
M2ICAL : A TECHNIQUE FOR ANALYZING

IMPERFECT COMPARISON ALGORITHMS USING

MARKOV CHAINS

OON WEE CHONG

(M.Sc.(Comp. Sc.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48632996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Bernice

Acknowledgements

This research has been a long and sometimes arduous journey,and I would never have

made it to the finish line without the help of a number of wonderful people.

My sincerest gratitude goes to my supervisor Martin Henz, who took a naive PhD

student low on confidence under his wing and taught him how to reach for the stars. I

didn’t think that I was capable of making a significant contribution to the field; I do now.

A lavish pesco-vegetarian dinner awaits my partner-in-crime Lim Yew Jin, seem-

ingly the only other person interested in intellectual games research in the whole of

Singapore. My initial thesis idea stemmed from him, and eventhough it eventually

metamorphosed beyond recognition, Yew Jin was always available as a sounding board

for ideas and a sympathetic ear as a fellow PhD student. Almost makes me forgive him

for being 6 years younger and 6 times smarter.

A special thank you to Bruce Maxwell Brown, whose insights asa mathematician

are invaluable to this mathematically-deficient computer science student. The number

of cups of Spinelli coffee I owe him for his help tends to infinity.

Several are the professors who took time out to speak to a confused student about

his half-formed, hare-brained ideas. These include Frank Stephan; Lee Wee Sun; Huang

Zhiyong; Chionh Eng Wee; Rudy Setiono; Gary Tan; and Tay YongChiang. Your help

iii

Acknowledgements iv

does not go unappreciated.

Finally, there is no-one I am more grateful to (and for) than my wife Bernice Ho,

who was with me every step of the way. As the final chapter of this thesis ends, I look

forward to embarking on the next chapter of my life with her love and companionship.

Contents

Acknowledgements iii

Summary ix

List of Figures xii

List of Algorithms xiv

I Foundations 1

1 Introduction 3

1.1 Imperfect Comparison Algorithms 3

1.2 The Game-Playing Problem . 5

1.3 Motivations . 7

1.4 Thesis Organization . 11

2 Background 13

2.1 Markov Chains . 13

v

Contents vi

2.2 Monte Carlo Simulations . 14

2.3 Intellectual Games . 16

2.4 Evolutionary Artificial Neural Networks 18

3 Definitions & Notations 21

3.1 General Concepts . 21

3.2 Games . 22

3.3 Markov Chains . 25

II The M2ICAL Method 28

4 Method Overview 30

4.1 Estimating Player Strength .31

4.2 Populating the Classes . 33

4.3 Comparison Function Generalization 36

4.4 Neighbourhood Distribution .38

4.5 Transition Matrix . 39

5 Usefulness of Model 42

5.1 Expected Player Strength . 43

5.2 Time to Convergence . 44

5.3 Variance and Standard Deviation .. 47

5.4 Summary . 48

6 Example: Modulo Nim 50

6.1 Modulo Nim . 51

6.2 Simple Comparison Search . 52

6.3 Model Construction . 53

6.4 Experimental Results . 56

Contents vii

6.5 Summary . 57

III Case Study: HC-Gammon 58

7 Introduction 60

7.1 Backgammon . 60

7.2 HC-Gammon . 65

7.3 Experimental Setup . 66

7.4 SCSA on Backgammon . 69

8 Model Construction 72

8.1 Determining Input Parameters .73

8.2 Populating the Classes . 75

8.3 Comparison Function Generalization 75

8.4 Neighbourhood Distribution .76

8.5 Transition Matrix . 77

9 Experiments A: Random Initial Player 80

9.1 Exp A1: Inheritance . 81

9.2 Exp A2: Fixed Annealing Schedule 83

9.3 Exp A3: Dynamic Annealing Schedule87

10 Experiments B: All-zero Initial Player 93

10.1 Single Initial Player .93

10.2 Exp B1: Inheritance . 96

10.3 Exp B2: Fixed Annealing Schedule98

10.4 Exp B3: Dynamic Annealing Schedule 99

Contents viii

11 Summary 102

11.1 Usefulness of model . 102

11.2 Comments on HC-Gammon . 104

11.3 Conclusions . 105

IV Further Discussions 107

12 Significance of Parameters 109

12.1 Number of ClassesN . 110

12.2 Player Evaluation SizeMopp . 113

12.3 Class Population Parameters .. 115

12.4 Error and Neighbourhood Distribution Parameters 117

13 Adapting the Model 119

13.1 Simple Adaptations . 119

13.2 Player Strength Evaluations .. . 121

13.3 Populations . 124

13.4 Annealing . 125

14 Conclusions 127

14.1 Academic Contributions . 127

14.2 Why useM2ICAL ? . 128

14.3 Future Work . 130

Bibliography 131

A Table of Symbols 136

B Analytical Determination of Stationary Vector 141

Summary

Practical optimization problems are often not well-defined, in the sense that the qual-

ity of a solution cannot be easily calculated. Many algorithms that attempt to solve such

problems are comparison-based, i.e., they have a comparison function that compares two

(or more) solutions and returns the superior one. Due to the difficulty in calculating the

quality of a solution, the comparison function employed is imperfect (i.e., it may make

an error). Machine learning algorithms in intellectual games (like chess or checkers)

often fall into this class of imperfect comparison algorithms, since two solutions (play-

ers) are compared by playing them against each other, and there is generally a non-zero

probability that the weaker player will defeat the stronger.

This thesis describes a 4-step process to model imperfect comparison algorithms

into Markov Chains, using Monte Carlo simulations to handlethe effects of comparison

errors. We call this process theMonte CarloMarkov Chain forImperfectComparison

AL gorithms method, or theM2ICAL method for short. Once the algorithm is modeled

as a Markov Chain, it can then be analyzed using existing Markov Chain theory. In-

formation that can be extracted from the Markov Chain include the estimated solution

quality aftert iterations; the standard deviation of the solutions’ quality; and the time to

convergence.

ix

Summary x

TheM2ICAL method is a 4-step process. In step 1, a representative sample popula-

tion of the algorithm’s search space is generated and allocated into the various classes

in the Markov Chain; this sample population is used to find theprobability distributions

of the algorithm. Both the comparison error of the algorithm’s comparison function and

the neighbourhood distribution of the algorithm are estimated using several Monte Carlo

simulations in steps 2 and 3 respectively. Finally, these distributions are used to devise

the transition matrix of the Markov Chain model of the algorithm in step 4.

We take problems from the field of intellectual games as the running examples

throughout the dissertation. In particular, we describe two case studies that show the ca-

pabilities of theM2ICAL method. The first is the Simple Comparison Search Algorithm

(SCSA) on the game of Modulo Nim (ModNim). This is a very simple hill-climbing

algorithm on a strongly solved but computationally non-trivial game. The predictions

made by theM2ICAL method were very accurate in this case, which shows the potential

capabilities of the technique in an ideal setting.

The second case study is the HC-Gammon generation program described in a 1998

publication by Pollack and Blair. It is a hill-climbing algorithm that generated players

of the game of backgammon. The best solution was able to display a decent playing

strength despite the simplicity of the approach, and these results were used by Pollack

and Blair to question the importance of the temporal-difference learning technique used

in another backgammon program TD-Gammon. We describe two different setups of

the HC-Gammon experiments, one with a randomly generated artificial neural network

as the initial player, and the other with a neural network with all weights and biases

set to zero as the initial player. The results revealed several interesting aspects of the

HC-Gammon experiments and enabled us to refute part of Pollack and Blair’s claims.

As an analysis tool for practical algorithms, the various parameters involved in the

M2ICAL method must be carefully considered in order to make the modeling of the

algorithm worthwhile. The effects of these parameters are discussed, along with some

Summary xi

other important issues that this pioneering work has failedto address. In any case, the

M2ICAL method is the first technique that can objectively analyze imperfect comparison

algorithms, which will be useful for algorithm designers and practitioners.

List of Figures

2.1 Basic structure of an artificial neural network 18

2.2 Sigmoid transfer function .19

3.1 Game tree for a tic-tac-toe game from the given starting position (X to

play) . 23

3.2 Graphical representation of Markov Chain of coin-guessing algorithm

on 90% biased coin . 26

6.1 Sample state size (γi

ΓN
) distribution . 55

6.2 Model and experimental results for ModNim(100,3) usingSCSA 56

7.1 Starting position for backgammon 61

7.2 Direction of movement for white pieces 62

7.3 Two ways that White can play a roll of 5/3 63

7.4 Entering from the bar . 64

7.5 White bears off two checkers on a roll of 4/6 65

7.6 Artificial Neural Network architecture for HC-Gammon 67

7.7 Model and experimental results for SCSA on backgammon 70

xii

List of Figures xiii

9.1 Model and experimental results for HC-Gammon 95% Inheritance on

backgammon . 82

9.2 Model results for fixed annealing schedule HC-Gammon 95%Inheri-

tance on backgammon . 85

9.3 Model results for dynamic annealing schedule HC-Gammon95% Inher-

itance on backgammon . 92

10.1 Model and experimental results for HC-Gammon using theAZNN ini-

tial player . 95

10.2 Time-Lag Model and experimental results for HC-Gammonusing the

AZNN initial player . 97

10.3 Time-Lag Model for fixed annealing schedule HC-Gammon using the

AZNN initial player . 98

10.4 Time-Lag Model for dynamic annealing schedule HC-Gammon using

the AZNN initial player . 100

11.1 Time-Lag Model for annealing at 1050 and 3307 iterations using the

AZNN initial player . 103

12.1 Expected player strength using N=100, 50, 33, 20 and 10 for Mod-

Nim(100,3) using SCSA . 110

12.2 Standard Deviation using N=100, 50, 33, 20 and 10 for ModNim using

SCSA . 112

12.3 Estimated player strength (and std. dev.) withMopp 113

List of Algorithms

4.1 Populating the Classes . 35

4.2 Computing the Win Probability MatrixW 37

4.3 Finding the Neighbourhood Distributionλi 39

5.1 Expected player strength aftert iterations 44

5.2 Convergence to Stationary . 46

6.1 Simple Comparison Search Algorithm (SCSA) 52

8.1 Finding the Descendent Probability DistributionsDij 78

9.1 Finding the transition matrixP(t) . 91

xiv

Part I

Foundations

1

2

This dissertation presents a technique for analyzing imperfect comparison algorithms on

optimization problems using a Markov Chain model that utilizes Monte Carlo simula-

tions in its construction, using game-playing problems as our application domain. Our

research therefore straddles several disciplines in computer science, including algorithm

analysis, optimization algorithms, Markov Chain theory, Monte Carlo simulations and

intellectual games research.

In this part of the thesis, we provide some foundational knowledge that is required for

better understanding of the material that follows. Chapter1 introduces the problem that

we are trying to solve, which is to analyze the efficiency and effectiveness of imperfect

comparison algorithms on optimization problems. We give anoverview of such algo-

rithms with an emphasis on the game-playing problem, and also detail the motivations

behind our research. Chapter 2 provides background knowledge on existing research in

the fields relevant to our work, and Chapter 3 gives the definitions and notations used

throughout the dissertation.

Chapter 1
Introduction

1.1 Imperfect Comparison Algorithms

Real-world optimization problems are often not well-defined in the sense that the quality

of a solution may not be satisfactorily expressed in terms ofan easily calculable equa-

tion. This could be due to the sheer complexity or size of the problem, or there could

be other external factors that prevent a solution from beingcorrectly evaluated. In these

types of problems, it can be difficult or impossible to objectively evaluate the quality of

a solution. Examples of such problems include:

• Inaccurate or noisy data.The accuracy of any algorithm can only be as good as

the accuracy of the input data. If the input data to an algorithm is erroneous, then

so will the output of the algorithm based on it. This phenomenon is sometimes

called“garbage in, garbage out”.

• Predictive algorithms. Such algorithms usually only have information from the

present timet, and have to provide a solution that is valid at some future time

T > t. However, without knowing precisely how the problem will change in the

future, predictive algorithms cannot guarantee an optimalsolution at timeT .

3

1.1 Imperfect Comparison Algorithms 4

• Imprecise problem definitions. Many real-life problems are highly complex,

e.g., large timetabling problems with several constraints. With so many different

factors to consider, it is difficult for human users to accurately define their user

requirements. While there may be algorithms that can solve such a problem pre-

cisely, their solutions are limited by the ability of the users to define their problem.

• Problem mapping. Sometimes, it is preferable to map a difficult problem to an-

other problem that is not completely identical but better understood. For example,

it has been shown that the paper spread problem in examination timetabling (i.e.,

increasing the amount of time between successive examination papers for each

student) can be mapped to the vehicle routing problem, and can then be solved

using a standard vehicle routing algorithm [LHO01]. However, since the target

problem and the mapped problem are not identical, the final solution is not gener-

ally optimal.

Many algorithms that solve optimization problems are comparison-based, i.e., they

have as their primary operation the comparison of two (or more) solutions in order to

determine their relative superiority. Comparison-based algorithms range from simple

greedy neighbourhood searches to genetic and evolutionaryalgorithms. However, since

real-life optimization problems may not be well-defined, comparison-based algorithms

must often employ a comparison function that is not 100% accurate as a result. We

call algorithms that rely on such imperfect comparison functions imperfect comparison

algorithms.

In real-world applications, the algorithmic solutions to such problems can be ex-

ceedingly complex, involving several different interacting components. Due to the com-

plexity of such algorithms, it is difficult to evaluate theireffectiveness; the efficacy of

genetic algorithms, for example, is dependent on several factors including the data rep-

resentation, mutation and crossover rates and methods, population size and number of

1.2 The Game-Playing Problem 5

generations. While it is possible to establish upper, loweror average bounds of perfor-

mance in some instances, a more precise estimation of algorithm performance is usually

not performed. The difficulty is exacerbated if the target problem is not well-defined,

because the inability to correctly evaluate produced solutions reduces the accuracy of

any such analysis.

This research proposes a technique for the analysis of imperfect comparison algo-

rithms. The technique is based on the idea of modelling the algorithms as a discrete

Markov Chain with the help of Monte Carlo simulations, and then discovering important

attrributes such as the expected solution quality; solution spread; and rate of convergence

of the algorithm using numerical analysis. We call our techniqueMonte CarloMarkov

Chain for ImperfectComparisonAL gorithms, orM2ICAL1 for short; the models pro-

duced using this technique are similarly calledM2ICAL models. As far as we know,

there have been no previous attempts to analyze the performance of complex imperfect

comparison algorithms in practical settings.

1.2 The Game-Playing Problem

The running examples throughout this research will be the game-playing problem, which

is an archetypal imperfect comparison problem. The game-playing problem has a long

history in computer science. The aim of this problem is to create a program that can

play an intellectual game such as chess or checkers well, as measured by its results

against other (human or computer) players. The greatest practical successes have been

achieved by using very deep brute force searches in order to find the move leading to the

position that is evaluated as being of the highest quality; the evaluation function being

maximized is often a hand-tuned weighted sum of features of aposition. For example,

the IBM supercomputerDeep Bluewas able to defeat then World Chess Champion Gary

1pronouncedMichael.

1.2 The Game-Playing Problem 6

Kasparov 3.5-2.5 in an exhibition match using this approach[BN97].

Recently, more emphasis has been placed on using intellectual games as a test bed

for machine learning techniques. The aim of such research isto use machine learning

methods to generate a game player capable of playing an intellectual game at a high level

of proficiency, usually while avoiding the use of very deep searches that may obscure the

effect of the machine learning technique itself. Notable successes in this field include

the backgammon programTD-Gammon[Tes95] that was based on a technique called

temporal difference learning, and the checkers programAnaconda[CF01, Fog02] based

on co-evolution of neural networks. Unfortunately, the results-oriented mentality of

intellectual games research in computer science seems to have been passed on to this

field as well. Research in this area involves applying a particular machine learning

technique on a game, and then evaluating the final player produced by playing it against

existing players (human or computer); while this approach to research can showcase the

ability of a technique to create a strong game player, it provides little insight on how the

technique achieves this feat, nor does it provide any boundson algorithm performance.

Such an approach would most likely be insufficient to prove analgorithm’s capabilities

if it was applied to algorithms in other fields in computer science.

One of the main difficulties in current research on algorithms that generate game-

playing programs is how to evaluate the final generated player in a fair and accurate

way. The cause of this difficulty is the fact that there is in general a non-zero proba-

bility that a “weaker” player defeats “stronger” player in ahead-to-head match, for a

given definition of player strength. This phenomenon has been dubbed the “Buster Dou-

glas Effect” [PB98], named after the 45-1 underdog heavyweight boxer who defeated

overwhelming favourite Mike Tyson to become World Heavyweight Champion. Even

though algorithms like competitive co-evolution have beenfound to converge to opti-

mality when this phenomenon does not occur [RB96], in all practical games the Buster

Douglas Effect is present. Since the relative strength of two players is usually found

1.3 Motivations 7

by playing them against each other, the Buster Douglas Effect essentially results in an

imperfect comparison.

In this thesis, we describe how we can use Markov Chains to examine imperfect

comparison algorithms that are applied to the game-playingproblem. Markov Chains

have been used to model algorithms in computer science for several decades. As long

as the next state of an algorithm is related only to the current state, it can be modeled

as a Markov Chain and analyzed using a variety of mathematical tools. Examples of

such research include the analysis of Genetic Algorithms [WZ99], Simulated Annealing

[Sor91] and Local Search algorithms [And02], which used Markov Chains to show im-

portant algorithm properties (e.g., proof of algorithm convergence). We show how the

performance of imperfect comparison algorithms on the game-playing problem can be

translated into Markov Chain form by using several Monte Carlo simulations to estimate

various behaviourial aspects of the algorithm. This then allows us to take advantage of

existing knowledge on Markov Chains to better evaluate the strengths and weaknesses

of algorithms that attempt to generate game-playing programs.

1.3 Motivations

Most of existing computer science research in intellectualgames is almost entirely

results-oriented, in the sense that the objective of the researchers was to create a game-

playing program capable of playing a particular game well intournament conditions.

The greatest successes were achieved using a large variety of methods, including very

deep searches, human-defined evaluation functions, time management schemes and even

dedicated hardware; all of these methods are usually heavily customized for maximum

effectiveness for the particular game and/or tournament format. Since the domain of in-

tellectual games is competitive by its very nature, this approach to research is perfectly

understandable and sound. Furthermore, as the field is now very well-researched, it be-

comes exceedingly difficult to find new ways to improve the strength of a game-playing

1.3 Motivations 8

program, so any new scheme that is able to do so will be of interest to practitioners in

the field.

Academically speaking, there are disadvantages to this heavily results-oriented out-

look. As long as a program succeeds in playing a strong game, there is interest in publi-

cations revealing the technique used to produce the program. When the technique used

involves the combination of several different methods, it is often left to the interested

practitioner to decide for themselves the relative worth ofeach of the methods when

applied to their own game. Also, many of the techniques that are applied to a partic-

ular game cannot be used for another game, e.g., the evaluation functions used by the

IBM chess supercomputerDeep Blue[BN97], which involves some 8000 components,

cannot be easily applied to any other game. Many approaches also have some random

component, which has a significant effect on the strength of the generated player, further

obscuring the relative worth of the overall technique itself.

More recently, there has been work on using intellectual games as simply a test bed

for machine learning techniques, where the aim of the research is not necessarily to

create the strongest possible game-playing program, but toshowcase the ability of the

machine learning technique in the games domain. However, there are two significant

problems with current research in this area. Firstly, existing publications usually focus

on the results achieved by the best player generated by theirapproach, even when several

different trials were required; while this gives an indication of the upper-bound poten-

tial of the approach, it does not provide much information onits average or worst-case

performance. Secondly, it is difficult to judge the strengthof the produced player in a

fair and convenient manner.

One of the aims of this research is to analyze the performanceof certain algorithms

that search for strong game-playing programs. To do so, we model these algorithms into

Markov Chains using a number ofMonte Carlo simulations to estimate the pertinent

properties of theImperfectComparisonAL gorithm; we have taken the liberty of naming

1.3 Motivations 9

the models that are derived in this wayM2ICAL models.

The basic idea behind theM2ICAL method is simple. Suppose we wish to analyze

an imperfect comparison algorithmA that searches for a strong player for the game of

chess. This is accomplished in 4 steps:

1. Using algorithmA’s player-generation function, we generate several “intermedi-

ate” players. Each of these players are evaluated by playingthem against a number

of randomly generated opponents to estimate their strengths, and these players are

allocated to classes according to their estimated strengths. The aim of this step is

to produce a population of players that are representative of the variety of players

that algorithmA produces in the long run.

2. Using the representative population, we estimate the probability that a player from

a weaker class will beat a player from a stronger class, for all pairs of classes

(called theerror distribution). This is done by randomly selecting players from

each pair of classes and playing them against each other.

3. We estimate the probability that a player from classi will produce a player from

classj for all pairs of classesi andj in one iteration of algorithmA (called the

neighbourhood distribution). This is done by repeated applications of algorithm

A’s neighbourhood function on the members of the representative population.

4. The transition matrix for the Markov Chain representation of algorithmA can

now be derived using the error and neighbourhood distributions, which can then

be analyzed using existing Markov Chain theory.

Even though theM2ICAL model involves some approximations and therefore cannot

guarantee complete accuracy, it allows us to estimate the performance of algorithms

that are applied to problems where the quality of solutions is difficult to measure such

as intellectual games. This helps us to evaluate the suitability of an algorithm to such

1.3 Motivations 10

problems. In particular, when using Markov Chains to model the performance of an

imperfect-comparison algorithm on an optimization problem, we pursue the following

aims:

• To find the expected quality of the solution generated by the algorithm after a

sufficiently large number of iterations such that the effectof the initial state is

negated. This provides an upper bound on the expected quality of an algorithm.

• To find the number of iterations of the algorithm required forthe expected solution

quality to converge to its upper bound value.

• To find the expected quality of the solution after a fixed amount of time as mea-

sured by the number of iterations. This is important for time-crucial applications.

• To find the spread of the quality of the solutions generated bythe algorithm, as

measured by its standard deviation.

• To determine the importance of the various factors affecting algorithm perfor-

mance. This allows the algorithm developer to concentrate his efforts on the as-

pects of the algorithm that have the greatest effect.

Ideally, the model should capture all the pertinent aspectsof both the problem and

the algorithm, and be able to predict the algorithm’s performance to a reasonable degree

of accuracy. Furthermore, the analysis method should provide a performance advantage

over simply running Monte Carlo simulations on the solutions produced by running the

algorithm itself.

This research examines the game-playing problem by implementing theM2ICAL

model on two games. The first game is calledModulo Nim(ModNimfor short), which is

a simple game that can be easily customised to suit our needs.The purpose of modeling

ModNim in our thesis is to show the accuracy of our model on a small game using a

simple algorithm, which represents a setting that is close to ideal. The second game is

1.4 Thesis Organization 11

backgammon, which is one of the most popular games in the world and the subject of

much current research. We model the hill-climbing algorithms used by Pollack and Blair

when generating their backgammon player, which we refer to as HC-Gammon[PB98].

Despite constraints on time and computational resources, we were still able to discover

some interesting results in a reasonable amount of time by making some compromises

on the granularity of the results.

1.4 Thesis Organization

This thesis is divided into 4 parts.Part I: Foundations gives an introduction to the

problem, and provides the necessary background knowledge for the proper understand-

ing of the rest of the thesis. Chapter 2 gives a brief description of the existing work that

is relevant to our discussion, while Chapter 3 presents the definitions and terminology

that will be used throughout this dissertation.

Part II: The M2ICAL Method provides the basic formulation of theM2ICALmethod.

In Chapter 4, we give the step-by-step description of the entire process, which results in

the derivation of a Markov Chain model of the target imperfect comparison algorithm.

We then explain how this Markov Chain model can be used to discover important prop-

erties of the modeled algorithm in Chapter 5. This part concludes with a description of

the implementation of theM2ICAL method on the simple, idealized problem of the Sim-

ple Comparison Search Algorithm (SCSA) on the game of ModuloNim, which shows

the capabilities of theM2ICAL method in a close to optimal setting.

Part III: Case Study: HC-Gammon details the primary case study of this research,

namely the HC-Gammon backgammon program by Pollack and Blair [PB98]. Chap-

ter 7 first introduces the game of backgammon, and then describes the HC-Gammon

experiments in some detail; it concludes with a descriptionof the implementation of

theM2ICAL method on SCSA on backgammon. Chapter 8 describes how theM2ICAL

method can be implemented in the particular case of the HC-Gammon experiments to

1.4 Thesis Organization 12

produce the Markov Chain representation of the algorithm. We performed two sets of

experiments based on the HC-Gammon setup, the first using a randomly generated artifi-

cial neural network as the initial player (Chapter 9), and the other using a neural network

with all weights and biases set to zero as the initial player (Chapter 10). The results of

these experiments are summarized in Chapter 11, along with some discussions on their

implications.

Part IV: Further Discussions gives our thoughts on some theoretical issues relevant

to theM2ICAL method. In Chapter 12, we provide some analysis on the significance of

the various parameters ofM2ICAL method in terms of their effects on the predictive

accuracy of the model and the computation time. We then discuss how theM2ICAL

model can be adapted to various practical algorithms in Chapter 13. Finally, the thesis

concludes in Chapter 14, which summarizes the academic contributions made in this

dissertation, and also presents some possible avenues for future work.

Chapter 2
Background

2.1 Markov Chains

A Markov Chain is a sequence of random variables with the Markov property (i.e., the

conditional probability of the next state is dependent onlyon the current state; the formal

definition is given in Section 3.3). Since the next state is only dependent on the present

state, Markov Chains are useful in modeling systems that arememoryless. The first

results were produced as early as 1906 by Andrey Markov [Mar06, Mar71], and the

process bears his name.

The key task in modeling a system as a Markov Chain is to determine the transition

probabilities, which are the conditional probabilities for the system to go to a particu-

lar new state given a particular current state, for all states. If these values are known,

then the Markov Chain is able to compute the probability thatthe system will be in

any particular state at a future time. Markov Chains have been used in many diverse

fields including computer science, mathematics, engineering, operations research, biol-

ogy and economics. Markov Chains can be used to calculate themean time to failure of

components in important systems like air traffic control systems; to analyze economic

models such as population forecasting and financial planning; to locate bottlenecks in

13

2.2 Monte Carlo Simulations 14

communication networks; and many other applications.

There is much existing work involving the modeling of algorithms using Markov

Chains. Examples of such research include Genetic Algorithms [NV92, WZ99], Sim-

ulated Annealing [Sor91] and Local Search algorithms [And02]. The information that

is most often sought when modeling a system into a Markov Chain is the probability of

being in each state after a certain amount of time has passed when the system becomes

operational. Often, the desired information is the probabilities of being in each state

after a sufficient amount of time has passed such that the influence of the starting state is

erased, which are called thestationary probabilitiesor thestationary distribution; when

the system modelled is an algorithm, the stationary probabilities give the states to which

the algorithmconverges.

Generally all existing work has focused on systems that are precisely defined, in

the sense that it is possible to instantiate a Markov Chain that models the system with

complete accuracy. In this research, we examine a class of problems where this is not

possible, namely thegame-playing problem, where the task is to create a player that

can play an intellectual game (like chess or checkers) well.Furthermore, much of the

existing work with Markov Chains has been theoretical, where systems and algorithms

are represented using Markov Chains, and then theoretical bounds for properties like

time to convergence are proven and stationary distributionvectors are calculated. In

contrast, we will go beyond theoretical considerations andprovide a procedure with

which particular instances of imperfect-comparison algorithms can be analyzed using

Markov Chains.

2.2 Monte Carlo Simulations

A Monte Carlo simulation describes the process of determining the values of a proba-

bility distribution by repeatedly and randomly selecting instances of it, and then exam-

ining the proportion of each instance. A common analogy to describe a Monte Carlo

2.2 Monte Carlo Simulations 15

simulation is that of finding the proportions of colours on a multi-coloured dartboard

by throwing several darts at it, and then counting the numberof darts that strike each

colour. It was given its exotic name (which refers to a famouscasino in Monaco) by

Polish-American mathematician Stanislaw Ulam in 1946.

Monte Carlo simulations have applications in several fields, including the study of

systems where there is a large amount of uncertainty in the inputs like risk calcula-

tion in business; the calculation of multidimensional definite integrals with complicated

boundary conditions; simulated annealing for protein structure prediction; and in semi-

conductor device research to model the transport of currentcarriers. In general, Monte

Carlo simulations are useful in determining probability distributions that cannot be eas-

ily calculated in a precise way.

A crucial result in Monte Carlo simulations is that the standard deviation of the

result from the actual value is inversely proportional to the square root of the number

of samples. In applications where the result must be accurate to several decimal places,

this slow rate of convergence of the accuracy of Monte Carlossimulations is considered

a major failing. On the other hand, if a standard deviation ofabout 10% on the result

is acceptable, then only about 100 trials are required. For our analysis of algorithm

performance, we have found that the square root convergencerate for the accuracy of

Monte Carlo simulations is sufficient.

Markov Chains and Monte Carlo methods have been used together in a class of

algorithms calledMarkov Chain Monte Carlo(MCMC) methods. The aim of MCMC

methods is to discover probability distributions by constructing a Markov Chain with

stationary probabilities equal to the desired (but unknown) distribution, and then finding

the distribution by numerically determining the Markov Chain’s stationary distribution.

Despite the superficial similarity in the names, our technique has little to do with MCMC

methods of this sort. In this research, we make use of Monte Carlo simulations in a more

direct way, by discovering the relevant probability distributions of algorithms in order to

2.3 Intellectual Games 16

construct the corresponding Markov Chain.

2.3 Intellectual Games

The game-playing problem is a well-established problem in the field of artificial in-

telligence, with roots going as far back as Arthur Samuel’s seminal work on machine

learning using the game of checkers [Sam59, Sam67]. It has always been a highly

results-oriented field, and the paramount achievement would be to create a program

that could defeat the best human player in any intellectual game. When the supercom-

puterDeep Bluedefeated the then-reigning world chess champion Gary Kasparov in a

6-game exhibition match (by a score of 3.5-2.5) in 1997, a major milestone in the his-

tory of intellectual games research in computer science wasreached [BN97]. By using

a combination of massively parallel processing, specialized hardware for chess-related

operations like move generation, and various game-relatedimprovements like optimized

alpha-beta search, a comprehensive opening book and endgame database, and a labori-

ously constructed evaluation function involving some 8000components, the IBM team

was able to create a program that could search 200 million positions a second.

Much of the playing strength ofDeep Bluecan be attributed to the extraordinary

number of positions searched by the program. Even though intellectual games research

is classified under the field of artificial intelligence, and while there is no doubt that

search is an integral part of human intellegence, it is of relatively less importance in

our efforts to simulate human cognitive processes. However, a well-known result in

computer games research is that the playing strength of a program increases almost

linearly with minimax search depth [Tho82]; consequently,much of the early research

efforts in the field prior to theDeep Blue-Kasparov result focused on finding ways to

extend or speed up the minimax search. This led to several game-related improvements

like transposition tables and forward pruning heuristics,but results in other aspects of

artificial intelligence and machine learning stemming fromgames research has been

2.3 Intellectual Games 17

limited.

Recently, more emphasis has been placed on using intellectual games as a test bed

for machine learning techniques. The aim of such research isto use machine learning

methods to generate a game player capable of playing an intellectual game at a high

level of proficiency. Notable successes in this field includethe backgammon program

TD-Gammon[Tes95] that was based on temporal difference learning, andthe checkers

programAnaconda[CF01, Fog02] based on co-evolution of neural networks. In general,

research in this area involves applying a particular machine learning technique on a

game, and then evaluating the final player produced.

In the field of computer science research on intellectual games, it is difficult to ob-

jectively and easily evaluate the strength of players. The main problem lies in the fact

that in a match between two players of different strengths, there is in general a non-zero

probability that the weaker player will defeat the stronger. In particular, if the com-

parison function used in an algorithm to evaluate the relative strengths of two players

involves playing them in a match, then this non-zero probability is a comparison error.

This difficulty is one of the major motivating factors in our research, and we take the

possibility of a comparison error into account when evaluating the (expected) strength

of a player that is produced by an algorithm.

To our knowledge, there is no existing research that directly addresses the effect of

imperfect comparisons on the game-playing problem. For example, an existing frame-

work on the competitive co-evolution algorithm [RB96] delivers its strongest results un-

der the assumptions of full transitivity of player strengths (i.e., zero comparison error)

or infinite memory. This project aims to establish a technique for modeling instances of

algorithms on imperfect comparison problems such as intellectual games into Markov

Chains using Monte Carlo simulations. We can then make use ofMarkov Chain theory

to analyze and evaluate these algorithms.

2.4 Evolutionary Artificial Neural Networks 18

Figure 2.1: Basic structure of an artificial neural network

2.4 Evolutionary Artificial Neural Networks

Artificial neural networks (ANN) [Hay99, AM92], or simply neural networks, model

the workings of the brain (and in particular the human brain). A brain consists of a huge

number of interconnected cells called neurons. Basically,a real neuron “fires” when a

stimulus excites it beyond a certain threshold, and sends this output into several other

neurons. Therefore, depending on the input stimuli, this complex network of neurons

produces different outputs according to the makeup of the neurons. While biological

neurons can have as many as 200,000 different inputs, artificial neural networks simulate

this structure in a simplified form to create a computationaldevice that takes a certain

input to produce the desired output.

The basic structure of an artificial neural network is shown in Figure 2.1. An ANN

is divided into 3 layers, namely the input layer, the hidden layer(s) and the output layer.

Each layer comprises a number of artificial neurons, which are simply functions that

receive an input and produces an output. These neurons are connected by weighted

connections that multiply the values produced by each neuron. The data to be computed

is entered into the input layer; this data is passed through the one or more hidden layers;

finally, an output is produced via the output layer.

2.4 Evolutionary Artificial Neural Networks 19

Figure 2.2: Sigmoid transfer function

The function (known as the transfer function) that each artificial neuron computes

transforms the input into a real number output. Usually, theoutput is restricted to some

desired range of values, for instance within [0, 1] or [-1, 1]. Such functions include sine,

hyperbolic tangent and sigmoid. For example, the sigmoid function (shown in Figure

2.2) converts the input value into a value between 0 and 1. These transfer functions

approximate the threshold function (where values are returned when the input is beyond

a certain threshold), but smoothens the function.

The most important part of artificial neural networks is the connection weights.

These weights determine the result of the neural network computation. The key to the

accuracy of a neural network solution to a problem is the correct assignment of connec-

tion weights. In order to find the best assignment of connection weights, neural networks

have to be “trained”. One method of training neural networksusesevolutionary comput-

ing, which is a branch of computer science that makes use of some of the principles of

Darwin’s Theory of Evolution to solve problems. Concepts like the survival of the fittest,

mutation of species and the inheritance of parental traits by offspring are employed on a

population of solutions such that, at the end of several “generations”, a solution would

be evolved to solve the problem at hand.

2.4 Evolutionary Artificial Neural Networks 20

In general, evolutionary computing techniques begin with aset of randomized solu-

tions, which form the individuals of the initial population. The fittest of these individuals

(the definition of fittest being dependent on the problem) areselected for survival, and

offspring are produced. These offspring differ from their parents via mutation and/or the

inheritance of traits from both parents (termed “crossover”). The offspring, combined

with the original parents, form the initial population of the next generation. Techniques

that fall under the category of evolutionary computing include genetic algorithms, evo-

lutionary programming and artificial life.

The combination of the evolutionary process with artificialneural networks is a nat-

ural idea, since it parallels the evolutionary process thatgave rise to brains in nature.

Termedevolutionary artificial neural networks (EANN), this technique makes use of

the evolutionary computing mechanism to train artificial neural networks [Yao99]. The

most straightforward implementation of EANNs involves theevolution of connection

weights. The process begins with an initial population of neural networks of fixed ar-

chitecture (usually fully connected) with randomized weights. Each network is then

evaluated using a fitness function. The fittest individuals are retained, and offspring

is produced using mutation and/or crossover operations, which affect the connection

weights.

In this dissertation, our primary case study is the backgammon program HC-Gammon

[PB98], which uses a simplified EANN; it uses mutation to generate offspring, and has a

population with only a single member. While the lack of a multi-member population of

solutions transforms the algorithm into a hill-climbing algorithm, it can still be classified

as an evolutionary algorithm due to its use of mutation in itssearch for solutions.

Chapter 3
Definitions & Notations

This chapter describes some of the definitions and notationsemployed for the rest of the

thesis. The basic concepts are explained here, while certain other symbols and notations

are explained in the main body of the thesis as they are encountered. For a summary of

the symbols used, refer to the Table of Symbols in Appendix A.

3.1 General Concepts

Let P be an optimization problem, andS the set of solutions to this problem. In general,

any optimization problemP can be expressed in terms of a correspondingobjective

functionF : S → R, which takes as input a solutions ∈ S and returns a real value that

gives the desirability ofs. Then, the problem becomes finding a solution that maximizes

F .

An important class of algorithms that solves such problems is based on the compar-

ison of two solutions. Thus, we define acomparison functionQ : S × S → S as a

function that takes two solutionssi andsj and returns one of them. Conceptually, com-

parison functions compare two solutions to a problem and return the one that it considers

superior. Aperfect comparison function (PCF)for a problemP would be

21

3.2 Games 22

PCF (si, sj) =

si F (si) ≥ F (sj)

sj otherwise.
for all si, sj ∈ S (3.1)

Equation 3.1 is perfect in the sense that it exactly equates the relative desirability of

two solutions to the problem. However, it is not always possible to formulate a PCF for

a given problem, in particular when the objective functionF of the problem cannot be

calculated practically. Therefore, alternativeimperfectcomparison functions are used

that approximate the requirements of the problem.

3.2 Games

The application domain in this dissertation are instances of the game-playing problem.

The task of the game-playing problem in computer science is to create a program that

can play a game well (so the solution spaceS of the game-playing problem is the set of

all possible game-playing programs). The “better” a playeris, the greater its “playing

strength”. However, despite the seemingly intuitive notion of playing strength that ex-

ists in common usage, there is no single commonly accepted method of measuring the

strength of a player. In this section, we attempt to define thegame-playing problem.

Games can be expressed in terms of a directed graphG = (V, E) , where each

vertex represents a valid position in the game, andE = {(vi, vj)| there is a legal move

from vi to vj}. All terminal vertices have avalue from an ordered set that denotes its

desirability, e.g.,{win, draw, loss}. We can use retrograde analysis to assign all non-

terminal vertices with a corresponding value [Tho86]; hence, all positionsv have a value

val(v). For example, Figure 3.1 shows the graph representation forthe game of tic-tac-

toe from a particular starting position. For the sake of simplicity, we only examine

2-player, turn-taking games that take their values from theset of{win, loss} where a

win is preferable to a loss. Thegame-theoretic valueof the game is the value of the

3.2 Games 23

Figure 3.1: Game tree for a tic-tac-toe game from the given starting position (X to play)

initial position, so the result of a game will be its game-theoretic value given optimal

play. Since we only examine win/loss games, it follows that the initial position is a win

for either the first or second player.

For a given game, we also define a functionM : V → Ē that takes as its argument

a position and returns the set of all legal moves from that position. Hence,M(vi) =

{(vi, vj)|(vi, vj) ∈ E}.

Definition 1 (Player) A player of a gameG = (V, E) is a functionPL : V → E that

takes as (one of its) input(s) a valid positionv ∈ V and returns as output a valid move

(v, v′) ∈ E.

Our definition of a player is a function that takes as one of itsinputs a legal position

and returns its move. If the only input is the position and thefunction is deterministic,

then this function is also called astrategy. However, practical game-playing programs

are often not deterministic, and also sometimes take information other than the current

game position into consideration when making a move (e.g., opponent’s previous his-

tory, time remaining, etc.); all such functions are also considered players.

3.2 Games 24

The most natural comparison function to use when comparing two players is to sim-

ply play them against each other in a single game, and select the player that wins. For-

mally, thisbeatscomparison function (BCF) is defined as follows:

BCF (PLi, PLj) =

PLi PLi beatsPLj

PLj otherwise.
for all PLi, PLj ∈ S (3.2)

For turn-taking games, the first argument is the first player and the second argument

is the second player. Note that in general,BCF (PLi, PLj) 6= BCF (PLj, PLi). We

use the shorthand notationPLi ≻ PLj to represent the case whereBCF (PLi, PLj) =

PLi; andPLi ≺ PLj to representBCF (PLi, PLj) = PLj.

The objective of the game-playing problem is to find a player with maximumplayer

strength. However, even though there is an instinctive layman’s notion of player strength,

there is at present no universally accepted definition of theconcept. In this thesis, we

make use of the following definition of player strength. We make use of the notation1f

to represent the indicator function for a boolean functionf , i.e.,1f returns 1 iff is true

and 0 iff is false.

Definition 2 (Player Strength) The strength of playerPLi, denoted byPS(PLi), is

PS(PLi) =
∑

1≤j≤|S|

1PLi≻PLj
+
∑

1≤j≤|S|

1PLj≺PLi
(3.3)

The strength of playerPLi is found by counting all the players that it beats as both

the first and the second player from the initial position. This definition most closely

approximates the layman’s notion of player strength, sincethe performance of a player

in a tournament is determined by its results when playing on both sides. However, from

a purely theoretical standpoint, this objective function contradicts the accepted notion of

an “optimal” player, which is basically defined in existing computer science research as

a player that plays best from the superior side, assuming that the game in question is a

game-theoretic win for one side; such an optimal player may have a lower strength than

a sub-optimal player under our definition.

3.3 Markov Chains 25

3.3 Markov Chains

Our research relies heavily on existing Markov Chain theory. A sequence{Xt}t≥0 of

random variables with values from a setI is adiscrete-time stochastic processwith state

spaceI. We assume in this thesis thatI is finite; we defineN to be the number of

elements in the state space, and the elements inI are denoted byi, j, k, Traditionally,

the states in a Markov Chain are labelled1..N , which is the convention we employ in

this thesis. IfXt = i for somei ∈ I, we say that the process is in statei at timet.

Definition 3 (Markov Chain) A Markov Chain is a discrete-time stochastic process

where for all integerst ≥ 0 and for all statesi0, i1, · · · , it+1,

P (Xt+1 = it+1|Xt = it, Xt−1 = it−1, · · · , X0 = i0) = P (Xt+1 = it+1|Xt = it) (3.4)

This equation is known as theMarkov property. A Markov Chain ishomogenousif

the right hand side is independent oft.

Definition 4 (Transition Matrix) The matrixP = {pij}i,j∈I is thetransition matrix

of a homogenous Markov Chain if, for allt,

pij = P (Xt+1 = j|Xt = i) (3.5)

Since the values for each rowi of a transition matrix give the probability of moving

from statei to all states, each row in a transition matrix sums to 1.

Markov Chains are completely defined by their transition matrices. Another way to

represent a Markov Chain is by using a weighted directed graph, where each node is

a state inI, and the weight of each edge(i, j) is equal topij in the transition matrix.

By convention, the edge representingpii is often omitted; its weight is1−∑
j 6=i

pij. This

graphical representation is often useful for visualizing the Markov Chain.

3.3 Markov Chains 26

Figure 3.2: Graphical representation of Markov Chain of coin-guessing algorithm on

90% biased coin

For example, suppose an algorithm chooses a strategy for theguessing of coin flips,

and it only considers 3 strategies. Strategy 1 always chooses “heads”, strategy 2 always

chooses “tails”, and strategy 3 randomly chooses “heads” or“tails” with equal proba-

bility. If the current strategy selected by the algorithm incorrectly guesses the coin flip

result, it randomly chooses one of the two other strategies to employ for the next guess.

Otherwise, the algorithm retains its existing strategy.

The Markov Chain representing the above algorithm would have 3 states, corre-

sponding to strategies 1, 2 and 3 respectively. Suppose thisalgorithm is implemented on

a biased coin that lands on “heads” 90% of the time. If the algorithm is in state 1, it will

guess correctly with probability 0.9 and hence remain in thesame state, otherwise it will

go to state 2 or state 3 with equal probability of 0.05. If the algorithm is in state 2, it will

guess correctly with probability 0.1, but will guess incorrectly and therefore go to state 1

or state 3 with equal probability of 0.45. Finally, if it is instate 3, it will guess correctly

with probability 0.5, otherwise it will move to state 1 or state 2 with equal probability of

0.25.

3.3 Markov Chains 27

Figure 3.2 gives the graphical representation of the MarkovChain corresponding to

the above algorithm. As stated previously, the self-loops in this diagram can be omitted.

The transition matrix for this Markov Chain is as follows:

0.9 0.05 0.05

0.45 0.1 0.45

0.25 0.25 0.5

Part II

The M2ICAL Method

28

29

Markov Chain theory has a wealth of literature dating back several decades. As a re-

sult, if we can accurately model imperfect comparison-based algorithms on optimiza-

tion problems using Markov Chains, we can make use of existing tools to analyze their

performance. In this part of the thesis, we show how an imperfect-comparison algo-

rithm that is applied to the task of finding a strong player foran intellectual game can be

modelled with a Markov Chain using a number of Monte Carlo simulations, and explain

what can be learnt about the algorithm by doing so.

The model construction process is divided into 4 phases. Thefirst phase involves

generating a sample population of players that is representative of the algorithm’s search

space. The second phase makes use of these players to discover the probability that a

weaker player defeats a stronger player given their relative player strengths. The aim of

the third phase is to estimate the distribution of player strengths found by the algorithm’s

search function. Finally, the fourth phase combines the results found in the second

and third phases to construct the transition matrix of the Markov Chain model of the

algorithm. The purpose of this process is to make use of the characteristics of the sample

population and the algorithm’s search function to predict futuretrendsin the algorithm.

By mining the relevant probability distributions of the sample population, we can use

the Markov Chain model to estimate how the algorithm will perform.

Chapter 4 presents an overview of theM2ICAL method, which gives the steps in-

volved in deriving a Markov Chain representation of an imperfect comparison algorithm.

In Chapter 5, we show how the derivedM2ICAL model can be used to discover several

useful properties of the algorithm. This part of the thesis concludes in Chapter 6 with an

example of theM2ICAL method at work on the case of the Simple Comparison Search

Algorithm on the game of Modulo Nim.

Chapter 4
Method Overview

The task of modeling an algorithm as a Markov Chain begins with dividing it into dis-

tinct states, where the set of all states encompasses the setof all possible solutions to the

problem. For example, a simple way to do so is to have a number of states equal to the

number of possible solutions to the problem. However, in ourresearch, we are primar-

ily concerned with the performance of the algorithm in termsof the quality of the final

solution as measured by the objective functionF . Therefore, each state corresponds to

a unique measure of quality of solution, which we call aclass; how this is done will be

detailed in the relevant sections of this thesis. We place a directed edge from statei to

statej if it is possible to move fromi to j in one iteration of the algorithm; the edge

(i, j) is assigned a weight equal to the probability of the transition.

Assuming that we are able to divide the algorithm into a finitenumber of states, the

main difficulty in modeling it lies in determining the weights for each edge. To do so,

we perform a process that is divided into 4 phases:

1. Populate the classes of the Markov Chain.

2. Generate thewin probability matrixW .

3. Generate theneighbourhood distributionλi for each classi.

30

4.1 Estimating Player Strength 31

4. Calculate the transition matrixP usingW andλ.

To derive the Markov Chain model, the main technique is to useMonte Carlo sim-

ulations to estimate the various values involved. Hence, wehave named our technique

Monte CarloMarkov Chain forImperfectComparisonAL gorithms, orM2ICAL for

short. Similarly, the Markov Chain models produced using this method are called

M2ICAL models.

In this chapter, we explain how theM2ICAL method can be used to estimate the

values of the transition matrix for the Markov Chain model ofan algorithm that searches

for strong game-playing programs. However, it should be reasonably simple to adapt our

approach to imperfect comparison problems other than the game-playing problem.

4.1 Estimating Player Strength

Evaluating the strength of the generated players is a major difficulty in games research.

A layman’s notion of a player’s strength in an intellectual game corresponds to its ability

to beat other players. When analyzing a trivial or small game, it may be possible to find

a player’s strength by fully enumerating all players, but this is impossible for practical

games since the number of possible players in such games is astronomically large.

In this research, we make use of Monte Carlo simulations to estimate the strength

of a player over the space of all possible players. LetN denote the number of states

in the Markov Chain. For a target playerPLi, we uniformly randomly generateMopp

opponentsPLij, 1 ≤ j ≤ Mopp. PlayerPLi then plays a match ofg games against

each of these opponents. To divide all players intoN unique sets of players of similar

strength, we group them byestimated player strength ofPLi, denoted byF ′(PLi):

F ′(PLi) = min

(

N,

⌊

Mopp
∑

j=1

(1PLi≻PLij
+ 1PLij≺PLi

)/(g ·Mopp/N)

⌋

+ 1

)

(4.1)

4.1 Estimating Player Strength 32

This equation simply calculates the proportion of games wonby the player and trans-

lates this value into the appropriate class. Suppose we wishto produce a Markov Chain

with N = 100 states. Hence all players are divided into 100 sets corresponding to

100 states in the Markov Chain, whereby the members of each set have a similar esti-

mated strength. LetF (i) be the quality measure of statei. Therefore, the state space

I = {i|∃PL∈S, F ′(PL) = F (i)}. If Mopp is set to 1000, then all players that win be-

tween 0 and 9 games are in state 1, those that win between 10 and19 games are in state

2, and so on.

Conceptually, the space of all possible players is divided into N classes where all

players with the same estimated player strength belong to the same class. We use the

termclassto denote the set of players of a given player strength, and the termstatein

the usual way to denote a state in a Markov Chain. Since there is a one-to-one corre-

spondence between classes and states in our formulation, the two terms are often used

interchangeably throughout the rest of this dissertation.

Using this technique, we can find the estimated strength of a player by playing it

againstMopp randomly generated opponents. If the random generation of opponents is

assumed to takeO(1) time, then the evaluation of each player takesO(Mopp) time. It

turns out that the process of evaluating players takes up thebulk of the computation time

for theM2ICAL method.

An intrinsic assumption of theM2ICAL method is that all players in the same class

are identical in every way. This assumption is only necessarily true if the number of

classesN is equal to the number of all possible players (i.e., each class consists of only

one player), which is an infeasibly large number in all practical applications. However,

the M2ICAL method is still able to produce a reasonable analysis of algorithm perfor-

mance despite this simplifying assumption. Furthermore, the effect of this assumption

can be reduced by increasing the number of classesN at the expense of added compu-

tation time; we discuss the implications of this in Section 12.1.

4.2 Populating the Classes 33

4.2 Populating the Classes

In the first phase, the task is to populate the classes of the Markov Chain (which represent

different strength levels) with as many players as possible, with the given time and space

constraints. Ideally, we wish to have at least one representative from each class. The aim

of this phase is to find a representative subset of the sample space that the algorithm will

be searching, which will form the initial basis for the remaining steps in our technique.

Many algorithms that attempt to find strong game-playing programs begin with a

randomly-generated player. For instance, the initial player in an artificial neural net-

work representation is often a network with its weights and biases uniformly randomly

determined within a range of values (as is the case for our first set of experiments on the

HC-Gammon backgammon program - see Section 8.2). From this initial player, other

players are generated in some manner, e.g., by using a mutation function that changes a

given player’s values slightly. For the rest of this thesis,we will refer to such functions

by the generic term ofneighbourhood function.

In order to get a representative subset of the algorithm’s neighbourhood, we populate

the classes in two separate steps. In the first step, we randomly generate a number of

players to provide a starting population for the model; thissimulates the running of

the algorithm several times using a randomly chosen initialplayer. In the second step,

we make use of the algorithm’s neighbourhood function for each of the classes in turn

to generate more players in an attempt to fill up the remainingclasses; this generates

players that will be produced over the course of the target algorithm for inclusion into

the sample population.

We define thesizeof a statei as follows:

Definition 5 (State Size)Let S̄ be a sample population of players,S̄ ⊆ S. Thesize of

i, γi is the number of playersPL ∈ S whereF ′(PL) = F (i). Thecumulative size ati,

Γi is the value of the cumulative function ofγ at i, i.e.,

4.2 Populating the Classes 34

Γi =
i
∑

j=1

γj (4.2)

By convention, we defineγj = 0 whenj ≤ 0 or j > N . Note thatγj = Γj − Γj−1.

Also, the total number of distinct players in the problem isΓN .

Let N be the number of classes in the Markov Chain. Due to memory constraints,

we set amaximum class sizevalue ofγ̂ , so that we only retain a maximum ofγ̂ players

per class. We begin by generatingMsample players using the method employed by the

target algorithm to select the initial player. For each player, we evaluate its strength by

playing it againstMopp uniformly randomly generated opponents. We randomly retain

up toγ̂ players from each class generated this way and discard the rest.

After the initialMsample players have been generated, we consider each class in turn.

For each playerPL in an unchecked classi with maximal sizeγi, we generate another

playerPL′ using the algorithm’s neighbourhood function and evaluateits strength. If

PL′ belongs to a class with fewer than̂γ players, then it is retained; otherwise it is

retained with a probability of γ̂
γ̂+1

, replacing a random existing player in that class (i.e.,

all players from the same class have an equal probability of being retained). We repeat

this process untilMpop new players have been generated. If at least one of theMpop

players produced belongs to a class that initially had fewerthan γ̂ players, then we

generate a furtherMpop players from the same class, and repeat this process until no

such players are produced out of the set ofMpop players. The pseudocode for this phase

is given in Algorithm 4.1, which assumes that the target algorithm randomly selects its

initial player.

In the worst case, the initialMsample players all belong to the same class, and then the

subsequentMpop players generated using the neighbourhood function alwaysgenerates

only one new player in every instance. The algorithm would then takeO((Msample +

(N −1)γ̂Mpop)Mopp) time. Assuming thatMsample = Mpop = Mopp = γ̂ = O(N), then

4.2 Populating the Classes 35

Initialize ~s[1..N] = NULL;

for i = 1 to Msample do
Uniformly randomly generate playerPL;

STR = eval(PL);

if size(~s[STR]) < γ̂ then
~s[STR]← PL;

else

Randomly replace player in~s[STR] with PL with probability γ̂
γ̂+1

;

end

end

for i = 1 to N do
Choose an unmarked~s[j] s.t. size(~s[j]) ≥ size(~s[k]) for all unmarked~s[k];

COUNT = 0; FOUND = false;

while COUNT< Mpop do
Randomly select playerPL from ~s[j];

Generate neighbourhood playerPL′ from PL;

STR = eval(PL′);

if size(~s[STR]) < γ̂ then
~s[STR]← PL′;

FOUND = true;

else

Randomly replace player in~s[STR] with PL′ with probability γ̂
γ̂+1

;

end

COUNT++;

if COUNT == Mpop && FOUND == true then
COUNT = 0; FOUND = false;

end

end

Mark ~s[j];

end

Algorithm 4.1: Populating the Classes

4.3 Comparison Function Generalization 36

this process takesO(N4) in this very unlikely worst-case scenario. The storage of the

generated players requiresO(N · γ̂) space.

There are two objectives to be met when populating the classes of the Markov Chain.

First, we want the representative players to have some variety. This is why we begin

with an initial population fromMsample randomly generated players rather than starting

with only a single starting player. Second, we wish to fill up as many classes with

as many players (up tôγ) as possible. In particular, we wish to have representatives

from classes that the target algorithm is likely to generate. Hence, it is logical to make

use of the neighbourhood function employed by our target algorithm to systematically

generate players to populate the various classes. If the neighbourhood function is unable

to generate players of a particular strength, we assume thatthe algorithm itself is unlikely

to generate such players over the course of running the actual algorithm.

4.3 Comparison Function Generalization

When comparing the relative strengths of two players, the comparison functionQ em-

ployed by the target algorithm usually involves playing them against each other in a

match consisting of one or more games. Obviously, the greater the number of games

involved in the match, the more likely it is that the strongerplayer will triumph over the

weaker one. However, the tradeoff for this added accuracy inthe comparison function

is an increase in computation time required for each game to be played.

Note that as long as we know the probability that a playerPL beats another player

PL′ as first player and also as second player, we can compute the probability thatPL

beatsPL′ in at leastx out of y games (wherey1 games are as first player andy2 are as

second,y = y1 + y2). Hence, we wish to compute anN × N win probability matrix

(WPM)W , such that its elementswij provides the probability that a player from class

i beats a player from classj playing first. This is done, as usual, using Monte Carlo

simulations.

4.3 Comparison Function Generalization 37

Using the population of generated players as given in section 4.2, for all pairs of

classesi andj we randomly select a playerPL from classi and a playerPL′ from class

j and play a game between them withPL as first player andPL′ as second, noting the

result. We repeat thisMwpm times for each pair of classesi andj, and then compute the

value ofwij as1s≻s′/Mwpm. The pseudocode is given in Algorithm 4.2.

for i = 1 to N do

for j = 1 to N do
WINS = 0;

for k = 1 to Mwpm do
Randomly select a playerPL from classi;

Randomly select a playerPL′ from classj;

WINS + = 1PL≻PL′;

end

wij = WINS/Mwpm;

end

end

Algorithm 4.2: Computing the Win Probability MatrixW

This method of computation is most suitable for non-deterministic games and/or

players, where the result of different games between the same players may have different

results. For deterministic players on deterministic games, there is a possibility that the

random selection of opponents for a particular pair of classes may choose the same

players multiple times. However, if the selection process is truly random, then such

occurences should not affect the accuracy of the win probability matrix.

For each pair of classes,Mwpm games are played. Assuming thatMwpm = O(N),

then this algorithm takesO(N3) time.

The WPMW gives us the probabilities for winning as first player. LetW̄ be the

corresponding win probability matrix that provides the winning probabilities as second

4.4 Neighbourhood Distribution 38

player. For a win-loss game,̄wij = 1 − wji. This gives us considerable flexibility

in devising the comparison functionQ based on combinations of the results of several

games. We define a shorthand notationW
≥x(y1/y2)
ij to denote the probability that a player

PL from classi would beat a playerPL′ from classj at leastx times in a match where

PL plays as first playery1 times and as second playery2 times. For example,

W
≥3(2/2)
ij = ((1− w̄ij) · w̄ij · w2

ij) +

(w̄2
ij · wij · (1− wij)) +

(w̄2
ij · w2

ij) (4.3)

The probabilities of other results based on multiple games can be computed in a

similar manner. In this way, we avoid having to recompute ourprobability distributions

for different comparison functions. For a given comparisonfunctionQ with fixed values

for x, y1 andy2, we denote thecomparison error ofQ at statesi andj by

δij =

W
≥x(y1/y2)
ij i < j

W
≥x(y1/y2)
ji i > j

0 i = j

(4.4)

This value gives the probability that the comparison function makes an error by

selecting the weaker player (i.e., the weaker player defeats the stronger player in their

match). If i < j, then an error occurs if the player from classi beats the player from

classj; similarly, if i > j, and error occurs if the player from classj is victorious. The

comparison error is zero if both playersi andj belong to the same class.

4.4 Neighbourhood Distribution

Algorithms that attempt to produce a strong game-playing program search the domain

of all possible players starting from the initial player or population of players. The

4.5 Transition Matrix 39

set of players that the algorithm can potentially search is called the algorithm’sneigh-

bourhood. In this phase, we once again use Monte Carlo simulations to estimate the

distribution of player strengths in the neighbourhood of the algorithm. To do so, we ap-

ply the neighbourhood function employed by the algorithmMnei times for each class in

our representative population of players, and then evaluate the strengths of the resultant

players.

for i = 1 to N do

Initialize ~λi[1..N] = 0.0;

for j = 1 to Mnei do
Randomly select playerPL from ~s[i];

Generate neighbourhood playerPL′ from PL;

STR = eval(PL′);

~λi[STR]++;

end

~λi[1..N] = ~λi[1..N]/Mnei;

end

Algorithm 4.3: Finding the Neighbourhood Distributionλi

For each class,Mnei neighbourhood players are generated and evaluated. If the

generation of neighbourhood players is assumed to take O(1)time, then up to a total

of O(MneiMopp) operations are performed per class. Assuming thatMnei = Mopp =

O(N), then this part of the process runs inO(N3) time.

4.5 Transition Matrix

In the final phase, we combine the win probability matrixW with the neighbourhood

distribution functionsλi for each statei to find the transition matrix for the Markov

Chain model of this system. The neighbourhood distributionprovides the probabilities

4.5 Transition Matrix 40

that a prospective next state is chosen given the current state, while the win probability

matrix allows the calculation of the probability that this prospective next state is retained.

For many algorithms, this information is all that is necessary to derive its Markov Chain

model.

The transition matrix for several algorithms follow a discernable structure. For ex-

ample, considerstrict hill-climbing algorithms. Strict hill-climbing algorithms do not

change their current statei if the next statej is not superior. However, since the relative

quality of two solutions is determined by the imperfect comparison functionQ, there is

a chance of an error denoted byδij . Let λij be the probability that statej is chosen as

the potential next state when the current state isi. Then the transition matrix for strict

hill-climbing algorithms can be expressed as:

p11 λ12(1− δ12) λ13(1− δ13) · · · λ1j(1− δ1j) · · · λ1N(1− δ1M)

λ21δ21 p22 λ23(1− δ23) · · · λ2j(1− δ2j) · · · λ2N (1− δ2N)

λ31δ31 λ32δ32 p33 · · · λ3j(1− δ3j) · · · λ3N (1− δ3N)
...

...
...

. ..
...

...

λi1δi1 λi2δi2 λi3δi3 · · · pii · · · λiN(1− δiN)
...

...
...

...
. . .

...

λN1δN1 λN2δN2 λN3δN3 · · · λNjδNj · · · pNN

(4.5)

wherepkk = 1−
k−1
∑

j=1

(λkjδkj)−
N
∑

j=k+1

(λkj(1− δkj)) .

For algorithms of this type, the WPM and neighbourhood distribution functions are

sufficient to derive its Markov Chain model. However, depending on the details of the

algorithm, additional information may be required that mayin turn require additional

Monte Carlo simulations. For example, traditional annealing methods usually result in a

non-homogenous Markov Chain, which may require an additional distribution to reflect

the changes in the transition matrix in each iteration. We discuss this further in Section

4.5 Transition Matrix 41

13.4.

Once the transition matrix for the Markov Chain is determined, we can use existing

Markov Chain theory to discover several important properties of the algorithm in ques-

tion. For certain special cases, some properties can be computed analytically rather than

numerically. For example, Appendix B describes how the stationary distribution (which

is the probability of system being in each state after it converges) can be computed ana-

lytically when the comparison errorδij is equal for alli andj. However, in the general

case, a numerical analysis involving several matrix multiplications onP is required. The

derivation of these properties and their utility is coveredin the next chapter.

Chapter 5
Usefulness of Model

There are two basic underlying assumptions in theM2ICAL method. The first is that all

members of a particular class in the Markov Chain model have similiar neighbourhoods;

this is affected by the number of classesN in the Markov Chain (and therefore the num-

ber of players represented by each class), which we discuss further in Section 12.1. The

second assumption is that the various distributions constructed using the Monte Carlo

simulations are representative of the workings of the algorithm in question, the accuracy

of which can be improved by increasing the sample sizes involved. Although neither of

these assumptions are generally true in the strictest sense, if we accept that the resultant

model is a close enough approximation of the system that we wish to analyze, then we

can estimate several useful properties of the algorithm by analyzing these distributions,

using existing Markov Chain theory.

This chapter explains how certain interesting properties can be extracted from the

Markov Chain representation of the algorithm, which gives an approximate measure of

both its efficiency and its effectiveness. This informationcan help the practitioner to

pinpoint possible weaknesses in the algorithm, and direct him towards possible avenues

of improvement in the algorithm design.

42

5.1 Expected Player Strength 43

5.1 Expected Player Strength

The first and arguably the most important property to discover about an algorithm is its

expected solution quality aftert iterations for a given value oft. After all, one of the

aims of any algorithm must be to produce the highest quality solution possible. For the

game-playing problem, this is equivalent to theexpected player strengthof the current

player aftert iterations.

Since theN states in the Markov Chain are ordered by ascending (estimated) player

strength, the current state of the target algorithm at timet corresponds to the quality

of the solution that the algorithm has produced at that time.Hence, assuming that the

Markov Chain is an accurate representation of the target algorithm, its performance over

time can be described by its expected state (which is equivalent to its expected player

strength) after each iteration. To find the expected player strength of the algorithm, we

begin with a probability vector~v(0) of sizeN , ~v(0) = {v1, v2, · · · , vN} that contains

in each elementvi the probability that the initial player will belong to classi, i.e., the

probability that it will be of estimated strengthF (i). The values of~v(0) depends on how

the algorithm chooses its initial state, and can usually be easily determined.

Let ~v(t) be the corresponding estimated player strength probability vector of the

algorithm aftert iterations. Given the transition matrixP of our Markov Chain, we

can compute~v(t) by performing a matrix multiplication of~v(0)
T and P t times, i.e.,

~v(t)
T = ~v(0)

T ·P (t). The estimated strength of the player produced by the algorithm after

t iterations, denoted byPL(t) is then given by

E(PS(PL(t))) =
N
∑

i=1

~v(t)[i] · F (i) (5.1)

Algorithm 5.1 shows this process in pseudocode form, where the vector~v stores the

estimated player strength probabilities after every iteration.

5.2 Time to Convergence 44

Initialize~v[1..N]; EXPPS = 0;

for i = 1 to t do
~v[1..N] = ~vTP ;

end

for i = 1 to N do
EXPPS +=~v[i].F (i);

end

return EXPPS;

Algorithm 5.1: Expected player strength aftert iterations

The computation of the expected player strength aftert iterations requirest·N2 float-

ing point multiplications, which takes very little actual computation time. Therefore, it

is feasible to compute the expected player strength for all values from 1 tot in order to

observe the change in expected player strength over time. Ingeneral, once the transi-

tion matrix for the Markov Chain has been determined, the computation of the expected

solution quality using this method will be much faster than running the target algorithm

itself, and then using Monte Carlo simulations to determinethe estimated solution qual-

ity after every iteration. This is one of the main advantagesof using theM2ICAL method

to analyze imperfect comparison algorithms.

5.2 Time to Convergence

Another property that would be useful to discover is the expected number of iterations

required for the given imperfect comparison algorithm to converge to the values given

in the stationary vector to a specified degree of accuracy. Wecould then terminate the

algorithm once this number of iterations has been reached because further iterations will

not improve the expected solution quality significantly.

Existing Markov Chain theory has several concise definitions on the convergence of

5.2 Time to Convergence 45

a system, including concepts ofφ-irreducibility, Harris recurrence and geometric ergod-

icity of Markov Chains [MT93]. These various concepts describe how a system depicted

by a Markov Chain converges to a stationary distribution to varying degrees of strictness.

However, the practitioner is often less interested in the theoretical definitions of system

convergence, but is more concerned with the practical performance of the algorithm. For

instance, an algorithm whose expected solution quality always increases by infinitesimal

amounts does not by definition “converge”, but the practitioner would be interested in

knowing at what point in time does the algorithm’s increase in solution quality become

so small that further iterations of the algorithm will be of limited effect.

Hence, our notion of thetime to convergenceof an algorithm is admittedly not theo-

retically concise, but we believe that it is useful to the practitioner. Basically, we wish to

detect the point in the algorithm where all the elements in the expected player strength

vector in two successive iterations are identical up tok decimal places. To do so, we

once again employ a straightforward numerical method by first instantiating a proba-

bility vector ~v of sizeN , ~v = {v1, v2, · · · , vN}. We then perform successive vector

multiplications of~vT P , terminating when all the values of~v in two successive iterations

are equal to a degree of accuracy ofk decimal places. The number of iterations required

for this to occur is the expected number of iterations for thealgorithm to converge to the

stationary values to a degree of accuracy ofk decimal places.

The level of strictness of the convergence is determined by the accuracy valuek.

For example, whenk = 3, then Algorithm 5.2 gives the number of iterations required

for all elements in two successive iterations of the probability vector ~v to be equal to

a degree of 3 decimal places. Hence, additional iterations of the target algorithm past

this point will change probability of the current solution being in any class by no more

than 0.001%; consequently the expected solution quality should change by no more than

0.001% for each additional iteration beyond this point (andin fact, the actual change in

solution quality should be considerably less).

5.2 Time to Convergence 46

Initialize~v[1..N]; COUNT = 0; DIFF = 1;

while DIFF != 0 do
~v′[1..N] = ~vT P ;

for i = 1 to N do

DIFF = abs(~v[i].10k)− abs(~v′[i].10k);

if DIFF != 0 then
break;

end

end

if DIFF == 0 then
return COUNT;

end

~v[1..N] = ~v′[1..N];

COUNT++;

end

Algorithm 5.2: Convergence to Stationary

5.3 Variance and Standard Deviation 47

Note that not all Markov Chains have steady state convergentbehaviour. It is possi-

ble for an algorithm to exhibit periodic behaviour, and hence the Markov Chain repre-

senting it never converges to any particular state. For example, consider a game where

the best strategy defeats all other strategies except the weakest one (which loses to all

other strategies except the strongest one); a simple hill-climbing algorithm that searches

for strategies in such a game would never converge. Such cases would cause Algorithm

5.2 above to run infinitely, although this is easily rectifiedby limiting the number of

iterations. However, knowing that an algorithm never converges will also be useful to

the practitioner since he can then make an informed decisionon when to terminate the

algorithm, especially when combined with a careful examination of the expected player

strength to find the point where the player strength begins todecrease.

5.3 Variance and Standard Deviation

It is also useful to know the spread of the solutions generated by the algorithm. This

is measured by the standard deviation of the solutions, and can be calculated from the

probability vector~v after any number oft iterations. We first find the varianceσ2 of the

vector:

σ2 =

N
∑

i=1

(~v[i]− µ)2 · F (i) (5.2)

whereµ =
N
∑

i=1

~v[i] · F (i). We can then find a range of expected values given by

[µ−σ, µ+σ], whereσ is the square root of the variance, which is the standard deviation.

Assuming that the set of solutions generated by the algorithm can be approximated by a

normal distribution, then about 68% of all solutions found by the algorithm will have a

strength within this range (and about 95% will be within[µ− 2σ, µ + 2σ]).

The standard deviation and the expected solution quality ofan algorithm helps the

5.4 Summary 48

practitioner decide if re-running the algorithm is worthwhile. For example, assume that

the quality of the solution generated by one run of the algorithm is close to the predicted

expected quality. If the standard deviation is small, then it is less likely that re-running

the algorithm will produce a superior result; conversely, if the standard deviation is

large, then it may be worthwhile to re-run the algorithm in the hopes of generating a

superior solution (although the probability of generatingan inferior solution could be

just as high).

The standard deviation also helps to determine if the results of a particular run are

anomalous. This may be particularly pertinent to algorithms that generate game-playing

programs, since the current methodology is to present primarily the results obtained by

the best run. If the best run is indeed an anomaly (e.g., it is far superior to the predicted

expected solution quality even after the standard deviation is taken into account), then

the results achieved would overstate the actual ability of the algorithm.

5.4 Summary

By modeling the algorithm using theM2ICAL method, we can estimate three important

aspects of the algorithm in question. Firstly, the expectedsolution quality after any

number of iterations can be measured, which will give us an idea of the capabilities of

the algorithm when implemented on the problem. Secondly, ifthe algorithm converges,

then the number of iterations required for the system to converge to a given degree of

accuracy can be found. This provides the practitioner with an indication of the number

of iterations to run the algorithm, beyond which the expected amount of improvement

to solution quality will be limited. Thirdly, the standard deviation of the algorithm can

also be estimated, which shows the spread of the solutions. This gives a measure of the

brittleness of the solutions generated by the algorithm, and tells us whether further runs

using the same setup is likely to result in vastly stronger (or weaker) players.

Although the steps required to create this Markov Chain may seem involved and

5.4 Summary 49

complex, the underlying principle is quite simple. The purpose of theM2ICAL method

is to use Monte Carlo simulations to estimate the workings ofthe algorithm, and then to

use Markov Chain theory to predict certain aspects of the algorithm given these estima-

tions. In effect, this model is a type of trend predictor, which gives a projection of the

algorithm’s processes based on these estimations.

Chapter 6
Example: Modulo Nim

This chapter shows how theM2ICAL method can be used to examine the performance of

a simple algorithm SCSA on a simple game-playing problem called Modulo Nim (Mod-

Nim). The purpose behind performing this case study on such asimple algorithm and

game is twofold. Firstly, the simplicity of both the target algorithm and the target game

problem allows us to explain the implementation of theM2ICAL model without having

to handle possible extraneous factors that may be present inmore complex instances.

Secondly, this experiment represents a close to ideal setupfor theM2ICAL method. The

algorithm is simple enough that the neighbourhood functionis easily and precisely cap-

tured, and the short duration of each game of ModNim allows usto increase the sample

sizes of the Monte Carlo simulations, thereby increasing the accuracy of the estimations.

Therefore, this case study can serve as a “proof of concept”.

It is worth reiterating that this case study is not meant to bea realistic example

of a practical approach. We acknowledge that SCSA is not an algorithm that will be

employed in many (if any) practical applications, and also that ModNim is a trivial

strongly-solved game that elicits no more than passing interest to the intellectual games

research community. However, we believe that the results that we have produced in this

case study shows the potential of theM2ICAL method, and the accuracy of the resultant

50

6.1 Modulo Nim 51

model’s predictions is an indication of the underlying soundness of our approach.

6.1 Modulo Nim

Modulo Nim, or ModNimfor short, is a simple version of the game of Nim [BCG82]; it

is a strongly solved win/loss game that has exactly one winning move in each position.

The rules of ModNim are simple. The initial position of ModNim containsK sticks.

On a player’s turn, he can remove no fewer than 1 stick and at most M sticks. The

player who removes the last stick loses (and his opponent wins). We use the notation

ModNim(K,M) to denote the game of ModNim withK sticks in the initial position

and at mostM sticks removed per move. The winning strategy can be expressed math-

ematically as follows: to win, remove a number of sticks to leaven sticks so thatn

satisfies the equationn mod (M + 1) = 1. Note that all games of ModNim(K,M)

whereK mod (M +1) = 1 are second player wins, and all other configurations are first

player wins.

ModNim possesses several desirable traits for the purposesof this project. Firstly,

the number of all possible ModNim players is determined by the values ofK andM ,

which we can define to suit our needs. In particular,K defines the maximum length of

a game andM determines the maximum branching factor in any position. There are

exactlyK unique positions and exactly(K −M + 1)M + (M − 1)! unique players in

ModNim(K,M). For our experiments, we use the game of ModNim(100,3) which has

over1.1 × 1047 unique players1 and is a game-theoretic win for the first player. While

even this game is considered small when compared to more popular games like chess

and checkers, it is a large enough problem to show theM2ICAL model in a practical

setting. Secondly, games of ModNim(K,M) have a maximum length ofK moves and

M choices per move, so they are fast to compute. Thirdly, sinceModNim players can be

1114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 to be exact.

6.2 Simple Comparison Search 52

represented simply by a vector ofK integers in the range of[1..M], it is easy to generate

players uniformly randomly.

In our experiments, we represent a deterministic ModNim(K,M) player using a vec-

tor {m1, m2, · · · , mK} of K integers. The range of the firstM − 1 elementsmi is [1..i],

and the range of the remaining elements is[1..M]; the elementmi represents the number

of sticks that the player removes when there arei sticks left. To randomly generate a

player, we simply randomly determine the value of each element in the vector within the

presribed ranges.

6.2 Simple Comparison Search

The simplest comparison-based algorithm is one that successively improves a current

solution by uniformly randomly finding a better solution andreplacing it. We call this

theSimple Comparison Search Algorithm (SCSA), defined as follows.

Chooses(0) uniformly randomly fromS;

for t = 1 to MAXGEN do
Chooses uniformly randomly fromS;

Let s(t) = Q(s(t−1), s);

end

returns(t);

Algorithm 6.1: Simple Comparison Search Algorithm (SCSA)

SCSA begins by uniformly randomly choosing a solutions(0) from the solution space

S. In each iterationt, a solutions is uniformly randomly selected from the entire solution

space. SCSA then comparess with the solution found in the previous iteration using

the comparison functionQ; the solution favored byQ is retained and the other solution

discarded. This continues until a number of generations equal toMAXGEN is reached.

6.3 Model Construction 53

When SCSA is applied to the game-playing problem, then each solution s is in fact a

player of the gamePL. For our experiments, the comparison functionQ(PL, PL′)

plays a single game of ModNim(100,3) wherePL is the first player andPL′ is the

second player, and returns the winner. Hence, the incumbentalways plays as the first

player.

We chose to examine SCSA for this study because despite its simplicity, it serves

as the basis for more complex algorithms, and variants of SCSA have been used in

practical games research, e.g., Pollack and Blair’s hill-climbing backgammon player

[PB98]. Furthermore, the simplicity of SCSA allows us to explain the Markov Chain

model without having to handle the specifics of more complex algorithms.

6.3 Model Construction

For our ModNim experiments, the parameters chosen were set semi-arbitrarily such that

an acceptable degree of accuracy could be achieved within a reasonable amount of com-

putation time. We set the number of states in the Markov ChainN to 100. Hence, the

ModNim players will be divided into 100 different classes, where each class represents

the set of players of a particular strength. The number of randomly generated opponents

Mopp used to estimate the strength of each player was set at the value ofMopp = 1000.

Admittedly, these input parameters were not chosen based onany scientific analysis

beyond trial and error. This set of experiments using SCSA onModNim were performed

to see if our initial concept of theM2ICAL method was at all viable, and due to the

simplicity of both the algorithm and the game, we were able toset these parameters to

reasonably high values while still maintaining an acceptable computation time. In fact,

it is very likely that the parameter values used for this experiment were much higher than

was required for an accurate model. For more complex algorithms and/or problems, a

more systematic determination of appropriate input parameters may be necessary.

6.3 Model Construction 54

Since our ModNim(100,3) players can be conveniently represented using a 100-

element vector, memory limitations are not as important in this experiment. Further-

more, since the mutation function for SCSA involves simply choosing a random player,

the neighbourhood of SCSA is already captured by our initialstep of populating the

classes withMsample randomly generated players. For these reasons, we decided to sim-

ply populate the classes withMsample = 10, 000 randomly generated players and retain

all of them for the subsequent steps of the framework. In terms of Algorithm 4.1, the

method used is equivalent to setting the parameters asMsample = 10, 000, γ̂ = ∞ and

Mpop = 0.

As previously stated, this case study was our initial experiments to determine the

viability of theM2ICAL method. Given the specifications of SCSA and ModNim(100,3),

it was not necessary at the time to populate the classes in a more complex way. It was

only after we started working on analyzing a more complex algorithm (with a more

complex neighbourhood function and memory constraints) that the systematic method

of populating the classes given in Algorithm 4.1 was devised.

Since SCSA is a strict hill-climbing algorithm, we can make use of Equation (4.5)

directly to represent the Markov Chain model of the system. In our version of SCSA,

the comparison functionQ returns the winner of one game of ModNim(100,3) where

the incumbent is the first player. Therefore, the the error (δij) distribution for all pairs of

statesi andj is identical to the WPMW . Hence we can find theδij distribution via the

direct application of Algorithm 4.2, such thatδij = Wij . The number of games played

between every pair of classesMwpm was arbitrarily set to a value of 1000.

Recall from Equation (4.5) thatλij is the probability that statej is chosen as the po-

tential next state when the current state isi. For SCSA, since the challenger is uniformly

randomly generated, the probability that the challenger isfrom classj corresponds to

the proportion of players that belong to classj out of all possible players, i.e.,λij =
γj

ΓN
.

6.3 Model Construction 55

Figure 6.1: Sample state size (γi

ΓN
) distribution

Therefore, it is not necessary to employ Algorithm 4.3, which determines the neighbour-

hood distribution for each state in turn, although it will produce similar results.

To estimate theλij-distribution from our population ofMsample of ModNim(100,3)

players, we simply order the states in ascending estimated player strength, and then

count the number of players in each state. These values are then divided byMsample to

give an estimated value forγi

ΓN
. Figure 6.1 shows the sample state size distribution of

our experiment.

Because the distribution is derived from a sample of sizeMsample, it may not be able

to capture state size information if the number of players with that player strength is

small (< 1/Msample of the entire solution space). For our sample, the 10,000 random

players failed to produce any players from states 1, 99 and 100. We simply omit these

states from our model, and apply it to the remaining 97 statesinstead.

Having determined both theδij-distribution and theλij-distribution, we simply sub-

stitute these values into Equation 4.5 to produce the transition matrix that represents the

Markov Chain model of the system. This final step completes the application of the

M2ICAL method to SCSA on ModNim(100,3).

These experiments were performed on a Pentium-IV 1.6 GHz PC with 512MB

RAM. It took approximately 24 hours for the entire process.

6.4 Experimental Results 56

Figure 6.2: Model and experimental results for ModNim(100,3) using SCSA

6.4 Experimental Results

By modeling the implementation of SCSA on ModNim(100,3) as aMarkov Chain as

given in the previous chapter, we were able to discover several useful properties of the

system. Figure 6.2 gives the results averaged over the 100 runs of SCSA, along with

the expected solution quality and spread forecast by the model. The bold black lines

give the estimated player strength predicted by the model aswell as the estimated player

strength when the predicted standard deviation is added or subtracted; the grey line

gives the corresponding values for the 100 runs of SCSA. We ran the algorithm to 1000

iterations each, but only the first 200 iterations are shown here for the purpose of clarity

because the remaining iterations follow a similar trend.

The model predicts that the expected solution quality will eventually converge to a

value of 68.3551%, closely matching the average solution quality achieved by the actual

runs (which fluctuates within a range of 67% to 70%). Our modelalso shows that the

solution quality of SCSA on ModNim(100,3) has a standard deviation of±16.4793%,

and a visual inspection of the sample standard deviation of our 100 runs confirms that

this prediction is also accurate. If the strength of ModNim(100,3) players produced by

6.5 Summary 57

SCSA is normally distributed, then this indicates that different runs of SCSA on Mod-

Nim(100,3) could produce players of radically differing strengths, where about 68% of

the players produced will have strengths over a range of over32% of all player strengths.

Furthermore, using Algorithm 5.2 we find that SCSA convergesto a stationary so-

lution to a degree of accuracy of 3 decimal places in 207 iterations. This suggests that

further iterations of the algorithm beyond 207 will not improve the expected solution

quality found by SCSA by more than 0.001%. Considering the fact that several existing

papers on intellectual games perform experiments for 1000 iterations or more (albeit

with different techniques) [PB98, CKL+03], if SCSA is representative of typical algo-

rithms in this problem domain, then this small time-to-convergence value suggests that

such experiments could actually be terminated much sooner.

The simplicity of the game and algorithm allowed us to use a large sample population

(10,000 players) as well as a large number of states (100), which reduced the inherent

inaccuracy of the Monte Carlo simulations involved in the process. Furthermore, the

neighbourhood function for SCSA is uniformly random, whichis also easy to estimate

using Monte Carlo simulations. These factors contributed to the high degree of accuracy

of the resultantM2ICAL model.

6.5 Summary

Our experiments with SCSA on ModNim(100,3) primarily serves as an example of how

the M2ICAL method functions. SCSA is the simplest possible imperfect comparison

algorithm, and is unlikely to be a particularly effective algorithm for any practical prob-

lem. Similarly, ModNim is a fully solved game with a mathematically calculable opti-

mal strategy, and our chosen explicit representation of ModNim strategy using a multi-

element array is generally infeasible for practical games.Nonetheless, these experiments

show that the Markov Chain model derived using theM2ICAL method is able to provide

highly accurate predictions on the performance of SCSA on ModNim(100,3).

Part III

Case Study: HC-Gammon

58

59

So far, we have been working with the very naive SCSA on the very simple game of

ModNim. While SCSA is useful to show how the Markov Chain model works, it is

almost never used in practical applications. This is because its selection criterion is

completely random, making use of no expert knowledge other than that which is en-

compassed by the comparison function. Also, while ModNim iscertainly useful for

explaining how the model works, it is a strongly solved “toy”problem and not a practi-

cal game that is currently the target of computer games research.

In this part of the dissertation, we apply our model to the practical game of backgam-

mon. Unlike ModNim, backgammon is a game that is very much thefocus of current

research. In particular, we will model an algorithm very close to the hill-climbing ap-

proach used by Pollack and Blair [PB98], which was used to critique the effectiveness

of the temporal difference learning approach in the Master-levelTD-Gammonbackgam-

mon program [Tes95]. For convenience, we will refer to the program generated by

Pollack and Blair’s technique asHC-Gammon, even though the authors themselves left

the program nameless.

Chapter 7 introduces both the game of backgammon and the HC-Gammon experi-

ment done by Pollack and Blair, which is the target problem for theM2ICAL method in

this part of the thesis. We show how theM2ICAL method is adapted to HC-Gammon in

Chapter 8. Two sets of experiments based on Pollack and Blair’s work are performed;

the first uses a random starting player and is described in Chapter 9, while the second

uses an all-zero neural network starting player, and is described in Chapter 10. Finally,

Chapter 11 summarizes both the results and the findings obtained from both sets of ex-

periments.

Chapter 7
Introduction

7.1 Backgammon

Backgammon is believed to have originated in Mesopotamia inthe Persian empire, and

is the oldest known recorded game. It was derived from the game of Senat; gaming

boards for Senat have been found in Egypt that date back to 3000-1788 BC. In terms of

popularity, it is held in similar standing to chess, checkers and go. There is an annual

World Backgammon Championship, which was last held in MonteCarlo, Monaco in

July 2007. Backgammon is also one of the games involved in theannual Computer

Olympiad, last held in Amsterdam, The Netherlands in June 2007, which allows the

best game-playing programs in the world to compete in a single arena. The relevant

rules for backgammon are reproduced here from [Kei96] in order to fix our terminology.

Backgammon is a game for two players, played on a board consisting of twenty-four

narrow triangles calledpoints. The triangles alternate in color and are grouped into four

quadrants of six triangles each. The quadrants are referredto as a player’shome board

andouter board, and the opponent’s home board and outer board respectively. The home

and outer boards are separated from each other by a ridge downthe center of the board

called thebar.

60

7.1 Backgammon 61

Figure 7.1: Starting position for backgammon

The points are numbered for either player starting in that player’s home board. The

outermost point is the twenty-four point, which is also the opponent’s one point. Each

player has fifteen checkers of his own color. The initial arrangement of checkers is: two

on each player’s twenty-four point, five on each player’s thirteen point, three on each

player’s eight point, and five on each player’s six point. SeeFigure 7.1.

The object of the game is move all your checkers into your own home board and

then bear them off. The first player to bear off all of their checkers wins the game. To

start the game, the first player throws two dice and moves his checkers according to the

numbers showing on both dice; the players alternate turns. The roll of the dice indicates

how many points, orpips, the player has to move his checkers. The checkers are always

moved forward, to a lower-numbered point. Figure 7.2 shows the direction of movement

for the player of the white checkers; red checkers move in theopposite direction.

7.1 Backgammon 62

Figure 7.2: Direction of movement for white pieces

The following movement rules apply:

1. A checker may be moved only to anopen point, one that is not occupied by two

or more opposing checkers.

2. The numbers on the two dice constitute separate moves. Forexample, if a player

rolls 5 and 3, he may move one checker five spaces to an open point and another

checker three spaces to an open point, or he may move the one checker a total of

eight spaces to an open point, but only if the intermediate point (either three or

five spaces from the starting point) is also open. See Figure 7.3 for an example of

how a roll of 5/3 can be played from the starting position.

3. A player who rolls doubles plays the numbers shown on the dice twice. For ex-

ample, a roll of 6/6 means that the player has four sixes to use, and he may move

any combination of checkers he feels appropriate to complete this requirement.

4. A player must use both numbers of a roll if this is legally possible (or all four

7.1 Backgammon 63

Figure 7.3: Two ways that White can play a roll of 5/3

numbers of a double). When only one number can be played, the player must play

that number. If either number can be played but not both, the player must play

the larger one. When neither number can be used, the player loses his turn. In the

case of doubles, when not all four numbers can be played, the player must play as

many numbers as he can.

A point occupied by a single checker of either color is calleda blot. If an opposing

checker lands on a blot, the blot ishit and placed on thebar. Any time a player has

one or more checkers on the bar, his first obligation is toenterthose checker(s) into the

opposing home board. A checker is entered by moving it to an open point corresponding

to one of the numbers on the rolled dice.

For example, if a player rolls 4/6, he may enter a checker ontoeither the opponent’s

four point or six point, so long as the prospective point is not occupied by two or more

of the opponent’s checkers. If neither of the points is open,the player loses his turn. If a

7.1 Backgammon 64

Figure 7.4: Entering from the bar

player is able to enter some but not all of his checkers, he must enter as many as he can

and then forfeit the remainder of his turn. After the last of aplayer’s checkers has been

entered, any unused numbers on the dice must be played, by moving either the checker

that was entered or a different checker. For example in Figure 7.4, if White rolls 4/6, he

must enter the checker red’s four points since Red’s six point is not open.

Once a player has moved all of his fifteen checkers into his home board, he may

commencebearing off. A player bears off a checker by rolling a number that corre-

sponds to the point on which the checker resides, and then removing that checker from

the board. Thus, rolling a 6 permits the player to remove a checker from the six point.

If there is no checker on the point indicated by the roll, the player must make a legal

move using a checker on a higher-numbered point. If there areno checkers on higher-

numbered points, the player is permitted (and required) to remove a checker from the

highest point on which one of his checkers resides. A player is under no obligation to

bear off if he can make an otherwise legal move. Figure 7.5 show an instance where two

7.2 HC-Gammon 65

Figure 7.5: White bears off two checkers on a roll of 4/6

checkers bear off on a roll of 4/6.

A player must have all of his active checkers in his home boardin order to bear off.

If a checker is hit during the bear-off process, the player must bring that checker back

to his home board before continuing to bear off. The first player to bear off all fifteen

checkers wins the game.

7.2 HC-Gammon

In computer science, the greatest success in backgammon is undoubtedly Gerald Tesauro’s

TD-Gammonprogram [Tes95]. Using a straightforward version of Temporal Difference

learning called TD(λ) on a neural network, TD-Gammon achieved Master-level play,

which is far superior to any other backgammon program that had been created before.

The latest version TD-Gammon 3.0 defeated Grandmaster NeilKazaros in a match by

+6 points in 20 games.

What makes this feat even more remarkable is the fact that TD(λ) is an unsupervised

learning technique that learns through self-play, and the initial version of TD-Gammon

was a strong player without the use of expert knowledge. Pollack and Blair [PB98]

had the suspicion that the success of the temporal difference learning approach was not

principally due to the power of the learning technique, but was also a function of the

7.3 Experimental Setup 66

mechanics of the game of backgammon. To test this hypothesis, they implemented a

simple hill-climbing method of training a backgammon player using the same neural

network structure employed by Tesauro (which we will callHC-Gammon). Although

HC-Gammon did not perform as well as TD-Gammon, it produced sufficiently good re-

sults for the authors to conclude that even a relatively naive algorithm like hill-climbing

exhibits significant learning behaviour in backgammon. This supports their claim that

the success of TD-Gammon may not be due to the TD(λ) algorithm, but is rather a

function of backgammon itself.

In their paper, Pollack and Blair stated that they used several different experimental

setups with varying levels of success, but they only reported the results for their best

setup in detail. In this part of the thesis, we attempt to model what Pollack and Blair

did in their various HC-Gammon experiments using theM2ICAL method, and analyze

each of these setups to explain how they achieved their results. This would allow us to

evaluate the validity of some of their claims.

7.3 Experimental Setup

Each backgammon player is represented as a standard fully-connected feedforward ar-

tificial neural network with one input layer, one hidden layer and a single output node

using the sigmoid transition function. For each point on thebackgammon board, 4 nodes

represent the number of white checkers on that point. If there are 0, 1, 2 or 3 checkers

on that point, then the first 0, 1, 2 or 3 nodes are given the value of 1, and the rest of the

nodes are given the value 0. If there are three or more checkers on the point, then the

first 3 nodes are given a value of 1, and the fourth node takes the value(n− 3)/2 where

n is the number of checkers on the point.

The four nodes for white and four nodes for red at each of the 24points added up to

192 input nodes. In addition, there is one node for each side representing the number of

checkers on the bar (taking the value ofn/2 wheren is the number of checkers on the

7.3 Experimental Setup 67

Figure 7.6: Artificial Neural Network architecture for HC-Gammon

bar), and another node for each side giving the number of checkers already successfully

removed from the board (these took the valuen/15 wheren is the number of checkers

already borne off). Finally, one additional unit indicatedwhether the game was in arace

situation, i.e., all the checkers from both sides are past the opponent’s checkers, and

therefore hitting checkers is no longer possible. This gives a total of 197 input nodes.

The input nodes are fully connected to a 20-node hidden layer, which are then con-

nected to a single output node. This makes a total of 3980 weights; Figure 7.6 shows

this architecture. The value returned by the output node provides an evaluation of the

desirability of the input position. The backgammon player chooses its move in a given

current position by evaluating the resulting positions from all possible moves for the

given dice roll, and then choosing the move that leads to the position with the highest

evaluation. In effect, the players perform a one-move lookahead. The initial player had

all weights set to 0.0.

Using this neural network architecture to represent backgammon players, Pollack

and Blair implemented and tested 3 different hill-climbingalgorithms, which we call

Experiments 1 to 3. In Experiment 1, Pollack and Blair used anapproach that is similar

7.3 Experimental Setup 68

to SCSA, except that instead of uniformly randomly generating the challenger in each

iteration, the challenger is derived from the current player via amutation function, where

gaussian noise is added to the neural network weights of the current player to produce

the challenger. In their paper [PB98], the only descriptionprovided of this function is

the phrase“the noise was set so each step would have a 0.05 RMS distance (which is

the euclidean distance divided by
√

3980).” Without further clarification available, we

assume that the mutation function is as follows.

Let wi, 1 ≤ i ≤ 3980 be the weights of the current player , andw′
i be the corre-

sponding weights of the challenger derived from the currentplayer. To implement the

mutation function, for each weightwi we randomly introduce gaussian noise to the mag-

nitude ofxi, which will be normalized with a multiplierk, i.e.,w′
i = wi +kxi. The value

of k is computed as follows:

√
∑

i

(w′
i − wi)2

√
3980

= 0.05

k = 0.05 ·
√

√

√

√

3980
∑

i

x2
i

(7.1)

Since the game of backgammon uses dice rolls to determine thelegal moves in each

position, a common method of comparing two computer backgammon players is to al-

low them to play 2 games against each other, one as first playerand one as second, using

the same sequence of dice rolls (ordice streams). In Experiment 1, if the new player

(the “challenger”) defeats the original player (the “incumbent”) in 3 out of 4 games, i.e.,

two pairs of games using two different dice streams, then thechallenger is deemed to

be victorious. However, instead of replacing the incumbentdirectly with the victorious

challenger, Pollack and Blair altered the algorithm to retain most of the traits of the

incumbent while adjusting the weights towards the challenger’s using thedescendent

function:

7.4 SCSA on Backgammon 69

new incumbent= 0.95 · old incumbent+ 0.05 · challenger (7.2)

We call this descendent function a95% Inheritancefunction, since the new cham-

pion inherits 95% of the incumbent’s weights.

Experiment 2 increased the challenger’s requirements fromhaving to win 3 out of

4 games to 5 out of 6 games after 10,000 iterations, and then to7 out of 8 games after

70,000 iterations, implementing a simple form of simulatedannealing (see Section 13.4).

The values 10,000 and 70,000 were chosen after inspecting the progress of their best

player from Experiment 1. The final evolved player from Experiment 2 was the strongest

player created, which was able to win 40% of the time against areasonably strong public

domain backgammon program calledPUBEVAL. Finally, Experiment 3 implemented a

dynamic annealing schedule by increasing the challenger’svictory requirements when

over 15% of the the challengers were successful over the last1000 iterations.

7.4 SCSA on Backgammon

To gain some insight on the effect of analyzing a complex gamelike backgammon using

the M2ICAL method, we analyzed SCSA (Algorithm 6.2) on backgammon. Forthis

experiment, the comparison functionQ used by SCSA involves playing the incumbent

player and the challenger player in a 2-game match using identical dice streams with

different starting players, and the incumbent player is replaced only if the new player

beats it inbothgames. We constrain the weights and biases of the neural network to a

range of [-2.0, 2.0] to approximate the domain of all possible backgammon players, and

the challenger is generated by uniformly randomly selecting values for all 3980 weights

of the neural network within this range.

Since games of backgammon take much longer to complete than ModNim, we only

generate 1000 random players to estimate our distributions(rather than the 10,000 that

7.4 SCSA on Backgammon 70

Figure 7.7: Model and experimental results for SCSA on backgammon

we generated for ModNim), and use only 100 players playing 2 games each to evaluate

player strength (rather than 1000 for ModNim). Our 1000 random players only occupied

66 out of 100 classes, so the unrepresented 34 classes were discarded. The remainder of

the experimental setup is identical to our ModNim(100,3) experiments.

Figure 7.7 shows the average results of 50 runs of SCSA on backgammon, and the

expected solution quality and spread forecast by theM2ICAL model. Once again, the

values predicted by the model are given by the bold black lines, and the ones provided

by 50 runs of SCSA on backgammon are given by the grey lines. Although we ran the

algorithm up to 1000 iterations, only the values for the first300 iterations are provided

here for greater clarity since the remaining iterations show a similar trend.

In this instance, the model accurately predicts an expectedsolution quality of 64.531%

compared to the average value of the actual runs that fluctuated within 61% and 67%.

The standard deviation calculated by the model was±10.2510%, which was also borne

out by the sample standard deviation achieved by our 50 runs of SCSA. The standard

deviation for backgammon is significantly smaller than for ModNim; the fact that only

66 classes were represented may have a bearing on this, but since the players used in our

sample population were generated using the method employedby the algorithm itself,

7.4 SCSA on Backgammon 71

the prediction remained accurate. Hence, according to the model, SCSA on backgam-

mon produces less volatile results than for ModNim(100,3);if the strengths of backgam-

mon players follows a normal distribution, then the model shows that about 68% of all

players will fall within a range of 20.5% of all player strengths when generated using

SCSA.

Finally, Algorithm 5.2 reveals that SCSA on backgammon converges to a stationary

solution to a degree of accuracy of 3 decimal places in 272 iterations (and to 2 decimal

places in 203 iterations). Despite the added complexity of backgammon compared to

ModNim, the number of iterations required before SCSA converges is still surprisingly

low. This suggests that convergence rate is less a function of the target problem, and

more a function of the algorithm.

Backgammon remains a very popular subject for current computer science research

on games, and there is no disputing that backgammon is a much more complex game

than ModNim. These results show that theM2ICAL model also gives very accurate

predictions when analysing SCSA on backgammon with playersrepresented by artificial

neural networks. Therefore, there is evidence to show that theM2ICAL method is able

cater to complex games and data representations without losing much (if any) accuracy

in its predictive capabilities.

Chapter 8
Model Construction

Compared to our previous ModNim(100,3) experiments, HC-Gammon is significantly

more complex in both the target problem and the imperfect comparison algorithm for

analysis. Unlike ModNim, backgammon is a non-deterministic game since a player’s

possible moves are dictated by dice rolls. To cater for the effect of lucky dice rolls

on the results of games between two players, the comparison function used by Pollack

and Blair involves multiple pairs of games using identical dice streams. Furthermore,

games of backgammon take much longer to complete than ModNim, so computation

time becomes an important factor.

The HC-Gammon generation algorithm is a hill-climbing algorithm that is not strict.

Even though the algorithm does not change the incumbent player unless it loses to its

opponent in a match, the resultant player may not necessarily be stronger than the in-

cumbent because it is the offspring of the two players (and not the winning player it-

self). Therefore, we cannot separate the values of the transition matrix for this system

into neighbourhood (λij) and error (δij) components like we did for SCSA. Instead, the

transition matrix must be found in a more complex way.

This chapter describes how we can use theM2ICAL method to analyze HC-Gammon

despite the added complexity of both the problem and the algorithm.

72

8.1 Determining Input Parameters 73

8.1 Determining Input Parameters

Compared to ModNim, each game of backgammon requires significantly more time to

complete. For ModNim(K,M), each game can only last for a maximum ofK−1 moves,

but backgammon games can potentially last for 200 moves or more, which is frequently

the case early in the algorithm when the generated players are poor. Furthermore, the

branching factor of backgammon is estimated to be about 20 for each possible dice roll,

while ModNim(K,M)’s branching factor isM . Finally, it takes longer for the neural

network implementation of the backgammon players to evaluate each position than for

our ModNim implementation, which simply returns a move using what is essentially a

table look-up.

In practical terms, the added computation time for backgammon games forces us to

carefully determine the various input parameters for our Monte Carlo generation of the

Markov Chain probability distributions. While it is clear that larger sample sizes (and

therefore more sample games) will in general provide more accurate results, there is a

definite trade-off in terms of computation time. Therefore,we must set the various input

parameters in a way that minimizes computation time while still retaining an acceptable

degree of accuracy in our results.

The first major task is to decide on the number of classesN in our Markov Chain.

The more classes we use in our Markov Chain, the finer the granularity of the results

achieved, but this is at the expense of added computation time. We were able to perform

our ModNim experiments using 100 classes, but when we attempted to run the model

for backgammon using the same parameters, we found that the estimated amount of time

required to generate the values for the model might be as muchas a year. Therefore, we

decided to construct the Markov Chain using onlyN = 10 classes; while using only 10

classes certainly reduces the granularity of the results, we felt that it was sufficient for us

to observe the general properties of HC-Gammon, and still provide interesting insights

to the system.

8.1 Determining Input Parameters 74

One of the most common operations in our Markov Chain generation process in-

volves evaluating the strength of a player by playing it against Mopp uniformly ran-

domly generated players. This operation is required both while populating the classes

and when deriving the neighbourhood distribution. Therefore, the value ofMopp is vital

to the overall running time of the entire process. We eventually decided on a value of

Mopp = 100, which provides an approximately 90% confidence interval ifthe results

of a player against randomly generated opponents is normally distributed with a mean

equal to its actual strength. Further details of how this value is derived is given in Section

12.2.

The values for the remaining parameters in the model generation process were in-

fluenced by the necessity of minimizing running time, but were ultimately decided arbi-

trarily. During the population of the classes, we set the maximum class sizêγ at 20, and

started with an initial population of randomly generated players ofMsample = N · γ̂ =

200. We set the number of additional sample population players generated in each iter-

ationMpop = 100.

Whenever we wish to find a distribution of values across theN = 10 classes, it is

necessary to generate a sufficiently large number of instances in order to discover the dis-

tribution. In our experiments, we decided that 200 sample points would give an adequate

reflection of the various distributions. Therefore, to generate the winning probability

matrixW , the number of games between each pair of classes is set atMwpm = 200. We

also set the number of challengers generatedMcha to derive the challenger probability

distributionCi, and the number of descendents generatedMdes to derive the descendent

probability distributionDij to be both 200; these distributions were required to derive

the neighbourhood distribution for HC-Gammon.

With these values, we were able to use theM2ICAL method to generate the Markov

Chain representation of HC-Gammon on a Pentium-IV 1.6 GHz PCwith 512MB RAM

in about 3 weeks in total.

8.2 Populating the Classes 75

8.2 Populating the Classes

In the first phase, the task is to populate the classes of the Markov Chain (which repre-

sent different strength levels) with as many players as possible, with the given memory

space constraints and within a reasonable amount of computation time. Ideally, we

wish to have at least one representative from each class. Recall from our experiments

on backgammon using SCSA in Section 7.4 that uniformly randomly selecting 1000

backgammon players only managed to generate players from 66out of 100 classes.

This is obviously less than ideal, but in our examination of SCSA, a better method of

generating players was not available to us. However in the case of HC-Gammon we have

another tool at our disposal, namely the neighbourhood function employed by Pollack

and Blair; we can make use of this neighbourhood function to systematically generate

players in order to populate the classes.

Using Algorithm 4.1, we populated the 10 classes of our Markov Chain. We began

with Msample = 200 ANNs with the weights and biases uniformly randomly determined

from the range of [-2.0, 2.0] to approximate the domain of allpossible backgammon

players. For each class we made use of the mutation function to generate challenger

players, and if the challenger player defeats the parent, then a descendent player is gen-

erated for the purpose of populating the classes (further details on the mutation and

descendent functions are given in Section 9.1). In this way,we systematically generate

additional players from each class until no further playersfrom a class with fewer than

γ̂ = 20 players is generated afterMpop = 100 attempts. Populating the classes took

approximately 50 hours to complete.

8.3 Comparison Function Generalization

When comparing the relative strengths of two players, the HC-Gammon comparison

function plays them against each other in a match consistingof multiple sets of 2 games.

8.4 Neighbourhood Distribution 76

Each 2-game set comprises one game as first player and one gameas second player using

the same dice stream for both games. Pollack and Blair tried several different compari-

son functions based on this principle at different stages oftheir algorithms (3 wins out of

4, 5 wins out of 6, etc.). We are able to handle all of these different comparison functions

by generating the win probability matrixW as detailed in Section 4.3.

Using the population of generated players as given in Section 8.2, for all pairs of

classesi andj we randomly select a playerPL from classi and a playerPL′ from class

j and play a game between them withPL as first player andPL′ as second, noting the

result. We repeat thisMwpm = 200 times for each pair of classesi and j, and then

compute the value ofwij as1s≻s′/Mwpm, as given in Algorithm 4.2. This process was

completed in under 24 hours.

8.4 Neighbourhood Distribution

The general matrix given in Equation (4.5) applies to stricthill-climbing algorithms,

where the next state changes only if it is superior to the current state. While the HC-

Gammon method is also hill-climbing, it is not strict since the player retained for the next

state is not the winning player in the match but a separate player generated by combining

the two players. In evolutionary computing parlance, this is a type of crossover operation

that creates a descendent from two parents. Therefore, we cannot use Equation (4.5)

directly. Instead, we must discover two separate distributions and combine them in

order to find what is essentially the neighbourhood functionfor this system.

For each classi in turn, we first generate thechallenger probability distributionCi,

which gives the probability inci(j) that an incumbent playerPL in classi will create

a challengerPL′ in classj using HC-Gammon’s mutation function. This is done using

our usual Monte Carlo simulation method by creatingMcha = 200 challengers this way,

evaluating each of them, and then estimating the overall probability distribution using

this sample. We store all of the generated challengers (which are separate from our initial

8.5 Transition Matrix 77

population found in Section 4.2) in vectors~c1,~c2 · · ·~cN , such that ifeval(PL′) = STR

thenPL′ will be stored in~cSTR, including a pointer fromPL′ to its parentPL. This

part of the process is synonymous to Algorithm 4.3.

Next, for every non-empty vector~cj after the creation ofMcha challengers, we find

the descendent probability distributionDij that gives the probability indij(k) that a

descendent created from a crossover between a player from classi and classj will be

of strengthk. To do so, we once again perform a Monte Carlo simulation by randomly

selecting a parent-challenger pairPL from classi andPL′ from classj, and then create-

ing a descendent from the crossover ofPL andPL′ and evaluating it. This is repeated

Mdes = 200 times to provide the probability distribution. Note that for HC-Gammon,

the descendent probability distributionDij is essentially its neighbourhood distribution.

The pseudocode for the generation of the descendent probability distributionDij is given

in Algorithm 8.1.

For each class,Mcha challengers are generated and evaluated, which takesO(MchaMopp)

time. Then for each pair of classes,Mdes descendents are generated and evaluated,

which takesO(MdesMopp) time; in total, theN classes will requireO((N2Mdes + N ·
Mcha)Mopp) time to run. Assuming thatMdes = Mcha = Mopp = O(N), then the entire

algorithm runs inO(N4) time. Since the classes are considered in turn, only one set

of generated challengers needs to be retained at any one time. Therefore, the algorithm

requiresO(Mcha) space for the purpose of storing interim players. This was the most

time-consuming step in the generation of our Markov Chain model, requiring about 15

days to complete.

8.5 Transition Matrix

Having estimated the values for the win probability matrixW , the challenger probability

distributionCi and the descendent probability distributionDij, we can now formulate

the transition matrixP of the Markov Chain representing HC-Gammon for each of the

8.5 Transition Matrix 78

for i = 1 to N do

for j = 1 to Mcha do
Randomly select playerPL from ~s[i];

Generate challenger playerPL′ from PL;

STR = eval(PL′);

~cSTR ← PL′;

end

for j = 1 to N do

Initialize ~dij[1..N] = 0.0;

if ~cj is non-emptythen

for k = 1 to Mdes do
Randomly select playerPL′ from~cj ;

PL = PL′.parent;

Generate mutant playerPL′′ from PL andPL′;

STR = eval(PL′′);

~dij[STR]++;

end

end

for k = 1 to N do
~dij [k] = ~dij[k]/Mdes;

end

end

for j = 1 to N do
Clear~cj ;

end

end

Algorithm 8.1: Finding the Descendent Probability DistributionsDij

8.5 Transition Matrix 79

three experiments. Each valuepik in the transition matrix is the sum of the product of

three sets of values over all values ofj from 1 toN : (1) the probability that a challenger

from classj is generated from a classi incumbent, given byci(j); (2) the probability

that a descendent from classk is generated from parents of classesi andj, given by

dij(k); (3) and the relevant winning probability of a classi player over a classj player

depending on the comparison function.

For instance, if the comparison function returns the challenger only if it beats the

incumbent at least 3 out of 4 games, then

pik =
∑

j

ci(j) ·W≥3(2/2)
ji · dij(k) (8.1)

where

W
≥3(2/2)
ji = ((1− w̄ji) · w̄ji · w2

ji) +

(w̄2
ji · wji · (1− wji)) +

(w̄2
ji · w2

ji) (8.2)

In this manner, we are able to compute all the values ofpik for the transition matrix

P representing the Markov Chain model. This completes the implementation of the

M2ICAL method on HC-Gammon.

Chapter 9
Experiments A: Random Initial Player

This chapter presents our first attempts at analyzing the HC-Gammon experiments con-

ducted by Pollack and Blair. The main difference between these experiments and HC-

Gammon is our assumption that the initial player is a randomly-selected artificial neural

network, while Pollack and Blair began with a neural networkwith all weights and bi-

ases set to zero. There are two reasons for this modification.Firstly, beginning with a

single fixed player presents theM2ICAL method with certain problems that require addi-

tional changes to the general formulation (see Chapter 10 for further details). Secondly,

it was our original belief that the identity of the initial player should have minimal effect

on the overall performance of the algorithm, especially since most existing research on

unsupervised machine learning techniques on intellectualgames begin with randomly

generated players, e.g., [CF01, KW01, LM01].

In this chapter, we describe in detail how theM2ICAL method can be used to generate

a Markov Chain representation of the HC-Gammon generation algorithm that uses a

randomly generated initial player, and present the resultsproduced by the model. The

modelling of the algorithm that begins with an all-zero neural network initial player,

which was the scheme employed by Pollack and Blair for HC-Gammon, is described in

Chapter 10.

80

9.1 Exp A1: Inheritance 81

9.1 Exp A1: Inheritance

The very first algorithm attempted by Pollack and Blair was identical to SCSA, except

that it made use of the mutation function given in Equation (7.1) to generate challengers

rather than uniformly randomly selecting them; the challenger replaces the incumbent

if it wins at least 3 out of 4 games in their match (i.e., it is a strict hill-climbing al-

gorithm1). Pollack and Blair observed that this setup“...worked reasonably well. The

networks so evolved improved rapidly at first, but then sank into mediocrity” [PB98].

They believed that this effect may be due to the possibility of a much weaker challenger

defeating a stronger incumbent in their once-off match, which they quaintly termed the

“Buster Douglas Effect” (named after the 45-1 underdog heavyweight boxer who de-

feated overwhelming favourite Mike Tyson to become World Heavyweight Champion),

which is synonymous with a comparison error in our terminology. To address this possi-

bility, instead of replacing the incumbent with the challenger, they used the descendent

function given in Equation (7.2) to generate the incumbent for the next iteration.

When populating the classes using theM2ICAL method to model this experiment,

we managed to generate 20 players from classes 1 to 9 (for a total of 180 players), but

were unable to generate any players from the highest class. We therefore constructed the

Markov Chain with only 9 classes. Furthermore, by using the combination of a mutation

and a descendent function to determine the next incumbent player, this algorithm is no

longer astrict hill-climbing algorithm because the new player may not be superior to

the previous incumbent when evaluated by the comparison function. Hence, we cannot

make use of the transition matrix for strict hill-climbing algorithms given by Equation

(4.5), but must instead construct the transition matrix forthe Markov Chain in the way

explained in Section 8.4.

Figure 9.1 shows the comparison between the results predicted by our model and the

1To model this experiment, we can directly apply the generic transition matrix for strict hill-climbing

algorithms given in Equation (4.5), whereλij = Ci(j) andδij = W
≥3(2/2)
ij .

9.1 Exp A1: Inheritance 82

Figure 9.1: Model and experimental results for HC-Gammon 95% Inheritance on

backgammon

values found by actually running the algorithm 25 times to 1000 generations (only the

values for the first 300 iterations are shown here; the remaining 700 iterations follow

the same trend). As usual, the estimated player strength (and± the standard deviation)

predicted by the model are given by the bold black line, and the corresponding values

for the actual runs are given by the grey line.

A visual inspection of these results reveals that although the values predicted by

the model are not as accurate as for our previous experimentson SCSA on both Mod-

Nim(100,3) and backgammon, it still provides a reasonable estimate of the values achieved

by the algorithm. In this case, the expected player strengthfor the model converges to

an accuracy of 5 decimal places after 288 iterations, to a value of about 62.25%. This

predicted value is higher than the average of the 25 actual runs, which fluctuates be-

tween 59% and 61%. Furthermore, the standard deviation given by the model after a

large number of iterations is around 10.05%, which is a little smaller than the sample

standard deviation of the 25 runs of between 10.2% and 12.5%.

Therefore, our model slightly overestimated the expected solution quality and slightly

9.2 Exp A2: Fixed Annealing Schedule 83

underestimated the standard deviation of the algorithm. Webelieve that this slight inac-

curacy is due to the fact that we only usedN = 10 classes in our Markov Chain, and

even so the discrepancy in the expected player strength was only about 1%. The small

number of classes used in the model will also tend to underestimate the standard devia-

tion since the players are divided into only a few classes, which allows less variation in

player strengths.

It is interesting to note that the expected player strength for using the 95% Inher-

itance neighbourhood function is actually quite poor. The predicted value of 62.25%

means that the generated player is not much better than average, and in fact is infe-

rior to the player resulting from SCSA described in Section 7.4 (which has an expected

player strength of 64.531%)! This is completely contradictory to the reported result that

a player generated in this way is able to compete with thePUBEVALprogram. Although

Pollack and Blair ran this algorithm for 100,000 iterations, which is far in excess of the

288 iterations that the model states is required in order forthe expected player strength

to converge to an accuracy of 5 decimal places, our model suggests that the additional

iterations of the algorithm cannot account for such a dramatically higher playing stan-

dard.

9.2 Exp A2: Fixed Annealing Schedule

Pollack and Blair noticed in Experiment 1 that counter-intuitively, even though networks

in later generations are supposedly stronger, the number ofchallengers able to defeat the

incumbent did not decrease. They surmised that this is because the challengers derived

from the incumbent possess a similar strategy, and therefore due to the small number

of games used to determine the superior player, there is a high possibility that the chal-

lenger will emerge victorious in a match. Therefore, the second algorithm they examined

followed an “annealing schedule” such that after 10,000 generations the challenger must

win 5 out of 6 games (rather than 3 out of 4); and after 70,000 the challenger must win

9.2 Exp A2: Fixed Annealing Schedule 84

7 out of 8. The values 10,000 and 70,000 were chosen after observing the frequency of

successful challengers in their best run of Experiment 1.

The player evolved using this second algorithm was the strongest player achieved.

However, when this algorithm was re-run a further 9 times, all of the subsequent players

generated were poor. Nonetheless, the strongest conclusions drawn by Pollack and Blair

on the capabilities of temporal difference learning on the game of backgammon were

based on the capabilities of the initial strongest player generated.

We can easily customize the Markov Chain model to handle thisfixed annealing

schedule. Essentially, the Markov Chain representing thisfixed annealing schedule

makes use of three separate transition matrices. From iterations 1 to 10,000, the model

is identical to Exp A1, using the transition matrixP calculated using the comparison

functionW
≥3(2/2)
ji as given in Equation (8.1); from iterations 10,001 to 70,000, the tran-

sition matrix used is calculated usingW≥5(3/3)
ji , which we callP ′; finally, the transition

matrix P ′′ calculated usingW≥7(4/4)
ji is used for iterations 70,001 onwards. Explicitly,

the transition matricesP ′ andP ′′ are:

p′ik =
∑

j

ci(j) ·W≥5(3/3)
ji · dij(k) (9.1)

where

W
≥5(3/3)
ji = ((1− w̄ji) · w̄2

ji · w3
ji) +

(w̄3
ji · w2

ji · (1− wji)) +

(w̄3
ji · w3

ji) (9.2)

and

p′′ik =
∑

j

ci(j) ·W≥7(4/4)
ji · dij(k) (9.3)

9.2 Exp A2: Fixed Annealing Schedule 85

Figure 9.2: Model results for fixed annealing schedule HC-Gammon 95% Inheritance

on backgammon

where

W
≥7(4/4)
ji = ((1− w̄ji) · w̄3

ji · w4
ji) +

(w̄4
ji · w3

ji · (1− wji)) +

(w̄4
ji · w4

ji) (9.4)

Figure 9.2 shows the expected player strength, along with the addition and subtrac-

tion of the standard deviation, that was predicted by the model; we are unable to compare

these predictions with the average results of several actual runs of the algorithm because

using Monte Carlo simulations to evaluate the strength of the generated players up to

100,000 iterations would take too much computation time (multiple days for each run

depending on the frequency of the Monte Carlo player strength evaluations).

The model produces the expected prediction: the expected player strength is the

same as for Experiment A1 up to 10,000 iterations, which usesthe transiton matrixP . At

9.2 Exp A2: Fixed Annealing Schedule 86

this point, the algorithm switches to the best-5-out-of-6 comparison function captured by

transition matrixP ′, causing the expected player strength to increase by approximately

0.3 classes within 250 iterations before rapidly stabilizing (although the expected player

strength continues to increase at a very slow rate). At 70,000 iterations, the comparison

function switches to the best-7-out-of-8 scheme, represented by the transition matrix

P ′′. The expected solution quality once again increases, by about 0.25 classes, before

showing signs of stabilization although it takes around 1000 iterations for this to happen.

If the model’s prediction is accurate, then several interesting comments can be made

about this algorithm. Firstly, recall that the expected strength of the produced player

converged to 62.25% after about 288 iterations. After 100,000 iterations, the expected

strength was about 70.01%, an increase of less that 8% (less that one player class).

Considering the amount of time required to run the algorithmup to 100,000 iterations

and the small increase in strength as a result, it can be argued that it would be preferable

to spend the computation time elsewhere. Secondly, the increase in strength does not

occur in a gradual manner, but is instead “stepped” at the points where the comparison

functions anneal, i.e., at iterations 10,000 and 70,000. Since the model predicts that the

expected strength starts to converge after about 288 iterations (and 853 iterations after

the first change change in the comparison function), perhapsit would be more efficient to

set the annealing points closer to these values. Thirdly, the standard deviation predicted

by the model remains roughly around 10% to 12% throughout. This suggests that it

might be wiser to run the algorithm multiple times for fewer iterations rather than to run

it a few times for a seemingly excessive 100,000 iterations.

However, the model does not tell the whole story. In particular, the model does

not take into account the computation time required to perform the stricter comparison

functions since the results are given in terms of iterations. Therefore, although the re-

sults suggest that we could continuously increase the annealing by using ever stricter

comparison functions (e.g., best-9-out-of-10 and so on), this would eventually become

9.3 Exp A3: Dynamic Annealing Schedule 87

infeasible due to the added computation time required to play the increased number of

games. Nonetheless, the model does show that Pollack and Blair’s arbitrarily determined

value of 100,000 iterations for the experiment seems severely excessive.

9.3 Exp A3: Dynamic Annealing Schedule

When the algorithm using the fixed annealing schedule at 10,000 and 70,000 generations

was re-run a further 9 times, all of the subsequent players generated were poor. The

authors discovered that the annealing schedule that was chosen based on observing the

traits of the first run did not transfer well to the other runs,which had different challenger

success frequencies. Therefore, they implemented a third algorithm, which increased

the number of games required for the challenger to win when the challenger success rate

exceeded 15% over the last 1000 generations. This algorithmwas run 10 times, and

“all ten players evolved under this regime were competitive” [PB98], although none

of them were superior to the one generated by the hand-tuned player in the first run of

Experiment 2.

The Markov Chain model for this dynamic annealing schedule makes use of the

same three transition matricesP , P ′ andP ′′ as in Exp A2, but in a more complex way.

From iterations 1 to 1000, the model is identical to the modelin Exp A1, which is

represented by the transition matrixP . Beyond iteration 1000, the transition matrix at

iterationt for the Markov Chain model,P(t), is a composite ofP , P ′ andP ′′, weighted

by the probability that the algorithm is using the 5-out-of-6 or the 7-out-of-8 comparison

function.

Let κ be the number of challengers that must replace the incumbentin the lastΛ

iterations before the next, more stringent, comparison function is employed; in this case,

κ = 150 andΛ = 1000. Let α(t), α′
(t) andα′′

(t) be the probability that the algorithm is

employing at iterationt the comparison function represented by the transition matrices

P , P ′ andP ′′ respectively. We know that when1 ≤ t ≤ Λ, α(t) = 1.0 while α′
(t) and

9.3 Exp A3: Dynamic Annealing Schedule 88

α′′
(t) are both equal to zero. Similarly, between iterationsΛ + 1 and2Λ, α(t) andα′

(t)

are non-zero and sum up to 1, whileα′′
(t) remains at zero, and all three values should be

non-zero after iteration2Λ. Furthermore,α(t) = α′
(t) = α′′

(t) = 0 whent ≤ 0.

Let a(t) be the probability that the challenger wins in iterationt. To calculate this

value, we require the probabilities that the incumbent player is in each classi, which

is given by the probability distribution vector for the previous iterationv(t−1)[i]. Then,

knowing the probability that the incumbent produces a challenger from classj, which

is given by the mutant or challeger functionci(j), we can find the probability that the

challenger wins using the appropriate winning probabilityWji (given in Equations (8.2),

(9.2) and (9.4)) by summing these values over all combinations ofi andj.

a(t) = α(t−1) ·
(

N
∑

i=1

N
∑

j=1

v(t−1)[i] · ci(j) ·W≥3(2/2)
ji

)

+

α′
(t−1) ·

(

N
∑

i=1

N
∑

j=1

v(t−1)[i] · ci(j) ·W≥5(3/3)
ji

)

+

α′′
(t−1) ·

(

N
∑

i=1

N
∑

j=1

v(t−1)[i] · ci(j) ·W≥7(4/4)
ji

)

=
N
∑

i=1

N
∑

j=1

v(t−1)[i] · ci(j) ·

(α(t) ·W≥3(2/2)
ji + α′

(t) ·W
≥5(3/3)
ji + α′′

(t) ·W
≥7(4/4)
ji) (9.5)

Note thata(t) = 0 whent ≤ 0.

Let b
k/l
(t) be the probability that exactlyk challengers were victorious between itera-

tions t − l + 1 andt inclusive, i.e., in the lastl iterations. For convenience, we define

b
k/l
(t) = 0 when t ≤ 1. Obviously, if k > l then b

k/l
(t) = 0. Furthermore, ifl > t

thenb
k/l
(t) = b

k/t
(t) . Therefore, we can assume without loss of generality thatl ≤ t in the

following construction.

Observe thatb0/1
(t) = 1− a(t), since the probability that no challengers win in the first

iteration out of the last 1 iteration is the probability thatthe challenger did not win in

9.3 Exp A3: Dynamic Annealing Schedule 89

that iteration. By the same token,b
1/1
(t) = a(t).

For t− l +1 < s ≤ t, we find that the probability of exactlyk victorious challengers

in iterationt is the probability that there werek − 1 victorious challengers in the last

l − 1 iterations and the challenger is victorious in iterationt, plus the probability that

there werek victorious challengers in the lastl − 1 iterations and the challenger fails to

defeat the incumbent in iterationt. Hence,

b
k/l
(s) = b

k−1/l−1
(s−1) · (1− a(s)) + b

k/l−1
(s−1) · a(s) (9.6)

for t− l+1 < s ≤ t. In this way, we can recursively expressb
k/l
(t) in terms ofb values

for iteration(t− 1) anda(t).

This suggests a method of findingbk/l
(t) algorithmically, assuming that the values for

a(s), t − l + 1 ≤ s ≤ t are known. To do so, in each iteration we first compute the

values ofb0/1
(t−l+1) andb

1/1
(t−l+1). These values allow us to computeb

0/2
(t−l+2), b

1/2
(t−l+2) and

b
2/2
(t−l+2), which in turn gives us sufficient information to compute therelevantb values

for iteration(t− l + 3), and so on, until we reach iterationt, where all values fromb0/l
(t)

to b
k/l
(t) is computed. Note that fort − l + k ≤ s ≤ t, we are only required to compute

the values ofb0/l
(s) to b

k/l
(s) inclusive. By substituting the values ofκ andΛ into k and l

respectively into the above formulation, we can find the values ofb0/Λ
(t) to b

κ/Λ
(t) inclusive.

Let β
k/l
(t) be the probability thatat leastk challengers were victorious in the lastl

iterations at iterationt. We can easily compute this value usingb values as follows:

β
k/l
(t) =

l
∑

i=k

b
i/l
(t) (9.7)

= 1−
k−1
∑

i=0

b
i/l
(t) (9.8)

We can now compute the values ofα(t), α′
(t) andα′′

(t):

9.3 Exp A3: Dynamic Annealing Schedule 90

α(t) =

0 t ≤ 0

1 0 < t < l

α(t−1) − α(t−1) · βκ/Λ
(t) t ≥ l

(9.9)

α′
(t) =

0 t < l

1− α(t) 0 < t < l

α′
(t−1) + α(t−1) · βκ/Λ

(t) − α′
(t−1) · β

κ/Λ
(t) t ≥ l

(9.10)

α′′
(t) =

0 t < 2l

1− α(t) − α′
(t)) 0 < t < l

(9.11)

(9.12)

Obviously, this formulation can be generalized to the caseswhen the number of pos-

sible annealing steps is greater than 3. Once theα values are computed for a particular

iterationt, then the transition matrix for that iterationP(t) is simply:

P(t) = (α(t) · P) + (α′
(t) · P ′) + (α′′

(t) · P ′′) (9.13)

The algorithm for numerically computing the transition matrix for each iterationt

first computes the value ofa(t), which is a function ofα(t−1), α′
(t−1) andα′′

(t−1). It then

computes the values ofb0/Λ
(t) to b

κ/Λ
(t) , using the stored values ofa(t−l+1) to a(t). This

enables the determination ofβ(t), which in turn provides sufficient information for the

computation ofα(t), α′
(t) andα′′

(t). Since we know thatα(1) = 1.0 andα′
(1) = α′′

(1) = 0.0,

we are able to computeP(t) for every iterationt. The pseudocode for this algorithm is

given in Algorithm 9.1.

Unfortunately, the algorithm performance predicted by themodel is entirely different

from the behaviour reported by Pollack and Blair. Accordingto the model, the proba-

bility that annealing occurs at iteration 1000, given byα′
(1000), is close to 1.0, i.e., it is

almost certain that at least 150 out of the first 1000 challengers would be victorious. In

9.3 Exp A3: Dynamic Annealing Schedule 91

Initialiseα = 1.0, α′ = 0.0, α′′ = 0.0;

Initialize κ = 150, Λ = 1000;

for t = 1 to MAX ITERATIONSdo
Computea using Equation (9.5);

for l = 1 to min(t, Λ) do

for k = min(l, κ) downto 0 do

Computebk corresponding tobk/l
(t−Λ+l) using Equation (9.6);

end

end

Computeβκ/Λ
(t) using Equation (9.7);

Computeα, α′ andα′′ using Equation (9.9);

ComputeP(t) using Equation (9.13);

end

Algorithm 9.1: Finding the transition matrixP(t)

contrast, the probability that a second annealing occurs, given byα′′
(t), remains close to

0.0 throughout that 100,000 iterations of the model. This produces the results shown in

Figure 9.3, where a sharp increase in player strength is observed up to iteration 1100

or so, whereupon the increase in strength becomes very smallover the remainder of the

algorithm. Indeed, actual runs of the algorithm bears out this prediction; all 25 runs of

the algorithm switched to the 5-out-of-6 comparison function at iteration 1000 and never

employs the 7-out-of-8 comparison function.

The high value ofα′
(1000) is easily explained. Early in the algorithm, the randomly

chosen initial player is not a particularly strong backgammon player. As a result, there

is a high probability that it would produce a descendent thatcan beat it in a 3-out-of-4

match. In fact, if the incumbent and the challenger are of similar strength, where the

probability of one beating the other in any given game is 50%,then the probability of

the challenger beating the incumbent 3 out of 4 games is 5/16 =31.25%, more than twice

9.3 Exp A3: Dynamic Annealing Schedule 92

Figure 9.3: Model results for dynamic annealing schedule HC-Gammon 95% Inheri-

tance on backgammon

the required probability of 15% for a annealing to occur. Thelow value ofα′′
(t) can also

be explained in this manner: if the incumbent and the challenger are of similar strength,

the probability that the challenger is victorious in at least 5 out of 6 games is 7/64≈
10.9%, significantly lower than the required 15% probability. Of course, this analysis

is not exact since the descendent produced may be of greater or lesser strength than the

incumbent, but it illustrates the probabilities involved in this process.

Although it was not explicitly stated by the authors, it can be surmised that this be-

haviour was not observed in HC-Gammon. Certainly, we can assume that when the

authors implemented this dynamic annealing scheme, the 7-out-of-8 comparison func-

tion was employed in at least some of the runs of their algorithm. Furthermore, none

of the players generated using any of our configurations wereable to defeatPUBEVAL

over 10% of the time. It is apparent that there is some elementin the experimental setup

of HC-Gammon that has not been implemented in the same way in our experiments.

Chapter 10
Experiments B: All-zero Initial Player

10.1 Single Initial Player

The experimental results given in the previous chapter represented the expected perfor-

mance of the HC-Gammon algorithm when the initial player is aneural network with

randomly determined neuron and synapse weights. Both the results predicted by the

M2ICAL model and the values achieved by actual runs of the algorithmwere rather poor,

and the generated players were significantly weaker than reported by Pollack and Blair.

Furthermore, we did not encounter the counterintuitive phenomenon of an increase in

challenger success when the player strength increases as reported by Pollack and Blair.

The most likely factor causing these disparities in the results is the fact that while we

used a randomly generated neural network as our initial player, Pollack and Blair used

as the initial player a neural network with all its initial neuron and synapse weights set

to zero.

When such anall-zero neural network(AZNN) is used to evaluate backgammon

positions, it would return an identical value for all positions (namely zero). The move

chosen by a player using the AZNN as its evaluation function therefore depends on how

the implementation of the player chooses between positionsof equal value; this was not

93

10.1 Single Initial Player 94

discussed by Pollack and Blair in their paper. In our experiments, we order the moves

in descending order of the origin point for the first die, and then the second die. e.g., on

a roll of 4/1 by White, we first consider if it is legal to move a checker from point 24 to

20, then another checker from 24 to 23; then we consider moving from point 24 to 20

followed by 23 to 22, and so on. The ordering of the moves is similar for Red, except

that it is in ascending order. Hence, an AZNN player will playthe first legal move found

in this manner.

While we do not know if Pollack and Blair implemented their move ordering func-

tion in the same way, we found that the estimated player strength of our AZNN player

is between 7 and 8 (out of 10 classes). This is significantly higher than the average

estimated player strength of randomly generated neural network players, which was be-

tween 5 and 6. It transpired that using the AZNN player as the starting point for the

algorithm accounts for at least some of the disparity in the strength of the player gen-

erated by our experiments and HC-Gammon, since the AZNN player is generally of a

superior strength than a randomly generated neural networkplayer.

This presented a problem for our approach. By using Monte Carlo simulations to es-

timate the various performance aspects of an algorithm, theMarkov Chain model is able

to provide a prediction on the performance of the algorithm in theaverage case. How-

ever, by starting the experiment using a single fixed initialplayer (the AZNN player), the

algorithm always begins its search in a very local neighbourhood. One straightforward

way to implement our approach is to populate the classes using an initial population of

Msample = 1, namely the AZNN player. Figure 10.1 shows the comparison between

the average results achieved by 25 runs of HC-Gammon using the AZNN player as the

initial solution, and the predictions given by the Markov Chain model implemented in

this way.

A visual inspection of the graph shows that the Markov Chain model provides a very

poor prediction of the algorithm’s performance. The expected player strength predicted

10.1 Single Initial Player 95

Figure 10.1: Model and experimental results for HC-Gammon using the AZNN initial

player

by the model begins at a value between 7 and 8, which corresponds to the estimated

strength of the AZNN player, then falls to just above 7 beforeincreasing again to a

consistent value just below 7.5. In contrast, the results achieved by the 25 actual runs of

HC-Gammon also first experiences a drop in average player strength (to values between

6.5 and 7) for about 100 iterations; then the results improveuntil around iteration 400

when the average player strength fluctuates between 8.5 and 9.

Although the model was able to capture the algorithm’s initial drop in player strength,

its prediction drastically underestimates the performance of the algorithm in the long

term. This is not an unexpected result: by populating the classes using players that stem

from the single player (i.e., the AZNN player), the representative sample of players

upon which the Markov Chain model is based is composed largely of players from the

immediate neighbourhood of a single initial player. Therefore, the probability distribu-

tions derived by theM2ICAL method from this population will reflect the properties of

the immediate neighbourhood of the AZNN player. As the actual runs of HC-Gammon

showed, the algorithm at the neighbourhood of the AZNN player first experiences a

10.2 Exp B1: Inheritance 96

drop in player strength before rising again (when the algorithm moves away from the

immediate neighbourhood of the AZNN player). However, since a large proportion of

the players in the sample belongs to the local neighbourhoodof the AZNN player, the

M2ICAL model can only predict the initial fall in player strength, but not the subsequent

rise.

10.2 Exp B1: Inheritance

One way to address this issue is to populate the classes with players that are sufficiently

far removed from the initial player so that the effect of a particular local neighbourhood

is alleviated. To do so, we performMsample = 200 runs of the HC-Gammon algorithm

using the AZNN player as the initial player, advancing each run one iteration at a time in

parallel until at least 50% of the runs have experienced at least 10 replacements, i.e., the

challenger has defeated the incumbent at least 10 times. In our experiment, this event

occurred after 47 iterations of the algorithm. At this point, we use the current players

of the 200 runs as the initial sample for populating the classes. We call this process of

running the algorithm until a sufficient number of replacements has occurredintroducing

a time-lag. Interestingly, we were able to populate all 10 classes withγ̂ = 20 players

for a full sample population of 200 players using this initial sample.

Figure 10.2 shows the predictions given by the time-lagM2ICAL model, compared

to the same 25 runs of HC-Gammon; the values for the model begin at iteration 48. With

this modification, the model is able to provide a much more accurate prediction of the

expected player strength of HC-Gammon. It predicts that theexpected player strength of

HC-Gammon will rise steadily from 67.80% at iteration 48 before converging to a value

of 86.99%, to an accuracy of 5 decimal places, after approximately 1050 iterations.

This is reasonably close to the results obtained from the average of 25 runs of HC-

Gammon, which fluctuates between 85.5% and 90.5%. However, the model predicts

that the standard deviation of the player strength will be about 1.8 classes, overestimating

10.2 Exp B1: Inheritance 97

Figure 10.2: Time-Lag Model and experimental results for HC-Gammon using the

AZNN initial player

the standard deviation of the values obtained from the 25 runs of HC-Gammon, which

fluctuate between 0.95 and 1.25 classes. Nonetheless, the values obtained from the

actual runs fall well within the range of values predicted bythe model.

Several interesting observations can be made. Firstly, both the model’s prediction

and the average results of the actual runs confirm that the players generated by beginning

with the AZNN player as the initial player are much stronger than if the initial player

was randomly generated. In fact, the strength of the player is expected to be almost

in the top 87% of all possible players. Secondly, since the highest (10th) class falls

within one standard deviation of the expected player strength, then we can expect that

about 13.6% of all players produced using this algorithm will be in the top 10% of all

possible players if the strength of the players is normally distributed. Note however

that since our model contains only 10 classes, we can only predict the expected strength

of the generated players to within a 10% range, so this experiment does not show that

the algorithm will be able to generate players that can beat very strong players like

10.3 Exp B2: Fixed Annealing Schedule 98

Figure 10.3: Time-Lag Model for fixed annealing schedule HC-Gammon using the

AZNN initial player

PUBEVALor TD-Gammon, who are probably in the top 1% or better of all possible

players.

10.3 Exp B2: Fixed Annealing Schedule

When the annealing schedule is fixed such that the challengeris required to beat the in-

cumbent in 5 out of 6 matches after iteration 10,000 and 7 out of 8 matches after iteration

70,000, the time-lagM2ICAL model prediction of its expected player strength is given in

Figure 10.3. As expected, the results are similar to the corresponding experiment with

a randomly chosen initial player, with distinct “steps” in the expected player strengths

after the annealing points (see Section 9.2). Although the expected player strength of

the algorithm as predicted by the model changes throughout,it converged to a degree

of accuracy of 5 decimal places at iteration 1,050, it also converged to 5 decimal places

2,302 iterations after the 5-out-of-6 comparison functionis used.

10.4 Exp B3: Dynamic Annealing Schedule 99

The most startling aspect of this model is the fact that afterboth the first and second

annealing point, the expected player strength reaches a local maximum value and then

starts to decline. This occured at about iteration 12,170 when the 5-out-of-6 comparison

function was used (at a player strength of 93.30%); the algorithm reached its highest

expected playing strength of approximately 94.76% of all possible players after about

74,900 iterations when 7-out-of-8 comparison function wasin effect. Beyond this point,

the expected player strength decreases, until it reached a value of 93.29% at iteration

100,000.

Obviously, this model is not completely accurate, and we cannot claim that further

iterations of the algorithm beyond a certain optimal point will definitely result in re-

duced playing strength based on this experiment alone. Thisobservation may be due to

the inherent inaccuracies involved in estimating distributions using Monte Carlo simu-

lations, combined with the small number of classes we used inthis model. However,

this model does highlight the fact that such a danger is present, and it is possible that not

only is running an algorithm for extremely large numbers of iterations not significantly

beneficial to the generated program’s performance, it couldbe detrimental to it. Such

a phenomenon occurs when the probability of generating a superior descendent is off-

set by the probability that an inferior descendent can defeat (and therefore replace) its

superior parent.

10.4 Exp B3: Dynamic Annealing Schedule

Even though the time-lag model begins at iteration 48, for simplicity we assume that the

sample players that we obtained at this point were from iteration 0, and then perform

the same procedure as given in Experiment A3 to generate the Markov Chain model for

this algorithm. Surprisingly, we find that the probability of 15% of the last 1000 chal-

lengers defeating the incumbent 3-out-of-4,α′, is close to zero throughout the algorithm

(needless to say,α′′ is even smaller). These results are given in Figure 10.4, which is in

10.4 Exp B3: Dynamic Annealing Schedule 100

Figure 10.4: Time-Lag Model for dynamic annealing scheduleHC-Gammon using the

AZNN initial player

effect almost exactly the same as the results for ExperimentA1 (Figure 10.2), extended

to 100,000 iterations.

Experiments using actual runs of the algorithm bear out these findings: none of

the actual runs using the AZNN as the initial player ever managed to achieve the 15%

challenger success rate to elicit an increase in the comparison function requirements.

Once again, our experiments contradict the results reported by Pollack and Blair, who

explicitly stated that the rate of challenger success increased as the number of iterations

of their algorithm increased. Furthermore, none of the players generated using any of

the configurations detailed in this chapter were able to defeat PUBEVALover 15% of

the time. We are currently unable to definitively explain thediscrepancies in our results,

although there are two areas where our emulation of the HC-Gammon algorithm is most

likely to be different from the original HC-Gammon implementation. The first is in

our interpretation of their mutation function, which represents our best guess given the

description provided by the authors; the second is the move ordering function for our

10.4 Exp B3: Dynamic Annealing Schedule 101

backgammon implementation, which was not mentioned by the authors at all.

Chapter 11
Summary

This part of the thesis described two sets of experiments, both of which were meant to

emulate the algorithm used by Pollack and Blair in their generation of the HC-Gammon

backgammon player. In this section, we summarize our findings from these experiments,

and comment on how they affect the conclusions drawn by Pollack and Blair in their

paper.

11.1 Usefulness of model

Although we were unable to reproduce HC-Gammon’s results due to our inability to

duplicate their experimental setup precisely, we can use the algorithm that wehaveim-

plemented as an example of how theM2ICAL method can be useful for the evaluation

and refinement of algorithms. We have shown that the expectedplayer strength of the

algorithm starting from the AZNN as the initial player should be in the 90th percentile

of all possible players; while this seems impressive, it is likely that the set of “interest-

ing” backgammon players (i.e., players that are able to playbackgammon with some

measure of “intelligence”) could belong to the top 99th percentile, 99.9th percentile or

even higher. In any case, the standard deviation of the results given by the model shows

102

11.1 Usefulness of model 103

Figure 11.1: Time-Lag Model for annealing at 1050 and 3307 iterations using the AZNN

initial player

that this algorithm is at least theoretically capable of producing players of this level.

Unfortunately, we are unable to provide more precise results using our 10-class model.

The most obvious improvement to the algorithm is the number of iterations run. The

M2ICAL model suggests that running the algorithm to 100,000 iterations is needlessly

excessive, and in fact the annealing points, where the requirements for the challenger

to displace the incumbent are increased, should be placed closer to the points of con-

vergence. Figure 11.1 shows the comparison between the model’s prediction of the

expected player strength and the average of 25 actual runs ofa fixed annealing setup

using the AZNN initial player, where the annealing points are set at iterations 1,050 and

3,307 respectively; these are the points of convergence to 5decimal places predicted by

the model in Experiment A2. We find that the expected player strength after 5,000 iter-

ations is at 95.31%, which is higher than the 93.29% achievedafter 100,000 iterations

in the original fixed annealing setup (with annealing pointsat 10,000 and 70,000 itera-

tions). These values are once again borne out by the results obtained from the average

11.2 Comments on HC-Gammon 104

of 25 runs of the actual algorithm. Hence, we are able to produce stronger players on

average in 1/20 of the time, simply by choosing the annealingpoints more carefully.

11.2 Comments on HC-Gammon

Most of the conclusions made by Pollack and Blair on the favourable characteristics of

backgammon to self-learning and its effect on the evaluation of TD-Gammon’s temporal

difference learning approach are based on how they managed to produce a player that

could defeatPUBEVAL40% of the time using a simple hill-climbing algorithm. Even

though we were unable to reproduce their result, our experiments do cast doubt on some

of their conclusions and suppositions.

Our first set of experiments assumed that the initial player was a randomly generated

ANN. While theM2ICAL method was able to capture the workings of this algorithm,

the results obtained were much poorer than those reported byPollack and Blair. The

main difference between our experiment and the original HC-Gammon was the fact that

the authors used an all-zero neural network as their initialplayer, a difference that turns

out to be crucial to the performance of the algorithm. This presented a problem for

theM2ICAL method since Monte Carlo simulations are poor at capturing the long-term

effects of an algorithm that stems from a very localised neighbourhood. We resolved

this problem by introducing a time-lag from the start of the algorithm before commenc-

ing our Monte Carlo simulations, which allowed the algorithm to move sufficiently far

enough away from its initial local neighbourhood to generate an effective estimation.

This algorithm produced significantly stronger players than the first set of experiments,

although it was still not as strong as the ones reported by Pollack and Blair. We can only

assume that the discrepancy in player strength is due to somedifferences in our experi-

mental setups, possibly in the mutation function and/or themove ordering function.

The drastic difference between the strengths of the playersgenerated using a ran-

domly generated player rather than the AZNN as the initial player is somewhat startling.

11.3 Conclusions 105

This seemingly minor change resulted players that were almost 3 classes (or 30% of

all possible players) weaker. The fact that the AZNN is itself in the 80% percentile of

all players helps the algorithm to find better solutions, since the starting neighbourhood

of the algorithm is already of a reasonably high quality. Nonetheless, this fact reveals

that although Pollack and Blair managed to produce a strong player using a simple 95%

Inheritance hill-climbing algorithm, the hill-climbing approachin generalis not fully re-

sponsible for the success of the algorithm; the initial starting player is crucial, at least for

our implementation of the hill-climbing approach. In particular, this observation casts

doubt on Pollack and Blair’s hypothesis that certain qualities of backgammon“operates

against the formation of mediocre stable states”[PB98], where the algorithm is trapped

in a local optimal. If their hypothesis is correct, then the identity of the initial player

should have no long-term effect on the quality of produced players. Our models showed

that this is not the case.

11.3 Conclusions

In this part of the thesis, we have shown how a simple but non-trivial algorithm can be

modelled as a Markov Chain by using theM2ICAL method, namely the hill-climbing

approach used to create the backgammon player HC-Gammon. Even though we were

unable to duplicate the reported results, the model was ableto predict the performance

of our experimental setups reasonably well despite having only 10 classes in the Markov

Chain. In doing so, we discovered some interesting aspects of the algorithm that could

have ramifications for other similar algorithms, and we werealso able to improve the

algorithm so that it could produce a superior player in a shorter amount of computation

time.

We do not claim that theM2ICAL method is able to produce Markov Chain models

that reflect the performance of algorithms with anywhere close to 100% accuracy; this

is impossible for practical problems due to the inherent inaccuracies involved in doing

11.3 Conclusions 106

Monte Carlo simulations, although the accuracy can be increased at the cost of added

computation time. However, we hope that by implementing themodel on an actual,

published algorithm, we have shown the possible benefits of having a technique that can

evaluate algorithm performance in objective terms.

Part IV

Further Discussions

107

108

In this final part of the thesis, we delve deeper into the intricacies of theM2ICAL method.

In general, the more Monte Carlo simulations we perform, themore accurate will be the

output of our model. Our experiments on SCSA have shown that when the algorithm

being analyzed is simple enough such that its neighbourhoodfunction can be closely

estimated using Monte Carlo simulations, then the model canpredict the algorithm’s

performance almost exactly. However, for most practical algorithms it would be pro-

hibitively time-consuming to perform the very large numberof Monte Carlo simulations

in order to model the algorithm to such a high degree of accuracy. Therefore, we must

reduce the number of Monte Carlo simulations used at the expense of some of the accu-

racy of the model. Nonetheless, even a somewhat less accurate model can be useful, as

shown by our experiments on HC-Gammon.

For the remainder of this dissertation, we will discuss the issues that arise when em-

ploying our basic technique on practical problems. In Chapter 12, we examine the trade-

off between the accuracy of the model and computation time ofthe various parameters,

including the number of classesN ; the player evaluation sizeMopp; the class popula-

tion parameters; and the neighborhood distribution parameters. The factors involved in

adapting the model for practical algorithms that possess traits that are different from

the algorithms that we have already examined is discussed inChapter 13. Finally, we

conclude this dissertation in Chapter 14 with a summary of the results and contributions

made, along with some possible directions for further research.

Chapter 12
Significance of Parameters

One of the greatest criticisms of theM2ICAL method is the amount of time required

to run the multitude of Monte Carlo simulations in order to produce the Markov Chain

model of the system. While the ability to estimate importantproperties like the expected

player strength and solution spread is useful, if it requires an excessive amount of time

to create the model, its usefulness becomes severely limited. In particular, it would be

impractical to make use of theM2ICAL method if you can run the algorithm itself several

times in the same amount of time, thereby deriving the same properties in that manner.

The basis of the model is the use of Monte Carlo simulations toestimate the work-

ings of the algorithm in question. In general, the more data points are used in a Monte

Carlo simulation, the more accurate the result will be. Hence, there is always a trade-

off between the number of data points used (and the resultantincrease in computation

time) and the accuracy of the result. However, different parameters in the model affect

different aspects of the accuracy of the model. In this chapter, we discuss the effects

of varying the various parameters in the model, which would help the practitioner who

wishes to implement theM2ICAL method to decide how to customize the model to suit

his needs.

109

12.1 Number of ClassesN 110

Figure 12.1: Expected player strength using N=100, 50, 33, 20 and 10 for Mod-

Nim(100,3) using SCSA

12.1 Number of ClassesN

The first and perhaps the most important parameter to decide when employing this tech-

nique is the number of classes or statesN in the Markov Chain. In the model, all players

that belong to a particular class are grouped together and are essentially indistinguish-

able from each other. The set of all possible players is divided intoN separate classes,

so the results returned by the Markov Chain will only be accurate up to1/N of the entire

search space. Hence, the value ofN affects thegranularityof the results.

To examine the impact of having a different number of classeson the results obtained

by the Markov Chain model, we return to our experiment on SCSAon ModNim(100,3).

Using the neighbourhood distributionλij and the error distributionδij that we have

already derived, we restructure the model so that it contains fewer than our original

N = 100 (therefore, all other parameters in the model remain the same). Figure 12.1

12.1 Number of ClassesN 111

gives the expected solution quality predicted by the MarkovChain model whenN=100,

50, 33, 20 and 10 respectively. Our original (and most accurate) results obtained with

a model usingN = 100 classes is provided by the bold line. The results given by the

smaller models are given in grey and labelled accordingly, while the results found by

averaging 100 runs of SCSA is given by the dashed grey line.

In this instance, we see that as the number of classes in the modelN decreases, the

expected player strength predicted by the model is overestimated by increasing amounts.

In particular, notice that whenN = 10, the predicted expected player strength converges

to a value of 72.38%, which is certainly higher than the values obtained from the actual

runs of the algorithm. Compared to the expected strength of 68.36% predicted when

N = 100, we see that there is only a slightly greater than a 4% disparity in the predic-

tions even though only 10% of the classes were used.

This example illustrates that there is a tradeoff between the accuracy of the result and

the number of classes involved in the model (and hence its computation time). While in

this case it turns out that the player strength is overestimated, it is possible that the results

will be underestimated instead for other problems. In any case, for a given percentage

decreasep% in the number of classes, we can expect a disparity ofup top% between the

two models, but this example shows that the disparity is morelikely to be significantly

less.

Figure 12.2 shows the corresponding results for the predicted standard deviation of

the Markov Chain model whenN = 100, 50, 33, 20 and 10. Once again, the original

results whenN = 100 are given by the bold line, the results of the smaller models are

given by grey lines, and the sample standard deviations of 100 runs of SCSA on ModNim

are given by the dashed grey line. The standard deviation forN = 50 is labelled as such,

while the standard deviation forN = 33, 20 and 10 are so close that they are practically

indistinguishable in Figure 12.2.

In this case, we see that the standard deviation is underestimated as the number of

12.1 Number of ClassesN 112

Figure 12.2: Standard Deviation using N=100, 50, 33, 20 and 10 for ModNim using

SCSA

classes decreases. It is logical to expect the predicted standard deviation to be underesti-

mated as the number of classes in the model decreases since players of similar strengths

are divided into fewer classes. Hence there would be a smaller spread of players with

distinct strengths, resulting in a lower standard deviation. However, in this example the

disparity is very small and still well within the results from the actual runs of the algo-

rithm. In fact, the difference betweenN = 100 andN = 10 after convergence is less

than 0.22% of all classes.

The number of classes in the Markov Chain model has a significant effect on the

running time of the model, since it affects several other parameters. However, it appears

that even when reducing the number of classes (e.g., fromN = 100 down toN = 10),

the decrease in accuracy is still small enough to provide a decent estimation of estimated

player strength and standard deviation. Of course, the nature of the problem largely

determines the minimum number of classes that the model mustcontain in order for the

information to be useful, but these observations are encouraging since there appears to

12.2 Player Evaluation SizeMopp 113

Figure 12.3: Estimated player strength (and std. dev.) withMopp

be considerable leeway in decidingN when the various parameters are being decided in

order to make the application of this model feasible on a difficult problem.

12.2 Player Evaluation SizeMopp

While the number of classesN determines the granularity of the results obtained, it is

the player evaluation sizeMopp that has the greatest effect on the amount of computation

time required to generate theM2ICAL model. This is because whenever a player is

generated, its strength must be estimated by playing it againstMopp randomly generated

players. Hence, it is advisable to determine the smallest value of Mopp that provides an

acceptable degree of accuracy when evaluating player strength.

While it is a well-known result that the accuracy of a Monte Carlo simulation is

proportional to the square root of the number of sample points, this is not particularly

helpful since we do not know the accuracy of the comparison function. Therefore, in

order to determine an appropriate value forMopp in our backgammon experiments, we

randomly generated a backgammon player, and then measured the value of its estimated

strength for various values ofMopp. Since we play two games against each opponent

12.2 Player Evaluation SizeMopp 114

using the same dice stream, once as first and once as second player, the number of

games is played is2×Mopp. Figure 12.3 shows the progression of the estimated playing

strength for 100 sets ofMopp randomly generated opponents, which clearly shows that as

Mopp increases, the estimated playing strength for the player converges towards a similar

value (around 60% in this case). Repeated trials with other randomly generated players

produced similar results.

The bold black line shows the standard deviationσ of the estimated playing strength

values; atMopp = 100, the standard deviation for this player wasσ = 0.031716. Assum-

ing a normal distribution of values with the mean value equalto the actual strength of

the player, the 90% confidence interval at this point is±1.64485σ = ±0.052168, which

encompasses slightly more than a 10% strength range (or 1 class in our Markov chain

of 10 classes). For our experiments, we decided that an approximately 90% confidence

interval of a 1-class range is sufficient for our investigation, and therefore we used the

value ofMopp = 100 in our experiments1. Using this value, each player usually takes 30

to 45 seconds to evaluate on a Pentium-IV 1.6 GHz PC with 512MBRAM.

It is crucial to the feasibility of theM2ICAL method that we are able to attain a con-

fidence interval of as high as 90% in our player strength evaluation even with a complex

game like backgammon, using a value ofMopp small enough to ensure a reasonable run-

ning time. For the analysis of more complex algorithms or problems that may require

more player evaluations, further computation time can be saved by sacrificing some de-

gree of accuracy in the evaluations.

1For a 90% confidence interval of≤ ±0.05, we require anMopp value of about 110. While we could

have usedMopp = 110 for our experiments, we felt thatMopp = 100 for a 10-class Markov Chain simply

‘fits’ better.

12.3 Class Population Parameters 115

12.3 Class Population Parameters

TheM2ICAL method involves first generating and evaluating a set of players, and then

using these players to estimate the various distributions required to derive a Markov

Chain model. Therefore, it is important that the sample of players used is both large

enough and varied enough to be a representative sample of theplayers that are produced

by the algorithm in question. Once again, there is a definite tradeoff between the accu-

racy of the final model and time and memory constraints. For example, since ModNim

players can be represented by a simple vector of integers, memory space is not a signif-

icant constraint in our ModNim experiments. Combined with the fast computation time

for each game of ModNim, we were able to simply generate 10,000 ModNim players

and use them as our representative sample. However, the neural networks used to repre-

sent backgammon players take up significantly more memory space, and backgammon

games take much more time to complete. Hence, we had to restrict the number of play-

ers in our representative sample both to reduce the number ofMonte Carlo evaluations

required and to limit the amount of memory used to store theseplayers. In this section,

we discuss cases where both time and space are significant factors in our decisions.

There are three parameters in our approach that affect the nature of the representative

population. The first isMsample, which is the initial number of players that are generated.

If we consider all algorithms starting from different initial players as distinct parallel

runs, then the value ofMsample can be thought of as the number of distinct parallel

runs from which we produce the rest of the representative population. The value of

Msample must be carefully chosen with respect to the total number of classesN in the

Markov Chain model. IfMsample is too large, then it is likely that a large number of

players retained by the model will come from the first few iterations of the algorithm,

and therefore players from later in the algorithm may be under-represented. On the

other hand, ifMsample is too small, then there may be too many players from later in the

algorithm in the representative population, when local optimals may have been reached.

12.3 Class Population Parameters 116

Furthermore, we require a value ofMsample that is large enough so that we can estimate

the distribution of the initial population for~v[1..N]. As a rule of thumb, we find that a

value ofMsample = N · γ̂ gives sufficient variety to the representative population.

The second parameter iŝγ, which is the maximum number of players from each

class that is retained in the representative population. Inour current formulation of

theM2ICAL method, we limit the sample size of each class to the same value of γ̂ for

simplicity; it may be worthwhile to implement a separate maximum class sizêγi for

each classi. In any case, a limit to the sample size for each class is required since

otherwise players of strengths similar to the initial population will be over-represented.

The appropriate value of̂γ is determined by both memory and time constraints. There

must be sufficient memory to store up toN · γ̂ players; furthermore, asN · γ̂ increases, so

does the time required to generate the players of these player strengths. We decided on

the value of̂γ = 20 for our backgammon experiments because we could store 200 neural

network backgammon players in memory without requiring disk I/O, and the amount of

time required to fill the classes was reasonable.

The third parameter isMpop, which is the number of descendents that are generated

when attempting to produce players from non-full classes. This value must also be care-

fully chosen. IfMpop is too high, then too many of the players in the sample population

will be direct descendents of players from certain classes,and most of the players in

the population will come from early in the algorithm. IfMpop is too low, then the pro-

cess of populating the classes may be unable to produce players of sufficiently varied

strengths to produce a meaningful Markov Chain. In our backgammon experiments, we

have found that a value ofMpop = 100 = γ̂/2 is able to produce a sufficiently varied

sample population in a reasonable amount of computation time.

Our analyses of the effects of these three parametersMsample, γ̂ andMpop are un-

avoidably general at this time, since if any of these parameters are changed, then the

entire experiment must be re-run in order to perceive the effects. However, as long as

12.4 Error and Neighbourhood Distribution Parameters 117

a little trial-and-error and common sense is applied, we believe that there should not be

undue difficulty in finding appropriate values for these parameters for any given problem

and algorithm.

12.4 Error and Neighbourhood Distribution Parameters

After populating the classes, theM2ICAL model involves discovering the error and

neighbourhood distributions of the algorithm by performing several Monte Carlo simu-

lations on the sample population. To find the error distribution across all pairs of classes

i andj, we simply playMwpm games between randomly selected players from classi

and classj, and then record the proportion of wins achieved. It is reasonable to expect

that an appropriate value forMopp would also be suitable forMwpm; Mopp is the number

of games required before the strength of a player can be determined to an acceptable

level of accuracy, whileMwpm is the number of games required before the proportion of

wins between two classes players can be ascertained to a similarly acceptable level of

accuracy. This is why we choseMwpm = 200 = 2 ·Mopp (because we play 2 games for

every opponent) for our backgammon experiments.

Note that the value ofMwpm does not greatly affect the running time of the model,

since generating the win probability matrixW only involves playing O(Mwpm · N2)

games. Compared to other parameters likeMpop and γ̂, which affects the number of

players generated (each requiringMopp games to evaluate), the amount of time required

to generate the win probability matrix is one order of magnitude lower. Hence, we can

setMwpm to a high value without severely increasing the running time. However, our

backgammon experiments did not require a value ofMwpm greater than 200.

The process required to discover the neighbourhood distributionλij for the algorithm

obviously depends on the algorithm itself. For SCSA on ModNim, the neighbourhood

distribution is γj

ΓN
and requires no additional computation. For HC-Gammon, however,

the neighbourhood distribution requires the combination of the challenger distribution

12.4 Error and Neighbourhood Distribution Parameters 118

Ci, estimated usingMcha applications of the mutation function for each classi; and

the descendent distributionDij , estimated usingMdes applications of the descendent

function for each pair of classesi andj.

Ostensibly, for more complex algorithms, even more distributions are required be-

fore the neighbourhood distribution can be formulated and included into the Markov

Chain model. However, one generalization we can make is thatthe distributions re-

quired must be in terms of the number of classesN , since we wish to discover how the

next state in the algorithm is affected by the current state in terms of its probability of

belonging to the various classes. We believe that a good value for parameters likeMcha

andMdes would once again be2 ·Mopp, which is the number of games required for the

Monte Carlo evaluation of a player to have approximately 90%confidence. For much

the same reason, this number of trials (200 in the case of our HC-Gammon experiments)

should also produce an estimated distribution with close to90% confidence.

Chapter 13
Adapting the Model

The aim of this research is to devise a technique that can analyze imperfect compari-

son algorithms in general (and algorithms on the game-playing problem in particular).

In choosing our target problems, our aim was to show the capabilities of the M2ICAL

method in a simple yet non-trivial setting. Therefore, neither of the two case applications

that we have chosen, namely SCSA on ModNim and HC-Gammon on backgammon,

were particularly complex algorithms.

Depending on the nature of the problem, much work may be required in order for

our technique to be useful for the analysis of practical algorithms. While some aspects

of algorithms can be easily and trivially handled by the model, others require possi-

bly significant changes to the basicM2ICAL method before an accurate analysis can

be achieved. This chapter discusses some of the possible issues that may arise when

employing the model on practical algorithms.

13.1 Simple Adaptations

Certain types of algorithms are easily handled by the basicM2ICAL method presented

in this thesis. For example, a common type of strict hill-climbing algorithm is called

119

13.1 Simple Adaptations 120

a neighbourhood search algorithm, where the potential next state is selected from the

neighbourhood of the current state. Algorithms of this typecan be modeled as a Markov

Chain using the transition matrix given in Equation (4.5), by using Monte Carlo simula-

tions to estimateλij based on the neighbourhood function employed.

Furthermore, any technique that does not affect the algorithm directly has no effect

on the implementation of the model whatsoever. For instance, in the field of game-

playing programs, there are several techniques that are employed in order to improve

the overall playing strength of the generated player. Theseinclude:

• Opening books.A set of pre-computed moves from the start of the game that are

considered desirable, which saves the program from having to compute positions

early in the game.

• Endgame databases.A set of pre-computed evaluations of all positions with

some trait (e.g., the set of all chess positions with 2 bishops and a king vs. a

king), such that the program can end the search once a position in the database is

reached.

• Transposition tables. A technique that reduces the number of re-evaluations of

the same position of the course of a game.

• Move ordering methods. Methods that decide the order of moves to search,

which may significantly reduce the search time, e.g., the history heuristic.

All of these techniques affect the speed and depth of search that the game-playing

program can achieve. However, these techniques do not affect our model because they

are implemented within the individual game-playing programs themselves. While the

results predicted by the model may indeed be affected by these techniques, there is no

difference in the implementation of theM2ICAL method.

13.2 Player Strength Evaluations 121

13.2 Player Strength Evaluations

Evaluating the strength of the generated players is a major difficulty in games research.

A layman’s notion of a player’s strength in an intellectual game corresponds to its ability

to beat other players. When analyzing a trivial or small game, it may be possible to find a

player’s strength by fully enumerating all possibilities,but this is impossible for practical

games since the number of possible players in such games is astronomically large. In

existing research on intellectual games, two methods of evaluating player strength have

become accepted practice, but both of these methods have their weaknesses.

The first way to evaluate player strength that has been employed in existing re-

search is to compete the generated player against a fixed benchmark player: Pollack and

Blair’s backgammon program was measured against the open-source programPUBE-

VAL [PB98]; Kendall and Whitwell’s chess program played against the commercial

softwareChessmaster 2100andChessmaster 8000[KW01]; and the checkers program

Anacondawas evaluated against both a commercial programHoyle’s Classic Games

[CF00] and also against the world champion checkers programChinook[Fog02]. How-

ever, the usefulness of this approach depends heavily on theability of the benchmark

player. If the benchmark player is too weak, results againstthat player may overstate the

ability of the generated player. On the other hand, an overlystrong benchmark player

that is far superior to the generated player will be victorious over the generated player by

a very wide margin, which would severely obscure the abilities of the generated player

when compared to average players.

The second is to compete the player against human opposition: Anacondaplayed on

the Internet checkers communitywww.zone.net[CF01, Fog02], and Moriarty and Mi-

ikkulainen’s Othello program was evaluated by 1993 World Othello Champion David

Shaman [MM95]. Unfortunately, this approach is usually very time-consuming and

dependent on the availability and ability of human opposition. In fact, checkers was fa-

mously and mistakenly considered solved when Samuel’s program beat a self-proclaimed

13.2 Player Strength Evaluations 122

blind checkers Master [Sam59], who was in reality much weaker than he claimed, caus-

ing researchers to ignore checkers in computer science for decades.

In the M2ICAL method, we introduce a third way to evaluate players, which is to

userandomly generated playerswhen performing Monte Carlo evaluations of player

strength. Depending on the data representation and method of random generation, the set

of players from which the opponents is drawn can be uniformlyselected from the space

of all possible players. This technique has certain advantages over existing methods:

since a variety of opponents is generated, the strength of the player is tested against

a wider spectrum of player strengths than when only a single fixed benchmark player

is employed; and the ready availability and ease of implementation allows many more

games to be played than when human opposition is used.

Our experiments have provided examples of cases where this technique works. How-

ever, for other practical problems, using randomly generated opponents for Monte Carlo

evaluation of players may be insufficient. The critical observation is that for most games,

the number of “strong” players is a very small percentage of the total number of all pos-

sible players. The comparison error between these “strong”players and the overwhelm-

ing majority of randomly generated players would be essentially zero. For example, you

would never expect Gary Kasparov to be beaten by a randomly generated chess player

no matter how many games were played. Hence, if the algorithmthat we were analyzing

was able to create a “strong” player, beyond a certain numberof iterations in the algo-

rithm the Monte Carlo evaluations based on random opponentswould return a 100%

success rate for the incumbent. At this point, the model loses its ability to differentiate

between the strengths of the generated players.

When Pollack and Blair looked to evaluate the strength of HC-Gammon, they used

the strong public domain backgammon programPUBEVALas a benchmark player. In

our experiments, we could not make use ofPUBEVALfor the evaluation of players be-

cause experiments showed thatPUBEVALloses less than 20 out of 1000 games against

13.2 Player Strength Evaluations 123

randomly generated opponents (which means that the strength of PUBEVALis within

the top 2 percent of all possible players). Hence, if we measured the strength of the

generated players using their results againstPUBEVAL, practically all of these players

would be placed into the lowest class. Once again, the model would have lost its ability

to differentiate between the strengths of the generated players.

How the strengths of the generated players should be evaluated depends on the ca-

pabilities of the algorithm itself. In our experiments using SCSA and HC-Gammon, it

turns out that these algorithms do not generally produce players that are able to compete

with “strong” players, and therefore we could use randomly generated players for eval-

uation purposes. However, for algorithms that are able to eventually generate “strong”

players, it may be possible to make use of existing “strong” players for the Monte Carlo

evaluations at some point in order to provide a better picture of the algorithm’s perfor-

mance.

The idea of introducing a time-lag in Exp A3 and B3 can be used for this purpose.

Early in the algorithm, when the current player is relatively weak, we could make use of

randomly generated players for the Monte Carlo evaluations. This model might predict

that the expected solution quality of the algorithm would reach the highest class aftert

iterations; we could then create a second model with a time-lag of lengtht, but make

use of existing “strong” players (such asPUBEVAL) for the Monte Carlo evaluations

instead. The main aim of this framework is to provide information on the capabilities of

the algorithm in question. Depending on the algorithm, the most useful information that

the model can provide could be relative to the space of all possible players (i.e., using

randomly generated players), or relative to particular benchmark “strong” players. By

changing the evaluating opponents at various stages of the algorithm and re-generating

the model, the information provided by theM2ICAL method can maintain relevance to

the practitioner.

13.3 Populations 124

13.3 Populations

In this dissertation, we examined two algorithms where the state of the algorithm con-

sists of only a single player. In practical algorithms, it isoften the case that apopulation

of p players is retained, and the potential next state is derivedfrom this set ofp players.

For example, a genetic algorithm would produce “offspring”from the current population

of players using operations like mutation and crossover, and the current state after each

iteration of the algorithm would be a population of players.If there are|S| distinct play-

ers in the game-playing problem, then there are
(

|S|
p

)

possible populations ofp players.

This is an increase in the search space by O(|S|p).
Theoretically, a population can be treated in a similar way as any solution by eval-

uating the quality of the population using Monte Carlo simulations in some way. In an

algorithm employing a population ofp players, one obvious way to evaluate the quality

of the population is to evaluate each member of the population by playing them against

Mopp randomly generated opponents, and then adding the estimated strengths of each

player together. However, this would increase the running time by a multiplicative fac-

tor of p, which may be infeasible for practical problems.

Alternatively, we may decide to estimate the quality of a population simply by evalu-

ating its “best” member, since such algorithms usually return this member as the solution

at the end of the algorithm. This would result in a running time asymptotically identical

to our original approach. Unfortunately, such a scheme may not work well in practice

because the intrinsic assumption in the model is that the neighbourhood function of two

solutions of similar quality will be similar. In algorithmsthat use populations, the com-

position of the next state is generally dependent on all thep members of the current state.

By considering the strength of only the “best” member of the population when evalu-

ating the entire population, we fail to take into account theeffect of the other members

of the population when determining the neighbourhood function. While such a scheme

may not be completely inaccurate (after all, if the “best” player is of a particular strength,

13.4 Annealing 125

it is reasonable to assume that the strengths of the other players in the population will

not be wildly different), it may not be sufficient in practical cases.

Perhaps the best way to handle populations is to compromise between the two ex-

tremes, by classifying the population based on the strengths of p′ < p of its members,

wherep′ depends on the specifics of the problem. This would increase the running time

by a factor ofp′, and is yet another parameter of the model where the tradeoffis be-

tween running time and accuracy. The appropriate value forp′ is problem-dependent,

and deserves further research.

13.4 Annealing

Another common technique used in algorithms that generate game-playing programs is

annealing. An annealing algorithm begins with a neighbourhood function that is rela-

tively broad, in the sense that there is a relatively large number of possible challengers

for any given incumbent. As the algorithm progresses, the neighbourhood function em-

ployed is made narrower and narrower, thereby increasing the probability of generating

a player from the immediate neighbourhood of the incumbent.This process simulates

the annealing process in metallurgy, where the atoms of a metal are agitated by heating,

and then slowly cooled, resulting in a harder material when the atoms re-settle into a

tighter configuration.

Experiments A2, A3, B2 and B3 (see Sections 9.2, 9.3, 10.3 and10.4 respectively)

are annealing techniques in the sense that when the requirements of the comparison

function are increased, the probability of generating a weaker challenger that is able to

defeat the incumbent is reduced, and hence the frequency of incumbent replacement is

also reduced. In practical problems, annealing is not usually implemented in this step-

wise manner. Instead, it is usually implemented as some kindof adaptive parameter

that acts on the neighbourhood function by multiplying the amount of mutation from the

13.4 Annealing 126

parent by a factor, which is reduced over time. This means that the Markov Chain is non-

homogenous, and the transition matrix changes after every iteration depending on the

effect of the annealing scheme on the neighbourhood function. In our current approach,

a direct application of theM2ICAL method would be to re-compute the transition matrix

after every iteration. This is of course impractical, sincedoing so will take a much longer

time than simply running the algorithm itself.

Instead, we need to estimate the effect of the annealing scheme on the neighbourhood

function so that this effect can be included in our computation of the transition matrix

over time. One possible way to approach this task is to observe that the purpose of

annealing is to restrict the newly generated challengers toplayers that are more similar to

the incumbent over time. In effect, this would cause the challenger distribution function

Cij to be modified by a factor that is inversely dependent on the magnitude of|i − j|
(i.e., an incumbent from classi is increasingly likely to generate a challenger from class

j if i andj are close together). In order to discover the nature of this factor, we can

once again make use of Monte Carlo simulations to discover how the neighbourhood

distributions are affected when the annealing scheme is performed over the iterations,

and then perform linear regression to translate this effectinto a computable function.

However, this would add another layer of estimation into thetechnique, and is likely to

reduce the accuracy of the model. Further research is required to ascertain if theM2ICAL

method remains feasible using this technique.

Chapter 14
Conclusions

14.1 Academic Contributions

In this dissertation, we described a method of analyzing theperformance of imperfect

comparison algorithms by modeling them as Markov Chains using Monte Carlo Simu-

lations to estimate the relevant distributions. We call this process theM2ICAL method,

and it allows the practitioner to predict the performance ofthe algorithm in terms of met-

rics like expected solution quality; standard deviation; and time to convergence. To the

best of our knowledge, this is the first technique proposed that is capable of analyzing

imperfect comparison algorithms objectively.

Machine learning approaches to finding strong players in thegame-playing prob-

lem is an archetypal example of imperfect comparison algorithms. We have used two

instances of algorithms in this field to illustrate the capabilities of theM2ICAL model.

The first example is SCSA on ModNim(100,3), which is a simple algorithm on a solved

but computationally non-trivial game. This example, analysed in Chapter 6, showed the

high degree of accuracy that theM2ICAL model’s predictions can obtain in an ideal-

ized situation where the neighbourhood distributions of the algorithm can be accurately

estimated using Monte Carlo simulations.

127

14.2 Why useM2ICAL ? 128

The second example analysed in Part III of this thesis examines HC-Gammon, a

hill-climbing algorithm on the game of backgammon utilizedby Pollack and Blair in

their 1998 publication. This is a more complex algorithm andproblem than SCSA on

ModNim, but theM2ICAL method was still able to derive a Markov Chain depiction of

the algorithm that could produce reasonably accurate predictions of its performance. By

implementing theM2ICAL method on the HC-Gammon generation algorithm, we were

able to discover certain properties that cast doubt on some of the assertions made by the

authors in their original work.

Ultimately, the concept behind theM2ICAL method is simple. The comparison errors

that occur in imperfect comparison algorithms make it difficult to accurately and objec-

tively evaluate their performance using existing methodologies. TheM2ICAL method

handles these comparison errors by performing Monte Carlo simulations to estimate

their probability distributions, and translates these distributions into a Markov Chain

model. The algorithm can then be analyzed using existing Markov Chain theory.

14.2 Why useM2ICAL ?

TheM2ICAL method is designed to be a practical analysis tool for complex real-world

imperfect comparison algorithms. The formulation is kept general to maintain appli-

cability to the maximum number of problems, and some of the design decisions were

made with practical considerations in mind1. As an analysis tool, theM2ICAL method

is only useful if it presents a performance advantage over running the target algorithm

itself if it is to justify the overhead involved in generating the distributions required to

derive the model.

Theoretically, all of the properties modelled by theM2ICAL method can be obtained

by running the target algorithm multiple times and performing Monte Carlo simulations

1in particular, our definition of “time to convergence” is notin accordance with traditional definitions

of Markov Chain convergence, but may be of greater use to the practitioner

14.2 Why useM2ICAL ? 129

on these runs. However, while the initial derivation of theM2ICAL model using several

Monte Carlo simulations is time-consuming, once the model is derived it can predict

the expected performance of the algorithm more quickly thanrunning the algorithm it-

self several times. The model can also handle certain changes to the algorithm without

requiring a re-run of the entire process, e.g., different victory conditions of the com-

parison function in HC-Gammon, game-playing improvementslike opening books and

endgame databases, etc. Therefore, the model is useful in predicting the effects of “what

if” scenarios by modeling such changes, which aids the algorithm designer in making

effective changes to the algorithm.

The straightforward application of theM2ICAL method on existing algorithms to

re-check the veracity of the analyses could be the source of much useful information.

Since there have been no techniques available for the analysis of imperfect comparison

algorithms in practical settings prior to theM2ICAL method, it is likely that some of the

previous analyses of such algorithms may be erroneous or unconfirmed; for example,

our analysis of HC-Gammon has refuted the supposition that backgammon tends not to

cause hill-climbing approaches to enter mediocre local optimal states. We could there-

fore implement theM2ICAL method to either correct or confirm (or at least bolster) the

analysis of existing research.

Beyond the re-examination of existing work, theM2ICAL method can be helpful in

the design of new algorithms. By modeling the algorithm intoa M2ICAL model, the

practitioner can compare the effects of changes to certain parameters in the algorithm

without having to re-implement and re-run the algorithms. The predicted standard devi-

ation can help to determine if a re-run of the algorithm in hopes of producing a superior

solution is justified, and the time to convergence provides agood ending point for the al-

gorithm. Hence, suitable adaptations of theM2ICAL method can potentially be of great

use to the design of practical algorithms.

There may also be more useful information already present inthe producedM2ICAL

14.3 Future Work 130

model than is detailed in this dissertation. The Markov Chain representation is fully de-

fined by the transition matrix, and this matrix is derived by combining several probabil-

ity distributions. Therefore, careful analysis of these distributions may uncoverreasons

behind the behaviour of the model itself. For example, it maybe discovered that the

winning probabilityWij of a player from classi beating a player from classj, i < j,

compared to the corresponding neighbourhood probabilityλij, may be the determining

factor in whether the expected solution quality increases or decreases over time. If so,

then an increase in the strictness of the comparison function may be required to reduce

the probability of such comparison errors.

The M2ICAL method presents pioneering work on the analysis of imperfect com-

parison algorithms. In a field like computer science research on intellectual games,

it provides an objective alternative to the existing methodof gauging the performance

of algorithms using the results of the best player produced against benchmark players

of possibly inaccurately determined strength. Other fieldswith similar difficulties in

judging solution quality may also benefit from using theM2ICAL method for algorithm

analysis.

14.3 Future Work

The most important weakness of theM2ICAL method is the amount of computation time

required to derive the model, which must be significantly less than running the algorithm

itself multiple times in order for the modeling to be worthwhile. Initial investigations

on the effects of the input parameters show that certain important parameters like the

number of classesN and the number of samples taken for the Monte Carlo evaluation

of solutionsMopp can be reduced for a significant reduction in computation time but

with a less than proportionate reduction in prediction accuracy. However, it is difficult

to generalize the effects of “cutting corners” on these parameters, and they should be

determined on a case-by-case basis.

14.3 Future Work 131

Many of the parameters that we employed were arbitrarily determined, and further

experiments should be performed in order to discover good heuristics for the parameters.

For example, it is not known precisely how the accuracy of theprediction is related to

factors like the number of classes in the Markov Chain; population sample size and

diversity; the complexity of the problem, etc. It may be worthwhile to implement the

M2ICAL method on an easily customisable problem in order to judge the effects of such

factors - ModNim may be a suitable test case for this purpose.

There are also certain types of algorithms that have not beentested in this research.

These include algorithms employing populations or annealing, which are two common

devices of practical machine learning algorithms in use today. While we have proposed

possible ways to handle these types of algorithms, it remains to be seen if these proposed

solutions can maintain the accuracy level of theM2ICAL method using a feasible amount

of computation time.

It is worth restating that although this dissertation focused primarily on the game-

playing problem, theM2ICAL method can potentially be applied to any imperfect com-

parison algorithm, or any comparison-based algorithm on anoptimization problem that

is not well-defined. As long as there is a way to use Monte Carlosimulations to esti-

mate the quality of a solution to an acceptable degree of accuracy, the algorithm can be

modeled and analyzed in this way. Researchers from other fields may therefore find the

M2ICAL method a useful analytical tool.

Bibliography

[AM92] Simon Anderson and George MacNeil. Artificial neuralnetworks technol-

ogy. Technical Report F30602-89-C-0082, Data & Analysis Center for Soft-

ware, 1992.

[And02] Edward James Anderson. Markov Chain modeling of thesolution surface in

local search.Journal of the Operational Research Society, 53(6):630–636,

2002.

[BCG82] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways

for Your Mathematical Plays. Academic Press, New York, 1982.

[BN97] Yngvi Björnsson and Monty Newborn. Kasparov versusDeep Blue: Com-

puter chess comes of age.International Computer Games Association

(ICGA) Journal, 20(2):92, 1997.

[CF00] Kumar Chellapilla and David B. Fogel. Anaconda defeats Hoyle 6-0: A

case study competing an evolved checkers program against commercially

available software.Proceedings of Congress on Evolutionary Computation

(CEC ’00), pages 857–863, 2000.

132

Bibliography 133

[CF01] Kumar Chellapilla and David B Fogel. Evolving an expert checkers play-

ing program without using human expertise.IEEE Trans. on Evolutionary

Computation, 5(5):422–428, 2001.

[CKL+03] S. Y. Chong, D. C. Ku, H. S. Lim, M. K. Tan, and J. D. White. Evolved

neural networks learning Othello strategies. InProceedings of Congress on

Evolutionary Computation (CEC’03), pages 2222–2229, 2003.

[Fog02] David B Fogel.Blondie24: Playing at the Edge of AI. Academic Press,

London, UK, 2002.

[Hay99] Simon Haykin.Neural Networks: A Comprehensive Foundation. Prentice-

Hall Inc., 2nd edition, 1999.

[Kei96] Tom Keith. Standard rules of Backgammon. Website, 1996. http://

www.bkgm.com/rules.html.

[KW01] Graham Kendall and Glenn Whitwell. An evolutionary approach for the tun-

ing of a chess evaluation function using population dynamics. In Proceed-

ings of the 2001 Congress on Evolutionary Computation CEC2001, pages

995–1002, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu,

Seoul, Korea, 27-30 2001. IEEE Press.

[LHO01] Andrew Lim, Wee-Kit Ho, and Wee-Chong Oon. Maximizing paper spread

in examination timetabling using a vehicle routing method.In Proceedings

of the 13th IEEE International Conference on Tools with Artificial Intelli-

gence (ICTAI ’01), pages 359–366, 11 2001.

[LM01] Alex Lubberts and Risto Miikkulainen. Co-evolving aGo-playing neural

network. In Richard K. Belew and Hugues Juillè, editors,Coevolution:

Turning Adaptive Algorithms upon Themselves, pages 14–19, San Francisco,

California, USA, 7 2001.

Bibliography 134

[Mar06] Andrey Andreyevich Markov. Rasprostranenie zakona bol’shih chisel na

velichiny, zavisyaschie drug ot druga.Izvestiya Fiziko-matematicheskogo

obschestva pri Kazanskom universitete, 2-ya seriya, 15:135–156, 1906.

[Mar71] Andrey Andreyevich Markov. Extension of the limit theorems of probability

theory to a sum of variables connected in a chain. In R. Howard, editor,

Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and

Sons, 1971.

[MM95] David Moriarty and Risto Miikkulainen. Discoveringcomplex Othello

strategies through evolutionary neural networks.Connection Science, 7(3–

4):195–209, 1995.

[MT93] S. P. Meyn and R. L. Tweedie.Markov Chains and Stochastic Stability.

Springer, London, 1993.

[NV92] A. Nix and M. D. Vose. Modeling Genetic Algorithms with Markov Chains.

Annals of Mathematics and Artificial Intelligence, 5:79–88, 1992.

[PB98] Jordan B. Pollack and Alan D. Blair. Coevolution in the successful learning

of Backgammon strategy.Machine Learning, 32:225–9240, 1998.

[RB96] Christopher D. Rosin and Richard K. Belew. A competitive approach to

game learning. InProceedings of the 9th Annual ACM Conference on Com-

putational Learning Theory (COLT-96), pages 292–302, 1996.

[Sam59] Arthur L. Samuel. Some studies in machine learning using the game of

Checkers.IBM Journal of Research and Development, 3(3):210–229, 1959.

[Sam67] Arthur L. Samuel. Some studies in machine learning using the game of

Checkers ii - recent progress.IBM Journal of Research and Development,

11(6):601–617, 1967.

Bibliography 135

[Sor91] G. Sorkin. Efficiency of simulated annealing: Analysis by rapidly-

mixing Markov Chains and results for fractal landscapes. Technical Report

UCB/ERL M91/12, EECS Department, University of California, Berkeley,

1991.

[Tes95] Gerald Tesauro. Temporal difference learning and TD-Gammon.Commu-

nications of the ACM, 38(3):58–68, 1995.

[Tho82] Ken Thompson. Computer Chess strength.Advances in Computer Chess,

3:55–56, 1982.

[Tho86] Ken Thompson. Retrograde analysis of certain endgames. ICCA Journal,

9(3):131–139, 1986.

[WZ99] Alden H. Wright and Yong Zhao. Markov Chain models of genetic algo-

rithms. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben,Max H. Gar-

zon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors,Proceed-

ings of the Genetic and Evolutionary Computation Conference, volume 1,

pages 734–741, Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann.

[Yao99] Xin Yao. Evolving artificial neural networks.PIEEE: Proceedings of the

IEEE, 87(9):1423–1447, 1999.

Appendix A
Table of Symbols

Symbol Brief Description Page

≻,≺ Shorthand notation forBCF 24

α(t), α′
(t), α′′

(t) The probability that the comparison function ofP , P ′ or

P ′′, respectively, is being used at iterationt

87

β
k/l
(t) The probability that at leastk challengers won in the lastl

iterations at iterationt

89

δij The comparison error ofQ at statesi andj 38

γi The size of statei 33

γ̂ The maximum number of players retained per class 34

Γi The cumulative distribution function ofγ at i 33

ΓN The total number of distinct players in the problem 34

κ The number of challengers that must win in the lastΛ itera-

tions to change the comparison function

87

Λ The number of most recent iterations considered when de-

ciding to change the comparison function

87

λi The neighbourhood distribution for classi 39

136

137

Table of Symbols (continued)

Symbol Brief Description Page

λij The probability that statej is chosen as the potential next

state when the current state isi

40

µ The mean of a probability vector~v 47

σ2 The variance of a probability vector~v 47

1f A boolean indicator, returns 1 iff is true and 0 iff is false 24

a(t) The probability that the challenger wins in iterationt 88

b
k/l
(t) The probability that exactlyk challengers won between it-

erationst− l + 1 andt inclusive

88

BCF Thebeatscomparison function 24

ci(j) The probability that a player in classi will create a chal-

lenger in classj

76

Ci The challenger probability distribution for a classi 76

dij(k) The probability that a descendent created from a parent of

classi and challenger of classj will be of strengthk

77

Dij The descendent probability distribution using parent state i

and challenger statej

77

E The set of edges inG representing all legal game moves 22

E(PS(PL)) The estimated strength of playerPL 43

F The objective function to an optimization problemP,

F : S → R

21

F (s) The quality of a solutions 21

F (i) The quality measure of statei 32

F ′(PLi) The estimated strength of playerPLi 31

g The number of matches a player plays against each ofMopp

opponents to estimate its strength

31

138

Table of Symbols (continued)

Symbol Brief Description Page

G The directed graph representing a game 22

I The finite state space of a Markov Chain 25

M(v) The set of all legal moves from game positionv,

M : V → Ē

23

Mcha The number of challengers generated to derive the chal-

lenger probability distributionCi

76

Mdes The number of descendents generated to derive the descen-

dent probability distributionDij

77

Mnei The number of players generated to evaluate the neighbour-

hood distributionλi

39

Mopp The number of randomly generated opponents used to esti-

mate a player’s strength

31

Mpop The minimum number of new players generated from an

unchecked class

34

Msample The number of initial players generated 34

Mwpm The number of matches played between each pair of classes

i andj to computewij

37

ModNim(K,M) The game of ModNim withK sticks initially and at most

M sticks removed per move

51

N The size of state spaceI (i.e., number of states) of a Markov

Chain

25

pij The element at rowi, columnj of transition matrixP 25

P The transition matrix of a homogenous Markov Chain 25

P , P ′, P ′′ The transition matrices calculated using different compari-

son functions (to handle annealing schedules)

84

139

Table of Symbols (continued)

Symbol Brief Description Page

P An optimization problem 21

PCF A perfect comparison function 21

PL A player of a gameG, PL : V → E 23

PL(t) A player produced by an algorithm aftert iterations 43

PS(PLi) The strength of a playerPLi 24

Q A comparison function,Q : S × S → S 21

s A solution to an optimization problemP, s ∈ S 21

S The set of solutions to an optimization problemP 21

(the set of all players in a game-playing problem) 22

S̄ A sample population of players 33

v A vertex inG representing a valid game position 22

V The set of vertices inG, representing all valid game posi-

tions

22

~v(t) The player strength probability vector of the algorithm after

t iterations. Each elementvi (i = 1 to N) of ~v(t) is the

probability that a player belongs to classi aftert iterations

43

val(v) The value of a game positionv 22

wi The weights of the current player for HC-Gammon 68

w′
i The weights of the challenger derived from the current

player for HC-Gammon

68

wij The probability that a player from classi beats a player from

classj playing first

36

w̄ij The probability that a player from classi beats a player from

classj playing second

37

W The win probability matrix as first player 36

140

Table of Symbols (continued)

Symbol Brief Description Page

W̄ The win probability matrix as second player 37

W
≥x(y1/y2)
ij The probability that a player from classi beats a player from

classj at leastx times out ofy1 games as first player andy2

games as second player

38

Xt The variable at timet of a Markov Chain 25

Appendix B
Analytical Determination of Stationary

Vector

In this section, we make two simplifying assumptions on the nature of the imperfect

comparison problem using SCSA. These two assumptions allowus to analytically cal-

culate the final stationary vector for the resultant Markov Chain, without having to com-

pute it numerically.

The first assumption is that the objective functionF for the problem is strictly in-

creasing, i.e., there exists an ordering{s1, s2, . . . , s|S|} of all solutionssi ∈ S such that

F (si) = F (sj) impliesi = j, andF (si) > F (sj) impliesi > j. Hence, no two solutions

have equal quality, and there is one unique optimal solution. This can be modeled using

a discrete Markov Chain with state spaceI equal toS. Such a case occurs when we con-

sider theranking functionR : S → Z
+ that uniquely ranks all solutions inS according

to F , and returns an integer value equal to the rank of the solution. We can define a rank-

ing function for any problem with a countable number of solutions even when there are

multiple solutions of equal quality, since the ranking function would (possibly arbitrar-

ily) rank solutions of equal quality by unique rankings. Note that the ranking function is

both strictly increasing as well as uniform, in thatR(sj)−R(sj−1) = R(sk)−R(sk−1)

141

142

for all 2 ≤ j, k ≤ |S|. For convenience, we assume that the objective function is a

ranking function. We number each state by its rank, such thatR(si) = i.

The second assumption is that the comparison error is equal over all solutions, i.e.,

δij = δ for all si ∈ S. This means that the comparison error between two classesi

andj are independent of the identities ofi andj, i.e., if si is superior tosj, then the

comparison function returnssi with probability1 − δ andsj with probabilityδ. While

this assumption is generally untrue for any particular problem, there could be instances

where it applies. For example, in an application where the comparison is perfect but

performed remotely, there could be an error probability ofδ in the transmission of the

result of the comparison function to the computational partof the system.

Given the above Markov Chain model of the algorithm, we can now construct its

transition matrix. Let the total number of statesN = |S|. To construct theN × N

transition matrixP for this Markov Chain, we considerpj, 1 < j ≤ N . The value of

pjk, 1 ≤ k < j is the probability thatsk is chosen andQ makes an error, which isδ
N

.

The value ofpjk, j < k ≤ N is the probability thatsk is chosen andQ makes a correct

decision, which is1−δ
N

. Since
∑

k

pjk = 1,

pjj =
N − (j − 1)δ − (N − j)(1− δ)

N

=
j + (N − 2j + 1)δ

N
(B.1)

Hence the transition matrixP is as follows:

1+(N−1)δ
N

1−δ
N

1−δ
N

1−δ
N

· · · 1−δ
N

δ
N

2+(N−3)δ
N

1−δ
N

1−δ
N

· · · 1−δ
N

δ
N

δ
N

3+(N−5)δ
N

1−δ
N

· · · 1−δ
N

δ
N

δ
N

δ
N

4+(N−7)δ
N

· · · 1−δ
N

...
...

...
...

. . .
...

δ
N

δ
N

δ
N

δ
N

· · · N+(1−N)δ
N

(B.2)

143

Note that this is identical to the matrix given in (4.5) whenλij = 1/N andδij = δ.

Having constructed the transition matrix for the system, wecan now find the ex-

pected quality of the solution after a sufficiently large number of generations, such that

the influence of the starting state has been eliminated. Thiscan be found by comput-

ing thestationary distribution vectorπ of the Markov Chain, defined by the stationary

equations asπT = πT P . To compute this vector, we first find the expressions for two

successive elements ofπ from the stationary equations.

πj =
1− δ

N
(π1 + π2 + · · ·+ πj−1) +

δ

N
(πj+1 + πj+2 + · · ·+ πN)

+

[

j + (N − 2j + 1)δ

N

]

πj

πj−1 =
1− δ

N
(π1 + π2 + · · ·+ πj−2) +

δ

N
(πj + πj+1 + · · ·+ πN)

+

[

j − 1 + (N − 2j + 3)δ

N

]

πj−1

Taking the difference,

πj − πj−1 =
1− δ

N
πj−1 −

δ

N
πj +

[

j + (N − 2j + 1)δ

N

]

πj

−
[

j − 1 + (N − 2j + 3)δ

N

]

πj

πj =

[

(1− δ)N + (2δ − 1)(j − 2)

(1− δ)N + (2δ − 1)j

]

πj−1 (B.3)

Let ωj = (1− δ)N + (2δ− 1)j, i.e.,πj =
ωj−2

ωj
πj−1 as given in Equation B.3 above.

Sinceπ2 = ω0

ω2

π1, we find that

πj =
ωj−2

ωj

ωj−3

ωj−1

ωj−4

ωj−2
· · · ω0

ω2
π1 =

ω1ω0

ωjωj−1
π1 (B.4)

Sinceπ is a distribution vector, by definition
∑

πi = 1. We can therefore calculate

π1 givenN andδ using Equation B.4 above by summing all the elements together and

144

solving forπ1. This allows us to calculate all the elements ofπ. We can then calculate

the expected quality of the solution generated by SCSA aftera sufficiently large number

of generationsT as:

E(F (s(T)) =

N
∑

i=1

F (si) · πi (B.5)

In the case where the objective function is a ranking function, Equation B.5 is equiv-

alent toE(R(s(T)) =
N
∑

i=1

i · πi. This value gives the expected quality of the solution

generated by SCSA in the best case, i.e., SCSA cannot expect to achieve a superior

result for a given uniform comparison errorδ no matter how many iterations of the al-

gorithm is performed.

