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Summary

Weibull distribution is one of the most widely used distributions in reliability data
analysis. Many methods have been proposed for estimating the two Weibull
parameters, among which Weibull probability plot (WPP), maximum likelihood
estimation (MLE) and least squares estimation (LSE) are the methods frequently used

nowadays.

LSE is the basic linear regression estimation method. It is frequently used with
WPP to show a graphical presentation. Such a method is preferred by practitioners;
however, it can perform very poorly for some data types. This thesis explores various
refinements of the ordinary LSE (OLSE) method. First, it presents a thorough
examination of the properties of the OLS estimators via both theoretical analyses and
intensive Monte Carlo simulation experiments. Second, it provides suggestions on the
procedure of the OLSE method including the selection of failure probability
estimators and the regression direction. Third, it proposes simple bias correcting
formulas for the OLSE of the shape parameter applied to both complete data and
censored data. Fourth, sophisticated linear regression techniques including weighted
least squares and robust regression are examined to replace the OLS technique for
estimating the Weibull parameters. Finally, it provides application instructions for the

linear regression estimation methods discussed in this study with numerical examples.

This thesis focuses on small samples, multiply censored samples, and samples
with outliers. The proposed linear regression estimation methods are good for dealing
with one or several of these data types. In addition, these methods are based on linear

regression techniques and hence can be easily applied and understood.
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Chapter 1

Introduction

The history of the Weibull distribution can be traced back to 1928, when two
researchers, Fisher and Tippett, deduced the distribution in their study of the extreme
value theory (Arora, 2000). In the late 1930s, a Swedish professor Waloddi Weibull
derived the same distribution and his hallmark paper in 1951 made this distribution
fashionable. In his hallmark paper (Weibull, 1951), Professor Weibull explained the
reasoning of the Weibull distribution through the phenomena of the weakest link in

the chain and he said

The same method of reasoning may be applied to the large group of
problems, where the occurrence of an event in any part of an object
may be said to have occurred in the object as a whole, e.g., the
phenomena of yield limits, statical or dynamical strengths, electrical
insulation breakdowns, life of electric bulbs, or even death of man...

All these words have become accepted as truth. Today, the Weibull distribution
has wide applications in various areas. These applications include using the
distribution to model wind speed, rainfall, flood or earthquake frequency, age of
disease onset, strength of materials, and so on. However, the most extensive use of the
distribution is in life testing and reliability studies, where the Weibull distribution has
been proven to be satisfactory in modeling the phenomena of fatigue and life of many
devices such as ball bearings, electric bulbs, capacitors, transistors, motors and
automotive radiators. Due to its wide application in reliability studies, reliability data

analysis is frequently called Weibull analysis (Wang, 2004).
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The general form of the Weibull distribution has three parameters: the scale
parameter, the shape parameter and the location parameter. In reliability data analysis,
the location parameter is frequently neglected. As pointed out in Dodson (2006), a
non-zero location parameter should not be used unless there is a physical justification
for a time period with a zero probability of failure. This thesis focuses on the
parameter estimation methods for the two-parameter Weibull distribution. Unless
otherwise indicated, the Weibull distribution in this thesis refers to the two-parameter

Weibull distribution.

Reliability data can be obtained from life testing experiments or from the field.
Unlike other data analyses, reliability data analysis is complicated because different
types of data may need different approaches for processing (Liu, 1997). When it
comes to the estimation of the Weibull parameters (assuming the data is Weibull
distributed), no method can always outperform the others for all types of data in view
of the properties of the estimators. Moreover, the commonly used estimation methods
such as the maximum likelihood estimation (MLE) method and the least squares
estimation (LSE) method have been discovered to be unsatisfactory under many
circumstances. The main focus of this thesis is to investigate various linear regression
estimation techniques including LSE for the estimation of Weibull parameters that
aim at different types of life data including small data sets, censored data sets and data

sets with outliers.

This chapter starts with an overview of the Weibull distribution and the physical
meanings of its two parameters in the context of reliability in Section 1.1. The scope
of the Weibull analysis is also briefly presented. Section 1.2 describes the common

types of life data under different classification schemes. Then Section 1.3 presents an
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overview of the existing Weibull parameter estimation methods and their limitations
with the focus on the commonly used ones. Finally, Section 1.4 and Section 1.5

present the scope and the contributions of this thesis, respectively.

1.1 The Weibull Distribution in Reliability Engineering

The cumulative distribution function (CDF) and the probability density function

(PDF) of the Weibull distribution are expressed by

P e
F(r):l—exp{—[gj } (1-1)
£-1 B
f(t>=ﬁ(ij exp{—(ij } (1-2)
o\ (04

where the scale parameter « and the shape parameter £ take on positive values.

In the context of reliability, F'(¢) is the probability that a random unit drawn
from the population fails by time ¢ (¢ >0), or the fraction of all units in the
population that fails by ¢ (Tobias & Trindade, 1995). The complement of F(¢) is the
reliability function, i.e., R(¢) =1— F(¢). From Equation (1-1), the expression for the

Weibull reliability function is

R() = exp _H (1-3)
[04

Other common reliability measures include mean time to failure (MTTF),

percentile life ¢, and failure rate (or hazard rate) A(¢) . Based on the Weibull CDF, the

expressions for these measures are
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MTTF = al"(l + lj (1-4)
B
t, =al-In(l- p)]s (1-5)
f1
Aty = ﬁ(ij (1-6)
a\a

where I'(-) denotes the Gamma function.

All of the above measures are functions of the two Weibull parameters. In the
following, the effects of the scale parameter and the shape parameter on the Weibull

distribution are separately described.

1.1.1 The Scale Parameter

Figure 1-1 shows the PDF plot of the Weibull distribution with different values of «

and a common value of f. As it can be observed, an increase or a decrease in «
while S is kept unchanged has an effect of stretching out the distribution to the right

or pushing in the distribution to the left and it has no effect on the shape of the
distribution. In fact, a change in the scale parameter « is the same as a change of the
abscissa scale. The parameter « has the same unit as ¢, such as hours, miles, cycles,

etc.

From Equation (1-5), when p =0.632, we obtain

loe32 =& (1-7)

Hence o is the time at which 63.2% of the population failed. It is frequently

called the characteristic life.
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Figure 1-1: The effect of a on the Weibull PDF for a common g (# = 3).

1.1.2 The Shape Parameter

The shape parameter S is of great importance to the Weibull distribution because it

determines the shape of the Weibull PDF and characterizes the failure rate trend.
Figure 1-2 shows several typical examples of the Weibull PDF with different values

of £ and a common « . Figure 1-3 illustrates a variety of the failure rate curves with

different values of £ and a common ¢« .

It can be observed from Figure 1-2 that when 0< f <1, the PDF is
exponentially decreasing. At f =1, the Weibull distribution reduces to the
exponential distribution. When £ >1, the PDF is unimodal and skewed to the right.
When 3 < <4, the PDF has a roughly bell-shape which is close to the normal
distribution. Figure 1-3 shows the relationship between £ and failure rate. As it can
be observed, when 0 < f <1, the failure rate is exponentially decreasing (same as the

PDF). At =1, the failure rate is constant and the failure rate A(¢)=1/a. When
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£ >1, the failure rate is monotonically increasing. A special case is when £ =2

where the failure rate is linearly increasing. The distribution is called Rayleigh
distribution. In other cases, the failure rate increases with different rates. Table 1-1

summarizes the typical characteristics of the Weibull PDF and failure rate with

varying f3.

4 p=10

Figure 1-2: The effect of # on the Weibull PDF for a common a (a =1).
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t

Figure 1-3: The effect of £ on the failure rate for a common a (o =1).
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Table 1-1: Typical characteristics of the Weibull PDF and failure rate with varying shape
parameter values.

Shape Parameter PDF Failure Rate

0<p<1 Exponentially decreasing from infinity Exponentially decreasing
p=1 Exponentially decreasing from 1/a Constant

B>1 Rises to peak and then decreases Increasing

B=2 A special case - Rayleigh distribution Linearly increasing
3<p<4 “Normal” bell-shape appearance Rapid increasing

g > 10 Similar to Type I extreme value distribution  Very rapidly increasing

The importance of the shape parameter to the Weibull distribution has been
discussed by many researchers. Wu & Vollertsen (2002a, b) presented detailed
analyses of the Weibull shape parameter in the context of the intrinsic breakdown of
dielectric films. The shape parameter not only decides the characteristics of the
Weibull PDF and failure rate, it also links the Weibull distribution to many other
distributions. For example, the Weibull-to-exponential transformation is a commonly
used method when the shape parameter can be obtained from material property or
other sources (Xie et al., 2000). With this transformation, the simple statistical tests
and analytical methods available for the exponential distribution can be applied to
ease the data analysis for the Weibull distribution. Keats et al. (2000) presented the
effect of the mis-specification of the shape parameter value on the estimation of the
scale parameter, and Xie et al. (2000) extended the analysis to the effect of the mis-
specification of the shape parameter on the estimation of reliability measures such as
MTTF, percentiles and mission reliability. The authors found that it is true that the
mis-specification will greatly affect the scale parameter because the two parameters
are highly correlated; however, the effect on the MTTF, percentiles and mission

reliability could be small.
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1.1.3 The Bathtub Curve

The life cycles of mechanical and electronic units and systems are often described by
the bathtub curve, see Figure 1-4. Based on the behavior of the failure rate, the life of
a unit or system is divided into three periods: infant (or early failure) period, life (or
intrinsic failure) period and wear-out (or aging) period. These periods are
characterized by a decreasing, constant and increasing failure rate, respectively.
Assuming the life distribution is Weibull, the value of the shape parameter can

indicate which period the unit or system lies in. When 0 < £ <1, it is in the infant
period. When £ =1, it is in the life period, and when £ >1, it is in the wear-out
period. The value of £ also indicates the failure mechanism of a unit or system being

early failures, random failures or wear-out failures. Table 1-2 summarizes the

relationship of life periods, failure mechanisms and the values of £.

A

< >< < >
Infant Life period Wear-out

2 . .

g period period

g

=

‘©

LL
0 Time

Figure 1-4: The bathtub curve.

Table 1-2: The relationship of life period, failure mechanism and .

Shape Parameter Life Period Failure Mechanism
0<p <l Infant period Early failure

p=1 Life period Random failure
B>1 Wear-out period Wear-out failure
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As can be seen from Figure 1-3, however, no matter what value of the shape
parameter takes, the Weibull distribution has a monotonic failure rate. This
monotonicity becomes a limitation as some products exhibit more than one stage of
the bathtub curve. The turning point of the failure rate trend is considered a ‘critical’
time and is important (Bebbington et al., 2008). To overcome this, a group of new
distributions have been proposed in the last decade, and these distributions are
commonly named as modified/extended/generalized Weibull distributions. In recent
years, great interests have been put to develop distributions with bathtub-shaped
failure rate functions. A good example can be found in Xie et al. (2002). Murthy et al.
(2004) summarized many of these new distributions and provided details for their
backgrounds, statistical analysis methods, practical applications, etc. Bebbington et al.
(2007) proposed a so-called flexible Weibull distribution which has only two
parameters and is able to model a modified bathtub-shaped failure rate where the
failure rate increases at the beginning and then follows a bathtub curve. Zhang & Xie
(2007) proposed a three-parameter distribution called extended Weibull distribution.
This distribution is very flexible in view of the failure rate function, which can be a
modified bathtub-shaped curve with a first stage increasing, or initialing decreasing
eventually decreasing but with increasing in the middle. Dimitrakopoulou et al.
(2007) proposed another three-parameter distribution which can specially present an
upside down bathtub-shaped failure rate. Pham & Lai (2007) summarized a few
popular Weibull-related models and discussed the issues of parameter estimation and

model validation.
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1.1.4 Scope of the Weibull Analysis

Weibull analysis, or reliability data analysis, commonly involves the following

activities (Abernethy, 2000):

® Plotting the data and interpreting the plot
® Failure forecasting and prediction

® Evaluating corrective action plans

® Maintenance planning

® Spare parts forecasting

® Warranty analysis

® Others

Parameter estimation of the two Weibull parameters often serves as the
preliminary step of the Weibull analysis after samples are collected. Accurate

parameter estimates may greatly affect the accuracy of the subsequent analyses.

1.2 Types of Life Data

The most common classification of life data is based on the life testing experiment
scheme. If all the units are tested to failure, this sample is a complete or uncensored
sample. Otherwise, if the experiment ends before all units fail, this sample is a
censored sample. Censored units are called censors or suspensions and their failure
times are only known to be beyond their present running times (i.e., the censoring
times). If all units are started on the test together and all censors have a common
running time, the data are singly censored. Such data are further classified into time
censored or Type I censored if the test is stopped at a predetermined time, and failure

censored or Type II censored if the test is stopped when a predetermined number of

10
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failures occur. If units begin their services at different times and thus when the test
stops before all units are failed, the censoring times and the failure times are
intermixed, the data are said to be multiply censored. Singly censored data can be
treated as a special case from multiply censored data; however, they are often
examined separately in the Weibull analysis. Besides, there are other types of
censored data, e.g., left censored data, doubly censored data, progressively Type Il
censored data, etc., which are beyond the scope of this study. Figure 1-5 illustrates
four common types of samples including a complete sample, a singly time censored
sample (Type I censored), a singly failure censored sample (Type II censored) and a

multiply censored sample.

Iltem Iltem
A A
1—e@ 1—e
2———O 2—O
3o 3 pb—m—m7m7383@
4 L ] 4 L ]
5 ° 5 | >
6 ° 6 | >
>t b
(a) Complete sample (b) Singly time censored (Type
| censored)
Item Item
A A
11— 1——=
2———O 2—————»
33— o 3 | >
r=4 '
4 L ] 4 L ]
5 | > 5 | &
6 | > 6 °
> t > t
(c) Singly failure censored (d) Multiply censored
(Type Il censored)
® Failure | = Censor (Run-time)

Figure 1-5: An illustration of different types of life data.
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Besides the conventional classification which divides life data into complete data
and censored data, life data can also be classified into different groups based on data
source, sample size and the quality of the data. A summary of the classification is

shown in Figure 1-6.

Life Data

v

Good Quality Data
(no measurement error)
Bad Quality Data
(missing observations, outliers, etc.)

Complete Data Experiment Data Small Data Set

Censored Data Field Data Medium Data Set

Large Data Set

Singly Censored

Data

Multiply Censored
Data

Type I Censored

Type II Censored

Figure 1-6: The classifications of life data based on testing schemes, data source, sample size and
quality of observations.

In view of data source, life data are divided into experiment data and field data.
Based on the number of observations or the sample size, a data set can be classified
into a small, medium or large data set. Normally a data set with no more than 20
observations is considered as a small dataset (Abernethy, 2000). Besides, life data can
be divided into good quality data and bad quality data. Good quality data ideally have
no measurement errors in the observations (i.e., failure time), or the error is small
enough to be neglected; while bad quality data involve outliers, influential points or

missing observations, etc.

Figure 1-6 does not provide an exhaustive classification for life data. For

example, there are other common data types such as group data and interval data

12
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which are not included. Recently, some methods were proposed to estimate Weibull

parameters for interval data, see, e.g., Vittal & Phillips (2007).

Life data have some special characteristics. For example, small data sets and
censored data sets are very common due to time and cost constrains. The increase of
the number of highly reliable systems also leads to the difficulty of collecting failure

data. These data conditions require specially designed data analysis techniques.

Given the perspectives of real applications, small data sets, multiply censored
data and bad quality data with outliers or influential points, are the focuses of this

research.

1.3 Overview of Weibull Parameter Estimation Methods

Since Weibull distribution became widely recognized in the 1950s, many methods
have been proposed for estimating the parameters. Both graphical estimation methods
and analytical estimation methods have been proposed. This section provides an
overview of the existing parameter estimation methods for the Weibull distribution. It
is impossible to list all the related work in the literature, thus the focus is given to

those commonly used methods.

1.3.1 Graphical Estimation Methods

There are mainly two categories of graphical estimation methods for the Weibull
distribution: Weibull probability plotting (WPP) methods and hazard plotting
methods. For a basic understanding of the two methods, see, e.g., Lai & Xie (2006, p.

145), Breyfogle (1992, p. 163) and Nelson (2004, chap. 3 & 4).

13
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Probability plotting for the Weibull distribution was introduced by Kao (1959).
Some discussions on the Weibull probability paper can be found in, e.g., Nelson &
Thompson (1971). White (1969) suggested using some analytic techniques such as
least squares to fit the straight line on the WPP instead of eye-fitting. Cran (1976)
gave several numerical examples of using probability plotting to estimate the Weibull
parameters. The WPP technique has been also used on the modified or extended

Weibull distributions, see, e.g., Murthy et al. (2004).

The related work on WPP has been centered on the determination of the Y-axis
plotting positions. Conventionally, the Y-axis plotting positions on the Weibull
probability paper, which denote failure probabilities or unreliability, are estimated by
some non-parametric estimators of the form (i—c,)/(n+c,) . Professor Weibull
originally used i/(n +1) to obtain the plotting positions (Weibull, 1939). This is then

named Weibull plotting position or Weibull estimator. Theoretically, it is the exact
mean rank plotting position of each data point. The Weibull estimator had been used
for many years until the Bernard estimator became more popular. The Bernard

estimator, i.e., (i—0.3)/(n+0.4) , was proposed by Bernard & Bosi-Levenbach

(1953) as an approximation to the median rank plotting position. It is a good
approximation to the exact median rank value of each data point shown by Mischke
(1979) via analytical methods and Fothergill (1990) via Monte Carlo simulations.
Compared to the mean rank plotting position, one of the good properties of the
median rank plotting position is that it is distribution free (Mischke, 1979; Yu &
Hung, 2001). With Monte Carlo simulations, many researchers, see, e.g., Fothergill
(1990) and Cacciari & Montanari (1991), have compared several plotting positions
including Weibull (Weibull, 1939), Bernard (Bernard & Bosi-Levenbach, 1953),

Hazen (Hazen, 1930), Blom (Blom, 1958), Filliben (Filliben, 1975), etc., on
14
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estimating Weibull parameters for complete samples of different sample sizes. Most
agreement has been achieved on the Bernard estimator and hence it is most widely
used today. Many textbooks on reliability data analysis have adopted the Bernard
estimator as the standard method for estimating failure probabilities, see, e.g., Tobias

& Trindade (1995).

Besides the Weibull estimator and the Bernard estimator, a few other estimators
for failure probability or Y-axis plotting positions were discussed in the last decade.
Ross (1994b) suggested a Y-axis plotting position that he called the expected plotting
position. Two formulas were provided. One is used to calculate the exact expected
plotting position for each data point, which has a complex form, and the other is a

simple approximation to the exact values and the formula is (i —0.44)/(n+0.25).

However, these formulas, especially the simplified one, have not received as much
attention as they should have. Drapella & Kosznik (1999) suggested a similar
approach as Ross’ for calculating Y-axis plotting positions and their formula is
basically same as that of Ross’ for the exact expected plotting position. The formula
has then been cited many times in recent years and is considered to be a bias
correction method for the conventional LSE method, see, e.g., Xie et al. (2000), Yang
& Xie (2003), Hung (2004) and Lu et al. (2004 ). The recent work of Wu & Lu (2004)
and Wu et al. (2006) examined the idea of using different failure probability
estimators for different sample sizes. The authors tabulated the optimal estimators for
certain sample sizes. Tiryakioglu & Hudak (2007), in a similar way, tabulated another
set of optimal estimators for different sample sizes between 9 and 50. However, since
there is no certain pattern in these tabulations, this kind of method is apparently

inconvenient in view of practical application.

15
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The above non-parametric plotting positions are mainly designed for complete
data, though it is not uncommon to see that they are wrongly used for censored data in
the literature. For censored data, to best use the information from all the observations,
new methods are needed to obtain plotting positions. The Kaplan-Meier estimator
(Kaplan & Meier, 1958) is the oldest non-parametric estimator of failure probabilities
applied to censored data. A big disadvantage of the estimator is that the unreliability
for the last failure data point is always 1, and hence it tends to underestimate the
failures in the tail of the distribution. Herd (1960) proposed a method to calculate the
reliability at each failure data point recursively in the case of multiply censored data,
and Johnson (1964) decomposed the Herd’s method into two steps: first is to calculate
the modified failure order number (MFON) of each failure data point and then use the
MFON in the Weibull estimator to estimate the reliability or failure probability. The
combination of their work is commonly known as the Herd-Johnson method. Nelson
once commented the Johnson’s method (Johnson, 1964) as a small and laborious
refinement compared to the original estimator of Herd (Herd, 1960), see, e.g., Nelson
(2004, pp. 147-148). However, the two-step estimation of the failure probability with
the identification of the MFON as the first step gained its popularity in the last decade
as the age sensitive methods were proposed, see, e.g., the age sensitive method of
Hastings & Bartlett (1997) and the exponential age sensitive method of Campean
(2000). More recently, Skinner et al. (2001) and Hossain & Zimmer (2003) modified
the Herd-Johnson method and proposed a simple formula which can directly calculate
the failure probability. Wang (2001, 2004) proposed a so-called refined rank
regression method which is a parametric method and must be solved iteratively.
Despite the calculation complexity, Wang’s method has a good theoretical

background and does not need many assumptions. Although these recently proposed

16



Chapter 1 Introduction

methods have been shown by the authors to outperform the Kaplan-Meier estimator or
the Herd-Johnson estimator, none of them have become popular or widely recognized.
The practitioners have not been aware of them. Therefore, a systematic comparison of
the existing methods in view of parameter estimation for the Weibull parameters will

be useful.

Obviously, the research on the estimation of failure probabilities or the Y-axis
plotting positions in the cases of both complete data and multiply censored data has
not reached a final conclusion. In Section 4.3, a detailed summary on the existing
plotting positions is presented for complete data and multiply censored data,
respectively, and the recommendations are given both from the theoretical point of

view and from Monte Carlo simulation results.

Another graphical estimation method is the hazard plotting estimation method
proposed by Nelson, see, e.g., Nelson (1972, 2004), and it also received many
agreements. Many years ago, the graphical methods were all done manually and the
big advantage of using hazard plotting for censored data is to save human labor
(Breyfogle, 1992). In view of estimation accuracy, however, hazard plotting will
probably not outperform probability plotting because its estimation for the hazard
function (i.e., A(¢) = 1/the reserve rank of each failure data point) is very simple and
there are few alternatives. In contrast, the probability plotting technique has the
variety because of the various plotting positions that can be applied. Obviously, by
changing the plotting positions, the probability plot can achieve a better fit of sample

data then the hazard plot.
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As mentioned, hazard plotting is a simple but less flexible method compared to
WPP. Besides, the programs of WPP are available in many statistical software

packages, e.g., MATLAB 7, and hence WPP is readily applicable.

1.3.2 Analytical Estimation Methods

Analytical estimation methods for the Weibull distribution have a large family.
Typical methods include: method of moment estimation (MME) or modified method
of moment estimation (MMME), maximum likelihood estimation (MLE), least

squares estimation (LSE), method of percentiles and Bayesian estimation method.

Earlier studies have been mainly confined to MLE and MME/MMME. The
references on MME and MMME can be found in Dubey (1966), Mann (1968),
Newby (1980), Arora (2000), etc. It has been found that MLE outperforms
MME/MMME in most cases, see, €.g2., Mann (1968), and MME/MMME is usually
not efficient compared to other methods such as MLE (Murthy et al., 2004, p. 62). In
fact, the MME/MMME methods are seldom discussed by Weibull researchers

nowadays.

MLE, in contrast, is preferred by a majority of Weibull researchers because of its
good statistical perspectives. Cohen (1965) first presented the estimating equations of
the MLE method of the two-parameter Weibull distribution for different types of
samples including complete samples, Type I or Type II singly censored samples and
progressively censored samples (i.e., removing one or more items from life testing at
various times prior to the termination of the test). Harter & Moore (1965) presented
the MLE method of the three-parameter Weibull distribution when all the three

parameters are unknown for complete samples and Type II singly censored samples.
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The existence and uniqueness of the maximum likelihood estimators (MLE) have
been discussed by many researchers. McCool (1970) proved that the MLEs of the
shape and scale parameters always exist and are unique when the location parameter
is known (for example, the two-parameter Weibull distribution). Farnum & Booth
(1997) presented similar results for the MLE applied to complete data and singly
censored data, and introduced a statistic which can be used to get a quick
approximation of the shape parameter estimate. However, the existence and
uniqueness of the MLE does not necessarily apply to the three-parameter Weibull
distribution when all three parameters are unknown, see, e.g., Rockette et al. (1974)

and Hirose (1996).

The large sample properties of the MLE have been extensively studied. Cohen
(1965) presented the information matrix of the MLE of the two Weibull parameters
for complete samples, singly censored samples and progressively censored samples,
respectively. Harter & Moore (1967) presented the maximum-likelihood information
matrix for doubly censored samples from the three-parameter Weibull distribution.

Thoman et al. (1969) proved the existence of the two pivotal functions of the MLE,
ie., ﬁ/ £ and ,5’ In(a/a) , whose distributions are independent of & and £ . With

Monte Carlo simulations, they tabulated the percentage points of the distributions of
the two pivotal functions which can be used to construct confidence intervals and
conduct hypothesis testing regarding the parameters. The authors also pointed out that
the distributions of the two pivotal functions are asymptotically normal and provided
suggestions on the required sample size to apply the large sample theory for MLE.
Billmann et al. (1972) extended the analysis of Thoman et al. (1969) to singly

censored samples and proposed their modified pivotal functions of the MLEs.
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Numerical methods such as the Newton-Raphson method have to be used to
solve the estimating equations of MLE, which were inconvenient at about a half-
century ago, and hence simple and closed form approximations for the MLE have
been proposed, see, e.g., a series of papers by Bain (1972), Engelhardt (1975) and

Engelhardt & Bain (1973, 1974, 1977).

As pointed out by Mann (1967), the MLEs of the Weibull distribution enjoy the
properties of consistency, asymptotic efficiency, asymptotic unbiasedness and
asymptotic normality. In other words, the estimators have outstanding large sample
properties. The small sample properties of the MLEs have become a hot topic since
1990s, and surprisingly, it has been found that the estimators can be highly biased in
the cases of small samples and highly censored samples (see, e.g., Jacquelin, 1993;
Ross, 1994a; Cacciari et al., 1996). Different methods have been proposed to
eliminate or reduce the bias of the ML estimators, especially for the shape parameter

estimator. Ross (1994a, 1996) and Hirose (1999) both based on the pivotal function
,@/ f, proposed simple bias correcting formulas that can be directly applied to the

original ML estimators.

In the meantime, much work can be found that provides analytical or
experimental results on the comparison among different parameter estimation

methods, see, e.g., Cacciari et al. (1996), Montanari et al. (1997a, b, 1998).

In recent years, the related work of MLE is more for the three-parameter Weibull
distribution or the modified/extended Weibull distributions. Abbasi et al. (2006)
proposed a new procedure to solve the MLE of the three-parameter Weibull

distribution.
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Like MLE and MME/MMME, linear order statistics estimation methods have
existed for a long time. A great deal of work emerged during the late 1960s and the
early 1970s, see, e.g., White (1964), McCool (1965), Mann (1967, 1968), D’ Agostino
(1971) and Thoman (1972). A common feature of these methods involves transferring
the Weibull distribution to the extreme value distribution which has a location-scale
form. After the transformation, the estimating equations for the location parameter
(i.e., u=Ina ) and the scale parameter (i.e., o=1/f ) of the extreme-value
distribution can be expressed by the linear combinations of the order statistics of the
transformed observations (i.e., x =In¢ ) and solved. Several estimators with good
statistical properties have been proposed including best linear unbiased estimators
(BLUE) (see, e.g., White, 1964; McCool, 1965), best linear invariant estimators
(BLIE) (see, e.g., Mann, 1967) and nearly best linear unbiased or invariant estimators
(NBLUE or NBLIE) (see, e.g., Thoman, 1972). The estimators of & and £ can be
obtained from the estimators of u and o, respectively, based on the relationships of
u=Ina and o =1/ ; however, since both are of nonlinear relationships, the
estimators of & and S will probably not be unbiased. Moreover, these methods
normally involve one or several reference tables proposed by the respective authors
and a look-up of the reference tables is required upon practical application. This

greatly limits their applications.

The LSE method is basically the analytical version of the WPP method. Like
WPP, it involves the estimation of failure probability at each failure data point. The
related work on the estimation of failure probabilities, or similarly, the determination
of the Y-axis plotting positions, has been described in Section 1.3.1. The LSE method

can also be treated as a special case of the linear order statistics estimation methods.
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LSE is less discussed compared to MLE, MME and other linear estimation methods
and the traditional opinion among researchers considers it as a simple and inaccurate
method (similar to the graphical estimation methods) and it is suggested to provide
the start values of parameters for other more sophisticated estimation methods such as
MLE. However, in the 1990s, some researchers, see, e.g., Montanari et al. (1997a, b,
1998), in their examination of MLE, compared MLE and LSE via Monte Carlo
simulations, and their results showed that the bias of the least squares estimator (LSE)
can be much smaller than the bias of the MLE for estimating the shape parameter for
complete data, singly censored data and multiply censored data. Ross (1999)
presented another intensive comparison between MLE and LSE (with several plotting
positions) and reached the similar conclusion that for estimating the shape parameter,
the performance of the LSE method with either the median rank plotting positions or
the mean plotting positions, is not worse than that of the MLE method in dealing with
small samples, and both are biased. Based on the results, Ross suggested that
ANSI/IEEE Std 930-1987 (IEEE Guide for the Statistical Analysis of Electrical
Insulation Voltage Endurance Data, 1987, sec. 4.1) change the statement that LSE is

less accurate than MLE.

Weighted least squares estimation (WLSE) methods for the Weibull distribution
have been discussed by some researchers. White (1969) briefly described a WLSE
method and gave a numerical example. The weights used in the White’s method are
tabulated for certain sample sizes. This method can be treated as the traditional WLSE
method but the calculation of weights is rather complicated. More recently, Bergman
(1986), Faucher & Tyson (1988), Hung (2001) and Lu et al. (2004) each proposed a
simple formula for calculating weights based on different approaches to approximate

the variances of the predictor variable values. They all demonstrated that their WLSE
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techniques are more efficient than LSE for estimating the Weibull parameters. Lu et
al. (2004) also presented an overview of the WLSE methods, except the traditional
method of White (White, 1969), and compared them via Monte Carlo simulations.
Theoretically, the traditional method has the best statistical foundation while the
‘new’ ones are simpler and more convenient for application. It is necessary to check
the performance of these ‘new’ methods on parameter estimation using the traditional

method as a reference.

Besides LSE and WLSE, Lawson et al. (1997) examined some robust M-
estimators for the Weibull parameters and compared them with the LSEs for complete
and censored data sets with and without outliers. The authors concluded that the
robust M-estimation methods outperform LSE in view of both model statistics and
parameter estimates. With a bunch of existing robust regression techniques, the robust

regression estimation (RRE) methods can be further explored.

Nonlinear estimation methods have also been discussed by some researchers.
Berger & Lawrence (1974), via Monte Carlo simulations, concluded that the
nonlinear regression technique performs similar to, if not worse than, the LSE
method. Somboonsavatdee et al. (2007) pointed out that the graphical estimators

(WPP and LSE) are especially useful with censored data.

Finally, there are other estimation methods such as methods of percentiles, see,
e.g., Seki & Yokoyama (1993), Wang & Keats (1995), Mark (2005), Bayesian
estimation methods, see, e.g., Kaminskiy & Krivtsov (2005), Soliman et al. (2006),
and modified profile likelihood methods, see, e.g., Yang & Xie (2003), Ferrari et al.

(2007).
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1.3.3 Summary and Research Gaps

A summary of the existing parameter estimation methods for the Weibull distribution

is shown in Table 1-3. The methods are divided into two large categories: graphical

estimation methods and analytical estimation methods. Analytical estimation methods

are further divided into five small groups: MME/MMME, MLE, linear order statistics

estimation methods, linear regression estimation methods and others. LSE, WLSE and

RRE are all related to linear regression techniques and hence this category of methods

is named linear regression estimation methods.

Table 1-3: Summary of existing parameter estimation methods for the Weibull distribution.

Category

Methods

Related Work

Graphical
Estimation
methods

WPP

Weibull (1939), Bernard & Bosi-Levenbach (1953),
Kaplan & Meier (1958), Kao (1959), Herd (1960),
Johnson (1964), Weibull (1967), Nelson & Thompson
(1971), Filliben (1975), Cran (1976), Mischke (1979),
Fothergill (1990), Ross (1994b), Hastings & Bartlett
(1997), Campean (2000), Skinner et al. (2001),
Hossain & Zimmer (2003), Wang (2001, 2004), Wu et
al. (2006), Tiryakioglu & Hudak (2007), etc.

Hazard plotting

Nelson (1972, 2004), Breyfogle (1992), etc.

Analytical
Estimation
Methods

MME/MMME

Dubey (1966), Mann (1968), Newby (1980), Arora
(2000), Murthy et al. (2004), etc.

MLE

Cohen (1965), Harter & Moore (1965, 1967), Mann
(1967), Thoman et al. (1969), McCool (1970),
Billmann et al. (1972), Bain (1972), Rockette et al.
(1974), Engelhardt (1975), Engelhardt & Bain (1973,
1974 and 1977), Jacquelin (1993), Cacciari et al.
(1996), Ross (1994a, 1996), Hirose (1996, 1999), ,
Montanari et al. (1997a,b, 1998), Abbasi et al. (2006),
etc.

Linear order statistics
estimation methods (BLUE,
BLIE, NBLUE, NBLIE, etc.)

White (1964), McCool (1965), Mann (1967, 1968),
D’Agostino (1971), Thoman (1972), etc.

Linear regression estimation
methods (LSE, WLSE, RRE)

White (1969), Berger & Lawrence (1974), Bergman
(1986), Faucher & Tyson (1988), Hung (2001),
Lawson et al. (1997), Montanari et al. (1997a,b,
1998), Ross (1994b, 1999), Lu et al. (2004), etc.

Others (nonlinear estimation
methods, method of
percentile, Bayesian
methods, etc.)

Berger & Lawrence (1974), Seki & Yokoyama (1993),
Wang & Keats (1995), Yang & Xie (2003), Kaminskiy
& Krivtsov (2005), Mark (2005), Soliman et al.
(2006), Ferrari et al. (2007), etc.
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As it can be observed from Table 1-3, a majority of the work on Weibull
parameter estimation methods was conducted between 1960 and 1980. However,
many of them are seldom used nowadays such as the traditional MME/MMME
methods and the linear order statistics estimation methods. Recently, Tiryakioglu &
Hudak (2007) pointed out that the moments method should be used only when the
sample size is more than 14 and the shape parameter is larger than 20. The linear
order statistics estimation methods, as mentioned previously, can generate estimators

of u and 0 (u=Ina and o=1/F) with good statistical properties, but the
estimators of & and £ are biased. Besides, the methods in this group are normally

inconvenient in view of practical applications.

The recent work on the Weibull parameter estimation methods has focused on

one or several of the following aspects:

® Bias correction methods

® Estimation based on small samples

® Estimation based on censored data or field data
® Robust estimation methods

® Bayesian estimation methods or others

In fact, WPP, MLE and LSE have become the most popular and widely used
parameter estimation methods for the Weibull distribution. WPP is a graphical
method which can serve as a simple tool for model validation and outlier detection.
MLE 1is considered to have good statistical perspectives and is preferred by
researchers, while WPP and LSE are frequently used by practitioners because of the

simplicity and graphical presentation. For example, LSE is the standard parameter
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estimation method for the Weibull distribution in soil studies (Munkholm & Perfect,
2005). MLE has been intensively examined in the literature, where both large sample
properties and small sample properties of its estimators have been investigated. In the
1990s, some researchers found that the estimators of MLE and LSE are both highly
biased in the cases of small samples and censored samples, see, e.g., Montanari et al.
(1997a, b, 1998), which could raise a warning message. Several bias correction
methods have been proposed for the MLE method, see, e.g., Ross (1994a, 1996) and
Hirose (1999). However, there are no bias correction methods for LSE. Indeed, the
LSE method is less discussed by researchers. Previously we have mentioned that
reliability data analysis requires different approaches for different types of data, and
the group of linear regression methods can satisfy this purpose because, as is well-
known, different regression techniques, such as WLS and robust regression, are good
at handling certain data types. LSE, as the simplest method in the group of linear
regression estimation methods, can be refined or replaced by other methods in the
group to achieve better estimation results. In summary, LSE and other linear
regression estimation methods have good potentials compared to MLE, but little work

has been done to explore them.

1.4 Scope of the Thesis

This thesis focuses on the linear regression estimation methods including LSE for the
Weibull distribution. WPP is presented together with the linear regression estimation
methods because they can be easily combined. The proposed estimation methods are
frequently compared with the MLE method because of its wide application. Other
estimation methods in Table 1-3 such as MME/MMME are beyond the scope of this

thesis.
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Harsh data conditions including small samples, highly censored samples, and/or

samples with outliers are central to this study mainly because they are very common

in the field and they are the recent interests of Weibull researchers.

1.5 Research Objectives and Significance

The purpose of this thesis is to refine the conventional LSE (or ordinary LSE, or

OLSE) method and develop new linear regression estimation methods for the Weibull

distribution to deal with harsh data conditions such as small samples, highly censored

samples, and/or samples with outliers. Several simple methods are proposed that can

be easily applied and understood. The specific aims are listed as follows:

1)

2)

3)

4)

Thoroughly investigate the properties of the OLS estimators of the two
Weibull parameters via both theoretical analysis and intensive Monte Carlo

simulation experiments (Chapter 3).

Provide suggestions on the application procedures of the LSE method
including the selection of failure probability estimator and the regression
direction, applied to complete data and censored data, respectively (Chapter

4).

Propose simple bias correcting formulas for the OLS shape parameter
estimator, applied to small and complete data, and censored data with low

censoring levels (Chapter 5).

Discuss the existing WLSE methods for the Weibull distribution and
propose new methods for calculating weights for complete data and

censored data, respectively (Chapter 6).
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5) Examine various robust regression techniques and develop robust M-
estimation methods for the Weibull distribution to replace OLSE in order to

deal with outliers (Chapter 7).

6) Provide application instructions on the linear regression estimation methods

discussed in this study with numerical examples (Chapter 8).

The LSE method is basically the application of simple linear regression.
Therefore, it is clear that the existing theories and various linear regression techniques
can be applied to improve or replace the LSE method to deal with various data types.
We will examine WLS regression techniques and robust regression techniques. The
step-by-step procedures will be provided for the application of these methods.
Moreover, the names and versions of common statistical software packages that can
be used to obtain quick results will be mentioned. To reduce the bias of the OLSE of
the shape parameter, bias correction methods will be proposed. The proposed simple
bias correcting formulas can be added to the end of the conventional OLSE procedure

to provide more accurate estimates without adding computation complexity.

The results of this study should give researchers a better understanding of the
theories of LSE and other linear regression estimation methods. The proposed
methods will be of great practical value for practitioners conducting reliability data
analysis. Moreover, it may lead to a better understanding of the roles of LSE and

WPP among all existing Weibull parameter estimation methods.
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Basic Weibull Parameter Estimation Methods

This chapter describes three nowadays most widely used parameter estimation
methods for the Weibull distribution, i.e., WPP, LSE and MLE. The theoretical
backgrounds of these methods are presented. Common criteria for comparing

estimation methods and estimators are described.

2.1 Introduction and Notations

Now suppose there is a random sample from a life testing experiment. Assume the
underlying distribution is the Weibull distribution. This sample can be denoted as

Lty ooyt ooy t, (i=12,---,n). Based on the experiment schemes, it can be a

complete sample where all the observations are failures, or it can be a censored
sample where some of the observations are failures and the others are censors. In this
thesis, multiply censored samples are used as the general case for censored life data.

For a multiply censored sample, let Y P YEILI PN TR (j=12,---,r) denote
the failure times and 7. ,,¢.,, "¢, t.,, (k=1,2,---,n—r) denote the
censoring times.

The order statistics of the observations are used in the LSE method since the

failures occur in sequence. Let 7, denotes the i™ smallest failure time in a complete

sample, i.e., f, <, <---<tf, <---<f, . For a multiply censored sample with r

failures and n—r censors, let 7, , denotes the /™ smallest failure time and Lo
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th . .
denotes the £~ smallest censoring time, so ¢, <t <--<f, , <--<f, , and
Loy Sty S Sty <+ <t,,,, - Table 2-1 provides an illustration of the notations

with a numerical example.

Table 2-1: An illustration of the notations with a numerical example.

Notations Notations of the Order Notations of the Order

Failure (F) / ofthe Statistics of the Sample  Statistics of the Sample
Censor (C)  Age Original ~ Without Failure/Censor ~ With Failure/Censor

Unit No Indicator (hour) Sample Indicator Indicator

1 F 290 f £y o

2 C 1000 t, L7 L.

3 F 133 2 Lay Lra

4 F 470 ty L) 3

5 C 500 L L Loy

6 F 700 Ly Ls) Ly

7 C 800 £ Lo L)

The objective of parameter estimation is to estimate & and /£ using sample data.

In the following of this chapter, the theoretical backgrounds and the estimation
equations (except WPP) of three common estimation methods of the Weibull
distribution, i.e., WPP, LSE and MLE, are separately presented in Sections 2.2, 2.3
and 2.4. Finally, Section 2.5 describes the common criteria for comparing different

estimation methods and their estimators.

2.2 Weibull Probability Plot and Y-axis Plotting Positions

WPP is a traditional graphical method for estimating the Weibull parameters.
Proposed by Kao (1959), it is still widely used nowadays for Weibull analysis. WPP,
in addition to providing simple parameter estimates, it serves the purpose of simple
model validation and outlier identification which are very important in any

engineering data analysis.
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WPP is based on the linearization of the Weibull CDF in Equation (1-1). The

linearized Weibull CDF is given by
In[-In(1- F(¢))]= flnt - flna (2-1)

Weibull probability paper is specially scaled based on Equation (2-1) so that it
shows a straight line if the Weibull distribution fits the sample data. Its X-axis
represents the observations ¢ (i.e., failure time) from a life testing experiment or the
field. The Y-axis represents the cumulative probability of failure F(¢). From the
Weibull CDF, the value of F(¢) at each failure data point are unknown without the
values of & and £ and hence can only be estimated. Similar to other probability
plotting methods, for example, the normal probability plotting, non-parametric

estimators of F(¢) with a general form of (i—c,)/(n+c,) are frequently used to
obtain the Y-axis plotting positions. As is well known, (i—3/8)/(n+1/4) (Blom,

1958) is used for the normal probability plotting. As for WPP, the selection of the
method to obtain the Y-axis plotting positions depends on whether the sample is
complete or censored. In the following, the theoretical backgrounds of the commonly
used Y-axis plotting positions covered in the reliability textbooks for complete

samples and censored samples are briefly presented.

Theoretical Backgrounds of Commonly Used Y-axis Plotting Positions on WPP

The complete samples are considered first. A common practice when using
probability theory to analyze the order statistics of random samples from a continuous
distribution (the parent distribution) considers the probability F as uniformly

distributed between 0 and 1, and hence its order statistic F{; has a beta distribution
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with parameters i and n—i+1. The mean and median of this beta distribution are

commonly used for the Y-axis plotting positions. The mean has a simple form, i.e.,

i

E(F,) = (2-2)

n+l1

Professor Weibull originally used Equation (2-2) (Weibull, 1939) and this is then
named Weibull plotting position or Weibull estimator. Theoretically, it is the exact

mean rank plotting position of each data point.

The median of F, is related to the incomplete beta function. It is the solution of

0

l(}/lj‘[ Mediaﬂ(F(i)) pi_] (1 _ p)n—i dp — l (2‘3)
i 2

The exact median values at different combinations of i and n can be obtained using
numerical methods. One can also lookup the standard tables of the percentage points

of the incomplete beta distribution (see, e.g., Gibbons et al., 1999) to get quick results.

The median rank plotting position in Equation (2-3) is more favored than the
mean rank plotting position in Equation (2-2) by Weibull researchers. Simple
approximations have been proposed for the median rank plotting position, among
which the Bernard estimator (Bernard & Bosi-Levenbach, 1953) has been widely used

nowadays. The Bernard estimator is given by

Bernard estimator ﬁ(i) = ﬂ (2-4)
n+0.4

Another popular source for }A?(i) is the Hazen estimator in Equation (2-5). It is

also known as the midpoint probability estimator since it is the middle value of the
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interval from (i —1)/n to i/n (Kimball, 1960). The Hazen estimator is used as the

default method for Y-axis plotting positions in the WPP program of MATLAB 7.

5 _i=05

Hazen estimator W = (2-5)

n

From the theoretical backgrounds of the above estimators (Weibull, Bernard and
Hazen), it is clear that all of them have no relationship with the Weibull CDF. In other
words, these are distribution-free plotting positions. In Section 4.3, plotting positions

related to the Weibull CDF will be presented.

Estimation of the failure probabilities for censored Weibull samples is a
challenge and the above mentioned estimators should not be directly used. It is
important to note that WPP and the group of linear regression estimation methods
discussed throughout this study only plots, or in the analytical cases uses, the failure
times. The influence of censoring can be reflected in the estimation of failure

probability at each failure data point.

Similar to the common estimators of F;, for complete samples, failure
probability estimators that are independent of failure time are frequently used for

censored samples. In the following, let ¥

() denotes the failure probability estimator

A

for the jth failure in a censored sample, i.e., F

oy = F(tf’(j)) . The Herd-Johnson

method (Herd, 1960; Johnson, 1964) is most widely used for estimating failure

probabilities for censored data. It is given by

A n+1-1.) .
Ry = = Ry
Herd-Johnson estimator ' n+2-1,) - (2-6)

1

Froy =1=R; )
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where /; denotes the event number of the ;™ failure in the sample. The occurrence of

A

a failure and a censor are both considered as an event. R, is the supplement of

aY

Fy oy and Ry ) =1.

The theoretical background for the derivation of Equation (2-6) is briefly
described as follows. Assume there is a multiply censored sample of size n in which
r failures (0<r<mn) and n—r censors are intermixed along the time axis. Let
Lt

WLy 5Ly s, denote the ordered observations. We call 7, an event and it can

be a failure event or a censor event. Let Lryslrys sty sl (1S <n) be the
ordered failure events. From the definition of /, one can obtain 7, , =¢,, .
J oL J

Censoring times can lie in one of the intervals constructed by failure times, i.e.,

(O,tf’(l)J, ltf,(j_l),tf’(j)J (I<j<r), and [tf,(r),+oo). The Herd-Johnson method first

assumes that a censor happens concurrently with a failure event, say for example, if

the censoring time lies in the interval [tf’(j_l),tfj( j)J, it is treated as happening at

t . Now consider a censor which occurs at ¢ if allowed to continue the test,

SG-D 1G-n>

it may fail in any of the intervals between two consecutive events (t(i_l),t(i)J, where

Loy 2t or the interval following the final event, denoted by [z, ,+), and there

(- f.G-D>

is a total of n—17, +2 possible intervals. By assuming the probabilities of failing in
any of the intervals are equal, the probability of failing in [tf’( PNy j)J is then
1/ (n—=1,+2) , or the probability of surviving in lt o trs j)J is
(n—1,+1) / (n—1;+2). Applying the multiplication rule of conditional probability,

we obtain
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n—[_/. +1

1 o P Y{T = ff,u—n}
J

PT{TZ’M.;)}: Pr{TZt.ﬂu)‘Tth,(f—l)}'Pr{Tth,u—l)}:

n—1j+1

S R(t,, )=— L —.
trn) n—1,+2

R(tf,(j—l))

A numerical example is given to illustrate the Herd-Johnson method, as shown in

Figure 2-1 and Table 2-2. Figure 2-1 plots the ordered observations in the sample

along a time axis and Table 2-2 shows the calculation of F " at each failure data

point.

%)

Ly 7,0) ! i@
L N AV4 O a74 O Oo—>
t

0 el) e(2) le,3)

Figure 2-1: A numerical example of the Herd-Johnson method: ordered events along a time axis
(“x” denotes failure and “0” denotes censor).

~

X

~

Table 2-2: A numerical example of the Herd-Johnson method: calculation of £ e

A A

teos i _

W) J 1 Rf,( 7 F o))
7-1+1 7 1_l_l

133 1 1 7-1+2 8 8 8
7-2+1 7 6 71 3 31
—_—X—= —X—= — l——=—

290 2 2 7-2+2 8 7 8 4 4 4
7-3+1 3 5 3 5 5 3
—_— X —m= = X — = — 1——:—

470 3 3 7-3+2 4 6 4 8 8 8
o5+l 5 3.5 15 1817

700 4 5 7-5+42"8 4 8 32 32 32

The estimation of failure probability is an important issue that affects both
goodness-of-fit and parameter estimation results. Many researchers have investigated
the issue and different methods have been compared and favored, see, e.g., Fothergill
(1990), Cacciari & Montanari (1991). For censored data, besides the Herd-Johnson

estimator which is a non-parametric estimator, some parametric estimators, see, €.g.,
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Wang (2001, 2004), have been proposed. Although some estimators, e.g., the Bernard
estimator used for complete samples and the Herd-Johnson estimator used for
censored samples, are more frequently used than the others, by now the agreement has
not been reached and the discussion is ongoing. Section 4.3 will further explore the

1ssue.

Application Procedure of WPP

A widely used procedure of WPP is to plot ¢ along the horizontal axis and the

estimated values of F(f), commonly called Y-axis plotting positions, along the

vertical axis, on the Weibull probability paper. As a traditional way, a straight line is
fitted to the points by eye; however, more objective estimates can be obtained by
fitting the straight line via the least squares regression technique. The shape parameter
is then estimated by the slope of the regression line and the scale parameter is
estimated by either the exponential of the ratio of the regression line’s intercept to

slope, or the value of # when F =0.632 (see Equation (1-7)).

WPP can be easily generated by common statistical software packages such as
MATLAB, SAS, S-PLUS and MINITAB. Table 2-3 summarizes the syntax (for
MATLAB and SAS) or dialogs (for S-PLUS and MINITAB) used in these software
packages to generate a WPP and their default straight line fitting techniques,
including the default Y-axis plotting positions, if applicable. As can be seen from the
table, MATLAB 7 uses the LS fit with the Hazen estimator (i.e., Equation (2-5)) for
Y-axis plotting positions by default, S-PLUS 6 provides both LS fit and MLE fit,
while SAS 9 and MINITAB 14 use MLE fit by default. The MLE fit is not traditional
for the WPP; however, has gained some popularity since researchers favor the MLE

method for parameter estimation. If the MLE fit is used, the Y-axis plotting positions
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are directly calculated by the Weibull CDF with the ML estimates of the two Weibull
parameters. The practitioners should be cautious about the MLE fit because it tends to
overestimate the shape parameter for small samples. The use of the Kaplan-Meier
estimator for the Y-axis plotting positions in SAS 9 and S-PLUS 6 is inappropriate. As
mentioned in Section 1.3.1, a big disadvantage of the Kaplan-Meier estimator is that
the unreliability for the last failure data point is always 1, and hence it tends to

underestimate the failures in the tail of the distribution.

Table 2-3: Summary of the syntax or dialogs for generating WPP with common statistical
software packages and their default straight line fitting techniques .

Software & WPP Syntax/Dialog  [WPP Syntax/Dialog for
Version for Complete Data Censored Data Default Straight Line Fitting Techniques References
whlplot(x) probplot(‘weibull', x, cens, Least squares. Default Y -axis plotting position is the Hazen |http://www.mathworks.com/a
MATLAB 7 P freq) estimator (i - 0.5)/n, where n is sample size for complete data |ccess/helpdesk/help/helpdesk.
; and number of failures for censored data html
probplot('weibull', x)
PROBPLOT By default is MLE fit instead of LS fit. If use LS fit, the http://support.sas.com/docum
PROBPLOT . default plotting position is the modified Kaplan-Meier rank, [entation/cdl/en/qcug/59658/H
SAS 9 . . variable<*censor- . . . .
variable</options> . . but we can also use mean rank or median rank (specified in  |[TML/default/rel_intro_sect34
variable(values)></options> . -
options) .htm#qcug_rel_intro_probopt
SPLIDA » Single distribution analysis P Probability |Least squares. Default ¥ -axis plotting position is the Kaplan- .
plot with nonparametric confidence intervals Meier rank. htp:/f v ub.hc.last_ale.edL_l/
S-PLUS 6 ~wqmeeker/splida/SplidaGui.
. T df
SPLIDA » Single distribution life data analyses » . . " . pdl
Probability plot with parametric ML fit Straight line generated by ML estimates.
Graph » Probability Plot (specify Weibull . . . htp://www.minitab.com/en
MINITAB 14 |, .. . Straight line generated by ML estimates. CA/support/answers/answer.a
distribution) 2ID=1331
spx?ID=

MATLAB 7 is used in this study. The default Y-axis plotting positions are
calculated by the Hazen estimator but can be easily changed to other options. Figure

2-2 gives an example of a computer-generated WPP in MATLAB 7.

" Online references: http://www.mathworks.com/access/helpdesk/help/helpdesk.html (MATLAB);
http://support.sas.com/documentation/cdl/en/qcug/59658/HTML/default/rel_intro_sect34.htm#qcug_rel_intro_pro
bopt (SAS); http://www.public.iastate.edu/~wqmeeker/splida/SplidaGui.pdf (S-PLUS);
http://www.public.iastate.edu/~wgmeeker/splida/SplidaGui.pdf (MINITAB).
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Weibull Probability Plot

0.96 - B
+ Data Points

0.90 | OLS fitting

0.75 -

0.50 -

0.25
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0.10 -

0.05 - B

10"

Data
Figure 2-2: An example of a computer-generated WPP in MATLAB 7.

2.3 Least Squares Estimation

The LSE method uses the least squares regression to estimate the two parameters

based on the linearized Weibull CDF in Equation (2-1).

As the conventional way, setting X =In7, Y = ln[— In(1-F )], A=-fIna and

B = [, Equation (2-1) becomes a simple equation, i.e.,

Y=A4A+BX (2-7)
Thus the estimation of & and /£ can be transferred to the estimation of the regression
coefficients for a simple linear regression model of the form ¥ = 4+ BX +e, where

e is the error term.

For a complete data set ¢,,¢,,---,¢,,---,t, , the values of X and Y can be

calculated by
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¥, =In(t,,) and y, = In|-In(1- £,,)]| (2-8)

For a censored data set where RTY FETLELIN P TELEN S denote the failure times,

the values of X and Y can be calculated by

x, =In(t, ;) and y, =In|-In(1— £, )] (2-9)

I

A

The common methods used to obtain the values of }A?([) and F, , have been

described in Section 2.2.

The objective function of the LSE method is

min S =>"[y, —(4+ Bx))] (2-10)
i=l1
where for complete data, » =n.

By taking partial derivatives of S with regard to 4 and B, respectively, and

setting the results to 0, we obtain

i(xi—f)z ) rixiz—(ixijz @-11)

where )_c:ixi/r and f:iyi/r.

i=1 i=1

Based on 4 =—-fIna and B = f, the estimating equation related to o and f

is then given by
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r

. [(xi_)_c)(yi_)_/)] sziyi_zxi'zyi
f = : _ =l i=1 i=1

pACEEI P> -(zxj

i=1

(2-12)

Equation (2-12) can be applied to both complete data and censored data. For complete

data, r=n.

2.3.1 The Ordinary/Conventional LSE Method

There are some uncertainties in the LSE method which makes it inappropriate to
describe LSE by a single equation like Equation (2-12). Firstly, Equation (2-12) is
derived based on the setting of X =InT and Y = In[-In(1- F)]. Another option
appeared in the literature isto set ¥ =In7 and X = ln[— In(1-F )] , 1.e., to reverse the
independent variable and the dependent variable in the regression. This will give
another estimating equation for LSE. Discussions for the regression direction are
presented in Section 4.4. Secondly, even if the conventional setting of X and Y is used,
different methods for calculating F; or y, will result in different estimates for the
parameters. A detailed comparison of the various estimators of the Y-axis plotting

positions on parameter estimation is presented in Section 4.3. Based on the above two

points, in fact, LSE has a family of methods.

According to the common practice, the OLSE method refers to the LSE method
that 1) sets X =In7 and ¥ = ln[— In(1-F )], so that Equation (2-12) is the estimating

equation; and 2) for estimating F', the Bernard estimator in Equation (2-4) is used for
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complete data, and the Herd-Johnson estimator in Equation (2-6) is used for multiply

censored data.

Application Procedure of OLSE

Step 1: Rank failure times from smallest to largest and calculate the estimates

for failure probability at each failure data point. For complete data, use
the Bernard estimator, i.e., Equation (2-4), to calculate ﬁm . For
censored data, use the Herd-Johnson estimator, i.e., Equation (2-6), to

calculate F -

Step 2: Calculate x; and y, . For complete data, use Equation (2-8). For

censored data, use Equation (2-9).

Step 3: Estimate o and [ using Equation (2-12).

2.4 Maximum Likelihood Estimation

MLE is one of the most widely used tools for statistical inference. Cohen (1965)
introduced the maximum likelihood equations for estimating the two Weibull
parameters from complete samples, Type I or Type II singly censored samples and
multiply censored samples, respectively. The likelihood function for complete

Weibull samples is given by
L=Tra) =118 10" Jexpl-(,/a) ] (2-13)
i=1 i=1

Taking logarithm of L, differentiating with respect to ¢ and £ and equating to

0, the estimating equation can be obtained as
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Sif oA (2-14)

The likelihood function for singly censored samples, either Type I or Type II

censored, is given by

L= C{H f(ti)} [=F@pl™

(2-15)
:C{H[(ﬂtf‘l/aﬂ)exp[—ai/a)”]]}eXp[—(n—r)(rT/a)ﬁ]
j=1
where C is a constant. For Type I censoring, ¢, is the predetermined time of

termination, and for Type II censoring, ¢, is the time at the 0 failure, 1.e., ¢, =1¢,.

The estimating equation of MLE for singly censored data is

r

>t/ nt,

i=1 . _l -
= r;lnt.

1

;fﬁ d (2-16)

(5e)]

For multiply censored samples, the likelihood function is given by

L= cﬁ s [ -Fa.)]

=C1:! {(ﬂt,/éj /aﬁ)exp[— (tf,j /O‘)ﬂ ]}'i}jeXp[— (tc,k /O‘)ﬂ]

(2-17)
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and the estimating equation is

n—r

- j
Yot e, + > th Int,, )
j=1 k=1 1 1
e —Zh’lt .
itﬁ + itﬁ ﬂ r .f:1 f,./
Jj=1 T k=1 o (2-18)

The Newton-Raphson method is frequently used to solve the estimating
equations, i.e., Equations (2-14), (2-16) and (2-18). Although the calculation is
complicated, nowadays many statistical software packages such as MATLAB, SAS,
S-PLUS and MINITAB have embedded programs for calculating the ML estimates.
Electronic spreadsheets such as Excel can also solve the estimating equations of MLE,

see, e.g., Tang (2003) for a numerical example.

2.5 Comparison of Estimation Methods and Estimators

As previously stated, parameter estimation usually serves as a preliminary step of
Weibull analysis and the parameter estimates may greatly affect the business
decisions making on the subsequent steps. Different parameter estimation methods
can generate widely differing estimates; therefore, it is important to have objective
criteria to instruct the selection of one estimation method over the other alternatives.
Tobias & Trindade (1995) gave four most desirable attributes for estimation methods.

Their descriptions are quoted below.

® Lack of bias: The expected value of the estimate equals the true parameter.
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® Minimum variance: The estimator of the selected method has less
variability on the average than any estimators. If this estimator is also
unbiased, it is likely to be closer to the true value than other estimators.

® Sufficiency: The estimate makes use of all the statistical information
available in the data.

® (onsistency: The estimate tends to get closer to true value with larger

sample size (infinite samples yield perfect estimates).

In view of the application perspectives for engineers, we add another desirable

attribute,

® Simplicity: The method does not involve complicated calculation and
sophisticated statistical knowledge. In short, it can be easily understood and

easily applied.

Also there are commonly used criteria for comparing parameter estimators
including bias, variance (or standard deviation), mean square error (MSE), efficiency,
consistency and robustness. The following descriptions talk about how these terms are

measured.

® Bias: The difference between the expected value of a statistic and the
parameter value which it estimates. An estimator is said to be unbiased if in
the long run it takes on the value of the population parameter.

® Variance: The expected value of the squares of the difference between the
values of the estimates and the mean of them.

® MSE: The expected value of the squares of the differences between the
values of the estimates and the parameter value. MSE can also be calculated

by the sum of the variance and the squared bias of the estimator.
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®  Efficiency: The ratio of the variances of two estimators. Sometimes, we will
select an estimator with a small amount of bias but a high efficiency.

® (onsistency: Estimator that converges in probability to the quantity being
estimated as the sample size grows. The performance of a consistent
estimator improves with the increase of sample size.

® Robustness: The properties of the estimator when the assumptions used in
the parameter estimation method are not valid. A common situation is the

properties of the estimator in the presence of outliers.

For the three basic estimation methods described in this chapter, WPP is the
simplest method and it can serve as a simple tool for model validation and outlier
identification. MLE is considered to have good statistical perspectives since it is
asymptotically unbiased, asymptotically efficient and consistent. Compared to MLE,
the LSE method has some advantages: 1) it has a closed form solution which can be
easily calculated; 2) it can be easily incorporated into WPP and the different ways of
obtaining the Y-axis plotting positions adds its flexibility; and 3) the properties of the
LS estimators including bias and MSE are not inferior to those of the ML estimators,
especially under harsh data conditions such as small samples and highly censored
samples. In the next chapter, the properties of the OLS estimators are discussed in
details. The simulation results will be given on the comparison of OLSE and MLE for

both parameter estimators.
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Chapter 3

Properties of the OLS Estimators

This chapter explores the properties of the OLS estimators for the Weibull distribution
through two approaches: analytical examination and Monte Carlo experimental
examination. The results suggest the possibility and directions to improve the OLSE

method.

3.1 Introduction

The OLSE method is widely used by practitioners conducting Weibull analysis. The
analytical background and application procedure of the method, and the relationship

between OLSE and LSE in the general sense, have been described in Section 2.3.

As previously mentioned, the traditional viewpoint toward LSE considers it as a
simple but inaccurate method for Weibull parameter estimation, compared with other
analytical estimation methods such as MLE. As a result, this method has been
overlooked by many researchers and it was not until the last decade that some
researchers, based on Monte Carlo simulations, pointed out that the properties such as
bias and MSE of the OLSE of the Weibull shape parameter outperform those of the
MLE for small samples and highly censored samples, see, e.g., Montanari et al.,

(1997a, b, 1998).

This chapter presents a detailed examination of the OLS estimators of both
Weibull parameters. Firstly, using the knowledge of least squares regression or the

Gauss-Markov theorem, we clarify why the OLS estimators of the Weibull parameters
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are not BLUE and discuss how the selection of the Y-axis plotting positions will affect
the bias of the estimators via analytical methods. Moreover, the existence of two
pivotal functions, ,3 / p and ,3 In(@¢/a), of the LS estimators, regardless of the
determination of the Y-axis plotting positions, and for both complete and censored
data, is proved. Secondly, the method of using Monte Carlo simulation experiments to
determine the bias, variance and MSE of the OLS estimators is described. The
experiment procedures, setting of experiment factors, and experiment results are
presented. Finally, the results from both analytical examinations and experiment

examinations are summarized.

3.2 Analytical Examinations of the OLS Estimators

3.2.1 OLS Estimators Are Not BLUE

As pointed out in Section 2.3, LSE transfers the estimation of & and S to the
estimation of the two regression coefficients for a simple linear regression model of

the form ¥ = A+ BX +e, where A=-fIna, B=f and e is the error term. The LS

estimators of @ and /£ can be obtained via the LS estimators of 4 and B.

According to the Gauss-Markov theorem, for a simple linear regression model
Y = A+ BX +e, if certain assumptions are satisfied, the LS estimators of 4 and B
will be BLUE, i.e., unbiased and have minimum MSE among all linear estimators of

A and B (Allen, 1997, pp. 182-185). These assumptions are

i. The expected value or mean of the population errors is zero. This

assumption can be mathematically stated as E(e;) =0.

ii. The variance of the errors is constant for all values of the independent
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variable. This assumption is also known as the homoscedasticity condition.
Mathematically, the assumption can be expressed by Var(e,) = o forall i.
iii. The errors are independent of each other. Mathematically, it can be
expressed by Cov(e,,e;)=0 forall i, j.
iv. The errors and the independent variable are independent, i.e.,

Cov(e,,x;) =0.

There is no specification on the distribution of the error; however, if the error is
normality distributed, the LS estimators of 4 and B will be the best unbiased

estimator (BUE) among all linear and nonlinear estimators.

If the above assumptions are satisfied, the BLUE of £ and Ina can be obtained
via the BLUE of 4 and B based on B=/f and 4 =—fIna . The estimator of « is

not BLUE because /x is not a linear operation, but this is not especially problematic

since in most times only £ is of importance.

In the most common simple linear regression scenario, the values of X are treated
as known constants set by a design and the values of Y are measured conditionally on
the values of X in an experiment. This does not meet the background of the LSE
method because here both X and Y are random variables and the values of Y cannot be
measured but estimated. To check the assumptions i — iv for the linear regression
model of the OLSE method, first assume the uncertainty of 7 or X =In7 is much
smaller than the uncertainty of ¥ (Y = ln[— In(1-F )]), thus the uncertainty of e can
be confined to Y. This assumption justifies the regression direction of ¥ on X used in

OLSE. With this assumption and also note that the values of x, and y, used in the

estimating equation, i.e., Equation (2-12), come from the order statistics of the
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variables, the problem now is to examine E(Y,), Var(Y,,) and Cov(Y,;,Y ;). From

i) i) i)”

the knowledge of order statistics, it is clear that Var(Y,; ), which is a function of the

order number £, is not a constant, and any two order statistics, e.g., ¥, and ¥, Y

are
correlated. Therefore, assumptions #i and i#ii are usually inappropriate. The analytical

expressions for E(Y,)), Var(Y,,) and Cov(Y,,,Y,;) are presented in Section 3.2.2.

i) i)’

Assumption i is also not true for the OLSE; however, as shown in Section 3.2.3, the
sensible selection of the Y-axis plotting positions, which is not by the Bernard
estimator used in OLSE, can satisfy this assumption in the case of complete data.
Finally, under the assumption that the error can be confined to Y, assumption iv is

satisfied.

The analytical examination clearly shows that the OLSE of £ and Ina are not

BLUE. It is very likely that the OLSE of « is not BLUE as well.

3.2.2 Derivations of the Mean, Variance and Covariance of the Order

Statistics of Y

As is well known, if the random variable T follows the Weibull distribution with scale

parameter o and shape parameter S, then the variable X =In7 follows the extreme

value distribution whose CDF has a location-scale form given by

F(x) = 1-exp|-exp(x — 1)/ ] (3-1)

where y=Ina and c=1/4.

For location-scale distributions such as the normal distribution and the extreme

value distribution, the variable Z = (X — )/o follows a parameter-free distribution
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and hence is frequently used to simply the analytical analysis. This variable Z is

frequently called reduced variable.

From Equation (3-1), the reduced variable Z related to the Weibull distribution

is given by
Z=(X-w/o=(InT -na)/(1/B)=InT - flna =n|(T/a)’ | (3-2)
Based on the Weibull CDF, the CDF of Z can be determined as

F(z)=P(Z<z)=PW|T/a)’]|<z2)=P(T <a-e'’)

z/ B -
l—expl—(a'e ﬁJ }l—exp(—ez) G-3)
a

Obviously, Z follows the standard smallest extreme value Type I distribution or the

standard Gumbel distribution.
The linearized Weibull CDF is
In[-In(1- F(¢))]= Blnt - flna (3-4)
Comparing Equation (3-4) with Equation (3-2), we obtain
Z = In[-In(1 - F(1))] (3-5)

Recall that Y = ln[— In(1-F (t))] which is exactly the same as the expression for
Z 1in Equation (3-5), therefore, the values of y, = ln[— In(1- 13“0.) )J can be looked on as

the values taken on by the order statistic of Z, i.e., Z (- Thus,

E(Y( )= E(Z(i))’ Var(Y(i)) = Var(z(i))9 COV(Y(i)7Y(j)) = COV(Z(i)7Z(j)) (3-6)

i)
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From Equation (3-3), the CDF of Z, can be determined as

F(z)= z['j [[FOI ' I-F&] f(2)dz
(3-7)

= z@ [ (=exp(=e?))™ (exp(-e7))" " d(1-exp(-¢*))

E(Z ), Var(Z ;) and Cov(Z,,Z ) can then be derived from the CDF. The

(i)

results are

_n) () ey In(r—i+k+1) i
ez o

E(Z2)=1978112+ {’ZJ S {(’ ; IJ(_l)k .

(3-9)
2)/ln(n—i+k+1)+[ln(n—i+k+1)]z}

n—i+k+1
where y =0.577216 is the Euler’s constant.
E(Z(i)Z(j)) = (nj( ) ‘] lj J.Ilnu ln V[l _ e—u ]i—l [e—u _ e—v ]j—i—l e—ue—(n—jﬂ)vdudv (3_10)
' JANE=1)%%

where u =Inz, andv=1Inz, .
Var(Z ) = E(Z(zi)) -[E(Z, )’ (3-11)

Con(Z,),2;)) = E(Z 2 ;) = E(Z,))- E(Z ;) (3-12)

Appendix A gives the detailed derivation of Equations (3-8) — (3-10).
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From the above results, obviously, the variance of Z; or equally Y, is not
constant. In Chapter 6, the values of Var(Y,) at selected sample sizes will be

tabulated which are used to calculate the exact weights for the WLSE method.

3.2.3 Sensible Selection for y;

Several numerical expressions for calculating the values of F,, or y, have been

)
presented in Section 2.2 with their theoretical backgrounds. It is noteworthy that F{,
is treated as a random variable rather than a probability in the process of determining

h

smallest observation 7., or

the analytical expressions of its estimators. Let the i' o

X =InT,,, which is also a random variable having a different value in different

samples, has the plotting position F

 or y;. It is sensible to select y; so that the

point ((E(X ; ), ;) lies on the linear regression line. Numerically this means

Vi :A+B'E(X(i)) (3-13)

where A=—-flna, B=/.

Let u=Ina and o=1/4, then A=—pu/o and B=1/c, and Equation (3-13)

becomes
Yi :[E(X(i))_ﬂJ/G:El(X(i)_'u)/O-J (3-14)

Thus the plotting positions y, are uniquely defined as the expected values of the order

statistics of the reduced variable Z = (X — u)/o , i.e.,

Vi :E(Z(i)) (3-15)
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The reduced variable Z and its order statistics are defined in the previous section and

the values of E(Z, ) can be obtained by Equation (3-8).

A

Based on the relationship y, = ln[— ln(l -F, )J, the plotting positions of F, can

be obtained by

A

£, =1-exp(~exp(E(Z,,))) (3-16)

This way of determining the Y-axis plotting positions makes the points (x,, y,),
where the values of x;, come from sample observations and are different in different
samples, and the values of y, are determined by Equation (3-15) and are fixed for a

certain sample size, on the average will achieve a linear plot if the Weibull

distribution fits.

3.2.4 Relationship between Plotting Positions and Bias of LS

Estimators

A

Now suppose the plotting positions 1:“0) or y, = ln[— ln(l - F, )J are predetermined by

some convention, e.g., the Bernard estimator ﬁ(i) =(—0.3)/(n+0.4), the Hazen

=(i—0.5)/n, the Weibull estimator F

estimator F 0 = i/(n+1), or the expected

()
values of the order statistics of the reduced variable, i.e., Equation (3-15) or Equation
(3-16). Thus the Y-axis values are fixed at a specific sample size and have no
uncertainty (this assumption is different from the one presented in Section 3.2.1 for
the OLSE method), suggesting that one should minimize the sum of squares of the

deviations in the X-axis direction (i.e., failure time) when applying the LSE method

for parameter estimation.
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With g =Ina and o =1/ f, the linear regression model Y = 4+ BX + e can be

transferred to

X=u+oY+e (3-17)

where e’ is the error term.

The LS estimating equations for ¢ and o , by minimizing the sum of

[x, = (&+&y,)]" . are given by

S -,
T S— (3-18)
Z(yi - y)z

LA=%—-6-7 (3-19)

where x; denote the sample values taken on from the random variable X, and the

values of y, are predetermined and not random. x = in / nand y= z v / n.

i=1 i=1

It can be easily proved that 6 and & computed by Equation (3-18) and Equation
(3-19), respectively, are unbiased if the values of y, are determined by the method

presented in Section 3.2.3, i.e., Equation (3-15). The proof is given below.

Proof for the Unbiasedness of the LS Estimators of u and c When Equation (3-15)

is Used for y;

The unbiasedness of & and f can be proved by E(6)=0 and E(&)=u.
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Since y, are treated as fixed values, from Equation (3-18), the expected value of
G is given by

Zn:(yi_y)xi Zn:(yi_y)E(X(i))
E(6)=E| . = £

> (-7 i(yi )

(3-20)

In Section 3.2.3, Equation (3-15) is derived based on the relationship given by

Equation (3-13). Rewrite this equation as
E(X,)=pu+oy, (3-21)

and substituting it in Equation (3-20) yields

Z(y, VEX,;) Z(y, Y u+oy,)
E(6)="— =

Z(y,-_)_/')z Z(yi_y)z

S0 -7) Z(y, )y,

=y +o-

Z(yi -3)’ Z(y, y)?
Zn‘,y —nf Zy,

=4 (3-22)

Z(y, y) Zy, -2y- Zy,+ny
Zy, —ny’

nf—nf +o i=1

:ﬂ .
Z(yi_y)z zyi _ny
i=1 i=1

Then from Equation (3-19), the expected value of z is

E(@)=E(X)-E(6)-y=pu+ay-oy (3-23)

9
J
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Therefore, the LS estimators 6 and /& are both unbiased when Equation (3-15)
is used for determining y,. This kind of plotting position has a good statistical

background and has been recommended by a few researchers, see, e.g., (Ross, 1994b).

However, since the relationships between x4 and o , and o and S, are both

nonlinear, there is no guarantee that & and f are also unbiased.

In the following, assuming the values of y, are predetermined by any plotting
convention, the analytical expressions of the relative bias of & and fz, respectively,

are presented.

Let s, = n(yl—_)_/) (3_24)
Z(y[ _J_/)z

From Equation (3-18) and Equation (3-19), the relative bias of the LS estimators

of 1 and o can be obtained by

D=9 X,
=E = o

¢ Zn)(y,- -’ (3-25)

= E[isiX(i)j o= iSiE(X(i))/O-
i=l i=1

E(o)

and

E(p) _E(X-6-5) _EX)-E@)-y

(3-26)
H H H
From the definitions of the reduced variable Z and its order statisticZ,, ,
E(Z,)=|Ex ) - ulfo (3-27)
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and

EQZ)=[EX)-u)o (3-28)

Let o, = E(Z,)) and rewrite Equation (3-27) as
E(X,)=u+0-E(Z;,)=p+0-0, (3-29)

where the values of @, can be calculated by Equation (3-8).

Substituting Equation (3-29) in Equation (3-25) for E(X ;) yields

E(6)/o= Zn:SiE(X(i)) o= isi(ﬂ+ O-a)i)/a
i=1 i=1
=,uZn:sl./J+Zn:sia)i (3-30)
i=1 i=1
i1

where ZS[ =0 can be easily obtained from Equation (3-24).

i=1

Since Z follows the standard smallest extreme value Type I distribution, we
have E(Z)=E(Z)=-y , where y=0.577216 is the Euler’s constant. Rewrite

Equation (3-28) as
EX)=u+oc-E(Z)=u-oc-y (3-31)

Then substituting Equation (3-30) and Equation (3-31) in Equation (3-26) for

E(6) and E(X) yields

E(i)/u=|EX) - E(6)-7)/u

n 3-32
:|:ﬂ_o7_ofzsia)i:|/ﬂ ( )
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Thus the relative bias of & can be numerically calculated by Equation (3-30)
given a sample size, a predetermined method for calculating the plotting positions,

and the values of @, which can be calculated by Equation (3-8). The relative bias of

[ involves the true values of x and o which are normally unknown and hence can

only be estimated.

3.2.5 Pivotal Functions of LS Estimators

The definition of pivotal function is a function, e.g., g(8) of & whose distribution is

known and is independent of & (Garthwaite et al., 2002, p. 98). For the Weibull

distribution, as is well known, there are two pivotal functions for the ML estimators of
the Weibull parameters, i.e., ,@ /B and ﬁln(a?/ a) . Their distributions can be

determined via the Monte Carlo method and are independent of & and £. Bain &

Antle (1967) presented three theorems of ,@/ £ and ﬁln(d/a) that clearly address
the properties of the two pivotal functions for their proposed estimators of the Weibull

parameters (neither LSE nor MLE). Let &, Bu denote the estimators of o and S

when the sample is actually from a normalized Weibull distribution, i.e., « = f =1,

the three theorems are as follows.

Theorem 1. ,@/ L has the same distribution as ,[;'1’1 and is distributed
independently of & and f.

Theorem 2. &/« has the same distribution as &, , and depends only on 3.
Theorem 3. [3In(&/ ) has the same distribution as ,él’l In(c,,), or (&@/a)’ has

the same distribution &, .
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Thoman et al. (1969) examined the above theorems for the MLE of the Weibull

parameters and pointed out that ,5’ / p and ,5’ In(&/ «) are two pivotal functions.

The pivotal functions for the LS estimators are seldom mentioned by Weibull
researchers. It can be proved that the properties of ,@ / B and ,@ In(a /) also apply to

the LS estimated a and /. The proof is given below.

Proof for the Two Pivotal Functions of the LSE

Let 1,,7,,---,T,,---,T, (i=1,2,---,n) denotes a random sample from a normalized
Weibull distribution (i.e., @ = #=1). Substituting ¢, = (7 /&)’ can generate a new
random sample, denoted by ¢,¢,, -+, ¢, ¢, (i=1,2,---,n) , from the Weibull

distribution with arbitrary « and f. Applying the LSE method for this new sample,

the LS shape parameter estimator can be obtained by

nzn:xiyi_zn:xizn:yi nznllnti'yi_znllntizn:yi
ﬁA: i=1 i=l =l _ =l i=1 i=1

2 2
anf—(in] nZ(lnti)z—(ZIntij
i=1 i=1 i=1 i=1

(3-33)

Substituting aTi”ﬂ for ¢, in Equation (3-33) yields

nYin(ar!”) y, - Yinlaz 7, (nilnﬂ-yi—ilnﬂiyij/ﬁ
IB: i=1 i=1 _ i=1 i=1 i=1

S P e I
i=1 i=1 i=1 i=1 (3_34)
”Zn‘,ln]; Vi _ianiyi
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For the normalized Weibull sample 7,,7,,---,T,,---,T, (i=1,2,---,n), the LS

shape parameter estimator is given by

nglnTi Vi _;h’lTi;yi

181,1 = ] 5 (3-35)
nY (InT))’ —(ZlnTij
i=1 i=1
Comparing Equation (3-34) and Equation (3-35), we obtain
B=BF (3-36)

It follows that ,é / B has the same distribution as Bu .

Similarly, the second pivotal function ,5’ In(a/ &) can be proved. For the Weibull

sample ¢,,t,,---,t,,--,t, (i=1,2,---,n), the LS estimators satisfy

1

n

zyi_:ézxi zyi_:ézlnti
i=1 _ _ =l i=1

Blng =—-2 (3-37)
n n
Substituting aTi”ﬂ for ¢, in Equation (3-37) yields
Yy, - AYmar”) Yy, ~(B/BYInT, ~npina
ﬁlnd — _ =l i=1 — _ =l i=1
n n
) ) (3-38)
>y —B/IpHYInT,
=-= ~ +flna
n
Thus
) o >y =B/IAHYInT,
Bn(é/a)=pInég - flna = - = (3-39)

n
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For the normalized Weibull sample 7,,7,,---,T,,---,T, (i=1,2,---,n), the LS

estimators satisfy

n

Zyi_:él,lzxi Zyi_ﬁl,lzln]:‘
-l _ i =

0 S |
Blna,, =-

(3-40)
n n

From Equation (3-36), ,@ / p= ﬂAu. Therefore, comparing Equation (3-39) and

Equation (3-40) yields
Bin(@/a)=p,, Ina,, (3-41)
It follows that B1n(& /) has the same distribution as ,ﬁﬂ’u Ing,,.

The above proof applies to complete data; however, in the case of censored data,
one can simply change » in the equations to », and the results still holds. In addition,

the values of y, are treated as fixed values in the proof, and it does not matter which

method is used for calculating y, .

The two pivotal functions, ﬁ/ £ and ,5’ In(@¢/«), are very useful in parameter
estimation. An important application is to correct the bias of the Weibull estimators.
Investigations on the bias correction methods for the LS estimators based on the first
pivotal function are shown in Chapter 5. Moreover, the pivotal functions also play a
significant role in the Monte Carlo experiment examination for the LS estimators.

Especially for the examination of the shape parameter, in most times the true

parameter values of ¢ and £ can be fixed to 1 in the experiment, since ﬁ / B has the
same distribution as ﬁAu. Theoretically it is unnecessary to try different parameter

values and hence a lot of simulation work can be saved. This, unfortunately, has not
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been noticed by many researchers. The effects of the pivotal functions on the setting

of the true parameter values of & and £ in a Monte Carlo simulation experiment are

presented in Section 3.3.2.

3.3 Monte Carlo Experiment Examination of the OLS

Estimators

As previously stated in Section 2.5, bias, variance (or standard deviation) and MSE of
the estimators are the common criteria for assessing the performance of a parameter
estimation method. The analytical examinations described in last section show that the

OLS estimators of ¢ and S are not BLUE: they are biased and may have large

variance. However, it is difficult to give analytical expressions for the bias or variance

of the OLS estimated ¢ and £ . For this reason, the Monte Carlo method is

frequently used. With Monte Carlo simulations, the sampling distributions of the
estimators can be approximated and hence the bias, variance and MSE of the

estimators can be determined.

Ambrozic & Vidovic (2007) summarized the three typical aims of Monte Carlo

simulations in reliability data analysis as: comparing different parameter estimation

A

methods, discovering the optimal probability estimators (i.e., F,

i or Ff,<J>) in the

linear regression method, and analyzing the type of distribution functions for Weibull

estimators. All of these purposes are covered in this study.

In the following, Section 3.3.1 describes the common procedures of a Monte
Carlo simulation experiment to obtain the bias, variance and MSE of the OLS

estimators in the case of complete data and multiply censored data, respectively.
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Section 3.3.2 presents the settings of the experiment factors and Section 3.3.3 presents

the important simulation results for the OLS estimators.

3.3.1 Monte Carlo Experiment Procedures

Monte Carlo simulations can be executed by many statistical software packages such
as MATLAB, SAS, S-PLUS, Mathematic, etc. Most of these software packages have
reliable algorithms for generating the uniformly distributed random numbers. Based
on these uniformly distributed numbers, random Weibull samples, either complete or

censored, can be generated. The software MATLAB 7 is used in this study.

Monte Carlo Experiment Procedure for Complete Data

The objective of the experiment is to calculate the bias, variance and MSE of the LSE

of « and £ under different combinations of the predetermined factors including the
true parameter values of ¢ and £ (denoted by a; and fr), and sample size n. The

step-by-step experiment procedure is described as follows.

Step 1: Generate n random numbers p,, p,,---, p, from a uniform distribution,
p, €U(0,]).
Step 2: For any specified values of a7, fr and p,, a random Weibull sample

t,t,,--,t, can be obtained by calculating ¢ :aT[— In(1— p,-)]l/ﬂ T
i=12,---,n).

Step 3: For the current Weibull sample, estimate ¢ and £ using the LSE
method (refer to Section 2.3).

Step 4: Repeat Step 1 to Step 3 for M times (M is called iteration number or

repetition number).
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Step 5:

Calculate the bias, variance and MSE of the estimators with the

following formula,
B(6)=6-06

Var(0) = ﬁi(é —0)’ (3-42)

MSE(6) = %i(é %

f— M A
where 6 can be replaced by o and £, and 6 :ﬁza .
i=l1

Monte Carlo Experiment Procedure for Multiply Censored Data

The experiment procedure for multiply censored data is more complicated because it

involves generating multiply censored samples (failure times and censoring times are

intermixed in such a sample). The step-by-step experiment procedure for multiply

censored data used in this study is described as follows.

Step 1:

Step 2:

Step 3:

Step 4:

Generate a random complete sample ¢,,7,,---,¢, from the Weibull

distribution with specified values of a7, By and n (refer to the first
two steps of the procedure for complete data).

From the complete sample ¢,¢,,---,¢, , randomly select n—r

n

observations, denoted by 7, (k=1,2,---, n—r), as the candidates to be

modified to generate censoring times. The remaining observations,

denoted by 7, ; (j=1,2,--+,r), are unchanged as failure times.
Generate n—r random numbers p,, p,,---, p,, from a uniform
distribution, p, € U(0,1).

Change ¢,, to p, -t to create the censoring times.
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Step 5: Merge failure times and censoring times to produce a multiply censored
sample.

Step 6: For the current sample, estimate ¢ and £ using the LSE method (refer
to Section 2.3).

Step 7: Repeat Step 1 to Step 6 for M times.

Step 8: Calculate the bias, variance and MSE of the estimators by Equation

(3-42).

The steps for generating the censoring times (Step 3 and Step 4) are based on an
underlying assumption that the censoring times are independent of the failure times.
This means the mechanism that causes the censoring is independent of the mechanism
that causes the failure. Thus the simplest way can be used to generate the censoring

times.

3.3.2 Setting of Experiment Factors

Simulation results are often presented under different combinations of the experiment
factors. For complete data, there are four factors of concern: the true parameter values
ar and fr, sample size n and iteration number M . For censored data, there is one
more factor, i.e., the censoring level c¢. The setting of the experiment factors is by no
means arbitrary. In the following, some general guidelines on the selection of the

values for each experiment factor are summarized.

Selection of True Values of o and f

For the Weibull distribution, « is the scale parameter that can take on any positive

value and g is the shape parameter that usually takes values between 0.1 and 10.
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Without considering the existence of the two pivotal functions, i.e., ﬁ/ f and

ﬁln(o?/ a), of the LS estimators, one must examine every combination of common
values of a7 and S to have a full picture of the performance of the LS estimators.
Luckily, as mentioned in Section 3.2.5, the pivotal functions can theoretically save the

simulation work. Theorem I says that ,3 / f has the same distribution as 131,1 , thus the
properties such as bias and MSE of the LS estimated £ under any combination of a7
and fr can be obtained from the properties of ,@u (a; = B, =1). Therefore, to

examine the LS shape parameter estimator, the values of oy and S can be fixed to 1
in the whole simulation experiment. On the other side, for examining the LS scale

parameter estimator, based on Theorem 2, i.e., &/« has the same distribution as «, 5

and depends only on £, the values of ay can still be fixed to 1; however, different

values of S, should be used.

In summary, the value of a; can always be fixed to 1. For the purpose of

examining ,3 , P can be fixed to 1 as well. However, for examining & , different S,

should be used. For example, 3, =0.5,0.8,1,2,4,5,6,8,10.

Selection of Sample Size

Small sample properties and large sample properties of the estimators are frequently
examined separately. The selection of sample size depends on the focus of the study.
In this thesis, the focus is the small sample properties of the LSE, which is also the
recent focus of Weibull researchers. For a Weibull sample of size n, commonly it is

known as a small sample if » <20, a medium sample if 20 <n <100, and a large
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sample if n>100 (Abernethy, 2000). With the focus on small to medium sized

samples, 7 is frequently set in the range of 3 to 30.

For censored samples, however, the selection of the sample size is more
arbitrary. The common range of the sample size used in this study for censored

samples is from 10 to 200.

Selection of Iteration Number

The accuracy of the simulation results is closely related to the iteration number or
repetition number. Usually increasing the iteration number can achieve a higher
accuracy; however, the simulation time is also increased. A trade-off between
accuracy and simulation time should be made. The accuracy of the simulation results
at an iteration number can be simply estimated by repeating the whole simulation
process for several times. Therefore, by setting a tolerance of accuracy, the required
iteration number can be determined by trial and error. In the literature, 10000 is the
commonly used iteration number, and we found that in most cases, this number can
achieve an accuracy of at least two decimal places. To have a higher accuracy, 50000

repetitions can be used.

Selection of Censoring Level

Censoring level is often presented by percentage. Commonly ¢ >50% refers to a
highly censored sample. Both low censoring levels and high censoring levels are
examined in this study and the range is frequently from 10% to 80%. For simplicity,
the censoring levels selected should satisfy that c-» is an integer and c-n>2
(required by the LSE method as at least two data points are needed for conducting

regression).
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3.3.3 Simulation Results for the OLS Estimators

A Monte Carlo experiment was conducted to examine the bias, standard deviation and
MSE of the OLS estimators, especially for the shape parameter estimator, in the cases
of complete data and multiply censored data, respectively. The experiment follows the

procedures described in Section 3.3.1.

Table 3-1 shows the setting of simulation factors in this experiment. For each
combination of the simulation factors (&, f,, n and c¢), 50000 random samples were
generated and the parameter estimates of both parameters were obtained from OLSE
and MLE simultaneously. The mean, standard deviation and MSE of both parameter
estimates were calculated and analyzed. The experiment was executed in MATLAB

7. The iteration number 50000 in most cases can guarantee an accuracy of 0.5%.

Table 3-1: Setting of experiment factors. The experiment is to examine the OLS estimators.

Factors Values

a, 1

ﬂT 05,1,2,3,5,8

n 3-20,22,24,...,28, 30, 35, ..., 45, 50, 60, ..., 90, 100, 200 (complete data)
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200 (censored data)

C 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%

M 50000

Methods OLSE, MLE

3.3.3.1 Simulation Results for Complete Data
The simulation results of the shape parameter estimator, in the case of complete data,
are shown in Table 3-2. The relative values E(B3)/B,, S(B)/ B, and MSE(f)/ /3

are tabulated in the table. The results for the scale parameter are shown in Table 3-3.

Since ¢, is fixed to 1 all the time, the values of E(&),S(a) and MSE(<) equal to
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the relative values. Note that not all the simulation results are tabulated in the two

tables; however, the omitted results will not affect the following conclusions which

can be observed from the tabulated values.

Simulation Results for Estimators of  (Table 3-2)

1)

2)

3)

70

The reliability of the simulation results is judged by the pivotal quantity
,3/ B, : In theory, the distribution of ,é/ B, , obtained by both MLE and
OLSE, should be independent of S, . This can be used to check the
reliability of the simulations. From Table 3-2, it can be seen that the values
of E(B)/ B, S(B)/ B, and MSE(f3)/ B? for both methods almost do not

vary with S, at all sample sizes examined, especially from »n =8 onwards.

Bias of the OLSE of the shape parameter: ,é / B, 1is inconsistent with .
The bias is most significant at n=3,4 ; however, it reaches smallest

between n =6 and n=7. From n =5 onwards, the relative bias is typically
within 5%. During 10 <n <30, the relative bias is like a constant and

remains at 4% or so. Typically, £ is overestimated when n <6 and
underestimated for the remaining conditions.

Standard deviation and MSE of the OLSE of the shape parameter: The

magnitude of S(,B)/ B, and MSE (ﬁ)/ B; decreases as the sample size n
increases. The magnitude of the absolute standard deviation (.S (,@)) is much

larger than that of the absolute bias (£ (ﬁ)— ;) under all combinations of

the experiment factors, especially when # is very small. In other words, the
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4)

MSE of ,5’ is mainly contributed by the standard deviation instead of the

bias.

Comparison between OLSE and MLE: The relative bias ,3 / B, of the
OLSE is significantly smaller than that of the MLE for small samples, i.e.,
n <20, is slightly smaller than that of the MLE for 20<n <50, and is
slightly larger for n >50. The magnitude of S (,B)/ B and MSE(,@)/ B; of

the OLSE is significantly smaller than that of the MLE for n <10. The
differences are small for 10 < n <20, and from n =20 onwards, MLE has

slightly smaller values than OLSE.

Simulation Results for Estimators of a (Table 3-3)

1)

2)

3)

General observations: The magnitude of the bias, standard deviation and
MSE of & decreases dramatically as £, increases and decreases slowly as

n increases.

Bias of the OLSE of the scale parameter: At 3, = 0.5, for the relative bias
of & to be within 10% requires n > 35, and to be within 5% requires n > 90.
At S, =1, for the relative bias of @ to be within 10% only requires n > 7,
and to be within 5% requires n >19. At S, =2, for the relative bias to be
within 3% requires n >4, to be within 2% requires n > 14, and to be within
1% requires n>50. At £, =3 onwards, the relative bias of ¢ is always
smaller than 2% and typically within 1%.

Standard deviation and MSE of the OLSE of the scale parameter: The

magnitude of S(&)and MSE(&) decreases as either S, or n increases. The
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4)

5)
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largest values of them happen at n=3 and £, =0.5. At n>100 or S, 23,
their values are very small and close to 0. Same as the results for the MSE of

,3, MSE (&) is mainly contributed by the standard deviation instead of bias.

Comparison between OLSE and MLE: MLE is significantly better than

OLSE for estimating ¢ when S, <3 in view of bias, standard deviation and
MSE, and especially at small £, and small n . For £, >3, the two

estimators of « are very close.

Comparison between the results for ¢ and ,B of the OLSE: The bias of a
depends on S, but the bias of ,3 is independent of £, . The bias of & seems
to be not an issue when £, >3, as the bias is typically within 1% at all
sample sizes investigated. However, the bias of ,B is 4% to 5% for small to
medium sized samples. The standard deviation and MSE of & also depend
on [, but those of ,3 is independent of f,. The magnitude of S(&) and
MSE(&) becomes very small when S, >3, and are smaller than that of
S(ﬁ)/ B, and MSE(,&A’)/ B; ; however, when B, <3, the magnitude of

S(@) and MSE(&) is typically larger than that of S(3)/f, and

MSE(B)/ B; .
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Table 3-2: Simulation results of ,é for complete data, generated by OLSE and MLE, at different
n and g : the values of E(3)/ S, + S(f)/ B and MSE(S)/ 8> (in parentheses).

n
Method 3 7 5 6 7 3 9 10 11 2 3
OLSE 1425 £5.042 11360943 1045 £0.582 1.012 %0480 0.991 0414 0982 £0376 0.972%0344 0971 £0325 0964 0303 0.963 0286 0960  0.274
(25.603) (0.908) (0.341) (0.231) 0.172) (0.142) (0.119) (0.107) (0.093) (0.083) (0.077)
MLE 228448265 1681342 1436 £0.782 1.334£0.608 1267£0499 122450434 119240387 1173£0357 1149 £0.323 113540298 1.124 £0.282
(69.954) (2.234) (0.802) (0.481) (0.321) (0.239) (0.186) (0.157) (0.127) (0.107) (0.095)
14 15 16 17 18 19 20 2 24 26 28
oLse 0961 £0264 0.961=0253 0959 £0.244 0.960 0238 0.960 =032 0960 £0.225 0.961 0220 0959 £0210 0962 =0.201 0.959%0.193 0962  0.186
Br=05 (0.071) (0.066) (0.061) (0.058) (0.056) (0.052) (0.050) (0.046) (0.042) (0.039) (0.036)
T MLE 11450265 1105£0252 1097 40.240 10920231 1.086£0.222 1080 £0.213 1078 £0208 1.067 +0.193 1.063 £0.184 1056 +0.173 1.053 +0.166
(0.083) (0.075) (0.067) (0.062) (0.057) (0.052) (0.049) (0.042) (0.038) (0.033) (0.030)
30 35 40 45 50 60 70 80 90 100 200
oLsg 09630181 0964 £0.168 0.965 £0.157 0965 £0.149 0.968 £0.142 0971 £0.129 0.971=0.121 09740114 0.976=0.108 0977 £0.102 0.984 +0.073
(0.034) (0.030) (0.026) (0.023) (0.021) (0.018) (0.015) (0.014) (0.012) (0.011) (0.006)
MLE  10S1£0.159 104250145 1035£0.132 103040124 10280117 1024£0.106 102040097 1017£0.090 1016 +0.085 1.015+0.080 1007 +0.056
(0.028) (0.023) (0.019) (0.016) (0.014) (0.012) (0.010) (0.008) (0.007) (0.007) (0.003)
n
Method 3 ] 5 6 7 3 9 10 11 ¥ 3
OLSE 1428 #3225 112550925 1053 £0.507 1.000 %0482 099 0423 0983 £0376 097450343 09700322 0963 0303 0.961 0286 0961 £0.274
(10.586) (0.871) (0.359) (0.233) (0.179) (0.142) (0.119) (0.104) (0.093) (0.083) (0.077)
ML 22885830 1641£1353 14450803 1331 £0.619 127440510 1226£0437 1.193£0.386 117140351 11500322 1.134£0299 1123 0281
(35.648) (2.243) (0.844) (0.492) (0.335) (0.242) (0.186) (0.153) (0.126) (0.108) (0.094)
14 15 16 17 18 19 20 22 24 26 28
oLsg 09600262 0.960 £0255 0962 £0.244 0.959 %0238 0958 £0231 0960 £0.225 0.960 =029 0960 £0.209 0.959 %0201 0959 £0.191 0.962 = 0.185
B (0.070) (0.067) (0.061) (0.058) (0.055) (0.052) (0.049) (0.045) (0.042) (0.038) (0.036)
T Mg 1113£0265 11050254 1099 £0.240 109140230 1.084£0221 1.081£0.213 10760206 1.069 £0.194 1.062£0.182 1057 £0.171 1.053 +0.165
(0.083) (0.075) (0.067) (0.061) (0.056) (0.052) (0.048) (0.042) (0.037) (0.032) (0.030)
30 35 40 45 50 60 70 80 90 100 200
oLsg 0961 =0.180 0964 £0.168 0.966 £0.158 0967 £0.149 0.966 =0.141 0971 £0.130 0.973 =0.121 0974 £0.114 0,975 =0.108 0977 £0.102 0.984 £0.073
(0.034) (0.030) (0.026) (0.023) (0.021) (0.018) (0.015) (0.014) (0.012) (0.011) (0.006)
MLE  1049£0.158 1.043£0.145 1.037£0.133 1032£0.124 102720117 1.024£0.106 1020 £0.097 1.018£0.090 1.015=0.085 1.014 £0.080 1007 +0.056
(0.027) (0.023) (0.019) (0.017) (0.014) (0.012) (0.010) (0.009) (0.007) (0.007) (0.003)
n
Method 3 7 5 6 7 3 9 0 il ¥ 3
oLsp 141422450 1320871 1050 £0.605 1.009 0480 0.993 0418 0980 =0375 0974 %0347 0967 0319 0.966 0303 0963 +0288 0.961 +0.274
(6.218) (0.776) (0.368) (0.230) (0.174) (0.141) (0.121) (0.103) (0.093) (0.084) (0.077)
ML 2258 #3803 1652+ 1268 144440807 132950605 1272+0.504 12260436 1.194+0.389 11680348 115230323 11350300 1.122+0.281
(16.047) (2.033) (0.848) (0.475) (0.328) (0.241) (0.189) (0.149) (0.127) (0.108) (0.094)
14 15 16 17 18 19 20 2 24 26 28
oLsg 09610262 09600254 0.959 £0.244 0960 £0238 0.960 £0.232 0957 £0225 0.960 =0.220 0959 £0208 0.959 0.200 0.960 £0.193 0.962 +0.186
o= (0.070) (0.066) (0.061) (0.058) (0.056) (0.052) (0.050) (0.045) (0.042) (0.039) (0.036)
T MLE 1130264 11030252 1.096:+0.241 1091 £0230 1.086£0.223 10790213 1077£0207 1.068 +0.192 1061 £0.181 1057 £0.172 1.053 +0.166
(0.083) (0.074) (0.068) (0.061) (0.057) (0.051) (0.049) (0.042) (0.036) (0.033) (0.031)
30 35 40 45 50 60 70 80 90 100 200
oLsg 09620180 0963 £0.167 0.965 £0.157 0967 £0.149 0.969 £0.141 0971 £0.130 0.972=0.121 0974 £0.113 0.976=0.107 0976 £0.103 0.984 £0.073
(0.034) (0.029) (0.026) (0.023) (0.021) (0.018) (0.015) (0.013) (0.012) (0.011) (0.006)
MLE  1049£0.158 1.041£0.143 1.036£0.133 1032£0.124 1.028£0.117 1.023£0.106 1020 £0.097 1.017£0.090 1.015=0.084 1.014 £0.081 1007 +0.056
(0.028) (0.022) (0.019) (0.016) (0.014) (0.012) (0.010) (0.008) (0.007) (0.007) (0.003)
n
Method 3 ] 5 6 7 3 9 0 il ¥ 3
OLsg 141922395 11370884 10470592 1014 =086 0.991 %0423 0984 £0378 0973 0344 0968 =032 0.966=0302 0962 =087 0962 +0.275
: (5.914) (0.799) (0.352) (0.237) (0.179) (0.143) (0.119) (0.104) (0.092) (0.084) (0.077)
ML 2268 £3.837 165641260 14390792 13370612 126840511 1230 £0443 1.193 0387 11680351 11520322 113540301 11230282
’ (16.330) (2.017) (0.821) (0.489) (0.332) (0.249) (0.187) (0.151) (0.127) (0.109) (0.095)
14 15 16 17 18 19 20 2 24 26 28
oLsg 09620263 09590254 0.958 £0.246 0960 £0239 0.959 £0.230 0959 £0224 0.961 =0.218 0958 £0208 0.960 £0.200 0961 £0.194 0.962 +0.187
B . (0.070) (0.066) (0.062) (0.059) (0.054) (0.052) (0.049) (0.045) (0.042) (0.039) (0.036)
"7 MLE 111420265 1105£0252 1097 +0.241 10920231 1.085£0.220 10800212 1077£0205 1.068+0.192 1.062%0.182 1057 £0.174 1.054 +0.167
(0.083) (0.074) (0.067) (0.062) (0.055) (0.051) (0.048) (0.041) (0.037) (0.034) (0.031)
30 35 40 45 50 60 70 80 90 100 200
oLsg 09620180 09620167 0.965 £0.157 0966 £0.148 0.968 £0.141 0970 £0.130 0.973 =0.121 0974 £0.114 0.976=0.108 0977 £0.102 0.985 £0.073
(0.034) (0.029) (0.026) (0.023) (0.021) (0.018) (0.015) (0.014) (0.012) (0.011) (0.006)
MLE 10480159 1.040£0.144 1036 £0.133 1031 £0.124 1.029£0.116 1.023£0.105 1020 £0.097 1.017:£0.090 1.016=0.085 1.014 £0.080 1007 +0.056
(0.028) (0.022) (0.019) (0.016) (0.014) (0.012) (0.010) (0.008) (0.008) (0.007) (0.003)
n
Method 3 1 5 3 7 3 9 0 1 ¥ 3
OLSE 140622205 11361063 1051 £0.622 1018 £0499 0993 0418 0983 £0377 097120340 0969 £0318 066 =0302 0.961 %0285 0962 £ 0274
(5.028) (1.149) (0.389) (0.249) (0.175) (0.143) (0.117) (0.102) (0.092) (0.083) (0.076)
ML 2299£3.524 1658+ 1601 14450829 1340 +0.627 127040509 12260435 1.192+0.383 11700349 11520322 113340297 1123 £0.280
(13.980) (2.995) (0.886) (0.509) (0.332) (0.241) (0.183) (0.151) (0.127) (0.106) (0.094)
14 15 16 17 18 19 20 2 24 26 28
oLsg  0962%0265 09590253 0.961+0246 0959 =0237 0.959+0.230 0959 £0225 0.958 0218 0960 =0210 0.959 =0.199 0960 =0.192 0.960 +0.185
- (0.071) (0.066) (0.062) (0.058) (0.055) (0.052) (0.049) (0.046) (0.041) (0.039) (0.036)
" Mg 11630267 11050253 109940240 1090 £0228 1.086+0.220 1081 £0213 1.075+0.205 1.069£0.193 1061 +0.181 1056 £0.172 1051 :+0.165
(0.085) (0.075) (0.067) (0.060) (0.056) (0.052) (0.048) (0.042) (0.037) (0.033) (0.030)
30 35 40 45 50 60 70 80 90 100 200
oLsg 09620181 0963 £0.167 0.964£0.157 0967 £0.148 0.968 0.141 09700130 0.973 =0.121 09740113 0.975 =0.108 0977 £0.102 0.984 £0.073
(0.034) (0.029) (0.026) (0.023) (0.021) (0.018) (0.015) (0.014) (0.012) (0.011) (0.006)
MLE 104950158 1.041£0.144 1.035£0.133 10320124 1.028£0.116 1.023£0.106 1021 £0.097 10180090 1.016=0.085 1.014 £0.080 1007 +0.056
(0.028) (0.022) (0.019) (0.016) (0.014) (0.012) (0.010) (0.008) (0.007) (0.007) (0.003)
n
Method 3 7 5 6 7 3 9 10 11 2 3
OLSE 144023208 113850932 1047 £0.507 1.000 0478 09930420 0978 £0373 0973 0343 0969 £0321 064 0302 0.962 %0284 0963 £ 0274
(11.073) (0.888) (0.359) (0.229) (0.176) (0.139) (0.118) (0.104) (0.092) (0.082) (0.077)
Mg 2303 £5.028 1659+ 1337 1439£0796 1331+0.606 127040507 1223 £0435 1.192£0.387 117140353 LIS1£0322 1.136£0298 11230281
(26.982) (2.222) (0.826) (0.477) (0.329) (0.239) (0.187) (0.154) (0.126) (0.107) (0.094)
14 15 16 17 18 19 20 2 24 26 28
oLsg 09590262 0961 =0252 0.961+0245 0960 =0237 0.958+0.230 0961 =025 0.959 0219 0961 0207 0.960 =0.201 0961 £0.193 0.961 +0.187
Br (0.070) (0.065) (0.062) (0.058) (0.054) (0.052) (0.050) (0.045) (0.042) (0.039) (0.036)
T MpE 113 E0265 11070252 1099 £0241 10910230 1.084£0220 1081 =0.213 1076 £0.206 1069 +0.192 1.062 £0.181 10S7+0.174 1051 £0.166
(0.083) (0.075) (0.068) (0.061) (0.055) (0.052) (0.048) (0.042) (0.037) (0.034) (0.030)
30 35 40 45 50 60 70 80 90 100 200
oLsg 09620180 0964 £0.166 0.965 £0.156 0967 £0.150 0.968 0.142 0970 £0.131 0.973 =0.121 0974 £0.114 0.975 0.107 0977 £0.103 0.984 £0.073
(0.034) (0.029) (0.026) (0.023) (0.021) (0.018) (0.016) (0.014) (0.012) (0.011) (0.006)
MLE 1047 £0.158 1.041£0.144 1035£0.132 103340125 10280117 1023 £0.106 1.020£0.098 1018 £0.091 1016 +0.085 1.014+0.080 1007 +0.056
(0.027) (0.022) (0.019) (0.017) (0.014) (0.012) (0.010) (0.009) (0.007) (0.007) (0.003)
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Table 3-3: Simulation results of ¢ for complete data, generated by OLSE and MLE, at different
n and g, : the values of E(4)+ S(4) and MSE(&) (in parentheses).

n

Method 3 ] 5 6 7 3 9 0 11 2 3
OLSE 1823 £2291 16301702 1534 £ 1490 1448 %1299 1401 £ 1150 1353 £ 1.054 1323 =0.966 1.294 %0895 127240841 1256 £0.799 1235 =0.761
(5.928) (3.635) (2.504) (1.888) (1.504) (1.236) (1.038) (0.888) (0.782) (0.704) (0.635)
ML 14771886 13641483 12921254 1236 £1.095 12090988 1179 £0898 1160 £0.824 114420776 1131 £0726 1122:+0.691 1108 %0658
(3.783) (2.333) (1.658) (1.254) (1.021) (0.839) (0.705) (0.622) (0.545) (0.493) (0.444)
14 15 16 17 18 19 20 22 24 26 28
oLsg 12220712 121120686 1202£0664 1.196 £0.646 1185 £0.614 1177 £059 1.167 £0.577 LI58=0550 1420512 1133 £0.487 1124 %0469
B0 (0.556) (0.515) (0.482) (0.455) (0.411) (0.386) (0.360) (0.327) (0.282) (0.255) (0.235)
Mg 103£0626 1.097£0.603 1.092+0.581 1.090+0.563 1.084+0544 1079 £0.527 1.072£0.508 1.069 +0.487 1.060 0458 1.054+0436 1050 0.424
(0.403) (0.373) (0.346) (0.325) (0.303) (0.284) (0.263) (0.242) (0.213) (0.193) (0.182)
30 35 40 45 50 60 70 80 90 100 200
oLsg 1125 £0453 11050410 1094 %0381 1.086 £0358 LOBI 0338 1068 £0305 1061 0278 1055 %0259 1051 £0244 1047 £0.230 1026 %0.159
(0.221) (0.179) (0.154) (0.135) (0.121) (0.098) (0.081) (0.070) (0.062) (0.055) (0.026)
MLE 10520408 1.041£0372 10360349 10320327 1030 £0310 1024£0282 1021£0258 10190242 1.018£0.229 1.0150.215 1.007 £0.151
(0.170) (0.140) (0.123) (0.108) (0.097) (0.080) (0.067) (0.059) (0.053) (0.046) (0.023)
n
Method 3 ] 5 6 7 3 9 0 11 12 3
OLsE 1163 #0684 1136=0584 11220516 LI11+0470 1102+0439 109 +0405 1.085=0383 L0SL =036 1.073 £0343 10710330 1068 0316
(0.494) (0.359) (0.281) (0.233) (0.203) (0.172) (0.154) (0.137) (0.123) (0.114) (0.105)
Mg 1045£0.621 103120533 10300474 1.027£0433 1.026:+0.407 10180375 101820355 1.017:£0.336 10130318 1.014£0306 1.013 +0.294
(0.388) (0.285) (0.226) (0.188) (0.166) (0.141) (0.126) (0.113) (0.102) (0.094) (0.087)
14 15 16 17 18 19 20 22 24 26 28
oLsg 106620305 1060 £0293 1.056+0282 1057 £0276 1.054 £0.269 1.051 £0259 1.050=0254 1048 £0241 1045 £0.232 1.045 0223 L1041 %0212
Bret (0.098) (0.089) (0.083) (0.079) (0.075) (0.070) (0.067) (0.060) (0.056) (0.052) (0.047)
T Mp 101430284 101050273 1.009£0264 1.010:+0.257 1.009+0.252 1008 £0243 1.008 £0.238 1008£0226 1.007 £0217 1.009£0.209 1007 %0200
(0.081) (0.075) (0.070) (0.066) (0.063) (0.059) (0.057) (0.051) (0.047) (0.044) (0.040)
30 35 40 45 50 60 70 80 90 100 200
oLsg 03830206 1.035£0.188 1.033£0.177 1029 £0.166 1.027 =0.156 1.023 £0.143 1021 %0133 1020%0.124 1017 £0.117 1017 £0.110 1010 %0077
(0.044) (0.037) (0.032) (0.028) (0.025) (0.021) 0.018) (0.016) (0.014) (0.012) (0.006)
MLp 1005 £0.193 1006 £0.178 1.005£0.167 1.004+0.157 1003 +0.148 1.002+0.136 1.003£0.126 1.003%0.118 1001 £0.111 1002 +0.105 1.001 0.074
(0.037) (0.032) (0.028) (0.025) (0.022) (0.018) (0.016) (0.014) (0.012) (0.011) (0.006)
n
Method 3 1 5 6 7 3 9 10 11 [V 3
oLsp 103320309 103420267 10300241 10300221 1028+0205 1.028 £0.195 1026 =0.181 102620173 1.024 £0.165 1.023 £0.157 1022 %0153
(0.097) (0.072) (0.059) (0.050) (0.043) (0.038) (0.034) (0.031) (0.028) (0.025) (0.024)
MLE 09780296 0985 £0.256 0.986:+0231 0.990£0212 0.992£0.197 0994 +0.185 0.994£0.174 0.995%0.166 0.996 0.158 0996 +0.151 0.996 +0.146
(0.088) (0.066) (0.054) (0.045) (0.039) (0.034) (0.030) (0.027) (0.025) (0.023) (0.021)
14 15 16 17 18 19 20 22 24 26 28
oLsg 102120146 1020 =0.141 [019£0.136 10200132 LOI8+0.129 1018 £0.125 1018 =0.122 10170116 L1016 £0.113 1016 +0.108 L0I5 % 0.103
Br=2 (0.022) (0.020) (0.019) (0.018) (0.017) (0.016) (0.015) (0.014) (0.013) (0.012) (0.011)
TT ML 0997 £0.140 0997 £0.135 0996 +0.131 0.998£0.127 0.997£0.124 0997 £0.120 0998 £0.117 0.998 +0.112 0.998 £0.108 0.998£0.103 0.998 +0.099
(0.020) (0.018) (0.017) (0.016) (0.015) (0.014) 0.014) (0.012) (0.012) (0.011) (0.010)
30 35 40 45 50 60 70 80 90 100 200
oLsg 1013 +0.100 1013 =0092 10120087 LOII+0.081 LOII +0.077 1.009 0071 1.009 =0.065 1008 =0.06] 1.007 =0.057 1.007 +0.055 1004+ 0.039
(0.010) (0.009) (0.008) (0.007) (0.006) (0.005) (0.004) (0.004) (0.003) (0.003) (0.002)
MLE 0999 £0.096 0999 £0.088 0.999£0.083 0.999+0.078 0.999 £0.075 0999 +0.068 0.999 £0.063 0.999£0.059 0.999 £0.055 1000 £0.053 1.000 +0.037
(0.009) (0.008) (0.007) (0.006) (0.006) (0.005) (0.004) (0.003) (0.003) (0.003) (0.001)
n
Method 3 ] 5 6 7 3 9 10 il 2 3
oLsg 101020205 10520178 101420159 1014 £0.145 10150135 1.014£0.127 101420119 1013 £0.114 1012 £0.108 1.012+0.104 1.012 %0101
(0.042) (0.032) (0.026) (0.021) (0.019) (0.016) 0.014) (0.013) (0.012) 0.011) (0.010)
ML 097450200 0.983£0.174 09850155 0.988 £0.141 0.991 £0.132 0992£0.124 0.993 +0.116 0.993=0.110 0.994 £0.105 0.994 +0.101 0.995 +0.098
(0.041) (0.031) (0.024) (0.020) (0.017) (0.015) (0.014) (0.012) (0.011) (0.010) (0.010)
14 15 16 17 18 19 20 2 24 26 28
oLsg 101220096 TOIT =009 01T 009 1011 =0.088 L0II £0.085 1010 £0.083 1.010=0.081 1010=0077 1.009 £0.074 1.009 £0.071 1009 %0069
B (0.009) (0.009) (0.008) (0.008) (0.007) (0.007) (0.007) (0.006) (0.006) (0.005) (0.005)
T MLE 09950093 0.995£0.090 0996 £0.088 0.997 +0.085 0.997+0.082 0.997£0.081 0997 £0.078 0.997 £0.075 0.997 £0.071 0.998+0.069 0.998 +0.066
(0.009) (0.008) (0.008) (0.007) (0.007) (0.007) (0.006) (0.006) (0.003) (0.005) (0.004)
30 35 40 45 50 60 70 80 90 100 200
oLsg 1009 %0066 1007 =0.06] 1.007 =0.057 1.007 £0.054 1006 %0051 1.006 £0.047 1.005=0.043 10050041 1.005 £0.038 1004 £0.036 1003 %0026
(0.004) (0.004) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
MLE 09980064 0.9980.059 0.998 £0.055 0.999 £0.052 0999 £0.050 0999 =0.045 0.999=0042 0.999£0.039 0.999 =0.037 0.999 £0.035 1.000 +0.025
(0.004) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
n
Method 3 ] 5 6 7 3 9 0 il 2 3
oLsE 1001 0.124 1.005=0.107 1.006 =0.09% 1.006+0.088 1007 0.8 1.006 +0.076 1.006 =0.072 1007 =0.068 1.007 £0.065 1.006 +0.062 1.006 = 0.060
(0.015) (0.012) (0.009) (0.008) (0.007) (0.006) (0.003) (0.005) (0.004) (0.004) (0.004)
MLE 0979 £0.123 0986 +0.106 0.988£0.095 0.991+£0.086 0.992+0.080 0993 +0.075 0.994£0.070 0.995 %0067 0.996 0.063 0995 +0.061 0.996 +0.059
(0.016) (0.011) (0.009) (0.008) (0.006) (0.006) (0.005) (0.004) (0.004) (0.004) (0.003)
14 15 16 17 18 19 20 22 24 26 28
oLsg 1006 £0.058 1.006 £0.056 1.006+0.054 1.006%0.052 1.006 =0.05] 1.005£0.050 1.006 %0048 1.005=0.046 1.005 £0.044 1.005 +0.042 1.004 %0041
_ (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)
P ML 0996 £0.056 0.996+0.055 09970053 0.997 £0.051 0.997 £0.050 0997 +0.048 0.998 £0.047 0.997 0.045 0998 +0.043 0.998 £0.041 0.998 0.040
(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
30 35 40 45 50 60 70 80 90 100 200
oLsg 10040040 10040037 1.004 %0034 1.004£0.032 1.003 0.031 1.003 £0028 1.003 %0026 1003 0.024 1.002£0.023 1.002 £0.022 L.00I &0.015
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)
MLE 09980039 0999 £0.036 0.999£0033 0.999+0031 0.999 £0.030 0999 +0.027 0.999 £0.025 0.999 %0024 0.999 £0.022 0999 £0.021 1,000 +0.015
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
n
Method 3 ] 5 6 7 3 9 0 T [V 3
oLse 0999 0078 1001 =0.068 1.003 £0.060 1.003 £0.055 1003 0051 1.003 £0.048 1.003 £0.045 1004 0042 1.003 £0.041 1003 £0.039 1003 %0037
(0.006) (0.005) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)
MLE 0985 £0.078 0989 £0.067 0.992:£0.060 0.993+0.054 0994 £0.050 0995 +0.047 0.995+0.044 0.996%0.042 0.996£0.040 0997 £0.038 0.997 0.037
(0.006) (0.003) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)
14 15 16 17 18 19 20 22 24 26 28
oLsg 1003 £0036 1.003=0035 1.003 £0.034 1,003 £0.033 1003 0032 1.003 £0.031 1.003 0.030 10030029 1.003 £0.028 1.003 £0.027 1003 %0026
Br=t (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
T Mg 09970035 0997£0.034 09980033 0.998£0.032 0.998+0.031 0.998£0.030 0998 £0.030 0.998 +0.028 0.998 £0.027 0.999£0.026 0999 +0.025
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
30 35 40 45 50 60 70 80 90 100 200
oLsg 10020025 1.002=0023 1002=002I 1.002£0.020 1.002+0019 1002+00I8 1.002=0.016 1.002=0015 1002 +0.014 1.001 £0.014 1001 +0.010
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
MLE 0999 £0.024 0999 £0.022 0.999£0.021 0.999£0.020 0.999 £0.019 0999 +0.017 0.999£0.016 0.999 %0015 1000 £0.014 1000 £0.013 1.000 +0.009
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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3.3.3.2 Simulation Results for Multiply Censored Data
The simulation results for multiply censored data, as can be seen from Table 3-4 —

Table 3-7, are presented in four parts: the results for ,5’ at low censoring levels, i.e.,

c=10%-40% (Table 3-4), the results for ,5’ at high censoring levels, i.e.,

¢ =50%—80% (Table 3-5), the results for & at low censoring levels (Table 3-6) and
the results for & at high censoring levels (Table 3-7). Please note not all the
simulation results are tabulated in the four tables; however, the omitted results will

not affect the following conclusions.

Simulation Results for Estimators of B (Table 3-4 and Table 3-5)

1) The reliability of the simulation results is judged by the pivotal quantity
,3 / P, : For censored data, the properties of the pivotal function ﬁ/ B, still

apply for MLE and LSE. Therefore, the pivotal quantity can be used to check

the reliability of the simulations as it does for the case of complete data. In
theory, the values of E(,@’)/ Br, S(ﬁ)/ B, and MSE(,@’)/ B; ., generated by

OLSE and MLE, should be constant at different values of f,. At low
censoring levels (refer to Table 3-4), the values of E (,3)/ Br, S(,@)/ B, and

MSE(,&A’)/ B; at six values of 3, almost do not change for a specific 7 .
Some discrepancies can be observed from the results at high censoring levels
(refer to Table 3-5), and the difference of E(,B)/ B, at different S, , for

example, can be larger than 10% when ¢=80% and n<40 . This is
probably due to the complexity in the generation of a highly censored sample.

In general, the difference is still acceptable.
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2)

3)
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Bias of the OLSE of the shape parameter: The relative bias of ,3 of the
OLSE can be smaller than 1, equal to 1, and larger than 1, depending on the
combination of n and c. The general trend of the relative bias as a function
of n at any specific censoring level, or the general trend of the relative bias
as a function of ¢ at any specific sample size, is similar, that is, the bias first
decreases with the variable (n or c¢), then at certain point the bias reaches 0,
and after that the bias increases with the variable (7 or c¢). The bias is
obviously inconsistent with either n or ¢. As shown in Table 3-4, at low
censoring levels, the bias reaches smallest at the combination of ¢ =30%
and n=150-200, or the combination of ¢=40% and n=100-150. At
high censoring levels (refer to Table 3-5), the bias reaches smallest at the
combination of ¢=50% and n=80-100, or the combination of ¢ =60%
and n=50-60, or the combination of ¢ =70% and n=20-30. The bias is
largest at the combination of ¢ =10% and »=20 and the combination of
c=80% and n=200. Although the bias presents a strange pattern as a
function of n and c, the relative bias is typically within 5%. The pattern of

the bias is further examined in Section 5.4.2.

Standard deviation and MSE of the OLSE of the shape parameter: The
values of the relative standard deviation and relative MSE both decrease with

the increase of n at a specific ¢, and consistently increase with the increase

of ¢ (from 10% to 80%) at a specific n. The values of S(B)/,BT and

MSE(,@’)/ B; are significant for small samples with very high censoring

levels, e.g., at the combination of ¢ =80% and n =20.
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4)

Comparison between OLSE and MLE for estimating [3: In view of bias,
standard deviation or MSE, OLSE outperforms MLE for estimating £ in
most cases, except when ¢ =10% —20% . The relative bias, relative standard
deviation or relative MSE of ,8 of the OLSE is significantly smaller than that
of the MLE at high censoring levels (50% — 80%). Especially at ¢ =80%,
the relative bias of ,é of the OLSE is 20% — 40% smaller than that of the

MLE. Although MLE performs inferior to OLSE for estimating £ in most

times under the simulation conditions examined, ,3 of the MLE has good

consistency and is asymptotically unbiased as sample size increases.

Simulation Results for Estimators of a (Table 3-6 and Table 3-7)

1)

2)

General results: The bias, standard deviation and MSE of & of both
methods decrease as £, increases. The decrease is dramatic from S, =0.5
to S, =1. From the results at high censoring levels (refer to Table 3-6), both
methods, especially OLSE, are unstable for estimating o at £, =0.5, and
both methods result in extremely large estimates especially when the sample
size is small.

Bias of the OLSE of the scale parameter: The bias is extremely large at
Br =0.5 at all censoring levels and the results are unstable when ¢ >50% .
At low censoring levels (refer to Table 3-6), the bias increases as ¢ increases

at all combinations of £, and n, and the bias decreases as n increases at all
combinations of £, and c. The bias is significant (>10% ) when £, <2 and

¢ 230%, but is typically within 2% at £, =5 and within 1% at B, =8. On
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3)

4)

5)
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the other hand, the bias at high censoring levels (refer to Table 3-7) is
inconsistent with ¢ and consistent with n. At 8, =3.,5.8, the bias reaches
smallest at ¢ =70% . Generally the bias at high censoring levels at any
combination of £, and n is larger than that at low censoring levels. At high
censoring levels (50% — 80%), the bias is larger than 10% when S, <3 and
all combinations of n and c. At B, =8, the bias is typically within 5%.

Standard deviation and MSE of the OLSE of the scale parameter: The
results regarding the standard deviation and MSE of & of the OLSE are
similar to those of the bias. Unstable results and extremely large values can

be observed at S, =0.5. Good consistency of standard deviation or MSE as
a function of n and ¢ can be observed at low censoring levels (10% — 40%);
however, the standard deviation or MSE is inconsistent with ¢ at high
censoring levels. The standard deviation and MSE reach smallest when
Br =8 and ¢ =70%.

Comparison between OLSE and MLE: MLE outperforms OLSE for
estimating « in view of bias, standard deviation and MSE at all conditions
examined, and is significantly better than OLSE when £, =0.5 and S, =1.
The difference between the two methods decreases as S, increases, and at
Br =8, both estimators of « are nearly unbiased and have very small

standard deviation and MSE.

Comparison between the results for a and ,3 of the OLSE: The bias,

standard deviation and MSE of & highly depend on £, while those of ,3 is
independent of S, . MLE is generally better for estimating o while OLSE is

better for estimating f when ¢ >30%.
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Table 3-4: Simulation results of 5 for multiply censored data, generated by OLSE and MLE, at

different n, g and ¢ (partl - low censoring levels): the values of £(3)/ s, + S(5)/ s and
MSE(f)/ p? (in parentheses).

n
Method 20 30 40 50 60 70 30 100 150 200
OLsE 08990214 0918+0.181 09260.159 093420144 09420.136 0950+0.127 0953 £0.118 09580107 0.969 =0.088 0976 +0.077
10% (0.056) (0.040) (0.031) (0.025) (0.022) (0.019) (0.016) (0.013) (0.009) (0.006)
MLE 1.096 £0.220  1.068 £0.170 1.053 £0.142  1.045 £0.124 1.041 £0.113 1,038 £0.105 1.034 +0.097 1.030 £0.085 1.025 +0.069 1.022  0.059
’ (0.057) (0.033) (0.023) (0.017) (0.015) (0.012) (0.010) (0.008) (0.005) (0.004)
OLsE 09050232 09240193 0932£0.170 09460153 0949 £0.142 09540132 0961 £0.125 0964 £0.113 0.976£0.094 0.984 +0.083
20% (0.063) (0.043) (0.033) (0.026) (0.023) (0.019) (0.017) (0.014) (0.009) (0.007)
MLE 1117 £0241  1.089 £0.183 1.070£0.152 1.066 +0.132 1057 £0.121 1.055£0.110 1.052+0.103 1.045+0.090 1.040 +0.074 1.038 + 0.063
Bi=05 (0.072) (0.042) (0.028) (0.022) (0.018) (0.015) (0.013) (0.010) (0.007) (0.005)
OLSE 09180248 09300204 09420184 0953 £0.168 0956 £0.152 0962 +0.142 0967 0135 0973 £0.121 0.985 £0.101 0.993 £ 0.089
0% (0.068) (0.046) (0.037) (0.030) (0.025) (0.022) (0.019) (0.015) (0.010) (0.008)
MLE 1.148 £0.266 1109 £0.199 1.093 £0.168 1.086 +0.146 1.077 £0.132 1.072£0.119 1.069 +0.112 1064 £0.099 1.058 +0.080 1.055  0.069
(0.093) (0.051) (0.037) (0.029) (0.023) (0.019) (0.017) (0.014) (0.010) (0.008)
OLSE  0926£0265 093440221 0950£0.197 0962+0.179 0.9640.167 097140154 0972£0.146 0978 +0.131 0.994=0.110 1001 +0.096
0% (0.076) (0.053) (0.041) (0.033) (0.029) (0.025) (0.022) (0.018) (0.012) (0.009)
MLE 1179£0.295 1130 £0219 1.116£0.184 1.109 £0.161 1.097 £0.144 1,093 £0.133  1.088 +0.122 1083 £0.107 1.077 £0.087 1.074 + 0.075
(0.119) (0.065) (0.047) (0.038) (0.030) (0.026) (0.023) (0.018) (0.014) (0.011)
OLSE 090220215 091740179 0.928£0.160 093820144 094320132 09490126 0.955£0.119 09620106 0.972 £0.088 0979 £0.077
10% (0.056) (0.039) (0.031) (0.025) (0.021) (0.018) (0.016) (0.013) (0.009) (0.006)
MLE 1100 £0220  1.070 £0.169 1.056 £0.141  1.049 £0.125 1.042£0.112  1.037 £0.104 1.037 £0.096 1.032 +0.085 1.026 +0.069 1.024 +0.059
(0.058) (0.033) (0.023) (0.018) (0.014) (0.012) (0.011) (0.008) (0.005) (0.004)
OLSE 09080227 092740192 09380169 0948 £0.154 0954 £0.142 0961 £0.133 0963 £0125 0973 %0.113 0.983 £0.094 0.990  0.082
20% (0.060) (0.042) (0.032) (0.026) (0.022) (0.019) (0.017) (0.014) (0.009) (0.007)
MLE 1123 £0.234 1.094 £0.183 1.077+0.152 1.069 +0.134 1.063 £0.120 1.061 0.111 1.055+0.102 1052 £0.091 1.045 +0.074 1.043 + 0.063
prt (0.070) (0.042) (0.029) (0.023) (0.018) (0.016) (0.013) (0.011) (0.007) (0.006)
! OLSE  0917£0241 093540203 0.946+0.180 0957 +0.164 0.965=0.151 09700141 0972£0.134 098240122 0.995=0.101 1003 +0.089
30% (0.065) (0.046) (0.035) (0.029) (0.024) (0.021) (0.019) (0.015) (0.010) (0.008)
MLE 1157 £0.259 1119 £0.199 1.101 £0.166 1.093 +0.145 1.085 £0.131 1.080 £0.119 1.076 +0.111 1.073 £0.099 1.067 +0.079 1.064  0.068
(0.092) (0.054) (0.038) (0.030) (0.024) (0.020) (0.018) (0.015) 0.011) (0.009)
OLSE 09300260 0.945+0216 0961 £0.198 097020176 0975 £0.164 0983 £0.155 0.988=0.143 0994+0132 1.008=0.110 1015 £0.097
0% 0.078 (0.050) (0.041) (0.032) (0.028) (0.024) (0.021) 0.017 (0.012) 0.010
MLE 1.195£0300 1.148 £0217 1.132+£0.184 1121 £0.159 1110 £0.143 1.108£0.133 1.103 £0.120 1.096 £0.108  1.090 +0.087 1.087 £ 0.075
(0.128) (0.069) (0.051) (0.040) (0.033) (0.029) (0.025) (0.021) (0.016) (0.013)
OLSE 09010215 0918:+0.180 0929 £0.159 0938 £0.145 0944 £0.133 0950 +0.124 0955 £0.118 0962 +0.106 0.974 +0.088 0.980 £ 0.077
10% (0.056) (0.039) (0.030) (0.025) (0.021) (0.018) (0.016) (0.013) (0.009) (0.006)
MLE 1101 £0.220  1.070 £0.169 1.055£0.141 1.047 £0.125 1.041 £0.112 1,037 £0.103 1.035 +0.096 1.031 £0.085 1.025+0.069 1.024 + 0.059
(0.059) (0.033) (0.023) (0.018) (0.014) (0.012) (0.010) (0.008) (0.005) (0.004)
OLSE 090720227 092640188 0.938=0.168 0948+0152 0953 £0.141 0960 +0.131 0.965£0.124 09720112 0.983=0.094 0992 +0.082
20% (0.060) (0.041) (0.032) (0.026) (0.022) (0.019) (0.017) (0.013) (0.009) (0.007)
MLE 1.125£0.239  1.092 0181 1.075+0.152 1.067 £0.133 1.060 £0.120 1.056 £0.110 1.053 +0.102 1.048 £0.090 1.043 +0.074 1.041 + 0.063
b2 (0.073) (0.041) (0.029) (0.022) (0.018) (0.015) (0.013) (0.010) (0.007) (0.006)
" OLSE 09190244 093540201 0.946£0.178 095820162 0.964£0.149 09700139 0.976£0.131 09840119 0.996=0.099 1004 0087
30% (0.066) (0.045) (0.035) (0.028) (0.024) (0.020) (0.018) (0.014) (0.010) (0.008)
® MLE 1159 £0.266 1119 £0.198 1.098 £0.164 1.090 +0.145 1.081 £0.130 1.077 £0.118 1.074 +0.111 1070 £0.097 1.063 +0.078  1.060  0.067
(0.096) (0.053) (0.037) (0.029) (0.023) (0.020) (0.018) (0.014) (0.010) (0.008)
OLSE 09300262 094740216 0958 £0.191 0967 £0.172 0978 £0.161 0.982£0.150 0989 £0.142 0996 %0.129 1.011 +0.108 1.019 £ 0.095
0% (0.073) (0.050) (0.038) (0.031) (0.026) (0.023) (0.020) (0.017) (0.012) (0.009)
MLE 1198 £0.297 1151 £0221 1.129+0.182 11160157 1.111+0.143 1.103£0.129 1.100 +0.121 1.094 £0.107 1.086 +0.086 1.084 + 0.074
(0.127) (0.071) (0.049) (0.038) (0.033) (0.027) (0.025) (0.020) (0.015) (0.013)
OLSE 08980214 091240179 0928+0.159 0936+0143 09440132 094940122 09540.117 0960 +0.107 0.971 =0.087 0978 +0.076
10% (0.056) (0.040) (0.031) (0.024) (0.021) (0.017) (0.016) (0.013 (0.008) (0.006)
MLE 1.098 £0.219  1.067 £0.169 1.054 £0.142 1.043 £0.122 1.039 £0.111 1.0350.101 1.032 +0.095 1.029+£0.085 1.024 +0.068 1.021 0.059
(0.057) (0.033) (0.023) (0.017) (0.014) 0.011) (0.010) (0.008) (0.005) (0.004)
OLSE 09050225 092440188 0935:£0.164 094320150 0950£0.139 09580130 0.962£0.123 0968 £0.111 0.981 £0.093 0.989 £0.080
20% (0.060) (0.041) (0.031) (0.026) (0.022) (0.019) (0.016) (0.013) (0.009) (0.007)
® MLE 11220235 1.089£0.182 1.072£0.151 1.062=0.131 1.056£0.119 1.051 £0.109 1.049 £0.101 1044 £0.091 1039 £0.073 1036  0.062
b (0.070) (0.041) (0.028) (0.021) (0.017) (0.014) (0.013) (0.010) (0.007) (0.005)
" OLsE 09160245 093340203 09430176 0949 £0.160 0962 £0.147 096640138 0973 £0.131 09810117 0993 £0.098 1.001 £ 0.086
30% (0.067) (0.046) (0.034) (0.028) (0.023) (0.020) (0.018) 0014 (0.010) (0.007)
® MLE 1156 £0.268 1114 £0200 1.095+0.163 1.081 £0.143 1.077 £0.129 1,070 £0.117 1.068 +0.110 1.063 £0.096 1.056 +0.078 1.053  0.067
(0.096) (0.053) (0.036) (0.027) (0.023) (0.019) (0.017) (0.013) (0.009) (0.007)
OLSE 09230260 093840214 0950+0.191 0961 0173 0969 =0.158 0981 +0.149 0982+0.139 0991 +0.127 1.006=0.106 1014 +0.093
0% (0.074) (0.050) (0.039) (0.031) (0.026) (0.023) (0.020) (0.016) (0.011) (0.009)
MLE 1193 £0.297 1141 £0217 1.119+0.182 1107 £0.157 1.100 £0.140 1.097 £0.130 1.091 +0.118 1.085=0.106 1.078 +0.085 1.074 +0.073
(0.125) (0.067) (0.047) (0.036) (0.029) (0.026) (0.022) (0.018) (0.013) 0.011)
OLSE 089420213 091040179 09250160 093420146 0939£0.132 094740124 0950£0.117 09580105 0.969 =0.087 0976 +0.076
10% (0.056) (0.040) (0.031) (0.026) (0.021) (0.018) (0.016) (0.013) (0.009) (0.006)
MLE 1092 £0219 1062 40.170 1.050 £0.144 1.041 £0.125 1.035+£0.112 1.032£0.103 1.030 £ 0.095 1.026+0.084 1.020 +0.068 1.018 0.059
(0.056) (0.033) (0.023) (0.017) (0.014) (0.012) (0.010) (0.008) (0.005) (0.004)
OLSE 08990228 0915+0.188 0931£0.165 093820152 09450138 0950 £0.130 0957 £0.123 0963 +0.110 0977 £0.092 0.984 £0.081
20% (0.062) (0.043) (0.032) (0.027) (0.022) (0.019) (0.017) (0.013) (0.009) (0.007)
® MLE 1114 £0240 1.081 £0.182  1.066 £0.151 1.056 £0.133  1.049 £0.120 1.045£0.110 1.043 £0.102 1.037 £0.090 1032 £0.073 1029 0.062
prss (0.071) (0.040) (0.027) (0.021) (0.017) (0.014) (0.012) (0.009) (0.006) (0.005)
8 OLSE 09070246 092740201 0935+0.174 0945+0160 0952=0.147 0958 +0.139 0.966+0.133 0969 +0.117 0.985+0.098 0992 +0.085
0% (0.069) (0.046) (0.035) (0.029) (0.024) (0.021) (0.019) (0.015) (0.010) (0.007)
MLE 1150 £0.267 1109 £0200 1.085+0.162 1.076 +0.145 1.067 £0.129 1,063 £0.119 1.058 +0.111 1.051 £0.097 1.046 +0.078 1.043 + 0.067
(0.094) (0.052) (0.034) (0.027) (0.021) (0.018) (0.016) (0.012) (0.008) (0.006)
OLSE 091020256 093140215 0.942£0.190 0950+0.172 0959 £0.159 0966 +0.147 0.973£0.140 0978 +0.124 0.995=0.104 1003 +0.092
0% (0.073) (0.051) (0.040) (0.032) (0.027) (0.023) (0.020) (0.016) 0.011) (0.008)
MLE 1181 £0.293  1.136 £0221 1.111+£0.181 1.097 £0.158 1.086 £0.141 1.083 £0.128 1.080 +0.121 1070 £0.104 1.065 +0.084 1.061 +0.073
(0.118) (0.067) (0.045) (0.034) (0.027) 0.023) (0.021) (0.016) 0011 (0.009)
OLSE 089320217 091140180 0.923£0.161 093120144 0939 £0.133 09430124 0.949£0.116 09570106 0.966 =0.088 0.973 £0.077
10% (0.058) (0.040) (0.032) (0.025) (0.022) (0.019) (0.016) (0.013) (0.009) (0.007)
® MLE 1095 £0.222  1.062 £0.169 1.047+£0.143 1.039 £0.124 1033 £0.111 1,029 £0.103 1.027 +0.095 1.023 £0.086 1.017 £0.069 1.015  0.059
(0.058) (0.032) (0.023) (0.017) (0.014) (0.011) (0.010) (0.008) (0.005) (0.004)
OLSE 08940228 091440190 09250168 09350151 0943£0139 0946+0.129 0952 £0122 0959 %0.111 0.971 £0.091 0.978 £ 0.080
20% (0.063) (0.043) (0.034) (0.027) (0.023) (0.020) (0.017) (0.014) (0.009) (0.007)
MLE L111£0241 1.077 £0.181 1.062+0.153 1.052+0.134 1.046+0.119 1.0390.109 1.038 +0.101 1.033+£0.090 1.026 +0.073 1.024 + 0.062
Bt (0.071) (0.039) (0.027) (0.021) (0.016) (0.014) (0.012) (0.009) (0.006) (0.004)
" OLSE  0892£0234 091240199 0926£0.177 0938£0157 0944=0.145 0951 +0.136 0958 £0.130 0963 +0.117 0.976=£0.098 0985 +0.085
30% (0.066) (0.048) (0.037) (0.029) (0.024) (0.021) (0.019) (0.015) (0.010) (0.007)
® MLE 1130 £0.257  1.095+£0.199 1.076 £0.166 1.066 +0.143 1.058 £0.128 1,054 £0.116 1.051 +0.109 1.044 £0.096 1.038 +0.078 1.035  0.067
(0.083) (0.048) (0.033) (0.025) (0.020) (0.016) (0.014) (0.011) (0.007) (0.006)
OLSE 089620250 09160213 0928£0.186 094220169 0949 £0.158 0957 £0.146 0.965=£0.138 0969 +0.125 0.984£0.105 0.992 £0.091
0% 0.078 (0.052) (0.040) (0.032) (0.027) (0.023) (0.020) 0017 0.011 0.008
MLE 1165 £0.297 111940218 1.096+0.179 1.085 £0.156 1.077 £0.142 1.072£0.128 1.068 +0.119 1060 £0.106 1.052 +0.085 1.048 +0.073
(0.115) (0.061) (0.041) (0.032) (0.026) (0.022) (0.019) (0.015) (0.010) (0.008)

79



Chapter 3 Properties of the OLS Estimators

Table 3-5: Simulation results of 5 for multiply censored data, generated by OLSE and MLE, at

different n, g and ¢ (partIl - high censoring levels): the values of £(3)/ 5, + S(5)/ p and
MSE(p)/ p? (in parentheses).

n
Method 20 30 40 50 60 70 30 100 150 200
OLsE 09380285 094940241 09550211 0968 =0.195 0976=0.181 0981 +0171 0.984=0.161 09920146 1.004=0.120 1010+0.106
50% (0.085) (0.061) (0.046) (0.039) (0.033) (0.030) (0.026) (0.021) (0.014) (0.011)
MLE 12050331 1167 £0250 1.136+£0.202 1131 £0.181 1.124+0.162 1.120£0.150 1.112+0.137 1.107 £0.121  1.098 £0.097 1.094  0.083
(0.151) (0.090) (0.059) (0.050) (0.042) (0.037) (0.031) (0.026) (0.019) (0.016)
OLSE  0958£0333 09580272 0.967£0236 0976+0217 0980 £0.201 09880187 0.989=0.177 10000164 1.011£0.137 10190120
0% (0.113) (0.076) (0.057) (0.048) (0.041) (0.035) (0.032) (0.027) (0.019) (0.015)
® MLE 1261 £0.398 1193 £0290 1.174+£0.235 1.159 0206 1.146 £0.185 1.141 £0.169 1.135+0.155 1.132+0.139 1123 £0.112  1.117 £ 0.095
Bi=05 (0.227) (0.122) (0.085) (0.068) (0.055) (0.048) (0.042) (0.037) (0.028) (0.023)
OLsE 10030429 09830315 09840276 0.994+0253 09940230 09970215 1004 £0204 1009 %0.186 1022 £0.155 1029 £0.139
0% (0.184) (0.100) (0.076) (0.064) (0.053) (0.046) (0.042) (0.035) (0.025) (0.020)
MLE 1327£0.510 1.245+0356 1211+0290 1.195+0249 11810221 1.173+£0.204 1.168+0.187 1.159+0.164 1.149+0.132 1.143 +0.113
(0.367) (0.187) (0.128) (0.100) (0.082) (0.071) (0.063) (0.052) (0.040) (0.033)
OLsE 10980610 104240417 10240347 1019+0310 10190283 102040264 10250251 102440225 1.0310.192 10420169
80% (0.382) (0.176) (0.121) (0.096) (0.081) (0.070) (0.064) (0.051) (0.038) (0.030)
MLE 1449 £0.735  1.328 £0.493 1275+0.382 1248 £0.331 12280287 12170263 1.212+0242 1.197+£0.206 1.179 £0.169 1.176 +0.144
(0.741) (0.350) (0.222) (0.171) (0.134) (0.116) (0.103) (0.081) (0.061) (0.052)
OLSE 09440287 095340238 0.967£0212 098320193 0989 £0.178 09940170 0.999£0.160 1006+0.144 1.022£0.121 1030 £0.106
0% (0.086) (0.059) (0.046) (0.038) (0.032) (0.029) (0.026) (0.021) (0.015) (0.012)
® MLE 1236 £0336 1182 £0249 1.161 £0.206 1.152£0.179 1.142+0.160 1.136+0.148 1.132+0.138 1.123+0.119 1.117+£0.097 1.113 £ 0.083
(0.169) (0.095) (0.068) (0.055) (0.046) (0.040) (0.037) (0.029) (0.023) (0.020)
OLSE 09710339 0.976£0268 09920239 09990216 1001 £0.197 1010£0.186 1014 £0177 1023 £0.161 1.036 £0.136 1.046 +0.120
0% (0.116) (0.072) (0.057) (0.046) (0.039) (0.035) (0.031) (0.026) (0.020) (0.016)
MLE 1298 £0408 1233 £0291 1209+0242 1191 £0205 1.176+0.185 1.171£0.168 1.166 +0.156 1.158 £0.138 1.117+0.097 1.113 +0.083
prt (0.255) (0.139) (0.102) (0.079) (0.065) (0.057) (0.052) (0.044) (0.023) (0.020)
! OLsE 10130417 100540320 10080275 1014+0246 10200229 102940218 1.029%0203 1036+0.184 1.053=0.157 1063 +0.139
70% (0.174) (0.103) (0.076) (0.061) (0.053) (0.048) (0.042) (0.035) (0.028) (0.023)
MLE 1386 £0.510 1.297 £0370 1258 +£0.294 1.236+0246 1224+0223 12150206 1.205+0.188 1.197+0.160 1.188+0.131 1.182+0.113
(0.409) (0.225) (0.153) (0.116) (0.100) (0.089) (0.078) (0.064) (0.052) (0.046)
oLsg  LUITZ0.621 105740410 1.043£0335 105320312 10460282 10530263 1.053£0247 10590226 1.074£0.190 1083 £0.170
0% 0.398 0.171 0.114 (0.100) (0.081) (0.072) (0.064) (0.054) (0.042) 0.036
® MLE 1524 £0.779 1395 £0497 1333+0.390 1.313+0341 1285+0294 12740263 1.262+0241 12510211 1.236+0.167 1.228 +0.144
(0.882) (0.403) (0.263) (0.215) (0.168) (0.144) (0.127) (0.107) (0.084) (0.073)
OLSE 09390284 09560235 09780208 0981 £0.187 0992 +0.175 0.995£0.164 1.001 £0.155 1010+0.139 1.026 +0.119 1.035 £0.103
0% (0.084) (0.057) (0.044) (0.035) (0.031) (0.027) (0.024) (0.020) (0.015) (0.012)
MLE 1242 £0337 11890248 1.168+0.206 1.151+0.178 1.143+0.158 1133 +0.144 1.131£0.136 1.124£0.117 1.115+0.096 1.111 =0.081
(0.172) (0.097) (0.071) (0.054) (0.045) (0.038) (0.036) (0.029) (0.022) (0.019)
OLSE 09640330 098140267 0.991£0229 0998+0208 1.009=0.195 10180184 10190172 1027:+0155 1.045£0.132 1056 +0.115
0% (0.110) (0.072) (0.052) (0.043) (0.038) (0.034) (0.030) (0.025) (0.020) (0.016)
MLE 13170418 1250 £0298 1215+0.240 1.194+0205 1.184+0.184 1.179+0.168 1.168 £0.154 1.159£0.135 1.150 £0.107 1.145 =0.091
g2 (0.275) (0.151) (0.104) (0.080) (0.068) (0.060) (0.052) (0.043) (0.034) (0.029)
" oLsE  1003£0398 1.005+0310 1.013£0271 101720238 10280224 10340210 1.038£0.198 10500180 1.0700.152 1076 :+0.134
70% (0.158) (0.096) (0.073) (0.057) (0.051) (0.045) (0.041) (0.035) (0.028) (0.024)
MLE 1426 £0.544 1326 £0370 1279 +£0.296 1.254£0.250 12380222 12240201 1.219+0.185 1209=0.162 1.198+0.129 1.188 +0.110
(0.477) (0.243) (0.165) (0.127) (0.106) (0.091) (0.082) (0.070) (0.056) (0.047)
oLsE 11130652 1.055+0405 10500329 105140292 10540270 10620252 10660238 107540217 1.093+0.187 1.104+0.164
$0% (0.437) (0.167) (0.111) (0.088) (0.076) (0.068) (0.061) (0.053) (0.044) (0.038)
MLE 1627 £0.861 1449 £0.529 1376+0.395 1339 0331 1315+0288 13030263 1.292+0239 1274+0208 1259 +0.165 1247 +0.138
(1.134) (0.481) (0.298) (0.225) (0.182) (0.161) (0.142) (0.118) (0.094) (0.080)
OLSE 09380288 095340236 0.966+0208 0973+0186 09820171 0992+0160 0.996=0.151 1007+0139 10220115 10300102
0% (0.087) (0.058) (0.044) (0.035) (0.030) (0.026) (0.023) (0.019) (0.014) (0.011)
MLE 1247 £0.344 118540251 1.162+0.208 1.140 +0.175 1.133+£0.158 1.127£0.144 1121 £0.132  1.115+£0.118 1.105 +0.094 1.100 = 0.081
(0.179) (0.097) (0.069) (0.051) (0.043) (0.037) (0.032) (0.027) (0.020) (0.016)
OLSE 095720336 0965+0262 09770227 099320206 0.995=0.190 1005+0.182 1.013£0.172 1021 £0.153 1039 £0.131 1050 0.113
0% (0.115) (0.070) (0.052) (0.043) (0.036) (0.033) (0.030) (0.024) (0.019) (0.015)
® MLE 1319£0429 1237 £0293 120240237 1189 £0204 1171 £0.181 1.165+0.167 1.159 £0.156 1.148 £0.134  1.139 £0.107 1.134 £ 0.092
b (0.286) (0.142) (0.097) (0.077) (0.062) (0.055) (0.050) (0.040) (0.031) (0.026)
g OLSE 09800399 09850298 09990258 10120238 1020£0220 10210202 103220193 1.040+0.174 1.060%0.148 1070 £0.131
0% 0.160 (0.089) (0.067) (0.057) (0.049) 0.041 (0.038) (0.032) (0.025) 0.022
® MLE 1423 £0.560 131540364 127240291 12480250 1230 +0223 1214+0.196 1.209+0.183 1.195+0.160 1.185+0.126 1.175 +0.107
(0.493) (0.232) (0.159) (0.124) (0.103) (0.085) (0.077) (0.064) (0.050) (0.042)
OLsE 10780625 103840412 10230317 1041+0292 10460269 10540249 10540230 1062+0211 1.086=0.180 10990159
$0% (0.397) 0.171) (0.101) (0.087) (0.074) (0.065) (0.056) (0.048) (0.040) (0.035)
MLE 1628 £0.843 1457 £0.549 1371+0.396 13390336 13140289 12990261 1.281+0236 1266=0.204 1248 +0.162 1.240 +0.135
(1.105) (0.511) (0.294) (0.228) (0.182) (0.158) (0.135) (0.112) (0.088) (0.076)
OLSE 09200283 093540231 09460201 09620184 0970£0.170 09760160 0.982%0.150 0991 +0.137 1.005=0.113 1017 +0.100
0% (0.086) (0.057) (0.043) (0.035) (0.030) (0.026) (0.023) (0.019) (0.013) (0.010)
® MLE 12290342 11680250 11380202 1.126=0.176 1118 £0.157 1.108£0.144 1.1040.133 1096 +0.118 1086 +0.094 1082 +0.079
(0.170) (0.090) (0.060) (0.047) (0.039) (0.032) (0.028) (0.023) (0.016) (0.013)
OLSE  0932£0328 09460252 0.960£0222 097020201 0982=0.186 09870175 09930165 1005 +0.150 1.022£0.126 1033 £0.111
0% (0.112) (0.066) (0.051) (0.041) (0.035) (0.031) (0.027) (0.023) (0.016) (0.013)
® MLE 1298 £0419 121840282 1.183+0235 11640201 1.154+0.178 1.143£0.164 1.137£0.150 1.129+0.132 1117 4£0.105 1.112 0.090
prss (0.264) (0.127) (0.089) (0.067) (0.055) (0.047) (0.041) (0.034) (0.025) (0.021)
g OLSE 09690413 095940296 0.973+0253 0983+0230 09970211 10080200 1.008=0.189 1022+0171 1.040=0.142 10550127
0% (0.172) (0.089) (0.065) (0.053) (0.045) (0.040) (0.036) (0.030) (0.022) (0.019)
MLE 14250582 1297 £0368 12480284 12200245 12070215 1.197+0.197 1.185+0.180 1.174+0.156 1.157 +0.123 1.153 +0.105
(0.520) (0.224) (0.142) (0.108) (0.089) (0.078) (0.066) (0.055) (0.040) (0.035)
OLsE 105720639 099840402 1.007£0326 1005+0274 10190257 102740240 1.030£0224 10490206 1.069=0.175 1078 +0.152
80% 0411 (0.161) (0.106) (0.075) (0.066) (0.059) (0.051) (0.045) (0.035) (0.029)
MLE 1.662 £0.906 1.438 £0.545 1366 +0.408 1.315+0324 1294+0289 1277+0.256 1.260+0234 1250+0.203 1.226+0.160 1.211 +0.133
(1.260) (0.489) (0.301) (0.204) (0.170) (0.143) (0.122) (0.103) (0.077) (0.062)
OLSE 091020290 092240229 0.937£0203 0.946£0.183 0953 £0.168 0961 £0.158 0970 £0.150 0976 0137 0.992£0.113 1003 £0.099
0% (0.092) (0.059) (0.045) (0.036) (0.030) (0.026) (0.023) (0.019) (0.013) (0.010)
® MLE 1219 £0.347 1151 £0245 1.128+0.203 1.109+0.174 1.098 £0.156 1.091 +0.141 1.087 +0.131 1078 £0.116 1.071 £0.093 1.066  0.080
(0.169) (0.083) (0.058) (0.042) (0.034) (0.028) (0.025) (0.020) (0.014) (0.011)
OLSE 09190328 0.927£0256 09420224 095440202 09650190 0970+0.173 0978 0162 0986 %0.148 1.001 £0.124 1.015 £0.110
0% (0.114) (0.071) (0.053) (0.043 (0.037) (0.031) (0.027) (0.022) (0.015) (0.012)
MLE 12850425 1.200 £0295 1.168+0.236 1.145+0203 1.133+0.182 1.122+0.163 1.118+0.148 1.106=0.130 1.094 +£0.106 1.091  0.090
Bt (0.262) (0.127) (0.084) (0.062) (0.051) (0.041) (0.036) (0.028) (0.020) (0.016)
" OLSE 09480421 094640306 09530258 096420230 097220212 098240198 0.984£0.185 0998 +0.169 1.017£0.140 1029 +0.125
10% (0.180) (0.096) (0.069) (0.054) (0.046) (0.040) (0.034) (0.029) (0.020) (0.016)
MLE 1411 £0.598 1.283 £0375 1229+0.295 1.203£0247 11830217 1.171£0.197 1.156+0.178 1.147£0.156 1.131 £0.122 1.123 +0.104
(0.526) (0.221) (0.139) (0.102) (0.081) (0.068) (0.056) (0.046) (0.032) (0.026)
OLsE  1020£0618 09730405 09780325 098020275 09890255 09980238 1.005£0221 10170201 1.044=0.171 1050 £0.152
80% 0.382 (0.165) (0.106) (0.076) (0.065) 0.057 (0.049) 0.041 (0.031) 0.026
MLE 1654 £0924 1428 £0.563 1349 £0420 1296 £0327 1.263£0.285 1.250£0.258 1.236£0.233 12160202 1.196+0.159 1.181 +0.133
(1.282) (0.500) (0.298) (0.195) (0.150) (0.129) (0.110) (0.088) (0.064) (0.050)
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Table 3-6: Simulation results of ¢ for multiply censored data, generated by OLSE and MLE, at
different 7, B, and ¢ (partI - low censoring levels): the values of £(4) + S(4) and MSE(g) (in

parentheses.
n
Method 20 30 50 100 150 200
OLSE 1.446 £0.752 1.372 £0.567 1.303 £0.419 1.250 £0.279 1.226 £0.222 1.217 £0.190
10% 0.764) (0.460) (0.267) (0.140) (0.100) (0.083)
MLE 1.238 £0.587 1.215 £ 0.465 1.191 £0.356 1.178 £0.247 1.171 £0.199 1.171 £0.174
(0.401) (0.262) (0.163) (0.093) (0.069) (0.060)
OLSE 1.756 £0.972 1.659 +0.729 1.576 £0.530 1.502 £0.349 1.473 £0.274 1.458 £0.236
20% (1.516) (0.966) (0.613) (0.374) (0.299) (0.265)
° MLE 1.457 +0.688 1.429 +0.549 1.409 £0.418 1.392 +£0.291 1.387 £0.235 1.384 +£0.204
Br=0.5 (0.683) (0.485) (0.342) (0.239) (0.205) (0.189)
1=0.
OLSE 2.194 +1.402 2.076 £1.017 1.959 +0.720 1.856 +0.457 1.817 +£0.360 1.793 £ 0.307
30% (3.390) (2.191) (1.438) (0.942) (0.796) 0.723)
° MLE 1.744 £0.822 1.725 £ 0.664 1.701 £0.507 1.681 £0.349 1.678 £0.285 1.674 £0.246
(1.230) (0.967) (0.748) (0.585) (0.540) 0.515)
OLSE 2.899 +£2.548 2.720 £2.339 2.534 £1.155 2.385 £0.699 2.320 £0.506 2.288 £0.425
0% (10.10) (8.430) (3.686) (2.406) (1.997) (1.841)
° MLE 2.165 £1.028 2.138 £0.830 2.110 £0.628 2.094 +0.441 2.086 £0.358 2.087 £0.308
(2.416) (1.983) (1.627) (1.392) (1.307) (1.275)
OLSE 1.146 +0.283 1.127 £0.229 1.109 £0.174 1.091 £0.122 1.085 +0.099 1.081 +0.085
10% (0.10) (0.069) (0.042) (0.023) (0.017) (0.014)
° MLE 1.067 £0.250 1.065 +0.206 1.063 £0.159 1.062 £0.113 1.061 +£0.092 1.061 +0.080
(0.067) (0.047) (0.029) (0.016) (0.012) (0.010)
OLSE 1.233 £0.32 1.213 £0.255 1.195 £0.19 1.174 £0.136 1.165 £0.109 1.161 +£0.094
20% 0) 0.11) 0.1) (0.049) (0.039) (0.035)
° MLE 1.134 +£0.269 1.134 £0.220 1.135 £0.170 1.135 £0.121 1.134 +£0.099 1.135 £ 0.085
Bmt (0.090) (0.066) (0.047) (0.033) (0.028) (0.026)
' OLSE 1.352 £0.374 1.328 £0.299 1.302 +£0.225 1.277 £0.154 1.267 £0.125 1.260 +0.107
30% (0.264) (0.197) (0.142) (0.101) (0.087) (0.079)
° MLE 1.223 £0.295 1.222 £0.240 1.224 £0.187 1.223 £0.132 1.223 £0.108 1.223 £0.093
(0.137) (0.107) (0.085) (0.067) (0.061) (0.058)
OLSE 1.496 +0.451 1.467 £0.359 1.440 £0.270 1.410 £0.183 1.396 £0.147 1.389 £0.126
0% (0.450) (0.347) (0.266) (0.202) (0.178) (0.168)
° MLE 1.330 +£0.330 1.330 +0.267 1.333 £0.206 1.334 +£0.146 1.335 £0.119 1.335 £0.103
(0.218) (0.180) (0.153) (0.133) (0.126) (0.123)
OLSE 1.052 £0.131 1.046 +0.107 1.040 +0.082 1.033 +£0.058 1.031 +£0.047 1.029 +0.041
10% (0.020) 0.014) (0.008) (0.004) (0.003) (0.003)
° MLE 1.017 £0.122 1.018 £0.100 1.020 £0.077 1.019 £0.055 1.021 £0.044 1.021 £0.039
0.015) (0.010) (0.006) (0.003) (0.002) (0.002)
OLSE 1.081 £0.141 1.074 £0.114 1.068 +0.088 1.061 +£0.062 1.056 £ 0.050 1.056 +0.043
20% (0.026) 0.019) 0.012) (0.007) (0.006) (0.005)
° MLE 1.039 +£0.128 1.042 +0.105 1.043 +0.081 1.044 +0.057 1.044 +0.047 1.045 +0.040
P 0.018) 0.013) (0.008) (0.005) (0.004) (0.004)
' OLSE 1.115 £0.150 1.109 £ 0.123 1.101 +0.095 1.093 +0.066 1.089 +0.054 1.087 +0.047
30% (0.036) (0.027) (0.019) (0.013) (0.011) (0.010)
° MLE 1.067 £0.134 1.069 £0.111 1.071 £0.085 1.073 £ 0.060 1.073 £0.050 1.073 £0.043
(0.023) (0.017) (0.012) (0.009) (0.008) (0.007)
OLSE 1.157 £0.167 1.150 £0.136 1.142 £0.105 1.133 £0.073 1.128 £0.059 1.126 £0.051
0% (0.052) (0.041) 0.031) (0.023) (0.020) 0.019)
° MLE 1.099 +£0.143 1.103 £0.116 1.105 £ 0.090 1.107 £ 0.064 1.108 +£0.052 1.108 +0.045
(0.030) (0.024) (0.019) (0.016) (0.014) (0.014)
OLSE 1.029 +0.086 1.026 +0.070 1.022 +0.054 1.018 £0.038 1.017 £0.031 1.016 +0.027
10% (0.008) (0.006) (0.003) (0.002) 0.001) 0.001)
¢ MLE 1.006 +0.081 1.008 £ 0.067 1.009 +0.051 1.009 +0.036 1.010 +£0.030 1.010 £ 0.026
0.007) (0.004) (0.003) (0.001) (0.001) 0.001)
OLSE 1.043 £0.091 1.041 £0.074 1.036 +0.057 1.032 £0.040  1.030 £0.033 1.029 +0.028
20% 0.010) 0.007) (0.005) (0.003) (0.002) (0.002)
° MLE 1.018 £ 0.085 1.020 + 0.069 1.021 £0.054 1.022 £0.038 1.022 £0.031 1.023 +£0.027
Brms (0.008) (0.005) (0.003) (0.002) 0.001) 0.001)
' OLSE 1.061 £ 0.096 1.058 +0.080 1.053 £0.061 1.049 +0.043 1.046 +0.035 1.045 £0.030
30% 0.013) (0.010) (0.007) (0.004) (0.003) (0.003)
° MLE 1.032 +£0.088 1.034 £0.073 1.035 +£0.056 1.037 £0.040  1.037 £0.032 1.037 £0.028
(0.009) (0.006) (0.004) (0.003) (0.002) (0.002)
OLSE 1.082 +£0.105 1.079 £+ 0.086 1.075 +0.066 1.069 +0.047 1.066 +0.038 1.065 +0.033
0% (0.018) 0.014) (0.010) (0.007) (0.006) (0.005)
° MLE 1.047 £0.094 1.051 £0.077 1.053 £0.059 1.054 £0.042 1.055 £0.034 1.055 £0.030
(0.011) (0.008) (0.006) (0.005) (0.004) (0.004)
OLSE 1.015 £0.051 1.013 £0.042 1.011 £0.032 1.009 +0.023 1.008 £0.019 1.007 £0.016
10% (0.003) (0.002) (0.001) (0.001) (0.000) (0.000)
° MLE 1.002 +0.049 1.002 £ 0.040 1.003 +0.031 1.004 +0.022 1.004 £0.018 1.004 £0.015
(0.002) (0.002) 0.001) (0.000) (0.000) (0.000)
OLSE 1.020 +0.054 1.019 £ 0.044 1.017 £0.034 1.014 +£0.024 1.013 +£0.020 1.013 £0.017
20% (0.003) (0.002) (0.001) (0.001) (0.001) (0.000)
° MLE 1.006 +0.051 1.007 +0.042 1.008 +0.032 1.009 +0.023 1.009 £0.019 1.009 +0.016
Bms (0.003) (0.002) (0.001) 0.001) (0.000) (0.000)
i OLSE 1.028 +£0.057 1.026 +0.047 1.024 £0.036 1.021 £0.025 1.020 £0.021 1.019 £0.018
30% (0.004) (0.003) (0.002) 0.001) 0.001) 0.001)
° MLE 1.011 +£0.054 1.013 +£0.044 1.014 +£0.034 1.015 £0.024 1.015 £0.019 1.015 £0.017
(0.003) (0.002) 0.001) (0.001) (0.001) 0.001)
OLSE 1.037 +£0.061 1.035 +£0.050 1.032 +£0.039 1.030 +0.027 1.029 +0.022 1.028 £ 0.019
0% (0.005) (0.004) (0.003) (0.002) (0.001) 0.001)
° MLE 1.018 £0.057 1.020 +0.047 1.021 £0.036 1.022 £0.025 1.023 £0.021 1.023 £0.018
(0.004) (0.003) (0.002) (0.001) (0.001) (0.001)
OLSE 1.008 +0.032 1.007 +0.026 1.005 +£0.020 1.004 £0.014 1.004 £0.012 1.003 £0.010
10% 0.001) 0.001) (0.000) (0.000) (0.000) (0.000)
¢ MLE 1.000 +0.031 1.000 +0.025 1.001 £0.019 1.001 £0.014 1.002 +0.011 1.002 £ 0.010
0.001) 0.001) (0.000) (0.000) (0.000) (0.000)
OLSE 1.010 +0.033 1.009 +0.028 1.008 = 0.021 1.007 £0.015 1.006 +0.012 1.006 +£0.011
20% (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
° MLE 1.001 +£0.032 1.002 +0.026 1.003 +£0.020 1.003 £0.014 1.004 £0.012 1.004 £0.010
pres 0.001) 0.001) (0.000) (0.000) (0.000) (0.000)
& OLSE 1.014 £0.036 1.012 £0.029 1.011 £0.022 1.010 £0.016 1.009 £0.013 1.009 £0.011
30% 0.001) 0.001) (0.001) (0.000) (0.000) (0.000)
° MLE 1.004 +0.034 1.005 +0.028 1.006 +0.021 1.006 +=0.015 1.006 +0.012 1.006 +£0.011
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)
OLSE 1.018 +£0.038 1.017 £0.031 1.015 +£0.024 1.014 £0.017 1.013 £0.014 1.013 £0.012
£0% (0.002) 0.001) (0.001) (0.000) (0.000) (0.000)
° MLE 1.007 £0.036 1.008 +0.030 1.009 +0.023 1.009 £0.016 1.010 £0.013 1.010 £0.011
(0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
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Table 3-7: Simulation results of ¢ for multiply censored data, generated by OLSE and MLE, at
different 7, B, and ¢ (part II - high censoring levels): the values of £(4)+ S(¢) and MSE(4) (in

parentheses).
n
Method 20 30 50 100 150 200
OLSE 453.59 + 87553 13.18 £124.7 9.739 £33.32 8.086 +9.395 7.574 £ 4.807 7.284 +£3.150
50% (7665782938) (15694) (1187) (138.49) (66.33) (49.42)
MLE 6.325 £5.202 6.034 £3.532 5.833 £2.408 5.700 + 1.567 5.662 +1.261 5.647 +£1.081
(55.42) (37.81) (29.16) (24.55) (23.32) (22.77)
OLSE 38376 + 5877178 591.5 £50231 56.16 +1816.8 22.94 £547.2 17.12 £32.17 16.02 £21.96
60% (34542694582961) (2523516876) (3303913) (299856) (1295) (707.9)
° MLE 20.45 + 163 13.81 +30.33 11.72 £9.273 10.80 +4.659 10.53 £3.473 10.42 £2.911
Br=0.5 (26815) (1084) (200.9) (117.8) (102.8) (97.22)
OLSE 4214 £14.61 4.075 +£70.24 3.478 £1.970 3230 +1.114 3.120 £0.816 3.065 +£0.669
0% (223.87) (4943) (10.02) (6.213) (5.159) (4.712)
° MLE 2.798 +1.387 2.754 £1.092 2.739 £0.838 2.717 £0.583 2.706 £ 0.478 2.703 £ 0.409
(5.156) (4.269) (3.728) (3.288) (3.140) (3.067)
OLSE 7.089 +45.34 6.098 +£23.75 5.300 £ 6.151 4.734 £2.256 4.538 £ 1.556 4.434 £1.279
0% (2093) (589.94) (56.33) (19.03) (14.94) (13.42)
° MLE 3912 £2.154 3.819 £ 1.671 3.779 £ 1.255 3.744 +0.864 3.721 £0.697 3.721 £0.603
- (13.12) (10.74) (9.298) (8.278) (7.887) (7.769)
OLSE 2.456 +4.437 2.393 £ 1.600 2.343 £0.984 2.270 £0.549 2.233 £0.426 2.209 £0.350
50% (21.81) (4.501) (2.771) (1.915) (1.700) (1.585)
° MLE 1.993 +0.647 1.993 £0.507 1.994 +0.383 2.000 £ 0.268 1.998 +0.219 2.000 £0.189
(1.405) (1.243) (1.136) (1.071) (1.045) (1.036)
OLSE 3.726 £ 36.74 3.382 £7.577 3.314 £24.20 3.087 +1.347 3.012 £0.984 2.972 £0.780
0% (1357) (63.09) (590.9) (6.173) (5.018) (4.498)
° MLE 2.685 +1.629 2.625 +£1.014 2.592 +0.691 2.574 £0.456 2.566 +0.364 2.565 +£0.312
Bmt (5.493) (3.669) (3.013) (2.684) (2.585) (2.546)
! OLSE 1.689 +0.581 1.660 +0.472 1.627 +£0.351 1.588 +0.232 1.572 £0.184 1.562 +0.158
0% (0.813) (0.659) (0.517) (0.400) 0.361) (0.340)
° MLE 1.469 £ 0.373 1.474 £0.306 1.478 £0.238 1.480 £0.167 1.481 £0.137 1.482 £0.119
(0.360) 0.319) (0.285) (0.258) (0.250) (0.246)
OLSE 1.974 £0.934 1.939 +£0.682 1.900 £0.512 1.847 £0.326 1.828 £0.262 1.810 £0.218
30% (1.822) (1.345) (1.072) (0.824) (0.754) (0.703)
MLE 1.668 +0.451 1.676 £0.372 1.679 +0.286 1.683 +0.200 1.687 £0.164 1.686 +0.142
(0.650) (0.595) (0.543) (0.507) (0.499) (0.491)
OLSE 1.211 £0.192 1.203 +£0.156 1.195 £0.120 1.184 +0.083 1.179 +0.067 1.177 £0.058
50% (0.081) (0.066) (0.053) 0.041) (0.037) (0.035)
° MLE 1.141 £0.155 1.144 £0.127 1.149 +£0.099 1.151 £0.069 1.152 £0.056 1.153 £0.048
(0.044) (0.037) (0.032) (0.028) (0.026) (0.026)
OLSE 1.280 +0.230 1.275 £0.189 1.266 +0.145 1.254 £0.101 1.247 £0.082 1.245 +£0.069
0% 0.131) 0.111) (0.092) 0.075) (0.068) (0.065)
° MLE 1.194 £0.173 1.201 +£0.141 1.206 +0.109 1.210 £ 0.077 1.210 +0.064 1.212 £0.054
P (0.068) (0.060) (0.054) (0.050) (0.048) (0.048)
' OLSE 1.375 £ 0.308 1.374 +0.245 1.367 +£0.188 1.356 +0.133 1.348 £ 0.106 1.343 £0.092
70% (0.235) (0.200) (0.170) (0.145) (0.132) (0.126)
¢ MLE 1.272 £0.205 1.279 £0.167 1.287 £0.128 1.293 +0.090 1.294 £ 0.073 1.295 +0.064
(0.116) (0.106) (0.098) (0.094) (0.092) (0.091)
OLSE 1.512 +0.496 1.527 £0.392 1.531 £0.312 1.524 £0.211 1.517 £0.165 1.509 £0.141
0% 0.507) (0.432) (0.380) 0.319) (0.295) (0.279)
° MLE 1.403 +0.290 1.411 £0.228 1.419 £0.172 1426 £0.119 1.429 +0.097 1.430 +0.084
(0.246) (0.220) (0.205) (0.196) (0.193) (0.192)
OLSE 1.189 £ 0.162 1.190 +0.133 1.188 £0.104 1.180 +0.073 1.176 +0.059 1.174 £ 0.051
50% (0.062) (0.054) (0.046) (0.038) (0.035) (0.033)
° MLE 1.132 £0.127 1.139 £0.103 1.145 £0.079 1.148 £0.056 1.150 +0.045 1.151 £0.040
(0.034) (0.030) (0.027) (0.025) (0.024) (0.024)
OLSE 1.253 £0.226 1.262 £0.182 1.265 £ 0.144 1.261 £0.102 1.258 +0.083 1.254 £0.071
0% 0.115) (0.102) 0.091) 0.079) 0.073) (0.069)
° MLE 1.193 £ 0.161 1.201 £0.129 1.208 +0.098 1.215 £ 0.068 1.216 £ 0.056 1.217 £0.048
P (0.063) 0.057) (0.053) 0.051) (0.050) (0.050)
' OLSE 1.109 £0.117 1.105 +0.095 1.101 £0.073 1.095 +0.052 1.092 +0.042 1.090 +0.036
0% (0.025) (0.020) (0.016) 0.012) (0.010) (0.009)
¢ MLE 1.068 +0.101 1.072 +0.083 1.075 £ 0.064 1.077 £0.045 1.078 +0.037 1.078 +0.032
0.015) 0.012) (0.010) (0.008) 0.007) 0.007)
OLSE 1.142 £0.134 1.141 £0.109 1.136 +0.084 1.130 +0.059 1.127 £ 0.048 1.124 £0.042
80% (0.038) (0.032) (0.026) (0.020) (0.018) (0.017)
° MLE 1.094 £0.111 1.100 + 0.090 1.104 £0.070 1.107 +0.049 1.108 £ 0.040 1.108 £ 0.035
(0.021) (0.018) (0.016) (0.014) (0.013) (0.013)
OLSE 1.082 +0.087 1.082 £ 0.071 1.081 £0.056 1.078 +0.039 1.076 +0.032 1.075 £0.027
50% 0.014) 0.012) (0.010) (0.008) (0.007) (0.006)
° MLE 1.052 £0.074 1.056 +0.061 1.060 = 0.047 1.063 +0.033 1.064 +0.027 1.064 +0.023
(0.008) (0.007) (0.006) (0.005) (0.005) (0.005)
OLSE 1.109 £0.113 1.115 £0.091 1.114 £0.070 1.113 £0.051 1.111 £0.041 1.110 £0.035
0% (0.025) (0.022) (0.018) 0.015) 0.014) 0.013)
° MLE 1.076 +0.090 1.084 £0.073 1.087 £ 0.055 1.092 +0.039 1.093 £ 0.032 1.094 +0.028
b5 0.014) 0.012) 0.011) 0.010) (0.010) 0.010)
T OLSE 1.048 +0.067 1.046 +0.055 1.044 +£0.042 1.041 +£0.030 1.040 +0.024 1.039 +0.021
0% (0.007) (0.005) (0.004) (0.003) (0.002) (0.002)
° MLE 1.026 +0.061 1.029 +0.050 1.031 £0.038 1.032 £0.027 1.033 +£0.022 1.033 £0.019
(0.004) (0.003) (0.002) (0.002) (0.002) (0.001)
OLSE 1.063 £0.075 1.061 +0.061 1.059 +0.047 1.056 +0.033 1.054 +0.027 1.054 £0.023
0% 0.010) (0.008) (0.006) (0.004) (0.004) (0.003)
MLE 1.037 +0.066 1.040 £ 0.054 1.043 +£0.042 1.045 +0.029 1.045 £ 0.024 1.046 +0.021
(0.006) (0.005) (0.004) (0.003) (0.003) (0.003)
OLSE 1.039 +0.053 1.039 +£0.043 1.038 £0.034 1.036 +0.024 1.035 £0.019 1.034 £0.017
50% (0.004) (0.003) (0.003) (0.002) (0.002) 0.001)
° MLE 1.021 +0.048 1.024 +0.039 1.026 = 0.030 1.028 £0.021 1.029 £0.017 1.029 £0.015
(0.003) (0.002) (0.002) (0.001) 0.001) 0.001)
OLSE 1.051 £ 0.065 1.054 +0.053 1.054 +0.041 1.053 £0.029 1.052 +0.024 1.051 +0.020
60% (0.007) (0.006) (0.005) (0.004) (0.003) (0.003)
° MLE 1.031 £0.056 1.035 £0.045 1.039 £0.035 1.042 +£0.024 1.042 +0.020 1.043 £0.017
pres (0.004) (0.003) (0.003) (0.002) (0.002) (0.002)
5 OLSE 1.023 +£0.041 1.022 £0.034 1.020 £ 0.026 1.019 £0.018 1.018 £0.015 1.018 £0.013
0% (0.002) (0.002) (0.001) 0.001) (0.001) (0.000)
° MLE 1.010 +0.039 1.011 +£0.032 1.013 +£0.024 1.014 £0.017 1.014 £0.014 1.014 £0.012
(0.002) (0.001) (0.001) (0.000) (0.000) (0.000)
OLSE 1.029 + 0.046 1.029 +0.037 1.027 +0.029 1.026 +0.021 1.025 £0.017 1.024 £0.014
0% (0.003) (0.002) (0.002) (0.001) (0.001) 0.001)
° MLE 1.014 £0.043 1.017 £0.034 1.018 £0.027 1.020 £0.019 1.020 £ 0.015 1.020 £0.013
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
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3.4 Summary

In this chapter, the properties of the OLS estimators of the Weibull parameters were

examined through both analytical methods and Monte Carlo simulation experiments.

The important findings are summarized as follows.

Theoretical Findings

1))

2)

3)

4)

The OLS estimators of  and f are biased and may not have minimum

variance among all linear estimators.

A sensible selection for y, is to use the expected values of the order

statistics of the reduced variable Z =(X —Ina)/(1/f). The values can be
calculated by Equation (3-8), and the corresponding estimates for failure

probability F can be calculated by the relationship Y = ln[— In(1-F )] )

The Weibull distribution, denoted by Wei(eax, ), is related to the extreme
value distribution, denoted by Exm(u,o), with 4 =Ina and o =1/ . The

transformation to the extreme-value distribution, which is of location-scale

type, helps to ease the analytical deductions. The BLUEs for i and o are
well-established; however, as the relationships g =Ina and o =1/ are

both nonlinear, the BLUEs for & and £ cannot be easily obtained.

Same as the MLE of « and £, the LSE of ¢ and £ have two pivotal

functions ,@/ S and Bln(d/a) whose distributions are independent of «

and f.
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Simulation Findings

1)

2)

3)

84

For complete data, the relative bias of the OLS estimated S is typically

within 5% and is inconsistent with the sample size. The relative bias reaches
smallest between n =6 and n=7. During 10 <n <30, the relative bias is
like a constant and remains at around 4%. The standard deviation and MSE
are typically much larger than the bias, indicating that OLSE has a low

efficiency. OLSE outperforms MLE for estimating £ for small samples,
while MLE performs better for estimating « , especially when £, is small

(although both estimators of « have large bias when £, is small).

For multiply censored data, the bias of the OLS estimated £ is inconsistent

with either n or c¢. The bias reaches smallest at different combinations of »
and ¢, e.g, ¢=30% and n=150-200, ¢=40% and n=100-150 ,
c=50% and n=80-100, ¢=60% and n=50-60, and c=70% and
n=20-30. The bias is significant for small samples with very low
censoring levels (¢ <20% ) or large samples with very high censoring levels
(c270% ). For estimating « , the results are generally unsatisfactory at
B, =05 . MLE always outperforms OLSE for estimating o . OLSE

outperforms MLE for estimating £ as long as the censoring level is not very

low, i.e., ¢ >20%.

For both complete data and censored data, the standard deviation and MSE of
¢ and ,5’ of the OLSE generally decrease with the increase of sample size.

However, the bias is inconsistent with the sample size. This means for the

OLSE method, the increase of sample size may not generate better estimates.



Chapter 4

Modifications on the OLSE Method

This chapter presents some modifications on the OLSE method with the aim of
providing better estimates for the Weibull parameters. The importance of using LSE
together with WPP is emphasized. Discussions on the plotting positions in the cases
of complete data and censored data, respectively, are presented. The expected plotting
positions or its approximations are recommended. A comparison between two LSE
methods, LS Y on X and LS X on Y, is presented. The simulation results show that the

two methods outperform each other at different conditions.

4.1 Introduction

In the previous chapter, the properties of the OLS estimators have been carefully
examined via both analytical method and experimental method. It was found that the
OLS estimators of the Weibull parameters, especially for the shape parameter, are
biased and have large variance for certain sample sizes or censoring levels. There are
many possibilities to improve the OLSE method, as can be seen in the following of
this thesis. This chapter presents a few small modifications without change the least

squares regression technique used in the OLSE method.

In the following, Section 4.2 describes the advantages of using OLSE with WPP
instead of using it merely as a simple analytical method. Section 4.3 examines the
selection of the Y-axis plotting positions on parameter estimation. It will show that the

Bernard estimator and the Herd-Johnson estimator used in OLSE for complete data
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and censored data, respectively, can be replaced by other estimators to achieve better
parameter estimators under certain circumstances. Section 4.4 presents another
modification on OLSE, which is to reverse the dependent variable and the
independent variable in the least squares regression. In OLSE, X =InT is the

independent variable and Y = ln[— In(1-F (t))] is the dependent variable. This is in

good agreement with WPP which plots ¢ along the X-axis and F along the Y-axis.
However, from the viewpoint of a controlled experiment design, it is more appropriate

to set X :ln[— In(1-F (t))] as the independent variable and Y =In7 as the

dependent variable because ¢ is the measured values or output from the experiment
and the values of F are estimated by some non-parametric estimators which are
independent of . The comparisons between the two methods are presented in details.
Some of the work presented in this chapter has been published in Zhang et al. (2005,

2007).

4.2 Modification 1: Always Use LSE with WPP

Parameter estimation methods for the Weibull distribution are commonly divided into
two groups: graphical methods and analytical methods. In Chapter 2, the WPP method
and the LSE method are described as two types of estimation methods: WPP is a
graphical estimation method, and LSE belongs to the group of analytical estimation
methods. In practice, however, these two methods are frequently used together.
Theoretically, LSE and WPP are both based on the linearized Weibull CDF, i.e.,
Equation (2-1). By combining LSE with WPP, it is basically to use the least squares
regression technique to generate the straight line on the probability plot instead of by
eye. The advantages of the combination over the two individual methods are obvious:

1) compared to WPP, it avoids the subjectivity by using eye-fitting so as to improve
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the estimation efficiency; and 2) compared to LSE, it gives a graphical presentation
which can serve as model validation and outlier identification, in addition to

parameter estimation.

Application Procedure of LSE with WPP

For a random Weibull sample denoted by ¢,,t,,---,t,,---,¢, (i=12,---,n), and in the

case of censored data, let Lristyasst b, (J=12,00,7) denote the failures in

12
this sample, the following procedure shows how to apply LSE with WPP to estimate

the Weibull parameters:

Step 1: Rank the failure times, ie., 7, (for complete sample) or 7, (for

censored sample), from smallest to largest.

Step 2: Calculate the estimated values of failure probability, i.e., }:“(i) (for

complete sample) or F ', (for censored sample), at each failure data
point.

Step 3: Generate the Weibull probability plot: plot 7, vs. I:ﬂ(i) (for complete

sample), or 7, ; Vs. F (; (for censored data) on Weibull probability

paper. If the Weibull distribution fits, the data points should appear to
be on a straight line.

Step 4: Generate a straight line for the data points on WPP using the least
squares regression technique.

Step 5: Estimate « and £ with Equation (2-12).

If the Weibull probability paper is not available, Step 3 can be modified as

plotting Inz, vs. ln[—ln(l—ﬁ(i))J (for complete sample), or Int Vs.

RE))
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lnl— In(1- F ) )J (for censored data) on linear-linear paper. This can be carried out in

spreadsheet like MS Excel.

4.3 Modification 2: Estimation of F(¢) (Plotting Positions)

WPP, LSE and other linear regression estimation methods discussed in this thesis all
require the estimated value of failure probability /' at each failure time. Weibull
researchers have agreed the importance of the estimation of /', commonly known as
the Y-axis plotting positions, on parameter estimation. Much work has been done on
this topic, as briefly described in Section 1.3.1. Among the existing estimators of F',
most are simple non-parametric estimators that can be used for complete data. The

estimation of F' in the case of multiply censored data is less discussed.

The definition of F(¢) is the probability that a random variable 7' takes on a
value less than or equal to a real number, e.g., #,. For the Weibull distribution, we

have
&)
F(t,))=P(T <t,)=1-exp —(—Oj } 4-1)
a

From Equation (4-1), the value of F(¢,) depends on #,, a and . ¢, is a failure
observation which is known, but & and £ are unknown parameters of the Weibull
distribution, hence the value of F(¢,) can only be estimated. The estimation of F'(¢,)

is frequently called the determination of Y-axis plotting positions for the Weibull
probability plot. This is not a unique problem for the Weibull probability plotting, for

example, some discussions on the similar problem can be found for the normal
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probability plotting, see, e.g., Looney & Gulledge (1985). As is well known,

F =(i—1/4)/(n+3/8) is used for the normal distribution.

The estimation of F(¢,), or the selection of the Y-axis plotting positions for

WPP, is such a hot topic that a large portion of literature about WPP and LSE

examined this problem. Different estimators of F(z,) have been proposed, to be

applied to complete data and censored data, respectively. Most of the existing

estimators are expressed by the functions of order number and sample size. Unlike the

situation for the normal probability plotting, where F' = (i —1/4)/(n +3/8) is used as

a standard formula for calculating F and there is rarely an alternative, currently there
is no fixed method for the estimation of the Weibull F', especially for censored data.

The discussion is still ongoing.

In the following, Section 4.3.1 summarizes the common methods for calculating

F for complete Weibull samples into different groups and the results are presented in
a table for easy reference. The related work is described and the research gaps are
pointed out. Similar work is presented in Section 4.3.2, in the case of censored data.

Then, Section 4.3.3 and Section 4.3.4 present the Monte Carlo experiment study of

the different methods for calculating £, in the cases of complete data and censored
data, respectively, and the results will suggest which method is best under certain
circumstances. The simulation results are presented in figures for the convenience of

comparison.
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4.3.1 Estimation of F for Complete Data

More than eight non-parametric estimators for calculating ﬁ(i) have been proposed

and compared in the literature. The general form of these estimators can be expressed

by

= (4-2)
n+c,

where c,, ¢, are two real numbers.

Table 4-1 gives a summary of these estimators. As can be seen from the table,
the existing non-parametric estimators are divided into five categories:
1) Mean rank plotting positions: the Weibull estimator (Weibull, 1939).

2) Median rank plotting positions: the Bernard estimator (Bernard & Bosi-

Levenbach, 1953) and the Filliben estimator (Filliben, 1975).

3) Expected plotting positions: the Ross estimator (Ross, 1994b) and the

Drap-Kos estimator (Drapella & Kosznik, 1999).

4) ‘Optimal’ plotting positions: the estimators vary with sample sizes (Wu &
P P gp y p

Lu, 2004; Tiryakioglu & Hudak, 2007).

5)  Others: the Hazen estimator (Hazen, 1930), the Blom estimator (Blom,

1958), etc.
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The theoretical backgrounds of the Weibull estimator, the Bernard estimator and
the Hazen estimator have been described in Section 2.2. The mean rank plotting
positions and the median rank plotting positions are most frequently used. The
estimators in these two categories satisfy the following general form,

~ i—c,

y = ——— 4-3
@ n—2c,+1 (*+-3)

where ¢ is a real number. The Hazen estimator is a special case which also satisfies

this equation with ¢, =0.5.

Fothergill (1990), with Monte Carlo simulations, compared the LSE methods
with the Bernard estimator, the Weibull estimator and the Hazen estimator on
estimating Weibull parameters for samples of size 3 to 20. The author concluded that
when the Bernard estimator is used, the LS estimators of « and S are nearly
unbiased, while the Weibull estimator results in underestimated £ and the Hazen
estimator results in overestimated /. It was also showed that the Bernard estimator is
a very good approximation to the exact median rank values. Cacciari & Montanari
(1991) extended Fothergill’s work and added the Blom estimator and the Filliben
estimator in the comparison via Monte Carlo simulations. The authors concluded that
the Bernard estimator and the Filliben estimator are clearly better than the Weibull
estimator and the Blom estimator on parameter estimation and should be preferred for
small samples. Their results also showed that when the Bernard or the Filliben
estimator is used, the LS estimators of & and £ are not consistent, i.e., the accuracy
improves as the sample size increases; while when the Blom estimator is used, the LS

estimators of ¢ and f are consistent.
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The methods in the third category can be found in the early literature such as
Weibull (1967) and White (1969); however, it is not as popular as the Weibull or the
Bernard estimator nowadays. Ross (1994b) examined the method and gave it the

name expected plotting positions. The idea is to first calculate the expected values of

Y

1> and then calculate the values for 13“([) by 13“([) :l—exp[— exp(E (Y(l.)))]. Weibull

(1967) said that the Bernard estimator, though generally acceptable, will be biased,
and the correct plotting positions are calculated in this way. Section 3.2.2 and Section
3.2.3 have presented the analytical deduction on E(Y;) and the theoretical
justification on this plotting position. Drapella & Kosznik (1999) also suggested the

calculation of }?‘( through E(Y,;), and the formulas are given by

i—1 _
Drap-Kos estimator E(Y,)=i " (-1)* —y - ln(n i+k+ 1)}
k=0 —i+k+1
(4-4)
and
ﬁ(i) =1- eXp[_ exp(y; )] (4-5)

Equation (4-4) is similar to Equation (3-8) but the deduction is not provided in
Drapella & Kosznik (1999). With Monte Carlo simulations, the authors concluded
that, with their formulas used in LSE, the bias of the LS estimators is greatly reduced,
while the MSE of the estimators are slightly increased. Equation (4-4) has been cited
many times in recent years, see, e.g., Xie et al. (2000), Yang & Xie (2003), Hung

(2004) and Lu et al. (2004 ).

The disadvantage of the expected plotting positions is obvious, i.e., the

complexity in calculating the values of E(Y;)), especially when the sample size is
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large. Ross (1994b) proposed a simple approximation formula which satisfies the
general form (i—c,)/(n+c,) for the expected plotting positions via numerical

methods. The formula is given by

Ross estimator F, = =044 (4-6)
n+0.25

Ross compared this estimator with the Bernard estimator and the Weibull estimator in
view of plotting and parameter estimation, respectively. It was concluded that the new
estimator, when used in LSE, outperforms the others and generates nearly unbiased
LS shape parameter estimator. This simple approximation formula, unfortunately, has

not received much attention.

The estimators for estimating F in the fourth category also belong to the simple

form in Equation (4-2); however, the values of ¢, and ¢, are not fixed but depend on
the sample size and are determined via the Monte Carlo method based on certain
objectives which make the estimators ‘optimal’. The objective used to determine c,
and ¢, in the work of Wu & Lu (2004) is to maximize the probability that ,5’ / £ fall

into the interval [0.9,1.1], and the objective in Wu et al. (2006) is to minimize the

bias of ,5’, 1.e., to make ,B/ p closest to 1. The values of ¢, and ¢, were determined
for selected sample sizes and tabulated in the two papers. The authors concluded that
there is no distinct relationship existing between the values of ¢,, ¢, and the sample

size. A similar research can also be found in Tiryakioglu & Hudak (2007). Obviously,
this type of method has great limitations on applications, because one can not know

the optimal values of ¢, and c, for those sample sizes that are not shown in the

authors’ work.
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The discussions regarding the estimation of failure probabilities for the Weibull
distribution have not received much agreement. The Bernard estimator is used in the
OLSE method for complete data and it is probably the most recognized estimator,
followed by the Hazen estimator and the Weibull estimator. The expected plotting
positions have good theoretical backgrounds and were noticed by some researchers in
the last decade. Ross’ approximation formula for the expected plotting positions in
Equation (4-6) may have a good potential for its simplicity and accuracy. It is
carefully examined, together with other popular plotting positions for LSE, on
parameter estimation via Monte Carlo simulations in Section 4.3.3. The fourth
category of the plotting positions is not further discussed due to the application

inconvenience.

4.3.2 Estimation of F for Censored Data

For a censored sample, LSE uses only the failure times to conduct regression analysis
and WPP plots only failure data points. How to make use of the information provided
by the part of censored data in a sample is the key problem in the LSE procedure and
it will greatly affect the parameter estimation results. Obviously, ignoring censored
data or treating them as failures will cause unreliable estimates because the

information provided by censored data is lost or misused.

As a common practice, the influence of censoring is reflected in the estimation of
F at each failure data point. Therefore, the estimation of F for censored data is more

complicated and more important than that for complete data.

The literature on estimating F' for censored data is not as much as that for

complete data. Nelson (2004) described the WPP procedure including the calculation
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of F

", In the cases of different types of censored data. The Herd-Johnson estimator

A

(Herd, 1960; Johnson, 1964) in Equation (2-6) is recommended for calculating 7, .

The theoretical background of the Herd-Johnson estimator has been presented in
Section 2.2. Other methods have also been proposed; however, not as popular as the

Herd-Johnson method. Table 4-2 summarizes the existing methods for calculating

A

F

) for censored data. The references are listed and the characteristics of each

method are pointed out.

As can be seen from the table, the existing methods on estimating F for

censored data are divided into two categories:

1) Without calculating the MFON: the Kaplan-Meier (KM) estimator
(Kaplan & Meier, 1958), the Herd-Johnson (HJ) estimator (Herd, 1960;
Johnson, 1964) and the Zimmer estimator (Skinner et al., 2001; Hossain &

Zimmer, 2003).

2) First calculate the MFON, denoted by m , ,, and then use m,  in the

Bernard estimator (or other non-parametric estimators like Hazen or

Weibull) to calculate ﬁ /¢ the modified Johnson (JM) method (Keats et
al., 2000), the age sensitive method (ASM) of Hastings & Bartlett (1997),
the exponential age sensitive method (EASM) of Campean (2000) and the

refined rank regression method (RRRM) of Wang (2001, 2004).

In the following, the methods in both categories are briefly described.
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The KM estimator is the oldest non-parametric estimator for F applied to

censored data. Its formula is given by

R n—1, R
I LTI I S
KM estimator T (”l +1-1, J D 4-7)

F I-R

£ = £

where the definition of 7, is given in Section 2.2, i.e., the event number of the I

failure in the sample. From Equation (4-7), if the last observation in a sample is a

failure, we have I, =n, and hence the failure probability is always equal to 1 for this

failure data point. This is obviously unrealistic for censored data and it tends to
underestimate the failures in the tail of the distribution; therefore, the KM estimator is

not recommended.

The HJ estimator overcomes the shortcoming of the KM estimator and is widely

used for censored data. The formula of the HJ estimator is given in Equation (2-6).

Besides the KM estimator and the HJ estimator, Skinner et al. (2001) and
Hossain & Zimmer (2003) proposed a similar estimator, named the Zimmer estimator,

which is expressed by

. n0.5-1,) -
Ry = R
Zimmer estimator o n+l5-1,) % (4-8)

Froy = 1- R

The authors compared it with the HJ estimator on estimating the Weibull parameters
in the cases of Type II censored samples and selected patterns of multiply censored

samples via Monte Carlo simulations. It was concluded that in view of both bias and
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MSE of the estimators, the HJ method is generally better than the Zimmer method for

estimating £ while the Zimmer method is better for estimating « .

The JM estimator belongs to the second category, but it has a close relationship

with the HJ estimator. The formula of the JM estimator is

B n+l-m;, B n+l-m,
i~ - *
n—1I,+2 I;+1
JM estimator My =My T4, (4-9)
no My 03
Ff,(j) -
n—0.4

where I; is the reverse rank of 1, 1.e., ij =n+l-1,. A, is the increment between

m,  and m, . At j=1, m,, =0.If the first observation is a failure, m, , =1.

A

In Equation (4-9), m, ; is used in the Bernard estimator for calculating F, ,,

A

but if it is used in the Weibull estimator, i.e., F

'y =My, /(n+1), the IM estimator

and the HJ estimator become the same.

The methods of KM, HJ, Zimmer and JM are insensitive to the exact censoring
times. The JM estimator and the HJ estimator are derived based on two assumptions:
one assumption is suggested by Herd (1960) that assumes a censoring event occurs
concurrently with a failure event, and the second assumption assumes that a censored
unit, if allowed to continue in service, has equal probability to fail in any of the

subsequent intervals of two consecutive failure times.

Hastings & Bartlett (1997) proposed a so-called age sensitive method to take the
censoring times into account for calculating F " (/- The method uses the proportion of

the interval length between event times to estimate the probability that a censored unit
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would fail in the current interval and in any of the subsequent intervals of two
consecutive failure times. The exact censoring times are used in the calculation. For a
multiply censored sample, plot the failure times and censoring times along the time
axis. Assume that the K™ censoring time I lies in the interval of two consecutive
failure times [¢, . ,).¢, ;). Let @, = () =2, 0)/ () —tr ) and @, =1-a,,

the formula of the Hastings & Bartlett’s ASM estimator is given by

_ntlemyg 1 > o
! I +1 I +1 S +a,
ASM estimator m, oy =mg oy +A, (4-10)
s Mo T 0.3
) n—04

where @; denotes the collection of all & that satisfy 7, ) €[t ;1,2 ;)-

Hastings & Bartlett (1997) compared the ASM with the JM method using a
numerical example and showed that their method is sensitive to the censoring time
while JM is not. However, the average performance of the method over the JM
method was not examined (Campean, 2000). Theoretically, compared to the JM
method, the ASM removed the Herd’s assumption and relaxed, or partially removed,

the equal probability assumption.

Campean (2000) proposed another age sensitive method called exponential age
sensitive method. The method is based on the assumption that the hazard rate, denoted

by &, , for each time interval of two consecutive failures is constant within the

interval. The author stated that this constant failure rate assumption offers a more
robust criterion for age sensitiveness than the simple proportional distance used by

Hastings & Bartlett (1997).
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The formula of the EASM is

A, :,Z(’fm —tow)hy + U= hy (g =ty ) +]
EASM estimator ] (4-11)
My =My T4,
~ my —0.3
£ n—-04

Campean (2000) provided two methods for estimating 7, , one is the maximum

likelihood estimation and the other is called the Bayesian smoothed piecewise
estimation method which, according to the author, can offer a smooth and robust
estimation for the hazard rate. A simulation study was conducted to compare the JM,
ASM and EASM (with the Bayesian smoothed piecewise estimator for hazard rate) on
the estimation of Weibull parameters. The results clearly showed the advantages of
the EASM at the censoring level of 12.5%. It is also surprised to see that the

performance of all methods improves with the increase of censoring level.

All the methods described above are non-parametric methods, i.e., the

calculation of F () does not involve the two Weibull parameters o and f. Wang

(2001, 2004) proposed a parametric approach to calculate the MFON and F,

()2
which is also an age sensitive method. Wang’s formula for MFON is based on the
Weibull CDF and the definition of conditional probability. The method is named

refined rank regression method by the author. The formula is given by

1/. B
m, =08 +(1-5,) Ft, ) F(ll-)}
RRRM estimator i=1 1-F(1) o
M 703
£ —0.4

where ¢, is the censoring indicator, and
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i

{O if ¢, 1s a censoring time

1 if ¢, is a failure time

From Equation (4-12), the calculation of m, ; is not straightforward because

F(t, ) and F(¢,) are unknown as « and S are unknown. To solve this problem,

74
Wang proposed an iterative procedure which combines the calculation of m, ; and
the parameter estimation for « and f. The procedure needs initial estimates of «
and S that can be obtained from the LSE method with the JM estimator. The

application procedure of the RRRM, according to Wang (2004), is as follows.

Step 0: Find distribution parameters using standard LS method as the initial

estimates.

Step 1: With the initial parameter estimates, calculate m, ;, and F, ; using
Equation (4-12).

Step 2: Update the estimates of the distribution parameters through a revised LS
regression using the new values of ) -

Step 3: Return and repeat the process from step 1 until an acceptable

convergence is reached on the parameter estimates.

An advantage of the RRRM is that it removes both the Herd’s assumption and
the equal probability assumption. However, the calculation is obviously more
complicated compared to other methods. With Monte Carlo simulations, the author
compared the RRRM and the JM method on the goodness-of-fit in view of plotting. It

was concluded that the RRRM generates a better fit for the Weibull distributed data.
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In summary, the KM estimator has a big problem and should not be used. The HJ

estimator or the JM estimator is probably the most widely used estimator. If the

A

Weibull estimator is used in JM, i.e., Fo)= mf’(j)/(n +1), the JM estimator and the

HJ estimator are same. The ASM and EASM both remove the Herd (1960)
assumption, i.e., censoring occur concurrently with a failure event, and use the exact
censoring time in calculating MFON. In theory, the EASM makes some
improvements over the ASM; however, the calculation becomes much more
complicated. The RRRM is the only parametric method and it has a good statistical
foundation. The application, however, needs iterations and hence is inconvenient
without the aid of a computer. Although computation is usually not a big problem
nowadays, there are still situations where the trade-off between computation

complexity and estimation accuracy is of interest.

In the following, selected methods for calculating ]% and F

() are compared

via Monte Carlo simulations and the results will provide suggestions on their usage.

4.3.3 Simulation Study on Plotting Positions for Complete Data

A Monte Carlo experiment was carried out to find the best plotting position, among
those described in Section 4.3.1, used in the LSE method to estimate the two Weibull
parameters for complete data. Table 4-3 lists the experiment factors and their values.
Five plotting positions were examined in this experiment including the Bernard
estimator in Equation (2-4), the Weibull estimator in Equation (2-2), the Hazen
estimator in Equation (2-5), the Ross estimator in Equation (4-6) and the Drap-Kos
estimator in Equation (4-4). The comparisons focus on the small to medium sized

samples because it is known that OLSE performs not very well under such conditions.
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Table 4-3: Setting of experiment factors. The experiment is to compare different plotting
positions used in LSE for complete data on parameter estimation.

Factors Values

ar 1

By I (for B)and 05,1,5 (for @)
n 3-30

M 10000

Methods Bernard, Weibull, Hazen, Ross, Drap-Kos

For a randomly generated Weibull sample, all the five methods were used to

calculate the values of y,, and then these y, were used in Equation (2-12) to generate
the LS estimates of o and f. This procedure was repeated for 10000 times in each

combination of «,, £, and n. Finally, the mean and MSE of & and S for each

method were calculated as the comparison criteria.

The comparison results are presented in figures instead of tables so that the
performance of the methods can be easily compared. The results for ﬁ are presented
in Figure 4-1 and Figure 4-2. The mean and MSE of the estimators are separately

presented. Based on the first pivotal function ,5’ / £, the results for ,Bu can represent

the results for ,3 given any f3,. The results for @ are presented in Figure 4-3 —
Figure 4-8. Since @/« is not a pivotal function, different values of 3, (0.5, 1 and 5)

were considered. The following conclusions can be observed.

Simulation Results for Estimators of f (Figure 4-1 and Figure 4-2)

1) Bias of ,3 (refer to Figure 4-1): Unfortunately, none of the methods always

performs best at all sample sizes investigated. Also, none of them are

unbiased. When the sample sizes are very small, say n =3, 4, the Weibull
estimator is the best; however, it is the worst among the five from n =25
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2)

3)

106

onwards. The Bernard estimator performs best during n =6—-8 where the
bias is almost 0. From n =9 onwards, the Ross estimator and the Drap-Kos

estimator are the best ones. The Hazen estimator generates highly
overestimated ,@ when n <10, but it performs very close to the Ross
estimator and the Drap-Kos estimator when n > 20. The Bernard estimator

results in underestimated ,B when n > 7 and the bias is close to a constant.

The bias of ﬁ generated by the Ross estimator and the Drap-Kos estimator

almost disappears when n>12 .

MSE of ,B (refer to Figure 4-2): Same as bias, none of the method has

smallest MSE at all sample sizes investigated. But the MSE of ,@ generated
by the Hazen estimator is always largest among the five. When n <10, the
MSE of ﬁ generated by the Weibull estimator is significantly smaller than
that of the other estimators, especially at n =3,4 . The Bernard estimator
performs the second best, followed by the Ross estimator and the Drap-Kos
estimator, and finally the Hazen estimator. When n > 10, however, the MSE
of ,3 generated by all the methods are close, and that of the Bernard

estimator is slightly smaller than that of the others.

Comparison between the Ross estimator and the Drap-Kos estimator: In
view of both bias and MSE, the two estimators perform closely for all the
sample sizes examined. This result indicates that the Ross estimator is a good

approximation for the exact expected plotting positions.
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Figure 4-1: Comparison of the shape parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n: the values of £( IBI E
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Figure 4-2: Comparison of the shape parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n: the values of 375 ( )5’1 D
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Simulation Results for Estimators of a (Figure 4-3 — Figure 4-8)

1)

2)

108

Bias of & (refer to Figures 4-3, 4-5 and 4-7): Comparing the three figures, it
can be seen that, although generally the bias of & of all methods decreases
as f, increases, the trends of @ as a function of n vary with £, for all the
methods. The trends of & of Hazen and Bernard at £, =5 are dramatically
different from the trends of them at 8, =0.5 and S, =1. The estimators of
a of all methods are roughly consistent at £, = 0.5, but inconsistent at
pBr=1 and p,=5. At B, =05 and f, =1, the Hazen estimator
outperforms the others at all sample sizes investigated, followed by the
Bernard estimator, and the Weibull estimator performs worst most of the
time. All methods result in highly overestimated & . The bias of & of all
methods is larger than 10% at £, =0.5, and at S, =1, the bias of & of
Hazen is within 10% and typically within 5%. At ., =5, however, a of
Hazen is underestimated when n < 6. At n <5, Bernard becomes the best
one. From n =5 onwards, Hazen returns to the best, followed by Bernard,
and then Ross, Drap-Kos and finally Weibull. The bias of & of Hazen is

typically 0.3% and that of Bernard is typically 0.6%.

MSE of « (refer to Figures 4-4, 4-6 and 4-8): The difference in the MSE of
a of all methods decreases with the increase of n and £, . The difference is
significant only at £, =0.5,1 and n<10. At all f,, the MSE of & of
Hazen is smaller than that of the others, especially at B, =0.5 and n<10.

The MSE of & of Weibull and Drap-Kos are always the largest.
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3) Both bias and MSE of & : Considering both bias and MSE, Hazen

4)

outperforms the others in most of the times except when £, =5 and n <5
(Bernard has a smaller bias). Especially when 5<# <10, the bias and MSE
of & of Hazen are significantly smaller than that of the other methods. On

the other hand, Weibull is generally inferior to others in view of both bias

and MSE of « .

Comparison between the Ross estimator and the Drap-Kos estimator: The
difference between the two is larger for estimating « than for estimating £ .
The Ross estimator performs slightly better than Drap-Kos for estimating o

in view of both bias and MSE of & .

22 T T T
T +  Bernard
+  Weibull
2k O Hazen
Ross
¥
X Drap-Kos
1.89F
*
- P
Te] B -
2 1.6 L
< ‘
w \‘ %
) %
1.4+ * E
* % %
)k X ¢
Tk D X% K
ON A *F %228 % % &
L OO0~ T % % XX % ¢ 4+ 4 i
12 VOO0 F R ERLRRXE LKL+ 44
PO0068E Rk R4ty
1, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4-3: Comparison of the scale parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n and g, : the values of £(g, ,)-
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Figure 4-4: Comparison of the scale parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n and g, : the values of MSE(&, )
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Figure 4-5: Comparison of the scale parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n» and g, : the values of E(g, ).
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Figure 4-6: Comparison of the scale parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n and §g, : the values of MSE(&,,)-
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Figure 4-7: Comparison of the scale parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different » and g, : the values of £(4, ;).
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Figure 4-8: Comparison of the scale parameter estimators for complete data, obtained by LSE
with different plotting positions used, at different n and §, : the values of MSE(&, )+

4.3.4 Simulation Study on Plotting Positions for Censored Data

The objective of this Monte Carlo experiment is to find the best plotting position
applied to multiply censored data among those descried in Section 4.3.2, used in the

LSE method for estimating the Weibull parameters.

Table 4-4 lists the experiment factors and their values. The plotting positions
examined in this experiment include the HJ estimator in Equation (2-6), the JM
estimator in Equation (4-9), the ASM estimator in Equation (4-10) and the RRRM
estimator in Equation (4-12). The EASM estimator is not considered because its
computation complexity may greatly limit its application. The KM estimator and the
Zimmer estimator are not considered because former work has shown that they are

not clearly better than the HJ estimator. The mean and MSE of & and ,3 , obtained by

each method, were calculated as comparison criteria.
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Table 4-4: Setting of experiment factors. The experiment is to compare different plotting

positions used in LSE for censored data on parameter estimation.

Factors Values

a, 1

B, 1 (for B)and 0.5,1,5 (for @)
n 10, 20, 30, 50, 80, 100

c 10%, 30%, 50%, 70%

M 10000

Methods HJ, JM, ASM, RRRM

The simulation results are presented in Figure 4-9 — Figure 4-24. The following

conclusions can be observed.

Simulation Results for Estimators of p (Figure 4-9 — Figure 4-16)

1)

2)

General observations: The results at low censoring levels (10%, 30%) and
high censoring levels (50%, 70%) are quite different. None of the methods

outperforms the others at all combinations of the experiment factors in view

of both bias and MSE of ,5’ .

Bias of ,5’ (refer to Figure 4-9, Figure 4-11, Figure 4-13 and Figure 4-15):
The HJ estimated ,5’ presents different trends as a function of the sample size
from the other three methods. At low censoring levels (10%, 30%), the bias
of ,@ of HJ is significantly larger than that of the other methods. JM, ASM

and RRRM perform similarly at ¢ =10% (the bias is typically within 4%)
and ¢ =30% (the bias is typically within 2%). The bias of the three methods

1s within 1% at the combinations of ¢ =30% and 30 < n <80. On the other

hand, at high censoring levels (50%, 70%), however, the bias of ,@ of HJ is

the smallest in most cases. Especially at ¢ = 70%, the bias of ,5’ of HJ is

within 1% at n=20,30 and within 4% at n=50,80,100 , which is
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3)

4)

5)

114

significantly smaller than that of the other methods. The difference among
JM, ASM and RRRM at high censoring levels is large for small samples.
When n <30, JM performs best, followed by ASM, and RRRM performs
worst; however, RRRM performs slightly better than JM and ASM for larger

sample sizes, e.g., n =80,100.

MSE of ,3 (refer to Figure 4-10, Figure 4-12, Figure 4-14 and Figure
4-16): HJ is the best at most conditions except that when ¢=10% and
n =20, the MSE of ,5’ of HJ is slightly larger than that of the other methods.
Among JM, ASM and RRRM, regardless the censoring levels, the MSE of

,@ of JM is always smallest, followed by ASM and finally RRRM.

Both bias and MSE of ,3 : HJ outperforms the others at high censoring levels
(50%, 70%) in view of both bias and MSE. JM, ASM and RRRM are better
for low censoring levels (10%, 30%) and the difference between them is

small.

Consistency: At low censoring levels (10%, 30%), the bias of ,5’ of HJ

decreases as the sample size increases and this is not true for the other
methods. At high censoring levels (50%, 70%), all the estimators are
inconsistent with the sample size. Moreover, all the estimators are

inconsistent with the censoring level.
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Figure 4-9: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different n: the values of f£( ﬁu) at c=10%.
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Figure 4-10: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different r: the values of j/SE( IBI ) ate=10%.
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Figure 4-11: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different n: the values of £( IBI ) atc=30%.
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Figure 4-12: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different r: the values of /SE( ﬁ’u) at ¢ =30%.
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Figure 4-13: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different n: the values of £( [}] ) atc=50%.
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Figure 4-14: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different n: the values of j/SE( ﬁ’u) at ¢ =50%.
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Figure 4-15: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different n: the values of £( [}] ) ate=70%.
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Figure 4-16: Comparison of the shape parameter estimators for censored data, obtained by LSE
with different plotting positions used, at different r: the values of /SE( ﬁ’u) at ¢ =70%.
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Simulation Results for Estimators of a (Figure 4-17 — Figure 4-22)

1) Bias of & (refer to Figure 4-17, Figure 4-19 and Figure 4-21): « of the
RRRM is very unstable. The bias is extremely large at £, =0.5 and
¢=50%,70% . The bias of & of the RRRM is the largest among all
methods at high censoring levels (50%, 70%) at most times; at low censoring
levels (10%), however, the bias of & of the RRRM is in the middle. The

bias of & of HJ is the largest at ¢ =10% . JM always performs best for

estimating « in view of bias.

2) MSE of & (refer to Figure 4-18, Figure 4-20 and Figure 4-22): Similar to
the results for bias, the MSE of @ of the RRRM is extremely large at high
censoring levels (50%, 70%). Among the other three methods, JM always
has the smallest MSE, ASM is better than HJ at low censoring levels, and HJ

is better than ASM at high censoring levels.

3) Both bias and MSE: Combining both bias and MSE, JM is the best for

estimating « and the RRRM should be used with caution.
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4.3.5 Summary of Results

The following conclusions are made by combining the results for ¢ and £.

For Complete Data

1)

2)

3)

For estimating £, the Bernard estimator performs very well when n <10.
When n >10, the Ross estimator or the Drap-Kos estimator is preferred
because the resulted ﬁ is nearly unbiased. However, the Ross estimator or

the Drap-Kos estimator cannot improve the efficiency of estimation.

For estimating o, the Hazen estimator is best especially at small £, and
small n. The Bernard estimator is the second best, followed by the Ross
estimator and the Drap-Kos estimator.

The Ross estimator is a good approximation to the Drap-Kos estimator (i.e.,
the exact expected plotting positions). The two methods perform similar for

estimating £, and the Ross estimator even performs slightly better for

estimating « .

For Censored Data

1)

2)

126

For estimating £, JM, ASM and RRRM are good for samples with low

censoring levels, say ¢ < 50%. Considering the application simplicity, JM is
recommended to be used. HJ should be preferred for samples with high
censoring levels, say ¢ > 50%.

For estimating «, JM is recommended for all censoring levels and sample
sizes. RRRM should be used with caution because it can generate extremely

large bias and MSE.
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4.4 Modification 3: LS Yon Xvs.LSXon Y

As mentioned in Section 2.3, the conventional setting of the independent and
dependent variables in the LSE method is that X =In7 and Y :ln[— In(1-F )],

which is consistent with the WPP where the X-axis is # and Y-axis is F . This method
is named LS Y on X in this study. Some researchers (see, e.g., Abernethy, 2000)

argued that it is more appropriate to set ¥ =In7 and X = ln[— In(1-F )] because ¢ is

the measured value or output from the experiment, and F is estimated by some non-
parametric method and is independent of 7". The replacement of the setting for X and
Y has the same effect as reversing the regression direction, and by doing this, another
method named LS X on Y is proposed. Abernethy (2000) compared the two methods
on parameter estimation via Monte Carlo simulations and suggested LS X on Y to be
used. However, the author’s experiment examined only a few sample sizes and only

complete data.

Nowadays, LS Y on X is the default method for LSE used by most Weibull
researchers and practitioners. However, it was found in the early literature that quite a
few Weibull researchers including Weibull (1967), White (1969) and Mann et al.
(1974) used LS X on Y. This motivated us to conduct a careful comparison between
these two methods. As the OLSE method cannot provide unbiased estimators of «

and f, the two methods must perform differently.

In the following, Section 4.4.1 presents the theoretical background and the
estimating equations for LS Y on X and LS X on 7, respectively. In Section 4.4.2, the
two methods are examined as two regression models by analytical methods. Some

results are found for the ratio of the MS of the two models and suggestions are

Error
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given on when to use which method in view of the goodness of model. Finally,
Section 4.4.3 presents the Monte Carlo experiment that compares the two methods on

parameter estimation.

4.4.1 Estimating Equations of LS Yon Xand LS Xon Y

Let X =InT and Y = ln[— In(1-F )] for both methods. The calculation for x; and y,

for complete samples and censored samples, respectively, can be found in Section 2.3.

Estimators of LS Y on X

If the Bernard estimator or the HJ estimator is used for estimating ', LS Y on X is the
OLSE method. Therefore, the estimating equation of the LS Y on X method is given

by Equation (2-12). Here it is rewritten as

”

[(xi_f)(yi_y)] rzxiyi_zxi'zyi
=1 _ _i=l i=1 i=1

ﬂLS—YX = B

B (8

i=1

(4-13)

r

Zy; - IHALS#X zxi
i=1

A J_/ B ﬂLS—YX)? i=1
Apsyx = exp(—A— =CXp| —

LS-YX rBis_yx

where &, ,, and ,l@LS_yx denote the estimators of o and S of the LS Y on X method.

The equation is applicable for both complete and censored data. » =n for a complete

sample, and » <n for a censored sample.

Estimators of LS X on Y

Rewrite Equation (2-7) as
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X=A"+B'Y (4-14)
where A'=Ina and B' =1/ . Thus the estimation of & and £ can be transferred to
the estimation of the regression coefficients for a simple linear regression model of

the form X = A"+ B'Y + ', where ¢’ is the error term.

The objective function of the LS X on Y method is

min S':i[xi —(4A'+By)[ (4-15)

i=1
The estimating equations can be easily obtained as

”

A

i i=l

[(xi _)_C)(yi _J_’)] rzxiyi _zxi 'zyi
_ =l i=1 i=1

o 2
—\2 r r
in _élzyi
— i=1 i=1

r

A'=x-BYy

Thus the estimators of & and S can be obtained by

~

) 2
A 05 (2]
Brs_xy = P = = = p = p
Z[(‘xi—f)(yi_y)] rzxiyi_zxi'zyi
i=1 i=1 i=1 i=1
ﬁLS—Xszi _zyi
i1 i-1

7, ,BLS—XY

(4-17)

%y
~ _ LS—XY _
Xps-xy = eXP[ﬂA—J = exp
LS-XY

where &,, ,, and ,BL&XY denote the estimators of ¢ and S of the LS X on Y

method. The equation is applicable for both complete and censored data. » =n for a

complete sample, and » < n for a censored sample.
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4.4.2 Analytical Examination of the Two Methods

r r

Lt 8,=) (-5, =Y~ 95, =X (5 -0, - 7) (+18)

i=1
Thus for the LS Y on X method, the estimators of 4 and B can be expressed by

B=S_ /S ,A=y-Bx (4-19)

Xy X

Similarly, for the LS X on Y method, the LS estimators of A" and B’ can be

obtained as
B'=Sxy/Sy,A’=)_c—B’y (4-20)

The common model statistics for a linear regression model include R’ (i.e.,

coefficient of determination) and MS R* is frequently used to measure the

Error *

goodness-of-fit. MS is the variance of error, and a smaller MS normally

Error Error

means a better model. To compare the models of LS Y on X and LS X on Y, the ratios

of their R*> and MS are derived. The results are given below.

Error

The definition of R? is

SSModel

R*=1- 4-21
SSTnml ( )
Thus the ratio of the R? of the two models is
2 2
l_Sxy/Sx 1— Sxy
Rl vy _ S, 58S, | (4-22)
R .. S:/s. 8%
LS-XY 1 _ xy/ y 1 _ xy
S, S, Sy
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Therefore, the two methods generate same values of R”.

The ratio of the MS,, . of the two models is given by

S, -8, /8,
MSerror(LS—YX) _ (l" 2) S S2 /S S

= 4-23
MS, sy, S.—S./S, S.-S1/S S (+23)

(-2

X

Since

= i(xi ~x)> =Var(X)

i=1

S, =, -3 =Var(¥)

i=l1

(4-24)

Equation (4-24) becomes

MSerror(LS—YX) Var(Y)

- (4-25)
MSerror(LS—XY) Val"(X)

It can be obtained, either from Y =4+ BX of the LS Y on X method or

X = A"+ B'Y ofthe LS X on Y method, that

Var(Y) = B*Var(X) (4-26)

Thus finally, the ratio of the MS,,,  of the two models is

MSerrur(LS—YX)
MS

error(LS—XY)

=p (4-27)

Based on this equation, if S <1, we have MS,, s yx) <MS, 015 xry 5 If B=1,
MSerror(LS—YX) = MSerror(LS—XY) 5 and lf IB > 1 H MSerror(LS—YX) > MSerror(LS—XY) :
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In summary, the analytical examinations on the two methods show that LS Y on
X and LS X on Y generate same values of R, which means the two methods perform

similarly in view of the goodness-of-fit. However, the examination of MS

error

suggests that LS Y on X be used when £ <1 and LS Xon Y be used when f>1.

4.4.3 Simulation Study of the Two Methods

A Monte Carlo experiment was conducted to compare the performance of LS Y on X
and LS X on Y on parameter estimation for complete and multiply censored samples,
respectively. The conventional methods for estimating F' used in OLSE, i.e., the
Bernard estimator for complete data and the HJ estimator for censored data, are used

for both methods. The simulation conditions are summarized in Table 4-5.

Table 4-5: Setting of experiment factors. The experiment is to compare the estimators of LS Y on
Xand LS Xon Y.

Factors Values

a; 1

,BT 0.5,1,2,3,5

n 5-20,22,...,28, 30, 35, ..., 45, 50, 80, 100 (complete data)
10, 20, ..., 90, 100, 150, 200 (censored data)

c 10%, 20%, ..., 70%, 80%

M 10000

Methods LS YonX,LSXonY

For a randomly generated Weibull sample, the two methods were used to

generate the LS estimates of @ and £ simultaneously. This procedure was repeated

for 10000 times in each combination of «,, £, n and c. Finally, the mean and MSE

of @ and ,@ for each method were calculated as the comparison criteria.
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4.4.3.1 Comparison Results for Complete Data

The simulation results for the shape parameter estimators are shown in Figure 4-23
and Table 4-6, and the results for the scale parameter estimators are shown in Figure
4-24 and Table 4-7. The bias of the estimators can be easily compared using Figure
4-23 and Figure 4-24. Table 4-6 and Table 4-7 tabulate the mean and MSE of the
estimators at selected simulation conditions. Not all the simulation results are

tabulated; however, the omitted results will not affect the following conclusions.

Simulation Results for Estimators of f (Figure 4-23 and Table 4-6)

1) General observations: In view of both bias and MSE of ,B , LS Yon X

outperforms LS X on Y when n<10. On the other hand, from n=11

onwards, LS X on Y outperforms LS Y on X for estimating £ in view of bias

but the values of MSE of the two estimators are close.

2) Bias of ,B of LS X on Y: The relative bias of ,B of LS X on Y is larger than

5% when n <10, but it drops fast from n =5 to 20, and the bias becomes

significantly smaller than that of LS Y on X at n > 20 . The estimator of S of

LS X on Y is nearly unbiased when n > 25 and the bias reaches 0 at about

n=40.

3) Bias of ,@ of LS Y on X: For LS Y on X, the bias of ,@ reaches 0 between

n=6 and n="7. During 10 < n <30, the relative bias is like a constant and

remains at 4% or so.

4) Consistency of ,3 : ,é of both methods are inconsistent with the sample size.
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X LSY on X(OLSE)
+ LS XonY
*
0.15 B
*
0.1 B
a *
ks
8 *
a *
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Figure 4-23: Bias of ,[;’1 ,» obtained by LS Y on X and LS X on ¥, at different n.

Table 4-6: Simulation results of Bl , for complete data, generated by LS Y on X and LS X on ¥, at

different n: the values of £( IBI ) and MSE( ,&1_1) (in parentheses).

n

Method 5 6 7 8 9 10 11 12 14 16
LSyopx 1042 1007 0994 0979 0972 0968 0961 0968 0958  0.962
(0.342)  (0228) (0.180) (0.143) (0.117) (0.109) (0.091) (0.084) (0.070) (0.061)
LSXopy 1160 1112 1093 1070 1057 1047 1036 1039  1.022  1.021
(0.461) (0297) (0.234) (0.180) (0.144) (0.132) (0.106) (0.100) (0.078) (0.067)
18 20 24 26 28 30 40 50 80 100
LSyonx 0958 0960 0956 0959 0966 0965 0966 0967 0974 0977
(0.053)  (0.050) (0.043) (0.038) (0.036) (0.034) (0.026) (0.021) (0.014) (0.011)
LSXopy 1014 1012 1002 1003 1008  1.004 1000 0997 0996  0.995
(0.057)  (0.053) (0.044) (0.039) (0.037) (0.035) (0.025) (0.020) (0.013) (0.011)

Simulation Results for Estimators of a (Figure 4-24 and Table 4-7)

1) General observations: In view of both bias and MSE, the method of LS X

on Y always outperforms LS Y on X for estimating « .

2) Bias of & : The bias of @ of LS X on Y is significantly smaller than that of

LS Y on X at p, <2. The differences are small when S, >2, and both

estimators of « are nearly unbiased and have small MSE at £,
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Table 4-7: Simulation results of &

3) Consistency of ¢ : For LS Y on X, the bias of & decreases as n and £,

increase. However, @ of LS X on Y is inconsistent with /3, as the estimator

is unbiased at S,

0.6 T T T T T T T T T
%X LSY on X(OLSE) beta=0.5
05 x 4 LS XonY beta=0.5
i e LS Y on X (OLSE) beta=2
x + LSXonY beta=2
04t * .
* x
%
s 03F * :
5 * %
8 + %
2 0.2r- e »“’%‘ 4
+ x
T Mxy
0.1r *g%e * X x x ]
T, x
. R x X
000090000, * +
OL - tHrHLE L2y & o o o e ______ .
_Ol | | | | | | | | | | | | | | | | | | |
0 5 10 1520 2530 3540 4550 55 60 6570 7580 85 90 95 100

Figure 4-24: Bias of ¢, 59 obtained by LS Y on X and LS X on Y, at different » and fr.

v for complete data, generated by LS Y on X and LS X on ¥,

at different n and 3, : the values of E(a4, 5) and MSE (&, 5) (in parentheses).

n

Method

5

6

7

8

9

10

12

15

20

30

40

50

80

100

B;=0.5

LSYonX

LSXonY

1.532
(2.571)
1.367
(1.945)

1.457
(1.918)
1.305
(1.431)

1.416
(1.563)
1.273
(1.177)

1362
(1.286)
1225
(0.943)

1325

(1.045)
1.198

(0.769)

1311
(0.944)
1.192
(0.709)

1241
(0.672)
1.136
(0.502)

1.199
(0.499)
1.109
(0.388)

1.150
(0337)
1.075
(0.269)

1122
(0.221)
1.063
(0.179)

1.088
(0.147)
1.041
(0.126)

1.079
(0.117)
1.040
(0.101)

1.052

(0.071)
1.024

(0.063)

1.049
(0.057)
1.024
(0.051)

Br=1

LSYonX

LSXonY

L113
(0.270)
1.052
(0.235)

1.109
(0.235)
1.048
(0.201)

1.106
(0.205)
1.048
0.173)

1.087

0.171)
1.033

0.147)

1.092
0.154)
1.039
0.131)

1.082
0.141)
1.031
(0.120)

1.077
(0.116)
1.032
(0.101)

1.056
(0.089)
1016
(0.078)

1.051
(0.066)
1017
(0.058)

1.036
(0.043)
1.010
(0.039)

1.032
(0.033)
1.010
(0.030)

1.026
(0.026)
1.007
(0.024)

1.020
(0.016)
1.006
(0.014)

1.017
(0.012)
1.006
(0.012)

=15

LSY on X

LS XonY

1.056
(0.109)
1.016
(0.099)

1.052
(0.091)
1.014
(0.083)

1.045
(0.079)
1.009
0.071)

1.050
(0.070)
1.014
(0.062)

1.044
(0.062)
1011
(0.056)

1.039
(0.056)
1.007
0.051)

1.036
(0.047)
1.006
(0.042)

1.033
(0.037)
1.007
(0.034)

1.026
(0.028)
1.004
(0.026)

1.021
(0.018)
1.003
0.017)

1018
(0.014)
1.004
(0.013)

1.016
(0.011)
1.003
(0.010)

1.010
(0.007)
1.001
(0.006)

1.010
(0.005)
1.003
(0.005)

LSY on X

LSXonY

1.030
(0.059)
1.001
(0.055)

1.028
(0.049)
1.000
(0.046)

1.029
(0.044)
1.001
(0.040)

1.025
(0.038)
1.000
(0.035)

1.026
0.033)
1.001
0.031)

1.022
(0.030)
0.998
(0.028)

1.023
(0.026)
1.002
(0.024)

1.019
(0.020)
1.000
(0.018)

1018
(0.015)
1.002
(0.014)

1015
(0.010)
1.002
(0.009)

1.012
(0.008)
1.001
(0.007)

1.010
(0.006)
1.001
(0.006)

1.008
(0.004)
1.001
(0.004)

1.007
(0.003)
1.001
(0.003)

pr=3

LSYonX

LSXonY

1.013
(0.026)
0.994
(0.025)

1.017
(0.021)
0.999
(0.020)

1.014

0.019)
0.996

0.018)

1014

0.016)
0.997

0.016)

1014
0.014)
0.997
0.014)

1013

0.013)
0.998

0.012)

1013
(0.011)
0.998
(0.010)

1012
(0.009)
0.999
(0.008)

1012
(0.007)
1.001
(0.006)

1.009
(0.005)
1.000
(0.004)

1.007
(0.003)
1.000
(0.003)

1.006
(0.003)
1.000
(0.003)

1.005
(0.002)
1.001
(0.002)

1.004
(0.001)
1.000
(0.001)

=5

LSYonX

LSXonY

1.005
(0.009)
0.993
(0.009)

1.006
(0.008)
0.994
(0.008)

1.005
(0.007)
0.994
(0.006)

1.006
(0.006)
0.995
(0.006)

1.006
(0.005)
0.996

(0.005)

1.007
(0.005)
0.997
(0.005)

1.005
(0.004)
0997
(0.004)

1.005
(0.003)
0.998
(0.003)

1.006
(0.002)
0.999
(0.002)

1.004
(0.002)
0.999
(0.001)

1.004
(0.001)
0.999
(0.001)

1.004
(0.001)
1.000
(0.001)

1.003
(0.001)
1.000
(0.001)

1.002
(0.000)
1.000
(0.000)
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4.4.3.2 Comparison Results for Censored Data

The comparison results for multiply censored data are shown in Table 4-8 for the

shape parameter estimators and Table 4-9 for the scale parameter estimators. The

following conclusions can be observed from the two tables.

Simulation Results for Estimators of f (Table 4-8)

1)

2)

3)

136

Bias of ,B : The mean values of ,5’ of LS X on Y are always larger than that
of LS Y on X. In view of the bias of ,3 , LS X on Y is clearly better at low

censoring levels (10% — 40%), where the bias of ﬁ of LS X on Y is typically

8% — 9% smaller than that of LS Y on X at n =10, and 2% — 6% smaller at

n>10. On the other hand, LS Y on X outperforms LS X on Y at high
censoring levels (60% — 80%), where the bias of ,3 of LS Y on X is typically

5% — 9% less than that of LS X on Y. At ¢ =50%, LS X on Y is better when

n <50 and LS Y on X is better when n > 50. The difference between the bias
of ,B of the two methods is significant at small sample sizes (n=10-20).
The bias of ,5’ of LS Y on Xis close to 0 at the combination of, e.g., ¢ = 60%
and n=50-60, and the bias of ,3 of LS X on Y is close to 0 at the
combination of; e.g., ¢ =30% and n=60-80.

MSE of ,8 : The MSE of ,8 of the two methods are close at most of the

times, except when the sample size is very small. The MSE of ,5’ of LS Y on

X is much smaller than that of LS X on Yat n=10.

,8 of both method are inconsistent with n for a specific ¢ and inconsistent

with ¢ for a specific n.
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Table 4-8: Simulation results of ,él , for multiply censored data, generated by LS ¥ on X and LS

X on ¥, at different n and c: the values of £( ﬁl ) and MSE( ,[31 ,) (in parentheses).

n

Method 10 20 30 40 50 60 70 80 90 100 150 200

10%

ISyonx 0878 0902 0917 0928 0938 0943 0949 0955 0957 0962 0972 0979
0.112) (0.056) (0.039) (0.031) (0.025) (0.021) (0.018) (0.016) (0.014) (0.013) (0.009) (0.006)
LSXopy 0953 0954 0959 0964 0969 0971 0975 0978 0979 0982 0987  0.992
0.119) (0.052) (0.034) (0.027) (0.021) (0.017) (0.016) (0.014) (0.012) (0.011) (0.007) (0.006)

20%

SYonx 0895 0908 0927 0938 0948 0954 0961 0963 0968 0973 0983  0.99
0.124) (0.060) (0.042) (0.032) (0.026) (0.022) (0.019) (0.017) (0.015) (0.014) (0.009) (0.007)
LSXopy 0973 0963 0973 0976 0981 0985 0988 0988 0992 0995  1.000  1.004
0.137) (0.057) (0.038) (0.029) (0.023) (0.020) (0.017) (0.015) (0.013) (0.012) (0.008) (0.006)

30%

LSyonx 0906 0917 0935 0946 0957 0965 0970 0972 0979 0982 0995  1.003
(0.140)  (0.065) (0.046) (0.035) (0.029) (0.024) (0.021) (0.019) (0.016) (0.015) (0.010) (0.008)
LSXony 0989 0976 0983 0987 0994 0998 1000 1001  1.006 1007 1015  1.019
(0.158) (0.064) (0.043) (0.032) (0.026) (0.022) (0.019) (0.017) (0.015) (0.014) (0.010) (0.008)

40%

LSyonx 0931 0930 0945 0961 0970 0975 0983 0988 0989 0994 1008 1015
0.179)  (0.078) (0.050) (0.041) (0.032) (0.028) (0.024) (0.021) (0.019) (0.017) (0.012) (0.010)
LSXony 1017 0994 0997 1007 1010 1012 1017 1019 101§ 1021  1.030  1.033
(0.214) (0.080) (0.049) (0.039) (0.030) (0.026) (0.023) (0.019) (0.018) (0.017) (0.012) (0.010)

50%

LSyopx 0974 0944 0953 0967 0983 0989 0994 0999 1002 1006 1.022 1030
0.251) (0.086) (0.059) (0.046) (0.038) (0.032) (0.029) (0.026) (0.023) (0.021) (0.015) (0.012)

LSXony 1-067 1012 1011 1017 1029 1030 1032 1035 1036 1038 1047 105
0.314) (0.093) (0.060) (0.046) (0.038) (0.032) (0.029) (0.025) (0.023) (0.021) (0.015) (0.013)

60%

LSyopx 1025 0971 0976 0992 0999 1001 1010 104 1020 1023  1.036 1046
0.415) (0.116) (0.072) (0.057) (0.046) (0.039) (0.035 (0.031) (0.028) (0.026) (0.020) (0.016)

LSXony 1119 1047 1039 1049 1050 1047 1053 1054 1059 1059  1.066  1.071
(0.509) (0.135) (0.078) (0.061) (0.049) (0.040) (0.036) (0.033) (0.029) (0.028) (0.021) (0.018)

70%

[Syonx 1180 1013 1005 1008 1014 1020 1029 1029 1033 1036 1.053  1.063
0.906) (0.174) (0.103) (0.076) (0.061) (0.053) (0.048) (0.042) (0.038) (0.035) (0.028) (0.023)
ISXony 1266 1095 1076 1071 1073 1074 1079 1076  1.079 1080  1.089  1.094
(1.060) (0.218) (0.120) (0.085) (0.067) (0.057) (0.053) (0.046) (0.042) (0.038) (0.030) (0.026)

80%

Syonx 1625 LIl 1057 1043 1053 1046 1053 1053 1057 1059 1.074  1.083
(2.747) (0.398) (0.171) (0.114) (0.100) (0.081) (0.072) (0.064) (0.059) (0.054) (0.042) (0.036)
LSXony 1625 1200 113 1116 LI2l L1014 LI L3 L3 L9 1123
(2.747) (0.517) (0215) (0.138) (0.118) (0.094) (0.083) (0.072) (0.066) (0.061) (0.047) (0.041)

Simulation Results for Estimators of a (Table 4-9)

1) In general, in view of both bias and MSE, the method of LS X on Y always

outperforms the method of LS Y on X for estimating « .

2) At S, =0.5, both methods perform unstable and generate extremely large

bias and MSE at some conditions. The bias and MSE of ¢ of LS X on Y at

most times are significantly smaller than those of LS Y on X at £, =0.5 and
B, =1. The difference becomes larger as ¢ increases. At S, =5, the two

methods perform closely and LS X on Y is slightly better in view of both
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bias and MSE. The bias of & of both methods drops greatly as S,

increases.

3) The bias and MSE of & of both methods are much larger than those of ,3

when £, is small.

Table 4-9: Simulation results of ¢, 5 for multiply censored data, generated by LS Y on X and LS
X on ¥, at different n, 3, and c: the values of E(&, ) and MSE (&, 5) (in parentheses)".

n
Method 10 20 30 50 100 150 200

LSYonX 1.650 (1.987) 1446 (0.764) 1.372 (0.460) 1303 (0.267) 1.250 (0.140) 1.226 (0.100) 1.217 (0.083)
LSXonY 1450 (1.181) 1318 (0.504) 1.277 (0.324) 1238 (0.200) 1.211 (0.113) 1.198 (0.083) 1.194 (0.071)

LSYonX 2008 (5.193) 1756 (1.516) 1.659 (0.966) 1.576 (0.613) 1.502 (0.374) 1.473 (0.299) 1.458 (0.265)
LSXonY 1713 (1.914) 1567 (0.905) 1.517 (0.629) 1478 (0.437) 1.444 (0.296) 1.431 (0.250) 1.423 (0.228)

LSYonX 2548 (23.24) 2194 (3.390) 2.076 (2.191) 1959 (1.438) 1.856 (0.942) 1.817 (0.796) 1.793 (0.723)
LSXonY 2072 (3.379) 1.899 (1.711) 1.854 (1.303) 1.806 (0.979) 1.764 (0.738) 1.749 (0.663) 1.739 (0.623)

LSYonX 3.561 (1289) 2899 (10.10) 2.720 (8.430) 2.534 (3.686) 2.385 (2.406) 2.320 (1.997) 2.288 (1.841)

10%

20%

30%

o

bi05 0% [SXonY 2622 (7226) 2396 (3.568) 2333 (2785) 2275 (2195) 2230 (L787) 2208 (1.638) 2.199 (1.570)

o sgop LSYONX 5083 (1119) 4214 (2239) 4075 (4943) 3478 (10.02) 3230 (6213) 3120 (5159) 3065 (4712)

® LSXonY 3491 (19.80) 3.156 (8513) 3.058 (6438) 3.005 (5219) 2949 (4.369) 2917 (4.052) 2902 (3.895)

00, LSYONX 1899 (1778543) 7.089 (2093) 6098 (589.9) 5300 (5633) 4734 (19.03) 4538 (1494) 4434 (1342

® LSXonY 5639 (6744) 4509 (28.50) 4326 (18.04) 4241 (13.97) 4160 (11.55) 4119 (10.74) 4.098 (10.35)

00, LSYonX 3660 X 453.6 x 13.177 (15694) 9739 (1187) 8.086 (138.5) 7.574 (66.33) 7.284 (49.42)

® LSXonY 327.1 X 8.750 X 7063 (1843) 6695 (51.56) 6.524 (37.33) 6469 (34.28) 6434 (32.68)

goo, LSYonX  x X 38376 x 591.5 X 56.16 (3303913) 22.94 (299856) 17.12  (1295) 16.02 (707.9)

® LSXonY  x X 768.6 X 30.57 X 1443 (1326) 1285 (257.7) 1254 (1764) 1247 (162.2)

love LSYonX LI% (0209) 1146 (0.10) 1127 (0.069) 1109 (0.042) 1091 (0.023) 1085 (0.017) LOSI (0.014)

® LSXonY 1125 (0.159) 1.099 (0.078) 1.090 (0.054) 1.083 (0.034) 1075 (0.019) 1.073 (0.014) 1.071 (0.012)

sg0p LSYONX 1288 (0297) 1233 (0.Is4) 1213 (0.110) 1195 (0.076) 1174 (0.049) 1165 (0.039) L1161 (0.035)

® LSXonY 1202 (0211) 1.174 (0.111) 1166 (0.081) 1.161 (0.058) 1.153 (0.040) 1.150 (0.033) 1.149 (0.030)

300, LSYonX 1397 (04sD) 1352 (0264) 1328 (0.197) 1302 (0.142) 1277 (0.101) 1267 (0.087) 1.260 (0.079)

® LSXonY 1293 (0297) 1274 (0.177) 1264 (0.137) 1257 (0.106) 1249 (0.082) 1245 (0.074) 1243 (0.069)

400, LSYonX 1553 (0766) 1496 (0450) 1467 (0347) 1440 (0.266) 1410 (0202) 1396 (0.178) 1389 (0.168)

bt ® LSXonY 1417 (0459) 1392 (0.289) 1383 (0.234) 1378 (0.195) 1371 (0.163) 1367 (0.152) 1365 (0.147)

" s, LSYonX 1746 (1670) 1689 (0.813) 1660 (0.659) 1627 (0.517) 1588 (0.400) 1572 (0.361) 1562 (0.340)

® LSXonY 1572 (0.764) 1547 (0.491) 1543 (0.421) 1539 (0365) 1532 (0.320) 1529 (0.305) 1.526 (0.296)

00 LSYONX 2042 (1132) 1974 (1.822) 1939 (1345) 1900 (1.072) 1847 (0.824) 1828 (0.754) 1810 (0.703)

® LSXonY 1798 (1.870) 1766 (0.917) 1764 (0.797) 1764 (0.709) 1.758 (0.636) 1.759 (0.617) 1.753 (0.599)

o0, LSYONX 2684 (5561) 2456 (21.81) 2393 (4501) 2343 (2771) 2270 (1915) 2233 (1.700) 2209 (L585)

® LSXonY 2226 (4448) 2.108 (2.081) 2103 (1.695) 2.107 (1.496) 2113 (1.371) 2.110 (1.321) 2.109 (1.297)

goo, LSYoOnX 2078 (8858266) 3.726 (1357) 3382 (63.09) 3314 (590.9) 3087 (6173) 3012 (5018) 2972 (4498)

® LSXonY 2978 (8858266) 2.817 (3428) 2737 (5.779) 2727 (4.032) 2746 (3.504) 2748 (3.350) 2.750 (3.286)

Lovs LSYonX TLOI8 (0.005) 1015 (0.003) LOI3 (0.002) 1011 (0.001) 1009 (0.00I) LOO8 (0.000) 1007 (0.000)

® LSXonY 1007 (0.005) 1.007 (0.003) 1007 (0.002) 1.006 (0.001) 1.006 (0.001) 1.006 (0.000) 1.005 (0.000)

200, LSYONX 1024 (0.006) 1020 (0.003) 1019 (0.002) 1.017 (0.001) 1014 (0.001) 1013 (0.001) 1013 (0.000)

® LSXonY 1013 (0.006) 1.012 (0.003) 1012 (0.002) 1.012 (0.001) 1011 (0.001) 1.011 (0.000) 1.011 (0.000)

300 LSYonX L1031 (0.007) 1028 (0.004) 1026 (0.003) 1024 (0.002) 1.021 (0.001) 1.020 (0.001) 1.019 (0.001)

® LSXonY 1018 (0.006) 1018 (0.003) 1018 (0.002) 1.018 (0.002) 1018 (0.001) 1.017 (0.001) 1.017 (0.001)

400, LSYonX 1039 (0009) 1037 (0.00) 1.035 (0.004) 1032 (0.003) 1.030 (0.002) 1.029 (0.001) 1.028 (0.001)

b ® LSXonY 1.025 (0.008) 1.026 (0.004) 1.026 (0.003) 1.026 (0.002) 1.026 (0.001) 1.026 (0.001) 1.025 (0.001)
=

LSYonX 1.049 (0.011) 1.048 (0.007) 1.046 (0.005) 1.044 (0.004) 1.041 (0.003) 1.040 (0.002) 1.039 (0.002)
LSXonY 1.034 (0.010) 1035 (0.005) 1.036 (0.004) 1036 (0.003) 1.036 (0.002) 1.036 (0.002) 1.036 (0.002)

LSYonX 1062 (0.015) 1.063 (0.010) 1.061 (0.008) 1059 (0.006) 1.056 (0.004) 1.054 (0.004) 1.054 (0.003)
LSXonY 1.046 (0.013) 1.048 (0.007) 1.049 (0.006) 1050 (0.004) 1.050 (0.003) 1.049 (0.003) 1.049 (0.003)

LSYonX 1074 (0.022) 1082 (0.014) 1.082 (0.012) 1081 (0.010) 1.078 (0.008) 1.076 (0.007) 1.075 (0.006)
LSXonY 1.060 (0.019) 1065 (0.011) 1.067 (0.009) 1.068 (0.007) 1.070 (0.006) 1.069 (0.006) 1.069 (0.005)

LSYonX 1081 (0.035) 1.109 (0.025) 1.115 (0.022) 1.114 (0.018) 1113 (0.015) 1111 (0.014) 1.110 (0.013)
LSXonY 1.081 (0.035) 1.09 (0.019) 1.096 (0.016) 1.098 (0.013) 1101 (0.012) 1.101 (0.012) 1.101 (0.011)

50%

60%

70%

80%

¥ There are some “x” in the table which denote the omitted results as they are extremely large values.
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Chapter 4 Modifications on the OLSE Method

4.4.3.3 Summary of Results

The following conclusions are made combining the results for & and £.

For Complete Data

1) LS Y on X is recommended for estimating £ for very small samples, say
n<10. LS X on Y is recommended for estimating £ for medium to large

samples, especially for n > 30.

2) LS Xon Yisrecommended for estimating « .

For Censored Data

1) LS Y on X is recommended for estimating £ for samples with high censoring
levels, say ¢ >50%. LS X on Y is recommended for estimating £ for samples

with low censoring levels, say ¢ < 50%.

2) LS Xon Yis recommended for estimating « .

4.5 Summary

This chapter presents several modifications or refinements on the OLSE method.
Firstly, it was emphasized to use LSE with WPP in order to have a graphical
presentation. Besides LSE, all the linear regression estimation methods should be

used with WPP as the graphical presentations are always useful for practitioners.

Two problems intrinsic to OLSE were examined. One is the determination of Y-
axis plotting positions. The existing plotting positions in the cases of complete data
and censored data, respectively, were summarized and analyzed in different groups.

Via intensive Monte Carlo experiments, selected plotting positions with the focus on
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Chapter 4 Modifications on the OLSE Method

those proposed in recent years and have not received much attention, were compared
on the estimation of two Weibull parameters. The results showed that the Ross
estimator is a promising one for complete data. For censored data, HJ should be
preferred for samples with high censoring levels while JM is good for samples with
low censoring levels. However, it should be noted that none of the existing estimators

outperforms the others for all the cases.

Another intrinsic problem of the LSE method is the direction of regression. Two
methods, i.e., LS Y on X and LS X on Y were compared for both complete data and
censored data. In terms of model statistics, it was found that LS X on Y should be

used when #>1 and LS Y on X should be used when £ <1. In terms of parameter

estimation, the simulation results have provided suggestions on when to use which

method, as listed in Section 4.4.3.3.
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Chapter 5
Bias Correction Methods for the Shape Parameter

Estimator of OLSE

This chapter presents the bias correction methods for the OLS estimated Weibull
shape parameter in the cases of complete data and censored data. Several bias
correcting formulas are proposed which can be used in the end of the OLS estimation
procedure to correct the bias of the shape parameter estimator. The proposed methods

are easy to use and can effectively reduce the bias.

5.1 Introduction

Bias is often an important issue of the estimator in the sense that it tells us whether the
estimator is an accurate estimate value of the population value. As one of the most
commonly used criteria to compare different estimation methods, the issue of bias has
raised the attention of Weibull researchers. In the 1990s, many researchers pointed out
that the estimators of the MLE method are significantly biased when the sample size
is small, among them, Ross (1994a) mentioned that ‘the frequently use of small-size
samples of life tests, e.g., n =5, where n is the sample size, can give significant
support to the investigation of unbiasing procedures’. Indeed, several bias correction
methods for the MLE have been proposed. Jacquelin (1993) modified the estimating
equation of the MLE method by adding two parameters which are calculated as the

functions of failure probability ;. The method is named generalized MLE and is

claimed to directly provide unbiased estimates without the aid of unbiasing factors.
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Chapter 5 Bias Correction Methods for OLSE

Ross (1994a, 1996), in a different approach as Jacquelin’s, proposed simple models of
unbiasing factors for the MLE of the shape parameter, applied to complete data and
censored data, respectively. The theoretical justification of the Ross’ bias correction

method is based on the first pivotal function of the MLE of the Weibull parameters,
ie., ,B / £ . With a similar theoretical background, Hirose (1999) provided another bias

correcting model for the MLE of the shape parameter and it has a polynomial form.
The unbiasing for the MLE of the scale parameter was also examined, and different

formulas were provided at selected £ values. Besides, Cacciari, Montanari, Mazzanti

and Fothergill co-published a series of work (Cacciari et al., 1996; Montanari et al.,
1997a, b, 1998) that compared several bias correction methods including the method
of Engelhardt & Bain (1974), Jacquelin (1993), Ross (1994a, 1996), White’s
weighted least squares technique (White, 1969), etc., together with the conventional
LSE method and the MLE method for both complete and censored data using the

Monte Carlo method.

The values of bias of the Weibull parameter estimators can be obtained via the
Monte Carlo method. While many researchers are keen on the bias correction for the
MLE of the Weibull parameters, less has been discussed on the bias correction for the
estimators of LSE. In fact, some researchers have pointed out that the OLSE of the
shape parameter is less biased than that of the MLE for small samples, see, e.g., Ross
(1999). This may hide the need for bias correction for this method; however, as shown
in Chapter 3 that the OLSE of the shape parameter is biased and from Section 3.3.3, it
can be observed that the OLS shape parameter estimator is not always satisfactory in
view of bias, for example, the result for complete samples shows that during the

sample sizes 11 — 30, there is always a relative bias of around 4%; and for censored
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Chapter 5 Bias Correction Methods for OLSE

sample, the relative bias is more than 10% at the combination of ¢ =10% and n =20.

As a result, simple bias correction methods for the OLSE will be helpful.

As shown in Section 4.3, the bias of the LSE of the shape parameter varies with

the selection of the estimators for F'(¢), for both complete and censored data. The

simulation results presented in Section 4.3.3 have shown that the expected estimators
including the Ross estimator (Ross, 1994b) and the Drap-Kos estimator (Drapella &
Kosznik, 1999) can greatly reduce the bias of the LSE of the shape parameter in the
case of complete data. This can be treated as one way to correct the bias for the LSE
method. This chapter presents another kind of bias correction method which provides
the unbiasing factors. The empirical bias correcting formulas are proposed and can be

added to the end of the OLSE procedure to reduce bias.

This chapter is organized as follows. In Section 5.2, the theoretical justification
for the existence of a single bias correcting formula for the OLSE of the shape
parameter is presented. Section 5.3 presents the bias correction methods for the OLSE
of the shape parameter applied to complete data. Firstly, the relationship between the
bias of the OLS shape parameter estimator and sample size in the case of complete
data is examined. Then, based on the relationship, the models of bias correcting
factors are proposed and the model parameters are determined via numerical methods.
Finally, the bias correcting formulas are presented as well as the application
procedure. The proposed methods are named the modified Ross’ method and the
modified Hirose’s method, respectively. Section 5.4 discusses the bias correction
methods for the shape parameter estimator of LS X on Y applied to complete data and

the shape parameter estimator of OLSE applied to multiply censored samples,
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respectively. A bias correcting formula is proposed for each condition. Some of the
related work has been published in Zhang et al. (2006).
5.2 Theoretical Background of Bias Correction

The existence of the pivotal function ,5’/ p, of the ML or LS estimated ,3 of the

Weibull distribution, makes the bias correction a simple job. Proof for the pivotal

functions of the LSE is described in Section 3.2.5.

The pivotal function ,B / [ says the following relationship,

E(B1B)=EB,,) (5-1)
or

E(B)=pB-EB.) (5-2)

Now define an estimator S, as

s _ B
Py =—— (5-3)
E(f)
Then the expected value of ﬁU is
s - EP)
E(By)=—7— (5-4)
E(S)
Based on Equation (5-2), we have
> IB ’ E(ﬁl 1)
E(fy)=—F""=F (5-5)
E(S)

Therefore, ,BU is the unbiased estimator of .
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The relationship between ,3 and ,5’U can be expressed by an unbiasing factor U

which satisfies

B, =U-p (5-6)

Then from Equation (5-4), U can be determined as

1

U=—=
E(B)

(5-7)

Since the values of E(,ﬁu) can be obtained via the Monte Carlo method, the

values of the unbiasing factor U can also be determined.

As shown above, the bias correction for ,B is clearly independent of the true
values of @ and £, and a single formula, i.e., Equation (5-3), can work for any data
set. This is not true for the scale parameter estimator @ because @/« is not a pivotal
function. The bias correction for & requires different formulas at different values of
f . Since ,3 is often of great importance, the bias correction for & is not discussed in

this chapter.

Without further examination, a traditional way of bias correction, e.g., in the case
of complete data, is to tabulate the values of E(ﬁu) or U at different sample sizes

via the Monte Carlo method. The tabulation generates a reference table. Thus given a
random data set, a look-up in the table using the sample size is needed to find the
value of the unbiasing factor so that the unbiased estimate of the shape parameter can
be calculated by Equation (5-6). It is noteworthy that Equation (5-6) and Equation

(5-7) can also be applied to the LSE of the shape parameter for censored data. In the
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Chapter 5 Bias Correction Methods for OLSE

case of censored data, a reference table should show the values of the unbiasing factor

at different combinations of sample sizes and censoring levels.

Obviously, the look-up method is inconvenient because it is troublesome or
impossible to tabulate the unbiasing factors at all sample sizes or all combinations of
sample sizes and censoring levels. A clearly better approach is to examine the pattern

of the unbiasing factors and use analytical models.

5.3 Bias Correction for the OLSE of the Shape Parameter

for Complete Data

As previously mentioned, the values of E( BU) of the OLS shape parameter estimator

at different sample sizes can be obtained via the Monte Carlo method. For this
purpose, a Monte Carlo simulation experiment was carried out. Table 5-1 lists the

setting of experiment factors.

Table 5-1: Setting of experiment factors. The experiment is to examine the trends of the bias of
the OLS and MLE estimated [ for complete data as a function of sample size.

Factors Values
ar 1

By 1

3,4,...,19,20,22,..., 28, 30, 35, 40,
45, 50, 60, 70, 80, 90, 100

M 50000

Methods OLSE, MLE

n

50000 random samples were generated for each sample size and the parameter

estimates were obtained from OLSE and MLE simultaneously. E (ﬂﬂu) is calculated

by the average of the parameter estimates. Bias is calculated by the difference

between E(,@U) and 1. Figure 5-1 shows the bias of ,@U, obtained from both OLSE
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and MLE, at each sample size investigated. The simulation results can also be
extracted from Section 3.3.3.1. From the figure we can see that, although the bias of
the OLSE of the shape parameter is much smaller than that of the MLE of the shape
parameter for small to medium sized samples (say n <30), OLSE still considerably
overestimates the shape parameter for extremely small samples (say # =3 and 4), and
the bias keeps at around 4% during 10 < n <30. Therefore, simple bias correction
methods will be helpful for the OLS shape parameter estimator, especially for very

small samples.

The shapes of the two curves in Figure 5-1 are similar and both have a
hyperbolic shape. This suggests that the bias correcting models of the MLE may be
used for the OLSE as well. Following this idea, the unbiasing formulas proposed by
Ross (1994a, 1996) and Hirose (1999), respectively, for the MLE were modified for
the OLSE and the proposed methods are named the modified Ross’ method and the

modified Hirose’s method.

1.4 T T
" x  OLSE
1.2F * MLE ||
1l i
0.8+ i
8 o6 :
3
+
0.4 % R
*
%
0.2 . e(%k B
o %**ﬁs** * % ¥ o« . .
0 - - T *x *x *x _* % _ =
AXXXX X X X X x x X X X
_0.2 | | | | L L L | L
0 10 20 30 40 50 60 70 80 90 100

Figure 5-1: Bias of IB’H , obtained by OLSE and MLE, as a function of sample size.
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5.3.1 Modified Ross’ Bias Correction Method

Ross’ Bias Correction Method for the MLE of the Shape Parameter

Ross (1994a) proposed an asymptotic difference function to model the bias of the ML

estimated ﬁA’Ll. The asymptotic difference function, denoted by D(n), is defined as

the difference between the expected value of the estimator from finite and infinite

sample size. From the definition,
D(n) = E(B,,) -1 (5-8)

D(n) was then modelled as a power function of n» with three parameters: the
threshold parameter R, the power parameter P and the proportionality constant Q.

Ross’ bias correcting factor, denoted by U, , is given by

1 1 1
CE(B,) 1+D(m) 1+0(n-R)"

U, (5-9)

With the values of E( ﬁu) of the MLE derived via the Monte Carlo method at

various sample sizes, the three parameters P, O, R were determined by the author

using both graphical and numerical methods. The results are P =—-1,Q0 =132, R=2.

Finally, Ross’ bias correcting formula for the MLE of the shape parameter was

determined which has a very simple form, i.e.,

;BU::é'UR:;é'

(5-10)

Ross concluded that the bias of the MLE of the shape parameter can be reduced

to typically <0.3% for n >3 if the proposed formula is used.

148



Chapter 5 Bias Correction Methods for OLSE

Modified Ross’ Bias Correction Method for the OLSE of the Shape Parameter

Theoretically, to use Ross’ asymptotic difference function and bias model for the

LSE, the following assumptions have to be satisfied:

i ,3 / B 1s a pivotal function for the LS estimated shape parameter.

ii. The expected value of the LS shape parameter estimator approaches to an

asymptotic value, i.e., the true value of f#, when n — .

There is no doubt that both assumptions are true for the OLSE of the shape
parameter. For assumption ii, from Figure 5-1 it can be seen that, although the OLSE
of the shape parameter is inconsistent (the bias reaches 0 when # is around 6 or 7), it
still approaches to the true value when n becomes large. Since the two assumptions
are satisfied, the modified Ross’ bias correction method is proposed for the OLSE of
the shape parameter, as presented in the following. It is mainly designed for small

samples of size <20.

Ross’ unbiasing factor U, has three parameters P, O, R . The condition
n—R>0 is set by the author. Thus, U, >1 when Q<0 and U, <1 when O0>0. It
is impossible to have U, >1 for some sample sizes and U, <1 for other sample sizes
because a single value of Q is required. Actually, the values of U, are always less
than 1 because the values of E (,31’1) obtained by MLE are always larger than 1, as

can be seen from Figure 5-1. However, this is not applicable to the OLSE. From
Figure 5-1 we can see that, the OLS shape parameter estimator needs a bias correcting

factor whose values are less than 1 when n <7, and larger than 1 when n>7.

Therefore, Ross’ bias correcting factor U, is not efficient for the OLSE. It can be
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improved by introducing a new parameter C,. We name C, the adjusting constant as

it works to adjust the values of the unbiasing factor to be greater than 1 or less than 1.

The modified bias correcting factor for the OLSE of the shape parameter,

denoted by U, , 1s proposed as

1

:HQ(n—_R)P‘FCa (5-11)

MR

The four parameters P,Q,R,C, in U,, were determined by using the

unconstrained nonlinear optimization, e.g., Nelder-Mead direct search method (Nelder

& Mead, 1965). The objective function is

min S [1=U () EGB), | =Y [1 - ((1 +0(n,-R) ) +C, ) EB), ]2 (5-12)

where n, denotes different sample sizes and £ (,Bu)ni denotes the value of E (,31’1) at
a specific n,.

The values of E( ﬁA’M ),, of the OLSE, obtained from the Monte Carlo experiment
at n, =3,4---,19,20,22,---,28,30,35,---,45,50,60,---,90,100 (same as Table 5-1), were
used to determine the values of P,Q,R,C, . Different starting values for the

parameters were tried in the Nelder-Mead direct search method. The calculation was
executed by MATLAB 7 and the function fminsearch was used. The current result
satisfies the termination criteria using OPTIONS.TolX of 1.000000e-001 and satisfies

the convergence criteria using OPTIONS.TolFun of 1.000000e-008.

The values for the parameters were determined as

P=-21,0=14,R=14,C, =0.05 (5-13)
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Substituting the values of P,Q,R,C, into Equation (5-11), the bias correcting

factor U,,, for the OLSE of the shape parameter is

1
T 1+1.4(n-1.4)7

+0.05 (5-14)

MR

Thus the bias correcting formula of the modified Ross’ method for the OLSE of

the shape parameter is

5 ; 1
=B Upp=p5 +0.05 5-15
Fo = Vs 'BL+1.4(n—1.4)2'1 -1

Table 5-2 tabulates the values of E(ﬁl,l), Uy and E; (,31’1) = E(,@Ll)-UMR at

selected sample sizes. As can be seen from the table, the differences between

E, (ﬁu) and 1 are less than the differences between E(ﬁA’Ll) and 1 at all sample

sizes. Especially at n =3 and n =4, the bias is significantly reduced. The bias is

within 1% and typically within 0.5% during n =6 — 30.

Table 5-2: Values of E( ,él D> Uy and E, o ( ,81 ,) at selected sample sizes (the modified Ross’

method for OLSE).
n
3 4 5 6 7 8 9 10 11 12 13 14 15
E(ﬁu ) 1.428 1.125 1.053 1.009 0996 0.983 0.974 0970 0.963 0961 0.961 0.960 0.960
U, 0.707 0.892 0.963 0.99 1.014 1.024 1.031 1.035 1.038 1.040 1.042 1.043 1.044

EU.MR(BI,I) 1.010 1.003 1.014 1.005 1.010 1.006 1.003 1.004 1.000 1.000 1.001 1.001 1.002

16 17 18 19 20 22 24 26 28 30 35 40 50
E(B,) 0962 0959 0958 0960 0960 0960 0959 0959 0962 0961 0964 0966 0.966
U 1.045 1.046 1.046 1.047 1047 1.048 1048 1048 1049 1049 1.049 1.049 1.050
E,e(B) 1006 1003 1002 1005 1.005 1006 1005 1006 1.009 1008 1012 1013 1014

To further check the proposed unbiasing formula in Equation (5-15) for a single
Weibull sample, another Monte Carlo experiment was conducted. Normalized

Weibull samples (i.e., a, = S, =1) of sizes 3 — 50 were randomly generated. For
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each sample, OLSE was used to estimate the parameters first, and then Equation (5-15)
was applied to the OLS estimated shape parameter to generate the unbiased estimate.
Both estimates of the shape parameter, i.e., with and without unbiasing, were recorded.

10000 iteration was used at each sample size and the average values of the estimates

were calculated as £ (,@1’1) and £ (,@Ul _mr) > Tespectively.

The results are shown in Table 5-3. It can be observed from the table that the

bias of ﬁUl‘l,MR is significantly smaller than the bias of ,631,1, especially at n =3. The

bias of ,BU is typically 4%, while the bias of ﬁUl ur 18 typically within 1%.

Table 5-3: Simulation results of the modified Ross’ method: the values of £( ,81 ) and E( IBU wr)

at selected sample size*.

n

3 4 5 6 7 8 9 10 11 12 13 14 15

E(ﬁm) 1.436 1.131 1.051 1.013 0.991 0975 0976 0969 0.963 0.965 0.965 0.963 0.961
E(:éu, ) 1.015 1.009 1.013 1.009 1.005 0.998 1.006 1.003 1.000 1.004 1.006 1.005 1.004

. 16 17 18 19 20 22 24 26 28 30 35 40 50
E(B.) 0961 0.956 0.958 0.961 0.962 0960 0959 0962 0961 0.964 0.965 0.964 0.968
E(B, &) 1004 1.000 1.000 1.006 1.008 1.005 1.005 1.006 1.007 1.011 1.013 1.012 1.016

Figure 5-2 shows the histograms or the empirical PDFs of ,BAUH,MR at selected

sample sizes: n =5,10,20,30. The estimates of the 10000 samples at each sample size
from the experiment were used to generate the histograms. As can be seen, the

distribution of ﬁUH’MR approaches to the normal distribution as the sample size

increases. It can also be observed that the mean of the distribution is very close to 1.

! The values of E( /81 ) are slightly different compared to the values in Table 5-2 at same sample size

because here the simulation iteration number is reduced to 10000.
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Figure 5-2: Histograms of /}U e At selected sample sizes (the modified Ross’ method for OLSE).

5.3.2 Modified Hirose’s Bias Correction Method

Hirose’s Bias Correction Method for the MLE of the Shape Parameter

Instead of modeling the unbiasing factor, Hirose (1999) proposed a function for
modeling the bias of the MLE of the shape parameter, given by
Bn(,@l,l)=ko+ﬁ+k—§+-~-k—’l+~-~ (5-16)
non

1

n

where B, () denotes the bias function as a function of 7.

For simplicity, Hirose suggested using the approximation, i.e.,

A ko k k k
B”(ﬁ]’l)zk°+7l+n_§+n_§+n_i (5-17)
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where k, k,, k,, k;, k, are the model parameters.

Based on the values of B, (,31’1) of the MLE obtained by the Monte Carlo

method at various sample sizes, Hirose determined the values of the five parameters

in Equation (5-17). The results are k, =0.0115, k, =1.278, k, =2.001, k&, =20.35 and

k, =—49.68 . Thus the bias model is determined as

1.278 N 2.001 ' 20.35 49.68

2 3 4
n n n n

B,(f,)~0.0115+ (5-18)

Finally, Hirose’s bias correcting formula for the MLE of the shape parameter is

given by
s P B B
Po =g~ 2~ (5-19)
E(B,) 1+B,(B.,) 10115+ 1.278 N 2.0201 N 20.335 B 49.468
n n n n

Modified Hirose’s Bias Correction Method for the OLSE of the Shape Parameter

Hirose’s bias model in Equation (5-17) uses the polynomial curve fitting technique.

As previously mentioned, the trends of E (/3’1,1) vs. n of the MLE and the OLSE are

similar, and both have a hyperbolic appearance (see Figure 5-1). Therefore, the
Hirose’s model can be applied to propose the unbiasing formula for the OLSE of the

shape parameter.

Same as the modified Ross’ method, we first determine the formula of the
unbiasing factor U . Obviously, the trend of the unbiasing factor U vs. n should also
have a hyperbolic shape. Therefore, the proposed model for the unbiasing factor of

the modified Hirose’s bias correction method, denoted by U, , 1s
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[ [ l
UMHzlo+;1+n—22+n—33+n—44 (5-20)

where /,,1,,1,,1;,1, are the model parameters.

As in the modified Ross’ method, the values of /; were determined through the

unconstrained nonlinear optimization technique (Nelder-Mead direct search method).

The objective function is

min Z[I_UMH(ni)'E(ﬁl,l)nl ]2 22[1_(10 +l_1+l_22+l_33+l_t]'E(ﬂA1,1)nl (5-21)

1 1 1 l

The calculation was executed by MATLAB 7 and the function fminsearch was

used. Different starting values for /, were tested in the Nelder-Mead direct search

method. The current result satisfies the termination criteria using OPTIONS.TolX of

1.000000e-004 and satisfies the convergence criteria using OPTIONS.TolFun of

1.000000e-008.
The parameter values were determined as
l,=1.0357,1, =0.3082,/, =-3.6347, 1, =2.4386,/, =—10.0430 (5-22)
Substituting the values into Equation (5-20), the formula of U, is

U, ~1.0357+ 0.3082 3.63247 N 2.43386 3 10.04430 (5-23)

n n n n

Thus the bias correcting formula of the modified Hirose’s method for the OLSE

of the shape parameter is

0.3082  3.6347 N 2.4386 10.0430} (5-24)

A, zﬁ-(1.0357+ , = = —
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Table 5-4 tabulates the values of E(ﬁA’Ll) , Uyy and E, (,BLI) = E(ﬁA’U) U, at
selected sample sizes. As can be seen from the table, the differences between

Ey v ( ﬁu) and 1 are much smaller than the differences between E (,@U) and 1 at all
sample sizes. Great improvements can be observed when n=3,4 . In addition,

comparing Table 5-4 with Table 5-2, we can see that £, ,,, (ﬁA’U) is slightly better

than £, (,@U) In most cases.

Table 5-4: Values of E( IBI D)s U,y and E, - ( ﬁl ) at selected sample sizes (the modified
Hirose’s method for OLSE).

n

3 4 5 6 7 8 9 10 11 12 13 14 15
E(B,,) 1428 1.125 1.053 1.009 0996 0983 0974 0970 0963 0961 0961 0.960 0.960
Ui 0.701 0.884 0955 0990 1.008 1.020 1027 1032 1035 1037 1039 1040 1.041
Eyyw(B,) 1001 0995 1.006 0998 1.005 1.002 1.000 1.001 0997 0996 0998 0.998 0.999

16 17 18 19 20 22 24 26 28 30 35 40 50
E(B,) 0962 0959 0958 0960 0960 0960 0959 0959 0962 0961 0964 0966 0.966
Uwe 1041 1042 1.042 1.042 1042 1.042 1.042 1.042 1.042 1.042 1042 1041 1.040
Ey oy (By) 1002 0999 0.998 1.001  1.000 1.001 1.000 1.000 1.002 1.002 1.005 1.005 1.005

The modified Hirose’s unbiasing formula in Equation (5-24) was also checked
for point estimation in the experiment described in the end of the modified Ross’
method. Table 5-5 tabulates the expected values of the shape parameter estimates

before and after correction at selected sample sizes. Figure 5-3 shows the histograms

or the empirical PDFs of ,BU’ Wy at selected sample sizes: n =5,10,20,30.

Table 5-5: Simulation results of the modified Hirose’s method: the values of £( 15’1 ,) and

E( ,éU i) at selected sample size*.

n

3 4 5 6 7 8 9 10 11 12 13 14 15

E(B) 1.436 1.131 1.051 1.013 0.991 0975 0976 0969 0.963 0.965 0.965 0.963 0.961
E(ﬁAUI o) 1006 1.001 1.004 1.002 1.000 0994 1.003 0.999 0997 1.001 1.003 1.001 1.001
. 16 17 18 19 20 22 24 26 28 30 35 40 50
E(ﬁAm) 0961 0.956 0.958 0.961 0.962 0960 0959 0962 0961 0.964 0.965 0.964 0.968
E(By, ym) 1000 0996 0998 1.002 1.003 1.000 1.000 1.002 1.001 1.005 1.005 1.004 1.007

156



Chapter 5 Bias Correction Methods for OLSE

2500 T T T T T 1500

2000+

1000 - M

1500

1000

500+

500+

0 2 4 6 g f) 12 O0 0.5 1 15 2 25 3 3.5 4 4.5
b, b,
2000 T T T T T 2500
1800+ 1 n=20| A n=30
1600 ] 2000} — 1
1400|- ML L
1200} 1 1500
1000 -
800 B 1000 -
600
400+ A 500
200
00 0.5 1 15 2 2.‘5 3 O0 0.5 1 15 ‘2 25
bU bU
Figure 5-3: Histograms of ﬁum At selected sample sizes (the modified Hirose’s method for
OLSE).

It can be observed from Table 5-5 that ,BUI w18 significantly better than ,31’1 in
view of the bias. The bias of ﬁUu, w18 typically within 0.3%. Compared to Table 5-3,
we can see that "GUH,MH of the modified Hirose’s method is slightly more accurate

than ,BAU1 . Of the modified Ross” method in most cases.

Figure 5-3 looks similar to Figure 5-2. As can be seen, the distribution of ,BAUH, i

approaches to the normal distribution as the sample size increases. The mean of the

distribution is close to 1 at all sample sizes.
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5.3.3 Application Procedure

Given a complete data set of size n, the procedure for obtaining an unbiased OLS

estimate of the shape parameter is as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Rank the failure times ¢, from smallest to largest and calculate the Y-
axis plotting positions by I:“(i) =(—-0.3)/(n+0.4), ie., the Bernard
estimator.

Plot the ranked failure times 7, against ﬁ(i) on WPP. If the Weibull

distribution fits, the data points should appear to be on a straight line.
Estimate the shape parameter by the OLSE method using Equation
(2-12).

Calculate the unbiased estimate for the shape parameter by the modified
Ross’ unbiasing formula in Equation (5-15), or the modified Hirose’s

unbiasing formula in Equation (5-24).

5.3.4 A Numerical Example

Below is a randomly generated Weibull sample with & =1000, #=2 and n=10:

2230, 1057, 573.6, 617.5, 544, 940.5, 1672, 1427, 405.2, 698.9.

First calculate the estimate of the shape parameter by the OLSE method and the

result is 1.923. If MLE is used, the shape parameter estimate is 1.963. Second, apply

the proposed bias correcting formulas to the shape parameter estimate of the OLSE. If

the modified Ross’ method is used, we have

ﬁU,MR = ,63{
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Otherwise, if the modified Hirose’s method is used, the unbiased estimate is

~ P 0.3082 3.6347 2.4386 10.0430
ﬂU,MHzﬂ-(l.O357+ ——— Z j

n n n n

0.3082  3.6347 N 2.4386 10.0430

= 2.238x]| 1.0357 + - : .
10 10 10

j:l.984

The unbiased estimates for the MLE can also be obtained using the original

Ross’ method and the Hirose’s method. The results are 1.685 and 1.671, respectively.

In this example, the best estimate for the shape parameter is obtained using the
modified Ross’ method. For the MLE, the estimates after bias correction were worse
than the original estimate. After all, the bias correction methods will work in the long

run but may not work for a single sample.

5.4 Discussions on Bias Correction for the LSE in Other

Circumstances

The bias correcting formulas presented in the previous section are specially designed
for the OLSE of the shape parameter and are only applicable to complete data. The
OLSE method limits the use of the Bernard estimator for estimating F(¢) for
complete data, and the regression direction of ¥ = ln[— In(1-F )] on X =InT. If any
of these two conditions is changed, a new bias correcting formula is needed. The same
approach as the modified Ross’ method or the modified Hirose’s method can be used
to derive the new bias correcting formulas. Section 5.4.1 presents the bias correcting

formulas for the LS X on Y method applied to complete data.

It is also important to deal with the bias of the OLSE in the case of censored data,

and a study is presented in Section 5.4.2. The bias as a function of the sample size and
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censoring level is shown by the 3-D surface plot, and it reflects the difficulty of
proposing a single model for the bias due to the inconsistency. However, a bias
correcting formula is proposed for multiply censored samples with ¢ <40% and

n<100.

5.4.1 Bias Correction for the Shape Parameter Estimator of LS X on

Y for Complete Data

The LS X on Y method is presented in Section 4.4 and compared with the LS Y on X
method. The simulation results in Section 4.4.3.1 show that for complete samples with
n<10, ,3 of the LS X on Y method always has larger bias than that of the LS Y on X
method. There is certainly a need to correct the bias with the recent focus of Weibull
researchers on small samples. In addition, from Figure 4-23 we can see that the curve
of the LS X on Y looks smoother than that of the LS Y on X, which implies a higher

efficiency of the potential bias correcting formula.

The modified Ross’ method and the modified Hirose’s method were used to
propose two bias correcting formulas for the shape parameter estimator of the LS X on
Y method. The procedures for developing these two formulas are similar to those

described in Section 5.3.1 and Section 5.3.2, and hence are not repeated here.

The bias correcting formula of the modified Ross’ method for the shape

parameter estimator of LS X on Y'is

A A 1
,BU,MR (LS-XY) = ﬂLS—XY 'L +0.6(n— 2)71_1 + 0-01} (5-25)
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The bias correcting formula of the modified Hirose’s method for the shape

parameter estimator of LS X on Y'is

0.2470 4.0751

R n 12.0084 23.3542
ﬂU,MH(LS—XY) ~ Brs xy '(1 0096 — 2 -

3 4
n

j (5-26)

n n n

The values of E (ﬂAM) obtained from the Monte Carlo simulations, the unbiasing

factor U from Equation (5-26) and Equation (5-27), and E,, (,@1’1) :E(ﬁA’u)-U , at
selected sample sizes, for the LS X on Y method, are shown in Table 5-6 and Table

5-7. As can be observed from both tables, the bias of ,31,1 after correction is generally

smaller, especially when n <10.

Table 5-6: Values of F( ,@U), U, and Ey i ( ﬁAU) at selected sample sizes (the modified Ross’
method for LS X on Y).

n

3 4 5 6 7 8 9 10 11 12 13 14 15

EB,) 1.585 1.266 1.171 1.118 1.089 1.072 1.062 1.048 1.035 1.035 1.031 1.030 1.024

Uik 0.635 0.791 0.858 0.894 0917 0933 0944 0953 0959 0965 0969 0972 0976
Eye(B,) 1007 1002 1.005 1.000 0999 1000 1.003 0999 0993 0998 0999 1.002 0.999
16 17 18 19 20 22 24 26 28 30 35 40 50

E(B,) 1.019 1.017 1.014 1.013 1.010 1.010 1.008 1.003 1.004 1.004 1.000 0.998 0.998
U A 0.978 0980 0982 0.984 0.986 0.988 0.990 0.992 0.994 0.995 0.997 0.999 1.002
Ey e (Bry) 0996 0997 0.997 0.997 0.995 0.998 0.998 0.995 0.998 0.999 0.997 0.998 1.000

Table 5-7: Values of E( ﬁﬂ’m), Uy and E; o ( ,éu) at selected sample sizes (the modified
Hirose’s method for LS X on Y).
n

3 4 5 6 7 8 9 10 11 12 13 14 15

E(B.,) 1.585 1266 1.171 1.118 1.089 1.072 1.062 1.048 1.035 1.035 1.031 1.030 1.024
Uwnr 0.631 0.790 0856 0893 0916 0933 0945 0954 0961 0967 0971 0975 0978
Ey o (Bry) 1.000 0999 1.002 0998 0.998 1.000 1.003 1.000 0.995 1.000 1.001 1.004 1.002
16 17 18 19 20 22 24 26 28 30 35 40 50

EB) 1.019 1.017 1.014 1.013 1.010 1.010 1.008 1.003 1.004 1.004 1.000 0.998 0.998
Uyn 0981 0983 0985 0987 0988 0991 0993 0995 0996 0997 0999 1.001 1.003
E, o (B) 0999 0999 0999 1.000 0.998 1.001 1.001 0.997 1.000 1.001 0.999 1.000 1.001
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5.4.2 Bias Correction for the Shape Parameter Estimator of the

OLSE for Censored Data

The bias of the OLSE of the shape parameter for censored data varies with sample
size and censoring level. Based on the values of the bias under different combinations
of sample sizes and censoring levels, obtained via Monte Carlo simulations, two 3-D
surface plots were generated, as shown in Figure 5-4 (for OLSE) and Figure 5-5 (for

MLE). The surface plots were generated by MATLAB 7 using the function meshz.

There are three axes representing the bias of f,,, sample size » and censoring level

¢, respectively. The color of the lines is proportional to the surface height and the

color goes lighter as the bias goes larger.

Comparing the two surface plots, it can be observed that the surface plot of MLE
shows a simpler relationship among the bias, sample size and censoring level. The
bias of the MLE of the shape parameter is consistent with the sample size at any
specific censoring level, and consistent with the censoring level at any specific sample
size. However, the bias of the OLSE of the shape parameter is inconsistent in either
way as the bias has a range of -10% — 15%. The surface plot in Figure 5-4 is further
split in two parts, as shown in Figure 5-5: one shows the bias at low censoring levels
(10% — 40%) and the other shows the bias at high censoring levels (50% — 80%). It
can be observed from Figure 5-5 that, at low censoring levels (10% — 40%), the bias
of the OLSE of the shape parameter presents good consistency and the bias is always
negative when 10 <n <100, while the same is not true at high censoring levels (50%
— 80%) because the bias reaches 0 at the combination of ¢ =70% and n=20-30, or
c=60% and n=50-60, or ¢ =50% and n=80-90. The similar results have been

presented in Section 3.3.3.2.
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Figure 5-4: The surface plot of the bias of the shape parameter estimator of OLSE. The Z axis is
the values of bias, the Y axis is censoring level (10% — 80%), and the X axis is sample size (20 —
100)%. The gray part in the second figure is the surface of bias = 0.

bias(b1 1)

Figure 5-5: The surface plot of the bias of the shape parameter estimator of MLE. The Z axis is
the values of bias, the Y axis is censoring level (10% — 80%), and the X axis is sample size (20 -
100)°.

¥ The color of the line is proportional to the surface height (the value of bias).
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Figure 5-6: The surface plot of the bias of the shape parameter estimator of OLSE, split in two
plots by censoring level. The Z axis is the values of bias, , the Y axis is censoring level (10% —
80%), and the X axis is sample size (20 — 100). The gray part in the second figure is the surface of
bias = 0°.
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As the surface plots of the bias of the MLE at all censoring levels and the bias of
the OLSE at low censoring levels show good consistency, it is possible to model the
bias as a function of the sample size and censoring level. Ross (1996) proposed a bias
correcting formula for the MLE of the shape parameter for singly right censored data,
using the same model he used for the bias correction for complete data, i.e., Equation

(5-9). The bias correcting formula for the MLE is given by

A 1.37 n
E )= 1+ N 5-27
[ﬂl,l (n ’”)] 192\~ ( )

In the following, a formula for correcting the bias of the OLSE of the shape

parameter, applied to censored data with low censoring levels, is presented.

The proposed bias model is given by

B, .(B)=-p,c"n” (5-28)

where p,, p,, p; are the model parameters. B, (,@) can only take negative values.

With the simulation generated values of the bias at different combinations of

sample sizes and censoring levels, the values of p,, p,, p; were determined by the

unconstrained nonlinear optimization technique (Nelder-Mead direct search method).

The objective function is

min Z[(E(ﬁl,l)n,,ci _1)_ Bni,ci (Bll)]z :Z [(E(:Bl,l)ni,c, - 1)+ pielnl ]2 (5-29)

where n, and ¢, denote different sample sizes and censoring levels examined in the
simulations. E( ﬂA’u)w_ denotes the value of E( ,BM) at a specific combination of #,

and c;.
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The parameter values were determined as

p, =0.2211, p, =-0.3476, p, =-0.5430 (5-30)
Substituting the values into Equation (5-28), the bias model is
Bn’c (ﬁ’\) — _0.221 107043476’170.5430 (5_3 1)

Thus the bias correcting formula is given by

it s (5-32)
En,c (ﬁl,l) 1 + Bn,c (,81’1 ) 1 - 0221 16’70'3476”70'5430

By (n,c)=

Equation (5-32) can be added to the end of the conventional OLSE procedure for

censored data in order to provide more accurate estimates. Table 5-8 tabulates the

values of the simulation generated En’c(,@u) and the corresponding unbiased
estimates EU(ﬁA’U)=E(,@u)/(l—o.2211c‘°'3476n‘°‘543°) at selected sample sizes and
censoring levels. As can be seen from the table, £ (ﬂAU) is more accurate than

E (,31’1) at nearly all conditions. Great improvements can be observed when ¢ =10%

and n =20, 30.

Table 5-8: Values of E( IBI ) and £, ( ﬁl ) at selected sample sizes and censoring levels.

13 n 20 30 40 50 60 70 80 90 100
10% E(S,,) 0.902 0917 0928 0.938 0943 0.949 0955 0.957 0.962
’ E,(f,,) 0998 0994 0994 0997 0996 0.998 1.000 1.000 1.002

sou, E(B) 0908 0927 0938 0948 0954 0961 0963 0968 0.973
* E,(f,) 0983 0098 0990 0994 0996 0999 0998 1.002 1.005
o0, E(A) 0917 0935 0946 0957 0965 0970 0972 0979 098
* E (4, 00982 098 0991 0998 1.002 1.003 1.004 1.009 1.010
E(f,,) 0930 0945 0961 0970 0975 0983 0988 0.989 0.994

0,
H0% L5y 0989 0992 1002 1.007 1008 1014 1016 1016 1.019
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It should be noted that the proposed bias correcting formula in Equation (5-32) is
specially designed for censored samples satisfying ¢ <40% and n <100. Since the
OLSE of the shape parameter is inconsistent with either sample size or censoring
level, it is difficult to have a single bias correcting formula that works for all

conditions.

5.5 Summary

In this chapter, several bias correcting formulas for the OLSE of the Weibull shape
parameter were proposed. These formulas can be added to the end of the conventional

LSE procedure in order to provide more accurate estimates for the shape parameter.

The main work in this chapter is the bias correction applied to small and
complete samples, where two methods, i.e., the modified Ross’ bias correction
method and the modified Hirose’s bias correction method, were proposed for the
OLSE of the shape parameter and examined in details. Although the bias correcting
formulas were determined by numerical methods, they work very well as confirmed
by the Monte Carlo simulation experiments. The bias is reduced to less than 1% and
typically less than 0.5%. The application procedures were also provided for the

proposed methods.

Two bias correcting formulas were also proposed for the shape parameter
estimator of LS X on Y using the modified Ross’ method and the modified Hirose’s

method.

Bias correction for the OLSE of the shape parameter in the case of multiply

censored data is challenging. A simple bias correcting formula was proposed for
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multiply censored samples with ¢ <40% and n<100. The bias is greatly reduced

with the proposed formula.

One thing to note is that theoretically these bias correction methods can greatly
reduce or eliminate the bias of the shape parameter estimator in the long run;
however, they may not provide more accurate estimate for a single Weibull sample

than OLSE.
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Chapter 6

Weighted Least Squares Estimation Methods

This chapter presents the weighted least squares estimation methods. A simple
approximation formula is proposed for calculating weights for small, complete
samples. Through Monte Carlo simulations, the proposed WLSE method is compared
with some existing WLSE methods and the OLSE method. The simulation results
show that the proposed procedure is slightly better than the existing WLSE methods
in terms of the properties of the estimators. The efficiency of the proposed WLSE
method is 20% to 30% higher than that of the OLSE method. A bias correcting
formula is also proposed to reduce the bias of the shape parameter estimator of the
proposed WLSE method. WLSE for censored data is discussed and a tentative

procedure is proposed for calculating weights.

6.1 Introduction

One problem with LSE is that it treats each data point equally under the assumption
that the variance of the error term is constant. As shown in Section 3.2, this
assumption cannot be satisfied. The variance of the errors can be calculated by
Equations (3-8) — (3-11) under the assumption that the uncertainty of failure time can
be neglected. By treating each data point equally, LSE has a low efficiency. WLSE, in
theory, can maximize the efficiency of parameter estimation by giving each data point

its proper amount of influence over the parameter estimates.
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The biggest challenge of WLSE is to determine the appropriate weight for each
data point. As a common practice, weights can be calculated by the reciprocal of the
variances of the dependent variable values. The variances of the dependent variable
values, in most cases, are estimated by repeated experiments. However, the values
may also be obtained through analytical deduction, which is the current situation. In
examining WLSE for the Weibull distribution, we still treat X =In7 as the
independent variable and Y = ln[— In(1-F (t))] as the dependent variable. We further
assume that the uncertainty of failure time can be neglected so that the variance of the
errors equals the variance of the dependent variable values. In particular, here the

values of the dependent variable Y are not measured but estimated.

The weights in the WLSE method for the Weibull distribution can be calculated

by

w, =1/Var(¥,) (6-1)

where Var(Y;)) can be obtained through analytical methods as shown later.

Several authors have examined the WLSE methods for the Weibull distribution
and different methods for calculating weights have been proposed (White, 1969;
Bergman, 1986; Faucher & Tyson, 1988; Hung, 2001; Lu et al., 2004). These
methods are briefly described in Section 6.2. We noticed that, in most of the existing

WLSE methods, Var(Y,,) is estimated via some kind of approximation method, e.g.,

the propagation of error. It is likely that errors are introduced by using such
approximations. The exact values of Var(Y,,)) are derived, which, in theory, are the
best weights. To simplify the calculation for the best weights, a simple approximation

formula is proposed through numerical method that can be used for small, complete
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samples, especially when » <20 . With Monte Carlo simulations, the proposed
methods are compared with the methods of Faucher & Tyson (1988), Lu et al. (2004)
and OLSE for estimating the Weibull parameters. Censored data is also discussed and
a method for calculating weights based on MFON is proposed. A numerical example
clearly shows the proposed WLSE procedure for censored data. Some of the related

work has been published by the authors (Zhang et al., 2006, 2008).

6.2 WLSE and Related Work

The idea of WLSE is to give each data point its proper amount of influence by
assigning each data point a weight, denoted by w,. The objective function of WLSE is
min S =Y w, [y, - (4+Bx,)[ (6-2)

i=1

where for complete data, r =n.

The conventional settings described in Section 2.3.1 for LSE are applicable, i.c.,
=InT, Y= ln[— ln(l—F)], A=-fIna and B = f. Given a Weibull sample, the
values of x, and y, can be obtained in a similar approach as in the LSE method (see

Section 2.3.1). From Equation (6-2), taking partial derivatives of S with regard to 4

and B, respectively, and setting the results to 0, we obtain

~
~

w; - Wixiyi _Zr:Wixi 'iwiyi
Zr:wl Zr:wx (waj
i=1
wa ﬂzwx
S
i=1

(6-3)
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Thus the estimators of « and S for the WLSE method are given by

r r r r
Wl szlyz Zwi'xi .szyz
ﬁ _ =l i=1 i=1 i=1
2
’ r r
S (z Wl.x,.j
i=1 i=1 i=1
6-4
) y (6-4)
lez - ﬂz Wixl
a = eXp _ =l - i=1
B2w,
i=1

Equation (6-4) can be applied to both complete data and censored data. For

complete data, » =n. As a special case, when w, =1 for all data points, the WLS

estimators reduce to the OLS estimators.

The WLSE method can be easily carried out after the values of w, are
determined. As mentioned in Section 6.1, w, can be calculated by Equation (6-1), i.e.,
the reciprocal of Var(Y,) . Following this rule, different methods for calculating

Var(Y,) have been proposed. White (1969) defined a log-Weibull order statistic and

)
derived the formula for calculating its variance that equals the variance of Var(Y,)).
The formula is complicated and the results are tabulated for selected sample sizes.
White also gave a numerical example of using WLSE to estimate the Weibull
parameters; however, without any discussion on the accuracy of the estimates.
Another shortcoming of the White’s method is that the regression of X =In7 on
Y= ln[— In(1-F )] is used, which is not the conventional way nowadays. Therefore,

there is no further discussion on this method. Besides, Bergman (1986), Faucher &

Tyson (1988), Hung (2001) and Lu et al. (2004) each proposed a simple formula for
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calculating weights. These methods are briefly introduced below and some comments

are given.

Bergman’s WLSE (Bergman, 1986)

Bergman (1986) applied the formula of the propagation of error (the simple case that

involves only a single variable) to the relationship ¥, = lnl— In(1- F(l.))J and obtained

Sl S, =Sk, [(1 —ﬁ(l.))ln(l - £, )r (6-3)

v =
(i) dF’(l)

where SYm and S 7 denote the standard deviations of Y, and F, , respectively.

(OR
. . . . S A 1
By assuming S is a constant, S, is then proportional to [(1 -F, )ln(l - F, )T

and Var(Y,;)) is proportional to [(l—ﬁm )ln(l—l:“(i) )}2 Thus Bergman determined the

formula for weights as
Wi = [(1 ~F, )1n(1 -1, )]Z (6-6)

Bergman examined two non-parametric estimators for calculating 1:“([), Le.,
i/(n+1) and (i—0.5)/n . He conducted a simulation experiment to compare his
WLSE method with LSE on estimating the shape parameter with both plotting
positions. The mean and standard deviation of ,5’ , denoted by E (,@) and S(ﬁ), were
calculated. The comparison criteria were E(,é’)/ £ and S(,B)/ E(,@) (coefficient of

variation). The author concluded that 1) WLSE has little effect on the coefficient of

variation; 2) in view of bias, the Hazen estimator ﬁ(i) =(i—0.5)/n should be used for

both LSE and WLSE; and 3) in view of bias, WLSE with ﬁ(i) =i/(n+1) outperforms
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LSE with £, =i/(n+1), while WLSE with £, = (i—0.5)/n performs similarly to
LSE with I% =(i—0.5)/n. Obviously, the author did not focus on the efficiency

improvement of WLSE over LSE, which should be measured directly by the standard

deviation or variance of estimators.

Hung’s WLSE (Hung, 2001)

Hung (2001) proposed a formula for calculating weights in a way similar to that of

Bergman (1986). Hung’s weights are given by

= [(1 -k () )ln(l B ﬁm )]2
,an: [(1 -k 0 )ln(l ~F ) )]2

w

(6-7)

Compared to Equation (6-6), this formula simply adds a denominator, i.e.,

Zn:[(l—ﬁ‘(i) )ln(l—ﬁ(l.) )]2 . The author did not give the reason for adding this

denominator, but clearly, it is independent of i and can be treated as constant. Since
the weight for one observation is given relative to the weights for other observations,
this denominator will not affect the estimation results. Therefore, Hung’s weight

formula is same as Bergman’s weight formula.

Hung suggested 13’(,.) be calculated by the method of Drapella & Kosznik (1999),

i.e., the expected plotting position described in Section 4.3.3. Via Monte Carlo

simulations, Hung compared three estimation methods: WLSE with the Bernard

A

estimator for calculating F

> LSE with the Bernard estimator for calculating 15( N and

LSE with the expected plotting position for calculating }?‘(i). The mean, variance and
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MSE of the shape parameter estimator of each method were calculated as the
comparison criteria. The simulation results showed that Hung’s WLSE method

provided the smallest variance and MSE in all cases examined.

Similar to Bergman’s WLSE method, Hung’s WLSE method involves an

assumption that the uncertainty of £, is constant.

F&T’s WLSE (Faucher and Tyson, 1988)

Faucher and Tyson (1988) pointed out that the order statistic Fj,, has a beta
distribution with parameters i and n—i+1; therefore, the uncertainty of £, cannot

be constant. The authors proposed to estimate the uncertainty of F

(, through the

difference of its two percentiles. The percentiles can be calculated by

S, ptenr e

k=1

The 20™ percentile and the 80™ percentile were selected to estimate the

uncertainty of F{,, . Then, with the relationship ¥, = ln[— In(1 _Fm)J’ the uncertainty
of Y, is estimated by the difference of ln[— ln(l—F(;.))J—ln[— In(1 —F(;.’))J, where F
denotes the 80™ percentile of F,, that can be calculated by setting p=0.8 in

Equation (6-8) and Fj, denotes the 20™ percentile calculated by setting p =0.2 in

Equation (6-8). The weight formula is then expressed by
w, =1/ {n[-1n(1 = F)) |- n[- (1 - £ ] (6-9)

However, the selection of the two percentiles is somewhat subjective.
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A simple approximation formula was also proposed via numerical methods as

w, =33F, —27.51- (1- £,)""| (6-10)

They suggested the Bernard estimator or exact median rank values to calculate ﬁ(i) .

The authors used Monte Carlo simulations to compare their WLSE with LSE in

view of the bias and standard deviation of both scale and shape parameter estimators.

The Hazen estimator and the Bernard estimator for calculating 15([) were examined
and compared. The results showed that their WLSE procedure with the Bernard

estimator should be preferred because it generates smallest standard deviation of the

estimators.

Lu et al’s WLSE (Lu et al., 2004)

Lu et al. (2004) defined an intermediate variable C with C =-In(1-F) and

Y=InC . From the Weibull CDF, it can be easily obtained that C follows the
standard exponential distribution. Therefore, the mean and variance of its order

statistic C;, can be determined as

I S
(n—j+1)°

and Var(C)) = z

Jj=1

E(C(i>)=2 1 (6-11)

—n—j+1

Var(Y,,) can be approximated by applying the propagation of error formula on
the relationship ¥ =InC, i.e.,
Var(C,)

Var(Y,)) =Var(InC, )= T (6-12)
@)
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Substituting Equation (6-11) in Equation (6-12) for E(C,)) and Var(C ;) yields

1 o 7
Var(Y,) = ;n ) /{;(n_jﬂ)} (6-13)

The Lu’s formula for weights is then given by

n [,l(n—zw) / e o

Besides its simplicity, this weight formula does not involve the selection of the

estimator for calculating Fm .

The authors compared several WLSE methods, including Bergman’s WLSE,
Hung’s WLSE, F&T’s WLSE, and their WLSE, via Monte Carlo simulations. For the

Bergman’s and F&T’s methods, three estimators of £, including the Weibull

estimator, the Hazen estimator, and the Bernard estimator, were examined. The mean,
variance and MSE of the shape parameter estimators were calculated as the
comparison criteria. It was concluded that Bergman’s WLSE (as well as Hung’s
WLSE) in most cases generates a larger MSE than the others regardless of the plotting

positions used. The authors’ method and the F&T’s method performed similarly.

Discussions

Equation (6-6), Equation (6-7), Equation (6-9) or Equation (6-10), and Equation (6-14)
are the formulas for calculating weights proposed by different authors in the past. In
summary, all these formulas are easy to use. Bergman’s method, as well as Hung’s,

involves the assumption that the uncertainty of £, is constant. However, this is not a
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good assumption because the values of F; come from order statistics and the
variance varies with the order number i. As F, can be treated as from a beta

distribution, the variance of F{, is given by

i(n+1-i)

D )

(6-15)

Lu et al. (2004) showed that Bergman’s method (as well as Hung’s) is inferior to the
others from their simulation results. The F&T’s and Lu et al.’s methods do not

involve any assumptions; however, both methods’ calculation for Var(Y,,) used

approximation methods, and the values are only approximated values. It is likely that
errors are introduced by using such approximations. In the next section, we present

the method for calculating the exact values of Var(Y,,) that will generate the most

i)

appropriate weights, and compare it with the existing methods.

6.3 Method for Calculating Best Weights

The best values for weights can be obtained through the exact reciprocal values of

Var(Y,,) . As shown in Section 3.2.2, we have derived the formula for calculating the

i)

exact values of Var(Y,)), i.e.,

M G [y —In(r—itk+1)
E()I(i))_l(iJ ko{( D k] n—i+k+1 }

(n\= i—=1) 2yIn(n—i+k+1)+In’(n—i+k+1
E(Y(f)):l.978112+z(J 0{(—1)"( ) J 7 In( )+ )}

i) n—i+k+1

)-£°(r,,)

i)):E(YZ

Var(Y o

(

(6-16)
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The best weights can then be calculated by Equation (6-1), i.e., w, =1/Var(Y,,) .

Since the weight for one observation is given relative to the weights for other
observations, it can be normalized in some way. Here we normalize the weights by
dividing the weight for each observation by the mean weight over the whole sample,

1e.,

(6-17)

nor i

S
|
2| =

where w,,. , denotes the normalized weight. w = Zwl. /n In this way, the sum of

i=1

the normalized weights equals the sample size, i.e., Zwmu =n.

i=1

Table 6-1 lists the values of the normalized best weights for selected sample
sizes. From the table it can be observed that, for n =5, 6, the weights increase as the
order number i increases, and the weights for the last two data points are much higher
than those for the first two data points. From n =7 onwards, however, the largest
weights are not given to the last data point but a little bit earlier. The weights for the
end part of the sample are still much larger than those for the beginning part of the

sample.

Apparently, the weights differ greatly for the data points in a sample; therefore,

the WLSE method and the OLSE method should perform differently.

179



Chapter 6 Weighted Least Squares Estimation Methods

Table 6-1: The normalized best weights for selected sample sizes (the largest value in each
column is highlighted).

n

i 5 6 7 8 10 12 14 16 18 20
1 02675 02269 0.1970 0.1741 0.1414 0.1190 0.1028 0.0904 0.0807 0.0729
2 0.6779 0.5761 0.5009 0.4431 0.3600 0.3032 0.2619 0.2305 0.2058 0.1859
3 1.0838 09286 0.8108 0.7190 0.5857 0.4939 0.4269 0.3759 0.3357 0.3033
4 14263 1.2538 1.1071 0.9875 0.8091 0.6841 0.5921 0.5218 0.4663 0.4215
5 15446 1.5013 1.3673 1.2364 1.0250 0.8708 0.7556 0.6668 0.5964 0.5393
6 1.5133 1.5416 1.4440 1.2266 1.0509 09155 0.8097 0.7252 0.6564
7 1.4754  1.5605 1.4023 1.2202 1.0699 0.9494 0.8520 0.7721
8 1.4353 1.5306 1.3719 1.2158 1.0843 0.9758 0.8859
9 1.5628 1.4946 1.3489 1.2125 1.0957 0.9971
10 1.3564 1.5667 1.4626 1.3310 1.2100 1.1049
11 1.5410 1.5452 1.4355 1.3167 1.2080
12 1.2836 1.5758 1.5193 1.4129 1.3050
13 1.5089 1.5709 1.4942 1.3938
14 1.2181 1.5700 1.5539 1.4715
15 1.4726 1.5810 1.5337
16 1.1595 1.5554 1.5738
17 1.4351 1.5811
18 1.1071  1.5359
19 1.3979
20 1.0599

The weights calculated by other methods, e.g., the Bergman’s, F&T’s and Lu et
al.’s methods, can be normalized in a similar way. After normalizing, the values of
weights from different methods can be compared for the same sample size. Figure 6-1
and Figure 6-2 show the comparison of the best weights and the weights calculated by
the Bergman’s method in Equation (6-6), the F&T’s method in Equation (6-10), and
the Lu et al.’s method in Equation (6-14), for two sample sizes, n =5 and n =15,
respectively. The following can be observed from the two figures: 1) the weights of
the F&T method are close to the best weights; 2) compared to the best weights, the
weights of the Bergman’s and Lu et al.’s methods present reversed trends. Bergman’s
method underestimates the last few points and overestimates the remaining points,

while Lu et al.’s method overestimates the last few points and underestimates the
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remaining points; and 3) at n =15, the weight for the 10" point, calculated by

different methods, are almost same.
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Figure 6-1: Comparison of normalized weights calculated by different methods at n =S5.
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Figure 6-2: Comparison of normalized weights calculated by different methods at n = 15.
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6.4 An Approximation Formula for Calculating Weights for

Small, Complete Samples

Using Equation (6-16) and then Equation (6-1) to calculate weights is not convenient
without the aid of a computer program. Also note that when the sample size becomes
large, say n > 30, the binomial coefficients in Equation (6-16) will become extremely
large, and it is hard to generate accurate results. Considering the fact that OLSE does
not perform very well mainly for small samples, say n <20, the examination of

WLSE also focuses on small samples.

To simplify the calculation for weights, it is possible to use numerical methods to

derive an approximation formula for calculating the best weights. w, can be modelled
as the function of order number i and sample size n, as can be seen in Table 6-1.

However, intuitively, it is easier to model it as the function of F.., like in the

(i) >
Bergman’s, Hung’s and F&T’s methods. To study the relationship between the best

weights and 15( Figure 6-3 plots the best weights calculated by Equation (6-16) and

i)?
then Equation (6-1) at selected sample sizes, and Figure 6-4 plots the values of I:ﬂ(i) ,
calculated by the Bernard estimator, i.e., ﬁm =(i—0.3)/(n+0.4), at the same sample

sizes. As can be seen, the two figures show similar patterns. Therefore, the best

weights can be modelled as a function of }:“(i) .
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Figure 6-3: Plot of best weights as a function of i and .
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Figure 6-4: Plot of ﬁ(;) (calculated by the Bernard estimator) as a function of i and n.
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6.4.1 The Approximation Formula

The relationship between w, and 13"(1.) can be modelled by a polynomial function, i.e.,
w_app(i) = p, +p1ﬁ(i) +p2ﬁ<?) +p3FA'(13‘) +p4ﬁ(?) (6-18)

where w_app(i) denotes the approximated value of w,, and p,, p,, p,, p;, p, are

the model parameters to be determined.

The model parameters can be determined by the nonlinear curve fitting technique.

The objective function is

2

min Z[Wi —(po + plﬁ(f) + pzﬁ'(?) + p3]3'(?) + p4]3'(?)) (6-19)

i=1

To solve this function, the multidimensional unconstrained nonlinear
minimization method, i.e., the Nelder-Mead method (Nelder & Mead, 1965), was
used. The calculation was executed in MATLAB 7, and the built-in function

fminsearch was used.

The best values of w,, calculated by Equation (6-16) and then Equation (6-1),

and 1:“0.) , calculated by ﬁ(i) =(—0.3)/(n+0.4), for samples of sizes 2 to 20 were

used in Equation (6-19) to determine the five model parameters. Finally, the values of

Po» P1» P» D3> P, Were determined as
p, =—0.076, p, =3.610, p, =—6.867, p, =13.54, p, =-9.231 (6-20)
Thus the approximation formula for calculating the best weights is

w_app(i) =—0.076 + 3.610F

) —6.867F, +13.54F —9.231F;

562D
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6.4.2 Application Procedure

The application procedure of the proposed WLSE method for estimating the Weibull

parameters in the case of small, complete samples is summarized as follows:

Step 1: Rank the failure times from smallest to largest and calculate the Y-axis

plotting positions by ﬁm =({-0.3)/(n+04).

Step 2: Plot the failure times ¢, against ﬁ(;) on WPP. If the Weibull distribution

fits, the data points should appear to be on a straight line.
Step 3: Calculate the values of the weights for each data point using Equation
(6-21).

Step 4: Calculate the estimates for o and £ using Equation (6-4).

Nowadays, many statistical software packages and electrical spreadsheets

provide the WLS programs, and users just need to provide x;, y, and the weights.

Therefore, WLSE can be easily applied.

6.4.3 A Numerical Example

Below is a randomly generated Weibull sample with =1 and f=2:

0.2153,0.6394, 0.7607, 0.8112, 1.0024, 1.2612, 1.3418, 1.4468, 1.5011, 1.8998.

Five methods, including the proposed one, Bergman’s WLSE, F&T’s WLSE, Lu
et al.’s WLSE, and OLSE, were used to estimate the two Weibull parameters for this
sample. The results are shown in Table 6-2. Figure 6-5 is the WPP with straight lines

generated by each method.
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It can be observed from Figure 6-5 that the OLSE line is greatly affected by the

first point. In Table 6-2 we can see that OLSE highly underestimates . The proposed
method and the F&T’s method provide the best estimates for £ and the bias is very
small. Bergman’s WLSE method underestimates £, and Lu et al.’s WLSE method

overestimates /. The differences in @ among these methods are smaller compared to

ﬁ; however, overall the bias of ¢ is larger than that of ﬁ .

Table 6-2: Estimates of o and P generated by different WLSE methods and OLSE.

Proposed Bergman F&T Lu OLSE
a 1.2526 1.2774 1.2547 1.2465 1.2863
,5’ 2.0639 1.9350 2.0318 2.2034 1.7221

Weibull Probability Plot

0.96 [ ‘ ‘ ]
0.90 R

0.75 y ]

0.50 + / -

0.25

Probability

0.10

0.05

Proposed WLS

10°

Data
Figure 6-5: WPP with straight lines generated by different WLSE methods and OLSE.
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6.4.4 Monte Carlo Study: A Comparison of Different WLSE Methods

and OLSE

Monte Carlo experiments were conducted to examine the proposed WLSE method for

estimating the Weibull parameters for small, complete data sets.
Five methods were compared in this experiment, including the following:

1. Best W: A WLSE method with best weights calculated by Equation (6-16)
and then Equation (6-1).

2. App. W: The proposed WLSE method, where the approximated best weights
calculated by Equation (6-21) are used.

3. F&T: A WLSE method where weights are calculated by Equation (6-10).

4. Lu: A WLSE method where weights are calculated by Equation (6-14).

5. OLSE.

The Bergman’s method was not considered in this experiment because it has
been shown inferior to the other existing WLSE methods (Lu et al., 2004) and it

involves an inappropriate assumption that £, has no uncertainty.

Weibull samples of different sizes were randomly generated with selected values

of « and f. For each sample generated, the above techniques were used to obtain
the estimates of @ and £ simultaneously. By repeating this process for 10000 times,

the mean, standard deviation, and MSE of the parameter estimates were calculated as

the comparison criteria. The setting of the experiment factors is given in Table 6-3.

A

For all the methods, F,

 is calculated by ﬁm =(i—0.3)/(n+0.4), i.e., the Bernard

estimator.
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Table 6-3: Setting of experiment factors. The experiment is to compare four WLSE methods and

OLSE.
Factors Values
o, 1
,BT 0.5,1,2
n 5,6,...,19,20
M 10000

Methods Best W, App. W, F&T, Lu, OLSE

It should be noted that the weights of all WLSE techniques examined here are

independent of the values of o and f. Therefore, the two pivotal functions, ,3/ p

and ,6A’1n(0?/ a), for the LS estimated o and £, are also true for the WLS estimated

Weibull parameters. The advantage of using the pivotal functions is that their

distributions can be derived from the normalized Weibull distribution (o = f =1), so

that the simulation work can be greatly reduced. In this experiment, the true value of

f was fixed at 1 to assess the estimators of £, and to assess the estimators of &,
three true values of f were used, i.e., f, =0.5,1,2. Since « is a scale parameter, we

fixed its true value to 1 in the whole experiment.

The simulation results are shown in Table 6-4 and Table 6-5. The results for
selected sample sizes are omitted; however, it will not affect the following

conclusions which can be observed from the tabulated values.

Simulation Results for Estimators of f (Table 6-4)

1) In view of both the standard deviation and MSE of ,@ , the WLSE methods

are significantly better than OLSE. The ratio of the MSE of ,3 between App.

W and OLSE is about 70% at n = 20 . Among the WLSE methods examined,

Best W and App. W always generate the smallest standard deviation and
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2)

3)

MSE, followed by the F&T’s method. Lu’s method generates slightly larger

standard deviation and MSE than the other three WLSE methods.

In view of bias, all WLSE methods perform similarly, and they only
outperform OLSE at n = 5. In most cases, the bias of ,B of OLSE is much

smaller, say, about 2 — 3% less than that of the other methods.

App. W performs very close to Best W.

Simulation Results for Estimators of a (Table 6-5)

1)

2)

3)

4)

In view of both the standard deviation and MSE of &, the WLSE methods
always outperform OLSE. Among the WLSE methods examined, Lu’s
method always generates the smallest standard deviation and MSE, followed

by Best W, App. W and F&T. At  =0.5, the ratio of the MSE between the
Lu’s method and OLSE is about 70%.

In view of the bias of &, the WLSE methods outperform OLSE in nearly all
cases. Lu’s method always generates the smallest bias among the WLSE
methods, followed by Best W and App. W. The bias of & of the Lu’s
method is 5 — 10% less than that of the OLSE, and the bias of & of Best W
and App. W is 3 — 5% less than that of the OLSE.

The standard deviation and MSE of & of all methods decrease as S,

increases.

App. W performs very close to Best W.
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Table 6-4: Simulation results of Bl |» generated by different WLSE methods and OLSE at

different n: the values of £( ,31 D ES( ’él and MSE( ﬁl ) (in parentheses).

n
Method 5 6 3 10 12 15 18 20
Best W 1.006 +0.563 0972 + 0447 0.048 +0.335 0.946 + 0286 0.945 £0.254 0950 + 0222 0.953 £ 0.198 058 + 0.188
(0.317) (0.201) (0.115) (0.085) (0.068) (0.051) (0.041) (0.037)
App. W 1.006+0.562 0.971 + 0447 0.947 £0.335 0.946 + 0286 0.946 £0.254 0950 + 0222 0.955 +0.198 0.960 +0.189
(0.316) (0.201) (0.115) (0.085) (0.068) (0.051) (0.041) (0.037)
F&T 1.007 +£0.562  0.972 + 0448 0.948 +0.336  0.946 + 0287 0.945 +0.255 0950 + 0223 0.953 = 0.199 0.957 +0.189
(0.316) (0.201) (0.116) (0.085) (0.068) (0.052) (0.042) (0.037)
Lu 1.005 +£0.567 0.971 + 0451 0.948 £0.339  0.948 + 0292 0.949 £0.261 0953 + 0228 0.956 = 0.204 0961 +0.195
(0.321) (0.204) (0.118) (0.089) (0.070) (0.054) (0.044) (0.040)
OLSE 1.046 £0.592  1.009 + 0481 0.978 +0.370 0.968 +0.319 0.962 +0.287 0.961 + 0255 0.959 = 0.230  0.961 +0.220
(0.353) (0.231) (0.137) (0.103) (0.084) (0.067) (0.057) (0.051)

Table 6-5: Simulation results of ¢, 5 generated by different WLSE methods and OLSE at
different n and /£, : the values of E(4, 5)E S(a, 5) and MSE(Q, 5) (in parentheses).

n

Method 6 3 10 12 15 18 20

Best W 1.383 = 1.344 1316+ 1.154 1.219 £0.921 1.191 £0.807 1.154 £0.721 1.129 £0.624 1.103 + 0.557 1.093 +0.523
(1.954) (1431) (0.896) 0.687) (0.544) (0.406) (0.320) (0.282)

App.W 139541356 1325+1.162 122440925 1.194+0.808 1.155+0.722 1.127 £0.623 1.101 £ 0.556 1.091 +0.522
(1.996) (1455) (0.906) 0.691) (0.545) (0.405) (0.319) (0.281)

Bos F&T 1405 + 1365 1334 +1.169 1.233£0.931 1202+0.813 1.163£0.727 1.135£0.627 1.108 0.559 1.098 +0.525
- (2.026) (1.478) (0.921) (0.703) (0.555) 0.412) (0.324) (0.286)

Lu 1333 £ 1.302 1264 +1.115 1.167 +0.888 1.142+0.780 1.109 +0.700 1.088 +0.608 1.066 + 0.544 1.059 +0.513
(1.806) (1313) (0.817) (0.629) (0.501) 0.377) (0.300) (0.266)

OLSE 1528 + 1.495 1454 +1286 1.342+1.032 1304+0902 1.256+0.812 1216+0.689 1.181 +0.612 1.167 +0.573
(2.512) (1.861) (1.183) (0.906) (0.725) 0.521) (0.408) (0.356)

Best W 1.067 £ 0.497 1055 +0447 1.040 +0.384 1.035+0.344 1.027+0.311 1.022 £0.278 1.020 + 0.256 1.016 = 0.240
(0.251) 0.203) (0.149) (0.120) (0.097) (0.078) (0.066) (0.058)

App.W  1.072£0.499 1059 £0449 1.042 £0.385 1.036+0.344 1.027+0311 1021 £0.278 1.019 +0.255 1.015 +0.240
(0.254) 0.205) (0.150) (0.120) (0.097) 0.078) (0.066) (0.058)

Bmt F&T 1.076 £ 0.500 1.063 £0450 1.046 +£0.386 1.039£0.346 1.030 £0.312 1.025£0.279 1.023 £0.256 1.018 +0.241
(0.256) 0207) (0.151) 0.121) (0.098) 0.079) (0.066) (0.058)

Lu 1.047 £ 0.489 1033 £+0440 1.017 +0.378 1.012+0.339 1.006 = 0.307 1.003 £0.276 1.003 + 0.254 1.000 = 0.239
(0.242) (0.195) (0.144) 0.115) (0.094) 0.076) (0.064) (0.057)

OLSE 1122 £0.523 1109 0472 1.090 +0.407 1.081 £0.363 1.069 = 0.328 1.060 £0.293  1.055 + 0.269  1.049 =0.252
(0.288) (0.235) (0.173) (0.138) (0.112) (0.090) (0.075) (0.066)

Best W 1.006 +0.234 1004 +0214 1.003 +0.186 1.003 £0.168 1.003 +0.153 1.002 £0.136 1.002 + 0.125 1.002 £0.119
(0.055) (0.046) (0.035) (0.028) (0.024) 0.019) (0.016) (0.016)

App.W  1.008+0.235 1006+0215 1.004+0.186 1.003+0.168 1.004+0.153 1.001 £0.136 1.002 +0.125 1.002 +0.119
(0.055) (0.046) (0.035) 0.028) (0.024) 0.019) (0.016) (0.016)

poa FAT 1.010 £0.235 1008 +0215 1.006 +0.187 1.005+0.168 1.005 +0.154 1.003 £0.136 1.004 + 0.126  1.004 +0.120
(0.055) (0.046) (0.035) (0.028) (0.024) 0.019) (0.016) (0.016)

Lu 0.996 £0.233 0993 £0213 0.991 +£0.185 0.992£0.167 0.993 £0.153 0992 +0.136  0.994 + 0.126  0.996 +0.120
(0.054) (0.045) (0.034) (0.028) (0.023) 0.019) (0.016) (0.016)

OLSE 1.032 £0.240 1030 £0220 1.027 £0.191 1.025+0.172 1.024 £0.158 1.020 £0.140 1.019 +0.129 1.018 +0.123
(0.059) (0.049) (0.037) (0.030) (0.026) (0.020) (0.017) (0.017)
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Chapter 6 Weighted Least Squares Estimation Methods

6.4.5 A Bias Correcting Formula for the Proposed Method

The proposed simple formula for calculating weights in Equation (6-21) is limited to
small, complete samples. The proposed WLSE method helps to improve the
efficiency of parameter estimation, which has been justified by the Monte Carlo
experiment. However, the experiment results also show that the shape parameter
estimators of the WLSE methods in most cases have larger bias than that of the
OLSE. The bias is most significant for very small samples. This can be dangerous.

Therefore, a bias correcting formula is proposed for the proposed WLSE method.

The modified Hirose’s method presented in Section 5.3.2 for unbiasing the
OLSE of the shape parameter can also be used for the WLSE of the shape parameter.
As shown in Figure 6-6, the plot of the bias of the WLS estimated £ vs. n presents a
hyperbolic appearance; therefore, Hirose’s bias model in Equation (5-17) can be
applied. The process for deriving the five model parameters are same as that presented

in Section 5.3.2 and is not repeated here.

0.4 \ \

0.35

0.3F B

0.25 B

0.2+ B

0.15 B

bias(blyl)

01r . i
0.05 .
0, |

+ B L
-0.05L *********%*% _

0.1 | | | | | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
n

Figure 6-6: Plot of the bias of the proposed WLS estimated ’5’1 , Vs, n.
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The bias correcting formula for the proposed WLSE of the shape parameter is

given by

n A 1.521 8.339 3.527 6.345
,BU:,B-£O.986+ -t 4j

n n n n

(6-22)

This equation can be added in the end of the WLSE procedure described in Section
6.4.2.

6.5 Discussions on Large Samples and Censored Samples

As the proposed WLSE method presented in last section is limited to small, complete
samples, this section discusses WLSE for large samples and censored samples,

respectively.

6.5.1 WLSE for Large Samples

As previously mentioned, it is difficult to calculate weights by Equation (6-16) and
then Equation (6-1) when the sample size is large, say n>30 . For example,
MATLAB 7 generates negative values for the weights at » = 30, which is obviously
wrong. A possible solution for large samples is to use one of the intermediate results

in the process of deriving Var(Y,)) , as shown in Appendix A, i.e.,

E(YO‘) ): E(Zm ): i(gﬂw Inv-(e" —1)""e™dv

E(Y(f) ): E(Zé) ): i[rilj-[:w In’v-(e =1)"-e™dv (6-23)

Va’”(Y(i) ): E(Y(f) )_ E? (Y(i) )

where v=e¢" . The Simpson rule (Thisted & Thisted, 1988) may be applied to

calculate the integrals in this equation and finally solve the weights.
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The F&T’s and Lu et al.’s methods, i.e., Equation (6-10) and Equation (6-14),
can be used for large samples. However, the accuracy needs to be checked. As shown
in Faucher & Tyson's (1988) simulation experiment, Equation (6-10) works well at
n=100. Also, Lu et al.'s (2004) simulation experiment showed that Equation (6-14)

works well at n = 50.

6.5.2 WLSE for Censored Samples

Censored data are commonly encountered in reliability data analysis and it adds the
difficulty for parameter estimation. For a censored sample, LSE uses only failure data

points to conduct regression, and the influence of the censored items is reflected

through the estimation of ﬁ > or through the MFON of each failure data point.

>
Several methods have been proposed for calculating the MFON for multiply censored

data, as shown in Section 4.3.2. The JM method, i.e., Equation (4-9), is widely used.

Like LSE, the WLSE methods can also be applied to multiply censored data;
however, this is less discussed in the literature. Lu et al. (2004), via Monte Carlo
simulations, examined several WLSE methods for censored samples of size 20 with
18 different predetermined censoring patterns. The weights for a complete sample of
size 20 are selected for the failures in the censored samples based on their event
numbers and used directly. The authors concluded that the simulation results for
censored samples are in accordance with those for complete data. Obviously, their
determination for weights is questionable. The effect of censoring on the failure items
is not taken into consideration. To apply WLSE to multiply censored data, instead of
the event number, the MFON of the failure data points should be used. The weights

for complete samples cannot be directly used for censored samples of the same size.
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If the MFON of a failure data point is non-integer, its weight might be calculated
by linear interpolation, i.e.,

Wy =Wy, + (mf,(j) - Intj)[w,mj+1 Wy, J (6-24)
where m, ., denotes the MFON of the ;™ failure and Int; =int[m, ;] denotes the
integral part of m . For small samples, Wy, can be calculated by Equation (6-21),
and for large samples, it can be calculated by Equation (6-11) or Equation (6-14).

Thus, the step-by-step procedures of WLSE applied to multiply censored

samples are given as follows:

Step 1I: Calculate m, , and ﬁ /.y for each failure data point using the JM

method, i.e., Equation (4-9).

Step 2: Plot the failure times 7, against ﬁ oy on WPP. If the Weibull

distribution fits, the data points should appear to be on a straight line.

Step 3: Calculate the weight for each failure data point based on its MFON. If
the MFON is non-integer, the weight is calculated through linear

interpolation, i.e., Equation (6-24).

Step 4: Calculate the estimates for « and £ using Equation (6-4).

6.5.2.1 A Numerical Example

The following example illustrates the proposed WLSE procedure for a censored
sample. This data set, as shown in Table 6-6, has been used for several times, see, e.g.,

Campean (2000) and Hastings & Bartlett (1997). Table 6-7 shows the spreadsheet

used for the calculation of & and ,5’
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Table 6-6: A multiply censored data set.

Unit Failure/Censor Age (hr)
1 F 112
2 C 213
3 F 250
4 C 484
5 C 500
6 F 572

Table 6-7: The calculation spreadsheet (WLSE for a multiply censored sample).

. Failure/ A . ~ " R
Censor L e wil Jomygy Fogy wi=w,, X, Vi wix, Wiy, wixy,  wix]
1 F 112 0.1094 0.2269 1 1 0.1094 0.2269) 4.7185 -2.1556 1.0706 -0.4891 -2.3079 5.0518

2 C 0.2656 0.5761
3 F 250  0.4219 0.9286f 2 2.2 0.2969 0.64660 5.5215 -1.0435 3.5702 -0.6747 -3.7255 19.7126

4 C 0.5781 1.253§]

5 C 0.7344 1.5013
6 F 572 0.8906 1.5133§ 3 4.6 0.6719 1.40230 6.3491 0.1083 8.9034 0.1518 0.9641 56.5289
sum 2.2758 13.5442 -1.0120 -5.0693 81.2933

In Table 6-7, ﬁm and w, are calculated for a complete sample of size 6. The

Bernard estimator is used for F,,,

ie, £, =(i-0.3)/(n+0.4). The values of w, are

extracted from Table 6-1 but can also be calculated by Equation (6-21). The values of

A

My i

shown below.

Calculation of m, ,, (use the JM method) and F

m, o =1, Fr g =(m,, —03)/(n+0.4) = (1-0.3)/6+0.4) =0.1094

n+l—-m; :1+6+1—1
I;+1 4+1

Mpoy =My gy +

n+l-m, -
£.2) :22+6+1 2.2

M, 3y =M, 5+ . .
/53 /2) ]3+1 1+1

Calculation of w/ by linear interpolation:

w) =w, =0.2269

=22, F;

7

A

and w/ are calculated only for failure data points. The calculations are

= (2.2-0.3)/6.4 = 0.2969

=46, F,; =(4.6-0.3)/6.4=0.6719
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Wh =W, +(m ) —2)% (W; —w,) = 0.5761+(2.2-2) x (0.9286 — 0.5761) = 0.6466

Wi =Wy +(m, ) — )% (wy —w,) = 1.2538 + (4.6 - 4) x (1.5013 ~1.2538) = 1.4023

Calculation of parameter estimates:
x; and y, are calculated by x; =In(z, ;) and y, = ln[— In(1- F o j))J. From Equation

(6-4), the parameter estimates are calculated by

WY WX, = D Wi - Y W,
,B _ =l i=1 i=1 i=1
2
w; Z:W'xl.2 —(Zwlxlj
i=1 i=1 i=1
_2.2758%(-5.0693) —13.5442 x (-1.0120) 13804
2.2758x81.2933 — (13.5442)* '
Sy, - AY wix,
@ = exp| — = r i=1
By W
i=1
~exp| - —1.0120-1.3894 x13.5544 _ 5292410
1.3894 x2.2758

6.6 Summary

In this chapter, a simple formula for calculating the weights to be used in WLSE for
estimating the two Weibull parameters in the case of small, complete samples of size
n <20 were proposed. Compared to the existing WLSE methods for the Weibull
distribution, the proposed method has a better statistical foundation because it is based

on the theoretical deduction of the variance of Y, . The Monte Carlo experiment

showed that the proposed method performs closely to the best W method and is
slightly better than the other WLSE methods and significantly better than OLSE in

view of the standard deviation and MSE for estimating /. For estimating « , the Lu
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et al.'s (2004) method performs better than the other WLSE methods and OLSE;
however, it performs inferior to the other WLSE methods for estimating /. The bias
of ,@ of the proposed WLSE method is larger than that of the OLSE; therefore, a bias

correcting formula is proposed using the modified Hirose’s method.

The WLSE method for multiply censored data was also proposed, where the
weights can be calculated by the modified failure order number. When the MFON is
non-integer, the weight can be calculated by linear interpolation. A numerical

example clearly illustrated the proposed WLSE procedure for censored data.
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Chapter 7

Robust Regression Estimation Methods

This chapter presents a study of using robust regression methods to estimate the
Weibull parameters. The robust M-estimation method is proposed and compared with
OLSE and MLE via Monte Carlo simulations. Both the case of small data sets with
outliers and the case of data sets with multiply censoring are considered. Simulation
results show that the proposed method is an effective method in reducing bias and it

performs well in most cases with or without outliers.

7.1 Introduction

The quality of data is very important in parameter estimation. Complete data with
large sample size are always preferred to achieve a high accuracy on parameter
estimation. Unfortunately, reliability engineers often face the problem of small data
sets or data sets with censors. In addition, it is also common to have extremely early
or late failures in life testing experiments. These harsh data conditions may lead to the
estimators of the Weibull parameters, obtained by the traditional methods such as

MLE and LSE, to be significantly biased.

In the previous chapter, we have examined the efficiency of the WLSE methods
over the OLSE method on Weibull parameter estimation. The proposed WLSE
method assumes there is no uncertainty on the failure time so that the weights used
are theoretically optimal. Obviously, this is seldom true for field data. Field data may

have some outliers, e.g., extremely early or late failures, caused by readout error or
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Chapter 7 Robust Regression Estimation Methods

irrelevant failure modes, etc. As is well known, the robust regression techniques are
good alternatives to the least squares technique when outliers present in a data set. By
replacing the LS regression with the robust regression, we call the estimation method

the robust regression estimation method.

This chapter is organized as follows. Section 7.1.1 and Section 7.1.2 present the
general knowledge including the definition of outliers, types of outliers and common
robust regression techniques. Six robust regression techniques and the OLS technique
are summarized in a table and compared. Section 7.1.3 overviews the related work of
applying robust regression techniques for Weibull parameter estimation. There is very
limited work on this topic. Section 7.2 studies the possible outlier configurations of
the Weibull samples and presents an important finding which narrows the selection of
the robust regression techniques for Weibull parameter estimation. Then, as a
preliminary study, the robust M-estimation method is proposed and examined in
details, as shown in Section 7.3 and Section 7.4. The simulation results may provide
useful information on the use of the robust M-estimation method. Some of the work

has been published in Zhang et al. (2006).

7.1.1 Concepts of Outliers

It is not easy to give a mathematically precise definition of an outlier, but there is a
commonly used rule, i.e., a point that is at least three or four standard deviations from

the center of the data set is considered an outlier (Ryan, 1997). For example, if x; is

suspected as an outlier in a sample, we can exclude it first and calculate the sample

mean X and sample standard deviation s of the remaining data points, then calculate

a standardized value |xi —)_c| /s for x,. If this value is large (e.g., > 4), then x, can be

200
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considered as an outlier. Outliers can have many causes, for example, data-entry or
recording error. It can also occur because it is truly from another population, or it may
present an atypical observation. In general, outliers caused by errors should be

discarded from analysis.

Outliers can be classified based on the direction of outlying. Outlying can occur
in the X-axis direction only, Y-axis direction only, or both axes directions
simultaneously. Such a point is called an X-outlier, a Y-outlier or an X&Y-outlier,

respectively. Figure 7-1 illustrates the three types of outliers.

Y Y
& Y-outlier
L 2 *
& L 4
L g
*¢ *¢ X-outlier
X X
A
Y
L 2
X&Y-outlier
L 2
L 4
+ 3

»
»

X

Figure 7-1: Three types of outliers.
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7.1.2 Common Robust Regression Techniques

Robust regression techniques are good alternatives to LS that can be appropriately
used when there is evidence that the distribution of the error term is (considerably)
nonnormal, and/or there are outliers (Ryan, 1997). These techniques aim to reject or
limit the influence of the outliers in a sample in order to provide a better fit to the

majority of the data points.

Robust regression techniques have a large family. Typical ones include least
absolute value (LAV) (Schwarz, 1987), least median of squares (LMS) (Rousseeuw,
1984), least trimmed squares (LTS) (Ruppert & Carroll, 1980), Huber’s M-estimation
(Huber, 1973), generalized M-estimation (GM-estimation) (Hampel et al., 1986) and
MM-estimation (Yohai, 1987). These methods are distinguished by their objective
functions and can be assessed by several properties, e.g., efficiency, breakdown point,
etc. A brief description and comparison of these methods are given in Anderson &
Schumacker (2003). Table 7-1 presents a summary of six commonly used robust
regression techniques including LAV, LMS, LTS, M-estimation with unbounded
influence function, M-estimation with bounded influence function or GM-estimation,
and MM-estimation, together with the OLS technique on several aspects. The table
shows the objective functions of each method, their breakdown points (i.e., the
smallest fraction of contamination that can cause an estimator to take on values
arbitrarily far from its true value), the outlier configurations that they can be applied

to, their drawbacks, and their availability in the common statistical software packages.
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Most RR methods have both advantages and disadvantages. Some methods, e.g.,
LAV, are not good at dealing with X-outliers. Although robust regression methods
usually are computation intensive, many of them are available in common statistical
software packages such as S-PLUS, SAS, MATLAB and STATA. For example, S-
PLUS 7 has a robust regression library including methods of LMS, LTS and MM-
estimation (S-PLUS 6 Robust Library User’s Guide, 2002). MATLAB 7 has the
functions for calculating M-estimators with different weight functions available

(Statistics Toolbox for Use with MATLAB, User’s Guide Version 5, 2004).

The RR methods are still emerging nowadays and it is impossible to examine all
of them for estimating the Weibull parameters. On the other hand, since the
performance of a RR method is closely related to the outlier configuration, a blind
examination of all RR methods should be avoided. In Section 7.2, the special outlier
configuration of the Weibull samples is presented. With this finding, some of the RR

methods can be excluded from examination.

7.1.3 Related Work

Few papers can be found on the use of RR methods to estimate the Weibull
parameters. Lawson et al. (1997) examined the M-estimators (the authors use the term
“ML-estimators”) for Weibull samples under four outlier conditions: with no outlier
or influential data point, with outliers in the right tail area, with outliers in the left tail
area, and with two or more near neighbors along the X-axis. Different weight
functions for the M-estimators were examined including Huber, Andrews, Hampel
and Ramsey (Huber, 1973; Andrews et al., 1972; Hampel et al., 1986; Ramsay, 1977)
via Monte Carlo simulations. OLSE was also included in the simulation experiment.

The comparisons were made on two aspects: model statistics and parameter
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estimation. The authors concluded that the robust M methods always perform better
or at least equally well than OLS in terms of fitting on the probability plot, judged by

three model statistics: R*, MS and F-statistic. The Andrews’ and the Ramsay’s

Ervor
weights are recommended. For parameter estimation, however, the authors found not
much difference between M-estimators and OLSE, especially for samples with tail
area outliers. This result is disappointing as we expect robust regression methods to
perform better. Considering the authors only used three sample sizes and 1000
iteration in their simulation experiments, it is possible that the results are incomplete.
In this chapter, we focus on the comparison of the robust M-estimators (with bounded
influence functions) with the OLS estimators on Weibull parameter estimation via

intensive simulation experiments.

7.2 Special Qutlier Configuration of Weibull Samples

As previously mentioned, there are three types of outliers based on the direction of
outlying: X-outlier, Y-outlier and X& Y-outlier. Sometimes all three types of outliers
can happen in a sample; however, for the Weibull sample, this is not the case. As is
well-known, the X-axis of the WPP represents the measured values or observations ¢
(i.e., failure time) from a life testing experiment or field. The Y-axis of the WPP
represents the cumulative probability of failure F(¢) at each failure data point. With

the use of some non-parametric estimator for F(¢), the plotting positions along the Y-

axis are independent of the values of ¢ along the X-axis and can be treated as known
constants. Therefore, there is no outlying in the Y-axis direction. In other words, there
should be no Y-outliers and X& Y-outliers. Such condition, according to Ryan, (1997),

is called fixed regressor case.
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This special condition for Weibull samples violates the use of some RR methods
that are only robust to the Y-outliers, such as LAV and M-estimation with unbounded
influence function. However, LMS, LTS, M-estimation with bounded influence
functions (or GM-estimation) and MM-estimation are robust to X-outliers so that they
are the potential candidates for examination. As a preliminary study, this chapter

presents the study of M-estimation methods with different bounded p functions. The

theoretical background of this type of method is presented in the next section.

In the following, for simplicity, the M-estimators refer to the M-estimators with

bounded influence functions.

7.3 Robust M-estimators of the Weibull Parameters

7.3.1 Estimating Equation

The M-estimation of Weibull parameters belongs to the simple linear regression

context. Let’s consider a simple linear regression model y, = 4+ Bx, +e, ; for

simplicity, the matrix form is used here, i.e., y, =x,6+e,, where X, = (1 xi) and

A
0= (Bj . As is known, the objective function of the LS estimators is given by

min Y (y, —x,0)’ =min ) ¢’ (7-1)
i=l i=1

The idea of M-estimation is simply to replace the squared residuals e} by

another function of the residuals, thus the objective function of an M-estimator is
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min Y’ p(y, —x/8) = min Y. p(e,) (7-2)
i=1 i=1

where p is typically a symmetric, positive-definite function with a unique minimum
at zero. The maximum likelihood estimator is a special case when p(e) =—In f(e)

(or p(e) =—-log f(e)) and hence the name “M-estimation” is used.

To solve Equation (7-2), the normal way is to differentiate the sum of p with

respect to the two regression coefficients and set the results to zero. This gives

Zn:l//(yi —-x;0)x, =0or Zn:‘//(ei)xi =0 (7-3)

i=l i=1
where y is the first derivative of p, i.e., w =dp/de . v is called the influence

function and it measures the influence of a data point on the value of the parameter

estimate. Besides being a bounded function, i should satisfy that the robust estimator

is unique. To meet this, the residuals need to be standardized by a robust estimate of

their scale, denoted by &, . Thus the estimating equation becomes

Y (e /5%, =0 (7-4)

where the median absolute deviation (MAD) is often used for calculating 6, and the

formulais 6, =1.4826x MAD =1.4826x median(|él. —median(e, )| )

Define a weight function as w(e) =y(e)/ e, thus Equation (7-4) becomes

Zn:w(el./é'e)~ei x; =0 (7-5)
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Different functions for p(e) and w(e) (or w(e)) have been proposed. Table 7-2

lists some of them. The Huber’s (Huber, 1973) and Tukey’s biweight (also known as

bisquare) (Beaton & Tukey, 1974) functions are two common choices.

Table 7-2: Typical p functions and weight functions used in the M-estimation method.

p(e) w(e) g
J‘*T forle| <k 1 o<k
Huber =4 w=<Kk 70
(1, k) = forl=k
Ke-%) forkl>k B H
Ly 2 -
-’_..-{:I |: .-*gw.li|i] ¥ r a2
(—i1- 1_:7: po forld=k | _|'.’3.'|_ <
Bisquare | p=¢ 5| L V1| =] }} forkl<x 4685
;% for lg|> & |0 forlg =k
L _'\.I . | sinfe/ k) <o
Andrews ,o=<j{ o ] forfl <k wel ap rHETE 1339
| 2k ﬁ:lrlglb'r-k |0 fﬂr|g|:>-'r;c
Cauch K rogl1-(€) w : 238
auchy p=—-"-log|l=- — | i — 2385
: 2 x| 1+(e/ k)
Z for <k
R 1 for g < &
7! =1 T < =
""-._MH 7) for ks <k forksle <k | k=17
P - =
SR R N IO
Ampe s i L X I I K'f P EEEK =83
ol -l for K £|q< K - -y
[0 for |d = &"
|k + & -R) forld = &
. 1] PPN
I | !
Welsch po=— l—axp:—'E: 1 we=exp —| = | | 2985
2 | j.;J. jll | L) JI

The estimating equation, Equation (7-4) or Equation (7-5), can be solved by the
iteratively reweighted least squares method (see, e.g., Holland & Welsch, 1977). The

procedure of the method is summarized as follows.
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Step 1: Select the initial estimates, for example, using the least squares
estimates.

Step 2: Compute the residuals.

Step 3: Calculate weights and solve the weighted least squares estimates.

Step 4: Recalculate the residuals.

Step 5: Repeat Steps 3 and 4 until the estimates convergence.

Same as OLSE, the robust M-estimation methods enjoy graphical presentation,
i.e., the WPP. The Weibull shape parameter is the slope of the regression line

generated by the robust regression method.

7.3.2 Practical Application with Statistical Software

Since the estimating equation of the M-estimation method has to be solved iteratively
until the convergence is reached, the computation can be highly complicated;
however, this is not a big problem nowadays as several statistical software packages
have functions or dialogs of various robust M-estimation methods. MATLAB 7 is
used in this study and it has a function, robustfit, to generate the M-estimates directly.
The syntax (Statistics Toolbox for Use with MATLAB, User’s Guide Version 5, 2004)

is given by
[b, stats] = robustfit(x, y, wfun, tune) (7-6)

The left side of the equation is the output, where b returns the M-estimates of the
regression coefficients, stats is optional and it includes several statistical measures
such as the standard errors of the coefficient estimates. The right side of the equation

is the input, where for the estimation of Weibull parameters, x=In¢ and
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y :lnl— In(1- F )J should be provided, same as in the OLSE method. wfun is the

weight function; by default the bisquare weight is used but we are free to change it to
‘andrews’, ‘cauchy’, ‘fair’, ‘huber’, ‘logistic’, ‘talwar’ and ‘welsch’. Tune is the
tuning constant related to the weight function and it has a default value for each of

them.

Besides MATLAB, the robustreg procedure in SAS 9 and the rreg command in
STATA 11 can also be used to generate M-estimates for a data set with no difficulty.
SAS 9 provides ten weight functions and the bisquare weight is still the default one.
STATA 11, however, does not offer the selection of the weight functions and use the

bisquare only.

7.3.3 Numerical Examples

Example 1 (A Complete Data Set with An Extremely Early Failure)

In this example, ten fatigue specimens were put on test and all tested to failure. The
failure times in hours are as follows: 150, 50, 250, 240, 135, 200, 240, 150, 200, and
190. This data set is used in Abernethy (2000) but we modified the second
observation to 50 to generate an extremely early failure. Early failures are very
common in life testing and it can be caused by many reasons, for example, the
experiment conditions are unstable at the beginning, or the failure is caused by other

failure modes that are not of concern.

The robust M-estimation method (with the bisquare weight) and the OLSE
method were used to estimate the shape parameter for this data set, and the results are
3.781 and 2.123, respectively. Figure 7-2 is the WPP for the data set, where the

regression lines are generated by the two methods. It can be seen that the first data
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point (which can be considered as an outlier) moves the OLS regression line toward it
while the M-estimation regression line is nearly unaffected by it and fits the other data
points well. The OLSE method results in the highly over-estimated shape parameter

estimate.

Weibull Probability Plot
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Figure 7-2: A numerical example to compare OLSE and robust M-estimation with WPP in the
case of complete data.

Example 2 (A Multiply Censored Data Set)

Censored data often add difficulty to parameter estimation, even if there is no outlier.
This sample, as shown in Table 7-3, was randomly generated from the Weibull

distribution with & =1000 and S =1.5.

Table 7-3: A computer-generated multiply censored example (“F” denotes failure and “C”
denotes censor).

54.6  1077.6 831.4 134.4 172.8  1749.5 189.7  1385.5 820.6 13.2

C C F C C F F C F C
685.7 578.8 596.1 11824 1081 497.7 3754  2008.5 951.5 135.1
F C C C F C C F F C
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The robust M-estimation method (with the bisquare weight) and the OLSE
method were used to estimate the shape parameter for this data set, and the results are
1.307 and 0.927, respectively. Figure 7-3 shows the WPP. As can be seen from the
plot, the first failure data point in this sample is far from the others, and it moves the
OLS regression line toward it. The M-estimation regression line is less affected by
this point and fits the majority of data points well. The OLSE method results in a

under-estimated £ for this sample.

Weibull Probability Plot

+  Orignal Data

0.96

0.90

0.75

0.50

Probability

0.25

Data

Figure 7-3: A numerical example to compare OLSE and robust M-estimation with WPP in the
case of censored data.

7.4 Monte Carlo Study of the Robust M-estimators of the

Shape Parameter

Monte Carlo simulation experiments have been carried out to compare the

performance of the OLSE and the robust M-estimation methods on parameter
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estimation when dealing with small, complete data sets with outliers, and multiply
censored data sets. Different weight functions including bisquare, Andrews, Cauchy
and Welsch, were examined for the robust M-estimation methods. The selection of the
four weight functions comes from their popularity and availability in MATLAB 7.

The MLE method is also included in the comparison due to its wide application.

As shown in Section 7.2, it only makes sense to have X-outliers for Weibull
samples. Given this, four outlier configurations were generated in this experiment
including one left tail X-outlier, one right tail X-outlier, two left tail X-outliers and two
right tail X-outliers. The method to generate samples with these types of outliers is as
follows: Firstly, generate a random, complete Weibull sample following the first two
steps in the procedure described in Section 3.3.1; Secondly, calculate the standard
deviation of this sample; Finally, to generate one left/right tail X-outlier, shift the
first/last failure data point in the original sample four standard deviations (of the
original sample) to the left/right in the X-axis direction, or, to generate two left/right
tail X-outliers, simultaneously shift the first/last two failure data points in the original

sample in such way.

Because multiply censored data often have large scatter and involve influential
points, it is less important to further add X-outliers to the randomly generated
samples. It is expected that, if the robust M-estimation methods perform well when

there is no real outliers, it will surely perform well when there are.

The setting of experiment factors is given in Table 7-4. For each combination of
the simulation factors, for example, o, =1, £, =0.5, n=5 and complete sample
with one left tail X-outlier, 10000 random samples were generated and parameter

estimates were obtained from OLSE, four M-estimation methods, and MLE. The
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results of the shape parameter estimators are the focus of this experiment. The mean,
standard deviation and MSE of the parameter estimates were calculated and analyzed.
The experiment was executed in MATLAB 7. Simulation results are presented in the

following sections for complete data and censored data, respectively.

Table 7-4: Setting of experiment factors. The experiment is to examine robust M-estimators and
compare them with OLSE and MLE.

Factors Values
a, 1
ﬂT 05,1,2,4,10

5,6, ...,10, 15, 18, 20, 25, 30 (for complete data)
10, 20, 30, 50, 80, 100 (for censored data)

n

c 20%, 40%, 60%, 80%

Outlier type  left tail X-outliers and right tail X-outliers

M 10000

Methods M-estimation methods (bisquare, Andrews, Cauchy and Welsch), OLSE, MLE

7.4.1 Simulation Results for Complete Samples with Outliers

General Observations

1) The four M-estimators associated with different weight functions including
bisquare, Andrews, Cauchy and Welsch perform similar.

2) The comparison result for the outlier configuration type one left X-outlier is
similar to that of one right X-outlier, and the result for two left X-outliers is

similar to that of two right X-outliers.

Based on the above two observations, the simulation results are only partially
tabulated, as shown in Table 7-5 and Table 7-6. M-estimator with the bisquare weight
function is selected to represent the performance of the robust M-estimator, and the

results for the outlier configurations of one left X-outlier and two left X-outliers are
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omitted. The omitted results will not affect the following conclusions which can be

observed from the tabulated values.

Simulation Results for Data Sets with One X-outlier (Table 7-5)

1)

2)

3)

4)

M-estimator performs best in view of bias among the three estimators in

most times except when £, =4,10 and n=35,6. MLE performs best when
Pr=4,10 and n=5,6.

Compare to OLSE, M-estimator has smaller bias in almost all combinations
of n and f,. The differences in bias between the two estimators are small
at n=5,6, but become significant as » and £, increase. OLSE is highly
biased at all sample sizes when £, =10, while the bias of the M-estimator is
within 5% when £, =10 and n>8. At all ,, the bias of the M-estimator

1s within 10% when n >10. The differences in MSE between the two

estimators are small when £, =0.5,1,2, but the MSE of the M-estimator is

much smaller when £, =4,10 and n>8.

Compare to MLE, M-estimator is significantly better when £, =0.5,1 and

n <10 in view of both bias and MSE.

The bias of all the estimators is decreasing with the increase of sample size.

However, the bias is inconsistent with £, .
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Table 7-5: Simulation results of IB for complete samples with one right tail X-outlier: the values
of E(IBM) + S(ﬁl,l)and MSE(Bl,l) (in parentheses).

n

Method 5 6 8 10 15 20 30
OLSE 0291 £0314 0403 £0.140 0421 £0.133 0438 £0.120 0453 £0.105  0.462 £0.093  0.470 £ 0.080
(0.142) (0.029) (0.024) (0.018) (0.013) (0.010) (0.007)
B0 Mecstimaior 02890314 04040150 044120182 04560155 0465 £0.127 047040106 0475 +0.086
(bisquare) (0.143) (0.032) (0.036) (0.026) (0.017) (0.012) (0.008)
MLE 0944 0786  1.023+0220  1.020+0.191 1018 £0.172  1.012=0.140  1.012+0.123  1.012 £0.123
(0.815) -(0.049) (0.037) (0.030) (0.020) (0.017) (0.017)
OLSE 0.627 0218  0.652+0203 0.719+0.199  0.775+0.190 0847 =0.179  0.874 £0.166  0.914 £0.148
(0.186) (0.162) (0.119) (0.087) (0.056) (0.043) (0.029)
Bmt M-estimator ~ 0.626 £0.220  0.658 £+0.227  0.859 0421 09100370 0941 £0283  0.932+0227  0.948 £0.179
r (bisquare) (0.188) (0.168) (0.197) (0.145) (0.083) (0.056) (0.035)
MLE 1445+0789 1343 £0.620 122240433  1.172+£0362  1.112£0257  1.073+0202  1.050 £0.156
(0.820) (0.502) (0.237) (0.160) (0.079) (0.046) (0.027)
OLSE 1436 £0.155 093440293 10800283  1217+0283  1436+0284  1.557+0277  1.704 +0.264
(0.343) (1.222) (0.926) (0.694) (0.399) (0.273) (0.158)
B2 M-estimator 1436 £0.156  0.959 +0.342  1.674 £0.875  1.927+0.735  1.914+0.541  1.905+0449  1.913 £0.356
5 (bisquare) (0.343) (1.202) (0.873) (0.545) (0.299) (0.211) (0.135)
MLE 2430 £0.771  2.678 +1.184 2436 +0831  2352+0.717 22230513  2.155+0411  2.099 +0.315
(0.778) (1.861) (0.880) (0.638) (0.313) (0.193) (0.109)
OLSE 3270 £0.112  1.145+0415 1373 £0408 1593 £0.424  2.073 £0.456  2.403 £0.465  2.875 £ 0.460
(0.546) (8.326) (7.068) (5.973) (3.921) (2.767) (1.476)
Bt M-estimator 3270 £0.113 1162 +0.443 3434 £2.033  3.861 1367 3.813+1.026 3.813+0.882  3.836 +0.700
g (bisquare) (0.546) (8.253) (4.451) (1.887) (1.087) (0.812) (0.518)
MLE 4449 £0.769 5323 £2373 48961767  4.647+1399  4388+0992 43020823 4207 £0.643
(0.794) (7.383) (3.923) (2.376) (1.134) (0.769) (0.457)
OLSE 1562 £0.653 1521 £0.530  1.647 £0.546  1.855£0.604  2.460 £0.754  3.064 £0.879 4224 +1.023
(71.620) (72.171) (70.074) (66.707) (57.421) (48.875) (34.414)
ptp  Meostimalor 156550656 15270538 987344339 982043460 05542615 95382232 9.543%1726
(bisquare) (71.586) (72.079) (18.844) (12.065) (7.038) (5.196) (3.187)
MLE 14337 £7.327 13286 £6.058 12225 £4.453 11704 £3.487 11.008 £2.536 10.775 £2.094  10.477 + 1.551
(72.496) (47.501) (24.780) (15.060) (7.448) (4.987) (2.634)

Simulation Results for Data Sets with Two X-outliers (Table 7-6)

1) M-estimator performs best among the three estimators when £, =0.5 and

n>15 in view of both bias and MSE.

2) M-estimator outperforms the OLSE in view of both bias and MSE in almost

all combinations of n and f,, even when n =35, 6. The differences between

the two estimators increase as [, increases.

3) Both OLSE and M-estimator perform badly when £, =10 and » <20, and

their bias and MSE are much larger than those of the MLE. As the sample

size increases, say at n = 30, however, the bias and MSE of the M-estimator
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4)

S)

is comparable to those of the ML estimator, but those of the OLSE is still

unacceptable.

MLE is better than the two linear regression methods in most cases,

especially when sample size is small, say n < 20.

The bias of all three estimators decreases as the sample size increase.

However, the bias is inconsistent with ;.

Table 7-6: Simulation results of ,[;’ for complete samples with two right tail X-outliers: the values

of E(ﬁ]‘l)is(ﬁ]‘l)and MSE(,BAU) (in parentheses).

n

Method 10 15 18 20 25 30
OLSE 0.374 £ 0091  0.408 £0.084 0.421 +0.081 0428 £0.081 0.441 0075 0.449 + 0.071
(0.024) (0.016) 0.013) (0.012) (0.009) (0.008)
pmg5 Meestimator  0377£0106 04250115 044520117  0452£0.114 0460 0.100 0465 +0.09
T (bisquare) (0.026) (0.019) 0.017) (0.015) (0.012) (0.009)
MLE 0.584 +0.179  1.023 £0.220  1.020+0.191  1.018 £0.172  1.012+0.140  1.012 +0.123
(0.039) (0.049) (0.037) (0.030 (0.020) (0.017)
OLSE 0.583 +0.132  0.686 +0.135  0.729 +0.131 0749 £0.131  0.791 £0.129  0.826 + 0.123
(0.191) (0.117) (0.091) (0.080) (0.060) (0.045)
po1  Mestimator 06040171 08400279 09080266 0923+0248 09320217  0.940 =0.185
T (bisquare) (0.187) (0.103) 0.079) (0.067) (0.052) (0.038)
MLE 1.167 0350  1.106 +0.257  1.093 £0.227 1077 £0.207  1.059 +0.181  1.047 + 0.158
(0.150) (0.077) (0.060) (0.049) (0.036) (0.027)
OLSE 0.782 £ 0201  0.987 £0.212  1.085+0.221 114240229 12670227 1.362 +0.216
(1.525) (1.072) (0.886) (0.788) (0.588) (0.454)
pa  Meestimator  0816£0265 1.640£0.591 1851+0512 1888£0484 19110414 19130377
T (bisquare) (1.471) (0.479) (0.285) (0.247) (0.180) (0.150)
MLE 2.329 40694 2215 +0.511 2177 £+0.447 2161 £0421  2.126 £ 0359  2.100 + 0.324
(0.590) (0.308) 0.231) (0.203) (0.145) (0.115)
OLSE 0.910 +0282  1.179 £0.322 1329 +0351 1423 0363 1.673 £0388  1.868 + 0.402
9.627) (8.060) (7.256) 6.771) (5.565) (4.708)
pog  Mestimator  0.905£0307 24311340 33541218 36431000 38200815 3.82420731
T (bisquare) 9.673) (4.259) (1.902) (1.128) (0.697) (0.565)
MLE 4.663 + 1418  4.427+1.014 4356 +0.891 43020803 4.250 £ 0.726  4.192 + 0.641
(2.450) (1.211) (0.922) (0.736) (0.590) (0.448)
OLSE 1.295 0275 1408 +0.337  1.525 £0.397 1600 £0430 1.842 + 0523  2.069 + 0.606
(75.856) (73.934) (71.978) (70.752) (66.823) (63.267)
poto Mestimator  1.286+0273 1651 %1275 3504%3215 52513756 8500 £2893 9381 1972
T (bisquare) (76.010) (71.338) (52.540) (36.658) (10.619) (4.271)
MLE 11.675 £3.506 11.063 £2.521 10.821 £2.203 10.755 £2.048 10.601 + 1.780 10.490 + 1.583
(15.096) (7.487) (5.528) (4.767) (3.530) (2.745)

7.4.2 Simulation Results for Censored Data

The simulation results for censored data are presented in Table 7-7. The following

conclusions can be observed.
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1) In general, M-estimator performs better than OLSE in view of both bias and

MSE.

2) In view of both bias and MSE, M-estimator and OLSE perform better than
MLE in most conditions.

3) MLE performs slightly better than the M-estimator when /S, =2 and
n>30, and significantly better when /S, =10. M-estimator and OLSE
perform badly when S, =10. The increase of sample size does not improve
their performance.

4) The estimator of MLE deteriorates as the censoring level increases, but the

estimators of OLSE and M-estimator are inconsistent with the censoring

level.

Table 7-7: Simulation results of ﬁ for multiply censored samples, generated by robust M-
estimation, OLSE and MSE: the values of F( ,571_1) +5( ﬁl 1)and MSE( /}1 D (in parentheses).

n

¢ Method 20 30 50 80 100
OLSE 0.908 £0.227 0927 =0.192 0.948 £ 0.154 0963 £0.125 0.973 £0.113
(0.060) (0.042) (0.026) 0.017) (0.014)
sgy,  M-estimator 0.943 £0.238 0.966 £0.200 0.991 +0.158 1.008 £0.130 1.021 +0.118
(bisquare) (0.049) (0.038) (0.010) (0.009) (0.004)
MLE 1.123 £0.234 1.094 £0.183 1.069 = 0.134 1.055+0.102 1.052 +0.091
(0.070) (0.042) (0.023) 0.013) (0.011)
OLS 0.930 £0.269 0.945 +0.216 0.970 £ 0.176 0.988 £0.143 0.994 +0.132
(0.078) (0.050) (0.032) 0.021) (0.017)
4ov,  M-estimator 0.958 £0.288 0.971£0.229 1001 +0.187 1.022+0.153 1.029 +0.141
(bisquare) (0.066) (0.037) 0.016) (0.003) (0.002)
MLE 1.195 £0.300 1.148 £0.217 1.121 £0.159 1.103 £0.120 1.096 +0.108
(0.128) (0.069) (0.040) (0.025) (0.021)
OLS 0.971 £0.339 0.976 +0.268 0.999 + 0216 1.014+0.177 1.023 +0.161
(0.116) (0.072) (0.046) 0.031) (0.026)
gov,  M-estimator 0.988 £0.361 0.995+0.283 1018 +0226 1.034+0.187 1.044 +0.169
(bisquare) (0.111) (0.062) (0.035) 0.018) (0.013)
MLE 1.298 +0.408 1.233 £0.291 1.191 0205 1.166 +0.156 1.158 +0.138
(0.255) (0.139) (0.079) (0.052) (0.044)
OLS L111 £0.621 1.057 +0.410 1.053 + 0312 1.053 +0.247 1.059 +0.226
(0.398) (0.171) (0.100) (0.064) (0.054)
gov,  M-estimator 1111 £0.621 1.057 £0.415 1,066 +0326 10650257 1.071 £0.234
(bisquare) (0.398) (0.172) (0.092) (0.056) (0.046)
MLE 1.524 £0.779 1395 +0.497 1313 = 0341 1262 +0241 1251 +0.211
(0.882) (0.403) (0215) 0.127) (0.107)
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7.5 Summary

Robust regression methods provide another alternative to OLS to fit the regression
line on WPP. Common robust regression methods can be easily applied with many

statistical software packages.

The results of this study indicated that the robust M-estimator of the Weibull
shape parameter almost always outperforms the OLS estimator for small, complete
samples with one X-outlier or two X-outliers in the right or left tail. The differences in
bias between the M-estimator and OLSE become significant as n and f, increase.
For samples with one X-outlier, M-estimator performs best in most cases except at the

combinations of very large £, and very small n. For samples with two X-outliers, the
M-estimator performs best when £, <1, while the ML estimator is the best in most
cases, especially when the sample size is very small and /£, is very large. Finally, for

multiply censored samples, M-estimator also performs better than OLSE in view of
both bias and MSE, and they perform better than MLE in most cases. In general, M-

estimator outperforms OLSE and thus should be recommended for use.

The robust regression methods are highly dependent on the outlier
configurations, and may not provide better estimates than OLSE even when outliers
exist in the samples. We recommend that the OLSE and RRE methods should be used

always with WPP to judge their performance.
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Chapter 8
A Procedure for Implementation of Linear Regression

Estimation Methods and Case Studies

This chapter presents a procedure which serves the purpose to guide the practitioners
on the selection of linear regression estimation methods, among those discussed in
this thesis, for different types of data. Case studies are provided to further illustrate

the application process.

8.1 Introduction

As mentioned in the beginning of this thesis, the analysis of life data is complex
because different types of data require different approaches of processing. This is
particularly true for parameter estimation. Accurate parameter estimates contribute to
an appropriate model for life data, and the parameter estimation results can directly
affect other aspects of life data analysis and hence have great impacts on reliability-
related activities and even business decisions. Therefore, the selection of parameter

estimation methods is very important in life data analysis.

In the previous chapters, various linear regression estimation methods for the
Weibull distribution have been presented. The step-by-step procedures were provided
for these methods so that there is no difficulty to apply them if the practitioners are
told which method to use. In this chapter, some suggestions on the selection of the
estimation methods, among those discussed in this thesis, under different data

conditions, are presented. Three case studies are also presented for illustration.
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Different from the numerical examples in the previous chapters, which are mostly

computer generated, here the cases selected are more like from the real conditions.

8.2 Implementation Procedure on the Use of Linear

Regression Estimation Methods

A flowchart is proposed to illustrate the process for selecting an appropriate linear
regression estimation method, as shown in Figure 8-1. The foundation of this chart is
the results, both analytical and experimental, presented in the previous chapters. It
mainly serves the purpose to provide accurate shape parameter estimates because the
shape parameter is usually more important than the scale parameter. The process is

described as follows.

The process begins when one have a data set consisting of several observations,
1.e., failure times and censoring times. First, draw a WPP for this data set to check
whether the data are Weibull distributed. Note that WPP is a simple model validation
tool and may not be accurate. If the majority of data points do not nicely form a
straight line, before reject the Weibull distribution assumption, it is necessary to use
specially designed goodness-of-fit tests, e.g., Chi-Square goodness-of-fit, to check

again.

If there is no doubt on the Weibull distribution assumption, then use the WPP to
check whether there are outliers or influential points in the sample. The judgment,
however, is subjective. If we suspect there are one or more outliers, the RRE methods
should be used for parameter estimation. It is not recommended to remove the outliers
or influential points from analysis because data are precious and every data point

conveys information.
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If there are no outliers or influential points in the sample, check whether this is a
complete sample or a multiply censored sample. Note that the sample can also be a
singly Type I or Type II censored sample, and it is suggested that the same procedure
for multiply censored data be applied to singly censored data, because singly censored
data can be treated as a special case of multiply censored data. For multiply censored
samples, the selection of estimation methods mainly depends on the censoring level of
the sample. It is suggested that LS Y on X with the HJ estimator, i.e., the OLSE
method, be used for a highly censored sample (¢ > 50%), and LS X on Y with the J]M
estimator for a lowly censored sample (¢ <50%). This is based on the simulation

results presented in Section 4.4.3.

On the other hand, if the sample is a complete sample, the selection of estimation
methods is based on the sample size. If it is a small sample with » <10, the OLSE
method is recommended; if » >10, LS Y on X with the Ross estimator or LS X on Y
with the Bernard estimator is recommended. For small samples with n <20, the

WLSE methods can also be used as a supplementary.

It is important to point out that the flowchart is mainly based on the examination
results on the bias, standard deviation and MSE of the linear regression estimators.
Therefore, it is correct in the long run but may not be correct for a single Weibull
sample. In fact, no estimation method can always provide accurate point estimates for
any sample. Facing this problem, it is important to improve data collection methods
including data recording, instrumentation calibrations, etc., and try to reduce the

scatter of data, eliminate outliers or identify the causes for them.
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Figure 8-1: Flowchart on the selection of linear regression estimation methods.
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8.3 Case Studies

8.3.1 Case Study 1: Life of Compressor (Complete Data)

This case study examines the life of compressors. The source of data is in the work of

Moss (2005).

Scenario: Four large, identical, horizontal reciprocating compressors were
monitored over a period for piston/liner failures. Since both piston and liner were
replaced after failure, the lifetimes observed were treated as a complete sample. For

each compressor, the failure times were recorded for five times as shown in Table 8-1.

Table 8-1: Original data of case study 1.
Compressor st failure 2nd failure 3rd failure 4th failure 5Sth failure

A 3600 3803 630 4001 7010
B 4200 4710 4600 1902 3808
C 2408 3018 1650 4926 2415
D 3003 5405 3609 5909 2806

Analysis: All the failure records are merged to form a complete sample of size
20. As this is a complete sample, the selection of the estimation methods is based on
the sample size. According to the flowchart in Figure 8-1, LS X on Y with the Bernard
estimator or LS Y on X with the Ross estimator can be used to estimate the
parameters. Table 8-2 tabulates the calculation spreadsheet and below the table the
calculations of the estimates are presented. OLSE and MLE were also used for this
sample and the comparison of estimation results are shown in Table 8-3. Figure 8-2

shows the WPP with the straight line fit by LS X on Y (Bernard).

For this sample, LS Y on X (Ross) and LS X on Y (Bernard) provide similar

parameter estimates for the shape parameter, and the WPP shows a good fit.
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Table 8-2: Parameter estimation of case 1: the calculation spreadsheet.

I Yy Fliy semara  Fliy,ross X Vi, Bernard Vi Ross xiz yf Bernard X;i * Vi gernard  Xi " Vi, Ross
1 630 0.03 0.03 6.45 -3.35 -3.57 41.55 11.25 -21.62 -23.04
2 1650 0.08 0.08 7.41 -2.44 -2.52 54.89 5.96 -18.09 -18.70
3 1902 0.13 0.13 7.55 -1.95 -2.00 57.01 3.81 -14.74 -15.11
4 2408 0.18 0.18 7.79 -1.61 -1.64 60.63 2.59 -12.53 -12.80
5 2415 0.23 023 7.79 -1.34 -1.37 60.68 1.80 -10.44 -10.64
6 2806 0.28 027 7.94 -1.12 -1.14 63.04 1.24 -8.86 -9.02
7 3003 0.33 032 8.01 -0.92 -0.94 64.12 0.85 -7.37 -7.51
8 3018 0.38 037 8.01 -0.75 -0.76 64.20 0.56 -5.98 -6.09
9 3600 0.43 042 8.19 -0.59 -0.60 67.05 0.34 -4.81 4.90
10 3609 0.48 047 8.19 -0.44 -0.45 67.10 0.19 -3.59 -3.67
11 3803 0.52 0.52 8.24 -0.30 -0.31 67.96 0.09 -2.44 -2.51
12 3808 0.57 0.57 8.24 -0.16 -0.17 67.98 0.03 -1.32 -1.38
13 4001 0.62 0.62 8.29 -0.03 -0.03 68.80 0.00 -0.22 -0.27
14 4200 0.67 0.67 8.34 0.11 0.10 69.60 0.01 0.90 0.85
15 4600 0.72 0.72 8.43 0.24 0.24 71.13 0.06 2.05 2.01
16 4710 0.77 0.77 8.46 0.38 0.38 71.53 0.15 3.25 3.22
17 4926 0.82 0.82 8.50 0.53 0.53 72.29 0.29 4.55 452
18 5405 0.87 0.87 8.60 0.70 0.70 73.88 0.50 6.05 6.04
19 5909 0.92 092 8.68 0.91 091 75.42 0.83 7.90 7.90
20 7010 0.97 097 8.86 1.22 122 78.41 1.48 10.76 10.78
sum 161.97 -10.89 -1141 1317.24 32.02 -76.55 -80.32

Calculation of Estimates by LS Y on X (Ross)

1Y XV koss D% D Vikos _20x(=76.55-161.97x(-11.41) _

,é: i=1 i=1 i:l2 ; 221
L (e 20x1317.24—(161.97)
x-S
i=1 i=1
yi,Ross _Bzxi _ _
G oxp T TR L TILAL=221X16L9TY

pn 20x2.21

Calculation of Estimates by LS X on Y (Bernard)

2

n n
2
nz yi,Bernard - z yi,Bernard
'B _ i=1 i=1
- n
nz xiyi,Bernard -
i-1

20x32.02-(-10.89) )
v S 20%(~76.55)—161.97 x (—10.89
zxizyi,Bernard ( ) ( )

i=1 i=1
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Table 8-3: Comparison results of different estimation methods (case study 1).
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Figure 8-2: WPP of case 1. The straight line is fit by the LS X on Y (Bernard) method.
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8.3.2 Case Study 2: Life of Capacitor (Multiply Censored Data with a

Low Censoring Level)

The scenario of this example is described in Tobias & Trindade (1995) without
providing observations. The experiment was slightly modified and a data set which is

Weibull distributed with «, =1000 and S, =1 was randomly generated.

Scenario: An experiment was carried out to test capacitors on fixtures mounted
in ovens. Assume the test started with 20 capacitors in four ovens, each containing 5
units. The units were subject to a fixed high voltage and high temperature. All units
are expected to be tested to failure, however, at 250hr, the experimenter found one of
the ovens malfunctions, causing all further data in this oven invalid. The other ovens

and units continued till all of them failed.

Analysis: The experiment output is a multiply censored data set with a censoring
level ¢=25% (5 censors in 20 observations). Since the censoring level is low,
according to Figure 8-1, LS Y on X with the JM estimator or LS X on Y with the HJ
estimator is preferred to estimate the parameters. Table 8-4 tabulates the the
calculation spreadsheet and below the table the calculations of the estimates are
presented. Table 8-5 shows the estimation results from five methods including LS Y
on X with the HJ estimator and the JM estimator, LS X on Y with the HJ estimator and
the JM estimator, and MLE. As can be seen, LS X on Y with the JM estimator
provides very accurate estimate for the shape parameter for this sample. Figure 8-3
shows the WPP with the straight line fit by this method. MLE tends to overestimate

£ while HJ tends to underestimate . This can be dangerous because f >1, =1

and S <1 represent different failure modes.
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Table 8-4: Parameter estimation of case 2: the calculation spreadsheet.

Failure/
i Censor toy My om Foom Fomw X Vi Vi X yiw XiYim  XiViw
Index
1 F 62.29 1.00 0.03 005 413 -335 -3.02 17.07 9.12 -13.86 -12.48
2 F 75.07 2.00 0.08 0.10 432 -244 230 18.65 530 -10.54 -9.94
3 F 10499 3.00 0.13 0.14 465 -195 -1.87 21.66 3.50 -9.08 -8.70
4 F 18473 4.00 0.18 019 52 -161 -155 2724 242 -840 -8.11
5 F 18549 5.00 0.23 024 52 -134 -1.30 27.28 1.70 -7.00 -6.80
6 F  209.76 6.00 0.28 029 535 -1.12 -1.09 28.58 1.19 -5.96 -5.82
7 F 21922 7.00 0.33 033 539 -092 -090 29.05 0.81 -4.96 -4.87
8 F 22513 8.00 0.38 038 542 -075 -0.73 2934 0.54 -4.04 -3.98
9 C  250.00
10 C  250.00
11 C  250.00
12 C  250.00
13 C  250.00
14 F 99995 9.63 0.46 046  6.91 -049  -049 4772 024 -3.40 -3.38
15 F 112622 11.25 0.54 054 7.03 -026 -0.26 49.37 0.07 -1.84 -1.86
16 F 1398.03 12.88 0.62 061 724 -004 -0.05 5246 0.00 -0.31 -0.37
17 F 1528.17 14.50 0.70 069 733 0.17 0.16 53.76 0.03 1.28 1.17
18 F 1708.08 16.13 0.78 077 7.4 0.40 0.38 5540 0.14 2.99 2.82
19 F 1741.19 17.75 0.86 085  7.46 0.66 0.62 55.69 0.39 4.92 4.65
20 F 1897.15 19.38 0.94 092 7.5 1.01 0.94 56.97 0.88 7.59 7.09
sum 90.66 -12.04 -11.48 570.23 2632 -52.63 -50.59

Calculation of Estimates by LS' Y on X (JM)

5 r;x’y’?’M _;x’;y’w _15%(=52.63)-90.66x (-12.04) _ oo
(&Y 15x570.23-90.66 '
eri — in
i—1 i=1
Yim _Iézxi _ _
Goexpl - T | (_ 12.04 O.90x90.66)=1028.50
pr 15%x0.90
Calculation of Estimates by LS X on Y (HJ)
r r 2
2
r . — X
e ,Z:l:y”’” ,Z:l:y”’” _ 15x26.32—(—11.48)
- L T 15%(=50.59)—90.66x (~11.48)
rzxiyi,HJ _zxizyi,HJ ( ) ( )
i—1 i=1 i=1
/ézxi _zyi,HJ
G=exp o :exp(o.93x9o.66—(—11.48)j=960_00
Br 15%0.93
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Table 8-5: Comparison results of different estimation methods (case study 2).

LS Y on X (HJ) LSXonY (H) LSYonX (JM) LSXonY (JM) MLE
a 1044.56 960.07 1028.29 93297 915.78
ﬁ 0.84 0.93 0.90 1.01 1.07
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Figure 8-3: WPP of case 2. The straight line is fit by LS X on Y with the JM estimator.

8.3.3 Case Study 3: Life of Radio (Type II Censored Data with a High

Censoring Level)

The source of this case study comes from the work of Lawson et al. (1997).

Scenario: 20 radios were placed in an environment test chamber and tested until
8 radios failed. Cycles-to-failure data were collected. Based on similar product

history, the distribution is assumed to be Weibull.

Analysis: This data set is a singly Type II censored data set. The censoring level

is 60%, which is a high censoring level. For censored data of high censoring levels,
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the flowchart in Figure 8-1 suggests the method of LS Y on X (HJ), i.e., OLSE, be
used. Table 8-6 tabulates the calculation spreadsheet and below the table the
calculations of the estimates are presented. The calculation for the estimates of LS Y

on X (JM) is also presented. Figure 8-4 shows the WPP for both methods.

The estimates of the two methods are close. Since we do not know the true
parameter values, it is hard to judge which one is better. On the other hand, from the
WPP, it can be observed that the first data point is suspicious to be an outlier,

indicating the robust regression estimation methods should be used.

Applying robust M-estimation (bisquare) to this data set, the estimation results
are: @ =1284.21, ﬁ =1.33. Figure 8-5 shows the WPP with straight lines fit by LS ¥

on X (HJ) or OLSE and the robust M-estimation (bisquare). It can be seen from the

figure that the robust regression line is less affected by the first data point.

Table 8-6: Parameter estimation of case 3: the calculation spreadsheet.

Loy Foyom Foow X; Yiam Vi xiz in,JM yiz,HJ XYiom XiYim

1 260 0.03 0.05 5.56 -3.35 -3.02 3092 11.25 9.12 -18.65 -16.79

2 265 0.08 0.10 5.58 -244 -2.30 31.13 5.96 530 -13.62 -12.84

3 300 0.13 0.14 5.70 -1.95 -1.87 32.53 3.81 3.50 -11.13 -10.67

4 305 0.18 0.19 5.72 -1.61 -1.55 3272 2.59 242 9.20 -8.89

5 425 0.23 0.24 6.05 -1.34 -1.30 36.63 1.80 1.70 -8.11 -7.88

6 545 0.28 0.29 6.30 -1.12 -1.09 39.70 1.24 1.19 -7.03 -6.86

7 620 0.33 0.33 643 -0.92 -0.90 41.34 0.85 081 -5.92 -5.80

8 870 0.38 0.38 6.77 -0.75 -0.73 4581 0.56 0.54 -5.05 -4.97
sum 48.12 -13.48 -12.78  290.79 28.06 24.57 -78.73 -74.72

Calculation of Estimates by LS Y on X (HJ)

B r;x"y’*”’ _;xi;yf’HJ | 8x(—74.72) - 48.12x(~12.78)
8x290.79 — (48.12)?

] 2
14 r
2
rz X; —[E xij
i=1 i=l

1.60
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Figure 8-4: WPP of case 3. The straight lines are fit by LS ¥ on X (JM) and LS Y on X (HJ).
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Figure 8-5: WPP of case 3. The straight lines are fit by OLSE and M-estimation (bisquare).
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis explored a group of linear regression estimation methods for the Weibull
distribution. LSE is the basic method in this group which is traditionally considered
simple but inaccurate. The LSE method in the general sense has the flexibility on the
selection of failure probability estimators and the regression direction. We defined the
OLSE method which uses the most widely used failure probability estimators (i.e., the
Bernard estimator for complete data and the HJ estimator for censored data), and the
regression direction of ¥ on X. Due to the simplicity, the OLSE method is widely used
by Weibull practitioners. On contrary, it has been less discussed by researchers

compared to other analytical estimation methods such as MLE.

The statistical properties of the OLS estimators of the Weibull scale and shape
parameters were carefully studied via both theoretical analyses and Monte Carlo
simulation experiments. In the theoretical analyses, firstly, we showed that the
parameter estimators of OLSE are not BLUE given that the variance of errors cannot
be constant and the covariance of errors is correlated. Secondly, assuming the Y-axis
plotting positions are pre-determined and can be treated as fixed values, we deduced

the analytical expressions of the bias of the OLS estimators as a function of the Y-axis
plotting positions. Thirdly, we proved that 3/ and BIn(d/e«) , whose distributions
are independent of & and £, of the LS estimators are two pivotal functions. This

235



Chapter 9 Conclusions and Future Work

applies to both complete data and censored data. The first pivotal function ﬁ/ pis

the theoretical foundation of the proposed bias correction methods (Chapter 5). In
addition, we pointed out that the two pivotal functions have great impact on the
Monte Carlo experiments described throughout this thesis. First of all, the functions
can be used to check the reliability of the simulation results. Second, the functions
provide theoretical support for simplifying the setting of the true parameter values of

a, and [, in the simulation experiment and hence save much effort in the

simulation. Since it is difficult to identify the distributions of the estimators of OLSE
or other linear regression estimation methods via analytical approaches, the Monte
Carlo method was used frequently to study the properties of the estimators. The
simulation results for the OLSE of the shape and scale parameters for complete data
and multiply censored data at different sample sizes and censoring levels were
tabulated. We found that for complete data, the OLSE of the shape parameter is
inconsistent with sample size n and the bias reaches smallest at n =6—7 . During
10 < n <30, the bias keeps around 4%. For multiply censored data, the bias of the
OLS shape parameter estimator is inconsistent with the censoring level ¢ and reaches
smallest at different combinations of » and ¢, e.g., ¢=30% and n=150-200,
c=40% and n=100-150, ¢=50% and n=80-100, ¢=60% and n=50-60,
and ¢ =70% and n=20-30. For estimating « , the results are unsatisfactory when

Br <1, but the bias generally decreases as [, increases. We also found that the

magnitude of the standard deviation of both estimators of OLSE is much larger than
the magnitude of the bias in most cases, indicating that improving the efficiency of

OLSE is important.
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Some arguments were made on the procedure of the OLSE method. A frequently
discussed issue toward LSE among Weibull researchers is the estimation of failure
probability, also known as the determination of Y-axis plotting positions. We
summarized the existing estimators of F for complete data and censored data,
respectively, and divided them into different categories. Two tables were provided for
easy references. These estimators were compared in terms of several aspects including
the theoretical foundation and the application simplicity. Then, the properties of the
LS estimators with different estimators of F' used in the regression, were examined
via the Monte Carlo simulation experiment. We focused on those relatively new
estimators of F proposed in the last decade including the Ross estimator (Ross,
1994), the Drap-Kos estimator (Drapella & Kosznik, 1999), the age sensitive
estimator (Hastings and Bartlett, 1997) and the RRR estimator (Wang, 2001, 2004).
The simulation results showed that for complete data, the Bernard estimator
outperforms the Ross estimator or the Drap-Kos estimator for estimating the shape
parameter only when 7 <10 in view of the bias. The Ross estimator or the Drap-Kos
estimator can generate nearly unbiased ,B when n >10. However, we also found that
the Ross estimator or the Drap-Kos estimator cannot improve the estimation
efficiency. The simulation results for censored data showed that J]M, ASM and RRR
are good for samples with low censoring levels, say ¢ < 50%, and the three methods
perform similarly. For application simplicity, JM should be used. The simplest

method HJ was found to perform best for samples with high censoring levels, say

c250%.

Another argument of the OLSE procedure is the determination of the
independent and dependent variables when conducting least squares regression. OLSE

treats X =1InT as independent variable and Y = ln[— In(1-F )] as dependent variable
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which is consistent with WPP where the X-axis is ¢ and the Y-axis is F'. However,
we noticed that in the early literature (see, e.g. Weibull, 1967; White, 1969 and Mann
et al., 1974) such a setting is reversed. The two methods are named LS Y on X and LS
X on Y. We compared them in terms of model statistics and parameter estimation. As
is known, a model comparison and a parameter estimation comparison are two
different things for Weibull parameter estimation methods. We proved that the two

regression models of LS ¥ on X and LS X on Y have same R’ and the ratio of their

MS equals to S*. Thus LS X on Y has a smaller MS,__ when #>1 and LS Y on

Error error

X has a smaller MS,,  when £ <1. This provides a rule for model selection between

error

the two when we have information about the value of . For parameter estimation,
our simulation results showed that for complete samples, LS ¥ on X is recommended
for estimating £ for very small samples, say » <10, and LS X on Y is recommended
for estimating £ for medium to large samples, say n > 30. For censored samples, LS
Y on X is recommended for estimating f for samples with high censoring levels
(¢2>50%), and LS X on Y is recommended for estimating £ for samples with low

censoring levels (¢ <50%). For estimating o, LS X on Y is recommended for both

complete and censored samples.

In view of the bias of the OLSE of the shape parameter, we proposed several
simple bias correcting formulas which can be used in the end of the OLSE procedure.
The bias correcting formulas were determined based on the modeling of the unbiasing
factors. In the case of complete data, the modified Ross’ method and the modified
Hirose’s method were proposed. The simulation results showed that the proposed
methods reduce bias to less than 1% and typically less than 0.5%. The bias correction

for the OLSE of the shape parameter was also examined for multiply censored data.
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We found that due to the inconsistency of the OLS shape parameter estimator, it is
difficult to propose a general model of the bias as a function of the sample size and
censoring level. However, when the censoring level is low (¢ < 50%) and the sample
size is within 100, the bias as a function of the sample size and censoring level shows
good consistency. Therefore, a simple bias correcting formula was proposed that can
be applied to multiply censored samples with ¢ <40% and »<100. The bias is

greatly reduced with the proposed formula.

Besides LSE, the family of linear regression estimation methods also includes
WLSE and RRE methods. WLSE methods have been studied by some researchers and
a few weight formulas have been proposed. We proposed a novel formula for
calculating weights applied to small, complete samples. This formula gives the
approximated values of the best weights. Theoretically, the proposed formula is more
accurate than the existing ones because it is based on the analytical deduction of the
exact values of the variances of predictor variable values. The proposed WLSE
method was compared with selected WLSE methods in the literature and OLSE for
estimating the Weibull parameters via Monte Carlo simulations. The results showed
that it is slightly better than the others and significantly better than OLSE in terms of
the standard deviation and MSE of the estimators. Given that the shape parameter
estimator of the proposed WLSE method still has a large bias, a simple bias correcting
formula was proposed which can be used as an add-on. We also discussed WLSE for
large samples and censored samples. The proposed formula for weights cannot be
used for large samples and approximation methods have to be used. For censored
samples, we suggested to calculate weights by the MFON of each failure data point.

The step-by-step procedures of the proposed WLSE method applied to censored data
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were provided and we also presented a numerical example to illustrate the calculation

process.

Robust regression techniques are known to be good at dealing with outliers. As a
preliminary study, we mainly examined robust M-estimation methods (with bounded
influence functions). We pointed out the special outlier data configuration of the
Weibull samples, that is, there should be no Y-outliers and X&Y-outliers because the
plotting positions along the Y-axis in WPP are independent of failure times and can be
treated as known constants. This makes it unnecessary to examine some of the robust
regression techniques that are robust only to the Y-outliers. With Monte Carlo
simulations, we examined robust M-estimators with different weight functions
(bisquare, Andrews, Cauchy and Welsch) on parameter estimation for complete data
with one left tail X-outlier, one right tail X-outlier, two left tail X-outliers and two
right tail X-outliers. We also examined robust M-estimators for multiply censored
data. The results of our study indicated that the robust M-estimator of the Weibull
shape parameter is more efficient than the OLS estimator for small, complete samples

with one X-outlier in the left or right tail, and especially when £, >1 and n > 8. For

small complete samples with two X-outliers in the tail, the M-estimator still
outperforms the OLS estimator. For multiply censored samples, M-estimator performs
better than OLSE in most cases in view of both bias and MSE and thus should also be

recommended for use.

In the beginning of the thesis we have pointed out that reliability data analysis
requires different estimation methods for different types of data. We provided a
flowchart to instruct the use of the linear regression estimation methods discussed in

this thesis for different types of data. And we used some cases studies to illustrate the

240



Chapter 9 Conclusions and Future Work

process. For all the methods discussed in this thesis, step-by-step procedures were
provided so that these methods can be easily applied by engineers and practitioners
conducting Weibull analysis. The proposed methods are of great practical value, but
there are some assumptions which need to be checked and some problems may be

encountered in the future.

9.2 Suggestions for Future Work

An underlying assumption in this study is that the data is known to be from a two-
parameter Weibull distribution, or it can at least be best modelled by such a
distribution. This assumption can be roughly checked by WPP. If the data points form
the approximation of a straight line on WPP, we can say that the assumption is
satisfied. However, elaborate statistical tests may be necessary to confirm this

assumption.

A large portion of the results in this thesis was obtained via Monte Carlo
simulations. We selected only limited values for the experiment factors including «

p, n and c. Moreover, due to the focus on small samples, » was mainly set to within

30. Large sample properties of the proposed methods were not carefully examined,
though we have noticed that the OLSE of the shape parameters is inconsistent with

the sample size.

During the presentation of the WLSE methods, a tentative method for calculating
weights applied to multiply censored data was proposed. Future work could be
conducted to further investigate this procedure both theoretically and via Monte Carlo
simulations. In the proposed procedure, the JM estimator was recommended for

calculating the MFON; however, it would be nice to check other estimators as well.
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The study of the RRE methods is just a beginning. Besides the robust M-
estimation methods, other robust regression methods could be examined in future
work. In addition, we considered only tail area outliers in our experiment due to its
popularity; however, outliers can occur in other places in a sample. Future work could

be conducted to examine such conditions.

The shape parameter estimators are the focus of this study and we assumed the
shape parameter is more important than the scale parameter. There are circumstances
that people have knowledge about the shape parameter and the scale parameter is of
more concern. We have found that OLSE can perform badly for estimating the scale
parameter when the shape parameter is small (within 1). Therefore, future work could
focus on the scale parameter, e.g., to propose bias correction methods for the scale

parameter.

Finally, the linear regression estimation methods could be extended to other
distributions in the Weibull family such as the three-parameter Weibull distribution,
the extended Weibull distributions and modified Weibull distributions. The WLSE
methods, RRE methods and bias correction methods could be proposed for these
distributions to generate more accurate parameter estimates or improve the estimation

efficiency.
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Appendix A

Derivation of Equations (3-8) — (3-10).

Based on the CDF and PDF of the reduced variable Z , i.e.,

F(z)=1-exp(—e’)

f(z)=exp(z—e”)

the CDF of the i order statistic Z (1<i<n) is given by

0]

F(zy) = lmj F(2)1-F(2)" [(2)dz
n)e: iy e mei o
- in_w(l—e-@ Y e ) d(l-e)
and its PDF is
faw)= ’UF (1-F()" ()

n N z . z
— l[ j(l _e—e )l—l (e—e )n—ze—e ez
l

The mean of Z , , by definition, can be obtained by

(i)
0 e —e N\i-l g -’ \n-i —e° z
EZy) = afGedz=i| . |[ 20— ) (e ) e edz

—o0 1 —00

Setting v =e", so that z =Inv,dz = dv/v, and the above equation becomes

E(Z(i)) = l{n]j(:w Inv- (1 - e_v)i—l e—(n—i+1)vdv

i

o n +Dol v li—l —nvd
—liJ.O nv-(e" =1)"e"dv
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Making advantage of the binominal theorem, i.e.,

(x+a)" = i(:]xka"_k

k=0

we have

(" - l)i—l _ i(’ ; lj(_l)kev(ilk)

k=0

Thus

o n < l_l k[t (n—i+k+1)v
E(z(,.))_{ij [ . ](—1) jo Inve dv

k=0
Let T =(n—i+k+1)t, after replacing, we have

n\=(i—-1 P . -T
E(Z(,.)):i(J;( L )(—1) jo [1nT—1n(n—z+k+1)]-mT

= -1 +00
"3 (—1)";[] InT-e7dT -
)=\ k n—i+k+1L%0

In(n—i+k +1) J-Ome'TdT}
Since

J:OO InT-e"dT = -y =-0.577216 , where ¥ is the Euler’s constant

J:OOeJ dT =1 and

n\& i—1 1
] ~-D* —=1
’[J;( ) { k jn—i+k+1
Finally we have

_[n ""1 i—1 oy —r—In(n—i+k+1)
E(Z(i))_l[iJ k_o{( k j( D n—i+k+1 }

which is Equation (3-8).
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Similarly £ (Z(Zi)) can be obtained. By definition,
2 L) 2 —e N\i-l, _—e* \n—i —e° z
E(Z;, :z(}j z7(1-e* ) (e )" "e " e'dz
l —00

Replacing e” by v,

E(Z(zl)) = i(l:j.[+wln2 V. (ev _ 1)1’—1 . e—nvdv

0

~
|
—_

n ] +o0 .
=l _1 k 1n2 V'e_(n_l+k+1)vdv
i )=\ k =D L
=i —1 +00 -T
=" e [T~ i vk DP ———dr
i k=0 k 0 I’l—l+k+1
=i —1 +00
"I e ;U In>T-e7dT +
i)\ k n—i+k+1L%

2yIn(n—i+k+1)+In’(n—i+k+1)]
Since

jo“” 2T -eTdT =1.978112

Finally we have

“fi—-1 g 20
E(Z})=1978112+i n ! (_1)k.27ln(” i+k+D)+In"(n—i+k+1)
0 ;
o (\ K n—i+k+1

1

which is Equation (3-9).

The joint density function of two order statistics, Z; and Z ;) (1<i< j<n), is

given by
n—1

. | B |
J —1)@— I j[F(z»]’-‘ [F(z)~FE)V =FE ) f(2)f ()

f(Zi’Zj)zn(j_i)(

i @(z ’ JU —exp(-¢*)] [exp(-e*) —exp(~e” )} [exp(~e™)]" -

e’ exp(—e™)e” exp(—e”)
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From the definition,

+o0Z;

E(ZyZ,)= [ |22,/ (z,2))dz dz,

—00—00

J

e’ exp(—e”)e” exp(—e™)

—00—00

Setting u = e” and v = ¢’ and re-write the above equation,
n J Tl —ui-lp _—u v j-i-lg _-vn—j —u _-v
E(Z(i)Z(j))z( J( 1J“‘mulnv[l—e 1" e —e" )" [e"]" e e dudv
JIANE=0%

=(nj( / ]Hlnulnv[l —e ) e —e ) e e Y dudy
JNi=1)4%

which is Equation (3-10).
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