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Summary

Summary

Constraints are ubiquitous in physical systems, and manifest themselves as physical

stoppages, saturation, as well as performance and safety specifications. Violation of

the constraints during operation may result in performance degradation, hazards or

system damage. Driven by practical needs and theoretical challenges, the rigorous

handling of constraints in control design has become an important research topic in

recent decades.

Motivated by this problem, this thesis investigates the use of Barrier Lyapunov Func-

tions (BLFs) for the control of single-input single-output (SISO) nonlinear systems

in strict feedback form with constraints in the output and states. Unlike conven-

tional Lyapunov functions, which are well-defined over the entire domain, and radi-

ally unbounded for global stability, BLFs possess the special property of finite escape

whenever its arguments approach certain limiting values. By ensuring boundedness

of the BLFs along the system trajectories, we show that transgression of constraints

is prevented, and this embodies the key basis of our control design methodology.

Starting with the simplest case where only the output is constrained, and with known

control gain functions, we employ backstepping design with BLF in the first step, and

quadratic functions in the remaining steps. It is shown that asymptotic output track-

ing is achieved without violation of constraint, and all closed-loop signals remain

bounded, under a mild restriction on the initial output. Furthermore, we explore

the use of asymmetric BLFs as a generalized approach that relaxes the restriction

on the initial output. To tackle parametric uncertainties, adaptive versions of the

controllers are presented. We provide a comparison study which shows that BLFs re-

quire less conservative initial conditions than Quadratic Lyapunov Functions (QLFs)
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Summary

in preventing violation of constraints.

The foregoing method is then extended to the case of full state constraints by em-

ploying BLFs in every step of backstepping design. Besides the nominal case where

full knowledge of the plant is available, we also tackle scenarios wherein parametric

uncertainties are present. It is shown that state constraints cannot be arbitrarily

specified, but are subject to feasibility conditions on the initial states and control pa-

rameters, which, if satisfied, guarantee asymptotic output tracking without violation

of state constraints. In the case of partial state constraints, the design procedure is

modified such that BLFs are used in only some of the steps of backstepping, and the

feasibility conditions can be relaxed.

In the presence of uncertainty in the control gain functions, we employ domination

design instead of the foregoing cancellation based approaches. Within this frame-

work, sufficient conditions that prevent violation of constraints are established to

accommodate stability analysis in the practical sense. When dealing with full state

constraints, we show that practical output tracking is achieved subject to feasibility

conditions on the initial states and control parameters. Additionally, it is shown that,

for the special case of output constraint with linearly parameterized nonlinearities,

practical output tracking is achieved free from the feasibility conditions.

Finally, we consider, as an application study, single degree-of-freedom uncertain elec-

trostatic microactuators with bi-directional drive, wherein the control objective is to

track a reference trajectory within the air gap without any physical contact between

the electrodes. Besides the state feedback case, for which the foregoing method for

dealing with output constraint can be applied, we also tackle the output feedback

problem, and employ adaptive observer backstepping based on asymmetric BLF to

ensure asymptotic output tracking without violation of output constraint.
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Chapter 1

Introduction

Adaptive control has progressed through a colorful history to become an established

field in modern control that is well-recognized and intensely researched today. Origi-

nally motivated by autopilot design for high performance aircraft, which need to deal

with large system parameter variations during changing flight conditions, research in

adaptive control witnessed a surge in the early 1950s, only to be undermined, albeit

momentarily, by an incident with a test flight. With rapid advances in stability theory

and the progress of control theory in the 1960s, in part driven by the due discovery of

A.M. Lyapunov’s pioneering works on stability of motion, understanding of adaptive

control grew at a tremendous rate and contributed to the revived interest in the field.

After almost three decades of research, a significant breakthrough was made in the

form of backstepping design methodology, which overcame many technical restric-

tions suffered by adaptive controllers and greatly widened their applicability to new

classes of systems, including nonlinear ones. Today, although adaptive control and

backstepping are considered mature, they are still being actively researched to solve

new problems in theory and applications. One such problem involves the considera-

tion of system constraints in adaptive control of uncertain nonlinear systems, which is

not only theoretically challenging, particularly in finding ways to contain the effects

of the transient adaptation dynamics, but also practically meaningful in face of the

ubiquity of constraints in physical and engineering systems.

In the remainder of this chapter, we provide a detailed exposition of the background

1



1.1 Background and Motivation

and motivation, as well as the objectives, scope, and structure of the research pre-

sented in this thesis. For clarity of presentation, the background and motivation are

separated into four parts, namely Lyapunov Based Control Design, Adaptive Control

and Backstepping, Control of Constrained Systems, as well as Control of Micro-

electromechanical Systems (MEMs). In each part, the related works and background

knowledge that motivate the research in this thesis are discussed in detail.

1.1 Background and Motivation

1.1.1 Lyapunov Based Control Design

Lyapunov’s direct method, first introduced in 1892 by A.M. Lyapunov in his seminal

work “The General Problem of Motion Stability” [109], has, in modern times, become

the most important tool in the analysis and control design for nonlinear systems.

Based on an analogy with the notion of energy in physical systems, the direct method

provides a means of determining stability without the need for explicit knowledge of

system solutions, by constructing a scalar “energy-like” function, also known as a

Lyapunov function, and then analyzing the properties of its derivative with respect

to time. Specifically, for a system represented as follows:

ẋ = f(x), x ∈ Rn (1.1)

where we consider the origin x = 0 as an equilibrium, if there exists a positive def-

inite, continuously differentiable function, V (x), such that its derivative along the

system trajectories is negative semidefinite, i.e. V̇ (x) ≤ 0, then the origin is (locally)

stable, and V (x) is a Lyapunov function. If V (x) is radially unbounded, then global

stability can be concluded [156]. The technique is not restricted to the analysis of

system stability per se, but can also be extended to design controllers that attribute,

to the closed loop systems, desirable stability properties, via the concept of Control

Lyapunov Functions (CLFs), introduced in [5]. The task of selecting a Lyapunov

function candidate, followed by the design of the control law that renders the deriv-

ative of the candidate function negative semidefinite along the system trajectories,

is, in general, non-trivial, for even if a stabilizing control law exists, we may fail to

find it due to an ill-chosen Lyapunov function candidate. On the other hand, once a

2



1.1 Background and Motivation

CLF is known, many methods can be employed to construct stabilizing control laws

[39, 94, 152, 157].

For simplicity, quadratic functions are often proposed as Lyapunov function candi-

dates, as described by the following form

V (x) =
1
2
xT Px (1.2)

where P is a positive definite matrix. In fact, a significant portion of the literature

on Lyapunov based control synthesis employs quadratic Lyapunov functions (QLFs).

Although QLFs are convenient and often sufficient to solve a large variety of control

problems, certain more difficult problems call for more sophisticated forms of Lya-

punov functions. One of the most classical examples can be found in early works on

control design for robotic manipulators, where energy-like functions were proposed,

through physical insight and intuition, as Lyapunov functions described, for example,

by the following form:

V (x) =
1
2
(ẋT M(x)ẋ + xT Px) (1.3)

where M(·) and P are symmetric positive definite matrices, with M(·), in particular,

being the inertia matrix for the manipulator. This insight paved the way for the proof

of closed loop stability with traditional Proportional-Derivative (PD) controllers in

a series of independent works [76, 86, 164, 172]. Since then, such physics-motivated

approach of constructing Lyapunov functions, has been extended and demonstrated

for stable control design in numerous works on mechanical systems [13, 14, 127, 128],

spacecraft [108, 155], ocean vessels [37, 167], helicopters [50], and robotics systems

[48, 101, 156].

Apart from physically motivated Lyapunov functions, other special forms of Lyapunov

functions have also been introduced to handle unknown control gain functions, which

are notoriously difficult to handle in adaptive control design. In particular, for the

nonlinear system ẋ = f(x) + g(x)u, where x ∈ R, u ∈ R, f(0) = 0, and g(x) 6= 0

for all x ∈ R, one can use certainty equivalent feedback linearization control u =
1

ĝ(x)(−f̂(x) + v), where f̂(x) and ĝ(x) are estimates of f(x) and g(x), and measures

have to be taken to avoid controller singularity when ĝ(x) = 0. To avoid this problem,

3



1.1 Background and Motivation

Integral Lyapunov Functions (ILFs), which can be described by the following form

V (x) =
∫ x

0
r
ḡ(r)
g(r)

dr, (1.4)

where ḡ(·) is a known function satisfying ḡ(·) ≥ g(·), have been developed in [45, 42],

based on the idea that when the derivative of the ILF is taken, the gain function

preceding the (virtual) control is canceled reciprocally by an identical term in the ILF.

Using this approach, semi-globally stable adaptive controllers have been constructed

which elegantly avoids the controller singularity problem. An alternative choice of

Lyapunov function is a quadratic-like function with reciprocal of the control gain

function, specifically V = x2/g(x), which operates in a similar manner as ILFs via

reciprocal cancelling of the control gain function, but require additional assumptions

on the rate of growth of the control gain function [44]. Besides unknown control gain

functions, it was shown that nonlinearly parameterized functions can also be handled

by using ILFs [43].

Special functionals, known as Lyapunov-Krasovskii functionals, also play a pivotal

role in Lyapunov based stability analysis for time-delay systems, based on the well-

known Lyapunov-Krasovskii theorem. A particular class of Lyapunov-Krasovskii

functionals can be described by the following:

VU =
∫ t

t−d
U(x(τ))dτ (1.5)

where d is the time delay and U(·) is a positive function. Interested readers can refer

to [60] for more in-depth discussion on other classes of functional candidates. These

have been applied to time-delay systems that are linear [85, 88, 58, 162], as well those

that are nonlinear [32, 72, 177]. With suitably constructed Lyapunov-Krasovskii

functionals, terms containing the delayed states can be matched and canceled when

the derivative of the Lyapunov function/functional is taken. Following its success

in stability analysis, the utility of Lyapunov-Krasovskii functionals in control design

for time-delay systems was subsequently explored. Linear systems with nonlinear

functions of delayed states were considered (e.g. [176]), along with SISO nonlinear

time-delay systems [122], wherein Lyapunov-Krasovskii functionals were used with

backstepping to obtain a robust controller. The need for exact knowledge of non-

linearities is removed with the use of adaptive NN control in [46], with subsequent

4



1.1 Background and Motivation

extensions tackling the case of completely unknown virtual control coefficients using

Nussbaum-type functions [47], as well as multi-input multi-output (MIMO) systems

with a more general mixture of delayed states in the unknown nonlinearities [51].

With the celebrated success and rapid development of Lyapunov based design tools

in solving challenging academic and practical problems such as time delay systems,

nonlinearly parameterized systems, as well as systems with unknown control gain

functions, there is a need to carry out investigations within this framework and de-

velop new tools to deal with nonlinear systems with constraints, without the need for

explicit solutions for the dynamic equations of the system, which can incur huge com-

putational costs. Furthermore, Lyapunov control synthesis lends itself to the design

of stable adaptation laws, and thus provides a promising avenue for fundamental con-

siderations and investigations of the adaptive control problem for high order nonlinear

systems with constraints.

1.1.2 Adaptive Control and Backstepping

Adaptive control has witnessed more than half a century of intense theoretical research

and engineering applications. Originally proposed for aircraft autopilots to deal with

parameter variations during changing flight conditions, it has since evolved into an

advanced and successful field, culminating from decades of research activities that

involve rigorous problem formulation, stability proof, robustness design, performance

analysis and applications.

Early research in adaptive control focused on stability issues and on achieving as-

ymptotic tracking properties [33, 56, 97, 117, 120], which laid the cornerstones for a

rigorous theory for adaptive systems that emerged later [7, 57, 66, 147]. Accompany-

ing the early results were observations that adaptive controllers had limited robust-

ness properties. Minute disturbances and the presence of unmodelled dynamics can

catastrophically destabilize the closed loop systems, as demonstrated by the Rohrs ex-

ample on a first order plant [142]. Subsequently, robustification techniques have been

integrated with adaptive control to improve robustness to unmodelled disturbances

and bounded disturbances, and these encompass normalization techniques [67, 91],

projection methods [55, 147], dead zone modifications [33, 131], the ε-modification
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[119], and the σ-modification [65].

While early works on adaptive control dealt mainly with linear systems and have

been highly successful, interest in extensions to nonlinear systems soon grew rapidly,

motivated by seminal developments of nonlinear feedback control theory based on

differential geometry [69]. Among the important early results for adaptive control of

nonlinear systems are works involving feedback linearization techniques [22, 137, 148,

166, 170] and robustification methods [2, 75, 77, 166].

However, global stability cannot be established without some restrictions on the

plants, which include the matching condition [166], extended matching condition

[78], and growth conditions on system nonlinearities [148]. To this end, the technique

of backstepping, rooted in the independent works of [20, 87, 159, 171], and further

developed in [21, 79, 126, 144], heralded an important breakthrough for adaptive con-

trol that overcame the structural and growth restrictions. Specifically, the marriage

of adaptive control and backstepping, i.e. adaptive backstepping, yields a means of

applying adaptive control to parametric-uncertain systems with non-matching con-

ditions [94, 114]. As a result, adaptive backstepping can be applied to a large class

of nonlinear systems in parametric strict feedback form or pure feedback form. The

advantage of adaptive backstepping design is that not only global stability and asymp-

totic stability can be achieved, but also the transient performance can be explicitly

analyzed and guaranteed [94].

Through the collective efforts of many researchers, the adaptive backstepping tech-

nique has undergone steady improvements. Although early designs, such as the one

in [81], were based on overparameterized schemes that require multiple estimates of

the same parameters, this requirement was subsequently obviated with the introduc-

tion of tuning functions [93]. For systems that can be represented by the parametric

output feedback form, the output feedback adaptive control problem has been solved

in [80, 82, 112]. This class of systems is later enlarged to include nonlinearly para-

meterized output nonlinearities [113], input-to-state stable (ISS) internal dynamics

[138], as well zero dynamics that are not necessarily stable [83]. Extended studies of

adaptive backstepping control have been performed for nonlinear systems with trian-

gular structures [153], large-scale decentralized systems in strict-feedback form [71],

as well as nonholonomic systems [73]. Several robust adaptive backstepping schemes
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were also proposed in [74] for the systems’ uncertainties satisfying an ISS property,

and uncertain systems in strict-feedback form with disturbances [34, 95, 104, 129].

Traditional adaptive control techniques rely on the key assumption of linear parame-

trization, where nonlinearities of the studied plants can be represented in the linear-

in-the-parameters form, for which the regressor is exactly known and the uncertainty

is parametric and time-invariant. However, many practical systems exhibit nonlin-

ear parametrization in their model representations, including fermentation processes

[16], bio-reactor processes [19, 18] and friction dynamics [49]. Departing from the as-

sumption of linear parametrization, several results were presented for different kinds

of nonlinearly parameterized systems [4, 16, 17, 18, 19, 38, 43, 107]. Of partic-

ular interest are the works in [16, 17], wherein an innovative design approach is

provided that appropriately parameterizes the nonlinearly parameterized plant and

constructs a suitable Lyapunov function, as well as in [43], where nonlinearly pa-

rameterized functions are handled by Integral Lyapunov Functions. Additionally,

approximation-based control techniques with guaranteed stability have been proposed

[26, 35, 36, 42, 70, 101, 102, 136, 145, 146] to compensate for nonlinearly parameterized

functions and general unknown nonlinear functions, based on the Stone-Weierstrass

theorem, which states that a universal approximator can approximate, to an arbitrary

degree of accuracy, any real continuous function on a compact set [145].

Despite the maturity of backstepping in dealing with such systems, the explicit con-

sideration of constraints within this framework has received little attention, with

a few exceptions. In the recent work [92], backstepping control was designed to

achieve nonovershooting tracking response for strict feedback systems, by appropri-

ately choosing the control gains such that the initial values for all the error variables

are negative. Another work [103] presented modified backstepping based on positively

invariant feasibility regions for a class of nonlinear systems with control singularities,

such that state trajectories are repelled from regions containing the singularities.

The design induces singularities in the Lyapunov functions that coincide with those

of the control laws, and this property proved to be instrumental in preventing state

trajectories from transgressing the feasibility boundaries. However, there are still fun-

damental problems about stability, robustness, and other issues for adaptive control

of uncertain high-order nonlinear systems with constraints to be further investigated.
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1.1.3 Control of Constrained Systems

Dealing with constraints in control design has become an important research topic in

recent decades, driven by practical needs and theoretical challenges. Many practical

systems have constraints on the outputs, inputs, or states, which may appear in

the form of physical stoppages, saturation, or performance and safety specifications.

Violation of the constraints during operation may result in performance degradation,

hazards or system damage. In some cases, it is possible to neglect constraints in

control design, but circumvent the problem through mechanical design, modification

of operating conditions, or ad-hoc engineering fixes, although such solutions are highly

context specific, require substantial human intervention, and do not provide any

guarantee of success. A more generic and fundamental approach is to consider the

constraints up front in the problem formulation, and then design a controller which

ensure that the constraints are met, along with desired stability and performance

properties.

Linear systems theory, with its rich set of analytical tools, have laid important foun-

dations for feedback control theory. It is particularly advantageous if plants can be

represented by linear systems, for these rich tools can be readily exploited for control

design. However, the presence of constraints automatically renders the closed loop

system nonlinear, even if the unconstrained system is linear. To handle both state and

input constraints in linear systems, many techniques have been developed (see e.g.

[27, 54, 59, 63, 64, 106, 143, 175]), most of which are based on notions of set invariance

using Lyapunov analysis [11]. When dealing with the simplified problem of only input

constraints, many results have also been achieved [6, 24, 30, 89, 105, 163, 168, 169].

The benefit of dealing with linear systems is that positive invariant sets can be ob-

tained constructively.

Another approach is concerned with casting the problem under an optimization frame-

work, which is naturally suited for consideration of constraints. Model predictive con-

trol (MPC), also known as receding horizon control, is concerned with solving on-line

a finite horizon open-loop optimal control problem, subject to the system dynam-

ics and constraints (see [116] for an excellent overview), and can handle both linear

and nonlinear systems. Over the past few decades, MPC has enjoyed widespread
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1.1 Background and Motivation

popularity and success in industrial applications of process control, with thousands

of applications to date that range from chemical to aerospace industries [1]. While

linear MPC (i.e. based on linear models of system dynamics) is well established,

extension to the nonlinear setting comes with theoretical and computational chal-

lenges. Even though many elegant theoretical treatments have been developed, one

of the key concerns involve making the optimization algorithms efficient enough to be

implemented online, which can be a formidable task considering the possibility of en-

countering complex or high order nonlinear dynamics [1, 140]. When there is a need

to incorporate robustness to uncertainties, the computational complexity increases

even more significantly. Notwithstanding these technical difficulties, successful appli-

cations have been demonstrated [29, 115, 139].

To extend MPC schemes for tracking of arbitrary reference signals, reference governors

have been proposed [9, 10]. The main idea behind reference governors is to have a

controller that provide desirable closed loop properties when constraints are neglected,

and then modulate the reference signal, which feeds the controller, in such a way as

to avoid any violation of system constraints (see e.g. [52, 53]). An early version for

linear constrained systems was presented in [53], while a recent generalized version

for nonlinear constrained systems was proposed in [52]. For implementation, online

optimization algorithms for computing the reference signals are needed. Related to

the idea of reference signal modification, an extremum seeking control design has been

proposed in [28], with online generation of set points that minimize an uncertain cost

function subject to state constraints.

Different from the above-mentioned methods, one can use Barrier Lyapunov Functions

(BLFs) to tackle the issue of constraint, which avoids the need for explicit solutions

of the system by virtue of being a Lyapunov based control design methodology. For

the great majority of works in the literature, the constructed Lyapunov functions

are radially unbounded, for global stability, or at least well-defined over the entire

domain. In contrast to this convention, the BLF-based method exploits the property

that the value of the barrier function approaches infinity whenever its arguments

approach certain limits. The design of barrier functions in Lyapunov synthesis has

been proposed for constraint handling in Brunovsky-type systems [121]. In their

backstepping procedure, the cancelation of cross coupling terms in the Lyapunov
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function derivative is avoided. Instead, the control gains are carefully chosen to

dominate the cross coupling terms. The advantage of this approach is that the control

effort is potentially reduced, since the control law does not contain the cross coupling

terms that may exhibit large growth rate.

Inspired by the use of barrier functions, it is of interest to investigate and generalize

their use for more complex classes of constrained nonlinear systems, which include

strict feedback systems, pure feedback systems, mechanical systems, among others.

There is also a need to obtain results that remove the need for prior assumptions on

the states satisfying some constraints, as an improvement over [121]. Additionally, no

attempts have been made for constrained systems with uncertainty using BLF based

control design.

1.1.4 Control of MEMs

The advent of microelectromechanical systems (MEMs) technology, which allows for

micro-scale devices to be batch-produced and processed at low costs, has ignited an

interest in how to control these devices effectively to achieve greater precision and

speed of response. Electrostatic microactuators have gained widespread acceptance

in MEMs applications, due to the simplicity of their structure, ease of fabrication,

and the favorable scaling of electrostatic forces into the micro domain.

One of the main problems associated with uni-directional electrostatic actuation with

open loop voltage control is the pull-in instability, a saddle node bifurcation phenom-

enon wherein the movable electrode snaps through to the fixed electrode once its

displacement exceeds a certain fraction (typically 1/3) of the full gap. This places a

severe limit on the operating range of electrostatic actuators. To overcome this prob-

lem, closed loop voltage control with position feedback was proposed to stabilize any

point in the gap [25]. An alternative approach, which involves the passive addition

of series capacitor, has been found to extend the range of travel without any active

feedback control circuitry [23, 150]. Another method is based on charge feedback to

stabilize the dynamics of the electrical subsystem, which leads to the stabilization

of the minimum phase mechanical subsystem [118, 149]. More advanced nonlinear

control techniques have been investigated in [179], including flatness-based control,
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Control Lyapunov Function (CLF) synthesis, and backstepping control. In [110], dif-

ferent static and dynamic output feedback control laws have been investigated and

compared, including input-output linearization, linear state feedback, feedback pas-

sivation, and charge feedback schemes. Under a geometric framework, control for a

general class of electrostatic MEMs has been proposed in [111].

Electrostatic micro-actuators with bi-directional drive are less prone to pull-in insta-

bility due to the fact that they can be actively controlled in both directions, unlike

uni-directional drive actuators where only passive restoring force is provided by me-

chanical stiffness in one direction. Although less challenging as a theoretical control

design problem, the study of micro-actuators with bi-directional drive is nevertheless

important since its controllability is an advantage in high performance applications.

Open loop control schemes, based on oscillatory switching input, have been pro-

posed in [124, 161] to overcome pull-in instability and extend operation range for

bi-directional parallel plate actuators. Recently, the comparative advantages and

disadvantages between simple open loop and closed loop control strategies for elec-

trostatic comb actuators with bi-directional drive have been studied [15].

In most of the works on MEMs control, knowledge of model parameters is required

and typically estimated through offline system identification methods. However, in-

consistencies in bulk micromachining result in variation of parameters across pieces,

and may require extensive efforts in parameter identification, with higher costs. Fur-

thermore, some of the parameters, such as the damping constant, are usually difficult

to identify accurately, so a viable alternative is to rely on adaptive feedback control

for online compensation of parametric uncertainties.

There has been relatively few works in the literature on application of adaptive tech-

niques in MEMs. Adaptive control has been applied in MEMs gyroscopes to com-

pensate for non-ideal coupling effects between the vibratory modes [99, 130, 154].

Another work dealt with electrostatic microactuators by utilizing position, velocity,

and acceleration information, to estimate, adaptively, parameters in the inverse model

of the system nonlinearities [132].

However, in the above works on adaptive techniques of MEMs, explicit consideration

of constraints has been neglected in control design, but instead, control parameters
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have been chosen to ensure constraint satisfaction via simulations and experiments.

With the need to avoid electrode contact for certain continuous tracking operations

of electrostatic microactuators, together with the presence of model uncertainties,

it is important to design adaptive controllers for electrostatic microactuators with

consideration of position constraints. This is a theoretically challenging task, in view

of the need to contain the effects of the transient adaptation dynamics and rely on

position feedback only.

1.2 Objectives, Scope, and Structure of the Thesis

The general objectives of the thesis are to develop constructive and systematic meth-

ods of designing adaptive controllers for constrained nonlinear systems, to show sys-

tem stability, and to obtain performance bounds of the states in the closed-loop

systems. In particular, we focus on the tracking problem for nonlinear systems in

strict feedback form with output and state constraints, motivated by the fact that

many practical systems are subjected to constraints in the form of physical stoppages,

saturation, or performance and safety specifications, which must not be violated.

Additionally, uncertainties in the plant are to be accommodated in the control design

via adaptive techniques. Not only is the class of linearly parameterized uncertain

nonlinearities considered, but general uncertain nonlinearities with known bounded

estimates within a compact region of interest are also dealt with. Control gain func-

tions preceding the control input and the virtual controls are not restricted to the

unity case, but may also contain uncertainties that need to be compensated for.

Furthermore, the practical relevance of the proposed control design method is to be

illustrated. We investigate the effectiveness of the proposed control for single degree-

of-freedom uncertain electrostatic microactuators with bi-directional drive. For this

application study, the control objective is to track a reference trajectory within the

air gap without any physical contact between the electrodes, i.e. position constraint.

Besides problem-oriented objectives as outlined above, we also endeavor to formal-

ize the notion of Barrier Lyapunov Functions in a technically rigorous framework
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and motivate their use in constructive, systematic control design that ensures non-

transgression of constraints in nonlinear systems. Although the use of barrier func-

tions to prevent excursions of variables from a region of interest is not a particularly

new idea, as noted by their applications in constrained optimization problems and

multi-agent collision avoidance algorithms, a formal treatment of barrier functions in

Lyapunov synthesis is currently lacking, and it is the aim of this thesis to reduce this

gap.

The thesis is organized as follows. After the introduction, Chapter 2 gives the math-

ematical preliminaries and design tools for tracking control of uncertain constrained

nonlinear systems. We define notions of continuity, differentiability, and smoothness,

as well as the classes of systems considered in this thesis, namely the strict feedback

form, parametric strict feedback form, and parametric output feedback form. For

completeness, concepts of Lyapunov stability and analysis are discussed. Key techni-

calities underlying the use of Barrier Lyapunov Functions for constraint satisfaction

are exposed. Following that, we explore three motivating examples on low order

systems to elucidate the benefits and procedure of design.

In Chapter 3, we start with the simplest case where only the output is constrained, and

with known control gain functions, we employ backstepping design with BLF in the

first step, and quadratic functions in the remaining steps. It is shown that asymptotic

output tracking is achieved without violation of constraint, and all closed loop signals

remain bounded, under a mild restriction on the initial output. Besides the nominal

case where full knowledge of the plant is available, we also tackle scenarios wherein

parametric uncertainties are present. Furthermore, we explore the use of asymmetric

Barrier Lyapunov Functions as a generalized approach that relaxes the restriction on

the initial output.

Chapter 4 extends investigations to the case of full state constraints by employing

BLFs in every step of backstepping design. It is shown that state constraints cannot

be arbitrarily specified, but are subject to feasibility conditions on the initial states

and control parameters, which, if satisfied, guarantee asymptotic output tracking

without violation of state constraints. These conditions can be relaxed when handling

only partial state constraints. We provide a comparison study which shows that

BLFs require less conservative initial conditions than quadratic Lyapunov functions
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in preventing violation of constraints.

Chapter 5 considers the presence of uncertainty in the control gain functions, and

employs domination design instead of the foregoing cancelation based approaches.

Within this framework, sufficient conditions that prevent violation of constraints, are

established to accommodate stability analysis in the practical sense. When dealing

with full state constraints, we show that practical output tracking is achieved subject

to feasibility conditions on the initial states and control parameters. Additionally,

we show that, for the special case of output constraint with linearly parameterized

nonlinearities, practical output tracking is achieved without any feasibility conditions.

In Chapter 6, we consider, as an application study, single degree-of-freedom uncertain

electrostatic microactuators with bi-directional drive, wherein the control objective is

to track a reference trajectory within the air gap without any physical contact between

the electrodes. Besides the state feedback case, for which the foregoing method for

dealing with output constraint can be applied, we also tackle the output feedback

problem, and employ adaptive observer backstepping based on asymmetric BLF to

ensure asymptotic output tracking without violation of output constraint.

Finally, Chapter 7 concludes the contributions of the thesis and makes recommenda-

tion on future research work.
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Chapter 2

Design Tools and Preliminaries

2.1 Introduction

In this chapter, we describe in detail the mathematical preliminaries, useful techni-

cal lemmata, and design tools for tracking control of uncertain constrained nonlinear

systems, which will be used throughout this thesis. We formally define notions of

continuity, differentiability, and smoothness, as well as the classes of systems consid-

ered in this thesis, namely the strict feedback form, parametric strict feedback form,

and parametric output feedback form. For completeness, concepts of Lyapunov sta-

bility and analysis are discussed. Most importantly, we introduce formally the notion

of Barrier Lyapunov Functions and motivate, through examples for low order sys-

tems, their use in control design that ensures non-transgression of output and state

constraints.

2.2 Mathematical Preliminaries

For the convenience of the reader, this section provides a brief review of the notions of

continuity, differentiability, and smoothness, as well as presents a formal description

of the classes of systems considered in this thesis, namely the strict feedback form,

parametric strict feedback form, and parametric output feedback form. The material
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covered in this section are largely borrowed from the references [94, 42].

Definition 1 [42] A function f : Rn → Rm is said to be continuous at a point x if

f(x + δx) → f(x) whenever ‖δx‖ → 0. Equivalently, f is continuous at x if, given

ε > 0, there is δ > 0 such that

‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε (2.1)

A function f is continuous in a set S if it is continuous at every point of S, and it

is uniformly continuous in S if given ε > 0, there is δ(ε) > 0 (dependent only on ε),

such that (2.1) holds for all x, y ∈ S.

Definition 2 [42] A function f : R → R is said to be differentiable at a point x if

the limit

df

dx
:= lim

δx→0

f(x + δx)− f(x)
δx

(2.2)

exists. A function f : Rn → Rm is continuously differentiable at a point x (in a set

S) if the partial derivatives ∂fi
∂xj

exist and are continuous at x (at every point of S)

for i = 1, ..., m, j = 1, ..., n.

Definition 3 [90] A function f : Rn → Rm is said to be continuously differentiable

of order k, or Ck, if

Daf :=
∂a1

∂xa1
1

∂a2

∂xa2
2

· · · ∂an

∂xan
n

f (2.3)

exists and is continuous for all points (x1, x2, ..., xn) in Rn, and all non-negative

integers a1, a2, ..., an satisfying
∑n

i=1 ai ≤ k.

Definition 4 [90] A smooth, or C∞, function f : Rn → Rm is one that is Ck for

every positive k.

Property 2.2.1 For any continuous function f(x) : Rn → R, if x belongs to a

compact set Ωx ⊂ Rn, there exists a positive constant F such that |f(x)| ≤ F .

Definition 5 [42] A square matrix A ∈ Rn×n is said to be
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• positive definite (denoted by A > 0) if xTAx > 0,∀x ∈ Rn, x 6= 0, or if for

some β > 0, xTAx ≥ βxT x = β‖x‖2 for all x;

• positive semi-definite (denoted by A ≥ 0) if xTAx ≥ 0,∀x ∈ Rn;

• negative semi-definite if −A is positive semi-definite;

• negative definite if −A is positive definite;

• symmetric if AT = A;

• skew-symmetric if AT = −A; and

• symmetric positive definite (semi-definite) if A > 0(≥ 0) and A = AT .

The classes of systems considered in this thesis include the strict feedback form,

parametric strict feedback form, and parametric output feedback form, which are

defined in the following. For completeness and relevance of discussion, the class of

output feedback systems is also described herewith.

Definition 6 [94] A system is said to be in strict feedback form if it can be described

by differential equations of the following form:

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, ..., n− 1

ẋn = fn(x) + g(x)u (2.4)

where fi(·), gi(·) are smooth functions, xi ∈ R, i = 1, ..., n, are the states, x̄i =

[x1, x2, ..., xi]T , x = [x1, x2, ..., xn]T , and u ∈ R is the input.

Definition 7 [94] A system is said to be in parametric strict feedback form if it can

be described by differential equations of the following form:

ẋi = xi+1 + θT ϕi(x̄i), i = 1, ..., n− 1

ẋn = g(x)u + θT ϕn(x) (2.5)

where θ ∈ Rl is a vector of unknown constant parameters, ϕi(·), g(·) are smooth func-

tions, xi ∈ R, i = 1, ..., n, are the states, x̄i = [x1, x2, ..., xi]T , x = [x1, x2, ..., xn]T ,

and u ∈ R is the input.
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Definition 8 [94] A system is said to be in output feedback form if it can be described

by differential equations of the form:

ẋi = xi+1 + ϕi(y), i = 1, ..., ρ− 1

ẋj = xj+1 + ϕj(y) + bj−ρβ(y)u, j = ρ, ..., n− 1

ẋn = ϕn(y) + bn−ρβ(y)u

y = x1 (2.6)

where b0, ..., bn−ρ are constant parameters, ϕi(·), β(·) are smooth functions, xi ∈ R,

i = 1, ..., n, are the states, u ∈ R and y ∈ R are the input and output, respectively.

Definition 9 [94] A system is said to be in parametric output feedback form if it can

be described by differential equations of the form:

ẋi = xi+1 + ϕ0,i(y) +
p∑

k=1

θkϕk,i(y), i = 1, ..., ρ− 1

ẋj = xj+1 + ϕ0,j(y) +
p∑

k=1

θkϕk,j(y) + bj−ρβ(y)u, j = ρ, ..., n− 1

ẋn = ϕ0,n(y) +
p∑

k=1

θkϕk,n(y) + bn−ρβ(y)u,

y = x1 (2.7)

where θ1, ..., θρ and b0, ..., bn−ρ are unknown constant parameters, ϕi,j(·), β(·) are

smooth functions, xi ∈ R, i = 1, ..., n, are the states, u ∈ R and y ∈ R are the input

and output respectively.

Interested readers are referred to [68, 94, 114] for differential geometric conditions

under which there exists diffeomorphisms that transform general nonlinear systems

into one or more of the above canonical representations.

2.3 Lyapunov Stability Analysis

Lyapunov’s direct method is an important tool in the analysis (and control design)

for nonlinear systems. It provides a means of determining stability of an equilibrium
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without the need for explicit knowledge of system solutions, by constructing a Lya-

punov function, and then analyzing the properties of its time derivative. We briefly

review below some well-known notions and tools in Lyapunov stability analysis, bor-

rowed from the references [5, 84, 94, 42, 156], which are important to the results

presented in this thesis.

Definition 10 [94] A continuous function γ : [0, a) → R+ is said to belong to class

K if it is strictly increasing and γ(0) = 0. It is said to belong to class K∞ if a = ∞
and γ(r) →∞ as r →∞.

Definition 11 [42] A continuous function V (x, t) : Rn × R+ → R is

• locally positive definite if there exists a class K function α(·) such that

V (x, t) ≥ α(‖x‖) (2.8)

for all t ≥ 0 and all x in a neighborhood N of the origin of Rn;

• positive definite if N = Rn;

• (locally) negative definite if −V is (locally) positive definite; and

• (locally) decrescent if V is (locally) positive definite and there exists a class K
function β(·) such that

V (x, t) ≤ β(‖x‖) (2.9)

for all t ≥ 0 and all x in Rn (in a neighborhood N of the origin of Rn).

Definition 12 [42] Given a continuously differential function V (x, t) : Rn×R+ → R,

together with a system of differential equations

ẋ = f(x, t) (2.10)

the derivative of V along the trajectories of the system is

V̇ =
dV (x, t)

dt
=

∂V (x, t)
∂t

+
[
∂V (x, t)

∂x

]
f(x, t) (2.11)
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Definition 13 [84] With respect to the system

ẋ = f(x, t), x(0) = x0 (2.12)

where x ∈ Rn and t ∈ [0,∞), a set M ⊆ Rn is positively invariant if, for every

x(0) ∈M, we have x(t) ∈M ∀t ≥ 0.

The following theorem provides conditions for the origin to be a stable equilibrium,

and presents a clear exposition of the notion of Lyapunov function. Since the condi-

tions are only sufficient, no conclusion on the stability or instability can be drawn if

a particular choice of Lyapunov candidate does not meet the conditions on V̇ .

Theorem 2.3.1 [42] (Lyapunov Theorem) Given the non-linear dynamic system

ẋ = f(x, t), x(0) = x0 (2.13)

with an equilibrium point at the origin, and let N be a neighborhood of the origin,

e.g.. N = {x : ‖x‖ ≤ ε}, with ε > 0, then, the origin is

• stable in the sense of Lyapunov if, for all x ∈ N , there exists a positive definite

scalar function V (x, t) such that V̇ (x, t) ≤ 0;

• uniformly stable if, for all x ∈ N , there exists a positive definite and decrescent

scalar function V (x, t) such that V̇ (x, t) ≤ 0;

• asymptotically stable if there exists a positive definite scalar function V (x, t)

such that V̇ (x, t) < 0 for all x ∈ N , x 6= 0;

• globally asymptotically stable if there exists a positive definite and radially un-

bounded scalar function V (x, t) such that V̇ (x, t) < 0 for all x ∈ Rn, x 6= 0;

• uniformly asymptotically stable if there exists a positive definite and decrescent

scalar function V (x, t) such that V̇ (x, t) < 0 for all x ∈ N , x 6= 0;

• globally uniformly asymptotically stable if there exists a positive definite, decres-

cent and radially unbounded scalar function V (x, t) such that V̇ (x, t) < 0 for all

x ∈ Rn, x 6= 0;
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2.3 Lyapunov Stability Analysis

• exponentially stable if there exist positive constants α, β, and γ such that, for

all x ∈ N , α‖x‖2 ≤ V (x, t) ≤ β‖x‖2 and V̇ (x, t) ≤ −γ‖x‖2;

• globally exponentially stable if there exist positive constants α, β, and γ such

that, for all x ∈ Rn, α‖x‖2 ≤ V (x, t) ≤ β‖x‖2 and V̇ (x, t) ≤ −γ‖x‖2.

Lyapunov analysis is a powerful tool that is not restricted to the analysis of sys-

tem stability only, but can also be extended to design controllers that attribute, to

the closed loop systems, desirable stability properties, via the concept of Control

Lyapunov Functions (CLFs), which is formalized in the following definition.

Definition 14 [5, 94] A positive definite C1 function V : D → R+, defined on a

neighborhood D of the origin, is called a Control Lyapunov Function for the system

ẋ = f(x, u), x ∈ D ⊆ Rn, u ∈ U ⊆ R, f(0, 0) = 0 (2.14)

if the following inequality holds

inf
u∈U

{
∂V (x)

∂x
f(x, u)

}
< 0, ∀x 6= 0 (2.15)

For global stabilization, a useful property of V (x) is radial unboundedness, with D
chosen as Rn and U as R. Note that there exist many Lyapunov functions for the same

system. Depending on the system of interest, specific choices of Lyapunov functions

may yield more precise results than others. The task of selecting a Lyapunov function

candidate, followed by the design of the control law that renders the derivative of the

candidate function negative semidefinite along the system trajectories, is, in general,

non-trivial. Different choices of Lyapunov functions may result in different forms of

controller, with correspondingly different performance. Further, even if a stabilizing

control law exists, we may fail to find it due to an ill-chosen Lyapunov function

candidate.

Lemma 2.3.1 [156] (Barbalat’s Lemma)

Consider a differentiable function h(t). If limt→∞ h(t) is finite and ḣ is uniformly

continuous, then limt→∞ ḣ(t) = 0.
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2.3 Lyapunov Stability Analysis

Throughout the thesis, the above lemma is useful for establishing asymptotic con-

vergence of signals to zero via analysis of continuity properties of the derivative

of the Lyapunov function candidate in the closed loop. In particular, the result

limt→∞ ḣ(x(t)) = 0 will allow us to draw important conclusions on the asymptotic

properties of the signal x(t).

We present the existence and uniqueness theorem for ordinary differential equations

below. This will be used to prove the subsequent lemma for Barrier Lyapunov Func-

tions.

Lemma 2.3.2 Existence and Uniqueness of Solution [158, p.476 Theorem 54]

Consider the initial value problem

ξ̇ = h(t, ξ(t)), ξ(σ0) = z0 (2.16)

where ξ(t) ∈ Z ⊆ Rn. Assume that h : I × Z → Rn, where Z ⊆ Rn is open and

I ⊆ R is an interval, satisfies the assumptions:

h(·, z) : I → Rn is measurable for each fixed z (2.17)

h(t, ·) : Z → Rn is continuous for each fixed t (2.18)

and the following two conditions also hold:

1. h is locally Lipschitz on z: that is, there are for each z0 ∈ Z a real number

ρ > 0 and a locally integrable function c : I → R+ such that the ball Bρ(z0) of

radius ρ centered at z0 is contained in Z and

‖h(t, z)− h(t, z∗)‖ ≤ c(t)‖z − z∗‖ (2.19)

for each t ∈ I and z, z∗ ∈ Bρ(z0).

2. h is locally integrable on t; that is, for each fixed z0 there is a locally integrable

function b : I → R+ such that

‖h(t, z0)‖ ≤ b(t) (2.20)

for almost all t.

22



2.4 Barrier Lyapunov Functions

Then, for each pair (σ0, z0) ∈ I ×Z there is some nonempty subinterval J ⊆ I open

relative to I and there exists a solution ξ of (2.16) on J , with the following property:

If ζ : J → Z is any other solution of (2.16), where J ′ ⊆ J and ξ = ζ on J ′. The

solution ξ is called the maximal solution of the initial-value problem in the interval

I.

With the additional condition that the solution is bounded, the following lemma

establishes that the solutions is defined for all time.

Lemma 2.3.3 [158, p.481 Proposition C.3.6] Assume that the hypothesis of Lemma

2.3.2 hold and that in addition it is known that there is a compact subset K ⊆ Z such

that the maximal solution ξ of (2.16) satisfies ξ(t) ∈ K for all t ∈ J . Then

J = [σ0, +∞)
⋂
I (2.21)

that is, the solution is defined for all times t > σ0, t ∈ I.

2.4 Barrier Lyapunov Functions

The idea of barrier functions as a means of preventing excursions of variables from a

region of interest is not new, and has been a useful tool in constrained optimization

problems, where they are used in the cost function to penalize proximity with the

boundary of the feasible region [8, 123, 133, 134, 135]. In addition, this idea has

also been adopted in the field of robotics, particularly for the problem of collision

avoidance, in the form of artificial potential field functions which grow to singularities

when the inter-object distance is less than a prescribed value [31, 40, 41, 100, 125,

141, 160, 165].

Motivated by these approaches, we explore the use of barrier functions in Lyapunov

synthesis that will pave the way for the development of a systematic control design

method for nonlinear constrained systems. When used in this context, we aptly

name them Barrier Lyapunov Functions, and they are characterized by the property

of growing to infinity when the function arguments approach certain limiting values.

23



2.4 Barrier Lyapunov Functions

0 0

   

z1

(a) (b)

kb1
-kb1

V1 V1

z1
-ka1

kb1

Figure 2.1: Schematic illustration of symmetric (left) and asymmetric (right) barrier
functions.

The key principle is that by ensuring boundedness of the BLFs in the closed loop, we

also ensure that the constraints are not transgressed.

To this end, we introduce the formal definition of Barrier Lyapunov Functions.

Definition 15 A Barrier Lyapunov Function is a scalar function V (x), defined with

respect to the system ẋ = f(x) on an open region D containing the origin, that is

continuous, positive definite, has continuous first-order partial derivatives at every

point of D, has the property V (x) → ∞ as x approaches the boundary of D, and

satisfies V (x(t)) ≤ b ∀t ≥ 0 along the solution of ẋ = f(x) for x(0) ∈ D and some

positive constant b.

General forms of barrier functions V1(z1) in Lyapunov synthesis satisfy V1(z1) → ∞
as z1 → −ka1 or z1 → kb1 . They may be symmetric (ka1 = kb1) or asymmetric

(ka1 6= kb1), as illustrated in Figure 2.1. Asymmetric barrier functions are more

general than their symmetric counterparts, and thus can offer more flexibility for

control design to obtain better performance. However, they are considerably more

difficult to construct analytically, and to employ for control design.
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2.4 Barrier Lyapunov Functions

The existence of a BLF for a system guarantees the stability of the equilibrium at the

origin, and that D is a positively invariant region. The following lemma formalizes

this notion for general forms of barrier functions, and is used in the control design

and analysis for strict feedback system with output constraint in Chapter 3.

Lemma 2.4.1 For any positive constants ka1 , kb1, let Z1 := {z1 ∈ R : −ka1 < z1 <

kb1} ⊂ R and N := Rl ×Z1 ⊂ Rl+1 be open sets. Consider the system

η̇ = h(t, η) (2.22)

where η := [w, z1]T ∈ N is the state, and the function h : R+ × N → Rl+1 satisfies

conditions (2.17)-(2.20). Suppose that there exist functions U : Rl → R+ and V1 :

Z1 → R+, continuously differentiable and positive definite in their respective domains,

such that

V1(z1) →∞ as z1 → −ka1 or z1 → kb1 (2.23)

γ1(‖w‖) ≤ U(w) ≤ γ2(‖w‖) (2.24)

where γ1 and γ2 are class K∞ functions. Let V (η) := V1(z1)+U(w), and z1(0) belong

to the set z1 ∈ (−ka1 , kb1). If the inequality holds:

V̇ =
∂V

∂η
h ≤ 0 (2.25)

then z1(t) remains in the open set z1 ∈ (−ka1 , kb1) ∀t ∈ [0,∞).

Proof: Since the right hand side of (2.22) satisfies the conditions (2.17)-(2.20), the

existence and uniqueness of the solution η(t) is ensured on the time interval [0, τmax)

by virtue of Lemma 2.3.2, taking σ0 = 0 without loss of generality. This implies that

V (η(t)) exists for t ∈ [0, τmax).

Since V (η) is positive definite and V̇ ≤ 0, we know that V (η(t)) ≤ V (η(0)) for

t ∈ [0, τmax). From V (η) := V1(z1) + U(w) and the fact that V1(z1) is a positive

function, it is clear that V1(z1(t)) is also bounded for t ∈ [0, τmax). Consequently, we

know, from (2.23), that |zi| 6= kb1 and |zi| 6= −ka1 . Given that −ka1 < z1(0) < kb1 , it

can be concluded that z1(t) remains in the set −ka1 < z1 < kb1 for t ∈ [0, τmax).
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2.4 Barrier Lyapunov Functions

Therefore, there is a compact subset K ⊆ N such that the maximal solution of (2.22)

satisfies η(t) ∈ K for all t ∈ [0, τmax). As a direct consequence of Lemma 2.3.3,

we have that η(t) is defined for all t ∈ [0,∞). It follows that z1(t) ∈ (−ka1 , kb1)

∀t ∈ [0,∞).

Remark 2.4.1 In Lemma 2.4.1, we split the state variable into z1 and w, where

z1 is the state to be constrained, and w are the free states, along with the adaptive

parameters if adaptive control is involved. The constrained state z1 requires the use

of a barrier function V1 to prevent it from reaching the limits −ka1 and kb1. The free

states require the use of Lyapunov function candidates in the usual sense, i.e. defined

over the entire state space, a common choice being quadratic functions.

Note that Lemma 2.4.1 involves only one BLF, based on the fact that for the output

constraint problem, only one BLF is required to contain the output within the region

of interest. The following lemma generalizes this result to deal with the problem of

state constraints in strict feedback system (Chapter 4), and involve more than one

BLF.

Lemma 2.4.2 For any positive constant kb1, let Z := {z ∈ Rn : |zi| < kb1 , i =

1, 2, ..., n} ⊂ Rn, Zi := {zi ∈ R : |zi| < kb1} ⊂ R, i = 1, ..., n, and N := Rl×Z ⊂ Rn+l

be open sets. Consider the system

η̇ = h(t, η) (2.26)

where η := [w, z]T ∈ N is the state, and the function h : R+ × N → Rn+l satis-

fies conditions (2.17)-(2.20). Suppose that there exist functions U : Rl → R+ and

Vi : Zi → R+, i = 1, ..., n, continuously differentiable and positive definite in their

respective domains, such that

Vi(zi) →∞ as zi → ±kb1 (2.27)

γ1(‖w‖) ≤ U(w) ≤ γ2(‖w‖) (2.28)

where γ1 and γ2 are class K∞ functions. Let V (η) :=
∑n

i=1 Vi(zi) + U(w), and zi(0)

belong to the set zi ∈ (−kb1 , kb1), i = 1, 2, ..., n. If the inequality holds:

V̇ =
∂V

∂η
h ≤ 0 (2.29)
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2.4 Barrier Lyapunov Functions

then zi(t) remains in the open set zi ∈ (−kb1 , kb1) ∀t ∈ [0,∞).

Proof: First, using Lemma 2.3.2, existence and uniqueness of the solution η(t) is

ensured for t ∈ [0, τmax). This implies that V (η(t)) exists for t ∈ [0, τmax). Then,

from the fact that V̇ (η) ≤ 0, we know that every Vi(zi(t)), i = 1, 2, ..., n, is bounded

for t ∈ [0, τmax). Thus, zi(t) remains in the set |zi| < kb1 for t ∈ [0, τmax). We infer

that η(t) remains in a compact subset K ⊆ N for all t ∈ [0, τmax). Based on Lemma

2.3.3, we conclude that η(t) is defined for all t ∈ [0,∞), and that zi(t) ∈ (−kb1 , kb1)

∀t ∈ [0,∞).

0

  

√

c/κ
√

c/κ−√

kb− kb

z

Vb

V̇bVV < 0V̇bVV < 0 V̇b > 0

Figure 2.2: Schematic illustration of Barrier Lyapunov Function, Vb, and regions in
which V̇b ≤ 0, based on the inequality V̇b ≤ −κz2 + c and condition κ > c/k2

b .

In Lemmata 2.4.1 and 2.4.2, non-violation of constraint is ensured with the con-

dition that the derivative of the composite Lyapunov function is negative semidef-

inite, i.e. V̇ ≤ 0. In the following result, we relax this condition to V̇ ≤ 0 for

(z, w) ∈ Ωzw := {z ∈ Rn, w ∈ Rr| ‖z‖ ≤ d1, ‖w‖ ≤ d2}, such that non-violation

of constraint can still be guaranteed under some conditions on Ωzw. This result is
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2.4 Barrier Lyapunov Functions

useful in establishing conditions for practical stability with guaranteed non-violation

of constraints, as detailed in Chapter 5.

Lemma 2.4.3 For any positive constant kb1, let Z := {z ∈ Rn : |zi| < kb1 , i =

1, 2, ..., n} ⊂ Rn, Zi := {zi ∈ R : |zi| < kb1} ⊂ R, i = 1, ..., n, and N := Rl×Z ⊂ Rn+l

be open sets. Consider the system

η̇ = h(t, η) (2.30)

where η := [w, z]T ∈ N is the state, and the function h : R+ × N → Rn+l satis-

fies conditions (2.17)-(2.20). Suppose that there exist functions U : Rl → R+ and

Vi : Zi → R+, i = 1, ..., n, continuously differentiable and positive definite in their

respective domains, such that

Vi(zi) →∞ as zi → ±kb1 (2.31)

γ1(‖w‖) ≤ U(w) ≤ γ2(‖w‖) (2.32)

where γ1 and γ2 are class K∞ functions. Let V (η) :=
∑n

i=1 Vi(zi) + U(w), and zi(0)

belong to the set zi ∈ (−kb1 , kb1), i = 1, 2, ..., n. If the inequality holds:

V̇ =
∂V

∂η
h ≤ −

n∑

i=1

κiz
2
i − ς‖w‖2 + c (2.33)

where κi > c/k2
bi

and c, ς are positive constants, then zi(t) remains in the open set

zi ∈ (−kb1 , kb1) ∀t ∈ [0,∞).

Proof: Existence and uniqueness of the solution η(t) of system (2.30), in the interval

t ∈ [0, τmax), is ensured with the help of Lemma 2.3.2. From (2.33), it is clear that

V̇ ≤ 0 whenever ‖w‖ ≥
√

c/ς and |zi| ≥
√

c/κi, for i = 1, 2, ..., n. The condition

κi > c/k2
bi

ensures that there exists a non-empty set

Ω = {z ∈ Rn :
√

c/κi ≤ |zi| < kbi , i = 1, 2, ..., n} (2.34)

in which V̇ ≤ 0. For illustrative purposes, Figure 2.2 shows such a set for a simplified

case. Then, due to the fact that V (η) is a positive function, we can show that it is

upper bounded by the positive constant

Vb := V (η)|{|zi|=
√

c/κi, ‖w‖=
√

c/ς} (2.35)
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if V (η(0)) ≤ Vb, and bounded by V (η(0)) if V (η(0)) > Vb. As Vi(zi) and U(w) are

positive functions, and since V (η) is bounded, we infer that each Vi(zi(t)) is also

bounded for t ∈ [0, τmax). Due to the fact that Vbi(zi) → ∞ as |zi| → kb1 , we have

that |zi(t)| 6= kb1 . Hence, if |zi(0)| < kb1 , then |zi(t)| < kb1 for all t ∈ [0, τmax).

As a result, η(t) belongs to a compact subset K ⊆ N for all t ∈ [0, τmax). Then,

based on Lemma 2.3.3, we have τmax = ∞, such that η(t) exists for all t ∈ [0,∞),

and hence, |zi(t)| < kb1 for all t ∈ [0,∞).

The following lemma will be useful for computing the bounds of stabilizing func-

tions αi within a compact set to check the sufficient conditions for the case of state

constraints.

Lemma 2.4.4 For any positive constants κi and kbi, the following inequality holds

for all zi in the interval |zi| ≤ kbi:

|(k2
bi
− z2

i )κizi| ≤ 2
3
√

3
κik

3
bi

(2.36)

Proof: Denote pi(zi) := (k2
bi
− z2

i )κizi. The maximum value of pi(zi) in the interval

|zi| ≤ kbi is obtained at the stationary points or the boundary points.

The stationary points of pi(zi) are obtained from the equation:

dpi

dzi
= κi(k2

bi
− 3z2

i ) = 0 (2.37)

which yields zi =
kbi√

3
and zi = −kbi√

3
, both of which lies within the interval |zi| ≤ kbi .

The corresponding values of pi(zi) at these stationary points are, respectively:

pi =
2

3
√

3
κik

3
bi

and pi = − 2
3
√

3
κik

3
bi

(2.38)

At the boundary points |zi| = ±kbi , we have that

pi = 0 (2.39)

Taking into account both stationary and boundary points, it is clear that

|pi| ≤ 2
3
√

3
κik

3
bi

(2.40)
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and thus, inequality (2.36) holds.

For clarity of presentation, we outline the method of employing BLF to design a con-

trol that does not violate constraints, for first and second order systems as motivating

examples. Comparisons with QLFs are provided to show the relative advantage of

BLFs in terms of less conservative initial condition requirements for systems with

order greater than one. Since the main purpose of these examples is to motivate the

use of BLFs, and for the sake of simplicity, we do not consider the presence of uncer-

tainties. In subsequent chapters, the control design based on adaptive techniques for

arbitrary n-order systems in strict feedback form will be detailed.

2.4.1 First Order SISO System

For simplicity, consider the following first order system:

ẏ = f(y) + g(y)u (2.41)

where f(y) and g(y) are known smooth functions, u ∈ R, and the output y ∈ R is

required to satisfy |y| < kc, with kc being a positive constant. Denote, by z = y− yd,

the tracking error, with yd(t) as the desired trajectory satisfying |yd| ≤ A0. To design

a control that does not drive y out of the interval (−kc, kc), we employ the following

BLF candidate, originally proposed in [121]:

V =
1
2

log
k2

b

k2
b − z2

(2.42)

where kb = kc −A0 denotes the constraint on z, that is, we require |z| < kb. As seen

from the schematic illustration of V (z) in Figure 2.1a, the BLF escapes to infinity at

|z| = kb. It can be shown that V is positive definite and C1 in the open set |z| < kb,

and thus a valid Lyapunov function candidate. The derivative of V is given by

V̇ =
dV

dz
ż =

zż

k2
b − z2

=
z(f(y) + g(y)u− ẏd)

k2
b − z2

(2.43)

for which the design of control

u =
1

g(y)
(−f(y)− (k2

b − z2)κz + ẏd) (2.44)
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where κ > 0 is a constant, yields V̇ = −κz2. Since V̇ ≤ 0, it can be shown that

V (t) < V (0) ∀t > 0. According to (2.42), we know that for V (t) to be bounded,

it has to be true that |z(t)| 6= kb. Therefore, the tracking error z remains in the

region |z(t)| < kb, for all initial conditions |z(0)| < kb. Based on the fact that

y(t) = z(t) + yd(t), and that |z(t)| < kb and yd(t) ≤ A0, it is clear that the output

y(t) remains in the region |y| < kc ∀t > 0.

It is interesting to note, for the first order case, that by employing QLFs, we can

similarly ensure that the output constraint is satisfied, provided that the initial output

satisfies some condition. Specifically, if we consider the Lyapunov function candidate

V = 1
2z2, and the control u = 1

g(y)(−f(y) − κz + ẏd), we obtain that V̇ ≤ 0. Thus,

|z(t)| ≤ |z(0)| ∀t > 0, and, in order to ensure that |z(t)| < kb, it suffices to impose the

initial condition |z(0)| < kb. We can see that the condition is the same regardless of

whether the BLF or the QLF is used, although the control laws are slightly different.

However, for systems of order 2 and above, it will be apparent that employing BLFs

results in less conservative initial conditions.

2.4.2 Second Order SISO System

Consider the second order system in strict feedback form:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)u

y = x1 (2.45)

where f1(x1), f2(x1, x2) g1(x1) and g2(x1, x2) are smooth functions, u ∈ R is the

control input, y ∈ R is the output, and x1, x2 ∈ R are the states, with y(t) required

to satisfy |y(t)| < kc1 for all t ≥ 0, with kc1 being a positive constant. We employ

backstepping design as follows.

Step 1 Define the error coordinates z1 = y − yd and z2 = x2 − α1, where α1 is a

stabilizing function to be designed. To design a control that does not drive y out

of the interval |y| < kc1 , we choose the following BLF candidate in the first step of
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backstepping:

V1 =
1
2

log
k2

b1

k2
b1
− z2

1

(2.46)

where kb1 = kc1 −A0. A schematic illustration of V1(z1) is shown in Figure 2.1a. The

derivative of V1 is given by

V̇1 =
z1ż1

k2
b1
− z2

1

=
z1(f1 + g1(z2 + α1)− ẏd)

k2
b1
− z2

1

(2.47)

Designing the stabilizing function α1 as follows:

α1 =
1
g1

(−f1 − (k2
b1 − z2

1)κ1z1 + ẏd) (2.48)

where κ1 > 0 is a constant, yields the following expression for the z1 dynamics:

ż1 = −(k2
b1 − z2

1)κ1z1 + g1z2 (2.49)

The derivative of V1 can be rewritten as

V̇1 = −κ1z
2
1 +

g1z1z2

k2
b1
− z2

1

(2.50)

with the coupling term g1z1z2

k2
b1
−z2

1
to be canceled in the subsequent step.

As a brief digression, observe that the second term of (2.48), (k2
b1
−z2

1)κ1z1, is designed

to cancel the denominator k2
b1
− z2

1 in the derivative of V1, (2.47), so as to obtain the

term −κ1z
2
1 in (2.50), which is crucial since it is negative semidefinite for all z1 ∈ R,

independent of any condition on z1. If we were to design the α1 as the following

function:

α∗1 =
1
g1

(−f1 − κ1z1 + ẏd) (2.51)

then it would yield

V̇1|α1=α∗1 =
−κ1z

2
1

k2
b1
− z2

1

+
g1z1z2

k2
b1
− z2

1

(2.52)

where the term −κ1z2
1

k2
b1
−z2

1
is negative only if |z1| < kb1 . This restriction would preclude

the use of Lemma 2.4.1 after the final step to assert that |z1(t)| < kb1 ∀t > 0.
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Step 2 Denote z3 = x3 − α2, where α2 is a stabilizing function to be designed.

Since x2 does not need to be constrained, we choose Lyapunov function candidate by

augmenting V1 with a quadratic function as follows

V2 = V1 +
1
2
z2
2 (2.53)

The derivative of V2 along the closed loop trajectories is given by

V̇2 = −κ1z
2
1 +

g1z1z2

k2
b1
− z2

1

+ z2(f2 + g2u− α̇1) (2.54)

where α̇1 is given by

α̇1 =
∂α1

∂x1
(f1 + x2) +

1∑

j=0

∂α1

∂y
(j)
d

y
(j+1)
d (2.55)

The stabilizing function α2 is designed as follows:

u =
1
g2

(
−f2 + α̇1 − κ2z2 − g1z1

k2
b1
− z2

1

)
(2.56)

where κ2 > 0 is constant, and the last term on the right hand side is designed to

cancel the residual coupling term g1z1z2

(k2
b1
−z2

1)
left over from the first step. Hence, it can

be obtained that

ż2 = −κ2z2 − g1z1

k2
b1
− z2

1

(2.57)

Then, the derivative of V2 can be rewritten as

V̇2 = −
2∑

i=1

κiz
2
i (2.58)

Based on the above expression, the following discussions and insights on the properties

of the control and closed loop system are in order.

• Output Constraint Satisfaction

Let the closed loop system (2.49) and (2.57) be written as ż = h(t, z), where

z := [z1, z2]T . The right hand side h(·, ·) is locally integrable in t and locally

Lipschitz in z ∈ Z := {z ∈ R2 : |z1| < kb1}. In fact, it satisfies the conditions

(2.17)-(2.20) for the existence and uniqueness of the solution z(t). Together
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2.4 Barrier Lyapunov Functions

with the fact that V̇2 ≤ 0, we infer, from Lemma 2.4.1, that the error signal z1

satisfies |z1(t)| < kb1 ∀t > 0, provided that

|z1(0)| < kb1 (2.59)

This can be intuitively understood by noting that since V2 is positive definite and

V̇2 ≤ 0, it is implied that V2 is bounded ∀t > 0. Because V2 is bounded, we know

that |z1| 6= kb1 . Given that |z1(0)| < kb1 , and that z1(t) is continuous, it can be

concluded that |z1(t)| < kb1 , ∀t > 0. Then, it is straightforward to show, from

y(t) = z1(t)+ yd(t), |z1(t)| < kb1 , and |yd(t)| ≤ A0, that |y(t)| < kb1 +A0 = kc1 .

Thus, the output constraint will never be violated.

• Bounded Control

From (2.56), it can be seen that there is a concern of u becoming unbounded

whenever |z1| = kb1 . However, we have established that, in the closed loop, the

error signal |z1(t)| will never reach kb1 ∀t > 0. As a result, despite the presence of

terms comprising (k2
b1
− z2

1) in the denominator, the control u remains bounded

for all time.

• Comparison With QLF Based Design

By carefully choosing the initial conditions, it is possible to design backstepping

control using QLFs to ensure that the output does not violate its constraint.

The question that naturally arises is this:

Can the control design based on QLFs meet the output constraint

with the same, if not more relaxed, initial condition requirements than

those based on BLFs?

The answer is negative, as we will demonstrate. Specifically, the initial condi-

tion requirement is more stringent when QLFs are employed. If we consider

Lyapunov function candidate V = 1
2

∑2
i=1 z2

i , and the following backstepping

control

α1 =
1
g1

(−f1 − κ1z1 + ẏd)

u =
1
g2

(−f2 − κ2z2 − g1z1 + α̇1) (2.60)
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2.4 Barrier Lyapunov Functions

it can be shown that V̇ ≤ −ρV , where ρ = 2min{κ1, κ2}, which implies ex-

ponential stability, i.e., ‖z(t)‖ ≤ ‖z(0)‖e−ρt, ∀t > 0. However, if we were

to use the initial condition requirement (2.59), then exponential stability is

insufficient to ensure that |z1(t)| < kb1 , as illustrated in Figure 2.3. Even

though the norm of the vector z(t) diminishes with time, the individual element

z1(t) may still increase and possibly exceed the region (−kb1 , kb1). Noting that

|z1(t)| ≤ ‖z(t)‖ ≤ ‖z(0)‖, we know that a sufficient condition for |z1(t)| < kb1 is

‖z(0)‖ < kb1

⇒ |z1(0)| <
√

k2
b1
− z2

2(0) (2.61)

Compared with (2.59), it is apparent that employing BLFs results in less con-

servative initial conditions. Another disadvantage is that the initial condition

requirement (2.61) depends on the stabilizing function α1, due to its depen-

dence on z2, and thus restrict the control parameter selection. Although we

have only shown the second order case, systems with order greater than two are

also subject to the same limitation when backstepping control, based on QLFs,

is employed.

• Design Principle

Although the specific form of Barrier Lyapunov Function (2.46) that we employ

in this study is similar to that in [121], there is a difference in the way the

control is designed. According to the design methodology of [121], applied to

system (2.45) for ease of discussion, cancelation of the residual coupling term
g1z1z2

k2
b1
−z2

1
, in the derivative of V1, is avoided. Instead, completion of squares is

used to separate it into two terms, namely 1
2

g1z2
1

k2
b1
−z2

1
and 1

2
g1z2

2

k2
b1
−z2

1
. Then, based

on the conditions that |z1(t)| < kb1 and |z2(t)| < kb2 , ∀t > 0, where kb1 , kb2 are

positive constants, the control gains are designed to dominate the two square

terms, such that the Lyapunov function derivative is negative semidefinite in

the set {|z1| < kb1 , |z2| < kb2}. In contrast, our method accommodates the

cancelation of coupling terms, which involve partial derivatives of the BLF.

Thus, the control directly inherits the properties of the BLF.
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2.4 Barrier Lyapunov Functions

z2

( z1(t), z2(t) ) 

( z1(t+ t), z2(t+ t) ) 
||z(t)||

||z(t+ t)||

increase of z1

z1

Figure 2.3: Exponential stability does not guarantee non-violation of constraint

2.4.3 MIMO Mechanical Systems

In the foregoing discussions, we dealt with the output constraint problem for first

and second order SISO nonlinear systems, so as to elucidate the main ideas of using

BLFs as a convenient design tool for handling system constraints. This section further

provides an exposition on how to deal with the full state constraint problem for second

order nonlinear systems. As a brief departure from SISO systems, which constitute

the systems of interest in this thesis, we provide some insights into how the design tool

of BLFs can be applied to a class of multi-input multi-output (MIMO) mechanical

systems with constraint on the norm of the position vector.

Consider a class of fully-actuated mechanical system described by:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ

y = q (2.62)

where M(q) ∈ Rn×n is a symmetric positive definite matrix, C(q, q̇)q̇ ∈ Rn are the

Coriolis and centrifugal forces, G(q) ∈ Rn are the restoring forces and/or gravity,

q ∈ Rn is the position vector, τ ∈ Rn is the control input, and y ∈ Rn is the output.

For ease of control design, denote q1 = q, q2 = q̇, and rewrite (2.62) into the following
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2.4 Barrier Lyapunov Functions

form suitable for backstepping:

q̇1 = q2

q̇2 = M−1(q1)(−C(q1, q2)q2 −G(q1) + τ)

y = q1 (2.63)

The control objective is to ensure that q1 tracks a desired trajectory qd while keeping

all closed loop signals bounded and preventing the position and velocity constraints

from being violated. In other words, the position q is required to remain in the set

‖q‖ ≤ kc1 , and the velocity q̇ in the set ‖q̇‖ ≤ kc2 , with kc1 and kc2 being positive

constants. We make the assumption that the desired trajectory qd(t) is smooth, i.e.

‖q̇d‖ < Q1, ‖q̈d‖ < Q2, where Q1, Q2 are positive constants. In addition, it is bounded

by ‖qd(t)‖ ≤ A0, where A0 is a positive constant that satisfies A0 < kc1 .

We follow a similar design procedure as that outlined in the second order SISO ex-

ample, but in the second step of backstepping, another BLF is employed rather than

a quadratic one. Another difference lies in a slight modification of the BLFs that

involves the quadratic terms of the error vector, instead of the square term of the

scalar error in the SISO case.

Step 1 Denote z1 = q1 − qd and z2 = q2 − α1, where α1 is a stabilizing function to

be designed shortly. Choose a Lyapunov function candidate as:

V1 =
1
2

log
k2

b1

k2
b1
− zT

1 z1
(2.64)

where kb1 = kc −A0. The derivative is given by

V̇1 =
zT
1 ż1

k2
b1
− zT

1 z1
=

zT
1 (z2 + α1 − q̇d)

k2
b1
− zT

1 z1
(2.65)

Design the stabilizing function α1 as:

α1 = −(k2
b1 − zT

1 z1)κ1z1 + q̇d (2.66)

which yields

ż1 = z2 − (k2
b1 − zT

1 z1)κ1z1 (2.67)
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2.4 Barrier Lyapunov Functions

Therefore, the derivative of V1 along the closed loop trajectories can be written as

V̇1 = −κ1‖z1‖2 +
zT
1 z2

k2
b1
− zT

1 z1
(2.68)

where the first term on the right hand side is negative definite and the second term

is eliminated in the second step.

Step 2 The control input τ is designed in this step. Let the Lyapunov function

candidate be

V2 = V1 +
1
2

log
k2

b1

k2
b1
− zT

2 M(q1)z2
(2.69)

The derivative of V1 along the closed loop trajectories is given by

V̇2 = V̇1 +
zT
2

k2
b1
− zT

2 M(q1)z2
[−C(q1, q2)(z2 + α1)−G(q1) + τ −M(q1)α̇1

+
1
2
Ṁ(q1, q2)z2]

= V̇1 +
zT
2

k2
b1
− zT

2 M(q1)z2
[−C(q1, q2)α1 −G(q1) + τ −M(q1)α̇1

+
1
2
(Ṁ(q1, q2)− 2C(q1, q2))z2] (2.70)

Due to skew symmetric property of Ṁ(q1, q2)− 2C(q1, q2) [48], the last term is zero,

thereby yielding

V̇2 = −κ1‖z1‖2 +
zT
2

k1
b2
− zT

2 M(q)z2
[−C(q1, q2)α1 −G(q1) + τ −M(q1)α̇1]

+
zT
1 z2

k2
b1
− zT

1 z1
(2.71)

Design the control input τ as

τ = (k2
b1 − zT

2 Mz2)κ2z2 −
(k2

b1
− zT

2 Mz2)z1

k2
b1
− zT

1 z1
+ C(q1, q2)α1 + G(q1) + M(q1)α̇1

(2.72)

where the derivative of α1(q1, qd, q̇d) is given by

α̇1 =
∂α1

∂q1
q2 +

1∑

j=0

∂α1

∂q
(j)
d

q
(j+1)
d (2.73)
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2.4 Barrier Lyapunov Functions

Thus, it is obtained that

V̇2 = −κ1‖z1‖2 − κ2‖z2‖2 (2.74)

which clearly implies that V2 is bounded ∀t > 0. Since V2 is bounded, we know

that ‖z1‖ 6= kb1 . From the fact that ‖z1(0)‖ < kb1 , and that z1(t) is continuous, it

can be concluded that ‖z1(t)‖ < kb1 , ∀t > 0. Then, it is straightforward to show,

from q1(t) = z1(t) + qd(t) and ‖qd(t)‖ ≤ A0, that ‖q1(t)‖ < kb1 + A0 = kc1 . Thus,

transgression of the position constraint is safely prevented.

We can follow similar arguments to establish that the error vector z2(t) is also con-

strained in the region ‖z2‖ < kb1 provided that ‖z2(0)‖ < kb1 . However, before we

can conclude that the velocity signal q2(t) is constrained within ‖q2‖ < kc2 via the

relationship q2(t) = z2(t)+α1(t), we need to show that there exists a positive constant

A1 satisfying the condition

kc2 > A1 + kb1 ≥ sup ‖α1(t)‖+ kb1 (2.75)

If the above condition is satisfied, then ‖q2(t)‖ ≤ kb1 + A1 < kc2 .

From the expression of α1 in (2.66), Lemma 2.4.4, and the fact that ‖q̇d‖ ≤ Q1, we

know that an upper bound for ‖α1‖ exists, and is given by:

‖α1‖ ≤ 2
3
√

3
κ1k

3
b1 + Q1 (2.76)

By defining the right hand side of the above inequality as A1, and then verifying,

if possible, that there indeed exist some values of κ1 such that condition (2.75) is

satisfied, we can guarantee that the velocity constraint can be met with the proposed

control. Note that the velocity constraint cannot be arbitrarily specified, but is

subject to the feasibility condition (2.75) on the control parameter κ1.
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Chapter 3

Control of Output-Constrained

Systems

3.1 Introduction

In this chapter, we generalize the use of BLFs for SISO nonlinear systems in strict

feedback form with output constraint and known control gain functions, motivated

by the fact that many practical systems are subject to constraints in the form of

physical stoppages, saturation, or performance and safety specifications, wherein vi-

olation of the constraints during operation may result in performance degradation,

hazards or system damage. Our method is based on constructing BLFs and keeping

them bounded in the closed loop, which thereby ensures that the barriers are not

transgressed. This is achieved by designing the control to render the derivative of the

Lyapunov function negative semidefinite.

Our design of stabilizing functions involve the canceling of cross coupling terms, with

post-design analysis revealing that the stabilizing functions remain bounded. This

is different from the approach undertaken in [121], where canceling of cross coupling

terms was avoided, but instead, control gains were carefully chosen to dominate them.

While [121] deals with systems in Brunovsky form, we consider the strict feedback

form with nonlinearities appearing in each differential equation. Moreover, we design
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3.2 Problem Formulation and Preliminaries

adaptive controllers to handle the presence of parametric uncertainty in the non-

linearities, while simultaneously preventing constraints from being violated. We also

propose novel asymmetrical BLFs for added flexibility in control design as well as per-

formance enhancement, and provide rigorous treatment of the issue of continuously

differentiable properties of the stabilizing functions. Furthermore, we provide com-

parison with QLFs, and show that they result in more conservative initial conditions

than those resulting from BLFs.

The remainder of this chapter is organized as follows. Section 3.2 introduces the

problem of tracking control for nonlinear strict feedback systems with constraint in the

output, with consideration of parametric uncertainties. In Sections 3.3-3.4, we present

the control design for the case of output constraints, considering full knowledge of

the plant dynamics as well as the presence of parametric uncertainties, based on

symmetric and asymmetric BLFs. To put the proposed methods based on BLFs

in perspective with conventional methods based on QLFs, a brief comparison study

is presented in Section 3.5, where it is shown that QLFs lead to more conservative

requirements on initial conditions. Finally, following the simulation study in Section

3.6 to demonstrate the effectiveness of the control, concluding remarks will be made

in Section 3.7.

3.2 Problem Formulation and Preliminaries

Consider the nonlinear system in strict feedback form:

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, 2, ..., n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1 (3.1)

where xi ∈ R, i = 1, 2, ..., n are the states, x̄i := [x1, x2, ..., xi]T , fi and gi are smooth

functions, u ∈ R and y ∈ R are the input and output respectively. We consider

the problem of output constraint, where the output is required to remain in the set

|y| ≤ kc1 , with kc1 a positive constant.
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3.3 Control Design

The nonlinear functions fi(x̄i) may be uncertain, in which case they satisfy the fol-

lowing linear-in-the-parameters (LIP) condition:

fi(x̄i) = θT ψi(x̄i), i = 1, ..., n (3.2)

where ψ1, ..., ψn are smooth functions, and θ ∈ Rl is a vector of uncertain parameters

satisfying ‖θ‖ ≤ θM with known positive constant θM .

The control objective is to track a desired trajectory yd while ensuring that all closed

loop signals are bounded and that the output constraint is not violated. Note that

the output constraint may not necessarily be a physical constraint, but can also be

associated with performance requirements.

Throughout this chapter, for notational convenience, we group the derivatives of the

desired trajectory in the vector ȳdi := [y(1)
d , y

(2)
d , ..., y

(i)
d ]T . The following assumptions

on the desired trajectory yd, as well as the control gain functions gi(·), i = 1, ..., n,

from (3.1), are in order.

Assumption 3.2.1 For any kc1 > 0, there exist positive constants Y 0, Y 0, A0, Y1,

Y2,..., Yn satisfying

max{Y 0, Y 0} ≤ A0 < kc1 (3.3)

such that the desired trajectory yd(t) and its time derivatives satisfy

−Y 0 ≤ yd(t) ≤ Y 0, |ẏd(t)| < Y1, |ÿd(t)| < Y2, · · · , |y(n)
d (t)| < Yn (3.4)

for all t ≥ 0.

Assumption 3.2.2 The control gain functions gi(·), i = 1, 2, ..., n, are known, and

there exists a positive constant g0 such that 0 < g0 ≤ |gi(·)|. Without loss of generality,

we further assume that the gi(·) are all positive.

3.3 Control Design

In this section, control design and analysis are presented, based on the fusion of

barrier functions, backstepping, and adaptive control techniques. We first consider
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3.3 Control Design

the case where the system model is known, and employ BLF to ensure that the

output remains constrained, along with stability and performance properties. In the

subsequent section which deals with the presence of parametric uncertainty, we show

that, by incorporating barrier function in adaptive backstepping design, the output

constraint is not violated at any time despite the presence of adaptation dynamics.

3.3.1 Known Case

First, we consider the case where the functions fi(x̄i) and gi(x̄i) are known. The

control design is based on backstepping, with BLF candidate employed in the first

step to impose constraint on the tracking error. Constraint on the output follows

from the bounds of the desired trajectory, and the constraint on the tracking error,

which is enforced through design. The remaining steps employ QLF candidates.

Since backstepping design has been well studied and mature, we shall omit the de-

tailed procedure for a concise presentation. Denote z1 = x1 − yd and zi = xi − αi−1,

i = 2, ..., n. The first two steps of the backstepping design are similar to that pre-

sented in Section 2.4.2 for second order strict feedback systems. From Step 3 onwards,

the design procedure is identical to the standard backstepping using QLFs.

By designing the stabilizing functions and control law as follows

α1 =
1
g1

(−f1 − (k2
b1 − z2

1)κ1z1 + ẏd) (3.5)

α2 =
1
g2

(
−f2 + α̇1 − κ2z2 − g1z1

k2
b1
− z2

1

)
(3.6)

αi =
1
gi

(−fi + α̇i−1 − κizi − gi−1zi−1), i = 3, ..., n (3.7)

u = αn (3.8)

where kb1 = kc1 −A0, κi > 0 is a constant, and α̇i−1 is given by

α̇i−1 =
i−1∑

j=1

∂αi−1

xj
(fj(x̄j) + gj(x̄j)xj+1) +

i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d , i = 2, ..., n

(3.9)
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3.3 Control Design

the closed loop system can be written as:

ż1 = −(k2
b1 − z2

1)κ1z1 + g1z2 (3.10)

ż2 = −κ2z2 − g1z1

k2
b1
− z2

1

+ g2z3 (3.11)

żi = −κizi − gi−1zi−1 + zi+1, i = 3, ..., n− 1 (3.12)

żn = −κnzn − gn−1zn−1 (3.13)

Consider the Lyapunov function candidate Vn composed by:

V1 =
1
2

log
kb1

k2
b1
− z2

1

(3.14)

Vi = Vi−1 +
1
2
z2
i , i = 2, ..., n (3.15)

The derivative of Vn along the closed loop tajectories can be rewritten as

V̇n = −
n∑

j=1

κjz
2
j ≤ 0 (3.16)

Let the closed loop system (3.10)-(3.13) be written as ż = h(t, z). The right hand side

h(t, z) is locally integrable in t and locally Lipschitz in z ∈ Z := {z ∈ Rn : |z1| < kb1}.
In fact, it satisfies the conditions (2.17)-(2.20) for the existence and uniqueness of the

solution z(t). Together with (3.16), we infer, from Lemma 2.4.1, that |z1(t)| < kb1

∀t > 0, provided that |z1(0)| < kb1 .

Remark 3.3.1 It is seen from (3.6) that there is a possibility of α2 becoming un-

bounded whenever z1 = kb1. Moreover, the propagation of the derivatives of α1, down

to the design of control u in the final step of backstepping, will result in even more

terms comprising (k2
b1
− z2

1) in the denominator. We address this issue in Theorem

3.3.1, where we formally show that, in the closed loop, under some restrictions on

the initial conditions, the error signal z1(t) never reaches kb1 ∀t > 0. As a result, the

stabilizing functions α2, ..., αn−1 and the control u does not become unbounded because

of the presence of terms comprising (k2
b1
− z2

1) in the denominator.

Theorem 3.3.1 Consider the closed loop system (3.1), (3.8) under Assumptions

3.2.1-3.2.2. If the initial conditions are such that z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |z1| <
kb1}, where z̄n := [z1, ..., zn]T , then the following properties hold.
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i) The signals zi(t), i = 1, 2, ..., n, remain in the compact set defined by

Ωz =
{

z̄n ∈ Rn : |z1| ≤ Dz1 , ‖z2:n‖ ≤
√

2Vn(0)
}

(3.17)

Dz1 = kb1

√
1− e−2Vn(0) < kb1 (3.18)

where zj:k := [zj , zj+1, ..., zk−1, zk]T .

ii) The output y(t) remains in the set Ωy := {y ∈ R : |y| ≤ Dz1 + A0 < kc1}
∀t > 0, i.e. output constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

Proof: The properties (i)− (iv) will be proved in sequence as follows.

i) Note, from V̇n ≤ 0, that Vn(t) ≤ Vn(0), which implies that:

1
2

log
k2

b1

k2
b1
− z2

1

≤ Vn(0) (3.19)

Taking exponentials on both sides of the inequality, it is easy to see that

k2
b1

k2
b1
− z2

1

≤ e2Vn(0) (3.20)

For |z1(0)| < kb1 , we have, from Lemma 2.4.1, that k2
b1
− z2

1(t) > 0 ∀ t. Multi-

plying both sides by (k2
b1
− z2

1) yields

k2
b1 ≤ e2Vn(0)(k2

b1 − z2
1) (3.21)

which leads to the inequality

|z1| ≤ kb1

√
1− e−2Vn(0) (3.22)

Similarly, from the fact that 1
2

∑n
j=2 z2

j ≤ Vn(0), it follows that ‖z2:n‖ ≤√
2Vn(0). Therefore, zi(t) remains in the compact set Ωz ∀ t > 0.
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ii) It is straightforward to show, from y(t) = z1(t)+ yd(t), |z1(t)| ≤ Dz1 < kb1 , and

|yd(t)| ≤ A0, that |y(t)| ≤ Dz1 + A0 < kb1 + A0 = kc1 . Hence, we conclude that

y(t) ∈ Ωy ∀t > 0.

iii) From V̇n ≤ 0 and Lemma 2.4.1, we know that the error signals z1(t), ..., zn(t) are

bounded. The boundedness of z1(t) and the reference trajectory yd(t) imply that

the state x1(t) is bounded. Together with the fact that ẏd(t) is bounded from

Assumption 3.2.1, it is clear that the stabilizing function α1(t) is also bounded

from (3.5). This leads to the boundedness of state x2(t) = z2(t) + α1(t). From

(3.17), we have that |z1(t)| ≤ Dz1 < kb1 ∀t > 0. Since α2 is a smooth function

of the bounded signals x̄2(t), z̄2(t), and ȳd2(t) in the interval z1 ∈ (−kb1 , kb1),

we know that α2(t) is bounded. This leads to the boundedness of the state

x3(t) = z3(t)+α2(t). Following this line of argument, we can progressively show

that each αi(t), for i = 3, ..., n − 1, is bounded, since it is a smooth function

of the bounded signals x̄i(t), z̄i(t), and ȳdi(t) in the interval z1 ∈ (−kb1 , kb1).

Thus, the boundedness of the state xi+1 = zi+1 +αi can be shown. Since x̄n(t),

z̄n(t) are bounded, and |z1(t)| ≤ Dz1 < kb1 , we conclude that control u(t) is

bounded. Hence, all closed loop signals are bounded.

iv) Based on (3.10), (3.11), (3.12), and (3.13), we write V̈n as:

V̈n = 2(k2
b1 − z2

1)κ
2
1z

2
1 + 2

n∑

j=2

κ2
jz

2
j +

2κ2g1z1z2

k2
b1
− z2

1

+ 2
n∑

j=3

κjgj−1zj−1zj

−2
n−1∑

j=1

κjgjzjzj+1

From the fact that xi, zi, i = 1, ..., n are bounded, and particularly |z1(t)| <

kb1 , it is obvious that V̈n(t) is bounded, which means that V̇n(t) is uniformly

continuous. Then, by Lemma 2.3.1 (Barbalat’s Lemma), zi(t) → 0 as t → ∞.

Since z1(t) = y(t)− yd(t), it is clear that y(t) → yd(t) as t →∞.

Remark 3.3.2 While our investigations focus on (3.14) as the BLF, this choice is

by no means unique. Any positive definite, C1 continuously differentiable function,

V1, which satisfies the condition V1(z1) → ∞ as z1 → ±kb1 is a valid candidate.
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3.3 Control Design

However, different choices of V1 result in different control designs with different per-

formances. An alternative to (3.14) which satisfies these conditions is the barrier

function V1 = kb1
π tan2( πz1

2kb1
), which yields different stabilizing functions in the first 2

steps of backstepping:

α1 =
1
g1

(
−f1 + ẏd −

κ1z
2
1 cos3( πz1

2kb1
)

sin( πz1
2kb1

)

)

α2 =
1
g2

(
−f2 + α̇1 − κ2z2 −

g1 sin( πz1
2kb1

)

cos3( πz1
2kb1

)

)
(3.23)

The remaining stabilizing functions and final control are of identical form to those

in the foregoing presentation, and can be shown to finally yield V̇n ≤ 0, from which

closed loop properties similar to those in Theorem 3.3.1 can be achieved. Throughout

this thesis, similar arguments may be made for the various cases considered.

Remark 3.3.3 Although we have established, in Theorem 3.3.1, the fact that all sig-

nals are bounded, there is a practical concern that the control u(t) may grow to a large

value when the term (k2
b1
− z1(t)2) becomes small. This can be viewed as a drawback

of the proposed method. Nevertheless, from (3.17)-(3.18), we know that a computable

bound for z1(t) can be obtained, which is dependent on the initial conditions zi(0),

i = 1, ..., n. Thus, by careful selection of the control parameters, it is possible to limit

the growth of the control signal within a desirable operating range.

3.3.2 Uncertain Case

In this section, we consider the system (3.1) in which the nonlinear functions fi(x̄i)

are uncertain, and satisfy the LIP condition (3.2). One advantage of Lyapunov based

backstepping designs is that it can be readily modified to accommodate parametric

uncertainty via well-established adaptive backstepping techniques. By employing

BLF in the first step of backstepping, we can guarantee asymptotic convergence

of output tracking error in the presence of parametric uncertainties, and, at the

same time, ensure that the output constraint is never violated, especially throughout

the transient stages of adaptation. Subsequent steps are still based on quadratic

Lyapunov functions.
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3.3 Control Design

Since adaptive backstepping design has been well studied and mature, we shall omit

giving a detailed step-by-step account of the procedure. Interested readers are referred

to [94]. Denote z1 = x1 − yd and zi = xi − αi−1, i = 2, ..., n. Consider the Lyapunov

function candidate Vn composed by:

V1 =
1
2

log
kb1

k2
b1
− z2

1

+
1
2
θ̃T Γ−1θ̃ (3.24)

Vi = Vi−1 +
1
2
z2
i , i = 2, ..., n (3.25)

where kb1 = kc1 − A0, Γ1 = ΓT
1 > 0 is constant matrix, and θ̃ := θ̂ − θ is the error

between θ and its estimate, θ̂. Note that Vn is positive definite and continuously

differentiable in the set |z1| < kb1 . The adaptive backstepping control is designed as

follows:

α1 =
1
g1

(−θ̂T w1 − (k2
b1 − z2

1)κ1z1 + ẏd) (3.26)

α2 =
1
g2


−θ̂T w2 − κ2z2 − g1z1

k2
b1
− z2

1

+
∂α1

∂x1
x2 +

1∑

j=0

∂α1

∂y
(j)
d

y
(j+1)
d +

∂α1

∂θ̂
Γτ2




(3.27)

αi =
1
gi


−θ̂T wi − κizi − gi−1zi−1 +

i−1∑

j=1

∂αi−1

xj
xj+1

+
i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d +

∂αi−1

∂θ̂
Γτi +

i−1∑

j=2

∂αj−1

∂θ̂
Γwizj


 , i = 3, ..., n (3.28)

w1 = ψ1(x1), wi = ψi(x̄i)−
i−1∑

j=1

∂αi−1

∂xj
ψj(x̄j) (3.29)

τ1 =
w1z1

k2
b1
− z2

1

, τi = τi−1 + wizi (3.30)

u = αn (3.31)
˙̂
θ = Γτn (3.32)

which yields the closed loop system

ż1 = −(k2
b1 − z2

1)κ1z1 + g1z2 − θ̃T ψ1(x1) (3.33)

ż2 = −κ2z2 − g1z1

k2
b1
− z2

1

+ g2z3 − θ̃T w2 +
∂α1

∂θ̂
(Γτ2 − ˙̂

θ) (3.34)
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3.3 Control Design

żi = −κizi − gi−1zi−1 + gizi+1 − θ̃T wi +
∂αi−1

∂θ̂
(Γτi − ˙̂

θ) +
i−1∑

j=2

∂αj−1

∂θ̂
Γwizj

(3.35)

żn = −κnzn − gn−1zn−1 − θ̃T wn +
∂αn−1

∂θ̂
(Γτn − ˙̂

θ) +
n−1∑

j=2

∂αj−1

∂θ̂
Γwnzj (3.36)

˙̃
θ = Γτn (3.37)

and the derivative of Vn along (3.33)-(3.37) as

V̇n = −
n∑

j=1

κjz
2
j (3.38)

Let the closed loop system (3.33)-(3.37) be written as η̇ = h(t, η), where η = [zT , θ̃T ]T .

The right hand side h(t, η) satisfies the conditions (2.17)-(2.20) in the open set η ∈
Z := {z ∈ Rn, θ̃ ∈ Rl : |z1| < kb1}. Thus, the existence and uniqueness of the solution

η(t) is ensured. Then, we infer from (3.38) and Lemma 2.4.1 that |z1(t)| < kb1 ∀t > 0,

provided that |z1(0)| < kb1 .

Theorem 3.3.2 Consider the closed loop system (3.1), (3.31), (3.32) under As-

sumptions 3.2.1-3.2.2. If the initial conditions are such that z̄n(0) ∈ Ωz0 := {z̄n ∈
Rn : |z1| < kb1}, where z̄n := [z1, z2, ..., zn]T , then the following properties hold.

i) The signals zi(t), i = 1, 2, ..., n, and θ̂(t) remain in the compact sets defined by

Ωz =
{

z̄n ∈ Rn : |z1| ≤ Dz1 , ‖z2:n‖ ≤
√

2V̄n

}
(3.39)

Ωθ̂ =

{
θ̂ ∈ Rl : ‖θ̂‖ ≤ θM +

√
2V̄n

λmin(Γ−1)

}
(3.40)

V̄n =
1
2

log
k2

b1

k2
b1
− z2

1(0)
+

1
2

n∑

j=2

z2
j (0) +

1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2

(3.41)

Dz1 = kb1

√
1− e−2V̄n < kb1 (3.42)

where zj:k := [zj , zj+1, ..., zk]T .

ii) The output y(t) remains in the set Ωy := {y ∈ R : |y| ≤ Dz1 + A0 < kc1}
∀t > 0, i.e. the output constraint is never violated.
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3.3 Control Design

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

Proof: The properties (i)− (iv) will be proved in sequence as follows.

i) From the fact that V̇n ≤ 0, it is clear that Vn(t) ≤ Vn(0). From (3.24) and the

fact that ‖θ‖ ≤ θM , we know that Vn(0) satisfies:

Vn(0) ≤ 1
2

log
k2

b1

k2
b1
− z2

1(0)
+

1
2

n∑

j=2

z2
j (0) +

1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2

= V̄n (3.43)

which implies that

1
2

log
k2

b1

k2
b1
− z2

1

≤ V̄n

⇒ k2
b1

k2
b1
− z2

1

≤ e2V̄n (3.44)

For |z1(0)| < kb1 , we have, from Lemma 2.4.1, that k2
b1
− z2

1(t) > 0 ∀ t. Thus,

we obtain

k2
b1 ≤ e2V̄n(k2

b1 − z2
1) (3.45)

which leads to the inequality

|z1| ≤ kb1

√
1− e−2V̄n (3.46)

Similarly, from the fact that 1
2

∑n
j=2 z2

j ≤ V̄n(0), we easily show that ‖z2:n‖ ≤√
2V̄n. Therefore, we obtain that zi(t) remains in the compact set Ωz ∀ t > 0.

Furthermore, from the fact that Vn(t) ≤ Vn ≤ V̄n(0), we have that

1
2
θ̃T Γ−1θ̃ ≤ V̄n

⇒ 1
2
λmin(Γ−1)‖θ̂ − θ‖2 ≤ V̄n (3.47)

It is straightforward to show that ‖θ̂‖ ≤ θM +
√

2V̄n
λmin(Γ−1)

such that θ̂ remains

in the compact set Ωθ̂ ∀ t, thus proving (i).
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3.3 Control Design

ii) It is straightforward to show, from y(t) = z1(t)+ yd(t), |z1(t)| ≤ Dz1 < kb1 , and

|yd(t)| ≤ A0, that |y(t)| < kb1 + A0 = kc1 . Hence, we conclude that y(t) ∈ Ωy

∀t > 0.

iii) From V̇n ≤ 0 and Lemma 2.4.1, we know that the error signals z1(t), ..., zn(t),

θ̃(t) are bounded. Since θ is constant, we have that θ̂(t) is bounded. The

boundedness of z1(t) and the reference trajectory yd(t) imply that the state x1(t)

is bounded. Together with the fact that ẏd(t) is bounded from Assumption 3.2.1,

it is clear that α1(t) is also bounded from (3.26). This leads to boundedness of

the state x2(t) = z2(t) + α1(t). From (3.39), we have that |z1(t)| ≤ Dz1 < kb1 .

Since α2 is a smooth function of the bounded signals x̄2(t), z̄2(t), ȳd2(t), and

θ̂(t) in the set z1 ∈ (−kb1 , kb1), we know that α2(t) is bounded. This leads to

boundedness of the state x3(t) = z3(t)+α2(t). Following this line of argument,

we can progressively show that each αi(t), for i = 1, ..., n− 1, is bounded, since

it is a smooth function of the bounded signals x̄i(t), z̄i(t), ȳdi
(t), and θ̂(t) in

the set z1 ∈ (−kb1 , kb1). Thus, the boundedness of state xi+1 = zi+1 + αi can

be shown. Since x̄n(t), z̄n(t), ȳdn(t), and θ̂(t) are bounded, and |z1(t)| < kb1 ,

we conclude that control u(t) is bounded. Hence, all closed loop signals are

bounded.

iv) Lastly, to show that y(t) → yd(t) as t → ∞, note, from (3.33), (3.34), (3.35),

and (3.36), that V̈n can be computed as follows:

V̈n = 2(k2
b1 − z2

1)κ
2
1z

2
1 + 2

n∑

j=2

κ2
jz

2
j +

2κ2z1z2

k2
b1
− z2

1

+ 2
n∑

j=3

κjgj−1zj−1zj

−2
n−1∑

j=1

κjgjzjzj+1 + 2
n∑

j=1

θ̃T wjκjzj −
n∑

j=2

∂αj−1

∂θ̂
Γ(τj − τn)κjzj

−2
n−1∑

k=3

k−1∑

j=2

∂αj−1

∂θ̂
Γwkκkzkzj (3.48)

From the fact that θ̂, xi, zi, i = 1, ..., n are bounded, and particularly |z1(t)| ≤
kb1 , it can be shown that ωj and τj are bounded. As a result, V̈n(t) is bounded,

which means that V̇n(t) is uniformly continuous. Then, by Barbalat’s Lemma,

we obtain that zi(t) → 0 as t →∞. Since z1(t) = x1(t)−yd(t) and y(t) = x1(t),

it is clear that y(t) → yd(t) as t →∞.
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3.4 Asymmetric Barrier Lyapunov Function

Remark 3.3.4 For robustness to unmodeled dynamics, the adaptation law ˙̂
θ = Γτn

may be modified by leakage terms or projection operators, which are commonly em-

ployed in robust adaptive control designs [42, 66]. However, a leakage term in the

adaptation law destroys the closed loop asymptotic tracking property so that only prac-

tical tracking within a neighborhood of the reference trajectory is achievable.

3.4 Asymmetric Barrier Lyapunov Function

Asymmetric barrier functions include symmetric ones as a special class, and thus

are, in this sense, more general. To achieve greater flexibility in control design and

to relax conditions on starting values of the output, asymmetric barrier functions

can be employed. This can be understood by noting that an additional parameter

ka1 , where ka1 6= kb1 , is now available for consideration in the control design to keep

the closed loop tracking error z1(t) constrained ∀t > 0. Consequently, it allows the

possible relaxation of ka1 , independent of kb1 , and vice versa, subject to the upper

and lower bounds of the desired trajectory yd.

In the following, we first present the design procedure and results for the case of

known systems, and then only state the results for the adaptive case.

Step 1 Denote z1 = x1 − yd and z2 = x2 − α1, where α1 is a stabilizing function to

be designed. Choose an asymmetric BLF candidate as:

V1 =
1
p
q(z1) log

kp
b1

kp
b1
− zp

1

+
1
p
(1− q(z1)) log

kp
a1

kp
a1 − zp

1

(3.49)

where p is an even integer satisfying p ≥ n, the function q(·) : R → {0, 1} is defined

by

q(•) =

{
1, if • > 0

0, if • ≤ 0
(3.50)

and

ka1 = kc1 − Y 0, kb1 = kc1 − Y 0 (3.51)

are positive constants representing the constraints in the z1 state space, given by

−ka1 < z1 < kb1 , induced from the constraints in the x1 state space, given by |x1| <
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3.4 Asymmetric Barrier Lyapunov Function

kc1 . For clarity of presentation, a schematic illustration of V1(z1) is shown in Figure

2.1b. Throughout this chapter, for ease of notation, we abbreviate q(z1) by q, unless

otherwise stated.

Remark 3.4.1 For symmetric BLF candidates, p = 2 is sufficient. However, for the

asymmetric ones, we need an even integer p ≥ n. The reason will be apparent in Step

2, where the stabilizing function α2 needs to cancel the residual coupling term from

the first step. Following the backstepping procedure, to ensure that α2 is n− 1 times

differentiable, we choose p ≥ n.

Lemma 3.4.1 The Lyapunov function candidate V1(z1) in (3.49) is positive definite

and C1 in the open interval z1 ∈ (−ka1 , kb1).

Proof: For ease of analysis, we rewrite V1 into the following form:

V1(z1) =





1
p log

kp
b1

kp
b1
−zp

1
, 0 < z1 < kb1

1
p log kp

a1

kp
a1
−zp

1
, −ka1 < z1 ≤ 0

(3.52)

It is easy to see that, for −ka1 < z1 < kb1 , we have that V1(z1) ≥ 0 and that V1(z1) = 0

if and only if z1 = 0, thus implying that V1(z1) is positive definite. Additionally, we

have that the right and left limits are identical, that is,

lim
z1→0+

1
p

log
kp

b1

kp
b1
− zp

1

= lim
z1→0−

1
p

log
kp

a1

kp
a1 − zp

1

= 0 (3.53)

leading to the fact that V1(z1) is continuous in z1 ∈ (−ka1 , kb1).

The function V1 is piecewise smooth within each of the two intervals z1 ∈ (−ka1 , 0]

and z1 ∈ (0, kb1). Thus, to show that V1 is a C1 function, we need only to show that

limz1→0
dV1
dz1

is identical from both directions. For 0 < z1 < kb1 , we have

lim
z1→0+

dV1

dz1
= lim

z1→0+

zp−1
1

kp
b1
− zp

1

= 0 (3.54)

Similarly, for −ka1 < z1 ≤ 0, we obtain that

lim
z1→0−

dV1

dz1
= lim

z1→0−

zp−1
1

kp
a1 − zp

1

= 0 (3.55)
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3.4 Asymmetric Barrier Lyapunov Function

Hence, we conclude that V1(z1) is C1 continuously differentiable.

From (3.49), the derivative of V1 along the closed loop trajectories is given by

V̇1 =

(
q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
zp−1
1 (f1 + g1(z2 + α1)− ẏd) (3.56)

from which we can choose the virtual control as

α1 =
1
g1

[
−f1 −

(
q(kp

b1
− zp

1) + (1− q)(kp
a1
− zp

1)
)

κ1z
m
1 + ẏd

]
(3.57)

with κ1 being a positive constant, and m any odd integer satisfying

m ≥ max{3, n} (3.58)

The integer m has to be odd in order to yield a negative semidefinite term −κ1z
m+p−1
1

in (3.60). Since n ≥ 2 for system (3.1) considered in this thesis (the case n = 1 is

trivial), it means that m must be at least 3. Consequently, we obtain the following:

ż1 = −
(
q(kp

b1
− zp

1) + (1− q)(kp
a1
− zp

1)
)

κ1z
m
1 + g1z2 (3.59)

The derivative of V1 along (3.59) can be rewritten as

V̇1 = −κ1z
m+p−1
1 +

(
q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
g1z

p−1
1 z2 (3.60)

where the first term is always non-positive and the second term will be canceled in

the subsequent step.

Step 2 Denote z3 = x3−α2, where α2 is a stabilizing function to be designed. Choose

the Lyapunov function candidate as V2 = V1 + 1
2z2

2 and the stabilizing function as:

α2 =
1
g2

[
−f2 − κ2z2 + α̇1 −

(
q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
g1z

p−1
1

]
(3.61)

which yields

ż2 = −κ2z2 −
(

q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
g1z

p−1
1 + g2z3 (3.62)

Then, the derivative of V2 along (3.62) is given by

V̇2 = −κ1z
m+p−1
1 − κ2z

2
2 + g2z2z3 (3.63)
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3.4 Asymmetric Barrier Lyapunov Function

where the coupling term g2z2z3 will be canceled in the subsequent step.

Steps 3, ..., n From Step 3 onwards, the design procedure is identical to standard

adaptive backstepping, and the stabilizing functions and control are given by

αi =
1
gi

(−fi + α̇i−1 − κizi − gi−1zi−1), i = 3, ..., n (3.64)

u = αn (3.65)

yielding the closed loop system

żi = −κizi − gi−1zi−1 + zi+1, i = 3, ..., n− 1 (3.66)

żn = −κnzn − gn−1zn−1 (3.67)

Control design with asymmetric BLFs is more involved as compared with its symmet-

ric counterpart. In general, it is not a trivial task to provide an analytical construct

for an asymmetric barrier function that is continuously differentiable and approaches

infinity at two different points. A straightforward approach, as we have undertaken,

is to assemble piecewise defined functions. The challenge therein lies in not only

ensuring that the barrier function be continuously differentiable, but also that the

stabilizing functions have the required differentiability properties for the final control

law to be well-defined.

According to the backstepping methodology, α1 needs to be differentiated n−1 times

before appearing in the final control law. In general, αi needs to be differentiable at

least n− i times. A further requirement in our approach is that α̇n−1 is continuous,

so as to preserve the continuity of the control signal and of the closed loop signals.

As such, α1 must be at least a Cn−1 function. Due to the presence of the switching

function q(z1), the stabilizing function α1 in (3.57) is designed to contain the mth

power of z1, where m ≥ max{3, n}, so as to ensure that its derivative α
(1)
1 , ..., α

(n−1)
1 ,

which will be used in the design of the control law in the subsequent steps, are

continuous, as will be shown in Lemma 3.4.2. On the other hand, if we let m = 1

and design the stabilizing function as

α1 =
1
g1

[−f1 −
(
q(kp

b1
− zp

1) + (1− q)(kp
a1
− zp

1)
)

κ1z1 + ẏd] (3.68)
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then it can be checked that

∂α1

∂z1
=

{
−κ1

g1
(kp

b1
− (p + 1)zp

1), z1 > 0

−κ1
g1

(kp
a1 − (p + 1)zp

1), z1 < 0
(3.69)

Since limz1→0+
∂α1
∂z1

6= limz1→0−
∂α1
∂z1

, it is clear that α1 is not even C1, leading to the

fact that α̇1 is discontinuous at z1 = 0.

In step 2 of backstepping, we have seen that α2 also contains the switching function

q(z1) in order to cancel the residual coupling term from the first step. As a result,

it is essential that the associated z1 term has an order of at least n − 1 to ensure

that α2 is Cn−2. If p = 2 irregardless of n, then it is easy to verify that the resulting

stabilizing function

α2 =
1
g2

[−f2 − κ2z2 + α̇1 −
(

q

k2
b1
− z2

1

+
1− q

k2
a1
− z2

1

)
g1z1] (3.70)

is not even C1. However, with p ≥ n, α2 is at least Cn−2 in the interval z1 ∈
(−ka1 , kb1), as will be shown shortly. The remaining stabilizing functions α3, ..., αn−1

are in standard form as derived from backstepping, and will be Cn−i provided that

α1 and α2 are, respectively, Cn−1 and Cn−2 in z1 ∈ (−ka1 , kb1). The following lemma

and proof provides a formal treatment of this point.

Lemma 3.4.2 Each stabilizing function αi(x̄i, z̄i, ȳdi), i = 1, ..., n − 1, as described

in (3.57), (3.61) and (3.7), is at least Cn−i in the interval z1 ∈ (−ka1 , kb1).

Proof: First, we establish that α1 and α2 are, respectively, at least Cn−1 and Cn−2

in z1 ∈ (−ka1 , kb1). Then, these two facts imply that αi is at least Cn−i. In the

following, it is understood that z1 belongs to the interval z1 ∈ (−ka1 , kb1), and we

shall not repeat it every time.

To prove that α1(x1, z1, ẏd) is Cn−1, we need to prove that the (n−1)th order partial

derivatives exist, and are continuous. Note that (3.57) can be split into three parts

as follows

α1(x1, z1, ẏd) = α1,a(x1) + α1,b1(x1)α1,b2(z1) + α1,c(ẏd) (3.71)
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where α1,a := −f1(x1)
g1(x1) , α1,b1 := − κ1

g1(x1) , α1,b2 := [q(kp
b1
−zp

1)+(1−q)(kp
a1−zp

1)]z
m
1 , and

α1,c := ẏd
g1(x1) . Since α1,a(x1), α1,b1(x1) and α1,c(ẏd) are obviously Cn−1 functions,

our task is reduced to proving that α1,b2(z1) is Cn−1. To this end, note that

α1,b2 =

{
(kp

b1
− zp

1)z
m
1 , 0 < z1 < kb1

(kp
a1 − zp

1)z
m
1 , −ka1 < z1 ≤ 0

(3.72)

The function α1,b2 is piecewise Cm−1 with respect to z1 over the two intervals z1 ∈
(−ka1 , 0) and z1 ∈ (0, kb1). Thus, to show it is Cm−1 for −ka1 < z1 < kb1 , we need

only to show that

lim
z1→0+

dm−1α1,b2

dzm−1
1

= lim
z1→0−

dm−1α1,b2

dzm−1
1

(3.73)

Taking the piecewise derivative of (3.72), we are able to obtain the following:

dm−1α1,b2

dzm−1
1

=





(m!kb1 − (p+m)!
(p+1)! z

p
1)z1, 0 < z1 < kb1

(m!ka1 − (p+m)!
(p+1)! z

p
1)z1, −ka1 < z1 < 0

(3.74)

where “!” denotes the factorial operator. From the above, it is clear that (3.73) holds,

and thus, we conclude that α1,b2(z1) is Cm−1. Based on the structure of α1(x1, z1, ẏd)

in (3.71), and since m ≥ n, it follows that α1(x1, z1, ẏd) is at least Cn−1.

Following a similar approach as above, by analyzing the limits of the derivative from

both sides of 0, we can show that the term
(

q
kp

b1
−zp

1
+ 1−q

kp
a1
−zp

1

)
zp−1
1 from (3.61) is

Cp−2 in the interval z1 ∈ (−ka1 , kb1). Due to the fact that α1 is Cn−1, as established

above, it follows that α̇1(x̄2, z̄2, ȳd2) is Cn−2. Furthermore, p ≥ n implies that α2 is

Cn−2 in the interval z1 ∈ (−ka1 , kb1).

The remaining stabilizing functions are given by

αi =
1
gi

(−fi + α̇i−1 − κizi − gi−1zi−1)

for i = 3, ..., n−1, from which we see that αi is Cn−i if α̇i−1(x̄i, z̄i, ȳdi) is Cn−i. Follow-

ing the fact that α2 is Cn−2, as established above, it can be shown that α̇2(x̄3, z̄3, ȳd3)

is Cn−3, which further implies that α3 is Cn−3. By iterating this procedure, we can

eventually show that every αi is at least Cn−i in z1 ∈ (−ka1 , kb1).
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3.4 Asymmetric Barrier Lyapunov Function

The derivative of Vn along (3.59), (3.62), (3.66) and (3.67) is

V̇n = −κ1z
m+p−1
1 −

n∑

j=2

κjz
2
j (3.75)

Let the closed loop system (3.59), (3.62), (3.66) and (3.67) be written as ż = h(t, z).

The right hand side h(t, z) satisfies the conditions (2.17)-(2.20) for z ∈ Z := {z ∈
Rn : −ka1 < z1 < kb1}. Then, from (3.75) and Lemma 2.4.1, we conclude that the

error signal z1 satisfies −ka1 < z1(t) < kb1 ∀t > 0, provided that −ka1 < z1(0) < kb1 .

We are now ready to summarize the results for the known case in the following

theorem.

Theorem 3.4.1 Consider the closed loop system (3.1), (3.8), (3.57), (3.61) under

Assumptions 3.2.1-3.2.2. If the initial conditions are such that z̄n(0) ∈ Ωz0 := {z̄n ∈
Rn : −ka1 < z1 < kb1}, where z̄n := [z1, z2, ..., zn]T , then the following properties hold.

i) The signals zi(t), i = 1, 2, ..., n, remain in the compact set defined by

Ωz =
{

z̄n ∈ Rn : −Dz1
≤ z1 ≤ Dz1 , ‖z2:n‖ ≤

√
2Vn(0)

}
(3.76)

Dz1 = kb1(1− e−pVn(0))
1
p < kb1 (3.77)

Dz1
= ka1(1− e−pVn(0))

1
p < ka1 (3.78)

ii) The output y(t) remains in the set Ωy := {y ∈ R : −kc1 < −Dz1
− Y 0 ≤ y ≤

Dz1 + Y 0 < kc1} ∀t > 0, i.e. output constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

Proof: The properties (i)− (iv) will be proved in sequence as follows.

i) From the result V̇n ≤ 0, it follows that Vn(t) ≤ Vn(0), which implies that the

following is true:

Vn(0) ≥





1
p log

kp
b1

kp
b1
−zp

1 (t)
, 0 < z1(t) < kb1

1
p log kp

a1

kp
a1
−zp

1 (t)
, −ka1 < z1(t) ≤ 0

(3.79)
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3.4 Asymmetric Barrier Lyapunov Function

Taking exponentials on both sides of the inequality, and noting, from Lemma

2.4.1, that kp
b1
− zp

1(t) > 0 and kp
a1 − zp

1(t) > 0 ∀ t, we can rearrange the above

inequality to yield

zp
1(t) ≤

{
kp

b1
(1− e−pVn(0)), 0 < z1(t) < kb1

kp
a1(1− e−pVn(0)), −ka1 < z1(t) ≤ 0

(3.80)

By taking pth root on both sides of the inequality, we obtain that z1(t) ≤
kb1(1 − e−pVn(0))

1
p for positive z1(t), and that z1(t) ≥ −ka1(1 − e−pVn(0))

1
p for

negative z1(t). Combining both cases, it is obvious that −Dz1
≤ z1(t) ≤ Dz1

∀t > 0.

Similarly, from the fact that 1
2

∑n
j=2 z2

j ≤ Vn(0), we can easily show that

‖z2:n‖ ≤
√

2Vn(0). Therefore, we obtain that zi(t) remains in the compact

set Ωz ∀ t.

ii) Secondly, it is straightforward to show, from y(t) = z1(t) + yd(t), −Dz1
≤

z1(t) ≤ Dz1 , and −Y 0 ≤ yd(t) ≤ Y 0, that

−Dz1
− Y 0 ≤ y(t) ≤ Dz1 + Y 0 (3.81)

Since Dz1
< ka1 and Dz1 < kb1 , we know that

Dz1 + Y 0 < kb1 + Y 0 = kc1

Dz1
+ Y 0 < ka1 + Y 0 = kc1 (3.82)

Hence, we conclude that y(t) ∈ Ωy ∀t > 0.

iii) To show that all closed loop signals are bounded, we follow the same approach

of signal chasing that has been described in detail in Theorem 3.3.1. The

only minor difference in the analysis is that the stabilizing functions αi (i =

1, ..., n− 1) are now Cn−i instead of C∞.

From the fact that V̇n(t) ≤ 0 ∀t > 0, we know that the error signals z1(t), ...,

zn(t) are bounded. Boundedness of z1(t) and the reference trajectory yd(t) imply

that the state x1(t) is bounded. Thus, α1(t) is also bounded from (3.57), which

guarantees boundedness of x2(t). Based on the Cn−1 property of α1(x1, z1, ẏd),

established in Lemma 3.4.2, it can be shown that α̇1(x̄2, z̄2, ȳd2) is Cn−2. Then,
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3.4 Asymmetric Barrier Lyapunov Function

boundedness of x̄2(t), z̄2(t), ȳd2(t) implies that α̇1(x̄2(t), z̄2(t), ȳd2(t)) is bounded

∀t > 0.

According to Lemma 2.4.1, we have that −ka1 < z1(t) < kb1 ∀t > 0, which,

together with the fact that α̇1(t) is bounded, imply that the stabilizing function

α2(t) from (3.61) is bounded. As a result, we know that the state x3(t) is also

bounded. Then, from the Cn−2 property of α2(x̄2, z̄2, ȳd2) in the set −ka1 <

z1 < kb1 , we know that α̇2(x̄3, z̄3, ȳd3) is Cn−3 in the set −ka1 < z1 < kb1 . Then,

boundedness of x̄2(t), z̄2(t), ȳd2(t), particularly with −ka1 < z1(t) < kb1 , implies

that α̇2(x̄3(t), z̄3(t), ȳd3(t)) is bounded ∀t > 0.

By induction, from the boundedness of α̇i−1(t), we conclude, from (3.7), that

αi(t) is bounded, which in turn implies boundedness of xi+1(t). From the

Cn−i property of αi(x̄i, z̄i, ȳdi) in the set −ka1 < z1 < kb1 , it can be obtained

that α̇i(x̄i, z̄i, ȳdi) is Cn−i−1 in the set −ka1 < z1 < kb1 . Then, bounded-

ness of x̄i(t), z̄i(t), ȳdi(t), particularly with −ka1 < z1(t) < kb1 , implies that

α̇i(x̄i(t), z̄i(t), ȳdi
(t)) is bounded. Following this line of argument, it is straight-

forward to show boundedness of the states x1(t), ..., xn(t), the stabilizing func-

tions α1(t), ..., αn−1(t), and the control u(t). Hence, all closed loop signals are

bounded ∀t > 0.

iv) Based on (3.59), (3.62), (3.12), and (3.13), we obtain

V̈n = 2
(
q(kp

b1
− zp

1) + (1− q)(kp
a1
− zp

1)
)

κ2
1z

m+1
1 + 2

n∑

j=2

κ2
jz

2
j

+2
n∑

j=3

κjgj−1zj−1zj + 2

(
q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
κ2g1z2z

p−1
1

−2
n−1∑

j=1

κjgjzjzj+1 (3.83)

From the fact that xi(t), zi(t), i = 1, ..., n are bounded, and particularly with

z1(t) ∈ (−ka1 , kb1), it is obvious that V̈n(t) is bounded, which means that V̇n(t)

is uniformly continuous. Then, by Barbalat’s Lemma, we obtain that zi(t) → 0

as t →∞. Since z1(t) = y(t)− yd(t), it is clear that y(t) → yd(t) as t →∞.

Using a similar design methodology, the results for the uncertain case can be derived.
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3.4 Asymmetric Barrier Lyapunov Function

In particular, the stabilizing functions are designed as:

α1 =
1
g1

[
−θ̂T w1 −

(
q(kp

b1
− zp

1) + (1− q)(kp
a1
− zp

1)
)

κ1z
m
1 + ẏd

]

α2 =
1
g2

[
−θ̂T w2 − κ2z2 −

(
q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
g1z

p−1
1 +

∂α1

∂x1
x2

+
1∑

j=0

∂α1

∂y
(j)
d

y
(j+1)
d +

∂α1

∂θ̂
Γτ2




αi =
1
gi


−θ̂T wi − κizi − gi−1zi−1 +

i−1∑

j=1

∂αi−1

xj
xj+1

+
i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d +

∂αi−1

∂θ̂
Γτi +

i−1∑

j=2

∂αj−1

∂θ̂
Γwizj


 , i = 3, ..., n (3.84)

with the following intermediate and tuning functions:

w1 = ψ1(x1)

wi = ψi(x̄i)−
i−1∑

j=1

∂αi−1

xj
ψj(x̄j), i = 2, ..., n

τ1 =

(
q

kp
b1
− zp

1

+
1− q

kp
a1 − zp

1

)
w1z1

τi = τi−1 + wizi, i = 2, ..., n (3.85)

Then, the actual control and adaptation laws are given by:

u = αn (3.86)
˙̂
θ = Γτn (3.87)

Now, we are ready to state the results in a concise manner in the following theo-

rem. The corresponding proofs follow the same lines of argument from the preceding

Theorems 3.3.2-3.4.1, and are omitted.

Theorem 3.4.2 Consider the closed loop system (3.1),(3.86),(3.87) under Assump-

tions 3.2.1-3.2.2. If the initial conditions are such that z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn :

−ka1 < z1 < kb1}, where z̄n = [z1, z2, ..., zn]T , then the following properties hold.
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3.5 Comparison With Quadratic Lyapunov Functions

i) The signals zi(t), i = 1, 2, ..., n, and θ̂(t) remain in the compact sets defined by

Ωz =
{

z̄n ∈ Rn : −Dz1
≤ z1 ≤ Dz1 , ‖z2:n‖ ≤

√
2V̄n

}
(3.88)

Ωθ̂ =

{
θ̂ ∈ Rl : ‖θ̂‖ ≤ θM +

√
2V̄n

λmin(Γ−1)

}
(3.89)

V̄n =
q(z1(0))

p
log

kp
b1

kp
b1
− zp

1(0)
+

1− q(z1(0))
p

log
kp

a1

kp
a1 − zp

1(0)

+
1
2

n∑

j=2

z2
j (0) +

1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2 (3.90)

Dz1 = kb1(1− e−pV̄n)
1
p < kb1 (3.91)

Dz1
= ka1(1− e−pV̄n)

1
p < ka1 (3.92)

where zj:k = [zj , zj+1, ..., zk]T .

ii) The output y(t) remains in the set Ωy := {y ∈ R : −kc1 < −Dz1
− Y 0 ≤ y ≤

Dz1 + Y 0 < kc1} ∀t > 0, i.e. the output constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

3.5 Comparison With Quadratic Lyapunov Functions

If the initial conditions belong to certain sets, it is possible for backstepping control

based on Quadratic Lyapunov Functions to ensure that the output does not violate

its constraint. Though this approach is simpler, closer analysis reveals a tradeoff.

Specifically, more conservative requirements on the initial conditions may be imposed

in order to ensure that output constraint is not violated.

In Section 2.4.2, we have established that, for second order strict feedback systems,

the use of BLF in place of a quadratic one leads to relaxation of the initial con-

dition requirement. Although exponential stability can be achieved through simple

quadratic Lyapunov functions, they may not ensure that the output constraint is not
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3.5 Comparison With Quadratic Lyapunov Functions

violated, unless some rather restrictive requirements on the initial conditions are im-

posed. Here, we extend the investigations and comparisons to strict feedback systems

with arbitrary order.

For the known system described by (3.1), consider the quadratic Lyapunov function

candidates:

V1 =
1
2
z2
1 , Vi = Vi−1 +

1
2
z2
i , i = 2, ..., n (3.93)

and the standard backstepping control law

α1 =
1
g1

(−f1(x1)− κ1z1 + ẏd)

αi =
1
gi

(−fi(x̄i)− κizi − gi−1zi−1 + α̇i−1), i = 2, ..., n− 1

u =
1
gn

(−fn(x̄n)− κnzn − gn−1zn−1 + α̇n−1) (3.94)

where κ1, ..., κn are positive constants. It can be shown that exponential stability is

obtained, i.e. V̇n ≤ −ρVn, where ρ = 2 min{κ1, ..., κn}, which leads to the fact that

Vn(t) ≤ Vn(0)e−ρt. As a result, we have that

|zi(t)| ≤
√√√√

n∑

j=1

z2
j (0)e−ρt −

∑

j 6=i

z2
j (t) ≤

√√√√
n∑

j=1

z2
j (0)e−ρt ≤ ‖z̄n(0)‖ (3.95)

for t > 0. For the output constraint case, to ensure |z1(t)| ≤ kb1 , we need to ensure

that the initial conditions start from the set

Ω0 = {z̄n ∈ Rn : ‖z̄n‖ ≤ kb1} (3.96)

which is much more restrictive than the condition |z1(0)| ≤ kb1 required when using

BLF.

In the presence of parametric uncertainty, consider the following augmented Lyapunov

function candidates [94]:

V1 =
1
2
z2
1 +

1
2
θ̃T
1 Γ−1

1 θ̃1, Vi = Vi−1 +
1
2
z2
i +

1
2
θ̃T
i Γ−1

i θ̃i, i = 2, ..., n (3.97)

63



3.5 Comparison With Quadratic Lyapunov Functions

with the stabilizing functions and control law

α1 =
1
g1

(−θ̂T
1 ψ1 − κ1z1 + ẏd)

αi =
1
gi

(−θ̂T
i ψ̄i − κizi − gi−1zi−1 + ωi−1), i = 2, ..., n− 1

u =
1
gn

(−θ̂T
n ψ̄n − κnzn − gn−1zn−1 + ωn−1) (3.98)

where the modified regressors and intermediate functions are described by

ψ̄i = ψi −
i−1∑

j=1

ψj
∂αi−1

∂xj
(3.99)

ωi−1 = −
i−1∑

j=1

∂αi−1

∂xj
xj+1 −

i−1∑

j=1

∂αi−1

∂θ̂j

˙̂
θj −

i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d , i = 2, ..., n(3.100)

The adaptation laws are given by

˙̂
θi = Γiψ̄izi, i = 1, ..., n (3.101)

where θi = θ, Γi = ΓT
i > 0, and θ̃i := θ̂i − θ is the error between θ and the estimate

θ̂i.

It can be shown that V̇n = −∑n
i=1 κiz

2
i , from which we know that Vn(t) ≤ Vn(0) ≤ V̄n,

where V̄n is the upper bound for the initial value of the Lyapunov function, defined

by

V̄n :=
1
2

n∑

i=1

[z2
i (0) + λmax(Γ−1)(‖θ̂i(0)‖+ θM )2] (3.102)

This yields |zi(t)| ≤
√

2V̄n. For the output constraint case, to ensure that |z1(t)| ≤
kb1 , it is necessary to restrict the initial conditions such that

√
2V̄n ≤ kb1 , which

implies that

‖z̄n(0)‖ ≤
√√√√k2

b1
− λmax(Γ−1)

n∑

i=1

(‖θ̂i(0)‖+ θM )2 (3.103)

Note that the additional condition

k2
b1 > λmax(Γ−1)

n∑

i=1

(‖θ̂i(0)‖+ θM )2 (3.104)
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needs to be satisfied as well. Clearly, these are more restrictive than that required

when using BLF, namely |z1(0)| < kb1 .

Though the above equations outline the overparameterized method for simplicity in

presentation, it can be easily checked that the tuning functions approach yield simi-

lar properties. Although the control design based on quadratic Lyapunov functions

is simpler, the drawback is that more restrictive initial conditions are required in

comparison with that using BLFs.

3.6 Simulation

In this section, we present simulation studies to demonstrate the effectiveness of the

proposed control. Consider the second-order nonlinear system

ẋ1 = θ1x
2
1 + x2

ẋ2 = θ2x1x2 + θ3x1 + (1 + x2
1)u (3.105)

where θ1 = 0.1, θ2 = 0.1, and θ3 = −0.2. We consider the output constraint prob-

lem, with and without uncertainty in θ1, θ2, θ3. The results based on the use of the

Symmetric Barrier Lyapunov Function (SBLF), the Asymmetric Barrier Lyapunov

Function (ABLF), and the Quadratic Lyapunov Function (QLF) are shown.

The objective is for x1 to track the trajectory yd = 0.2+0.3 sin t, subject to the output

constraint |x1| < 0.56. Since |yd| ≤ A0 = 0.5, we have that kb1 = 0.56 − 0.5 = 0.06.

Further, we have |ẏd| ≤ Y1 = 0.3. Noting that yd ≥ −0.1, it is easy to see that

ka1 = 0.56− 0.1 = 0.46.

For the known case, the initial conditions are x1(0) = 0.25 and x2(0) = 1.5, and

control gains are chosen as κ1 = κ2 = 2.0. For the adaptive case, the initial conditions

are x1(0) = 0.25, x2(0) = 1.5, and θ̂(0) = 0.0. Control gains are chosen as κ1 = κ2 =

2.0 for SBLF and κ1 = κ2 = 5.0 for ABLF. The adaptation parameters are selected

as γ1 = γ2 = γ3 = 2.0 for SBLF and γ1 = γ2 = γ3 = 5.0 for ABLF.

Simulation results for the output constraint problem without uncertainty are shown

in Figures 3.1-3.10. From Figure 3.1, it can be seen that the output x1 stays strictly
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within the constrained region i.e. |x1| < kc1 when the SBLF and the ABLF are

used. However, when the QLF is used, the constraint is violated. A simple check

reveals that ‖z̄2‖ =
√

0.052 + 1.3062 = 1.307 > kb1 , which violates the condition

‖z̄n(0)‖ ≤ kb1 for use of QLF in the output constraint problem. On the other hand,

we know that |z1(0)| = 0.05 satisfy the less conservative conditions |z1(0)| < kb1 for

SBLF and −ka1 < z1(0) < kb1 for ABLF.

Another observation is that while good asymptotic tracking performance is achieved,

there is larger undershoot in the transient stage for ABLF as compared to SBLF, due

to the fact that there is larger allowance for negative tracking error for ABLF, which

ensures −0.46 < z1(t) < 0.06 ∀t > 0.

The output x1 remains in the region (−kc1 , kc1) because the tracking error z1 remains

in the regions (−kb1 , kb1) and (−ka1 , kb1), respectively for SBLF and ABLF. Figures

3.2-3.3 show that these constraints for z1 are not violated for various initial values

for x1. Note that for the ABLF, the set of allowable starting values of x1 is enlarged.

With various control gains κ1 and κ2, the constraints are also not violated, as seen in

Figures 3.4-3.5. As expected, the tracking error converges faster with larger control

gains. Even the tendency for undershoot, in the case of the ABLF, is contained with

large control gains, as shown in Figure 3.5.

The phase portraits of z1(t) and z2(t) are shown in Figures 3.6-3.7. The error z1(t)

does not transgress its barriers as long as its initial value satisfies |z1(0)| < 0.06 when

the SBLF is used, or −0.46 < z1(0) < 0.06 when the ABLF is used. In other words,

the region between the barriers is positively invariant. In contrast, with the QLF,

the region |z1(0)| < 0.06 is not positively invariant, as witnessed in Figure 3.8. Even

though all these cases exhibit convergence of (z1(t), z2(t)) to 0, the set of admissible

initial values of (z1, z2) that guarantees output constraint satisfaction is largest for

the ABLF, followed by the SBLF, and finally the QLF.

To gain some insights on how the SBLF-based control operates in keeping the output

constrained, we observe, from the control law (2.56), that the nonlinear gain term

g1z1/(k2
b1
− z2

1) is responsible for ensuring that the constraint on the output is sat-

isfied. Whenever z1(t) approaches the barriers at z1 = ±0.06, the gain term grows

rapidly and provides a large control action that repels z1(t) from the barriers. This
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effect is observed in Figure 3.9, where the control input u(t), based on the SBLF,

peaks when the tracking error z1(t) → ±0.06. Similarly, the ABLF-based control

pulls z1(t) away from the barriers with a control input u(t) that grows rapidly when

z1(t) → 0.06 or z1(t) → −0.46, as seen in Figure 3.10. Interestingly, the negative

peaks in u(t), corresponding to z1(t) → 0.06, are larger than the positive peaks that

correspond to z1(t) → −0.46. This is due to the fact that, with a smaller allowable

positive range for z1(t), the control u(t) needs to grow at a faster rate to ensure that

the barrier z1 = 0.06 is not reached. In avoiding the barriers in the z1 dimension,

the control action can cause large excursions in the z2 dimension, as seen in Figures

3.6-3.7 for SBLF and ABLF respectively.

Simulation results for output constraint problem with uncertainty are shown in Fig-

ures 3.11-3.13. As shown in Figure 3.11, good tracking performance is achieved while

satisfying the constraint |x1| < kc1 , but with the ABLF, there is a greater tendency to

incur negative tracking error due to ka1 > kb1 . To diminish undershooting behavior,

we can increase the control gains κ1 and κ2. The tracking error z1 is constrained in

the regions |z1| < kb1 for the SBLF and −ka1 < z1 < kb1 for the ABLF (Figure 3.12),

and the parameter estimate θ̂ remains bounded (Figure 3.13).

3.7 Conclusions

In this chapter, we have presented control design for strict feedback systems with

constraints on the output, based on Barrier Lyapunov Functions. Besides the nominal

case where the plant is fully known, the presence of parametric uncertainties has also

been handled. We have shown that asymptotic tracking is achieved without violation

of the constraint, and all closed loop signals remain bounded, under a mild condition

on the initial output. Further, we have explored the use of asymmetric BLFs as a

generalized approach that can provide greater design flexibility and relax the starting

conditions. The use of quadratic Lyapunov functions in handling output constraint

has been investigated, and it is shown that more conservative restrictions on the initial

conditions are required as compared with using BLFs. Finally, the effectiveness of

the proposed control has been demonstrated through a simulation example.

67



3.7 Conclusions

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time t

ou
tp

ut
 x

1

desired
QLF
ABLF
SBLF

kc1

Figure 3.1: Output tracking behavior for output constraint problem based on the use
of the QLF, SBLF, and ABLF.
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Figure 3.2: Tracking error z1 for various initial conditions satisfying |z1(0)| < kb1 for
the output constraint problem using the SBLF.
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kb1 for the output constraint problem using the ABLF.
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Chapter 4

Control of State-Constrained

Systems

4.1 Introduction

In the foregoing exposition on the problem of output constraint with known control

gain functions, we employed backstepping design with BLF in the first step, and

quadratic functions in the remaining steps. The main principle of the design is based

on obtaining the derivative of the Lyapunov function V (z), along the closed loop

trajectories, in a negative semidefinite form. With the BLF bounded in closed loop,

it is thus guaranteed that the barriers are not transgressed. Cancelation of cross cou-

pling terms is accommodated, with post-design analysis revealing that the stabilizing

functions and control remain bounded.

In this chapter, we extend this design approach to SISO nonlinear systems in strict

feedback form, with constraints on the states and known control gain functions. For

the case of full state constraint, where every state is constrained, we employ BLFs

for each step of the backstepping design. In the case where only some of the states

have constraints, the design procedure is modified such that BLFs are only used up to

the step with the highest order state under constraint, and the feasibility conditions

can be relaxed. Feasibility conditions are provided, which can be checked a priori to
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4.2 Problem Formulation and Preliminaries

determine if the given problem can be solved under these approaches. Furthermore,

we present the design of adaptive controllers to deal with uncertain parameters in

the plant model, in face of the simultaneous need of preventing state constraints from

being violated.

The remainder of this chapter is organized as follows. In Section 4.2, we formulate

the problem of tracking control for nonlinear strict feedback systems with constraints

in the states. Following that, in Section 4.3, we present the control design for the

case where each state of the plant is to be constrained, and provide conditions for

offline checking of the feasibility of the proposed control in achieving its objectives.

Section 4.4 extends these results to the case where only some of the states need to be

constrained, and shows that the feasibility conditions are relaxed. Finally, simulation

results are presented in Section 4.5 to demonstrate the effectiveness of the proposed

control, followed by conclusions in Section 4.6.

4.2 Problem Formulation and Preliminaries

Consider the nonlinear system in strict feedback form:

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, 2, ..., n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1 (4.1)

where x1, x2, ..., xn are the states, x̄i = [x1, x2, ..., xi]T ∈ Ri, fi and gi are smooth

functions, u ∈ R and y ∈ R are the input and output respectively, for i = 1, 2, ..., n.

For the case of full state constraints, every state xi is required to remain in the set

|xi| ≤ kci , with kci as a positive constant, for i = 1, ..., n.

The nonlinear functions fi(x̄i) may be uncertain, in which case they satisfy the fol-

lowing linear-in-the-parameters (LIP) condition:

fi(x̄i) = θT ψi(x̄i), i = 1, ..., n (4.2)

where ψ1, ..., ψn are smooth functions, and θ ∈ Rl is a vector of uncertain parameters

satisfying ‖θ‖ ≤ θM with known positive constant θM . Due to the continuity property,

there exist positive constants Ψi such that |ψi(x̄i)| ≤ Ψi for |xi| ≤ kci , i = 1, 2, ..., n.
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4.3 Full State Constraints

The control objective is to track a desired trajectory yd while ensuring that all closed

loop signals are bounded and that state constraints, which may be due to physical

constraints as well as performance requirements, are not violated.

For ease of notation, we group the derivatives of the desired trajectory in the vector

ȳdi := [y(1)
d , y

(2)
d , ..., y

(i)
d ]T . In what follows, we present the assumptions on the desired

trajectory yd, as well as the control gain functions gi(·), i = 1, ..., n, from (4.1).

Assumption 4.2.1 For any kc1 > 0, there exist positive constants A0, Y1, Y2,..., Yn

such that the desired trajectory yd(t) and its time derivatives satisfy

|yd(t)| ≤ A0 < kc1 , |ẏd(t)| < Y1, |ÿd(t)| < Y2, · · · , |y(n)
d (t)| < Yn (4.3)

for all t ≥ 0.

Assumption 4.2.2 The control gain functions gi(·), i = 1, 2, ..., n, are known, and

there exists a positive constant g0 such that 0 < g0 ≤ |gi(·)|. Without loss of generality,

we further assume that the gi(·) are all positive.

4.3 Full State Constraints

For the case of output constraint in Section 3, only the first step of the backstepping

design involves the use of a BLF. By enforcing constraint on the output tracking error

z1 = y − yd, we are able to ensure that the output y itself is constrained within the

specified zone, provided that the desired trajectory yd is also within the same zone.

In this chapter, for the case of full state constraints, we extend the use of BLFs to

each and every step, in order to keep each error signal zi = xi − αi−1 (i = 2, ..., n)

constrained.

Provided that each stabilizing function αi−1 is bounded in the specified constrained

region for xi, we can ensure that xi remains in the constrained region. In view of

this, state constraints cannot be arbitrarily specified, but are subject to feasibility

conditions, based on the stabilizing functions αi−1 designed via backstepping with

barrier Lyapunov functions. Nevertheless, the feasibility conditions can be checked a

priori to determine if the given problem can be solved with this approach.
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4.3 Full State Constraints

In the following, we consider the case when the functions fi(x̄i) in system (4.1) are

known, and also the case when they contain uncertain parameters.

4.3.1 Full State Constraints: Known Case

Since fi(x̄i) are known, they can be used in the design of the stabilizing functions

and final control to cancel the system nonlinearities. In what follows, we outline the

design steps, and then provide the sufficient conditions on the design parameters to

check for feasibility with respect to the specified state constraints.

Step 1 Define the error coordinates z1 = x1 − yd and z2 = x2 − α1, where α1 is a

stabilizing function to be designed. To design a control that does not drive x1 out of

the interval |x1| < kc1 , we choose the following symmetric BLF candidate in the first

step of backstepping:

V1 =
1
2

log
k2

b1

k2
b1
− z2

1

(4.4)

where

kb1 = kc1 −A0 (4.5)

It can be shown that V1 is positive definite and continuously differentiable in the open

set |z1| < kb1 , and thus it is a valid Lyapunov function candidate. The derivative of

V1 along the closed loop trajectories is given by

V̇1 =
z1ż1

k2
b1
− z2

1

=
z1(f1 + g1(z2 + α1)− ẏd)

k2
b1
− z2

1

(4.6)

Designing the stabilizing function α1 as:

α1 =
1
g1

(−f1 − (k2
b1 − z2

1)κ1z1 + ẏd) (4.7)

where κ1 > 0 is a constant, yields

ż1 = −(k2
b1 − z2

1)κ1z1 + g1z2 (4.8)

The derivative of V1 along (4.8) can be written as

V̇1 = −κ1z
2
1 +

g1z1z2

k2
b1
− z2

1

(4.9)
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where the coupling term g1z1z2

k2
b1
−z2

1
is canceled in the subsequent step.

Step i (i = 2, ..., n− 1)

Denote zi+1 = xi+1 − αi, where αi is a stabilizing function to be designed. Choose

Lyapunov function candidates as

Vi = Vi−1 +
1
2

log
k2

b1

k2
b1
− z2

i

(4.10)

The derivative of Vi along the closed loop trajectories is given by

V̇i = −
i−1∑

j=1

κjz
2
j +

gi−1zi−1zi

k2
b1
− z2

i−1

+
zi(fi + gi(zi+1 + αi)− α̇i−1)

k2
b1
− z2

i

(4.11)

where α̇i−1 is given by

α̇i−1 =
i−1∑

j=1

∂αi−1

xj
(fj(x̄j) + gj(x̄j)xj+1) +

i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d (4.12)

By designing the stabilizing function as

αi =
1
gi

(
−fi + α̇i−1 − (k2

b1 − z2
i )κizi −

k2
b1
− z2

i

k2
b1
− z2

i−1

gi−1zi−1

)
(4.13)

where κi > 0 is constant, it can be obtained that

żi = −(k2
b1 − z2

i )κizi −
k2

b1
− z2

i

k2
b1
− z2

i−1

gi−1zi−1 + gizi+1 (4.14)

The derivative of Vi along (4.14) can be written as

V̇i = −
i∑

j=1

κjz
2
j +

gizizi+1

k2
b1
− z2

i

(4.15)

where the coupling term gizizi+1

k2
b1
−z2

i
is canceled in the subsequent step.

Remark 4.3.1 Despite the presence of terms in (4.13) containing (k2
b1
−z2

i−1) in the

denominator, it is shown, in Theorem 4.3.1, that the magnitude of the error signals

zi−1(t) is bounded away from kb1 ∀t > 0 under some conditions on the initial states

and control parameters, resulting in bounded stabilizing function αi.

79



4.3 Full State Constraints

Step n In the final step, the actual control law is designed. We choose a Lyapunov

function candidate as

Vn = Vn−1 +
1
2

log
k2

b1

k2
b1
− z2

n

(4.16)

Then, the derivative of Vn along the closed loop trajectories is given by

V̇n = −
n−1∑

j=1

κjz
2
j +

gn−1zn−1zn

k2
b1
− z2

n−1

+
zn(fn + gnu− α̇n−1)

k2
b1
− z2

n

(4.17)

By designing the actual control as

u =
1
gn

(
−fn + α̇n−1 − (k2

b1 − z2
n)κnzn −

k2
b1
− z2

n

k2
b1
− z2

n−1

gn−1zn−1

)
(4.18)

where κn > 0 is constant, it can be obtained that

żn = −(k2
b1 − z2

n)κnzn −
k2

b1
− z2

n

k2
b1
− z2

n−1

gn−1zn−1 (4.19)

The derivative of Vn can be rewritten as

V̇n = −
n∑

j=1

κjz
2
j (4.20)

Let the closed loop system (4.8), (4.14) and (4.19) be written as ż = h(t, z). The right

hand side h(t, z) satisfies the conditions (2.17)-(2.20) for z ∈ Z := {z ∈ Rn : |zi| <

kb1 , i = 1, 2, ..., n}. Hence, from (4.20) and Lemma 2.4.2, we have that |zi(t)| < kb1

for all t > 0 and i = 1, ..., n, provided that |zi(0)| < kb1 .

Theorem 4.3.1 Consider the closed loop system (4.1), (4.18) under Assumptions

4.2.1-4.2.2. Denote by Ai an upper bound for αi in the compact set Ωi, that is,

Ai ≥ sup
(x̄i, z̄i, ȳdi

) ∈ Ωi

|αi(x̄i, z̄i, ȳdi ; κ̄i)|, i = 1, ..., n− 1 (4.21)

where αi is parameterized by κ̄i := [κ1, κ2, ..., κi]T , and Ωi is a compact set defined

by:

Ωi :=
{
x̄i ∈ Ri, z̄i ∈ Ri, ȳdi ∈ Ri :

|xj | ≤ Dz1 + Aj−1, |zj | ≤ Dz1 , |y(j)
d | ≤ Yj , j = 1, ..., i

}
(4.22)

Dz1 := kb1

√
1− Πn

i=1(k
2
b1
− z2

i (0))
k2n

b1

(4.23)

Given the constraints kci+1 > 0, i = 1, ..., n− 1, and that
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C1) there exist Ai, for all i = 1, ..., n− 1, such that

kci+1 > Ai + kb1 (4.24)

C2) the initial conditions are such that

z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |zi| < kb1 , i = 1, 2, ..., n} (4.25)

then the following properties hold.

i) The signals zi(t), i = 1, 2, ..., n, remain in the compact set defined by Ωz =

{z̄n ∈ Rn : |zi| ≤ Dz1 , i = 1, 2, ..., n}.

ii) Every state xi(t) remains in the set Ωx := {x̄n ∈ Rn : |xi| ≤ Dz1 + Ai−1 <

kci , i = 1, ..., n} ∀t > 0, i.e. the full state constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

Proof: The properties (i)− (iv) are proved in sequence as follows.

i) From the fact that V̇n ≤ 0, it is clear that Vn(t) ≤ Vn(0). Since z2
i (0) < k2

b1

from Conditions C1 and C2, it is straightforward to conclude that Vn(0) ≤
∑n

i=1
1
2 log

k2
b1

k2
b1
−z2

i (0)
which implies that

1
2

log
k2

b1

k2
b1
− z2

i

≤
n∑

j=1

1
2

log
k2

b1

k2
b1
− z2

j (0)
, i = 1, ..., n (4.26)

Using the identity log a + log b = log ab, we rewrite the above as

log
k2

b1

k2
b1
− z2

i

≤ log
k2n

b1

Πn
j=1(k

2
b1
− z2

j (0))
, i = 1, ..., n (4.27)

Furthermore, since |zi(0)| < kb1 , we know, from Lemma 2.4.2, that k2
b1
−z2

i (t) >

0 ∀ t. Then, the above can be rearranged to yield |zi(t)| ≤ Dz1 hence zi(t)

remains in Ωz ∀ t.
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ii) From V̇n ≤ 0 and Lemma 2.4.2, we know that |zi(t)| ≤ Dz1 < kb1 , i = 1, ..., n,

∀ t, where kb1 > 0 due to (4.24). Then, from |z1(t)| ≤ Dz1 < kc1 − A0, we can

show that

|x1(t)| ≤ Dz1 + |yd(t)| < kc1 −A0 + |yd(t)| (4.28)

Noting that |yd(t)| ≤ A0 from Assumption 4.2.1, we therefore conclude that

|x1(t)| ≤ Dz1 + A0 < kc1 , ∀ t.

To show that |x2(t)| ≤ kc2 , we need to first verify that there exists a positive

constant A1 such that |α1(t)| ≤ A1, ∀ t. Since |x1(t)| ≤ Dz1 + A0, |z1(t)| ≤
Dz1 , and |ẏd(t)| ≤ Y1, it is clear that (x1(t), z1(t), ȳd1(t)) ∈ Ω1, and thus,

the stabilizing function α1(x1, z1, ȳd1) in (4.7) is bounded since it is a smooth

function. As a result, sup(x1, z1, ȳd1
)∈ Ω1

|α1(x1, z1, ȳd1)| exists, and an upper

bound A1 can be found. Then, from |z2(t)| ≤ Dz1 < kb1 , we infer that

|x2(t)| ≤ Dz1 + |α1(t)| < kb1 + |α1(t)| (4.29)

Since |α1(t)| ≤ A1, we conclude that |x2(t)| ≤ Dz1 + A1 < kb1 + A1 < kc2 , ∀ t.

We can progressively show that |xi+1(t)| ≤ kci+1 , i = 2, ..., n− 1, after verifying

that there exist positive constants Ai such that |αi(t)| ≤ Ai, ∀ t. Since |xi(t)| ≤
Dz1 +Ai−1, |zi(t)| ≤ Dz1 , and |y(i)

d (t)| ≤ Yi, it is clear that (x̄i(t), z̄i(t), ȳdi(t)) ∈
Ωi, and thus, the stabilizing function αi(x̄i, z̄i, ȳdi) in (4.7) is bounded since it

is a smooth function. As a result, we have that sup(x̄i, z̄i, ȳdi
)∈ Ωi

|αi(x̄i, z̄i, ȳdi)|
exists, and an upper bound Ai can be found. Then, from |zi+1(t)| ≤ Dz1 < kb1 ,

we infer that

|xi+1(t)| ≤ Dz1 + |αi(t)| < kb1 + |αi(t)| (4.30)

Since |αi(t)| ≤ Ai, we conclude that |xi+1(t)| ≤ Dz1 + Ai < kb1 + Ai < kci+1 ,

∀ t.

iii) By inspection of the stabilizing functions αi(x̄i, z̄i, ȳdi) and the control u(x̄n, z̄n, ȳdn),

it is clear that they are bounded, by virtue of the boundedness of x̄n(t), z̄n(t), ȳdn(t),

and, in particular, by |zi(t)| ≤ Dz1 < kb1 , which prevents any term comprising

(k2
b1
− z2

i ) in the denominator from becoming unbounded.

82



4.3 Full State Constraints

iv) Finally, we show that y(t) → yd(t) as t →∞. Based on (4.8), (4.14), and (4.19),

we compute V̈n as follows:

V̈n = 2
n∑

j=1

(k2
b1 − z2

j )κ2
jz

2
j + 2

n∑

j=2

k2
b1
− z2

j

k2
b1
− z2

j−1

κjgj−1zj−1zj − 2
n−1∑

j=1

κjgjzjzj+1

From the fact that |xi(t)| ≤ kci , |zi(t)| ≤ Dz1 , i = 1, ..., n, we infer that V̈n(t) is

bounded. Thus, V̇n(t) is uniformly continuous. Then, by Barbalat’s Lemma, we

obtain that V̇n(t) → 0, and thus zi(t) → 0, as t →∞. Since z1(t) = x1(t)−yd(t)

and y(t) = x1(t), it is clear that y(t) → yd(t) as t →∞.

4.3.2 Full State Constraints: Uncertain Case

When the nonlinearities fi(x̄i) are uncertain, but can be linearly parameterized ac-

cording to (4.2), the foregoing design methodology can be modified, based on the

certainty equivalence approach, i.e. replacing instances of θT ψi(x̄i) in the controls

with their estimates θ̂T ψi(x̄i), followed by the design of the adaptation law for θ̂ that

guarantees closed loop stability. To be consistent with the output constraint case, we

adopt the tuning functions approach [94] for stable design of an adaptation law.

Denote z1 = x1− yd and zi = xi−αi−1, i = 2, ..., n. Consider the Lyapunov function

candidate Vn composed by:

V1 =
1
2

log
kb1

k2
b1
− z2

1

+
1
2
θ̃T Γ−1θ̃ (4.31)

Vi = Vi−1 +
1
2

log
kb1

k2
b1
− z2

i

, i = 2, ..., n (4.32)

where kb1 = kc1−A0, Γ := diag(γ1, γ2, ..., γl) > 0, and θ̃ := θ̂−θ is the error between θ

and its estimate, θ̂. Note that Vn is positive definite and continuously differentiable in

the set |zi| < kb1 for all i = 1, 2, ..., n. The adaptive backstepping control is designed

as follows:

α1 = −θ̂T w1 − (k2
b1 − z2

1)κ1z1 + ẏd (4.33)

α2 =
1
g2


−θ̂T w2 − (k2

b1 − z2
2)κ2z2 −

k2
b1
− z2

2

k2
b1
− z2

1

g1z1 +
∂α1

∂x1
x2 +

1∑

j=0

∂α1

∂y
(j)
d

y
(j+1)
d

+
∂α1

∂θ̂
Γτ2

)
(4.34)
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αi =
1
gi


−θ̂T wi − (k2

b1 − z2
i )κizi −

k2
b1
− z2

i

kb1 − z2
i−1

gi−1zi−1 +
i−1∑

j=1

∂αi−1

xj
xj+1

+
i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d +

∂αi−1

∂θ̂
Γτi +

i−1∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
Γwi


 , i = 3, ..., n

(4.35)

w1 = ψ1(x1), wi = ψi(x̄i)−
i−1∑

j=1

∂αi−1

xj
ψj(x̄j), i = 2, ..., n (4.36)

τ1 =
w1z1

k2
b1
− z2

1

, τi = τi−1 +
wizi

k2
b1
− z2

i

(4.37)

u = αn (4.38)
˙̂
θ = Γτn (4.39)

which yields the closed loop system

ż1 = −(k2
b1 − z2

1)κ1z1 + z2 − θ̃T ψ1(x1) (4.40)

ż2 = −(k2
b1 − z2

2)κ2z2 −
k2

b1
− z2

2

k2
b1
− z2

1

g1z1 + g2z3 − θ̃T w2 +
∂α1

∂θ̂
(Γτ2 − ˙̂

θ) (4.41)

żi = −(k2
b1 − z2

i )κizi −
k2

b1
− z2

i

k2
b1
− z2

i−1

gi−1zi−1 + gizi+1 − θ̃T wi +
∂αi−1

∂θ̂
(Γτi − ˙̂

θ)

+
i−1∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
Γwi (4.42)

żn = −(k2
b1 − z2

n)κnzn −
k2

b1
− z2

n

k2
b1
− z2

n−1

gn−1zn−1 − θ̃T wn +
∂αn−1

∂θ̂
(Γτn − ˙̂

θ)

+
n−1∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
Γwn (4.43)

˙̃
θ = Γτn (4.44)

The derivative of Vn along (4.40)-(4.44) can be written as:

V̇n = −
n∑

j=1

κjz
2
j (4.45)

Let the closed loop system (4.40)-(4.44) be written as η̇ = h(t, η), where η = [zT , θ̃T ]T .

By inspection, h(t, η) satisfies the conditions (2.17)-(2.20) in the open set η ∈ Z :=

{z ∈ Rn, θ̃ ∈ Rl : |zi| < kb1 , i = 1, 2, ..., n}. Together with (4.45), we infer, from

Lemma 2.4.2, |zi(t)| < kb1 , for all t > 0 and i = 1, ..., n, provided that |zi(0)| < kb1 .
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4.3 Full State Constraints

Theorem 4.3.2 Consider the closed loop system (4.1), (4.38), (4.39) under Assump-

tions 4.2.1-4.2.2. Denote by Ai an upper bound for αi in the compact set Ωi, that

is,

Ai ≥ sup
(x̄i, z̄i, ȳdi

, θ̂) ∈ Ωi

|αi(x̄i, z̄i, ȳdi , θ̂; κ̄i, Γ)|, i = 1, ..., n− 1 (4.46)

where αi is parameterized by Γ and κ̄i := [κ1, κ2, ..., κi]T , and Ωi is a compact set

defined by:

Ωi :=
{

x̄i ∈ Ri, z̄i ∈ Ri, ȳdi
∈ Ri, θ̂ ∈ Rl :

|xj | ≤ Dz1 + Aj−1, |zj | ≤ Dz1 , ‖θ̂‖ ≤ Dθ̂, |y
(j)
d | ≤ Yj , j = 1, ..., i

}
(4.47)

Dz1 := kb1

√√√√1− Πn
i=1(k

2
b1
− z2

i (0))

k2n
b1

e2V̄θ̂

(4.48)

Dθ̂ := θM +

√
2V̄n

λmin(Γ−1)
(4.49)

V̄θ̂ :=
1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2 (4.50)

V̄n :=
1
2

n∑

i=1

log
k2

b1

k2
b1
− z2

i (0)
+ V̄θ̂ (4.51)

Given the constraints kci+1 > 0, i = 1, ..., n− 1, and that

C1) there exist Ai, for all i = 1, ..., n− 1, such that

kci+1 > Ai + kb1 (4.52)

C2) the initial conditions are such that

z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |zi| < kb1 , i = 1, 2, ..., n} (4.53)

then the following properties hold.

i) The signals zi(t) and θ̂(t), i = 1, 2, ..., n, remain, for all t > 0, in the compact

sets defined by

Ωz = {z̄n ∈ Rn : |zi| ≤ Dz1 , i = 1, 2, ..., n} (4.54)

Ωθ̂ =
{

θ̂ ∈ Rl : ‖θ̂‖ ≤ Dθ̂

}
(4.55)
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4.3 Full State Constraints

ii) Every state xi(t) remains in the set Ωx := {x̄n ∈ Rn : |xi| ≤ Dz1 + Ai−1 <

kci , i = 1, ..., n} ∀t > 0, i.e. the full state constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

Proof: The properties (i)− (iv) are proved in sequence as follows.

i) Since ‖θ‖ ≤ θM , and |zi(0)| < kb1 from Condition C2, it can be shown that

Vn(0) =
n∑

i=1

1
2

log
k2

b1

k2
b1
− z2

i (0)
+

1
2
θ̃(0)T Γ−1θ̃(0)

≤
n∑

i=1

1
2

log
k2

b1

k2
b1
− z2

i (0)
+

1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2

= V̄n (4.56)

From the fact that V̇n ≤ 0, it is clear that Vn(t) ≤ Vn(0) ≤ V̄n, from which we

obtain

1
2
λmin(Γ−1)‖θ̂(t)− θ‖2 ≤ V̄n (4.57)

and hence

‖θ̂(t)‖ ≤ θM +

√
2V̄n

λmin(Γ−1)
(4.58)

Therefore, θ̂ remains in the compact set Ωθ̂ ∀ t > 0.

Furthermore, from Vn(t) ≤ V̄n, we also have that

k2
b1

k2
b1
− z2

i (t)
≤ k2n

b1
e2V̄θ̂

Πn
i=1(k

2
b1
− z2

i (0))
, i = 1, ..., n (4.59)

Since |zi(0)| < kb1 , we know that k2
b1
− z2

i (t) > 0 ∀ t from Lemma 2.4.2. A

simple rearrangement yields |zi(t)| ≤ Dz1 < kb1 , and thus, zi(t) remains in the

compact set Ωz ∀ t > 0.
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4.3 Full State Constraints

ii) The proof follows the a similar line of argument as that in Theorem 4.3.1,

and is shown here for completeness. From V̇n ≤ 0 and Lemma 2.4.2, we have

established that |zi(t)| ≤ Dz1 < kb1 , i = 1, ..., n, ∀ t, and hence

|x1(t)| ≤ Dz1 + |yd(t)| < kc1 −A0 + |yd(t)| (4.60)

Noting that |yd(t)| ≤ A0 from Assumption 4.2.1, we therefore conclude that

|x1(t)| ≤ Dz1 + A0 < kc1 , ∀ t > 0.

We can progressively show that |xi+1(t)| ≤ kci+1 , i = 2, ..., n− 1, after verifying

that there exist positive constants Ai such that |αi(t)| ≤ Ai, ∀ t. Since ‖θ̂(t)‖ ≤
Dθ̂, |xi(t)| ≤ Dz1 + Ai−1, |zi(t)| ≤ Dz1 , and |y(i)

d (t)| ≤ Yi, it is clear that

(x̄i(t), z̄i(t), ȳdi(t), θ̂(t)) ∈ Ωi (4.61)

and thus, the stabilizing function αi(x̄i, z̄i, ȳdi , θ̂) in (4.7) is bounded since it is a

continuous function. As a result, we have that sup(x̄i,z̄i,ȳdi
,θ̂)∈ Ωi

|αi(x̄i, z̄i, ȳdi , θ̂)|
exists, and an upper bound Ai can be found. Then, since |zi+1(t)| ≤ Dz1 < kb1 ,

we can show that

|xi+1(t)| ≤ Dz1 + |αi(t)| < kb1 + |αi(t)| (4.62)

From Condition C1 and the fact that |αi(t)| ≤ Ai, we conclude that |xi+1(t)| ≤
Dz1 + Ai < kci+1 , ∀ t.

iii) It is straightforward to prove that all closed loop signals are bounded, based

on the results |zi(t)| ≤ Dz1 < kb1 , |xi(t)| < kci , and ‖θ̂(t)‖ ≤ Dθ̂, for i =

1, ..., n. By inspection of the stabilizing functions αi(x̄i, z̄i, ȳdi , θ̂) and control

u(x̄n, z̄n, ȳdn , θ̂) , it is clear that they are bounded, by virtue of the boundedness

of x̄n(t), z̄n(t), ȳdn(t), θ̂(t), and, in particular, by |zi(t)| < kb1 , which prevents

any term comprising (k2
b1
− z2

i ) in the denominator from becoming unbounded.

iv) Based on (4.40), (4.41), (4.42), and (4.43), we have that

V̈n = 2
n∑

j=1

(k2
b1 − z2

j )κ2
jz

2
j + 2

n∑

j=2

k2
b1
− z2

j

k2
b1
− z2

j−1

κjgj−1zj−1zj

−2
n−1∑

j=1

κjgjzjzj+1 + 2
n∑

j=1

θ̃T wjκjzj − 2
n∑

j=2

∂αj−1

∂θ̂
Γ(τj − τn)κjzj

−2
n∑

k=3

k−1∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
Γwkκkzk (4.63)
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From the fact that |zi(t)| ≤ Dz1 < kb1 , |xi(t)| < kci , and ‖θ̂(t)‖ ≤ Dθ̂, i =

1, ..., n, it can be shown that all right hand side terms are bounded. Thus,

V̈n(t) is bounded, which implies that V̇n(t) is uniformly continuous. Then,

by Barbalat’s Lemma, we obtain that zi(t) → 0 as t → ∞. Since z1(t) =

x1(t)− yd(t) and y(t) = x1(t), it is clear that y(t) → yd(t) as t →∞.

4.3.3 Full State Constraints: Feasibility Check

As mentioned earlier, the proposed method is unable to handle arbitrary state con-

straints. The state constraints kci need to satisfy the feasibility conditions C1 and

C2 in Theorems 4.3.1-4.3.2, which depend on the initial conditions and the design

parameters. Since initial conditions cannot be chosen, this amounts to a search for a

set of design parameters κ̄n−1 and Γ that satisfies C1 and C2.

We wish to choose the design parameters to be sufficiently large so as to achieve

higher rates of error convergence and adaptation. However, the feasibility conditions

impose an upper bound on the design parameters. This tradeoff can be formulated as

a static nonlinear constrained optimization problem that can be solved offline prior to

actual implementation, using state of the art numerical solvers such as the MATLAB

function “fmincon.m”.

When the system (4.1) is known, we check if there exists a solution κ̄n−1 := [κ1, ..., κn−1]T

for the optimization problem:

max
κ1,...,κn−1>0

P (κ̄n−1) =
n−1∑

i=1

aiκi

subject to:

kci+1 > Ai(κ̄i) + kb1

kb1 > |xi+1(0)− αi(x̄i(0), z̄i(0), ȳdi(0); κ̄i)|
i = 1, ..., n− 1 (4.64)

where P is the objective function, and ai are positive constants. If a solution κ̄∗n−1

to the above optimization problem exists, then C1 and C2 in Theorem 4.3.1 are

satisfied, and the proposed control (4.18) with κ̄n−1 = κ̄∗n−1 is feasible in ensuring

output tracking for the system (4.1) with full state constraint.

88



4.4 Partial State Constraints

When (4.1) is uncertain, the matrix of adaptation parameters, Γ := diag(γ1 ,γ2,...,γl),

is also considered in the optimization:

max
κ1,...,κn−1,Γ>0

P (κ̄n−1, Γ) =
n−1∑

i=1

aiκi +
l∑

i=1

biγi

subject to:

kci+1 > Ai(κ̄i, Γ) + kb1

kb1 > |xi+1(0)− αi(x̄i(0), z̄i(0), ȳdi(0), θ̂(0); κ̄i,Γ)|
i = 1, ..., n− 1 (4.65)

where bi are positive constants. If a solution (κ̄∗n−1,Γ
∗) to the above optimization

problem is found, then the proposed adaptive control (4.38)-(4.39), with κ̄n−1 = κ̄∗n−1

and Γ = Γ∗, is feasible in ensuring output tracking for the system (4.1) with full state

constraint, according to Theorem 4.3.2.

Remark 4.3.2 The conditions C1 and C2, in Theorems 4.3.1 and 4.3.2, are suffi-

cient conditions to achieve output tracking in the presence of state constraints. In

particular, C1 ensures that the state constraints |xi(t)| < kci are met, given that

|zi(t)| < kb1, for all i = 1, 2, ..., n. The condition |zi(t)| < kb1, for all i = 1, 2, ..., n, is

ensured by our proposed BLF-based control.

Remark 4.3.3 The bounds A1, ..., An−1 are computable for any set of control pa-

rameters κ1, ..., κn, Γ and initial conditions x(0), and thus, these conditions can be

checked before the control is implemented, provided that knowledge of the initial con-

dition is available.

4.4 Partial State Constraints

When all states need to be constrained, the feasibility conditions C1-C2, as described

in Theorems 4.3.1-4.3.2, may become rather restrictive. In the case where only some,

but not all, of the states have constraints, the design procedure is modified such

that Barrier Lyapunov Functions are only used up to the step with the highest order

state under constraint, and the feasibility conditions can be relaxed. Consider the
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4.4 Partial State Constraints

partition of the full state x = [x1, ..., xn]T into free states xr = [xr1 , xr2 , ..., xrnr
]T

and constrained states xs = [xs1 , xs2 , ..., xsns
]T , where nr + ns = n, and the number

sequences, {r1, r2, ..., rnr} and {s1, s2, ..., sns}, are both ascending.

4.4.1 Partial State Constraints: Known Case

According to the backstepping methodology, we employ BLFs from steps 1 to sns :

V1 =
1
2

log
k2

b1

k2
b1
− z2

1

+ Vθ, (4.66)

Vi = Vi−1 +
1
2

log
k2

b1

k2
b1
− z2

i

, i = 2, 3, ..., sns (4.67)

to design the corresponding stabilizing functions

α1 =
1
g1

(−f1 − (k2
b1 − z2

1)κ1z1 + ẏd) (4.68)

αi =
1
gi

(
−fi + α̇i−1 − (k2

b1 − z2
i )κizi −

k2
b1
− z2

i

k2
b1
− z2

i−1

gi−1zi−1

)
, i = 2, 3, ..., sns

(4.69)

From step (sns + 1) onwards until the final step, quadratic Lyapunov functions are

used for the design of the remaining stabilizing functions and final control law:

Vi = Vi−1 +
1
2
z2
i , i = sns + 1, sns + 2, ... , n (4.70)

αsns+1 =
1

gsns+1

(
−fsns+1 + α̇sns

− κsns+1zsns+1 −
gsns

zsns

k2
b1
− z2

sns

)
(4.71)

αj =
1
gj

(−fj + α̇j−1 − κjzj − gj−1zj−1), j = sns + 2 , sns + 3 , ... , n

(4.72)

u = αn (4.73)

For i ∈ {s1, s2, ..., sns}, the given constraints kci need to satisfy feasibility conditions

similar to those in Theorems 4.3.1-4.3.2. However, for i ∈ {r1, r2, ..., rns}, where

rns < sns , the constraints ki are not explicitly specified as problem requirements, but

rather, they are artificially imposed as part of the design procedure. As such, they

can be chosen as design parameters, thus relaxing the feasibility conditions.

We state the results concisely for the known case in the following theorem.
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Theorem 4.4.1 Consider known system (4.1) under Assumptions 4.2.1-4.2.2, sta-

bilizing functions and control law (4.68)-(4.69),(4.71)-(4.73). Denote by Ai an upper

bound for αi in the compact set Ωi, that is,

Ai ≥ sup
(x̄i, z̄i, ȳdi

) ∈ Ωi

|αi(x̄i, z̄i, ȳdi ; κ̄i)|, i = 1, ..., sns − 1 (4.74)

where αi is parameterized by κ̄i = [κ1, κ2, ..., κi]T , and Ωi is a compact set defined by:

Ωi :=
{
x̄i ∈ Ri, z̄i ∈ Ri, ȳdi ∈ Ri :

|xj | ≤ Dz1 + Aj−1, |zj | ≤ Dz1 , |y(j)
d | ≤ Yj , j = 1, ..., i

}
(4.75)

Dz1 := kb1

√√√√1− Πsns
i=1(k

2
b1
− z2

i (0))

k
2sns
b1

e
Pn

i=sns
z2
i (0)

(4.76)

Given the constraints {kcs2
, kcs3

, ..., kcsns
}, and that

C1) there exist Ai and {kci}i∈F , where F := {r1, r2, ..., rnr} ∩ {1, 2, ..., sns}, such

that

kci+1 > Ai + kb1 , i = 1, ..., sns − 1 (4.77)

C2) the initial conditions are such that

z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |zi| < kb1 , i = 1, 2, ..., sns} (4.78)

then the following properties hold.

i) The signals zi(t), i = 1, 2, ..., n, remain, for all t > 0, in the compact set defined

by Ωz = {z̄n ∈ Rn : |zi| ≤ Dz1 , i = 1, 2, ..., sns , ‖zsns+1:n‖ ≤
√

2Vn(0)}, where

zsns+1:n := [zsns+1, zsns+2, ..., zn]T .

ii) The partial state xs(t) remains in the set Ωxs := {xs ∈ Rns : |xi| ≤ Dz1 +Ai−1 <

kci , i = s1, s2, ..., sns} ∀t > 0, i.e. the partial state constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.
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Proof: The properties (i)− (iv) will be proved in sequence as follows:

i) From the fact that V̇n ≤ 0, it is clear that

Vn(t) ≤
sns∑

i=1

1
2

log
k2

b1

k2
b1
− z2

i (0)
+

n∑

i=sns+1

1
2
z2
i (0)

Using the identity log a + log b = log ab, we have that

k2
b1

k2
b1
− z2

i (t)
≤ k

2sns
b1

e
Pn

i=sns
z2
i (0)

Πsns
i=1(k

2
b1
− z2

i (0))
(4.79)

Since |zi(0)| < kb1 , we know that k2
b1
− z2

i (t) > 0 ∀ t from Lemma 2.4.2. Simple

rearrangement yields that |zi(t)| ≤ Dz1 , i = 1, 2, ..., sns . Then, based on the fact

that 1
2

∑n
i=sns+1 z2

i (t) ≤ Vn(0), it is easy to see that ‖zsns+1:n(t)‖ ≤
√

2Vn(0).

Hence, zi(t) remains in the compact set Ωz ∀ t > 0.

ii) This part of the proof is similar to that in Theorem 4.3.1, with a minor difference

that |xi| ≤ kci for i = 1, 2, ..., sns , instead of i = 1, 2, ..., n. Since the sequence

{s1, s2, ..., sns} ⊂ {1, 2, ..., sns}, we can conclude that xs(t) ∈ Ωxs ∀t > 0.

iii) We have already established the boundedness results |zi(t)| ≤ Dz1 < kb1 ,

|xi(t)| < kci , and αi(t) ≤ Ai for i = 1, ..., sns . Together with the fact ‖zsns+1:n‖ ≤√
2Vn(0), we can progressively show, via the usual signal chasing, that the re-

maining αi(t) and xi(t) are also bounded (i = sns +1, ..., n). Then, it is straight-

forward to show that the control u(x̄n, z̄n, ȳdn) is bounded. Thus, all closed loop

signals are bounded.

iv) The proof follows by showing that V̈n is bounded and then invoking Barbalat’s

Lemma to conclude asymptotic stability of z1.

4.4.2 Partial State Constraints: Uncertain Case

When dealing with parametric uncertainty, we employ the same Lyapunov function

candidates as described in (4.66) and (4.70), with the exception that V1 is augmented

with a quadratic term of the parameter estimation error:

V1 =
1
2

log
k2

b1

k2
b1
− z2

1

+
1
2
θ̃T Γ−1θ̃ (4.80)
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From step 1 to step sns , BLF candidates are considered, leading to the following

stabilizing functions:

α1 =
1
g1

(−θ̂T w1 − (k2
b1 − z2

1)κ1z1 + ẏd)

α2 =
1
g2


−θ̂T w2 − (k2

b1 − z2
2)κ2z2 −

k2
b1
− z2

2

k2
b1
− z2

1

g1z1 +
∂α1

∂x1
x2 +

1∑

j=0

∂α1

∂y
(j)
d

y
(j+1)
d

+
∂α1

∂θ̂
Γτ2

)

αi =
1
gi


−θ̂T wi − (k2

b1 − z2
i )κizi −

k2
b1
− z2

i

kb1 − z2
i−1

gi−1zi−1 +
i−1∑

j=1

∂αi−1

xj
xj+1

+
i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d +

∂αi−1

∂θ̂
Γτi +

i−1∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
Γwi


 , i = 3, 4, ..., sns

(4.81)

From step (sns + 1) onwards until the final step, QLF candidates are used, and the

following stabilizing functions are designed:

αsns+1 =
1

gsns+1


−θ̂T wsns+1 − κsns+1zsns+1 −

gsns
zsns

k2
b1
− z2

sns

+
sns∑

j=1

∂αsns

xj
xj+1

+
sns∑

j=0

∂αsns

∂y
(j)
d

y
(j+1)
d +

∂αsns

∂θ̂
Γτsns+1 +

sns∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
Γwsns+1




αk =
1
gk


−θ̂T wk − κkzk − gk−1zk−1 +

k−1∑

j=1

∂αk−1

xj
xj+1 +

k−1∑

j=0

∂αk−1

∂y
(j)
d

y
(j+1)
d

+
∂αk−1

∂θ̂
Γτk +




sns∑

j=2

zj

k2
b1
− z2

j

∂αj−1

∂θ̂
+

k−1∑

j=sns+1

zj
∂αj−1

∂θ̂


Γwk


 ,

k = sns + 2, sns + 3, ..., n (4.82)

The control and adaptation laws are chosen as follows:

u = αn (4.83)
˙̂
θ = Γτn (4.84)
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where the intermediate functions wi, tuning functions τi, and adaptation law are

given by

w1 = ψ1(x1), wi = ψi(x̄i)−
i−1∑

j=1

∂αi−1

xj
ψj(x̄j), i = 2, ..., n

τ1 =
w1z1

k2
b1
− z2

1

, τi =





τi−1 + wizi

k2
b1
−z2

i
, i = 2, ..., sns

τi−1 + wizi, i = sns + 1, ..., n
(4.85)

The results for the uncertain case are summarized in the following theorem.

Theorem 4.4.2 Consider uncertain system (4.1), under Assumptions 4.2.1-4.2.2,

stabilizing functions and control law (4.81)-(4.82), and adaptation law (4.84). Denote

by Ai an upper bound for αi in the compact set Ωi, that is,

Ai ≥ sup
(x̄i, z̄i, ȳdi

, θ̂) ∈ Ωi

|αi(x̄i, z̄i, ȳdi , θ̂; κ̄i,Γ)|, i = 1, ..., sns − 1 (4.86)

where αi is parameterized by Γ = and κ̄i = [κ1, κ2, ..., κi]T , and Ωi is a compact set

defined by:

Ωi :=
{

x̄i ∈ Ri, z̄i ∈ Ri, ȳdi ∈ Ri, θ̂ ∈ Rl :

|xj | ≤ Dz1 + Aj−1, |zj | ≤ Dz1 , |y(j)
d |, ‖θ̂‖ ≤ Dθ̂ ≤ Yj , j = 1, ..., i

}
(4.87)

Dz1 := kb1

√√√√1− Πsns
i=1(k

2
b1
− z2

i (0))

k
2sns
b1

e2V̄ξ
(4.88)

Dθ̂ := θM +

√
2V̄n

λmin(Γ−1)
(4.89)

V̄ξ :=
1
2

n∑

i=sns+1

z2
i (0) +

1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2 (4.90)

V̄n :=
1
2

sns∑

i=1

log
k2

b1

k2
b1
− z2

i (0)
+ V̄ξ (4.91)

Given the constraints {kcs2
, kcs3

, ..., kcsns
}, and that

C1) there exist Ai and {kci}i∈F , where F := {r1, r2, ..., rnr} ∩ {1, 2, ..., sns}, such

that

kci+1 > Ai + kb1 , i = 1, ..., sns − 1 (4.92)
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4.4 Partial State Constraints

C2) the initial conditions are such that

z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |zi| < kb1 , i = 1, 2, ..., sns} (4.93)

then the following properties hold.

i) The signals zi(t), i = 1, 2, ..., n, and θ̂(t) remain in the compact sets defined by

Ωz :=
{

z̄n ∈ Rn : |zi| ≤ Dz1 , i = 1, 2, ..., sns , ‖zsns+1:n‖ ≤
√

2V̄n

}
(4.94)

Ωθ̂ :=
{

θ̂ ∈ Rl : ‖θ̂‖ ≤ Dθ̂

}
(4.95)

ii) The partial state xs(t) remains in the set Ωxs := {xs ∈ Rns : |xi| ≤ Dz1 +Ai−1 <

kci , i = s1, s2, ..., sns} ∀t > 0, i.e. the partial state constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to zero asymptotically, i.e., y(t) →
yd(t) as t →∞.

Proof: The properties (i)− (iv) will be proved in sequence as follows.

i) Since ‖θ‖ ≤ θM , we have

Vn(0) ≤
sns∑

i=1

1
2

log
k2

b1

k2
b1
− z2

i (0)
+

n∑

i=sns+1

1
2
z2
i (0) +

1
2
λmax(Γ−1)(‖θ̂(0)‖+ θM )2

= V̄n

From the fact that V̇n ≤ 0, it is clear that Vn(t) ≤ Vn(0) ≤ V̄n, and hence
1
2λmin(Γ−1)‖θ̂(t)− θ‖2 ≤ V̄n. It is straightforward to show that ‖θ̂(t)‖ ≤ θM +√

2V̄n
λmin(Γ−1)

such that θ̂(t) remains in the compact set Ωθ̂ ∀ t.

Furthermore, from Vn(t) ≤ V̄n, we have that

k2
b1

k2
b1
− z2

i (t)
≤ k2n

b1
e2V̄ξ

Πsns
i=1(k

2
b1
− z2

i (0))
(4.96)

Since |zi(0)| < kb1 , we know that k2
b1
− z2

i (t) > 0 ∀ t from Lemma 2.4.2. A

simple rearrangement yields |zi| ≤ Dz1 , i = 1, 2, ..., sns . Then, based on the fact

that 1
2

∑n
i=sns+1 z2

i (t) ≤ V̄n, it is easy to see that ‖zsns+1:n(t)‖ ≤
√

2V̄n. Hence,

zi remains in the compact set Ωz ∀ t > 0.
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4.4 Partial State Constraints

ii) Similar to the proof of Theorem 4.3.2(ii), we can show that |xi| ≤ kci for

i = 1, 2, ..., sns . Since the sequence {s1, s2, ..., sns} ⊂ {1, 2, ..., sns}, we can

conclude that xs(t) ∈ Ωxs ∀t > 0.

iii) We have already established the boundedness results ‖θ̂‖ ≤ Dθ̂, |zi(t)| ≤ Dz1 <

kb1 , |xi(t)| < kci , and αi ≤ Ai for i = 1, ..., sns . Together with the fact

‖zsns+1:n‖ ≤
√

2V̄n, we can progressively show, along the lines of the proof

of Theorem 4.3.2(iii), that the remaining αi and xi, for i = sns + 1, ..., n, and

the control u(x̄n, z̄n, ȳdn , θ̂), are all bounded.

iv) The proof follows by showing that V̈n is bounded and then invoking Barbalat’s

Lemma to conclude asymptotic stability of z1.

4.4.3 Partial State Constraints: Feasibility Check

With only a portion of the states to be constrained, the feasibility conditions are re-

laxed. Recall that the full state is partitioned into free states xr = [xr1 , xr2 , ..., xrnr
]T

and constrained states xs = [xs1 , xs2 , ..., xsns
]T . Then, the parameters kci , for i ∈

F := {r1, r2, ..., rnr} ∩ {1, 2, ..., sns}, are no longer hard constraints imposed by the

problem, but are now design constants at our disposal. Additionally, there are less

conditions to satisfy, except for the special case when sns = n, i.e. xn needs to be

constrained.

Similar to the full state constraint problem, we check offline the feasibility condi-

tions C1-C2 in Theorems 4.4.1-4.4.2 by solving a nonlinear constrained optimization

problem. When the plant is known, we check if there exists a solution κ̄sns−1 :=

[κ1, ..., κsns−1]T for the optimization problem:

max
κ1,...,κsns−1>0

P (κ̄sns−1, {kci}i∈F ) =
sns−1∑

i=1

aiκi −
∑

i∈F
dikci

subject to:

kci+1 > Ai(κ̄i) + kb1

kb1 > |xi+1(0)− αi(x̄i(0), z̄i(0), ȳdi(0); κ̄i)|
i = 1, ..., sns − 1 (4.97)
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where P is the objective function, and ai, di are positive constants. If a solution

(κ̄∗sns−1, {k∗ci
}i∈F ) to the above optimization problem exists, then C1 and C2 in The-

orem 4.4.1 are satisfied, and the proposed control (4.73) with κ̄sns−1 = κ̄∗sns−1 is

feasible in ensuring output tracking for the system (4.1) with partial state constraint.

When the plant is uncertain, the matrix of adaptation parameters, Γ := diag(γ1, γ2, ..., γl),

is also taken into consideration in the optimization problem:

max
κ1,...,κsns−1,Γ>0

P (κ̄sns−1, {kci}i∈F ,Γ) =
sns−1∑

i=1

aiκi +
l∑

i=1

biγi −
∑

i∈F
dikci

subject to:

kci+1 > Ai(κ̄i, Γ) + kb1

kb1 > |xi+1(0)− αi(x̄i(0), z̄i(0), ȳdi(0), θ̂(0); κ̄i, Γ)|
i = 1, ..., sns − 1 (4.98)

where bi are positive constants. If a solution (κ̄∗sns−1, {k∗ci
}i∈F ,Γ∗) to the above

optimization problem exists, then C1 and C2 in Theorem 4.4.2 are satisfied, and

the proposed adaptive control (4.83)-(4.84), with κ̄sns−1 = κ̄∗sns−1 and Γ = Γ∗, is

feasible in ensuring output tracking for the system (4.1) with partial state constraint.

Note that a penalty term −∑
i∈F dikci is appended in the above objective functions

to limit the growth of the design constants kci , i ∈ F , during the optimization. For

each i ∈ F , ensuring kci to be as small as possible helps to ensure that Ai is also

small, thus increasing the possibility of satisfying the condition kci+1 > Ai + kb1 .

4.5 Simulation

In this section, we present simulation studies to demonstrate the effectiveness of the

proposed control, with and without uncertainty in the plant model. Consider the

second-order nonlinear system

ẋ1 = θ1x
2
1 + x2

ẋ2 = θ2x1x2 + θ3x1 + (1 + x2
1)u (4.99)

where θ1 = 0.1, θ2 = 0.1, and θ3 = −0.2. The objective is for x1 to track desired

trajectory yd = 0.2 + 0.3 sin t, subject to full state constraint |x1| < kc1 = 0.8 and
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|x2| < kc2 = 2.5. Since |yd| ≤ A0 = 0.5, we have that kb1 = 0.8− 0.5 = 0.3. Further,

we have |ẏd| ≤ Y1 = 0.3. The initial conditions are x1(0) = 0.0 and x2(0) = 0.5.

For the known case, it can be verified that with control gain κ1 = 1.0, we obtain that

z1(0) = −0.2, z2(0) = 0.19, Dz1 = 0.249 from (4.23), and A1, with the help of Lemma

2.4.4, as follows:

sup
(x1,z1,ẏd)∈Ω1

|α1| ≤ θ1(Dz1 + A0)2 + Y1 +
2

3
√

3
k3

b1κ1 = A1 = 0.367 (4.100)

where Ω1 = {x1 ∈ R, z1 ∈ R, ẏd ∈ R : |x1| ≤ Dz1 + A0, |z1| ≤ Dz1 , |ẏd| ≤ Y1}.
Therefore, the condition kc2 > A1 is satisfied. At the same time, we have |z2(0)| ≤
|z1(0)| < kb1 . Thus, the feasibility conditions C1-C2 in Theorems 4.3.1 are satisfied.

Further, we obtain that kb1 = 2.5− 0.367 = 2.133, and choose κ2 = 1.0.

For the adaptive case, it can be verified that with the control gain κ1 = 1.0, adaptation

parameters γ1 = γ2 = γ3 = 5.0, and θ̂(0) = 0.0, we obtain that z1(0) = −0.2,

z2(0) = 0.19, Dz1 = 0.250 from (4.48), Dθ̂ = 2.682 from (4.49), and A1, with the help

of Lemma 2.4.4, as follows:

sup
(x1,z1,ẏd,θ̂)∈Ω1

|α1| ≤ Dθ̂(Dz1 + A0)2 + Y1 +
2

3
√

3
k3

b1κ1 = A1 = 1.819 (4.101)

where Ω1 = {x1 ∈ R, z1 ∈ R, ẏd ∈ R, θ̂ ∈ R : |x1| ≤ Dz1 + A0, |z1| ≤ Dz1 , |ẏd| ≤
Y1, ‖θ̂‖ ≤ Dθ̂}. Therefore, the condition kc2 > A1 is satisfied. At the same time, we

have |z2(0)| ≤ |z1(0)| < kb1 . Thus, the feasibility conditions C1-C2 in Theorems 4.3.2

are satisfied. Further, we obtain that kb1 = 2.5− 1.819 = 0.681, and choose κ2 = 1.0.

Simulation results for full state constraint problem with and without uncertainty are

shown in Figures 4.1-4.5. Good tracking performance is exhibited, and the state

constraint requirements |x1| < kc1 and |x2| < kc2 are satisfied, as a result of enforcing

constraints on error signals |z1| < kb1 and |z2| < kb1 . The control signals and the

parameter estimates are well behaved and bounded.

Remark 4.5.1 In this simulation, we have selected parameters for the controller

based on trial and error out of simplicity. Alternatively, the parameters can be selected

by solving the optimization problems described in (4.64) and (4.65). The optimization

problem can be solved by using state of the art solvers such as the MATLAB function

“fmincon.m” in the MATLAB Optimization Toolbox.
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4.6 Conclusions

In this chapter, we have presented control designs for strict feedback systems with

constraints on the states, based on Barrier Lyapunov Functions. Besides the nominal

case where the plant is known exactly, the presence of parametric uncertainties has

also been handled. When dealing with full state constraints, asymptotic tracking is

achieved without violation of constraints, and all closed loop signals remain bounded,

under some feasibility conditions which involve the initial states and the control para-

meters. When handling only partial state constraints, the conditions can be relaxed.

These feasibility conditions can be checked offline. The effectiveness of the proposed

control has been demonstrated through a simulation example.
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Figure 4.1: The output x1 and the state x2 for the full state constraint problem with
and without uncertainty.
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Chapter 5

Control of Constrained Systems

with Uncertain Control Gain

Functions

5.1 Introduction

In this chapter, we extend our investigations to the adaptive control problem for

SISO nonlinear strict feedback systems with uncertain control gain functions and

constraints in the output and states. Methods for handling unknown virtual control

gains include the use of Integral Lyapunov Functions [43] and quadratic-like Lya-

punov functions with reciprocal of control gain function [44]. As these approaches

are difficult to combine with Barrier Lyapunov Functions for handling of constraints,

we adopt, in this chapter, the robust adaptive domination approach of handling un-

known virtual control gains. In the adaptive domination approach, we do not try to

cancel the nonlinearities as in feedback linearization, but instead dominate them by

adaptively estimating constant bounds for the nonlinear functions within some local

region. Then, with the help of BLFs, it can be shown that the state never leaves the

said region, thus validating the control design and analysis.

Within this framework, conditions for practical stability with guaranteed non-violation
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of constraints are established, and both cases of full state constraint and output con-

straint are considered. For the case of full state constraints, we employ Barrier

Lyapunov Functions for each step of the backstepping design. Feasibility conditions

on the initial states and control parameters are provided, which can be checked a

priori, to determine if the given problem can be solved with these approaches, and

can generally be relaxed when handling only partial state constraints. For the special

case of output constraint with linearly parameterized system nonlinearities, feasibil-

ity conditions are not required, and the design employs BLF only in the first step of

backstepping, while the subsequent steps are all based on quadratic ones.

The organization of the remainder of this chapter is outlined as follows. In Section

5.2, the tracking control problem for nonlinear constrained systems in strict feedback

form is formulated, where we pay special attention to the uncertainty of the control

gain functions. Following that, the control design methodology is detailed in Section

5.3 for the case of full state constraint, along with the conditions that govern the

feasibility of proposed control. Section 5.4 extends these results to the special case of

output constraint with linearly parameterized system nonlinearities, for which feasi-

bility conditions are not required. Finally, computer simulation results are presented

in Section 5.5 to illustrate the performance of the control, before concluding remarks

are made in Section 5.6.

5.2 Problem Formulation and Preliminaries

Consider the system in strict feedback form:

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, 2, ..., n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1 (5.1)

where x1, x2, ..., xn are the states, x̄i := [x1, x2, ..., xi]T ∈ Ri, fi and gi are uncertain

smooth functions, u ∈ R and y ∈ R are the input and output respectively, for i =

1, 2, ..., n. We consider the problems of output and state constraints. For the case of

output constraint, the output is required to remain in the set |y| ≤ kc1 , with kc1 being
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a constant. For the case of state constraints, every state xi is required to remain in

the set |xi| ≤ kci , with kci being a constant, for i = 1, ..., n.

The control objective is to track a desired trajectory yd while ensuring that all closed

loop signals are bounded and that output or state constraints are not violated. In this

chapter, for convenience of notation, we group the derivatives of the desired trajectory

in the vector ȳdi
:= [y(1)

d , y
(2)
d , ..., y

(i)
d ]T . The assumptions on the desired trajectory

yd, as well as the functions gi(·), i = 1, ..., n, from (5.1), are stated as follows.

Assumption 5.2.1 For any kc1 > 0, there exist positive constants A0, Y1, Y2,..., Yn

such that the desired trajectory yd(t) and its time derivatives satisfy

|yd(t)| ≤ A0 < kc1 , |ẏd(t)| < Y1, |ÿd(t)| < Y2, · · · , |y(n)
d (t)| < Yn (5.2)

for all t ≥ 0.

Assumption 5.2.2 The control gain functions gi(x̄i) satisfy |gi(x̄i)| ≥ g∗ ≥ gmin > 0

for i = 1, 2, ..., n where g∗ := mini=1,...,n{inf x̄i∈Ri gi(x̄i)} is uncertain, while gmin is a

known positive constant. Note that gmin can be a conservative estimate for g∗. We

further assume that the gi(x̄i) are all positive.

5.3 Control Design for State Constraints

In this section, we consider the case of full state constraints, and employ BLFs in every

step of backstepping design, so as to keep each error signal zi = xi−αi−1 (i = 2, ..., n)

constrained. Provided that each stabilizing function αi−1 is bounded in the specified

constrained region for xi, we can ensure that xi remains in the constrained region,

subject to feasibility conditions.

Unlike the previous chapters, which adopted a cancellation based approach, this chap-

ter is based on a domination based approach, due to the presence of uncertain control

gain functions. We first explain the technique of robust adaptive domination design

with BLF using a simple first order nonlinear system as a motivating example. Sub-

sequently, the design methodology is extended to the n-order system (5.1) with the

use of backstepping techniques.
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5.3.1 Robust Adaptive Domination Design

For clarity of presentation, we outline the method of employing Robust Adaptive

Domination Design together with BLF to design a control that not only handles the

uncertain control gain function, but also prevents the state constraint from being

transgressed. Consider, as a motivating example, the first order nonlinear system:

ẋ1 = f1(x1) + g1(x1)u (5.3)

where the objective is to stabilize the origin while ensuring that |x1| < kc. Choose

Lyapunov function candidate as:

Vx =
1
2

log
k2

c

k2
c − x2

1

(5.4)

which is positive definite and continuously differentiable in the region |x1| < kc. The

derivative of Vx along the solution of (5.3) is given by

V̇x =
x1

k2
c − x2

1

(f1(x1) + g1(x1)u) (5.5)

In the adaptive domination approach, we do not try to cancel the nonlinearity f1(x1),

but instead dominate it by adaptively estimating a local constant bound for the non-

linear function. Considering the set |x1| ≤ kc, we know, by virtue of the smoothness

of function f1(x1), that f1(x1) ≤ F1 where F1 := sup|x1|≤kc
|f1(x1)|, which yields the

inequality:

V̇x ≤
∣∣∣∣

x1

k2
c − x2

1

∣∣∣∣F1 +
x1g1(x1)u
k2

c − x2
1

(5.6)

By completion of squares on the first term on the right hand side, it can be obtained

that

V̇x ≤ λg∗x2
1

(k2
c − x2

1)2
θ1 +

x1g1(x1)u
k2

c − x2
1

+
1
4λ

(5.7)

where λ is a positive constant, and θ1 := F 2
1 /g∗ is an unknown parameter to be

estimated adaptively. Denote by θ̂1 an estimate for θ1, and design the control and

adaptation laws as follows:

u = −
(

λ

k2
c − x2

1

θ̂1 + (k2
c − x2

1)κ1

)
x1 (5.8)

˙̂
θ1 =

Γ1x
2
1

(k2
c − x2

1)2
− σθ̂1, θ̂1(0) ≥ 0 (5.9)
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where σ is a positive constant, and κ1 > c/k2
c with c to be defined later. Then, the

closed loop system consists of (5.9) and

ẋ1 = f1(x1)− g1(x1)
(

λ

k2
c − x2

1

θ̂1 − (k2
c − x2

1)κ1

)
x1 (5.10)

From (5.9), it is easy to see that θ̂1(t) ≥ 0 ∀t > 0. At the same time, from Assumption

5.2.2, we know that g1(x1) > gmin > 0. Therefore, it is clear that the following

inequality holds:

− λg1(x1)x2
1

(k2
c − x2

1)2
θ̂1 ≤ − λg∗x2

1

(k2
c − x2

1)2
θ̂1 (5.11)

Substituting the control law into (5.7), and using the above inequality, the derivative

of Vx can be rewritten in the form:

V̇x ≤ −κ1g1(x1)x2
1 −

λg∗x2
1

(k2
c − x2

1)2
θ̃1 +

1
4λ

(5.12)

To analyze closed loop stability due to online parameter adaptation, we augment Vx

with a quadratic term of the parameter estimation error θ̃1 = θ̂1 − θ1, which yields

the new Lyapunov function candidate as:

V = Vx +
λg∗

2
Γ−1

1 θ̃2
1 (5.13)

where Γ1 is a positive constant. Finally, the derivative of V satisfies the inequality:

V̇ ≤ −κ1g1(x1)x2
1 −

λg∗σ
2

Γ−1
1 θ̃2

1 + c (5.14)

where

c :=
1
4λ

+
λg∗σ

2
Γ−1

1 θ2
1 (5.15)

Let the closed loop system (5.9)-(5.10) be written as η̇ = h(t, η), where η = [x1, θ̂]T .

By inspection, h(t, η) satisfies the conditions (2.17)-(2.20) in the open set η ∈ Z :=

{x1 ∈ R, θ̂ ∈ R : |x1| < kc}. Together with (5.14) and κ1 > c/k2
c , Lemma 2.4.3 can be

invoked to show that the state constraint is never violated, i.e. |x1(t)| < kc ∀t > 0,

as long as |x1(0)| < kc.

Thus far, in the foregoing design and analysis, we have assumed that f1(x1) ≤ F1

in the set |x1| ≤ kc. Since the proposed control indeed renders the set |x1| < kc

positively invariant, we can safely conclude that f1(x1(t)) ≤ F1 is valid ∀t > 0, such

that the control design and analysis are valid.
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5.3.2 Adaptive Backstepping Design

In this section, the foregoing control design methodology is extended to the n-order

strict feedback system (5.1) via backstepping. For any δ ≥ 0, let

Ωc := {x ∈ Rn : |xi| < kci , i = 1, ..., n} (5.16)

Ωx := {x ∈ Rn : |xi| ≤ kci + δ, i = 1, ..., n} (5.17)

For x ∈ Ωx, the uncertain functions fi(x̄i) and gi(x̄i) are bounded by known positive

constants F̄i and Ḡi respectively. Then, robust adaptive backstepping with Barrier

Lyapunov Functions is employed to ensure that x(t) ∈ Ωc ⊂ Ωx, under certain initial

conditions. The detailed design procedure is presented as follows.

Step 1 Denote z1 = x1 − yd and z2 = x2 − α1, where α1 is a stabilizing function to

be designed. Choose Lyapunov function candidate as:

V1 =
1
2

log
k2

b1

k2
b1
− z2

1

+
λg∗

2
Γ−1

1 θ̃2
1 (5.18)

where kb1 = kc1 − A0, λ and Γ1 are positive constants, and θ̃1 = θ̂1 − θ1 is the

estimation error, with θ1 an unknown positive parameter and θ̂1 its estimate. The

derivative of V1 is given by

V̇1 ≤
∣∣∣∣∣

z1

k2
b1
− z2

1

∣∣∣∣∣ (F1 + Y1) +
z1

k2
b1
− z2

1

(g1(x1)z2 + g1(x1)α1) +
λg∗

Γ1
θ̃1

˙̂
θ1 (5.19)

where F1 := supx∈Ωx
f1(x1) and ẏd ≤ Y1. By completion of squares, we have that

∣∣∣∣∣
z1

k2
b1
− z2

1

∣∣∣∣∣ (F1 + Y1) ≤ λg∗z2
1

(k2
b1
− z2

1)2
θ1 +

1
4λ

(5.20)

where θ1 := (F1 + Y1)2/g∗. Then, it can be shown that

V̇1 ≤ λg∗z2
1

(k2
b1
− z2

1)2
θ1 +

g1(x1)z1α1

k2
b1
− z2

1

+
g1(x1)z1z2

k2
b1
− z2

1

+
λg∗

Γ1
θ̃1

˙̂
θ1 +

1
4λ

(5.21)

Design the stabilizing function α1 and adaptation law designed as:

α1 = −
(

λ

k2
b1
− z2

1

θ̂1 + (k2
b1 − z2

1)κ1

)
z1 (5.22)

˙̂
θ1 =

Γ1z
2
1

(k2
b1
− z2

1)2
− σθ̂1, θ̂1(0) ≥ 0 (5.23)
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where κ1 is a positive constant. Substituting (5.22) and (5.23) into (5.21) yields

V̇1 ≤ −κ1g1(x1)z2
1 +

λg∗z2
1

(k2
b1
− z2

1)2
θ1 − λg1(x1)z2

1

(k2
b1
− z2

1)2
θ̂1 +

g1(x1)z1z2

k2
b1
− z2

1

+λg∗θ̃1

(
z2
1

(k2
b1
− z2

1)2
− Γ−1

1 σθ̂1

)
+

1
4λ

(5.24)

From (5.23), we know that θ̂1 ≥ 0, and from Assumption 5.2.2, we know that g1(x1) >

gmin > 0. As a result, it is easy to obtain that

V̇1 ≤ −κ1g1(x1)z2
1 −

λg∗z2
1

(k2
b1
− z2

1)2
θ̃1 + λg∗θ̃1

(
z2
1

(k2
b1
− z2

1)2
− Γ−1

1 σθ̂1

)

+
g1(x1)z1z2

k2
b1
− z2

1

+
1
4λ

≤ −κ1g1(x1)z2
1 +

g1(x1)z1z2

k2
b1
− z2

1

− λg∗σΓ−1
1 θ̃1θ̂1 +

1
4λ

(5.25)

Using the property that −θ̃1θ̂1 ≤ 1
2(−θ̃2

1 + θ2
1), we obtain

V̇1 ≤ −κ1g1(x1)z2
1 +

g1(x1)z1z2

k2
b1
− z2

1

− λg∗σ
2

Γ−1
1 θ̃2

1 + c1 (5.26)

where

c1 =
1
4λ

+
λg∗σ

2
Γ−1

1 θ2
1 (5.27)

The coupling term g1(x1)z1z2

k2
b1
−z2

1
is dominated in the subsequent step.

Step i (i = 2, ..., n)

Denote zi+1 = xi+1 − αi, where αi is a stabilizing function to be designed, and

zi+1 := 0. Choose the Lyapunov function candidate:

Vi = Vi−1 +
1
2

log
kb1

k2
b1
− z2

i

+
λg∗

2
θ̃T
i Γ−1

i θ̃i (5.28)

where kb1 is to defined later, Γi := diag(γi,1, γi,2, ..., γi,2i) > 0, and θ̃i = θ̂i − θi is

the estimation error between θi and its estimate θ̂i. The derivative of αi−1 can be

described by the expression:

α̇i−1 =
i−1∑

j=1

∂αi−1

∂xj
(fj(x̄j) + gj(x̄j)xj+1) + wi−1 (5.29)
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where wi−1 is a computable quantity represented by:

wi−1 :=
i−2∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d +

i−1∑

j=1

∂αi−1

∂θ̂j

˙̂
θj (5.30)

The derivative of Vi is given by

V̇i =
zi

k2
b1
− z2

i

[fi(x̄i)− α̇i−1 + gi(x̄i)zi+1 + gi(x̄i)αi] + λg∗θ̃T
i Γ−1

i
˙̂
θi + V̇i−1 (5.31)

Substituting (5.29) into the above equation yields:

V̇i ≤ zi

k2
b1
− z2

i

[fi(x̄i)−
i−1∑

j=1

∂αi−1

∂xj
(fj(x̄j) + gj(x̄j)xj+1)− wi−1 + gi(x̄i)(zi+1 + αi)]

+λg∗θ̃T
i Γ−1

i
˙̂
θi −

i−1∑

j=1

κjgj(x̄j)z2
j +

gi−1(x̄i−1)zi−1zi

k2
b1
− z2

i−1

−
i−1∑

j=1

λg∗σ
2

θ̃2
j + ci−1

≤
∣∣∣∣∣

zi

k2
b1
− z2

i

∣∣∣∣∣


Fi +

i−1∑

j=1

∣∣∣∣
∂αi−1

∂xj

∣∣∣∣ (Fj + Gj |xj+1|) + |wi−1|

 +

∣∣∣∣∣
zi−1zi

k2
b1
− z2

i−1

∣∣∣∣∣Gi−1

+λg∗θ̃T
i Γ−1

i
˙̂
θi +

zi

k2
b1
− z2

i

(gi(x̄i)zi+1 + gi(x̄i)αi)−
i−1∑

j=1

κjgj(x̄j)z2
j

−
i−1∑

j=1

λg∗σ
2

θ̃T
j Γ−1

j θ̃j + ci−1 (5.32)

where Fi := supx∈Ωx
|fi(x̄i)|, and Gi−1 := supx∈Ωx

|gi−1(x̄i−1)|.

Remark 5.3.1 Although it would appear more convenient to consider the bound

supx∈Ωx
(fi(x̄i)− α̇i−1) in (5.31), this is not viable because αi−1, and thus ∂αi−1

∂xj
and

wi−1, are not continuous at the points |zj | = kb1, due to the terms (k2
b1
− z2

j ), in the

denominator, for j = 1, ..., i − 1. As a result, supx∈Ωx
(fi(x̄i) − α̇i−1) is not finite

for all x ∈ Ωx. To circumvent this problem, we note, from (5.29)-(5.30), that the

unknown parts of α̇i−1, namely fj(x̄j) + gj(x̄j)xj+1, are continuous, such that they

are upper bounded by positive constants in Ωx. The splitting of α̇i−1 into continuous

and non-continuous parts result in the need for the multiple bounding constants Fj

and Gj.
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Using completion of squares, the following inequalities can be shown to hold:
∣∣∣∣∣

zi

k2
b1
− z2

i

∣∣∣∣∣Fi ≤ λz2
i

(k2
b1
− z2

i )2
F 2

i +
1
4λ

(5.33)

∣∣∣∣∣
zi

k2
b1
− z2

i

∣∣∣∣∣
∣∣∣∣
∂αi−1

∂xj

∣∣∣∣Fj ≤ λz2
i

(k2
b1
− z2

i )2

∣∣∣∣
∂αi−1

∂xj

∣∣∣∣
2

F 2
j +

1
4λ

(5.34)

∣∣∣∣∣
zi

k2
b1
− z2

i

∣∣∣∣∣ |wi−1| ≤ λz2
i

(k2
b1
− z2

i )2
w2

i−1 +
1
4λ

(5.35)

∣∣∣∣∣
zi

k2
b1
− z2

i

∣∣∣∣∣
∣∣∣∣
∂αi−1

∂xj

∣∣∣∣ |xj+1|Gj ≤ λz2
i x2

j+1

(k2
b1
− z2

i )2

∣∣∣∣
∂αi−1

∂xj

∣∣∣∣
2

G2
j +

1
4λ

(5.36)

∣∣∣∣∣
zi−1zi

k2
b1
− z2

i−1

∣∣∣∣∣ Gi−1 ≤ λz2
i−1z

2
i

(k2
b1
− z2

i−1)2
G2

i−1 +
1
4λ

(5.37)

for j = 1, ..., i− 1. Substituting the above inequalities into (5.32) yields

V̇i ≤ λg∗z2
i

(k2
b1
− z2

i )2
θT
i Ψi +

zi

k2
b1
− z2

i

(gi(x̄i)zi+1 + gi(x̄i)αi)

+λg∗θ̃T
i Γ−1

i
˙̂
θi −

i−1∑

j=1

κjgj(x̄j)z2
j −

i−1∑

j=1

λg∗σ
2

θ̃T
j Γ−1

j θ̃j + ci−1 +
2i + 1

4λ
(5.38)

where θi = 1
g∗ [F

2
i , ..., F 2

1 , 1, G2
1, ..., G

2
i−1]

T , and the regressor is given by

Ψi =

[
1,

∣∣∣∣
∂αi−1

∂xi−1

∣∣∣∣
2

, ...,

∣∣∣∣
∂αi−1

∂x1

∣∣∣∣
2

, w2
i−1,

∣∣∣∣
∂αi−1

∂x1

∣∣∣∣
2

x2
2, ...,

∣∣∣∣
∂αi−1

∂xi−2

∣∣∣∣
2

x2
i−1,

z2
i−1(k

2
b1
− z2

i )2

(k2
b1
− z2

i−1)2
+

∣∣∣∣
∂αi−1

∂xi−1

∣∣∣∣
2

x2
i

]T

(5.39)

Choose stabilizing function, control and adaptation laws as follows:

αi = −
(

λ

k2
b1
− z2

i

θ̂T
i Ψi + (k2

b1 − z2
i )κi

)
zi (5.40)

u = αn (5.41)

˙̂
θi =

z2
i

(k2
b1
− z2

i )2
ΓiΨi − σθ̂i, θ̂i(0) ≥ 0 (5.42)
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The closed loop system is given by

ż1 = f1 − ẏd + g1z2 − λg1θ̂1z1

k2
b1
− z2

1

− (k2
b1 − z2

1)κ1g1z1 (5.43)

żi = fi − α̇i−1 + gizi − λgiθ̂
T
i Ψizi

k2
b1
− z2

i

− (k2
b1 − z2

i )κigizi, i = 2, ..., n (5.44)

along with (5.23) and (5.42).

Due to the fact that θ̂i ≥ 0, and that gi(x̄i) ≥ g∗ > 0, it is clear that (5.38) can be

rewritten as

V̇i ≤ − λg∗z2
i

(k2
b1
− z2

i )2
θ̃T
i Ψi +

gi(x̄i)zizi+1

k2
b1
− z2

i

+ λg∗θ̃T
i

(
z2
i

(k2
b1
− z2

i )2
Ψi − σΓ−1

i θ̂i

)

−
i∑

j=1

κjgj(x̄j)z2
j −

i−1∑

j=1

λg∗σ
2

θ̃T
j Γ−1

j θ̃j + ci−1 +
2i + 1

4λ
(5.45)

Using the property that −θ̃T
i Γ−1

i θ̂i ≤ 1
2(−θ̃T

i Γ−1
i θ̃i + θT

i Γ−1
i θi), we obtain that

V̇i ≤ −
i∑

j=1

κjgj(x̄j)z2
j −

i∑

j=1

λg∗σ
2

θ̃T
j Γ−1

j θ̃j +
gi(x̄i)zizi+1

k2
b1
− z2

i

+ ci (5.46)

where

ci = ci−1 +
2i + 1

4λ
+

λg∗σ
2

θT
i Γ−1

i θi (5.47)

and the coupling term gi(x̄i)zizi+1

k2
b1
−z2

i
is dominated in the subsequent step. Particularly,

in the final step, the derivative of Vn can be expressed in the form:

V̇n ≤ −
n∑

j=1

κjgj(x̄j)z2
j −

λg∗σ
2

n∑

j=1

θ̃T
j Γ−1

j θ̃j + cn (5.48)

where the constant cn is given by:

cn = cn−1 +
2n + 1

4λ
+

λg∗σ
2

θT
n Γ−1

n θn

=
2 + (n− 1)(2n + 6)

8λ
+

λg∗σ
2

n∑

i=1

θT
i Γ−1

i θi (5.49)

Based on the fact that gj(x̄j) ≥ g∗ ≥ gmin, we can rewrite (5.48) into the form:

V̇n ≤ −g∗
n∑

j=1

κjz
2
j −

λg∗σ
2

n∑

j=1

θ̃T
j Γ−1

j θ̃j + g∗c̄n (5.50)
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where the computable constant c̄n is defined by:

c̄n =
2 + (n− 1)(2n + 6)

8λgmin
+

λσ

2

n∑

j=1

λmax(Γ−1
j )θ̄2

j (5.51)

θ̄1 :=
1

gmin
(F̄1 + Ȳ1)2 (5.52)

θ̄i :=
1

gmin

√√√√
i∑

j=1

F̄ 4
j +

i−1∑

j=1

Ḡ4
j + 1, i = 2, ..., n (5.53)

with F̄i, Ḡi as known constants satisfying fi(x̄i) ≤ F̄i, gi(x̄i) ≤ Ḡi, for x ∈ Ωx.

Let the closed loop system (5.23), (5.42)-(5.44) be written as η̇ = h(t, η), where η :=

[z, Θ̂]T and Θ̂ := [θ̂1, θ̂
T
2 , ..., θ̂T

n ]T . The right hand side h(t, η) satisfies the conditions

(2.17)-(2.20) for η ∈ Z := {z ∈ Rn, Θ̂ ∈ Rl : |zi| < kb1 , i = 1, 2, ..., n}, where

l = 1 + (n−1)(n+6)
2 . Together with (5.50) and the condition

√
c̄n/κi < kb1 , i = 1, ..., n (5.54)

we invoke Lemma 2.4.3 to yield |zi(t)| < kb1 for all t > 0 and i = 1, ..., n, provided

that |zi(0)| < kb1 .

Although we have shown that each error signal zi(t) is constrained in the set |zi| < kb1 ,

∀t > 0, the question remains as to how we can ensure that x(t) ∈ Ωc ∀t > 0, where

Ωc is defined in (5.16). In the control design, we considered the region x ∈ Ωx,

where Ωx is defined in (5.17), such that there exist constant upper bounds Fi and Gi

for the uncertain smooth functions fi(x̄i) and gi(x̄i), respectively. By ensuring that

x(t) ∈ Ωc ⊂ Ωx in the closed loop, we verify that the assumptions fi(x̄i) ≤ Fi and

gi(x̄i) ≤ Gi are valid. The details are explained in the following theorem.

Theorem 5.3.1 Consider the closed loop system (5.1), (5.42), (5.41) under Assump-

tions 5.2.1-5.2.2. Denote by Ai an upper bound for αi in the compact set Ωi, that

is,

Ai ≥ sup
(x̄i, z̄i, ȳdi

, Θ̂i)∈ Ωi

|αi(x̄i, z̄i, ȳdi , Θ̂i; κ̄i,Γ1, ...,Γi)|, i = 1, ..., n− 1 (5.55)

where αi is parameterized by Γ1, ...,Γi and κ̄i := [κ1, κ2, ..., κi]T , and Ωi is a compact
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set defined by:

Ωi :=
{

x̄i ∈ Ri, z̄i ∈ Ri, ȳdi ∈ Ri, Θ̂i ∈ Rl :

|xj | ≤ Dz1 + Aj−1, |zj | ≤ Dz1 , |y(j)
d | ≤ Yj , ‖θ̂j‖ ≤ Dθ̂j

, j = 1, ..., i
}
(5.56)

Dz1 := kb1

√
1− e−2V̄n (5.57)

Dθ̂i
:= θ̄i +

√
2V̄n

λmin(Γ−1
i )λgmin

, (5.58)

Va :=
1
2

n∑

i=1

log
k2

b1

k2
b1
− z2

i (0)
+

λḠ

2
λmax(Γ−1)(‖Θ̂(0)‖+ ‖Θ̄‖2) (5.59)

Vb :=
n∑

i=1

1
2

log
k2

b1

k2
b1
− c̄n

κi

+
Ḡc̄n

σ
(5.60)

V̄n := max {Va, Vb} (5.61)

with Γ := blockdiag(Γ1, ...,Γn), Θ̄ := [θ̄1, θ̄
T
2 , ..., θ̄T

n ]T , Θ̂i := [θ̂T
1 , ..., θ̂T

i ]T , Θ̃ :=

[θ̃1, θ̃
T
2 , ..., θ̃T

n ]T , and Ḡ = maxi=1,...,n Ḡi. Given the constraints kci+1 > 0, i =

1, ..., n− 1, and that

C1) there exist positive constants κi and Ai such that

kci+1 > Ai + kb1 , i = 1, ..., n− 1 (5.62)

κi >
c̄n

k2
b1

, i = 1, ..., n (5.63)

C2) the initial conditions are such that

z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |zi| < kb1 , i = 1, 2, ..., n} (5.64)

then the following properties hold.

i) The signals zi(t) and θ̂(t), i = 1, 2, ..., n, remain, for all t > 0, in the compact

sets defined by

Ωz = {z̄n ∈ Rn : |zi| ≤ Dz1 , i = 1, 2, ..., n} (5.65)

Ωθ̂i
=

{
θ̂i ∈ Rli : ‖θ̂i‖ ≤ Dθ̂i

}
(5.66)

where l1 = 1 and li = 2i for i = 2, 3, ..., n.
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ii) Every state xi(t) remains in the compact set Ωcc := {x̄n ∈ Rn : |xi| ≤ Dz1 +

Ai−1 < kci , i = 1, ..., n} ∀t > 0, where Ωcc ⊂ Ωc, i.e. the full state constraint is

never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to the set |z1| ≤
√

c̄n/κ1.

Proof:

i) From (5.50), we have that V̇n ≤ 0 whenever

|zi| ≥
√

c̄n

κi
, i = 1, ..., n (5.67)

Θ̃T Γ−1Θ̃ ≥ 2c̄n

λσ
(5.68)

As a result, provided that
√

c̄n/κi < kb1 , i = 1, ..., n, an upper bound for Vn is

obtained:

Vn(t) ≤
{

Vb, if Vn(0) ≤ Vb

Vn(0), otherwise
(5.69)

Since Vn(0) ≤ Va, we infer that

Vn(t) ≤
{

Vb, if Vn(0) ≤ Vb

Va, otherwise
(5.70)

The upper bound for Vn(t) depends on the initial condition Vn(0). We take

the maximum of Va and Vb to obtain the overall bound V̄n, such that that

Vn(t) ≤ V̄n for all Vn(0) ∈ R and all t > 0.

Then, from the fact that λg∗
2 θ̃T

i Γ−1
i θ̃i ≤ V̄n, and thus λg∗

2 λmin(Γ−1
i )‖θ̂i − θi‖2 ≤

V̄n, it is straightforward to show that

‖θ̂i‖ ≤ θ̄i +

√
2V̄n

λmin(Γ−1
i )λgmin

(5.71)

such that θ̂i remains in the compact set Ωθ̂i
∀ t.

Similarly, it can be shown that 1
2 log

k2
b1

k2
b1
−z2

i (t)
≤ V̄n, which yields

k2
b1

k2
b1
−z2

i (t)
≤

e2V̄n . Since |zi(0)| < kb1 , we know that k2
b1
− z2

i (t) > 0 ∀ t from Lemma 2.4.1.
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Simple rearrangement yields |zi(t)| ≤ Dz1 < kb1 , and thus, zi(t) remains in the

compact set Ωz ∀ t.

ii) From Vn(t) ≤ V̄n and Lemma 2.4.3, we have established that |zi(t)| ≤ Dz1 < kb1 ,

i = 1, ..., n, ∀ t. Then, |x1(t)| ≤ Dz1 + |yd(t)| < kc1 − A0 + |yd(t)|. Noting that

|yd(t)| ≤ A0 from Assumption 5.2.1, we conclude that |x1(t)| ≤ Dz1 +A0 < kc1 ,

∀ t.

We can progressively show that |xi+1(t)| < kci+1 , i = 2, ..., n − 1, after veri-

fying that there exist positive constants Ai such that |αi(t)| ≤ Ai, ∀ t. As a

result of ‖θ̂i‖ ≤ Dθ̂i
, |xi(t)| ≤ Dz1 + Ai−1, |zi(t)| ≤ Dz1 , and |y(i)

d (t)| ≤ Yi,

it can be shown that (x̄i(t), z̄i(t), ȳdi(t), Θ̂i(t)) ∈ Ωi. Therefore, boundedness

of the stabilizing function αi(x̄i, z̄i, ȳdi
, Θ̂i) in (5.22) is established, since it is

a continuous function in the region |zj | < kb1 for all j = 1, ..., i. Hence, we

know that sup(x̄i,z̄i,ȳdi
,Θ̂i)∈ Ωi

|αi(x̄i, z̄i, ȳdi , Θ̂i)| exists, so it is possible to find

an upper bound Ai. Following the fact that |zi+1(t)| ≤ Dz1 and |αi(t)| ≤ Ai, it

is straightforward that |xi+1(t)| ≤ Dz1 + Ai < kci+1 , ∀ t.

iii) Thus far, we have obtained the results |zi(t)| ≤ Dz1 < kb1 , |xi(t)| < kci ,

and ‖θ̂i(t)‖ ≤ Dθ̂i
, for i = 1, ..., n. By inspecting the stabilizing functions

αi(x̄i, z̄i, ȳdi , Θ̂i) and the control u(x̄n, z̄n, ȳdn , Θ̂n) , it is clear that they are also

bounded. Therefore, all closed loop signals are bounded.

iv) First, note the property Vn(za, Θ̃a) < Vn(zb, Θ̃b) for ‖za‖ < ‖zb‖ and ‖Θ̃a‖ <

‖Θ̃b‖. Together with the fact that V̇n ≤ 0 in the region Vn(z, Θ̃) ≥ V ∗
b , where

V ∗
b := Vn(z, Θ̃)|n|zi|=

q
c̄n
κi

, Θ̃T Γ−1Θ̃= 2c̄n
λσ

o (5.72)

two cases ensue, depending on the initial condition Vn(z(0), Θ̃(0)).

For the first case, where Vn(z(0), Θ̃(0)) ≤ V ∗
b , it is clear that Vn(z(t), Θ̃(t)) can-

not escape from the region Vn(z, Θ̃) ≤ V ∗
b since V̇n ≤ 0 whenever Vn(z(t), Θ̃(t)) ≥

V ∗
b . On the other hand, if we start from Vn(z(0), Θ̃(0)) ≥ V ∗

b , then V̇n ≤ 0

whenever Vn(z(t), Θ̃(t)) ≥ V ∗
b , so that there exists a positive constant T where

Vn(z(T ), Θ̃(T )) ≤ V ∗
b , and Vn(z(t), Θ̃(t)) ≤ V ∗

b for t > T .

Thus, Vn(z, Θ̃) ≤ V ∗
b is a positively invariant set, and (z(t), Θ̃(t)) remains in
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the interior of the level set

Ωb = {z ∈ Rn, Θ̃ ∈ Rl | Vn(z, Θ̃) = V ∗
b } (5.73)

We obtain the bounds, albeit conservatively, as |zi(t)| ≤
√

c̄n
κi

, i = 1, ..., n

and Θ̃T (t)Γ−1Θ̃(t) ≤ 2c̄n
λσ , for t > T . Therefore, we conclude that the output

tracking error z1(t) converges to the set |z1| ≤
√

c̄n/κ1.

5.3.3 Feasibility Check

As mentioned earlier, the proposed method is unable to handle arbitrary state con-

straints. The state constraints kci need to satisfy feasibility conditions C1 and C2

in Theorem 5.3.1. These provide criteria to check if the backstepping induced stabi-

lizing functions αi are sufficient to achieve output tracking in the presence of state

constraints. The bounds A1, ..., An−1 are computable for any set of control parame-

ters κ1, ..., κn, Γ and initial conditions x(0), and thus, these conditions can be checked

before the control is implemented.

Specifically, we check if there exists a solution (κ̄n−1, Γ), where κ̄n−1 := [κ1, ..., κn−1]T ,

Γ := diag(γ1 ,γ2,...,γl), for the optimization problem:

max
κ1,...,κn−1,Γ>0

P (κ̄n−1, Γ) =
n−1∑

i=1

aiκi +
l∑

i=1

biγi

subject to:

κi >
c̄n

k2
b1

(5.74)

kci+1 > Ai(κ̄i, Γ) + kb1

kb1 > |xi+1(0)− αi(x̄i(0), z̄i(0), ȳdi
(0), θ̂(0); κ̄i,Γ)|

i = 1, ..., n− 1 (5.75)

where bi are positive constants. If a solution (κ̄∗n−1,Γ
∗) to the above optimization

problem is found, then the proposed adaptive control (4.38)-(4.39), with κ̄n−1 = κ̄∗n−1,

Γ = Γ∗ and a choice of κn > c̄n

k2
b1

, is feasible in ensuring output tracking for the system

(5.1) with full state constraint, according to Theorem 5.3.1.
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Remark 5.3.2 We require the constants gmin, F̄i and Ḡi, which represent bounds

for system nonlinearities, to be known so that c̄n, Dz1 and Dθ̂i
can be computed.

The latter bounds are required to estimate Ai, the bound for the stabilizing function

αi, so that the feasibility conditions C1 and C2 can be checked. Note that gmin, F̄i

and Ḡi may be crude estimates for this purpose. In the adaptive control design, the

maximal lower bound, given by g∗ := mini=1,...,n{inf x̄i∈Ri gi(x̄i)}, and the minimal

upper bounds, given by Fi := supx∈Ωx
fi(x̄i) ≤ F̄i and Gi := supx∈Ωx

gi(x̄i) ≤ Ḡi, are

considered to be unknown and adaptively compensated for.

Remark 5.3.3 Thus far, we have dealt with constraint on full state. For the case

of partial state constraint, where not all states need to be bounded within any pre-

specified constrained regions, we gain flexibility in design, since the constants kci+1

for the unconstrained states can be freely chosen to bound Ai in (5.62), instead of

being imposed as a requirement. As a result, the feasibility conditions are relaxed.

5.4 Control Design for Output Constraint

As seen in the previous section, the control design for the full state constraint case

employs BLFs in every step of the design, and involves feasibility conditions that can

be checked a priori. Under partial state constraint, these conditions can be relaxed

to some extent. In this section, we consider the special case of output constraint with

linearly parameterized system nonlinearities, for which feasibility conditions are not

required.

According to system (5.1), we consider the class of linearly parameterizable nonlinear

functions fi(x̄i) = θT ψi(x̄i) and gi(x̄i) = φT ϕi(x̄i) ≥ g∗ > 0, i = 1, ..., n where ψi

and ϕi are known smooth functions, θ ∈ Rl and φ ∈ Rm are vectors of uncertain

parameters satisfying ‖θ‖ ≤ θM and ‖φ‖ ≤ φM for some known positive constants

θM and φM . With the consideration of constraint in the output only, it follows

that only the first step of backstepping employs a Barrier Lyapunov Function, while

the subsequent steps are all based on quadratic ones, thus simplifying the design

procedure and analysis.
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The detailed procedure for adaptive backstepping design is outlined in the following.

Step 1 Denote z1 = x1 − yd and z2 = x2 − α1, where α1 is a stabilizing function to

be designed. Choose Lyapunov function candidate as:

V1 =
1
2

log
k2

b1

k2
b1
− z2

1

+
λg∗

2
Γ−1

1 θ̃2
1 (5.76)

where kb1 = kc1 − A0, λ, and Γ1 are positive constants, and θ̃1 = θ̂1 − θ1 is the

estimation error, with θ1 as an unknown positive parameter and θ̂1 its estimate.

The derivative of V1 is given by

V̇1 =
z1

k2
b1
− z2

1

(θT ψ1(x1)− ẏd + g1(x1)z2 + g1(x1)α1) + λg∗Γ−1
1 θ̃1

˙̂
θ1 (5.77)

Based on completion of squares, we have that

z1(θT ψ1(x1)− ẏd)
k2

b1
− z2

1

≤ λg∗z2
1

(k2
b1
− z2

1)2
θ1Ψ1 +

1
4λ

(5.78)

where θ1 := 1
g∗ (‖θ‖2 + 1) and

Ψ1 := ‖ψ1‖2 + (ẏd)2 (5.79)

Then, it can be shown that

V̇1 ≤ λg∗z2
1

(k2
b1
− z2

1)2
θ1Ψ1 +

g1(x1)z1α1

k2
b1
− z2

1

+
g1(x1)z1z2

k2
b1
− z2

1

+ λg∗Γ−1
1 θ̃1

˙̂
θ1 +

1
4λ

(5.80)

Design stabilizing function and adaptation law as follows:

α1 = −
(

λ

k2
b1
− z2

1

θ̂1Ψ1 + κ1(k2
b1 − z2

1)

)
z1 (5.81)

˙̂
θ1 =

z2
1

(k2
b1
− z2

1)2
Γ1Ψ1 − σθ̂1, θ̂1(0) ≥ 0 (5.82)

it can be shown that

V̇1 ≤ −κ1g1(x1)z2
1 +

λg∗z2
1

(k2
b1
− z2

1)2
θ1Ψ1 − λg1(x1)z2

1

(k2
b1
− z2

1)2
θ̂1Ψ1 +

g1(x1)z1z2

k2
b1
− z2

1

+λg∗θ̃1

(
z2
1

(k2
b1
− z2

1)2
Ψ1 − Γ−1

1 σθ̂1

)
+

1
4λ

(5.83)
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From (5.23), we know that θ̂1 ≥ 0, and from Assumption 5.2.2, we know that g1(x1) >

gmin > 0. Therefore, it is clear that the following inequalities holds:

− λg1(x1)z2
1

(k2
b1
− z2

1)2
θ̂1Ψ1 ≤ − λg∗z2

1

(k2
b1
− z2

1)2
θ̂1Ψ1 (5.84)

As a result, it is easy to obtain that

V̇1 ≤ −κ1g1(x1)z2
1 −

λg∗z2
1

(k2
b1
− z2

1)2
θ̃1Ψ1 + λg∗θ̃1

(
z2
1

(k2
b1
− z2

1)2
Ψ1 − Γ−1

1 σθ̂1

)

+
g1(x1)z1z2

k2
b1
− z2

1

+
1
4λ

≤ −κ1g1(x1)z2
1 +

g1(x1)z1z2

k2
b1
− z2

1

− λg∗σ
2

Γ−1
1 θ̃2

1 + c1 (5.85)

where

c1 =
1
4λ

+
λg∗σ

2
Γ−1

1 θ2
1 (5.86)

The coupling term g1(x1)z1z2

k2
b1
−z2

1
is dominated in the subsequent step.

Step i (i = 2, ..., n)

Denote zi+1 = xi+1 − αi, where αi is a stabilizing function to be designed, and

zn+1 := 0. Choose a Lyapunov function candidate as follows:

Vi = Vi−1 +
1
2
z2
i +

λg∗

2
θ̃T
i Γ−1

i θ̃i (5.87)

where Γi > 0 is a diagonal matrix, θ̂i is the estimate of θi, and θ̃i := θ̂i − θi. The

derivative of Vi along the closed loop trajectories satisfies

V̇i ≤ zi


θT ψi(x̄i)−

i−1∑

j=1

∂αi−1

∂xj
(θT ψj(x̄j) + φT ϕj(x̄j)xj+1)− wi−1




+zigi(x̄i)(zi+1 + αi) + λg∗θ̃T
i Γ−1

i
˙̂
θi −

i−1∑

j=1

(
κjgj(x̄j)z2

j +
λg∗σ

2
θ̃T
i Γ−1

i θ̃i

)

+φT ϕi−1(x̄i−1)zi−1zi + ci−1

≤ θT


ψi −

i−1∑

j=1

∂αi−1

∂xj
ψj


 zi + φT


ϕi−1zi−1 −

i−1∑

j=1

∂αi−1

∂xj
ϕjxj+1


 zi

+wi−1zi + zi (gi(x̄i)zi+1 + gi(x̄i)αi) + λg∗θ̃T
i Γ−1

i
˙̂
θi

−
i−1∑

j=1

(
κjgj(x̄j)z2

j +
λg∗σ

2
θ̃T
i Γ−1

i θ̃i

)
+ ci−1 (5.88)
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For the first three terms on the right hand side of the above expression, we use

completion of squares arguments to obtain

θT


ψi −

i−1∑

j=1

∂αi−1

∂xj
ψj


 zi ≤ λg∗z2

i

∥∥∥∥∥∥
ψi −

i−1∑

j=1

∂αi−1

∂xj
ψj

∥∥∥∥∥∥

2

θi1 +
1
4λ

(5.89)

wi−1zi ≤ λg∗z2
i w2

i−1θi3 +
1
4λ

(5.90)

φT


ϕi−1zi−1 −

i−1∑

j=1

∂αi−1

∂xj
ϕjxj+1


 zi ≤ λg∗z2

i

∥∥∥∥∥∥
ϕi−1zi−1 −

i−1∑

j=1

∂αi−1

∂xj
ϕjxj+1

∥∥∥∥∥∥

2

θi2

+
1
4λ

(5.91)

where θi1 := 1
g∗ ‖θ‖2, θi2 := 1

g∗ ‖φ‖2, θi3 := 1
g∗ . Substituting the above inequalities

into (5.88) yields

V̇i ≤ −
i−1∑

j=1

(
κjgj(x̄j)z2

j +
λg∗σ

2
θ̃T
i Γ−1

i θ̃i

)
+ λg∗θT

i Ψiz
2
i + zi (gi(x̄i)zi+1 + gi(x̄i)αi)

+λg∗θ̃T
i Γ−1

i
˙̂
θi + ci−1 +

3
4λ

(5.92)

where θi = [θi1, θi2, θi3]T and

Ψi =




∥∥∥∥∥∥
ψi −

i−1∑

j=1

∂αi−1

∂xj
ψj

∥∥∥∥∥∥

2

,

∥∥∥∥∥∥
ϕi−1zi−1 −

i−1∑

j=1

∂αi−1

∂xj
ϕjxj+1

∥∥∥∥∥∥

2

, w2
i−1




T

(5.93)

Design the stabilizing function, control and adaptation laws as

αi = −(λθ̂T
i Ψi + κi)zi (5.94)

u = αn (5.95)
˙̂
θi = ΓiΨiz

2
i − σθ̂i, θ̂i(0) ≥ 0 (5.96)

From (5.96), we know that θ̂i ≥ 0, and from Assumption 5.2.2, we know that gi(x̄i) >

gmin > 0. Therefore, (5.92) together with (5.94)-(5.96) can be rewritten as

V̇i ≤ −
i−1∑

j=1

(
κjgj(x̄j)z2

j +
λg∗σ

2
θ̃T
i Γ−1

i θ̃i

)
− λg∗θ̃T

i Ψiz
2
i + gi(x̄i)zizi+1

+λg∗θ̃T
i

(
Ψiz

2
i − σΓ−1

i θ̂i

)
+ ci−1 +

3
4λ

≤ −
i∑

j=1

κjgj(x̄j)z2
j −

i∑

j=1

λg∗σ
2

θ̃T
j Γ−1

j θ̃j + gi(x̄i)zizi+1 + ci (5.97)
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where

ci = ci−1 +
3
4λ

+
λg∗σ

2
θT
i Γ−1

i θi (5.98)

The final step of backstepping yields the derivative of Vn, along the closed loop

trajectories, as:

V̇n ≤ −
n∑

j=1

κjgj(x̄j)z2
j −

λg∗σ
2

n∑

j=1

θ̃T
j Γ−1

j θ̃j + cn (5.99)

where the constant cn is given by:

cn = cn−1 +
3
4λ

+
λg∗σ

2
θT
n Γ−1

n θn

=
3n− 2

4λ
+

λg∗σ
2

n∑

i=1

θT
i Γ−1

i θi (5.100)

Based on the fact that gj(x̄j) ≥ g∗ ≥ gmin, we can rewrite (5.99) into

V̇n ≤ −g∗
n∑

j=1

κjz
2
j −

λg∗σ
2

n∑

j=1

θ̃T
j Γ−1

j θ̃j + g∗c̄n (5.101)

where the constant c̄n is computable:

c̄n :=
3n− 2
4λgmin

+
λσ

2

n∑

j=1

λmax(Γ−1
j )θ̄2

j (5.102)

θ̄1 :=
1

gmin
(θ2

M + 1), θ̄i :=
1

gmin

√
θ4
M + φ4

M + 1, i = 2, ..., n (5.103)

and θM and φM are known positive constants satisfying ‖θ‖ ≤ θM and ‖φ‖ ≤ φM

respectively.

Similar to the analysis presented after Step n in Section 5.3.2, we can write the

closed loop system (5.1), (5.96) and (5.95) as η̇ = h(t, η), where η := [z, Θ̂]T and

Θ̂ := [θ̂1, θ̂
T
2 , ..., θ̂T

n ]T . Then, it can be shown that h(t, η) satisfies the conditions

(2.17)-(2.20) for η ∈ Z := {z ∈ Rn, Θ̂ ∈ Rl : |z1| < kb1}, where l = 3n− 2. Together

with (5.101) and the condition

√
c̄n/κ1 < kb1 (5.104)

we invoke Lemma 2.4.3 to yield |z1(t)| < kb1 for all t > 0 and i = 1, ..., n, provided

that |z1(0)| < kb1 .
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Remark 5.4.1 Unlike the state constraint case, there is no need to first consider the

compact set Ωx satisfying Ωx ⊃ Ωc = {x ∈ Rn : |xi| < kci , i = 1, ..., n}, in which

fi(x̄i) and gi(x̄i) are upper bounded, and then ensure that x ∈ Ωc ⊂ Ωx. This is due to

the fact that the nonlinearities fi(x̄i) and gi(x̄i) are linearly parameterized with known

regressor functions ψi(x̄i) and ϕi(x̄i). Together with the fact that state constraints

are not specified at the outset, it is clear that feasibility conditions, similar to C1 and

C2 in Theorem 5.3.1 for the state constraint case, are no longer needed. Only mild

conditions on the initial output y(0) and the control parameter κ1 are needed.

Theorem 5.4.1 Consider the closed loop system (5.1), (5.96), (5.95) under As-

sumptions 5.2.1-5.2.2. Given the constraint kc1 > 0, we define the following positive

constants:

Dz1 := kb1

√
1− e−2V̄n (5.105)

Dθ̂i
:= θ̄i +

√
2V̄n

λmin(Γ−1
i )λg∗

, i = 1, ..., n (5.106)

Va :=
1
2

log
k2

b1

k2
b1
− z2

1(0)
+

n∑

j=2

z2
j (0)
2

+
λg∗

2
λmax(Γ−1)(‖Θ̂(0)‖+ ‖Θ̄‖2)

(5.107)

Vb :=
1
2

log
k2

b1

k2
b1
− c̄n

κ1

+ c̄n




n∑

j=2

1
2κj

+
g∗

σ


 (5.108)

V̄n := max {Va, Vb} (5.109)

where kb1 = kc1 − A0, Vb is defined in (5.108), c̄n in (5.102), Θ̄ := [θ̄1, θ̄
T
2 , ..., θ̄T

n ]T ,

and Θ̂ := [θ̂1, θ̂
T
2 , ..., θ̂T

n ]T .

If the initial conditions are such that z̄n(0) ∈ Ωz0 := {z̄n ∈ Rn : |z1| < kb1}, and the

control parameter κ1 satisfies (5.104), then the following properties hold.

i) The signals zi(t) and θ̂, i = 1, 2, ..., n, remain in the compact sets defined by

Ωz =
{

z̄n ∈ Rn : |z1| ≤ Dz1 , ‖z2:n‖ ≤
√

2V̄n

}
(5.110)

Ωθ̂i
=

{
θ̂i ∈ Rli : ‖θ̂i‖ ≤ Dθ̂i

}
(5.111)

where z2:n := [z2, ..., zn]T , l1 = 1, and li = 3 for i = 2, 3, ..., n.
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5.4 Control Design for Output Constraint

ii) The output y(t) remains in the compact set Ωy := {y ∈ R : |y| ≤ Dz1 +A0 < kc1

∀t > 0, i.e. the output constraint is never violated.

iii) All closed loop signals are bounded.

iv) The output tracking error z1(t) converges to the set |z1| ≤
√

c̄n/κ1.

Proof:

i) Similar to the proof of Theorem 5.3.1, we can show that Vn(t) is bounded by

Vn(t) ≤
{

Vb, if Vn(0) ≤ Vb

Va, otherwise
(5.112)

as a result of (5.101) and (5.104). Then, V̄n is obtained by taking the maximum

of Va and Vb, such that Vn(t) ≤ V̄n for all Vn(0).

Thus, from the fact that 1
2 log

k2
b1

k2
b1
−z2

1(t)
≤ V̄n, and that |z1(0)| < kb1 , we know

that k2
b1
−z2

1(t) > 0 ∀ t from Lemma 2.4.3. Simple rearrangement yields |z1(t)| ≤
Dz1 < kb1 , and thus, zi(t) remains in the compact set Ωz, as described in (5.110).

Since λg∗
2 θ̃T

i Γ−1
i θ̃i ≤ V̄n, and thus λg∗

2 λmin(Γ−1
i )‖θ̂i(t) − θi‖2 ≤ V̄n, it follows

that ‖θ̂i(t)‖ ≤ θ̄i +
√

2V̄n

λmin(Γ−1
i )λg∗

such that θ̂i(t) remains in the compact set

Ωθ̂i
, as described in (5.111).

ii) It is straightforward to show, from y(t) = z1(t) + yd(t), |z1(t)| ≤ Dz1 < kb1 ,

and |yd(t)| ≤ A0, that |y(t)| < kb1 + A0 = kc1 . Hence, we can conclude that

y(t) ∈ Ωy ∀t > 0.

iii) From Vn(t) ≤ V̄n, we know that the error signals zi(t) and θ̃i(t), for i = 1, ..., n,

are bounded. Since θi are constants, we have that θ̂i(t) are bounded. The

boundedness of z1(t) and the reference trajectory yd(t) imply that the state x1(t)

is bounded. Together with the fact that ẏd(t) is bounded from Assumption 5.2.1,

it is clear that α1(t) is also bounded from (5.81). This leads to the boundedness

of state x2(t) = z2(t) + α1(t). It is also straightforward to show that α2 is a

continuous function of the bounded signals x̄2(t), z̄2(t), ȳd2(t), θ̂1(t), θ̂2(t) in

the set z1 ∈ (−kb1 , kb1). Together with the fact that |z1(t)| ≤ Dz1 < kb1 , as

123



5.4 Control Design for Output Constraint

established in item (i), we know that α2(t) is bounded. Following this line of

argument, we can progressively show that each αi(t), for i = 1, ..., n − 1, is

bounded, since it is a continuous function of the bounded signals x̄i(t), z̄i(t),

ȳdi
(t), θ̂1(t), ..., θ̂i(t) in the set z1 ∈ (−kb1 , kb1). Thus, the state xi+1(t) =

zi+1(t)+αi(t) is bounded. Since x̄n(t), z̄n(t), ȳdn(t), θ̂1(t), ..., θ̂n(t) are bounded,

and particularly with |z1(t)| < kb1 , we conclude that the control u(t) is also

bounded. Hence, all closed loop signals are bounded.

iv) Recall the definition of V ∗
b from (5.72). Similar to the proof Theorem 5.3.1(iv),

we establish that the set Vn(z, Θ̃) ≤ V ∗
b is positively invariant, due to the fact

that V̇n ≤ 0 in the region Vn(z, Θ̃) ≥ V ∗
b . As such, (z(t), Θ̃(t)) remains in the

interior of the level set Ωb = {z ∈ Rn, Θ̃ ∈ Rl | Vn(z, Θ̃) = V ∗
b }. Then, there

exists a positive constant T such that |zi(t)| ≤
√

c̄n
κi

for t > T . It follows that

the output tracking error z1(t) converges to the set |z1| ≤
√

c̄n/κ1.

Remark 5.4.2 The constants gmin, θM and φM are to be known in order to obtain c̄n

in (5.102) only, so that the control parameter κ1 can be chosen to satisfy κ1 > c̄n/k2
b1

.

Note that gmin, θM and φM may be crude estimates for this purpose. For a less

conservative design, we do not use these bounds explicitly in the control, but consider

the maximal lower bound, given by g∗ := mini=1,...,n{inf x̄i∈Ri gi(x̄i)}, and the actual

norms ‖θ‖ and ‖φ‖, to be unknown and compensate for them using adaptive control.

Remark 5.4.3 Unlike the case of state constraint, the output constraint case does

not involve checking of feasibility conditions, and thus, Dz1 and Dθ̂i
are not necessary

for control implementation, but rather, for analytical purposes. As such, they are

described in terms of the unknown parameter g∗.

Remark 5.4.4 To achieve greater flexibility in control design and to relax conditions

on starting values of the output, the presented method can be extended to employ the

asymmetric Barrier Lyapunov Function described in Section 3.4.
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5.5 Simulation Results

5.5 Simulation Results

In this section, computer simulation studies are presented to demonstrate the effec-

tiveness of the proposed control. We focus on the control for the output constraint

case as described in Section 5.4. Consider the strict feedback system

ẋ1 = x1 + (0.8 + 0.1e−x2
1)x2

ẋ2 = x2
1 + 0.1 tanhx2 + (1 + 0.2 sin x2)u (5.113)

When the nonlinearities are expressed in linearly parameterized forms, it can be ob-

tained that θ = [1, 1, 0.1]T , φ = [0.8, 0.1, 1, 0.2]T , ψ1 = [x1, 0, 0]T , ψ2 = [0, x2
1, tanhx2]T ,

ϕ1 = [1, e−x2
1 , 0, 0]T , and ϕ2 = [0, 0, 1, sinx2]T . The objective is for x1 to track

desired trajectory yd = 0.7 sin t, subject to output constraint |x1| < 1.0. Since

|yd| ≤ A0 = 0.7, we have that kb1 = 1.0 − 0.7 = 0.3, and that |ẏd| ≤ Y1 = 0.7. It is

straightforward to verify that Assumptions 5.2.1-5.2.2 are satisfied, with g∗ = 0.8.

The initial conditions are x1(0) = 0.1, x2(0) = 0.0, and θ̂1(0) = θ̂2(0) = 0.0. For

simplicity, the control gains and adaptation parameters are selected as κ1 = 15.0,

κ2 = 2.0, σ = 0.1, Γ1 = 20.0, and Γ2 = 20.0I and we set gmin = 0.8, θM = ‖θ‖, and

φM = ‖φ‖. From the choice of parameters, c̄n = 1.316 can be computed based on

(5.102). Then, it can be verified that initial tracking error satisfies |z1(0)| ≤ kb1 and

the control parameter κ1 satisfies κ1 > c̄n/k2
b1

, as required in Theorem 5.4.1.

We implement the following control and adaptation laws in computer simulation:

α1 = −
(

λ

k2
b1
− z2

1

θ̂1Ψ1 + κ1(k2
b1 − z2

1)

)
z1

u = −(λθ̂T
2 Ψ2 + κ2)z2

˙̂
θ1 =

z2
1

(k2
b1
− z2

1)2
Γ1Ψ1 − σθ̂1

˙̂
θ2 = Γ2Ψ2z

2
2 − σθ̂2 (5.114)

where Ψ1 and Ψ2 are defined in (5.79) and (5.93), respectively.

Figure 5.1 shows that good practical tracking performance is achieved, and the output

constraint requirement |x1| < kc1 is satisfied as a result of enforcing constraints on

the tracking error signal |z1| < kb1 . From Figures 5.2 and 5.3, the state x2, control

125
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signal u, and parameter estimates θ̂1 and θ̂2, are well behaved and bounded. Tracking

performance for different values of Γ1, Γ2, and κ1 are shown in Figures 5.4 and 5.5,

where it is observed that increase of Γ1, Γ2, or κ1 leads to decrease in steady state

tracking error.

5.6 Conclusions

In this chapter, we have presented control design based on BLFs for nonlinear con-

strained systems in strict feedback form with uncertain (virtual) control gain func-

tions. Conditions for practical stability with guaranteed non-violation of constraints

have been established in Lemma 2.4.3. For the case of full state constraints, it has

been shown that practical output tracking is achieved under certain feasibility con-

ditions on the initial states and control parameters, which can generally be relaxed

when handling only partial state constraints. Furthermore, we have shown that,

for the special case of output constraint with linearly parameterized system nonlin-

earities, feasibility conditions are not required,and similar results of practical output

tracking are achieved without violation of output constraint. Finally, the effectiveness

of the proposed control has been demonstrated through a simulation example.
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Figure 5.2: Control signal u and state x2.
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Chapter 6

Adaptive Control of

Electrostatic Microactuators

6.1 Introduction

Electrostatic microactuators have gained widespread acceptance in MEMs applica-

tions, due to the simplicity of their structure, ease of fabrication, and the favorable

scaling of electrostatic forces into the micro domain. This has ignited an interest

in how to control these devices effectively to achieve greater precision and speed of

response. In this chapter, we focus on the adaptive control of electrostatic micro-

actuators with bi-directional drive, which are less prone to pull-in instability due to

the fact that they can be actively controlled in both directions, unlike uni-directional

drive actuators where only passive restoring force is provided by mechanical stiffness

in one direction. Although less challenging as a theoretical control design problem,

the study of micro-actuators with bi-directional drive is nevertheless important since

its controllability is an advantage in high performance applications.

In most of the works on MEMs control, knowledge of model parameters is required

and typically estimated through offline system identification methods. However, in-

consistencies in bulk micromachining result in variation of parameters across pieces,
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6.1 Introduction

and may require extensive efforts in parameter identification, with higher costs. Fur-

thermore, some of the parameters, such as the damping constant, are usually difficult

to identify accurately, so a viable alternative is to rely on intelligent feedback control

for online compensation of parametric uncertainties.

There has been relatively few works in the literature on application of adaptive tech-

niques in MEMs. Motivated by our previous works on intelligent control for general

nonlinear systems [42] and robotic manipulators [48], we apply adaptive backstepping

control for 1DOF electrostatic microactuators with bi-directional drive, based on rig-

orous Lyapunov synthesis, to force the movable plate to track a reference trajectory

within the air gap without knowledge of plant parameters. When full-state informa-

tion is available, adaptive backstepping is carried out following a suitable change of

coordinates that transforms the system into parametric strict feedback form. When

velocity feedback is unavailable, the plant is transformed into the parametric output

feedback form and adaptive observer backstepping is employed to achieve asymptotic

tracking without velocity measurement. We employ special barrier functions in Lya-

punov synthesis so as to design a control ensuring that the movable plate and the

electrodes do not come into contact. To the best of the authors’ knowledge, the latter

objective has not been tackled rigorously in published works on control of electrostatic

microactuators, which usually base the control design on the unconstrained system

and subsequently demonstrate by simulations that the constraints are not violated.

The organization of the remainder of this chapter is as follows. Section 6.2 presents

a description of the electrostatic microactuator under study, the problem statement,

and the related state transformations to facilitate the control design. This is followed

by Sections 6.3 and 6.4, which provide full details on the use of barrier functions to

enforce constraints on the output, as well as the control design and rigorous stabil-

ity analyses for the full-state feedback and output feedback cases, based on adaptive

backstepping and adaptive observer backstepping, respectively. Finally, detailed sim-

ulation results for both cases are shown in Section 6.5.
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6.2 Problem Formulation and Preliminaries

Consider the dynamic model of the 1-DOF electrostatic microactuator with bidirec-

tional drive, as illustrated in Figure 6.1. The capacitances Cf and Cb, between the

movable plate and the top and bottom electrodes respectively, are described by

Cf =
εA

l0 − l
, Cb =

εA

l0 + l
(6.1)

where l ∈ R denotes the air gap between the movable plate and the top electrode,

and l0 the gap when both input voltages Vf and Vb are zero. The corresponding

electrostatic forces acting on the movable plate due to the input voltages Vf and Vb

are:

Ff = −1
2

∂Cf

∂l
V 2

f =
εA

2(l0 − l)2
V 2

f ,

Fb = −1
2

∂Cb

∂l
V 2

b = − εA

2(l0 + l)2
V 2

b (6.2)

Thus, the state space equations governing the dynamics of the electrostatic microac-

tuator are given by:

ml̈ + b(l)l̇ + kl =
εA

2

(
V 2

f

(l0 − l)2
− V 2

b

(l0 + l)2

)
=:

εA

2
ν (6.3)

where m denotes the mass of the movable electrode, ε the permittivity of the gap, A

the plate area, k the spring constant, and b(l) the nonlinear squeeze film damping.

A simplified form for b(l) obtained from linearization of the compressible Reynolds

gas-film equation [12]

b(l) =
bc

g3
(6.4)

This function, exhibiting a cubic dependence on the air gap, g, in the denominator,

has been described in several works [3, 96, 98, 173, 174], but with different values of

the coefficient bc. In this chapter, by averaging the effects of the two layers of squeeze

films on both sides of the movable electrode, we arrive at the following modified

model:

b(l) =
bc

2

(
1

(l0 − l)3
+

1
(l0 + l)3

)
(6.5)
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The constant parameters m, ε, A, bc and k may be difficult to identify accurately

in practice, and are thus considered to be uncertain. For example, m, k and A can

vary from unit to unit due to limitations in fabrication precision. The permittivity

ε can change according to the ambient humidity. The coefficient bc in the damping

model is composed of parameters such as fluid viscosity and plate dimensions, and

is thus likely to vary according to ambient conditions and fabrication consistency.

Nevertheless, it is reasonable to have good indication of the order of magnitudes of

these parameters.

bk

l
Vf

-l
Vb

l0

-l0

Figure 6.1: One-degree-of-freedom electrostatic microactuator with bi-directional
drive.

Remark 6.2.1 While bi-directional parallel plate actuators, as shown in Figure 6.1,

can be used for both out-of-plane and in-plane applications, out-of-plane bi-directional

configurations involve complex fabrication processes, such that the derived benefits

need to be weighed against the costs. On the other hand, lateral parallel plate mi-

croactuators are much more feasible, as they can be easily fabricated and configured for

bi-directional actuation, such as that shown in [61] for optical moving-fibre switches,

and that in [62] for positioning of disk drive sliders.

Remark 6.2.2 The voltages Vf and Vb are independent inputs which collectively pro-

vide controllability of the movable plate in both directions. By lumping the two voltage

terms into an aggregate control variable ν in (6.3), we can design it as an uncon-

strained input first, and subsequently apportion it to the actual voltage inputs.
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6.2 Problem Formulation and Preliminaries

Remark 6.2.3 To prevent shorting of the electrical circuit, an insulating layer is

present in each of the driving electrodes. This also helps to prevent singularity, which

is evident from (6.3) whenever |l| = l0, causing the input ν to be undefined. Hence,

the state space of the system in constrained in the compact set χ = {(l, l̇) ∈ R2| |l| <
l0 − δ}, where 0 < δ < l0.

To obtain the same order of magnitude of the variables and thereby avoid numerical

problems in simulation, we perform a change of time scale τ = σt and a change of

variables x1 = l
l0

, x2 = 1
l0

dl
dτ , u = ν

β , for large constants σ > 0 and β > 0, thus

yielding the strict-feedback form:
dx1

dτ
= x2(τ)

dx2

dτ
= − bc

2mσl30
b̄(x1(τ))x2(τ)− k

mσ2
x1(τ) +

εAβ

2mσ2l0
u(τ)

y = x1(τ) (6.6)

where y ∈ R is the output and b̄(x1) is described by:

b̄(x1) =
1

(1− x1)3
+

1
(1 + x1)3

(6.7)

For ease of notation, ẋ1 and ẋ2 are henceforth understood as dx1
dτ and dx2

dτ respectively,

following the change of time scale.

The scaling constants σ and β condition the magnitude of the coefficients. For in-

stance, the large constant σ moderates the value of k
mσ2 , which is otherwise very large

and may pose problems in numerical implementation. On the other hand, the coeffi-

cient εA
2mσ2l0

in the second equation of (6.6) can be very small. By working with the

scaled input u = ν
β instead of ν, the large constant β is introduced, which moderates

the magnitude of the coefficient for easier simulation.

Remark 6.2.4 These scalings are introduced for analysis purposes only, and do not

change the properties of the original plant (6.3). The choice of the scaling constants

may be motivated by a priori knowledge of the order of magnitude of the uncertain

parameters.

The control objective is to force the movable electrode to track a reference trajectory

yd(t) within the air gap, i.e. |y(t) − yd(t)| → 0 as t → ∞. At the same time, all
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6.3 Full-State Feedback Adaptive Control Design

closed loop signals are to be kept bounded. To avoid complicated switched systems

analysis, we aim to design a control scheme which ensures that the movable plate

does not come into contact with the electrodes.

Assumption 6.2.1 The first and second order time-derivatives of the reference tra-

jectory yd(t) are bounded, i.e. |ẏd(t)| < Y1, |ÿd(t)| < Y2, where Y1 and Y2 are con-

stants. In addition, the reference trajectory is bounded by y
d
≤ yd(t) ≤ yd, where y

d

and yd are constants that satisfy y
d

> −1 + δ
l0

and yd < 1− δ
l0

.

6.3 Full-State Feedback Adaptive Control Design

In this section, we investigate full-state feedback adaptive control for 1DOF electro-

static microactuators described by (6.6), in the presence of parametric uncertainty.

The control design follows the procedures detailed in Section 3.4 for n = 2.

Step 1 Define error variables z1 = x1−yd and z2 = x2−α1, where α1 is the stabilizing

function to be designed. We consider the Lyapunov function candidate to facilitate

the design of stabilizing function α1 that will ensure that the constraint on x1 is

respected:

V1 =
κ0

2
q(z1) log

k2
b

k2
b − z2

1

+
κ0

2
(1− q(z1)) log

k2
a

k2
a − z2

1

(6.8)

where κ0 is a positive design constant, the function q(·) : R→ {0, 1} is defined by

q(•) =

{
1, if • > 0

0, if • ≤ 0
(6.9)

and

ka = 1− δ

l0
− |y

d
|, kb = 1− δ

l0
− |yd| (6.10)

are positive constants representing the constraints in the z1 state space, given by

−ka < z1 < kb, induced from the constraints in the x1 state space, given by |x1| <

1− δ
l0

. By invoking Lemma 3.4.1 with p = 2, we obtain that the Lyapunov function

candidate V1(z1) in (6.8) is positive definite, continuous and continuously differen-

tiable in the open interval z1 ∈ (−ka, kb).
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Choose the stabilizing function as

α1 = −κ1

[
q(k2

b − z2
1) + (1− q)(k2

a − z2
1)

]
z3
1 + ẏd (6.11)

with κ1 being a positive constant. This yields

V̇1 = −κ0κ1z
4
1 +

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1z2 (6.12)

where the first term is always non-positive and the second term is cancelled in the

second step. According to Lemma 3.4.2, the stabilizing function α1(z1, ẏd) described

in (6.11) is continuously differentiable with respect to z1 in the open interval z1 ∈
(−ka, kb).

Step 2 This is the step in which the actual control input will be designed. Consider

the Lyapunov function candidate

V ∗
2 = V1 +

mσ2l0
εAβ

z2
2 (6.13)

Ideally, we can design the control input as

u = u∗ = −κ2z2 −
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 + θT ψ (6.14)

where θ = 2mσ2l0
εAβ

[
k

mσ2 , bc

2mσl30
, 1

]T
, ψ =

[
x1, b̄(x1)x2, α̇1

]T , and κ2 is a positive

constant, which leads to the following equation:

V̇ ∗
2 = −κ0κ1z

4
1 − κ2z

2
2 (6.15)

from which the asymptotic convergence of the error signals z1 and z2 to zero can be

shown after some analysis.

However, the ideal control law (6.14) is not viable due to the fact that the parameters

m, ε, A, b and k in θ∗ are not available. To deal with the parametric uncertainty, we

employ the certainty-equivalent control law:

u = −κ2z2 −
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 + θ̂T ψ (6.16)

˙̂
θ = −Γψz2 (6.17)
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where θ̂ ∈ R3 is the estimate of θ. Since u is an aggregate control variable defined

for ease of analysis, we still need to compute the actual voltage controls Vf and Vb,

which is performed with the following algorithm

Vf =
√

βl20q(u)(1− x1)2u

Vb =
√
−βl20(1− q(u))(1 + x1)2u (6.18)

where the function q(·) is defined in (6.9). It can be checked that βl20q(u)(1− x1)2u

and −βl20(1 − q(u))(1 + x1)2u, i.e., the terms within the square root operators, are

always non-negative.

Remark 6.3.1 The algorithm in (6.18) minimizes the sum of V 2
f and V 2

b for a given

u. From (6.3), it can be shown that

V 2
f + V 2

b =





(
1 + (1−x1)2

(1+x1)2

)
V 2

b + βl20(1− x1)2u if u > 0(
1 + (1+x1)2

(1−x1)2

)
V 2

f − βl20(1 + x1)2u if u ≤ 0
(6.19)

It is clear that for u > 0, the minimum is obtained when Vb = 0 and for u < 0, the

minimum is obtained when Vf = 0.

For stability analysis and design of the adaptation law, we augment the Lyapunov

function candidate with a quadratic term in the parameter estimation error as follows

V2 = V1 +
mσ2l0
εAβ

z2
2 +

1
2
θ̃T Γ−1θ̃ (6.20)

where θ̃ = θ̂ − θ, and Γ = ΓT > 0 is a constant matrix. The time derivative of V2

along the closed loop trajectories is given by

V̇2 = −κ0κ1z
4
1 − κ2z

2
2 (6.21)

With the above equation, we are ready to present our main results.

Theorem 6.3.1 Consider the uncertain 1DOF electrostatic microactuator system

(6.6) under Assumption 6.2.1, full-state feedback control law (6.16), and adaptation

law (6.17). If the initial conditions are such that (x1(0), x2(0)) ∈ Ω̄, where the latter

set is described by:

Ω̄ := {(x1, x2) ∈ R2 | − ka < x1(0)− yd(0) < kb} (6.22)
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with ka and kb defined in (6.10), then the output tracking error with respect to a

reference trajectory within the air gap, i.e. yd(t) ∈ (−l0 + δ, l0 − δ), is asymptotically

stabilized, i.e., y(t) → yd(t) as t →∞, while keeping all closed loop signals bounded.

Furthermore, the output y(t) remains in the set Ωy := {y ∈ R : |y| ≤ 1−δ/l0} ∀t > 0,

i.e. the output constraint is never violated.

Proof: The proof follows along the lines of the proof of Theorem 3.4.1, and is briefly

outlined here for the sake of completeness. First, V̇2(t) ≤ 0 implies that for any

bounded V2(0), we have that V2(t) remains bounded ∀t > 0. From (6.20), it follows

that V1(t) is bounded ∀t > 0 and thus −ka < z1(t) < kb. From (6.10) and z1 = y−yd,

it can be shown that

−1 +
δ

l0
+ yd(t) + |y

d
| < y(t) < 1− δ

l0
+ yd(t)− |yd|

From Assumption 6.2.1, we know that y
d
≤ yd(t) ≤ yd, which yields fact that yd(t)+

|y
d
| ≥ 0 and yd(t)− |yd| ≤ 0, leading to the following inequality

−1 +
δ

l0
< y(t) < 1− δ

l0

Hence, we conclude that y(t) ∈ Ωy ∀t > 0.

Next, we show that all closed loop signals are bounded. From (6.21), we know that

z1(t), z2(t), and θ̂(t) are bounded. The boundedness of z1(t) and the reference tra-

jectory yd(t) imply that the state x1(t) is bounded. Given that ẏd(t) is bounded,

the stabilizing function α1(t) is also bounded from (6.11). This leads to the bound-

edness of state x2(t) = z2(t) + α1(t). Since −ka < z1(t) < kb, |ÿd(t)| ≤ Y2, and

|x1(t)| < 1 − δ/l0, we infer that the control u(t) from (6.16) is bounded. Therefore,

all closed loop signals are bounded.

Lastly, we show that y(t) → yd(t) as t → ∞. From the boundedness of the closed

loop signals, it can be shown that

V̈2 = −4κ0κ1z
3
1(x2 − ẏd)− εAβ

mσ2l0
κ2z2(−κ2z2 + θ̃T ψ)

is bounded, thus implying that V̇2(t) is uniformly continuous. Then, by Barbalat’s

Lemma, we obtain that z1(t), z2(t) → 0 as t → ∞. Since z1(t) = x1(t) − yd(t), it is

clear that y(t) → yd(t) as t →∞.
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6.4 Output Feedback Adaptive Control Design

Full-state feedback control, as presented in the previous section, requires measure-

ments of displacement l and velocity l̇. Among the various sensing methods in MEMs,

which include capacitive, optical, electromagnetic, piezoelectric, and tunneling, one

of the more successful types is capacitive sensing, due to the simplicity of the sensor,

low power consumption, and good temperature stability. The displacement l can be

measured by state-of-the-art capacitive sensing methods (see e.g. [151]), which are

suitable for BLF-based control since they are fast, reliable and low-noise.

However, it is generally difficult to measure the velocity l̇ for feedback control. Thus,

x1 is available but x2 is not. Furthermore, since the BLF-based control designs for

general strict feedback systems presented in Chapter 3 dealt with full state feedback,

they are not directly applicable to the output feedback problem. In this section, we

provide a detailed exposition of the output feedback control design based on the BLF

and adaptive observer backstepping [94].

6.4.1 State Transformation and Filter Design

To facilitate the design of the adaptive observer backstepping control, we first perform

a change of coordinates:

η1 = x1 (6.23)

η2 = x2 +
bc

mσl30
φ̄(x1) (6.24)

where φ̄(x1) is defined by

φ̄(x1) =
1
2

(
1

(1− x1)2
− 1

(1 + x1)2

)
(6.25)

The time derivative of φ̄ is given by

˙̄φ =
∂φ̄(x1)

∂x1
ẋ1 =

(
1

(1− x1)3
+

1
(1 + x1)3

)
x2 = b̄(x1)x2 (6.26)
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Substituting (6.23)-(6.26) into (6.6), we can rewrite the system dynamics in paramet-

ric output feedback form:

η̇1 = η2 − θ1φ̄(η1)

η̇2 = −θ2η1 + ϑu

y = η1 (6.27)

where θ1 = bc

mσl30
, θ2 = k

mσ2 , ϑ = εAβ
2mσ2l0

. This can be represented by the simplified

form:

η̇ = Aη +
2∑

i=1

θiφi(y) + ϑe2u (6.28)

y = η1

where e2 := [0, 1]T , η = [η1, η2]T , A =

[
0 1

0 0

]
, φ1(y) =

[−φ̄(y) , 0
]T , φ2(y) =

[0,−y]T .

Design the following filters:

ξ̇0 = A0ξ0 + cy (6.29)

ξ̇i = A0ξi + φi(y), i = 1, 2 (6.30)

v̇ = A0v + e2u + ϕ (6.31)

where ξi ∈ R2 (i = 0, 1, 2), v ∈ R2, ϕ(·) = [ϕ1, ϕ2]T ∈ R2 is a correction function to

be designed, and c = [c1, c2]T with positive constants c1 and c2 chosen such that the

matrix A0 =

[
−c1 1

−c2 0

]
satisfies

AT
0 P + PA0 = −R (6.32)

for some P = P T > 0 and R = RT > 0.

Remark 6.4.1 For systems in the parametric output feedback form, the regressors

φi (i = 1, 2) depend only on the output y, hence adaptive observer backstepping can

be employed for stable output feedback control design [94].
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Remark 6.4.2 The filters (6.29)-(6.31) are similar to the K-filters presented in [94],

but include the additional correction term ϕ(·), which will be designed to cancel the

terms containing the observation error that appear in the Lyapunov derivative during

backstepping design. It is an alternative to nonlinear damping techniques, which

dominate, instead of cancelling, the terms [94].

Remark 6.4.3 It is necessary to implement the filters (6.29)-(6.31) due to the prob-

lems associated with reconstructing the states using certainty equivalence methods,

namely that the observation error dynamics will be corrupted by parameter estimation

errors. As will be shown subsequently, the use of these filters renders the observation

error dynamics almost autonomous, if not for the correction term ϕ(·), which will be

systematically designed to guarantee closed loop stability.

By constructing the state estimate as follows

η̂(t) = ξ0(t) +
2∑

i=1

θiξi(t) + ϑv(t) (6.33)

it is easy to see that the dynamics of the observation error, η̃ = η̂ − η, are given by

˙̃η = ˙̂η − η̇ = A0ξ0 + cy +
2∑

i=1

θi(A0ξi + φi(y)) + ϑ(A0v + e2u + ϕ)−Aη

−
2∑

i=1

θiφi(y)− ϑe2u

= A0

(
ξ0 +

2∑

i=1

θiξi + ϑv

)
−A0η + ϑϕ

= A0η̃ + ϑϕ (6.34)

The constructive procedure for adaptive observer backstepping design will be pre-

sented next.

6.4.2 Adaptive Observer Backstepping

The method presented in this section is similar to the backstepping procedure in

Section 6.3, but the filter signal v2 of (6.31) is used as the stabilizing function, instead

of the state x2, which is unavailable.
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Step 1 Define z1 = y − yd, whose derivative is given by

ż1 = ξ02 +
2∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1φ̄(y)− ẏd (6.35)

where ξij and vj denote the j-th elements of ξi and v, respectively. Denote z2 =

v2−α1, where α1 is a stabilizing function to be designed, and consider the Lyapunov

function candidate:

V ∗
1 =

κ0

2
q(z1) log

kb

k2
b − z2

1

+
κ0

2
(1− q(z1)) log

ka

k2
a − z2

1

(6.36)

where κ0 is a positive design constant, and q(·) is defined in (6.9). The derivative of

V ∗
1 is given by

V̇ ∗
1 =

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

(
ξ02 +

2∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1φ̄(y)− ẏd

)

=
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

(
ξ02 +

2∑

i=1

θiξi2 + ϑ(z2 + α1)− η̃2 − θ1φ̄(y)− ẏd

)

(6.37)

Ideally, we can design the stabilizing function as

α1 = α∗1 :=
1
ϑ

[−ξ02 −ΘT
1 Ψ1 − κ1

(
q(k2

b − z2
1) + (1− q)(k2

a − z2
1)

)
z3
1 + ẏd

]
(6.38)

where the parameter and regressor vectors are respectively defined by:

Θ1 = [θ1, θ2]T (6.39)

Ψ1 = [ξ12 − φ̄(y), ξ22]T (6.40)

By substitution of the ideal stabilizing function α1 = α∗1 into (6.37), it can be obtained

that

V̇ ∗
1 = −κ0κ1z

4
1 +

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(ϑz1z2 − η̃2z1) (6.41)

for which the first right-hand-side term is always negative and the second term can

be eliminated in the subsequent step.

However, due to the fact that the parameters θ1, θ2 and ϑ are unknown, the ideal

stabilizing function α∗1 is not admissible. To circumvent this problem, we augment
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the V ∗
1 with quadratic terms of the parameter estimation errors to form V1, the new

Lyapunov function candidate:

V1 =
κ0

2
q(z1) log

kb

k2
b − z2

1

+
κ0

2
(1− q(z1)) log

ka

k2
a − z2

1

+
1
2
Θ̃T

1 Γ−1
1 Θ̃1 +

ϑ

2γ%
%̃2

(6.42)

where Θ̃1 = Θ̂1 − Θ1 is the estimation error for the unknown parameter vector Θ1.

The derivative of V1 is given by

V̇1 =
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

[
ξ02 + ΘT

1 Ψ1 + ϑ(z2 + α1)− η̃2 − ẏd

]

+Θ̃T
1 Γ−1

1
˙̂Θ1 +

ϑ

γ%
%̃ ˙̂% (6.43)

Denote %̂ as the estimate of % = 1/ϑ, with %̃ = %̂ − % as the estimation error, and

let the stabilizing function α1 = %̂ᾱ1, where ᾱ1 is to be defined shortly. Hence, the

above equation can be rewritten as

V̇1 =
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

[
ξ02 + ΘT

1 Ψ1 + ϑ(z2 + %̂ᾱ1)− η̃2 − ẏd

]

+Θ̃T
1 Γ−1

1
˙̂Θ1 +

ϑ

γ%
%̃ ˙̂%

=
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

[
ξ02 + ΘT

1 Ψ1 + (ϑ̂− ϑ̃)z2 + ϑ(%̃ + %)ᾱ1 − η̃2 − ẏd

]

+Θ̃T
1 Γ−1

1
˙̂Θ1 +

ϑ

γ%
%̃ ˙̂% (6.44)

To facilitate the design of the stabilizing function and adaptation laws, we rearrange

the above equation into the following form:

V̇1 =
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

(
ξ02 + ᾱ1 + ΘT

1 Ψ1 + ϑ̂z2 − ẏd

)
+ Θ̃T

1 Γ−1
1

˙̂Θ1

+
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(−z1η̃2 − ϑ̃z1z2)

+ϑ%̃

[(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ᾱ1z1 +

1
γ%

˙̂%
]

(6.45)

The stabilizing function is designed as

α1 = %̂ᾱ1 (6.46)
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where

ᾱ1 := −ξ02 − Θ̂T
1 Ψ1 −

[
q(k2

b − z2
1) + (1− q)(k2

a − z2
1)

]
κ1z

3
1 + ẏd (6.47)

while the adaptation laws are given by

˙̂Θ1 = Γ1Ψ1

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 (6.48)

˙̂% = −γ%

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ᾱ1z1 (6.49)

Substituting the stabilizing function and adaptation laws (6.46)-(6.49) into (6.45)

yields the following

V̇1 = −κ0κ1z
4
1 +

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ϑ̂z1z2

+ϑ%̃

[(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ᾱ1z1 +

1
γ%

˙̂%
]

+Θ̃T
1

[
Γ−1

1
˙̂Θ1 −Ψ1

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

]

+
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(−z1η̃2 − ϑ̃z1z2)

= −κ0κ1z
4
1 +

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(ϑ̂z1z2 − z1η̃2 − ϑ̃z1z2) (6.50)

From the above equation, it can be seen that the first term is stabilizing, while

the second term consisting of state and parameter estimation errors will be brought

forward into the subsequent step to be handled by the actual control.

We assert that α1(z1, ·) is a C1 function with the following lemma, which ensures that

α̇1 is well-defined.

Lemma 6.4.1 The stabilizing function α1(z1, ·) in (6.46) is continuously differen-

tiable with respect to z1 in the open interval z1 ∈ (−ka, kb).

Proof: The stabilizing function α1(z1, ·) is piecewise C1, with respect to z1, over the

two intervals z1 ∈ (−ka, 0] and z1 ∈ (0, kb). Thus, to show that α1 is a C1 function

for −ka < z1 < kb, we need only to show that limz1→0
∂α1
∂z1

is identical from both

directions. For 0 < z1 < kb, we have

lim
z1→0+

∂α1

∂z1
= lim

z1→0+
%̂κ1

(−3k2
b + 5z2

1

)
z2
1 = 0 (6.51)
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Similarly, for −ka < z1 < 0, we obtain that

lim
z1→0−

∂α1

∂z1
= lim

z1→0−
%̂κ1

(−3k2
a + 5z2

1

)
z2
1 = 0 (6.52)

Hence, limz1→0+
∂α1
∂z1

= limz1→0−
∂α1
∂z1

, and we conclude that α1(z1, ·) is C1 with respect

to z1.

Step 2 This is the second and final step of the backstepping procedure, in which the

control input u appears. According to Lemma 6.4.1, the derivative of the stabilizing

function α1(ξ0, ξ1, ξ2, y, Θ̂1, %̂, yd, ẏd) is well-defined, and can be computed as:

α̇1 =
∂α1

∂ξ0
(A0ξ0 + cy) +

2∑

i=1

∂α1

∂ξi
(A0ξi + φi) +

∂α1

∂Θ̂1

Γ1Ψ1

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

+
∂α1

∂z1

(
ξ02 +

2∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1φ̄(y)− ẏd

)

−∂α1

∂%̂
γ%

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ᾱ1z1 +

1∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d (6.53)

where y
(i)
d := di

dti
(yd), and the partial derivatives are obtained as:

∂α1

∂ξ0
= −eT

2 %̂,
∂α1

∂ξ1
= −eT

2 %̂Θ̂11,
∂α1

∂ξ2
= −eT

2 %̂Θ̂12,
∂α1

∂yd
= %̂Θ̂11b̄(y),

∂α1

∂Θ̂1

= −%̂ΨT
1 ,

∂α1

∂%̂
= ᾱ1,

∂α1

∂ẏd
= %̂,

∂α1

∂z1
= %̂

[
Θ̂11b̄(y)− 3

(
qk2

b + (1− q)k2
a

)
κ1z

2
1 + 5κ1z

4
1

]
(6.54)

with Θ1i denoting the i-th element of Θ1, for i = 1, 2, and b̄(•) defined in (6.7). From

Lemma 6.4.1, we deduce that α̇1 is continuous. Note that (6.53) can be written as

the sum of two parts F (·) and G(·):

α̇1 = F
(
ξ0, ξ1, ξ2, z1, Θ̂1, %̂, yd, ẏd

)
+ G (θ1, θ2, ϑ, η̃) (6.55)

in which F (·) is known and can be directly cancelled by the control u, while G(·)
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contains unknown elements. The functions F (·) and G(·) are defined as follows

F =
∂α1

∂ξ0
(A0ξ0 + cy) +

2∑

i=1

∂α1

∂ξi
(A0ξi + φi) +

∂α1

∂z1
(ξ02 − ẏd) +

1∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d

+
∂α1

∂Θ̂1

Γ1Ψ1

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 − ∂α1

∂%̂
γ%

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ᾱ1z1

= %̂ω − γ%

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ᾱ

2
1z1 (6.56)

G =
∂α1

∂z1

(
2∑

i=1

θiξi2 + ϑv2 − η̃2 − θ1φ̄(y)

)

=
∂α1

∂z1
(ΘT

2 Ψ2 − η̃2) (6.57)

where

Ψ1,a =

[
c2ξ11 + ξ02b̄(y)

c2ξ21 + y

]
, Θ2 =




θ1

θ2

ϑ


 , Ψ2 =




ξ12 − φ̄(y)

ξ22

v2




ω = c2(ξ01 − y) + ÿd −ΨT
1 Γ1Ψ1

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 + Θ̂T

1 Ψ1,a

+
[−3(qk2

b + (1− q)k2
a)κ1z

2
1 + 5κ1z

4
1

]
(ξ02 − ẏd) (6.58)

This yields the derivative of z2 as

ż2 = −c2v1 + u + ϕ2 − F (·) + %̂
[
Θ̂11b̄(y)− 3

(
qk2

b + (1− q)k2
a

)
κ1z

2
1 + 5κ1z

4
1

]

×(−ΘT
2 Ψ2 + η̃2) (6.59)

Consider the Lyapunov function candidate

V ∗
2 = V ∗

1 +
1
2
z2
2 +

1
2ϑ

η̃T P η̃ (6.60)

for which the derivative can be written as

V̇ ∗
2 = −κ0κ1z

4
1 +

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(ϑz1z2 − z1η̃2) + z2ż2

+
1
2ϑ

η̃T (AT
0 P + PA0)η̃ + η̃T Pϕ (6.61)
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Substituting (6.59) into the above equation yields:

V̇ ∗
2 = −κ0κ1z

4
1 −

1
2ϑ

η̃T Rη̃ +
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(ϑz1z2 − z1η̃2) + η̃T Pϕ

+z2

(
−c2v1 + u + ϕ2 − F ∗ +

∂α∗1
∂z1

η̃2

)

= −κ0κ1z
4
1 −

1
2ϑ

η̃T Rη̃ +
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ϑz1z2 + z2(−c2v1 + u

+ϕ2 − F ∗) + η̃T

[
Pϕ + e2

(
∂α∗1
∂z1

z2 −
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

)]
(6.62)

where

F ∗ =
∂α∗1
∂ξ0

(A0ξ0 + cy) +
2∑

i=1

∂α∗1
∂ξi

(A0ξi + φi) +
∂α∗1
∂z1

(
ξ02 − ẏd + ΘT

2 Ψ2

)

+
1∑

i=0

∂α∗1
∂y

(i)
d

y
(i+1)
d (6.63)

If the parameters were known, then it would be a straightforward affair to design the

control as

u = u∗ := −κ2z2 + c2v1 −
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0ϑz1 − ϕ∗2 + F ∗ (6.64)

where the correction term is chosen as

ϕ∗ := −P−1e2

[
∂α∗1
∂z1

z2 −
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

]
(6.65)

to cancel out the last term in (6.61), thus yielding

V̇ ∗
2 = −κ0κ1z

4
1 −

1
2ϑ

η̃T Rη̃ − κ2z
2
2 (6.66)

from which it is possible to show that the error signals z1 and z2 converge asymptot-

ically to zero.

However, since the parameters θ1, θ2 and ϑ are actually unknown, the ideal control u∗

is not implementable. To circumvent this problem, V ∗
2 is augmented with quadratic

terms of the parameter estimation errors, so that we obtain the new Lyapunov func-

tion candidate V2 as follows:

V2 = V1 +
1
2
z2
2 +

1
2ϑ

η̃T P η̃ +
1

2γϑ
ϑ̃2 +

1
2
Θ̃T

2 Γ−1
2 Θ̃2 (6.67)
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where Θ̃2 = Θ̂2 − Θ2 is the estimation error for the unknown parameter vector Θ2.

The derivative of V2 is given by

V̇2 = −κ0κ1z
4
1 +

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(ϑ̂z1z2 − z1η̃2) + z2ż2 + Θ̃T

2 Γ−1
2

˙̂Θ2

+
1
2ϑ

η̃T (AT
0 P + PA0)η̃ + η̃T Pϕ + ϑ̃

[
−

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1z2 +

1
γϑ

˙̂
ϑ

]

(6.68)

Substituting (6.59) and (6.32) into (6.68) yields

V̇2 = −κ0κ1z
4
1 −

1
2ϑ

η̃T Rη̃ +
(

q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0(ϑ̂z1z2 − z1η̃2) + η̃T Pϕ

+ϑ̃

[
−

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1z2 +

1
γϑ

˙̂
ϑ

]
+ Θ̃T

2 Γ−1
2

˙̂Θ2

+z2

[
−c2v1 + u + ϕ2 − F (·) +

∂α1

∂z1
(−ΘT

2 Ψ2 + η̃2)
]

(6.69)

For ease of design of the adaptation laws and the correction term, we rearrange the

above equation into the form:

V̇2 = −κ0κ1z
4
1 −

1
2ϑ

η̃T Rη̃ + ϑ̃

[
−

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1z2 +

1
γϑ

˙̂
ϑ

]

+z2

[
u + ϑ̂

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 − c2v1 + ϕ2 − F (·)− ∂α1

∂z1
Θ̂T

2 Ψ2

]

+η̃T

[
Pϕ + e2

(
∂α1

∂z1
z2 −

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

)]

+Θ̃T
2

(
Γ−1

2
˙̂Θ2 +

∂α1

∂z1
Ψ2z2

)
(6.70)

From (6.70), it can be seen that the last term containing the observation error η̃ may

be eliminated by choosing the correction term ϕ as:

ϕ = −P−1e2

[
∂α1

∂z1
z2 −

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1

]
(6.71)

By designing the control and adaptation laws as follows:

u = −κ2z2 + c2v1 − ϑ̂

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 + F (·)− ϕ2 +

∂α1

∂z1
Θ̂T

2 Ψ2

(6.72)
˙̂Θ2 = −Γ2Ψ2

∂α1

∂z1
z2 (6.73)

˙̂
ϑ = γϑ

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1z2 (6.74)
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and substituting (6.72)-(6.74) into (6.70), it can be shown that

V̇2 = −κ0κ1z
4
1 − κ2z

2
2 −

1
2ϑ

η̃T Rη̃ (6.75)

in which all three terms on the right hand side are always non-positive.

Since u is an aggregate control variable defined for ease of analysis, we compute the

actual voltage controls Vf and Vb by using the algorithm in (6.18).

Remark 6.4.4 It can be checked that u = u(y, v, ξ0, ξ1, ξ2, Θ̂1, Θ̂2, %̂, ϑ̂, yd, ẏd, ÿd),

where the filter signals ξ0(t), ξ1(t), ξ2(t) are generated from y(t), the signal v(t) from

u(t), the parameter estimates Θ̂1, Θ̂2, %̂, ϑ̂ from y, yd, ẏd, ξ0, ξ1, ξ2. Therefore, the con-

trol u is feasible based on only output measurement, and does not require the feedback

of the state x2, which is difficult to measure.

Theorem 6.4.1 Consider the uncertain 1DOF electrostatic microactuator system

(6.6) under Assumption 6.2.1, output feedback control law (6.72), and adaptation laws

(6.48), (6.49), (6.73), and (6.74). If the initial conditions satisfy (x1(0), x2(0)) ∈ Ω̄,

where

Ω̄ := {(x1, x2) ∈ R2 | − ka < x1(0)− yd(0) < kb} (6.76)

with ka and kb defined in (6.10), then the output tracking error with respect to any

reference trajectory within the air gap, i.e. yd(t) ∈ (−l0 + δ, l0 − δ), is asymptotically

stabilized, i.e., y(t) → yd(t) as t → ∞, and all closed loop signals are bounded.

Furthermore, the output y(t) remains in the set Ωy := {y ∈ R : |y| ≤ 1−δ/l0} ∀t > 0,

i.e. the output constraint is never violated.

Proof: The proof for y(t) ∈ Ωy ∀t > 0 is similar to that presented in Theorem 6.3.1

and is omitted. Next, we show that all closed loop signals are bounded. From (6.75),

we know that V̇2(t) ≤ 0 ∀t > 0, and thus, the error signals z1(t), z2(t), Θ̃1(t), Θ̃2(t),

%̃(t), ϑ̃(t), and η̃(t) are bounded. Since Θ1, Θ2, %, ϑ are constants, we have that

Θ̂1(t), Θ̂2(t), %̂(t), ϑ̂(t) are bounded. Since |x1(t)| < 1 − δ/l0, we know, from the

filters (6.29)-(6.30), that ξi(t) (i = 0, 1, 2) are all bounded.

Given that ẏd(t) is bounded, the stabilizing function α1(t) is also bounded, as seen

from (6.46). This leads to the boundedness of v2(t) = z2(t) + α1(t). According to
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Lemma 2.4.1, the tracking error z1(t) remains in the set −ka < z1 < kb. As such, the

adaptation rates ˙̂Θ1(t), ˙̂%(t), ˙̂Θ2(t),
˙̂
ϑ(t) in (6.48), (6.49), (6.73), (6.74) respectively,

are all bounded. Furthermore, we can deduce, from (6.71), that ϕ(t) is bounded.

From (6.31), we have that v̇1 = −c1v1 + v2 + ϕ1, which implies that v1(t) is also

bounded. Thus, we infer that the control u(t) in (6.72) is bounded. At the same

time, from (6.33), η̂(t) is bounded, and thus, η2(t) and x2(t) are bounded too. We

conclude that all closed loop signals are bounded.

To prove that y(t) → yd as t →∞, we first establish that

V̈2 = −4κ1z
3
1 ż1 − 2κ2z2ż2 − 2η̃T R ˙̃η

is bounded, since ż1 is bounded from (6.35), ż2 is bounded from (6.59), and ˙̃η is

bounded from (6.34). As a result, V̇ (t) is uniformly continuous. According to Bar-

balat’s Lemma, z1(t), z2(t) → 0 as t →∞. Since z1(t) = x1(t)− yd(t), it is clear that

y(t) → yd(t) as t →∞.

Remark 6.4.5 Although the adaptive control scheme in this chapter is developed for

parallel plate microactuators, the same approach can be used for comb drive microac-

tuators, as show in Figure 6.2, with a minor modification of the capacitance model to

C(x) = 2nεT
d (l + l̄) [15], where n denotes the number of movable fingers, T the thick-

ness of the structure, d the gap between the fingers, and l̄ the initial overlap between

the electrodes. Consequently, the input is given by u = 2nεTβ
d (V 2

f − V 2
b ).

Remark 6.4.6 In our control design, we utilized more parameter estimates than the

actual number of uncertain parameters. This is carried out mainly to simplify the

design procedure and analysis, since any uncertain parameters encountered in each

step is handled by a new set of estimates, even though the parameters appearing

in different steps may be common. To avoid over-parametrization, it is feasible to

employ the tuning functions approach, in which the number of parameter estimates

is the same as that of the uncertain parameters, and the design of the adaptation is

postponed until the final step. However, the design procedure and analysis will become

more involved.
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bk

l
Vf

-l
Vb

l0

Figure 6.2: One-degree-of-freedom electrostatic comb drive

Remark 6.4.7 The possible rapid change of control voltages near the electrode sur-

faces can be viewed as a tradeoff from the ability of the controller to prevent electrode

contacts in a relatively simple and robust way, particularly in face of model uncer-

tainty and lack of velocity measurements. Since electrical dynamics are much faster

than mechanical dynamics even in the micro scale, the plant model considered is still

reasonable. If necessary, upper bounds for the rate of change of control voltages can

always be computed for given design constants and initial conditions. From these es-

timates, the design constants and/or initial conditions can be appropriately selected

to curb excessive rates.

Remark 6.4.8 In practice, measurement noise may cause problems due to the high

sensitivity near the barrier. A low pass filter can be employed to attenuate high fre-

quency measurement noise. Furthermore, we propose to modify the barrier limits, ka

and kb, into the following:

k
′
a =

(
1− δ

l0
− |y

d
| −∆

)2

, k
′
b =

(
1− δ

l0
− |yd| −∆

)2

(6.77)

so as to provide for a safety margin ∆, which accounts for measurement variance

induced by noise. For small noise, we can reasonably expect that the filtered tracking

error, denoted by z
′
1 remains in the interval (−k

′
a,−k

′
b). Then, for |z′1| ≤ |z1|+∆, we

expect that z1 remains in the interval (−ka, kb). In the subsequent section, we present

simulation results to show that closed loop performance under these modifications are
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robust to small magnitude sensor noise.

Remark 6.4.9 Although nonlinear squeeze film damping model (6.5) is considered

in this chapter, the control design methodology is also applicable to linear damping

models as a special case, for both full-state and output feedback cases.

6.5 Simulation Results

To demonstrate the effectiveness of the control design, we perform simulations on

plant (6.6), for both full-state feedback and output feedback cases, under the following

choices of plant parameters values: bc = 2.659 × 10−21Nsm2, k = 350.0Nm−1, m =

1.864× 10−11kg, ε = 8.859× 10−12Fm−1, A = 2.0× 10−8m2, l0 = 1.0× 10−6m, δ =

2.0×10−8m, and the scaling constants are chosen as σ = 1.0×106 and β = 2.0×1017.

The initial conditions are x1(0) = 0.0, x2(0) = 0.0, θ̂1(0) = 0.0, and θ̂2(0) = 0.0.

The performance of the proposed control is investigated for two types of tasks: set

point regulation and trajectory tracking. For each task, the controller is required to

ensure that the condition −ka < z1 < kb holds, thereby preventing electrode contact,

i.e. |x1| < 0.98.

For set point regulation, the movable plate is required to be stabilized at the specified

set points ysi, i=1,2,3,4. Between the start position and each set point, the plate is

to follow a reference trajectory ydi(t) defined by:

ydi(t) =





y0 +
(
6( t

td
)5 − 15( t

td
)4 + 10( t

td
)3

)
(ysi − y0) for t ≤ td

ysi for t > td
(6.78)

where y0 is the desired initial position, and td is the time to reach ys, starting from

y0. We simulate stabilization to four set points within the gap, namely ys1 = −0.2,

ys2 = 0.4, ys3 = −0.6, and ys4 = 0.8, with each case starting from y0 = 0.0. The

duration is specified as td = 100 µs. The bounds on z1 corresponding to the set

points can be computed as
√

ka1 = 0.78,
√

kb1 = 0.98,
√

ka2 = 0.98,
√

kb2 = 0.58,√
ka3 = 0.38,

√
kb3 = 0.98,

√
ka4 = 0.98, and

√
kb4 = 0.18.
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For trajectory tracking, the movable plate is required to follow the reference trajec-

tory:

yd(t) = 0.4(sin(0.1t) + sin(0.2t)) (6.79)

from which it can be computed that |yd|=|yd
| = 0.705. Thus, we have ka = kb =

1− 0.02
1.0 − 0.705 = 0.275.

6.5.1 Full-State Feedback Control

According to (6.3), (6.16), and (6.18), the full-state feedback control law is given by

u =
1
β

(
V 2

f

l20(1− x1)2
− V 2

b

l20(1 + x1)2

)

where

Vf =
√

βl20q(ū)(1− x1)2ū , Vb =
√
−βl20(1− q(ū))(1 + x1)2ū

ū = −κ2z2 − κ0

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
z1 + θ̂T ψ

with the function q(•) is defined in (6.9). The control parameters are chosen as

κ0 = 1.0× 10−3, κ1 = 5.0× 107, κ2 = 1.0, and Γ =diag{70.0, 100.0, 50.0}.

For set point regulation, the simulation results are shown in Figures 6.3-6.5. From

Figure 6.3, it can be seen that the movable electrode is successfully stabilized at each

of the four set points, and does not come into contact with the fixed electrodes, whose

positions are indicated by the grey lines. The tracking error for each case decays to

a small value. From Figure 6.4, the boundedness and reciprocating action of the

two control voltages are shown. Figure 6.5 shows that the velocity and parameter

estimates are bounded.

Simulation results for the trajectory tracking are detailed in Figures 6.6-6.8. From

Figure 6.6, it can be seen that the movable plate followed the sinusoidal trajectory

closely, and successfully avoided contact with the electrodes. The tracking error

z1(t) = x1(t) − yd(t) showed a trend of decreasing asymptotically to zero, while not

violating the constraint −0.275 < z1 < 0.275 during the transient response. From

Figure 6.7, the boundedness and reciprocating action of the two control voltages are

shown. Figure 6.8 shows that the velocity and parameter estimates are bounded.
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6.5.2 Output Feedback Control

According to (6.3), (6.18), and (6.72), the output feedback control law is given by

u =
1
β

(
V 2

f

l20(1− y)2
− V 2

b

l20(1 + y)2

)

where

Vf =
√

βl20q(ū)(1− y)2ū , Vb =
√
−βl20(1− q(ū))(1 + y)2ū

ū = −κ2z2 + c2v1 − ϑ̂

(
q

k2
b − z2

1

+
1− q

k2
a − z2

1

)
κ0z1 + F (·)− ϕ2

+%̂
[
Θ̂11 − 3 (qkb + (1− q)ka) κ1z

2
1 + 5κ1z

4
1

]
Θ̂T

2 Ψ2

with the function q(•) defined in (6.9), and the output y = x1. The control parameters

are chosen as κ0 = 1.0, κ1 = κ2 = 2.0, Γ1 = diag{60.0, 10.0}, Γ2 = 10.0I, γ% = γϑ =

1.0, c1 = 8.0, c2 = 15.0, and R = I.

For the task of set point regulation, the results are shown in Figures 6.9-6.11. From

Figure 6.9, it can be seen that the movable electrode is successfully stabilized at

each of the four set points without coming into contact with the electrodes. The

boundedness of the control voltages, the velocity and parameter estimates are shown

in Figures 6.10 and 6.11.

Results of simulation for sinusoidal tracking is shown in Figures 6.12-6.14. It can be

seen in Figure 6.12 that the movable plate followed the sinusoidal trajectory closely

without contacting the electrodes. The tracking error z1(t) decreased rapidly to a

small value without violating the constraint −0.275 < z1 < 0.275 during the transient

response. From Figures 6.13 and 6.14 the boundedness of the control voltages, velocity

and parameter estimates can be seen.

6.5.3 Measurement Noise

To test the effectiveness of the controller in the presence of sensor noise, we inject

noise into the output, such that the measured signal is given by

ym = y + naµ(t) (6.80)
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where µ ∈ [−1, 1] is a random variable with uniform distribution, and na is the noise

magnitude. The raw signal ym is passed through a low pass filter 1
1+2s , where s is

the Laplace variable, and the output of the filter, yf , is then used in the estimation

filters, adaptation laws, and control law. The barrier limits are modified according to

(6.77) with ∆ = 0.05 so as to provide a safety margin that accounts for measurement

variance induced by noise. This yields
√

k′a =
√

k
′
b = 0.27.

Simulation results for the output feedback tracking control are shown in Figures

6.15-6.17 for na = 0.03, na = 0.06, and na = 0.1, respectively. It can be seen that

the effect of the controller is to minimize the filtered tracking error, z
′
1 = yf − yd,

instead of the actual tracking error, z1 = y−yd. As a result, the actual trajectory y(t)

fluctuates about the desired trajectory yd(t). As noise magnitude, na, increases, the

actual tracking error also increases. The fact that z
′
1(t) ∈ (−0.27, 0.27) ensures that

z1(t) ∈ (−0.275, 0.275), since |z′1| ≤ |z1| + 0.05. This in turn ensures that the true

position does not violate constraints, i.e. |y(t)| < 0.98.

Remark 6.5.1 From our simulation study, we found that the selection of design pa-

rameters affects the performance quite significantly. Trial and error tuning is needed

to find a set of parameters that yield good performance in the two tracking scenarios

studied in our simulation. For the full-state feedback case, there are six design para-

meters, namely κ0, κ1, κ2, and Γ =diag {γ1, γ2, γ3}. These are tuned by trial and

error. For the output feedback case, there are considerably more design parameters,

16 in total, namely κ0, κ1, κ2, Γ1 =diag{γ11, γ12}, Γ2 =diag{γ21, γ22, γ23}, γ%, γϑ, c1,

c2, and R =

[
r11 r12

r21 r22

]
. To simplify the selection procedure, we first set R = I and

determine c1, c2, that give reasonable responses in filters (6.29)-(6.31). The remain-

ing 10 parameters κ0, κ1, κ2, Γ1 =diag{γ11, γ12}, Γ2 =diag{γ21, γ22, γ23}, γ%, γϑ are

then tuned by trial and error.

6.6 Conclusions

We have presented adaptive control for a class of single-degree-of-freedom (1DOF)

electrostatic microactuator systems, such that the movable plate is able to track a

155



6.6 Conclusions

reference trajectory within the air gap without knowledge of the plant parameters.

Both full-state feedback and output feedback schemes have been developed, with

guaranteed asymptotic output tracking. Simulation results show that the proposed

adaptive control is effective for both set point regulation and trajectory tracking

tasks. It can be seen from the control design that, in the adaptive setting, the

output feedback treatment, which required the implementation of additional filters,

became much more involved as compared to the full-state feedback case. If velocity

measurements can be used, then full-state feedback control can be implemented with

relative ease.
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Figure 6.3: Normalized displacement x1 and tracking error z1
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0 1000 2000 3000 4000 5000
−30

−20

−10

0

10

20

30

40 V
f

V
b

Figure 6.7: Control inputs Vf and Vb

158



6.6 Conclusions

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

time [µs]

no
rm

 o
f p

ar
am

et
er

 e
st

im
at

es

0 1000 2000 3000 4000 5000
−0.01

−0.005

0

0.005

0.01

0.015

time [µs]

no
rm

al
iz

ed
 v

el
oc

ity

Figure 6.8: Norm of parameter estimates ‖θ‖ and normalized velocity x2
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Figure 6.16: Normalized displacement and tracking error in presence of measurement
noise with na = 0.06.
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Figure 6.17: Normalized displacement and tracking error in presence of measurement
noise with na = 0.1.
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Chapter 7

Conclusions and Future Work

This thesis investigated the use of Barrier Lyapunov Functions for the control of SISO

nonlinear systems in strict feedback form with constraints in the output and states.

To begin with, the notion of Barrier Lyapunov Functions has been formally introduced

to pave the way for a systematic and technically rigorous framework for control design

that ensures non-transgression of constraints in nonlinear systems. Key technicalities

underlying the use of BLFs for constraint satisfaction are exposed, and motivating

examples based on low order systems are shown to elucidate the design methodology.

While the idea of barrier functions as a means of preventing excursions of variables

from a region of interest is not new, as noted by their applications in constrained op-

timization problems and collision avoidance algorithms, a formal treatment of barrier

functions in Lyapunov synthesis is currently lacking in the control literature, and we

endeavor to partly fill this gap in this thesis.

Following the preliminaries and motivating examples, tracking control design was

presented for strict feedback systems with constraints on the output, and in the

presence of parametric uncertainties. Both symmetric and asymmetric BLFs have

been investigated, with the latter being a more generalized approach that can provide

greater design flexibility and relax the starting conditions. We have shown that

asymptotic tracking is achieved without violation of constraint, and all closed loop

signals remain bounded, under a mild condition on the initial output. The use of

QLFs in handling output constraint has been investigated, and it is shown that more
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conservative initial conditions are required as compared with using BLFs.

The BLF based control design is then extended to strict feedback systems with con-

straints on the states, with adaptive versions of the controllers designed to handle the

presence of uncertainties. Unlike the output constraint case, some feasibility condi-

tions which involve the initial states and selection of control parameters are required

when dealing with full state constraints. Although they can be restrictive, due to the

fact that they are based on conservative bound estimates, the good thing is that they

can be checked offline prior to control implementation. When handling only partial

state constraints, the conditions can be relaxed. It has been shown that asymptotic

tracking is achieved without violation of constraint, and all closed loop signals remain

bounded, provided that the feasibility conditions are fulfilled.

Subsequently, the thesis tackled the adaptive control problem for nonlinear con-

strained systems in strict feedback form with uncertain control gain functions, the

latter being notorious for causing difficulties in adaptive control design. Although

there are good methods in the literature for handling unknown control gains in the

absence of constraints, such as Integral Lyapunov Functions [43] and quadratic-like

Lyapunov functions with reciprocal of control gain function [44], these approaches

are difficult to combine with BLFs for handling of constraints. In this thesis, we

have adopted the robust adaptive domination approach of handling unknown virtual

control gains. Based on the conditions for practical stability with guaranteed non-

violation of constraints, which we have established in Lemma 2.4.3, it has been shown

that practical output tracking is achieved without violation of output constraint. For

the case of full state constraints, feasibility conditions on the initial states and control

parameters are needed, which can generally be relaxed when handling only partial

state constraints, and obviated for the special case of output constraint with linearly

parameterized system nonlinearities.

To demonstrate the effectiveness of the proposed method of adaptive control design

for constrained nonlinear systems, we have chosen, as an application study, a class of

single-degree-of-freedom (1DOF) electrostatic microactuator systems, which is con-

strained in the sense that the movable electrode is to track a reference trajectory

within the air gap without touching any of the fixed driving electrodes. Both full-

state feedback and output feedback schemes have been developed, with guaranteed
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asymptotic output tracking. Computer simulation results show that the proposed

adaptive control is effective for both set point regulation and trajectory tracking

tasks. It can be seen from the control design that, in the adaptive setting, the output

feedback treatment, which required the implementation of additional filters, became

much more involved as compared to the full-state feedback case. If velocity mea-

surements can be realized, then full-state feedback control can be implemented with

considerable ease.

In light of existing methods in the literature for dealing with constraints in nonlin-

ear systems, particularly Model Predictive Control, our proposed method has pros

and cons. The main advantages are that there is no issue related to computational

tractability since there is no need to solve optimization problem online, and that the

feasibility of the control with respect to state constraints can be evaluated a priori.

Shortcomings of the method include conservative feasibility conditions that limit the

class of applicable systems, as well as the difficulty of handling an input constraint

due to the high-gain nature of the control that uses the gradient of a barrier function.

Recommendations For Future Work:

Despite the existing applications of barrier functions in constrained optimization

problems and multi-agent collision avoidance algorithms, the investigations of bar-

rier functions in Lyapunov synthesis, in the form of BLFs, is relatively new in the

context of providing a systematic framework of control design for general nonlinear

systems. The focus of this thesis, on uncertain strict feedback systems with state and

output constraints, is but a part of the wider scope consisting of numerous interest-

ing and meaningful open research topics. In the following, we outline several possible

topics for future investigations:

• Constrained Input. In this thesis, we have focused on output and state

constraints, but neglected any consideration of constraints on the input. The

reason is that provision for a potentially large control effort is key to safeguard-

ing against any constraint transgression. This is an inevitable consequence of

the design methodology, stemming from the use of BLFs that grow to infinity

when the states approach the boundaries of the constrained region, and can be

viewed as a drawback of the proposed method, although we have established, in
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Theorem 3.3.1, the fact that the control signal remains bounded for all time. By

careful selection of the control parameters, it is possible to limit the growth of

the control signal within a desirable operating range. In fact, a straightforward

extension will be to add one more condition to the full state constraint problem,

namely kcn+1 > An ≥ supΩn
|u(·)|, where kcn+1 is the input constraint. This

condition needs to be checked to assess feasibility of the proposed method, albeit

with extra conservatism. More investigations are needed to relax the feasibility

conditions and to find more effective ways to deal with input constraints.

• Different Classes of Systems. As a starting point in our research of BLFs,

we have dealt with only strict feedback nonlinear systems in this thesis, which

are sufficiently rich to elucidate the main principles and some for the problems

associated with BLF based control design for constraint handling. Many more

classes of systems in the presence of constraints, including pure feedback sys-

tems, time delay systems, mechanical systems, general MIMO systems, among

others, carry with them unique and meaningful problems, and await to be in-

vestigated under the proposed BLF control design framework. For analytical

purposes and performance assessment, BLF based control design can be ap-

plied to linear systems with constraints, and the results compared with existing

results, such as those based on positively invariant sets.

• Different Choices of BLFs. The choice of BLF, as for any control Lyapunov

function, is not unique, and different selections of BLFs can lead to different

transient performance and stability properties. For an open region D, any

positive definite and continuously differentiable function, V1 : D → R, which

satisfies the condition V1(z1) → ∞ as z1 → ±kb1 is a valid candidate. An

alternative to (3.14) which satisfies these conditions is the barrier function V1 =
kb1
π tan2( πz1

2kb1
), which can be shown to yield very different stabilizing functions

as well as control and adaptation laws. More classes of BLFs with desirable

properties need to be proposed, and investigations and comparisons of control

performances, induced by different classes of BLFs, are welcome.

• Output Feedback Designs. Although we have presented an output feedback

design based on adaptive observer backstepping for the MEMs system in the

application study of Chapter 6, this is a special case where the problem is
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tractable due to the low order dynamics and simplified system nonlinearities.

Designing an output feedback control for nonlinear systems with guarantee of

constraint satisfaction is very much an open and challenging problem. A natural

and promising point to start is with nonlinear systems in the output feedback

form under state and output constraints, since such systems are amenable to

adaptive observer backstepping techniques that can be fused with BLFs.

• Practical Applications. As mentioned, constraints are ubiquitous in practi-

cal applications. There is plenty of scope for more in-depth application studies

to be performed, including robotics manipulators in constrained workspace,

ocean vessels moving in constrained channels, mechanical systems with satu-

rated actuators, as well as process control applications with state constraints.

Both computer simulations and experimental work need to be carried out ex-

tensively to verify the effectiveness and expose the limitations of the controllers,

especially in the face of unmodelled dynamics, process disturbances, and mea-

surement noise.

• Approximation-Based Control. Approximation-based control rely on uni-

versal approximation property in a compact set in order to approximate un-

known nonlinearities in the plant dynamics. As long as the arguments of the

unknown function remain within the set, stable tracking with guaranteed perfor-

mance bounds can be achieved. One method of ensuring that the approximation

condition holds is by careful selection of the control parameters, via rigorous

transient performance analysis, so that the system states do not transgress the

compact set of approximation [42, 44]. Another method is to rely on a sliding

mode control mechanism operating in parallel to the approximation-based con-

trol, such that the compact set is rendered positively invariant [35, 178]. The

BLF based control design methodology presented in this thesis appears very

promising in providing yet another means of tackling the approximation-based

control problem, by actively constraining the states of the system to remain

within the compact set of approximation.
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