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Summary

Small disulphide-rich proteins (SDPs) represent a class of proteins which

include predominantly secretory proteins that have predatory, defensive or regulatory

roles (such as toxins, inhibitors and hormones). SDPs are thus a rich source for

therapeutic drugs and other bioactive molecules. SDPs are characterized as short

polypeptides stabilized in conformation by inter-cysteine side chain bonds known as

disulphide bonds (or bridges). These disulphide bridges play crucial roles in the three

dimensional structure, function and evolution of SDPs.

The roles and patterns of disulphide bridges in SDPs were investigated using

bioinformatics approaches. SDPs structures and relevant data were systematically

gathered from public databases to form the Small Disulphide-rich Fold Database -

SDFD. Systematic analyses and mining of this database suggested that the cysteine

signature in the peptide sequence could facilitate the detection of distantly related

homologs or convergently evolved structures. Based on the rules derived from the

analyses, a software pipeline called SDPMOD was designed and implemented

specifically for the automated comparative modeling of SDPs.  For further in-depth

investigation of the nature of SDPs, an unusual subfamily of SDPs was selected. This

potato type II proteinase inhibitor family (Pot II) was comprehensively characterized

for conserved patterns in 3D structure, protein sequence and gene architecture. The

analysis of the ratio of non-synonymous to synonymous substitutions suggested

heterogeneous selection pressure at different regions within the Pot II domains. As

opposed to “purifying selection” over the cysteine scaffold that is expected, some

evidence for “positive selection” on the reactive site is presented, illustrating the

power and utility of bioinformatics tools in the study of SDPs.
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Chapter 1 Introduction

Among the 20 standard amino acids, cysteine residues in secreted proteins have a

unique property since they may pair to form disulphide bridges which contribute to

the thermodynamic stability of the 3D structure. The disulphide bond is formed by the

post-translational oxidation of two thiol (-SH) groups leading to the forming of a

covalent S-S bond between the cysteine residues. This property was first highlighted

by the pioneering work of Anfinsen on ribonuclease. According to Anfinsen’s results

fully denatured proteins can recover their native structure and restore the correct

disulphide connectivity in vitro (Anfinsen and Haber 1961; Anfinsen et al. 1961;

Anfinsen 1973). Disulphide bridges can increase the conformational stability of

proteins mainly by constraining the unfolded conformation (Wedemeyer et al. 2000),

and this effect is more significant for small proteins (Harrison and Sternberg 1994).

Therefore small disulphide-rich proteins (SDPs) are good candidates for

understanding the structure, conservation and evolution effects of cysteines and

disulphide bridges in disulphide-bonded proteins. This thesis describes our effort to

understand the roles of cysteines and disulphide bridges in SDPs through

bioinformatics approaches.

The initial aim of this study is to develop automated comparative modeling

methods specifically for SDPs to narrow the sequence-structure gap and thereby

assign functionality to the large number of SDPs that have no structural or functional

information. Building such a modeling method requires: (1) a high quality non-

redundant template repository; (2) rules for the comparative modeling of SDPs. These

requirements and distinct features of SDPs have inspired us to build a comprehensive
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database for small disulphide-rich folds (SDFs) and then carry out the systematic

analysis of SDFs to study the roles and patterns of cysteines and disulphide bridges in

SDPs (Chapter 2). The results of database curation and data analysis provide a non-

redundant template dataset as well as rules for designing the modeling method. Based

on the above, an automated comparative modeling method, SDPMOD, has been

developed (Chapter 3) and applied to large scale comparative modeling of conotoxins,

a family of SDPs. Moreover, the topology and parameter definition libraries for non-

standard residues occurring in conotoxins have also been developed to overcome the

bottlenecks of conotoxin modeling (Chapter 3).

Comparative modeling is dependent on homologous proteins adopting similar

folds, which are indicative of their underlying function. Among the SDPs, we noted

that domain duplication is a frequent occurrence and these duplicated domains fold

into architectures with tandem repeat structures. The only exception to this

observation is the Potato II (Pot II) proteinase inhibitor family. During SDF analysis

and comparative modeling of SDPs, a specific family of SDPs, Pot II, came to our

attention due to its multiple disulphide connectivities for the same fold and to the

numerous evolutionary phenomena found in this family. To ensure that we understand

how all SDPs fold, a comprehensive computational analysis was done on the Pot II

family and interesting findings are reported in Chapter 4. Of them, one of the most

interesting findings is that the cysteine scaffold in Pot II domain is under “purifying

selection” (Kondrashov et al. 2002) to maintain the fold and the reactive sites under

positive selection to target a broad range of proteinases from pathogens. This provides

a perfect example how small disulphide-rich folds can be used to design novel

proteins for drug or other bioactive molecules.
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In Chapter 1, I will firstly review the background knowledge on disulphide

bridges, including its formation and its roles in biological systems. Then I will define

the focal theme of this thesis: small disulphide-rich proteins (SDPs) and small

disulphide-rich folds (SDFs) and their features, applications and comparative

modeling of SDPs. Since the comparative modeling of SDPs requires specific rules

derived from systematic analysis of cysteines and disulphides in SDPs, the current

databases and studies related to disulphide and disulphide-bonded proteins are briefly

described. Using the domain as the basic unit to study SDPs and SDFs, the definition

for domain is discussed and available structure-based domain databases are reviewed.

At the end of Chapter 1, the bioinformatics problems in the study of SDPs are

introduced and the objectives and contributions of this thesis are described.

1.1 Introduction to disulphide bonds

Before describing disulphide bridges, I would like to discuss the cysteine residue first.

Cysteine is one of the special amino acids among the 20 standard amino acids. It has a

hydrophobic methylene group (–CH2-) group and a terminal sulfhydryl groups (-

SH), also known as thiol group. The thiol group makes cysteine the most reactive

amino acid side chain, participating in various reactions. For example, thiols of

cysteine reisdues can form complexes of varying stability with a variety of metal ions

(such as copper, zinc, iron), which is the basis of the high–affinity binding of metal

ions (e.g. by zinc-finger transcription factors). The sulphur atom of cysteine residues

can exist in diverse oxidation states, but the disulphide bond is most likely to be the

end product in an oxidative milieu. Because of the special features of cysteine, this

residue is hard to be substituted by other amino acids and remains one of the most

conserved residues in proteins.
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Disulphide bonds (also called disulphide bridges) are formed by the

oxidization of thiol group of two cysteine residues. The disulphide bond covalently

crosslinks regions which might be far apart in the protein’s primary sequence. It can

occur intra-molecularly (within a single polypeptide chain) and inter-molecularly

(between two polypeptide chains). Intra-molecular disulphide bonds stabilize the

tertiary structures of proteins while inter-molecular disulphide bonds are involved in

stabilizing quaternary structure. Not all proteins contain disulphide bridges as these

occur almost exclusively in extracytoplamic proteins.

In the following section, I will briefly introduce how disulphide bonds are

formed in prokaryotic or eukaryotic cells, which is indispensable for understanding

the roles and patterns of the disulphide in proteins.

1.1.1 Formation of disulphide bonds

In 1960s, Anfinsen and coworkers showed the native disulphide bonding of fully

denatured ribonuclease A can be restored spontaneously in vitro with presence of

molecular oxygen (Anfinsen et al. 1961). These studies led to the assumption that the

disulphide bond formation is a spontaneous process in vivo. However, the formation

of native disulphide bonds in vitro required hours or even days of incubation, while

disulphide bond formation in the cell usually occurs within seconds or minutes after

protein synthesis. The discovery of the DsbA gene in E. coli revealed that disulphide

bond formation is actually a catalyzed process in vivo (Bardwell et al. 1991). Later a

group of thiol-disulphide oxidoreductases were identified both in prokaryotic or

eukaryotic organisms (Dailey and Berg 1993; Missiakas et al. 1995; Frand and Kaiser

1998). Currently, the pathways for disulphide bond formation have been characterized

in both prokaryotic and eukaryotic organisms.
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In prokaryotes, disulphide bonds are formed by the oxidation of thiol-

disulphide oxidoreductase DsbA. Non-native disulphide connectivity can be

rearranged by the isomerization of thiol-disulphide oxidoreductase DsbC. Disulphide

bonds are generally formed in the periplasm. This is due to the reducing environment

of the cytoplasm and the oxidative environment of the periplasm. Similarly, in

eukaryotic cells, disulphide bonds are generally formed in the lumen of the ER

(endoplasmic reticulum) and not in the cytosol because of the oxidative milieu of the

ER and the reducing milieu of the cytosol. Thus, disulphide bonds are mostly found in

secretory proteins, lysosomal proteins, and the exoplasmic domains of membrane

proteins.

In eukaryotic cells, oxidizing equivalents for disulphide-bond formation are

introduced into the ER by two parallel pathways. In the first pathway, oxidizing

equivalents flow from Ero1 (ER oxidoreduction) to the thiol-disulphide

oxidoreductase protein disulphide isomerase (PDI), and from PDI to secretory

proteins through a series of direct thiol-disulphide exchange reactions. In the second

pathway, the ER oxidase, Erv2 transfers disulphide bonds to PDI before substrate

oxidation. Erv2 obtains oxidizing equivalents directly from molecular oxygen through

its flavin cofactor.

From the pathways and locations of disulphide bond formation, several points

are worthy to of notice for computational studies.

(1) Depending on the organism and cellular location of cysteine-containing

proteins, cysteines can be oxidized to form disulphide bonds or reside in the

reduced state as free cysteines. Prior to cysteine bonding state prediction and

disulphide connectivity prediction, information related to the organism and the
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cellular location of the protein should be considered. For example, signal

peptides generally determine the cellular location of the protein and thus

signal peptides may help in the prediction of cysteine-bonding states.

(2) Although there are many possible disulphide connectivities for multi-

disulphide proteins, only one of them is the native connectivity. Non-native

connectivities are possible under some circumstance or conditions and they

can be rearranged to native disulphide connectivity by isomerization in vivo.

1.1.2 Roles of disulphide bridges

Disulphide bonds can be divided into two classes:

(1) stabilizing disulphide

Most disulphide bonds belong to this class and form the stable part of folded

protein structures, especially in small proteins.

(2) reactive disulphide

Disulphide bonds in some proteins can alternate between the reduced and

oxidized states to participate specific oxidation-reduction functions.

Disulphide bonds of the first class may contribute to the folding pathway of

the protein and to the stability of its native fold. Researchers have applied this feature

to design and engineer new disulphide bonds in proteins to improve their

thermostability (Perry and Wetzel 1984; Mansfeld et al. 1997; Robinson and Sauer

2000; Martensson et al. 2002).

Besides stabilization of protein structures, disulphide bonds also have been

reported to have other roles. In bacteria, disulphide bonds can play an important

protective role as a reversible switch that turns a protein on or off when bacterial cells
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are exposed to oxidation reactions by hydrogen peroxide (H2O2), which could

severely damage DNA and kill the bacterium at low concentrations if not for the

protective action of the disulphide bonds. In some eukaryotic cells, it is reported that

specific cleavage of one or more disulphide bonds can control the function of some

secreted soluble proteins and cell-surface receptors (Hogg 2003).

1.2 Small Disulphide-rich Proteins (SDPs) and Small Disulphide-rich

Folds (SDFs)

1.2.1 The definitons of SDPs and SDFs

All proteins can be classified into disulphide-containing proteins (also called

disulphide-bonded proteins) and non-disulphide proteins according to the occurrence

of disulphide bond. Among disulphide-bonded proteins, this thesis particularly

focuses on small disulphide-rich proteins.

Before exploring further, I would like to clarify two concepts used in this

study: Small Disulphide-rich Proteins (SDPs) and Small Disulphide-rich Folds

(SDFs). These are highly similar and closely related but they also have minor

differences. Both concepts has been used by scientists in previous studies (Harrison

and Sternberg 1996; Mas et al. 2001). Generally disulphide-rich proteins are defined

as having more than two disulphide bonds. And for small proteins, there are no

widely accepted criteria. Harrison and Sternberg reported that different physical

models should be used to describing disulphide connectivities for short sequences and

longer sequences (Harrison and Sternberg 1994). They suggested that for short

sequences as (less than 75 residues) native disulphide connectivities tend to have

entropically greater-stabilising arrangement features (entropic model), while longer
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sequences (longer than about 200 residues) are better described by diffusive contact in

the unfolded states (diffusive model). In their later research on disulphide β-Cross,

they defined small disulphide-rich folds as ≤ 100 residues and with ≥ 2 disulphides

(Harrison and Sternberg 1996).

In this study, both concepts are used in different situations. SDFs are

practically defined as small domains (size less than 100 residues) and have at least

two disulphide bonds (same as Harrison’s), while SDPs are defined as proteins which

are composed of SDF domains.

Generally, SDFs have broader scope since they may include small disulphide-

rich domains from large proteins which also contain non-SDF domains, while SDPs

are always composed of SDFs.

1.2.2 The applications of SDPs

Small disulphide-rich proteins (SDPs) are a special class of proteins with

diverse functions. They include many secretory proteins, which serve predatory,

defensive or regulatory roles (such as toxins, inhibitors and hormones). SDPs are

involved in various biological functions and pathways and therefore many important

applications:

(1) They are a “gold mine” for therapeutic drugs (Shen et al. 2000). For

example, ancrod and angiotensin converting enzyme inhibitor, Captopril,

from snake venom can be used for treatment of heart attack patients (von

Segesser et al. 2001).

(2) SDPs are also very useful tools in protein-protein interaction research. For

example, conotoxins are used as research tools to characterize different ion

channels subtypes and molecular isoforms of receptors (Lewis 2004; Li



9

and Tomaselli 2004) where analyses of toxin-channel/receptor complex

interfaces can expedite drug discovery.

(3) Some SDPs also serve as pesticides, such as plant proteinase inhibitors

which can block insect gut proteases (Richardson 1977).

Despite the biomedical importance of SDPs, the three-dimensional structures

are not available for many such proteins. This deficiency requires to be addressed by

comparative modeling of SDPs, discussed in the following section.

1.2.3 Comparative modeling of SDPs

To understanding the functional roles of SDPs and exploit their applications in drug

design, structural information is always essential. Studies on protein function,

especially interactions between proteins, often require the availability of 3D

structures. To comprehend complex biological functions, structure information is

indepensable. Single amino acid mutations may result in significant changes in 3D

structures and affect the function of a protein. For example, α-conotoxin ImI is a

highly specific antagonist for the neuronal α7 nicotinic acetylcholine receptor (nACh

receptor). The activity of its single-residue mutant (with residue 5 changed from

aspartic acid to asparagine) was reduced by at least two orders of magnitude in

comparison to the wild type ImI (Rogers et al. 2000).  3D structures are essential in

drug design to improve ligand characteristics, in silico mutation and protein-protein

interaction studies.

However, 3D structural information is only available for a small subset of

proteins. Structure determination through experimental methods such as X-ray

crystallography and Nuclear Magnetic Resonance Spectroscopy (NMR) are still both

time-consuming and expensive although the advances of techniques and structural
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genomics projects. With the rapid growth of sequence data, it is impractical to

experimentally solve 3D structures for all known protein sequences. This results in a

huge gap between the number of known 3D structures and the number of primary

sequences. According to the latest statistics (07-Feb-2006) of the UniProt database

(Wu et al. 2006) and the Protein Data Bank (Kouranov et al. 2006), TrEMBL Release

32.0 contains 2,605,584 entries and SwissProt Release 49.0 (07-Feb-2006) holds

207,132 proteins whereas PDB has only 32,009 protein structures (1.23% and 15.4%,

respectively of the protein sequence databases). However, this enormous structure-

sequence information gap can be narrowed using large-scale automated protein

structure prediction.

Currently protein structure prediction methods can be classified into three

major classes: comparative structure prediction (homology modeling), fold

recognition (also called threading) and de novo prediction (or ab initio modeling)

(Baker and Sali 2001). Comparative modeling methods produce 3D models of given

sequences based on the target-template alignment to one or more related protein

structures. Fold recognition methods scan protein sequences against known 3D

structures and evaluate the sequence-structure fitness, which can sometimes reveal

more distant relationships than purely sequence-based methods. De novo methods are

based on the assumption that the native structure of a protein is at the global free

energy minimum, and do not require known any protein structure information. These

methods carry out a large-scale search of conformational space for protein tertiary

structures that are particularly low in free energy for the given amino acid sequence.

These structure prediction methods are compared in Table 1.
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Table 1 Comparison of protein structure prediction methods

Method Comparative modeling
(Homology modeling)

Fold recognition
(Threading)

De novo prediction
(ab initio modeling)

Requirement of related 3D
structure(s)

Yes Yes No

Sequence similarity ID% ≥ 30% < 30% N.A
Computational time Fast and scaleable Slow Extremely slow
Applicable size of protein Almost no limits,

provided a homologous
template is available

Single domain Small or medium size
proteins

Model accuracy High Medium Low

Among these structure prediction methods, de novo methods are extremely

computationally intensive and are not applicable to large-scale structural modeling

even though they do not require known related structures. Threading methods are less

restrained by detectable sequence similarity but they are not as accurate as

comparative modeling methods. Comparative modeling methods are the most reliable

and accurate for generating 3D models among the three classes. They are also

relatively fast and can be used for large-scale modeling.  Comparative modeling

methods have been applied at genomic scales to generate 3D models for proteins in

Saccharomyces cerevisiae genomes (Sanchez and Sali 1998) or the entire SwissProt

database (Guex et al. 1999). Structural Genomics projects worldwide are currently

addressing the issue of determining all the representative structures so that most

structure prediction problems will be reduced to comparative modeling (Rost 1998;

Brenner and Levitt 2000; Chandonia and Brenner 2005; Xie and Bourne 2005).

Comparative modeling of protein structures often requires expert knowledge

and proficiency in specialized methods. In the mid-1990s, Peitsch and co-workers
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developed the first automated modeling server SWISS-MODEL (Peitsch 1996),

which is currently the most widely-used server of this genre. Recently, several other

automated comparative modeling servers have emerged, such as CPHmodels (Lund et

al. 1997), 3D-JIGSAW (Bates et al. 2001), ModWeb (Pieper et al. 2002) and

ESyPred3D (Lambert et al. 2002).

Although so many automated comparative modeling servers are available,

most of them do not work well on SDPs due to two reasons. Most of the automated

servers are primarily designed for globular protein domains, making it difficult to

discriminate SDPs with relatively small sizes, from background noise. Taking as an

example the sequence of α-conotoxin PnIA (Hu et al. 1996) (PDB ID: 1PEN; 16

residues; 2 disulphide bridges in its structure), we note that both SWISS-MODEL and

ModWeb report that they do not cover the modeling of sequences length less than 25

or 30 amino acids, respectively, while the other three servers state that no suitable

templates can be identified for this sequence.

The second reason is that SDPs have distinct characteristics from medium and

large globular proteins. They usually do not have a compact hydrophobic core, which

is a major factor in stabilizing globular protein structure. SDPs tend to have less

secondary structures and more solvent-exposed hydrophobic residues compared to

larger proteins.  Comparative modeling techniques tend to rely on the characteristics

of assembling secondary structural units, which are only present to a limited extent in

small peptides and/or small proteins such as SDPs; and burying hydrophobic residues

while exposing charged residues. The 3D structures of small proteins are usually

dominated by disulphide bridges, metal or ligands, according to their SCOP

classification (Murzin et al. 1995), and tend to bind or interact with globular proteins.
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In small disulphide-rich proteins, the effects of disulphide bridges and constrained

residues such as prolines are more significant in determining their 3D structures.

Unlike short peptides which are flexible enough to be able to adopt many

conformations, SDPs are sufficiently constrained to form stable structures. For

comparative modeling of such small structures, rules will have to be highly specific

and different from those adopted for large globular proteins. The distinct features of

SDPs require specific methodology to be developed for comparative modeling.

The development of such a modeling method further requires the availability

of high quality non-redundant template repository and systematic analysis of SDPs to

derive rules for automated comparative modeling. The following section will review

currently available databases and related studies on disulphide and disulphide-bonded

proteins.

1.3 Databases related to disulphide bridges

Disulphide bridge information can be obtained from a variety of resources, mainly

public databases and literatures. These public databases can be classified into primary

(where biologists deposit their data) and secondary databases (database derived from

primary database).

1.3.1 Primary databases on disulphide information

The primary databases can be further classified into sequence and structure databases.

Among the sequence databases, SwissProt database (Boeckmann et al. 2003) provides

the largest number of annotated disulphide information. It contains both

experimentally determined disulphides and inferred disulphides (annotated “By

similarity”). Inferred disulphide annotations are assigned only when a protein
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sequence has a clear sequence homology to another protein with experimentally

determined disulphide information. These inferred disulphide annotations should be

used with caution since they may contain incorrect information.

Among the structure databases, Protein Data Bank (PDB) (Berman et al.

2000) is the most abundant resource for disulphide information. Beside disulphide

connectivity, much more related information, such as secondary structure, solvent

accessibility and dihedral angles, can be derived from PDB structures. The

unambiguous and rich disulphide information available from PDB provides both

accurate and comprehensive information for the study of disulphide bonds or

disulphide-bonded proteins.

In consideration of data quality and features available for further in-depth

investigation, PDB was selected as the main data source for the analysis of

disulphides in this study.

1.3.2 Secondary databases on disulphide information

Several secondary databases (Table 2) centered on disulphide bridges were developed

(Chuang et al. 2003; Tessier et al. 2004; van Vlijmen et al. 2004; Vinayagam et al.

2004). These databases have different foci and are suitable for different applications,

as described below.

Table 2 Secondary databases on disulphide bonds

Database Data
source

Basic unit Feature URL

SSDB PDB PDB chain Classification http://e106.life.nctu.edu.tw/~ssbond/
DSDBASE PDB Disulphide Protein

engineering
http://caps.ncbs.res.in/dsdbase/dsdbase.html

DisulphideDB PDB PDB chain Cysteine-bondng
state prediction

Not available

Disulphide
pattern DB

SwissProt Pfam
domain

Disulphide
patterns

Not available
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SSDB is a disulphide classification database that clusters disulphide-bonded

proteins based on a hierarchical clustering scheme (Chuang et al. 2003). The curators

collected 3,134 disulphide-bonded (disulphide number ≥ 2) proteins chains from PDB

and treated each PDB chains as separate units. In SSDB, protein chains are classified

hierarchically in three levels: disulphide-bonding numbers, disulphide-bonding

connectivity and disulphide-bonding patterns. They reported that disulphide-bonding

patterns could be used to detect the structural similarities of proteins of low sequence

identities (<25%).

DSDBASE is a database of native and modeled disulphide bonds in proteins

(Vinayagam et al. 2004), which provides information on native disulphides and those

that are stereochemically possible between pairs of residues for all PDB structures.

The modeled disulphides are obtained using MODIP (Sowdhamini et al. 1989), by the

identification of residues pairs that can host a covalent cross-link without strain. The

main application of DSDBASE is to design site-directed mutants in order to improve

the thermal stability of a protein.  DSDBASE can also be used for the modeling of

disulphide-rich proteins.

The DisulphideDB database collected disulphide information with structural,

evolutionary and neighborhood information on cysteines in proteins (Tessier et al.

2004). The data collection is based on a representative selection of PDB structures –

PDBSELECT <http://bioinfo.tg.fh-giessen.de/pdbselect/> and only retains PDB

chains from eukaryotic cells with at least one disulphide bond annotation in the PDB

files. The disulphide information is used to derive rules for cysteine-bonding state

prediction.
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A database of disulphide patterns was developed by van Vlijmen and

coworkers for analyzing disulphide patterns in proteins (van Vlijmen et al. 2004).

The database was constructed using disulphide annotations from SwissProt, and was

expanded by an inference method that combines SwissProt annotations with Pfam

multiple sequence alignments. This database contains 94,999 disulphide-bonded

domains and was used to detect distantly related homologs.

Although several disulphide-related databases have been constructed, all of

them cannot fulfil the needs of this study due to the following reasons:

(1) Focus. None of these databases are specifically focused on SDPs.

(2) Availability. Neither DisulphideDB nor Disulphide pattern database (van

Vlijmen et al. 2004) are available on the Internet.

Structural domains. None of these databases are based on structural domains.

SSDB and DisulphideDB use PDB chains as the basic unit, which is

unsuitable to the analyses of cysteine and disulphide patterns of multi-domain

proteins. For example, SSDB has classified the proteinase inhibitor C1-T1

from Nicotiana alata (PDB ID: 1FYB, Chain A; Figure 2) in the eight-

disulphide group according to its disulphide number in its structure.

T1 domain C1 domain
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Figure 1 The structure and disulphide connectivity of C1-T1 (PDB ID: 1FYB, Chain

A), a two-domain proteinase inhibitor derived from the six-domain precursor protein

Na-ProPI. The structure is in ribbon representation, with disulphide bridges depicted

in stick mode. Domain C1 (1-55) is colored in blue and domain T1 (56-111) in

magenta.

Figure 1 shows the structure and disulphide connectivity of C1-T1 (PDB ID:

1FYB). Both domain C1 (Chymotrypsin-specific domain-1) and domain T1 (Trypsin-

specific domain-1) have the same structural features (an anti-parallel β-sheet) and the

same disulphide connectivity. Both of them are classified into the SCOP family Plant

Proteinase Inhibitors.  This example clearly shows the weakness of PDB chains as

basic unit to analyze patterns of cysteines and disulphides. Based on such

considerations, the domain was selected as basic unit for this study. In the section 1.4,

protein domains and structure-based domain databases are described.

1.4 Reviews on domain and structure-based domain databases

The concept of protein domains is very important for studies on structure, function,

and evolution of proteins. The modular architecture of proteins has been widely

recognized for over a decade now (Wetlaufer 1973; Baron et al. 1991; Henikoff et al.

1997; Schultz et al. 1998). Proteins are composed of smaller building blocks, which

are called “domain” or “modules”. These building blocks are distinct regions of 3D

structure resulting in protein architectures assembled from modular segments that

have evolved independently. The modular nature of proteins has many advantages,

offering new cooperative functions and enhanced stability. As a result of the

duplication and mutational evolution of these building blocks through various gene

rearrangement and stabilizing selection mechanisms, respectively, a large proportion
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of proteins in higher organisms especially eukaryotic extracellular proteins, consist of

multiple domains (Apic et al. 2001). Knowledge of protein domain architecture and

domain boundaries is essential for the characterization and understanding of protein

function.

There are a number of databases providing domain definition and information.

These domain databases can be classified into sequence-based domain databases and

structure-based databases according to their data resource. Structure-based databases

contain domain information derived from PDB structure while sequence-based

databases are mainly based on sequence information. Domain databases and their web

address are listed in Table 3.

Table 3 List of databases that contain domain information.

Database URL
Sequence-based domain databases
ProDom http://prodes.toulouse.inra.fr/prodom/current/html/home.php
DOMO http://www.infobiogen.fr/services/domo
BLOCKS http://blocks.fhcrc.org/blocks/blocks_search.html
COGs http://www.ncbi.nlm.nih.gov/COG
SMART http://smart.embl-heidelberg.de
Pfam http://www.sanger.ac.uk/Software/Pfam
SBASE http://www.icgeb.trieste.it/sbase
Interpro http://www.ebi.ac.uk/interpro
Structure-based domain databases
SCOP http://scop.mrc-lmb.cam.ac.uk/scop
CATH http://www.biochem.ucl.ac.uk/bsm/cath
3Dee http://www.compbio.dundee.ac.uk/3Dee
DALI/FSSP http://www.ebi.ac.uk/dali/fssp
MMDB http://www.ncbi.nih.gov/Structure/MMDB/mmdb.shtml

Since PDB is selected as the main data source for this study, only structure-

based domain databases are described as follows.

1.4.1 SCOP

The SCOP (Structural Classification Of Proteins) database is a comprehensive
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classification of all structures in PDB according to their evolutionary and structural

relationship (Murzin et al. 1995; Lo Conte et al. 2000; Andreeva et al. 2004). The

domain assignment in SCOP is based on both evolutionary relationship and structure

features. Therefore some of the domain definitions are different from other structure-

based domain databases. All the domains in SCOP are classified according to a four-

level hierarchy: Family, Superfamily, Fold and Class.

(1) Family.

Proteins are clustered together into families on the basis of one of two criteria that

imply their having a common evolutionary origin: first, all proteins that have

residue identities of 30% and greater; second, proteins with lower sequence

identities but whose functions and structures are very similar; for example,

globins with sequence identities of 15%.

(2) Superfamily.

Families, whose proteins have low sequence identities but whose structures and,

in many cases, functional features suggest that a common evolutionary origin is

probable, are placed together in superfamilies; for example, the variable and

constant domains of immunoglobulins.

(3) Common Fold.

Superfamilies and families are defined as having a common fold if their proteins

have the same major secondary structures in the same arrangement and with the

same topological connections. The structural similarities of proteins in the same

fold category probably arise from the physics and chemistry of proteins favoring

certain packing arrangements and chain topologies.
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(4) Class.

The different folds have been grouped into classes. Most of the folds are assigned

to one of the five structural classes:

• All-α, structures essentially formed by helices.

• All-β, structures essentially formed by β-sheets.

• α/β (Mainly parallel β sheets), structures with α-helices and β-strands

• α+β (Mainly anti-parallel β sheets), structures with α-helices and β-strands

are largely segregated.

• Multi-domain, structures with domains of different folds and no homologues

are known at present.

• Membrane and cell surface proteins and peptides.

• Small proteins. Usually dominated by metal ligand, heme, and/or disulphide

bridges.

Other classes have been assigned for Peptides, Designed proteins, Coiled coil proteins

and Low resolution protein structures.

1.4.2 CATH

CATH (Pearl et al. 2003) is also a hierarchal classification database of protein domain

structures, which clustered protein domain in five principal levels: Class (C),

Architecture (A), Topology (T), Homologous superfamily (H) and Sequence family

(S). The domain definitions were assigned by a consensus procedure based on three

domain recognition algorithms: DETECTIVE (Swindells 1995), PUU (Holm and

Sander 1994) and DOMAK (Siddiqui and Barton 1995)) as well as manual

assignment. CATH domains are classified manually at C- and A-levels and

automatically at T-, H- and S-levels.
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(1) Class, C-level.

Class is determined from the protein structure secondary structure composition

and its packing within the structure. Three major classes are recognized: mainly-

α, mainly-β and α-β. This last class (α-β) includes both alternating α/β structures

and α+β structures. A fourth class is also identified which contains protein

domains, which have low secondary structure content. The class number is

assigned using the automatic method of Michie et al. (Michie et al. 1996).

(2) Architecture, A-level

This describes the overall shape of the domain structure as determined by the

orientations of the secondary structures but ignores the connectivity between the

secondary structures. It is currently assigned manually using a simple description

of the secondary structure arrangement e.g. barrel or 3-layer sandwich. Reference

is made to the literature for well-known architectures (e.g the β-propeller or α-

helix bundle). Procedures are being developed for automating this step.

(3) Topology (Fold family), T-level

Structures are grouped into fold families at this level depending on both the

overall shape and connectivity of the secondary structures. This is done using the

structure comparison algorithm SSAP (Orengo and Taylor 1996). Parameters for

clustering domains into the same fold family have been determined by empirical

trials throughout the development of this databank. Structures having an SSAP

score of 70 with at least 60% of the larger protein matching the smaller protein

are assigned to the same T level or fold family.

(4) Homologous Superfamily, H-level

This level groups together, the protein domains that are thought to share a
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common ancestor and can therefore be described as homologous. Similarities are

identified first by sequence comparisons and subsequently by structure

comparison using SSAP. Structures are clustered into the same homologous

super-family if they satisfy one of the following criteria:

• Sequence identity >= 35%, 60% of larger structure equivalent to smaller

• SSAP score >= 80.0 and sequence identity >= 20%

• 60% of larger structure equivalent to smaller

• SSAP score >= 80.0, 60% of larger structure equivalent to smaller, and

domains that have related functions.

(5) Sequence families, S-level

Structures within each H-level are further clustered on sequence identity.

Domains clustered in the same sequence families have sequence identities >35%

(with at least 60% of the larger domain equivalent to the smaller), indicating

highly similar structures and functions.

1.4.3 DALI/FSSP

DALI/FSSP database presents a fully automatic classification of all the known protein

structures (Holm and Sander 1998). The classification is derived from using an all-

against-all comparison of all the structures in PDB by an automatic structural

alignment method DALI (Holm and Sander 1993). The structural domains are defined

by a modified version of ADDA algorithm (Heger and Holm 2003). The criteria of

recurrence and compactness are used for finding the domain boundaries and each

domain is assigned a Domain Classification number DC_I_m_n_p represention:

• Fold space attractor region (I) represents the architecture of the proteins. There

are now six fold space attractors defined based on the secondary structure



23

composition and the supersecondary structural motifs. Attractor 1 consists of

α/β, attractor 2 consists of all-α , attractor 3 consists of all-β, attractor 4

consists of anti parallel β barrels and attractor 5 contains α/β meander.

• Globular folding topology (m) represents all the domains with the same

topology but having with shifts in the relative orientation of the secondary

structures. They are obtained empirically based on a tree constructed by

average linkage clustering of the structural similarity score. The folds are

classified based on the DALI Z score levels of 2, 4, 8, 16, 32 and 64. The first

level (Z > 2) has been used as an operational definition of folds. The higher

the Z score, the higher the structural similarities among the protein structures.

• Functional family (n) represents inferred plausible evolutionary relationships

from strong structural similarities, which are accompanied by functional or

sequence similarities. Functional families are branches of the fold dendrogram

where all pairs have a high average neural network prediction for being

homologous. The neural network weighs evidence coming from: overlapping

sequence neighbors as detected by PSI-BLAST, clusters of identically

conserved functional residues, Enzyme Commission (E.C.) numbers,

SwissProt keywords. The threshold for functional family unification was

chosen empirically and is conservative; in some cases the automatic system

finds insufficient numerical evidence to unify domains, which are believed to

be homologous by human experts.

• Sequence family (p) represents subsets of protein structures that have proteins

with sequence identity greater than 25%.
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1.4.4 3Dee

3Dee (Database of Protein Domain Definitions) is a comprehensive collection of

protein structural domain definitions (Siddiqui et al. 2001). The domains in 3Dee are

defined on a purely structural basis. DOMAK algorithm (Siddiqui and Barton 1995)

was used to define all domains when the database was first built. For later updates, the

domains were defined by sequence alignment to existing domain definitions or

manually. All the domains in 3Dee were organized a hierarchy of three levels:

Domain families (sequence redundant domains), Domain sequence families (structure

redundant domains) and Domain structure families (non-redundant on structure)

(Dengler et al. 2001).

1.4.5 MMDB

MMDB (Molecular Modeling Database) is NCBI (National Center for Biotechnology

Information) Entrez’s 3D-structure database (Chen et al. 2003) derived from the PDB.

MMDB contains two kinds of domains: “3D domain” and “Conserved Domain”(Chen

et al. 2003). 3D Domains in MMDB are structural domains, which are assigned

automatically using an algorithm that searches for one or more breakpoints such that

the ratio of intra- to inter-domain contacts falls above a set threshold(Madej et al.

1995). Conserved domains in MMDB are recurrent evolutionary modules defined by

Entrez’s CDD (Conserved Domain Database) (Marchler-Bauer et al. 2003) where the

domains are derived from SMART (Letunic et al. 2004), Pfam (Heger and Holm

2003) and COGs (Tatusov et al. 2003).

1.4.6 The selection of domain database for this study

As described above, there are several structure-based domain databases available.
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They are derived by different methods and therefore the domain definition and

classification for the same domain is different among these databases. Figure 2

illustrates an example of different domain boundary assignments for the same protein

in different domain databases.

Figure 2 Domain definitions for D-Glucose 6-Phosphotransferase (PDB ID: 1HKB,

Chain A) are dissimilar in different structure-based domain databases.  The domain

assignments are collated and visualized by XdomView (Vivek et al. 2003). Segments

with the same color or number are assigned to the same domain.

Figure 2 shows the different domain definitions in different domain databases

for the same protein. Among the five databases, DALI tends to divide protein

structures into small and compact domains while SCOP is reluctant to split the

domains unless there is some evidence to support to do so.  In this study, SCOP is

selected to be the major source for domain definition because of the following

reasons:

(1) SCOP considers both evolutionary and structure information for assigning

domains, while other databases mainly based on structure information to

define domain. Since disulphides are always conserved during evolution to

stabilize the structure and fold, SCOP domain definition will better

represent the evolutionary relationship between homologous disulphide-

bonded proteins.

(2) SCOP is manually curated by experts with visual inspection thus is likely
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the most reliable resource for domain definition and classification. DALI,

3Dee and MMDB are generated by computer program automatically.

CATH is built based on semi-automated method: manually at Class (C)

and Architecture (A) levels and automated at Topology (T), Homologous

superfamily (H) and Sequence family (S) levels. Therefore, for some low

level classification, CATH may not be as accurate as SCOP. For example,

both domains of C1-T1 (PDB ID: 1FYB, Chain A) and PCI-1 (PDB ID:

4SGB, Chain I) clearly belongs to the same sequence family, but they are

classified into two sequence families (3.30.60.30.6: complex (serine

proteinase-inhibitor) and 3.30.60.30.7: hydrolase) in CATH. While in

SCOP, all the Pot II domains were correctly classified into SCOP family

labeled plant proteinase inhibitors.

For these reasons, in this study, SCOP is selected as the major source for

domain definition and domain classification and CATH is used for reference and in-

depth analysis.

1.5 Objectives of this thesis

SDPs have great potential as therapeutic drugs, diagnostic agents and pesticides. The

most important characteristic of SDPs is their cysteines and disulphides patterns. Due

to the unique features of SDPs, applications of SDPs require an in-depth

understanding of the nature of SDPs and the availability of corresponding

computational resources, such as a high quality dataset and approaches specifically

tailored for SDPs. The objectives of this thesis is to address these demands by

systematic investigation of SDPs from the following specific aspects:
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(1) Build a high quality and comprehensive dataset for the researches of

SDPs;

(2) Analyze the roles and patterns of cysteines and disulphide bridges of

SDPs and derive rules for further investigations and applications of SDPs;

(3) Develop computational methods specifically for SDPs, particularly on the

comparative modeling of SDPs;

(4) Investigate SDP families for the in-depth understanding of structure,

function and evolution of SDPs.

1.6 Contributions of this thesis

This thesis provides several novel contributions that are briefly described below:

(1) SDFD – a database of Small Disulphide-rich Folds (SDFs) has been curated to

facilitate the research of SDPs and SDFs.

(2) A hierarchal classification scheme for SDFs is proposed based on disulphide

number, disulphide connectivity and cysteine signature.

(3) Systematic analysis of SDFD reveals that the cysteine signature can help in

detecting distantly related homologs and convergently evolved structures that

are difficult to identify by sequence similarity searches.

(4) SDPMOD – a novel method for the automated comparative modeling of SDPs

has been developed, specific rules for dealing with SPDs. The CHARMM22

forcefield topologies and parameters for non-standard residues has been

generated and tested on large scale comparative modeling of conotoxins;

(5) The unique property of the Potato II (Pot II) proteinase inhibitor family to

form structural repeats different from sequence repeats has been identified and

investigated. A comprehensive analysis revealed that this family exhibits
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“purifying” selection on the cysteine scaffold and positive selection on the

reactive sites. The evolution of Pot II family showed the feasibility of using

SDFs as scaffolds for drug design and protein engineering.
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Chapter 2 Small Disulphide-rich Fold Database (SDFD)

Small disulphide-rich folds (SDFs) constitute a large group of proteins with diverse

functions and have many important applications as discussed in Chapter 1. The most

important characteristics of SDFs are their cysteine patterns and disulphide-bonding

patterns.

To better understand the features of SDFs and facilitate the applications of

SDFs, a comprehensive analysis of the roles and patterns of cysteines and disulphide

bridges in SDFs is essential. Such an analysis requires the availability of a complete

and accurate structural SDF dataset. Although several databases centered on

disulphide proteins are available (Chuang et al. 2003; van Vlijmen et al. 2004;

Vinayagam et al. 2004), they have different emphases and cannot fulfill the needs of

this study (details in Chapter 1).

To facilitate the analysis of roles and patterns of cysteine residues and

disulphide bridges in SDFs, a comprehensive database for SDFs and SDPs was built.

SDF Database (SDFD) provides the clean and complete dataset for the analysis of

SDFs and also serves as the template repository for comparative modeling of SDPs.
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2.1 Data sources and data extraction

Figure 3 Flowchart shows data resources and data flow in SDFD.
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Figure 3 shows the data flow involved in the creation of this database. SDFD

is a heterogeneous database, incorporating information on protein structures and

disulphide connectivity from PDB (Kouranov et al. 2006), protein domain definition

and classification from SCOP (Andreeva et al. 2004), PDB ATOM—SEQRES

correspondence maps, genetic domain definition and SPACI (Summary PDB

ASTRAL Check Index) from ASTRAL (Brenner et al. 2000; Chandonia et al. 2002;

Chandonia et al. 2004), Gene Ontology terms from the Gene Ontology Consortium

( A s h b u r n e r  et al. 2000) and functional annotation from GOA@EBI

<http://www.ebi.ac.uk/GOA/index.html> (Camon et al. 2004). These data resources

are described briefly in the following section. In this study, SDFs were collected

according to the criteria of domain size ≤  100 residues and with at least two

disulphide bridges.

The basic unit for SDFD database is the “domain” as defined by SCOP

(Andreeva et al. 2004), while most previous studies on disulphide bonding pattern use

PDB chains as basic units (Harrison and Sternberg 1996; Chuang et al. 2003). Such

consideration was due to an obvious problem during the analysis of cysteine patterns

and disulphide-bonding patterns. For example, some multi-domain SDPs (such as the

Pot II family discussed in Chapter 4) contain tandem domain duplication, so that

extracting cysteine patterns or disulphide-bonding patterns based on PDB chains will

introduce inaccuracies due to the repetition of a single unique pattern.

2.1.1 The Protein Data Bank

In this study, all the small disulphide-rich proteins were collected from Protein Data

Bank (Kouranov et al. 2006). Protein 3D structures are the most accurate and
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informative resource for disulphide connectivity information. Although disulphide

connectivity information can also be obtained from other resources, such as the

annotation of Swiss-Prot (Boeckmann et al. 2003), some important features such as

secondary structures and solvent accessibility are absent in sequence databases.

For each PDB structure, general information (such as experimental method,

resolution, r-value and deposition date) and features for each protein chain (protein

sequence from SEQRES and ATOM records) were extracted.

Disulphide connectivity, secondary structure and solvent accessibility were

calculated using the DSSP algorithm (Kabsch and Sander 1983), which is a widely

used program to calculate secondary structural features for PDB structures. Although

the disulphide connectivity information was initially extracted from the SSBOND

records in the PDB files, further study showed that for some PDB entries SSBOND

records are incomplete or incorrect. For example, for the pancreatic trypsin inhibitor

(PDB ID: 1B0C) chain E, there are six cysteines in the primary sequence (at

positions: 5, 14, 30, 38, 51, 55), while the SSBOND record in the PDB files only

reported 5-55, 30-51 as disulphide bridges. In fact, the distance between sulfur atoms

of residues 14 and 38 is 2.04 Å, which was annotated as disulphide bonds by most

structure analysis software, such as DSSP (Kabsch and Sander 1983), WHATIF

(Vriend 1990) and PROMOTIF (Hutchinson and Thornton 1996). To obtain complete

and accurate disulphide bonding information, DSSP was used to calculate disulphide

connectivity as well as secondary structure and solvent accessibility for SDFD.

Python scripts were written to extract all the useful information from the DSSP output

files and populate the appropriate fields in the database.
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2.1.2 SCOP and CATH

The domain is used as basic unit for SDFD. There are several public databases

available for domain definition and domain classification (described in Chapter 1),

such as DALI (Holm and Sander 1993), CATH (Pearl et al. 2003) and SCOP

(Andreeva et al. 2004). In this study, SCOP was used for domain definition and

classification since it is manually curated and is widely used as the “gold standard”

for structural domain classification. SCOP 1.69 release (Aug. 2005) splits 25,973

PDB structures into 70,859 domains and classifies domains into four hierarchical

levels: class, fold, superfamily and family. The domain definitions and classifications

are retrieved from SCOP. CATH version 2.6.0 (Apr. 2005) was also downloaded as a

reference structure classification database.  FSSP is mainly derived from automatic

domain classification programs and hence DALI data was not used in this study.

2.1.3 ASTRAL

ASTRAL (Chandonia et al. 2004) offers high quality curated data about PDB

structures and SCOP domains in the following aspects:

(1) ASTRAL RAF Sequence Maps provide the mapping between the protein

primary sequences defined in the SEQRES record of a PDB file to the

actually reported atomic coordinates, found in the ATOM records. It is

possible that the sequence from SEQRES records and the sequence in the

ATOM records may be slightly different for some PDB entries, which is

mainly due to the nature of structure determination techniques (especially

X-ray crystallography). The coordinates of some residues cannot be

completely determined so that the sequence from the ATOM record may

vary from the biological sequence of the protein (available from the
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SEQRES record). Such differences may cause problems during analysis.

ASTRAL provides the PDB ATOM to SEQRES correspondence maps in

Rapid Access Format to solve this problem.

(2) Genetic domains: a SCOP domain may include several fragments from

different PDB chains. In most cases, these fragments are the product of a

single gene. ASTRAL reassembles the fragments in the order found in the

original gene sequence. Such information is valuable for the analysis of

intra and inter-chain disulphide bridges. The definitions and sequences of

genetic domains are retrieved from ASTRAL.

(3) SPACI scores: before data analysis, any redundancy should always be

removed first from the dataset. Structure quality is one of the most

important criteria for removing redundancy in structural data. SPACI

scores from ASTRAL (Brenner et al. 2000) provide a reliable evaluation

parameter for structure quality and the scores are calculated by combining

three components: the quality of the experimental data (the resolution),

how well the model fits the collected data (the R-factor), and the

theoretical quality of the model, determined by stereochemical checks

from PROCHECK (Laskowski et al. 1993) and WHAT_CHECK (Vriend

1990).

2.1.4 Gene Ontology (GO) and GOA@EBI

The analyses on function and common properties of biological molecules are always

complicated by wide variations in terminology. The use of a common vocabulary will

greatly facilitate the identification of relationships and common properties between

biological molecules from different species. The Gene Ontology (GO) approach
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addresses such a demand by developing a structured, controlled vocabularies

(ontologies) that describe gene products in terms of their associated biological

processes, cellular components and molecular functions in a species-independent

manner (Ashburner et al. 2000). Usually, a gene product can have one or more

molecular functions and be used in one or more biological processes, while associated

with one or more cellular components. Therefore, GO terms are organized in

structures called directed acyclic graphs (DAGs), in which a child term (which is

more specialized) can have several parent terms (which are typically less specialized).

GOA@EBI (GO Annotation@EBI) (Camon et al. 2004) is a project run by

the European Bioinformatics Institute (EBI) that aims to provide assignments of gene

products to the Gene Ontology (GO) resource. In the GOA project, GO terms are

applied to all proteins described in the UniProt (Swiss-Prot/TrEMBL) (WU et al.

2006) and Ensembl databases (Birney et al. 2004) that collectively provide complete

proteomes. GOA also provides annotations for all entries in PDB database (PDB-

GOA).

To assist the analysis of function variation of SDFs, GO terms were

downloaded from the Gene Ontology Consortium (Ashburner et al. 2000). The GO

annotations for each PDB chain were retrieved from PDB-GOA project under

GOA@EBI <http://www.ebi.ac.uk/GOA> (Camon et al. 2004). So the combination

of GO annotation (in form of GO term ID) and GO term definition provides

information on molecular function, biological processes and cellular components of

each PDB chain in standard vocabularies.
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2.1.5 Software packages used during the curation of SDFD

1. PostgreSQL. PostgreSQL <http://www.postgresql.org> is currently the most

advanced open source relational database system. It is renowned for its

reliability, data integrity and correctness. It supports a large part of the SQL

(Structural Query Language, a standard computer language for accessing and

manipulating databases) standard and offers many modern features, such as

complex queries, foreign keys, views and transactional integrity. PostgreSQL

is used as the relational database system in this study.

2. Python and Biopython. Python is an interpreted, interactive, object-oriented

programming language. Python combines remarkable power with very clear

syntax. It has modules, classes, exceptions, very high-level data types and

dynamic typing. Python scripts are portable across almost all platforms,

including all major Unix systems, Linux, Windows and Mac OS. All these

features make Python an ideal language for bioinformatics tasks. The

Biopython Project <http://www.biopython.org> is an international association

of developers of freely available Python tools for computational molecular

biology. All the scripts in this study are written in Python with the facilitation

of Biopython, especially the PDB module (Hamelryck and Manderick 2003).

2.1.6 Database schema

SDFD features were organized into 7 entities (Figure 4): (1) Structure; (2)

Protein_chain; (3) Domain; (4) Disulphide; (5) Pro_chain_segment; (6) Residue and

(7) GO.
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Figure 4 Schematic entity relationship of SDFD. PK represents the primary key for

each entity and FK stands for foreign key that connects different entities, establishing

the links between them.

SDFD is implemented on top of the open source database system PostgreSQL.

It integrates all data from the primary data sources as shown in Figure 4.  The data

from the original sources are available in different formats, such as flat files, database

dump files, or HTML pages. Parsers were written in Python and Biopython to

populate SDFD with the data obtained in non-relational representation.

2.2 Classification of SDFs

SDFs are highly redundant and variable and in order to systematically classify them,

we propose a hierarchical classification scheme (Appendices: Poster 2), inspired by

the SCOP classification but based on the disulphide bond number and disulphide

connectivity. In order to compare and classify disulphide bond connectivity, the

specific cysteine residues involved in disulphide bond formation are extracted and the
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links between them are numbered sequentially. For example, in an SDF with four

cysteines forming two disulphide bonds, the connectivity may be described as 1221,

where the first disulphide link, represented by the number “1” is between the first and

fourth cysteine residues and the second disulphide bond (labeled “2”) describes the

link between the second and third cysteines. If the connectivity is 1212, then the first

cysteine is connected to the third and the second to the fourth. Similarly, for proteins

with six cysteines, for instance, one of the 15 possible disulphide connectivities where

three disulphide bridges are formed, the first (1) between the first cysteine (1) and the

third cysteine (1), the second (2) between the second (2) and the fifth cysteine (2), and

the third (3) between the fourth (3) and the sixth (3), would thus be ordered

sequentially and abbreviated as “121323”. Such a notation provides an easy way to

discriminate between different disulphide connectivities for both human inspection

and machine calculation and comparison.

Figure 5 The classification hierarchy of SDFD.  The top level is the superfamily,

followed by the family, cluster and then the individual domains.
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Figure 5 shows the SDFD numbering scheme for the representative structure

α-conotoxin GI (PDB code: 1XGA) that has two disulphide bonds and 1212

connectivity. All the SDFs in the database were classified into four levels: Disulphide

Superfamily (DSSF), Disulphide Family (DSF), Disulphide Cluster (DSC) and

Disulphide Individual (DSI). These levels are described in detail as follows:

(1) DSSF (Disulphide Superfamily). DSSF is the highest level in the

classification hierarchy and depends on the number of disulphide bridges

in the domain. For example, α-conotoxin GI (PDB ID: 1XGA) has two

disulphide bridges in its structures and therefore is classified into DSSF 2

superfamily.

(2) DSF (Disulphide Family). Each DSSF can be classified into disulphide

families (DSF) according to the disulphide connectivity. In case of DSSF

II, there are three possible disulphide connectivities: 1122, 1212 and 1221.

α-conotoxin GI has a disulphide connectivity (C2-C7, C3-C13, where 2, 3,

7 and 13 respectively are the residue numbers of the cysteines), therefore

belongs to DSF 2.1212.

(3) DSC (Disulphide Cluster). The domains in each DSF are further grouped

into clusters by the “cysteine signature”. In this study, the cysteine

signature is represented as a vector of sequential distance between

cysteines participating in the disulphide bonds. For example, the cysteine

pattern occurring along the primary amino acid sequence of an SDP can be

written as CX3CX9CX2C, where C is a cysteine residue involved in a

disulphide bridge and X is any other non-disulphide bridge residue, and a

number following X indicates the number of consecutive X residues
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between two cysteine residues. This pattern can be represented as a vector

(3,9,2). For example, for two 2-disulphide proteins, their cysteine

signatures can be (x1, y1, z1) and (x2, y2, z2), respectively. And the pairwise

distance (d) between the two cysteine signatures can be calculated by the

following formula (Equation 1):

 (Equation 2)

Likewise, for n-disulphide proteins, the cysteine signatures can be

represented as 2n-1 dimensional vectors and their pairwise distances can

be calculated in a similar way.

The pairwise distance (d) can be further normalized by the number of

separation (s=2n-1) to obtain a normalized pairwise distance ds=d/s=d/(2n-

1). In this study, the members of each Disulphide Family were clustered

into Disulphide Cluster according to an empirical threshould (ds ≤ 1.0).

The clusters are numbered consecutively from 1. For each cluster, a

representative domain is selected according to the structure quality. α-

conotoxin GI is selected as the representative domain for DSC 2.1212.1.

(4) DSI (Disulphide Individual). The domains in each DSC are numbered

consecutively from 1. So every domain in SDFD has a unique

classification identifier. In the case of α-conotoxin GI, its classification

identifier is 2.1212.1.1.
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2.3 Data analysis of SDFD

2.3.1 Database content of SDFD

SDFD incorporates data retrieved and carefully extracted from PDB, SCOP, CATH,

ASTRAL, GO and GOA. The data were organized into seven entities as shown in

Figure 4.  SDFD was further classified into hierarchal levels according to their

disulphide numbers, disulphide connectivity and sequence similarities.

Table 4 The current content of SDFD database

Entities Number
Structures 849
PDB chains 999
Domain 1,035
Disulphide bridges 3,307
Residues 58,054

Table 4 shows the current content of non-redundant SDFD database (as of

March 2006). Currently SDFD contains 999 PDB chains and 1,044 domains from 849

PDB structures. More than 81% of PDB chains only contain a single domain, which

suggests that most SDPs are single-domain proteins. This also indicates that domain

is the functional unit for most SDPs and interactions or cooperations between multiple

domains are rare in SDPs. Therefore, in Chapter 3, structural modeling of SDPs, there

is very few demand for model building for multi-domain SDPs and SDPMOD didn’t

include a step to predict domain boundary for input sequences before the modeling.

This will be further described in Chapter 3.

2.3.2 SDF distribution in SCOP classes

SCOP contains seven major classes: (1) All α proteins; (2) All β proteins; (3) α and β



42

proteins (α/β); (4) α and β proteins (α+β); (5) Multi-domain proteins (α and β); (6)

Membrane and cell surface proteins and peptides; (7) Small proteins. The distribution

of SDFD entries in each SCOP classes was tabulated in Table 5.

Table 5 The distribution of SDFs among SCOP classes

SCOP Classes Number of entries
All α proteins 34
All β proteins 44
α/β proteins 0
(α+β) proteins 90
Multi-domain proteins (α and β) 0
Membrane and cell surface
proteins and peptides

0

Small proteins 843
Peptides 24
Total 1,035

The majority of SDFs (> 80%) belong to the Small Proteins Class of SCOP,

which is not unexpected as this class predominantly comprises proteins that are

usually dominated by metal ligand, heme, and/or disulphide bridges.  In this SCOP

class, the fold family labeled Knottins (small inhibitors, toxins, lectins) has the largest

collection (353 entries) of SDFs. A number of SDFs are also present in the all α, all β

and (α+β) protein classes.  Significantly, there are no examples of SDFs among class

α/β proteins, class Multi-domain proteins and class Membrane and cell surface

proteins and peptides. This should be due to the small sizes and less secondary

structures of SDFs.

2.3.3 SDF Distribution among SDFD superfamilies and families

All the SDF domains were collected into DSSF superfamilies according to the

number of disulphide bonds. In current version of SDFD, disulphide bond number
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ranges from two to eight. For example, the antifreeze protein from beetle (PDB code:

1EZG, Chain B and SCOP ID: d1ezgb_) has eight disulphides within a chain of 84

residues. The distribution of domains amongst DSSF superfamilies and families is

presented in Table 6.
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Table 6 The distribution of entries among SDFD superfamilies and families. The most

populous DSF family in each DSSF Superfamily is highlighted in bold font.

DSSF Superfamily Number DSF family Number
1122 30
1212 184DSSF 2 260
1221 46
112233 8
112323 11
112332 1
121233 73
121323 63
122133 1
122313 2
123123 128
123132 26
123213 60
123231 84
123312 2

DSSF 3 467

123321 18
11223344      1
11223443      2
11232344      5
11234234      1
11234432      1
12123344     31
12123434      1
12134234      3
12231434      3
12234134      4
12312344     18
12312434      1
12312443      6
12314234      7
12314342      1
12314432      1
12321344      2
12324134      5
12331244      1
12332144      2
12341234      4
12341342      2
12342314      5
12342341     33
12343124      5

DSSF 4 149

12344321      4
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DSSF Superfamily Number DSF family Number
1212334554 2
1212344355 7
1212345345 7
1213324455 8
1213434525 1
1223134455 7
1231245345 1
1231425534 1
1231452345 6
1232145435 1
1233245451 2
1234134525 1
1234215534 1
1234253451 1

DSSF 5 51

1234321554 5
121233445656 1
123214543656 5DSSF 6 7
121234535646 1
12344256577631 7
12324431565776 6DSSF 7 14
12123344565677 1

DSSF 8 2 1213234455667788 2

Table 6 clearly shows the uneven distribution of SDFD entries among

superfamilies and families. DSSFs 2 and 3 are most abundant superfamilies in SDFD,

contributing 25% and 45% of the whole dataset, respectively. Only those families

with structural examples in the PDB have been listed, although combinatorially, a

large number of families are possible.

For proteins with n-disulphide bonds, the number of possible connectivity

patterns can be calculated by the follow formula (Fariselli and Casadio, 2001):

Cp = (2n - 1)!! = Π (i ≤ n) (2i - 1) (Equation 3)

In Equation 1, Cp represents the number of possible disulphide connectivities,

n stands for the number of disulphide bridges in the protein. So theoretically the

possible disulphide connectivities for each DSSF superfamily can be calculated for n
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= 2,3,…,8 (Table 7).

Table 7 The theoretic number and observed number of disulphide connectivity for

each disulphide superfamily (DSSF).

DSSF Disulphide
number (n)

Theoretical number Observed number

DSSF 2 2 3×1 = 3 3
DSSF 3 3 5×3×1 = 15 13
DSSF 4 4 7×5×3×1 = 105 26
DSSF 5 5 9×7×5×3×1 = 945 15
DSSF 6 6 11×9×7×5×3×1 = 10,395 3
DSSF 7 7 13×11×9×7×5×3×1 = 135,135 3
DSSF 8 8 15×13×11×9×7×5×3×1 = 2,027,025 1

Table 7 shows the enormous difference between theoretical and observed

number of disulphide connectivities in each DSSF. Although the number of possible

connectivities for DSSF superfamily (n ≥ 4) is huge, only a small proportion is

observed in SDFD. Such gaps can be explained by the following reasons:

(1) Not every kind of disulphide connectivity is possible in nature. Obviously,

observed protein sequences only account for a tiny portion of possible sequence

space. Given the protein sequence, the disulphide connectivity will be restrained

steric factors since cysteines close enough can possibly form disulphide bridges.

(2) The observed disulphide-rich structures are only a small fraction of known protein

sequences. With the rapid development of genome sequencing projects and

structural genomics projects, more and more disulphide-rich proteins will be

identified and more disulphide connectivities will be found.

(3) Nature displays preferences for some disulphide connectivities over others. The

observed number in each DSF clearly supports this tendency. For DSSF 2, there

are three possible disulphide connectivities. According to the nomenclature
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proposed for the arrangement of disulphide bridges (Harrison and Sternberg

1994), three relationships can occur between two disulphide bridges (Figure 6):

(1) independence (DSF 1122); (2) overlap (DSF 1212); or (3) enclosure (DSF

1221).

Figure 6 Three relationships between two disulphide bridges as described by Harrison

and Sternberg 1994. Beside each connectivity diagram the number observed in SDFD

is given. Note that this terminology does not take into consideration the 3D structure

of the protein and simply describes the relationship between disulphide bridges at the

level of the primary sequence. In a structural study such as this, in a number of

instances, such a description may be a misnomer, e.g. a sequentially “overlapping” set

of disulphide bridges do not necessarily have “overlaps” structurally. However, they

have the utility of being concise and are used in this thesis on that basis.

Clearly the overlapping topology (DSF 1212) has the largest observed

population (over 70%), which suggests the preference of the overlapping topology

over independent and enclosed topologies. Similarly in DSSF 3, the overlapping

topology of DSF family 123123 has the biggest number among 15 possible disulphide

connectivities. A possible explanation for such this preference is that the overlapping

topology of disulphide connectivities will help to anchor constituent protein



48

fragments and improve the intra-domain interactions, thereby making the protein

thermodynamically more stable.

2.3.4 Disulphide distance distribution

Disulphide distance is defined as the sequential distance between the two bonded

cysteines of a disulphide bridge, measured as the difference between their residue

numbers. Tsai and coworkers reported that a descriptor derived from the disulphide

distance could improve the accuracy of disulphide connectivity predictions (Tsai et al.

2005; Zhao et al. 2005). Therefore, the distribution of disulphide distance may

provide useful information for predictioning disulphide connectivity of newly

sequenced SDPs. Figure 7 shows the distribution of the distances between two bonded

cysteines.

Overall values:

Min = 1

Median = 18

Max = 88
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Figure 7 The distribution of disulphide distance in SDFD. The unit for disulphide

distance is residues.

The maximum disulphide distance observed in SDFD is 88 residues, for the

disulphide bond formed between C3A and C91A in tomato serine proteinase inhibitor

II (TI-II, PDB ID: 1PJU, Chain A). The minimal disulphide distance observed in

SDFD is 1, with only one occurrence, belonging to a disulphide formed between

adjacent cysteines, C13A and C14A, in the insecticidal neurotoxin, J-ACTXs (PDB

ID: 1DL0, Chain A). Such vicinal disulphide bridges are rare and they may have

special functional roles. In the case of 1DL0, the vicinal disulphide bridge is critical

for insecticidal activity of J-ACTXs (Wang et al. 2000).

Figure 7 shows that the distribution of disulphide distance is double-humped

with two maxima at 18 (the main peak) and 40 (the secondary peak), respectively.

The frequency for short disulphide distance (less than 4) and long distance (greater

than 54) is very low, while the intermediate distance of 32-38 is also not preferred.

This distribution should be useful for disulphide connectivity prediction programs

which could use this parameter for screening out false positives.

2.3.5 Inter-domain vs. intra-domain disulphide bridges

The disulphide bridges in protein structures can be classified into inter-domain or

intra-domain disulphide bonds, based on whether the two bonded cysteine residues

belong to the same domain or not. Most of the disulphide bridges in SDFD are intra-

domain disulphides. Among the 3,307 disulphide bridges in SDFD, only 93 of them

connect two different domains defined by SCOP. But if the CATH domain definition

is used instead, 68 of these 93 inter-domain disulphides belong to the same domain.

Detailed analysis suggested that the domain boundaries for some SCOP domains
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might be stringently assigned, causing bonded cysteine residues to be assigned to

different domains. For example, wheat germ agglutinin (PDB ID: 9WGA, Chain A)

contains an inter-domain disulphide bond (C46A-C61A) linking domain d9wgaa1 and

d9wgaa2 (according to SCOP domain definitions, Figure 8A). But this disulphide

bond becomes an intra-domain disulphide bond in domain 9wgaA2 (based on CATH

domain definition, Figure 8B).

Figure 8 The comparison of SCOP and CATH domain boundaries of wheat germ

agglutinin (PDB ID: 9WGA, Chain A: 1-86). (A) SCOP domain boundaries for

9WGA, domain d9wgaa1 (blue): 1A-52A, domain d9wgaa2 (green): 53A-86A; (B)

CATH domain boundaries for 9WGA, domain 9wgaA1 (magenta): 1A-42A,domain

9wgaA2 (red): 43A-86A. The structures are in ribbon representation and disulphide

bridges are shown in stick representation, colored in yellow. Two cysteine residues,

(A) SCOP

(B) CATH

C61A

C46A

C46A

C61A

d9wgaa2 d9wgaa1

9wgaA2 9wgaA1
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46A and 61A, forming the disulphide bond analyzed, are labeled.

From Figure 8, the CATH domain boundary definition is more reasonable

than the SCOP definition in the case of 9WGA from the viewpoint of structure.

Another evidence (Figure 9) for such misclassification is obtained from the domain

sequence alignment provided by the Superfamily server (Gough et al. 2001).

Figure 9 The multiple sequences alignment of SCOP superfamily plant lectin by

Superfamily. The regions marked by rectangles delineate the incorrect domain

boundary between domains d9wgaa1 and d9wgaa2. 

Figure 9 clearly shows that the unaligned sequence segment at the end of

domain d9wgaa1 should go to the N-terminus of domain d9wgaa2, correctly picked

up by the CATH domain definition. Therefore, the inter-domain disulphide bond

46A-61A is actually an intra-domain disulphide bond. Similarly, the other 67 of the

93 inter-domain disulphides have been reclassified as intra-domain disulphide bonds,
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based on the CATH domain definitions for these domains.

Only 25 disulphide bonds were classified as inter-domain disulphide bonds by

both SCOP and CATH domain definitions. These inter-domain disulphide bonds help

to fix the relative position of functional domains. For example, the inter-domain

disulphide bond (C122C-C141L) in Gla-domainless activated protein C (PDB ID:

1AUT, Chain C, Chain L) linked to the light chain, is the catalytic domain (Mather et

al. 1996).

The low frequency (25/3,307=0.7%) of inter-domain disulphide bond is not

surprising since a domain tends to be a compact, independent unit of protein structure.

Inter-domain disulphide bonds anchoring the relative positions between domains are

thus uncommon in small proteins, such as SDPs.

This observation has potential application in domain boundary delineation,

disulphide connectivity prediction and molecular modeling. When determining the

domain boundary, the two cysteines forming a disulphide bond are more likely to be

in the same domain unless there is evidence that the role of that disulphide is to help

stabilizing the relative position of two domains. The same rule is also applicable to

disulphide connectivity prediction. Before the prediction of disulphide connectivity,

the sequence should be split into domains and disulphide connectivity predicted for

each domain. This will greatly reduce the prediction search space of possible

connectivities and improve the prediction accuracy.

2.3.6 Inter-chain disulphide vs. intra-chain disulphide bridges

Among 3307 disulphide bonds in SDFD, 148 of them are inter-chain disulphide

bridges, which is only a small fraction (4.4%) of the total dataset. These 148 inter-

chain disulphides can be further classified into 52 inter-domain and 96 intra-domain
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disulphides. According to genetic domain definitions from ASTRAL, all 96 inter-

chain intra-domain disulphides belong to genetic domains, so that the multiple protein

chains are actually the product of a single gene. In other words, these inter-chain

disulphide bridges are actually intra-chain disulphide bridges before the protein

precursors were processed into mature proteins. Insulin is the best example of such

inter-chain disulphides. Insulin is derived from a single-chained precursor, proinsulin,

by the removal of a segment from the middle of the precursor protein.  The active

hormone, insulin, is composed of two protein chains and contains two inter-chain and

one intra-chain disulphide bridges. Fully denatured insulin cannot recover its native

structure and disulphide bridges (Anfinsen 1973), which suggests that the complete

sequence information is essential for the folding of this protein and the formation

correct disulphide bonds. This result provides an indication that for disulphide

connectivity prediction, the precursor sequence information may be a better descriptor

and should be more informative than the mature sequence alone.

Of the 52 inter-chain inter-domain disulphide bonds, 24 of them belong to the

SCOP fold of cysteine-knot cytokines. Detailed analysis shows that these inter-chain

disulphide bridges link two identical sequences (monomers) derived from the same

gene.
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Figure 10 Inter-chain inter-domain disulphide bonds in the structure of Vascular

Endothelial Growth Factor (PDB ID: 1KAT). Chain V (color in red) forms one

domain (SCOP ID: d1katv_) and chain W (color in blue) forms another domain

(SCOP ID: d1katw_). The structure was rendered in ribbon represenation and the

disulphide bridges are shown in stick and colored in yellow.

The aboving figure (Figure 10) shows an example of inter-chain inter-domain

disulphide bonds in the structure of Vascular Endothelial Growth Factor (PDB ID:

1KAT) from SCOP fold of cysteine-knot cytokines. From Figure 10, we can see that

chain V and chain W are two identical monomer structures and each chain forms one

domain. The two chains were linked together by two inter-chain inter-domain

disulphide bonds (between Cys60 in chain V and Cys51 in chain W, Cys51 in chain V

and Cys60 in chain W, respectively). The structure is symmetrical and chain V and

chain W have identical sequences.

W51

V60

W60

V51
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Overall, among all inter-chain disulphides identified in SDFD, no example

connects chains from different genes, indicating that such “inter-gene” disulphide

bonding is difficult to form in nature.

2.3.7 The cysteine signature for the detection of structural similarity

Our results show that cysteine signatures can facilitate the detection of structural

similarity, at a finer level than the DSF classification, and can be used for grouping

structures as redundant or non-redundant folds. Figure 11 shows an example of two

highly similar structures identified by cysteine signature clustering.

Figure 11 The structure comparison between sweet-tasting protein brazzei (PDB ID:

1BRZ) and plant toxin γ 1-hordothionin (PDB ID: 1GPT) (A) 1BRZ, colored in cyan;

(B) 1GPT, in grey. Both structures are in ribbon representation. Disulphide bonds are

represented in stick and colored in yellow.

The cysteine signature of a sweet-tasting protein brazzei from fruits of

Pentadiplandra brazzeana (PDB ID: 1BRZ) is (11,5,3,10,9,1,2), is very close to the

signature (10,5,3,9,6,1,3) from a plant toxin, γ 1-hordothionin from barley (PDB ID:

1GPT). The two proteins have been clustered into a single group in SDFD, although

(A) 1BRZ (B) 1GPT
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there is no functional relationship between these two proteins and the sequence

identity between them is only 14.8%. Structure comparison of these two proteins

(Figure 11) shows their structures are highly similar (RMSD 1.2Å) and they have the

same disulphide connectivity. This suggested that the cysteine signature might be a

useful feature to detect distantly related homologs or convergently evolved proteins

especially when structural information is unavailable.
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2.4 Conclusion

Chapter 2 described the database curation, classification and data analysis of the small

disulphide fold database (SDFD). The principal findings are as follow:

(1) SDFD is a curated database, containing 1,044 non-redundant SDF

domains. These domains have been used collectively as the template

repository for comparative modeling of SDPs, described in Chapter 3.

(2) A hierarchical classification scheme for systematically sorting and

grouping SDF domains has been developed. The SDFD database is

classified into four hierarchical levels according to disulphide bond

number, disulphide connectivity and cysteine signature. The hierarchical

classification method is able to detect the structural similarities of proteins

of low sequence identity.

(3) The distribution of SDFs among DSSF superfamily and DSF family

suggested a preference of disulphide connectivity on overlapped topology.

(4) The analysis of intra- and inter-domain disulphide bonds identified some

mis-assigned domain boundaries by SCOP. The low frequency of inter-

domain disulphide in SDPs suggests that prior to disulphide connectivity

prediction and molecular modeling, the protein sequence should be split

into domains to improve the accuracy of disulphide connectivity prediction

and reduce computational time.

(5) The analysis of intra and inter-chain disulphide bonds showed the most

inter-chain disulphides are actually intra-chain disulphides, which connect

fragments that originally belong to the same gene before the processing of

protein precursors.
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Chapter 3 Structural modeling of SDPs

3.1 Introduction

This chapter focuses on the comparative modeling of SDPs and contains two parts:

the first part describes the design, modeling procedure and benchmarking of

SDPMOD and implementation of SDPMOD as a web server; the second part will

illustrate a high throughput comparative modeling technique based on conotoxins, a

large species-specific SDP family, using SDPMOD with the topology and parameter

libraries that we have developed for constructing proteins with non-standard residues.

3.2 The automated comparative modeling method for SDPs -

SDPMOD

3.2.1 Curation of template repository

Before commencing the comparative modeling of SDPs, a non-redundant template

repository needs to be created. The SDFD database served as such repository after

redundancy is removed at two levels as follows.

Firstly, most structures determined by the NMR method contain an ensemble

of monomer models. These structures represent models that fit all restraints

determined from the NMR experiment. During comparative modeling, only one

monomer needs to be used as a template, as the structural information available from

the different NMR structures is redundant (Marti-Renom et al. 2000). Different

researchers use different strategies to treat the NMR structure ensemble. While some

groups simply use the first monomer as the representative structure, others utilize the
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mean structure by averaging atom positions of all monomers and minimizing the

energy. But the mean structure results in a fictitious molecule with some abnormal

bond lengths and bond angles. In this study, NMRCLUST (Kelley et al. 1996) is used

to the select representative monomer from NMR structures. NMRCLUST can cluster

monomers into groups and select the monomer that is closest to other monomers as

the representative monomer.

Secondly, when multiple structures exist for the same sequence, the

representative structure is chosen according to its structural qualities. The structural

qualities are ranked by the following criteria (adopted from PDB): (1) X-ray

structures over NMR structures, (2) higher quality factor (1/resolution - R-value) for

X-ray structures and higher restraint per residue for NMR, (3) better geometry, (4)

fewer missing atoms and non-standard residues and (5) later deposition date. Based

on the above strategy, a non-redundant template structure dataset for SDPs was

generated and loaded into a PostgreSQL database. Currently it contains more than

1,000 non-redundant SDF domain and their coordinates.

3.2.2 The Modeling procedure

SDPMOD is designed specifically for the comparative modeling of SDPs. The special

features of SDPs are considered and incorporated into the model building method.

Traditional comparative modeling methods usually contain four steps: (1) template

selection; (2) target-template sequence alignment; (3) model building; (4) model

evaluation (Marti-Renom et al. 2000). Among these four steps, the first two (template

selection and target-template) are the most crucial steps for the quality of comparative

modeling. The major problems within the comparative modeling of SDPs are also

confined to these two steps, as explained in the introductory part of this chapter.
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Available comparative modeling servers and methods have problems in identifying

the best templates for SDP sequences and in aligning the SDP sequence and template

sequences correctly, as they are parameterized and benchmarked for larger globular

proteins.  SDPMOD is designed with special consideration to the template selection

and target-template alignment steps, according to the features of SDPs, each step of

which is presented in the following sections.

3.2.2.1 Template selection

Template selection is the most crucial step in comparative modeling. Comparative

modeling is based on the assumption that two structures would be similar to each

other if their sequences are homologous (Sander and Schneider 1991). Template

selection usually begins with sequence searching programs, such as BLASTP

(Altschul et al. 1990) or PSI-BLAST (Altschul et al. 1997) against protein sequences

from PDB (Berman et al. 2000). In most cases, multiple hits will be retrieved and the

best template(s) need not necessarily be the top ones.

Traditionally the best template(s) are selected according the following criteria

in the order of decreasing importance:

(1) Similarity of domain. The template(s) are expected to belong to the same

fold as the target sequence. For the modeling of multi-domain proteins, domain

boundary prediction methods, such as domain-fishing (Contreras-Moreira and Bates

2002), should be used first to split the target sequence into domains before searching

unless the structural database search can identify highly similar (ID% > 70%)

templates with almost full coverage of the target sequence;

(2) Similarity of Sequence. The template with higher sequence similarity and

fewer gaps is preferred as the structural model generated from this is expected to be
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closer to the real structure of the target sequence;

(3) Better structural quality. If there are multiple templates available from

the PDB with almost the same sequence, structural quality will be an important

consideration, as described in Section 3.2.1.

In SDPMOD, the strategies for template selection are different due to the

unique features of SDPs.

(1) Cysteine numbers.  Cysteine numbers defined here refer to the total

number of cysteine residues in the sequence. In the case of SDPs, the total number of

cysteines tend to be conserved during evolution and can serve as a reliable filter to

exclude proteins that apparently belong to different folds so as to reduce the

computational time. One possible problem here is that this step may filter out some

good templates if there are free cysteines (cysteine which do not form disulphide

bond) in the sequence. However, while this may be significant in other proteins, in

SDPs, only about 0.8% (53 of 6,667) of cysteine residues are free cysteines. For novel

sequences, the bonding states of cysteine residues (free or forming disulphide bridges)

can be easily predicted at high accuracy (up to 88%) (Fiser and Simon 2000; Martelli

et al. 2002). Furthermore, if both the target sequence and the template structure

contain free cysteines in similar positions (which is very likely since the highly

conserved nature and functional importance of cysteine residues), this would not

cause problem when searching for templates. Therefore, cysteine number can still

serve as a reliable and safe filter for most modeling jobs. For input sequences with

free cysteines, if SDPMOD cannot identify the template automatically, the manual

mode to choose the correct template has to be used.

(2) Cysteine signatures. Cysteine signatures are sequence motifs that are
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composed of cysteines and the distances between cysteines. For small proteins, the

spacing between cysteine residues is more important than sequence similarity for

template selection. Drakopoulou and co-workers reported that cysteine spacing

govern specific disulphide bond formation (Drakopoulou et al. 1998). Also, it is

difficult to compensate for the distortion of structures when deletion and insertion

events occur in small proteins. Fewer gaps have higher priority over sequence

similarity, especially if sequence similarity is not significant, as is usually the case

among SDPs. Therefore, a higher gap open penalty of 15 was used in the alignment

step, rather than the default penalty of 11.

The structure redundancy problem has been solved during the curation of the

template repository. The modeling of multi-domain proteins is not a major problem

for the modeling of SDPs. Firstly, SDPs are small molecules that are usually single

domain proteins or processed into functional single-domain proteins. So there is little

or no demand for modeling multi-domain SDPs. Secondly, there is currently no good

method available to predict the relative positions of protein domains. This is actually

a protein-protein docking problem that is extremely computationally intensive, with

multiple solutions. So the modeling of multi-domain proteins is beyond the scope of

this study unless there are corresponding multi-domain templates available from PDB.

3.2.2.2 Target-template alignment

After the best template(s) are selected, alignment of the target and template sequences

will be the most critical factor to determine the quality of comparative modeling.

Although the final alignments for the modeling only contain sequences of the target

protein and template(s), it is a good idea to include multiple homologous sequences

during the alignment since they can help in the identification of conserved regions and
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residues. There are a number of programs to do this with the most popular one being

CLUSTAL (Higgins and Sharp 1988). Generally the alignment algorithm will try to

maximize the aligned regions and minimize the gap regions. But the optimal

computational alignment does not always correspond to the optimum biological

alignment. Therefore, the alignment generated by a sequence alignment program may

not be the best alignment for the modeling purposes. The alignments usually can be

improved by manual adjustment (aligning the conserved regions and residues and

positioning gaps to loop regions or the ends of secondary structure elements) using

freely available software such as Jalview (Clamp et al. 2004).  Due to the importance

of cysteine residues in SDPs, SDPMOD uses a modified scoring matrix, in which the

value of cysteine match was doubled, to force the cysteine residues to be well aligned.

3.2.2.3 Model building

Given the template structure(s) and the target-template sequence alignment,

comparative modeling programs can generate 3D models. One of the most reputable

programs used in comparative model building is MODELLER (Sali and Blundell

1993). Assuming a good choice of template and an optimum target-template sequence

alignment, this step is almost automatic and not much human intervention is required.

However, researchers can still adjust the level of molecular dynamics (MD)

optimization and start with multiple initial models to overcome the local energy

minimal.

SDPMOD uses MODELLER to build 3D models based on the template

structure and target-template alignment from previous two steps. Multiple models

were built using different initial models and the best model is selected according to

the least MODELLER objective function score, based on the in-built potential energy
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function including stereochemical violations.

3.2.2.4 Model evaluation

After 3D models are generated, model evaluation has to be done to check the quality

of models. The models are often evaluated in two ways:

(1) Stereochemical quality evaluation. The most frequently used program

for this purpose is PROCHECK (Laskowski et al. 1993). PROCHECK can assess

how normal or how unusual, the geometry of each residue in a given protein structure

is, as compared with stereochemical parameters derived from well-refined, high-

resolution structures. Stereochemically strained regions highlighted by PROCHECK

are not necessarily errors, but may correspond to unusual features for which there is a

reasonable explanation (e.g. distortions due to ligand-binding at the protein's active

site). Nevertheless, they are regions that should be checked manually. SDPMOD

utilizes PROCHECK to evaluate the stereochemical quality of models. Generally, an

ideal model should have high G-factors scores and most residues cluster in the most

favorable regions of the Ramachandran plot. A reasonable model should have overall

G-factors greater than –0.5 with less than 5% of the residues in the most unfavorable

Ramachandran regions.

(2) Comparison between template structure and generated 3D models. If

the RMSD (Root Mean Square Deviation) between them is too large (greater than 3Å

for most proteins (Schwede et al. 2000) and 2 Å for SDPs), the models should be

carefully re-examined. It usually indicates that selected template may not belong to

the same fold with the target protein or the alignment between template and target

sequence is poor. The modeling parameters should be checked and the first two steps,

template selection and target-template alignment, should be re-checked. The models
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with large RMSD values should only be used subsequently with caution, if at all.

SDPMOD calculates the RMSD between template and model using MODELLER as

an indicator for modeling reliability.
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Figure 12 The flowchart of SDPMOD
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Figure 12 shows the detailed modeling procedure for automated modeling of

SDPs in SPDMOD. The non-redundant SDF dataset is first filtered using the number

of cysteine residues, and the resulting template sequences are globally aligned to the

target sequence using a modified scoring matrix. The best templates are then selected

based on the highest alignment scores. A dynamic minimum threshold for the

alignment scores was used in this step because in some cases, the sequence

similarities can be very low. For example, the sequence identity between sweet-

tasting protein brazzei (PDB ID: 1BRZ) and γ 1-hordothionin (PDB ID: 1GPT) is

only 15% but the two structures are highly similar (RMSD 1.2Å, shown in Chapter 2

Figure 11).  Also cysteine number and cysteine signature already serve as realiable

filters prior to this step. With the selected best template, target-template alignment

and model building are achieved by MODELLER (Sali and Blundell 1993), using a

customized matrix to ensure that all the cysteine residues are well aligned. The final

models are chosen according to the MODELLER objective function score, which

reflects lower energy and fewer stereochemical violations. Finally, the overall

structural quality of the generated models is evaluated against stereochemical

parameters derived from high quality experimental structures using PROCHECK

(Laskowski et al. 1993).

3.2.3 Benchmarking and Evaluation

A large-scale benchmarking was completed using the fully automated mode of the

SDPMOD method. A control set of 664 sequences (a subset of our SDFD non-

redundant database) with known structures was used to evaluate the reliability of the

method. Prior to the modeling of each sequence, its corresponding PDB structure was
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removed from the template dataset. The Cα RMSD values between models and their

actual experimental structures were calculated. The results are summarized in Table 8.

Table 8 SDPMOD results for the benchmarking dataset. D represents the RMSD.

Number of ModelsSequence
identity
(%)

Total D<0.5Å 0.5Å≤D<1Å 1Å≤D<1.5Å 1.5Å≤D<2Å 2Å≤D

20-30 172 0/0.0% 0/0.0% 23/13.4% 105/61.0% 44/25.6%
30-40 93 0/0.0% 3/3.2% 34/36.6% 46/49.5% 10/10.7%
40-50 56 0/0.0% 5/8.9% 29/51.8% 20/35.8% 2/3.6%
50-60 55 0/0.0% 11/20.0% 24/43.7% 16/29.1% 4/7.2%
60-70 53 0/0.0% 13/5.7% 24/45.3% 15/28.3% 1/1.9%
70-80 54 4/7.4% 12/22.2% 18/33.3% 16/29.6% 4/7.4%
80-90 91 9/9.9% 19/20.9% 32/35.1% 28/30.8% 3/3.3%
90-95 90 13/14.4% 19/21.1% 32/35.5% 23/25.6% 3/3.3%
Total
number

664 26/3.9% 82/12.3% 216/32.5% 253/38.1% 71/10.7%

Table 8 shows the SDPMOD results for the benchmarking dataset, based on

the target-template sequence identity values. The values of RMSD (based on Cα

atoms) between generated model and its template were calculated by MODELLER

and were used to evaluate the accuracy of modeling. Generally, the models are

considered as reasonable models if the RMSD value is less than 1.5Å. The RMSD

values in each sequence identity range are calculated and tabulated. It is clear that the

accuracy tends to be better in higher sequence identity ranges and become quite poor

if sequence identities between target and template sequences are below 40%. The

sequence identity value required here is much greater than 25% set as the threshold

(“twilight zone”) for globular proteins (Sander and Schneider 1991). Overall, in the

40-70% sequence identity range, 64% of models have Cα RMSD values less than

1.5Å. The benchmarking results show SDPMOD can predict 3D models with an

accuracy comparable to other automated methods (Schwede et al. 2000).
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3.2.4 The implementation of SDPMOD as a web server

To facilitate the use of the SDPMOD methodology, a web server has been developed,

which is freely accessible to academic or non-profit users via a web interface (shown

in Figure 13) at <http://proline.bic.nus.edu.sg/sdpmod>.  SDPMOD is primarily

designed as a fully automated procedure for ease of use. However, due to the

complexity of comparative modeling, human intervention and expert knowledge may

be required for optimal modeling of some proteins at two critical stages, namely

template selection and target-template alignment (Bates et al. 2001).  To allow for

human intervention, the current version of the SDPMOD server provides three modes

of access (fully automated, semi-automated and manual) to meet the different needs

of the expert users.

Figure 13 The web interface of SDPMOD
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The ‘fully automated’ mode presents an easy-to-use interface. User can simply

submit a target protein sequence with their email address and their MODELLER

license key, obtained from the MODELLER registration page

<http://salilab.org/modeller/registration.shtml>. The modeling will be carried out

automatically according to the procedure described in Figure 12.  In the ‘semi-

automated’ mode, a ranked list of potential templates will be returned after the target

sequence is submitted. Users can then choose the best template and adjust the target-

template sequence alignment using their knowledge. In the ‘manual’ mode, users are

allowed to propose a template from our non-redundant SDP structure dataset and

modify the target-template alignment where necessary.

After the modeling process is completed, a link with the prediction results will

be returned via email. Users can refer to the link to view the prediction results and

download the models. The prediction results consist of: (i) a summary of the selected

template(s), (ii) the predicted model based on each template in PDB format and (iii) a

brief report for each modeling attempt that includes the target-template alignment

used in modeling building, a comparison of the model against the template as

measured by RMSD and a PROCHECK report on the stereochemical quality of the

models.
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3.3 Comparative modeling of conotoxins

SDPMOD has been widely used for comparative modeling of SDPs. Till now

according to the server log, more than one hundred users have submitted more than

1,000 modeling jobs to SDPMOD web server since July 2004 (Kong et al. 2004).

SDPMOD was also used to do large-scale comparative modeling for SDP families,

e.g. over 540 homology models for native and mutant scorpion toxins were built and

incorporated into SCORPION2 database (Tan et al. 2006). But when SDPMOD was

used for the comparative modeling of conotoxins, we encountered a new problem.

Cone peptides contain non-standard amino acid residues, which will affect the

accuracy of modeling. After a general introduction to conotoxins, their unique

features and potential as drugs, comparative modeling of conotoxins will be discussed

and with the solution to non-standard amino acid residues and an evaluation of the

results obtained.

3.3.1 Introduction to conotoxins

Conotoxins (or conopeptides) are a vast array of peptide toxins secreted by cone

snails for capturing prey and as a defense against predators. They form distinct

families among SDPs and notable for their unprecedented selectivity and specificity

for varieties of neuronal receptors and ion channels (Lewis 2004). These properties

make conotoxins great tools in studies aimed at identifying receptors and their ligands

(McIntosh et al. 1999a), as well as potential therapeutic drugs (Shen et al. 2000).

Conopeptides have been reported to attack a wide variety of pharmacological targets,

making them an invaluable source of ligands for studying the properties of these

targets in normal and diseased states. A number of these peptides have shown efficacy
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in vivo, including as inhibitors of calcium channels, nicotinic acetylcholine receptors,

NMDA receptors and neurotensin receptors, with several having undergone pre-

clinical or clinical development for the treatment of pain.

3.3.1.1 Diversity of conopeptides

Conopeptides mainly come from the predatory cone snails (genus Conus). These

Conus comprise one of the largest living genus of marine animals (~500 living

species) (Olivera et al. 1990). Cone snails can be classified into three subgroups

according to their prey preference: (1) piscivorous (fish-hunting); (2) vermivorous

(worm-hunting); (3) molluscivorous (hunting on other marine snails). All conus use

complex venoms to capture prey, defend predators and for other biological purposes.

Most biologically active components of these venoms are small peptides (6-40 amino

acid in length), called conopeptides, and the majority of those are in the range of 12-

30 amino acids. It is estimated that there are 50~200 peptides in the venom of a single

Conus species. So in all Conus venoms, the total number of conopeptides is

anticipated to be in excess of 50,000 (Olivera et al. 1999).

Conopeptides are organized to multiple families according to disulphide

bridge pattern and homologous target sites. The various conopeptide families are

further grouped into superfamilies based on a surprising fact: within each

superfamily, the conopeptides share a common highly conserved signal sequence in

their precursors. Up to now conotoxins have six superfamilies (A, M, O, P, S, T).

The development of such potent and chemically diverse conopeptides, which

simultaneously target multiple components of nervous system in their prey, is

probably caused by natural selection pressure. For example, for fish-hunting cones,

the slow-moving snails have to immobilize the fast-moving fish immediately.
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Consequently, some fantastic mechanisms were developed in Conus to diversify the

components of venom to increase efficiency. All known conopeptides are derived

from precursors about 70-80 amino acids. In these precursors, the N-terminal

prepropeptides sequence within a given superfamily is highly conserved. The C-

terminus, which contains the mature conopeptides, represents a hypervariable region

that is readily mutated. Mutation frequencies vary by more than one order-of-

magnitude across these precursor sections, with the mature toxin region undergoing

the highest mutation rate (Olivera et al. 1999). The rate of conopeptide evolution is

higher than that of most other known proteins (Duda and Palumbi 1999). Post-

translational modifications also contribute to the diversity of conopeptides.

3.3.1.2 The potential of conopeptides as drugs

As potential therapeutic drugs, conopeptides show their advantages from several

aspects. (1) After more than 50 million years’ evolution, conopeptides have been

optimized to target specific ion channels and receptors with high affinities and

selectivities. The diversity of conopeptides makes it possible to target wide range

types of ion channel and neuronal receptors. Presently three types of targets have been

identified. These are ligand-gated (Nicotinic, 5HT3, NMDA) and voltage-gated ion

channels (Ca++, Na+, K+), and G protein-linked receptors (Vasopression,

Phospholipid) (McIntosh et al. 1999b). (2) As conopeptides can be highly selective

between closely related receptors subtypes, they could meet specific therapeutic needs

with a reduced likelihood of side effects. Conus peptides are the most specific ligands

known for several ion channel targets. For example, among ligands that target

voltage-gated sodium channels, µ-conotoxin GIIIA has unprecedented specificity for

the skeletal muscle subtype. This isoform is among the set of sodium channels that are
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etrodotoxin- and saxitoxin-sensitive. However, µ-conotoxin GIIIA is much more

specific than either of these guanidinium toxins and has a preference for the skeletal

muscle isoform by at least three orders of magnitude over other tetrodotoxin-sensitive

subtypes. This high subtype selectivity is proving to be a general feature of

conopeptides (McIntosh et al. 1999a).

These properties enable conopeptides as valuable drug candidates. For

example, conantokin peptides, targeting mammalian NMDA receptors, are being

considered as potential therapies for CNS disorders. Conopeptide MVIIA, which

selectively blocks N-type calcium channels, is a potent analgesic drug in the treatment

of neuropathic pain, as it can reduce pain with no development of tolerance (Shen et

al. 2000).

3.3.1.3 The unique features of conotoxins

Conopeptides have several unique features: (1) signal sequences peptides within the

same superfamily are extraordinarily conserved; in contrast, the mature toxin regions

are hypermutated; (2) high percentage of cysteines that form structurally constrained

disulphide bridges; (3) the abundance of post-translationally modified residues in

conotoxins. The following section will discuss the post-translational modifications

resulting in non-standard residues and their important roles in the structure and

function of conotoxins.

3.3.1.4 Post-translational modifications in conotoxins

Post-translational modifications are very common in conotoxins and include

hydroxylation of proline, γ-carboxylation of glutamate, bromination of tryptophan and

C-terminal amidation. Post-translational modifications and their products are shown
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in Table 9.

Table 9 post-translational modifications in conotoxins

Post-translational modification Standard
residues

Resulted non-standard residues Non-standard
residues

C-terminal amidation N.A. N.A. NH2
γ-carboxylation of glutamate GLU γ-carboxy-glutamic acid CGU
hydroxylation of proline PRO 4-hydroxyproline HYP
Epimerization of tyrosine TYR D-tyrosine DTY
C-terminal amidation of cysteine CYS 2-amino-3-mercapto-propionamide CY3
Epimerization of tryptophan TRP D-tryptophan DTR
bromination of tryptophan TRP brominated tryptophan BTR
Glycosylation of threonine THR glycosylated threonine GTH

Some post-translational modifications are crucial to the structures of

conopeptides. For example, research on structures of conantokin G reveals that upon

binding calcium ions to γ-carboxyglutamic acid, conantokin G undergoes a

conformation transition from a distorted 310 helix to a linear α-helix (Rigby et al.

1997). Craig and coworkers also reported that γ-carboxylation of glutamate residues

may play an essential role for the function of conantokins where the presence of γ-

carboxyglutamate residues promotes formation of an α-helix (Craig et al. 1999).

Some non-standard residues play important roles in the affinity and toxicity of

these toxins. A structure-activity relationship study of µ-conopeptide GIIIA showed

that hydroxyl groups are essential for blocking the sodium channel, with the

replacement of HYP17 with PRO17 decreasing the activity by a factor of 5

(Wakamatsu et al. 1992).

Overall, post-translation modifications and non-standard residues are

important for the structure and function of conotoxins.
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3.3.1.5 Why comparative modeling?

GenBank (up to Jan 2006) lists 1,301 conopeptides (1,072 non-redundant sequences),

with only 64 of them having 3D structures in the PDB. The total number of

conopeptides is anticipated to exceed 50,000. Structure determination by

experimentation cannot meet the demand of so many sequences. So using

bioinformatics methods to automatically predict 3D structures for conopeptide

sequences is a reasonable solution.

Among the 1,072 conopeptide sequences, many sequences share common

disulphide bridges scaffolds but have different residues in loop regions, which

determine their specificities. So comparative modeling should be a promising tool to

predict 3-D structure for native and mutant conotoxins. Although structures from

modeling may contain errors, they can still provide us an insight to investigate

structure-activity relationships. Furthermore, the generated homology model could be

a repository of potential drug candidates.

3.3.1.6 Non-standard residues in the comparative modeling of conopeptides

When SDPMOD was first used for comparative modeling of conotoxins, non-

standard residues became a serious problem that interrupted the modeling process and

affected the model accuracy. Non-standard residues affected the comparative

modeling from several aspects:

(1) SDPMOD has difficulty in template selection due to the high percentage of

post-translational modification of residues. For example, the 8-residue-long sequence

of Contryphan-Sm (PDB code: 1DFY) contains three non-standard residues: HYP,

DTR and CY3.

(2) These non-standard residues cannot be recognized by the in-built



77

CHARMM22 forcefield (MacKerell et al. 1998) used by MODELLER. A quick-and-

dirty solution is replacing non-standard residues with the most similar standard

residues. But this will introduce inaccuracies since non-standard residues are crucial

for the structure and function of conopeptides.

To address these problems, a solution had to be developed for the comparative

modeling of conotoxins. In this study, the CHARMM22 forcefield topology and

parameter libraries for non-standard residues in conotoxins were developed and

incorporated into the library of MODELLER so that MODELLER can recognize and

make use of non-standard residues for comparative modeling of conopeptides.

3.3.2 Topology and parameter development for non-standard residues

3.3.2.1 Topology definition

Currently there are eight kinds of non-standard residues (NH2,

CGU, HYP, DTY, CY3, DTR, BTR and GTH) (see Table 9) found in conopeptides.

Among these residues, topology and parameter files were developed for six non-

standard residues (HYP, NH2, CGU, BTR, DTY, and DTR). The structures of these

six non-standard residues are shown in Figure 14. The libraries for the remaining two

residues (CY3 and GTH) were not developed for specific reasons. CY3 (2-amino-3-

mercapto-propionamide) is actually cysteine with C-terminal amidation, identical to

NH2 described earlier, and therefore, this termination does not require the

development of a library for CY3. For GTH (glycosylated threonine), it is difficult to

define the parameters due to the flexible nature of the sugar moiety.  GTH is also

rarely encountered as in the entire PDB database, there is only one entry with GTH.

The lack of specific topology and parameter files for this residue do not affect the
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modeling of conotoxins, as it can be substituted by threonine.

Figure 14 non-standard residues in conopeptides

Topologies and parameters for non-standard residues were developed based on

high-resolution structures available from PDB database. The detailed procedure is as

follows:

(1) Get the coordinates of non-standard residues from high-resolution crystal

structures and then read them into Insight II (Accelrys).

(2) Check the structure to make sure there are no error or missing atoms and

then add hydrogen atoms, as required.

(3) Select the CHARMM22 forcefield, assign the potential and charges, and

fix partial charges. (Where the CHARMM22 forcefield cannot assign charge

parameters for some atoms, BOND-INCREMENT charges were used.)

(4) Accept the assigned charges.
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(5) Write “RTF” files using Insight II CHARMM RTF writer.

(6) Manual inspection and modification of the RTF file are essential. Improper

dihedral angles should be added if necessary.

(7) If there are new CHARMM atom types, they need be added into the

CHARMM22 topology file explicitly and their atomic radii need be defined.

3.3.2.2 Parameter estimation

Parameters are derived from similar entries in the CHARMM22 forcefield and high-

resolution structures. There are several kinds of parameters that need to be defined.

(1) Bond length. The energy function for bond length is Vbond = Kb (b-b0)2.

The force constant Kb is estimated from similar entries and equilibrium bond length b0

is calculated from selected structures.

(2) Bond angle. The energy function for bond length is Vangle = Kθ (θ-θ0)2. The

force constant Kθ is estimated from similar entries and equilibrium bond angle θ0 is

calculated from selected structures.

(3) Dihedral angles. The energy function is: Vdihedral =Kφ (1+cos(nφ-δ))

Kφ is the force constant; n is the periodicity; δ is the phase. For dihedral angle, the

force constant Kφ and periodicity n are basically determined by atom types of two

middle atoms (X-A-A-X). When the torsion angle has the lowest energy, cos(nφ-δ)

should be equal to -1. So the following equation can be derived: δ= (nφ0±180). φ0 is

the equilibrium dihedral angle and can be calculated from selected structures.

(4) Improper dihedral angles. The energy function is Vimproper = Kϕ (ϕ-ϕ0)2.

The force constant Kϕ is basically determined by atom types of two outer atoms (A-X-

X-A) and estimated from similar entries. The periodicity n for improper dihedral
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angles is always equal to 0. The equilibrium improper dihedral angle ϕ0 is calculated

from selected structures.

3.3.2.3 Topology and parameter evaluation method

After new topology and parameter files for each non-standard residue were generated,

3D models were built using these library files to evaluate their correctness and

quality. Before the modeling can proceed, the newly developed topologies and

parameters need to be incorporated into the MODELLER library by the following

steps.

(1) Add new entry into restyp.lib

(2) Add new entry into model.lib

(3) Modify radii.lib and radii14.lib if necessary.

For the purpose of modeling with non-standard residues, lowercase single

characters are used to represent non-standard sequences. For example, “o” stands for

HYP, “k” for DTY, “m” for DTR and “v” for NH2. The scoring matrix is modified to

include these non-standard residues and the values of their corresponding standard

residues are used.

There are several considerations on dataset selection for the benchmarking.

(1) Only conopeptides, which have structures available in PDB, can be used to

evaluate the quality of our models.

(2) The selected conopeptide sequences should include non-standard residues,

so the effect of new modeling method with non-standard residues can be evaluated.

(3) To eliminate the effect of other factors such as gap, this dataset only

include no gap alignment.

There are totally 19 conotoxins suitable for benchmarking according to above
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criteria. Among these 19 sequences, 13 sequences carry post-translation modifications

of only NH2 (C-terminal amidation), while 6 sequences include HYP and 2 sequences

include DTR.

The modeling is carried out with and without newly developed libraries using

SDPMOD. The modeling procedure is the same, and the only difference between the

two methods is that in the new method non-standard residues are introduced while in

the traditional method only standard residues are used.

Models by both methods are compared to their experimentally determined

structures in PDB, respectively. The RMSD (by Cα) between models and their

cognate PDB structure were calculated.
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3.3.2.4 Topology and parameter benchmarking results

Table 10 Comparison of models with or without non-standard residues with template

structures

PDB ID Standard
model (Å)

Non-standard
model (Å)

RMSD
Difference

Sequence
Identity

Non-standard residues and
their positions

1A0M 0.59 0.46 0.13 75% NH2 (17)
1AKG 0.51 0.36 0.15 87% NH2 (17)

1AV3 1.50 1.55 -0.05 42% HYP (4)

1B45 0.79 0.65 0.14 75% NH2 (15)
1CNN 1.24 1.25 -0.01 80% NH2 (27)
1D7T 1.88 0.49 1.39 56% HYP (3), DTY (4), NH2 (9)
1DFY 1.81 0.98 0.83 88% HYP (3), DTR (4), NH2 (9)
1DG2 0.89 0.74 0.15 75% NH2 (16)
1GIB 1.30 1.21 0.09 81% HYP (6,7,17)
1IEN 0.91 1.00 -0.09 40% NH2 (20)
1IMI 1.34 1.28 0.06 91% NH2 (13)
1MII 1.20 0.99 0.21 43% NH2 (17)
1MVJ 1.20 1.19 0.01 80% NH2 (27)
1NOT 0.66 0.64 0.02 83% NH2 (14)
1OMN 1.29 1.28 0.01 76% NH2 (27)
1PEN 0.56 0.48 0.08 87% NH2 (17)
1QFB 2.05 1.04 1.01 88% HYP (3), DTR (4), NH2 (9)
1QMW 0.81 0.89 -0.08 83% NH2 (14)
1TCG 0.77 0.68 0.09 95% HYP (6,7,17), NH2 (23)
Average 1.12 0.91 0.22

The results in Table 10 showed that 3 models (in bold) were significantly

improved after incorporating new topologies and parameters. They are 1D7T, 1DFY

and 1QFB. It is reasonable because there are DTR (D-tryptophan) residues in 1DFY

and 1QFB sequences and DTY (D-tyrosine) in 1D7T. D-residues will change the

direction of the backbone and the use of non-standard residue templates will

significantly affect the resultant structures.

For other non-standard residues such as HYP (4-hydroxyproline), NH2 (C-

terminal amidation) models do not show any significant difference between the two
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modeling methods. The difference between HYP and PRO lies in the side chain and

NH2 is only C-terminal amidation and therefore they do not affect backbone

conformation as expected, although the structural models will be biologically more

accurate.

Figure 15 shows the superimposition of the model with non-standard residues

(1DFYnons, in green) and the standard model (1DFYstan, in red) onto its original

structure (1DFY, in blue).  Clearly the backbone orientation of the model with

traditional standard residues (1DFYstan) is significantly different from the

experimentally determined structure (1DFY), while the model with non-standard

residues (1DFYnons) is very similar to 1DFY.

Figure 15 The superimposition of standard (1DFYstan, in red) and non-standard

model (1DFYnons, in green) to the PDB structure (1DFY, in blue). The structures are

in ribbon representation and disulphide bonds in wire representation (yellow).

For other non-standard residues, there were no significant improvements in the

backbone RMSD values of the models. If the three models involving D-residues were

removed from the list, the average RMSD difference between the two methods is only

0.05 Å. This result is reasonable because the modification in residue side chains will

1DFYstan
1DFY

1DFYnons
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not significantly affect the backbone conformation.

Overall, the benchmarking results showed that the incorporation of D-residues

(such as DTR, DTY) will significantly improve the quality of models. While for those

non-standard residues (HYP and NH2) which only had difference in side chain with

standard ones, there was only little improvement in backbone of models. The new

topology and parameter libraries facilitate and improve the modeling of conotoxins.

These library files also can be incorporated into other programs using the

CHARMM22 forcefield.

Using the modified version of SDPMOD, homology models for 125

conopeptide sequences were built (Table 11) and the generated models had been

incorporated into the MOLLUSK database <http://research.i2r.a-

star.edu.sg/MOLLUSK/>.

Table 11 Statistics of homology models for conotoxin families and

their disulphide connectivities (SDFD DSF)

Conotoxin family Conotoxin
superfamily

Number of
models

SDFD disulphide family
(DSF)

α-conotoxin A 22 2.1212
αA-conotoxin A 3 3.122313
µ-conotoxin M 12 3.123123
ϖ-conotoxin C 78 3.123123
τ-conotoxin T 6 2.1212
Contryphan Others 4 N.A. (only one disulphide)
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3.4 Conclusion

Chapter 3 focuses on structural modeling of SDPs. The major results are as follows:

(1) An automated comparative modeling method specifically for SDPs,

SDPMOD, has been developed. The benchmarking results showed that

SDPMOD can reliably generate homology models for SDPs with reasonable

accuracy.

(2) A web server version of SDPMOD, with three modes of access (fully

automated, semi-automated and manual) has been implemented to provide to

the different needs of the users.

(3) CHARMM22 topology and parameter libraries for non-standard residues in

conotoxins have been developed and incorporated into the MODELLER

library, accessed by SDPMOD with validation results suggesting improved

modeling accuracy, especially for conotoxins which contain D-residues.

(4) Homology models for conotoxins which contains non-standard residues have

been successfully built with the updated version of SDPMOD which

incorporated CHARMM22 topology and parameter for non-standard residues.
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Chapter 4 Computational analysis of Pot II proteinase

inhibitor family

4.1 Introduction

Proteinase inhibitors are one of the most well studied classes of proteins within SDPs

and they widely exist in almost all known organisms and in various tissues of these

organisms. They play critical roles in organisms in various ways: regulating the

activities of endogenous proteinases and inhibiting exogenous proteinases. Proteinase

inhibitors have received intensive research interests because of their potential

applications in medicine and agriculture, e.g. designing effective inhibitors targeting

HIV (Human Immunodeficiency Virus) proteinase or constitutive expression of

inhibitors in transgenic crops to control the pests.

To better understand the important roles of proteinase inhibitors, firstly let us

have a quick look at the functions of proteinases. Proteinases are ubiquitous and they

have a cradle-to-grave relationship with proteins. They aid the maturation of the

proteins by removing the initiating Met residues and removing the signal peptides.

They also convert both exogenous proteins (food digestion) and endogenous proteins

(protein turnover) to amino acids, which are then utilized for new protein synthesis or

in other metabolic pathways. More importantly, proteinases process proteins to turn

on or off numerous cellular regulatory activities which are responsible for many

biological phenomena such as blood clotting, clot dissolution, protein hormone action,

differentiation, cell death and apoptosis (Neurath 1989). Although controlled

proteolysis is essential to life, unrestricted proteolysis is lethal. If our blood clots

uncontrollably, or our pancreas are digested by self-secreted proteinases, the
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consequences would be lethal. Along with so many important functions, the

proteolysis processes must be tightly controlled in time and place in order to be

effective. One of the most important measures developed during protein evolution is

the creation of proteinase inhibitors.

Proteinase inhibitors (PIs) can be classified into four categories according to

the classification of their targeted proteinase: serine-, cysteine-, metallo- and aspartyl-

proteinase inhibitors (Laskowski and Kato 1980). Among them, serine proteinase

inhibitors have the largest number of well characterized members because of the

dominant role of serine proteinases and their inhibitors in fundamental life processes.

Serine proteinase inhibitors from plants are reported to be major constituents

of seeds, tubers and leaves of members of the Solanaceae (e.g. potatoes, tomatoes,

eggplant, sweet peppers, chili peppers, tobacco and petunias) and Leguminosae (e.g.

legumes, pea or bean) families (5-15% of the total protein) (Richardson 1977).  These

PIs are an integral part of the constitutive and inducible defensive mechanisms that

protect plants from attacking pests (bacteria, fungi and insects) (Bowles 1990).  These

defensive mechanisms involve the systemic synthesis of serine PIs that accumulate in

distal tissue and can inhibit the digestive trypsin- and chymotrypsin-like enzymes of

insects and other related serine proteinases of plant pathogens (Johnson et al. 1989).

The inhibitory properties towards serine proteinases of these PIs have already been

exploited for the production of transgenic plants over-expressing specific PIs in an

attempt to control pests (Duan et al. 1996).

Potato type II proteinase inhibitor family (Pot II) is one of the major serine

proteinase inhibitor families which are mainly found in higher plants from the

Solanaceae family (Greenblatt et al. 1989). Pot II accumulation is always in response
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to stress, infection and wounding, and constitute an important measure for defense

against predators or diseases. Intensive research has been conducted on proteinase

inhibitors (PIs) from this family.

This family of PIs is interesting in that it exhibits domain duplication resulting

in 2-8 copies of the ancestral single domain protein, of which we have evidence only

from genome sequences. More interestingly, the structure adopted by these proteins is

a permutation of the ancestral fold, so that the structural repeat does not correspond to

the sequence repeat. The correlation between sequence and structural repeats within

this family and the evolution and molecular adaptation of Pot II genes has been

investigated through computational analysis, using the putative ancestral domain

sequence as the basic repeat unit.

4.1.1 Origin and function of Pot II PIs

Previous research suggests that there are mainly three kinds of physiological functions

for Pot II PIs:

(1) defense against predators or diseases. Members of the Pot II have been

reported to inhibit a wide spectrum of serine proteinase, such as trypsin,

chymotrypsin, subtilisin, oryzin and elastase (Pearce et al. 1982; Plunkett

et al. 1982);

(2) endogenous regulatory role. Reports on their developmental regulation and

their tissue-specific accumulation suggest they have endogenous functions

such as regulating proteolysis (Xu et al. 2001);

(3) storage proteins in tuber or seeds. For example, Potato Inhibitor II (PI-II) is

one of the major proteins in Russet Burbank potato tubers, representing

about 5% of the soluble proteins (Greenblatt et al. 1989). The
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concentrations of PIs in potato tubers are dramatically lowered during

their sprouting, which suggests that PIs may serve as storage proteins

during the development of plants (Richardson 1977).

PIs of the Potato II (Pot II) inhibitor family have been isolated from various

plants and organs: wounded tomato and tobacco leaves, green tomatoes, potato tubers,

eggplant fruits, paprika seeds and ornamental tobacco flower stigma.  Pot II PIs can

accumulate systemically in plant tissue as a result of wound, stress or pathogen

attacks. But some PIs are expressed constitutively or regulated in a developmental-

and tissue-specific manner. The systemic response to attack in the Solanaceae family

has been attributed to a complex signaling cascade that is initiated by the binding of

systemin to a cell-surface receptor and leads to the release of linolenic acid which is

then converted to 12-oxophytodienoic acid and jasmonic acid (Li et al. 2002).  The

release of jasmonic acid leads to the activation of several signaling pathways that in

turn lead to the production of more jasmonic acid, H2O2 and the synthesis of PIs

(Ryan and Moura 2002).  Within 48 hours of insect attack or wounding, PIs can

accumulate to levels of 2% or more of the total soluble protein in the leaves of tomato

and potato plants and are thought to have adverse effects on the digestive physiology

of insects (Lee et al. 1986). The wide distribution and inducible expression of Pot II

PIs in plants strongly suggest the fundamental importance of these proteins to the pest

defense strategies of many commercially important crops. Table 12 below

summarizes the distribution of Pot II PIs on species, tissues and expression patterns.
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Table 12 The source and expression profile of Pot II PIs

Species Tissue Expression profile
Seeds (Antcheva et al. 1996) Constitutive expression
Pericarp (unpublished, Swiss-
Prot entry name: IP22_CAPAN)

Development
Capsicum annuum
(paprika, bell pepper)

Flower, green fruits (rich);
leaves, red fruits (little); root,
stems (absent) (Shin et al. 2001)

TMV-P0;
SA, MeJA, ethephon;
Wound

Nicotiana alata
(persian tobacco,
ornamental tobacco)

Stigmas of flower(Nielsen et al.
1995; Lee et al. 1999; Miller et
al. 2000)

Development

Nicotiana attenuate
(coyote tobacco)

Leaves (Hui et al. 2003) Wound

Young leaves and floral organs
(Choi et al. 2000)

DevelopmentNicotiana glutinosa
(tobacco)

Mature leaves(Choi et al. 2000) Wound, pathogen

Leaves (Pearce et al. 1993; Hara
et al. 2000)

Wound (not by systemin)Nicotiana tabacum
(common tobacco)

Flower (Pearce et al. 1993) Development
Leaves (Graham et al. 1985)
aerial tissues (Gadea et al.
1996),

Seedling root (Taylor et al.
1993)

Wound (systemin) (Graham
et al. 1985),
viroid infection and ethephon
treatment (Gadea et al.
1996),
auxin (Taylor et al. 1993)

Green fruits (Pearce et al. 1988),
shoot apex and developing
flower (Brandstadter et al. 1996)

Development

Lycopersicon
esculentum
(tomato)

Roots of healthy plants(Gadea et
al. 1996)

Constitutive expression
(Gadea et al. 1996)

Solanum americanum
(black nightshade)

Phloem of stems, roots and
leaves, flowers (Xu et al. 2001)

Development

Solanum melongena
(eggplant)

Fruits(Richardson 1979) Constitutive expression

Solanum phureja leaves (unpublished, GenBank
Accession No.: AAO88244)

Wound-induced

Root, leaves (Dammann et al.
1997)

Systemin
Wound->Abscisic acid ->
jasmonic acid (Dammann et
al. 1997)

Solanum tuberosum
(potato)

Tuber (Bryant et al. 1976) Constitutive expression
(Bryant et al. 1976)
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4.1.2 Domain repeats in Pot II

Interesting phenomena in Pot II family (such as tandem duplication, domain swapping

and fold circular permutation (Scanlon et al. 1999)) make this family an excellent

example to study gene family evolution and protein folding.  Members within this

family have been identified with different numbers of tandem sequence repeat units

(RUs), such as two (Keil et al. 1986), three (Balandin et al. 1995), four (Miller et al.

2000), six (Atkinson et al. 1993), seven (GenBank Accession No.: AAO85558) and

eight (Choi et al. 2000) RUs. Each RU can be characterized as a ~50-residue-long 8-

cysteine polypeptide, which includes a reactive site targeting serine proteinases. The

evolution of several members of this multi-domain family, at the gene duplication

level, has been recently reported (as the Pin2 family (Barta et al. 2002)). However,

the complex correspondence between sequence repeats and their 3D structure has not

been well investigated.

Several 3D structures of the Pot II family are known, belonging to the SCOP

(Lo Conte et al. 2000) fold family of plant proteinase inhibitors. Pot II family RUs

adopts a variety of structural repeats, by circular permutation of the same fold

(Greenblatt et al. 1989; Lee et al. 1999; Scanlon et al. 1999). Structures exhibited by

naturally occurring proteins are single or double chain permutated domains composed

of N- and C-termini segments from sequence repeats. The engineered putative

ancestral domain protein alone has a fold corresponding to the sequence repeat

(Scanlon et al. 1999).

The complex correlation between sequence and structural repeats within this

family has been investigated using sequence, structural and phylogenetic analyses,

with the putative ancestral domain sequence as the basic repeat unit.  Systematic



92

analysis of Pot II family using bioinformatic approaches has revealed many

interesting findings.

(1) The sequence repeats cluster into distinct phylogenetic groups depending

on the repeat number and the species. The conservation patterns between

repeat units in available genes suggest variation of duplication history and

mechanism in different species.

(2) The permutated domains appear more stable than original repeat domain,

from available structural information. Therefore, a multiple-repeat sequence

(up to eight in Nicotiana) is likely to adopt the permuted fold from contiguous

sequence segments, with the N- and C-termini forming a single non-

contiguous structural domain, linking the bracelet of tandem repeats.

(3) Two 3-repeat sequences from Capsicum annuum have evolved to tailor the

sequence repeats to correspond with the structural repeats thus eliminating the

bracelet link. The repeat unit for this group is a circular permutation of the

ancestral domain, making this group the late entrant to the Pot II family.

(4) The analysis of nonsynonymous/synonymous substitution rate ratio (ω =

dN/dS) in Pot II domain revealed heterogeneous selective pressures among

amino acid sites: the reactive site is under position selection (providing

different specificity to target varieties of proteinases) while the cysteine

scaffold is under purifying selection (essential for maintaining the fold).

(5) For multi-RU Pot II genes from Nicotiana genus, the proteolytic

processing site is under positive selection to achieve higher efficiency for

cleavage.
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This chapter provides comprehensive analysis and characterization of the Pot

II family, and aims to enlighten our understanding of the strategies (gene and domain

duplication, structural circular permutation and molecular adaptation) of Solanaceae

plants for defense against pest attacks through the evolution of Pot II genes.

4.2 Materials and Methods

4.2.1 Collection of Pot II Family Members: structures, gene and protein

sequences

To identify 3D structures in Pot II family, PSI-BLAST (Altschul et al. 1997) was

used to search against PDB (Berman et al. 2000) database with the Potato Inhibitor II

sequence (PI-II, SwissProt Accession No.: P01080; Keil et al. 1986). The default

parameters were used with four iterations (to convergence) and manual selection of

homologues. There were seven significant hits, 4SGBI, 1FYB, 1CE3, 1TIH, 1QH2,

1OYV and 1PJU. For NMR structures where the PDB entry comprises multiple

conformers, NMRCLUST (Kelley et al. 1996) has been used to choose the

representative structure (details available in Chapter 3).

The gene structure of Pot II family will provide clues about its evolution.

DNA sequences of Pot II genes were retrieved through a search of the non-redundant

GenBank database (Benson et al. 2006) with TBLASTN (Altschul et al. 1990) using

PI-II. Only complete DNA sequences were retrieved. TBLASTN searches were also

performed against Arabidopsis thaliana and Oryza sativa genomes available from

TIGR (The Institute for Genomic Research, http://www.tigr.org/) and single domain

Pot II genes were located. The final dataset for Pot II genes was derived from the

combination of the results of all these searches followed by redundancy removal and

manual checking. The GenBank accession numbers of 13 significant hits are
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AB110700, AK105387, AY007240, AY129402, L25128, M15186, NM_105864,

U45450, X04118, X78275, Z12753, Z13992 and Z29537.

PSI-BLAST was used to search against NCBI non-redundant protein database

to retrieve protein sequences of the Pot II family while TBLASTN facilitated

searching the NCBI dbEST database (Boguski et al. 1993). The search results were

combined with the collection of Pfam (Bateman et al. 2002) entry Prot_inhib_II,

which contains 94 Pfam domains (as of December 2005). Partial sequences and

redundancies were removed. The final sequence dataset includes 40 protein

sequences. The IDs (Swiss-Prot names, accession numbers and GenBank accession

numbers are used whenever possible.) for these sequences were listed as follows:

AAF14181, AAF18450, AAF18451, AAF25496, AAO85558, AAL36458,

AAO88244, AAR37362, AAX84035, AAX84036, AC096689, AI724716,

AY105802, AW616253, BE033392, BE033653, BE033692, BE942349, BE943304,

BI421162, BI434643, BI436259, CAA27409, CAA27730, CN847229, CO516657,

IP22_CAPAN, IP27_SOLTU, IP2Y_SOLTU, IP25_SOLTU, IP2K_SOLTU,

IP2T_SOLTU, IP2X_SOLTU, IP21_LYCES, IP23_LYCES, IP22_LYCES,

IP21_TOBAC, JQ2153, NP_177351 and X99095.

4.2.2 Protein Structure Analysis

The alignments of 3D structures were performed using MULTI-GAFIT (May and

Johnson 1995) and MALIGN3D algorithm in the MODELLER package (Sali and

Blundell 1993). The structures were displayed using RASMOL (Sayle and Milner-

White 1995) and Swiss PDB Viewer (Guex and Peitsch 1997). Structural images were

generated using YASARA (available from http://www.yasara.org). MODELLER

(Sali and Blundell 1993) was used to build homology models for PI-II. The different
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Pot II topologies were compared to evaluate their structural qualities by using several

structure validation methods, WHATIF Packing Quality Control (Vriend and Sander

1993), ProQ (Cristobal et al. 2001) and ERRAT (Colovos and Yeates 1993).

4.2.3 Gene Structure Analysis

The analysis of Pot II family gene structure (exon/inton boundary, organization and

splicing phase) were facilitated by Xpro (Gopalan et al. 2004) and EMBOSS (Rice et

al. 2000). The Arabidopsis thaliana and Oryza sativa genomes were downloaded

from TIGR. The FASTA format genomic sequences were formatted and queried

using NCBI standalone BLAST package (Altschul et al. 1990).

4.2.4 Protein Sequence Analysis

The sequences of Pot II proteins were extracted and then split into single Repeat Units

(RUs) according to the putative ancestral domain sequence from 1CE3. The multiple

sequence alignments were carried out with CLUSTAL_X (Thompson et al. 1997) ,

followed by manual inspection and adjustment, to maximize the alignment of

identical and similar residues and minimize the number of gaps. The consensus

sequences were represented using Sequence Logos (Schneider and Stephens 1990).

The degree of conservation of each amino acid was assessed by the maximum-

likelihood method (Armon et al. 2001) and mapped onto the surface of the putative

ancestral 3D structure (1CE3) using ConSurf (Glaser et al. 2003).

4.2.5 Phylogenetic Tree Building

Nucleotide sequences were retrieved from NCBI Entrez server and split into single

RUs corresponding to putative ancestral domain sequence from 1CE3. The alignment

of nucleotide sequences was facilitated by protal2dna server
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(http://bioweb.pasteur.fr/seqanal/interfaces/protal2dna.html), based on the aligned

amino acid sequences. The phylogeny was estimated using Neighbor-Joining method

(Saitou and Nei 1987a) and bootstrapped for 1000 replicates. The trees were

displayed using TreeView (Page 1996).

4.2.6 Analyses of Selective Pressure

To examine the selective pressure acting on genes from Pot II family, only sequences

from Solanaceae plants were used and the single-RU Pot II genes were excluded from

the dataset since they are not well annotated and their inhibition functions are

uncertain. The dataset included 83 RUs sequences from multi-RU Pot II genes after

removing 12 single-RU genes. All the analyses were performed using the  CODEML

module of the PAML 3.15 package (Yang 1997).

4.2.6.1 Site-based Analysis

Codon-substitution Models of the variable ω  (dN/dS, nonsynonymous and

synonymous substitution ratio) among sites were used to test for the existence of

amino acid sites under positive selection (with ω >1) and to identify these sites.

Several models (M0, M1, M2, M3, M7 and M8) were used for this analysis, as

recommended by Yang et al. (Yang et al. 2000a; Wong et al. 2004)  and implemented

in the CODEML module of the PAML 3.15 package (Yang 1997). For this analysis,

the tree topology generated by the previous phylogenetic (Section 4.2.6) analysis is

used, with the exclusion of the single-RU Pot II genes since these are not well

annotated and their function and proteinase inhibitory activities are putative.

Among the model used, Model M0 (one ratio) assumes an invariable ω for all

sites. Model M1 (NearlyNeutral) assumes two classes of sites in the protein: the
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conserved sites at which 0 < ω < 1 and the neutral sites at which ω = 1. In addition to

the classes mentioned for M1, the M2 Model (PositiveSelection) adds a third class of

sites with ω as a free parameter, thus allowing for sites with ω > 1. Model M3

(discrete) uses a general discrete distribution with three site classes, with proportions

(p0, p1, and p2) and the ω ratios (ω0, ω1, and ω2) estimated from the data. Model M7

(β) assumes a β distribution between 0 and 1 depending on the parameters p and q.

Finally, Model M8 (β and ω) adds an extra class of sites to the β (M7) model, with ω

values and proportions estimated from the data. Among the above models, only

Models M2, M3, and M8 can detect sites under positive selection.

From these models, Likelihood Ratio Test (LRT) can be done to test the

positive selection hypothesis by comparing the simpler null hypothesis (M0, M1 and

M7) with their more complex alternative models (M3, M2 and M8). All analyses were

checked for convergence by performing the analysis with different starting ω values

(0.3, 1 and 1.7). When the estimation of the parameters was finished, both naive

empirical Bayes (NEB) (Nielsen and Yang 1998; Yang et al. 2000b) and Bayes

empirical Bayes (BEB) (Yang et al. 2005) approaches were used to calculate the

posterior probability for site classes. All statistics analyses were performed using the

CODEML module in the PAML package (Yang 1997).

4.2.6.2 Branch-based Analysis

To test whether there is significant difference in selective pressure among different

clades, branch models have been used, which allow for variable ω ratios among

branches in the tree (Yang 1998). The null hypothesis model assumed the same ω for

all lineages in the tree. The alternative hypothesis model assigns different ω ratios for

different clades in the tree (discussed in Section 4.3.4). An LRT has been carried out
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to compare the null and the alternative hypothesis models.

4.2.6.3 Clade-wise Site-based Analyses

Site models assume the same ω ratios for all branches while branch models assume no

variation among amino site sites. These site and branch models might not detect

lineage-specific changes in selective pressure at specific amino acid sites. The branch-

site model (Yang and Nielsen 2002; Zhang et al. 2005) allows the ω ratio to vary both

among lineage and among sites but the current implementation of branch-site model

only supports two branch types and cannot be used to detect different positive

selection sites among different clades. Clade-wise site-based analyses in selective

pressure have been conducted on Clade 3 (1st RUs of 2-RU or 3-RU PIs), Clade 4 (2nd

RUs of 2-RU or 3-RU PIs) and Clade 7 (Similar RUs of multi-RU PIs from Nicotiana

genus). Other clades cannot be analyzed separately since they contain very few

sequences.

4.2.7 Codon Usage Analysis

The codon usage analyses were carried out to check whether there is codon bias in the

Pot II gene family for domain duplication. The single-RU Pot II genes were removed

from the dataset. Codon usage tables of Pot II genes were calculated using the CUSP

module of EMBOSS package (Rice et al. 2000). Codon usage tables for individual

species were retrieved from the Codon Usage Database (Nakamura et al. 2000),

which is available from http://www.kazusa.or.jp/codon. Codon usage tables were

compared with the Graphical Codon Usage Analyser (GCUA, http://gcua.schoedl.de/)

(Fuhrmann et al. 2004).
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4.3 Results and Discussion

4.3.1 Protein 3D Structure Analysis of the Pot II Family

PSI-BLAST identified seven structures for the Pot II family. These are 4SGB

(Greenblatt et al. 1989), 1CE3 (Scanlon et al. 1999), 1FYB (Schirra et al. 2001),

1QH2 (Lee et al. 1999), 1TIH (Nielsen et al. 1995), 1OYV (Barrette-Ng et al.

2003b), and 1PJU (Barrette-Ng et al. 2003a). Among them, 1TIH, 1QH2 and 1FYB

are one or two domains (T1, C2 and C1-T1 domains, respectively) of the Nicotiana

alata  Pot II PI (Na-PI) (Atkinson et al. 1993) a 6-domain precursor protein. The

engineered single domain proteinase inhibitor, 1CE3, is the putative ancestral protein

of Na-PI, which corresponds to the single domain RU putative sequences identified

by genome searching (Section 4.2.1). The representative structures for 1CE3, 1FYB

and 1TIH were selected by NMRCLUST as models 9, 4 and 5, respectively. These

monomers are named 1CE39, 1FYB4 and 1TIH5. The structure of PCI-1, from the I

chain of 4SGB, is referred to as 4SGBI. 1OYV is a 2:1 complex of Subtilisin

Carlsberg and the two-domain tomato inhibitor II (TI-II), while 1PJU is actually the

unbound form of TI-II. All these structures belong to the SCOP (Lo Conte et al. 2000)

family of plant proteinase inhibitors. Among these structures, only 1FYB and 1PJU

are two-domain PIs while the rest have a single domain. All these structures have

little secondary structure and are restrained principally by four disulphide bridges in

each domain, and the main secondary structure in their folds is an anti-parallel 3-

stranded β-sheet on the face opposite to the reactive site loop.
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Figure 16 Multiple sequence alignment of domains of all structures in the Pot II

family. The arrow marks out the positions of the reactive sites. Pairs of cysteines

forming disulphide bridges are linked by lines. Abbreviations used: 1FYBC,

chymotrypsin-specific domain of 1FYB (Domain I); 1FYBT, trypsin-specific domain

of 1FYB (Domain II); 1PJU2, Domain II of 1PJU; 1PJU1N, N-terminal segment of

1PJU (Domain I); 1PJU2C, N-terminal segment of 1PJU (Domain I); 1QH2A, chain

A of 1QH2; 1QH2B, chain B of 1QH2.

The sequence alignment of domains of the Pot II family structures (Figure 16)

suggests that the sequences of all domains can mainly be divided into two parts,

named here as the H- and L-fragments (for heavy and light fragments) connected by

Linker-1 or Linker-2. In most structures, the L-fragment forms the reactive loop and

one strand of the β-sheet, while the H-fragment forms a loop and two strands.

From Figure 16, it is clear that all the structures share the same disulphide

connectivity although the combination of the H- and L-fragments is different. These

domains can be divided into three types based on their sequences and structures: (1)

H-L type (H- and L-fragment joined by Linker-1): with structural examples, 4SGBI,
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1TIH, 1FYBC, 1FYBT and 1PJU2; (2) L-H type (L- and H-fragment linked by

Linker-2): the engineered ancestral protein 1CE3; (3) H+L type (No Linker-1 or

Linker-2 between the two fragments): 1QH2 and 1PJU1. The three structures shown

in Figure 17 are actually circular permutations of the same fold.  All three topologies

have the β-sheet and the functional proteinase inhibitory site conserved, although the

intra-chain connectivities are different. The H+L structure (1PJU1) can be considered

the basic fold, with Linker-1 between C2 and N1 in 4SGBI and Linker-2 between C1

and N2 in 1CE3. The existence of the H+L structure shows the viability of a two-

chain protease inhibitor in this fold family.

Figure 17 Structural comparison of three types of Pot II PI topologies: H-L, L-H and H+L.

The structures are in ribbon representation, with the N- and C-termini marked and the reactive

sites depicted in ball-and-stick mode. The β-strands are shown in red, with the linker regions

marked.

Based on the structure analysis of the plant proteinase inhibitor family, it is

obvious that the same fold is possibly formed by different topologies by circular

permutation of sequence information. In a protein with multiple repeated regions,

such as PI-II (with two domains) and the ornamental tobacco (Nicotiana alanta) Na-



102

PI-II (with six domains), theoretically there are two possible domain organizations:

(1) tandem repeat domain organization. Each domain is equivalent to the sequence

repeat and adopts L-H topology; (2) circularly permuted domain organization. The

domains do not correspond to the sequence repeats. The domain formed by N- and C-

terminal sequence segments adopts H+L topology while the other internal domains

adopt the H-L topology.

So the problem is: given a multi-RU Pot II protein, which domain organization

will it naturally prefer?  Based on the observation of the current data set, all

experimentally determined multi-domain structures have circularly permuted two-

domain organization (an H+L domain and an H-L domain). And most single-domain

Pot II PIs (often derived from processing of multi-domain PIs) adopt the H-L type

topology which also suggests that the multi-domain PIs have circularly permuted

domain organization before they were processed. The only exception is 1CE3, which

has only one RU in its primary sequence and thus can only adopt the L-H topology

alone, and moreover it is the product of an engineered gene (Scanlon et al. 1999). The

abundance of the H-L topology suggests it is more favorable in nature than the L-H

topology.

So the next question is: does the H-L topology have an advantage (e.g. greater

stability or better packing) over the L-H topology? To evaluate the structural quality

of different topologies and domain organization, several structure validation methods

(WHATIF packing quality control (Vriend and Sander 1993), ERRAT (Colovos and

Yeates 1993) and ProQ (Cristobal et al. 2001)) were used, to compare representative

structures of each type. In the Pot II family, there is only one 2-domain structure

available namely Tomato Proteinase Inhibitor II, (TI-II, PDB ID: 1PJU), which
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adopts a circularly permuted 2-domain domain organization. To compare the structure

quality between two types of domain organizations, 3D models were built for PI-II of

Type 1 (tandem 2-domain) and Type 2 (circularly permuted 2-domain) for the

purpose of further analysis, named PI2t1 (Type 1, based on template 1CE3) and PI2t2

(Type 2, based on template 1PJU), respectively. The comparison results are

summarized in Table 13.

Table 13 Quality comparison of representative structures using different structure

validation methods.

WHATIF quality control ProQStructure Domain
organization

Domain
topology Coarse Fine

ERRAT
Score LGscore MaxSub

1PJU Permuted 2D H-L, H+L -1.59 -0.95 92.16 1.69 0.09
PI2t1 Tandem 2D L-H, L-H -2.11 -4.60 57.28 1.42 0.07
PI2t2 Permuted 2D H-L, H+L -1.54 -2.36 86.41 2.02 0.13
1PJU2 1D H-L -1.55 -0.43 88.10 0.92 0.08
1CE3 1D L-H -1.93 -3.43 47.86 0.09 -0.09
1QH2 1D H+L -2.20 -2.73 NA 0.20 -0.10

The results (shown in Table 13) of WHATIF packing quality control showed

that the coarse scores (-1.59 and -1.54) for both of permuted 2D structures (1PJU and

PI2t2) are better than the score (-2.11) of the tandem 2D structure PI2t1. According to

WHATIF documentation, a molecule is certain to be incorrectly folded if the average

coarse packing quality score is below -3.0, while poorly refined molecules, very well

energy minimized mis-threaded molecules and low homology models give values

between -2.0 and -3.0. The fine packing quality control suggests that permuted

structures and H-L type structures have better packing quality than tandem repeat and

L-H type structures, based on the fine packing quality control criteria. ERRAT and

ProQ also recommend permuted structures and H-L type topologies have better

structure qualities with fewer packing errors. Overall, the structure quality
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comparison of representative structures using different structure validation methods

suggested that H-L type topology is the most favorable topology and that multi-

domain Pot II proteins tend to fold as H-L topology domains.

4.3.2 The Gene Structure of Pot II Family

Gene structures can potentially provide clues for the evolution of Pot II family. To

this end, the gene structures of the Pot II PIs were investigated. Firstly the exon/intron

organization information for all available Pot II family members was collected.

TBLASTN searches were carried out with PI-II against the GenBank non-redundant

database as well as the Oryza sativa genome and the assembled Arabidopsis thaliana

genome from TIGR. The searches retrieved DNA/RNA records which include Pot II

repeat units. All the results were combined, and only records which have complete

coding sequence (CDS) information were retained. All the 30 significant hits come

from plants. More specifically, most of them were from Solanaceous family species

except one entry each from Arabidopsis thaliana, Oryza sativa and Zea mays. Only

13 entries from the 30 significant hits have intron information available. Among these

13 records, six are from Solanum tuberosum, four from Lycopersicon esculentum and

one each from Nicotiana tabacum, Oryza sativa and Arabidopsis thaliana.

The locus and distribution of Pot II gene in the A. thaliana genome can be

investigated using the assembled whole genome sequence for A. thaliana, available

from TIGR Arabidopsis thaliana Database (http://www.tigr.org/tdb/e2k1/ath1), using

TBLASTN searches. The results show that there is only one copy of the Pot II gene

(labeled here as AT-PI) in the entire A. thaliana genome, with one RU. The locus for

this gene is 26,718,284-26,718,630 of chromosome 1 and it was composed of two

exons (26,718,284-26,718,326, 26,718,435-26,718,630) and a 108-bp intron
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(26,718,327-26,718,434).

The putative Pot II gene in Oryza sativa (OS-PI) is from whole genome

shotgun sequence (GenBank Accession No.: AAAA01000128) (Yu et al. 2002). The

locus for single-domain OS-PI is 15,645-15,297 (on the reverse strand) with two

exons (15,645-15,600, 15,496-15,294) and a 103-bp intron (15,599-15,497). As with

A. thaliana, rice has a single copy of the 1-RU Pot II gene.

The exon and intron information for all records with available intron

information were collected and their gene structures were investigated with the

ass is tance of  the  Xpro database ( G o p a l a n  et al. 2004)

(http://origin.bic.nus.edu.sg/xpro/). Interestingly, all the records had the same gene

structure including the putative Pot II genes from A. thaliana and Oryza sativa.

(1) All the records have two exons. The first exon encodes a part of the signal

peptide (12-17 residues). The second exon encodes the remaining part of the signal

peptide (7-12 residues) and the mature polypeptide. There is no intron between the

RUs in the genes of multi-RU.

(2) The splice phases for all records are conserved as phase 1. The last

nucleotide of the exon 1 and the first two nucleotides of exon 2 always encode a Gly

residue.

(3) The splicing motif is also conserved and found to be GT…AG.

Overall, the conservation of exon/intron organization, splice phase, splice

motif and Gly residues all confirm the homologous relationship between the identified

Pot II family members. The same gene structure features are also found in AT-PI and

OS-PI, which are strongly indicative of these two are also members of the Pot II

family. Moreover, it is found that in all the Pot II family members lacking intron
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information, there is a conserved Gly in a similar location in their signal peptides.

These records came from a range of species of the Solanaceae family, such as

Solanum americanum, Solanum nigrum, Nicotiana glutinosa, Nicotiana alata and

Capsicum annuum.

Both AT-PI and OS-PI had only one L-H type RU. Although more than ten

single-domain PIs have been reported, none of them was found to be the direct

translation product of a single-RU gene. On the contrary, most of them are identical to

a part of multiple-domain PI precursors, indicating that these single-domain PIs are

proteolytic products of multiple-domain PIs. Considering the range of multiple-

domain PIs found in Solanaceae, gene duplication mechanism has been suggested to

play an important role in the evolution of the Pot II family members, with the

ancestral gene having only one RU (Scanlon et al. 1999). The characteristics of AT-PI

and OS-PI strongly support this hypothesis.

Generally, the existence of introns between exons are regarded as facilitators

of domain duplication events, since without introns there would be only a few sites in

the original gene at which a recombination could duplicate the domain (Alberts et al.

2002). The mechanism for tandem domain duplication in Pot II family, however,

remains unclear. Although the multi-RU proteins can be regarded as a result of a

series of unequal crossovers (UECOs) (Barta et al. 2002), it is not sufficient to

explain how the domain duplication has occurred accurately without the assistance of

introns. For example, in the animal Kazal family, which shares the same SCOP

superfamily as the Pot II PIs, there is an intron between each inter-repeat region (Scott

et al. 1987). With the present dataset, there is very little information on gene

structures to enable us to arrive at a hypothesis on the evolution of multi-RU Pot II
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members. Further investigation of the duplication mechanism requires the availability

of more sequenced plant genomes.

4.3.3 Protein Sequence Analysis

The protein sequences of all Pot II family members were collected and putative Pot II

PIs from the NCBI non-redundant protein database and dbEST database. After

removing duplicates, 40 non-redundant protein sequences remained, with 95 RUs.

The RUs were named according to the following convention: Total_number_repeats-

Accession-Species-RU_number. For example, PI3-IP22_LYCES-LE-R1 represents

the first repeat unit (R1) of the 3-RU (PI3) protein, IP22_LYCES (Swiss-Prot names,

accession numbers and GenBank accession numbers are used whenever possible.)

from Lycopersicon esculentum (LE). (Abbreviations for other species are: AT,

Arabidopsis thaliana; CA, Capsicum annuum; LE, Lycopersicon esculentum; LH,

Lycopersicon hirsutum; MC, Mesembryanthemum crystallinum; MT, Medicago

truncatula; NA, Nicotiana alata; NE, Nicotiana attenuate; NG, Nicotiana glutinosa;

NT, Nicotiana tabacum; OS, Oryza sativa; SA, Solanum americanum; SH, Sorghum

halepense; SM, Solanum melongena; SN, Solanum nigrum; SP, Solanum phureja;

ST, Solanum tuberosum; ZM, Zea mays).

The Multiple sequence alignment of 95 Pot II RUs are shown in Figure 18.

The eight cysteines are fully conserved in all the 95 RUs.
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Figure 18 Multiple sequence alignment of 95 Pot II RUs. Full conserved residues are

L-fragment H-fragmentLinker-2 Linker-1
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marked with “*” and highly conserved residues by “.”  The reactive site was marked

by arrows.

Sequence Logo representation of the consensus sequence of the 95 RUs from

the entire Pot II family was shown in Figure 19, with the eight Cys residues fully

conserved. Besides these, other residues that are highly conserved are two Gly

residues and a Pro residue (marked by arrows in Figure 19), probably having

important roles in stabilizing the 3D structure of the protein.

The degree of conservation of the amino acid sites of Pot II RUs were

estimated by a Maximum Likelihood method (Armon et al. 2001) and mapped to a

reference 3D structure (1CE3) to identify functionally important regions by the

program ConSurf (Glaser et al. 2003). The result was shown in Figure 20 below.
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Figure 19 Sequence Logo representation of the consensus sequence of the 95 RUs from the

entire Pot II family. The highly conserved residues besides the eight cysteines were marked

by arrows.

Figure 20 Residue conservation analysis for the Pot II family RUs from ConSurf,
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mapped onto the structure, 1CE3 (residues K2-C50). LHS and RHS are different

views of the same structure, rotated by 180°, in (A) ribbon and (B) CPK

representations. Residues are shaded from cyan (highly variable) through white

(moderate conservation) to purple (highly conserved).

Figure 20 show that distinct regions in the RUs of Pot II PIs have very different

conservation degrees. Besides the eight fully conserved cysteines as structural

scaffold in the core region, a few highly conserved residues are also important for

maintaining the fold, such as Pro-18, Gly-38 and Gly-46 (numbering according to

1CE3). The detailed analysis reveals that they belong to three β-turns, respectively.

For example, the i+3 position of a type I β-turn is favored by a Gly residue, which is

Gly-46, in 1CE3.  Its φ and ψ angles (80.3° and 63.7°, respectively) falls into the

region that is not favored by other residues, and makes it hard to be replaced by other

residues without distorting the fold. These 11 residues including the eight cysteines,

are structurally important residues. Unlike most globular proteins, the reactive loop in

this domain is highly variable. The variability of the reactive loop may allow the

inhibitor to target a variety of different proteinases from invading organisms

efficiently. The two linker regions between the H- and the L-fragments (Figure 16),

are also hypervariable which suggests that they are less critical for the functionality of

the Pot II domain. 1CE3 has only linker region 2 (Linker-2, shown in Figure 20) and

does not have the linker region 1, which is present in 4SGBI.

4.3.4 Phylogenetic Analysis of Pot II Family

To investigate the evolution of Pot II family genes, the phylogenetic tree was

constructed using the Neighbor-Joining method (Saitou and Nei 1987b). The taxa in

the tree can be clustered into several clades, by repeat number and species. All single-
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RU PIs cluster into one group, and they are widely distributed in non-solanaceous

plants. They are more distantly related to other members of the Pot II family and are

more likely the ancestral single domain Pot II proteins. With only one RU, the

sequence and the structural units are identical, with the L-H topology of 1CE3. All

these single-domain PIs were defined as outgroup and the tree was rerooted.
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Figure 21 Phylogenetic tree of Pot II PIs repeat units. PIs from different species were

colored into different colors. Green, tomato; dark blue, potato; red, paprika; orange,

Nicotiana genus; blue, Solanum genus (except potato and tomato); black, non-

solanaceous plants.



114

Figure 22 Clade-wise Sequence Logo representation of the consensus sequences for

each clades. The arrows make out the full conserved residues except the cysteine

residues.
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Figure 21 shows the inferred phylogenetic tree of 95 Pot II RUs. All RUs are

clustered into clades, according to repeat number, species or total RU number. This

clustering of RUs within each clade is strongly supported by the high bootstrap

proportions (BP) where the relative positions between clades is tentative because their

BP values are low. Clade 1 contains all (12 taxa) single-RU Pot II PIs, which exist in

a wide range of species and are more likely the ancient genes in Pot II family. The

Sequence Logo representation of the consensus sequences (Figure 22) showed the

single-RU PIs are quite diverse. The functionality or inhibitor activity of these genes

is unknown because of the lack of experimental information. Clade 2 (5 taxa)

comprises the third RUs of 3-RU PIs while Clade 3 (17 taxa) and 4 (17 taxa) consist

of the first and second RUs of 2-RU and 3-RU PIs, respectively. Most of RUs in

Clade 2, 3 and 4 are from Solanum genus. Clade 5 includes 8 taxa from paprika, and

the repeat unit sequences in this clade are H-L type, which is different with RUs from

all other members of Pot II family. Clade 6 (5 taxa) contains one 2-RU and one 3-RU

PIs from Solanum genus. Clade 7 (31 taxa) includes 4-RU, 6-RU, 7-RU and 8-RU PIs

from Nicotiana genus.

There are mainly three features observed in the conservation patterns (Figure

21):

(1) RUs with the same repeat numbers are most similar. The 2-RU and 3-RU

PIs from the Solanum genus (Clade 2, 3 and 4) have 17 sequences, from 7

species with total 39 RUs, and are the largest group in this family. Here, the

first RU clusters into one group as do the second RU and the third RU. This

suggests the RU tandem duplication events happened before the speciation,

although this level of sequence similarity cannot be detected at the DNA
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sequence level between different repeats.

(2) Clade 5, 6, 7 contain repeats that are striking similar to each other within

the same genes. The similarity is even clearly detectable at the DNA level.

Such pattern cannot be explained by purifying selection since the domain

duplications usually loose the functional constraints and allow more

mutations. The remarkable similarity suggests the existence of concerted

evolution which usually can be resulted by unequal crossing over and gene

conversion (Dover 1982; Schlotterer and Tautz 1994; Santoyo and Romero

2005).

(3) In Clade 5, RUs from paprika is very different to other members of the

Solanacae species. Unlike all the other groups, the RUs of the Pot II inhibitor

from Capsicum annuum are of the H-L type. The sequence repeat is thus

identical to the structural repeat observed in potato and tomato and in

Nicotiana (H-L type in Figure 16) and has no N- and C-terminal sequence

segments, which form the “bracelet” link domain in other multi-RU PIs (H+L

type in Figure 16). As each domain adopts the H-L domain topology,

multiple-domain PIs from Capsicum annuum are likely to adopt tandem

structural domains with a “beads-on-a-string” domain organization, which is

different from all other multiple-domain PIs in Pot II family. Strong sequence

similarity exists in this cluster at both protein and nucleotide sequence levels.

4.3.5 Analysis of Selective Pressure

4.3.5.1 Site-based Analysis of Selective Pressure

Codon substitution models of were used to analyze Pot II genes to identify amino acid
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sites under diversifying selection. The models used the nonsynonymous/synonymous

substitution rate ratio (ω = dN/dS) as an indicator of selection pressure and allowed the

ratio to vary among sites. The ω ratio of a site <1 indicates that the nonsynonymous

mutations at this site are deleterious and the site is under purifying selection while ω

>1 suggests that the nonsynonymous mutations at this site are beneficial and the site

should be under positive selection.

The results of site-based analysis of Pot II genes were summarized in Table 14

and Table 15. p is the number of parameters in each model and l is the Likelihood

values estimated under each model.

Table 14 Likelihood values and parameter estimates for Pot II genes

Models p l kappa dN/dS Estimates of parameters Positive Selected
Site

M0 (one-ratio) 1 -3281.13 1.706 0.262 ω=0.262 None
M1
(NearlyNeutral)

2 -3219.57 1.986 0.551 p0=0.513, ω0=0.126
p1=0.487, ω1=1.000

Not Allowed

M2
(PostiveSelection)

4 -3201.55 2.045 0.714 p0=0.499,ω0=0.128
p1=0.480, ω1=1.000
p2=0.021, ω2=8.001

Site 5

M3 (discrete) 5 -3163.57 1.762 0.372 p0=0.363, ω0=0.041
p1=0.616, ω1=0.420
p2=0.021, ω2=4.621

Site 5

M7 (β) 2 -3169.60 1.745 0.323 p=0.525, q=  1.095 Not Allowed
M8 (β and ω) 4 -3156.75 1.791 0.387 p0=0.979, (p1=0.021)

p=0.599, q=1.450, w=4.791
Site 5

Table 15 Likelihood Ratio Test Statistics (2Δl)

Comparison 2Δl d.f. χ2
1% p value

M0 (one-ratio) vs. M3 (discrete) 2×[-3163.57–(-3281.13)]= 235.12 4 13.28 <0.0001
M1 (NearlyNeutral) vs. M2 (PostiveSelection) 2×[-3201.55–(-3219.57)]= 36.04 2 9.21 <0.0001
M7 (β) vs. M8 (β and ω) 2×[-3156.75-(-3169.60)]= 25.70 2 9.21 <0.0001

Table 14 shows the parameters estimated under variable selective pressure

among sites using the unrooted tree topology of Figure 21 without the outgroup (PI1,
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single-RU Pot II genes). The average ω ratio ranges from 0.32 to 0.38 among all but

the worst-fitting models. The Likelihood Ratio Test (LRT) statistics (Table 15)

suggested the highly variable ω ratio among amino acid sites.  For example, the

model of one ω ratio for all sites (M0) is rejected by a big margin when compared

with model M3 (discrete), which allows for three classes of sites with different ω

ratios. The LRT statistic for this comparison is 235.12, much greater than critical

values from a χ2 distribution with d.f. = 4. The discrete model (M3) suggests a small

proportion of sites (p2=2.1%) under positive selection, with ω2 = 4.621. This models

fits the data significantly better than M0 (one-ratio) or M1 (NearlyNeutral). Similarly,

Model M8 (β and ω) also suggests 2.1% of sites under diversifying selection with ω1

= 4.791. The LRT statistic for comparing M7 (β) and M8 (β and ω) is 25.70. The P-

value for this comparison is 0.1×10-4, in comparison with the χ2 distribution with d.f.

= 2. M7 is thus rejected in favor of M8. In sum, among all the models tested, all

models designed to detect positive selection sites (M2, M3 and M8) were significantly

better than their counterpart null hypothesis (M0, M1 and M7), which provide

consistent evidence for the presence of heterogeneous selection pressure among

amino acid sites within Pot II domains.

Furthermore, all models allowed positive selection (M2, M3 and M8)

converged to the same site, site 5.  And site 5 had a high posterior probability (above

the 99% level) of being in the positively selected class in all models allowed positive

selection (M2, M3 and M8).

Statistics analyses of variation of ω among sites provide strong evidence of the

positive selection. Interestingly, the positively selected site 5 locates at P1 position of

the reactive site of Pot II domains according the nomenclature of the Schechter and
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Berger (Schechter and Berger 1968). For standard mechanism, canonical

proteinaceous PIs of serine proteinases, the specificity of the inhibitors is determined,

at least in part, by a single residue at the P1 position (Laskowski and Kato 1980). In

Pot II PI structures, the P1 residue contribute the largest number of contacts (Schirra

and Craik 2005). Therefore, the hypervariability and positive selection of the P1

residue in reactive site can be easily understood since they allow the Pot II inhibitors

to provide inhibition activity to a wide range of proteinases which help Solanaceae to

combat pathogenic attacks.

4.3.5.2 Clade-wise site-based analyses in selective pressure

Clade-wise site-based analyses in selective pressure were also conducted on Clade 3

(1st RUs of 2-RU or 3-RU PIs), Clade 4 (2nd RUs of 2-RU or 3-RU PIs) and Clade 7

(Similar RUs of multi-RU PIs from Nicotiana genus) in order to detect the short

episode of positive Darwinian selection within each clades.

For all three clades, LRT tests support the existence of positive selected sites,

but selective pressures among sites are quite different between Clade 3, Clade 4 and

Clade 7. For Clades 3, 4 and 7 separately, the approximate posterior mean of ω ratio

at each site was plotted (Figure 23).
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Figure 23 Approximate posterior mean of the ω ratio by Bayes Empirical Bayes

(BEB) method for each site calculated under model M8 (β and ω) for the (a) Clade 3

(1st RUs of 2-RU or 3-RU PIs); (b) Clade 4 (2nd RUs of 2-RU or 3-RU PIs); (c) Clade

7 (Similar RUs of multi-RU PIs from Nicotiana genus).

ω ratio

ω ratio

ω ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

site

site

site

(b) Clade 4

(c) Clade 7

(a) Clade 3



121

Figure 23 shows that the majority of amino acid sites in Clade 3 and Clade 4

are under purifying or neutral selection while Clade 7 has more amino acid sites under

positive selection. In Clade 3 and Clade 4, site 5 (P1 site of reactive loop) was

identified as statistically significant positive selected sites by all models (M2, M3 and

M8), which is consistent with the previous analysis.  While in Clade 7, all models

support strong positive selection over site 19, which is the ending residue after the

proteolytic processing removing the Linker 1 region (highly conserved linker

“EEKKN” in multi-RU Pot II PIs from Nicotiana genus).

Such differences in variable selective pressure between Clade 3 and Clade 4

and Clade 7 may be due to the number of RUs. For two-domain Pot II PIs, the two

domains can bind to two proteinases simultaneous without steric interference since

the two binding sites are at the opposite ends of two inhibitor domains (e.g. the bound

form of TI-II) (Barrette-Ng et al. 2003c). For Pot II PIs with more than two domains,

it becomes more and more difficult for each domain to bind a proteinase without

steric hindrance. Heath and co-workers reported that the six-domain precursor NA-PI

has stoichiometry of only 2.6 trypsin molecules (Heath et al. 1995). So the efficiency

of proteolytic processing of multi-domain PIs may provide evolutionary advantages

by performing better inhibitory activity. This may explain why in Clade 7 the residue

at the boundary of the on the cleavage sites is under positive selection.

4.3.6 Linker region analyses of Pot II genes

Schirra and Craik proposed that linker regions particularly the EEKKN linker (Linker

2 in Figure 16) determined the circular permutation of multi-RU Pot II genes in a

recent review (Schirra and Craik 2005). To validate this hypothesis and investigate

the features and patterns of linker regions, systematic linker region analyses were
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carried out on the Linker 1 (L1) and Linker 2 (L2) in each clade. The results are

summarized in Table 16.

Table 16 The sequence patterns and the extent of conservation of the linker regions.

Clade L1 (important for
structural repeats)

L2 (important for
sequence repeats)

%L1/%L2

All Clades after removing the ending RUs  EGESDPxNP 89% PRSEexkxxxnxI 50% 1.8
Clade 1, single-RU  xxx------ 0% PsSGxxx--LxPx 42% 0.0
Clade 2, the third RU of 3-RU -GEPqsxxx 44% PsSGlaK--lnQv 62% 0.7
Clade 3, the first RU of 2-RU and 3-RU  EGxSDPKnP 83% PRSEGSP--eNPI 81% 1.0
Clade 4, the second RU of 2-RU and 3-
RU

 EGESdEPkx 78% PRSeGKxlIYPTG 85% 0.9

Clade 5, RUs from paprika  EGESDPNNP 100% PRSEgnA--Enrx 62% 1.6
Clade 6, similar RUs  dgESxwxxe 44% pxlxxKr--Vxgl 35% 1.2
Clade 7, Similar RUs of multi-RU PIs
from Nicotiana genus

 EGESDPxNP 89% PRsEEKK--NdxI 69% 1.3

For an estimation of % conservation, we have used a simple metric with 1 for

fully conserved, 0.5 for partly conserved and 0 for unconserved positions.

From Table 16, the ranking of L1 conservation is 5 > 7 > 3 > 4 > 6 = 2 (>>1).

This clearly reflects the tendency to nucleate permuted domains as structural units,

with clade 5 showing maximum propensity, closely followed by clade 7.

For L2 conservation, the ranking (4 > 3 > 7 > 5 = 2 (> 1) > 6) indicates

propensity for domain duplication at the sequence level: obviously clade 7 has

greatest tendency in this respect.  What is surprising is clade 6 from tomato, has a

lower level of conservation than clade 1, which is made up of many organisms. This

is an artifact due to the low number of domains in this clade, made up entirely of a 3-

RU PI and a 2-RU PI, each of which is remarkably conserved.

L1 and L2 conservation need to be considered together, in order to understand

the subtle interplay between sequence and structural repeat units in this protein

family.  Preference for structural repeats over sequence repeats may be measured by

taking the ratio of %L1/%L2.  Here the clades are in the order:
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%L1/%L2: 5 > 7 > 6 > 3 > 4 > 2 (>> 1)

Thus the third RU of 3-RU PIs and the second RU of 2- and 3-RU PIs (clades

2 and 4) show more L2 than L1 conservation.  In fact, it is probable that clade 2,

expressed alone or in combination with the preceding domain from clade 4 might

adopt the L+H topology of 1CE3. However, the first RU of these PIs (clade 3) slows a

slightly higher L1 conservation, which tilts the structure towards H+L over L+H.

Clades 6, 7 and 8 show progressively enhanced preference for L1 conservation over

L2, shifting the equilibrium towards conserved structural repeat units of the H+L

type.

Considering all clades in toto, the family has evolved to preferentially adopt

H+L topology over L+H, culminating in clade 5 with sequence repeats that mirror the

structural repeat unit of 4SGBI. This is supported by the rapidly evolving PIs as well

as those of more recent origin with %L1/%L2 ratios > 1.0 (clades 5-7).  The older

proteins (clades 2-4) represent the cross-roads when sequence and structural repeats

are vying for supremacy: the obvious choice of H+L topology is suggestive of

pressures other than evolution, such as evasion of protease degradation events.

In the creation of the engineered protein of Nicotiana alata (1CE3), L1 and L2

segments were swapped, creating a sequence with <75% (1/1.3) probability of

adopting the H+L structure over that of L+H, leading to the observed structure 1CE3.

4.3.7 Codon usage analysis of Pot II genes

Codon usage analyses were carried out on Pot II genes to evaluate whether there is

codon usage bias and whether such bias is advantageous or not. The codon usage

tables were calculated using CUSP module of EMBOSS package. The derived codon

usage table for Pot II genes was compared with codon usage table of Nicotiana
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tabacum by Graphical Codon Usage Analyser (GCUA, http://www.gcua.de) and the

mean difference between codon usage tables are also calculated by GCUA. The result

is shown in Figure 24.

Since a general codon usage table for Solanaceae family is not available,

Nicotiana tabacum was chosen as a representative organism for Solanaceae family

for the following considerations:

(1) The difference between codon usage tables from organisms from

Solanaceae family is subtle. For example, the mean difference of codon usage

table between Nicotiana tabacum and Solanum tuberosum is only 1.7%, and

the differences between Solanaceae plants we observed so far are all less than

2.5%. So the selection of a representative organism will not affect the analysis

results significantly.

(2) The number of CDS and codons used for the codon usage calculation is

very important since a small sample size will possibly introduce gloss

statistics of codon usage frequency. The codon usage table of Nicotiana

tabacum from Codon Usage Database was calculated by a large number of

genes (1343 CDS and 513,897 codons, the largest dataset in plants from

Solanaceae family), so the frequency of codon usage in this table should be

quite reliable.
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Figure 24 Codon usage tables comparison between Pot II genes and Nicotiana

tabacum. Columns of Pot II genes are in grey (left) while columns of Nicotiana

tabacum in black (right).
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The results of codon usage table comparison (Figure 24) showed the

difference of codon usage between Pot II genes and Nicotiana tabacum. The mean

difference between two tables is in moderate level (9.18%). For most residues, the

codon usages are almost the same. But there are significant codon usage differences

on Gln, Glu, Ile, Tyr and Val. Interestingly, for all these residues, the codon usages in

Pot II genes apparently tend to use the codons which are used more frequently in

Nicotiana tabacum, and avoid to use the low-frequency codons. For example, ILE is

encoded by three codons: ATA, ATC and ATT. The codon usage frequency for these

three codons in Solanum tuberosum is 25%, 25% and 50%, respectively, while the

frequency in Pot II genes are 32.5%, 3% and 64.5%. And these frequencies are based

on a reasonable number of codon observations (335 codons for ILE). These

frequencies are also consistent with the tRNA gene abundance in plant. Since the

complete genome data for Nicotiana tabacum is unavailable, the number of tRNA

genes in Arabidopsis thaliana was used as a reference. In Arabidopsis thaliana, the

numbers of tRNA genes (identified so far) for codons ATA, ATC and ATT are 5, 0

and 19 copies. The codon usage frequencies for these residues are obviously

advantageous since it suggests that Pot II genes utilize abundant tRNA subpopulations

that facilitate the rapid expression and response to wounds and pest infestation. The

codon usage tables comparison were also conducted on individual organism of Pot II

genes, e.g. the codon usage table of Pot II genes from Nicotiana glutinosa were

compared to Nicotiana glutinosa codon usage tables. These results are very similar to

the above observation except there are apparently some fake biases due to the small

sample size.
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4.4 Conclusion

Chapter 4 described systematic analyses of Pot II family using a range of

bioinformatics analysis tools, leading to several interesting findings:

(1) The database search has identified new putative single-RU Pot II PIs from

non-solanaceous species such as Arabidopsis thaliana, Oryza sativa and Zea

Mays, which are representative of the ancestral Pot II domain, synthesized by

Craik et al. (Scanlon et al. 1999) with the 3D structure 1CE3, having L-H

topology.

(2) The gene structure analysis reveals conserved features including: (a) similar

exon/intron organization; (b) conserved splice phase and splice motif; (c)

conserved Gly residues across splice sites.

(3) The protein sequence alignment suggests the consensus sequence of Pot II

family to be:

CX(3)CX(7,8)CPX(9,12)CX(1,2)CCX(4,5)GCX(6)GX(3,4)C,

with C, G and P representing Cys, Gly and Pro residues,  X is any residue and

(m,n) represents residue repeat numbers ranging from m to n, where m and n

are integers.

(4) Based on observed domain organization or all known sequences in Pot II

family, there is a propensity in Pot II PIs domain’s topology to adopt the H-L

topology (representative structure being 4SGBI). Given that the repeat unit for

most multiple-RU Pot II PIs is of the L-H type, such PIs will therefore fold

into contiguous permuted structural domains, linked by bracelet-like structures

formed by the N- and C-terminal segments from the first and the last repeat

units.
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(5) For PIs from paprika alone, the repeat unit is of the H-L type, so that multiple-

domain PIs from paprika should adopt a simple tandem permuted domain

architecture, with no linking bracelet structure, which is unique to the Pot II PI

family.  Naturally isolated L-H type single-domain PIs can only be derived

from single-RU genes, which are present in Clade 1, so far recognized in rice,

maize, etc.

(6) The degree of conservation for each residue in the Pot II PIs repeat units was

evaluated and mapped onto the molecular surface of the structure for the

putative ancestral protein, 1CE3. The result shows that different regions of the

protein sequences, have very different mutation rates. Eight fully conserved

cysteines form the scaffold in the protein core, with the reactive loop and

linker region being highly variable. The rapid mutation of the reactive site is

consistent with the PIs possessing the ability to adopt different specificities to

target a wide range of proteinases. Three other highly conserved residues (two

Gly’s and a Pro) are located at structurally important sites β-turns and are thus

critical for maintaining the overall PI structure.

(7) Phylogenetic analysis shows that the repeat units cluster into several groups

according to repeat number and species. The different similarities patterns

between repeat units in genes suggest that in different species the duplication

history and mechanism should be different.

Overall, the evolution of Pot II serine proteinase inhibitors brings obvious

advantages to Solanaceae plants for fighting against pests. The duplications in both

gene level and domain level enable rapid and efficient expression of Pot II genes.
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Codon usage analysis suggests that Pot II genes utilize abundant tRNA

subpopulations that facilitate the rapid expression and response to wounds and pest

infestation. On the structure level, the multi-RU precursors can acquire circularly

permutated structures which have a more stable and thermodynamic favorable

folding. The molecular adaptation particular the positive selection over reactive sites

provides various inhibition activities targeting the broad range of pathogenic

proteinases.

In our quest to build 3D structural models for SDPs, new SDP proteins

resulting from single-domain genes of the Pot II family will adopt the ancestral fold

(with L-H topology), while all multi-domain Pot II sequences will adopt the permuted

fold (H-L topology), with the termini arranged as H+L. Normally, for all the SDPs,

repeated sequence units fold into repeated structural units, each of which can be

modeled using SDPMOD directly. The Pot II family is the only exception to this rule

and will require manual query-template alignments to be generated prior to model

building.
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Chapter 5 Conclusions and future directions

5.1 Conclusions

Small disulphide-rich proteins (SDPs) are a special class of proteins with diverse

functions, which mainly includes secretory proteins with predatory, defensive or

regulatory roles (such as toxins, inhibitors and hormones). SDPs are rich sources for

therapeutic drugs, diagnostic agents and pesticides. SDPs are characterized as short

polypeptides stabilized in conformation by disulphide bridges. Bioinformatics studies

suggest the central importance of these disulphide bridges in the structure, function

and evolution of SDPs. For this important class of proteins, we have developed

strategies for determining single domains, for each of which a custom-designed 3D

model building strategy has been devised and tested for large scale comparative

modelling. While almost all SDPs are composed of tandem repeats of monomeric

domains, which are conserved both in sequence and in 3D structure, we had a single

example of an SDP family where, as a defensive strategy, the structural repeat is a

permutated fold from the sequence repeat.  We have used in-depth bioinformatics

analyses to understand why this occurs and predict how a new member of this family

would fold.

Overall, the specific outcomes of this study can be summarized as follows:

(1) SDFD – a database of Small Disulphide-rich Folds (SDFs), has been curated

to host high quality and comprehensive data for the research of SDPs and

SDFs. SDFD incorporated clean data from various resources and can serve as
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a template repository for structural modeling of SDPs.

(2) Classification scheme: A hierarchal classification scheme for SDFs is

proposed and applied to SDFD. The classification scheme classifies all SDFs

into four levels: DSSF (Disulphide superfamily, according to the disulphide

number), DSF (Disulphide family, based on the disulphide connectivity), DSC

(Disulphide cluster, clustering by cysteine signature) and DSI (Disulphide

individual, each SDF domain).

(3) SDFD data analysis: A systematic analysis of SDFD revealed the following

interesting findings:

a. The distribution of SDFs on disulphide number and disulphide

connectivity is uneven. Current data suggested disulphide

connectivities for two or three-disulphide SDFs have preference on

overlapped topology.

b. The analysis of intra- and inter-domain disulphide shows the low

frequency of inter-domain disulphide in SDFs and this preference can

be applied to improve computational methods from several fields, such

as domain boundary prediction, disulphide connectivity prediction and

structural modeling of SDPs.

c. The analysis of intra- and inter-chain disulphide reported the low

occurrence of inter-chain disulphide bonds. Most inter-chain

disulphide in structure databases are actually intra-chain disulphide

bonds according to the definition of genetic domain.

d. Analysis shows cysteine signature can help detecting distantly related

homologs and convergently evolved structures.
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(4) Modeling 3D structures of SDPs: SDPMOD – a novel method for the

automated comparative modeling of SDPs has been developed. The

CHARMM22 forcefield topologies and parameters for non-standard residues

in conotoxins were developed for the structural modeling of conotoxin. To the

best of our knowledge, this is the only methodology available currently for

building 3D models of proteins with non-standard residues.

(5) Novel SDP family analysis: An intriguing family of SDPs, Potato II (Pot II)

proteinase inhibitor family, was investigated systematically. The main

findings are listed as below:

a. The conserved patterns and features were characterized on gene

architecture, protein sequence and structural domain;

b. The sequence repeats cluster into distinct phylogenetic groups

depending on the repeat number and the species. The conservation

patterns between repeat units in available genes suggest variation of

duplication history and mechanism in different species;

c. The permutated domains appear more stable than original repeat

domain, from available structural information. Therefore, a multiple-

repeat sequence (up to eight in Nicotiana) is likely to adopt the

permuted fold from contiguous sequence segments, with the N- and C-

termini forming a single non-contiguous structural domain, linking the

bracelet of tandem repeats;

d. Two 3-repeat sequences from Capsicum annuum have evolved to tailor

the sequence repeats to correspond with the structural repeats thus

eliminating the bracelet link. The repeat unit for this group is a circular
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permutation of the ancestral domain, making this group the late entrant

to the Pot II family;

e. The analysis of nonsynonymous/synonymous substitution rate ratio (ω

= dN/dS) in Pot II domain revealed heterogeneous selective pressures

among amino acid sites: the reactive site is under position selection

(providing different specificity to target varieties of proteinases) while

the cysteine scaffold is under purifying selection (essential for

maintaining the fold). This provides a prefect example for the

application of SDFs in protein engineering and drug design.
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5.2 Future directions

Although the roles of cysteines and disulphide bridges on the structure, function and

evolution of SDPs is being studied, the effort to accurately predict the behavior of

cysteines and disulphides and utilize them is still enormous as such predictions are

still in their infancy. Several avenues of SDP-related research directions can be

pursued in the future.  A brief outline of a few of these is provide below.

5.2.1 Disulphide connectivity prediction

Disulphide connectivity prediction is one of the major topics in the research of

disulphide-bonded proteins. The correct prediction of disulphide connectivity for a

given protein sequence will greatly facilitate the protein structure prediction by

reducing the search space. Although several methods have been developed recently

(Fariselli and Casadio 2001; Vullo and Frasconi 2004; Chen and Hwang 2005; Tsai et

al. 2005), the best reported accuracy is 55% for proteins with two to five disulphide

(Chen and Hwang 2005). This area thus offers an opportunity for methodological

development and improvement of prediction accuracy. SDFD provides a clean dataset

for the prediction of disulphide connectivity. The findings obtained in this study (e.g.

distribution of disulphide distance, the preference of disulphide connectivity, cysteine

signature) can be used as features for sophisticated machining learning techniques.

5.2.2 The de novo modeling of SDPs

In this study, the structural modeling of SDPs was limited to comparative modeling.

Although comparative modeling can provide reliable homology models, it is

dependent on the availability of known related structures as templates, available only

for a small fraction of known sequences. The de novo modeling of SDPs will be
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greatly simplified with known disulphide connectivity, which can be used as distance

restraints during the modeling. The dataset derived from this study can be used for

testing and validating the new method. The development of novel template-

independent modeling methods will greatly expand the scope of protein structure

prediction for SDPs.

5.2.3 Protein engineering and drug design

The analysis of Pot II family illustrated a perfect example for the fitness of small

disulphide-rich fold as a scaffold for protein engineering. The multiple cross-linked

disulphide bridges provide robustness for the domain while the loop regions can be

designed to meet different requirements for functional specificity and affinity. Beside

Pot II domain and conotoxins, several other small disulphide-rich domains have been

reported as perfect scaffolds for protein engineering and drug design, such as Knottins

(Rees et al. 1982), BPTI domains (James et al. 1995), three-finger domains (Menez

2004). Such small disulphide-rich scaffolds can provide both rigidity and variability

which are critical for the tight binding to target molecules (Greenblatt et al. 1989;

Barrette-Ng et al. 2003). Therefore protein engineering and drug design based on

SDFs is a promising and attractive research area. SDFD also contains 150 protein

complexes, e.g. one two-domain inhibitors (TI-II) binding to two molecules of

proteinases (PDB ID: 1OYV). The protein-protein interaction studies and docking

analyses of these complexes would be interesting and valuable for drug design.
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ABSTRACT

Small disulfide-bonded proteins (SDPs) are rich
sources for therapeutic drugs. Designing drugs from
these proteins requires three-dimensional structural
information, which is only available for a subset of
these proteins. SDPMOD addresses this deficit in
structural information by providing a freely available
automated comparative modeling service to the res-
earch community. For expert users, SDPMODoffers a
manual mode that permits the selection of a desired
template as well as a semi-automated mode that
allows users to select the template from a suggested
list. Besides the selection of templates, expert users
can edit the target–template alignment, thus allowing
further customization of the modeling process.
Furthermore, the web service provides model stereo-
chemical quality evaluation using PROCHECK. SDP-
MODisfreelyaccessibletoacademicusersviatheweb
interface at http://proline.bic.nus.edu.sg/sdpmod.

INTRODUCTION

Small disulfide-bonded proteins (SDPs) are a special class of
proteins that are relatively small in size (length<100 residues)
and have disulfide bonds within their three-dimensional (3D)
structures (1). SDPs include many secretory proteins which
serve predatory, defensive or regulatory roles (such as toxins,
inhibitors and hormones), and they are rich source for thera-
peutic drugs (2) and pesticides (3). The 3D structures of SDPs
are essential for understanding the functions of SDPs and
for drug design. However, 3D structure determination through
experimental methods such as X-ray crystallography and
nuclear magnetic resonance (NMR) spectroscopy are still
both time-consuming and expensive. This results in a gap
between the number of known 3D structures and the number
of primary sequences that could be narrowed using large-scale
automated protein structure prediction.

Among current structure prediction methods, comparative
modeling is the most reliable method for generating 3D mod-
els. Comparative modeling of protein structures often requires
expert knowledge and proficiency in specialized methods. In
the mid-1990s, Peitsch and coworkers developed the first
automated modeling server SWISS-MODEL (4), which is
currently the most widely used server of this genre. Recently,
several other automated comparative modeling servers
have also been developed, such as CPHmodels (5), 3D-
JIGSAW (6), ModWeb (7) and ESyPred3D (8).

Although so many automated comparative modeling servers
are available, most of them do not work well on small SDPs for
two reasons. Most of the automated servers are primarily
designed for globular protein domains, making it difficult to
discriminate small-sized SDPs from background noise. Taking
as an example the sequence of a-conotoxin PnIA (9) (PDB id:
1PEN; 16 residues; 2 disulfide bridges in its structure), we note
that both SWISS-MODEL andModWeb report that they do not
cover the modeling of sequences <25 or <30 amino acid resi-
dues in length, respectively, while the other three servers state
that no suitable templates can be identified for this sequence.

The second reason is that SDPs have distinct characteristics
from medium-sized and large globular proteins. They usually
do not have a compact hydrophobic core, which is a major
factor in stabilizing protein structure. Their side chains are
more likely to be exposed to solvent and their conformations
are more flexible. The 3D structures of small proteins are
usually dominated by disulfide bridges, metal or ligand
(according to SCOP classification) (10) and tend to bind or
interact with large molecules. In small disulfide-rich proteins,
the effects of disulfide bridges and constrained residues such as
prolines are more significant than sequence similarity. As such,
the comparative modeling rules for such proteins are highly
specific and different from those adopted for large globular
proteins. These distinct features require specific methods and
datasets to be developed for the comparativemodeling of SDPs.

To address these problems, we have first developed special
strategies and rules for large-scale automated comparative
modeling of the entire family of conotoxins (L. Kong and
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S. Ranganathan, unpublished data). Subsequently these rules
were extended to other SDPs. Here, we present SDPMOD, a
comprehensive comparative modeling server that is designed
specifically for SDPs with specialized rules and datasets.

MATERIALS AND METHODS

Non-redundant SDP structure dataset

Before the modeling can proceed, a non-redundant dataset for
SDPs needs to be created to serve as the template repository.
Structures containing protein chains of length <100 amino
acids with at least two cysteines were retrieved from the
Protein Data Bank (PDB) (11) and loaded into MySQL, a rela-
tional database management system for flexible query and
manipulation. The redundancy in SDP structures was removed
at two levels. First, for NMR structures which have multiple
monomer models, the representative monomers were selected
using NMRCLUST (12). Second, when multiple structures
exist for the same sequence, the representative structure
was chosen according to its structural qualities. The structural
qualities are ranked by the following criteria (adopted from
PDB): (i) X-ray structures over NMR structures, (ii) higher-
quality factor (1/resolution�R-value) for X-ray structures and
higher restraint per residue for NMR, (iii) better geometry,
(iv) fewermissing atoms andnon-standard residues and (v) later
deposition date. Based on the above strategy, a non-redundant
structure database for SDPs was generated. Currently it con-
tains >1300 non-redundant protein chains and their coordinates.
The database will be automatically updated once a month.

Modeling procedure

The SDPMOD server performs comparative modeling in four
steps: (i) template selection, (ii) target–template alignment,
(iii) model building and (iv) model evaluation (13). Figure 1
shows the detailed modeling procedure for automated model-
ing. The non-redundant dataset is first filtered using the num-
ber of cysteine residues, and the resulting template sequences
are globally aligned to the target sequence using a modified
scoring matrix derived from the non-redundant SDP dataset.
The best templates are then selected based on the alignment
scores. Target–template alignment and model building are
achieved by MODELLER (14) (http://salilab.org/modeller/
modeller.html), using a customized matrix to ensure that all
the cysteine residues are well aligned. The final models are
chosen according to the MODELLER objective function
score, which reflects low energy and least stereochemical
violations. Finally, the overall structural quality of the gener-
ated models is evaluated against stereochemical parameters
derived from high-quality experimental structures by
PROCHECK (15) (http://www.biochem.ucl.ac.uk/~roman/
procheck/procheck.html).

Benchmarking

A large-scale benchmarking excercise was completed using
the fully automated mode of the SDPMOD server. A control
set of 664 sequences (a subset of our non-redundant SDP
dataset) with known structures was used to evaluate the
reliability of the server. The Ca root mean square deviation
(RMSD) values between models and their actual experimental

structures were calculated. The benchmarking results show
SDPMOD can predict 3D models with a reasonable accuracy.
For example, in the 40–70% sequence identity range, 64% of
models have Ca RMSD values <1.5 Å. The detailed analysis
of the accuracy of our modeling protocol is available from
http://proline.bic.nus.edu.sg/sdpmod/accuracy.html.
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Figure 1. The SDPMODmethodology for automatic comparative modeling of
small disulfide-bonded proteins.
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WEB SERVICE

SDPMOD is freely accessible to academic or non-profit users
via a web interface (shown in Figure 2) at http://proline.
bic.nus.edu.sg/sdpmod. SDPMOD is primarily designed as a
fully automated procedure for ease of use. However, due to the
complexity of comparative modeling, human intervention and
expert knowledge may be required for optimal modeling of
some proteins at two critical stages, namely template selection
and target–template alignment (6). To allow for human inter-
vention, the current version of the SDPMOD server provides
three modes of modeling (fully automated, semi-automated
and manual) to meet the different needs of the expert users.

The ‘fully automated’ mode presents an easy-to-use inter-
face. Users can simply submit a target sequence with their
email address and their MODELLER license key, obtained
from the MODELLER registration page http://salilab.org/
modeller/registration.shtml, and the modeling will be carried
out automatically according to the procedure described in
Figure 1. In the ‘semi-automated’ mode, a ranked list of poten-
tial templates will be returned after the target sequence is
submitted. Users can then choose the best template and adjust
the target–template alignment using expert knowledge. In the
‘manual’ mode, users are allowed to propose a template from
our non-redundant SDP structure dataset and modify the
target–template alignment where necessary.

After the modeling process is completed, a link with the
prediction results will be returned via email. Users can refer to

the link to view the prediction result and download the models.
The prediction results consist of (i) a summary of the selected
template(s), (ii) the predicted model based on each template in
PDB format and (iii) a brief report for each modeling attempt
that includes the target–template alignment used in model
building, a comparison of the model against the template
by means of RMSD and a PROCHECK report on the stereo-
chemical quality of the models.
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Abstract

The delineation of domain boundaries of a given sequence in the absence of known 3D

structures or detectable sequence homology to known domains benefits many areas in protein

science, such as protein engineering, protein 3D structure determination and protein structure

prediction. With the exponential growth of newly determined sequences, our ability to predict

domain boundaries rapidly and accurately from sequence information alone is both essential

and critical from the viewpoint of gene function annotation. Anyone attempting to predict

domain boundaries for a single protein sequence is invariably confronted with a plethora of

databases that contain boundary information available from the internet and a variety of

methods for domain boundary prediction. How are these derived and how well do they work?

What definition of ‘domain’ do they use? We will first clarify the different definitions of protein

domains, and then describe the available public databases with domain boundary information.

Finally, we will review existing domain boundary prediction methods and discuss their

strengths and weaknesses.

INTRODUCTION
Studies on conformation, function and

evolution of proteins have revealed the

central importance of protein domains as

fundamental units of organisation.1 The

modular architecture of protein has been

widely recognised for over a decade

now.2–5

Proteins are composed of smaller

building blocks, which are called

‘domains’ or ‘modules’. These building

blocks are distinct regions in 3D structure

resulting in protein architectures

assembled from modular segments that

have evolved independently. The

modular nature of proteins has many

advantages, offering new cooperative

functions and enhanced stability. As a

result of the duplication and mutational

evolution of these building blocks

through various gene rearrangement and

purifying selection mechanisms,

respectively, a large proportion of proteins

in higher organisms especially eukaryotic

extracellular proteins, consist of multiple

domains.6

Knowledge of protein domain

architecture and domain boundaries is

essential for the characterisation and

understanding of protein function,

particularly in the post-genome era.

Domain boundary prediction has

applications in many areas of protein

science:

• Protein engineering: the knowledge of

protein domain boundaries facilitates

the engineering and design of new

proteins, such as the creation of

chimeric proteins which are composed

of multifunctional domains and

downsizing of proteins without loss of

their functions.7

• Protein 3D structure determination:

the 3D structures of large proteins are

difficult to determine using standard X-

ray crystallography and nuclear
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magnetic resonance (NMR)

spectroscopic methods owing to

problems associated with crystallisation,

solubility or limitations on protein size.

In such case, domain boundary

prediction methods can be used to split

the proteins into distinct domains and

then the structure of each constituent

domain can be determined

independently.3

• Protein structure prediction: for

comparative modelling, the delineation

of domain boundary can optimise the

search for templates, which are

classified on the basis of domains;8 and

for threading, the domain boundary

prediction can improve the

performance by enhancing the signal-

to-noise ratio.9

• Multiple sequence alignment: accurate

delineation of boundaries for

homologous domains is important for

reliable multiple sequence alignment,10

which in turn serves as input to

phylogenetic and other bioinformatic

analyses.

Our current knowledge of domain

boundaries is entirely dependent on 3D

structure determination and multiple

sequence alignment of protein families

with the same or related function. With

the exponential growth of newly

determined sequences, our ability to

predict domain boundaries rapidly and

accurately from sequence information

alone is both essential and critical from

the viewpoint of gene function

annotation.

In the area of protein domains, there

are several databases, providing different

numbers of domains with varying domain

boundaries for the same protein

structure.11 When attempting to predict

domain boundaries for a query protein

sequence, the number of WWW servers

and methods available today overwhelms

the unwary user. Indeed, even the

definition of the word ‘domain’ can differ

depending on the database or method

used. In this review, we attempt to

separate the available definitions for the

protein ‘domain’ into structural,

functional and evolutionary classes. We

then present a collection of the most

frequently used and current databases and

methods available for the domain

boundary prediction problem. The

prediction methods have been categorised

depending on their methodology and

applicability, with references to the

databases they derive from, with our

assessment of the pros and cons of

choosing a particular method over others

of the genre.

DIFFERENT DOMAIN
DEFINITIONS:
STRUCTURAL,
FUNCTIONAL AND
EVOLUTIONARY DOMAINS
The concept of domains plays an

important role in protein science.

However, this concept is defined

differently under different circumstances.

The term ‘domain’ was initially

introduced in structural biology for those

globular proteins that are composed of

several distinct structural regions that fold

independently.2 It was also observed that

specific regions of proteins are involved in

effecting a specific biological task such as

catalytic activity or binding a ligand (eg a

DNA-binding domain). The occurrence

of similar functional segments in diverse

proteins led to the concept of modular

building blocks which are believed to

have evolved independently. Depending

on the identification method and the

focus of the investigation, the domain

names and boundaries attributed to a

single protein sequence can be quite

different. Here, we summarise the usage

of the word ‘domain’ in three main

categories – structural domains, functional

domains and evolutionary domains – to

distinguish between different domain

definitions and to facilitate comparisons of

similarly defined domains.

A structural domain is a substructure

formed by specific regions of a

Protein structure
determination

Protein structure
prediction

Multiple sequence
alignment

Different domain
definitions
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polypeptide chain, capable of folding

independently into a compact, stable

entity. A structural domain usually

contains between 40 and 350 amino acids,

and is the modular unit from which many

larger proteins are constructed. The

domain boundary information mainly

comes from domain assignment of known

3D structures available from the Protein

Data Bank (PDB).12

A functional domain refers to particular

regions in proteins that are responsible for

a specific biological function. Functional

domains are, in the main, identified by

deletion experiments through whittling

down proteins to their smallest active

fragments using proteinases and

recombinant technology. The

information on functional domains is

scattered in many primary databases such

as Swiss-Prot13 and PubMed.14

Evolutionary domains can also be

called ‘protein modules’. Modules are

subsets of domains that can be found in

functionally diverse proteins as building

blocks (eg the Src-homology 2 or SH2

domain).15 In the early 1990s, it was

hypothesised that modules often

correspond to single exons with same

phase at their intron/exon boundaries.3

But with the growing body of

information, we observe that intron/exon

boundaries need not correspond to

domain boundaries (Figure 1). The

identification of modules usually results

from comparative sequence alignment.

ProDom18 and DOMO10 databases are

derived from automated homologous

sequence clustering and are rich sources of

modules. The domains in the SCOP

database19 were assigned according to

evolutionary information and therefore

comprise evolutionary domains.

Modules represent contiguous segments

of protein sequence, while structural

domains are independently folded parts

that are not necessarily contiguous.

Although the three kinds of domain are

identical in many cases, structural domains

are not necessarily exactly the same as

functional domains, and may not

correspond to evolutionary domains. So

when we wish to assign domains to a

protein sequence, it is critical to decide

which category of domains we are

interested in and then choose the

appropriate databases and methods.

DOMAIN AND LINKER
DATABASES
Before rushing into domain boundary

prediction methods, a good understanding

of existing domain/linker databases is

indispensable. These databases can

provide both rich domain boundary

information as well as the validation data

set for the evaluation of prediction

methods. But different databases use

different methods to delineate the domain

boundary, so that domain boundaries for

the same protein can be vastly different.20

Figure 2 illustrates an example of different

domain boundaries assignment for the

same protein in different domain

databases.

In this paper, we will briefly review the

available domain and linker databases. All

domain databases can be classified into

two categories according to their primary

Structural domains

Functional domains

Evolutionary domains

Domain/linker
databases

Figure 1: SMART16 representation of SH2
domain in several proteins shows that
module is not necessary to correspond to a
single exon. Intron positions are indicated
with vertical lines showing the intron phase
and exact position in the amino acid
sequence. The Ensembl17 ID for four
sequences containing SH2 domains are: (A)
CG8049-PA; (B) ENSMUSP00000001110;
(C) ENSMUSP00000002216; (D)
ENSMUSP00000005188
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data source: structure or sequence. The

main sequence-based domain databases

include ProDom,18 DOMO,10 Pfam,21

SMART,16 COGs,22 BLOCKS,23

SBASE24 and Interpro.25 The major

structure-based domain databases are

SCOP,18 CATH,26 3Dee,27 Dali/FSSP28

and MMDB.29 XdomView11 provides a

quick and easy interface to compare the

structural domain definitions from these

different databases. The only reported

linker database is LinkerDB30 which

contains information on inter-domain

linkers. The WWW addresses of these

databases and the type of domain

information they contain is available from

Table 1.

SEQUENCE-BASED
DOMAIN DATABASES
ProDom
The ProDom18 database is a

comprehensive set of protein domain

families automatically generated from

Swiss-Prot and TrEMBL13 databases using

MKDOM2,31 which is based on position-

specific iterative BLAST (PSI-BLAST).32

The current release (2003.1) contains

556,964 domain families. Among them,

144,444 have at least two sequence

members.

DOMO
DOMO10 is a database of aligned protein

domains constructed from sequence

information alone by a fully automated

process that involves detection and

clustering of similar sequences, domain

delineation and multiple sequence

alignment. The domain boundaries were

inferred from the relative positions of

homologous segments.33 The latest

update (1998) of DOMO contains 99,058

domains which are clustered into 8,877

multiple sequence alignments.

BLOCKS
The BLOCKS23 database consists of

blocks which are ungapped multiple

sequence alignments of the most

conserved regions of proteins. It is built

by automated PROTOMAT system from

documented families of related proteins.

The current BLOCKS release (Version

14.0, October 2003) includes 24,294

sequence blocks representing 4,944

groups documented in InterPro.25

COGs
COGs22 (Clusters of Orthologous Groups

of proteins) database is the delineation of

protein sequences encoded in 43

complete genomes by clustering of

orthologues, which present 30 major

phylogenetic lineages. Each COG consists

of individual proteins or groups of

paralogues from at least three lineages and

thus corresponds to an ancient conserved

domain. The COGs database initially

contained only the sequenced genome of

prokaryotes and unicellular eukaryotes.34

A recent update to include multicellular

eukaryote genomes has enlarged the

database to 74,059 COGs and 104,101

proteins from 43 completed genomes.

SMART
SMART5 (a Simple Modular

Architecture Research Tool) is a tool for

protein domain identification and

annotation and domain architecture

representation. The database consists of a

library of hidden Markov models

(HMMs) which are derived mainly from

refined multiple sequence alignment

primarily collected from published papers.

The domain boundaries are verified with

3D structure, wherever possible, in

conjunction with protein N- and C-

termini and the known extents of adjacent

Sequence-based domain
databases

Structure-based domain
databases

Domain databases from
sequence alignments

Orthologous sequences

Hidden Markov models

Figure 2: Domain boundaries for D-glucose 6-phosphotransferase (PDB
ID: 1HKB, chain A) are dissimilar in different structure-based domain
databases. The domain assignments are collated and visualised by
XdomView.11 Segments with the same number are assigned to the same
domain
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domains. The release 4.0 (January 2004)

of SMART contains 685 protein domains

with extensive annotation for each

domain. The latest update for SMART

allows the combined representation of

detailed gene structure (exon/intron

boundaries and phases) and domain

architecture, which facilitates

investigation of the correlation between

exon/intron boundaries and protein

domain boundaries.16

Pfam
Pfam35 is a comprehensive collection of

protein domains and families represented

by multiple sequence alignments and

HMMs. Pfam has two parts: Pfam-A and

Pfam-B. Pfam-A includes manually

curated families while Pfam-B is derived

from ProDom database domains that are

not in Pfam-A. To obtain more accurate

domain definitions, Pfam makes use of

structure information and compares its

domain definition with structural domain

databases such as SCOP and CATH.21

The recent release 11.0 (December 2003)

of Pfam contains 7,255 families.

SBASE
SBASE24 is a collection of annotated

protein domain sequences. The data

sources for SBASE include Swiss-

Prot+TrEMBL,13 PIR,36 Pfam,35

SMART5 and PRINTS.37 The

boundaries of domains are defined by

experiment report or homology to

known domains. The current version

(release 10) includes 1,052,904 protein

domain sequences, all of which are

clustered into 4,340 functionally or

structurally well-characterised domains

(SBASE-A) and 1863 less well-

characterised groups (SBASE-B).

InterPro
InterPro25 is an integrated documentation

resource for protein families, domains,

patterns and functional sites. It is a

comprehensive resource that includes

information from PROSITE,38 Pfam,

PRINTS, ProDom, SMART and

TIGRFAMs.39 The latest release 7.1

(December 2003) contains 10,403 entries,

representing 2,239 domains, 7,901

families, 197 repeats, 26 active sites, 20

SBase and InterPro are
integrated resources
that include domain
annotations

Table 1: Databases that contain domain or linker information

Database URL Stored information

Sequence-based domain databases
ProDom http://prodes.toulouse.inra.fr/prodom/current/html/home.php/ Evolutionary domain
DOMO http://www.infobiogen.fr/services/domo/ Evolutionary domain
BLOCKS http://blocks.fhcrc.org/blocks/blocks_search.html Evolutionary and functional domain
COGs http://www.ncbi.nlm.nih.gov/COG/ Evolutionary and functional domain
SMART http://smart.embl-heidelberg.de Evolutionary, functional and structural domain
Pfam http://www.sanger.ac.uk/Software/Pfam/ Evolutionary, functional and structural domain
SBASE http://www.icgeb.trieste.it/sbase/ Evolutionary, functional and structural domain
InterPro http://www.ebi.ac.uk/interpro/ Evolutionary, functional and structural domain

Structure-based domain databases
SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ Evolutionary and structural domain
CATH http://www.biochem.ucl.ac.uk/bsm/cath/ Structural domain
3Dee http://www.compbio.dundee.ac.uk/3Dee/ Structural domain
Dali/FSSP http://www.ebi.ac.uk/dali/fssp/ Structural domain
MMDB http://www.ncbi.nih.gov/Structure/MMDB/mmdb.shtml Structural and evolutionary domain
XdomView* http://surya.bic.nus.edu.sg/xdom/ Structural and evolutionary domains

Linker database
LinkerDB http://ibivu.cs.vu.nl/programs/linkerdbwww/ Linker derived from 3D structure

*Although not strictly a database, XdomView integrates domain data from all five structure-based domain databases.
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binding sites and 20 post translational

modifications.

STRUCTURE-BASED
DOMAIN DATABASES
SCOP
The SCOP40 (Structural Classification Of

Proteins) database is a comprehensive

classification of all structures in PDB

according to their evolutionary and

structural relationship. The domain

assignments in SCOP are mainly based on

evolutionary relationship and therefore

some of the domain definitions are

different from other structure-based

domain databases. All the domains in

SCOP are manually classified according

to a four-level hierarchy: Family,

Superfamily, Fold and Class. The 1.65

release of SCOP (December 2003)

contains 20,619 structures, 54,745

domains, 2,327 families, 1,294

superfamilies, 800 folds and 7 classes.

CATH
CATH26 is also a hierarchal classification

database of protein domain structures,

which clustered protein domain in five

principal levels: Class (C), Architecture

(A), Topology (T), Homologous

superfamily (H) and Sequence family (S).

The domain definitions were assigned by

a consensus procedure based on three

algorithms for domain recognition

(DETECTIVE,41 PUU42 and

DOMAK43) as well as manual

assignment. CATH domains are classified

manually at C- and A-level and

automatically at T-, H- and S-level. The

current available release (v2.5.0, August

2003) of CATH includes 43,299 domains,

grouped into 4,036 sequence families,

1,467 superfamilies, 813 topologies, 37

architectures and 4 main classes.

3Dee
3Dee27 (Database of Protein Domain

Definitions) is a comprehensive collection

of protein structural domain definitions.

The domains in 3Dee are defined on a

purely structural basis. DOMAK

algorithm43 was used to define all

domains when the database was first built.

For later updates, the domains were

defined by sequence alignment to existing

domain definitions or manually. All the

domains in 3Dee were organised in a

hierarchy of three levels: Domain families

(sequence-redundant domains), Domain

sequence families (structure-redundant

domains) and Domain structure families

(non-redundant on structure).44 The last

release of 3Dee (November 1999)

contained 13,767 protein chains and

18,896 domains. These domains were

further clustered into 1,715 domain

sequence families and 1,199 domain

structure families.

Dali/FSSP
Dali/FSSP28 database presents a fully

automatic classification of all known

protein structures. The classification is

derived using all-against-all comparison of

all structures in PDB by an automatic

structural alignment method (Dali45). The

structural domains of the current release

(May 2003) are defined by a modified

version of ADDA algorithm.46

MMDB
MMDB29 (Molecular Modeling Database)

is NCBI Entrez’s 3D-structure database

derived from the PDB. MMDB contains

two kinds of domains: ‘3D domain’ and

‘Conserved Domain’.29 3D Domains in

MMDB are structural domains, which are

assigned automatically using an algorithm

that searches for one or more breakpoints

such that the ratio of intra- to inter-

domain contacts falls above a set

threshold.47 Conserved domains in

MMDB are recurrent evolutionary

modules defined by Entrez’s CDD

(Conserved Domain Database),48 where

the domains are derived from SMART,

Pfam and COGs.

XdomView
XdomView11 is a Chime-based

visualisation tool that integrates and maps

the domain boundaries of the input PDB

chain obtained from protein structure

classification databases (SCOP, CATH,

Domain databases from
structural alignments
include SCOP, CATH,
3Dee, Dali/FSSP and
MMDB
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3Dee, Dali/FSSP and MMDB) to its

tertiary structure. It also runs BLAST2 for

the input PDB chain sequence against all

protein sequences in the ExInt49 database

and maps the intron positions and phases

of aligned search results on the input

protein’s 3D structure. XdomView, a

useful visualisation tool for scientists

working on gene and protein evolution

and structural modelling and classification,

is able to provide domain boundary

information on a PDB structure

simultaneously from the five different

structure-based domain databases listed

above.

LINKER DATABASE
Linkers are sequence regions between

defined structural domains. Linker regions

have usually been regarded as

unstructured, non-globular or low-

complexity segments that are flexible in

3D space,50 but recent studies show linker

regions may significantly affect the

cooperation and interaction between

domains and therefore alter the overall

functionality and efficiency of multiple-

domain proteins.51 A systematic

investigation of linker regions has been

reported by George and Heringa,30

resulting in a curated linker database

(LinkerDB).

LinkerDB
LinkerDB is derived from the non-

redundant structure data set available from

NCBI.30 Linker regions are assigned by

extending the domain boundaries

determined by Taylor algorithm.52 All the

linkers in LinkerDB were grouped by

several criteria: length (small, medium and

large); the numbers of intervening linkers

separating two domains (1-linker, 2-

linker, 3-linker and .3-linker sets);

secondary structure type for linkers (helix,

strand and loops). Two main types of

linkers were identified: helical and non-

helical, with distinct properties such as

rigidity or amino acid composition.

Statistics from the linker database reveal

that certain residues (Pro, Arg, Phe, Thr,

Glu and Gln) are preferred by linker

regions while others (Cys and Gly) are

preferentially located within domains.

The analysis by George and Heringa30

suggested the amino acid propensity of

inter-domain linkers is distinct from intra-

domain loops. The accurate amino acid

propensity and other properties of linkers

derived from LinkerDB may benefit

domain boundary prediction methods.

DOMAIN BOUNDARY
PREDICTION METHODS
Currently there are many domain

boundary prediction methods available.

All these methods can be classified into

three categories: comparative methods,

clustering methods and ab initio methods.

Table 2 lists major domain boundary

prediction methods.

Comparative domain boundary
prediction methods
Each of these methods (SBASE,24

SUPERFAMILY53 and Domain

Fishing8) uses exhaustive sequence

searches against known domain

definitions within the associated domain

database(s). They predict domain

boundaries as well as domain content and

thus can be used for the identification of

protein domain architecture. Their

predictions are reliable if a known

homologous domain can be detected

within their internal database.

Comparative methods need prior

knowledge about domains. As more and

more domains are identified and

characterised, it is expected that

comparative methods will perform better

with novel sequences. Generally, standard

sequence database search protocols are

used to identify domains, eg PSI-

BLAST32 and HMM. Since most

comparative methods are quite similar in

principle, only one method is reviewed

here.

Domain Fishing

Domain Fishing8 is targeted to predict

domain architecture and identify

structural templates for each domain for

comparative modelling. PDB, Pfam and

Integrated viewer for
domain contents and
exon/interon
boundaries

Predicting domain
boundaries

Linker regions have
different properties
from domain regions

Comparative methods

Domain architecture
prediction
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SCOP databases have been combined and

two sequence databases, dPFAM_PDB

and dSCOP, generated, which serve as

template domain repositories. Given a

query sequence, PSI-BLAST32 is used to

search dPFAM_PDB to predict domain

content and boundaries are defined by

dSCOP.

Clustering methods for domain
boundary prediction
Unlike comparative methods, clustering

methods do not require any prior

knowledge for domains. The biological

basis for all clustering methods is the

modular nature of proteins. Clustering

methods will iteratively search against the

data set and generate segment sequence

clusters. Several databases such as

ProDom18 and DOMO10 are generated

in this manner. Clustering methods are

usually applied to large data sets such as

Swiss-Prot and TrEMBL, leading to

comprehensive derived domain databases.

But the biological meaning of these

domains may be not clear and sometimes

just be artefacts of the specific thresholds

applied during clustering. Clustering

methods include DOMAINER,54

MKDOM,31 GeneRAGE55 and

GEANFAMMER,56 of which MKDOM

is described below.

MKDOM

MKDOM (version 2)31 is an automatic

clustering algorithm used to generate the

current release of the ProDom18 database.

It relies on the assumption that the

shortest protein sequence corresponds to a

single domain. The program iteratively

searches the query sequence for matches

to the database sequences, starting with

the shortest entry, using PSI-BLAST. All

significant hits are removed from the

query sequence and the remaining

fragment(s) are searched, until the

database entries are exhausted. Prior to

the iterative clustering process,

fragmentary sequences (less than the

shortest sequence in the database) are

removed and low-complexity regions are

masked using SEG.50

Clustering methods

Iterative BLAST

Table 2: Domain boundary prediction methods

Methods URL or availability Server or
standalone

Features Input

Comparative methods
Domain Fishing http://www.bmm.icnet.uk/servers/3djigsaw/dom_fish/ Server PSI-BLAST Single
SBASE http://www3.icgeb.trieste.it/�sbasesrv/main.html Server BLAST Single
SUPERFAMILY http://supfam.org Server HMM Single

Clustering methods
MKDOM ftp://ftp.toulouse.inra.fr/pub/xdom/ Standalone Clustering Large data set
GeneRAGE http://www.ebi.ac.uk/research/cgg/services/rage/ Standalone Clustering Large data set
GEANFAMMER http://www.mrc-lmb.cam.ac.uk/genomes/geanfammer.html Standalone Clustering Large data set

Ab initiomethods
UMA
(Linker prediction)

Available upon request from C. Townsend
(ctownsend@jhu.edu)

Standalone Hydrophobicity and
amino acid
conservation

MSA

SnapDRAGON Available upon request from J. Heringa
(jhering@nimr.mrc.ac.uk)

Standalone Ab initio 3D models MSA

DomSSEA http://bioinf.cs.ucl.ac.uk/dompred/ Server Secondary structure
alignment

MSA

PASS http://www.bio.gsc.riken.go.jp/PASS/pass_query_sample.htm Server Similarity plot MSA
DomCut (Linker
prediction)

http://www.bork.embl-heidelberg.de/�suyama/domcut/ Server, standalone Amino acid
composition

Single

DGS http://www.ncbi.nlm.nih.gov/Structure/dgs/DGSWeb.cgi Server, standalone Sequence length Single
Entropy profile ftp://ftp.ncbi.nlm.nih.gov/pub/wheelan/DGS Standalone Entropy profile Single

Combination method
DomPred http://bioinf.cs.ucl.ac.uk/dompred/ Server Pfam search followed

by DomSSEA
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Ab initio methods for domain
boundary prediction
Ab initio methods attempt to predict

domain boundaries in the absence of

experimental determined 3D structures or

detectable known domain definitions.

Physical properties such as domain size

distribution9 (DGS), entropy profiles57 or

differential amino acid composition7 have

been selected as discriminatory criteria.

Predicted secondary structure and ab initio

simulation of 3D structure are also used to

make informed boundary predictions.58,59

The followings are the most popular ab

initio domain boundary prediction

methods.

UMA

UMA60 (Udwary–Merski Algorithm) is a

method for predicting linker regions

within large multifunctional proteins. It is

relies on three assumptions:

• proteins can be dissected into two kinds

of regions: compact, independent

folding, bioactive globular regions

(domains) and unstructured, flexible

regions (linkers);

• amino acids in domain regions are

relatively more conserved while linker

regions carry more mutations; and

• linker regions are more hydrophilic

than domain regions.

According to these assumptions, the

propensity of an amino acid in a sequence

to be within a linker or a domain is

calculated as the weighted sum of three

properties (primary sequence similarity,

secondary structure similarity and

hydrophobicity).

The UMA algorithm provides better

predictions than sequence alignments

alone, but it also has several limitations:

• the criteria for linker regions based on

UMA scores is loosely defined and thus

the selection of linkers is subjective,

based on user-defined thresholds;

• UMA depends on the availability of

detectable homologous sequences of

target sequence;

• the input for UMA requires at least two

homologous sequences; with prediction

reliability increasing with more input

sequences;

• sequence alignment quality may

strongly affect the reliability of linker

prediction, necessitating manual

inspection and adjustment of the

multiple sequence alignments.

SnapDRAGON

SnapDRAGON59 is a suite of programs

used to predict domain boundaries based

on the consistency of a set of ab initio 3D

structural models. The assumption behind

SnapDRAGON is that hydrophobic

residues cluster together in space, forming

the protein core. This algorithm includes

three steps. Firstly, 100 ab initio models are

generated by the distance-geometry based

DRAGON method61 using multiple

sequence alignment and predicted

secondary structures as input. Secondly,

domain boundaries of these models are

assigned using the method of Taylor.52

Lastly, the final domain boundaries are

determined from the consistency of the

assigned domain boundaries in the set of

alternative 3D models. This method was

evaluated with a non-redundant 3D

structure data set available from NCBI.

The domain definitions of this data set

were assigned by Taylor algorithm52 and

validated by SCOP and Dali. The

accuracy of domain boundaries prediction

is 63.9 per cent for proteins with

continuous domains and 35.4 per cent for

proteins with discontinuous domains,

with an overall accuracy of 51.8 per cent.

SnapDRAGON is a reliable method and

can predict domain boundaries for protein

with discontinuous domains. But it is

computational intensive and therefore not

suitable for large-scale sequence analysis.

It also requires a set of homologous

sequences, similar to the target sequence

Ab initio methods

Ab initio 3D modelling

Hydrophobic core
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to generate a multiple sequence alignment

as input.

DomSSEA

DomSSEA58 predicts domain boundaries

by aligning secondary structural elements.

The secondary structure of a query

sequence is first predicted by PSIPRED62

and this prediction is aligned with known

secondary structures of CATH domains.

The best matches are reported as

predicted domains for the input sequence.

This method is not entirely ab initio since

it depends on CATH domain definitions.

At the same time, it differs from the

comparative methods in that there is no

requirement for detectable sequence

similarity. The success rate of this method

for assigning domain number correctly is

73.3 per cent and the correct prediction

of domain number and location of

boundaries is 24 per cent for multiple

domain set (�20 residues).

DomCut

DomCut7 predicts inter-domain linkers

regions using sliding-windows average of

linker index derived from a domain/

linker data set collected from Swiss-Prot

annotation. DomCut uses the difference

of amino acid composition between

domain and linker regions, while DGS9

(discussed below) and SnapDRAGON59

are based on the length distribution of

known 3D domain structures and ab initio

3D model construction, respectively. The

propensity of different amino acids to be

located in domain or linker regions is

compiled from sequence databases, unlike

LinkerDB,30 which is based on structural

data. For example, Pro, Ser and Thr are

quite abundant in linker regions while

Try, Gly, Cys and Trp prefer to be

located within domains. At the default

threshold value –0.09, the sensitivity and

selectivity for DomCut are 53.5 and 50.1

per cent, respectively.

From our analysis, there are several

points in the domain/linker selection

criteria of DomCut that need to be

addressed:

• Domain/linker definitions derived

from structure may define the

boundaries of domains more accurately

and better represent residue

preferences.

• The pre-set range for domains (50–

500) and linkers (10–100) may miss

some data. In protein structure, short

linkers, fewer than 10 residues, are not

uncommon.29

These changes may result in a better

data set and more accurate linker

preference profiles.

DGS

DGS9 (Domain Guess by Size) is based on

two observations of domain size

distribution:

• Domain sizes follow a narrow

distribution (peak at 100 residues).

• Most domains are formed by single

continuous segment (83.6 per cent).9

These observations are derived from

the non-redundant data set selected from

PDB and domain definitions were taken

from NCBI Entrez.47 Given the length of

target sequence, DGS will enumerate all

possible domain boundaries (with a step

size of 20 residues) and calculate their

relative likelihood according to a

likelihood function based on empirical

distributions of domain length and

segment number. The accuracy of DGS

was reported to be 28 per cent for two-

domain proteins (�20 residues). Wheelan

et al.9 suggest that DGS is more successful

for protein sequences shorter than 400

residues with one or two domains. DGS

can potentially predict complicated

domain organisation including

discontinuous domains. For DGS, several

top guesses should be considered rather

than the first guess, which is always a

single domain, owing to the

preponderance of single-domain proteins

in the data set. DGS is not practical as a

domain boundary prediction method

Secondary structure
prediction

Narrow distribution of
domain sizes

Amino acid propensity
for domain/linker
regions
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alone, but it can be used together with

other methods or the prior knowledge of

functional regions.

CALCULATION OF
ENTROPY PROFILES
Galzitskaya and Melnik report a method

that predicts domain boundaries based on

the calculation of entropy profiles.57 This

method is founded on the hypothesis that

segments with high side chain entropy

correspond to domain regions, while

linker regions have relatively low side

chain entropy. The data set is built

through selection of SCOP structures

with two continuous domains.

Redundancy (sequence ID . 80 per cent)

and small domains (length , 50 residues)

have been removed from the data set.

The entropy parameters for each residue

have been defined by Galzitskaya et al.63

A sliding window (with a 40 residue

window size) is used to average the

entropy profiles. The boundaries are

predicted by the global minimal of the

entropy. The success rate of this method

on the data set is 63 per cent (�40

residues). It is worth noting that the data

set includes only two-domain proteins

with continuous domains, so that the

complexity of prediction is significantly

reduced. The current version of this

method can only be applied to two-

domain proteins and is not suitable for

proteins with small domains. The success

rate may not reflect the real accuracy of

this method since the resolution of this

method is �40 residues, which is close to

the average size of domain (100 residues

according to Wheelan et al.9).

Among ab initio approaches, some

methods require a multiple sequence

alignment as input. Although this should

improve the prediction accuracy, it also

has some limitations on sequences that

have no known structural homologues.

DISCUSSION
Each category of method discussed above

has its own strengths and weaknesses.

Comparative methods are accurate and

informative but have difficulties when the

target sequence has no detectable

homologue with known domain

information. Clustering methods are

better for large data sets but are not

applicable for the analysis of a single

sequence. Ab initio methods are generally

not limited by the availability of known

homologous domains or data set, but their

sensitivities and specificities are

significantly lower than those of other

methods. The combination of multiple

methods may achieve a more reliable and

accurate prediction for domain

boundaries. So the practical procedure for

domain boundary prediction is a step-

wise approach. At the outset, one should

try to use comparative methods to search

the domain databases. If no significant hits

are detected, then ab initio methods should

be tried. Some of the available methods

have already adopted such a strategy. For

example, the DomPred server58 first

searches the Pfam21 database to identify

known domains, and the ab initio method

DomSSEA is used only if there are no hits

in the first round.

Although there are a variety of

methods available for domain boundary

prediction, there is room for

improvement, especially for ab initio

methods:

• The boundary prediction for

discontinuous domains remains very

difficult, especially from ab initio

approaches. To figure out which

segments form a discontinuous domain

is a great challenge. Currently the most

successful ab initio method for

predicting discontinuous domains is

SnapDRAGON.59

• Large multiple domain proteins are

more difficult targets for correct

domain boundary prediction, since

they are more complex and can result

in several complex combinatorial

domain possibilities.7,57

• The complexity of domain boundary

prediction is also greatly increased by

rearrangements within the domain,

Entropy profiles

Stepwise strategy

Difficulties in domain
boundary prediction

Discontinuous domains
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such as the insertion of one domain

into another or domain swapping.64 In

the case of potato proteinase inhibitor

II (Pot II) family, domain duplication

followed by domain swapping results in

three topologies for the same fold

(SCOP family of plant proteinase

inhibitors) in the same protein family

(Figure 3). The three types of domain

are circularly permuted with respect to

each other and, of the three, the type 1

domain seems to be the most stable

based on observed data.65

The currently available methods cannot

discriminate between these three types of

structural domains and thus are unable to

provide correct prediction for domain

boundaries (Kong and Ranganathan,

unpublished results).
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Applications and future work
•Flexible web interface for easy access.
•Removal of redundancy using classification
•Specialized parameters to be derived:

• A scoring matrix for SDP alignments 
• Stereochemical parameters for SDP 

geometrical quality evaluation
•Prediction of disulphide connectivity for SDP.
•3D structure predictions of SDP using predicted 
disulphide connectivity.

Introduction

Small Disulphide-bonded Proteins (SDP) is a 
class of small proteins (length <100 a.a) that 
contains at least one disulphide bridge. Its 
members include varieties of proteins, such as 
insulin, inhibitors and toxins. They are an 
abundant resource of potential therapeutic drugs. 
A major problem in the structure prediction of 
SDP is to figure out their disulphide connectivity 
as this largely determines their fold. Their small 
sizes and complex disulphide connectivity make 
them distinct from large globular proteins, 
requiring specialized applications and datasets. 

Our comprehensive Small Disulphide-bonded 
Proteins Structural (SDPS) database aims to 
facilitate research on SDP and disulphide 
connectivity. Data sources include PDB [1], 
SCOP [2], ASTRAL [3] and DSSP [4]. A number 
of features have been extracted and calculated, 
the most important being the disulphide 
connectivity, which cannot be easily obtained 
through public databases. SDPS database is 
accessible at http://origin.bic.nus.edu.sg/sdps. 

A key feature of the database will be the 
introduction of a hierarchical classification system 
based on the number of disulfide bridges, 
connectivity and sequence similarity.

SDPS: Small Disulphide-bonded Proteins Structural 
Database
Lesheng Kong1, Tin Wee Tan1 and Shoba Ranganathan1, 2
1Department of Biochemistry & 2Department of Biological Sciences,
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Results and discussion
Database statistics
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bonds
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Preliminary analysis of the current dataset reveals 
some interesting statistics. For example, among 
855 protein chains which have multiple disulphide 
bonds, 238 chains have α−ω (i.e. first and last 
cysteine residues) type disulphide connectivity. 
Furthermore only a small portion (5%) of the 1285 
protein chains have free cysteines. 

Methodology

SDPS classification hierarchy
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Data flow in SDPS

Figure 2. SDPS numbering scheme for representative 
structure α-conotoxin GI (PDB code: 1XGA) which has 2 
disulphide bonds and 1212 connectivity. Classification into 
Disulphide Superfamily (DSSF), Disulphide Family (DSF), 
Disulphide Cluster (DSC) and Disulphide Individual (DSI)

Select representative
by structure quality

Figure 4. Histogram of the distribution of disulphide distance 
in SDP dataset
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Analysis of DSSF VI

We analyzed DSSF VI which has six disulfide 
bridges and ten members. Based on sequence 
identities, redundant structures were removed 
and only seven non-redundant structures remain 
(PDB codes: 1FVL, 1KST, 1F5Y, 1HJ7, 1HZ8, 
1DQB, 1EMN). Theoretically, there are 11 x 9 x 7 
x 5 x 3 = 10,395 possible connectivities. These 
seven structures belonging to just six DSFs. 
1EMN (fibrillin) and 1HJ7 (LDL receptor) both 
share the same connectivity. Interestingly, they 
have very similar topology although they share 
low sequence identities (34.1%). 
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Figure 1. Flow chart of data processing                        
procedures in SDPS

1HJ7-1------GTNECLDNNGGCSH-VCNDLKIGYECLCPDGFQLVAQRRCEDI-42
------------..:||.:.:-.|.|-.|.:....|.|.||.|:-::|...|.|.
1EMN 1 --SAVDMDECKEPD-VCKHGQCINTDGSYRCECPFGY-ILAGNECVDT-44

1HJ7-43--------DECQDPDTCSQ-LCVNLEGGYKCQCEEGFQLDPHTKACK--80
---------------|||...:.|..-.|.|:.||::|.|||||:..|-...|:
1EMN 45 -------DECSVGNPCGNGTCKNVIGGFECTCEEGFEPGP-MMTCE--82

(A)

Figure 5. The structure and 
sequence comparison of 
1EMN and 1HJ7. The RMSD 
between two structures is 
1.68 Å.

1EMN

1HJ7

(B)

SDPS web address: http://origin.bic.nus.edu.sg/sdps contact: lesheng@bic.nus.edu.sg 
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Figure 3. Histogram of the distribution of disulphide bonds 
number in SDP dataset
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Introduction
Conopeptides mainly come from predatory cone 
snails. They are notable for their unprecedented 
selectivity and specificity for varieties of neuronal 
receptors and ion channels. These properties 
make conopeptides very useful in studies aimed 
identifying receptors and their ligands, as well as 
in drug development [1]. In GenBank (up to Sep. 
2003), there are 881 conopeptides, among them 
only 61 of them have 3D structures in PDB. 
We developed an automatic comparative 
modeling method to predict structures  for 
conopeptides. During the model development, 
one big obstacle was the presence of  common 
post-translational modifications. Figure 1 shows 6 
non-standard residues in conopeptides.

Topology and parameter development for 
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(1) Bond length: Vbond = Kb (b - b0)2

(2) Bond angle: Vangle = Kθ (θ - θ0)2

(3) Dihedral angles: Vdihedral =KΦ(1 + cos(nΦ - δ))
(4) Improper dihedral angles: Vimproper = Kϕ(ϕ - ϕ0)2

For other non-standard residues such as HYP and 
NH2, models do not show big difference on 
backbone conformations between two methods. 
The difference between HYP and PRO lies in 
exposed side chain and NH2 is only c-terminal 
amidation. They will not affect backbone 
conformation apparently. But they may change the 
hydrophobic/hydrophilic property or electrostatic  
potential of the protein surface. This is subject to 
further analysis. 
In summary, the comparison of models with non-
standard residues and those with only standard 
residues: 
Worse Similar Better
ΔRMSD < -0.5Å |ΔRMSD| < 0.5Å ΔRMSD > 0.5Å
None 16 models 3 models

The significance of residues leading to model 
improvement: DTR, DTY > CGU, BTR, HYP, NH2
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Topology definition
(1) Get the coordinates of non-standard residues 

from selected high resolution structures.
(2) Check the structure for errors or missing 

atoms and add missing atoms and hydrogens.
(3) Assign partial charges and forcefield

parameters based on atom types. 
(4) Inspect topology files for improper dihedral 

angles and fix if necessary. 

Previous studies have shown that some 
modifications are crucial for the observed 
functions of conopeptides and their affinity for ion 
channels [2]. Post-translational modifications 
may considerably contribute to the structure, 
affinity and specificity of conopeptides. But 
traditional molecular modeling methods can 
neither recognize templates containing non-
standard residues nor generate models with 
these non-standard residues. 

To address these problems, we tried to develop 
special method that can recognize and make use 
of non-standard residues for comparative 
modeling of conopeptides. Our strategy is to 
define the charmm22 forcefield [3] library files for 
non-standard residues and incorporate them into 
a commonly used program MODELLER [4]. 

Parameter development

Parameters are derived from similar entries in 
charmm22 forcefield and good quality structures for the 
following types:

Benchmarking
We selected all conopeptides which have structures 
available in PDB as well as non-standard residues in 
their structures (total 19). 

A CASP-like benchmarking were done to compare the 
modeling before and after the incorporation of non-
standard residues library files. Jacknife (leave-one-out) 
technique was applied  into our benchmarking due to 
low sample size. We use generated models with and 
without the use of non-standard residues for 
comparative modeling of these 19 conopeptides. 

The models generated by both methods were compared 
to their experimental structures and the RMSDs were 
calculated.
Result and Discussion
Basing on the above strategy, libraries files for 6 non-
standard residues were developed and incorporated into 
MODELLER library. 

Benchmarking was done to validate these libraries files. 
The results were shown in Figure 2.

Applications
With the facilitation of these topology and 
parameter files, it is possible to do comparative 
modeling on conopeptides that includes non-
standard residues, and enhance the accuracy of 
modeling. The topology and parameter files for 
these 6 non-standard residues are available on 
request (Email: lesheng@bic.nus.edu.sg).

The force constants Kb, Kθ, KΦ, Kϕ, were extrapolated 
from similar atom type entries and equilibrium values 
b0, θ0, δ, ϕ0 were calculated from selected structures.

Figure 2. Comparisons of models generated by two methods

Figure 3. The overlay of two models with real 
structure. 1QFBstan (red, only standard residues); 
1QFBnons (blue, includes non-standard residues); 
1QFB (green, real structure).

Figure 1. Non-standard residues in conopeptides

(C-terminal amidation)   (Brominated tryptophan)       (D-tryptophan)

(4-hydroxyproline)        (γ-carboxy-glutamic acid )      (D-tyrosine)

From Figure 2, we can see that the difference between 
two kinds of models (ΔRMSD) can be clustered into two 
groups: (1) ΔRMSD < 0.30Å; (2) ΔRMSD > 0.80Å.   
3 models (ΔRMSD for 1D7T, 1DFY and 1QFB is 1.39Å, 
0.83Å and 1.01Å, respectively) are significantly 
improved after the incorporation of new topologies and 
parameters. This is to be expected since there are D-
amino acids present (DTR in 1DFY and 1QFB and DTY 
in 1D7T). Standard modeling packages can only deal 
with L-residues leading to considerable error in 
backbone conformation.

Figure 3 shows the dramatic backbone 
improvement in the model for 1QFB when non-
standard residues are used. 

Comparison of using standard and non-standard

residues
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Introduction

Small Disulphide-bonded Proteins (SDPs) are a 
special class of proteins that are relatively small 
in size (length<100 residues) and have disulphide 
bonds within their 3D structures. SDPs include 
many secretory proteins which serve predatory, 
defensive or regulatory roles  (such as toxins, 
inhibitors and hormones) and they are rich source 
for therapeutic drugs and pesticides. Designing 
drugs from these proteins requires 3D structural 
information, which is only available for a subset of 
these proteins. 

SDPMOD addresses this deficit in structural 
information by providing a freely available 
comprehensive comparative modeling service 
(http://proline.bic.nus.edu.sg/sdpmod) to the 
research community [1]. 

SDPMOD: A Comprehensive Comparative Modeling 
Server for Small Disulphide-bonded Proteins
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Web Service

Methodology

Non-redundant SDPs structure dataset

Before the modeling can proceed, a non-
redundant dataset for SDPs needs to be created 
to serve as the template repository. Structures 
containing protein chains of length less than 100 
aa with at least two cysteines were retrieved from 
the Protein Data Bank (PDB) [2] and loaded into 
MySQL for flexible query and manipulation. The 
redundancies in SDP structures were removed 
according to structure quality.

Result and Discussion

Benchmarking

A large-scale benchmarking was completed using 
SDPMOD server. A control set of 664 sequences (a 
subset of our SDPs non-redundant dataset) with known 
structures was used to evaluate the reliability of server. 
The Cα RMSD values between models and their actual 
experimental structures were calculated. The results are 
summarized in Table 1.

SDPMOD web address: http://proline.bic.nus.edu.sg/sdpmod contact: lesheng@bic.nus.edu.sg

Table 1. Probabilities of SDPMOD accuracy for target-template 
identity classes.

712532168226664Total
3233219139090-95
328321999180-90
416181245470-80
115241305360-70
416241105550-60
22029505640-50
104634309330-40
44105230017220-30

No. of 
models
2Å≤RMSD

No. of 
models
1.5Å≤RMSD<2 Å

No. of 
models
1Å≤RMSD<1.5 Å

No. of 
models
0.5Å≤RMSD<1 Å

No. of 
models
RMSD<0.5Å

No. of 
modelsID (%)

SDPMOD Flowchart

The benchmarking results show SDPMOD can predict 
3D models with a reasonable accuracy. For example, in 
the 40-70% sequence identity range, 64% of models 
have Cα RMSD values less than 1.5 Å.

Modeling Procedure

The SDPMOD server performs comparative 
modeling in the four steps: (i) template selection, 
(ii) target-template alignment, (iii) model building, 
and (iv) model evaluation. Figure 1 shows the 
detailed modeling procedure for automated 
modeling. Target-template alignment and model 
building are achieved by MODELLER [3] using a 
customized matrix to ensure that all the cysteine
residues are well aligned. The overall structural 
quality of the generated models are evaluated by 
PROCHECK [4].

SDPMOD is primarily designed as a fully automated 
procedure for easy of use. However due to the complexity 
of comparative modeling, human intervention and expert 
knowledge may be required for optimal modeling of some 
proteins. To allow for human intervention, the current 
version of the SDPMOD server provides three modes of 
modeling (fully automated, semi-automated and manual) to 
meet the different needs of the expert users.
The manual mode permits the expert users to specify 
desired template, and the semi-automated mode allows 
users to select the template from a suggested list. Besides 
the selection of templates, expert users can edit the target-
template alignment thus allowing further customization of 
the modeling process. 
After the modeling process is completed, a link with the 
prediction results will be returned via email. Users can refer 
to the link to view the prediction result and download the 
models. The prediction results consist of: (i) a summary of 
the selected template(s), (ii) the predicted model based on 
each template in PDB format and (iii) a brief report for each 
modeling attempt that include the target-template alignment 
used in modeling building, a comparison of the model 
against the template by means of RMSD and a 
PROCHECK report on the stereochemical quality of the 
models. 

Figure 2. The web interface of SDPMOD.

Figure 1. The SDPMOD 
methodology for automatic 
comparative modeling of 
small disulphide-bonded 
proteins

SDPMOD is freely accessible to academic or non-profit 
users via a web interface (shown in Figure 2) at 
http://proline.bic.nus.edu.sg/sdpmod.


