DECONSTRUCTING WORONIN BODY FORMATION

TEJASWINI DHAVALE

(B. Sc., M. Sc., University of Pune, India)

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF BIOLOGICAL SCIENCES

NATIONAL UNIVERSITY OF SINGAPORE

2006

Acknowledgements

This study, which began in August 2005 and concluded in

December 2006, was carried out in the Comparative Cell Biology

Laboratory at the Temasek Life Sciences Laboratory (TLL), Singapore.

Support for this study was provided in part by a Graduate Research

Scholarship from the Department of Biological Sciences, National

University of Singapore.

I wish to express my sincere appreciation to Dr. Gregory Jedd for

entrusting me with this project and for the continuous support and

guidance offered throughout the duration of my candidature.

I am also grateful to all laboratory members past and present for

innumerable discussions on protocols and trouble-shooting, and to the

support staff at TLL particularly those from the Sequencing Laboratory and

the Media Preparation room.

Last, but certainly not least, I offer my heartfelt thanks to my family

especially my parents and Mark Donoghue for their constant support. I

dedicate this work to them.

Singapore, December 2006

Tejaswini Dhavale

i

TABLE OF CONTENTS

Acknowledgements	i.
Table of Contents	ii.
Summary	iv.
List of Figures	vi.
List of Symbols and Abbreviations	vii.
 1.0 Introduction 1.1 Background 1.2 Function 1.3 Ultrastructure and Composition of the Woronin body 1.4 The HEX crystal structure 1.5 Woronin body biogenesis and molecular organization of the colony 1.6 Phylogenetic distribution and Evolutionary concerns 1.7 Experimental Hypothesis 	1 1 4 5 7 9 11
2.0 Materials and Methods 2.1 Neurospora crassa strains used 2.2 Stock Solutions for Media preparation 2.2.1. Trace elements solution	14 14 14 14
2.2.2. Vogel's 50X salts2.2.3. Media composition (various)2.2.4. Fries' Synthetic Crossing Media (SC)2.2.5. Microconidiation induction medium	15 15 16 17
2.3 Techniques2.3.1. Starting cultures of <i>Neurospora crassa</i>2.3.2. Purifying mixed cultures2.3.3. Microconidiation	17 17 18 19
2.3.4. Complementation assay2.3.5. Crossing2.3.6. Harvesting ascospores2.3.7. Induction of competence in <i>Neurospora crassa</i>	19 20 22 23
conidia 2.3.8. Transformation of <i>Neurospora crassa</i> 2.3.9. Site Directed Mutagenesis of the <i>hex</i> gene 2.3.10. Cycle sequencing 2.3.11. Long-term storage of cultures	24 24 27 28
2.3.12. Pre-treatment of liquid cultures of <i>Neurospora</i> crassa for protein extraction 2.3.13. Protein Extraction Protocol 2.3.14. SDS-PAGE	28 29 29

2.3.15. Western Blot	30
2.3.16. Functional assay	30
3.0 Results 3.1 Introducing mutations into <i>Neurospora crassa</i> 3.2 Steady state levels of HEX in mutants 3.3 HEX crystal morphology 3.3.1. Group I 3.3.2. Group II 3.3.3. Group III 3.4 Double mutants 3.5 Larger peroxisomes in mutants	32 32 34 34 36 38 38 39
 4.0 Discussion 4.1 Targeting hex mutants to the endogenous hex locus 4.2 HEX is robustly self-assembling 4.3 The Group III mutant, Q134E is devoid of refractive structures 4.4 The Q134E mutant fails to form large peroxisomes and exerts a dominant effect on the import of GFP-PTS1 	40 40 40 42
5.0 Conclusion	47
Bibliography	48
Appendix 1	54
Appendix 2	58
Appendix 3	59
Appendix 4	60
Appendix 5	62

Summary

The Woronin body is a peroxisomally derived organelle unique to the group of filamentous fungi known as the Euascomycetes (Dhavale and Members of this group are colonial coenocytes, with Jedd, 2006). multinucleate septate tubular hyphae. Each septum features a central pore permitting unrestricted movement of cellular organelles throughout the entire syncytium. The drawback of this system becomes obvious during tip lysis: cytoplasmic pressure forces protoplasm through the pores in adjoining septa and out of the lysed tip. The Woronin body functions by blocking the septal pores of injured hyphae; its dense central core of HEX allowing it to withstand the combined turgor pressure of many adjoining compartments, and halting further loss of cellular components. HEX self-assembles to form a crystal lattice comprised of three distinct groups of residues namely Groups I, II and III. Groups II and I interact via a central salt bridge and adjoining hydrogen bonds while Group III interacts exclusively via Hydrogen bonds. Disruption of self-assembly is known to abolish Woronin body function (Yuan et al., 2003).

A fundamental question in cell biology concerns how cells determine the frequency or copy number of cellular constituents. Woronin bodies are formed from peroxisomes as evidenced by a GFP marker targeted to the peroxisomal matrix. This marker reveals two distinct populations of peroxisomes; numerous small peroxisomes and less abundant large peroxisomes and the latter appear to be involved in HEX crystal nucleation and growth. The mechanism that determines these two populations is

currently unknown. Interestingly, large peroxisomes are no longer observed in the N.crassa HEX deletion mutant Δhex . This suggests that the matrix protein HEX may control peroxisome size. Furthermore, some aspect of the HEX oligomer may mediate this control.

To test this hypothesis, point mutations in each group contact were introduced into the chromosomal copy of *hex* by homologous recombination. The resultant mutants were examined by a variety of techniques designed to assess the formation of HEX oligomers, peroxisome size and Woronin body function. Surprisingly, mutation of Group I and II residues – even key salt-bridge residues - has relatively minor effects on HEX self-assembly, the formation of large peroxisomes and Woronin body In contrast the Group III mutant Q134E abolishes HEX selfassembly and function and large peroxisomes are no longer observed in this mutant. In addition, this Group III mutant (Q134E) has a dominant negative effect on the import of a peroxisome targeted GFP marker. Together these data support the hypothesis that the HEX-oligomer controls peroxisome size. They further suggest a model whereby Group IIIdependent HEX self-assembly is initiated in the cytosol. This assembly may play a key role in determining peroxisome fate.

List of Figures

Figure 1	The HEX crystal lattice	8
Figure 2	(a) Alignment of <i>N. crassa</i> HEX crystal contact residues with eIF-5A(b) Alignment of mutations introduced into <i>N. crassa</i> HEX	13 13
Figure 3	Construct used for targeted insertion of mutagenized <i>hex</i> gene	33
Figure 4	(a) HEX crystals observed in different strains (b) Coomassie stained SDS-PAGE gel with corresponding Western Blot	35 35
Figure 5	Functional assay	37
Figure 6	Localization of GFP-PTS1 to peroxisomes in different strains	43
Figure 7	The effects of Group III mutation Q134E on protein import into the Woronin body	45

List of Symbols and Abbreviations

Units of Measurement

°C Degrees Celsius

Å Angstrom unit, a unit of wavelength, 10-10 m, roughly the

diameter of an atom; equivalent to 0.1 nm.

bp base pairs

e E-value, or expectation value. The number of different

alignents with scores equivalent to or better than S that are

expected to occur in a database search by chance. The lower

the E value, the more significant the score .

g gram

h hour

kDa kiloDalton. A Dalton is a unit of mass equal to 1/12 the mass

of a carbon-12 atom, 1.0000 in the atomic mass scale;

numerically, but not dimensionally, equal to molecular or

particle weight (atomic mass units).

I litre

mg milligrams

Molar, a solution containing (w/v) the gram molar weight of the

reagent i.e. Mass in grams equal to the molecular mass of the

reagent.

mM milliMoles

ml millilitres

ng nanogram (10⁻⁹ grams)

rpm rotations per minute

s seconds

μg microgram (10⁻⁶ grams)

μl microlitre (10⁻⁶ litres)

 μm micrometer (10⁻⁶ meters)

Reagents and Solutions

EDTA Ethylene diamine tetra acetate

IAA Indole Acetic Acid

SDS- PAGE Sodium dodecacyl sulphate - Polyacrylamide gel

electrophoresis

TE Tris-EDTA buffer utilized for re-suspending nucleic acids.

VB Vogel's medium, Basal

VT Vogel's medium, Top

VN Vogel's nutrient medium

Others

 Δ delta, here, indicative of a gene deletion.

et al. et alter (and others)

1.0 Introduction

1.1 Background

Fungi comprise one of three Eukaryotic Kingdoms that independently evolved multicellular organization (Dhavale and Jedd, 2006). Most fungi form colonies that consist of multicellular, multinucleate, tubular filaments known as *hyphae*. The hyphal lifestyle facilitates efficient exploitation of growth substrate, its functions include: invasive growth, long distance transport and, when required, aggregation into multicellular reproductive structures (Alexopolous *et al.*, 1996).

Hyphae typically colonize substrates through a continuous process of apical extension followed by branching and fusion, or *anastomosis*, of branches resulting in an interconnected synctial network of cells known as the mycelium (Buller, 1933b, Glass *et al.*, 2004). Based on characteristic physiological and morphological traits, as well as similarity in nucleotide sequence data, fungi are grouped into four distinct evolutionary groups or phyla (Berbee and Taylor, 2001, Bruns *et al.*, 1992, Lutzoni *et al.*, 2004). Vegetative hyphae of individuals from the basal or early diverging phyla, i.e., the Zygomycetes and Chytridiomycetes, do not make septa. In contrast, the more recently evolved Dikaryomycetes, Ascomycetes and Basidiomycetes possess distinct perforate septa. It has been suggested, based on these observations, that the septate condition evolved in an ancestor common to the Dikaryomycetes (Berbee and Taylor, 2001) (Jedd, 2006). It is also hypothesized that the presence of septa may have

1

favoured the more recent advent of septal pore associated organelles such as the Woronin body and septal pore cap (SPC) in the Euascomycetes and certain members of the Basidiomycetes respectively (Bracker, 1967, Muller *et al.*, 1998).

In the multicellular Kingdoms Animalia and Plantae, cells communicate with their neighbours through a variety of channels including gap junctions (Sosinsky and Nicholson, 2005) and tunnelling nanotubules (Rustom *et al.*, 2004) in the former and plasmodesmata in the latter (Gallagher and Benfey, 2005). These channels are designed to allow the passage of a limited set of cellular constituents. In contrast, the septal pore of the Euascomycetes is often large enough to allow unrestricted passage of large organelles such as nuclei via mass flow of protoplasm. This interconnectedness of fungal hyphae can prove advantageous in exploiting resources such as nutrient availability over long distances: for example in the mycorrhizal Basidiomycete, *Pisolithus tinctorius* motile-tubular vacuoles are responsible for the transport of nutrients such as phosphate throughout the mycelium via the formation of transient connections through septal pores (Cole *et al.*, 1998, Sheperd *et al.*, 1993).

The fungal mycelium is divided into two regions based upon the distance from the hyphal tip at which hyphal damage fails to inhibit the growth of leading hyphae. These are: the growth zone at the periphery of the colony where hyphal compartments cooperate to support apical tip-growth at the leading edge, and the central growth zone where hyphae

grow and accumulate biomass at a comparatively slower rate and do not contribute to the colony's radial growth (Trinci, 1971).

The aseptate nature of the mycelium of early diverging fungi suggests that the septum is not a prerequisite to the successful colonization of substrate. The presence of perforate septation however, does seem to allow for a more complex level of multicellularity than is observed in members of the basal fungi. Not only does the presence of perforated septa allow for the potential cellularization of the synctium in response to ageing or injury, fungi with septal pore associated structures also form the largest and most complex reproductive structures (Alexopolous *et al.*, 1996, Dhavale and Jedd, 2006).

This thesis is concerned with investigating the organelle known as the Woronin body. Woronin bodies are highly refractive particles associated with the fungal septum. Their existence was first documented by the Russian mycologist Michael Stepanovitch Woronin in the fungus Ascolbolus pulceherrimus (Woronin, 1864) and subsequently named after him by the mycologist A. H. R. Buller (Buller, 1933a). Ensuing light microscopic observation by Woronin's mycologist successors led to frequent confusion in establishing the organelle's identity; it was often mistaken for other refractile particles of cytoplasmic origin (such as lipid bodies). The advent of electron microscopy resolved this dilemma; Woronin bodies are now recognized as single membrane bound electron dense cytoplasmic particles with a proteinaceous core and are known to be derived from peroxisomes (Jedd, 2006). In Euascomycetes, Woronin

bodies function as septal plugs, serving to seal injured hyphae by occluding the septal pore and initiating subsequent wall deposition (Collinge and Markham, 1985).

1.2 Function

Woronin bodies are found in Euascomycetes, including many plant and human pathogens (Markham and Collinge, 1987). The archetypal Woronin body is a peroxisome-related organelle with a dense crystalline core composed of the protein HEX (Jedd, 2006). The organelle's size and form may vary across species (viz. hexagonal in *N. crassa*, spheroidal in Magnaporthe grisea) however, its function remains the same: occlusion of the septal pores of injured hyphae and prevention of the ensuing outflow of cytoplasm. Experiments in *N. crassa* (inducing hyphal damage or tip lysis by means of hypotonic shock and cutting with a razor) established early on the Woronin body's main function as that of septal pore occlusion (Trinci and Collinge, 1974). These initial observations were further bolstered by quantitative results from another fungal species, *Penicillium* chrysogenum documenting the Woronin body mediated occlusion of 90% of septal pores in injured hyphae as compared to only 5% in undamaged hyphae (Collinge and Markham, 1985). Woronin body function in pore occlusion has been conserved across a diverse range of Euascomycetous fungi; electron microscope observations have revealed that following septal pore occlusion, material similar to that comprising the cell wall is deposited over the Woronin body septal pore complex. This process

results in the initiation of new hyphal tips from the occluded septum. More recently, experiments in *Aspergillus oryzae* utilizing RFP (red fluorescent protein) targeted to Woronin bodies have documented post hyphaldamage septal plugging in exquisite three-dimensional detail (Maruyama *et al.*, 2005). The Δhex mutant provided insights into the Woronin body loss of function phenotype; the mutant displays a total absence of Woronin bodies in hyphae and bleeds significant amounts of protoplasm following cell lysis. (Jedd and Chua, 2000, Tenney *et al.*, 2000), confirming a function in cell damage induced septal pore sealing. As a secondary consequence, the mutant is also defective in the production of asexual spores called conidia. Δhex mutants in *M. grisea* (Soundararajan *et al.*, 2004) and *A. oryzae* (Maruyama *et al.*, 2005) also lack observable Woronin bodies. In addition, the *M. grisea* mutant exhibits significant defects in pathogenocity accompanied by fatality in response to Nitrogen deprivation.

1.3 Ultrastructure and Composition of the Woronin body

Woronin bodies were purified and characterized for the first time in *N. crassa* through the combined use of differential and density gradient centrifugation (Yuan *et al.*, 2003). Woronin body-enriched fractions revealed an abundant 19kDa protein, termed HEX, which on further characterization by protein sequencing was found to define a family of closely related proteins unique to the Euascomycetes (Jedd and Chua, 2000, Tenney *et al.*, 2000). In filamentous fungi, HEX oligomerizes to

form an extremely large and stable superstructure which is localized (as detected by antibody staining) to the Woronin body matrix in N.crassa (Jedd and Chua, 2000), Aspergillus nidulans (Momany et al., 2002), and M. grisea (Soundararajan et al., 2004). Aside from microscopic evidence, sequence detail has also shed considerable light on the peroxisomal localization of HEX. hex and its orthologs all possess consensus Cterminal peroxisome targeting signals (PTS-1), indicative of transport of the protein into the peroxisomal matrix. Expression of transgenic *hex* in *S.* cerevisiae resulted in the formation of hexagonal intra-peroxisomal protein assemblies morphologically identical to the native Woronin body core (Jedd and Chua, 2000). These experiments also provided the first evidence of HEX's capacity for self-assembly which was found to be independent of its expression in its specific host organism, an ability retained by the protein even under in vitro conditions (Jedd and Chua. 2000). Collectively, these results defined HEX as a key structural determinant of the Woronin body core and confirmed the peroxisomal origin of Woronin bodies.

Unlike the single version of HEX in *N. crassa*, the biosynthesis of HEX in a number of other fungi begins with a process of alternative splicing between the first and second exons producing *two* variant proteins differing by several kiloDaltons (kDa) at their N-terminus. These two variants have been reported in *M. grisea* (Soundararajan *et al.*, 2004), *A. oryzae* (Maruyama *et al.*, 2005) and *Trichoderma reesei* (Curach *et al.*,

2004, Lim *et al.*, 2001) and are thought to be the chief cause of the spheroidal Woronin body in those species.

1.4 The HEX crystal structure

The HEX crystal structure reveals the mechanism of its selfassembly. The HEX crystal lattice is divided into three groups of amino acid residues that mediate lattice assembly. These are named Group I, Group II and Group III. Group I and II interfaces are both centred on a bidentate salt bridge and occupy opposite faces of the HEX monomer (Figure 1.a). The Group I and II interface results in the formation of a helical filament (Figure 1.d). Such filaments are then cross-linked through the Group III interface to produce the overall six-fold symmetry characteristic of the crystal's hexagonal structure (Figure 1.e). The importance of these crystal contact residues to HEX function is illustrated by the (Group I) H39G mutant, which is unable to self-assemble the HEX crystal in vitro and forms aberrant spheroidal Woronin bodies (Yuan et al., 2003). The abnormal HEX crystallization exhibited by these mutants results in a soluble core lacking the core density to resist intracellular turgor pressure. As a result, instead of occluding the septal pore to facilitate repair these mutant Woronin bodies bleb out of the pore along with other cellular contents. Together, these results define the mechanism of HEX assembly and demonstrate that HEX crystallinity is required for Woronin body function.

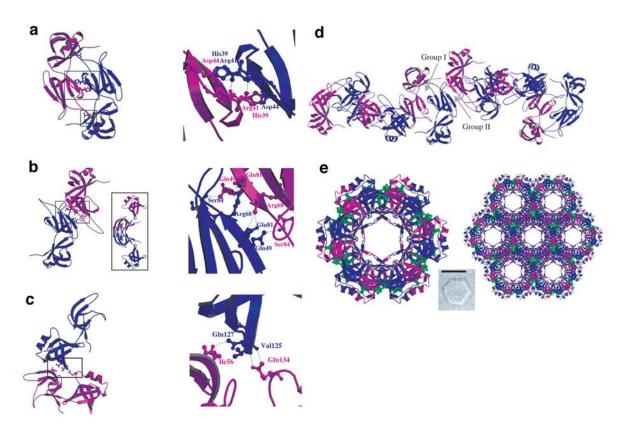


Figure 1. The HEX crystal lattice

- **a.** Intermolecular interactions between constituent groups of HEX. Group I interaction involving central N-terminal salt bridges and the N- to C- terminal domain contacts. The His39 stabilizing the salt bridge between Arg41 and Asp44 was mutated to Gly39.
- ${\bf b.}$ Group II interactions. The Glu49 hydrogen bond was mutated to Lys49 and the Arg68 salt bridge was mutated to His68
- **c.** Group III interactions. The Gln127 and Gln134 hydrogen bonds were mutated to Glu127 and Glu134 respectively.
- **d.** Arrangement of the HEX crystal lattice. Alternating HEX molecules in blue and purple. Coiled filment produced by Group I and II interactions. Filament depicted perpendicular to c-axis.
- e. Coiled filament from (d) viewed down the crystallographic c-axis. Group III interaction residues (green) at filament surface. Inset: native HEX crystal.

1.5 Woronin body biogenesis and molecular organization of the colony

Initial hypotheses concerning an apical origin for Woronin bodies were proposed on the basis of electron microscope assisted observations of Woronin bodies being synthesized apically through progressive accumulation of electron dense material in a membranous covering (Brenner and Carroll, 1968). As Woronin bodies generally exceed septal pore diameter, it is unlikely that they are trafficked from sites of synthesis to sites of function implying these organelles are formed early in the process of hyphal growth. Initially observed by light microscopy (Buller, 1933a, Ternetz, 1900) and later by electron microscopy in a variety of Euascomycetes (Brenner and Carroll, 1968, Collinge and Markham, 1982, Momany *et al.*, 2002) Woronin bodies are consistently observed in apical compartments. In *A. nidulans* germlings that have undergone septation, fewer Woronin bodies are found at the hyphal tip, suggesting that septation may be associated with the retrograde transport and targeting of apical Woronin bodies to the septum (Momany *et al.*, 2002).

In *N. crassa*, the direct observation of Woronin body biogenesis in living hyphae via time-lapse microscopy revealed the Woronin body core in large peroxisomes moving in a tip directed manner. These mobile Woronin bodies underwent a process of maturation terminating with the organelles docking at the hyphal wall and being excluded from protoplasmic flow. This process ensures Woronin bodies are distributed roughly equally throughout the compartments of the colony (Tey *et al.*,

2005).

What factors determine the localization of this process to apical cells? Expression of a fluorescent reporter protein from hex-1 regulatory sequences revealed a high apically localized fluorescent gradient that diminishes towards sub-apical cells. This suggested that hex-1 gene expression is polarized to apical compartment. To determine the spatial distribution of endogenous hex-1 transcripts, the fungal colony was fractionated into zones corresponding to apical and increasingly sub-apical hyphal compartments (Tey et al., 2005). Using this system, endogenous hex-1 transcripts were found to be enriched at the leading edge of the fungal colony, while other transcripts were shown to accumulate in the colony interior (Tey et al., 2005). These experiments demonstrated the apical programming of hyphal gene expression and suggested a possible role for localized hex-1 mRNA transcripts in the apical formation of the Woronin body. To test this model, the *hex-1* structural gene was expressed from the regulatory sequences of a transcript normally confined to the colony interior. Under these conditions, Woronin body formation was re-directed to hyphal compartments at the colony interior. Thus, the localization of hex-1 transcripts is a key determinant of the localization of Woronin body formation. In this case, the apical programming of gene expression ensures that the first sub-apical compartment contains a complement of functional Woronin bodies (Tey et al., 2005). Expression of *hex* transcripts from sub-apically expressed regulatory sequences leads to a loss of function 'bleeding' phenotype further underlining the

1.6 Phylogenetic distribution and Evolutionary concerns

The *hex* gene is only found in Euascomycetes, which are believed to have arisen from a single common ancestor approximately 500 million years ago (Berbee and Taylor, 2001). HEX shows both structural and sequence similarity to eIF-5A (Yuan et al., 2003). eIF-5a proteins are found from Archaea through Eukaryotes and are highly conserved (Krypides and Woese, 1998). Sequence comparison of hex to human elF-5a (NCBI protein database entry gi: 9966867, blastp E-value = $3e^{-08}$), reveals 52% similarity. HEX however lacks several key features of eIF-5A such as, a highly conserved lysine, which, in eIF-5A, is modified to the amino acid hypusine vital for eIF-5A participation in the processes of mRNA metabolism (Zuk and Jacobson, 1998) and nucleocytoplasmic RNA transport (Hofmann et al., 2001, Rosorius et al., 1999). The structural and functional disparities between the two proteins are further highlighted by the fact that HEX fails to complement a temperature sensitive yeast eIF-5A mutant (Jedd and Chua, 2000) and that the HEX protein is targeted to the peroxisomal lumen, whereupon it displays its inherent ability to self assemble into characteristic hexagonal crystals. Conversely, despite the tendency of eIF-5A protein to form dimers, and reversible tetramers and hexamers in solution (Chung et al., 1991), there is no evidence of any oligomerization (akin to that of HEX). Thus, if eIF-5A does self assemble, it does so through interactions distinct from those mediating HEX assembly.

Thus, HEX probably evolved following ancestral duplication of eIF-5a and acquired new functions associated with peroxisome targeting and self-assembly.

1.7 Experimental Hypothesis

The experimental hypothesis was based on the reasoning that some aspect of the Woronin body matrix is responsible for the formation of large HEX crystal forming peroxisomes. Alignment of HEX crystal contact residues with the analogous positions in EIF-5a suggests that contact residues in HEX correspond to largely conservative substitutions in EIF-5a (Figure 2.a). Based on this information individual HEX group residues were mutated to the analogous amino acid in EIF-5a consensus (Figure 2.b). The aim was to avoid disrupting the proteins overall fold while identifying the group contact(s) responsible for controlling the process of Woronin body formation.

а	I	II	Ш	b	1	П	Ш
Con eIF-5A		KSH5-	VTRE	SALT BRIDGES			
Nc_eIF-5A Nc Hex	SECEDS HHIDSON	OSRES	EVOC	D44G	HRGSQE	QSRES	IVQQ
30100 101100				R68H	HRDSQE	QSHES	IVQQ
				D44G, R68H	HRGSQE	QSHES	IVQQ
Figure 2.				HYDROGEN			
a. Alignmen	t of A	leurospor	a crassa	BONDS			
(Nc_Hex) sec				Q105E	HRDSEE	QSRES	IVQQ
with the eIF-5				H39G	GRDSEE	QSRES	IVQQ
eIF-5A) and t				Q49K	HRDSQE	KSRES	IVQQ
crassa. Roma				Q127E	HRDSQE	QSRES	IVEQ
				Q134E	HRDSQE	QSRES	IVQE
groups I, II and				Q105E Q49K	HRDSEE	KSRES	IVQQ
lighted in yelle				Q105E, Q134E	HRDSEE	QSRES	IVQE
crassa denote	d in black.	Red ban	ids indicate	Q49K, Q134E	HRDSQE	KSRES	IVQE
sallt bridges.				Q127E, Q134E	HRDSQE	QSRES	IVEE

b. Alignment of the mutations introduced into N. crassa HEX. Mutated residues are indicated in bold font. Roman numerals indicate interaction groups I, II and III. Note that mutated residues are in keeping with the Nc_eIF-5A sequence depticted in section a.

2.0 Materials and Methods

2.1 Neurospora crassa strains used

The strain FGSC # 9720 with the Genotype *delta mus-52:: bar+, his-3* was used for transforming mutagenized samples. Successfully transformed isolates were sequenced then crossed with the *pan-2* strain GJ344 mating type *mat a* thus creating a suitable background for transformation with the pan⁺ GFP-PTS1 construct (Tey *et al.*, 2005). For more information on strains used, please refer to *Appendix 4* for fungal strains utilized.

2.2 Stock Solutions for Media preparation

2.2.1. Trace elements solution

On a magnetic stirrer at room temperature the following reagents are dissolved in 95 ml of distilled water, with continuous stirring until such time as no precipitates remain:

Citric acid. 1 H₂O	5.0 g
ZnSO ₄ . 7 H ₂ O	5.0 g
Fe $(NH_4)_2(SO_4)_2$. $6H_20$	1.0 g
CuSO ₄ . 5 H ₂ 0	0.25 g
MnSO ₄ . 1 H ₂ 0	0.05 g
H ₃ BO ₃ , anhydrous	0.05 g

 Na_2MoO_4 . 2 H_2O 0.05 g

The volume is then made up to 99 ml with distilled water, to which 1 ml Chloroform is added (as a preservative). The solution is then bottled, capped tightly and stored at room temperature.

2.2.2. Vogel's 50X salts

In 750 ml distilled water, the following reagents are dissolved in the order that they are listed in, accompanied by continuous stirring on a magnetic stirrer at room temperature.

Na ₃ citrate. 5 ½ H ₂ 0	150 g
KH₂PO₄, anhydrous	250 g
NH₄NO₃, anhydrous	100 g
MgSO ₄ . 7H ₂ O	10 g
CaCl ₂ . 2H ₂ O	5 g
Trace Element Solution	5 ml
Biotin Solution	2.5 ml

2.2.3. Media composition (various)

(for 500ml unless otherwise stated)

	VN	VB	VT
50X Vogel's solution	10 ml	10 ml	10 ml
Trace elements	100 μΙ	100 μΙ	100 μl
Bacto-agar	7.5 g	7.5 g	7.5 g

Sucrose	7.5 g	-	7.5 g
D-Sorbitol	-	-	91 g
1X SC (without sucrose)	-	-	-
Uracil	-	-	-
Uridine	-	-	-
De-ionized water to	500 ml	450 ml	450 ml
Autoclave			
10X sugars	-	50 ml	50 ml
2.2.4. Fries' Synthetic Cro	ossing Media	(SC)	
KNO ₃		1.0 g	
K ₂ HP0 ₄		0.7 g	
KH ₂ PO ₄		0.5 g	
MgSO ₄ .7H ₂ 0		0.5 g	
CaCl ₂		0.1 g	
NaCl		0.1 g	
Biotin solution		0.1 ml	
Trace elements solution		0.1 ml	
Sucrose		1.0 g	
Final pH		6.5	
De-ionized water to		1000 ml	

PYR-4 (supplement for the pyr-4 background of Δhex mutant)

U-0750

1g/ l

Uracil

16

Uridine U-3750 1g/ l

(To be added before autoclaving).

NB: in the following protocols, all media were supplemented with required nutritional supplements/selection markers unless otherwise stated. All procedures were carried out under sterile conditions (in a laminar flow hood or in close proximity to a naked flame) unless otherwise stated.

2.2.5. Microconidiation induction medium

1X Synthetic Crossing medium (without Sucrose or Agar)	50 ml
Agar	10 g
Sucrose	2.5 g
Uracil	0.5 g
Uridine	0.5 g

The volume is made up to 500 ml with distilled water and the mixture is autoclaved. Following autoclaving 5ml of filter sterilized 0.1 M Sodium lodoacetate (Sigma) is added to the medium. The addition of iodoacetate selectively stimulates microconidiogenesis in *N. crassa* (Rossier *et al.*, 1973).

2.3 Techniques

2.3.1. Starting cultures of Neurospora crassa

5 ml slants of VN agar (with requisite supplements) are made in 50 ml falcon tubes, solidified and inoculated with either $1\mu l$ of macroconidia

(suspended in distilled water) or by contact with an inoculation wand dipped into a frozen glycerol stock of macroconidia. Incubation is carried out at room temperature for 7 days followed by harvesting conidia by suspending in 5ml distilled water, vortexing, and filtering through a 40μl mesh strainer (BD Falcon). Spores collected in this manner can then be stored at 4°C (viable for 3-4 months with decreasing germination efficiency) or used for preparing 50% glycerol stocks for storage at -80°C (indefinitely).

2.3.2. Purifying mixed cultures

Subsequent to transformation, colonies picked from densely inoculated plates can carry nuclei from wild type colonies (acquired following anastomoses with wild type colonies). Since macroconidia are often multinucleate, there are chances of macroconidia grown single colonies being heterozygous for the mutant gene. Under such conditions, one can differentiate between the mutants and the heterozygotes by diluting the macroconidial suspension 1:1000 in sterile distilled water and innoculating different concentrations suspended in VT (with requisite supplements). Spores with single nuclei exhibit clearly defined phenotypes. If this technique is unsuccessful, strains are inoculated onto microconidia induction medium to induce microconidiation.

2.3.3. Microconidiation

Under conditions of starvation *N. crassa* vegetative mycelium gives rise to predominantly uninucleate conidia known as microconidia (Baylis and DeBusk, 1967, Horowitz and Macleod, 1960). Microconidiation is a convenient (albeit, time consuming) method for obtaining pure cultures. 5ml slants of micronidiation medium (supplemented with IAA, see *Material* and Methods section for more information) are poured into 50 ml falcon tubes (with requisite supplements). Each slant is then inoculated with 1 μ l of macroconidial suspension in water and kept at room temperature (with alternate light and dark exposure corresponding to a photoperiod of at least 8 hours) for a week. The microconidia are harvested by suspending in 5 ml of distilled water and vortexing vigorously for 1 minute. The suspension is then strained through a Millex SV 5 μm filter unit (Micropore) and centrifuged at 13000 rpm. The water is carefully pipetted out leaving about 2 ml behind. The microconidia are resuspended by vortexing thoroughly and then inoculated in VT at different dilutions. Pure culture single colonies can be observed under the stereomicroscope within two days of inoculation. These are then excised and inoculated on 5 ml VN slants for obtaining pure culture conidia.

2.3.4. Complementation assay

Complementation assays facilitate the identification of genes carrying specific mutations. A strain carrying a visually recognizable mutation on an unknown gene is mixed with another strain carrying a

visually recognizable mutation on a known gene. Care is taken to ensure that both strains are of the same mating type. If the mutations are on the same gene, the mutant phenotype persists in the mixture and the gene responsible for the phenotype is thus identified. A mixture exhibiting a wild type phenotype is indicative of complementation, that is, indicative of the fact that both strains have mutations disparate on Complementation assays can be carried out using either conidia (suspended in distilled water) from both strains, or agar blocks of mycelium cut from VN plates containing mycelium from each strain. The latter method is preferable as it allows for the selection of equivalent amounts of mycelium of the same physiological age from both isolates.

2.3.5. Crossing

Fries' crossing medium (SC) containing the required supplements (omit all selection markers like hygromycin, BASTA, etc) and 1% agar is poured into plates at 20 ml/plate and allowed to solidify. In the case of *pan-2* mutants requiring Ca-panthothenate as a nutritional supplement a 10X concentration of pantothenic acid (10 mg/ml) is recommended (even when the protoperithecial parent is *pan+*) for improving crossing efficiency (Perkins *et al.*, 2001b). The protoperithecial (female/A) parent is inoculated onto the surface of the plate directly from the glycerol stock and allowed to colonize the entire plate surface for the next 2-3 days. During this time separate cultures of the male (a) strains are inoculated on VN agar containing requisite supplements. Agar blocks (1x1cm) are cut out

from the peripheral zone of the mating type a cultures and placed on the surface of the SC plates containing the female strain. The plates are then sealed with Micropore tape, inverted, and incubated in the dark at room temperature. Over the next 2 weeks the plates are scanned regularly for the appearance of perithecia, which, on maturing, develop beaks from which ascospores are liberated. These dark brown almond-shaped ascospores are visible on the plate cover.

In order to create a pan-2 background for the mutants, the his-3 strain was crossed with a pan-2 strain. The reason being that, for clear visualization of peroxisomal dimorphism in these mutants, transformation with a GFP-PTS1 tag mobilized in the vector pOKE103 was required. However, selection for this particular GFP-PTS1 construct is pan-based, i.e., upon successful transformation with the pOKE103 containing the GFP construct, pan-2 mutants regain the ability to convert ketovaline to ketopantoic acid (Perkins et al., 1973) and no longer require supplementation with Ca-pantothenate. For this reason, mutants were crossed with the pan-2 strain FGSC # 466a. However, due to incompatibility between the two strains, all crosses were found to be nonfunctional, i.e., perithecia formed but failed to release ascospores. order to by-pass this incompatibility the crossing strain was substituted with another: GJSF# 340 (also pan-2). The crosses were successful and the resulting ascospores were inoculated onto VB-VT supplemented with the required amount of Ca-pantothenate (for more information please refer to the section on media supplements). From the resulting single colonies,

those displaying the mutant phenotype were inoculated on VN slants (also supplemented in the same manner), their spores collected and used for innoculating cultures on VN *without* Ca-pantothenate supplementation. The spores that failed to germinate were *pan-2*. These strains were further characterized by PCR and cycle sequencing to confirm presence of the required mutation and, following positive characterization, were transformed with the vector GJP 602 containing a GFP-PTS1 tag and a *pan+* selection marker (Tey *et al.*, 2005). Positive transformants were selected based on survivability on Ca-pantothenate deficient medium, characterized by mutant phenotype and sequenced. Mutants with comparable expression levels of GFP were chosen and observed under a compound microscope (Olympus BX-51) using the corresponding fluorescent filter.

2.3.6. Harvesting ascospores

When ascospores are visible on the plate cover, the cover is removed and 3-4 ml of distilled water is pipetted into it. Under the stereomicroscope a pipette tip or an inoculating loop is used to carefully suspend all visible ascospores in the distilled water. This solution is then pipetted out into 1.5ml microtubes (Axygen). These tubes are then inoculated for an hour at 60°C in a dry bath; the inoculation serves to inactivate any macroconidia that may be present while simultaneously breaking the dormancy of the ascospores and stimulating their germination (Dodge, 1912). Varying dilutions of the spores are then

suspended in 10 ml aliquots of VT (containing requisite supplements) each of which is then poured onto pre-prepared VB plates (containing requisite supplements). In the case of Woronin body mutants, the mutant phenotype of germinating colonies is observable as early as the next day.

2.3.7. Induction of competence in Neurospora crassa conidia

A week prior to induction of competence, *N. crassa* macroconidia are inoculated on VN slants containing the required supplements. (Addition of selection markers such as hygromycin is recommended against as it adversely affects the efficiency of conidiation. For information on the conidial count method of determining efficiency of conidiation, please refer to section *2.3.16 Functional assay* in the Materials and Methods section and Appendix 3).

Slants are then incubated at room temperature for 7 days, until powdery orange conidia are clearly visible. 5 ml chilled sterile distilled water is added and the tubes are vortexed thoroughly and the suspension filtered through 40µm cell strainers (BD Falcon) into sterile Falcon tubes which are placed on ice for 30 minutes. Spores are then washed 4 times with chilled 1M sorbitol (each wash involves the following steps: Cold centrifugation at 3000 rpm for 5 minutes at 4°C, decantation of sorbitol and addition of fresh chilled sorbitol in steadily decreasing amounts followed by vortexing to resuspend). After the first wash the suspension is transferred to a 2ml tube). Finally, the competent spores are stored at 4°C (for a minimum of 2 hours in case of immediate transformation).

2.3.8. Transformation of Neurospora crassa

For stored spores: the spore suspension aliquots are removed from 4°C and washed three times with sorbitol. Aliquots of 40-50ul are made and approximately 1/10th the volume of DNA (concentration 4-5ng) in TE is added. The mixture is incubated on ice for 20-30 minutes and then pipetted into an electroporation cuvette and electroporated at 2.1kV. After the electroporation pulse, 1 ml of ice-cold 1 M sorbitol is immediately added and the cuvette is incubated at 30°C for 45 minutes. Aliquots of varying dilutions suspended in VT are inoculated on VB agar plates using the requisite selection/ supplements and incubated overnight at 30°C.

2.3.9. Site Directed Mutagenesis of the hex gene

The *hex* gene utilized as the mutagenesis template is part of a cassette containing the entire hex genomic segence downstream of a Hygromycin resistant selective marker sequence (See Appendix 1). The entire sequence, known as the hex1.hyg.int.cassette was cloned into the pSP72 backbone, creating the plasmid p836. Site directed mutagenesis *hex* gene was carried out using the STRATAGENE QuikChange®Site-Directed Mutagenesis Kit (catalogue #200518) with the oligonucleotides listed in Appendix 2. This was followed by *Dpn I* digestion (enzyme provided with the same kit, at a concentration of 10U/ µI) of p836 to digest template parental DNA thus selecting for newly synthesized mutation containing DNA. These mutagenized plasmids were then transformed into XL1Blue Supercompetent cells (available in the same kit from Stratagene) and selected overnight at 37°C on LB agar plates containing Ampicillin (50µg/ ml). Liquid cultures (LB containing the same amount of Ampicillin) were then inoculated with single colonies, and incubated overnight at 37°C. Mutagenized plasmids were extracted using the Fast Plasmid ® Mini kit (Eppendorf). PCR was carried out using the following primers:

hex1.seq1: 5' GCCTCTACAGCGAGTCTACTG 3'

hex1.seq2: 5' CATAACATCCAAGCAGCCCT 3'

Amplification with the above primer pair results in a single band 835bp in length. This band was cut out of the gel, extracted using the illustra GFX DNA and PCR band purification kit (GE Healthcare) and suspended in T.E. Cycle sequencing was carried out using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosytems). Sequence data was analyzed and aligned using the Segman software (DNA*).

Positives were inoculated into liquid cultures on which plasmid prep was carried out using the Fast Plasmid® Mini kit (eppendorf). Concentrations quantified Nanodrop[®] were on а ND-100 spectrophotometer (quantification is done prior to restriction digestion because the presence of BSA adversely affects accuracy of readings). This was followed by linearization of the vectors by restriction digestion using Xho1 from New England Biolabs® Inc. and visualization of 1/10th of the sample on a 1% agarose gel. Samples were then combined and

ethanol precipitated to a concentration of 4-5µg in 10µl. Phenol treatment

was not carried out as the presence of the restriction enzyme in the final

transformation mixture is thought to facilitate integration (via restriction

enzyme mediated insertion or REMI. (See Guerin and Larochelle, 2002 for

a comprehensive review of the process). A solution of these linearized

vectors in T.E was then used to transform competent cells of N. crassa

strain FGSC# 9720 (mus-52, his-3, Hyg'). The transformed cells were

plated on VB-VT (supplemented with Histidine and with Hygromycin as a

selectable marker) and identified based on the Woronin body deficient

bleeding phenotype. Individual colonies were then grown on VN

(supplemented with Histidine and hygromycin for selection and phyloxine

B for visualization of the mutant phenotype) and screened by PCR for

monitoring correct insertion of the construct. The primers used for

screening were as follows:

P1: 5' CGTATATGCTCCGCATTGGT 3'

P2: 5' GCGAAGCACCCATAATGTCT 3'

P3: 5' GTCGACATGAAGGTCGTCCA 3'

P4: 5' CGTGGATTGGCTCTCATT 3'

Samples from individuals containing the insert in the correct

orientation exhibited a 900bp band for the primer pair P1 and P2 and a

single band at 1.9kb for the primer pair P3 and P4 respectively. Impure

samples (i.e., those from colonies having undergone anastamosis with

26

wild type colonies), however, exhibited two distinct bands when amplified using the primer pair P3-P4: one band at 550bp and another at 1.9kb. The 550bp band is indicative of a wild type copy of the gene, lacking the hygromycin segment. Isolates exhibiting an impure genotype were purified by microconidiation while the remaining (pure) isolates were sequenced. The sequencing primers used were as previously mentioned (see previous page).

2.3.10. Cycle sequencing

The reaction mixture for cycle sequencing using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosytems) is comprised as follows:

BigDye Terminator ready reaction mix 6μl

Template (300-500ng for a sequence up to 2kb) xμl

Primer (3.2 pmol) $1\mu l$ (10mM)

De-ionized water to make up the volume to 20µl

Total 20µl

The above mixture is mixed well, briefly spun down and amplified using the following PCR program:

96°C for 1minute

96°C for 10 seconds

50°C for 5 seconds

2.3.11. Long-term storage of cultures

Isolates with a pure genotype are inoculated on VN slants and the resulting conidia are harvested for long-term storage. 1x1cm blocks of agar with mycelium on the surface are used to inoculate 5 ml slants of VN containing the requisite supplements. Cultures are incubated at room temperature for 7 days then harvested by suspending them in sterile distilled water and pouring through a sterile 40 μm mesh strainer (BD Falcon) into a 50 ml Falcon tube. This step separates any hyphae that may be present in the suspension. The flow through is used for preparing glycerol stocks (using a 1:1 ratio of conidial suspension in water: 50% glycerol), which are then stored at -80°C. For a complete list of plasmids constructed and strains obtained in this manner, refer to Appendix 4.

2.3.12. Pre-treatment of liquid cultures of Neurospora crassa for protein extraction

10 μ l of macroconidial suspension of the required *Neurospora* strain is inoculated in 5 ml of liquid VN (with requisite supplements if required) in a 250 ml conical flask at room temperature for 6 hours on a shaker at 50 rpm. At the end of this inoculation period the total volume is made up with fresh VN to 50 ml and the culture is incubated overnight on a shaker (at 50 rpm).

The following morning the mycelium is poured through a sterile 40 µm mesh strainer (BD Falcon) and transferred using fine tipped forceps between two blotting papers kept between a stack of C4 towels. After 10 seconds the mycelium is shifted to a dry area on the blotting paper and dried for 20 seconds more. It is then transferred to a 50ml Falcon tube, which is securely sealed and placed in liquid Nitrogen. (Mycelium treated in this manner can be stored for extended periods at -80°C).

2.3.13. Protein Extraction Protocol

Autoclaved mortars and pestles are cooled to room temperature and swabbed with pure ethanol then chilled using liquid Nitrogen. A spatula is chilled the same way, and then used to transfer the frozen mycelial mat to the chilled mortar. The chilled pestle is then used to grind the mycelial mat to a fine powder (continuously adding liquid Nitrogen to prevent thawing). 500 μ l by volume of this powder is transferred to a 2ml micro-tube along with 1000 μ l of 2X loading buffer (prepared according to standard protocols in Sambrook and Russell, 2001a). The microtube is placed in a heat block at 100°C for 5 minutes and then allowed to cool at room temperature. Samples treated in this manner can then be stored indefinitely at -20°C.

2.3.14. SDS-PAGE

SDS-PAGE was carried out according to standardized protocols from *Molecular Cloning: a Laboratory Manual* (Sambrook and Russell,

2001a) in a Criterion™ Cell System (BIO-RAD) with a 12% resolving gel and a 5% stacking gel. A pre-stained marker (10-100kD) was used for size estimation (BIO-RAD). Electrophoresis was allowed to proceed at 100 V for two hours. Two gels with equivalent loading were run simultaneously, the first was stained with Coomassie blue as per standardized protocol in *Molecular Cloning: a Laboratory Manual* (Sambrook and Russell, 2001a) the second was used for Western blotting.

2.3.15. Western Blot

The procedure was carried out as per the standardized protocol in *Molecular Cloning: a Laboratory Manual* (Sambrook and Russell, 2001b) in a Criterion™ Cell System (BIO-RAD). The transfer was carried out at 100V for 2 hours at 4°C. Detection (using HEX specific antibodies, secondary antibody tagged with HRP) was made using the Immobilon™ Western Chemiluminescent HRP substrate system (Milipore).

2.3.16. Functional assay

N. crassa strains were inoculated on 1ml VN slants containing the requisite supplements and allowed to grow to complete conidiation (7 days). Conidia were then harvested in 5 ml chilled distilled water and kept on ice until assayed. A haemocytometer (Hausser Scientific) was used to count the number of conidia per ml. Four of the smallest ruled squares in the upper left corner of the grid were used for counting conidia. The average number of conidia from three different isolates of each strain were

then used to calculate a conidial average in each mutant (See Appendix 3 for full list of calculations).

The following formula was used:

Number of conidia in upper 4 squares x 25 x 10⁴ = number of conidia/ ml³

4

 $\frac{\text{conidia/ ml}^3}{1000} = \text{number of conidia/ ml}$

Number of conidia/ml x 5 = number of conidia/ml of VN

3.0 RESULTS

3.1 Introducing mutations into Neurospora crassa

In order to test the hypothesis that some aspect of HEX self-assembly controls the formation of large peroxisomes, mutagenesis of key HEX Group contacts was carried out. This was achieved by substitution of key residues in Groups I, II and III with corresponding residues from the eIF-5a consensus sequence (Figures 2.a and b). All mutations were introduced via site directed mutagenesis. The template used for mutagenesis was the *hex* gene in the *hex1.HYG.integration cassette* containing a genomic segment of the *hex* gene. The introduction of this construct into a strain of *N. crassa* allowed for homologous recombination of transformant DNA. The simultaneous directed integration of the *Hygromycin*^G gene downstream of the *hex* gene (located on chromosome 1 of the *N. crassa* genome) allowed for selection of positive transformants (Figure 3). The procedure was carried out in this manner to eliminate the possibility of mutant phenotypes caused by incorrect integration.

3.2 Steady state levels of HEX in mutants

Mutants were grown in liquid culture and extracts were prepared (as described in the section *Materials and Methods*). Western blotting was used to determine the steady-state level of HEX protein and to demonstrate that the mutations incorporated did not affect the level of HEX expression. Figure 4.b shows that all mutants (with the exception of

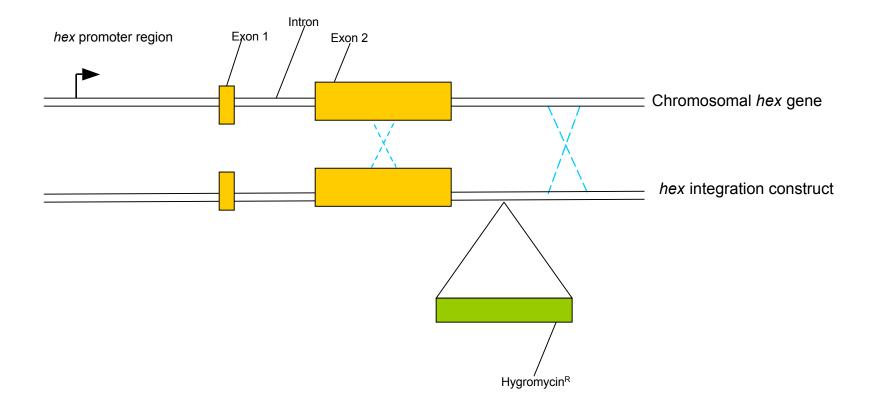
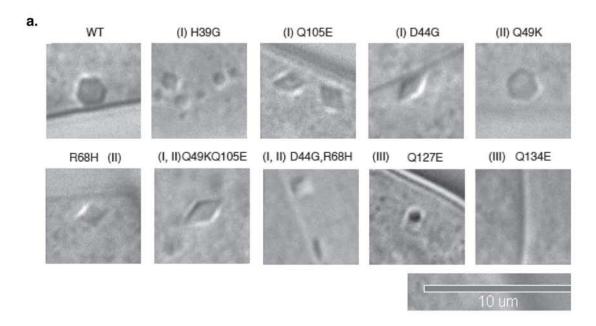


Figure 3. Construct used for targeted insertion of vector containing mutagenized hex gene

 Δhex , which was used as a negative control) displayed amounts of HEX equivalent to those present in wild type. This finding suggests that defects in self-assembly do not cause HEX turnover. Moreover, they suggest that differences in HEX crystal formation are dependent only on the physical properties of HEX.


3.3 HEX crystal morphology

3.3.1. Group I

Wild type HEX crystals assume the form of a hexagonal plate (Jedd and Chua, 2000), which can readily be observed by light microscopy (Figure 4.a). The Hydrogen bond disrupting the Group I mutation, Q105E (Figure 4.a) and the salt bridge disrupting mutation, D44G, both produce crystalline structures. Surprisingly, both of these possess a rhomboidal form (Figure 4.a). This is in stark contrast to the Group I π -bond mutant H39G (this bond stabilizes the salt-bridge), which produces refractive spheroidal assemblies that are known to provide little Woronin body function (Jedd and Chua, 2000). Level of function in mutants was

_

A series of refractive needle-like structures were also observed. However, without crystallographic data, it is unclear whether the two structures are related. Some of the needles seem to be equivalent in size to the sides of the rhomboids, while others are far too large to be part of the same structure. While the rhomboidal crystals seem to be capable of occluding septal pores, the needles themselves do not seem to possess any such property. Some of the larger needles seem, on fine adjustment, to resemble plates, although the resolution on our microscope is not high enough to document their exact nature. A matter of some interest, however, is that the needle-like structures always dock (onto hyphal walls) in the same orientation; that is, with their narrowest plane facing the observer. The structural re-arrangement responsible for this selectively oriented docking may be a result of the mutations in the Group I contacts. However, further research is required to resolve this matter.

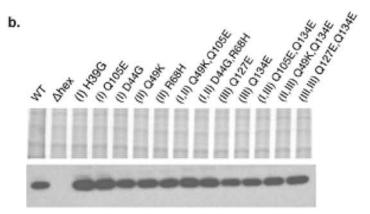


Figure 4.

- a. HEX crystals observed in mutants. Roman numerals denote group number.
- b. Coomassie stained SDS-PAGE gel showing equivalent loading of samples, corresponding Western blot with equivalent levels of HEX protein.

assessed by quantifying their level of conidiation and comparing it against that of the wild type (Figure 5). In HEX mutants, aerial hyphae that undergo tip lysis are unable to repair this damage and, as a result, continue to bleed protoplasm instead of making conidia (Yuan *et al.*, 2003). Q105E and D44G mutants are capable of producing relatively normal levels of conidia (Figure 5), suggesting that the rhomboidal crystalline structures retain sufficient structural integrity for function. Together, these data confirm previous work, and suggest that different mutations in the Group I interface can have very dissimilar effects on the assembly of HEX. They further suggest that alternate pathways to HEX crystallinity may be accessed in the context of certain mutations².

3.3.2. Group II

To further probe the structure-function relationship of HEX Group contact residues, the Group II hydrogen bond disrupting mutation Q49K and the salt-bridge disrupting mutation R68H were created. Q49K Woronin bodies are hexagonal in shape (Figure 4.a) and almost perfectly functional as is evidenced by their conidia forming ability (Figure 5). Mutation of the Group II Salt bridge contact, R68H results in the formation of a rhomboidal Woronin body similar to that exhibited by the Group I mutants, Q105E and D44G (Figure 4.a). Both Group II mutants display a

_

² Microscopic observations suggest another phenomenon particular to Group I mutants: a marked increase in the total number of Woronin bodies per hyphal compartment. Isolates of H39G, D44G and Q105E all display numerous mutant Woronin bodies docked along compartment walls as well as adjacent to septa. It is not clear at this point whether the Group I contact is essential for controlling Woronin body number. However, there does seem to be a correlation, which could be investigated further.

FUNCTIONAL ASSAY

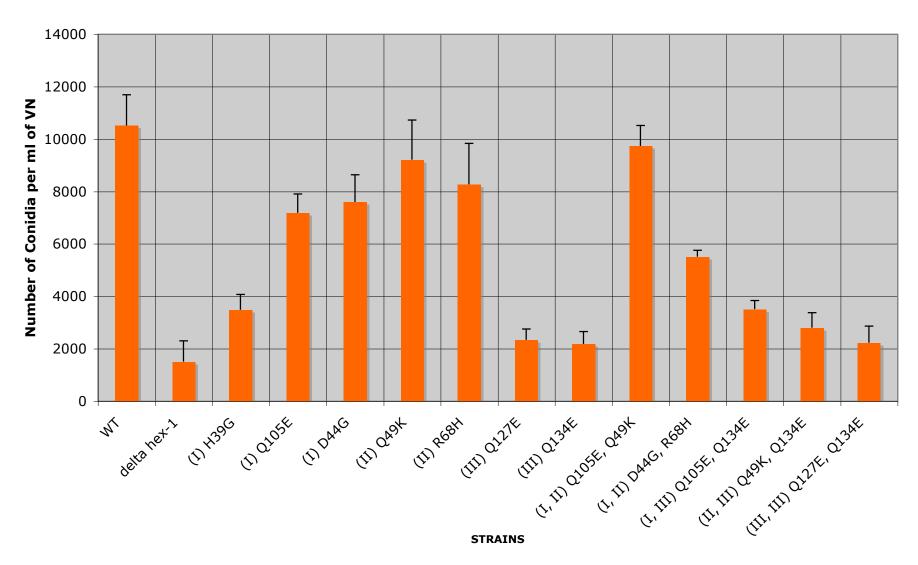


Figure 5. Graphical representation of function as depicted by conidiation frequency in various strains of *Neurospora crassa*.

slight reduction in Woronin body function, suggesting that these residues are not entirely dispensible for function. Interestingly, mutations of both Group I and Group II contacts can lead HEX to access an alternate crystal form.

3.3.3. Group III

The Group III mutants, Q127E and Q134E (Figure 4.a), exhibit the most significant effects on HEX form and function. In Q127E mutant hyphae, refractive spheroidal Woronin bodies (similar to those observed in the Group I mutant H39G) are observed. These spheroidal Woronin bodies are poorly functional (i.e. cause a measurable decrease in conidiation) and, like the spheroidal Woronin bodies seen in the H39G mutant, lack the core density to resist turgor pressure. As a result they are deformed out of septal pores following tip lysis (see Appendix 3 and Figure 5 for a numerical comparison of conidiation efficiency in different mutant strains). The Group III mutant Q134E (Figure 4.a) does not present any observable refractive structures under light field microscopy. As the mutant protein is expressed at normal levels, future experiments could utilize detection techniques such as immunofluorescence to visualize the protein's exact localization.

3.4 Double mutants

To examine the interaction between different group residues, a variety of double mutants were constructed. The combined Group I and

Group II salt bridge mutants, (D44G and R68H) while capable of producing observable refractive structures, were significantly impaired in HEX function as reflected by defects in conidiation (Figure 5). The Group III Q134E mutation produced the strongest effect: all double mutants made in combination with Q134E were phenotypically similar to Q134E, suggesting that this mutation is epistatic to the others.

3.5 Larger peroxisomes in mutants

As mentioned previously, apical cells of *N. crassa* possess a group of large peroxisomes that can grow up to 4 mm in diameter. These appear to be engaged in HEX crystal production (Tey *et al.*, 2005). To assess peroxisome size, GFP-PTS1 was transformed into Group contact mutants and examined under a fluorescence microscope. With the exception of Q134E all of the group mutants exhibit a distinct population of large peroxisomes observable in the apical compartment. In contrast, the Q134E mutant (as well as all mutants containing combinations of Q134E with any other Group contact mutant), display only one population: that of small peroxisomes. In addition, in the apical cells of Q134E mutant hyphae, GFP-PTS1 accumulates in the cytosol, suggesting that the Q134E mutant is a dominant inhibitor of GFP-PTS1 import.

4.0 Discussion

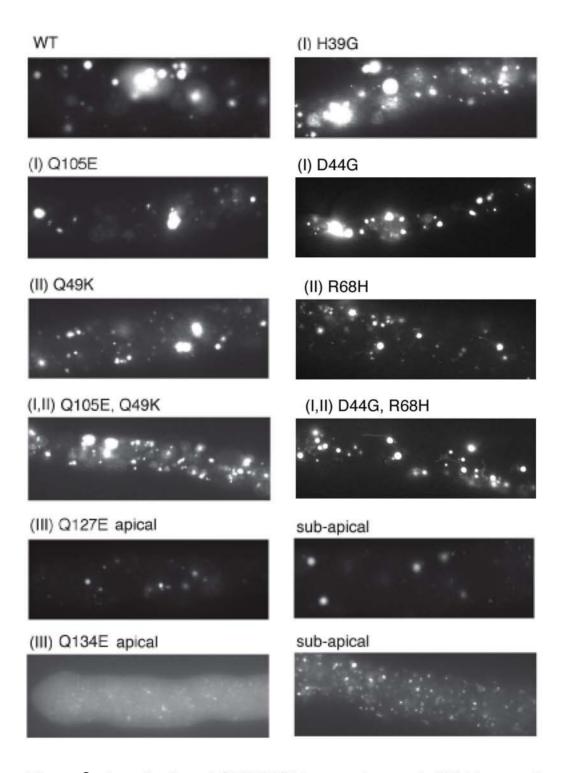
4.1 Targeting hex mutants to the endogenous hex locus

This project has developed a system for the systematic analysis of HEX mutants expressed from their endogenous chromosomal locus. All mutants were introduced to the chromosome by homologous recombination and selected through a hygromycin resistance cassette simultaneously introduced downstream of the *hex* gene (Figure 3). This is an important technical advance as it allows for the study of HEX mutant phenotypes in isolation. Western blotting confirmed equivalent protein expression levels in all the introduced mutants (Figure 4.b). As some of these Woronin body mutants have significant defects in self-assembly, the data strongly suggests against the presence of a surveillance mechanism recognizing unassembled HEX protein. Equivalent levels of protein also suggest that defects in crystal assembly are determined only by the altered character of the HEX protein and not by differences in its expression.

4.2 HEX is robustly self-assembling

Previous research has demonstrated that HEX self-assembly is a prerequisite for Woronin body function: the Group I mutant H39G (Figure 4.a) produces spheroidal Woronin bodies with a soluble non-crystalline core (Yuan *et al.*, 2003). Despite producing a refractive core, this mutant is unable to complement conidiation defects presented by the *hex* deletion

mutant, Ahex (Yuan et al., 2003). Data from the current investigation confirms this previous analysis (Figure 5). Surprisingly, other mutants in both Group I and Group II that were predicted to have a significant impact on self-assembly did not cause as extreme an effect as did H39G. For example, the Group I and II salt-bridge residues - D44G and R68H respectively- had relatively little effect on HEX function (Figure 5). In addition, these mutants along with other Group I and II mutants produced refractive structures with a rhomboidal morphology (Figure 4.a). In the HEX crystal structure, Group I and II interfaces produce a helical filament (Figure 1.d) that is cross-linked by the Group III interaction to produce the overall hexagonal geometry of the HEX crystal. This data suggests that the Group I and II mutants are able to access an alternative mode of self-assembly and crystal packing. In this case, understanding the precise arrangement of monomers in the crystal will require resolution of mutant crystal structures.


From a biological perspective, this data demonstrates that HEX is robustly self-assembling and capable of retaining this self-assembly in a variety of mutant states. However, minor defects in conidiation displayed by these mutants as well as the more severe defect presented by the R68H/ D44G double mutant (Figure 5) suggest that these residues do play a significant role in HEX self-assembly.

4.3 The Group III mutant, Q134E is devoid of refractive structures

Group III mutants Q127E and Q134E both displayed severe effects on HEX crystal structure and function (Figures 4.a, and 5). The Q127E mutant formed spheroidal refractive structures similar in appearance to those observed in the Group I mutant H39G (Figure 4.a). Q134E also had a greater impact on HEX crystal structures to the extent that none could be observed (Figure 4.a). In addition, these mutants had the greatest impact on HEX function as supported by corresponding defects in conidiation (Figure 5). The Q134E mutant retained all these characteristics in combination with Group I, II and III mutations, suggesting that the Q134E mutation cannot be suppressed by other Group contact mutations and therefore is epistatic over all the others.

4.4 The Q134E mutant fails to form large peroxisomes and exerts a dominant effect on the import of GFP-PTS1

In order to examine the peroxisomes in the group mutants, they were transformed with a peroxisomally localized GFP marker (GFP-PTS1) expressed from the apically localized *hex* promoter. Wild type hyphae transformed with this construct displayed two distinct populations of both large and small peroxisomes in the apical compartment (Figure 6). These were also observed in all the mutants except Q134E and double mutants thereof. Moreover, a significant level of cytosolic GFP-PTS1 was observed in all mutants containing the Q134E mutation (Figure 6). In sub-apical hyphal compartments, the level of cytosolic GFP-PTS1 was found to be

Figure 6. Localization of GFP-PTS1 to peroxisomes in Wild type and mutant hyphae. Roman numerals in brackets denote group number. Note the presence of two distinct populations of peroxisomes (small and large) visible in all strains except Q134E.

diminished and a uniform population of small peroxisomes was more clearly observable. These data suggest that the Q134E mutant has a strong dominant negative effect on the import of GFP-PTS1. Taken together, these observations imply that the Q134E mutation affects not only the cytosolic assembly and import of HEX, but also that it has a dominant effect on the import of *other* peroxisomally tagged proteins. What follows is a model explaining the process involved in these interactions (Figure 7).

In wild type hyphae, HEX monomers oligomerize in a Q134 dependent manner before being transported to the peroxisomal membrane by the carrier protein PEX5 (Figure 7). In this case, depending on the degree of HEX oligomerization, a single PEX5 chaperone may be sufficient to target many HEX proteins to the peroxisomal membrane translocation machinery. Instances of proteins 'piggy-backing' a ride on matrix-targeted proteins are well documented in various systems (Glover et al., 1994, Subramani et al., 2000). Since the Group III contacts are integral to HEX assembly, cytosolic oligomers are unable to assemble in their absence. Subsequently, in the absence of cytosolic oligomerization each PEX5 molecule can ferry only a single unit of HEX to the peroxisomal membrane at a time. As a result, PEX5 levels become ratelimiting for matrix localization (Figure 7). This explains the cytosolic accumulation of GFP-PTS1 in the apical compartments of Q134E expressing individuals (Figure 6). An effect on the rate of import is also confirmed by the eventual reduction of the cytosolic signal in sub-apical

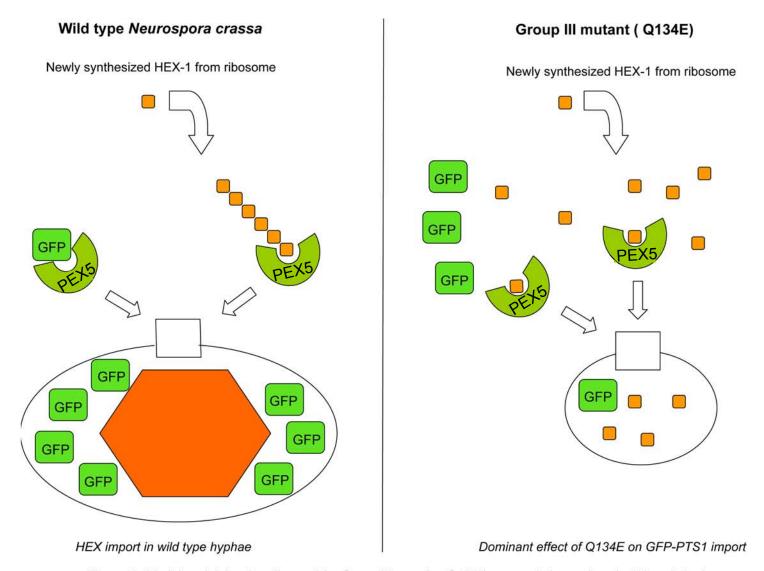


Figure 7. Model explaining the effects of the Group III mutation Q134E on protein import into the Woronin body.

hyphae, which are older and have had more time to import GFP-PTS1 into the peroxisomal matrix.

The Q134E mutant presents evidence for the importance of a Group III oligomer in the cytosol. However, the process by which the oligomer engenders increased peroxisome size is still not clear. Positive feedback between the HEX oligomer and some component of the peroxisome biogenesis machinery may provide a basis for understanding the phenomenon. In this case, the oligomer may recruit a component of the peroxisome import machinery thereby favouring the recruitment of additional HEX oligomers. Future work can be directed at addressing this hypothesis.

5.0 Conclusions

This project has investigated the role of HEX self-assembly in determining Woronin body genesis specifically in addressing the question of whether some aspect of the HEX matrix controls peroxisome size. Mutations in lattice forming residues (Group I, II and III) were systematically analyzed and the Group III residue Q134 was identified as playing a key role. While visible refractive structures and two distinct peroxisomal populations are maintained in all other mutants, the Q134E mutation eliminates both visible refractive structures and the larger population of peroxisomes. The Q134E mutation also has a dominant effect on the import of a peroxisomally targeted marker, GFP-PTS1, implying that this Group contact is important for efficient transport into the peroxisome matrix. Additionally, the Q134E mutant phenotype persists in the presence of all other group mutations indicating that Q134E mutation is epistatic over all the other mutations. These results are consistent with a model wherein the Group III oligomer promotes peroxisome growth through a positive feedback mechanism. Future work can focus on the Group III interface and cytosolic events to determine the precise mechanism(s) involved in the determination of peroxisome size.

Bibliography

Alexopolous, C. J., Mims, C. W. and Blackwell, M. (1996) Introductory Mycology 185-186 John Wiley and Sons, New York

Baylis, J. R. and DeBusk, A. G. (1967)

Estimation of the frequency of multinucleate conidia in microconidiating strains

Neurospora Newsletter 11: 9-13

Berbee, M. L. and Taylor, J. W. (2001) Fungal molecular evolution: Gene trees and geological time 229-245 The Mycota Springer-Verlag, Berlin Heidelberg

Bracker, C. E. (1967)
Ultrastructure of fungi
Annual Review of Phytopathology 5: 343-374

Brenner, D. M. and Carroll, G. C. (1968)
Fine-structural Correlates of Growth in Hyphae of Ascodesmis sphaerospora
Journal of Bacteriology 95: (2) 658-671

Bruns, T. D., Vilgalys, S., Barns, D., Gonzalez, d. s., Hibbett, D. J., Lane, L., Simon, S., Stickel, T. M., Szaro, W. G., Weisbur, W. G. and Sogin, M. L. (1992)

Evolutionary relationships within the fungi: analyses of nuclear small subunit RNA sequences

Molecular Phylogenetics and Evolution 1: 231-241

Buller, A. H. R. (1933a)
Woronin bodies and their movements
127-130
Researches on Fungi
Longmans, Green and Co., London

Buller, A. H. R. (1933b)

The formation of hyphal fusions in the mycelium of the higher fungi 1-74

Researches on Fungi

Longmans, Green and Co., London

Chung, S. I., Park, M. H., Folk, J. E. and Lewis, M. S. (1991)

Eukaryotic initiation factor 5A: the molecular form of the hypusinecontaining protein from human erythrocytes.

Biochimica et Biophysica Acta 1076: 448–451

Cole, L., Orlovick, D. A. and Ashford, A. E. (1998)

Structure, function and evolution of vacuoles in filamentous fungi

Fungal Genetics and Biology 24: 86-100

Collinge, A. J. and Markham, P. (1982)

Hyphal tip ultrastructure of *Aspergillus nidulans* and *Aspergillus giganteus* and possible implications of Woronin bodies close to the hyphal apex of the latter species

Protoplasma 113: 209-213

Collinge, A. J. and Markham, P. (1985)

Woronin bodies rapidly plug septal pores of severed *Penicillium chrysogenum* hyphae

Experimental Mycology 9: 80-85

Curach, N. C., Te'o, V. S., Gibbs, M. D., Bergquist, P. L. and Nevalainen, K. M. (2004)

Isolation, characterization and expression of the hex1 gene from *Trichoderma reesei*

Genes and Development 331: 133-140

Dhavale, T. and Jedd, G. (2006)

Structure, function and evolution of the fungal Woronin body In press.

... proco.

The Mycota

Springer-Verlag, New York, In press.

Dodge, B. O. (1912)

Methods of culture and the morphology of the archicarp in certain species of the Ascobolaceae.

Bulletins of the Torrey Botanical Club 39: (139-197) 139

Gallagher, K. L. and Benfey, P. N. (2005)

Not just another hole in the wall: understanding intercellular protein trafficking

Genes and Development 19: 189-195

Glass, N. L., Rasmussen, C., Roca, G. and Read, N. D. (2004) Hyphal homing, hyphal fusion and mycelial interconnectedness

Trends in Microbiology 12: (3) 135-141

Glover, J. R., Andrews, D. W. and Rachubinski, R. A. (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proceedings of the National Academy of Sciences, USA, 91: 10541-10545

Guerin, N. A. and Larochelle, D. A. (2002)

A user's guide to restriction enzyme-mediated integration in Dictyostelium.

Journal of Muscle Research and Cell Motility 23: (7-8) 597-604

Hofmann, W., Reichart, B., Ewald, A., Müller, , E., S., I., , Stauber, R. H., Lottspeich, F., Jockusch, B. M., Scheer, S. U., Hauber, J. and Dabauvalle, M. C. (2001)

Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin.

Journal of Cell Biology 152: 895-910

Horowitz, N. H. and Macleod, H. (1960) The DNA content of Neurospora nuclei Genetics Bulletin 17: 6-7

Jedd, G. (2006)

Natural history of the fungal hypha: how Woronin bodies support a multicellular lifestyle

In press.

Fungi in the Environment Cambridge University Press,

Jedd, G. J. and Chua, N.-h. (2000)

A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane

Nature Cell Biology 2: 226 - 231

Krypides, N. C. and Woese, C. R. (1998)

Universally conserved translation initiation factors

Proceedings of the ntional Academy of Sciences of the USA 95: 224-228

Lim, D. B., Hains, P., Walsh, B., Bergquist, P. and Nevalainen, H. (2001) Proteins associated with the cell envelope of *Trichoderma reesei*: A proteomic approach

Proteomics 1: 899-909

Lutzoni, F., Kauff, F., Cox, J. C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Shcoch, C., Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, T., O'Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R. C., Hosaka, K., Lim, Y.-W.,

Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. and Vilgalys, R. (2004) Assembling the fungal tree of life: Progress, classification and evolution of subcellular traits

American Journal of Botany 91: 1446-1480

Markham, P. and Collinge, A. J. (1987) Woronin bodies of filamentous fungi. FEMS Microbiology Reviews 46: 1-11

Maruyama, J., Juvvadi, P. R., Ishi, K. and Kitamoto, K. (2005)

Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae.

Biochemical and Biophysical Research Communications 331: 1081-1088

Momany, M., Richardson, E. A., Van Sickle, C. and Jedd, G. (2002) Mapping Woronin body position in *Aspergillus nidulans* Mycologia 94: (2) 260-266

Muller, W. H., Montijn, R. C., Humber, B. M., van Aelst, A. C., Boon, E. J. M. C., van der Krift, T. P. and Boekhout, T. (1998) Structural differences between two types of basidiomycete septal pore caps

Microbiology 144: 1721-1730

Perkins, D., Radford, A. and Sachs, M. (2001a) Alphabetical entries for genes and other loci 93 The Neurospora Compendium Academic Press, California

Perkins, D., Radford, A. and Sachs, M. (2001b) Alphabetical entries for genes and other loci 137-138 The Neurospora Compendium Academic Press, California

Perkins, D. D., M. R. Smith and Galeazzi, D. R. (1973) New markers and linkage data. Neurospora Newsletter 20: 45-49

Rosorius, O., Reichart, B., Kratzer, F., Heger, P., Dabauvalle, M.-C. and Hauber, J. (1999)

Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1.

Journal of Cell Science 112: 2369-2380

Rossier, C., Oulevey, N. and Turian, G. (1973)

Electron microcsopy of selectively stimulated microconidiogenesis in wild type *Neurospora crassa*

Archives of Microbiology 91: (4) 345-353

Rustom, A., Saffrich, R., Markovic, I., Wlather, P. and Gerdes, H.-H. (2004)

Nanotubular highways for intercellular organelle transport

Science 5660: 1007-1010

Sambrook, J. and Russell, D. W. (2001a)
Appendix of Protocols
A8.40-A48.49
Molecular Cloning a Laboratory Manual
Cold Spring Harbor Laboratory Press, New York

Sambrook, J. and Russell, D. W. (2001b)
Appendix of Protocols
A9.28-A29.37
Molecular Cloning a Laboratory Manual
Cold Spring Harbor Laboratory Press, New York

Sheperd, V. A., Orlovich, D. A. and Ashford, A. E. (1993) Cell-to-cell transport via motile tubules in growing hyphae of a fungus. Journal of Cell Science 105: (1173-1178)

Sosinsky, G. E. and Nicholson, B. J. (2005) Structural organization of gap junction channels Biochemica Biopysica Acta 1711: 99-125

Soundararajan, S., Jedd, G., Li, X., Ramos-Pamplona, M., Chua, N.-h. and Naqvi, N. I. (2004)

Woronin body function in *Magnaporthe grisea* ss essential for efficient pathogenesis and for survival during nitrogen starvation stress Plant Cell 16: 1564-1574

Subramani, S., Koller, A. and Snyder, W. B. (2000) Import of peroxisomal matrix and membrane proteins Annual Reviews in Biochemistry 69: 399-418

Tenney, K., Hunt, I., Sweigard, J., Pounder, J. I., McClain, C., Bowman, E. J. and Bowman, B. J. (2000)

Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores.

Fungal Genetics Biology 3: 205-217

Ternetz, C. (1900)

Protoplamabewegung und Fruchtkoperbildung bei Ascophanus carneus

Jahrb. f. wiss. Bot. Bd. XXXV: 273-312

Tey, W. K., North, A. J., Reyes, J. L., Lu, Y. F. and Jedd, G. (2005)

Polarized gene expression determines woronin body formation at the leading edge of the fungal colony.

Molecular Biology of the Cell 16: (6) 2651-2659

Trinci, A. P. J. (1971)

Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media.

Journal of General Microbiology 67: 325-344

Trinci, A. P. J. and Collinge, A. J. (1974)

Occlusion of the septal pores of damaged hyphae of Neurospora crass by hexagonal crystals

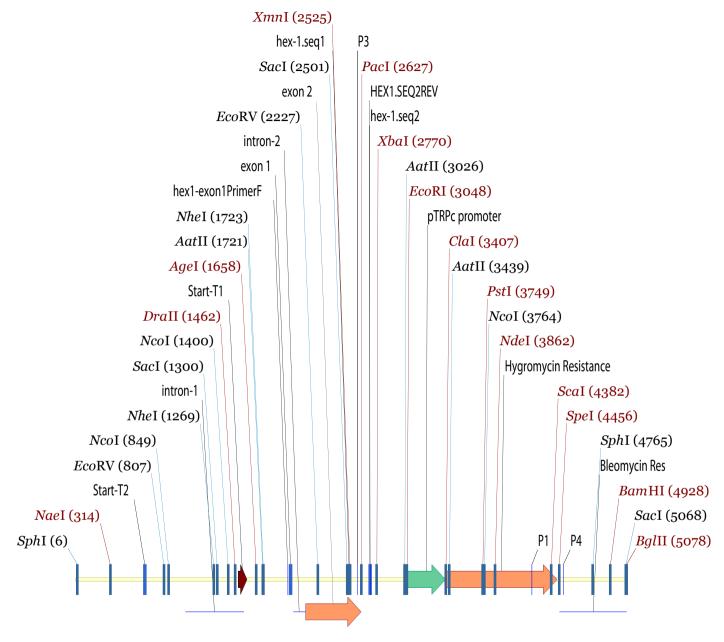
Protoplasma 80: 57-67

Woronin, M. (1864)

Entwicklungsgeschichte der Ascobolus pulcherrimus Cr. Und eniger Pezizen

Abh. Senkenb. Naturforsch. 5: 333-334

Yuan, P., Jedd, G., Kumaran, D., Swaminathan, S., Shio, H., Hewitt, D., Chua, N.-H. and Swaminathan, K. (2003)


A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa

Nature Structural Biology 10: (4) 264-270

Zuk, D. and Jacobson, A. (1998)

A single amino acid substitution in yeast eIF-5A results in mRNA stabilization.

EMBO Journal 17: 2914-2925

hex1.HYG.integration.cassette+primers 5082 bp

Appendix 1. Construct used for mutagenesis of group contacts in hex-1. Figure created using Vector NTI.

	Sphl									
1	···········	CCCACACAAA	TCGACTGAAT	CCCACMCCAA	CAACACCCCM	CCCACACMCA	CCCCCMMCMM	CACCMACCMC	7 7 M C C 7 C M M C	
1			AGCTGACTTA						TTAGCTGAAG	
101	GAAGCCAGAG	TCATTCTTTT				AGGAAAGACT		CCGTAGAAAA	CCGCCAAACT	
101		AGTAAGAAAA	GTAGTTAGAA		TTTCCAACTA	TCCTTTCTGA		GGCATCTTTT	GGCGGTTTGA	
201			CAGCATCTTC							
201			GTCGTAGAAG							
		Nael								
301	AGGTCACCAA	GCCGGCTCAT	GGTGCTCACC	ATGACCACGG	ССАТБАББАС	CACCATCATG	СТССССТССС	TCCGGCTGTC	CATGAGCTTC	AGCCTCCCCG
001		CGGCCGAGTA	CCACGAGTGG	TACTGGTGCC		GTGGTAGTAC		AGGCCGACAG	GTACTCGAAG	TCGGAGGGC
401	TGTAGAGCAG	CGCATTGTCG	AGGAGGAGAT	CCACATCACC	CGTGAGGAGG	AGGTTCACAA	GGAAGATCAC	CACAAGGAGC	ATCACCACCA	CCATCGCCCT
101	ACATCTCGTC	GCGTAACAGC	TCCTCCTCTA	GGTGTAGTGG		TCCAAGTGTT	CCTTCTAGTG	GTGTTCCTCG	TAGTGGTGGT	GGTAGCGGGA
501	GCCAGCGCCC	ACTCGCACCG	CTCTCACCAT	TCGCATCACT	CTCACAAGCC	TCACTCACCC	CATATCCCTC	ACCTTCATCT	TCACAAGAAC	GAGGCCACC
	CGGTCGCGGG	TGAGCGTGGC	GAGAGTGGTA	AGCGTAGTGA	GAGTGTTCGG	AGTGAGTGGG	GTATAGGGAG	TGGAAGTAGA	AGTGTTCTTG	CTCCCGGTGG
601	ACCACCATCA	CCACCACCAC	CATCACGACG	AGGAGGAGGA	CCACAAGGAG	CACAAGCACC	ACCTCATTGA	CCACCTCACT	GACAAGCTCC	CCCACATCCA
	TGGTGGTAGT	GGTGGTGGTG	GTAGTGCTGC			GTGTTCGTGG		GGTGGAGTGA	CTGTTCGAGG	GGGTGTAGGT
701	CCGCGCTCAC	TCGGCCAGGG	ACGAGGAACA			ACCACCTCAT			ACTCCCACCA	CTCTTCCCAC
	GGCGCGAGTG		TGCTCCTTGT		CTGGTGTTCG		ACTGTTCCAA	GTGGCAGGAG	TGAGGGTGGT	GAGAAGGGTG
	EcoRV					col				
801	CACGATATCG	TCGAGGTGCA	CAAGACGGAG	CATATCCATA			TCCCACGGCT	CTCATGGCTC	CCACGGCTCC	CACGTTGGTC
	GTGCTATAGC	AGCTCCACGT	GTTCTGCCTC	GTATAGGTAT	GGGTGTTGGT	ACCGGTGCCG	AGGGTGCCGA	GAGTACCGAG	GGTGCCGAGG	GTGCAACCAG
901	CGGTGATCGT	TCCCGAGCCC	AAGCACAACG	ACCACCACCA	CGCGCCGCAC	TATCCTCTGG	AGCCTCAGGA	GCACCATTCG	CACACTCATG	TGCACTCGCA
	GCCACTAGCA	AGGGCTCGGG	TTCGTGTTGC	TGGTGGTGGT	GCGCGGCGTG	ATAGGAGACC	TCGGAGTCCT	CGTGGTAAGC	GTGTGAGTAC	ACGTGAGCGT
1001	CACCAGGTGA	GTTGATTGTT	СТТТТТТТТТ	TTCTTGCGTT	CTTTTATTTT	TTTTATCCTA	GTGCAAGATC	CGTTTTTGCG	TTCCACATCC	CGTTACCGTT
	GTGGTCCACT	CAACTAACAA	GAAAAAAAAA	AAGAACGCAA	GAAAATAAAA	AAAATAGGAT	CACGTTCTAG	GCAAAAACGC	AAGGTGTAGG	GCAATGGCAA
1101		CTTCCAGCCT		ACCAGACTCG	CTTTTCGCCC	AGGTGGGATT	GCTGGCGTGT	GTCTGCTTCC	GCGGTGGTAA	CATTGAGCTG
	GGTAGGAAAG	GAAGGTCGGA	GGCAAAACTT	TGGTCTGAGC		TCCACCCTAA				
							, N	hel		Sacl
1201	CAAACCAGTC	CAGCTGGTAG	ACCCCTGGTA	GAAGCGGCTG	GGTCTCGCGC	GAATGCGTTG			GTCTAGGGGC	
	GTTTGGTCAG	GTCGACCATC	TGGGGACCAT	CTTCGCCGAC	CCAGAGCGCG	CTTACGCAAC	GCTTTACCGA	TCGACCTCGC	CAGATCCCCG	ACCGCTCGAG
										Ncol
1301			GCTTTTTTGC							TATTAGCTCC
	CATTTGGTCG		CGAAAAAACG							
	Ncol						Drall			
1401	ATGGTCCACT	TACGATCAAG	GGACGGAGCG	GGAAAAATAC	TGTACCAAGT	CCCCTTTTCG		CTCTCAAAGC	CCTCTCATAT	CTGCTCGTCT
	TACCAGGTGA	ATGCTAGTTC	CCTGCCTCGC	CCTTTTTATG	ACATGGTTCA	GGGGAAAAGC	CCAGGGTCGG	GAGAGTTTCG	GGAGAGTATA	GACGAGCAGA
1501	CTACTGTTCT	CTACGCCTAT	ATCTAACCAG	CAAATCCCTC	CAGTGGTCAC	AACTTTTCTG	AACCATCCTT	CGAAAAGCCT	CATCATCACC	ACTCCTCTTC
	GATGACAAGA	GATGCGGATA	TAGATTGGTC	GTTTAGGGAG	GTCACCAGTG	TTGAAAAGAC	TTGGTAGGAA	GCTTTTCGGA	GTAGTAGTGG	TGAGGAGAAG
						Age	el			
1601	TCATCATCAA	CAATCCTCCG	ACAGCGCCAG	CGCTATCGAC	ATTGCTGAGC			CAGCCCGCCT	ACCACAACGA	AGGTCACGTA
	AGTAGTAGTT	GTTAGGAGGC	TGTCGCGGTC	GCGATAGCTG	TAACGACTCG	TAGTTATGGC	CAGGTTCAAG	GTCGGGCGGA	TGGTGTTGCT	TCCAGTGCAT
			Nhel							
		Aatll								
1701		CCGTCGACGT	CGCTAGCTAC							
	CAGCCAAGGT	GGCAGCTGCA	GCGATCGATG	GCAGGGTCGG	TGTTCCTCAG	GTGGGTGCAG	CTGCTGTGAT	GACAGCTGAA	GGGACGTGAG	GGACGTGGGG

1801	CTAGATCCAC TT	יכייים כם בה	GAGAAGATCG	ттстссасса	GACTACCGTC	GACTTCCCCA	ССТАСССТСС	GGCTCATAAG	AAGGCACCCA	GCCTCTACAG
1001	GATCTAGGTG AA									
1901	CGAGTCTACT GT	CGACATCC	AAGAAAACGA	ACTTTCTCTA	GTCAAAGTTT	CCAACAACAA	CAACACATCT	TCCAAAATGG	GCTACTACGA	CGACGACGGT
	GCTCAGATGA CA	GCTGTAGG	TTCTTTTGCT	TGAAAGAGAT	CAGTTTCAAA	GGTTGTTGTT	GTTGTGTAGA	AGGTTTTACC	CGATGATGCT	GCTGCTGCCA
2001	AAGCACCCAT CA	TCCATCAT	CCATCCTCAT	TATTCATCTT	TCCTTCAGAC	ACTTTGACTC	GTCTGTCTGT	CTGTCTTCTC	AAAACAATAA	GCTGACCATG
	TTCGTGGGTA GT	AGGTAGTA	GGTAGGAGTA	ATAAGTAGAA	AGGAAGTCTG	TGAAACTGAG	CAGACAGACA	GACAGAAGAG	TTTTGTTATT	CGACTGGTAC
+1		H	G H V	E A D	A A P R	A T T	G T G	T G S A	S Q T	V T I P
2101	TCTTCCTCCA TT				CCGCGCCCCG				TTCCCAGACT	GTCACCATCC
	AGAAGGAGGT AA	TGTCGAGT		CTCCGACTAC	GGCGCGGGGC	ACGGTGGTGG	CCGTGACCGT	GGCCGAGACG	AAGGGTCTGA	CAGTGGTAGG
			EcoRV							
+1	· P C H H	I R L	G D I	L I L Q	G R P	C Q V	I R I S	T S A	A T G	Q H R Y·
2201	CCTGCCACCA CA				GGGCCGCCCT					AGCACCGTTA
	GGACGGTGGT GT	'AGGCGGAG							CGGTGACCGG	TCGTGGCAAT
+1 ·	Y L G V D	L F	T K Q L	<u> </u>	S S F	V S N P	A P S	V V V	Q T M L	G P V
2301					TCCAGCTTCG				AGACCATGCT	CGGCCCGTC
	GGAGCCACAG CT	'GGAGAAGT	GGTTCGTCGA	GGTACTCCTC	AGGTCGAAGC	AGAGGTTGGG	ACGGGGGTCG	CAGCAGCAGG	TCTGGTACGA	
	F	D V 1	D 14 0	D 0 0		.	0 0 1		D 1/	Sacl
+1	F K Q Y	R V L	D M Q	D G S	I V A M	 		K Q N L	P V I	D Q S S·
2401	TTCAAGCAGT AC									
	AAGTTCGTCA TG			CTACCGAGGT	AGCAGCGGTA	CTGGCTCTGA	CCGCTACAGT	TCGTCTTGGA	GGGGCAGTAA	CTGGTCTCGA
	~	w	^~~~~	- 0 0 0	0 0 1	D V 1		0	- M	V 5 M K
+1		R L Q	 	S G R	G S V		V V S D		/	V D M K ·
2501	CTCTCTGGAA CC GAGAGACCTT GG				CGGCTCCGTC GCCGAGGCAG				GAGATGGCCG	TCGACATGAA
	GAGAGACCII GG	CAGAGGIC	Pacl	TCAGACCGGC	GCCGAGGCAG	GCACAGGAGC	AGCAGAGGCI	GGIGCCAGCG	CICIACCGGC	AGCIGIACII
+1 ·	K V V H G	i S R	L ************************************							
2601	GGTCGTCCAC GG			СССППООСПО						
2001					Δ ጥሮሮሮጥጥሮ Δ Δ	T T T T T T T T T T	ጥጥሮሮሮሮሮጥጥሮ	CTCCDDTCCC	ACACACGACA	СУСУСССТТС
								CTGGAATCGG GACCTTAGCC		
	CCAGCAGGTG CC						AAGGGGGAAG			
2701	CCAGCAGGTG CC	AAGGGCGG	AAATTAATTT	CCCAAGGCAG	TAGGCAAGTT	ATTATACTGA	AAGGGGAAG	GACCTTAGCC Xbal	TGTGTGCTGT	GTGTGCCAAC
2701		AAGGGCGG CTGCTTGG	AAATTAATTT	CCCAAGGCAG ATGGTCTCTC	TAGGCAAGTT TGATGCTGGG	ATTATACTGA TCTGATTTTT	AAGGGGGAAG TGCGCGCGTC	GACCTTAGCC Xbal TAGAAGATGG	TGTGTGCTGT GTTGGATAAT	GTGTGCCAAC TTGTACTGGT
	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC	AAGGGCGG CTGCTTGG GACGAACC	AAATTAATTT ATGTTATGAT TACAATACTA	ATGGTCTCTC TACCAGAGAG	TAGGCAAGTT TGATGCTGGG ACTACGACCC	ATTATACTGA TCTGATTTTT AGACTAAAAA	TGCGCGCGTC ACGCGCGCAG	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC	TGTGTGCTGT GTTGGATAAT CAACCTATTA	GTGTGCCAAC TTGTACTGGT AACATGACCA
2701	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC	CTGCTTGG CGACGAACC	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA	ATGGTCTCTC TACCAGAGAG AAATTGTAAT	TAGGCAAGTT TGATGCTGGG	TCTGATTTTT AGACTAAAAAGTCAGTAATA	TGCGCGCGTC ACGCGCGCAG CAACCTTAAA	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC	TTGTACTGGT AACATGACCA CAATTGATTG
	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT	AAGGGCGG CTGCTTGG GACGAACC CCCCATCC GGGGTAGG	ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG	TCTGATTTTT AGACTAAAAA GTCAGTAATA CAGTCATTAT	TGCGCGCGTC ACGCGCGCAG CAACCTTAAA GTTGGAATTT	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG	TTGTACTGGT AACATGACCA CAATTGATTG
2801	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA	AAGGGCGG CTGCTTGG GACGAACC CCCCATCC GGGGTAGG	ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT	TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG	TCTGATTTTT AGACTAAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC	TGCGCGCGTC ACGCGCGCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA
2801	GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA	AAGGGCGG CTGCTTGG GACGAACC CCCCATCC GGGGTAGG	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatil	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC	TCTGATTTTT AGACTAAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG	TGCGCGCGTC ACGCGCGCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA
2801	GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA	CTGCTTGG GACGAACC CCCCATCC GGGGTAGG ATTTGCAT	ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatil	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC	TCTGATTTTT AGACTAAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG	TGCGCGCGCAG ACGCGCCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG	GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT
2801	GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA TGTGTGAACA GC ACACACTTGT CG	CTGCTTGG GACGAACC CCCCATCC GGGGTAGG ATTTGCAT TAAACGTA	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatil GACGTCCTCG	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA ACTTCTGATT	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC ECOF GGTAGGGAAT	TCTGATTTTT AGACTAAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG	TGCGCGCGCAG ACGCGCCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT ATTGAAGGAG	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG CATTTTTGGG	GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC CTTGGCTGGA	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT
2801	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA TGTGTGAACA GC ACACACTTGT CG TCATAGTGCA TC	CTGCTTGG CGACGAACC CCCCATCC GGGGTAGG ATTTGCAT TAAACGTA CAGACTAGC	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatill GACGTCCTCG CTGCAGGAGC	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA ACTTCTGATT TGAAGACTAA	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC ECOF GGTAGGGAAT	TCTGATTTTT AGACTAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG TCAAGATGAT AGTTCTACTA	TGCGCGCGTC ACGCGCCCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT ATTGAAGGAG TAACTTCCTC	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG CATTTTTGGG GTAAAAAACCC	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC CTTGGCTGGA GAACCGACCT	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT GCTAGTGGAG CGATCACCTC
2801 2901 3001	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA TGTGTGAACA GC ACACACTTGT CG TCATAGTGCA TC AGTATCACGT AG GTCAACACAT CA	CTGCTTGG GACGAACC CCCCATCC GGGGTAGG ATTTGCAT TAAACGTA CAGACTAGC TCTGATCG	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatill GACGTCCTCG CTGCAGGAGC TTGGTTTAGT	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA ACTTCTGATT TGAAGACTAA CGTCCAGGCG	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC ECOF GGTAGGGAAT CCATCCCTTA	TCTGATTTTT AGACTAAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG TCAAGATGAT AGTTCTACTA TTTGTGTCGT	TGCGCGCGCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT ATTGAAGGAG TAACTTCCTC TTGACAAGAT	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG CATTTTTGGG GTAAAAACCC GGTTCATTTA	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC CTTGGCTGGA GAACCGACCT	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT GCTAGTGGAG CGATCACCTC CAGATCAGCC
2801 2901 3001	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA TGTGTGAACA GC ACACACTTGT CG TCATAGTGCA TC AGTATCACGT AG GTCAACACAT CA	CTGCTTGG CGACGAACC CCCCATCC GGGGTAGG ATTTGCAT TAAACGTA CTGATCG ATGCTATT TACGATAA GTAGCGGC	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatil GACGTCCTCG CTGCAGGAGC TTGGTTTAGT AACCAAATCA GGCGCTCGAA	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA ACTTCTGATT TGAAGACTAA CGTCCAGGCG GCAGGTCCGC GTGTGACTCT	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC ECOF GGTAGGGAAT CCATCCCTTA GATCACAAAA CTAGTGTTTT TATTAGCAGA	TCTGATTTTT AGACTAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG TCAAGATGAT AGTTCTACTA TTTGTGTCGT AAACACAGCA CAGGAACGAG	TGCGCGCGTC ACGCGCCGCA CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT ATTGAAGGAG TAACTTCCTC TTGACAAGAT AACTGTTCTA GACATTATTA	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG CATTTTTGGG GTAAAAACCC GGTTCATTTA	GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC CTTGGCTGGA GAACCGACCT GGCAACTGGT CCGTTGACCA	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT GCTAGTGGAG CGATCACCTC CAGATCAGCC GTCTAGTCGG GATAACTTGT
2801 2901 3001 3101 3201	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA TGTGTGAACA GC ACACACTTGT CG TCATAGTGCA TC AGTATCACGT AG GTCAACACAT CA CAGTTGTGTA GT CACTTGTAAG CA GTGAACACAT CA GTGAACACAT CA CAGTTGTAAG CA GTGAACACTTC GT	CTGCTTGG CGACGAACC CCCCATCC GGGGTAGG ATTTGCAT TAAACGTA CAGACTAGC TCTGATCG ATGCTATT TACGATAA GTAGCGGC CCATCGCCG	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatill GACGTCCTCG CTGCAGGAGC TTGGTTTAGT AACCAAATCA GGCGCTCGAA CCGCGAGCTT	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA ACTTCTGATT TGAAGACTAA CGTCCAGGCG GCAGGTCCGC GTGTGACTCT CACACTGAGA	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC Ecof GGTAGGGAAT CCATCCCTTA GATCACAAAA CTAGTGTTTT TATTAGCAGA ATAATCGTCT	TCTGATTTTT AGACTAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG TCAAGATGAT AGTTCTACTA TTTGTGTCGT AAACACAGCA CAGGAACGAG GTCCTTGCTC	TGCGCGCGTC ACGCGCCGCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT ATTGAAGGAG TAACTTCCTC TTGACAAGAT AACTGTTCTA GACATTATTA CTGTAATAAT	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG CATTTTTGGG GTAAAAACCC GGTTCATTTA CCAAGTAAAT TCATCTGCTG AGTAGACCAC	TGTGTGCTGT GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC CTTGGCTGGA GAACCGACCT GGCAACTGGT CCGTTGACCA CTTGGTGCAC CTTGGTGCAC GAACCACGTG	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT GCTAGTGGAG CGATCACCTC CAGATCAGCC GTCTAGTCGG GATAACTTGT CTATTGAACA
2801 2901 3001 3101	CCAGCAGGTG CC GGTTAATAAG GG CCAATTATTC CC AGTATGCTCC CT TCATACGAGG GA TGTGTGAACA GC ACACACTTGT CG TCATAGTGCA TC AGTATCACGT AG GTCAACACAT CA CAGTTGTGTA GT CACTTGTAAG CA	CTGCTTGG CGACGAACC CCCATCC GGGGTAGG ATTTGCAT TAAACGTA CAGACTAGC TCTGATCG ATGCTATT TACGATAA GTAGCGGC CCATCGCCG CCAAGGTAA	AAATTAATTT ATGTTATGAT TACAATACTA ATGTATATGA TACATATACT GAAAGTGACT CTTTCACTGA Aatil GACGTCCTCG CTGCAGGAGC TTGGTTTAGT AACCAAATCA GGCGCTCGAA CCGCGAGCTT GTGAACGACC	ATGGTCTCTC TACCAGAGAG AAATTGTAAT TTTAACATTA GCATTCTTCT CGTAAGAAGA ACTTCTGATT TGAAGACTAA CGTCCAGGCG GCAGGTCCGC GTGTGACTCT CACACTGAGA CGGTCATACC	TAGGCAAGTT TGATGCTGGG ACTACGACCC GGAAGGAGTC CCTTCCTCAG GGTGCTAAAG CCACGATTTC ECOF GGTAGGGAAT CCATCCCTTA GATCACAAAA CTAGTGTTTT TATTAGCAGA ATAATCGTCT TTCTTAAGTT	TCTGATTTTT AGACTAAAA GTCAGTAATA CAGTCATTAT GTCAGTTCAC CAGTCAAGTG TCAAGATGAT AGTTCTACTA TTTGTGTCGT AAACACAGCA CAGGAACGAG GTCCTTGCTC CGCCCTTCCT	TGCGCGCGTC ACGCGCGCAG CAACCTTAAA GTTGGAATTT ATCTTGTTGA TAGAACAACT ATTGAAGGAG TAACTTCCTC TTGACAAGAT AACTGTTCTA GACATTATTA CTGTAATAAT CCCTTTATTT	GACCTTAGCC Xbal TAGAAGATGG ATCTTCTACC AAACTCGCTT TTTGAGCGAA CAGCTTGATC GTCGAACTAG CATTTTTGGG GTAAAAACCC GGTTCATTTA CCAAGTAAAT TCATCTGCTG AGTAGACCAC CAGATTCAAT	GTTGGATAAT CAACCTATTA CGTCTTGTTC GCAGAACAAG TCGCTTGAGG AGCGAACTCC CTTGGCTGGA GAACCGACCT GCCAACTGGT CCGTTGACCA CTTGGTGCAC CTTGGTGCAC GAACCACGTG CTGACTTACC	TTGTACTGGT AACATGACCA CAATTGATTG GTTAACTAAC TGTCGAACAA ACAGCTTGTT GCTAGTGGAG CGATCACCTC CAGATCAGCC GTCTAGTCGG GATAACTTGT CTATTGAACA TATTCTACCG

	Clal	.		AatII						
3401		ATGAAAAAGC	CTGAACTCAC		GTCGAGAAGT	TTCTGATCGA	AAAGTTCGAC	AGCGTCTCCG	ACCTGATGCA	GCTCTCGGAG
	TTCGTAGCTA	TACTTTTTCG	GACTTGAGTG	GCGCTGCAGA	CAGCTCTTCA	AAGACTAGCT	TTTCAAGCTG	TCGCAGAGGC	TGGACTACGT	CGAGAGCCTC
3501	GGCGAAGAAT	CTCGTGCTTT	CAGCTTCGAT	GTAGGAGGGC	GTGGATATGT	CCTGCGGGTA	AATAGCTGCG	CCGATGGTTT	CTACAAAGAT	CGTTATGTTT
	CCGCTTCTTA	GAGCACGAAA	GTCGAAGCTA	CATCCTCCCG	CACCTATACA	GGACGCCCAT	TTATCGACGC	GGCTACCAAA	GATGTTTCTA	GCAATACAAA
3601	ATCGGCACTT	TGCATCGGCC	GCGCTCCCGA	TTCCGGAAGT	GCTTGACATT	GGGGAGTTCA	GCGAGAGCCT	GACCTATTGC	ATCTCCCGCC	GTGCACAGGG
		ACGTAGCCGG								
					Pstl		Ncol			
3701	TGTCACGTTG	CAAGACCTGC	CTGAAACCGA	ACTGCCCGCT		CGGTCGCGGA		GCGATCGCTG	CGGCCGATCT	TAGCCAGACG
	ACAGTGCAAC	GTTCTGGACG	GACTTTGGCT	TGACGGGCGA	CAAGACGTCG	GCCAGCGCCT	CCGGTACCTA	CGCTAGCGAC	GCCGGCTAGA	ATCGGTCTGC
							Ndel			
3801	AGCGGGTTCG	GCCCATTCGG	ACCGCAAGGA	ATCGGTCAAT	ACACTACATG		ATATGCGCGA	TTGCTGATCC	CCATGTGTAT	CACTGGCAAA
	TCGCCCAAGC	CGGGTAAGCC	TGGCGTTCCT	TAGCCAGTTA	TGTGATGTAC	CGCACTAAAG	TATACGCGCT	AACGACTAGG	GGTACACATA	GTGACCGTTT
3901	CTGTGATGGA	CGACACCGTC	AGTGCGTCCG	TCGCGCAGGC	TCTCGATGAG	CTGATGCTTT	GGGCCGAGGA	CTGCCCCGAA	GTCCGGCACC	TCGTGCACGC
	GACACTACCT	GCTGTGGCAG	TCACGCAGGC	AGCGCGTCCG	AGAGCTACTC	GACTACGAAA	CCCGGCTCCT	GACGGGGCTT	CAGGCCGTGG	AGCACGTGCG
4001	GGATTTCGGC	TCCAACAATG	TCCTGACGGA	CAATGGCCGC	ATAACAGCGG	TCATTGACTG	GAGCGAGGCG	ATGTTCGGGG	ATTCCCAATA	CGAGGTCGCC
	CCTAAAGCCG	AGGTTGTTAC	AGGACTGCCT	GTTACCGGCG	TATTGTCGCC	AGTAACTGAC	CTCGCTCCGC	TACAAGCCCC	TAAGGGTTAT	GCTCCAGCGG
4101	AACATCTTCT	TCTGGAGGCC	GTGGTTGGCT	TGTATGGAGC	AGCAGACGCG	CTACTTCGAG	CGGAGGCATC	CGGAGCTTGC	AGGATCGCCG	CGGCTCCGGG
	TTGTAGAAGA	AGACCTCCGG	CACCAACCGA	ACATACCTCG	TCGTCTGCGC	GATGAAGCTC	GCCTCCGTAG	GCCTCGAACG	TCCTAGCGGC	GCCGAGGCCC
4201	CGTATATGCT	CCGCATTGGT	CTTGACCAAC	TCTATCAGAG	CTTGGTTGAC	GGCAATTTCG	ATGATGCAGC	TTGGGCGCAG	GGTCGATGCG	ACGCAATCGT
	GCATATACGA	GGCGTAACCA	GAACTGGTTG	AGATAGTCTC	GAACCAACTG	CCGTTAAAGC	TACTACGTCG	AACCCGCGTC	CCAGCTACGC	TGCGTTAGCA
									Scal	
4301	CCGATCCGGA	GCCGGGACTG	TCGGGCGTAC	ACAAATCGCC	CGCAGAAGCG	CGGCCGTCTG	GACCGATGGC			TAGTGGAAAC
	GGCTAGGCCT	CGGCCCTGAC					CTGGCTACCG			
						Spel				
4401	CGACGCCCCA	GCACTCGTCC	GAGGGCAAAG	GAATAGAGTA	GATGCCGACC		ATACATAGTC	AACAAGAGTC	AATACACGCC	AACCAATGAG
	GCTGCGGGGT	CGTGAGCAGG	CTCCCGTTTC	CTTATCTCAT	CTACGGCTGG	CTTGTGATCA	TATGTATCAG	TTGTTCTCAG	TTATGTGCGG	TTGGTTACTC
4501	AGAGCCAATC	CACGTCAACG	AATAGGAGAG	CCAAAAGTCT	CGATGGTGAG	TGGTAGCCGG	GGATGAAGTT	CAGTGGTGTC	CGGTCAGCCC	GTGTCTTCGG
	TCTCGGTTAG	GTGCAGTTGC	TTATCCTCTC	GGTTTTCAGA	GCTACCACTC	ACCATCGGCC	CCTACTTCAA	GTCACCACAG	GCCAGTCGGG	CACAGAAGCC
4601	TCATCTCATC	CTGAACCGTC	TTGAAGGACA	AGATACACAG	GTCGAGGCAA	CCACCAGGAT	TGAATGAAAA	TGATTCGCTC	CTTCGGATAG	TGGGAGAAAA
	AGTAGAGTAG	GACTTGGCAG	AACTTCCTGT	TCTATGTGTC	CAGCTCCGTT		ACTTACTTTT	ACTAAGCGAG	GAAGCCTATC	ACCCTCTTTT
							Sphl			
4701	GATTGCTGTG	CCGCACGGCT	GCAAGCTGGA	CGCGGGTCAT	TGATAAGCAG			TACGAGTTCT	AACCACCTTC	TCAATGAGGA
	CTAACGACAC	GGCGTGCCGA	CGTTCGACCT	GCGCCCAGTA	ACTATTCGTC	GGGGAGTGCC	GTACGCTGTG	ATGCTCAAGA	TTGGTGGAAG	AGTTACTCCT
4801	GAAGCCTTGA	CCTCTTTCTC	CAAGTACCCC	CGCGTTTGAA	AGGGTGAGAG	TGGCAGGAGT	GGTACGGGCC	TCGGGCTATC	AAGGGACTCA	AGTCCGTGCC
	CTTCGGAACT	GGAGAAAGAG	GTTCATGGGG	GCGCAAACTT	TCCCACTCTC	ACCGTCCTCA	CCATGCCCGG	AGCCCGATAG	TTCCCTGAGT	TCAGGCACGG
			Bam							
4901	AACACCGGAT	GACTGTCATA		CCCGTATCTT	TTGCATGACT	TTCCAGCTCC	CTTTCCAGCT	CCCGTCTTTG	CATTATCAAC	CCAAGCTGAG
	TTGTGGCCTA	CTGACAGTAT	GTTTAGCCTA	GGGCATAGAA	AACGTACTGA	AAGGTCGAGG	GAAAGGTCGA	GGGCAGAAAC		GGTTCGACTC
							Sacl	Bgll	I	
5001	ATCCGACGGT	GACGATTTGG	AGTTTGAACT	CGATCAACAC	ACCAAGATAA	ACCTTTTCAC	TAGAGCTCAT	CAGCCAAGAT		
	TAGGCTGCCA	CTGCTAAACC	TCAAACTTGA	GCTAGTTGTG	TGGTTCTATT	TGGAAAAGTG	ATCTCGAGTA	GTCGGTTCTA	GA	

HYDROGEN	GROUP I	GROUP II	GROUP III	DIRECTION	PRIMERS USED FOR MUTAGENESIS	PROTEIN
BONDS	HRDSQE	QSRES	IVQQ			
Q105E	HRDSEE	QSRES	IVQQ	FORWARD REVERSE	GCCCGTCTTCAAG GAG TACCGTGTCCTCGAC GTCGAGGACACGGTACTCCTTGAAGACGGGGC	PVFK E YRVLD
H39G	G RDSEE	QSRES	IVQQ	FORWARD REVERSE	CATCCCCTGCCAT GGC ATCCGCCTCGGC GCCGAGGCGGATGCCATGGCAGGGGATG	IPCH G IRLG
Q49K	HRDSQE	KSRES	IVQQ	FORWARD REVERSE	GATATCCTCATCCTC AAG GGCCGCCCTTGCC GGCAAGGGCGGCCCTTGAGGATGAGGATATC	DILIL K GRPC
Q127E	HRDSQE	QSRES	IVEQ	FORWARD REVERSE	GGCGATGTCAA GAG AACCTCCCCGTC GACGGGGAGGTTCTCCTTGACATCGCC	GDVK E NLPV
Q134E	HRDSQE	QSRES	IVQE	FORWARD REVERSE	CCCGTCATTGAC GAG AGCTCTCTCTGG CCAGAGAGAGCTCTCGTCAATGACGGG	PVID E SSLW
Q127E,Q134E	HRDSQE	QSRES	IVEE	FORWARD	CTGGCGATGTCAAG GAG AACCTCCCCGTCATTGAC GA CAGAGAGAGCTCTCGTCAATGACGGGGAGGTTCTCCT	
SALT BRIDGES						GDVKENLPVIDESSL
D44G	HR G SQE	QSRES	IVQQ	FORWARD REVERSE	CACATCCGCCTCGGC GGC ATCCTCATCCTCCAG CTGGAGGATGAGGATGCCGCCGAGGCGGATGTG	HIRLG G ILILQ
R68H	HRDSQE	QSHES	IVQQ	FORWARD REVERSE	GCCACTGGCCAGCACCTACCTCGGTGTCGACGTCGACACCGAGGTAGTGGTGCTGGCCAGTGGC	atgqh h ylgvd

Appendix 2. List of primers used for mutagenesis and corresponding mutagenized proteins. Mutagenized residues are depicted in bold red font.

FUNCTIONAL ASSAY

ISOLATES	AVERAGE	STD.DEV	Cells per ml ³	Cells per ml	Cells per ml of VN
WT delta hex-1 (I) H39G (I) Q105E (I) D44G	33.66666667 4.833333333 11.16666667 23 24.333333333	3.75277675 2.56580072 1.892969449 2.291287847 3.329164059	2104166.667 302083.3333 697916.6667 1437500 1520833.333	2104.166667 302.0833333 697.9166667 1437.5 1520.833333	10520.83333 1510.416667 3489.583333 7187.5 7604.166667
(II) Q49K	29.5	4.82182538	1843750	1843.75	9218.75
(II) R68H (III) Q127E (III) Q134E	26.5 7.5 7	5 1.322875656 1.5	1656250 468750 437500	1656.25 468.75 437.5	8281.25 2343.75 2187.5
(I, II) Q105E, Q49K	31.16666667	2.516611478	1947916.667	1947.916667	9739.583333
(I, II) D44G, R68H	17.66666667	0.763762616	1104166.667	1104.166667	5520.833333
(I, III) Q105E, Q134E	11.25	1.040833	703125	703.125	3515.625
(II, III) Q49K, Q134E	' 9	1.802775638	562500	562.5	2812.5
(III, III) Q127E, Q134E	7.166666667	2.020725942	447916.6667	447.9166667	2239.583333

Appendix 3. Data used to assay function in terms of conidial number. See Figure 6. for graphical representation.

Appendix 4

Fungal strains

Strain: FGSC # 9720

Mating type: A

Genotype: delta mus-52:: bar+, his-3

The selection marker for this particular strain is Hygromycin added to

nutrient medium at 2.5μg/μl as previously mentioned (see *Materials and*

Methods for a complete description).

mus-52 is a mutation affecting the end joining of DNA. It, in effect, lowers

the background of ectopic integration thus increasing the chances of

achieving homologous integration. The bar+ and his- genes allow for

selection as follows: the bar+ gene from Streptomyces hygroscopicus

allows selection using the herbicide BASTA while the his-3 blocks the

phosphoribosyl AMP step in the histidine pathway, thus preventing growth

on medium lacking histidine (Perkins et al., 2001a).

Strain: FGSC # 466

Mating type: a

Genotype: pan-2: pantothenic acid-2

60

This strain encodes mutated version of а ketopantoate

hydroxymethyltransferase that renders it unable to convert ketovaline to

ketopantoic acid. pan-2 mutants are raised on nutrient medium

supplemented with 1mg/ml Ca-pantothenate. For good recovery of *pan-2*

progeny, crossing media should be supplemented with 10 times the

regular amount (i.e. 10 mg/ml), of Ca-pantothenate even when the

protoperithecial (female) parent is pan⁺.

Strain: GJ344

Mating type: a

Genotype: pan-

Individuals are unable to grow on medium lacking supplementation with

Ca-pantothenate (1mg/ml). Utilized in crosses with strain FGSC#9720

(after crosses between FGSC# 9720 and FGSC#466 failed due to strain

incompatibility). Its purpose was to provide the Woronin body mutants

with a pan- background for subsequent transformation with eGFP

containing a *pan*⁺ marker.

61

List of Plasmids and Mutant strains

Strains	Group No.	GJP#	GJF# (mus	GJF# (pan-)	GFP-PTS1
Wt		N/A	52) 71	344	48
Δhex	_	N/A	N/A	3	38
H39G	I	942	237	407	449
Q105E	I	899	242	530	539
D44G	I	1235	471	597	579
Q49K	II	900	340	541	578
R68H	II	1234	472	587	580
Q127E	III	901	147	541	555
Q134E	III	902	146	413	488
Q105E,Q49K	I, II	911	184	414	465
Q105E, Q134E	I. III	912	187	415	492
Q49K, Q134E	II, III	913	188	416	509
D44G, R68H	I, II	1276	529	598	581
Q127E, Q134E	III,III	903	253	417	480
Q105E,	I, II, III	914	-	-	-
Q49K, Q134E					

Appendix 5. A list of all the Plasmids and Mutant strains developed during the course of this project. GJP reflects the plasmid number in the Gregory Jedd lab plasmid list, GJF reflects the coresponding number on the fungus stock list. All plasmids were transformed into the mus 52 background before transfer into the pan- background for transformation with the pan+ GFP-PTS1 marker.