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Summary 

Humans have striking capabilities to perform many complex motor tasks such as carving 

and manipulating objects. This means that humans can learn to compensate skillfully for 

the forces arising from the interaction with the environment. As an attempt to understand 

motor adaptation, this thesis introduces a model of neural adaptation to novel dynamics 

and simulates its behavior in representative stable and unstable environments.  

Psychophysical experiments have shown that humans are able to adapt to stable 

dynamics in order to perform tasks successfully (Shadmehr and Mussa-Ivaldi 1994, 

Conditt and Mussa-Ivaldi 1997, Shadmehr and Holcomb 1996). Recent experiments 

(Burdet et al 2001A) further show that humans are also able to adapt to unstable 

dynamics, and suggest that the central nervous system (CNS) can control endpoint 

impedance to counteract instability with low metabolic cost. However, previous models of 

motor adaptation cannot stabilize unstable dynamics, and learn stable dynamics with 

transients different from that found in experiments. 

Our proposed controller assumes that the adaptation mechanism, realized in muscle 

space, comprises three elements:  

• In each muscle, the stretch reflex, representative of the novel dynamics, is utilized 

to update the feedforward command. This is similar to feedback error learning 

(Albus 1975, Kawato et al 1987), but is realized here in muscle rather than joint 

space. 

• A stretched muscle induces correlated reflex both in this muscle and in the 

antagonist, i.e. cross reflex. 
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• Selective deactivation decreases the coactivation of agonist-antagonist muscles not 

required to stabilize movement.  

Simulations on a 2-link 6-muscle model demonstrate the capabilities of the proposed 

algorithm. Feedforward motor commands, which produce inverse dynamics (IDM) 

compensating for reproducible dynamics and anisotropic impedance counteracting 

irreproducible effects, are gradually learned in repeated trials. The simulated motion 

trajectories, evolution of muscle activity, and final endpoint impedance are consistent with 

experimental results (Burdet et al 2001A, Franklin et al 2003A, Osu et al 2003, Franklin 

et al 2003B). Furthermore, this novel nonlinear adaptive controller is the first that is able 

to learn appropriate motor commands compensating for both stable and unstable 

dynamics. 

Sensitivity analysis shows that learning is robust to large variations of parameters. 

Neither learning nor motion control is impeded by an increase of noise of up to 1.5 times, 

by a large delay in reflex of up to 200ms, and by the full range of cross reflex magnitudes 

from 0 to 1. In unstable dynamics, feedback error learning in muscles results in 

consecutive motions alternating on either side of the mean trajectory. This increases 

coactivation of agonist-antagonist muscles, hence providing larger arm impedance that 

counteracts the instability. As a consequence, cross reflexes, although identified in EMG 

(Franklin et al 2003B), are not indispensable to learning stable movements in unstable 

dynamics. While the transients and asymptotic impedance depend on the learning 

parameters, the qualitative evolution features predicted by the model are generally similar 

to the behavior observed in psychophysical experiments. 
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Simulations are also performed to predict the adaptation to representative dynamic 

environments, which future psychophysical experiments may validate. Examining the 

adaptation to instabilities in various directions, we find that while impedance generally 

increases in the direction of instability, it tends to converge along the stiffness axis of the 

maximally stretched muscle pair. In addition, impedance increases monotonously with the 

magnitude of instability to provide about the same trajectory deviation in various dynamic 

environments. Finally, the modeled controller is able to learn and coordinate motor 

commands in environments requiring modification of both force and impedance.  

Such computational models, using only measurable variables and simple 

computation, may be used to simulate the effect of neuro-muscular disorders on 

movement control, to develop better controllers for neural prostheses and to design novel 

rehabilitation approaches. While developing this novel model, the author has also 

contributed related works including the realization of a hybrid IDM/impedance learning 

controller to stabilize unstable dynamics (Tee 2001, Burdet et al 2001C), a model of 

endpoint force and impedance (Tee et al 2003A, Tee et al 2003B) and a study of stability 

(Burdet et al 2001B) in human movements. 
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Introduction 

1 Introduction 

1.1 Motivation and Goal 

A common conception holds that humans can be distinguished from animals by their use 

of tools (Whiten et al 1998). Despite evidence that tool manipulation is not exclusive to 

humans (de Waal 1999,Weir et al 2002), the ability of humans to learn to wield a wide 

range of tools dexterously in different environments is exceptional. How are humans able 

to constantly adapt to novel tasks with distinct dynamics? As a specific example, let us 

consider the novel task of sculpting, which requires learning to produce the forces to move 

the chisel on the material surface and at the same time compensating for any potential 

destabilization due to material excrescencies and motor noise. To accomplish complex 

tasks such as sculpting, the central nervous system (CNS) coordinates muscles in the 

limbs to produce the appropriate force and impedance (i.e. the resistance to infinitesimal 

perturbations applied at the hand) during movement. 

When an action is performed for the first time, there is generally a need to monitor 

the movement continuously. However, when the action is repeated, the motion gradually 

becomes automatic, requiring less and less feedback control. In a similar way, a very 

successful algorithm, feedback error learning (FEL) (Albus 1975, Kawato et al 1987), 

learns the feedforward force to perform stable actions by minimizing feedback during 

repeated trials. Several studies suggest that the oculo-motor system uses a similar strategy 

(Yamamoto et al 2001, Kawato 1999, Gomi et al 1998, Kobayashi et al 1998, Shidara et 

al 1993). In multi-joint arm movements, FEL was found to be consistent with patterns of 

adaptation to stable dynamics (Shadmehr and Mussa-Ivaldi 1994, Conditt and Mussa-

Ivaldi 1997, Shadmehr and Holcomb 1997, Krakauer et al 1999). However, conventional 
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FEL cannot explain (Burdet et al 2001B, Osu et al 2003) the adaptation to unstable 

dynamics that are recently investigated (Milner and Cloutier 1993, Burdet et al 2001A). 

A novel algorithm is needed to explain how the CNS learns to perform motion in 

both stable and unstable dynamics. To address this need, we have developed a 

computational model that will be described in this thesis. The model suggests how the 

CNS adapts muscle forces in order to successfully perform novel motor tasks. It assumes 

that sensor afferents relay feedback to the CNS, which uses it to modulate feedforward 

command, and considers motor output variability. This model uses measurable variables 

and parameters such as muscle activation, hand force and trajectory, and is therefore 

testable. Despite being based on only a few assumptions, it is able to predict the main 

learning features observed in (Franklin et al 2003A, Osu et al 2003, Franklin et al 2003B, 

Franklin et al 2002).  

 

1.2 Related Experimental Results 

In recent experiments (Burdet et al 2001A, Franklin et al 2003A, Osu et al 2003, Franklin 

et al 2003B, Franklin et al 2002), human subjects performed horizontal reaching arm 

movements away from the body while interacting with a haptic interface that exerted 

forces on the hand (Fig. 1). In the null field (NF), the subjects performed straight 

movements towards the target. Introduction of a novel force field perturbed the movement 

significantly. However, with practice, all subjects were able to adapt to the force field and 

perform successful movements. Burdet et al 2001A, Franklin et al 2003A, Osu et al 2003, 

Franklin et al 2003B analysed, in particular, the adaptation to a velocity-dependent force  
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Fig. 1 Motor adaptation experiment of (Burdet et al 2001A, Franklin et al 2003A, Franklin et al 2003B, Osu 
et al 2003). A: The subjects adapted to forces produced during movement by a robotic interface. B: Hand 
trajectories in the null field condition (NF) are almost straight to the target. C, D: The two kinds of force 
fields studied and corresponding trajectory adaptation.  E, F: Endpoint stiffness after adaptation to the force 
fields. 

 

field (VF) producing a stable interaction with the arm, and a divergent force field (DF) 

producing an unstable interaction. The hand trajectory, endpoint force and stiffness, as 

well as the electromyogram (EMG) of shoulder, elbow and biarticular muscles were 

measured during movement, with the following observations: 

• When learning VF, the trajectories become similar to NF trajectories in less than 

10 trials. In DF, adaptation is slower, with the trajectories becoming similar to 

NF trajectories after 25 trials. 

3 



Introduction 

 
Fig. 2 EMG measurements (Franklin et al 2003B) of 6 muscles in the human arm during adaptation to the 
velocity-dependent force field (VF) and the divergent force field (DF), normalized with respect to EMG in 
null field (NF). The curves are double exponential functions best-fit with least square error. The 6 muscles 
form flexor-extensor pairs for the reaching movements studied. 

 

• In both VF and DF, the initial sharp increase of muscle activity due to 

cocontraction of agonist-antagonist muscles is followed by a gradual relaxation 

(Fig. 2). 

• For VF, when the force field is unexpectedly shut down after adaptation, 

movements (termed after effects) are curved in the direction opposite to the 

force, suggesting that an inverse dynamics model was acquired during 

adaptation. The activity of extensor muscles is high after learning. 

• During adaptation DF, hand stiffness is increased selectively along the direction 

of instability (Fig. 1), producing a stability margin (i.e. difference between 

adapted and environmental stiffness) that is similar to NF stiffness. 

Correspondingly, after effect trials in DF are characterized by a decrease of 

deviation relative to NF movements. 
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• The direction of trajectory error in DF alternates left and right of the mean 

trajectory during the early stage of learning. This contrasts sharply with 

trajectory error in VF, which is initially biased to the left and decays in a manner 

that is consistent with feedback error learning. Both suggest that some feedback 

error learning is taking place in motor adaptation. 

• The initial trials in novel dynamics show an increase of muscle activation that is 

correlated with muscle stretch. When an agonist muscle is stretched, the 

antagonist activation will be increased even though the antagonist is not 

stretched.  

 

1.3 Overview of model 

Our novel model describes how muscle activation is adapted to perform successful 

movements in novel dynamics. It is defined by the three properties: 

1. A stretch in a muscle elicits a correlated reflex signal in itself as well as in its 

antagonist.  

2. For each muscle, the reflex feedback is used to update the feedforward command 

on the next trial, inducing an increase of endpoint impedance. 

3. The feedforward cocontraction signals of all muscle pairs decay slowly, and the 

muscle pair with the largest cocontraction decays faster. 

Adaptive compensation for the mean external force is realized through the second 

property, which is feedback error learning at the muscle level. Although the agonist-

antagonist muscle pairs are independent, dynamic coupling arises through feedback error 

learning with repetition of the movement. This is similar to conventional FEL proposed in 
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(Kawato et al 1987). The first and third properties ensure that the stiffness ellipse is 

elongated in the direction of instability. 

In unstable dynamics consecutive movements deviate in different directions. With 

the first two properties, it leads to the coactivation of all muscles (Fig. 5). Hence, our 

algorithm is able to stabilise unstable dynamics, in contrast to FEL (Burdet et al 2001B, 

Burdet et al 2003) and also all existing controllers. 

In principle, increasing coactivation leads to a more robust control and less trajectory 

deviation. However, noise is increasing with coactivation. The adaptive controller tends to 

seek a balance between low deviation and low coactivation. 
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Force

motor
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Fig. 3 Dynamics of motion generation, consisting of feedforward, reflex and noise in the motor command, 
spring-like forces in the muscles, and forces from the environment acting on the moving body part. Error 
between the actual and planned movements produces a restoring force arising from muscle elasticity and the 
(delayed) reflexes. Afferent signals that evoke reflexes modulate the descending feedforward from the CNS 
via feedback error learning. 
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2 Model of Human Motor Adaptation 

Models of human motor adaptation can be broadly classified into two categories: those 

assuming the Internal Model hypothesis and those assuming the Equilibrium Point 

Trajectory hypothesis. The Internal Model hypothesis asserts that the CNS acquires 

internal representations of the dynamics of interactions with the external world, which it 

uses to predict motor commands and execute movements successfully. The Equilibrium 

Point Trajectory hypothesis postulates that, to learn motor skills, the CNS only needs to 

utilize kinematic information in the form of an equilibrium trajectory.  This is possible due 

to muscle viscoelasticity and reflexes, which generate servo action whenever there is an 

error between the actual state and the equilibrium state.   

Our model of motor adaptation is in line with the Internal Model hypothesis, and 

postulates that stretch reflexes, elicited by trajectory error, contribute to the formation of 

an inverse dynamics model and to an increase of muscle coactivation.  

Previous models have focused on the learning of inverse dynamics in stable 

interactions using neural network (Kawato et al 1987) or adaptive control (Burdet 1996). 

Stroeve 1999 modelled a motor control system that used a single neural network to learn 

both the inverse dynamics model and impedance in a stable interaction. However, it is 

unclear if these models will be successful in predicting the necessary increase of 

impedance in unstable interactions. By considering the learning process at the muscle 

level, our model provides a novel unified framework for learning both the inverse 

dynamics model and the necessary impedance for stability, in both stable and unstable 

interactions.  
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In the following sections, we shall examine how the main dynamic components in 

movement control are modeled. These are namely the arm dynamics, muscle 

viscoelasticity and reflexes, motor noise and the feedforward motor command. Finally we 

shall look at how our algorithm leads to the learning of appropriate feedforward motor 

command in both stable and unstable dynamics. 

 

2.1 Movement control 

The dynamics of motion generation are shown in Fig. 3. A list of all the equations 

governing the model is given in Appendix C.  

Muscles produce the force to generate movement, as expressed by the following 

equation: 

TASK DYNAMICS = MUSCLE       (1) 

The task dynamics comprises the dynamics to move the limb, which we model by 

the rigid-BODY dynamics, and to counteract the external FORCE from the environment: 

TASK DYNAMICS = BODY + FORCE      (2) 

The muscle force stems from the total motor COMMAND comprising the 

descending (efferent) command and reflexes, and from SPRING, the mechanical 

impedance (i.e. resistance to infinitesimal perturbation of the state) produced by muscle 

mechanics: 

MUSCLE = COMMAND + SPRING      (3) 

The motor command can be evaluated from the EMG signal, and impedance from 

measurements of the restoring force due to small perturbations (Mussa-Ivaldi et al 1985, 
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Burdet et al 2000). We further consider that impedance increases with motor command 

(Hunter and Kearney 1982, Gomi and Osu 1998). 

We assume that the motor command is composed of a descending feedforward 

command (FF), updated with repeated movements; neural feedback, represented by the 

stretch REFLEX; and motor NOISE that increases with muscle activation: 

COMMAND = FF + REFLEX + NOISE      (4) 

 

 
target

Fe

start

τ2

τ1

x 

Y 

q2

q1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 The arm model used in simulation consists of two segments, two joints and six muscles. Blue: 
shoulder muscles with moment arms ρ1=ρ2. Red: elbow muscles with moment arms ρ3=ρ4. Green: 
biarticular muscles with moment arms ρ5=ρ6 at the shoulder and ρ7=ρ8 at the elbow.  Dashed lines represent 
flexor muscles while solid lines represent extensor muscles. Hand coordinates (x,y) are relative to the 
shoulder. τ1 and τ2 are the shoulder and elbow torques respectively; q1 and q2 are the shoulder and elbow 
angles respectively. Reaching movement is generated from start to target while interacting with the external 
force Fe. 
 
 
Equations (1) to (4) yield 

BODY + FORCE  = FF + SPRING + REFLEX + NOISE    (5) 
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which describes the dynamics of the arm controlled by the CNS to perform a task. To 

compute the resulting motion, this equation will be integrated in joint space. 

2.2 Rigid Body Kinematics and Dynamics 

The kinematic and dynamics transformations between the hand, joint and muscle spaces 

are summarized in Table 1. Vectors and matrices are denoted in bold and scalars in italic. 

In hand space, x is the hand position, and F the force exerted on the hand. In joint space, q 

is the joint position, qv the joint velocity, and τ the joint torque. In muscle space, λ is the 

vector of muscles lengths, λv the corresponding velocity and m the muscle tensions. 

 
Table 1 Kinematic and dynamic transformations between the hand, joint and muscle spaces 

 
hand  joint  muscle  

x  q  λ position 

v J qv qv Jm qv λv velocity 

F JTF τ Jm
Tm m force 

Kx JTKxJ + (dJT/dq)F Kq Jm
TκJm κ stiffness 

 
 

The rigid body dynamics have the general form (deWit et al 1996):  

BODY(q,qv,qa) = H(q)qa + C(q,qv)qv + G(q)      (6) 

where H(q) denotes the mass matrix, qa denotes the joint acceleration, C(q,qv)qv denotes 

Corioli’s and centrifugal forces and G(q) denotes the forces due to gravity. For horizontal 

movements G(q) can be neglected.  

For the 2-link 6-muscle model which is used in the simulations (Fig. 4), x, q, τ, F are 

2x1 vectors, λ, m are 6x1 vectors, Jm is a 2x6 matrix, J, Kx, Kq are 2x2 matrices and Km 

is a 6x6 matrix. The indices are labeled as follows: 
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• In hand space, x=[x1 x2]T : 1 for x-position, and 2 for y-position relative to 

shoulder joint. 

• In joint space, q=[q1 q2]T: 1 for shoulder, and 2 for elbow. 

• In muscle space, m=[m1 m2 …m6]T : 1 and 2 for shoulder monoarticular muscles, 

3 and 4 for elbow monoarticular muscles, 5 and 6 for biarticular muscles.  

The transformation matrix between joint space and muscle space corresponds to the 

moment arms ρ1 to ρ8 of the six muscles at the two joints, and we assume them to be 

constant: 

T

8743

6521
m 00

00
⎥⎦
⎤

⎢⎣
⎡=

−
−−
ρρρρ
ρρρρJ        (7) 

All the above transformations, as well as the rigid body dynamics model, are described in 

Appendices A and B respectively. 

 

2.3 Muscle viscoelasticity and reflexes 

The muscle spring-like property, i.e. the phenomenon where the hand returns to the 

undisturbed trajectory after a perturbation (Milner 1993, Won and Hogan 1995), stems 

from muscle viscoelasticity and from stretch reflex. Their main characteristics are as 

follows:  

• When there is a displacement in muscle length, there is an immediate increase in 

muscle force arising from muscle elasticity, which is due to the mechanical 

properties of cross-bridges and passive tissue.  

• This response is supplemented by the delayed stretch reflex mediated through 

afferent pathways.  
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• Both muscle stiffness and reflex gain increase with muscle force (Sinkjaer 1988). 

• Reflex EMG has been found to have a linear relation with muscle stretch velocity 

(Eng and Hoffer 1997, Nakazawa 2001).  

• Reflex activity of antagonist increases even though only agonist muscle is 

stretched (Milner 1995, Franklin 2003B). 

Both muscle viscoelasticity and reflex are modeled in muscle space as some 

proportional-and-derivative terms of muscle stretch ∆λ(t). For each muscle, the 

viscoelastic restoring force is represented as:  

s(t)= κ [∆λ(t) +  κd ∆λv(t)] I{∆λ(t)>0}         (8) 

where κ is the muscle stiffness, κd is the ratio of muscle viscosity to stiffness, I is the 

Kronecker indicator function defined by Icondition≡1 when the condition is fulfilled and 0 

otherwise. The stretch ∆λ = λ-λd is computed relative to the planned trajectory in muscle 

coordinates, λd(t).  

The reflexes ra and raa in agonist-antagonist muscle pair are modeled as 

ra (t)= ea(t) + β eaa(t)         (9) 

raa(t) = eaa(t) + β ea(t) 

where  

e(t)= g [∆λ(t-φ) + gd ∆λv(t-φ)] I{∆λ(t)>0}          (10) 

is the error signal of each muscle, β  yields the strength of cross reflexes and φ is the reflex 

delay. The subscripts a and aa denote agonist and antagonist muscles respectively.  
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The results of (Hunter and Kearney 1982, Gomi and Osu 1998) show that impedance 

increases with the force produced. Similarly, we assume that both the intrinsic stiffness κ 

and the reflex gain g increase linearly with muscle activity. For each muscle,  

κ(t) = κ0 + κ1 m(t) and g(t) = g0 + g1 m(t) .     (11) 

κ0, κ1, g0 and g1 are chosen to be identical across all muscles. With this constraint, each 

muscle has an equal likelihood of increasing its stiffness and reflex gain based on the 

amount of stretch it is subjected to. The muscles that are more activated and/or stretched 

will have correspondingly higher stiffness and reflex gains. 

 
2.4 Motor Noise 

During planning and execution of movements by the CNS, noise at the neural level 

corrupts the signals that encode sensory information and motor command. This is 

manifested in higher cognitive levels as variability in visual and proprioceptive perception 

(Foley and Held 1972, van Beers et al 1998), motor output (Fitts 1954, Schmidt et al 

1979), and internal estimation of the body’s state by the CNS (Festinger and Canon 1965, 

Wolpert et al 1995). For simplicity, we model only the overall effect of these noise 

sources as deviation in muscle tension.  

Empirical findings, in isometric force production (Schmidt et al 1979, Meyer et al 

1998, Jones et al 2002) and in movement (Nakano et al 2002), show that the standard 

deviation of force produced in the muscles scales linearly with the mean force. These 

evidences directly support the long-held assumption that motor noise is signal dependent. 

Hence we require motor noise to be monotonously increasing with the total motor 
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command comprising the feedforward FF and stretch REFLEX. This can be symbolically 

expressed as:  

COMMAND = (FF + REFLEX)(1 + NOISE)     (12) 

In Section 3.3, the linear model of motor noise that we implement in simulation will be 

described in detail. 

 

2.5 Learning Algorithm 

The learning algorithm realizes feedback error learning at the muscle level. The idea is 

that muscle reflex is representative of the force to move the arm along the desired 

movement. Therefore it can be incorporated into the feedforward command for the next 

trial to provide the force necessary to move the arm along the desired movement. While 

this is similar to conventional feedback error learning or iterative control in joint space 

(Kawato et al 1987, Bien and Xu 1998, Burdet et al 1998), a fundamental difference 

appears when consecutive trials oscillate around the mean trajectory as typically occurring 

in unstable situations (Osu et al 2003, Burdet et al 2003). 

To provide an illustrative example of how muscle FEL stabilises unstable dynamics, 

let us consider the activities of biarticular muscles during multijoint arm movement in an 

unstable interaction. The interaction causes consecutive trajectories to alternate on either 

side of the mean trajectory (Fig. 5). When the movement is initially to the right, the 

biarticular flexor is stretched and experiences an increase of activity due to muscle 

elasticity and reflex. If we neglect the cross reflex in this example, then the biarticular 

extensor does not increase activity since it is shortened. In the subsequent trial, the 

feedforward for the flexor is increased due to muscle FEL, However, in the given unstable 
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interaction, this results in a movement to the left, eliciting a reflex increase of activity in 

the extensor that is in turn incorporated into the feedforward of the extensor. In addition to 

learning a mean force of zero, as in the case of conventional (joint) FEL, muscle FEL also 

leads to a build-up of cocontraction of agonist and antagonist muscles. This provides an 

increase of arm impedance, as shown in (11) and Table 1, that gradually compensates for 

the instability. 

 

Fig. 5 Feedback error learning at the muscle level can stabilize unstable dynamics. Movements in DF for 
initial trials and after adaptation are shown in the top row. Centerline is shown dotted. Biarticular muscle 
forces are shown in the bottom row, with dotted lines representing the feedforward component and solid 
lines representing sum of feedforward and feedback components. Movements alternating left and right of the 
centerline result in a buildup of cocontraction in both muscles, hence increasing impedance. Results are 
simulated. 
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Cocontraction is further increased with the inclusion of the cross term in reflexes, as 

described in (9). To remove superfluous cocontraction during adaptation, muscle 

deactivation is necessary. Thus the learning algorithm can be formulated as: 

mk+1(t)≡ mk(t) – γ(t) + α r(t+ϕ)        (14) 

The superscript k denotes the number of elapsed learning trials, m is the feedforward 

muscle tension, γ the deactivation term, r the reflex and α the learning factor. The phase 

advance ϕ in the feedforward update is taken to be equal to the reflex delay φ in (10). 

 

Fig. 6 Reciprocal activation and cocontraction in agonist-antagonist muscle pair. The feedforward muscle 
tension (black) is composed of reciprocal activation (blue) and cocontraction (red). Reciprocal activation is 
defined by the difference of muscle forces i.e. (ma-maa), and cocontraction by the common force in both 
muscles i.e. ½ (ma+maa-|ma-maa|). 

  

The results of Section 5 show that this simple algorithm concurrently learns the 

inverse dynamics and the increase in impedance required for stable task performance in 

unstable or stable dynamics. For equal moment arms ρ of the agonist and antagonist on 

the same joint, the amount of cocontraction v and feedforward torque u (Fig. 6) are:  

v= ½(ma+maa–|ma–maa|)        (15) 
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uk+1 = ρ ( ma
k+1–maa

k+1)  

       = ρ [ma
k–maa

k + α (ra–raa)] 

       = uk + α ρ (ra–raa) 

       = uk + α τr

It can be seen that the torque is updated in a manner similar to the classical feedback 

error learning algorithm (Kawato et al 1987, Burdet et al 1998), i.e. the reflex torque τr 

serves as the teacher signal to update the feedforward torque, leading to the acquisition of 

an inverse dynamics model (Slotine 1991). 

 

2.6 Learning Factor  

All muscles have the same learning factor α that increases with the kinematic stretch error 

of muscles within the movement. In particular, we consider the time-averaged stretch error 

of the agonist and antagonist within each muscle pair, and then take the maximum 

amongst the three muscle pairs:  

ek≡ (1/T) maxj ∫0
T [∆λa

k(t) + ∆λaa
k(t)]j dt      (16) 

T is the movement time, k is the trial number, and j is the muscle pair index. Taking the 

maximum ensures a sensitive trigger condition for learning. 

This will derive a single measure of stretch error ē for each movement that in turn 

determines the learning factor α   

ēk≡ (1-η) ēk-1 + η ek          (17) 

α≡ ½ α0[1+ tanh(σ (ēk-ε ))]        (18) 
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Equation (17) is necessary to average the stretch error over previous trials, otherwise 

the error signal is very noisy due to movement variability. The threshold error ε in (18) 

prevents an unbounded increase of impedance to eliminate motion variability. An 

alternative would be to implement a constant learning factor and a threshold in the reflex, 

so that when kinematic error is within normal motion variability, there will be no reflex 

action and hence no learning. However, the reflex error signal can be very noisy. Without 

any averaging of inter-trial errors, learning performance may not be satisfactory.  

 

2.7 Anisotropic Impedance Learning 

The following two-step adaptation strategy results in anisotropic impedance along the 

direction of instability, as was observed in experiments (Burdet at al 2001A).   

Step 1. Through muscle FEL, an imposed deviation in a (Cartesian) direction induces an 

increase of endpoint stiffness in about the same direction.  

Step 2. Selective deactivation is performed to minimize superfluous muscle cocontraction 

not required for task stabilization.  

 

Step 1: Increase of endpoint stiffness in the direction of imposed deviation 

The increase of stiffness due to the shoulder and elbow single-joint muscles is always in 

the same direction independent of the moment arms. On the other hand, the direction of 

stiffness increase resulting from cocontraction of biarticular muscles depends on the ratio 

of the moment arms at the two joints spanned by the muscles. To investigate whether the 

direction of stiffness change is correlated with the direction of the deviation, we compute 

the change of endpoint stiffness ∆Kx corresponding to the trajectory deviation ∆x. The 
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variables used here are defined in Section 2.2. From Table 1, the muscle stretch 

corresponding to deviation ∆x is  

∆λ = JmJ-1∆x .          (19) 

Feedback error learning in muscle space gives an increase of muscle force 

proportional to the imposed muscle stretch:  

∆m= diag[α1,α2, ..α6] ∆λ = diag[α1,α2, ..α6] JmJ-1∆x      (20) 

The associated modulation of stiffness is equal to diag[κ-1∆m] in muscle space. The 

change in endpoint stiffness resulting from a deviation ∆x is expressed as  

∆Kx = (JmJ-1)T diag(κ1 ∆m) (JmJ-1)        (21) 

The geometry of stiffness increase depends on the learning factors α1,α2, ..α6  and 

on Jm, i.e. the moment arms. In order to visualize endpoint stiffness in the Cartesian 

workspace, we represent stiffness as an ellipse, which is obtained by plotting the 

coordinates of the force vectors Fs(θ) generated by a unit rotating input displacement 

vector. The stiffness ellipse is represented as: 

Fs(θ) = Kx ⎥
⎦

⎤
⎢
⎣

⎡
θ
θ

sin
cos

 0<θ<2π       (22) 

It can be seen that with all the learning factors set to 1, and moment arms identical, 

the increase of endpoint stiffness induced by a deviation ∆x = (1,0) is not in the same 

direction (Fig. 10). In our model, for simplicity, the learning factors are set equal, i.e. 

α≡ α1=α2 =α3=α4 =α5=α6 , and the moment arms are appropriately chosen to produce a 

stiffness change that is in the same direction as the imposed deviation. An alternative 
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would be to vary the learning factors. This would suggest the possibility that the CNS 

adaptively compensates for the inherent moment arms.  

 

Step 2: Selective deactivation 

Muscle FEL as described in (14) does not automatically produce the selective increase of 

impedance in the direction of instability as observed in (Burdet et al 2001A). Rather, 

superfluous increase of impedance is also produced in directions that are relatively stable. 

To remove superfluous impedance, anisotropic deactivation is required. This can be 

realized through a combination of two strategies: 

i. An independent deactivation process where each muscle pair decreases activity 

relative to itself and independently of the other muscle pairs, realized by: 

γi(t)= γ0 vi(t)         (23) 

where γ0 represents the decay factor, and subscript i represents either shoulder, 

elbow or biarticular muscle pair. 

The associated decrease in stiffness is isotropic and will not produce the elongated 

ellipses (Fig. 1E) observed in the experiment (Burdet et al 2001A).  

ii. A homogenous deactivation process, where all muscles decrease activity by the 

same amount. One possibility is to consider the mean cocontraction level of all 

muscle pairs:  

γi(t)=  γ0 [vi(t)+vj1(t)+vj2(t)]/3  where j1,j2≠ i    (24) 
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The principle of this deactivation process is that the decrease of cocontraction in 

one muscle pair may ‘diffuse’ to the other muscle pairs. It can be easily shown that 

if  

vi>{vj1, vj2 }  

then  

{γj1/vj1, γj2/vj2 }>γi/vi   

meaning that the relative decay of muscle pairs j1 and j2 will be higher than that of 

muscle pair i. This diffusion results in anisotropic stiffness decrease by causing a 

faster deactivation in the muscle pairs with relatively smaller cocontraction level 

(winner-takes-all). 

Combining these two strategies yields a more general form, where the relative rate of 

deactivation of the muscle pairs is determined by γ1.   

γi(t)= γ0 [γ1 vi(t) + ½ (1-γ1) vj1(t) +  ½ (1-γ1) vj2(t)]         (25) 

where γ0>0, 1/3<γ1<1. 
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3 Implementation 

Section 2 has generally described the dynamic equations of the model in terms of its 

parameters. To investigate the control and learning behavior resulting from these 

equations, and thereafter to evaluate the plausibility and robustness of the model, 

simulations need to be performed. In this chapter, we will look at the definition of the 

movement tasks to be simulated, as well as the issues in implementation, namely the 

algorithm for integrating the motion and the selection of parameters for muscle elasticity, 

reflex, noise and learning. 

 

3.1 Simulation of Movement Tasks 

The simulation of the learning model is based on experimental conditions similar to that in 

real experiments (Burdet et al 2001A, Franklin et al 2003A, Osu et al 2003, Franklin et al 

2003B, Franklin et al 2002). This section defines the movement task, physical constraints, 

and environmental interactions in the computational experiment.  

The start and target locations for simulated movements are at (x,y)=(0,0.31)m and 

(0,0.56)m respectively, with the coordinates relative to the shoulder joint. The movement 

is constrained such that shoulder and elbow movements are on the horizontal plane. 

Duration of movement is 600ms. 

Before interaction with novel dynamics, the dynamics of null field movements are to 

be learnt. To do this, the muscle forces are first initialized from the feedforward joint 

torque by minimising the sum of squared muscle forces (Pedotti 1978, Collins 1995) i.e. 

mTm. Then, the optimal muscle forces are modified through learning in 100 NF 
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movements. The mean muscle forces obtained over the last 20 trials are used as the 

feedforward command at the start of any novel dynamics learning. 

 

 

Fig. 7 Velocity-dependent field (VF) producing stable dynamics and diverging field (DF) producing 
unstable dynamics. Top row: Vector field of the external force as a function of hand velocity for VF and 
hand position for DF. Bottom row: External force experienced when movement trajectory deviates slightly 
left and right of the straight line along the y-axis.  

 

The external force consists of not only the novel dynamics arising from interaction 

with the environment, but also the friction and inertia of the parallel link direct drive air 

and magnet floating manipulandum (PFM) used in (Burdet et al 2001A, Franklin et al 

2003A, Osu et al 2003, Franklin et al 2003B, Franklin et al 2002). The PFM dynamics, 

with parameters identified by (Franklin 2002), are represented as: 

τPFM = JT[M a + Dd v + tanh(200 Ds v)]       (26) 
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where M= ,  D⎥⎦
⎤

⎢⎣
⎡

404.10
0516.1

d = , D⎥⎦
⎤

⎢⎣
⎡

592.70
0247.10

s = ; v and a are the hand 

velocity and acceleration respectively. The static friction dynamics are smoothened by the 

hyperbolic tangent function. 

⎥⎦
⎤

⎢⎣
⎡

356.00
0102.0

Movements are performed in novel dynamics and adaptation is allowed to take place 

for 100 learning trials. Two types of novel dynamics, representative of stable and unstable 

interactions, are simulated:  

i. Velocity-Dependent Field (VF) 

FVF= v        (27) ⎥⎦
⎤

⎢⎣
⎡

−−
−

1318
1813

With this force field, a stable interaction with the arm is produced, as can be 

inferred from the eigenvalues of the linearized coupled system. Despite different 

trajectories to the left and right of the straight line along the y-axis, the external 

forces acting on the hand are similar (Fig. 7), and hence reproducible. The force 

field is shut down when the hand is within 0.0125m radius of the target.  

ii. Position-dependent Diverging Field (DF)  

FDF = (-350x, 0)        (28) 

The DF produces a force proportional to the hand position as measured from the y-

axis, resulting in an unstable interaction with the arm. The force field is shut down 

when the hand is within 0.0125m radius of the target. The net stiffness, defined by 

the sum of the negative environmental stiffness and the endpoint stiffness of the 

arm, has negative eigenvalues before adaptation, leading to instability when there 

is a perturbation. As a result, movements diverge irretrievably (Fig. 7).  
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To prevent “breaking the arm”, there is a boundary 4cm from the centerline and on 

both sides. When the hand reaches this boundary, the force field is shut down and 

a restoring force F=(40 , 0) is applied on the hand for the duration of which the 

hand is outside the boundary. When the hand falls within the boundary again, it is 

allowed to move freely to the target. 

x&

 

3.2 Motion Integration 

The algorithm for motion integration is shown in the flowchart of Fig. 8. 

Anthropometrical data for the segments (Diffrient et al 1978), used in the motion 

simulations, are shown in Table 2. 

The planned trajectory in Cartesian space, xd, is defined as the mean NF trajectory 

measured in (Burdet et al 2001A). During the computation of the mean trajectory, a 

velocity threshold of 0.001ms-1 is used to define the start of each experimental movement. 

The planned trajectory in joint coordinates qd is realized via inverse kinematics (Appendix 

A).   

Table 2 Anthropometrical data for arm segments 

 
 

Mass (kg) Length (m) 

Center of mass 
relative to 

proximal joint    
(m) 

Mass moment of 
inertia (kg m2) 

Upper arm 1.93 0.29 0.165 0.0141 

Forearm 1.52 0.34 0.19 0.0188 
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Feedforward
muscle tension

mFF

Total muscle
tension

m=mFF+mFB

Feedforward
torque

τFF=Jm
T mFF

Motion integration
in joint space

Error in muscle
length

∆λ=Jm∆q

Feedback muscle
force

mFB=R+S

Signal-dependent
noise

N=(µp+µam)υ

Noise torque
τN=Jm

T N

Reflex torque
τR=Jm

T R

Elastic muscle force
S=κ(∆λ+κd∆λv)

Reflex  muscle force
R=g(∆λ+gd∆λv)

Joint trajectory
error ∆q

reflex gain
g=gp+gam

delay

muscle stiffness
κ=κp+κam

Torque due to muscle
elasticity

τS=Jm
T κ Jm(∆q+κd∆qv)

Feedback error
learning

 

 

Fig. 8 Flowchart for motion integration algorithm. Motion integration is in joint space, with the inputs at any 
time being the feedforward torque, reflex torque, torque due to muscle elastic response, torque due to motor 
noise and external torque (not shown). Any error in movement resulting from this interaction of dynamics 
elicits changes in muscle forces (via reflexes and muscle elasticity) and hence affects the movement at the 
next time instant. The reflex of the movement is used to modulate the feedforward of the successive 
movement i.e. feedback error learning, shown in dotted line. 
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In order to curb oscillations after reaching the target, a high damping force is 

implemented when the y-displacement is more than 0.245m (y-displacement of the target 

is 0.25m). 

τv = JT(-50v)          (29) 

To obtain the movement resulting from the interaction of the arm and the 

environment, (5) is Euler integrated at 500Hz: 

qa(t)= Γ(q(t-∆t), qv(t-∆t), m(t-∆t))       (30) 

qv(t)= qv(t-∆t) + qa(t) ∆t 

q(t)= q(t-∆t) + qv(t-∆t) ∆t + ½ qa(t) ∆t2

where t is the movement time, ∆t the sampling time, and Γ the dynamics of interaction 

depending on the joint position q, joint velocity qv and muscle activity m of the previous 

time. 

The simulations are performed in Matlab 6.5 under Windows environment. 

 

3.3 Reflex, Impedance and Noise Parameters 

The interplay of reflex, impedance and noise in the motor control system produces the 

deviation in movements that we observe. We want to use reflex, impedance and noise 

parameters corresponding to experimental values and producing deviation similar to that 

of real movements. The dynamic equations and default parameter values used in 

simulation are listed in Appendix C. 
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3.3.1 Reflex and Impedance 

The learning controller described in Section 2.5 corresponds to a nonlinear adaptive 

controller in muscle space, with the reflex and impedance depending on the proportional 

and derivative terms of the imposed muscle stretch. It has been demonstrated 

mathematically that nonlinear adaptive controllers converge with any positive proportional 

or derivative term of the error (Bayard and Wen 1998), suggesting that in our case 

convergence should also occur with any positive proportional or derivative term of the 

stretch. Our simulations confirmed this. However, a zero derivative term resulted in 

slightly oscillating trajectories different from real movements. The selected proportional 

and derivative terms are plausible as long as they produce movements that are 

kinematically similar to real movements. 

In the impedance modeling, the following stiffness parameters are selected: κd= 

1/12, κ0=2844Nm-1, κ1=0.035m-1, producing stiffness ellipse in NF similar to what is 

measured in experiments (Franklin et al 2003, Burdet et al 2001A, Gomi and Kawato 

1997). 

In the reflex modeling, the strength of the cross reflex, β, is estimated to be 0.4 

(Franklin 2003B) and the reflex gains are selected as: g0=114Nm-1, g1=0.035m-1, gd= 2. 

Only long latency reflexes with a fixed delay φ=100ms are incorporated, because short 

latency reflexes are negligible for long-duration, low frequency perturbations (Lee and 

Tatton 1982), which characterise the task interactions of (Burdet et al 2001A). The onset 

of long latency EMG response typically is delayed by 55-65ms from the onset of 

perturbation. Considering that we are working with muscle forces and not EMG, there is 

an additional latency of 25-50ms to account for excitation-contraction coupling and time 
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to reach maximum muscle contraction. The sensitivity of the model to the reflex delay 

will be analyzed in Section 4.2.1.  

The above selection of parameters for reflex and impedance ensured a reflex 

contribution of 20-35% of total restoring response, similar to the physiological range of 

18-44% (Carter et al 1990).  

 

3.3.2 Noise 

Noise is realized as Brownian motion. This produces similar motion variability as in real 

movements. It is implemented in the following way. First, Gaussian noise is generated at 

500Hz, using the in-built Matlab random generator randn that is based on the Ziggurat 

Algorithm (Marsuglia and Tsang 1984). The high frequency content is then attenuated 

using a fifth order low-pass Butterworth filter with a cutoff frequency of 2Hz. Finally the 

delay (of 80ms, as we find through cross-correlation) inherent in this filter is compensated 

for, to obtain a noise series {ν(t)}. The noise for each muscle is then computed as  

n(t)= (µ0 + µ1m(t))ν(t)            (31) 

with µ0 =0.0725 and µ1 =6.5. 

 

3.3.3 Motion Variability 

To evaluate the selection of parameters for reflex, impedance and noise, inter-trial 

variability of simulated and real motion are compared. (Fig. 9A) shows that the 

histograms of absolute hand path error, defined by 

Ep= dttytx
T

o
)()(∫ &          (32) 
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with T as the movement time, are similar between simulated and real NF movements. 

Besides inter-trial variability, positional variance within movement is also compared (Fig. 

9B). There is a close match of positional variance for movement time up to about 700ms, 

after which the variance for real movements drops sharply. Since 700ms corresponds to 

the mean time when the hand reaches the target, the drop in variability of real movements 

can be explained by visual/voluntary correction, which is significant in the proximity of 

the target for reaching tasks. Because the model does not incorporate visual/voluntary 

feedback, it is expected that the variance of simulated movements is higher after 700ms. 

Nevertheless, this late phase of movement does not significantly affect the adaptation. On 

the whole, the above selection of reflex, impedance and noise parameters successfully 

produces motion variability similar to that of real movements. 

 

 

Fig. 9 Histograms of absolute hand path error and positional variances during simulated and real NF 
movements over 50 trials. 
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3.4 Learning Parameters 

3.4.1 Moment Arms 

Equal moment arms are taken for each pair of agonist and antagonist muscles acting at a 

joint. For the biarticular muscles, the moment arm ratio between the shoulder and elbow 

joints is selected such that a deviation ∆x = (1,0) produces a stiffness increase 

approximately in the same direction. This condition can be obtained with a ratio between 

1.3 and 1.5, of which we select 1.3. Fig. 10 shows how the different muscle pairs can 

modify endpoint stiffness. The increase of activity in each muscle pair causes endpoint 

stiffness to increase in a fixed direction by a magnitude depending on the moment arm. To 

obtain NF stiffness geometry as measured in experiment (Fig. 1E), the moment arms 

corresponding to the three muscles pairs are tuned. The matrix of moment arms is 

represented as: 

T

m 0338.00338.0017.0017.000
044.0044.000028.0028.0

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=J m   (33) 

 

3.4.2 Deactivation 

To obtain anisotropic stiffness modulation similar to what was measured in the 

experiments, the parameters γ0 =0.04 and γ1=0.7 are used in (24), with the condition:  

γ (t) =      v(t) for γ(t)> v(t)        (34) 

  γ(t) otherwise 

This ensures that only the built-up co-contraction, but not the learnt torque, decreases and 

in turn ma≥0 and maa≥0. 
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Fig. 10 Relationship between endpoint stiffness geometry, muscle pairs cocontraction, and moment arms. 
Each of the bold lines represent the axis along which the endpoint stiffness changes when the muscle 
stiffness or the moment arms of the pair changes. We term this the “muscle pair stiffness axis”.  With the 
endpoint perturbed in the (1,0)T direction (perpendicular to the movement), stiffness change ellipses ∆Kx 
resulting from feedback error learning are plotted for different ratios of moment arms of the biarticular 
muscle pair. Ratio is defined as ratio of moment arm spanning the shoulder to moment arm spanning the 
elbow.  Ratios between 1.3 and 1.7 produce elongation of the stiffness ellipse roughly in the direction of the 
perturbation. 

 

3.4.3 Learning Factor 

In the computation of the learning factor α from (17), the threshold error ε =5.65x10-4m is 

selected to give a low α  in NF movements such that there is minimal learning. 

σ=5500m−1 is selected such that there is adequate learning (high α) in the initial 

adaptation to novel dynamics and minimal learning (low α) after adaptation. 
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The parameter η is given by: 

η (k) =  2/5 for k<=8       (35) 

1/8 for k>8 

so that the initial learning will be more reactive to large changes in the kinematic error that 

characterize novel dynamics. After adaptation, the response to changes in error is more 

damped. 
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4 Results 

4.1 Adaptation to VF and DF 

The simulated hand trajectories, muscle activity and stiffness, during adaptation in both 

VF and DF, are highly consistent with experimental data (Burdet et al 2001A, Franklin et 

al 2003A, Osu et al 2003, Franklin et al 2003B) that are shown in Figs.1 and 2. 

The simulation results for adaptation to VF are shown in Fig. 11. The before effects, 

corresponding to movements subjected to the unexpected onset of the force field, show the 

effect of the force field before adaptation takes place. Like the before effects, the initial 

learning trials are perturbed to the left, but with a fast reduction of kinematic error over 

trials due to adaptation. Movements become fairly straight within 10 trials. The after 

effects, corresponding to adapted movements subjected to the unexpected shutdown of the 

force field, deviate to the right forming a mirror image of the before effects. This shows 

that an inverse dynamics model of VF has been acquired. 

The model predicts a sharp increase of muscle activity in the initial trials followed 

by the onset of gradual reduction after about ten trials. Due to the cross reflexes, there is 

an increase of flexor muscle activity in the initial learning phase even though the flexor 

muscles are not stretched.  

After adaptation, there is a distinct increase of reciprocal activation in the extensor 

muscles, corresponding to the acquired inverse dynamics of VF.  This can be distinctly 

identified in the shoulder muscles, which are primarily responsible for producing the 

necessary forces to compensate for VF. Cocontraction increases sharply in the initial 10 

trials and then undergoes a gradual decrease for all muscle pairs. Because of the relatively 
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larger activity in the shoulder muscles, the endpoint stiffness is larger in the direction of 

the shoulder pair stiffness axis (see Fig. 10). 

 

 

Fig. 11 Simulated adaptation to VF. A: Hand trajectories in initial and final adaptation, as well as after 
effects of adaptation. B: Adapted endpoint stiffness (black) and NF stiffness (green). C: Shoulder muscles 
activation in NF (green) and adapted (black) movements. D: Evolution of mean muscle forces (black) over 
100 learning trials in VF. Green lines represent the mean muscle force levels in NF movements. Blue and 
red represent mean levels of reciprocal activation and cocontraction respectively. 

 

Fig. 12 shows the simulated results for adaptation to DF. Initial movements, like 

before effects, diverge in both left and right directions, but after about 25 trials, 

movements are straight. After effects are also straight, showing that no meaningful inverse 

dynamics model of DF is learnt. This is expected since inverse dynamics models are only 
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meaningful when the dynamics to be learnt are reproducible, which is not the case for DF. 

The after effects also show significantly less deviation from the centerline as compared to 

NF movements, due to the increase of impedance in the x-direction. Relative to NF 

stiffness, the DF stiffness after adaptation is elongated in the direction of instability.  

 

 

Fig. 12 Simulated adaptation to DF. A: Hand trajectories in initial and final adaptation, as well as after 
effects of adaptation. B: Adapted endpoint stiffness (black) and NF stiffness (green). C: Biarticular muscles 
activation in NF (green) and adapted (black) movements. D: Evolution of mean muscle forces (black) over 
100 learning trials in DF. Green lines represent the mean muscle force levels in NF movements. Blue and 
red represent mean levels of reciprocal activation and cocontraction respectively. 
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There is a substantial increase in both flexor and extensor muscles after adaptation to 

DF, in contrast to the case of VF, which produced an increase only in the extensor 

muscles. Throughout adaptation to DF, reciprocal activation fluctuates at the same level 

but cocontraction undergoes a rapid initial increase in all muscle pairs followed by a 

gradual decrease after motion kinematic error is reduced (about 30 trials). Using (19), it 

can be shown that in DF, the biarticular muscles experience the maximal imposed stretch, 

followed by the shoulder muscles. The elbow muscles are hardly stretched. Following 

feedback error learning at the muscle level, the biarticular, shoulder and elbow muscles 

build up levels of cocontraction forces proportional to their respective stretch.  

To visualize how endpoint stiffness changes throughout learning, stiffness ellipses 

are plotted after every 20 trials (Fig. 13A). In the initial learning phase (<20 trials), 

stiffness is large and relatively elongated in the direction of instability. Subsequently it 

undergoes an isomorphic decrease of size. The stiffness components in the stiffness matrix 

Kx=   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

yyxy

xyxx

KK

KK

are also plotted against learning trials (Fig. 13B). For DF, there is a significant increase of 

Kxx to counteract the instability in the x-direction, and a superfluous increase of Kyy that is 

removed by 100 trials.  

In concurrence with impedance, the inverse dynamic model (IDM) of the 

environment changes throughout the learning (Fig. 13C). Here, we represent it in terms of 

feedforward joint torque. During adaptation to VF, there is a progressive increase of 

shoulder and elbow  extensor  torques, as  the IDM  is  being  learnt.  After adaptation,  the 
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Fig. 13 Evolution of endpoint stiffness and inverse dynamics model (IDM). A: Stiffness ellipses are plotted 
at intervals of 20 trials during adaptation, with increasing color tone corresponding to increasing number of 

trials. The NF ellipse is shown in green. B: Endpoint stiffness is defined as Kx= . The solid, 

dashed and dotted lines represent K
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

yyxy

xyxx
KK

KK

xx, Kxy and Kyy components respectively.  C: The IDM waveform in joint 
space is shown for trials {2, 4, 6, 50, 100} during adaptation. Color tones from yellow to red correspond to 
increasing trial numbers. Green corresponds to the mean IDM in NF. D: The IDM waveform for each trial is 
rectified and averaged over movement time to obtain the mean absolute IDM. The difference between the 
mean absolute IDM in the force field and in NF is plotted over learning trials.  
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IDM corresponds to VF dynamics. Adaptation to DF yields a different behavior, 

producing an IDM that consistently fluctuates about the mean level even after a large 

number of trials. This is because the movements in DF tend to oscillate about the mean 

trajectory. To view the change in the level of IDM over trials, we take the mean of 

absolute IDM torque over movement time for each trial relative to the NF (Fig. 13D). The 

mean absolute IDM increases and converges smoothly within 10 learning trials in VF, in 

contrast to the fluctuations about a constant level in DF. These results show that while 

IDM learning compensates for stable dynamics, it is ineffective for adapting to unstable 

dynamics. 

To investigate how the level of instability affects endpoint stiffness predicted by the 

model, we simulate adaptation to DF of different strengths. The external force is defined 

by 
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where κe denotes the strength of the field, with values of 200N/m, 300N/m, 400N/m and 

500N/m. Fig. 14 shows that as instability is increased along the x-direction, the adapted 

stiffness becomes increasingly elongated in the direction of instability with very minimal 

increase in the other directions. Hence the model has the property of producing the 

minimal stability margin needed to compensate for externally imposed instability. This is 

consistent with the experimental results of (Franklin et al 2003C), which suggests that the 

CNS employs a similar strategy minimizing metabolic cost when adapting to unstable 

dynamics.  
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Fig. 14 Stiffness adaptation to DF of different strengths, namely 200N/m (yellow), 300N/m (orange), 
400N/m (brown) and 500N/m (red). The NF stiffness is shown in green. A: Stiffness ellipses after 
adaptation. B: Stiffness component in the x-direction after adaptation. The net stiffness (i.e. the difference 
between the adapted stiffness and the environmental stiffness) in the x-direction is shown in blue. C: 
Stiffness component in the y-direction after adaptation. 
 

4.2 Sensitivity to parameters 

This section examines the sensitivity of the model’s behavior to changes in parameters. 

The model’s parameters can be categorized into three distinct groups: i) anthropometric 

parameters of the rigid-body model; ii) parameters influencing the control during 

movement; and iii) learning parameters. The sensitivity to the rigid-body parameters is not 

investigated, as the control depends smoothly and slowly on them and the performance do 

not vary with them.  

 
4.2.1 Sensitivity to control parameters 

As can be seen in Fig. 15, motion stability and learning are relatively insensitive to even a 

large delay in reflex. This is due to the fact that the feedforward learned in consecutive 

trials produces the motion dynamics, thus the feedback only needs to provide stability to 
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unexpected perturbations (Burdet et al 2003). When the delay is below about 100ms, there 

is almost no effect on learning and control. When the delay is larger, the control 

deteriorates slightly and requires a small increase of impedance for stability. 

 

 

Fig. 15 Sensitivity to reflex delay. For VF, delays of 60, 100, and 200ms are represented by light blue, 
medium blue and dark blue respectively. For DF, delays of 60, 100, 150 and 200ms are represented by 
yellow, light orange, medium orange and red respectively. NF is represented by green. A: Evolution of mean 
muscle forces during adaptation. B: Evolution of absolute hand path error during adaptation. C: Stiffness 
after adaptation to novel dynamics. 
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Fig. 16 illustrates how impedance depends on motor noise. When the noise in (31) is 

uniformly scaled by a factor s>1, the NF stiffness ellipse is enlarged isomorphically to 

produce stable movements. When s<1, NF stiffness decreases due to deactivation. 

Subsequent adaptation in DF produces elongated stiffness increase in the direction of 

instability. The algorithm learns to increase impedance to guarantee similar deviation in 

all noise conditions.  

 

 

Fig. 16 Coupling between impedance and motor noise. Dotted: NF stiffness. Solid: stiffness after adaptation 
to DF. s is a scaling factor multiplying noise in (31). 

 

4.2.2 Sensitivity to learning parameters 

Cross reflex strength  

Fig. 17 shows the sensitivity to the cross reflex strength β. Higher β results in larger 

cocontraction, as seen in the simultaneous increase of flexor and extensor muscle forces. 

42 



Results 

The large impedance obtained after adaptation reduces movement deviation. Also, high β 

results in low reflex torque and hence a slow decrease of kinematic error in interactions 

requiring modification of torque. This explains the slow adaptation to VF and the large 

build-up of muscle force. When β is zero, i.e. there is no cross reflex, adaptation to DF is 

still successful, yielding sufficient stiffness to compensate for instability. 

 

Fig. 17 Sensitivity to cross reflex strength β. The β values of 0, 0.4 and 0.8 are represented by light, medium 
and dark blue respectively for VF and by yellow, orange and red respectively for DF. NF is represented by 
green. A: Evolution of mean muscle forces during adaptation. B: Evolution of absolute hand path error 
during adaptation. C: Stiffness after adaptation to novel dynamics. 

43 



Results 

 

Fig. 18 Sensitivity to learning factor α0. The α0 values of 1, 3 and 6 are represented by light, medium and 
dark blue respectively for VF and by yellow, orange and red respectively for DF. NF is represented by 
green. A: Evolution of mean muscle forces during adaptation. B: Evolution of absolute hand path error 
during adaptation. C: Stiffness after adaptation to novel dynamics. 

 

Learning factor and decay rate 

Fig. 18 shows the sensitivity to the learning factor α0. When α0 increases, there is an 

overall increase of muscle forces and a decrease of absolute hand path error. This trend 

can be seen in both the transient and final adaptation. A higher α0 gives faster rise time, 

larger maximum overshoot and higher steady state value. The final stiffness increases as 
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α0 increases. When α0 is too low, learning in DF is unsuccessful since the final stiffness is 

not sufficiently large to compensate for the instability. This can be seen in the absolute 

hand path error, which is significantly higher than that of NF. 

 

 

Fig. 19 Sensitivity to decay rate γ0. The γ0 values of 0.01, 0.04 and 0.08 are represented by light, medium 
and dark blue respectively for VF and by yellow, orange and red respectively for DF. NF is represented by 
green. A: Evolution of mean muscle forces during adaptation. B: Evolution of absolute hand path error 
during adaptation. C: Stiffness after adaptation to novel dynamics. 
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Fig. 19 shows the sensitivity to the decay rate γ0. It can be seen that a low γ0 results 

in a slow rate of decrease of muscle forces. The final stiffness is large and the hand path 

error is small. Conversely, high γ0 prevents sufficient increase of stiffness to compensate 

for the instability in DF, resulting in movements that are unsuccessful even after extensive 

learning. 

While α0 and γ0 have different effects on the transients of learning, their effects on 

the final stiffness are similar. Large asymptotic stiffness results from either a large α0 or a 

small γ0, and small asymptotic stiffness results from the converse relationship. Therefore 

the size of the adapted stiffness increases with the ratio α0/γ0. A large ratio leads to 

excessive stiffness increase that is more than required to stabilise motion. A small ratio 

results in inadequate increase of stiffness in DF and unsuccessful movements even after a 

long learning phase. 

 
Relative decay ratio 

Fig. 20 shows the sensitivity to the relative decay ratio γ1. γ1=1 corresponds to 

independent deactivation in all muscle pairs, described in (23), and results in shoulder and 

elbow muscle activity being larger than required. This yields stiffness that is not reduced 

even in relatively stable directions. γ1=0.33 corresponds to homogenous deactivation 

described in (24) and results in large muscle forces in the biarticular muscles for DF and 

in the shoulder muscles for VF. These muscle pairs have large activities because they are 

maximally stretched in the respective force fields. The activities in other muscle pairs 

decrease rapidly. γ1=0.7 gives a more moderate build-up of activity in the muscle pair that 

is maximally stretched. At the same time, the activities in the other muscle pairs do not 
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decrease so rapidly. As γ1 decreases, the adapted stiffness becomes increasingly elongated 

along the stiffness axis of the maximally stretched muscle pair. There is faster decay of 

activity in all muscle pairs except the pair that is primarily stretched, which experiences an 

increasing build-up.  

 

 

Fig. 20 Sensitivity to relative decay factor γ1. The γ1 values of 0.33, 0.7 and 1are represented by light, 
medium and dark blue respectively for VF and by yellow, orange and red respectively for DF. NF is 
represented by green. A: Evolution of mean muscle forces during adaptation. B: Evolution of absolute hand 
path error during adaptation. C: Stiffness after adaptation to novel dynamics. 
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4.2.3 Robustness of model  

In summary, the novel algorithm is robust to large variations of the parameters. Reflex and 

muscle elasticity parameters, which ensure good control performance in NF produce good 

learning in stable and unstable dynamics. In particular, the algorithm is able to learn to 

perform stable motion in unstable dynamics. To our knowledge this is the first algorithm 

with such adaptation property.  

Despite a large increase of noise and reflex delay, which have potentially 

destabilising effects, neither learning nor motion control are impeded. The algorithm is 

able to deal with an increase in noise of up to 150% and a reflex delay of up to 200ms 

(well above the physiological range), by increasing impedance to produce stable 

movements with deviation similar to NF motion.  

The transients and asymptotic impedance depend on the learning parameters. 

Adaptation is successful with various values of cross reflex strength β from 0 to 1, and 

various ratios of learning to deactivation α0/γ0 from 50 to 120, producing qualitative 

evolution features that are generally similar to experimental results (Burdet et al 2001A, 

Franklin et al 2003A, Osu et al 2003, Franklin et al 2003B). 

 

4.3 Model Predictions 

This section shows the results that are predicted by the model in novel dynamics (other 

than VF and DF) for which only partial or no experimental data are available. The 

predicted results may be tested in future experiments. Two questions are addressed in this 

section:  
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i. Our impedance adaptation algorithm relies on the strategy that gives an 

increase of endpoint stiffness in approximately the same direction as the 

deviation (Section 2.7). At the same time, the winner-takes-all deactivation 

strategy tends to minimize cocontraction in the muscles that are minimally 

stretched. In view of the two complementary strategies, does the model 

generally predict a stiffness increase in the direction of instability? 

ii. The novel dynamics used so far are either purely stable (VF) or purely unstable 

(DF). We have seen that inverse dynamics are learnt to compensate for stable 

dynamics whereas impedance is increased to counteract instability (Section 

4.1). Is the model able to concurrently learn the inverse dynamics and 

impedance so as to adapt to composite interactions comprising both stable and 

unstable dynamics? What does it learn in this case? 

 

4.3.1 Unstable interactions with different directions of instability 

To address the first question, three force fields are examined: DF{θ=135°}, DF{θ=80°}, 

DF{θ=45°}. They are similar to DF except that the destabilizing forces act along the axis 

θ degrees relative to the x-axis. The axis along which the hand experiences zero external 

force is unchanged i.e. {x=0}. The mean external force is approximately zero as the hand 

diverges left and right of {x=0} and thus adaptation is due to the increase of impedance 

brought about by cocontraction of agonist and antagonist muscles. The strengths of the 

various DF fields are chosen such that the corresponding trajectory deviations are 

adequately unstable. The directions of instability {θ=135°}, {θ=80°} and {θ=45°} are 

chosen such that the task space is spanned. With instability along {θ=90°}, movements 
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are seriously impeded since they are along the same direction. Hence {θ=80°} is chosen 

instead. These directions allow us to test if the algorithm consistently produces an increase 

of stiffness in the direction of instability. 

 

DF{θ=135°}  

The external force is given by 
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The initial movements diverge unpredictably left and right of the centerline but tend to 

travel farther in the positive y-direction on the left side (Fig. 21). Movements after 

adaptation successfully reach the target and are similar to NF movements.  

Reciprocal activation levels are roughly constant in all muscles, and the after effects 

are similar to NF movements, showing that successful adaptation is not due to learning an 

inverse dynamics model of the external force. Rather, it is due to the increase of arm 

impedance produced by cocontraction of agonist and antagonist muscles. Cocontraction 

level in the shoulder muscle pair increased maximally, while those for the biarticular and 

elbow pairs are relatively lower. This is because the imposed stretch experienced in the 

shoulder muscles, from (19), is substantially larger than in the other two pairs.  

To test if the direction of stiffness increase is aligned with the direction of instability 

{θ=135°}, we compare the adapted stiffness with the theoretical stiffness obtained by 
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Fig. 21 Simulated adaptation to DF{θ=135°}. A: Vector field of external force as a function of hand position. B: 
Hand trajectories in initial and final adaptation, as well as after effects of adaptation. C: Adapted endpoint 
stiffness (black, solid) and NF stiffness (green). The dotted ellipse is the stiffness obtained by increasing the 
NF stiffness in the direction of the instability. D: Evolution of mean muscle forces (black) over 100 learning 
trials in DF. Green lines represent the mean muscle force levels in NF movements. Blue and red represent 
mean levels of reciprocal activation and cocontraction respectively. 

 

increasing the NF stiffness in the direction of the instability (Fig. 21C). The magnitude of 

increase is such that the maximum eigenvalues of the theoretical and adapted stiffness are 
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the same. It can be seen that the orientations of the adapted and theoretical stiffness are 

similar, showing that stiffness increases approximately in the direction of the instability. 

With our algorithm, the maximal stretch of shoulder muscles induces maximal build-up of 

cocontraction in the shoulder muscles, providing an increase of stiffness in the shoulder 

pair stiffness axis (see Fig. 10), to counteract the instability in approximately the same 

direction. 

 

DF{θ=80°}  

The external force is given by  

⎥
⎦

⎤
⎢
⎣

⎡
°

−=⎥
⎦

⎤
⎢
⎣

⎡
80tan

175
x

x
F
F

y

x         (37) 

The initial trajectories diverge and tend to overshoot the target when the hand is in the 

right half but fall short of the target when in the left half (Fig. 22). The large perturbation 

in the y-direction causes a large disparity in the y-displacement between the left and right 

halves of the workspace. The adaptation of movements is successful, giving trajectories 

that are similar to NF movements. 

Reciprocal activation levels are roughly constant in all muscles, and the after effects 

are similar to NF movements, showing that successful adaptation is not due to learning an 

inverse dynamics model of the external force. Rather, it is due to the increase of arm 

impedance produced by cocontraction of agonist and antagonist muscles. Cocontraction 

levels in the elbow and biarticular pairs are large after adaptation because they are 

substantially stretched in this direction of destabilization. In contrast, shoulder muscle 

forces decreased to a low level since they are minimally stretched.  
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Fig. 22 Simulated adaptation to DF{θ=80°}. A: Vector field of external force as a function of hand position. B: 
Hand trajectories in initial and final adaptation, as well as after effects of adaptation. C: Adapted endpoint 
stiffness (black, solid) and NF stiffness (green). The dotted ellipse is the stiffness obtained by increasing the 
NF stiffness in the direction of the instability. D: Evolution of mean muscle forces (black) over 100 learning 
trials in DF. Green lines represent the mean muscle force levels in NF movements. Blue and red represent 
mean levels of reciprocal activation and cocontraction respectively. 
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In comparison with the theoretical stiffness obtained by increasing the NF stiffness 

in the direction of the instability, the adapted stiffness has approximately the same 

orientation (Fig. 22C). With our algorithm, the maximal stretch of elbow muscles induces 

maximal build-up of cocontraction in the elbow pair, producing an increase of stiffness 

primarily in the direction of the elbow stiffness axis, which is similar to the direction of 

instability {θ=80°}. However, there is also a moderate increase of stiffness along {θ=0°} 

because the substantial stretch of the biarticular muscle pair elicits a moderately high 

cocontraction level. As a result, the adapted stiffness does not ‘touch’ the NF ellipse and 

appears to be non-minimal. 

 

DF{θ=45°}  

The external force is given by 
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As shown in Fig. 23, the initial movements diverge unpredictably left and right of the 

centerline but tend to travel farther in the positive y-direction on the right side. This is 

expected since the external force perturbs the hand in the positive y-direction when in the 

right half and in the negative y-direction when in the left half. Adapted movements are 

similar to NF movements. 

Reciprocal activation levels are roughly constant in all muscles, and the after effects 

are similar to NF movements, showing that successful adaptation is not due to learning an 

inverse dynamics model of the external force. Rather, it is due to the increase of arm 

impedance produced by cocontraction of agonist and antagonist muscles. Cocontraction  
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Fig. 23 Simulated adaptation to DF{θ=45°}. A: Vector field of external force as a function of hand position. B: 
Hand trajectories in initial and final adaptation, as well as after effects of adaptation. C: Adapted endpoint 
stiffness (black, solid) and NF stiffness (green). The dotted ellipse is the stiffness obtained by increasing the 
NF stiffness in the direction of the instability. D: Evolution of mean muscle forces (black) over 100 learning 
trials in DF. Green lines represent the mean muscle force levels in NF movements. Blue and red represent 
mean levels of reciprocal activation and cocontraction respectively.  Note that in this case the adapted 
stiffness is not oriented at 45°. 

 

level in the biarticular pair is large after adaptation because the biarticular muscles are 

maximally stretched when the instability is along {θ=45°}, as can be verified from (19). In 
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contrast, the cocontraction forces in the shoulder and elbow muscle pairs decreased to low 

levels since the muscles are stretched by a relatively less amount. 

The adapted stiffness has approximately the same orientation as the theoretical 

stiffness obtained by increasing the NF stiffness in the direction of the instability (Fig. 

23C). With our algorithm, the maximal stretch of biarticular muscles induces maximal 

build-up of cocontraction in the biarticular pair, producing an increase of stiffness 

primarily in the direction of the biarticular stiffness axis, leading to successful adaptation 

to instability along {θ=45°}. 

 

From the simulated adaptation to the three force fields DF{θ=135°}, DF{θ=80°}, and 

DF{θ=45°}, it can be deduced that impedance generally increases in the direction of 

instability. However, this does not mean that impedance is optimized in Cartesian space. 

In fact, our winner-takes-all algorithm performs optimization in muscle space, minimizing 

cocontraction levels in all but those muscle pairs that are maximally stretched. The large 

build-up of cocontraction in each maximally stretched muscle pair provides an increase of 

stiffness along its stiffness axis (Fig. 10). Hence there is a tendency for the orientation of 

the adapted stiffness to align with the stiffness axis of the muscle pair being stretched 

maximally, as seen in the simulated results. Because the muscle pair stiffness axes are 

generally well distributed in the task space, given our set of moment arms, any direction 

of instability will be near to one of the stiffness axes. This accounts for the fact that 

impedance generally increases in the direction of instability. 
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4.3.2 Composite interactions comprising stable and unstable dynamics 

To address the second question of whether the algorithm is able to adapt to composite 

interactions consisting of both stable and unstable dynamics, two force fields are 

examined: rDF and rCF. Each has the same direction of destabilization as DF but the axis 

along which there is no external force (i.e. zero-force axis) is rotated. The rDF is a 

divergent field with zero-force axis rotated 7° and the rCF is a convergent field with zero-

force axis rotated -7°. Both rotations are relative to the y-axis. With rotated zero-force 

axis, the arm would have to compensate for a bias force as well as instability. 

 

rDF 

The external force is given by  

⎥
⎦

⎤
⎢
⎣

⎡
−+−=⎥

⎦

⎤
⎢
⎣

⎡
o

o
oo

7sin
7cos

)7sin)31.0(7cos(350 yx
F
F

y

x      (39) 

Due to the leftward bias force, the initial trajectories are perturbed towards the left, as 

shown in Fig. 24. After adaptation, the trajectories are straight. After effect trajectories 

deviate towards the right, showing that an inverse dynamics model has been acquired in 

the learning. This is consistent with the experimental results of (Osu et al 2003). 

Simulated muscle activity is similar to that in DF except for the large increase of 

reciprocal activation in the biarticular extensor muscle to compensate for the leftward bias 

force. The shoulder extensor muscle has a relatively smaller increase of reciprocal 

activation. Similar to DF adaptation, the stiffness is elongated approximately along 

{θ=0°}, with a stiffness margin relative to NF that is large in the x-direction and 
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negligible in the y-direction. The deviation of after effects motion relative to the centerline 

is reduced as a result of this increase of impedance. 

 

 

Fig. 24 Simulated adaptation to rDF. A: Vector field of external force as a function of hand position. B: 
Hand trajectories in initial and final adaptation, as well as after effects of adaptation. C: Adapted endpoint 
stiffness (black) and NF stiffness (green). D: The Kxx and Kyy stiffness components after adaptation are 
shown in black whereas those for NF are shown in green. E: Evolution of mean muscle forces (black) over 
100 learning trials in DF. Green lines represent the mean muscle force levels in NF movements. Blue and 
red represent mean levels of reciprocal activation and cocontraction respectively. 
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rCF 

The external force is given by  
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Initial trajectories are perturbed to the left due to the leftward bias force that is the same as 

in the rDF (Fig. 25). After adaptation in about 10 trials, the trajectories are fair straight. 

After effects trajectories deviate towards the right, corresponding to experimental results 

of (Osu et al 2003), and showing that an inverse dynamics model has been acquired. 

Mean muscle forces in the flexors decreased below the initial levels after adaptation 

due to a decrease in both the reciprocal activation and the cocontraction components. For 

the extensors, there is an increase in the mean levels of reciprocal activation, mostly in the 

biarticular muscles. As a result of similar bias force, the increase of reciprocal activation 

levels and the mean after effects trajectories in both rCF and rDF are similar. 

The converging field provides an increase of stability to the system that reduces the 

trajectory deviation due to noise. This leads to a decrease of cocontraction in all muscle 

pairs below their initial levels, giving a slightly reduced stiffness. As a result, the 

deviation of after effects motion relative to the centerline is increased.  

It can be seen that the reduction of stiffness in the x-direction is almost negligible 

while the reduction in the y-direction is relatively larger. In view of the fact that rCF and 

rDF have the same strength, how is it that the magnitude of stability margin (the net 

difference between the adapted and NF stiffness) of rCF is much smaller than that of rDF?  
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Fig. 25 Simulated adaptation to rCF. A: Vector field of external force as a function of hand position. B: 
Hand trajectories in initial and final adaptation, as well as after effects of adaptation. C: Adapted endpoint 
stiffness (black) and NF stiffness (green). The cyan ellipse is the stiffness after adaptation to CF i.e. 
convergent field without bias force. D: The Kxx and Kyy stiffness components after adaptation to rCF and CF 
are shown in black and cyan respectively whereas the same stiffness components for NF are shown in green. 
E: Evolution of mean muscle forces (black) over 100 learning trials in DF. Green lines represent the mean 
muscle force levels in NF movements. Blue and red represent mean levels of reciprocal activation and 
cocontraction respectively. 

 

Stiffness reduction in rCF is limited as there is a minimal stiffness arising from 

passive muscle tissue, from movement dynamics, and from compensation of the bias 

force. The latter two arise due to the obligatory coupling between force and stiffness 

(Hunter and Kearney 1982, Gomi and Osu 1998). To test if the negligible change of Kxx is 

due to the compensation of the bias force, we simulated adaptation to a pure convergent 

field CF, defined by FCF = (350x, 0), that does not comprise any bias force. Indeed, we see 
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a significant decrease of the Kxx component when the external bias force is removed. This 

shows that the negligible change of Kxx in rCF is attributed to bias force compensation. 

 

The adaptations to rCF and rDF clearly show that the algorithm is able to 

concurrently learn the inverse dynamics of reproducible external forces as well as the 

necessary impedance against irreproducible external forces.   
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5 Discussion 

This thesis has introduced a novel model of motor adaptation using the stretch reflex to 

modulate the feedforward muscle activation and selective deactivation to decrease 

superfluous agonist-antagonist co-activation. The simulations show that this model is 

successful in adapting to various stable and unstable novel dynamics, and produces 

changes in motion, impedance, and muscle activity highly consistent with experimental 

results. While conventional feedback error learning only learns the inverse dynamics and 

so cannot compensate for unstable dynamics, the novel algorithm, extending feedback 

error learning, simultaneously learns the endpoint force and impedance necessary to 

perform stable motions, as illustrated in the adaptation to force fields producing both a 

bias force and instability (Figs. 24 and 25).  

 

5.1 Stiffness magnitude depends on noise amplitude and environmental 

instability 

 

The controller adapts to the current environment and learns to produce trajectories with 

similar deviation in all environments, which is consistent with the experimental results  

(Burdet et al 2001A, Osu et al 2003, Franklin et al 2003C). An interesting prediction of 

the model is that impedance increases with motor noise (Fig. 16), and similarly with 

environment instability (Fig. 14). This is because the algorithm is only concerned with 

deviation and not the source of this deviation. An interesting experiment would be to 

increase motor noise (for example by vibrating muscles) and ascertain if impedance 

would, in reality, increase as predicted by our model. 
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5.2 Role of cross reflexes 

 

Experimental results (Franklin et al 2003A, Osu et al 2003, Franklin et al 2003B) have 

shown evidence for cross reflexes, i.e. there is an increase of antagonist muscle activity 

even though only the agonist muscle is stretched. Obviously cross reflexes produces 

cocontraction, and thus stabilization. To test whether cross reflex is necessary to ensure 

successful adaptation to unstable dynamics, we decreased the cross reflex strength β down 

to zero for the adaptation to DF. The results show that even without impedance provided 

by cross reflexes, adaptation to unstable dynamics is still successful, and is realized at a 

lower level of muscle activity (Fig. 17). In fact, most of the impedance required for 

stabilizing motion stems from the coupling of feedback error learning with instability, 

through the build-up of activity in agonist and antagonist muscles over a series of 

consecutive alternating movements. From a control perspective, it can be argued that the 

utility of cross reflexes reflects the importance of stability in the strategy employed by the 

CNS when adapting to novel dynamics, such that it justifies a higher metabolic cost. 

Perhaps such provision of a larger-than-required stability margin is required to facilitate 

the formation of an inverse dynamic model (Franklin et al 2003B).  

 

5.3 Selective deactivation strategy 

 

A given deviation of the hand imposes a stretch on various muscles in the arm. Through 

feedback error learning at the muscle level, the stretched muscles increase activity, 

resulting in an increase of endpoint impedance generally in the direction of deviation. 

However, the increase of impedance in the other directions is larger than what is observed 
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in (Burdet et al 2001A). Hence, a selective deactivation strategy is required such that 

superfluous impedance not required for task stabilization is reduced.  

The winner-takes-all deactivation strategy used in our model minimizes 

cocontraction in the muscle pairs that are minimally stretched. Only the muscle pairs that 

are substantially stretched will retain the cocontraction muscle activity required for task 

stabilization. In this way, it provides for anisotropic increase of impedance that is large in 

the direction of instability and small in the other directions. This is observed in the 

simulated adaptation to DF and to other divergent fields with different directions of 

instability.  

While we do not know what the CNS is optimizing exactly, experimental results 

support the idea that the CNS is able to control the impedance size, shape and orientation 

through appropriate muscle co-activation. In our algorithm, for simplicity, we have fixed 

the cocontraction pairings such that ∆mc1=∆mc2, ∆mc3=∆mc4, and ∆mc5=∆mc6 at all times, 

with ∆mc denoting the change of cocontraction muscle activity. The effect of 

cocontraction of each fixed pair on endpoint stiffness, shown in Fig. 10, restricts the 

possible impedance geometry. For example, consider a desired stiffness change along 45° 

from the x-axis, which is in between the biarticular and elbow pair stiffness axes. 

Cocontraction of either the biarticular or the elbow muscles increases stiffness only along 

the respective muscle pair stiffness axis. Cocontraction of both the biarticular and elbow 

pairs results in a generalized increase of stiffness in more than one direction. Therefore, 

with fixed muscle pairings, it is not possible to achieve a stiffness change exactly along 

45°, and likewise for any direction other than those corresponding to the three muscle pair 
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stiffness axes. It is interesting to note that despite such constraints arising from our 

simplification, preliminary experimental results are consistent with these findings. 

We could give more freedom for coactivation without modifying endpoint force, for 

example producing changes in muscle activity satisfying the following equations:  

∆τ1=ρ1∆mc1 - ρ2∆mc2 + ρ5∆mc5 - ρ6∆mc6=0  

∆τ2=ρ3∆mc3 - ρ4∆mc4 + ρ7∆mc5 - ρ8∆mc6=0 

This would allow a greater set of possible muscle pair stiffness axes that will satisfy 

optimal stiffness control. Despite the theoretical possibilities, it remains unclear whether 

the CNS is able to activate muscles independently to achieve coordinated, synergistic 

control of impedance.  

 

5.4 Ideal and realistic deactivation 

 

Another limitation of the model is that in the deactivation strategy, only cocontraction is 

decreased and not the reciprocal activation. In a post-adaptation behavioral study (Scheidt 

et al 2000), it was shown that the adapted muscle activity, corresponding to the inverse 

dynamics of the stable interaction, undergoes slow relaxation when the movements are 

constrained within a straight channel. The relaxation is much slower than in normal 

conditions without the channel, i.e. when kinematic error is provided. In the absence of 

kinematic error, our algorithm can only rely on deactivation to produce the change in 

motor command. With a decrease of only cocontraction and not the reciprocal activation 

in each agonist-antagonist muscle pair, no change of endpoint force will occur with our 

model. We suggest that in reality the CNS is not able to perform such perfectly 
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coordinated deactivation without a change of endpoint force. The associated change of 

endpoint force with the decrease of cocontraction may suffice to produce the gradual 

unlearning of the inverse dynamics model as observed in (Scheidt et al. 2000), even 

without kinematic error.   

 

5.5 Conclusion 

 

Despite the limitations, the novel algorithm of motor adaptation is robust to large 

variations of the parameters. While transients and asymptotic impedance depend on the 

learning parameters, the qualitative evolution features are generally similar to the 

experimental results (Burdet et al 2001A, Franklin et al 2003A, Osu et al 2003, Franklin 

et al 2003B). The simulations show a large increase of coactivation in initial trials, 

followed by a gradual decrease, and a selective increase of impedance in the direction of 

instability. Furthermore, the physiologically-based parameter values result in learning and 

control patterns that are quantitatively consistent with what have been measured. Such 

computational models, using measurable variables, may be used as tools to investigate the 

neural control of posture and movement, to simulate the effect of neuro-muscular 

disorders on control, to develop better controllers for neural prostheses, and to develop 

robot-assisted rehabilitation protocols. 
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Appendix A 

Appendix A: Kinematic Transformations 

In hand space, x≡(x,y) is the hand position, and F≡(Fx,Fy)  the force exerted on the hand. 

In joint space, q≡(qs,qe) is the joint position, qv≡(qv,s,qv,e) the joint velocity, and τ≡(τs,τe) 

the joint torque. Subscripts s and e denote the shoulder and elbow joints respectively. In 

muscle space, λ≡(λ1,λ2,λ3,λ4,λ5,λ6) is the vector of muscles lengths, 

λv≡(λv,1,λv,2,λv,3,λv,4,λv,5,λv,6) the corresponding velocity and m≡(m1,m2,m3,m4,m5,m6) the 

muscle tensions. 

1. The inverse kinematics equations (x q) of the 2-joint, 2-segment arm used in our 

simulations are: 
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2. The Jacobian transformation relating an infinitesimal change in hand position to an 

infinitesimal change in joint position(dq dx) is expressed as: 
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3. The transformation between joint torque and endpoint force (F τ) is derived, using 

the principle of conservation of energy, as follows 
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τTδq = FTδx 

τ = (FT(δx/δq)) T

τ = JTF 

4. The transformation between joint stiffness and endpoint stiffness (Kx Κq) is derived 

as: 
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5. The change in muscle lengths is related to the change in joint position (δq  δλ) by: 
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6. The transformation between joint torque and muscle tension (m τ) is  
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7. The transformation between joint stiffness and muscle stiffness (Km Κq) is derived 

as: 
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Appendix B: Rigid Body Dynamics Model 

This Appendix describes the rigid body dynamics of a 2-joint, 2-segment arm moving on 

the horizontal plane. Let M denote the segment mass, J denote the segment inertia, l its 

length, lm the distance between the center of mass of the segment and the proximal joint, 

with subscripts 1 and 2 denoting the upper arm and forearm respectively, and subscripts s 

and e denote the shoulder and elbow joints respectively. The rigid body dynamics is 

expressed in the following form: 

 

τ(q, , ) = H(q)  + C(q, )   q& q&& q&& q& q&

 

where the inertia matrix H(q) is represented as: 
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and the term C(q,q )q , corresponding to Corioli’s and centrifugal forces, is represented 

as: 
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Appendix C: Summary of Equations and Parameter Values  

Dynamic Equations 

The dynamics of the arm moving while interacting with the environment is described by 

BODY + FORCE = SPRING + FF + NOISE + REFLEX,     (A1) 

corresponding to the scheme of Fig. 3. Muscles have to produce the rigid-BODY 

dynamics to move the limb and to counteract the external FORCE. SPRING corresponds 

to mechanical impedance (the resistance to infinitesimal perturbation of the state) 

produced by muscles mechanics. The motor command consists of a feedforward (FF) term 

that is learned to produce the expected task dynamics, inherent motor NOISE and 

REFLEXES. 

The elastic force in every muscle is modeled as a proportional-and-derivative term of the 

stretch λ(t): for each muscle  

spring(t)= κ [∆λ(t) +  κd ∆λv(t)] I{∆λ(t)>0}        (A2) 

where κ is the muscle stiffness, κd is the ratio of muscle viscosity to stiffness, I is the 

Kronecker indicator function defined by Icondition≡1 when the condition is fulfilled and 0 

otherwise. The stretch ∆λ = λ-λd is computed relative to the planned trajectory in muscle 

coordinates, {λd(t)}.  

The reflex ra and raa in the agonist and antagonist muscles of a muscle pair acting at the 

same joint are modeled as 

ra (t)= ea(t) + β eaa(t)         (A3) 
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raa(t) = eaa(t) + β ea(t),   where  

ea(t)= g [∆λ(t-φ) + gd ∆λv(t-φ)] I{∆λ(t)>0}          (A4) 

eaa(t)= g [∆λ(t-φ) + gd ∆λv(t-φ)] I{∆λ(t)>0}     

are the error signals of the agonist and antagonist muscles (linearly dependent on stretch 

and stretch velocity), β  yields the strength of cross reflexes and φ is the reflex delay. The 

subscripts a and aa denote agonist and antagonist muscles respectively. Both the intrinsic 

stiffness κ and the reflex gain g increase linearly with muscle activity. For each muscle,  

κ(t) = κ0 + κ1 m(t) and g(t) = g0 + g1m(t) .     (A5) 

where κ0, κ1, g0 and g1 are chosen to be identical across all muscles.  

We model the overall effect of the many different sources of noise as deviation in muscle 

tension. This noise is monotonously increasing with the total motor command m, i.e. the 

addition of feedforward and reflex: 

noise(t)= [µ0 + µ1m(t)] µ(t)           (A6) 

where µ(t) is a 125Hz low-pass filtered Brownian motion. 

The major aspect of our algorithm is to describe how the feedforward (FF) is learned to 

compensate the task and environment dynamics. For each muscle, the reflex r, 

representative of the novel dynamics, is used to update the feedforward muscle tension m 

according to 

mk+1(t)≡ mk(t) – γ(t) + α r(t+φ)        (A7)  
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The superscript k denotes the number of elapsed learning trials, α is the learning factor and 

γ the deactivation. The learning compensates for the reflex delay φ by using an equal 

phase advance. The learning factor 

α≡ ½α0[1+ tanh(σ (ēk-ε ))]         (A8) 

is a sigmoid function of the mean stretch error  

ēk≡ (1-η) ēk-1 + η ek         (A9) 

with  ek≡ maxj{(1/T)∫0T ∆λj,a
k(t) + ∆λj,aa

k(t) dt},     (A10) 

T is the movement time. ∆λj,a and ∆λj,aa denote the stretch at the agonist and antagonist 

muscles of pair j. The threshold ε in (A8) prevents the algorithm from learning infinite 

impedance and reducing motion variability to 0. Deactivation decreases superfluous co-

activation using 

γi(t)= γ0[γ1 vi(t) + ½(1-γ1) vj1(t) +  ½(1-γ1) vj2(t)]       (A11) 

where γ0>0, 1/3<γ1<1, and 

vj= ½(ma+maa–|ma–maa|)  

is the coactivation in the j-th muscle pair, with ma and maa representing the tension in the 

agonist and antagonist muscles respectively. Assuming that the deactivation term does not 

vary in consecutive trials, one finds 

uk+1≡ ρ(ma
k+1–maa

k+1) =ρ [ma
k–maa

k + α(ra–raa)] = uk + αρ (ra–raa) = uk + αρ FB (A12) 

We recognize classical feedback error learning (Kawato et al 1987, Burdet et al 1998), in 

which feedback is used to update the feedforward u. 
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Parameter values 

The model’s parameters can be distinguished into three distinct groups: parameters of the 

rigid-body model, parameters influencing the control during the movement, and learning 

parameters. The default parameters used in the simulation are: 

Rigid body model parameters 

• moment arms of 0.028m for the shoulder muscles, 0.017m for the elbow muscles, 

and 0.044m and 0.0338m for the biarticular muscles 

• anthropometrical parameters for the arm segments are shown in Table 2. 

Control parameters 

• muscle elasticity (A2 and A5): κd≡1/12, κ0=2844Nm-1, κ1=0.035m-1 

• reflex gains (A5): gd≡2, g0=114Nm-1, g1=0.035m-1  

• reflex delay in (A4): φ≡100ms 

• strength of the crossed reflexes in (A3): β≡0.4 

• noise (A6): µ0≡0.0725N, µ1≡6.5 

Learning parameters 

• learning factor magnitude (A8): α0≡3 

• threshold error for the learning factor α  (A8): ε≡5.65x10-4m 

• corresponding time scaling: σ≡5500m-1 

• error averaging factor (A9):   η (k)≡       2/5  for k≤8     

     1/8        k>8 

• decay factors (A11): γ0≡0.04, γ1≡0.7 
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