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Summary 

Summary 

 

 Photonic crystals are a type of materials with periodically varying refractive index, 

which results in the presence of a photonic bandgap. Analogous to semiconductors for 

controlling electrons, photonic crystals open an opportunity of controlling the behavior 

of photons by the photonic bandgap. According to the dimensionality that the photonic 

bandgap works, photonic crystals are classified into three categories, namely 

one-dimensional, two-dimensional, and three-dimensional photonic crystals. Due to 

the high cost and difficulty of fabricating three-dimensional photonic crystals using 

traditional lithography method, the self-assembly method that utilizes colloidal 

microspheres as the primary building units has been considered as an alternative 

cost-effective approach. This thesis work focuses on the fabrication of photonic 

crystals using the self-assembly method. 

 First, various monodisperse microspheres and core-shell structures were 

synthesized, which were used as the building blocks of colloidal crystals (artificial 

opals). The control over the particle size and size uniformity was attempted. 

 Second, an approach to the fabrication of crack-free colloidal crystals was 

designed and demonstrated for the first time. The addition of a silica precursor into a 

colloidal suspension containing microspheres was found effective in eliminating the 

defects formed in the crystal drying process. The precursor hydrolyzed during the 

drying process and took the place of solvent layer, leading to the formation of 

crack-free colloidal crystals in large domains. 

 Third, the fabrication of non-close packed opal was achieved through the 
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combination of chemical vapor deposition and templating methods. Chemical vapor 

deposition was used to deposit a layer of silica on silica inverse opal. Upon infiltration 

of a polymer and removal of the silica template, a free-standing non-close packed opal 

was obtained with a mechanically tunable optical property.  

    Fourth, binary colloidal crystals were also synthesized using a horizontal 

deposition method. This provides a convenient method of producing complex structure 

of colloidal crystals. 

 Fifth, the incorporation of engineered defects into photonic colloidal crystals is 

still a challenge. A general route of introducing planar defects into colloidal photonic 

crystals without involving lithography was designed and demonstrated. A combination 

of spin-coating and horizontal deposition techniques allowed an effective control over 

the structure and thickness of the defect layer in a colloidal photonic crystal.  

 Finally, a colloidal crystal templating method was proposed and demonstrated for 

patterning the surface of microspheres. The patterning was achieved by controlling the 

contact areas between the adjacent spheres of a colloidal crystal. Using the 

surface-patterned spheres as seeds, uniform nonspherical particles were obtained. 

Colloidal spheres with nanoholes were also fabricated by selectively etching of a 

colloidal monolayer partially embedded in an electrochemically deposited metal layer. 

Since these surface-patterned spheres and nonspherical particles have well-defined 

surface pattern and shapes determined by the uniform structure of colloidal crystals, 

they hold a great promise in assembly of photonic crystal devices and other functional 

devices. 
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Nomenclature 

Nomenclature 

 
1D One-dimensional 

2D Two-dimensional 

3D Three-dimensional 

Å Angstrom 
oC Degree Celsius 

CC Colloidal Crystal 

d Diameter 

f Volume fraction in colloidal crystal 

φ  Particle volume fraction in colloidal suspension 

je Evaporation rate of the solvent 

Jevap Integral of water evaporation flux 

L  Evaporation length 

n Refractive index 

λ Wavelength 

bcc Body centered cubic 

BET Brunauer-Emmett-Teller 

BJH Barrett-Joyner-Halenda 

BTEE 1,2-bis(triethoxysilyl)ethane 

BTEM 1,2-bis(triethoxysilyl)methylene 

BTEEY 1,2-bis(triethoxysilyl)ethenylene 

CP Cross polarization 

CVD Chemical vapor deposition 

DA Dubinin-Astakhov 

EDX  Energy dispersive X-ray spectroscopy 

EM Electromagnetic 

FE-SEM Field-emission scanning electron microscopy 

fcc Face-centered cubic 

FCVD Flow-controlled vertical deposition 

FTIR Fourier transform infrared 
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Nomenclature 

HCP Hexagonal close packed 

KPS Potassium persulfate 

LB Langmuir-Blodgett 

MAS   Magic angle spinning 

NMR Nuclear magnetic resonance 

OMOS Ordered macroporous organosilica 

PAH Poly(allylamine hydrochloride)  

PBG Photonic bandgap 

PhC Photonic crystal 

PDMS Poly(dimethylsiloxane) 

PS Polystyrene 

PSS Poly(sodium styrenesulfonate) 

PMMA poly(methyl methacrylate) 

RI Refractive index 

SEM Scanning electron microscopy 

FESEM Field Emission Scanning electron microscopy 

TEM Transmission electron microscopy 

TGA Thermogravimetric analysis  

UV-Vis-NIR Ultra-Violet visible near-infrared 

XRD X-ray diffraction  
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Chapter 1 

Introduction 

 Photonic crystals (PhCs) (John, 1987; Yablonovitch, 1987), also known as 

photonic band gap (PBG) materials, are a class of optical materials having a periodic 

alternation of dielectric medium with different refractive indexes (RIs) on an 

optical-length scale. This structure induces a photonic band gap – a range of forbidden 

frequencies, for which light with a frequency falling in this range cannot propagate 

through the structure. It is known that an energy range between the valence and 

conduction bands in semiconductors is called electronic band gap, through which 

electrons cannot transit. This property produces the possibility of processing electron 

flow. Similarly, the existence of a PBG allows the control of the behavior of photons. 

 The concept of PBG materials was first proposed independently by Yablonovitch 

(1987) and John (1987). Since these materials, especially the three-dimensional PhCs, 

have the potential of controlling the behavior of photons, they provide a promising 

future in photonics (Arsenault et al., 2004). Photonics, an analogy of electronics, deals 

with light and other forms of radiant energy whose quantum unit is photon. Photons 

have many advantages in information processing when compared to electrons. First, 

photons travel through a dielectric medium in a much faster speed than the electrons do. 

In addition, photons do not interact strongly with the medium, leading to a less energy 

loss. Furthermore, photons can carry larger amount of information than electrons. Thus 

it is believed that photonics will replace the electronics in the future as the heart of the 
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information technology, with the increasingly rapid demand for high-speed computing 

and information transferring. Because of the promising properties of these PhCs, the 

past few years have seen a dramatic increase in the number of publications in terms of 

modeling, fabrication, characterization, property evaluation, and application of PhCs 

(Busch and John, 1998; John and Busch, 1999; Xia et al., 2001; Koenderink et al., 2002; 

Lopez, 2003). 

1.1 PBG and PBG materials 

 According to the arrangement of the dielectric media, the PhCs can be classified 

mainly into one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) 

PhCs (see Figure 1.1). Accordingly, light with a frequency in PBG cannot propagate 

in one, two or all three dimensions respectively. However, the propagation behavior of 

electromagnetic (EM) waves in the PhCs is the same except the difference of the 

dimension. Thus the basic principle of the formation of PBGs can be explained simply 

by the model of 1D PhC as shown in Figure 1.2 (Yablonovitch, 2001). It can be seen 

that the 1D PhC has alternation of layers of different dielectric constants (Figure 1.2A). 

When an incident EM wave enters the PhC, it is partially reflected at each boundary of 

the dielectric layers (Figure 1.2B). The reflected waves are in phase and reinforce one 

another. They combine with the incident wave to produce a standing wave that does not 

travel through the material (Figure 1.2C). The range of wavelengths in which incident 

waves are reflected is the PBG of the PhC.  
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.  

Figure 1.1 Schematic illustration of 1D, 2D and 3D PhCs. The different colors 
represent the difference of dielectric constants of the materials. 

 

 
Figure 1.2 The propagation of EM waves in 1D PhCs. The wavelength of the incident 

wave is in the PBG (Yablonovitch, 2001). 

 There are two main factors influencing the structure of the PBGs, the RI contrast 

and average RI. The former governs the gap width and the greater the contrast the 

wider the gap, while the latter governs the gap positions (Yablonovitch, 1987). Among 

them, 3D PhCs obtain considerable attention recently because they can possess a full 

bandgap, which can stop the propagation of EM waves in all directions. Therefore, by 

fabricating waveguides in the PhCs the propagation direction of the EM waves can be 

controlled. As a result, 3D PhCs provide a foundation for the development of novel 

A 

B 

C 

1D 2D 3D 
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optical devices and integration of such devices into a microchip (Joannopoulos et al., 

1997). However, the science and technology of PhCs are still in the early phase of 

development. The main challenges that are facing materials scientists are how to 

fabricate 3D PhCs in large domains and of high quality with acceptable cost.  

1.2 Fabrication of 3D PBG materials 

 There are two general methods of fabricating photonic crystals, namely the 

traditional “top-down” method and the “bottom-up” method. The strategy of the 

“top-down” method is to work out the required shapes out of a bulk material using 

conventional micromachining and lithography techniques (Birner et al., 2001). 

Normally, in this method, a predefined pattern is employed to selectively remove 

unwanted parts or grow extra materials (Figure 1.3). It provides precisely control over 

the structure because of the use of advanced devices and the exact copy from the 

patterns. However, the cost of lithography is normally high and it’s difficult to build 

3D structures using this method. 

 
Figure 1.3 The strategy of the “top-down” methods. 

 In the recent years, the bottom-up method, involving self-assembly, has been 

explored and demonstrated as a simple and cost-effective route to fabricate 3D 

PhCs(Stein, 2001; Xia et al., 2001; Yablonovitch, 2001). The underling principle is that 
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uniform microspheres in a colloid tend to self-organize in to an ordered crystal structure 

(normally face-centered cubic structure) under certain conditions. After infiltration of a 

secondary material with a high RI into the void between the spheres, followed by the 

removal of the colloidal spheres, an inverse opal with a complete PBG can be obtained 

(Blanco et al., 2000; Vlasov et al., 2001) (see figure 1.4). Because that the regularity of 

the structure need to be extremely high to open a complete PBG, it is essential to form a 

highly ordered colloidal crystal (CC), a template for fabricating inverse opal. Various 

methods, sedimentation, evaporation, electrophoresis, etc. have been explored for 

self-assembly of colloidal microspheres (Stein, 2001; Lopez, 2003). In addition, to 

infiltrate the template with a high RI material, several techniques have been developed, 

such as liquid infilling, chemical vapor deposition (CVD), and electrodeposition, etc. 

The inverse opal can be metals, metal oxides, semiconductors, carbons, etc. (Lopez, 

2003). 

 
Figure 1.4 Scheme of fabricating inverse opal. (a) Self-assembly of microspheres into 
a CC; (b) Infiltration of the voids of the CC with a dielectric material; (3) Removal of 

the colloidal spheres to obtain an inverse opal. 
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1.3 Defect Engineering in Photonic Crystals 

 Given a photonic crystal with an omnidirectional band gap, its full potential can be 

harnessed only after the introduction of engineered defects, like the doping of 

semiconductors. A defect is anything that breaks the usual periodicity of dielectric 

constant. According to dimension of the defects, the defects can be classified into three 

types, namely, planar defects, line defects and point defects. All the three kinds of 

defects can introduce modes that lie inside the band gap of the bulk crystal, namely, 

localized states in the vicinity of the defect (Johnson and Joannopoulos, 2002). 

  

     (a)           (b) 

Figure 1.5. An illustration of (a) line defect as a wave guide and (b) point defect as a 
photon trap (http://ab-initio.mit.edu/photons/tutorial/L2-defects.ppt). 

 For example, the point defect embedded can trap or localize photons and act as a 

micro-cavity with a high quality factor (Q) (John, 1987; Joannopoulos et al., 1997). A 

line defect introduced can direct the propagation path of photons, acting as an 

ultra-compact and low-loss optical waveguide (John, 1987). A planar defect on the 

other hand can be used a slab waveguide or a cavity depending on the direction of the 

Help!
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incident optical field(Xia et al., 2001). Many photonic applications, such as optical 

waveguides, splitters, couplers, switches, micro-lasers, and others, exploit these 

properties(Norris and Vlasov, 2001) Thus, an important issue for the practical 

application of 3D PhCs is how to introduce artificial defects within the structure in a 

controllable manner, no matter which kind of fabrication method is used. 

1.4 Objectives 

 Although the self-assembly method has many advantages for the fabrication of 

3D PhCs, there are still a lot of problems limiting the application of the method. This 

PhD thesis work aimed at addressing some of the problems and was targeted to: 

 synthesize various monodisperse microspheres to be used as the building blocks 

of colloidal crystals, 

 overcome the formation of cracks during the drying process in the present 

self-assembly method, 

 control the structure of colloidal crystals and fabricate non-close-packed 

structures, and 

 engineer designed defects in colloidal photonic crystals using simple chemical 

methods. 
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Chapter 2  

Literature Review 

 

 Two theoretical works on photonic crystals (PhCs) were independently published 

by Yablonovitch (1987) and John (1987) in 1987. Yablonovitch theoretically proposed 

a three-dimensional (3D) periodic structure as a means to control the emission of 

photons. The motivation was to create a photonic bandgap, in analogy with the 

bandgap in semiconductors. With this concept, the performance of lasers, solar cells 

and heterojunction transistors would be improved greatly. John found that a strong 

Anderson localization of photons could exist in an intricate dielectric superlattice and a 

photonic bandgap could be produced by ordered 3D periodic dielectric structures. 

These two pioneer works founded the basis of the PBG theory. 

For PhCs there are only two parameters that determine the creation of a bandgap, 

namely the crystal structure and the dielectric constant contrast. Thus, PhC is scalable 

and can be designed to produce band gap in different wave region. The same crystal 

structure can work in wave regions of microwave, optical range and X-rays by 

changing its lattice constants to scales of centimeters, micrometers and angstroms. 

Thus, the design of 3D PhCs can be simplified into two steps. First, an appropriate 

crystal structure should be proposed, which might exhibit a certain width of complete 

bandgap. Subsequently, the lattice constant should be scaled up or down corresponding 

to the wavelength of the targeted light. Although it has been found that diamond 

(Maldovan and Thomas, 2004), woodpile and face-centered cubic (fcc) structures 
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(Doosje et al., 2000) could possess complete band gaps through theoretical simulation, 

the fabrication of these structures on an optical scale with high dielectric constants is 

still challenging. In the past decade, various methods were proposed to fabricate PhCs, 

most of which can be classified into two categories: traditional “top-down” method in 

which a desired structure is carved out a bulk material and the “bottom-up” method, 

which utilizes the self-assembly of colloidal particles (microspheres) into a colloidal 

crystal (CC) structure (opal).  

2.1 Fabrication of photonic crystals 

2.1.1 The “top-down” approaches to 3D photonic crystals 

 In 1991, Yablonovitch et al. first fabricated successfully photonic bandgap crystal, 

namely yablonovite. It was a fcc structure formed by drilling holes at a slab of 

semiconductor with 35 degree off normal incidence and 120o on the azimuth 

(Yablonovitch et al., 1991) (See Figure 2.1). 

   

Figure 2.1 (A) Schematic illustration of the fabrication of yablonovite (Yablonovitch et 
al., 1991) and (B) SEM of the 6.2 µm PMMA yablonovite fabricated using X-ray beam 

(Cuisin et al., 2002).  

BA 
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 A full band gap was created, but it was at the microwave range and not practical. The 

scale of Yablonovite is limited by the fabricating technique, micromachining. New 

fabrication techniques are required to decrease the scale of the PhC. Deep X-ray 

lithography (Feiertag et al., 1997) allows an extra degree of precision and an extremely 

high depth of focus due to the reduced wavelength of the radiation used. In this method, a 

pattern is drawn on a resist and transferred to a metal sheet. This metal is then used as a 

mask, whose shade can be projected in different directions, tilted with respect to the 

normal, to produce rod structures. Simple methods may be used to replicate yablonovite 

structures in other materials (Feiertag et al., 1997). The pattern can then be transferred to 

a metal (by electro deposition) or high refractive index materials (by a sol-gel technique). 

Glancing angle deposition (Robbie and Brett, 1997; Robbie et al., 1998), focused ion 

beam micromachining (Chelnokov et al., 2000), e-beam were also used to fabricate 

yablonovite structures . 

 Holographic lithography (Campbell et al., 2000) is a technique developed recently, 

carving the structures by using the interfering beams. When four laser beams were 

used together (Figure 2.2), the interference of them leads to a distribution of laser 

intensity with 3D translational symmetry. Thus, if an appropriate photoresist is 

exposed to these beams, a solubility pattern can be formed in the bulk photoresist. A 

3D periodic structure can be formed after the development of the exposed structure 

(Figure 2.3). In this method, the period of the structure and its symmetry are dictated 

by the laser wavelength, the relative phases and the incidence directions of the 

interfering beams while the shape of the repeated feature in the lattice results from the 
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beams’ polarizations. Although this technique can produce complex 3D structure in a 

short period time, it can only apply to photosensitive polymers, which low RIs limit 

their application as PhCs. To improve the RIs of the structures, silica-methacrylate 

composites was used as photoresist to carve out desired structures (Saravanamuttu et 

al., 2003). Additionally, the holographic lithographic structure was used as template to 

produce PDMS (poly (dimethylsiloxane)) elastomeric structures, which optical 

property could be tuned by mechanical pressure (Jang et al., 2006). Through 

translation of a multi-beam interference pattern, two interference patterns could be 

aligned to produce diamond structure (Moon et al., 2005b). 

 

 

  

 The woodpile structure, as shown in Figure 2.4, is another category of structure 

which has been proven exhibiting complete bandgaps. Ozbay et al. (1994a; 1994b) and 

Ho et al. (1994) first proposed this structure. Initially, woodpile structures were 

fabricated by layer-by-layer stacking of dielectric rods, which had bandgap only in the 

Figure 2.2 Beam geometry for 
an fcc interference pattern. 

Figure 2.3 SEM images of different 
structures generated by holographic 
lithography (Campbell et al., 2000). 
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microwave region due to the large dimension of the rods. To develop woodpile 

materials with a bandgap in the optical region, wafer-bonding and selective etching 

(Noda et al., 1996), wafer fusion and alignment (Noda et al., 1999; 2000b), vapor 

deposition and direct holographic writing (Feigel et al., 2000) have used to fabricate 

structures with smaller critical dimensions. Additionally the packed metallic rods (see 

Figure 2.4D) were proven to have bandgap at infrared region. Through the 

combination of integrated circuit processing and micromanipulation, engineered 

defects could be incorporated at predetermined positions on a structure (Aoki et al., 

2003). 

     

  

Figure 2.4 (A) Schematic illustration of one unit of woodpile-structure 3D PC 
(Noda et al., 2000b). (B) and (C) the side and top view of the woodpile-structure 
3D PC (Lin and Fleming, 1999) and (D) SEM images of the metallic woodpile 

structure PCs (Fleming et al., 2002). 

A 

C D
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 Direct laser writing of photoresist by multiphoton polymerization (Kawata et al., 

2001) has also emerged as a promising technique for the rapid, cheap and flexible 

fabrication of photonic structures (Kawata et al., 2001). In 2002, two-photon 

photopolymerization was used to write a 3D structure with a fundamental pseudo 

bandgap at 1.9μm in a liquid resin (Straub and Gu, 2002). Direct writing of high quality 

large-scale fcc layer-by-layer structures was demonstrated by Deubel et al. (2004). 

Through silicon double inversion (Figure 2.5) a complex 3D photonic crystals of silicon 

with a complete PBG was obtained (Tétreault et al., 2006b). This combination of 

techniques offers great potential of producing PhCs with complete bandgaps in optical 

wavelength region. 

 
Figure 2.5. Schematic representation of the silicon double inversion method. a) The 
photoresist template fabricated by DLW. b) Full SiO2 infiltration by way of 
layer-by-layer chemical vapor deposition (CVD). c) Anisotropic reactive-ion etching 
of the top SiO2 overlayer to uncover the SU-8. d) Removal of the photoresist template 
by O2 plasma etching or calcination in air to obtain the SiO2 inverse woodpile; inset: 
re-infiltration of the SiO2 inverse woodpile by SiO2 CVD to fine-tune the rod filling 
fraction. e) Si infiltration of the inverse woodpile by low-pressure CVD. f) Attachment 
to an HF-resistant substrate with a polymer adhesive and removal of SiO2 inverse 
woodpile and substrate by chemical etching in an aqueous HF solution to obtain the Si 
woodpile replica (Tétreault et al., 2006b). 
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 In 2002, García-Santamaría et al. (2002) fabricated a diamond structure consisting 

of colloidal microspheres by means of micro-robot manipulation, as shown in Figure 

2.6B. In their fabrication process, the latex and silica nanospheres were arranged into 

body-centered cubic (bcc) structure and then the latex spheres were selectively 

removed with plasma etching. Consequently, the non-closed packed diamond structure 

was obtained. García-Santamaría et al. (2001) predicted that the silicon inverse 

structure templated from this diamond structure had a complete band gap of 12%. 

 

 

Figure 2.6 (A) PhC model with diamond structure (Maldovan and Thomas, 2004) and 
(B) Diamond array of silicon spheres (Garcia-Santamaria et al., 2002). 

5 um 

B 
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2.1.2 Colloidal self-assembly approaches to photonic crystals 

 Although the top-down method has already been proved applicable in fabrication 

of PhCs with precise structure control ability, its complexity and high cost limit its 

potential applications. By contrast, colloidal self-assembly approaches have recently 

been explored and demonstrated as a simple and inexpensive route to fabricate 3D 

PhCs. Self-assembly mostly result in close packed fcc arrangement of microspheres. 

Despite of the limitation of fcc structures and the low refractive index of colloidal 

beads, it is possible to take further steps to fabricate PhCs with a complete band gap 

using CC as templates. Normally a material with a high refractive index is infiltrated 

into the voids of CC and then the spheres are removed to obtain an inverse opal 

structure. In this step, not only is the refractive index contrast increased, but also the 

connectivity and topology of dielectric medium are improved. 

 

2.1.2.1 Fabrication of colloidal crystals 

 A variety of methods are employed to organize monodispersed microspheres into 

highly ordered 3D arrays. Great efforts have been paid on reducing the unwanted 

defects formed in the process of crystal growth. The fundamental mechanism of 

self-assembly was also studied extensively. 

 Sedimentation and centrifuge. Sedimentation (Hunter, 1993) and centrifuge 

(Holland et al., 1999; Yan et al., 2000) seem to be the simplest methods to obtain 

crystalline arrangement of microbeads. In these processes microspheres move slowly 

under gravitational force (in sedimentation) or centrifugal force (in centrifuge) and 
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form a 3D crystalline structure at the bottom of the container (Figure 2.7). Although it 

looks simple, this process involves a coupling of several complex processes including 

gravitational settling, translational diffusion and crystallization. Three parameters, 

namely the size and density of colloidal spheres and the rate of sedimentation, should 

be controlled carefully to allow the crystal growth. 

 

 

 

Figure 2.7 Schematic illustration of sedimentation and centrifuge method. In 
sedimentation method the force is gravitational force while it is centrifugal force in 

centrifuge process. 

 Thermodynamically, atoms or molecules tend to adopt the structure with the 

lowest Gibbs free energy. Self-assembly of spheres tends to form closely packed 

crystalline structures, such as fcc and hcp lattices. It has been demonstrated that the fcc 

structure has a slightly lower Gibbs free energy than the hcp structure with a difference 

of about 0.005 RT (Woodcock, 1997). Because this difference is so small that the 
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structure obtained from sedimentation is normally a mixture of different crystalline 

phases. However, careful control over particle sedimentation velocity can allow one to 

obtain a single crystalline phase. To control the sedimentation velocity, two methods 

were applied. One is to use a proper solvent. Although both silica and polymer spheres 

can disperse in water, water is sometimes not a suitable solvent for sedimentation. For 

small particles, ethanol, which has a lower density and viscosity than water, has been 

found to be a good solvent. With large particles, a mixture of water and ethyl glycol or 

ethanol is a good choice (Blanco et al., 2000; Velev et al., 2000; Stachowiak et al., 

2005). The other method is to use extra forces. The surface charge of the colloidal 

spheres can respond to a macroscopical electric field, thus the velocity of the 

sedimentation can be controlled by using an electric field parallel to gravity direction 

(Holgado et al., 1999; Rogach et al., 2000).  

 Although sedimentation and centrifuge are simple and easy to implement, a large 

quantity of defects and the large possibility of forming a mixture of colloidal crystal 

phase reduce its application in fabrication of PhCs.  

 Self-assembly under physical confinement. A simple device was designed to 

fabricate CCs by Xia’s group (Park and Xia, 1998; Gates et al., 1999; Xia et al., 1999). 

In this method, colloidal spheres were assembled into a highly ordered structure in a 

specially designed packing cell (see Figure 2.8) under continuous sonication. Only 

under sonication was each colloidal sphere placed at the lattice site represented as a 

thermodynamic minimum. In this method the number of the layers was controllable 

because it is solely determined by the distance between the two substrates and the 
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diameter of the spheres.  

 
Figure 2.8 crystallization through physical confinement and hydrodynamic flow (Xia 

et al., 1999). 

 Vertical deposition method. In this method, a substrate such as a flat glass or 

silicon wafer is placed vertically in a colloidal suspension (Jiang et al., 1999a; Jiang et 

al., 1999b). The withdrawal of substrate or the evaporation of solvent causes the 

meniscus to wipe off the substrate surface vertically downward (see Figure 2.9). Under 

the combinational influence of convection flow and capillary force, colloidal particles 

accumulate to and organize at the edge of meniscus. CC grows along the direction in 

that meniscus wipe off the substrate. This method works well for silica and latex 

particles of diameter below 500 and 700 nm, respectively. However, it has two 

limitations: first, the long time of evaporation and second, more crucially, deposition is 

limited to smaller colloidal spheres that sediment slower than the solvent evaporates. 
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The typical evaporation rate used by Jiang et al. (1999a) was ca. 10-3 cm3/min, and 

sedimentation of dense (ca. 2.0 g/cm3) silica effectively precludes formation of 

continuous large-area colloidal crystal films out of silica spheres larger than ca. 500 

nm. Sedimenting colloidal spheres depart from the meniscus, and the deposition 

process is terminated.  

 
Figure 2.9 Scheme of vertical deposition 

 Two improvements were proposed to counteract the effect of sedimentation, 

namely, mechanical agitation (Yang et al., 2002) and convection induced by a 

temperature gradient (Vlasov et al., 2001). Vlasov et al. (2001) reported the successful 

application of heating from the bottom of a vial containing silica spheres dispersed in 

ethanol to induce convective flows and produce colloidal crystal films from 855 nm 

spheres. Mechanical agitation utilizing controlled gentle stirring was utilized 

successfully by Ozin and co-workers (Yang et al., 2002) for confined crystallization of 

large silica spheres within controlled geometry surface relief patterns in optical 
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microchips. Mechanical agitation did not work well for the preparation of continuous 

colloidal crystal films. It seems that the swirl created by stirring disturbs the meniscus 

and impedes successful growth of continuous colloidal arrays. Low pressure was also 

used to accelerate ethanol evaporation and to counteract sedimentation (Kitaev and 

Ozin, 2003). This method proves to be very successful for self-assembling large (up to 

1.5 µm) polystyrene (PS) latex spheres, and while it extends the self-assembly range 

for the silica spheres up to ca. 800 nm diameter, counteracting the sedimentation rate 

of faster sedimenting silica colloids of ca. 1 µm in size seems to be quite challenging. 

An isothermal heating evaporation-induced self-assembly method was demonstrated to 

further reduce the limitations on silica sphere size (Wong et al., 2003). By heating the 

solvent (ethanol) very close to the boiling point, the spheres were kept suspended in 

the dispersion by convection flows, and the time of growth was shortened considerably 

to about 1 h for centimeter extents of the film. A flow-controlled vertical deposition 

method was proposed to counter the effect of the sedimentation of the sphere in our 

group (Zhou and Zhao, 2004).  

 Horizontal Deposition. Zental’ group (Muller et al., 2000) has successfully 

prepared CCs by drying drops of emulsion spread on a microscope placed horizontally. 

This method was further developed and the underlying mechanism was studied by 

Zhao’s group (Yan et al., 2005d). In the latter work, concentrated colloids were spread 

on various substrates and allowed to dry in room temperature. In this method the 

growth of CCs proceeded from the edge to the center of the substrates, and voids were 

left at the center. This was because that water evaporation caused meniscus shifting 
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from periphery to the center and the convection flow and capillary force caused the 

particles moving to the meniscus, reducing the concentration of particles in central 

area, as illustrated in Figure 2.10.  

 
Figure 2.10. A scheme showing the inward self-assembly mechanism for colloidal 

crystal films deposited on a horizontal solid substrate (Yan et al., 2005d). 

 Other methods. Self-assembly of particles can not only happen on the solid 

substrates, but also on the surface of liquids. This leads to the method of floating 

self-assembly. The surface of mercury and gallium were used as substrates to allow the 

growth of CCs (Griesebock et al., 2002). PS microspheres were found also 

self-organizing at the surface of water (Im et al., 2002; Im and Park, 2002; Zeng et al., 

2002; Im et al., 2003). Electrohydrodynamic deposition method was employed by Trau 

et al. (1996; 1997) to fabricate CCs of both silica spheres (0.9 μm in diameter) and PS 
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spheres (2 μm in diameter).  

 

2.1.2.2 Infiltration of the colloidal crystals 

 To obtain a PhC with a complete band gap, it is necessary to infiltrate the 

interstices among the spheres in CCs with a material of high RI, followed by removal 

of the colloidal spheres. The infiltration process influences the morphology and the 

optical property of the inverse opal greatly. Because incomplete infiltration may lead to 

the collapse of the inverse opal structure, complete and uniform infiltration is 

important. Many infiltration techniques have been developed to precisely control the 

infiltration process. 

 Soaking method. Soaking method is a simple and effective method. Through 

soaking CCs in a precursor, followed by further reactions (e.g. polymerization, 

carbonization, hydrolysis, etc.) a desired material can be obtained and occupy the 

voids between the microspheres (Gates et al., 1999; Xia et al., 1999; Deutsch et al., 

2000; Miguez et al., 2001b). This is termed precursor infiltration. Also, the CCs can be 

infiltrated directly with colloid containing metal or semiconductor nanoparticles 

(Vlasov et al., 2001).  

 Electrodeposition. An artificial opal was placed on the cathode and a 

semiconductor was electrodeposited directly in the voids of the opal (Braun and 

Wiltzius, 1999). The most obvious advantage is that the deposition grows from the 

bottom to the top of the template, leading to a complete filling. Additionally 

electrodeposition can be used for making ІI-VI, ІІI-V and ІV group semiconductors 
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such as CdS and ZnO, etc. and metallic materials such as Pt (Bartlett et al., 2000; Luo 

et al., 2001), Pd (Bartlett et al., 2000), Ni (Xu et al., 2000; Luo et al., 2001), Ag (Lellig 

et al., 2002), Au (Wijnhoven et al., 2000; Xu et al., 2000). 

 Chemical Vapor deposition (CVD). CVD, a widely used materials-processing 

technique has been used for fabricating PhCs of high dielectric constants (Yates et al., 

1998; Dag et al., 1999; Blanco et al., 2000; Chomski and Ozin, 2000; Vlasov et al., 

2001). Because silicon and gallium can be easily be implemented in the present 

photonic technology, it can be easily integrated in the optical devices. PhCs of silicon 

with a RI of 3.5 (Blanco et al., 2000) and gallium with a RI of 4 (Miguez et al., 2001a) 

have been fabricated, which guarantee a sizeable full bandgp (Sozuer et al., 1992).  

 

2.1.2.3 Removal of colloidal particles 

 To get inverse opals, the final step is to remove the colloidal particles. Calcination 

and dissolving method were normally used to remove polymer particles. Due to the 

contraction induced by high temperature, calcination could have an enormous impact 

on the optical properties of the inverse opal (Yan et al., 1999; Yan et al., 2000; Yang et 

al., 2001). Silica is often removed by chemical etching with a low-concentration 

hydrofluoric acid solution. The main problem of HF-etching is that HF is extremely 

toxic and corrosive. 

2.2 The Incorporation of Engineered Defects in Photonic Crystals 

Although it is a primary desire to fabricate perfect PhCs without intrinsic defects, 
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engineering of artificial defects (point, line, and planar defects) in 3D PhCs is also of 

paramount importance especially for practical device applications (Joannopoulos et al., 

1995; Joannopoulos et al., 1997). Like impurity atoms doped in semiconductors, 

artificial defects in PhCs act as photonic dopants. Depending on their structure, they 

can offer PhCs different functions. For example, the point defect embedded can trap or 

localize photons and act as a micro-cavity with a high quality factor (the measure of 

energy loss, the higher the quality factor, the lower the energy loss) (John, 1987; 

Yablonovitch, 1987; Joannopoulos et al., 1997). A line defect introduced can direct the 

propagation path of photons, acting as an ultra-compact and low-loss optical 

waveguide (John, 1987; Yablonovitch, 1987; Joannopoulos et al., 1997). A planar 

defect on the other hand can be used a slab waveguide or a cavity depending on the 

direction of the incident optical field (Istrate and Sargent, 2002). Many photonic 

applications, such as optical waveguides, splitters, couplers, switches, micro-lasers, 

and others, exploit these properties (Joannopoulos et al., 1995). Thus, an important 

issue for the practical application of 3D PhCs is how to introduce artificial defects 

within the structure in a controllable manner, no matter which kind of fabrication 

method is used. 

Unfortunately, artificial defect engineering in self-assembled 3D PhCs has been a 

great challenge for a long time. It is only very recently that some exciting 

advancements have been achieved. There are mainly two reasons behind this delay. 

The first reason is that artificial engineering in self-assembled 3D PhCs is not as 

straightforward as that in 3D PhCs fabricated using the “top-down” method (Noda et 
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al., 2000b; Ogawa et al., 2004; Qi et al., 2004; Imada et al., 2006) or the laser 

direct-writing technique (Deubel et al., 2004; Moon et al., 2005a; Seet et al., 2005; 

Tétreault et al., 2006a). In a self-assembly process, the natural tendency of colloidal 

spheres is to form a “perfect” crystal, which makes the insertion of artificial defects 

challengeable. Techniques other than self-assembly have to be introduced to introduce 

engineered defects. The second reason lies on the high density of intrinsic defects (e.g. 

cracks, vacancies, dislocations, and grain boundaries) present in the early PhCs made 

by using the self-assembly method (Zhu et al., 1997; Holgado et al., 1999). Thus, 

many of the previous efforts were placed on obtaining a perfect self-assembled 

colloidal PhC without the presence of intrinsic defects rather than on how to introduce 

artificial defects (Miguez et al., 1998; Park et al., 1999; Muller et al., 2000). At the 

same time, the existence of intrinsic defects presents difficulties for the 

characterization of artificially induced defects. Since the availability of the vertical 

deposition method described by Colvin’s group (Jiang et al., 1999a), together with that 

of other improved methods developed afterwards (Gu et al., 2001; Wong et al., 2003; 

Jin et al., 2005b; Yan et al., 2005d), the research progress has dramatically advanced. 

Nowadays, planarized colloidal crystals with a high optical quality can be grown on a 

wide variety of substrates.  

Over the past years, great efforts have been put on introduction of artificial defects 

within a colloidal PhC by using a combination of self-assembly methods and 

micromachining techniques.  
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2.2.1. Line Defect Engineering 

A line defect constructed inside an otherwise perfect 3D PhC constitutes a PhC 

waveguide. Such a device represents a new kind of optical waveguides whose 

functional principle completely differs from that of the conventional waveguides. In 

the conventional waveguides, e.g. optical fibers or semiconductor ridge waveguides, 

light is confined by using the total internal reflection, thus suffering large bend loss. In 

a PhC waveguide, light is confined by the PBG. Once a light with a frequency within 

the band gap of the 3D PhC is coupled into the waveguide, it can only propagate along 

the path of the line defect introduced since the guided mode is prohibited to escape 

into the surrounding PhC. Thus PhCs with line defects in principle can serve as a 

lossless waveguide with ultra-compact size, even can guide light around tight corners. 

Achieving lossless optical waveguides with a sharp bend has been of great interest 

since they might lead to the miniaturization of optical components and eventually 

realize the high-density photonic integrated circuits. 

Up to now, various approaches have been employed to incorporate line defects in 

colloidal crystals. Generally, underling these approaches there are two different 

methodologies: a) modifying the structures of the colloidal crystals through direct 

writing by confocal microscopy or high-energy beam after self-assembly, b) 

templating the growth of colloidal crystals.  
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2.2.1.1 Line defect engineering by directly modifying the structure of the colloidal 

PhCs 

As a significant first step, Braun and coworkers developed a multi-photon 

photopolymerization method for introducing micron-scale line defects into a 

monomer-infiltrated silica colloidal PhC (Lee et al., 2002; Pruzinsky and Braun, 2005). 

The process can be schematically illustrated in Figure 2.11 (Taton and Norris, 2002). 

After colloidal self assembly, the voids between the silica spheres were filled with a 

photosensitive monomer (Figure 2.11a). A focused laser beam was used to scan and 

polymerize small volumes of the infiltrated monomer, thus writing a line defect within 

the structure (Figure 2.11b). After the unexposed monomers have been removed, the 

engineered defect can be visualized by staining the structure with a fluorescent dye 

(Figure 2.11c). Figure 2.11d schematically illustrates a 3D PhC with a full PBG 

(inverse opal) and an artificial line defect in its interior. By using the similar strategy, 

Zental and coworkers reported the incorporation of both emitters and defects in an 

inverted polymer opal (Lange et al., 2006). A photo-polymerizable resin in which a 

fluorescent dye was dissolved was first filling into the voids in an inverse opal PhC. 

Two-photo polymerization was then performed to polymerize the resin at the focus. 

The unexposured monomer can be removed after development, leaving artificial 

defects created inside the inverse opal. 
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Figure 2.11. Schematic illustration of introducing micron-scale line defects into a 

self-assembled 3D PC by using the multi-photon photopolymerization method (Taton 
and Norris, 2002). (a) infiltration of a photosensitive monomer into a silica colloidal 
crystal, (b) polymerization with a focused laser beam, (c) the engineered line defect 
within the 3D structure, (d) a silicon inverse opal with an artificial line defect in its 

interior (Taton and Norris, 2002). 

Direct electron-beam writing technique has been employed to construct 

deterministic defects in self-assembled poly (methyl methacrylate) (PMMA) opals 

(Ferrand et al., 2003; Romanov et al., 2003; Ferrand et al., 2004). PMMA is in nature a 

resist material typically used in electron beam lithography. Once PMMA colloidal 

spheres are self-assembled into an opal film, EBL can be directly implemented on the 

film, forming intentional defects on the surface of the PMMA opal film. After 
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repeating growth of the PMMA opal film on the patterned one, a buried line defect in a 

self-assembled 3D PhC can be achieved (Romanov et al., 2003). With the similar 

method, López and coworkers (Juarez et al., 2004) reported the formation of 

micron-scale defects in a silica-infiltrated PMMA opal. As the Figure 2.12 shows, after 

growth of the PMMA colloidal crystal, silica was infiltrated into the opal by using 

chemical vapor deposition (CVD) method. Then EBL was used to pattern the 

silica-PMMA composite. After dissolution of the exposed PMMA, an area of inverted 

opal was selectively formed within a silica infiltrated PMMA opal as an artificial 

defect. However, the applicability of the multi-photon polymerization is limited to the 

polymer materials. The direct electron-beam writing method to non-PMMA colloidal 

crystals is also challengeable.  

 
Figure 2.12. A process shows the selective formation of an inverted-opal area in an 
opal by using electron beam lithography. A) Growth of PMMA opal film on a 
substrate. B) Infiltration of silica into the PMMA opal by using CVD technique. C) 
Patterning of the silica-infiltrated PMMA opal by using electron beam lithography. D) 
Selective formation of inverted-opal area in the PMMA opal by dissolution of the 
exposed PMMA (Juarez et al., 2004). 
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 Micron-scale line defects on the surface of an inverse silicon PhC have been 

obtained by modification of the local refractive index using laser micro-annealing 

techniques (Tetreault et al., 2003). In this method, a spatially resolved laser was used 

to selectively anneal amorphous silicon to be nanocrystalline silicon. Because of the 

difference of the refractive index of the amorphous and nanocrystalline silicon, 

refractive index patterns can be obtained in an amorphous silicon inverse opal. Thus 

the method enables the creation of micrometer-sized extrinsic defects on the surface of 

a 3D PhC. Although the inverse silicon PhC possess a full PBG, it will be interesting 

to show whether the small refractive index contrast between the nanocrystalline silicon 

line defect and the surrounding amorphous silicon can realize an optically confined 

waveguide. With the similar method, laser direct writing by using a pulsed 

deep-ultraviolet F2 laser has been employed to form extrinsic line defects on the 

surface of silica colloidal crystals (Li et al., 2005).  

Norris and co-workers (Jun et al., 2005) have demonstrated the fabrication of 1-μm 

air-core line defects embedded in a silicon PhC by means of 

colloidal-crystal-templating and multiphoton polymerization techniques. In this 

method, a silica opal was first infiltrated with a hybrid photoresist containing 

organosilica precursor. A laser-scanning confocal microscope was then used to 

construct patterns inside the silica opal via multiphoton polymerization. After 

development and annealing process, a silica defect pattern can be created inside the 

silica opal. Silicon was then infiltrated into the silica opal by using low-pressure CVD 

method. The silica opal template together with the silica line defects were finally 
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removed by chemical etching, resulting in a silicon inverse opal with embedded 

(Akahane et al., 2003) line defects. 

The performance of the PhC-based photonic device has proved to be closely 

related to the dimension of the line defects introduced (Akahane et al., 2003; Galli et 

al., 2005; Tanaka et al., 2005). In conventional 2D PhC-based waveguide devices, the 

dimension of the line defects is typically comparable with the lattice constant of the 2D 

PhC (Akahane et al., 2003; Galli et al., 2005; Tanaka et al., 2005). For self-assembled 

3D PhCs working within the visible and near-infrared wavelength scope, the lattice 

constant or the sphere size are typically of submicron scale (Miguez et al., 1998; 

Blanco et al., 2000; Vlasov et al., 2001). Thus, line defects with submicron dimensions 

are desired for light-waveguiding applications. However, the smallest feature size of 

the line defect achieved is limited to about 1 μm because of the resolution of the 

confocal microscope (see Figure 2.13). 

 
Figure 2.13 (a) Silicon inverse opal with an air-core line defect, of which the size is 
around 1 μm (Jun et al., 2005). (b) Silica opal (sphere size 450 nm) with sub-micron 

line defects. The white rectangular highlights the presence of the line defect (550 nm × 
480 nm PMMA strips) embedded. 

(a) 

10 μm 

(b) 

1 μm 
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2.2.1.2 Line defect engineering by templated growth of colloidal crystals 

The combination of colloidal self-assembly and conventional optical lithography 

provides an alternative approach to building line defects within self-assembled 

colloidal PhCs. Ye et al. (2002) have described the fabrication of air-core micron-scale 

line defects within a silica inverse opal using this strategy. Micron-scale photoresist 

line patterns were constructed on a silicon or glass substrate by using typical optical 

lithography. PS colloidal spheres were self-assembled into an opal film on the pattered 

substrate. After removal of the photoresist strips and inverting the structure with silica, 

air-core line defects confined between a silica inverse opal and a dielectric substrate 

were obtained (Figure 2.14a). A similar structure, i.e. a rib-type Si3N4 waveguide 

surrounded by a silica opal (Figure 2.14b), has also been reported by Baek and 

Gopinath (2005), in which the ridge waveguide can be regarded as a line defect within 

the silica opal. However, a line defect constructed in the bottom or on the surface of a 

3D PhC (as constructed by using E-beam direct writing noted above) can not act as an 

ideal light-waveguiding structure because the line defect was not fully embedded in a 

3D PhC, which may lead to the leakage of guided modes from the surrounding 

dielectric. 
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Figure 2.14 (a) An air-core line defect on the bottom of a silica inverse opal (Ye et al., 
2002). (b) A Si3N4 ridge-type waveguide on the bottom of a silica opal to form a line 

defect within the opal (Baek and Gopinath, 2005). 

Very recently, Ozin’s group (Vekris et al., 2005) and our group (Yan et al., 2005c) 

have independently demonstrated a straightforward method to embed micron-scale line 

defects within the interior of a self-assembled 3D PhC. The fabrication method was 

based on a multi-step process. A silica colloidal crystal film was first deposited on a Si 

substrate with the typical vertical deposition method (Jiang et al., 1999a). A layer of 

photoresist (AZ P4620, Clariant) was then spin-coated on the opal film. Conventional 

optical photolithography was employed to pattern photoresist lines on the surface of 

the silica opal film. After that, silica opal film was re-grown on the patterned one, 

resulting in a silica colloidal crystal with photoresist line defects embedded in its 

interior. The photoresist can be removed simply by chemical etching, leaving a silica 

colloidal crystal with an air-core line defect (Figure 2.15a). Consequently, a 

high-refractive-index material like silicon can be infiltrated in the voids of the silica 

colloidal crystal by using a CVD method. Removal of the silica spheres template may 

yield an air-core line defect embedded in the 3D PhC with complete PBG (e.g. silicon 

inverse opal). The feature size of the line defects can be easily controlled by 

2 μm 

(a) 

1 μm 

(b) 
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manipulating the photolithographic parameters like photoresist type, spin-coating time 

and speed, and so on. It was demonstrated that line defects with complex patterns, such 

as ring, Y-branch, X-cross, and S-band, can be introduced into the silica colloidal 

crystal in a similar way to meet the requirements of various photonic devices (e.g. 

optical coupler, switch, Machn-Zehnder interferometer) (Yan et al., 2005c). In addition, 

the air-core line defect can be filled with colloidal spheres with different size or 

material (Figure 2.15b), resulting in a heterogeneous colloidal PhC or a colloidal 

crystal with a three-dimensional line defect (Yan et al., 2005b). 

 

 
Figure 2.15 (a) A micron-scale air-core line defect embedded in a silica colloidal crystal 
opal (sphere size 0.39 μm) (Yan et al., 2005c). (b) A three-dimensional micron-scale line 
defect embedded in a silica colloidal crystal opal (sphere size 0.39 μm). The 3D line 
defect is composed of a colloidal strip of PS spheres (1.1 μm) (Yan et al., 2005b). 

 

2.2.2. Planar Defect Engineering 

Planar defects in PhCs can introduce allowed photon states within the otherwise 

forbidden bandgap frequencies. If a light of the allowed frequency is launched into the 

PhC perpendicularly to the planar defect, a minimum will appear within the reflection 

peak associated with the PBG. In this case, the planar defect acts as an optical cavity 

(b) (a) 
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(Istrate and Sargent, 2002). On the other hand, if the light is launched into the PhC and 

coupled with the planar defect in a parallel manner, the light will be confined and 

propagate along the planar defect. In this case, the planar defect serves as a slab optical 

waveguide (Istrate and Sargent, 2002). 

Generally, the fabrication and the optical characterization of planar defects are 

relatively easier than those of linear defects and point defects. A variety of planar 

defects in self-assembled 3D PhC has been achieved by using a layer-by-layer 

deposition strategy. In general, a colloidal crystal film was first deposited on a 

substrate, followed by the deposition of a defect layer. The sequential growth of 

another layer of colloidal crystal resulting in a planar defect sandwiched in the 

self-assembled 3D PhC (Egen et al., 2003; Wostyn et al., 2003; Zhao et al., 2003; 

Masse et al., 2006). The planar defects can be a layer of colloidal spheres with 

different sizes or different refractive indexes from the host opal (Figure 2.16a), 

dielectric materials (Figure 2.16d), polyelectrolyte multilayers (Figure 2.16b), or even 

nanocrystalline materials (Figure 2.16c). 

A monolayer of spheres with different sizes or different refractive indexes can be 

sandwiched into two opal films by using the Langmuir-Blodgett method (Wostyn et al., 

2003; Zhao et al., 2003; Masse et al., 2006), withdrawing technique (Egen et al., 2003), 

or spin-coating (Wang et al., 2006). For the incorporation of polyelectrolyte 

multilayers, either a layer-by-layer deposition of oppositely charged electrolytes 

directly on the bottom opal film or a transfer-printing of the as-formed polyelectrolyte 
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multilayer can be used (Figure 2.17) (Fleischhaker et al., 2005a; Fleischhaker et al., 

2005b; Tetreault et al., 2005; Fleischhaker et al., 2006). 

 

 

 

Figure 2.16 (a) A monolayer of large colloidal spheres (980 nm silica spheres) 
embedded in a colloidal crystal (390 nm silica spheres) as a planar defect (Masse et al., 
2006). (b) A polyelectrolyte multilayer sandwiched in a silica colloidal crystal (280 nm 
colloidal spheres) as a planar defect (Fleischhaker et al., 2005b). (c) A layer of 
nanocrystalline TiO2 embedded in a PS colloidal crystal (700 nm colloidal spheres) as 
a planar defect (Pozas et al., 2006). (d) A silica dielectric layer sandwiched in a silica 
inverse opal (from 375 nm PS colloidal spheres) as a planar defect (Tetreault et al., 
2004). 

(c) 

(a) (b) 

(d) 
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Figure 2.17 Two different methods used to introduce polyeletrolyte multilayers into a 
colloidal crystal as planar defects. Both methods start with the growth a planar opal film 
on a substrate. (a) The top of the colloidal crystal is sputter-coated with a thin layer of 
gold (~5 nm), which was then chemically treated to be negatively charged. (b) The 
polyelectrolyte multilayers were deposited on the gold-coated silica colloidal crystal in a 
layer-by-layer manner by alternate immersion in a solution of polycation and one of 
polyanion. (c) A second silica colloidal crystal film was grown on top the planar defect. 
(d) In another transfer-printing route, the polyelectrolyte multilayers were first grown on 
a flat poly (dimethylsiloxane) (PDMS) substrate. (e) The PDMS was  then contacted 
with the opal film surface to transfer the whole polyelectrolyte multilayers to the surface 
of the as-formed silica colloidal crystal. A sequential growth of the second silica opal 
film resulted in a planar defect sandwiched in the silica colloidal crystal (Tetreault et al., 
2005). 

 By using the spin-coating method, Miguez and coworkers (Pozas et al., 2006) 

reported the insertion of a layer of nanocrystalline TiO2 into a silica colloidal crystal as 

a planar defect. A universal method to place dielectric planar defects within 3D PhC 

involves the CVD technique (Palacios-Lidon et al., 2004; Tetreault et al., 2004). In the 
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method concurrently developed by Lopez’s group (Palacios-Lidon et al., 2004) and 

Ozin’s group (Tetreault et al., 2004), a PS colloidal crystal film was over-infiltrated 

with silica by using CVD technique, resulting in a homogeneous silica surface layer on 

the top of the infiltrated PS opal. Then the second PS colloidal crystal film was grown 

on the silica layer. The top-layer PS opal was infiltrated with silica with the same 

technique. Removal of the PS spheres template yielded a silica inverse opal with a 

dielectric silica layer as a planar defect. The method allows precise control over the 

thickness of the planar defects introduced, thus making the tuning of the optical 

property of the system possible (Palacios-Lidon et al., 2004; Tetreault et al., 2004). 

The optical properties of the colloidal PhCs with planar defects were widely 

studied (Wostyn et al., 2003; Zhao et al., 2003; Palacios-Lidon et al., 2004; Tetreault et 

al., 2004). The introduction of a planar defect produces localized states for photons in 

the bandgap. The position of the states depends not only on the property and the 

thickness of the defect, but also on the characteristics of the PhCs sandwiching the 

defect. A defect layer with a higher effective refractive index arouses increased-index 

defect, which originates from the conduction band, while a defect with a lower 

effective refractive index produces decreased-index defect, originating from the 

valence band. The spectral position of the defect state oscillates periodically between 

the low-wavelength edge and the high-wavelength edge of the gap with the increase of 

the defect thickness/lattice parameter ratio (see Figure 2.18) (Palacios-Lidon et al., 

2004; Tetreault et al., 2004). 
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Figure 2.18 Reflectance spectra of engineered defects in 311 nm SiO2/PS opals. Silica 
film planar defects of a) 130 nm, b) 230 nm, and c) 280 nm are embedded in the 
photonic crystal. Depending on the defect thickness the dip position shifts through the 
gap, starting at low wavelengths (high energies). d) Spectral position as a function of 
defect thickness. The straight lines are guides to the eye (Palacios-Lidon et al., 2004). 

Recently, noteworthy efforts in planar defect engineering have been made to offer 

the introduced planar defects with multiple functionalities. Ozin and coworkers 

(Fleischhaker et al., 2005b; Tetreault et al., 2005) have demonstrated the fabrication of 

a series of planar defects in colloidal PhCs based on polyelectrolyte multilayers 

(PEMs). Various functional materials can be incorporated in these layers without loss 

of function, thus opening an opportunity of tuning the defect states of the colloidal 

PhCs by external stimulations. Two approaches of incorporating the PEMs were 
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proposed (Tetreault et al., 2005). The first one involves the modification of the surface 

of the colloidal crystal, which producing a wettability difference between the surface 

and the bulk. Then oppositely charged polyelectrolyte layers are deposited 

alternatively directly on the surface. The second one starts with the deposition of a 

PEM onto a flat piece of poly (dimethylsiloxane) (PDMS), followed by 

transfer-printing the PEM onto the surface of the colloidal crystal. The PEM defect 

formed by deposition of poly (sodium styrenesulfonate) (PSS) and poly (allylamine 

hydrochloride) (PAH) can be accurately adjusted by the pressure-controlled vapor 

absorption (Tetreault et al., 2005). An azo polyelectrolyte was employed to fabricate a 

PEM defect layer sensitive to photochemical and thermal stimuli (Fleischhaker et al., 

2005b). Redox swithchable planar defect was achieved through incorporating a 

polyferrocenylsilane (PFS) metallopolymer PEM (Fleischhaker et al., 2005a). More 

recently, it was demonstrated that DNA-based polyelectrolyte (Fleischhaker et al., 

2006) can be used to fabricate biologically sensitive planar defect structures. These 

functional PEM defects provides the structures many potential applications such as 

sensors, electrochemically tunable microcavities, and electrochemically tunable 

PhC-based laser sources (Fleischhaker et al., 2005a).  

 

2.2.3 Point Defect Engineering 

Point defect in an otherwise perfect 3D PhC can trap or localize the photons of 

certain frequencies in a very small volume (λ3), form so-called micro-cavity. Such a 

micro-cavity has a very high quality factor (Q), which is of great importance to 
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achieve low-threshold micro-lasers. Introducing point defects into 3D PhCs has proven 

quite difficult, with only a few examples reported (Pradhan et al., 1996; Gates and Xia, 

2001; Matthias et al., 2004; Ogawa et al., 2004; Qi et al., 2004; Lai et al., 2005; 

Palacios-Lidon et al., 2005). By using a top-down lithographic method, 3D GaAs 

(Ogawa et al., 2004) and silicon (Qi et al., 2004) PhCs with designed point defects 

have recently been fabricated. Matthias et al. (2004) have shown the possibility of 

introduction of point defects into a 3D silicon PhC by using modified electrochemical 

etching and lithographic methods. Direct laser writing (Scrimgeour et al., 2006) and 

lithographic masks (Lai et al., 2005) have been used to produce point defects within 

polymer 3D PhCs fabricated by using holographic lithography. 

Introduction of point defects into self-assembled 3D PhCs was first attempted by 

doping impurity colloidal spheres of different sizes or dielectric strengths during the 

self-assembly process (Pradhan et al., 1996; Gates and Xia, 2001; Vlasov et al., 2001; 

Palacios-Lidon et al., 2005). Waston and co-workers (Pradhan et al., 1996) reported the 

impurity modes in the optical stop bands of a intentionally doped PS colloidal crystal. 

They added a small volume of smaller spheres and larger spheres into the colloidal 

suspension as accepter dopants and donor dopants, respectively. Experimental results 

showed that both the accepter and donor dopants could introduce defect modes within 

the stop bands. At the same time, it was found that the presence of the impurities 

leaded to a significant widening of the optical stop band (Figure 2.19) (Pradhan et al., 

1996). Xia’s group (Gates and Xia, 2001) and Lopez’s group (Palacios-Lidon et al., 

2005) also reported the doping of impurities into a self-assembled PhC. Both of their 
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study showed that with the increase of the impurity concentration the attenuation of 

transmittance within the optical stop band decreased while the defect modes associated 

with the impurities within the stop band were not observed. The reason lies in that such 

point defects introduced by doping are randomly distributed throughout the structure. 

For precisely manipulating the defect states within the stop band and for practical 

device applications, the position of the point defects should be controllable.  

 
Figure 2.19 Near-infrared transmission spectra for PS colloidal crystals containing 
intentionally doped impurities. The dotted curve is a transmission spectrum for an 
undoped polystyrene colloidal crystal (sphere size 0.173 μm). The plain solid curve 
and the solid curve with open circles show the spectra for crystals doped with 
0.200-μm silica (2% number fraction) and 0.214-μm polystyrene (10% number 
fraction), respectively. The polystyrene and the water band edges are also shown. The 
insets illustrate two different types of impurities. One is the acceptor impurity that 
caused by doping of small colloidal spheres and the other one is the donor impurity 
that caused by doping of large spheres (Pradhan et al., 1996). 

For self-assembled polymer colloidal crystals from PMMA spheres, it is possible 

to introduce point defects precisely by using e-beam processing (Jonsson et al., 2005). 
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E-beam was employed to individually expose an array of spheres on the surface layer 

of a PMMA colloidal crystal. After development, an array of point defects can be 

defined on the surface of the colloidal crystal (Figure 2.20). If a second PMMA 

colloidal crystal can be deposited on the exposed one, followed by development to 

remove the exposed individual PMMA colloidal spheres, a colloidal crystal with 

embedded point defects can be obtained (Jonsson et al., 2005). Similarly, laser direct 

writing by using a pulsed deep-ultraviolet F2 laser was employed to remove single 

microspheres of a silica colloidal crystal, forming extrinsic defects (point and line 

defects) on the surface of the silica colloidal crystal (Li et al., 2005). Scanning electron 

microscope with a variable pressure was also used to precisely create point defects on 

the surface of a self-assembled 3D PhC (Xie et al., 2006). However, the defects 

constructed via these techniques have to be written point by point, which is relatively 

time-consuming. 

 

Figure 2.20 An array of point defects defined on the surface layer of a PMMA 
colloidal crystal (sphere size 498 nm) by using electron beam lithography (Jonsson et 

al., 2005). 
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Very recently, our group has developed a straightforward method to incorporate 

point defects within a self-assembled silica colloidal PhC in a controllable manner (Yan 

et al., 2005a). The fabrication method involved a couple of steps, including self 

assembly of colloidal spheres, nanoimprinting lithography, template-directed self 

assembly, and sequential growth of colloidal crystals (Figure 2.21a). By using the typical 

vertical deposition method (Jiang et al., 1999a), monodisperse silica colloidal 

microspheres were first assembled on a silicon substrate to form a planar opal film (host 

opal). Silica colloidal spheres were chosen because they are mechanically and thermally 

stable, allowing high-temperature processing such as infiltration of semiconductor 

materials using CVD technique to yield a 3D PhC with a full PBG (Blanco et al., 2000; 

Vlasov et al., 2001). After spin-coating a layer of PMMA polymer, nanoimprinting 

lithography was employed to produce a hole array on the surface of the PMMA layer. 

Further treatment by using mild oxygen plasma etching allowed the holes to penetrate 

the entire PMMA layer down to the surface of the underneath silica host opal. The 

resultant hole array was used as a template to direct the assembly of silica colloidal 

spheres of different sizes from the host silica spheres into the holes as point defects. 

After full removal the PMMA resist layer around the point defects by a second-time 

oxygen plasma etching, a point defect array of silica spheres was loaded on the surface 

of the host silica opal film (Figure 2.21b). Finally, vertical deposition was carried out 

again to re-grow the silica host opal. Thus, a silica colloidal crystal containing point 

defects within its interior was obtained. The eventual silica colloidal PhC (from 450 nm 

silica spheres) containing point defects within its interior can be seen from Figure 2.21c, 
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where the arrows highlight the presence of point defects (390 nm silica spheres). One 

additional advantage of this method is that the point defects and line defects can be 

embedded into the colloidal PhC simultaneously, between which the distance can be 

easily controlled by properly designing the nanoimprinting mould. This property is of 

importance since in many cases the point defects need to be incorporated together with 

the line defects to realize a certain photonic functionality to meet the requirement of 

practical photonic devices (Fan et al., 1998; Noda et al., 2000a; Sugitatsu et al., 2005). 

Furthermore, both acceptor-type and donor-type point defects can be introduced by 

using this method.  

 

 

(a) 
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Figure 2.21 (a) Schematic illustration of introducing point defects into self-assembled 
3D PCs (b) A top view of the point defect array loaded on the surface of the host silica 
opal film. (c) A cross-section view of the silica colloidal photonic crystal containing 
point defects within its interior. The arrows in (c) highlight the presence of the point 
defects (Yan et al., 2005a). 

 

The past five years have witnessed the encouraging advancement on incorporation 

of artificial defects (point, line, and planar defects) into the interior of a self-assembled 

3D PhC, which is of paramount importance for the practical device applications of 

these novel materials. Although the self assembly approach alone has proved to be 

difficult to introduce artificial defects into a 3D PhC, the combination with other 

techniques, such as optical lithography, nanoimprinting, spin-coating, and CVD, 

provide a straightforward way to producing artificial defects within the 3D PhC in a 

controllable manner. The latest advancement has proven that self-assembled 3D PhCs 

with a full PBG and artificial defects embedded are now available (Jun et al., 2005). 

These achievements represent a significant advancement towards functional optical 

devices from self-assembled PhCs. 

In spite of these recent research progresses, a real photonic device based on a 

self-assembled 3D PhC has not been reported yet. For the artificial planar defects 

introduced into a self-assembled 3D PhC, optical study indeed confirmed the presence 

(b) (c)
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of the defect modes within the stop band. Detailed relation between the thickness of 

the planar defect, as well as the thickness and material characteristics of the 

surrounding PhC, and the position of the defect modes has been established (Zhao et 

al., 2003; Palacios-Lidon et al., 2004; Tetreault et al., 2004; Fleischhaker et al., 2006). 

For the point defects and line defect incorporated, however, optical characterizations 

are scarce (Jun et al., 2005; Vekris et al., 2005; Yan et al., 2005a; Yan et al., 2005b; 

Yan et al., 2005c; Xie et al., 2006). It seems that the structural perfection needs to be 

further improved to fulfill the technological requirements. The presence of unwanted 

intrinsic defects such as cracks, vacancies, dislocations, and grain boundaries in 

colloidal crystals degrades the optical quality of the colloidal crystal template, even 

eliminating the PBG behavior of the final 3D PhC (Li and Zhang, 2000; Li and Zhang, 

2001). Fortunately, theoretical studies (Norris et al., 2004; Reyes and Duda, 2005; 

Tirumkudulu and Russel, 2005; Zhou et al., 2006) and recent experimental studies 

both indicate that using appropriate self-assembly techniques (Wong et al., 2003; 

Chabanov et al., 2004; Kuai et al., 2004; McLachlan et al., 2004; Jin et al., 2005a; 

McLachlan et al., 2005) and highly uniform colloidal spheres (Wong et al., 2003; Kuai 

et al., 2004; Jin et al., 2005a) can minimize or even eliminate the presence of the 

unwanted intrinsic defects.  

At the same time, artificial defects introduced should be further tailored to meet the 

requirements of real photonic devices. On one hand, the size of the extrinsic defects 

should be optimized not to disturb the ordered host structure. On the other hand, the 

geometries and position of the extrinsic defects should be precisely controlled. For 
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instances, how to remove an array of colloidal spheres to release an air-sphere line 

defect efficiently? How to locate the line defect along a certain direction to achieve a 

better waveguide property? A more challengeable problem is how to couple light 

between line-defect based waveguide and planar-defect based micro-cavity. The 

available planar defects are all oriented parallel with (111) crystalline faces, which are 

typically perpendicular with the supporting substrate. If a light from a PhC waveguide 

is expected to couple with the planar defect to initiate the micro-cavity modes, the 

orientation of the line defect should be perpendicular with the planar defect. This 

requires a three-dimensional configuration of the artificial defects introduced. The 

two-photon polymerization may be a leading method since it is able to create 3D 

embedded line patterns throughout the bulk of the PhC. It is expected that a further 

advancement in defect engineering in self-assembled 3D PhCs will lead to the eventual 

technological applications of these novel materials. 
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Chapter 3  

Experimental Section 

 

3.1 Chemicals and substrates 

 The chemicals used in this study include benzene (Merck), styrene (99%, 

Aldrich), divinylbenzene (DVB, Aldrich, 80%), potassium persulfate (KPS, 99%, 

Aldrich), hydrogen peroxide (30%, Ashland Chemical) sodium hydroxide pellet (99%, 

Merck), sulfuric acid (98%, Merck), fuming hydrochloric acid (HCl, 37%, Merck), 

tetraethyl orthosilicate (TEOS, 98%, Fisher), absolute ethanol (99.99%, Merck), 

toluene (99.5%, Merck), ammonia solution (NH4OH, 28%, Fisher), hydrofluoric acid 

(HF, 49%, J.B. Beaker), sucrose (98%, Fluka), acetononitrile (TEDIA), silicon 

tetrachloride (SiCl4, 99.998%, Aldrich), 3-(trimethoxysilyl)propyl methacrylate 

(MPS), sodium dodecyl sulfate (SDS, >98%, Sigma), benzyl peroxide (BPO, 98%, 

Merk), poly(allylamine hydrochloride) (PAH, Aldrich, ave Mw~ 70000), ammonium 

hexafluorotitanate ((NH4)2TiF6, 99.99%, Aldrich), boric acid (H3BO3, Lancaster), 

tera-n-octylammonium bromide solution ([CH3(CH2)7]4NBr, TOAB, Merck), H2PtCl6 

(aldrich), dodecanethiol (CH3(CH2)11SH, DDT, Aldrich), NaBH4 (Aldrich), 

3-mercaptopropionic acid (MPA, Merck) 
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Figure 3.1 The molecular structure of 3-(trimethoxysilyl)propyl methacrylate(MPS) 

 All the chemicals were used as received without further purification. Glass 

substrates (microscope glass slide, 22 × 22 × 0.3 mm3, Marienfeld, Germany) and 

silicon substrates (20 × 20 × 0.5 mm3, HNS, Singapore) were pretreated by bathing in 

a piranha solution, the mixture of concentrated sulfuric acid and hydrogen peroxide 

with volume ratio of 3: 1 for 3 h (CAUTION: piranha solution reacts violently with 

organic material and should be handled with care). Subsequently, the substrates were 

washed with copious deionized water and dried in nitrogen flow before use. 

3.2 Synthesis of colloidal spheres 

3.2.1 Synthesis of silica microspheres 

 The synthesis of the SiO2 microspheres was conducted in a 500 ml three-neck 

round-bottom flask. A teflon wedge connected with a teflon sprayed stick driven by an 

electric motor, was used as stirrer. A variable flow mini-pump (Fisher scientific) was 

used to control the feeding of the chemicals. 

 The first step is the synthesis of silica microspheres that are used as seeds in the 

following re-growth step. A mixture of 19g H2O, 2.8ml ammonia and 40ml ethanol 

was poured into a three-neck flask and stirred for 10 min (stirring speed: 300 MPH). 

Then a mixture of TEOS 2.7ml and Ethanol 60ml is added into the flask and allowed 
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to react for 4 h. Thus the seeds are successfully fabricated. There is no need to take 

out the seeds and wash them. Mixture of TEOS and ethanol can be dripped into the 

reaction flask to grow the silica seeds directly. 

 Subsequently, a mixture of certain amount of TEOS and 4 times amount of 

ethanol was dripped at a speed of 5.15ml/h using peristaltic pump. When the volume 

of the reaction medium doubled, the dripping was paused for 2 hours and ammonia 

and DI water were added to restore their concentrations to the original values before 

the dripping. After the restoration the reaction media was stirred for 1 hour before the 

dripping was resumed. Two hour after the completion of the dripping, monodisperse 

silica beads could be washed and collected. The washing process involved 3 times of 

washing by ethanol followed by 3 times of washing by DI water using centrifuge and 

redsipersion. In some rare cases, there are some second seeds formed during the 

re-growth process, thus a separation process was introduced to purify the silica beads. 

The separation process involved 8 times of centrifuge at an appropriate speed and 

redispersion. 

3.2.2 Synthesis of polystyrene microbeads 

 The reaction was carried out in a 500 ml three-neck flask, which was immersed in 

a water bath to control the reaction temperature. A mechanical stirrer with a water seal 

device driven by an electric motor was used in the reaction. Pure nitrogen was 

bubbled into the flask throughout the experiment. At the outlet of nitrogen, a 

condenser was installed to condense the styrene vapor brought by the nitrogen, so as 

to reduce the styrene loss during the reaction. 
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An emulsion polymerization process was employed to synthesize polystyrene (PS) 

spheres. During this process, 200g DI water, certain amount of styrene monomer, 

some amount of sodium dodecyl sulfate (SDS) were added into the flask. The flask 

was then put in the water bath controlled at 60 oC. After installment of the mechanical 

stirrer and start of nitrogen flow, the mixture was stirred at 300 rpm. At the same time, 

an initiator solution was prepared by solving certain amount of potassium persulfate 

(KPS) in 50g DI water. After the mixture was stirred for 1h, the initiator was poured 

into the flask to start the polymerization. After 30h PS spheres were washed by 

centrifuge and redispersion of 4 times. Finally, the PS spheres were stored as colloid 

in water for subsequent experimental use. In the experiment, different amounts of 

styrene monomer were used to test the influence of it on the final PS bead size. 

Additionally, the effect of SDS, DVB was also examined by control the addition of 

SDS in the reaction system (see the recipe of the PS synthesis in Table 3.1). 

 

Weight percentage and volume fraction measurement. The weight percentage 

of the silica and PS spheres was measured by drying 200 μL colloid on a piece of 

aluminum foil followed by weighting the remaining solid. The weight percentage and 

the volume fraction of the colloids were calculated with the following equations: 

fw

fd

WW
WW

w
−

−
=  

Where, w is the weight percentage of the colloid and Wd, Wf and Ww are the weight of 

dried colloid with the aluminum foil, the weight of the foil and the weight of colloid 

with the aluminum foil, respectively.  
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Table 3.1 Recipe of the PS bead synthesis 

Sample Styrene Amount (g) 
DVB 
(g) 

KPS 
(g) 

SDS 
(g) 

PS1 25  0.14  

PS2 25  0.14  

PS3 25  0.14  

PS4 20.89  0.14  

PS5 20  0.14  

PS6 20.2  0.14  

PS7 10  0.14  

PS8 8  0.3  

PS9 7.5  0.14  

PS10 5.4  0.14  

PS11 5  0.14  

PS12 3  0.14  

PS13 20  0.143 0.15 

PS14 20 0.8 0.14  

PS15 17 3 0.14  

PS16 15.45 4.55 0.14  

PS17 5  0.35  

 

  

The volume fractions of PS and silica aqueous colloids were calculated according 
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to the following equation, where the specific gravities of PS and silica beads were 

assumed as 1.08 and 2: 

PS

PS
PS w

w
f

08.01−
=  

Silica

Silica
Silica w

w
f

−
=

2  

Preparation of colloids of different concentrations. Aqueous PS and silica 

colloids were prepared by diluting the concentrated mother colloids directly according 

to the weight percentage of the colloids. Alcoholic silica suspensions were prepared 

by diluting the concentrated silica colloids with ethanol. 

3.3 Synthesis of composite microspheres and shells 

3.3.1 Synthesis of SiO2/TiO2 and SiO2/TiO2-Pt core/shell nanostructures 

Silica spheres of 650nm were synthesized by the method described previously. 

The surface of them was then functionalized by adsorption of a type of polyelectrolyte, 

poly allylamine hydrochloride using a layer-by-layer technique (Strohm and Lobmann, 

2005). Briefly, about 20 mL of a PAH solution containing 1 g L-1 of PAH was added 

to 30 mL of a colloid containing 0.5 g silica spheres. After being magnetically stirred 

for 30 min, the spheres were collected by centrifugation, followed by three-time 

washing using deionized (DI) water to remove residual PAH. The PAH-coated silica 

spheres were dispersed in 40 mL of DI water. Then, a given amount of 0.6 M 

(NH4)2TiF6 solution was added to the dispersion. The above dispersion was mixed in a 

conical flask placed in an ultrasonicator and sonicated for 1 h before the pH was 
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adjusted to 2.85 using HCl (1M). Finally, a H3BO3 acid solution of 0.6 M was added 

to the system and sonicated for 9 h. The solid spheres were collected by centrifuge, 

washed with DI water, and finally dried at 60 ºC overnight. 

SiO2/TiO2 core/shell structure with Pt nanoparticles incorporated in the titania 

shells were prepared according to the method of Li and Zeng (Li and Zeng, 2006). 

Briefly, 28 mL of tera-n-octylammonium bromide solution in toluene 

([CH3(CH2)7]4NBr, TOAB, 27 g L-1) and 10 mL of H2PtCl6 solution (0.05 M) were 

stirred vigorously for 5 min, followed by adding 4 mL of 0.22 M dodecanethiol in 

toluene. Subsequently, 20 mL of 0.24 M NaBH4 aqueous solution was added to obtain 

a Pt nanoparticle suspension. Afterward, SiO2/TiO2 core/shell composite particles was 

added to 50 mL of a 3-mercaptopropionic acid (MPA) solution (0.22 M in toluene) 

and stirred for 10 min. Then the Pt suspension was added under stirring and kept 

stirred for another 3 h. Finally, the solid was washed with acetone, dried at 60 ºC 

overnight, and calcined at 500 ºC for 3 h to obtain a powder sample of gray color. 

3.3.2 Synthesis of various hollow spheres 

The synthesis of single shelled hollow carbon spheres (SHCSs). Monodisperse 

silica spheres with diameters of 460 nm, 650 nm, 730 nm, and 1600 nm were 

synthesized (Stöber et al., 1968). Subsequently, silica spheres were coated with 

carbon using a chemical vapor deposition (CVD) method, as shown in Figure 3.2. 

Briefly, the powder of silica spheres of a given diameter was placed in a quartz tube 

and were heated to 900 ºC or 1000 ºC with a heating rate of 5 ºC/min under N2 flow 

(30 cm3 min). Then, another N2 flow of 30 cm3 /min containing 10 wt% benzene 
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vapor was passed through the silica spheres to allow deposition of carbon on the 

surface of the silica spheres. After a given period of time, composite carbon/silica 

spheres were obtained. Removal of the silica spheres using a 20 wt% HF solution 

yielded a carbon sample. The samples obtained at CVD temperatures of 900 ºC and 

1000 ºC for 4 h are denoted as SHCS900 and SHCS1000, respectively.  

 

 

Figure 3.2 The setups of silica CVD (top) and carbon CVD (bottom) 

 The preparation of N-doped hollow carbon spheres (NHCSs). N-doped 

hollow carbon spheres (NHCSs) were prepared following a similar experimental 

procedure as described above. Briefly, nitrogen gas (30 cm3/min) containing 5 wt% 

acetonitrile (CH3CN, Tedia) vapor instead of benzene vapor was passed to the quartz 

tube to allow carbon deposition on the surface of the silica spheres. The sample 

obtained at a CVD temperature of 1000ºC for 4 h is denoted as NHCS1000. 

 The fabrication of double shelled hollow carbon spheres (DHCSs). First, 

silica spheres of 1600 nm were coated with a layer of carbon using the CVD at 1000 

ºC for 1 h with benzene as precursor. Second, the silica/carbon core/shell structures 
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were dispersed in ethanol and sonicated for 0.5 h. Third, deposition of a silica layer on 

the core/shell spheres was conducted by silica CVD according to the method 

described by Ozin and co-workers, as shown in Figure 3.2 (Miguez et al., 2002). 

Briefly, the samples were placed in a home-made glass tube reactor working at room 

temperature and atmospheric pressure. De-ionized (DI) water was bubbled into the 

reactor by a highly pure nitrogen flow, followed by bubbling silicon tetrachloride. 

Hydrolysis of SiCl4 formed a layer of silica on the interior surface of the 

silica-inverse opals to produce NCIOs. By controlling the bubbling time and nitrogen 

flow rate, the thickness of the deposited silica layer can be easily controlled. Fourth, 

the above silica/carbon/silica composite spheres were dispersed in ethanol and 

sonicated for 0.5 h. Fifth, silica/carbon/silica composite spheres was further deposited 

with carbon using the carbon CVD method. Finally, the silica component in the 

composite spheres was removed using a 20 wt% HF solution to obtain DHCSs.  

 The synthesis of hollow silica spheres. The SHCSs prepared above were used as 

templates here to prepare hollow silica spheres. After the SHCSs was coated with 

silica layer using silica, the sample was calcined in air at 700 ºC for 5 h to burn off the 

SHCSs, leaving behind hollow silica spheres. 

3.4  Fabrication of colloidal crystals 

3.4.1 Vertical deposition (VD) method 

 Colloidal spheres were diluted to a certain concentration before use (normally the 

volume fraction was lower than 1%). Then about 15 ml of the colloidal suspension 
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was added into a polyethylene vial and a glass slide or silicon substrate was vertically 

immerged into the suspension and fixed to the wall of the vial. Then the vial was 

placed in an oven of different temperature overnight (Jiang et al., 1999a; Im et al., 

2002; Im and Park, 2002). 

3.4.2 Horizontal deposition (HD) Method 

After being treated with piranha solution, the glass or silicon substrates were 

washed with copious deionized water and dried in nitrogen gas flow before use. A 

few drops of colloidal suspension of a given concentration were placed on a substrate 

and carefully spread to fully cover the substrate surface, as illustrated in Figure 3.3 

The spread suspension was exposed to ambient conditions with a temperature around 

23 °C. 

 
Figure 3.3 Schematic illustration of the procedure of horizontal deposition. The 
colloids of a given concentration were dropped on the substrate by using a finnpipette 
(Labsystems, J36207, 10~100 μl) which could control the drop volume precisely. 
Then a pipette tip was used to spread the suspension on the substrate. When one 
moved the tip along the surface of the substrate, the colloidal suspension will be 
guided to spread on the substrate and finally fully cover the substrate surface, as 
illustrated in the second panel. Subsequently, the spread suspension was exposed to 
ambient conditions with a temperature of around 23oC and the colloidal crystallization 
took place (see the third panel). After 1~2 hours, a thin colloidal crystal film with a 
macroscopic void formed on its center was obtained, as illustrated in the fourth panel. 

The annealing process is necessary to increase the mechanical strength of the 
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colloidal crystals and form necks among the microspheres. For PS spheres the 

colloidal crystals were heated at 105 oC or 110 oC for a certain time (normally, 5 to 15 

min according to different purpose), while the silica spheres were calcinated at 500oC 

or 550oC for a certain period of time (normally, 2 to 5 h). 

 

3.4.3 Fabrication of crack-free colloidal crystals using vertical deposition (VD) 

method 

 Silica beads of 277 nm in diameter with a polydispersity lower than 3% were 

synthesized following a procedure (Giesche, 1994) based on the Stöber method 

(Stöber et al., 1968). Silicon wafer was treated in a piranha solution at 60 °C for 2 h 

before use (WARNING: the above solution reacts violently with organic materials. 

Handle with caution). A silica precursor solution was prepared by mixing TEOS, 

ethanol, and 0.1 M HCl (volume ratio = 1:10:1) under stirring for 4 h. Different 

amounts of the silica precursor solution was mixed with the colloid of silica spheres 

under ultrasonication before the VD method (Jiang et al., 1999a) was used to grow 

CC films on the silicon substrate. During the VD process, two silicon substrates were 

placed back to back in the center of a cylindrical vial containing 15 mL of silica 

sphere colloidal suspension. Self-assembly of the silica beads was completed after 

about 40 h at 30 °C. Then, the silica bead films were exposed to vapor for different 

periods of time depending upon the thicknesses of the films. 
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3.5 Fabrication of free-standing non-close-packed opal films 

Fabrication of PS Opals. PS spheres of 569 and 687 nm in diameter with a 

polydispersity of < 3% were synthesized using an emulsifier-free emulsion 

polymerization method (Shim et al., 1999). The spheres were used to fabricate PS 

opals on a silicon substrate by using an inward-growing self-assembly technique as 

described in the previous section. The PS opals fabricated from the 569-nm and 

687-nm beads were annealed at 110 °C for 20 and 30 min, respectively, before further 

processing. 

Fabrication of Silica Inverse Opals. A silica precursor solution was prepared by 

mixing tetraethyl orthosilicate, ethanol, and 0.1 M HCl solution (volume ratio = 

1:10:1) under stirring for 4 h. Then the solution was infiltrated into the voids of the 

opals fabricated above using a Laurell spin coater (WS-400B-6NPP/LITE) operating 

at 1200 RPM for 15 s, followed by drying at room temperature for 4 h (Matsuura et 

al., 2005). Three circles of infiltration and drying were performed to enhance the 

infiltration. Subsequently, the PS spheres were removed by immersing the samples in 

toluene at 60 °C for 4 h. This was repeated three times to ensure a complete removal 

of the PS beads. 

Backfilling of the Inverse Opals to Obtain Non-Close-Packed Inverse Opals 

(NCIOs). A silica layer was deposited on the interior surface of the silica-inverse 

opals by using the CVD method as described by Ozin and co-workers (Miguez et al., 

2002). Briefly, the samples were placed in a home made glass tube reactor (as 

illustrated in Figure 3.2) working at room temperature and atmospheric pressure. 
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De-ionized (DI) water was bubbled into the reactor by a highly pure nitrogen flow, 

followed by bubbling silicon tetrachloride. Hydrolysis of SiCl4 formed a layer of silica 

on the interior surface of the silica-inverse opals to produce NCIOs. By controlling 

the bubbling time and nitrogen flow rate, the thickness of the deposited silica layer 

can be easily controlled. 

Infiltration of the NCIOs with Styrene Monomer and Removal of the Silica 

NCIOs. According to the method described by Jiang et al. (1999b), styrene was 

infiltrated into the pores of the NCIOs followed by polymerization to allow the 

formation of PS in the pores of the NCIOs. In detail, styrene was washed with a 10% 

NaOH solution three times to remove the inhibitor, followed by three times of 

washing with DI water. Then, 1 wt% of benzyl peroxide (Fluka) was added to the 

styrene. Covered with a glass slide, the NCIOs was dipped in the monomer to allow 

full infiltration of the voids of the NCIOs by the styrene monomer. Polymerization of 

the monomer was conducted at 60 °C overnight. A 10 wt% HF solution was used to 

etch away the silica framework to obtain free-standing NCO films. 

3.6 Fabrication of planar defects in opals and inverse opals 

Synthesis of PS spheres and fabrication of first multilayer. PS spheres of 380, 

560 and 655 nm in diameter (polydispersity < 3%) were synthesized and washed 4 

times before redispersion in water to obtain a colloidal suspension having volume 

fractions of 6, 8 and 9 %, respectively. Horizontal deposition method was used to 

grow PS multilayer on a glass substrate  
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Spin coating of a silica layer as planar defect. Silica particles of 225 and 585 

nm in diameter synthesized using the Stöber method were washed and redispersed in 

ethanol (99.95%, Aldrich) to form a colloidal suspension of 4 and 5.6 % volume 

fractions, respectively. The silica beads were spin-coated on the PS film obtained 

earlier at spinning speeds of 1000 RPM for the 225-nm beads and 1200 RPM for the 

585-nm beads on a Laurell spin coater (WS-400B-6NPP/LITE). Then the sample was 

annealed at 100 °C for another 3 min before the subsequent treatment.  

Growth of the second PS multilayer. Another 40 μL of the PS colloidal 

suspension were dropped and spread carefully on the surface of the sample obtained 

above. After the formation of the PS colloidal crystal, the sample was annealed at 100 

°C for 15 min. 

Infiltration with silica. A SiO2 sol was prepared by mixing tetraethyl 

orthosilicate (TEOS, 98%, Acros Organics), ethanol and 0.1 M HCl solution (Merck) 

(volume ratio: 1:10:1) under stirring for 4 h. The samples were placed vertically and 

the sol was dropped on them to make them fully wetted. Then the wetted samples 

were allowed to dry at room temperature for 12 hours. This infiltration process was 

repeated for another 3 times to make the voids of opal fully infiltrated by silica. 

Finally the samples were calcined at 500°C for 6 hours to remove PS particles. 

3.7 Patterning the surface of microspheres and fabrication of 

nonspherical particles 

3.7.1 Patterning Microsphere Surface by 3D Colloidal Crystal Templating and 
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Fabrication of Nonspherical Particles 

A CC self-assembled from 984-nm PS spheres was annealed at 110 °C for 15 min. 

Then 6g CC was grinded into small pieces and put in a conical flask. Concentrated 

H2SO4 (the weight ratio of CC over H2SO4 was around 1:20) into the flask. The flask 

was then placed in an oil bath at 40 °C. The mixture of CC and H2SO4 was mildly 

stirred for 2.5 h to allow sulphonation (Yang et al., 2003) of the CC. Subsequently, the 

CC was washed four times. Upon redispersion of the sulphonated CC in water using 

the ultrasoniction technique, 3.89g functionalized PS beads were obtained. In the 

following seeded regrowth process, 15 mL of surface-sulphonated PS sphere 

(containing 0.29 g of PS spheres) was mixed with 50 mL of H2O and 0.28 mL of 

styrene monomer under stirring for 60 min at 60 °C under the protection of N2 flow. 

Then, a solution containing 10 g of H2O and 0.016 g of potassium persulfate was 

added to the above mixture. After polymerization for 24 h, non-spherical PS particles 

were obtained after centrifuging and washing.  

A CC self-assembled from 400-nm PS spheres was annealed at 110 °C for 5 min. 

Then 6g CC was grinded into small pieces and put in a conical flask. Concentrated 

H2SO4 (the weight ratio of CC over H2SO4 was around 1:20) into the flask. The 

flask was then placed in an oil bath at 40 °C. The mixture of CC and H2SO4 was 

mildly stirred for 2.5 h to allow sulphonation (Yang et al., 2003) of the CC. 

Subsequently, the CC was washed four times using deionized water. Upon 

redispersion of the sulphonated CC in water using the ultrasoniction technique, 4.3g 

functionalized PS beads were obtained. Similarly, PS particles with protruding edges 
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were also synthesized with 400 nm PS spheres. Briefly, first, 15 mL of 

surface-sulphonated PS sphere (containing 0.195 g of PS spheres) was mixed with 50 

mL of H2O and certain amount (0.1 mL, 0.2mL and 0.4mL for the samples shown in 

Figure 2b, c and d, respectively) of styrene monomer under stirring for 60 min at 60 

°C under the protection of N2 flow. Then, a solution containing 10 g of H2O and 0.015 

g of potassium persulfate was added to the above mixture. After polymerization for 24 

h, non-spherical PS particles were obtained after centrifuging and washing. 

Silica spheres of 415nm with a polydispersity of 3% were synthesized using a 

modified Stöber method (Giesche, 1994). A vial containing a 0.75 wt % colloid of the 

silica spheres, with a piece of cleaned silicon wafer placed vertically (Jiang et al., 

1999a) near the vial wall was placed in a desiccator connected with a vacuum pump. 

The desiccator was put in a 50 °C oven and kept at a pressure of 115 mm Hg for 24 h 

to allow the formation of colloidal crystals (CCs) on the silicon substrate. CCs 

containing 0.05g silica spheres (the weight of the spheres were calculated by 

subtracting the weight of the bare substrates from that of the substrate with CCs) was 

first annealed at 750 °C for different periods of time. Subsequently, the CC films were 

placed in a solution containing 40 mL of ethanol, 1.5 g of H2O, 0.5 mL of 3- 

(trimethoxysilyl) propyl methacrylate (MPS), and 1 mL of ammonia solution (25%) 

for 24h. Then, the CC films were taken out and washed with ethanol five times to 

remove residual MPS. The washed films were dried at room temperature and their 

masses were measured. Finally, the CC films were redispersed in ethanol by 

ultrasonication. After drying it was found that 0.039 g patterned silica spheres was 
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collected. 0.02 g of the surface-patterned silica spheres was added to a 40 mL mixture 

containing ethanol, 5 g of H2O, and 1 mL of ammonia solution (25%) under stirring 

for 30 min. Then, an ethanol solution containing 40 μL of tetraethyl orthosilicate 

(TEOS) and 40 mL of ethanol was dropped into the mixture containing silica spheres 

at a speed of 3.6 mL/h still under stirring. After completion, the system was stirred for 

another 2 h. The solid (non-spherical silica particles) was collected by centrifuging. 

 

3.7.2 Drilling holes in colloidal spheres by selective etching 

 Monodisperse colloidal PS spheres of 450 nm in diameter were synthesized using 

previously described method and self-assembled into a monolayer on an glass 

substrate (1 × 2 cm) coated with indium-tin-oxide (ITO) using VD. A diluted PS 

colloidal suspension with a concentration of 10-4 (volume ratio) was used to obtain a  

hexagonally close-packed PS monolayer. After annealing at 110oC for 5 min, the 

above sample was dipped into a 0.1 M nickel sulfate solution containing 0.06 M boric 

acid and 0.01 M sodium dodecyl sulfate for electrochemical deposition of nickel at 

pH = 3, 50 oC, and - 1 V against Ag/AgCl (3 M KCl) for 30 min. 

Inductively coupled plasma (ICP) etching was then carried out using a 

Plasma-Therm SLR-770 system with 2.0 MHz source configured with an electrode 

chuck in the chamber, which was biased separately at 13.56 MHz. The reactive gas 

was CF4 with a flow rate of 20 sccm while the operation pressure was kept constant at 

7 mTorr. The inductive power was kept at 400 W at a constant rf chuck power of 100 

W.  
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3.8 Characterization 

Scanning electron microscope (SEM). When a condensed, accelerated electron 

beam hits a specimen and secondary and backscattered electrons are produced. In 

SEM process, secondary electrons emitted from the sample are collected to create an 

area map of the secondary emissions. Since the intensity of secondary emission 

depends highly on the local morphology, the area map is a magnified image of the 

sample. In our experiment, a dilute solution of microparticles was prepared and this 

solution was dropped on a piece of clean smooth copper tape attached on a SEM 

copper holder. Dry samples were obtained after the complete drying of the solution. 

The samples of colloidal crystals and films were directly cut by diamond cutter or 

knife. The free-standing PS colloidal crystals films were break into small piece in 

liquid nitrogen to keep their microstructure from being destroyed. Then small pieces 

of samples were attached on the copper holder. Before measurement, the samples 

were coated with platinum with a sputter coater (JEOL JFC-1300 Auto fine coater). 

Finally, SEM images were obtained on a JEOL JSM-5600LV and a JEOL-7600F field 

emission scanning electron microscope (FESEM), which were operated at an 

acceleration voltage of 5, 10 and 15 kV and filament current of 60 mA. The sizes and 

deviations of the sphere diameter, shell thickness, feature lengths were obtained by 

measuring at least 50 samples on the SEM images. 

Energy-Dispersive X-ray Analysis (EDX). EDX attached on the SEM was used 

to analyze the atomic composition of the samples. The energy of the electronic beam 

is typically in the range 10-20 kV. The energy of the X-rays emitted depends on the 
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material under examination. The X-rays are generated in a region about 2000 

nanometers in depth, and thus EDX is not a surface science technique.  

Transmission electron microscope (TEM). Before measurement, the sample was 

dispersed in ethanol and then dripped and dried on copper grid. In the operation of TEM, 

an electron beam is focused on a specimen and part of the electron beam is transmitted. 

This transmitted portion is focused by objective lens into an image and the image is 

passed down through enlarge lenses and a projector lens, being enlarged all the way. In 

the experiment, the TEM was used to characterize the nonspherical particles and the 

TEM images were obtained on a JEOL 2010 transmission electron microscope, 

operated at an acceleration voltage of 200 kV. 

UV-Visible-near-infrared Scanning Spectrophotometer. The reflectance and 

transmission spectra of the colloidal crystals and the PCs were characterized on a 

Shimadzu UV-3101PC UV-Visible-near-infrared Scanning Spectrophotometer. A 

home-made mask was used to constrain the incident light into 5 mm diameter circle. 

 Scanning spectrophotometers normally utilize diffraction gratings to scan across a 

spectral region, which can be used in the UV, visible, and NIR regions. The 

polychromatic light from the radiation source passes through lenses and filters and 

onto the sample. After being modified by the samples, the light is then collected and 

transferred to the monochromator where it is diffracted into individual wavelengths 

and measured by the detectors.  

X-ray Photoelectron Spectroscopy (XPS). XPS was employed to measure the 
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surface composition of the samples. The sample in colloid state was dropped on the 

surface of a small piece of glass. After complete drying, the glass piece was attached 

to a XPS holder, which was further place in the XPS cabinet to do the measurement. 

XPS can be used to measure the elemental composition, chemical state and electronic 

state of the elements that exist in the surface of a material. By irradiating a material 

with a beam of X-rays and simultaneously measuring the kinetic energy and number 

of electrons escaping from the surface, elemental information can be produced about 

the 10 nm depth of the surface of a sample. The XPS machine used is AXIS HSI 165 

spectrometer, from Kratos Analytical. 

X-ray diffraction (XRD). X-ray diffraction (XRD) takes advantages of the 

coherent scattering of x-rays by polycrystalline materials to obtain a wide range of 

structural information. The x-rays are scattered by each set of lattice planes at a 

characteristic angle, and the scattered intensity is a function of the atoms, which occupy 

those planes. The scattering from all the different sets of planes results in a pattern, 

which is unique to a given compound. In addition, distortions in the lattice planes due to 

stress, solid solution, or other effects can be measured. TiO2 samples in the thesis were 

also identified by using X-ray diffraction (XRD) on a Shimadzu XRD-6000 

diffractometer (CuKα radiation) operated at 40 kV and 30 mA with a scanning speed of 

0.02 ˚ s-1.  
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Chapter 4 

Synthesis of Colloidal Microspheres 

 Various methods have been employed to fabricate colloidal crystals, which can be 

further used as template for producing photonic crystals. Almost all of these methods 

involve growth of colloidal crystals by the using of a colloid of microspheres. To 

produce a highly ordered colloidal crystal the colloid has to meet the following 

prerequisites. First, the monodispersity is highly important for the formation of 

ordered structure. Normally, to obtain an ordered colloidal crystal the polydispersity 

of the spheres should be less than 5% (Allard and Sargent, 2004). Moreover, the 

colloid should be relatively stable in a time period compared to the growth of 

colloidal crystals. Furthermore, the microspheres will be removed after infiltration of 

dielectric materials. Thus, the physicochemical properties of the spheres are also of 

high importance. The spheres need to exhibit a solvability, chemical properties or 

decomposition temperature that is different from the infiltrated materials. Thus they 

can be removed by dissolution, etching or by calcination. Additionally, the solvent 

should be volatile sot that it can be completely removed after the formation of 

colloidal crystals.  

 Various approaches have been employed to produce monodisperse colloidal 

spheres. Presently, the most commonly used methods are controlled precipitation for 

spheres of inorganic oxides and emulsion polymerization for polymer latex spheres. 

(Xia et al., 2000) In this chapter, the synthesis of monodisperse silica spheres and 
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polystyrene (PS) spheres are discussed.  

 

4.1 Synthesis of silica microspheres 

 Silica spheres are widely adopted to fabricate colloidal crystals as template of 

photonic crystals because of its several advantages. First, it can be easily dispersed in 

water or ethanol to form a stable colloid. Additionally, it can be easily removed by 

hydrofluoric acid after infiltration of dielectric materials. Furthermore, it is stable 

under high temperature so that the colloidal crystals maintain their structure during 

process such as chemical vapor deposition of silicon.  

 

 Stöber et al. (1968) first reported the synthesis of monodisperse silica spheres in 

1968. Subsequently, the method has been improved by a number of research groups 

(Giesche, 1994a; 1994b; Yano and Fukushima, 2003). Generally, a dilute solution of 

tetraethylorthosilicate (TEOS) is allowed to hydrolyze in an ethanol media with the 

presence of ammonia solution. The hydrolysis and condensation processes produce 

initial nulei of silica and the growth of nuclei forms the final silica beads. The reaction 

mechanism is shown as following:  
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+ 2OHOR- OHR -OH+
  

 

+ OH-Si OH Si O +-
2OH

 

+ OR-+-Si O ORSi Si O Si

  
Figure 4.1 Schematic illustration of reaction mechanism of TEOS under basic 

conditions (Chang and Ring, 1992). 

 As a general rule, precise control of reaction conditions, for instance, the pH, the 

concentration of water and the concentration of reactants is necessary to generate 

monodisperse silica spheres. Since TEOS reacts strongly with water, high 

concentration of water should be avoided and water should be distributed in the 

reaction solution as homogeneously as possible. Alcohol is normally chosen as the 

reaction media because both organic reactant (TEOS) and inorganic catalyst (aqueous 

ammonia hydroxide) can be mixed homogeneously in it.  

 The choosing of catalysts is considered as the most important factor in 

determining the mechanisms of silica growth. It has been found that only when 

ammonia is used as catalyst, spherical silica particles can be obtained. Thus ammonia 

can be taken as a morphological catalyst. 

Hydrolysis 

Condensation 
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 In this work, a modified Stöber method was used to synthesize silica spheres, 

which involved a formation of seeds and regrowth of them. As the first step, the 

mixture of TEOS and ethanol was poured into a solution of ammonia and alcohol 

under stirring to allow the formation of silica spheres under 200nm. By dripping 

diluted TEOS into the reaction media after the formation of the seeds, larger silica 

beads can be obtained. 

 

 

Table 4.1 The TEOS amounts used in the synthesis of seeds and the final beads and 
the sizes of them 

Batch 

Number 

TEOS used for 

the synthesis of seeds 

(ml) 

The size 

of the seeds

(nm) 

TEOS amount dripped to 

grow the seeds 

(ml) 

The final 

bead size 

(nm) 

S1 3.38 122 20 211 

S2 4.5 145 34 277 

S3 2.7 174 24 378 
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Figure 4.2 Images (a-f) are the FESEM images of samples S1, S1a, S2, S2a, S3 and 

S3a respectively. 

 During the seed-regrowth processes, a key issue to ensure the monodispersity of 

the final seeds is to prevent the formation of second seeds during the dripping of 

TEOS. Thus, assuming that the formation of second seeds is neglectable in all the 

three batches of synthesis, the final bead size Øf could be calculated with the initial 

seed size Øs and the amount of TEOS dripped into the reaction system according to 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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the following equation: 

S
S

Sd
f V

VV
φφ ×

+
= 3  

 In the equation Vs and Vd are the amount of TEOS used for synthesis of the seeds 

and dripped to grow the seeds, respectively. 

 
Figure 4.3 Images (a-d) are the FESEM images of samples S4, S4a, S4b and S4b 

respectively. 

 Thus, theoretically the sizes of the final beads of the three batch of synthesis 

should be 232 nm, 296 nm and 373 nm respectively. They are in well accordance with 

the experimental observation of the final bead sizes. The difference between the 

experimental and theoretical value might come from the formation of tiny second 

seeds, incomplete reaction of the dripped TEOS and the SEM observation error. It can 

(a) 

(c) 

(b) 

(d) 
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be concluded that the final beads size can be controlled by the amount of TEOS 

dripped into the reaction system. 

 At the same time, it is possible to synthesize beads of different sizes in one batch 

by simply pausing the TEOS dripping and taking out a portion of the colloid at 

different stages of dripping. Figure 4.3 shows the images of the seeds and three final 

beads obtained in a single batch of synthesis. The sizes of them are 134nm, 266nm, 

367nm and 480nm respectively. The sizes of them also can be predicted by the seed 

size and the relative dripped TEOS amount. 

 In some cases, as shown in Figure 4.4 (a, c), second seeds formed during the 

growth of beads, probably due to the speed variation of the perilistic pump. However, 

we found that the second seeds can be removed by centrifuge if the size of the second 

seeds is less than half of the beads. During the separation process, the rotation speed 

and time should be set properly so that the desired beads can be deposited completely 

while the second seeds are still in the colloid. In the sample shown as Figure 4.4a, the 

beads and the second seed sizes are 415nm and 140nm, respectively. Optimal 

centrifuge speeds were chosen to settle down the larger beads while leaving the 

smaller beads in the colloid bulk. Four times of centrifuge at 5000RPM for 3min were 

used to separate the seeds and obtain the sample shown as Figure 4.4b. The bead and 

the second seed sizes are 447nm and 220nm respectively. Four times of centrifuge at 

4500RPM for 3min were taken to purify the beads.  
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Figure 4.4 Images (a, b) and (c, d) shows the FESEM images of silica beads of 415nm 

and 445nm before and after separation. 

4.2 Synthesis of PS beads by emulsion polymerization 

 PS spheres are widely employed in the self-assembly of colloidal crystals because 

of their low density and high ratio of surface charge to density. In some processes 

such as vertical deposition, typically half a day or several days are needed to allow the 

growth of the colloidal crystals. The surface charge and low density of PS spheres 

ensure the stability of the colloid under gravitation force during this period of time, 

subsequently allowing the self-assembly of larger PS beads. 

 The polymer microspheres are normally prepared with the techniques suspension 

polymerization, dispersion polymerization, emulsion polymerization, and seeded 

polymerization (Arshady, 1992). Among these methods, emulsion polymerization is a 

(a) 

(c) 

(b)

(d)
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well-established method to synthesize monodisperse and submicron polymer 

microspheres. 

 In this work, emulsion polymerization was used to synthesize PS microspheres of 

different sizes. Emulsion polymerization, emulsifier-free emulsion polymerization 

were employed in the experiments. The experimental results of the different 

polymerization batches are listed in Table 4.2 

 

Table 4.2 The sizes and the monodispersities of the PS beads 

Sample Diameter 
(nm) 

S.D. Acceptable 
Yes or No? 

PS1 1060 Y 

PS2 970 Y 

PS3 1033 Y 

PS4 1330 Y 

PS5 789 Y 

PS6 820 Y 

PS7 590 Y 

PS8 538 Y 

PS9 655 Y 

PS10 485 Y 

PS11 390 Y 

PS12 150 Y 

PS13 295 Y 

PS14 414 Y 

PS15 330 Y 

PS16  N 

PS17 175 Y 
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Figure 4.5 SEM of PS microspheres with a diameter of (a) 1330nm, (b) 970nm 

(c)820nm (d) 655nm, (e) 380nm and (f) 175nm. 
 

 The influence of the monomer amount. From the experimental results Figure 

4.6, it can be concluded that the final bead size increase with the increase of the 

monomer amount when the other experimental conditions were fixed. It could be 

understood that at the initial stage, the number of nuclei formed was limited, so that 

with the addition of monomer the beads numbers did not increase proportionally, 

leading to the increase of the final bead sizes. 

(a) 

(c) 

(e) 

(b)

(d)

(f)
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Figure 4.6 The relationship between the monomer amount and the final PS bead size 
when the initiator is 0.14g and no DVB and SDS were added. 

 The influence of surfactant. The different sizes of PS5 and PS13 illustrated that 

the addition of surfactant decreased the final bead size. During both emulsion 

polymerization processes with and without emulsifier, the polymerization mainly 

happens in the micelles. In an emulsion process with emulsifier, the micelles of 

monomer are stabilized by the surfactant. However, in emulsifier-free polymerization, 

the monomers dissolved in solvent are initiated by radicals of initiator to form 

water-soluble oligomers. When the chain length of the oligomers achieve to the 

critical length, they precipitate out and adsorb on the micelle surface and stabilize 

them. However, the density of the radicals on the surface is much lower than the 

surfactant on micelle surface in tradition emulsion polymerization. Consequently, 

during the growth of the oligomers, they are easier to coagulate together. As a result, 
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the final particle size will be much larger than that of emulsion polymerization.  

 The influence crosslink agent divinylbenzene (DVB). It was found that the 

addition of DVB also decreased the PS bead sizes. It might be because that DVB is 

easier to polymerize than styrene, thus addition of DVB increase the speed of 

polymerization at the initial stage. Thus more seeds are formed and the final bead size 

decreases while the monomer amount is fixed. The glass transition temperature of the 

beads was increased from about 100 to 135oC with the addition of DVB (Cha and 

Choe, 1995). Thus crosslinked PS beads are desirable in some processes that require 

better thermal stability. 

4.3 Summary 

 Silica spheres have been synthesized using a modified Stöber method. Small 

silica spheres were first synthesized and the solution of TEOS was dripped into the 

reaction solution to allow the growth of the silica spheres. Through seed-regrowth 

process, high uniformity of the size of the silica beads was achieved. The size of the 

final beads can be precisely controlled by the size of the seeds or the amount of the 

TEOS dripped into the reaction solution. During the synthesis, the dripping speed 

should be controlled carefully to avoid the formation of second seeds, which leads to 

wide distribution of the final bead sizes. Emulsifier-free polymerization has been 

employed to synthesize monodisperse polystyrene spheres. The control of the sphere 

size can be achieved by simply adjusting the amount of the monomer while other 

conditions are fixed. The final bead size increases with the increase of the monomer 
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amount. On the other hand, bead size decrease with the addition of surfactant and 

divinylbenzene.  
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Chapter 5 
 

Fabrication of Complex Microspheres 

5.1 Synthesis of SiO2/TiO2 core/shell microspheres 

 Presently, the majority of spheres used in self-assembly approaches to 

photonic crystals are polystyrene, poly (methyl methacrylate) and silica spheres 

because of the ease of synthesizing and processing these spheres, as well as the 

good control of their surface morphology. However, the refractive indexes of these 

materials are relatively lower than those semiconductor materials. Among various 

semiconductor materials, titania has long been considered an ideal candidate for 

fabrication of photonic crystals because of its low absorption in the visible and 

near-infrared regions and its relatively high refractive index. Unfortunately, it is 

difficult to prepare titania as uniform colloidal spheres with polydispersity less 

than 5%. Therefore, employment of microspheres of core-shell structure is an 

interesting alternative method for the formation of novel photonic crystals, which 

are expected to exhibit unique optical properties (Breen et al., 2001; Kalinina and 

Kumacheva, 2001; Velikov and van Blaaderen, 2001; Graf and van Blaaderen, 

2002) 

 Several methods have been applied to deposit TiO2 films on SiO2 materials, 

such as chemical vapor deposition (CVD) and liquid-phase deposition methods 

(Koumoto et al., 1999; Pizem and Sukenik, 2002; Strohm and Lobmann, 2005). 

The layer-by-layer deposition approaches are adopted to produce homogeneously 
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coated particles, which utilize the electrostatic attraction between oppositely 

charged species deposited from solution onto microspheres (Caruso et al., 1998; 

Caruso, 2001; Caruso et al., 2001a; 2001c). This method allows precise control of 

the morphology of the microspheres as well as uniform layers of diverse 

composition. At the same time, the incorporation of metal nanoparticles in the 

colloidal crystals is of interest because of their influence on the photonic bandgap 

(Lin et al., 2006) as well as their surface plasmon response (Noguez, 2007). In 

present work, a novel ultrasonic-assisted liquid-phase deposition method is used to 

synthesize mono-dispersed SiO2/TiO2 core/shell nanostructures with a 

well-controlled composition. Pt particles were deposited on the SiO2/TiO2 

core/shell structure. 

 The surface of the silica spheres were first coated with a layer of PAH (poly 

allylamine hydrochloride), a cationic polyelectrolyte. The charge on the surface 

could be determined by zeta potential measurement, as shown in Figure 5.1. We 

can see that the surface of the SiO2 spheres was negatively charged in the pH range 

studied (see curve a) before PAH coating. After coating the surface of the SiO2 

spheres became positively charged as shown in curve d, which facilitated the 

subsequent deposition of TiO2 through strong electrostatic attractions. It can be 

seen from curve b that the addition of [TiF6]2- reversed the surface charge again. 

After the addition of H3BO3, the titanium species were converted to titania, coating 

on the silica sphere surface (see curve c).  
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Figure 5.1 Zeta potential profiles of the silica particles at different stages of 
particle preparation. 

 

The titania film was firstly deposited on the silica spheres surface due to 

electrostatic interactions. This interaction disappeared after the complete covering 

of titania. Subsequently, van der Waals force dominated and allowed the 

continuous deposition of titania on the surface of the silica spheres (Strohm and 

Lobmann, 2005). 
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Figure 5.2 XRD patterns of (a) SiO2 spheres, (b) SiO2/TiO2 core/shell structure, (c) 
SiO2/TiO2-Pt particles, and (d) Degussa P25.  

The wide-angle XRD patterns of the silica spheres, SiO2/TiO2, SiO2/TiO2-Pt, 

and Degussa P25 are shown in Figure 5.2. The silica spheres exhibited a 

featureless XRD pattern due to its amorphous nature. Samples SiO2/TiO2, 

SiO2/TiO2-Pt, and P25 exhibited two characteristic peaks at 2θ = 25.3 and 48.1°, 

which signify titania of anatase phase.27 The characteristic peaks of Pt0 with 2θ of 

39.7, 46.2, 67.5, and 81.3° were observed on sample SiO2/TiO2-Pt, confirming the 

presence of crystalline Pt0 phase. 
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 Figure 5.3 SEM images of synthesized silica spheres and core-shell particles: (a) 
and (b) SiO2 spheres, (c)-(f) SiO2/TiO2, (g)-(i) SiO2/TiO2-Pt, (j) EDX analysis of 
SiO2/TiO2-Pt (Pt wt% = 5%), (k) 6th reused SiO2/TiO2-Pt and (l) EDX analysis of 

SiO2/TiO2-Pt after 6 runs of recycling. 

  Figure 5.3 shows the SEM images of silica and the core-shell spheres. It can be 

seen that the silica spheres is uniform in size with a smooth surface, as can be seen 

in Figures 5.3a and b. After coating a layer of tatania, the surface of the spheres 

become rough (Figures 5.3c-f), probably because that titania are deposited as 

nanoparticles on the silica sphere surface. As shown in Figure 5.3f, the titania film 

is composed of titania nanoparticles with the size of 10-20 nm. Additionally, the 

titania shell thickness is uniformly around 80 ± 15 nm. The control of the titania 

thickness could be achieved easily by adjusting the concentration of the titanium 

hg 

i j
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precursor in the preparation steps. Figures 5.3g-i show the SEM images of 

SiO2/TiO2-Pt particles prepared in this work. Pt nanoparticles with sizes of 5-10 

nm can be observed uniformly coated on the surface of the TiO2 shell. MPA 

molecules have two functional groups, with the carboxyl group adsorbed on titania 

surface and thiol groups attracted Pt nanoparticles. Thus the density of the Pt 

nanoparitcles on the shells can be controlled MPA group adhesion density or the Pt 

particle concentration during the preparation. Figure 5.3j, the EDX analysis 

confirmed the presence of Pt element. 

 

 
Figure 5.4 TEM images of SiO2/TiO2 (a and b) and SiO2/TiO2-Pt (c and d). 

 

b

c 

a 

d
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The TEM images of samples SiO2/TiO2 and SiO2/TiO2-Pt are shown in Figure 

5.4. From Figures 5.4a and d the core-shell structures can be clearly observed. The 

average thickness of the TiO2 shell was measured to be in the range of 75 – 90 nm, 

in accordance with the SEM data. The Pt nanoparticles are observed to have 

diameters in the range of 7 - 15 nm on the surface of the TiO2 shell (see Figures 

5.4b and c). The TEM images in Figures 5.4b and c were taken at the edge of 

spherical particles since electron could not penetrate the particles due to their size.  

 
Figure 5.5. XPS spectra of TiO2/SiO2-Pt 
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XPS technique was used to characterize the surface of the particles containing Pt 

nanoparticles. Figure 5.5 shows the XPS spectra of the SiO2/TiO2-Pt samples. The 

Pt (4f7/2,5/2) peaks in SiO2/TiO2-Pt could be decomposed into two sets of spin-orbit 

doublet. Therefore, the Pt (4f7/2,5/2) peaks at 71.2, 74.5, and 72.6, 75.7 eV are 

respectively due to the presence of Pt meal and PtO. The smaple contained both Pt0 

and PtO because of the calcination of the particles during preparation. 

 

5.2 The fabrication of carbon hollow spheres with a controllable 

shell structure 

 Monodisperse hollow microspheres have attracted intense attention because of 

their potential applications in drug delivery systems, catalysis, microreactors, 

chromatography, adsorption and energy. Over the past few years, template method 

(Liu and Zeng, 2005; Yang et al., 2005a) emulsion polymerization strategy (Rana et 

al., 2002) and self-assembly method have been utilized to fabricate hollow spheres 

of silica (Caruso et al., 1998; Lu et al., 1999; Caruso, 2001; Caruso et al., 2001b; 

Rana et al., 2002; Chen et al., 2006; Zoldesi et al., 2006), zeolite (Wang et al., 2000), 

polymer (Yu et al., 2005), metal and metal oxide (Caruso et al., 1998; Yang et al., 

2003; Correa-Duarte et al., 2005; Yang et al., 2005a), semiconductor (Liu and Zeng, 

2005), and hybrid composites (Tierno and Goedel, 2006). The template method 

involves coating or deposition of a desired material on the surface of microspheres 

to form core-shell structures, followed by removing the microspheres, template to 

obtain hollow structures.  
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Hollow carbon spheres (HCSs) have received a lot of research interest due to 

their excellent chemical inertness, electrical conductivity, and controllable surface 

properties. They might find application in photonic band gap materials, catalyst 

support, biomaterials, and electrode materials (Lee et al., 2003; Li et al., 2005; Xia 

and Mokaya, 2005b; Zhou et al., 2005; Wang et al., 2006). Therefore, various 

methods have been explored to prepare HCSs. Sucrose was used as a carbon 

precursor to fill in silica inverse opal to obtain HCSs (Zhou et al., 2005). A spherical 

core-shell structure was used as template to fabricate porous hollow carbon 

structures (Arnal et al., 2006). A sol-gel method was explored to synthesize HCSs 

encapsulating tin (Lee et al., 2003). The preparation of graphitic hollow carbon 

nanoshells was recently achieved by using cellulose chars (Herring et al., 2003) and 

polypyrrole (Jang et al., 2004). However, complex procedures and the difficulty of 

controlling the size and morphology of the HCSs in these methods might limit their 

potential applications.  

We report the fabrication of various HCSs with a single shell, deformed shell, 

double shell, and N-doped shell by silica sphere templates, as illustrated in Figure 

5.6. In our work, carbon was coated by CVD of benzene or acetonitrile vapor on the 

surface of silica spheres and silicon tetrachloride was used for silica coating. HF 

solution was used to remove the silica spheres or layers to obtain HCSs. 

Additionally, the use of obtained HCSs as templates was demonstrated to synthesize 

monodisperse hollow silica spheres. 
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Figure 5.6 The strategy of synthesizing various HCSs. (a) carbon patches from 
incomplete ; (b) incomplete HCSs from the assembly of carbon patches; (c) 
deformed HCSs prepared using large silica spheres as templates with a short CVD 
duration; (d) complete single-shell HCSs prepared obtained after a long CVD period 
or a high CVD temperature; (e) N-doped HCSs prepared using acetonitrile as the 
carbon source; (f) double-shelled HCSs prepared using a three-step CVD, 
depositing layers of carbon, silica and carbon subsequently on a silica spheres, 
followed by removal of silica. 

Single-shell hollow carbon spheres (SHCSs) 

Figure 5.7 shows the SEM and TEM images of the silica particles, 

silica/carbon composite particles and the patches or shells obtained after removal 

of silica from the composite particles. Figure 5.7a is the image of the silica spheres 

of 650 nm with a smooth surface used as templates for the following samples. 

Figure 5.7b shows the silica/carbon composite particle obtained by depositing 

carbon on the silica spheres with a CVD temperature 900 °C and a deposition time 

of 0.5 h. It can be seen that carbon patches of different sizes sparsely deposit on 

the surface of silica spheres. 
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Figure 5.7 SEM and TEM (inset) images of (a) silica spheres of 650 nm in 
diameter, (b) silica/carbon core/shell after CVD of carbon for 0.5 h, (c, d) are 
carbon patches and incomplete SHCSs obtained after CVD of carbon for 1 h, 2.5 h, 
respectively, followed by removal of the silica spheres, (e) SHCSs obtained after 
CVD of carbon at for 4 h, (f) sample (e) after removal of the silica spheres (this 
sample is denoted as SHCS900). All the CVD are operated at 900oC. 
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   The patches were formed by the polycyclic aromatic hydrocarbon species 

produced by dehydrogenation and pyrolysis of benzene molecules (Bokros, 1969). 

The carbon patches became larger when the CVD time was extended to 1 h at the 

same temperature, as can be seen from Figure 5.7c. An incomplete carbon shell 

were achieved by further extending CVD time to 3 h (Figure 5.7d). By prolonging 

CVD time to 5 h, intact SHCSs with an external diameter of about 730 nm, named 

as SHCS900, was obtained (Figure 5.7e and f). The shell thickness was measured 

to be around 50 nm from the inset of Figure 5.7f. The inner diameter of SHCS900, 

around 630 nm, is smaller than that of the original silica spheres (650 nm), 

probably due to the shrinkage of silica spheres at high temperatures. Additionally, 

increasing CVD temperature also gave rise to the speed of carbon depositing on 

silica spheres, evolving into larger carbon patches. 

Figure 5.8 shows the images of the SHCSs prepared under different conditions. 

Compared with the SHCS900 sample (Figure 5.7e), the SHCSs prepared at 1000 

oC for 4 h (Figure 5.8a) exhibit a smother surface, an external diameter of around 

740 nm, a thicker shell of about 70 nm, and a smaller inner diameter of around 600 

nm. This indicates that a higher CVD facilitates the formation of a smoother 

surface, accelerate the carbon deposition rate, and increase the extent of silica 

shrinkage. When smaller silica spheres (460 nm) were employed as templates, the 

morphology of HCSs (Figure 5.8b) synthesized under the same conditions was 

dramatically changed, probably due to the size effect of the silica template on the 

carbon patches, the building blocks for the formation of hollow structures. 
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Consequently, larger carbon patches caused a rougher surface and non-spherical 

morphology of HCSs in our work. The size effect was further confirmed by 

employing larger silica spheres (around 1600 nm) as templates, as seen in Figure 

5.8c. We can see that the surface of SHCSs prepared at 1000 oC for 4 h (named as 

SHCS1000) is smoother. SHCS1000 has an external diameter of 1720 nm and a 

shell of 120 nm. Interestingly, when the CVD time was shortened to 1 h using the 

same silica spheres (1600 nm), a deformed carbon hollow shell was obtained with 

a shell thickness of around 30 nm (Figure 5.8d).  

Figure 5.8 SEM and TEM image of SHCSs prepared under CVD temperature of 
1000 oC: (a) SHCSs prepared with 650-nm silica sphere template, CVD 3 h; (b) 
SHCSs prepared with 460-nm silica sphere, CVD 3 h; (c) SHCSs prepared with 
1600-nm silica sphere template, CVD 4 h (named SHCS1000); (d) deformed 
SHCSs prepared with 1600-nm silica spheres, CVD 1 h. 
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To the best of our knowledge, this is the first time to achieve the deformed 

graphitizable HCSs. Hollow silica spheres (Chen et al., 2006; Zoldesi et al., 2006), 

hollow polymer spheres (Yu et al., 2005), and nongraphitizable HCSs (Arnal et al., 

2006) with similar deformable hollow structures have been synthesized so far. The 

deformable property of these structures are owed to the template deformation (Chen 

et al., 2006), or a high ratio of hollow sphere diameter over shell thickness (Zoldesi 

et al., 2006) or plastic property of materials (Yu et al., 2005). Probably in our case, 

the graphitizable thin carbon shells possess some extent of flexibility due to the 

formation of defects in the graphitic network for strain relief and mechanical 

relaxation after drying. 

 

N-doped hollow carbon spheres (NHCSs) 

 By using acetonitrile as the precursor of carbon CVD, we also prepared NHCSs 

at 1000 oC (see Figure 5.9). With 730-nm silica spheres as template, monodisperse 

NHCSs with an external diameter of around 810 nm and a shell thickness of about 

60 nm were obtained (Figure 5.9a). With 1600-nm silica spheres as templates, 

NHCSs (named as NHCS1000) with an external diameter of around 1760 nm and a 

shell thickness of around 120 nm were achieved (Figure 5.9b). Moreover, the 

smoother surface morphology of NHCS1000 further demonstrates that the lower 

curvature of the silica sphere surface leads to smoother carbon shell surface. The 

EDX spectrum of sample NHCS1000 (Figure 5.9c) shows that NHCS1000 is 

composed of 80.7 wt % C, 12.6 wt % O, 6.6 wt % N, and 0.1wt % Si, confirming the 
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presence of nitrogen element and the removal of the silica spheres. The XPS 

spectrum of the sample depicted in Figure 5.9d also shows the presence of C (284.0 

eV), O (532.0 eV), N (398.0 eV), and minor Si (99.5 eV). The mass percentages of 

the four elements were calculated to be 84.4 wt %, 9.5 wt %, 5.6 wt %, and 0.5 wt %, 

respectively, fairly consistent with the EDX result. The N1s spectrum (inset, Figure 

5.9d) can be fitted into two peaks labeled with 1 with a binding energy (BE) of 399.4 

eV and 2 with a BE of 400.8 eV, corresponding to pyridine-type N atoms existing at 

the edge of the grapheme sheet, or quaternary N atoms incorporated in the matrix of 

the graphene sheets (Xia and Mokaya, 2005a), respectively. In general, C1s spectrum 

characterized by a large peak at 284.5 eV is attributed to sp2 carbon atoms and wider 

peak normally suggests less degree of graphitization (Yang et al., 2005b). It was 

found that the full width at half maximum (FWHM) of the C1s XPS spectrum of 

sample NHCS1000 was larger than that of sample SHCS1000, indicating a higher 

crystallinity of the former. 
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Figure 5.9 (a) Images of SEM and TEM (inset) of NHCSs (730 nm, 1000 oC for 3 

h); (b) Images of SEM and TEM (inset) of NHCSs (1600 nm, 1000 oC for 4 h, 
designed as NHCS1000). (c) EDX and (d) XPS spectrum of NHCS1000. 

Figure 5.10 presents the high-resolution TEM images of samples SHCS1000 and 

NHCS1000, together with their XRD patterns. It can be seen that graphene sheets of 

different sizes are arranged parallel to the carbon shell surface, indicating the 

graphitizable nature of the HCSs. However, the discrete and curved features of the 

graphene sheets indicate a low crystallinity. In addition, SHCS1000 seems to have a 

shorter graphene sheets and a larger distance between graphene sheets than 

NHCS1000, implying its lower crystallinity. The XRD patterns (Figure 5.10c) 

shows the presence of (002), (101), and (004) reflections, indicating the graphitic 
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nature of the carbon materials. Compared with SHCS900, SHCS1000 has a smaller 

d002 value and a larger crystallite size Lc, suggesting that a higher CVD temperature 

promotes the formation of a higher graphitic carbon structure. 

 

 
         (a) top and (b) bottom                         (c) 
Figure 5.10 TEM images of the carbon shell fringe lattice: (a) SHCS1000 and (b) 
NHCS1000, together with (c) XRD patterns: (A) NHCS1000, (B) SHCS1000, (C) 

SHCS900. 

Double shelled hollow carbon spheres (DHCSs) 

 DHCSs were prepared using 1600-nm silica spheres as templates, as shown in 

Figure 5.11.  The external diameter of the DHCSs was measured to be around 1750 

nm. The double shell structure can be clearly observed from the broken area of the 

shells. The TEM image (Figure 5.11b) further confirmed the double shell structure, 

through which the thicknesses of the outer and inner shells were estimated to be 

about 35 and 55 nm, respectively. The distance between the two shells was 

measured to be around 70 nm. The difference between the thicknesses of the two 
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shells might be due to the different surface chemistries of the original silica spheres 

and the silica layer formed by hydrolysis of SiCl4 during the silica CVD (Miguez et 

al., 2002).  

               

Figure 5.11 SEM (a) and TEM (b) images of DHCSs. 
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Hollow silica spheres 

 By using SHCS1000 as template we synthesized hollow silica spheres, as 

illustrated in Figure 5.12. The average diameter of the silica spheres was measured 

to be 1520 nm (Figure 5.12a), less than that of template SHCS1000 (1720 nm), 

probably due to the shrinkage during calcination at 700 oC for 4 h. From the TEM 

image, it can be observed that the hollow structure has a shell thickness of 150 nm. 

In the silica CVD process, water vapor and SiCl4 vapor reacted to form silica 

depositing on the surface of template SHCS1000 (Miguez et al., 2002). 

Subsequently, removal of carbon yielded the hollow silica spheres. The thickness of 

the silica layer can be tuned by controlling the deposition time. 

 

Figure 5.12 (a) SEM and TEM (inset) images of hollow silica spheres 
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5.3 Summary 

SiO2/TiO2 core/shell structure and SiO2/TiO2-Pt core/shell structures with Pt 

nanoparticles well dispersed in the TiO2 shell were syntheiszed and characterized 

with SEM, XRD and XPS. 

The preparation of graphitizable hollow carbon spheres (HCSs) with a single 

shell, deformed shell, double shell, and N-doped shell were also demonstrated by 

using silica spheres as templates via chemical vapor deposition (CVD) of benzene 

or acetonitrile. The shells of carbon materials was found to be assembled from 

carbon patches (polycyclic aromatic hydrocarbon). The structure and thickness of 

the hollow carbon shells depended on the experimental conditions including silica 

sphere diameter, CVD temperature and duration. The syntheis of deformable 

graphitizable HCSs were first achieved. It was found that higher CVD temperature 

resulted in higher graphitic nature of HCSs and the N-doped HCSs is more 

crystallized than undoped HCSs under same CVD conditions. Monodisperse 

hollow silica spheres was also synthesized using HCSs as templates. 
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Chapter 6 

Fabrication of Crack-free Colloidal Crystals 

6.1 Introduction 

 Since Yabnolovitch (1987) and John (1987) independently proposed the concept 

of photonic crystals (PhCs) or photonic bandgap (PBG) materials in 1987, this family 

of optical materials has attracted a great deal of research interest because PhCs can be 

used to manipulate photons, offering a platform for future photonic and optoelectronic 

integrated circuits. Self-assembly of colloidal microspheres is an inexpensive 

approach to the fabrication of three-dimensional (3D) PhCs (Xia, 2001). While 

self-assembly of colloidal microspheres does not produce PhCs with a complete PBG, 

it yields colloidal crystals (CCs), which are excellent template for further processing 

to fabricate materials with a complete PBG (Busch and John, 1998; Blanco et al., 

2000; Vlasov et al., 2001). Various methods of self-assembly have been developed to 

produce CCs, including gravitational sedimentation (Zhu et al., 1997; Miguez et al., 

1998), vertical deposition (VD) (Jiang et al., 1999), horizontal deposition (Yan et al., 

2005), electrophoretic deposition (Holgado et al., 1999), spin-coating (Jiang and 

McFarland, 2004; Mihi et al., 2006), confined cell method (Park et al., 1999), 

Langmuir-Blodgett technique (Reculusa and Ravaine, 2003) and floating 

self-assembly (Im and Park, 2002). These methods afford CCs in large domains with 

a desired thickness. 
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 However, the resultant colloidal crystals fabricated using the above-mentioned 

self-assembly methods often contain unwanted defects, such as cracks, stacking faults, 

and dislocations. It has been a great challenge to experimentally avoid the formation 

of such intrinsic defects. Cracks occurring vertically with regard to a substrate, 

typically divide the colloidal crystal films into areas of several tens of micrometers, 

creating a major obstacle to the application of CCs as template. It has been observed 

that the formation of cracks is mainly caused by the decrease in the distance between 

two adjacent spheres due to the tensile stresses during the drying step (Jiang et al., 

1999; Wong et al., 2003; Tirumkudulu and Russel, 2004). Although optimization of 

the conditions of self-assembly of colloidal spheres has been carried out to minimize 

the formation of cracks (Griesebock et al., 2002; Wong et al., 2003; Chabanov et al., 

2004; McLachlan et al., 2004; Li et al., 2005; Chung et al., 2006), only very recently 

Jin and co-workers (Jin et al., 2005) reported a successful fabrication of crack-free 

CCs. In this method, a template with periodic pillars on a silicon substrate is used to 

direct the growth of CCs in a VD process. By scrupulous control over the 

experimental parameters, crack-free (100)-oriented CC films can be obtained. Wong 

et al. (2003) hypothesized that adding tetraethyl orthosilicate (TEOS) or tetramethyl 

orthosilicate to an alcoholic colloidal suspension of silica spheres may minimize the 

formation of cracks. However, no experimental results were presented to support this 

hypothesis. 
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6.2 The Fabrication of Crack-free Colloidal Crystals 

 In this thesis work, a method on the basis of the VD method was designed and 

demonstrated for the fabrication of crack-free CCs. How the method works is 

schematically illustrated in Figure 6.1. A given amount of a silica precursor solution 

containing TEOS, hydrochloric acid, and ethanol is added to an alcoholic colloidal 

suspension of silica spheres. The hydrolysis of TEOS produces coarse silica species, 

which fills the spaces between the silica spheres. The importance of the silica species 

is to counteract the shrinkage of the CCs during drying. By adjusting the amount of 

the silica precursor solution, crack-free colloidal films can be obtained. The films thus 

fabricated are composed of non-close packed silica spheres with the voids being filled 

with coarse silica. Interestingly, the silica species in the interstices can be easily 

etched away by HF vapor, (Marczewski and Goedel, 2005) leaving behind the silica 

spheres forming a crack-free CC film. Additionally, if an excessive amount of the 

silica precursor solution is used in the VD process of producing silica sphere bilayer, 

the resultant CC films curl and peel off from the substrate, resulting in the formation 

of ordered nanobowl arrays (Xu et al., 2004) on the substrate.   

 
Figure 6.1 A scheme illustrating the steps of fabricating crack-free colloidal crystal 

films. 
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 It was found that when pure TEOS was added to a silica sphere suspension in the 

VD process, little effect on the formation of cracks was observed. When 0, 200, 420, 

and 500 μL of the silica precursor solution containing TEOS, ethanol and HCl were 

respectively added to 15 mL of 1.7 wt% 277nm silica sphere suspension in the VD 

process, samples denoted as VD-1, VD-2, VD-3, and VD-4 were obtained, and their 

FESEM images are shown in Figure 6.1. It can be seen that the domain sizes of the 

CC films became larger and larger from samples VD-1 (Figure 6.2b) to VD-2 (Figure 

6.2a), and sample VD-3 is a crack-free CC film (Figure 6.2c). The existence of HCl 

was essential for the fabrication of crack-free CC films because it catalyzed the 

hydrolysis of TEOS. 

 The cracks seen from sample VD-1, which was prepared in the absence of the 

silica precursor solution, arose from the decrease of the distance between the centers 

of the adjacent spheres in the CC film during drying, caused by shrinkage of the 

spheres and the evaporation of solvent (Jin et al., 2005). Because the spheres of the 

bottom layer were attached to the substrate, the trend of contraction of the film during 

drying was resisted by the substrate. Thus a tensile stress was produced and became 

stronger and stronger until it was released by cracking (Tirumkudulu and Russel, 

2004). When some silica precursor solution was added into the colloidal suspension, 

the concentration of the silica species and HCl in the meniscus region was increasing 

with the evaporation of the solvent. The silica species filled in the voids between 

spheres and occupied the place of the solvent layers. Consequently, the force bringing 

silica spheres to become closer was balanced by the deposited silica layer. A 
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crack-free CC film can be obtained when the concentration of silica precursor solution 

is appropriate. From the high magnification image of the CC film of sample VD-3 

(Figure 6.2e) it can be seen that the voids between the spheres are completely filled 

with silica. It was measured that the average distances between the centers of the 

adjacent spheres were 283 and 289 nm respectively in the CC films of samples VD-2 

and VD-3, both larger than the diameter of the silica spheres. This demonstrates that 

the introduction of the silica precursor solution increased the final distance between 

the adjacent silica spheres. 

 

  

   

(a) (b) 

(c) (d) 
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Figure 6.2 Top views of colloidal crystal films VD-1 (a), VD-2 (b), VD-3 (c and e), 
VD-4 (d), and VD-5 (f) (the inset image shows the magnified view of a CC roll). (g) 
is a SEM image of an exposed nanobowl array of sample VD-5 (the inset image is a 
magnified view, the scale bar in the inset is 1 μm). 

  When an excessive amount of the silica precursor solution was added to the 

colloid, the silica produced from hydrolysis not only filled up the voids of the silica 

beads, but also deposited an additional silica layer on the top of the CC film. This 

silica layer was dried ahead of the CC of silica spheres, causing the reappearance of 

cracks due to the contraction of the additional silica layer during drying. It can be 

(f) 

(g) 

(e) 
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clearly observed from Figure 6.2d that the first layer of silica beads near the cracks 

was dragged apart from the bottom layer by the additional top silica layer. When a 

0.56 wt% silica sphere colloid with addition of 200μL of the silica precursor solution 

was used in our VD experiment (the sample thus obtained is denoted as VD-5), the 

resultant bilayer of silica spheres curled together with the top silica layer. Thus the 

whole CC film peeled off partially from the substrate (Figure 6.2f), forming a roll-like 

structure (the inset image of Figure 6.2f). A nanobowl array was left on the areas 

where the CC film peeled off from the substrate. It should be noted here that this 

observation can lead to a one-step method of fabrication of nanobowl arrays in large 

domains (Figure 6.2g). For the nanobowl arrays, some silica spheres that had not been 

pulled together by the curled CC film are still seen as indicated by the arrows. 

 From the cross-section view of the CC film of sample VD-3 (Figure 6.3a), it can 

be seen that a coarse silica layer occupies the voids between the silica spheres. Thus, 

when the CC film was exposed to HF acid, the interstice silica could be etched away 

rapidly while the silica spheres were not significantly affected because HF acid can 

diffuse much more easily into the coarse silica layer than into the dense silica spheres. 

When the film was exposed to a dilute HF solution, however, the etched film 

presented serious cracks. In this work, HF vapor was used to avoid the introduction of 

cracks during the etching process. Figure 6.3c is a top view of the CC film of sample 

VD-3 after being exposed to HF vapor for 85 s. From the high magnification view it 

can be observed that all interstice silica was removed while the average diameter of 

the silica spheres was reduced to 274 nm (the silica spheres deviated a little from their 
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position because of exposure to the electron beam of SEM). In the same layer the 

silica spheres are no longer close packed, but a non-close-packed array. However, the 

adjacent layers are still closely packed. Point defects arising from smaller particles 

and doublets are indicated by the arrows. The domain areas are normally larger than 

1mm2 and most of them are divided because of stack faults rather than cracks. Images 

of different magnifications of the etched crack-free CC film are shown in Figures 3d 

and e. 

  

 

(a) (b) 

(c) 
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Figure 6.3. (a) and (b) are the FESEM cross section views of the sample VD-3 before 

and after HF vapor etching, respectively. (c) are the top view of the sample VD-3 
after HF etching with an inset image of higher magnification (the scale bar is 100nm 
in the inset image). (d) and (e) are the top view of VD-3 after HF etching in smaller 

magnification. 

(d) 

(e) 
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 Figure 6.4 shows the optical properties of the films obtained from the VD method 

and that of the CC film of sample VD-3 after being exposed to HF vapor. It can be 

seen that with the increase of the amount of the silica precursor solution added to the 

self-assembly system, the diffraction peak due to the pseudo-gap became lower and 

lower while its position underwent a red shift because of the increased infiltration of 

silica species into the voids of the silica spheres, leading to the decrease of the 

refractive index contrast and the increase of effective refractive index. For sample 

VD-3, the peak almost became indistinguishable from the side fringes owning to the 

finite thickness of the film because its voids are fully filled with silica. However, a 

new sharp peak appeared after HF vapor etching, indicating that the interstice silica 

was successfully removed and the ordered structure of the self-assembled silica 

spheres was maintained. Obviously, the reflectance peaks underwent a blue-shift in 

comparison with that of sample VD-1 because of the reduction of the diameter of the 

silica spheres and the increase of the distance between the centers of the silica spheres.   

 It was experimentally observed that the amount of the silica precursor solution 

needed to fabricate crack-free CC film must be increased with the increase in the 

concentration of colloidal silica spheres. Figure 6.5 shows the relationship between 

the precursor solution volume, colloid concentration and the number of layers of CCs. 

With the increase of colloid concentration, the number of layers of the CC deposited 

on the substrate increases. Thus more silica is needed to fill up the voids between 

silica spheres and the amount of precursor solution increases. 
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Figure 6.4. The reflectance spectra of the samples obtained from the VD experiments.  

  

Figure 6.5 The relationship between the precursor solution volume, the colloid 
concentration and the number of the layers of the colloidal crystals. 
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6.3 Summary 

 A novel template-free approach to the fabrication of crack-free colloidal crystals 

was proposed in this thesis work. During this approach, a silica precursor solution is 

added to the colloid containing silica spheres. When the silica spheres self-assemble 

on a silicon substrate, additional silica is produced from hydrolysis of the precursor 

solution, filling up the voids between the silica spheres and forming a crack-free film. 

Interestingly, the silica in the interstices can be easily etched away by the vapor of 

hydrofluoric acid, leaving a crack-free non-close-packed colloidal crystal behind. The 

amount of the silica precursor solution needed to fabricate crack-free film increases 

with increasing number of the layers of colloidal crystals. Additionally, when 

excessive silica precursor solution is added in the VD process of producing silica 

sphere bilayer, the colloidal crystal film peels off partially from the substrate and 

leaves behind a large-area nano-bowl array. 
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Chapter 7 

Fabrication of Free-Standing Non-Close-Packed Opal Films 

 
7.1 Introduction 

 Self-assembly of colloidal microspheres (Xia, 2001) has been considered as a 

promising approach to the fabrication of photonic crystals (PhCs) (John, 1987; 

Yablonovitch, 1987). This process, however, usually produces a close-packed 

face-centered cubic (fcc) arrangement of the dielectric spheres, which itself does not 

exhibit a complete photonic band gap (PBG) (Zhang and Satpathy, 1990; Sozuer et al., 

1992). While such self-assembled artificial opals (Xia et al., 2000; Norris and Vlasov, 

2001; Lopez, 2003; Arsenault et al., 2004) can be employed as templates to fabricate 

PhCs with a complete PBG (Blanco et al., 2000; Vlasov et al., 2001), it has been 

shown that a structure templated by a non-close-packed opal (NCO) may have a wider 

PBG than that templated by a close-packed one (Doosje et al., 2000; Yethiraj and van 

Blaaderen, 2003; Chen et al., 2005). 

 Up to now, non-close-packed (NCP) architectures have been obtained by various 

methods. Yethiraj and van Blaaderen (2003) have achieved a NCP arrangement of 

polymer spheres in a stabilized colloidal suspension. NCP colloidal crystals have been 

obtained by means of binary layer-by-layer growth (Velikov et al., 2002) and 

colloidal epitaxy methods (Hoogenboom et al., 2003). NCP arrays of colloidal spheres 

have been immobilized in polymer matrix (Jiang and McFarland, 2004; Nakamura 
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and Ishii, 2005) and hydrogel (Iwayama et al., 2003; Lawrence et al., 2005). 

Nanorobotic manipulation has been employed by García-Santamaría et al. (2002) to 

fabricate a NCP arrangement of spheres of the diamond architecture. Ozin and 

co-workers (Miguez et al., 2003) have demonstrated an approach to the fabrication of 

a NCP inverse opal (NCIO) by backfilling a close-packed inverse opal, which was 

further improved by Summers and co-workers (King et al., 2006). Fenollosa and 

Meseguer (2003; 2005) have described the fabrication of NCOs consisting of silica 

spheres connected by silica cylinders by chemically etching strongly annealed silica 

opals. The structure has subsequently been employed to fabricate two-dimensional 

structures of nanoshells interconnected by nanotubes (Meseguer and Fenollosa, 2005) 

Cho et al. (2005) demonstrated the fabrication of polystyrene (PS) NCOs through 

etching close-packed PS opals with hyperthermal neutral beam. 

 The work described in this chapter is regarding an approach to the fabrication of 

free-standing NCO films, which consist of an fcc lattice of PS spheres connected by 

PS cylinders with uniform structures in large domains by using silica-backfilled 

inverse opals as templates. The optical properties of the NCO films can be tuned by 

mechanical stretching (Iwayama et al., 2003; Lawrence et al., 2005; Nakamura and 

Ishii, 2005; Arsenault et al., 2006; Fudouzi and Sawada, 2006). The fabrication 

strategy is illustrated in Figure 7.1. First, a close-packed PS artificial opal was 

fabricated on a silicon substrate by using an inward-growing self-assembly technique 

(Yan et al., 2005). Second, after annealing, the synthetic opal was then infiltrated with 

a silica precursor by spin-coating (Matsuura et al., 2005), followed by drying at room 
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temperature to allow the formation of a silica-infiltrated opal. Third, the PS beads 

were dissolved away in toluene to obtain an inverse opal. Fourth, by depositing a 

silica layer on the inner surface of the inverse opal using the chemical vapor 

deposition (CVD) method as described by Ozin and co-workers (Miguez et al., 2002), 

the size of the air spheres in the inverse opal was reduced. Thus, a structure consisting 

of NCP air spheres connected by air tubes, namely a NCIO, was obtained. Fifth, 

styrene monomer was infiltrated into the voids of the structure, followed by 

polymerization to allow the formation of PS in the voids of the NCIO (Jiang et al., 

1999). Finally, the silica framework was removed with HF to leave behind a 

free-standing NCO film with a fcc lattice of PS spheres connected by PS cylinders, 

which separated from the silicon substrate automatically after complete removal of 

silica.   

 
Figure 7.1 A scheme illustrating the steps of fabricating a NCO: (a) a PS opal 
fabricated by using an inward-growing self-assembly technique (Yan et al., 2005); (b) 
infiltration of the opal with silica by using a spin-coating method (Matsuura et al., 
2005); (c) removal of the PS beads by toluene extraction; (d) CVD deposition of a 
silica layer on the inner surface of the inverse opal (Miguez et al., 2002); (e) 
infiltration of styrene monomer followed by polymerization (Jiang et al., 1999); (f) 
removal of silica by HF etching to obtain a free-standing NCO film. 
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7.2 The Fabrication of Non-Close Packed Inverse Opal 

 In this work, close-packed opals fabricated from 569-nm and 687-nm PS spheres 

were annealed at 110 °C for 20 and 30 min, respectively. The annealing step not only 

allowed the formation of connections between the PS spheres, which subsequently 

transformed into air pores connecting the air spheres in the inverse opals, but also 

improved the stability of the opal structures in the subsequent spin-coating process. It 

was also found that the spin-coating method is an effective method to control the 

morphology of the infiltrated silica. During the infiltration process, the inner surface 

of the PS opal was uniformly coated by a layer of silica while most of the protruding 

parts of the PS beads in the top layer were uncoated as suggested by the SEM image 

of the inverse opal structure (see Figure 7.2). This was probably because the silica 

precursor was attracted in the small voids among the PS beads driven by capillary 

forces. Such infiltrated silica morphology facilitated the subsequent processing steps, 

including removal of the PS beads, deposition of silica, and infiltration of styrene 

monomer. The silica was grown on the surface of the PS beads in a layer-by-layer 

manner during the infiltration process. In this work, three circles of infiltration were 

performed to enhance the infiltration.  

After removal of the PS beads using the toluene extraction method, silica inverse 

opals, with air spheres interpenetrating each other, were formed. The diameters of the 

connections between the air spheres were measured to be 251 and 286 nm 

respectively in the inverse opals templated by the opals of 569-nm and 687-nm PS 

spheres. By depositing silica on the inner surfaces of the inverse opals, the thickness 
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of the silica wall was increased at the expense of the diameter of the air spheres and 

the connection size. In the mean time, air tubes connecting the air spheres emerged. 

The length of the tubes doubled the thickness of the deposited silica layer 

approximately. The interpenetrating parts of the air spheres were reduced until the air 

spheres became tangent with each other. When further deposition of silica was 

performed, the air spheres became apart from each other to form a NCP arrangement 

(Miguez et al., 2003). Thus a NCP arrangement of air spheres connected by air tubes 

was obtained. By changing the deposited silica layer thickness, the size of the air 

spheres and the length of the air tubes can be controlled. 

 
Figure 7.2 SEM top view of the inverse silica inverse opal replicated from a 

close-packed opal of 569-nm PS spheres. 
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 Table 7.1 shows the samples involved in this work and their feature sizes. Among 

them the first three NCIO samples, namely NCIO-1, NCIO-2, and NCIO-3 were 

fabricated by depositing 28-nm, 59-nm, and 88-nm silica layer, respectively, on the 

surfaces of the silica inverse opals fabricated from close-packed opals of 569-nm PS 

spheres. After infiltration of styrene monomer, followed by polymerization and 

removal of the silica frameworks, three NCOs, namely, NCO-1, NCO-2, and NCO-3 

were obtained from NCIO-1, NCIO-2, and NCIO-3, respectively. The other three 

NCOs, i.e., NCO-4, NCO-5, and NCO-6 were similarly fabricated from opals of 

687-nm PS spheres.  

Table 7.1 Feature sizes of the samples involved as obtained from SEM images 

NCIO 

Thickness 
of the 

backfilled 
silica layer 

(nm) 

Connection 
size of the 

NCIO 
(nm) 

Subsequent 
NCO 

Diameter 
of PS 

spheres in 
NCO 
(nm) 

Length of 
PS 

cylinders in 
NCO 
(nm) 

Diameter 
of PS 

cylinders in 
NCO (nm)

NCIO-1 28 204 NCO-1 507 49 167 

NCIO-2 59 126 NCO-2 438 94 88 

NCIO-3 88 61 NCO-3 382 161 49 

   NCO-4 630 20 216 

   NCO-5 586 82 167 

   NCO-6 550 130 136 

 



Chapter 7 Fabrication of Free-Standing Non-Close-Packed Opal Films 

121 

    Figure 7.3 shows the scanning electron microscope (SEM) images of samples 

NCIO-1, NCIO-2, and NCIO-3. The NCP air spheres separated by silica walls can be 

clearly seen. From samples NCIO-1 to NCIO-3, the silica wall thickness increased 

while the size of the air spheres and connections between the air spheres were 

decreased with the increase of the thickness of the deposited silica layer. The 

connection sizes between two adjacent air spheres were measured according to the 

SEM images and are reported in Table 1. It is seen that the decrease in the connection 

size is approximately double the thickness of the deposited silica, suggesting a 

uniform deposition of a silica layer on the surfaces of the air spheres and the air tubes 

connecting them. 

 Figure 7.4 shows the reflectance spectra of the inverse opal fabricated from 

569-nm PS spheres and the subsequent NCIO samples. It can be seen that as the 

thickness of the deposited silica layer was increased, both the peaks in low- and 

high-energy regions underwent a red shift because of the increase of the effective 

refractive index of the films. The Fabry-Perot ripples around the main reflectance 

peaks are due to the interference of the light waves reflected at the top and bottom of 

the films with a finite thickness (Birner et al., 2001). 
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Figure 7.3 SEM images of NCIOs fabricated from close-packed opals of 569-nm PS 
spheres: (a, b) SEM images of NCIO-1 of different magnifications; (c, d) SEM 
images of NCIO-2 of different magnifications; and (e, f) cross-section views of 

NCIO-3 of different magnifications. 
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Figure 7.4 Reflectance spectra of (a) the inverse silica opal fabricated from the 

close-packed opal of 569-nm PS spheres, (b) NCIO-1, (c) NCIO-2, and (d) NCIO-3. 

 

7.3 Fabrication of Non-Close Packed Opal 

 After infiltration of styrene monomer and polymerization followed by removal of 

the silica framework, free-standing NCO films replicating the voids of the NCIOs 

were obtained in large area (see Figure 7.5). The SEM images of samples NCO-1, 

NCO-2, and NCO-3 are shown in Figure 7.6. Uniform structures consisting of NCP 

PS spheres connected by PS cylinders can be seen for all samples. The shining color 

of the films and the SEM images in a smaller magnification (see Figure 7.5) showed 

that the structures are uniform in large domains. Because there was always some 

superfluous styrene accumulating between the surface of the NCIOs and the glass 
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slide covering them during the infiltration of the styrene monomer, a solid PS layer 

(from 20 to 30 μm) formed on the surface of the NCO, which enhanced the strength 

of the films. 

  
a                   b 

Figure 7.5 (a, b) A photograph (taken with a Kodak DX7590) of NCPO-2 after being 
cut for characterization (the glass substrate was 2.2 × 2.2 cm2). 

 From the data reported in Table 1, it can be concluded that the sizes of the PS 

spheres and cylinders can be precisely controlled by changing the thickness of the 

deposited silica layer. The decrease in the sphere size and the increase of the cylinder 

length also approximately doubled the thickness of the deposited silica layer. It is also 

seen that the sum of the sphere diameter and the cylinder length is smaller than the 

diameter of the original PS spheres. This is because the original PS spheres 

interpenetrated each other and contracted slightly during the annealing. Additionally, 

the diameters of the PS cylinders are smaller than that of the air tubes in the 

corresponding NCIOs due to the volume shrinkage of styrene upon polymerization 

(Jiang et al., 1999). The ratio of the cylinder length over the sphere size increases with 

the increase in the thickness of the deposited silica layer. In this work 687-nm PS 

beads were also used to fabricate close-packed opals as the starting templates. The 
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inverse opals obtained from the 687-nm PS opals were backfilled with 18-, 49-, 

70-nm silica layer and subsequent fabrications produced another three NCO structures, 

namely, NCO-4, NCO-5, and NCO-6 having 630-nm, 586-nm, and 550-nm PS 

spheres connected by 20-nm, 82-nm, and 130-nm cylinders respectively. The SEM 

image of NCO-4 is shown in Figure 7.6f. 

 

Figure 7.6 SEM images of NCO-1, NCO-2 and NCO-4: (a, b) top views of NCO-1 of  
different magnifications; (c) cross section view of NCO-1; (d-e) top view and 
perspective view of NCO-2, respectively; (f) cross section views of NCO-4. 
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   The transmission spectra of the NCO samples are shown in Figure 7.7. It can be 

seen that with the decrease of the PS sphere size and the increase of the cylinder size a 

clear blue shift of the main transmittance valley occurred for both groups of NCO 

structures fabricated from 569-nm and 687-nm PS spheres. Fabry-Perot ripples are not 

obviously seen from most of the NCO samples, which is probably because of the 

influence of the solid PS layer and the difficulty of keeping the free-standing films 

highly flat during measuring the spectra. 

 
Figure 7.7 The transmission spectra of (a-c) NCO-1, NCO-2, and NCO-3, 

respectively; and (d-f) NCO-4, NCO-5, and NCO-6, respectively. 
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7.4 Tuning the Optical Properties of the Colloidal Crystals 

 Since the NCOs were obtained as free-standing films, the microstructures and the 

optical properties of the NCOs can be tuned simply by stretching the films. Figure 7.8 

compares the transmission spectra of sample NCO-5 before and after stretching. It can 

be observed that the main transmittance valley moved toward the lower wavelength 

region upon stretching, most probably because of the elongation of the PS cylinders 

and the distortion of the PS spheres, resulting in an decrease in the dimensions of the 

PS spheres and cylinders along the direction vertical to the film surface, thus leading 

to the observed blue shift of the main transmittance valley. 

 
Figure 7.8 The transmission spectra of NCO-5 that was (a) not stretched, (b) stretched 

to 105% of its initial length, and (c) stretched to 110% of its initial length. 
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 During annealing of the opals, the largest diameter of the connection area 

between two adjacent spheres that can be achieved is less than the radius of the sphere 

before all the pores are closed up (see Figure 7.9). Thus, in this method the largest 

thickness of silica layer that can be deposited on the silica inverse opal is less than 

half of the radius of the spheres forming the opal. This is similar to the approach to 

NCOs by etching strongly annealed silica opals (Fenollosa and Meseguer, 2003; Cho 

et al., 2005; Meseguer and Fenollosa, 2005), that the largest silica thickness that can 

be etched away is less than half of the radius of the initial silica beads before the 

structure collapses. Thus for both approaches, the smallest radius of the spheres in the 

NCO structures is larger than half of the radius of the initial spheres. Correspondingly, 

the largest cylinder length in the NCO structures that can be achieved is less than the 

difference between the length of O1O2 (the distance between the centers of two 

adjacent spheres, see Figure 7.9) and the radius of the initial spheres, and the ratio of 

the cylinder length over the sphere diameter in the NCO structure is less than 0.732. 

However, in our approach, the length of the PS cylinders can be adjusted by 

mechanical stretching. If elastomers, such as poly (dimethylsiloxane) (PDMS) 

(Fudouzi and Sawada, 2006), instead of PS, are used, elastic NCO structures can be 

realized. Thus, the ratio of the cylinder size to the sphere size can be highly tuned by 

mechanical forces, enabling the fabrication of various NCP structures. 
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Figure 7.9. A scheme showing the largest possible connection size that can be 

achieved before the pore among three adjacent spheres is closed up. 

7.5 Summary 

 In summary, this chapter has demonstrated an approach to the fabrication of 

non-close-packed opal films consisting of PS spheres connected by PS cylinders in 

large domains, of which the optical properties can be tuned by mechanical stretching. 

The chemical vapor deposition technique works well for deposition of silica layers on 

the surface of a silica inverse opal, producing uniform non-close-packed inverse opal 

structures. Upon infiltration of the non-closed-packed inverse opal with a polymer 

monomer (say styrene as demonstrated in this work), followed by polymerization and 

subsequent removal of the silica framework, a free standing non-closed-packed opal 

film can be obtained. Importantly, the optical properties of the non-closed-packed 

opal film can be tuned by mechanical stretching. 
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Chapter 8 

The Fabrication of Binary Colloidal Crystals and Inverse 

Opals 

 
8.1 Introduction 

 Fabrication of binary colloidal crystal has attracted a lot of interest in both 

theoretical study (Bartlett et al., 1990; Bartlett et al., 1992; Larsen and Grier, 1997) and 

applications (Garcia-Santamaria et al., 2002) since the discovery of binary superlattice in 

Brazilian opal (Sanders and Murray, 1978). Various types of binary nanoparticle 

superlattice have been synthesized through deliberate control of the electrical charges on 

the nanoparticles (Shevchenko et al., 2006; Shevchenko et al., 2006). Binary CCs have 

also been fabricated by layer-by-layer growth strategy (Jiang et al., 2001; Velikov et al., 

2002; Wang and Mohwald, 2004), where monolayer of small spheres are deposited on 

the monolayer of large spheres. Co-deposition method was has been reported (Kitaev and 

Ozin, 2003; Cong and Cao, 2005) in the fabrication of binary CCs. However, in these 

reports, only surface structure was studied.  Recently, co-deposition of binary (Wang et 

al., 2008)  and trimodal (Wang et al., 2006) CCs and study of the inner structure were 

reported.  

 In this thesis work, binary CCs were fabricated and inverse CCs were prepared to 

determine the structure of the binary structure. Their optical properties were also 

investigated. Two different set of binary polystyrene (PS) spheres were employed. 
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Through the adjustment of the ratio of the number of the smaller spheres to the large 

spheres, the final structures of the binary CCs were successfully changed. The internal 

structures of the CCs were studied by imaging its cross-section and its inverse structures. 

The optical properties of the CCs and inverse CCs were studied with a UV-vis 

spectrometer. 

8.2 The Fabrication of Binary Colloidal Crystals 

 The samples fabricated are listed in Table 8.1. It was found that horizontal 

deposition is an effective method of producing binary colloidal crystals. Iridescent colors 

could be clearly seen across the film after complete drying. Figure 8.1 shows the SEM 

images of sample B1 and B2. As enlisted in Table 1, B1 and B2 have the S/L size ratio of 

0.154. The S/L particle number ratios are 4.1 and 8.1, respectively for B1 and B2. 

Table 8.1 The binary colloids and the fabricated colloidal crystals samples 
Large Particles Small Particles Sample 

Size VF Size VF 

Size ratio 

(S/L) 

Particle number 

ratio (S/L) 

B1 1000 nm 15.39% 154 nm 0.23% 0.154 4.1 

B2 1000 nm 13.19% 154 nm 0.39% 0.154 8.1 

B3 789 nm 8.59% 154 nm 0.16% 0.195 2.5 

B4 789 nm 7.88% 154 nm 0.23% 0.195 3.9 

 

 It can be observed that the addition of small spheres in the colloid did not change 

the ordered arrangement of the large spheres. The arrangement of the small large spheres 

is ordered in the 3 fold interstitial voids among the large spheres on the crystal top 
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surface in most of the areas. The increase of VF ratios of small and large spheres leads to 

the increased number of small spheres residing between the large spheres. The top layer 

structure of B1 shows that each large sphere is surrounded by 6 small particles, while B2 

shows that each large sphere is surrounded by 15 small spheres. Both numbers are 

significantly larger than the averaged S/L particle number ratios, namely 4.1 and 8.1. It 

suggests that the small particles may not uniformly distribute throughout the binary 

crystals. 

 

Figure 8.1 Top view SEM images of B1 (a, b) and B2 (c, d) 

 

Figure 8.2 shows the structure of the binary CCs fabricated from B3 and B4. The 

patterns on the surfaces of the CCs are also largely uniform. Due to the increased S/L size 

ratio, 0.195, less small particles can be fitted into the interstitial voids among the large 

a b

c d
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particles compared to B1 and B2. The top layer of B3 shows that most of the 3 fold voids 

are occupied by single small spheres while sporadically some voids accommodate 2 or 3 

small particles. Sample B4 presents a large area of LS6 binary crystal structure. 

Consistent with B1 and B2, this binary configuration is also greater than the averaged S/L 

particle number ratio, 3.9. To observe the distribution of the small spheres in the bulk of 

the CCs, the sample was broken into pieces and its cross-section view was taken by SEM. 

It was found that at the very bottom of the colloidal crystal, there is almost no presence of 

the small particles, and the distribution of the small spheres was not as uniform as on the 

top surface as shown in Figure 8.2b.  

 
Figure 8.2 SEM images of B3 and B4. a) and b) are the top view and cross-section view 

of B3 respectively. c) and d) are the top view of B4. 

a b

c d
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After annealing, infiltration of silica and subsequent removal of PS spheres, their 

inverse structures were obtained, as shown in Figure 8.3. Besides the large and small 

pores originated from the templating large and small latex particles, on the SEM we can 

also observe large and small windows in the porous structure. The large windows are the 

result of original contact areas between the large particles, while the small windows 

reveal the original contract points between the large and small spheres. Therefore, even 

the top view SEM images of the inverse opals can offer some insight of the internal 

architecture. Figure 8.3a, 3b, 3c show the top view of the inverse B2, B3, B4. The large 

and small windows on the images demonstrate that the original large spheres were 

packed in fcc form and they are not separated apart by the small spheres, however the 

small spheres were not packed in a highly ordered fashion inside the colloidal crystal. 

The cross-section view of the inverse B4 also confirms the uneven distribution of the 

small spheres in the bulk CCs. It appears that the distribution of small spheres have a 

slight gradient with an increasing concentration towards the upper layers. . 

From the above observation, a mechanism of the formation of the binary colloidal 

crystals is proposed as following: in the drying process of the colloidal suspension, the 

particles are equally dragged towards the edge of the substrate due to the higher 

evaporation rate at the 3 phase contact line and the consequent convective flow. The 

solvent evaporation first causes meniscus formed between the large spheres while the 

smaller ones are still immersed in the liquid existing as Brownian particles with a 

diffusion coefficient of kT/6πŋR (where k is the Boltzmann constant, T is the temperature, 

ŋ is the viscosity, and R is the particle radius). Thus the capillary force drives the ordered 

arrangement of the large spheres while the smaller spheres diffuse into the voids of the 
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larger ones. Also because of the evaporation over the suspension surface, there is a 

minute upwards flow, which may be the cause of the slight gradient of the small sphere 

concentration from the bottom to the top layers of the colloidal crystal. On the top surface, 

the small spheres were controlled by the capillary force as well as the confinement of the 

voids between the large spheres, which probably resulted in the uniform arrangement. 

However, in the bulk the free movement of the small spheres is limited by the 

confinement of the interstices of the large spheres, therefore, under the conditions 

investigated in this study, they cannot be arranged evenly in the bulk.  

  

 
Figure 8.3 SEM images of inverse binary CCs: a) B2, b) B3, c) and d) are the top view 

and cross-section view of the sample B4. 

a b

c d
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 The optical spectra of the samples were studied, as shown in Figure 8.4. The 

distinctive dips in the transmittance spectra confirm the ordered the structures of the 

binary opals and binary inverse opals. It was found that the main peak due to the pseudo-

bandgap shifted to larger wavelength with the increase of the VF ratio of the small 

spheres to the large spheres. This is mainly because that the increase of the small spheres 

numbers in the binary CCs leads to larger effective refractive index, which leads to the 

red-shift of the main peak. However, in their inverse structures, a blue-shift happened 

when the VF ratio of the small spheres to the large spheres. This is due to the inverse 

influence of the increasing number of small spheres, which leads to the decrease of the 

effective refractive index of the inverse binary CCs. 
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Figure 8.4 The spectra of the binary CCs and their inverse structures. 
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8.3 Summary 

 In this chapter the fabrication of binary colloidal crystal using a horizontal 

deposition method was demonstrated. Through the change of the volume fraction ratios 

of the small spheres to that of the large spheres, the structures of the binary colloidal 

crystals can be changed. It was found that the arrangement of the small spheres on the 

surface of the binary colloidal crystals can be ordered. However, in the bulk of the 

colloidal crystals the arrangement of the small spheres is not ordered because of the 

confinement effect of the large spheres. The optical spectra of the samples confirm the 

long-range order of the binary system, which originated from the large sphere packing.  

 Despite the less order of the small spheres in the binary crystal, the inverse 

structure possesses two sets of pores with defined sizes. Such a binary porous structure 

may find important applications in catalysis and separation. Equally importantly, the 

fabrication method presented in this study is simple and straightforward, with minimum 

equipment investment. 
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Chapter 9 

Engineering Planar Defect in Colloidal Photonic Crystals 

9.1 Introduction 

 Like the significance of doping in semiconductors, the introduction of 

well-defined defects into PCs is essential to harness their full potential in device 

application (Meade et al., 1991; Yablonovitch et al., 1991; Johnson and Joannopoulos, 

2002). Recently, great efforts have been contributed to the incorporation of various 

defects into PCs. Linear defects have been fabricated by multi-photon polymerization 

(Lee et al., 2002; Jun et al., 2005), direct electron beam writing techniques (Ferrand et 

al., 2004), micromachining (Tetreault et al., 2003) and lithography patterning (Vekris 

et al., 2005; Yan et al., 2005; Yan et al., 2005). In addition, point defects have been 

created by using the layer-by-layer lithographic method (Ogawa et al., 2004; Qi et al., 

2004), and direct electron beam writing (Ferrand et al., 2003; Ferrand et al., 2004). 

Very recently, we have demonstrated an approach by combining nanoimprinting 

lithography with self-assembly to incorporating point defects in PCs (Yan et al., 

2005). 

 Planar defects have been successfully introduced into opals and inverse opals. 

Langmuir-Blodgett technique and the vertical deposition method have been employed 

to insert a layer of beads of different sizes into an opal (Wostyn et al., 2003; Zhao et 

al., 2003). Transferring printing has been used to embed a polyelectrolyte multilayer 

into opals, forming a tunable planar defect (Fleischhaker et al., 2005; Fleischhaker et 
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al., 2005; Tetreault et al., 2005). Chemical vapor deposition (CVD) has also been used 

to create a defect layer in an inverse opal structure, which grew a solid silica layer 

onto the first multilayer of polystyrene (PS) opal infiltrated with silica before the 

growing of second multilayer of PS opal (Palacios-Lidon et al., 2004; Tetreault et al., 

2004). Then after infiltrating the second PS multilayer with silica and removing the 

PS spheres in the whole structure, an inverse opal embedded with a solid silica layer 

was achieved. 

 In this chapter a facile method of fabricating colloidal crystals and inverse opals 

with a planar defect is reported. Through this method opals with a planar defect can 

be fabricated in a short period of time (as short as 5 hours). Inverse opals with planar 

defects can be obtained by direct inversion of the opals with planar defects. Only one 

time of infiltration process is needed and high-cost techniques such as lithography and 

CVD are not involved. As illustrated in Figure 9.1, our method is to fabricate PS 

multilayer embedded with a monolayer of silica beads, followed by infiltration of 

silica, and finally removal of the PS beads by calcinations to obtain an inverse silica 

structure while the silica bead layer becoming a solid defect layer embedded in the 

inverse structure. The growth of the PS layers was carried out by using an inward 

growing self-assembly method (Yan et al., 2005), while the silica-bead monolayer 

was introduced by using spin coating (Burmeister et al., 1998; Hulteen et al., 1999). 

Then an inverse opal with a planar defect can be obtained merely by using colloidal 

self assembly and wet chemistry methods without involving high-cost techniques such 

as lithography and CVD. Microscopy study showed the high structural quality of 
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samples and optical spectra of the samples confirmed the existence of defect state. 

Different sizes of PS beads and silica beads were used in experiment, demonstrating 

the possibility of adjusting thickness of the defect layers and other parameters.  

 

 
Figure 9.1 A scheme showing the steps of fabricating a planar defect embedded in an 
opal and inverse opal: (1) Growth of the first PS multilayer on a glass substrate by 
using an inward-growing self-assembly method (Yan et al., 2005); (2) Spin coating of 
a monolayer of silica beads on the surface of the PS colloidal crystal; (3) Growth of 
the second PS multilayer on the surface of the silica beads; (4) Infiltration with silica; 
(5) Removal of the PS particles by calcination. 
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9.2 The Insertion of Planar Defect 

 It was observed that the annealing step was essential to ensure the structural 

stability for the subsequent treatments. An alcoholic silica colloidal suspension was 

used during the spin-coating process because the surface of the PS beads became 

hydrophobic after drying.  

 Figure 9.2 shows the FESEM images of a sample consisting 20 layers of 560-nm 

PS particles embedded with a 225-nm silica bead layer and its inverted structure. The 

quality of PS colloidal crystal of both multilayers can be observed here. From the 

high-magnification image (Figure 9.2b) it can be seen clearly that a single-layer silica 

beads were successfully introduced into the PS colloidal crystal. Because of the 

uniformity of the silica layer, the quality of the second PS multilayer is as good as that 

of the first multilayer grown on a flat glass substrate. The quality of the crystal can 

also be revealed by the optical transmission spectra of the sample shown in Figure 9.3 

(opal). The Fabry-Perot oscillations at both sides of main transmittance valley (mainly 

caused by the interference of light wave reflected by the top and bottom surfaces of 

the sample) indicate the uniformity of the sample thickness and similarity of long 

range crystal orientation (Wostyn et al., 2003). 
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Figure 9.2 SEM images of an opal with planar defect and its inverted structure: (a, b) 
20 layers of 560nm PS spheres embedded with a 225nm silica bead monolayer, low 
and high magnification; (c, d) the inverted opal sample, low and high magnification.  

   During the infiltration process the silica beads were connected together by the 

infiltrated silica to form a solid silica phase. After removal of the PS beads, the layer 

of the silica beads was left behind as a defect layer in the inverted opal structure. 

Figure 9.2 c and d show the microstructures of the inverted sample imaged using 

different magnifications. It can be observed that a homogenous silica layer was 

formed. The observed thickness, which was about 210 nm, is not exactly equal to the 

diameter of the silica beads (225nm) because the silica bead layer was corrugated by 

the PS layers. Besides calcination had led to a contraction of the silica beads. The 

(a) 

(c) 

(b) 

(d) 
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diameter of spherical pores became 490 nm, smaller than the diameter of the PS 

spheres, because of contraction during calcination.  
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Figure 9.3 Optical transmittance spectra of an opal consisting of 20 layers of 560 nm 

PS particles embedded with a 225nm silica bead layer and its inverted structure.  

 The periodicity of dielectric constant was interrupted by the silica bead layer in 

the opal sample, and by the solid silica layer in the inverted structure. The interruption 

layer serves as a two-dimensional planar defect, introducing localized defect states 

into the band gap (Yablonovitch et al., 1991). The two arrows in Figure 9.3 indicate 

the position of the defect states. It is known that there are two kinds of defects: (1) 

reduced-index defect, introduced by removal of the material with a higher dielectric 

index or replacement of a material of a higher dielectric index with that of a lower 

dielectric index; (2) increased-index defect, produced by addition of the material with 

a higher dielectric index or replacement of the material of a lower dielectric index 
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with that of a higher dielectric index (Johnson and Joannopoulos, 2002). The 

reduced-index defect induces acceptor modes originating from valence band while 

increased-index defect causes donor modes originating from conduction band. In the 

opal structure the dielectric index of silica (1.45) is lower than that of the surrounding 

PS beads (1.59) and the size of the silica spheres is smaller than that of the PS spheres. 

Then the silica layer serves as a reduced-index defect. However, in the inverted opal 

structure the PS beads are replaced by air. Silica becomes the material of a higher 

dielectric index, thus the silica layer change to behave as an increased-index defect. 

 Other PS spheres of 380 and 655 nm in diameter were also used together with the 

225-nm silica spheres to fabricate sandwiched opal structures. The optical spectra of 

the sandwich opals are shown in Figure 9.4a, together with that of the previous 

sample. It can be seen that the position of the defect states moves towards the lower 

wavelength edge of the stop bands (conduction bands) with the increase of the 

diameter of the PS particles. This is because the defects are all of reduced-index 

nature, originating from the valence bands. Therefore the larger the PS particle 

diameters, the less the ratio of defect thickness to lattice parameter, and the larger the 

distance from defect states to the higher wavelength edge of the stop bands. This is 

consistent with results of previous reports (Tetreault et al., 2005; Yan et al., 2005). 
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 (a) 

 
 (b) 

Figure 9.4 (a) Optical transmittance spectra of opals consisting of 225nm silica bead 
layer sandwiched by 20 layers of (1) 380nm, (2) 560nm and (3) 655nm PS particles; 
(b) Optical transmittance spectra of inverse opals fabricated using (1) 20 layers of 
380-nm PS spheres embedded with a layer of 225-nm silica beads, (2) 20 layers of 
560-nm PS spheres embedded with a layer of 225-nm silica beads and (3) 24 layers of 
560-nm PS spheres embedded with a layer of 585-nm silica beads. 
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 A comparison of the spectra of the inverse opals fabricated using 380- and 

560-nm PS beads (see Figure 9.4b revealed that the position of the defect states 

moved towards the higher wavelength edge of the stop bands (valence bands) with the 

increase of lattice constant/defect thickness ratio. 

 

 
Figure 9.5 SEM images of inverse opals inverted from 24 layers of 560nm PS spheres 

embedded with 585nm silica bead layer (low and high magnification). 
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Figure 9.6 Optical transmittance spectra of opals consisting of 585nm silica bead 
layer sandwiched by 24 layers of 560nm PS particles 

(a) (b)
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 Through the change of the diameter of the silica beads embedded, the thickness 

of defect layer can be adjusted. In the present study, 585-nm silica beads were 

embedded into 560-nm PS multilayer. The spectrum of the opal structure did not 

show any defect state (see Figure 9.6), probably because the sizes and refractive 

indices of silica and PS beads are both very close to each other. After infiltration and 

calcination its inverted structure was obtained, and a 510nm solid defect layer was 

formed, as shown in Figure 9.5. The spectrum of inverted structure also clearly 

showed the defect state introduced, as indicated by the arrow c in Figure 9.4b.  

 

9.3 Summary 

 This chapter illustrates a cost-effective way to fabricate opals with planar defect 

and successful conversion of them into inverse opals with planar defect. Through the 

combination of inward-growing self-assembly and spin-coating, a single layer of 

silica beads was inserted into PS opal. After infiltration of silica and removal of PS 

inverse opal structure with a homogeneous planar defect was obtained. The thickness 

of defect layer can be adjusted by changing the diameter of the silica beads. The 

fabrication method was proved to be efficient to achieve good crystal quality and 

defect layer uniformity. The existence of defect states induced by the planar defects 

was confirmed by transmission spectra of samples.  
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Chapter 10 

 

Patterning Microsphere Surfaces and Fabrication of 

Nonspherical Particles 

 

10.1 Introduction 

 Patterning of the surface of microspheres is of great interest because of its 

potential applications in directed self-assembly (Glotzer, 2004; Zhang and Glotzer, 

2004; DeVries et al., 2007) and sensors (Perez et al., 2003). Various methods have 

been explored to fabricate Janus microspheres. The surfaces of colloidal spheres 

arranged in a monolayer were partially modified to produce Janus particles by using 

vapor deposition (Takei and Shimizu, 1997; Love et al., 2002; Correa-Duarte et al., 

2005), Langmuir-Blodgett technique (Yokoyama et al., 2005), electroless deposition 

(Cui and Kretzschmar, 2006) and contact printing (Cayre et al., 2003). Janus spheres 

were also achieved by using membranes (Nagle and Fitzmaurice, 2003; Nagle et al., 

2003), phase interface (Fujimoto et al., 1999; Petit et al., 2000; Paunov and Cayre, 

2004) and substrate (Snyder et al., 2005) as protection. Microfluidic synthesis and 

nodule-protected modification of spheres (Perro et al., 2005) were found effective in 

relative large-scale production of Janus particles. Recently, more complex pattern has 

been achieved on the top-half of the spheres in the bottom layer of a colloidal crystal 

(CC) by using the top layers as masks to deposit Au on them (Zhang et al., 2005a; 
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2005b; Zhang et al., 2006). Nevertheless, most of these methods are suitable for the 

modification of the spheres arranged in a monolayer. Thus the modification is limited 

to one of hemispheres and the amount of the spheres produced is limited. It is still a 

challenge to pattern the whole surface of the spheres in large scale.  

 Most of the highly monodisperse non-spherical particles were fabricated by 

modification of spherical particles. Polymer multiplets were synthesized by seeded 

polymerization (Skjeltorp et al., 1986; H. R. Sheu, 1990; Kim et al., 2006; Mock et al., 

2006). Ellipsoidal particles (Lu et al., 2001) and spheres with holes (Marczewski and 

Goedel, 2005; Yan et al., 2006) were fabricated by modifying microspheres. The 

fabrication of snow-man like particles (Koo et al., 2004), dimmers (Lu et al., 2003) 

and colloidal clusters (Velev et al., 2000; Cho et al., 2005) were also demonstrated. 

Hybrid nonspherical particles were synthesized by using functionalized silica spheres 

as seeds in a polymerization process (Reculusa et al., 2002; Reculusa et al., 2004; 

Reculusa et al., 2005) Complex particles were fabricated by colloidal lithography 

(Yang et al., 2006). 

10.2 Patterning the Surface of Microspheres by 3D Colloidal Crystal 

Templating and Fabrication of Nonspherical Particles 

 In this chapter, we report, for the first time, the patterning of the surface of 

submicron spheres by three-dimensional (3D) colloidal crystal templating. A pattern 

with twelve dots distributed around the spherical surface can be formed on different 

particles. By using the patterned particles as seeds in the further regrowth process, 
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three types of novel non-spherical particles were synthesized. This may serve as a 

general approach to the fabrication of submicron spheres with complex surface 

patterns and non-spherical particles in large amount. 

 

 
Figure 10.1 Schematic illustration of patterning microsphere surfaces and fabricating 
nonspherical particles using different strategies: a) a material is grown on the 
unmodified areas to obtain spheres with twelve nodules, b) seeded polymerization is 
used to obtain spheres with protruding edges, and c) a material is grown on the 
modified areas to achieve core-shell particles with holes on the shells (the holes on the 
equator are indicated by white dot lines). 

 The strategy of the patterning and the fabrication of non-spherical spheres are 

illustrated in Figure 10.1. First, monodisperse silica particles or polystyrene (PS) were 

allowed to self-assemble into a 3D CC, followed by annealing of the CC to form 

connection areas between adjacent spheres. Second, the CC was immersed into 

functionalizing solution to chemically modify the exposed areas of the sphere surface 

while the connection areas were shadowed by the adjacent spheres. Subsequently, 

after several times wash the functionalized CC was redispersed by ultrasonication. 

Thus, a colloid of spheres with twelve dots (transformed from the connection areas) 

pattern was obtained. Finally, by using these surface-patterned spheres as seeds, three 
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novel types of non-spherical particles were fabricated through growing materials on 

different part of the surface pattern or seeded polymerization. Spheres with 

hemispheres connected to them can be formed when the material deposits only on the 

connection areas (Figure 10.1a), while core-shell spheres with holes on shells can be 

formed when the material grows on the exposed areas (Figure 10.1c). Particles with 

protruding edges can be achieved through a seeded polymerization process (Figure 

10.1b). 

 

10.2.1 Fabrication of Silica Nonspherical Particles  

 CCs of 41 5nm silica spheres were fabricated and calcinated at 750 °C to allow 

the formation of connections between adjacent spheres. Consequently the calcinated 

CCs were immersed into a solution containing MPS (3-(trimethoxysilyl)propyl 

methacrylate). Thus the exposed surfaces of the spheres in the CCs were grafted with 

MPS while the connection areas remained unmodified. After washing and 

redispersion, silica spheres with twelve dots patterned around the spherical surface 

were obtained. By using these surface-patterned spheres as seeds in a silica regrowth 

process (Giesche, 1994), spheres with twelve hemispheres connected to them were 

obtained as seen in Figure 10.2. 

 It is proved that the hemispheres grew from the connection areas by using some 

pieces of surface-modified CCs instead of well-redispersed spheres in the regrowth 
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process (Figure 10.2c). This result, in return, proves the successful formation of a 

complex pattern on the silica spheres by 3D CC templating.  

 

 

Figure 10.2 Scanning electron microscopy (SEM) images of the nonspherical silica 
particles: a, b) the particles resulted from an opal annealed for 5 h; c) the result of 
using a piece of MPS-modified CC in the regrowth process; d) the particle resulted 
from an opal annealed for 8 h. e) nonspherical silica particles obtained from a CC 
annealed for 5 h; f) nonspherical silica particles obtained from a CC annealed for 8 h. 

 Some of the spheres (see Figure 10.2 e and f) did not have 12 hemispheres 

connected to them, probably because that the size deviation of the beads made some 

(a) 

(c) 

(e) 

(b)

(d)

(f)
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of the spheres remain not connected with one or several of the 12 adjacent spheres 

after calcination. Figure 10.2d shows the result of the particle by prolonging the 

calcinations time from 5h (for Figure 10.2a) to 8h. The hemisphere diameter increased 

from 95nm to 115nm. This demonstrates that by adjusting the calcination time, the 

sizes of dots on the surface pattern could be tuned and so did the size of the 

hemispheres connected to the silica spheres. 

 

 In a close-packed CC of fcc (face-centered cubic) structure, every sphere, except 

those in the bottom or top layer, contacts 12 spheres around it. Thus the consequent 

patterned spheres and the nonspherical particles are limited to being 12-fold 

symmetry. However, through the change of the structure of the template CC, the 

number of spheres connecting to one sphere can be changed. For instance, if a CC 

with non-close-packed spheres in the same layers (a structure readily available as 

shown in Jiang and McFarland’s article (Jiang and McFarland, 2004)) is employed, 

patterned spheres with 6-fold symmetry can be obtained, as illustrated in Figure 10.3a. 

Similarly, patterned particles with 7 chemical patches are expected to be achieved if a 

monolayer of close-packed CC is employed, as shown in Figure 10.3b. Additionally, 

in a binary CC composed of large and small spheres, the large sphere may be 

surrounded by more than 12 spheres, which might be used to fabricate particles with 

more than 12 patches or nodules. 
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 (a) 

 
 (b) 

Figure 10.3 (a) Scheme of patterning sphere surfaces with 6 unmodified areas 
(another three are on the back side) and the fabricating of non-spherical with 6 
nodules; (b) Scheme of patterning sphere surfaces with 7 unmodified areas and the 
fabricating of non-spherical with 7 nodules. 

10.2.2 Fabrication of Polystyrene Nonspherical Particles 

 This method of patterning the surface of submicrometer spheres can also be 

applied to polymer beads. In our work, PS beads with a surface sulphonation pattern 

were obtained by sulphurizing PS CCs and redispersion of them. Contrary to the CCs 

before sulphonation treatment, CCs after sulphonation could be easily redispersed in 

water. To confirm the formation of surface pattern on the PS beads, these sulfurized 

PS spheres were re-grown in a seeded polymerization procedure. In this procedure, 

the mixture of 0.29g sulfurized 984nm PS spheres, 0.28ml styrene monomer and 

water was stirred for 60 min at 60°C. After addition of potassium persulfate and 

polymerization for 20 h, PS particles of 1.23μm with protruding edges, as illustrated 

in Figure 10.4, were obtained. 
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Figure 10.4 The SEM images of the nonspherical PS particles of different 
magnifications. 

 In the other two batches of seeded polymerization, which used untreated PS beads 

and completely sulphurized PS beads as seeds, the final particles were all spherical. 

This indicates that the formation of the protruding edges is due to the surface pattern 

on the PS seed particles. These PS particles with protruding edges were found still 

hydrophilic after complete drying.  

 

Table 10.1 X-ray photoelectron spectroscopy (XPS) quantitative analyzing result of 
the PS particle surfaces 

                     Mass    
              Concentration 
                      (%) 
Samples Name 

S O C 

Original PS beads  0.48  5.43 94.09 

Sulphonated PS beads 10.46 29.38 60.16 

Non-spherical PS particles 9.48 19.38 71.14 

 

 The XPS results in Table 10.1 show that the sulfur content increases greatly after 

sulphurnation. After seeded polymerization, the sulfur content on the surface 

(a) (b)
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decreases a little, but is still much larger than that in the surface of PS beads without 

sulphonation. Considering the shape and the surface composition of the beads, we 

propose a mechanism of the seeded polymerization process as following: after the 

addition of the initiator the free radicals generated by initiator react with styrene 

monomer in the aqueous phase to form oligomeric free radicals. Most of these 

oligomeric free radicals are captured by the existing PS beads and anchor 

preferentially on the hydrophilic part of their surface (Shim et al., 1999). The 

hydrophobic parts of the oligomeric radicals penetrate into the PS beads and react 

with styrene solubilized in the beads. Thus the polymerization mainly happens 

underneath the sulfurized part of the PS beads surface, leading to the formation of 

protruding edges on the particles. 

 

 Smaller PS beads of 400nm were also employed in this work to fabricate 

nonspherical particles. It was found that the final particles were with protruding arms 

rather than protruding edges (Figure 10.5). This morphology difference might be due 

to the small size of the beads, which caused that the thickness of the edges was so thin 

that they separated to form independent arms. Through the change of the monomer 

amount added in the regrowth process, the size of the final particles and the length of 

arms could be altered. From Figure 10.5, we can observe that the size of the beads 

increase from 490nm to 510nm and 650nm when the monomer amount increased 

from 0.1ml to 0.2ml and 0.4ml. 
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Figure 10.5 SEM images of nonspherical PS particles. (a, b) (c, d) (e, f) are the high 
and low magnification view of nonspherical particles fabricated from 400-nm PS 

beads, using 0.1 mL, 0.2 mL and 0.4 mL styrene in the seeded polymerization 
processes, respectively. The scale bars of image (a, c and e) are all 200 nm. 

10.3 Drilling Nanoholes in PS Spheres 

 This chapter also demonstrated a very effective route to drilling nanohole in PS 

colloidal spheres, as schematically illustrated in Figure 10.6.  

(a) 

(c) 

(e) 

(b)

(d)

(f)
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Figure 10.6 Schematic illustration of fabrication of an array of PS colloidal spheres with 

nanoholes. 

 
Figure 10.7 Scanning electron microscopy (SEM) images of (a) a colloidal monolayer 
of PS spheres of 450 nm in diameter self-assembled on an ITO-coated glass substrate, 
(b) an array of PS colloidal spheres partially embedded in a nickel layer, (c) after ICP 

etching for 3 min and 1.6 M HCl etching for another 3 min, and (d) an array of PS 
colloidal spheres with nanoholes. 

A monolayer of self-assembled PS 
spheres on an ITO-coated glass 

substrate 

After electrochemical deposition 

of Ni  

After selective etching using 

ICP technique  

After removal of the nickel 
mask  
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 The first step is the self assembly of a PS monolayer on a glass substrate coated 

with indium-tin-oxide (ITO). Subsequently, a layer of nickel was electrochemically 

deposited on the surface of the substrate, filling the interstice of the PS sphere 

monolayer. The thickness of the metal layer is carefully controlled to be larger than the 

radius but smaller than the diameter of the PS spheres. Thus, the PS colloidal spheres 

are partially covered by nickel and the upper hemispheres partially protrude from the 

metal layer. Consequently, in the following step of anisotropic dry etching using 

inductively coupled plasma (ICP), the deposited nickel acts as a mask, covering the 

equatorial parts while nanoholes are etched out through uncovered areas. Finally, a 

monolayer array of PS colloidal spheres with nanoholes is obtained after removal of the 

nickel by chemically etching with a diluted hydrochloric acid. The samples collected at 

different stages are characterized with a field-emission scanning electron microscope. 

 The hexagonally close-packed monolayer of PS spheres was fabricated by vertical 

depostion, as shown in Figure 10.7a. Through annealing, the monolayer formed a 

connection between adjacent spheres, which improved the stability of the structure 

during the following fabrication steps. Figure 10.7b shows a tilted cross-section view of 

the PS colloidal monolayer embedded in the nickel layer, obtained after the deposition 

of nickel. It can be clearly seen that the top surface of PS spheres partially protrude 

from the metal layer. Nickel was also found fully infiltrated into the interior space 

between the PS colloidal spheres and the nickel layer was quite uniform with a 

thickness of about 400 nm. 
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 Figure 10.7c shows a tilted top view of the sample after being etched for 3 min. To 

obtain a better view of the etched PS spheres, here the etched sample was treated with a 

1.6 M HCl solution for 3 min to thin the nickel layer. Because of the anisotropic nature 

of the ICP etching technique and the masking function of the Ni layer, it is seen that 

only the middle parts of the PS colloidal spheres were etched. Upon complete removal 

of the Ni layer, an array of PS colloidal spheres with nanoholes was obtained, as can be 

seen from Figure 10.7d. It should be noted that the order of the particle array was 

slightly distorted in comparison with that of the original PS monolayer, which was most 

probably caused by the wet chemical etching during the removal of the metal layer. A 

long-time annealing of the PS monolayer prior to electrochemical deposition may avoid 

such a structural distortion. 

 Electrochemical deposition of metals into the voids of a close-packed array of 

microspheres on conductive substrates has been used by many researchers to fabricate 

macroporous metal films (Jiang et al., 1999; Bartlett et al., 2000; Wijnhoven et al., 2000; 

Xu et al., 2000; Luo et al., 2001). The thickness of the metal film can be easily 

controlled through the time of electrochemical deposition due to the bottom-up-growth 

mechanism. This enables the fabrication of arrays of PS colloidal spheres with different 

nanohole sizes. The diameter of the nanoholes can be simply manipulated by the 

thickness of the deposited metal film according to a simple geometrical consideration: r 

= [R 2- (H - R)2]1/2 (r is the radius of the holes, R is the radius of the PS spheres, and H 

is the thickness of the metal film). Thus, through manipulation of the thickness of the 

metal layer, the size of the nanohols can be controlled. For instance, if a nickel layer of 
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409 nm covers 450 nm PS spheres, the diameter of the nanoholes should be about 260 

nm. The experimentally measured value from the cross-sectional SEM image shown in 

Figure 10.7d is in good agreement with the estimated value. Figure 10.8 a and b show 

the arrays of PS colloidal spheres covered with Ni metal layers of thicknesses of 421 

and 309 nm leading to nanohole sizes of 220 and 306 nm, respectively. 

  

Figure 10.8 PS colloidal spheres with nanohole sizes of (a) 220 nm fabricated with a 
nickel mask layer of thickness of 421 nm, and (b) 306 nm fabricated with a nickel 

mask layer of thickness of 309 nm. 

 Additionally, the depth of the holes can also be tuned by controlling the ICP 

etching time. PS colloidal spheres with non-through holes could be produce by shorter 

etching time while a longer etching time resulted in PS spheres with through holes (see 

Figure 10.7d). The arrays of PS colloidal spheres with non-through pores have potential 
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application as micro- and nano-vials for applications in chemical and biochemical 

microanalysis (Jiang, 2004; Jiang, 2005). Furthermore, the arrays are potentially 

applicable for selectively capturing particles smaller than the hole size (Xu et al., 2004).  

10.4 Summary 

 In summary, this chapter illustrates a novel method to the fabrication of 

submicron spheres with chemically patterned surface through three-dimensional 

colloidal crystal templating. A pattern with dots distributed around the surface can be 

formed on spheres. This technique provides a general approach to patterning the 

whole surface of submicron spheres in large scale. By using these surface-patterned 

spheres as seeds, three new types of non-spherical particles are synthesized, which 

might find applications in directed self-assembly, the fabrication of superhydrophobic 

surface and drug delivery. 

 An effective approach to the fabrication of arrays of colloidal spheres with 

nanoholes was demonstrated by selectively etching of a colloidal monolayer partially 

embedded in an electrochemically deposited metal layer. Both the hole size and the 

hole depth can be controlled precisely. Since all the processes involved in this 

approach, fabrication of large-scale colloidal monolayer, electrochemical deposition 

of uniform metal layer, and dry etching, are quite mature, this approach enables the 

production of arrays of colloidal spheres with nanoholes in a simple and cost-effective 

manner. Colloidal spheres with nanoholes and their arrays might find potential 

applications in microanalysis, photonics and biology. 
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Chapter 11 

Conclusion and Recommendations 
 

11.1 Conclusions 

 While self-assembly of colloidal spheres has been considered to be a 

cost-effective way of producing photonic crystals, the application of this method is 

still limited by a number of fundamental issues, such as the unavailability of uniform 

colloidal particles with a desired refractive index, the presence of unwanted cracks in 

a self-assembled colloidal crystal, the difficulty in assembly of pre-designed 

crystalline structures other than the close-packed structures (fcc or bcc), and the 

challenge of incorporating engineered defects (wanted defects) into colloidal photonic 

crystals. This thesis work focused on solving some of the problems encountered in the 

self-assembly approach to the fabrication of photonic crystals. 

 In this thesis work, monodisperse silica and polystyrene spheres were synthesized. 

A seed-growth method was used to fabricate highly uniform silica spheres. The 

control of the final particle size was achieved by adjusting the seed size or the amount 

of TEOS added. According to the experimental data, the adding speed of TEOS must 

be controlled carefully to avoid the formation of secondary seeds, which will lead to 

the nonuniformity of the final bead sizes. The emulsifier-free emulsion 

polymerization technique was employed to synthesize polystyrene beads. The 

polystyrene bead size was found to increase with the amount of monomer and 

decrease with the addition of surfactant and divinylbenzene. In addition, silica/titania 

core-shell structures were synthesized by depositing titania on polycation modified 
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silica sphere surface. Pt nanoparticles were also successfully incorporated within the 

titania shells. The preparation of graphitizable hollow carbon spheres (HCSs) with a 

single shell, deformed shell, double shell, and N-doped shell were also demonstrated 

by using silica spheres as templates via chemical vapor deposition (CVD) of benzene 

or acetonitrile. 

A novel template-free approach to the fabrication of crack-free colloidal crystals 

was proposed and demonstrated. In this approach, the addition of a silica precursor 

solution into the colloid containing silica spheres provides an effective means of 

eliminating the formation cracks. When silica spheres crystallize on a silicon substrate, 

the precursor solution hydrolyzes to form additional silica species to fill in the 

interstices among the spheres in the colloidal crystal. The filled silica acts as a glue to 

stick the spheres firmly, thus avoiding the formation of cracks during the drying 

process. The hydrolyzed silica among the spheres can be easily etched away using 

hydrofluoric acid vapor to obtain a crack-free colloidal crystal, in which the spheres in 

the same layer do not touch each other while they touch with the spheres of the 

adjacent layers. The amount of the silica precursor solution needed to form crack-free 

film increases with increasing the number of the layers of colloidal crystals. 

Interestingly, when an excessive amount of silica precursor solution is introduced in 

the vertical deposition process of producing silica sphere bilayer, the colloidal crystal 

film peels off from the substrate, leaving behind a large-area nano-bowl array. This 

might provide a one-step cost-effective way of fabricating nano-bowl pattern in large 

areas. 
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 A novel approach to the fabrication of non-close-packed colloidal crystal films 

consisting of spheres connected by cylinders in large domains has been demonstrated. 

In this approach, the chemical vapor deposition method is employed to deposit silica 

layers on the surface of a silica inverse opal, producing uniform inverse opal 

structures with non-close-packed air pores. Subsequent infiltration of the 

non-closed-packed inverse opal with styrene monomer followed by polymerization 

and removal of the silica framework yields a free standing non-closed-packed 

polystyrene opal film. The employment of chemical vapor deposition enables precise 

controlling of the final structure. The formation of free-standing polystyrene opal 

films allows tuning the optical properties of the films by mechanical stretching. If 

elastomer was used in the experiment, a highly tunable free-standing opal should be 

achieved. 

 Fabrication of binary colloidal crystals using the horizontal deposition method 

has been attempted in this thesis work. The significant advantages of this fabrication 

method lie in its simplicity and fast production rate (about 2 hours over an area of 2.2 

× 2.2 cm2). Through variations of the volume fraction ratio of small spheres over large 

ones, the structures of the binary colloidal crystals can be tuned. It has been found that 

the small spheres on the top surface of the binary colloidal crystals are embedded 

within the voids among large spheres in an ordered manner. However, studies of the 

internal structures have shown that in the bulk of the colloidal crystals the 

arrangement of the small spheres is not ordered, possibly due to the confinement 

effect within the interstitial pores among the large spheres, which restricts the motion 
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of the small particles to self assemble themselves into an ordered fashion. Both 

structures of the binary colloidal crystal and inverse opals suggest an increasing 

gradient in the distribution density of small spheres in the direction from bottom to 

top perpendicular to the substrate. The spectra of all the samples confirm the 

long-range order of the binary system, which originated from the large sphere packing. 

The distinctive stop bands demonstrate that the pseudo bandgap property is not 

affected by the less-evenly distributed small particles in the system. The stop band 

positions also agree with the volumetric constitutions of the binary mixtures. The 

simple fabrication process, the ordered and gradient double pore system, as well as 

the optical property suggest that such binary colloidal crystals hold a great promise 

for applications beyond photonics, such as for catalysis, micro-reactors, and 

bio-sensing. 

 A pure wet chemistry method without involving lithography has been designed 

and demonstrated to fabricate colloidal crystals and their inverse structures with 

planar defects. A spin-coating technique has been shown to be quite useful to insert a 

defect layer into a colloidal crystal of polystyrene spheres. The defect layer can be 

transferred to the inverse structure of the colloidal crystal by infiltration of the void 

spaces of the colloidal crystal with silica followed by removal of the polystyrene 

spheres. The thickness of the defect layer can be controlled by changing the diameter 

of the silica beads or polystyrene beads. Optical spectra have confirmed the existence 

of defect states induced by the planar defects. The method demonstrated in this thesis 
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work may provide a general approach to incorporating defect layers of controllable 

thickness in self-assembled colloidal photonic crystals. 

 An innovative method for chemical patterning of submicron spheres has 

succeeded in this thesis work. A pattern with round areas distributed around the 

surface can be formed on spheres through three-dimensional colloidal crystal 

templating. By using these surface-patterned spheres as seeds, three types of novel 

non-spherical particles can be fabricated. Such particles may find applications in 

directed self-assembly, creating of superhydrophobic surface, and drug delivery. This 

technique provides a general approach to patterning the whole surface of submicron 

spheres in a controllable manner in large scales.  

  

11.2 Recommendations 

 In this thesis work, the formation of crack-free colloidal crystals was achieved by 

replacing the solvent layer with additional materials formed during the self-assembly. 

A precursor solution needs to be added in the colloid, which influences the property of 

the colloid. Thus, to obtain ordered colloidal crystals, the amount of the precursor 

solution that should be added is limited, and is the layer number of the colloidal 

crystals. An alternative approach of avoiding the formation of cracks is suggested to 

introduce the substrate contraction during the self-assembly process. For instance, if a 

polymer substrate with a hydrophilic surface, which can be swollen with organic 

solvent, is used in vertical deposition process using aqueous colloid, the release of the 

solvent from the substrate would lead to the contraction of the substrate. If the speed 
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of the substrate contraction corresponds to that of the solvent evaporation, no 

formation of cracks is expected. The layer number of the colloidal crystals is also 

expected to be unlimited.  

 In the fabrication of non-close packed opals in this thesis work, the voids of the 

silica inverse opals are fully filled with polystyrene. If a chemical vapor deposition 

method is used to deposit a thin layer of material followed by removal of the silica 

inverse opal, an interesting structure consisting of hollow shells connected by air 

tubes can be obtained. In addition, an elastomer can be used to fabricate non-close 

packed opals instead of polystyrene. Thus, free-standing opal films with highly 

tunable optical properties are expected. 

 In patterning microsphere surface by colloidal crystal patterning, the change of 

the structure of the colloidal crystals will lead to the change of the surface pattern on 

the spheres. It is recommended that monolayer and non-close packed structure be 

used to produce micospheres with various surface patterns and various types of 

nonspherical particles.  
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