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ABSTRACT

Product proliferation has become so common that most companies now offer

hundreds, if not thousands, of stock keeping units (SKUs) in order to com-

pete in the market place. High correlations may exist among the customers’

utilities of these products due to the common attributes among them. These

correlations may affect the demand for each product, which makes demand

forecasts and production/inventory decisions even harder. Therefore, such

correlations should be properly incorporated into the supply chain manage-

ment to improve the profitability.

In the first part of this thesis, we develop a product line selection model

in conjunction with a utility maximization model to describe the choice be-

havior of customers. Semi-definite Programming (SDP) is used to approxi-

mate the expected utility and the customer choice probabilities. The product

line selection problem is then solved by incorporating the SDP approach with

popular product swapping and greedy heuristics. With the ability to incor-

porate the correlation between products arising from common attributes in

the choice behavioral model, this model successfully address the issue of In-

dependence of Irrelevant Attributes (I.I.A.) property, which is an inherent

limitation of the popular Multinomial Logit (MNL) model. We compare the

performance of the new SDP model with the classic MNL based product line
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selection model in a simulated example. Our experimental results indicate

that for both the buyer’s welfare problem and seller’s profit problem, our

model can lead to better design of the product line, and can perform signif-

icantly better than MNL model, especially when the products share many

common attributes.

In the second part, we extend the above work to include the inventory

decisions. We embed our Cross Moment Model into the assortment and

inventory joint decision problem for retailers, and focus on comparing the

resulting offer set and inventory levels decision with those decision under

classic MNL choice models. We also quantify the improvement of the total

expected profits through Monte Carlo simulation. We found that under static

substitution, less correlated products set can bring more profit. We also

show that the total varieties of products can be reduced under dynamic

substitution. And through simulation, considerable improvement in expected

profits result from taking account of utilities’ correlations.

The third part of this thesis analyzed how flexibility in order quantity

created by using options in a supply contract affects the payoffs of the manu-

facturer and the retailer as well as their joint payoff. We examine the impact

of reorder options in a single-product case and further compare the differ-

ences between pooled and non-pooled options in a multi-product case. While

reorder options seem to offer the retailer more flexibility, we find that in some

cases the retailer may end up with a lower payoff. For multi-product cases,

we identify some conditions where pooled and non-pooled option contracts

may provide the same payoff, and other conditions where one can be higher

than the other.
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1. INTRODUCTION

Product proliferation has become so common that most companies now of-

fer hundreds, if not thousands, of stock keeping units (SKUs) in order to

compete in the market place. It has been identified as a critical strategy to

compete in today’s business world since it benefits the consumers by meeting

diversified preferences, improving their satisfaction, and consequently stim-

ulating the sales. On the other hand, product proliferation can also lead to

negative consequences such as customer confusion, cost increases, inventory

imbalances, product stock-outs, and cannibalization. For this reason, it is

important for a company to understand consumer choices so that it can bet-

ter predict customers’ demand, which enables the company to better balance

the breath and depth of the components of its product lines.

Besides product line decisions, controlling inventory costs is also im-

portant in managing such a multiple-product supply chain. These decisions

can be very complicated since they involve allocating limited resources among

various products, whose demand may be interdependent such as substitutable

or complementary goods.

There is a vast literature on consumer choice models. As we will ex-

plain in Section 1.1 and Section 1.2, the existing models either do not model

product interdependence or are computationally tedious. Therefore, in this
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thesis, we aim to propose a computationally-efficient model which captures

consumer choices for interdependent products and incorporate this model

into supply chain decisions including product line selection and inventory

planning. We also study how contracts between manufacture and retailer will

affect supply chain efficiency when we face multiple interdependent products.

1.1 Consumer Choice Models

In this section, we briefly discuss choice models in general followed by two

widely adopted stochastic choice models in the literature: multinomial logit

(MNL) model and locational model. Through this brief discussion, we will

explain why we are motivated to propose a new method “Cross Moment

Model (CMM)” which will be presented in Chapter 2. More detailed litera-

ture will be presented in Section 1.2.

1.1.1 General Choice Modelling Methods

According to Mahajan and van Ryzin [39], there are two generic approaches

for modeling choices: (1) construct preference relations directly, or (2) con-

struct utilities and then apply utility maximization. They showed that ap-

proach (1) is essentially equivalent to approach (2).

To construct preference relations directly, it typically consists of mod-

elling attributes of each alternative and specifying a ranking rule. The key

advantage of attribute models of choice is that consumer preferences can be

linked directly to attributes of a firm’s products. Therefore, this approach is

well suited to operations management problems involving product design or
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product positioning, since the firm can have control over the design features

of its products.

On the other hand, if the product design decisions are not so much

concerned, the decision maker can directly focus on the utility values of each

product. Utility models are more naturally suited to problems of product

selection.

The distinction between attribute and utility models, however, is not

entirely sharp. Indeed, one frequently used transportation choice model re-

late attributes to utilities directly. That is the linear in attributes utility

model(Ben-Akiva and Lerman[5]), in which the utility is expressed as a lin-

ear function of a product’s attributes. We will demonstrate later that our

CMM model actually adopts this linear in attributes utility model to take

into account of the utilities’ correlations among products with certain com-

mon attributes.

1.1.2 Multinomial Logit Model

The multinomial logit model (MNL) is the most popular random utility

model. Instead of assigning deterministic utilities for the products, MNL

assumes a probability distribution for the consumer’s utility on a specific

product j. Specifically, for product j, its utility Ũj is equal to the utility

mean Vj, plus a random error term εj, where the error terms are indepen-

dent and identically distributed (iid) Gumbel random variables:

Ũj = Vj + εj
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. Given an offer set Y, when the i.i.d. Gumbel error terms have mean zero and

scale parameter β, the probability that a given individual chooses product j

within set Y is given by:

PY (j) =
eβVj

∑

k∈Y eβVk
. (1.1)

Note that variance for a Gumbel distributed random variable is π2

6β2 , where π

is the ratio of circumference of a circle to its diameter. MNL model predicts

customer choice based on (1.1). A well-known result related to the expected

maximum utility that can be achieved under MNL model is given in the

following:

E(maxj(Ũj)) =
1

β
ln
∑

j∈Y

e(βVj)

Note that the MNL model suffers from the Independence of Irrelevant

Alternatives (IIA) property: the ratio of choice probabilities for any two

alternatives is unaffected by the presence of other alternatives.

1.1.3 Locational Model

Locational model was studied in Lancaster [32]. Suppose there are n products

located along the interval [0,1], which is called the “attribute space”. Denote

the location of product j as lj, and denote the customer t’s “ideal point”

as Lt, which can be a random variable. Then the utility of product j for

customer t is given by: U t
j = a − b ‖ Lt − lj ‖, where a specifies the utility
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of a product that exactly matches the customer’s ideal point and b measures

how fast the utility declines with the deviations from the ideal point. It uses

a distributional assumption on the customer ideal points Lt to capture the

randomness of the utility.

Certain correlations among utilities of different products in locational

model can be captured, hence the Independence of Irrelevant Alternatives

(IIA) property of MNL model can be tackled to some extent. However, we

noticed that it is not easy to directly quantify and specify that correlation

in high-dimension attributes’ case. And also due to the difficulties from

high-dimension integral, the current literature on assortment and inventory

management is restricted to the study on one-dimension attribute locational

model.

1.2 Literature Review

In this section we will review the related literature from three aspects: Sec-

tion 1.2.1 focuses on product line selection articles; Section 1.2.2 reviews

literature that integrated product line selection and inventory decisions; Sec-

tion 1.2.3 is from the contract coordination perspective since we will study

in Chapter 4 how contracts between manufacturer and retailer affect supply

chain efficiency when we face multiple products which are interdependent.

1.2.1 Related Literature on Product line Selection and Pricing

The product line selection problem has been the focus of numerous research

articles in the past two decades ([4, 2, 18]). A fundamental issue is the
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modeling of the random utility functions. The simplest model assumes a

linear function to approximate the utility with:

Ui(z) = xi · β(z) + εz,i, (1.2)

The vector xi describes the observable attributes of product i and β(z) is a

vector of weights attached to each attribute of the product. The random term

εz,i denotes the corresponding error term associated with this approximation.

Each consumer is assumed to choose the product in the product line with

the highest utility.

In the simple first choice approach, both β(z) and εz,i are assumed to be

completely deterministic. Each customer thus goes for the product with the

highest deterministic utility (cf. Green and Krieger [23], McBride and Zufry-

den [41], Dobson and Kalish [17, 18], Kohli and Sukumar [29]). Product line

selection models using the first choice assumption are shown to be NP-hard,

and the research community has focussed on devising sophisticated heuristic

approaches such as the Genetic Algorithm [23] or the Beam search heuristic

[44]. Complete enumeration can serve as a benchmark to evaluate the per-

formance of candidate heuristics. Recently, Camm et al. [12] proposed an

exact branch-and-bound algorithm to solve the share-of-choice single prod-

uct design problem to optimality. Wang et al. [61] extends that of Camm et

al. [12] to obtain the optimal integer solution for the share-of-choice product

line design problem.

Although it seems straightforward, the first choice assumption tends to

exaggerate the market share of popular products and underestimate the share
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of unpopular products [55]. To rectify this bias, probabilistic choice models

have been incorporated into the product line selection problem. These models

typically satisfy Luce’s Axiom (cf. [36]): the choice probability for product i

is given by

vz,i
∑

k vz,k

, (1.3)

where vz,i is the customer’s ratio-scaled preference value or utility for product

i. Among these models, the Multinomial Logit (vz,i = eλxi·β(z) for some

constant λ) is currently the most popular method used in modelling the

consumer’s choice probabilities (see Aydin and Ryan [2]).

Hanson and Martin [24] were arguably the first to systematically study

the MNL based product line selection and pricing problem. They discussed

the difficulty of the MNL based profit optimization problem in view of the

fact that MNL converges to the first choice rule as the utility measurement

errors go to zero. They proposed an efficient path-following heuristic to solve

the non-concave seller’s profit maximization problem. In their formulation,

all the products are assumed to be offered and decisions are only made on

the price vector. Chen and Hausman [13] discretized the product prices and

relaxed the resulting mixed integer program into a quasi-concave nonlinear

program based on the objective’s special structure. They constrained the

number of launched products within a certain range, so that the product line

decisions can be made simultaneously with the pricing decisions. However, as

noted by Kraus and Yano [31], their lower bound on the number of products

is redundant and the problem can be viewed as choosing a fixed number
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(equal to the upper bound) of products and deciding their associated prices.

Aydin and Ryan [2] built three basic models based on the MNL rule: new

product offering choice and pricing model, optimal pricing of given products

and eventually the pricing and product selection joint optimization problem.

Hopp and Xu [25] incorporated the product development cost and focused

on the value of modularity design. They used one-dimensional measurement

“quality” to differentiate the products. The customers are further restricted

to come from a homogenous population.

All the above choice models suffer from the Independence of Irrelevant

Alternatives (IIA) property: the ratio of choice probabilities for any two al-

ternatives is unaffected by the presence of other alternatives. These models,

including the MNL model, tend to exaggerate the market share of similar

products, or products with many common characteristics. The issue of cor-

relation in utility evaluation can be addressed using the GEV (Generalized

Extreme Value) models discussed in McFadden [42]. This family of models

includes the (generalized) nested logit, pair-combinatorial logit, and various

other models as special cases. These models have the advantage that the

choice probabilities have a closed form expression (as in the MNL model),

but suffers from the fact that the dependence structure in the error terms is

extremely complex. The approach is also more suitable when the products

are well specified, but not suitable when the product set is itself a decision

(as in the product line selection problem).

The Probit model is another popular approach used in place of MNL.

However, the computational burden associated with choice probability com-

putation (involving multi-dimensional integrals or simulations) has limited
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its applicability in practice. Several authors have built on this model to pro-

pose choice models to capture the interdependency among the alternatives.

Clark [14] and Daganzo et al. [15] proposed numerical approximations for

the choice probabilities for normal variates, building on an approximation

method for pairs of normal random variables. Kamakura and Srivastava [27]

overcame this issue by approximating the covariance matrix using two pa-

rameters and a proximity measure, whereas Dalal and Klein [16] proposed

the generalized logit model, and reduced the computational burden to one

over a much smaller type space. However, due to computational complexity

and implementation difficulties, to the best of our knowledge, none of these

approaches have been applied into the product line selection problem.

Steenburgh [56] recently noticed that many of the popular consumer

choice models described above (including MNL, GEV and Probit models)

suffer from an additional limitation known as the Invariant Proportion of

Substitution (IPS) property. Namely, the shares that product i draws from

product k does not depend on which attribute in i is changed, but only on

the net change in xi ·β(z). More generally, he showed that if the utility Ui(z)

for product i can be decomposed as deterministic component v(xi, z) and

random noise εz,i which is independent of the attribute vector xi, and the

choice probability for product i depends on the attribute only through the

deterministic component v(xi, z), then the IPS property holds. This property

is undesirable as we expect that if a product k is more similar to product

i in attribute a than attribute a′, then the change in choice probability for

product k will be more substantial if attribute a in product i is improved,

compared to improvements in attribute a′ in product i.
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Due to the intrinsic limitation of these models, Sawtooth [55] suggested

using a “randomized first choice” rule, with added random perturbations to

the utilities of each feature and overall products for each individual customer.

The market shares were estimated by running multiple iterations of simula-

tion. This method avoids the drawbacks of MNL, but significantly increases

the computational time.

In this thesis, we attempt to propose a new choice model (see Cross

Moment Model (CMM) in Chapter 2) and apply it to the product line selec-

tion and inventory planning problem. The attractiveness of this stochastic

choice model is its capability in correcting those undesirable properties of the

MNL model and at the same time maintaining a reasonable computational

complexity.

1.2.2 Related Literature on Product Line Selection and Inventory Control

Research on retailer’s assortment planning and inventory management has

advanced rapidly in recent years. One of the most prominent progress is the

incorporation of individual-level consumer choice theory from the marketing

literature into the modelling of substitution between products. Among them,

the MNL model and locational choice model are the most commonly adopted

consumer choice models. We will first summarize the literature on assort-

ment planning and inventory management using the traditional exogenously

specified model and these two consumer choice models.

Traditionally, exogenous modelling of the demand substitution is most

commonly adopted in the literature on inventory management for substi-
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tutable products. See McGillivray and Silver [43], Parlar and Goyal [48],

Noonan [46], Parlar [47], Wang and Parlar [60], Rajaram and Tang [51],

Ernst and Kouvelis [21], Smith and Agrawal [54], and Netessine and Rudi

[45]. In these models, distribution of random demand for each product is

assumed to be exogenous, and when demand realization exceeds the stock-

ing quantity of a particular product, the ratio of the excess demand to be

re-allocated to other products is also assumed to be exogenous. Unsatisfied

re-allocated demand is lost. It is also named as Markovian Second Choice in

Mahajan and van Ryzin [38].

The advantage of exogenous substitution is in its ability to differentiate

the substitution between different product categories by specifying different

substitution rates for them. However, since there is no underlying consumer

behavior such as a utility model to generate the demands or to explain the

substitutions, for tractability, most of the exogenous model only allows one

time substitution and need to stipulate a fixed substitution rate by the deci-

sion maker. It is also hard to incorporate marketing variables such as prices

and promotions into this choice model.

Application of consumer choice model to capture the demand substi-

tution has advanced rapidly in recent years. When first choice product is

unavailable, certain degree of substitution can be implied by the consumer

choice model through their parameters, instead of postulated by decision

makers.

van Ryzin and Mahajan [53] were the first to study assortment plan-

ning and inventory decisions under the MNL model. They defined the so-

called static substitution, where the customer’s choice is affected by the set
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of variants offered in the assortment, but not by the current inventory levels.

Static substitution assumption simplifies the resulting inventory and vari-

ety analysis, yet generates many interesting managerial insights. However,

it is a somehow unsatisfying assumption, especially for those products such

as grocery items, soft drinks, etc., where consumers substitute readily when

products are out of stock. Aydin and Ryan [2] also apply the MNL model to

study the joint assortment planning and pricing problem under static substi-

tution. They built three basic models based on the MNL rule: new product

offer choice and pricing model, optimal pricing of given products, and the

pricing and product selection joint optimization problem. They found that

optimal solutions have equal profit margins for all the offered products.

Dynamic substitution under MNL choice model is much more compli-

cated and first studied in Mahajan and van Ryzin [38], where substitution

times and orders are totally determined by the customers’ utilities when stock

out. They proved the non-concavity of the total expected profit in each prod-

uct’s inventory level, and proposed a sample path gradient algorithm to find

the stationary points. They used the MNL and locational model in their

numerical examples to predict the real demand. In Chapter 3, we will adopt

a model setting which is similar with the one in Mahajan and van Ryzin [38],

but imbed our Cross Moment Model (CMM) to characterize the consumer

choice. We will also examine a pooled newsboy algorithm to quantify the

effects from dynamic substitution.

Vishal and Honhon [22] also used the locational choice model in their

paper. They incorporate the locational choice model (Hotelling [26], Lan-

caster [32]) to capture the dynamic substitution of customer demands. The
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locational model rectifies the Independence of Irrelevant Alternatives prop-

erty inherited in the MNL model. However, to remain tractable, only one

dimension of attribute was handled for locational model, whereas in our cross

moment model (CMM), multi-dimension of attributes can be easily handled.

Besides, the randomness of customer choice is limited in this paper for lo-

cational model to certain distribution. In contrast, we don’t impose such

assumption in our CMM model. Our CMM model actually is capable of

handling multiple dimensions of differentiation in products’ selection and

factor in the utilities correlations among the products in the offer set.

Most recently, Maddah and Bish [37], Tang and Yin [57] and Dong et

al.[19] incorporate both selling price and production quantity decisions into

the product line selection framework. For further research on empirical and

analytical models on assortment planning with consumer choice, we refer the

readers to an extensive literature review by Mahajan and van Ryzin [39] and

more recently by Kok et. al. [30].

1.2.3 Related Literature on Flexible Contracts

In recognition of channel coordination, many extensive studies have centered

on the design of coordinating contracts in achieving system optimal perfor-

mance. These include nonlinear pricing (e.g. two-part tariff pricing, quantity

discounts) (Lee [35]), return policies (buy-backs) (Pasternack [49]), backup

agreements (Eppen and Iyer [20]), quantity-flexible contracts (Tsay [59]),

revenue sharing contracts (Cachon [11]) and pay-to-delay arrangements. Ex-

tensive reviews of the supply contracts literature include Anupindi and Bas-
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sok [1], Lariviere [34], Tsay et al. [58], and recently Cachon [9]. Compared

as a benchmark, Lariviere and Porteus [33] also study price-only contracts,

where they identify the coefficient of variation as the key element affecting

channel efficiency. Cachon [10] shows the combined use of push and pull

price-only contracts in achieving high channel performance.

Ritchken and Tapiero [52] were the first to introduce option contracts

in inventory management, where they assumed a standard B-S formula for

option pricing. Option models are explicitly modeled in recent works due

to their attractiveness, especially in the context of high demand uncertainty.

Barnes- Schuster et al. [3] show that backup, quantity flexible, and pay-to-

delay contracts can all be viewed as special cases of option contracts that

permit expedited orders, and they develop the sufficient conditions of the

cost parameters for linear prices to coordinate the channel in its general op-

tion contracts. Kamrad and Siddique [28] employ real options methodologies

to analyze supply contracts with quantity flexibility, supplier-switching op-

tions, and reaction options under exchange rate uncertainty. In commodity

procurement studies, option contracts have been studied to find the optimal

contracts under different market conditions. Martinez and Levi [40] focus

on the design of an option portfolio in a multi-period environment with in-

ventory holding costs, where a modified base-stock policy is derived as the

optimal replenishment policy. Wu and Kleindorfer [62] characterize the price

of capacity options, concentrating on the competition effects between sellers

with heterogeneous technologies.

Burnetas and Ritchken [8] explicitly price call (put) supply chain op-

tions, which they map as the retailer’s right to reorder (return) goods at



1. Introduction 15

a pre-determined price with the manufacturer. While most previous papers

assume risk-neutral agents in the supply chain and use simple profit as the ob-

jective, Burnetas and Ritchken [8] relax this assumption by applying option

pricing methodologies in finance theory to parameterize the risk preferences

of the supply chain participants.

We adopt a similar approach to incorporate risk preference into the mod-

els. However, our problem assumes a different market structure, where retail

price is determined exogenously and therefore is not affected by the behavior

of a single retailer. Also, we assign a certain reservation value to the retailer.

In reality, it is a common belief that the retailer will reject the contract of-

fer if he cannot obtain more than his reservation. Most importantly, in this

thesis we emphasize extending these studies to multi-product joint options.

To our knowledge, study on flexible contracts in a multi-product context

has just started. Brown et al. [7] examine the return policies in multi-product

cases, where they define a “pooled” return policy as one where the distrib-

utor can return any combination of the products up to R percent of the

total purchases across all products, while a “non-pooled” policy only allows

each product to be returned separately. They identify a counterintuitive re-

sult regarding the retailer’s optimal order quantity under both pooled and

non-pooled return policies. Our study differs from the above in the han-

dling of risk preference; we also extend the analysis to discuss the implied

requirements for the manufacturer in offering such flexibility.
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1.3 Purpose and Structure of the Thesis

In chapter 2, we develop a new choice estimation model for the product line

selection problem. The new approach will only require the mean and covari-

ance matrix associated with the random utility evaluation. We refer to this

new approach as the Cross Moment Model (CMM). The attractiveness of the

CMM model is its capability to capture the correlation between the prod-

uct candidates with little computation burden increased. The new approach

will predict the choice probabilities more accurately and help to achieve the

product line optimization more effectively. We demonstrate this in Chapter

2 with our computational results on the performance comparison between

the CMM and the MNL model.

In a supply chain, since the retailers’ ordering set and ordering quantity

decisions affect the efficiency of the whole chain, he acts as the interface

between the manufacturer and the end consumers. Therefore, in Chapter 3,

we extend our CMM model to integrate product line selection and inventory

decisions from the retailer’s point of view.

Flexible contracts are usually used as supply chain coordination tools.

In Chapter 4, we study the flexibility in supply contracts with the focus on

multi-products reorder option contracts. In a multiple product environment,

in addition to product quantity flexibility, product mix flexibility should also

be considered, thus we study the impact of contract flexibility from both

dimensions in such a multiple product environment.

We conclude our study in Chapter 5.



2. PRODUCT LINE SELECTION WITH

INTER-DEPENDENT PRODUCTS

2.1 Introduction

We consider in this thesis a product line design problem of the following form:

Let N = {1, 2, . . . , n} denote a set of product options and Ui(z) denote the

random utility for product i for a customer with random attributes z. We

assume that (U1(z), . . . , Un(z), z) is drawn from a joint distribution F with

the conditional density function f(U1(z), . . . , Un(z)|z). Each customer picks

the product that yields the greatest utility in the choice set. Our goal is to

design a product line with exactly K products so as to maximize the expected

utility:

(PLD) max
S⊂N :|S|=K

(

EF

[

max
i∈S

Ui(z)

])

. (2.1)

The utility functions Ui(z) may be correlated across different products, due

to the presence of common product attributes and the random customer

attributes z.

This class of problems is motivated by a practical problem faced by a lo-
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cal service parts supplier in Singapore. The company stores various standard

boxes to pack and ship their products to different customer destinations. Un-

fortunately, due to the varying sizes and shapes of the products in an order,

and the limitation on the number of standard boxes available, the company

has to often use a large box to pack the few products in an order. Figure 2.1

illustrates a typical order with items packed inside the standard box. This

box is the best available to ship this order, but the volume usage is quite low.

The third party logistics provider, however, charges the company based on

the larger of volumetric weight (defined as volume in cm3 divided by 6000)

and actual weight. An inefficient utilization of the volume in the standard

boxes may thus lead to excessive shipping costs, which occasionally may be

more than the value of the items shipped!

Fig. 2.1: An example of a box with low volume usage

The company would thus like to select a set of K standard boxes, to

minimize the average shipping cost for the business. Note that the deter-

ministic problem (with known input of the items in each order and their

shape distribution) is already a notorious combinatorial packing problem.

The complexity of the problem is exacerbated by the fact that item’s shape
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distribution usually fluctuates with each order, and finding a set of standard

sized boxes that work well for all orders is thus a daunting problem. We

can encode the attributes of an order by a random tuple z = (j, Rj, sj)
1,

where j is the destination of the order, Rj is the revenue generated by the

order, and sj encodes the shape of each item (length, width and height) in

the order. Product i can be described by the shape attributes of the box,

say (Li, Wi, Hi), denoting the length, width and height of box i. The utility

of an order attached to product i is thus

Ui(z) := max

(

0,

(

Rj − cj(Li × Wi × Hi)

)

χ

(

sj can be packed into box i

)

)

,(2.2)

where χ(·) is an indicator function, and cj(V ) is the cost of shipping a box

with volumetric weight V to the destination j. Clearly, the utilities attached

to the boxes are correlated, depending on the shape distribution of items in

the order and the destinations and shapes of the boxes.

There are plenty of other examples in practice where the utility evalua-

tion is not independent across products. In many consumer markets, hard-

ware/software configuration problems, and even in airline network revenue

management (cf. Bront et al. [6]), slight variation in features are often used

to distinguish products. In general, in these problem settings, different re-

sources are combined to provide for the configuration of different products

(e.g. each resource corresponds to a single-leg flight, and a product is defined

as an itinerary and fare-class combination). The sharing of common resources

1 In most instances, the actual weight of items in each order is smaller than the volu-
metric weight, so that the shipping cost is dominated by volumetric weight alone.
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can result in high correlations in utility evaluation among the products. In

these circumstances, the product line design model using the assumption

that the products are evaluated independently could be far from accurate,

and thus the product line designed under such assumptions may be far from

ideal.

In this thesis, we propose a parsimonious model (called the Cross Mo-

ment model or abbreviated CMM model) to obtain choice estimates, using

only information on the mean and covariance of the utility evaluation across

products. Surprisingly, despite using only the moments information, our

numerical results suggest that CMM model can generate reasonable choice

estimates, even for highly correlated products. A key advantage of the model

is that there is no need for exhaustive simulations to generate the choice prob-

ability estimates. This allows the model to be embedded into a heuristic to

search for a good set of products for the product line design problem.

Section 2.2 introduces the CMM discrete choice model for customer

choice prediction, taking into account the interdependency of products due

to common attributes. In section 2.3, we show that our proposed consumer

choice model is also able to circumvent the issues associated with the IIA

(Independence from Irrelevant Alternatives) and IPS (Invariant Proportion

of Substitution) properties inherent in many existing consumer choice mod-

els. In Section 2.4, a detailed comparison of MNL and CMM models on a

flexible packaging problem is provided.
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2.2 Consumer Choice Model

In this section, we develop a new customer choice model using only the mean

and covariance information for the utilities of the products. No assumption

on the form of the utility function is made. All we assume is that the mean

vector µ and the second moment matrix Q for the random utilities are known:

µ =













µ1

...

µn













,Q =













Q11 . . . Q1n

...
. . .

...

Qn1 . . . Qnn













,

where µi = E[Ui(z)] and Qij = E[Ui(z)Uj(z)] and the moments satisfy the

feasibility condition Q � µµ′. We are interested in estimating the choice

probability

P

(

Ui(z) ≥ max
k∈N

Uk(z)

)

. (2.3)

2.2.1 Distribution of Random Utilities

In general, there are many possible distributions that satisfy the prescribed

moment conditions. One such distribution is the multivariate normal distri-

bution for which the choice probabilities can be accurately computed only

through simulation. Instead, we look for a joint distribution where the choice

estimates can be obtained easily through solving a tractable optimization

problem.

Consider the following mixture distribution representation for the utili-
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ties:

(

U1(z), . . . , Un(z)
)

=
(

Yk + β1k, . . . , Yk + βnk

)

with probability yk for k = 1, . . . , n,
(2.4)

where (Y1, . . . , Yn) are independent random variables with zero means and

βik are fixed numbers. Under scenario k, we have max (U1(z), . . . , Un(z)) =

Yk + max (β1k, . . . , βnk). Then, the product with the highest utility is known

irrespective of the value of Yk and the choice process is a simple deterministic

problem. If we assume further that

βkk ≥ max
i:i6=k

βik, for k = 1, . . . , n,

then the customer picks product k in scenario k and the choice probability

is simply yk.

Our model thus attempts to find βik, yk, and independent random vari-

ables Yk with zero means and variance δ2
k, so that the moment conditions

are satisfied. Over these class of mixture distributions, the values are chosen

such that the expected utility of the customer is maximized. This reduces to
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solving the following nonlinear problem:

Z1 = maxβik,yk,δk

∑

k∈N
ykβkk

s.t.
∑

k∈N
ykβikβjk +

∑

k∈N
ykδ

2
k = Qij, i, j = 1, . . . , n,

∑

k∈N
ykβik = µi, i = 1, . . . , n,

∑

k∈N
yk = 1,

βkk ≥ max
i:i6=k

βik, k = 1, . . . , n,

yk, δk ≥ 0, k = 1, . . . , n.

(2.5)

Note that a priori, it is not clear why the choice of this distribution is appro-

priate. As it turns out, interestingly, this approach is a “good” way to approx-

imate the choice process - the joint distribution obtained under this approach

maximizes the expected utility over all joint distributions of the utilities with

the given mean and covariance structure. More importantly, this nonlinear

model can be recast into a convex semidefinite optimization problem in a

higher dimensional space, and is therefore computationally tractable.

2.2.2 Cross Moment (CMM) model

The problem of maximizing the expected utility of the products selected by

customers over all joint probability distributions F for the utility functions
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satisfying the moment conditions is formulated as:

Z := max
F











EF

[

max
i∈N

Ui(z)

]

∣

∣

∣

EF [Ui(z)] = µi; i ∈ N ,

EF [Ui(z)Uj(z)] = Qij ; i, j ∈ N











. (2.6)

This problem can be reformulated as a semidefinite optimization problem

and the choice probability estimates are obtained from the optimal value of

the variables.

Proposition 1: Let ek denote a vector of dimension n with 1 in the kth posi-

tion and 0 otherwise. Problem (2.6) is solvable as the semidefinite optimiza-

tion problem:

Z = maxWk,wk,yk

∑

k∈N
e′kwk

s.t.
∑

k∈N









Wk wk

w′
k yk









=









Q µ

µ′ 1









,









Wk wk

w′
k yk









� 0, k = 1, . . . , n,

(2.7)

where the decision variables Wk are symmetric matrices of dimension n× n,

wk are vectors of dimension n and yk are scalars. The optimal yk values are

the choice probabilities under the optimal distribution in Problem (2.6).
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Proof. We first show that the Formulation (2.7) provides an upper bound

on Z. Consider a partition of space of the utility vector

U(z) =













U1(z)

...

Un(z)













,

into the sets:

Tk =

{

U(z) ∈ <n
∣

∣

∣
Uk(z) ≥ max

i∈N
Ui(z)

}

.

Define the decision variables as the scaled conditional moments over these

sets:







Wk wk

w′
k yk






=







E[U(z)U(z)′
∣

∣Tk]P (Tk) E[U(z)
∣

∣Tk]P (Tk)

E[U(z)′
∣

∣Tk]P (Tk) P (Tk)






.

The expected utility objective in Problem (2.6) is then expressed as:

E

[

max
k∈N

Uk(z)

]

= E

[

max
k∈N

e′kU(z)

]

=
∑

k∈N
E

[

e′kU(z)
∣

∣Tk

]

P

[

Tk

]

=
∑

k∈N
e′kwk.

The first set of constraints in (2.7) are obtained by expressing the mean and

the second moment matrix for the utility levels as the sum of the scaled
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conditional moments:







Q µ

µ′ 1






=

∑

k∈N







E[U(z)U(z)′
∣

∣Tk]P (Tk) E[U(z)
∣

∣Tk]P (Tk)

E[U(z)′
∣

∣Tk]P (Tk) P (Tk)







=
∑

k∈N







Wk wk

w′
k yk






.

The second set of constraints in (2.7) arises from the standard positive

semidefiniteness condition that the first moment vector and the second mo-

ment matrix must satisfy:







Wk wk

w′
k yk






� 0.

The necessary conditions in Formulation (2.7) implies that it provides an

upper bound on Z.

Next, we use the optimal variables (W ∗
k , w∗

k, y
∗
k) to generate the mul-

tivariate distribution that attains the bound. In the optimal solution, if

there exists a product k such that y∗
k = 0, then the positive semidefiniteness

condition implies that w∗
k must be a vector of zeros. We then perturb the

solution by adding the matrix W ∗
k to the matrix W ∗

j for any product j with

y∗
j > 0. This maintains feasibility and does not affect the objective value.
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The distribution F ∗ is now generated as follow:

(a) Choose product k ∈ N with probabilityy∗
k > 0

(b) Generate normally distributed utilities with mean w∗
k/y

∗
k

and second moment matrix W ∗
k /y∗

k.

The moment conditions for U(z) are clearly satisfied from the feasibility con-

ditions in (2.7). Furthermore, under this distribution F ∗ by simply looking

at the utility for the kth product under the kth scenario, we have:

EF ∗

[

max
k∈N

Uk(z)

]

≥
∑

k∈N :y∗
k>0

y∗
k

(

e′kw
∗
k

y∗
k

)

=
∑

k∈N
e′kw

∗
k.

This proves that the bound is attainable.

From the argument in Proposition 1, it is clear whenever product k is

selected with probability y∗
k, the optimal distribution for the utilities must be

perfectly correlated so that it will always attain the maximum utility. Note

that for bivariate normal variables X and Y , X > Y holds with probability

1 only when Y = X − β for some β > 0. The joint distribution identified in
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Proposition 1 hence has the form:

(

U1(z), . . . , Un(z)
)

=
(

Yk + w∗
1k, . . . , Yk + w∗

nk

)

(2.8)

with probability y∗
k for k = 1, . . . , n

where Yk is a normal random variable with mean 0 and variance δ2
k. The

variance δ2
k can be identified from the matrix equation:

δ2
kee

′ = W ∗
k /y∗

k − (w∗
k/y

∗
k) (w∗

k/y
∗
k)

′ ,

where e is a vector of ones of dimension n. This distribution degenerates into

the mixture distribution that we described at the start of this section and

we obtain the following corollary:

Corollary 1: Z1 = Z.

The equivalence of Formulations (2.5) and (2.7) can be used to gener-

ate numerous insights into the construction of the optimal distribution. In

Formulation (2.5), let ∆2 denote
∑

k ykδ
2
k. Using a change of variable, we

define:

v0 = (
√

y1, . . . ,
√

yn, 0),

vi = (
√

y1βi1, . . . ,
√

ynβin, ∆).
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Let Ik(v) denote the projection of v onto the k-th coordinate. We can then

find Z1 or Z by solving the reformulation:

Z1 = Z = maxv0,vk

∑

k∈N
v0 · Ik(vk)

s.t. vi · vj = Qij, i, j = 1, . . . , n,

v0 · vi = µi, i = 1, . . . , n

v0 · v0 = 1,

v0 · en+1 = 0,

vi · en+1 = vj · en+1, i, j = 1, . . . , n.

(2.9)

Geometrically, the vectors v0, v1, . . . , vn can be interpreted as finding a Cholesky

factorization of the (n + 1) × (n + 1) moments matrix







Q µ

µ′ 1






,

oriented so that the n + 1th coordinates satisfy the boundary conditions.

Now, consider the problem of scaling each of the utility functions by a

constant λ:

Z(λ) := max
F











EF

[

max
i∈N

Ui(z)

]

∣

∣

∣

EF [Ui(z)] = λµi; i ∈ N

EF [Ui(z)Uj(z)] = λ2Qij; i, j ∈ N











.(2.10)

The argument to the proof in Proposition 1 shows that the choice prob-

abilities obtained under the CMM model is scale invariant.
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Corollary 2: Let yi(λ) be the choice probability for product i in the CMM

model Z(λ). Then for all λ, λ′ > 0, we have:

yi(λ) = yi(λ
′).

In this thesis, we focus solely on utility maximization. There is an

analogous formulation with min-objective function. More specifically, we

have the following analogous proposition:

Proposition 2: Let ek denote a vector of dimension n with 1 in the kth posi-

tion and 0 otherwise. The problem

min
F

{

EF

[

min
i∈N

Ui(z)

]

∣

∣

∣
EF [Ui(z)] = µi; i ∈ N , EF [Ui(z)Uj(z)] = Qij; i, j ∈ N

}

.

is solvable as the semidefinite optimization problem:

minWk,wk,yk

∑

k∈N
e′kwk

s.t.
∑

k∈N









Wk wk

w′
k yk









=









Q µ

µ′ 1









,









Wk wk

w′
k yk









� 0, k = 1, . . . , n.
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2.3 Performance of the CMM model

We provide three simple examples to validate the quality of the choice proba-

bility predictions obtained from the Cross Moment model. The first example

deals with solving the two product case in closed form. The second example

discusses how the model can be used to overcome the behavorial limitations

observed in discrete choice models that display the IIA and IPS properties.

The third example deals with the use of the Cross Moment model in retriev-

ing a close approximation to the arcsine law observed in random walk models.

Example 1: Two Product Closed Form

Consider a set of uncorrelated products with means µi and variances σ2
i . By

choosing a different set of orthonormal basis, the optimal vi in Formulation

(2.9) can be rewritten as:

vi = µiv0 + σisi,

where the vectors (v0, s1, . . . , sn) forms a set of orthonormal basis, with v0 ·

en+1 = 0, and si · en+1 = ∆/σi for all i. This can be solved in closed form for

the case of two products.

Corollary 3: Consider two uncorrelated products, with means µ1, µ2 satisfy-

ing µ1 ≥ µ2 and variances σ2
1, σ

2
2 > 0. The choice probabilities obtained from
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CMM have the following values:

y1 =
1

2

(

1 +
µ1 − µ2

√

(µ1 − µ2)2 + σ2
1 + σ2

2

)

and y2 =
1

2

(

1 − µ1 − µ2
√

(µ1 − µ2)2 + σ2
1 + σ2

2

)

.

Proof. For the two product case, the set of orthonormal basis can be ex-

pressed as:

v0 =













√
y1

√
y2

0













, s1 =













α1
√

y2

−α1
√

y1

∆/σ1













, s2 =













−α2
√

y2

α2
√

y1

∆/σ2













.

From the orthonormality conditions, we have

y1 + y2 = 1, α2
1 + ∆2/σ2

1 = 1, α2
2 + ∆2/σ2

2 = 1, −α1α2 + ∆2/(σ1σ2) = 0.

Solving these equations, we obtain

∆ =
σ1σ2

√

σ2
1 + σ2

2

, α1 =

√

σ2
1

σ2
1 + σ2

2

, α2 =

√

σ2
2

σ2
1 + σ2

2

.

We obtain the optimal values for y1 and y2 by solving the following problem:

maxy1,y2 µ1y1 +
√

(σ2
1 + σ2

2)y1y2 + µ2y2

s.t. y1 + y2 = 1

y1, y2 ≥ 0.
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The optimality conditions yields the choice probabilities as:

y1 =
1

2

(

1 +
µ1 − µ2

√

(µ1 − µ2)2 + σ2
1 + σ2

2

)

and y2 = 1 − y1.

To evaluate the usefulness of the above results, we used it to approximate

the probability that X1 ≥ X2, when both X1 and X2 are normally distributed

and independent of each other. Note that the exact solution to P (X1 ≥ X2)

cannot be evaluated in closed form. The first plot in Figure 2.2 shows the

solution obtained from numerical evaluations (in black dash line), and that

obtained from the CMM model (in blue solid line), with X1 ∼ N(1, 0.12),

X2 ∼ N(µ2, 0.1
2), as µ2 varies from 0 to 1. The second plot shows the

performance when the distribution of X1 changes to N(1, 0.52). Clearly the

closed form solution provided by the CMM model tracks closely the actual

performance for this range of parameters.

Example 2: IIA and IPS Properties

The second example demonstrates that CMM model can be used to overcome

the counterintuitive behavior implied by the IIA and IPS properties that is

observed in many discrete choice models. Consider the example taken from

Steenburgh [56] where an customer faces a choice among laptop computers.

The observable attributes of the computers are the weight and the processor

speed (see Table 2.1).

In Choice Set I, an customer faces a choice between two laptop computers A

and C. Laptop A is the lightest alternative but it runs at the slowest speed.

Laptop C is the fastest alternative but is heaviest in weight. In Choice Set

II, an additional Laptop B is added to the choice set with medium weight
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Fig. 2.2: Comparison of two normal variates

Attributes Choice Set
Laptop Weight Speed I II

A LIGHT (1) SLOW (0) YES YES
C HEAVY (0) FAST (1) YES YES
B MEDIUM (α1) MEDIUM (α2) NO YES

Tab. 2.1: Laptop choice set
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and speed. The laptop attributes denoted by the vector (Weight, Speed)

are xA = (1, 0), xC = (0, 1) and xB = (α1, α2) for products A, C and B

respectively. We assume that the utility value of product P with weight αW

and speed αS is represented by

UP = (1 + ε1)αW + (1 + ε2)αS + εP ,

where ε1 and ε2 correspond to the random noise terms in utility evaluation

relating to the weight and speed attributes of the laptops. We assume ε1 and

ε2 have mean 0, variance 1 and are uncorrelated. We also let εP denote the

noise term introduced by the unobserved attributes of product P in utility

evaluation. εP is assumed to have mean 0, variance 1, for all products in this

example, and is independent of ε1 and ε2. Thus

UA = 1 + ε1 + εA

UC = 1 + ε2 + εC

UB = α1 + α2 + α1ε1 + α2ε2 + εB

(2.11)

Furthermore, we assume εC is uncorrelated with εA and εB while the correla-

tion factor between εA and εB is ρ. Computing the mean and second moment

matrix for the utilities gives us:

µ =













1

1

α1 + α2













,Q =













3 1 2α1 + α2 + ρ

1 3 α1 + 2α2

2α1 + α2 + ρ α1 + 2α2 2α2
1 + 2α2

2 + 2α1α2 + 1













.
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The corresponding correlation matrix for the utilities is

















1 0
α1 + ρ

√

2(α2
1 + α2

2 + 1)

0 1
α2

√

2(α2
1 + α2

2 + 1)
α1 + ρ

√

2(α2
1 + α2

2 + 1)

α2
√

2(α2
1 + α2

2 + 1)
1

















.

As the weight of laptop B is decreased (α1 increases), the utilities for laptops

A and B become more correlated. Likewise as the speed of laptop B increases

(α2 increases), the utilities for laptops C and B become more correlated.

We first consider the counterintuitive behavior implied by the IIA prop-

erty. In Choice Set I, using the two product formula the choice probabilities

are 1/2 under CMM. For Choice Set II, we set (α1, α2) = (1, 0) and change

ρ ∈ [−1, 1]. The correlation between the utilities of products C and B is thus

set to 0 while the correlation between product B and A changes from 0 to 1.

The choice probabilities obtained from CMM is plotted in Figure 2.3. Clearly

the IIA property is absent in this model. For example if B is uncorrelated

with A, then the choice probabilities for (A, B, C) are (1/3, 1/3, 1/3) while

if B is identical to A we get (1/4, 1/4, 1/2)

We next consider the counterintuitive behavior implied by the IPS prop-

erty. To check for this property, we compute the change in choice probabilities

as the attributes are modified. We set ρ = 0 and locate laptop B in the mid-

dle of the competing laptops (α1, α2) = (1/2, 1/2). Holding the speed fixed,

we make laptop B lighter and compute the new choice probabilities. Simi-

larly, we hold the weight fixed and increase the speed of laptop B. The choice
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Fig. 2.3: Absence of IIA property in CMM

probabilities in Table 2.2 indicate that the IPS property does not hold under

this model. As B becomes lighter, a greater proportion of the growth in it’s

probability is drawn from A (63.78%) as compared to C (36.22%). Similarly

as B becomes faster, a greater proportion of the growth in it’s probability is

drawn from C (63.78%) as compared to A (36.22%). In fact, Steenburgh [56]

suggests that the IPS property can be overcome by allowing the error terms

to become more correlated as the alternatives become more similar. Using

Eq. (2.11) and the CMM model, we provide a rigorous model to capture this

behavior.

(α1,α2)
Laptop (0.5,0.5) (1,0.5) (B becomes lighter) (0.5,1) (B becomes faster)

A 0.3586 0.2585 0.3018
C 0.3586 0.3018 0.2585
B 0.2829 0.4397 0.4397

Tab. 2.2: Absence of IPS property in CMM

Example 3: Random Walk model

The third example demonstrates the accuracy of CMM on a larger scale
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model. We test it’s performance on a random walk problem, wherein the

explicit solution on the choice probabilities is well known. Suppose Xi are

random variables with mean µi and standard deviation σi. Let

Sk = X1 + . . . + Xk, k = 1, . . . , n,

with S0 = 0. The goal is to estimate the probability that the random walk

attains it maximum value at step k. i.e., find

P

(

Sk = max
0≤j≤n

Sj

)

.

If Xi’s are iid, this probability can be rewritten as:

P

(

Sk = max
0≤j≤n

Sj

)

= P

(

Xk ≥ 0,

k
∑

j=k−1

Xj ≥ 0, . . . ,

k
∑

j=1

Xj ≥ 0

)

P

(

Xk+1 ≤ 0, . . . ,

n
∑

j=k+1

Xj ≤ 0

)

= P

(

S1 ≥ 0, S2 ≥ 0, . . . , Sk ≥ 0

)

× P

(

S1 ≤ 0, . . . , Sn−k ≤ 0

)

.

Let α =
∑n

i=1 P (Si > 0)/n. Then the classical arcsine law states that the

probability

P

(

Sk = max
0≤j≤n

Sj

)

converges in distribution to

1

nπ
sin

(

π

α

)(

k

n

)α−1(

1 − k

n

)−α
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Contrary to popular intuition, the two end points (k = 0 or k = n) have the

highest probability of attaining the maximum.

The above is identical to a discrete choice problem, where the utility of

product k is given by the summand Sk =
∑k

j=1 Xk. We can obtain the choice

probability estimates using the CMM model, with

µ =

















...

E(Sk) =

k
∑

j=1

µj

...

















,

Q =













...

· · · E(SiSj) =
∑

a≤i,b≤j,a6=b µaµb +
∑

a≤i,j(µ
2
a + σ2

a) · · ·
...













.

Figure 2.4 shows the choice prediction of the above random walk model,

based on the arcsine law and the Cross Moment model, for n = 80, using

Xi with mean µi = 0, standard deviation σi = 1, and α = 0.5 (i.e. Xi’s are

symmetrical about the mean). Interestingly, the Cross Moment model is able

to approximately return the arcsine law behaviour of the choice probabilities,

with slight over-estimation for the popular products (k = 0 and k = n), and

under-estimation for the less popular products (k ≈ n/2).
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Fig. 2.4: Comparison of choice probabilities under Arcsine Law and CMM with
n = 80

2.4 Application of Model: Flexible Packaging Design Problem

Using the Cross Moment model, the product line design problem is to choose

a set of K products to maximize the expected utility:

max
S⊂N :|S|=K

Z(S),

where Z(S) is obtained by solving the semidefinite optimization problem:

Z(S) = maxWk,wk,yk

∑

k∈S
e′kwk

s.t.
∑

k∈S







Wk wk

w′
k yk






=







QS µS

µ′
S 1






,







Wk wk

w′
k yk






� 0, k ∈ S.
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The second moment matrix QS and mean vector µS are obtained by looking

at the corresponding subset S ⊂ N from the original matrix Q and vector

µ. The number of decision variables in solving Z(S) is O(K3) which can be

much smaller than O(n3) for K << n.

We augment the ease of choice estimation with a greedy-swapping heuris-

tic (used in many product line design problems) to obtain a “good” product

set. More specifically, we first use a standard greedy strategy to iteratively

enlarge the set of products till we have K candidates, and then we look for the

best option to swap a selected product with one that has not been selected by

the heuristic. To determine the best swap to adopt each time, we iteratively

replace the current candidates with those unselected ones and compare the

resulting total utilities. The swapping heuristic thus maintain a set of K

products throughout. This heuristic terminates when no improvement can

be achieved through swapping.

With the MNL model, we solve the following problem directly to find

optimal solutions:

max
S⊂N :|S|=K

ln

(

∑

i∈S
eE[Ui(z)]

)

The objective herein is obtained using the well known fact that

E

(

max
i∈S

Ui(z)

)

= ln

(

∑

i∈S
eE[Ui(z)]

)

for the standard MNL model. We solve the above model via complete enu-

meration to obtain the global optimal product line design.
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Application of the above model could be found in many manufacturing

and service industries. From the manufacturers’ point of view, it may be

purely to decide on its product set; While from the retailers’ perspective,

more of their concerns may focus on the integration of product selection

with inventory planning decisions. We will extend our model to incorporate

inventory decision in next chapter. Here we will constraint the application

to a pure product selection problem. The following flexible packaging design

problem can use our Cross Moment Model to model its underlying uncer-

tainties.

We use the framework discussed above to address a problem faced by

a local service parts supplier. The company deals with instruments and de-

vices for electronics and communications, and has three distribution centers

(DC) worldwide to coordinate the flow of service parts throughout the sup-

ply chain. The DC in Singapore was the latest addition and established to

cater to the needs of the expanding Asian markets. It was responsible for

satisfying customer orders mainly from the Asia-Pacific region, and provid-

ing replenishment support to other DCs. The customer orders arrived from

six main destinations: China, Japan, Korea, United States, Malaysia and

Taiwan. Other destinations included Germany, Thailand, France and some

other countries but the number of orders from these countries were much

smaller as compared to the six main locations. Customers were individual

firms, company’s regional offices and other warehouses (for replenishment).

The observed variance in orders was quite high. While orders could be large,

order with just one item were also not uncommon. In fact most of the orders

from Malaysia and Taiwan usually had a small number of items.
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Each order required the DC to ship the ordered items in a mother box

through one of the freight services (e.g. DHL express, KWE, FEDEX etc.).

With rare exceptions, the freight service used by the warehouse for a par-

ticular destination was fixed - FEDEX was used mainly for shipping to the

US, KWE for shipping to China, Japan, and Korea etc. Each freight service

had a different freight rate but they followed an international standard set by

IATA (International Air Transport Association), which required shipments

to be rated based on the larger of “actual weight” and “volume weight”.

On receiving an order, each item is packed in a rectangular box (item-

box), size and shape of which could vary considerably from item to item.

All the item-boxes belonging to an order were then packed in a mother-box.

Usually the items shipped by the warehouse have low density and it is the

volume of the mother-box that determines the freight cost and not the actual

weight. Shipping cost is based on the volumetric weight of the mother box.

As per the IATA standards,

volumeweight = (l × w × h)/6000 (2.12)

where l, w, and h are the length, width and height of the box respectively,

in centimeters. The volume weight and actual weight are measured in kilo-

grams.

The DC is faced with the task of maintaining an inventory of different

sized mother-boxes, while keeping the shipping cost as low as possible. On

average the shipping cost constitutes a high percentage (around 85%) of

the total cost of the warehouse services per line item. The variations in
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size, shape and number of items per order makes the problem of selecting

a manageable number of boxes in the box-set an extremely difficult one to

solve. The DC explored the usage of a flexible packaging option, in which

a box with one base can be adjusted to have more than one heights. One

such box is shown in Figure 2.5. This box can be adjusted to have three

different heights (more heights can be achieved easily). A flexible box costs

a little more than the normal fixed height box, but gives the warehouse a

degree of freedom in terms of height. The DC thus needs to select a fixed

number of bases for the mother-boxes. We call this the flexible packaging

design problem.

Fig. 2.5: A flexible box with 3 adjustable heights

This is a product line selection problem in a loose manner, where orders

are analogous to customers with random utilities. We can think of the orders

arriving from each destination as a different customer segment. Assuming

utility of base (product) i for a order (customer) j is given by

Uij = Max0, M − cj((li × wi × hij)/6000), (2.13)
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where M is a constant which can be seen as a fixed revenue from each order

(we used M=1001 for all orders, and assume M == Rj∀j), and cj(x) is the

cost of shipping x kg volume weight to destination j. The parameters li, wi

are the length and width (in cm) of base i, and hij is the height achieved by

the order j when packed in a box with base li × wi. Details on the packing

is provided in the next section.

2.4.1 Data

We were provided the data of a total of 101 orders. The data was collected

during consecutive working days over a week. Note that there is no season-

ality involved in the business of this DC. For each order, the dimension of

the individual item-boxes, order destination, and dimensions of mother-box

used were provided. Along with the order data, we were also provided the

freight rates of various freight services used by the warehouse.

Figure 2.6 shows the dimensions (length, width, and height in cm) of

some of the typical item-boxes shipped by the DC. It gives a fair idea about

the shapes and sizes distribution of the item-boxes: some are elongated (like

a rod), some are flat (like a pizza box) while some have regular cuboid shape.

Figure 2.7 shows the frequency distribution of the sum of the volume

weights of all the item-boxes belonging to an order, for six major order-

destinations. This statistics shows the per-order volume weight distribution.

Orders from China and Japan cover a big range of volume weights and may

have high values (upto 105 kg), whereas orders from Japan were quite uni-

formly distributed. Orders from US and Malaysia, on the other hand, have
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Fig. 2.6: Dimensions of various item-boxes

low volume weights (upto 25 kg). It is clear that orders do have some pecu-

liar characteristics (in-terms of volume weights) destination-wise. Moreover

we have different freight rates applicable for different destinations. There
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Fig. 2.7: Destination-wise volume weight distribution for orders

are mainly two types of freight services used by the DC - freight forwarders

(such as KWE and DHL Global), and express services (such as DHL Express
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and FEDEX). A snapshot of the shipping cost structures for both types of

providers are shown in Figure 2.8. The shipping cost structure affect Uij

through the term cj(·).
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Fig. 2.8: A typical shipping cost curve for freight-forward services (dashed line)
and express services (solid line)

Tracking both the smallest and largest item-boxes involved in all the

orders, we identified the base candidates of the mother-box. We start the

length/width from 15cm, and increase by 10cm interval each time, until we

arrive at 85cm for both length and width. Therefore, totally we get 36

base candidates. Given these base candidates and the order information, our

objective is to select K bases for mother-boxes. We solve this base selection

problem using both MNL and CMM models to compare their efficacy.

We describe next how we obtain empirical estimates of the first and

second moment matrix of the utility function Uij.

• We randomly select 10 orders per destination from the available his-

torical data. For each order to destination j and each base i, we find

height hij by packing the items (belonging to the order) in the box

with base i. We use a commercial 3D packing software, 3D load packer
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developed by Astrokettle Algorigthms, to find this height with rectan-

gular packing (without orientation). The height hij is chosen so as to

attain minimum volume using the base i so that all the items belong-

ing to the order can be packed. In Figure 2.9, we show a snapshot of

the packing using the 3D Load packer software, and the corresponding

packing obtained is shown in Figure 2.10.

Fig. 2.9: A sample of packing using 3D loadpacker

We assume that packing crew at the warehouse, in practice, packs the

items as efficiently as the 3D packing software. Given a small number

of items per order this assumption is fairly justified. Given a base and

an order, we were able to find the minimum possible volume (and hence

maximum possible utility) that is achievable using the given base for

the order.

• With this height hij and length li and width wi of the base i, we find
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Fig. 2.10: View of packing generated in the sample of Figure 2.9

the volume weight of the mother-box with base i and order j.

• Given the freight rates of various services, we find the shipping cost

cj(.) for each order. Note that the freight service used for a particular

destination is known in advance.

• Once the cj(.) is found, we can find utilities Uij using equation (2.13). If

order j does not fit into any box with base i, we assign a small number

as utility for this order and base combination.

• From these utilities we find the first and second moment matrices which

are input to CMM. For MNL model, we use the mean utilities for differ-

ent products and calculate the variance of all utilities as the estimated

random error.
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2.4.2 Computational Results

Table 2.3 provides the bases chosen for the mother-boxes using both MNL

and CMM for varying values of K.

K MNL selection

5 45 × 65 55 × 65 55 × 85 65 × 75 65 × 85
6 45 × 65 55 × 65 55 × 85 65 × 75 65 × 85 75 × 75
7 45 × 65 55 × 65 55 × 85 65 × 75 65 × 85 75 × 75 55 × 75
8 45 × 65 55 × 65 55 × 85 65 × 75 65 × 85 75 × 75 55 × 75 45 × 75
9 45 × 65 55 × 65 55 × 85 65 × 75 65 × 85 75 × 75 55 × 75 45 × 75 65 × 65
10 45 × 65 55 × 65 55 × 85 65 × 75 65 × 85 75 × 75 55 × 75 45 × 75 65 × 65 75 × 85

K CMM selection

5 15 × 55 25 × 25 25 × 45 45 × 55 65 × 85
6 15 × 55 25 × 25 25 × 45 35 × 75 65 × 85 45 × 45
7 15 × 55 25 × 25 25 × 45 45 × 55 65 × 85 45 × 45 85 × 85
8 15 × 55 25 × 25 25 × 45 45 × 55 65 × 85 45 × 45 85 × 85 15 × 15
9 15 × 55 25 × 25 25 × 55 45 × 55 65 × 85 45 × 45 85 × 85 15 × 15 25 × 35
10 15 × 55 25 × 25 25 × 45 45 × 55 65 × 85 65 × 65 85 × 85 15 × 15 25 × 35 35 × 75

Tab. 2.3: Base sets selected by MNL and CMM

The results indicate that the product line selected from the CMM tends

to span a broader range than the MNL model suggests. This can be explained

by the fact that CMM captures the information about common attributes of

bases in terms of their width and length by the utilities covariance. Therefore,

the CMM model successfully avoids the tendency to focus only on bases with

high utility means, instead it includes bases with more variant dimensions

to satisfy divergent order needs. For example, we can find in CMM’s offer

set, base 65 × 75 is avoided throughout, whereas base 65 × 85 is kept in the

product line. MNL model includes both bases in all the cases. In terms of

utility values, these two bases have high correlation of 0.9779. Thus it often

suffices to carry one of the two bases in the product line.
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K Avg. utilities Avg utilities Improvements Avg. cost Avg. cost Savings
from MNL from CMM in utilities from MNL from CMM in cost

5 5215.6 5571.2 6.8% 131.73 72.47 45.0%
6 5219.5 5635.2 8.0% 131.08 61.80 52.9%
7 5243.2 5719.4 9.1% 127.13 47.77 62.4%
8 5244.9 5721.8 9.1% 126.85 47.37 62.7%
9 5247.4 5754.8 9.7% 126.43 41.87 66.9%
10 5247.9 5794.1 10.4% 126.35 35.32 72.0%

Tab. 2.4: Simulated utilities and costs for MNL and CMM

Using simulation, we attempt to confirm and quantify the advantage

from the CMM’s results over MNL’s results. Based on the utilities mean

and covariance estimations, we simulate the performance of both product

lines using 10,000 randomly generated utility values, with the multivariate

normal distributions. Employment of the multivariate normal distribution

for the utilities is the most reasonable and convenient approach to simulate

the utilities, although both CMM and MNL hold under different assumptions

regarding the distribution of random utilities. Table 2.4 lists the resulting

average utilities and the corresponding average cost obtained by each base

set.

From the above table, we can see that the CMM significantly improves

the average resulting utilities compared to MNL model. The savings in the

corresponding shipping cost is even more significant. From our numerical

results, the extent of improvements in utility and savings in cost tend to

increase as the number of bases selected increases.

We used the actual shipping cost incurred in shipping each order as a

benchmark to test the performance of CMM. For each order, the dimension of

the mother-box used was provided to us so we could find this benchmark cost
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for each order. A total of 7 standard sized boxes (without flexible heights)

were being used at the time the data was collected. Dimensions of these

mother-boxes were 74 × 66 × 64, 76 × 66 × 41, 70 × 65 × 30, 55 × 50 × 35,

41× 39× 21, 45× 32.5× 15, and 31× 23.5× 12. We used our base-set with

7 bases (corresponding to bases 15 × 55, 25 × 45, 25 × 25, 45 × 45, 45 × 55,

65 × 85, 85 × 85) with flexible packaging option to pack each order and find

the shipping cost using the box with this base-set. To calculate the shipping

cost, the 3D packaging software was used and each order was assigned the

base which achieves the minimum shipping cost.

The comparison of total cost with the existing box-set and that with

the 7 base set generated by CMM shows a percentage reduction of 11.24 in

the shipping cost. Another interesting finding is that the total shipping cost

using only the 6-base set (corresponding to bases 85×65,45×25,75×35,25×

25,55× 15,45× 45) already reduces the shipping cost by 8.53% as compared

to the benchmark performance. The option of the flexible height can thus

potentially allow the DC to use less bases to meet the needs of the packaging

operation. It should be mentioned here that the cost reduction highlighted

here is the result of solution suggested by CMM model as well as the flexible

packaging option.

2.5 Conclusions

There are many real life situations in product line design where products are

interdependent. In this thesis we proposed a model, called Cross Moment

(CMM) model, to solve this class of problems. The consumer choice model
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proposed here is parsimonious in that, it uses only the mean and covariance

information of utility evaluations across the products. Despite exploiting

just the first and second moment information, our results suggest that the

model generates reasonable choice estimates, even in the situations where

product utilities are highly correlated. The key advantage of CMM is that it

avoids the need of exhaustive simulation to generate the choice probability

estimates. This allows CMM to be embedded into a heuristic to search for

a good set of products for the product line design problem. Also CMM

is computationally tractable as a convex semidefinite optimization problem,

which makes it more attractive for practical purposes.

We used three examples from various settings to validate the quality

of choice predictions obtained from CMM. We showed that CMM is able

to circumvent the issues associated with IIA (Independence from Irrelevant

Alternatives) and IPS (Invariant Proportion of Substitution) properties in-

herent in many popular consumer choice models.

We applied CMM to address a flexible packaging design problem faced

by a local service part supplier and augmented the ease of choice estimation

with a greedy-swapping heuristic. Finally we compared the performance of

CMM and MNL in this flexible packaging problem to check the efficacy of

CMM. The product set delivered by CMM indeed seems better than the one

suggested by MNL model, even though the latter is obtained via complete

enumeration.

In real world, many supply chains involved both manufacturers and re-

tailers. Their respective decisions affect the efficiency of the whole supply

chain. Obviously interdependent characteristics among multiple products
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will affect the retailer’s stocking strategies. To extend our CMM model to

incorporate the inventory decisions, we will study the product line selection

and inventory joint decisions from a retailer’s standpoint in the next chapter.



3. PRODUCT LINE SELECTION AND INVENTORY

JOINT DECISIONS

3.1 Introduction

From a retailer’s perspective, product proliferation causes complexity to the

fundamental assortment planning and inventory decisions. For example, a

retailer who sells hand phones often faces various models of hand phones

with different brands and different attributes such as camera, video, radio,

mp3, bluetooth and so on. The retailer who is a profit maximizer not only

needs to consider which brands to carry and which models to put in display,

but also needs to determine the inventory levels for each model in order to

meet customers’ demand while keeping the inventory cost low.

To achieve these goals, the retailer needs to predict and incorporates the

customers’ demand pattern into his product offering and inventory decisions.

To a large extent, the retailer’s ultimate profit depends on the accuracy and

reasonability of her forecast of her customers’ demand for each product model

respectively. To make the forecast practical, recent literature in “random

utility theory” acknowledged that the randomness not only exists among the

utilities of different individuals, but also in the utility of the same individual



3. Product Line Selection and Inventory Joint Decisions 56

due to its “unobservable” nature. We will examine different customer choice

models under random utility framework in this chapter.

Based on random utility theory, multinomial logit model (MNL) has

been applied widely in both marketing and operation management literature.

Tractability and simplicity are the key advantages of this model. However,

due to its simplified assumption of independence among products utilities,

MNL suffers from the property of Independence of Irrelevant Alternatives

(IIA). That is, the ratio of the probabilities of any two alternatives is entirely

unaffected by the systematic utilities of any other alternatives. Consequently,

MNL will exaggerate the market share of similar products. A classic example,

the blue bus/red bus paradox, illustrates this prediction bias inherent in

MNL model. In the setting where three kinds of transportation methods are

provided, namely, train, red bus and blue bus, the customers have the same

utility mean on either taking the train or the bus which can be blue or red.

Then the MNL model will give a choice prediction as 1
3
, 1

3
, 1

3
for each vehicle,

while the actual situation should be 1
2
, 1

4
, 1

4
.

Based on attribute model, the locational model to some extent tackles

the IIA property. But this model is not tractable for high dimensions case

when we consider many attributes of the products.

To address the above issue, a new consumer choice model based on both

random utility and attribute model is proposed in Chapter 2, with the name

Cross Moment Model (CMM). This CMM model relates the attributes to the

customer utilities in a linear function, and satisfactorily models and factors in

the complicated utility correlations among the different products. In Chap-

ter 2, we showed that the CMM model can be applied to the product design
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issues and bring a significant improvement over the MNL model. However,

we did not take inventory into consideration, therefore the complicated inter-

action between customer choice and retailer’s inventory level resulting from

substitution have not been modeled and studied.

Thus in Chapter 3, we will incorporate this CMM model into the assort-

ment planning problem. We will examine the characteristics of its solutions

and compare the performance of CMM model and MNL model when being

applied to the retailer’s assortment planning problem.

Additional complexity in retailer’s assortment and inventory decision

comes from the customers’ substitution behavior. It is common for a cus-

tomer to enter a store, looking for a particular product, but not able to find

it thus settle for another similar product instead. This is called substitution.

Substitution depends on product availability as well as product accessibility.

To illustrate product availability, we consider hand phones as an example

again. Assume there are only 3 attributes: camera, color and radio. If two

hand phones have both 2-megapixel camera and radio, but differ in color,

and the third hand phone is totally different which is in quirky color and

has neither camera nor radio, then we can say the first two hand phones are

closer to each other. Close products provide the availability for substitution.

On the other hand, accessibility measures the ease of access for the

customer to make the substitution. For example, in a supermarket, it is easy

for customers to substitute the product in mind which is out of stock with

other similar products which are nearby. This is not the case for catalogue

shopping when customers have no idea about the product availability.

Therefore, substitution depends on both product availability and prod-
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uct accessibility. In this chapter, we will consider three different types of

substitution: static substitution, perfect substitution, and dynamic substitu-

tion. We will examine the performance of our model for retailer assortment

planning problem under each type.

Our contributions can be summarized as follows:

a) We build a framework and a tractable approach to factor product

inter-dependence into retailers’ assortment decisions through the embedded

customer demand forecast process. This enables us to propose a method to

deal with both the horizontal and vertical differentiated products in the joint

product line selection and inventory problem. In contrast, the previous MNL

and locational models only target at horizontal differentiation.

b) We examine the influence of the inter-dependence among product

attributes on the retailer’s assortment decisions. By taking correlation among

products’ utilities into account, we show that when the correlation increases,

under our model, the optimal offer set should be smaller and the inventory

level should be more concentrated, and the expected profit can be achieved

at a higher level.

3.2 Retailer’s Assortment Planning Model with Customer

Choice Embedded

Consider a big retailer such as Walmart who faces a procurement problem

whereby he needs to choose the products to carry (that is, to determine his
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offer set) from M alternatives as well as to decide the order quantity for each

product. This product line selection and order quantity joint problem is also

called the assortment planning problem. We consider a single period problem

here.

Suppose there are M products in the market, and the retailer needs to

select some products to carry and the inventory level qj for each product j.

The revenue of each product is denoted as rj and procurement cost sj. Excess

demand at the end of the period is lost and excess inventory is salvaged at

value vj. We assume rj > sj > vj. For simplicity of the expressions, we

let vj = 0 in our following presentation. Let N denote the total number of

customers in the market.

To estimate the choice probability pj, we use the consumer choice model

developed in Chapter 2. Suppose the customers have only rough knowledge

about what products are offered in the whole market before heading to a

particular retailer. To avoid the complexity of incorporating competition

modelling from other retailers, we propose a virtual product, numbered zero,

to represent the customer’s reservation utilities, say, for the not-purchase

option from this particular retailer for the time being. And for simplicity, we

assume this reservation utility is constant.

Since the customer can not observe the inventory until he enters the

store, he can only buy his utility-maximization product at the store if it is

available. If it is out of stock, the customer may or may not substitute the

product in mind with other products at this store, depending on different

nature of the products. For example, if the customer is looking for a specific

medicine, he is unlikely to substitute and may choose to continue his search
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in other stores. On the other hand, substitution will “always” happen if the

searching cost is extremely high. For example, when you invite some guests to

a restaurant and realize the restaurant ran out of your favorite drinks after

you have ordered the main dish, then you may switch to whatever drinks

they offer. The first case permits no substitution and the second case allows

perfect substitution.

In addition to the above two extreme cases, substitution can happen

in a limited manner. For example, it is common for different models of an

electronic product to have various appearances and functions while sharing

certain key features. In this case, the customers may restrict the substitution

within a small group. For example, some customer may only accept any hand

phones with three-mega camera and blue-tooth technology.

Limited substitution is common in practice, however it is difficult to

solve when it is factored into the assortment planning problem. Next, we

will first examine the problem with no substitution or perfect substitution.

We will show that these two extreme cases provide the lower bound and

upper bound for limited substitution. We will also derive some heuristics for

limited substitution and examine the properties of the optimal solution.

3.2.1 Static Substitution

The concept of Static substitution first appeared in van Ryzin and Mahajan[53].

Under static substitution, customers choices are based only on knowledge of

the variants but not on inventory status of the offer set, so they do not sub-

stitute if the store has run out of their first choice product by the time of
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their arrival.

With static substitution, the demand for product j, is simply the number

of customers that pick product j as their first choice, which is dependent on

the offer set, but independent of the inventory levels. A typical case in

life of static substitution is catalogue shopping without back-order, where

customers are only aware of product variants on the timing of their purchase

choice, assuming availability for all products offered.

An extreme case would be No Substitution. No substitution requires

the consumers to possess perfect information of the product variants on the

market, as well as the absolute loyalty to their first choice. Thus the demand

for any particular product is quite inflexible, independent of both the offer set

and the inventory levels. In fact, we can deem No Substitution as a special

case of the Static substitution. Since in no substation case, the customer

simply knows all the product variety information, and hence it is equivalent

to the case when the retailer adopts the whole product spectrum as the offer

set with static substitution conditions. 1

Given any complete product set, the retailer’s problem with product line

selection and order quantity joint decisions can be formulated as follows:

1 We augment with the Greedy and Swapping Heuristic to the following solution to find
the optimal offer set in static substitution case.
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Π = max
yj ,qj

E

[ M
∑

j=1

rj min(D̃j, qj) − sjqj

]

s.t. 0 ≤ qj ≤ yjN ∀j = 1, 2, ..., M

yj ∈ {0, 1} ∀j = 1, 2, ..., M.

(3.1)

The random variables D̃j above denote the demand for each product.

Assume homogeneous consumer segment and from the choice probability, we

can derive the demand D̃j as a binomial distribution with choice probability

pj and Poisson consumers arriving with rate λ. Let N denote the total number

of customers arrived and Nj denote the number of customers with product

j as their first choice. Then N is Poisson with rate λ, and Nj is Poisson

with rate λ ∗ pj. Here yj is the zero-one variable to decide whether product

j will be selected into the offer set 2. To derive the optimal expected profit

in closed form, we use Normal approximation for Poisson distribution. That

is, we assume that the demand for product j is normally distributed with

mean λ ∗ pj, and standard deviation
√

λ ∗ pj. Indeed, inventory model in

practice is quite common to adopt simple distribution assumptions of this

sort. Readers can refer to [38] and [22]. If the market shares are predicted

using MNL model, than we call the combined model as MNL-INV model,

and if CMM model is used to produce the market shares, we call the whole

method CMM-INV model.

2 It is different from in Chapter 2, where we use yj for choice probability.
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Let K denote the number of products we would like to choose from M

products’ set. Let Y denote the product offer set as a vector (y1,y2,y3,...,yM),

where
∑M

j=1 yj = K, yj ∈ {0, 1}, j = 1, 2, 3, ..., M . Given an offer set Y, the

expected total profit of this offer set can be written as follows:

Π(Y ) = max
qj

E

[ M
∑

j=1

rj min(D̃j, qj) − sjqj

]

s.t. 0 ≤ qj ≤ yjλ ∀j = 1, 2, 3, ..., M.

(3.2)

With static substitution condition, profits from different products will not

affect each other, therefore problem(3.2) can be decomposed into M subprob-

lems, with each problem as:

Πj = max
qj≥0

E

[

rj min(D̃j, qj) − sjqj

]

Proposition 3: Given any offer set Y, under static substitution, the choice

probability is determined as pj, ∀j = 1, 2, 3, ..., M , then the optimal order

quantity for each product can be obtained as q̄∗j = F−1(θj) = λpj + z
√

λpj.

The optimal expected profit achieved is

Π∗
j = (rj − sj)pjλ − rj

√

pjλφ(z). (3.3)
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where z = Φ−1(θj) is the service level, θj =
rj−sj

rj
is the critical fractile,

and φ(·) and Φ(·), respectively, denote the density function and cumulative

distribution function of the standard normal distribution.

Proof. Newsboy model can be used to get the optimal order quantity and

optimal expected profit for each product respectively. The advantage of the

normal demand distribution is that it gives a close form expression for the

optimal expected profit. Refer to Porteus ([50]:p13), and plug in our demand

mean of pjλ, and standard deviation of
√

pjλ to get the optimal expected

profit for product j in formula (3.3).

Using the above proposition, we can propose a two level solution frame-

work to the original problem (3.1). At the lower level, for any given offer set

Y, inventory decision for each product will be determined based on the de-

mand forecast derived from customer choice prediction, and expected profit

objective Π can be obtained for each product correspondingly; At the higher

level, offer set decision will be made by maximizing the total expected profit,

which is the sum of the expected profit for each product as we derived in the

lower level.

Lemma 1: Optimal expected profit for product j is strictly convex in choice

probability pj.

Proof. From Formula (3.3), we see first term (rj − sj)pjλ is linear in pj,

and second term −rj

√

pjλφ(z) is strictly convex in pj, therefore, optimal
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expected profit for product j Πj is strictly convex in choice probability pj.

From the above Proposition 3 and Lemma 1, we can construct the fol-

lowing solution for static problem (3.1) under the “MNL-INV” model.

Proposition 4: Given the complete product set, when all the products have

same procurement costs and revenues, the optimal offer set of Problem (3.1)

contains the products with highest market shares in the complete product

set. That is, if we index the products according to their market share pj in

a descendant order, p1 ≥ p2 ≥ p3..., and let Ak = {1, 2...k} denote the set

consisting of first k variants, then the optimal offer set using MNL choice

model in static substitution will always belong to one of the sets Ak. And

the offer set will cover more products as the customer population increase.

Proof. van Ryzin and Mahajan[53] proved the similar “nested set property”

for MNL-INV assortment problems, although they used different demand

variance in the product demand distributions. Our proof follows their proof

methodology closely as shown in the following.

Let wj = eβVj , j ∈ Y , w0 = eβV0 , where V0 is the reservation utility from

no purchase, then from Formula (1.1), we get the choice probability under

MNL model: pj =
wj

∑

j∈Y wj+w0
.

Now let us consider perturbing the offer set by adding one more product

from the remaining set, which has expected utility Vn. Let δ = eβVn , then

the new choice probability with this new product incorporated to the offer

set is: pj(δ) =
wj

∑

j∈Y wj+w0+δ
.
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From Formula (3.3) and sum in products, we can get the total expected

profit with the new offer set.

Π(δ) = f(δ)
g(δ)

, where

f(δ) =
∑

j∈Y wj + δ + w0

g(δ) =
(r − s)λ(

∑

j∈Y wj + δ)

− r
√

λ e−z2/2√
2π

(
∑

j∈Y

√
wj +

√
δ)
√

(
∑

j∈Y wj + δ + w0).

(3.4)

Now using the following result from Mangasarian (1969): The function

g(·)/f(·) is quansiconvex on X if (1)g(·) is convex and f(·) > 0 for all v ∈ X

and (2) f(·) is linear on X.

As we can see the function defined in f(δ) is linear in δ and greater than

zero for all possible δ, and easy to get the function in g(δ) is convex in δ.

Thus, the total expected profit Π(δ) is quasi convex in δ.

Because the function is quasi convex, it follows that the maximum profit

is achieved at the end points of the interval for δ. Therefore the expected

profit is maximized by either not adding any more products or by adding the

product with highest wj among those not included in Y.

To proof the structure of the optimal offer set, we consider any opti-

mal set Y ∗, the number of products in set Y ∗ is m, and their w∗
j is order

as w∗
1 ≥ w∗

2 ≥ ... ≥ w∗
M > 0. If Y ∗ = Am, the proposition holds already.

Otherwise, then there exists a wj not belongs to Y ∗ such that wj > w∗
m.

Then from the quasi convexity of the total expected functions, it must also

be true that we can either remove w∗
m or exchange it for wj > w∗

m without

decreasing profits. Redefine Y ∗ to be this new set and repeat the procedure.
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Eventually the optimal offer set arrives at Y ∗ ∈ {A1, A2, ..., AM}

For CMM-INV model, the market share of any new introduced products

will affect the previous products depending on the complicated correlation

matrix structure. Therefore, for any new subset, we need to recalculate the

market share again. The above Proposition 4 may not apply to CMM-INV

model. However, when all the products in the offer set have same utility

variance and correlations, we adopt this “nested set heuristic” to derive offer

set for CMM-INV model. To be more specific, we only consider sets Ak =

{1, 2...k}, which only consists of first k products, according to their market

share pj in a descendant order. The whole solution algorithm framework is

displayed as follows in Figure 3.1.

Proposition 5: Under static substitution, when utility variance of the two

products are the same and small enough, the total inventory level from CMM-

INV Model is lower than that from MNL-INV model. And the inventory

levels are more concentrated on popular products. Such inventory gap and

skew increase as the positive correlation among utilities of the two products

increase.

Proof.

Compare MNL market share and CMM market share under correlations

equal to zero for two product case. Suppose µ1 > µ2, let yCMM
1 denote

product one’s market share under CMM model, and yMNL
1 denote product

one’s market share under MNL model, then the difference ∆y is as follows.
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Calculate market share using consumer
choice model MNL or CMM model.

Determine Inventory level
using independent newsboy or
pooled newsboy heuristic

Any other offer set untested

in the nested set heuristic?

Take the complete product
set as given offer set

Calculate Expected Total Profit

End

Choose the solution with
highest expected profit

No

Yes

Move on to the next
offer set in “nested
set heuristic”

Fig. 3.1: Algorithm for assortment problems with CMM-INV model
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∆y = yCMM
1 − yMNL

2 =
1

2

(

√

(µ1 − µ2)2

π2

3β2 + (µ1 − µ2)2
− eβµ1 − eβµ2

eβµ1 + eβµ2
). (3.5)

As β increase, above (3.5) also increase. Therefore, we can claim, there

exist a β, when β > β, ∆y > 0. Therefore, as the utility variance small

enough, CMM model will produce more concentrated market share then MNL

model.

From Proposition 3, summing the inventory for all products,

∑

j∈Y

q∗j = λ + z
∑

j∈Y

√

λpj. (3.6)

Then for two products, total inventory Q is: Q = λ+z
√

λ(
√

p+
√

1 − p)

Easy to see Q is concave in p, with maximum inventory at p = 1
2
. Then

from Proposition 7 and 8, we prove that market share will become more

concentrated as utility correlation increase. Therefore, total inventory will

decrease with the utility correlation increase. As the market share of popu-

lar product under CMM model will be larger than under MNL model when

utility variance is small enough, therefore the total inventory will be smaller

under CMM model than MNL model when utility variance is small enough.

Proposition 6: Under static substitution, when utility variance of two prod-

ucts are same and small enough, the expected profit from CMM-INV Model is

bigger than that from MNL-INV model. And the difference in total expected
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profit would increase as the positive correlation among product utilities in-

crease.

Proof. From expected profit formula (3.3), we can sum up to get the total

expected profits for the two products:

Π = (r − s)λ − r
√

λφ(z)(
√

p +
√

1 − p). (3.7)

As d2Π
dp2 = r

√
λφ(z)(1

4
p

−3
2 − 1

4
(1 − p)−

3
2 ) > 0 for p > 0 and optimal

p∗ = 1
2
. Therefore the total expected profit will increase as the market share

of popular product increase. And from Proposition 7 and 8, we prove that

CMM model will produce more concentrated market share as utility corre-

lation increase. Therefore, expected profits will also increase with the utility

correlation increase. From the Proof of Proposition 5, market share of popu-

lar product under CMM model will be larger than under MNL model when

utility variance is small enough, therefore the expected profits will be larger

under CMM model than MNL model when utility variance is small enough.

3.2.2 Perfect Substitution

Under perfect substitution, once the customer arrives at the retailer, he will

definitely buy one product in the end. If his first choice product is out of

stock, he will substitute with the second choice, and if the second choice is

also out of stock, he then changes to the third, and so on. This extreme

case represents an extreme loyal customer or the cost of switching to another
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retailer is extremely high (e.g. monopoly retailer).

Perfect substitution will provide an upper bound for the retailer in terms

of the total expected profit. With perfect substitution assumption, the re-

tailer will only stock the most profitable product. By doing so, he forces all

the customer to purchase this product and achieves highest expected profit.

The profit under perfect substitution is simply: (rm − sm)N , where rm

and sm are revenue and cost for product m, which produced highest profit

margin.

3.2.3 Dynamic Substitution

Under dynamic substitution, the customer only substitutes when the utility

from available products are higher than his reservation utility. That is to say,

the customer will buy his first choice if available, and if not he will change

to his second choice, he then change to third, and so on, until nothing is

worth of buying. This is the most common practice in our life, where we face

limited competition among the retailers and the customers retain certain

level of reservation utilities.

Given the same product set and inventory level, we can expect such

substitution will top on extra expected profit compared to the static substi-

tution case, because it can actually satisfy part of the previously lost sale

with alternative products. So we could use static substitution as its lower

bound. And since perfect substitution can use up all the available inventory

to satisfy the previously lost sale, it provides an upper bound for limited

substitution problem.
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Mahajan and van Ryzin(2001)[38] showed that assortment planning and

inventory decisions under dynamic substitution is non-concave and generally

hard to solve even with MNL choice model. Therefore, pooled newsboy

model has been adopted as a heuristic to tackle this complicated problem.

We will adopt the same pooled newsboy model (Details will be explained

later in the thesis) to handle inventory decision here since, instead of finding

an exact solving algorithm, our main purpose is to investigate the influence

of correlation among product utilities by comparing the performance of two

customer choice model: MNL-INV and CMM-INV under different situations.

We will plug in this offer-set dependent inventory decisions to the nested set

heuristic to derive the offer set as displayed in Figure 3.1.

Heuristic Policy: The “pooled newsboy” model calculates the inven-

tory as if all the products in the offer set can be substituted freely. Therefore,

demand is pooled and an aggregate quantity is determined to maximize the

total profits, and then it allocates in a rough-cut fashion to individual vari-

ants depending on their choice probabilities.

Specifically, let p(S) =
∑

j∈S pj(S) denote the probability that a cus-

tomer chooses at least one of the products in the offer set S. Then the optimal

aggregate inventory level for the whole set, denoted x(S), is computed using

x(S) = λp(S)+z
√

λp(S), where z is the newsboy fractile determined using a

weighted average price and cost as follows: z = Φ−1(1− s
r
). Here s and r are

averaged based on the choice probabilities: r =
∑

j∈S pj(S)rj

p(S)
, s =

∑

j∈S pj(S)sj

p(S)
,

and Φ(z) denotes the c.d.f. of a standard normal random variable. The

Pooled newsboy inventory for variant j, denoted xp
j , is then determined by

allocating the aggregate inventory proportional to choice probabilities pj(S)
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as follows: xp
j = x(S)

pj(S)

p(S)
j ∈ S.

3.3 CMM Predictions for Two Product Case

In the last chapter, we have demonstrated the closeness between the market

share predictions from the close form solution of CMM and the actual sit-

uations for two independent products. Whereas what we aim to investigate

through CMM model here is the relationship between the utility correlation

and the concentration degree of the choice probabilities.

3.3.1 Close Form Solution from CMM

Proposition 7: Consider m = 2, with means µ1 and µ2 (µ1 ≥ µ2), and Q12 =

µ1µ2 + ρ1,2σ1σ2. The choice probabilities obtained from the CMM models

have the following closed form solution:

1

2
± 1

2
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(µ1 − µ2)2

s2 + (µ1 − µ2)2
,

where

s =































|σ2
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2 |√
σ2
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σ2
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√

σ2
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σ2
, σ2

σ1
);

0, ρ1,2 = 1, σ1 = σ2
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Proof. Consider a set of correlated products with means µi variances σ2
i

and correlations ρi,j. By choosing a different set of orthonormal basis, the

optimal vi in Formulation (2.9) can be rewritten as:

vi = µiv0 + σisi, i = 1, . . . , m. (3.8)

where the vectors (v0, s1, . . . , sm) forms a set of orthonormal basis, with v0 ·

em+1 = 0, and si · em+1 = ∆/σi for all i. This can be solved in closed form

for the case of two products.

For two products case, the set of orthonormal basis corresponding to

above formula (3.8) can be expressed as follows, with α1, α2, ∆ as coefficients

to be determined:

v0 =
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1
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.

As the orthonormal basis, v0, s1, s2 should satisfy v0 · v0 = 1, s1 · s1 =

1, s2 · s2 = 1, which translates to:

y1 + y2 = 1, α2
1 + ∆2/σ2

1 = 1, α2
2 + ∆2/σ2

2 = 1.

Consider the constraint conditions in formulation (2.9). First constraint

translates to:

−α1α2 +
∆2

σ1σ2
= ρ1,2.
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Second to last constraints are satisfied as the orthonormal basis constructed

deliberately.

We can solve to obtain, when σ2
1 + σ2

2 − 2ρ1,2σ1σ2 6= 0,

∆ = σ1σ2

√

1 − ρ2
1,2

σ2
1 + σ2

2 − 2ρ1,2σ1σ2
, α1 =

|σ1 − ρ1,2σ2|
√

σ2
1 + σ2

2 − 2ρ1,2σ1σ2

, α2 =
|σ2 − ρ1,2σ1|

√

σ2
1 + σ2

2 − 2ρ1,2σ1σ2

.

Otherwise, when σ2
1 + σ2

2 − 2ρ1,2σ1σ2 = 0, which leads to ρ1,2 = 1, σ1 = σ2,

we can deduce ∆ = ±σ1, α1 = α2 = 0 accordingly.

Substitute the above solution for α1, α2, ∆ to the objective in formulation

(2.9), we obtain the optimal choice for y1 and y2 by solving the following

quadratic problem:

max µ1y1 + s
√

y1y2 + µ2y2

s.t. y1 + y2 = 1

where

s =
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};

√
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1 + σ2
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σ1
);

0, ρ1,2 = 1, σ1 = σ2

This gives,

y1 =
1

2
+

1

2

√

(µ1 − µ2)2

s2 + (µ1 − µ2)2
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y2 =
1

2
− 1

2

√

(µ1 − µ2)2

s2 + (µ1 − µ2)2
.

Proposition 8: For two product case, when the variances are equal, the mar-

ket share difference is monotonously increasing with the utility correlation

increase.

Proof. We can see three different cases in terms of the relationship between

market share difference and the utility correlation for the two products.

Case 1. When µ1 = µ2, then regardless of correlation ρ1,2, we always get

y1 = y2 = 1
2
, and hence the market share difference |y1 − y2| = 0. Otherwise,

the market share difference depends on the correlation ρ1,2.

.

Case 2. When µ1 6= µ2 and σ1 = σ2, then when ρ1,2 = 1, we have

s = 0, y1 = 1, y2 = 0 and market share difference |y1 − y2| = 1. This

corresponds to the case when one of the products totally dominates the

other. In this case, if the utility correlation ρ1,2 decreases from 1, s will

increase accordingly, which shrinks the market share difference. In sum,

under Case 2, where two products have different utility means, but same

utility variance, we can see the market share difference positively depends on

the utility correlation.

Case 3. When µ1 6= µ2 and σ1 6= σ2, since ρ1,2 ∈ [0, 1], then s will

take two segments’ expression. For ρ1,2 ∈ [0, min(σ1

σ2
, σ2

σ1
)], s decreases as

the correlation increases; and for ρ1,2 ∈ [min(σ1

σ2
, σ2

σ1
), 1], s will increase with

the correlation. Consequently, the market share difference |y1 − y2| will first

increase with the correlation and then decrease with the correlation.
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.

We present the dependence of market share gap on utility correlation in

different scenarios in the following table and figure.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

utility correlation ρ

m
ar

ke
t s

ha
re

s 
ga

p 
|y

12 −y
22 |

1. µ
1
=3, µ

2
=3, σ

1
=1, σ

2
=1

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

utility correlation ρ

m
ar

ke
t s

ha
re

s 
ga

p 
|y

12 −y
22 |

2. µ
1
=3, µ

2
=2, σ

1
=1, σ

2
=1

0 0.2 0.4 0.6 0.8 1
0.3

0.305

0.31

0.315

0.32

0.325

utility correlation ρ

m
ar

ke
t s

ha
re

s 
ga

p 
|y

12 −y
22 |

3. µ
1
=3, µ

2
=2, σ

1
=1, σ

2
=3

0 0.2 0.4 0.6 0.8 1
0.095

0.096

0.097

0.098

0.099

0.1

0.101

utility correlation ρ

m
ar

ke
t s

ha
re

s 
ga

p 
|y

12 −y
22 |

4. µ
1
=3, µ

2
=2, σ

1
=1, σ

2
=10

Fig. 3.2: Dependence of market shares gap on utility correlations predicted by
CMM

Remarks: The insights we can get from the above analysis are:

1. As long as the utility means are equal, the market share will split

evenly between two products, regardless of the correlation structure.

2. With different means, but the same variance, the market shares’

difference will expand as the two products share more common attributes.

This conforms to our intuition. As we expect the inferior (in mean value)

product will lose more market share if it has less distinct attributes from the
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Scenario No. µ1 µ2 σ1 σ2 Curve Shape

1 3 3 1 1 Horizontal Line
2 3 2 1 1 Monotone Increasing
3 3 2 1 3 First Increasing, then Decreasing
4 3 2 1 10 First Increasing, then Decreasing

Tab. 3.1: Four scenarios to display dependence of market shares gap on utility
correlations predicted by CMM

superior product. The extreme case is when the utility correlation reaches 1,

all the market share goes to the superior product.

3. With different utility means and variances, the relationship between

market shares’ difference and utility correlation becomes less stable. Firstly,

the absolute value of the market share difference shrank dramatically when

one of the variances increased. And also the direction of the market share

difference-correlation line changes at certain point.

Interestingly, using probit model3, which assumes multivariate normal

distribution for the utilities, we may get the similar results through 100,000

cases simulation.

Comparing the results from CMM and Probit, we can find more fluctua-

tions in the market share difference-correlation dependence predicted by the

Probit model than CMM model as the variances difference increased. But

both models agree that less absolute value for the market share difference

results as the variance difference increase. In other words, when two prod-

ucts dramatically differ in their utility variances, it is not safe to use the

intuitive rule that predicts higher market share difference with higher corre-

3 Probit model adopts the multi-variate normal distribution for the customer utilities,
and derives the choice probabilities through multi-dimension integration. Hence it is dif-
ficult to be applied to high dimension problems.
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Fig. 3.3: Dependence of market shares gap on utility correlations predicted by
Probit
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R.V. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Correlation with X Mean STD

X 0 5 7 9 N.A. 5.25 3.8622

Y1 8 8 6 6 -0.8222
Y2 8 6 8 6 -0.5232
Y3 8 6 6 8 -0.2242 7 1.1547
Y4 6 8 8 6 0.2242
Y5 6 8 6 8 0.5232
Y6 6 6 8 8 0.8222

Tab. 3.2: Realization of random variables in four scenarios

lations. The intuitive rule only holds when two products have comparable

utility variances.

3.3.2 Example

We illustrate the above counterintuitive findings with the following simple

example. Consider two random variables: X and Y. For simplicity, we sup-

pose the probability distribution as equal likelihood for 4 scenarios. We fix

X’s realizations in these four scenarios as 0,5,7 and 9. While we change the

realizations of Y in six different cases to attain different correlations between

X and Y. Yi corresponds to case i for random variable Y. Their realizations

and statistic parameters are showed in Table 3.2.

Through the straightforward simple comparison, we can get the market

shares as displayed in Table 3.3, and we plot the market share difference

against the correlations in Figure 3.4. Through this example, we can see the

market share difference is not monotonously depend on the utility correlation.

In other words, the market shares’ difference may not always enlarge with the

correlation increase. Note in this example, no predictive model is involved.

The market shares are calculated directly from the actual utility realizations.
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R.V. Correlations with X Market share Y Market share X Difference
Y1 -0.8222 0.5 0.5 0
Y2 -0.5232 0.75 0.25 0.5
Y3 -0.2242 0.5 0.5 0
Y4 0.2242 0.75 0.25 0.5
Y5 0.5232 0.5 0.5 0
Y6 0.8222 0.75 0.25 0.5

Tab. 3.3: Four scenarios to display dependence of market shares gap on utility
correlations predicted by CMM

The actual results confirm our counterintuitive findings.
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Fig. 3.4: Dependence of market shares gap on utility correlations for X and Y

3.4 Computational Results

As indicated in our analysis, inventory decision is significantly impacted by

the market share prediction from the Choice Model. Therefore to get the

sense how MNL and CMM model behave, we conducted some preliminary

numerical experiments with the focus on comparison of the choice probabili-
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ties predicted by CMM and MNL. The insights we got from the experiments

is summarized as following two cases.4

Case 1. Independent product utilities.

• For products with same utility means and variances, MNL and CMM

both produce the evenly spread market shares.

• When the products have same variances, but different means, CMM

model will assign bigger market shares than MNL to those products

with higher means.

• When the products have same means, but different variances, CMM

model will assign bigger market shares than MNL to those products

with higher variances.

Case 2. Correlated product utilities. Positive correlation will accel-

erate CMM’s skewing effect, namely, with higher positive correlation among

product utilities, CMM will assign higher market shares to the popular prod-

ucts which have either higher utility means or higher variances.

In the rest of this section, we will incorporate the inventory level and

offer set decisions into consideration. We will take example 1 from Mahajan

and van Ryzin (2001)[38], and compare results from CMM-INV model with

the MNL-INV model in the original paper. Consider 10 product candidates,

n=10. The no-purchase option as a reservation utility level is denoted as

j = 0. We associate this no-purchase utility to each customer to represent

the reservation utility possibly from other channels or from the money saved.

4 Since we will present more detailed study including inventory level later, the experi-
ment data and results are omitted here. Though all the data and results are available on
request.
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Assume production costs sj and prices rj are same for all products,

with sj = 3, rj = 8, j = 1, ..., n. The utilities means are of the form: uj =

aj − rj, ∀j = 1, ..., n, u0 = a0, where aj is the quality indices. aj is linearly

decreasing: aj = 12.25 − 0.5(j − 1), ∀j = 1, ...n, a0 = 4. The utilities’

variances are constant, equal to 1.18, which translates to µ = 1.5 in Gumbel

distribution for MNL model.

We use independent newsboy model to compute the inventory levels

for static substitution problem, and approximates the dynamic substitution

with pooled newsboy solution. To find the offer set, for MNL-INV model,

we employ Proposition 4; for CMM-INV model, we adopt the algorithm as

shown in Figure 3.1.

3.4.1 Static Substitution

1. Inventory Levels

Figure 3.5 depicts the inventory levels computed by independent news-

boy for all the ten products assuming all of them are offered. Observations

are:

• When correlation=0, the total inventory under the CMM is lower than

that suggested by MNL (29.7 vs 30.3 )

• The gap of total inventory level became larger as the correlation in-

creases (4.2 for correlation=0.5, 7.0 for correlation=0.8, and 11.2 for

correlation=1).

• Compared to MNL solution with more evenly spread inventory across

different products, CMM recommended higher inventory for the most
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popular product (product 1), and lower inventory for the other prod-

ucts.

• CMM produced a more skewed inventory as the correlations among the

products’ utilities increase.

Fig. 3.5: Comparison of inventory levels for 10 products set under MNL and CMM

The prediction by CMM that higher correlation leads to more concen-

trated inventory is intuitive. As we know, with the correlation increase, it

implies more common attributes shares by different products, then the uncer-

tainty in customers’ choice is less, which in turn results more concentration

on the popular products. We can get in the extreme case, when all the prod-

ucts are perfectly correlated in their utilities, then inventory under CMM

actually is only for product one at 19.1, and zero for all other products.

2. Offer Set
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Fig. 3.6: Comparison of profit from different offer sets under MNL and CMM for
N=30

Figure 3.6 shows the profit objective obtained from different offer sets

under MNL and CMM model when customer number is 30. Observations

are:

• The optimal offer set under MNL is {1,2,3}, with profit achieved at

70.72. It is 32% improvement from the results of 10 products’ set as-

sumed in the previous section. The reason is scale of economy resulting

from eliminating those products with too small demand.

• The offer set under CMM model depends on the utility correlations,

and generally tends to be narrower than under MNL model. Figure

3.6 shows for correlation 0.1 and independent case, optimal offer set is

{1,2}, while for correlation 0.5 and 0.8, optimal offer set shrinks to {1}
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only.

• The profit objective achieved will decrease as the correlations among

the utilities of products increase. The reason is that, according to CMM

model, higher correlations among the products in the offer set will lead

to more concentration of the choice on the popular products, and as well

as the increase on market share of not-correlated product (no-purchase

option). Therefore, as the utility correlations among offered products

increase, the optimal offer set tend to downsize, and the covered market

tend to shrink, resulting in lower total profit.

Fig. 3.7: Comparison of profit from different offer sets under MNL and CMM for
N=300

Figure 3.7 depicts when customer number is 300, the profit generated

from different offer sets under MNL and CMM model. Compared to Figure
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3.6, we have observations:

• As the customer number increase, the optimal offer sets tend to expand.

The optimal offer set under MNL is {1,2,3,4,5,6}, larger than {1,2,3}

when customer number equals to 30.

• Size of the offer set under CMM model is decreasing with the cor-

relations among the utilities of offered products. CMM recommends

different offer sets, with set {1,2,3,4,5,6} for independent products and

0.1 correlations, set {1,2,3,4} for 0.5 correlation, set {1,2} for 0.8 cor-

relation.

• Consistent with our previous result, CMM will produce an optimal offer

set no bigger than MNL model.

Similarly, when the customer number increase to 30,000, we found the

optimal offer set expands to including all the 10 products for both the MNL

and CMM model (See Figure 3.8) .

We can depict the size of the optimal offer sets for different customer

volume in Figure 3.9. First observation is positive relationship between cus-

tomer volume and the size of offer set. The intuitive explanation is as the

number of independent customer increase, we need to offer more variety to

cover more market, and can take advantage of the scale economy at the same

time.

Second observation is the size of offer set increases more rapidly with the

customer volume for lower correlated products. The optimal offer size goes

to 10 with 1500 customers for products with utility correlation less than 0.1;
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Fig. 3.8: Comparison of profit from different offer sets under MNL and CMM for
N=30000

Fig. 3.9: Offer set size versus customer volume under MNL and CMM
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but for products with 0.5 correlation, it needs 2100 customers to justify the

full optimal offer set, and for 0.8 correlation, even when customers increase

to 2400, the optimal offer set is restricted at 5 products. At extreme case

with perfect correlated product candidates, optimal offer size remains only

one product, irrespective to the customer volume.

3. Comparison of the Simulated Profits

For static substitution, the arrival sequence of the customer will not

affect the total profit. So to simulate the customers’ purchase process, we can

first use multi-variate normal distribution to randomly generate the utilities

for 10 products with given mean and correlations for all the customers. We

get the 300 customers’ utilities in a 300 by 11 matrix for 1000 times, with

the first column contains the utility from no-purchase option and the rest 10

columns are the utilities for the 10 product candidates. We then adopt the

first principle for each customer, and apply the offer sets and inventory levels

computed through MNL-INV and CMM-INV model, thus we can calculate

the expected total simulated profits. We summarize the results, optimal offer

sets and inventory levels under MNL-INV and CMM-INV model as follows.

From Figure 3.10, we can see generally the profits improve from MNL to

CMM model. And the profit improvement increase as the correlation among

the products’ utilities increase. The negative improvements in the bottom

line is due to the negative profit from MNL model under extreme situation

when utilities are perfect correlated.

This is because CMM model can make more accurate prediction about

the market share by capturing the correlations among the products, and

hence give a more profitable inventory arrangement through the following
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N=300 MNL CMM

Correla-
tions

Offer
set

Inventory Profit Offer set Inventory Profit
Improve-
ments

0 734 {1,2,3,4,5,6} {99,57,36,24,17,13} 879 19.8%

0.1 693 {1,2,3,4,5,6} {99,56,34,23,16,12} 853 23.1%

0.5 495 {1,2,3,4} {112,53,29,18} 835 68.7%

0.8 247 {1,2} {140,48} 829 235.6%

1

{1,2,3,
4,5,6}

{81,59,42,
31,22,16} 

-105 {1} {178} 817 -878.1%

Fig. 3.10: Comparison of profit from different offer sets under MNL and CMM

two ways: one is from concentrating more on popular products, and the other

is from reducing the offer set. In the extreme case, when the products have

perfect correlation among their utilities, expected profit got from MNL-INV

solution is negative, while CMM-INV solution still maintain total expected

profit of 817, which is less than 10% decrease from independent product case.

3.4.2 Dynamic Substitution

Under dynamic substitution situation, when the customers’ demand could

not be satisfied with the product he most desires, he will substitute with

other products that are available at the moment as long as the utility gained

is higher than no-purchase. So in the shop, each customer will evaluate the

utilities for all the available products and pick the one with highest utility

as long as it is better than reservation utility.

Under dynamic substitution, it is hard to write the total profit in a

closed form, since the profits depend on the arriving sequence of customers.



3. Product Line Selection and Inventory Joint Decisions 91

Therefore, we solved by maximization of the simulated profits. We generate

a 11 by 300 matrix with given mean and covariance matrix to represent a

realization of arrival of 300 customers and their utilities on the 10 products

plus their no-purchase utility. The profit is obtained by accounting the real

sales of each product by allowing the customer to switch choice when his

previous preference is stock-out. We then average the profits obtained from

50000 realizations and use it as our objective function.

1. Inventory Levels

We depict the inventory levels for 10 products’ set under MNL-INV and

CMM-INV in the following Figure 3.11.

Fig. 3.11: Comparison of inventory levels for 10 products set under MNL and
CMM

Similar to the situation under static substitution, the inventory level by

CMM-INV model is less in total number and demonstrate a concentration

on popular products, while the MNL model produce higher total inventory

and more evenly inventory among different variants.
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As the correlation among product utilities increase, the above phenom-

ena become more significant. In other words, CMM model recommend lower

total inventory and more concentrated inventory for more highly correlated

products.

2. Offer Set

The optimal offer set under dynamic substitution is smaller than under

static substitution for both MNL-INV and CMM-INV model. When cus-

tomer volume is 300, for MNL, the optimal set is 3 products for dynamic

substitution, but 6 products for static substitution. For CMM, the opti-

mal offer set also shrink under dynamic substitution. (See Figure 3.12) This

shrinkage is expected since by allowing stock-out substitution, less product

variety is needed. The reason is that retailer can benefit from the economy

of scale by reducing variety in the offer set with less hurt from shrinkage of

market coverage.

And similar to the result from static substitution, the optimal offer set

under CMM model is no bigger than the optimal set under MNL model. The

size of the offer set increase with the customer volume. And for CMM model,

the size of offer set decrease as the utilities’ correlation increase. The offer

set expands more quickly with the customer volume when the correlation

among products is low.

3. Comparison of the Simulated Profits

We summarize the optimal solution and the simulated profits for MNL

and CMM model under dynamic substitution in Figure 3.12. Compared to

Figure 3.10 static substitution case, we can see higher profits under dynamic

substitution than under static substitution in each circumstances. This profit
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improvement results from increased sales, which exactly comes from stock-

out substitution.

Secondly, when considering the profit improvements between MNL model

and CMM model, it is less significant under dynamic substitution than un-

der static substitution. The possible reason may be that by allowing freely

substitution, MNL model also shrink its offer set and adjust its inventory

to a more concentrated style. Hence its solution get closer to that of CMM

model, and hence reduce the profits gap.

N=300 MNL CMM

Correla-
tions

Offer
set

Inventory Profit Offer set Inventory Profit
Improve-
ments

0 960 {1,2,3} {117,66,40} 1011 5.31%

0.1 933 {1,2,3} {117,64,38} 991 6.22%

0.5 803 {1,2,3} {118,55,30} 910 13.33%

0.8 668 {1,2} {139,47} 849 27.10%

1

{1,2,3} {100,72,52} 

556 {1} {178} 817 46.94%

Fig. 3.12: Comparison of profit from different offer sets under MNL and CMM

3.5 Conclusions

In this chapter, we extend from the last chapter on product line selection

for correlated products to include the inventory decisions. It is a practical

problem especially for big retailers who need to decide on the variety of his

assortment as well as inventory levels for each variety.

In the marketing and operations literature, MNL model has been adopted
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to handle such problems. But due to its IIA property, MNL model is inca-

pable to take care of the utility correlations among the offer products. To

factor in the products correlations, we incorporate our Cross Moment Model

into this assortment and inventory joint decision problem, and compare the

resulting offer set and inventory levels from these two different choice mod-

els. We found significant improvement of the total profits by CMM-INV

model over MNL-INV model through Monte Carlo simulation. And such

improvement increase with the utility correlation among offering products

increase.

In sum, CMM model has demonstrated its advantage and potential to

deal with the customer choice prediction in product selection and inventory

decision problems.

In practice, the retailers decisions (offer set and inventory level) are

not only based on the customer demand forecast, but also impacted by the

contract terms between the manufacturer and retailer. The above chapter

studied the problem based on a simple contract assumption. We will try to

examine the effects of contract terms on the retailer’s decisions in the next

chapter.



4. MULTI-PRODUCT REORDER OPTION CONTRACTS

4.1 Introduction

Option contracts allow a buyer to postpone part of his order quantity deci-

sion until some or all demand uncertainties are resolved. By paying a reser-

vation fee upfront, the buyer secures the right to buy the products at the

predetermined execution price up to the specified level in the selling season.

The buyer can also let the right expire and forgo the initial reservation fee.

Although the total unit cost (reservation plus execution price) is typically

higher than the simple fixed wholesale price, buyers with option contracts

can enjoy the flexibility of adjusting order quantities according to the ob-

served demand, and therefore largely mitigate their inventory overage and

underage risk.

In a decentralized supply chain, parties with different interests tend to

create an uncoordinated system, which leads to sub-optimal performance in

the entire chain. In response to this “double- marginalization” issue, various

supply contracts have been designed and applied; among them, the above-

described contingent claims (option contracts) have received much attention.

Option contracts have been recently explored in the chemical industry,

electricity market, and semi- conductor industry (Wu and Kleindorfer 2005).
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In fact, we find the practice of option contracts in many industries faced

with a long lead time, short selling season, and high demand uncertainties

owing to the retailers’ need for flexibility in their order quantities from the

supplier. Indeed, in the fashion, sporting goods, toy, pharmaceutical, and

textile garment industries, the retailer’s ability to place more than one order

in a season is becoming increasingly common (Fisher and Raman 1996; Eppen

and Iyer 1988). A story from the Reebok company highlights the urgent need

for flexible supply contracts. Reebok, who is the exclusive provider of NFL

licensed merchandise, used to face a big challenge in the inventory control of

replica jerseys (Parsons 2005):

“I have a warehouse full of jerseys out there and retailers are scream-

ing for the teams and players I don’t have.” “I wish there was someway to

plan inventory that would allow me to react faster to hot players and teams.

But with player demand changing so much from year to year, I really can’t

increase inventory; in fact, I like to minimize inventory at year-end.”

In the financial industry, the business of underwriting securities, like

IPOs or corporate bonds, also uses similar sale contracts as options. For

example, between 1997 and 1999, 47.7% of IPOs in Canada used a best

efforts offering (Kooli et al. 2003). Namely, the total issue quantity is not

fixed before hand, instead, the underwriter can return any unsold subscribed

shares to the issuer unconditionally . Interestingly, as we will see later, such

“return” policies can also be viewed as “put options” in the framework of

supply chain contracts.

The previous literature has considered only option contracts on a single

product. But sometimes the total demand may be less volatile, while high
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uncertainty exists in the demand for each specific type/model choice among

a product family. Recall the above case of Reebok: the total demand for

jerseys remains relatively stable from year to year. But the demand for

each specific team’s jerseys depends on the performance of each football

team, which is highly unpredictable. Therefore, requirements with respect

to contract flexibility arise not only in product quantities, but also in product

choice among the product family. This precisely asks for a thorough study

on multiple product option contracts.

Although option contracts can be beneficial through the flexibility they

provide, what are their implied requirements for the manufacturer in offering

such flexibility? In this chapter, we aim on the one hand to quantify the

improvements that option contracts bring to each individual and the joint

payoffs to the players, and on the other to identify the manufacturer’s profile,

in terms of his capacity constraints, that would favor an option contract.

We borrow the real option framework from finance to analyze flexibility

in supply chain contracts; we also employ game theory to consider the inter-

active decision-making process between the manufacturer and the retailer.

This chapter is organized as follows. Section 4.2 builds up the basic

analysis model and introduces the risk-neutral pricing approach. In Section

4.3, we quantify the impact of the reorder option on each party and the entire

supply chain in a single product setting. In Section 4.4, we examine the re-

order option in a multi-product setting and study the value of product choice

flexibility by comparing pooled and non-pooled options. Finally, Section 4.5

summarizes the conclusions.
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4.2 The Model

This section builds up the general settings and is applicable to both single-

product and multi-product cases. We will elaborate on these two scenarios

in detail in Sections 4 and 5, respectively.1 We consider a two-echelon sup-

ply chain with one manufacturer and one retailer. The products have an

exogenous retail price p, which is determined by the whole market and not

affected by the individual retailer. The manufacturer incurs K0 as the unit

production cost in the normal production mode, and K1 per unit cost in

the emergency production mode. The manufacturer takes the Stackelberg

game leader’s position and offers the contract conditions to the retailer. In

response, the retailer can either choose to take the conditions or leave the

game.

4.2.1 Decision Sequence and Analysis Framework

We focus on a specific type of flexible contract, namely, the reorder option.

At a certain expense, each unit of the reorder option gives the retailer the

right to buy one unit of product from the manufacturer at a predetermined

exercise price X in the selling season. The retailer can also let the right expire

if the retail market is weak.

Before the selling season, the manufacturer decides on both the wholesale

price and the option price and offers the contract to the retailer. 2We let the

1 In the multi-product section, we use subscripts to indicate each product. For example,
p1, p2 are retail prices for product one and product two respectively. Here in this model
section, for the ease of expression, we drop the subscripts.

2 Exercise price X can also be a decision of the manufacturer. But for the purpose of
analytical simplicity, we assume exercise price X is chosen within certain range according
to the manufacturer’s rule of thumb.
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wholesale price be S and the option price be C, so the contract’s form is (S,C).

The retailer can either accept the offer or leave the game; if he chooses to

accept it, he then decides his optimal inventory level I and option quantity U,

based on his outlook of the future market status α. The retailer’s objective

is to maximize his present expected value of total profit R, and we impose

a reservation value R, below which the retailer will not participate in the

business.

Therefore, the retailer needs to make a two-stage decision. In stage 1,

the retailer decides on the desired inventory level and option quantity to

purchase. Then in stage 2, without considering the sunk cost in stage 1, he

decides v, the number of options to exercise according to the realized market

status3. The typical decision/action sequence is as follows:

Stage 1: 1. Manufacturer offers contract (S, C);

2. Retailer builds up inventory I, purchases option U ;

Stage 2: 3. Retailer decides on the number of options to exercise v;

This two-stage optimization model can be analyzed using a backward induc-

tion approach. At stage 2, the retailer’s problem is to maximize his current

value R′ by choosing v within [0,U], given I, U, and realized α: max R′(v |

I, U ; α), s.t. 0 6 v 6 U. At stage 1, the retailer’s problem is to maximize his

expected value at that point ER by choosing I and U, given the offered S and

3 An additional assumption is that the manufacturer should not find it advantageous
to build inventories as a contingency against possible orders arriving in stage 2.
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Fig. 4.1: The decision sequence and time span

C, where the expectation is based on his estimation of the future uncertainty

and his own risk preference: max ER(I, U | S, C), s.t. 0 6 I, 0 6 U. On the

other hand, the manufacturer’s problem at stage 1 is to maximize his current

expected value EM by choosing S and C: max EM(S, C), s.t. 0 6 S, 0 6 C.

4.2.2 Mechanism of the Reorder Option

As we described above, the mechanism of a single product reorder option

is as follows: In the ordering season, for each unit of options the retailer

purchased from the manufacturer, the retailer need to pay option price C,

to gain the right to buy one unit of product from the manufacturer at an

exercise price X in the selling season.

We illustrate the process with a simple example. In stage 1, the retailer

builds up 800 units of inventory with a wholesale unit price of $10 and pur-

chases 200 units of options at the option unit price of $1 and option exercise

price of $10. When the actual demand turns out to be 1000 units in stage

2, the retailer should use up all his inventory, but it is still not enough to

meet all the demand. He now can exercise all his options to meet the extra

demand. Suppose the unit retail price is $15, then the retailer’s total profit
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is simply $(15 − 10) × 1000 − 200 = $4800. In comparison, without the re-

order option the retailer can satisfy only 800 units of demand, and he will

incur 200 lost sale, which results $1000 less in profit. After taking account

of option price upfront payout, option contract still can make $800 more in

total profit. Similarly, if the actual demand turns out to be 900 units, the

retailer can exercise 100 option rights to supplement the inventory and earn

an extra $300 in total profit. If the actual demand is equal to or less than 800

units, the retailer will choose not to exercise any rights and forgo his option

cost of $200. The mechanism of the reorder is simple, but its implications

are profound. The retailer may actively use the reorder option to decrease

inventory levels, or the manufacturer may manipulate either the retail price

or the option price to induce the retailer to take actions that benefit the

manufacturer.

In the multi-product case, we consider an added dimension of reorder

flexibility, namely, pooled and non-pooled options. The pooled reorder option

allows the retailer to request different products when exercising the option.

This pooled arrangement is commonly used in distributing high-technology

products (Brown et al., 2008). Let’s look at an example: suppose on day 0,

the retailer purchases 10 units of options for product 1, and 5 units of options

for product 2. On day 1, it turns out that the realized demand for product

1 is 15 units more than product 1’s inventory, while product 2’s inventory

is just enough to meet its real demand. In the non-pooled option scenario,

only 10 units of options for product 1 will be exercised, leaving 5 units of

demand unsatisfied. In the pooled option case, the additional demand of 15

units can be satisfied by exercising all 15 units of options.
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4.2.3 Risk-neutral Pricing

Most papers usually adopt simple expected payoff as the objective, which is

equal to assuming the decision maker to be risk-neutral. Our model targets to

relax this assumption and accounts for the decision maker’s risk preference.

One way is to adopt the standard expected utility theory, which involves

the cumbersome task of estimating each decision maker’s utility function.

Alternatively, we can adopt the risk-neutral pricing approach. It converts

real world probability into risk-neutral world probability, through inclusion

on the prices of certain assets. Risk neutral pricing actually incorporates the

market-determined risk preference.4

Future demand is a random variable. With certan probability respec-

tively, we assume it will result in either a high state αH or a low state αL.

For the convenience of the analysis, we assume demand to be Bernoulli dis-

tributed, but with the potential to be extended to other general distributions.

α =











αH with probability : PbH

αL with probability : PbL

(4.1)

Arrow-Debreu assets are constructed as a set of fundamental assets

whose future payoff is 1 in a certain future state, and zero in all other states.

4 A key assumption under risk-neutral pricing is the completeness of the market, which
requires sufficient assets being traded. The basic idea lies in having a complete market
where the current price of every cash flow is determined uniquely according to the market’s
risk preference. Such risk preference is reflected by the prices of a series of assets. The
reason for ignoring an individual’s risk preference is that the individual can hedge freely
in the markets to change his risk profile.
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The current values (or prices) of the whole set of Arrow-Debreu assets are

also called pricing kernels in modern finance, since every future uncertain

cash flow can be priced uniquely with these Arrow-Debreu state prices. Let

eH (eL) be the Arrow-Debreu state price corresponding to 1 unit of payoff

only in the high (low) state, and 0 otherwise.

To find out the value of the “pricing kernels”, we need to make use of the

price information of two assets. One is the riskless bond, which pays out 1

unit on day 1 regardless of the resultant state. The other is a traded security

that pays out αH in the high state, and αL in the low state. Suppose we can

observe the current price of the riskless bond as B0 and the current price of

that traded security as A0. Then, to ensure no arbitrage, clearly,

A0 = αHeH + αLeL

B0 = eH + eL.

We take the riskless bond price B0 as a discount factor and rewrite the

above pricing formula: A0 = (αH × eH

B0
+ αL × eL

B0
) × B0. By defining the

risk-neutral probability of the high state and the low state as qj = ej

B0
, j =

H, L, we can clearly interpret the present value ( or price) of any cash flow

as the discounted expected value of its future payoff under the risk-neutral

probabilities.5

Similar to Burnetas and Ritchken(2005), we next can use the market-

5 Note that risk-neutral probabilities do not have a direct relationship with real state
probabilities. Rather, they are obtained by comparing the Arrow-Debrau state prices
and the riskless assets’ price. Therefore, even if we are not very sure about the actual
demand distribution, we can price the option as long as we can get the information for
the Arrow-Debrau state prices and the riskless assets’ price.
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observed prices A0, B0 to reparametrize the unknown αH , αL, eH , eL. Let µ

and σ2 represent the mean and variance of the intercept term of the demand

curve under the risk-neutral measure. It is easy to find that

µ = αH × qH + αL × qL =
A0

B0

σ2 =
eHeL

B2
0

(αH − αL)2

Also, let ρ = eL/eH6 and we can express αL, αH, eL, eH in terms of µ, σ, B0, ρ

as follows.

αH =
A0

B0
+
√

ρσ

αL =
A0

B0
− 1√

ρ
σ

eH =
B0

1 + ρ

eL =
B0ρ

1 + ρ
.

4.3 Single Product

In this section, we first analyze the single product supply chain. Through the

comparison among centralized system, decentralized system under price-only

contract and under reorder option, the conceptual and analytical framework

will be built up and the value of re-order option will be discussed in detail.

6 ρ generally reflects the relative risk preference of the market
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4.3.1 Centralized System

With the market parameters introduced in Section 3, we identify the optimal

decisions for a centralized system. Suppose I products will be produced before

selling season, and U products’ capacity will be reserved as emergency supply.

If the future demand turns out to be high, then supply total number of I +U

products, otherwise, supply only I products. To maximize present value of

the centralized system:

maxI∈{αL ,αH},U∈{0,αH−I}(e
Hp1 − K0

1 )I + eH(p1 − K1
1 )U + αLeLp1.

Lemma 2: Under the assumption K0 ≥ eHK1, optimal decisions of the cen-

tralized system is:

I∗ = αL, U∗ = αH − αL.

Proof: eHp1 − K0
1 − (eH(p1 − K1

1 )) = eHK1
1 − K0

1 ≤ 0

4.3.2 Price-only Contract

We examine the basic price-only contract as a benchmark. Let ER repre-

sent the retailer’s present value.7 The retailer decides on the inventory level:

maxαH≥I≥αL ER = I(eHp1 − S) + eLαLp1 The optimal decision is straight-

7 Hereafter, the present value in the objectives are all calculated using the risk neutral
pricing kernels.
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forward:

I∗ =











αH if eHp1 ≥ S

αL if (eH + eL)p1 ≥ S ≥ eHp1.

(4.2)

With the retailer’s reservation payoff in mind, the manufacturer’s objective

is to maximize present value by offering the appropriate wholesale price:

max M = I∗ ∗ (S − K0) subject to : ER∗ = I∗(eHp1 − S) + eLαLp1 ≥ R

Lemma 3: When price-only contracts are used, the manufacturer’s optimal

solution is piecewise linear depending on the value of the retailer’s reserva-

tion.

S∗ =































eHp1 + eLp1 − R
αL if R ≤ eLαLp1 − (αH − αL)(eHp1 − K0

1)

eHp1 if eLαLp1 − (αH − αL)(eHp1 − K0
1) ≤ R ≤ eLαLp1

eHp1 + eLp1 − R
αL if R ≥ eLαLp1.

(4.3)
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And the retailer’s best response in these three regions are as follows.

I∗ =































αL if R ≤ eLαLp1 − (αH − αL)(eHp1 − K0
1)

αH if eLαLp1 − (αH − αL)(eHp1 − K0
1 ) ≤ R ≤ eLαLp1

αH if R ≥ eLαLp1.

(4.4)

Proof: Consider case 1: R ≤ eLαLp1. To satisfy the retailer’s reservation

constraint, we require S ≤ eHp1 + eLαLp1−R

I∗
. On the other hand, taking

account of retailer’s best response in (4.2), we get:

M∗ =











αH(eHp1 − K0
1 ) if eHp1 ≥ S > 0

αL(eHp1 + eLp1 − R
αL − K0

1 ) if eHp1 + eLαLp1−R

I
≥ S > eHp1

Comparing the two situations, we easily find that when (αH − αL)(eHp1 −

K0
1 ) < eLαLp1 − R, I∗ = αL, S∗ = (eH + eL)p1 − R

αL . Otherwise, I∗ =

αH , S∗ = eHp1. In case 2, R ≥ eLαLp1, we get S ≤ eHp1 + eLαLp1−R

I∗
≤ eHp1,

so I∗ = αH , S∗ = eHp1 + eLαLp1−R

I∗
; therefore, R∗ = R, M∗ = αH(eHp1 +

eLαLp1−R

I∗
− K0

1 ).
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To gain a clear view, we plot in Figure 4.2 the optimal order quan-

tity I∗, optimal whole sale price S∗, and the corresponding optimal manu-

facturer’s, retailer’s and system’s payoff (M ∗, R∗ and M∗ + R∗), assuming

p1 = 24, K0
1 = 3, αH = 29.8, αL = 15, eH = 0.27, eL = 0.53. Figure 4.2

shows that generally speaking, with other parameters fixed, as the retailer’s

reservation value increases, the manufacturer has to decrease his wholesale

price, leading to a decrease in manufacturer’s payoff. An interesting jump

happens when the retailer’s reservation value reaches the threshold, where

the manufacturer would rather reduce the wholesale price further to induce

more order quantity.
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Fig. 4.2: Optimal decisions under price-only contract depending on various R

Lemma 4: When price-only contracts are used, the manufacturer’s optimal
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solution is piecewise non-linear depending on the value of the standard devi-

ation of the demand distribution.

S∗ =































eHp1 + eLp1 − R
αL if σ ≤

√
ρρA0p1−√

ρ(1+ρ)R

(1+2ρ)B0p1−(1+ρ)2K0
1

eHp1 if
√

ρρA0p1−√
ρ(1+ρ)R

(1+2ρ)B0p1−(1+ρ)2K0
1
≤ σ ≤

√
ρρA0p1−√

ρ(1+ρ)R

B0ρp1

eHp1 + eLp1 − R
αL if σ ≥

√
ρρA0p1−√

ρ(1+ρ)R

B0ρp1
.

(4.5)

And the retailer’s best response in these three regions are as follows.

I∗ =































αL if σ ≤
√

ρρA0p1−√
ρ(1+ρ)R

(1+2ρ)B0p1−(1+ρ)2K0
1

αH if
√

ρρA0p1−√
ρ(1+ρ)R

(1+2ρ)B0p1−(1+ρ)2K0
1
≤ σ ≤

√
ρρA0p1−√

ρ(1+ρ)R

B0ρp1

αH if σ ≥
√

ρρA0p1−√
ρ(1+ρ)R

B0ρp1
.

(4.6)

Proof: Based on lemma 3, we only need to substitute the parameters’ ex-

pression for state price in (4.2). Then we can get the critical determinant

conditions in terms of standard deviation of demand under the risk-neutral

measure.

To gain a clear view, we plot the optimal order quantity I∗, optimal

whole sale price S∗, and the corresponding optimal manufacturer’s and re-
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tailer’s payoff, M ∗ and R∗ in Figure 4.3, assuming p1 = 24, K0
1 = 3, A =

15.996, R = 160, eH = 0.27, eL = 0.53.
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Fig. 4.3: Optimal decisions under price-only contract depending on Various σ

Figure 4.3 shows that, generally speaking, the system’s total payoff suffers

as the demand becomes more variant. However, there is a jump where man-

ufacturer is willing to slash the wholesale price down to entice higher order

quantity level. Before this threshold, the manufacturer will set the whole-

sale price as high as possible and leave the retailer with only the reservation

payoff. In response, the retailer will choose only the lower inventory level.

The supply chain thus loses those sales opportunities in high demand scenar-

ios. But since the variation of sales is comparably small, the manufacturer

is better off by charging the retailer a higher unit price. The retailer can get
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more payoff than his reservation value when the demand variance is above

the threshold.

In next subsection, we will study how to improve the performance of

the price-only contract. We show the conditions under which we can coordi-

nate the decentralized system to the centralized optimal level by adding the

reorder option scheme.

4.3.3 Reorder Option

The use of option contracts necessitates a two-stage decision process; we

adopt backward induction to solve the problem. In stage 2, the retailer

decides on the optimal quantity of options to exercise:

max
0≤v1≤U1

ER(v1 | I1, U1; α1) = max0≤v1≤U1[min(α1, I1 + v1) ∗ p1 − v1 ∗ x1]

=











I1 ∗ p1 + v1 ∗ (p1 − X1) if α1 > I1 + v1

α1 ∗ p1 − v1 ∗ X1 if I1 + v1 > α1 > 0.

(4.7)

Lemma 5: At stage 2, the retailer’s optimal policy takes the following form:

1. If I1 > α1,then the optimal number of options to exercise is 0;

2. If I1 < α1, then v∗
1 = min(U1, α1 − I1).

Proof: This can be obtained by analyzing the piecewise objective func-

tion. Ensuring that the retailer behaves reasonably, we make the assump-

tions X1 > 0, and p1 − X1 > 0. If X1 < 0, the retailer will make a profit
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just by exercising his options as much as possible without even selling the

product. If p1 − X1 < 0, the retailer will not use any options owing to their

negative intrinsic value. Finally, the result follows as the number of exercised

options should not be more than the number purchased at stage 1.

Fig. 4.4: The retailer’s optimal exercise decisions at stage 2

Fig. 4.5: The retailer’s decisions at stage 2 in different scenarios

Figure 4.4 depicts the retailer’s optimal exercise decision at stage 2.

Since the demand is assumed to be Bernoulli distributed, we combine the
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two scenarios into the decision graph in Figure 4.5, which divides the whole

decision space into six areas.

In stage 2 the retailer has a different optimal exercise decision in each

area. We list all the decisions in these six areas in Table 4.1 for clarity.

Region v∗
H v∗

L

1 U U
2 U αL − I
3 U 0
4 αH − I αL − I
5 αH − I 0
6 0 0

Tab. 4.1: The retailer’s optimal exercise decision at stage 2 by region in Figure
4.5.

Lemma 6: At stage 1, if the option is offered and the retailer chooses to pur-

chase it, then the retailer’s optimal policy, in terms of inventory level and

number of options purchased, should fall into area 3 in Figure 4.5. In par-

ticular, either U ∗ = 0, or αH
1 ≥ I∗ ≥ αL

1 and αH
1 − I∗ ≥ U∗ ≥ 0.

If the retailer’s decision falls within area 3, he faces the problem of

deciding the desired inventory level and option quantity:

max
αL

1 ≤I1,0≤U1≤αH
1 −I1

ER(I1, U1 | S1, C1)

= max
αL

1 ≤I1,0≤U1≤αH
1 −I1

−I1 ∗ S1 − U1 ∗ C1 + eH ∗ [(I1 + U1)p1 − U1 ∗ X1] + eL ∗ αL
1 ∗ p1
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Rearranging the above expression in terms of I1 and U1, we get:

ER =

maxαL
1 ≤I1≤αH

1 ,0≤U1≤αH
1 −I1

(eH
1 p1 − S1)I1 + (eH

1 p1 − eH
1 X1 − C1)U1 + eL

1 ∗ αL
1 ∗ p1.

(4.8)

We requires that (eH
1 + eL

1 )p1 ≥ S1. Otherwise,the retailer has no incen-

tive to carry any inventory. On the other hand, if eH
1 p1 ≥ S1, the retailer

will choose to stock as much as possible and will not purchase any options.

To induce the retailer into choosing a combination of stock and options at

stage 1, the manufacturer must set the wholesale price S1 between eH
1 p1 and

(eH
1 + eL

1 )p1 and set the option price C1 at less than eH
1 (p1 −X1). With these

settings, the retailer’s stage 1 optimal decision is simply:

I∗ = αL
1 , U∗ = αH

1 − αL
1 .

Keeping the above retailer’s reaction in mind, the manufacturer can

move on to the contract design. The problem faced by the manufacturer is

as follows:

M = maxeH
1 p1≤S1≤(eH

1 +eL
1 )p1,0≤C1≤eH

1 (p1−X1)(S1 − K0
1 ) ∗ αL

1 + (C1 + eH(X1 − K1
1 )) ∗ (αH

1 − αL
1 ). (4.9)

And the whole chain’s payoff is:

R + M = (eHp1 − K0
1 )I1 + eH(p1 − K1

1 )U1 + αLeLp1. (4.10)
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If the reservation utility of the retailer is not considered in the model,

the manufacturer, as the Stackelberg leader, will obviously choose to offer

the upper bound of the wholesale price and the option price, which is (eH
1 +

eL
1 )p1 and eH

1 (p1 −X1) respectively. However, this degenerate solution is not

practical, since the retailer under such a contract condition will gain exactly

zero payoff. To ensure that the retailer participates in the contract, the

manufacturer has to assign at least the reservation payoff to the retailer R.

R∗ = [(eH + eL)p1 − S1]α
L + (eH(p1 − X1) − C1)(α

H − αL) ≥ R. (4.11)

Solving his problem (4.9) with the constraint (4.11). It is not difficult

to reach the following proposition:

Proposition 9: Using reorder option contract, the manufacturer’s payoff will

always be improved if K1
1 < p1. The manufacturer will maintain the reserva-

tion payoff for the retailer by adjusting the wholesale price and option price

according to the following key condition 1 (KC1):

(KC1)































αLS + (αH − αL)C = B0pα
L + eH(p − X)(αH − αL) − R

(eH + eL)p1 ≥ S1 ≥ eHp1

eH(p1 − X1) ≥ C ≥ 0.

Therefore the manufacturer is indifferent to the specific combination of

(S∗, C∗) as long as it conforms to the above specified relationship. Further-
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more, the exercise price X1 will not affect the results as long as it is within

a certain reasonable interval, (K1
1 , p1).

Proof: Substitute the retailer’s reservation constraint (4.11) into the manu-

facturer’s problem (4.9), we get:

M ≤ (eHp1 − K0
1)α

L + eH(p1 − K1
1)(α

H − αL) + αLeLp1 − R.

First, we see that the manufacturer will attain the upper bound M ∗ when

the retailer’s reservation constraint is a strict equation. Second, compare the

manufacturer’s payoff here with the one under price-only contract. Under

reorder option, the manufacturer present payoff is:

M∗ = [(eH + eL)p1 − K0
1 ] ∗ αL + (αH − αL)eH(p1 − K1

1 ) − R.

Recalling the optimal payoff in price only contract in Lemma 4, we can find

the increment of manufacturer’s is:

∆M
∗

=



























−αL(eH p1 + eLp1 − R

αL
− K0

1 ) + ([(eH + eL)p1 − K0
1 ] ∗ αL + (αH − αL)eH (p1 − K1

1 ) − R)

−αH ∗ (eH p1 − K0
1 ) + ([(eH + eL)p1 − K0

1 ] ∗ αL + (αH − αL)eH(p1 − K1
1 ) − R)

−αH ∗ (eH p1 + eLp1 − R

αL
− K0

1 ) + ([(eH + eL)p1 − K0
1 ] ∗ αL + (αH − αL)eH (p1 − K1

1 ) − R)

=































(αH − αL)eH (p1 − K1
1 ) if σ ≤

√
ρρA0p1−

√
ρ(1+ρ)R

(1+2ρ)B0p1−(1+ρ)2K0
1

(αH − αL)(K0
1 − eH K1

1 ) + αLeLp1 − R if
√

ρρA0p1−
√

ρ(1+ρ)R

(1+2ρ)B0p1−(1+ρ)2K0
1

≤ σ ≤
√

ρρA0p1−
√

ρ(1+ρ)R
B0ρp1

(αH − αL)(eH p1 − K0
1 ) − (αH − αL)eH (p1 − K1

1 ) if σ ≥
√

ρρA0p1−
√

ρ(1+ρ)R
B0ρp1
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This increment is greater than zero if p1 > K1
1 in case 1. And in case

2 and 3, due to the assumption K0 ≥ K1eH , it is also greater than zero.

Proposition 1 established the conditions for the option contracts to be

beneficial and attractive to the manufacturer. In summary, the manufacturer

can assume these five steps to find out whether to adopt and how to set up

a suitable contract menu:

Step 1: Evaluate demand standard deviation, if it falls in area 2 and 3 in

Lemma 4, use option contract and skip Step 2.

Step 2: Evaluate its emergency produce cost K1
1 , and compare it to the

market price p1. If p1 > K1
1 , then choose to offer contracts with options.

Step 3: For the option, arbitrarily choose the exercise price X1 ∈ (K1
1 , p1).

Step 4: According to key relationship 1, work out the entire menu of (S, C)

combinations, with C1 ∈ (0, eH(p1 − X1)) and S1 ∈ (eHp1, (e
H + eL)p1) .

Step 5: If the implicit option contract is preferred, where the option price

is incorporated into the wholesale price, the manufacturer can simply let

C∗ = 0, and find the corresponding S as the wholesale price.

Comparing the contracts with and without options, we see the manufac-

turer will always be better off if his emergency production cost is less than

the retail price. However, all benefits will be absorbed by the manufacturer,

while the retailer gets only the reservation payoff in his pocket. At first look,

option scheme seems to benefit retailers by providing more flexibility in their
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Fig. 4.6: Comparison between price-only and reorder option performance
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order commitment. But as a Stackelberg follower, the retailer actually is also

forced to give up upward profit potential. In other words, circumstances exist

where the retailer gets a lower payoff under the option contract. For exam-

ple, when the demand variance is beyond the threshold, the retailer may gain

more under the price-only contract by keeping a higher inventory. But with

an option contract, the retailer’s payoff will be reduced to the reservation

value.

With the option, the wholesale price will increase if the option price is

not explicitly charged. Therefore if your supplier offer you the right to adjust

your order quantity freely in the future. Please take note such freedom may

have already be charged incorporated in the wholesale price. This also ex-

plains why commission fee is lower in the “best-efforts” offering than normal

in the security underwriting business.

4.4 Multiple Products

A supply of product family, such as different designs of garments or different

models of an electronic products, is likely to happen between the same sup-

plier and retailers. An added dimension of flexibility, namely, pooling, can

thus be incorporated into the contract. A pooled option allows interchanging

the underlying assets on the exercise date, while a non-pooled option does

not.

A non-pooled multiple products’ option can be seen as separate options

contracts, whose solution process is essentially the same as the single product

contract. We thus focus on pooled options in this section and investigate the
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implications of this added flexibility by comparing the optimal decisions, ob-

jectives, and supply chain efficiencies under pooled and non-pooled options.

Similar to the single-product setting, we reparametrize the uncertainty

in two demands as follows: Suppose a traded security exists that pays out

αH
1 (αH

2 ) when the demand for product 1 (2) is in the high state, and αL
1 (αL

2 )

is in the low state. The price of this security at day 0 is A10(A20), and the

price of the riskless bond is B0. Let eHH (eLH , eHL, eLL) be Arrow-Debreu

state prices corresponding to 1 unit of payoff only in the high (low) state,

and 0 otherwise.8 Then clearly:

A10 = αH
1 (eHH + eHL) + αL

1 (eLH + eLL)

A20 = αH
2 (eHH + eLH) + αL

2 (eLL + eHL)

B0 = eHH + eLH + eHL + eLL

Now we have three market-observable parameters: A10, A20 and B0.

Let σ2
1, σ

2
2 represent the variances of the intercept term of the demand curves

under the risk-neutral measure for the two products, ρ12 be the correlation

between the two demands, and θ1 = eHH

eHL , θ2 = eLH

eLL represent the decision

maker’s subjective risk attitude. αL
1 , αH

1 , αL
2 , αH

2 , eLL, eHL, eLH , eHH can then

be numerically expressed in terms of A10, A20, B0, θ1, θ2, σ1, σ2, ρ12 accord-

ingly.

8 eH
1 = eHH + eHL, eH

2 = eHH + eLH , eL
1 = eLH + eLL, eL

2 = eHL + eLL,and practically
assume eHH , eLH , eHL, eLL are all positive
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Region v∗1 Conditions v∗2 Conditions v∗1 v∗2
1 α1 > I1 + U α2 > I2 U 0

2 α1 < I1 + U,α1 > I1 I1 + I2 + U < α1 + α2 α1 − I1 U − (α1 − I1)

3 α1 < I1 + U,α1 > I1 I1 + I2 + U < α1 + α2, I2 < α2 α1 − I1 α2 − I2

4 α1 < I1 α2 < I2 + U, I2 < α2 0 α2 − I2

5 α1 < I1 α2 < I2 + U 0 U

6 α1 > I1, I1 + U > α1 α2 < I2 α1 − I1 0

7 α1 < I1 α2 < I2 0 0

Tab. 4.2: The retailer’s optimal exercise decision on date 1 when the pooled option
is adopted by different regions of I1, I2, U .

4.4.1 The Retailer’s Problem

Throughout this section, we assume p1 −X1 > p2 − X2, such that it is more

profitable to use product 1 as the underlying asset when exercising the pooled

option. Using backward induction, the retailer faces this problem in stage 2:

max
0≤v1,0≤v2,0≤v1+v2≤U

R′(v1, v2|I1, I2, U ; α1, α2)

= max
0≤v1,0≤v2,0≤v1+v2≤U

[min(α1, I1 + v1)p1 − v1X1 + min(α2, I2 + v2)p2 − v2X2].

(4.12)

Lemma 7: Given the retailer’s stage 1 decision (I1, I2, U), and the revealed

demand α ∈ {α1, α2} in stage 2, the retailer’s stage 2 decision is piecewise

linear as shown in Table 4.2.

Proof: According to different demand realization, we can list the retailer’s

exercise decision in Table 4.3. We then can map it into the seven regions in

Table 4.2 conditional on the relationship between I1, I2 and U. To visualize

the seven regions, we depict them in Figure 4.7.
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Conditions v∗1 v∗2
α1 > I1 + v1, α2 > I2 + v2 max(0,min(U,α1 − I1)) max(0,min(U − v∗1 , α2 − I2))

α1 > I1 + v1, α2 < I2 + v2 max(0,min(U,α1 − I1)) min(U − v∗1 ,max(0, α2 − I2))

α1 < I1 + v1, α2 > I2 + v2 max(0, α1 − I1) max(0,min(U − v∗1 , α2 − I2))

α1 < I1 + v1, α2 < I2 + v2 max(0, α1 − I1) min(U − v∗1 ,max(0, α2 − I2))

Tab. 4.3: The retailer’s optimal exercise decision on date 1 when the pooled option
is adopted.

.

Fig. 4.7: The retailer’s optimal exercise decisions in seven regions

Now consider the two possible future states, αH and αL.

Lemma 8: At stage 1, if the option is offered and the retailer chooses to

purchase it, then the retailer’s optimal policy, in terms of inventory level of

each product and the number of options purchased, should fall into one of
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the four efficient regions in Figure 4.9.

Figure 4.9 identifies the only four efficient regions where the retailer will

choose to use options in stage 1. Within these four regions, the retailer’s

stage 2 exercise decisions are shown in Figure 4.8.

Fig. 4.8: The retailer’s optimal exercise decisions in four efficient regions
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Fig. 4.9: The retailer’s decisions in different scenarios by four efficient regions

We consider the retailer’s stage 1 problem in these four regions. For

example, in region 1, the problem can be written as

max
αL

1 ≤I1≤αH
1 ,αL

2 ≤I2≤αH
2 ,max(αH

1 −I1,αH
2 −I2)≤U≤αH

1 −I1+αH
2 −I2

R(I1, I2, U |S1, S2, C)

= −I1S1 − I2S2 − U ∗ C

+ eHH(αH
1 p1 − (αH

1 − I1)X1 + (I2 + (U − αH
1 + I1)p2 − (U − αH

1 + I1)X2)

+ eHL(αH
1 p1 − (αH

1 − I1)X1 + αL
2 p2)

+ eLH(αL
1 p1 + αH

2 p2 − (αH
2 − I2)X2)

+ eLL(αL
1 p1 + αL

2 p2)

(4.13)
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Lemma 9: In region 1, the conditional optimal decision is: I∗
1 = αL

1 , I∗
2 = αL

2 ,

U∗ =















αH
1 − αL

1 + αH
2 − αL

2 when C < (p2 − X2)e
HH

max(αH
1 − αL

1 , αH
2 − αL

2 ) when C > (p2 − X2)e
HH

Proof: Rearrange the expression in terms of I1, I2 and U , and note S1 >

p1e
H
1 , S2 > p2e

H
2 ; the result then follows.

Similarly, we can find out the conditional optimal decisions in regions 2,

3, and 4.

Lemma 10: In region 2, αH
1 − I1 < αH

2 − I2, the conditional optimal decision

is: I∗
1 = αL

1 , I∗
2 = αL

2 , U∗ =















αH
1 − αL

1 when C > (p2 − X2)e
H
2

αH
2 − αL

2 when C < (p2 − X2)e
H
2

Lemma 11: In region 3, αH
1 − I1 > αH

2 − I2, the conditional optimal decision

is: I∗
1 = αL

1 , I∗
2 = αL

2 , U∗ =















αH
2 − αL

2 when C > (p1 − X1)e
H
1

αH
1 − αL

1 when C < (p1 − X1)e
H
1

Throughout all these four regions, the retailer’s optimal decision can be

summarized in the following proposition:

Proposition 10: When the pooled option policy is used, I∗
1 = αL

1 , I∗
2 = αL

2 ,

and if

αH
1 − αL

1 < αH
2 − αL

2 ,
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then

U∗ =































αH
1 − αL

1 + αH
2 − αL

2 , 0 < C < (p2 − X2)e
HH ;

αH
2 − αL

2 , (p2 − X2)e
HH < C < (p2 − X2)e

H
2 ;

αH
1 − αL

1 , (p2 − X2)e
H
2 < C < (p1 − X1)B0.

Otherwise, if

αH
1 − αL

1 > αH
2 − αL

2 ,

then

U∗ =































αH
1 − αL

1 + αH
2 − αL

2 , 0 < C < (p2 − X2)e
HH ;

αH
1 − αL

1 , (p2 − X2)e
HH < C < (p1 − X1)e

H
1 ;

αH
2 − αL

2 , (p1 − X1)e
H
1 < C < (p1 − X1)B0.

From the above proposition, we see that when using pooled options, the

retailer may have three types of optimal decisions depending on the option

price charged by the manufacturer. Suppose the demand for two products is

negatively correlated (with demand correlation= −1), then we have eHH = 0,

and the proposition implies that the retailer will never purchase αH
1 − αL

1 +

αH
2 − αL

2 options, which may likely happen in non-pooled option contracts

without considering the demand correlation among different products.

Comparing the results between pooled and the non-pooled policy, since

eHH < eH
1 , and eHH < eH

2 , the manufacturer may need to restrict to lower

unit option price range to make the retailer keep the same order and option
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quantity as in non-pooled case. To further examine the impact of a pooled

options policy on the supply chain, we move on to study the manufacturer’s

payoff in these three situations and generate optimal and applicable contract

conditions.

4.4.2 The Manufacturer’s Problem

In normal production mode, the manufacturer will usually arrange capacity

for each product respectively. But in an emergency production mode, differ-

ent products may need to compete for limited production capacity/resources.

For example, if two products require the same equipment or staff to produce,

the emergency production cost of one will rise if the other needs emergency

production at the same time. The manufacturer needs to be able to tell

whether his emergency production costs are independent or inter-dependent

among different products.

Independent Emergency Production Costs

Under the pooled option policy, the manufacturer also anticipates the re-

tailer’s best response to his offered price menu (S1, S2, C), and as a Stackel-

berg leader, he will set a menu of combinations of (S1, S2, C) to maximize his

gains while satisfying the retailer’s reservation payoff. The retailer’s reserva-

tion constraint can be expressed as follows:
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R∗ = (B0p1 − S1)I
∗
1 + (B0p2 − S2)I

∗
2 − U∗C

+ eHH(min(U∗, (αH
1 − I∗

1 ))(p1 − X1) + (U∗ − max(0, (αH
1 − I∗

1 )))(p2 − X2))

+ eHL min(U∗, (αH
1 − I∗

1 ))(p1 − X1)

+ eLH min(U∗, (αH
2 − I∗

2 ))(p2 − X2)

R∗ ≥ R

(4.14)

Apart from the retailer’s reservation payoff, any excess payoff will be

reaped by the manufacturer. Therefore, the manufacturer’s problem is equiv-

alent to maximizing the system’s joint payoff. Consider the supply chain’s

payoff:

R∗ + M∗ = (B0p1 − K0
1 )I∗1 + (B0p2 − K0

2 )I∗2

+ eHH min(U∗, ((αH
1 − I∗1 ))(p1 − K1

1 ) + (U∗ − max(0, (αH
1 − I∗1 )))(p2 − K1

2 ))

+ eHL min(U∗, (αH
1 − I∗1 ))(p1 − K1

1 )

+ eLH min(U∗, (αH
2 − I∗2 ))(p2 − K1

2 )

(4.15)
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Proposition 11: When emergency production costs are independent among

multiple products, under the condition of K1
1 < p1 and K1

2 < p2, the payoffs

for the whole chain, the retailer, and the manufacturer are the same under

both pooled and non-pooled settings. The manufacturer will maintain the

least reservation payoff for the retailer by adjusting the wholesale price and

option price according to the following key condition 2 (KC2):

(KC2)















































S1α
L
1 + S2α

L
2 + (αH

1 − αL
1 + αH

2 − αL
2 )C

= B0p1α
L
1 + B0p2α

L
2 + eH

1 (p1 − X1)(α
H
1 − αL

1 ) + eH
2 (p2 − X2)(α

H
2 − αL

2 ) − R

B0p1 ≥ S1 ≥ eH
1 p1, B0p2 ≥ S2 ≥ eH

2 p2

(p2 − X2)e
HH ≥ C ≥ 0

Therefore, the manufacturer is indifferent to the specific combination

of (S∗
1 , S

∗
2 , C

∗) as long as it conforms to the above specified relationship.

Furthermore, the exercise price X1, X2 will not affect the results as long as

it is within a certain reasonable interval, namely (K1
1 , p1) and (K1

2 , p2).

For the whole chain, the wholesale price S1, S2 and option price C

are transfer payments. They do not affect the whole chain’s payoff and

do not appear in the above expressions. Consider the efficient area 1 in

Figures 4.9 and 4.8, when p1 > K1
1 , p2 > K1

2 , the supplier would like U ∗ to

be αH
1 − αL

1 + αH
2 − αL

2 to maximize the joint payoff. The pooled policy is

same as the non-pooled policy in terms of the resulting order quantity, option
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quantity, and retailer’s and supplier’s optimal payoff. However, the supplier’s

decision over the design of the price menu is changed. To solicit the retailer’s

desirable response, he needs to adjust the option price to a more restricted

lower range and sets the new wholesale prices accordingly.

It seems counterintuitive that added flexibility does not increase the

joint payoff. But if we look at the non-pooled option contract, we will see

that the supplier, as the Stackelberg leader, has already taken full advantage

of the flexible contract settings to reap all potential benefits. In the case of

p1 > K1
1 , p2 > K1

2 , from non-pooled to pooled, added flexibility only affects

the rule of internal transfer payment.

Meanwhile, when p1 > K1
1 , p2 < K1

2 , U∗ should take αH
1 − αL

1 regardless

of the contract type. But we see that the whole chain’s payoff decreases in

the pooled case. This is because when p2 < K1
2 , no option should be offered

for product 2, but the pooled option grant such option and hence make things

worse. It is similar for the cases of p1 < K1
1 , p2 > K1

2 or p1 > K1
1 , p2 > K1

2 .

We show the comparison between pooled and non-pooled options in

terms of their performance, each party’s decisions and payoffs under different

scenarios in Table 4.4

Conditions Whole Chain Value R M Contract Menu

p1 > K1
1 , p2 > K1

2 unchanged unchanged unchanged changed

p1 > K1
1 , p2 < K1

2 P < NP unchanged P < NP changed

p1 < K1
1 , p2 > K1

2 P < NP unchanged P < NP changed

Tab. 4.4: Comparison between pooled and non-pooled options with independent
emergency production costs.

The relationship between retail price and emergency production price is
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the sole determinant for the manufacturer to determine the optimal option

quantity that the retailer should buy. Although this is not affected by the

option type, the latter does influence the specific price combination in the

contract menu. The pooled options are usually priced in a tighter and lower

range.

Inter-dependent Emergency Production Costs

The previous analysis assumes that the emergency production costs of dif-

ferent products are independent of one another. We now consider the depen-

dency in such costs for a two-product case. In this case, we can show that

the manufacturer may utilize the pooled policy to achieve better results than

non-pooled option contracts.

Let us make a further assumption on the emergency production cost.

We call K1
1 and K1

2 the normal emergency production costs when only one

product is produced in emergency mode. And we denote K2
1 and K2

2 as the

emergency production costs for the two products, respectively, when they are

required to be produced together in emergency mode. 9 Since the retailer’s

problem does not involve these parameters, his decisions remain the same as

before. For the manufacturer, we compare his actions and payoffs under the

pooled and non-pooled cases.

Proposition 12: When all pi > K1
i and at least one pi ∈ (K1

i , K
2
i ), occasions

exist where

9 K2

i > K1

i , for ∀i, and pi ∈ (K1

i , K2

i ) for at least one i. Otherwise, the problem can be
reduced to the previous discussion with no inter-dependent emergency production costs.
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(1) the option price will be set higher under a pooled policy, such that fewer

options will be purchased under this policy than under the non-pooled pol-

icy,

(2) the manufacturer can gain a higher payoff under the pooled than the

non-pooled policy.

Proof: Consider two products and use the pooled option. From Proposition

2, we know that the retailer may have one of three possible responses to the

manufacturer’s price menu:

1) U∗ = αH
1 − αL

1 + αH
2 − αL

2 ;

2) U∗ = αH
1 − αL

1 ;

3) U∗ = αH
2 − αL

2 ;

Now write down the payoffs of the whole chain under the non-pooled policy

in these three cases:

1)

(R + M)1
NP = (B0p1 − K0

1)I
∗
1 + eHH(αH

1 − αL
1 )(p1 − K2

1) + eHL(αH
1 − αL

1 )(p1 − K1
1 )

+ (B0p2 − K02)I
∗
2 + eHH(αH

2 − αL
2 )(p2 − K2

2) + eLH(αH
2 − αL

2 )(p2 − K1
2 )

2)(R + M)2
NP = (B0p1 − K0

1 )I∗
1 + eH

1 (αH
1 − αL

1 )(p1 − K1
1 ) + (B0p2 − K02)I

∗
2 ;

3)(R + M)3
NP = (B0p1 − K0

1)I
∗
1 + eH

2 (αH
2 − αL

2 )(p2 − K1
2 ) + (B0p2 − K02)I

∗
2 .

Compare them with the payoffs of the whole chain under the pooled policy
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in the above cases:

1)

(R + M)1
P = (B0p1 − K0

1 )I∗
1 + eHH(αH

1 − αL
1 )(p1 − K2

1 ) + eHL(αH
1 − αL

1 )(p1 − K1
1 )

+ (B0p2 − K02)I
∗
2 + eHH(αH

2 − αL
2 )(p2 − K2

2) + eLH(αH
2 − αL

2 )(p2 − K1
2 )

2) (R + M)2
P = (B0p1 − K0

1 )I∗
1 + (B0p2 − K02)I

∗
2 + eH

1 (αH
1 − αL

1 )(p1 − K1
1 ) +

eLH min(αH
1 − αL

1 , αH
2 − αL

2 )(p2 − K1
2)

3) (R + M)3
P = (B0p1 − K0

1 )I∗
1 + (B0p2 − K02)I

∗
2 + eH

1 (αH
2 − αL

2 )(p1 − K1
1 ) +

eLH(αH
2 − αL

2 )(p2 − K1
2 ), when αH

1 − αL
1 > αH

2 − αL
2 ;

or (B0p1 −K0
1)I

∗
1 + (B0p2 −K02)I

∗
2 + eHH [(αH

1 −αL
1 )(p1 −K2

1) + (αH
2 −αL

2 −

(αH
1 − αL

1 ))(p2 − K2
2 )] + eHL(αH

1 − αL
1 )(p1 − K1

1 ) + eLH(αH
1 − αL

1 )(p2 − K1
2),

when αH
1 − αL

1 < αH
2 − αL

2 ;

Let M j
P denote the manufacturer’s payoff under a pooled policy in case j,

M j
P = (R + M)j

P − R. We adopt similar notation for non-pooled cases. We

see that since all pi > K1
i , M1

P = M1
NP , and M2

P > M2
NP , the manufacturer

will choose case 1 under the non-pooled policy and case 2 under the pooled

policy under a certain criteria set,10 namely, that an occasion exists where

M2
P > M1

P = M1
NP > M2

NP . In this situation, the manufacturer will prefer to

lead the retailer to purchase fewer options by setting a higher option price in

a pooled policy; at the same time, he can gain a higher payoff by applying a

pooled policy than a non-pooled one.

.

10 The conditions’ set is: M1

NP > M2

NP , M1

NP > M3

NP , M2

P > M1

P , M2

P > M3

P
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Summing up the analysis thus far, we see that the choice of a pooled

or non-pooled policy depends on the emergency production cost structure

of the manufacturer. When the costs are independent, a non-pooled pol-

icy will never be worse than the pooled one. On the other hand, under

inter-dependent emergency production costs, a pooled policy can demon-

strate substantial advantages in certain occasions. The manufacturer should

analyze his own emergency production costs before choosing the option con-

tract type. We summarize the results with interactive emergency production

costs in the following table. We use “P” to represent pooled option and “NP”

to represent non-pooled option.

Term1 =
αH

1 − αL
1

αH
2 − αL

2

(max(p1 − K1
1 , p2 − K1

2 ) − (p1 − K2
1)).

Conditions Whole Value M U Contract

p1 > K2
1 , p2 > K2

2 + Term1 unchanged unchanged unchanged changed

p1 > K2
1 ,K2

2 + Term1 > p2 > K1
2 P > NP P > NP P < NP changed

p1 > K2
1 , p2 < K1

2 P < NP P < NP unchanged changed

Tab. 4.5: Comparison of pooled and non-pooled options with inter-dependent
emergency production costs

4.4.3 Numerical Examples

We demonstrate the difference between pooled and non-pooled options using

a numerical example. Suppose we have two products with correlated emer-

gency production costs: p1 = 24, K0
1 = 6, K1

1 = 10, K2
1 = 18, αL

1 = 15, αH
1 =

29.8, A10 = 15.99, σ2
1 = 255.9, K0

2 = 6, K1
2 = 10, K2

2 = 18, αL
2 = 15, αH

2 =
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29.8, A20 = 17.00, B0 = 0.8, σ2
2 = 268.2, eLL = 0.33, eHL = 0.17, eLH =

0.2, eHH = 0.1. We then find that when K1
2 > p2, the pooled option is worse,

(M+R)* 

Fig. 4.10: Comparison of channel NPV under pooled and non-pooled options

but

when K1
2 < p2 < K2

2 +
αH

1 −αL
1

αH
2 −αL

2
(max(p1 −K1

1 , p2 −K1
2 )− (p1 −K2

1 )), then the

pooled option is better.

When p2 > K2
2 +

αH
1 −αL

1

αH
2 −αL

2
(max(p1 − K1

1 , p2 − K1
2 ) − (p1 − K2

1)), both pooled

and non-pooled options have the same contribution.

Figure 4.10 compares the channel Net Present Value (NPV) under the

three different contracts: price-only contract, non-pooled option contract,

and pooled option contract. The channel NPV from the price-only contract

is always the lowest among the three contracts within the price domain. This

phenomenon is consistent with the well-documented “double-marginalization

effect” in the supply chain contract literature. It also confirms our belief

that flexibility can bring added value to the whole chain. We use this lowest
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NPV from the price-only contract as the worst case benchmark for our other

contracts.

Figure 3.10 also demonstrates that a pooled contract achieves more chan-

nel NPV than a non-pooled contract when the price of the second product is

between 10 and 26 (region 2). This result indicates that product flexibility

does add more value on top of volume flexibility in some circumstances. So

we observe that contract flexibility is value-added within this region. The

improvement in the channel NPV probably results from the exchangeability

of the underlying assets when the pooled option is exercised. Such exchange-

ability allows the production greater flexibility and hence adds more value

to the whole supply chain.

However, as the figure demonstrates, when the price is below 10 (region

1), the NPV under the pooled option is less than that under the non-pooled

option. Additionally, as the price further decreases, the difference increases.

This phenomenon that a pooled option can even worsen the situation is

somehow counterintuitive because we usually expect more value from greater

exchangeability. Nevertheless, this result is consistent with Goyal and Netes-

sine (2005), who identify the conditions for the volume flexibility technology

to be a better solution than both volume and product flexibility technology.

of volume flexibility technology as the better solution than both volume and

product flexibility technology. The probable reason for this counterintuitive

phenomenon is the misuse of the pooled option in the contracts. Since the

option value is negatively correlated with the spot price, it becomes too costly

to offer the option for the second product when that product’s spot price falls

below 10. Under the non-pooled option contract, the manufacturer can easily
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choose not to offer the option contract for the second product, while under

the pooled option contract, the options for the two products are combined

as a whole; the retailer can thus easily take advantage of this and deliber-

ately choose the strategy that benefits himself but harms the manufacturer

and the whole chain. Therefore, our results show that a pooled option con-

tract, which offers more flexibility, can still exacerbate the situation if used

inappropriately.

In addition, Figure 3.10 shows that in region 3, where the price is be-

yond 26, both pooled and non- pooled contracts actually achieve the same

NPV. This suggests that the benefits from product flexibility diminish as the

second product’s spot price goes up and finally disappears beyond a certain

threshold. This can be explained by the mechanism whereby when the spot

price of the second product rises, the benefits from its volume flexibility grow

increasingly important compared with those from the product flexibility ef-

fect. Therefore, the difference in NPV between the pooled and non-pooled

option contracts, which stands exactly for the benefits from product flexibil-

ity, increasingly declines. In the end, when the second product’s spot price

reaches the threshold, the benefits from volume flexibility begin to fully dom-

inate those from product flexibility. Hence, the two contracts, both pooled

and non-pooled, accomplish the same results when the spot price is high

enough.

In sum, our results suggest that it is not necessarily correct that more

flexibility will add more value to the whole chain. Depending on the product’s

different spot prices, pooled option contracts can do better, worse, or the

same as non-pooled option contracts. In other words, although the benefits
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from volume flexibility are obvious, it is not as simple when we come to the

benefits of product flexibility. The impact of product flexibility on the supply

chain can be positive, negative, or fully dominated when product flexibility

interacts with volume flexibility. Basically this result is analogous to what

Goyal and Netessine (2005) find, although they assume a centralized supply

chain in their models.

4.5 Conclusions

The main purpose of this study was to examine two specific supply contracts,

namely, pooled and non- pooled reorder options. We attempted to determine

the necessary and sufficient conditions for the reorder options to improve the

efficiency of a distributed supply chain. We also investigated the potentials

of pooled option contracts for a multi-product supply chain.

With a reorder options contract, a distributed supply chain achieves a

higher expected profit than an ordinary newsboy inventory control method

in a price-only contract setting. This benefit created by the option arrange-

ment can be explained by its ability to make full use of valuable information.

By holding back part of the initial investment, options allow decision mak-

ers to make appropriate adjustments to their initial production plan when

information on the latest market environment becomes available.

Reorder option contracts also coordinate the objectives and risk profiles

of the different parties in the supply chain. Using option contracts eliminates

the double-marginalization effect, and the total profits of a distributed system

approach that of a centralized system. We prove options portfolio contracts
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to have coordination capability. These coordination benefits may result from

the profit and risk reallocation effects introduced by the option contracts. As

we know, different parties in the supply chain may have different objectives

and risk preferences. These differences can cause discrepancies and finally

inefficiencies in the whole system. Interestingly, option contracts provide

a possible channel for the different parties to negotiate and transfer their

proceedings and risks so that they can coordinate their efforts towards a

common objective, and system efficiency can be improved.

Extending volume flexibility to product flexibility, pooled option con-

tracts demonstrate their specific advantages and limitations. Our results

show that pooled options outperform non-pooled options only within a cer-

tain price region outside which pooled options might have the same perfor-

mance as or even underperform non-pooled options. The limitation of the

benefits from product flexibility can be attributed to the fact that ordinary

non-pooled individual options have already made good use of the available

information and provided a certain degree of transfer channel. Therefore, ad-

ditional flexibility from product exchange can produce extra value only when

the two products have a close price region and require a mutual transfer of

their profits and risks.

This study has systematically studied for the first time the implications

of pooled reorder options in distributed supply chains. The results challenge

the commonly held notion that greater flexibility brings higher profits.

To simplify the model and analysis, we assumed the decision makers

have access to a complete financial market. Therefore, commodity risk can be

fully hedged off and risk preference can be addressed by using the risk-neutral
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probabilities to replace the actual probabilities. For an incomplete market,

our model is still valid for risk-neutral market players. We expect that risk

aversion on the buyer’s or seller’s side would lead to more pronounced benefits

from option contracts. However, the behavior and strategies for risk averse

companies in an incomplete market need to be further quantified.

Another simplification of our study is the exogenously determined retail

price. This is suitable for those industries with intensive competition, for

example, oil, electricity, or bank loans. However, for many other industries,

retailers may have the power to influence market price. It would be very

interesting to incorporate pricing strategy into the analysis and examine its

interplay with options portfolio contracts.

Future studies could also elaborate the informational aspect of option

contracts. We treated the symmetry information case in our study, which

assumes that all market players have complete information about their op-

ponents’ situations. Such information includes cost structure in addition to

parameters, objectives, demands, and risk preferences. Obviously, this is an

ideal case. Asymmetric information about demand or cost structure may

prevail in diverse circumstances, which would lead to changes in the opti-

mal decisions and contract parameters. Recently, more and more research

in game theory has concentrated on asymmetric information and the result-

ing principal-agent problem. It would be promising to extend our options

portfolio contracts to situations with asymmetric information.



5. CONCLUSIONS AND FUTURE WORK

This study developed a product line selection model in conjunction with a

utility maximization model to deal with the complicated choice behavior of

customers. Semi-definite Programming (SDP) is used to approximate the

expected utility and the customer choice probabilities. The product line

selection problem is then solved by incorporating the SDP approach with

product swapping and greedy heuristics.

Compared to the popular multinomial logit model (MNL), we showed

that our new method is able to incorporate the correlation among products

arising from common attributes in the choice behavioral model. Thus the

inherent drawback of MNL and IIA property can be addressed nicely. From

the computational results, we found that our new SDP model consistently

outperformed other product line selection methods that are based on MNL

model. This gap gets wider when the correlations of products increase, coeffi-

cients of variances of the attributes decrease, and the number of heterogenous

customer segments decrease. In other words, when it comes to those highly

correlated products, our methods would fit much better than the popular

MNL model. Therefore, we expect our methods to have many useful appli-

cations including airline revenue management, software configuration, etc.

In the second part of the thesis, we extended our work on product line
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selection to include the inventory decisions. It is a practical problem espe-

cially for big retailers who need to decide on the variety of his assortment as

well as inventory levels for each variety.

We incorporated our Cross Moment Model into the product line se-

lection and inventory joint decision problem and focused on comparing the

resulting offer set and inventory levels from these two different choice models.

Several managerial insights have been gained through numerical examples.

We showed that under static substitution, less correlated products set can

generate more profit, which is in the similar spirit of the findings of “spaced

out positioning” from the locational model [22]. We also showed that the

total varieties of products can be reduced under dynamic substitution. And

through the simulation, we demonstrated the considerable improvement in

expected profits when the utilities’ correlation is factored in.

The CMM choice model is useful to approximate market shares when

products’ utilities are random and largely depend on their various attributes.

However, CMM requires to use mean and covariance estimations on products’

utilities. How to get these estimation still remain a challenge in marketing

research. Even if we can use the linear in attributes method to break down

the products’ utilities to their attributes level, the issue to estimate the mean

and variance of each attribute’s utility still need to be addressed.

In the last chapter, we analyze how flexibility in order quantity created

by using options in a supply contract affects the payoffs of the manufacturer

and the retailer as well as their joint payoff. We consider a Stackelberg

game in which the manufacturer sets the contract and the retailer reacts to

it. We examine the impact of reorder options in a single-product case and
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further compare the differences between pooled and non-pooled options in a

multi- product case. While reorder options seem to offer the retailer more

flexibility, we find that in some cases the retailer may end up with a lower

payoff. For multi-product cases, we identify some conditions where pooled

and non-pooled option contracts may provide the same payoff, and other

conditions where one can be higher than the other.
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