functions from the

family of splines {pk}k∈N in Theorem 4.1.2, then statement (a) in Theorem 4.2.2 will
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Figure 4.1: Graphs of φ̂π
3

and |ψ̂π
3
|.

be replaced by the following statement: There exists a sequence of real-valued wavelets

ψǫ such that

(a’) each ψ̂ǫ ∈ Ck(R) and |ψǫ(x)| ≤ C(1 + |x|)−l for all x ∈ R, where l < k, 0 ≤ k <∞
and C is a constant depending on k, ǫ and l only.

This is because when g = pk ∈ Ck(R), bǫ ∈ Ck(R) and so is ψ̂ǫ(ξ) = e
iξ

2 [bǫ(
ξ
2
−

π)+ bǫ(
ξ
2
+π)]bǫ(

ξ
4
). Then by the properties of the Fourier transform in Theorem 3.1.1,

|ψǫ(x)| ≤ C(1 + |x|)−l for all x ∈ R whenever l < k. Properties (b) and (c) remain

unchanged due to the proof of Theorem 4.2.2. Figure 4.1 illustrates both φ̂π
3

and ψ̂π
3

with g = p10 ∈ C10(R).

Finally, we are better equipped to tackle the explicit constructions of bandlimited

tight framelets in the next chapter. While the existence of Meyer’s wavelets is rather

well understood over the past decade, the construction of bandlimited tight framelets

is not as well understood and many constructions provided seem ad-hoc. We will use

a rather systematic way in the next chapter to construct these framelets, which is via

the Mixed Unitary Extension Principle (Mixed UEP).



Chapter 5

Bandlimited Biframelets

5.1 Construction by the mixed UEP

The Unitary Extension Principle was first established by Ron and Shen in [20] for

the construction of tight wavelet frames. It was further generalized into the Mixed

Extension Principle and the Oblique Extension Principle in [21] and [9] respectively.

In this chapter, we will construct bandlimited biframes of L2(R) from one or two

bandlimited refinable scaling functions using the Mixed Unitary Extension Principle

(Mixed UEP). Define Ψ := {ψi ∈ L2(R) : i = 1, . . . , n} and Ψ̃ := {ψ̃i ∈ L2(R) : i =

1, . . . , n}. We say that X(Ψ) and X(Ψ̃) are biframes for L2(R) or form a biframelet

system of L2(R) if for every f ∈ L2(R),

f =
n∑

i=1

∑

j,k∈Z

〈f, ψ̃i,j,k〉ψi,j,k =
n∑

i=1

∑

j,k∈Z

〈f, ψi,j,k〉ψ̃i,j,k,

and X(Ψ), X(Ψ̃) each forms a frame for L2(R). As noted in [9], the Mixed UEP does

not even require the integer shifts of the refinable functions φ and φ̃ to form a frame

for V0 and Ṽ0 respectively, where V0 and Ṽ0 are defined by φ and φ̃ respectively as in

(2.1.6) and (2.1.7). This is fortunate because we know from Theorem 2.2.1 that for

0 < δ ≤ Ω ≤ π/2, a function φ ∈ Bδ,Ω must necessarily have its Fourier transform φ̂

discontinuous if the integer shifts of φ form a frame for V0. Consequently, the decay of

φ is poor. If the integer shifts of φ are not required to form a frame for V0, in view of

55
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Theorem 2.2.1, we could now allow the scaling function φ to be a function such that

its Fourier transform φ̂ is a bell function belonging to C∞(R) which implies that φ is in

the Schwartz class. This leads to construction of framelets which are in the Schwartz

class as well. Thus the mixed UEP provides added flexibility to construct bandlimited

framelets with excellent time and frequency localization.

There are a few general things to take note of. Firstly, similar to the case of

employing the Mixed UEP to construct compactly supported biframelets of L2(R),

constructions of bandlimited biframelets of L2(R) via the Mixed UEP are more flexible

than those of bandlimited tight frames of L2(R). Secondly, although there are some

existing constructions of bandlimited framelets in the wavelet literature in [3] and [14],

they are not created by the Mixed UEP, so it would be interesting to investigate a

systematic approach of constructing bandlimited framelets by the Mixed UEP.

This chapter will be outlined as follows. We will quote two special formulae related

to the Mixed UEP and construct bandlimited biframes of L2(R) from a special pair

of refinable bandlimited functions φ, φ̃ based on these formulae. We will also provide

a characterization of X(Ψ) and X(Ψ̃) forming a biframelet system of L2(R) with Ψ

and Ψ̃ each being a singleton set in L2(R) based on the second formula. Lastly, we

construct explicit examples of bandlimited biframes of L2(R) with excellent time and

frequency localization using bell functions in Chapter 4.

We quote a result in [5] which is based on [7] from Chui, He, Stöckler and [9] by

Daubechies, Han, Ron and Shen. This result is a consequence of the mixed UEP.

Theorem 5.1.1 Let φ, φ̃ be a pair of refinable scaling functions in L2(R) and â, ˆ̃a

be their respective refinement masks. Define the sets Ψ and Ψ̃ in either one of the

following two setups.

(A) Let Ψ := {ψl}3
l=1, Ψ̃ := {ψ̃l}3

l=1 where

ψ̂l(ξ) := âl(ξ/2)φ̂(ξ/2), ˆ̃ψl(ξ) := ˆ̃al(ξ/2) ˆ̃φ(ξ/2), l = 1, 2, 3,

â1(ξ) := eiξâ(ξ + π), ˆ̃a1(ξ) := eiξ ˆ̃a(ξ + π),

âl(ξ) := ei(l−2)ξm̂(ξ), ˆ̃al(ξ) := ei(l−2)ξ ˆ̃m(ξ), l = 2, 3,

P (ξ) := 1 −
(
â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π)

)
,

(5.1.1)
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and (m̂, ˆ̃m) is a factorization pair of P taking the form

P = 2m̂ ˆ̃m, m̂(0) = 0 = ˆ̃m(0). (5.1.2)

(B) Let Ψ := {ψl}2
l=1, Ψ̃ := {ψ̃l}2

l=1 where

ψ̂l(ξ) := âl(ξ/2)φ̂(ξ/2), ˆ̃ψl(ξ) := ˆ̃al(ξ/2) ˆ̃φ(ξ/2), l = 1, 2,

â1(ξ) := eiξâ(ξ + π), ˆ̃a1(ξ) := eiξ ˆ̃a(ξ + π),

â2(ξ) := â(ξ)m̂(2ξ), ˆ̃a2(ξ) := ˆ̃a(ξ) ˆ̃m(2ξ)

and (m̂, ˆ̃m) is a real factorization pair of P as defined in (5.1.1) and (5.1.2).

If there exist ρ > 1
2

and a constant B > 0 such that

|ψ̂l(ξ)|, | ˆ̃ψl(ξ)| ≤ B(1 + |ξ|)−ρ

for almost everywhere ξ ∈ R and for all l = 1, . . . , n, where n = 3 in setup (A) and

n = 2 in setup (B), then X(Ψ) and X(Ψ̃) form a biframelet system of L2(R). In

particular, if φ = φ̃, â = ˆ̃a, m̂ = ˆ̃m, then Ψ = Ψ̃ and X(Ψ) forms a tight frame for

L2(R).

Now we state our main focus of this chapter.

Theorem 5.1.2 For 0 < δ < Ω ≤ 2π/3, 0 < δ̃ < Ω̃ ≤ 2π/3, let â ∈ Aδ,Ω, ˆ̃a ∈ Aδ̃,Ω̃

such that â(ξ)ˆ̃a(ξ)+â(ξ+π)ˆ̃a(ξ+π) ≤ 1 for all ξ ∈ R. Let φ and φ̃ be the corresponding

scaling functions of the masks â and ˆ̃a respectively as defined in (2.1.6) and (2.1.7).

Define the sets Ψ, Ψ̃ by the functions â, ˆ̃a, φ, φ̃, m̂, ˆ̃m by either setup (A) or (B) of

Theorem 5.1.1, where m̂ = 1√
2
P ν/n and ˆ̃m = 1√

2
P 1−ν/n, 1 ≤ ν < n, ν, n ∈ N. Then

X(Ψ) and X(Ψ̃) form a biframelet system of L2(R).

Proof: Firstly, observe that φ ∈ Bδ,Ω and φ̃ ∈ Bδ̃,Ω̃ with the respective refinement

masks â and ˆ̃a. Next P ≥ 0, which ensures nonnegativity of the pair (m̂, ˆ̃m) in both

setups (A) and (B). Now since φ̂,
ˆ̃
φ are compactly supported and bounded, so are ψ̂i,

ˆ̃ψi for all i in both setups (A) and (B). The compact support of ψ̂i,
ˆ̃ψi, i = 1, . . . , n in
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both setups ensures that the decay conditions in Theorem 5.1.1 are satisfied. Then we

apply Theorem 5.1.1 to obtain the result.

For applications, we desire Ψ and Ψ̃ to have as few generators as possible. We

shall illustrate that it is possible to obtain only one generator for each set. When

Ω > π/2 and Ω̃ > π/2, we can employ a different setup in Chapter 6 to create Ψ and

Ψ̃ that consist of only one generator each and the resulting X(Ψ) and X(Ψ̃) form a

pair of biorthogonal Riesz bases for L2(R). In view of this, we consider a special case

of Theorem 5.1.2.

Corollary 5.1.1 For 0 < δ < Ω < π/2, 0 < δ̃ < Ω̃ < π/2, let â ∈ Aδ,Ω, ˆ̃a ∈ Aδ̃,Ω̃

such that â(ξ), ˆ̃a(ξ) ≤ 1 for all ξ ∈ R. Define the sets Ψ and Ψ̃ by â, ˆ̃a, φ, φ̃, m̂,

ˆ̃m as in Theorem 5.1.2. Then X(Ψ) and X(Ψ̃) form a biframelet system of L2(R).

Furthermore we have the following:

(A) For setup (A),

(1) ψ1 ≡ 0 if and only if 2Ω ≤ −Ω̃ + π.

ψ̃1 ≡ 0 if and only if 2Ω̃ ≤ −Ω + π.

(2) If 2Ω > −Ω̃ + π, supp ψ̂1 = [−2Ω̃ + 2π, 4Ω] ∪ [−4Ω, 2Ω̃ − 2π].

If 2Ω̃ > −Ω + π, supp ˆ̃ψ1 = [−2Ω + 2π, 4Ω̃] ∪ [−4Ω̃, 2Ω − 2π].

(3) supp ψ̂2 = supp ψ̂3 = [2δ′, min{4Ω, 2π−2δ′}]∪[−min{4Ω, 2π−2δ′}, −2δ′],

supp
ˆ̃
ψ2 = supp

ˆ̃
ψ3 = [2δ′, min{4Ω̃, 2π−2δ′}]∪[−min{4Ω̃, 2π−2δ}, −2δ′],

where δ′ = min{δ, δ̃}.

(B) For setup (B), statements (1) and (2) in (A) hold with statement (3) replaced

by (3’).

(3’) supp ψ̂2 = [δ′, min{−δ′ + π, 2Ω}] ∪ [−min{−δ′ + π, 2Ω}, −δ′],
supp ˆ̃ψ2 = [δ′, min{−δ′ + π, 2Ω̃}] ∪ [−min{−δ′ + π, 2Ω̃}, −δ′],
where δ′ = min{δ, δ̃}.

Proof: Note that φ̂ ∈ Bδ,Ω, ˆ̃φ ∈ Bδ̃,Ω̃ where 0 < δ < Ω < π/2, 0 < δ̃ < Ω̃ < π/2.

Without loss of generality, let us assume that Ω̃ ≤ Ω. Since Ω < π
2
, on the interval
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[−π, π], âˆ̃a has support [−Ω̃, Ω̃] and has the interval of constancy [−δ′, δ′] where δ′ =

min{δ, δ̃}. Then we have

supp âˆ̃a ∩ supp âˆ̃a(· + π) = ∅.

Since 0 ≤ â(ξ)ˆ̃a(ξ) ≤ 1 and supp âˆ̃a ∩ supp âˆ̃a(· + π) = ∅, P takes value in [0, 1].

For statement (1), supp ψ̂1 = supp â1(
·
2
)φ̂( ·

2
) and supp â1 = [−Ω̃ + π, Ω̃ + π] ∪

[−Ω̃ − π, Ω̃ − π] on the interval [−2π, 2π]. With supp φ̂ = [−2Ω, 2Ω] ( [−π, π], we

get ψ1 ≡ 0 if and only if â1φ̂ ≡ 0 which is equivalent to supp â1 ∩ supp φ̂ is a set of

measure zero. This is tantamount to 2Ω ≤ −Ω̃ + π. Similarly, ψ̃1 ≡ 0 if and only if

2Ω̃ ≤ −Ω + π. Otherwise, we get result (2).

Next, on the interval [−π, π], suppP = [δ′, −δ′ +π]∪ [δ′ −π, −δ′] because âˆ̃a(ξ)+

âˆ̃a(ξ + π) = 1, ξ ∈ [−π, π] ∩
(
[δ′, −δ′ + π] ∪ [δ′ − π, −δ′]

)c

, and P (ξ) = 1 for ξ ∈
[Ω̃, −Ω̃ + π] ∪ [Ω̃ − π, −Ω̃] because âˆ̃a(ξ) + âˆ̃a(ξ + π) = 0, |ξ| ∈ [Ω̃, −Ω̃ + π].

Since m̂ = 1√
2
P

ν
n , 1 ≤ ν < n, ν, n ∈ N, it follows that supp m̂ = [δ′, −δ′ + π] ∪

[δ′ − π, −δ′] on the interval [−π, π].

Note that δ′ = min {δ, δ̃} ≤ δ < Ω < 2Ω, and supp φ̂ = [−2Ω, 2Ω]. Then

supp â2φ̂ = [δ′, min {2Ω, −δ′ + π}] ∪ [−min {2Ω, −δ′ + π}, −δ′],

thus

supp ψ̂3 = supp ψ̂2 = supp m̂(
·
2
)φ̂(

·
2
)

= [2δ′, min {4Ω, −2δ′ + 2π}] ∪ [−min {4Ω, −2δ′ + 2π}, −2δ′].

Since ˆ̃m = 1√
2
P

n−ν
n we have supp ˆ̃m = [δ′, −δ′ + π] ∪ [δ′ − π, −δ′] on the interval

[−π, π]. With supp φ̂ = [−2Ω̃, 2Ω̃], we can compute similarly that

supp
ˆ̃
ψ3 = supp

ˆ̃
ψ2 = [2δ′, min {4Ω̃, −2δ′ + 2π}] ∪ [−min {4Ω̃, −2δ′ + 2π}, −2δ′].

Recall that in setup (B),

ψ̂2(ξ) = â2(
ξ

2
)φ̂(

ξ

2
), ˆ̃ψ2(ξ) = ˆ̃a2(

ξ

2
) ˆ̃φ(

ξ

2
),

where â2(ξ) = â(ξ)m̂(2ξ), ˆ̃a2(ξ) = ˆ̃a(ξ) ˆ̃m(2ξ). On the interval [−2π, 2π],

supp m̂ = supp ˆ̃m = [δ′, −δ′ + π] ∪ [δ′ + π, −δ′ + 2π].
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On the interval [−2π, 2π],

supp â(
·
2
) = [−2Ω, 2Ω] ( [−π, π], supp ˆ̃a(

·
2
) = [−2Ω̃, 2Ω̃] ( [−π, π].

Thus on the interval [−2π, 2π],

supp â2(
·
2
) = supp â(

·
2
)m̂(·) = [δ′, min {−δ′ + π, −2Ω}] ∪ [−min {−δ′ + π, −2Ω}, −δ′],

supp ˆ̃a2(
·
2
) = supp â(

·
2
)m̂(·) = [δ′, min {−δ′ + π, −2Ω̃}] ∪ [−min {−δ′ + π, −2Ω̃}, −δ′].

Now, supp φ̂( ·
2
) = [−4Ω, 4Ω] ( [−2π, 2π] and supp

ˆ̃
φ( ·

2
) = [−4Ω̃, 4Ω̃] ( [−2π, 2π].

Noting that supp ψ̂2=supp â2(
·
2
)∩ supp φ̂( ·

2
) and supp ˆ̃ψ2=supp ˆ̃a2(

·
2
)∩ supp ˆ̃φ( ·

2
), we

get the desired result in (3’).

Corollary 5.1.2 With the assumptions of Corollary 5.1.1, if it is further assumed that

â = ˆ̃a and m̂ = ˆ̃m, then Ψ = Ψ̃ and X(Ψ) forms a tight frame for L2(R). We also

have the following.

(A) For setup (A),

(1) ψ1 ≡ 0 if and only if Ω ≤ π/3.

(2) If Ω > π/3, supp ψ̂1 = [−2Ω + 2π, 4Ω] ∪ [−4Ω, 2Ω − 2π].

(3) supp ψ̂2 =supp ψ̂3 = [2δ, min{4Ω, 2π−2δ}]∪[−min{4Ω, 2π−2δ}, −2δ].

(B) For setup (B), statements (1) and (2) in (A) hold with statement (3) replaced

by (3’).

(3’) supp ψ̂2 = [δ, min{−δ + π, 2Ω}] ∪ [−min{−δ + π, 2Ω}, −δ].

Proof: The proof follows directly by setting Ω = Ω̃, δ = δ̃ in Corollary 5.1.1.

We note that there is a slight tradeoff of having just one generator for X(Ψ) to form

a tight frame of L2(R) in Corollary 5.1.2: the closed linear span of the integer shifts of

φ consist of bandlimited functions f whose Fourier transform f̂ has compact support

up to [−π/3, π/3] and does not contain other bandlimited functions. This can be easily
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seen by Theorem 3.2.2. On the other hand, less generators means less computational

cost. We shall see in the following that though we have a single generator, this generator

cannot form a basis for L2(R).

Proposition 5.1.1 With the assumptions of setup (B) in Corollary 5.1.1 with Ω, Ω̃ <

π/2 and 2Ω ≤ −Ω̃ + π, 2Ω̃ ≤ −Ω + π, then X(Ψ) and X(Ψ̃) cannot form a pair of

biorthogonal Riesz wavelet bases for L2(R). In particular, if â = ˆ̃a, m̂ = ˆ̃m, Ω ≤ π/3,

then X(Ψ) cannot be an orthonormal basis for L2(R).

Proof: Now supp
ˆ̃
ψ2, supp ψ̂2 ( [−π, π], so m(supp

ˆ̃
ψ), m(supp ψ̂)< 2π which means

∑
l∈Z

ψ̂2(ξ + 2πl) ˆ̃ψ2(ξ + 2πl) equal zero on a set of positive measure. By Theorem 2.2.1,

we obtain the result.

5.2 Explicit constructions

We shall see below that the construction of explicit bandlimited biframes generally

is more flexible than the construction of explicit bandlimited tight frames. This is due

to the need to impose a square root factorization of the function P in Theorem 5.1.2

for constructing a tight frame. We note that in the bandlimited context, the Féjer-

Riesz lemma is not required to perform the factorization on P , and yet we can still

obtain tight framelets. However a potential problem is that the factorization of the

function P may affect the differentiability of the resulting pair (m̂, ˆ̃m) which could lead

to poor time localization of the resulting wavelets. So we take caution in the following

to eliminate this problem. The following construction is based on working backwards

so as to obtain explicit expressions of the mother wavelets in terms of their Fourier

transforms and to preserve the differentiability properties of the Fourier transforms of

the wavelets.

Let I = [−Ω, −δ], J = [δ, Ω] and â be the 2π-periodic extension of the function

η(ξ) = bmI,J(ξ) = cosm
(π

2
g(

1

Ω
− δ(|ξ| − δ))

)
,

as in Theorem 4.1.1, where 0 < δ < Ω < π/2, 2δ ≥ Ω, m ∈ N, g ∈ Ck(R).
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Let I ′ = [δ̃, Ω̃], J ′ = [π − Ω̃, π − δ̃], ˆ̃a be the 2π-periodic extension of the function

η̃(ξ) = [1 − γ1(ξ)]1[−Ω̃, Ω̃](ξ),

as in Theorem 4.1.1, where γ1(ξ) = γ2(ξ) + γ2(ξ + π), γ2(ξ) = bnI′,J ′(ξ) where 0 < δ̃ <

Ω̃ < π
2

and 2δ̃ ≥ Ω̃, 2 ≤ n < ∞, n ∈ N, g ∈ Ck(R). One can verify that indeed

ˆ̃a ∈ Aδ,Ω and that â, ˆ̃a satisfy the assumptions on â and ˆ̃a in Corollary 5.1.1.

Let us further assume that Ω̃ ≤ δ. Then we claim that in the interval [0, π],

P (ξ) = γ2(ξ) which we will prove in due course. The upshot is that we can easily

perform factorization on the function P by simply letting m̂ and ˆ̃m to be the π-periodic

extension of the following functions

zν(ξ) :=
1√
2
bνI′,J ′(ξ), zn−ν(ξ) :=

1√
2
bn−ν
I′,J ′(ξ),

where 1 ≤ ν < n, ν ∈ N. Due to this factorization, we shall observe that the properties

of differentiability of zν and zn−ν will be passed onto the Fourier transforms of the

resulting framelets.

Now let us establish the claim that P (ξ) = γ2(ξ) on [0, π]. Since supp ˆ̃a =
⋃
l∈Z

[−Ω̃+

2πl, Ω̃ + 2πl], Ω̃ ≤ δ, and â(ξ) = 1, ξ ∈ ⋃
l∈Z

[−δ + 2πl, δ + 2πl], it follows that P (ξ) =

1 − [â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π)] = 1 − [ˆ̃a(ξ) + ˆ̃a(ξ + π)] for all ξ ∈ R.

Next when Ω̃ < π
2
, supp ˆ̃a1[−π, π] = [−Ω̃, Ω̃] ( [−π

2
, π

2
]. Thus supp ˆ̃a(·+π)1[−π,π] =

[−Ω̃+π, π]∪[−π, Ω̃−π] ( [π
2
, π]∪[−π, −π

2
] which implies that supp ˆ̃a∩ supp ˆ̃a(·+π) =

∅. Since P is π-periodic, it suffices to just consider P on [0, π]. Now on the interval

[0, π],

ˆ̃a(ξ) + ˆ̃a(ξ + π) =





η̃(ξ), if 0 ≤ ξ < Ω̃,

0, if Ω̃ ≤ ξ ≤ π − Ω̃,

η̃(ξ − π), if π − Ω̃ < ξ ≤ π,
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where we note that Ω̃ < π − Ω̃ because Ω̃ < π
2
< π − Ω̃. Thus,

P (ξ) = 1 −
[
ˆ̃a(ξ) + ˆ̃a(ξ + π)

]
=






γ1(ξ), if 0 ≤ ξ < Ω̃,

1, if Ω̃ ≤ ξ ≤ π − Ω̃,

γ1(ξ − π), if π − Ω̃ < ξ ≤ π,

=






γ2(ξ), if 0 ≤ ξ < Ω̃,

1, if Ω̃ ≤ ξ ≤ π − Ω̃,

γ2((ξ + π) − π), if π − Ω̃ < ξ ≤ π,

= γ2(ξ)

because γ2(ξ) = γ1(ξ) + γ1(ξ + π) where supp γ1 = [δ̃, π − δ̃].

We now proceed to compute explicit expressions of the wavelet functions in terms

of their Fourier transforms using setups (A) and (B) in Theorem 5.1.2. Since 2δ̃ ≥ Ω̃

and 2δ ≥ Ω,

φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω] = â(ξ/2)1[−2Ω,2Ω](ξ) = bmI,J(ξ/2),

ˆ̃
φ(ξ) =

[ N∏

j=1

ˆ̃a(2−jξ)
]
1[−2Ω̃, 2Ω̃](ξ) = ˆ̃a(ξ/2)1[−2Ω̃, 2Ω̃](ξ) = η̃(

ξ

2
).

We first consider setup (A). With some calculation similar to the justification of (4.2.4),

it is not hard to see that

ψ̂1(ξ) = e
iξ

2 ˆ̃a(
ξ

2
+ π)φ̂(

ξ

2
)

= e
iξ

2

(
η̃(
ξ

2
− π) + η̃(

ξ

2
+ π)

)
φ̂(
ξ

2
)

= e
iξ

2

(
η̃(
ξ

2
− π) + η̃(

ξ

2
+ π)

)
bmI,J(ξ/4),

(5.2.1)

ˆ̃
ψ1(ξ) = e

iξ

2 â(
ξ

2
+ π)φ̂(

ξ

2
) = e

iξ

2

(
η̃(
ξ

2
− π) + η̃(

ξ

2
+ π)

)
η̃(
ξ

4
), (5.2.2)

ψ̂2(ξ) = m̂(
ξ

2
)φ̂(

ξ

2
) =

1√
2
[zν(

ξ

2
) + zν(

ξ

2
+ π)]bmI,J(ξ/4), ψ̂3(ξ) = e

iξ

2 ψ̂2(ξ),

ˆ̃
ψ2(ξ) = ˆ̃m(

ξ

2
)
ˆ̃
φ(
ξ

2
) =

1√
2
[zn−ν(

ξ

2
) + zn−ν(

ξ

2
+ π)]η̃(ξ/4),

ˆ̃
ψ3(ξ) = e

iξ
2

ˆ̃
ψ2(ξ),
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where the supports of ψ̂l,
ˆ̃ψl, l = 1, 2, 3, are given in Corollary 5.1.1.

For setup (B), ψ̂1,
ˆ̃
ψ1 remain the same as in (5.2.1) and (5.2.2), whereas

ψ̂2(ξ) = â2(
ξ

2
)φ̂(

ξ

2
) =

1√
2
bI,J(

ξ

2
)bI,J(

ξ

4
)
[
zν(ξ) + zν(ξ + π)

]

=
1√
2
bI,J(

ξ

2
)
[
zν(ξ) + zν(ξ + π)

]
,

ˆ̃
ψ2(ξ) = ˆ̃a2(

ξ

2
)
ˆ̃
φ(
ξ

2
) =

1√
2
η̃(ξ/2)η̃(ξ/4)[zn−ν(ξ) + zn−ν(ξ + π)]

=
1√
2
η̃(ξ/2)[zn−ν(ξ) + zn−ν(ξ + π)],

(5.2.3)

where the supports of ψ̂l,
ˆ̃
ψl, l = 1, 2 are given in Corollary 5.1.1.

Although the computations may seem tedious, the upshot is that these explicit

expressions could prove useful in applications.

Next, we show that if g ∈ Ck(R) where 0 ≤ k ≤ ∞, the Fourier transforms of the

mother wavelets defined in Theorem 5.1.2 will also belong to Ck(R). In view of Lemma

3.1.1 and the formulae of the mother wavelets in terms of their Fourier transforms in

Theorem 5.1.2, it suffices to verify that η̃ ∈ Ck(R) whenever g ∈ Ck(R).

Note that γ2 = γ1 + γ1(· + π) ∈ Ck(R) because γ1 ∈ Ck(R) whenever g ∈ Ck(R).

Recall that η̃(ξ) =
[
1−γ2(ξ)

]
1[−Ω̃, Ω̃](ξ). Clearly, 1−γ2 ∈ Ck(R), so to show η̃ ∈ Ck(R),

it suffices to show that 1 − γ2(ξ) = 0 on [Ω̃, Ω̃ + ǫ] for some ǫ > 0. Indeed one can

verify that 1 − γ2(ξ) = 0 for |ξ| ∈ [Ω̃, π − Ω̃] where Ω̃ < π/2 < π − Ω̃.

Example 5.2.1 We use setup (B) here. Let Ω = 2π
9
, Ω̃ = π

9
, δ̃ = π

18
, δ = π

9
, m = 4,

n = 3, ν = 1. Then 2Ω < −Ω̃ + π, 2Ω̃ < −Ω + π. We either take g = q1,1 ∈ C∞(R)

as defined in Theorem 4.1.3 or p10 ∈ C10(R) as defined in Theorem 4.1.2. According

to Corollary 5.1.1, ψ̂1 ≡ 0 ≡ ˆ̃
ψ1. Using (5.2.3),

ψ̂2(ξ) = bmI,J(ξ/2)bmI,J(ξ/4)
[
zν(ξ) + zν(ξ + π)

]
,

ˆ̃ψ2(ξ) = η̃(ξ/2)η̃(ξ/4)
[
zn−ν(ξ) + zn−ν(ξ + π)

]
,

where supp ψ̂2 = [π/18, 4π/9]∪[−4π/9, −π/18], supp ˆ̃ψ2 = [π/18, 2π/9]∪[−2π/9, −π/18].

Figure 5.1 depicts ψ̂2 and
ˆ̃
ψ2 when g = p10.



CHAPTER 5. BANDLIMITED BIFRAMELETS 65

−10π/3

0

0.1

0.2

0.3

0.4

0.5

 −3π −8π/3 −7π/3 −2π −5π/3 −4π/3  −π −2π/3 −π/3 0 π/3 2π/3 π 4π/3 5π/3 2π 7π/3 8π/3 3π 10π/3

0.6

0.7

−10π/3

0

0.1

0.2

0.3

0.4

0.5

 −3π −8π/3 −7π/3 −2π −5π/3 −4π/3  −π −2π/3 −π/3 0 π/3 2π/3 π 4π/3 5π/3 2π 7π/3 8π/3 3π 10π/3

0.6

0.7

Figure 5.1: Graphs of |ψ̂2| and | ˆ̃ψ2|.

In the second part of this section, we offer an easier construction of bandlimited

tight frames for L2(R). Let I = [−Ω, −δ], J = [δ, Ω], â be the 2π-periodization of the

bell function bI,J where 0 < δ < Ω < π
2

and 2δ ≥ Ω. Define ψ1, ψ2, ψ3 as in part (A) of

Theorem 5.1.2 and set Ψ = {ψ1, ψ2, ψ3}. Not only will we derive explicit expressions

for ψ̂1, ψ̂2, ψ̂3, we can also show that if the function g in the bell function belongs to

Ck (R), 1 ≤ k ≤ ∞, k ∈ N, so do ψ̂i for i = 1, 2, 3.

Firstly, on the fundamental interval [−π, π],

â(ξ) = cos
(π

2
g(

1

Ω − δ
(|ξ| − δ))

)

=





sin
(

π
2
g( 1

Ω−δ
(ξ + Ω))

)
, if − Ω ≤ ξ < −δ,

1, if − δ ≤ ξ ≤ δ,

cos
(

π
2
g( 1

Ω−δ
(ξ − δ))

)
, if δ < ξ ≤ Ω,

0, otherwise.

Now â(ξ)1[−π,π](ξ) = cos
(

π
2
g( 1

Ω−δ
(|ξ| − δ))

)
< 1, |ξ| ∈ (δ, Ω] and clearly 0 ≤ â ≤ 1

due to the construction of bell functions in Chapter 4. So â ∈ Aδ,Ω with Ω < π
2

and

all other assumptions of Corollary 5.1.2 are satisfied.

Now we will overcome the main difficulty in deriving useful explicit expressions for

ψ̂1, ψ̂2, ψ̂3 which is to find an explicit expression for

m̂(ξ) =
√

1 − (â2(ξ) + â2(ξ + π)).

Thanks to the property of sin2
(

π
2
g( 1

Ω−δ
(ξ − δ))

)
+ cos2

(
π
2
g( 1

Ω−δ
(ξ − δ))

)
≡ 1, we can
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achieve this. Indeed on the interval [0, π], we obtain

m̂(ξ) =





sin
(

π
2
g( 1

Ω−δ
(ξ − δ))

)
, if δ ≤ ξ < Ω,

1, if Ω ≤ ξ ≤ π − Ω,

cos
(

π
2
g( 1

Ω−δ
(ξ + Ω − π))

)
, if π − Ω < ξ ≤ π − δ,

0, otherwise.

= bI1,J1
(ξ)

where I1 := [δ, Ω] and I2 := [π − Ω, π − δ] and bI1,J1
is as defined in Theorem 4.1.1.

On the interval [−π, π],

â1(ξ) = eiξâ(ξ + π) = eiξ
[
bI,J(ξ − π) + bI,J(ξ + π)

]
.

Next, φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ) = â( ξ

2
)1[−2Ω, 2Ω] = bI,J(ξ/2), since N as defined

in (2.1.7) is equal to 1 as 2δ ≥ Ω. If Ω ≤ π
3
, we already know from Corollary 5.1.2 that

ψ̂1 ≡ 0. For setup (A), if we assume π
3
< Ω < π

2
, we get

ψ̂1(ξ) = â1(
ξ

2
)φ̂(

ξ

2
)

= e
iξ

2 â(
ξ

2
+ π)φ̂(

ξ

2
)

= eiξ/2
[
bI,J(ξ/2 − π) + bI,J(ξ/2 + π)

]
· bI,J(ξ/4),

where supp ψ̂1 = [−2Ω + 2π, 4Ω] ∪ [−4Ω, 2Ω − 2π] by Corollary 5.1.2.

Note that m̂ is π-periodic, thus on the interval [−π, π],

m̂(ξ) = bI1,J1
(ξ) + bI1,J1

(ξ + π).

Since supp φ̂ = [−2Ω, 2Ω] ( [−π, π], it follows that

ψ̂2(ξ) =
m̂( ξ

2
)√

2
φ̂(
ξ

2
) =

1√
2

[
bI1,J1

(
ξ

2
) + bI1,J1

(
ξ

2
+ π)

]
· bI,J(

ξ

4
),

where supp ψ̂2 = [2δ, min{4Ω, 2π−2δ}]∪[−min{4Ω, 2π−2δ}, −2δ], and ψ̂3 = e
iξ

2 ψ̂2(ξ).

For setup (B): Considering the interval [−π, π] again, since supp â1[−π, π] = [−Ω, Ω]

⊆ [−π/2, π/2], then

â2(ξ) =
1√
2
â(ξ)m̂(2ξ) =

1√
2
bI,J(ξ) ·

2∑

l=−1

bI1,J1
(2ξ + πl)
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Figure 5.2: Graph of ψ̂2.

Since supp ψ̂2 ( [−π, π] as given in part (B) of Corollary 5.1.2

ψ̂2(ξ) = â2(
ξ

2
)φ̂(

ξ

2
) =

1√
2
bI,J(

ξ

2
)

2∑

l=−1

bI1,J2
(ξ + πl) · bI,J(

ξ

4
)

=
1√
2
bI,J(

ξ

2
)

1∑

l=0

bI1,J2
(ξ + πl),

(5.2.4)

where supp ψ̂2 is as evaluated in part (B) of Corollary 5.1.2. Now ψ̂1, ψ̂2, ψ̂3 in setup

(A) and ψ̂1, ψ̂2 obtained in setup (B) are formed by sums and products of functions in

Ck(R) since g ∈ Ck(R). Thus by product rule and chain rule, all of the above functions

belong to Ck(R).

Example 5.2.2 Let Ω = π
3
, δ = π

6
, g = q1,1 ∈ C∞(R) as defined in Theorem 4.1.3 or

g = p10 as defined in Theorem 4.1.2. Then by Corollary 5.1.2, ψ̂1 ≡ 0. Furthermore,

by (5.2.4), I = [−π/3, −π/6], J = [π/6, π/3], I1 = [π/6, π/3], J1 = [2π/3, 5π/6] and

ψ̂2(ξ) =
1√
2
bI,J(

ξ

2
)[bI1,J1

(ξ) + bI1,J1
(ξ + π)].

Letting Ψ = {ψ2}, by Corollary 5.1.2, X(Ψ) forms a tight frame for L2(R). Figure 5.2

illustrates ψ̂2 when g = p10.



Chapter 6

Bandlimited Biorthogonal Wavelets

In this chapter, we illustrate that it is rather simple to construct a pair of dual

bandlimited biorthogonal Riesz wavelets. Our construction is via a good choice of the

refinement mask and the wavelet mask. Note that conventional constructions involve

carefully picking two refinement masks â and ˆ̃a so that they are dual to each other, and

then followed by defining the wavelet masks as b̂ := e−i·ˆ̃a(· + π) and
ˆ̃
b := e−i·â(· + π).

Instead of doing that, we choose the masks â and b̂ first in a particular way, and then

define ˆ̃a and
ˆ̃
b. We will see that the former method is a special case of the latter, and

furthermore, there is much more freedom in constructing the desired wavelets. It is well

known in the literature that Riesz wavelet bases are constructed from scaling functions

with integer shifts that form a Riesz sequence. Thus, by the characterization of integer

shifts of a bandlimited function forming a Riesz sequence in the second chapter, we

will only consider functions from the set Aδ,Ω , 0 < δ < Ω ≤ 2π/3 and Ω > π/2,

throughout this chapter.

It is well known that if one starts from a scaling function φ with orthonormal integer

shifts, using the alternating flip formula

b̂(ξ) := e−iξâ(ξ + π), (6.0.1)

and defining ψ ∈ L2(R) by

ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2), (6.0.2)

68
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and letting Ψ := {ψ}, then X(Ψ) forms an orthonormal basis of L2(R). Moreover,

the alternating flip formula in (6.0.1) gives us an explicit formulation of the wavelet

functions in terms of their Fourier transforms. This motivates us to investigate whether

the alternating flip formulae still works if one starts from a bandlimited scaling function

lying in the Schwartz class with integer shifts forming a Riesz sequence instead. Indeed

we will see in the following that this is true. We are ready to state our main result in

this chapter.

Theorem 6.0.1 For π/3 ≤ δ < Ω ≤ 2π/3, Ω > π/2, π/3 ≤ δ0 < Ω0 ≤ 2π/3,

Ω0 > π/2, let â ∈ Aδ,Ω ∩ Ck(R) and â0 ∈ Aδ0,Ω0
∩ Ck(R) where k ≥ 2. Define

b̂(ξ) := e−iξâ0(ξ + π), ˆ̃a(ξ) :=
b̂(ξ + π)

d̂(ξ)
,

ˆ̃
b(ξ) := − â(ξ + π)

d̂(ξ)
, (6.0.3)

where

d̂(ξ) := â(ξ)b̂(ξ + π) − b̂(ξ)â(ξ + π), (6.0.4)

and

φ̂(ξ) :=
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ), ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2),

ˆ̃
φ(ξ) :=

[ Ñ∏

j=1

ˆ̃a(2−jξ)
]
1[−2Ω0, 2Ω0](ξ),

ˆ̃
ψ(ξ) :=

ˆ̃
b(ξ/2)

ˆ̃
φ(ξ/2),

where N and Ñ are as defined in (2.1.7). Then φ̂,
ˆ̃
φ, ψ̂,

ˆ̃
φ ∈ Ck(R), supp ψ̂ =

[2(−Ω0 +π), 4Ω]∪ [−4Ω, 2(Ω0−π)] and supp ˆ̃ψ = [2(−Ω+π), 4Ω0]∪ [−4Ω0, 2(Ω−π)].

Furthermore, for Ψ = {ψ} and Ψ̃ = {ψ̃}, the systems X(Ψ) and X(Ψ̃) form a pair of

bandlimited biorthogonal Riesz wavelet bases for L2(R).

Corollary 6.0.1 For 0 < δ < Ω ≤ 2π/3, Ω > π/2, let â ∈ Aδ,Ω ∩ Ck(R). Define ψ

by the alternating flip formula (6.0.1) and (6.0.2). Let Ψ := {ψ}, then X(Ψ) forms a

Riesz basis for L2(R).

Proof: We choose â0 = â and apply Theorem 6.0.1 to obtain the result.

Note that when â0 = â in Theorem 6.0.1, then we have the simplifications b̂(ξ) =

e−iξâ(ξ+π), ˆ̃a(ξ) = â(ξ)
[
â2(ξ)+ â2(ξ+π)

]−1

,
ˆ̃
b(ξ) = eiξâ(ξ+π)

[
â2(ξ)+ â2(ξ+π)

]−1

.
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Define ψ, ψ̃, Ψ, Ψ̃ as in Theorem 6.0.1, then by Theorem 6.0.1, X(Ψ) and X(Ψ̃) form

a pair of biorthogonal Riesz bases for L2(R). We remark that Corollary 6.0.1 adds on

another family of Riesz wavelets created by the alternating flip formula (6.0.1) to those

families discussed in [15].

We mention that the masks defined in (6.0.1) and (6.0.2) are similarly used in [15]

for constructing compactly supported Riesz wavelet bases. As such, the result above

is very much inspired by [15]. Although biorthogonal wavelet theory is relatively

well understood in the past decade, the focus has been on constructing compactly

supported biorthogonal wavelets and not bandlimited ones. Therefore, we will need a

considerable amount of preparatory work in the next two sections before we can prove

Theorem 6.0.1.

6.1 Direct sum decompositions of L2(R)

The general theory of biorthogonal wavelets makes some natural assumptions on the

scaling function φ.

(A1) φ ∈ L1(R) ∩ L2(R).

(A2) φ̂(0) = 1 and φ̂(2πk) = 0, k ∈ Z \ {0}.

(A3) There exist positive constants A and B such that

A ≤ [φ̂, φ̂] ≤ B a.e.

(A4) There exists a coefficient sequence {ak}k∈Z ∈ ℓ1(Z) such that the two-scale rela-

tion holds, i.e.

φ(x) =
∑

k∈Z

akφ(2x− k) a.e.

We shall show later that the assumptions made in Theorem 6.0.1 will always ensure φ

and φ̃ to satisfy properties (A1) to (A4). Define V0 := span {φ(· − k) : k ∈ Z}, then

certainly the integer shifts of φ form a Riesz basis for V0. Thus by a simple dilation

argument, {φ1,k}k∈Z forms a Riesz basis for V1 := span{φ(2 · −k) : k ∈ Z}. We note



CHAPTER 6. BANDLIMITED BIORTHOGONAL WAVELETS 71

that property (A4) assures us that the mask â(ξ) =
∑
k∈Z

ake
ikξ of φ is a continuous

function due to the Weierstrass M-test. The following is a theory of scaling functions

with two-scale sequences to be in ℓ1(Z). The reader should note that most of the

results for the rest of this section are quoted from [6] without proof and that [6] uses

assumptions (A1) to (A4) in the development of biorthogonal wavelet theory.

Definition 6.1.1 A Laurent series is said to belong to the Wiener class W if its coef-

ficient sequence is in ℓ1(Z).

Since the discrete convolution of two ℓ1(Z)-sequences is again a sequence in ℓ1(Z),

this makes W into an algebra. The truth is that W is even more than an algebra, as

seen in the following well-known theorem due to N.Wiener.

Theorem 6.1.1 Let f ∈ W and suppose that f(z) 6= 0 for all z on the unit circle

|z| = 1. Then 1
f
∈ W as well.

In this context, the Laurent series involved take the form

p(z) =
∑

k∈Z

pkz
k =

∑

k∈Z

pke
−ikξ = p̂(ξ),

where z = e−iξ, and

p(−z) =
∑

k∈Z

pk(−z)k =
∑

k∈Z

pke
ik(ξ+π) = p̂(ξ + π).

Although in [6], the z-symbol is used for representing the Fourier series, we shall use

notations like p̂(ξ) =
∑
k∈Z

pke
−ikξ throughout the chapter. Let φ be a scaling function

whose mask

â(ξ) =
∑

k∈Z

ake
−ikξ

is in W. Recall that â governs the relation of V0 ⊂ V1 in the sense that

φ(x) =
∑

k∈Z

akφ(2x− k),

and the integer shifts of φ generate V0. Let us now consider any other ℓ1(Z)-sequence

{bk}k∈Z and its Fourier series

b̂(ξ) =
∑

k∈Z

bke
−ikξ.
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Then b̂ is also in W and defines a function

ψ(x) :=
∑

k∈Z

bkφ(2x− k) (6.1.1)

in V1. This function ψ also generates a closed subspace W0 in the same manner as φ

generates V0, namely:

W0 := span {ψ(· − k) : k ∈ Z}. (6.1.2)

Hence, analogous to the function â, the function b̂ governs the relation W0 ⊂ V1 in the

sense that (6.1.1) and (6.1.2) are satisfied.

Our main concern in the construction of wavelets is at least to ensure that V0 and

W0 are complementary subspaces of V1, in the sense that

V0 ∩W0 = {0} and V1 = V0 +W0, (6.1.3)

which means

V1 = V0+̇W0, (6.1.4)

and this notation will be used in place of (6.1.3). In the following we will see that the

matrix

Mâ,b̂(ξ) :=



 â(ξ) b̂(ξ)

â(ξ + π) b̂(ξ + π)



 (6.1.5)

plays an essential role in characterizing (6.1.4). Hence, we must consider the deter-

minant ∆â,b̂(ξ) := det Mâ,b̂(ξ) of the matrix in (6.1.5). Since â, b̂ are in W and W is

an algebra, we have ∆â,b̂ ∈ W as well. In addition, if ∆â,b̂(ξ) 6= 0 for all ξ ∈ R, then

by Theorem 6.1.1, we also have 1
∆

â,b̂

∈ W. So under the condition ∆â,b̂(ξ) 6= 0 for all

ξ ∈ R, the two functions

ˆ̃a(ξ) =
b̂(ξ + π)

∆â,b̂(ξ)
,

ˆ̃
b(ξ) =

â(ξ + π)

∆â,b̂(ξ)
(6.1.6)

are both in the Wiener class W. The reason for considering the functions ˆ̃a and ˆ̃b is

that the resulting matrix Mˆ̃a,ˆ̃b
is the inverse of Mâ,b̂, namely, for any ξ ∈ R,

Mâ,b̂(ξ)M
∗
ˆ̃a,ˆ̃b

(ξ) =


 1 0

0 1


 = M∗

ˆ̃a,ˆ̃b
(ξ)Mâ,b̂(ξ). (6.1.7)
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The first identity in (6.1.7) is equivalent to the pair of identities

â(ξ)ˆ̃a(ξ) + b̂(ξ)ˆ̃b(ξ) ≡ 1, â(ξ)ˆ̃a(ξ + π) + b̂(ξ)ˆ̃b(ξ + π) ≡ 0, (6.1.8)

while the second identity in (6.1.7) is equivalent to the following set of four identities:





â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π) ≡ 1, â(ξ)

ˆ̃
b(ξ) + â(ξ + π)

ˆ̃
b(ξ + π) ≡ 0,

ˆ̃a(ξ)b̂(ξ) + ˆ̃a(ξ + π)b̂(ξ + π) ≡ 0, b̂(ξ)
ˆ̃
b(ξ) + b̂(ξ + π)

ˆ̃
b(ξ + π) ≡ 1.

(6.1.9)

For L2(R) decomposition, we do not need the identities in (6.1.9). However, this set

of identities will be crucial to our discussion of ‘duality’ in the next section.

Since ˆ̃a,
ˆ̃
b ∈ W, we may write

ˆ̃a(ξ) =
∑

k∈Z

ãke
−ikξ,

ˆ̃
b(ξ) =

∑

k∈Z

b̃ke
−ikξ, (6.1.10)

where {ãk}k∈Z, {b̃k}k∈Z ∈ ℓ1(Z), whenever ∆â,b̂(ξ) 6= 0 for all ξ ∈ R. We are now ready

to formulate the following decomposition result.

Theorem 6.1.2 A necessary and sufficient condition for the direct-sum decomposition

(6.1.4) to hold is that the function ∆â,b̂ never vanishes on the real line R. Furthermore,

if ∆â,b̂(ξ) 6= 0 for all ξ ∈ R, then the family {ψ(· − k) : k ∈ Z}, governed by b̂ as in

(6.1.1), is a Riesz basis of W0, and the decomposition relation

φ(2x− l) =
1

2

∑

k∈Z

{¯̃al−2kφ(x− k) +
¯̃
bl−2kψ(x− k)}, l ∈ Z,

holds for all x ∈ R where {ãk}k∈Z and {bk}k∈Z are defined as in (6.1.10).

Let us pause for a moment and comment on the decomposition of L2(R) via The-

orem 6.1.2. Let ∆â,b̂(ξ) 6= 0 for all ξ ∈ R and define

Wj := span {ψ(2j · −k) : k ∈ Z}, j ∈ Z.

Then in view of the definition of Vj, j ∈ Z, and the assertion V1 = V0+̇W0 in Theorem

6.1.2, we have

Vj+1 = Vj+̇Wj , j ∈ Z.
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Hence, since {Vj}j∈Z is an MRA of L2(R), it follows that the family {Wj}j∈Z constitutes

a direct sum decomposition of L2(R), namely,

L2(R) = · · · +̇W−1+̇W0+̇ · · ·

However, {ψj,k : j, k ∈ Z} may not constitute a Riesz basis of L2(R) if we just assume

∆â,b̂(ξ) 6= 0 for all ξ ∈ R. Furthermore we recall that in any series representation

f(x) =
∑

j,k∈Z

cj,kψj,k(x), f ∈ L2(R),

we need a dual ψ̃ of ψ to extract any time-frequency information of f from the coeffi-

cients cj,k.

6.2 Wavelets and their duals

We continue our discussion of the decomposition of L2(R) and extend our effort

to ensure that the decompositions are ‘wavelet decompositions’. We assume that â,

b̂ ∈ W,

â(0) = 1, â(π) = 0, b̂(0) = 0. (6.2.1)

Let ˆ̃a and
ˆ̃
b be defined by (6.1.6). Then we have ˆ̃a,

ˆ̃
b ∈ W and the four trigonometric

functions satisfy (6.1.8). Therefore it follows from this set of identities and (6.2.1) that

ˆ̃a(0) = 1, ˆ̃a(π) = 0. (6.2.2)

The similarity between â and ˆ̃a, as described by (6.2.1) and (6.2.2), suggests that

ˆ̃a(ξ) =
∑

k∈Z

ãke
−ikξ

should also be chosen as the mask of some scaling function that generates a possibly

different MRA of L2(R).

This motivates the following strategy for constructing wavelets and their duals.

In our context, we will start from two 2π-periodic functions â, ˆ̃a in Aδ,Ω and Aδ̃,Ω̃

respectively, where 0 < δ < Ω ≤ 2π/3, 0 < δ̃ < Ω̃ ≤ 2π/3 and Ω, Ω̃ > π/2. Define
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φ and φ̃ by â and ˆ̃a respectively as in (2.1.6). Then φ generates an MRA {Vj}j∈Z of

L2(R) and φ̃ generates another MRA {Ṽj}j∈Z of L2(R). According to Theorem 6.1.2,

selecting any two 2π-periodic functions b̂, ˆ̃b that satisfy

∆â,b̂(ξ) 6= 0 and ∆ˆ̃a,ˆ̃b
(ξ) 6= 0 for all ξ ∈ R,

will result in two totally unrelated direct-sum decompositions of L2(R). In view of the

discussion in the previous section, we will make use of the first identity in (6.1.9) to

make a connection between these two decompositions.

Definition 6.2.1 The two-scale masks â and ˆ̃a are said to be ‘duals’ of each other if

they satisfy

â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π) ≡ 1. (6.2.3)

Hence, if the two trigonometric functions b̂,
ˆ̃
b are chosen so that the two nonsingular

matrices Mâ,b̂(ξ) and M∗
ˆ̃a,

ˆ̃
b
(ξ) are inverses of each other for all ξ ∈ R, (6.2.3) holds for

the pair of functions â and ˆ̃a. We remark that by (6.2.2) and the second identity in

(6.1.9), the pair (ˆ̃a, ˆ̃b) satisfies the condition

ˆ̃a(0) = 1, ˆ̃a(π) = 0, ˆ̃b(0) = 0

which is the same set of conditions as in (6.2.1).

Recall that the two masks â and ˆ̃a give rise to two scaling functions φ and φ̃.

Although φ and φ̃ might generate two different MRAs of L2 (R), they could still be

related in the following sense.

Definition 6.2.2 Two scaling functions φ and φ̃, generating possibly different MRAs

{Vj}j∈Z and {Ṽj}j∈Z respectively of L2(R), are said to be ‘dual scaling functions’, if

they satisfy the condition

〈φ(· − j), φ̃(· − k)〉 =

∫ ∞

−∞
φ(x− j)φ̃(x− k) dx = δjk, j, k ∈ Z.

We next obtain some important intermediate results about the functions given in

Theorem 6.0.1, and k ≥ 2.
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Proposition 6.2.1 Let â, ˆ̃a, b̂, ˆ̃b, φ, φ̃, ψ, ψ̃, k be as defined in Theorem 6.0.1. Then

we have the following.

(a) â, ˆ̃a, b̂,
ˆ̃
b are in Ck(R). Consequently, â, ˆ̃a ∈ W.

(b) â and ˆ̃a are dual to each other, and Mâ,b̂(ξ)M
∗
ˆ̃a,ˆ̃b

(ξ) = I2×2 = Mˆ̃a,ˆ̃b
(ξ)M∗

â,b̂
(ξ)

for all ξ ∈ R.

(c) φ, φ̃ belong to Bδ,Ω and Bδ̃,Ω0
respectively with both φ̂, ˆ̃φ ∈ Ck(R), where δ̃ =

min{δ0, δ, π − min{Ω, Ω0}}.

(d) φ and φ̃ are dual scaling functions and both φ and φ̃ satisfy criteria (A1)-(A4).

(e) ψ and ψ̃ are bandlimited with ψ̂, ˆ̃ψ ∈ Ck(R).

Proof: For (a), clearly, â, b̂ ∈ Ck(R), k ≥ 2. Denote the Fourier coefficients of the

L2
2π functions â, ˆ̃a, b̂, ˆ̃b to be {an}n∈Z, {ãn}n∈Z, {bn}n∈Z, {b̃n}n∈Z. Then there exists a

constant M > 0 such that

|an|, |bn| ≤M(1 + |n|)−2

for all n ∈ Z. Thus, â, b̂ ∈ W. To show that ˆ̃a,
ˆ̃
b ∈ W, we first show that ˆ̃a,

ˆ̃
b ∈ Ck(R),

k ≥ 2.

In view of Lemma 3.1.1, it suffices to show that

d̂(ξ) = â(ξ)b̂(ξ + π) − b̂(ξ)â(ξ + π) = e−iξ
[
â(ξ)â0(ξ) + â(ξ + π)â0(ξ + π)

]

never vanishes. Let r(ξ) = â(ξ)â0(ξ). Then r ∈ Aδ′,Ω′, where 0 < δ′ = min{δ, δ0},
π/2 < Ω′ = min{Ω, Ω0} ≤ 2π/3. Thus, by Theorem 2.2.1 and Corollary 2.2.3, since

Ω′ > π/2, there exist constants A, B > 0 such that for all ξ ∈ R, A ≤ r(ξ) +

r(ξ + π) ≤ B. Thus d̂ never vanishes and ˆ̃a(ξ) =
b̂(ξ + π)

d̂(ξ)
∈ Ck(R). In addition,

ˆ̃
b(ξ) = − â(ξ + π)

d̂(ξ)
∈ Ck(R). Therefore ˆ̃a,

ˆ̃
b ∈ W, completing the proof of (a).

By the π-periodicity of d̂ and the definitions of â, b̂, ˆ̃a, ˆ̃b, it is easy to verify statement

(b).
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To show statement (c), it suffices to show that ˆ̃a ∈ Aδ̃,Ω0
∩Ck(R) since we already

know that â ∈ Aδ,Ω ∩ Ck(R). Note that ˆ̃a(ξ) =
â0(ξ)

r(ξ) + r(ξ + π)
. Since r(ξ) + r(ξ + π)

never vanishes, it is clear that ˆ̃a(ξ) = 0, ξ ∈ [−π, π]\(−Ω0, Ω0). To establish ˆ̃a(ξ) = 1,

ξ ∈ [−δ̃, δ̃], it suffices to show that r(ξ) + r(ξ + π) = 1, ξ ∈ [−δ̃, δ̃]. Let q(ξ) =

r(ξ)1[−π,π](ξ). On the interval [−π/2, π/2], we have

r(ξ) + r(ξ + π) =





q(ξ) + q(ξ + π), if ξ ∈ [−π/2, Ω′ − π),

q(ξ), if ξ ∈ [Ω′ − π, π − Ω′],

q(ξ) + q(ξ − π), if ξ ∈ (π − Ω′, π/2],

where π/2 < Ω′ = min{Ω, Ω0} ≤ 2π/3. Since r(ξ) = 1 for ξ ∈ [−δ0, δ0], we conclude

that r(ξ) = 1 for ξ ∈ [−δ̃, δ̃] where δ̃ = min{δ, δ0, π − Ω′}. Thus ˆ̃a(ξ) = 1 for

ξ ∈ [−δ̃, δ̃]. Therefore ˆ̃a ∈ Bδ̃,Ω0
∩ Ck(R) giving us the desired result.

As for (d), it follows from Lemma 2.2.2 and part (b) that φ and φ̃ are dual scaling

functions. We shall see that criterion (A1)-(A4) are satisfied by both the scaling

functions φ, φ̃ defined in Theorem 6.0.1. Indeed from statement (c), we have φ̂, ˆ̃φ ∈
Ck(R), k ≥ 2. Then by Chapter 3, we see that there exists a constant A > 0 such that

|φ(x)|, |φ̃(x)| ≤ A(1+ |x|)−2 for every x ∈ R, which ensures that φ, φ̃ ∈ L1(R)∩L2(R),

i.e. (A1) holds. Since φ ∈ Bδ,Ω and φ̃ ∈ Bδ̃,Ω0
, where 0 < δ < Ω < π/3, 0 < δ̃ < Ω0 ≤

2π/3, it is clear that φ̂(0) = 1 = ˆ̃φ(0) and φ̂(2πk) = 0 = ˆ̃φ(2πk), k ∈ Z \ {0}, giving

(A2).

Statement (A3) follows from the characterization in Theorem 2.2.1 since Ω, Ω0 >

π/2. Statement (A4) is a consequence of the earlier result that φ, φ̃ are refinable with

their respective masks â and ˆ̃a ∈ W.

Finally, for (e), since â, ˆ̃a, b̂,
ˆ̃
b, φ̂,

ˆ̃
φ ∈ Ck(R), it follows from the definition of ψ̂

and ˆ̃ψ in Theorem 6.0.1 that ψ̂, ˆ̃ψ ∈ Ck(R). Since φ̂, ˆ̃φ have compact support, it is

not hard to see that ψ̂,
ˆ̃
ψ must be compactly supported too, which means that ψ, ψ̃

are bandlimited. This completes the proof.

By considering the functions

ψ(x) =
∑

k∈Z

b̃kφ(2x− k), ψ̃(x) =
∑

k∈Z

bkφ̃(2x− k),
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where
ˆ̃
b(ξ) =

1

2

∑

k∈Z

b̃ke
−ikξ, b̂(ξ) =

1

2

∑

k∈Z

bke
−ikξ,

and setting

ψj,k := 2
j

2ψ(2j · −k), ψ̃j,k := 2
j

2 ψ̃(2j · −k),

as well as

Wj := span{ψj,k : k ∈ Z}, W̃j := span{ψ̃j,k : k ∈ Z},

we have

Vj+1 = Vj+̇Wj , Ṽj+1 = Ṽj+̇W̃j, j ∈ Z.

Here, as usual, we set

Vj := span{φj,k : k ∈ Z}, Ṽj := span{φ̃j,k : k ∈ Z},

where

φj,k := 2
j

2φ(2j · −k), φ̃j,k := 2
j

2 φ̃(2j · −k),

with φ and φ̃ being the scaling functions whose masks â and ˆ̃a are defined in Theorem

6.0.1.

We shall next show that if these masks â and ˆ̃a are dual to each other, then not

only are {ψj,k}j,k∈Z and {ψ̃j,k}j,k∈Z dual to each other, but additional orthogonality

properties are achieved as well.

Theorem 6.2.1 Let â, ˆ̃a, b̂, ˆ̃b, φ, φ̃, ψ, ψ̃ be defined as in Theorem 6.0.1. Then

〈ψj,k, ψ̃l,m〉 = δjlδkm, j, k, l, m ∈ Z, (6.2.4)

and

〈φj,k, ψ̃j,l〉 = 0, 〈φ̃j,k, ψj,l〉 = 0, j, k, l ∈ Z,

that is, Vj ⊥ W̃j and Ṽj ⊥Wj for all j ∈ Z.

The proof follows word by word from [6] since under the hypothesis in Theorem

6.0.1, we have shown that the scaling functions φ and φ̃ are dual to each other in
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Proposition 6.2.1. As a consequence of the biorthogonality property in (6.2.4), both

families are ℓ2(Z2)-linearly independent which we will show later. Therefore since

L2(R) = · · · +̇W−1+̇W0+̇W1+̇ · · · = · · · +̇W̃−1+̇W̃0+̇W̃1+̇ · · · ,

both {ψj,k}j,k∈Z and {ψ̃j,k}j,k∈Z are bases of L2(R). In fact, under the hypothesis of

Theorem 6.0.1, it follows that both {ψj,k}j,k∈Z and {ψ̃j,k}j,k∈Z are frames of L2(R) too.

In the following section, we shall show that X(Ψ) and X(Ψ̃) form frames for L2(R)

and that coupled with ℓ2(Z2)-linear independence, we may conclude that X(Ψ) and

X(Ψ̃) each forms a Riesz basis of L2(R).

6.3 Frames, Riesz bases and linear independence

In this section, we shall present the details to show that indeed X(Ψ) and X(Ψ̃)

form a pair of dual frames and further, they form a pair of biorthogonal Riesz bases.

We need to introduce a series of technical lemmas to achieve this aim. The reader

should note that most of them are adapted from ideas in [8].

Proposition 6.3.1 For c > 0, let Fc(ξ) := 1
2πc
f̂(ξ)φ̂( ξ

c
) where ξ ∈ R, and define the

2πc-periodic function

Gc(ξ) :=
∑

k∈Z

f̂(ξ + 2πck)φ̂(
ξ + 2πck

c
),

where f̂ ∈ L2(R) and φ̂ is a compactly supported and bounded function on R. Then

the Fourier coefficients of Gc are given by Ĝc(n) = 〈f, φ(c · −n)〉L2(R) = F̂c(
n
c
), n ∈ Z.

Furthermore, Gc ∈ L2[0, 2πc].

Proof: Consider

Ĝc(n) =
1

2πc

∫ πc

−πc

Gc(ξ)e
−in ξ

c dξ =
1

2πc

∫ πc

−πc

∑

k∈Z

f̂(ξ + 2πck)φ̂(
ξ + 2πck

c
)e−in ξ

j dξ.

Now since φ̂ is compactly supported, so is the function Fc(·) = f̂c(·)φ̂( ·
c
). As such,

only a finite number of terms in the summation of the series is being considered in the
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interval [−πc, πc]. Thus we can interchange the sum and integral to give

Ĝc(n) =
1

2πc

∑

k∈Z

∫ πc

−πc

f̂(ξ + 2πck)φ̂(
ξ + 2πck

c
)e−in ξ

c dξ

=
1

2πc

∑

k∈Z

∫ πc+2πck

−πc+2πck

f̂(ξ′)φ̂ (
ξ′

c
)e−in ξ′−2πck

c dξ′

=
1

2πc

∑

k∈Z

∫ πc+2πck

−πc+2πck

f̂(ξ)φ̂(
ξ

c
)e−in ξ

c dξ

=
1

2πc

∫

R

f̂(ξ)φ̂(
ξ

c
)e−in ξ

c dξ = 〈f, φ(c · −n)〉L2(R).

Therefore

∑

n∈Z

|Ĝc(n)|2 =
∑

n∈Z

|〈f, φ(c · −n)〉|2 ≤ sup
ξ∈[0, 2cπ]

[φ̂, φ̂](
ξ

c
)‖f‖2

L2 ≤M‖f‖2
L2 <∞,

for f ∈ L2(R) since φ̂ is compactly supported and bounded. Since the Fourier

coefficients of Gc(·) are square-summable for every f ∈ L2(R), we conclude that

Gc(·) ∈ L2[0, 2πc] for every f ∈ L2(R).

Note that F ∈ L1(R). Indeed,

∫

R

|Fc(ξ)| dξ =

∫

R

|f̂(ξ)φ̂(
ξ

c
)| dξ ≤ ‖f̂‖L2

[ ∫

R

|φ̂(
ξ

c
)|2 dξ

]1

2

= c‖f̂‖L2‖φ̂‖L2 <∞

since f̂ , φ̂ ∈ L2(R). Thus

F̂c(
n

c
) =

1

2πc

∫

R

f̂(ξ)φ̂(
ξ

c
)e−in ξ

c dξ = 〈f, φ(c · −n)〉 = Ĝc(n).

This completes the proof.

Corollary 6.3.1 Let φ, φ̃, f1, f2 ∈ L2(R) such that φ̂, ˆ̃φ are compactly supported and

bounded. Then for j ∈ N, we have

∑

k∈Z

〈f1, φj,k〉 〈φ̃j,k, f2〉 = 2π
∑

k∈Z

∫

R

f̂1(ξ)φ̂(
ξ

2j
)
ˆ̃
φ(
ξ

2j
+ 2πk)f̂2(ξ + 2π2jk) dξ,

for all f1, f2 ∈ L2(R).
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Proof: Set c = 2j in Proposition 6.3.1 and let F 1
j (ξ) := 1

2π2j f̂1(ξ)φ̂( ξ
2j ) and F 2

j (ξ) :=

1
2π2j f̂2(ξ)

ˆ̃φ( ξ
2j ) and G1

j(ξ) := 2π2j
∑
k∈Z

F 1
j (ξ + 2π2jk), G2

j(ξ) := 2π2j
∑
k∈Z

F 2
j (ξ + 2π2jk),

where f̂1, f̂2 ∈ L2(R) and φ̂, ˆ̃φ are compactly supported and bounded functions. Note

that by Proposition 6.3.1, G1
j , G

2
j ∈ L2[0, 2π2j] functions. Then by Proposition 6.3.1,

and Parseval’s identity for L2[0, 2π2j] functions,

∑

n∈Z

〈f1, φj,n〉〈φ̃j,n, f2〉 =
∑

n∈Z

Ĝ1
j(n)Ĝ2

j (n) = 2π〈G1
j , G

2
j〉L2[0, 2π2j ]. (6.3.1)

On the other hand,

∫ 2π2j

0

(∑

k∈Z

f̂1(ξ + 2π2jk)φ̂(
ξ + 2π2jk

2j
)
)( ∑

l∈Z

f̂2(ξ + 2π2jl)
ˆ̃
φ(
ξ + 2π2jl

2j
)
)
dξ

= 〈G1
j , G

2
j〉L2[0, 2π2j ] =

∫ 2πj

0

G1
j(ξ)G

2
j(ξ) dξ

(6.3.2)

Since φ̂, ˆ̃φ are compactly supported, both series in the integral consist only of finite

number of terms on the interval [0, 2π2j] and thus the integral and summations can

be interchanged.

Hence

〈G1
j , G

2
j〉L2[0, 2π2j ]

=
∑

k∈Z

∫ 2π2j

0

∑

l∈Z

f̂1(ξ + 2π2jk)φ̂(
ξ + 2π2jk

2j
)f̂2(ξ + 2π2jl)

ˆ̃
φ(
ξ + 2π2jl

2j
) dξ

=
∑

k∈Z

∫ 2π2j+2π2jk

2π2jk

(∑

l∈Z

f̂2(ξ − 2π2jk + 2π2jl) ˆ̃φ(
ξ − 2π2jk + 2π2jl

2j
)
)
φ̂(
ξ

2j
)f̂1(ξ) dξ

=
∑

k∈Z

∫ 2π2j+2π2jk

2π2jk

(∑

l∈Z

f̂2(ξ + 2π2jl)
ˆ̃
φ(
ξ + 2π2jl

2j
)
)
φ̂(
ξ

2j
)f̂1(ξ) dξ

=
∑

l∈Z

∫

R

f̂2(ξ + 2π2jl) ˆ̃φ(
ξ + 2π2jl

2j
)φ̂(

ξ

2j
)f̂1(ξ) dξ.

This completes the proof of the corollary.

Finally we show that
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Lemma 6.3.1 Let â and â0, φ, φ̃, ψ, ψ̃ be defined as in Theorem 6.0.1. Then for all

f1, f2 ∈ L2(R),

∑

k∈Z

〈f1, φ1,k〉〈φ̃1,k, f2〉 =
∑

l∈Z

(
〈f1, φ0,l〉〈φ̃0,l, f2〉 + 〈f1, ψ0,l〉〈ψ̃0,l, f2〉

)
.

Proof: Firstly, φ, φ̃, ψ, ψ̃ are well-defined in L2(R) because φ̂,
ˆ̃
φ, ψ̂,

ˆ̃
ψ have com-

pact support and are bounded. Next, we show that the sum defined above do make

sense as well. The reader can refer to [5] that given f , ϕ ∈ L2(R), the infinite series
∑
k∈Z

|〈f, ϕ0,k〉|2 is bounded if and only if the 2π-periodic function
∑
l∈Z

|ϕ̂(ξ + 2πl)|2 is

bounded above a.e. As established earlier, [φ̂, φ̂], [ ˆ̃φ, ˆ̃φ], [ ˆ̃ψ, ˆ̃ψ], [ψ̂, ψ̂] must be bounded

above a.e. Then by a simple application of the Cauchy-Schwartz inequality, all the

terms stated above in the lemma make sense.

Set j = 1 in Corollary 6.3.1, we get

∑

k∈Z

〈f1, φ1,k〉〈φ̃1,k, f2〉 = 2π
∑

k∈Z

∫

R

f̂1(ξ)φ̂(
ξ

2
)
ˆ̃
φ(
ξ

2
+ 2πk)f̂2(ξ + 4πk) dξ.

Setting j = 0 in Corollary 6.3.1 for φ, φ̃ and ψ, ψ̃ gives

∑

l∈Z

〈f1, φ0,l〉〈φ̃0,l, f2〉 = 2π
∑

l∈Z

∫

R

f̂1(ξ)φ̂(
ξ

2
) ˆ̃φ(ξ + 2πl)f̂2(ξ + 2πl) dξ,

∑

l∈Z

〈f1, ψ0,l〉〈ψ̃0,l, f2〉 = 2π
∑

l∈Z

∫

R

f̂1(ξ)ψ̂(
ξ

2
)
ˆ̃
ψ(ξ + 2πl)f̂2(ξ + 2πl) dξ.

Thus

∑

l∈Z

(
〈f1, φ0,l〉〈φ̃0,l, f2〉 + 〈f1, ψ0,l〉〈ψ̃0,l, f2〉

)

= 2π
∑

l∈Z

∫

R

f̂1(ξ)f̂2(ξ + 2πl)
[
φ̂(ξ)

ˆ̃
φ(ξ + 2πl) + ψ̂(ξ)

ˆ̃
ψ(ξ + 2πl)

]
dξ

= 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 4πk)
[
φ̂(ξ)

ˆ̃
φ(ξ + 4πk) + ψ̂(ξ)

ˆ̃
ψ(ξ + 4πk)

]
dξ

+ 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 2π + 4πk)
[
φ̂(ξ)

ˆ̃
φ(ξ + 2π + 4πk) + ψ̂(ξ)

ˆ̃
ψ(ξ + 2π + 4πk)

]
dξ.
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Using the two-scale relation of φ, φ̃, ψ, ψ̃, we have

∑

l∈Z

(
〈f1, φ0,l〉〈φ̃0,l, f2〉 + 〈f1, ψ0,l〉〈ψ̃0,l, f2〉

)

= 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 4πk)
[
â(
ξ

2
)φ̂(

ξ

2
)ˆ̃a(

ξ

2
) ˆ̃φ(

ξ

2
+ 2πk) + b̂(

ξ

2
)φ̂(

ξ

2
)ˆ̃b(

ξ

2
) ˆ̃φ(

ξ

2
+ 2πk)

]

+ 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 2π + 4πk)
[
â(
ξ

2
)φ̂(

ξ

2
)ˆ̃a(

ξ

2
+ π)

ˆ̃
φ(
ξ

2
+ π + 2πk)

+ b̂(
ξ

2
)φ̂(

ξ

2
)ˆ̃b(

ξ

2
+ π) ˆ̃φ(

ξ

2
+ π + 2πk)

]

= 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 4πk)φ̂(
ξ

2
) ˆ̃φ(

ξ

2
+ 2πk)

[
â(
ξ

2
)ˆ̃a(

ξ

2
) + b̂(

ξ

2
)ˆ̃b(

ξ

2
)
]
dξ

+ 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 2π + 4πk)φ̂(
ξ

2
)
ˆ̃
φ(
ξ

2
+ π + 2πk)

[
â(
ξ

2
)ˆ̃a(

ξ

2
+ π) + b̂(

ξ

2
)
ˆ̃
b(
ξ

2
+ π)

]
dξ

= 2π
∑

k∈Z

∫

R

f̂1(ξ)f̂2(ξ + 4πk)φ̂(
ξ

2
)
ˆ̃
φ(
ξ

2
+ 2πk) dξ,

since â( ξ
2
)ˆ̃a( ξ

2
)+ b̂( ξ

2
)ˆ̃b( ξ

2
) ≡ 1 and â( ξ

2
)ˆ̃a( ξ

2
+π)+ b̂( ξ

2
)ˆ̃b( ξ

2
+π) ≡ 0. This completes the

proof.

Next, we prove a lemma to show that X(Ψ) and X(Ψ̃) are complete and Bessel in

L2(R).

Lemma 6.3.2 Under the assumptions in Theorem 6.0.1, we have for all f1, f2 ∈
L2(R),

∑

j,k∈Z

〈f1, ψj,k〉〈ψ̃j,k, f2〉 = 〈f1, f2〉. (6.3.3)

Proof: We note that the proof is almost entirely the same as that provided by Cohen,

Daubechies and Feauveau in [8] for compactly supported biorthogonal wavelets. How-

ever, we will highlight parts of the proof where the arguments could be simplified due

to the bandlimited assumptions of Theorem 6.0.1.

We shall show that the left-hand side of (6.3.3) makes sense by proving
∑

j,k∈Z

|〈f1, ψj,k〉|2

and
∑

j,k∈Z

|〈ψ̃j,k, f2〉|2 are bounded for all f1, f2 ∈ L2(R). Indeed, by Parseval’s identity
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and the Poisson’s summation formula, we have the following. By letting φ = ψ = φ̃ in

(6.3.1) and (6.3.2),

∑

k∈Z

|〈f1, ψj,k〉|2 =

∫ 2π2−j

0

|
∑

l∈Z

f̂1(ξ + 2π2−jl)ψ̂(2jξ + 2πl)|2 dξ.

Applying the Cauchy-Schwartz inequality,

∑

k∈Z

|〈f1, ψj,k〉|2

= 2π

∫ 2π2−j

0

|
∑

l∈Z

(f̂1(ξ + 2πl2−j)(ψ̂(2jξ + 2πl))δ(ψ̂(2jξ + 2πl))1−δ|2 dξ

≤ 2π

∫ 2π2−j

0

[
∑

l∈Z

|ψ̂(2jξ + 2πl)|2(1−δ)][
∑

l∈Z

|f̂1(ξ + 2πl2−j)|2|ψ̂(2jξ + 2πl)|2δ] dξ

= 2π

∫

R

|f̂1(ξ)|2|ψ̂(2jξ)|2δ
∑

m∈Z

|ψ̂(2jξ + 2πm)|2(1−δ) dξ

(6.3.4)

for any δ ∈ (0, 1).

Since ψ̂ is compactly supported in [−8π/3, −2π/3]∪ [2π/3, 8π/3] and bounded, we

have
∑

m∈Z

|ψ̂(2jξ + 2πm)|2(1−δ) ≤
∑

m∈Z

M2(1−δ)1[−8π/3,−2π/3]∪[2π/3, 8π/3](ξ + 2πm)

≤
∑

m∈Z

M21[−8π/3,−2π/3]∪[2π/3, 8π/3](ξ + 2πm) ≤ 4M2
(6.3.5)

for all ξ and for all δ ∈ (0, 1).

Then

∑

j,k∈Z

|〈f1, ψj,k〉|2 ≤ 4πM2
∑

j∈Z

∫

R

|f̂1(ξ)|2|ψ̂(2jξ)|2δ dξ = 4πM2

∫

R

|f̂1(ξ)|2
∑

j∈Z

|ψ̂(2jξ)|2δ dξ

≤ 4πM2

∫

R

|f̂1(ξ)|2
∑

j∈Z

M2δ1[−8π/3,−2π/3]∪[2π/3, 8π/3](2
jξ) dξ

≤ 4πM2

∫

R

|f̂1(ξ)|2M2
∑

j∈Z

1[−8π/3,−2π/3](2
jξ) + 1[2π/3, 8π/3](2

jξ) dξ

≤ 8πM4

∫

R

|f̂1(ξ)|2 dξ = 4M4‖f‖2
2

(6.3.6)
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Similarly, there exists a constant B > 0 such that

∑

j,k∈Z

|〈f2, ψ̃j,k〉|2 ≤ B‖f2‖2
2

for all f2 ∈ L2(R).

Next, we have the strong L2 convergence result by Cohen, Daubechies and Feauveau

in [8]. As the proof holds perfectly true under our assumptions, we shall not prove it

here. The interested reader can refer to [8] for the proof.

Lemma 6.3.3 Under the assumptions of Theorem 6.0.1, we have, for all f ∈ L2(R),

lim
J,K→∞

∑

|j|≤J,|k|≤K

〈f, ψj,k〉ψ̃j,k = lim
J,K→∞

∑

|j|≤J,|k|≤K

〈f, ψ̃j,k〉ψj,k = f

where the limits are in the strong L2 topology.

Under our assumptions, we note that both {ψj,k}j,k∈Z and {ψ̃j,k}j,k∈Z constitute a

frame in L2(R). The upper bound is simply the Bessel bound proved earlier and the

lower bound follows from the following argument:

‖f‖ = sup
‖g‖=1

|〈f, g〉| ≤ sup
‖g‖=1

∑

j,k∈Z

|〈f, ψj,k〉||〈ψ̃j,k, g〉|

≤ (
∑

j,k∈Z

|〈f, ψj,k〉|2)1/2 sup
‖g‖=1

(
∑

j,k∈Z

|〈ψ̃j,k, g〉|2)1/2

≤ C(
∑

j,k∈Z

|〈f, ψj,k〉|2)1/2.

We need the following theorem from [6] to establish that X(Ψ) and X(Ψ̃) both form

Riesz bases of L2(R).

Theorem 6.3.2 Let ψ ∈ L2(R). Then the following two statements are equivalent.

(a) {ψj,k}j,k∈Z is a Riesz basis of L2(R).

(b) {ψj,k}j,k∈Z is a frame of L2(R), and is also an ℓ2(Z2)-linearly independent fam-

ily, in the sense that if
∑

j,k∈Z

cj,kψj,k = 0 and {cj,k}j,k∈Z ∈ ℓ2(Z2), then cj,k = 0

for all j, k ∈ Z. Furthermore, the Riesz bounds and frame bounds agree.
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So, in order to show that the {ψj,k}j,k and {ψ̃j,k}j,k constitute dual Riesz bases, we

therefore only need to establish ℓ2(Z2)-linear independence.

Lemma 6.3.4 Let φ, φ̃, ψ, ψ̃ be as defined in Theorem 6.0.1. Then each of {ψj,k}j,k∈Z,

respectively {ψ̃j,k}j,k∈Z, are ℓ2(Z2)-linearly independent if and only if

〈ψj,k, ψ̃j′,k′〉 = δjj′δkk′. (6.3.7)

Lemma 6.3.5 Let φ, φ̃, ψ, ψ̃ be as defined in Theorem 6.0.1. A sufficient condition

for (6.3.7) to hold is

〈φ0,k, φ̃0,l〉 = δjl. (6.3.8)

It is noted that these two results above hold even without our bandlimited assump-

tion in Theorem 6.0.1. The reader can refer to [8] for details. Finally, we will prove

Theorem 6.0.1.

Proof of Theorem 6.0.1 In view of Lemmas 6.3.1, 6.3.2, 6.3.3, 6.3.4 and Theorem

6.3.2, to show that X(Ψ) and X(Ψ̃) each form a Riesz basis of L2(R), it suffices to

establish the condition (6.3.8) in Lemma 6.3.5. By Proposition 6.2.1, φ and φ̃ are dual

scaling functions and thus (6.3.8) is satisfied.

Since supp â(·/2 + π) =
⋃
l∈Z

[2(−Ω + π + 2πl), 2(Ω + π + 2πl)], supp â0(·/2 + π) =

⋃
l∈Z

[2(−Ω0 + π + 2πl), 2(Ω0 + π + 2πl)], supp φ̂(·/2) = [−4Ω, 4Ω], supp
ˆ̃
φ(·/2) =

[−4Ω0, 4Ω0] and π/2 < Ω, Ω0 ≤ 2π/3, we conclude that supp ψ̂ = [2(−Ω0 + π), 4Ω] ∪
[−4Ω, 2(Ω0 − π)] and supp

ˆ̃
ψ = [2(−Ω + π), 4Ω0] ∪ [−4Ω0, 2(Ω − π)].

Combining all the above results gives Theorem 6.0.1. It is noted that the alternating

flip formulae belong to a special case of Theorem 6.0.1 where we select â0 = â. �

It was brought to the author’s attention that an application of results in a very

recent paper [16], can yield us Theorem 6.0.1. However the approach taken in [16] is

very different and its proofs rather technical. Therefore it still seems natural that we

adapt proofs from standard biorthogonal wavelet theory to suit our purposes.

Alternatively, we could use Corollary 4.18 in [21] to show that under the setting

posed in Theorem 6.0.1, X(Ψ) and X(Ψ̃) defined by Ψ = {ψ} and Ψ̃ = {ψ̃} form

a pair of biorthogonal Riesz bases in L2(R). To this end, we verify the conditions
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of Corollary 4.18 in [21]. Firstly, we check that the integer shifts of φ and φ̃ form a

Riesz system. This is verified by using the characterization proved in Theorem 2.2.1

and the assumptions that Ω, Ω0 > π/2 and â, ˆ̃a ∈ C2(R). Secondly, we show that

〈φ(·−j), φ̃(·−j′)〉 = δj,j′ which is equivalent to [φ̂,
ˆ̃
φ] ≡ 1 by Proposition 2.2.1. Indeed,

by construction of the masks in Theorem 6.0.1, we have âˆ̃a(·)+ âˆ̃a(·+π) ≡ 1. Then we

apply Lemma 2.2.2 to get [φ̂,
ˆ̃
φ] ≡ 1. Thirdly, it follows easily from the definition of

ψ and ψ̃ in Theorem 6.0.1 that X(Ψ) and X(Ψ̃) are two affine systems constructed by

the square version of the Mixed Extension Principle. Lastly, it is required to show that

X(Ψ) and X(Ψ̃) are Bessel sets. We apply Proposition 2.6 in Bin Han’s paper [14] to

see that there exist constants M1, M2, M̃1, M̃2 > 0 such that
∑
l∈Z

|ψ̂(ξ + 2πl)| ≤ M1,

∑
j∈Z

|ψ̂(2jξ)| ≤ M2 and
∑
l∈Z

| ˆ̃ψ(ξ + 2πl)| ≤ M̃1,
∑
j∈Z

| ˆ̃ψ(2jξ)| ≤ M̃2. Using arguments in

(6.3.4), (6.3.5) and (6.3.6), these inequalities imply that X(Ψ) and X(Ψ̃) are Bessel

sets. Hence Corollary 4.18 in [21] gives the result.

Let us now focus our discussion on consequences of Theorem 6.0.1. We shall see

that the Meyer’s wavelets is indeed a very special case resulting from Theorem 6.0.1.

However, this theorem does not include the classical Shannon’s wavelets due to the

Ck(R), k ≥ 2, restriction required.

Lastly we have a result which roughly says that a pair of dual scaling functions

φ̂ ∈ Bδ,Ω and ˆ̃φ ∈ Bδ0,Ω0
where ˆ̃a is defined by â and â0 in Theorem 6.0.1, cannot have

both interpolatory properties and good regularity simultaneously. Furthermore, it says

that if a bandlimited scaling function φ resulting from â ∈ Aδ,Ω, is both interpolatory

and has orthonormal shifts, then it cannot have good regularity. Precisely, we have

the following.

Proposition 6.3.1 Suppose that â ∈ Aδ,Ω with π/3 ≤ δ ≤ Ω ≤ 2π/3, Ω ≥ π/2, is an

interpolatory mask. Define ˆ̃a :=
â0

d̂0

where â0 ∈ Aδ0,Ω0
, 0 < δ0 ≤ Ω0 ≤ 2π/3, with

d̂0(·) = â(·)â0(·) + â(· + π)â0(· + π).

If ˆ̃a is also an interpolatory mask, then â is the 2π-periodic extension of the charac-

teristic function 1[−π/2, π/2] and supp ˆ̃a = [−π/2, π/2]. In particular, suppose |â(·)|2 +
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|â(·+π)|2 ≡ 1 and set â0 = â, then ˆ̃a is an interpolatory mask and â is the 2π-periodic

extension of the function 1[−π/2, π/2].

Proof: Note that supp â1[−π, π] = [−Ω, Ω] and supp ˆ̃a1[−π, π] = [−Ω0, Ω0]. Then for

â ∈ Aδ,Ω to be an interpolatory mask, it is necessary that

A ≤ â2(ξ) + â2(ξ + π) ≤ B

a.e by Proposition 3.2.1. Then by the characterization provided in Theorem 2.2.1, this

means that either Ω > π/2 or Ω = π/2 and lim
ξ→π/2−

â(ξ) > 0.

If ˆ̃a is an interpolatory mask, then

1 = ˆ̃a(·) + ˆ̃a(· + π) =
â0(·) + â0(· + π)

ââ0(·) + ââ0(· + π)

which gives â(·)â0(·)+ â(·+π)â0(·+π) = â0(·)+ â0(·+π) a.e. Since â(·)+ â(·+π) ≡ 1,

multiplying to the right-hand side of the above equation, we get

â(·)â0(·) + â(· + π)â0(· + π) = [â0(·) + â0(· + π)][â(·) + â(· + π)]

= â(·)â0(·) + â0(·)â(· + π) + â(·)â0(· + π) + â(· + π)â0(· + π).

Therefore

â0(·)â(· + π) + â(·)â0(· + π) ≡ 0. (6.3.9)

Next, since ˆ̃a is also an interpolatory mask, similarly, we have either Ω0 > π/2 or

Ω0 = π/2 and lim
ξ→π/2−

ˆ̃a(ξ) > 0. This would mean that d̂0 never vanishes and thus ˆ̃a is

well defined and is continuous everywhere except possibly at the points ±Ω0.

On the other hand, since â, â0, â(·+π), â(·+π) ≥ 0, for (6.3.9) to hold, â0(ξ)â(ξ+

π) = 0 = â(ξ)â0(ξ + π) a.e which implies that supp â0 ∩ supp â0(· + π) is of measure

zero and supp â∩ supp â(·+π) is also of measure zero. Since all these functions are 2π-

periodic, we need only to consider the behaviour of these functions in the fundamental

interval [−π, π]. Thus we have

supp â1[−π, π] = [−Ω, Ω], supp â01[−π, π] = [−Ω0, Ω0],

supp â(· + π)1[−π,π] = [−π, Ω − π] ∪ [π − Ω, π],
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supp â0(· + π)1[−π, π] = [−π, Ω0 − π] ∪ [π − Ω0, π].

Then supp â01[−π, π] ∩ supp â(· + π)1[−π,π] is a null set if and only if Ω0 ≤ π − Ω.

Likewise, supp â1[−π, π] ∩ supp â0(· + π)1[−π,π] is a null set if and only if Ω ≤ π − Ω0.

Thus both coincide to give the condition Ω + Ω0 ≤ π. Since Ω, Ω0 ≥ π/2, we must

have Ω = π/2 = Ω0.

Thus supp â ∩ supp â(· + π) is a null set. On the interval [−π/2, π/2],

1 = â(ξ) + â(ξ + π) = â(ξ).

Since supp â1[−π,π] = [−Ω, Ω] = [−π/2, π/2], â must be the 2π-periodic extension of

the characteristic function 1[−π/2, π/2].

In particular, if â is further assumed to satisfy the CQF condition, setting â0 = â

gives

ˆ̃a(ξ) + ˆ̃a(ξ + π) =
[
â2(ξ) + â2(ξ + π)

]−1[
â(ξ) + â(ξ + π)

]
≡ 1.

Thus, ˆ̃a is an interpolatory mask as well. Then by the first part of this proposition,

we have â is the 2π-periodic extension of the characteristic function 1[−π/2, π/2].

6.4 Explicit constructions

In this section, we consider the construction of two families of bandlimited biorthog-

onal wavelets. The first family of wavelets is defined as follows. Define I := [−Ω, −δ],
J := [δ, Ω], I ′ := [−π/2−ǫ/2, −π/2+ǫ/2], J ′ := [π/2−ǫ/2, π/2+ǫ/2]. For m ∈ N, let

âm be the 2π-periodic extension of the bell function bδ,Ω,m = bmI,J , 0 < δ < Ω ≤ 2π/3,

2δ ≥ Ω, Ω > π/2, where bI,J is as defined in Theorem 4.1.1. Let â0 be the 2π-periodic

extension of the bell function bǫ = bI′,J ′, 0 < ǫ ≤ π/3. We can either set the func-

tion g = q1,1 as defined in Theorem 4.1.3 to get â ∈ Aδ,Ω ∩ C∞(R) or for k ≥ 1,

set g = pk where pk is as defined in Theorem 4.1.2 to get â ∈ Aδ,Ω ∩ Ck(R) and

ˆ̃a ∈ Aπ/2−ǫ/2,π/2+ǫ/2 ∩ C∞(R). Lastly, we impose π/2 + ǫ/2 ≤ δ to obtain:

â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π) = ˆ̃a(ξ) + ˆ̃a(ξ + π) = 1
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for all ξ ∈ R. This is because â(ξ) = 1 for ξ ∈ ⋃
l∈Z

[−δ + 2πl, δ + 2πl], and supp

ˆ̃a ⊆ ⋃
l∈Z

[−δ + 2πl, δ + 2πl] since π/2 + ǫ/2 ≤ δ.

In view of the definitions of â, ˆ̃a, b̂, ˆ̃b, d̂ in Theorem 6.0.1, we have the following

simplifications:

b̂(ξ) = e−iξâ0(ξ + π),

d̂(ξ) = −e−iξ
[
â(ξ)â0(ξ) + â(ξ + π)â0(ξ + π)

]
= −e−iξ 6= 0,

ˆ̃a(ξ) = â0(ξ),
ˆ̃
b(ξ) = e−iξâ(ξ + π).

Thus, not only are the functions â, ˆ̃a dual to each other, ˆ̃a is also an interpolatory mask.

Since 2δ ≥ Ω and 2(π/2 − ǫ/2) ≥ π/2 + ǫ/2 whenever ǫ ≤ π/3, we have ⌈log2(
Ω
δ
)⌉ = 1

and

φ̂(ξ) =
[ N∏

j=1

â(2−jξ)
]
1[−2Ω, 2Ω](ξ) = bδ,Ω,m(ξ/2),

and similarly, ⌈log2(
Ω̃
δ̃
)⌉ = 1,

ˆ̃
φ(ξ) = bǫ(ξ/2).

By applying Theorem 6.0.1, we conclude that X(Ψ) and X(Ψ̃) form a pair of biorthog-

onal Riesz wavelet bases of L2(R). Similar to the justification of (4.2.4) ψ and ψ̃ are

given in terms of their Fourier transforms as

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2) = e−iξ/2ˆ̃a(ξ/2 + π)φ̂(ξ/2)

= e−iξ/2
[
bǫ(ξ/2) + bǫ(ξ/2 + π)

]
bδ,Ω,m(ξ/4),

ˆ̃
ψ(ξ) =

ˆ̃
b(ξ/2)

ˆ̃
φ(ξ/2) = e−iξ/2â(ξ/2 + π)

ˆ̃
φ(ξ/2)

= e−iξ/2
[
bδ,Ω,m(ξ/2) + bδ,Ω,m(ξ/2 + π)

]
bǫ(ξ/4).

The second family of wavelets illustrates the usefulness of the alternating flip for-

mula. For m ∈ N, let âm be the 2π-periodic extension of the bell function bmǫ , 0 < ǫ ≤
π/3 and g = q1,1 ∈ C∞(R) where bI,J is as defined in Theorem 4.1.1. Let â0 = âm in

Theorem 6.0.1. Then b̂m(ξ) = e−iξâm(ξ + π). Since âm ∈ Aπ/2−ǫ/2,π/2+ǫ/2 ∩C∞(R) and

π/2 + ǫ/2 > π/2 for all 0 < ǫ ≤ π/3, according to Theorem 6.0.1, X(Ψ) and X(Ψ̃)
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form a pair of biorthogonal dual Riesz wavelet bases of L2(R), where ψ, ψ̃ are defined

by âm as in Theorem 6.0.1.

In particular, when m = 1, d̂(ξ) = −e−iξ
[
â2

1(ξ) + â2
1(ξ + π)

]
= e−iξ and â1 satisfies

the CQF condition. We can check that ψ = ψ̃ and X(Ψ) alone already forms an

orthonormal wavelet basis for L2(R). In fact, ψ is the Meyer’s wavelets described in

Chapter 4 Theorem 4.2.2 where the CQF condition has already been verified. So we

will not discuss the justification here.

When m = 2, we have â2(ξ) + â2(ξ + π) ≡ 1. In view of the previous results

established and the alternating flip formula, ψ2 is an interpolatory wavelet and similar

to the justification of (4.2.4), ψ2 is given by

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2) = e−iξ/2
[
b2ǫ (ξ/2 − π) + b2ǫ (ξ/2 + π)

]
b2ǫ (ξ/4).

Furthermore, we have the following.

â2(ξ) + â2(ξ + π) =
∑

l∈Z

b4ǫ (ξ + πl),

ˆ̃φ(ξ) =
[ N∏

j=1

ˆ̃a(2−jξ)
]
1[−π−ǫ, π+ǫ](ξ) =

[ â(ξ/2)∑
l∈Z

b4ǫ (ξ/2 + πl)

]
1[−π−ǫ, π+ǫ](ξ) =

b2ǫ (ξ/2)∑
l∈Z

b4ǫ (ξ/2 + πl)

and
ˆ̃
ψ(ξ) = e−iξ/2 â(ξ/2 + π)∑

l∈Z

b4ǫ (ξ/2 + πl)
ˆ̃
φ(ξ/2)

= e−iξ/2 b
2
ǫ(ξ/2 − π) + b2ǫ (ξ/2 + π)∑

l∈Z

b4ǫ (ξ/2 + πl)

b2ǫ (ξ/4)∑
l∈Z

b4ǫ (ξ/4 + πl)
.

Although the dual wavelets look a little complicated, they could still be described

explicitly. Again, if we choose the function g associated with the bell functions to be

in C∞(R), then both ψ and ψ̃ ∈ S.

Example 6.4.1 Based on the above construction, we choose ǫ = π/3, m = 2, g =

p10 ∈ C10(R) where p10 is as defined in Theorem 4.1.2, then ψ̂(ξ) = e−iξ/2
[
b2π

3

(ξ/2 −

π) + b2π
3

(ξ/2 + π)
]
b2π

3

(ξ/4), ˆ̃ψ(ξ) = e−iξ/2
b2π

3

(ξ/2−π)+b2π
3

(ξ/2+π)P
l∈Z

b4π
3

(ξ/2+πl)

b2π
3

(ξ/4)P
l∈Z

b4π
3

(ξ/4+πl)
. Furthermore,

ψ̂, ˆ̃ψ ∈ C10(R) and supp ψ̂ = [2π/3, 8π/3] ∪ [−8π/3, −2π/3] = supp ˆ̃ψ. Figure 6.1

displays the plots of |ψ̂| and | ˆ̃ψ|.
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Figure 6.1: Graphs of |ψ̂| and | ˆ̃ψ|.

6.5 Concluding remarks

This thesis only investigates the construction of univariate bandlimited wavelets with

dilation factor two. There is also some research done on bandlimited multidimensional

multiwavelets in [12] and [17] but explicit constructions of such wavelets are not given

readily. The author feels that much more work could be done in generalizing this work

into a multidimensional and multiwavelet setting.

It has come to the author’s attention that the existence of bandlimited wavelets

with subexponential decay has been proved in [11]. However it is not easy to provide

explicit examples of such wavelets for the time being.

When periodized, bandlimited wavelets give rise to trigonometric polynomial wavelets.

The trigonometric polynomial structure may prove to be beneficial to signal processing

on periodic images and signals. We like to add that there is some renewed interest in

the theory of bandlimited wavelets, as Donoho and Raimondo had used the periodized

two-dimensional Meyer’s wavelets in deconvolution and image deblurring in [10]. It is

also the wish of the author that the generalizations provided in this thesis will improve

existing methods in applications.

Lastly, frames of local sine and cosine decompositions of L2(R) have not been

investigated yet in the literature. These are areas which the author may like to carry

out future research in.
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