CHIRAL BICYCLIC GUANIDINE CATALYZED MICHAEL REACTIONS

YE WEIPING
(BSc., Peking University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

To my parents, sisters, and Junye, for their love, support, and encouragement

Acknowledgements

First and foremost, I would like to take this opportunity to thank my supervisor, Assistant Professor Tan Choon-Hong, for his guidance and encouragement throughout my PhD research and study.

I appreciate Mr. Goh Kunli's help in proofreading this manuscript. Mr. Soh Ying Teck and Dr. Jiang Zhiyong's suggestions and comments also helped improve this thesis.

I would also like to thank all my labmates for creating such a harmonious, encouraging, and helpful working environment. My special thanks go to Miss Serena Goh, Mr. Leow Dasheng, Mr. Chian Chee-Hoe, Mr. Tan Chin-Tong, and Dr. Jiang Zhiyong for their participation in different stages of this project.

I thank Mdm Han Yanhui and Miss Ler Peggy for their assistance in NMR analysis, and Mdm Wong Lai Kwai and Mdm Lai Hui Ngee for their assistance in Mass analysis as well. I also owe my thanks to many other people in NUS chemistry department, for their help and assistance from time to time.

Last but not least, I thank all my friends in Singapore who helped me settle down at the beginning. Singapore is a great place and I enjoy the life here.

Table of Contents

Summary
List of Schemes
List of Tables
List of Figures
List of Abbreviations
Chapter 1
Chiral Guanidines and Guanidinium Derivatives as Asymmetric Catalysts 14
Chapter 2
1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) Catalyzed Michael Reactions
2.1 The Synthetic Utility of TBD 31
2.2 TBD Catalyzed Michael Reactions 32
Chapter 3
Chiral Bicyclic Guanidines Catalyzed Michael Reaction
3.1 An Aziridine-Based Synthesis of Chiral Bicyclic Guanidines 47
3.2 Michael Reaction between 2-Cyclopenten-1-one and 1,3-Dicarbonyl Compounds 49
3.3 Michael Reactions of Acyclic Michael Acceptors 66
Chapter 4
Michael Reaction between N-Alkyl Maleimides and 1,3-Dicarbonyl Compounds
4.1 Michael Reaction of N-Alkyl Maleimides 73
4.2 Enantioselective Synthesis of (S)-(+)-homo- β-Proline 78
Chapter 5
Proposed Stereochemical Model for the Origin of Enantioselectivity 82
Chapter 6
Experimental Procedures
6.1 General Procedures 91
6.2 Preparation of S, S^{\prime}-Dialkyl Dithiomalonates 92
6.3 General Procedures for the Synthesis of Chiral Bicyclic Guanidines 94
6.4 Typical Experimental Procedures for the Michael Reactions 101
6.5 Characterization of Michael Adducts 102
6.6 Synthesis of (S)-(+)- β-Proline 141
References 146
Appendix 156
Publications 226

Summary

The aim of this study is to develop a highly enantioselective Michael reaction catalyzed by chiral bicyclic guanidines.

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD), a bicyclic guanidine base, was found to be an excellent catalyst for Michael and Michael-type reactions. A wide variety of Michael donors and acceptors can participate in these reactions using 10-20 mol\% of TDB. These reactions are mild, fast, easy to perform, and proceed with high yields. They can occur in several solvents without the need for strictly anhydrous conditions.

A series of chiral bicyclic guanidines, both symmetrical and non-symmetrical, were synthesized using a concise and efficient aziridine-based synthetic methodology. One of the synthesized chiral bicyclic guanidine was found to be a highly enantioselective organocatalyst for the Michael reactions between 2-cyclopenten-1-one and various 1,3-dicarbonyl compounds, including dialkyl malonates, benzoylactetates, and S, S^{\prime} 'dialkyl dithiomalonates. The enantioselectivities generally range from $86-96 \%$, with yields between $84-99 \%$.

The substrate scope of the chiral bicyclic guanidine catalyzed Michael reaction was expanded to include N-alkyl maleimides. The enantioselectivities generally range from $90-96 \%$, with yields between $91-99 \%$. The methodology has been applied to the first enantioselective synthesis of $(S)-(+)$-homo- β-proline, which is a potent GABA agonist and uptake inhibitor.

A stereochemical model was proposed to explain the origin of the high enantioselectivity obtained.

List of Schemes

Scheme 1.1 Ma and Cheng's chiral guanidine catalyzed Michael reaction of glycinate.

Scheme 1.2 Ishikawa's chiral guanidine catalyzed Michael reaction of glycinate.
Scheme 1.3 Ma's chiral guanidine catalyzed Michael reaction and Diels-Alder reaction between anthrone and maleimide.

Scheme 1.4 Chiral bicyclic guanidinium salt catalyzed aza-Michael reaction.

Scheme 1.5 Chiral guanidine or guanidinium catalyzed nitro Michael reaction.
Scheme 1.6 Terada's axially chiral guanidine catalyzed Michael reaction of nitroalkene.

Scheme 1.7 Lipton's cyclic dipeptide catalyzed Strecker reaction.

Scheme 1.8 Corey's bicyclic guanidine catalyzed Strecker reaction.
Scheme 1.9 Guanidinium slat catalyzed phase transfer epoxidation.
Scheme 1.10 Guanidine promoted epoxidation of chalcone.
Scheme 1.11 Guanidine promoted epoxidation.
Scheme 1.12 Chiral guanidine catalyzed asymmetric silylation of secondary alcohol.

Scheme 1.13 Chiral guanidine catalyzed TMS cyanation of aliphatic aldehydes $\mathbf{4 5}$.
Scheme 1.14 Chiral guanidine mediated azidation of (\pm)-1-indanol 41a.
Scheme 1.15 Isolated complex between TBD and phenyl nitromethane.
Scheme 1.16 Henry reaction catalyzed by homochiral guanidine.
Scheme 1.17 Diastereoselective Henry reaction catalyzed by chiral guanidines.
Scheme 1.18 Diastereoselective Henry reaction catalyzed by a guanidine-thiourea catalyst.

Scheme 1.19 Chiral pentacyclic guanidinium salt catalyzed phase transfer alkylation.

Scheme 1.20 Chiral tetracyclic guanidinium salt catalyzed phase transfer alkylation.
Scheme 2.1 Organobase catalyzed Michael reaction between 2-cyclopenten-1-one 64 and dimethyl malonate 65 a .

Scheme 2.2 Several organobase catalyzed Michael reaction between Michael acceptors 67 and dimethyl malonate 65a.

Scheme 2.3 TBD ($10 \mathrm{~mol} \%$) catalyzed Michael addition of various carbon nucleophiles to 2-cyclopenten-1-one $\mathbf{6 4}$ in toluene at rt.

Scheme 2.4 TBD catalyzed Michael reaction between various Michael acceptors 67 and dimethyl malonate 65 a.

Scheme 2.5 TBD (10 mol\%) catalyzed Michael reactions between 2-acetyl-cyclopentanone $\mathbf{6 5 f}$ and various activated terminal alkenes 69a-d.

Scheme 3.1 Synthesis of symmetrical chiral bicyclic guanidines.
Scheme 3.2 Synthesis of non-symmetrical or hindered chiral bicyclic guanidines.
Scheme 3.3 Various chiral bicyclic guanidines catalyzed Michael reaction of 2-cyclopenten-1-one 64 and dimethyl malonate 65a.

Scheme 3.4 Chiral bicyclic guanidines 79b catalyzed Michael reaction of 2-cyclopenten-1-one 64 and dimethyl malonate $\mathbf{6 5 a}$ in different conditions.

Scheme 3.5 Determination of the absolute configuration of $\mathbf{6 5 y}$.
Scheme 3.6 Bicyclic guanidines catalyzed Michael reaction of nitroalkanes with trans-chalcone 35a.

Scheme 3.7 Bicyclic guanidines catalyzed Michael reaction of dimethyl malonate with fumaric derivatives.

Scheme 3.8 Bicyclic guanidines catalyzed Michael reaction of dimethyl malonate $65 a$ with fumaric derivatives 84 .

Scheme 4.1 Cyclic Michael acceptors that resemble 2-cyclopenten-1-one 64 tested in the reaction with dimethyl malonate $\mathbf{6 5 a}$ in the presence of 10 $\mathrm{mol} \% \mathrm{TBD}$ in toluene.

Scheme 4.2 Chiral guanidine 79b catalyzed Michael reaction between N -substituted maleimides 87a-b and dimethyl malonate 65a.

Scheme 4.3 Chiral guanidine 79b catalyzed Michael reaction between N-alkyl maleimides and S, S^{\prime}-dialkyl dithiomalonates.

Scheme 4.4 Chiral Guanidine 79b catalyzed Michael reaction between N -alkyl maleimides and 1,3-diketones.

Scheme 4.5 Derivatization of Michael adducts 90f-h for HPLC analyses.
Scheme 4.6 The first enantioselective synthesis of (S)-(+)-homo- β-proline.
Scheme 5.1 Proposed catalytic cycle in the chiral bicyclic guanidine catalyzed Michael reaction.

List of Tables

Table 2.1 The influence of catalyst amount and solvents on the reaction between 2-cyclopenten-1-one 64 and dimethyl malonate 65a.

Table 2.2 The influence of different organobases ($10 \mathrm{~mol} \%$) on the reaction between 2-cyclopenten-1-one 64 and dimethyl malonate $65 a$ in toluene as solvent.

Table 2.3 Comparision of TBD with other organobases as catalyst ($10 \mathrm{~mol} \%$) in the reactions of various substrates 67 and dimethyl malonate 65a (Scheme 2.2).

Table 2.4 TBD catalyzed Michael addition of various carbon nucleophiles to 2-cyclopenten-1-one 64 (Scheme 2.3).

Table 2.5 TBD (10 mol\%) catalyzed Michael reaction between dimethyl malonate and various substrates in toluene.

Table 2.6 The reaction times and yields of the reactions in Scheme 2.5.
Table 3.1 Various chiral bicyclic guanidines catalyzed Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one 64 (Scheme 3.3).

Table 3.2 Solvent effect on the Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one 64 catalyzed by 79b (Scheme 3.4).

Table 3.3 Concentration and temperature effects on the Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one 64 catalyzed by 79b in toluene as solvent.

Table 3.4 Additive effect on the Michael addition of dimethyl malonate 65a to 2 -cyclopenten-1-one $\mathbf{6 4}$ catalyzed by $\mathbf{7 9 b}$.

Table 3.5 Chiral guanidine 79b catalyzed Michael addition of various dialkyl malonates to 2-cyclopenten-1-one $\mathbf{6 4}$.

Table 3.6 Chiral guanidine 79b catalyzed Michael addition of various ethyl benzoylacetates 651-r to 2-cyclopenten-1-one $\mathbf{6 4}$.

Table 3.7 Chiral guanidine 79b catalyzed Michael addition of various 1,3-diketones $\mathbf{6 5 s}$-u and $\mathbf{6 5 f}$ to 2 -cyclopenten-1-one $\mathbf{6 4}$.

Table 3.8 Chiral guanidine 79b catalyzed Michael addition of S, S^{\prime} 'dialkyl dithiomalonates $\mathbf{6 5 v}-\mathbf{y}$ to 2 -cyclopenten-1-one $\mathbf{6 4}$.

Table 3.9 Chiral guanidine 79b catalyzed Michael addition between other cyclic enones and 1,3-dicarbonyl compounds.

Table 3.10 The influence of different guanidine catalysts on the Michael reaction of nitroalkanes with trans-chalcone 35a (Scheme 3.6).

Table 3.11 Chiral bicyclic guanidines catalyzed Michael reaction of nitroalkanes with $\mathbf{6 4}$ and $\mathbf{6 7 m}$.

Table 3.12 The influenece of different guanidine catalysts on the reaction in Scheme 3.8.

Table 4.1 Michael addition of S, S^{\prime}-dialkyl dithiomaloates to N -alkyl maleimides catalyzed by 79b (Scheme 4.3).

Table 4.2 Michael addition of 1,3-diketones to N -alkyl maleimides catalyzed by 79b.

Table 5.1 ${ }^{1} \mathrm{H}$ NMR study of 79b, 65a, and their mixture in Tolune-D8 at $25^{\circ} \mathrm{C}$.
Table 5.2 ${ }^{1} \mathrm{H}$ NMR study of $\mathbf{7 9 b}, \mathbf{6 5 y}$, and their mixture in Tolune-D8.

List of Figures

Fig. 2.1 Various organobases.

Fig. 2.2 Michael donors 65I-VIII that do not react with 2-cyclopenten-1-one 64 in toluene at rt in the presence of TBD ($10 \mathrm{~mol} \%$).

Fig. 2.3 Michael acceptors 67I-VI that do not react with dimethyl malonate 65a in toluene at rt in the presence of TBD ($10 \mathrm{~mol} \%$).

Fig. 3.1 The effect of $C 2$ and $C 8$ chiral centers.
Fig. 3.2 Difference between thioester and ordinary ester.
Fig. 5.1 Hydrogen bonding motifs between guanidinium groups and oxoanions revealed by crystal X-ray structures: I) guanidinium with phosphates; II) guanidinium with carboxylates; III) guanidinium with nitrates.

Fig. 5.2 Proposed pre-transition-state assemblies for the Michael reaction between $\mathbf{6 5 a}$ and $\mathbf{6 4}$ catalyzed by 79b.

Fig. 5.3 The reason of 1:1 d.r. obtained using benzoylacetates as the donors.

Fig. 5.4 Proposed pre-transition-state assemblies for the Michael reaction between $65 y$ and 87 b catalyzed by 79b.

Fig. 5.5 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of the mixture (1:1) of $\mathbf{7 9 b}$ and $\mathbf{6 5 y}$ at $25^{\circ} \mathrm{C}$ (a), $-20^{\circ} \mathrm{C}$ (b), and $-50^{\circ} \mathrm{C}$ (c).

List of Abbreviations

AcOH	acetic acid
Ac	acetyl
[α]	optical rotation
aq.	aqueous
Bn	benzyl
$i \mathrm{Bu}$	iso-butyl
$t \mathrm{Bu}$	tert-butyl
c	concentration
Cbz	benzyloxycarbonyl
${ }^{\circ} \mathrm{C}$	degrees (Celcius)
δ	chemical shift in parts per million
DBN	1,5-diazabicyclo[4.3.0]non-5-ene
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DMAP	4-dimethylaminopyridine
DMF	dimethyl formamide
DMSO	dimethyl sulfoxide
dd	doublet of doublet
dr	diastereomeric ratio
ee	enantiomeric excess
EI	electron impact ionization
ESI	electro spray ionization

Et	ethyl
FAB	fast atom bombardment ionization
FTIR	fourier transformed infrared spectroscopy
g	grams
h	hour(s)
HPLC	high pressure liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	hertz
i.d.	internal diameter
IR	infrared
J	coupling constant
LRMS	low resolution mass spectroscopy
Me	methyl
MeCN	acetonitrile
MeOH	methanol
mg	milligram
MHz	megahertz
min.	minute(s)
ml	milliliter
$\mu \mathrm{l}$	microliter
mmol	millimole
MS	mass spectroscopy
MTBD	1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine

NMR	nulcear magnetic resonance
NOE	nuclear Overhauser enhancement
ppm	parts per million
Pr	isopropyl
rt	room temperature
$\mathrm{S}_{\mathrm{N} 2}$	nucleophilic substitution, second order
TBD	1,5,7-Triazabicyclo[4.4.0]dec-5-ene
THF	tetrahydrofuran
TLC	thin layer chromatography
Tol.	transition state
T.S.	para-toluenesulfonyl chloride
TsCl	para-toluenesulfonic acid

Chapter 1

Chiral Guanidines and Guanidinium

Derivatives as Asymmetric Catalysts

Arginine $\mathbf{1}$ is found in the active site of many enzymes and its guanidine side chain typically exists in the protonated form as a guanidinium ion, which is known to interact with phosphates, nucleotide bases, and carboxylate containing biomolecules through double hydrogen bonding. ${ }^{1}$ Guanidine is one of the most basic forms of neutral nitrogen compounds and guanidine derivatives are widely used as strong bases in synthetic organic chemistry. ${ }^{2}$

It is anticipated that chiral guanidine derivatives can function as asymmetric catalysts by utilizing the great basicity of the guanidine group and the special hydrogen bonding pattern of the guanidinium ion. ${ }^{3}$ This research topic has increasingly attracted great interest and the asymmetric catalytic ability of chiral guanidine or guanidinium has been demonstrated in several reactions, including the Michael reaction, Strecker reaction, enone epoxidation, asymmetric silylation of secondary alcohol, TMS cyanation, azidation, Henry reaction, and phase transfer alkylation.

Michael reactions:

In 1999, Ma reported that chiral guanidines 4a-b catalyze the Michael reaction of glycinate 2 to ethyl acrylate 3 (Scheme 1.1). ${ }^{4}$ Although the yield was high, the ee obtained from the four different catalysts only ranged within 6-29\%.

Scheme 1.1. Ma and Cheng's chiral guanidine catalyzed Michael reaction of glycinate.

In 2001, Ishikawa used the modified guanidine 7 to catalyze the Michael reaction of glycinate 2 under solvent free condition (Scheme 1.2). ${ }^{5}$ Good yield (85\%) and high ee (97%) were obtained with the reaction of ethyl acrylate 3. It seems that this reaction only works well for acrylates. The reaction of acrylonitrile $\mathbf{6}$ only gave the product in moderate yield (79\%) and ee (55\%). In addition, the typical reaction time was 3-5 days.

Scheme 1.2. Ishikawa's chiral guanidine catalyzed Michael reaction of glycinate.

Ma also reported that chiral guanidine 4a catalyzed the Michael reaction and Diels-Alder reaction between anthrone 9 and N-methylmaleimide 10 (Scheme 1.3). ${ }^{6}$ Up to 70% ee and 67% yield was obtained for the Michael addition product 12, while the Diels-Alder product 11 was obtained in minimal yield ($<3 \%$), with no ee determined.

Scheme 1.3. Ma's chiral guanidine catalyzed Michael reaction and Diels-Alder reaction between anthrone and maleimide.

Scheme 1.4. Chiral bicyclic guanidinium salt catalyzed aza-Michael reaction.

Knowing that guanidinium ions interact well with carboxylate ion, both Mendoza ${ }^{7}$ and Murphy ${ }^{8}$ studied the Michael reaction between unsaturated lactone $\mathbf{1 3}$ and pyrrolidine $\mathbf{1 4}$, hoping that the guanidinium ion would interact with the lactone in a similar manner as with a carboxylate ion (Scheme 1.4). Mendoza used bicyclic
guanidinium 15 as catalyst and Murphy used tetracyclic guanidinium 16 instead. However, in both cases, there was no enantioselectivity, though the reaction rates were increased.

In 1995, Davis reported that chiral bicyclic guanidine 20 catalyzed the nitro Michael reaction of 18a-c to 19, giving products 21a-c in 9-12\% ee (Eq. (1), Scheme 1.5). ${ }^{9}$ Similar reaction between 2-nitro propane 22 and chalcone 23 was catalyzed by Murphy's tetraguanidinium salt 24, albeit with moderate yield (70\%) and unsatisfactory ee (23\%) (Eq. (2), Scheme 1.5). ${ }^{8}$

Scheme 1.5. Chiral guanidine or guanidinium catalyzed nitro Michael reaction.

The chiral guanidine catalysts discussed above are either acyclic guanidine (eg. 4a-c) with chiral side chains or mono-to-polycyclic systems (eg. 4d, 7, 15, 16, 20, and 24) with central chiralities. Recently, Terada ${ }^{3}$ et al. developed a new type of chiral guanidine catalysts, such as $(R)-\mathbf{2 8}$, which introduced an axially chiral binaphthyl backbone. This axially chiral guanidine was found to be a highly efficient catalyst for
the Michael reaction between a variety of conjugated nitroalkenes 26 and several 1,3-dicarbonyl compounds 27, featuring both high yielding and excellent enantioselectivity, with catalyst loading as low as $0.4-2 \mathrm{~mol} \%$ (Scheme 1.6).

29a
98\% yield, 97% ee

29d
>99\% yield, 95\% ee

29b
86\% yield, 91% ee

29e
79\% yield, 91% ee

29c
90% yield, 95% ee

29f 82\% yield, 98% ee

Scheme 1.6. Terada's axially chiral guanidine catalyzed Michael reaction of nitroalkene.

Strecker reaction:

In 1996, the Lipton group reported the first catalytic asymmetric Strecker reaction using the cyclic dipeptide $\mathbf{3 1}$ as the catalyst (Scheme 1.7). ${ }^{10}$ The guanidine side-chain of $\mathbf{3 1}$ was found to be a prerequisite for asymmetric induction as replacing the
guanidine group with an imidazole group resulted in a non-enantioselective reaction. It was proposed that the more basic guanidine group enabled the catalyst to accelerate proton transfer in the Strecker reaction. Using only $2 \mathrm{~mol} \%$ catalyst 31, good to excellent enantioselectivities ($80->99 \%$ ee) were usually obtained with the reaction of imines derived from benzaldehyde or electron-deficient aldehydes (eg. (S)-32a-c), except (S)-32d. However, unsatisfactory enantioselectivities were obtained with the heteroaromatic (eg. (S)-32e) or aliphatic ((S)-32f) Strecker products.

(S) -32a
97% yield, >99\% ee

(S) -32d
71% yield, $<10 \%$ ee

(S)-32b
94% yield, >99\% ee

(S)-32e
86% yield, $<10 \%$ ee

(S) -32c
90% yield, 96% ee

(S) $\mathbf{- 3 2 f}$
81% yield, $<10 \%$ ee

Scheme 1.7. Lipton's cyclic dipeptide catalyzed Strecker reaction.

In 1999, Corey and Grogan developed an efficient asymmetric Strecker reaction using the C_{2}-symmetric bicyclic guanidine $\mathbf{3 3}$ as the catalyst (Scheme 1.8). ${ }^{11}$ The
N-benzhydryl substituent of the imine substrate $\mathbf{3 0}$ was found to be critical to obtain good enantioselectivity (up to 88%), as N-benzyl or N-(9'-fluorenyl)-substituted imines gave poor ee ($0-25 \%$). In contrast with Lipton's diketopiperazine-catalyzed Strecker reaction, the reactions of aliphatic imines gave high yields (ca. 95\%) and good enantioselectivities (63-84\%).

(R)-32a
96% yield, 86% ee

(R)-32h
96% yield, 79% ee

(R)-32b

88\% yield, 81% ee

(S) -32i
95% yield, 84% ee

(R) $-\mathbf{3 2 g}$
98% yield, 88% ee

(S) -32
95% yield, 76% ee

Scheme 1.8. Corey's bicyclic guanidine catalyzed Strecker reaction.
In the reaction mechanism proposed by the Corey group, a complex 34 was formed, in which both imine and cyanide attach to the guanidinium ion through
hydrogen bonds. The pre-transition state assembly modeling also explained the opposite configuration obtained for aromatic (eg. (R)-32a-h) and aliphatic (eg. (S)-32i-j) Strecker products.

Enone epoxidation:

Scheme 1.9. Guanidinium slat catalyzed phase transfer epoxidation.
In 2003, Murphy ${ }^{8}$ reported that tetracyclic guanidinium salt 24 catalyzed the phase transfer epoxidation of chalcones 23 and 35. High enantioselectivities were obtained for the two examples (93% ee for $\mathbf{3 6 a}, 91 \%$ ee for $\mathbf{3 6 b}$) shown in Scheme 1.9. These results are comparable with existing phase transfer catalysts for these processes.

$X=t B u, 34 \%$ yield, 49% ee
$\mathrm{X}=\mathrm{PhC}(\mathrm{Me})_{2}, 52 \%$ yield, 64% ee

Scheme 1.10. Guanidine promoted epoxidation of chalcone.

This reaction was also catalyzed by Ishikawa's monocyclic guanidine 37 (Scheme 1.10). ${ }^{5 \mathrm{a}}$ With $20 \mathrm{~mol} \%$ of the guanidine $\mathbf{3 7}$, epoxide $\mathbf{3 6 a}$ was obtained in 49% and
64% ee respectively when two different hydroperoxides were used.

Chiral monocyclic guanidines 40a-g were also found to promote the tert-butylhydroperoxide (TBHP)-mediated enantioselective epoxidation of enone 38. ${ }^{12}$ A stoichiometric amount of $\mathbf{4 0}$ was required to obtain moderate yields. With various chiral N-substituents on the guanidine 40, epoxide 39 was obtained in moderate enantioselectivities ranging from 26-60\% (Scheme 1.11).

40e
(39 50\% ee)

40b
(39 60\% ee)

40c
(39 40\% ee)

40d
(39 38\% ee)
40f
(39 41\% ee)

40g
(39 26\% ee)

Scheme 1.11. Guanidine promoted epoxidation.

Asymmetric silylation of secondary alcohols:

Ishikawa's modified guanidines 43 and $\mathbf{4 4}$ were also used as an asymmetric reagent for the kinetic silylation of secondary alcohols. ${ }^{5 b}$ Using guanidine 43, 42a was obtained in 59\% ee and 36\% yield (Scheme 1.12). While guanidine 44 was used, 42a and 42b were obtained in 58% and 70% ee respectively. In both cases, 1 equiv. of the guanidine was required.

Scheme 1.12. Chiral guanidine catalyzed asymmetric silylation of secondary alcohol.

TMS cyanation:

Ishikawa ${ }^{5 a}$ also reported that the C_{2}-symmetrical bicyclic guanidine 47a catalyzed the TMS cyanation of aliphatic aldehydes $\mathbf{4 5}$, affording the products $\mathbf{4 6}$ in quantitative yield and moderate ee (Scheme 1.13). However, low yield and ee were obtained when ketone was used in place of aldehyde.

Scheme 1.13. Chiral guanidine catalyzed TMS cyanation of aliphatic aldehydes 45.

Azidation reaction:

Chiral bicyclic guanidines 47a-b were also found to promote the kinetic azidation of (\pm)-1-indanol 41a (Scheme 1.14). ${ }^{5 \text { a }}$ Stoichiometric amount of the guanidine was used and the product was obtained in 26-30\% ee.

Scheme 1.14. Chiral guanidine mediated azidation of (\pm)-1-indanol 41a.

Henry reaction:

Since the isolation of complex 51, formed between the guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) 49 and phenyl nitromethane 50, it was anticipated that this type of intermediate could be a good model for an enantioselective guanidine-catalyzed Henry (nitroaldol) reaction. ${ }^{13}$

Scheme 1.15. Isolated complex between TBD and phenyl nitromethane.

The Nájera group tested the Henry reaction between aldehyde 52 and nitromethane $\mathbf{5 3}$ using a series of homochiral guanidines as the catalyst. ${ }^{14}$ The best enantioselectivity was achieved with guanidine $\mathbf{5 4}$ with C_{2}-symmetry, affording 55a in 54% ee and $\mathbf{5 5 b}$ in 33% ee. However, yields were compromised due to the low reaction temperature required for satisfactory enantioselectivity.

Scheme 1.16. Henry reaction catalyzed by homochiral guanidine.

Scheme 1.17. Diastereoselective Henry reaction catalyzed by chiral guanidines.

Ma also studied the diastereoselective Henry reactions of N, N-dibenzyl α-amino aldehydes $\mathbf{5 6}$ with nitromethane $\mathbf{5 3}$ catalyzed by guanidines (Scheme 1.17). ${ }^{15}$ Among the various chiral guanidines tested, including acyclic, monocyclic, and bicyclic ones, acyclic guanidine $\mathbf{5 7}$ afforded the product 58-anti with the best diastereoselectivity. While the reaction was generally high yielding, the diastereoselectivity was highly dependent on the substrates. Good diastereoselectivities (96% and 91% respectively) were observed with products 58a and 58b. Only moderate or poor diastereoselectivities were obtained with other products (eg. 58c, 58d).

58e-anti anti:syn(99:1) 70% (99% ee)

58g-anti anti:syn(99:1) 70% (95% ee)

58f-anti anti:syn(99:1) 70\% (95\% ee)

60a-anti anti:syn(86:14) 82\% (99\% ee)

58a-anti anti:syn(99:1) 33\% (99\% ee)

60b-anti anti:syn(84:16) 80\% (99\% ee)

Scheme 1.18. Diastereoselective Henry reaction catalyzed by a guanidine-thiourea catalyst.

Nagasawa ${ }^{16}$ recently developed a highly diastereoselective Henry reaction. Under phase transfer conditions, $(R, R)-\mathbf{6 1}$, a guanidinium salt with two thiourea groups, effectively catalyzed the Henry reaction between various α-substituted aldehydes $\mathbf{5 6}$ or $\mathbf{5 9}$ with nitromethane $\mathbf{5 3}$ (Scheme 1.18). In the reactions of N, N-dibenzyl α-amino aldehydes 56, the anti-nitro alcohols (eg. 58e, f-g) were obtained with high diastereoselectivity. Low yield was obtained with the bulky β-branched aldehyde $\mathbf{5 6 a}(\mathrm{R}=i \mathrm{Pr})$. Reactions with 59 proceeded to give the products with good diastereoselectivities and high yields (eg. 60a, b).

Phase transfer alkylation:

Scheme 1.19. Chiral pentacyclic guanidinium salt catalyzed phase transfer alkylation.

Based on the marine natural product ptilomycalin A and related products, Nagasawa designed a series of C_{2}-symmetrical pentacyclic guanidiniums, including 62 as catalyst. ${ }^{17}$ In the presence of $30 \mathrm{~mol} \%$ of 62 and under phase transfer conditions, glycinate 2 underwent alkylation reaction with various alkyl halides (Scheme 1.19). (R)- 63 were generated as the major product, with ee in the range of 80 -90%. The yields were generally moderate to good ($55-85 \%$), although the reaction usually took 95-140 h to complete. It was observed that the stereochemical outcome was controlled by the configuration of the spiro-ether rings of the guanidinium
catalyst. The substituent (methyl group) on the spiro ether rings of $\mathbf{6 2}$ was found to play a key role in effective asymmetric induction.

Murphy ${ }^{8}$ also reported that tetracyclic guanidinium 24, which is a subunit of 62, catalyzed the phase transfer alkylation of glycinate $\mathbf{2}$ with benzyl bromide, to afford (R)-63a in 86% ee and $>97 \%$ conversion (Scheme 1.20). The catalyst was found to be robust and recyclable.

Scheme 1.20. Chiral tetracyclic guanidinium salt catalyzed phase transfer alkylation.

Summary:

Chiral guanidines function as effective Brønsted base catalyst for a variety of reactions. It is best demonstrated in Terada's axially chiral guanidine (R)-28 catalyzed Michael reaction of nitroalkenes, Lipton's dipeptide 31 and Corey's bicyclic guanidine $\mathbf{3 3}$ catalyzed Strecker reaction. Chiral guanidinium salts are also effective phase transfer catalysts, as represented by Nagasawa's pentacyclic guanidinium 62 catalyzed phase transfer alkylation of glycinate 2.

There are less successful examples that utilize acyclic guanidines, which are structurally less rigid than mono-polycyclic guanidines. However, currently available
methods for the preparation of chiral bicyclic, tetracyclic and pentacyclic guanidines are generally lengthy, which tends to impede catalyst supply for methodology studies.

Chapter 2

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD)

2.1 The Synthetic Utility of TBD

Non-chiral bicyclic guanidine bases ${ }^{18}$ such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene (49, $\operatorname{TBD}, \mathrm{pKa}_{(\mathrm{MeCN})}=26$, Fig. 2.1) and $1,3,4,6,7,8$-hexahydro-1-methyl-2H-pyrimido-[1,2-a]-pyrimidine (7-methyl-TBD or MTBD, $\mathrm{pKa}_{(\mathrm{MeCN})}=25$, Fig. 2.1) are known as superbases due to their high pKa values. ${ }^{19}$ They have been shown to promote various reactions including the Wittig reaction, ${ }^{20}$ nitroaldol (Henry) reaction, ${ }^{21}$ dialkyl phosphite addition to carbonyl compounds ${ }^{21}$ and the addition of azoles to α, β-unsaturated nitriles and esters. ${ }^{22}$

49 TBD

TMP

MTBD

DABCO

DBU

TMG

DIPEA

Fig. 2.1. Various organobases.

Stoichiometric amounts of MTBD have been shown to be moderately active towards the Baylis-Hillman reaction. ${ }^{23}$ Immobilised MTBD, in siliceous MCM-41, can promote the Knoevenagel condensation, epoxidation ${ }^{24}$ and the formation of thioureas. ${ }^{25}$ Polystyryl supported-TBD (PSTBD) can catalyze 1,2-epoxide ring-opening, aldol-type condensation and the Michael addition of nitroethane to benzylidene acetone. ${ }^{26}$ Nucleophilic ring opening reactions of 2,2-dialkyl-1,2,3,4-tetrahydro- γ-carbolinium salts with thiols can also be mediated by polymer-supported TBD. ${ }^{27}$

Carbon-carbon bond formation is central to organic synthesis. Direct Michael addition and Michael-type conjugate reactions are amongst the most simple, efficient and atom-economical ways to achieve this transformation. These reactions are typically performed with stoichiometric amounts of inorganic bases such as sodium ethoxide (NaOEt), potassium tert-butoxide ($t \mathrm{BuOK}$), potassium hydroxide (KOH), sodium metal, LDA, sodium hydride (NaH) or n-butyllithium ($n \mathrm{BuLi}$). ${ }^{28}$ Strong basic conditions can, however, lead to side reactions. Recently, excellent enantioselective Michael reactions have been developed using transition metal catalysts. ${ }^{29}$ A quaternary ammonium salt,,30 proline lithium salt, ${ }^{31}$ L-proline, ${ }^{32}$ cinchona alkaloids ${ }^{33}$ and imidazolidine ${ }^{34}$ have also been shown to exhibit catalytic activity in several conjugate addition reactions. In contrast, organobases such as DBU^{35} (Fig. 2.1) and $\mathrm{TBD}^{26,36}$ are less extensively documented as catalysts for Michael reactions. We embarked on a search for the range of substrates and carbon nucleophiles that are suitable for Michael and Michael-type reactions using TBD as the catalyst.

2.2 TBD Catalyzed Michael Reactions

2.2.1 Various organobases catalyzed Michael reaction of cyclopentenone and dimethyl malonate.

As a reliable starting point, dimethyl malonate 65a was used as the Michael donor to the cyclic enone, 2-cyclopenten-1-one 64 (Scheme 2.1, Table 2.1). With 10 $\mathrm{mol} \%$ of TBD , the reaction proceeded smoothly at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$ with toluene as the solvent. The reaction completed in 5 minutes and, after flash chromatography, gave the product in an excellent isolated yield of 95\% (Table 2.1,
entry 1). The amount of catalyst could be reduced to $5 \mathrm{~mol} \%$ (entry 2) without affecting the yield. With only $2 \mathrm{~mol} \%$ or $1 \mathrm{~mol} \%$ TBD, the reaction proceeded to 60% conversion in 2 h (entry 3, 4). This protocol neither requires strictly anhydrous condition nor low reaction temperature. It is more convenient and operationally simpler to perform than the reported methodology using sodium methoxide ($\mathrm{NaOMe} \mathrm{)}$ to generate the same product. ${ }^{37}$

Scheme 2.1. Organobase catalyzed Michael reaction between 2-cyclopenten-1-one 64 and dimethyl malonate 65a.

Table 2.1. The influence of catalyst amount and solvents on the reaction between 2-cyclopenten-1-one $\mathbf{6 4}$ and dimethyl malonate $\mathbf{6 5 a}$.

entry	catalyst/mol\%	solvent	time	yield/ $/{ }^{\text {a }}$
1	TBD (10)	Toluene	5 min	95
2	TBD (5)	Toluene	30 min	95
3	TBD (2)	Toluene	2 h	$60^{\text {b }}$
4	TBD (1)	Toluene	2 h	$60^{\text {b }}$
5	TBD (10)	DMF	15 min	90
6	TBD (10)	MeOH	15 min	90
7	TBD (10)	MeCN	30 min	90
8	TBD (10)	$\mathrm{Et}_{2} \mathrm{O}$	30 min	90
9	TBD (10)	THF	30 min	90
10	TBD (10)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 h	$70^{\text {b }}$
11	TBD (20)	Tol: $\mathrm{H}_{2} \mathrm{O}$ (99:1)	30 min	90

${ }^{\text {a }}$ Isolated yield. Conversion estimated to be 100% by TLC. No side products observed. ${ }^{\mathrm{b}}$ Conversion estimated by TLC.

Under the same conditions, a variety of solvents such as DMF (Table 2.1, entry 5), methanol (entry 6), acetonitrile (entry 7), diethyl ether (entry 8) and THF (entry 9) were found to be suitable solvents for this reaction. These reactions typically completed within 15 to 30 minutes, giving isolated yields of $\geq 90 \%$. However, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which is a mid-polarity solvent, the reaction reached only 70% conversion in 1 h (entry 10). We also discovered that this reaction is not sensitive to moisture. For example, the reaction in toluene containing 1% water with $20 \mathrm{~mol} \%$ of the catalyst was completed in 30 minutes and the yield was 90% (entry 11).

Next, we were keen to find out if it is a general phenomenon for organobases to act as catalysts in Michael reactions. We compared the results obtained with TBD against a variety of organobases such as MTBD, DBU, DBN, 1,1,3,3-tetramethylguanidine (TMG, Fig. 2.1), tetramethylpiperidine (TMP, Fig. 2.1), DABCO and diisopropylethylamine (DIPEA, Fig. 2.1). MTBD (Table 2.2, entry 1), DBU (entry 3) and DBN (entry 4) are all effective for this reaction. However, they catalyzed the reaction at a much slower rate than TBD. It is interesting to note the difference in reaction time between TBD and MTBD (entry 2). Such differences were much reduced in polar solvents such as MeOH and MeCN . The guanidinium intermediate that is generated when TBD is protonated may play a role as a hydrogen bond donor in the catalytic cycle. As such, this type of interaction would be enhanced in non-polar solvents such as toluene. The TMG catalyzed reaction (entry 5) was not able to reach completion. Other organobases such as TMP, DABCO and DIPEA were ineffective as catalyst for this reaction (entries 6-8). No products were observed after

46 h of reaction time. This was expected as the conjugate acids of these bases have relatively low pKa values.

Table 2.2. The influence of different organobases ($10 \mathrm{~mol} \%$) on the reaction between 2-cyclopenten-1-one 64 and dimethyl malonate $\mathbf{6 5 a}$ in toluene as solvent.

entry	catalyst	$\mathrm{pKa}^{\mathrm{a}}(\text { solvent })^{\text {lit }}$	time	yield/ $^{\mathrm{b}}$
1	TBD	$26.0(\mathrm{MeCN})^{19 \mathrm{a}}$	5 min	95
		$21.0(\mathrm{THF})^{19 \mathrm{~b}}$		
2	MTBD	$25.4(\mathrm{MeCN})^{19 \mathrm{a}}$	6 h	91
3		$17.9(\mathrm{THF})^{19 \mathrm{~b}}$		
3	DBU	$16.8(\mathrm{THF})^{19 \mathrm{~b}}$	24 h	93
4	DBN	NA	24 h	90
5	TMG	$23.3(\mathrm{MeCN})^{19 \mathrm{a}}$	37 h	85^{c}
6	TMP	$15.5(\mathrm{THF})^{19 \mathrm{~b}}$	46 h	0
7	DABCO	$8.9(\mathrm{DMSO})^{\mathrm{i}}$	46 h	0
8	DIPEA	NA	46 h	0

${ }^{a}$ Values for conjugate acids of the respective bases. ${ }^{b}$ Isolated yield. No side products observed. ${ }^{\text {c }}$ Reaction did not complete.

Scheme 2.2. Several organobase catalyzed Michael reaction between Michael acceptors $\mathbf{6 7}$ and dimethyl malonate $\mathbf{6 5 a}$.

We next investigated whether TBD was also advantageous on other reactions of different Michael acceptors. We compared TBD against MTBD, DBU, and TMP in the reactions of 67a-c with dimethyl malonate 65a in toluene as solvent at rt (Scheme 2.2). In the case of highly reactive β-nitrostyrene 67a, MTBD and DBU were comparable with TBD in terms of reaction rate and conversion (Table 2.3, entries 1-3),

[^0]while TMP only gave a conversion of 10% after 19 h (entry 4). In the reactions of both 67b and 67c, TBD was considerably more effective than MTBD and DBU (entries 5-7, 9-11). TMP was ineffective in the reactions of 67b-c (entries 8, 12). Thus, it could be concluded that TBD was a generally more effective organobase for Michael reactions.

Table 2.3. Comparison of TBD with other organobases as catalyst ($10 \mathrm{~mol} \%$) in the reactions of various substrates 67 and dimethyl malonate $\mathbf{6 5 a}$ (Scheme 2.2).

${ }^{a}$ Estimated reaction conversion based on TLC. ${ }^{b}$ Isolated yield, also see Table 2.5 , entry 1 .

2.2.2 Suitable Michael donors for the reaction with cyclopentenone

Subsequently, we investigated a range of carbon nucleophiles suitable for this reaction using 2 -cyclopenten-1-one $\mathbf{6 4}$ as the substrate (Scheme 2.3). Diethyl malonate 65b (Table 2.4, entry 1) and di-tert-butyl malonate 65c (entry 2) were both effective donors for the reaction. Compared with the reaction of dimethyl malonate 65a, it was observed that as the alcohol groups of the malonate became bulkier, the
reaction rate decreased, though it did not affect the yield. Ethyl acetoacetate 65d (entry 3), N, N-dimethylacetoacetamide $\mathbf{6 5 e}$ (entry 4) and 2-acetylcyclopentanone $\mathbf{6 5 f}$ (entry 5) were also found to be useful donors. These three reactions were slower than that of dimethyl malonate and the reaction of $\mathbf{6 5 f}$ required $20 \mathrm{~mol} \%$ TBD (entry 5). The reactions of nucleophiles 65b-f proceeded smoothly, giving high isolated yields of the Michael adducts 66b-f. It is interesting to note that the reaction with 2-acetylcyclopentanone had no side products even though it contained multiple enolizable protons (entry 5). This demonstrates the mildness and chemoselectivity of this reaction. The quaternary carbon of the product was identified using DEPT NMR experiments.

Ethyl cyanoacetate $\mathbf{6 5 g}$ was a highly reactive donor and has side products in the reaction with 2-cyclopenten-1-one $\mathbf{6 4}$. The expected product $\mathbf{6 6 g}$ was isolated in 43% yield after 15 min reaction time (entry 6). Phenyl acetonitrile $\mathbf{6 6 h}$ was also an effective donor for the reaction and gave the Michael adduct $\mathbf{6 7 h}$ in a moderate yield of 82% after 18 h (entry 7).

Scheme 2.3. TBD ($10 \mathrm{~mol} \%$) catalyzed Michael addition of various carbon nucleophiles to 2-cyclopenten-1-one 64 in toluene at rt.

Table 2.4. TBD catalyzed Michael addition of various carbon nucleophiles to 2-cyclopenten-1-one 64 (Scheme 2.3).
entry donors
(
${ }^{\mathrm{a}}$ Isolated yield. ${ }^{\mathrm{b}} 20 \mathrm{~mol} \%$ of catalyst used.

Nitroalkanes are another important class of stabilized carbanions and were also tested as the Michael donor. The reaction of nitromethane with 2-cyclopenten-1-one 64 resulted in unidentified side products and the expected product was obtained in low yield. With $20 \mathrm{~mol} \% \mathrm{TBD}$, the reaction of the more hindered nitroalkane $\mathbf{2 2}$ went smoothly to give $\mathbf{6 6 i}$ in 80% yield after 6 h (entry 9).

Fig. 2.2. Michael donors 65I-VIII that do not react with 2-cyclopenten-1-one $\mathbf{6 4}$ in toluene at rt in the presence of TBD $(10 \mathrm{~mol} \%)$.

In our survey on Michael donors, compounds 65I-VIII (Fig. 2.2) were found to be ineffective as donors in the reaction with 2-cyclopenten-1-one $\mathbf{6 4}$ in toluene at rt . Amongst these donors, $\mathbf{6 5 I}$ and 65IV are most unexpected to be ineffective as they have similar pKa values and structures as dimethyl malonate.

Thus, it can be concluded that TBD is generally an effective base catalyst for the Michael reactions of 1,3-dicarbonyl compounds with cyclopentenone. The Michael addition of nitroalkanes to cyclopentenone can also be catalyzed by TBD.

2.2.3 Suitable Michael acceptors for the reaction catalyzed by TBD

Using dimethyl malonate 65a as the donor, we decided to investigate other suitable Michael acceptors (Scheme 2.4). We found that with $10 \mathrm{~mol} \%$ of TBD, various β-nitrostyrenes 67a and 67d-g (Table 2.5, entry 1-5) underwent Michael addition with dimethyl malonate $\mathbf{6 5 a}$ smoothly, featuring high yields in short reaction times (5 min). In the case of $\mathbf{6 7 g}, \mathrm{MeCN}$ was used as the solvent due to the poor solubility of $\mathbf{6 7} \mathbf{g}$ in toluene (entry 5).

Scheme 2.4. TBD catalyzed Michael reaction between various Michael acceptors 67 and dimethyl malonate 65a.

Various trans-chalcones 67h-l (Table 2.5, entry 6-10) were also suitable substrates, giving the corresponding products in high yields. We realized that electron deficient chalcones were more active substrates and gave shorter reaction time. The electron rich chalcones 67 k and 671 required $20 \mathrm{~mol} \% \mathrm{TBD}$ to complete the reaction. However, the difference in reaction time did not affect the yield of the reactions.

Trans-1,2-dibenzoylethylene $\mathbf{6 7 m}$ (entry 11) and trans-1,2-diacetylethylene $\mathbf{6 7 n}$ (entry 12) turned out to be very reactive and both of the reactions completed within 5 min, giving good to high yields. The reactions of diethyl fumarate $\mathbf{6 7 c}$ (entry 13)
and fumaronitrile 67i (entry 14) were relatively slower and required $15 \mathrm{~mol} \%$ and 20 $\mathrm{mol} \% \mathrm{TBD}$ respectively to complete.

It is interesting to note that the reaction of 2 -cyclohexen-1-one $\mathbf{6 7 p}$ was considerably slower than that of 2-cyclopenten-1-one 64 and required $25 \mathrm{~mol} \%$ catalyst to reach 83% yield after 10 h (Table 2.5, entry 15). The hindered cyclopentenone derivative, 2-methyl-2-cyclopenten-1-one $\mathbf{6 7 q}$ was even less reactive than $\mathbf{6 7 p}$ and only 20% conversion was achieved after 19 h (entry 16). Lactone $\mathbf{6 7 r}$, which is structurally similar to 2-cyclopenten-1-one 64, was also less reactive and after 53 h , only 30% conversion was indicated by TLC (entry 17).

Table 2.5. TBD ($10 \mathrm{~mol} \%$) catalyzed Michael reaction between dimethyl malonate and various substrates in toluene.
Entry
(

13			30 min	$91^{\text {d }}$
14			2 h	$93^{\text {c }}$
15			10 h	$83^{\text {e }}$
16			19 h	$20^{\text {f }}$
17	 67r		53 h	$30^{\text {f }}$

${ }^{\mathrm{a}}$ Isolated yield. ${ }^{\mathrm{b}} \mathrm{MeCN}$ used as solvent. ${ }^{\mathrm{c}} 20 \mathrm{~mol} \%$ of catalyst used. ${ }^{\mathrm{d}} 15 \mathrm{~mol} \%$ catalyst used. ${ }^{\mathrm{e}} 25 \mathrm{~mol} \%$ of catalyst used. ${ }^{\mathrm{f}}$ Estimated conversion indicated by TLC.

Fig. 2.3. Michael acceptors 67I-VI that do not react with dimethyl malonate 65a in toluene at rt in the presence of TBD $(10 \mathrm{~mol} \%)$.

Michael acceptors 67I-VI (Fig. 2.3) were found to be ineffective as substrates in the reaction with dimethyl malonate $\mathbf{6 5 a}$ in toluene at rt in the presence of TBD (10 $\mathrm{mol} \%$). Considering the fact that fumaronitrile $\mathbf{6 7 o}$ was a suitable substrate under the
same conditions, it was unexpected to see $\mathbf{6 7 I I}$ as ineffective substrate for the reaction. One of the reasons might be the steric hindrance caused by the tetra-substitution.

Scheme 2.5. TBD (10 mol\%) catalyzed Michael reactions between 2-acetyl-cyclopentanone $\mathbf{6 5 f}$ and various activated terminal alkenes 69a-d.

Table 2.6. The reaction times and yields of the reactions in Scheme 2.5.

entry	substrates	R	products	time	yield/ $/{ }^{\text {a }}$
1	69a	CN	70a	1 h	83
2	69b	$\mathrm{CO}_{2} \mathrm{Me}$	70b	30 min	93
3	69c	$\mathrm{CO}_{2} \mathrm{Ph}$	70c	30 min	97
4	69d	$\mathrm{SO}_{2} \mathrm{Ph}$	70d	1.5 h	87
5	69e	$\mathrm{SO}_{3} \mathrm{Ph}$	70e	5 min	85

${ }^{\text {a }}$ Isolated yield. Conversion estimated to be 100% by TLC. No side products observed.

One-step construction of a quaternary carbon is often a difficult task, especially under catalytic conditions and this area has attracted the interest of many chemists. ${ }^{38}$ Using our methodology, we therefore focused on broadening the range of suitable acceptors for the donor 2-acetylcyclopentanone $\mathbf{6 5 f}$ (Scheme 2.5). We tested various activated terminal alkenes and found several suitable acceptors; for example acrylonitrile 69a (Table 2.6, entry 1), acrylates 69b,c (entry 2, 3), phenyl vinyl sulfone 69d (entry 4) and phenyl vinylsulfonate 69e (entry 5). All reactions completed within a short reaction time, giving moderate to excellent isolated yields of previously unreported Michael adducts 70a-d. These Michael products are unreported previously.

The quaternary carbons of the products were identified using DEPT NMR experiments.

In conclusion, we have discovered a mild, catalytic, high yielding and efficient methodology for Michael and Michael-type reactions using TBD. This type of reaction is easy to perform, fast and the purification protocol is simple. No side products were observed for most reactions. As the reaction is not sensitive to moisture, the solvents used and reaction conditions need not be absolutely anhydrous. This methodology can accommodate a wide range of substrates and donors, making it a useful addition to the chemists' toolbox. Using this protocol, we have synthesized a series of Michael adducts containing quaternary carbon centers that were previously unreported. Moreover, TBD is inexpensive and commercially available.

Chapter 3

Chiral Bicyclic Guanidines

Catalyzed Michael Reaction

3.1 An Aziridine-Based Synthesis of Chiral Bicyclic Guanidines ${ }^{\text {ii }}$

To achieve an efficient asymmetric version of the 1,5,7-triazabicyclo [4.4.0]dec-5-ene (TBD) catalyzed Michael reactions, we embarked on the development of an efficient synthesis of chiral bicyclic guanidines. The current synthetic approaches to these guanidines include the coupling of two amino acid derivatives and the reduction of the resulting amide to obtain the triamine backbone. ${ }^{39}$ Another strategy is to go through a thiourea intermediate, followed by 1,3-dimethyimidazolinium chloride induced step-wise cyclization. ${ }^{40}$ However, a more efficient synthetic protocol will be needed if this class of catalyst is to gain widespread usage. We envisioned that an effective synthesis will be achieved if we take advantage of the C_{2} symmetric nature of the catalyst.

Aziridines can undergo regio- and stereoselective ring opening reactions, making them useful synthetic intermediates. ${ }^{41} \mathrm{~N}$-Tosyl aziridine 72 (Scheme 3.1) was readily prepared from their corresponding commercially available α-amino alcohols 71. ${ }^{42}$ Triamine unit 73 was easily obtained by treating $\mathbf{7 2}$ with 0.5 equivalent of benzyl amine. ${ }^{43}$ The nucleophilic attack preferentially occurs at the sterically least hindered carbon atom. The subsequent removal of tosyl groups were achieved by using sodium in liquid ammonia and was immediately subjected to catalytic hydrogenation without further purification. The crude triamine $\mathbf{7 4}$ was subjected to the final cyclization step, leading to the expected guanidines $\mathbf{7 5 a}$ and $\mathbf{7 5 b}$ in 71% and 43% total yield

[^1]respectively from their amino alcohols. We have utilized five chemical steps with only three requiring chromatographic purification.

Scheme 3.1 Synthesis of symmetrical chiral bicyclic guanidines. Reagents and conditions. (i) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}^{18}, 92 \%$ for $\mathbf{7 2 a}, 94 \%$ for $\mathbf{7 2 b}$; (ii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{MS}(4 \mathrm{~A}), 0{ }^{\circ} \mathrm{C}$ then $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 80%; iii) 0.5 equiv. BnNH_{2}, $\mathrm{MeOH}, 60^{\circ} \mathrm{C}, 3$ days ${ }^{19 b}, 92 \%$ for $\mathbf{7 3 a}, 75 \%$ for $\mathbf{7 3 b}$; (iv) a) $\mathrm{Na} / \mathrm{NH}_{3}(1),-78{ }^{\circ} \mathrm{C}$, THF; b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; (v) (MeS$)_{2} \mathrm{C}=\mathrm{S}, \mathrm{MeI} / \mathrm{AcOH}, \mathrm{MeNO}_{2}$, reflux, 84% for 75a, 61% for 75b.

The formation of 72c (Scheme 3.1) did not proceed as expected using this usual protocol. The tosylation of the hydroxyl group was poor after the formation of the N-sulfonamide intermediate. We found that if mesyl chloride was used as a replacement, the O-sulfonate was formed more easily and it also facilitated the $\mathrm{S}_{\mathrm{N}} 2$ ring-closing reaction. In our attempt to prepare guanidine 79b (Scheme 3.2), we met with another obstacle. The aziridine double ring-opening reaction with BnNH_{2} turned out to be slow and low yielding, giving mainly the mono-opening product. The problem was circumvented by treating 72c with NH_{3} to form diamine 76c, which was used without purification to open another equivalent of aziridine 72c, leading to the backbone 77b in 84% yield (from 72c). Detosylation and cyclization resulted in the guanidine 79b (overall 50% yield from 71c). A step-wise approach to construct the
triamine backbone provides us with an opportunity to prepare non-symmetrical chiral bicyclic guanines such as 79a through the use of two different aziridines. By stirring aziridine 72a in MeOH saturated with NH_{3} gas in a sealed vessel, single ring-opening product 76a was obtained and used as a nucleophile for the ring-opening of aziridine 72b, leading to backbone 77a in 80% yield (based on 72a). After removal of the tosyl group and final cyclization step, guanidine 79a was obtained in 71\% yield (from 72a).

Scheme 3.2 Synthesis of non-symmetrical or hindered chiral bicyclic guanidines. Reagents and conditions. (i) $\mathrm{NH}_{3} / \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt; (ii) $\mathrm{CH}_{3} \mathrm{CN}, 90^{\circ} \mathrm{C}, 3$ days, $\mathbf{7 2 b}$ or 72c, 80% for 77a from 72a, 84% for 77b from 72c; (iv) (MeS) $)_{2} \mathrm{C}=\mathrm{S}$, $\mathrm{MeI} / \mathrm{AcOH}$, MeNO_{2}, reflux, 89% for 79a from 77a, 75% for 79b from 77b.

3.2 Michael Reaction between 2-Cyclopenten-1-one and

1,3-Dicarbonyl Compounds

3.2.1 Recent advances in asymmetric catalytic Michael reactions

Organocatalytic methods have gained widespread popularity in recent years. ${ }^{44}$ Lewis bases are particularly useful and operate through an iminium ${ }^{45}$ or enamine intermediate. ${ }^{46}$ The activation of a stabilized carbanion using a Brønsted base for conjugate addition is a classical approach. There are many successful examples using

Cinchona alkaloids and its derivatives. ${ }^{47}$ Many of these act as bifunctional catalysts; activating the electrophile with hydroxyl or phenolic group. Other bifunctional catalysts, such as those containing the thiourea moiety, activate nitro compounds for the Michael reaction using hydrogen bonding. ${ }^{48}$ Chiral quaternary ammonium salts and Cinchona alkaloid derivatives are also well known to participate in Michael reactions as phase transfer catalysts. ${ }^{49}$

Addition reaction of 1,3-dicarbonyl compounds to 2-cyclopenten-1-one provides an easy and direct approach to chiral cyclopentanones. Successful examples typically utilize metal catalysts such as Al-Li-BINOL, ${ }^{50}$ Al-Li-aminodiols, ${ }^{51}$ La-linkedBINOL ${ }^{52}$ and Ru-amido complexes. ${ }^{53}$ Organocatalytic methods include the use of (2-pyrrolidyl)alkyl ammonium hydroxide derivatives ${ }^{54}$ and Cinchona alkaloid derivatives. ${ }^{55}$ L-Proline, with trans-2,5-dimethylpiperazine as an additive, has been shown to catalyze the reaction between nitroalkanes and 2-cyclopenten-1-one. ${ }^{56}$

3.2.2 The effect of the catalyst structure on the enantioselectivity

With an efficient synthesis of the chiral bicyclic guanidines in hand, we embarked on the study of the Michael reaction between 2-cyclopenten-1-one $\mathbf{6 4}$ and dimethyl malonate 65a (Scheme 3.3). We found that with $20 \mathrm{~mol} \%$ of 75a, the reaction between dimethyl malonate $\mathbf{6 5 a}$ and 2-cyclopenten-1-one $\mathbf{6 4}$ completed in 24 h at 25 ${ }^{\circ} \mathrm{C}$ in toluene (Table 3.1, entry 1). The product 66a was obtained in an isolated yield of 95% and 30% ee. Under the same conditions, the ee of $44 \%, 66 \%$ and 78% (entries 2-4) were obtained for the reactions catalyzed by guanidine catalysts 79a, 75b, and 79b, respectively. As the appendage of the catalysts became bulkier, the
enantioselectivity improved while the reaction rate slowed down, though yields remained high.

Scheme 3.3. Various chiral bicyclic guanidines catalyzed Michael reaction of 2 -cyclopenten-1-one 64 and dimethyl malonate 65a.

Lowering reaction temperature is a general approach to improve enantioselectivity. However, the reaction time of 4 days to obtain 78% ee (Table 3.1, entry 4) makes conducting the experiment at lower temperatures not practical. Therefore, we designed and synthesized several other chiral bicyclic guanidine catalysts 80a-d, hoping that by tuning the electronic and steric properties of the catalyst, both the reaction rate and enantioselectivity could be improved.

Table 3.1. Various chiral bicyclic guanidines catalyzed Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one 64 (Scheme 3.3).

| entry | catalyst (mol\%) | time
 /day | yield $/ \%^{a}$ | ee $/ \%^{b}$ | product 66a
 absolute config. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | (20) | 1 | 95 | 30 | $R-(+)$ |
| | | 1.5 | 93 | 44 | $R-(+)$ |

5

6

7

256
$34 \quad R-(+)$

8

1.584
$17 \quad R-(+)$

655
45
$S-(-)$
(20)
${ }^{a}$ Isolated yield. ${ }^{b}$ Chiral HPLC.

In the reaction catalyzed by guanidine $\mathbf{8 0 a}$, with a heteroatom-containing side chain, there was only a slight improvement in ee (34%, Table 3.1 , entry 5) compared with guanidine 75a. However, the reaction was obviously slower than that catalyzed by 75a, giving the product in 56\% yield after 2 days.

Catalyst $\mathbf{8 0 b}$ was also tested and 17% ee (Table 3.1 , entry 6) was obtained, which was inferior to both 75a and 79a. As the only difference between 80 b and 79a was the relative configuration of the two appendages at $C 3$ and $C 7$ of the catalyst, it was concluded that the anti relative configuration was important for the effective asymmetric induction.

We designed catalyst 80c, hoping that the bulky $-\mathrm{CHPh}_{2}$ side chain would increase the enantioselectivity. However, with $10 \mathrm{mo} \% \mathbf{8 0 c}$, only a moderate ee of
45% was obtained and the reaction was very slow, giving the product in 55% yield after 6 days (Table 3.1, entry 7).

As all the catalysts discussed above only have chiral centers on $C 3$ and $C 7$, we were curious whether installation of chiral centers on $C 2$ and $C 8$ would affect the enantioselectivity. Therefore, catalyst 80d (Fig. 3.1), with $C 2, C 3, C 7$, and $C 8$ chiral centers, was synthesized and tested. 38% ee and 54% yield were obtained (Table 3.1, entry 8). From the trend of ee obtained with catalysts 75a, 75b, 79a, and 79b, we have realized that the enantioselectivity improves as the alkyl chains at $C 3$ and $C 7$ become bulkier. We envisioned that if catalyst $\mathbf{8 0 e}$, with a methyl group appendage that is less hindered than a benzyl group, was applied to the reaction, the ee obtained should be less than that obtained with catalyst 75a (30% ee). Thus, the 38% ee obtained with catalyst 80e implied that the installed $C 2$ and $C 8$ chiral centers are conducive for the asymmetric induction. However, due to the unavailability of other similar catalysts with all $C 2, C 3, C 7$, and $C 8$ chiral centers, we were unable to further study the effects of the $C 2$ and $C 8$ chiral centers.

(66a: < 30\% ee?)

66a: 30% ee

66a: 38\% ee

Fig. 3.1. The effect of $C 2$ and $C 8$ chiral centers.

By comparing the optical rotation and HPLC trace of the product 66a with literature data, ${ }^{50-52}$ it was found that $(R)-(+)-\mathbf{6 6 a}$ was the major isomer obtained in the reactions catalyzed by 75a-b, 79a-b, and 80a-b, while (S)-(-)-6a was the major
isomer obtained in the reactions catalyzed by $\mathbf{8 0} \mathbf{c}$-d. It was not unexpected since the absolute configuration of $\mathbf{8 0} \mathbf{c - d}$ was opposite to those in 75a-b, 79a-b, and 80a-b.

3.2.3 Optimization studies on the reaction of 2 -cyclopenten-1-one 64 with dimethyl malonate 65 a catalyzed by catalyst 79b

Scheme 3.4. Chiral bicyclic guanidines 79b catalyzed Michael reaction of 2-cyclopenten-1-one $\mathbf{6 4}$ and dimethyl malonate $\mathbf{6 5 a}$ in different conditions.

Table 3.2. Solvent effect on the Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one $\mathbf{6 4}$ catalyzed by 79b (Scheme 3.4). ${ }^{a}$

entry	solvent	time/days	yield/ $\%^{a}$	ee $/ \%^{b}$
1	THF	6	91	73
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	82	58
3	PhF^{2}	2	73	57
4	PhCF_{3}	4	80	70
5	$1,2-$-Dichlorobenzene	4	44	70
6	Nitrobenzene	4.5	52	47
7	p-Xylene	6	77	77
8	Xylenes	4	44	70
9	Neat in 64	4	77	73
10	Neat in 65a	10	33	59

${ }^{a} 25{ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield. ${ }^{b}$ Chiral HPLC.

With 79b as the optimal catalyst, the reaction was optimized by changing other variables of the reaction conditions (Scheme 3.4).

Solvent effect was first studied by screening various solvents at rt (Table 3.2). We found that protic (eg. MeOH) and highly polar solvents (eg. DMSO, DMF) usually caused low enantioselectivities. Solvents such as THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (entries 1-2) were found to be inferior to toluene. Since toluene gave the best results so far, we tested several other aromatic solvents. Fluorobenzene (entry 3), PhCF_{3} (entry 4), 1,2-dichlorobenzene (entry 5), and nitrobenzene (entry 6) were found unsuitable as the solvent, as they gave both lower ee and yields than in toluene. Although the reaction in p-xylene gave an ee of 77% (entry 7), which is close to that in toluene, only 77% yield was obtained after 6 days. A mixture of xylenes as solvent gave a lower ee of 70% and 44% yield after 4 days (entry 8). In order to improve the reaction rate, we also conducted the experiments under neat conditions. 73% ee was obtained when the reaction was in 2-cyclopenten-1-one 64 as solvent, while no obvious rate increase was observed (entry 9). Slow reaction rate (33% yield, 10 days) and low ee (59\%) was resulted when dimethyl malonate $\mathbf{6 5 a}$ was used as the solvent (entry 10). Therefore, toluene was chosen as the solvent for further optimization.

Concentration and temperature effects were studied using toluene as the solvent (Table 3.3). It was found that 78% ee and 92% yield was obtained when the concentration of $\mathbf{6 4}$ was 0.25 M (entry 1). When the concentration was diluted to 0.05 M , the ee decreased dramatically to 27% and the reaction obviously slowed down to reach a yield of 72% in 16 days (entry 2). When concentration was increased to 0.6 M and 1.0 M , the ee of 74% (entry 3) and 76% (entry 4) was obtained respectively, without obvious rate acceleration observed. At a concentration of 2.5 M , the ee
decreased to 68% and 89% yield was obtained in 4 days (entry 5). Thus, the concentration of $\mathbf{6 4}$ was maintained at 0.25 M in the study of temperature effect. Lowering the temperature to $0{ }^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$ slowed the reaction rate considerably without an improvement in ee (entry 6-7). To our surprise, when the reaction temperature was increased to $50{ }^{\circ} \mathrm{C}$, the ee only decreased slightly to 76%, without obvious increase in reaction rate (entry 8).

Table 3.3. Concentration and temperature effects on the Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one $\mathbf{6 4}$ catalyzed by 79b in toluene as solvent.

entry	temp. $/{ }^{\circ} \mathrm{C}$	concentration $[\mathbf{6 4}] / \mathrm{M}$	time $/$ days	yield $/ \%^{a}$	ee $/ \%^{b}$
1	25	0.25	4	92	78
2	25	0.05	16	72	27
3	25	0.6	2	75	74
4	25	1.0	4	60	76
5	25	2.5	4	89	68
6	0	0.25	10	72	79
7	-20	0.25	14	98	76
8	50	0.25	4	75	76

${ }^{a}$ Isolated yield. ${ }^{b}$ Chiral HPLC.
It is known that in many cases of asymmetric catalysis, the addition of small amounts of very simple achiral compounds can be beneficial for both the yields and enantioselectivities obtained. ${ }^{57}$ We therefore tested a few compounds as additives in the reaction (Table 3.4). Addition of 1 eq. $t \mathrm{BuOH}$ decreased both the ee (70%) and the yield $(73 \%$, entry 1$)$. Hoping that compounds such sulfonamides or thioureas could activate the Michael acceptor through double hydrogen bonding, ${ }^{58}$ we tested a chiral sulfonamide (1 eq.) as the additive. Though a high yield of 95% was obtained after
4.5 days, the ee was decreased to 67% (entry 2).

Table 3.4. Additive effect on the Michael addition of dimethyl malonate 65a to 2-cyclopenten-1-one $\mathbf{6 4}$ catalyzed by 79b. ${ }^{a}$

entry	solvent	Additive	temp/ ${ }^{\circ} \mathrm{C}$	time/day	yield/ $/ \%^{b}$	ee $/ \%^{c}$
1	Tol	$t \mathrm{BuOH}(1 \mathrm{eq})$.	25	4.5	73	70
2	Tol		25	4.5	95	67
3	Tol	$\mathrm{Et}_{3} \mathrm{~N}$ (1 eq.)	25	3	99	79
4	Tol	$\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{v} \%)$	25	0.5	86	80
5	$\mathrm{Et}_{3} \mathrm{~N}$	Nil^{d}	25	0.5	92	81
6	$\mathrm{Et}_{3} \mathrm{~N}$	Nil^{d}	-20	5	95	91

${ }^{a}[\mathbf{6 4}]=0.25 \mathrm{M} .{ }^{b}$ Isolated yield. ${ }^{c}$ Chiral HPLC. ${ }^{d}$ No additive.
We suspected that the possible formation of a zwitterion between the guanidine catalyst with $\mathrm{CO}_{2}{ }^{59}$ from atmosphere might have slowed down the reaction. We envisioned that addition of an extra base, like $\mathrm{Et}_{3} \mathrm{~N}$, may speed up the reaction. Several amines were tested including trimethylamine, pyridine, $E t N i \operatorname{Pr}_{2}$ and $N, N, N^{\prime}, N^{\prime}$-tetramethyl diaminomethane, but $\mathrm{Et}_{3} \mathrm{~N}$ gave the best results. Addition of 1 eq. $\mathrm{Et}_{3} \mathrm{~N}$ drove the reaction to completion within 3 days, giving the product in an excellent yield of 99% and 79% ee (entry 3). As the amount of $\mathrm{Et}_{3} \mathrm{~N}$ added to the reaction increased to $10 \mathrm{v} \%$, the reaction rate accelerated significantly and completed within 12 h , with a slight improvement in ee (80%, entry 4). Using $\mathrm{Et}_{3} \mathrm{~N}$ as the solvent afforded the product in 92% yield in 12 h and an improved ee of 81% (entry 5). This dramatic rate acceleration provided us with an opportunity to conduct the experiment at a lower temperature. With $\mathrm{Et}_{3} \mathrm{~N}$ as solvent at $-20^{\circ} \mathrm{C}$, the reaction completed within 5 days, giving the product in 95% yield and 91% ee (entry 6).). As the boiling point
of $\mathrm{Et}_{3} \mathrm{~N}$ is normal $\left(88.9{ }^{\circ} \mathrm{C}\right)$, it was treated as a normal solvent during workup and no extra procedure was needed. This condition was used for expanding the substrate scope.

3.2.4 Highly enantioselective Michael reaction between cyclopentenone and

1,3-dicarbonyl compounds catalyzed by chiral bicyclic guanidine 79b

Table 3.5. Chiral guanidine 79b catalyzed Michael addition of various dialkyl malonates to 2-cyclopenten-1-one $\mathbf{6 4}{ }^{a}{ }^{a}$

 64		R^{1} c, j-k	$\mathrm{Et}_{3} \mathrm{~N},-20^{\circ}$	tBu mol\%)	
entry	Donor	R^{1}	time/day	yield/ $/{ }^{\text {b }}$	ee/ $/ \%^{c}$
1	65b	Et	5.5	93	92
2	65j	Bn	5.5	99	92
3	65k	$i \mathrm{Pr}$	8	84	96
4	65c	$t \mathrm{Bu}$	10	36	36

${ }^{a}$ At $-20{ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield after 6 days. ${ }^{c}$ Chiral HPLC.

With suitable conditions determined, various dialkyl malonates $\mathbf{6 5 b} \mathbf{b}$, and $\mathbf{6 5 j} \mathbf{- k}$ were tested as donors for the Michael addition to $\mathbf{6 4}$. With $\mathrm{Et}_{3} \mathrm{~N}$ as solvent at $-20^{\circ} \mathrm{C}$, the reactions of diethyl malonate $\mathbf{6 5} \mathbf{b}$, dibenzyl malonate $\mathbf{6 5 j}$ completed within 5.5 days and gave the respective desired Michael adducts with high enantioselectivities and yields (Table 3.5, entry 1-2). The reaction of the more hindered malonate, diisopropyl malonate $\mathbf{6 5 k}$, reached a yield of 84% in 8 days and gave an excellent ee of 96% (entry 3). The reaction of di-tert-butyl malonate $\mathbf{6 5 c}$ was extremely slow and only reached a yield of 36% after 10 days, with a low ee of 36% (entry 4).

Table 3.6. Chiral guanidine 79b catalyzed Michael addition of various ethyl benzoylacetates 651-r to 2-cyclopenten-1-one $\mathbf{6 4}$.

 64			 ent, 25 or -2				
entry	Donor	Ar	temp/ ${ }^{\circ} \mathrm{C}$	solvent	time	yield/ $/{ }^{\text {a }}$	ee/ $/{ }^{\text {b }}$
1	651	Ph	25	$\mathrm{Et}_{3} \mathrm{~N}$	30 h	93	82; 82
2	651	Ph	25	Tol	43 h	28	77; 77
3	651	Ph	-20	$\mathrm{Et}_{3} \mathrm{~N}$	7 d	98	93; 90
4	651	Ph	-20	Tol	8 d	25^{c}	92; 88
5	65m	m-MePh	25	Tol	20 h	67	81; 81
6	65m	m-MePh	25	$\mathrm{Et}_{3} \mathrm{~N}$	20 h	96	77; 77
7	65m	m-MePh	-20	Tol	8 d	85	91; 90
8	65m	m-MePh	-20	$\mathrm{Et}_{3} \mathrm{~N}$	60 h	89	87; 86
9	$65 n$	$p-\mathrm{CF}_{3} \mathrm{Ph}$	-20	Tol	6 d	90	96; 92
10	650	$m-\mathrm{CF}_{3} \mathrm{Ph}$	-20	Tol	6 d	84	89; 88
11	65p	$p-\mathrm{ClPh}$	-20	Tol	6 d	99	93; 92
12	65q	$m-\mathrm{ClPh}$	-20	Tol	6 d	99	90; 90
13	65r	$p-\mathrm{NO}_{2} \mathrm{Ph}$	-20	Tol	6 d	91	94;93

${ }^{a}$ Isolated yield. ${ }^{b}$ Ee determined by chiral HPLC, 1:1 d.r. of 661-r determined by ${ }^{1}$ H-NMR and chiral HPLC. ${ }^{c} 30 \mathrm{~mol} \%$ catalyst 79b used.

We next examined the suitability of ethyl benzoylacetate $\mathbf{6 5 1}$ and its analogues $\mathbf{6 5 m} \mathbf{- r}$ as donors for the reaction. At rt , in terms of both reaction rate and enantioselectivity, $\mathrm{Et}_{3} \mathrm{~N}$ was found to be a better solvent than toluene for the reaction of ethyl benzoylacetate $\mathbf{6 5 1}$ (Table 3.6, entry 1 vs. entry 2). At $-20^{\circ} \mathrm{C}$, although the ee obtained in the reaction of $\mathbf{6 5 1}$ in $\mathrm{Et}_{3} \mathrm{~N}$ (93% and 90% ee, entry 3) as solvent was close to that in toluene $(92 \%$ and 88% ee, entry 4$)$ as solvent, much higher yield $(98 \%$,
entry 3) was obtained in $\mathrm{Et}_{3} \mathrm{~N}$ than in toluene (25%, entry 4). However, for the reaction of $\mathbf{6 5 m}$ at both rt (entry 5 and 6) and $-20^{\circ} \mathrm{C}$ (entry 7 and 8), $\mathrm{Et}_{3} \mathrm{~N}$ turned out to be inferior to toluene in terms of enantioselectivity. In the reactions of other ethyl benzoylacetate analogues $\mathbf{6 5 n} \mathbf{n}$, toluene was also found to be the better solvent than $\mathrm{Et}_{3} \mathrm{~N}$, giving the products in high yields (84-99\%) and ee (88-96\%) (entries 9-13).

In later studies, we found out that using $\mathrm{Et}_{3} \mathrm{~N}$ as solvent, the addition of benzoylacetates $\mathbf{6 5 m}$-r to $\mathbf{6 4}$ occurred without catalyst at room temperature. This might be the reason that other than $\mathbf{6 5 1}, \mathrm{Et}_{3} \mathrm{~N}$ did not improve the enantioselectivities of the reaction compared to toluene. These reactions of 651-r gave the respective products in diastereomeric ratios of 1:1 (Table 3.6). All diastereomers can be distinguished using chiral HPLC.

Various 1,3-diketones $\mathbf{6 5 s}$-u and $\mathbf{6 5 f}$ were also tested as the Michael donors for the reaction with 2-cyclopenten-1-one 64 (Table 3.7). Similar to the benzoylacetates, additives like $\mathrm{Et}_{3} \mathrm{~N}$ did not improve the ee of these reactions. Compared with the reaction of dibenzoylmethane $\mathbf{6 5 s}$ in toluene at $\mathrm{rt}(83 \%$ ee, entry 1$)$, addition of 1 eq. of $\mathrm{Et}_{3} \mathrm{~N}$ resulted in an inferior ee (72%, entry 2), though with faster reaction rate. By using $40 \mathrm{~mol} \%$ catalyst at $-20^{\circ} \mathrm{C}$, the reaction of $\mathbf{6 5 s}$ in toluene afforded the product in 91% ee and $\mathbf{6 1 \%}$ yield in 6 days (entry 3). In the reaction of acetyl acetone $\mathbf{6 5 t}$ at rt , toluene gave a better ee of 61% (entry 4) than that in $\mathrm{Et}_{3} \mathrm{~N}(44 \%$ ee, entry 5). The reaction of $\mathbf{6 5 u}$ at $-20^{\circ} \mathrm{C}$ gave the product in a moderate ee (80 and 81%) and yield (62%, entry 6). The reaction of the hindered 1,3 -diketone $\mathbf{6 5 f}$ was conducted at rt and the product was obtained in modest yield and ee (entry 7).

Table 3.7. Chiral guanidine 79b catalyzed Michael addition of various 1,3 -diketones $\mathbf{6 5 s}-\mathbf{u}$ and $\mathbf{6 5 f}$ to 2-cyclopenten-1-one 64.

${ }^{a}$ Isolated yield. ${ }^{b}$ Ee determined by chiral HPLC. ${ }^{c} 40 \mathrm{~mol} \%$ catalyst 79b used.
${ }^{d} 1: 1$ d.r. of $\mathbf{6 6 s}$-u and $\mathbf{6 6 f}$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and chiral HPLC.

3.2.5 S, S^{\prime}-dialkyl dithiomalonates: novel Michael donors in the highly enantioselective Michael reaction

While the enantioselectivities obtained for the Michael addition of dialkyl malonates and benzoylacetates were high, the reaction times were long. In order to overcome this disadvantage and broaden the scope of this methodology, we started searching for other 1,3-dicarbonyl compounds with higher reactivity. It is known that the α-hydrogen acidity of thioesters is usually higher than their corresponding
esters. ${ }^{60}$ It is because the $\mathrm{S}(3 \mathrm{p})$ orbitals are too large to efficiently overlap with the $\mathrm{C}(2 \mathrm{p})$ orbitals of the carbonyl group (Fig. 3.2). ${ }^{60}$ Therefore the thioesters have less conjugation than ordinary esters and this enhances the acidity of their α-hydrogens. It makes thioester a useful enol equivalent in the laboratory ${ }^{61}$ as well as in nature (as acyl coenzyme A). ${ }^{62}$ We envisioned that S, S^{\prime}-dialkyl dithiomalonates should also have lower pKa values than dialkyl malonates and so could be more reactive in Michael reactions. Thus, a series of S, S^{\prime}-dialkyl dithiomalonates $\mathbf{6 5 v}-\mathbf{y}$ were synthesized and tested as the Michael donor (Table 3.8).

Fig. 3.2. Difference between thioester and ordinary ester.
At rt in toluene as solvent, the addition of S, S^{\prime}-di- n-propyl dithiomalonate $\mathbf{6 5 v}$ to 2-cyclopenten-1-one $\mathbf{6 4}$ completed within 36 h to give the product $\mathbf{6 6 v}$ in 99% yield and 78% ee (Table 3.8, entry 1). This reaction rate was significantly faster than both the dialkyl malonates and benzoylacetates. The enantioselectivity of the reaction of 65v was improved to 87% (entry 2) by lowering the reaction temperature at $-20^{\circ} \mathrm{C}$, while the yield remained excellent (99\%, entry 2). Similar to the benzoylacetates, using $\mathrm{Et}_{3} \mathrm{~N}$ as solvent at $-20^{\circ} \mathrm{C}$ caused inferior ee (47\%, entry 3). By conducting the reactions of $\mathbf{6 5 v}-\mathbf{y}$ at $-40^{\circ} \mathrm{C}$ in toluene as solvent, all the desired Michael adducts were
obtained in good enantioselectivities (entries 4-7, 89-93\% ee) and good yields $(92-99 \%)$. The highest enantioselectivity was obtained with the more hindered S, S^{\prime}-di-tert-butyl dithiomalonate $\mathbf{6 5 y}$ (entry 7). At $-70^{\circ} \mathrm{C}$, the reaction rate slowed considerably with a slight improvement in the ee while the yields remained high.

Table 3.8. Chiral guanidine 79b catalyzed Michael addition of S, S^{\prime} '-dialkyl dithiomalonates $\mathbf{6 5 v - y}$ to 2-cyclopenten-1-one $\mathbf{6 4}$.

$65 v-y$

$66 \mathrm{v}-\mathrm{y}$

entry	donor	R	temp $/{ }^{\circ} \mathrm{C}$	solvent	time/h	yield $/ \%^{a}$	ee $/ \%^{b}$
1	$\mathbf{6 5 v}$	$n \operatorname{Pr}$	25	Tol	36	99	78
2	$\mathbf{6 5 v}$	$n \operatorname{Pr}$	-20	Tol	96	99	87
3	$\mathbf{6 5 v}$	$n \operatorname{Pr}$	-20	$\mathrm{Et}_{3} \mathrm{~N}$	96	58	47
4	$\mathbf{6 5 v}$	$n \mathrm{Pr}$	-40	Tol	72	95	89
5	$\mathbf{6 5 w}$	Et	-40	Tol	72	92	90
6	$\mathbf{6 5 x}$	$i \operatorname{Pr}$	-40	Tol	80	99	90
7	$\mathbf{6 5 y}$	$t \mathrm{Bu}$	-40	Tol	80	92	93

${ }^{b}$ Isolated yield. ${ }^{b}$ Chiral HPLC.
Thiol esters offer a versatile handle in organic synthesis. They can be easily hydrolyzed or conveniently transformed to ketones, aldehydes or β-ketoesters. ${ }^{63}$ The dithiomalonate group can also be directly reduced to a saturated alcohol using Raney nickel. ${ }^{64}$ These reactions may facilitate the modification of the Michael adducts and allow S, S '-dialkyl dithiomalonates to be good alternatives for the construction of chiral cyclopentanones. This is also the first example of S, S^{\prime} 'dialkyl dithiomalonates
used in the highly enantioselective catalytic Michael reactions.

3.2.6 The Michael reaction of other cyclic enones with 1,3-dicarbonyl compounds

From the studies above, we have developed a highly enantioselective Michael reaction of 2 -cyclopenten-1-one 64. To expand the substrate scope of this methodology, we tested other cyclic enones as Michael acceptors with 1,3-dicarbonyl compounds (Table 3.9).

Table 3.9. Chiral guanidine 79b catalyzed Michael addition between other cyclic enones and 1,3-dicarbonyl compounds.
(20

6	$\mathbf{6 7 p}$	SEt	Tol	25	1	64	68
7	$\mathbf{6 7 p}$	SBn	Tol	25	4	46	70
8	$\mathbf{6 7 t}$	SBn	Tol	25	4	13	56
9	$\mathbf{6 7 u}$	SBn	Tol	25	4	16	50
10	0						

${ }^{a}$ Isolated yield. ${ }^{b}$ Chiral HPLC. ${ }^{c}$ No reaction observed.
As shown in Table 3.9, this asymmetric catalytic system is sensitive to the structure of the Michael acceptor. Thus far, only the reactions of 2-cyclopenten-1-one 64 achieved high enantioselectivities and yields. The steric hindrance of substituted cyclopentenone 67s is likely the reason of its low reactivity. The 6, 7, and 8 -membered cyclic enones $67 \mathbf{p}, 67 \mathrm{t}$, and $\mathbf{6 7 u}$ were also less reactive than the $\mathbf{6 4}$. It might be due to the increased steric hindrance of the ring and the decreased ring strain compared with the 5 -membered ring.

3.2.7 Determination of the absolute configuration of the Michael adducts

Michael adducts $\mathbf{6 6 a - d}$, \mathbf{k} were determined to be $(R)-(+)$ by comparing with literature reports. ${ }^{50-52}$ Michael adduct 661 was determined to be (R) by comparing with literature reports ${ }^{4}$. Michael adducts $\mathbf{6 6 m} \mathbf{- r}$ were assumed to have the same absolute configuration as 661. Product $\mathbf{6 6 y}$ was converted to its O-ester analog, which was determined to be $(R)-(+)$ by using optical rotation and HPLC (Scheme 3.5). Similar Michael adducts $\mathbf{6 6 v}-\mathbf{x}$ were assumed to have the same absolute configuration as $\mathbf{6 6 y}$.

Scheme 3.5. Determination of the absolute configuration of $\mathbf{6 5 y}$.

3.3 Michael Reactions of Acyclic Michael Acceptors

3.3.1 Nitroalkanes as Michael donor

Scheme 3.6. Bicyclic guanidines catalyzed Michael reaction of nitroalkanes with trans-chalcone 35a.

It is known that amidine and guanidine bases can interact with nitroalkanes in non-polar solvents and form tightly bound ion pair complexes. ${ }^{65}$ Nitroalkanes are a valuable source of stablized carbanions and are widely used as carbon nucleophiles for conjugate addition to enones. ${ }^{66}$ The Michael adducts retaining a nitro group can undergo a variety of transformations, making it a versatile building block for organic synthesis. ${ }^{57}$ Chiral spirocyclic guanidines have also been shown to catalyze the Michael reaction of nitroalkanes to chalcone with modest enantioselectivity. ${ }^{8}$ In addition, there are relatively limited satisfactory examples of catalytic enantioslective Michael reaction of nitroalkanes to chalcone derivatives. ${ }^{67}$ Thus, the synthesized chiral bicyclic guanidines were tested as catalysts in the Michael reactions between
nitroalkanes and trans-chalcone 35a (Scheme 3.6).
Table 3.10. The influence of different guanidine catalysts on the Michael reaction of nitroalkanes with trans-chalcone 35a (Scheme 3.6).

entry	Michael donor	catalyst $(\mathrm{mol} \%)$	time	yield $/ \%^{a}$	e.e. $/ \%^{b}$
1	$\mathbf{5 3}$	TBD (20)	1.5 h	99	NA
2	$\mathbf{5 3}$	$\mathbf{7 5 a}(10)$	7 d	60^{c}	13
3	$\mathbf{5 3}$	$\mathbf{7 5 b}(20)$	4 d	42^{c}	32
4	$\mathbf{5 3}$	$\mathbf{7 9 b}(20)$	7 d	35^{c}	56
5	$\mathbf{2 2}$	$\mathbf{7 5 b}(20)$	4 d	23^{c}	61
6	$\mathbf{2 2}$	$\mathbf{8 0 a}(20)$	5 d	40^{c}	10
7	$\mathbf{2 2}$	$\mathbf{7 9 b}(20)$	5 d	20^{c}	54
8^{d}	$\mathbf{2 2}$	$\mathbf{7 9 b}(10)$	2 d	42^{c}	40

${ }^{a}$ Isolated yield. ${ }^{b}$ Chiral HPLC. ${ }^{c}$ Reaction was not completed. ${ }^{d} \mathrm{Et}_{3} \mathrm{~N}$ as solvent.

With $20 \mathrm{~mol} \% \mathrm{TBD}$, the conjugate addition of nitromethane $\mathbf{5 3}$ to chalcone $\mathbf{3 5 a}$ completed within 1.5 h , giving $\mathbf{8 1}$ in 99% yield (Table 3.10, entry 1). In the presence of $10-20 \mathrm{~mol} \% \mathbf{7 5 a}, \mathbf{7 5 b}$, and 79b, $13 \%, 32 \%$, and 56% e.e. (entries 2-4) were obtained respectively. It was shown that as the appendage of the catalyst became bulkier, the enantioselectivity improved. However, both the reaction rate and yields decreased. The enantioselectivity was also affected by the nature of the nitroalkanes. With the more hindered 2-nitropropane $\mathbf{2 2}$ and $\mathbf{7 5 b}$ as catalyst (entry 5), higher enantioselectivity (61% e.e.) was obtained than with $\mathbf{5 3}$ (entry 3). Using 80a as the catalyst, only 10% ee was obtained in the reaction of 22 (entry 6). Unexpectedly, the ee of product obtained with the more hindered catalyst 79b (54%, entry 7) was lower
than that obtained with catalyst $\mathbf{7 5 b}$ (61%, entry 5). Using $\mathrm{Et}_{3} \mathrm{~N}$ as solvent resulted in an inferior ee (40%, entry 8).

Table 3.11. Chiral bicyclic guanidines catalyzed Michael reaction of nitroalkanes with 64 and 67 m .

entry	substrate	Michael donor	catalyst (mol\%)	time	yield/ $/{ }^{\text {a }}$	e.e./\%
1		53	75b (10)	4 d	59	24^{b}
2		22	75b (20)	8 d	59	41^{c}
3		22	79b (20)	5 d	54	11^{c}

${ }^{\text {a }}$ Isolated yield, reactions was not completed. ${ }^{b}$ Ee determined by ${ }^{13} \mathrm{C}$-NMR after conversion to a diastereomeric acetal with ($2 R, 3 R$)-2,3-butandiol. ${ }^{c}$ Ee determined by chiral HPLC.

The Michael reactions of nitroalkanes to other Michael acceptors were also tested. The reaction of nitromethane $\mathbf{5 3}$ with 2-cyclopenten-1-one $\mathbf{6 4}$ was catalyzed by $10 \mathrm{~mol} \% \mathbf{7 5 b}$, giving the product in 24% ee and 59% yield after 4 days (Table 3.11, entry 1). With $20 \mathrm{~mol} \% \mathbf{7 5 b}$, the reaction of 1,2 -dibenzoyl ethylene $\mathbf{6 7 m}$ with 2-nitropropane 22 reached a yield of 59% and gave the product with 41% ee (entry 2). It was interesting to note that using catalyst 79b, which was a better catalyst in the Michael reaction of 2-cyclopenten-1-one $\mathbf{6 4}$ with 1,3-dicarbonyl compounds, the ee (11%, entry 3) obtained was considerably lower than that obtained with $\mathbf{7 5 b}$ (41% ee, entry 2). This trend was also observed in the reaction of trans-chalcone 35a with 22, where higher ee was obtained with 75b than with 79b. These results implied that the mode of interaction between nitroalkanes with the catalysts might be different from that between 1,3-dicarbonyl compounds and the catalysts.

3.3.2 The Michael reaction between dimethyl malonate and fumaric derivatives

In our survey on TBD catalyzed Michael reactions, we have found that fumarate and fumaric derivatives were good substrates of the reactions with dimethyl malonate. Using either 75a or 75b as catalyst, poor enantioselectivities (12\% ee or less) were observed when 1,2-dibenzoylethylene $\mathbf{6 7 m}$ and dimethyl fumarate $\mathbf{8 2}$ were reacted with dimethyl malonate $\mathbf{6 5 a}$ (Scheme 3.7). It was observed that the reaction of $\mathbf{6 7 m}$ gave a much higher yield and occurred at a much faster rate than $\mathbf{8 2}$. This implies that α, β-unsaturated ketones are more electrophilic than α, β-unsaturated esters.

Scheme 3.7. Bicyclic guanidines catalysed Michael reaction of dimethyl malonate with fumaric derivatives.

The observed difference in reactivity prompted us to study the regioselectivity of Michael reactions of malonate to unsymmetrical conjugated compounds such as methyl trans-4-oxo-2-pentenoate 84a and ethyl trans-3-benzoylacrylate 84b (Scheme 3.8).

84a, $R^{1}=M e, R^{2}=O M e$
$84 b, R^{1}=P h, R^{2}=O E t$
$85 \mathrm{a}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}$
86a, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}$
85b, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{OEt}$
86b, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{OEt}$
Scheme 3.8. Bicyclic guanidines catalyzed Michael reaction of dimethyl malonate $65 a$ with fumaric derivatives 84 .

With various bicyclic guanidine catalysts, only one regioisomer was observed for both of the reactions. NOE experiments of the product obtained from $\mathbf{8 4 a}$ showed that there was obvious $\operatorname{NOE}(10 \%)$ between H^{a} and H^{b}. No NOE was observed between H^{b} and H^{c}. Thus the product obtained from 84a was confirmed to be regioisomer 85a instead of 86a.

85b

Similarly, in the NOE experiments of the product obtained from 84b, a clear NOE (7\%) was observed between H^{d} and H^{e}. No NOE was observed between H^{d} and H^{h}, H^{e} and H^{f}, H^{e} and H^{g}. Thus the product obtained from $\mathbf{8 4 b}$ was confirmed to be regioisomer $\mathbf{8 5 b}$ instead of $\mathbf{8 6 b}$.

As expected, the formation of regioisomer $\mathbf{8 5}$ is directed by the ketone carbonyl group instead of the ester group. It was not unexpected since a ketone carbonyl group
is generally more electro-withdrawing than an ester carbonyl group. To the best of our knowledge, this is the first example of absolutely regioselective Michael reaction of malonates to fumaric derivatives. ${ }^{68}$

Table 3.12. The influenece of different guanidine catalysts on the reaction in Scheme 3.8 .

entry	substrate	catalyst $(\mathrm{mol} \%)$	time/h	$\mathbf{8 5}: \mathbf{8 6}$	yield $^{a} / \%$	e.e. $/ \%^{b}$
1	$\mathbf{8 4 a}$	TBD (20)	0.5	$100: 0$	90	NA
2	$\mathbf{8 4 a}$	$\mathbf{7 5 a}(20)$	120	$100: 0$	40^{c}	41
3	$\mathbf{8 4 a}$	$\mathbf{7 5 b}(10)$	90	$100: 0$	41^{c}	33
4	$\mathbf{8 4 a}$	$\mathbf{7 9 a}(10)$	93	$100: 0$	46^{c}	35
5	$\mathbf{8 4 b}$	$\mathbf{7 5 b}(20)$	120	$100: 0$	86^{c}	23

${ }^{a}$ Not optimized isolated yield. ${ }^{b}$ Chiral HPLC. ${ }^{c}$ Reaction not completed.

The enantioselectivity of this reaction was also studied. With catalysts 75a, 75b, and 79b, $41 \%, 33 \%$, and 35% e.e. (Table 3.12, entries 2-4) were obtained respectively for the reactions of $\mathbf{8 4 a}$. Though the e.e. of the reaction of $\mathbf{8 4 b}$ catalyzed by $\mathbf{7 5 b}$ was lower, the yield was improved to 86% (entry 5).

In conclusion, in this Chapter, we have developed a highly enantioselective Michael reaction between 2-cyclopenten-1-one and various 1,3-dicarbonyl compounds.

Chapter 4

Michael Reaction between N-Alkyl Maleimides and 1,3-Dicarbonyl Compounds

4.1 Michael Reaction of \boldsymbol{N}-alkyl Maleimides

4.1.1 Michael reaction between maleimides and S, S^{\prime}-dialkyl dithiomalonates

In order to expand the substrate scope of the methodology developed for 2-cyclopenten-1-one 64, we tested other cyclic Michael acceptors that structurally resemble 64 in the reaction with dimethyl malonate $\mathbf{6 5 a}$ in the presence of $10 \mathrm{~mol} \%$ TBD in toluene at rt (Scheme 4.1). Enone 67VII, 1,4-Naphthoquinone 67VIII, dione 67IX, and maleic anhydride $\mathbf{6 7 X}$ were found ineffective in this reaction. Only the reaction of N-substituted maleimides $\mathbf{8 7}$ proceeded smoothly to give the products in high yields.

cyclic substrates that resemble 2-cyclopenten-1-one 64:

67VII

67VIII

67IX

67X

87

Scheme 4.1. Cyclic Michael acceptors that resemble 2-cyclopenten-1-one $\mathbf{6 4}$ tested in the reaction with dimethyl malonate $\mathbf{6 5 a}$ in the presence of $10 \mathrm{~mol} \% \mathrm{TBD}$ in toluene.

Subsequent asymmetric experiments revealed that with $20 \mathrm{~mol} \%$ of guanidine 79b, dimethyl malonate 65a underwent Michael addition to maleimides 87a and 87b (Scheme 4.2). Both these two reactions in toluene were relatively slow, giving the Michael adducts 88a and 88b in low yields and modest ee (39% and 47%). Conducting the reaction of $\mathbf{8 7 b}$ in $\mathrm{Et}_{3} \mathrm{~N}$ as solvent decreased the ee to 24%, and a high
yield (99\%) was obtained.

Scheme 4.2. Chiral guanidine 79b catalyzed Michael reaction between N-substituted maleimides $87 \mathbf{a}-\mathrm{b}$ and dimethyl malonate $\mathbf{6 5 a}$.

Scheme 4.3. Chiral guanidine 79b catalyzed Michael reaction between N-alkyl maleimides and S, S^{\prime}-dialkyl dithiomalonates.

To improve the reaction rate, the more reactive S, S^{\prime}-dialkyl dithiomalonates were tested in place of dimethyl malonate (Scheme 4.3). We were pleased to find that with $10 \mathrm{~mol} \%$ catalyst 79b at rt , the reaction between S, S^{\prime} 'di-tert-butyl dithiomalonate $\mathbf{6 5 y}$ and N-ethyl maleimide $\mathbf{8 7 b}$ completed within 1 h , giving the Michael adduct $\mathbf{8 9}$ a in 97% yield and 78% ee (Table 4.1, entry 1). This dramatic rate improvement allowed us to conduct the reaction at lower temperatures. At $-20^{\circ} \mathrm{C}$, the enantioselectivity improved to 90% ee (entry 2). By further lowering the temperature to $-50^{\circ} \mathrm{C}$, the ee
was improved to 95% and the reaction was completed with an excellent yield of 98% (entry 3).

Table 4.1. Michael addition of S, S^{\prime}-dialkyl dithiomaloates to N-alkyl maleimides catalyzed by 79b (Scheme 4.3).

entry	substrate	product	temp/ ${ }^{\circ} \mathrm{C}$	time $/ \mathrm{h}$	yield $/ \%^{a}$	ee $/ \%^{b}$	
1	$\mathbf{8 7 b}$	$\mathbf{6 5 y}$	$\mathbf{8 9 a}$	25	1	97	78
2	$\mathbf{8 7 b}$	$\mathbf{6 5 y}$	$\mathbf{8 9 a}$	-20	4	99	90
3	$\mathbf{8 7 b}$	$\mathbf{6 5 y}$	$\mathbf{8 9 a}$	-50	6	98	95
4	$\mathbf{8 7 c}$	$\mathbf{6 5 y}$	$\mathbf{8 9 b}$	-50	6	94	95
5	$\mathbf{8 7 d}$	$\mathbf{6 5 y}$	$\mathbf{8 9 c}$	-50	6	99	95
6	$\mathbf{8 7 e}$	$\mathbf{6 5 y}$	$\mathbf{8 9 d}$	-50	6	99	92
7^{c}	$\mathbf{8 7 c}$	$\mathbf{6 5 x}$	$\mathbf{8 9 e}$	-70	48	96	93
8^{c}	$\mathbf{8 7 b}$	$\mathbf{6 5 x}$	$\mathbf{8 9 f}$	-70	48	99	93

${ }^{a}$ Isolated yield. ${ }^{b}$ Chiral HPLC. ${ }^{c} 20 \mathrm{~mol} \% \mathbf{7 9 b}$.
Under these conditions, various N-alkyl maleimides ($\mathbf{8 7} \mathbf{c}-\mathbf{e}$) were found to participate in the reaction with $\mathbf{6 5 y}$, giving the Michael adducts $\mathbf{8 9 b}$-d in excellent yields $(94-99 \%)$ and good ee ($92-95 \%$, Table 4.1, entries 4-6). With the less hindered S, S '-diisopropyl dithiomalonate $\mathbf{6 5 x}$, reactions with $\mathbf{8 7}$ c or $\mathbf{8 7 b}$ needed to be conducted at $-70^{\circ} \mathrm{C}$ to obtain satisfactory ee of 93% (entries 7,8).

4.1.2 Michael reaction between maleimides and 1,3-diketones

Scheme 4.4. Chiral Guanidine 79b catalyzed Michael reaction between N-alkyl maleimides and 1,3-diketones.

Table 4.2. Michael addition of 1,3 -diketones to N-alkyl maleimides catalyzed by 79b.

entry	substrate		product	time $/ \mathrm{h}$	yield $/ \%^{a}$	ee $/ \%^{b}$
1	$\mathbf{8 7 b}$	$\mathbf{6 5 s}$	$\mathbf{9 0 a}$	60	99	92
2	$\mathbf{8 7 c}$	$\mathbf{6 5 s}$	$\mathbf{9 0 b}$	72	99	93
3	$\mathbf{8 7 d}$	$\mathbf{6 5 s}$	$\mathbf{9 0 c}$	72	99	92
4	$\mathbf{8 7 e}$	$\mathbf{6 5 s}$	$\mathbf{9 0 d}$	96	99	90
5	$\mathbf{8 7 f}$	$\mathbf{6 5 s}$	$\mathbf{9 0 e}$	144	72	92
6	$\mathbf{8 7 b}$	$\mathbf{6 5 u}$	$\mathbf{9 0 f}$	120	99^{c}	$95 ; 96^{d}$
7	$\mathbf{8 7 b}$	$\mathbf{6 5 1}$	$\mathbf{9 0 g}$	60	99	88^{e}
8	$\mathbf{8 7 g}$	$\mathbf{6 5 1}$	$\mathbf{9 0 h}$	72	91	94^{d}

${ }^{a}$ Isolated yield. ${ }^{b}$ Chiral HPLC. ${ }^{c} \mathbf{6 5 u}$ diluted to 0.1 M , due to low solubility at $-50{ }^{\circ} \mathrm{C}$. ${ }^{d} 1: 1$ d.r. (${ }^{1} \mathrm{H} \mathrm{NMR}$), ee determined after α-chlorination. ${ }^{e} 1: 1 \quad$ d.r. $\quad\left({ }^{1} \mathrm{H}\right.$ NMR), ee determined after decarboxylation.

Further studies revealed that 1,3-diketones $\mathbf{6 5 y}$ can function as the donor for the Michael addition with the maleimides (Scheme 4.4). It was observed that the reactions with $\mathbf{6 5 y}$ were generally slower than those with S, S^{\prime} 'dialkyl dithiomalonates which have relatively similar pKa values. At $-50^{\circ} \mathrm{C}$, the reactions between maleimides $\mathbf{8 7 b}-\mathbf{e}$ and dibenzoylmethane $\mathbf{6 5} \mathrm{s}$ completed between $60-96 \mathrm{~h}$, giving the corresponding Michael adducts 90a-d with $>90 \%$ ee and 99% yield (Table 4.2, entries 1-4). A compromised yield (72\%) was obtained for the reaction between the more hindered N-isobutyl maleimide $\mathbf{8 7 f}$ and $\mathbf{6 5 s}$, while the ee remained high (92%, entry 5). Various other 1,3-diketones including $\mathbf{6 5 u}$ (Table 4.2, entry 6) and benzoylacetates including 651 (entries 7, 8) were tested using the established protocols. We observed that many of these 1,3 -diketones including $\mathbf{6 5 u}$ have poor solubility in toluene at -50 ${ }^{\circ} \mathrm{C}$. We were also unable to find suitable HPLC conditions to determine the ee of
many Michael adducts of benzoylacetate derivatives. We were successful with 3 examples (entries 6-8) after the Michael adducts 90f-h were derivatized either through decarboxylation or α-chlorination reaction (Scheme 4.5). Eventually, we were able to conclude that $\mathbf{6 5 u}$ and $\mathbf{6 5 1}$ were also good substrates for this reaction, giving high yields and enantioselectivities.

Scheme 4.5. Derivatization of Michael adducts 90f-h for HPLC analyses.

4.1.3 Potential synthetic utility of the maleimide-based Michael adducts

While maleimides are commonly used in cycloaddition reactions, they are not well documented as acceptors in asymmetric catalytic Michael reactions. ${ }^{69}$ A large number of biologically interesting α-substituted succinimides ${ }^{70}$ and functionalized pyrrolidines, ${ }^{71}$ can potentially be obtained via asymmetric Michael reaction. Methodology based on maleimides should provide easy access to these enantiopure
heterocycles. Simple ring opening procedures ${ }^{72}$ could also mean rapid entry to functionalized open chain derivatives. Coupled with the versatility of thioesters, these maleimide-based Michael adducts should have good potential synthetic utility.

4.1 Enantioselective Synthesis of (S)-(+)-homo- β-Proline

Scheme 4.6. The first enantioselective synthesis of (S)-(+)-homo- β-proline.
The synthetic utility of this methodology was demonstrated in the first enantioselective synthesis of (S)-(+)-homo- β-proline 97 (Scheme 4.6), a potent γ-aminobutyric acid (GABA) agonist and uptake inhibitor. ${ }^{73} \gamma$-Aminobutyric acid is a neurotransmitter present in $60-70 \%$ of all synapses and has been implicated to several
neurological disorders such as anxiety, pain, Parkinson's disease and epilepsy. ${ }^{74}$ Current syntheses include the resolution of racemic homo- β-proline using pig liver esterase, ${ }^{75}$ the use of (S)-(-)-1-phenylethylamine as a chiral auxiliary, ${ }^{64 \mathrm{a}, 76}$ and the use of aspartic acid as the chiral starting material. ${ }^{77}$

To realize this multistep synthesis, an efficient preparation of the novel Michael donor, S, S '-di-tert-butyl dithiomalonate $\mathbf{6 5 y}$, was desired. After surveying a few ester formation conditions, it was found that using POCl_{3} as the carboxylic acid activating reagent and DMAP as the catalyst, malonic acid 91 and 2-methyl-2-propanethiol afforded the product $\mathbf{6 5 y}$ in 3 h with 93% yield. Subsequently, the developed enantioselective Michael reaction between 65y and N-benzyl maleimide 87e was carried out at a 1 mmol scale without compromising the yield (99\%) and enantioselectivity (92%) of the product $\mathbf{8 9 d}$.

Through the decarboxylation of one of the thioesters of $\mathbf{8 9 d}$, mono-thioester $\mathbf{9 2}$ was obtained in 99% yield. No recemization was observed when 92 was analyzed using chiral HPLC. Reduction of $\mathbf{9 2}$ with LiAlH_{4} went smoothly to generate the N-benzyl-homo- β-prolinol 93 in a yield of 92%. Jones' oxidation of 93 was capricious and gave side products on some occasions. This problem was circumvented by exchanging the protecting group to Cbz group. This was followed by Jones' oxidation and hydrogenolysis. These few steps were carried out efficiently, without the need of chromatography purification and were achieved with a yield of 80% yield from 93. This efficient enantioselective synthesis of (S)-(+)-homo- β-proline 97 (overall yield of 67% from 91) also allowed the unambiguous assignment of the
absolute configuration of the substituted succinimides obtained via the guanidine catalyzed Michael reaction.

Chapter 5

Proposed Stereochemical Model for the Origin of Enantioselectivity

In the highly enantioselective Michael reactions catalyzed by chiral bicyclic guanidine, we believe that two key features of guanidine and guanidinium groups are important: 1) The high basicity of the guanidine group is required to initiate the base catalyzed Michael reaction by generating the carbanion; 2) The special double hydrogen bonding pattern between a guanidinium group and oxoanions.

The crystal structures of guanidinium groups with phosphates (I), carboxylates (II), or nitrates (III), have revealed the typical arrangement of hydrogen bonds to oxoanions (Fig. 5.1). ${ }^{78}$ In all these three arrangements, a guanidinium-oxoanion complex was formed through double hydrogen bonding. The complexes were also stabilized by electrostatic attraction between the ion pairs. ${ }^{1}$

I

II

III

Fig. 5.1. Hydrogen bonding motifs between guanidinium groups and oxoanions revealed by crystal X-ray structures: I) guanidinium with phosphates; II) guanidinium with carboxylates; III) guanidinium with nitrates.

Based on these observations and speculations, the catalytic cycle of the chiral bicyclic guanidine 79b catalyzed Michael reaction between 2-cyclopenten-1-one $\mathbf{6 4}$ and dimethyl malonate $\mathbf{6 5 a}$ is proposed as in Scheme 5.1. In the first step of the cycle, deprotonation of dimethyl malonate $\mathbf{6 5 a}$ by guanidine 79b generates a guanidinium cation and an enolate anion. The positive charge on the guanidinium is spread among the three nitrogens by resonance, with two - NH groups as potential hydrogen bonding
donors. The negative charge on the enolate is also delocalized, rendering the two carbonyl oxygens anionic. An ion pair guanidinium-enolate complex $\mathbf{9 8}$ is presumably formed through double hydrogen bonding, maintaining co-planarity between the guanidinium and the enolate. The Michael addition occurs while 2-cyclopenten-1-one 64 approaches the complex to generate the enolate intermediate 99, which in turn gains back a proton from the guanidinium ion to release the catalyst 79b and to give the product $(R)-\mathbf{6 6 a}$.

Scheme 5.1. Proposed catalytic cycle in the chiral bicyclic guanidine catalyzed Michael reaction.

The origin of the enantioselectivity lies in the selective approach of $\mathbf{6 4}$ to the well-defined guanidinium-enolate complex 98. Due to the steric repulsion by the proximal tert-butyl group of the guanidinium, each of the two methyl groups of the malonate enolate is tilted away from the co-plane, leaving the bottom left corner
(viewing above the co-plane of the complex 98) more accessible by the enone 64. The four possible ways of 2-cyclopenten-1-one 64 approaching the enolate ion are depicted as four pre-transition-state assemblies in Fig. 5.2. The difference in the steric hindrance between the alkenic side (bearing H^{a} and H^{b}) and the aliphatic side (bearing H^{c} and H^{d}) of 2-cyclopenten-1-one $\mathbf{6 4}$ is presumed to play a key role in the stereo control. In assemblies A and B, the more hindered aliphatic side of $\mathbf{6 4}$ tends to be repulsed by both the tert-butyl group of the guanidinium and the methyl group of the enolate on the same side of the co-plane, making \mathbf{A} and \mathbf{B} disfavoured. Assembly \mathbf{C} is also disfavoured as the α proton of $\mathbf{6 4}, \mathrm{H}^{\mathrm{a}}$, is blocked by the proximal methyl group of the enolate. Assembly \mathbf{D}, with the least steric repulsion, is favoured and $\mathbf{6 4}$ is attacked from its $r e$-face to give the observed major isomer (R) - $\mathbf{6 6 a}$.

Fig. 5.2. Proposed pre-transition-state assemblies for the Michael reaction between 65a and 64 catalyzed by 79b.

This working hypothesis receives support from three observations:

1) As shown in Table 3.1 (Chapter 3, p51-52), the enantioselectivity of the
reaction between 64 and $65 a$ increased as the appendage of the catalyst became bulkier. The increased steric hindrance of the guanidinium appendage would cause more repulsion to the aliphatic side of $\mathbf{6 4}$, which disfavours the pre-transition-state assemblies A and B.
2) Among various dialkyl malonates, the reaction with diisopropyl malonate $\mathbf{6 5 k}$, which has the bulkiest ester chain, obtained highest enantioselectivity. The bulkier malonate side chains tend to be tilted further away from the guanidinium appendage and subsequently add to the repulsion indicated in assemblies \mathbf{A}, \mathbf{B}, and \mathbf{C}, favouring assembly D.

1:1 d.r.

Fig. 5.3. The reason of $1: 1$ d.r. obtained using benzoylacetates as the donors.
3) 1:1 Diastereomeric ratios were obtained in all the reactions of various benzoylacetates as donors. As shown in Fig. 5.3, due to the C_{2}-symmetry of the catalyst and the co-planarity between the guanidinium group and the enolate, there is no facial selectivity over the central sp^{2} carbon of the enolate, giving the two diastereomers in equal amounts.

Fig. 5.4. Proposed pre-transition-state assemblies for the Michael reaction between 65y and 87 b catalyzed by 79 b .

In the reactions of N-alkyl maleimides with 1,3-dicarbonyl compounds, we believe that the asymmetric induction was similar to the reactions using 2-cyclopenten-1-one $\mathbf{6 4}$ as the substrate. The catalytic cycle should also follow as in Scheme 5.1. A guanidinium-enolate complex is presumed to form between the catalyst and the donor $\mathbf{6 5 y}$, creating a chiral environment (Fig. 5.4). Similar to 64, the different steric hindrance of the alkenic side (bearing H^{a} and H^{b}) and the N-Et side of the maleimide $\mathbf{8 7 b}$ allowed the selective approach of $\mathbf{8 7 b}$ to the guanidinium-enolate complex. In pre-transition-state assemblies \mathbf{A} and \mathbf{B} (Fig. 5.4), the bulky N-Et side of $\mathbf{8 7 b}$ is repulsed by both the tert-butyl group of the guanidinium and the tert-butyl group of the enolate on the same side of the co-plane, making \mathbf{A} and \mathbf{B} disfavoured. In assembly \mathbf{C}, the proximal carbonyl group is blocked by the tert-butyl group of the enolate and disfavours the attack on the $s i$-face of $\mathbf{8 7 b}$. Assembly \mathbf{D} is favoured as it has the least steric repulsion and the attack on the re-face gave the major isomer
(S)-89a.

To prove the proposed stereochemical model and gain further insights, NMR study of the catalyst 79b, Michael donors $\mathbf{6 5 a}$ and $\mathbf{6 5 y}$, and their mixtures was carried out. The ${ }^{1} \mathrm{H}$ NMR spectrums of $\mathbf{7 9 b}, \mathbf{6 5 a}$, and $\mathbf{6 5}$ y were recorded respectively in toluene-D8 as solvent. The ${ }^{1} \mathrm{H}$ NMR spectra of the $1: 1$ mixture of $\mathbf{7 9 b}$ with $\mathbf{6 5 a}$ or 65y were also taken and the change in chemical shift of characteristic protons was calculated.

65a

65y

As shown in Table 5.1, when 79b and $\mathbf{6 5 a}$ was in a 1:1 mixture, there was no obvious change in the chemical shift of all the protons. In the NMR spectrum of the mixture, protons H^{e} were still present and the integration ratio of $H^{e}: H^{f}$ was also maintained at $1: 3$, which means protons H^{e} were not completely deprotonated.

Table 5.1. ${ }^{1} \mathrm{H}$ NMR study of $\mathbf{7 9 b}, \mathbf{6 5 a}$, and their mixture in Tolune-D8 at $25{ }^{\circ} \mathrm{C} .{ }^{[a]}$

	79b	$\mathbf{6 5 a}$	$\mathbf{7 9 b}: 65 a$ $(1: 1)^{\mathrm{a}}$	$\Delta \delta^{[\mathrm{b}]} / \mathrm{ppm}$
$\mathrm{H}^{\mathrm{a} / \mathrm{ppm}}$	0.83	-	0.84	+0.01
$\mathrm{H}^{\mathrm{b}} / \mathrm{ppm}$	3.69	-	3.72	+0.03
$\mathrm{H}^{\mathrm{c}}, \mathrm{H}^{\mathrm{d}} / \mathrm{ppm}$	$2.62,2.68$	-	$2.67,2.77$	$+0.05,+0.09$
$\mathrm{H}^{\mathrm{e}} / \mathrm{ppm}$	-	2.95	2.92	-0.03
$\mathrm{H}^{\mathrm{f}} / \mathrm{ppm}$	-	3.27	3.25	-0.02

[^2]mixture form compared with in a pure single component form, eg. $\Delta \delta\left(\mathrm{H}^{\mathrm{a}}\right)=\delta\left(\mathrm{H}^{\mathrm{a}}, 79 \mathbf{b}: \mathbf{6 5 a}(1: 1)\right)-\delta\left(\mathrm{H}^{\mathrm{a}}, 79 \mathbf{b}\right)$.
Table 5.2. ${ }^{1}$ H NMR study of 79b, $\mathbf{6 5 y}$, and their mixture in Toluene-D8. ${ }^{[a]}$

sample	79b	$\mathbf{6 5 y}$	79b:65y $(1: 1)$			
			$25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$	$\Delta \delta^{[\mathrm{b}]} / \mathrm{ppm}$
	0.83	-	0.82	0.90	0.93	-0.01
$\mathrm{H}^{\mathrm{b}} / \mathrm{ppm}$	3.69	-	3.70	3.70	3.84	+0.01
$\mathrm{H}^{\mathrm{c}}, \mathrm{H}^{\mathrm{d}} / \mathrm{ppm}$	2.62,	-	2.66,	2.69,	2.70,	$+0.04,+0.05$
	2.68		2.73	2.76	2.75	
$\mathrm{H}^{\mathrm{g}} / \mathrm{ppm}$	-	1.31	1.31	1.30	1.30	0
$\mathrm{H}^{\mathrm{h}} / \mathrm{ppm}$	-	3.25	3.25	3.17	3.08	0

${ }^{[a]}$ The concentration of $\mathbf{7 9 b}$ and $\mathbf{6 5 y}$ was 0.02 M in toluene-D8, the $1: 1$ mixture of 79b and 65 y was stirred at rt before ${ }^{1} \mathrm{H}$ NMR was recorded. ${ }^{[b]} \Delta \delta$ refers to the change of a certain proton's chemical shift when in a mixture form compared with in a pure single component form, eg. $\Delta \delta\left(\mathrm{H}^{\mathrm{a}}\right)=\delta\left(\mathrm{H}^{\mathrm{a}}, \mathbf{7 9 b}: 65 \mathbf{y}(1: 1)\right)-\delta\left(\mathrm{H}^{\mathrm{a}}, \mathbf{7 9 b}\right)$.

Fig. 5.5. ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture (1:1) of $\mathbf{7 9 b}$ and $\mathbf{6 5 y}$ at $25^{\circ} \mathrm{C}$ (a), $-20^{\circ} \mathrm{C}$ (b), and $-50^{\circ} \mathrm{C}$ (c).

Similarly, the ${ }^{1} \mathrm{H}$ NMR spectra of the mixture of $\mathbf{7 9 b}$ and $\mathbf{6 5 y}$ was also recorded.

As shown in Table 5.2, there was no clear change in the chemical shift of all the protons. However, in the mixture spectrum, the peak belonging to H^{h} became a broad singlet, while it reverted back to a sharp singlet when the NMR was taken at $-20^{\circ} \mathrm{C}$ or $-50{ }^{\circ} \mathrm{C}$ (as shown in Fig. 5.5). It implied that the deprotonation of H^{g} was fast at rt and reversible. It also showed that the deprotonation of $\mathbf{6 5 y}$ is faster than $\mathbf{6 5 a}$ and may explain why the reactions with $\mathbf{6 5 y}$ was faster than those with $\mathbf{6 5 a}$ as donor.

In an attempt to find proof for the existence of a guanidinium-enolate complex, NOE study of the mixture of $\mathbf{7 9 b}$ and $\mathbf{6 5 y}$ was carried out at both rt and $-50^{\circ} \mathrm{C}$. However, no obvious NOE was found between the protons of 79b and those of $\mathbf{6 5 y}$.

In conclusion, based on the experimental results and literature study, a stereochemical model for the origin of the enantioselectivity in the chiral bicyclic guanidine catalyzed Michael reactions is proposed. NMR studies neither give positive nor negative proof for this proposal. Further studies by other techniques, such as computational simulation and crystal X-ray diffraction may give greater insights and help elucidate the mechanism of the asymmetric induction.

Chapter 6

Experimental Procedures

6.1 General Procedures

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ACF300 $(300 \mathrm{MHz})$ or AMX500 $(500 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in parts per million (ppm). The residual solvent peak was used as an internal reference. Low resolution mass spectra were obtained on a VG Micromass 7035 spectrometer in EI mode, a Finnigan/MAT LCQ spectrometer in ESI mode, and a Finnigan/MAT 95XL-T mass spectrometer in FAB mode. All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Infrared spectra were recorded on a BIO-RAD FTS 165 FTIR spectrometer. Enantiomeric excess values were determined by chiral HPLC analysis on a set of Jasco HPLC units, including a Jasco DG-980-50 Degasser, a LG-980-02 Ternary Gradient Unit, a PU-980 Intelligent HPLC Pump, UV-975 Intelligent UV/VIS Detectors, and an AS-950 Intelligent Sampler. Optical rotations were recorded on Jasco DIP-1000 polarimeter. Melting points were determined on a BÜCHI B-540 melting point apparatus. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm . Flash chromatography separations were performed on Merck 60 (0.040 0.063 mm) mesh silica gel. Toluene was distilled from sodium/benzophenone and stored under N_{2} atmosphere. THF was freshly distilled from sodium/benzophenone before use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and stored under N_{2} atmosphere. MeOH was refluxed over magnesium turnings together with a small amount of iodine until the iodine disappeared and then distilled off. All distilled solvents were stored under N_{2}. All other reagents and solvents are commercial grade and were used as
supplied without further purification, unless otherwise stated.

6.2 Preparation of S, S^{\prime}-Dialkyl Dithiomalonates.

Typical procedure: To the mixture of malonic acid ($104 \mathrm{mg}, 1 \mathrm{mmol}$) and 4-DMAP ($49 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.4$ equiv.) in dry toluene (4 ml) was added $\mathrm{POCl}_{3}(0.21$ $\mathrm{ml}, 2.2 \mathrm{mmol}, 2.2$ equiv.) dropwise, followed by addition of alkylthiol ($2.2 \mathrm{mmol}, 2.2$ equiv.). The reaction flask was equipped with a condenser and heated at $70^{\circ} \mathrm{C}$ until no obvious release of $\mathrm{HCl}(2-3 \mathrm{~h})$. The reaction was quenched by pouring into cold water (5 ml), followed by extraction with ether ($3 \times 10 \mathrm{ml}$). The combined organic layer was washed with brine, followed by removal of solvent and chromatography on silica gel, to give the desired S, S^{\prime}-dialkyl dithiomalonate as an oil.

(65v) S, S^{\prime}-dipropyl propanebis(thioate)

Pale yellow oil. 35% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 0.97$ (t, $J=7.4 \mathrm{~Hz}$, $6 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 13.5,22.8,31.7,58.0,190.9$. IR (film): 2965, 1673, 1457, 1287, 991 cm^{-1}. LRMS(EI) m/z $220.0\left(\mathrm{M}^{+}\right), \operatorname{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 220.0585\left(\mathrm{M}^{+}\right)$, calc. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$ 220.0592.

$65 v$
(65w) S, S^{\prime}-diethyl propanebis(thioate)
Pale yellow oil. 30% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.27(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$6 \mathrm{H}), 2.93(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 14.3$, 24.0, 57.7, 190.6. LRMS(EI) m/z $192.0\left(\mathrm{M}^{+}\right)$.

(65x) S, S^{\prime}-Diisopropyl propanebis(thioate)

Colorless oil. 78% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 6 \mathrm{H}$), $1.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 22.6,35.5,57.8$, 190.6. IR (film): 2986, 2928, 2868, 1677, 1453, 1051, 990 cm^{-1}. LRMS(EI) m/z $220.0\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $220.0591\left(\mathrm{M}^{+}\right)$, calc. 220.0592 for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$.

65x
(65y) $\boldsymbol{S}, S^{\prime}$-Di-tert-butyl propanebis(thioate) ${ }^{79}$
Colorless oil. 93% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.46(\mathrm{~s}, 18 \mathrm{H}), 3.58(\mathrm{~s}$, 2H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 29.6, 49.0, 59.0, 191.2. LRMS(EI) m/z $248.1\left(\mathrm{M}^{+}\right), \operatorname{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 248.0901\left(\mathrm{M}^{+}\right)$, calc. 248.09047 for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$.

65y
(65z) $\boldsymbol{S}, \boldsymbol{S}^{\prime}$-dibenzyl propanebis(thioate) ${ }^{79}$

Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.52(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 4 \mathrm{H}), 5.99$ (m, 10H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 34.1,57.2,127.7,128.9,129.0,136.7$, 189.9. LRMS(EI) m/z $315.9\left(\mathrm{M}^{+}\right)$.

$65 z$

6.3 General Procedures for the Synthesis of Chiral Bicyclic Guanidines

6.3.1 General procedure for the removal of \boldsymbol{p}-toluenesulfonyl (Ts) group: (73b as an example)

Na ($793 \mathrm{mg}, 100$ equiv.) was washed with hexane and transferred into a 25 ml flame dried two-necked round-bottom flask equipped with a magnetic bar and an ammonium condenser. The reaction flask and the condenser were cooled to $-78^{\circ} \mathrm{C}$. NH_{3} gas was condensed through the condenser into the reaction flask until a dark blue solution (around 10 ml) was formed. While stirring, a THF solution (1 ml) of the triamine backbone 73b ($202 \mathrm{mg}, 0.345 \mathrm{mmol}$) was added dropwise into the dark blue solution at $-78^{\circ} \mathrm{C}$. Stirring was continued at $-78^{\circ} \mathrm{C}$ and more Na was added whenever the dark blue color fades. After 4 h , the reaction flask was opened to the air and brought to room temperature. Solid $\mathrm{NH}_{4} \mathrm{Cl}$ was added slowly with vigorous stirring until a white heterogeneous mixture was formed. After all NH_{3} evaporated off,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added to the resulted white solid and stirred for a half hour. The solid was then removed by suction filtration and was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The filtrate was combined and the solvent was removed under reduced pressure, giving a pale yellow oil in quantitative yield. The crude product was used directly for next reaction.

6.3.2 General procedure for Pd / C catalyzed hydrogenation: (73b as an example)

After 73b (202 mg, 0.345 mmol) underwent removal of tosyl group in $\mathrm{Na} / \mathrm{NH}_{3}(1)$, the crude product was dissolved in dry methanol (3 ml) and added to a dry round-bottom flask containing $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg}, 50 \% \mathrm{w} / \mathrm{w})$. The reaction mixture was purged with H_{2} gas for a half hour and kept stirring under H_{2} balloon. The reaction was monitored by TLC. Upon completion of reaction, the Pd / C was removed by suction filtration and the solvent was evaporated off under reduced pressure, affording 74b as a pale yellow oil, which was used for next step without further purification.

6.3.3 General procedure for final cyclization step: ($\mathbf{7 5 b}$ as an example)

(This procedure mainly followed the protocol reported by Davis and Dempsey ${ }^{80}$ with a slight modification during work-up). The crude free triamine 74b ($50 \mathrm{mg}, 0.26$ mmol) was dissolved in nitromethane (1 ml). Dimethyl trithiocarbonate ($36 \mu \mathrm{l}, 0.33$ mmol, 1.25 equiv.) in nitromethane (0.1 ml) was added to the mixture slowly, followed by refluxing at $110^{\circ} \mathrm{C}$ for 2 h , and then was cooled to room temperature. Acetic acid ($61 \mu \mathrm{l}, 1.06 \mathrm{mmol}, 4$ equiv.) and $\mathrm{MeI}(49 \mu \mathrm{l}, .53 \mathrm{mmol}, 2$ equiv.) were
added. It was refluxed at $110^{\circ} \mathrm{C}$ for 3 h and left stirring at room temperature overnight. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added to dilute the reaction mixture and the solvent was removed under reduced pressure. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added and the solution was loaded onto a plug of silica gel. It was eluted with copious $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to flush out the dark colored portion and then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (19:1) to recover the product, which was assumed to be a HI salt. The product was basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, giving the guanidine 75b in free amine form as a pale yellow oil ($31 \mathrm{mg}, 61 \%$ yield from 73b).
6.3.4 Preparation and characterization data of compound 72c, 75a, 75b, 77a, 77b, 79a, 79b.

(72c): To a flame dried round-bottom flask containing $4 \AA$ molecular sieves and a magnetic bar was added L-tert-leucinol (71c, $100 \mathrm{mg}, 0.85 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.48 \mathrm{ml}, 3.4$ mmol, 4 equiv. $)$, and dry $\mathrm{MeCN}(2.4 \mathrm{ml})$. It was cooled to $0^{\circ} \mathrm{C}$ and then $\mathrm{TsCl}(179 \mathrm{mg}$, $0.94 \mathrm{mmol}, 1.1$ equiv.) was added in one portion. After stirring at $0^{\circ} \mathrm{C}$ for 20 min , the reaction mixture was brought to room temperature and stirred for another 1 h . The solvent was removed under reduced pressure and ethyl acetate (5 ml) was added. The resulted precipitate and molecular sieves were removed by suction filtration and washed thoroughly with ethyl acetate. The solvent of the filtrate was removed and the residual oil was subjected to a solution of $\mathrm{Et}_{3} \mathrm{~N}(0.48 \mathrm{ml}, 3.4 \mathrm{mmol}, 4$ equiv. $)$ and DMAP ($104 \mathrm{mg}, 0.85 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.4 ml). $\mathrm{MsCl}(0.13 \mathrm{ml}, 1.7$
mmol, 2 equiv) was added slowly and then the reaction mixture was stirred at room temperature for 3 h . The solvent was removed under reduced pressure, followed by addition of ethyl acetate (5 ml). The resulted precipitate was removed by suction filtration and washed thoroughly with ethyl acetate. After removing the solvent of the filtrate and chromatography on silica gel, 72c was obtained as a white solid (172 mg , 80% yield). mp 51.9-52.7 ${ }^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}^{27}=+18.2$ (c $6.2, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 0.78$ (s, 9H), 2.16 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (s, 3H), 2.51 (d, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=4.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.6,26.2,30.1,30.2,48.8,128.1,129.5$, 135.2, 144.3. IR (film): 3039, 2961, 1921, 1601, 1477, 1322, $1162,1098 \mathrm{~cm}^{-1}$. LRMS(FAB) m/z $254.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$, $\operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 254.1215\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{SNO}_{2} 254.1215$.

(75a): As described above, 73a underwent detosylation and hydrogenolysis, followed by the final cyclization step, to give $\mathbf{7 5 a}$ as a pale yellow oil in 84% yield (based on 73a). $[\alpha]_{\mathrm{D}}^{25}=-22.3\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 2.77(\mathrm{dd}, J=$ $7.5,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=6.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=7.0,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 42.1,53.6,65.9,126.6,128.7,129.3,138.5,168.3$. IR (film): $3069,3020,2929,2857,1776,1707,1667,1600,1499,1459,1386,1316,1187 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z $291.8\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$, $\operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z} 292.1816\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for

$$
\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \text { 292.1814. }
$$

(75b): As described in the general procedures, 75b was also obtained as pale yellow oil in 61% yield from 73b. $[\alpha]_{\mathrm{D}}^{26}=-9.0\left(c 1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta 0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=$ $6.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): ~ \delta 18.3,18.9,32.8,50.9,69.7,167.1 . \operatorname{IR}$ (film): 3186, 2962, 2404, 1682, 1598, 1468, $1218 \mathrm{~cm}^{-1} . \operatorname{LRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 196.3\left(\mathrm{M}+\mathrm{H}^{+}\right), \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 196.1811\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{3} 196.1814$.

(77a): NH_{3} gas was continuously bubbled into $\mathrm{MeOH}(3 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for 30 min . A solution of aziridine 72a ($230 \mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{ml})$ was added into the saturated NH_{3} solution in MeOH at $0^{\circ} \mathrm{C}$. The reaction vessel was sealed up tightly and brought to room temperature slowly. After stirring over night, the solvent was removed under reduced pressure, giving a pale yellow oil. It was added to a solution of aziridine 72b ($297 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.5$ equiv.) in dry $\mathrm{MeCN}(2 \mathrm{ml})$. The reaction mixture was refluxed at $95^{\circ} \mathrm{C}$ for 2 days. After removing solvent under reduced pressure and flash chromatography, 77a was obtained as a white foamy solid in 80%
yield (based on 72a). $[\alpha]_{\mathrm{D}}^{29}=-20.7\left(c\right.$ 3.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 0.72(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.51-2.63(\mathrm{~m}, 4 \mathrm{H})$, 2.70 (dd, $J=6.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.27$ $(\mathrm{m}, 7 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 18.2,18.4,21.4,30.2,39.249 .3,51.3,53.8,58.0,126.5,127.0,127.1$, 128.4, 129.1, 129.4, 129.5, 129.6, 136.8, 137.3, 137.9, 143.2. IR (film): 3027, 2964, 2867, 1723, 1643, 1598, 1449, 1326, 1158, $1090 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z $544.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS(ESI) m/z 544.2299 (M+H $\left.{ }^{+}\right)$, calc. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~S}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ 544.2304.

(77b): Using the procedure used to make compound 77a, aziridine 72c was converted to diamine 76c, which was used to open aziridine 72c (1.2 equiv). After flash chromatography, 77b was obtained as a white solid in 84% yield (from 72c). Mp 187.3-189.2 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{31}=+4.3\left(c 1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta$ 0.76 (s, 18H), 2.33 (m, 2H), 2.39 (s, 6H), 2.63 (dd, $J=7.0,13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.4,26.9,34.4,49.0,61.6,126.9,129.4$, 139.0, 142.9. IR (film): 3023, 1692, 1601, 1327, 1216, $1156,1091 \mathrm{~cm}^{-1}$. LRMS(FAB) m/z $524.4\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$, $\operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 524.2611\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~S}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ 524.2617.

(79a): The crude free triamine 78a was obtained by removing the tosyl group of 77a and was cyclized using the general procedure to give guanidine 79a as pale yellow oil in 89% yield from 77a. $[\alpha]_{\mathrm{D}}^{32}=-18.8\left(c 3.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H})$, 2.89-3.07 (m, 3H), $3.20(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=7.6,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 5.63$ (bs, 2H), 7.17-7.29 (m, 5H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 18.7, 19.4, 33.2, 42.1, 51.7, 53.4, 66.5, 69.6, 126.5, 128.6, 129.3, 138.7, 168.4. IR (film): 3214, 3021, 2963, 1653, 1496, 1260, $1217 \mathrm{~cm}^{-1} . \operatorname{LRMS}(E S I) \mathrm{m} / \mathrm{z} 243.7\left(\mathrm{M}^{+} \mathrm{H}^{+}\right), \mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ $244.1818\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3} 244.1814$.

(79b): The crude free triamine 78b was obtained by removing the tosyl group of 77b and was cyclized using the general procedure to give guanidine 79b as pale yellow oil in 75% yield (from 77b). $[\alpha]_{\mathrm{D}}^{31}=-5.4\left(c 1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta 0.92$ (s, 18 H$), 3.10(\mathrm{dd}, J=6.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{dd}$, $J=6.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{bs}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 25.8,33.8$, 48.6, 72.8, 167.2. IR (film): 2963, 2869, 1652, 1401, 1370, 1219, $1019 \mathrm{~cm}^{-1}$. LRMS(FAB) m/z $224.3\left(\mathrm{M}+\mathrm{H}^{+}\right), \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 224.2125\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{3}$ 224.2127.

6.4 Typical Experimental Procedures for the Michael Reactions

6.4.1 Typical experimental procedure for Michael reaction catalyzed by TBD

Toluene (0.4 mL) was added to a 5 mL round-bottom flask followed by 2-cyclopenten-1-one 64 ($8.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and dimethyl malonate $\mathbf{6 5 a}$ ($66 \mathrm{mg}, 0.5$ $\mathrm{mmol})$. A toluene solution of TBD (0.01 mmol TBD in 0.1 mL toluene; $10 \mathrm{~mol} \%$ catalyst) was then added to start the reaction. The reaction mixture was stirred for 5 min at room temperature, filtered through a plug of silica and washed several times with ethyl acetate (EtOAc). After removing the solvents with lower boiling points, the product was kept under high vacuum to remove excess dimethyl malonate. The product 66a was obtained as colorless oil in 95% yield (20.3 mg). No further purification is necessary. For all reactions, control experiments containing no catalyst were performed simultaneously. For the time frame of the experiments, no product was observed for any of the controls.

For Michael donors with high boiling point, column chromatography was used to remove them after the reaction was completed and this resulted in slightly lower yields.

6.4.2 A typical procedure of the chiral guanidine catalyzed enantioselective

Michael reaction:

N-Ethyl maleimide 87b (3.2 mg, 0.025 mmol$)$ and S, S^{\prime}-di-tert-butyl dithiomalonate $\mathbf{6 5 y}$ ($7.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.2$ equiv.) was dissolved in toluene $(0.09 \mathrm{ml})$ and stirred at $-50{ }^{\circ} \mathrm{C}$. A pre-cooled toluene solution of catalyst $\mathbf{7 9 b}(0.58 \mathrm{mg}$ in 0.01
ml toluene, $0.0025 \mathrm{mmol}, 10 \mathrm{~mol} \%$; pre-treated by passing through a plug of $\mathrm{K}_{2} \mathrm{CO}_{3}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was injected into the reaction mixture. It was stirred at $-50^{\circ} \mathrm{C}$ and monitored by TLC. Upon complete consumption of 87b (6 h), the reaction mixture was directly loaded onto a short silica gel column, followed by gradient elution with hexane/EA mixtures (9/1-4/1 ratio). After removing the solvent, product 89a was obtained as a white solid $\left(\mathrm{Mp} 122^{\circ} \mathrm{C}\right)$ in 98% yield $(9.1 \mathrm{mg})$.

6.5 Characterization of Michael Adducts

(25) 4-Nitro-1,3-diphenylbutan-1-one

White solid. Structure was confirmed by comparing with literature spectra data ${ }^{81}$. The enantiomeric excess was determined by HPLC analysis. HPLC separation conditions: column CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $=90 / 10$; flow rate $1.2 \mathrm{ml} / \mathrm{min}$; temp $25{ }^{\circ} \mathrm{C}$; detection UV 254 nm ; retention time: 15.6 min (major) and 21.0 min (minor).

(66a) (R)-(+)-Dimethyl 2-(3-oxocyclopentyl)malonate ${ }^{82}$
Colorless oil. 91% ee, $[\alpha]_{\mathrm{D}}^{26}=+132.8\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta 1.51-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=10.8,18.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.43$ (dd, $J=8.0,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.87(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.70$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 27.3,36.2,38.0,42.7,52.4,55.9,168.3$,
168.4, 216.7. LRMS (ESI) $\mathrm{m} / \mathrm{z} 231.9\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$, $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 213.0762(\mathrm{M}-\mathrm{H})$, calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{5}$ 213.0763. The ee was determined by a HPLC analysis after conversion to ethylene ketal. CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $=97 / 3$; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210 \mathrm{~nm}$; retention time: 24.6 \min (major) and 25.9 min (minor).

(66b) (R)-(+)-3-Di(ethoxycarbonyl)methyl-1-cyclopentanone ${ }^{83}$
Colorless oil. 92% ee, $[\alpha]_{\mathrm{D}}^{26}=+50.4\left(c 0.56, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): ~ \delta 1.21-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.35(\mathrm{~m}, 3 \mathrm{H})$, $2.47(\mathrm{dd}, J=7.6,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.23$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 13.9,27.3,36.2,38.0,42.8,56.4,61.5$, 167.9, 168.0, 217.0. LRMS (EI) m/z $242.2\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z 242.1165, (M^{+}), calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5} 242.1154$. The ee was determined by a HPLC analysis after conversion to ethylene ketal. CHIRALCEL OD-H (4.6 mm i.d. $\times 250 \mathrm{~mm}$); Hexane/2-propanol $=$
$97 / 3$; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210 \mathrm{~nm}$; retention time: 18.3 min (major) and 20.1 $\min ($ minor $)$.

(66c) Di-tert-butyl 2-(3-oxocyclopentyl)malonate
As reported in lit. ${ }^{84}$

(66d) Ethyl 3-oxo-2-(3-oxocyclopentyl)butanoate
As reported in lit. ${ }^{85}$

(66e) N, N '-Dimethyl-3-oxo-2-(3-oxocyclopentyl) butanamide
Colorless oil. A 1:1 mixture of two diastereomers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.36(\mathrm{~m}, 8 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$, $3.07(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 26.5,26.9,28.2,36.0,36.7,36.8,37.4,37.5,37.9,38.0,42.3,43.5$, 64.2 (2 peaks), 167.2, 203.5, 203.7, 216.9, 217.1. IR (film): 1740, 1635, 1496, 1402, $1360 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z $212.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS (FAB) m/z $212.1291\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3} \quad$ 212.1287.

(66f) 3-(1-acetyl-2-oxocyclopentyl)cyclopentanone
Colorless oil. A 1:1 mixture of two diastereomers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.61-2.02(\mathrm{~m}, 11 \mathrm{H}), 2.11-2.27(\mathrm{~m}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$ and $2.23(\mathrm{~s}, 3 \mathrm{H})$, 2.31-2.41 (m, 4H), 2.62-2.67 (m, 2H), 2.98-3.07 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 19.3,19.4,24.4,25.0,25.7,25.8,26.3,26.4,38.0,38.2,38.9,39.3$, 39.8, 40.3, 40.4, 40.6, 71.1 (quaternary carbon), 71.2 (quaternary carbon), 202.7 (2 peaks), 215.2, $215.3,216.0,216.3$. IR (film): $1740,1708,1592,1464,1377 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z 207.1 (M-H), HRMS (FAB) m/z 207.10217 (M-H), calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}$ 207.10212.

(66h) 2-[3'-Oxocyclopentyl]2-phenylacetonitrile
As reported in lit. ${ }^{86}$

(66i) 3-(2-Nitropropan-2-yl)cyclopentanone
As reported in lit. ${ }^{87}$

(66j) (R)-(+)-Dibenzyl 2-(3-oxocyclopentyl)malonate
Colorless oil. 92% ee, $[\alpha]_{\mathrm{D}}^{26}=\left(c 0.91, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta$ $1.54-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{dd}, J=10.1,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.36(\mathrm{~m}, 3 \mathrm{H})$, $2.41-2.50(\mathrm{dd}, J=8.0,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (s, 2H), $5.17(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 27.3$, 36.3, 38.0, 42.7, 56.4, 67.2, 67.3, 128.2, 128.5, 135.0 (two peaks), 167.6, 167.7, 216.8. LRMS(EI) m/z $367.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$, $\mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 367.1545\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5}$ 367.1545. The ee was determined by a HPLC analysis after conversion to ethylene ketal. CHIRALCEL OJ-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow
rate $0.4 \mathrm{ml} / \mathrm{min}$; $25{ }^{\circ} \mathrm{C}$; 210 nm ; retention time: 113.5 min (major) and 119.9 min (minor).

(66k) (R)-(+)-diisopropyl 2-(3-oxocyclopentyl)malonate
Colorless oil. 96% ee, $[\alpha]_{\mathrm{D}}^{26}=+100.5\left(c 0.57, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): ~ \delta 1.20-1.25(\mathrm{~m}, 12 \mathrm{H}), 1.59-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.04(\mathrm{dd}, J=10.8,18.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.10-2.35 (m, 3H), 2.43-2.51 (dd, $J=6.8,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.84(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 21.5,21.6$, 27.4, 36.1, 38.1, 42.8, 56.9, 69.1 (two peaks), 167.5, 167.6, 217.3. LRMS (EI) m/z 271.1 $\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$, HRMS (EI) $\mathrm{m} / \mathrm{z} 271.1547\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}$ 271.1545. The ee was determined by HPLC analyses of the Michael adduct. CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 97/3; flow rate $0.3 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210$ nm ; retention time: 35.0 min (major) and 38.7 min (minor).

(661) (R)-(+)-ethyl 3-oxo-2-(3-oxocyclopentyl)-3-phenylpropanoate

Colorless oil. A 1:1 mixture of diastereomers. 90% and 93% ee. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.14-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.38$ $(\mathrm{m}, 7 \mathrm{H}), 2.50-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.15(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.99-8.04(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 14.0,27.4,28.0,36.4,36.6,38.1,38.3,42.8$, 43.3, 59.1, 59.4, 61.7 (two peaks), 128.6, 128.8, 133.8, 136.1, 136.3, 168.4, 168.5, 193.4, 193.6, 193.4, 193.6, 217.3. LRMS (EI) m/z 274.1 (${ }^{+}$), HRMS (EI) m / z $274.1207\left(\mathrm{M}^{+}\right)$, calc. 274.1205 for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. Double columns, CHIRALPAK (AD-H)-(AD-H) (4.6 mm i.d. x 250 mm); Hexane/2-propanol 80/20; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 28.3 min (minor) and 45.3 min (major), $90 \% \mathrm{ee} ; 32.7 \mathrm{~min}$ (minor) and $33.6 \min$ (major), 93\% ee.

(66m) Ethyl 3-oxo-2-((R)-3-oxocyclopentyl)-3-m-tolylpropanoate
Colorless oil. A $1: 1$ mixture of diastereomers. 90% and 91% ee. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.17(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{dd}, J=$ $11.4,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.37(\mathrm{~m}, 6 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.55(\mathrm{~m}, 2 \mathrm{H})$, 3.05-3.14 (m, 2H), 4.09-4.19 (m, 4H), 4.27 (m, 2H), 7.34-7.42 (m, 4H), 7.78-7.82 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 14.0,21.3,27.4,27.9,36.4,36.6,38.1$, 38.2, 42.8, 43.3, 59.0, 59.3, 61.6 (two peaks), 125.8, 128.7, 129.0, 134.6, 136.2, 136.4, 138.7, 168.5 (two peaks), 193.6, 193.8, 217.3. IR (film): 3019, 2981, 1740, 1686, 1603, 1024, $754 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $288.1\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $288.1360\left(\mathrm{M}^{+}\right)$, calc. 288.1362 for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $90 / 10$; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 8.5 min (minor), 12.0 min (major); 9.7 min (minor), 10.6 min (major).

(66n) (R)-ethyl 3-oxo-2-(3-oxocyclopentyl)-3-(4-(trifluoromethyl)phenyl)propanoate

Colorless oil. A $1: 1$ mixture of diastereomers. 92% and 96% ee. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.17(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{dd}, J=$ $11.4,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.40(\mathrm{~m}, 6 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.18(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.19(\mathrm{~m}$, 4H), $4.25(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.77(\mathrm{~m}, 4 \mathrm{H})$, 8.10-8.13 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, ppm): $\delta 14.1,14.2,27.5,28.2,36.4$, 36.6, 38.3, 38.4, 42.8, 43.5, 59.7, 60.0, 62.1, 62.2, 122.5, 124.7, 126.1 (five peaks, C-F coupling), 129.1, 135.1, 135.4, 138.9, 139.1, 168.2 (two peaks), 192.7, 192.9, 217.0 (two peaks). IR (film): 2980, 1743, 1696, 1513, 1465, $997 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $342.2\left(\mathrm{M}^{+}\right), \operatorname{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 342.1079\left(\mathrm{M}^{+}\right)$, calc. 342.1079 for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 29.8 min (minor), 37.0 min (major), $92 \% \mathrm{ee}$; and 52.5 min (minor), 54.1 min (major), 96\% ee.

(660) (R)-(+)-Ethyl 3-oxo-2-(3-oxocyclopentyl)-3-(3-(trifluoromethyl)phenyl)-propanoate

Colorless oil. A 1:1 mixture of diastereomers. 88% and 89% ee ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.18(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{dd}, J=$ $11.3,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.41(\mathrm{~m}, 6 \mathrm{H}), 2.54(\mathrm{dd}, J=7.6,18.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.19(\mathrm{~m}$, $2 \mathrm{H}), 4.11-4.22(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.87(\mathrm{~m}$, $2 \mathrm{H}), 8.18-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 13.9$ (two peaks), 27.3, 28.0, 36.3, 36.4, 38.1, 38.2, 42.6, 43.3, 59.4, 59.7, 62.0 (two peaks), 123.5 (q, C-F coupling, $J=273.1 \mathrm{~Hz}$), 125.4 (three peaks), 129.6, 130.2 (four peaks), 131.2-132.0 (six peaks), 136.6, 136.8, 168.0 (two peaks), 192.1, 192.3, 216.8, 216.9. IR (film): 3021, 2984, 1735, 1692, 1333, 1137, $770 \mathrm{~cm}^{-1}$. LRMS(EI) m/z 342.1 $\left(\mathrm{M}^{+}\right)$, $\operatorname{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 342.1065\left(\mathrm{M}^{+}\right)$, calc. 342.1079 for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane $/ 2$-propanol $95 / 5$; flow rate $0.5 \mathrm{ml} / \mathrm{min}$; temp $25^{\circ} \mathrm{C}$; detection UV 254 nm ; retention time: 62.3 min (minor) and 95.3 min (major), 88% ee; 67.1 min (minor), 84.0 min (major), 89% ee

(66p) (R)-Ethyl 3-(4-chlorophenyl)-3-oxo-2-(3-oxocyclopentyl)propanoate
Colorless oil. A $1: 1$ mixture of diastereomers. 92% and 93% ee. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.17(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dd}, J=$ $11.0,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.39(\mathrm{~m}, 6 \mathrm{H}), 2.49-2.54(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 2 \mathrm{H})$, 4.10-4.18 (m, 4H), $4.21(\mathrm{t}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.93-7.97(\mathrm{~m}, 4 \mathrm{H}) .$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, ppm): $\delta 14.0$ (two peaks), 27.3, 28.0, 36.3, 36.5, 38.1, 38.2, 42.7, 43.3, 59.2, 59.5, 61.9 (two peaks), 129.2 (two peaks), 130.0, 134.4, 134.6, 140.5, 168.2, 168.3, 192.2, 192.4, 217.0 (two peaks). IR (film): 3020, 1737, 1686, 1591, 1216, 1094, $760 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $308.1\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z 308.0804 $\left(\mathrm{M}^{+}\right)$, calc. 308.0815 for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 11.1 min (minor) and 15.9 \min (major), 92% ee; 13.6 min (major), 15.2 min (minor), 93% ee.

(66q) (R)-(+)-Ethyl 3-(3-chlorophenyl)-3-oxo-2-(3-oxocyclopentyl)propanoate

Colorless oil. A 1:1 mixture of diastereomers. 90% and 90% ee. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.16-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{dd}, J$ $=11.2,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.33(\mathrm{~m}, 6 \mathrm{H}), 2.53(\mathrm{dd}, J=7.3,18.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.12(\mathrm{~m}$, $2 H)$, 4.12-4.24 (m, 6H), 7.41-7.47 (m, 2H), $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.91(\mathrm{~m}, 2 \mathrm{H})$, 7.98-7.80 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 14.0,27.3,28.0,36.3,36.5$, 38.1, 38.2, 42.7, 43.3, 59.3, 59.6, 61.9 (two peaks), 126.6, 128.6, 130.2, 133.8, 135.3, 137.6, 137.8, 168.1 (two peaks), 192.2, 192.4, 217.0 (two peaks). IR (film): 2965, 1739, 1690, 1572, 1470, 1370, $999 \mathrm{~cm}^{-1} . \quad$ LRMS(EI) m/z 307.9 (M ${ }^{+}$), HRMS(EI) $\mathrm{m} / \mathrm{z} 308.0814\left(\mathrm{M}^{+}\right)$, calc. 308.0815 for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 9.2 \min (minor) and 12.7 min (major); 10.8 min (minor), 11.5 min (major).

(66r) (R)-(+)-Ethyl 3-(4-nitrophenyl)-3-oxo-2-(3-oxocyclopentyl)propanoate
Colorless oil. A $1: 1$ mixture of diastereomers. 93% and 94% ee. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.15-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{dd}, J=$ $11.2,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.41(\mathrm{~m}, 6 \mathrm{H}), 2.56(\mathrm{dd}, J=7.7,18.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-3.16(\mathrm{~m}$, $2 \mathrm{H}), 4.12-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{dd}, J=7.7,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15-8.20(\mathrm{~m}, 4 \mathrm{H}), 8.32-8.36$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 14.0$ (two peaks), 27.2, 28.0, 36.1, $36.3,38.0,38.2,42.5,43.3,59.8,60.1,62.1,62.2,124.1,129.6,140.3,140.5,150.6$, 167.7, 167.8, 192.0, 192.2, 216.6, 216.7. IR (film): 1735, 1688, 1648, 1528, 1405, 1351, 1153, $999 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $318.9\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $319.1062\left(\mathrm{M}^{+}\right)$, calc. 319.1056 for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25{ }^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 21.6 min (minor), 23.6 \min (major); 32.6 min (major), 36.5 min (minor).

(66s) 3-(1,3-Dioxo-1,3-diphenylpropan-2-yl)cyclopentanone
Colorless oil. Mp $84{ }^{\circ} \mathrm{C} .61 \%$ yield, 91% ee. $[\alpha]_{\mathrm{D}}^{27}=+47.1\left(c \quad 0.24, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.63-1.73(\mathrm{~m}, 1 \mathrm{H}), \quad 1.96(\mathrm{dd}, J=11.5,18.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.12-2.37 (m, 3H), $2.49(\mathrm{dd}, J=7.3,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.37(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.95-8.03(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 28.3,37.9,38.4,43.5,63.2,128.9,129.2,134.0$ (two peaks), 136.5, 136.6, 194.8, 195.0, 217.1. LRMS(ESI) m/z 305.1172 (M-H), HRMS(ESI) m/z 305.3472 (M-H), calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3}$. The enantiomeric excess was determined by HPLC analysis of the Michael adduct without derivatization. HPLC separation conditions: column CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $90 / 10 \mathrm{~min}$; flow rate $1.0 \mathrm{ml} / \mathrm{min}$; temp $25^{\circ} \mathrm{C}$; detection UV 254 nm ; retention time: 22.0 min (minor) and 24.5 min (major).

(66t) (R)-3-(3-oxocyclopentyl)pentane-2,4-dione
As reported in lit. ${ }^{88}$

(66v) (R)-(+)-S,S'-dipropyl 2-(3-oxocyclopentyl)propanebis(thioate)
Colorless oil. 89% ee, $[\alpha]_{\mathrm{D}}^{26}=+50.3\left(c 0.67, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta 0.95(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.92(\mathrm{dd}, J=10.8,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.24$ (m, 2H), $2.31(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=7.7,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, 3.01-3.09 (m, 1H), $3.72(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 13.2, 22.6, 27.3, 31.5, 37.7, 38.0, 42.4, 73.4, 192.5, 216.5. IR (film): 2965, 1744, 1696, 1287, 1240, 1153, $986 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $301.9\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $302.1005\left(\mathrm{M}^{+}\right)$, calc. 302.1010 for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}_{2}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $95 / 5 \mathrm{~min}$; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C}$; 210 nm ; retention time: 21.2 min (major) and 23.4 min (minor).

(66w) (R)-(+)-S,S'-Diethyl 2-(3-oxocyclopentyl)propanebis(thioate)
Colorless oil. 90% ee, $[\alpha]_{\mathrm{D}}^{25}=+54.3\left(c 0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$: $\delta 1.26(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=10.6,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.46(\mathrm{~m}$, $4 \mathrm{H}), 2.88-3.01(\mathrm{~m}, 4 \mathrm{H}), 3.03-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 14.3,24.1,27.3,37.8,38.0,42.4,73.3,192.5,216.5$. IR (film): 2970, 1744, 1693, 1454, 1409, 1263, 1155, $974 \mathrm{~cm}^{-1} . \operatorname{LRMS}(E I) \mathrm{m} / \mathrm{z} 274.1\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $274.0699\left(\mathrm{M}^{+}\right)$, calc. 274.0697 for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}_{2}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRACEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210 \mathrm{~nm}$; retention time: 25.8 min (major) and 28.4 min (minor).

(66x) (R)-(+)-S,S'-Diisopropyl 2-(3-oxocyclopentyl)propanebis(thioate)
Colorless oil. 92% ee, $[\alpha]_{\mathrm{D}}^{26}=+87.6\left(c \quad 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 1.28-1.33(\mathrm{~m}, 12 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.45(\mathrm{~m}, 4 \mathrm{H})$, 2.94-3.05 (m, 1H), $3.61(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 22.5,22.6,22.7,27.3,35.7$ (two peaks), 38.0, 42.4, 73.3, 192.5, 216.6. IR (film): 3021, 2969, 2930, 1744, 1692, 1216, 988, $764 \mathrm{~cm}^{-1}$. LRMS(EI) m/z 302.1 $\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $302.1006\left(\mathrm{M}^{+}\right)$, calc. 302.1010 for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}_{2}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $95 / 5 \mathrm{~min}$; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210 \mathrm{~nm}$; retention time: 18.2 min (major) and 20.4 min (minor).

(66y) (R)-(+)- S,S -Di-tert-butyl 2-(3-oxocyclopentyl)propanebis(thioate)

White solid. Mp $104{ }^{\circ} \mathrm{C} .95 \% \mathrm{ee},[\alpha]_{\mathrm{D}}^{26}=+44.7\left(c 0.43, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=11.0,18.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.91-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 27.3,29.5$ (two peaks), 37.8, 38.0, 42.4, 49.4, 74.2, 192.8, 216.8. IR (film): $3024,1741,1655,1457,1364,1222,1157,972 \mathrm{~cm}^{-1}$. LRMS(EI) m/z
$330.0\left(\mathrm{M}^{+}\right)$, $\mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 330.1315\left(\mathrm{M}^{+}\right)$, calc. 330.1323 for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~S}_{2} \mathrm{O}_{3}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210 \mathrm{~nm}$; retention time: 8.6 min (minor) and 9.6 min (major).

(68a) Methyl 2-carbomethoxy-4-nitro-3-phenylbutyrate
As reported in lit. ${ }^{89}$

(68c) 2,3-Diethyl 1,1-dimethyl propane-1,1,2,3-tetracarboxylate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=5.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=7.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (td, $J=5.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 13.8,14.0,33.4,40.4,51.9,52.6,60.7,61.3$, 168.0, 168.1, 171.0, 171.5. IR (film): 1741, 1643, $1463,1377 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z $305.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS (FAB) m/z $305.1229\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{8}$ 305.1236.

(68d) Dimethyl 2-(1-(furan-2-yl)-2-nitroethyl)malonate
As reported in lit. ${ }^{90}$

(68e) Dimethyl 2-(2-nitro-1-(thiophen-2-yl)ethyl)malonate
As reported in lit. ${ }^{90}$

(68f) Dimethyl 2-(2-nitro-1-p-tolylethyl)malonate
As reported in lit. ${ }^{91}$

(68g) Dimethyl 2-[2-nitro-1-(4-nitrophenyl)ethyl]malonate
As reported in lit. ${ }^{91}$

(68h) Methyl 3,5-Diphenyl-2-methoxycarbonyl-5-oxopentanoate
As reported in lit. ${ }^{92}$

(68i) Dimethyl 2-(1-(4-nitrophenyl)-3-oxo-3-phenylpropyl)malonate
Brown oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.89(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{td}, J=5.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.88$ $(\mathrm{m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 40.3,41.7$, $52.6,52.8,56.5,123.6,128.0,128.7,129.2,133.4,136.3,147.0,148.3,167.7,168.1$, 196.6. IR (film): $1647,1524,1458,1215 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z $386.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS (FAB) m/z $386.1257\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{7} 386.1240$.

(68j) Dimethyl 2-(1-(2-chlorophenyl)-3-oxo-3-phenylpropyl)malonate

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 3.52(\mathrm{~s}, 3 \mathrm{H}), 3,53-3.66(\mathrm{~m}, 2 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=4.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H})$, $7.21(\mathrm{dd}, J=2.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=1.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 37.3,40.2,41.1,52.5,54.8$, 126.8, 128.1, 128.3, 128.5, 129.1, 130.1, 133.1, 134.0, 136.7, 137.7, 168.2, 168.6,
197.3. IR (film): $1737,1642,1459,1377 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z $375.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS (FAB) $\mathrm{m} / \mathrm{z} 375.1016\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClO}_{5}$ 375.0999.

(68k) Dimethyl 2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate
As reported in lit. ${ }^{93}$

(681) Dimethyl 2-(3-oxo-1-phenyl-3-p-tolylpropyl)malonate

White solid. Mp $93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.56$ (m, 2H), $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{td}, J=5.6,9.2 \mathrm{~Hz}$, 1H), 7.19-7.25 (m, 7H), $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ $21.5,40.7,42.1,52.2,52.5,57.2,127.1,128.0,128.1,128.4,129.1,134.3,140.4$, 143.7, 168.1, 168.6, 197.0. IR (KBr): 1759, 1681, 1497, $1436 \mathrm{~cm}^{-1}$. LRMS (EI) m/z $354.1\left(\mathrm{M}+\right.$), $\mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 354.1469\left(\mathrm{M}^{+}\right)$, calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} 354.1467$.

(68m) Dimethyl 2-(1,4-dioxo-1,4-diphenylbutan-2-yl)malonate
As reported in lit. ${ }^{94}$

(68n) Dimethyl 2-(2, 5-dioxohexan-3-yl)malonate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{dd}$, $J=4.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=7.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.68-3.74(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 29.5,29.7,42.8,45.4,52.2,52.7$ (2 peaks), 168.3, 168.4, 205.3, 208.0. IR (film): 1647, 1459, 1377, 1216, $1161 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z $245.3\left(\mathrm{M}+\mathrm{H}^{+}\right), \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 245.1036\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{6}$ 245.1025.

The starting material, 1,2-diacetyl ethylene, was prepared according to the method reported in the literature. ${ }^{95}$
(680) Methyl 2-methoxycarbonyl-3,4-dicyanobutanoate

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.63$ (dd, $J=6.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 19.1,28.0,51.4,53.7,114.8,116.3,165.6,165.7$. IR (film): 1761, 1630, 1439, $1363 \mathrm{~cm}^{-1} . \operatorname{LRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 211.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS(FAB) $\mathrm{m} / \mathrm{z} 211.0709\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ 211.0719.

(68p) 3-[Bis(methoxycarbonyl)methyl]cyclohexanone
As reported in lit. ${ }^{82}$

(70a) 3-(1-Acetyl-2-oxocyclopentyl)propanenitrile
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.72-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.11(\mathrm{~m}$, $3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.39(\mathrm{~m}, 5 \mathrm{H}), 2.55-2.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 13.2,19.6,26.4,29.6,31.6,38.3,67.2$ (quaternary carbon), 118.9, 203.3, 215.1. IR (film): $1699,1436,1360,1233 \mathrm{~cm}^{-1}$. LRMS (FAB) m/z $180.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS (FAB) m/z $180.1017\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$, calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}$ 180.1025.

(70b) Methyl 3-(1-acetyl-2-oxocyclopentyl)propanoate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.61-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.79-2.02(\mathrm{~m}$, $3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.29(\mathrm{~m}, 5 \mathrm{H}), 2.55-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 19.5,26.2,29.5,29.7,31.1,38.5,51.9,68.0$ (quaternary carbon), 173.1, 204.2, 215.7. IR (film): $1739,1700,1458,1364 \mathrm{~cm}^{-1} . \operatorname{LRMS}(E S I)$ $\mathrm{m} / \mathrm{z} 212.9\left(\mathrm{M}+\mathrm{H}^{+}\right), \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 213.1135\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}$ for 213.1127.

(70c) Phenyl 3-(1-acetyl-2-oxocyclopentyl)propanoate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.71-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.86-2.01(\mathrm{~m}$, $2 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.68$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 19.3,26.1,28.9,29.8,31.2,38.3,67.6$ (quaternary carbon), $121.3,125.8,129.3,150.5,171.1,204.0,215.6$. IR (film): 1697, 1654, 1489, $1363 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $274.0\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $274.1203\left(\mathrm{M}^{+}\right)$, calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} 274.1205$.

(70d) 2-Acetyl-2-(2-(phenylsulfonyl)ethyl)cyclopentanone
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.97(\mathrm{~m}$, $3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.94-3.05(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.60$ (m, 2H), $7.64(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 19.6,26.2$, $26.8,31.9,38.3,52.0,66.6$ (quaternary carbon), 128.2, 129.6, 134.2, 138.9, 203.7, 215.1. IR (film): $1701,1590,1448,1409,1323 \mathrm{~cm}^{-1} . \operatorname{LRMS}(E I) \mathrm{m} / \mathrm{z} 294.1\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z 294.0923 (M^{+}), calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ 294.0926.

(70e) Phenyl 2-(1-acetyl-2-oxocyclopentyl)ethanesulfonate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 1.74-1.84 (m, 1H), 1.95-2.04 (m, $2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H})$, 7.39 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 19.7,26.5,27.5,32.2,38.4,46.4$, 66.3 (quaternary carbon), $122.2,127.5,130.2,149.2,203.7,215.2$. IR (film): 1741, 1707, 1653, 1592, 1488, $1353 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $309.9\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $310.0861\left(\mathrm{M}^{+}\right)$, calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S} 310.0875$.

(81) 4-Methyl-4-nitro-1,3-diphenylpentan-1-one

White solid. Structure was confirmed by comparing with literature spectra data ${ }^{81}$. The enantiomeric excess was determined by HPLC analysis. HPLC separation conditions: column CHIRALCEL OJ-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate $1.2 \mathrm{ml} / \mathrm{min}$; temp $25^{\circ} \mathrm{C}$; detection UV 254 nm ; retention time: 20.0 min (minor) and 26.8 min (major).

(85a) Trimethyl 4-oxopentane-1,1,2-tricarboxylate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 2.17$ (s, 3H), 2.80 (dd, $J=5.0,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=7.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.92(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 29.8,39.2$,
41.9, 51.8, 52.5, 52.7, 52.8, 168.2, 168.4, 172.4, 205.4. LRMS(FAB) m/z 261.1 $\left(\mathrm{M}+\mathrm{H}^{+}\right), \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 261.0967\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. 261.0974 for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{7}$. The enantiomeric excess was determined by HPLC analysis. HPLC separation conditions: column CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min}$; temp $25^{\circ} \mathrm{C}$; detection UV 210 nm ; retention time: 14.4 min (minor) and 18.3 min (major).

(85b) 2-Ethyl 1,1-dimethyl 4-oxo-4-phenylbutane-1,1,2-tricarboxylate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.33(\mathrm{dd}$, $J=5.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=6.8,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.84$ (m, 1H), $4.04(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 13.9,37.3,39.6$, 52.0, 52.7, 52.8, 61.4, 128.1, 128.6, 133.3, 136.4, 168.5, 172.0, 197.2. LRMS(EI) m/z $336.0\left(\mathrm{M}^{+}\right)$, $\mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 336.1211\left(\mathrm{M}^{+}\right)$, calc. 336.1209 for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{7}$. The enantiomeric excess was determined by HPLC analysis. HPLC separation conditions: column CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate $1.0 \mathrm{ml} / \mathrm{min}$; temp $25{ }^{\circ} \mathrm{C}$; detection UV 254 nm ; retention time: 18.7 min (major) and 21.9 min (minor).

(88b) (S)-Dimethyl 2-(1-ethyl-2,5-dioxopyrrolidin-3-yl)malonate
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.17$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.72 (dd, $J=5.6,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=9.1,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 12.6,32.3,34.0,39.2,50.5,52.9,53.0,167.4,168.0,175.6,176.9$ IR (film): 3023, 2956, 1739, 1701, 1439, 1408, 1227, $754 \mathrm{~cm}^{-1}$. LRMS(EI) m/z 257.0 $\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $257.0894\left(\mathrm{M}^{+}\right)$, calc. 257.0899 for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{6}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 210 \mathrm{~nm}$; retention time: 16.0 min (minor) and 17.4 min (major).

(89a) (S)-S,S'-Di-tert-butyl 2-(1-ethyl-2,5-dioxopyrrolidin-3-yl)propanebis(thioate)

White solid. Mp $122{ }^{\circ} \mathrm{C} .95 \%$ ee, $[\alpha]_{\mathrm{D}}^{27}=-46.6\left(c 0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.77(\mathrm{dd}, J=9.4$, $18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=5.6,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 12.7,29.5,32.0$, $33.9,40.5,49.8,50.0,66.2,175.8,176.8,192.8$. IR (film): 3020, 2968, 1777, 1703,

1406, 1216, 1130, 967, $776 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z $396.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, HRMS(ESI) m/z $396.1276\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, calc. 396.1279 for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NaNS}_{2} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25{ }^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 30.1 \min (minor) and 36.6 min (major).

(89b) (S)-S,S'-Di-tert-butyl 2-(1-methyl-2,5-dioxopyrrolidin-3-yl)propanebis(thioate)

White solid. Mp $98{ }^{\circ} \mathrm{C} .95 \%$ ee, $[\alpha]_{\mathrm{D}}^{26}=-9.3\left(c 0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 2.75-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.40$ $(\mathrm{m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 25.0,29.5$, 32.1, 40.5, 49.8, 50.0, 66.3, 175.9, 177.0, 192.7, 192.8. IR (film): 3020, 2965, 2400, 1780, 1706, 1439, 1217, $759 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z $382.0\left(\mathrm{M}+\mathrm{Na}^{+}\right), \mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ $382.1128\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, calc. 382.1123 for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NaNS}_{2} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 13.7 \min (minor) and $25.4 \min$ (major).

(89c) (S)-S,S'-Di-tert-butyl 2-(1-hexyl-2,5-dioxopyrrolidin-3-yl)propanebis(thioate)

White solid. Mp $62{ }^{\circ} \mathrm{C} .95 \%$ ee, $[\alpha]_{\mathrm{D}}^{26}=-15.6$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 0.84-0.87(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.77(\mathrm{dd}$, $J=9.4,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=5.6,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=$ 7.3 Hz, 2H), 4.21 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 14.0,22.4$, $26.4,27.5,29.5,31.3,32.0,39.1,40.5,49.8,50.0,66.1,176.0,177.0,192.9$. IR (film): 2963, 2929, 1778, 1703, 1404, 1366, 1217, 1172, $967 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z 452.1 $\left(\mathrm{M}+\mathrm{Na}^{+}\right), \operatorname{HRMS}($ ESI $) \mathrm{m} / \mathrm{z} 452.1893\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, calc. 452.1905 for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NaNS}_{2} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C}$; 254 nm ; retention time: 6.8 min (minor) and 8.7 min (major).

(89d) (S)-S,S'-Di-tert-butyl 2-(1-benzyl-2,5-dioxopyrrolidin-3-yl)propanebis(thioate)

Sticky solid. 90% ee, $[\alpha]_{\mathrm{D}}^{27}=-14.1\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.79(\mathrm{dd}, J=9.4,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=5.6,18.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30-3.37(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J$ $=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 29.7$ (two peaks), $32.3,40.8,42.8,50.0,50.2,66.2,128.0,128.7,128.9,135.7,175.8,176.8$, 193.1. IR (film): $3020,2967,2925,2402,1777,1707,1400,1216,1168 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z $458.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, $\mathrm{HRMS}($ ESI $) \mathrm{m} / \mathrm{z} 436.1612\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. 436.1616 for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NS}_{2} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate 0.5 $\mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 34.6 min (minor) and 43.5 min (major).

(89e) (S)-S,S'-Diisopropyl 2-(1-methyl-2,5-dioxopyrrolidin-3-yl)propanebis(thioate)

White solid. Mp $78{ }^{\circ} \mathrm{C} .93 \%$ ee, $[\alpha]_{\mathrm{D}}^{26}=-19.6\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.26-1.37(\mathrm{~m}, 12 \mathrm{H}), 2.81(\mathrm{dd}, J=9.1,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=5.9$, $18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): ~ \delta 22.5,25.0,32.1,36.0,36.2,40.5,65.3$, 175.9, 176.9, 192.6. IR (film): 2966, 2930, 1781, 1704, 1440, 1386, 1284, 1121, 978 cm^{-1}. LRMS(ESI) m/z $354.1\left(\mathrm{M}^{2}+\mathrm{Na}^{+}\right)$, $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 354.0812\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, calc. 354.0810 for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NaNS}_{2} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 15.1 min (minor) and 17.7 min (major).

(89f) (S)-S,S'-Diisopropyl 2-(1-ethyl-2,5-dioxopyrrolidin-3-yl)propanebis(thioate) White solid. Mp $65{ }^{\circ} \mathrm{C} .93 \%$ ee, $[\alpha]_{\mathrm{D}}^{25}=-24.4\left(c 0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.37(\mathrm{~m}, 12 \mathrm{H}), 2.78(\mathrm{dd}, J=9.4,18.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=5.9,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, 3.61-3.79 (m, 2H), $4.31(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 12.7$, $22.5,22.6,32.1,33.9,36.0,36.1,40.4,65.3,175.7,176.7,192.5,192.6$. IR (film):

2968, 2932, 1777, 1703, 1444, 1406, 1228, 1129, $973 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z 367.9 $\left(\mathrm{M}+\mathrm{Na}^{+}\right), \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 368.0966\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, calc. 368.0966 for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NaNS}_{2} \mathrm{O}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALCEL OJ-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 80/20; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25{ }^{\circ} \mathrm{C} ; 254$ nm ; retention time: 7.3 min (minor) and 8.2 min (major).

(90a) (S)-3-(1,3-Dioxo-1,3-diphenylpropan-2-yl)-1-ethylpyrrolidine-2,5-dione Colorless oil. 92% ee, $[\alpha]_{\mathrm{D}}^{27}=-196.9\left(c 0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 1.13$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $2.60(\mathrm{dd}, J=9.4,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=5.4$, $18.3 \mathrm{~Hz}, 1 \mathrm{H}) 3.34-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36-7.42 (m, 2H), 7.51-7.59 (m, 3H), 7.66-7.71 (m, 1H), 7.80-7.83 (m, 2H), 8.06-8.08 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 12.6,31.5,34.0,39.9,54.3$, 128.4, 128.7, 128.8, 129.4, 133.8, 134.5, 135.4, 176.0, 177.7, 194.7, 195.1. IR (film): 3020, 2940, 2400, 1776, 1704, 1597, 1448, 1351, 1227, 1131, $777 \mathrm{~cm}^{-1} . \operatorname{LRMS}(E I)$ $\mathrm{m} / \mathrm{z} 348.7\left(\mathrm{M}^{+}\right)$, $\operatorname{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 349.1315\left(\mathrm{M}^{+}\right)$, calc. 349.1314 for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254$
nm ; retention time: 17.0 min (major) and 23.4 min (minor).

(90b) (S)-3-(1,3-Dioxo-1,3-diphenylpropan-2-yl)-1-methylpyrrolidine-2,5-dione Colorless oil. 93% ee, $[\alpha]_{\mathrm{D}}^{25}=-260.3\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta 2.64(\mathrm{dd}, J=9.4,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=5.5,18.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36-3.42 (m, 1H), $6.01(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 3 \mathrm{H})$, 7.66-7.71 (m, 1H), 7.78-7.81 (m, 2H), 8.06-8.09 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): ~ \delta 25.1,31.5,40.0,54.3,128.4,128.7,128.9,129.5,133.9,134.5,134.6,135.3$, 176.2, 178.0, 194.9, 195.2. IR (film): 3020, 2949, 2400, 1779, 1717, 1597, 1449, 1349, 1119, 1001, $839 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $335.0\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z 335.1160 $\left(\mathrm{M}^{+}\right)$, calc. 335.1158 for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol $80 / 20$; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 14.0 min (major) and 23.2 $\min ($ minor $)$.

(90c) (S)-3-(1,3-Dioxo-1,3-diphenylpropan-2-yl)-1-hexylpyrrolidine-2,5-dione Colorless oil. 92% ee, $[\alpha]_{\mathrm{D}}^{25}=-197.5\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{bs}, 6 \mathrm{H}), 1.50-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=9.5$, $18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=5.6,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.01(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.65-7.70(\mathrm{~m}$, $1 \mathrm{H}), 7.81-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 13.9$, $22.4,26.3,27.3,31.3,31.4,39.1,39.8,54.2,128.4,128.6,128.8,129.3,133.8,134.4$, 134.5, 135.4, 176.1, 177.8, 194.6, 195.0. IR (film): 3020, 2932, 2400, 1776, 1699, 1406, 1216, $776 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $405.0\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $405.1943\left(\mathrm{M}^{+}\right)$, calc. 405.1940 for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 16.4 min (major) and 18.8 $\min ($ minor $)$.

(90d) (S)-1-Benzyl-3-(1,3-dioxo-1,3-diphenylpropan-2-yl)pyrrolidine-2,5-dione Colorless oil. 90% ee, $[\alpha]_{\mathrm{D}}^{25}=-167.2\left(c \quad 0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 2.63$ (dd, $J=9.4,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=5.6,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.44(\mathrm{~m}$, $1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.25-7.41 (m, 7H), 7.51-7.57 (m, 3H), 7.65-7.70(m, 1H), 7.78-7.81 (m, 2H), 8.03-8.06 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}, ppm): $\delta 31.5,40.0,42.6,54.1,127.7$, 128.4, 128.5 (two peaks), 128.7, 128.8, 129.4, 133.9, 134.5, 135.3, 135.6, 175.7, 177.5, 194.6, 195.0. IR (film): 3023, 2403, 1777, 1700, 1597, $1402,1218 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $410.8\left(\mathrm{M}^{+}\right)$, HRMS(EI) $\mathrm{m} / \mathrm{z} 411.1462\left(\mathrm{M}^{+}\right)$, calc. 411.1471 for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate 1.0 $\mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 32.1 min (minor) and 36.6 min (major).

(90e) (S)-3-(1,3-Dioxo-1,3-diphenylpropan-2-yl)-1-isobutylpyrrolidine-2,5-dione Colorless oil. 72% yield, 92% ee, $[\alpha]_{D}^{24}=-185.6\left(c 0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 0.87(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.97-2.06(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{dd}, J=9.5,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=5.7,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.37-3.41(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.58(\mathrm{~m}$, $3 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 20.0,20.1,27.1,31.4,39.9,46.5,54.1,128.5,128.7,128.9,129.4$, $133.8,134.5,134.6,135.5,176.3,178.1,194.6,195.2$. IR (film): 3020, 2966, 2400, 1777, 1699, 1597, 1406, 1215, 1139, $760 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $376.9\left(\mathrm{M}^{+}\right)$, HRMS(EI) $\mathrm{m} / \mathrm{z} 377.1622\left(\mathrm{M}^{+}\right)$, calc. 377.1627 for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 25{ }^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 16.6 \min (major) and 22.8 min (minor).

(90f) (3S)-3-(1,3-Dioxo-1-phenylbutan-2-yl)-1-ethylpyrrolidine-2,5-dione
Colorless oil. A 1:1 mixture of diastereomers determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.90(\mathrm{~m}, 4 \mathrm{H}), 3.13-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.60(\mathrm{~m}$,
$4 \mathrm{H}), 5.04(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.69(\mathrm{~m}, 6 \mathrm{H}), 7.89-7.92$ (m, 2H), 7.80-7.82 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 12.6$ (two peaks), 29.2, 29.5, 31.5, 32.4, 33.9, 34.0, 39.4, 39.7, 59.1, 61.2, 128.7 (two peaks), 129.0, 129.3, 134.3, 134.6, 135.1, 135.9, 175.6, 175.8, 177.7 (two peaks), 194.8, 195.8, 201.7, 202.3. IR (film): $3021,1774,1700,1448,1407,1353,1227,1131,756 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $287.1\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z 287.11677 (M^{+}), calc. 287.1158 for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$. The ee was determined by HPLC analyses after chlorination of the Michael adduct. The chlorination product $\mathbf{9 0 f} \mathbf{- C l}$ was obtained as a $4: 1$ mixture of diastereomers. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C}$; 254 nm ; retention time: 39.1 min (minor), and 55.0 min (major), 95% ee; 43.5 min (major), and 45.6 min (minor), 96% ee.

(90g) (3S)-Ethyl 2-(1-ethyl-2,5-dioxopyrrolidin-3-yl)-3-oxo-3-phenylpropanoate
Colorless oil. A $1: 1$ mixture of diastereomers, determined by ${ }^{1} \mathrm{H}$ NMR, 88% ee
determined after decarboxylation of the Michael adduct. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): ~ \delta 1.12-1.21(\mathrm{~m}, 12 \mathrm{H}), 2.77-2.94(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.48(\mathrm{~m}, 1 \mathrm{H})$, 3.52-3.63 (m, 4H), 4.11-4.21 (m, 4H), $4.89(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43-7.65(\mathrm{~m}, 6 \mathrm{H}), 7.90-7.99(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 12.7$ (two peaks), 13.8 (two peaks), 32.2, 32.4, 34.0, 39.4, 39.6, 52.0, 53.3, 62.1, 62.2, $128.5,128.7,128.8,128.9,134.0,134.1,135.5,135.7,167.8,168.2,175.9,176.0$, 177.5, 177.7, 193.2, 194.0. IR (film): 3021, 2984, 2401, 1777, 1735, 1704, 1598, 1448, 1380, 1219, 1027, $780 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $317.2\left(\mathrm{M}^{+}\right)$, HRMS(EI) m / z $317.1269\left(\mathrm{M}^{+}\right)$, calc. 317.1263 for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$. The ee was determined by HPLC analyses after removing the ester group of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 80/20; flow rate $10 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254$ nm ; retention time:12.4 min (major) and 21.1 min (minor).

(90h) 3S)-Ethyl 2-(1-tert-butyl-2,5-dioxopyrrolidin-3-yl)-3-oxo-3-phenylpropanoate

Colorless oil. A 1:1 mixture of diastereomers determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.14-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 2.68-2.83$ (m, 4H), 3.18-3.23 (m, 1H), 3.31-3.36 (m, 1H), 4.14-4.19 (m, 4H), 4.86 (d, $J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.91-8.01(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 13.9$ (two peaks), 28.2 (two peaks), 32.4, 32.7, 39.4, 39.6, 52.3, 53.4, 58.6, 61.9, 62.1, 128.5, 128.7 (two peaks), 128.9, 133.8, 134.0, 135.5, 135.9, 167.9, 168.4, 177.1, 178.6, 178.7, 193.4, 194.2. IR (film): 2980, 2938, 1770, 1736, 1700, 1352, 1265, $1165 \mathrm{~cm}^{-1}$. LRMS(EI) $\mathrm{m} / \mathrm{z} 345.2\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $345.1581\left(\mathrm{M}^{+}\right)$, calc. 345.1576 for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5}$. The ee was determined by HPLC analyses after α-chlorination of the Michael adduct. The chlorination product $\mathbf{9 0 h} \mathbf{- C l}$ was obtained as a $10: 1$ mixture of diastereomers. The major diastereomer was separated and analyzed by HPLC. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 95/5; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time: 21.4 min (major) and 28.3 min (minor), 94% ee.

6.6 Synthesis of (S)-(+)- β-Proline

(92) (S)-(+)-S-tert-Butyl 2-(1-benzyl-2,5-dioxopyrrolidin-3-yl)ethanethioate

The Michael adduct 89d ($300 \mathrm{mg}, 0.69 \mathrm{mmol}, 90 \%$ ee) and $\mathrm{NaCl}(121 \mathrm{mg}, 2.7 \mathrm{mmol}$, 3 equiv.) was dissolved in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}(10: 1)$ solvent mixture (11 ml) and heated to $110^{\circ} \mathrm{C}$. Upon complete consumption of $\mathbf{8 9 d}$ (9h), the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and extracted with ether $(3 \mathrm{x} 30 \mathrm{ml})$. The combined organic layer was washed with brine, followed by removal of solvent and chromatography on silica gel, to give the desired mono thioester $\mathbf{9 2}$ as a colorless oil in 99% yield. 92% ee, $[\alpha]_{\mathrm{D}}^{25}=+41.3\left(c 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.50$ (dd, $J=4.9,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.15(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 29.7,34.0,36.5,42.6,43.8,48.9,127.9,128.6,128.7,135.6,175.6,178.3,197.1$. IR
(film): 3022, 2966, 2403, 1776, 1705, 1679, 1348, 1217, $1168 \mathrm{~cm}^{-1}$. LRMS(ESI) m/z $342.1\left(\mathrm{M}+\mathrm{Na}^{+}\right), \quad$ HRMS(ESI) $\mathrm{m} / \mathrm{z} 342.1136\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, calc. 342.1140 for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{SNO}_{3} \mathrm{Na}$. The ee was determined by HPLC analyses of the Michael adduct. CHIRALPAK AD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol 90/10; flow rate 1.0 $\mathrm{ml} / \mathrm{min} ; 25^{\circ} \mathrm{C} ; 254 \mathrm{~nm}$; retention time:11.5 min (minor) and 12.4 min (major).

(93) (S)-2-(1-Benzylpyrrolidin-3-yl)ethanol

The mono thioester 92 ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$) was dissolved in dry THF (9 ml) and refluxed with LiAlH_{4} ($470 \mathrm{mg}, 12.5 \mathrm{mmol}, 20$ equiv.) for 22 h . The reaction was diluted with ether (45 ml) and stirred vigorously at $0^{\circ} \mathrm{C}$. Water $(0.5 \mathrm{ml})$ was added dropwise, followed by aqueous $\mathrm{NaOH}(0.5 \mathrm{ml}, 1 \mathrm{M})$, and water $(0.5 \mathrm{ml})$. After stirring vigorously at rt for 2 h , the mixture was filtered through celite and the residue solid was washed with copious ether. The combined filtrate was washed with brine and
dried over MgSO_{4}, followed by removal of solvent and chromatography on basified silica gel, to give the desired N-benzyl homo- β-prolinol 93 as colorless oil in 92% yield. 92% ee, $[\alpha]_{D}^{25}=-3.9$ (c 3, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ $1.45-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.54(\mathrm{~m}, 1 \mathrm{H})$, 2.60-2.69 (m, 2H), 3.48-3.61 (m, 4H), 7.22-7.30 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): ~ \delta 29.0,34.3,37.7,53.5,60.1,60.2,60.4,127.2,128.3,129.0,138.1$. IR (film): 3362, 2928, 1450, 1217, $1064 \mathrm{~cm}^{-1}$. LRMS(EI) m/z $205.0\left(\mathrm{M}^{+}\right)$, HRMS(EI) m/z $205.1467\left(\mathrm{M}^{+}\right)$, calc. 205.1467 for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$.
(97) (S)-(+)-homo- β-Proline

a) N-Benzyl-homo- β-prolinol 93 ($33 \mathrm{mg}, 0.16 \mathrm{mmol}$) and ammonium formate (51 mg , $0.8 \mathrm{mmol}, 5$ equiv.) was dissolved in $\mathrm{MeOH}(2 \mathrm{ml}) . \mathrm{Pd} / \mathrm{C}(10 \%, 36 \mathrm{mg})$ was added and the reaction mixture was refluxed for 0.5 h , followed by filtration through celite. The solvent was removed to give free homo- β-prolinol as thick oil in quantitative yield.
b) The product obtained above was dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10 / 1,1.1 \mathrm{ml})$, followed by addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (12 mg , 0.55 equiv.). The reaction mixture was stirred in an ice-salt bath $\left(-10^{\circ} \mathrm{C}\right)$ and $\mathrm{CbzCl}(28 \mathrm{mg}, 1$ equiv.) was added dropwise. After stirring in ice-salt bath for another 10 min , the reaction was brought to $0^{\circ} \mathrm{C}$ and stirred for 0.5 h .

The reaction mixture was poured into ice-water (3 ml) and solid NaCl was added until saturation, followed by extraction with EA ($3 \times 6 \mathrm{ml}$). The combined organic layer was washed with $5 \% \mathrm{HCl}$, water, and brine. After drying over MgSO_{4}, solvent was removed, giving N-Cbz homo- β-prolinol as thick oil.
c) The product obtained above was dissolved in acetone (2 ml) and stirred in an ice-salt bath $\left(-10^{\circ} \mathrm{C}\right)$. The Jones' reagent ${ }^{\text {iii }}(1 \mathrm{ml})$ was diluted with acetone $(3 \mathrm{ml})$ and cooled in the ice-salt bath for 10 min , followed by dropwise addition to the reaction mixture until the orange-red color persisted for more than 5 min . The reaction was further stirred in the ice-salt bath until complete consumption of the starting material indicated by TLC (about 0.5 h$)$. Isopropanol (0.1 ml) was added to quench the reaction and the solvent was removed. The residue was diluted with brine (3 ml) and extracted with EA ($3 \times 6 \mathrm{ml}$). Solvent was removed and the residue was dissolved in toluene (3 ml) and washed with aqueous $\mathrm{KOH}(1 \mathrm{M}, 3 \mathrm{ml})$. The organic layer was acidified with concentrated HCl to pH 1 and extracted with EA (3 x 6 ml). The combined organic layer was washed with brine and dried over MgSO_{4}. Solvent was removed to give N-Cbz homo- β-proline as thick oil.
d) The product obtained above was dissolved in MeOH (1 ml) and stirred with Pd / C $(10 \%, 6 \mathrm{mg})$ under H_{2} for 2 h , before filtration through Celite to give the pure (S)-(+)-homo- β-proline 97 as an amorphous white solid. 92% ee, $[\alpha]_{\mathrm{D}}^{25}=+8.3(c 0.4$, $\left.\mathrm{H}_{2} \mathrm{O}\right),\left(\mathrm{lit}^{[73 \mathrm{~d}]},[\alpha]_{\mathrm{D}}^{27}=+9.6\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta$ 1.45-1.70 (m, 3H), 1.93-2.04 (m, 1H), 2.30-2.37 (m, 2H), 2.45-2.54 (m, 1H),

[^3]$2.60-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.61(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): ~ \delta 29.0,34.3,37.7,53.5,60.1,60.2,60.4,127.2,128.3,129.0,138.1$. LRMS(FAB) m/z $130.0\left(\mathrm{M}+\mathrm{H}^{+}\right)$, HRMS(FAB) m/z $130.0866\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calc. 130.0868 for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{2}$.

References

1 C. L. Hannon, E. V. Anslyn, Bioorganic Chemistry Frontiers, Springer-Verlag: Berlin, Heidelberg, 1993, vol 3, 193.

2 Y. Yamamoto, S. Kojima, In The Chemistry of Amidines and Imidates; S. Patai, Z. Rappoport, Eds, John Wiley \& Sons Inc.: New York, 1991, vol 2, pp 485.

3 M. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454.
4 D. Ma, K. Cheng, Tetrahedron: Asymmetry 1999, 10, 713.
5 (a) T. Ishikawa, T. Isobe, Chem. Eur. J. 2002, 8, 552; (b) T. Ishikawa, Y. Araki, T. Kumamoto, H. Seki, K. Fukuda, T. Isobe, Chem. Commun. 2001, 245.

6 B. Peng, K. Cheng, D. Ma, Chin. J. Chem. 2000, 18, 411.
7 M. Martín-Portugués, V. Alcázar, P. Prados, J. de Mendoza, Tetrahedron 2002, 58, 2951.

8 M. T. Allingham, A. Howard-Jones, P. J. Murphy, D. A. Thomas, P. W. R. Caulkett, Tetrahedron Lett. 2003, 44, 8677.

9 A. P. Davis, K. J. Dempsey, Tetrahedron: Asymmetry 1995, 6, 2829.
10 M. S. Iyer, K. M. Gigstad, N. D. Namdev, M. Lipton, J. Am. Chem. Soc. 1996, 118, 4910.

11 E. J. Corey, M. J. Grogan, Org. Lett. 1999, I, 157.
12 J. C. McManus, T. Genski, J. S. Carey, R. J. K. Taylor, Synlett 2003, 369.
13 (a) E. van Aken, H. Wynberg, F. van Bolhuis, J. Chem. Soc., Chem. Commun. 1990, 55; (b) E. van Aken, H. Wynberg, F. van Bolhuis, Acta. Chem. Scand. 1993, 47, 122.

14 R. Chinchilla, C. Nájera, P. Sánchez-Agulló, Tetrahedron: Asymmetry 1994, 5, 1393.
D. Ma, Q. Pan, F. Han, Tetrahedron Lett. 2002, 43, 9401.

16 Y. Sohtome, N. Takemura, T. Iguchi, Y. Hashimoto, K. Nagasawa, Synlett 2006, 144.

17 T. Kita, A. Georgieva, Y. Hashimoto, T. Nakata, K. Nagasawa, Angew. Chem. Int. Ed. 2002, 41, 2832.

18 (a) D. H. R. Barton, J. D. Elliott, S. D. Géro, J. Chem. Soc., Perkin Trans. 1 1982, 2085; (b) F. P. Schmidtchen, Chem. Ber. 1980, 113, 2175.

19 (a) B. Kovačević, Z. B. Maksić, Org. Lett. 2001, 3, 1523; (b) I. Kaljurand, T. Rodima, A. Pihl, V. Māemets, I. Leito, I. A. Koppel, M. Mishima, J. Org. Chem. 2003, 68, 9988.

20 (a) D. Simoni, M. Rossi, R. Rondanin, A. Mazzali, R. Baruchello, C. Malagutti, M. Roberti, F. P. Invidata, Org. Lett. 2000, 2, 3765; (b) M. G. Edwards, J. M. J. Williams, Angew. Chem. Int. Ed. 2002, 41, 4740.

21 D. Simoni, R. Rondanin, M. Morini, R. Baruchello, F. P. Invidiata, Tetrahedron Lett. 2000, 41, 1607.

22 A. Horváth, Tetrahedron Lett. 1996, 37, 4423.
23 V. K. Aggarwal, A. Mereu, Chem. Comm. 1999, 2311.
24 Y. V. Subba Rao, D. E. De Vos, P. A. Jacobs, Angew Chem. Int. Ed. Engl. 1997, 36, 2661.

25 R. Ballini, G. Bosica, D. Fiorini, R. Maggi, P. Righi, G. Sartori, R. Sartorio, Tetrahedron Lett. 2002, 43, 8445.

26 F. Fringuelli, F. Pizzo, C. Vittoriani, L. Vaccaro, Chem. Comm. 2004, 2756.
27 M. E. Lizarzaburu, S. J. Shuttleworth, Tetrahedron Lett. 2004, 45, 4781.
28 M. E. Jung, In Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.; Pergamon: Oxford, 1991, 4, 1-67.

29 (a) M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2003, 125, 11204; (b) M. Watanabe, K. Murata, T. Ikariya, J. Am. Chem. Soc. 2003, 125, 7508; (c) Y. S. Kim, S. Matsunaga, J. Das, A. Sekine, T. Ohishima, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 6506; (d) Y. Hamashima, D. Hotta, M. Sedeoka, J. Am. Chem. Soc. 2002, 124, 11240.

30 E. J. Corey, F-Y. Zhang, Org. Lett. 2000, 2, 4257.
31 M. Yamaguchi, N. Yokota, T. Minami, J. Chem. Soc., Chem. Commun. 1991, 1088.

32 S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975.
33 (a) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906; (b) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, L. Deng, Angew. Chem. Int. Ed. 2005, 44, 105.

34 N. Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. Int. Ed. 2003, 42, 661.
35 (a) R. Ballini, A. Rinaldi, Tetrahedron Lett. 1994, 35, 9247; (b) S. Muthusamy, S.
A. Babu, C. Gunanathan, Synth. Commun. 2002, 32, 3247.
D. Bensa, J. Rodriquez, Synth. Commun. 2004, 34, 1515.

37 (a) S. H. K. Reddy, K. Chiba, Y. Sun, K. D. Moeller, Tetrahedron 2001, 57, 5183;
(b) R. G. Salomon, N. D. Sachinvala, S. Roy, B. Basu, S. R. Raychaudhuri, D.
B. Miller, R. B. Sharma, J. Am. Chem. Soc. 1991, 113, 3085.

38 (a) E. J. Corey, A. Guzman-Perez, Angew. Chem. Int. Ed. 1998, 37, 388; (b) K. Fuji, Chem. Rev. 1993, 93, 2037.

39 (a) E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157; (b) E. J. Corey, M. Ohtani, Tetrahedron Lett. 1989, 30, 5227.

40 T. Isobe, K. Fukuda, K. Yamaguchi, H. Seki, T. Tokunaga, T. Ishikawa, J. Org. Chem. 2000, 65, 7779.

41 (a) W. McCoull, F. A. Davis, Synthesis 2000, 10, 1347; (b) D. Tanner, Angew. Chem. Int. Ed. Engl. 1994, 33, 599.

42 M. B. Berry, D. Craig, Synlett 1992, 41.
43 (a) B. M. Kim, S. M. So, H. J. Choi, Org. Lett. 2002, 4, 949; (b) J. E. W. Scheuermann, G. Ilyashenko, D. V. Grioffiths, M. Watkinson, Tetrahedron: Asymmetry 2002, 13, 269; (c) F. Lake, C. Moberg, Eur. J. Org. Chem. 2002, 18, 3179; (d) M. Cernerud, A. Skrinning, I. Bérgère, C. Moberg, Tetrahedron: Asymmetry 1997, 8, 3437.

44 (a) A. Berkessel, H. Gröger, Asymmetric Organocatalysis-From Biomimetic Concepts to Applications in Asymmetric Synthesis, WILEY-VCH, 2005, p. 47-55;
(b) J. Seayad, B. List, Org. Biomol Chem. 2005, 3, 719; (c) P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248; Angew. Chem. Int. Ed. 2004, 43, 5138; (d) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840; Angew. Chem. Int. Ed. 2001, 40, 3726.

45 (a) C. E. T. Mitchell, S. E. Brenner, S. V. Ley, Chem. Commun. 2005, 5346; (b) N. Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. 2003, 115, 685; Angew. Chem. Int. Ed. 2003, 42, 661; (c) S. P. Brown, N. C. Goodwin, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 1192; (d) N. Halland, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002, 67, 8331; (e) S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975; (f) M. Yamaguchi, T. Shiraishi, M. Hirama, J. Org. Chem. 1996, 61, 3520; (g) A. Kawara, T. Taguchi, Tetrahedron Lett. 1994, 35, 8805.

46 (a) Y. Hayahshi, H. Gotoh, T. Tamura, H. Yamaguchi, R. Masui, Mi. Shoji, J. Am. Chem. Soc. 2005, 127, 16028; (b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. 2005, 117, 4284; Angew. Chem. Int. Ed. 2005, 44, 4212; (c) W. Wang, J. Wang, H. Li, Angew. Chem. 2005, 117, 1393; Angew. Chem. Int. Ed.

2005, 44, 1369; (d) A. J. A. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold, S. V. Ley, Org. Biomol. Chem. 2005, 3, 84; (e) M .Marigo, T. Schulte, J. Franzén, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 15710; (f) T. J. Peelen, Y. Chi, S. H. Gellman, J. Am. Chem. Soc. 2005, 127, 11598; (g) M. T. H. Fonseca, B. List, Angew. Chem. 2004, 116, 4048; Angew. Chem. Int. Ed. 2004, 43, 3958; (h) N. Mase, R. Thayumanavan, F. Tanaka, C. F. Barbas III, Org. Lett. 2004, 6, 2527; (i) A. Alexakis, O. Andrey, Org. Lett. 2002, 4, 3611.

47 (a) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, L. Deng, Angew. Chem. 2004, 117, 107; Angew. Chem. Int. Ed. 2005, 44, 105; (b) J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481; (c) D. Xue, Y.-C. Chen, Q.-W. Wang, L.-F. Cun, J. Zhu, J.-G. Deng, Org. Lett. 2005, 7, 5293; (d) M. Bella, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 5672; (e) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906.

48 (a) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119; (b) Y. Hoashi, T. Okino, Y. Takemoto, Angew. Chem. 2005, 117, 4100; Angew. Chem. Int. Ed. 2005, 44, 4032; (c) J. Wang, H. Li, W. Duan, L. Zu, W. Wang, Org. Lett. 2005, 7, 4713; (d) S. H. McCooey, S. J. Connon, Angew. Chem. 2005, 117, 6525; Angew. Chem. Int. Ed. 2005, 44, 6367; (e) B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967; (f) T. Okino, Y. Hoashi, Y. Takemoto J. Am. Chem. Soc. 2003, 125, 12672.
(a) T. Ooi, T. Miki, M. Taniguchi, M. Shiraishi, M. Takeuchi, K. Maruoka, Angew. Chem. 2003, 115, 3926; Angew. Chem. Int. Ed. 2003, 42, 3796; (b) T. Shibuguchi, Y. Fukuta, Y. Akachi, A. Sekine, T. Ohshima, M. Shibasaki, Tetrahedron Lett. 2002, 43, 9539; (c) S. Arai, R. Tsuji, A. Nishida, Tetrahedron Lett. 2002, 43, 9535;
(d) F.-Y. Zhang, E. J. Corey, Org. Lett. 2001, 3, 639; (e) T. Perrard, J.-C.

Plaquevent, J.-R. Desmurs, D. Hébrault, Org. Lett. 2000, 2, 2959; (f) R. S. E. Conn, A. V. Lovell, S. Karady, L. M. Weinstock, J. Org. Chem. 1986, 51, 4710; (g) K. Hermann, H. Wynberg, J. Org. Chem. 1979, 44, 2238.

50 T. Arai, H. Sasai, K.-I. Aoe, K. Okamura, T. Date, M. Shibasaki, Angew. Chem. Int. Ed. Engl. 1996, 35, 104.

51 G. Manickum, G. Sundararajan, Tetrahedron: Asymmetry 1997, 8, 2271.
52 Y. S. Kim, S. Matsunaga, J. Das, A. Sekine, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 6506.

53 (a) T. Ikariya, H. Wang, M. Watanabe, K. Murata, J. Organomet. Chem. 2004, 689, 1377; (b) M. Watanabe, K. Murata, T. Ikariya, J. Am. Chem. Soc. 2003, 125, 7508.

54 A. Kawara, T. Taguchi, Tetrahedron Lett. 1994, 35, 8805.
55 T. Perrard, J.-C. Plaquevent, J.-R. Desmurs, D. Hébrault, Org. Lett. 2000, 2, 2959.
56 S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975.
57 E. M. Vogl, H. Gröger, M. Shibasaki, Angew. Chem. Int. Ed. 1999, 38, 1570.
58 P. M. Pihko, Angew. Chem. Int. Ed. 2004, 43, 2062.
59 (a) Heldebrant, D. J.; Jessop, P. G.; Thomas, C. A.; Eckert, C. A.; Liotta, C. L. J. Org. Chem. 2005, 70, 5335. (b) Endo, T.; Nagai, D.; Monma, T.; Yamaguchi, H.; Ochiai, B. Macromolecules, 2004, 37, 2007.

60 M. W. Cronyn, M. P. Chang, R. A. Wall, J. Am. Chem. Soc. 1955, 77, 3031.
61 (a) C. Gennari, A. Bernardi, S. Cardani, C. Scolastico, Tetrahedron Lett. 1985, 26, 797; (b) D. A. Evans, T. Rovis, M. C. Kozlowski, C. W. Downey, J. S. Tedrow, J. Am. Chem. Soc. 2000, 122, 9134; (c) D. A. Evans, T. Rovis, M. C. Kozlowski, J. S. Tedrow, J. Am. Chem. Soc. 1999, 121, 1994.

62 (a) J. Baddiley, E. M. Thain, G. D. Novelli, F. Lipmann, Nature 1953, 171, 76; (b)
J. Baddiley, E. M. Thain, J. Chem. Soc. 1951, 3425.

63 (a) Y. Mori, M. Seki, Tetrahedron Lett. 2004, 45, 7343; (b) T. Fukuyama, S.-C. Lin, L. Li, J. Am. Chem. Soc. 1990, 112, 7050; (c) P. L. DeRoy, A. B. Charette, Org. Lett. 2003, 5, 4163.
(a) P. H. Boyle, M. A. Convery, A. P. Davis, G. D. Hosken, B. A. Murray, J. Chem. Soc., Chem. Commun., 1992, 239; (b) E. van Aken, H. Wynberg, F. van Bolhuis, J. Chem. Soc., Chem. Commun., 1992, 629.
R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, M. Petrini, Chem. Rev. 2005, 105, 933.
(a) E. J. Corey, F.-Y. Zhang, Org. Lett. 2000, 2, 4257; (b) K. Funabashi, Y. Saida, M. Kanai, T. Arai, H. Sasai, M. Shibasaki, Tetrahedron Lett. 1998, 39, 7557; (c) T. Bakó, P. Bakó, Á. Szöllõsy, M. Czugler, G. Keglevich, L. Tõke, Tetrahedron: Asymmetry 2002, 13, 203; (d) P. Bakó, Z. Bajor, L. TTõke, J. Chem. Soc., Perkin Trans. l 1999, 3651; (e) P. Bakó, E. Czinege, T. Bakó, M. Czugler, L. Tőke, Tetrahedron: Asymmetriy 1999, 10, 4539; (f) P. Bakó, K. Vizvárdi, Z. Bajor, and L. Tõke, Chem. Commun. 1998, 1193.

68 A. Kamimura, N. Murakami, F. Kawahara, K. Yokota, Y. Omata, K. Matsuura, Y. Oishi, R. Morita, H. Mitsudera, H. Suzukawa, A. Kakehi, M. Shirai, H. Okamoto, Tetrahedron 2003, 59, 9537.

69 (a) R. Shintani, W.-L. Duan, T. Nagano, A. Okada, T. Hayashi, Angew. Chem. 2005, 117, 4687; Angew. Chem. Int. Ed. 2005, 44, 4611; (b) S. Harada, N. Kumagai, T. Kinoshita, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 2582; (c) J. K. Myers, E. N. Jacobsen, J. Am. Chem. Soc. 1999, 121, 8959; (d) Y. Bi, L. Bailly, F. Marsais, V. Levacher, C. Papamicaël, G. Dupas, Tetrahedron:

Asymmetry 2004, 15, 3703; (e) R. Ballini, G. Bosica, G. Cioci, D. Fiorini, M. Petrini, Tetrahedron 2003, 59, 3603; (f) J. H. Nelson, P. N. Howells, G. C. DeLullo, G. L. Landen, J. Org. Chem. 1980, 45, 1246.

70 (a) J. Pohlmann, T. Lampe, M. Shimada, P. G. Nell, J. Pernerstorfer, N. Svenstrup, N. A. Brunner, Bioorg. Med. Chem. Lett. 2005, 15, 1189; (b) M. L. Curtin, R. B. Garland, H. R. Heyman, R. R. Frey, M. R. Michaelides, J. Li, L. J. Pease, K. B. Glaser, P. A. Marcotte, S. K. Davidsen, Bioorg. Med. Chem. Lett. 2002, 12, 2919.

71 (a) A. Mitchinson, A. Nadin, J. Chem. Soc., Perkin Trans. 1 2000, 2862; (b) M. Pichon, B. Figadère, Tetrahedron: Asymmetry 1996, 77, 927.

72 A. R. Katritzky, J. Yao, M. Qi, Y. Chou, D. J. Sikora, S. Davis, Heterocycles 1998, 48, 2677.

73 For biological activities of homo- β-proline, see: (a) D. R. IV Coleman, Z. Ren, P. K. Mandal, A. G. Cameron, G. A. Dyer, S. Muranjan, M. Campbell, X. Chen, J. S. McMurray, J. Med. Chem. 2005, 48, 6661; (b) K. E. Andersen, J. L. Sorensen, J. Lau, B. F. Lundt, H. Petersen, P. O. Huusfeldt, P. D. Suzdak, M. D. B. Swedberg, J. Med. Chem. 2001, 44, 2152; (c) V. N'Goka, G. Schlewer, J.-M. Linget, J.-P. Chambon, C.-G. Wermuth, J. Med. Chem. 1991, 34, 2547; (d) L. Nielsen, L. Brehm, P. Krogsgaard-Larsen, J. Med. Chem. 1990, 33, 71; (e) L. M. Yunger, P. J. Fowler, P. Zarevics, P. E. Setler, J. Pharmacol. Exp. Ther. 1984, 228, 109.
(a) N. G. Bowery, T. G. Smart, Br. J. Pharmacol. 2006, 147, S109; (b) U. Rudolph, H. Möhler, Curr. Opin. Pharmacol. 2006, 6, 18.

75 F. Felluga, V. Gombac, G. Pitacco, E. Valentin, Tetrahedron: Asymmetry 2004, 15, 3323.

76 (a) R. Galeazzi, S. Geremia, G. Mobbili, M. Orena, Tetrahedron: Asymmetry 1996, 7, 79; b) R. Galeazzi, G. Mobbili, M. Orena, Tetrahedron 1996, 52, 1069; (c) B.

Cardillo, R. Galeazzi, G. Mobbili, M. Orena, Synlett 1995, 1159.
77 C. Thomas, F. Orecher, P. Gmeiner, Synthesis 1998, 1491.
78 F. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609.
79 T. Imamoto, M. Kodera, M. Yokoyama, Synthesis 1982, 134.
80 A.P. Davis, K. J. Dempsey, Tetrahedron: Asymmetry, 1995, 6, 2829.
81 D. Y. Kim, S. C. Huh, Tetrahedron, 2001, 57, 8933.
82 Y. S. Kim, S. Matsunaga, J. Das, A. Sekine, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 6506.

83 M. Watanabe, K. Murata, T. Ikariya, J. Am. Chem. Soc. 2003, 125, 7508.
84 N. Prabagaran, G. Sundararajan, Tetrahedron: Asymmetry 2002, 13, 1053.
85 H. Kotsuki, K. Arimura, T. Ohishi, R. Maruzasa, J. Org. Chem. 1999, 64, 3770.
86 R. Sauvetre, M.-C. Roux-Schmit, J. Seyden-Penne, Tetrahedron 1978, 34, 2135.
87 Hanessian, S.; Pham, V. Org. Lett., 2000, 2, 2975.
88 J. Comelles, M. Moreno-Manas, E. Perez, A. Roglans, R. M. Sebastian, A. Vallribera, J. Org. Chem. 2004, 69, 6834.

89 J. Ji, D. M. Barnes, J. Zhang, S. A. King, S. J. Wittenberger, H. E. Morton, J. Am. Chem. Soc. 1999, 121, 10215.

90 M. Watanabe, A. Ikagawa, H. Wang, K. Murata, T. Ikariya, J. Am. Chem. Soc. 2004, 126, 11148.

91 A. A. Tishkov, V. O. Smirnov, M. V. Nefed'eva, I. M. Lyapkalo, S. E. Semenov, S. L. Ioffe, Yu. A. Strelenko, V. A. Tartakovskii, Russ. J. Org. Chem. 2001, 37, 390.

92 H. Sasai, T. Arai, Y. Satow, K. N. Houk, M. Shibasaki, J. Am. Chem. Soc. 1995, 117, 6194.

93 B. M. Choudary, M. L. Kantam, B. Kavita, Ch. V. Reddy, F. Figueras,

Tetrahedron 2000, 56, 9357.
94 M. L. Graziano, M. R. Iesce, Synthesis 1984, 1, 64.
95 K. A. Runcie, R. J. K. Taylor, Chem. Comm. 2002, 974.

Appendices

13C Standard AV300 ag16ywp.3.1 jzy1014 13 C

1H normal range AV300 oc26ywp.1.1. jzy1192-1

oc26ywp1.2.1 jzy 1192-1 13 c

se20ywp.5.1 jzy1080
(

ag24ywp.3.1 jzy DiBn thio malonate 13 c

ACF300 AP06GLM3. 888 DiEt Malonate+cyclopentenone

 200

241 2ax 1×2
(

AP08GLMA. 888 DiPrM

[^4]

1H AV500 wp0919.32.1 ywp7166

oc19ywp.4.1 ywp7226 13C


```
oc30ywp.5.1 ywp7246
```


se24ywp. 7.1 ywp7175 13c

14H DC26YWP1.888 YWP2032-3

14c mja02ywp. 888 ywp2032-3

21 WP0329.71.1 Ywp2279-2

9 AP03YWP2.888 YWP2292-4

23c ap02ywp.2.1 ywp6040

15c wp0309.12.1 ywp2212 13 C

17h ja20ywp3. 888 tet1093

17C JA21YWP7. 888 TCT1093


```
ma ma4ywp0.888 tct1071
    \
```


70d

wp1116.5.1 ywp5056-2 2C

wp1116.7.1 ywp5056-2 $2 C$

MA10LDS1.888 7A

MA19YWP5.8889A

79a

JA27WP05.888 9B

79b

amx500 wp1122.1.1 ywp5071

wp1102.2.1 alx1056

se14ywp.5.1 glm3275 13

菏				\%	\%		

85b

del6ywp.2.1 ywp8045-1 13c

89a
 (ppm)

ja13ywp. 3.1 ywp8088 13
(

ja27ywp.2. 1 ywp8112-1

89e

ja14ywp.3.1 ywp8084 13 c

13C Standard AV300 de06ywp.2.1 ywp8036-2 13


```
ja25ywp.2.1 ywp8099
```


ja25ywp.3.1 ywp8099 13c

1H AV500 wp0110.1.1. ywp8067

13C AV500 WP0110.2.1 YWP8067 13C


```
de15ywp.3.1 ywp8045-3
```



```
                og
```

```
                og
```



```
*)
```

dpx300 de15ywp. 4.1 ywp8045-3 13c


```
1H AV500 wp0118.3.1 ywp8092
```


ja19ywp. 4.1 ywp 8092 13c

ma01ywp.2.1 ywp8170-1

ma01ywp.3.1 ywp8170-1 13 c

ma18ywp.1.1 ywp8219 in MeOD

ma18ywp. 6.1 ywp 8219 in MeOD

Publications

1 Ye, Weiping; Xu, Junye; Tan, Chin-Tong; Tan, Choon-Hong. 1,5,7-Triazabicyclo[4.4.0]- -dec-5-ene (TBD) Catalyzed Michael Reactions. Tetrahedron Lett. 2005, 46, 6875.

2 Ye, Weiping; Leow, Dasheng; Goh, Serena Li Min; Tan, Chin-Tong; Chian, Chee-Hoe; Tan, Choon-Hong. Chiral Bicyclic Guanidines: A Concise and Efficient Aziridine-Based Synthesis. Tetrahedron Lett. 2006, 47, 1007.

3 Ye, Weiping; Goh, Serena Li Min; Leow, Dasheng; Jiang, Zhiyong; Soh, Ying-Teck; Tan, Choon-Hong. Chiral Bicyclic Guanidine Catalyzed Michael Reaction; Application to the Enantioselective Synthesis of (S)-(+)-homo- β-Proline. Submitted for publication.

4 Ye, Weiping; Tan, Choon-Hong. Enantioselective Michael Reaction of 1,3-Dicarbonyl Compounds to Cyclopentenone Catalyzed by Chiral Bicyclic Guanidines. Manuscript in preparation.

5 Shen, Juan; Nguyen, Thanh Truc; Goh Yong-Peng; Ye, Weiping; Fu Xiao; Xu Junye; Tan Choon-Hong. Enantioselective Reactions of Anthrone Derivatives Catalyzed by Chiral Bicyclic Guanidine. Manuscript in preparation.

[^0]: ${ }^{\text {i }}$ Bordwell pKa Table (Acidity in DMSO): http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

[^1]: ${ }^{\text {ii }}$ Mr. Leow Dasheng and Miss Serena Goh are acknowledged for providing the first few batches of the catalysts.

[^2]: ${ }^{[a]}$ The concentration of 79b and $\mathbf{6 5}$ a was 0.02 M in toluene-D8, the 1:1 mixture of 79b and $\mathbf{6 5 a}$ was stirred at rt before ${ }^{1} \mathrm{H}$ NMR was recorded. ${ }^{[b]} \Delta \delta$ refers to the change of a certain proton's chemical shift when in a

[^3]: iii Prepared by dissolving $\mathrm{CrO}_{3}(26.7 \mathrm{~g})$ in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(23 \mathrm{ml})$ and dilution to 100 ml with water.

[^4]: FI

