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SUMMARY

One of the problems we will look at in this thesis concerns the over-representation Chapt. 2

(or under-representation) of palindromic words in genomic sequences, particularly

in the SARS and other coronavirus genomes. Based on a Markov-chain model for the

genome sequence, the mean and standard deviation of the number of palindromes

at or above a certain length are derived. Using these results and extensive simula-

tion, palindromes of a certain length are assessed whether they are statistically over-

represented (or under-represented).

Many empirical studies show that there are unusual clusters of palindromes, closely

spaced repeats and inverted repeats around the replication origins of herpesviruses.

As the search for replication origins involves labor-intensive laboratory procedures,

the long-term goal of my project is to develop sound computational and statistical

methods to predict the likely locations of replication origins in the herpesvirus fam-

ilies. This results in huge savings of time and resources. This long-term project con-

sists of two stages.

Stage 1 is to devise new scoring schemes to measure the spatial abundance of Chapt. 3

palindromes, which generalize and refine the scan-statistics approach of Leung et

al. (Leung et al., 2005, 1994; Leung and Yamashita, 1999). The new prediction meth-

ods, based on these new scoring schemes, when applied to 39 known or annotated

replication origins in 19 herpesviruses have close to 80% sensitivity in the prediction

accuracy (compared to about 15% by the scan statistics approach).

viii



Summary ix

Stage 2 is to develop the mathematics needed to compute or approximate the dis- Chapt. 4

tribution of the scores so as to determine which scores obtained are statistically sig-

nificant. We approximate the scores in one of the new schemes, the Palindrome

Length Score by a compound Poisson distribution with parameters entirely deter-

mined by the base pair composition of the genome.

As an alternative approach to predict the locations of replication origins in the Chapt. 5

double stranded herpesviruses, we propose looking at a simple, yet natural, sequence

feature - the AT content. We adopt Karlin’s score based approach (Karlin, 1994, 2005;

Karlin and Altschul, 1990, 1993; Karlin et al., 1992) to quantitate local AT abundance

reflecting the genome’s base pairs composition. We then develop a computational

method, called the AT excursion method, to complement the prediction methods we

have developed in the first part of the thesis.

Finally, we conclude this thesis by reporting some preliminary results on our at- Chapt. 6

tempt in adopting Karlin’s excursion approach to palindromic word patterns. A sum-

mary of the approaches we have tried in this thesis in predicting locations of repli-

cation origins is presented. Some possible extensions to works in this thesis are also

proposed.
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INTRODUCTION

Advances in biochemical techniques have led to an exponential increase in the amount

of genomic sequence data available to us. Mathematical and computational meth-

ods play an increasingly important role in managing, organizing, analyzing and in-

terpreting the rapidly accumulating DNA data. Computer algorithms can be used

to compare and extract sequence features of interest while probability models and

statistical techniques tell us if these features are random or not.

This thesis deals with measuring spatial abundance of some word patterns in

genomic sequences. There are three main themes that we will be looking at:

(i) Over-representation (or under-representation) of RNA-palindromes in the SARS

and other coronaviruses;

(ii) Novel scoring schemes to quantify the spatial abundance of DNA-palindromes;

and

(iii) AT excursions to quantitate local AT abundance in genomic sequences.

In particular, we are interested to look at (ii) and (iii) and make use of them to predict

the locations of replication origins in some families of double stranded viruses which

includes the herpesviruses, amongst others.

1
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1.1 A Little Biology for the Mathematician

Before we go on, let us review some relevant biological concepts and background.

Deoxyribonucleic acid (DNA) is a nucleic acid – usually in the form of a double

helix – that contains the genetic instructions specifying the biological development

of all cellular forms of life, and many viruses. Contrary to a common misconcep-

tion, DNA is not a single molecule, but rather a pair of molecules joined by hydro-

gen bonds: it is organized as two complementary strands, head-to-toe, with the hy-

drogen bonds between them. Each strand of DNA is a chain of chemical “building

blocks”, called nucleotides, of which there are four types: adenine (abbreviated A),

cytosine (C), guanine (G) and thymine (T).

Between the two strands, each base can only “pair up” with one single predeter-

mined other base: A+T, T+A, C+G and G+C are the only possible combinations; that

is, an “A” on one strand of double stranded DNA will “mate” properly only with a

“T” on the other, complementary strand; therefore, naming the bases on the con-

ventionally chosen side of the strand is enough to describe the entire double strand

sequence. We call A the complement of T (vice versa), and C the complement of G.

Two nucleotides paired together are called a base pair.

Figure 1.1 – DNA replication

The double stranded structure of DNA provides a simple mechanism for DNA

replication: the DNA double strand is first “unzipped” down the middle, and the



1.1. A Little Biology for the Mathematician 3

“other half” of each new single strand is recreated by exposing each half to a mixture

of the four bases. An enzyme makes a new strand by finding the correct base in the

mixture and pairing it with the original strand. In this way, the base on the old strand

dictates which base will be on the new strand, and the cell ends up with an extra copy

of its DNA.

DNA palindromes are DNA words which are symmetrical in the sense that they

read exactly the same as their complementary sequences in the reverse direction (see

Figure 1.2 for example). A DNA palindrome is necessarily even in length because the

middle base in any odd-length nucleotide string cannot be identical to its comple-

ment. More precisely, we can define a palindrome to be a word pattern of the form

b1 . . .bLb′
L ...b′

1, where b′ is the complement of base b and L is called the stem length

(or half-length) of the palindrome. We call the letter bL the left-center and b′
L the

right-center of the palindrome. The length of the palindrome in Figure 1.2 is 10 and

L = 5.

5′ . . .
←−−−−
GCAATATTGC . . . 3′

3′ . . .CGTTATAACG−−−−→ . . . 5′

Figure 1.2 – A palindrome of length 10.

Palindromes play important roles as protein binding sites in DNA replication pro-

cesses (Kornberg and Baker, 1992, Chapter 1). The local two-fold symmetry created

by the palindrome provides a binding site for DNA-binding proteins which are of-

ten dimeric in structure. Such double binding markedly increases the strength and

specificity of the binding interaction (Creighton, 1993, Chapter 8). High concentra-

tion of palindromes around replication origins is generally attributed to the reason

that the initiation of DNA replication typically requires the binding of an assembly of

enzymes to these DNA sequences. Helicase is an example of these enzymes known to

bind with the initiation site, locally unwind the DNA helical structure, and pull apart

the two complementary strands. This explanation is consistent with the observation
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of AT-rich regions, believed to facilitate the unwinding, in replication origin domains

of the genome (Lin et al., 2003).

Ribonucleic acid (RNA) is primarily made up of four different bases: adenine,

guanine, cytosine, and uracil (abbreviated U). The first three are the same as those

found in DNA, but uracil replaces thymine as the base complementary to adenine.

RNA serves as the template for translation of genes into proteins, transferring amino

acids to the ribosome to form proteins, and also translating the transcript into pro-

teins. The definition of a RNA palindrome is similar to that of a DNA palindrome,

with uracil (U) taking on the role of thymine (T).

1.2 Organization of the Thesis

We are firstly interested to measure the abundance of palindromic word pattern at

a global and local level. The assessment of whether DNA/RNA palindromes are over-

represented or under-represented can be broadly classified into (i) global count –

total count of palindromes in a biological sequence; and (ii) local count – spatial

distributions of palindromes in a biological sequence.

One of the problems we will look at in this thesis concerns the over-representation Chapt. 2

(or under-representation) of palindromic words in genomic sequences, particularly

in the SARS and other coronavirus genomes. Based on a Markov-chain model for the

genome sequence, the mean and standard deviation of the number of palindromes

at or above a certain length are derived. Using these results and extensive simula-

tion, palindromes of a certain length are assessed whether they are statistically over-

represented (or under-represented). Our conclusions are (i) length 4 palindromes

are statistically significantly under-represented in all coronaviruses; and (ii) most

interestingly, length 6 palindromes are significantly under-represented only in the

SARS sequence and not in any other coronaviruses. These findings lead to the hy-

pothesis that this avoidance of length-six palindromes in the SARS genome perhaps

offers a protective effect on the virus, making it comparatively more difficult to be de-
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stroyed. This is a joint work with Kwok Pui Choi (NUS), Hans Heidner (University of

Texas, San Antonio) and Ming-Ying Leung (University of Texas, El Paso) and has been

published in a special issue on computational molecular biology/bioinformatics of

INFORMS Journal on Computing, 16(4):331-340 (Chew et al., 2004).

Many empirical studies show that there are unusual clusters of palindromes, closely

spaced repeats and inverted repeats around the replication origins of herpesviruses.

As the central step in the reproduction of herpesviruses, viral DNA replication has

been the target for a number of anti-herpesvirus drugs. Understanding the molecu-

lar mechanisms involved in DNA replication is of great importance in further devel-

oping strategies to control the growth and spread of viruses. As the search for repli-

cation origins involves labor-intensive laboratory procedures, the long-term goal of

my project is to develop sound computational and statistical methods to predict the

likely locations of replication origins in the herpesvirus families. This results in huge

savings of time and resources. This long-term project consists of two stages.

Stage 1 is to devise new scoring schemes to measure the spatial abundance of Chapt. 3

palindromes, which generalize and refine the scan-statistics approach of Leung et

al. (Leung et al., 2005, 1994; Leung and Yamashita, 1999). The new prediction meth-

ods, based on these new scoring schemes, when applied to 39 known or annotated

replication origins in 19 herpesviruses have close to 80% sensitivity in the predic-

tion accuracy (compared to about 15% by the scan statistics approach). 1 This joint

work with Kwok Pui Choi and Ming-Ying Leung has been published in Nucleic Acids

Research, 33(15):e134 (Chew et al., 2005).

Stage 2 is to develop the mathematics needed to compute or approximate the dis- Chapt. 4

tribution of the scores so as to determine which scores obtained are statistically sig-

nificant. We approximate the scores in one of the new schemes, the Palindrome

Length Score by a compound Poisson distribution with parameters entirely deter-

1For this thesis, we work with a slightly larger data set and so the above sentence would read “. . . 43
known or annotated replication origins in 20 herpesviruses. . . ”.
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mined by the base pair composition of the genome. Based on this approximation, we

are able to identify windows with statistically high scores which are then proposed

as possible locations of replication origins of herpesviruses. Work is in progress for

the other scheme.

As an alternative approach to predict the locations of replication origins in the Chapt. 5

double stranded herpesviruses, we propose looking at a simple, yet natural, sequence

feature - the AT content. It has been observed that regions around the replication

origins are rich in AT. One possible explanation is that segments of DNA with high

AT content, i.e., lower GC content, are less stable and hence more likely candidates

for replication origins. We adopt Karlin’s score based approach (Karlin, 1994, 2005;

Karlin and Altschul, 1990, 1993; Karlin et al., 1992) to quantitate local AT abundance

reflecting the genome’s base pairs composition. We then develop a computational

method, called the AT excursion method, to complement the prediction methods we

have developed in the first part of the thesis. The idea is to assign positive scores

to AT bases and negative ones to CG bases and look for regions in the genomic se-

quence with high positive additive scores. Our method is statistical-based. Building

on the work of Karlin and his collaborators, we have statistical tools to determine

statistically high scoring segments. When this is used to predict replication origins

of viruses from the herpesvirus family, we obtained results that complement the ap-

proach mentioned earlier.

Finally, we conclude this thesis by reporting some preliminary results on our at- Chapt. 6

tempt in adopting Karlin’s excursion approach to palindromic word patterns. A sum-

mary of the approaches we have tried in this thesis in predicting locations of repli-

cation origins is presented. Some possible extensions to works in this thesis are also

proposed.
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PALINDROMES IN SARS AND OTHER

CORONAVIRUSES

2.1 Introduction

In March 2003, a novel coronavirus associated with the severe acute respiratory syn-

drome (SARS) was identified. The outbreak of SARS in different parts of the world,

causing hundreds of deaths, has initiated much international effort that includes

clinical, epidemiologic, and laboratory investigations with the aim of controlling the

spread of the virus (Bloom, 2003; Marra et al., 2003; Rota et al., 2003; Ruan et al.,

2003). Although the world was cleared of new SARS cases by July 2003, the pursuit for

a thorough understanding of the origin, evolution, and pathogenicity of this deadly

virus continues.

With the availability of the complete genome sequence of the SARS and several

other coronaviruses in public databases (e.g., GenBank), it is possible to do a compu-

tational analysis of the viral genome, looking for unusual genome sequence features

either unique to the SARS virus or common to the coronavirus family. Such informa-

tion can give clues to the origin, natural reservoir, and evolution of the virus. It may

7
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contribute to the studies of the immune response to this virus and the pathogenesis

of SARS-related disease (Rota et al., 2003).

Statistical and experimental studies of palindromes in the other classes of viral

genomes, such as the double stranded DNA viruses, bacteriophages, retroviruses,

etc., have been performed (Cain et al., 2001; Dirac et al., 2002; Hill et al., 2003; Kar-

lin et al., 1992; Leung et al., 2005; Rocha et al., 2001, among others). These studies

have suggested that palindromes might be involved in the viral packaging, replica-

tion, and defense mechanisms. Unlike these well-studied viruses involved in fatal

diseases such as AIDS and various cancers, the coronaviruses have not received as

much attention until the recent outbreak of SARS.

In the present study, we focus our attention on palindromes in the positive stranded

RNA genomes of coronaviruses. In accordance with GenBank convention, we repre-

sent an RNA sequence as a string of letters from the alphabet A ={A, C, G, T}. The

four letters respectively stand for the RNA bases adenine, cytosine, guanine, and

uracil. The letters A and T are complementary to each other because adenine and

uracil form hydrogen bonds with each other. The same applies to C and G. A palin-

drome is a symmetrical word such that when it is read in the reverse direction, it is

exactly the complement of itself. For example, ACGT is a palindrome of length four. A

palindrome is necessarily even in length because the middle base in any odd-length

nucleotide string cannot be identical to its complement.

Several points are worth noting from this initial exploratory analysis of palin-

dromes in the coronavirus genome sequences:

(1) The palindrome counts in the coronavirus genomes seem lower than what would

be expected from random sequences.

(2) The SARS virus contains an exceptionally long palindrome with 22 nucleotide

bases. This is the longest among all palindromes observed in the coronaviruses.

(3) There are two copies of a length-12 palindrome situated within 100 bases of each

other in the SARS genome. This is not observed in the other coronaviruses.
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Whether or not these palindrome-related features have any biological relevance

will, of course, have to rely on careful laboratory investigations by the virologists.

At this stage, however,it would be only reasonable to assess whether these features

can indeed be considered statistically unusual when compared to random-sequence

models. Our observations call for investigations into the probability distributions of

palindrome counts, lengths, and locations in a random sequence. For this chapter,

we will focus only on the palindrome counts, leaving the others for future studies.

In the next section, the mathematical formulas for the theoretical mean and vari-

ance for the number of palindromes at or above a prescribed length are derived

based on a Markov-chain random-sequence model. Section 2.3 summarizes the

computational results in comparing palindrome counts of the coronavirus genomes

to the random-sequence models. In Section 2.4, we propose some biological ques-

tions that may be investigated in relation to these observed nonrandom features. A

few concluding remarks are given in Section 2.5.

2.2 Palindrome Counts in Markov-Chain Models

The main objective of this chapter is to assess whether the palindrome counts in the

coronavirus genomes are observed more (or less) frequently than expected, under

some specified probability models. We model the genome sequence as a realization

of a sequence of random variables ξ1,ξ2, . . . ,ξn taking values in A ={A, C, G, T} where

n is the genome length.

Throughout, we will assume that either

(i) {ξ1,ξ2, . . . ,ξn} are independent and identically distributed (M0); or

(ii) {ξ1,ξ2, . . . ,ξn} form a stationary Markov chain of order one (M1).

For studying DNA words of length k, one can choose to use Markov chains of or-

der up to the maximum order of k−2 as the sequence model. A higher-order Markov

chain will better fit the data sequence, but at the same time the number of param-

eters in the model increases exponentially. In this study, we carried out some sim-
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ulations using the second-order Markov-chain model (M2). The computation takes

much longer but the z scores obtained gave the same interpretation as that of the M1

model. We therefore content ourselves with the M0 and M1 models for our analysis

of palindromes of length four and above.

We are interested in deriving the mean and standard deviation of the random

variable XL , total number of palindromes of length at least 2L under the M0 and

M1 sequence models. This will help quantify the extent of deviation of the observed

palindrome counts in the coronavirus genome from the expected counts under the

specified probability model.

For L ≤ k ≤ n −L, define

Ik =


1 if the kth base is the left center of a palindrome of length ≥ 2L

0 otherwise

.

We say that a palindrome occurs at k when Ik = 1. Therefore, XL =∑n−L
k=L Ik . Note

that the distribution of Ik depends only on the joint distribution of (ξk−L+1, . . . ,ξk+L).

Under the M0 or M1 model, the joint distribution of (ξk−L+1, . . . ,ξk+L) is independent

of k. Hence IP[Ik = 1] is a constant in k. Similarly IP[I j = 1, Ik = 1] depends only on

| j −k|. Therefore, for L ≤ k ≤ n −L and 1 ≤ d ≤ n −L−k, we define

γ(0) := IP[Ik = 1] and γ(d) := IP[Ik = 1, Ik+d = 1].

The expressions of γ(0) and γ(d) are crucial to calculating the mean and variance

of XL (see Proposition 2.3 below). Lemma 2.1 (respectively, Lemma 2.2) deals with

the computation of γ(0) and γ(d) under the M1 (respectively, M0) sequence model.

Indeed, we will deduce Lemma 2.2 from Lemma 2.1.

Throughout, we use b′ to denote the complementary base of b, and w′ the inver-

sion (i.e., the complementary word read in reverse) of the word w. There are quite

a few details to work out all the possible overlap cases since the overlap structures

depend on the relative sizes of d (the extent of overlap) and 2L (the cut-off length of
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a palindrome). However, there are only two basic patterns in the overlap. In the first

pattern (as illustrated by Figure 2.1(b)), the shaded segment, due to the complimen-

tary requirement of a palindrome, will uniquely determine the left and right ends of

Ck and Ck+d . And in the other pattern (as illustrated by Figure 2.1(c)), the shaded

segment will determine the rest of both palindromes. In Figure 2.1(a), even though

palindromes Ck and Ck+d do not actually overlap (i.e., d ≥ 2L), the occurrence of a

palindrome at k will still have an effect on the probability that a palindrome will oc-

cur at k +d under the M1 sequence model. Lemma 2.1 provides expressions of γ(d)

under all possible situations.

(a) d ≥ 2L. Here the palindromes Ck and Ck+d do not overlap
and c denotes the segment between them.

(b) L ≤ d < 2L. Here w denotes the common segment of palindromes Ck and
Ck+d . And w determines the left end and right end of Ck and Ck+d .

(c) 1 ≤ d < L with q as quotient when L is divided by d and r the remainder. The
shaded segment determines the rest of both palindromes

Figure 2.1 – Overlapping Structures of Palindromes Ck and Ck+d for Different Values
of d. Note that (a), (b), and (c) are Drawn with Different Scales.
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Lemma 2.1. Suppose the genome sequence is modeled as a stationary Markov chain of

order one with stationary distribution π := (π(A),π(C ),π(G),π(T )). For a,b ∈ A and

m ≥ 1, let P (a,b) and P (m)(a,b) respectively denote the transition probability and the

m-step transition probability from base a to base b.

(a) We have

γ(0) = ∑
b1,...,bL∈A

π(b1)P (bL ,b
′
L)

L−1∏
j=1

[
P (b j ,b j+1)P (b

′
j+1,b

′
j )

]
. (2.1)

(b) For d ≥ 1, we have the following three cases:

(i) d ≥ 2L:

γ(d) = ∑
1≤i≤L

ai , bi∈A

π(a1)P (aL , a
′
L)P (bL ,b

′
L)P (d−2L+1)(a

′
1,b1)

×
L−1∏
j=1

[
P (a j , a j+1)P (a

′
j+1, a

′
j )P (b j ,b j+1)P (b

′
j+1,b

′
j )

]
.

(ii) L ≤ d < 2L:

γ(d) = ∑
b1,··· ,bd∈A

π(b
′
L)P (b

′
1,b1)P (bd ,b

′
d )

d−1∏
j=1

P (b j ,b j+1)

×
L−1∏
l=1

[
P (b

′
l+1,b

′
l )P (b

′
d−L+l+1,b

′
d−L+l )

]
.

(iii) 1 ≤ d < L: we let L = qd + r .

γ(d) = ∑
b1,··· ,bd∈A

Kr,d (b1, . . . ,bd )

[
P (bd ,b

′
d )

d−1∏
j=1

P (b
′
j+1,b

′
j )

]q+1

×
[

P (b
′
1,b1)

d−1∏
j=1

P (b j ,b j+1)

]q
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where

Kr,d (b1, . . . ,bd )

=



π(bd−r+1)P (b
′
1,b1)

∏r−1
j=1 P (b j ,b j+1)

∏d−1
j=d−r+1 P (b j ,b j+1) r ≥ 2

π(bd−r+1)P (b
′
1,b1) r = 1

π(b
′
d )

P (bd ,b
′
d )

r = 0

.

Proof. (a) Note that a palindrome of length at least 2L is of the form b1 · · ·bLb
′
L · · ·b

′
1

where b1, . . . ,bL ∈A . Therefore

γ(0) = ∑
b1,...,bL∈A

IP[b1 · · ·bLb
′
L · · ·b

′
1].

Since

IP[b1 · · ·bLb
′
L · · ·b

′
1] =π(b1)

[
L−1∏
j=1

P (b j ,b j+1)

]
P (bL ,b

′
L)

[
L−1∏
j=1

P (b
′
j+1,b

′
j )

]
,

(2.1) follows immediately after rearranging terms.

(b) To compute the overlap probability γ(d), i.e., the probability that there are palin-

dromes at k and k +d , we call the stretch of bases ξk−L+1 · · ·ξk+d+L the span of

palindromes Ck and Ck+d .

For (i) d ≥ 2L: the span s of the two palindromes Ck and Ck+d is of the form acb

where a = a1 · · ·aL a
′
L · · ·a

′
1, c = c1 · · ·cd−2L , and b = b1 · · ·bLb

′
L · · ·b

′
1. Hence,

γ(d) = ∑
a,c,b

IP[s] =∑
a,b

∑
c

IP[a]IP[cb1|a
′
1]IP[b|b1]

= ∑
a,b

IP[a]P (d−2L+1)(a
′
1,b1)IP[b|b1].

Hence (i) follows immediately from

IP[a] =π(a1)

[
L−1∏
j=1

P (a j , a j+1)

]
P (aL , a

′
L)

[
L−1∏
j=1

P (a
′
j+1, a

′
j )

]
;
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and

IP[b|b1] =
[

L−1∏
j=1

P (b j ,b j+1)

]
P (bL ,b

′
L)

[
L−1∏
j=1

P (b
′
j+1,b

′
j )

]
.

For (ii) L ≤ d < 2L: refer to Figure 2.1(b), let w = bd−L+1 · · ·bL denote the common

segment of palindromes Ck and Ck+d . Assuming d > L, let u = b1 · · ·bd−L and v =
bL+1 · · ·bd ; we can represent Ck = w

′
u

′
uw and Ck+d = wvv

′
w

′
where b1, . . . ,bd ∈

A . Therefore

γ(d) = ∑
b1,··· ,bd∈A

IP[w
′
u

′
uwvv

′
w

′
] = ∑

b1,··· ,bd∈A

IP[b
′
L · · ·b

′
1b1 · · ·bd b

′
d · · ·b ′

d−L+1].

Writing it out in terms of the initial distribution and transition probabilities, we

have proved (ii) for d > L. The case for d = L is similar: take u and v as null words

and proceed as in the case d > L.

To prove (iii), we consider the case r ≥ 1 first. This time, let w = b1 · · ·bd denote

the first d bases to the right of the center of Ck and to the left of the center of

Ck+d . Let u = b1 · · ·br and v = bd−r+1 · · ·bd respectively denote the first and last r

bases of w. Figure 2.1(c) displays the necessary structure in Ck and Ck+d for both

of them to be palindromes when q = 3.

If q is odd, then the span of Ck and Ck+d is of the form v w
′
w︸︷︷︸

1

· · · w
′
w︸︷︷︸

q

w
′
u. There-

fore,

γ(d) = ∑
b1,··· ,bd∈A

IP[bd−r+1 · · ·bd b
′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
1

· · ·b ′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
q

b
′
d · · ·b ′

1b1 · · ·br ].

(2.2)

If q is even, then the span of Ck and Ck+d is changed accordingly to the form

u
′

ww
′︸︷︷︸

1

· · · ww
′︸︷︷︸

q

wv
′

and

γ(d) = ∑
b1,··· ,bd∈A

IP[b
′
r · · ·b

′
1 b1 · · ·bd b

′
d · · ·b ′

1︸ ︷︷ ︸
1

· · ·b1 · · ·bd b
′
d · · ·b ′

1︸ ︷︷ ︸
q

b1 · · ·bd b
′
d · · ·b ′

d−r+1].

(2.3)

By making the one-to-one transformation in the summation, b1 → b
′
d , . . . ,bd →



2.2. Palindrome Counts in Markov-Chain Models 15

b
′
1, and we can see that both sums on the RHS of (2.2) and (2.3) are the same. So

without loss of generality, we compute γ(d) under the assumption that q is odd.

The crucial step is then to calculate the probability of the span of Ck and Ck+d ,

and part (iii) will follow immediately from summing over all possible b1, . . . ,bd .

We first consider r ≥ 2, then

IP[bd−r+1 · · ·bd b
′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
1

· · ·b ′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
q

b
′
d · · ·b ′

1b1 · · ·br ] (2.4)

=π(bd−r+1)P (b
′
1,b1)

[
r−1∏
j=1

P (b j ,b j+1)

][
d−1∏

j=d−r+1
P (b j ,b j+1)

]

×
[

P (bd ,b
′
d )

d−1∏
j=1

P (b
′
j+1,b

′
j )

]q+1 [
P (b

′
1,b1)

d−1∏
j=1

P (b j ,b j+1)

]q

.

For r = 1, (2.4) becomes

IP[bd b
′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
1

· · ·b ′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
q

b
′
d · · ·b ′

1b1]

= π(bd )P (b
′
1,b1)

[
P (bd ,b

′
d )

d−1∏
j=1

P (b
′
j+1,b

′
j )

]q+1 [
P (b

′
1,b1)

d−1∏
j=1

P (b j ,b j+1)

]q

.

If r = 0, reasoning similar to the above leads us to consider just the case q is

odd. However, the span of Ck and Ck+d becomes (one can take u and v as empty

words) w
′
w︸︷︷︸

1

· · · w
′
w︸︷︷︸

q

w
′
. And hence

IP[b
′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
1

· · ·b ′
d · · ·b ′

1b1 · · ·bd︸ ︷︷ ︸
q

b
′
d · · ·b ′

1]

= π(b
′
d )

P (bd ,b
′
d )

[
P (bd ,b

′
d )

d−1∏
j=1

P (b
′
j+1,b

′
j )

]q+1 [
P (b

′
1,b1)

d−1∏
j=1

P (b j ,b j+1)

]q

.

Under the M0 model, the stationary distribution π = (p A, pC , pG , pT ), and the

transition probabilities P (a,b) = pb and P (m)(a,b) = pb for any a,b ∈A ,m ≥ 1. Sub-

stituting these into Lemma 2.1(a) and (i) and (ii) of Lemma 2.1(b) immediately gives
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us the corresponding parts in Lemma 2.2 below. Part (iii) of Lemma 2.1(b) can be

simplified further according to how big the remainder r is in relation to d . We shall

omit the details. In this way, we have deduced the following Lemma 2.2, which was

first proved in Leung et al. (2005).

Lemma 2.2. Suppose the genome sequence is modeled as M0 and let

θ := 2(p A pT +pC pG ).

(a) We have

γ(0) = θL .

(b) For d ≥ 1, we have the following four cases:

(i) d ≥ 2L:

γ(d) = θ2L ;

(ii) L ≤ d < 2L:

γ(d) = θ2(d−L) [p A pT (p A +pT )+pC pG (pC +pG )
]2L−d ;

when 1 ≤ d < L we let L = qd + r where 0 ≤ r < d, and consider two subcases

according to how big the remainder r is in relation to d.

(iii) 1 ≤ d < L and 0 ≤ r < (d +1)/2:

γ(d) = [
2
(
(p A pT )q+1 + (pC pG )q+1)]2r

× [
(p A pT )q (p A +pT )+ (pC pG )q (pC +pG )

]d−2r .

(iv) 1 ≤ d < L and (d +1)/2 ≤ r < d:

γ(d) = [
2
(
(p A pT )q+1 + (pC pG )q+1)]2(d−r )

× [
(p A pT )q+1(p A +pT )+ (pC pG )q+1(pC +pG )

]2r−d
.
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Proposition 2.3. With the Ik ’s as defined at the beginning of Section 2.2, the total

number of palindromes of length at least 2L is given by XL :=∑n−L
k=L Ik . And hence,

λL := E(XL) = (n −2L+1)γ(0)

and

σ2
L := Var(XL) = (n −2L+1)γ(0)(1−γ(0))+2

n−2L∑
d=1

(n −2L+1−d)
[
γ(d)−γ(0)2]

where γ(0) and γ(d) are given as in Lemma 2.2 under the M0 sequence model, and

Lemma 2.1 under M1 sequence model.

Proof. The first equation follows immediately from taking expectations on both sides

of XL :=∑n−L
k=L Ik . And

σ2
L =

n−L∑
j=L

Var(I j )+2
n−L−1∑

j=L

n−L∑
k= j+1

Cov(I j , Ik )

= (n −2L+1)γ(0)(1−γ(0))+2
n−L−1∑

j=L

n−L− j∑
d=1

[
IP[I j = 1, I j+d = 1]−γ(0)2]

= (n −2L+1)γ(0)(1−γ(0))+2
n−2L∑
d=1

(n −2L+1−d)
[
γ(d)−γ(0)2] .

2.3 Palindrome Counts in Coronaviruses

The derived means and variances under the M0 and M1 sequence models enable

us to assess whether the observed palindrome count in a genome is too abundant

or rare. The z score defined in (2.5) below is a modification of a generally accepted

measure of over- (or under-) representation of a DNA word. For L ≥ 2, a standardized

frequency under the assumption of the M1 sequence model is defined as

zM1 = XL −µM1

σM1
(2.5)
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where XL is the observed number of palindromes of length at least 2L, while µM1 and

σM1 denote its expected value and standard deviation, respectively. (For simplicity,

we do not indicate the dependence of µ and σ on L.) The corresponding z score is

defined similarly for the M0 sequence model. When L is small compared with the

genome length n, XL is a sum of weakly dependent random indicators Ik and it is

therefore well approximated by a normal distribution. Indeed, if we let X ( j )
L denote

the number of occurrences of the j th palindrome in the genome, then the count vec-

tor (X (1)
L , X (2)

L , . . . , X (4L)
L ) will converge to a multivariate normal distribution as n →∞

(see Theorem 12.5 in Waterman (1995)). And hence XL = ∑
1≤ j≤4L X ( j )

L will converge

to a normal distribution as n →∞. For L = 2 or 3, and n in the range 30000, we ex-

pect that the distribution of the z scores will be approximately standard normal. The

near-straight lines in the Q-Q plots in Figure 2.2 confirmed that this is the case. This

motivates our definition: the count is said to be over- (or under-)represented, if the z

score is greater than 1.645 or less than −1.645, respectively (i.e., in the upper or lower

5% of a standard normal distribution, as commonly used in one-tailed hypothesis

tests in biological experiments). However, it should be emphasized that these cutoff

z score values can only be considered as a convenient statistical guideline to help

bring out interesting observations rather than a strict criterion to lead to a definitive

conclusion.

We compute the z scores of the genomes in a data set that comprises seven coro-

naviruses with complete genome sequences and four other RNA viruses. For some

coronaviruses, the genome sequences of multiple strains of the same virus are avail-

able. Only one strain is included in our data set because their genomes are very

similar. Four other RNA viruses outside the coronavirus family are included in the

data set. Two of these (the rubella virus and the equine arteritis virus) have positive-

stranded RNA genomes like the coronoviruses, one (rabies virus) has a negative stranded

RNA genome, and the remaining one (HIV) is a retrovirus. Table 2.1 lists the names of

the viruses, abbreviations, GenBank accession numbers, genome lengths, and base

compositions of the seven coronaviruses and the other four RNA viruses. Table 2.2
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displays the z scores for counts of palindromes of length four and above under the

M0 and M1 models.

Table 2.1 – List of Seven Coronaviruses and Four Other RNA Viruses to be Analyzed

Name Abbrev. Accession Length Base Composition

SARS coronavirus Urbani SARS AY278741 29727 (0.28, 0.20, 0.21, 0.31)
Avian infectious bronchitis virus AIBV NC_001451.1 27608 (0.29, 0.16, 0.22, 0.33)
Bovine coronavirus BCoV NC_003045.1 31028 (0.27, 0.15, 0.22, 0.36)
Human coronavirus 229E HCoV NC_002645.1 27317 (0.27, 0.17, 0.22, 0.35)
Murine hepatitis virus MHV NC_001846 31357 (0.26, 0.18, 0.24, 0.32)
Porcine epidemic diarrhea virus PEDV NC_003436.1 28033 (0.25, 0.19, 0.23, 0.33)
Transmissible gastroenteritis virus TGV NC_002306.2 28586 (0.29, 0.17, 0.21, 0.33)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rubella virus RUV NC_001545.1 9755 (0.15, 0.39, 0.31, 0.15)
Equine arteritis virus EAV NC_002532.2 12704 (0.21, 0.26, 0.26, 0.27)
Rabies virus RV NC_001542.1 11932 (0.29, 0.22, 0.23, 0.26)
Human immunodeficiency virus 1 HIV-1 NC_001802.1 9181 (0.36, 0.18, 0.24, 0.22)

Table 2.2 – z Scores for Counts of Palindromes of Length Four and Above

Virus Counts µM0(σM0) µM1(σM1) zM0 zM1

SARS 1554 1981.0 (43.4) 1687.6 (40.3) -9.83 -3.32
AIBV 1578 1896.6 (42.8) 1675.3 (38.2) -7.45 -2.54
BCoV 1886 2115.6 (45.4) 2007.5 (45.5) -5.06 -2.67
HCoV 1451 1843.6 (42.2) 1567.6 (37.0) -9.30 -3.15
MHV 1793 2006.6 (43.8) 1911.3 (41.4) -4.88 -2.86
PEDV 1457 1781.6 (41.2) 1578.8 (38.3) -7.87 -3.18
TGV 1610 1993.9 (43.8) 1695.6 (38.9) -8.76 -2.20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RUV 868 793.2 (28.0) 845.6 (28.3) 2.67 0.79
EAV 672 784.3 (27.2) 710.4 (25.8) -4.13 -1.49
RV 559 758.0 (26.7) 564.3 (23.0) -7.45 -0.23
HIV-1 475 551.9 (23.1) 480.2 (21.9) -3.33 -0.24

Table 2.2 indicates that there is a general avoidance of palindromes of length four

and above in the coronavirus genomes. A natural question that follows is whether

palindromes of a given exact length are also under-represented in these viruses.

To answer this question, one would need the mean ν and standard deviation τ for

the count YL of palindromes of exact length 2L. It is easy to obtain the mean because

ν= E(YL) = E(XL)−E(XL+1). The standard deviation of YL can be derived with suit-

able modification of the method of proofs in Lemmas 2.1 and 2.2, but the expression
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obtained is rather lengthy due to an increase in the overlapping structures. Instead,

we adopt an alternative approach to estimate the standard deviation by simulation,

which at the same time serves to validate our derived means and standard devia-

tions. This approach has a further advantage of giving us the empirical distributions,

and Figure 2.2 shows that for small values of L, the distributions are well approxi-

mated by normal distributions.
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Figure 2.2 – Normal Q-Q Plots of Counts of Palindromes of Length Four (Left) and Six
(Right) in the 1000 Random Sequences Under the M1 Model for the SARS
Genome

For each virus in Table 2.1, 1000 random sequences were generated for both the

M0 and M1 models using scripts written in the R language (http://www.r-project.org/).

The sequences are run through the palindrome program which is part of EMBOSS

(European Molecular Biology Open Software Suite, Rice et al. (2000)) to extract the

palindrome positions and length. Each output is then read by R again and the counts

of palindromes of various length are tabulated.

Tables 2.3 and 2.4 present the counts of palindromes of exact length four, six,

and eight, along with their expected values ν, estimated standard deviations τ̂, and z

scores.

Based on the z scores, Tables 2.3 and 2.4 indicate that length-four palindromes

are significantly under-represented across the coronavirus family under both the M0

and M1 sequence models. However, for length-six palindromes, SARS is the only

member of the coronavirus family that shows under-representation under the M1

sequence model. For length eight or above, no distinct patterns are observed.
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Table 2.3 – z Scores for Palindromes of Various Lengths Under the M0 Model

Length-Four Palindromes Length-Six Palindromes Length-Eight Palindromes
Count νM0(τ̂M0) zM0 Count νM0(τ̂M0) zM0 Count νM0(τ̂M0) zM0

SARS 1144 1469.6 (36.9) −8.82 284 379.4 (19.4) −4.92 90 97.9 ( 9.7) −0.82
AIBV 1142 1399.5 (37.5) −6.87 320 366.8 (18.6) −2.52 91 96.1 ( 9.9) −0.52
BCoV 1360 1563.2 (40.4) −5.03 389 408.2 (20.4) −0.94 98 106.6 (10.7) −0.80
HCoV 1054 1364.7 (36.9) −8.42 287 354.5 (18.9) −3.57 82 92.1 ( 9.8) −1.03
MHV 1328 1499.0 (38.0) −4.50 340 379.2 (19.5) −2.01 82 95.9 ( 9.9) −1.41
PEDV 1079 1332.5 (36.5) −6.94 274 335.9 (18.5) −3.35 79 84.7 ( 9.2) −0.62
TGV 1180 1467.3 (38.4) −7.48 306 387.5 (19.7) −4.14 85 102.3 ( 9.8) −1.77

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RUV 610 567.0 (22.8) +1.89 167 161.7 (12.6) +0.42 68 46.1 ( 6.9) +3.17
EAV 479 589.4 (23.8) −4.64 145 146.4 (12.3) −0.12 36 36.4 ( 6.1) −0.06
RV 407 567.0 (23.7) −6.75 102 142.9 (12.4) −3.30 38 36.0 ( 5.9) +0.34
HIV-1 347 416.6 (20.1) −3.46 89 102.1 (10.2) −1.29 34 25.0 ( 4.8) +1.87

Table 2.4 – z Scores for Palindromes of Various Lengths Under the M1 Model

Length-Four Palindromes Length-Six Palindromes Length-Eight Palindromes
Count νM1(τ̂M1) zM1 Count νM1(τ̂M1) zM1 Count νM1(τ̂M1) zM1

SARS 1144 1242.7 (33.4) −2.96 284 327.3 (18.0) −2.41 90 86.5 ( 9.4) +0.37
AIBV 1142 1229.8 (35.4) −2.48 320 326.9 (17.8) −0.39 91 87.0 ( 9.4) +0.42
BCoV 1360 1476.5 (37.2) −3.13 389 390.4 (19.5) −0.07 98 103.4 ( 9.8) −0.55
HCoV 1054 1146.9 (34.5) −2.69 287 307.6 (17.4) −1.18 82 82.7 ( 8.9) −0.08
MHV 1328 1421.3 (37.8) −2.47 340 364.3 (18.8) −1.29 82 93.5 ( 9.8) −1.17
PEDV 1079 1169.8 (34.5) −2.63 274 302.9 (17.5) −1.65 79 78.6 ( 9.1) +0.05
TGV 1180 1239.5 (34.0) −1.75 306 333.2 (18.4) −1.48 85 89.8 ( 9.7) −0.49

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RUV 610 604.3 (24.5) +0.23 167 172.5 (13.8) −0.40 68 49.2 ( 6.9) +2.72
EAV 479 529.6 (22.5) −2.25 145 134.8 (11.3) +0.91 36 34.3 ( 5.7) +0.30
RV 407 415.2 (19.1) −0.43 102 109.8 (10.4) −0.75 38 28.9 ( 5.3) +1.71
HIV-1 347 358.3 (18.7) −0.60 89 91.0 ( 9.6) −0.21 34 23.1 ( 4.5) +2.42

For palindromes of length four and above, it is possible to fit higher-order Markov

models to the genome sequence. For example, the second-order Markov-chain model

that takes the base, dinucleotide, as well as trinucleotide composition into account,

can be used to calculate the z scores. We simulated 1000 random sequences with the

M2 model, but the results did not differ much from the M1 model.

As the EMBOSS palindrome program provides us with a detailed listing of all oc-

currences of palindromes of length four and above, we are able to notice two unique

features in SARS. First, the SARS sequence contains a long palindrome of length 22,

the longest among all palindromes observed in the coronaviruses. Second, there are

two identical, length-12 palindromes situated within 100 bases of each other in the

SARS genome. These are not observed in the other coronaviruses. Although con-
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tributing little to the total palindrome counts, these three palindromes appear un-

usual enough to warrant further study of their possible biological roles, as discussed

in the next section.

2.4 Discussion

Various statistical assessments of unusual abundance and rarity of individual words,

including individual palindromes, in nucleotide sequences have been done using

random-sequence models in a number of previous studies (Karlin et al., 1992; Merkl

and Fritz, 1996; Rocha et al., 2001, 1998; Schbath et al., 1995, to name just a few).

The present study, however, aims at investigating the unusual abundance and rar-

ity of palindromes collectively rather than individually. The mathematical results in

Section 2.2 provide a directly computable formula to give a single z score for all palin-

dromes with a given minimal length. We hope the exploratory results in this chapter

will serve as a basis for more detailed investigations to see how palindromes might

be involved in important biological mechanisms of the coronaviruses.

There are two random sequence models M0 and M1 used in this chapter. Since

M1 can take the genome dinucleotide compositions into consideration while M0

cannot, M1 is preferred over M0. Comparatively, the z scores under M1 are less ex-

treme than those of M0. M1 is therefore more conservative in declaring the palin-

drome counts in a genome to be significantly different from those in random se-

quences. We shall base our discussion of the results on M1 whenever possible.

The counts of palindromes of length at least four in each coronavirus analyzed

are significantly lower than expected (see Table 2.2). As the palindrome length in-

creases to six and above, the under-representation of palindromes no longer holds

across the family (theoretical z scores under M1 range from −1.66 to 0.46.) This sug-

gests that there is a family-wide avoidance of palindromes of exact length four in the

coronaviruses, which is confirmed by the empirical z scores for exact-length palin-

dromes in Tables 2.3 and 2.4. With this knowledge, a thorough examination of the
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relative abundance of individual length-four palindromes, conditional on the total

length-four palindrome count is called for. We are in the process of setting up such a

study.

Although the under-representation of length-four palindromes is observed for

all of the coronaviruses in our data set that include members from all three anti-

genic groups (Marra et al., 2003), this under-representation is not universally true in

all RNA viruses, as demonstrated by the other RNA viruses outside the coronavirus

family. While it is conceivable that palindrome under-representation is just a char-

acteristic of the common ancestor of the coronaviruses, it is worth noting that the

characteristic is preserved in the family despite the reputation for RNA viruses to be

nature’s swiftest evolvers (Worobey and Holmes, 1999). So far, we cannot find any

previous report of under-representation of short palindromes in RNA viruses with

eukaryotic hosts. However, avoidance of short palindromes in some bacterial and

phage DNA genomes has been reported in several studies (Karlin et al., 1992; Merkl

and Fritz, 1996; Rocha et al., 2001, 1998, among others). The phenomenon is gen-

erally explained in relation to the defense mechanisms of the bacterial and phage

genomes, protecting themselves against being destroyed by restriction enzymes ca-

pable of cutting up DNA molecules at certain palindromic sites. It will be interesting

to investigate whether there is any possible interaction of the short palindromes in

the coronavirus genomes with the immune system of the host cells that might have

detrimental effects on the survival of the virus.

Length-six palindromes are found significantly under-represented only in SARS

but not in the other six coronaviruses (see Table 2.4). Would this avoidance of length-

six palindromes in the SARS genome offer a protective effect on the virus, making it

comparatively more difficult to be destroyed and contributing to the rapid spread

and the severity of the disease? This will be an interesting point to observe as we

seek to learn more about the SARS virus.

Among all palindromes found in the seven coronaviruses genomes we analyzed,

the longest one resides in SARS, composed of the 22 bases TCTTTAACAAGCTTGTTAAAGA
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spanning positions 25962–25983. Since the probability distribution of palindrome

lengths has not been rigorously obtained, we can only attempt a rough estimation,

based on the simple M0 sequence model, of observing a length-22 palindrome in a

genome with base composition like that of SARS. It has been demonstrated in Le-

ung et al. (2005) that for larger values of L (say ≥ 5), we may approximate the counts

of palindromes at or above length 2L by a Poisson random variable with parameter

λ equal to the expected count. We therefore have IP[maximal palindrome length ≥
22] = IP[X11 ≥ 1], which can be approximated by the corresponding Poisson prob-

ability with λ11 = E(X11) = 0.01008 by Proposition 2.3. This Poisson probability is

equal to 1−e−λ11 , about 1%.

Knowing that this long palindrome is quite unlikely to occur by chance, one would

logically ask the question of whether it plays any particular functional role. Accord-

ing to the classification of open reading frames (ORFs) encoding potential nonstruc-

tural proteins of the SARS virus (Rota et al., 2003, Table 1), this palindrome occurs

in the overlapping region of the two ORFs designated X1 and X2. Due to the loca-

tion of this palindrome, it is tempting to speculate that it might be involved in some

secondary structures serving similar purposes like those of a pseudoknot, which is

typically found at frame-shift locations in overlapping coding sequences (Giedroc

et al., 2000). One would have to perform a detailed secondary structure prediction on

this part of the SARS and other coronavirus genomes before further suggestions can

be made. The methods and tools used by Qin et al. (2003) to predict the secondary

structure in another part of the SARS virus genome (around the packaging-signal se-

quence) are likely to be applicable here as well.

Another feature unique to SARS is the occurrence of two repeating length-12

palindromes TTATAATTATAA spanning positions 22712–22723 and 22796–22807, all

within 100 bases of the genome in the coding sequence of the surface-spike glyco-

protein, which is important for virus entry and virus-receptor interactions (Yu et al.,

2003). Both copies begin on the third position of a codon. Three amino acids Tyr-

Asn-Tyr are coded by the second through tenth bases of the palindrome. No such
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repeating palindromes are observed in the corresponding glycoprotein-coding se-

quences for any of the other six coronaviruses. Probabilistic assessment of close re-

peating palindromes occurring in random sequences has yet to be formulated math-

ematically or estimated by simulation. (The method of Robin and Daudin (1999) can

be used to assess the probability that a given palindrome repeats itself in close prox-

imity.) If such an observation is found to be unlikely to occur by chance, then these

repeating palindromes might be tested for potential regulatory functions. Large palin-

dromes present in single-stranded RNA have the inherent ability to form double

stranded stem structures through the formation of intramolecular base pairs; thus,

it is possible that these sequences form secondary RNA structures in the genomic

RNA and in one or more subgenomic RNAs of the SARS virus. In many of the single-

stranded RNA viruses, stem structures play important regulatory roles in genome

replication or gene expression. It should be possible to investigate potential regula-

tory roles of these repeated length-12 palindromes by engineering silent mutations

within these sequences such that the encoded protein is not altered but the palin-

dromes and putative secondary structures are lost.

2.5 Concluding Remarks

While we hope that there will never be another outbreak of SARS, we believe that

detailed analysis of the SARS genome sequence can help generate useful information

for understanding the biology of the coronaviruses and perhaps other RNA viruses in

general. This first exploration about palindromes in the coronavirus family generates

many questions to be investigated in greater detail mathematically, computationally,

as well as biologically.

Closely related to palindromes is the sequence feature of close inversion, which

is a palindrome with its two halves separated by a short stretch of intervening nu-

cleotides. These close inversions are well known to form stem-loop and other sec-

ondary structures involved in the viral recombination and packaging process (Qin
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et al., 2003; Rowe et al., 1997). We anticipate that a set of interesting and challenging

questions in random-sequence models will again emerge from the analysis of close

inversions.
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SCORING SCHEMES OF PALINDROME

CLUSTERS FOR PREDICTION OF

REPLICATION ORIGINS IN

HERPESVIRUSES

3.1 Introduction

The herpesvirus family includes some of the well-known pathogenic viruses such as

herpes simplex, varicella-zoster, Epstein-Barr and cytomegalovirus. Some of these

viruses are believed to pose major risks in immunosuppressive post-transplantation

therapies, while others have been associated with life-threatening disease such as

AIDS and various cancers (Bennett et al., 2001; Biswas et al., 2001; Labrecque et al.,

1995; Vital et al., 1995). A number of animal herpesviruses are also of agricultural

concern.

Example of 80 or more herpesviruses that infect a variety of animal species are

the herpes simplex virus (HSV1 and HSV2), which causes cold sores and genital tract

27



3.1. Introduction 28

infections in humans; Epstein-Barr virus (EBV), associated with infectious mononu-

cleosis and with two-human cancers, Burkitt’s lymphoma and nasopharyngeal car-

cinoma; cytomegalovirus (HCMV), causing human and animal diseases, particularly

in immunodeficient individuals; varicella-zoster virus (VZV), producing chickenpox

in children and shingles in adults; and Marek’s herpesvirus (GaHV2), which causes

malignant avian lymphoma (Kornberg and Baker, 1992).

Early studies (Reisman et al., 1985; Weller et al., 1985) have reported that the nu-

cleotide sequences around replication origins of certain herpesviruses have com-

plex repetitive structures of closely spaced direct and inverted repeats. A high con-

centration of palindromes around replication origins have been found in these her-

pesviruses.

Herpesviruses utilize two different types of replication origins during lytic and

latent infections. For each type of origins, the count and locations in the genome

vary from one kind of herpesvirus to another. Most herpesviruses have one to two

copies of latent and lytic origins. Presence of palindromes around replication origins

is prevalent in both latent and lytic types (Leung et al., 2005; Lin et al., 2003; Masse

et al., 1992; Reisman et al., 1985; Weller et al., 1985).

As the central step in the reproduction of herpesviruses, viral DNA replication has

been the target for a number of anti-herpesvirus drugs (e.g., acyclovir). Understand-

ing the molecular mechanisms involved in DNA replication is of great importance in

further developing strategies to control the growth and spread of viruses (Delecluse

and Hammerschmidt, 2000; Hartline et al., 2005; Villarreal, 2003). Since replication

origins are regarded as major sites for regulating genome replication, labor-intensive

laboratory procedures have been used to search for replication origins (See, for ex-

ample, Deng et al., 2004; Newlon and Theis, 2002; Zhu et al., 1998).

With the increasing availability of genomic DNA sequence data, one way that

may save time and resources would be to scan the viral genome sequence for the ex-

pected sequence features by a computer program before an experimental search for

replication origins is launched. Masse et al. (1992) first used this computational ap-
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proach to predict the replication origin oriLyt on the human cytomegalovirus (HCMV)

and then confirmed it by experimentation. In that computational analysis, one of the

sequence features being scanned for in the genome sequence is the presence of a

high concentration of palindromes of length 10 or above clustering within a window

of 1000 bases.

Leung et al. (1994) describe how an evaluation criterion, based on the scan statis-

tics (Dembo and Karlin, 1992; Glaz, 1989), is developed for assessing palindrome

clusters by modeling the occurrences of palindromes in the genome as points ran-

domly sampled from the unit interval according to the uniform distribution. By iden-

tifying windows on the genome sequence containing statistically significant clusters

of palindromes, the scan statistics, in principle, provide a method to predict likely

locations of replication origins. This criterion, however, essentially assesses a win-

dow of the genome by only the counts of palindrome contained in it, regardless of

the actual extent of the palindrome lengths. This drawback has led to missing some

replication origins which contain one extremely long palindrome rather than a clus-

ter of moderately long ones. In the present chapter, we propose two new schemes

for evaluating palindrome clusters and use the rankings of these evaluation criteria

to predict the replication origins in the herpesviruses. By checking with known repli-

cation origins reported either in published literature or GenBank annotations, we

assess the accuracy of the new prediction schemes. These assessments demonstrate

that there is a substantial improvement over the original scan statistics criterion.

In section 2, we describe the main steps of the prediction method and three scor-

ing schemes. The first scoring scheme, called the palindrome count scheme (PCS), is

essentially the scan statistics method first described by Leung et al. (1994), and fur-

ther discussed in the articles of Leung and Yamashita (1999), and Leung et al. (2005).

Two new scoring schemes, namely, the palindrome length scheme (PLS) and the base-

pair weighted scheme (BWS) are introduced as measures of palindrome clusters. In

section 3, we report the results of applying these scoring schemes to predict the lo-

cations of replication origins for 42 fully sequenced herpesviruses, and compare the
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prediction accuracies in terms of sensitivity and positive predictive value. A few con-

cluding remarks are given in section 4.

3.2 Methods

We propose a computational method to identify regions of a genome which harbor

unusual clusters of palindromes. This, in turn, becomes the basis of our method

to predict replication origins for the herpesviruses. Table 3.1 on the following page

presents the viruses to be analyzed. The data set comprises all complete genome

sequences of the herpesvirus family downloaded from GenBank at the NCBI web site

in March 2006. For each virus, we list its abbreviation, accession number, sequence

length, and the relative frequencies of the four nucleotide bases in the genome.

Our method for predicting replication origins consists of 4 basic steps: (1) locate

palindromes at or above a prescribed length; (2) choose a scoring scheme for palin-

dromes; (3) compute a score for each window of the genome according to the chosen

scoring scheme; and (4) select regions with high scores.

Step (1): Locating palindromes at or above a prescribed length:

As very short palindromes occur frequently by chance, a parameter, L, needs

to be chosen where palindromes of length below 2L will not be consid-

ered in the analysis. Leung et al. (2005) propose a procedure, which is

based on bench-marking with the well-studied HCMV virus, for the choice

of L. This choice takes into account the length of the sequence, as well

as the base frequencies in the genome. Using this criterion, L is chosen

to be 6 for the BOHV1, BOHV5, CEHV1, CEHV2, CEHV16, HSV1, HSV2,

SHV1 and THV sequences and 5 for the other sequences. Once the min-

imal palindrome length has been chosen, the sequences are run through

the palindrome program, which is part of EMBOSS (European Molecular

Biology Open Software Suite, Rice et al., 2000), to extract the palindrome

positions and lengths. Each of these palindromes will be assigned a score
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Table 3.1 – The list of herpesviruses to be analyzed.

Virus Abbreviation Accession Length Base Composition

Alcelaphine herpesvirus 1 alhv1 NC_002531 130608 (0.27, 0.24, 0.22, 0.26)
Ateline herpesvirus 3 athv3 NC_001987 108409 (0.32, 0.19, 0.17, 0.31)
Bovine herpesvirus 1 bohv1 NC_001847 135301 (0.14, 0.36, 0.37, 0.14)
Bovine herpesvirus 4 bohv4 NC_002665 108873 (0.30, 0.21, 0.20, 0.29)
Bovine herpesvirus 5 bohv5 NC_005261 138390 (0.12, 0.37, 0.38, 0.13)
Callitrichine herpesvirus 3 calhv3 NC_004367 149696 (0.26, 0.25, 0.25, 0.25)
Cercopithecine herpesvirus 1 cehv1 NC_004812 156789 (0.13, 0.37, 0.38, 0.13)
Cercopithecine herpesvirus 2 cehv2 NC_006560 150715 (0.12, 0.38, 0.38, 0.12)
Cercopithecine herpesvirus 8 cehv8 NC_006150 221454 (0.26, 0.25, 0.24, 0.25)
Cercopithecine herpesvirus 9 cehv7 NC_002686 124138 (0.29, 0.21, 0.20, 0.30)
Cercopithecine herpesvirus 15 cehv15 NC_006146 171096 (0.18, 0.31, 0.31, 0.20)
Cercopithecine herpesvirus 16 cehv16 NC_007653 156487 (0.12, 0.38, 0.38, 0.12)
Cercopithecine herpesvirus 17 mmrv NC_003401 133719 (0.24, 0.27, 0.26, 0.23)
Equid herpesvirus 1 ehv1 NC_001491 150224 (0.22, 0.29, 0.28, 0.22)
Equid herpesvirus 2 ehv2 NC_001650 184427 (0.22, 0.29, 0.28, 0.21)
Equid herpesvirus 4 ehv4 NC_001844 145597 (0.25, 0.25, 0.25, 0.25)
Gallid herpesvirus 1 gahv1 NC_006623 148687 (0.26, 0.24, 0.24, 0.26)
Gallid herpesvirus 2 gahv2 NC_002229 174077 (0.28, 0.22, 0.22, 0.28)
Gallid herpesvirus 3 gahv3 NC_002577 164270 (0.23, 0.27, 0.27, 0.23)
Human herpesvirus 1 hsv1 NC_001806 152261 (0.16, 0.34, 0.34, 0.16)
Human herpesvirus 2 hsv2 NC_001798 154746 (0.15, 0.35, 0.35, 0.15)
Human herpesvirus 3 vzv NC_001348 124884 (0.27, 0.23, 0.23, 0.27)
Human herpesvirus 4 ebv NC_007605 171823 (0.20, 0.30, 0.30, 0.21)
Human herpesvirus 5 strain AD169 hcmv NC_001347 230287 (0.22, 0.28, 0.29, 0.21)
Human herpesvirus 5 strain Merlin hcmv-m NC_006273 235645 (0.21, 0.29, 0.29, 0.21)
Human herpesvirus 6 hhv6 NC_001664 159321 (0.29, 0.22, 0.21, 0.29)
Human herpesvirus 6B hhv6b NC_000898 162114 (0.29, 0.22, 0.21, 0.29)
Human herpesvirus 7 hhv7 NC_001716 153080 (0.32, 0.20, 0.17, 0.31)
Human herpesvirus 8 hhv8 NC_003409 137508 (0.24, 0.27, 0.26, 0.23)
Ictalurid herpesvirus 1 ichv1 NC_001493 134226 (0.21, 0.28, 0.28, 0.22)
Meleagrid herpesvirus 1 mehv1 NC_002641 159160 (0.26, 0.24, 0.24, 0.26)
Murid herpesvirus 1 mcmv NC_004065 230278 (0.20, 0.29, 0.30, 0.21)
Murid herpesvirus 2 rcmv NC_002512 230138 (0.19, 0.30, 0.31, 0.20)
Murid herpesvirus 4 muhv4 NC_001826 119450 (0.27, 0.24, 0.23, 0.26)
Macaca fuscata rhadinovirus mfrv NC_007016 131217 (0.25, 0.27, 0.25, 0.23)
Ostreid herpesvirus 1 oshv1 NC_005881 207439 (0.31, 0.19, 0.19, 0.30)
Ovine herpesvirus 2 ohv2 NC_007646 135135 (0.23, 0.29, 0.24, 0.24)
Pongine herpesvirus 4 ccmv NC_003521 241087 (0.19, 0.31, 0.31, 0.19)
Psittacid herpesvirus 1 pshv1 NC_005264 163025 (0.19, 0.31, 0.30, 0.20)
Saimiriine herpesvirus 2 sahv2 NC_001350 112930 (0.33, 0.18, 0.16, 0.32)
Suid herpesvirus 1 shv1 NC_006151 143461 (0.13, 0.37, 0.37, 0.13)
Tupaiid herpesvirus 1 thv NC_002794 195859 (0.17, 0.33, 0.34, 0.17)
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according to a scoring scheme chosen in the next step. Note that although

it is possible for one palindrome to contain a shorter one in it (e.g. the

length 12 palindrome ACCGTGCACGGT contains the length 10 palindrome

CCGTGCACGG), EMBOSS automatically discards the shorter redundant palin-

drome and report only the longest one.

Step (2): Choosing a scoring scheme for palindromes:

Three schemes for scoring palindromes are described. In all of them, any

palindrome of length less than 2L will always get a score 0.

(i) Palindrome count score (PCS):

In this scoring scheme, a palindrome is given a score 1 when its length

is at or above 2L.

(ii) Palindrome length score (PLS):

A palindrome of length 2s ≥ 2L is given a score s/L. For example, if we

let L = 5, a palindrome of length 10 will get a score of 1, while one of

length 24 will get a score of 2.4.

(iii) Base-pair weighted score of order m (BWSm):

The idea behind BWS is that a higher score should be given to rarer

palindromes, namely those which have lower probabilities to occur by

chance. We assess the probability of occurrence of a particular palin-

drome based on Markov type sequence models (Durbin et al., 2000,

Chapter 3). Here m denotes the order of the Markov chain. Then, we

take the negative logarithm of the probability of a palindrome to give

it a positive score which is higher when the probability is lower.

We give a simple example of calculating the BWS0 score. In the Markov

model with order m = 0, the letters in the sequence are independent of

each other. A palindrome containing respectively nA,nC ,nG ,nT of A, C, G,

and T occurs with probability pnA
A pnC

C pnG
G pnT

T where p A, pC , pG , pT are the
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relative base frequencies in the sequence. The BWS0 score of such a palin-

drome will be the negative logarithm of this probability, which is equal to

−(nA log p A +nC log pC +nG log pG +nT log pT ). Consider two palindromes:

CACGTACGTG and TTTTTAAAAA in a very CG-rich genome, say, with relative

base frequencies p A = pT = 0.1, and pC = pG = 0.4. The latter palindrome

is much less likely to occur than the former, and accordingly should receive

a higher score to reflect its rarity compared with the former. Indeed, the

calculated scores of the two palindromes turn out to be 14.7 for the former

and 23.0 for the latter.

Step (3): Computing the Window score:

The score of a window in the genome is simply the total of the scores of all

the palindromes occurring in this window. A palindrome is considered in

the window if its left-center is. By trying out a variety of window lengths

with the method, we have found that it is best to choose the window length

w at 0.5% of the genome length, rounded down to the nearest hundred

bases for convenience. Also, we let consecutive windows overlap by half

their lengths. That is, the first window spans the first through the w-th

bases, the second the
(w

2 +1
)
st to

(3w
2

)
th bases, and so on. Because of the

way the sliding windows are constructed, the length of the last window is

usually shorter than w .

Step (4): Selecting regions with significant palindrome clusters:

For the PCS, regions that harbor statistical significant clusters of palindromes

are identified using the scan statistics criterion as described in Leung et al.

(1994). For this chapter, we use a nonparametric approach where a fixed

number of top scoring windows are chosen as the predicted locations of

replication origins. It is well known that herpesviruses have multiple repli-

cation origins. However, there does not appear to be any obvious rule to

determine the number of top scoring windows that one should take. Based
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on sensitivity and positive predictive value consideration (defined below),

we find that using the top 3 to 5 ranked windows for prediction works well

for the herpesviruses.

3.3 Results And Discussion

3.3.1 Scan Statistics method versus the new scoring schemes

To compare and contrast the two new scoring schemes with the scan statistics method,

now called PCS, the sliding window plots for HCMV and HSV1 using PCS, PLS and

BWS0 score schemes are displayed in Figure 3.1. In each plot, the scores of the win-

dows are plotted against the position of the window. For HCMV, the highest scoring

window is the same for all three schemes. This window corresponds to the oriLyt of

the HCMV identified by Masse et al. (1992). For HSV1, however, the plot of the PCS

look rather different from those of the PLS and BWS. The highest scoring window in

each of PLS and BWS corresponds to the oriL, and the two next highest peaks are

close to the two oriS’s. In contrast, the PCS fails to locate any significant clusters of

palindromes.

Tables 3.2 and 3.3 shows the top 10 scoring windows for each of the 42 viruses

under both the PLS and BWS schemes. The numbers in the table indicate the middle

positions of the windows. In cases where two or more high scoring windows are close

to one another, only one of them is picked to represent the region that gave the high

scores. We adopt the practice that when a certain high scoring window is chosen, the

neighboring 8 windows both to the left and to the right of it will not be considered

subsequently. Rows that are shaded indicate that the particular viruses have known

replication origins either from literature or from annotation. Underlined entries de-

note the middle positions of the windows which are within 2 map units 1 of known

replication origins. Shaded rows without any underlined entries show that the com-

putational method fails to predict the known origins of replication. Finally, rows that

1One map unit is one percent of the genome length, and will be abbreviated as ‘mu’ from now on.
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Figure 3.1 – Sliding window plots of HCMV and HSV1 using PCS, PLS and BWS0.
The first window spans the first through the w-th bases, the second the(w

2 +1
)
st to

(3w
2

)
th bases, and so on. The score of a window is the total of

the scores of all the palindromes occurring in this window according to
PCS, PLS or BWS0.

are not shaded denote those viruses whose origins of replication are not known, as

far as we know. Table 3.4 lists the regions with significant clusters of palindromes as

found by the PCS scheme.

3.3.2 Prediction accuracy

We next examine the correspondence between the locations of these high scoring

windows and those of the known replication origins. From Genbank sequence en-

tries, annotations and literature, we are able to compile a list of 43 known replication

origins for some of the viruses in our data set. Table 3.5 shows the distance between

each known origin from the nearest significant palindrome cluster for PCS, or the

nearest high scoring window for PLS and BWS1 if the center of the cluster or window

is within 2 mu of the origin. Otherwise a "-" is entered. The distance is calculated

from the mid-point of the window to the mid-point of the closest replication origin.



3.3. Results And Discussion 36

Table 3.2 – High Scoring Windows of PLS. The numbers in the table indicate the mid-
dle positions of the windows. Rows that are shaded indicate that the par-
ticular viruses have known replication origins either from literature or
from annotation. Underlined entries denote the middle positions of the
windows which are within 2 map units (i.e. 2% of the genome length) of
known replication origins.

PLS Rankings
Virus 1 2 3 4 5 6 7 8 9 10

alhv1 113701 32701 123301 27301 127501 110701 95101 1501 64201 120301
athv3 99001 54751 97001 1001 25501 36751 107751 86751 49501 43501
bohv1 113401 124501 103801 134401 87301 107101 131101 82801 30901 101101
bohv4 30251 54751 72251 26501 11501 48501 19751 46251 52251 2501
bohv5 19201 78001 107401 135601 31501 36901 6601 90901 67501 84301
calhv3 116201 133351 23101 56351 14001 18901 30101 100101 143851 148751
ccmv 91201 207001 177001 130201 24001 142201 63601 154201 49201 149401
cehv1 133001 149451 61601 113051 117601 109901 8051 36401 44451 140701
cehv2 129501 144201 61601 75951 123551 150501 107101 19951 92051 79101
cehv7 18601 93601 15601 24601 110701 117601 51301 101701 106201 121801
cehv8 161151 147401 198001 166651 44551 122651 88551 136401 207901 76451
cehv15 8001 34801 138801 109201 152001 68801 114001 57201 126401 100401
cehv16 21001 137201 8751 118301 154001 143151 127751 63351 38151 76301
ebv 7601 141201 41201 73201 115201 66401 12401 121201 155601 63201
ehv1 116201 146651 47601 123201 140001 94151 50751 9801 24851 56001
ehv2 6301 54001 173251 140401 46351 131851 164701 17551 160651 24751
ehv4 105351 142801 3851 109901 53551 64751 115151 27651 21001 42351
gahv1 41651 68601 99751 31851 111651 57401 126351 26951 36401 71751
gahv2 160801 801 137601 42401 46401 75201 108801 144801 168001 5601
gahv3 158801 138401 11201 122401 105201 154801 1201 132401 142401 52401
hcmv 94051 196351 77001 174901 64351 86901 53901 121001 217251 128151
hcmv-m 175451 94051 153451 77001 86901 167751 201301 190301 229351 551
hhv6 30101 8051 110601 67901 89251 125651 98701 132651 20651 24501
hhv6b 90401 69201 132801 8801 12001 60801 44001 57201 111601 31601
hhv7 133351 9451 127401 152251 29751 140701 43751 49001 62651 78401
hhv8 23401 119401 15001 136501 19201 29101 130801 102001 108601 38701
hsv1 62301 129851 148401 48301 55651 78401 91701 69651 81201 72801
hsv2 74551 7351 119701 28001 45151 12951 48651 81201 77351 1051
ichv1 55501 9301 89701 124801 19201 15001 130501 32401 108301 2101
mcmv 92951 142451 200201 130351 210651 67101 108351 101201 191401 182601
mehv1 5601 117951 11551 40951 97651 134751 72801 65451 86101 51101
mfrv 130501 115501 54601 13201 23401 75301 127201 10801 32401 101401
mmrv 132601 3301 117601 35101 87001 60001 22801 55801 32701 76801
muhv4 99251 26251 62001 50751 106251 751 30251 42251 66751 19501
ohv2 117601 134401 81001 103801 90001 99901 42001 49201 87001 16801
oshv1 21001 144001 185001 197501 204501 2501 180001 49501 67501 92501
pshv1 130401 151601 26801 60801 18801 43201 106801 11201 103201 114801
rcmv 75901 110551 83601 101751 127601 118251 8801 37401 155101 95151
sahv2 103751 112501 27751 81501 3251 6751 76501 51001 109251 90501
shv1 38151 93101 11551 46201 58451 1401 25901 85051 122851 53551
thv 134101 10801 50401 144901 85051 107551 58501 163801 54451 157951
vzv 119401 110101 100501 49201 1501 60001 13501 57301 66901 6601
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Table 3.3 – High Scoring Windows of BWS1.

BWS1 Rankings
Virus 1 2 3 4 5 6 7 8 9 10

alhv1 113701 123301 32701 27301 127501 110701 95101 1501 64201 4801
athv3 99251 97001 54751 107751 36751 1001 25501 87501 67001 49501
bohv1 113401 124501 87301 104101 134101 82801 107101 131101 30901 101101
bohv4 54751 30251 72251 26501 11501 48501 52251 46251 19751 7751
bohv5 18901 113401 129601 78001 107401 135601 84301 31501 90901 36901
calhv3 116201 133351 23101 56351 100101 18901 14001 30101 143851 148751
ccmv 91201 207001 177001 24001 130201 142201 63601 49201 154201 115801
cehv1 133001 149451 61601 113051 117601 36401 109901 44451 8051 68601
cehv2 129501 144201 61601 75951 79101 92051 123551 150501 32201 107101
cehv7 18601 106201 121801 24601 15601 93601 110701 117601 51301 68401
cehv8 161151 147401 198001 166651 44551 122651 136401 88551 207901 76451
cehv15 8001 34801 138801 152001 109201 68801 114001 57201 126401 98801
cehv16 21001 137201 154001 8751 118301 143151 63351 38151 127751 76301
ebv 7601 41201 144001 73201 115201 66401 121201 155601 63201 78801
ehv1 116201 147001 47601 123201 140001 51101 94151 76651 73501 9801
ehv2 54001 6301 173251 140401 46351 131851 164701 160651 17551 72901
ehv4 105351 143151 109901 3851 53551 64751 115151 27651 21001 42351
gahv1 68601 41651 99751 31851 111651 57401 26951 122501 126351 36401
gahv2 160801 801 137601 46401 145201 75201 168001 20401 42401 5601
gahv3 158801 138401 11201 122401 105201 154801 142401 52401 1201 132401
hcmv 94051 174901 196351 77001 86901 53901 121001 64351 217251 209001
hcmv-m 175451 94051 153451 77001 86901 201301 167751 190301 229351 23101
hhv6 8051 30101 110601 67901 89251 132651 98701 125651 24501 93101
hhv6b 90801 132801 8801 69201 12001 60801 57201 44001 111601 2001
hhv7 9451 152251 133351 127401 29751 140701 43751 62651 49001 78401
hhv8 23401 119701 136501 15001 19201 29101 102001 130801 108601 38701
hsv1 62301 129851 148401 91701 78401 69651 48301 81201 55651 1051
hsv2 74551 28001 12951 45151 7351 119701 81201 48651 89251 77351
ichv1 55501 89701 9301 124801 19201 15001 130501 32401 108301 117901
mcmv 92951 142451 200201 130351 210651 182601 101201 108351 67101 191401
mehv1 5601 117951 11551 97651 40951 134751 72801 86101 65451 51101
mfrv 130501 115501 54601 23401 13501 75301 33601 127201 101401 10801
mmrv 132601 117601 3301 35101 87001 60001 22801 55801 123901 32701
muhv4 99251 26251 62001 50751 106251 66751 30251 42251 751 87501
ohv2 117601 134701 81001 103801 49201 42001 90001 99901 87001 16801
oshv1 21001 144001 187501 204501 197501 2501 180001 93001 103001 44001
pshv1 130401 151601 18801 26801 60801 43201 103201 106801 114801 11201
rcmv 75901 110551 83601 127601 101751 118251 207351 8801 155101 147951
sahv2 103751 112501 81501 29751 6751 3251 76501 51001 90501 11501
shv1 38151 11551 93101 46201 115151 130201 58451 1401 64051 122851
thv 134101 10801 144901 107551 49951 85501 163801 58501 54451 38251
vzv 119401 110101 100501 1501 49201 60001 66901 57301 13501 63901
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Table 3.4 – Regions with significant clusters of palindromes as found by the PCS. For
example, for the virus EBV, the region 6771-10590 bp is deemed to contain
a high concentration of palindromes. BOHV4, BOHV5, CEHV2, CEHV7,
EHV4, GAHV1, GAHV2, HHV6, HSV1, HSV2, ICHV1, OSHV1, SAHV2 and
VZV have no significant clusters of palindromes.

Virus Region

alhv1 113456-113759
athv3 95350-100098

bohv1 77155-77168, 102895-106948, 113462-113636, 124582-124756, 131268-135221
calhv3 21899-23918, 115406-117660, 133180-133587

ccmv 88376-93659, 206555-207582
cehv1 112833-113219
cehv8 147015-147280, 158953-164225

cehv15 5182-10840, 32483-36810, 137852-139781, 150277-152289
cehv16 20343-21242

ebv 6771-10590, 37173-42573, 138248-145848
ehv1 115125-119096, 144064-148035
ehv2 4911-9106, 147228-147250, 171785-175980

gahv3 10409-11952, 104965-105067, 121153-123174, 138321-138935, 158536-159150
hcmv 90515-95115, 195962-196203

hcmv-m 90881-96835, 175177-176003, 201246-201487
hhv6b 88469-94716

hhv7 124985-128653
hhv8 21913-23705

mcmv 92621-93412, 142118-142186
mehv1 116644-116667
mmrv 3464-3517, 130148-132723

muhv4 96755-105094
mfrv 114579-118884, 127211-130650
ohv2 113104-121989, 130697-134852

pshv1 128677-131155, 151017-153495
rcmv 74134-76485, 118126-118854
shv1 36683-41606

thv 10089-11213

Clearly, Table 3.5 shows that both PLS and BWS present a substantial improvement

in the prediction accuracy of replication origins. For the PLS and BWS, we have used

the top 3 scoring windows for each virus to construct this table.

Prediction accuracy of the different schemes can be quantified by two commonly

accepted measures: sensitivity and positive predictive value (PPV). In our context,

sensitivity is the percentage of known origins that are close to the regions suggested

by the prediction; and positive predictive value is the percentage of identified regions

that are close to the known origins.
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Table 3.5 – Prediction performance of various scoring schemes, PLS and BWS, based
on top 3 scoring windows. The table shows the distance between each
known origin from the nearest significant palindrome cluster for PCS, or
the nearest high scoring window for PLS and BWS1 if the center of the clus-
ter or window is within 2 mu of the origin. For example, one of the top
3 scoring windows under the PLS (and BWS) for RCMV is 0.62 map unit
away from the RCMV oriLyt.

Virus Known ORIs/ Names PCS PLS BWS1

bohv1 111080-111300 (OriS) 1.96mu 1.63mu 1.63mu
126918-127138 (OriS) 1.52mu 1.87mu 1.87mu

bohv4 97143-98850 (OriLyt) - - -
bohv5 113206-113418 (OriLyt) - - 0.064mu

129595-129807 (OriLyt) - - 0.072mu
cehv1 61592-61789 (OriL1) - 0.057mu 0.057mu

61795-61992 (OriL2) - 0.18mu 0.18mu
132795-132796 (OriS1) - 0.13mu 0.13mu
132998-132999 (OriS2) - 0.0016mu 0.0016mu
149425-149426 (OriS2) - 0.016mu 0.016mu
149628-149629 (OriS1) - 0.11mu 0.11mu

cehv2 61445-61542 (OriL) - 0.071mu 0.071mu
129452-129623 (OriS) - 0.024mu 0.024mu
144386-144557 (OriS) - 0.18mu 0.18mu

cehv7 109627-109646 - - -
118613-118632 - - -

cehv16 62892-63070 (OriL) - - -
133380-133578 (OriS) - - -
149725-149923 (OriS) - - -

ebv 7315-9312 (OriP) contains ori 0.41mu 0.41mu
40301-41293 (OriLyt) contains ori 0.23mu 0.23mu

143207-144444 (OriLyt) contains ori 1.52mu 0.10mu
ehv1 126187-126338 - - -
ehv4 73900-73919 (OriL) - - -

119462-119481 (OriS) - - -
138568-138587 (OriS) - - -

gahv1 24738-25005 (OriL) - - -
hcmv 93201-94646 (OriLyt) contains ori 0.055mu 0.055mu
hhv6 67617-67993 (OriLyt) - - -

hhv6b 68740-69581 (OriLyt) - 0.024mu -
hhv7 66685-67298 - - -
hsv1 62475 (OriL) - 0.11mu 0.11mu

131999 (OriS) - 1.41mu 1.41mu
146235 (OriS) - 1.42mu 1.42mu

hsv2 62930 (OriL) - - -
132760 (OriS) - - -
148981 (OriS) - - -

rcmv 75666-78970 (OriLyt) overlaps ori 0.62mu 0.62mu
shv1 63848-63908 (OriL) - - -

114393-115009 (OriS) - - -
129593-130209 (OriS) - - -

vzv 110087-110350 - 0.094mu 0.094mu
119547-119810 - 0.22mu 0.22mu



3.3. Results And Discussion 40

Figure 3.2 shows the performance of the various schemes. For the PLS and BWS1,

the sensitivity and positive predictive value using one to ten top scoring windows are

given in percentages. Results from BWS0 and BWS2 are also obtained (not shown).

Their prediction accuracies are close to but slightly less than that of BWS1. Note that

as the number of windows increases, we gain in sensitivity but at the same time lose

in positive predictive value. The highest sensitivities attained by PLS and BWS1 are

67% and 79% respectively. The highest positive predictive values for both schemes

are 47%.

Figure 3.2 – Sensitivity and positive predictive values of the PLS and BWS. In our con-
text, sensitivity is the percentage of known origins that are close to the
regions suggested by the prediction; and positive predictive value is the
percentage of identified regions that are close to the known origins. The
sensitivity and positive predictive values of the PCS are 16 and 37 respec-
tively.
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3.3.3 Difference between PLS and BWS

Note that both PLS and BWS take the length of the palindromes into account, as

longer palindromes have lower probability of occurrence than shorter ones. More-

over, the BWS takes into account the base and word frequencies which affect the

probability of occurrence of the palindrome. Consider, for example, the BWS0 score

can be viewed as a weighted sum, with weights according to the negative logarithms

of the base frequencies. If the base probabilities are all equal, the BWS0 will reduce

to log4×(nA+nC +nG +nT ) which is equal to log4×Length of palindrome and hence

is equivalent to the PLS.

In essence, the BWS includes more information about the sequence in its pre-

diction and so we expect it to give better prediction accuracy. Our results show that

this is indeed true. When we choose to use 6 or more top ranking windows, the BWS

performs better than the PLS in terms of (higher) sensitivity and positive predictive

value.

Suspecting that the probability of occurrence of palindromes might not be well

estimated on the basis of a global base and word frequencies, we also try calculating

palindrome probabilities using the base and word frequencies of those at the local

window rather than those of the entire genome.

Figure 3.3 shows the sensitivity and positive predictive values of the local BWS of

order 0,1,2. We use BWSm(Local) to represent the local version of BWS of order m.

According to these results, the local version still does not perform any better than

BWS1.

3.3.4 Further improvement of the algorithm

While our results show that using PLS and BWS with the ranking approach clearly

outperforms the PCS, we have to note that the PCS is the only scheme where a rig-

orous statistical significance criterion, based on the probability distribution of the

scan statistics, is currently available. The probability distributions of the maximal

window scores with PLS and BWS have yet to be established. We have some prelim-
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Figure 3.3 – Sensitivity and positive predictive values of Local BWS.

inary results on approximating the distributions of the window score under PLS by

compound Poisson distribution. The compound Poisson distribution is motivated

from a marked Poisson process point of view. The occurrence of a palindrome of

length 2L and above is modeled by a Poisson process (Leung et al., 2005), and the

actual length of this palindrome is modeled by a geometric distribution.

On closer examination of the known replication origins in this set of genome se-

quences, we notice that some of the origins missed by this prediction algorithm are

actually rather long approximate palindromes. They are missed because we choose

to consider only the perfect palindromes. For example, in HSV2, allowing just one

error would have let us pick up a 136 base long approximate palindrome centered

at 62930, which is where the reported replication origin is located. If we include
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these approximate palindromes in our consideration, the sensitivity can be further

increased.

3.4 Concluding Remarks

It is mentioned in the introduction that palindromes are merely one type of sequence

features known to be associated with replication origins. Other frequently observed

characteristics around replication origins include clustering of closely spaced direct

and inverted repeats, as well as high AT content. We have actually examined each

of these other types of sequence features and found that none of them, when used

alone on our data set, reaches the same level of prediction accuracy offered by the

BWS. However, it is likely that the prediction accuracy can be further improved by

appropriately incorporating them in the prediction scheme. In fact, several replica-

tion origins in BoHV4, EHV4 and HSV2 which are not identified by any of PCS, PLS,

or BWS can be easily detected by the high local AT content around them. Exactly

in what way all the different sequence features should be combined to produce the

optimal prediction results is the subject of an ongoing investigation.

While it is encouraging to see that close to 80% of replication origins can be pre-

dicted using a palindrome based scoring scheme like BWS, we have also noted that

the positive predictive value is rather low whenever the corresponding sensitivity ex-

ceeds 50%. This means that a substantial percentage of the high-scoring windows

do not correspond to confirmed replication origins. On closer examination of these

high scoring windows which are not replication origins, some of them turn out to be

regulatory sequences such as transcription factor binding sites. So far, we have not

made use of palindromes to predict regulatory sites, but this would be an important

area to explore.

Our prediction scheme is geared towards herpesviruses and still needs to be tested

on other DNA viruses. There are a few other methods proposed for prediction of

replication origins for bacterial, archaeal, and yeast genomes (Breier et al., 2004;
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Mackiewicz et al., 2004; Salzberg et al., 1998; Zhang and Zhang, 2005). These meth-

ods, which are based on DNA asymmetry, flanking sequence similarity, z-curves,

might be adapted to work on viral DNA as well.
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COMPOUND POISSON APPROXIMATION

OF PALINDROME LENGTH SCORE

4.1 Introduction

In the previous chapter, we introduced several scoring schemes to measure spatial

concentration of palindromic patterns in genomic sequences. The aim is to locate

regions in herpesvirus genomes that has a high concentration of palindromic pat-

terns and ultimately suggest them as potential replication origin sites. While our

prediction methods are rather successful in terms of sensitivity measure, they lack a

rigorous statistical significance criterion.

In this chapter, we will approximate the distributions of the window scores under

the Palindrome Length Score (PLS) by a Compound Poisson distribution. The occur-

rence of a palindrome of length 2L and above is modeled by a Poisson process (Leung

et al., 2005), and the actual length of this palindrome is modeled by a geometric dis-

tribution.

We will discuss very briefly some properties of the Compound Poisson Distribu-

tion, before going on to describe our approximation of the PLS. Based on this ap-

45



4.2. Implementing The Palindrome Length Score 46

proximation, we will then locate windows with scores in the herpesvirus genomes

that are statistically significant at the 5% and 1% level.

4.2 Implementing The Palindrome Length Score

Recall that the Palindrome Length Score assigns to a palindromic pattern appearing

in a genomic sequence a score that is proportionate to its length. For each of the

viruses listed in Table 3.1 on page 31, we do the following:

(1) Locate palindromes at or above a prescribed length;

(2) Score the palindromes according to the PLS scheme;

(3) Compute the score for each window of the genome according to the PLS scheme;

and

(4) Select regions with high scores.

The reader may refer to Section 3.2 on page 30 for details.

Note that in the previous chapter, (4) was done by selecting a pre-determined

number of top scoring windows. In this chapter, we approximate the PLS score of a

sliding window using a Compound Poisson random variable. Based on this, we are

able to locate windows that have statistically significant high scores.

4.3 Properties of the Compound Poisson Distribution

Before we proceed with the modeling of the PLS window score, it is perhaps timely

to have a quick and brief review of the Compound Poisson Distribution.

Definition 4.1. Let X1, X2, . . . be positive, integer valued, independent and identically

distributed random variables with a common distribution F with finite moments up

to a certain order. Let N be a Poisson random variable, independent of X1, X2, . . ., with

parameter λ.
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We define the Compound Poisson random variable SN to be

SN =


X1 + . . .+XN , N ≥ 1

0, N = 0

.

We now establish the Stein identity for the Compound Poisson distribution.

Proposition 4.2. Let X be a random variable having the same distribution as in the

definition of SN above, and independent of X1, X2, . . . and N . Then, for f : Z+ → R

bounded, we have

λIEX f (X +SN ) = IESN f (SN ).

Proof.

IESN f (SN ) =
∞∑

n=0
IE

[
SN f (SN ) | N = n

]
IP(N = n)

=
∞∑

n=1
IE

[
Sn f (Sn)

]
IP(N = n)

=
∞∑

n=1

n∑
k=1

IE
[

Xk f (Sn)
]

IP(N = n)

By symmetry, IEXk f (Sn) = IEXn f (Sn), for all 1 ≤ k ≤ n so the above expression

becomes

IESN f (SN ) =
∞∑

n=1

n∑
k=1

IE
[

Xn f (Sn)
]

IP(N = n)

=
∞∑

n=1
nIE

[
Xn f (Sn−1 +Xn)

]
IP(N = n)

=λ
∞∑

n=1
IE

[
Xn f (Sn−1 +Xn)

]
IP(N = n −1)

=λ
∞∑

n=1
IEX f (Sn−1 +X )IP(N = n −1)

=λIEX f (Sn +X ).

We will also have the following corollary:
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Corollary 4.3. Let αk = IP(X = k), for k ≥ 1. Then IP(SN = 0) = e−λ, and

IP(SN = n) = λ

n

n∑
k=1

kαk IP(SN = n −k), for n ≥ 1

.

Proof. Firstly, IP(SN = 0) = IP(N = 0) = e−λ.

Using Proposition 4.2 with the indicator function I , we get

nIP(SN = n) = IESN I{n}(SN ) =λIEX I{n}(SN +X )

=λ
∞∑

j=1
jα j IEI{n}(SN + j )

=λ
n∑

j=1
jα j IP(SN = n − j ).

4.4 Modeling the Palindrome Length Score

The modeling of the Palindrome Length Score consists of the following stages:

1. Probability model on DNA genome:

We model the genome sequence as a realization of a sequence of random vari-

ables ξ1,ξ2, . . . ,ξn taking values in A ={A, C, G, T} where n is the genome length.

We will assume that either

a) {ξ1,ξ2, . . . ,ξn} are independent and identically distributed (M0); or

b) {ξ1,ξ2, . . . ,ξn} form a stationary Markov chain of order one or two (M1 or

M2).
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2. Occurrences of palindromes:

Let L ≥ 1 be fixed, L is our lower cutoff, i.e., the minimum length of palindrome

that we consider. For L ≤ k ≤ n −L, define the indicator random variable

Ik =


1, if the kth base is the left center of a palindrome of length ≥ 2L

0, otherwise

.

3. Scoring the Palindrome:

Suppose there exist a palindrome of length at least 2L with left center at k. That

is, assume that Ik = 1. Let M > L, where M denotes our upper cutoff for the

palindrome length. For our application, we have M = 3L, which we will justify

later in the chapter. We consider the following cases:

a) L ≤ k < M or n −M +1 < k ≤ n −L+1.

For L ≤ s ≤ k, we define Xk = s if there is a maximally extended palin-

drome of length exactly 2s with left center at k.

b) M ≤ k ≤ n −M +1.

For L ≤ s < M , we define Xk = s if there is a maximally extended palin-

drome of length exactly 2s with left center at k.

For s = M , we define Xk = M if there is a maximally extended palindrome

of length at least 2M with left center at k.

4. Window score:

Recall that we construct overlapping windows along the span of the genome.

Say a total of T of them. For a typical window (ignoring the edge effect), the

window score Wi is given by

Wi =
∑

(i−1)w/2<k≤(i+1)w/2
Xk Ik

where w is the window width.
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The random variable

Vi =
∑

(i−1)w/2<k≤(i+1)w/2
Ik

counts the number of palindromes of length at least 2L in the window i .

4.5 Compound Poisson Approximation

For 1 ≤ i ≤ T , we construct a compound Poisson random variable Zi to approximate

the window score as below. Let Ni denote a Poisson random variable of parameter

λ := wIP[ξ1 · · ·ξ2L forms a palindrome].

Here Ni models the number of palindromes that occur in window i . To model the

length of the palindromes, let Y ,Yi ,1,Yi ,2, . . . be independent random variables taking

values L,L + 1, . . . , M with a common probability mass function pY to be specified

later, i.e,

IP[Y = j ] = pY ( j ), for L ≤ j ≤ M . (4.1)

We remark that probability mass function of Zi can be computed once the prob-

ability mass function as given by (4.1) is computed, and is given by the following

recursive formula (See Corollary 4.3 on page 47)

IP[Zi = k] = λ

k

k∑
j=1

j pY ( j )IP[Zi = k − j ], for k ≥ 1. (4.2)

with initial value IP[Zi = 0] = e−λ.

4.6 Probability Mass Function of Y

The probability mass function of Y depends on the sequence model of the genome.

We will show how to compute pY under the assumption of IID (M0), or stationary

Markov chain of order r with r = 1 or 2. Computation of pY when the underlying
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probability model are higher order Markov chains can be done in a similar fashion.

1. DNA sequence model is M0:

Let θ = 2(p A pT +pC pG ) and λ= |w |θL , where θ is the probability that a pair of

bases being complementary to each other. We will define pY to be

pY ( j ) =


(1−θ)θ j−L , if L ≤ j < M

θM−L , if s = M

.

2. DNA sequence model is M1:

Let P (a,b) denote the transition probability of a to b for a,b ∈A . Let (π(a))a∈A

be the stationary distribution of this Markov chain. We shall illustrate how

IP[Y ≥ j ] can be computed, and hence IP[Y = j ].

A brute force way to compute IP[Y ≥ j ] is by exhaustive enumeration:

IP[Y ≥ j ] = ∑
w∈A j

IP[ww′]

for L ≤ j ≤ M .

For the herpesviruses, recall that we pick L = {5,6} and hence M = 3L = {15,18}.

Note that computation by exhaustive enumeration soon becomes impracti-

cal for when j = M , it will be summing about 68 billion (418 = 68,719,476,736)

terms. Fortunately, we have a dynamic programming algorithm to do the com-

putation effectively.
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Proposition 4.4 (The Outside-In Algorithm for M1).

a) Define, for a ∈A , α1(a) = P (a, a′).

b) For m ≥ 2 and a ∈A , define

αm(a) := ∑
b∈A

P (a,b)αm−1(b)P (b′, a′).

c) Then

pY (m) = ∑
a∈A

π(a)[αm(a)−αm+1(a)]. (4.3)

Proof. Let ξ1 · · ·ξ2m ∈P to denote that ξ1 · · ·ξ2m forms a palindrome. We claim

that

IP[ξ1 · · ·ξ2m ∈P |ξ1 = a] =αm(a), a ∈A , m ≥ 1. (4.4)

Assuming that (4.4) holds, then

IP[Y ≥ m] = IP[ξ1 · · ·ξ2m ∈P ]

= ∑
a∈A

π(a)IP[ξ1 · · ·ξ2m ∈P |ξ1 = a]

= ∑
a∈A

π(a)αm(a)

proving (4.3). We shall prove (4.4) by induction.

For m = 1,

IP[ξ1ξ2 ∈P |ξ1 = a] = IP[aa′] = P (a, a′) =α1(a)

showing that (4.4) holds for m = 1.
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Assuming (4.4) holds for m, then

IP[ξ1 · · ·ξ2m+2 ∈P |ξ1 = a]

= IP[aξ2 · · ·ξ2m+1a′ ∈P |ξ1 = a]

= ∑
b∈A

IP[abξ3 · · ·ξ2mb′a′ ∈P |ξ1 = a]

= ∑
b∈A

IP[abξ3 · · ·ξ2mb′a′ ∈P |ξ1 = a,ξ2 = b]IP[ξ2 = b|ξ1 = a]

= ∑
b∈A

P (a,b)IP[bξ3 · · ·ξ2mb′ ∈P |ξ2 = b]P (b′, a′)

= ∑
b∈A

P (a,b)αm(b)P (b′, a′)

=αm+1(a)

showing that (4.4) holds for m +1. Induction finishes the proof.

3. DNA sequence model is M2:

Let P (ab,c) denote the transition probability of the dinucleotide ab to c for

a,b,c ∈A . Let (π(ab))ab∈A 2 be the stationary distribution of this Markov chain

of order 2. The Outside-In algorithm can be extended to the M2 case.

Proposition 4.5 (The Outside-In Algorithm for M2).

a) Define, for a,b ∈A ,

β1(a,b) =


1, if b = a′

0, otherwise

.

b) For m ≥ 2 and a,b ∈A , define

βm(a,b) := ∑
c∈A

P (ab,c)βm−1(b,c)P (c ′b′, a′).

c) Then

pY (m) = ∑
a∈A

π(ab)[βm(a,b)−βm+1(a,b)]. (4.5)
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Proof. The proof is similar to the above. We observe that

β2(a,b) = ∑
c∈A

P (ab,c)β1(b,c)P (c ′b′, a′) = P (ab,b′)P (bb′, a′)

= IP[ξ1ξ2ξ3ξ4 ∈A |ξ1ξ2 = ab].

For m ≥ 2,

IP[ξ1 · · ·ξ2m+2 ∈A |ξ1ξ2 = ab]

= ∑
c∈A

IP[abcξ4 · · ·ξ2m−3c ′b′a′ ∈A |ξ1ξ2 = ab]

= ∑
c∈A

IP[abcξ4 · · ·ξ2m−3c ′b′a′ ∈A |ξ1ξ2ξ3 = abc]IP[ξ3 = c|ξ1ξ2 = ab]

= ∑
c∈A

P (ab,c)IP[bcξ4 · · ·ξ2m−3c ′b′ ∈A |ξ2ξ3 = bc]P (c ′b′, a′)

= ∑
c∈A

P (ab,c)βm(b,c)P (c ′b′, a′)

=βm+1(a,b).

4.7 Goodness of Approximation

We now proceed to demonstrate that the Compound Poisson random variable we

constructed approximates the window score under the Palindrome Length Score well.

Recall that for our model we needed to apply a cut-off to the (stem) length of the

palindromes we consider (see Section 4.4 on page 48). We have chosen the lower cut-

off for the stem length of the palindromes to be L (which is 5 for most of the viruses in

our herpesvirus data set and 6 for a handful of others) and M to be the upper cut-off.

A few questions arise? What would be a good upper cut-off for M? How good

is our compound Poisson approximation? To answer these questions, we resort to

simulation.
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This is what we did (for each of the viral genomes in our data set):

1. Under the assumed Markov chain order (M0 or M1), estimate the transition

probabilities from the real DNA sequence.

2. Simulate 10,000 DNA sequences (of length w each) using the estimated transi-

tion probabilities and stationary distribution.

3. Form the empirical distribution of window score under the PLS from the win-

dow scores of these 10,000 simulated windows.

4. Measure the discrepancy of the Compound Poisson distribution and the em-

pirical distribution by the Total Variational distance and Kolmogorov distance.

The Total Variational distance dT V between two discrete random variables X

and Y is given by

dT V =∑
k

(IP(X = k)− IP(Y = k))−

and the Kolmogorov distance dK is given by

dK = sup
k

|P (X ≤ k)−P (Y ≤ k)|.

We have to decide upon a good value of M to be used. To answer this question, we

picked several representative members of the herpesvirus family, namely the hcmv,

vzv, ebv, hsv1 and cehv1 to form our training set. By letting the value of M to be 2L,

3L and 4L, we were able to measure the total variational and Kolmogorov distances

between our compound Poisson and empirical distributions under those assumed

values of M . In fact, we did a total of two runs of simulations under the M0 model.

Table 4.1 on the next page gives the results of these simulation studies.

As you will discover from the table, there is an substantial improvement in the

values of dT V and dK (i.e, the distance between the theoretical compound poisson

and the empirical distribution gets smaller) when we change the value of M from

M = 2L to M = 3L, but no substantial change when we change M from M = 3L to
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Table 4.1 – Total Variational Distance (dT V ) and Kolmogorov Distance (dK ) between
the Compound Poisson and Empirical Distributions for the training set.

1st Run 2nd Run
L M dT V dK dT V dK min(dT V ) min(dK )

M=2L
hcmv 5 10 0.034657 0.026505 0.045732 0.033084 0.034657 0.026505

vzv 5 10 0.013849 0.010177 0.018386 0.010799 0.013849 0.010177
ebv 5 10 0.036998 0.022327 0.028022 0.020017 0.028022 0.020017

hsv1 6 12 0.012643 0.008720 0.015082 0.010020 0.012643 0.008720
cehv1 6 12 0.025797 0.016437 0.026785 0.013875 0.025797 0.013875

M=3L
hcmv 5 15 0.013494 0.004203 0.017642 0.004435 0.013494 0.004203

vzv 5 15 0.005284 0.001312 0.009679 0.002863 0.005284 0.001312
ebv 5 15 0.016800 0.013452 0.009851 0.007279 0.009851 0.007279

hsv1 6 18 0.010954 0.008720 0.013199 0.010020 0.010954 0.008720
cehv1 6 18 0.011316 0.004575 0.019632 0.013875 0.011316 0.004575

M=4L
hcmv 5 20 0.013485 0.004203 0.017626 0.004435 0.013485 0.004203

vzv 5 20 0.005280 0.001312 0.009675 0.002863 0.005280 0.001312
ebv 5 20 0.016788 0.013452 0.009840 0.007279 0.009840 0.007279

hsv1 6 24 0.010953 0.008720 0.013199 0.010020 0.010953 0.008720
cehv1 6 24 0.011307 0.004575 0.019630 0.013875 0.011307 0.004575

M = 4L. Based on these observations, we decide to select M = 3L across the board

for all the viral genomes in our data set.

Using M = 3L we proceed to compute dT V and dK for all the viruses in our data

set. Table 4.4 on page 59 gives the details of the dT V ’s and dK ’s for all the viruses in

our data set. Table 4.2 gives some statistics of these distances.

Table 4.2 – Summary for Total Variational Distance (dT V ) and Kolmogorov Distance
(dK ) between the Compound Poisson and Empirical Distributions.

M0 M1
dT V in 10−2 dK in 10−2 dT V in 10−2 dK in 10−2

minimum 0.503 0.246 0.409 0.251
maximum 2.166 1.868 3.052 2.683
mean 1.310 0.799 1.432 0.939
standard deviation 0.383 0.362 0.490 0.457

These results demonstrates that our compound Poisson approximation of the

window score under PLS is good. We will then be able to use this compound Pois-

son approximation to come out with a cut-off for the window scores under the PLS
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scheme say at 1%, and use that to determine windows that have statistically signifi-

cant high scores.

4.8 Identifying High Scoring Windows

In the previous section, we have established that the compound Poisson random

variable is a good approximation of the PLS window score. We now have the means

to identify statistically high scoring windows.

Recall that the genome is “covered” by T windows. We want to approximate the

distribution of W ∗ := max1≤i≤T Wi , the maximum of all the window scores Wi . Let

c be the 95 (or 99) percentile of W ∗. To determine c, we apply the usual Poisson

approximation argument.

0.05 = IP[W ∗ ≥ c] = IP

[
T∑

i=1
I (Wi ≥ c)

]

≈ 1−exp

{
−

T∑
i=1

IP[Wi ≥ c]

}
= 1−exp{−T IP[W1 ≥ c]}

≈ 1−exp{−T IP[Z1 ≥ c]} .

Based on Equation (4.2) on page 50, c can be chosen so that

IP[Z1 ≥ c] =− log0.95

T
.

We present in Tables 4.5 on page 60 and 4.6 on page 61 the high-scoring windows

under the M0 and M1 models respectively, at both 5% and 1%.

As in the previous chapter, to assess the prediction performance of these schemes,

we look at the sensitivity and positive predictive power of them. The summary of the

performance is given in Table 4.3.

Notice that the sensitivity of our prediction decreases as compared to the results
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Table 4.3 – Prediction performance of PLS with compound Poisson approximation.

M0 M1
1% 5% 1% 5% PLS (10 windows)

Sensitivity 47 51 47 49 65
PPV 25 28 25 27 14

for PLS (using 10 windows) in the previous chapter. However, this is not surprising

to us. We had expected that when a cut-off is applied, we would have lesser windows

to be put forth as potential replication origin sites, and hence lesser replication ori-

gins will be predicted. We are however glad to see that the positive predictive power

nearly doubles for both approximation schemes (M0 and M1) at 1% and 5%. This

means that we will have lesser false prediction when we use such an approximation

scheme. Finally, we could not stress enough that the advantage that this approach

has over the non-parametric approach in the previous chapter is that we have able to

know the statistical significance of the scores of the windows that we use as potential

replication origin sites.

Last but not least, we do want to remark that the compound Poisson approxi-

mation for the BWS scheme as described in the previous chapter has not yet been

worked out. Recall that the prediction performance of the BWS is better than that

of the PLS. We would then expect that under the corresponding compound Poisson

approximation we will get results that will be better that those we have seen in this

chapter.
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Table 4.4 – Total Variational Distance (dT V ) and Kolmogorov Distance (dK ) between
the Compound Poisson and Empirical Distributions under M0 and M1
model.

M0 M1
Virus L M=3L dT V dK dT V dK

alhv1 5 15 0.00990927 0.00490914 0.00409128 0.00250852
athv3 5 15 0.01546954 0.01377820 0.01880386 0.01496876

bohv1 6 18 0.01887245 0.01475483 0.03052115 0.02683041
bohv4 5 15 0.02077680 0.01868002 0.01645188 0.01413331
bohv5 6 18 0.01112975 0.00531951 0.02040017 0.01520402
calhv3 5 15 0.01091473 0.00821730 0.00777838 0.00501029

ccmv 5 15 0.01688846 0.00631984 0.01575265 0.00817880
cehv1 6 18 0.01564512 0.01175157 0.01692463 0.01381026

cehv15 5 15 0.01588958 0.00949796 0.01520027 0.01158785
cehv16 6 18 0.01655194 0.00796564 0.02133380 0.01455390

cehv2 6 18 0.01819161 0.01035406 0.01918128 0.01026972
cehv7 5 15 0.01408748 0.01005454 0.01134546 0.00617778
cehv8 5 15 0.01217465 0.00334885 0.01550555 0.00582608

ebv 5 15 0.02166096 0.01079030 0.01331154 0.00891508
ehv1 5 15 0.00967108 0.00277337 0.01215583 0.00544480
ehv2 5 15 0.01592747 0.00915296 0.00995649 0.00604436
ehv4 5 15 0.00976372 0.00430894 0.01227365 0.00932433

gahv1 5 15 0.00968592 0.00655585 0.01347043 0.01023047
gahv2 5 15 0.01235920 0.00584615 0.00942289 0.00701855
gahv3 5 15 0.00918203 0.00501825 0.01047886 0.00394285
hcmv 5 15 0.01395996 0.00661273 0.02144730 0.00924072

hcmv-m 5 15 0.01416455 0.00898589 0.02041383 0.01258359
hhv6 5 15 0.00961172 0.00647553 0.01597751 0.00757296

hhv6b 5 15 0.01241257 0.00723543 0.01577835 0.01131182
hhv7 5 15 0.01405826 0.00571736 0.01034384 0.00352412
hhv8 5 15 0.01053258 0.00821349 0.01094572 0.00718649
hsv1 6 18 0.00742916 0.00622034 0.01016645 0.00784827
hsv2 6 18 0.01501359 0.01334275 0.01526228 0.01254315

ichv1 5 15 0.01191611 0.00910209 0.00980290 0.00660671
mcmv 5 15 0.01365551 0.00595827 0.01509266 0.00597760

mehv1 5 15 0.01068748 0.00537938 0.00976498 0.00486943
mfrv 5 15 0.00800154 0.00398064 0.00876273 0.00631488

mmrv 5 15 0.00863562 0.00399538 0.01848031 0.01552133
muhv4 5 15 0.01130150 0.00794064 0.01027370 0.00930311

ohv2 5 15 0.00751198 0.00526105 0.00959869 0.00641516
oshv1 5 15 0.01586530 0.00867926 0.01300445 0.00336977
pshv1 5 15 0.01409341 0.00596304 0.02154577 0.01596890
rcmv 5 15 0.01924567 0.01268640 0.01592607 0.00829536

sahv2 5 15 0.01510956 0.01216842 0.01458957 0.00971274
shv1 6 18 0.01699541 0.01396658 0.01723847 0.01264602

thv 6 18 0.00502617 0.00246431 0.01222325 0.00970855
vzv 5 15 0.01029122 0.00566254 0.01044034 0.00799625
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Table 4.5 – Windows with scores exceeding the critical score at 5% for M0 Model. Rows
on upper half list viruses with known replication origins, those on lower
half without. Entries in bold indicate that window score is also signifi-
cantly high at 1%. Underlined entries indicate that window is within 2mu
of some known ORI.

Virus Mid point of Window

bohv1 105901,113401,124501,132301,77401,87601,82801,30901,35701,4801,51901, 74401,
70201,96901

bohv4
bohv5 78001,108301,134701,19201,36901,6601,33901,61801,84301,31501,67501,94201,

53101,118501, 10501,90901,101401,4201
cehv1 133001,149451,61601,113051,125301,701 ,102201,109901,32551,36401,50751,117601,

144551,154701
cehv2 129501,144201,61601,123551,22051,75951,107101,92401, 111301,150501,35351,8051,

32201,115151
cehv7

cehv16 118301,8751,21001,37801,137201,33251,154001, 51451,102901,77701, 47251,132301
ebv 7601,141201,41201

ehv1 116201,146651
ehv4

gahv1
hcmv 94051
hhv6

hhv6b 90401
hhv7
hsv1 62301,129851,148401,72801, 1051,124951
hsv2 74551,7351,119701,28001,128801,152951, 22401,45151
rcmv 75901, 110551,83601,101751,127601
shv1 37801,58451,93101,30451,85051,78751,124601,75251,11551, 20301,6651

vzv 119401, 110101,100501

alhv1
athv3

calhv3 116201,133351,23101
ccmv 91201,207001,177001

cehv15 8001,34801,138801
cehv8 161151,147401

ehv2 6301,54001,173251, 140401
gahv2
gahv3 158801,138401, 11201,122401

hcmv-m 175451,94051, 153451
hhv8 23401
ichv1

mcmv 92951,142451, 200201
mehv1

mfrv 130501
mmrv 132601

muhv4
ohv2 117601, 134401

oshv1
pshv1 130401,151601
sahv2 103751, 112501

thv 134101,10801,50401,144901,85051,107551,58501,163801,54451, 157951,38251,181801
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Table 4.6 – Windows with scores exceeding the critical score at 5% for M1 Model.

Virus Mid point of Window

bohv1 105901,113401,124501,132301,77401,87601,82801,30901,35701,4801
bohv4
bohv5 78001,108301,134701,19201,36901,6601,33901,61801,84301,31501,67501,94201,53101
cehv1 133001,149451,61601,113051,125301,701,102201,109901,32551,36401,50751,117601,

144551,154701
cehv2 129501,144201,61601,123551,22051,75951,107101,92401,111301,150501,35351,8051,

32201,115151
cehv7

cehv16 118301,8751,21001,37801,137201,33251,154001,51451,102901,77701
ebv 7601,141201,41201

ehv1 116201,146651
ehv4

gahv1
hcmv 94051
hhv6

hhv6b 90401
hhv7
hsv1 62301,129851,148401,72801,1051,124951
hsv2 74551,7351,119701,28001,128801,152951,22401,45151
rcmv 75901,110551
shv1 37801,58451,93101,30451,85051,78751,124601,75251,11551,20301,6651

vzv 119401,110101

alhv1 113701
athv3

calhv3 116201,133351,23101
ccmv 91201,207001,177001

cehv15 8001,34801,138801,109201,152001
cehv8 161151,147401

ehv2 6301,54001,173251,140401
gahv2
gahv3 158801,138401,11201,122401

hcmv-m 175451,94051
hhv8 23401
ichv1

mcmv 92951,142451
mehv1

mfrv 130501
mmrv 132601

muhv4 99251
ohv2 117601,134401

oshv1
pshv1 130401,151601
sahv2 103751,112501

thv 134101,10801,50401,144901,85051,107551,58501,163801,54451,157951
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4.9 Binomial Approximation to the AT Sliding Window

Score

We reported in the last section of Chapter 3 using sliding windows of AT percentages

as a prediction tool. Based on windows with top AT percentages we were able to

predict 28 replication origins out of 43 known origins in the herpesviruses.

In this section we want to describe our attempt to approximate the AT content

sliding window scores using a Binomial distribution. Think of the AT content in a

typical sliding window of length w as a realization of a Binomial distribution with pa-

rameters (w,b), where b is the probability of success, which in our case corresponds

to the event the base A or T is chosen.

Suppose again that there are T sliding windows constructed for a given viral genome.

For each 1 ≤ i ≤ T , we construct a Binomial random variable Wi with parameters

(w,b) where b will be estimated using the global AT frequency of that particular

genome. Note when |i − j | > 1, windows i and j do not overlap and hence Wi will

be independent of W j . This fact will be useful in the derivation of Equation (4.6).

We are interested to estimate the probability that the maximum of A plus T base

count amongst all sliding windows exceeds a certain number, x, given by

IP
(

max
1≤i≤T

Wi ≥ x

)
.

The aim then is to preset this probability to some significance level, say 5% and

find the critical x value. Windows with AT counts exceeding this critical x would then

be deemed to be abundant in AT content at the significance level chosen.

Note that by Boole’s Inequality

∑
1≤i≤T

IP(Wi ≥ x)− ∑
1≤i< j≤T

IP(Wi ≥ x,W j ≥ x) ≤ IP
(

max
1≤i≤T

Wi ≥ x

)
≤ ∑

1≤i≤T
IP(Wi ≥ x).

Using the fact that Wi and W j are independent when |i − j | > 1 and some simpli-
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fication, we arrive at

Tα− (T −1)(T −2)

2
α2 + (T −1)IP(W1 ≥ x,W2 ≥ x) ≤ IP

(
max

1≤i≤T
Wi ≥ x

)
≤ Tα, (4.6)

where α= IP(W1 ≥ x).

We had in fact estimated the lower and upper bounds of the above inequality

numerically and found them to be tight. This means that we can use the following

approximation

IP
(

max
1≤i≤T

Wi ≥ x

)
≈ T IP(W1 ≥ x), (4.7)

which the right hand side term can be easily computed.

Setting the right hand side term of Equation (4.7) to some predetermined value,

say p%, we are able to locate windows with statistically significant scores at p% for

each of the viral genomes in our data set. In fact, when we set the significance level

to 5%, the set of windows with statistically significant AT count (content) was able to

predict correctly 31 out of 43 known replication origins. Compared to the 51% sensi-

tivity (22 origins correctly predicted) that the PLS compound Poisson approximation

yielded, this is a huge improvement.
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AT EXCURSIONS FOR PREDICTION OF

REPLICATION ORIGINS

5.1 Background

Besides the methods described in the previous chapters, many computational meth-

ods to predict likely locations of replication origins have also been developed for the

prediction of replication origins in bacterial, archaeal and yeast genomes. All these

methods exploit certain sequence features often found around the replication ori-

gins for their prediction. For example, Lobry (1996) employed the GC skew plot to

predict replication origins and terminals in bacterial genomes. The skew, calculated

as (G-C)/(G+C) for a window sliding along the sequence, was shown to switch po-

larity in the vicinity of the terminus and replication origin, with the leading strand

manifesting a positive skew. This method is commonly used to identify the putative

oriC region within chromosomes, particularly before experimental analysis. How-

ever, when we applied the GC skew plot to the herpesviruses, no clear cut switches of

polarity could be observed.

64
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Salzberg et al. (1998) predicted the replication origins for a number of bacterial

and archael genomes based on the identifying some 7-mers and/or 8-mers whose

orientation is preferentially skewed around the replication origins. However, as pointed

out by the authors, this method may not suited for many viral DNA genomes with

multiple replication origins. Breier et al. (2004) developed the Oriscan algorithm to

predict the exact location of replication origins in S. cerevisiae genome. The algo-

rithm searched for sequences similar to a training set of 26 known yeast origins that

were pinpointed by site-directed mutagenesis. Oriscan uses both the origin recogni-

tion complex binding site and its flanking regions to identify candidates, and it then

ranks potential origins by their likelihood of activity. Zhang and Zhang (2005) ap-

plied the Z-curve method successfully to identify several replication origins in bac-

terial and archaeal genomes. The Z-curve is a three-dimensional curve that con-

stitutes a unique representation of a DNA sequence. This means that for any DNA

sequence and its associated Z-curve, each can be uniquely reconstructed from the

other. One of the advantages of the Z-curve is its intuitiveness; the entire Z-curve of

a genome can be viewed on a computer screen or on paper, regardless of genome

length, thus allowing both global and local compositional features of genomes to be

easily grasped.

These methods do not seem to work well in predicting the likely locations of repli-

cation origins in viral genomes with multiple replication origins.

A simple, yet natural, sequence feature that can possibly be exploited to predict

the locations of replication origins in the doubly stranded herpesviruses is the AT

content. Segments of DNA with high GC content, i.e., lower AT content, are more

stable and hence less likely candidates for replication origins. Segurado et al. (2003)

used a sliding window approach to find “islands” within the Schizosaccharomyces

pombe genome that have high AT content. They measured base composition us-

ing sliding windows of different sizes and found that the highest A+T content for

each window was significantly higher for ORI-containing regions than for regions

that replicated passively.
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It has also been observed that regions around the replication origins are rich in AT

(see Chapter 1 in Kornberg and Baker (1992), Bramhill and Kornberg (1988)). Chew

et al. (2005) reported using sliding windows of AT percentages. Based on windows

with top AT percentages they were able to predict 28 replication origins out of 43

known origins in the herpesviruses. Moreover, 4 origins, which were predicted by AT

percentages, failed to be detected by their based weighted score method. We are thus

led to adopt a more refined score based approach as in Karlin (1994) to quantitate the

AT content and hence a computational method to predict the replication origins in

the herpesviruses. This score based approach has a further advantage as Karlin and

his collaborators have worked out the limiting statistical distribution which enables

us to identify statistically significant high scoring segments.

There are 3 main objectives in this chapter. Our first objective is to adopt Karlin’s

score based approach to quantitate local AT abundance reflecting the genome’s base

pairs composition. Moreover, this approach does away the choice of window size. We

then develop a computational method, called AT excursion method, to complement

the existing prediction methods. The second objective is to apply the AT excursion

method to predict the replication origins in herpesviruses. And from known loca-

tions of the replication origins, we can then assess the performance of this method.

Our result demonstrates that the AT excursion method compares very well with the

other methods, and this method is also shown to complement these methods. Hav-

ing established that AT excursion method is a credible prediction tool, our third ob-

jective is to apply the AT excursion method to predict the locations of replication

origins in two other classes of viruses, the Iridoviruses and the Poxviruses. These

two families are chosen because, like the herpesviruses, they are double stranded

viruses with no RNA stage and their lengths are similar in magnitude to that of the

herpesviruses. Moreover, the replication origins of these two classes of viruses are

either unknown or not available in the public domain. Indeed, amongst these two

classes of viruses, we could only find one virus with 6 known replication origins,

when we checked the literature.
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5.2 Methods

We propose a computational method to identify segments of a genome that have

high AT concentration. This, in turn, forms the basis of our method to predict replica-

tion origins for the herpesviruses. As with the previous chapters, Table 3.1 on page 31

presents the viruses to be analyzed. The data set comprises all complete genome se-

quences of the herpesvirus family downloaded from GenBank at the NCBI web site

in March 2006. For each virus, we list its abbreviation, accession number, sequence

length, and the relative frequencies of the four nucleotide bases in the genome.

The approach that we adopt here will be score-based sequence analysis.

5.2.1 Score-based sequence analysis

The aim of score-based sequence analysis is to identify segments of DNA sequences

with high additive scores by assigning appropriate scores to individual residues in

those sequences.

Karlin and his collaborators were among the first to use this approach to iden-

tify interesting biological features using various score schemes. For details, see, for

example, Karlin (1994, 2005); Karlin and Altschul (1990, 1993); Karlin et al. (1992).

5.2.2 Scoring the bases.

In this chapter, we are interested to find segments of DNA sequences with high AT

concentration. We classify the four nucleotide bases {A, C, G, T} as “strongly bonding”

or “weakly bonding” bases, denoted by S and W respectively. Under this formulation,

S bases (C or G) are given a score of ss and W bases (A or T), a score of sw .

The probabilities ps := P (base chosen is S) and pw := P (base chosen is W) are es-

timated using the relative frequencies of the four nucleotide bases in the genome we

are considering.
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5.2.3 Probability Model.

The sequence model we will work with is adapted from the work of Karlin and his

collaborators. For the general mathematical theory, interested readers may refer to

Karlin et al. (1990) and Dembo and Karlin (1991a) for details.

Let X1, X2, . . . , Xn be independent identically distributed letters drawn from the

alphabet set {S, W} with associated scores {ss , sw } such that P (X = S) = ps , P (X = W) =
pw , where ps = 1−pw > 0. The interpretation is that if you sample the letter W, say,

the score associated with that draw is X = sw . In order to have meaningful conclu-

sions, we further require that the expected score per base µ= ps ss +pw sw should be

negative, with at least one of the scores, sw in our case, taking positive value.

Following a hint from Karlin (1994), we let sw = 1 and chose ss to be a (negative)

integer so that the expected score per base, µ = ps ss +pw sw is close to the value of

−0.5. In fact, as we prefer to deal with integer-valued scores, ss is chosen to be

bµ−pw sw
ps

c,

where µ=−0.5 and b·c denotes the integer floor function.

5.2.4 Excursions and their value.

We next compute the cumulative scores and seek to identify segments of the genome

that have significantly high scores. As we are only interested in segments with pos-

itive additive scores, we reset our cumulative scores to zero whenever it becomes

non-positive.

The excursion scores Ei are defined recursively as

E0 = 0, Ei = max{Ei−1 +Xi ,0}, for 1 ≤ i ≤ n.

Using this recursive definition, we are able to construct “excursions” for each of

the genomes. An excursion starts at a point i where Ei is zero and ends at j > i where



5.2. Methods 69

E j first becomes zero. The score then stays at zero until it first becomes positive again

for the start of the next excursion. The value of an excursion is defined to be the peak

score during the course of that particular excursion.

5.2.5 Distribution of the Maximal Aggregate Score.

For each value of x, the maximal aggregate score

Mn = max
1≤k≤n

Ek

satisfies

P

(
Mn > lnn

λ∗ +x

)
≈ 1−exp{−K ∗e−λ∗x}, (5.1)

where λ∗ is the unique positive solution to the equation

E
(
eλX

)
= pseλss +pw eλsw = 1

and K ∗ is a parameter given by an explicit series expansion (See Karlin and Altschul

(1990)).

When X is a lattice variable of span δ, we have a simpler expression for K ∗ (See

Karlin et al. (1990)):

exp{−K+e−λ∗x} ≤ liminf
n→∞ P

(
Mn − lnn

λ∗ < x

)
≤ limsup

n→∞
P

(
Mn − lnn

λ∗ < x

)
≤ exp{−K−e−λ∗x},

where

K− = λ∗δ
eλ∗δ−1

K ∗, K+ = λ∗δ
1−eλ∗δK ∗. (5.2)

For the simple score scheme with values {−m, . . . ,−1,0,1} occurring with proba-
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bilities {p−m , . . . , p−1, p0, p1} we have,

K− = (e−λ∗ −e−2λ∗
)E

(
X eλ

∗X
)

.

We can set the left hand side of Equation (5.1) to some predetermined signifi-

cance level, say P = 0.01, and solve for x. A segment with score exceeding MP =
lnn
λ∗ +x is then said to be significant at the P level.

For our approach, we use K− in place of K ∗ in Equation (5.1) for a “conservative”

estimate of the probability and K+ for a “generous” one.

5.2.6 High-scoring Segments.

We use Equation (5.1) with P = 0.05 and P = 0.01 to get M0.05 and M0.01 respectively. If

the value of an excursion exceeds the critical values M0.05 or M0.01, then the segment

from the beginning of the excursion up to the base where the peak value is realized

is known as a high-scoring segment (HSS), significant at the 5% or 1% level.

We show the excursion plot of the Human Herpesvirus 3 (the VZV virus) in Fig-

ure 5.1.

For each of the viral genomes list in Table 3.1, we obtain a set of high-scoring

segments, significant at the 0.05 (or 0.01) level. In each set of high-scoring segments,

it is common to find that several of them are actually very close to one another. We

thus apply a filtering procedure so that, if this happens, we will only take one out of

several “neighboring” excursions as a “representative” for that part of the genome.

Table 5.4 on page 79 lists the high-scoring segments for each virus in the Her-

pesviridae family.

5.2.7 Prediction Performance.

The high-scoring segments are then checked against known replication origins in

herpesviruses to evaluate their performance as a prediction tool for replication ori-

gins.
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Figure 5.1 – The Excursion Plot of the VZV virus.

We list in Table 5.1 on the following page all the known replication origins for

the viruses in the Herpesviridae family. These replication origins are reported either

in published literature or GenBank annotations. For each replication origin, we list

the high-scoring segment (at 5% level) closest to it. For this table we had used the

“conservative” estimate for the value of K ∗ (See Equations (5.1) and (5.2)). When

the peak of a high-scoring segment is less than 2 map units away from the center of

a replication origin, we say that our method has correctly predicted that particular

replication origin.

From Table 5.1 on the next page, we see that of the 43 replication origins known

to us, 32 of them are close to the high-scoring segments that we have identified. This

suggests that regions with high AT concentration are potential replication origin sites.

We had also tried using the “generous” estimate for K ∗ at the 5% and 1% level

of significance. Table 5.2 on page 73 gives a summary of the performance of our

prediction scheme when those bounds were used. The first two columns of the table

gives the sensitivity level and positive prediction power of our scheme. APD (average
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Table 5.1 – Prediction results at 5% level using the conservative bound.

Nearest HSS
Virus Ori Center Start Peak Value Prediction

bohv1 111190 109702 109730 25 Yes
bohv1 127028 128487 128515 25 Yes
bohv4 97996.5 60687 60826 35 No
bohv5 113312 113549 113583 28 Yes
bohv5 129701 129429 129463 28 Yes
cehv1 61690.5 61680 61700 20 Yes
cehv1 61893.5 61680 61700 20 Yes
cehv1 132795.5 132785 132805 20 Yes
cehv1 132998.5 132785 132805 20 Yes
cehv1 149425.5 149415 149435 20 Yes
cehv1 149628.5 149415 149435 20 Yes

cehv16 62981 62970 62991 21 Yes
cehv16 133479 133468 133489 21 Yes
cehv16 149824 149813 149834 21 Yes

cehv2 61493.5 61483 61503 20 Yes
cehv2 129537.5 129527 129547 20 Yes
cehv2 144471.5 144461 144481 20 Yes
cehv7 109636.5 86167 86296 37 No
cehv7 118622.5 86167 86296 37 No

ebv 8313.5 11854 11950 45 No
ebv 40797 43158 43235 23 Yes
ebv 143825.5 77111 77150 24 No

ehv1 126262.5 128924 128992 23 Yes
ehv4 73909.5 73340 73509 37 Yes
ehv4 119471.5 112929 112967 29 No
ehv4 138577.5 132383 132462 49 No

gahv1 24871.5 24852 24890 30 Yes
hcmv 93923.5 96685 96824 34 Yes
hhv6 67805 130410 130501 59 No

hhv6b 69160.5 132997 133163 62 No
hhv7 66991.5 128589 128984 70 No
hsv1 62475 62465 62485 20 Yes
hsv1 131999 131990 132008 18 Yes
hsv1 146235 144115 144142 18 Yes
hsv2 62930 62919 62939 17 Yes
hsv2 132760 132691 132711 17 Yes
hsv2 148981 146600 146631 19 Yes
rcmv 77318 24072 24108 21 No
shv1 63878 63862 63892 24 Yes
shv1 114701 114686 114715 20 Yes
shv1 129901 129607 129636 20 Yes

vzv 110218.5 110195 110227 32 Yes
vzv 119678.5 119669 119701 32 Yes
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predictive distance) shows the average of the distances between the center of each

replication origin and a HSS that predicts it in map units. We also did some simple

analysis of the location of the center of each replication origin with respect to the

HSS closest to it. We count the number of times the center of replication origin falls

within the left, right or center of the HSS. %L, %R and %C gives these proportions.

Table 5.2 – Prediction Performance: Summary. (C) indicates that the “Conservative”
bound is used while (G) indicates that the “Generous” bound is used.

Significance Sensitivity PPV APD %L %R %C
5% (C) 74% 22% 0.34±0.57 16% 31% 53%
5% (G) 86% 17% 0.35±0.53 24% 30% 46%
1% (C) 67% 25% 0.31±0.52 14% 34% 52%
1% (G) 74% 18% 0.34±0.57 16% 31% 53%

We see from the table that the prediction performance is rather good, with a sen-

sitivity value of up to 86% when we use the “generous” bound at 5%. Another thing

to note is that, on average, when we have a replication origin correctly predicted, the

high-scoring segment closest to it is only 0.34 map units away from the true origin.

5.3 Discussion/Conclusion

We have also done some comparison studies between the methods described in this

chapter and that of Chapter 3. Investigations revealed that amongst the methods

mentioned in Chapter 3, BWS1 performs the best when used to predict replication

origins of viruses from the Herpesviridae family.

As mentioned in Chapter 3, we tried using a AT-content sliding window approach

(say we call it AT sliding window) on the herpesviruses. 28 out of 43 replication ori-

gins have been predicted using this approach and some of these were not predicted

by the BWS1 or PLS method. Curious, we had in fact made some attempts to investi-

gate the association of the AT sliding window approach with that of the BWS1. Scatter

plots and the Spearman’s rank correlation coefficient were examined and we found

that there is no association between the two schemes.
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Further, we also tried used a “voting” scheme, to combine the two features in the

hope of better prediction performance, in the following way:

1. For each sliding window constructed, we compute the BWS1 score and AT con-

tent of it.

2. We rank the windows two times, the first ranking them according to its BWS1

score and the other their AT content. Thus each window will have two ranks,

one due to its BWS1 score and the another its AT content.

3. For each window, we compute a “combined” rank, which is the average of the

two ranks. Say if for the 100th window, its BWS1 rank is 12 and AT sliding win-

dow rank is 30, then the combined rank will be 21.

4. We then sort all windows according to this combined rank and list out the top

10 windows, applying the filtering process mentioned in Chapter 3. That is, if

the rank i th window is already chosen, then 8 windows to the left and right of

it will not be considered for further ranking.

5. Using these top 10 windows, we access its prediction performance. Our re-

sults shows that this “voting” scheme does not add much value even though

it managed to predict 32 out of 43 replication origins. There are only 3 repli-

cation origins that were predicted by this “voting ” scheme but not previously

predicted by either one of the two methods, the BWS1 and AT sliding window

approach. However, 9 origins that were predicted by the BWS1 or AT sliding

window approach were not picked up by this new approach.

This investigation justifies that the AT excursion approach we introduced in this chap-

ter is a more refined method to measure AT content.

We now do a comparison of the AT excursion method and the BWS1 scheme. The

number of predictions suggested by both the AT excursion method and BWS1 scheme

are presented in Figure 5.2.
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6 26 7

4

AT-ex BWS1

Figure 5.2 – Predictions of AT excursion and BWS1. In this figure, the set A consists of
origin replications predicted by the AT excursion method and B consists
of those predicted by the BWS1 method. A∩BC = {cehv71, cehv72, ehv41,
hsv21, hsv22, hsv23}, AC ∩B = {cehv162, cehv163, ebv1, ebv3, hhv6, hhv6b,
rcmv}, (A∪B)C = {bohv4, ehv42, ehv43, hhv7}. The rest of the replication
origins (26 of them) are predicted by both methods. (Note: For viruses with
several known replication origins, such as hsv2, we denote the replication
origins as hsv21,hsv22,hsv23, etc.)

From the diagram, we see that the two methods complement one another. Ma-

jority of replication origins are predicted by both methods and most of the remaining

ones are predicted by either methods. Of the 43 known replication origins, only 4 of

them failed to be predicted by either one of the methods. This suggests that when

searching for potential replication origin sites, AT concentration and palindromic

concentration are two features that could be worth a look at.

We would like to point out several advantages of this approach.

1. It is “window size free”. Unlike the approach mentioned in Chapter 3, the meth-

ods described in this chapter does not require the use of any sliding window to

measure AT concentration.

2. The palindromes considered in Chapter 3 are of length at least 10 in most cases,

and in some cases 12. These lengths were chosen after bench-marking with the

well studied HCMV. The AT excursion method does not need to impose this

kind of parameter.
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3. Our method is more elaborate than merely measuring A/T percentage. Hope-

fully, this will more correctly capture the essence of A/T abundance.

This is indeed the case for the herpesvirus data set. Out of 43 known replication

origins, 23 are predicted by AT sliding window plot (AT-SWP) and AT Excursion

method (AT-Ex); 9 are predicted by AT-Ex but not AT-SWP; whereas 5 by AT-

SWP but not AT-EX.

4. Our method is statistical-based. Building on the work of Karlin and his collab-

orators (Karlin, 1994, 2005; Karlin and Altschul, 1990, 1993; Karlin et al., 1992),

we have statistical tools to determine statistically high scoring segments.

5. It picks up some origins not detected by BWS1 as shown in Figure 2. This shows

that the AT-excursion method complements the BWS1 method.

We have also tried locating high-scoring segments by running the excursions

from the 3′ end to 5′ end of the genome. The results we obtained is not significantly

different from the “vanilla” version (i.e., from 5’ to 3’).

5.3.1 Other Families of Viruses

Iridoviruses are a family of viruses that contain DNA as their genetic material and

have an icosahedral (20-sided) capsid. Iridoviruses have been found in a wide variety

of fish, including both freshwater and saltwater species. Some iridoviruses have been

associated with serious diseases (e.g., viral erythrocytic necrosis of salmonids) while

others have not and have only been found in apparently healthy animals (e.g., gold-

fish iridovirus). One iridovirus causes a disease called lymphocystis which causes

unsightly skin lesions on infected fish. Iridoviruses associated with disease and mor-

tality of tropical fish have been reported in Ramirez dwarf cichlids, angelfish, and,

most recently, gouramis from the genus Trichogaster .

Poxviruses are the largest and most complex viruses. They are linear double stranded

DNA viruses of 130 – 300 kilobase pair. The major human disease caused by a poxvirus

(variola virus) is smallpox. Smallpox is caused by the Variola virus. Many animal
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species have their own specific poxvirus infections, usually in the form of skin le-

sions. There are many poxviruses in nature, affecting species that gather in swarms

and herds. Insects are also tortured with poxviruses. There are three groups of insect

poxviruses: beetlepox, butterflypox (which includes mothpoxes), and flypox (includ-

ing those of mosquitoes).

We will repeat our methods described in the previous sections on these two classes

of viruses and identify high-scoring segments of these viral genomes. Viruses from

the two families that are completely sequenced as of April 2006 are listed in Table 5.3.

These two families of viruses are chosen because, like the herpesviruses, they are

double stranded viruses with no RNA stage and their lengths are similar in magni-

tude to that of the herpesviruses. Amongst these two classes of viruses, we could

only find one virus with 6 known replication origins, when we checked the literature.

Our methods, however, could only correctly predict the location of one of the replica-

tion origins. We list out the high-scoring segments for each of the viruses in Table 5.5

on page 82.

Also, Table 5.6 on page 83 list the high-scoring windows as per the Base Weighted

Scheme described in Chew et al. (2005) for the Irido and Pox viruses.

We do hope that the high-scoring segments and high-scoring windows will prove

to be useful in identifying replication origins in these two families of viruses too.
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Table 5.3 – The list of Irido and Pox viruses to be analyzed.

Accession Virus Length Base Composition

— Irido Viruses —

NC_001824 Lymphocystis disease virus 1 102653 (0.35, 0.15, 0.14, 0.36)
NC_003038 Invertebrate iridescent virus 6 212482 (0.35, 0.15, 0.14, 0.36)
NC_003494 Infectious spleen and kidney necrosis virus 111362 (0.23, 0.28, 0.27, 0.23)
NC_005832 Ambystoma tigrinum virus 106332 (0.23, 0.27, 0.27, 0.23)
NC_005902 Lymphocystis disease virus - isolate China 186250 (0.36, 0.13, 0.14, 0.36)
NC_005946 Frog virus 3 105903 (0.23, 0.27, 0.28, 0.22)
NC_006549 Singapore grouper iridovirus 140131 (0.25, 0.24, 0.24, 0.26)

— Pox Viruses —

NC_001132 Myxoma virus 161773 (0.29, 0.22, 0.22, 0.28)
NC_001266 Rabbit fibroma virus 159857 (0.31, 0.20, 0.20, 0.30)
NC_001611 Variola virus 185578 (0.34, 0.16, 0.16, 0.33)
NC_001731 Molluscum contagiosum virus 190289 (0.18, 0.32, 0.32, 0.18)
NC_001993 Melanoplus sanguinipes entomopoxvirus 236120 (0.41, 0.09, 0.09, 0.41)
NC_002188 Fowlpox virus 288539 (0.35, 0.15, 0.15, 0.34)
NC_002520 Amsacta moorei entomopoxvirus 232392 (0.41, 0.09, 0.09, 0.42)
NC_002642 Yaba-like disease virus 144575 (0.37, 0.13, 0.14, 0.36)
NC_003027 Lumpy skin disease virus NI-2490 150773 (0.38, 0.13, 0.13, 0.36)
NC_003310 Monkeypox virus 196858 (0.34, 0.17, 0.17, 0.33)
NC_003389 Swinepox virus 146454 (0.37, 0.14, 0.14, 0.36)
NC_003391 Camelpox virus 205719 (0.34, 0.17, 0.17, 0.33)
NC_003663 Cowpox virus 224499 (0.33, 0.17, 0.17, 0.33)
NC_004002 Sheeppox virus 17077-99 149955 (0.38, 0.12, 0.13, 0.37)
NC_004003 Goatpox virus Pellor 149599 (0.38, 0.12, 0.13, 0.37)
NC_004105 Ectromelia virus 209771 (0.33, 0.17, 0.17, 0.33)
NC_005179 Yaba monkey tumor virus 134721 (0.35, 0.15, 0.15, 0.35)
NC_005309 Canarypox virus 359853 (0.35, 0.15, 0.15, 0.34)
NC_005336 Orf virus 139962 (0.18, 0.32, 0.32, 0.18)
NC_005337 Bovine papular stomatitis virus 134431 (0.18, 0.32, 0.32, 0.18)
NC_006966 Mule deer poxvirus 166259 (0.37, 0.13, 0.13, 0.37)
NC_006998 Vaccinia virus 194711 (0.33, 0.17, 0.17, 0.33)
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Table 5.4 – Herpesviruses : HSS at 5% level using the conservative bound.

HSS
Accession Start Peak Value

alhv1 1204 1370 54
32478 32850 48

113630 113684 46
85923 85992 45
72999 73115 44

125691 125726 31
athv3 8827 8892 40

bohv1 100410 100484 26
109702 109730 25
128487 128515 25

16593 16626 21
113720 113738 18
124479 124497 18

29 45 16
58542 58569 15

bohv4 60687 60826 35
bohv5 68440 68507 49

113549 113583 28
129429 129463 28

592 616 21
86191 86215 21

102074 102106 17
92511 92535 15

120935 120959 15
59921 59938 14
17408 17433 13
41883 41899 13

calhv3 70131 70198 31
ccmv 50872 50973 50

158344 158701 45
95375 95603 39

3519 3602 35
24084 24156 33

182982 183136 31
14314 14370 23

177170 177247 23
189041 189075 22
147310 147384 20

cehv1 116723 116836 53
92092 92118 26
61680 61700 20

132785 132805 20
149415 149435 20

52055 52075 17
42984 43006 16
11389 11407 15
24415 24441 14

cehv15 11965 12011 28
114927 114988 19

cehv16 92913 92940 23
62970 62991 21

133468 133489 21
149813 149834 21

8303 8331 20
118685 118713 20

53056 53100 18
25423 25473 16

1717 1736 15
114861 114890 15
125280 125299 15

30975 30991 14

HSS
Accession Start Peak Value

cehv2 7681 7738 33
115791 115848 33

61483 61503 20
129527 129547 20
144461 144481 20

90857 90884 19
51884 51910 14
93873 93887 14

112292 112320 14
cehv7 86167 86296 37
cehv8 149643 149720 33

15671 15733 30
29233 29278 29

163766 163806 28
177904 178092 28

89538 89589 27
ebv 11854 11950 45

77111 77150 24
43158 43235 23

ehv1 20348 20431 47
134195 134276 36

65055 65126 35
99301 99374 34
11034 11141 32

105796 105862 30
73653 73746 27

113818 113849 25
149310 149341 25
110314 110352 23
128924 128992 23

ehv2 160281 160518 102
86522 86622 76
53843 54012 61

140661 140826 57
4580 4655 51

171454 171529 51
95342 95440 50
10772 10820 48
39893 39977 48

177646 177694 48
113310 113399 47
134709 134772 45
166114 166207 42

45831 45965 41
15443 15482 39
19722 19845 39

182317 182356 39
153977 154145 36
123321 123362 35
147222 147341 35

34816 34884 29
76380 76454 29

103167 103223 29
64344 64402 25

786 831 24
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Table 5.4 – Herpesviridae : HSS at 5% level using the conservative bound. (Cont’d)

HSS
Accession Start Peak Value

ehv4 109852 110086 60
19878 19943 50

132383 132462 49
105284 105365 48

23895 24016 43
3984 4110 42

73340 73509 37
98849 98930 33
46612 46674 32
10630 10697 31
58833 58906 31
82616 82701 31

127230 127351 31
112929 112967 29
145082 145120 29

gahv1 24852 24890 30
gahv2 106724 106811 35
gahv3 11168 11198 27

122384 122414 27
134414 134461 26
162999 163046 26

58953 58999 25
hcmv 3402 3542 41

186855 186995 41
16757 16915 35
96685 96824 34
11713 11808 32

198116 198171 31
173560 173599 30
210724 210781 30

26361 26475 27
108222 108303 24
159296 159380 24

71011 71055 23
226192 226230 23

hcmv-m 3798 3939 42
181238 181334 33

97069 97206 32
173950 173994 32
216020 216077 30
203400 203456 29

17082 17297 26
12060 12145 25

157590 157726 25
hhv6 130410 130501 59

3605 3712 51
154838 154945 51
137079 137210 43

hhv6b 132997 133163 62
139482 139569 51

3911 3988 37
157232 157309 37

hhv7 134169 134376 117
128589 128984 70

hhv8 136287 136704 93
982 1125 44

58833 58906 28
23547 23598 27
30712 30775 27

119416 119467 27
106412 106452 25

HSS
Accession Start Peak Value

hsv1 62465 62485 20
35000 35034 19

115242 115303 19
131990 132008 18
144115 144142 18

11705 11734 17
52753 52818 17
96047 96069 16

136146 136162 16
hsv2 5584 5628 35

121621 121665 35
52978 53003 19
91716 91747 19

146600 146631 19
95238 95256 18
48761 48778 17
62919 62939 17

132691 132711 17
81195 81220 16
99337 99370 15

ichv1 6068 6290 81
121738 121960 81
104134 104399 70

17065 17333 58
132735 133003 58

451 726 50
116121 116396 50

60752 60845 30
42919 43007 28
20109 20187 24
10016 10063 23

125686 125733 23
mcmv 155163 156341 125

161228 161391 40
115543 115640 37
102865 102960 35

79497 79573 34
15628 15724 33

144170 144290 33
73525 73579 27
39209 39248 24
92997 93036 24

219239 219282 22
mehv1 NIL

mfrv 128046 128640 114
23139 23374 109

2488 3068 106
32573 33752 84
64296 64454 62

111496 111624 44
72739 72809 43
53766 53825 32
69912 70061 32

114828 114860 32
mmrv 2388 2967 111

23902 24187 108
33761 35136 103

130346 131085 97
65611 65853 56
74140 74204 37
71311 71462 31

117507 117551 29
112930 113033 28
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Table 5.4 – Herpesviridae : HSS at 5% level using the conservative bound. (Cont’d)

HSS
Accession Start Peak Value

muhv4 6000 6037 29
ohv2 115365 115545 72

126823 127116 68
118943 118988 42

72630 72699 36
1269 1370 29

27589 27633 29
76335 76370 26
79158 79265 26

oshv1 73292 73460 64
35416 35493 61

146021 146164 55
190174 190312 54
195928 196026 54
201648 201786 54

23065 23135 50
161395 161505 50

2682 2735 49
180276 180329 49
108068 108173 45
171433 171549 44

67872 67975 43
114689 114763 42

pshv1 18751 18791 31
121452 121486 31
160685 160719 31
130332 130365 27
151806 151839 27

23896 23942 22
134013 134049 21

78233 78256 20

HSS
Accession Start Peak Value

rcmv 150923 151612 92
207600 207980 80
143617 144150 74
178241 178326 37
214638 214702 37
219069 219153 33
201767 201885 28
161797 161929 27
171828 171870 27

24072 24108 21
sahv2 28533 28613 45

shv1 63862 63892 24
96251 96275 21

114686 114715 20
129607 129636 20

50382 50407 19
75955 75984 17
16151 16172 15
33045 33063 15

109083 109098 15
135503 135518 15

8432 8455 14
thv 168842 168927 25

24153 24200 23
28257 28286 17

vzv 2574 2785 39
110195 110227 32
119669 119701 32
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Table 5.5 – Irido and Pox viruses: HSS at 5% level using the conservative bound.

HSS
Accession Start Peak Value

— Irido Viruses —

NC_001824 NIL
NC_003038 79081 79249 66

183476 183613 65
105552 105759 63
153314 153430 62
174299 174361 62

58432 58537 57
NC_003494 14511 14546 26

8403 8449 25
NC_005832 57645 58021 103

28404 28881 102
34433 34957 86
93135 93532 82
60770 61386 76

8445 8824 67
23967 24236 62
49790 50135 60
14551 14919 59
73173 74011 58
81666 81980 56

101304 101712 54
98977 99415 48
55341 55467 45
21468 21707 41

3416 3623 36
88908 89282 35

104642 104781 31
37618 37803 26
71482 71548 24
84341 84389 24

NC_005902 25319 25426 83
NC_005946 91036 91300 60

65486 65899 56
84444 84664 43
11456 11662 41

100217 100399 41
87467 87807 37
70406 70535 33
60587 60658 32
42478 42647 31
75837 76051 31

1169 1483 29
30559 30801 29
16604 16868 27
50384 50630 27
80707 80812 27

104871 105033 27
6300 6550 25

37735 37917 23
46489 46554 23

NC_006549 81306 81382 32
110066 110102 32

37472 37506 30
135884 135929 29

— Pox Viruses —

NC_001132 70592 70699 47
115736 115827 47

NC_001266 69787 69895 52
114903 114989 50
143583 143744 41

HSS
Accession Start Peak Value

NC_001611 NIL
NC_001731 142080 142122 36

3323 3353 24
186936 186966 24
158487 158508 18

NC_001993 99125 99560 147
32990 33296 99

NC_002188 73269 73413 74
15448 15664 66

232716 232804 58
NC_002520 200361 200872 214

207549 208262 155
165286 165627 152

16532 17256 130
139207 139516 111
133061 133305 109

89235 89522 107
110336 110659 107

58328 58497 106
99032 99612 103

NC_002642 23141 23269 68
69383 69515 66

NC_003027 NIL
NC_003310 178751 178921 80

148715 148766 51
NC_003389 67171 67316 73
NC_003391 144645 144737 92

191172 191354 57
24592 24653 51

NC_003663 3 114 76
159398 159460 62

NC_004002 17624 18041 87
117891 118153 76

NC_004003 NIL
NC_004105 177738 177834 91

16773 17140 57
NC_005179 NIL
NC_005309 151555 151798 78
NC_005336 4745 4880 51

135222 135298 43
129134 129329 42
113376 113456 32
119112 119205 30
108363 108520 25

318 350 23
60440 60478 23

139546 139578 23
46479 46515 21
54314 54343 20

124682 124703 18
NC_005337 126750 126962 35

4662 4781 26
13133 13183 23
54399 54440 23

108478 108513 23
46663 46700 22
60477 60503 20

9108 9145 19
113089 113137 18

62922 62972 17
69451 69477 17

119341 119370 17
NC_006966 120853 121259 88
NC_006998 1 114 74
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6
PALINDROME EXCURSIONS AND

SUMMARY

Encouraged by our success with the AT excursion, we want to try to extend the ap-

proach to work with palindromes. In this chapter we will give some preliminary re-

sults of our investigation. We will also conclude this thesis by giving a summary of

our efforts in the prediction of replication origins and suggest some possible exten-

sions of the problems we have considered in this thesis.

6.1 Palindrome Excursions

We will describe in this section our attempts to adapt once again Karlin’s score based

approach to the setting of palindromes. Recall that the idea is to assign scores to

different bases in the genomic sequences and look for regions with statistically high

scores. So to make the approach work with the palindromes, we score a base accord-

ing to if it is part of a palindrome, that is, bases that form part of a palindrome will be

given a score say sp and those that do not form part of a palindrome will be given a

score say sq .

84



6.1. Palindrome Excursions 85

Further, we need to compute the probability that a base is part of a palindrome,

so let us define

ψ := p(k-th base pair is part of a palindrome of length at least 2L).

Note that we would once again consider palindromes above a certain length, consis-

tent with the approach of this thesis.

Let A j denote the event that there is a palindrome of length at least 2L starting

from base j . Then

ψ= P (ξ jξ j+1 · · ·ξ j+2L−1 forms a palindrome, for some k −2L+1 ≤ j ≤ k.)

= P (∪2L
j=1 A j )

= P (A1)+P (AC
1 A2)+·· ·+P (AC

1 · · · AC
2L−1 A2L)

=
2L∑

i=1
P (Ai )−

2L∑
i=2

P
([
∪i−1

j=1 A j

]
Ai

)
≤ 2LP (A1)−

2L∑
i=2

P (Ai−1 Ai )

= 2LP (A1)− (2L−1)P (A1 A2)

:=ψU .

So we have an upper bound (which we define as ψU ) for the probability ψ. Note

that the term P (A1 A2) is actually the term γ(1) as defined in Lemma 2.1 on page 12.

Following a hint from Galambos and Simonelli (1996)(Inequality I.7, p.22), we will

also have an lower bound for ψ, given by

ψL := max
2≤k≤2L

{
2S1

k
− 2S2

k(k −1)

}
,
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where

S1 :=
2L∑

i=1
P (Ai )

S2 := ∑
1≤i< j≤2L

P (Ai A j ) =
2L−1∑
i=1

2L∑
j=i+1

P (Ai A j ) =
2L−1∑
i=1

2L−i∑
r=1

P (A1 Ar+1)

=
2L−1∑
r=1

2L−r∑
i=1

P (A1 Ar+1) =
2L−1∑
r=1

(2L− r )P (A1 Ar+1).

Similarly, the term P (A1 Ar+1) is γ(r ) as defined in Lemma 2.1.

The values of ψL and ψU for the herpesviruses are listed in Table 6.1 on the fol-

lowing page. From the last column of the table, we see that the upper and lower

bounds of ψ are rather close, which means that our bounds are tight.

Even though we do not have the exact form of the probability expression ψ, it

does seem reasonable to use an approximation of it and apply the excursion ap-

proach to it. However, Karlin’s results require an i.i.d. or Markov chain assumption

(See, for example Dembo and Karlin, 1991a,b), whereas for our case here, there is

some local dependence in the way the bases are related. For if a base is part of a

palindrome, then bases near it is likely to be part of a palindrome too. Hence we

cannot directly apply Karlin’s results to this problem.

Nonetheless, we decide to try an non-parametric approach like we did for the

scoring schemes in Chapter 3. We will run the excursions on the palindromes over

the family of herpesviruses and list out the top high scoring segments and use them

as our prediction regions. The procedure will be similar to what we have described

in the previous chapter on AT excursion. We will not be able to apply Karlin’s results

to come up with any statistically high scoring windows though.

However, we will still use ψU as an conservative approximation for ψ. The ratio-

nal is that we want to control the “drift” of the excursion process, which is dependent

on the expected value per base µ= spψ+sq (1−ψ). Note that as in the previous chap-

ter, we will set µ to some negative value, and let sp be 1. The value sq of will then be

determined according to the definition of µ.
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Table 6.1 – Herpesviruses:ψ values.

Virus ψU ψU ψL/ψU

alhv1 0.00993734 0.00997550 0.99617406
athv3 0.01358172 0.01369403 0.99179838

bohv1 0.00866357 0.00874687 0.99047745
bohv4 0.01117899 0.01123763 0.99478183
bohv5 0.01081602 0.01095066 0.98770574
calhv3 0.00970650 0.00974086 0.99647229

ccmv 0.01261702 0.01270470 0.99309886
cehv1 0.01042433 0.01054889 0.98819164

cehv15 0.01273456 0.01282521 0.99293252
cehv16 0.01216570 0.01233720 0.98609926

cehv2 0.01202644 0.01219396 0.98626209
cehv7 0.01156561 0.01163149 0.99433630
cehv8 0.00972483 0.00975931 0.99646721

ebv 0.01155367 0.01161911 0.99436842
ehv1 0.01059220 0.01064006 0.99550220
ehv2 0.01082274 0.01087468 0.99522403
ehv4 0.00972554 0.00975992 0.99647710

gahv1 0.00978630 0.00982155 0.99641095
gahv2 0.01045407 0.01049959 0.99566507
gahv3 0.00997182 0.01000979 0.99620665
hcmv 0.01074478 0.01079521 0.99532850

hcmv-m 0.01083288 0.01088484 0.99522684
hhv6 0.01085252 0.01090489 0.99519764

hhv6b 0.01075493 0.01080555 0.99531574
hhv7 0.01377465 0.01389278 0.99149707
hhv8 0.00992798 0.00996557 0.99622790
hsv1 0.00616250 0.00619926 0.99407027
hsv2 0.00728651 0.00734222 0.99241291

ichv1 0.01047484 0.01052080 0.99563175
mcmv 0.01126013 0.01131982 0.99472622

mehv1 0.00983418 0.00987013 0.99635727
mfrv 0.00976015 0.00979539 0.99640227

mmrv 0.00981245 0.00984835 0.99635514
muhv4 0.00985069 0.00988705 0.99632187

ohv2 0.00969729 0.00973306 0.99632489
oshv1 0.01235602 0.01243828 0.99338643
pshv1 0.01221558 0.01229454 0.99357746
rcmv 0.01224677 0.01232638 0.99354180

sahv2 0.01513100 0.01528533 0.98990333
shv1 0.00960496 0.00970946 0.98923778

thv 0.00543967 0.00546611 0.99516254
vzv 0.01002025 0.01005902 0.99614604
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Table 6.2 – Prediction Performance of Palindrome Excursion.

1 2 3 4 5 6 7 8 9 10
Sensitivity 16 28 37 44 51 51 53 56 60 63

PPV 35 30 27 24 22 18 16 15 14 14

We tried setting µ = −5,−10,−15,−20 and found that for our purpose, µ = −10

works the best. Table 6.2 shows the performance of this “Palindrome Excursion”

scheme when a certain number of top scoring windows are chosen. Comparing with

the non-parametric approach we adapted for Chapter 3, we see that the performance

of this approach is just slightly inferior to the PLS scheme.

6.2 Summary

In this section we do a summary of the various approaches we have looked at in this

thesis in the problem of predicting replication origins in the herpesviruses. Table 6.3

on the following page lists all the known replication origins of the herpesviruses, to-

gether with the prediction outcomes of the various schemes of prediction, namely

the PLS, BWS1, PLS with compound Poisson approximation (PLS-CPA) at 5% un-

der the M0 model, the AT sliding window with Binomial approximation (AT-swp-

Binomial) at 5%, the AT excursion (AT-ex) at 5% and the palindrome excursion (Pal-

ex). Entries under the columns “PLS”, “BWS1” and “Pal-ex” indicate the rank of the

window/segment that predicts the replication origin listed on that row. For the other

columns, a “ Y” indicates that the high-scoring window/segment is successful in pre-

dicting that particular replication origin, and a “N” indicates otherwise. A “-” indi-

cates that there are no statistically significant high scoring windows/segments.

We note that most of the replication origins are predicted by either one of the pre-

diction schemes except a few, namely one of the replication origins of ehv4, and that

of hhv7. We suspect that other features such as approximate palindromes (imperfect

palindromes with one or more mismatch), inverted repeats might be useful in the

prediction of these replication origins. Indeed, Qin (2005) reported in her thesis her

attempts to use approximate palindromes in the prediction of replication origins in
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Table 6.3 – Summary of All Prediction Schemes.

Non-Parametric
Virus ORI Center PLS BWS1 PLS-CPA AT-swp-Binomial AT-ex Pal-ex

5% M0 5% 5%

bohv1 111190 1 1 Y Y Y 3
bohv1 127028 2 2 Y Y Y 4
bohv4 97996.5 0 0 - Y N 0
bohv5 113312 0 2 N Y Y 9
bohv5 129701 0 3 N Y Y 10
cehv1 61690.5 3 3 Y Y Y 1
cehv1 61893.5 3 3 Y Y Y 1
cehv1 132795.5 1 1 Y Y Y 2
cehv1 132998.5 1 1 Y Y Y 2
cehv1 149425.5 2 2 Y Y Y 3
cehv1 149628.5 2 2 Y Y Y 3
cehv2 61493.5 3 3 Y Y Y 3
cehv2 129537.5 1 1 Y N Y 1
cehv2 144471.5 2 2 Y Y Y 2
cehv7 109636.5 5 7 - N N 0
cehv7 118622.5 6 8 - N N 0
cehv16 62981 8 7 N Y Y 1
cehv16 133479 0 0 Y N Y 20
cehv16 149824 0 0 N Y Y 21
ebv 8313.5 1 1 Y Y N 5
ebv 40797 3 2 Y Y Y 1
ebv 143825.5 2 3 Y Y N 2
ehv1 126262.5 4 4 N Y Y 5
ehv4 73909.5 0 0 - Y Y 0
ehv4 119471.5 0 0 - N N 0
ehv4 138577.5 0 0 - Y N 0
gahv1 24871.5 8 7 - N Y 0
hcmv 93923.5 1 1 Y Y Y 4
hhv6 67805 4 4 - Y N 5
hhv6b 69160.5 2 4 N Y N 4
hhv7 66991.5 0 0 - N N 0
hsv1 62475 1 1 Y Y Y 1
hsv1 131999 2 2 Y N Y 15
hsv1 146235 3 3 Y Y Y 16
hsv2 62930 0 0 N Y Y 11
hsv2 132760 0 0 N N Y 0
hsv2 148981 0 0 N Y Y 0
rcmv 77318 1 1 Y N N 8
shv1 63878 0 9 N Y Y 16
shv1 114701 0 5 N Y Y 7
shv1 129901 0 6 N Y Y 9
vzv 110218.5 2 2 Y N Y 1
vzv 119678.5 1 1 Y N Y 2
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the herpesviruses. She extended the palindrome length scheme to work with the ap-

proximate palindromes and reported that the prediction performance of her scheme

shows an improvement over that of the PLS in terms of sensitivity and positive pre-

dictive power.

6.3 Future Work

In this thesis, we had devoted a great deal of effort in the problem of predicting repli-

cation origins in the herpesviruses (primarily).

There are still a few problems that we can work on. One of it is the problem of

approximating the window score under the Base-pair Weighted Scheme by possibly

a compound Poisson distribution.

The excursion approach of Karlin could also be adapted to work with palindromes.

Because of the local dependence structure embedded in the problem, we suspect the

Chen-Stein method of Poisson approximation might be relevant to this problem.

Finally, we note that these endeavors to accurately predict replication origins had

motivated several interesting and challenging mathematical problems and will con-

tinue to do so.
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