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Summary

This thesis proposes methodologies to optimize uncertain inventory in a robust

manner for two important settings. The first is a multiperiod inventory control

problem where we trade-off the cost of holding excess inventory against the cost of

backlog under ambiguous demands. The second setting is a service-level scenario

where we propose bounds to guarantee a high level of expected fill rate against

demands where the distribution is uncertain.

More specifically, the front half of this thesis proposes a robust optimization

approach to address a multiperiod inventory control problem under ambiguous de-

mands, where only limited information of the demand distributions such as mean,

support and some measures of deviations are available. The approach is devel-

oped around a factor-based model, which has the ability to incorporate business

factors as well as time-series forecast of trend, seasonality and cyclic variations.

We obtain the parameters of the replenishment policies by solving a tractable de-

terministic optimization problem in the form of a second-order cone optimization

problem (SOCP), with solution time; unlike dynamic programming approaches, is

polynomial and independent on parameters such as replenishment lead time, de-

mand variability, and correlations. The proposed truncated linear replenishment

policy, which is piecewise-linear with respect to demand history, improves upon

static and linear policies and achieves objective values that are reasonably close to

optimal.

While traditional fill rate optimization of inventory assumes a known distribu-

tion, in reality demand distributions are seldom known exactly, only approximately.

This is the motivation for the latter half of the thesis where we propose an approach

to optimize fill rate using descriptive statistics so as to assure that a high fill rate is

achieved even when there is distributional uncertainty. That is, the order quantity
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needs to achieve an expected fill rate target for a family of distributions with the

same demand range, demand median and range of the probability density func-

tion. We develop bounds for the expected fill rate function, which enables the

multiproduct problem to be approximated by linear programming formulation.
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Chapter 1

Introduction

Inventory management has been an area of active research, even before operations

research emerged as a scientific discipline. In particular, Zipkin (2000) attributed

the advent of modern inventory theory to the economic order quantity formula

which was proposed about 100 years ago by Harris (1913). He mentioned that

Raymond (1931) is the first published book on inventory management. Notice

that these developments pre-dated Dantzig’s seminal work on linear programming.

Graves et al. (1993) commented that even with the long and fruitful history, the

major issues and problems in the area of inventory management have not all been

resolved. They expect research on the area to continue to flourish, namely because

of the following factors.

• “First, many logistics systems are extremely complex. It is difficult, both for

researchers and managers, to achieve a clear, coherent picture of how such

systems work. It has sometimes taken decades to obtain satisfactory solutions

to the technical problems inherent in these systems, and even now many such

problems remain open. Moreover, we continue to witness the development

of fundamentally new approaches to the subject and a lively debate over the

basic terms, premises and issues.”

• “Second, the practical world of logistics has changed markedly over the past

few decades. . . . Even more striking has been the explosion of information

technologies, which has utterly transformed the very nature of logistics man-

agement.”
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1.1 Motivation

Inventory ties up working capital and incurs holding costs, reducing profit every day

that excess stock is held. Good inventory management is hence crucial to businesses

as they seek to continually improve their customer service and profit margins, in

the light of global competition and demand variability. Baldenius and Reichelstein

(2005) offered perhaps the most convincing study on the contribution of good

inventory management to profitability. They studied inventories of publicly traded

American manufacturing companies between 1981 and 2000, and they concluded:

“Firms with abnormally high inventories have abnormally poor long-term stock

returns. Firms with slightly lower than average inventories have good stock returns,

but firms with the lowest inventories have only ordinary returns.”

The ability to incorporate more realistic assumptions about product demand

into inventory models is one key factor to profitability. Practical models of in-

ventory need to address the issue of demand forecasting while ensuring sufficient

robustness against uncertainty and maintaining tractability. In most industrial

contexts, demand is uncertain. Many demand histories have factors that behave

like random walks that evolve over time with frequent changes in directions and

rates of growth or decline. In practice, for such demand processes, inventory man-

agers rely on forecasts based on a time-series of prior demands, which are often

correlated over time. For example, a product demand may depend on factors such

as market outlook, oil prices, and so forth, and contains effects of trend, seasonality,

cyclic variation and randomness.

Motivated by the need to explicitly address uncertainty, this thesis proposes

methodologies to optimize uncertain inventory in a robust manner for two impor-

tant settings. The first is a multiperiod inventory control problem where we trade-

off the cost of holding excess inventory against the cost of backlog under ambiguous

demands. The second setting is a service-level scenario where we propose bounds to

guarantee a high level of expected fill rate against demands where the distribution

is uncertain. The latter is motivated by the fact that in most practical settings,

the distribution of demand is seldom known exactly but only approximately, and

therefore it is difficult to derive the expected fill rate function. In particular, given

a set of empirical data, it is common to find not one but several possible fits to
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the distribution. Uncertainty in the type of demand distribution may also arise

with changing trends. For example, many consumer goods are known to exhibit

seasonal variation with demand distributed differently over time.

1.2 Organization of Thesis

The thesis is organized as follows. We begin with a review of the relevant literature

in Chapter 2. In Chapter 3 we describe the model to optimize multiperiod inventory

robustly. This is followed by computational experiments in Chapter 4. Chapter 5

describes the approach to safeguard fill rate against distributional uncertainty. It

is followed by the computational experiments in Chapter 6. We then conclude the

thesis in Chapter 7 with a summary of our contributions.

1.3 Notation

Throughout this thesis, a random variable is denoted with the tilde sign such as

ỹ. We denote vectors with bold face lower-case letters such as y and matrices with

bold face upper-case such as A. We use y′ to denote the transpose of vector y.

Also, denote y+ = max(y, 0), y− = max(−y, 0), and ∥y∥2 =
√∑

y2i . We generally

use the bar and underline signs to denote the range or bound of a variable. For

example, the upper and lower support of random variable d̃ are denoted as d and

d̄, respectively. We use m(d̃) to denote the median of the random variable d̃.
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Chapter 2

Literature Review

This chapter contains a review of the relevant literature. Specifically, we highlight

previous work that is directly related to our models. Before proceeding with the

literature review proper, we provide some background material on second-order

cone programming and discuss how it can be used to represent robust optimization

problems. The material originated from Boyd and Vandenberghe (2004) and is

included to facilitate the exposition of the multiperiod inventory control models,

which are essentially second-order cone programs.

2.1 Second-order Cone Programming

Conic optimization problems are a class of convex nonlinear optimization prob-

lems, lying between linear programming (LP) problems and general convex non-

linear problems. A conic optimization problem can be written as an LP (with a

linear objective and linear constraints) plus one or more cone constraints. A cone

constraint specifies that the vector formed by a set of decision variables is con-

strained to lie within a closed convex pointed cone. The simplest example of such

a cone is the nonnegative orthant, the region where all variables are nonnegative:

the normal situation in an LP. Conic optimization allows for more general cones,

with second-order cone being the more common case.
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A second-order cone program (SOCP) takes the following form:

min f ′x

s.t. ||Aix+ bi||2 ≤ c′ix+ di, i = 1 . . .m,

Fx = g,

where x ∈ ℜn is the decision variable, Ai ∈ ℜni×n, and F ∈ ℜp×n. We call a

constraint of the form

||Ax+ b||2 ≤ c′x+ d

where A ∈ ℜk×n, a second-order cone constraint, since it is the same as requiring

the affine function (Ax + b, c′x + d) to lie the second-order cone in ℜk+1. When

ci = 0, i = 1 . . .m, the SOCP is equivalent to a quadratic constrained quadratic

programming (which is obtained by squaring each of the constraints). Similarly if

Ai = 0, i = 1 . . .m, then the SOCP reduces to a linear program. Second-order

cone programs are more general than quadratic constrained quadratic programming

(and of course linear programs). SOCPs are known to be tractable, and can be

solved with great efficiency by interior point methods, see for instance Boyd and

Vandenberghe (2004). A number of commercial solvers are able to solve SOCP

efficiently. The noteworthy ones are CPLEX, LOQO, MOSEK and PENSDP.

Consider a quadratic constraint on the form

x′A′Ax+ b′x+ c ≤ 0.

This is equivalent to the SOC constraint∥∥∥∥∥∥ (1− b′x− c)/2

Ax

∥∥∥∥∥∥
2

≤ (1− b′x− c)/2.

We now provide two examples on how SOCP can be used to represent robust

optimization problems.

(a) Robust linear programming. We consider a linear program in inequality form,

min c′x

s.t. a′
ix ≤ bi, i = 1 . . .m,

in which there is some uncertainty or variation in the parameters c,ai, bi. To

simplify the exposition we assume that c and bi are fixed, and that ai are

known to lie in given ellipsoids:

a ∈ Ei = {ai + P iu | ∥u∥2 ≤ 1},
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where P i ∈ ℜn×n. (If P i is singular we obtain ‘flat’ ellipsoids, of dimension

rank P i; P i = 0 means that ai is known perfectly.) We will require that

the constraints be satisfied for all possible values of the parameters ai, which

leads us to the robust linear program

min c′x

s.t. a′
ix ≤ bi, ∀ai ∈ Ei i = 1 . . .m.

(2.1)

The robust linear constraint, a′
ix ≤ bi ∀ai ∈ Ei, can be expressed as

sup{a′
ix | ai ∈ Ei} ≤ bi,

the lefthand side of which can be expressed as

sup{a′
ix | ai ∈ Ei} = a′

ix+ sup{u′P ′
ix | ∥u∥2 ≤ 1}

= a′
ix+ ∥P ix∥2.

Thus, the robust linear constraint can be expressed as

a′
ix+ ∥P ix∥2 ≤ bi,

which is evidently a second-order cone constraint. Hence Problem (2.1) can

be expressed as the SOCP

min c′x

s.t. a′
i + ∥P ix∥2 ≤ bi, i = 1 . . .m.

Note that the additional norm terms act as regularization terms; they pre-

vent x from being large in directions with considerable uncertainty in the

parameters ai.

(b) Linear programming with random constraints. The robust LP described above

can also be considered in a statistical framework. Here we suppose that the

parameters ai are independent Gaussian random vectors, with mean āi and

covariance Σi. We require that each constraint a′
ix ≤ bi should hold with a

probability (or confidence) exceeding η, where η ≥ 0.5, that is,

prob(a′
ix ≤ bi) ≥ η. (2.2)

We will show that this probability constraint can be expressed as a second-

order cone constraint. Letting u = a′
ix, with σ2 denoting its variance, this
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constraint can be written as

prob

(
u− ū

σ
≤ bi − ū

σ

)
≥ η.

Since (u− ū)/σ is a zero mean unit variance Gaussian variable, the probabil-

ity above is simply Φ((bi − ū/σ)), where Φ(z) is the cumulative distribution

function of a zero mean unit variance Gaussian random variable. Thus the

probability constraint (2.2) can be expressed as

bi − ū

σ
≥ Φ−1(η),

or equivelently,

ū+ Φ−1(η)σ ≥ bi.

From ū = ā′
ix and σ = (x′Σix)

1/2 we obtain

ā′
ix+ Φ−1(η)∥Σ1/2

i x∥ ≤ bi.

By our assumption that η ≥ 1/2, we have Φ−1(η) ≥ 0, so this constraint is a

second-order cone constraint. In summary, the problem

min c′x

s.t. prob(ã′
ix ≥ bi) ≥ η, i = 1 . . .m,

can be expressed as the SOCP

min c′x

s.t. ā′
ix+ Φ−1(1− η)∥Σ1/2

i x ≥ bi∥2 i = 1 . . .m.

This concludes our exposition on second-order cone programming. For more

applications of SOCP for robust optimization, the interested readers can refer

to Boyd and Vandenberghe (2004).

2.2 Multiperiod Inventory Model

The multiperiod inventory control problem is a well-studied problem in opera-

tions research. For the single-product inventory control problem with history-

independent demands, it is well known that the base-stock policy based on a critical

fractile is optimum. See Scarf (1959, 1960), Azoury (1985), Miller (1986) and Zip-

kin (2000). For correlated demands, Veinott (1965) characterized conditions under
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which a myopic policy is optimal. Extending the results of Veinott, Johnson and

Thompson (1975) considered an auto-regressive, moving-average (ARMA) demand

process, zero replenishment lead time and no backlogs, and showed the optimality

of a myopic policy when the demand in each period is bounded. Lovejoy (1990)

showed that a myopic critical-fractile policy is optimum or near optimum in some

inventory models with adaptive demand processes, citing exponential smoothing

on the demand process and Bayesian updating on uniformly distributed demand

as examples. Song and Zipkin (1993) addressed the case of Poisson demand, where

the transition rate between states is governed by a Markov process.

Although optimum policies can be characterized in many interesting variants

of inventory control problems, it is not easy to compute them efficiently, that is,

in polynomial time with respect to the input size of the problem. In this the-

sis, the term tractable replenishment policy is used if the parameters of the policy

are polynomial in size and can be obtained in polynomial time. For instance,

the celebrated optimum base-stock policy may not necessarily be a tractable one.

Sampling-based approximation has been applied to the inventory control problem;

see, for instance, Levi et al. (2007). Using marginal cost accounting and cost-

balancing techniques, Levi et al. (2007) proposed an elegant two-approximation

algorithm for the inventory control problem. However, there is a lack of compu-

tational studies demonstrating the effectiveness of the approximation algorithm.

Other sampling-based approaches include infinitesimal perturbation analysis (see

Glasserman and Tayur (1995)), which uses stochastic gradient estimation tech-

nique, and the concave adaptive value estimation procedure, which successively

approximates the objective cost function with a sequence of piecewise-linear func-

tions (see Godfrey and Powell (2001) and Powell et al. (2004)). More recently,

Iida and Zipkin (2006) and Lu et al. (2006) developed approximate solutions for

demand following the martingale model of forecast evolution.

2.3 Robust Inventory Models

One of the fundamental assumptions of stochastic models, which has recently been

challenged, is the availability of probability distributions in characterizing the un-

certain parameters. Bertsimas and Thiele (2006) illustrated that an optimum in-
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ventory control policy that is heavily tuned to a particular demand distribution

may perform poorly against another demand distribution bearing the same mean

and variance. Assuming a demand distribution tacitly implies that we are able to

obtain exact estimates of all the moments, which is practically prohibitive. It is a

common practice to estimate the first two moments from data and fit the param-

eters to an assumed distribution. By doing so, we artificially extrapolate the rest

of the moments using only the information from lower partial moments. Errors

in estimating the first two moments will naturally propagate to higher moments.

Therefore, it is not surprising that policies derived from assuming demand distribu-

tions may be less robust. One approach to account for distributional ambiguity is

to consider a family of demand distributions, which can be characterized by their

descriptive statistics such as partial moment information, support and so forth.

Research on inventory control under ambiguous demand distributions dates back

to Scarf (1958), where he considered a newsvendor problem and determined orders

that minimized the maximum expected cost over all possible demand distributions

with the same first and second moments and with nonnegative support. Various

extensions of Scarf’s single-period results have been studied by Gallego and Moon

(1993). Although the solutions to these single-period models are in the form of a

second-order cone optimization problem (SOCP), which are polynomial-time solv-

able, the minimax approach does not scale well computationally with the number

of periods. Nevertheless, the optimum policies for multiperiod inventory control

problems under various forms of demand ambiguity have been characterized by

Kasugai and Kasegai (1960) and Gallego et al. (2001).

In recent years, robust optimization has seen an explosive growth and has be-

come a dominant approach to address the optimization problem under uncertainty.

Traditionally, the goal of robust optimization is to immunize uncertain mathemat-

ical optimization problems against infeasibility while preserving the tractability of

the models. See, for instance, Ben-Tal and Nemirovski (1998, 1999, 2000), Bert-

simas and Sim (2003, 2004), Bertsimas et al. (2004, 2009), El-Ghaoui and Lebret

(1997), and El-Ghaoui et al. (1998). Many robust optimization approaches have

the following two important characteristics:

(a) The model of data uncertainty in robust optimization permits distributional
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ambiguity. Data uncertainty can also be completely distributional free and

specified by an uncertainty set parameterized by the “Budget of Uncertainty”,

which controls the size of the uncertainty set. Another model of uncertainty

considers uncertain parameters whose distributions are unknown but are con-

fined to a family of distributions that would generate the same descriptive

statistics on the data, such as known means and variances.

(b) The solution (or approximate solution) to a robust optimization model can

be obtained by solving a tractable deterministic mathematical optimization

problem such as SOCP, whose associated solvers are commercially available,

robust and efficiently optimized. Robust optimization methodology often de-

couples model formulation from the optimization engine, which enables the

modeler to focus on modeling the actual problem and not to be hindered by

algorithm design.

Based on the framework of robust optimization, Bertsimas and Thiele (2006) de-

veloped a new approach to address demand ambiguity for a multiperiod inventory

control problem, which has the advantage of being computationally tractable. They

considered a family of demand distributions similar to Scarf and enforced indepen-

dence across time periods. Bertsimas and Thiele mapped the demand uncertainty

model into a “Budget of Uncertainty” model of Bertsimas and Sim (2004) and

proposed an open-loop inventory control approach in which the solutions can be

obtained by solving a tractable linear optimization problem. They showed that

the optimum solution of their robust model has a base-stock structure and the

tractability of the problem readily extends to problems with capacity constraints

and over a supply chain network, and their paper characterizes the optimum policies

for these cases. The analysis of the robust models and computational experiments

for independent demands suggests that robust approaches compare well against an

optimum model under exact distribution and is yet robust against distributional

ambiguity. Using a similar approach, Adida and Perakis (2006) proposed a deter-

ministic robust optimization formulation for dealing with demand uncertainty in a

dynamic pricing and inventory control problem for a make-to-stock manufacturing

system. They developed a demand-based fluid model and showed that it is no more

difficult to solve the robust formulation than it is to solve the nominal problem.
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Other related work in the robust inventory control literature includes Bienstock and

Ozbay (2008), where they proposed a robust model focusing on base-stock policy

structure. Song et al. (2007) adopted a data-driven approach to robust inventory

management.

To address the inadequacy of open-loop robust optimization models involving

multistage decision processes, Ben-Tal et al. (2004) introduced the concept of ad-

justable robust counterpart, which permits decisions to be delayed until information

is available. Unfortunately, with the additional flexibility in modeling, adjustable

robust counterpart models are generally NP -hard, and the authors have proposed

and advocated the use of linear decision rule as a tractable approximation. Ben-Tal

et al. (2005) applied their model to a multiperiod inventory control problem and

showed, by means of computational studies the advantages of the linear replen-

ishment policy over the open-loop model which had a static replenishment policy.

We emphasize that in contrast to stochastic models, the uncertainty considered

in adjustable robust counterpart is completely distribution free, that is, the data

uncertainty is characterized only by its support.

To bridge the gap between robust optimization and stochastic models, Chen et

al. (2007) introduced the notions of directional deviations known as forward and

backward deviations. They also proposed computationally tractable robust opti-

mization models for immunizing linear optimization problems against infeasibility,

which enhanced the modeling power of robust optimization in the characterization

of ambiguous distributions. In a parallel work, Chen et al. (2008) proposed sev-

eral piecewise-linear decision rules for approximating stochastic linear optimization

problems that improve upon linear rules. These approaches have been unified by

Chen and Sim (2009), where they proposed a general family of distributions char-

acterized by the mean, covariance, directional deviations and support and showed

how it can be extended to approximate the solution for a two-period stochastic

model under a satisficing objective.

2.4 Fill Rate Models

On another front, while many classical inventory models are cost-based approaches

trading off holding excess inventory against the penalty of shortage, service level
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approaches based on fully known distributions have also been popular. See for

instance Chen and Krass (2001), Lee and Billinton (1992, 1995); Taylor (1997).

Sherbrooke (1992) describes the use of fill rate as a measure of performance in

inventory management of spare part. Fill rate models in the literature typically

assume that the cumulative distribution function of demand is known. This is seen

in, for example, Schwarz et al. (1985) and Ding et al. (2006). Distribution-free

models involving fill rate include Song (1998) in which she developed bounds on

order quantity using partial information such as first and second moments, and

Agrawal and Seshadri (2000). While there are many distribution-free approaches

in the literature, we are unaware of any counterpart that directly estimates the

expected fill rate using only descriptive statistics. In some industries, the ability

to incorporate service level considerations robustly into inventory models is crucial

to good inventory management. It seems that models which address the issue

of achieving high service standards while staying sufficiently immunized against

uncertainty appear to be lacking. The model of Chapter 5 aims to address this

gap.
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Chapter 3

Robust Optimization of

Multiperiod Inventory

We begin the exposition by describing the multiperiod inventory problem in detail.

This is followed by a discussion of our robust inventory model. We then close the

chapter with some possible extensions.

3.1 Stochastic Inventory Model

The stochastic inventory model involves the derivation of replenishment decisions

over a discrete planning horizon consisting of a finite number of periods under

stochastic demand. The demands in period t = 1 . . . N form a sequence of random

variables that are not necessarily identically distributed and not necessarily inde-

pendent. We consider an inventory system with T planning horizons from t = 1 to

t = T . External demands arrive at the inventory system and the system replenishes

its inventory from some central warehouse (or supplier) with ample supply. The

timeline of events is as follows.

1. At the beginning of the tth time period, before observing the demand, the

inventory manager places an order of xt at unit cost ct for the product to

arrive after a (fixed) order lead time of L periods. Orders placed at the

beginning of the tth time period will arrive at the beginning of t+Lth period.

We assume that replenishment ceases at the end of the planning horizon, so

that the last order is placed in period T − L. Without loss of generality, we
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assume that purchase costs for inventory are charged at the time of order.

The case where purchase costs are charged at the time of delivery can be

represented by a straightforward shift of cost indices.

2. At the beginning of each time period t, the inventory manager faces an initial

inventory level yt and receives an order of xt−L. The demand of inventory for

the period is realized at the end of the time period. After receiving a demand

of dt, the inventory level at the end of the period is yt + xt−L − dt.

3. Excess inventory is carried to the next period, incurring a per-unit over-

age (holding) cost. On the other hand, each unit of unsatisfied demand is

backlogged (carried over) to the next period with a per-unit underage (back-

logging) penalty cost. At the last period, t = T , the penalty of lost sales can

be accounted through the underage cost.

We assume an inventory manager whose objective is to determine the dynamic

ordering quantities xt from period t = 1 to period t = T − L so as to minimize

the total expected ordering, inventory overage (holding), and inventory underage

(backlog) costs in response to the uncertain demands. Observe that for L ≥ 1, the

quantities xt−L, t = 1, . . . , L are known values. They denote orders made before

period t = 1 and are inventories in the delivery pipeline when the planning horizon

starts.

We introduce the following notation:

• d̃t: stochastic exogenous demand at period t

• d̃t: a vector of random demands from period 1 to t, that is, d̃t = (d̃1, . . . , d̃t)

• xt(d̃t−1): order placed at the beginning of the tth time period after observing

d̃t−1. The first-period inventory order is denoted by x1(d̃0) = x0
1

• yt(d̃t−1): inventory level at the beginning of the tth time period

• ht: unit inventory overage (holding) cost charged on excess inventory at the

end of the tth time period

• bt: unit underage (backlog) cost charged on backlogged inventory at the end

of the tth time period
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• ct: unit purchase cost of inventory for orders placed at the tth time period

• St: the maximum amount that can be ordered at the tth time period.

We use xt(d̃t−1) to represent the nonanticipative replenishment policy at the

beginning of period t. That is, the replenishment decision is based solely on the

observed information available at the beginning of period t, which is given by the

demand vector d̃t−1 = (d̃1, . . . , d̃t−1). Given the order quantity xt−L(d̃t−L−1) and

stochastic exogenous demand d̃t, the inventory level at the end of the t time period

(which is also the inventory level at start of t+ 1 time period) is given by

yt+1(d̃t) = yt(d̃t−1) + xt−L(d̃t−L−1)− d̃t, t = 1, . . . , T. (3.1)

In resolving the initial boundary conditions, we adopt the following notation:

• The initial inventory level of the system is y1(d̃0) = y01.

• When L ≥ 1, the orders that are placed before the planning horizon starts

are denoted by

xt(d̃t−1) = x0
t , t = 1− L, . . . , 0.

Note that Equation (3.1) can be written using the cumulative demand up to

period t and cumulative order received as follows:

yt+1(d̃t) =

y01︸︷︷︸
start inventory

+

min{L,t}∑
τ=1

x0
τ−L︸ ︷︷ ︸

committed orders

+
t∑

τ=L+1

xτ−L(d̃τ−L−1)︸ ︷︷ ︸
order decisions

−
t∑

τ=1

d̃τ .︸ ︷︷ ︸
cumulative demands

(3.2)

Observe that positive (respectively, negative) value of yt+1(d̃t) represents the

total amount of inventory overage (respectively, underage) at the end of the period t

after meeting demand. Thus, the total expected cost, including ordering, inventory

overage, and inventory underage charges is equal to

T∑
t=1

(
E
(
ctxt(d̃t−1)

)
+ E

(
ht(yt+1(d̃t))

+
)
+ E

(
bt(yt+1(d̃t))

−
))

.
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Therefore, the multiperiod inventory problem can be formulated as a T stage

stochastic optimization model as follows:

ZSTOC = min
T∑
t=1

(
E
(
ctxt(d̃t−1)

)
+ E

(
ht(yt+1(d̃t))

+
)
+ E

(
bt(yt+1(d̃t))

−
))

.

s.t. yt+1(d̃t) = yt(d̃t−1) + xt−L(d̃t−L−1)− d̃t t = 1, . . . , T

0 ≤ xt(d̃t−1) ≤ St t = 1, . . . , T − L.

(3.3)

The aim of the stochastic optimization model is to derive a feasible replenish-

ment policy that minimizes the expected ordering and inventory costs. That is, we

seek a sequence of action rules that advises the inventory manager of the action to

take in time t as a function of demand history. Unfortunately, the decision vari-

ables in Problem (3.3), xt(d̃t−1), t = 1 . . . T − L and yt(d̃t−1), t = 2 . . . T + 1, are

functionals, which means that Problem (3.3) is an optimization problem with an

infinite number of variables and constraints, and hence generally intractable.

The stochastic optimization problem (3.3) can also be formulated as a dynamic

programming problem. For simplicity, assuming zero lead time, the dynamic pro-

gramming requires the following updates on the value function:

Jt(yt, d1, . . . , dt−1)

= min
x∈[0,St]

E
(
ctx+Gt(yt + x− d̃t) +

Jt+1(yt + x− d̃t, d1, . . . , dt−1, d̃t) | d̃1 = d1, . . . , d̃t−1 = dt−1

)
,

where Gt(u) = ht max(u, 0)+bt max(−u, 0). Maintaining the value function Jt(·) is

computationally prohibitive, and hence most inventory control literature identify

conditions such that the value functions are not dependent on past demand history,

so that the state space is computationally amenable. For instance, it is well known

that when the lead time is zero and the demands are independently distributed

across time periods, there exist base-stock levels, qt, such that the following replen-

ishment policy,

xt(d̃t−1) = min
{
max

{
qt − yt(d̃t−1), 0

}
, St

}
(3.4)

is optimum. Hence, instead of being a function of the entire demand history, the

optimum demand policy can be characterized by the inventory level as follows:

xt(yt) = min {max {qt − yt, 0} , St} .
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JBSP
t (yt) = min

0≤x≤St

Ed̃t

(
ctx+Gt(yt + x− d̃t) + JBSP

t+1 (yt + x− d̃t)
)
,

where d̃t = z̃t+αz̃t−1+αz̃t−2+ · · ·+αz̃1+µ. The replenishment policy is given by

xBSP
t (yt) = arg min

0≤x≤St

Ed̃t

(
ctx+Gt(yt + x− d̃t) + JBSP

t+1 (yt + x− d̃t)
)
.

Under capacity limit on order quantities, the modified history-independent

base-stock policy is optimum when the demands are independently distributed.

This is discussed in Federgruen and Zipkin (1986).

3.1.1 Factor-based Demand Model

We adopt a factor-based demand model in which the uncertain demand is affinely

dependent on zero mean random factors z̃ ∈ ℜN as follows:

dt(z̃)
∆
= d̃t = d0t +

N∑
k=1

dkt z̃k, t = 1, . . . , T,

where

dkt = 0 ∀k ≥ Nt + 1,

and 1 ≤ N1 ≤ N2 ≤ · · · ≤ NT = N . Such an affine factor-based uncertainty model

is a common assumption in robust optimization. See for instance, Ben-Tal and

Nemirovski (1998). Under a factor-based demand model, the random factors, z̃k,

k = 1, . . . , N are realized sequentially. At period t, the factors, z̃k, k = 1, . . . , Nt

have already been unfolded. In progressing to period t + 1, the new factors z̃k,

k = Nt + 1, . . . , Nt+1 are made available.

Demand that is affected by random noise or shocks can be represented by

the factor-based demand model. For independently distributed demand, which is

assumed in most inventory models, we have

dt(z̃) = d0t + z̃t, t = 1, . . . , T,

in which z̃t are independently distributed. However, in many industrial contexts,

demands across periods may be correlated. In fact, many demand histories behave

more like random walks over time, with frequent changes in directions and rate of

growth or decline. See Johnson and Thompson (1975) and Graves (1999). In those
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settings, we may consider standard forecasting techniques such as an ARMA(p, q)

demand process (see Box et al. (1994)) as follows:

dt(z̃) =


d0t if t ≤ 0
p∑

j=1

ϕjdt−j(z̃) + z̃t +

min{q,t−1}∑
j=1

θj z̃t−j otherwise,

where ϕ1, . . . , ϕp, θ1, . . . , θq are known constants. Indeed, it is easy to show by in-

duction that dt(z̃) can be expressed in the form of a factor-based demand model.

Song and Zipkin (1993) presented a world-driven demand model where the de-

mand is Poisson with rate controlled by finite Markov states representing different

business environments. However, it may be difficult to determine exhaustively the

business states and their state transition probabilities. On the other hand, factor-

based models have been used extensively in finance for modeling returns as affine

functions of external factors, in which the coefficients of the factors can be deter-

mined statistically. In the same way, we can apply the factor-based demand model

to characterize the influence of demands with external factors such as market out-

look, oil prices and so forth. Effects of trend, seasonality, cyclic variation, and

randomness can also be incorporated.

3.2 Robust Inventory Model

The stochastic inventory control problem requires full information of the demand

distributions, which is practically prohibitive. Furthermore, even if the probability

distributions are known, due to computational complexity, we may not be able to

obtain the optimum solution. Note that under the factor-based demand model, it is

easy to evaluate the demand distribution when the factors are normally distributed.

However, this is not necessarily the case for other distributions. Nemirovski and

Shapiro (2006) noted that evaluating the distribution of a weighted sum of uni-

formly distributed independent random variables is already NP -hard. As such,

it would generally be intractable to evaluate the cumulative distributions of the

random demand with nonnormally distributed factors. Consequently, it would be

technically intractable to compute the myopic critical fractile based on the seem-

ingly benign factor-based demand model. The robust optimization approach we

are proposing aims to address these issues collectively.
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Table 3.1: Forward and backward deviation of some common probability distribu-

tions

Distribution σf σb

Normal with standard deviation, σ σ σ

Uniform with standard deviation, σ σ σ

Exponential with standard deviation, σ ∞ σ

Instead of assuming full distributions on the factors, which are practically pro-

hibitive, we adopt a modest distributional assumption on the random factors, such

as known means, supports, and some aspects of deviations. The factors may be par-

tially characterized using the directional deviations, that were recently introduced

by Chen et al. (2007).

Definition 1 (Directional deviations) Given a random variable z̃, the forward de-

viation is defined as

σf (z̃)
∆
= sup

θ>0

{√
2 ln(E(exp(θ(z̃ − E(z̃)))))/θ2

}
(3.5)

and backward deviation is defined as

σb(z̃)
∆
= sup

θ>0

{√
2 ln(E(exp(−θ(z̃ − E(z̃)))))/θ2

}
. (3.6)

Table 3.1 shows the forward and backward deviation of some common proba-

bility distributions. We also present in Table 3.2, the directional deviations of a

truncated exponential random variable z̃ in [0, z̄] with the following density func-

tion:

fz̃(z) =
exp(−z)

1− exp(−z̄)
.

Although the forward deviation of a pure exponential distributed random variable

is infinite, the truncated exponential distribution has a reasonably small forward

deviation compared to the support z̄. Even when z̄ = 10, the forward deviation is

only slightly more than twice its standard deviation.

Given a sequence of independent samples, we can essentially estimate the mag-

nitude of the directional deviations from (3.5) and (3.6). Some of the properties of

the directional deviations include:
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Table 3.2: Directional deviations for truncated exponential variable with support

[0, z̄].

z̄ 4 5 6 7 8 9 10 100

Standard deviation 0.834 0.911 0.954 0.977 0.989 0.995 0.998 1.000

σf 1.037 1.239 1.419 1.583 1.733 1.871 2.000 7.000

σb 0.834 0.911 0.954 0.977 0.989 0.995 0.998 1.000

Proposition 1 (Chen et al. (2007))

Let σ, p and q be, respectively, the standard, forward and backward deviations of a

random variable z̃ with zero mean.

(a)

p ≥ σ q ≥ σ.

If z̃ is normally distributed, then p = q = σ.

(b) For all θ ≥ 0,

P(z̃ ≥ θp) ≤ exp(−θ2/2);

P(z̃ ≤ −θq) ≤ exp(−θ2/2).

Proposition 1(a) shows that the directional deviations are no less than the stan-

dard deviation of the underlying distribution, and under the normal distribution,

these two values coincide with the standard deviation. As exemplified in Proposi-

tion 1(b), the directional deviations provide an easy bound on the distributional

tails. The advantage of using the directional deviations is the ability to capture

distributional asymmetry and stochastic independence, while keeping the resultant

optimization model computationally amicable. We refer the reader to the paper

by Natarajan et al. (2008) for the computational experience of using directional

derivations derived from real-life data.

In this work, we adopt the random factor model introduced by Chen and Sim

(2009), which encompasses most of the uncertainty models found in the literature

of robust optimization.

Assumption U: We assume that the uncertainties {z̃j}j=1:N are zero mean ran-

dom variables, with positive definite covariance matrix, Σ. We denote a subset,
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I ⊆ {1, . . . , N}, which can be an empty set, such that z̃j, j ∈ I are stochastically

independent. Moreover, the corresponding forward and backward deviations are

given by pj = σf (z̃j) and qj = σb(z̃j), respectively, for j ∈ I and that pj = qj = ∞

for j /∈ I1

Let W be a convex set containing the support of z̃. The choice of the support

set W can influence the computational tractability of the problem. Henceforth,

we assume that the support set is a second order conic representable set (also

known as conic quadratic representable set) proposed in Ben-Tal and Nemirovski

(1998), which includes polyhedral and ellipsoidal sets. A common support set is

the interval set, which is given by W = [−z, z̄], in which z, z̄ > 0.

For notational convenience, we define the following sets:

I1
∆
= {j : pj < ∞} Ī1

∆
= {j : pj = ∞}

I2
∆
= {j : qj < ∞} Ī2

∆
= {j : qj = ∞}.

Furthermore, if pj = ∞ (respectively, qj = ∞), its product with zero remains zero,

that is, pj × 0 = 0 (respectively, qj × 0 = 0).

3.2.1 Bound on E((·)+)

In the absence of full distributional information, it would be meaningless to evaluate

the optimum objective as depicted in Problem (3.3). Instead, we assume that

the modeler is averse to distributional ambiguity and aims to minimize a good

upper bound on the objective function. Such an approach of soliciting inventory

decisions based on partial demand information is not new. In the 1950s, Scarf

(1958) considered a min-max newsvendor problem with uncertain demand d̃ given

by only its mean and standard deviations. Scarf was able to obtain solutions to

the tight upper bound of the newsvendor problem. The central idea in addressing

such a problem is to solicit a good upper bound on E((·)+), which appears at the

objective of the newsvendor problem and also in Problem (3.3). The following

result is well known:

1It will be shown subsequently that the bound on expectation using directional deviations is

valid only when the factors are stochastically independent. For dependent uncertainties, we set

pj = qj = ∞ for j /∈ I.
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Proposition 2 (Scarf ’s upper bound Scarf (1958)) Let z̃ be a random variable in

[−µ,∞) with mean µ and standard deviation σ, then, for all a ≥ −µ,

E((z̃ − a)+) ≤


1

2

(
−a+

√
σ2 + a2

)
if a ≥ σ2−µ2

2µ

−a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
if a < σ2−µ2

2µ

.

Moreover, the bound is achievable.

Interestingly, Bertsimas and Thiele (2006) used the bound of Proposition 2 to

calibrate the budget of uncertainty parameter in their robust inventory models.

Unfortunately, it is generally computationally intractable to evaluate tight prob-

ability bounds involving multivariate random variables with known moments and

support information (see Bertsimas and Popescu (2002)). We adopt the bound

of Chen and Sim (2009) to evaluate the expected positive part of an affine sum

of random variables under Assumption U. This bound is constructed from 5 dif-

ferent bounds to E((·)+), consisting of support, (second) moments, and deviation

measures.

Definition 2 We say a function f(z) is nonzero crossing with respect to z ∈ W

if at least one of the following conditions holds:

1. f(z) ≥ 0 ∀z ∈ W

2. f(z) ≤ 0 ∀z ∈ W .

Theorem 1 (Chen and Sim (2009)) Let z̃ ∈ ℜN be a multivariate random variable

under the Assumption U. Then

E((y0 + y′z̃)+) ≤ π(y0,y),
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where π(y0,y) is given by

π(y0,y) = min r1 + r2 + r3 + r4 + r5

s.t. y10 +max
z∈W

z′y1 ≤ r1

0 ≤ r1

max
z∈W

z′(−y2) ≤ r2

y20 ≤ r2

1
2
y30 +

1
2
∥(y30,Σ1/2y3)∥2 ≤ r3

infµ>0
µ
e
exp

(
y40
µ

+
∥u∥22
2µ2

)
≤ r4

uj ≥ pjy4j ∀j ∈ I1, y4j ≤ 0 ∀j ∈ Ī1

uj ≥ −qjy4j ∀j ∈ I2, y4j ≥ 0 ∀j ∈ Ī2

y50 + infµ>0
µ
e
exp

(
− y50

µ
+

∥v∥22
2µ2

)
≤ r5

vj ≥ qjy5j ∀j ∈ I2, y5j ≤ 0 ∀j ∈ Ī2

vj ≥ −pjy5j ∀j ∈ I1, y5j ≥ 0 ∀j ∈ Ī1

y10 + y20 + y30 + y40 + y50 = y0

y1 + y2 + y3 + y4 + y5 = y.

ri, yi0 ∈ ℜ,yi ∈ ℜN , i = 1, . . . , 5,u,v ∈ ℜN .

(3.7)

Moreover, the bound is tight if y0 + y′z is a nonzero crossing function with respect

to z ∈ W. That is, if

y0 + y′z ≥ 0 ∀z ∈ W

we have E
(
( y0 + y′z )+

)
= π(y0,y) = y0. Likewise, if

y0 + y′z ≤ 0 ∀z ∈ W ,

we have E
(
( y0 + y′z )+

)
= π(y0,y) = 0.

Remark 1: The convexity of π(y0,y) depends on the convexity of the following

function

f(u0,u) = inf
µ>0

µ exp
(u0

µ
+

∥u∥22
µ2

)
.

It is easy to see that g(u0,u) = exp(u0 + ∥u∥22) is a convex function, and it is

straightforward to check that h(u0,u, µ) = µg(u0/µ,u/µ) is a convex function on

domain µ > 0. Hence, f(u0,u) = inf
µ>0

h(u0,u, µ) is a convex function. Due to the

presence of such a function, the set of constraints in Problem (3.7) is not exactly

second-order cone representable (see Ben-Tal and Nemirovski (2001)). Fortunately,
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using a few second-order cones, we can accurately approximate such constraints to

a good level of numerical precision. The interested readers can refer to Chen and

Sim (2009).

Remark 2: Note that the first and third constraints involving the support set W ,

take the form of

max
z∈W

v′z ≤ r

or, equivalently, as

v′z ≤ r ∀z ∈ W .

Such a constraint is known as the robust counterpart whose explicit formulation

under different choices of tractable support set W is well discussed in Ben-Tal and

Nemirovski (1998, 2001). Because W is a second order conic representable set, the

robust counterpart is also second-order cone representable. For instance, if W =

[−z, z̄], the corresponding robust counterpart is representable by the following

linear inequalities:

z′t+ z̄′s ≤ r,

for some s, t ≥ 0 satisfying s− t = v.

Remark 3: Note that under the Assumption U, it is not necessary to provide

all the information, such as the directional deviations. Therefore, whenever such

information is unavailable, we can assign an infinite value to the corresponding

parameter. For instance, supposing that factor z̃j has standard deviation σ and

unknown directional deviations; we would set pj = qj = ∞. When the bounds on

pj and qj are finite, the π(·) bound will be tighter.

Remark 4: In the absence of uncertainty, the nonzero crossing condition ensures

that the bound is tight. That is, y+ = E(y+) = π(y,0).

Remark 5: The uncertainty model assumes that we have exact estimates of the

covariance, means, and deviation measures from data. However, it is possible to

consider a model of data uncertainty in which the covariance, means, and devi-

ation measures are uncertain and belong to some uncertainty set. This can be

done by modifying the bound π(y0,y) and applying standard robust optimization

techniques such as those of Ben-Tal and Nemirovski (1998) and Bertsimas and Sim

(2006).
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Figure 3.1: Comparing the bounds of E((z̃ − a)+)

The robust model of Bertsimas and Thiele (2006) uses Proposition 2. Next, we

show that for a univariate random variable with one-sided support, the bound of

Theorem 1 is just as tight.

Proposition 3 Let z̃ be a random variable in [−µ,∞) with mean µ and standard

deviation σ, then for all a ≥ −µ,

E((z̃ − a)+) ≤ π(−a, 1) =


1

2

(
−a+

√
σ2 + a2

)
if a ≥ σ2−µ2

2µ

−a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
if a < σ2−µ2

2µ

.

Proof : See Appendix A.

We can further improve the bound if the distribution of the random variable z̃ is

sufficiently light tailed such that the directional deviations are close to its standard

deviation, such as those of normal and uniform distributions. Figure 3.1 compares

the bounds of E((z̃ − a)+) in which µ = 1 and σ = σf (z̃) = σb(z̃) = 2. Bound 1

corresponds to the bound of Proposition 2, whereas Bound 2 corresponds to the

bound of Theorem 1. Clearly, despite the lack of tightness results, incorporating

the directional deviations can potentially improve the bound on E((z̃ − a)+). We

will further demonstrate the benefits in our computational experiments.

3.2.2 Tractable Replenishment Policies

Having introduced the demand uncertainty model, a suitable approximation of the

replenishment policy xt(d̃t−1) is needed to obtain a tractable formulation. That is,
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we seek a formulation in which the policy can be obtained by solving an optimiza-

tion problem that runs in polynomial time and is scalable across time periods. We

review two tractable replenishment policies, static as well as linear with respect to

the random factors of demand, which are decision rules prevalent in the context of

robust optimization. We also introduce a new replenishment policy known as the

truncated linear replenishment policy, that improves over these policies.

Static replenishment policy

The static replenishment policy, also known as the open-loop policy, has order

decisions not influenced by random factors of demand as follows:

xt(d̃t−1) = x0
t . (3.8)

A tractable model under such a replenishment policy is as follows:

ZSRP = min
T∑
t=1

(
ctx

0
t + htπ

(
y0t+1,yt+1

)
+ btπ

(
−y0t+1,−yt+1

))
s.t. y0t+1 = y0t + x0

t−L − d0t t = 1, . . . , T

ykt+1 = ykt − dkt k = 1, . . . , N, t = 1, . . . , T

ykt+1 = 0 k ≥ Nt + 1, t = 1, . . . , T

0 ≤ x0
t ≤ St t = 1, . . . , T − L,

(3.9)

with y01 being the initial inventory level and yk1 = 0 for all k = 1, . . . , N . For L ≥ 1,

x0
t are the known committed orders made at time periods t = 1− L, . . . , 0.

Under Equation (3.8), it is evident from Equation (3.1) that the inventory level

also takes an affine structure,

yt+1(d̃t) = y0t+1 +
N∑
k=1

ykt+1z̃k. (3.10)

Using Theorem 1, we can bound the excess inventory level at time period t, that

is, E
(
(yt+1(d̃t))

+
)
≤ π(y0t+1,yt+1). Proceeding similarly for the backlog inventory

gives the objective function of Problem (3.9). Equating the coefficients of the

constant and z̃k term of Equation (3.1) gives the first two sets of constraints in

Problem (3.9), respectively. The last set of constraints enforces the range on order

quantity, that is, nonnegativity and upper limit.
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Theorem 2 The expected cost of the stochastic inventory problem under the static

replenishment policy,

xSRP
t (d̃t−1) = x0∗

t t = 1, . . . , T − L

in which x0∗
t , t = 1, . . . , T −L is the optimum solution of Problem (3.9), is at most

ZSRP .

Proof : See Appendix B.

Linear replenishment policy

A more refined replenishment policy introduced in Ben-Tal et al. (2005), and Chen

et al. (2007) is the linear replenishment policy where the order decisions are affinely

dependent on the random factors of demand, that is,

xLRP
t (d̃t−1) = x0

t + x′
tz̃, (3.11)

in which the vector xt = (x1
t , . . . , x

N
t ) satisfies the following nonanticipative con-

straints:

xk
t = 0 ∀k ≥ Nt−1 + 1. (3.12)

Because the order decision is made at the beginning of the tth period, the

nonanticipative constraints ensure that the linear replenishment policy is not in-

fluenced by demand factors that are unavailable up to the beginning of the tth

period. The model for the linear replenishment policy is as follows:

ZLRP = min
T∑
t=1

(
ctx

0
t + htπ

(
y0t+1,yt+1

)
+ btπ

(
−y0t+1,−yt+1

))
s.t. ykt+1 = ykt + xk

t−L − dkt k = 0, . . . , N, t = 1, . . . , T

ykt+1 = 0 k ≥ Nt + 1, t = 1, . . . , T

xk
t = 0 k ≥ Nt−1 + 1, t = 1, . . . , T − L

0 ≤ x0
t + x′

tz ≤ St ∀z ∈ W t = 1, . . . , T − L,

(3.13)

with y01 being the initial inventory level and yk1 = 0 for all k = 1, . . . , N . For L ≥ 1,

x0
t are the known committed orders made at time periods t = 1− L, . . . , 0.

Under Equation (3.11), the inventory level has a structure similar to Equation

(3.10). The objective function and the first set of constraints are hence obtained
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in a similar manner as Problem (3.9). The last set of constraints ensures that the

linear replenishment policy is confined within the ordering capacity for all possible

states of random factors. Observe that under the assumption that W is a tractable

conic representable uncertainty set, the robust counterpart

0 ≤ x0
t + x′

tz ≤ St ∀z ∈ W

can be represented concisely as tractable conic constraints. Therefore, Problem

(3.13) is essentially a tractable conic optimization problem.

Theorem 3 The expected cost of the stochastic inventory problem under the linear

replenishment policy,

xLRP
t (d̃t−1) = x0∗

t + x∗
t
′z̃ t = 1, . . . , T − L,

in which xk∗
t , k = 0, . . . , N, t = 1, . . . , T − L is the optimum solution of Problem

(3.13), is at most ZLRP . Moreover, ZLRP ≤ ZSRP .

Proof : See Appendix C.

Truncated linear replenishment policy

Chen et al. (2008) studied the weakness of linear decision rules (or policy) and

showed that carefully chosen piecewise-linear decision rules can strengthen the

approximation of stochastic optimization problems. Indeed, a base-stock policy

such as Equation (3.4) can be shown by induction to be piecewise-linear with

respect to the historical demands. In the same spirit, we introduce a new piecewise-

linear replenishment policy that we call the truncated linear replenishment policy.

It takes the following form:

xTLRP
t (d̃t−1) = min

{
max

{
x0
t + x′

tz̃, 0
}
, St

}
, (3.14)

where the vector xt = (x1
t , . . . , x

N
t ) satisfies the following nonanticipative con-

straints:

xk
t = 0 ∀k ≥ Nt−1 + 1. (3.15)

Note that the truncated linear replenishment policy is piecewise-linear and directly

satisfies the ordering range constraint as follows:

0 ≤ xTLRP
t (d̃t−1) ≤ St.
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Before introducing the model, we present the following bound on the expecta-

tion of a nested sum of positive values of random variables:

Theorem 4 Let z̃ ∈ ℜN be a multivariate random variable under Assumption U.

Then

E

((
y0 + y′z̃ +

p∑
i=1

(
x0
i + xi

′z̃
)+)+)

≤ η((y0,y), (x0
1,x1), . . . , (x

0
p,xp)), (3.16)

where

η((y0,y), (x0
1,x1), . . . , (x

0
p,xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑
i=1

w0
i ,y +

p∑
i=1

wi

)
+

p∑
i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i ,xi −wi)
)}

.

Moreover, the bound is tight if y0 + y′z +
∑p

i=1 (x
0
i + xi

′z)
+

and x0
i + xi

′z, i =

1, . . . , p are nonzero crossing functions with respect to z ∈ W.

Proof : See Appendix D.

Remark : It is easy to establish that

E

((
y0 + y′z̃ +

p∑
i=1

(
x0
i + xi

′z̃
)+)+)

≤ E
((

y0 + y′z̃
)+)

+

p∑
i=1

E
((

x0
i + xi

′z̃
)+)

≤ π
(
y0,y

)
+

p∑
i=1

π(x0
i ,xi).

However, this is a weaker bound, considering the fact that

η((y0,y), (x0
1,x1), . . . , (x

0
p,xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑
i=1

w0
i ,y +

p∑
i=1

wi

)
+

p∑
i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i ,xi −wi)
)}

≤ π
(
y0,y

)
+

p∑
i=1

π(x0
i ,xi).

The model for the truncated linear replenishment policy can be formulated as
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follows:

ZTLRP =

min
T∑
t=1

ctπ(x
0
t ,xt) +

L∑
t=1

(
htπ(y

0
t+1,yt+1) + btπ(−y0t+1,−yt+1)

)
+

T∑
t=L+1

(
htη
(
(y0t+1,yt+1), (−x0

1,−x1), . . . , (−x0
t−L,−xt−L)

)
+

btη
(
(−y0t+1,−yt+1), (x

0
1 − St,x1), . . . , (x

0
t−L − St,xt−L)

))
s.t. ykt+1 = ykt + xk

t−L − dkt k = 0, . . . , N, t = 1, . . . , T

ykt+1 = 0 k ≥ Nt + 1, t = 1, . . . , T

xk
t = 0 k ≥ Nt−1 + 1, t = 1, . . . , T − L

(3.17)

with y01 being the initial inventory level and yk1 = 0 for all k = 1, . . . , N . For L ≥ 1,

x0
t are the known committed orders made at time periods t = 1− L, . . . , 0.

Under Equation (3.14) the inventory level, yt+1(d̃t) is no longer affinely depen-

dent on z̃. The terms in the objective function account for the costs associated with

excess inventory level and backlog, taking into consideration the piecewise-linear

policy. It can be shown that the truncated linear replenishment policy dominates

over the linear replenishment policy as follows.

Theorem 5 The expected cost of the stochastic inventory problem under the trun-

cated linear replenishment policy,

xTLRP
t (d̃t−1) = min

{
max

{
x0∗
t + x∗

t
′z̃, 0

}
, St

}
t = 1, . . . , T − L

in which xk∗
t , k = 0, . . . , N , t = 1, . . . , T − L is the optimum solution of Problem

(3.17), is at most ZTLRP . Moreover, ZTLRP ≤ ZLRP .

Proof : See Appendix E.

We have shown that ZSTOC ≤ ZTLRP ≤ ZLRP ≤ ZSRP . The linear replen-

ishment policy improves over the static replenishment policy because it is able to

adapt to demand history. Because setting the coefficient of the random factors xt

to be zero in Problem (3.13) gives Problem (3.9), it is evident from Equation (3.11)

that the linear replenishment policy subsumes the static replenishment policy. Ob-

serve that in Problem (3.13), from which the solution of the linear replenishment
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policy is derived, the set of constraints restricting the ordering quantity

0 ≤ x0
t + x′

tz ≤ St ∀z ∈ W t = 1, . . . , T − L

can be overly constraining on the replenishment policy. For the case when the

uncertainty set W is unbounded, such as W = {z : z ≥ −z}, the decision

variables xt will be driven to zeroes. This means that the ordering decision of

Problem (3.13) degenerates to a static replenishment policy, losing the ability to

adapt to the history of random factors. The truncated linear replenishment policy,

on the other hand, avoids this issue. Moreover, we also note that in Problem (3.13),

information of mean, variance, and directional deviations are not utilized for the

set of constraints restricting the ordering quantity. In contrast, the truncated

linear replenishment policy is defined to satisfy the ordering constraint. Hence, the

robust model of Problem (3.17) does not have the explicit constraints on ordering

levels and is able to utilize the additional information via the π and η functions for

improving the bound.

It should be noted that establishing the bounds does not necessarily imply the

superiority of truncated linear replenishment policy over static and linear ones.

Nevertheless, this behavior is observed throughout our computational studies.

3.3 Extensions

In this section, we discuss some extensions to the basic model.

3.3.1 Fixed Ordering Cost

Unfortunately, with fixed ordering cost the inventory replenishment problem be-

comes nonconvex and is much harder to address. Using the idea of Bertsimas

and Thiele (2006), we can formulate a restricted problem where the time period

in which the orders that can be placed is determined at the start of the planning



32

horizon as follows:

ZSTOCF =

min
T∑
t=1

(
E
(
ctxt(d̃t−1) +Ktδt + ht(yt+1(d̃t))

+
)
+ E

(
bt(yt+1(d̃t))

−
))

s.t. yt+1(d̃t) = yt(d̃t−1) + xt−L(d̃t−L−1)− d̃t t = 1, . . . , T

0 ≤ xt(d̃t−1) ≤ Stδt t = 1, . . . , T − L

δt ∈ {0, 1} t = 1, . . . , T − L.

(3.18)

In Problem (3.18), inventory can only be replenished at a period where the cor-

responding binary variable δt takes the value of one. We can then incorporate

the tractable replenishment policies developed in the previous section, and ex-

ploit π(·) and η(·) to bound the terms at the objective function. The resulting

optimization model is a conic integer program since π(·) and η(·) are SOC func-

tions. Conic integer program is already addressed in commercial solvers such as

CPLEX 11.2. Admittedly, algorithms for solving conic integer programs are still in

their infancy. On the theoretical front, Atamtürk and Narayanan (2009) recently

developed general-purpose conic mixed-integer rounding cuts based on polyhedral

conic substructures of second-order conic sets, which can be readily incorporated in

branch-and-bound algorithms that solve continuous conic optimization problems at

the nodes of the search tree. Their preliminary computational experiments suggest

that the new cuts are quite effective in reducing the integrality gap of continuous

relaxations of conic mixed-integer programs.

3.3.2 Supply Chain Networks

The models we have presented in the preceding section can also be extended to

more complex supply chain networks such as the serial system, or, more generally

tree networks. These are multistage systems where goods transit from one stage to

the next stage, each time moving closer to their final destination. In many supply

chains, the main storage hubs, or the sources of the network, receive their supplies

from outside manufacturing plants in a treelike hierarchical structure and send

items throughout the network until they finally reach the stores, or the sinks of the

network. The extension to tree structure uses the concept of echelon inventory and

closely follows Bertsimas and Thiele (2006). We refer interested readers to their
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paper.

We have completed the theoretical discussions on the models. In the next

chapter, we will discuss via computational studies, the effectiveness of our robust

approach. In particular, we compare it against existing approaches in the literature.
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Chapter 4

Computational Studies of

Multiperiod Inventory Model

In this chapter we discuss the computational performance of the static, linear and

truncated linear replenishment policies against the optimum history dependent

policy and two dynamic programming based heuristics, namely, the myopic policy

and a history-independent base-stock policy. Specifically, we examined the quality

of truncated linear replenishment policies over many realistic scenarios of planing

horizon, cost parameters and demand correlations. To benchmark the performance,

we have to assume knowledge of the underlying distribution of the demand. We

did not conduct experiments to test robustness of policies against distributional

ambiguity such as those studied in Bertsimas and Thiele (2006) and Chen and Sim

(2009). Instead, we have focused on how well or poorly the tractable replenishment

policies perform against the optimum policy obtained by dynamic programming,

as well as against heuristics in inventory control.

We are aware of the folding horizon implementation, where the replenishment

policy can be enhanced by solving repeatedly with updated demand information.

For instance, the static replenishment policy proposed by Bertsimas and Thiele

(2006) has a base-stock structure under the folding horizon implementation. Since

more accurate information is used each time the model is solved, the results will only

improve. Unfortunately, due to the computational intensiveness of the evaluation,

we have excluded folding horizon implementations from our computational studies.

For instance, under the folding horizon implementation, it would typically take
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about four minutes to evaluate the sample path of a ten period model based on the

truncated linear replenishment policy. Through sizing experiments, we envisaged

that it would require about 100,000 sample paths to reduce the standard error of

the estimated objective value to less than 1%, which amounts to about 280 days

of computational time.

4.1 Experimental Setup

The demand process we considered is motivated by Graves (1999) as follows:

dt(z̃) = z̃t + αz̃t−1 + αz̃t−2 + · · ·+ αz̃1 + µ, (4.1)

where the shocks factors z̃t are independently uniformly distributed random vari-

ables in [−z̄, z̄], and have standard deviations and directional deviations numeri-

cally close to 0.58z̄.

Observe that the demand process of Equation (4.1) for t ≥ 2 can be expressed

recursively as

dt(z̃) = dt−1(z̃)− (1− α)z̃t−1 + z̃t. (4.2)

Hence, this demand process is an integrated moving average (IMA) process of order

(0, 1, 1). See also Box et al. (1994). Note that given µ̄ = dt−1(z̃) − (1 − α)z̃t−1 at

time period t, the distribution of dt(z̃) is uniform in [−z̄ + µ̄, z̄ + µ̄].

A range of demand processes can be modeled by varying α. With α = 0, the de-

mand process follows an i.i.d process of uniformly distributed random variables. As

α grows, the demand process becomes nonstationary and less stable with increasing

variance. When α = 1, the demand process is a random walk on a continuous state

space.

We considered problems with T = 5, 10, 20 and 30, and selected parameters so

that the demand, dt(z̃) is nonnegative for all α ∈ [0, 1]. The lead time L is zero,

St = 260, unit ordering cost ct = 0.1, and unit holding cost ht = 0.02 for all periods

t = 1, . . . , T . In view of the long computational time for dynamic programming,

especially for T = 20 and 30, we have used more manageable parameters for the

demand process as follows.

• For T = 5, we used µ = 200, and z̄ = 40.
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• For T = 10, we used µ = 200, and z̄ = 20.

• For T = 20, we used µ = 240, and z̄ = 12.

• For T = 30, we used µ = 240, and z̄ = 8.

Since unfulfilled demands are lost at the end of T , we set a relatively high

backlog cost, bT = 10b1, to heavily penalize unmet demand at the last period

throughout our experiments. For notational convenience, we use b and h to denote

the backlog and holding cost from t = 1 . . . T − 1. In our study, we varied α from

0 to 1 in steps of 0.25 and set b/h to range from 10 to 50.

We benchmarked our solutions against solution based on dynamic programming,

where the optimum replenishment policy for the case of zero lead time can be

characterized by the following backward recursion:

Jt(yt, dt−1, zt−1)

= min
0≤x≤St

E
(
ctx+Gt(yt + x− dt−1 + (1− α)zt−1 − z̃t, z̃t))+

Jt+1(yt + x− dt−1 + (1− α)zt−1 − z̃t, dt−1 − (1− α)zt−1 + z̃t)
)

where Gt(u) = ht max(u, 0)+ bt max(−u, 0). By letting vt = dt− (1−α)zt, we have

equivalently

Jt(yt, vt−1) = min
0≤x≤St

E
(
ctx+Gt(yt+x−vt−1−z̃t)+Jt+1(yt+x−vt−1−z̃t, vt−1+αz̃t)

)
,

which reduces the state space by one dimension. The optimum replenishment

policy at time t is a function of the current inventory level yt and vt−1 as follows:

xOPT
t (yt, vt−1) =

arg min
0≤x≤St

E
(
ctx+Gt(yt + x− vt−1 − z̃t) + Jt+1(yt + x− vt−1 − z̃t, vt−1 + αz̃t)

)
.

In our implementation, we discretized the value functions uniformly and used linear

interpolations for evaluating the intermediate points. The underlying expectations

were computed using the well-known Simpson’s rule of numerical integration. To

obtain a near optimum policy within reasonable time, we adjusted the level of dis-

cretization such that when the discretization is increased by two, the improvement

in objective value is less than 1%.

We also considered two heuristics. The first is a history-independent base-stock

policy (BSP), where we computed the replenishment policy recursively by ignoring



37

the dependency of previous demands as follows:

JBSP
t (yt) = min

0≤x≤St

Ed̃t

(
ctx+Gt(yt + x− d̃t) + JBSP

t+1 (yt + x− d̃t)
)
,

where d̃t = z̃t+αz̃t−1+αz̃t−2+ · · ·+αz̃1+µ. The replenishment policy is given by

xBSP
t (yt) = arg min

0≤x≤St

Ed̃t

(
ctx+Gt(yt + x− d̃t) + JBSP

t+1 (yt + x− d̃t)
)
.

Under capacity limit on order quantities, the modified history-independent base-

stock policy is optimum if the demands are independently distributed, which occurs

only when α = 0 (see Federgruen and Zipkin (1986)). Note that when α > 0, evalu-

ating the expectation exactly involves multi-dimensional integration, which can be

computationally prohibitive. Therefore, at every dynamic programming recursion,

we computed the value functions approximately using sampling approximations

from 500 instances of demand realizations instead.

The other heuristic we considered is an adaptive myopic policy (MP), where

the replenishment level for the case of zero lead time is derived by minimizing the

following one-period expected cost as described below:

xMP
t (yt, vt−1) = arg min

0≤x≤St

E
(
ctx+Gt(yt + x− vt−1 − z̃t)

)
.

Under the uniform distribution, the myopic policy can be obtained using the critical

fractile as follows:

xMP
t (yt, vt−1) = min

{(
vt−1 − z̄ + 2z̄

(
1− ct + ht

bt + ht

)
− yt

)+

, St

}
.

In contrast with the optimum dynamic programming recursion, the adaptive my-

opic policy optimizes only the current period expected cost, and ignores all subse-

quent costs.

After obtaining the policies, we compared them using 100, 000 simulated in-

ventory runs and reported the sample means over all the runs. The results for the

T = 5, 10, 20 and 30 problems are given in Table 4.1, Table 4.2, Table 4.3 and Table

4.4, respectively. The robust policies were obtained using the bounds of Theorem

1 and Theorem 4 where the support, covariance, directional deviations associated

with random factors are specified. In the tables, we have used TLRP, LRP, SRP,

BSP, MP to denote the sample mean of the expected cost under the simulated



38

runs when the replenishment policies are the truncated linear replenishment pol-

icy, linear replenishment policy, static replenishment policy, history-independent

base-stock policy and adaptive myopic policy, respectively. Correspondingly, we

used OPT to denote the values derived from the optimum policy. For convenience,

we used these abbreviations to denote the respective policies throughout this chap-

ter. We also provided in parentheses, the performance of the corresponding policy

with respect to the optimum value. For example, the performance of TLRP given

in parentheses shows the value of TLRP/OPT. A value of 1.05 hence shows that

the deviation from OPT is 5%. We also reported the model objective values for the

robust models as ZTLRP , ZLRP and ZSRP to four significant places. Throughout

the tables, the sample errors of the mean are less than 1%, and the sample means

are shown to three significant places.

4.2 Comparison of Policies

In all the cases tested, TLRP deviates from the optimum answer by not more than

7%, whereas LRP is observed to deviate by as much as 29%; SRP by as much as

48%, MP by as much as 26%, and BSP by as much as 20% from OPT.

For α = 0, TLRP and LRP perform well, coming within 1% from OPT. We

observed that when α is small, the model objective values of TLRP and LRP, ZTLRP

and ZLRP , come near to the simulated inventory runs, indicating the closeness of

the bound. MP and BSP perform reasonably well for α ≤ 0.5 with deviation of not

more than 10%. However, for large α, the deviation can exceed 20%. We observed

that TLRP is never worse off against LRP, SRP, and outperforms BSP and MP in

most of the cases. Moreover, TLRP has the sharpest lead against LRP, SRP and

MP when the α is high. It is also interesting to note that when α = 1, the bounds

of LRP and SRP are rather close, while TLRP has much better performance.

Overall, the out-performance of TLRP over the rest of the non-optimum policies

can be as high as 14%. In relatively few cases, BSP and MP may outperform TLRP.

However, the margins do not exceed 1%. The results suggest that TLRP has the

best overall performance.
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Table 4.1: Performance of truncated linear replenishment policy T = 5

Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 108(1) 108(1) 121(1.1) 115(1.07) 107(1) 108 108.0 108.0 120.8

30 108(1) 108(1) 124(1.13) 110(1.02) 108(1) 108 108.0 108.0 124.4

50 108(1) 108(1) 126(1.14) 109(1.01) 108(1) 108 108.0 108.0 125.8

α = 0.25

10 108(1.01) 109(1.01) 130(1.18) 116(1.08) 109(1.01) 107 108.3 109.1 130.3

30 108(1) 109(1.01) 136(1.22) 111(1.03) 110(1.02) 108 108.6 109.2 135.5

50 108(1) 109(1.01) 138(1.24) 110(1.02) 110(1.02) 108 108.8 109.2 137.6

α = 0.50

10 110(1.02) 118(1.06) 141(1.25) 119(1.1) 112(1.04) 108 111.2 117.7 140.5

30 111(1.02) 125(1.1) 148(1.31) 114(1.05) 115(1.06) 109 114.3 125.0 147.5

50 112(1.03) 130(1.12) 150(1.33) 113(1.04) 117(1.07) 109 116.7 129.6 150.5

α = 0.75

10 113(1.03) 133(1.14) 151(1.31) 126(1.15) 117(1.07) 110 119.0 133.3 151.1

30 118(1.05) 153(1.22) 163(1.35) 125(1.12) 124(1.1) 112 131.9 152.5 162.9

50 122(1.06) 166(1.25) 173(1.34) 130(1.14) 130(1.14) 114 142.7 166.2 172.7

α = 1

10 118(1.04) 152(1.21) 163(1.35) 137(1.21) 126(1.12) 113 132.3 152.3 163.3

30 131(1.06) 191(1.28) 193(1.31) 151(1.22) 145(1.18) 123 164.8 191.0 193.3

50 140(1.06) 223(1.28) 223(1.29) 168(1.28) 158(1.2) 132 195.2 222.9 223.3
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Table 4.2: Performance of truncated linear replenishment policy T = 10

Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 206(1) 206(1) 220(1.06) 214(1.04) 206(1) 206 206.0 206.0 220.2

30 206(1) 206(1) 224(1.08) 209(1.01) 206(1) 206 206.0 206.0 223.8

50 206(1) 206(1) 225(1.08) 208(1.01) 206(1) 206 206.0 206.0 225.3

α = 0.25

10 206(1) 206(1) 240(1.14) 214(1.04) 207(1.01) 206 206.0 206.1 239.5

30 206(1) 206(1) 247(1.18) 209(1.01) 208(1.01) 206 206.0 206.1 246.7

50 206(1) 206(1) 250(1.19) 208(1.01) 209(1.02) 206 206.0 206.1 249.7

α = 0.50

10 206(1) 213(1.03) 260(1.23) 214(1.04) 210(1.02) 206 206.3 213.0 260.0

30 206(1) 215(1.04) 271(1.28) 209(1.01) 212(1.03) 206 207.0 215.1 270.9

50 206(1) 216(1.04) 275(1.3) 208(1.01) 214(1.04) 206 207.5 216.0 275.5

α = 0.75

10 207(1.01) 232(1.1) 281(1.31) 215(1.04) 214(1.04) 206 210.5 231.6 280.8

30 211(1.02) 242(1.14) 296(1.38) 211(1.02) 218(1.05) 207 215.4 241.9 295.6

50 213(1.03) 247(1.16) 302(1.41) 211(1.02) 221(1.07) 207 218.2 247.4 301.8

α = 1

10 213(1.02) 257(1.18) 302(1.39) 220(1.06) 221(1.06) 208 220.6 257.4 301.8

30 222(1.05) 281(1.25) 322(1.46) 222(1.05) 231(1.1) 210 235.5 281.1 321.7

50 228(1.07) 296(1.29) 331(1.48) 229(1.08) 240(1.13) 212 245 296.0 331.5
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Table 4.3: Performance of truncated linear replenishment policy T = 20

Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 486(1) 486(1) 506(1.04) 496(1.02) 486(1) 486 486.0 486.0 506.3

30 486(1) 486(1) 511(1.05) 489(1.01) 486(1) 486 486.0 486.0 511.2

50 486(1) 486(1) 513(1.05) 488(1) 486(1) 486 486.0 486.0 513.2

α = 0.25

10 488(1) 520(1.06) 556(1.13) 497(1.02) 489(1.01) 486 490.7 520.0 556.1

30 490(1.01) 532(1.08) 570(1.15) 491(1.01) 491(1.01) 487 495.7 532.0 570.3

50 492(1.01) 538(1.09) 576(1.17) 490(1.01) 493(1.01) 487 499.0 537.9 576.4

α = 0.50

10 507(1.02) 588(1.14) 609(1.19) 515(1.04) 507(1.02) 496 528.0 587.7 609.3

30 534(1.05) 636(1.17) 643(1.21) 536(1.05) 536(1.05) 511 569.4 635.9 642.5

50 550(1.05) 667(1.19) 668(1.2) 564(1.08) 562(1.08) 522 600.0 667.3 667.9

α = 0.75

10 549(1.04) 674(1.18) 677(1.2) 562(1.07) 552(1.05) 527 601.4 673.7 677.1

30 620(1.05) 818(1.17) 818(1.17) 670(1.14) 654(1.11) 590 754.2 817.8 817.8

50 686(1.05) 959(1.15) 959(1.15) 788(1.21) 756(1.16) 652 898.2 958.5 958.5

α = 1

10 604(1.04) 780(1.19) 780(1.19) 631(1.09) 614(1.06) 578 708.0 780.1 780.1

30 773(1.05) 1120(1.14) 1120(1.14) 876(1.19) 828(1.12) 739 1057 1118 1119

50 935(1.04) 1460(1.11) 1460(1.11) 1130(1.25) 1040(1.15) 899 1398 1457 1457
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Table 4.4: Performance of truncated linear replenishment policy T = 30

Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 726(1) 726(1) 749(1.03) 736(1.01) 726(1) 725 725.6 725.6 748.9

30 726(1) 726(1) 754(1.03) 729(1) 727(1) 726 725.6 725.6 754.4

50 726(1) 726(1) 757(1.04) 728(1) 729(1) 726 725.6 725.6 756.7

α = 0.25

10 726(1) 766(1.05) 830(1.12) 736(1.01) 729(1) 725 726.8 765.6 829.6

30 727(1) 778(1.06) 850(1.15) 729(1) 731(1.01) 726 728.5 777.7 850.4

50 727(1) 783(1.07) 860(1.17) 728(1) 732(1.01) 726 729.7 783.3 859.2

α = 0.50

10 738(1.01) 862(1.14) 913(1.21) 746(1.02) 742(1.01) 732 755.7 861.6 913.4

30 762(1.03) 909(1.18) 953(1.25) 757(1.02) 763(1.03) 743 792.5 908.6 952.7

50 778(1.04) 936(1.19) 972(1.26) 767(1.03) 778(1.04) 750 815.6 935.6 972.0

α = 0.75

10 787(1.03) 976(1.21) 1000(1.26) 789(1.03) 786(1.03) 763 840.3 976.1 1004

30 862(1.06) 1100(1.24) 1100(1.25) 886(1.09) 888(1.09) 816 963.8 1102 1103

50 902(1.06) 1190(1.23) 1190(1.23) 974(1.15) 970(1.14) 849 1064 1194 1194

α = 1

10 857(1.05) 1110(1.24) 1120(1.26) 868(1.06) 863(1.06) 818 965.4 1115 1119

30 1020(1.06) 1412(1.21) 1412(1.21) 1119(1.17) 1100(1.15) 957 1286 1412 1412

50 1150(1.06) 1700(1.18) 1700(1.18) 1370(1.26) 1310(1.2) 1090 1587 1704 1704



43

Table 4.5: Performance of truncated linear replenishment policy T = 5 with and

without directional deviations

Simulated Inventory Runs Objective Value

TLRP TLRP ZTLRP ZTLRP

α b/h directional no directional OPT directional no directional

deviations deviations deviations deviations

0 10 108(1.01) 108(1.01) 107 108.0 108.0

50 108(1) 108(1) 108 108.0 180.0

0.5 10 110(1.02) 110(1.02) 108 111.2 122.0

50 112(1.02) 113(1.03) 109 116.7 175.0

1 10 118(1.04) 122(1.07) 113 132.3 159.4

50 140(1.06) 163(1.24) 132 195.2 347.1

4.3 Influence of Directional Deviations

Table 4.5 shows a comparison of the TLRP with and without information on the

directional deviations. In the latter case, the robust policies were obtained using

the bound of Theorem 1 with information only on the support and covariance

associated with the random factors. When α = 0, information on directional

deviations has little impact on the model objective. It is observed that TLRP gives

an improvement when α = 1 and b/h = 50. The additional computational burden

posed by the directional deviations varies with the size of the model. For T = 30,

the computational time of TLRP with and without the directional deviations are

197 seconds and 143 seconds, respectively. For T = 20, the computational time are

37.6 seconds and 30.5 seconds, respectively. For the T = 5 and T = 10 models, the

computational time with and without the directional deviations are practically the

same.

4.4 Effects of Demand Variability

We also investigated the influence of demand variability on the performance of

the best robust policy, namely, TLRP. Shown in Table 4.6 are results of TLRP
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for the T = 5 model, with µ = 200, b/h = 50, for α = 0, α = 0.25, α = 0.5,

and various degrees of variability, as reported by z̄. When α = 0, we are able to

perform the experiments for larger coefficient of variations. The case of z̄ = 200

corresponds to coefficient of variation being 0.58. We observe that the bound

of ZTLRP degrades significantly as demand variability increases. However, the

impact on the performance against the optimum policy is marginal, which is rather

surprising given the fact that we use significantly less distributional information in

our demand model.

One may find in industry demands with coefficients of variation of four and

even higher. The coefficient of variation in our computational studies is limited by

the random factors being uniform distributed. To achieve larger values of σ/µ, we

assumed that demands across periods are 2-point distributed i.i.d random variables.

The demand at each period is zero with probability β and 200 with probability 1−β.

The parameter β controls the coefficient of variation and the other parameters used

were St = 260, α = 0, b/h = 50. We compare the performance of TLDR with and

without directional deviations and present the results in Table 4.7. For both cases,

the results are similar with the bound of ZTLRP coming close to OPT. TLRP

performs very well when demands have very high coefficient of variations. The

phenomenon that the robust optimization performs well when uncertainties have

very high coefficient of variations has also been observed in the computational

studies of Chen et al. (2008).

4.5 Analysis of Policies

Although the robust models appear to be complex, implementing the policy derived

from the model is extremely easy. The truncated linear replenishment policy is

computed simply by taking an affine sum of random factors using weights given by

the TLRP model solution and then restricting the range of the order quantity. For
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Table 4.6: Performance of truncated linear replenishment policy T = 5 with various

demand range

Simulated Inventory Runs Objective Value

α z̄ TLRP OPT ZTLRP

20 104(1) 104 104.0

40 108(1) 108 108.0

60 112(1) 112 112.0

0 80 125(1.03) 118 131.8

100 136(1.04) 131 161.3

120 158(1.03) 153 212.8

160 244(1.02) 239 385.8

200 380(1.02) 372 629.2

20 102(1) 102 102.0

40 108(1) 108 108.8

0.25 60 119(1.04) 114 128.9

80 142(1.05) 135 190.7

100 195(1.04) 187 306.4

20 104(1) 104 104.0

0.5 40 112(1.03) 109 116.7

60 139(1.06) 131 187.9
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Table 4.7: Performance of truncated linear replenishment policy under a 2-point

demand distribution

Simulated Inventory Runs Objective Value

TLRP TLRP ZTLRP ZTLRP

β σ/µ directional no directional OPT directional no directional

deviations deviations deviations deviations

T = 5

0.80 2.00 52(1) 52(1) 52 52.0 52.0

0.85 2.38 49(1) 49(1) 49 49.0 49.0

0.90 3.00 46(1) 46(1) 46 46.0 46.0

0.95 4.36 43(1) 43(1) 43 43.0 43.0

0.98 7.00 41(1) 41(1) 41 41.2 41.2

T = 10

0.80 2.00 88(1) 88(1) 88 88.0 88.0

0.85 2.38 81(1) 81(1) 81 81.0 81.0

0.90 3.00 74(1) 74(1) 74 74.0 74.0

0.95 4.36 67(1) 67(1) 67 67.0 67.0

0.98 7.00 63(1) 63(1) 63 62.8 62.8
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Table 4.8: A sample path of the truncated linear replenishment policy

t zt dt xTRLP
t yt+1

1 13.3 213.3 260.0 46.7

2 6.2 212.9 214.5 48.4

3 14.5 224.2 224.8 48.9

4 -24.1 192.9 249.6 105.6

5 -32.3 172.7 139.5 72.5

example, a sample problem where α = 0.5 has the following model solution:

x0
1

x0
2

x0
3

x0
4

x0
5


=



260.00

191.93

218.29

243.57

126.31


,



x′
1

x′
2

x′
3

x′
4

x′
5


=



0 0 0 0 0

0.25 0 0 0 0

1.7 0 0 0 0

0 1.04 0 0 0

1.29 1.44 1.6 1.5 0


.

Table 4.8 shows the sample path, constructed using weights from the model solu-

tion, and then applying the relevant capacity constraints,

xTLRP
i (z) = min{(x0

i + x′
iz)

+, 260}.

In the above example, the inventory manager would order a quantity of 260, 215,

225, 250 and 140 for periods 1 to 5, respectively.

Ben-Tal et al. (2005) showed that the linear replenishment policy is equivalent

to a history-independent base-stock if and only if it exhibits Markovian behavior

and takes the form xt(d̃t−1) = x0
t + z̃t−1. The truncated linear replenishment policy

has a different structure and in general, we are unable to show the connection with

a base-stock structure. When the demands are independent, that is, α = 0, it

is observed that TLRP exhibits Markovian behavior for most input parameters.

There are also instances that LRP is Markovian when the TLRP is not. For

example, for T = 10, µ = 220, α = 0, b/h = 40, z̄ = 40, TLRP and LRP are the

same and having a Markovian structure. See Table 4.9. However, when z̄ = 80,

the TLRP and LRP policies presented in Table 4.10 and Table 4.11, respectively,

show a difference in the structure. For the case of correlated demands, we did not

observe any Markovian structure in our experiments.
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Table 4.9: TLRP and LRP for µ = 220, α = 0, T = 10, b/h = 40, z̄ = 40, St = 240

x0
1

x0
2

x0
3

x0
4

x0
5

x0
6

x0
7

x0
8

x0
9

x0
10



=



240

220

220

220

220

220

220

220

220

220



,



x′
1

x′
2

x′
3

x′
4

x′
5

x′
6

x′
7

x′
8

x′
9

x′
10



=



0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0



.

4.6 Computational Time

We formulated the robust models using an in-house developed software, PROF

(Platform for Robust Optimization Formulation). The Matlab based software is

essentially a algebraic modeling language for robust optimization that contains

reusable functions for modeling multiperiod robust optimization using decision

rules. After formulating the model, it calls upon a commercial SOCP solver,

MOSEK 5.0 for solution. We have implemented bounds for π(·) of Theorem 1

and η(·) of Theorem 4. The sample formulation of Problem (3.17) provided in Ap-

pendix F shows the ease of formulating the TLRP model using the software. The

size of the problem we considered is presented in Table 4.12. Our computation was

carried out on a 2.4 GHz desktop with 2 Gb memory. The computational time de-

pends on the number of periods. It typically takes less than 0.3 seconds to solve the

TLRP model for T = 5. For T = 10, 20 and 30, the times taken were 3 seconds,

30 seconds and 3 minutes, respectively, suggesting that the computational time

scales reasonably well with respect to the size of the problem. Moreover, the time

needed for computation does not depend on the replenishment lead time, demand

variability, and correlations. On the other hand, much of the computational effort

lies in solving the optimum history dependent policy using dynamic programming.

In the experiments, we have customized and optimized the dynamic programming
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Table 4.10: TLRP for µ = 220, α = 0, T = 10, b/h = 40, z̄ = 80, St = 240

x0
1

x0
2

x0
3

x0
4

x0
5

x0
6

x0
7

x0
8

x0
9

x0
10



=



240.0

231.0

231.4

231.7

232.2

232.9

233.7

234.9

236.4

135.7



,



x′
1

x′
2

x′
3

x′
4

x′
5

x′
6

x′
7

x′
8

x′
9

x′
10



=



0 0 0 0 0 0 0 0 0 0

0.23 0 0 0 0 0 0 0 0 0

0 0.22 0 0 0 0 0 0 0 0

0 0 0.21 0 0 0 0 0 0 0

0 0 0 0.20 0 0 0 0 0 0

0 0 0 0 0.17 0 0 0 0 0

0 0 0 0 0 0.16 0 0 0 0

0 0 0 0 0 0 0.13 0 0 0

0 0 0 0 0 0 0 0.09 0 0

0.78 0.78 0.79 0.80 0.82 0.84 0.87 0.91 1.00 0



.
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Table 4.11: LRP for µ = 220, α = 0, T = 10, b/h = 40, z̄ = 80, St = 240

x0
1

x0
2

x0
3

x0
4

x0
5

x0
6

x0
7

x0
8

x0
9

x0
10



=



240.0

229.6

229.8
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,


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=



0 0 0 0 0 0 0 0 0 0

0.26 0 0 0 0 0 0 0 0 0

0 0.26 0 0 0 0 0 0 0 0

0 0 0.26 0 0 0 0 0 0 0

0 0 0 0.26 0 0 0 0 0 0

0 0 0 0 0.26 0 0 0 0 0

0 0 0 0 0 0.26 0 0 0 0

0 0 0 0 0 0 0.25 0 0 0

0 0 0 0 0 0 0 0.24 0 0

0 0 0 0 0 0 0 0 0.23 0



.
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algorithm so that we can reduce the computational time to less than three hours.

For instance, we implemented the Golden-section search method and exploited the

fact that vt = µ+αz̃1+ · · ·+αz̃t ∈ [µ− tαz, µ+ tαz̄] to reduce the size of the state

space. Table 4.13 compares the computational times of the TLRP model against

the optimum dynamic programming model.

4.7 Summary

In this chapter, we studied the computational performance of the static, linear and

truncated linear replenishment policies against the optimum history dependent pol-

icy and two dynamic programming based heuristics, namely, the myopic policy and

a history-independent base-stock policy. Our computational results suggest that

the truncated linear replenishment policy, together with information on the direc-

tional deviations, yield reasonably good solutions against the optimum and give

the best overall performance among linear and static policies and simple dynamic

programming based heuristics. Specifically, the contribution of our approach over

the related works of Bertsimas and Thiele (2006) and Ben-Tal et al. (2005) can be

summarized as follows.

• Our proposed robust optimization approximation is based on a comprehen-

sive factor-based demand model that captures correlations such as the auto-

regressive nature of demand, the effect of external factors, as well as trends

and seasonality, among others. In addition, we cater for distributional ambi-

guity in the underlying factors by considering a family of distributions char-

acterized by the mean, covariance, support and directional deviations. In

contrast, the robust optimization model of Bertsimas and Thiele (2006) is re-

stricted to independent demands with an identical mean and variance, while

the model of Ben-Tal et al. (2005) is confined to completely distribution-free

demand uncertainty.

• We propose a new policy called the truncated linear replenishment policy,

which gives improved approximation to the multiperiod inventory control

problem over static and linear decision rules used in the robust optimiza-

tion proposals of Bertsimas and Thiele (2006) and Ben-Tal et al. (2005),
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Table 4.12: Size of the TLRP model, where Ln = {(x0,x) ∈ ℜ × ℜn−1 : ∥x∥2 ≤

x0}.

T 5 10 20 30

Affine constraints 5911 24721 125041 348961

Free variables 3366 15806 89911 266316

nonnegative variables 1700 9000 56400 174200

T 5 10 20 30 T 5 10 20 30

L2 cones 12 12 12 12 L18 cones - - 206 206

L3 cones 1226 4026 14426 31226 L19 cones - - 218 218

L4 cones 38 38 38 38 L20 cones - - 230 230

L5 cones 50 50 50 50 L21 cones - - 282 242

L6 cones 72 62 62 62 L22 cones - - 102 254

L7 cones 27 74 74 74 L23 cones - - - 255

L8 cones - 86 86 86 L24 cones - - - 278

L9 cones - 98 98 98 L25 cones - - - 290

L10 cones - 110 110 110 L26 cones - - - 302

L11 cones - 142 122 122 L27 cones - - - 314

L12 cones - 52 134 134 L28 cones - - - 326

L13 cones - - 146 146 L29 cones - - - 338

L14 cones - - 158 158 L30 cones - - - 350

L15 cones - - 170 170 L31 cones - - - 422

L16 cones - - 182 182 L32 cones - - - 152

L17 cones - - 194 194

Table 4.13: Computational time

T 5 10 20 30

TLRP 0.3 sec 3 sec 30 sec 3 min

OPT, α = 0 5 sec 18 sec 25 sec 85 sec

OPT, α = 1 12 min 30 min 1.5 hr 2.5 hr
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respectively. We do not restrict the policy structure to base-stock. We have

developed a new bound on a nested sum of expected positive values of random

variables and show that the parameters of the truncated linear replenishment

policy can be obtained by solving a tractable deterministic mathematical op-

timization problem in the form of a SOCP, whose solution time is independent

on replenishment lead time, demand variability, and correlations.
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Chapter 5

Safeguarding Fill Rate Against

Distributional Uncertainty

This chapter kicks off the second part of the thesis where we propose an approach

to optimize fill rate using descriptive statistics so as to assure that a high fill rate is

achieved even when there is distributional uncertainty. That is, the order quantity

needs to achieve an expected fill rate target for a family of distributions with the

same demand range, demand median and range of the probability density function.

Whereas part one discusses a single-product multiperiod problem, the problem here

is essentially a single-period multiproduct one. The goal of the chapter is to discuss

what an appropriate uncertainty set would be, based on the information we could

glean from historical data, and the quality of the robust model as seen in the

price to pay for incorporating robustness. The latter is important because while

robustness is desired, robust models should not be overly expensive.

In most practical settings, the distribution of demand is seldom known exactly

but only approximately. In particular, given a set of empirical data, it is common

to find not one but several possible fits to the distribution. Uncertainty in type

of demand distribution may also arise with changing trends. For example, many

consumer goods are known to exhibit seasonal variation with demand distributed

differently over time. Motivated by the practical need to incorporate uncertainty

in the type of demand distribution, this chapter proposes a model to optimize fill

rate using descriptive statistics.

In this model, it is assumed that the demand is bounded in [d, d̄], which is
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realistic in many practical settings. The demand probability density function,

pdf, is denoted by h(t) and we use D(d, d̄, h, h̄) to denote the family of demand

distributions with support [d, d̄] and pdf bounded within [h, h̄]. We adopt the

following notation where the subscript j, j = 1 . . . p denotes the jth product; for

the single-product case, the subscript may be omitted. Other notation are as

follows

• xj: order quantity

• d̃j: stochastic exogenous demand

• mj: median of the demand

• cj: unit ordering cost

• τj: fill rate target

5.1 Multiproduct Fill Rate Model

5.1.1 Definition of Fill Rate

Two different notions of fill rate are commonly encountered in supply chain man-

agement - case fill rate and line fill rate. Case fill rate measures the quantity of cases

filled as a proportion of cases ordered, usually as of the initial shipment in fulfill-

ment of an order. On the other hand, line fill rate measures the number of line items

that are completely (100%) filled, divided by the total number of line items ordered,

see for instance http://www.supplychainmetric.com/fillrate.thm. Our model

is concerned with case fill and not line fill. Throughout this thesis, we use the term

fill rate to denote the notion of case fill rate. More formally, given a stock of x, the

fill rate of inventory is the proportion of demand satisfied by on-hand stocks. Note

that fulfillment can never exceed the demand, and hence fill rate takes a maximum

value of one. Against uncertain demands, the instantaneous fill rate of inventory

can be written as min{x, d̃}/d̃ = min{x/d̃, 1}. Taking expectation gives the ex-

pected fill rate, E
(
min{x/d̃, 1}

)
. Observe that this measures a different quantity

from one minus the stockout probability. In particular, when demand is fully met,

we attach a utility (or value) of one, else we take the proportion of fulfillment x/d
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as the utility. In the case of one minus the stockout probability, the utility is one

when demand is fully met, and zero otherwise. The expected fill rate is not strictly

a probability and attaches some value to partially filled demands. While one minus

the stockout probability does not distinguish 1% fulfillment from 99% fulfillment,

fill rate does not have this issue and has been used by service critical industries to

quantify the extent of service delivered. One other advantage of expected fill rate

is that the function is concave which results in a convex optimization problem that

can be solved efficiently.

In practice, it is not uncommon for different products sharing the same bud-

get basket to have varying importance. This happens frequently in spare-part

provisioning, where items are extremely wide-ranging. On one end are low-cost

substitutable products such as screws and gaskets, while on the other extreme are

expensive specialized parts. Given known weights that sum to unity representing

the relative importance, we can define an aggregate expected fill rate as follows:

p∑
j=1

λjE
(
min{xj/d̃j, 1}

)
, with λj ≥ 0,

p∑
j=1

λj = 1.

The aggregate fill rate gives an overall measure of performance of inventory across

the basket of products. In the absence of concrete linkages between the products,

λ is used as a proxy to combine the item fill rate into an aggregate system level fill

rate. The weighting can be based on the importance of the items, or heuristically

derived from quantities such as the mean demand. For example, if the demand of

item i is on average twice that of item j, one could assert that λi = 2λj. When the

items are equally valued, the multiproduct problem aims to minimize inventory

purchase costs across all product types against fill rate constraints at the item

level, τj and the system level, τ0. In some contexts λ is not used and the system

level fill rate is taken as the minimum of the item fill rates, τ0 = min(τ1, . . . , τp).

This is common in military inventory management where the items may represent

essentials like food, water, fuel, and so forth. Only when all the items are available

will the military unit be operational, which explains the rationale of using the

minimum. An illustration of λ and system fill rate is provided in the multiproduct

model of Problem (5.5), as well as the example in Section 6.3. We now introduce

the notion of distributional uncertainty, before discussing the model.



57

5.1.2 Distributional Uncertainty

The distribution function of the demand is an input required for computation of

expected fill rate. Much literature assumes the function to be known and forecast

from historical data. The data requirements for estimating the distribution can

be inferred from the Dvoretzky-Kiefer-Wolfowitz inequality (see Dvoretzky et al.

(1956), Massart (1990)) which states that

Pr(sup
t

|F̂n(t)− F (t)| > ϵ) ≤ 2e−2nϵ2 . (5.1)

In the above, F̂n is the associated empirical distribution function computed using

n samples and F is the true cdf. This inequality is a classical result in statistical

and probability literature used to compute the sample size needed to guarantee

that the estimation of the cumulative distribution function is accurate. It should

be highlighted that the bound is tight, see Massart (1990). Application of the

inequality shows that in order to obtain accuracy of 0.01 with 0.99 confidence, a

sample size of n ≥ 26491 is needed.

To evaluate the accuracy of the estimation, simulations were carried out using

a uniform distribution in (0, 1) with sample size of n using Matlab. We denote the

ith sample of the data by yi, and the ith ordered sample by y(i). The empirical

distribution function is given by F̂n(t) = 1/n
∑n

i=1 1(yi≤t), where 1(yi≤t) is an indi-

cator variable. Observe that F̂n is a step function with discrete jumps. Instead

of deriving the worst-case error as per Equation (5.1), we derived the error at the

jump points. Observe that at the ith jump point, F is the ith ordered statistics

of the sample and F̂n = i/n, so the error is ζi = |F̂n(i/n)− F (i/n)| = |i/n− y(i)|.

The quantity maxi ζi approximately corresponds to but is less than ϵ of Equation

(5.1), and it is clear that maxi ζi → ϵ as n → ∞. The quantity,
∑

i ζi/n, gives

an indication of the mean error. The simulation was repeated N times. For ease

of exposition, we use superscript ζj to denote the outcome of the jth simulation.

Table 5.1 shows the result of N = 100000 simulations for a range of sample sizes.

The second column shows the maximum error while the third column shows the

mean error, averaged over N simulations. The variance of the error (averaged over

N simulations) is given in the last column, and we have used n rather than n− 1

in the computation for simplicity.
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Table 5.1: Errors in the estimation of distribution (obtained from simulation)

Max error Mean error Variance of error

Sample size (n) 1
N

∑
j maxi ζ

j
i

1
N

∑
j

∑
i ζ

j
i /n

1
N

∑
j

(∑
i(ζ

j
i )

2/n−
∑

i ζ
j
i /n
)

50 0.11 0.045 10× 10−4

100 0.081 0.032 5.0× 10−4

1000 0.026 0.010 5.0× 10−5

5000 0.012 0.0044 1.0× 10−5

10000 0.0057 0.0018 1.6× 10−6
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a) 100 samples b) 10000 samples

Figure 5.1: Uncertainty in distribution type

To visualize the distributions, we provided in Figure (5.1) the histograms of

n = 100 and n = 10000. For the n = 100 case, maxi ζi and
∑

i ζi/n are 0.073 and

0.024, respectively. Comparing these with Table 5.1, it is evident that Figure (5.1)

is a typical scenario one would encounter in practice.

Given the difficulty of knowing the density function precisely, we aim to derive

order quantities that will safeguard against variation in the distribution type, which

could be due to limited sample size used in forecasting the demand. That is, rather

than computing the fill rate using the (limited) demand data and assuming it to

represent the true distribution well, we want some assurance that the solution

obtained from the model is valid, even when using limited samples of demand data.

A common approach in robust inventory literature is to allow d̃ to assume some

possible distributions with the same descriptive statistics. As discussed earlier in
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Chapter 3, the use of descriptive statistics is not new in the inventory literature.

It was used by Scarf (1958), where he considered all possible demand distributions

with the same first and second moments. We next show that it is not practical to

use the moment approach for expected fill rate. To assure high fill rate, we need to

obtain a lower bound using the first two moments of d̃. We can use the fact that

for any random variables ã, b̃,

E
(
min{ã, b̃}

)
= 1

2
E (ã) + 1

2
E
(
b̃
)
− 1

2
E
(
|b̃− ã|

)
≥ 1

2
E (ã) + 1

2
E
(
b̃
)
− 1

2

√
E
(
(b̃− ã)2

)
,

(5.2)

where the last inequality is due to E (|r̃|) ≤
√
E (r̃2) (Jensen’s inequality). So,

E
(
min{x

d̃
, 1}
)

≥ 1
2
xE
(

1
d̃

)
+ 1

2
− 1

2

√
E
(
(1− x

d̃
)2
)

= 1
2
xE
(

1
d̃

)
+ 1

2
− 1

2

√
1− 2xE

(
1/d̃
)
+ x2E

(
1/d̃2

)
.

(5.3)

To use Inequality (5.3), we would need the quantities E
(
1/d̃
)
and E

(
1/d̃2

)
.

Only in special distributions, such as those with reciprocal symmetry, see Seshadri

(1964), would we be able to derive E
(
1/d̃
)
from E

(
d̃
)
, and E

(
1/d̃2

)
from E

(
d̃2
)
.

Distributions with reciprocal symmetry are often too limited to realistically model

real-life demand distributions. They are often unbounded from the right and trun-

cating them as a remedy would destroy the reciprocal property. An alternative

is to use the fact that for any nonnegative random variable d̃, Jensen’s inequality

gives E
(
1/d̃
)
≥ 1/E

(
d̃
)
. Applying to Inequality (5.3), we have

E

(
min

{
x

d̃
, 1

})
≥ 1

2
x/E

(
d̃
)
+

1

2
− 1

2

√
1− 2x/E

(
d̃
)
+ x2E

(
1/d̃2

)
.

A further bound on E
(
1/d̃2

)
is still required, which means that the result will be

very much weakened and not likely to be useful in practice.

5.1.3 Descriptive Statistics & Uncertainty Sets

Given this difficulty, there is a need to explore the use of other descriptive statis-

tics to construct the lower bound. Our approach is to deliberately incorporate

safeguards into the models by using more amenable descriptive statistics. For in-

stance, given that the demand may assume one of the two possible distributions
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shown in Figure (5.2), the following descriptive statistics can be used as input

parameters for optimization:

• d = 1, d̄ = 100,

• h = 0, h̄ = 0.03,

• 71.0 ≤ m(d̃) ≤ 79.6, since the median of case 1 demand is 71.0, and the

median of case 2 demand is 79.6.

0 20 40 60 80 100
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0.01

0.015

0.02

0.025

0.03

 

 

Case1: h(t)=0.03((t−1)/99)2

Case2: h(t)=0.02((t−1)/99)

Figure 5.2: Two possible distributions

The key idea is to provision for stocks to achieve a high fill rate over a family

of distributions wide enough to contain the true distribution which is uncertain.

Our approach is to develop bounds using the range of the demand and the range

of the pdf. That is, bounds of E
(
min{x/d̃, 1}

)
∀d̃ ∈ D(d, d̄, h, h̄). The quantity

h, h̄ are bounds on the pdf and can be estimated from empirical data by way of a

histogram.

In the case of a perfectly uniform distribution, h = h̄ = ĥ
∆
= 1/(d̄ − d). So

for evenly distributed data, an approach is to estimate h, h̄ with respect to some

deviation δ from the uniform distribution. Specifically, we add a buffer to the range

of pdf as a means to safeguard against distributional uncertainty:

h = (1− δ)ĥ, h̄ = (1 + δ)ĥ, 0 ≤ δ ≤ 1. (5.4)

Clearly, large δ implies a larger family of distributions and more conservative re-

sults. This approach closely resembles the uncertainty set approach in robust opti-

mization which has gained substantial acceptance as a tool to manage uncertainty.
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Besides h̄ and h, it will be seen shortly that another useful statistics is the

median, the discussion of which we postpone to a later section. Given these statis-

tics, the family of distribution could consist of all d̃ ∈ D(d, d̄, h, h̄), such that

m ≤ m(d̃) ≤ m̄, where m and lower and upper bounds to the median, respectively.

We are interested in an order quantity of x ∈ (0, d̄). Outside this range, the op-

timal value for the fill rate becomes trivial. The multiproduct fill rate optimization

problem with demand information given by descriptive statistics can be described

as follows:

min

p∑
j=1

cjxj

s.t. inf
d̃j∈D(dj ,d̄j ,hj ,h̄j)

mj≤m(d̃j)≤m̄j

E

(
min

{
xj

d̃j
, 1

})
≥ τj j = 1 . . . p

p∑
j=1

λj inf
d̃j∈D(dj ,d̄j ,hj ,h̄j)

mj≤m(d̃j)≤m̄j

E

(
min

{
xj

d̃j
, 1

})
≥ τ0

0 ≤ xj ≤ d̄j j = 1 . . . p.

(5.5)

The first set of constraints stipulate targets on the item fill rates, while the second

constraint stipulates a target on the aggregate fill rate. When there is no require-

ment for the aggregate fill rate to be higher than some specified target, we can set

τ0 = 0 to render the system level fill rate constraint inactive. The same applies to

the item level fill rate. The above is a single-period model. To extend it to multiple

periods, one needs to insert fill rate constraints and inventory balance equations at

the end of each period, see for instance Zipkin (2000).

5.2 Fill Rate Bounds

This section discusses the fill rate bounds. We start off with a basic bound, after

which we show how it can be improved.

5.2.1 Bounds using the Pdf Range

The main issue is the expected fill rate expression E
(
min{x/d̃, 1}

)
. Observe that

min{x/d̃, 1} = 1 +min{x/d̃− 1, 0} = 1−max{1− x/d̃, 0} = 1− (1− x/d̃)+.
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When the pdf is constant in (a, b), that is h(t) = h ∀t ∈ (a, b), we have the following

for x ≤ b:∫ b

a
(min{1, x/t})h dt =

∫ b

a
(1− (1− x/t)+)h dt

= h(b− a)− h
∫ b

max{x,a} 1− x/t dt

= h(b− a)− h
(
b−max{x, a} − x ln(b) + x ln (max{x, a})

)
= hmax{x− a, 0}+ hmin

{
−x ln(x),−x ln(a)

}
+ hx ln(b).

(5.6)

Notice that (1− x/t)+ = 0 when x > b, and therefore∫ b

a

(min{1, x/t})h dt = κ(x, a, b, h)
∆
= h(x− a)+ + hmin

{
−x ln(x),−x ln(a)

}
+ hx ln(b) x ≤ b

h(b− a) x > b.

(5.7)

With the kappa function, we now present the basic bounds on the expected fill rate

function.

Theorem 6 For demand with support in (d, d̄), and pdf bounded in [h, h̄], the

expected fill rate is bounded by the quantities below.

1. Lower bound,

inf
d̃∈D(d,d̄,h,h̄)

E
(
min{x/d̃, 1}

)
= κ(x, d, p, h) + κ(x, p, d̄, h̄),

where p =
h̄d̄− hd− 1

h̄− h
.

(5.8)

2. Upper bound,

sup
d̃∈D(d,d̄,h,h̄)

E
(
min{x/d̃, 1}

)
= κ(x, d, P, h) + κ(x, P, d̄, h̄),

where P =
1− hd̄+ h̄d

h̄− h
.

(5.9)

Proof :

1. For d̃ ∈ D(d, d̄, h, h̄), the worst-case fill rate for any order quantity x ∈ (0, d̄),

corresponds to the case when the demand (amongst the family of distributions

in D) is the largest. This happens for a pdf with the maximum mass packed

to the right. When this happens, the worst-case fill rate is achieved, which

means that the corresponding upper bound constructed from the pdf is tight.
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Figure 5.3: Fill rate cases

Figure (5.3a) shows such a distribution. Observe that it consists of two

piecewise uniform distributions. Let p be the intersection point of the two

uniform distributions. From the geometry, using
∫
h(t)dt = 1 we obtain

p = h̄d̄−hd−1
h̄−h

, and the result follows by Equation (5.7).

2. Similarly, the best-case fill rate is achieved by a distribution with the max-

imum mass packed to the left. See Figure (5.3b). From the geometry,

P = 1−hd̄+h̄d
h̄−h

and the result follows.

The quantity

sup
d̃∈D(d,d̄,h,h̄)

E
(
min{x/d̃, 1}

)
− inf

d̃∈D(d,d̄,h,h̄)
E
(
min{x/d̃, 1}

)
bounds the variation of fill rate within the family of distributions, and provides

insights on the price incurred when incorporating distributional uncertainty in the

model.

5.2.2 Bounds using the Median

The bounds of Theorem 6 are achieved by the distributions shown in Figure 5.3,

which means that the bounds are tight. However, the price to pay for incorporat-

ing the uncertainty in the distribution type may be high, especially when h̄− h is

large. Means to reduce the price of distributional uncertainty are hence necessary

to obtain a practical model. Given that d̃ may take one of the two possible distri-

butions of Figure (5.4a), it would make sense to exclude other oppositely skewed

distributions, such as those of Figure (5.4b) even though they have the same de-

mand range and pdf range. Observe that the mean demands of the distributions of
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Figure 5.4: Demand cases

Figure (5.4a) are substantially larger than those of Figure (5.4b). This suggests the

approach of constraining the family of distributions such that the mean demand

lies within a restricted range u ≤ E
(
d̃
)
≤ U .
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Figure 5.5: Fill rate for three demand distributions with mean of 25

Figure (5.5) shows the expected fill rate for three distributions all with the same

mean of 25, as follows.

1. d̃ = 40 with probability 0.5, and 10 with probability 0.5,

2. d̃ = 30 with probability 0.75, and 10 with probability 0.25,

3. d̃ = 25 with probability 1.

As is evident from the figure, inf
d̃∈D(d,d̄,h,h̄),E(d̃)=U

E
(
min{x/d̃, 1}

)
is not achieved by

a single demand distribution, which makes derivation of tight bounds difficult. We
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therefore utilize another measure of central tendency - the median. The use of the

median has two key advantages. Firstly, it allows tight bounds to be developed

easily, as will be shown very shortly. Secondly, the median is well known in robust

statistics literature to be more resilient to data contamination than the mean, see

for instance, Ricardo et al. (2006).

Theorem 7 For demand with support in (d, d̄), pdf bounded in [h, h̄], and median

m ≤ m(d̃) ≤ m̄ the expected fill rate is bounded by the quantities below.

1. Lower bound,

inf d̃∈D(d,d̄,h,h̄)

m≤m(d̃)≤m̄

E
(
min{x/d̃, 1}

)
= κ(x, d, p1, h) + κ(x, p1, m̄, h̄) +

κ(x, m̄, p2, h) + κ(x, p2, d̄, h̄),

(5.10)

where p1 =
h̄m̄− hd− 0.5

h̄− h
, p2 =

h̄d̄− hm̄− 0.5

h̄− h
.

2. Upper bound,

supd̃∈D(d,d̄,h,h̄)

m≤m(d̃)≤m̄

E
(
min{x/d̃, 1}

)
= κ(x, d, P1, h̄) + κ(x, P1,m, h) +

κ(x,m, P2, h̄) + κ(x, P2, d̄, h),

(5.11)

where P1 =
0.5− hm+ h̄d

h̄− h
, P2 =

0.5 + h̄m− hd̄

h̄− h
.

h̄

h

m̄p1 p2d d̄

h̄

h

mP1 P2d d̄

a) Worst-case Fill Rate b) Best-case Fill Rate

Figure 5.6: Fill rate cases with median constraint

Proof :
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1. The worst-case fill rate is achieved by the distribution with median = m̄ and

the maximum mass packed to the right. See Figure (5.6a). Observe that

it consists of four piecewise uniform distributions. Let p1, p2 be intersection

points as indicated in the figure. Since
∫ m̄

d
h(t)dt =

∫ d̄

m̄
h(t)dt = 0.5, from the

geometry we obtain p1 =
h̄m̄−hd−0.5

h̄−h
, p2 =

h̄d̄−hm̄−0.5
h̄−h

and the result follows by

Equation (5.7).

2. The best-case fill rate is achieved by a distribution with median = m and

maximum mass packed to the left. From the geometry, P1 =
0.5−hm+h̄d

h̄−h
, P2 =

0.5+h̄m−hd̄
h̄−h

, giving the result.

5.2.3 Bounds using Modal Information

For the case of unimodal distributions, when the pdf increases to some peak and

then decreases, the price of distributional uncertainty can be reduced using modal

information. The idea is to restrict the family of distributions to unimodal ones.

h̄

h

mpd d̄

h̄

h

m Pd d̄

a) Worst-case Fill Rate b) Best-case Fill Rate

Figure 5.7: Unimodal demand

Theorem 8 Let G be the family of unimodal demand distributions with support in

(d, d̄), pdf bounded in [h, h̄] with median m more than the peak. A lower bound on

the expected fill rate for d̃ ∈ G is

inf d̃∈G E
(
min{x/d̃, 1}

)
= κ(x, d, p, h) + κ(x, p,m, h̄) + κ

(
x,m, d̄, 0.5

d̄−m

)
,

where p =
h̄m− hd− 0.5

h̄− h
.

(5.12)
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Proof : Observe that the pdf to the right of the peak is non-increasing. For

demand > m, we need to pack half of the entire mass as much as possible to the

right such that the pdf is non-increasing, which is achieved by spreading the mass

out evenly. That is, h(t) = 0.5
d̄−m

, t > m. The worst-case fill rate hence takes the

form of Figure (5.7a). Similar to Theorem 7, p = h̄m̄−hd−0.5
h̄−h

by the geometry and

the result follows.

When the peak of the pdf falls to the right of the median, we can modify

Theorem 8 to use the q-percentile rather than the median, where q is selected such

that the percentile lies to the right of the peak. The percentile can be estimated

using empirical data, though the statistical robustness of the estimate may not be

as favorable as the median. Clearly, for any two percentiles that lie to the right

of the peak, the smaller percentile will yield a better result. Notice that with

q = 100%, the result is identical to the lower bound of Theorem 7. Theorem 8

can hence be considered as a refinement for the case of an unimodal distribution.

Using similar concepts, we obtain the following counterpart for the upper bound.

Theorem 9 Let H be the the family of unimodal demand distributions with support

in (d, d̄), pdf bounded in [h, h̄] with median m less than the peak. An upper bound

on the expected fill rate for d̃ ∈ H is

supd̃∈H E
(
min{x/d̃, 1}

)
= κ

(
x, d,m, 0.5

m−d

)
+ κ(x,m, P, h̄) + κ(x, P, d̄, h),

where P =
0.5 + h̄m− hd̄

h̄− h
.

(5.13)

Proof : For demand < m, we need to pack half of the entire the mass as much

as possible to the left such that the pdf is non-decreasing, which is achieved by

spreading the mass out evenly. That is, h(t) = 0.5
d̄−m

, t < m. The best-case fill rate

hence takes the form of Figure (5.7b). Similar to Theorem 7, P = 0.5+h̄m−hd̄
h̄−h

by

the geometry and the result follows.

With slightly more information, we can reduce the price of distributional uncer-

tainty further. If q, q̄ are percentiles such that q-percentile < peak < q̄-percentile,

modifying Theorem 8 with the q̄-percentile and Theorem 9 with the q-percentile

gives the lower and upper bounds, respectively. Our framework can be further

generalized. Suppose the distributions are multimodal, the above result is valid

when q-percentile < left-most peak < right-most peak < q̄-percentile.
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We have completed the theoretical discussions on the models. In the next

chapter, we will discuss via computational studies, the effectiveness of our robust

approach.
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Chapter 6

Computational Studies of Fill

Rate Model

In our computational study, we first tested whether our approach has the ability of

obtaining meaningful solutions even in the absence of complete demand informa-

tion. We compared the bounds of Theorem 6 with Theorem 7 to examine the effect

of incorporating median information, and to provide insights on the bounds. This

is followed by a second set of tests to investigate the effectiveness of our robust ap-

proach against the traditional approach of enforcing fill rate constraint using data

samples. Here, the parameters are not known but estimated from data. Thereafter,

we provided an example constructed using real-life demand to illustrate the model.

The technical tests cover bounds at the single-product level. In the example with

real-life demand, bounds at the multiproduct level are constructed. Throughout

this chapter, we use price of distributional uncertainty to refer to the following

sup
d̃∈D

E
(
min{x/d̃, 1}

)
− inf

d̃∈D
E
(
min{x/d̃, 1}

)
,

which is the price incurred for incorporating robustness when the family of distri-

bution is D. In short, it refers to the price of robustness.

6.1 Technical Tests

For the purposes of technical testing, we used two reference distributions with pdf

h1(t) and h2(t), t ∈ (0, 1) to construct the descriptive statistics, which means that
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the family of distributions needs to contain h1(t) and h2(t). The test cases are as

follows.

1. h1(t) = 1, h2(t) = 2t, scaled to [d, d̄] = [1, 100] and [51, 100].

2. Left-skewed distributions, as illustrated in Figure (5.4a), h1(t) = 2t, h2(t) =

3t2, scaled to [d, d̄] = [1, 100] and [51, 100].

3. Right-skewed distributions, as illustrated in Figure (5.4b), h1(t) = 2(1 − t),

h2(t) = 3(1− t)2, scaled to [d, d̄] = [1, 100] and [51, 100].
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a) 50.5 ≤ m(d̃) ≤ 71.0 b) 75.5 ≤ m(d̃) ≤ 85.6

(h, h̄) = [0, 0.02], [d, d̄] = [1, 100] (h, h̄) = [0, 0.04], [d, d̄] = [51, 100]

Figure 6.1: Case 1 - h1(t) = 1, h2(t) = 2t

The results are presented in Figures (6.1), (6.2) and (6.3), respectively. Note

that the y-axis represents fill rate while the x-axis represents order quantity. The

results can be taken to be representative for more general demand scaling, as

discussed below.

• Recall that fill rate is scale-invariant in the sense that multiplying the de-

mand by any positive constant can be compensated by multiplying the order

quantity by the same constant. That is, for any β > 0, E
(
min{x/d̃, 1}

)
=

E
(
min{βx/βd̃, 1}

)
. For instance, demand scaled to [1, 50] is approximately

half the demand scaled to [1, 100], so the trend for [1, 100] will apply to [1, 50]

approximately.
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a) 71.0 ≤ m(d̃) ≤ 79.6 b) 85.6 ≤ m(d̃) ≤ 89.9

[h, h̄] = [0, 0.03], [d, d̄] = [1, 100] [h, h̄] = [0, 0.06], [d, d̄] = [51, 100]

Figure 6.2: Case 2 - h1(t) = 2t, h2(t) = 3t2
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a) 21.4 ≤ m(d̃) ≤ 30.0 b) 61.1 ≤ m(d̃) ≤ 65.4

[h, h̄] = [0, 0.03], [d, d̄] = [1, 100] [h, h̄] = [0, 0.06], [d, d̄] = [51, 100]

Figure 6.3: Case 3 - h1(t) = 2(1− t), h2(t) = 3(1− t)2

• For the same upper support, fill rate decreases when we increase the lower

support. This is evident from the figures, when we compare fill rates without

median information for [1, 100] with [51, 100].

In all the test cases, incorporating median information results in stronger bounds.

The price of incorporating distributional uncertainty varies with the order quantity.

For left-skewed distributions, Figure (6.2), the prices are much smaller at expected

fill rate of 0.9 or more, where the order quantities are high. For right-skewed dis-

tributions, Figure (6.3), the bounds of Theorem 7 are comparatively much weaker.

However, using Theorem 8 to exploit the fact that the distributions are unimodal
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results in an improved lower bound, as shown in Figure (6.4a). Similarly, using

Theorem 9, we can improve the upper bound of left-skewed distributions, as shown

in Figure (6.4b). Theoretically, the price of distributional uncertainty can still be

reduced by using a more “optimal” percentile instead of the median, but this was

not pursued in this set of experiments.
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a) h1(t) = 2(1− t), h2(t) = 3(1− t)2 b) h1(t) = 2t, h2(t) = 3t2

21.4 ≤ m(d̃) ≤ 30.0 71.0 ≤ m(d̃) ≤ 79.6

[h, h̄] = [0, 0.03], [d, d̄] = [1, 100] [h, h̄] = [0, 0.03], [d, d̄] = [1, 100]

Figure 6.4: Results with unimodal Information

In another set of experiments, we tested the approach of adding a buffer to the

pdf ranges with some factor δ with respect to the uniform distribution. See Equa-

tion (5.4). The objective of this set of experiments is to investigate the suitability of

our model in safeguarding against deviations from evenly distributed demands. We

used δ = 0.2, 0.4, 0.6, 0.8, [d, d̄] = [1, 100] with ±10% margin added to the median,

45.5 ≤ m(d̃) ≤ 55.6. The results are presented in Figure (6.5).

As is evident from Figure (6.5), the price of safeguarding the uniform distribu-

tion is inexpensive for δ ≤ 0.6. For small δ, 0.2 to 0.4, the effect of median informa-

tion is not significant. At an order quantity of 60, the lower bounds with median

information for the four cases are close: 0.89, 0.87, 0.85, 0.83 for δ = 0.2, 0.4, 0.6, 0.8,

respectively. It should be highlighted that Corsten and Gruen (2004) shows that

average fill rates for U.S. supermarkets are around 0.9. For skewed distributions,

Figure (6.4) shows with the use of modal information, the price to pay for distri-

butional uncertainty is not overly high for this level of fill rate.
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a) Case 1 - δ = 0.2 b) Case 2 - δ = 0.4
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Figure 6.5: Fill rate with buffer to the pdf ranges

6.2 Effectiveness of Robust Fill Rate Model

In this set of tests, we investigated the effectiveness of our robust approach against

the traditional approach of enforcing fill rate constraint using data samples. While

we have established the lower bound on the expected fill rate function under the

assumption that the true pdf and the true median are bounded in (h, h̄) and (m, m̄),

respectively, we are interested to examine whether our model is still robust when

these quantities are not known but estimated from data.

In the traditional approach, the order quantity is derived using available data

samples of demands against a fill rate target τ . We denote the sample size used

by n, the fill rate target by τ , and we use subscript indexing xT, n, τ to denote the

order quantity obtained by this approach. That is,

xT, n, τ = min
x

{
x
∣∣ E(min{x/d̃, 1}

)
≥ τ, where d̃ = d1 . . . dn

}
.
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For the robust approach, we use xR, n, τ to denote the order quantity obtained using

the lower bound with median information of Theorem 7. That is,

xR, n, τ = min
x

x

∣∣∣∣∣ inf d̃∈D E
(
min{x/d̃, 1}

)
= κ(x, d, p1, h) +

κ(x, p1, m̄, h̄) + κ(x, m̄, p2, h) + κ(x, p2, d̄, h̄) ≥ τ

 ,

where p1 = h̄m̄−hd−0.5
h̄−h

, p2 = h̄d̄−hm̄−0.5
h̄−h

, and d, d̄, h, h̄ are quantities estimated from

the same set of sample data d̃ = d1 . . . dn used in the traditional approach. It

should be emphasized that we let m̄, the upper bound on the true median, to

equal to the sample median, rather than any valid upper bound. The quantities

h and h̄ were estimated using a histogram. We then evaluated the expected fill

rate achieved by xT, n, τ and xR, n, τ under the true distribution, which we denote

by fT, n, τ and fR, n, τ , respectively. That is, fT, n, τ = E
(
min{xT, n, τ/d̃, 1}

)
, where

d̃ is the true distribution, and the same applies to fR, n, τ . The experiment is

repeated N = 1, 000 times, and we use superscript to denote the ith outcome. For

comparison purposes, we made use of the following quantities,

• E
(
(τ − f̃T, n, τ )

+
)
=

1

N

∑
i

(τ − f i
T, n, τ )

+, which measures the level of under-

achievement, and

• E
(
(f̃T, n, τ − τ)+

)
=

1

N

∑
i

(f i
T, n, τ − τ)+, which measures the level of over-

achievement.

We now discuss why these quantities were used for comparison purposes. As-

suming that we know the true distribution or have available a very large number of

sample demands, we can use the samples to derive xR, n, τ . If we repeat the exper-

iments and compute the above quantities, it is evident that E
(
(τ − f̃T, n, τ )

+
)
=

E
(
(f̃T, n, τ − τ)+

)
= 0. That is, the order quantity achieves the fill rate tar-

get exactly, with no underachievement and no overachievement. This would be

ideal, but deriving it in practice is hard, because data samples are limited. Under

practical scenarios, service-oriented industries would aim to reduce the risk of un-

derachievement by provisioning for more stocks to safeguard against distributional

uncertainty. A model with less underachievement would therefore be more robust

and offers better safeguard. To compare the models, it is assumed that we have

knowledge of the true distribution which we took to be Beta distributions scaled
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to (1, 100). We used sample sizes of n = 20 and n = 60, and fill rate targets τ of

0.85 and 0.95. In the estimation of h and h̄, we used histograms with 5 bins and

15 bins, for n = 20 and n = 60, respectively.

The results are presented in Table (6.1). In Theorem 7, we have established

the lower bound on the expected fill rate function under the assumption that the

true pdf and the true median are bounded in (h, h̄) and (m, m̄), respectively. As

is evident from the results, when these quantities are not known but estimated

from data, the lower bound is effective. In all cases but one, the robust model has

lower underachievement and is able to safeguard fill rate better than the traditional

method. For the case, β(2, 1), n = 20, and τ = 0.95, the underachievement of the

traditional approach is marginally better, 0.0085 versus 0.0090 achieved by the ro-

bust model. In this case the robustness of our approach is somewhat compromised,

because of the shape of the distribution and the error in estimating the parameters.

However, both models perform similarly for the case when we let the upper bound

on the median, m̄, to be 1.1 times the sample median rather than 1.0 times. (In

practice, one can add a buffer to the estimated parameters or construct uncertainty

sets around them.) The robust model generally has higher overachievement, which

is as expected.

To visualize the result, we provided histograms of expected fill rate achievement

for the case of n = 20, τ = 0.85, β(1, 1) in Figure (6.6). In the figure, the left tail

of the robust model, f̃R, is much shorter than that of the traditional model, f̃T .

We observe that the robust fill rate, f̃R, is squeezed to the right, with more cases

achieving 0.85 and higher fill rate.

It should be highlighted that the traditional approach provisions for order quan-

tity against a single distribution, and hence E
(
(τ − f̃T, n, τ )

+
)
= E

(
(f̃T, n, τ − τ)+

)
= 0 when we use large sample sizes to derive the order quantity. When sample size

is large, we will have zero underachievement for the robust model, but the over-

achievement will be positive because we are provisioning for order quantity against

a family of distribution D. If we evaluate the achievement under the worst-case de-

mand in the family D, the robust model will give zero underachievement as well as

zero overachievement when (h, h̄) bounds the pdf tightly. In statistical literature,

it is well known that the histogram converges to the true pdf when large sample
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Table 6.1: Robust fill rate model versus traditional approach

Underachievement Overachievement

Distribution Traditional Robust Traditional Robust

n = 20, τ = 0.85

β(1, 1) 0.0207 0.0047 0.0131 0.0208

β(2, 2) 0.0179 0.0039 0.0134 0.0315

β(1, 2) 0.0233 5.91e-04 0.0147 0.0713

β(2, 1) 0.0151 0.0126 0.0106 0.0113

n = 20, τ = 0.95

β(1, 1) 0.0132 0.0056 0.0057 0.0077

β(2, 2) 0.0113 0.0041 0.0062 0.0152

β(1, 2) 0.0141 0.0032 0.0063 0.0238

β(2, 1) 0.0085 0.0090 0.0051 0.0024

n = 60, τ = 0.85

β(1, 1) 0.0104 1.08e-05 0.0083 0.0433

β(2, 2) 0.0098 0 0.0075 0.0671

β(1, 2) 0.0118 0 0.0095 0.1061

β(2, 1) 0.0045 4.33e-04 0.0032 0.0095

n = 60, τ = 0.95

β(1, 1) 0.0055 4.69e-06 0.0039 0.0197

β(2, 2) 0.0057 2.45e-06 0.0037 0.0305

β(1, 2) 0.0067 1.17e-06 0.0047 0.0389

β(2, 1) 0.0046 5.21e-04 0.0031 0.0092
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a) f̃T, 20, 0.85 (Traditional Model) b) f̃R, 20, 0.85 (Robust Model)

Figure 6.6: Histogram of Expected Fill Rate Achievements

size is large. So tight bounds are possible, but only in theory.

6.3 An Example with Real-life Demand

Following on from the technical testing, experiments using industrial demands were

carried out. It should be highlighted that the purpose here is to derive the fill rate

trend using real-life demands, and actual application of the model is likely to take

a different form. Motivated by the popularity of demand satisfaction problem in

the power generation industry, see for instance Williams (1999) the power genera-

tion, hydro power and refinery optimization examples, we used demands from the

electricity industry to construct an example.

Consider the scenario of an electricity service provider serving two locations,

location 1 and location 2 with demands d̃1 and d̃2, respectively. For presentation

purposes we have reported the demands in units of 10000 MWh. That is, a figure

of 50 means 50 × 10000 MWh. From a supply chain perspective, we can define a

service level for each retailer locally and also globally as an aggregate. Denote x1

and x2, respectively, as the resources (say coal for instance) allocated to fulfilling

the demand from the locations. The resources are measured in quantities of the

demand. For instance, x1 represents the quantity of coal to produce 10000 MWh of

electricity for location 1. The problem is to decide x1, x2 to maximize the aggregate

fill rate given by τ0 = λ1E
(
min{x1/d̃1, 1}

)
+λ2E

(
min{x2/d̃2, 1}

)
, subject to cost

constraint c1x1 + c2x2 ≤ C. The rationale of the objective function lies in the fact
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Figure 6.7: Monthly electricity generation (histogram)

that the service provider is obliged to serve not one but both locations. The weight

λ can be derived from the population size of the location, where a larger population

implies more importance. Arguably, demand is proportional to population size so

as a simplification, we may use the demand mean to derive λ. Observe that the

problem has a concave objective function with a single (linear) constraint, which

corresponds to a knapsack problem. It is more illustrative to derive an aggregate

fill rate versus cost curve. To this end, the problem is optimized using marginal

analysis, a popular algorithm for solving the knapsack problem. For simplicity, we

have assumed that the resources are of the same type, which means that we can

use c1 = c2 = 1. For location 1, we used the data from 2005 to 2007 from the

facility called Barry; for location 2, data from the facility called Gorgas was used.

See the Appendix G. Figure (6.7) shows the histogram of the demands, and the

descriptive statistics are presented in Table 6.2.

The results are shown in Figure (6.8) and Figure (6.9), with the x-axis rep-

resenting the cost. We did not use the exact sample median but have added a

margin of about ±10% when constructing the bounds. For location 1, the bounds

are reasonably close without median information whereas they are much wider for

location 2, which means that the price of distributional uncertainty is expensive.

Therefore, the median bounds were used during the marginal analysis process (the

optimization stage). The aggregate fill rate versus cost curve is shown in Figure

(6.9).

In practice, for more complicated problems we can exploit the fact that the
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Table 6.2: Monthly electricity generation (descriptive statistics)

Location 1 Location 2

demand mean 123 65

demand median 125 68

demand variance 396 313

d 79 11

d̄ 154 85

h 0.004 0

h̄ 0.033 0.045
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Figure 6.8: Fill rate of electricity demand

expected fill rate function E
(
min{x/d̃, 1}

)
is concave in x and adopt a linear

programming formulation. Recall that the minimum of affine functions f(x) =

min{ax + b, αx + β} is concave in x, which means that the function g(x) =

min{x/d, 1} is concave. Also note that the expectation operator preserves con-

vexity (concavity). Given discrete demands d1 . . . dN , we have E
(
min{x/d̃, 1)

)
=∑N

i=1 Pr(d̃ = di) ·min{x/di, 1}, which is a weighted sum of the concave function g.

This implies that E
(
min{x/d̃, 1}

)
is concave in x. For continuous demands, this

argument holds with integration replacing summation, that is, E
(
min{x/d̃, 1}

)
=∫

h(t)min{x/d̃, 1} dt, see Chapter 3 of Boyd and Vandenberghe (2004).

The functions of Theorems 6 to 9 are concave in x, since they are exact identi-

ties for expected fill rate. Therefore it is always possible to approximate Problem
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Figure 6.9: Aggregate fill rate of electricity demand

(5.5) using a concave piecewise-linear function, which results in a linear program-

ming formulation for the multiproduct problem. We can solve a piecewise-linear

approximation problem that underestimates

inf
d̃∈D(d,d̄,h,h̄)

m≤m(d̃)≤m̄

E
(
min{x/d̃, 1}

)

and a piecewise-linear approximation problem that overestimates

sup
d̃∈D(d,d̄,h,h̄)

m≤m(d̃)≤m̄

E
(
min{x/d̃, 1}

)
.

6.4 Summary

This part of the research proposes a new methodology to assure that high fill rate is

achieved even with uncertain demand distributions. Using the moment approach to

construct bounds for the expected fill rate is impractical, but it is possible to exploit

other descriptive statistics and we propose a framework to optimize expected fill

rate using information such as the range and median of the demand, and the range

of the pdf. Using the median bounds, the price of distributional uncertainty does

not appear to be too expensive, especially for high fill rates of 0.9 or more.

In practice, one would construct the bounds for the products individually and

incorporate information gradually, incorporating median and then modal informa-

tion. A final fill rate bound is then selected. The items may be ranked according
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to the price of distributional uncertainty to identify those requiring exceptionally

high price. The inventory manager could then focus his/her effort to improve the

demand forecasting of these items. He/she would need to collect more data on

these items, so as to reduce the price of distributional uncertainty to a reasonable

level. The final step is to solve the multiproduct model using the finalized bounds

to obtain the price of distributional uncertainty at the aggregated level.
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Chapter 7

Conclusions

We close the thesis with this concluding chapter, which highlights the contributions

of our research. Recall that the thesis proposes two methodologies, a technique to

optimize multiperiod inventory model robustly and an approach to safeguard fill

rate against distributional uncertainty. We begin by highlighting the advantages

of our models and the insights gained.

• The approach of the multiperiod inventory model has the advantage of being

able to obtain the replenishment policy by solving a tractable polynomial-

time solvable SOCP of modest size. The computational studies suggest that

the truncated linear replenishment policy performs better than linear and

static ones. Moreover, the robustness of the truncated linear replenishment

policy is exemplified by its outperformance against optimal policies despite

using significantly less information. Although the robust policy does not nec-

essarily have a base-stock structure, our computational studies suggest that

it can perform better than simple heuristics derived from dynamic program-

ming.

• In the latter half of the thesis, we propose a new methodology to assure

that high fill rate is achieved even with uncertain demand distributions. We

have shown that using the moment approach to construct bounds for the

expected fill rate is impractical, which explains the scarcity of distribution-

free approaches in the fill rate practice. Nevertheless it is possible to exploit

other descriptive statistics and we propose a framework to optimize expected
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fill rate using information such as the range and median of the demand, and

the range of the pdf.

7.1 Contributions

7.1.1 Multiperiod Inventory Model

Instead of the “Budget of Uncertainty” demand model, we focus on uncertain

demands being robustly characterized by their descriptive statistics. The former

requires the size of the uncertainty set to be specified, which as exemplified in

Bertsimas and Sim (2006), can be dependent on the types of stochastic optimization

problem we are addressing. The “Budget of Uncertainty” approach to uncertainty,

although it has its strengths, is less appealing when we compare it vis-à-vis with

stochastic demand models. Specifically, the contribution of our approach over the

related works of Bertsimas and Thiele (2006) and Ben-Tal et al. (2005) can be

summarized as follows.

(a) Our proposed robust optimization approximation is based on a comprehen-

sive factor-based demand model that captures correlations such as the auto-

regressive nature of demand, the effect of external factors, as well as trends and

seasonality, among others. In addition, we cater for distributional ambiguity

in the underlying factors by considering a family of distributions characterized

by the mean, covariance, support and directional deviations. In contrast, the

robust optimization model of Bertsimas and Thiele (2006) is restricted to in-

dependent demands with an identical mean and variance, whereas the model

of Ben-Tal et al. (2005) is confined to completely distribution-free demand

uncertainty.

(b) We propose a new policy called the truncated linear replenishment policy,

which gives improved approximation to the multiperiod inventory control

problem over static and linear decision rules used in the robust optimization

proposals of Bertsimas and Thiele (2006) and Ben-Tal et al. (2005), respec-

tively. We do not restrict the policy structure to base-stock. We have de-

veloped a new bound on a nested sum of expected positive values of random

variables and show that the parameters of the truncated linear replenishment
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policy can be obtained by solving a tractable deterministic mathematical op-

timization problem in the form of a SOCP, whose solution time is independent

on replenishment lead time, demand variability, and correlations.

(c) We studied the computational performance of the static, linear and truncated

linear replenishment policies against the optimum history dependent policy

and two dynamic programming based heuristics, namely, the myopic policy

and a history-independent base-stock policy. We analyze the impact of the

solutions over realistic ranges of planing horizon, cost parameters and de-

mand correlations. In contrast, the computational experiments of Bertsimas

and Thiele (2006) are confined to independent demands, while the experiment

considered in Ben-Tal et al. (2005) does not benchmark against stochastic

demand models. Our computational results suggest that the truncated linear

replenishment policy, together with information on the directional deviations,

yield reasonably good solutions against the optimum and give the best overall

performance among linear and static policies and simple dynamic program-

ming based heuristics.

7.1.2 Fill Rate Model

The second model, which is discussed in Chapter 5, proposes an approach to de-

rive the order quantity that achieves an expected fill rate target using descrip-

tive statistics, such as the demand range, the demand median, and the range of

the probability density function, so as to safeguard against distributional uncer-

tainty. Our model differs from many robust optimization models in that we do

not make use of moments. We can derive the price of incorporating the uncer-

tainty in distribution through solving a pair of approximate problems, by means

of linear programming formulation. We have also extended the model to make

use of additional information such as the location of the peak demand, and show

that incorporating information on the location of the demand peak with respect to

specific percentiles reduces the price of uncertainty. (The α-percentile is the value

below which α percent of the demands can be found). Our work focuses primarily

on single-period problems. However, by inserting fill rate constraints and inventory

balance equations at the end of each period, it is possible to apply the methodology
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to multiperiod problems.

The model may be used to help practitioners estimate the price of distributional

uncertainty and evaluate whether it is worth remedying or mitigating. We feel that

while this may not eliminate the need for more precise demand forecasting, it is

nevertheless a tool that accesses the need for more elaborate data collection efforts.

As exemplified by the uniform distribution, the price of distributional uncertainty

may be inexpensive. The inventory manager could then focus his/her effort to

improve the demand forecasting of the items that have a high price of distributional

uncertainty.

7.2 Concluding Remarks

As mentioned in the introductory chapter, even with the long and fruitful research

history, the major issues and problems in the area of inventory optimization has

not been fully resolved. It has been the author’s motivation and desire that this

thesis will serve the dual purpose of helping practitioners better manage inventory

as well as motivating further research. Inventory management will surely evolve

and so will the techniques and solutions. This research has provided a pleasant

learning experience, and it is the author’s hope that others may benefit from it as

well.
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Appendix A

Proof of Proposition 3

Proof : The bound E((z̃−a)+) ≤ π(−a, 1) follows directly from Theorem 1. Since

the bound of Proposition 2 is tight, it suffices to show

π(−a, 1) ≤


1

2

(
−a+

√
σ2 + a2

)
if a ≥ σ2−µ2

2µ

−a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
if a < σ2−µ2

2µ

With z = µ and p = q = z̄ = ∞, we first simplify the bound as follows:

π(y0,y) = min r1 + r2 + r3

s.t. y10 + t1µ ≤ r1

0 ≤ r1

−t1 = y11

t1 ≥ 0

h1µ ≤ r2

y20 ≤ r2

h1 = y21

h1 ≥ 0

1
2
y30 +

1
2

√
y230 + σ2y231 ≤ r3

y10 + y20 + y30 = −a

y11 + y21 + y31 = 1

= min (y10 − y11µ)
+ +max{y21µ, y20}+ 1

2
y30 +

1
2

√
y230 + σ2y231

s.t. y11 ≤ 0

y21 ≥ 0

y10 + y20 + y30 = −a

y11 + y21 + y31 = 1.

(A.1)
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Clearly, with y10 = y20 = 0, y30 = −a, y11 = y21 = 0 and y31 = 1, we see that

π(y0,y) ≤ −1
2
a+ 1

2

√
a2 + σ2. Now for a < σ2−µ2

2µ
, we let y10 = y11 = 0,

y20 = µσ2−µ2−2µa
µ2+σ2 ,

y21 = σ2−µ2−2µa
µ2+σ2 ≥ 0,

y30 = (µ+ a)µ
2−σ2

µ2+σ2 ,

y31 = 2µ µ+a
µ2+σ2 .

which are feasible in Problem (A.1). Hence,

π(−a, 1) ≤ (y10 − y11µ)
+ +max{y21µ, y20}+ 1

2
y30 +

1
2

√
y230 + σ2y231

= −a− 1

2
(µ+ a)

µ2 − σ2

µ2 + σ2
+

1

2

√
(a+ µ)2︸ ︷︷ ︸
=a+µ

= −a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
.
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Appendix B

Proof of Theorem 2

Proof : Under the static replenishment policy and using the factor-based demand

model, the inventory level at the end of period t is given by

ySRP
t+1 (d̃t) = y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

xSRP
τ−L (d̃τ−L−1)−

t∑
τ=1

dτ (z̃)

= y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

x0∗
τ−L −

t∑
τ=1

d0τ −
t∑

τ=1

N∑
k=1

dkτ z̃k

= y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

x0∗
τ−L −

t∑
τ=1

d0τ︸ ︷︷ ︸
=y0∗t+1

+
N∑
k=1

(
t∑

τ=1

(−dkτ )

)
︸ ︷︷ ︸

=yk∗t+1

z̃k

= y0∗t+1 +
N∑
τ=1

yk∗t+1z̃k

where yk∗t+1 k = 0, . . . , N , t = 1, . . . , T are the optimum solutions of Problem (3.9).

Clearly, the static replenishment policy, xSRP
t (d̃t−1) is feasible in Problem (3.3).

Moreover, by Theorem 1, we have

E

(
ctx

SRP
t (d̃t−1) + ht

(
ySRP
t+1 (d̃t)

)+
+ bt

(
ySRP
t+1 (d̃t)

)−)
= E

ctx
0∗
t + ht

(
y0∗t+1 +

N∑
k=1

yk∗t+1z̃k

)+

+ bt

(
−y0∗t+1 −

N∑
k=1

yk∗t+1z̃k

)+


≤ ctx
0∗
t + htπ

(
y0∗t+1,y

∗
t+1

)
+ btπ

(
−y0∗t+1,−y∗

t+1

)
.

(B.1)

Hence, ZSTOC ≤ ZSRP .
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Appendix C

Proof of Theorem 3

Proof : Observe that Problem (3.13) with additional constraints xk
t = 0, k =

1, . . . , N , t = 1 . . . , T − L gives the same feasible constraint set as Problem (3.9).

Moreover, the objective functions of both problems are the same. Hence, ZLRP ≤

ZSRP . Under the linear replenishment policy, the inventory level at the end of

period t is given by

yLRP
t+1 (d̃t)

= y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

xLRP
τ−L (d̃τ−L−1)−

t∑
τ=1

dτ (z̃)

= y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

(
x0∗
τ−L +

N∑
k=1

xk∗
τ−Lz̃k

)
−

t∑
τ=1

d0τ −
t∑

τ=1

N∑
k=1

dkτ z̃k

= y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

x0∗
τ−L −

t∑
τ=1

d0τ︸ ︷︷ ︸
=y0∗t+1

+
N∑
k=1

(
t∑

τ=1

(xk∗
τ−L − dkτ )

)
︸ ︷︷ ︸

=yk∗t+1

z̃k

= y0∗t+1 +
N∑
τ=1

yk∗t+1z̃k

where yk∗t+1 k = 0, . . . , N , t = 1, . . . , T are the optimum solutions of Problem

(3.13). Clearly, the linear replenishment policy, xLRP
t (d̃t−1) is feasible in Problem

(3.3). Moreover, by Theorem 1 and by z̃ being zero mean random variables, we
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have

E

(
ctx

LRP
t (d̃t−1) + ht

(
yLRP
t+1 (d̃t)

)+
+ bt

(
yLRP
t+1 (d̃t)

)−)
= E

ct
(
x0∗
t + x∗

t
′z̃
)
+ ht

(
y0∗t+1 +

N∑
k=1

yk∗t+1z̃k

)+

+ bt

(
−y0∗t+1 −

N∑
k=1

yk∗t+1z̃k

)+


≤ ctx
0∗
t + htπ

(
y0∗t+1,y

∗
t+1

)
+ btπ

(
−y0∗t+1,−y∗

t+1

)
.

(C.1)

Hence, ZSTOC ≤ ZLRP .
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Appendix D

Proof of Theorem 4

Proof : We first show the following bound:(
y +

p∑
i=1

x+
i

)+

≤

(
y +

p∑
i=1

wi

)+

+

p∑
i=1

(
(−wi)

+ + (xi − wi)
+) (D.1)

for all wi, i = 1, . . . , p. Note that for any scalars a, b

a+ + b+ ≥ (a+ b)+ (D.2)

a+ + b+ = a+ + (b+)+ ≥ (a+ b+)+. (D.3)

Therefore, we have(
y +

p∑
i=1

wi

)+

+

p∑
i=1

(
(−wi)

+ + (xi − wi)
+)

≥

(
y +

p∑
i=1

(
wi + (−wi)

+ + (xi − wi)
+
))+

from Inequality (D.3)

=

(
y +

p∑
i=1

(
w+

i + (xi − wi)
+
))+

≥

(
y +

p∑
i=1

x+
i

)+

from Inequality (D.2).

For notational convenience, we denote y(z̃) = y0 + y′z̃, xi(z̃) = x0
i + xi

′z̃ and

wi(z̃) = w0
i + wi

′z̃. To prove Inequality (3.16), it suffices to show that for any

w0
i ,wi, i = 1, . . . , p, we have

π

(
y0 +

p∑
i=1

w0
i ,y +

p∑
i=1

wi

)
+

p∑
i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i ,xi −wi)
)

≥ E

((
y(z̃) +

p∑
i=1

wi(z̃)

)+)
+

p∑
i=1

(
E
(
(−wi(z̃))

+)+ E
(
(xi(z̃)− wi(z̃))

+))
≥ E

((
y(z̃) +

p∑
i=1

xi(z̃)
+

)+)
,
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where the first inequality follows from Theorem 1 and the last inequality follows

from Inequality (D.1).

To prove the tightness of the bound, we consider the case when x0
i + xi

′z,

i = 1, . . . , p are nonzero crossing functions with respect to z ∈ W . Let

K = {k : x0
k + xk

′z ≥ 0 ∀z ∈ W}.

Hence,

y0 + y′z +

p∑
i=1

(
x0
i + xi

′z
)+

= y0 + y′z +
∑
i∈K

(
x0
i + xi

′z
)

∀z ∈ W .

Therefore, if

y0 + y′z +

p∑
i=1

(
x0
i + xi

′z
)+ ≥ 0 ∀z ∈ W

or equivalently,

y0 + y′z +
∑
i∈K

(
x0
i + xi

′z
)
≥ 0 ∀z ∈ W ,

we have

E

((
y0 + y′z̃ +

p∑
i=1

(
x0
i + xi

′z̃
)+)+)

= E

((
y0 + y′z̃ +

∑
i∈K

(
x0
i + xi

′z̃
))+)

= y0 +
∑
i∈K

x0
i .

Likewise, if

y0 + y′z +

p∑
i=1

(
x0
i + xi

′z
)+ ≤ 0 ∀z ∈ W

or equivalently,

y0 + y′z +
∑
i∈K

(
x0
i + xi

′z
)
≤ 0 ∀z ∈ W ,

we have

E

((
y0 + y′z̃ +

∑p
i=1 (x

0
i + xi

′z̃)
+
)+)

= E
((

y0 + y′z̃ +
∑

i∈K (x0
i + xi

′z̃)
)+)

= 0.
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Indeed, for all k ∈ K, let (w0
i ,wi) = (x0

i ,xi) and for all k /∈ K, (w0
i ,wi) = (0,0).

Therefore, using the tightness result of Theorem 1, we have

E

((
y0 + y′z̃ +

p∑
i=1

(
x0
i + xi

′z̃
)+)+)

≤ η((y0,y), (x0
1,x1), . . . , (x

0
p,xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑
i=1

w0
i ,y +

p∑
i=1

wi

)
+

p∑
i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i ,xi −wi)
)}

≤ π

(
y0 +

∑
i∈K

x0
i ,y +

∑
i∈K

xi

)
+
∑
i∈K

π(−x0
i ,−xi)︸ ︷︷ ︸
=0

+π(0,0)

+

∑
i/∈K

π(−0,−0) + π(x0
i ,xi)︸ ︷︷ ︸
=0


= π

(
y0 +

∑
i∈K

x0
i ,y +

∑
i∈K

xi

)

=


y0 +

∑
i∈K

x0
i if y0 + y′z̃ +

∑
i∈K

(
x0
i + xi

′z̃
)
≥ 0 ∀z ∈ W

0 if y0 + y′z̃ +
∑
i∈K

(
x0
i + xi

′z̃
)
≤ 0 ∀z ∈ W

= E

((
y0 + y′z̃ +

p∑
i=1

(
x0
i + xi

′z̃
)+)+)

.
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Appendix E

Proof of Theorem 5

Proof : We first show that ZTLRP ≤ ZLRP . Let x
k†
t , k = 0, . . . , N , t = 1, . . . , T−L

and yk†t+1, k = 0, . . . , N , t = 1, . . . , T be the optimum solution to Problem (3.13),

which is also feasible in Problem (3.17). Based on the following inequality,

η((y0,y), (x0
1,x1), . . . , (x

0
p,xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑
i=1

w0
i ,y +

p∑
i=1

wi

)
+

p∑
i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i ,xi −wi)
)}

≤ π
(
y0,y

)
+

p∑
i=1

π(x0
i ,xi),

(E.1)

we have

ZTLRP ≤
T∑
t=1

ctπ(x
0†
t ,x†

t) +
L∑

t=1

(
htπ(y

0†
t+1,y

†
t+1) + btπ(−y0†t+1,−y†

t+1)

)
+

T∑
t=L+1

(
htη
(
(y0†t+1,y

†
t+1), (−x0†

1 ,−x1), . . . , (−x0†
t−L,−x†

t−L)
)
+

btη
(
(−y0†t+1,−y†

t+1), (x
0†
1 − St,x

†
1), . . . , (x

0†
t−L − St,x

†
t−L)

))
≤

T∑
t=1

ctπ(x
0†
t ,x†

t) +
L∑

t=1

(
htπ(y

0†
t+1,y

†
t+1) + btπ(−y0†t+1,−y†

t+1)

)
+

T∑
t=L+1

(
htπ

(
y0†t+1,y

†
)
+ ht

t−L∑
i=1

π(−x0†
i ,−x†

i ) +

btπ
(
−y0†t+1,−y†

t+1

)
+ bt

t−L∑
i=1

π(−x0†
i − St,x

†
i )

)
.

Observe that since x0†
t + x†

t

′
z ≥ 0, −x0†

t − x†
t

′
z ≤ 0 and x0†

t − St + x†
t

′
z ≤ 0

for all z ∈ W , we have from Theorem 1, π(x0†
i ,x†

i ) = x0†
i ,π(−x0†

i ,−x†
i ) = 0 and
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π(x0†
i − St,x

†
i ) = 0 for all i = 1, . . . , T − L. Hence,

ZTLRP ≤
T∑
t=1

(
ctx

0†
t + htπ

(
y0†t+1,y

†
)
+ btπ

(
−y0†t+1,−y†

t+1

))
= ZLRP .

We next show that ZSTOC ≤ ZTLRP . Under the truncated linear replenishment

policy, the inventory level at the end of period t is given by

yTLRP
t+1 (d̃t) = y01 +

min{L,t}∑
τ=1

x0
τ−L +

t∑
τ=L+1

xTLRP
τ−L (d̃τ−L−1)−

t∑
τ=1

dτ (z̃).

Let xk∗
t , k = 0, . . . , N , t = 1, . . . , T − L and yk∗t+1, k = 0, . . . , N , t = 1, . . . , T

be the optimum solution to Problem (3.17). It suffices to show that the following

bounds:

(a)

E

((
xTLRP
t (d̃t−1)

)+)
≤ π(x0∗

t ,x∗
t ).

(b) For t ≤ L,

E

((
yTLRP
t+1 (d̃t)

)+)
≤ π

(
y0∗t+1,y

∗
t+1

)
and

E

((
yTLRP
t+1 (d̃t)

)−)
≤ π

(
−y0∗t+1,−y∗

t+1

)
(c) For t = L+ 1, . . . , T ,

E

((
yTLRP
t+1 (d̃t)

)+)
≤ η

(
(y0∗t+1,y

∗
t+1), (−x0∗

1 ,−x∗
1), . . . , (−x0∗

t−L,−x∗
t−L)

)
and

E

((
yTLRP
t+1 (d̃t)

)−)
≤

η
(
(−y0∗t+1,−y∗

t+1), (x
0∗
1 − St,x

∗
1), . . . , (x

0∗
t−L − St,x

∗
t−L)

)
.

For Bound (a), we note that

E
(
xTLRP
t (d̃t−1)

)
= E (min {max {x0∗

t + x∗
t
′z̃, 0} , St})

≤ E (max {x0∗
t + x∗

t
′z̃, 0})

= E
(
( x0∗

t + x∗
t
′z̃ )

+
)

≤ π(x0∗
t ,x∗

t ).
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We focus on deriving Bound (c), as the exposition of Bound (b) is similar. Indeed,

using the bound of Theorem 4, we have for t ≥ L+ 1,

E

((
yTLRP
t+1 (d̃t)

)+)
= E

( y01 +
L∑

τ=1

x0
τ−L +

t∑
τ=L+1

xTLRP
τ−L (d̃τ−L−1)−

t∑
τ=1

dτ (z̃)

)+


= E

((
y01 +

L∑
τ=1

x0
τ−L +

t∑
τ=L+1

min
{
max

{
x0∗
τ−L + x∗

τ−L
′z̃, 0

}
, St

}
−

t∑
τ=1

d0τ −
t∑

τ=1

N∑
k=1

dkτ z̃k

)+)

≤ E

((
y01 +

L∑
τ=1

x0
τ−L +

t∑
τ=L+1

max
{
x0∗
τ−L + x∗

τ−L
′z̃, 0

}
−

t∑
τ=1

d0τ −
N∑
k=1

t∑
τ=1

dkτ z̃k

)+)

= E

((
y01 +

L∑
τ=1

x0
τ−L +

t∑
τ=L+1

(
x0∗
τ−L + x∗

τ−L
′z̃
)
+

t∑
τ=L+1

max
{
−x0∗

τ−L − x∗
τ−L

′z̃, 0
}
−

t∑
τ=1

d0τ −
N∑
k=1

t∑
τ=1

dkτ z̃k

)+)

= E

((
y01 +

L∑
τ=1

x0
τ−L +

t∑
τ=L+1

x0∗
τ−L −

t∑
τ=1

d0τ︸ ︷︷ ︸
=y0∗t+1

+

t∑
τ=L+1

(
−x0∗

τ−L − x∗
τ−L

′z̃
)+

+
N∑
k=1

(
t∑

τ=1

(xk∗
τ−L − dkτ )

)
︸ ︷︷ ︸

=yk∗t+1

z̃k

)+)

= E

((
y0∗t+1 + y∗

t+1
′z̃ +

t∑
τ=L+1

(
−x0∗

τ−L − x∗
τ−L

′z̃
)+)+)

≤ η
(
(y0∗t+1,y

∗
t+1), (−x0∗

1 ,−x∗
1), . . . , (−x0∗

t−L,−x∗
t−L)

)
.
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Similarly,

E

((
yTLRP
t+1 (d̃t)

)−)
= E

((
−yTLRP

t+1 (d̃t)
)+)

= E

(−y01 −
L∑

τ=1

x0
τ−L −

t∑
τ=L+1

xTLRP
τ−L (d̃τ−L−1) +

t∑
τ=1

dτ (z̃)

)+


= E

((
−y01 −

L∑
τ=1

x0
τ−L −

t∑
τ=L+1

min
{
max

{
x0∗
τ−L + x∗

τ−L
′z̃, 0

}
, St

}
−

t∑
τ=1

d0τ +
t∑

τ=1

N∑
k=1

dkτ z̃k

)+)

≤ E

((
−y01 −

L∑
τ=1

x0
τ−L −

t∑
τ=L+1

min
{
x0∗
τ−L + x∗

τ−L
′z̃, St

}
+

t∑
τ=1

d0τ −
N∑
k=1

t∑
τ=1

dkτ z̃k

)+)

= E

((
− y01 −

L∑
τ=1

x0
τ−L −

t∑
τ=L+1

(
x0∗
τ−L − x∗

τ−L
′z̃
)
+

t∑
τ=L+1

(
−min

{
St − x0∗

τ−L − x∗
τ−L

′z̃, 0
})

+
t∑

τ=1

d0τ +
N∑
k=1

t∑
τ=1

dkτ z̃k

)+)

= E

((
−y01 −

L∑
τ=1

x0
τ−L −

t∑
τ=L+1

x0∗
τ−L +

t∑
τ=1

d0τ︸ ︷︷ ︸
=−y0∗t+1

+

t∑
τ=L+1

(
x0∗
τ−L − St + x∗

τ−L
′z̃
)+

+
N∑
k=1

(
t∑

τ=1

(−xk∗
τ−L + dkτ )

)
︸ ︷︷ ︸

=−yk∗t+1

z̃k

)+)

= E

((
−y0∗t+1 − y∗

t+1
′z̃ +

t∑
τ=L+1

(
x0∗
τ−L − St + x∗

τ−L
′z̃
)+)+)

≤ η
(
(−y0∗t+1,−y∗

t+1), (x
0∗
1 − St,x

∗
1), . . . , (x

0∗
t−L − St,x

∗
t−L)

)
.
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Appendix F

Sample Formulation in PROF

The following is a sample formulation of Problem (3.17) in PROF is presented

in Table F.1. Note that the function meanpositivebound() implements π(·) of

Equation (3.7), and meannestedposbound() implements η(·) of Theorem 4.
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Table F.1: Formulation of Problem (3.17) using PROF

Zmax = 20; T = 10;

Z.zlow = Zmax*ones(N,1); Z.zupp = Zmax*ones(N,1);

Z.p = .58*Zmax*ones(N,1); Z.q = .58*Zmax*ones(N,1);

Z.sigma =.58*Zmax*ones(N,1);

Ny = [0 1:T];

Nx = [zeros(1,L) 0:T-L-1]; Nxms = [zeros(1,L) 0:T-L-1];

zcoef = eye(T,T); MeanD = mu*ones(T,1);

for n = 2:T

zcoef(1:n-1,n)= alpha;

end

startmodel % Start PROF

x = linearrule(T,N,Nx); xms = linearrule(T,N,Nxms);

y = linearrule(T+1,N,Ny);

for i=1:T

addconst(xms(i,:) == x(i,:)-S*ldrdata([0 1],N));

end

hbound=0; sbound=0;

for t=1:T

if L+1 ≤ t

hbound = hbound +

h*meannestedposbound(Z,y(t+1,0:t),-x(L+1:t,0:t),t);

sbound = sbound +

b(t)*meannestedposbound(Z,-y(t+1,0:t),xms(L+1:t,0:t),t);

else

hbound = hbound+h*meanpositivebound(Z,y(t+1,:),1,N);

sbound = sbound + b(t)*meanpositivebound(Z,-y(t+1,:),1,N);

end

end

minimize (sbound+hbound +

c*sum(meanpositivebound(Z,x(L+1:T,:),T-L,N)))

addconst(x(1:L,0)==initx); addconst(y(1,0)==inity);

for i=1:T

addconst(y(i+1,:) ==

y(i,:)+x(i,:)-ldrdata([0 MeanD(i);(1:N)’ zcoef(:,i)],N));

end

m=endmodel; s = m.solve(’MOSEK’)
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Appendix G

Raw Data of Example

Table G.1 shows the monthly net electricity generation extracted from Electric

Power Monthly found in the web-site http://www.eia.doe.gov for the period of

2005 to 2007. The Electric Power Monthly presents monthly electricity statistics

for a wide audience including the general public. The purpose of the publication is

to provide energy decision makers with accurate and timely information that may

be used in forming various perspectives on electricity issues that lie ahead. In the

web-site data, the figures from Jul 2007 is missing. The data is presented in units

of 10000 MWh, that is, a figure of 50 in the table means 50× 10000 MWh. We use

B to denote the electricity generated by the facility called Barry, and G to denote

the electricity generated by the facility Gorgas. It was stated in the web-site data

that both facilities are operated by the Alabama Power Co in the U.S.
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Table G.1: Monthly electricity generation data

2007 2006 2005

B G B G B G

Dec 111 69 93 60 119 71

Nov 107 74 99 70 95 61

Oct 93 81 88 68 141 73

Sep 117 61 92 57 79 68

Aug 143 74 125 66 134 72

Jul - - 146 78 137 72

Jun 144 78 146 82 113 80

May 136 83 154 85 128 83

Apr 134 48 142 65 122 78

Mar 147 11 132 68 130 36

Feb 107 12 125 66 122 35

Jan 137 67 121 66 140 62


