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Summary 

Weibull distribution is one of the most widely used distributions in reliability data 

analysis. Many methods have been proposed for estimating the two Weibull 

parameters, among which Weibull probability plot (WPP), maximum likelihood 

estimation (MLE) and least squares estimation (LSE) are the methods frequently used 

nowadays. 

LSE is the basic linear regression estimation method. It is frequently used with 

WPP to show a graphical presentation. Such a method is preferred by practitioners; 

however, it can perform very poorly for some data types. This thesis explores various 

refinements of the ordinary LSE (OLSE) method. First, it presents a thorough 

examination of the properties of the OLS estimators via both theoretical analyses and 

intensive Monte Carlo simulation experiments. Second, it provides suggestions on the 

procedure of the OLSE method including the selection of failure probability 

estimators and the regression direction. Third, it proposes simple bias correcting 

formulas for the OLSE of the shape parameter applied to both complete data and 

censored data. Fourth, sophisticated linear regression techniques including weighted 

least squares and robust regression are examined to replace the OLS technique for 

estimating the Weibull parameters. Finally, it provides application instructions for the 

linear regression estimation methods discussed in this study with numerical examples. 

This thesis focuses on small samples, multiply censored samples, and samples 

with outliers. The proposed linear regression estimation methods are good for dealing 

with one or several of these data types. In addition, these methods are based on linear 

regression techniques and hence can be easily applied and understood.  
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Notations and Abbreviations 

n  Sample size 

i  Order number of observations from smallest to largest, ni 1  

r  Number of failures in a sample  

c  Censoring level, nrnc /)(   

t   Time (failure time or censoring time) 

)(it  The ith smallest time of nttt ,,, 21   

)(, jft  The jth smallest failure time in a censored sample, rj 1  

)(, kct  The kth smallest censoring time in a censored sample, )(1 rnk   

)(tF  CDF of the Weibull distribution 

)(tR  Reliability, )(1)( tFtR   

  Scale parameter of the Weibull distribution 

  Shape parameter of the Weibull distribution 

TT  ,  True parameter values for   and   (simulation experiment factors) 

 ˆ,ˆ  Estimators of   and   

TTTT   ,,
ˆ,ˆ  Estimators of   and   with given values of T  and T   

jI  The event number of the jth failure in a censored sample 

)(, jfm  The modified failure order number of )(, jft , nmj jf  )(,  

)(,)(
ˆ,ˆ

jfi FF  Estimators of )(tF , )(
ˆ

iF  for complete data and )(,
ˆ

jfF  for censored 

data 

e  Error or residual 

)(E  Mean or expected value 

)(S  Standard deviation 

)(Var  Variance 
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)(B  Bias function 

U̂  Unbiased ̂  

U  Bias correcting factor 

MRU  Bias correcting factor of the modified Ross’ method 

MHU  Bias correcting factor of the modified Hirose’s method 

M  Iteration number of simulation experiment 

2R  Coefficient of determination 

errorMS  Model statistic, mean square error 

iw  Weights for failure observations 

inorw _  Normalized weights for failure observations 

iappw _  Approximated weights 

  

  

ASM Age Sensitive Method (estimation for )(,
ˆ

jfF ) 

BLIE Best Linear Invariant Estimator 

BLUE Best Linear Unbiased Estimator 

BUE Best Unbiased Estimator 

CDF Cumulative Distribution Function 

EASM Exponential Age Sensitive Method (estimation for )(,
ˆ

jfF ) 

HJ Herd-Johnson 

JM Modified Johnson 

KM Kaplan-Meier 

LSE Least Squares Estimation/Estimator  
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MLE Maximum Likelihood Estimation/Estimator 

MME Method of Moment 

MMME Modified Method of Moment 

MSE Mean Square Error 

MTTF Mean Time To Failure 

NBLIE Nearly Best Linear Invariant Estimator 

NBLUE Nearly Best Linear Unbiased Estimator 

OLSE Ordinary Least Squares Estimation/Estimator 

PDF Probability Density Function 

WLSE Weighted Least Squares Estimation/Estimator 

WPP Weibull Probability Plot 

RR Robust Regression 

RRE Robust Regression Estimation/Estimator 

RRRM Refined Rank Regression Method (estimation for )(,
ˆ

jfF ) 
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Chapter 1 

Introduction 

 

The history of the Weibull distribution can be traced back to 1928, when two 

researchers, Fisher and Tippett, deduced the distribution in their study of the extreme 

value theory (Arora, 2000). In the late 1930s, a Swedish professor Waloddi Weibull 

derived the same distribution and his hallmark paper in 1951 made this distribution 

fashionable. In his hallmark paper (Weibull, 1951), Professor Weibull explained the 

reasoning of the Weibull distribution through the phenomena of the weakest link in 

the chain and he said 

The same method of reasoning may be applied to the large group of 
problems, where the occurrence of an event in any part of an object 
may be said to have occurred in the object as a whole, e.g., the 
phenomena of yield limits, statical or dynamical strengths, electrical 
insulation breakdowns, life of electric bulbs, or even death of man… 

All these words have become accepted as truth. Today, the Weibull distribution 

has wide applications in various areas. These applications include using the 

distribution to model wind speed, rainfall, flood or earthquake frequency, age of 

disease onset, strength of materials, and so on. However, the most extensive use of the 

distribution is in life testing and reliability studies, where the Weibull distribution has 

been proven to be satisfactory in modeling the phenomena of fatigue and life of many 

devices such as ball bearings, electric bulbs, capacitors, transistors, motors and 

automotive radiators. Due to its wide application in reliability studies, reliability data 

analysis is frequently called Weibull analysis (Wang, 2004). 
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The general form of the Weibull distribution has three parameters: the scale 

parameter, the shape parameter and the location parameter. In reliability data analysis, 

the location parameter is frequently neglected. As pointed out in Dodson (2006), a 

non-zero location parameter should not be used unless there is a physical justification 

for a time period with a zero probability of failure. This thesis focuses on the 

parameter estimation methods for the two-parameter Weibull distribution. Unless 

otherwise indicated, the Weibull distribution in this thesis refers to the two-parameter 

Weibull distribution. 

Reliability data can be obtained from life testing experiments or from the field. 

Unlike other data analyses, reliability data analysis is complicated because different 

types of data may need different approaches for processing (Liu, 1997). When it 

comes to the estimation of the Weibull parameters (assuming the data is Weibull 

distributed), no method can always outperform the others for all types of data in view 

of the properties of the estimators. Moreover, the commonly used estimation methods 

such as the maximum likelihood estimation (MLE) method and the least squares 

estimation (LSE) method have been discovered to be unsatisfactory under many 

circumstances. The main focus of this thesis is to investigate various linear regression 

estimation techniques including LSE for the estimation of Weibull parameters that 

aim at different types of life data including small data sets, censored data sets and data 

sets with outliers. 

This chapter starts with an overview of the Weibull distribution and the physical 

meanings of its two parameters in the context of reliability in Section 1.1. The scope 

of the Weibull analysis is also briefly presented. Section 1.2 describes the common 

types of life data under different classification schemes. Then Section 1.3 presents an 
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overview of the existing Weibull parameter estimation methods and their limitations 

with the focus on the commonly used ones. Finally, Section 1.4 and Section 1.5 

present the scope and the contributions of this thesis, respectively. 

1.1  The Weibull Distribution in Reliability Engineering 

The cumulative distribution function (CDF) and the probability density function 

(PDF) of the Weibull distribution are expressed by 
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where the scale parameter   and the shape parameter   take on positive values.  

In the context of reliability, )(tF  is the probability that a random unit drawn 

from the population fails by time t  )0( t , or the fraction of all units in the 

population that fails by t  (Tobias & Trindade, 1995). The complement of )(tF  is the 

reliability function, i.e., )(1)( tFtR  . From Equation (1-1), the expression for the 

Weibull reliability function is  
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Other common reliability measures include mean time to failure (MTTF), 

percentile life pt  and failure rate (or hazard rate) )(t . Based on the Weibull CDF, the 

expressions for these measures are 
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where  )(  denotes the Gamma function. 

All of the above measures are functions of the two Weibull parameters. In the 

following, the effects of the scale parameter and the shape parameter on the Weibull 

distribution are separately described.     

1.1.1 The Scale Parameter 

Figure 1-1 shows the PDF plot of the Weibull distribution with different values of   

and a common value of  . As it can be observed, an increase or a decrease in   

while   is kept unchanged has an effect of stretching out the distribution to the right 

or pushing in the distribution to the left and it has no effect on the shape of the 

distribution. In fact, a change in the scale parameter   is the same as a change of the 

abscissa scale. The parameter   has the same unit as t , such as hours, miles, cycles, 

etc. 

From Equation (1-5), when 632.0p , we obtain  

 632.0t  (1-7) 

Hence   is the time at which 63.2% of the population failed. It is frequently 

called the characteristic life.  
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Figure 1-1: The effect of α on the Weibull PDF for a common β (β = 3). 

1.1.2 The Shape Parameter 

The shape parameter   is of great importance to the Weibull distribution because it 

determines the shape of the Weibull PDF and characterizes the failure rate trend. 

Figure 1-2 shows several typical examples of the Weibull PDF with different values 

of   and a common  . Figure 1-3 illustrates a variety of the failure rate curves with 

different values of   and a common  .  

It can be observed from Figure 1-2 that when 10   , the PDF is 

exponentially decreasing. At 1 , the Weibull distribution reduces to the 

exponential distribution. When 1 , the PDF is unimodal and skewed to the right. 

When 43   , the PDF has a roughly bell-shape which is close to the normal 

distribution. Figure 1-3 shows the relationship between   and failure rate. As it can 

be observed, when 10   , the failure rate is exponentially decreasing (same as the 

PDF). At 1 , the failure rate is constant and the failure rate  /1)( t . When 
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1 , the failure rate is monotonically increasing. A special case is when 2  

where the failure rate is linearly increasing. The distribution is called Rayleigh 

distribution. In other cases, the failure rate increases with different rates. Table 1-1 

summarizes the typical characteristics of the Weibull PDF and failure rate with 

varying  . 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

f(
t)

=10

=3

=2=1

=0.5

 
Figure 1-2: The effect of β on the Weibull PDF for a common α (α = 1). 
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Figure 1-3: The effect of β on the failure rate for a common α (α = 1). 
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Table 1-1: Typical characteristics of the Weibull PDF and failure rate with varying shape 
parameter values. 

Shape Parameter  PDF Failure Rate  
10    Exponentially decreasing from infinity Exponentially decreasing 

1  Exponentially decreasing from 1/α  Constant 
1  Rises to peak and then decreases Increasing 
2  A special case - Rayleigh distribution Linearly increasing 

43    “Normal” bell-shape appearance Rapid increasing 
10  Similar to Type I extreme value distribution Very rapidly increasing 

 

The importance of the shape parameter to the Weibull distribution has been 

discussed by many researchers. Wu & Vollertsen (2002a, b) presented detailed 

analyses of the Weibull shape parameter in the context of the intrinsic breakdown of 

dielectric films. The shape parameter not only decides the characteristics of the 

Weibull PDF and failure rate, it also links the Weibull distribution to many other 

distributions. For example, the Weibull-to-exponential transformation is a commonly 

used method when the shape parameter can be obtained from material property or 

other sources (Xie et al., 2000). With this transformation, the simple statistical tests 

and analytical methods available for the exponential distribution can be applied to 

ease the data analysis for the Weibull distribution. Keats et al. (2000) presented the 

effect of the mis-specification of the shape parameter value on the estimation of the 

scale parameter, and Xie et al. (2000) extended the analysis to the effect of the mis-

specification of the shape parameter on the estimation of reliability measures such as 

MTTF, percentiles and mission reliability. The authors found that it is true that the 

mis-specification will greatly affect the scale parameter because the two parameters 

are highly correlated; however, the effect on the MTTF, percentiles and mission 

reliability could be small.  
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1.1.3 The Bathtub Curve 

The life cycles of mechanical and electronic units and systems are often described by 

the bathtub curve, see Figure 1-4. Based on the behavior of the failure rate, the life of 

a unit or system is divided into three periods: infant (or early failure) period, life (or 

intrinsic failure) period and wear-out (or aging) period. These periods are 

characterized by a decreasing, constant and increasing failure rate, respectively. 

Assuming the life distribution is Weibull, the value of the shape parameter can 

indicate which period the unit or system lies in. When 10   , it is in the infant 

period. When 1 , it is in the life period, and when 1 , it is in the wear-out 

period. The value of   also indicates the failure mechanism of a unit or system being 

early failures, random failures or wear-out failures. Table 1-2 summarizes the 

relationship of life periods, failure mechanisms and the values of  . 

 
Figure 1-4: The bathtub curve. 

 

Table 1-2: The relationship of life period, failure mechanism and β. 

Shape Parameter  Life Period Failure Mechanism 
10    Infant period Early failure 

1  Life period Random failure 
1  Wear-out period Wear-out failure 
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As can be seen from Figure 1-3, however, no matter what value of the shape 

parameter takes, the Weibull distribution has a monotonic failure rate. This 

monotonicity becomes a limitation as some products exhibit more than one stage of 

the bathtub curve. The turning point of the failure rate trend is considered a ‘critical’ 

time and is important (Bebbington et al., 2008). To overcome this, a group of new 

distributions have been proposed in the last decade, and these distributions are 

commonly named as modified/extended/generalized Weibull distributions. In recent 

years, great interests have been put to develop distributions with bathtub-shaped 

failure rate functions. A good example can be found in Xie et al. (2002). Murthy et al. 

(2004) summarized many of these new distributions and provided details for their 

backgrounds, statistical analysis methods, practical applications, etc. Bebbington et al. 

(2007) proposed a so-called flexible Weibull distribution which has only two 

parameters and is able to model a modified bathtub-shaped failure rate where the 

failure rate increases at the beginning and then follows a bathtub curve. Zhang & Xie 

(2007) proposed a three-parameter distribution called extended Weibull distribution. 

This distribution is very flexible in view of the failure rate function, which can be a 

modified bathtub-shaped curve with a first stage increasing, or initialing decreasing 

eventually decreasing but with increasing in the middle. Dimitrakopoulou et al. 

(2007) proposed another three-parameter distribution which can specially present an 

upside down bathtub-shaped failure rate. Pham & Lai (2007) summarized a few 

popular Weibull-related models and discussed the issues of parameter estimation and 

model validation.      



 Chapter 1 Introduction 

10  

1.1.4 Scope of the Weibull Analysis 

Weibull analysis, or reliability data analysis, commonly involves the following 

activities (Abernethy, 2000): 

 Plotting the data and interpreting the plot 

 Failure forecasting and prediction 

 Evaluating corrective action plans 

 Maintenance planning 

 Spare parts forecasting 

 Warranty analysis 

 Others 

Parameter estimation of the two Weibull parameters often serves as the 

preliminary step of the Weibull analysis after samples are collected. Accurate 

parameter estimates may greatly affect the accuracy of the subsequent analyses.   

1.2  Types of Life Data 

The most common classification of life data is based on the life testing experiment 

scheme. If all the units are tested to failure, this sample is a complete or uncensored 

sample. Otherwise, if the experiment ends before all units fail, this sample is a 

censored sample. Censored units are called censors or suspensions and their failure 

times are only known to be beyond their present running times (i.e., the censoring 

times). If all units are started on the test together and all censors have a common 

running time, the data are singly censored. Such data are further classified into time 

censored or Type I censored if the test is stopped at a predetermined time, and failure 

censored or Type II censored if the test is stopped when a predetermined number of 
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failures occur. If units begin their services at different times and thus when the test 

stops before all units are failed, the censoring times and the failure times are 

intermixed, the data are said to be multiply censored. Singly censored data can be 

treated as a special case from multiply censored data; however, they are often 

examined separately in the Weibull analysis. Besides, there are other types of 

censored data, e.g., left censored data, doubly censored data, progressively Type II 

censored data, etc., which are beyond the scope of this study. Figure 1-5 illustrates 

four common types of samples including a complete sample, a singly time censored 

sample (Type I censored), a singly failure censored sample (Type II censored) and a 

multiply censored sample. 

 

Figure 1-5: An illustration of different types of life data.  
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Besides the conventional classification which divides life data into complete data 

and censored data, life data can also be classified into different groups based on data 

source, sample size and the quality of the data. A summary of the classification is 

shown in Figure 1-6. 

 

 

Figure 1-6: The classifications of life data based on testing schemes, data source, sample size and 
quality of observations. 

 

In view of data source, life data are divided into experiment data and field data. 

Based on the number of observations or the sample size, a data set can be classified 

into a small, medium or large data set. Normally a data set with no more than 20 

observations is considered as a small dataset (Abernethy, 2000). Besides, life data can 

be divided into good quality data and bad quality data. Good quality data ideally have 

no measurement errors in the observations (i.e., failure time), or the error is small 

enough to be neglected; while bad quality data involve outliers, influential points or 

missing observations, etc.  

Figure 1-6 does not provide an exhaustive classification for life data. For 

example, there are other common data types such as group data and interval data 
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which are not included. Recently, some methods were proposed to estimate Weibull 

parameters for interval data, see, e.g., Vittal & Phillips (2007).    

Life data have some special characteristics. For example, small data sets and 

censored data sets are very common due to time and cost constrains. The increase of 

the number of highly reliable systems also leads to the difficulty of collecting failure 

data. These data conditions require specially designed data analysis techniques. 

Given the perspectives of real applications, small data sets, multiply censored 

data and bad quality data with outliers or influential points, are the focuses of this 

research.  

1.3  Overview of Weibull Parameter Estimation Methods 

Since Weibull distribution became widely recognized in the 1950s, many methods 

have been proposed for estimating the parameters. Both graphical estimation methods 

and analytical estimation methods have been proposed. This section provides an 

overview of the existing parameter estimation methods for the Weibull distribution. It 

is impossible to list all the related work in the literature, thus the focus is given to 

those commonly used methods. 

1.3.1 Graphical Estimation Methods 

There are mainly two categories of graphical estimation methods for the Weibull 

distribution: Weibull probability plotting (WPP) methods and hazard plotting 

methods. For a basic understanding of the two methods, see, e.g., Lai & Xie (2006, p. 

145),  Breyfogle (1992, p. 163) and Nelson (2004, chap. 3 & 4). 
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Probability plotting for the Weibull distribution was introduced by Kao (1959). 

Some discussions on the Weibull probability paper can be found in, e.g., Nelson & 

Thompson (1971). White (1969) suggested using some analytic techniques such as 

least squares to fit the straight line on the WPP instead of eye-fitting. Cran (1976) 

gave several numerical examples of using probability plotting to estimate the Weibull 

parameters. The WPP technique has been also used on the modified or extended 

Weibull distributions, see, e.g., Murthy et al. (2004). 

The related work on WPP has been centered on the determination of the Y-axis 

plotting positions. Conventionally, the Y-axis plotting positions on the Weibull 

probability paper, which denote failure probabilities or unreliability, are estimated by 

some non-parametric estimators of the form )/()( 21 cnci  . Professor Weibull 

originally used )1/( ni to obtain the plotting positions (Weibull, 1939). This is then 

named Weibull plotting position or Weibull estimator. Theoretically, it is the exact 

mean rank plotting position of each data point. The Weibull estimator had been used 

for many years until the Bernard estimator became more popular. The Bernard 

estimator, i.e., )4.0/()3.0(  ni , was proposed by Bernard & Bosi-Levenbach 

(1953) as an approximation to the median rank plotting position. It is a good 

approximation to the exact median rank value of each data point shown by Mischke 

(1979) via analytical methods and Fothergill (1990) via Monte Carlo simulations. 

Compared to the mean rank plotting position, one of the good properties of the 

median rank plotting position is that it is distribution free (Mischke, 1979; Yu & 

Hung, 2001). With Monte Carlo simulations, many researchers, see, e.g., Fothergill 

(1990) and Cacciari & Montanari (1991), have compared several plotting positions 

including Weibull (Weibull, 1939), Bernard (Bernard & Bosi-Levenbach, 1953), 

Hazen (Hazen, 1930), Blom (Blom, 1958), Filliben (Filliben, 1975), etc., on 
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estimating Weibull parameters for complete samples of different sample sizes. Most 

agreement has been achieved on the Bernard estimator and hence it is most widely 

used today. Many textbooks on reliability data analysis have adopted the Bernard 

estimator as the standard method for estimating failure probabilities, see, e.g., Tobias 

& Trindade (1995). 

Besides the Weibull estimator and the Bernard estimator, a few other estimators 

for failure probability or Y-axis plotting positions were discussed in the last decade. 

Ross (1994b) suggested a Y-axis plotting position that he called the expected plotting 

position. Two formulas were provided. One is used to calculate the exact expected 

plotting position for each data point, which has a complex form, and the other is a 

simple approximation to the exact values and the formula is )25.0/()44.0(  ni . 

However, these formulas, especially the simplified one, have not received as much 

attention as they should have. Drapella & Kosznik (1999) suggested a similar 

approach as Ross’ for calculating Y-axis plotting positions and their formula is 

basically same as that of Ross’ for the exact expected plotting position. The formula 

has then been cited many times in recent years and is considered to be a bias 

correction method for the conventional LSE method, see, e.g., Xie et al. (2000), Yang 

& Xie (2003), Hung (2004) and Lu et al. (2004 ). The recent work of Wu & Lu (2004) 

and Wu et al. (2006) examined the idea of using different failure probability 

estimators for different sample sizes. The authors tabulated the optimal estimators for 

certain sample sizes. Tiryakioglu & Hudak (2007), in a similar way, tabulated another 

set of optimal estimators for different sample sizes between 9 and 50. However, since 

there is no certain pattern in these tabulations, this kind of method is apparently 

inconvenient in view of practical application.  
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The above non-parametric plotting positions are mainly designed for complete 

data, though it is not uncommon to see that they are wrongly used for censored data in 

the literature. For censored data, to best use the information from all the observations, 

new methods are needed to obtain plotting positions. The Kaplan-Meier estimator 

(Kaplan & Meier, 1958) is the oldest non-parametric estimator of failure probabilities 

applied to censored data. A big disadvantage of the estimator is that the unreliability 

for the last failure data point is always 1, and hence it tends to underestimate the 

failures in the tail of the distribution. Herd (1960) proposed a method to calculate the 

reliability at each failure data point recursively in the case of multiply censored data, 

and Johnson (1964) decomposed the Herd’s method into two steps: first is to calculate 

the modified failure order number (MFON) of each failure data point and then use the 

MFON in the Weibull estimator to estimate the reliability or failure probability. The 

combination of their work is commonly known as the Herd-Johnson method. Nelson 

once commented the Johnson’s method (Johnson, 1964) as a small and laborious 

refinement compared to the original estimator of Herd (Herd, 1960), see, e.g., Nelson 

(2004, pp. 147-148). However, the two-step estimation of the failure probability with 

the identification of the MFON as the first step gained its popularity in the last decade 

as the age sensitive methods were proposed, see, e.g., the age sensitive method of 

Hastings & Bartlett (1997) and the exponential age sensitive method of Campean 

(2000). More recently, Skinner et al. (2001) and Hossain & Zimmer (2003) modified 

the Herd-Johnson method and proposed a simple formula which can directly calculate 

the failure probability. Wang (2001, 2004) proposed a so-called refined rank 

regression method which is a parametric method and must be solved iteratively. 

Despite the calculation complexity, Wang’s method has a good theoretical 

background and does not need many assumptions. Although these recently proposed 
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methods have been shown by the authors to outperform the Kaplan-Meier estimator or 

the Herd-Johnson estimator, none of them have become popular or widely recognized. 

The practitioners have not been aware of them. Therefore, a systematic comparison of 

the existing methods in view of parameter estimation for the Weibull parameters will 

be useful.  

Obviously, the research on the estimation of failure probabilities or the Y-axis 

plotting positions in the cases of both complete data and multiply censored data has 

not reached a final conclusion. In Section 4.3, a detailed summary on the existing 

plotting positions is presented for complete data and multiply censored data, 

respectively, and the recommendations are given both from the theoretical point of 

view and from Monte Carlo simulation results. 

Another graphical estimation method is the hazard plotting estimation method 

proposed by Nelson, see, e.g., Nelson (1972, 2004), and it also received many 

agreements. Many years ago, the graphical methods were all done manually and the 

big advantage of using hazard plotting for censored data is to save human labor 

(Breyfogle, 1992). In view of estimation accuracy, however, hazard plotting will 

probably not outperform probability plotting because its estimation for the hazard 

function (i.e., )(th 1/the reserve rank of each failure data point) is very simple and 

there are few alternatives. In contrast, the probability plotting technique has the 

variety because of the various plotting positions that can be applied. Obviously, by 

changing the plotting positions, the probability plot can achieve a better fit of sample 

data then the hazard plot.  
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As mentioned, hazard plotting is a simple but less flexible method compared to 

WPP. Besides, the programs of WPP are available in many statistical software 

packages, e.g., MATLAB 7, and hence WPP is readily applicable. 

1.3.2 Analytical Estimation Methods 

Analytical estimation methods for the Weibull distribution have a large family. 

Typical methods include: method of moment estimation (MME) or modified method 

of moment estimation (MMME), maximum likelihood estimation (MLE), least 

squares estimation (LSE), method of percentiles and Bayesian estimation method.  

Earlier studies have been mainly confined to MLE and MME/MMME. The 

references on MME and MMME can be found in Dubey (1966), Mann (1968), 

Newby (1980), Arora (2000), etc. It has been found that MLE outperforms 

MME/MMME in most cases, see, e.g., Mann (1968), and MME/MMME is usually 

not efficient compared to other methods such as MLE (Murthy et al., 2004, p. 62). In 

fact, the MME/MMME methods are seldom discussed by Weibull researchers 

nowadays.  

MLE, in contrast, is preferred by a majority of Weibull researchers because of its 

good statistical perspectives. Cohen (1965) first presented the estimating equations of 

the MLE method of the two-parameter Weibull distribution for different types of 

samples including complete samples, Type I or Type II singly censored samples and 

progressively censored samples (i.e., removing one or more items from life testing at 

various times prior to the termination of the test). Harter & Moore (1965) presented 

the MLE method of the three-parameter Weibull distribution when all the three 

parameters are unknown for complete samples and Type II singly censored samples. 
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The existence and uniqueness of the maximum likelihood estimators (MLE) have 

been discussed by many researchers. McCool (1970) proved that the MLEs of the 

shape and scale parameters always exist and are unique when the location parameter 

is known (for example, the two-parameter Weibull distribution). Farnum & Booth 

(1997) presented similar results for the MLE applied to complete data and singly 

censored data, and introduced a statistic which can be used to get a quick 

approximation of the shape parameter estimate. However, the existence and 

uniqueness of the MLE does not necessarily apply to the three-parameter Weibull 

distribution when all three parameters are unknown, see, e.g., Rockette et al. (1974) 

and Hirose (1996). 

The large sample properties of the MLE have been extensively studied. Cohen 

(1965) presented the information matrix of the MLE of the two Weibull parameters 

for complete samples, singly censored samples and progressively censored samples, 

respectively. Harter & Moore (1967) presented the maximum-likelihood information 

matrix for doubly censored samples from the three-parameter Weibull distribution. 

Thoman et al. (1969) proved the existence of the two pivotal functions of the MLE, 

i.e., ̂  and )ˆln(ˆ  , whose distributions are independent of   and  . With 

Monte Carlo simulations, they tabulated the percentage points of the distributions of 

the two pivotal functions which can be used to construct confidence intervals and 

conduct hypothesis testing regarding the parameters. The authors also pointed out that 

the distributions of the two pivotal functions are asymptotically normal and provided 

suggestions on the required sample size to apply the large sample theory for MLE. 

Billmann et al. (1972) extended the analysis of Thoman et al. (1969) to singly 

censored samples and proposed their modified pivotal functions of the MLEs.  
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Numerical methods such as the Newton-Raphson method have to be used to 

solve the estimating equations of MLE, which were inconvenient at about a half-

century ago, and hence simple and closed form approximations for the MLE have 

been proposed, see, e.g., a series of papers by Bain (1972), Engelhardt (1975) and 

Engelhardt & Bain (1973, 1974, 1977).  

As pointed out by Mann (1967), the MLEs of the Weibull distribution enjoy the 

properties of consistency, asymptotic efficiency, asymptotic unbiasedness and 

asymptotic normality. In other words, the estimators have outstanding large sample 

properties. The small sample properties of the MLEs have become a hot topic since 

1990s, and surprisingly, it has been found that the estimators can be highly biased in 

the cases of small samples and highly censored samples (see, e.g., Jacquelin, 1993; 

Ross, 1994a; Cacciari et al., 1996). Different methods have been proposed to 

eliminate or reduce the bias of the ML estimators, especially for the shape parameter 

estimator. Ross (1994a, 1996) and Hirose (1999) both based on the pivotal function 

̂ , proposed simple bias correcting formulas that can be directly applied to the 

original ML estimators.  

In the meantime, much work can be found that provides analytical or 

experimental results on the comparison among different parameter estimation 

methods, see, e.g., Cacciari et al. (1996), Montanari et al. (1997a, b, 1998).  

In recent years, the related work of MLE is more for the three-parameter Weibull 

distribution or the modified/extended Weibull distributions. Abbasi et al. (2006) 

proposed a new procedure to solve the MLE of the three-parameter Weibull 

distribution.  
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Like MLE and MME/MMME, linear order statistics estimation methods have 

existed for a long time. A great deal of work emerged during the late 1960s and the 

early 1970s, see, e.g., White (1964), McCool (1965), Mann (1967, 1968), D’Agostino 

(1971) and Thoman (1972). A common feature of these methods involves transferring 

the Weibull distribution to the extreme value distribution which has a location-scale 

form. After the transformation, the estimating equations for the location parameter 

(i.e., lnu ) and the scale parameter (i.e.,  /1 ) of the extreme-value 

distribution can be expressed by the linear combinations of the order statistics of the 

transformed observations (i.e., tx ln ) and solved. Several estimators with good 

statistical properties have been proposed including best linear unbiased estimators 

(BLUE) (see, e.g., White, 1964; McCool, 1965), best linear invariant estimators 

(BLIE) (see, e.g., Mann, 1967) and nearly best linear unbiased or invariant estimators 

(NBLUE or NBLIE) (see, e.g., Thoman, 1972). The estimators of   and   can be 

obtained from the estimators of u  and  , respectively, based on the relationships of 

lnu  and  /1 ; however, since both are of nonlinear relationships, the 

estimators of   and   will probably not be unbiased. Moreover, these methods 

normally involve one or several reference tables proposed by the respective authors 

and a look-up of the reference tables is required upon practical application. This 

greatly limits their applications.  

The LSE method is basically the analytical version of the WPP method. Like 

WPP, it involves the estimation of failure probability at each failure data point. The 

related work on the estimation of failure probabilities, or similarly, the determination 

of the Y-axis plotting positions, has been described in Section 1.3.1. The LSE method 

can also be treated as a special case of the linear order statistics estimation methods. 
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LSE is less discussed compared to MLE, MME and other linear estimation methods 

and the traditional opinion among researchers considers it as a simple and inaccurate 

method (similar to the graphical estimation methods) and it is suggested to provide  

the start values of parameters for other more sophisticated estimation methods such as 

MLE. However, in the 1990s, some researchers, see, e.g., Montanari et al. (1997a, b, 

1998), in their examination of MLE, compared MLE and LSE via Monte Carlo 

simulations, and their results showed that the bias of the least squares estimator (LSE) 

can be much smaller than the bias of the MLE for estimating the shape parameter for 

complete data, singly censored data and multiply censored data. Ross (1999) 

presented another intensive comparison between MLE and LSE (with several plotting 

positions) and reached the similar conclusion that for estimating the shape parameter, 

the performance of the LSE method with either the median rank plotting positions or 

the mean plotting positions, is not worse than that of the MLE method in dealing with 

small samples, and both are biased. Based on the results, Ross suggested that 

ANSI/IEEE Std 930-1987 (IEEE Guide for the Statistical Analysis of Electrical 

Insulation Voltage Endurance Data, 1987, sec. 4.1) change the statement that LSE is 

less accurate than MLE. 

Weighted least squares estimation (WLSE) methods for the Weibull distribution 

have been discussed by some researchers. White (1969) briefly described a WLSE 

method and gave a numerical example. The weights used in the White’s method are 

tabulated for certain sample sizes. This method can be treated as the traditional WLSE 

method but the calculation of weights is rather complicated. More recently, Bergman 

(1986), Faucher & Tyson (1988), Hung (2001) and Lu et al. (2004) each proposed a 

simple formula for calculating weights based on different approaches to approximate 

the variances of the predictor variable values. They all demonstrated that their WLSE 
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techniques are more efficient than LSE for estimating the Weibull parameters. Lu et 

al. (2004) also presented an overview of the WLSE methods, except the traditional 

method of White (White, 1969), and compared them via Monte Carlo simulations. 

Theoretically, the traditional method has the best statistical foundation while the 

‘new’ ones are simpler and more convenient for application. It is necessary to check 

the performance of these ‘new’ methods on parameter estimation using the traditional 

method as a reference.  

Besides LSE and WLSE, Lawson et al. (1997) examined some robust M-

estimators for the Weibull parameters and compared them with the LSEs for complete 

and censored data sets with and without outliers. The authors concluded that the 

robust M-estimation methods outperform LSE in view of both model statistics and 

parameter estimates. With a bunch of existing robust regression techniques, the robust 

regression estimation (RRE) methods can be further explored.  

Nonlinear estimation methods have also been discussed by some researchers. 

Berger & Lawrence (1974), via Monte Carlo simulations, concluded that the 

nonlinear regression technique performs similar to, if not worse than, the LSE 

method. Somboonsavatdee et al. (2007) pointed out that the graphical estimators 

(WPP and LSE) are especially useful with censored data.  

Finally, there are other estimation methods such as methods of percentiles, see, 

e.g., Seki & Yokoyama (1993), Wang & Keats (1995), Mark (2005), Bayesian 

estimation methods, see, e.g., Kaminskiy & Krivtsov (2005), Soliman et al. (2006), 

and modified profile likelihood methods, see, e.g., Yang & Xie (2003), Ferrari et al. 

(2007). 
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1.3.3 Summary and Research Gaps 

A summary of the existing parameter estimation methods for the Weibull distribution 

is shown in Table 1-3. The methods are divided into two large categories: graphical 

estimation methods and analytical estimation methods. Analytical estimation methods 

are further divided into five small groups: MME/MMME, MLE, linear order statistics 

estimation methods, linear regression estimation methods and others. LSE, WLSE and 

RRE are all related to linear regression techniques and hence this category of methods 

is named linear regression estimation methods.  

Table 1-3:  Summary of existing parameter estimation methods for the Weibull distribution. 

Category Methods Related Work  

WPP 

Weibull (1939), Bernard & Bosi-Levenbach (1953), 
Kaplan & Meier (1958), Kao (1959), Herd (1960), 
Johnson (1964), Weibull (1967), Nelson & Thompson 
(1971), Filliben (1975), Cran (1976), Mischke (1979), 
Fothergill (1990), Ross (1994b), Hastings & Bartlett 
(1997), Campean (2000), Skinner et al. (2001), 
Hossain & Zimmer (2003), Wang (2001, 2004), Wu et 
al. (2006), Tiryakioglu & Hudak (2007), etc.  

Graphical 
Estimation 
methods 

Hazard plotting Nelson (1972, 2004), Breyfogle (1992), etc. 

MME/MMME 
Dubey (1966), Mann (1968), Newby (1980), Arora 
(2000), Murthy et al. (2004), etc. 

MLE 

Cohen (1965), Harter & Moore (1965, 1967), Mann 
(1967), Thoman et al. (1969), McCool (1970), 
Billmann et al. (1972), Bain (1972), Rockette et al. 
(1974), Engelhardt (1975), Engelhardt & Bain (1973, 
1974 and 1977), Jacquelin (1993), Cacciari et al. 
(1996), Ross (1994a, 1996), Hirose (1996, 1999), , 
Montanari et al. (1997a,b, 1998), Abbasi et al. (2006), 
etc. 

Linear order statistics 
estimation methods (BLUE, 
BLIE, NBLUE, NBLIE, etc.) 

White (1964), McCool (1965), Mann (1967, 1968), 
D’Agostino (1971), Thoman (1972), etc. 

Linear regression estimation 
methods (LSE, WLSE, RRE) 

White (1969), Berger & Lawrence (1974), Bergman 
(1986), Faucher & Tyson (1988), Hung (2001), 
Lawson et al. (1997), Montanari et al. (1997a,b,  
1998), Ross (1994b, 1999), Lu et al. (2004), etc. 
 

Analytical 
Estimation 
Methods 

Others (nonlinear estimation 
methods, method of 
percentile, Bayesian 
methods, etc.) 

Berger & Lawrence (1974), Seki & Yokoyama (1993), 
Wang & Keats (1995), Yang & Xie (2003), Kaminskiy 
& Krivtsov (2005), Mark (2005), Soliman et al. 
(2006), Ferrari et al. (2007), etc. 
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As it can be observed from Table 1-3, a majority of the work on Weibull 

parameter estimation methods was conducted between 1960 and 1980. However, 

many of them are seldom used nowadays such as the traditional MME/MMME 

methods and the linear order statistics estimation methods. Recently, Tiryakioglu & 

Hudak (2007) pointed out that the moments method should be used only when the 

sample size is more than 14 and the shape parameter is larger than 20. The linear 

order statistics estimation methods, as mentioned previously, can generate estimators 

of u  and   ( lnu  and  /1 ) with good statistical properties, but the 

estimators of   and   are biased. Besides, the methods in this group are normally 

inconvenient in view of practical applications. 

The recent work on the Weibull parameter estimation methods has focused on 

one or several of the following aspects: 

 Bias correction methods 

 Estimation based on small samples 

 Estimation based on censored data or field data 

 Robust estimation methods  

 Bayesian estimation methods or others 

In fact, WPP, MLE and LSE have become the most popular and widely used 

parameter estimation methods for the Weibull distribution. WPP is a graphical 

method which can serve as a simple tool for model validation and outlier detection. 

MLE is considered to have good statistical perspectives and is preferred by 

researchers, while WPP and LSE are frequently used by practitioners because of the 

simplicity and graphical presentation. For example, LSE is the standard parameter 
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estimation method for the Weibull distribution in soil studies (Munkholm & Perfect, 

2005). MLE has been intensively examined in the literature, where both large sample 

properties and small sample properties of its estimators have been investigated. In the 

1990s, some researchers found that the estimators of MLE and LSE are both highly 

biased in the cases of small samples and censored samples, see, e.g., Montanari et al.  

(1997a, b, 1998), which could raise a warning message. Several bias correction 

methods have been proposed for the MLE method, see, e.g., Ross (1994a, 1996) and 

Hirose (1999). However, there are no bias correction methods for LSE. Indeed, the 

LSE method is less discussed by researchers. Previously we have mentioned that 

reliability data analysis requires different approaches for different types of data, and 

the group of linear regression methods can satisfy this purpose because, as is well-

known, different regression techniques, such as WLS and robust regression, are good 

at handling certain data types. LSE, as the simplest method in the group of linear 

regression estimation methods, can be refined or replaced by other methods in the 

group to achieve better estimation results. In summary, LSE and other linear 

regression estimation methods have good potentials compared to MLE, but little work 

has been done to explore them. 

1.4  Scope of the Thesis 

This thesis focuses on the linear regression estimation methods including LSE for the 

Weibull distribution. WPP is presented together with the linear regression estimation 

methods because they can be easily combined. The proposed estimation methods are 

frequently compared with the MLE method because of its wide application. Other 

estimation methods in Table 1-3 such as MME/MMME are beyond the scope of this 

thesis. 
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Harsh data conditions including small samples, highly censored samples, and/or 

samples with outliers are central to this study mainly because they are very common 

in the field and they are the recent interests of Weibull researchers.  

1.5  Research Objectives and Significance 

The purpose of this thesis is to refine the conventional LSE (or ordinary LSE, or 

OLSE) method and develop new linear regression estimation methods for the Weibull 

distribution to deal with harsh data conditions such as small samples, highly censored 

samples, and/or samples with outliers. Several simple methods are proposed that can 

be easily applied and understood. The specific aims are listed as follows: 

1) Thoroughly investigate the properties of the OLS estimators of the two 

Weibull parameters via both theoretical analysis and intensive Monte Carlo 

simulation experiments (Chapter 3). 

2) Provide suggestions on the application procedures of the LSE method 

including the selection of failure probability estimator and the regression 

direction, applied to complete data and censored data, respectively (Chapter 

4). 

3) Propose simple bias correcting formulas for the OLS shape parameter 

estimator, applied to small and complete data, and censored data with low 

censoring levels (Chapter 5). 

4) Discuss the existing WLSE methods for the Weibull distribution and 

propose new methods for calculating weights for complete data and 

censored data, respectively (Chapter 6). 
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5) Examine various robust regression techniques and develop robust M-

estimation methods for the Weibull distribution to replace OLSE in order to 

deal with outliers (Chapter 7). 

6) Provide application instructions on the linear regression estimation methods 

discussed in this study with numerical examples (Chapter 8). 

The LSE method is basically the application of simple linear regression. 

Therefore, it is clear that the existing theories and various linear regression techniques 

can be applied to improve or replace the LSE method to deal with various data types. 

We will examine WLS regression techniques and robust regression techniques. The 

step-by-step procedures will be provided for the application of these methods. 

Moreover, the names and versions of common statistical software packages that can 

be used to obtain quick results will be mentioned. To reduce the bias of the OLSE of 

the shape parameter, bias correction methods will be proposed. The proposed simple 

bias correcting formulas can be added to the end of the conventional OLSE procedure 

to provide more accurate estimates without adding computation complexity.  

The results of this study should give researchers a better understanding of the 

theories of LSE and other linear regression estimation methods. The proposed 

methods will be of great practical value for practitioners conducting reliability data 

analysis. Moreover, it may lead to a better understanding of the roles of LSE and 

WPP among all existing Weibull parameter estimation methods.  
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Chapter 2 

Basic Weibull Parameter Estimation Methods 

 

This chapter describes three nowadays most widely used parameter estimation 

methods for the Weibull distribution, i.e., WPP, LSE and MLE. The theoretical 

backgrounds of these methods are presented. Common criteria for comparing 

estimation methods and estimators are described.     

2.1  Introduction and Notations 

Now suppose there is a random sample from a life testing experiment. Assume the 

underlying distribution is the Weibull distribution. This sample can be denoted as 

ni tttt ,,,,, 21   ),,2,1( ni  . Based on the experiment schemes, it can be a 

complete sample where all the observations are failures, or it can be a censored 

sample where some of the observations are failures and the others are censors. In this 

thesis, multiply censored samples are used as the general case for censored life data. 

For a multiply censored sample, let ),,2,1(,,,,, ,,2,1, rjtttt rfjfff    denote 

the failure times and ),,2,1(,,,,, )(,,2,1, rnktttt rnckccc    denote the 

censoring times.  

The order statistics of the observations are used in the LSE method since the 

failures occur in sequence. Let )(it  denotes the ith smallest failure time in a complete 

sample, i.e., )()()2()1( ni tttt   . For a multiply censored sample with r  

failures and rn   censors, let )(, jft  denotes the jth smallest failure time and )(, kct  
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denotes the kth smallest censoring time, so )(,)(,)2(,)1(, rfjfff tttt    and 

)(,)(,)2(,)1(, rnckccc tttt   . Table 2-1 provides an illustration of the notations 

with a numerical example.  

Table 2-1: An illustration of the notations with a numerical example. 

Unit No

Failure (F) / 
Censor (C) 
Indicator

Age   
(hour)

Notations 
of the 
Original 
Sample

Notations of the Order 
Statistics of the Sample 
Without Failure/Censor 
Indicator

Notations of the Order 
Statistics of the Sample 
With Failure/Censor 
Indicator

1 F 290
2 C 1000
3 F 133
4 F 470
5 C 500
6 F 700
7 C 800

2t
3t
4t
5t
6t
7t

)1(,ft
)3(,ct

)3(,ft
)1(,ct
)4(,ft

)2(,ct

1t )2(,ft

)1(t

)2(t

)3(t
)4(t
)5(t
)6(t

)7(t

 
 

The objective of parameter estimation is to estimate   and   using sample data. 

In the following of this chapter, the theoretical backgrounds and the estimation 

equations (except WPP) of three common estimation methods of the Weibull 

distribution, i.e., WPP, LSE and MLE, are separately presented in Sections 2.2, 2.3 

and 2.4. Finally, Section 2.5 describes the common criteria for comparing different 

estimation methods and their estimators. 

2.2  Weibull Probability Plot and Y-axis Plotting Positions 

WPP is a traditional graphical method for estimating the Weibull parameters. 

Proposed by Kao (1959), it is still widely used nowadays for Weibull analysis. WPP, 

in addition to providing simple parameter estimates, it serves the purpose of simple 

model validation and outlier identification which are very important in any 

engineering data analysis.  
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WPP is based on the linearization of the Weibull CDF in Equation (1-1). The 

linearized Weibull CDF is given by  

    lnln))(1ln(ln  ttF  (2-1) 

Weibull probability paper is specially scaled based on Equation (2-1) so that it 

shows a straight line if the Weibull distribution fits the sample data. Its X-axis 

represents the observations t  (i.e., failure time) from a life testing experiment or the 

field. The Y-axis represents the cumulative probability of failure )(tF . From the 

Weibull CDF, the value of )(tF  at each failure data point are unknown without the 

values of   and   and hence can only be estimated. Similar to other probability 

plotting methods, for example, the normal probability plotting, non-parametric 

estimators of )(tF  with a general form of )/()( 21 cnci   are frequently used to 

obtain the Y-axis plotting positions. As is well known, )41()83(  ni  (Blom, 

1958) is used for the normal probability plotting. As for WPP, the selection of the 

method to obtain the Y-axis plotting positions depends on whether the sample is 

complete or censored. In the following, the theoretical backgrounds of the commonly 

used Y-axis plotting positions covered in the reliability textbooks for complete 

samples and censored samples are briefly presented.  

Theoretical Backgrounds of Commonly Used Y-axis Plotting Positions on WPP 

The complete samples are considered first. A common practice when using 

probability theory to analyze the order statistics of random samples from a continuous 

distribution (the parent distribution) considers the probability F  as uniformly 

distributed between 0 and 1, and hence its order statistic )(iF  has a beta distribution 
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with parameters i  and 1 in . The mean and median of this beta distribution are 

commonly used for the Y-axis plotting positions. The mean has a simple form, i.e., 

       
1

)( )( 


n

i
FE i  (2-2) 

Professor Weibull originally used Equation (2-2) (Weibull, 1939) and this is then 

named Weibull plotting position or Weibull estimator. Theoretically, it is the exact 

mean rank plotting position of each data point.  

The median of )(iF  is related to the incomplete beta function. It is the solution of  

        






 )(

0

1)(

2

1
)1(

iFMedian ini dppp
i

n
i  (2-3) 

The exact median values at different combinations of i  and n  can be obtained using 

numerical methods. One can also lookup the standard tables of the percentage points 

of the incomplete beta distribution (see, e.g., Gibbons et al., 1999) to get quick results. 

 The median rank plotting position in Equation (2-3) is more favored than the 

mean rank plotting position in Equation (2-2) by Weibull researchers. Simple 

approximations have been proposed for the median rank plotting position, among 

which the Bernard estimator (Bernard & Bosi-Levenbach, 1953) has been widely used 

nowadays. The Bernard estimator is given by 

    Bernard estimator    
4.0

3.0ˆ
)( 




n

i
F i  (2-4) 

Another popular source for )(
ˆ

iF  is the Hazen estimator in Equation (2-5). It is 

also known as the midpoint probability estimator since it is the middle value of the 
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interval from ni /)1(   to ni /  (Kimball, 1960). The Hazen estimator is used as the 

default method for Y-axis plotting positions in the WPP program of MATLAB 7. 

   Hazen estimator     
n

i
F i

5.0ˆ
)(


  (2-5) 

From the theoretical backgrounds of the above estimators (Weibull, Bernard and 

Hazen), it is clear that all of them have no relationship with the Weibull CDF. In other 

words, these are distribution-free plotting positions. In Section 4.3, plotting positions 

related to the Weibull CDF will be presented. 

Estimation of the failure probabilities for censored Weibull samples is a 

challenge and the above mentioned estimators should not be directly used. It is 

important to note that WPP and the group of linear regression estimation methods 

discussed throughout this study only plots, or in the analytical cases uses, the failure 

times. The influence of censoring can be reflected in the estimation of failure 

probability at each failure data point.  

Similar to the common estimators of )(iF  for complete samples, failure 

probability estimators that are independent of failure time are frequently used for 

censored samples. In the following, let )(,
ˆ

jfF  denotes the failure probability estimator 

for the jth failure in a censored sample, i.e., )(ˆˆ
)(,)(, jfjf tFF  . The Herd-Johnson 

method (Herd, 1960; Johnson, 1964) is most widely used for estimating failure 

probabilities for censored data. It is given by   

Herd-Johnson estimator                      




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where jI  denotes the event number of the jth failure in the sample. The occurrence of 

a failure and a censor are both considered as an event. )(,
ˆ

jfR  is the supplement of 

)(,
ˆ

jfF  and 1ˆ
)0(, fR . 

The theoretical background for the derivation of Equation (2-6) is briefly 

described as follows. Assume there is a multiply censored sample of size n  in which 

r  failures ( nr 0 ) and rn   censors are intermixed along the time axis. Let 

)()()2()1( ,,,,, ni tttt   denote the ordered observations. We call )(it  an event and it can 

be a failure event or a censor event. Let )(,)(,)2(,)1(, ,,,,, rfjfff tttt   ( nr 1 ) be the 

ordered failure events. From the definition of jI  one can obtain )()(, jIjf tt  . 

Censoring times can lie in one of the intervals constructed by failure times, i.e., 

 )1(,,0 ft ,  )(,)1(, , jfjf tt   ( rj 1 ), and  ,)(, rft . The Herd-Johnson method first 

assumes that a censor happens concurrently with a failure event, say for example, if 

the censoring time lies in the interval  )(,)1(, , jfjf tt  , it is treated as happening at 

)1(, jft . Now consider a censor which occurs at )1(, jft , if allowed to continue the test, 

it may fail in any of the intervals between two consecutive events  )()1( , ii tt  , where 

)1(,)1(   jfi tt , or the interval following the final event, denoted by  ,nt , and there 

is a total of 2 jIn  possible intervals. By assuming the probabilities of failing in 

any of the intervals are equal, the probability of failing in  )(,)1(, , jfjf tt   is then 

)2(1  jIn , or the probability of surviving in  )(,)1(, , jfjf tt   is 

)2()1(  jj InIn . Applying the multiplication rule of conditional probability, 

we obtain 
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A numerical example is given to illustrate the Herd-Johnson method, as shown in 

Figure 2-1 and Table 2-2. Figure 2-1 plots the ordered observations in the sample 

along a time axis and Table 2-2 shows the calculation of )(,
ˆ

jfF  at each failure data 

point. 

X    X X X
0 )1(,ct )2(,ct )3(,ct

)1(,ft )2(,ft
)3(,ft )4(,ft

 
 Figure 2-1: A numerical example of the Herd-Johnson method: ordered events along a time axis 

(“x” denotes failure and “o” denotes censor). 

 

Table 2-2: A numerical example of the Herd-Johnson method: calculation of 
)(,

ˆ
jfF . 
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The estimation of failure probability is an important issue that affects both 

goodness-of-fit and parameter estimation results. Many researchers have investigated 

the issue and different methods have been compared and favored, see, e.g., Fothergill 

(1990), Cacciari & Montanari (1991). For censored data, besides the Herd-Johnson 

estimator which is a non-parametric estimator, some parametric estimators, see, e.g., 
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Wang (2001, 2004), have been proposed. Although some estimators, e.g., the Bernard 

estimator used for complete samples and the Herd-Johnson estimator used for 

censored samples, are more frequently used than the others, by now the agreement has 

not been reached and the discussion is ongoing. Section 4.3 will further explore the 

issue.  

Application Procedure of WPP 

A widely used procedure of WPP is to plot t  along the horizontal axis and the 

estimated values of )(tF , commonly called Y-axis plotting positions, along the 

vertical axis, on the Weibull probability paper. As a traditional way, a straight line is 

fitted to the points by eye; however, more objective estimates can be obtained by 

fitting the straight line via the least squares regression technique. The shape parameter 

is then estimated by the slope of the regression line and the scale parameter is 

estimated by either the exponential of the ratio of the regression line’s intercept to 

slope, or the value of t  when 632.0F  (see Equation (1-7)).  

WPP can be easily generated by common statistical software packages such as 

MATLAB, SAS, S-PLUS and MINITAB. Table 2-3 summarizes the syntax (for 

MATLAB and SAS) or dialogs (for S-PLUS and MINITAB) used in these software 

packages to generate a WPP and their default straight line fitting techniques, 

including the default Y-axis plotting positions, if applicable. As can be seen from the 

table, MATLAB 7 uses the LS fit with the Hazen estimator (i.e., Equation (2-5)) for 

Y-axis plotting positions by default, S-PLUS 6 provides both LS fit and MLE fit, 

while SAS 9 and MINITAB 14 use MLE fit by default. The MLE fit is not traditional 

for the WPP; however, has gained some popularity since researchers favor the MLE 

method for parameter estimation. If the MLE fit is used, the Y-axis plotting positions 
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are directly calculated by the Weibull CDF with the ML estimates of the two Weibull 

parameters. The practitioners should be cautious about the MLE fit because it tends to 

overestimate the shape parameter for small samples. The use of the Kaplan-Meier 

estimator for the Y-axis plotting positions in SAS 9 and S-PLUS 6 is inappropriate. As 

mentioned in Section 1.3.1, a big disadvantage of the Kaplan-Meier estimator is that 

the unreliability for the last failure data point is always 1, and hence it tends to 

underestimate the failures in the tail of the distribution.  

Table 2-3: Summary of the syntax or dialogs for generating WPP with common statistical 
software packages and their default straight line fitting techniques*. 

Software & 
Version

WPP Syntax/Dialog 
for Complete Data

WPP Syntax/Dialog for 
Censored Data Default Straight Line Fitting Techniques References

wblplot(x)
probplot('weibull', x, cens, 
freq)

probplot('weibull', x)

SAS 9
PROBPLOT 
variable</options>

PROBPLOT 
variable<*censor-
variable(values)></options>

By default is MLE fit instead of LS fit. If use LS fit, the 
default plotting position is the modified Kaplan-Meier rank, 
but we can also use mean rank or median rank (specified in 
options)

http://support.sas.com/docum
entation/cdl/en/qcug/59658/H
TML/default/rel_intro_sect34
.htm#qcug_rel_intro_probopt

Least squares. Default Y -axis plotting position is the Kaplan-
Meier rank.

Straight line generated by ML estimates.

MINITAB 14 Straight line generated by ML estimates.
http://www.minitab.com/en-
CA/support/answers/answer.a
spx?ID=1331

S-PLUS 6
http://www.public.iastate.edu/
~wqmeeker/splida/SplidaGui.
pdf

Graph ► Probability Plot (specify Weibull 
distribution)

http://www.mathworks.com/a
ccess/helpdesk/help/helpdesk.
html

Least squares. Default Y -axis plotting position is the Hazen 
estimator (i - 0.5)/n, where n is sample size for complete data 
and number of failures for censored data

MATLAB 7

SPLIDA ► Single distribution analysis ► Probability 
plot with nonparametric confidence intervals

SPLIDA ► Single distribution life data analyses ► 
Probability plot with parametric ML fit

 

 

MATLAB 7 is used in this study. The default Y-axis plotting positions are 

calculated by the Hazen estimator but can be easily changed to other options. Figure 

2-2 gives an example of a computer-generated WPP in MATLAB 7. 

 

                                                 

* Online references: http://www.mathworks.com/access/helpdesk/help/helpdesk.html (MATLAB); 
http://support.sas.com/documentation/cdl/en/qcug/59658/HTML/default/rel_intro_sect34.htm#qcug_rel_intro_pro
bopt (SAS); http://www.public.iastate.edu/~wqmeeker/splida/SplidaGui.pdf (S-PLUS); 
http://www.public.iastate.edu/~wqmeeker/splida/SplidaGui.pdf (MINITAB). 
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Figure 2-2: An example of a computer-generated WPP in MATLAB 7. 

 

2.3  Least Squares Estimation 

The LSE method uses the least squares regression to estimate the two parameters 

based on the linearized Weibull CDF in Equation (2-1). 

As the conventional way, setting TX ln ,  )1ln(ln FY  ,  lnA  and  

B , Equation (2-1) becomes a simple equation, i.e., 

 BXAY   (2-7) 

Thus the estimation of   and   can be transferred to the estimation of the regression 

coefficients for a simple linear regression model of the form eBXAY  , where 

e  is the error term.  

For a complete data set ni tttt ,,,,, 21  , the values of X  and Y  can be 

calculated by 
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 )ln( )(ii tx   and  )ˆ1ln(ln )(ii Fy    (2-8)   

For a censored data set where rfjfff tttt ,,2,1, ,,,,,   denote the failure times, 

the values of X  and Y  can be calculated by 

 )ln( )(, jfi tx   and  )ˆ1ln(ln )(, jfi Fy   (2-9) 

The common methods used to obtain the values of )(
ˆ

iF  and )(,
ˆ

jfF  have been 

described in Section 2.2.  

The objective function of the LSE method is 

 min  



r

i
ii BxAyS

1

2)(   (2-10) 

where for complete data, nr  .  

By taking partial derivatives of S  with regard to A  and B , respectively, and 

setting the results to 0, we obtain 

 

   

 








































 

  







 

  





r

xBy
xByA

xxr

yxyxr

xx

yyxx
B

r

i
i

r

i
i

r

i

r

i
ii

r

i

r

i

r

i
iiii

r

i
i

r

i
ii

11

1

2

1

2

1 1 1

1

2

1

ˆ
ˆˆ

ˆ

 (2-11) 

where rxx
r

i
i




1

 and ryy
r

i
i




1

.  

Based on  lnA  and B , the estimating equation related to   and   

is then given by 
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Equation (2-12) can be applied to both complete data and censored data. For complete 

data, nr  . 

2.3.1 The Ordinary/Conventional LSE Method 

There are some uncertainties in the LSE method which makes it inappropriate to 

describe LSE by a single equation like Equation (2-12). Firstly, Equation (2-12) is 

derived based on the setting of TX ln  and  )1ln(ln FY  . Another option 

appeared in the literature is to set TY ln  and  )1ln(ln FX  , i.e., to reverse the 

independent variable and the dependent variable in the regression. This will give 

another estimating equation for LSE. Discussions for the regression direction are 

presented in Section 4.4. Secondly, even if the conventional setting of X and Y is used, 

different methods for calculating iF  or iy  will result in different estimates for the 

parameters. A detailed comparison of the various estimators of the Y-axis plotting 

positions on parameter estimation is presented in Section 4.3. Based on the above two 

points, in fact, LSE has a family of methods.   

According to the common practice, the OLSE method refers to the LSE method 

that 1) sets TX ln  and  )1ln(ln FY  , so that Equation (2-12) is the estimating 

equation; and 2) for estimating F , the Bernard estimator in Equation (2-4) is used for 
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complete data, and the Herd-Johnson estimator in Equation (2-6) is used for multiply 

censored data.  

Application Procedure of OLSE 

Step 1:  Rank failure times from smallest to largest and calculate the estimates 

for failure probability at each failure data point. For complete data, use 

the Bernard estimator, i.e., Equation (2-4), to calculate )(
ˆ

iF . For 

censored data, use the Herd-Johnson estimator, i.e., Equation (2-6), to 

calculate )(,
ˆ

jfF . 

Step 2:  Calculate ix  and iy . For complete data, use Equation (2-8). For 

censored data, use Equation (2-9). 

Step 3: Estimate   and   using Equation (2-12). 

2.4  Maximum Likelihood Estimation 

MLE is one of the most widely used tools for statistical inference. Cohen (1965) 

introduced the maximum likelihood equations for estimating the two Weibull 

parameters from complete samples, Type I or Type II singly censored samples and 

multiply censored samples, respectively. The likelihood function for complete 

Weibull samples is given by 

       /exp/)(
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 (2-13) 

Taking logarithm of L , differentiating with respect to   and   and equating to 

0, the estimating equation can be obtained as 
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The likelihood function for singly censored samples, either Type I or Type II 

censored, is given by 
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where C  is a constant. For Type I censoring, Tt  is the predetermined time of 

termination, and for Type II censoring, Tt  is the time at the rth  failure, i.e., rT tt  . 

The estimating equation of MLE for singly censored data is 
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For multiply censored samples, the likelihood function is given by 
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and the estimating equation is 
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The Newton-Raphson method is frequently used to solve the estimating 

equations, i.e., Equations (2-14), (2-16) and (2-18). Although the calculation is 

complicated, nowadays many statistical software packages such as MATLAB, SAS, 

S-PLUS and MINITAB have embedded programs for calculating the ML estimates. 

Electronic spreadsheets such as Excel can also solve the estimating equations of MLE, 

see, e.g., Tang (2003) for a numerical example. 

2.5  Comparison of Estimation Methods and Estimators 

As previously stated, parameter estimation usually serves as a preliminary step of 

Weibull analysis and the parameter estimates may greatly affect the business 

decisions making on the subsequent steps. Different parameter estimation methods 

can generate widely differing estimates; therefore, it is important to have objective 

criteria to instruct the selection of one estimation method over the other alternatives. 

Tobias & Trindade (1995) gave four most desirable attributes for estimation methods. 

Their descriptions are quoted below. 

 Lack of bias: The expected value of the estimate equals the true parameter. 
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 Minimum variance: The estimator of the selected method has less 

variability on the average than any estimators. If this estimator is also 

unbiased, it is likely to be closer to the true value than other estimators.  

 Sufficiency: The estimate makes use of all the statistical information 

available in the data. 

 Consistency: The estimate tends to get closer to true value with larger 

sample size (infinite samples yield perfect estimates). 

In view of the application perspectives for engineers, we add another desirable 

attribute,  

 Simplicity: The method does not involve complicated calculation and 

sophisticated statistical knowledge. In short, it can be easily understood and 

easily applied.  

Also there are commonly used criteria for comparing parameter estimators 

including bias, variance (or standard deviation), mean square error (MSE), efficiency, 

consistency and robustness. The following descriptions talk about how these terms are 

measured. 

 Bias: The difference between the expected value of a statistic and the 

parameter value which it estimates. An estimator is said to be unbiased if in 

the long run it takes on the value of the population parameter. 

 Variance: The expected value of the squares of the difference between the 

values of the estimates and the mean of them. 

 MSE: The expected value of the squares of the differences between the 

values of the estimates and the parameter value. MSE can also be calculated 

by the sum of the variance and the squared bias of the estimator. 
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  Efficiency: The ratio of the variances of two estimators. Sometimes, we will 

select an estimator with a small amount of bias but a high efficiency.  

 Consistency: Estimator that converges in probability to the quantity being 

estimated as the sample size grows. The performance of a consistent 

estimator improves with the increase of sample size.  

 Robustness: The properties of the estimator when the assumptions used in 

the parameter estimation method are not valid. A common situation is the 

properties of the estimator in the presence of outliers.  

For the three basic estimation methods described in this chapter, WPP is the 

simplest method and it can serve as a simple tool for model validation and outlier 

identification. MLE is considered to have good statistical perspectives since it is 

asymptotically unbiased, asymptotically efficient and consistent. Compared to MLE, 

the LSE method has some advantages: 1) it has a closed form solution which can be 

easily calculated; 2) it can be easily incorporated into WPP and the different ways of 

obtaining the Y-axis plotting positions adds its flexibility; and 3) the properties of the 

LS estimators including bias and MSE are not inferior to those of the ML estimators, 

especially under harsh data conditions such as small samples and highly censored 

samples. In the next chapter, the properties of the OLS estimators are discussed in 

details. The simulation results will be given on the comparison of OLSE and MLE for 

both parameter estimators. 
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Chapter 3 

Properties of the OLS Estimators 

 

This chapter explores the properties of the OLS estimators for the Weibull distribution 

through two approaches: analytical examination and Monte Carlo experimental 

examination. The results suggest the possibility and directions to improve the OLSE 

method. 

3.1  Introduction 

The OLSE method is widely used by practitioners conducting Weibull analysis. The 

analytical background and application procedure of the method, and the relationship 

between OLSE and LSE in the general sense, have been described in Section 2.3.   

As previously mentioned, the traditional viewpoint toward LSE considers it as a 

simple but inaccurate method for Weibull parameter estimation, compared with other 

analytical estimation methods such as MLE. As a result, this method has been 

overlooked by many researchers and it was not until the last decade that some 

researchers, based on Monte Carlo simulations, pointed out that the properties such as 

bias and MSE of the OLSE of the Weibull shape parameter outperform those of the 

MLE for small samples and highly censored samples, see, e.g., Montanari et al., 

(1997a, b, 1998).    

This chapter presents a detailed examination of the OLS estimators of both 

Weibull parameters. Firstly, using the knowledge of least squares regression or the 

Gauss-Markov theorem, we clarify why the OLS estimators of the Weibull parameters 
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are not BLUE and discuss how the selection of the Y-axis plotting positions will affect 

the bias of the estimators via analytical methods. Moreover, the existence of two 

pivotal functions,  /ˆ  and )/ˆln(ˆ  , of the LS estimators, regardless of the 

determination of the Y-axis plotting positions, and for both complete and censored 

data, is proved. Secondly, the method of using Monte Carlo simulation experiments to 

determine the bias, variance and MSE of the OLS estimators is described. The 

experiment procedures, setting of experiment factors, and experiment results are 

presented. Finally, the results from both analytical examinations and experiment 

examinations are summarized. 

3.2  Analytical Examinations of the OLS Estimators 

3.2.1 OLS Estimators Are Not BLUE 

As pointed out in Section 2.3, LSE transfers the estimation of   and   to the 

estimation of the two regression coefficients for a simple linear regression model of 

the form eBXAY  , where  lnA , B  and e  is the error term. The LS 

estimators of   and   can be obtained via the LS estimators of A  and B . 

According to the Gauss-Markov theorem, for a simple linear regression model 

eBXAY  , if certain assumptions are satisfied, the LS estimators of A  and B  

will be BLUE, i.e., unbiased and have minimum MSE among all linear estimators of 

A  and B (Allen, 1997, pp. 182-185). These assumptions are 

i. The expected value or mean of the population errors is zero. This 

assumption can be mathematically stated as 0)( ieE . 

ii. The variance of the errors is constant for all values of the independent 
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variable. This assumption is also known as the homoscedasticity condition. 

Mathematically, the assumption can be expressed by 2)( ieVar  for all i .  

iii. The errors are independent of each other. Mathematically, it can be 

expressed by  0),( ji eeCov  for all ji, . 

iv. The errors and the independent variable are independent, i.e., 

0),( ii xeCov . 

There is no specification on the distribution of the error; however, if the error is 

normality distributed, the LS estimators of A  and B  will be the best unbiased 

estimator (BUE) among all linear and nonlinear estimators.  

If the above assumptions are satisfied, the BLUE of   and ln  can be obtained 

via the BLUE of A  and B  based on B  and  lnA . The estimator of   is 

not BLUE because ln is not a linear operation, but this is not especially problematic 

since in most times only   is of importance.  

In the most common simple linear regression scenario, the values of X are treated 

as known constants set by a design and the values of Y are measured conditionally on 

the values of X in an experiment. This does not meet the background of the LSE 

method because here both X and Y are random variables and the values of Y cannot be 

measured but estimated. To check the assumptions i – iv for the linear regression 

model of the OLSE method, first assume the uncertainty of T or TX ln  is much 

smaller than the uncertainty of Y (  )1ln(ln FY  ), thus the uncertainty of e  can 

be confined to Y . This assumption justifies the regression direction of Y on X used in 

OLSE. With this assumption and also note that the values of ix  and iy  used in the 

estimating equation, i.e., Equation (2-12), come from the order statistics of the 
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variables, the problem now is to examine )(),( )()( ii YVarYE  and ),( )()( ji YYCov .  From 

the knowledge of order statistics, it is clear that )( )(iYVar , which is a function of the 

order number i, is not a constant, and any two order statistics, e.g., )(iY  and )( jY , are 

correlated. Therefore, assumptions ii and iii are usually inappropriate. The analytical 

expressions for )( )(iYE , )( )(iYVar  and ),( )()( ji YYCov  are presented in Section 3.2.2. 

Assumption i is also not true for the OLSE; however, as shown in Section 3.2.3, the 

sensible selection of the Y-axis plotting positions, which is not by the Bernard 

estimator used in OLSE, can satisfy this assumption in the case of complete data. 

Finally, under the assumption that the error can be confined to Y, assumption iv is 

satisfied.  

The analytical examination clearly shows that the OLSE of   and ln  are not 

BLUE. It is very likely that the OLSE of   is not BLUE as well. 

3.2.2 Derivations of the Mean, Variance and Covariance of the Order 

Statistics of Y  

As is well known, if the random variable T follows the Weibull distribution with scale 

parameter   and shape parameter  , then the variable TX ln  follows the extreme 

value distribution whose CDF has a location-scale form given by 

  )exp(exp1)(  xxF       (3-1) 

where  ln  and  /1 . 

For location-scale distributions such as the normal distribution and the extreme 

value distribution, the variable )(  XZ  follows a parameter-free distribution 
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and hence is frequently used to simply the analytical analysis. This variable Z  is 

frequently called reduced variable. 

From Equation (3-1), the reduced variable Z  related to the Weibull distribution 

is given by 

   )/(lnlnln)1()ln(ln)( TTTXZ        (3-2) 

Based on the Weibull CDF, the CDF of Z  can be determined as  
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Obviously, Z  follows the standard smallest extreme value Type I distribution or the 

standard Gumbel distribution.  

The linearized Weibull CDF is  

    lnln))(1ln(ln  ttF  (3-4) 

Comparing Equation (3-4) with Equation (3-2), we obtain  

  ))(1ln(ln tFZ        (3-5) 

Recall that  ))(1ln(ln tFY   which is exactly the same as the expression for 

Z  in Equation (3-5), therefore, the values of  )ˆ1ln(ln )(ii Fy   can be looked on as 

the values taken on by the order statistic of Z , i.e., )(iZ . Thus, 

 ),(),(),()(),()( )()()()()()()()( jijiiiii ZZCovYYCovZVarYVarZEYE    (3-6) 
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From Equation (3-3), the CDF of )(iZ  can be determined as  
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)(),( )()( ii ZVarZE  and ),( )()( ji ZZCov  can then be derived from the CDF. The 

results are 
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where 577216.0  is the Euler’s constant. 
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where ji zvzu lnandln   . 

 2
)(

2
)()( )]([)()( iii ZEZEZVar      (3-11) 

 )()()(),( )()()()()()( jijiji ZEZEZZEZZCov    (3-12) 

Appendix A gives the detailed derivation of Equations (3-8) – (3-10).  
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From the above results, obviously, the variance of )(iZ  or equally )(iY  is not 

constant. In Chapter 6, the values of )( )(iYVar  at selected sample sizes will be 

tabulated which are used to calculate the exact weights for the WLSE method. 

3.2.3 Sensible Selection for yi 

Several numerical expressions for calculating the values of )(iF  or iy  have been 

presented in Section 2.2 with their theoretical backgrounds. It is noteworthy that )(iF  

is treated as a random variable rather than a probability in the process of determining 

the analytical expressions of its estimators. Let the ith smallest observation )(iT  or 

)()( ln ii TX  , which is also a random variable having a different value in different 

samples, has the plotting position )(iF  or iy . It is sensible to select iy  so that the 

point ( )),(( )( ii yXE  lies on the linear regression line. Numerically this means 

 )( )(ii XEBAy    (3-13) 

where  lnA , B .  

Let  ln  and  /1 , then A  and 1B , and Equation (3-13) 

becomes 

       )()( )( iii XEXEy   (3-14) 

Thus the plotting positions iy  are uniquely defined as the expected values of the order 

statistics of the reduced variable )(  XZ , i.e., 

 )( )(ii ZEy    (3-15) 
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The reduced variable Z and its order statistics are defined in the previous section and 

the values of )( )(iZE  can be obtained by Equation (3-8).  

Based on the relationship   )(
ˆ1lnln ii Fy  , the plotting positions of )(iF  can 

be obtained by 

 ))(exp(exp(1ˆ
)()( ii ZEF    (3-16) 

This way of determining the Y-axis plotting positions makes the points ( ii yx , ), 

where the values of ix  come from sample observations and are different in different 

samples, and the values of iy  are determined by Equation (3-15) and are fixed for a 

certain sample size, on the average will achieve a linear plot if the Weibull 

distribution fits. 

3.2.4 Relationship between Plotting Positions and Bias of LS 

Estimators 

Now suppose the plotting positions )(
ˆ

iF  or   )(
ˆ1lnln ii Fy   are predetermined by 

some convention, e.g., the Bernard estimator )4.0()3.0(ˆ
)(  niF i , the Hazen 

estimator niF i )5.0(ˆ
)(  , the Weibull estimator )1(ˆ

)(  niF i , or the expected 

values of the order statistics of the reduced variable, i.e., Equation (3-15) or Equation 

(3-16). Thus the Y-axis values are fixed at a specific sample size and have no 

uncertainty (this assumption is different from the one presented in Section 3.2.1 for 

the OLSE method), suggesting that one should minimize the sum of squares of the 

deviations in the X-axis direction (i.e., failure time) when applying the LSE method 

for parameter estimation.  
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With  ln  and  /1 , the linear regression model eBXAY   can be 

transferred to 

 eYX     (3-17) 

where e  is the error term. 

The LS estimating equations for   and  , by minimizing the sum of 

 2)ˆˆ( ii yx    , are given by 
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where ix  denote the sample values taken on from the random variable )(iX  and the 

values of iy  are predetermined and not random. nxx
n

i
i




1

 and nyy
n

i
i




1
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It can be easily proved that ̂  and ̂  computed by Equation (3-18) and Equation 

(3-19), respectively, are unbiased if the values of iy  are determined by the method 

presented in Section 3.2.3, i.e., Equation (3-15). The proof is given below.  

Proof for the Unbiasedness of the LS Estimators of μ and σ When Equation (3-15) 

is Used for yi  

The unbiasedness of ̂  and ̂  can be proved by  )ˆ(E  and  )ˆ(E . 
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Since iy  are treated as fixed values, from Equation (3-18), the expected value of 

̂  is given by 
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In Section 3.2.3, Equation (3-15) is derived based on the relationship given by 

Equation (3-13). Rewrite this equation as 

 ii yXE  )( )(   (3-21) 

and substituting it in Equation (3-20) yields 
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  (3-22) 

Then from Equation (3-19), the expected value of ̂  is 

   yyyEXEE )ˆ()()ˆ(   (3-23) 
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Therefore, the LS estimators ̂  and ̂  are both unbiased when Equation (3-15) 

is used for determining iy . This kind of plotting position has a good statistical 

background and has been recommended by a few researchers, see, e.g., (Ross, 1994b). 

However, since the relationships between   and  , and   and  , are both 

nonlinear, there is no guarantee that ̂  and ̂  are also unbiased. 

In the following, assuming the values of iy  are predetermined by any plotting 

convention, the analytical expressions of the relative bias of ̂  and ̂ , respectively, 

are presented. 
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From Equation (3-18) and Equation (3-19), the relative bias of the LS estimators 

of   and   can be obtained by 
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  (3-25) 

and 
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From the definitions of the reduced variable Z  and its order statistic )(iZ ,  

    )()( )()( ii XEZE   (3-27) 
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and  

    )()( XEZE   (3-28) 

Let )( )(ii ZE  and rewrite Equation (3-27) as 

 iii ZEXE   )()( )()(   (3-29) 

where the values of i  can be calculated by Equation (3-8). 

Substituting Equation (3-29) in Equation (3-25) for )( )(iXE  yields 
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where 



n

i
is

1

0  can be easily obtained from Equation (3-24). 

Since Z  follows the standard smallest extreme value Type I distribution, we 

have  )()( ZEZE , where 577216.0  is the Euler’s constant. Rewrite 

Equation (3-28) as 

   )()( ZEXE   (3-31) 

Then substituting Equation (3-30) and Equation (3-31) in Equation (3-26) for 

)ˆ(E  and )(XE  yields 
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Thus the relative bias of ̂  can be numerically calculated by Equation (3-30) 

given a sample size, a predetermined method for calculating the plotting positions, 

and the values of i  which can be calculated by Equation (3-8). The relative bias of 

̂  involves the true values of   and   which are normally unknown and hence can 

only be estimated. 

3.2.5 Pivotal Functions of LS Estimators  

The definition of pivotal function is a function, e.g., )(g  of   whose distribution is 

known and is independent of   (Garthwaite et al., 2002, p. 98). For the Weibull 

distribution, as is well known, there are two pivotal functions for the ML estimators of 

the Weibull parameters, i.e.,  /ˆ  and )/ˆln(ˆ  . Their distributions can be 

determined via the Monte Carlo method and are independent of   and  . Bain & 

Antle (1967) presented three theorems of  /ˆ  and )/ˆln(ˆ   that clearly address 

the properties of the two pivotal functions for their proposed estimators of the Weibull 

parameters (neither LSE nor MLE). Let 1,1̂ , 1,1̂  denote the estimators of   and   

when the sample is actually from a normalized Weibull distribution, i.e., 1  , 

the three theorems are as follows. 

Theorem 1.   /ˆ  has the same distribution as 1,1̂  and is distributed 

independently of   and  . 

Theorem 2.   /ˆ  has the same distribution as  ,1ˆ  and depends only on  . 

Theorem 3. )/ˆln(ˆ   has the same distribution as )ˆln(ˆ
1,11,1  , or  ̂  has 

the same distribution 1,1̂ . 
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Thoman et al. (1969) examined the above theorems for the MLE of the Weibull 

parameters and pointed out that  /ˆ  and )/ˆln(ˆ   are two pivotal functions.  

The pivotal functions for the LS estimators are seldom mentioned by Weibull 

researchers. It can be proved that the properties of  /ˆ  and )/ˆln(ˆ   also apply to 

the LS estimated   and  . The proof is given below. 

Proof for the Two Pivotal Functions of the LSE 

Let ),,2,1(,,,,, 21 niTTTT ni    denotes a random sample from a normalized 

Weibull distribution (i.e., 1  ). Substituting  ii Tt   can generate a new 

random sample, denoted by ),,2,1(,,,,, 21 nitttt ni   , from the Weibull 

distribution with arbitrary   and  . Applying the LSE method for this new sample, 

the LS shape parameter estimator can be obtained by  
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Substituting  /1
iT  for it  in Equation (3-33) yields 
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For the normalized Weibull sample ),,2,1(,,,,, 21 niTTTT ni   , the LS 

shape parameter estimator is given by 
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Comparing Equation (3-34) and Equation (3-35), we obtain 

 1,1
ˆˆ     (3-36) 

It follows that  /ˆ  has the same distribution as 1,1̂ .  

Similarly, the second pivotal function )/ˆln(ˆ   can be proved. For the Weibull 

sample ),,2,1(,,,,, 21 nitttt ni   , the LS estimators satisfy  
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Substituting  /1
iT  for it  in Equation (3-37) yields 
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Thus  
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For the normalized Weibull sample ),,2,1(,,,,, 21 niTTTT ni   , the LS 

estimators satisfy  
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From Equation (3-36), 1,1
ˆˆ   . Therefore, comparing Equation (3-39) and 

Equation (3-40) yields 

   1,11,1 ˆlnˆˆlnˆ     (3-41) 

It follows that )/ˆln(ˆ   has the same distribution as 1,11,1 ˆlnˆ  .  

The above proof applies to complete data; however, in the case of censored data, 

one can simply change n  in the equations to r , and the results still holds. In addition, 

the values of iy  are treated as fixed values in the proof, and it does not matter which 

method is used for calculating iy .  

The two pivotal functions,  /ˆ  and )/ˆln(ˆ  , are very useful in parameter 

estimation. An important application is to correct the bias of the Weibull estimators. 

Investigations on the bias correction methods for the LS estimators based on the first 

pivotal function are shown in Chapter 5. Moreover, the pivotal functions also play a 

significant role in the Monte Carlo experiment examination for the LS estimators. 

Especially for the examination of the shape parameter, in most times the true 

parameter values of   and   can be fixed to 1 in the experiment, since  /ˆ  has the 

same distribution as 1,1̂ . Theoretically it is unnecessary to try different parameter 

values and hence a lot of simulation work can be saved. This, unfortunately, has not 
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been noticed by many researchers. The effects of the pivotal functions on the setting 

of the true parameter values of   and   in a Monte Carlo simulation experiment are 

presented in Section 3.3.2.  

3.3  Monte Carlo Experiment Examination of the OLS 

Estimators  

As previously stated in Section 2.5, bias, variance (or standard deviation) and MSE of 

the estimators are the common criteria for assessing the performance of a parameter 

estimation method. The analytical examinations described in last section show that the 

OLS estimators of   and   are not BLUE: they are biased and may have large 

variance. However, it is difficult to give analytical expressions for the bias or variance 

of the OLS estimated   and  . For this reason, the Monte Carlo method is 

frequently used. With Monte Carlo simulations, the sampling distributions of the 

estimators can be approximated and hence the bias, variance and MSE of the 

estimators can be determined.  

Ambrozic & Vidovic (2007) summarized the three typical aims of Monte Carlo 

simulations in reliability data analysis as: comparing different parameter estimation 

methods, discovering the optimal probability estimators (i.e., )(
ˆ

iF  or )(,
ˆ

jfF ) in the 

linear regression method, and analyzing the type of distribution functions for Weibull 

estimators. All of these purposes are covered in this study.  

In the following, Section 3.3.1 describes the common procedures of a Monte 

Carlo simulation experiment to obtain the bias, variance and MSE of the OLS 

estimators in the case of complete data and multiply censored data, respectively. 
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Section 3.3.2 presents the settings of the experiment factors and Section 3.3.3 presents 

the important simulation results for the OLS estimators.  

3.3.1 Monte Carlo Experiment Procedures  

Monte Carlo simulations can be executed by many statistical software packages such 

as MATLAB, SAS, S-PLUS, Mathematic, etc. Most of these software packages have 

reliable algorithms for generating the uniformly distributed random numbers. Based 

on these uniformly distributed numbers, random Weibull samples, either complete or 

censored, can be generated. The software MATLAB 7 is used in this study. 

Monte Carlo Experiment Procedure for Complete Data 

The objective of the experiment is to calculate the bias, variance and MSE of the LSE 

of   and   under different combinations of the predetermined factors including the 

true parameter values of   and   (denoted by T  and T ), and sample size n . The 

step-by-step experiment procedure is described as follows. 

Step 1: Generate n random numbers nppp ,,, 21   from a uniform distribution, 

)1,0(Upi  . 

Step 2: For any specified values of T , T  and ip , a random Weibull sample 

nttt ,,, 21   can be obtained by calculating   T
iTi pt  /1)1ln(   

),,2,1( ni  . 

Step 3: For the current Weibull sample, estimate   and   using the LSE 

method (refer to Section 2.3). 

Step 4: Repeat Step 1 to Step 3 for M times (M is called iteration number or 

repetition number). 
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Step 5: Calculate the bias, variance and MSE of the estimators with the 

following formula, 
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               where   can be replaced by   and  , and 



M

i
iM 1

ˆ1  . 

Monte Carlo Experiment Procedure for Multiply Censored Data 

The experiment procedure for multiply censored data is more complicated because it 

involves generating multiply censored samples (failure times and censoring times are 

intermixed in such a sample). The step-by-step experiment procedure for multiply 

censored data used in this study is described as follows. 

Step 1: Generate a random complete sample nttt ,,, 21   from the Weibull 

distribution with specified values of T , T  and n  (refer to the first 

two steps of the procedure for complete data). 

Step 2: From the complete sample nttt ,,, 21  , randomly select rn   

observations, denoted by ),,2,1(, rnkt kc   , as the candidates to be 

modified to generate censoring times. The remaining observations, 

denoted by ),,2,1(, rjt jf  , are unchanged as failure times. 

Step 3: Generate rn   random numbers rnppp ,,, 21   from a uniform 

distribution, )1,0(Upk  . 

Step 4: Change kct ,  to kck tp ,  to create the censoring times. 
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Step 5: Merge failure times and censoring times to produce a multiply censored 

sample. 

Step 6: For the current sample, estimate   and   using the LSE method (refer 

to Section 2.3). 

Step 7: Repeat Step 1 to Step 6 for M times. 

Step 8: Calculate the bias, variance and MSE of the estimators by Equation 

(3-42). 

The steps for generating the censoring times (Step 3 and Step 4) are based on an 

underlying assumption that the censoring times are independent of the failure times. 

This means the mechanism that causes the censoring is independent of the mechanism 

that causes the failure. Thus the simplest way can be used to generate the censoring 

times.  

3.3.2 Setting of Experiment Factors 

Simulation results are often presented under different combinations of the experiment 

factors. For complete data, there are four factors of concern: the true parameter values 

T  and T , sample size n  and iteration number M . For censored data, there is one 

more factor, i.e., the censoring level c . The setting of the experiment factors is by no 

means arbitrary. In the following, some general guidelines on the selection of the 

values for each experiment factor are summarized.  

Selection of True Values of α and β 

For the Weibull distribution,   is the scale parameter that can take on any positive 

value and   is the shape parameter that usually takes values between 0.1 and 10. 
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Without considering the existence of the two pivotal functions, i.e.,  /ˆ  and 

)/ˆln(ˆ  , of the LS estimators, one must examine every combination of common 

values of T  and T  to have a full picture of the performance of the LS estimators. 

Luckily, as mentioned in Section 3.2.5, the pivotal functions can theoretically save the 

simulation work. Theorem 1 says that  /ˆ  has the same distribution as 1,1̂ , thus the 

properties such as bias and MSE of the LS estimated   under any combination of T  

and T  can be obtained from the properties of 1,1̂  ( 1 TT  ). Therefore, to 

examine the LS shape parameter estimator, the values of T  and T  can be fixed to 1 

in the whole simulation experiment. On the other side, for examining the LS scale 

parameter estimator, based on Theorem 2, i.e.,  /ˆ  has the same distribution as  ,1ˆ  

and depends only on  , the values of T  can still be fixed to 1; however, different 

values of T  should be used. 

In summary, the value of T  can always be fixed to 1. For the purpose of 

examining ̂ , T  can be fixed to 1 as well. However, for examining ̂ , different T  

should be used. For example, 10,8,6,5,4,2,1,8.0,5.0T . 

Selection of Sample Size 

Small sample properties and large sample properties of the estimators are frequently 

examined separately. The selection of sample size depends on the focus of the study. 

In this thesis, the focus is the small sample properties of the LSE, which is also the 

recent focus of Weibull researchers. For a Weibull sample of size n , commonly it is 

known as a small sample if 20n , a medium sample if 10020  n , and a large 
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sample if 100n  (Abernethy, 2000). With the focus on small to medium sized 

samples, n  is frequently set in the range of 3 to 30.  

For censored samples, however, the selection of the sample size is more 

arbitrary. The common range of the sample size used in this study for censored 

samples is from 10 to 200. 

Selection of Iteration Number 

The accuracy of the simulation results is closely related to the iteration number or 

repetition number. Usually increasing the iteration number can achieve a higher 

accuracy; however, the simulation time is also increased. A trade-off between 

accuracy and simulation time should be made. The accuracy of the simulation results 

at an iteration number can be simply estimated by repeating the whole simulation 

process for several times. Therefore, by setting a tolerance of accuracy, the required 

iteration number can be determined by trial and error. In the literature, 10000 is the 

commonly used iteration number, and we found that in most cases, this number can 

achieve an accuracy of at least two decimal places. To have a higher accuracy, 50000 

repetitions can be used.  

Selection of Censoring Level 

Censoring level is often presented by percentage. Commonly %50c  refers to a 

highly censored sample. Both low censoring levels and high censoring levels are 

examined in this study and the range is frequently from 10% to 80%. For simplicity, 

the censoring levels selected should satisfy that nc   is an integer and 2nc  

(required by the LSE method as at least two data points are needed for conducting 

regression).  
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3.3.3 Simulation Results for the OLS Estimators 

A Monte Carlo experiment was conducted to examine the bias, standard deviation and 

MSE of the OLS estimators, especially for the shape parameter estimator, in the cases 

of complete data and multiply censored data, respectively. The experiment follows the 

procedures described in Section 3.3.1.  

Table 3-1 shows the setting of simulation factors in this experiment. For each 

combination of the simulation factors ( cnTT and,,  ), 50000 random samples were 

generated and the parameter estimates of both parameters were obtained from OLSE 

and MLE simultaneously. The mean, standard deviation and MSE of both parameter 

estimates were calculated and analyzed. The experiment was executed in MATLAB 

7. The iteration number 50000 in most cases can guarantee an accuracy of 0.5%.  

Table 3-1: Setting of experiment factors. The experiment is to examine the OLS estimators.  

Factors Values 

T  1 

T  0.5, 1, 2, 3, 5, 8 

n  3 – 20, 22, 24,…, 28, 30, 35, …, 45, 50, 60, …, 90, 100, 200 (complete data) 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200 (censored data) 

c  10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% 

M 50000 

Methods OLSE, MLE 

 

3.3.3.1 Simulation Results for Complete Data 

The simulation results of the shape parameter estimator, in the case of complete data, 

are shown in Table 3-2. The relative values TE  /)ˆ( , TS  /)ˆ(  and 2/)ˆ( TMSE   

are tabulated in the table. The results for the scale parameter are shown in Table 3-3. 

Since T  is fixed to 1 all the time, the values of )ˆ(),ˆ(  SE  and )ˆ(MSE  equal to 
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the relative values. Note that not all the simulation results are tabulated in the two 

tables; however, the omitted results will not affect the following conclusions which 

can be observed from the tabulated values. 

Simulation Results for Estimators of β (Table 3-2) 

1) The reliability of the simulation results is judged by the pivotal quantity 

T̂ : In theory, the distribution of T̂ , obtained by both MLE and 

OLSE, should be independent of T . This can be used to check the 

reliability of the simulations. From Table 3-2, it can be seen that the values 

of TE  /)ˆ( , TS  /)ˆ(  and 2/)ˆ( TMSE   for both methods almost do not 

vary with T  at all sample sizes examined, especially from 8n  onwards.  

2) Bias of the OLSE of the shape parameter: T̂  is inconsistent with n . 

The bias is most significant at 4,3n ; however, it reaches smallest 

between 6n  and 7n . From 5n  onwards, the relative bias is typically 

within 5%. During 3010  n , the relative bias is like a constant and 

remains at 4% or so. Typically,   is overestimated when 6n  and 

underestimated for the remaining conditions.  

3) Standard deviation and MSE of the OLSE of the shape parameter: The 

magnitude of TS  /)ˆ(  and 2/)ˆ( TMSE   decreases as the sample size n  

increases. The magnitude of the absolute standard deviation ( )ˆ(S ) is much 

larger than that of the absolute bias ( TE  )ˆ( ) under all combinations of 

the experiment factors, especially when n is very small. In other words, the 
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MSE of ̂  is mainly contributed by the standard deviation instead of the 

bias.  

4) Comparison between OLSE and MLE: The relative bias T /ˆ  of the 

OLSE is significantly smaller than that of the MLE for small samples, i.e., 

20n , is slightly smaller than that of the MLE for 5020  n , and is 

slightly larger for 50n . The magnitude of TS  /)ˆ(  and 2/)ˆ( TMSE   of 

the OLSE is significantly smaller than that of the MLE for 10n . The 

differences are small for 2010  n , and from 20n  onwards, MLE has 

slightly smaller values than OLSE.  

Simulation Results for Estimators of α (Table 3-3) 

1) General observations: The magnitude of the bias, standard deviation and 

MSE of ̂  decreases dramatically as T  increases and decreases slowly as 

n  increases. 

2) Bias of the OLSE of the scale parameter: At 5.0T , for the relative bias 

of ̂  to be within 10% requires 35n , and to be within 5% requires 90n . 

At 1T , for the relative bias of ̂  to be within 10% only requires 7n , 

and to be within 5% requires 19n . At 2T , for the relative bias to be 

within 3% requires 4n , to be within 2% requires 14n , and to be within 

1% requires 50n . At 3T  onwards, the relative bias of ̂  is always 

smaller than 2% and typically within 1%. 

3) Standard deviation and MSE of the OLSE of the scale parameter: The 

magnitude of )ˆ(S and )ˆ(MSE  decreases as either T  or n  increases. The 
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largest values of them happen at 3n  and 5.0T . At 100n  or 3T , 

their values are very small and close to 0. Same as the results for the MSE of 

̂ , )ˆ(MSE  is mainly contributed by the standard deviation instead of bias.  

4) Comparison between OLSE and MLE: MLE is significantly better than 

OLSE for estimating   when 3T  in view of bias, standard deviation and 

MSE, and especially at small T  and small n . For 3T , the two 

estimators of    are very close. 

5) Comparison between the results for ̂  and ̂  of the OLSE: The bias of ̂  

depends on T  but the bias of ̂  is independent of T . The bias of ̂  seems 

to be not an issue when 3T , as the bias is typically within 1% at all 

sample sizes investigated. However, the bias of ̂  is 4% to 5% for small to 

medium sized samples. The standard deviation and MSE of ̂  also depend 

on T  but those of ̂  is independent of T . The magnitude of )ˆ(S and 

)ˆ(MSE  becomes very small when 3T , and are smaller than that of 

TS  /)ˆ(  and 2/)ˆ( TMSE  ; however, when 3T , the magnitude of 

)ˆ(S and )ˆ(MSE  is typically larger than that of TS  /)ˆ(  and 

2/)ˆ( TMSE  . 
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Table 3-2: Simulation results of ̂  for complete data, generated by OLSE and MLE, at different 

n  and 
T : the values of  /)ˆ(/)ˆ( SE T   and 2/)ˆ( TMSE   (in parentheses). 

Method
1.425 ± 5.042 1.136 ± 0.943 1.045 ± 0.582 1.012 ± 0.480 0.991 ± 0.414 0.982 ± 0.376 0.972 ± 0.344 0.971 ± 0.325 0.964 ± 0.303 0.963 ± 0.286 0.960 ± 0.274

2.284 ± 8.265 1.658 ± 1.342 1.436 ± 0.782 1.334 ± 0.608 1.267 ± 0.499 1.224 ± 0.434 1.192 ± 0.387 1.173 ± 0.357 1.149 ± 0.323 1.135 ± 0.298 1.124 ± 0.282

0.961 ± 0.264 0.961 ± 0.253 0.959 ± 0.244 0.960 ± 0.238 0.960 ± 0.232 0.960 ± 0.225 0.961 ± 0.220 0.959 ± 0.210 0.962 ± 0.201 0.959 ± 0.193 0.962 ± 0.186

1.114 ± 0.265 1.105 ± 0.252 1.097 ± 0.240 1.092 ± 0.231 1.086 ± 0.222 1.080 ± 0.213 1.078 ± 0.208 1.067 ± 0.193 1.063 ± 0.184 1.056 ± 0.173 1.053 ± 0.166

0.963 ± 0.181 0.964 ± 0.168 0.965 ± 0.157 0.965 ± 0.149 0.968 ± 0.142 0.971 ± 0.129 0.971 ± 0.121 0.974 ± 0.114 0.976 ± 0.108 0.977 ± 0.102 0.984 ± 0.073

1.051 ± 0.159 1.042 ± 0.145 1.035 ± 0.132 1.030 ± 0.124 1.028 ± 0.117 1.024 ± 0.106 1.020 ± 0.097 1.017 ± 0.090 1.016 ± 0.085 1.015 ± 0.080 1.007 ± 0.056

Method
1.428 ± 3.225 1.125 ± 0.925 1.053 ± 0.597 1.009 ± 0.482 0.996 ± 0.423 0.983 ± 0.376 0.974 ± 0.343 0.970 ± 0.322 0.963 ± 0.303 0.961 ± 0.286 0.961 ± 0.274

2.288 ± 5.830 1.641 ± 1.353 1.445 ± 0.803 1.331 ± 0.619 1.274 ± 0.510 1.226 ± 0.437 1.193 ± 0.386 1.171 ± 0.351 1.150 ± 0.322 1.134 ± 0.299 1.123 ± 0.281

0.960 ± 0.262 0.960 ± 0.255 0.962 ± 0.244 0.959 ± 0.238 0.958 ± 0.231 0.960 ± 0.225 0.960 ± 0.219 0.960 ± 0.209 0.959 ± 0.201 0.959 ± 0.191 0.962 ± 0.185

1.113 ± 0.265 1.105 ± 0.254 1.099 ± 0.240 1.091 ± 0.230 1.084 ± 0.221 1.081 ± 0.213 1.076 ± 0.206 1.069 ± 0.194 1.062 ± 0.182 1.057 ± 0.171 1.053 ± 0.165

0.961 ± 0.180 0.964 ± 0.168 0.966 ± 0.158 0.967 ± 0.149 0.966 ± 0.141 0.971 ± 0.130 0.973 ± 0.121 0.974 ± 0.114 0.975 ± 0.108 0.977 ± 0.102 0.984 ± 0.073

1.049 ± 0.158 1.043 ± 0.145 1.037 ± 0.133 1.032 ± 0.124 1.027 ± 0.117 1.024 ± 0.106 1.020 ± 0.097 1.018 ± 0.090 1.015 ± 0.085 1.014 ± 0.080 1.007 ± 0.056

Method
1.414 ± 2.459 1.132 ± 0.871 1.050 ± 0.605 1.009 ± 0.480 0.993 ± 0.418 0.980 ± 0.375 0.974 ± 0.347 0.967 ± 0.319 0.966 ± 0.303 0.963 ± 0.288 0.961 ± 0.274

2.258 ± 3.803 1.652 ± 1.268 1.444 ± 0.807 1.329 ± 0.605 1.272 ± 0.504 1.226 ± 0.436 1.194 ± 0.389 1.168 ± 0.348 1.152 ± 0.323 1.135 ± 0.300 1.122 ± 0.281

0.961 ± 0.262 0.960 ± 0.254 0.959 ± 0.244 0.960 ± 0.238 0.960 ± 0.232 0.957 ± 0.225 0.960 ± 0.220 0.959 ± 0.208 0.959 ± 0.200 0.960 ± 0.193 0.962 ± 0.186

1.113 ± 0.264 1.103 ± 0.252 1.096 ± 0.241 1.091 ± 0.230 1.086 ± 0.223 1.079 ± 0.213 1.077 ± 0.207 1.068 ± 0.192 1.061 ± 0.181 1.057 ± 0.172 1.053 ± 0.166

0.962 ± 0.180 0.963 ± 0.167 0.965 ± 0.157 0.967 ± 0.149 0.969 ± 0.141 0.971 ± 0.130 0.972 ± 0.121 0.974 ± 0.113 0.976 ± 0.107 0.976 ± 0.103 0.984 ± 0.073

1.049 ± 0.158 1.041 ± 0.143 1.036 ± 0.133 1.032 ± 0.124 1.028 ± 0.117 1.023 ± 0.106 1.020 ± 0.097 1.017 ± 0.090 1.015 ± 0.084 1.014 ± 0.081 1.007 ± 0.056

Method
1.419 ± 2.395 1.137 ± 0.884 1.047 ± 0.592 1.014 ± 0.486 0.991 ± 0.423 0.984 ± 0.378 0.973 ± 0.344 0.968 ± 0.321 0.966 ± 0.302 0.962 ± 0.287 0.962 ± 0.275

2.268 ± 3.837 1.656 ± 1.260 1.439 ± 0.792 1.337 ± 0.612 1.268 ± 0.511 1.230 ± 0.443 1.193 ± 0.387 1.168 ± 0.351 1.152 ± 0.322 1.135 ± 0.301 1.123 ± 0.282

0.962 ± 0.263 0.959 ± 0.254 0.958 ± 0.246 0.960 ± 0.239 0.959 ± 0.230 0.959 ± 0.224 0.961 ± 0.218 0.958 ± 0.208 0.960 ± 0.200 0.961 ± 0.194 0.962 ± 0.187

1.114 ± 0.265 1.105 ± 0.252 1.097 ± 0.241 1.092 ± 0.231 1.085 ± 0.220 1.080 ± 0.212 1.077 ± 0.205 1.068 ± 0.192 1.062 ± 0.182 1.057 ± 0.174 1.054 ± 0.167

0.962 ± 0.180 0.962 ± 0.167 0.965 ± 0.157 0.966 ± 0.148 0.968 ± 0.141 0.970 ± 0.130 0.973 ± 0.121 0.974 ± 0.114 0.976 ± 0.108 0.977 ± 0.102 0.985 ± 0.073

1.048 ± 0.159 1.040 ± 0.144 1.036 ± 0.133 1.031 ± 0.124 1.029 ± 0.116 1.023 ± 0.105 1.020 ± 0.097 1.017 ± 0.090 1.016 ± 0.085 1.014 ± 0.080 1.007 ± 0.056

Method
1.406 ± 2.205 1.136 ± 1.063 1.051 ± 0.622 1.018 ± 0.499 0.993 ± 0.418 0.983 ± 0.377 0.971 ± 0.340 0.969 ± 0.318 0.966 ± 0.302 0.961 ± 0.285 0.962 ± 0.274

2.249 ± 3.524 1.658 ± 1.601 1.445 ± 0.829 1.340 ± 0.627 1.270 ± 0.509 1.226 ± 0.435 1.192 ± 0.383 1.170 ± 0.349 1.152 ± 0.322 1.133 ± 0.297 1.123 ± 0.280

0.962 ± 0.265 0.959 ± 0.253 0.961 ± 0.246 0.959 ± 0.237 0.959 ± 0.230 0.959 ± 0.225 0.958 ± 0.218 0.960 ± 0.210 0.959 ± 0.199 0.960 ± 0.192 0.960 ± 0.185

1.116 ± 0.267 1.105 ± 0.253 1.099 ± 0.240 1.090 ± 0.228 1.086 ± 0.220 1.081 ± 0.213 1.075 ± 0.205 1.069 ± 0.193 1.061 ± 0.181 1.056 ± 0.172 1.051 ± 0.165

0.962 ± 0.181 0.963 ± 0.167 0.964 ± 0.157 0.967 ± 0.148 0.968 ± 0.141 0.970 ± 0.130 0.973 ± 0.121 0.974 ± 0.113 0.975 ± 0.108 0.977 ± 0.102 0.984 ± 0.073

1.049 ± 0.158 1.041 ± 0.144 1.035 ± 0.133 1.032 ± 0.124 1.028 ± 0.116 1.023 ± 0.106 1.021 ± 0.097 1.018 ± 0.090 1.016 ± 0.085 1.014 ± 0.080 1.007 ± 0.056

Method
1.440 ± 3.298 1.138 ± 0.932 1.047 ± 0.597 1.009 ± 0.478 0.993 ± 0.420 0.978 ± 0.373 0.973 ± 0.343 0.969 ± 0.321 0.964 ± 0.302 0.962 ± 0.284 0.963 ± 0.274

2.303 ± 5.028 1.659 ± 1.337 1.439 ± 0.796 1.331 ± 0.606 1.270 ± 0.507 1.223 ± 0.435 1.192 ± 0.387 1.171 ± 0.353 1.151 ± 0.322 1.136 ± 0.298 1.123 ± 0.281

0.959 ± 0.262 0.961 ± 0.252 0.961 ± 0.245 0.960 ± 0.237 0.958 ± 0.230 0.961 ± 0.225 0.959 ± 0.219 0.961 ± 0.207 0.960 ± 0.201 0.961 ± 0.193 0.961 ± 0.187

1.113 ± 0.265 1.107 ± 0.252 1.099 ± 0.241 1.091 ± 0.230 1.084 ± 0.220 1.081 ± 0.213 1.076 ± 0.206 1.069 ± 0.192 1.062 ± 0.181 1.057 ± 0.174 1.051 ± 0.166

0.962 ± 0.180 0.964 ± 0.166 0.965 ± 0.156 0.967 ± 0.150 0.968 ± 0.142 0.970 ± 0.131 0.973 ± 0.121 0.974 ± 0.114 0.975 ± 0.107 0.977 ± 0.103 0.984 ± 0.073

1.047 ± 0.158 1.041 ± 0.144 1.035 ± 0.132 1.033 ± 0.125 1.028 ± 0.117 1.023 ± 0.106 1.020 ± 0.098 1.018 ± 0.091 1.016 ± 0.085 1.014 ± 0.080 1.007 ± 0.056
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Table 3-3: Simulation results of ̂  for complete data, generated by OLSE and MLE, at different 
n  and 

T : the values of )ˆ()ˆ(  SE   and )ˆ(MSE  (in parentheses). 

Method
1.823 ± 2.291 1.650 ± 1.792 1.534 ± 1.490 1.448 ± 1.299 1.401 ± 1.159 1.353 ± 1.054 1.323 ± 0.966 1.294 ± 0.895 1.272 ± 0.841 1.256 ± 0.799 1.235 ± 0.761

1.477 ± 1.886 1.364 ± 1.483 1.292 ± 1.254 1.236 ± 1.095 1.209 ± 0.988 1.179 ± 0.898 1.160 ± 0.824 1.144 ± 0.776 1.131 ± 0.726 1.122 ± 0.691 1.108 ± 0.658

1.222 ± 0.712 1.211 ± 0.686 1.202 ± 0.664 1.196 ± 0.646 1.185 ± 0.614 1.177 ± 0.596 1.167 ± 0.577 1.158 ± 0.550 1.142 ± 0.512 1.133 ± 0.487 1.124 ± 0.469

1.103 ± 0.626 1.097 ± 0.603 1.092 ± 0.581 1.090 ± 0.563 1.084 ± 0.544 1.079 ± 0.527 1.072 ± 0.508 1.069 ± 0.487 1.060 ± 0.458 1.054 ± 0.436 1.050 ± 0.424

1.125 ± 0.453 1.105 ± 0.410 1.094 ± 0.381 1.086 ± 0.358 1.081 ± 0.338 1.068 ± 0.305 1.061 ± 0.278 1.055 ± 0.259 1.051 ± 0.244 1.047 ± 0.230 1.026 ± 0.159

1.052 ± 0.408 1.041 ± 0.372 1.036 ± 0.349 1.032 ± 0.327 1.030 ± 0.310 1.024 ± 0.282 1.021 ± 0.258 1.019 ± 0.242 1.018 ± 0.229 1.015 ± 0.215 1.007 ± 0.151

Method
1.163 ± 0.684 1.136 ± 0.584 1.122 ± 0.516 1.111 ± 0.470 1.102 ± 0.439 1.090 ± 0.405 1.085 ± 0.383 1.081 ± 0.361 1.073 ± 0.343 1.071 ± 0.330 1.068 ± 0.316

1.045 ± 0.621 1.031 ± 0.533 1.030 ± 0.474 1.027 ± 0.433 1.026 ± 0.407 1.018 ± 0.375 1.018 ± 0.355 1.017 ± 0.336 1.013 ± 0.318 1.014 ± 0.306 1.013 ± 0.294

1.066 ± 0.305 1.060 ± 0.293 1.056 ± 0.282 1.057 ± 0.276 1.054 ± 0.269 1.051 ± 0.259 1.050 ± 0.254 1.048 ± 0.241 1.045 ± 0.232 1.045 ± 0.223 1.041 ± 0.212

1.014 ± 0.284 1.010 ± 0.273 1.009 ± 0.264 1.010 ± 0.257 1.009 ± 0.252 1.008 ± 0.243 1.008 ± 0.238 1.008 ± 0.226 1.007 ± 0.217 1.009 ± 0.209 1.007 ± 0.200

1.038 ± 0.206 1.035 ± 0.188 1.033 ± 0.177 1.029 ± 0.166 1.027 ± 0.156 1.023 ± 0.143 1.021 ± 0.133 1.020 ± 0.124 1.017 ± 0.117 1.017 ± 0.110 1.010 ± 0.077

1.005 ± 0.193 1.006 ± 0.178 1.005 ± 0.167 1.004 ± 0.157 1.003 ± 0.148 1.002 ± 0.136 1.003 ± 0.126 1.003 ± 0.118 1.001 ± 0.111 1.002 ± 0.105 1.001 ± 0.074

Method
1.033 ± 0.309 1.034 ± 0.267 1.030 ± 0.241 1.030 ± 0.221 1.028 ± 0.205 1.028 ± 0.193 1.026 ± 0.181 1.026 ± 0.173 1.024 ± 0.165 1.023 ± 0.157 1.022 ± 0.153

0.978 ± 0.296 0.985 ± 0.256 0.986 ± 0.231 0.990 ± 0.212 0.992 ± 0.197 0.994 ± 0.185 0.994 ± 0.174 0.995 ± 0.166 0.996 ± 0.158 0.996 ± 0.151 0.996 ± 0.146

1.021 ± 0.146 1.020 ± 0.141 1.019 ± 0.136 1.020 ± 0.132 1.018 ± 0.129 1.018 ± 0.125 1.018 ± 0.122 1.017 ± 0.116 1.016 ± 0.113 1.016 ± 0.108 1.015 ± 0.103

0.997 ± 0.140 0.997 ± 0.135 0.996 ± 0.131 0.998 ± 0.127 0.997 ± 0.124 0.997 ± 0.120 0.998 ± 0.117 0.998 ± 0.112 0.998 ± 0.108 0.998 ± 0.103 0.998 ± 0.099

1.015 ± 0.100 1.013 ± 0.092 1.012 ± 0.087 1.011 ± 0.081 1.011 ± 0.077 1.009 ± 0.071 1.009 ± 0.065 1.008 ± 0.061 1.007 ± 0.057 1.007 ± 0.055 1.004 ± 0.039

0.999 ± 0.096 0.999 ± 0.088 0.999 ± 0.083 0.999 ± 0.078 0.999 ± 0.075 0.999 ± 0.068 0.999 ± 0.063 0.999 ± 0.059 0.999 ± 0.055 1.000 ± 0.053 1.000 ± 0.037

Method
1.010 ± 0.205 1.015 ± 0.178 1.014 ± 0.159 1.014 ± 0.145 1.015 ± 0.135 1.014 ± 0.127 1.014 ± 0.119 1.013 ± 0.114 1.012 ± 0.108 1.012 ± 0.104 1.012 ± 0.101

0.974 ± 0.200 0.983 ± 0.174 0.985 ± 0.155 0.988 ± 0.141 0.991 ± 0.132 0.992 ± 0.124 0.993 ± 0.116 0.993 ± 0.110 0.994 ± 0.105 0.994 ± 0.101 0.995 ± 0.098

1.012 ± 0.096 1.011 ± 0.094 1.011 ± 0.090 1.011 ± 0.088 1.011 ± 0.085 1.010 ± 0.083 1.010 ± 0.081 1.010 ± 0.077 1.009 ± 0.074 1.009 ± 0.071 1.009 ± 0.069

0.995 ± 0.093 0.995 ± 0.090 0.996 ± 0.088 0.997 ± 0.085 0.997 ± 0.082 0.997 ± 0.081 0.997 ± 0.078 0.997 ± 0.075 0.997 ± 0.071 0.998 ± 0.069 0.998 ± 0.066

1.009 ± 0.066 1.007 ± 0.061 1.007 ± 0.057 1.007 ± 0.054 1.006 ± 0.051 1.006 ± 0.047 1.005 ± 0.043 1.005 ± 0.041 1.005 ± 0.038 1.004 ± 0.036 1.003 ± 0.026

0.998 ± 0.064 0.998 ± 0.059 0.998 ± 0.055 0.999 ± 0.052 0.999 ± 0.050 0.999 ± 0.045 0.999 ± 0.042 0.999 ± 0.039 0.999 ± 0.037 0.999 ± 0.035 1.000 ± 0.025

Method
1.001 ± 0.124 1.005 ± 0.107 1.006 ± 0.096 1.006 ± 0.088 1.007 ± 0.081 1.006 ± 0.076 1.006 ± 0.072 1.007 ± 0.068 1.007 ± 0.065 1.006 ± 0.062 1.006 ± 0.060

0.979 ± 0.123 0.986 ± 0.106 0.988 ± 0.095 0.991 ± 0.086 0.992 ± 0.080 0.993 ± 0.075 0.994 ± 0.070 0.995 ± 0.067 0.996 ± 0.063 0.995 ± 0.061 0.996 ± 0.059

1.006 ± 0.058 1.006 ± 0.056 1.006 ± 0.054 1.006 ± 0.052 1.006 ± 0.051 1.005 ± 0.050 1.006 ± 0.048 1.005 ± 0.046 1.005 ± 0.044 1.005 ± 0.042 1.004 ± 0.041

0.996 ± 0.056 0.996 ± 0.055 0.997 ± 0.053 0.997 ± 0.051 0.997 ± 0.050 0.997 ± 0.048 0.998 ± 0.047 0.997 ± 0.045 0.998 ± 0.043 0.998 ± 0.041 0.998 ± 0.040

1.004 ± 0.040 1.004 ± 0.037 1.004 ± 0.034 1.004 ± 0.032 1.003 ± 0.031 1.003 ± 0.028 1.003 ± 0.026 1.003 ± 0.024 1.002 ± 0.023 1.002 ± 0.022 1.001 ± 0.015

0.998 ± 0.039 0.999 ± 0.036 0.999 ± 0.033 0.999 ± 0.031 0.999 ± 0.030 0.999 ± 0.027 0.999 ± 0.025 0.999 ± 0.024 0.999 ± 0.022 0.999 ± 0.021 1.000 ± 0.015

Method
0.999 ± 0.078 1.001 ± 0.068 1.003 ± 0.060 1.003 ± 0.055 1.003 ± 0.051 1.003 ± 0.048 1.003 ± 0.045 1.004 ± 0.042 1.003 ± 0.041 1.003 ± 0.039 1.003 ± 0.037

0.985 ± 0.078 0.989 ± 0.067 0.992 ± 0.060 0.993 ± 0.054 0.994 ± 0.050 0.995 ± 0.047 0.995 ± 0.044 0.996 ± 0.042 0.996 ± 0.040 0.997 ± 0.038 0.997 ± 0.037

1.003 ± 0.036 1.003 ± 0.035 1.003 ± 0.034 1.003 ± 0.033 1.003 ± 0.032 1.003 ± 0.031 1.003 ± 0.030 1.003 ± 0.029 1.003 ± 0.028 1.003 ± 0.027 1.003 ± 0.026

0.997 ± 0.035 0.997 ± 0.034 0.998 ± 0.033 0.998 ± 0.032 0.998 ± 0.031 0.998 ± 0.030 0.998 ± 0.030 0.998 ± 0.028 0.998 ± 0.027 0.999 ± 0.026 0.999 ± 0.025

1.002 ± 0.025 1.002 ± 0.023 1.002 ± 0.021 1.002 ± 0.020 1.002 ± 0.019 1.002 ± 0.018 1.002 ± 0.016 1.002 ± 0.015 1.002 ± 0.014 1.001 ± 0.014 1.001 ± 0.010

0.999 ± 0.024 0.999 ± 0.022 0.999 ± 0.021 0.999 ± 0.020 0.999 ± 0.019 0.999 ± 0.017 0.999 ± 0.016 0.999 ± 0.015 1.000 ± 0.014 1.000 ± 0.013 1.000 ± 0.009
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3.3.3.2 Simulation Results for Multiply Censored Data 

The simulation results for multiply censored data, as can be seen from Table 3-4 – 

Table 3-7, are presented in four parts: the results for ̂  at low censoring levels, i.e., 

%40%10 c  (Table 3-4), the results for ̂  at high censoring levels, i.e., 

%80%50 c  (Table 3-5), the results for ̂  at low censoring levels (Table 3-6) and 

the results for ̂  at high censoring levels (Table 3-7). Please note not all the 

simulation results are tabulated in the four tables; however, the omitted results will 

not affect the following conclusions. 

Simulation Results for Estimators of β (Table 3-4 and Table 3-5) 

1) The reliability of the simulation results is judged by the pivotal quantity 

T̂ : For censored data, the properties of the pivotal function T̂  still 

apply for MLE and LSE. Therefore, the pivotal quantity can be used to check 

the reliability of the simulations as it does for the case of complete data. In 

theory, the values of TE  /)ˆ( , TS  /)ˆ(  and 2/)ˆ( TMSE  , generated by 

OLSE and MLE, should be constant at different values of T . At low 

censoring levels (refer to Table 3-4), the values of TE  /)ˆ( , TS  /)ˆ(  and 

2/)ˆ( TMSE   at six values of T  almost do not change for a specific n . 

Some discrepancies can be observed from the results at high censoring levels 

(refer to Table 3-5), and the difference of TE  /)ˆ(  at different T , for 

example, can be larger than 10% when %80c  and 40n . This is 

probably due to the complexity in the generation of a highly censored sample. 

In general, the difference is still acceptable. 
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2) Bias of the OLSE of the shape parameter: The relative bias of ̂  of the 

OLSE can be smaller than 1, equal to 1, and larger than 1, depending on the 

combination of n  and c . The general trend of the relative bias as a function 

of n  at any specific censoring level, or the general trend of the relative bias 

as a function of c  at any specific sample size, is similar, that is, the bias first 

decreases with the variable ( n  or c ), then at certain point the bias reaches 0, 

and after that the bias increases with the variable ( n  or c ). The bias is 

obviously inconsistent with either n  or c . As shown in Table 3-4, at low 

censoring levels, the bias reaches smallest at the combination of %30c  

and 200150 n , or the combination of %40c  and 150100 n . At 

high censoring levels (refer to Table 3-5), the bias reaches smallest at the 

combination of %50c  and 10080 n , or the combination of %60c  

and 6050 n , or the combination of %70c  and 3020 n . The bias is 

largest at the combination of %10c  and 20n  and the combination of 

%80c  and 200n . Although the bias presents a strange pattern as a 

function of n  and c , the relative bias is typically within 5%. The pattern of 

the bias is further examined in Section 5.4.2. 

3) Standard deviation and MSE of the OLSE of the shape parameter: The 

values of the relative standard deviation and relative MSE both decrease with 

the increase of n  at a specific c , and consistently increase with the increase 

of c  (from 10% to 80%) at a specific n . The values of TS  /)ˆ(  and 

2/)ˆ( TMSE   are significant for small samples with very high censoring 

levels, e.g., at the combination of %80c  and 20n .  
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4) Comparison between OLSE and MLE for estimating  : In view of bias, 

standard deviation or MSE, OLSE outperforms MLE for estimating   in 

most cases, except when %20%10 c . The relative bias, relative standard 

deviation or relative MSE of ̂  of the OLSE is significantly smaller than that 

of the MLE at high censoring levels (50% – 80%). Especially at %80c , 

the relative bias of ̂  of the OLSE is 20% – 40% smaller than that of the 

MLE. Although MLE performs inferior to OLSE for estimating   in most 

times under the simulation conditions examined, ̂  of the MLE has good 

consistency and is asymptotically unbiased as sample size increases. 

Simulation Results for Estimators of α (Table 3-6 and Table 3-7) 

1) General results: The bias, standard deviation and MSE of ̂  of both 

methods decrease as T  increases. The decrease is dramatic from 5.0T  

to 1T . From the results at high censoring levels (refer to Table 3-6), both 

methods, especially OLSE, are unstable for estimating   at 5.0T , and 

both methods result in extremely large estimates especially when the sample 

size is small. 

2) Bias of the OLSE of the scale parameter: The bias is extremely large at 

5.0T  at all censoring levels and the results are unstable when %50c . 

At low censoring levels (refer to Table 3-6), the bias increases as c  increases 

at all combinations of T  and n , and the bias decreases as n  increases at all 

combinations of T  and c . The bias is significant ( %10 ) when 2T  and 

%30c , but is typically within 2% at 5T  and within 1% at 8T . On 
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the other hand, the bias at high censoring levels (refer to Table 3-7) is 

inconsistent with c  and consistent with n . At 8,5,3T , the bias reaches 

smallest at %70c . Generally the bias at high censoring levels at any 

combination of  T  and n  is larger than that at low censoring levels. At high 

censoring levels (50% – 80%), the bias is larger than 10% when 3T  and 

all combinations of n  and c . At 8T , the bias is typically within 5%. 

3) Standard deviation and MSE of the OLSE of the scale parameter: The 

results regarding the standard deviation and MSE of ̂  of the OLSE are 

similar to those of the bias. Unstable results and extremely large values can 

be observed at 5.0T . Good consistency of standard deviation or MSE as 

a function of n  and c  can be observed at low censoring levels (10% – 40%); 

however, the standard deviation or MSE is inconsistent with c  at high 

censoring levels. The standard deviation and MSE reach smallest when 

8T  and %70c . 

4) Comparison between OLSE and MLE: MLE outperforms OLSE for 

estimating   in view of bias, standard deviation and MSE at all conditions 

examined, and is significantly better than OLSE when 5.0T  and 1T . 

The difference between the two methods decreases as T  increases, and at 

8T , both estimators of    are nearly unbiased and have very small 

standard deviation and MSE. 

5) Comparison between the results for ̂  and ̂  of the OLSE: The bias, 

standard deviation and MSE of ̂  highly depend on T  while those of ̂  is 

independent of T . MLE is generally better for estimating   while OLSE is 

better for estimating   when %30c . 
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Table 3-4: Simulation results of ̂  for multiply censored data, generated by OLSE and MLE, at 

different n , 
T  and c  (part I – low censoring levels): the values of  /)ˆ(/)ˆ( SE T   and 

2/)ˆ( TMSE   (in parentheses). 

Method

0.899 ± 0.214 0.918 ± 0.181 0.926 ± 0.159 0.934 ± 0.144 0.942 ± 0.136 0.950 ± 0.127 0.953 ± 0.118 0.958 ± 0.107 0.969 ± 0.088 0.976 ± 0.077

1.096 ± 0.220 1.068 ± 0.170 1.053 ± 0.142 1.045 ± 0.124 1.041 ± 0.113 1.038 ± 0.105 1.034 ± 0.097 1.030 ± 0.085 1.025 ± 0.069 1.022 ± 0.059

0.905 ± 0.232 0.924 ± 0.193 0.932 ± 0.170 0.946 ± 0.153 0.949 ± 0.142 0.954 ± 0.132 0.961 ± 0.125 0.964 ± 0.113 0.976 ± 0.094 0.984 ± 0.083

1.117 ± 0.241 1.089 ± 0.183 1.070 ± 0.152 1.066 ± 0.132 1.057 ± 0.121 1.055 ± 0.110 1.052 ± 0.103 1.045 ± 0.090 1.040 ± 0.074 1.038 ± 0.063

0.918 ± 0.248 0.930 ± 0.204 0.942 ± 0.184 0.953 ± 0.168 0.956 ± 0.152 0.962 ± 0.142 0.967 ± 0.135 0.973 ± 0.121 0.985 ± 0.101 0.993 ± 0.089

1.148 ± 0.266 1.109 ± 0.199 1.093 ± 0.168 1.086 ± 0.146 1.077 ± 0.132 1.072 ± 0.119 1.069 ± 0.112 1.064 ± 0.099 1.058 ± 0.080 1.055 ± 0.069

0.926 ± 0.265 0.934 ± 0.221 0.950 ± 0.197 0.962 ± 0.179 0.964 ± 0.167 0.971 ± 0.154 0.972 ± 0.146 0.978 ± 0.131 0.994 ± 0.110 1.001 ± 0.096

1.179 ± 0.295 1.130 ± 0.219 1.116 ± 0.184 1.109 ± 0.161 1.097 ± 0.144 1.093 ± 0.133 1.088 ± 0.122 1.083 ± 0.107 1.077 ± 0.087 1.074 ± 0.075

0.902 ± 0.215 0.917 ± 0.179 0.928 ± 0.160 0.938 ± 0.144 0.943 ± 0.132 0.949 ± 0.126 0.955 ± 0.119 0.962 ± 0.106 0.972 ± 0.088 0.979 ± 0.077

1.100 ± 0.220 1.070 ± 0.169 1.056 ± 0.141 1.049 ± 0.125 1.042 ± 0.112 1.037 ± 0.104 1.037 ± 0.096 1.032 ± 0.085 1.026 ± 0.069 1.024 ± 0.059

0.908 ± 0.227 0.927 ± 0.192 0.938 ± 0.169 0.948 ± 0.154 0.954 ± 0.142 0.961 ± 0.133 0.963 ± 0.125 0.973 ± 0.113 0.983 ± 0.094 0.990 ± 0.082

1.123 ± 0.234 1.094 ± 0.183 1.077 ± 0.152 1.069 ± 0.134 1.063 ± 0.120 1.061 ± 0.111 1.055 ± 0.102 1.052 ± 0.091 1.045 ± 0.074 1.043 ± 0.063

0.917 ± 0.241 0.935 ± 0.203 0.946 ± 0.180 0.957 ± 0.164 0.965 ± 0.151 0.970 ± 0.141 0.972 ± 0.134 0.982 ± 0.122 0.995 ± 0.101 1.003 ± 0.089

1.157 ± 0.259 1.119 ± 0.199 1.101 ± 0.166 1.093 ± 0.145 1.085 ± 0.131 1.080 ± 0.119 1.076 ± 0.111 1.073 ± 0.099 1.067 ± 0.079 1.064 ± 0.068

0.930 ± 0.269 0.945 ± 0.216 0.961 ± 0.198 0.970 ± 0.176 0.975 ± 0.164 0.983 ± 0.155 0.988 ± 0.143 0.994 ± 0.132 1.008 ± 0.110 1.015 ± 0.097

1.195 ± 0.300 1.148 ± 0.217 1.132 ± 0.184 1.121 ± 0.159 1.110 ± 0.143 1.108 ± 0.133 1.103 ± 0.120 1.096 ± 0.108 1.090 ± 0.087 1.087 ± 0.075

0.901 ± 0.215 0.918 ± 0.180 0.929 ± 0.159 0.938 ± 0.145 0.944 ± 0.133 0.950 ± 0.124 0.955 ± 0.118 0.962 ± 0.106 0.974 ± 0.088 0.980 ± 0.077

1.101 ± 0.220 1.070 ± 0.169 1.055 ± 0.141 1.047 ± 0.125 1.041 ± 0.112 1.037 ± 0.103 1.035 ± 0.096 1.031 ± 0.085 1.025 ± 0.069 1.024 ± 0.059

0.907 ± 0.227 0.926 ± 0.188 0.938 ± 0.168 0.948 ± 0.152 0.953 ± 0.141 0.960 ± 0.131 0.965 ± 0.124 0.972 ± 0.112 0.983 ± 0.094 0.992 ± 0.082

1.125 ± 0.239 1.092 ± 0.181 1.075 ± 0.152 1.067 ± 0.133 1.060 ± 0.120 1.056 ± 0.110 1.053 ± 0.102 1.048 ± 0.090 1.043 ± 0.074 1.041 ± 0.063

0.919 ± 0.244 0.935 ± 0.201 0.946 ± 0.178 0.958 ± 0.162 0.964 ± 0.149 0.970 ± 0.139 0.976 ± 0.131 0.984 ± 0.119 0.996 ± 0.099 1.004 ± 0.087

1.159 ± 0.266 1.119 ± 0.198 1.098 ± 0.164 1.090 ± 0.145 1.081 ± 0.130 1.077 ± 0.118 1.074 ± 0.111 1.070 ± 0.097 1.063 ± 0.078 1.060 ± 0.067

0.930 ± 0.262 0.947 ± 0.216 0.958 ± 0.191 0.967 ± 0.172 0.978 ± 0.161 0.982 ± 0.150 0.989 ± 0.142 0.996 ± 0.129 1.011 ± 0.108 1.019 ± 0.095

1.198 ± 0.297 1.151 ± 0.221 1.129 ± 0.182 1.116 ± 0.157 1.111 ± 0.143 1.103 ± 0.129 1.100 ± 0.121 1.094 ± 0.107 1.086 ± 0.086 1.084 ± 0.074

0.898 ± 0.214 0.912 ± 0.179 0.928 ± 0.159 0.936 ± 0.143 0.944 ± 0.132 0.949 ± 0.122 0.954 ± 0.117 0.960 ± 0.107 0.971 ± 0.087 0.978 ± 0.076

1.098 ± 0.219 1.067 ± 0.169 1.054 ± 0.142 1.043 ± 0.122 1.039 ± 0.111 1.035 ± 0.101 1.032 ± 0.095 1.029 ± 0.085 1.024 ± 0.068 1.021 ± 0.059

0.905 ± 0.225 0.924 ± 0.188 0.935 ± 0.164 0.943 ± 0.150 0.950 ± 0.139 0.958 ± 0.130 0.962 ± 0.123 0.968 ± 0.111 0.981 ± 0.093 0.989 ± 0.080

1.122 ± 0.235 1.089 ± 0.182 1.072 ± 0.151 1.062 ± 0.131 1.056 ± 0.119 1.051 ± 0.109 1.049 ± 0.101 1.044 ± 0.091 1.039 ± 0.073 1.036 ± 0.062

0.916 ± 0.245 0.933 ± 0.203 0.943 ± 0.176 0.949 ± 0.160 0.962 ± 0.147 0.966 ± 0.138 0.973 ± 0.131 0.981 ± 0.117 0.993 ± 0.098 1.001 ± 0.086

1.156 ± 0.268 1.114 ± 0.200 1.095 ± 0.163 1.081 ± 0.143 1.077 ± 0.129 1.070 ± 0.117 1.068 ± 0.110 1.063 ± 0.096 1.056 ± 0.078 1.053 ± 0.067

0.923 ± 0.260 0.938 ± 0.214 0.950 ± 0.191 0.961 ± 0.173 0.969 ± 0.158 0.981 ± 0.149 0.982 ± 0.139 0.991 ± 0.127 1.006 ± 0.106 1.014 ± 0.093

1.193 ± 0.297 1.141 ± 0.217 1.119 ± 0.182 1.107 ± 0.157 1.100 ± 0.140 1.097 ± 0.130 1.091 ± 0.118 1.085 ± 0.106 1.078 ± 0.085 1.074 ± 0.073

0.894 ± 0.213 0.910 ± 0.179 0.925 ± 0.160 0.934 ± 0.146 0.939 ± 0.132 0.947 ± 0.124 0.950 ± 0.117 0.958 ± 0.105 0.969 ± 0.087 0.976 ± 0.076

1.092 ± 0.219 1.062 ± 0.170 1.050 ± 0.144 1.041 ± 0.125 1.035 ± 0.112 1.032 ± 0.103 1.030 ± 0.095 1.026 ± 0.084 1.020 ± 0.068 1.018 ± 0.059

0.899 ± 0.228 0.915 ± 0.188 0.931 ± 0.165 0.938 ± 0.152 0.945 ± 0.138 0.950 ± 0.130 0.957 ± 0.123 0.963 ± 0.110 0.977 ± 0.092 0.984 ± 0.081

1.114 ± 0.240 1.081 ± 0.182 1.066 ± 0.151 1.056 ± 0.133 1.049 ± 0.120 1.045 ± 0.110 1.043 ± 0.102 1.037 ± 0.090 1.032 ± 0.073 1.029 ± 0.062

0.907 ± 0.246 0.927 ± 0.201 0.935 ± 0.174 0.945 ± 0.160 0.952 ± 0.147 0.958 ± 0.139 0.966 ± 0.133 0.969 ± 0.117 0.985 ± 0.098 0.992 ± 0.085

1.150 ± 0.267 1.109 ± 0.200 1.085 ± 0.162 1.076 ± 0.145 1.067 ± 0.129 1.063 ± 0.119 1.058 ± 0.111 1.051 ± 0.097 1.046 ± 0.078 1.043 ± 0.067

0.910 ± 0.256 0.931 ± 0.215 0.942 ± 0.190 0.950 ± 0.172 0.959 ± 0.159 0.966 ± 0.147 0.973 ± 0.140 0.978 ± 0.124 0.995 ± 0.104 1.003 ± 0.092

1.181 ± 0.293 1.136 ± 0.221 1.111 ± 0.181 1.097 ± 0.158 1.086 ± 0.141 1.083 ± 0.128 1.080 ± 0.121 1.070 ± 0.104 1.065 ± 0.084 1.061 ± 0.073

0.893 ± 0.217 0.911 ± 0.180 0.923 ± 0.161 0.931 ± 0.144 0.939 ± 0.133 0.943 ± 0.124 0.949 ± 0.116 0.957 ± 0.106 0.966 ± 0.088 0.973 ± 0.077

1.095 ± 0.222 1.062 ± 0.169 1.047 ± 0.143 1.039 ± 0.124 1.033 ± 0.111 1.029 ± 0.103 1.027 ± 0.095 1.023 ± 0.086 1.017 ± 0.069 1.015 ± 0.059

0.894 ± 0.228 0.914 ± 0.190 0.925 ± 0.168 0.935 ± 0.151 0.943 ± 0.139 0.946 ± 0.129 0.952 ± 0.122 0.959 ± 0.111 0.971 ± 0.091 0.978 ± 0.080

1.111 ± 0.241 1.077 ± 0.181 1.062 ± 0.153 1.052 ± 0.134 1.046 ± 0.119 1.039 ± 0.109 1.038 ± 0.101 1.033 ± 0.090 1.026 ± 0.073 1.024 ± 0.062

0.892 ± 0.234 0.912 ± 0.199 0.926 ± 0.177 0.938 ± 0.157 0.944 ± 0.145 0.951 ± 0.136 0.958 ± 0.130 0.963 ± 0.117 0.976 ± 0.098 0.985 ± 0.085

1.130 ± 0.257 1.095 ± 0.199 1.076 ± 0.166 1.066 ± 0.143 1.058 ± 0.128 1.054 ± 0.116 1.051 ± 0.109 1.044 ± 0.096 1.038 ± 0.078 1.035 ± 0.067

0.896 ± 0.259 0.916 ± 0.213 0.928 ± 0.186 0.942 ± 0.169 0.949 ± 0.158 0.957 ± 0.146 0.965 ± 0.138 0.969 ± 0.125 0.984 ± 0.105 0.992 ± 0.091

1.165 ± 0.297 1.119 ± 0.218 1.096 ± 0.179 1.085 ± 0.156 1.077 ± 0.142 1.072 ± 0.128 1.068 ± 0.119 1.060 ± 0.106 1.052 ± 0.085 1.048 ± 0.073

n
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Table 3-5: Simulation results of ̂  for multiply censored data, generated by OLSE and MLE, at 

different n , 
T  and c  (part II – high censoring levels): the values of  /)ˆ(/)ˆ( SE T   and 

2/)ˆ( TMSE   (in parentheses). 

Method

0.938 ± 0.285 0.949 ± 0.241 0.955 ± 0.211 0.968 ± 0.195 0.976 ± 0.181 0.981 ± 0.171 0.984 ± 0.161 0.992 ± 0.146 1.004 ± 0.120 1.010 ± 0.106

1.205 ± 0.331 1.167 ± 0.250 1.136 ± 0.202 1.131 ± 0.181 1.124 ± 0.162 1.120 ± 0.150 1.112 ± 0.137 1.107 ± 0.121 1.098 ± 0.097 1.094 ± 0.083

0.958 ± 0.333 0.958 ± 0.272 0.967 ± 0.236 0.976 ± 0.217 0.980 ± 0.201 0.988 ± 0.187 0.989 ± 0.177 1.000 ± 0.164 1.011 ± 0.137 1.019 ± 0.120

1.261 ± 0.398 1.193 ± 0.290 1.174 ± 0.235 1.159 ± 0.206 1.146 ± 0.185 1.141 ± 0.169 1.135 ± 0.155 1.132 ± 0.139 1.123 ± 0.112 1.117 ± 0.095

1.003 ± 0.429 0.983 ± 0.315 0.984 ± 0.276 0.994 ± 0.253 0.994 ± 0.230 0.997 ± 0.215 1.004 ± 0.204 1.009 ± 0.186 1.022 ± 0.155 1.029 ± 0.139

1.327 ± 0.510 1.245 ± 0.356 1.211 ± 0.290 1.195 ± 0.249 1.181 ± 0.221 1.173 ± 0.204 1.168 ± 0.187 1.159 ± 0.164 1.149 ± 0.132 1.143 ± 0.113

1.098 ± 0.610 1.042 ± 0.417 1.024 ± 0.347 1.019 ± 0.310 1.019 ± 0.283 1.020 ± 0.264 1.025 ± 0.251 1.024 ± 0.225 1.031 ± 0.192 1.042 ± 0.169

1.449 ± 0.735 1.328 ± 0.493 1.275 ± 0.382 1.248 ± 0.331 1.228 ± 0.287 1.217 ± 0.263 1.212 ± 0.242 1.197 ± 0.206 1.179 ± 0.169 1.176 ± 0.144

0.944 ± 0.287 0.953 ± 0.238 0.967 ± 0.212 0.983 ± 0.193 0.989 ± 0.178 0.994 ± 0.170 0.999 ± 0.160 1.006 ± 0.144 1.022 ± 0.121 1.030 ± 0.106

1.236 ± 0.336 1.182 ± 0.249 1.161 ± 0.206 1.152 ± 0.179 1.142 ± 0.160 1.136 ± 0.148 1.132 ± 0.138 1.123 ± 0.119 1.117 ± 0.097 1.113 ± 0.083

0.971 ± 0.339 0.976 ± 0.268 0.992 ± 0.239 0.999 ± 0.216 1.001 ± 0.197 1.010 ± 0.186 1.014 ± 0.177 1.023 ± 0.161 1.036 ± 0.136 1.046 ± 0.120

1.298 ± 0.408 1.233 ± 0.291 1.209 ± 0.242 1.191 ± 0.205 1.176 ± 0.185 1.171 ± 0.168 1.166 ± 0.156 1.158 ± 0.138 1.117 ± 0.097 1.113 ± 0.083

1.013 ± 0.417 1.005 ± 0.320 1.008 ± 0.275 1.014 ± 0.246 1.020 ± 0.229 1.029 ± 0.218 1.029 ± 0.203 1.036 ± 0.184 1.053 ± 0.157 1.063 ± 0.139

1.386 ± 0.510 1.297 ± 0.370 1.258 ± 0.294 1.236 ± 0.246 1.224 ± 0.223 1.215 ± 0.206 1.205 ± 0.188 1.197 ± 0.160 1.188 ± 0.131 1.182 ± 0.113

1.111 ± 0.621 1.057 ± 0.410 1.043 ± 0.335 1.053 ± 0.312 1.046 ± 0.282 1.053 ± 0.263 1.053 ± 0.247 1.059 ± 0.226 1.074 ± 0.190 1.083 ± 0.170

1.524 ± 0.779 1.395 ± 0.497 1.333 ± 0.390 1.313 ± 0.341 1.285 ± 0.294 1.274 ± 0.263 1.262 ± 0.241 1.251 ± 0.211 1.236 ± 0.167 1.228 ± 0.144

0.939 ± 0.284 0.956 ± 0.235 0.978 ± 0.208 0.981 ± 0.187 0.992 ± 0.175 0.995 ± 0.164 1.001 ± 0.155 1.010 ± 0.139 1.026 ± 0.119 1.035 ± 0.103

1.242 ± 0.337 1.189 ± 0.248 1.168 ± 0.206 1.151 ± 0.178 1.143 ± 0.158 1.133 ± 0.144 1.131 ± 0.136 1.124 ± 0.117 1.115 ± 0.096 1.111 ± 0.081

0.964 ± 0.330 0.981 ± 0.267 0.991 ± 0.229 0.998 ± 0.208 1.009 ± 0.195 1.018 ± 0.184 1.019 ± 0.172 1.027 ± 0.155 1.045 ± 0.132 1.056 ± 0.115

1.317 ± 0.418 1.250 ± 0.298 1.215 ± 0.240 1.194 ± 0.205 1.184 ± 0.184 1.179 ± 0.168 1.168 ± 0.154 1.159 ± 0.135 1.150 ± 0.107 1.145 ± 0.091

1.003 ± 0.398 1.005 ± 0.310 1.013 ± 0.271 1.017 ± 0.238 1.028 ± 0.224 1.034 ± 0.210 1.038 ± 0.198 1.050 ± 0.180 1.070 ± 0.152 1.076 ± 0.134

1.426 ± 0.544 1.326 ± 0.370 1.279 ± 0.296 1.254 ± 0.250 1.238 ± 0.222 1.224 ± 0.201 1.219 ± 0.185 1.209 ± 0.162 1.198 ± 0.129 1.188 ± 0.110

1.113 ± 0.652 1.055 ± 0.405 1.050 ± 0.329 1.051 ± 0.292 1.054 ± 0.270 1.062 ± 0.252 1.066 ± 0.238 1.075 ± 0.217 1.093 ± 0.187 1.104 ± 0.164

1.627 ± 0.861 1.449 ± 0.529 1.376 ± 0.395 1.339 ± 0.331 1.315 ± 0.288 1.303 ± 0.263 1.292 ± 0.239 1.274 ± 0.208 1.259 ± 0.165 1.247 ± 0.138

0.938 ± 0.288 0.953 ± 0.236 0.966 ± 0.208 0.973 ± 0.186 0.982 ± 0.171 0.992 ± 0.160 0.996 ± 0.151 1.007 ± 0.139 1.022 ± 0.115 1.030 ± 0.102

1.247 ± 0.344 1.185 ± 0.251 1.162 ± 0.208 1.140 ± 0.175 1.133 ± 0.158 1.127 ± 0.144 1.121 ± 0.132 1.115 ± 0.118 1.105 ± 0.094 1.100 ± 0.081

0.957 ± 0.336 0.965 ± 0.262 0.977 ± 0.227 0.993 ± 0.206 0.995 ± 0.190 1.005 ± 0.182 1.013 ± 0.172 1.021 ± 0.153 1.039 ± 0.131 1.050 ± 0.113

1.319 ± 0.429 1.237 ± 0.293 1.202 ± 0.237 1.189 ± 0.204 1.171 ± 0.181 1.165 ± 0.167 1.159 ± 0.156 1.148 ± 0.134 1.139 ± 0.107 1.134 ± 0.092

0.980 ± 0.399 0.985 ± 0.298 0.999 ± 0.258 1.012 ± 0.238 1.020 ± 0.220 1.021 ± 0.202 1.032 ± 0.193 1.040 ± 0.174 1.060 ± 0.148 1.070 ± 0.131

1.423 ± 0.560 1.315 ± 0.364 1.272 ± 0.291 1.248 ± 0.250 1.230 ± 0.223 1.214 ± 0.196 1.209 ± 0.183 1.195 ± 0.160 1.185 ± 0.126 1.175 ± 0.107

1.078 ± 0.625 1.038 ± 0.412 1.023 ± 0.317 1.041 ± 0.292 1.046 ± 0.269 1.054 ± 0.249 1.054 ± 0.230 1.062 ± 0.211 1.086 ± 0.180 1.099 ± 0.159

1.628 ± 0.843 1.457 ± 0.549 1.371 ± 0.396 1.339 ± 0.336 1.314 ± 0.289 1.299 ± 0.261 1.281 ± 0.236 1.266 ± 0.204 1.248 ± 0.162 1.240 ± 0.135

0.920 ± 0.283 0.935 ± 0.231 0.946 ± 0.201 0.962 ± 0.184 0.970 ± 0.170 0.976 ± 0.160 0.982 ± 0.150 0.991 ± 0.137 1.005 ± 0.113 1.017 ± 0.100

1.229 ± 0.342 1.168 ± 0.250 1.138 ± 0.202 1.126 ± 0.176 1.118 ± 0.157 1.108 ± 0.144 1.104 ± 0.133 1.096 ± 0.118 1.086 ± 0.094 1.082 ± 0.079

0.932 ± 0.328 0.946 ± 0.252 0.960 ± 0.222 0.970 ± 0.201 0.982 ± 0.186 0.987 ± 0.175 0.993 ± 0.165 1.005 ± 0.150 1.022 ± 0.126 1.033 ± 0.111

1.298 ± 0.419 1.218 ± 0.282 1.183 ± 0.235 1.164 ± 0.201 1.154 ± 0.178 1.143 ± 0.164 1.137 ± 0.150 1.129 ± 0.132 1.117 ± 0.105 1.112 ± 0.090

0.969 ± 0.413 0.959 ± 0.296 0.973 ± 0.253 0.983 ± 0.230 0.997 ± 0.211 1.008 ± 0.200 1.008 ± 0.189 1.022 ± 0.171 1.040 ± 0.142 1.055 ± 0.127

1.425 ± 0.582 1.297 ± 0.368 1.248 ± 0.284 1.220 ± 0.245 1.207 ± 0.215 1.197 ± 0.197 1.185 ± 0.180 1.174 ± 0.156 1.157 ± 0.123 1.153 ± 0.105

1.057 ± 0.639 0.998 ± 0.402 1.007 ± 0.326 1.005 ± 0.274 1.019 ± 0.257 1.027 ± 0.240 1.030 ± 0.224 1.049 ± 0.206 1.069 ± 0.175 1.078 ± 0.152

1.662 ± 0.906 1.438 ± 0.545 1.366 ± 0.408 1.315 ± 0.324 1.294 ± 0.289 1.277 ± 0.256 1.260 ± 0.234 1.250 ± 0.203 1.226 ± 0.160 1.211 ± 0.133

0.910 ± 0.290 0.922 ± 0.229 0.937 ± 0.203 0.946 ± 0.183 0.953 ± 0.168 0.961 ± 0.158 0.970 ± 0.150 0.976 ± 0.137 0.992 ± 0.113 1.003 ± 0.099

1.219 ± 0.347 1.151 ± 0.245 1.128 ± 0.203 1.109 ± 0.174 1.098 ± 0.156 1.091 ± 0.141 1.087 ± 0.131 1.078 ± 0.116 1.071 ± 0.093 1.066 ± 0.080

0.919 ± 0.328 0.927 ± 0.256 0.942 ± 0.224 0.954 ± 0.202 0.965 ± 0.190 0.970 ± 0.173 0.978 ± 0.162 0.986 ± 0.148 1.001 ± 0.124 1.015 ± 0.110

1.285 ± 0.425 1.200 ± 0.295 1.168 ± 0.236 1.145 ± 0.203 1.133 ± 0.182 1.122 ± 0.163 1.118 ± 0.148 1.106 ± 0.130 1.094 ± 0.106 1.091 ± 0.090

0.948 ± 0.421 0.946 ± 0.306 0.953 ± 0.258 0.964 ± 0.230 0.972 ± 0.212 0.982 ± 0.198 0.984 ± 0.185 0.998 ± 0.169 1.017 ± 0.140 1.029 ± 0.125

1.411 ± 0.598 1.283 ± 0.375 1.229 ± 0.295 1.203 ± 0.247 1.183 ± 0.217 1.171 ± 0.197 1.156 ± 0.178 1.147 ± 0.156 1.131 ± 0.122 1.123 ± 0.104

1.020 ± 0.618 0.973 ± 0.405 0.978 ± 0.325 0.980 ± 0.275 0.989 ± 0.255 0.998 ± 0.238 1.005 ± 0.221 1.017 ± 0.201 1.044 ± 0.171 1.050 ± 0.152

1.654 ± 0.924 1.428 ± 0.563 1.349 ± 0.420 1.296 ± 0.327 1.263 ± 0.285 1.250 ± 0.258 1.236 ± 0.233 1.216 ± 0.202 1.196 ± 0.159 1.181 ± 0.133
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Table 3-6: Simulation results of ̂  for multiply censored data, generated by OLSE and MLE, at 
different n , 

T  and c  (part I – low censoring levels): the values of )ˆ()ˆ(  SE   and )ˆ(MSE  (in 

parentheses. 

Method

1.446 ± 0.752 1.372 ± 0.567 1.303 ± 0.419 1.250 ± 0.279 1.226 ± 0.222 1.217 ± 0.190

1.238 ± 0.587 1.215 ± 0.465 1.191 ± 0.356 1.178 ± 0.247 1.171 ± 0.199 1.171 ± 0.174

1.756 ± 0.972 1.659 ± 0.729 1.576 ± 0.530 1.502 ± 0.349 1.473 ± 0.274 1.458 ± 0.236

1.457 ± 0.688 1.429 ± 0.549 1.409 ± 0.418 1.392 ± 0.291 1.387 ± 0.235 1.384 ± 0.204

2.194 ± 1.402 2.076 ± 1.017 1.959 ± 0.720 1.856 ± 0.457 1.817 ± 0.360 1.793 ± 0.307

1.744 ± 0.822 1.725 ± 0.664 1.701 ± 0.507 1.681 ± 0.349 1.678 ± 0.285 1.674 ± 0.246

2.899 ± 2.548 2.720 ± 2.339 2.534 ± 1.155 2.385 ± 0.699 2.320 ± 0.506 2.288 ± 0.425

2.165 ± 1.028 2.138 ± 0.830 2.110 ± 0.628 2.094 ± 0.441 2.086 ± 0.358 2.087 ± 0.308

1.146 ± 0.283 1.127 ± 0.229 1.109 ± 0.174 1.091 ± 0.122 1.085 ± 0.099 1.081 ± 0.085

1.067 ± 0.250 1.065 ± 0.206 1.063 ± 0.159 1.062 ± 0.113 1.061 ± 0.092 1.061 ± 0.080

1.233 ± 0.32 1.213 ± 0.255 1.195 ± 0.19 1.174 ± 0.136 1.165 ± 0.109 1.161 ± 0.094

1.134 ± 0.269 1.134 ± 0.220 1.135 ± 0.170 1.135 ± 0.121 1.134 ± 0.099 1.135 ± 0.085

1.352 ± 0.374 1.328 ± 0.299 1.302 ± 0.225 1.277 ± 0.154 1.267 ± 0.125 1.260 ± 0.107

1.223 ± 0.295 1.222 ± 0.240 1.224 ± 0.187 1.223 ± 0.132 1.223 ± 0.108 1.223 ± 0.093

1.496 ± 0.451 1.467 ± 0.359 1.440 ± 0.270 1.410 ± 0.183 1.396 ± 0.147 1.389 ± 0.126

1.330 ± 0.330 1.330 ± 0.267 1.333 ± 0.206 1.334 ± 0.146 1.335 ± 0.119 1.335 ± 0.103

1.052 ± 0.131 1.046 ± 0.107 1.040 ± 0.082 1.033 ± 0.058 1.031 ± 0.047 1.029 ± 0.041

1.017 ± 0.122 1.018 ± 0.100 1.020 ± 0.077 1.019 ± 0.055 1.021 ± 0.044 1.021 ± 0.039

1.081 ± 0.141 1.074 ± 0.114 1.068 ± 0.088 1.061 ± 0.062 1.056 ± 0.050 1.056 ± 0.043

1.039 ± 0.128 1.042 ± 0.105 1.043 ± 0.081 1.044 ± 0.057 1.044 ± 0.047 1.045 ± 0.040

1.115 ± 0.150 1.109 ± 0.123 1.101 ± 0.095 1.093 ± 0.066 1.089 ± 0.054 1.087 ± 0.047

1.067 ± 0.134 1.069 ± 0.111 1.071 ± 0.085 1.073 ± 0.060 1.073 ± 0.050 1.073 ± 0.043

1.157 ± 0.167 1.150 ± 0.136 1.142 ± 0.105 1.133 ± 0.073 1.128 ± 0.059 1.126 ± 0.051

1.099 ± 0.143 1.103 ± 0.116 1.105 ± 0.090 1.107 ± 0.064 1.108 ± 0.052 1.108 ± 0.045

1.029 ± 0.086 1.026 ± 0.070 1.022 ± 0.054 1.018 ± 0.038 1.017 ± 0.031 1.016 ± 0.027

1.006 ± 0.081 1.008 ± 0.067 1.009 ± 0.051 1.009 ± 0.036 1.010 ± 0.030 1.010 ± 0.026

1.043 ± 0.091 1.041 ± 0.074 1.036 ± 0.057 1.032 ± 0.040 1.030 ± 0.033 1.029 ± 0.028

1.018 ± 0.085 1.020 ± 0.069 1.021 ± 0.054 1.022 ± 0.038 1.022 ± 0.031 1.023 ± 0.027

1.061 ± 0.096 1.058 ± 0.080 1.053 ± 0.061 1.049 ± 0.043 1.046 ± 0.035 1.045 ± 0.030

1.032 ± 0.088 1.034 ± 0.073 1.035 ± 0.056 1.037 ± 0.040 1.037 ± 0.032 1.037 ± 0.028

1.082 ± 0.105 1.079 ± 0.086 1.075 ± 0.066 1.069 ± 0.047 1.066 ± 0.038 1.065 ± 0.033

1.047 ± 0.094 1.051 ± 0.077 1.053 ± 0.059 1.054 ± 0.042 1.055 ± 0.034 1.055 ± 0.030

1.015 ± 0.051 1.013 ± 0.042 1.011 ± 0.032 1.009 ± 0.023 1.008 ± 0.019 1.007 ± 0.016

1.002 ± 0.049 1.002 ± 0.040 1.003 ± 0.031 1.004 ± 0.022 1.004 ± 0.018 1.004 ± 0.015

1.020 ± 0.054 1.019 ± 0.044 1.017 ± 0.034 1.014 ± 0.024 1.013 ± 0.020 1.013 ± 0.017

1.006 ± 0.051 1.007 ± 0.042 1.008 ± 0.032 1.009 ± 0.023 1.009 ± 0.019 1.009 ± 0.016

1.028 ± 0.057 1.026 ± 0.047 1.024 ± 0.036 1.021 ± 0.025 1.020 ± 0.021 1.019 ± 0.018

1.011 ± 0.054 1.013 ± 0.044 1.014 ± 0.034 1.015 ± 0.024 1.015 ± 0.019 1.015 ± 0.017

1.037 ± 0.061 1.035 ± 0.050 1.032 ± 0.039 1.030 ± 0.027 1.029 ± 0.022 1.028 ± 0.019

1.018 ± 0.057 1.020 ± 0.047 1.021 ± 0.036 1.022 ± 0.025 1.023 ± 0.021 1.023 ± 0.018

1.008 ± 0.032 1.007 ± 0.026 1.005 ± 0.020 1.004 ± 0.014 1.004 ± 0.012 1.003 ± 0.010

1.000 ± 0.031 1.000 ± 0.025 1.001 ± 0.019 1.001 ± 0.014 1.002 ± 0.011 1.002 ± 0.010

1.010 ± 0.033 1.009 ± 0.028 1.008 ± 0.021 1.007 ± 0.015 1.006 ± 0.012 1.006 ± 0.011

1.001 ± 0.032 1.002 ± 0.026 1.003 ± 0.020 1.003 ± 0.014 1.004 ± 0.012 1.004 ± 0.010

1.014 ± 0.036 1.012 ± 0.029 1.011 ± 0.022 1.010 ± 0.016 1.009 ± 0.013 1.009 ± 0.011

1.004 ± 0.034 1.005 ± 0.028 1.006 ± 0.021 1.006 ± 0.015 1.006 ± 0.012 1.006 ± 0.011

1.018 ± 0.038 1.017 ± 0.031 1.015 ± 0.024 1.014 ± 0.017 1.013 ± 0.014 1.013 ± 0.012

1.007 ± 0.036 1.008 ± 0.030 1.009 ± 0.023 1.009 ± 0.016 1.010 ± 0.013 1.010 ± 0.011
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Table 3-7: Simulation results of ̂  for multiply censored data, generated by OLSE and MLE, at 
different n , 

T  and c  (part II – high censoring levels): the values of )ˆ()ˆ(  SE   and )ˆ(MSE  (in 

parentheses). 

Method

453.59 ± 87553 13.18 ± 124.7 9.739 ± 33.32 8.086 ± 9.395 7.574 ± 4.807 7.284 ± 3.150

6.325 ± 5.202 6.034 ± 3.532 5.833 ± 2.408 5.700 ± 1.567 5.662 ± 1.261 5.647 ± 1.081

38376 ± 5877178 591.5 ± 50231 56.16 ± 1816.8 22.94 ± 547.2 17.12 ± 32.17 16.02 ± 21.96

20.45 ± 163 13.81 ± 30.33 11.72 ± 9.273 10.80 ± 4.659 10.53 ± 3.473 10.42 ± 2.911

4.214 ± 14.61 4.075 ± 70.24 3.478 ± 1.970 3.230 ± 1.114 3.120 ± 0.816 3.065 ± 0.669

2.798 ± 1.387 2.754 ± 1.092 2.739 ± 0.838 2.717 ± 0.583 2.706 ± 0.478 2.703 ± 0.409

7.089 ± 45.34 6.098 ± 23.75 5.300 ± 6.151 4.734 ± 2.256 4.538 ± 1.556 4.434 ± 1.279

3.912 ± 2.154 3.819 ± 1.671 3.779 ± 1.255 3.744 ± 0.864 3.721 ± 0.697 3.721 ± 0.603

2.456 ± 4.437 2.393 ± 1.600 2.343 ± 0.984 2.270 ± 0.549 2.233 ± 0.426 2.209 ± 0.350

1.993 ± 0.647 1.993 ± 0.507 1.994 ± 0.383 2.000 ± 0.268 1.998 ± 0.219 2.000 ± 0.189

3.726 ± 36.74 3.382 ± 7.577 3.314 ± 24.20 3.087 ± 1.347 3.012 ± 0.984 2.972 ± 0.780

2.685 ± 1.629 2.625 ± 1.014 2.592 ± 0.691 2.574 ± 0.456 2.566 ± 0.364 2.565 ± 0.312

1.689 ± 0.581 1.660 ± 0.472 1.627 ± 0.351 1.588 ± 0.232 1.572 ± 0.184 1.562 ± 0.158

1.469 ± 0.373 1.474 ± 0.306 1.478 ± 0.238 1.480 ± 0.167 1.481 ± 0.137 1.482 ± 0.119

1.974 ± 0.934 1.939 ± 0.682 1.900 ± 0.512 1.847 ± 0.326 1.828 ± 0.262 1.810 ± 0.218

1.668 ± 0.451 1.676 ± 0.372 1.679 ± 0.286 1.683 ± 0.200 1.687 ± 0.164 1.686 ± 0.142

1.211 ± 0.192 1.203 ± 0.156 1.195 ± 0.120 1.184 ± 0.083 1.179 ± 0.067 1.177 ± 0.058

1.141 ± 0.155 1.144 ± 0.127 1.149 ± 0.099 1.151 ± 0.069 1.152 ± 0.056 1.153 ± 0.048

1.280 ± 0.230 1.275 ± 0.189 1.266 ± 0.145 1.254 ± 0.101 1.247 ± 0.082 1.245 ± 0.069

1.194 ± 0.173 1.201 ± 0.141 1.206 ± 0.109 1.210 ± 0.077 1.210 ± 0.064 1.212 ± 0.054

1.375 ± 0.308 1.374 ± 0.245 1.367 ± 0.188 1.356 ± 0.133 1.348 ± 0.106 1.343 ± 0.092

1.272 ± 0.205 1.279 ± 0.167 1.287 ± 0.128 1.293 ± 0.090 1.294 ± 0.073 1.295 ± 0.064

1.512 ± 0.496 1.527 ± 0.392 1.531 ± 0.312 1.524 ± 0.211 1.517 ± 0.165 1.509 ± 0.141

1.403 ± 0.290 1.411 ± 0.228 1.419 ± 0.172 1.426 ± 0.119 1.429 ± 0.097 1.430 ± 0.084

1.189 ± 0.162 1.190 ± 0.133 1.188 ± 0.104 1.180 ± 0.073 1.176 ± 0.059 1.174 ± 0.051

1.132 ± 0.127 1.139 ± 0.103 1.145 ± 0.079 1.148 ± 0.056 1.150 ± 0.045 1.151 ± 0.040

1.253 ± 0.226 1.262 ± 0.182 1.265 ± 0.144 1.261 ± 0.102 1.258 ± 0.083 1.254 ± 0.071

1.193 ± 0.161 1.201 ± 0.129 1.208 ± 0.098 1.215 ± 0.068 1.216 ± 0.056 1.217 ± 0.048

1.109 ± 0.117 1.105 ± 0.095 1.101 ± 0.073 1.095 ± 0.052 1.092 ± 0.042 1.090 ± 0.036

1.068 ± 0.101 1.072 ± 0.083 1.075 ± 0.064 1.077 ± 0.045 1.078 ± 0.037 1.078 ± 0.032

1.142 ± 0.134 1.141 ± 0.109 1.136 ± 0.084 1.130 ± 0.059 1.127 ± 0.048 1.124 ± 0.042

1.094 ± 0.111 1.100 ± 0.090 1.104 ± 0.070 1.107 ± 0.049 1.108 ± 0.040 1.108 ± 0.035

1.082 ± 0.087 1.082 ± 0.071 1.081 ± 0.056 1.078 ± 0.039 1.076 ± 0.032 1.075 ± 0.027

1.052 ± 0.074 1.056 ± 0.061 1.060 ± 0.047 1.063 ± 0.033 1.064 ± 0.027 1.064 ± 0.023

1.109 ± 0.113 1.115 ± 0.091 1.114 ± 0.070 1.113 ± 0.051 1.111 ± 0.041 1.110 ± 0.035

1.076 ± 0.090 1.084 ± 0.073 1.087 ± 0.055 1.092 ± 0.039 1.093 ± 0.032 1.094 ± 0.028

1.048 ± 0.067 1.046 ± 0.055 1.044 ± 0.042 1.041 ± 0.030 1.040 ± 0.024 1.039 ± 0.021

1.026 ± 0.061 1.029 ± 0.050 1.031 ± 0.038 1.032 ± 0.027 1.033 ± 0.022 1.033 ± 0.019

1.063 ± 0.075 1.061 ± 0.061 1.059 ± 0.047 1.056 ± 0.033 1.054 ± 0.027 1.054 ± 0.023

1.037 ± 0.066 1.040 ± 0.054 1.043 ± 0.042 1.045 ± 0.029 1.045 ± 0.024 1.046 ± 0.021

1.039 ± 0.053 1.039 ± 0.043 1.038 ± 0.034 1.036 ± 0.024 1.035 ± 0.019 1.034 ± 0.017

1.021 ± 0.048 1.024 ± 0.039 1.026 ± 0.030 1.028 ± 0.021 1.029 ± 0.017 1.029 ± 0.015

1.051 ± 0.065 1.054 ± 0.053 1.054 ± 0.041 1.053 ± 0.029 1.052 ± 0.024 1.051 ± 0.020

1.031 ± 0.056 1.035 ± 0.045 1.039 ± 0.035 1.042 ± 0.024 1.042 ± 0.020 1.043 ± 0.017

1.023 ± 0.041 1.022 ± 0.034 1.020 ± 0.026 1.019 ± 0.018 1.018 ± 0.015 1.018 ± 0.013

1.010 ± 0.039 1.011 ± 0.032 1.013 ± 0.024 1.014 ± 0.017 1.014 ± 0.014 1.014 ± 0.012

1.029 ± 0.046 1.029 ± 0.037 1.027 ± 0.029 1.026 ± 0.021 1.025 ± 0.017 1.024 ± 0.014

1.014 ± 0.043 1.017 ± 0.034 1.018 ± 0.027 1.020 ± 0.019 1.020 ± 0.015 1.020 ± 0.013

n
20 30 50 100 150
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(0.001) (0.001) (0.001)

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

(0.145) (0.132) (0.126)

(0.094) (0.092) (0.091)
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3.4  Summary 

In this chapter, the properties of the OLS estimators of the Weibull parameters were 

examined through both analytical methods and Monte Carlo simulation experiments. 

The important findings are summarized as follows. 

Theoretical Findings 

1) The OLS estimators of   and   are biased and may not have minimum 

variance among all linear estimators. 

2) A sensible selection for iy  is to use the expected values of the order 

statistics of the reduced variable )1()ln(  XZ . The values can be 

calculated by Equation (3-8), and the corresponding estimates for failure 

probability F  can be calculated by the relationship  )1ln(ln FY  . 

3) The Weibull distribution, denoted by ),( Wei , is related to the extreme 

value distribution, denoted by ),( Exm , with  ln  and  /1 . The 

transformation to the extreme-value distribution, which is of location-scale 

type, helps to ease the analytical deductions. The BLUEs for   and   are 

well-established; however, as the relationships  ln  and  /1  are 

both nonlinear, the BLUEs for   and   cannot be easily obtained. 

4) Same as the MLE of   and  , the LSE of   and   have two pivotal 

functions  /ˆ  and )/ˆln(ˆ   whose distributions are independent of   

and  . 
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Simulation Findings 

1) For complete data, the relative bias of the OLS estimated   is typically 

within 5% and is inconsistent with the sample size. The relative bias reaches 

smallest between 6n  and 7n . During 3010  n , the relative bias is 

like a constant and remains at around 4%. The standard deviation and MSE 

are typically much larger than the bias, indicating that OLSE has a low 

efficiency. OLSE outperforms MLE for estimating   for small samples, 

while MLE performs better for estimating  , especially when T  is small 

(although both estimators of   have large bias when T  is small). 

2) For multiply censored data, the bias of the OLS estimated   is inconsistent 

with either n  or c . The bias reaches smallest at different combinations of n  

and c , e.g., %30c  and 200150 n , %40c  and 150100 n , 

%50c  and 10080 n , %60c  and 6050 n , and %70c  and 

3020 n . The bias is significant for small samples with very low 

censoring levels ( %20c ) or large samples with very high censoring levels 

( %70c ). For estimating  , the results are generally unsatisfactory at 

5.0T . MLE always outperforms OLSE for estimating  . OLSE 

outperforms MLE for estimating   as long as the censoring level is not very 

low, i.e., %20c . 

3) For both complete data and censored data, the standard deviation and MSE of 

̂  and ̂  of the OLSE generally decrease with the increase of sample size. 

However, the bias is inconsistent with the sample size. This means for the 

OLSE method, the increase of sample size may not generate better estimates. 
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Chapter 4 

Modifications on the OLSE Method 

 

This chapter presents some modifications on the OLSE method with the aim of 

providing better estimates for the Weibull parameters. The importance of using LSE 

together with WPP is emphasized. Discussions on the plotting positions in the cases 

of complete data and censored data, respectively, are presented. The expected plotting 

positions or its approximations are recommended. A comparison between two LSE 

methods, LS Y on X and LS X on Y, is presented. The simulation results show that the 

two methods outperform each other at different conditions. 

4.1  Introduction 

In the previous chapter, the properties of the OLS estimators have been carefully 

examined via both analytical method and experimental method. It was found that the 

OLS estimators of the Weibull parameters, especially for the shape parameter, are 

biased and have large variance for certain sample sizes or censoring levels. There are 

many possibilities to improve the OLSE method, as can be seen in the following of 

this thesis. This chapter presents a few small modifications without change the least 

squares regression technique used in the OLSE method.  

In the following, Section 4.2 describes the advantages of using OLSE with WPP 

instead of using it merely as a simple analytical method. Section 4.3 examines the 

selection of the Y-axis plotting positions on parameter estimation. It will show that the 

Bernard estimator and the Herd-Johnson estimator used in OLSE for complete data 
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and censored data, respectively, can be replaced by other estimators to achieve better 

parameter estimators under certain circumstances. Section 4.4 presents another 

modification on OLSE, which is to reverse the dependent variable and the 

independent variable in the least squares regression. In OLSE, TX ln  is the 

independent variable and  ))(1ln(ln tFY   is the dependent variable. This is in 

good agreement with WPP which plots t  along the X-axis and F  along the Y-axis. 

However, from the viewpoint of a controlled experiment design, it is more appropriate 

to set  ))(1ln(ln tFX   as the independent variable and TY ln  as the 

dependent variable because t is the measured values or output from the experiment 

and the values of F are estimated by some non-parametric estimators which are 

independent of t . The comparisons between the two methods are presented in details. 

Some of the work presented in this chapter has been published in Zhang et al. (2005, 

2007). 

4.2  Modification 1: Always Use LSE with WPP 

Parameter estimation methods for the Weibull distribution are commonly divided into 

two groups: graphical methods and analytical methods. In Chapter 2, the WPP method 

and the LSE method are described as two types of estimation methods: WPP is a 

graphical estimation method, and LSE belongs to the group of analytical estimation 

methods. In practice, however, these two methods are frequently used together. 

Theoretically, LSE and WPP are both based on the linearized Weibull CDF, i.e., 

Equation (2-1). By combining LSE with WPP, it is basically to use the least squares 

regression technique to generate the straight line on the probability plot instead of by 

eye. The advantages of the combination over the two individual methods are obvious: 

1) compared to WPP, it avoids the subjectivity by using eye-fitting so as to improve 
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the estimation efficiency; and 2) compared to LSE, it gives a graphical presentation 

which can serve as model validation and outlier identification, in addition to 

parameter estimation. 

Application Procedure of LSE with WPP  

For a random Weibull sample denoted by ni tttt ,,,,, 21   ),,2,1( ni  , and in the 

case of censored data, let ),,2,1(,,,,, ,,2,1, rjtttt rfjfff    denote the failures in 

this sample, the following procedure shows how to apply LSE with WPP to estimate 

the Weibull parameters: 

Step 1:  Rank the failure times, i.e., it  (for complete sample) or jft ,  (for 

censored sample), from smallest to largest. 

Step 2:  Calculate the estimated values of failure probability, i.e., )(
ˆ

iF  (for 

complete sample) or )(,
ˆ

jfF  (for censored sample), at each failure data 

point.  

Step 3:  Generate the Weibull probability plot: plot )(it  vs. )(
ˆ

iF  (for complete 

sample), or )(, jft  vs. )(,
ˆ

jfF  (for censored data) on Weibull probability 

paper. If the Weibull distribution fits, the data points should appear to 

be on a straight line. 

Step 4: Generate a straight line for the data points on WPP using the least 

squares regression technique. 

Step 5: Estimate   and   with Equation (2-12). 

If the Weibull probability paper is not available, Step 3 can be modified as 

plotting )(ln it  vs.  )ˆ1ln(ln )(iF  (for complete sample), or )(,ln jft  vs. 
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 )ˆ1ln(ln )(, jfF  (for censored data) on linear-linear paper. This can be carried out in 

spreadsheet like MS Excel.  

4.3  Modification 2: Estimation of F(t) (Plotting Positions) 

WPP, LSE and other linear regression estimation methods discussed in this thesis all 

require the estimated value of failure probability F  at each failure time. Weibull 

researchers have agreed the importance of the estimation of F , commonly known as 

the Y-axis plotting positions, on parameter estimation. Much work has been done on 

this topic, as briefly described in Section 1.3.1. Among the existing estimators of F , 

most are simple non-parametric estimators that can be used for complete data. The 

estimation of F  in the case of multiply censored data is less discussed. 

The definition of )(tF  is the probability that a random variable T  takes on a 

value less than or equal to a real number, e.g., 0t . For the Weibull distribution, we 

have 

 

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













0

00 exp1)()(
t

tTPtF  (4-1) 

From Equation (4-1), the value of )( 0tF  depends on 0t ,   and  . 0t  is a failure 

observation which is known, but   and   are unknown parameters of the Weibull 

distribution, hence the value of )( 0tF  can only be estimated. The estimation of )( 0tF  

is frequently called the determination of Y-axis plotting positions for the Weibull 

probability plot. This is not a unique problem for the Weibull probability plotting, for 

example, some discussions on the similar problem can be found for the normal 
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probability plotting, see, e.g., Looney & Gulledge (1985). As is well known, 

   8/34/1ˆ  niF  is used for the normal distribution. 

The estimation of )( 0tF , or the selection of the Y-axis plotting positions for 

WPP, is such a hot topic that a large portion of literature about WPP and LSE 

examined this problem. Different estimators of )( 0tF  have been proposed, to be 

applied to complete data and censored data, respectively. Most of the existing 

estimators are expressed by the functions of order number and sample size. Unlike the 

situation for the normal probability plotting, where    8/34/1ˆ  niF  is used as 

a standard formula for calculating F̂  and there is rarely an alternative, currently there 

is no fixed method for the estimation of the Weibull F , especially for censored data. 

The discussion is still ongoing.  

In the following, Section 4.3.1 summarizes the common methods for calculating 

F̂  for complete Weibull samples into different groups and the results are presented in 

a table for easy reference. The related work is described and the research gaps are 

pointed out. Similar work is presented in Section 4.3.2, in the case of censored data. 

Then, Section 4.3.3 and Section 4.3.4 present the Monte Carlo experiment study of 

the different methods for calculating F̂ , in the cases of complete data and censored 

data, respectively, and the results will suggest which method is best under certain 

circumstances. The simulation results are presented in figures for the convenience of 

comparison. 
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4.3.1 Estimation of F for Complete Data 

More than eight non-parametric estimators for calculating )(
ˆ

iF  have been proposed 

and compared in the literature. The general form of these estimators can be expressed 

by  

 
2

1
)(

ˆ
cn

ci
F i 


  (4-2) 

where 21 , cc  are two real numbers.  

 Table 4-1 gives a summary of these estimators. As can be seen from the table, 

the existing non-parametric estimators are divided into five categories:  

1) Mean rank plotting positions: the Weibull estimator (Weibull, 1939).  

2) Median rank plotting positions: the Bernard estimator (Bernard & Bosi-

Levenbach, 1953) and the Filliben estimator (Filliben, 1975). 

3) Expected plotting positions: the Ross estimator (Ross, 1994b) and the 

Drap-Kos estimator (Drapella & Kosznik, 1999). 

4) ‘Optimal’ plotting positions: the estimators vary with sample sizes (Wu & 

Lu, 2004; Tiryakioglu & Hudak, 2007). 

5) Others: the Hazen estimator (Hazen, 1930), the Blom estimator (Blom, 

1958), etc. 
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The theoretical backgrounds of the Weibull estimator, the Bernard estimator and 

the Hazen estimator have been described in Section 2.2. The mean rank plotting 

positions and the median rank plotting positions are most frequently used. The 

estimators in these two categories satisfy the following general form,  

 
12

ˆ
0

0
)( 




cn

ci
F i  (4-3) 

where 0c  is a real number. The Hazen estimator is a special case which also satisfies 

this equation with 5.00 c .  

Fothergill (1990), with Monte Carlo simulations, compared the LSE methods 

with the Bernard estimator, the Weibull estimator and the Hazen estimator on 

estimating Weibull parameters for samples of size 3 to 20. The author concluded that 

when the Bernard estimator is used, the LS estimators of   and   are nearly 

unbiased, while the Weibull estimator results in underestimated   and the Hazen 

estimator results in overestimated  . It was also showed that the Bernard estimator is 

a very good approximation to the exact median rank values. Cacciari & Montanari 

(1991) extended Fothergill’s work and added the Blom estimator and the Filliben 

estimator in the comparison via Monte Carlo simulations. The authors concluded that 

the Bernard estimator and the Filliben estimator are clearly better than the Weibull 

estimator and the Blom estimator on parameter estimation and should be preferred for 

small samples. Their results also showed that when the Bernard or the Filliben 

estimator is used, the LS estimators of   and   are not consistent, i.e., the accuracy 

improves as the sample size increases; while when the Blom estimator is used, the LS 

estimators of   and   are consistent.  
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The methods in the third category can be found in the early literature such as 

Weibull (1967) and White (1969); however, it is not as popular as the Weibull or the 

Bernard estimator nowadays. Ross (1994b) examined the method and gave it the 

name expected plotting positions. The idea is to first calculate the expected values of 

)(iY , and then calculate the values for )(
ˆ

iF  by  ))(exp(exp1ˆ
)()( ii YEF  . Weibull 

(1967) said that the Bernard estimator, though generally acceptable, will be biased, 

and the correct plotting positions are calculated in this way. Section 3.2.2 and Section 

3.2.3 have presented the analytical deduction on )( )(iYE  and the theoretical 

justification on this plotting position. Drapella & Kosznik (1999) also suggested the 

calculation of )(
ˆ

iF  through )( )(iYE , and the formulas are given by   
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  (4-4) 

and 

  )ˆexp(exp1ˆ
)( ii yF   (4-5) 

Equation (4-4) is similar to Equation (3-8) but the deduction is not provided in 

Drapella & Kosznik (1999). With Monte Carlo simulations, the authors concluded 

that, with their formulas used in LSE, the bias of the LS estimators is greatly reduced, 

while the MSE of the estimators are slightly increased. Equation (4-4) has been cited 

many times in recent years, see, e.g., Xie et al. (2000), Yang & Xie (2003), Hung 

(2004) and Lu et al. (2004 ). 

The disadvantage of the expected plotting positions is obvious, i.e., the 

complexity in calculating the values of )( )(iYE , especially when the sample size is 
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large. Ross (1994b) proposed a simple approximation formula which satisfies the 

general form )/()( 21 cnci   for the expected plotting positions via numerical 

methods. The formula is given by 

Ross estimator 
25.0

44.0ˆ
)( 




n

i
F i  (4-6) 

Ross compared this estimator with the Bernard estimator and the Weibull estimator in 

view of plotting and parameter estimation, respectively. It was concluded that the new 

estimator, when used in LSE, outperforms the others and generates nearly unbiased 

LS shape parameter estimator. This simple approximation formula, unfortunately, has 

not received much attention. 

The estimators for estimating F  in the fourth category also belong to the simple 

form in Equation (4-2); however, the values of 1c  and 2c  are not fixed but depend on 

the sample size and are determined via the Monte Carlo method based on certain 

objectives which make the estimators ‘optimal’. The objective used to determine 1c  

and 2c  in the work of Wu & Lu (2004) is to maximize the probability that ̂  fall 

into the interval ]1.1,9.0[ , and the objective in Wu et al. (2006) is to minimize the 

bias of ̂ , i.e., to make ̂  closest to 1. The values of 1c  and 2c  were determined 

for selected sample sizes and tabulated in the two papers. The authors concluded that 

there is no distinct relationship existing between the values of 1c , 2c  and the sample 

size. A similar research can also be found in Tiryakioglu & Hudak (2007). Obviously, 

this type of method has great limitations on applications, because one can not know 

the optimal values of 1c  and 2c  for those sample sizes that are not shown in the 

authors’ work.  
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The discussions regarding the estimation of failure probabilities for the Weibull 

distribution have not received much agreement. The Bernard estimator is used in the 

OLSE method for complete data and it is probably the most recognized estimator, 

followed by the Hazen estimator and the Weibull estimator. The expected plotting 

positions have good theoretical backgrounds and were noticed by some researchers in 

the last decade. Ross’ approximation formula for the expected plotting positions in 

Equation (4-6) may have a good potential for its simplicity and accuracy. It is 

carefully examined, together with other popular plotting positions for LSE, on 

parameter estimation via Monte Carlo simulations in Section 4.3.3. The fourth 

category of the plotting positions is not further discussed due to the application 

inconvenience. 

4.3.2 Estimation of F for Censored Data 

For a censored sample, LSE uses only the failure times to conduct regression analysis 

and WPP plots only failure data points. How to make use of the information provided 

by the part of censored data in a sample is the key problem in the LSE procedure and 

it will greatly affect the parameter estimation results. Obviously, ignoring censored 

data or treating them as failures will cause unreliable estimates because the 

information provided by censored data is lost or misused.  

As a common practice, the influence of censoring is reflected in the estimation of 

F  at each failure data point. Therefore, the estimation of F  for censored data is more 

complicated and more important than that for complete data. 

The literature on estimating F  for censored data is not as much as that for 

complete data. Nelson (2004) described the WPP procedure including the calculation 
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of )(,
ˆ

jfF  in the cases of different types of censored data. The Herd-Johnson estimator 

(Herd, 1960; Johnson, 1964) in Equation (2-6) is recommended for calculating )(,
ˆ

jfF . 

The theoretical background of the Herd-Johnson estimator has been presented in 

Section 2.2.  Other methods have also been proposed; however, not as popular as the 

Herd-Johnson method. Table 4-2 summarizes the existing methods for calculating 

)(,
ˆ

jfF  for censored data. The references are listed and the characteristics of each 

method are pointed out.  

As can be seen from the table, the existing methods on estimating F  for 

censored data are divided into two categories: 

1) Without calculating the MFON: the Kaplan-Meier (KM) estimator 

(Kaplan & Meier, 1958), the Herd-Johnson (HJ) estimator (Herd, 1960; 

Johnson, 1964) and the Zimmer estimator (Skinner et al., 2001; Hossain & 

Zimmer, 2003). 

2) First calculate the MFON, denoted by )(, jfm , and then use )(, jfm  in the 

Bernard estimator (or other non-parametric estimators like Hazen or 

Weibull) to calculate )(,
ˆ

jfF : the modified Johnson (JM) method (Keats et 

al., 2000), the age sensitive method (ASM) of Hastings & Bartlett (1997), 

the exponential age sensitive method (EASM) of Campean (2000) and the 

refined rank regression method (RRRM) of Wang (2001, 2004). 

In the following, the methods in both categories are briefly described.  
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The KM estimator is the oldest non-parametric estimator for F applied to 

censored data. Its formula is given by 

KM estimator 
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               (4-7) 

where the definition of jI  is given in Section 2.2, i.e., the event number of the jth 

failure in the sample. From Equation (4-7), if the last observation in a sample is a 

failure, we have nI j  , and hence the failure probability is always equal to 1 for this 

failure data point. This is obviously unrealistic for censored data and it tends to 

underestimate the failures in the tail of the distribution; therefore, the KM estimator is 

not recommended.  

The HJ estimator overcomes the shortcoming of the KM estimator and is widely 

used for censored data. The formula of the HJ estimator is given in Equation (2-6).  

Besides the KM estimator and the HJ estimator, Skinner et al. (2001) and 

Hossain & Zimmer (2003) proposed a similar estimator, named the Zimmer estimator, 

which is expressed by 

Zimmer estimator  
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The authors compared it with the HJ estimator on estimating the Weibull parameters 

in the cases of Type II censored samples and selected patterns of multiply censored 

samples via Monte Carlo simulations. It was concluded that in view of both bias and 
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MSE of the estimators, the HJ method is generally better than the Zimmer method for 

estimating   while the Zimmer method is better for estimating  .  

The JM estimator belongs to the second category, but it has a close relationship 

with the HJ estimator. The formula of the JM estimator is  

JM estimator 
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where 
jI  is the reverse rank of jI , i.e., jj InI  1 . j  is the increment between 

)1(, jfm  and )(, jfm . At 1j , 0)0(, fm . If the first observation is a failure, 1)1(, fm .  

In Equation (4-9), )(, jfm  is used in the Bernard estimator for calculating )(,
ˆ

jfF , 

but if it is used in the Weibull estimator, i.e., )1(ˆ
)(,)(,  nmF jfjf , the JM estimator 

and the HJ estimator become the same.  

The methods of KM, HJ, Zimmer and JM are insensitive to the exact censoring 

times. The JM estimator and the HJ estimator are derived based on two assumptions: 

one assumption is suggested by Herd (1960) that assumes a censoring event occurs 

concurrently with a failure event, and the second assumption assumes that a censored 

unit, if allowed to continue in service, has equal probability to fail in any of the 

subsequent intervals of two consecutive failure times.  

Hastings & Bartlett (1997) proposed a so-called age sensitive method to take the 

censoring times into account for calculating )(,
ˆ

jfF . The method uses the proportion of 

the interval length between event times to estimate the probability that a censored unit 
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would fail in the current interval and in any of the subsequent intervals of two 

consecutive failure times. The exact censoring times are used in the calculation. For a 

multiply censored sample, plot the failure times and censoring times along the time 

axis. Assume that the kth censoring time )(, kct  lies in the interval of two consecutive 

failure times ),[ )(,)1(, jfjf tt  . Let )()( )1(,)(,)1(,)(,   jfjfjfkck tttt  and kk   1 , 

the formula of the Hastings & Bartlett’s ASM estimator is given by  

ASM estimator 
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where j  denotes the collection of all k  that satisfy ),[ )(,)1(,)(, jfjfkc ttt  .  

Hastings & Bartlett (1997) compared the ASM with the JM method using a 

numerical example and showed that their method is sensitive to the censoring time 

while JM is not. However, the average performance of the method over the JM 

method was not examined (Campean, 2000). Theoretically, compared to the JM 

method, the ASM removed the Herd’s assumption and relaxed, or partially removed, 

the equal probability assumption.  

Campean (2000) proposed another age sensitive method called exponential age 

sensitive method. The method is based on the assumption that the hazard rate, denoted 

by jh , for each time interval of two consecutive failures is constant within the 

interval. The author stated that this constant failure rate assumption offers a more 

robust criterion for age sensitiveness than the simple proportional distance used by 

Hastings & Bartlett (1997).  
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The formula of the EASM is  

EASM estimator 
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Campean (2000) provided two methods for estimating jh , one is the maximum 

likelihood estimation and the other is called the Bayesian smoothed piecewise 

estimation method which, according to the author, can offer a smooth and robust 

estimation for the hazard rate. A simulation study was conducted to compare the JM, 

ASM and EASM (with the Bayesian smoothed piecewise estimator for hazard rate) on 

the estimation of Weibull parameters. The results clearly showed the advantages of 

the EASM at the censoring level of 12.5%. It is also surprised to see that the 

performance of all methods improves with the increase of censoring level. 

All the methods described above are non-parametric methods, i.e., the 

calculation of )(,
ˆ

jfF  does not involve the two Weibull parameters   and  . Wang 

(2001, 2004) proposed a parametric approach to calculate the MFON and )(,
ˆ

jfF , 

which is also an age sensitive method. Wang’s formula for MFON is based on the 

Weibull CDF and the definition of conditional probability. The method is named 

refined rank regression method by the author. The formula is given by 

RRRM estimator 
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where i  is the censoring indicator, and  
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From Equation (4-12), the calculation of )(, jfm  is not straightforward because 

)( )(, jftF  and )( itF  are unknown as   and   are unknown. To solve this problem, 

Wang proposed an iterative procedure which combines the calculation of )(, jfm  and 

the parameter estimation for   and  . The procedure needs initial estimates of   

and   that can be obtained from the LSE method with the JM estimator. The 

application procedure of the RRRM, according to Wang (2004), is as follows. 

Step 0: Find distribution parameters using standard LS method as the initial 

estimates. 

Step 1: With the initial parameter estimates, calculate )(, jfm  and )(,
ˆ

jfF  using 

Equation (4-12). 

Step 2: Update the estimates of the distribution parameters through a revised LS 

regression using the new values of )(,
ˆ

jfF . 

Step 3: Return and repeat the process from step 1 until an acceptable 

convergence is reached on the parameter estimates. 

An advantage of the RRRM is that it removes both the Herd’s assumption and 

the equal probability assumption. However, the calculation is obviously more 

complicated compared to other methods. With Monte Carlo simulations, the author 

compared the RRRM and the JM method on the goodness-of-fit in view of plotting. It 

was concluded that the RRRM generates a better fit for the Weibull distributed data. 
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In summary, the KM estimator has a big problem and should not be used. The HJ 

estimator or the JM estimator is probably the most widely used estimator. If the 

Weibull estimator is used in JM, i.e., )1(ˆ
)(,)(,  nmF jfjf , the JM estimator and the 

HJ estimator are same. The ASM and EASM both remove the Herd (1960) 

assumption, i.e., censoring occur concurrently with a failure event, and use the exact 

censoring time in calculating MFON. In theory, the EASM makes some 

improvements over the ASM; however, the calculation becomes much more 

complicated. The RRRM is the only parametric method and it has a good statistical 

foundation. The application, however, needs iterations and hence is inconvenient 

without the aid of a computer. Although computation is usually not a big problem 

nowadays, there are still situations where the trade-off between computation 

complexity and estimation accuracy is of interest.  

In the following, selected methods for calculating )(
ˆ

iF  and )(,
ˆ

jfF  are compared 

via Monte Carlo simulations and the results will provide suggestions on their usage. 

4.3.3 Simulation Study on Plotting Positions for Complete Data 

A Monte Carlo experiment was carried out to find the best plotting position, among 

those described in Section 4.3.1, used in the LSE method to estimate the two Weibull 

parameters for complete data. Table 4-3 lists the experiment factors and their values. 

Five plotting positions were examined in this experiment including the Bernard 

estimator in Equation (2-4), the Weibull estimator in Equation (2-2), the Hazen 

estimator in Equation (2-5), the Ross estimator in Equation (4-6) and the Drap-Kos 

estimator in Equation (4-4). The comparisons focus on the small to medium sized 

samples because it is known that OLSE performs not very well under such conditions. 



 Chapter 4 Modifications on the OLSE Method 

  105

Table 4-3: Setting of experiment factors. The experiment is to compare different plotting 
positions used in LSE for complete data on parameter estimation. 

Factors Values 

T  1 

T  1 ( for ̂ ) and 0.5, 1, 5 (for ̂ ) 
n  3 – 30  
M  10000 
Methods Bernard, Weibull, Hazen, Ross, Drap-Kos 

 

For a randomly generated Weibull sample, all the five methods were used to 

calculate the values of iy , and then these iy  were used in Equation (2-12) to generate 

the LS estimates of   and  . This procedure was repeated for 10000 times in each 

combination of TT  ,  and n . Finally, the mean and MSE of ̂  and ̂  for each 

method were calculated as the comparison criteria. 

The comparison results are presented in figures instead of tables so that the 

performance of the methods can be easily compared. The results for ̂  are presented 

in Figure 4-1 and Figure 4-2. The mean and MSE of the estimators are separately 

presented. Based on the first pivotal function ̂ , the results for 1,1̂  can represent 

the results for ̂  given any T . The results for ̂  are presented in Figure 4-3 – 

Figure 4-8. Since ̂  is not a pivotal function, different values of T  (0.5, 1 and 5) 

were considered. The following conclusions can be observed. 

Simulation Results for Estimators of β (Figure 4-1 and Figure 4-2) 

1) Bias of ̂  (refer to Figure 4-1): Unfortunately, none of the methods always 

performs best at all sample sizes investigated. Also, none of them are 

unbiased. When the sample sizes are very small, say 4,3n , the Weibull 

estimator is the best; however, it is the worst among the five from 5n  



Chapter 4 Modifications on the OLSE Method  

106  

onwards. The Bernard estimator performs best during 86 n  where the 

bias is almost 0. From 9n  onwards, the Ross estimator and the Drap-Kos 

estimator are the best ones. The Hazen estimator generates highly 

overestimated ̂  when 10n , but it performs very close to the Ross 

estimator and the Drap-Kos estimator when 20n . The Bernard estimator 

results in underestimated ̂  when 7n  and the bias is close to a constant. 

The bias of ̂  generated by the Ross estimator and the Drap-Kos estimator 

almost disappears when 12n .  

2) MSE of ̂  (refer to Figure 4-2): Same as bias, none of the method has 

smallest MSE at all sample sizes investigated. But the MSE of ̂  generated 

by the Hazen estimator is always largest among the five. When 10n , the 

MSE of ̂  generated by the Weibull estimator is significantly smaller than 

that of the other estimators, especially at 4,3n . The Bernard estimator 

performs the second best, followed by the Ross estimator and the Drap-Kos 

estimator, and finally the Hazen estimator. When 10n , however, the MSE 

of ̂  generated by all the methods are close, and that of the Bernard 

estimator is slightly smaller than that of the others.   

3) Comparison between the Ross estimator and the Drap-Kos estimator: In 

view of both bias and MSE, the two estimators perform closely for all the 

sample sizes examined. This result indicates that the Ross estimator is a good 

approximation for the exact expected plotting positions. 
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Figure 4-1: Comparison of the shape parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1E . 
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Figure 4-2: Comparison of the shape parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1MSE . 

 

 



Chapter 4 Modifications on the OLSE Method  

108  

Simulation Results for Estimators of α (Figure 4-3 – Figure 4-8) 

1) Bias of ̂ (refer to Figures 4-3, 4-5 and 4-7): Comparing the three figures, it 

can be seen that, although generally the bias of ̂  of all methods decreases 

as T  increases, the trends of ̂  as a function of n  vary with T  for all the 

methods. The trends of ̂  of Hazen and Bernard at 5T  are dramatically 

different from the trends of them at 5.0T  and 1T . The estimators of 

 of all methods are roughly consistent at 5.0T , but inconsistent at 

1T  and 5T . At 5.0T  and 1T , the Hazen estimator 

outperforms the others at all sample sizes investigated, followed by the 

Bernard estimator, and the Weibull estimator performs worst most of the 

time. All methods result in highly overestimated ̂ . The bias of ̂  of all 

methods is larger than 10% at 5.0T , and at 1T , the bias of ̂  of 

Hazen is within 10% and typically within 5%. At 5T , however, ̂  of 

Hazen is underestimated when 6n . At 5n , Bernard becomes the best 

one. From 5n  onwards, Hazen returns to the best, followed by Bernard, 

and then Ross, Drap-Kos and finally Weibull. The bias of ̂  of Hazen is 

typically 0.3% and that of Bernard is typically 0.6%.  

2) MSE of ̂ (refer to Figures 4-4, 4-6 and 4-8): The difference in the MSE of 

̂  of all methods decreases with the increase of n  and T . The difference is 

significant only at 1,5.0T  and 10n . At all T , the MSE of ̂  of 

Hazen is smaller than that of the others, especially at 5.0T  and 10n . 

The MSE of ̂  of Weibull and Drap-Kos are always the largest.  
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3) Both bias and MSE of ̂ : Considering both bias and MSE, Hazen 

outperforms the others in most of the times except when 5T  and 5n  

(Bernard has a smaller bias). Especially when 105  n , the bias and MSE 

of ̂  of Hazen are significantly smaller than that of the other methods. On 

the other hand, Weibull is generally inferior to others in view of both bias 

and MSE of ̂ .  

4) Comparison between the Ross estimator and the Drap-Kos estimator: The 

difference between the two is larger for estimating   than for estimating  . 

The Ross estimator performs slightly better than Drap-Kos for estimating   

in view of both bias and MSE of ̂ . 

 

4 6 8 10 12 14 16 18 20 22 24 26 28 30

1

1.2

1.4

1.6

1.8

2

2.2

n

E
(a

1,
0.

5)

 

 

Bernard

Weibull

Hazen
Ross

Drap-Kos

 
Figure 4-3: Comparison of the scale parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n and 
T : the values of )ˆ( 5.0,1E . 
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Figure 4-4: Comparison of the scale parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n and 
T : the values of )ˆ( 5.0,1MSE . 
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Figure 4-5: Comparison of the scale parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n and 
T : the values of )ˆ( 1,1E . 
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Figure 4-6: Comparison of the scale parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n and 
T : the values of )ˆ( 1,1MSE . 
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Figure 4-7: Comparison of the scale parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n and 
T : the values of )ˆ( 5,1E . 
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Figure 4-8: Comparison of the scale parameter estimators for complete data, obtained by LSE 

with different plotting positions used, at different n and 
T : the values of )ˆ( 5,1MSE . 

 

4.3.4 Simulation Study on Plotting Positions for Censored Data 

The objective of this Monte Carlo experiment is to find the best plotting position 

applied to multiply censored data among those descried in Section 4.3.2, used in the 

LSE method for estimating the Weibull parameters.  

Table 4-4 lists the experiment factors and their values. The plotting positions 

examined in this experiment include the HJ estimator in Equation (2-6), the JM 

estimator in Equation (4-9), the ASM estimator in Equation (4-10) and the RRRM 

estimator in Equation (4-12). The EASM estimator is not considered because its 

computation complexity may greatly limit its application. The KM estimator and the 

Zimmer estimator are not considered because former work has shown that they are 

not clearly better than the HJ estimator. The mean and MSE of ̂  and ̂ , obtained by 

each method, were calculated as comparison criteria.  
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Table 4-4: Setting of experiment factors. The experiment is to compare different plotting 
positions used in LSE for censored data on parameter estimation. 

Factors Values 

T  1 

T  1 ( for ̂ ) and 0.5, 1, 5 (for ̂ ) 
n  10, 20, 30, 50, 80, 100 
c  10%, 30%, 50%, 70% 
M  10000 
Methods HJ, JM, ASM, RRRM 

 

The simulation results are presented in Figure 4-9 – Figure 4-24. The following 

conclusions can be observed. 

Simulation Results for Estimators of β (Figure 4-9 – Figure 4-16) 

1) General observations: The results at low censoring levels (10%, 30%) and 

high censoring levels (50%, 70%) are quite different. None of the methods 

outperforms the others at all combinations of the experiment factors in view 

of both bias and MSE of ̂ . 

2) Bias of ̂  (refer to Figure 4-9, Figure 4-11, Figure 4-13 and Figure 4-15): 

The HJ estimated ̂  presents different trends as a function of the sample size 

from the other three methods. At low censoring levels (10%, 30%), the bias 

of ̂  of HJ is significantly larger than that of the other methods. JM, ASM 

and RRRM perform similarly at %10c  (the bias is typically within 4%) 

and %30c  (the bias is typically within 2%). The bias of the three methods 

is within 1% at the combinations of %30c  and 8030  n . On the other 

hand, at high censoring levels (50%, 70%), however, the bias of ̂  of HJ is 

the smallest in most cases. Especially at %70c , the bias of ̂  of HJ is 

within 1% at 30,20n  and within 4% at 100,80,50n , which is 
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significantly smaller than that of the other methods. The difference among 

JM, ASM and RRRM at high censoring levels is large for small samples. 

When 30n , JM performs best, followed by ASM, and RRRM performs 

worst; however, RRRM performs slightly better than JM and ASM for larger 

sample sizes, e.g., 100,80n .  

3) MSE of ̂  (refer to Figure 4-10, Figure 4-12, Figure 4-14 and Figure 

4-16): HJ is the best at most conditions except that when %10c  and 

20n , the MSE of ̂  of HJ is slightly larger than that of the other methods. 

Among JM, ASM and RRRM, regardless the censoring levels, the MSE of 

̂  of JM is always smallest, followed by ASM and finally RRRM.  

4) Both bias and MSE of ̂ : HJ outperforms the others at high censoring levels 

(50%, 70%) in view of both bias and MSE. JM, ASM and RRRM are better 

for low censoring levels (10%, 30%) and the difference between them is 

small. 

5) Consistency: At low censoring levels (10%, 30%), the bias of ̂  of HJ 

decreases as the sample size increases and this is not true for the other 

methods. At high censoring levels (50%, 70%), all the estimators are 

inconsistent with the sample size. Moreover, all the estimators are 

inconsistent with the censoring level. 
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Figure 4-9: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1E  at c = 10%. 
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Figure 4-10: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1MSE  at c = 10%. 
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Figure 4-11: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1E  at c = 30%. 
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Figure 4-12: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1MSE  at c = 30%. 
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Figure 4-13: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1E  at c = 50%. 
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Figure 4-14: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1MSE  at c = 50%. 
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Figure 4-15: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1E  at c = 70%. 
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Figure 4-16: Comparison of the shape parameter estimators for censored data, obtained by LSE 

with different plotting positions used, at different n: the values of )ˆ( 1,1MSE  at c = 70%. 
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Simulation Results for Estimators of α (Figure 4-17 – Figure 4-22) 

1) Bias of ̂ (refer to Figure 4-17, Figure 4-19 and Figure 4-21):  ̂  of the 

RRRM is very unstable. The bias is extremely large at 5.0T  and 

%70%,50c . The bias of  ̂  of the RRRM is the largest among all 

methods at high censoring levels (50%, 70%) at most times; at low censoring 

levels (10%), however, the bias of  ̂  of the RRRM is in the middle. The 

bias of  ̂  of HJ is the largest at %10c . JM always performs best for 

estimating   in view of bias. 

2) MSE of ̂ (refer to Figure 4-18, Figure 4-20 and Figure 4-22): Similar to 

the results for bias, the MSE of ̂  of the RRRM is extremely large at high 

censoring levels (50%, 70%). Among the other three methods, JM always 

has the smallest MSE, ASM is better than HJ at low censoring levels, and HJ 

is better than ASM at high censoring levels. 

3) Both bias and MSE: Combining both bias and MSE, JM is the best for 

estimating   and the RRRM should be used with caution. 
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4.3.5 Summary of Results 

The following conclusions are made by combining the results for   and  . 

For Complete Data 

1) For estimating  , the Bernard estimator performs very well when 10n . 

When 10n , the Ross estimator or the Drap-Kos estimator is preferred 

because the resulted ̂  is nearly unbiased. However, the Ross estimator or 

the Drap-Kos estimator cannot improve the efficiency of estimation. 

2) For estimating  , the Hazen estimator is best especially at small T  and 

small n . The Bernard estimator is the second best, followed by the Ross 

estimator and the Drap-Kos estimator. 

3) The Ross estimator is a good approximation to the Drap-Kos estimator (i.e., 

the exact expected plotting positions). The two methods perform similar for 

estimating  , and the Ross estimator even performs slightly better for 

estimating  . 

For Censored Data 

1) For estimating  , JM, ASM and RRRM are good for samples with low 

censoring levels, say %50c . Considering the application simplicity, JM is 

recommended to be used. HJ should be preferred for samples with high 

censoring levels, say %50c .  

2) For estimating  , JM is recommended for all censoring levels and sample 

sizes. RRRM should be used with caution because it can generate extremely 

large bias and MSE. 
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4.4  Modification 3: LS Y on X vs. LS X on Y 

As mentioned in Section 2.3, the conventional setting of the independent and 

dependent variables in the LSE method is that TX ln  and  )1ln(ln FY  , 

which is consistent with the WPP where the X-axis is t  and Y-axis is F . This method 

is named LS Y on X in this study. Some researchers (see, e.g., Abernethy, 2000) 

argued that it is more appropriate to set TY ln  and  )1ln(ln FX   because t is 

the measured value or output from the experiment, and F  is estimated by some non-

parametric method and is independent of T . The replacement of the setting for X and 

Y has the same effect as reversing the regression direction, and by doing this, another 

method named LS X on Y is proposed. Abernethy (2000) compared the two methods 

on parameter estimation via Monte Carlo simulations and suggested LS X on Y to be 

used. However, the author’s experiment examined only a few sample sizes and only 

complete data. 

Nowadays, LS Y on X is the default method for LSE used by most Weibull 

researchers and practitioners. However, it was found in the early literature that quite a 

few Weibull researchers including Weibull (1967), White (1969) and Mann et al. 

(1974) used LS X on Y. This motivated us to conduct a careful comparison between 

these two methods. As the OLSE method cannot provide unbiased estimators of   

and  , the two methods must perform differently. 

In the following, Section 4.4.1 presents the theoretical background and the 

estimating equations for LS Y on X and LS X on Y, respectively. In Section 4.4.2, the 

two methods are examined as two regression models by analytical methods. Some 

results are found for the ratio of the ErrorMS  of the two models and suggestions are 
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given on when to use which method in view of the goodness of model. Finally, 

Section 4.4.3 presents the Monte Carlo experiment that compares the two methods on 

parameter estimation. 

4.4.1 Estimating Equations of LS Y on X and LS X on Y 

Let TX ln  and  )1ln(ln FY   for both methods. The calculation for ix  and iy  

for complete samples and censored samples, respectively, can be found in Section 2.3. 

Estimators of LS Y on X 

If the Bernard estimator or the HJ estimator is used for estimating F , LS Y on X is the 

OLSE method. Therefore, the estimating equation of the LS Y on X method is given 

by Equation (2-12). Here it is rewritten as  
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 (4-13) 

where YXLS̂  and yxLS̂  denote the estimators of   and   of the LS Y on X method. 

The equation is applicable for both complete and censored data. nr   for a complete 

sample, and nr   for a censored sample.  

Estimators of LS X on Y 

Rewrite Equation (2-7) as 
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 YBAX   (4-14) 

where lnA  and /1B . Thus the estimation of   and   can be transferred to 

the estimation of the regression coefficients for a simple linear regression model of 

the form eYBAX  , where e  is the error term.  

The objective function of the LS X on Y method is    

  



r

i
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The estimating equations can be easily obtained as 
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Thus the estimators of   and   can be obtained by 
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where XYLS̂  and XYLS̂  denote the estimators of   and   of the LS X on Y 

method. The equation is applicable for both complete and censored data. nr   for a 

complete sample, and nr   for a censored sample.  
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4.4.2 Analytical Examination of the Two Methods 
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Thus for the LS Y on X method, the estimators of A  and B  can be expressed by  

 xByASSB xxy
ˆˆ,/ˆ   (4-19) 

Similarly, for the LS X  on Y method, the LS estimators of A  and B  can be 

obtained as  

 yBxASSB yxy  ˆˆ,/ˆ  (4-20) 

The common model statistics for a linear regression model include 2R  (i.e., 

coefficient of determination) and ErrorMS . 2R  is frequently used to measure the 

goodness-of-fit. ErrorMS  is the variance of error, and a smaller ErrorMS  normally 

means a better model. To compare the models of LS Y on X and LS X on Y, the ratios 

of their 2R  and ErrorMS  are derived. The results are given below.  

The definition of 2R  is 
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Therefore, the two methods generate same values of 2R . 

The ratio of the ErrorMS  of the two models is given by 
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Since  
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Equation (4-24) becomes 
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It can be obtained, either from BXAY   of the LS Y on X method or 

YBAX   of the LS X on Y method, that   

 )()( 2 XVarYVar    (4-26) 

Thus finally, the ratio of the ErrorMS  of the two models is 

 2
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Based on this equation, if 1 , we have )()( XYLSerrorYXLSerror MSMS   ; if 1 , 

)()( XYLSerrorYXLSerror MSMS   ; and if 1 , )()( XYLSerrorYXLSerror MSMS   . 
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In summary, the analytical examinations on the two methods show that LS Y on 

X and LS X on Y generate same values of 2R , which means the two methods perform 

similarly in view of the goodness-of-fit. However, the examination of errorMS  

suggests that LS Y on X  be used when 1  and LS X on Y  be used when 1 . 

4.4.3 Simulation Study of the Two Methods 

A Monte Carlo experiment was conducted to compare the performance of LS Y on X 

and LS X on Y on parameter estimation for complete and multiply censored samples, 

respectively. The conventional methods for estimating F used in OLSE, i.e., the 

Bernard estimator for complete data and the HJ estimator for censored data, are used 

for both methods. The simulation conditions are summarized in Table 4-5.  

Table 4-5: Setting of experiment factors. The experiment is to compare the estimators of LS Y on 
X and LS X on Y. 

Factors Values 

T  1 

T  0.5, 1, 2, 3, 5 

n  5 – 20, 22, …, 28, 30, 35, …, 45, 50, 80, 100 (complete data) 
10, 20, …, 90, 100, 150, 200 (censored data) 

c  10%, 20%, …, 70%, 80% 

M 10000 

Methods LS Y on X, LS X on Y 

 

For a randomly generated Weibull sample, the two methods were used to 

generate the LS estimates of   and   simultaneously. This procedure was repeated 

for 10000 times in each combination of TT  , , n  and c . Finally, the mean and MSE 

of ̂  and ̂  for each method were calculated as the comparison criteria. 
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4.4.3.1 Comparison Results for Complete Data 

The simulation results for the shape parameter estimators are shown in Figure 4-23 

and Table 4-6, and the results for the scale parameter estimators are shown in Figure 

4-24 and Table 4-7. The bias of the estimators can be easily compared using Figure 

4-23 and Figure 4-24. Table 4-6 and Table 4-7 tabulate the mean and MSE of the 

estimators at selected simulation conditions. Not all the simulation results are 

tabulated; however, the omitted results will not affect the following conclusions. 

Simulation Results for Estimators of β (Figure 4-23 and Table 4-6) 

1) General observations: In view of both bias and MSE of ̂ , LS Y on X 

outperforms LS X on Y when 10n . On the other hand, from 11n  

onwards, LS X on Y outperforms LS Y on X for estimating   in view of bias 

but the values of MSE of the two estimators are close.  

2) Bias of ̂  of LS X on Y: The relative bias of ̂  of LS X on Y is larger than 

5% when 10n , but it drops fast from 5n  to 20, and the bias becomes 

significantly smaller than that of LS Y on X at 20n . The estimator of   of 

LS X on Y is nearly unbiased when 25n  and the bias reaches 0 at about 

40n . 

3) Bias of ̂  of LS Y on X: For LS Y on X, the bias of ̂  reaches 0 between 

6n  and 7n . During 3010  n , the relative bias is like a constant and 

remains at 4% or so. 

4) Consistency of ̂  : ̂  of both methods are inconsistent with the sample size. 
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Figure 4-23: Bias of 

1,1̂ , obtained by LS Y on X and LS X on Y, at different n. 

 

Table 4-6: Simulation results of 
1,1̂  for complete data, generated by LS Y on X and LS X on Y, at 

different n: the values of )ˆ( 1,1E  and )ˆ( 1,1MSE  (in parentheses). 

Method 5 6 7 8 9 10 11 12 14 16

1.042 1.007 0.994 0.979 0.972 0.968 0.961 0.968 0.958 0.962
(0.342) (0.228) (0.180) (0.143) (0.117) (0.109) (0.091) (0.084) (0.070) (0.061)
1.160 1.112 1.093 1.070 1.057 1.047 1.036 1.039 1.022 1.021

(0.461) (0.297) (0.234) (0.180) (0.144) (0.132) (0.106) (0.100) (0.078) (0.067)

18 20 24 26 28 30 40 50 80 100
0.958 0.960 0.956 0.959 0.966 0.965 0.966 0.967 0.974 0.977

(0.053) (0.050) (0.043) (0.038) (0.036) (0.034) (0.026) (0.021) (0.014) (0.011)
1.014 1.012 1.002 1.003 1.008 1.004 1.000 0.997 0.996 0.995

(0.057) (0.053) (0.044) (0.039) (0.037) (0.035) (0.025) (0.020) (0.013) (0.011)
LS X on Y

n

LS Y on X

LS X on Y

LS Y on X

 

 

Simulation Results for Estimators of α (Figure 4-24 and Table 4-7) 

1)  General observations: In view of both bias and MSE, the method of LS X 

on Y always outperforms LS Y on X for estimating  .  

2)    Bias of ̂ : The bias of ̂  of LS X on Y is significantly smaller than that of 

LS Y on X at 2T . The differences are small when 2T , and both 

estimators of   are nearly unbiased and have small MSE at 5T . 
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3)   Consistency of ̂ : For LS Y on X, the bias of ̂  decreases as n and T  

increase. However, ̂  of LS X on Y is inconsistent with T  as the estimator 

is unbiased at  2T . 
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Figure 4-24: Bias of 

T
 ,1ˆ , obtained by LS Y on X and LS X on Y, at different n and βT . 

 

Table 4-7: Simulation results of 
T

 ,1ˆ  for complete data, generated by LS Y on X and LS X on Y, 

at different n and 
T : the values of )ˆ( ,1 T

E   and )ˆ( ,1 T
MSE   (in parentheses). 

Method 5 6 7 8 9 10 12 15 20 30 40 50 80 100

1.532 1.457 1.416 1.362 1.325 1.311 1.241 1.199 1.150 1.122 1.088 1.079 1.052 1.049
(2.571) (1.918) (1.563) (1.286) (1.045) (0.944) (0.672) (0.499) (0.337) (0.221) (0.147) (0.117) (0.071) (0.057)
1.367 1.305 1.273 1.225 1.198 1.192 1.136 1.109 1.075 1.063 1.041 1.040 1.024 1.024

(1.945) (1.431) (1.177) (0.943) (0.769) (0.709) (0.502) (0.388) (0.269) (0.179) (0.126) (0.101) (0.063) (0.051)

1.113 1.109 1.106 1.087 1.092 1.082 1.077 1.056 1.051 1.036 1.032 1.026 1.020 1.017
(0.270) (0.235) (0.205) (0.171) (0.154) (0.141) (0.116) (0.089) (0.066) (0.043) (0.033) (0.026) (0.016) (0.012)
1.052 1.048 1.048 1.033 1.039 1.031 1.032 1.016 1.017 1.010 1.010 1.007 1.006 1.006

(0.235) (0.201) (0.173) (0.147) (0.131) (0.120) (0.101) (0.078) (0.058) (0.039) (0.030) (0.024) (0.014) (0.012)

1.056 1.052 1.045 1.050 1.044 1.039 1.036 1.033 1.026 1.021 1.018 1.016 1.010 1.010
(0.109) (0.091) (0.079) (0.070) (0.062) (0.056) (0.047) (0.037) (0.028) (0.018) (0.014) (0.011) (0.007) (0.005)
1.016 1.014 1.009 1.014 1.011 1.007 1.006 1.007 1.004 1.003 1.004 1.003 1.001 1.003

(0.099) (0.083) (0.071) (0.062) (0.056) (0.051) (0.042) (0.034) (0.026) (0.017) (0.013) (0.010) (0.006) (0.005)

1.030 1.028 1.029 1.025 1.026 1.022 1.023 1.019 1.018 1.015 1.012 1.010 1.008 1.007
(0.059) (0.049) (0.044) (0.038) (0.033) (0.030) (0.026) (0.020) (0.015) (0.010) (0.008) (0.006) (0.004) (0.003)
1.001 1.000 1.001 1.000 1.001 0.998 1.002 1.000 1.002 1.002 1.001 1.001 1.001 1.001

(0.055) (0.046) (0.040) (0.035) (0.031) (0.028) (0.024) (0.018) (0.014) (0.009) (0.007) (0.006) (0.004) (0.003)

1.013 1.017 1.014 1.014 1.014 1.013 1.013 1.012 1.012 1.009 1.007 1.006 1.005 1.004
(0.026) (0.021) (0.019) (0.016) (0.014) (0.013) (0.011) (0.009) (0.007) (0.005) (0.003) (0.003) (0.002) (0.001)
0.994 0.999 0.996 0.997 0.997 0.998 0.998 0.999 1.001 1.000 1.000 1.000 1.001 1.000

(0.025) (0.020) (0.018) (0.016) (0.014) (0.012) (0.010) (0.008) (0.006) (0.004) (0.003) (0.003) (0.002) (0.001)

1.005 1.006 1.005 1.006 1.006 1.007 1.005 1.005 1.006 1.004 1.004 1.004 1.003 1.002
(0.009) (0.008) (0.007) (0.006) (0.005) (0.005) (0.004) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.000)
0.993 0.994 0.994 0.995 0.996 0.997 0.997 0.998 0.999 0.999 0.999 1.000 1.000 1.000

(0.009) (0.008) (0.006) (0.006) (0.005) (0.005) (0.004) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.000)

βT=5
LS Y on X

LS X on Y

βT=2
LS Y on X

LS X on Y

βT=3
LS Y on X

LS X on Y

βT=1
LS Y on X

LS X on Y

βT=1.5
LS Y on X

LS X on Y

n

βT=0.5
LS Y on X

LS X on Y
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4.4.3.2 Comparison Results for Censored Data 

The comparison results for multiply censored data are shown in Table 4-8 for the 

shape parameter estimators and Table 4-9 for the scale parameter estimators. The 

following conclusions can be observed from the two tables. 

Simulation Results for Estimators of β (Table 4-8) 

1) Bias of ̂ : The mean values of ̂  of LS X on Y are always larger than that 

of LS Y on X. In view of the bias of ̂ , LS X on Y is clearly better at low 

censoring levels (10% – 40%), where the bias of ̂  of LS X on Y is typically 

8% – 9% smaller than that of LS Y on X at 10n , and 2% – 6% smaller at 

10n . On the other hand, LS Y on X outperforms LS X on Y at high 

censoring levels (60% – 80%), where the bias of ̂  of LS Y on X is typically 

5% – 9% less than that of LS X on Y. At %50c , LS X on Y is better when 

50n  and LS Y on X is better when 50n . The difference between the bias 

of ̂  of the two methods is significant at small sample sizes ( 2010 n ). 

The bias of ̂  of LS Y on X is close to 0 at the combination of, e.g., %60c  

and 6050n , and the bias of ̂  of LS X on Y is close to 0 at the 

combination of, e.g., %30c  and 8060 n . 

2) MSE of ̂ : The MSE of ̂  of the two methods are close at most of the 

times, except when the sample size is very small. The MSE of ̂  of LS Y on 

X is much smaller than that of LS X on Y at 10n . 

3) ̂  of both method are inconsistent with n  for a specific c  and inconsistent 

with c  for a specific n .  
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Table 4-8: Simulation results of 
1,1̂  for multiply censored data, generated by LS Y on X and LS 

X on Y, at different n and c: the values of )ˆ( 1,1E  and )ˆ( 1,1MSE  (in parentheses). 

c Method 10 20 30 40 50 60 70 80 90 100 150 200

0.878 0.902 0.917 0.928 0.938 0.943 0.949 0.955 0.957 0.962 0.972 0.979
(0.112) (0.056) (0.039) (0.031) (0.025) (0.021) (0.018) (0.016) (0.014) (0.013) (0.009) (0.006)
0.953 0.954 0.959 0.964 0.969 0.971 0.975 0.978 0.979 0.982 0.987 0.992

(0.119) (0.052) (0.034) (0.027) (0.021) (0.017) (0.016) (0.014) (0.012) (0.011) (0.007) (0.006)

0.895 0.908 0.927 0.938 0.948 0.954 0.961 0.963 0.968 0.973 0.983 0.990
(0.124) (0.060) (0.042) (0.032) (0.026) (0.022) (0.019) (0.017) (0.015) (0.014) (0.009) (0.007)
0.973 0.963 0.973 0.976 0.981 0.985 0.988 0.988 0.992 0.995 1.000 1.004

(0.137) (0.057) (0.038) (0.029) (0.023) (0.020) (0.017) (0.015) (0.013) (0.012) (0.008) (0.006)

0.906 0.917 0.935 0.946 0.957 0.965 0.970 0.972 0.979 0.982 0.995 1.003
(0.140) (0.065) (0.046) (0.035) (0.029) (0.024) (0.021) (0.019) (0.016) (0.015) (0.010) (0.008)
0.989 0.976 0.983 0.987 0.994 0.998 1.000 1.001 1.006 1.007 1.015 1.019

(0.158) (0.064) (0.043) (0.032) (0.026) (0.022) (0.019) (0.017) (0.015) (0.014) (0.010) (0.008)

0.931 0.930 0.945 0.961 0.970 0.975 0.983 0.988 0.989 0.994 1.008 1.015
(0.179) (0.078) (0.050) (0.041) (0.032) (0.028) (0.024) (0.021) (0.019) (0.017) (0.012) (0.010)
1.017 0.994 0.997 1.007 1.010 1.012 1.017 1.019 1.018 1.021 1.030 1.033

(0.214) (0.080) (0.049) (0.039) (0.030) (0.026) (0.023) (0.019) (0.018) (0.017) (0.012) (0.010)

0.974 0.944 0.953 0.967 0.983 0.989 0.994 0.999 1.002 1.006 1.022 1.030
(0.251) (0.086) (0.059) (0.046) (0.038) (0.032) (0.029) (0.026) (0.023) (0.021) (0.015) (0.012)
1.067 1.012 1.011 1.017 1.029 1.030 1.032 1.035 1.036 1.038 1.047 1.051

(0.314) (0.093) (0.060) (0.046) (0.038) (0.032) (0.029) (0.025) (0.023) (0.021) (0.015) (0.013)

1.025 0.971 0.976 0.992 0.999 1.001 1.010 1.014 1.020 1.023 1.036 1.046
(0.415) (0.116) (0.072) (0.057) (0.046) (0.039) (0.035) (0.031) (0.028) (0.026) (0.020) (0.016)
1.119 1.047 1.039 1.049 1.050 1.047 1.053 1.054 1.059 1.059 1.066 1.071

(0.509) (0.135) (0.078) (0.061) (0.049) (0.040) (0.036) (0.033) (0.029) (0.028) (0.021) (0.018)

1.180 1.013 1.005 1.008 1.014 1.020 1.029 1.029 1.033 1.036 1.053 1.063
(0.906) (0.174) (0.103) (0.076) (0.061) (0.053) (0.048) (0.042) (0.038) (0.035) (0.028) (0.023)
1.266 1.095 1.076 1.071 1.073 1.074 1.079 1.076 1.079 1.080 1.089 1.094

(1.060) (0.218) (0.120) (0.085) (0.067) (0.057) (0.053) (0.046) (0.042) (0.038) (0.030) (0.026)

1.625 1.111 1.057 1.043 1.053 1.046 1.053 1.053 1.057 1.059 1.074 1.083
(2.747) (0.398) (0.171) (0.114) (0.100) (0.081) (0.072) (0.064) (0.059) (0.054) (0.042) (0.036)
1.625 1.200 1.136 1.116 1.121 1.110 1.114 1.111 1.113 1.113 1.119 1.123

(2.747) (0.517) (0.215) (0.138) (0.118) (0.094) (0.083) (0.072) (0.066) (0.061) (0.047) (0.041)
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Simulation Results for Estimators of α (Table 4-9) 

1)  In general, in view of both bias and MSE, the method of LS X on Y always 

outperforms the method of LS Y on X for estimating  .  

2)    At 5.0T  , both methods perform unstable and generate extremely large 

bias and MSE at some conditions. The bias and MSE of ̂  of LS X on Y at 

most times are significantly smaller than those of LS Y on X at 5.0T  and 

1T . The difference becomes larger as c  increases. At 5T , the two 

methods perform closely and LS X on Y is slightly better in view of both 
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bias and MSE. The bias of ̂  of both methods drops greatly as T  

increases. 

3)    The bias and MSE of ̂  of both methods are much larger than those of ̂  

when T  is small. 

Table 4-9: Simulation results of 
T

 ,1ˆ  for multiply censored data, generated by LS Y on X and LS 

X on Y, at different n, 
T  and c: the values of )ˆ( ,1 T

E   and )ˆ( ,1 T
MSE   (in parentheses)†. 

Method
LS Y on X 1.650 (1.987) 1.446 (0.764) 1.372 (0.460) 1.303 (0.267) 1.250 (0.140) 1.226 (0.100) 1.217 (0.083)
LS X on Y 1.450 (1.181) 1.318 (0.504) 1.277 (0.324) 1.238 (0.200) 1.211 (0.113) 1.198 (0.083) 1.194 (0.071)

LS Y on X 2.008 (5.193) 1.756 (1.516) 1.659 (0.966) 1.576 (0.613) 1.502 (0.374) 1.473 (0.299) 1.458 (0.265)
LS X on Y 1.713 (1.914) 1.567 (0.905) 1.517 (0.629) 1.478 (0.437) 1.444 (0.296) 1.431 (0.250) 1.423 (0.228)

LS Y on X 2.548 (23.24) 2.194 (3.390) 2.076 (2.191) 1.959 (1.438) 1.856 (0.942) 1.817 (0.796) 1.793 (0.723)
LS X on Y 2.072 (3.379) 1.899 (1.711) 1.854 (1.303) 1.806 (0.979) 1.764 (0.738) 1.749 (0.663) 1.739 (0.623)

LS Y on X 3.561 (1289) 2.899 (10.10) 2.720 (8.430) 2.534 (3.686) 2.385 (2.406) 2.320 (1.997) 2.288 (1.841)
LS X on Y 2.622 (7.226) 2.396 (3.568) 2.333 (2.785) 2.275 (2.195) 2.230 (1.787) 2.208 (1.638) 2.199 (1.570)

LS Y on X 5.083 (1119) 4.214 (223.9) 4.075 (4943) 3.478 (10.02) 3.230 (6.213) 3.120 (5.159) 3.065 (4.712)
LS X on Y 3.491 (19.80) 3.156 (8.513) 3.058 (6.438) 3.005 (5.219) 2.949 (4.369) 2.917 (4.052) 2.902 (3.895)

LS Y on X 18.99 (1778543) 7.089 (2093) 6.098 (589.9) 5.300 (56.33) 4.734 (19.03) 4.538 (14.94) 4.434 (13.42)
LS X on Y 5.639 (674.4) 4.509 (28.50) 4.326 (18.04) 4.241 (13.97) 4.160 (11.55) 4.119 (10.74) 4.098 (10.35)

LS Y on X 3660 x 453.6 x 13.177 (15694) 9.739 (1187) 8.086 (138.5) 7.574 (66.33) 7.284 (49.42)
LS X on Y 327.1 x 8.750 x 7.063 (184.3) 6.695 (51.56) 6.524 (37.33) 6.469 (34.28) 6.434 (32.68)

LS Y on X x x 38376 x 591.5 x 56.16 (3303913) 22.94 (299856) 17.12 (1295) 16.02 (707.9)
LS X on Y x x 768.6 x 30.57 x 14.43 (1326) 12.85 (257.7) 12.54 (176.4) 12.47 (162.2)

LS Y on X 1.194 (0.209) 1.146 (0.101) 1.127 (0.069) 1.109 (0.042) 1.091 (0.023) 1.085 (0.017) 1.081 (0.014)
LS X on Y 1.125 (0.159) 1.099 (0.078) 1.090 (0.054) 1.083 (0.034) 1.075 (0.019) 1.073 (0.014) 1.071 (0.012)

LS Y on X 1.288 (0.297) 1.233 (0.154) 1.213 (0.110) 1.195 (0.076) 1.174 (0.049) 1.165 (0.039) 1.161 (0.035)
LS X on Y 1.202 (0.211) 1.174 (0.111) 1.166 (0.081) 1.161 (0.058) 1.153 (0.040) 1.150 (0.033) 1.149 (0.030)

LS Y on X 1.397 (0.451) 1.352 (0.264) 1.328 (0.197) 1.302 (0.142) 1.277 (0.101) 1.267 (0.087) 1.260 (0.079)
LS X on Y 1.293 (0.297) 1.274 (0.177) 1.264 (0.137) 1.257 (0.106) 1.249 (0.082) 1.245 (0.074) 1.243 (0.069)

LS Y on X 1.553 (0.766) 1.496 (0.450) 1.467 (0.347) 1.440 (0.266) 1.410 (0.202) 1.396 (0.178) 1.389 (0.168)
LS X on Y 1.417 (0.459) 1.392 (0.289) 1.383 (0.234) 1.378 (0.195) 1.371 (0.163) 1.367 (0.152) 1.365 (0.147)

LS Y on X 1.746 (1.670) 1.689 (0.813) 1.660 (0.659) 1.627 (0.517) 1.588 (0.400) 1.572 (0.361) 1.562 (0.340)
LS X on Y 1.572 (0.764) 1.547 (0.491) 1.543 (0.421) 1.539 (0.365) 1.532 (0.320) 1.529 (0.305) 1.526 (0.296)

LS Y on X 2.042 (11.32) 1.974 (1.822) 1.939 (1.345) 1.900 (1.072) 1.847 (0.824) 1.828 (0.754) 1.810 (0.703)
LS X on Y 1.798 (1.870) 1.766 (0.917) 1.764 (0.797) 1.764 (0.709) 1.758 (0.636) 1.759 (0.617) 1.753 (0.599)

LS Y on X 2.684 (556.1) 2.456 (21.81) 2.393 (4.501) 2.343 (2.771) 2.270 (1.915) 2.233 (1.700) 2.209 (1.585)
LS X on Y 2.226 (44.48) 2.108 (2.081) 2.103 (1.695) 2.107 (1.496) 2.113 (1.371) 2.110 (1.321) 2.109 (1.297)

LS Y on X 29.78 (8858266) 3.726 (1357) 3.382 (63.09) 3.314 (590.9) 3.087 (6.173) 3.012 (5.018) 2.972 (4.498)
LS X on Y 29.78 (8858266) 2.817 (34.28) 2.737 (5.779) 2.727 (4.032) 2.746 (3.504) 2.748 (3.350) 2.750 (3.286)

LS Y on X 1.018 (0.005) 1.015 (0.003) 1.013 (0.002) 1.011 (0.001) 1.009 (0.001) 1.008 (0.000) 1.007 (0.000)
LS X on Y 1.007 (0.005) 1.007 (0.003) 1.007 (0.002) 1.006 (0.001) 1.006 (0.001) 1.006 (0.000) 1.005 (0.000)

LS Y on X 1.024 (0.006) 1.020 (0.003) 1.019 (0.002) 1.017 (0.001) 1.014 (0.001) 1.013 (0.001) 1.013 (0.000)
LS X on Y 1.013 (0.006) 1.012 (0.003) 1.012 (0.002) 1.012 (0.001) 1.011 (0.001) 1.011 (0.000) 1.011 (0.000)

LS Y on X 1.031 (0.007) 1.028 (0.004) 1.026 (0.003) 1.024 (0.002) 1.021 (0.001) 1.020 (0.001) 1.019 (0.001)
LS X on Y 1.018 (0.006) 1.018 (0.003) 1.018 (0.002) 1.018 (0.002) 1.018 (0.001) 1.017 (0.001) 1.017 (0.001)

LS Y on X 1.039 (0.009) 1.037 (0.005) 1.035 (0.004) 1.032 (0.003) 1.030 (0.002) 1.029 (0.001) 1.028 (0.001)
LS X on Y 1.025 (0.008) 1.026 (0.004) 1.026 (0.003) 1.026 (0.002) 1.026 (0.001) 1.026 (0.001) 1.025 (0.001)

LS Y on X 1.049 (0.011) 1.048 (0.007) 1.046 (0.005) 1.044 (0.004) 1.041 (0.003) 1.040 (0.002) 1.039 (0.002)
LS X on Y 1.034 (0.010) 1.035 (0.005) 1.036 (0.004) 1.036 (0.003) 1.036 (0.002) 1.036 (0.002) 1.036 (0.002)

LS Y on X 1.062 (0.015) 1.063 (0.010) 1.061 (0.008) 1.059 (0.006) 1.056 (0.004) 1.054 (0.004) 1.054 (0.003)
LS X on Y 1.046 (0.013) 1.048 (0.007) 1.049 (0.006) 1.050 (0.004) 1.050 (0.003) 1.049 (0.003) 1.049 (0.003)

LS Y on X 1.074 (0.022) 1.082 (0.014) 1.082 (0.012) 1.081 (0.010) 1.078 (0.008) 1.076 (0.007) 1.075 (0.006)
LS X on Y 1.060 (0.019) 1.065 (0.011) 1.067 (0.009) 1.068 (0.007) 1.070 (0.006) 1.069 (0.006) 1.069 (0.005)

LS Y on X 1.081 (0.035) 1.109 (0.025) 1.115 (0.022) 1.114 (0.018) 1.113 (0.015) 1.111 (0.014) 1.110 (0.013)
LS X on Y 1.081 (0.035) 1.090 (0.019) 1.096 (0.016) 1.098 (0.013) 1.101 (0.012) 1.101 (0.012) 1.101 (0.011)

60%

70%

80%

βT=0.5

10%

20%

30%

40%

50%

βT=1

10%

20%

30%

40%

50%

60%

70%

80%

βT=5

10%

20%

30%

40%

50%

60%

70%

80%

100 150 200
n

10 20 30 50

 

                                                 

† There are some “x” in the table which denote the omitted results as they are extremely large values.  
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4.4.3.3 Summary of Results 

The following conclusions are made combining the results for   and  . 

For Complete Data 

1)  LS Y on X is recommended for estimating   for very small samples, say 

10n . LS X on Y is recommended for estimating   for medium to large 

samples, especially for 30n . 

2)    LS X on Y is recommended for estimating  . 

For Censored Data 

1) LS Y on X is recommended for estimating   for samples with high censoring 

levels, say %50c . LS X on Y is recommended for estimating   for samples 

with low censoring levels, say %50c . 

2)  LS X on Y is recommended for estimating  . 

4.5  Summary 

This chapter presents several modifications or refinements on the OLSE method. 

Firstly, it was emphasized to use LSE with WPP in order to have a graphical 

presentation. Besides LSE, all the linear regression estimation methods should be 

used with WPP as the graphical presentations are always useful for practitioners.  

Two problems intrinsic to OLSE were examined. One is the determination of Y-

axis plotting positions. The existing plotting positions in the cases of complete data 

and censored data, respectively, were summarized and analyzed in different groups. 

Via intensive Monte Carlo experiments, selected plotting positions with the focus on 
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those proposed in recent years and have not received much attention, were compared 

on the estimation of two Weibull parameters. The results showed that the Ross 

estimator is a promising one for complete data. For censored data, HJ should be 

preferred for samples with high censoring levels while JM is good for samples with 

low censoring levels. However, it should be noted that none of the existing estimators 

outperforms the others for all the cases.  

Another intrinsic problem of the LSE method is the direction of regression. Two 

methods, i.e., LS Y on X and LS X on Y were compared for both complete data and 

censored data. In terms of model statistics, it was found that LS X on Y  should be 

used when 1  and LS Y on X  should be used when 1 . In terms of parameter 

estimation, the simulation results have provided suggestions on when to use which 

method, as listed in Section 4.4.3.3. 
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Chapter 5 

Bias Correction Methods for the Shape Parameter 

Estimator of OLSE 

 

This chapter presents the bias correction methods for the OLS estimated Weibull 

shape parameter in the cases of complete data and censored data. Several bias 

correcting formulas are proposed which can be used in the end of the OLS estimation 

procedure to correct the bias of the shape parameter estimator. The proposed methods 

are easy to use and can effectively reduce the bias. 

5.1  Introduction 

Bias is often an important issue of the estimator in the sense that it tells us whether the 

estimator is an accurate estimate value of the population value. As one of the most 

commonly used criteria to compare different estimation methods, the issue of bias has 

raised the attention of Weibull researchers. In the 1990s, many researchers pointed out 

that the estimators of the MLE method are significantly biased when the sample size 

is small, among them, Ross (1994a) mentioned that ‘the frequently use of small-size 

samples of life tests, e.g., 5n , where n  is the sample size, can give significant 

support to the investigation of unbiasing procedures’. Indeed, several bias correction 

methods for the MLE have been proposed. Jacquelin (1993) modified the estimating 

equation of the MLE method by adding two parameters which are calculated as the 

functions of failure probability iF . The method is named generalized MLE and is 

claimed to directly provide unbiased estimates without the aid of unbiasing factors. 
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Ross (1994a, 1996), in a different approach as Jacquelin’s, proposed simple models of 

unbiasing factors for the MLE of the shape parameter, applied to complete data and 

censored data, respectively. The theoretical justification of the Ross’ bias correction 

method is based on the first pivotal function of the MLE of the Weibull parameters, 

i.e., ̂ . With a similar theoretical background, Hirose (1999) provided another bias 

correcting model for the MLE of the shape parameter and it has a polynomial form. 

The unbiasing for the MLE of the scale parameter was also examined, and different 

formulas were provided at selected   values. Besides, Cacciari, Montanari, Mazzanti 

and Fothergill co-published a series of work (Cacciari et al., 1996; Montanari et al., 

1997a, b, 1998) that compared several bias correction methods including the method 

of Engelhardt & Bain (1974), Jacquelin (1993), Ross (1994a, 1996), White’s 

weighted least squares technique (White, 1969), etc., together with the conventional 

LSE method and the MLE method for both complete and censored data using the 

Monte Carlo method.  

The values of bias of the Weibull parameter estimators can be obtained via the 

Monte Carlo method. While many researchers are keen on the bias correction for the 

MLE of the Weibull parameters, less has been discussed on the bias correction for the 

estimators of LSE. In fact, some researchers have pointed out that the OLSE of the 

shape parameter is less biased than that of the MLE for small samples, see, e.g., Ross 

(1999). This may hide the need for bias correction for this method; however, as shown 

in Chapter 3 that the OLSE of the shape parameter is biased and from Section 3.3.3, it 

can be observed that the OLS shape parameter estimator is not always satisfactory in 

view of bias, for example, the result for complete samples shows that during the 

sample sizes 11 – 30, there is always a relative bias of around 4%; and for censored 
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sample, the relative bias is more than 10% at the combination of %10c  and 20n . 

As a result, simple bias correction methods for the OLSE will be helpful.  

 As shown in Section 4.3, the bias of the LSE of the shape parameter varies with 

the selection of the estimators for )(tF , for both complete and censored data. The 

simulation results presented in Section 4.3.3 have shown that the expected estimators 

including the Ross estimator (Ross, 1994b) and the Drap-Kos estimator (Drapella & 

Kosznik, 1999) can greatly reduce the bias of the LSE of the shape parameter in the 

case of complete data. This can be treated as one way to correct the bias for the LSE 

method. This chapter presents another kind of bias correction method which provides 

the unbiasing factors. The empirical bias correcting formulas are proposed and can be 

added to the end of the OLSE procedure to reduce bias.  

This chapter is organized as follows. In Section 5.2, the theoretical justification 

for the existence of a single bias correcting formula for the OLSE of the shape 

parameter is presented. Section 5.3 presents the bias correction methods for the OLSE 

of the shape parameter applied to complete data. Firstly, the relationship between the 

bias of the OLS shape parameter estimator and sample size in the case of complete 

data is examined. Then, based on the relationship, the models of bias correcting 

factors are proposed and the model parameters are determined via numerical methods. 

Finally, the bias correcting formulas are presented as well as the application 

procedure. The proposed methods are named the modified Ross’ method and the 

modified Hirose’s method, respectively. Section 5.4 discusses the bias correction 

methods for the shape parameter estimator of LS X on Y applied to complete data and 

the shape parameter estimator of OLSE applied to multiply censored samples, 
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respectively. A bias correcting formula is proposed for each condition. Some of the 

related work has been published in Zhang et al. (2006). 

5.2  Theoretical Background of Bias Correction  

The existence of the pivotal function ̂ , of the ML or LS estimated ̂  of the 

Weibull distribution, makes the bias correction a simple job. Proof for the pivotal 

functions of the LSE is described in Section 3.2.5. 

The pivotal function ̂  says the following relationship,  

 )ˆ()/ˆ( 1,1 EE                                                   (5-1) 

or 

  )ˆ()ˆ( 1,1 EE                                                   (5-2) 

Now define an estimator U̂  as 

 
)ˆ(

ˆ
ˆ
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U    (5-3) 

Then the expected value of U̂  is 
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Based on Equation (5-2), we have  
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1,1
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E U   (5-5) 

Therefore, U̂  is the unbiased estimator of  . 
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The relationship between ̂  and U̂  can be expressed by an unbiasing factor U  

which satisfies 

  ˆˆ UU   (5-6) 

Then from Equation (5-4), U  can be determined as 

  
)ˆ(

1

1,1E
U    (5-7) 

Since the values of )ˆ( 1,1E  can be obtained via the Monte Carlo method, the 

values of the unbiasing factor U  can also be determined. 

As shown above, the bias correction for ̂  is clearly independent of the true 

values of   and  , and a single formula, i.e., Equation (5-3), can work for any data 

set. This is not true for the scale parameter estimator ̂  because ̂  is not a pivotal 

function. The bias correction for ̂  requires different formulas at different values of 

 . Since ̂  is often of great importance, the bias correction for ̂  is not discussed in 

this chapter. 

Without further examination, a traditional way of bias correction, e.g., in the case 

of complete data, is to tabulate the values of )ˆ( 1,1E  or U  at different sample sizes 

via the Monte Carlo method. The tabulation generates a reference table. Thus given a 

random data set, a look-up in the table using the sample size is needed to find the 

value of the unbiasing factor so that the unbiased estimate of the shape parameter can 

be calculated by Equation (5-6). It is noteworthy that Equation (5-6) and Equation 

(5-7) can also be applied to the LSE of the shape parameter for censored data. In the 
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case of censored data, a reference table should show the values of the unbiasing factor 

at different combinations of sample sizes and censoring levels.  

Obviously, the look-up method is inconvenient because it is troublesome or 

impossible to tabulate the unbiasing factors at all sample sizes or all combinations of 

sample sizes and censoring levels. A clearly better approach is to examine the pattern 

of the unbiasing factors and use analytical models.      

5.3  Bias Correction for the OLSE of the Shape Parameter 

for Complete Data  

As previously mentioned, the values of )ˆ( 1,1E  of the OLS shape parameter estimator 

at different sample sizes can be obtained via the Monte Carlo method. For this 

purpose, a Monte Carlo simulation experiment was carried out. Table 5-1 lists the 

setting of experiment factors.  

Table 5-1: Setting of experiment factors. The experiment is to examine the trends of the bias of 
the OLS and MLE estimated   for complete data as a function of sample size. 

Factors Values 

T  1 

T  1 

n  3, 4, …, 19, 20, 22,…, 28, 30, 35, 40, 
45, 50, 60, 70, 80, 90, 100 

M 50000 
Methods OLSE, MLE 

 

50000 random samples were generated for each sample size and the parameter 

estimates were obtained from OLSE and MLE simultaneously. )ˆ( 1,1E  is calculated 

by the average of the parameter estimates. Bias is calculated by the difference 

between )ˆ( 1,1E  and 1. Figure 5-1 shows the bias of 1,1̂ , obtained from both OLSE 
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and MLE, at each sample size investigated. The simulation results can also be 

extracted from Section 3.3.3.1. From the figure we can see that, although the bias of 

the OLSE of the shape parameter is much smaller than that of the MLE of the shape 

parameter for small to medium sized samples (say 30n ), OLSE still considerably 

overestimates the shape parameter for extremely small samples (say n 3 and 4), and 

the bias keeps at around 4% during 3010  n . Therefore, simple bias correction 

methods will be helpful for the OLS shape parameter estimator, especially for very 

small samples.  

The shapes of the two curves in Figure 5-1 are similar and both have a 

hyperbolic shape. This suggests that the bias correcting models of the MLE may be 

used for the OLSE as well. Following this idea, the unbiasing formulas proposed by 

Ross (1994a, 1996) and Hirose (1999), respectively, for the MLE were modified for 

the OLSE and the proposed methods are named the modified Ross’ method and the 

modified Hirose’s method. 
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Figure 5-1: Bias of 

1,1̂ , obtained by OLSE and MLE, as a function of sample size. 
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5.3.1 Modified Ross’ Bias Correction Method 

Ross’ Bias Correction Method for the MLE of the Shape Parameter 

Ross (1994a) proposed an asymptotic difference function to model the bias of the ML 

estimated 1,1̂ . The asymptotic difference function, denoted by )(nD , is defined as 

the difference between the expected value of the estimator from finite and infinite 

sample size. From the definition,  

  1)ˆ()( 1,1  EnD  (5-8) 

)(nD  was then modelled as a power function of n  with three parameters: the 

threshold parameter R , the power parameter P  and the proportionality constant Q . 

Ross’ bias correcting factor, denoted by RU , is given by 

 
PR RnQnDE

U
)(1

1

)(1

1

)ˆ(

1

1,1








 (5-9) 

With the values of )ˆ( 1,1E  of the MLE derived via the Monte Carlo method at 

various sample sizes, the three parameters RQP ,,  were determined by the author 

using both graphical and numerical methods. The results are 2,32.1,1  RQP . 

Finally, Ross’ bias correcting formula for the MLE of the shape parameter was 

determined which has a very simple form, i.e., 

   
68.0

2ˆˆ




n

n
U RU      (5-10) 

Ross concluded that the bias of the MLE of the shape parameter can be reduced 

to typically <0.3% for 3n  if the proposed formula is used. 
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Modified Ross’ Bias Correction Method for the OLSE of the Shape Parameter 

Theoretically, to use Ross’ asymptotic difference function and bias model for the 

LSE, the following assumptions have to be satisfied: 

i.  /ˆ  is a pivotal function for the LS estimated shape parameter.  

ii. The expected value of the LS shape parameter estimator approaches to an 

asymptotic value, i.e., the true value of  , when n .  

There is no doubt that both assumptions are true for the OLSE of the shape 

parameter. For assumption ii, from Figure 5-1 it can be seen that, although the OLSE 

of the shape parameter is inconsistent (the bias reaches 0 when n  is around 6 or 7), it 

still approaches to the true value when n  becomes large. Since the two assumptions 

are satisfied, the modified Ross’ bias correction method is proposed for the OLSE of 

the shape parameter, as presented in the following. It is mainly designed for small 

samples of size 20 .  

Ross’ unbiasing factor RU  has three parameters RQP ,, . The condition 

0 Rn  is set by the author. Thus, 1RU  when 0Q  and 1RU  when 0Q . It 

is impossible to have 1RU  for some sample sizes and 1RU  for other sample sizes 

because a single value of Q  is required. Actually, the values of RU  are always less 

than 1 because the values of )ˆ( 1,1E  obtained by MLE are always larger than 1, as 

can be seen from Figure 5-1. However, this is not applicable to the OLSE. From 

Figure 5-1 we can see that, the OLS shape parameter estimator needs a bias correcting 

factor whose values are less than 1 when 7n , and larger than 1 when 7n . 

Therefore, Ross’ bias correcting factor RU  is not efficient for the OLSE. It can be 
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improved by introducing a new parameter aC . We name aC  the adjusting constant as 

it works to adjust the values of the unbiasing factor to be greater than 1 or less than 1. 

The modified bias correcting factor for the OLSE of the shape parameter, 

denoted by MRU , is proposed as 

 aPMR C
RnQ

U 



)(1

1
  (5-11) 

The four parameters aCRQP ,,,  in MRU  were determined by using the 

unconstrained nonlinear optimization, e.g., Nelder-Mead direct search method (Nelder 

& Mead, 1965). The objective function is 

       


i

i

i

i
n

na
P

i
n

niMR ECRnQEnU
2

1,1

12

1,1 )ˆ()(11)ˆ()(1min   (5-12) 

where in  denotes different sample sizes and 
inE )ˆ( 1,1  denotes the value of )ˆ( 1,1E  at 

a specific in .  

The values of  
inE )ˆ( 1,1  of the OLSE, obtained from the Monte Carlo experiment 

at 100,90,,60,50,45,,35,30,28,,22,20,19,4,3 in  (same as Table 5-1), were 

used to determine the values of aCRQP ,,, . Different starting values for the 

parameters were tried in the Nelder-Mead direct search method. The calculation was 

executed by MATLAB 7 and the function fminsearch was used. The current result 

satisfies the termination criteria using OPTIONS.TolX of 1.000000e-001 and satisfies 

the convergence criteria using OPTIONS.TolFun of 1.000000e-008.  

The values for the parameters were determined as 

 05.0,4.1,4.1,1.2  aCRQP                             (5-13) 
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Substituting the values of aCRQP ,,,  into Equation (5-11), the bias correcting 

factor MRU  for the OLSE of the shape parameter is 

 05.0
)4.1(4.11

1
1.2



 n

U MR                              (5-14) 

Thus the bias correcting formula of the modified Ross’ method for the OLSE of 

the shape parameter is 

  










  05.0

)4.1(4.11

1ˆˆˆ
1.2n

U MRU    (5-15) 

Table 5-2 tabulates the values of )ˆ( 1,1E , MRU  and MRMRU UEE  )ˆ()ˆ( 1,11,1,   at 

selected sample sizes. As can be seen from the table, the differences between 

)ˆ( 1,1, MRUE  and 1 are less than the differences between )ˆ( 1,1E  and 1 at all sample 

sizes. Especially at 3n  and 4n , the bias is significantly reduced. The bias is 

within 1% and typically within 0.5% during n 6 – 30.  

Table 5-2: Values of )ˆ( 1,1E , 
MRU  and )ˆ( 1,1, MRUE  at selected sample sizes (the modified Ross’ 

method for OLSE). 

3 4 5 6 7 8 9 10 11 12 13 14 15
1.428 1.125 1.053 1.009 0.996 0.983 0.974 0.970 0.963 0.961 0.961 0.960 0.960
0.707 0.892 0.963 0.996 1.014 1.024 1.031 1.035 1.038 1.040 1.042 1.043 1.044
1.010 1.003 1.014 1.005 1.010 1.006 1.003 1.004 1.000 1.000 1.001 1.001 1.002

16 17 18 19 20 22 24 26 28 30 35 40 50
0.962 0.959 0.958 0.960 0.960 0.960 0.959 0.959 0.962 0.961 0.964 0.966 0.966
1.045 1.046 1.046 1.047 1.047 1.048 1.048 1.048 1.049 1.049 1.049 1.049 1.050
1.006 1.003 1.002 1.005 1.005 1.006 1.005 1.006 1.009 1.008 1.012 1.013 1.014

n

)ˆ( 1,1E

)ˆ( 1,1E

MRU

MRU

)ˆ( 1,1, MRUE

)ˆ( 1,1, MRUE  

 

To further check the proposed unbiasing formula in Equation (5-15) for a single 

Weibull sample, another Monte Carlo experiment was conducted. Normalized 

Weibull samples (i.e., 1 TT  ) of sizes 3 – 50 were randomly generated. For 
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each sample, OLSE was used to estimate the parameters first, and then Equation (5-15) 

was applied to the OLS estimated shape parameter to generate the unbiased estimate. 

Both estimates of the shape parameter, i.e., with and without unbiasing, were recorded. 

10000 iteration was used at each sample size and the average values of the estimates 

were calculated as )ˆ( 1,1E  and )ˆ( ,1,1 MRUE  , respectively.  

The results are shown in Table 5-3. It can be observed from the table that the 

bias of MRU ,1,1
̂  is significantly smaller than the bias of 1,1̂ , especially at 3n . The 

bias of 1,1̂  is typically 4%, while the bias of MRU ,1,1
̂  is typically within 1%. 

Table 5-3: Simulation results of the modified Ross’ method: the values of )ˆ( 1,1E  and )ˆ( ,1,1 MRUE   

at selected sample size‡. 

3 4 5 6 7 8 9 10 11 12 13 14 15
1.436 1.131 1.051 1.013 0.991 0.975 0.976 0.969 0.963 0.965 0.965 0.963 0.961
1.015 1.009 1.013 1.009 1.005 0.998 1.006 1.003 1.000 1.004 1.006 1.005 1.004

16 17 18 19 20 22 24 26 28 30 35 40 50
0.961 0.956 0.958 0.961 0.962 0.960 0.959 0.962 0.961 0.964 0.965 0.964 0.968
1.004 1.000 1.000 1.006 1.008 1.005 1.005 1.006 1.007 1.011 1.013 1.012 1.016

n

)ˆ( 1,1E

)ˆ( 1,1E

)ˆ( ,1,1 MRUE 

)ˆ( ,1,1 MRUE   

 

Figure 5-2 shows the histograms or the empirical PDFs of MRU ,1,1
̂  at selected 

sample sizes: 30,20,10,5n . The estimates of the 10000 samples at each sample size 

from the experiment were used to generate the histograms. As can be seen, the 

distribution of MRU ,1,1
̂  approaches to the normal distribution as the sample size 

increases. It can also be observed that the mean of the distribution is very close to 1. 

                                                 

‡ The values of )ˆ( 1,1E  are slightly different compared to the values in Table 5-2 at same sample size 

because here the simulation iteration number is reduced to 10000. 
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Figure 5-2: Histograms of 

MRU ,1,1
̂  at selected sample sizes (the modified Ross’ method for OLSE).  

 

5.3.2 Modified Hirose’s Bias Correction Method 

Hirose’s Bias Correction Method for the MLE of the Shape Parameter 

Instead of modeling the unbiasing factor, Hirose (1999) proposed a function for 

modeling the bias of the MLE of the shape parameter, given by 

  
i
i

n n

k

n

k

n

k
kB

2
21

01,1 )ˆ(   (5-16) 

where )(nB  denotes the bias function as a function of n .  

For simplicity, Hirose suggested using the approximation, i.e., 

 
4
4

3
3

2
21

01,1 )ˆ(
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n

k

n

k
kBn    (5-17) 
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where 43210 ,,,, kkkkk  are the model parameters. 

Based on the values of )ˆ( 1,1nB  of the MLE obtained by the Monte Carlo 

method at various sample sizes, Hirose determined the values of the five parameters 

in Equation (5-17). The results are 35.20,001.2,278.1,0115.0 3210  kkkk  and 

68.494 k . Thus the bias model is determined as 

 
4321,1

68.4935.20001.2278.1
0115.0)ˆ(

nnnn
Bn    (5-18) 

Finally, Hirose’s bias correcting formula for the MLE of the shape parameter is 

given by 

 

432
1,11,1

68.4935.20001.2278.1
0115.1

ˆ

)ˆ(1

ˆ

)ˆ(

ˆ
ˆ

nnnn
BE n

U












   (5-19) 

Modified Hirose’s Bias Correction Method for the OLSE of the Shape Parameter 

Hirose’s bias model in Equation (5-17) uses the polynomial curve fitting technique. 

As previously mentioned, the trends of )ˆ( 1,1E  vs. n  of the MLE and the OLSE are 

similar, and both have a hyperbolic appearance (see Figure 5-1). Therefore, the 

Hirose’s model can be applied to propose the unbiasing formula for the OLSE of the 

shape parameter.  

Same as the modified Ross’ method, we first determine the formula of the 

unbiasing factor U . Obviously, the trend of the unbiasing factor U  vs. n  should also 

have a hyperbolic shape. Therefore, the proposed model for the unbiasing factor of 

the modified Hirose’s bias correction method, denoted by MHU , is  
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where 43210 ,,,, lllll  are the model parameters. 

As in the modified Ross’ method, the values of il  were determined through the 

unconstrained nonlinear optimization technique (Nelder-Mead direct search method). 

The objective function is  
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The calculation was executed by MATLAB 7 and the function fminsearch was 

used. Different starting values for il  were tested in the Nelder-Mead direct search 

method. The current result satisfies the termination criteria using OPTIONS.TolX of 

1.000000e-004 and satisfies the convergence criteria using OPTIONS.TolFun of 

1.000000e-008.  

The parameter values were determined as 

 0430.10,4386.2,6347.3,3082.0,0357.1 43210  lllll       (5-22)  

Substituting the values into Equation (5-20), the formula of MHU  is  

 
432

0430.104386.26347.33082.0
0357.1

nnnn
U MH    (5-23) 

Thus the bias correcting formula of the modified Hirose’s method for the OLSE 

of the shape parameter is 

        

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Table 5-4 tabulates the values of )ˆ( 1,1E , MHU  and MHMHU UEE  )ˆ()ˆ( 1,11,1,   at 

selected sample sizes. As can be seen from the table, the differences between 

)ˆ( 1,1, MHUE  and 1 are much smaller than the differences between )ˆ( 1,1E  and 1 at all 

sample sizes. Great improvements can be observed when 4,3n . In addition, 

comparing Table 5-4 with Table 5-2, we can see that )ˆ( 1,1, MHUE  is slightly better 

than )ˆ( 1,1, MRUE  in most cases. 

Table 5-4: Values of )ˆ( 1,1E , MHU  and )ˆ( 1,1, MHUE  at selected sample sizes (the modified 

Hirose’s method for OLSE).  

3 4 5 6 7 8 9 10 11 12 13 14 15
1.428 1.125 1.053 1.009 0.996 0.983 0.974 0.970 0.963 0.961 0.961 0.960 0.960
0.701 0.884 0.955 0.990 1.008 1.020 1.027 1.032 1.035 1.037 1.039 1.040 1.041
1.001 0.995 1.006 0.998 1.005 1.002 1.000 1.001 0.997 0.996 0.998 0.998 0.999

16 17 18 19 20 22 24 26 28 30 35 40 50
0.962 0.959 0.958 0.960 0.960 0.960 0.959 0.959 0.962 0.961 0.964 0.966 0.966
1.041 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.041 1.040
1.002 0.999 0.998 1.001 1.000 1.001 1.000 1.000 1.002 1.002 1.005 1.005 1.005

n

)ˆ( 1,1E

)ˆ( 1,1E

MHU

MHU

)ˆ( 1,1, MHUE

)ˆ( 1,1, MHUE  
 

The modified Hirose’s unbiasing formula in Equation (5-24) was also checked 

for point estimation in the experiment described in the end of the modified Ross’ 

method. Table 5-5 tabulates the expected values of the shape parameter estimates 

before and after correction at selected sample sizes. Figure 5-3 shows the histograms 

or the empirical PDFs of MHU ,̂  at selected sample sizes: 30,20,10,5n .  

Table 5-5: Simulation results of the modified Hirose’s method: the values of )ˆ( 1,1E  and 

)ˆ( ,1,1 MHUE   at selected sample size‡. 

3 4 5 6 7 8 9 10 11 12 13 14 15
1.436 1.131 1.051 1.013 0.991 0.975 0.976 0.969 0.963 0.965 0.965 0.963 0.961
1.006 1.001 1.004 1.002 1.000 0.994 1.003 0.999 0.997 1.001 1.003 1.001 1.001

16 17 18 19 20 22 24 26 28 30 35 40 50
0.961 0.956 0.958 0.961 0.962 0.960 0.959 0.962 0.961 0.964 0.965 0.964 0.968
1.000 0.996 0.998 1.002 1.003 1.000 1.000 1.002 1.001 1.005 1.005 1.004 1.007

n

)ˆ( 1,1E

)ˆ( 1,1E

)ˆ( ,1,1 MHUE 

)ˆ( ,1,1 MHUE   
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Figure 5-3: Histograms of 

MHU ,1,1
̂  at selected sample sizes (the modified Hirose’s method for 

OLSE). 

 

It can be observed from Table 5-5 that MHU ,1,1
̂  is significantly better than 1,1̂  in 

view of the bias. The bias of MHU ,1,1
̂  is typically within 0.3%. Compared to Table 5-3, 

we can see that MHU ,1,1
̂  of the modified Hirose’s method is slightly more accurate 

than MRU ,1,1
̂  of the modified Ross’ method in most cases.  

Figure 5-3 looks similar to Figure 5-2. As can be seen, the distribution of MHU ,1,1
̂  

approaches to the normal distribution as the sample size increases. The mean of the 

distribution is close to 1 at all sample sizes. 
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5.3.3 Application Procedure  

Given a complete data set of size n , the procedure for obtaining an unbiased OLS 

estimate of the shape parameter is as follows: 

Step 1: Rank the failure times it  from smallest to largest and calculate the Y-

axis plotting positions by )4.0()3.0(ˆ
)(  niF i , i.e., the Bernard 

estimator. 

Step 2:  Plot the ranked failure times )(it  against )(̂iF  on WPP. If the Weibull 

distribution fits, the data points should appear to be on a straight line. 

Step 3: Estimate the shape parameter by the OLSE method using Equation 

(2-12).  

Step 4: Calculate the unbiased estimate for the shape parameter by the modified 

Ross’ unbiasing formula in Equation (5-15), or the modified Hirose’s 

unbiasing formula in Equation (5-24). 

5.3.4 A Numerical Example 

Below is a randomly generated Weibull sample with 2,1000    and 10n : 

2230, 1057, 573.6, 617.5, 544, 940.5, 1672, 1427, 405.2, 698.9. 

First calculate the estimate of the shape parameter by the OLSE method and the 

result is 1.923. If MLE is used, the shape parameter estimate is 1.963. Second, apply 

the proposed bias correcting formulas to the shape parameter estimate of the OLSE. If 

the modified Ross’ method is used, we have 

990.105.0
)4.110(4.11

1
923.105.0

)4.1(4.11

1ˆˆ
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Otherwise, if the modified Hirose’s method is used, the unbiased estimate is 

984.1
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The unbiased estimates for the MLE can also be obtained using the original 

Ross’ method and the Hirose’s method. The results are 1.685 and 1.671, respectively. 

In this example, the best estimate for the shape parameter is obtained using the 

modified Ross’ method. For the MLE, the estimates after bias correction were worse 

than the original estimate. After all, the bias correction methods will work in the long 

run but may not work for a single sample. 

5.4  Discussions on Bias Correction for the LSE in Other 

Circumstances 

The bias correcting formulas presented in the previous section are specially designed 

for the OLSE of the shape parameter and are only applicable to complete data. The 

OLSE method limits the use of the Bernard estimator for estimating )(tF  for 

complete data, and the regression direction of  )1ln(ln FY   on TX ln . If any 

of these two conditions is changed, a new bias correcting formula is needed. The same 

approach as the modified Ross’ method or the modified Hirose’s method can be used 

to derive the new bias correcting formulas. Section 5.4.1 presents the bias correcting 

formulas for the LS X on Y method applied to complete data. 

It is also important to deal with the bias of the OLSE in the case of censored data, 

and a study is presented in Section 5.4.2. The bias as a function of the sample size and 
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censoring level is shown by the 3-D surface plot, and it reflects the difficulty of 

proposing a single model for the bias due to the inconsistency. However, a bias 

correcting formula is proposed for multiply censored samples with %40c  and 

100n . 

5.4.1 Bias Correction for the Shape Parameter Estimator of LS X on 

Y for Complete Data 

The LS X on Y method is presented in Section 4.4 and compared with the LS Y on X 

method. The simulation results in Section 4.4.3.1 show that for complete samples with 

10n , ̂  of the LS X on Y method always has larger bias than that of the LS Y on X 

method. There is certainly a need to correct the bias with the recent focus of Weibull 

researchers on small samples. In addition, from Figure 4-23 we can see that the curve 

of the LS X on Y looks smoother than that of the LS Y on X, which implies a higher 

efficiency of the potential bias correcting formula. 

The modified Ross’ method and the modified Hirose’s method were used to 

propose two bias correcting formulas for the shape parameter estimator of the LS X on 

Y method. The procedures for developing these two formulas are similar to those 

described in Section 5.3.1 and Section 5.3.2, and hence are not repeated here. 

The bias correcting formula of the modified Ross’ method for the shape 

parameter estimator of LS X on Y is 

      










  01.0

)2(6.01
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The bias correcting formula of the modified Hirose’s method for the shape 

parameter estimator of LS X on Y is 

      





   432)(,

3542.230084.120751.42470.0
0096.1ˆˆ

nnnnXYLSXYLSMHU     (5-26)  

The values of )ˆ( 1,1E  obtained from the Monte Carlo simulations, the unbiasing 

factor U  from Equation (5-26) and Equation (5-27), and UEEU  )ˆ()ˆ( 1,11,1  , at 

selected sample sizes, for the LS X on Y method, are shown in Table 5-6 and Table 

5-7. As can be observed from both tables, the bias of 1,1̂  after correction is generally 

smaller, especially when 10n . 

Table 5-6: Values of )ˆ( 1,1E , 
MRU  and )ˆ( 1,1, MRUE  at selected sample sizes (the modified Ross’ 

method for LS X on Y).  

3 4 5 6 7 8 9 10 11 12 13 14 15
1.585 1.266 1.171 1.118 1.089 1.072 1.062 1.048 1.035 1.035 1.031 1.030 1.024
0.635 0.791 0.858 0.894 0.917 0.933 0.944 0.953 0.959 0.965 0.969 0.972 0.976
1.007 1.002 1.005 1.000 0.999 1.000 1.003 0.999 0.993 0.998 0.999 1.002 0.999

16 17 18 19 20 22 24 26 28 30 35 40 50
1.019 1.017 1.014 1.013 1.010 1.010 1.008 1.003 1.004 1.004 1.000 0.998 0.998
0.978 0.980 0.982 0.984 0.986 0.988 0.990 0.992 0.994 0.995 0.997 0.999 1.002
0.996 0.997 0.997 0.997 0.995 0.998 0.998 0.995 0.998 0.999 0.997 0.998 1.000

n

)ˆ( 1,1E

)ˆ( 1,1E

MRU

MRU

)ˆ( 1,1, MRUE

)ˆ( 1,1, MRUE  

 

Table 5-7: Values of )ˆ( 1,1E , MHU  and )ˆ( 1,1, MHUE  at selected sample sizes (the modified 

Hirose’s method for LS X on Y).  

3 4 5 6 7 8 9 10 11 12 13 14 15
1.585 1.266 1.171 1.118 1.089 1.072 1.062 1.048 1.035 1.035 1.031 1.030 1.024
0.631 0.790 0.856 0.893 0.916 0.933 0.945 0.954 0.961 0.967 0.971 0.975 0.978
1.000 0.999 1.002 0.998 0.998 1.000 1.003 1.000 0.995 1.000 1.001 1.004 1.002

16 17 18 19 20 22 24 26 28 30 35 40 50
1.019 1.017 1.014 1.013 1.010 1.010 1.008 1.003 1.004 1.004 1.000 0.998 0.998
0.981 0.983 0.985 0.987 0.988 0.991 0.993 0.995 0.996 0.997 0.999 1.001 1.003
0.999 0.999 0.999 1.000 0.998 1.001 1.001 0.997 1.000 1.001 0.999 1.000 1.001

n

)ˆ( 1,1E

MHU

)ˆ( 1,1E

MHU

)ˆ( 1,1, MHUE

)ˆ( 1,1, MHUE  

 



 Chapter 5 Bias Correction Methods for OLSE 

162  

5.4.2 Bias Correction for the Shape Parameter Estimator of the 

OLSE for Censored Data 

The bias of the OLSE of the shape parameter for censored data varies with sample 

size and censoring level. Based on the values of the bias under different combinations 

of sample sizes and censoring levels, obtained via Monte Carlo simulations, two 3-D 

surface plots were generated, as shown in Figure 5-4 (for OLSE) and Figure 5-5 (for 

MLE). The surface plots were generated by MATLAB 7 using the function meshz. 

There are three axes representing the bias of 1,1̂ , sample size n  and censoring level 

c , respectively. The color of the lines is proportional to the surface height and the 

color goes lighter as the bias goes larger. 

Comparing the two surface plots, it can be observed that the surface plot of MLE 

shows a simpler relationship among the bias, sample size and censoring level. The 

bias of the MLE of the shape parameter is consistent with the sample size at any 

specific censoring level, and consistent with the censoring level at any specific sample 

size. However, the bias of the OLSE of the shape parameter is inconsistent in either 

way as the bias has a range of -10% – 15%. The surface plot in Figure 5-4 is further 

split in two parts, as shown in Figure 5-5: one shows the bias at low censoring levels 

(10% – 40%) and the other shows the bias at high censoring levels (50% – 80%). It 

can be observed from Figure 5-5 that, at low censoring levels (10% – 40%), the bias 

of the OLSE of the shape parameter presents good consistency and the bias is always 

negative when 10010  n , while the same is not true at high censoring levels (50% 

– 80%) because the bias reaches 0 at the combination of %70c  and 3020 n , or 

%60c  and 6050 n , or %50c  and 9080 n . The similar results have been 

presented in Section 3.3.3.2.  
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Figure 5-4: The surface plot of the bias of the shape parameter estimator of OLSE. The Z axis is 
the values of bias, the Y axis is censoring level (10% – 80%), and the X axis is sample size (20 – 

100)§. The gray part in the second figure is the surface of bias = 0. 
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Figure 5-5: The surface plot of the bias of the shape parameter estimator of MLE. The Z axis is 
the values of bias, the Y axis is censoring level (10% – 80%), and the X axis is sample size (20 – 

100)§. 

 

                                                 

§ The color of the line is proportional to the surface height (the value of bias). 
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Figure 5-6: The surface plot of the bias of the shape parameter estimator of OLSE, split in two 
plots by censoring level. The Z axis is the values of bias, , the Y axis is censoring level (10% – 

80%), and the X axis is sample size (20 – 100). The gray part in the second figure is the surface of 
bias = 0§. 
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As the surface plots of the bias of the MLE at all censoring levels and the bias of 

the OLSE at low censoring levels show good consistency, it is possible to model the 

bias as a function of the sample size and censoring level. Ross (1996) proposed a bias 

correcting formula for the MLE of the shape parameter for singly right censored data, 

using the same model he used for the bias correction for complete data, i.e., Equation 

(5-9). The bias correcting formula for the MLE is given by 

  
r

n

r
rnE

92.1

37.1
1),(ˆ

1,1 
   (5-27) 

    In the following, a formula for correcting the bias of the OLSE of the shape 

parameter, applied to censored data with low censoring levels, is presented.  

The proposed bias model is given by 

 32
1, )ˆ( pp

cn ncpB    (5-28) 

where 321 ,, ppp  are the model parameters. )ˆ(, cnB  can only take negative values. 

 With the simulation generated values of the bias at different combinations of 

sample sizes and censoring levels, the values of 321 ,, ppp  were determined by the 

unconstrained nonlinear optimization technique (Nelder-Mead direct search method). 

The objective function is  

       
ii

ii

ii

iiii
cn

p
i

p
icn

cn
cncn ncpEBE

,

2

1,1,1
,

2

1,1,,1,1
321)ˆ()ˆ(1)ˆ(min    (5-29) 

where in  and ic  denote different sample sizes and censoring levels examined in the 

simulations. 
ii cnE ,1,1 )ˆ(  denotes the value of )ˆ( 1,1E  at a specific combination of in  

and ic .  
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The parameter values were determined as 

 5430.0,3476.0,2211.0 321  ppp       (5-30)  

Substituting the values into Equation (5-28), the bias model is  

 5430.03476.0
, 2211.0)ˆ(  ncB cn    (5-31) 

Thus the bias correcting formula is given by 

 
5430.03476.0

1,1,1,1,
2211.01

ˆ

)ˆ(1

ˆ

)ˆ(

ˆ
),(ˆ







ncBE
cn

cncn

U






   (5-32) 

Equation (5-32) can be added to the end of the conventional OLSE procedure for 

censored data in order to provide more accurate estimates. Table 5-8 tabulates the 

values of the simulation generated )ˆ( 1,1, cnE  and the corresponding unbiased 

estimates )2211.01()ˆ()ˆ( 5430.03476.0
1,11,1

 ncEEU   at selected sample sizes and 

censoring levels. As can be seen from the table, )ˆ( 1,1UE  is more accurate than 

)ˆ( 1,1E  at nearly all conditions. Great improvements can be observed when %10c  

and 30,20n .  

Table 5-8: Values of )ˆ( 1,1E  and )ˆ( 1,1UE  at selected sample sizes and censoring levels.  

 c          n 20 30 40 50 60 70 80 90 100
0.902 0.917 0.928 0.938 0.943 0.949 0.955 0.957 0.962
0.998 0.994 0.994 0.997 0.996 0.998 1.000 1.000 1.002

0.908 0.927 0.938 0.948 0.954 0.961 0.963 0.968 0.973
0.983 0.988 0.990 0.994 0.996 0.999 0.998 1.002 1.005

0.917 0.935 0.946 0.957 0.965 0.970 0.972 0.979 0.982
0.982 0.988 0.991 0.998 1.002 1.003 1.004 1.009 1.010

0.930 0.945 0.961 0.970 0.975 0.983 0.988 0.989 0.994
0.989 0.992 1.002 1.007 1.008 1.014 1.016 1.016 1.019

10%

20%

30%

40%

)ˆ( 1,1E

)ˆ( 1,1UE

)ˆ( 1,1E

)ˆ( 1,1UE

)ˆ( 1,1E

)ˆ( 1,1UE

)ˆ( 1,1E

)ˆ( 1,1UE  
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It should be noted that the proposed bias correcting formula in Equation (5-32) is 

specially designed for censored samples satisfying %40c  and 100n . Since the 

OLSE of the shape parameter is inconsistent with either sample size or censoring 

level, it is difficult to have a single bias correcting formula that works for all 

conditions. 

5.5  Summary 

In this chapter, several bias correcting formulas for the OLSE of the Weibull shape 

parameter were proposed. These formulas can be added to the end of the conventional 

LSE procedure in order to provide more accurate estimates for the shape parameter.  

The main work in this chapter is the bias correction applied to small and 

complete samples, where two methods, i.e., the modified Ross’ bias correction 

method and the modified Hirose’s bias correction method, were proposed for the 

OLSE of the shape parameter and examined in details. Although the bias correcting 

formulas were determined by numerical methods, they work very well as confirmed 

by the Monte Carlo simulation experiments. The bias is reduced to less than 1% and 

typically less than 0.5%. The application procedures were also provided for the 

proposed methods. 

Two bias correcting formulas were also proposed for the shape parameter 

estimator of LS X on Y using the modified Ross’ method and the modified Hirose’s 

method.   

Bias correction for the OLSE of the shape parameter in the case of multiply 

censored data is challenging. A simple bias correcting formula was proposed for 
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multiply censored samples with %40c  and 100n . The bias is greatly reduced 

with the proposed formula. 

One thing to note is that theoretically these bias correction methods can greatly 

reduce or eliminate the bias of the shape parameter estimator in the long run; 

however, they may not provide more accurate estimate for a single Weibull sample 

than OLSE.  
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Chapter 6 

Weighted Least Squares Estimation Methods 

 

This chapter presents the weighted least squares estimation methods. A simple 

approximation formula is proposed for calculating weights for small, complete 

samples. Through Monte Carlo simulations, the proposed WLSE method is compared 

with some existing WLSE methods and the OLSE method. The simulation results 

show that the proposed procedure is slightly better than the existing WLSE methods 

in terms of the properties of the estimators. The efficiency of the proposed WLSE 

method is 20% to 30% higher than that of the OLSE method. A bias correcting 

formula is also proposed to reduce the bias of the shape parameter estimator of the 

proposed WLSE method. WLSE for censored data is discussed and a tentative 

procedure is proposed for calculating weights.  

6.1  Introduction 

One problem with LSE is that it treats each data point equally under the assumption 

that the variance of the error term is constant. As shown in Section 3.2, this 

assumption cannot be satisfied. The variance of the errors can be calculated by 

Equations (3-8) – (3-11) under the assumption that the uncertainty of failure time can 

be neglected. By treating each data point equally, LSE has a low efficiency. WLSE, in 

theory, can maximize the efficiency of parameter estimation by giving each data point 

its proper amount of influence over the parameter estimates.  
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The biggest challenge of WLSE is to determine the appropriate weight for each 

data point. As a common practice, weights can be calculated by the reciprocal of the 

variances of the dependent variable values. The variances of the dependent variable 

values, in most cases, are estimated by repeated experiments. However, the values 

may also be obtained through analytical deduction, which is the current situation. In 

examining WLSE for the Weibull distribution, we still treat TX ln  as the 

independent variable and  ))(1ln(ln tFY   as the dependent variable. We further 

assume that the uncertainty of failure time can be neglected so that the variance of the 

errors equals the variance of the dependent variable values. In particular, here the 

values of the dependent variable Y  are not measured but estimated.  

The weights in the WLSE method for the Weibull distribution can be calculated 

by 

 )(/1 )(ii YVarw                                                (6-1) 

where )( )(iYVar  can be obtained through analytical methods as shown later.  

Several authors have examined the WLSE methods for the Weibull distribution 

and different methods for calculating weights have been proposed (White, 1969; 

Bergman, 1986; Faucher & Tyson, 1988; Hung, 2001; Lu et al., 2004). These 

methods are briefly described in Section 6.2. We noticed that, in most of the existing 

WLSE methods, )( )(iYVar  is estimated via some kind of approximation method, e.g., 

the propagation of error. It is likely that errors are introduced by using such 

approximations. The exact values of )( )(iYVar  are derived, which, in theory, are the 

best weights. To simplify the calculation for the best weights, a simple approximation 

formula is proposed through numerical method that can be used for small, complete 
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samples, especially when 20n . With Monte Carlo simulations, the proposed 

methods are compared with the methods of Faucher & Tyson (1988), Lu et al. (2004) 

and OLSE for estimating the Weibull parameters. Censored data is also discussed and 

a method for calculating weights based on MFON is proposed. A numerical example 

clearly shows the proposed WLSE procedure for censored data. Some of the related 

work has been published by the authors (Zhang et al., 2006, 2008).  

6.2  WLSE and Related Work 

The idea of WLSE is to give each data point its proper amount of influence by 

assigning each data point a weight, denoted by iw . The objective function of WLSE is 

  



r

i
iii BxAywS

1

2)(min  (6-2) 

where for complete data, nr  . 

The conventional settings described in Section 2.3.1 for LSE are applicable, i.e., 

TX ln ,  )1ln(ln FY  ,  lnA  and B . Given a Weibull sample, the 

values of ix  and iy  can be obtained in a similar approach as in the LSE method (see 

Section 2.3.1). From Equation (6-2), taking partial derivatives of S  with regard to A  

and B , respectively, and setting the results to 0, we obtain 
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Thus the estimators of   and   for the WLSE method are given by 
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                               (6-4) 

Equation (6-4) can be applied to both complete data and censored data. For 

complete data, nr  . As a special case, when 1iw  for all data points, the WLS 

estimators reduce to the OLS estimators. 

The WLSE method can be easily carried out after the values of iw  are 

determined. As mentioned in Section 6.1, iw  can be calculated by Equation (6-1), i.e., 

the reciprocal of )( )(iYVar . Following this rule, different methods for calculating 

)( )(iYVar  have been proposed. White (1969) defined a log-Weibull order statistic and 

derived the formula for calculating its variance that equals the variance of )( )(iYVar . 

The formula is complicated and the results are tabulated for selected sample sizes. 

White also gave a numerical example of using WLSE to estimate the Weibull 

parameters; however, without any discussion on the accuracy of the estimates. 

Another shortcoming of the White’s method is that the regression of TX ln  on 

 )1ln(ln FY   is used, which is not the conventional way nowadays. Therefore, 

there is no further discussion on this method. Besides, Bergman (1986), Faucher & 

Tyson (1988), Hung (2001) and Lu et al. (2004) each proposed a simple formula for 
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calculating weights. These methods are briefly introduced below and some comments 

are given. 

Bergman’s WLSE (Bergman, 1986) 

Bergman (1986) applied the formula of the propagation of error (the simple case that 

involves only a single variable) to the relationship  )1ln(ln )()( ii FY   and obtained 

      1

)()(
)(

)( ˆ1lnˆ1
)()()(


 iiFF

i

i
Y FFSS

dF

dY
S

iii
 (6-5) 

where 
)( iYS  and 

)( iFS  denote the standard deviations of )(iY  and )(iF , respectively. 

By assuming 
)( iFS  is a constant, 

)( iYS  is then proportional to      1

)()(
ˆ1lnˆ1


 ii FF  

and )( )(iYVar  is proportional to      2

)()(
ˆ1lnˆ1


 ii FF . Thus Bergman determined the 

formula for weights as 

     2)()(
ˆ1lnˆ1 iii FFw                 (6-6) 

Bergman examined two non-parametric estimators for calculating )(
ˆ

iF , i.e., 

)1/( ni  and ni /)5.0(  . He conducted a simulation experiment to compare his 

WLSE method with LSE on estimating the shape parameter with both plotting 

positions. The mean and standard deviation of ̂ , denoted by )ˆ(E  and )ˆ(S , were 

calculated. The comparison criteria were  )ˆ(E  and )ˆ()ˆ(  ES  (coefficient of 

variation). The author concluded that 1) WLSE has little effect on the coefficient of 

variation; 2) in view of bias, the Hazen estimator niF i /)5.0(ˆ
)(   should be used for 

both LSE and WLSE; and 3) in view of bias, WLSE with )1/(ˆ
)(  niF i  outperforms 
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LSE with )1/(ˆ
)(  niF i , while WLSE with niF i /)5.0(ˆ

)(   performs similarly to 

LSE with niF i /)5.0(ˆ
)(  . Obviously, the author did not focus on the efficiency 

improvement of WLSE over LSE, which should be measured directly by the standard 

deviation or variance of estimators.  

Hung’s WLSE (Hung, 2001) 

Hung (2001) proposed a formula for calculating weights in a way similar to that of 

Bergman (1986). Hung’s weights are given by  
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Compared to Equation (6-6), this formula simply adds a denominator, i.e., 

    



n

i
ii FF

1

2

)()(
ˆ1lnˆ1 . The author did not give the reason for adding this 

denominator, but clearly, it is independent of i  and can be treated as constant. Since 

the weight for one observation is given relative to the weights for other observations, 

this denominator will not affect the estimation results. Therefore, Hung’s weight 

formula is same as Bergman’s weight formula. 

Hung suggested )(
ˆ

iF  be calculated by the method of Drapella & Kosznik (1999), 

i.e., the expected plotting position described in Section 4.3.3. Via Monte Carlo 

simulations, Hung compared three estimation methods: WLSE with the Bernard 

estimator for calculating )(
ˆ

iF , LSE with the Bernard estimator for calculating )(
ˆ

iF  and 

LSE with the expected plotting position for calculating )(
ˆ

iF . The mean, variance and 
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MSE of the shape parameter estimator of each method were calculated as the 

comparison criteria. The simulation results showed that Hung’s WLSE method 

provided the smallest variance and MSE in all cases examined. 

Similar to Bergman’s WLSE method, Hung’s WLSE method involves an 

assumption that the uncertainty of )(iF  is constant.  

F&T’s WLSE (Faucher and Tyson, 1988) 

Faucher and Tyson (1988) pointed out that the order statistic )(iF  has a beta 

distribution with parameters i  and 1 in ; therefore, the uncertainty of  )(iF  cannot 

be constant. The authors proposed to estimate the uncertainty of )(iF  through the 

difference of its two percentiles. The percentiles can be calculated by 
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The 20th percentile and the 80th percentile were selected to estimate the 

uncertainty of )(iF . Then, with the relationship  )1ln(ln )()( ii FY  , the uncertainty 

of )(iY  is estimated by the difference of    )1ln(ln)1ln(ln )()( ii FF  , where )(iF   

denotes the 80th percentile of )(iF  that can be calculated by setting 8.0p  in 

Equation (6-8) and )(iF   denotes the 20th percentile calculated by setting 2.0p  in 

Equation (6-8). The weight formula is then expressed by 

     2
)()( )1ln(ln)1ln(ln1 iii FFw                              (6-9) 

However, the selection of the two percentiles is somewhat subjective. 
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A simple approximation formula was also proposed via numerical methods as  

                     025.0
)()( )ˆ1(15.27ˆ3.3 iii FFw                                    (6-10) 

They suggested the Bernard estimator or exact median rank values to calculate )(
ˆ

iF .  

The authors used Monte Carlo simulations to compare their WLSE with LSE in 

view of the bias and standard deviation of both scale and shape parameter estimators. 

The Hazen estimator and the Bernard estimator for calculating )(
ˆ

iF  were examined 

and compared. The results showed that their WLSE procedure with the Bernard 

estimator should be preferred because it generates smallest standard deviation of the 

estimators. 

Lu et al’s WLSE (Lu et al., 2004) 

Lu et al. (2004) defined an intermediate variable C  with )1ln( FC   and   

CY ln . From the Weibull CDF, it can be easily obtained that C  follows the 

standard exponential distribution. Therefore, the mean and variance of its order 

statistic )(iC  can be determined as 

 
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2)( )1(

1
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)( )(iYVar  can be approximated by applying the propagation of error formula on 

the relationship CY ln , i.e.,     

    2)(

)(
)()(

)(

)(
ln)(

i

i
ii

CE

CVar
CVarYVar        (6-12) 
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Substituting Equation (6-11) in Equation (6-12) for )( )(iCE  and )( )(iCVar  yields 
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The Lu’s formula for weights is then given by 

       
 











i

j

i

j
i jinjin

w
1

2

2

1 )(

1

)(

1
                          (6-14) 

Besides its simplicity, this weight formula does not involve the selection of the 

estimator for calculating )(
ˆ

iF .  

The authors compared several WLSE methods, including Bergman’s WLSE, 

Hung’s WLSE, F&T’s WLSE, and their WLSE, via Monte Carlo simulations. For the 

Bergman’s and F&T’s methods, three estimators of )(iF  including the Weibull 

estimator, the Hazen estimator, and the Bernard estimator, were examined. The mean, 

variance and MSE of the shape parameter estimators were calculated as the 

comparison criteria. It was concluded that Bergman’s WLSE (as well as Hung’s 

WLSE) in most cases generates a larger MSE than the others regardless of the plotting 

positions used. The authors’ method and the F&T’s method performed similarly. 

Discussions 

Equation (6-6), Equation (6-7), Equation (6-9) or Equation (6-10), and Equation (6-14) 

are the formulas for calculating weights proposed by different authors in the past. In 

summary, all these formulas are easy to use. Bergman’s method, as well as Hung’s, 

involves the assumption that the uncertainty of )(iF  is constant. However, this is not a 
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good assumption because the values of )(iF  come from order statistics and the 

variance varies with the order number i . As )(iF  can be treated as from a beta 

distribution, the variance of )(iF  is given by 

 
)2()1(

)1(
)(

2)( 



nn

ini
FVar i   (6-15) 

Lu et al. (2004) showed that Bergman’s method (as well as Hung’s) is inferior to the 

others from their simulation results. The F&T’s and Lu et al.’s methods do not 

involve any assumptions; however, both methods’ calculation for )( )(iYVar  used 

approximation methods, and the values are only approximated values. It is likely that 

errors are introduced by using such approximations. In the next section, we present 

the method for calculating the exact values of )( )(iYVar  that will generate the most 

appropriate weights, and compare it with the existing methods. 

6.3  Method for Calculating Best Weights 

The best values for weights can be obtained through the exact reciprocal values of 

)( )(iYVar . As shown in Section 3.2.2, we have derived the formula for calculating the 

exact values of )( )(iYVar , i.e., 
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(6-16) 
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The best weights can then be calculated by Equation (6-1), i.e., )(/1 )(ii YVarw  .  

Since the weight for one observation is given relative to the weights for other 

observations, it can be normalized in some way. Here we normalize the weights by 

dividing the weight for each observation by the mean weight over the whole sample, 

i.e., 

 
w

w
w i

inor _    (6-17) 

where inorw _  denotes the normalized weight. nww
n

i
i




1

. In this way, the sum of 

the normalized weights equals the sample size, i.e., 



n

i
inor nw

1
_ .  

Table 6-1 lists the values of the normalized best weights for selected sample 

sizes. From the table it can be observed that, for 6,5n , the weights increase as the 

order number i increases, and the weights for the last two data points are much higher 

than those for the first two data points. From 7n  onwards, however, the largest 

weights are not given to the last data point but a little bit earlier. The weights for the 

end part of the sample are still much larger than those for the beginning part of the 

sample. 

Apparently, the weights differ greatly for the data points in a sample; therefore, 

the WLSE method and the OLSE method should perform differently.  
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Table 6-1: The normalized best weights for selected sample sizes (the largest value in each 
column is highlighted). 

n 

i  5 6 7 8 10 12 14 16 18 20 

1 0.2675  0.2269  0.1970  0.1741 0.1414 0.1190 0.1028 0.0904 0.0807  0.0729  

2 0.6779  0.5761  0.5009  0.4431 0.3600 0.3032 0.2619 0.2305 0.2058  0.1859  

3 1.0838  0.9286  0.8108  0.7190 0.5857 0.4939 0.4269 0.3759 0.3357  0.3033  

4 1.4263  1.2538  1.1071  0.9875 0.8091 0.6841 0.5921 0.5218 0.4663  0.4215  

5 1.5446  1.5013  1.3673  1.2364 1.0250 0.8708 0.7556 0.6668 0.5964  0.5393  

6  1.5133  1.5416  1.4440 1.2266 1.0509 0.9155 0.8097 0.7252  0.6564  

7   1.4754  1.5605 1.4023 1.2202 1.0699 0.9494 0.8520  0.7721  

8    1.4353 1.5306 1.3719 1.2158 1.0843 0.9758  0.8859  

9     1.5628 1.4946 1.3489 1.2125 1.0957  0.9971  

10     1.3564 1.5667 1.4626 1.3310 1.2100  1.1049  

11      1.5410 1.5452 1.4355 1.3167  1.2080  

12      1.2836 1.5758 1.5193 1.4129  1.3050  

13       1.5089 1.5709 1.4942  1.3938  

14       1.2181 1.5700 1.5539  1.4715  

15        1.4726 1.5810  1.5337  

16        1.1595 1.5554  1.5738  

17         1.4351  1.5811  

18         1.1071  1.5359  

19          1.3979  

20          1.0599  

 

The weights calculated by other methods, e.g., the Bergman’s, F&T’s and Lu et 

al.’s methods, can be normalized in a similar way. After normalizing, the values of 

weights from different methods can be compared for the same sample size. Figure 6-1 

and Figure 6-2 show the comparison of the best weights and the weights calculated by 

the Bergman’s method in Equation (6-6), the F&T’s method in Equation (6-10), and 

the Lu et al.’s method in Equation (6-14), for two sample sizes, 5n  and 15n , 

respectively. The following can be observed from the two figures: 1) the weights of 

the F&T method are close to the best weights; 2) compared to the best weights, the 

weights of the Bergman’s and Lu et al.’s methods present reversed trends. Bergman’s 

method underestimates the last few points and overestimates the remaining points, 

while Lu et al.’s method overestimates the last few points and underestimates the 
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remaining points; and 3) at 15n , the weight for the 10th point, calculated by 

different methods, are almost same. 
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Figure 6-1: Comparison of normalized weights calculated by different methods at n = 5. 
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Figure 6-2: Comparison of normalized weights calculated by different methods at n = 15. 
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6.4  An Approximation Formula for Calculating Weights for 

Small, Complete Samples 

Using Equation (6-16) and then Equation (6-1) to calculate weights is not convenient 

without the aid of a computer program. Also note that when the sample size becomes 

large, say 30n , the binomial coefficients in Equation (6-16) will become extremely 

large, and it is hard to generate accurate results. Considering the fact that OLSE does 

not perform very well mainly for small samples, say 20n , the examination of 

WLSE also focuses on small samples.  

To simplify the calculation for weights, it is possible to use numerical methods to 

derive an approximation formula for calculating the best weights. iw  can be modelled 

as the function of order number i and sample size n, as can be seen in Table 6-1. 

However, intuitively, it is easier to model it as the function of )(
ˆ

iF , like in the 

Bergman’s, Hung’s and F&T’s methods. To study the relationship between the best 

weights and )(
ˆ

iF , Figure 6-3 plots the best weights calculated by Equation (6-16) and 

then Equation (6-1) at selected sample sizes, and Figure 6-4 plots the values of )(
ˆ

iF , 

calculated by the Bernard estimator, i.e., )4.0()3.0(ˆ
)(  niF i , at the same sample 

sizes. As can be seen, the two figures show similar patterns. Therefore, the best 

weights can be modelled as a function of )(
ˆ

iF . 
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Figure 6-3: Plot of best weights as a function of i and n. 
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Figure 6-4: Plot of  

)(̂iF   (calculated by the Bernard estimator) as a function of i and n. 
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6.4.1 The Approximation Formula 

The relationship between iw  and )(
ˆ

iF  can be modelled by a polynomial function, i.e., 

 4
)(4

3
)(3

2
)(2)(10

ˆˆˆˆ)(_ iiii FpFpFpFppiappw    (6-18) 

where )(_ iappw  denotes the approximated value of iw , and 43210 ,,,, ppppp  are 

the model parameters to be determined. 

The model parameters can be determined by the nonlinear curve fitting technique. 

The objective function is 

  
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3
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)(2)(10 )ˆˆˆˆ(min 


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n

i
iiiii FpFpFpFppw  (6-19) 

To solve this function, the multidimensional unconstrained nonlinear 

minimization method, i.e., the Nelder-Mead method (Nelder & Mead, 1965), was 

used. The calculation was executed in MATLAB 7, and the built-in function 

fminsearch was used. 

The best values of iw , calculated by Equation (6-16) and then Equation (6-1), 

and )(
ˆ

iF , calculated by )4.0()3.0(ˆ
)(  niF i , for samples of sizes 2 to 20 were 

used in Equation (6-19) to determine the five model parameters. Finally, the values of 

43210 ,,,, ppppp  were determined as 

 231.9,54.13,867.6,610.3,076.0 43210  ppppp          (6-20) 

Thus the approximation formula for calculating the best weights is 

 4
)(

3
)(

2
)()(

ˆ231.9ˆ54.13ˆ867.6ˆ610.3076.0)(_ iiii FFFFiappw         (6-21) 
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6.4.2 Application Procedure 

The application procedure of the proposed WLSE method for estimating the Weibull 

parameters in the case of small, complete samples is summarized as follows: 

Step 1: Rank the failure times from smallest to largest and calculate the Y-axis 

plotting positions by )4.0()3.0(ˆ
)(  niF i . 

Step 2:  Plot the failure times it  against )(̂iF  on WPP. If the Weibull distribution 

fits, the data points should appear to be on a straight line. 

Step 3:  Calculate the values of the weights for each data point using Equation 

(6-21). 

Step 4:  Calculate the estimates for    and   using Equation (6-4). 

Nowadays, many statistical software packages and electrical spreadsheets 

provide the WLS programs, and users just need to provide ix , iy  and the weights. 

Therefore, WLSE can be easily applied.  

6.4.3 A Numerical Example 

Below is a randomly generated Weibull sample with 1  and 2 :  

0.2153, 0.6394, 0.7607, 0.8112, 1.0024, 1.2612, 1.3418, 1.4468, 1.5011, 1.8998. 

Five methods, including the proposed one, Bergman’s WLSE, F&T’s WLSE, Lu 

et al.’s WLSE, and OLSE, were used to estimate the two Weibull parameters for this 

sample. The results are shown in Table 6-2. Figure 6-5 is the WPP with straight lines 

generated by each method.  
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It can be observed from Figure 6-5 that the OLSE line is greatly affected by the 

first point. In Table 6-2 we can see that OLSE highly underestimates . The proposed 

method and the F&T’s method provide the best estimates for   and the bias is very 

small. Bergman’s WLSE method underestimates  , and Lu et al.’s WLSE method 

overestimates . The differences in ̂  among these methods are smaller compared to 

̂ ; however, overall the bias of ̂  is larger than that of ̂ .  

Table 6-2: Estimates of α and β generated by different WLSE methods and OLSE. 

Proposed Bergman F&T Lu OLSE

1.2526 1.2774 1.2547 1.2465 1.2863

2.0639 1.9350 2.0318 2.2034 1.7221

̂
̂  

 

10
0

0.05  

0.10  

0.25  

0.50  

0.75  

0.90  

0.96  

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot

 

 

Lu WLS

Proposed WLS

OLS

Bergman WLS

F&T WLS

 
Figure 6-5: WPP with straight lines generated by different WLSE methods and OLSE. 
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6.4.4 Monte Carlo Study: A Comparison of Different WLSE Methods 

and OLSE 

Monte Carlo experiments were conducted to examine the proposed WLSE method for 

estimating the Weibull parameters for small, complete data sets.  

Five methods were compared in this experiment, including the following: 

1. Best W: A WLSE method with best weights calculated by Equation (6-16) 

and then Equation (6-1). 

2. App. W: The proposed WLSE method, where the approximated best weights 

calculated by Equation (6-21) are used. 

3. F&T: A WLSE method where weights are calculated by Equation (6-10). 

4. Lu: A WLSE method where weights are calculated by Equation (6-14). 

5. OLSE. 

The Bergman’s method was not considered in this experiment because it has 

been shown inferior to the other existing WLSE methods (Lu et al., 2004) and it 

involves an inappropriate assumption that )(iF  has no uncertainty. 

Weibull samples of different sizes were randomly generated with selected values 

of   and  . For each sample generated, the above techniques were used to obtain 

the estimates of   and   simultaneously. By repeating this process for 10000 times, 

the mean, standard deviation, and MSE of the parameter estimates were calculated as 

the comparison criteria. The setting of the experiment factors is given in Table 6-3. 

For all the methods, )(
ˆ

iF  is calculated by )4.0()3.0(ˆ
)(  niF i , i.e., the Bernard  

estimator. 
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Table 6-3: Setting of experiment factors. The experiment is to compare four WLSE methods and 
OLSE. 

Factors Values 

T  1 

T  0.5, 1, 2 

n 5, 6, …, 19, 20 
M 10000 
Methods Best W, App. W, F&T, Lu, OLSE 

 

It should be noted that the weights of all WLSE techniques examined here are 

independent of the values of   and  . Therefore, the two pivotal functions,  /ˆ  

and )/ˆln(ˆ  , for the LS estimated   and  , are also true for the WLS estimated 

Weibull parameters. The advantage of using the pivotal functions is that their 

distributions can be derived from the normalized Weibull distribution ( 1  ), so 

that the simulation work can be greatly reduced. In this experiment, the true value of 

  was fixed at 1 to assess the estimators of  , and to assess the estimators of  , 

three true values of   were used, i.e., 2,1,5.0T . Since   is a scale parameter, we 

fixed its true value to 1 in the whole experiment. 

The simulation results are shown in Table 6-4 and Table 6-5. The results for 

selected sample sizes are omitted; however, it will not affect the following 

conclusions which can be observed from the tabulated values. 

Simulation Results for Estimators of β (Table 6-4) 

1) In view of both the standard deviation and MSE of ̂ , the WLSE methods 

are significantly better than OLSE. The ratio of the MSE of ̂  between App. 

W and OLSE is about 70% at 20n . Among the WLSE methods examined, 

Best W and App. W always generate the smallest standard deviation and 
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MSE, followed by the F&T’s method. Lu’s method generates slightly larger 

standard deviation and MSE than the other three WLSE methods. 

2) In view of bias, all WLSE methods perform similarly, and they only 

outperform OLSE at n = 5. In most cases, the bias of ̂  of OLSE is much 

smaller, say, about 2 – 3% less than that of the other methods. 

3) App. W performs very close to Best W. 

Simulation Results for Estimators of α (Table 6-5) 

1) In view of both the standard deviation and MSE of ̂ , the WLSE methods 

always outperform OLSE. Among the WLSE methods examined, Lu’s 

method always generates the smallest standard deviation and MSE, followed 

by Best W, App. W and F&T. At 5.0 , the ratio of the MSE between the 

Lu’s method and OLSE is about 70%.  

2) In view of the bias of ̂ , the WLSE methods outperform OLSE in nearly all 

cases. Lu’s method always generates the smallest bias among the WLSE 

methods, followed by Best W and App. W.  The bias of ̂  of the Lu’s 

method is 5 – 10% less than that of the OLSE, and the bias of ̂  of Best W 

and App. W is 3 – 5% less than that of the OLSE. 

3) The standard deviation and MSE of ̂  of all methods decrease as T  

increases. 

4) App. W performs very close to Best W. 
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Table 6-4: Simulation results of 
1,1̂ , generated by different WLSE methods and OLSE at 

different n: the values of )ˆ()ˆ( 1,11,1  SE  and )ˆ( 1,1MSE  (in parentheses). 

Method

Best W 1.006 ± 0.563 0.972 ± 0.447 0.948 ± 0.335 0.946 ± 0.286 0.945 ± 0.254 0.950 ± 0.222 0.953 ± 0.198 0.958 ± 0.188

App. W 1.006 ± 0.562 0.971 ± 0.447 0.947 ± 0.335 0.946 ± 0.286 0.946 ± 0.254 0.950 ± 0.222 0.955 ± 0.198 0.960 ± 0.189

F&T 1.007 ± 0.562 0.972 ± 0.448 0.948 ± 0.336 0.946 ± 0.287 0.945 ± 0.255 0.950 ± 0.223 0.953 ± 0.199 0.957 ± 0.189

Lu 1.005 ± 0.567 0.971 ± 0.451 0.948 ± 0.339 0.948 ± 0.292 0.949 ± 0.261 0.953 ± 0.228 0.956 ± 0.204 0.961 ± 0.195

OLSE 1.046 ± 0.592 1.009 ± 0.481 0.978 ± 0.370 0.968 ± 0.319 0.962 ± 0.287 0.961 ± 0.255 0.959 ± 0.230 0.961 ± 0.220
(0.084) (0.067) (0.057) (0.051)(0.353) (0.231) (0.137) (0.103)

(0.070) (0.054) (0.044) (0.040)(0.321) (0.204) (0.118) (0.089)

(0.068) (0.052) (0.042) (0.037)(0.316) (0.201) (0.116) (0.085)

(0.068) (0.051) (0.041) (0.037)(0.316) (0.201) (0.115) (0.085)

(0.068) (0.051) (0.041) (0.037)(0.317) (0.201) (0.115) (0.085)

n
5 6 8 10 12 15 18 20

 

  

Table 6-5: Simulation results of 
T

 ,1ˆ , generated by different WLSE methods and OLSE at 

different n and T : the values of )ˆ()ˆ( ,1,1 TT
SE     and )ˆ( ,1 T

MSE   (in parentheses). 

Method

Best W 1.383 ± 1.344 1.316 ± 1.154 1.219 ± 0.921 1.191 ± 0.807 1.154 ± 0.721 1.129 ± 0.624 1.103 ± 0.557 1.093 ± 0.523

App. W 1.395 ± 1.356 1.325 ± 1.162 1.224 ± 0.925 1.194 ± 0.808 1.155 ± 0.722 1.127 ± 0.623 1.101 ± 0.556 1.091 ± 0.522

F&T 1.405 ± 1.365 1.334 ± 1.169 1.233 ± 0.931 1.202 ± 0.813 1.163 ± 0.727 1.135 ± 0.627 1.108 ± 0.559 1.098 ± 0.525

Lu 1.333 ± 1.302 1.264 ± 1.115 1.167 ± 0.888 1.142 ± 0.780 1.109 ± 0.700 1.088 ± 0.608 1.066 ± 0.544 1.059 ± 0.513

OLSE 1.528 ± 1.495 1.454 ± 1.286 1.342 ± 1.032 1.304 ± 0.902 1.256 ± 0.812 1.216 ± 0.689 1.181 ± 0.612 1.167 ± 0.573

Best W 1.067 ± 0.497 1.055 ± 0.447 1.040 ± 0.384 1.035 ± 0.344 1.027 ± 0.311 1.022 ± 0.278 1.020 ± 0.256 1.016 ± 0.240

App. W 1.072 ± 0.499 1.059 ± 0.449 1.042 ± 0.385 1.036 ± 0.344 1.027 ± 0.311 1.021 ± 0.278 1.019 ± 0.255 1.015 ± 0.240

F&T 1.076 ± 0.500 1.063 ± 0.450 1.046 ± 0.386 1.039 ± 0.346 1.030 ± 0.312 1.025 ± 0.279 1.023 ± 0.256 1.018 ± 0.241

Lu 1.047 ± 0.489 1.033 ± 0.440 1.017 ± 0.378 1.012 ± 0.339 1.006 ± 0.307 1.003 ± 0.276 1.003 ± 0.254 1.000 ± 0.239

OLSE 1.122 ± 0.523 1.109 ± 0.472 1.090 ± 0.407 1.081 ± 0.363 1.069 ± 0.328 1.060 ± 0.293 1.055 ± 0.269 1.049 ± 0.252

Best W 1.006 ± 0.234 1.004 ± 0.214 1.003 ± 0.186 1.003 ± 0.168 1.003 ± 0.153 1.002 ± 0.136 1.002 ± 0.125 1.002 ± 0.119

App. W 1.008 ± 0.235 1.006 ± 0.215 1.004 ± 0.186 1.003 ± 0.168 1.004 ± 0.153 1.001 ± 0.136 1.002 ± 0.125 1.002 ± 0.119

F&T 1.010 ± 0.235 1.008 ± 0.215 1.006 ± 0.187 1.005 ± 0.168 1.005 ± 0.154 1.003 ± 0.136 1.004 ± 0.126 1.004 ± 0.120

Lu 0.996 ± 0.233 0.993 ± 0.213 0.991 ± 0.185 0.992 ± 0.167 0.993 ± 0.153 0.992 ± 0.136 0.994 ± 0.126 0.996 ± 0.120

OLSE 1.032 ± 0.240 1.030 ± 0.220 1.027 ± 0.191 1.025 ± 0.172 1.024 ± 0.158 1.020 ± 0.140 1.019 ± 0.129 1.018 ± 0.123

(0.016)

(0.059) (0.049) (0.037) (0.030) (0.026) (0.020) (0.017) (0.017)

(0.028) (0.023) (0.019) (0.016)

(0.055) (0.046) (0.035) (0.028) (0.024) (0.019) (0.016) (0.016)

(0.016)

(0.055) (0.046) (0.035) (0.028) (0.024) (0.019) (0.016) (0.016)

(0.028) (0.024) (0.019) (0.016)

βT=2

(0.055) (0.046) (0.035)

(0.054) (0.045) (0.034)

(0.057)

(0.288) (0.235) (0.173) (0.138) (0.112) (0.090) (0.075) (0.066)

(0.115) (0.094) (0.076) (0.064)

(0.256) (0.207) (0.151) (0.121) (0.098) (0.079) (0.066) (0.058)

(0.058)

(0.254) (0.205) (0.150) (0.120) (0.097) (0.078) (0.066) (0.058)

(0.120) (0.097) (0.078) (0.066)

βT=1

(0.251) (0.203) (0.149)

(0.242) (0.195) (0.144)

(0.266)

(2.512) (1.861) (1.183) (0.906) (0.725) (0.521) (0.408) (0.356)

(0.629) (0.501) (0.377) (0.300)

(2.026) (1.478) (0.921) (0.703) (0.555) (0.412) (0.324) (0.286)
βT=0.5

(1.806) (1.313) (0.817)

(0.545) (0.405) (0.319) (0.281)(1.996)

12 15 18 205 6 8 10

(1.455) (0.906) (0.691)

(0.544) (0.406) (0.320) (0.282)(1.954) (1.431) (0.896) (0.687)

n
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6.4.5 A Bias Correcting Formula for the Proposed Method 

The proposed simple formula for calculating weights in Equation (6-21) is limited to 

small, complete samples. The proposed WLSE method helps to improve the 

efficiency of parameter estimation, which has been justified by the Monte Carlo 

experiment. However, the experiment results also show that the shape parameter 

estimators of the WLSE methods in most cases have larger bias than that of the 

OLSE. The bias is most significant for very small samples. This can be dangerous. 

Therefore, a bias correcting formula is proposed for the proposed WLSE method.  

The modified Hirose’s method presented in Section 5.3.2 for unbiasing the 

OLSE of the shape parameter can also be used for the WLSE of the shape parameter. 

As shown in Figure 6-6, the plot of the bias of the WLS estimated   vs. n presents a 

hyperbolic appearance; therefore, Hirose’s bias model in Equation (5-17) can be 

applied. The process for deriving the five model parameters are same as that presented 

in Section 5.3.2 and is not repeated here. 
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Figure 6-6: Plot of the bias of the proposed WLS estimated 

1,1̂  vs. n. 
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The bias correcting formula for the proposed WLSE of the shape parameter is 

given by 

 





 

432

345.6527.3339.8521.1
986.0ˆˆ

nnnnU                      (6-22) 

This equation can be added in the end of the WLSE procedure described in Section 

6.4.2. 

6.5  Discussions on Large Samples and Censored Samples 

As the proposed WLSE method presented in last section is limited to small, complete 

samples, this section discusses WLSE for large samples and censored samples, 

respectively. 

6.5.1 WLSE for Large Samples 

As previously mentioned, it is difficult to calculate weights by Equation (6-16) and 

then Equation (6-1) when the sample size is large, say 30n . For example, 

MATLAB 7 generates negative values for the weights at 30n , which is obviously 

wrong. A possible solution for large samples is to use one of the intermediate results 

in the process of deriving )( )(iYVar , as shown in Appendix A, i.e.,  
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                      (6-23) 

where zev  . The Simpson rule (Thisted & Thisted, 1988) may be applied to 

calculate the integrals in this equation and finally solve the weights. 
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The F&T’s and Lu et al.’s methods, i.e., Equation (6-10) and Equation (6-14), 

can be used for large samples. However, the accuracy needs to be checked. As shown 

in Faucher & Tyson's (1988) simulation experiment, Equation (6-10) works well at 

100n . Also, Lu et al.'s (2004) simulation experiment showed that Equation (6-14) 

works well at 50n . 

6.5.2 WLSE for Censored Samples 

Censored data are commonly encountered in reliability data analysis and it adds the 

difficulty for parameter estimation. For a censored sample, LSE uses only failure data 

points to conduct regression, and the influence of the censored items is reflected 

through the estimation of )(,
ˆ

jfF , or through the MFON of each failure data point. 

Several methods have been proposed for calculating the MFON for multiply censored 

data, as shown in Section 4.3.2. The JM method, i.e., Equation (4-9), is widely used. 

Like LSE, the WLSE methods can also be applied to multiply censored data; 

however, this is less discussed in the literature. Lu et al. (2004), via Monte Carlo 

simulations, examined several WLSE methods for censored samples of size 20 with 

18 different predetermined censoring patterns. The weights for a complete sample of 

size 20 are selected for the failures in the censored samples based on their event 

numbers and used directly. The authors concluded that the simulation results for 

censored samples are in accordance with those for complete data. Obviously, their 

determination for weights is questionable. The effect of censoring on the failure items 

is not taken into consideration. To apply WLSE to multiply censored data, instead of 

the event number, the MFON of the failure data points should be used. The weights 

for complete samples cannot be directly used for censored samples of the same size.  
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If the MFON of a failure data point is non-integer, its weight might be calculated 

by linear interpolation, i.e., 

  
jjj IntIntjjfIntjf wwIntmww  1)(,, )(                       (6-24) 

where )(, jfm  denotes the MFON of the jth failure and ]int[ )(, jfj mInt   denotes the 

integral part of )(, jfm . For small samples, 
jIntw  can be calculated by Equation (6-21), 

and for large samples, it can be calculated by Equation (6-11) or Equation (6-14). 

Thus, the step-by-step procedures of WLSE applied to multiply censored 

samples are given as follows: 

Step 1: Calculate )(, jfm  and )(,
ˆ

jfF  for each failure data point using the JM 

method, i.e., Equation (4-9). 

Step 2:  Plot the failure times )(, jft  against )(,
ˆ

jfF  on WPP. If the Weibull 

distribution fits, the data points should appear to be on a straight line. 

Step 3: Calculate the weight for each failure data point based on its MFON. If 

the MFON is non-integer, the weight is calculated through linear 

interpolation, i.e., Equation (6-24). 

Step 4: Calculate the estimates for   and   using Equation (6-4). 

6.5.2.1 A Numerical Example 

The following example illustrates the proposed WLSE procedure for a censored 

sample. This data set, as shown in Table 6-6, has been used for several times, see, e.g., 

Campean (2000) and Hastings & Bartlett (1997). Table 6-7 shows the spreadsheet 

used for the calculation of ̂  and ̂ . 
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Table 6-6: A multiply censored data set. 

Unit Failure/Censor Age (hr) 
1 F 112 
2 C 213 
3 F 250 
4 C 484 
5 C 500 
6 F 572 

 

Table 6-7: The calculation spreadsheet (WLSE for a multiply censored sample). 

i
Failure/
Censor

j

1 F 112 0.1094 0.2269 1 1 0.1094 0.2269 4.7185 -2.1556 1.0706 -0.4891 -2.3079 5.0518
2 C 0.2656 0.5761
3 F 250 0.4219 0.9286 2 2.2 0.2969 0.6466 5.5215 -1.0435 3.5702 -0.6747 -3.7255 19.7126
4 C 0.5781 1.2538
5 C 0.7344 1.5013
6 F 572 0.8906 1.5133 3 4.6 0.6719 1.4023 6.3491 0.1083 8.9034 0.1518 0.9641 56.5289

sum 2.2758 13.5442 -1.0120 -5.0693 81.2933

iw
ixjfi ww ,

iy ii xw ii yw iii yxw 2
ii xw)(

ˆ
iF )(,

ˆ
jfF)(, jfmit

 

 

In Table 6-7, )(
ˆ

iF  and iw  are calculated for a complete sample of size 6. The 

Bernard estimator is used for )(
ˆ

iF , i.e., )4.0()3.0(ˆ
)(  niF i . The values of iw  are 

extracted from Table 6-1 but can also be calculated by Equation (6-21). The values of 

)(, jfm , )(,
ˆ

jfF  and iw  are calculated only for failure data points. The calculations are 

shown below. 

Calculation of )(, jfm  (use the JM method) and )(,
ˆ

jfF : 

1)1(, fm , 1094.0)4.06)3.01()4.0()3.0(ˆ
)1(,)1(,  nmF ff  

2.2
14

116
1

1

1

2

)1(,
)1(,)2(, 








 I

mn
mm f

ff , 2969.04.6)3.02.2(ˆ
)2(, fF  

6.4
11

2.216
2.2

1

1

3

)2(,
)2(,)3(, 








 I

mn
mm f

ff , 6719.04.6)3.06.4(ˆ
)3(, fF  

Calculation of iw  by linear interpolation： 

2269.011  ww  
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6466.0)5761.09286.0()22.2(5761.0)()2( 23)2(,22  wwmww f  

4023.1)2538.15013.1()46.4(2538.1)()4( 45)3(,43  wwmww f  

Calculation of parameter estimates: 

ix  and iy  are calculated by )ln( )(, jfi tx   and  )ˆ1ln(ln )(, jfi Fy  . From Equation 

(6-4), the parameter estimates are calculated by 
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6.6  Summary 

In this chapter, a simple formula for calculating the weights to be used in WLSE for 

estimating the two Weibull parameters in the case of small, complete samples of size 

20n  were proposed. Compared to the existing WLSE methods for the Weibull 

distribution, the proposed method has a better statistical foundation because it is based 

on the theoretical deduction of the variance of )(iY . The Monte Carlo experiment 

showed that the proposed method performs closely to the best W method and is 

slightly better than the other WLSE methods and significantly better than OLSE in 

view of the standard deviation and MSE for estimating  . For estimating  , the Lu 
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et al.'s (2004) method performs better than the other WLSE methods and OLSE; 

however, it performs inferior to the other WLSE methods for estimating  . The bias 

of ̂  of the proposed WLSE method is larger than that of the OLSE; therefore, a bias 

correcting formula is proposed using the modified Hirose’s method.   

The WLSE method for multiply censored data was also proposed, where the 

weights can be calculated by the modified failure order number. When the MFON is 

non-integer, the weight can be calculated by linear interpolation. A numerical 

example clearly illustrated the proposed WLSE procedure for censored data. 
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Chapter 7 

Robust Regression Estimation Methods  

 

This chapter presents a study of using robust regression methods to estimate the 

Weibull parameters. The robust M-estimation method is proposed and compared with 

OLSE and MLE via Monte Carlo simulations. Both the case of small data sets with 

outliers and the case of data sets with multiply censoring are considered. Simulation 

results show that the proposed method is an effective method in reducing bias and it 

performs well in most cases with or without outliers.  

7.1  Introduction 

The quality of data is very important in parameter estimation. Complete data with 

large sample size are always preferred to achieve a high accuracy on parameter 

estimation. Unfortunately, reliability engineers often face the problem of small data 

sets or data sets with censors. In addition, it is also common to have extremely early 

or late failures in life testing experiments. These harsh data conditions may lead to the 

estimators of the Weibull parameters, obtained by the traditional methods such as 

MLE and LSE, to be significantly biased.  

In the previous chapter, we have examined the efficiency of the WLSE methods 

over the OLSE method on Weibull parameter estimation. The proposed WLSE 

method assumes there is no uncertainty on the failure time so that the weights used 

are theoretically optimal. Obviously, this is seldom true for field data. Field data may 

have some outliers, e.g., extremely early or late failures, caused by readout error or 
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irrelevant failure modes, etc. As is well known, the robust regression techniques are 

good alternatives to the least squares technique when outliers present in a data set. By 

replacing the LS regression with the robust regression, we call the estimation method 

the robust regression estimation method.  

This chapter is organized as follows. Section 7.1.1 and Section 7.1.2 present the 

general knowledge including the definition of outliers, types of outliers and common 

robust regression techniques. Six robust regression techniques and the OLS technique 

are summarized in a table and compared. Section 7.1.3 overviews the related work of 

applying robust regression techniques for Weibull parameter estimation. There is very 

limited work on this topic. Section 7.2 studies the possible outlier configurations of 

the Weibull samples and presents an important finding which narrows the selection of 

the robust regression techniques for Weibull parameter estimation. Then, as a 

preliminary study, the robust M-estimation method is proposed and examined in 

details, as shown in Section 7.3 and Section 7.4. The simulation results may provide 

useful information on the use of the robust M-estimation method. Some of the work 

has been published in Zhang et al. (2006).  

7.1.1  Concepts of Outliers  

It is not easy to give a mathematically precise definition of an outlier, but there is a 

commonly used rule, i.e., a point that is at least three or four standard deviations from 

the center of the data set is considered an outlier (Ryan, 1997). For example, if ix  is 

suspected as an outlier in a sample, we can exclude it first and calculate the sample 

mean x  and sample standard deviation s  of the remaining data points, then calculate 

a standardized value sxxi   for ix . If this value is large (e.g., > 4), then ix  can be 
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considered as an outlier. Outliers can have many causes, for example, data-entry or 

recording error. It can also occur because it is truly from another population, or it may 

present an atypical observation. In general, outliers caused by errors should be 

discarded from analysis. 

Outliers can be classified based on the direction of outlying. Outlying can occur 

in the X-axis direction only, Y-axis direction only, or both axes directions 

simultaneously. Such a point is called an X-outlier, a Y-outlier or an X&Y-outlier, 

respectively. Figure 7-1 illustrates the three types of outliers. 

 

X

Y 
Y-outlier 

X 

Y

X-outlier 

 

 

X

Y 

X&Y-outlier 

 
Figure 7-1: Three types of outliers. 
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7.1.2  Common Robust Regression Techniques 

Robust regression techniques are good alternatives to LS that can be appropriately 

used when there is evidence that the distribution of the error term is (considerably) 

nonnormal, and/or there are outliers (Ryan, 1997). These techniques aim to reject or 

limit the influence of the outliers in a sample in order to provide a better fit to the 

majority of the data points.  

Robust regression techniques have a large family. Typical ones include least 

absolute value (LAV) (Schwarz, 1987), least median of squares (LMS) (Rousseeuw, 

1984), least trimmed squares (LTS) (Ruppert & Carroll, 1980), Huber’s M-estimation 

(Huber, 1973), generalized M-estimation (GM-estimation) (Hampel et al., 1986) and 

MM-estimation (Yohai, 1987). These methods are distinguished by their objective 

functions and can be assessed by several properties, e.g., efficiency, breakdown point, 

etc. A brief description and comparison of these methods are given in Anderson & 

Schumacker (2003). Table 7-1 presents a summary of six commonly used robust 

regression techniques including LAV, LMS, LTS, M-estimation with unbounded 

influence function, M-estimation with bounded influence function or GM-estimation, 

and MM-estimation, together with the OLS technique on several aspects. The table 

shows the objective functions of each method, their breakdown points (i.e., the 

smallest fraction of contamination that can cause an estimator to take on values 

arbitrarily far from its true value), the outlier configurations that they can be applied 

to, their drawbacks, and their availability in the common statistical software packages. 
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Most RR methods have both advantages and disadvantages. Some methods, e.g., 

LAV, are not good at dealing with X-outliers. Although robust regression methods 

usually are computation intensive, many of them are available in common statistical 

software packages such as S-PLUS, SAS, MATLAB and STATA. For example, S-

PLUS 7 has a robust regression library including methods of LMS, LTS and MM-

estimation (S-PLUS 6 Robust Library User’s Guide, 2002). MATLAB 7 has the 

functions for calculating M-estimators with different weight functions available 

(Statistics Toolbox for Use with MATLAB, User’s Guide Version 5, 2004).  

The RR methods are still emerging nowadays and it is impossible to examine all 

of them for estimating the Weibull parameters. On the other hand, since the 

performance of a RR method is closely related to the outlier configuration, a blind 

examination of all RR methods should be avoided. In Section 7.2, the special outlier 

configuration of the Weibull samples is presented. With this finding, some of the RR 

methods can be excluded from examination.  

7.1.3  Related Work 

Few papers can be found on the use of RR methods to estimate the Weibull 

parameters. Lawson et al. (1997) examined the M-estimators (the authors use the term 

“ML-estimators”) for Weibull samples under four outlier conditions: with no outlier 

or influential data point, with outliers in the right tail area, with outliers in the left tail 

area, and with two or more near neighbors along the X-axis. Different weight 

functions for the M-estimators were examined including Huber, Andrews, Hampel 

and Ramsey (Huber, 1973; Andrews et al., 1972; Hampel et al., 1986; Ramsay, 1977) 

via Monte Carlo simulations. OLSE was also included in the simulation experiment. 

The comparisons were made on two aspects: model statistics and parameter 
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estimation. The authors concluded that the robust M methods always perform better 

or at least equally well than OLS in terms of fitting on the probability plot, judged by 

three model statistics: 2R , ErrorMS  and F-statistic. The Andrews’ and the Ramsay’s 

weights are recommended. For parameter estimation, however, the authors found not 

much difference between M-estimators and OLSE, especially for samples with tail 

area outliers. This result is disappointing as we expect robust regression methods to 

perform better. Considering the authors only used three sample sizes and 1000 

iteration in their simulation experiments, it is possible that the results are incomplete. 

In this chapter, we focus on the comparison of the robust M-estimators (with bounded 

influence functions) with the OLS estimators on Weibull parameter estimation via 

intensive simulation experiments. 

7.2  Special Outlier Configuration of Weibull Samples 

As previously mentioned, there are three types of outliers based on the direction of 

outlying: X-outlier, Y-outlier and X&Y-outlier. Sometimes all three types of outliers 

can happen in a sample; however, for the Weibull sample, this is not the case. As is 

well-known, the X-axis of the WPP represents the measured values or observations t  

(i.e., failure time) from a life testing experiment or field. The Y-axis of the WPP 

represents the cumulative probability of failure )(tF  at each failure data point. With 

the use of some non-parametric estimator for )(tF , the plotting positions along the Y-

axis are independent of the values of t  along the X-axis and can be treated as known 

constants. Therefore, there is no outlying in the Y-axis direction. In other words, there 

should be no Y-outliers and X&Y-outliers. Such condition, according to Ryan, (1997), 

is called fixed regressor case.  
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This special condition for Weibull samples violates the use of some RR methods 

that are only robust to the Y-outliers, such as LAV and M-estimation with unbounded 

influence function. However, LMS, LTS, M-estimation with bounded influence 

functions (or GM-estimation) and MM-estimation are robust to X-outliers so that they 

are the potential candidates for examination. As a preliminary study, this chapter 

presents the study of M-estimation methods with different bounded   functions. The 

theoretical background of this type of method is presented in the next section. 

In the following, for simplicity, the M-estimators refer to the M-estimators with 

bounded influence functions.   

7.3  Robust M-estimators of the Weibull Parameters 

7.3.1 Estimating Equation 

The M-estimation of Weibull parameters belongs to the simple linear regression 

context. Let’s consider a simple linear regression model iii eBxAy  ; for 

simplicity, the matrix form is used here, i.e., iii ey  x , where  ii x1x  and 











B

A
 . As is known, the objective function of the LS estimators is given by  

  
 


n

i

n

i
iii ey

1 1

22 min)(min x   (7-1) 

The idea of M-estimation is simply to replace the squared residuals 2
ie  by 

another function of the residuals, thus the objective function of an M-estimator is 
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  
 


n

i

n

i
iii ey

1 1

)(min)(min  x   (7-2) 

where   is typically a symmetric, positive-definite function with a unique minimum 

at zero. The maximum likelihood estimator is a special case when )(ln)( efe   

(or )(log)( efe  ) and hence the name “M-estimation” is used. 

To solve Equation (7-2), the normal way is to differentiate the sum of   with 

respect to the two regression coefficients and set the results to zero. This gives  

 0)(or0)(
11

 


n

i
ii

n

i
iii ey xxx    (7-3) 

where   is the first derivative of  , i.e., ded  .   is called the influence 

function and it measures the influence of a data point on the value of the parameter 

estimate. Besides being a bounded function,   should satisfy that the robust estimator 

is unique. To meet this, the residuals need to be standardized by a robust estimate of 

their scale, denoted by e̂  . Thus the estimating equation becomes 

 0)ˆ(
1




n

i
ieie x   (7-4) 

where the median absolute deviation (MAD) is often used for calculating e̂  and the 

formula is  )ˆ(ˆ4826.14826.1ˆ iie emedianemedianMAD  .     

Define a weight function as eeew /)()(  , thus Equation (7-4) becomes 

 0)ˆ(
1




ii

n

i
ei eew x   (7-5) 
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Different functions for )(e  and )(ew  (or )(e ) have been proposed. Table 7-2 

lists some of them. The Huber’s (Huber, 1973) and Tukey’s biweight (also known as 

bisquare) (Beaton & Tukey, 1974) functions are two common choices. 

Table 7-2: Typical   functions and weight functions used in the M-estimation method. 

 

 

The estimating equation, Equation (7-4) or Equation (7-5), can be solved by the 

iteratively reweighted least squares method (see, e.g., Holland & Welsch, 1977). The 

procedure of the method is summarized as follows. 
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Step 1: Select the initial estimates, for example, using the least squares 

estimates. 

Step 2:   Compute the residuals.  

Step 3:   Calculate weights and solve the weighted least squares estimates. 

Step 4:   Recalculate the residuals. 

Step 5:   Repeat Steps 3 and 4 until the estimates convergence. 

Same as OLSE, the robust M-estimation methods enjoy graphical presentation, 

i.e., the WPP. The Weibull shape parameter is the slope of the regression line 

generated by the robust regression method.  

7.3.2 Practical Application with Statistical Software 

Since the estimating equation of the M-estimation method has to be solved iteratively 

until the convergence is reached, the computation can be highly complicated; 

however, this is not a big problem nowadays as several statistical software packages 

have functions or dialogs of various robust M-estimation methods. MATLAB 7 is 

used in this study and it has a function, robustfit, to generate the M-estimates directly. 

The syntax (Statistics Toolbox for Use with MATLAB, User’s Guide Version 5, 2004) 

is given by 

   ),,,(robustfitstatsb, tunewfunyx   (7-6) 

The left side of the equation is the output, where b returns the M-estimates of the 

regression coefficients, stats is optional and it includes several statistical measures 

such as the standard errors of the coefficient estimates. The right side of the equation 

is the input, where for the estimation of Weibull parameters, tx ln  and 
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 )ˆ1ln(ln Fy   should be provided, same as in the OLSE method. wfun is the 

weight function; by default the bisquare weight is used but we are free to change it to 

‘andrews’, ‘cauchy’, ‘fair’, ‘huber’, ‘logistic’, ‘talwar’ and ‘welsch’. Tune is the 

tuning constant related to the weight function and it has a default value for each of 

them.   

Besides MATLAB, the robustreg procedure in SAS 9 and the rreg command in 

STATA 11 can also be used to generate M-estimates for a data set with no difficulty. 

SAS 9 provides ten weight functions and the bisquare weight is still the default one. 

STATA 11, however, does not offer the selection of the weight functions and use the 

bisquare only. 

7.3.3 Numerical Examples 

Example 1 (A Complete Data Set with An Extremely Early Failure) 

In this example, ten fatigue specimens were put on test and all tested to failure. The 

failure times in hours are as follows: 150, 50, 250, 240, 135, 200, 240, 150, 200, and 

190. This data set is used in Abernethy (2000) but we modified the second 

observation to 50 to generate an extremely early failure. Early failures are very 

common in life testing and it can be caused by many reasons, for example, the 

experiment conditions are unstable at the beginning, or the failure is caused by other 

failure modes that are not of concern.  

The robust M-estimation method (with the bisquare weight) and the OLSE 

method were used to estimate the shape parameter for this data set, and the results are 

3.781 and 2.123, respectively. Figure 7-2 is the WPP for the data set, where the 

regression lines are generated by the two methods. It can be seen that the first data 
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point (which can be considered as an outlier) moves the OLS regression line toward it 

while the M-estimation regression line is nearly unaffected by it and fits the other data 

points well. The OLSE method results in the highly over-estimated shape parameter 

estimate. 
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Figure 7-2: A numerical example to compare OLSE and robust M-estimation with WPP in the 

case of complete data. 

 

Example 2 (A Multiply Censored Data Set) 

Censored data often add difficulty to parameter estimation, even if there is no outlier. 

This sample, as shown in Table 7-3, was randomly generated from the Weibull 

distribution with 5.1and1000   . 

Table 7-3: A computer-generated multiply censored example (“F” denotes failure and “C” 
denotes censor).  

54.6 1077.6 831.4 134.4 172.8 1749.5 189.7 1385.5 820.6 13.2
C C F C C F F C F C

685.7 578.8 596.1 1182.4 1081 497.7 375.4 2008.5 951.5 135.1
F C C C F C C F F C  
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The robust M-estimation method (with the bisquare weight) and the OLSE 

method were used to estimate the shape parameter for this data set, and the results are 

1.307 and 0.927, respectively. Figure 7-3 shows the WPP. As can be seen from the 

plot, the first failure data point in this sample is far from the others, and it moves the 

OLS regression line toward it. The M-estimation regression line is less affected by 

this point and fits the majority of data points well. The OLSE method results in a 

under-estimated   for this sample. 
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Figure 7-3: A numerical example to compare OLSE and robust M-estimation with WPP in the 

case of censored data. 

7.4  Monte Carlo Study of the Robust M-estimators of the 

Shape Parameter 

Monte Carlo simulation experiments have been carried out to compare the 

performance of the OLSE and the robust M-estimation methods on parameter 
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estimation when dealing with small, complete data sets with outliers, and multiply 

censored data sets. Different weight functions including bisquare, Andrews, Cauchy 

and Welsch, were examined for the robust M-estimation methods. The selection of the 

four weight functions comes from their popularity and availability in MATLAB 7. 

The MLE method is also included in the comparison due to its wide application.  

As shown in Section 7.2, it only makes sense to have X-outliers for Weibull 

samples. Given this, four outlier configurations were generated in this experiment 

including one left tail X-outlier, one right tail X-outlier, two left tail X-outliers and two 

right tail X-outliers. The method to generate samples with these types of outliers is as 

follows: Firstly, generate a random, complete Weibull sample following the first two 

steps in the procedure described in Section 3.3.1; Secondly, calculate the standard 

deviation of this sample; Finally, to generate one left/right tail X-outlier, shift the 

first/last failure data point in the original sample four standard deviations (of the 

original sample) to the left/right in the X-axis direction, or, to generate two left/right 

tail X-outliers, simultaneously shift the first/last two failure data points in the original 

sample in such way.  

Because multiply censored data often have large scatter and involve influential 

points, it is less important to further add X-outliers to the randomly generated 

samples. It is expected that, if the robust M-estimation methods perform well when 

there is no real outliers, it will surely perform well when there are. 

The setting of experiment factors is given in Table 7-4. For each combination of 

the simulation factors, for example, 1T , 5.0T , 5n  and complete sample 

with one left tail X-outlier, 10000 random samples were generated and parameter 

estimates were obtained from OLSE, four M-estimation methods, and MLE. The 
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results of the shape parameter estimators are the focus of this experiment. The mean, 

standard deviation and MSE of the parameter estimates were calculated and analyzed. 

The experiment was executed in MATLAB 7. Simulation results are presented in the 

following sections for complete data and censored data, respectively. 

Table 7-4: Setting of experiment factors. The experiment is to examine robust M-estimators and 
compare them with OLSE and MLE. 

Factors Values 

T  1 

T  0.5, 1, 2, 4, 10 

n 
5, 6, …, 10, 15, 18, 20, 25, 30 (for complete data) 
10, 20, 30, 50, 80, 100 (for censored data) 

c 20%, 40%, 60%, 80% 

Outlier type left tail X-outliers and right tail X-outliers 

M 10000 

Methods M-estimation methods (bisquare, Andrews, Cauchy and Welsch), OLSE, MLE 

 

7.4.1 Simulation Results for Complete Samples with Outliers    

General Observations 

1)  The four M-estimators associated with different weight functions including 

bisquare, Andrews, Cauchy and Welsch perform similar.  

2)   The comparison result for the outlier configuration type one left X-outlier is 

similar to that of one right X-outlier, and the result for two left X-outliers is 

similar to that of two right X-outliers. 

Based on the above two observations, the simulation results are only partially 

tabulated, as shown in Table 7-5 and Table 7-6. M-estimator with the bisquare weight 

function is selected to represent the performance of the robust M-estimator, and the 

results for the outlier configurations of one left X-outlier and two left X-outliers are 
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omitted. The omitted results will not affect the following conclusions which can be 

observed from the tabulated values.  

Simulation Results for Data Sets with One X-outlier (Table 7-5) 

1)    M-estimator performs best in view of bias among the three estimators in 

most times except when 10,4T  and 6,5n . MLE performs best when 

10,4T  and 6,5n . 

2)    Compare to OLSE, M-estimator has smaller bias in almost all combinations 

of n  and T . The differences in bias between the two estimators are small 

at 6,5n , but become significant as n  and T  increase. OLSE is highly 

biased at all sample sizes when 10T , while the bias of the M-estimator is 

within 5% when 10T  and 8n . At all T , the bias of the M-estimator 

is within 10% when 10n . The differences in MSE between the two 

estimators are small when 2,1,5.0T , but the MSE of the M-estimator is 

much smaller when 10,4T  and 8n .  

3)    Compare to MLE, M-estimator is significantly better when 1,5.0T  and 

10n  in view of both bias and MSE.  

4)    The bias of all the estimators is decreasing with the increase of sample size. 

However, the bias is inconsistent with T . 
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Table 7-5: Simulation results of ̂  for complete samples with one right tail X-outlier: the values 

of )ˆ()ˆ( 1,11,1  SE  and )ˆ( 1,1MSE  (in parentheses). 

Method 5 6 8 10 15 20 30

0.291 ± 0.314 0.403 ± 0.140 0.421 ± 0.133 0.438 ± 0.120 0.453 ± 0.105 0.462 ± 0.093 0.470 ± 0.080

0.289 ± 0.314 0.404 ± 0.150 0.441 ± 0.182 0.456 ± 0.155 0.465 ± 0.127 0.470 ± 0.106 0.475 ± 0.086

0.944 ± 0.786 1.023 ± 0.220 1.020 ± 0.191 1.018 ± 0.172 1.012 ± 0.140 1.012 ± 0.123 1.012 ± 0.123

0.627 ± 0.218 0.652 ± 0.203 0.719 ± 0.199 0.775 ± 0.190 0.847 ± 0.179 0.874 ± 0.166 0.914 ± 0.148

0.626 ± 0.220 0.658 ± 0.227 0.859 ± 0.421 0.910 ± 0.370 0.941 ± 0.283 0.932 ± 0.227 0.948 ± 0.179

1.445 ± 0.789 1.343 ± 0.620 1.222 ± 0.433 1.172 ± 0.362 1.112 ± 0.257 1.073 ± 0.202 1.050 ± 0.156

1.436 ± 0.155 0.934 ± 0.293 1.080 ± 0.283 1.217 ± 0.283 1.436 ± 0.284 1.557 ± 0.277 1.704 ± 0.264

1.436 ± 0.156 0.959 ± 0.342 1.674 ± 0.875 1.927 ± 0.735 1.914 ± 0.541 1.905 ± 0.449 1.913 ± 0.356

2.430 ± 0.771 2.678 ± 1.184 2.436 ± 0.831 2.352 ± 0.717 2.223 ± 0.513 2.155 ± 0.411 2.099 ± 0.315

3.270 ± 0.112 1.145 ± 0.415 1.373 ± 0.408 1.593 ± 0.424 2.073 ± 0.456 2.403 ± 0.465 2.875 ± 0.460

3.270 ± 0.113 1.162 ± 0.443 3.434 ± 2.033 3.861 ± 1.367 3.813 ± 1.026 3.813 ± 0.882 3.836 ± 0.700

4.449 ± 0.769 5.323 ± 2.373 4.896 ± 1.767 4.647 ± 1.399 4.388 ± 0.992 4.302 ± 0.823 4.207 ± 0.643

1.562 ± 0.653 1.521 ± 0.530 1.647 ± 0.546 1.855 ± 0.604 2.460 ± 0.754 3.064 ± 0.879 4.224 ± 1.023

1.565 ± 0.656 1.527 ± 0.538 9.873 ± 4.339 9.820 ± 3.469 9.554 ± 2.615 9.538 ± 2.232 9.543 ± 1.726

14.337 ± 7.327 13.286 ± 6.058 12.225 ± 4.453 11.704 ± 3.487 11.008 ± 2.536 10.775 ± 2.094 10.477 ± 1.551

(0.029) (0.024) (0.018)

(0.815)

βT=0.5

OLSE

M-estimator 
(bisquare)

MLE

βT=1

OLSE

M-estimator 
(bisquare)

MLE

βT=2

OLSE

M-estimator 
(bisquare)

MLE

βT=4

OLSE

M-estimator 
(bisquare)

MLE

βT=10

OLSE

M-estimator 
(bisquare)

MLE

(0.010) (0.007)

(0.143) (0.032) (0.036) (0.026) (0.017) (0.012) (0.008)

(0.142)

(0.037) (0.030) (0.020)

(0.013)

(0.017) (0.017)

(0.186) (0.162) (0.119) (0.087) (0.056) (0.043) (0.029)

-(0.049)

(0.188) (0.168) (0.197) (0.145) (0.083) (0.056) (0.035)

(0.820) (0.502) (0.237) (0.160) (0.079) (0.046) (0.027)

(0.343) (1.222) (0.926) (0.694) (0.399) (0.273) (0.158)

(0.343) (1.202) (0.873) (0.545) (0.299) (0.211) (0.135)

(0.778) (1.861) (0.880) (0.638) (0.313) (0.193) (0.109)

(0.546) (8.326) (7.068) (5.973) (3.921) (2.767) (1.476)

(0.546) (8.253) (4.451) (1.887)

(0.794) (7.383) (3.923) (2.376)

(34.414)

(1.087) (0.812) (0.518)

(1.134) (0.769) (0.457)

(7.448) (4.987) (2.634)

(71.586) (72.079) (18.844) (12.065)

(72.496) (47.501) (24.780) (15.060)

n

(7.038) (5.196) (3.187)

(71.620) (72.171) (70.074) (66.707) (57.421) (48.875)

 

Simulation Results for Data Sets with Two X-outliers (Table 7-6) 

1) M-estimator performs best among the three estimators when 5.0T  and 

15n  in view of both bias and MSE. 

2) M-estimator outperforms the OLSE in view of both bias and MSE in almost 

all combinations of n  and T , even when 6,5n . The differences between 

the two estimators increase as T  increases.  

3) Both OLSE and M-estimator perform badly when 10T  and 20n , and 

their bias and MSE are much larger than those of the MLE. As the sample 

size increases, say at 30n , however, the bias and MSE of the M-estimator 
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is comparable to those of the ML estimator, but those of the OLSE is still 

unacceptable. 

4) MLE is better than the two linear regression methods in most cases, 

especially when sample size is small, say 20n . 

5) The bias of all three estimators decreases as the sample size increase. 

However, the bias is inconsistent with T . 

 

Table 7-6: Simulation results of ̂  for complete samples with two right tail X-outliers: the values 

of )ˆ()ˆ( 1,11,1  SE  and )ˆ( 1,1MSE  (in parentheses). 

Method

0.374 ± 0.091 0.408 ± 0.084 0.421 ± 0.081 0.428 ± 0.081 0.441 ± 0.075 0.449 ± 0.071

0.377 ± 0.106 0.425 ± 0.115 0.445 ± 0.117 0.452 ± 0.114 0.460 ± 0.100 0.465 ± 0.090

0.584 ± 0.179 1.023 ± 0.220 1.020 ± 0.191 1.018 ± 0.172 1.012 ± 0.140 1.012 ± 0.123

0.583 ± 0.132 0.686 ± 0.135 0.729 ± 0.131 0.749 ± 0.131 0.791 ± 0.129 0.826 ± 0.123

0.604 ± 0.171 0.840 ± 0.279 0.908 ± 0.266 0.923 ± 0.248 0.932 ± 0.217 0.940 ± 0.185

1.167 ± 0.350 1.106 ± 0.257 1.093 ± 0.227 1.077 ± 0.207 1.059 ± 0.181 1.047 ± 0.158

0.782 ± 0.201 0.987 ± 0.212 1.085 ± 0.221 1.142 ± 0.229 1.267 ± 0.227 1.362 ± 0.216

0.816 ± 0.265 1.640 ± 0.591 1.851 ± 0.512 1.888 ± 0.484 1.911 ± 0.414 1.913 ± 0.377

2.329 ± 0.694 2.215 ± 0.511 2.177 ± 0.447 2.161 ± 0.421 2.126 ± 0.359 2.100 ± 0.324

0.910 ± 0.282 1.179 ± 0.322 1.329 ± 0.351 1.423 ± 0.363 1.673 ± 0.388 1.868 ± 0.402

0.905 ± 0.307 2.431 ± 1.340 3.354 ± 1.218 3.643 ± 1.000 3.820 ± 0.815 3.824 ± 0.731

4.663 ± 1.418 4.427 ± 1.014 4.356 ± 0.891 4.302 ± 0.803 4.250 ± 0.726 4.192 ± 0.641

1.295 ± 0.275 1.408 ± 0.337 1.525 ± 0.397 1.600 ± 0.430 1.842 ± 0.523 2.069 ± 0.606

1.286 ± 0.273 1.651 ± 1.275 3.504 ± 3.215 5.251 ± 3.756 8.500 ± 2.893 9.381 ± 1.972

11.675 ± 3.506 11.063 ± 2.521 10.821 ± 2.203 10.755 ± 2.048 10.601 ± 1.780 10.490 ± 1.583
(5.528) (4.767) (3.530) (2.745)

(52.540) (36.658) (10.619) (4.271)

(71.978) (70.752) (66.823) (63.267)

βT=10

OLSE
(75.856) (73.934)

M-estimator 
(bisquare) (76.010) (71.338)

MLE
(15.096) (7.487)

(0.922) (0.736) (0.590) (0.448)

(1.902) (1.128) (0.697) (0.565)

(7.256) (6.771) (5.565) (4.708)

βT=4

OLSE
(9.627) (8.060)

M-estimator 
(bisquare) (9.673) (4.259)

MLE
(2.450) (1.211)

(0.231) (0.203) (0.145) (0.115)

(0.285) (0.247) (0.180) (0.150)

(0.886) (0.788) (0.588) (0.454)

βT=2

OLSE
(1.525) (1.072)

M-estimator 
(bisquare) (1.471) (0.479)

MLE
(0.590) (0.308)

(0.060) (0.049) (0.036) (0.027)

(0.079) (0.067) (0.052) (0.038)

(0.091) (0.080) (0.060) (0.045)

βT=1

OLSE
(0.191) (0.117)

M-estimator 
(bisquare) (0.187) (0.103)

MLE
(0.150) (0.077)

(0.037) (0.030) (0.020) (0.017)

(0.017) (0.015) (0.012) (0.009)

(0.013) (0.012) (0.009) (0.008)

βT=0.5

OLSE
(0.024) (0.016)

M-estimator 
(bisquare) (0.026) (0.019)

MLE
(0.039) (0.049)

n
10 15 18 20 25 30

 

7.4.2 Simulation Results for Censored Data 

The simulation results for censored data are presented in Table 7-7. The following 

conclusions can be observed. 



 Chapter 7 Robust Regression Estimation Methods  

218  

1)    In general, M-estimator performs better than OLSE in view of both bias and 

MSE.  

2)    In view of both bias and MSE, M-estimator and OLSE perform better than 

MLE in most conditions.  

3)    MLE performs slightly better than the M-estimator when 2T  and 

30n , and significantly better when 10T . M-estimator and OLSE 

perform badly when 10T . The increase of sample size does not improve 

their performance. 

4)    The estimator of MLE deteriorates as the censoring level increases, but the 

estimators of OLSE and M-estimator are inconsistent with the censoring 

level. 

 

Table 7-7: Simulation results of ̂  for multiply censored samples, generated by robust M-

estimation, OLSE and MSE: the values of )ˆ()ˆ( 1,11,1  SE  and )ˆ( 1,1MSE  (in parentheses). 

c Method

0.908 ± 0.227 0.927 ± 0.192 0.948 ± 0.154 0.963 ± 0.125 0.973 ± 0.113

0.943 ± 0.238 0.966 ± 0.200 0.991 ± 0.158 1.008 ± 0.130 1.021 ± 0.118

1.123 ± 0.234 1.094 ± 0.183 1.069 ± 0.134 1.055 ± 0.102 1.052 ± 0.091

0.930 ± 0.269 0.945 ± 0.216 0.970 ± 0.176 0.988 ± 0.143 0.994 ± 0.132

0.958 ± 0.288 0.971 ± 0.229 1.001 ± 0.187 1.022 ± 0.153 1.029 ± 0.141

1.195 ± 0.300 1.148 ± 0.217 1.121 ± 0.159 1.103 ± 0.120 1.096 ± 0.108

0.971 ± 0.339 0.976 ± 0.268 0.999 ± 0.216 1.014 ± 0.177 1.023 ± 0.161

0.988 ± 0.361 0.995 ± 0.283 1.018 ± 0.226 1.034 ± 0.187 1.044 ± 0.169

1.298 ± 0.408 1.233 ± 0.291 1.191 ± 0.205 1.166 ± 0.156 1.158 ± 0.138

1.111 ± 0.621 1.057 ± 0.410 1.053 ± 0.312 1.053 ± 0.247 1.059 ± 0.226

1.111 ± 0.621 1.057 ± 0.415 1.066 ± 0.326 1.065 ± 0.257 1.071 ± 0.234

1.524 ± 0.779 1.395 ± 0.497 1.313 ± 0.341 1.262 ± 0.241 1.251 ± 0.211

(0.139) (0.079)

(0.882) (0.403) (0.215)

(0.070)

(0.066)

(0.116)

(0.255)

n

(0.127) (0.107)

20 30 50 80 100

MLE

M-estimator 
(bisquare) (0.398) (0.172) (0.092) (0.056) (0.046)

(0.052) (0.044)

80%

OLS
(0.398) (0.171) (0.100) (0.064) (0.054)

MLE

M-estimator 
(bisquare) (0.111) (0.062) (0.035) (0.018) (0.013)

(0.072) (0.046) (0.031) (0.026)

MLE
(0.128) (0.069) (0.040) (0.025) (0.021)

(0.037) (0.016) (0.003) (0.002)
40%

OLS
(0.078) (0.050) (0.032) (0.021) (0.017)

M-estimator 
(bisquare)

(0.042) (0.023) (0.013) (0.011)

M-estimator 
(bisquare) (0.049) (0.038) (0.010) (0.009) (0.004)

(0.060) (0.042) (0.026) (0.017) (0.014)

20%

OLSE

MLE

60%

OLS
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7.5  Summary 

Robust regression methods provide another alternative to OLS to fit the regression 

line on WPP. Common robust regression methods can be easily applied with many 

statistical software packages.  

The results of this study indicated that the robust M-estimator of the Weibull 

shape parameter almost always outperforms the OLS estimator for small, complete 

samples with one X-outlier or two X-outliers in the right or left tail. The differences in 

bias between the M-estimator and OLSE become significant as n  and T  increase. 

For samples with one X-outlier, M-estimator performs best in most cases except at the 

combinations of very large T  and very small n. For samples with two X-outliers, the 

M-estimator performs best when 1T , while the ML estimator is the best in most 

cases, especially when the sample size is very small and T  is very large. Finally, for 

multiply censored samples, M-estimator also performs better than OLSE in view of 

both bias and MSE, and they perform better than MLE in most cases. In general, M-

estimator outperforms OLSE and thus should be recommended for use. 

The robust regression methods are highly dependent on the outlier 

configurations, and may not provide better estimates than OLSE even when outliers 

exist in the samples. We recommend that the OLSE and RRE methods should be used 

always with WPP to judge their performance. 
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Chapter 8 

A Procedure for Implementation of Linear Regression 

Estimation Methods and Case Studies 

 

This chapter presents a procedure which serves the purpose to guide the practitioners 

on the selection of linear regression estimation methods, among those discussed in 

this thesis, for different types of data. Case studies are provided to further illustrate 

the application process. 

8.1  Introduction 

As mentioned in the beginning of this thesis, the analysis of life data is complex 

because different types of data require different approaches of processing. This is 

particularly true for parameter estimation. Accurate parameter estimates contribute to 

an appropriate model for life data, and the parameter estimation results can directly 

affect other aspects of life data analysis and hence have great impacts on reliability-

related activities and even business decisions. Therefore, the selection of parameter 

estimation methods is very important in life data analysis. 

In the previous chapters, various linear regression estimation methods for the 

Weibull distribution have been presented. The step-by-step procedures were provided 

for these methods so that there is no difficulty to apply them if the practitioners are 

told which method to use. In this chapter, some suggestions on the selection of the 

estimation methods, among those discussed in this thesis, under different data 

conditions, are presented. Three case studies are also presented for illustration. 
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Different from the numerical examples in the previous chapters, which are mostly 

computer generated, here the cases selected are more like from the real conditions. 

8.2  Implementation Procedure on the Use of Linear 

Regression Estimation Methods   

A flowchart is proposed to illustrate the process for selecting an appropriate linear 

regression estimation method, as shown in Figure 8-1. The foundation of this chart is 

the results, both analytical and experimental, presented in the previous chapters. It 

mainly serves the purpose to provide accurate shape parameter estimates because the 

shape parameter is usually more important than the scale parameter. The process is 

described as follows.  

The process begins when one have a data set consisting of several observations, 

i.e., failure times and censoring times. First, draw a WPP for this data set to check 

whether the data are Weibull distributed. Note that WPP is a simple model validation 

tool and may not be accurate. If the majority of data points do not nicely form a 

straight line, before reject the Weibull distribution assumption, it is necessary to use 

specially designed goodness-of-fit tests, e.g., Chi-Square goodness-of-fit, to check 

again.  

If there is no doubt on the Weibull distribution assumption, then use the WPP to 

check whether there are outliers or influential points in the sample. The judgment, 

however, is subjective. If we suspect there are one or more outliers, the RRE methods 

should be used for parameter estimation. It is not recommended to remove the outliers 

or influential points from analysis because data are precious and every data point 

conveys information.  
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If there are no outliers or influential points in the sample, check whether this is a 

complete sample or a multiply censored sample. Note that the sample can also be a 

singly Type I or Type II censored sample, and it is suggested that the same procedure 

for multiply censored data be applied to singly censored data, because singly censored 

data can be treated as a special case of multiply censored data. For multiply censored 

samples, the selection of estimation methods mainly depends on the censoring level of 

the sample. It is suggested that LS Y on X with the HJ estimator, i.e., the OLSE 

method, be used for a highly censored sample ( %50c ), and LS X on Y with the JM 

estimator for a lowly censored sample ( %50c ). This is based on the simulation 

results presented in Section 4.4.3.  

On the other hand, if the sample is a complete sample, the selection of estimation 

methods is based on the sample size. If it is a small sample with 10n , the OLSE 

method is recommended; if 10n , LS Y on X with the Ross estimator or LS X on Y 

with the Bernard estimator is recommended. For small samples with 20n , the 

WLSE methods can also be used as a supplementary. 

It is important to point out that the flowchart is mainly based on the examination 

results on the bias, standard deviation and MSE of the linear regression estimators. 

Therefore, it is correct in the long run but may not be correct for a single Weibull 

sample. In fact, no estimation method can always provide accurate point estimates for 

any sample. Facing this problem, it is important to improve data collection methods 

including data recording, instrumentation calibrations, etc., and try to reduce the 

scatter of data, eliminate outliers or identify the causes for them.  
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Figure 8-1: Flowchart on the selection of linear regression estimation methods. 
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8.3  Case Studies 

8.3.1 Case Study 1: Life of Compressor (Complete Data) 

This case study examines the life of compressors. The source of data is in the work of 

Moss (2005). 

Scenario: Four large, identical, horizontal reciprocating compressors were 

monitored over a period for piston/liner failures. Since both piston and liner were 

replaced after failure, the lifetimes observed were treated as a complete sample. For 

each compressor, the failure times were recorded for five times as shown in Table 8-1. 

Table 8-1: Original data of case study 1. 

Compressor 1st failure 2nd failure 3rd failure 4th failure 5th failure
A 3600 3803 630 4001 7010
B 4200 4710 4600 1902 3808
C 2408 3018 1650 4926 2415
D 3003 5405 3609 5909 2806  

 

Analysis: All the failure records are merged to form a complete sample of size 

20. As this is a complete sample, the selection of the estimation methods is based on 

the sample size. According to the flowchart in Figure 8-1, LS X on Y with the Bernard 

estimator or LS Y on X with the Ross estimator can be used to estimate the 

parameters. Table 8-2 tabulates the calculation spreadsheet and below the table the 

calculations of the estimates are presented. OLSE and MLE were also used for this 

sample and the comparison of estimation results are shown in Table 8-3. Figure 8-2 

shows the WPP with the straight line fit by LS X on Y (Bernard).  

For this sample, LS Y on X (Ross) and LS X on Y (Bernard) provide similar 

parameter estimates for the shape parameter, and the WPP shows a good fit. 
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Table 8-2: Parameter estimation of case 1: the calculation spreadsheet. 

i

1 630 0.03 0.03 6.45 -3.35 -3.57 41.55 11.25 -21.62 -23.04
2 1650 0.08 0.08 7.41 -2.44 -2.52 54.89 5.96 -18.09 -18.70
3 1902 0.13 0.13 7.55 -1.95 -2.00 57.01 3.81 -14.74 -15.11
4 2408 0.18 0.18 7.79 -1.61 -1.64 60.63 2.59 -12.53 -12.80
5 2415 0.23 0.23 7.79 -1.34 -1.37 60.68 1.80 -10.44 -10.64
6 2806 0.28 0.27 7.94 -1.12 -1.14 63.04 1.24 -8.86 -9.02
7 3003 0.33 0.32 8.01 -0.92 -0.94 64.12 0.85 -7.37 -7.51
8 3018 0.38 0.37 8.01 -0.75 -0.76 64.20 0.56 -5.98 -6.09
9 3600 0.43 0.42 8.19 -0.59 -0.60 67.05 0.34 -4.81 -4.90

10 3609 0.48 0.47 8.19 -0.44 -0.45 67.10 0.19 -3.59 -3.67
11 3803 0.52 0.52 8.24 -0.30 -0.31 67.96 0.09 -2.44 -2.51
12 3808 0.57 0.57 8.24 -0.16 -0.17 67.98 0.03 -1.32 -1.38
13 4001 0.62 0.62 8.29 -0.03 -0.03 68.80 0.00 -0.22 -0.27
14 4200 0.67 0.67 8.34 0.11 0.10 69.60 0.01 0.90 0.85
15 4600 0.72 0.72 8.43 0.24 0.24 71.13 0.06 2.05 2.01
16 4710 0.77 0.77 8.46 0.38 0.38 71.53 0.15 3.25 3.22
17 4926 0.82 0.82 8.50 0.53 0.53 72.29 0.29 4.55 4.52

18 5405 0.87 0.87 8.60 0.70 0.70 73.88 0.50 6.05 6.04

19 5909 0.92 0.92 8.68 0.91 0.91 75.42 0.83 7.90 7.90
20 7010 0.97 0.97 8.86 1.22 1.22 78.41 1.48 10.76 10.78

sum 161.97 -10.89 -11.41 1317.24 32.02 -76.55 -80.32

)(it 2
ixBernardiF ),(

2
, Bernardiy Bernardii yx , Rossii yx ,Bernardiy , Rossiy ,RossiF ),( ix
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Table 8-3: Comparison results of different estimation methods (case study 1). 

OLSE LS X  on Y  (Bernard) LS Y  on X  (Ross) MLE

4248.33 4257.19 4194.85 4121.75
2.13 2.21 2.24 2.64

̂
̂  
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Figure 8-2: WPP of case 1. The straight line is fit by the LS X on Y (Bernard) method. 
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8.3.2 Case Study 2: Life of Capacitor (Multiply Censored Data with a 

Low Censoring Level) 

The scenario of this example is described in Tobias & Trindade (1995) without 

providing observations. The experiment was slightly modified and a data set which is 

Weibull distributed with 1000T  and 1T  was randomly generated.  

Scenario: An experiment was carried out to test capacitors on fixtures mounted 

in ovens. Assume the test started with 20 capacitors in four ovens, each containing 5 

units. The units were subject to a fixed high voltage and high temperature. All units 

are expected to be tested to failure, however, at 250hr, the experimenter found one of 

the ovens malfunctions, causing all further data in this oven invalid. The other ovens 

and units continued till all of them failed.  

Analysis: The experiment output is a multiply censored data set with a censoring 

level %25c  (5 censors in 20 observations). Since the censoring level is low, 

according to Figure 8-1, LS Y on X with the JM estimator or LS X on Y with the HJ 

estimator is preferred to estimate the parameters. Table 8-4 tabulates the the 

calculation spreadsheet and below the table the calculations of the estimates are 

presented. Table 8-5 shows the estimation results from five methods including LS Y 

on X with the HJ estimator and the JM estimator, LS X on Y with the HJ estimator and 

the JM estimator, and MLE. As can be seen, LS X on Y with the JM estimator 

provides very accurate estimate for the shape parameter for this sample. Figure 8-3 

shows the WPP with the straight line fit by this method. MLE tends to overestimate 

  while HJ tends to underestimate . This can be dangerous because 1 , 1  

and 1  represent different failure modes.  
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Table 8-4: Parameter estimation of case 2: the calculation spreadsheet. 

i
Failure/
Censor 

Index
1 F 62.29 1.00 0.03 0.05 4.13 -3.35 -3.02 17.07 9.12 -13.86 -12.48
2 F 75.07 2.00 0.08 0.10 4.32 -2.44 -2.30 18.65 5.30 -10.54 -9.94
3 F 104.99 3.00 0.13 0.14 4.65 -1.95 -1.87 21.66 3.50 -9.08 -8.70
4 F 184.73 4.00 0.18 0.19 5.22 -1.61 -1.55 27.24 2.42 -8.40 -8.11
5 F 185.49 5.00 0.23 0.24 5.22 -1.34 -1.30 27.28 1.70 -7.00 -6.80
6 F 209.76 6.00 0.28 0.29 5.35 -1.12 -1.09 28.58 1.19 -5.96 -5.82
7 F 219.22 7.00 0.33 0.33 5.39 -0.92 -0.90 29.05 0.81 -4.96 -4.87
8 F 225.13 8.00 0.38 0.38 5.42 -0.75 -0.73 29.34 0.54 -4.04 -3.98
9 C 250.00

10 C 250.00
11 C 250.00
12 C 250.00
13 C 250.00
14 F 999.95 9.63 0.46 0.46 6.91 -0.49 -0.49 47.72 0.24 -3.40 -3.38
15 F 1126.22 11.25 0.54 0.54 7.03 -0.26 -0.26 49.37 0.07 -1.84 -1.86
16 F 1398.03 12.88 0.62 0.61 7.24 -0.04 -0.05 52.46 0.00 -0.31 -0.37
17 F 1528.17 14.50 0.70 0.69 7.33 0.17 0.16 53.76 0.03 1.28 1.17
18 F 1708.08 16.13 0.78 0.77 7.44 0.40 0.38 55.40 0.14 2.99 2.82
19 F 1741.19 17.75 0.86 0.85 7.46 0.66 0.62 55.69 0.39 4.92 4.65
20 F 1897.15 19.38 0.94 0.92 7.55 1.01 0.94 56.97 0.88 7.59 7.09

sum 90.66 -12.04 -11.48 570.23 26.32 -52.63 -50.59

)( it JMjfm ),(, JMjF ),( HJjF ),( ix 2
ixJMiy , HJiy ,
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Calculation of Estimates by LS Y on X (JM) 
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Calculation of Estimates by LS X on Y (HJ) 
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Table 8-5: Comparison results of different estimation methods (case study 2). 

LS Y  on X  (HJ) LS X  on Y  (HJ) LS Y  on X  (JM) LS X  on Y  (JM) MLE

1044.56 960.07 1028.29 932.97 915.78

0.84 0.93 0.90 1.01 1.07

̂

̂  
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Figure 8-3: WPP of case 2. The straight line is fit by LS X on Y with the JM estimator. 

8.3.3 Case Study 3: Life of Radio (Type II Censored Data with a High 

Censoring Level) 

The source of this case study comes from the work of Lawson et al. (1997).  

Scenario: 20 radios were placed in an environment test chamber and tested until 

8 radios failed. Cycles-to-failure data were collected. Based on similar product 

history, the distribution is assumed to be Weibull. 

Analysis:  This data set is a singly Type II censored data set. The censoring level 

is 60%, which is a high censoring level. For censored data of high censoring levels, 
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the flowchart in Figure 8-1 suggests the method of LS Y on X (HJ), i.e., OLSE, be 

used. Table 8-6 tabulates the calculation spreadsheet and below the table the 

calculations of the estimates are presented. The calculation for the estimates of LS Y 

on X (JM) is also presented. Figure 8-4 shows the WPP for both methods. 

The estimates of the two methods are close. Since we do not know the true 

parameter values, it is hard to judge which one is better. On the other hand, from the 

WPP, it can be observed that the first data point is suspicious to be an outlier, 

indicating the robust regression estimation methods should be used.  

Applying robust M-estimation (bisquare) to this data set, the estimation results 

are: 33.1ˆ,21.1284ˆ   . Figure 8-5 shows the WPP with straight lines fit by LS Y 

on X (HJ) or OLSE and the robust M-estimation (bisquare). It can be seen from the 

figure that the robust regression line is less affected by the first data point. 

Table 8-6: Parameter estimation of case 3: the calculation spreadsheet. 

i

1 260 0.03 0.05 5.56 -3.35 -3.02 30.92 11.25 9.12 -18.65 -16.79
2 265 0.08 0.10 5.58 -2.44 -2.30 31.13 5.96 5.30 -13.62 -12.84
3 300 0.13 0.14 5.70 -1.95 -1.87 32.53 3.81 3.50 -11.13 -10.67
4 305 0.18 0.19 5.72 -1.61 -1.55 32.72 2.59 2.42 -9.20 -8.89
5 425 0.23 0.24 6.05 -1.34 -1.30 36.63 1.80 1.70 -8.11 -7.88
6 545 0.28 0.29 6.30 -1.12 -1.09 39.70 1.24 1.19 -7.03 -6.86
7 620 0.33 0.33 6.43 -0.92 -0.90 41.34 0.85 0.81 -5.92 -5.80
8 870 0.38 0.38 6.77 -0.75 -0.73 45.81 0.56 0.54 -5.05 -4.97

sum 48.12 -13.48 -12.78 290.79 28.06 24.57 -78.73 -74.72

HJjF ),(JMjF ),()(it ix JMiy , HJiy ,
2
ix JMii yx , HJii yx ,
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,HJiy2

,JMiy
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Figure 8-4: WPP of case 3. The straight lines are fit by LS Y on X (JM) and LS Y on X (HJ). 
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Figure 8-5: WPP of case 3. The straight lines are fit by OLSE and M-estimation (bisquare). 
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Chapter 9 

Conclusions and Future Work 

 

9.1  Conclusions 

This thesis explored a group of linear regression estimation methods for the Weibull 

distribution. LSE is the basic method in this group which is traditionally considered 

simple but inaccurate. The LSE method in the general sense has the flexibility on the 

selection of failure probability estimators and the regression direction. We defined the 

OLSE method which uses the most widely used failure probability estimators (i.e., the 

Bernard estimator for complete data and the HJ estimator for censored data), and the 

regression direction of Y on X. Due to the simplicity, the OLSE method is widely used 

by Weibull practitioners. On contrary, it has been less discussed by researchers 

compared to other analytical estimation methods such as MLE. 

The statistical properties of the OLS estimators of the Weibull scale and shape 

parameters were carefully studied via both theoretical analyses and Monte Carlo 

simulation experiments. In the theoretical analyses, firstly, we showed that the 

parameter estimators of OLSE are not BLUE given that the variance of errors cannot 

be constant and the covariance of errors is correlated. Secondly, assuming the Y-axis 

plotting positions are pre-determined and can be treated as fixed values, we deduced 

the analytical expressions of the bias of the OLS estimators as a function of the Y-axis 

plotting positions. Thirdly, we proved that  /ˆ  and )/ˆln(ˆ   , whose distributions 

are independent of   and  , of the LS estimators are two pivotal functions. This 
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applies to both complete data and censored data. The first pivotal function  /ˆ  is 

the theoretical foundation of the proposed bias correction methods (Chapter 5). In 

addition, we pointed out that the two pivotal functions have great impact on the 

Monte Carlo experiments described throughout this thesis. First of all, the functions 

can be used to check the reliability of the simulation results. Second, the functions 

provide theoretical support for simplifying the setting of the true parameter values of 

T  and T  in the simulation experiment and hence save much effort in the 

simulation. Since it is difficult to identify the distributions of the estimators of OLSE 

or other linear regression estimation methods via analytical approaches, the Monte 

Carlo method was used frequently to study the properties of the estimators. The 

simulation results for the OLSE of the shape and scale parameters for complete data 

and multiply censored data at different sample sizes and censoring levels were 

tabulated. We found that for complete data, the OLSE of the shape parameter is 

inconsistent with sample size n  and the bias reaches smallest at 76 n . During 

3010  n , the bias keeps around 4%. For multiply censored data, the bias of the 

OLS shape parameter estimator is inconsistent with the censoring level c  and reaches 

smallest at different combinations of n  and c , e.g., %30c  and 200150 n , 

%40c  and 150100 n , %50c  and 10080 n , %60c  and 6050 n , 

and %70c  and 3020 n . For estimating  , the results are unsatisfactory when 

1T , but the bias generally decreases as T  increases. We also found that the 

magnitude of the standard deviation of both estimators of OLSE is much larger than 

the magnitude of the bias in most cases, indicating that improving the efficiency of 

OLSE is important. 
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Some arguments were made on the procedure of the OLSE method. A frequently 

discussed issue toward LSE among Weibull researchers is the estimation of failure 

probability, also known as the determination of Y-axis plotting positions. We 

summarized the existing estimators of F  for complete data and censored data, 

respectively, and divided them into different categories. Two tables were provided for 

easy references. These estimators were compared in terms of several aspects including 

the theoretical foundation and the application simplicity. Then, the properties of the 

LS estimators with different estimators of F  used in the regression, were examined 

via the Monte Carlo simulation experiment. We focused on those relatively new 

estimators of F  proposed in the last decade including the Ross estimator (Ross, 

1994), the Drap-Kos estimator (Drapella & Kosznik, 1999), the age sensitive 

estimator (Hastings and Bartlett, 1997) and the RRR estimator (Wang, 2001, 2004). 

The simulation results showed that for complete data, the Bernard estimator 

outperforms the Ross estimator or the Drap-Kos estimator for estimating the shape 

parameter only when 10n  in view of the bias. The Ross estimator or the Drap-Kos 

estimator can generate nearly unbiased ̂  when 10n . However, we also found that 

the Ross estimator or the Drap-Kos estimator cannot improve the estimation 

efficiency. The simulation results for censored data showed that JM, ASM and RRR 

are good for samples with low censoring levels, say %50c , and the three methods 

perform similarly. For application simplicity, JM should be used. The simplest 

method HJ was found to perform best for samples with high censoring levels, say 

%50c .  

Another argument of the OLSE procedure is the determination of the 

independent and dependent variables when conducting least squares regression. OLSE 

treats TX ln  as independent variable and  )1ln(ln FY   as dependent variable 
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which is consistent with WPP where the X-axis is t  and the Y-axis is F . However, 

we noticed that in the early literature (see, e.g. Weibull, 1967; White, 1969 and Mann 

et al., 1974) such a setting is reversed. The two methods are named LS Y on X and LS 

X on Y. We compared them in terms of model statistics and parameter estimation. As 

is known, a model comparison and a parameter estimation comparison are two 

different things for Weibull parameter estimation methods. We proved that the two 

regression models of LS Y on X and LS X on Y have same 2R  and the ratio of their 

ErrorMS  equals to 2 . Thus LS X on Y has a smaller errorMS  when 1  and LS Y on 

X has a smaller errorMS  when 1 . This provides a rule for model selection between 

the two when we have information about the value of  . For parameter estimation, 

our simulation results showed that for complete samples, LS Y on X is recommended 

for estimating   for very small samples, say 10n , and LS X on Y is recommended 

for estimating   for medium to large samples, say 30n . For censored samples, LS 

Y on X is recommended for estimating   for samples with high censoring levels 

( %50c ), and LS X on Y is recommended for estimating   for samples with low 

censoring levels ( %50c ). For estimating  , LS X on Y is recommended for both 

complete and censored samples. 

In view of the bias of the OLSE of the shape parameter, we proposed several 

simple bias correcting formulas which can be used in the end of the OLSE procedure. 

The bias correcting formulas were determined based on the modeling of the unbiasing 

factors. In the case of complete data, the modified Ross’ method and the modified 

Hirose’s method were proposed. The simulation results showed that the proposed 

methods reduce bias to less than 1% and typically less than 0.5%. The bias correction 

for the OLSE of the shape parameter was also examined for multiply censored data. 
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We found that due to the inconsistency of the OLS shape parameter estimator, it is 

difficult to propose a general model of the bias as a function of the sample size and 

censoring level. However, when the censoring level is low ( %50c ) and the sample 

size is within 100, the bias as a function of the sample size and censoring level shows 

good consistency. Therefore, a simple bias correcting formula was proposed that can 

be applied to multiply censored samples with %40c  and 100n . The bias is 

greatly reduced with the proposed formula. 

Besides LSE, the family of linear regression estimation methods also includes 

WLSE and RRE methods. WLSE methods have been studied by some researchers and 

a few weight formulas have been proposed. We proposed a novel formula for 

calculating weights applied to small, complete samples. This formula gives the 

approximated values of the best weights. Theoretically, the proposed formula is more 

accurate than the existing ones because it is based on the analytical deduction of the 

exact values of the variances of predictor variable values. The proposed WLSE 

method was compared with selected WLSE methods in the literature and OLSE for 

estimating the Weibull parameters via Monte Carlo simulations. The results showed 

that it is slightly better than the others and significantly better than OLSE in terms of 

the standard deviation and MSE of the estimators. Given that the shape parameter 

estimator of the proposed WLSE method still has a large bias, a simple bias correcting 

formula was proposed which can be used as an add-on. We also discussed WLSE for 

large samples and censored samples. The proposed formula for weights cannot be 

used for large samples and approximation methods have to be used. For censored 

samples, we suggested to calculate weights by the MFON of each failure data point. 

The step-by-step procedures of the proposed WLSE method applied to censored data 
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were provided and we also presented a numerical example to illustrate the calculation 

process.  

Robust regression techniques are known to be good at dealing with outliers. As a 

preliminary study, we mainly examined robust M-estimation methods (with bounded 

influence functions). We pointed out the special outlier data configuration of the 

Weibull samples, that is, there should be no Y-outliers and X&Y-outliers because the 

plotting positions along the Y-axis in WPP are independent of failure times and can be 

treated as known constants. This makes it unnecessary to examine some of the robust 

regression techniques that are robust only to the Y-outliers. With Monte Carlo 

simulations, we examined robust M-estimators with different weight functions 

(bisquare, Andrews, Cauchy and Welsch) on parameter estimation for complete data 

with one left tail X-outlier, one right tail X-outlier, two left tail X-outliers and two 

right tail X-outliers. We also examined robust M-estimators for multiply censored 

data. The results of our study indicated that the robust M-estimator of the Weibull 

shape parameter is more efficient than the OLS estimator for small, complete samples 

with one X-outlier in the left or right tail, and especially when 1T  and 8n . For 

small complete samples with two X-outliers in the tail, the M-estimator still 

outperforms the OLS estimator. For multiply censored samples, M-estimator performs 

better than OLSE in most cases in view of both bias and MSE and thus should also be 

recommended for use. 

 In the beginning of the thesis we have pointed out that reliability data analysis 

requires different estimation methods for different types of data. We provided a 

flowchart to instruct the use of the linear regression estimation methods discussed in 

this thesis for different types of data. And we used some cases studies to illustrate the 
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process. For all the methods discussed in this thesis, step-by-step procedures were 

provided so that these methods can be easily applied by engineers and practitioners 

conducting Weibull analysis. The proposed methods are of great practical value, but 

there are some assumptions which need to be checked and some problems may be 

encountered in the future. 

9.2  Suggestions for Future Work 

An underlying assumption in this study is that the data is known to be from a two-

parameter Weibull distribution, or it can at least be best modelled by such a 

distribution. This assumption can be roughly checked by WPP. If the data points form 

the approximation of a straight line on WPP, we can say that the assumption is 

satisfied. However, elaborate statistical tests may be necessary to confirm this 

assumption.  

A large portion of the results in this thesis was obtained via Monte Carlo 

simulations. We selected only limited values for the experiment factors including  , 

 , n  and c. Moreover, due to the focus on small samples, n was mainly set to within 

30. Large sample properties of the proposed methods were not carefully examined, 

though we have noticed that the OLSE of the shape parameters is inconsistent with 

the sample size.  

During the presentation of the WLSE methods, a tentative method for calculating 

weights applied to multiply censored data was proposed. Future work could be 

conducted to further investigate this procedure both theoretically and via Monte Carlo 

simulations. In the proposed procedure, the JM estimator was recommended for 

calculating the MFON; however, it would be nice to check other estimators as well. 
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The study of the RRE methods is just a beginning. Besides the robust M-

estimation methods, other robust regression methods could be examined in future 

work. In addition, we considered only tail area outliers in our experiment due to its 

popularity; however, outliers can occur in other places in a sample. Future work could 

be conducted to examine such conditions.   

The shape parameter estimators are the focus of this study and we assumed the 

shape parameter is more important than the scale parameter. There are circumstances 

that people have knowledge about the shape parameter and the scale parameter is of 

more concern. We have found that OLSE can perform badly for estimating the scale 

parameter when the shape parameter is small (within 1). Therefore, future work could 

focus on the scale parameter, e.g., to propose bias correction methods for the scale 

parameter.  

Finally, the linear regression estimation methods could be extended to other 

distributions in the Weibull family such as the three-parameter Weibull distribution, 

the extended Weibull distributions and modified Weibull distributions. The WLSE 

methods, RRE methods and bias correction methods could be proposed for these 

distributions to generate more accurate parameter estimates or improve the estimation 

efficiency. 
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Appendix A 

Derivation of Equations (3-8) – (3-10). 

Based on the CDF and PDF of the reduced variable Z , i.e., 
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Making advantage of the binominal theorem, i.e., 
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which is Equation (3-9). 
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From the definition, 
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which is Equation (3-10). 
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