
A FULL-CUSTOM DIGITAL-SIGNAL-PROCESSING UNIT FOR
REAL-TIME CORTICAL BLOOD FLOW MONITORING

HONG ZHIQIAN
(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2009

i

ABSTRACT

Chairperson of the Supervisory Committee: Dr. Le Minh Thinh
 Department of ECE

 This thesis presents a full custom digital-signal-processing unit for real-time cortical

blood flow monitoring. An evaluation of suitable algorithms using Laser Speckle Imaging

statistical methods is presented from a theoretical perspective for practical

implementations. All existing methods are found to be mathematically describing the same

coefficient of variation but with different input samples and sample sizes. The simplest

algorithm, Laser Speckle Contrast Analysis, is chosen to relax on the real-time imaging

requirement.

 Unlike normal imaging applications which require high speed and accuracy,

biomedical imaging specifications are often relaxed to the minimum to achieve a low-

power application. Consequently, CMOS sensors are evaluated and compared on their

architectures that will eventually lead to the design of a low-power on-chip digital signal

processing unit.

 Numerous low-power digital techniques are discussed and applied on the design.

These techniques include aggressive lowering of supply voltage close to or less than the

sum of absolute device threshold, non pre-charged memory, clock-gating and pulse-latch

clocking strategies. Performance is maintained through the use of bit-serial arithmetic units

and these units include adder, multiplier, squarer, square-root and divider. This design is

implemented in 0.35μm and a post-layout simulated power consumption of 887μW is

achieved at a supply voltage of 1.2V while maintaining 30MHz at worst corner variation.

This translates to approximately 1 million speckle contrast computations per second and a

Figure of Merit of 962pW/fp.

ii

ACKNOWLEDGMENTS

 This master thesis has been carried out independently as a research programme in

National-University-of-Singapore (NUS) and is supported by the faculty research committee

grant (R-263-000-405-112 and R-263-000-405-133), Faculty of Engineering, NUS.

 The author wishes to express sincere appreciation to the Department of Electrical

and Computer Engineering in National University of Singapore for their financial support,

supervisor Dr. Le Minh Thinh for his insights on Laser Speckle Imaging and acting co-

supervisor Dr. Xu Yong Ping for his teachings in EE5507 Advanced Analog Integrated

Circuit Design. Due to their previous research efforts in Laser Speckle Imaging and the

approval of research grant, the existence of this thesis is promising.

 The author will like to thank Dr. Heng Chun Huat for giving the most

comprehensive introductory IC course in EE5507. His timely replies through forum and

email to the questions posted by the author have been fruitful. Additional help is also given

by Mr. Amit Bansal, graduate assistant of EE5507 and student of Dr. Heng, in his

theoretical and practical advices on IC design and simulation tools. Appreciation is also

given to Mr. Tan Kah Yong, student of Dr. Xu and ex-employee of STMicroelectronics,

for his assistance on design methods and usage of simulation tools.

 The author wouldalso like to acknowledge Mr. Teo Seow Miang for his help in

computer setup, Ms. Zheng Huan Qun for enabling the Linux account and Mr. Kurt Van

Genechten, ASIC MPW support Engineer from Europractice, for providing a

comprehensive setup guide on Cadence and Mentor Calibre tools for the design kit.

iii

TABLE OF CONTENTS

Abstract .. i
Acknowledgments ... ii
Table of Contents ... iii
List of Figures ... iv
List of Abbreviations ... viii

Chapter I Introduction ... 1
Background .. 1
Motivation.. 1
Limitations ... 2
Definition ... 4
Achievement .. 4
Organization .. 4

Chapter II Literature Review .. 6
Laser Speckle Imaging ... 6
CMOS Image Sensor ... 9
Low Power Digital Design ... 22

Chapter III Formulation Of Specification ... 36
Algorithm ... 36
CMOS Image Sensor ... 38
DSP Architecture ... 41
Specification .. 45
Design Flow .. 48
Design Principles .. 49

Chapter IV LSBF Arithmetic Units .. 51
Bit-Serial Adder/Subtractor ... 51
Bit-Serial Multiplier .. 54
Bit-Serial Squarer .. 56
Power Consumption .. 62

Chapter V MSBF Arithmetic Units ... 63
Bit-Serial Square-Root ... 63
Bit-Serial Divider .. 66
Bit-Parallel Adder ... 68
Power Consumption .. 72

Chapter VI System Design ... 73
Finite State Machine .. 74
Memory Interface ... 79
Clocking Strategy .. 85
Functional Verification .. 93

Chapter VII Conclusion.. 95
Design Summary .. 95
Assessment ... 100
Future Works ... 101

Bibliography ... 102

iv

LIST OF FIGURES

Figure 1. Experimental setup of speckle imaging of cerebral blood flow [1]. 6

Figure 2. N+/Pwell, Nwell/Psub and P+/Nwell photodiode [20] .. 9

Figure 3. Triple well photodiode [21] ... 10

Figure 4. 1.5T/pixel voltage-mode pixel [26] .. 11

Figure 5. 1.5T/pixel current-mode pixel [28] .. 11

Figure 6. Signal readout chain for voltage-mode column-parallel architecture [32] 12

Figure 7. (a) Serial architecture; (b) Column-parallel architecture [32]; (c) top-bottom

architecture [34] .. 12

Figure 8. Digital pixel sensor architecture [32].. 13

Figure 9. Sub-threshold multiplier [21], [44].. 15

Figure 10. Fixed-ratio current mirror multipliers [50] ... 15

Figure 11. Gibert cell [47] ... 15

Figure 12. Loser-take-all [48] .. 16

Figure 13. In-pixel switched-cap voltage multiplier [45] ... 16

Figure 14. (a) In-pixel arithmetic unit; (b) sub-threshold multiplier [46] 17

Figure 15. iVisual sensor with vision processor [27] .. 18

Figure 16. NTSC video camera [53] .. 18

Figure 17. Bioluminescence detector [9] .. 19

Figure 18. On-chip image compression [54] ... 20

Figure 19. On-chip bit-serial DFT [55] .. 20

Figure 20. Column-based processor array [56] ... 21

Figure 21. Parallel image compression [57] ... 21

Figure 22. Energy efficient at different supply voltage [60] ... 23

Figure 23. (a) Single-reference; (b) parallel; (c) pipelined implementation [61] 23

Figure 24. Pulse-latch generator [64] .. 25

Figure 25. Pulse-latch replacement methodology [64] .. 25

Figure 26. Clock gating replacement for memorizing registers [59] ... 26

Figure 27. Traditional 6-transistor SRAM cell [61] .. 27

Figure 28. 10T Non pre-charge single-ended SRAM [68] .. 28

Figure 29. Static full adder [75] .. 28

v

Figure 30. dynamic TSPC full adder [71] ... 29

Figure 31. 8-T full adder [76] .. 29

Figure 32. Path balancing [61] .. 31

Figure 33. Hazard filtering [80] .. 31

Figure 34. Distributed arithmetic architecture of μ-powered DSP [83] ... 32

Figure 35. Measured power of μ-powered DSP [83] ... 32

Figure 36. Comparison of 16-bit digit-serial multipliers [85] ... 33

Figure 37. Ling vs CLA adder [86] .. 34

Figure 38. Sparse-tree domino ling adders [86] .. 35

Figure 39. CMOS sensor with column parallel analog and digital circuits [32] 40

Figure 40. Bit-parallel iterative with maximum pipelining .. 41

Figure 41. Bit-serial architecture .. 42

Figure 42. 5×5 window selection of pixels and difference in window ... 43

Figure 43, Scanning sequences of different rows ... 43

Figure 44. Reduced bit-serial architecture (D - delay elements) .. 44

Figure 45. Packed SRAM arrangement .. 46

Figure 46. Top level design flow.. 48

Figure 47. LSBF symbols .. 51

Figure 48. Bit-serial adder (Sum=A+B) [89] ... 51

Figure 49. Bit-serial subtractor (Diff=A-B) [89] ... 51

Figure 50. 6-input tree adder (Σ = X0+X1+X2+X3+X4+X5) .. 52

Figure 51. Post-layout simulation of Σ with 8-bit output (inverted output) 52

Figure 52. Post-layout simulation of Σ with 16-bit output (inverted output) 53

Figure 53. Current consumption of C30+CG1+2Σ .. 53

Figure 54. 25× bit-serial multiplier .. 54

Figure 55. Post-layout simulation of 25×+1-bit subtractor ... 55

Figure 56. Current consumption of C30+CG1+25×+1-bit subtractor .. 55

Figure 57. 8-bit bit-serial squarer ... 56

Figure 58. Clock-gating signals for bit-serial squarer ... 58

Figure 59. Post-layout simulation of 8-bit BS-squarer .. 59

Figure 60. Post-layout simulation of 13-bit BS-squarer (inverted output) 59

Figure 61. Current consumption of C30+CG0+10×8-bit squarer .. 60

vi

Figure 62. Current consumption of C30+CG1+13-bit squarer .. 60

Figure 63. Post-layout simulation of gated-clocks in BS-squarer .. 62

Figure 64. Non-restoring square-root [88] ... 63

Figure 65. 26-bit square-root unit with adder front-end using dynamic multiplexer latch 64

Figure 66. Post-layout simulation of square-root (inverted) .. 65

Figure 67. Current consumption of C30+CG1+square-root .. 65

Figure 68. Subtractive division ... 66

Figure 69. Post-layout simulation of divider ... 67

Figure 70. Current consumption of C30+CG1+divider .. 67

Figure 71. Sparse radix-4 15-bit CLA adder .. 68

Figure 72. CM operations and their CMOS implementation .. 69

Figure 73. Propagate and generate (*: minimum sized) .. 70

Figure 74. 4-bit full radix-4 CLA adder .. 70

Figure 75. 3-bit non-critical sum generator ... 70

Figure 76. Critical path delay of adder in square-root at Vdd=1.2v ... 71

Figure 77. Latch delay at worst process corner .. 71

Figure 78, Top level architecture block diagram .. 73

Figure 79. Finite state machine block diagram.. 74

Figure 80. 30-bit shift register .. 74

Figure 81. 9-bit shift register... 75

Figure 82. 6-bit synchronous count up counter ... 75

Figure 83. A 5-to-32 decoder ... 76

Figure 84. Post-layout simulation of C30 .. 77

Figure 85. Current consumption of C30 .. 77

Figure 86. Current consumption of C30+CG0+CR9+CR64+DEC+SRAM 78

Figure 87. Arrangement of SRAM .. 79

Figure 88. Non pre-charge, differential SRAM ... 82

Figure 89. Sense-amplifier flip-flop ... 82

Figure 90. Worst case voltage difference on memory bus at 30MHz .. 83

Figure 91. Critical path from memory block to arithmetic block ... 83

Figure 92. Critical path delay from memory block to arithmetic block at 1.2v 84

Figure 93. Inverted output of memory block for „01111111‟ (LSBF) .. 84

vii

Figure 94. Monte-carlo simulation of 1000 samples of SAFF ... 84

Figure 95. Inverted pulse generator and its hazard. ... 85

Figure 96. Post-layout simulation of inverted pulse generator. ... 86

Figure 97. Latch with internal pre-charge .. 88

Figure 98. Latch with a tri-state feedback .. 88

Figure 99. Latch with enable .. 88

Figure 100. Latch with multiplex input .. 88

Figure 101. Latch with reset ... 88

Figure 102. Latch with set and reset ... 88

Figure 103. Pulse-latch clock gating .. 89

Figure 104. Clock gating signals ... 90

Figure 105. Post-layout simulation of gated-clocks ... 91

Figure 106. Current consumption of C30+CG0 .. 92

Figure 107. Current consumption of C30+CG1 .. 92

Figure 108. Simulation I - (a) raw speckle image; (b) speckle contrast [1] 93

Figure 109. Simulation II - (a) raw speckle image; (b) speckle contrast [94] 94

Figure 110. Current consumption distribution ... 95

Figure 111. Top-level layout ... 99

viii

LIST OF ABBREVIATIONS

ADC Analog-to-digital converter

ALU Arithmetic logic unit

ASIC Application specific integrated circuit

APS Active pixel sensor

BS Bit-serial

CCD Charged-coupled device

CDS Correlated double sampling

CG Clock gating

CM Carry merge

CIS CMOS Image sensor

CLA Carry-look-ahead

CMOS Complementary metal oxide semiconductor

CPL Complementary pass-transistor logic

DA Distributed arithmetic

DCT Discrete cosine transformation

DNA Deoxyribo nucleic acid

DPL Double pass-transistor logic

DPS Digital pixel sensor

DRC Design rule check

DS Digital serial

DSP Digital signal processing

FFT Fast Fourier Transform

ix

FIR Finite-length impulse response

FOM Figure of merit

FPGA Field programmable gate array

FPN Fixed pattern noise

FPS Frames per second

FSM Finite state machine

HDL Hardware description language

IC Integrated circuit

K Speckle contrast

LASCA Laser speckle contrast analysis

LSB Least significant bit

LSI Laser speckle imaging

LTA Loser take all

LVS Layout versus schematic

MAC Multiply accumulation

MCBS Multi channel bit serial

MSB Most significant bit

PD Photo-diode

PG Propagate generate

PMT Photo multiplier tubes

PWM Pulse width modulation

RF Radio frequency

RTL Register transfer level

SAFF Sense amplifier flip-flops

x

SAR Successive approximation register

SoC System-on-chip

SRAM Static random access memory

SRT Square root

SS Single slope

WTA Winner-take-all

1

CHAPTER I

INTRODUCTION

Background

 This individual research work is to investigate viable algorithms for visualizing and

quantifying blood flows to be implemented as an Integrated-Circuit (IC) within a System-on-

Chip (SoC) in a timeframe of two years. Outlined by the Principal Investigator, Dr. Le

Minh Thinh, Laser-Speckle-Imaging (LSI) from [1] will only be considered for this research

work. The targeted fabrication process is 0.35μm (AMIS-C035U/I3T25) [2], [3] and [4].

Motivation

 System-on-chip has been widely demonstrated in the recent years to integrate

various laboratory functionalities such as sensing, processing and actuation onto a single

chip. A few of the recent applications include a bladder urine pressure sensor measurement

system integrated with an Application-Specific-Integrated-Circuit (ASIC) die and a Radio-Frequency

(RF) module [5], a droplet-based micro-fluidic biochip [6] and a charged-based capacitive

sensor for Deoxyribo-Nucleic-Acid (DNA) detection and cells monitoring [7].

 The use of CMOS-Image-Sensor (CIS) technology [8] has also been widely used in

biomedical imaging devices, such as the bioluminescence detection lab-on-chip [9] and

retina implant systems for patients suffering from vision illness [10], [11]. The main reason

for these existences is that CIS technology can coexist with the same CMOS fabrication

process and allows full integration of other analog/digital signal processing units and

control circuits within the same chip [12]. These camera-on-a-chip miniaturizations have

eventually lead to low-power, cost-effective and portable implementations and deemed

2

very suitable to replace high-powered and expensive CCDs or Photo-Multiplier-Tubes (PMTs)

biomedical devices [13].

 A typical setup for LSI relies on the use of a Charge-Coupled-Device (CCD) camera to

capture the reflected light from the illuminated tissue to produce the speckle pattern. The

speckle pattern is then analyzed on an offline computer. A typical quasi real-time

monitoring embedded implementation will include a high quantum efficiency CCD camera

to acquire the speckle pattern and a high performance digital signal processor to perform

image processing algorithms. Alternatively, a camera-on-chip system will provide an

attractive alternative to both the embedded implementation and the present setup of using

a CCD-Desktop-Matlab combination [1].

Limitations

 According to the Samsung CIS Roadmap, better fabrication processes (0.18μm-

0.09μm) are already in existence at the beginning of this work (2008) [14]. The use of an

older technology immediately puts some limitation when approaching the design problem.

For example, new design methods used in deep-submicron technology to reduce leakage

current might not be appropriate when apply on older technology. Realistic specifications

must be set within the performance of older technology as compared to the state-of-the-art

CIS research work. However, there will be a wider knowledge of design methods existing

in literature and a more mature understanding of design limitation in a 0.35μm process.

 In a fast value iteration IC design work flow, the availability of the appropriate

design tools and knowledge of these tools are also one of the four key contributions for

project reusability [15]. There is a need for “designer reuse” where designers get to share

the how's and the tricks of the tools, where one can ideally abstract away the need to drive

3

the tools [15]. Without a collaborative team in the current environment, one has to place

emphasis on allocating the time required to master the art of the tools. Although the

school has a suite of Synopsys design tools for standard cell-based ASIC design, very little

technical support is provided to enable the tools to work with the chosen design kit.

Nonetheless, the ASIC support engineer at Europractice, Mr. Kurt Van Genechten, is able

to provide instructions to setup the beta version of the design kit to work with Cadence

Virtuoso Schematic Editor, Layout Editor, and Spectre Simulator for design and Mentor

Calibre for physical design verification focusing on analog and custom design.

 In a realistic SoC project, a valid workflow model is used as a roadmap for

planning and execution [15]. A case study finds that a full SoC project covering all design

aspects is completed in 20 weeks (5 months) by a group of 11 experienced IC design

engineers [15]. Without such a comprehensive design team, it is thus required to narrow

down the focus for an individual work. The focus of the project is now reduced to the

second key point of project reusability in a fast value iteration IC design workflow [15] -

the construction recipes of the Digital-Signal-Processing (DSP) unit implementing the

processing algorithm using custom digital design methods. By focusing on the design

methods of the processing algorithm, it will make a more significant contribution for

future development.

 In addition, CMOS sensors are already a mature product in 0.35μm process and

are widely available in the market. The third key point of project reusability, floor planning

[15], is thus easily available from existing literature. The fourth key point of using a

standard design environment will not pose a problem in an individual work. With a good

4

understanding of the limitations, one can then address the challenges by planning a strategy

and defining a research design problem with the available and appropriate tools.

Definition

 The objective of this master thesis is to evaluate the suitability of the different LSI

algorithms for the design and implementation of a DSP unit to be used in conjunction with

an existing CMOS image sensor for a SoC-based integration. The design and

implementation of the DSP unit includes and up to the full layout using the available

custom design tools that have been setup to work with the defined design kit.

Achievement

 Numerous low-power digital techniques are discussed and applied on the design.

These techniques include aggressive lowering of supply voltage close to or less than the

sum of absolute device threshold, non pre-charged memory, clock-gating and pulse-latch

clocking strategies. Performance is maintained through the use of bit-serial arithmetic units

and these units include adder, multiplier, squarer, square-root and divider. This design is

implemented in 0.35μm and a post-layout simulated power consumption of 887μW is

achieved at a supply voltage of 1.2V while maintaining 30MHz at worst corner variation.

This translates to approximately 1 million speckle contrast computations per second and a

FOM of 962pW/fp.

Organization

 The rest of the thesis is organised as follows. In Chapter 2, a literature review of

LSI algorithms [1], existing CMOS image sensors, and low power digital design techniques

are reported. In Chapter 3, the design solution and methodology are presented. This

chapter also includes the formulation of the research work based on the literature review in

5

Chapter 2. LSBF and MSBF arithmetic blocks are discussed in Chapters 4 and 5

respectively. Chapter 6 describes the design and simulation work of the DSP unit from a

top-level perspective, including the state controller, memory interface and the clock

strategy. Chapter 7 then concludes with the design results that are presented in the

previous chapters.

6

CHAPTER II

LITERATURE REVIEW

This chapter briefly discuss the four LSI algorithms outlined in [1]. A review of existing

CMOS image sensors architectures and their SoC implementations are provided for a

deeper understanding. This chapter then ends of with some of the existing and suitable low

power digital design techniques.

Laser Speckle Imaging

 Among the existing methods of blood flow monitoring, one special technique,

Laser-Speckle-Imaging (LSI), has been used extensively in medical research to achieve the

viability of real-time medical imaging [1]. This technique uses an imaging device to capture

the reflected light of a low-power laser shining on an object. A typical experimental setup,

consisting of a laser diode, a monochrome CCD camera and a rodent, is shown below in

Figure 1.

Figure 1. Experimental setup of speckle imaging of cerebral blood flow [1].

7

 When the collimated laser light is scattered from the surface of the rodent, a

random interference pattern is captured by the CCD. Although this grainy raw speckle

pattern contains no useful information, it is known that when there are movements of

blood cells, the speckle pattern that is produced changes. These speckles remain correlated

with short movements and de-correlate with long movements [17]. By applying statistical

methods, blood flow images made up of speckle contrast can then be obtained from the

raw speckle pattern. The most fundamental transformation process is identified as Laser-

Speckle-Contrast-Analysis (LASCA) where the speckle contrasts are derived from the spatial

information of the raw speckle images [17]. A few other variants have also been identified

and compared in [1] as sLASCA (spatially derived contrast using temporal frame

averaging), modified laser speckle imaging (mLSI) and tLASCA (temporally derived

contrast). Among the methods, tLASCA has out-performed the rest in terms of processing

speed and contrast with better subjective and objective evaluations of images [1]. A brief

summary of the different statistical methods are reviewed below for completeness and

better understanding of the thesis.

LASCA

IK Iyx /),((1)

N

i

iI
N

I
1

1 (2)

N

i

iI II
N 1

2

1

1
 (3)

 The most fundamental transformation defines Speckle Contrast (1), K(x, y), as ratio of

its spatial standard deviation (3), σI, to its spatial mean intensity (2), Ī , of a window of

pixels isolated from the raw speckle pattern, where N is the number of pixels in the

8

window of interest (e.g. a 5×5 window has 25 pixels) [17]. In statistics, this ratio is also

known as the coefficient of variation which measures the dispersion of probability

distribution. K(x, y) then represents the pixel value at location (x, y) of the blood flow image

defined by the centre of the window of interest.

sLASCA

N

i

iyxyx K
N

K
1

),(),(

1 (4)

 An improvement over the basic technique was made in [18], where the derived

speckle contrasts of an image in (1) are further averaged over a number of frames of flow

images (4), where N is the number of frames and K(x, y) i is the speckle contrast located at (x,

y) at the i-th frame.

mLSI

2

),,(

2

),,(

2

),,(),(/)(tyxtyxtyxyx IIIK (5)

 An alternative first-order temporal statistics of the time-integrated speckle pattern

was also proposed in [19] where the K(x, y) is now defined as (5) where the intensities of the

(x, y) pixels are averaged over a number of temporal frames instead of a spatial window (1).

tLASCA

W

i

tyxtyxyx I
W

K
1

),,(),,(),(/
1

 (6)

N

t

tyxtyx I
N

I
1

),,(),,(

1 (7)

N

t

tyxtyxtyx II
N 1

2

),,(),,(),,(
1

1
 (8)

 The newest proposed method in [1] first calculates K(x, y) using (6) but with a ratio of

temporal standard deviation (8), to its temporal mean intensities (7), of pixel (x, y) over a

9

number of frames, where N defines the number of frames. The speckle contrasts are then

further averaged over a spatial observation window (6), where W is the window size, to

obtain a final speckle contrast. This speckle contrast now represents the pixel value at

location (x, y) of the blood flow image defined by the centre of the window of interest.

CMOS Image Sensor

Figure 2. N+/Pwell, Nwell/Psub and P+/Nwell photodiode [20]

10

Figure 3. Triple well photodiode [21]

 CMOS image sensors have been widely used in consumer products from optical

mouse to high-end digital cameras [8]. With the advent of deep submicron CMOS, much

more analog and digital processing are to be integrated within the same silicon die. This has

brought CMOS image sensor into a new era of applications and also as a viable competitor

to CCD technology. CMOS sensor uses a 2-dimension array of photodiodes to convert the

input light intensity to electrical signals. In a standard CMOS process, a photodiode can be

implemented as one of the following variants: N+/Pwell, Nwell/Psub or P+/Nwell, shown in

Figure 2, where Nwell/Psub has a better green wavelength response, Nwell/Psub has a better

infrared (longer wavelength) response and P+/Nwell is more useful when substrate isolated

detectors are desired [20]. A more advanced triple-well CMOS process, shown in Figure 3,

can even separate the colour component using vertically integrated photodiodes [22]. The

principle operation of the photodiode has been left out intentionally due to its irrelevance

in this work.

 The electrical signals are then further read out using suitable readout architectures

where the signals are converted to noise tolerant digital signals. Recent advancement in

sensor technology has been focusing on the readout architectures in Active Pixel Sensor

11

(APS) [23], Digital Pixel Sensor (DPS) and camera-on-chip system integration applications

[24] with results demonstrating ultra-high speed of 10,000 frames per second (fps) in DPS

architecture [25], multi-mega pixel sensor with ultra-small pitch of 2μm in APS architecture

[26], and highly-integrated sensor, processor and memory SoC [27].

Active Pixel Sensor

Figure 4. 1.5T/pixel voltage-mode pixel [26]

Figure 5. 1.5T/pixel current-mode pixel [28]

 APS architecture exists in both voltage-mode, Figure 4, and current-mode, Figure

5. In both modes, the simplest form of APS pixel relies on a single transistor amplifier to

isolate the sense node of the photodiode from the large column bus capacitance. This

12

single transistor operates in saturation as a source follower in voltage-mode, while it

operates in the linear region as a trans-conductance amplifier in current-mode. Historically,

voltage-mode sensors have better noise performance, gain matching characteristics [28]

and exhibit a higher linearity [29] while current-mode sensors are capable of operating at a

lower voltage supply [30], more compatible to simple analog computations and able to scan

at faster rates [31]. Although both modes show differences, they do exhibit similarities in

the readout architectures, where [29] has integrated both modes onto the same readout

architecture.

Figure 6. Signal readout chain for voltage-mode column-parallel architecture [32]

 Noise cancellation is performed after amplifying the electrical signal, followed by

an analog-to-digital conversion, Figure 6. This noise cancelling stage is also known as

Correlated-Double-Sampling (CDS) and attempts to cancel the Fixed-Pattern-Noise (FPN)

generated by threshold voltage variation [8]. The principle of operation of noise

cancellation has also been left out due to its irrelevance in this work.

Figure 7. (a) Serial architecture; (b) Column-parallel architecture [32]; (c) top-bottom architecture [34]

13

 The readout architectures are further classified into serial and column-parallel

architecture, Figure 7. Both signal readout chains are similar with the exception that more

Analog-to-Digital Converters (ADCs) are used in the column-parallel architecture as compared

to a single global ADC in the serial architecture. In the latter, readouts are performed one

row at a time in a rolling manner, i.e. top to bottom, delivering a faster rate compared to

the single pixel serially read-out architecture. Common column-parallel ADC used are

Single-Slope (SS) [33], Successive-Approximation-Register (SAR) [34], Cyclic [35], Delta-Sigma (∆∑)

[36] and Pulse-Width-Modulation (PWM) [37]. These ADCs are usually smaller and pitch

matched to the pixel. Larger ADCs, such as [34], [35], can be split into a top-bottom

architecture and sized two times bigger along the pixel pitch. They tend to operate slower

compared to those ADC architectures used in a serial sensor where any high speed ADC is

suitable. The principle of operation of ADC architecture is beyond the scope of this thesis,

and thus is not discussed.

Digital Pixel Sensor

Figure 8. Digital pixel sensor architecture [32]

 In DPS architecture, ADCs are integrated into individual pixel, Figure 8, enabling

massive parallel analog-to-digital conversion and providing ultra-high speed digital readout.

Compared to the APS, they have larger pitch size but offer other advantages such as better

scaling with CMOS technology due to reduced analog circuit performance demands, and

14

the elimination of read-related column FPN and column readout noise [8]. Although there

is a very tight constraint on the area requirements, ADC architectures such as ∆∑ [38],

Multi-Channel-Bit-Serial (MCBS) [39], SS [25], and PWM [40] are still viable. Other than

ADCs, these sensors are usually packed with pixel-level memory to form a 2-dimension

on-chip memory array. This memory array can be used to store the digital outputs, and also

act as temporary memory buffer for other on-chip processing circuits [40].

Analog Camera-on-chip System

 Camera-on-chip system is one kind of SoC combining CIS technology with ASIC

and/or RF applications. These systems are commonly applied in biomedical applications,

vision systems and image/video processing where there is a need to perform some

algorithms. The APS and DPS architectures have been used in these systems to extract the

image data with additional analog and/or digital circuits to execute the algorithms.

Although there are numerous examples of analog processing algorithms, the trend is to

move towards digital implementations due to significant advantages mentioned in [43].

However, a review of the more successful analog domain camera-on-chip implementations

will provide great insights to the research work.

 Among the analog camera-on-chip, pixel-level implementations include magnitude

and gradient extraction [44], programmable pixel analog processing [45], [46] and range-

position detection [47]; while sensor-level processing unit includes colour processing skin

detection [21], stereo imager [48], video compression using Discrete-Cosine-Transformation

(DCT) [49] and spatiotemporal image filtering [50]. Note that these do not represent all of

the existing work in literature.

15

Figure 9. Sub-threshold multiplier [21], [44]

Figure 10. Fixed-ratio current mirror multipliers [50]

Figure 11. Gibert cell [47]

16

Figure 12. Loser-take-all [48]

 The most popular technique in analog processing in CIS technology is to use

current-mode APS architecture such as [21], [48] to implement simple arithmetic addition

and subtraction, where current sums or subtracts at splitting nodes (Kirchhoff‟s current

law). More complex operations like squaring, multiplying and dividing are implemented

using sub-threshold multipliers, Figure 9, fixed-ratio current mirrors, Figure 10, and

Gilbert cells, Figure 11. In addition, innovative circuits such as Loser-Take-All (LTA),

Figure 12, and Winner-Take-All (WTA) algorithm also exists in [48] and [51], respectively.

Figure 13. In-pixel switched-cap voltage multiplier [45]

17

Figure 14. (a) In-pixel arithmetic unit; (b) sub-threshold multiplier [46]

 Alternatively, arithmetic in voltage-mode can be realised using switched-capacitors

multipliers, Figure 13, and sub-threshold multipliers, Figure 14. Although feasible, the

voltage-mode multipliers are more complex to design in nature and larger than the current-

mode counterparts. For example, fixed coefficient multiplication can be easily implemented

as a current mirror, but exists as a differential amplifier in a switched-capacitor voltage

multiplier.

18

Digital Camera-on-chip System

Figure 15. iVisual sensor with vision processor [27]

Figure 16. NTSC video camera [53]

19

Figure 17. Bioluminescence detector [9]

 More complex imaging processing algorithms are usually implemented in digital

camera-on-chip systems as they are more noise tolerant and offer more precision when

compared to analog processing. In addition, digital circuits offer more design reusability in

nature as modern algorithms are designed on desktop applications such as Matlab.

Compared to the analog-camera-on-chip systems, these systems are more integrated. For

example: iVisual vision processor, Figure 15, NTSC video camera, Figure 16, and

bioluminescence detector, Figure 17, have successfully embedded tons of processing

elements into the image sensor.

20

Figure 18. On-chip image compression [54]

Figure 19. On-chip bit-serial DFT [55]

21

Figure 20. Column-based processor array [56]

Figure 21. Parallel image compression [57]

Simpler architectures integrating single unit on-chip image compression, Figure 18,

and DFT, Figure 19, are also found in literature. The former treats the image sensor as a

distributed static memory array and the latter relies on digital bit-serial readout to relax on

the hardware interface requirement. To achieve a higher throughput in a large resolution

image sensor, the column-parallel APS architecture is exploited by embedding more

column-based processing element. In Figure 20, a column-based processing array

architecture using generic processor is proposed and similar architecture is also found

22

recently in an on-chip image compression sensor, Figure 21, using dedicated discrete

cosine transformation processor with a distributed arithmetic architecture from [58].

Low Power Digital Design

 leakageshortswitch

staticdynamictotal

PPP

PPP

 (9)

 In an SoC design, the total power consumption is made up of dynamic power and

static power, where dynamic power is the active power consumed when signals are

changing values and static power is the power consumed when the signals are not changing

[59]. In CMOS devices, the dynamic power is dominated by the switching and short circuit

power while the static power is dominated by the leakage power and is defined by (9).

clockddeffectivedynamic fVCP 2

(10)

2

2
TGS VV

L
W

oxDS CI

(11)

 At 0.35μm where the threshold voltage is high, the dynamic power is much more

dominant than the leakage power and is represented by the simplified switching power

formula (10). Ignoring leakage power consumption at the current process, power can be

effectively reduced by lowering the three components in (10). Ideally, the effective

capacitance (Ceffective) and supply voltage (Vdd) should be reduced while maintaining the

operating frequency (fclock) for effective throughput requirement of the application.

However, reducing transistors sizing (Ceffective) or lowering the Vdd reduces the drive current

(11) which reduce the fclock and might result in an inefficient application.

23

Figure 22. Energy efficient at different supply voltage [60]

 In [60], a sub-threshold Fast-Fourier-Transform (FFT) processor has a minimum

energy dissipation per 1024-FFT at Vdd =350mV but operates at only 9.6kHz compared to

its 6MHz operation at Vdd =900mV, Figure 22. On many occasions where slow operations

are not acceptable, the limit of low supply voltage is still placed on the application

requirement and a balance is required for an efficient power driven solution. A review of

relevant low power techniques associated to dynamic power consumption is provided for

references in this work. However, this review do not account for all existing low power

techniques in literature.

Supply Voltage

Figure 23. (a) Single-reference; (b) parallel; (c) pipelined implementation [61]

dynamic

clockreducedddeffective

clockreducedddeffectiveparalleldynamic

P

fVC

fVCP

2

,

2
12

,, 2

(12)

24

 The most effective method to reduce dynamic power consumption is by

decreasing Vdd in (10) while maintaining performance of the system due to the squaring

factor. To maintain the performance of the system, parallel implementation of the same

design can be exploited [62]. For simplicity, consider the single reference in Figure 23 has a

dynamic power (10) and duplicated implementations of the same design (2×Ceffective) with

each running at half the frequency (½× fclock) but is able to operate at a much lower supply

voltage, Vdd,reduced. The throughput performance of the system is maintained but yielding a

reduction in power consumption (12) excluding any overhead power consumption. This

methodology has a high power savings if massive parallel implementation is applied at the

cost of larger estate. Alternatively, one can consider maintaining fclock at lower Vdd by using a

higher pipelined version [62]. While pipelined reduced the critical path delay to maintain

the fclock, it does increase the latency of the system but at a lower area cost. In scenarios,

where the output is fed back into the input, pipelining is not applicable as the latency has

increased.

Clocking Strategies

 In a synchronous digital system, the clock acts as a synchronizing signal for data

transfer and ALU operations. Traditional Register-Transfer-Level (RTL) designs assume the

use of two level-triggered D-type flip-flops and configure itself as a master-slave clocking

element. Designers then express their combinational logics using Hardware Description

Language (HDL). Such flip-flops exist as standard cells in design kits of modern fabrication

process and can be found in the present design kit. Although designs can be simplified

with the used of HDL, clock strategies and clocking elements will then be difficult to alter

if such design methods are employed.

25

Figure 24. Pulse-latch generator [64]

Figure 25. Pulse-latch replacement methodology [64]

 Typically, clock paths are usually made up of long global interconnected lines

coupled to a large number of clocking elements. As such, they often contribute to a

significant fraction of the power consumption, accounting for half of dissipated dynamic

power in a recent IBM study [63]. One of the modern design techniques uses a pulse-latch

clock strategy, Figure 24, where real designs exhibit an approximate reduction of 20% in

dynamic power [64] and these power savings come from the replacement of flip-flops with

simpler and lower powered latches [63]. To enable such replacements, Figure 25, pulse

generators are inserted into the clock network such that a level-triggered latch can operate

similarly to an edge-triggered flip-flop. Although these pulse generators increase the overall

power consumption, the incremental power can be significantly reduced by sharing a single

clk clk

Delay cell

Pulse generator

Pulse buffer

Clock inverter

Clock buffer

Regular flip-flops

Forbidden
flip-flops
(macro, neg ff)

Pulsed latch

26

pulse generator to more latches [65]. As such, additional pulse generators and compatible

latches are required to be designed. Although the complexity increases, the combinational

logic design using HDL can still be reused before the replacement of latches over flip-

flops. However, additional timing analysis is required to ensure the functionality of the

overall design.

 In addition, there is also a hidden power reduction methodology that is applicable

to a pulse-latch approach. In [66], flow-through latches have shown an improvement of

10% cycle time and 30% reduction of overall clock load. While reduction of clock load

contributes directly to the overall power reduction, an improvement of cycle time also

permits the lowering of voltage supply to meet the original speed requirements which in

turn reduce the overall power consumption.

Clock Gating

Figure 26. Clock gating replacement for memorizing registers [59]

 Clock-Gating (CG) is a common method to turn off clocks when they are not

required, Figure 26. This is done by inserting a gated-clock along the clock path to control

the switching activity of the clock path. While a gated-clock introduce glitches, an

opposite-edged-triggered latch is normally inserted to remove the glitches and is grouped

together to form a clock-gating cell in standard library. (Note that clock-gating cells are not

available in the standard library of the targeted design kit.) When the clocks are turned off,

the state of the registers are preserved. This will disable unnecessary signal propagation,

27

effectively reducing dynamic power. Additional power is saved from the lower switching

activity of the gated-clock and additional area is saved by reducing the feedback multiplexer

used in memorizing cells, Figure 26. To effectively reduce dynamic power, a single clock-

gating cell can be shared by a group of registers and it is found that clock-gating of one

unit is not power and area efficient [59]. An example of clock gating is demonstrated by a

MPEG-4 decoder in [67].

Memory

Figure 27. Traditional 6-transistor SRAM cell [61]

 Almost all SoC design requires embedded memory blocks, particularly Static-

Random-Access-Memory (SRAM), Figure 27, and accounts for a large portion of area and

power [61]. Dynamic power is consumed when a read or write is performed on the SRAM

cells and static power is consumed when SRAM is holding the value. During a read or

write, both complementary bit-lines are charged/discharged and swings between 0 to Vdd.

Particularly during reading, bit-lines are pre-charged to Vdd and are costly in terms of power

consumptions as these bit-lines are densely connected by SRAMs and highly capacitive. As

such, power savings can be improved by pre-charging using NMOS devices to lower the

charge along the bit-lines [61].

28

 Figure 28. 10T Non pre-charge single-ended SRAM [68]

 Recent studies in [68] and [69] have shown that there a high correlation of data

across adjacent pixels in video/image processing. The Most-Significant-Bits (MSBs) are found

to be lopsided to logic „0‟/‟1‟ while the Least-Significant-Bits (LSBs) are found to be random

[68]. In such examples, there is a strong correlation in the MSB and a logic transition („0‟

→ ‟1‟/ „0‟ → „1‟) occurs lesser in the MSBs as compared to LSBs. When data are read

across the video/image, a 74% power reduction was found when applied on a H.264

reconstructed-image using a non pre-charge single-ended 10T SRAM [68]. These power

savings can be seen from Figure 28. The downside is that this architecture does not operate

as fast as a pre-charge differential-ended SRAM [69].

Types of Logic

Figure 29. Static full adder [75]

29

Figure 30. dynamic TSPC full adder [71]

Figure 31. 8-T full adder [76]

 Digital logic styles include static, dynamic and pass-transistor logic and are widely

reported in literature. Static is the most commonly found and preferred style in existing

literature as it is the most robust form of implementation with respect to voltage and

transistor scaling [70]. Conversely, dynamic style is popular for high speed design [71] and

commonly found in modern microprocessor design in the form of domino logic to relax

on the critical path requirement such as [72], [73] and [74]. The final pass-transistor style

30

makes use of single transistor logic to perform logic operation, making it the most

attractive in terms of minimizing transistor count [75], driving the transistor count for a full

adder cell such as Figure 29 and Figure 30 to as low as 8 transistor, Figure 31.

 A comparison between static and transistor-pass logics was discussed in [62] and

compared in [70]. Although the transistor-pass logic appears attractive in terms of lowering

Ceffective through reducing transistor count, these circuits suffer from threshold voltage drop

across single pass transistor, resulting in lower current drive and operate slower or

inoperable under low supply voltage [62]. From a system perspective, the inconvenience to

reduce operating supply voltage hinders power efficiency. Even in the case of

Complementary-Pass-transistor-Logic (CPL), Double-Pass-transistor-Logic (DPL) where full supply

voltage swing is achieved, the increase in transistor count in CPL and DPL still dissipates

more power as compared to static CMOS logic style [70].

 Dynamic logics evaluate a function through the use of PMOS pull-up and NMOS

pull-down logic in two phases, a pre-charge and an evaluation phase. The pre-charge is

done more commonly using PMOS pull-up and evaluate using only NMOS transistors.

This will reduce the total input output capacitance and operates faster as compared to

other logic styles. However, the constant pre-charge requirement, increase in clock load

and additional self-time clocks are power hungry and unattractive for low power design

[77], [78]. Dynamic logic style also suffers from charge leakage of floating nodes‟ and lower

noise margin which limits the operating frequency and supply voltage [79]. Noise immunity

circuits are often employed by using weak or inverter feedback or by inserting high skew

static gates in between dynamic logics [74]. Consequently, additional overhead results in

higher power consumption.

31

Glitch Control

Figure 32. Path balancing [61]

Figure 33. Hazard filtering [80]

 Glitches occur when a single input change causes multiple transitions at the output

and result in unnecessary dynamic power consumption [61]. The most widely mentioned

method in literature is to balance the delay paths to gate Z in Figure 32, such that the

inputs at gate Z switch simultaneously. Alternatively, hazard filtering can be altering the

gate delay through transistor sizing, Figure 33. However, such methods have become

ineffective with large variation of process parameters [81]. An alternative way to reduce

glitches is to increase the number of pipeline stages as glitches are stopped at registers edge

[82]. Although this method is more useful in Field-Programmable-Gate-Array (FPGA) as

plenty of unused flip-flops are available, it does complement the use of pipelining to lower

supply voltage and eventually lower power consumption.

32

DSP Architecture

Figure 34. Distributed arithmetic architecture of μ-powered DSP [83]

Figure 35. Measured power of μ-powered DSP [83]

33

 While there are many low power techniques available in literature, a good DSP

architecture design is more effective to produce a better efficient power system [61]. One

technique used in energy harvesting architecture is the use of Bit-Serial (BS) and Distributed-

Arithmetic (DA) design to reduce power consumption [84]. Such application has

demonstrated a micro-powered programmable DSP, Figure 34, running at 1.2 kHz

(99.8%)/250 kHz (0.2%) [83]. As DA is able to compute vector dot products without

multipliers through BS arithmetic and Look-Up-Table (LUT), it is one of the most efficient

implementation to perform Multiply-Accumulation (MAC) operation found in Finite-length-

Impulse-Response (FIR) filters. In Figure 35, the work also demonstrates that if accuracy is

not important, the input word-length quantization can be further relaxed to reduce power

consumption.

Figure 36. Comparison of 16-bit digit-serial multipliers [85]

34

 BS and Digit-Serial (DS) multipliers have also demonstrated that the use of

pipelining resulted in a much lower operating supply while maintaining the same word

sampling frequency when compared to its unfolded multiplier, Figure 36 [85]. While

significant power is saved by reducing supply voltage, a larger size digit-serial

implementation is more favourable as it has a lower clock speed requirement and in turn,

its voltage requirement can be lowered.

Figure 37. Ling vs CLA adder [86]

35

Figure 38. Sparse-tree domino ling adders [86]

 The adder being implemented in all digital systems is one of the most significant

cores which is subjected to optimization. Fast and energy-efficient single cycle core is often

required in high performance microprocessor design and a combination implementation of

radix-2 or radix-4 with full or sparse tree of conventional or Ling‟s Carry-Look-Ahead (CLA)

adder is the primary choice [86]. Shown in Figure 37, the radix-4 adder proves to be more

energy efficient than the radix-2 adder for the particular technology and design constraints

used in [86]. In addition, the sparseness of the adders also reduces the energy consumption

of the adders as shown in Figure 38.

36

CHAPTER III

FORMULATION OF SPECIFICATION

In this chapter, a suitable equation from the existing algorithm for hardware realization is

derived. Existing CMOS sensors‟ architectures are then compared for suitability.

Advantages and disadvantages of possible design are also discussed and the final

specifications are formulated and derived for design implementation.

Algorithm

 While many techniques derived from LASCA allow the estimation of blood flow

based on its statistics, a suitable method for real-time imaging has to be identified for the

application. Unlike normal imaging applications which require high speed, biomedical

imaging specifications are often relaxed to the minimum to achieve a low-power

application. Therefore, the simpler spatial derived contrast (1) is actually more suitable for

implementation for real-time bio-medical application, even though the temporal statistical

method has been proven to be a better technique for analysis in [1]. For instance, a

temporal algorithm which requires 10 frames of image data will require more power and

memory to capture, store and process more data as compared to the single frame spatial

derived algorithm.

2

1

2

2

11

2

1

22

1

2

1

1

2
1

1

2
1

1

1

1

INI
N

INIII
N

IIII
N

II
N

N

i

i

N

i

i

N

i

i

N

i

ii

N

i

iI

(13)

37

 The biggest advantage of a hardware implemented algorithm is the possibility of

implementing parallel processing as compared to a sequentially process programming

language. An observation on LASCA algorithm (1), page 7, is that it is parallel computation

unfriendly as (3), page 7, is dependent on (2), page 7. However, (3) can be simplified to an

alternative mathematical equivalence (13) , where (2) is no longer in an iterative summation

loop.

N

i

i

N

i

i

N

i

i

N

i

i

N

i

i

N

i

i

N

i

i

N

i

i

Iyx

IIIN
N

N

II
N

I
N

N

I
N

INI
N

IK

1

2

11

2

1

2

11

2
2

1

2

1

2

),(

1

1

1

1

1

1

/

(14)

 A further substitution of (2) and (13) into (1) simplifies to (14) which only differs

to (5) by a constant factor of √(N/N-1). However, this constant factor approaches to 1

when the sample size is large and K(x, y) approximates to (15) which is actually

mathematically equivalent to (5). From a statistical point of view, the four different

methods in [1] are mathematically describing the same coefficient of variation and only

differ in terms of the input samples and sample size. Typically, a larger sample size using

statistical methods will lead to an increased precision in estimating the evaluated properties.

Using the observation results from [1], a size of 5×5 window of 8-bit data processed with

LASCA should be sufficient for monitoring purpose and this will heavily relax on the

timing and memory requirements.

N

i

i

N

i

i

N

i

iyx IIINK
1

2

11

2

),(

(15)

38

Symbol Bit width

I 8
I2 16

ΣI 13

ΣI2 21

NΣI2 26

(ΣI)2 26

NΣI2-(ΣI)2 26

√(NΣI2-(ΣI)2) 13

Table 1. Bit width requirement

 The reason of using (15) is its simplicity, defined only with N, ΣI and ΣI2. In

addition, the equation is parallel computation friendly as ΣI and ΣI2 are independent of one

another. Further simplification by squaring both the numerator and denominator will only

incur a large bit width divider and is undesirable. Using inputs of 5×5×8-bit (N=25), the

bit width for the various symbols in (15) has been tabulated in Table 1. Subsequently, the

required bit width for each arithmetic operator can be identified.

CMOS Image Sensor

 Although the current work does not involve the design of the sensor, the choice of

sensor architecture does affect the design of the processing unit. The choice of the sensor

architecture should ideally be a low-power and power-efficient solution while maintaining a

decent throughput.

Description Process Supply Resolution Pitch Fps Power FOM Operator Output

Skin detection [21] 0.18μm 1.8v - 9T - - - ×,÷,+,- 1 bit

Neuromorphic vision [48] 0.35μm 3.3v 2×128×128 10μm 40 33.6mW 25.6nW/fp +,-,LTA 7 bit

→ - - - - 30 33.2mW 30.7nW/fp - -

Gradient extraction [44] 0.5μm - 100×100 80μm 1k 50mW 5.0nW/fp ×,÷,+,- 3.5 bit

Spatiotemporal image filters [50] 1.2μm 5v 16×16 30μm 20k 1mW 195pW/fp ×,÷,+,- 5 bit

Range position [47] 0.5μm 3.3v 64×64 40μm 2k 400mW 400nW/fp ×,+,- 1 bit

Pixel analog processor [45] 0.35μm 3.3v 32×32 35μm 30 6mW 195nW/fp ×,+,- -

Video compression (sensor) [49] 0.35μm 3v 128×128 16μm 1k 7.2mW 439pW/fp - -

Video compression (DCT) [49] - - 2×8×8 - ~24k - 7.1nW/fp ×,+ 8 bit
Color correction sensor [52] 0.35μm 3.3v 352×288 4T 30 20mW 6.6nW/fp ×,÷,+,- 8 bit

Pixel analog processor [46] 0.35μm 3.3v 64×64 35μm 10k 250mW 6.1nW/fp ×,+ 4.5 bit

Table 2. Performance of analog domain camera-on-chip

39

 In Table 2, a list of analog domain camera-on-chip is tabulated to discuss on the

disadvantages of using analog processing for the current work. The major limitation of

analog processing is the incredible low accuracy of 1-bit to 8-bits of processed data where

the accuracy requirement of this work is 26-bits, Table 1. Even in the application of more

precise computation [48], [49] and [52], only simple addition/subtraction and fixed-

multiplication using switched-capped voltage multiplier is feasible. More importantly, the

accuracy of squaring operation in (15) will be difficult to achieve in analog implementation.

Even if achievable, there is still a lot of downside. The fundamental of analog processing

lies in matching and to achieve matching between transistors, large transistors are required.

This will result in even larger pixels when compared to [44], [47] and [46] if in-pixel analog

processing is required. Thus a digital approach is more suitable for the current work.

Description Process Supply Resolution Pitch Fps Power FOM Output

APS-SAR [41] 0.35μm 1.2v 176×144 5.0μm 20 48μW(no pad) 95pW/fp 8 bits

APS-SAR [42] 0.35μm 1.5v 176×144 5.0μm 30 550μW 723pW/fp 8 bits

APS-COL-SS [33] 0.25μm 2.5v 400×330 7.4μm 142 52mW 2.77nW/fp 10 bits

APS-COL-SAR [34] 0.35μm - 512×512 16μm 2.5k 500mW 763pW/fp 9 bits

APS-COL-CYCLIC [35] 0.25μm 2.5/3.3v 514×530 20μm 3.5k 1W 1nW/fp 12 bits

APS-COL-∆∑ [36] 0.5μm 5v 1k×1k 10μm 1 115mW 115nW/fp 12 bits

APS-COL-PWM [37] 0.35μm 1.35v 128×96 10μm 9.6 55.2μW 468pW/fp 9 bits

DPS-∆∑ [38] 1.2μm 5v 64×64 60μm 30 1mW 8.1nW/fp 8 bits

DPS-MCBS [39] 0.35μm 3.3v 320×256 10.5μm 30 20mW 8.1nW/fp 8 bits

DPS-SS [25] 0.18μm 1.8v 352×288 9.4μm 10k 50mW 49pW/fp 8 bits

DPS-PWM [40] 0.18μm 1.8v 5128 ~25.1μm 2 1.4mW 146nW/fp -

Table 3. Performance of APS and DPS sensors

pixelsfps

Power
FOM

(16)

 While many CMOS sensor design claims low power operation in few milli-watts,

many have failed to address the power efficiency of the sensor. In Table 3, a comparison of

existing APS and DPS architectures that include sufficient information for calculating

Figure-Of-Merit (FOM) is given to evaluate on suitable low-power and power-efficient

sensor design. FOM is defined in [48] by normalizing the power dissipation by the frame

rate and number of pixels (16) with units of milli-watt per frame-pixel (mW/fp). This

40

implicitly measures the amount of energy required to extract information from a single

pixel. Note that the characteristics of the photodiode are excluded. The most power-

efficient sensor has a DPS architecture using SS ADC [25], while the lowest power-

consumption sensor is a APS sensor with column-parallel PWM ADC [37] and ranks

second in terms of power-efficient. The use of SAR ADC also came close in both low-

power and power-efficient sensor.

Figure 39. CMOS sensor with column parallel analog and digital circuits [32]

 Particularly, the use of column-parallel DSP units with the sensor in [56] coincides

with exploiting parallelism for low power applications [62]. A recap of such architecture is

shown in Figure 39. This architecture also corresponds with a low-power and power-

efficient image sensor found in [37]. In order to maximise the number of column-parallel

DSP units, the area of the DSP unit is critically important. This in turn minimises the

operating supply of the digital circuits. Therefore, employing such architecture gives more

design room space for the low-power digital circuits.

41

DSP Architecture

 The computational complexity of the algorithm (15) lies in implementing square-

root and division operation. Unlike MAC operations, square-root and division are usually

implemented using cycle-operated algorithms such as restoring, non-restoring, SRT and

Newton-Raphson [87]. Particular of interest is a non-restoring square-root unit (using only

one adder/subtractor and shift registers) in [88], coupled with a conventional subtractive

algorithmic division (one subtractor and shift-load registers) fulfils the advantage of small

area implementation. The smallest radix-2 unit generates a digit per cycle from the MSB

and can be chained together in the same pipeline stage.

Figure 40. Bit-parallel iterative with maximum pipelining

 If the cycle-operated divider and square-rooter are iterated in a bit-parallel fashion,

Figure 40, each pipeline stages will operate within a number of clock cycles. In order to

calculate ΣI and ΣI2 in (15), the first pipeline stage is limited to one-cycle arithmetic

operations to align its input to the second stage. Subsequent stages can be implemented

using cycle-operated or multi-cycled units. Although this architecture can be easily

implementable, large area and long critical path delay is associated with the bit-parallel

arithmetic units. Even if the squarer, fixed-multiplier and subtractor in the second and

third stage are implemented as cycle-operated or multi-cycled units, the overall path delay is

still restricted to the 21-bit adder in the first stage.

×2

I

+ ×

N

- √ ÷ K

×2

8-bit

26-bit

13-bit

21-bit

13-bit

26-bit

13-bit/13-bit

+

42

Figure 41. Bit-serial architecture

 Since the cycle-operated division and square-root unit stays in the architecture, the

use of BS arithmetic is an alternative to the bit-parallel cycle-operated arithmetic units. The

architecture can be divided into two pipeline stages, Figure 41, where the first stage

consists of the adding, squaring, multiplying and subtracting, and the second stage is made

up of the square-root and divisor unit. In the first stage, a continuous chain of LSB-First

(LSBF) BS processing unit can be realised as described in [89] and this eliminates any path

delay in the first stage. In addition, a single BS unit occupies much lesser area as compared

to its bit-parallel implementation at the expense of more cycle operations. For example: a

26-bit adder/subtractor can be realised with a 1-bit adder and registers. However, there is a

blown up of 25 BS-squarer required at the input compare to a single 8-bit bit-parallel

squarer. It is unlikely that this design will realise a more compact design than the prior

version.

+

...

I0

IN-1

I1

IN-2

...

+

+

+

...

I0

IN-1

I1

IN-2

...

+

+

×2

×2

×2

×2

×2

×

N

- √ ÷ K

43

Figure 42. 5×5 window selection of pixels and difference in window

 Consider a window scanning sequence from left to right defined by the dotted

arrow in Figure 42, there is an overlap of data between the first window and second

window for processing. For that reason, re-calculating ΣI and ΣI2
 in (15) from scratch is

redundant and all that is required is to add and subtract the difference from the previous

window. If the intermediate results of ΣI and ΣI2 can be stored within the DSP, the amount

of memory reads required per speckle contrast will be reduced from 25 pixels to 10 pixels.

Consequently, the amount of addition and multiplication is also reduced to 10. Not only

does this methodology reduce the power consumption of memory reads by 60%, it also

relaxed the number of BS-squarer from 25 to 10.

Figure 43, Scanning sequences of different rows

 The scanning sequences can then be repeated for different rows as shown in Figure

43. One might think that storing ΣI and ΣI2 per column might further reduce pixel memory

access to compute the total ΣI and ΣI2 per window, but in actual fact it is not. This is

1st Window

2nd Window

Subtract

Add

Scanning sequence of first 5 rows

Scanning sequence of next 5 rows

44

because scanning sequences of different rows have overlapped region and individual pixel‟s

data are required to be known to differentiate the scanning sequences. As such additional

memories and memory transfers are required to store ΣI and ΣI2 from a block of pixel‟s

data to a new block of memory. This could amount to a large number of memory blocks if

the numbers of columns are large and is undesirable.

Figure 44. Reduced bit-serial architecture (D - delay elements)

Description Gate Frequency
Bit-parallel, Figure 40 9.7k 118MHz
Bit-serial, Figure 44 9.4k 211MHz

Table 4. Estimate gate count and operating frequency of arithmetic nodes at 3.3v

 A reduced BS architecture with its Finite-State-Machine (FSM) controller, Clock-

Gating (CG) generator and a required window scanning SRAM is shown in Figure 44. To

differentiate both the design, estimates of gate-count using un-optimised arithmetic units

were performed on both implementation and are shown in Table 4. The bit-parallel

implementations are estimated with slower but area-efficient ripple-carry adders while the

rest are compiled using the standard library. The square-root and division units remain

5

5

SRAM

FSM

Done

Start

×2

×2

×2

×2

×2

∑

×2

×2

×2

×2

×2

∑

-
-

×

D

25

∑

∑

-
-

D

×2

-

-
D √ ÷ K

CG

45

same in both designs. In both cases, the gate counts are approximately the same, with the

BS estimates having more non-combinatorial logic. The ripple-carry adders are found to

limit the operating frequency in the bit-parallel estimates, while the latter is limited by the

square-root unit. Note that optimizing the bit-parallel adders is only possible at the expense

of occupying more area. The main purpose of this estimate is to ensure that 10 BS-squarer

do not occupy too much area so that power reduction can be performed by reducing the

supply voltage aggressively.

Specification

 The number of cycles required to operate will now be determined by the depth of

BS-chain and the output bit width. A depth of 4 and 26-bit required by ΣI2
 in (15) will limit

the operating cycles to be 30 per pipeline stage. Since the output precision is determined by

the divisor at the last stage, a highly precise output of 13 integer bits and 15 fractional bits

(Q13.15) will be produced in 30 cycles (one digit per cycle for radix-2 divisor). The last two

cycles is used on loading/resetting and propagating the output from the square-root unit to

the divisor. Although the DSP unit requires multiple cycles to generate a single output, this

can be compensated by duplicating them in the column-parallel architecture, Figure 39.

 Due to complexity of the algorithm, a similar reference of column-parallel image

compression sensor in [57] is used to determine the pixel pitch of the sensor. In [57], the

pixel pitch is 15μm in a 0.25μm technology and the pixel pitch is relaxed to 20μm for the

current 0.35μm technology. Although this pixel pitch is slightly bigger than previously

mentioned architecture in Table 3, most of the column-parallel implementations are

achieved in top-bottom architecture, Figure 7 on page 12, which is not feasible in this case.

46

Figure 45. Packed SRAM arrangement

 Unlike block-based image processing algorithm such as DCT where neighbouring

data is not required between blocks, a window-based image processing algorithm requires

all neighbouring data to be present for every pixel. In [56], a global metal bus is used to

pass information between neighbours as it operates as a generic processor. A simpler

method is to pack more columns of SRAM within each separable block and duplicate the

data at edge of the blocks. For example, using a window size of 5×5 will require a packed

SRAM arrangement of 32 columns to every 28 columns as shown in Figure 45. Since the

data is digital, splitting the node at the edge should not be problematic if a BS-interface

such as [55] is employed.

284 nColumnimage

(17)

 Choosing a convenient 32-to-28 column limits the pitch width of the DSP unit to

28×20μm=560μm. Note that the pixel width can be adjusted for future implementation by

packing more SRAM into the DSP block. The column of the image can only take values of

(17), where n is an integer, while the row is not limited. For example, a large resolution

image, n can take 32 and thus Columnimage=4+32×28=900 while number of rows can be

1024.

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

2
8

 C
o

lu
m

n
s

3
2

 C
o

lu
m

n
s

4
 C

o
lu

m
n

s

Sensor

ADC

SRAM

DSP

/ 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4

47

unitsspecklecyclefpspixelsf /)/(30min

(18)

 The operating frequency of the DSP unit can be estimated with (18) and can be

estimated to be 26MHz using resolution of 1024×900 at a frame-rate of 30fps with 32

DSP units. It is rounded up to 30MHz to provide an extra overhead for data transfer

between ADC and the SRAM. The unit can be operated slower at 20fps or lesser to reduce

power consumption since video rate is not required in biomedical imaging. Nevertheless,

the DSP‟s operating frequency is set as a target of 30MHz. A summary of the specification

is shown below in Table 5.

Description Specification
Resolution 1024×900 (arbitrary chosen)
DSP units 32 (arbitrary chosen)
Frame-rate 30 fps (arbitrary chosen)
Pixel-pitch 20μm (arbitrary chosen)
DSP-pitch 560μm
Frequency 30MHz

Window size 5×5 (N=25)
Pipeline 2 stages
Latency 60 cycles

Throughput 1/30 speckle/cycle
Input precision 8-bit

Output precision Q13.15

Table 5. Summary of specification

48

Design Flow

Figure 46. Top level design flow

 The top level design flow, Figure 46, first starts off by constructing a C/C++

model of the algorithm for verification. An equivalent behavioural/structural RTL is then

designed and simulated in verilog, with its output compared with the C/C++ model for

functional correctness. Following, a gate-level netlist is created manually, functionally

simulated and logically checked for accuracy.

 When all digital simulations are correct, the schematics of the pulse-latch custom

cells are designed and inserted into the clock-tree of the gate-level netlist. A more accurate

C/C++ model

(gcc)

Create/Update and simulate behavioral/structural RTL

(Synopsys vcs)

Hand designed gate netlist creation/changes

(Cadence virtuoso schematic editor)

Pre-layout corner timing simulation

(Cadence virtuoso spectre circuit simulator)

Functional simulation

(Cadence nc-verilog)

Design and insert/replace pulse-latch clock

(Cadence virtuoso schematic editor)

Layout design of custom cells

(Cadence virtuoso layout editor)

Floor planning

(Cadence virtuoso layout editor)

Hand placement of standard and

custom cells for group components

(Cadence virtuoso layout editor)

Design Rule Check

(Mentor Calibre DRC)

Layout Verse Schematic

(Mentor Calibre LVS)

Parasitic Extraction

(Mentor Calibre PEX)

Fail output comparison

Fail logic comparison

Ways to improve timing

Logic relocation, Transistor sizing

Ways to fix hold time violation

Insert buffer, Logic relocation

Fail

Layout Verse Schematic

(Mentor Calibre LVS)

Post-layout corner timing simulation

(Cadence virtuoso spectre circuit simulator)

Minimize by schematic over-design

Full chip layout

(Cadence virtuoso layout editor)

Design Rule Check

(Mentor Calibre DRC)

Layout Verse Schematic

(Mentor Calibre LVS)

49

and conventional method is to test the digital design using more accurate transistor level

simulation. This is only possible if the design is broken up into smaller component blocks

so that simulations at sub-component level can then be performed time-efficiently. To

reduce the time taken for transistor level simulation, the schematics are over-designed to

reduce the expected failures at the post-layout stage.

 Placement and routing is performed manually due to a lack of automatic placement

and routing technology for mixed custom and standard cells supporting the targeted design

kit. In addition, the lack of good timing analysis software for digital circuits supporting this

design kit and dedicated/distributed simulation machines make it impossible to perform a

top level parasitic extraction and timing simulation. The design flow then ends off with a

top level Design-Rule-Check (DRC) and Layout-Versus-Schematic (LVS) to ensure the sub-

component are connected correctly. Similar top level design flow can also be found in [72].

Design Principles

 The general design approach is to minimise the power consumption while

maintaining the specifications requirement. A summary of general design principles are

written to ease the design methods.

1. While this is a custom design development, individual transistor sizing approach is not

used. A more generic rule of thumb is used instead to infer the sizing from the

standard library. Along the critical path, the standard sizing from the standard library is

used and along the non-critical path, a 50% sizing of the smallest cell from the standard

library is used. This will ease the layout design on the digital logic cells.

2. Dynamic logic is minimised due to higher power consumption while static logic is

preferred as it is available from the standard library. However, it can be used minimally

50

to relax the critical path. Due to the high power consumption in self-timing clock for

some dynamic logic (domino), it is only used when the clocked logic is aligned with the

clock-edge.

3. It is estimated that the critical path in Figure 44 lies in the square-root unit. Therefore

smaller transistors are used on the first pipeline stage and normal sized transistors are

used in the second stage. This approach will minimise the operating supply voltage as

the second stage is required to operate faster. There is a minimum operating supply

voltage in this system and is explained in the memory section.

4. Due to the heavy reliance of clocking elements in BS architecture, a pulse-latch

clocking strategy approach is employed.

5. Leakage power is not considered due to high Vth of the process parameters.

6. Other design methodologies such as clock-gating, glitch control and memory

optimization are applied when necessary.

7. Simulations are performed at the sub-component level to ensure functional operation

of the design. Post-layout simulations are performed with supply voltages of 1.2V and

1.8V at 27 º across corner variation.

8. Power consumptions are then measured at 1.2V, 30MHz, 27º in typical process

corners at the post-layout simulation using a 50% switching activity input approach.

51

CHAPTER IV

LSBF ARITHMETIC UNITS

This chapter describes the operations and simulations of all the Least-Significant-Bit-First

(LSBF) arithmetic blocks in the DSP unit. The LSBF arithmetic blocks include an adder, a

subtractor, a tree adder, a multiplier and a squarer. The following symbols shown below in

Figure 47 will be reused in this chapter for illustration.

D-latch

D-latch with reset

D-latch with set

D-latch with enable

Full adder

Multiplexer

Figure 47. LSBF symbols

Bit-Serial Adder/Subtractor

Figure 48. Bit-serial adder (Sum=A+B) [89]

Figure 49. Bit-serial subtractor (Diff=A-B) [89]

 Bit-Serial (BS) adder/subtractor is also known as carry-save adder/subtractor as

carry is saved from one bit position to the next. Figure 48 and Figure 49 shows the logical

equivalence of a single BS adder and subtractor where numbers are input in two‟s

complement representation from the least significant bit [89]. These adders can be used to

perform addition and subtraction for any bit-width number sequence and effectively trade

more operational cycles for smaller area implementations. A BS adder/subtractor has an

operating cycle equal to the number of bits at the output. For example, two 8-bits addition

will need 9 clock cycles as it has a 9-bit output. As the full adders are not cascaded, glitches

D DR DS DEN FA

M
U

X

Reset

DR

FAA
B

Sum

Set

DS

FAA
B

Diff

52

are minimised as there is no ripple through effect. Another advantage of using BS

adder/subtractor is efficient implementation of multi-input adders.

Figure 50. 6-input tree adder (Σ = X0+X1+X2+X3+X4+X5)

Figure 51. Post-layout simulation of Σ with 8-bit output (inverted output)

R0

DR

FA

R0

DR

FA

R0

DR

FA D

D

D

R1

DR

FA D

R2

DR

FA D

D

Sum

X0, X1, X2

X3, X4, X5

(LSB) 1 1 0 1 0 1 0 1 = 171 (LSB) 0 0 1 1 0 1 0 1 = 172

53

Figure 52. Post-layout simulation of Σ with 16-bit output (inverted output)

Figure 53. Current consumption of C30+CG1+2Σ

 Consider a 6-bit adder in Figure 50, it uses only five full adders and latches to

design a single Σ operator in Figure 44. This simple design allows maximum parallel

addition for any bit-width input at the minimum area cost. Since the delay paths in these

(LSB) 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 = 43691 (LSB) 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 = 43692

54

adders are least in the entire DSP, a typical mirror adder from Figure 30 can be reused

from the standard library. It can be sized smallest even with a stack height of 6 and the

inherent gate delay is also required to fulfil the hold time requirement of the latches. Two

random post-layout simulations of the Σ operations are performed to obtain a 8-bit and

16-bit output. They are shown in Figure 51 and Figure 52 respectively with the total

current consumption of the Σ operations in the DSP unit shown in Figure 53. These

adders including the state controller account to about 120.1μA of current consumption.

Bit-Serial Multiplier

Figure 54. 25× bit-serial multiplier

 The only multiplier required in (15) is a fixed N multiplication that is dependent on

the window size of the processing algorithm, Figure 54. In this case, a 5×5 window size

will set N=25. The easiest method to perform a multiplication is by using the shift-add

method in binary form. A „1‟ at the k-th bit of the number will require a k-bit left shift

before addition. As N = „11001‟ in binary, and input number will require every bit shifted

by 0, 3 and 4 before addition. If a number is input bit-serially from the LSB, the input

performs an addition at the 0th, 3rd and 4th shift. This is equivalent to a circuit

implementation in Figure 54 where full adder is placed at the 0th position (right) and the

3rd position (3 delays after the first). The last adder at the 4th position is omitted as adding

a zero is equivalent to itself. This small implementation is one of the most area efficient

fixed-multiplier with the least transistor count.

DR

FA DR DR DR

Reset

DR

FADR

X
25X

55

Figure 55. Post-layout simulation of 25×+1-bit subtractor

Figure 56. Current consumption of C30+CG1+25×+1-bit subtractor

 The post-layout simulation of the multiplier is shown in Figure 55 and the current

consumption is shown in Figure 56. As one of the 1-bit subtractor is close to the 25× BS-

multiplier, both units are simulated together. A small amount of glitches are observed from

Glitches

56

Figure 55 due to the rippling effect of the multiplier connecting to the subtractor, similarly

to a 2-bit ripple carry adder. However, the ripples will be stopped by the next expected

latch in a BS design. From Figure 56, the total current consumption accounts

approximately to 102.1μA.

Bit-Serial Squarer

n

i

i

ixx
0

2 (19)

2

11

00

2

1

0

2

0

2

222

2

2

n

i

i

i

n

i

i

i

n

i

i

i

n

i

i

i

xxxx

xx

xx

(20)

 Consider an n-bit number x represented in binary (19), where xi is the i-th bit,

being squared and expanded in (20). The final expanded version has three terms with the

first term being itself (as squaring a bit is just itself). The second term represents an AND

operation of the 0th bit with every single other bit and multiply by two. The last term is

just a normal squaring operation but without the 0th bit of number x. The last term can be

expanded similarly and thus the arithmetic design is an addition of the first two terms with

the duplication of the design on the rest of the bits.

Figure 57. 8-bit bit-serial squarer

M
U

X

X

R6

DR

FA DR

R6

DEN

M
U

X

R5

DR

FA DR

R5

DEN

M
U

X

R4

DR

FA DR

R4

DEN

M
U

X

R3

DR

FA DR

R3

DEN

M
U

X

R2

DR

FA DR

R2

DEN

M
U

X

R1

DR

FA DR

R1

DEN

M
U

X

R0

DR

FA DR

R0

DEN

R7

X2

Bit-slice

57

 The implementation of the first two terms is shown as a single bit-slice in Figure

57, where the first bit output selects its own value, x0, through a multiplexer and also stores

the same value in a D-latch. It then performs an AND operation with other input bits and

left shifts its own value by delaying one cycle (×2). The cell is then duplicated and added

accordingly to form the third term. A full expansion of (20) will reduce the last term to the

bit itself, resulting in an AND gate.

 An 8-bit design is shown in Figure 57 and the 13-bit required BS-squarer for (ΣI)2

in Table 1 can be obtained by padding with more bit-slices. As such, an n-bit squarer will

require (n-1) bit-slice and an AND gate. It also requires n×n clock cycles to complete.

Similar to the BS-adders, small sized mirror adders are used to make full use of the time

slack available within the latches. This design is similar to one in [89] except that the D-

latches are not all reset initially but sequentially by the control signal. Optimization of the

BS-squarer is performed previously in [92] by recognizing similar computation terms and

reusing the D-latches in the design. Such BS-squarer is more effective for long word-length

BS-squarer and requires clocking for every cycle. In this design, the D-latch can also be

recycled from a system level. Since the 13-bit BS-squarer stores ΣI within itself, data from

the bit-squarer can be reused to the input of adder tree and divider as required by the

algorithm and drawn in Figure 44. This will not be possible if the optimized BS-squarer is

employed.

58

Figure 58. Clock-gating signals for bit-serial squarer

 In the case of 8-bit BS-squarer, grouping ten of them together enable a precise

clock-gating to the cycle requirement of every single D-latch. This is possible as the D-

latches are not required to operate at every cycle due to the design of the sequentially

controlled reset signals as described earlier. Consider slice 6 in Figure 58, it is only required

to operate after the 6-bit input and can be turned off immediately after 3 cycles as zero is

padded onwards. Subsequently, all the clock-gating signals can be derived by considering

the input propagation across the bit-slices. The final required clock-gating signals are

shown in Figure 58. Although the amounts of latches are significant, the actual required

clock-cycles required is much lesser. Initially a total of 3 latch × 7 slices × 16 cycles × 10

units = 3360 cycles are required. After clock-gating, a total of (2+3+…+14+16+7) × 10

units = 1270 cycles are required.

M
U

X

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

X2

M
U

X

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA DR

DEN

M
U

X

DR

FA D

DEN

M
U

X

DR

FA DR

DEN

X2

Slice 6 Slice 5 Slice 4 Slice 3 Slice 2 Slice 1 Slice 0

Φ[8] Φ[7] Φ[6] Φ[5] Φ[4] Φ[3] Φ[2]

Φ[2:15]

Φ[2:17]Φ[3:15]

Φ[3:14]

Φ[4:14]

Φ[4:13]

Φ[5:13]

Φ[5:12]

Φ[6:12]

Φ[6:11]

Φ[7:11]

Φ[7:10]

Φ[8:10]

Φ[8:9]

59

Figure 59. Post-layout simulation of 8-bit BS-squarer

Figure 60. Post-layout simulation of 13-bit BS-squarer (inverted output)

(LSB) 00 1 00 111 0000 111 = Square(170) (LSB) 1 00 111 000 1 00 111 = Square(171) (LSB) 0000 1 00 111 00 111 = Square(172)

(LSB) 00 1 00 111 0000 111 = Square(170) (LSB) 1 00 111 000 1 00 111 = Square(171) (LSB) 0000 1 00 111 00 111 = Square(172)

60

Figure 61. Current consumption of C30+CG0+10×8-bit squarer

Figure 62. Current consumption of C30+CG1+13-bit squarer

 A functional simulation of the 8-bit and 13-bit squarer is shown in Figure 59 and

Figure 60 respectively while Figure 61 and Figure 62 show current consumption of

Effects of clock gating

Maximum current drawn Maximum current drawn

61

232.3μA and 124.7μA respectively. The effects of clock-gating can also be noticed from

Figure 61 as the current drawn increase linearly to a maximum point where all the latches

are clock simultaneously and decrease linearly afterwards. The post-layout simulations of

the gated clocks are also shown below in Figure 63.

Unit Clock Waveform

8b-x2

ϕ[2]

ϕ[3]

ϕ[4]

ϕ[5]

ϕ[6]

ϕ[7]

ϕ[8]

ϕ[2:17]

ϕ[2:15]

ϕ[3:15]

ϕ[3:14]

ϕ[4:14]

ϕ[4:13]

ϕ[5:13]

ϕ[5:12]

ϕ[6:12]

ϕ[6:11]

62

ϕ[7:11]

ϕ[7:10]

ϕ[8:10]

ϕ[8:9]

Figure 63. Post-layout simulation of gated-clocks in BS-squarer

Power Consumption

Arithmetic Units Power

Σ 37.1µW

25× Multiplier 19.1 µW

x2(10×8-bit) 135.6 µW

x2(13-bit) 41.7 µW

Table 6. Power consumption of LSBF arithmetic units

 The power consumption for the LSBF arithmetic units have been extracted and

summarized in Table 6.

63

CHAPTER V

MSBF ARITHMETIC UNITS

This chapter describes the operations and simulations of all the Most-Significant-Bit-First

(MSBF) arithmetic blocks in the DSP unit. The MSBF arithmetic blocks include a square-

root and a divider unit. The design of a bit-parallel adder is also discussed.

Bit-Serial Square-Root

Pseudo code

dk← k-th bit of input digit to be square-rooted

q ← 0 (partial square-root)

r ← 0 (partial remainder)

for i ← maximum-output-bit to 0 by 1
 if r is non-negative

 r ← rd2i+1d2i – q01
 else

 r ← rd2i+1d2i + q11
 if r is non-negative

 q ← q1
 else

 q ← q0
end

Figure 64. Non-restoring square-root [88]

 In Figure 64, a radix-2 non-restoring square-root algorithm using a small sized

iterative architecture is presented from [88]. The algorithm scans two input bits from the

MSB and attempts to find the integer portion of the square-root (one bit per iteration)

from the partial remainder padded with the two input bits. Since the square-root of two

bits (00, 01, 10, 11) can only takes the value of 0 for „00‟ or 1 for values greater than „01‟,

the basic idea of the algorithm is to determine the next partial remainder by subtracting its

64

own value padded with two input bits (rd2i+1d2i) by q01 to determine if the remainder is q00

or greater than q01. If it is greater than q01 (a non-negative partial remainder) then the next

partial square-root must be q1 otherwise it is q0. The addition of q11 when the remainder

is negative is to compensate for the over subtraction in the previous iteration. A proof for

the addition of q11 can be found in [88].

Figure 65. 26-bit square-root unit with adder front-end using dynamic multiplexer latch

 This simplicity makes the design of the square-root compact by using a single

selectable adder or subtractor. To perform a 13-bit output square-root, √(NΣI2-(ΣI)2) from

Table 1, a 15-bit adder is required as two extra bits are required to add/subtract the padded

the partial square root. To speed up the operation of the square-root unit, an adder front-

end with dynamic multiplex latch is used to invert the bits of the partial square-root to

perform a 2‟s complement subtraction, Figure 65. (Dynamic multiplex latch can be found

in Figure 100 on page 88.) The inverting operation has been shifted to a non-critical

portion of the register effectively and the critical path delay is slightly reduced to that of the

15-bit adder to the edge of the multiplexer latch. This design can also be found in modern

processor‟s Arithmetic-Logic-Unit (ALU) adder front-end design where dynamic multiplexer

is used to perform subtraction operation, set „0‟ or set‟1‟ operations [74]. The final output

Q in Figure 65 is generated one digit per cycle from the MSB as described from the

algorithm.

15-bit Adder

EVEN

ODD

R

R[12:0]

D[25:0]

Q-MUX

R[14]

Q

65

Figure 66. Post-layout simulation of square-root (inverted)

Figure 67. Current consumption of C30+CG1+square-root

 The simulated outputs shown in Figure 66 and Figure 67 report a total of 184.2μA

in current consumption. The effects of clock-gating are also noticeable from Figure 67 as

the square root unit is turned off when it is not required to operate.

(MSB) 1 0 1 0 1 0 1 0 1 0 1 0 1 = ISQRT(29822521) (MSB) 1 0 1 0 1 0 1 0 1 0 1 0 1 = ISQRT(29822522)

Turned off Turned off Turned off

66

Bit-Serial Divider

Pseudo code

nk← k-th bit of input dividend

d ← divisor

q ← 0 (partial quotient)

r ← 0 (partial remainder)

for i ← maximum-output-bit to 0 by 1
 if (rni – d) is non-negative

 r ← rni – d

 q ← q1
 else

 r ← rni

 q ← q0
 end
end

Figure 68. Subtractive division

 In Figure 68, a subtractive divider is presented which follows the conventional

time-consuming division by hand algorithm. The algorithm repeatedly subtracts the divisor

from the partial remainder padded with the input dividend. When the partial remainder is

greater than the divisor (non-negative subtraction), the next quotient bit is set to „1‟

otherwise „0‟. The next partial remainder then gets loaded with the subtracted remainder or

shifted to a new bit precision. Similar to the square-root unit, this loading and shifting

operation can be shifted to a non-critical portion of the register by using a dynamic

multiplexing latch. A 14-bit subtractor is required to perform a 13-bit division as the

remainder is padded with a single bit dividend per iteration. Since the divider uses one less

bit than the square-root unit in the bit-parallel operation, the dominant critical path delay

still lies in the square-root unit.

14-bit Subtractor

R[13:0]

R-MUX

DIVISOR

DIVIDEND

R[13]

Q

ϕ[1]

67

Figure 69. Post-layout simulation of divider

Figure 70. Current consumption of C30+CG1+divider

 As the iterations can continue infinitely, the divider can perform an infinite

precision of division. Two divisions are illustrated in Figure 69, where one output does not

have any decimal digits and one with infinite decimal digits. The second output with

Integer Decimal Integer Decimal

68

decimal digits is terminated after 30 cycles have been used up. In Figure 70, simulation

results in an average current consumption of 156.9μA.

Bit-Parallel Adder

Figure 71. Sparse radix-4 15-bit CLA adder

 In both the divider and square-root unit, bit-parallel adders/subtractors are being

used. In actual realization, a subtractor is simply a 2s-complement adder and thus the logic

design in the divider and square-root unit can be reused. In this work, the critical path of

the DSP lies in the 15-bit adder of the square-root unit and an optimised adder will

determine the performance of the DSP. Due to the small bit-width requirement, complex

adder architecture is not required. However, a fast and energy-efficient adder working at

low voltage is still required. Previously, sparse CLA adders have demonstrated energy

savings in adder architectures due to fewer Carry-Merge (CM) operations in the adder tree

[86]. In Figure 71, a sparse radix-4 tree design is illustrated to demonstrate the calculation

of the every fourth carry in the adder (C0, C3, C7, C11). The carry signals are then used to

generate the sum output with a slower group of non-critical Propagate-Generate (PG) signals

PG2PG1PG0 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11CIN

CLA

Sum[0:3]

CLA

Sum[4:7]

C3

CLA

Sum[8:11]

C7

CSA

Sum[12:14]

C11

PG13PG12 PG14

CM

CM

CM CM

CM CM

69

corresponding to the dotted lines in Figure 71. In this radix-4 tree, the CM stages are

effectively reduced to two in the critical path and are closer to the optimal number of

stages with lower output loads [86].

Figure 72. CM operations and their CMOS implementation

 The performance of the tree now lies in the implementation of PG and CM stages

where the sparseness has reduced the number of fan-outs required per stage compared to a

full tree. In Figure 72, the CM operations and their equivalent static CMOS

implementation are shown. Dynamic logics are not considered due to their higher power

consumption in their pre-charge and self-timed clock trees even though it is the preferred

choice in modern microprocessor. All CM stages have an equal amount of two gates delay

and are rearranged with balanced network paths that are less vulnerable to glitches.

G0 P1G1

G1+G0∙P1

|||

G1+G0∙P1

G1+G0∙P1

G1

G1

G0

P1

P1

CM

G0 P1G1 P2G2

G2+G1∙P2+G0∙P2∙P1

G2+G1∙P2+

G0∙P2∙P1

G2

G1
P2

P1

G0
P2

CM

P0G0 P1G1 P2G2 P3G3

P0∙P1∙P2∙P3

G3+G2∙P3+G1∙P3∙P2+G0∙P3∙P2∙P1

G3

G2
P3

P1

G1
P2

G3+G2∙P3+

G1∙P3∙P2+

G0∙P3∙P2∙P1

P2

G0
P1

P3

P2

P0
P1

P3

P0∙P1∙P2∙P3

CM

70

Figure 73. Propagate and generate (*: minimum sized)

 To avoid an XOR gate in the critical path, an OR gate is used to create the

propagate signal along the critical path and the XOR operation is reconstructed using

minimum sized transistors along the non-critical path. The generate signal is created from a

normal AND gate and buffered to form the non-critical path. The dotted lines in Figure 73

are the non-critical path and are represented similarly as dotted lines in Figure 71.

Figure 74. 4-bit full radix-4 CLA adder

Figure 75. 3-bit non-critical sum generator

 In the square-root unit, the longest path depends on the MSB bit to perform a

multiplexing select operation. Therefore the sum generation for the remaining bits can be

further relaxed to reduce on the node operations. A 4-bit full radix-4 CLA with lesser

operation node count can be used instead of a CSA adder. In the critical MSB block, a

similar CSA scheme to [93] is employed to reduce the critical path of the MSB bit to one

multiplexer stage, Figure 75, instead of one CM plus one XOR stage, Figure 74. In both

PG

P=A+B

G=A∙B
A+ B *

A
B

P=A+B

G=A∙B

*G G’

G’

A+ B

CIN PGi PGi+1 PGi+2

SUM[i:i+3]

CM CM CM

CIN Pi

SUM[i:i+2]

Gi Pi+1 Gi+1

CM CM

C IN
=1

C IN
=0

MUXMUX

71

the CSA and CLA adders, most of the logic gates lie in the non-critical paths and a smaller

transistor sizing can be used.

Figure 76. Critical path delay of adder in square-root at Vdd=1.2v

Figure 77. Latch delay at worst process corner

Process variation Process variation

Pulse Output

72

 The critical path of the adder can be measured by triggering a carry propagation

chain from the LSB as there is a maximum fan-out in the CM stages. The propagation

delay from carry in can be ignored since it is only merged on the second stage of the adder

tree. With consideration of the CM stage arrangement in actual implementation, the worst

input pattern can be estimated from A(000…10),B(111…01) → A(111…11),B(000…10)

with Cin(1). The post-layout simulation of the critical path of the adder to the edge of the

multiplexer latch in the square-root unit is shown in Figure 76. Operating at supply voltage

of 1.2V, the critical path delay suffers from a wide process variation. The slowest process

corner yields a delay path of around 27ns while it only yields a 12ns delay in typical process

corner. Coupled with a near 0s setup time and 2.5ns worst delay latch, Figure 77, the total

worst delay is approximately 29.5ns and fits perfectly into a 30MHz clock.

Power Consumption

Arithmetic Units Power

√ 101.2 µW
÷ 73.9 µW

Table 7. Power consumption of MSBF arithmetic units

 The power consumption for the MSBF arithmetic units have been extracted and

summarized in Table 7.

73

CHAPTER VI

SYSTEM DESIGN

This chapter describes the design and simulations from the system perspective. The system

level design includes the design of the state controller, the memory interface and the

clocking strategy. They have been highlighted below in the top level architecture block

diagram, Figure 78. The functional verification is also presented to outline the functional

correctness of the system design.

Figure 78, Top level architecture block diagram

ADC Output

32 Differential

Serial Data Bus

10 Serial Data Bus

8 Discharge Control

40 Row Address

40 Write Address

Asynchronous

Reset

Enable

CLK

32 Column Address

State

Controller

(FSM)

32×40b

SRAM

Clock Gating

3 Gated Clocks 30 Control

Signals

Gated Clock

Arithmetic

Processing

Elements

(+,-,×,÷,√)

Speckle Contrast

Serial Output

29 Gated

Clocks

74

Finite State Machine

Figure 79. Finite state machine block diagram

 The Finite-State-Machine (FSM) of the system, Figure 79, is made up of four sub-

blocks, three counters and a 5-to-32 decoder. The components are clock-gated to reduce

the power consumption and to simplify the design logic.

Figure 80. 30-bit shift register

 The first counter, C30, is formed by a 30-bit shift register, Figure 80, and is used to

track the number of cycles executing in both the pipeline stages. The main functionality is

to provide control signals and clock gating signals for the rest of the circuits. It uses a one-

hot encoding scheme where one bit represents a single state of the pipeline execution. In

this case, a single state represents a single cycle and is propagated from cycle 0 to 29. The

choice of one-hot encoding over the other encoding methods is primarily due to the

requirement of faster control signals in some of the arithmetic blocks. Since there is only

one latch propagating a „1‟ at any time, the corresponding pre-charge latch from Figure 97

(page 88) is preferred over Figure 98 (page 88) without significant increase in power

FSM

Done

C30 C64

DEC

Row Column

ϕ[0:8]

C9

ϕ[0]

ϕ

Start

D D

Q[0]

D

Q[1]

D D

Q[27]

D

Q[28] Q[29]

Q[29]

Reset

Q[2]

75

consumption. Additional attention is also required to ensure the path delay between the

latches fulfils the hold time requirement.

Figure 81. 9-bit shift register

 Similar to the 30-bit shift register, the second counter, C9, is a 9-bit shift register,

Figure 81, and uses a one-hot encoding scheme. The main functionality of this counter is

used to perform the row select for the memory block. The first 8-bits are used to select the

data from the memory block in a bit-serial manner while the last bit is used to discharge the

memory bus when it is not in used. Subsequently, the clock required to power the counter

is turned off and thus it operates from cycle 0 to 8. To achieve a known state during power

up procedure, the counter is reset to one so that it is able to perform a read operation on

the first bit at cycle 0.

Figure 82. 6-bit synchronous count up counter

 The third counter, C64, is a 6-bit synchronous count up counter, Figure 82, and

uses a binary encoding scheme that counts from 0 to 63. The first four bits of the counter

counts from 0 to 31 in binary and is used to select the column of the memory block after

D D

Q[0]

D

Q[1]

D D

Q[6]

D

Q[7]

Q[8]

Q[8]

Reset

Q[2]

D D D D D D D_____

Reset

Q[0] Q[1] Q[2] Q[3] Q[4] Done

Q[5]

76

decoding. Since the column of the memory block is only required to change per generated

contrast, it is clocked only once every 30 cycles at cycle 0. Similar to the previous counter,

it is reset to zero to achieve a known state during the first start sequence. The last bit is

then delayed by one gated-clock to indicate a complete scanning sequence of the data in

the memory block. This one gated-clock delay is to force the last processing data from the

first stage to the second stage of the pipeline execution.

Figure 83. A 5-to-32 decoder

 The last component of the state machine is the 5-to-32 decoder, Figure 83, and

decodes a 5-bit binary encoding scheme to a 32-bit one-hot encoding scheme. The decoder

first decodes the 5-bit input into 10 different number sequences as indicated on the left

side of Figure 83, where 0/1/X represents 0/1/"don‟t care" respectively. The one-hot

encoding output is then decoded using 3-input AND gate using 3 of the 10 different

number sequences. This method reduces each column to contain only a 3-input AND gate

D[0]
D[1] XXX11

D[0]

D[1] XXX10

D[0]

XXX01

D[0]

D[1] XXX00

D[1]

D[2]
D[3] X11XX

D[2]

D[3] X10XX

D[2]

X01XX

D[2]

D[3] X00XX

D[3]

D[4]

D[4]

1XXXX

0XXXX

Q[0] Q[1] Q[2] Q[29] Q[30] Q[31]

R=Q[0]+Q[1]+Q[2]+Q[3]+Q[4]

77

instead of a 5-input logic decoder if a direct 5-to-32 decoding scheme is used. The last

output decoding logic R is used to place a „0‟ on the SUB bus of Figure 87 for the first five

columns readout as described later.

Figure 84. Post-layout simulation of C30

Figure 85. Current consumption of C30

Bit 0 to Bit 17 Bit 0 to Bit 17

78

 Simulation results of C30, Figure 84, indicates a bit shifting of 0 to 17 and is

repeated. Other bits that are not required in the controlling are left out of the waveform

result. It is able to perform the role shift register using a pulse-latch clocking methodology

and provide enough driving capability across corner variation to control the rest of the

arithmetic block. The current consumption is approximately 52.4μA, Figure 85. It is

observed that a large amount of current is consumed by the buffering of the control

signals.

Figure 86. Current consumption of C30+CG0+CR9+CR64+DEC+SRAM

 As mentioned earlier, the state machine is highly integrated with the memory block

and thus the current consumption is simulated jointly as a unit. The total current

consumption drawn by C30+CG0+CR9+CR64+DEC+SRAM is approximately 170.9μA,

Figure 86.

79

Memory Interface

Figure 87. Arrangement of SRAM

 The memories are arranged in 32 columns × 40 rows as illustrated on the left of

Figure 87 and provide an interface for data communication between the sensor and the

processing unit. It can also be viewed as 5 blocks of memory drawn in Figure 87 where

each block corresponds to a row of pixel data (8-bits) in Figure 42 and each column

corresponds to a column of pixel data in Figure 42. Due to the rolling readout of the

sensor, the sensor controller can write its output digital data in parallel to a different block

of memory every time a row of A2D conversion is completed. This operation enables the

memory to retain the last five rows of pixel data at any time to perform a windowing

operation. The sequence of writing data into the DSP can be as follows:

1. ADC is completed and data are written into block 0.

2. ADC is completed and data are written into block 1.

3. ADC is completed and data are written into block 2.

4. ADC is completed and data are written into block 3.

WR[0]

D[0]

D[0] D[31]

D[31]D[1]

D[1]

RD[0]

RD[7]

COL[5]COL[0]

Sense Sense

ϕ[1:9]

ADD
SUB

ADD BUS

SUB BUS

WR[7]

WR[8]

WR[15]

WR[16]

WR[23]

WR[24]

WR[31]

WR[32]

WR[39]

RD[1]

RD[2]

RD[3]

RD[4]

RD[5]

RD[6]

Block 0

Block 1

Block 2

Block 3

Block 4

Multiplexer

80

5. ADC is completed and data are written into block 4.

6. The processing of the last five rows of pixel data is triggered.

7. ADC is completed and data are over-written in block 0.

8. The processing of the last five rows of pixel data is triggered.

9. Step 7 and 8 is repeated by writing into a different memory block until all the rows

on the sensor have been converted and written.

 This arrangement will make the DSP to be compatible to any form of column-

parallel readouts whether it is ASP sensor or DPS sensor, and thus isolates itself from any

incompatibility. The input signals for writing are arranged such that the sensor is able to

write independent into each row of the memory using the differential inputs signal. Thus,

the input buses along each column are connected together while the write signals are

separately joined along the row. Similar to 6T SRAM, data is written to the memory by

placing a differential input on D and ~D and triggering a „1‟ on WR.

 The readout architecture is slightly more complex to achieve a bit-serial readout

directly instead of word-parallel readout followed by a bit-serial conversion using shift

registers. This design eliminates the need for shift registers such as those found in the

distributed arithmetic unit of Figure 35 from [83]. Also, all the pixel data in both add and

subtract columns of Figure 42 are required to be accessed in parallel bit-serially. The

internal connections of the memory block are illustrated on the right of Figure 87 to

achieve a bit-serial readout directly. In each block, the read ports are joined together and

connected to a multi-input single-pass-transistor switched multiplexer. A column controller

then selects the multiplexer to connect one of the column buses to the ADD bus and

another to the SUB bus. On the first five column reads, the SUB bus is set to zero to

81

accumulate ΣI and ΣI2 initially. On the sixth column reads, the first column is placed on the

SUB bus. Subsequently, the readouts are swept from the left to the right. Individual bits

can then be readout by setting a „1‟ on the RD control. A differential output is then sensed

and transferred to the arithmetic processing elements. Each block outputs a single ADD

and SUB signal which totals to five pairs of ADD and SUB signals as required.

No. of
Logic Transitions

Count

0 2
1 14
2 42
3 70
4 70
5 42
6
7

14
2

Table 8. Number of logic transitions in all 8-bit digits

 Previously in [68], non pre-charge memory has demonstrated a 74% power

reduction based on the fact that the most significant bits of a bit-parallel video data is

highly correlated. Similar design of non pre-charge memory is also applicable to a bit-serial

readout. For example, a bit-serial readout of binary value 00000000 has zero logic

transitions and binary value 10101010 has seven logic transitions. By considering all

possible binary combinations, the number of logic transitions in all 8-bit digits can be

tabulated. From Table 8, the expected number of logic transitions for random data is 3.5

and thus the use of a non pre-charge SRAM has a theoretical power savings of 50% in a

bit-serial readout.

82

Figure 88. Non pre-charge, differential SRAM

Figure 89. Sense-amplifier flip-flop

 As compared to the 90nm and 45nm process in [68] and [69] respectively, the use

of an inverter to drive a switch with high bus capacitance at low voltage and high Vth is

slow and undesirable. Therefore a differential with non pre-charge output SRAM, Figure

88, is used at the cost of more area and additional Sense-Amplifier-Flip-Flop (SAFF), Figure

89. Using only a single pass-transistor switch, the differential output is also limited to Vdd -

Vth,nmos and eliminates the need to pre-charge the memory bus to the full supply voltage.

 In order for the SAFF to switch without error, a few hundred milli-volts difference

between the inputs is required to overcome the offset voltage and noise. This will limit the

minimum supply voltage to be around Vth,nmos+Vdifference. In the worst case scenario using

max Vth≈0.8V and a voltage difference of 0.4V, this will set the limit of the supply voltage

to 1.2V. This voltage difference of 0.4V also provides some headroom for other circuits to

operate efficiently throughout the DSP unit. As the SRAM is operating in non pre-

charging mode, the voltage difference is not always at 0.4V as it may not be charged or

discharged completely within the operating frequency. A worst case input pattern will be

seven „1‟s followed by one „0‟ or vice versa to discharge a maximum charged memory bus

at the last bit and it can be used to estimate the worst voltage difference.

D

_

D

Q
_

Q

WR

RD

_

Φ

_

Φ

_

Φ

D

_

D

Q

_

Q

Φ
_

Φ

83

Figure 90. Worst case voltage difference on memory bus at 30MHz

 Since the worst possible scenario can only happen with slow transistors (maximum

Vth), a post-layout simulation of the memory block is only performed with the worst

corner variation, Figure 90. Simulated result is as expected with an approximate maximum

voltage difference of 400mV and an approximate minimum voltage difference is found to

be 200mV. The sampled output of the above simulation with its output inverted is shown

in Figure 93. A monte-carlo simulation of 1000 samples, Figure 94, are collected with an

input voltage difference of 200mV at worst process corner to ensure that SAFF switched

correctly in the presence of offset voltage at process mismatch condition.

Figure 91. Critical path from memory block to arithmetic block

Sense ×2 ∑
CLK

D

0.2v

BUS≈400mV (Max)

BUS Discharged when

not inused

1 1 1 1 1 1 1 0

84

Figure 92. Critical path delay from memory block to arithmetic block at 1.2v

Figure 93. Inverted output of memory block for „01111111‟ (LSBF)

Figure 94. Monte-carlo simulation of 1000 samples of SAFF

Process variation Process variation

1 1 1 1 1 1 1 0

CLK

85

 The SAFF, Figure 89, is referenced from [91] using a first stage pre-charge sense

amplifier followed with a set-reset latch. The slow performance of the set-reset latch

degrades the delay path but is absorbed by the fast processing signal path of the BS-

arithmetic nodes. The critical path of Figure 44 from the memory block is redrawn in

Figure 91 and a post-layout simulation measuring from input CLK to output D is shown in

Figure 92. This critical path delay measures about 28.5ns at worst process corner, 12.2ns at

typical process corner and fits nicely into a 30MHz operating frequency even at worst

process corner. The functional simulations of the memory blocks and SAFF are shown in

Figure 93 and Figure 94 respectively.

Clocking Strategy

Figure 95. Inverted pulse generator and its hazard.

 Inverted pulse generators, Figure 95, have been inserted into the clock network to

achieve a pulse-latch clock strategy in this work. A buffer is placed after the NAND gate to

enable more latches to share a single pulse-generator. Consider a simple level-triggered

latch used with the inverted pulse generator, the inherent timing requirement will be twidth >

CLK

PULSE

CLK

CLK

twidth

tD→Q

PULSE

twidth ___

CLK

DD Q

D

Q

twidth

tD→Q Hold time

violation

twidth

Does not trigger

when twidth<tD→Q

86

tD→Q, such that the input D is able propagate to output Q. Also, the transparent latch

requires a hold time of twidth to ensure that D is stable while propagating to Q. To meet the

timing requirements, twidth is adjusted by changing the sizes and stages of the inverter from

simulation such that the design latches meet the inherent timing requirement.

Figure 96. Post-layout simulation of inverted pulse generator.

 After performing a post-layout simulation of the pulse-generator in Figure 96, a

large variation of the pulse width is found against process corner variation, especially at low

voltage. Instead of performing a detailed hold time analysis with a single hold time, a better

approach is to ensure that the number of gate delay from latch-to-latch to be greater than

the number of stages of inverter in the pulse-generator. This will in fact track the required

delay of the pulse-generator. A rule of thumb in this design is to increase the gate delay by

one to cater for clock skew. Subsequently, a functional simulation with timing analysis can

be performed to avoid timing failure.

Process variation

87

 To facilitate the use of the pulse generator, compatible custom designed latches are

required. Over the years, many latch designs have existed and have been used in many

applications such as [65], [66], [72], and [90]. One of the advantages of using self-design

latches is the ability to embed complex static logic, such as incorporating enable function

[66], and [72] and multiplexing function [73]. Since the latches are aligned at every clock

edge, dynamic logic can be embedded without the need of power hungry self-timed clocks

and clock-trees. The use of dynamic logic is demonstrated in the multiplexing latch, Figure

100. Also, to make the design latches more operable and noise tolerable at low operating

voltage, design considerations are made according to [79].

A summary of design strategies is as follows:

 Balancing input clock load for different types of latch by employing similar latch

structure to reduce clock skew.

 Transistor sizing are chosen to meet the inherent timing requirement of twidth >

tD→Q across process corners and to provide enough driving capability

 Avoiding stacking of PMOS along signal path to improve the performance at low

voltage.

 Ensuring that “A dynamic node is not allowed to drive another dynamic node” by

either making the dynamic node static or enhancing its noise immunity using weak

feedback [79].

 Use a tri-state feedback instead of weak feedback to avoid the need for strong

forward drive and unnecessary contention power.

88

Figure 97. Latch with internal pre-charge

Figure 98. Latch with a tri-state feedback

Figure 99. Latch with enable

Figure 100. Latch with multiplex input

Figure 101. Latch with reset

Figure 102. Latch with set and reset

89

 By ensuring the dynamic nodes in the latch to be static, these nodes will be fully

charged even just after power up or disabled for a long period. Therefore, any static cells

cascaded succeeding the node will never be partially turned on, hence preventing a short

circuit from occurring. Although a fully static latch will consume more power, for example

the latch in Figure 97 has to charge the internal node X at every clock cycle as compared to

Figure 98, one can always design the logic such that this pre-charge power consumption

can be minimised by theoretical observation. For example, if a signal „0‟ has a high

probability of propagating across the latch in Figure 97, the internal node X will likely to be

always charged. Also, if one is required to hold a data for multiple clock cycles using Figure

99, then the internal node will likely to be always pre-charged as well.

Figure 103. Pulse-latch clock gating

 Although employing a latch with enable, Figure 99, already eliminates the need of

multiplexers for conventional memory units, one can still enjoy the additional dynamic

power savings along the clock path if clock gating is applied. In addition, these latches also

enjoy the power savings in places where grouping of memorizing units are not possible for

clock gating. Without clock-gating cells in the standard library, two types of pulse-latched

clock-gating cells, Figure 103, have been used to generate the gated-clock signals that are

required in the architecture. The left and right latches are Figure 98 and Figure 102

respectively, where the clock input signal is delayed and inverted before being fedto the

_

R

D

_

SCLK

_

E Dϕ[x] ϕ[x:y]

90

pulse generator. This delay ensures that the control signals, generated synchronously from

the positive-edge triggered logic circuits, are able to reach the negative-edge triggered

(CLK) clock-gating cells. The hold time requirement can be ignored in the clock-gating

cells as the control signals will only switch at a positive-edge. The left latch is used to

generate a single cycle clock signal where ϕ[x] denotes a single clock at the x-th cycle of the

30-cycle pipeline execution while the right latch is used to generate a range of clock signals

where ϕ[x:y] denotes a clock signal spanning from x-th to the y-th cycle of the 30-cycle

pipeline execution.

Figure 104. Clock gating signals

 In a bit-serial architecture, arithmetic blocks can be turned off once the expected

number of output bits is rolled out. In some scenarios, one additional cycle is required

before the signal enters the block to perform loading/resetting and one additional cycle is

required after the output signal to zero/sign-extend the expected output to the next bit-

serial arithmetic blocks. On occasion where the arithmetic blocks contain too little latches

to be clock-gated, they can be grouped with the neighbouring blocks to form an isolated

FSM

5

5

SRAM

Done

Start

×2

×2

×2

×2

×2

∑

×2

×2

×2

×2

×2

∑

-
-

×

D

25

∑

∑

-
-

D

×2

-

-
D √ ÷ K

C30 C64

DEC

Row

Column

CG0

CG1

ϕ[1:9]

ϕ[0:8]

C9

ϕ[0]

ϕ[2:17]ϕ

ϕ[0:16]

ϕ[6:0]

ϕ[1:16]
ϕ[1:15]

ϕ

ϕ[5:0]

ϕ[1:24]
ϕ

91

clock-gating group. Taking into considerations of all the blocks, the required clock signals

of each individual group have been drawn in Figure 104. Due to physical proximity, the

clock-gating block is divided into two blocks, CG0 and CG1. This is purely a convenience

decision to perform simulation and not a design rule.

Unit Clock Waveform

CR64 ϕ[0]

CR9 ϕ[0:8]

SRAM ϕ[1:9]

Σ ϕ[1:16]

Σ ϕ[1:24]

D ϕ[0:16]

x2 ϕ[2:17]

x2 ϕ[6:0]

× ϕ[5:0]

√ ϕ[1:15]

Others ϕ

Figure 105. Post-layout simulation of gated-clocks

92

Figure 106. Current consumption of C30+CG0

Figure 107. Current consumption of C30+CG1

 The post-layout simulated gated-clocks are shown in Figure 105 with the current

consumption illustrated in Figure 106 and Figure 107. The correctness of the simulated

clock-gating signals in Figure 105 across corner variation also indicates the fulfilment of the

timing requirement of the latches. As the control signals are generated from C30, the

93

current consumption in both figures includes the current drawn by C30. The absolute

average current drawn by C30 was presented earlier and the current consumption drawn by

C30+CG0 and C30+CG1 is approximately 96.7μA and 83.0μA respectively.

Functional Verification

 Two raw speckle images are used for functional simulation of the C/C++ and the

Verilog models of the design. In both Figure 108 and Figure 109, the raw speckle images

are on the left and the simulated outputs are on the right. In Figure 108, the image was

generated by right-shifting the output of the DSP unit by 7-bits. In Figure 109, the image

was generated by right-shifting the output of the DSP unit by 5-bits. Both models produce

the same output and the Verilog code is said to be functional cycle accurate and the DSP is

capable of generating more than the required precision in both images. Both simulated

speckle contrast images are 8-bit bitmap, using the most precise 8-bits of the DSP output.

Figure 108. Simulation I - (a) raw speckle image; (b) speckle contrast [1]

94

Figure 109. Simulation II - (a) raw speckle image; (b) speckle contrast [94]

 This right-shifting operation does not affect the absolute precision of the DSP

output and is only a means of extracting the most precise 8-bits. However, the number of

right-shifting positions indicates the required amount of precision to be generated. Table 9

tabulates the required minimum and maximum precision.

Description Requirement Precision
Figure 108 Min Q13.8
Figure 109 Min Q13.10

DSP output Max Q13.15

Table 9. Precision requirement

 In both simulations, the useful data lies in the fractional bits and the accuracy of

the division is important to generate a reasonable viewing image. Although the DSP

generates five more bits of precision than the minimum requirement, this is not a sufficient

condition to generalise that all images required such amount of precision and the required

precision should not be set based on these two images.

95

CHAPTER VII

CONCLUSION

This chapter concludes the thesis with a summary of the design work, an assessment of

strength and weakness, and considerations for future works.

Design Summary

 The simulated average current consumed at typical process totals up to 739μA

which accounts for a power consumption of 887μW operating at 1.2V and 30MHz. The

current distribution of the system is shown in Figure 110. It is observed that little power is

consumed at the input clock buffer as most of the clock trees have been shifted into the

clock-gating logic circuits.

Figure 110. Current consumption distribution

5

5

SRAM

FSM

Done

Start

×2

×2

×2

×2

×2

∑

×2

×2

×2

×2

×2

∑

-
-

×

D

25

∑

∑

-
-

D

×2

-

-
D √ ÷ K

CG

201.5μA

135.6μA

37.1μA 32μA

32μA

58.4μA

41.7μA

19.1μA 101.2μA

73.9μA

Clk

6.3μA

96

 Table 10 reveals some of the existing low-power digital circuits for different

applications and is shown as an informative reference. Note that it is difficult to draw

conclusions due to the different complexity involved in each algorithm.

Description Process Supply Clock Resolution Fps Power FOM Transistor

MPEG-4 video decoder LSI [67] 0.18μm 1.5v 27MHz 176×144 15 8.5mW 22.4nW/fp 11M

JPEG-LS for endoscopic capsule [95] 0.18μm 1.8v 40MHz 320×288 8 6.2mW 8.4nW/fp 70.4k

DCT processor with variable Vth [96] 0.3μm 0.9v 150MHz ≈150M 1 10mW 66pW/fp 120k

Energy harvesting heartbeat DSP [83] 0.6 μm 1.5v 1.2kHz 1-D samples (*)160 560nW (**)3.5nW/fp 190k

Single unit in this work 0.35μm 1.2v 30MHz ≈1M 1 887μW 962pW/fp 36k

Table 10. Performance comparison
(**) Re-calculated based on power per (*) sampling rate

Description Specification
Supply voltage 1.2v – 1.8v

Frequency 30 MHz @ (|Vtn|+|Vtp|=1.55v)
Layout 560μm × 1300μm

Transistors ≈36k
Window size 5×5 (N=25)

Pipeline 2 stages
Latency 60 cycles

Throughput 1/30 speckle/cycles
Input precision 8-bit

Output precision Q13.15
Power 887μW @ 1.2v,30MHz,typical
Rate ≈1 million pixels per second

Table 11. Simulated specification of a single unit

 While it may not be the most energy-efficient application in Table 10, it does

achieve a low-power design of 887μW in simulation, Table 11. The main contributing

factor of low-power design is due to the aggressive lowering of supply voltage. However,

as the supply voltage goes below |Vth|+|Vtn|, process corner variation starts to widen and

it is difficult to maintain high clock frequency. A large amount of time is spent on

performing corner simulation to ensure that the dynamic circuits and pulse-latches are

operable within the specifications. Significant power savings are also observed from clock-

gating of the BS-squarer and square-root unit. For an average resolution used in JPEG-LS

from Table 10, a single unit of this design is sufficient to operate within its frame-rate. The

97

low-power consumption also makes it easier to be duplicated in a column-parallel

architecture.

 In this work, higher performance is maintained through the use of bit-serial

arithmetic units and these units include adder, multiplier, squarer, square-root and divider.

This design is implemented in 0.35μm and a post-layout simulated power consumption of

887μW is achieved at a supply voltage of 1.2V while maintaining 30MHz at worst corner

variation. This translates to approximately 1 million speckle contrast computations per

second and a FOM of 962pW/fp. Although it is not as energy-efficient as [96], leakage

problem can be avoided. Besides, lowering threshold voltage in [96] can also be easily done

through better technology and might not be considered in future applications. More work

is also required to customise the standard library [96] as the source of the transistors cannot

be connected to the body. The use of narrow bit-width adders through bit-serial circuits is

the most critical factor that limits the operating frequency of the DSP unit. Although the

bit-parallel adders in the design may not be fastest adder in literature, it does achieve its

purpose by using static CMOS circuits.

 Figure 111 shows the custom top-level layout and the location of the arithmetic

blocks and the empty spaces are filled with decoupling capacitors to reduce switching

noise. Horizontal and internal cell are routed using metal 1. Metal 2 is used mainly for

vertical routings and vertical power strips and the top metal 3 is used only in areas when

routing is unachievable. However, metal 3 is also used to route the input horizontal write

signals in the SRAM. Besides, an asynchronous reset signal for the SRAM read control

signal is provided near the write signal to prevent short circuit current during power up.

The input SRAM differential signals are routed using metal 2 vertically from the top and

98

other input control signals are routed to the bottom left. The output signals are routed to

the bottom right. Additional unit can be placed beside and connected horizontally to share

the write and asynchronous reset signal to form a column-parallel architecture if required.

 The total transistors count approximates to 36K including SRAM. This is much

smaller than the estimates of 9.4K gates≈37.6K transistors excluding SRAM in Table 4.

Note that SRAM accounts for a large transistor count and area from Figure 111. This

reduction is mainly due to the latch replacement of master-slave flip-flops and the use of

an output bit-serial SRAM instead of shift registers. Such achievement is only possible

through the use of custom digital design as compared to synthesize methodology.

99

Figure 111. Top-level layout

SRAM
C

9

DECODER
C64

10×8-bit x
2

x
2

C30

2
5
×

CG0

CG1

CG1

D

∑

÷

√

D

D

Input clock and
enable signal

Output speckle
contrast, K

Write signal,
asynchronous

reset

Input SRAM
differential
signal

100

Assessment

 In this thesis, the first hardware design for cortical blood flow monitoring is

presented. A fully custom digital design methodology and the algorithm derivation for an

optimised implementation have been outlined. The suitability of the different LSI

algorithms has been carefully analysed and all present methods are found to be measuring

the same coefficient of variation but not mentioned in previous literature. A single low

powered DSP unit measuring this coefficient of variation is achieved and is ready to be

integrated with a CMOS image sensor. The use of a memory interface in this design will

resolve any incompatibility to future development of CMOS sensor as data can be easily

written into the DSP unit with the sensor master controller.

 The precision of the generated speckle contrast is argued from a 13-bit division

operation and this has resulted in a Q13.15 output. Since the coefficient of variation has

not been mentioned in previous literature, it is interesting to note that it has an inherent

property of having the range [0, 1] in this application. Being a fraction, the unit can be

modified to generate a Q0.28 precision at the expense of more power hungry logic circuits

and is not mentioned in this research work.

 Bulk of the research work lies in custom digital design and it is extremely time

consuming and effort driven. Although this has resulted in a much lower transistor count

when compared to an automatic synthesis process, such methodologies are not suitable for

actual fast turnover implementation.

 Being the first design in literature, this work has been accepted for presentation at

International Symposium on VLSI Design, Automation and Test 2009. Due to the busy

work schedule, no one was able to attend for presentation.

101

Future Works

Possible research directions include the following:

1. The foremost direction is to integrate the design with a CMOS sensor so that

fabricating and testing is achievable. This includes researching into low power

CMOS sensors working at low supply voltages where techniques are mentioned in

literature but not available.

2. When a single unit is tested successfully, more research work can be performed on

parallel implementation.

3. Digit-serial and parallel implementation can also be considered in the future.

4. A lot of design time is actually wasted due to the lack of design tools available for

the design kit and this has actually resulted in many work arounds in the design

flow. A more streamlined design flow integrated with more advanced tools is

definitely achievable when these tools are available. This includes researching into

automatic placement and routing for custom digital cells and automatic timing

closure on custom cells. This will reduce the turnaround time if this work is to be

considered for manufacturing as multiple fabrication phases are required for

testing.

5. Due to the limited time and design tools, custom digital cells to replace the existing

standard library are not considered. Many transmission gate logics with fewer

transistor counts have been reported in literature but are not available. Another

research area is to create a more optimised digital library to facilitate any form of

digital design.

102

BIBLIOGRAPHY

[1] T.M. Le, J.S. Paul, H. Al-Nashash, A. Tan, A.R. Luft, F.S. Sheu, and S.H. Ong, “New
insights into image processing of cortical blood flow monitors using laser speckle
imaging," IEEE Transactions on Medical Imaging, vol. 26, no. 6, pp. 833–842, June 2007.

[2] AMI Semiconductor Inc, C035U (0.35μm) core CMOS design rules DES-0005, Rev. 5, July
2007.

[3] AMI Semiconductor Inc, C035U (0.35μm) core ESD layout rules manual 07-0104, Rev. 2, July
2007.

[4] AMI Semiconductor Inc, I3T25/ C035U specific (0.35μm) design rules 1000115, Rev. B, May
2007.

[5] C.C. Wang, C.C. Huang, J.S. Liou, Y.J. Ciou, I.Y. Huang, C.P. Li, Y.C. Lee, and W.J. Wu,
“A Mini-Invasive Long-Term Bladder Urine Pressure Measurement ASIC and System,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 1, pp. 44-49, Mar. 2008.

[6] X. Tao, K. Chakrabarty, and S. Fei, “Defect-Aware High-Level Synthesis and Module
Placement for Microfluidic Biochips,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 2, no. 2, pp. 50-62, Mar. 2008.

[7] C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C. Paulus, M. Schienle,
M. Augustyniak, and R. Thewes, “CMOS DNA Sensor Array With Integrated A/D
Conversion Based on Label-Free Capacitance Measurement,‟ IEEE Journal of Solid-State
Circuits, vol. 41, (12), pp. 2956-2964, Dec. 2006.

[8] A. El Gamal, and H. Eltoukhy, “CMOS Image sensors,” IEEE Circuits and Devices
Magazine, vol. 21, (3), pp. 6-20, May-June. 2005.

[9] H. Eltoukhy, K. Salama, A. El Gamal, M. Ronaghi, and R. Davis, “A 0.18 μm CMOS 10–6
lux Bioluminescence Detection System-on-Chip,” Proceedings of 2004 IEEE Int. Solid-State
Circuits Conference., San Francisco, CA, pp.222–223, 2004.

[10] M. Schwarz, R. Hauschild, B.J. Hosticka, J. Huppertz, T. Kneip, S. Kolnsberg, L. Ewe, and
K.T. Hoc, “Single-chip CMOS Image Sensors for a Retina Implant System,” IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 7, pp.
870-877, Jul. 1999.

[11] J.N. Burghartz, T. Engelhardt, H.-G. Graf, C. Harendt, H. Richter, C. Scherjon, and K.
Warkentin, “CMOS Imager technologies for biomedical applications,” IEEE International
Solid-State Circuits Conference, pp. 142-143, Feb. 2008.

[12] E.R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” International Electron
Devices Meeting, pp. 17-25, Dec. 1995.

[13] N. Faramarzpour, M. El-Desouki, M.J. Deen, Q.Y. Fang, S. Shirani, and L.W.C. Liu,
“CMOS Imaging for biomedical applications,” IEEE Potentials, vol. 27, no. 3, pp. 31-36,
May-June 2008,

[14] Samsung, “Samsung CIS Roadmap,” [Online]. Available: http://image-sensors-
world.blogspot.com/2007/ 05/samsung-cis-roadmap.html, May 2007.

[15] L. Albanese, “How to manage a derivative SoC project,” EETimes, July 2007.

[16] J.D. Briers, “Laser Doppler, speckle, and related techniques for blood perfusion mapping
and imaging”, Physiological Measurement, 22: 35-66, 2001.

[17] J.D. Briers, and S. Webster, “Laser Speckle Contrast Analysis (LASCA): A non-scanning,
full-field technique for monitoring capillary blood flow,” Journal of Biomedical Optics,
1(2):174-179, 1996.

[18] A.K Dunn, H Bolay, M.A Moskowitz and D.A Boas, “Dynamic imaging of cerebral blood
flow using laser speckle”, Journal of Cerebral Blood Flow and Metabolism, 21:195-

103

201,_[Online]._Available:_http://www.nmr.mgh.harvard.edu/~adunn/speckle/software/
speckle_software.html, 2001.

[19] H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle
imaging method with improved spatial resolution,” Journal of Biomedical Optics. 8(3): pp.559-
564, 2003.

[20] D.E. Clarke, R. Perry, and K. Arora, “Characterization of CMOS IC photodiodes using
focused laser sources,” Proceedings of the IEEE Southeastcon ’96. ‘Bringing Together Education,
Science and Technology, pp. 381-384, April 1996.

[21] X. Zhao, F. Boussaid, and A. Bermak, “Characterization of a 0.18μm CMOS color
processing scheme for skin detection,” IEEE Sensors Journal, vol. 7, no. 11, pp. 1471-1474,
2007.

[22] R.B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well
structure,” U.S. Patent 5,965,875, Oct. 1999.

[23] A. Theuwissen, “CMOS image sensors: State-of-the-art and future perspectives,” IEEE
European Solid State Circuits Conference, pp. 21-27, Sept. 2007.

[24] A.El. Gamal, “Trends in CMOS image sensor technology and design,” IEEE International
Electron Devices Meeting, pp. 805-808, 2002.

[25] S. Kleinfelder, S.H. Lim, X.Q. Liu, and A.El. Gamal, “A 10000 frames/s CMOS digital
pixel sensor,” IEEE Journal of Solid-State Circuits, pp. 2049-2059, Dec. 2001.

[26] M. Kasano, Y. Inaba, M. Mori, S. Kasuga, T. Murata, and T. Yamaguchi, “A 2μm pixel
pitch MOS image sensor with an amorphous Si film color filter,” IEEE International Solid-
State Circuits Conference, vol. 1, pp. 611-617, Feb. 2005.

[27] C.C. Cheng, C.H. Lin, C.T. Lim, C.J. Hsu, and L.G. Chen, “iVisual: An intelligent visual
sensor SoC with 2790fps CMOS image sensor and 205GOPS/W vision processor,” IEEE
Internaional Solid-State Circuits Conference, pp. 306-307, Feb. 2008.

[28] Y. Zheng, V. Gruev, and J.V. der Spiegel, “Current-mode image sensor with 1.5 transistors
per pixel and improved dynamic range,” IEEE International Symposium on Circuits and Systems,
pp. 1850-1853, May 2008.

[29] Y. Zheng, V. Gruev, and J.V. der Spiegel, “A CMOS linear voltage/current dual-mode
imager,” IEEE International Symposium on Circuits and Systems, pp. 3574-3577, 2006.

[30] R.M. Philipp, and R. Etienne-Cummings, “A 1V current-mode CMOS active pixel
sensor,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 4771-4774, May
2005.

[31] R.M. Philipp, D. Orr, V, Gruev, J,V, der Spiegel, and R. Etienne-Cummings, “Linear
current-mode active pixel sensor,” IEEE Journal of Solid State Circuits, pp. 2482-2491, Nov.
2007.

[32] S. Kawahito, “Signal processing architectures for low-noise high resolution CMOS image
sensors,” IEEE Custom Integrated Circuits Conference, pp. 695-702, Sept. 2007.

[33] M.F. Snoeij, A.J.P. Theuwissen, J.H. Huijsing, and K.A.A. Makinwa, “Multiple-ramp
column-parallel ADC architectures for CMOS image sensors,” IEEE Journal of Solid-State
Circuits, vol. 42, no. 12, Dec. 2007.

[34] A.I. Krymski, and N.R. Tu, “A 9V/luxs 5000 frame/s,512×512 CMOS sensor,” IEEE
Transactions on Electron Devices, pp. 136-143, Jan. 2003.

[35] M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A high-speed, high-sensitivity digital
CMOS image sensor with a global shutter and 12-bit column-parallel cyclic A/D
converters,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 766-774, Apr. 2007.

104

[36] J. Nakamura, B. Pain, T. Nomoto, T. Nakamura, and E.R. Fossum, “On-focal-plane signal
processing for current-mode active pixel sensors,” IEEE Transactions on Electron Devices, vol.
44, no. 10, Oct. 1997.

[37] K. Kagawa, S. Shishido, M. Nunoshita, and J. Ohta, “A 3.6pW/frame-pixel 1.35V PWM
CMOS imager with dynamic pixel readout and no static bias current,” IEEE International
Solid-State Circuits Conference, pp. 54-55, Feb. 2008.

[38] B. Fowler, A.E. Gamal, and D.X.D. Yang, “A CMOS area image sensor with pixel-level
A/D conversion,” IEEE International Solid-State Circuits Conference, pp. 226-227, Feb. 1994.

[39] D.X.D. Yang, B. Fowler, and A.E. Gamal, “A nyquist-rate pixel-level ADC for CMOS
image sensors,” IEEE Journal of Solid-State Circuits, vol. 34, no. 3, Mar. 1999.

[40] M.L. Zhang, A. Bermak, X.W. Li, and Z.H. Wang, “A low power CMOS image sensor
design for wireless endoscopy capsule,” IEEE Biomedical Circuits and Systems Conference, pp.
397-400, Nov. 2008.

[41] K.B. Cho, A. Krymski, and E.R. Fossum, “A 1.2V micropower CMOS active pixel image
sensor for portable applications,” IEEE International Solid-State Circuits Conference, pp. 114-
115, 2000.

[42] K.B. Cho, A. Krymski, and E.R. Fossum, “A 3-pin 1.5V 550uW 176×144 self-clocked
CMOS active pixel image sensor,” IEEE International Symposium on Low Power Electronics and
Design, pp. 316-321, 2001.

[43] B.J. Hosticka, “Analog circuits for sensors,” IEEE European Solid State Device Research
Conference, pp. 97-102, Sep. 2007.

[44] M. Barbaro, P.-Y. Burgi, A. Mortara, P. Nussbaum, and F. Heitger, “A 100×100 pixel
silicon retina for gradient extraction with steering filter capabilities and temporal output
coding,” IEEE Journal of Solid-State Circuits, vol. 37, no. 2, Feb. 2002.

[45] N. Massari, M. Gottardi, L. Gonzo, D. Stoppa, and A. Simoni, “A CMOS Image Sensor
With Programmable Pixel-Level Analog Processing,” IEEE Transactions on Neural Networks,
vol. 16, (6), pp. 1673-1684, Nov. 2005.

[46] D. Jerome.,G. Dominique, and P. Michel, “A Single-Chip 10000 Frames/s CMOS Sensor
with In-Situ 2D Programmable Image Processing,” The International Workshop on Computer
Architecture for Machine Perception and Sensing, pp. 124-129, Aug. 2006.

[47] Y. Oike, M. Ikeda, and K. Asada, “High-Sensitivity and Wide-Dynamic-Range Position
Sensor Using Logarithmic-Response and Correlation Circuit,” IEICE Transactions on
Electronics, vol. E85-C, (8), pp. 1651-1658, Aug. 2002.

[48] R.M. Philipp, and R. Etienne-Cummings, “A 128×128 33mW 30 frames/s single-chip
stereo imager,” IEEE International Solid-State Circuits Conference, pp. 506-507, Feb. 2006.

[49] S. Kawahito, Y. Tadokoro, and A. Matsuzawa, “CMOS image sensors with video
compression,” Proceedings of the ASP-DAC, pp. 595-600, Feb. 1998.

[50] V. Gruev, and R. Etienne-Cummings, “Implementation of steerable spatiotemporal image
filters on the focal plane,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 49, no. 4, pp. 233-244, Apr. 2002.

[51] V. Brajovic, K. Mori, and N. Jankovic, “100 frames/s CMOS range image sensor,” IEEE
International Solid-State Circuits Conference, pp. 256-257, 2001.

[52] K. Yoonm C. Kim, B. Lee, and D. Lee, “Single-chip CMOS image sensor for mobile
applications,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1839-1845, Dec. 2002.

105

[53] S. Smith, J. Hurwitz, M. Torrie, D. Baxter, A. Holmes, M. Panaghiston, R. Henderson, A.
Murray, S. Anderson, and P. Denyer, “A single-chip 306×244-pixel CMOS NTSC video
camera,” IEEE Solid-State Circuits Conference, pp. 170-171, Feb. 1998.

[54] S.S. Chen, A. Bermak, Y, Wang, and D. Martinez, “A CMOS image sensor with combined
adaptive-quantization and QTD-based on-chip compression processor,” IEEE Custom
Integrated Circuits Conference, pp. 329-332, Sept. 2006.

[55] T. Eki, S. Kawahito, and Y. Tadokoro, “An on-sensor bit-serial column-parallel processing
architecture for high-speed discrete fourier transform,” IEEE Transactions on Circuits and
Systems II, vol. 53, no. 8, pp. 642-646, Aug. 2006.

[56] T. Morris, E. Fletcher, C. Afghahi, S. Issa, K. Connolly, and J.C. Korta, “A Column-based
processing array for high-speed digital image processing,” Proceedings of the 20th Anniversary
Conference on Advanced Research in VLSI, pp. 21-24, March 1999.

[57] Y. Nishikawa, S. Kawahito, M. Furuta, T. Tamura, “A high-speed CMOS image sensor
with on-chip parallel image compression circuits,” IEEE Custom Integrated Circuits Conference,
pp. 833-836, Sept. 2007.

[58] S. Uramoto, Y. Inoue, J. Takeda, A. Takabatake, H. Terane, and M. Yoshimoto, “A
100MHz 2D discrete cosine transform core processor,” IEEE Symposium on VLSI Circuits,
pp. 35-36, 1999.

[59] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K.J. Shi, Low power methodology manual, 1st
ed., Springer, 2007.

[60] A. Wang, and A. Chandrakasan, “A 180mV FFT processor using subthreshold circuit
techniques,” IEEE International Solid-State Circuits Conference, pp. 292-293, Feb. 2004.

[61] J. Rabaey, Low Power Design Essentials, 1st ed., Springer, 2009.

[62] A.P. Chandrakasan, S. Sheng, and R.W. “Low power CMOS digital design,” IEEE Journal
of Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.

[63] P. Zuchowski, “Design strategies for low power ASICs,” IBM Technology Group New
England Design Forum, June 18, 2003.

[64] S. Shibatani and A. Li, “Pulse-latch approach reduces dynamic power,” EE Times-India,
August 2006.

[65] J. Tschanz, S. Narendra, Z.P. Chen, S. Borkar, B. Sachdev, and De Vivek, “Comparative
delay and energy of single edge-triggered and dual edge-triggered pulsed flip-flops for high-
performance microprocessors,” IEEE International Symposium on Low Power Electronics and
Design, pp.147-152, 2001.

[66] H. Partovi, R. Burd, U. Salim, F. Weber, L. DiGregorio, and D. Draper, “Flow-through
latch and edge-triggered flip-flop hybrid elements,” IEEE International Solid-State Circuits
Conference, pp. 138-139, Feb. 1996.

[67] M. Ohashi, T. Hashimoto, S.I. Kuromaru, M. Matsuo, T. Mori-iwa, M. Hamada, Y.
Sugisawa, M. Arita, H. Tomita, M. Hoshino, H. Miyajima, T. Nakamura, K.I. Ishida, T.
Kimura, Y. Kohashi, T. Kondo, A. Inoue, H. Fujimoto, K.Watada, T. Fukunaga, T. Nishi,
H. Ito, and J. Michiyama, “A 27MHz 11.1mW MPEG-4 video decoder, LSI for mobile
application,” IEEE Solid-State Circuits Conference, vol. 1, pp. 366-474, 2002.

[68] H, Noguchi, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H. Kawaguchi, and M. Yoshimoto,
“A 10T Non-Precharge Two-Port SRAM for 74% Power Reduction in Video Processing,”
IEEE Computer Society Annual Symposium on VLSI, pp. 107-112, March 2007.

[69] H, Noguchi, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H. Kawaguchi, and M. Yoshimoto,
“Which is the best dual-port SRAM in 45nm process technology? – 8T, 10T single end,

106

and 10T differential,” IEEE Integrated Circuit Design and Technology and Tutorial, pp. 55-58,
June 2008.

[70] R. Zimmermann, and W. Fichtner, “Low-power logic styles: CMOS versus pass-transistor
logic,” IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1079-1089, July 1997.

[71] J. Yuan, and C. Svensson, “High-speed CMOS circuit techniques,” IEEE Journal of Solid-
State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.

[72] D. Draper, M. Crowley, J. Holst, G. Favor, A. Schoy, J. Trull, A. Ben-Meir, R. Khanna, D.
Wendell, R. Krishna, J. Nolan, D. Mallick, H. Partovi, M. Roberts, M. Johnson, and T.
Lee, “Circuit techniques in a 266-MHz MMX-enabled processor,” IEEE Journal of Solid-
State Circuits, vol. 32, no. 11, pp. 1650-1664, Nov. 1997.

[73] J.B. Kuang, T.C. Buchholtz, S.M. Dance, J.D. Warnock, S.N. Storino, D. Wendel, and
D.H. Bradley, “A Double-Precision Multiplier with Fine-Grained Clock-Gating Support
for a First-Generation CELL Processor,” IEEE International Solid-State Circuits Conference,
pp. 378-605, Feb. 2005.

[74] S.B. Wijeratne, N. Siddaiah, S.K. Mathew, M.A. Anders, R.K. Krishnamurthy, J. Anderson,
M. Ernest, and M. Nardin, “A 9-GHz 65-nm Intel Pentium 4 Processor Integer Execution
Unit,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, Jan. 2007.

[75] R. Zimmermann, and W. Fichtner, “Low-power logic styles: CMOS versus pass-transistor
logic,” IEEE Journal of Solid-State Circuits, vol. 32, no. 7, July 1997.

[76] D. Wang, M.F. Yang, W. Cheng, X.G. Guan, Z.M. Zhu, and Y.T. Yang, “Novel low
power full adder cells in 180nm CMOS technology,” IEEE Conference on Industrial Electronics
and Applications, pp. 430-433, May 2009.

[77] P. Ng, P.T. Balsara, and D. Steiss, “Performance of CMOS differential circuits,” IEEE
Journal of Solid-State Circuits, vol. 31, pp. 841-846, June 1996.

[78] K. Chu, and D. Pulfrey, “A comparison of CMOS circuit techniques: differential cascade
voltage switch logic versus conventional logic,” IEEE Journal of Solid-State Circuits, vol. 22,
pp. 528-532, Aug. 1987.

[79] L. Patrik, S. Christer, “Noise in digital dynamic CMOS circuits,”, IEEE Journal of Solid-State
Circuits, vol. 29, no. 6, pp. 655-662, June 1994.

[80] V.D. Agrawal, “Low-power design by hazad filtering,” IEEE International Conference on
VLSI Design, pp. 193-197, Jan. 1997.

[81] Y.L. Lu, and V.D. Agrawal, “Total power minimization in glitch-free CMOS circuits
considering process variation,” IEEE International Conference on VLSI Design, pp. 527-532,
Jan. 2008.

[82] N.Rollins, and M.J. Wirthlin, “Reducing energy in FPGA multipliers through glitch
reduction”, MAPLD International Conference, Sept. 2005.

[83] R. Amirtharajah, and A. P. Chandrakasan, “A micropower programmable DSP
approximate signal processing based on distributed arithmetic,” IEEE Journal of Solid-State
Circuits, vol. 39, no. 2, pp. 337-347, Feb. 2004.

[84] R. Amirtharajah, J. Collier, J. Siebert, B. Zhou and A. Chandrakasan, “DSPs for energy
harvesting sensors: applications and architectures,” IEEE Pervasive Computing, vol. 4, no. 3,
pp. 72-79, July-Sept. 2005.

[85] Y.N. Chang, J.H. Satyanarayana, and K.K. Parhi, “Systematic design of high-speed and
low-power digital serial multipliers,” IEEE Transactions on Circuits and Systems II, vol. 45, no.
12, Dec. 1998.

107

[86] S. Kao, R. Zlatanovici, and B. Nikolic, “A 240ps 64b carry-lookahead adder in 90nm
CMOS,” IEEE Solid-State Circuit Conference, pp. 1735-1744, Feb. 2006.

[87] P. Soderquist, and M. Leeser, “Division and square root: choosing the right
implementation,” IEEE Micro, vol. 17, no. 4, Aug. 1997.

[88] Y.M. Li, and W.M. Chu, “A new non-restoring square root algorithm and its VLSI
implementations,” International Conference on Computer Design, Oct. 1996.

[89] Lars Wanhammar, DSP Integrated Circuits. Academic Press, 1999.

[90] H. Mahmoodi-Meimand, and K. Roy, “Dual-edge triggered level converting flip-flops,”
IEEE International Symposium on Circuits and Systems, vol. 2, pp.661-664, May 2004.

[91] V. Stojanovic, and V.G. Oklobdzija, “Comparative analysis of master-slave latches and
flip-flops for high performance and low-power systems,” IEEE Journal of Solid-State Circuits,
vol. 34, no. 4, pp. 536-548, Apr. 1999.

[92] E. Chaniotakis, P. Kalivas, and K.Z. Pekmestzi, “Long number bit-serial squarers,” IEEE
Symposium on Computer Arithmetic, pp. 29-36, June 2005.

[93] S.B. Wijeratne, N. Siddaiah, S.K. Mathew, M.A. Anders, R.K. Krishnamurthy, J. Anderson,
M. Ernest, and M. Nardin, “A 9-GHz 65-nm Intel Pentium 4 processor integer execution
unit,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 26-37, Jan. 2007.

[94] A.K Dunn, H Bolay, M.A Moskowitz and D.A Boas, “Dynamic imaging of cerebral blood
flow using laser speckle”, Journal of Cerebral Blood Flow and Metabolism, 21:195-201, [Online].
Available:
http://www.nmr.mgh.harvard.edu/~adunn/speckle/software/speckle_software.html,
2001.

[95] X. Xie, G. L. Li, X. K. Chen, X. W. Li, and Z. H. Wang, “A low-power digital IC design
inside the wireless endoscopic capsule,” IEEE Journal of Solid-State Circuits, vol. 41, no. 11,
pp. 2390-2400, Nov. 2006.

[96] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, M.
Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakuma, and T. Sakurai, “A0.9V, 150
MHz, 10mW, 4mm2 2-D discrete cosine transform core processor with variable threshold
voltage (VT) scheme,”, IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1770-1779,
Nov. 1996.

