
TIMING ANALYSIS OF CONCURRENT

PROGRAMS RUNNING ON SHARED CACHE

MULTI-CORES

LI YAN

M.Sc., NUS

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48632885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank my supervisor Professor Tulika Mitra for her profes-

sional guidance and her invaluable advice and comments for the thesis during

my study.

Especially thanks go to Professor Abhik Roychoudhury for his guidance as

well as helpful suggestions.

I would like to thank Vivy Suhendra and Liang Yun who have collaborated

with me and have given me continue guidance through the last year.

My acknowledgements go out to all my friends Shi Chenwei, Zhen Hanxiong

for their warm-hearted help and beneficial discussions.

Finally, heartful thanks go for my family for their support with heart and

soul.

All errors are my own.

i

Abstract

Memory accesses form an important source of timing unpredictability.

Timing analysis of real-time embedded software thus requires bounding the

time for memory accesses. Multiprocessing, a popular approach for perfor-

mance enhancement, opens up the opportunity for concurrent execution.

However due to contention for any shared memory by different process-

ing cores, memory access behavior becomes more unpredictable, and hence

harder to analyze. In this thesis, we develop a timing analysis method

for concurrent software running on multi-cores with a shared instruction

cache. We do not handle data cache, shared memory synchronization and

code sharing across tasks. The method progressively refines the lifetime es-

timates of tasks that execute concurrently on multiple cores, in order to es-

timate potential conflicts in the shared cache. Possible conflicts arising from

overlapping task lifetimes are accounted for in the hit-miss classification of

accesses to the shared cache, to provide safe execution time bounds. We

show that our method produces tighter worst-case response time (WCRT)

estimates than existing shared-cache analysis on a real-world embedded

application.

ii

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Organization of the Thesis . 3

2 Background 4

2.1 Abstract Interpretation . 4

2.2 Message Sequence Charts . 8

2.3 Message Sequence Graph . 10

2.4 DEBIE Case Study . 10

2.5 System architecture . 11

3 Literature Review 13

4 Contributions 15

5 Approach 16

5.1 Overview . 16

5.2 Illustration . 19

5.3 Analysis Components . 20

5.3.1 Intra-Core Cache Analysis 20

5.3.2 Cache Conflict Analysis 23

5.3.3 WCRT Analysis . 25

5.4 Termination Guarantee . 28

iii

CONTENTS CONTENTS

6 Experiments 31

6.1 Setup . 31

6.2 Comparison with Yan-Zhang’s method 32

6.3 Set associative caches . 36

6.4 Sensitivity to L1 cache size . 36

6.5 Sensitivity to L2 cache size . 37

6.6 PapaBench . 37

6.7 Scalability . 38

7 Future Work 39

8 Conclusion 40

iv

LIST OF TABLES LIST OF TABLES

List of Tables

1 Filter function . 21

2 Access latency of a reference in best case and worst case given its

classifications . 26

3 Characteristics and settings of the DEBIE benchmark 33

4 Characteristics and settings of the Papa benchmark 34

v

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 An example of CCS and ACS. 5

2 An example of must and may analysis. 7

3 An example of persistence analysis. 7

4 A simple MSC and a mapping of its processes to cores. 9

5 A multi-core architecture with shared cache. 11

6 A multi-core architecture with shared cache. 12

7 Our Analysis Framework . 16

8 The working of our shared-cache analysis technique on the exam-

ple given in Figure 4 . 19

9 Intra-core cache analysis for L1 22

10 Intra-core cache analysis for L2 22

11 L2 cache conflict analysis . 23

12 EarlistTime and LatestTime Computation 27

13 Average number of task per set for different size of cache. 31

14 Code size distribution of DEBIE benchmark. 32

15 Comparison between Yan-Zhang’s method and our method and

the improvement of set associativity optimization. 35

16 Comparison of estimated WCRT between Yan-Zhang’s method

and our method for varying L1 and L2 cache sizes. 37

17 Runtime of our iterative analysis 38

vi

1 INTRODUCTION

1 Introduction

1.1 Motivation

Caches are commonly utilized to enhance performance in embedded comput-

ing systems. Cache management is handled by hardware, lending transparency

that, while desirable to ease programming effort, leads to unpredictable timing

behavior for real-time software. Worst-case execution time (WCET) analysis for

real-time applications requires that the access time for each memory access is

safely bounded, in order to guarantee that timing constraints are met. With

the presence of performance-enhancing features in today’s systems, this can be

a challenging feat. One such feature is multiprocessing, which opens the op-

portunity for concurrent execution and memory sharing, and at the same time

introduces the problem of estimating the impact of resource contention.

A lot of research efforts have been invested in modeling dynamic cache be-

havior in single-processing systems. In the context of instruction caches, a par-

ticularly popular technique is abstract interpretation [2, 24] which introduces the

concept of abstract cache states to represent complete possible cache contents

at a given program point, enabling subsequent Cache Hit-Miss Classification of

memory accesses into ‘Always Hit’, ‘Always Miss’, ‘Persistent/First Miss’, and

‘Not Classified’. The latency corresponding to each of these situations can then

be incorporated in the WCET calculation.

Hardy and Puaut [8] further extend the abstract interpretation method

to safely produce worst-case hit/miss access classification in multi-level set-

associative caches. They address a main weakness in the previous cache hierarchy

analysis [14], where unclassified L1 hit/miss results have been conservatively in-

terpreted as Always Miss in the WCET estimation. However, in the subsequent

L2 analysis, this interpretation will lead to the assumption that L2 is always

accessed for that reference. On set-associative caches with a Least Recently

Used replacement policy, the abstract cache state update may then arrive at

an over-optimistic estimation of the age of the reference in L2, leading to unsafe

1

1.1 Motivation 1 INTRODUCTION

classification of certain actual L2 misses as L2 hits. Hardy and Puaut’s approach

rectifies this problem by introducing the concept of Cache Access Classification

to model the propagation of access from a cache level to the level above it: Al-

ways, Never, or Uncertain. When a reference cannot be classified as Always Miss

nor Always Hit at L1, the access to L2 is Uncertain for that reference. For such

accesses, the L2 analysis joins the abstract cache state resulting from an actual

access and the abstract cache state corresponding to no access. Considering both

these cases avoids overlooking the situation that may give rise to an execution

time higher than the estimated WCET.

As multi-cores are increasingly adopted in high-performance embedded sys-

tems, the design choices for cache hierarcy also expand. While each L1 cache

is typically required to remain closely and privately adjoined to each processing

core in order to provide single-cycle latency, letting the multiple cores share a

common L2 cache is seen as beneficial in situations where memory usage is not

always balanced across cores. When L2 cache is shared, a core will be able to

occupy a larger share during its busy period, and relinquish the space to be used

by other cores when it is idle. This architecture is implemented for example

in Power5 dual-core chip [20], XBox360’s Xenon processor [5], and Sun Ultra-

SPARC T1 [22]. Certainly, the analysis effort required for this configuration is

also more complex, as memory contention across the multiple cores significantly

affects the shared cache behaviour. In particular, accesses to the L2 cache origi-

nating from different cores may conflict in the shared cache. Thus, isolated cache

analysis of each task that does not account for this effect will not safely bound

the execution time of the task.

The only technique in literature that has addressed shared-cache analysis

so far is one by Yan and Zhang [26]. Their approach first applies abstract

interpretation to tasks independently and produce the hit-miss classification at

both L1 and L2. In the next step, conflicting cache lines across the multiple

processing cores are identified. If these lines were previously categorized as hits,

they will be converted to misses. In this approach, all tasks executing in a

different core than the one under consideration are treated as potential conflicts

2

1 INTRODUCTION 1.2 Organization of the Thesis

regardless of their actual execution time frame, thus the resulting estimate is

not tight. We also note that their work has not addressed the problem with

conservative multi-level cache analysis observed by [8] as elaborated above, thus

it will be prone to unsafe estimation when applied to set-associative caches. This

concern, however, is orthogonal to the issues arising from cache sharing.

Motivated by this situation, this thesis proposes a tight and safe multi-level

cache analysis for multi-cores that include a shared L2 cache. Our method

includes progressively tightening lifetime analysis of tasks that execute concur-

rently across the multiple cores, in order to identify potential contention in the

shared cache. Possible conflicts arising from overlapping task lifetimes are then

accounted for in the hit-miss classification of accesses to the shared cache.

1.2 Organization of the Thesis

We introduce some related fundamental concepts related to timing analysis of

multi-cores with a shared instruction cache in Section 2 and literature review

in Section 3. From section 4, we list our primary contributions devoted to

timing analysis for concurrent software running on multi-cores with a shared

instruction cache. Following that, our analysis framework is illustrated in Section

5. Estimation results are shown to validate our approach later in Section 6.

Finally, the thesis proposes the future work in Section 7 and concludes in Section

8.

3

2 BACKGROUND

2 Background

Static analysis of programs to give guarantees about execution time is a difficult

problem. For sequential programs, it involves finding the longest feasible path in

the program’s control flow graph while considering the timing effects of the un-

derlying processing element. For concurrent programs, we also need to consider

the time spent due to interaction and resource contention among the program

threads.

What makes static timing analysis difficult? Clearly it is the variation in the

execution time of a program due to different inputs, different interaction pat-

terns (for concurrent programs) and different micro-architectural states. These

variations manifest in different ways, one of the major variations being the time

for memory accesses. Due to the presence of caches in processing elements, a

certain memory access may be cache hit or miss in different instances of its ex-

ecution. Moreover, if caches are shared across processing elements as in shared

cache multi-cores, one program thread may have constructive or destructive ef-

fect on another in terms of cache hits/misses. This makes the timing analysis of

concurrent programs running on shared-cache multi-cores a challenging problem.

We address this problem in our work. Before that, we will give some background

on Abstract Interpretation, Message Sequence Charts (MSCs) and Message Se-

quence Graphs (MSGs) — our system model for describing concurrent programs.

In doing so, we also introduce our case study with which we have validated our

approach. We conclude this section by detailing our system architecture — the

platform on which the concurrent application is executed.

2.1 Abstract Interpretation

In the context of instruction caches, a particularly popular technique is abstract

interpretation [2, 24] which introduces the concept of abstract cache states to

represent complete possible cache contents at a given program point, enabling

subsequent Cache Hit-Miss Classification of memory accesses into ‘Always Hit’,

4

2 BACKGROUND 2.1 Abstract Interpretation

‘Always Miss’, ‘Persistent/First Miss’, and ‘Not Classified’. The latency cor-

responding to each of these situations can then be incorporated in the WCET

calculation.

This approach works as follows [14, 21]:

Assume a two-way set-associative cache with four cache lines and Least Re-

cently Used (LRU) replacement policy.

Firstly, the concrete cache state (CCS) given a program point is defined. The

concrete cache state is the exact result cache state for a given program point. In

this way, each concrete cache state represents a real cache state.

Next, the abstract cache state (ACS) given a program point is defined. Ob-

viously, if we use CCS to do cache analysis, the possible cache states probably

will grow exponentially due to conditional executions or loops and thus renders

the problem to be unsolvable within finite time. To avoid this, an abstract cache

state is defined so that just one state can gather all possible occurring concrete

states for each program point.

4 0
5 1

Set 0

Set 1

Age 0 Age 1

6 2
7 3

Set 2

Set 3

9 10

4 0
9 5
6 2
7 3

4 0
5 1
10 6
7 3

4 0
9,5 5,1
10,6 6,2
7 37 3 7 3

CSS 1 CSS 2

7 3

ACS1

Figure 1: An example of CCS and ACS.

Figure 1 is an example of CCS and ACS. It shows a conditional execution.

Program line 9 is then-part while program line 10 is else-part. After the control

flow joins again, both CCS’ (that is CSS1 and CSS2 in the figure) represent

possible cache states and have to be considered for the remainder of program

5

2.1 Abstract Interpretation 2 BACKGROUND

execution. It also depicts the corresponding ACS (that is ACS1). There is only

one output ACS containing sets of program lines that may be cached at this

point of execution. In effect, the output CCS’ are merged into this output ACS.

Merging conserves space but reduces the amount of information. For example,

the output ACS does not show that either program lines 9 or 10 can be cached.

To catch as more information as possible, abstract semantics should consist

of an abstract domain and a set of proper abstract semantic functions, so called

transfer functions, for the program statements computing over the abstract do-

main. They describe how the statements transform abstract data. They must

be monotonic to guarantee termination. An element of the abstract domain rep-

resents sets of elements of the concrete domain. The subset relation on the sets

of concrete states determines the complete partial order of the abstract domain.

The partial order on the abstract domain corresponds to precision, i. e., quality

of information. To combine abstract values, a join operation is needed. In our

case this is the least upper bound operation, t, on the abstract domain, which

also defines the partial order on the abstract domain. This operation is used to

combine information stemming from different sources, e. g. from several possible

control flows into one program point.

We have three types of operations on ACS defined as following. To make

it clearly interpreted, we just assume LRU as the cache replacement strategy.

However, it can be extended to other cache replacement policies such as FIFO,

pseudo-LRU and so on which are explained specifically in [9]. Since each set

is independently updated when LRU cache replacement policy is adopted, we

illustrate operations of cache state using only one set of cache for simplicity.

Further, we assume a 4-way cache.

• Must Analysis: Must analysis determines the set of all memory blocks

that are guaranteed to be present in the cache at a given program point.

This analysis is similarly to do set intersection of multiple abstract cache

states where the position of a memory block is an upper bound of its age

among all the abstract cache states.

6

2 BACKGROUND 2.1 Abstract Interpretation

h
b, e

Age 0

Age 1

a, c
b

c, f
a

Age 2

Age 3

ACS1 ACS2

e
g

Result after must analysis Result after may analysis

a c h
b

c, e
a

a, c, h
b, e

f
gg

Figure 2: An example of must and may analysis.

• May Analysis: The may analysis determines all memory blocks that

may be in the cache at a given program point. It is used to guarantee the

absence of a memory block in the cache. This analysis is similarly to do

set unions of abstract cache state where the position of a memory block is

a lower bound of its age among all the abstract cache states. Figure 2 is

an example of must and may analysis.

h

b, e

c, f

a

Age 0

Age 1

Age 2

Age 3

ACS1 ACS2

Result after persistence analysis

a, c

b

e

g

b

c

a, g

d, e f, h

d, e, f, h

Figure 3: An example of persistence analysis.

• Persistence Analysis: This analysis is used to improve the classification

of memory references. It collects the set of all memory blocks that are

never evicted from the cache after the first reference, which means that a

first execution of a memory reference may result in either a hit or a miss,

but all non-first executions will result in hits. This analysis is similarly to

7

2.2 Message Sequence Charts 2 BACKGROUND

do unions of abstract cache states where the position of a memory block is

a upper bound of its age among all the abstract cache states. Additionally,

we assume a virtual cache line with the maximal age in a set of cache which

holds those cache lines that could once have been removed from the cache.

Figure 3 is an example of persistence analysis.

The cache analysis results can be used to classify the memory blocks in the

following manner. Each instruction can be classified into AH, AM, PS or NC.

• Always Hit (AH) If a memory block is present in the ACS corresponding

to must analysis, its references will always result in cache hits.

• Always Miss (AM) If a memory block is not present in the ACS corre-

sponding to may analysis, its references are guaranteed to be cache misses.

• Persistence (PS) If a memory block is guaranteed to be present not in

the virtual line after persistence analysis, it will never to be evicted from

the cache. Therefore, it can be classified as persistent where the second

and all further executions of the memory reference will always be cache

hits.

• Not Classified (NC) The memory reference cannot be classified as either

AH, AM, or PS.

2.2 Message Sequence Charts

Our system model consists of a concurrent program visualized as a graph, each

node of which is a Message Sequence Chart or MSC [1] . A MSC is a variant of

an UML sequence diagram with a formal semantics and is a modeling notation

that emphasizes the inter-process interaction, allowing us to exploit its structure

in our timing analysis. The individual processes in the MSC appear as vertical

lines. Interactions between the processes are shown as horizontal arrows across

vertical lines. The computation blocks within a process are shown as ”tasks” on

the vertical lines.

8

2 BACKGROUND 2.2 Message Sequence Charts

Health
MonitoringMain Tele-

command
Acqui-
sition

Hit Trigger
ISR

Core1 Core2 Core3 Core4

main1

main2
main3

hm
tc

aq3

main4
aq

hit

Figure 4: A simple MSC and a mapping of its processes to cores.

Figure 4 shows a simple MSC with five processes (vertical lines). It is in fact

drawn from our DEBIE case study, which models the controller for a space debris

management system. The five processes are mapped on to four cores. Each

process is mapped to a unique core, but several processes may be mapped to

the same core (e.g., Health-monitoring and Telecommand processes are mapped

to core 2 in Figure 4). Each process executes a sequence of “tasks” shown via

shaded rectangles (e.g., main1, hm, tc are tasks in Figure 4). Each task is an

arbitrary (but terminating) sequential program in our setting and we assume

there is no code sharing across the tasks.

Semantically, an MSC denotes a set of tasks and prescribes a partial order

over these tasks. This partial order is the transitive closure of (a) the total order

of the tasks in each process (time flows from top to bottom in each process),

and (b) the ordering imposed by the send-receive of each message (the send of

a message must happen before its receive). Thus in Figure 4, the tasks in the

Main process execute in the sequence main1, main2, main3, main4. Also, due

to message send-receive ordering, the task main1 happens before the task hm.

However, the partial ordering of the MSC allows tasks hm and tc to execute

concurrently.

We assume that our concurrent program is executed in a static priority-driven

non-preemptive fashion. Thus, each process in an MSC is assigned a unique static

priority. The priority of a task is the priority of the process it belongs to. If

more than one processes are mapped to a processor core, and there are several

tasks contending for execution on the core (such as the tasks hm and tc on core

9

2.3 Message Sequence Graph 2 BACKGROUND

2 in Figure 4), we choose the higher priority task for execution. However, once a

task starts execution, it is allowed to complete without preemption from higher

priority tasks.

2.3 Message Sequence Graph

A Message Sequence Graph (MSG) is a finite graph where each node is described

by an MSC. Multiple outgoing edges from a node in the MSG represent a choice,

so that exactly one of the destination charts will be executed in succession.

While an MSC describes a single scenario in the system execution, an MSG

describes the control flow between these scenarios, allowing us to form a complete

specification of the application.

To complete the description of MSG, we need to give a meaning to MSC

concatenation. That is, if M1, M2 are nodes (denoting MSCs) in an MSG, what

is the meaning of the execution sequence M1, M2, M1, M2, . . .? We stipulate that

for a concatenation of two MSCs say M1◦M2, all tasks in M1 must happen before

any task in M2. In other words, it is as if the participating processes synchronize

or hand-shake at the end of an MSC. In MSC literature, it is popularly known

as synchronous concatenation [3].

2.4 DEBIE Case Study

Our case study consists of DEBIE-I DPU Software [7], an in-situ space debris

monitoring instrument developed by Space Systems Finland Ltd. The DEBIE

instrument utilizes up to four sensor units to detect particle impacts on the

spacecraft. As the system starts up, it performs resets based on the condition

that precedes the boot. After initializations, the system enters the Standby state,

where health monitoring functions and housekeeping checks are performed. It

may then go into the Acquisition mode, where each particle impact will trigger

a series of measurements, and the data are classified and logged for further

transmission to the ground station. In this mode too, the Health Monitoring

10

2 BACKGROUND 2.5 System architecture

Node 1: Boot

Node 2: Power-up Reset

Node 3: Warm Reset

Node 4: Record WD Failure Node 5: Record CS Failure

Node 6: Initializations Node 7: Standby

Node 8: Acquisition

1: Boot

2: Power-up

Reset

6: Initializations

power-up

boot

5: Record

WD Failure

watchdog

boot

4: Record

CS Failure

checksum

boot

3: Warm

Reset

soft/warm

boot

8: Acquisition

7: Standby

Main

Main

MainMain

Health

Monitoring

Class-

ification

Class-

ification

Main
Health

Monitoring

Health

Monitoring

Tele-

command

Tele-
command

Tele-

command

Acqui-

sition

Acqui-

sition

Hit Trigger

ISR

Hit Trigger

ISR

SU
Interface

SU

Interface

[Env]
Sensor Unit

[Env]

Sensor Unit
Telemetry

Message Sequence Graph

Main
Class-

ification

Figure 5: A multi-core architecture with shared cache.

process continues to periodically monitor the health of the instrument and to

run housekeeping checks.

The MSG for the DEBIE case study (with different colors used to show the

mapping of the processes to different processor cores) is shown in Figure 5. This

MSG is acyclic. For MSGs with cycles, the number of times each cycle can be

executed needs to be bounded for worst-case response time analysis.

2.5 System architecture

The generic multi-core architecture we target here is quite representative of the

current generation multi-core systems as shown in Figure 6. Each core on chip

has its own private L1 instruction cache and a shared L2 cache that accommo-

dates instructions from all the cores. In this work, our focus is on instruction

11

2.5 System architecture 2 BACKGROUND

memory accesses and we do not model the data cache. We assume that the data

memory references do not interfere in any way with the L1 and L2 instruction

caches modeled by us (they could be serviced from a separate data cache that

we do not model).

Core 1

CPU CPU

Core n

……

L1 Cache L1 Cache

L2 Cache

Figure 6: A multi-core architecture with shared cache.

12

3 LITERATURE REVIEW

3 Literature Review

There have been a lot of research efforts in modeling cache behavior for WCET

estimation in single-core systems. A widely adopted technique is the abstract in-

terpretation ([2, 24]) which also forms the foundation to the framework presented

in this thesis.

Mueller [15] extends the technique for multi-level cache analysis; Hardy and

Puaut [8] further adjust the method with a crucial observation to produce safe

estimates for set-associative caches. Other proposed methods that attempt ex-

act classification of memory accesses for private caches include data-flow analy-

sis [15], integer linear programming [12] and symbolic execution [13].

Cache analysis for multi-tasking systems mostly revolves around a metric

called cache-related preempted delay (CRPD), which quantifies the impact of

cache sharing on the execution time of tasks in a preemptive environment. CRPD

analysis typically computes cache access footprint of both the preempted and

preempting tasks ([10, 25, 16]). The intersection then determines cache misses

incurred by the preempted task upon resuming execution due to conflict in the

cache. Multiple process activations and preemption scenarios can be taken into

account, as in [21]. A different perspective in [23] considers WCRT analysis

for customized cache, specifically the prioritized cache, which reduces inter-task

cache interference.

In multiprocessing systems, tasks in different cores may execute in paral-

lel while sharing memory space in the cache hierarchy. Due to the complex-

ity involved in static analysis of multiprocessors, time-critical systems often

opt not to exploit multiprocessing, while non-critical systems generally utilize

measurement-based performance analysis. Tools for estimating cache access time

are presented, among others, in [19], [6] and [11]. It has also been proposed to

perform static scheduling of memory accesses so that they can be factored in to

achieve reliable WCET analysis on multiprocessors [18].

The only technique in literature that has addressed inter-core shared-cache

13

3 LITERATURE REVIEW

analysis so far is the one proposed by Yan and Zhang [26]. Their approach ac-

counts for inter-core cache contention by detecting accesses across cores which

map to the same set in the shared cache. They treat all tasks executing in

a different core than the one under consideration as potential conflicts regard-

less of their actual execution time frames; thus the resulting estimate is highly

pessimistic. We also note that their work has not addressed the problem with

multi-level cache analysis observed by [8] (a “non-classified” access in L1 cache

cannot be safely assumed to always access L2 cache in the worst case) and will be

prone to unsafe estimation when applied to set-associative caches. This concern,

however, is orthogonal to the issues arising from cache sharing. Our proposed

analysis is able to obtain improved estimates by exploiting the knowledge about

interaction among tasks in the multiprocessor.

14

4 CONTRIBUTIONS

4 Contributions

Based on the literature review presented, our contributions in the thesis are as

following.

• The first contribution we make in this thesis is that we take into account the

execution interval of tasks to minimize the overestimation of interferences

in the shared cache between pairs of tasks from different cores and we

validate our estimation with experiments. We compare our method with

the only approach [26] in literature. And the only approach to model the

conflicts for L2 cache blocks among the cores is the following. Let T be

the task running on core 1 and T ′ be the task running on core 2. Also

let M1, . . . ,MX (M ′
1, . . . ,M

′
Y) be the set of memory blocks of thread T

(T ′) mapped to a particular cache set C in the shared L2 cache. Then

we simply deduce that all the accesses to memory blocks M1, . . . ,MX and

M ′
1, . . . ,M

′
Y will be misses in L2 cache. However, we observed that if a pair

of tasks from different cores cannot overlap in terms of execution interval,

they are not able to affect each other in terms of conflict misses and thus

we can reduce the number of estimated conflict misses in the shared cache.

• Another contribution in this thesis is that we embrace set-associative caches

in our analysis as opposed to only direct mapped caches and this creates

additional opportunities for improving the timing estimation. For simplic-

ity, direct-mapped cache is often assumed to be adopted. However, this

assumption is not practical since set-associative cache is prevalent.

In summary, we develop a timing analysis method for shared cache multi-

cores that enhances the state-of-the-art approach.

15

5 APPROACH

5 Approach

5.1 Overview

In this section, we present an overview of our timing analysis framework for

concurrent applications running on a multi-core architecture with shared caches.

For ease of illustration, we will throughout use the example of a 2-core architec-

ture. However, our method is easily scalable to any number of cores as will be

shown in the experimental evaluation. As we are analyzing a concurrent appli-

cation, our goal is to estimate the Worst Case Response Time (WCRT) of the

application.

L1 cache
analysis

L1 cache
analysis

Filter Filter

L2 cache
analysis

L2 cache
analysis

L2 cache
Conflict
analysis

WCRT
analysis

Interference
changes?

yesno

Estimated
WCRT

Core 1 Core 2

Initial task
interference

Modified task
interference

Figure 7: Our Analysis Framework

Figure 7 shows the workflow of our timing analysis framework. First, we

perform the L1 cache hit/miss analysis for each task mapped to each core inde-

pendently. As we assume a non-preemptive system, we can safely analyze the

cache effect of each task separately even if multiple tasks are mapped to the

same processor core. For preemptive systems, we need to include cache-related

16

5 APPROACH 5.1 Overview

preemption delay analysis ([10, 25, 16, 21]) in our framework.

The filter at each core ensures that only the memory accesses that miss in

the L1 cache are analyzed at the L2 cache level. Again, we first analyze the L2

cache behavior for each task in each core independently assuming that there is no

conflict from the tasks in the other cores. Clearly, this part of the analysis does

not model any multi-core aspects and we do not propose any new innovations

here. Indeed, we employ the multi-level non-inclusive instruction cache modeling

proposed recently [8] for intra-core analysis.

The main challenge in safe and accurate execution time analysis of a con-

current application is the detection of conflicts for shared resources. In our

target platform, we are modeling one such shared resource: the L2 cache. A first

approach to model the conflicts for L2 cache blocks among the cores is the fol-

lowing. Let T be the task running on core 1 and T ′ be the task running on core

2. Also let M1, . . . ,MX (M ′
1, . . . ,M

′
Y) be the set of memory blocks of thread T

(T ′) mapped to a particular cache set C in the shared L2 cache. Then we simply

deduce that all the accesses to memory blocks M1, . . . ,MX and M ′
1, . . . ,M

′
Y will

be misses in L2 cache. Indeed, this is the approach followed by the only shared

L2 cache analysis proposed in the literature [26].

A closer look reveals that there are multiple opportunities to improve the

conflict analysis. The first and foremost is to estimate and exploit the lifetime

information for each task in the system, which will be discussed in detail in the

following. If the lifetimes of the tasks T and T ′ (mapped to core 1 and core

2, respectively) are completely disjoint, then they cannot replace each other’s

memory blocks in the shared cache. In other words, we can completely bypass

shared cache conflict analysis among such tasks.

The difficulty lies in identifying the tasks with disjoint lifetimes. It is easy to

recognize that the partial order prescribed by our MSC model of the concurrent

application automatically implies disjoint lifetimes for some tasks. However, ac-

curate timing analysis demands us to look beyond this partial order and identify

additional pairs of tasks that can potentially execute concurrently according to

17

5.1 Overview 5 APPROACH

the partial order, but whose lifetimes do not overlap (see Section 5.2 for an ex-

ample). Towards this end, we estimate a conservative lifetime for each task by

exploiting the Best Case Execution Time (BCET) and Worst Case Execution

Time (WCET) of each task along with the structure of the MSC model. Still the

problem is not solved as the task lifetime (i.e., BCET and WCET estimation)

depends on the L2 cache access times of the memory references. To overcome this

cyclic dependency between the task lifetime analysis and the conflict analysis for

shared L2 cache, we propose an iterative solution.

The first step of this iterative process is the conflict analysis. This step

estimates the additional cache misses incurred in the L2 cache due to inter-

core conflicts. In the first iteration, conflict analysis assumes very preliminary

task interference information — all the tasks (except those excluded by MSC

partial order) that can potentially execute concurrently will indeed execute con-

currently. However, from the second iteration onwards, it refines the conflicts

based on task lifetime estimation obtained as a by-product of WCRT analysis

component. Given the memory access times from both L1 and L2 caches, WCRT

analysis first computes the execution time bounds of every task, represented as

a range. These values are used to compute the total response time of all the

tasks considering dependencies. The WCRT analysis also infers the interference

relations among tasks: tasks with disjoint execution intervals are known to be

non-interfering, and it can be guaranteed that their memory references will not

conflict in the shared cache. If the task interference has changed from the pre-

vious iteration, the modified task interference information is presented to the

conflict analysis component for another round of analysis. Otherwise, the iter-

ative analysis terminates and returns the WCRT estimate. Note the feedback

loop in Figure 7 that allows us to improve the lifetime bounds with each iteration

of the analysis.

18

5 APPROACH 5.2 Illustration

(a) Initial interference graph deduced from model

main1

main2

main3

main4

hm

tc

aq

hit

main1

main2

main3

main4

hm

tc

aq

hit

main1

main2

main3

main4

hm

tc

aq

hit

ti
m

e

(c) Interference graph after first round of analysis(b) Task lifetimes determined in first round of analysis

Figure 8: The working of our shared-cache analysis technique on the example
given in Figure 4

5.2 Illustration

We illustrate our iterative analysis framework on the MSC depicted in Figure 4.

Initially, the only information available are (1) the dependency specified in the

model, and (2) the mapping of tasks to cores. Two tasks t, t′ are known not to

interfere if either (1) t′ depends on t as per the MSC partial order, or (2) t and

t′ are mapped to the same core (by virtue of the non-preemptive execution).

We can thus sketch the initial interference relation among tasks in an in-

terference graph as shown in Figure 8(a). Each node of the graph represents

a task, and an edge between two nodes signifies potential conflict between the

tasks represented by the nodes. This is the input to the cache conflict analysis

component (Figure 7), which then accounts for the perceived inter-task conflicts

and accordingly adjusts L2 cache access time of conflicting memory blocks.

In the next step, we compute BCET and WCET values for each task. These

values are used in the WCRT analysis to determine task lifetimes. Figure 8(b)

visualizes the task lifetimes after the analysis for this particular example. Here,

time is depicted as progressing from top to bottom, and the duration of task

execution is shown as vertical bar stretching from the time it starts to the time

it completes.

The overlap between the lifetimes of two tasks signifies the potential that

they may execute concurrently and may conflict in the shared cache. Conversely,

19

5.3 Analysis Components 5 APPROACH

the absence of overlap in these inferred lifetimes tell us that some tasks are well

separated (e.g., aq and tc) so that it is impossible for them to conflict in the

shared cache. For instance, here tc starts later than hm on the same core,

and thus has to wait until hm finishes execution. By that time, most of the

other tasks have finished their execution and will not conflict with tc. Based

on this information, our knowledge of task interaction can be refined into the

interference graph shown in Figure 8(c). This information is fed back as input

to the cache conflict analysis, where some of the previously assumed evictions in

the shared cache can now be safely ruled out.

Our analysis proceeds in this manner iteratively. The initial conservative

assumption of task interferences is refined over the iterations. In the next section,

we provide detailed description of the analysis components and show that our

iterative analysis is guaranteed to terminate.

5.3 Analysis Components

The first step of our analysis framework is the independent cache analysis for each

core (see Figure 7). As mentioned before, we use the multi-level non-inclusive

cache analysis proposed by Hardy and Puaut [8] for this step. However, some

background on this intra-core analysis is required to appreciate our shared cache

conflict analysis technique. Hence, in the next subsection, we provide a quick

overview of the intra-core cache analysis.

5.3.1 Intra-Core Cache Analysis

The intra-core cache analysis step employs abstract interpretation method [24] at

both L1 and L2 cache levels. The additional step for multi-level caches is the filter

function (see Figure 7) that eliminates the L1 cache hits from accessing the L2

cache. The L1 cache analysis computes the three different abstract cache states

(ACS) at every program point within a task [24]. In this thesis, we consider LRU

replacement policy, but the cache analysis can be extended for other replacement

20

5 APPROACH 5.3 Analysis Components

Table 1: Filter function
L1 Classification L2 Access
Always Hit (AH) Never (N)

Always Miss (AM) Always (A)
Not Classified (NC) Uncertain (U)

polices as shown in [9].

As described in Section 2.1, we classify each instruction into AH, AM, PS

and NC.

For a Persistent (PS) memory block, we further classify it as Always Miss

(AM) for its first reference and Always Hit (AH) for the rest of the references.

Once the memory blocks have been classified at L1 cache level, we proceed to

analyze them at L2 cache level. But before that, we need to apply the filter

function that eliminates L1 cache hits from further consideration [8]. The filter

function is shown in Table 1.

A reference classified as always hit will never access L2 cache (“Never”)

whereas a reference classified as always miss will always access L2 cache (“Al-

ways”). The more complicated scenario is with the non-classified references. [8]

has shown that it is unsafe to assume that a non-classified reference will always

access L2 cache. Instead, its status is set to “Uncertain” and we consider both

the scenarios (L2 access and no L2 access) in our analysis for such references.

The intra-core L2 cache analysis is identical to L1 cache analysis except that

(a) a reference with “Never” tag is ignored, i.e., it does not update abstract

cache states, and (b) a reference r with “Uncertain” tag creates two abstract

cache states (one updated with r and the other one not updated with r) that

are “joined” together.

The pseudo-code of the intra-core cache analysis is shown in Figure 9 (for

L1) and Figure 10 (for L2).

21

5.3 Analysis Components 5 APPROACH

Algorithm 1: L1 cache analysis for a task t
AnalyseScopeL1(main_procedure, empty_ACS, empty_ACS);1

Function AnalyseScopeL1(Sc, in_must, in_may)

ACS_in_must(Sc.entry) := in_must;2
ACS_in_may(Sc.entry) := in_may;3
foreach basic block b in the topological order of Sc’s CFG do4

if b has more than one incoming edges then5
ACS_in_must(b) := IntersectMaxAge({ACS_out_must(b′) | b′ is a predecessor of b});6
ACS_in_may(b) := UnionMinAge({ACS_out_may(b′) | b′ is a predecessor of b});7

if b abstracts a loop L then8
(ACS_tr_must, ACS_tr_may) := AnalyseScopeL1(L, ACS_in_must(b), ACS_in_may(b)); // first iteration9
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL1(L, ACS_tr_must(b), ACS_tr_may(b)); // subsequent10

else11
ACS_curr_must := ACS_in_must(b);12
ACS_curr_may := ACS_in_may(b);13
foreach reference r in b in execution order do14

if r ∈ ACS_curr_must then CHMCr,1 := AH; CACr,2 := N ;15
else if r /∈ ACS_curr_may then CHMCr,1 := AM ; CACr,2 := A;16
else CHMCr,1 := NC; CACr,2 := U ;17

ACS_curr_must := Update(ACS_curr_must, r);18
ACS_curr_may := Update(ACS_curr_may, r);19

ACS_out_must(b) := ACS_curr_must;20
ACS_out_may(b) := ACS_curr_may;21

if b contains a function call to procedure P then22
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL1(P , ACS_out_must(b), ACS_out_may(b));23

return (ACS_out_must(Sc.exit), ACS_out_may(Sc.exit));24

Algorithm 2: L2 cache analysis for a task t
AnalyseScopeL2(main_procedure, empty_ACS, empty_ACS);1

Function AnalyseScopeL2(Sc, in_must, in_may)

ACS_in_must(Sc.entry) := in_must;2
ACS_in_may(Sc.entry) := in_may;3
foreach basic block b in the topological order of Sc’s CFG do4

if b has more than one incoming edges then5
ACS_in_must(b) := IntersectMaxAge({ACS_out_must(b′) | b′ is a predecessor of b});6
ACS_in_may(b) := UnionMinAge({ACS_out_may(b′) | b′ is a predecessor of b});7

if b abstracts a loop L then8
(ACS_tr_must, ACS_tr_may) := AnalyseScopeL2(L, ACS_in_must(b), ACS_in_may(b)); // first iteration9
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL2(L, ACS_tr_must(b), ACS_tr_may(b)); // subsequent10

else11
ACS_curr_must := ACS_in_must(b);12
ACS_curr_may := ACS_in_may(b);13
foreach reference r in b where CACr,2 6= N do14

if r ∈ ACS_curr_must then CHMCr,2 := AH;15
else if r /∈ ACS_curr_may then CHMCr,2 := AM ;16
else CHMCr,2 := NC;17

if CACr,2 = U then18
ACS_curr_must := IntersectMaxAge({ACS_curr_must, Update(ACS_curr_must, r) });19
ACS_curr_may := UnionMinAge({ACS_curr_may, Update(ACS_curr_may, r) });20

else21
ACS_curr_must := Update(ACS_curr_must, r);22
ACS_curr_may := Update(ACS_curr_may, r);23

ACS_out_must(b) := ACS_curr_must;24
ACS_out_may(b) := ACS_curr_may;25

if b contains a function call to procedure P then26
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL2(P , ACS_out_must(b), ACS_out_may(b));27

return (ACS_out_must(Sc.exit), ACS_out_may(Sc.exit));28

Figure 9: Intra-core cache analysis for L1

Algorithm 1: L1 cache analysis for a task t
AnalyseScopeL1(main_procedure, empty_ACS, empty_ACS);1

Function AnalyseScopeL1(Sc, in_must, in_may)

ACS_in_must(Sc.entry) := in_must;2
ACS_in_may(Sc.entry) := in_may;3
foreach basic block b in the topological order of Sc’s CFG do4

if b has more than one incoming edges then5
ACS_in_must(b) := IntersectMaxAge({ACS_out_must(b′) | b′ is a predecessor of b});6
ACS_in_may(b) := UnionMinAge({ACS_out_may(b′) | b′ is a predecessor of b});7

if b abstracts a loop L then8
(ACS_tr_must, ACS_tr_may) := AnalyseScopeL1(L, ACS_in_must(b), ACS_in_may(b)); // first iteration9
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL1(L, ACS_tr_must(b), ACS_tr_may(b)); // subsequent10

else11
ACS_curr_must := ACS_in_must(b);12
ACS_curr_may := ACS_in_may(b);13
foreach reference r in b in execution order do14

if r ∈ ACS_curr_must then CHMCr,1 := AH; CACr,2 := N ;15
else if r /∈ ACS_curr_may then CHMCr,1 := AM ; CACr,2 := A;16
else CHMCr,1 := NC; CACr,2 := U ;17

ACS_curr_must := Update(ACS_curr_must, r);18
ACS_curr_may := Update(ACS_curr_may, r);19

ACS_out_must(b) := ACS_curr_must;20
ACS_out_may(b) := ACS_curr_may;21

if b contains a function call to procedure P then22
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL1(P , ACS_out_must(b), ACS_out_may(b));23

return (ACS_out_must(Sc.exit), ACS_out_may(Sc.exit));24

Algorithm 2: L2 cache analysis for a task t
AnalyseScopeL2(main_procedure, empty_ACS, empty_ACS);1

Function AnalyseScopeL2(Sc, in_must, in_may)

ACS_in_must(Sc.entry) := in_must;2
ACS_in_may(Sc.entry) := in_may;3
foreach basic block b in the topological order of Sc’s CFG do4

if b has more than one incoming edges then5
ACS_in_must(b) := IntersectMaxAge({ACS_out_must(b′) | b′ is a predecessor of b});6
ACS_in_may(b) := UnionMinAge({ACS_out_may(b′) | b′ is a predecessor of b});7

if b abstracts a loop L then8
(ACS_tr_must, ACS_tr_may) := AnalyseScopeL2(L, ACS_in_must(b), ACS_in_may(b)); // first iteration9
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL2(L, ACS_tr_must(b), ACS_tr_may(b)); // subsequent10

else11
ACS_curr_must := ACS_in_must(b);12
ACS_curr_may := ACS_in_may(b);13
foreach reference r in b where CACr,2 6= N do14

if r ∈ ACS_curr_must then CHMCr,2 := AH;15
else if r /∈ ACS_curr_may then CHMCr,2 := AM ;16
else CHMCr,2 := NC;17

if CACr,2 = U then18
ACS_curr_must := IntersectMaxAge({ACS_curr_must, Update(ACS_curr_must, r) });19
ACS_curr_may := UnionMinAge({ACS_curr_may, Update(ACS_curr_may, r) });20

else21
ACS_curr_must := Update(ACS_curr_must, r);22
ACS_curr_may := Update(ACS_curr_may, r);23

ACS_out_must(b) := ACS_curr_must;24
ACS_out_may(b) := ACS_curr_may;25

if b contains a function call to procedure P then26
(ACS_out_must(b), ACS_out_may(b)) := AnalyseScopeL2(P , ACS_out_must(b), ACS_out_may(b));27

return (ACS_out_must(Sc.exit), ACS_out_may(Sc.exit));28

Figure 10: Intra-core cache analysis for L2

22

5 APPROACH 5.3 Analysis Components

(a) Initial interference graph deduced from model

main1

main2

main3

main

main1

main2

main3

main4

hm

tc

aq

hit

ti
m

e

(b) Task lifetimes determined in first round of analysis

main4

hm

tc

aq

hit

main1

main2

main3

main4

hm

tc

aq

hit

(c) Interference graph after first round of analysis(b) Task lifetimes determined in first round of analysis

Figure 5. The working of our shared-cache analysis technique on the example given in Figure 2

Table I
L2 CACHE ACCESS CLASSIFICATION BASED ON THE RESULT OF L1

CACHE HIT-MISS CLASSIFICATION

CHMCr,1 CACr,2

Always Hit (AH) Never (N)
Always Miss (AM) Always (A)
Not Classified (NC) Uncertain (U)

IV. ANALYSIS ALGORITHMS

A. L1 Cache Analysis

The L1 cache analysis step applies the abstract inter-
pretation method [25] on the control flow graph (CFG) of
each task. Two types of analyses are performed: the must
analysis and the may analysis. References found in the
resulting abstract cache state (ACS) of the must analysis
at the particular program point are the Always Hit (AH)
references, while references not found in the resulting ACS
of the may analysis are the Always Miss (AM) references.
References that cannot be categorized as AH nor AM are Not
Classified (NC) references. The Update and Join functions
for both types of analysis are as defined in [25].

Two contexts are defined for each loop in the CFG:
the first iteration of the loop and the subsequent iterations
of the loop. Each loop is unrolled once to reflect this
differentiation. As the must/may analysis traverses the CFG
and computes the ACSs, the resulting ACS at the end of the
first iteration is the input ACS to the subsequent iteration,
and the resulting ACS at the end of the subsequent iteration
is also the outcome ACS of the whole loop. In this way, we
can distinguish references that are first misses by treating
them as two separate references with their own CHMC. In
a similar spirit, a distinct ACS is defined for each procedure
call site in the CFG to reflect the different call contexts.

The detailed analysis steps for a single task are given in
Algorithm 1. Both must and may analyses are performed
simultaneously. The routines IntersectMaxAge (line 6) and
UnionMinAge (line 7) refer to the Join functions defined for
the respective analyses (see [25]). Here, we have used the
term scope to encompass loops and procedures in the task.

The control flow within each scope Sc forms a Directed
Acyclic Graph (DAG) with one entry point Sc.entry (thus
a single input ACS) and one exit point Sc.exit (thus a single
output ACS). The iteration edge of a loop is accounted in
the unrolling of the loop into first and subsequent iterations
(lines 9–10), as described above. Function call sites as well
as nested loops can be viewed as nested scopes. In the CFG
of a single scope, the nested loops are abstracted into a
single basic block that heads that particular loop (line 8).
For a function call, we first handle references contained in
the call instruction (lines 12–21) before taking the jump to
the called procedure (line 22). The analysis starts at the entry
point of the main procedure of the task, with an empty ACS
as input (line 1). It traverses each basic block in the CFG of
the scope according to the topological order (well defined
for a DAG), thus ensuring at each point that the required
input ACS-es have been computed. At each basic block,
each reference r is examined to deduce its CHMC in L1
and the CAC that will be propagated to L2 (lines 15–17).
The ACS is also updated after the access to r is performed
(lines 18–19)). The traversal proceeds recursively when a
nested scope is encountered (lines 8, 22).

foreach task t do1
foreach reference r in task t where CACr,2 6= N2

AND CHMCr,2 = AH do
foreach task u potentially interfering with t’s3

execution do
CfSet := {r′ | r′ ∈ u AND4
CACr′,2 6= N AND r′ maps to the same
L2 cache set as r};
if CfSet 6= ∅ then CHMCr,2 := NC;5

Algorithm 3: L2 conflict miss analysis

B. L2 Cache Analysis

The L2 cache analysis step applies a similar approach
as the L1 analysis, based on abstract interpretation, with
adjustments to account for access propagation from L1
as well as inter-core conflicts. Algorithm 2 presents the

Figure 11: L2 cache conflict analysis

5.3.2 Cache Conflict Analysis

Cache block containing single instruction Shared L2 cache conflict anal-

ysis is the central component of our framework. It takes in two inputs, namely

the task interference graph (see Figure 8) generated by the WCRT analysis step

and the abstract cache states plus the classification corresponding to L2 cache

analysis for each core. If accurate task interference information is not available

(that is, in the first iteration of our method), all tasks executing on a different

core than the task under consideration (and are not dependent according to the

partial order of MSC) are assumed to be potentially conflicting. The goal of

this step is to identify all potential conflicts among the memory blocks from the

different cores due to sharing of the L2 cache.

Let T be a task executing on core 1 and can potentially conflict with the set

of tasks T ′ executing on core 2 according to the task interference graph. Now

let us investigate the impact of the L2 memory accesses of T ′ on the L2 cache

hit/miss status of the memory blocks of T . First, we notice that if a memory

reference of T ′ is always hit in the L1 cache, it does not touch the L2 cache.

Such memory reference will not have any impact on task T . So we are only

concerned with the memory references of T ′ that are guaranteed to access the

L2 cache (“Always”) or may access the L2 cache (“Uncertain”). For each cache

set C in the L2 cache, we collect the set of unique memory blocks M(C) of T ′

that map to cache set C and can potentially access the L2 cache (i.e., tagged

with “Always” or “Uncertain”).

23

5.3 Analysis Components 5 APPROACH

If a memory block m of task T has been classified as “Always Miss” or “Non-

Classified” for L2 cache, the impact of interfering task set T ′ cannot downgrade

this classification. Hence, we only need to consider the memory blocks of task

T that have been classified as “Always Hit” for L2 cache. Let m be one such

memory reference of T that has been classified as “Always Hit” in the L2 cache

and it maps to cache set C. If M(C) 6= ∅, then the memory accesses from

interfering tasks can potentially evict m from the L2 cache. So we change the

classification of m from “Always Hit” to “Non-Classified”. Note that actual

task interaction at runtime will determine whether the eviction indeed occurs,

thus the access is regarded as “Non-Classified” rather than “Always Miss”. The

pseudo-code of the cache conflict analysis is shown in Figure 11.

Handling large cache blocks We have so far implicitly assumed that a mem-

ory block contains only one instruction. In reality, a memory block contains

multiple instructions (specially for L2 caches) so as to exploit spatial locality.

These multi-instruction cache blocks introduce additional complications into our

timing analysis. Let m be a 16-byte memory block of task T containing four

32-bit instructions I1, I2, I3, I4. Further, m is completely contained within a

basic block in the program corresponding to task T . In a sequential execution

where there is no conflict from the other tasks, we are only concerned about cat-

egorizing the cache hit/miss status of instruction I1 in memory block m. This

is because, execution of I1 will bring in the entire memory block m to the cache

and hence I2, I3, I4 are guaranteed to be cache hits. However, in a concurrent

execution, the situation is very different. A memory access from an interfering

task can evict the memory block m from the cache between the execution of I1

and I2. In this case, when I2 is fetched, it can result in a cache miss. In other

words, in a concurrent execution, we can no longer work at the granularity of

memory blocks while computing cache hit/miss classification.

We handle large cache blocks (i.e., blocks with more than one instructions) in

the following manner. First, we notice that if a memory block has been classified

as “Always Hit” even after conflict analysis, it is guaranteed not to be evicted

24

5 APPROACH 5.3 Analysis Components

from the cache. However, a memory block with a classification of “Always Miss”

or “Non-Classified” can potentially incur additional cache misses at instruction

level due to conflicting memory accesses from the other core. For each such

memory block m mapped to cache set C, we check ifM(C) = ∅. If not, then we

modify the classification of all but the first instruction in m to “Non-Classified”.

The first instruction retains the original classification of “Always Miss” or “Non-

Classified”.

Optimization for Set-Associativity In the discussion so far, we blindly

converted each “Always Hit” reference to “Non-Classified” if there are potential

memory accesses to the same cache set from the other interfering tasks. However,

for set-associative caches, we can perform more accurate conflict analysis. Again,

let m be a memory reference of task T at program point p that has been classified

as “Always Hit” in the L2 cache and it maps to cache set C. Clearly, m is

present in the abstract cache state (ACS) at program point p corresponding

to must analysis. Let age(m) be the age of reference m in the ACS of must

analysis. The definition of ACS implies that m should stay in the cache for at

least N − age(m) unique memory block references where N is the associativity

of the cache [24]. Thus, if |M(C)| ≤ N − age(m), memory block m cannot be

evicted from the L2 cache by interfering tasks. In this case, we should keep the

classification of m as “Always Hit”.

5.3.3 WCRT Analysis

In this step, we take the results of the cache analysis at all levels to determine

the BCET and WCET of all tasks. Table 2 presents how we deduce the latency

of a reference r in the best and worst case given its classification at L1 and L2.

Here, hitL denotes the latency of a hit at cache level L, which consists of (1) the

total delay for cache tag comparison at all levels l : 1 . . . L, and (2) the latency

to bring the content from level L cache to the processing core. missL2, the L2

miss latency, consists of (1) the total delay for cache tag comparison at L1 and

L2 caches, and (2) the latency to access the reference from the main memory

25

5.3 Analysis Components 5 APPROACH

and bring it to the processing core.

Table 2: Access latency of a reference in best case and worst case given its
classifications

L1 cache L2 cache Access latency
Best-case Worst-case

AH – hitL1 hitL1

AM AH hitL2 hitL2

AM AM missL2 missL2

AM NC hitL2 missL2

NC AH hitL1 hitL2

NC AM hitL1 missL2

NC NC hitL1 missL2

As a general rule, an AH reference at level L incurs hitL latency for all

cases, and an AM reference at level L incurs missL latency for all cases. An NC

reference is interpreted as hits in the best case, and as misses in the worst case.

We assume an architecture free from timing anomaly so that we can assign miss

latency to an NC reference in the worst case. Having determined the latency

of each reference, we can compute the best-case and worst-case latency of each

basic block by summing up all incurred latencies. A shortest (longest) path

search is then applied to obtain the BCET (WCET) of the whole task.

In order to compute the WCRT of MSG, we need to know the time interval

of each task. The task ordering within a node of the MSG model (denoting an

MSC) is given by the partial order of the corresponding MSC. The task order-

ing across nodes of the MSG model are captured by the directed edges in the

MSG. Given a task t, we use four variables EarliestReady[t], LatestReady[t],

EarliestF inish[t], and LatestF inish[t] to represent its execution time infor-

mation. Given a task t, its execution interval is from EarliestReady[t] to

LatestF inish[t]. These notations are explained below:

• EarliestReady[t]/LatestReady[t]: earliest/latest time when all of t’s pre-

decessors have completed execution.

• EarliestF inish[t]/LatestF inish[t]: earliest/latest time when task t fin-

ishes its execution.

• separated(t, u): If tasks t and u do not have any dependencies and their

26

5 APPROACH 5.3 Analysis Components

Algorithm 2: EarlistTime and LatestTime Computation
of MSG, G

Algorithm 3: EarlistTime and LatestTime Computation
of MSG, G

of some tasks may lead to different inference scenario which
might change the latest times again. Thus, Latest times needs
a fixed point computation as shown in Algorithm 4.

Theorem IV.1. For any task t, the level 2 cache conflict
analysis does not change its BCET.

Proof: Our level 2 cache conflict analysis only consid-
ers the memory blocks classified as “Always Hit” for L2
cache as shown in Section IV-B. Some of these memory
blocks might be changed to “Non-Classified” due to interfer-
ence from conflicting tasks while others remain as “Always
Hit”. There are two possibilities according to Table I. One
possibility is memory blocks are classified as L1 “Always
Miss”, but for both two cases (L2 AH and NC), the memory
blocks are considered as L2 cache hit for the best case.
The other possibility is memory blocks are classified as L1
“Non-Classified”, but for both two cases (L2 AH and NC),
the memory blocks are considered as L1 cache hit for the
best case. Hence, our L2 cache analysis does not change the
task’s BCET.

Theorem IV.2. For a task t, its EarliestReady[t] does not
change across iterative L2 cache and WCRT analysis.

Proof: We prove Theorem IV.2 by contradiction.
Assume for a task t, its earlistReady[t] changes.
Thus, this must be due to the change of its prede-
cessors’s earliestReady[t], because a task’s BCET re-
mains unchanged according to Theorem IV.1. In the
end, earliestReady[src] must change (src are the tasks
without any predecessors), contradicting with fact that
earliestReady[src] = 0 always.

Now we can infer tasks that can potentially conflict in
L2 cache, that is, tasks whose execution intervals (from
EarliestReady to LatestF inish) overlap. This informa-
tion, if different from the previous iteration, will be fed
back to the cache conflict analysis to refine the classification
for L2 accesses to compute the updated WCET and time
interval for each task. Our iterative analysis is guaranteed
to terminate, because the task interferences are shown to
monotonically decrease.

Theorem IV.3. Task interferences monotonically decrease
in each loop iteration.

Proof: We prove Theorem IV.3 by induction on the
number of iterations for iterative L2 cache and WCRT

Algorithm 4: EarlistTime and LatestTime Computation
of MSG, G

step = 0 ;1
Initliaze separated[., .] to 0;2
foreach node i ∈ G do3

EarliestReady[i] = 0; LatestReady[i] = 0;;4

EarliestT imes(G);5
repeat6

LatestT imes(G);7
Separated Computation() ;8
step = step + 1;9

until separated[., .] is unchanged or step > MAX STEP10
;

function(EarliestTimes(MSG G))11

foreach node i ∈ G in topologically sorted order do12
EarliestF inish[i] = EarlistReady[i] + BCET [i];13
foreach immediate successor k of i do14

EarlistReady[k] =15
max(EarliestReady[k], EarlistF inish[i]);

function(LatestTimes(MSG G))16

foreach node i ∈ G in topologically sorted order do17
LatestStart[i] = LatestReady[i];18
Speer =19
{j|¬separated[i, j] ∧ i, j are on the same core};
foreach j ∈ Speer do20

LatestStart[i] = LatestStart[i] + WCET [j]; ;21

LatestF inish[i] = LatestStart[i] + WCET [i];22
foreach immediate successor k of i do23

latestReady[k] =24
max(latestReady[k], latestF inish[i]);

analysis.
Base Case: In the first iteration, tasks are assumed to
conflict with all the tasks on other cores (except those
excluded by partial order). This is the worst case task
interference scenario. Thus, the task interferences of the
second iteration definitely monotonically decrease compared
to the first iteration.
Inductive Step: We need to show that the task interference
monotonically decrease compared from iteration n to itera-
tion n + 1, given the assumption that the task interference
monotonically decrease from iteration n− 1 to n. We prove
by contradiction. Assume two tasks i and j do not interfere
at iteration n, but interfere at iteration n + 1. There are two
cases.
• EarliestReady[j] ≥ LatestF inish[i] at iteration n,

but EarliestReady[j] < LatestF inish[i] at iteration
n+1. This implies that LatestF inish[i] at iteration
n + 1 increases, because EarliestReady[j] remains
unchanged across iterations according to Theorem IV.2.
The LatesteF inish[i] at iteration n + 1 increase,
there are 3 possibilities according to Algorithm 4. At
iteration n + 1, the WCET of task i itself increases;
the WCET of some tasks which task i depends on

Figure 12: EarlistTime and LatestTime Computation

execution interval do not overlap or if asks t and u have dependencies ,

then separated(t, u) is assigned true; otherwise it is assigned false.

In a non-preemptive system, EarliestF inish[t] = EarliestReady[t]+BCET [t].

Also, task t is ready only after all its predecessors have completed execution, that

is, EarliestReady[t] = maxu∈P (EarliestF inish[u]), where P is the set of pre-

decessors of task t. For a task t without any predecessor EarliestReady[t] = 0.

However, latest finish time of a task is not only affected by its predecessors

but also its peers (non-separated tasks on the same core). For task t, we define

St
peers = {t′|¬separated[t′, t] ∧ t′, t are on the same core}

In other words, St
peers is the set of tasks whose execution interfere with task t

27

5.4 Termination Guarantee 5 APPROACH

on the same core. Let P be the set of predecessors of task t. Then we have

LatestReady[t] = maxu∈P (LatestF inish[u])

LatestF inish[t] = LatestReady[t] + WCET [t] +
∑

t′∈St
peers

WCET [t′]

However, the change of latest times of tasks may lead to different interference

scenario (i.e., separated[., .] may change), which might change the latest finish

times. Thus, latest finish times are estimated iteratively until the separated[., .]

do not change. separated[t, u] is initialized to 0 if tasks t and u do not have any

dependency and 1 otherwise. When iterative process terminates, we are able to

derive the final application WCRT as

WCRT = maxt LatestF inish(t)−mint′ EarliestReady(t′)

that is, the duration from the earliest start time of any task until the latest com-

pletion time of any task. The pseudo-code of the EarlistT ime and LatestT ime

computation is shown in 12. Note that this iterative process within WCRT

analysis is different from the iterative process shown in Figure 7.

A by-product of WCRT analysis is the set of tasks that can potentially con-

flict in L2 cache, that is, tasks whose execution intervals (from EarliestReady

to LatestF inish) overlap. This information, if different from the previous iter-

ation, will be fed back to the cache conflict analysis to refine the classification

for L2 accesses.

5.4 Termination Guarantee

Now we proceed to prove that the iterative L2 cache conflict analysis framework

shown in Figure 7 terminates.

Theorem 5.1. For any task t, the level 2 cache conflict analysis does not change

its BCET.

Proof. Our level 2 cache conflict analysis only considers the memory blocks clas-

sified as “Always Hit” for L2 cache as shown in figure 12. Some of these memory

28

5 APPROACH 5.4 Termination Guarantee

blocks might be changed to “Non-Classified” due to interference from conflicting

tasks while others remain as “Always Hit”. There are two possibilities according

to Table 2. One possibility is memory blocks are classified as L1 “Always Miss”,

but for both two cases (L2 AH and NC), the memory blocks are considered as L2

cache hit for the best case. The other possibility is memory blocks are classified

as L1 “Non-Classified”, but for both two cases (L2 AH and NC), the memory

blocks are considered as L1 cache hit for the best case. Hence, our L2 cache

analysis does not change the task’s BCET.

Theorem 5.2. For a task t, its EarliestReady[t] does not change across iterative

L2 cache and WCRT analysis.

Proof. We prove Theorem 5.2 by contradiction. Assume for a task t, its earlistReady[t]

changes. Thus, this must be due to the change of its predecessors’s earliestReady[t],

because a task’s BCET remains unchanged according to Theorem 5.1. In the

end, earliestReady[src] must change (src are the tasks without any predeces-

sors), contradicting with fact that earliestReady[src] = 0 always.

Now we can infer tasks that can potentially conflict in L2 cache, that is,

tasks whose execution intervals (from EarliestReady to LatestF inish) overlap.

This information, if different from the previous iteration, will be fed back to the

cache conflict analysis to refine the classification for L2 accesses to compute the

updated WCET and time interval for each task. Our iterative analysis is guar-

anteed to terminate, because the task interferences are shown to monotonically

decrease.

Theorem 5.3. Task interferences monotonically decrease (strictly decrease or

remain the same) across different iterations of our analysis framework.

Proof. We prove by induction on number of iterations.

Base Case: In the first iteration, tasks are assumed to conflict with all the tasks

on other cores (except those excluded by partial order). This is the worst case

task interference scenario. Thus, the task interferences of the second iteration

29

5.4 Termination Guarantee 5 APPROACH

definitely monotonically decrease compared to the first iteration.

Induction Step: We need to show that the task interferences monotonically

decrease from iteration n to iteration n + 1 assuming that the task interferences

monotonically decrease from iteration n − 1 to n. We prove by contradiction.

Assume two tasks i and j do not interfere at iteration n, but interfere at iteration

n + 1. There are two cases.

• EarliestReady[j] ≥ LatestF inish[i] at iteration n, but EarliestReady[j] <

LatestF inish[i] at iteration n+1. This implies that LatestF inish[i] at it-

eration n+1 increases because EarliestReady[j] remains unchanged across

iterations according to Theorem 5.1. LatesteF inish[i] at iteration n + 1

can increase due to three reasons: (a) at iteration n+1, the WCET of task

i itself increases; (b) the WCET of some tasks which task i depends on

directly or indirectly increases; and (c) the WCET of some tasks increases

as a result of which either the number of peers of task i (|Si
peers|) increases

or the WCET of a peer of task i increases. In summary, at least one task’s

WCET is increased. The WCET increase at iteration n + 1 of some task

implies that more memory blocks are changed from “Always Hit” to “Non-

Classified” due to the task interference increase at iteration n. However,

this contradicts with the assumption that task interference monotonically

decrease at iteration n.

• EarliestReady[i] ≥ LatestF inish[j] at iteration n, but EarliestReady[i] <

LatestF inish[j] at iteration n+1. The proof is symmetric to the first case.

As task interferences decrease monotonically across iterations, the analysis

must terminate.

30

6 EXPERIMENTS

6 Experiments

6.1 Setup

We evaluate our analysis technique on a real-world application adapted from

DEBIE-I DPU Software [7], shown in Figure 5 and Papabench [17], which is a

Unmanned Aerial Vehicle (UAV) control application. For the DEBIE bench-

mark, there are total 35 tasks. The code size and the mapping of tasks to the

cores in a 4-core system are shown in Table 3. As shown, the code size of tasks

vary from 320 bytes to 23,288 bytes. For the 2-core setting, the tasks assigned to

Core 3 and Core 4 are merged into Core 1. For Papabench, there are 28 tasks.

The code size of tasks vary from 96 bytes to 6,496 bytes. The detailed task size

and mapping of papabench are shown in Table 4. In Figure 13, we show the

average number of tasks mapped to a set for both DEBIE and Papabench. As

shown, there are quite number of conflicts at task level. With our accurate task

lifetime analysis, many tasks mapped to the set do not conflict due to disjoint

lifetime.

25
30
35

pe
r s

et

10
15
20
25

e

of
 T

as
ks

 p

PapaBench

DEBIE

0
5

1K 2K 4K 8K 16K 32K

Av
er

ag
e

Figure 13: Average number of task per set for different size of cache.

Our analysis is based on SimpleScalar [4]. As we are modeling the cache,

we assume a simple in-order processor with unit-latency for all data memory

references. We perform all experiments on a 3GHz Pentium 4 CPU with 2GB

memory. The individual tasks are compiled into SimpleScalar-compliant bina-

ries, and their control flow graphs (CFGs) are extracted as input to the cache

analysis framework. Our analysis produces the WCRT result when the iterative

work flow as shown in Figure 7 terminate. The estimate produced after the first

31

6.2 Comparison with Yan-Zhang’s method 6 EXPERIMENTS

iteration assumes that any pair of tasks assigned to different cores may execute

concurrently and evict each other’s content from the shared cache. This value

is essentially the estimation result following Yan-Zhang’s technique [26] — the

only available shared-cache analysis method in the literature (see Section 3).

The improvement in WCRT estimation accuracy due to our proposed analysis

is demonstrated by comparing this value to the final estimation result of our

technique after iterative tightening.

10
12

Code Size Distribution

4
6
8
10

#o
f t

as
ks

0
2

0-1k 1k-2k 2k-4k 4k-8k 8k-16k 16k-

Task Code Size

Figure 14: Code size distribution of DEBIE benchmark.

As we are modeling the cache, we assume a simple in-order processor with

unit-latency for all data memory references. We perform all experiments on a

3GHz Pentium 4 CPU with 2GB memory.

Our analysis produces the WCRT result when the iterative work flow as

shown in Figure 7 terminates. The estimate produced after the first iteration as-

sumes that any pair of tasks assigned to different cores may execute concurrently

and evict each other’s content from the shared cache. This value is essentially

the estimation result following Yan-Zhang’s technique [26] — the only available

shared-cache analysis method in the literature (see Section 3). The improvement

in WCRT estimation accuracy due to our proposed analysis is demonstrated by

comparing this value to the final estimation result of our technique. In the

following, we evaluate DEBIE benchmark first.

6.2 Comparison with Yan-Zhang’s method

Yan-Zhang’s analysis [26] is restricted to direct mapped cache. Thus, to make

a fair comparison, we first configure both L1 and L2 as direct mapped caches.

32

6 EXPERIMENTS 6.2 Comparison with Yan-Zhang’s method

Table 3: Characteristics and settings of the DEBIE benchmark
MSC Task Codesize (bytes) Core

1 boot main 3,200 1
2 pwr main1 9,456 1

pwr main2 3,472 1
pwr class 1,648 4

3 wr main1 3,408 1
wr main2 5,952 1
wr class 1,648 4

4 rcs main 3,400 1
5 rwd main 3,400 1
6 init main1 320 1

init main2 376 1
init main3 376 1
init main4 376 1
init health 5,224 2
init telecm 4,408 2
init acqui 200 4
init hit 616 4

7 sby health1 16,992 2
sby health2 448 2
sby telecm 23,288 2
sby su1 6,512 4
sby su2 4,392 4
sby su3 1,320 4

8 acq health1 16,992 2
acq health2 448 2
acq telecm 23,288 2
acq acqui1 3,136 4
acq acqui2 3,024 4
acq telemt 3,768 3
acq class 3,064 4
acq hit 8,016 4
acq su0 2,536 4
acq su1 6,512 4
acq su2 4,392 4
acq su3 1,320 4

33

6.2 Comparison with Yan-Zhang’s method 6 EXPERIMENTS

Table 4: Characteristics and settings of the Papa benchmark
Core Task Codesize (bytes)

1 fm0 808
fm1 96
fm2 96
fm3 1,696
fm4 136
fm5 248

1 fv0 520
fv0 656

2 fr0 384
fr1 4,552

2 fs0 272
fs1 992
fs2 1,840

3 am0 768
am1 96
am2 96
am3 1,240
am4 1,536

3 ad0 352
ad1 2,296
ad2 6,496

4 as0 560
as1 2,744
as2 1,720
as3 168
as4 656

4 ag0 400
4 ar0 5,520

34

6 EXPERIMENTS 6.2 Comparison with Yan-Zhang’s method

Yan-Zhang's Method Our Method w/o optimization wtih optimizationYan-Zhang's Method Our MethodYan Zhang s Method Our Method w/o optimization wtih optimizationYan Zhang s Method Our Method

26) 24)30)26

es

24

es

30

ds
)

24yc
le

23yc
le

25an
d

24

cy

23

cy25

us
a

22on

22

on

ou

20lli
o

21lio20(th20m
i 21

m
il

s
 (

18T
 (

20 (m15on
s

18
R

T 20

R
T 15

ct
io

16W
C

R

19

W
C

R

10vi
c6

d
W 9

W10Ev

14te
d 18ed

or
e

12m
at

17at
e

5co12tim 17imer

10Es
t

16Es
t

0nt
e

10
1 L2 8KB 2 L2 16KB 4 L2 32KB

E 16
1 2 4 8

E0
1 L2 8KB 2 L2 16KB 4 L2 32KB

I

1-core, L2:8KB 2-core, L2:16KB 4-core, L2:32KB 1way 2way 4way 8way1-core. L2:8KB 2-core. L2:16KB 4-core. L2:32KB

Core Configuration (L1: 2KB) Core Configuration (2-core, L1:2KB)Core Configuration (L1: 2KB)Core Configuration (L1: 2KB) Core Configuration (2 core, L1:2KB)

(a) DEBIE: WCRT Comparison (b) DEBIE: Inter-core Eviction Comparison (c) DEBIE: Set associativity optimization(a) DEBIE: WCRT Comparison (b) DEBIE: Inter-core Eviction Comparison (c) DEBIE: Set associativity optimization

w/o optimization wtih optimizationYan-Zhang's Method Our Method Yan-Zhang's Method Our Methodg

360s)360s) 700)

350
360

le
s360

le
s 700

s

350

yc340yc 600on

340 c
y

320s
cy 600

ct
io

330nd
 320

nd
s vi
c

320
330

sa
n

300an 500

e
E

320

ou
s300

us or
e

310th
o

280ho 400co
300
3 0

 (t

80

(th

00
te

r
300

R
T 260

R
T

300In
t

290

W
C

R

240C
R 300

280W240W
C

270
280

ed

220ed
 W 200

270

m
at

e220

at
e

260tim200m
a

100 60
1way 2way 4way 8wayEs

t00
1 core L2:2KB 2 core L2:4KB 4 core L2:8KBst

i 00
1 core L2:2KB 2 core L2:4KB 4 core L2:8KB 1way 2way 4way 8wayE1-core, L2:2KB 2-core, L2:4KB 4-core, L2:8KBEs 1-core. L2:2KB 2-core. L2:4KB 4-core. L2:8KB

C C fi ti (L1 1KB) Core Configuration (2-core, L1:256B)Core Configuration (L1: 1KB) Core Configuration (L1: 1KB)

(d) Papa: WCRT Comparison (e) Papa: Inter-core Eviction Comparison (f) Papa: Set associativity optimization(d) Papa: WCRT Comparison (e) Papa: Inter-core Eviction Comparison (f) Papa: Set associativity optimization

Figure 15: Comparison between Yan-Zhang’s method and our method and the
improvement of set associativity optimization.

Figure 15(a) shows the comparison of the estimated WCRT between Yan-Zhang’s

analysis and ours on varying number of cores. The size of L1 cache is 2KB bytes

with 16-byte block size. The L2 cache has 32-byte block size. The L2 cache

size is doubled with the doubling of the number of cores. We assume 1 cycle

latency for L1 hit, 10 cycle latency for L1 cache misses and 100 cycle latency

for L2 cache misses. When only one core is employed, the tasks execute non-

preemptively without any interference. Thus the two methods produce the exact

same estimated WCRT. In the 2-core and 4-core settings where task interferences

become significant to the analysis, our method achieves up to 15% more accuracy

over Yan-Zhang’s method.

As tasks are distributed on more cores, the parallelization of task execution

may reduce overall runtime. But at the same time, the concurrency gives rise

to inter-core L2 cache content evictions that contribute to an increase in task

runtime. In this particular experiments, we observe that the WCRT value can

increase (1-core to 2-core) as well as decrease (2-core to 4-core) with increasing

number of cores.

35

6.3 Set associative caches 6 EXPERIMENTS

In Figure 15(b), we compare the number of inter-core evictions estimated by

both methods for the same configurations as in Figure 15(a). When only one core

is employed, there is no inter-core evictions for both methods. For multi-core

systems, due to the accurate task interference, the number of inter-core evictions

of our method are much smaller than Yan-Zhang’s method as shown in Figure

15(b). This explains the WCRT improvement in Figure 15(a).

6.3 Set associative caches

Our method is able to handle set-associative caches accurately by taking into

account the age of the memory blocks. Figure 15(c) compares the estimated

WCRT with and without the optimization for set-associativity (see Section 5.3.2)

in a 2-core system. Without the optimization, all the “Always Hit” accesses are

turned into “Non-Classified” accesses as long as there are conflicts from other

cores, regardless of the memory blocks’ age. Here, L1 cache is configured as

2KB direct mapped cache with 16-byte block size and L2 cache is configured as

a 32KB set-associative cache with 32-byte block size, but varied associativity (1,

2, 4, 8). As shown in Figure 15(c), when associativity is set to 1 (direct mapped

cache), there is no gain from the optimization. However, for associativity ≥ 2,

the estimated WCRT is improved significantly with the optimization.

6.4 Sensitivity to L1 cache size

Figure 16(a) shows the comparison of the estimated WCRT on a 2-core system

where L1 cache size is varied but L2 cache size is kept as constant. Again both

L1 and L2 caches are configured as direct mapped caches due to the limitation

of Yan-Zhang’s analysis. Our method is able to filter out evictions among tasks

with separated lifetimes and achieves up to 20% more accuracy over Yan-Zhang’s

method.

36

6 EXPERIMENTS 6.5 Sensitivity to L2 cache size

Y Zh ' M th d O M th dYan-Zhang's Method Our Method

120s)

100cl
es

100

n
cy

80lio
n

60(m
il

40

60

R
T

 (

40

W
C

R

20ed
 W

0m
at

e

0
512B 1KB 2KB 4KBst

im

512B 1KB 2KB 4KBEs

Core Configuration (2-core, L2: 16KB)

() V i 1 Si(a) Varying L1 Size

Yan-Zhang's Method Our Method

26

Yan Zhang s Method Our Method

26

es
)

25

cy
cl

24

on
 c

23

m
ill

io

22 (
m

21C
R

T

20

21

W
C

19

20

te
d

19

im
at

18
4KB 8KB 16KB 32KBEs

ti

4KB 8KB 16KB 32KBE

Core Configuration (2-core, L1: 2KB)g (,)

(b) V i L2 Si(b) Varying L2 Size

Figure 16: Comparison of estimated WCRT between Yan-Zhang’s method and
our method for varying L1 and L2 cache sizes.

6.5 Sensitivity to L2 cache size

Figure 16(b) shows the comparison of the estimated WCRT on a 2-core system

where L2 cache size is varied but L1 cache size is kept as constant. Here too, both

L1 and L2 cache are configured as direct mapped caches. We observe slightly

larger improvement as we increase the L2 cache size. In general, more space in L2

cache reduces inter-task conflicts. Without refined task interference information,

however, there can be significant pessimism in estimating inter-core evictions,

which limits the benefit of the larger space in the perspective of Yan-Zhang’s

analysis. As a result our analysis is able to achieve lower WCRT estimates as

compared to Yan-Zhang’s method.

6.6 PapaBench

For Papabench, we evaluate our analysis in terms of the aforementioned three

perspectives. In Figure 15(d) and (e), we compare the WCRT estimation and

37

6.7 Scalability 6 EXPERIMENTS

30
L1:2x512B

15
20
25

m
e

(s
ec

) L1:2x512B
L1:2x1KB
L1:2x2KB
L1:2x4KB

5
10
15

al
ys

is
 T

im L1:4x512B
L1:4x1KB
L1:4x2KB

0
2KB 4KB 8KB 16KB 32KB

A
na

Sh d L2 C h Si

L1:4x4KB

Shared L2 Cache Size

Figure 17: Runtime of our iterative analysis .

inter-core eviction. The L1 cache is 1KB bytes with 16-byte block size. L2

cache double its size with increase number of cores, starting with 2KB for 1-core

system. For papabench, we achieves about 10% more accuracy over Yan-Zhang’s

method in terms of WCRT estimation. For set associativity optimization, L1

cache is 256B and L2 cache is configured as 8KB set-associative cache with 32-

byte block size, but varied associativity (1, 2, 4, 8). The optimization gain is

shown in Figure 15(f).

6.7 Scalability

Finally, Figure 17 sketches the runtime of our complete iterative analysis (L2

cache and WCRT analysis) for various configurations. It takes less than 30

seconds to complete our analysis for any considered settings.

38

7 FUTURE WORK

7 Future Work

In future, we are planning to extend the work in several directions. This will

also amount to relaxing or removing the restrictions in our current analysis

framework.

Currently, we only handle the instruction memory hierarchy in this work.

We assume that the data memory references do not interfere in any way with

the L1 and L2 instruction caches modeled by us or data cache are separated

from instruction cache and we do not model that.

Instead of LRU cache replacement policy, we can extend our work to handle

other practical cache replacement policies such as pseudo-LRU, FIFO and so on.

We also assume that there is no code sharing between tasks. However, that

is not the actual case since library calls are common in programs. We can model

code sharing directly to capture the constructive effect of shared code across

tasks.

39

8 CONCLUSION

8 Conclusion

In this thesis, we develop a worst-case response time (WCRT) analysis of con-

current programs, where the concurrent execution of the tasks is analyzed to

bound the shared cache interferences.

We have presented a worst-case response time (WCRT) analysis of concur-

rent programs running on shared cache multi-cores. Our concurrent programs

are captured as graphs of Message Sequence Charts (MSCs) where the MSCs

capture ordering of computation tasks across processes. Our timing analysis it-

eratively identifies tasks whose lifetimes are disjoint and uses this information to

rule out cache conflicts between certain task pairs in the shared cache. Our anal-

ysis obtains lower WCRT estimates than existing shared cache analysis methods

on a real-world application.

40

REFERENCES REFERENCES

References

[1] Message Sequence Charts. ITU-TS Recommendation Z.120, 1996.

[2] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior pre-

diction by abstract interpretation. Lecture Notes in Computer Science,

1145:52–66, 1996.

[3] R. Alur and M. Yannakakis. Model checking message sequence charts. In

CONCUR, 1999.

[4] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for

computer system modeling. IEEE Computer, 35(2), 2002.

[5] J. Brown. Application-customized CPU design: The Microsoft Xbox 360

CPU story. Available on: http://www-128.ibm.com/developerworks/

power/library/pa-fpfxbox/?ca=dgr-lnxw07XBoxDesign, 2005.

[6] L.M.N. Coutinho, J.L.D. Mendes, and C.A.P.S. Martins. MSCSim – Mul-

tilevel and Split Cache Simulator. In 36th Annual Frontiers in Education

Conference, 2006.

[7] European Space Agency. DEBIE – First standard

space debris monitoring instrument, 2008. Available at:

http://gate.etamax.de/edid/publicaccess/debie1.php.

[8] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-

associative instruction caches. In RTSS, 2008.

[9] R. Heckmann et al. The influence of processor architecture on the design

and the results of WCET tools. Proceedings of the IEEE, 9(7), 2003.

[10] C.-G. Lee et al. Analysis of cache-related preemption delay in fixed-priority

preemptive scheduling. IEEE Transactions on Computers, 47(6):700–713,

1998.

41

REFERENCES REFERENCES

[11] J. W. Lee and K. Asanovic. METERG: Measurement-based end-to-end per-

formance estimation technique in QoS-capable multiprocessors. In RTAS,

2006.

[12] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software:

beyond direct mapped instruction caches. In RTSS, 1996.

[13] T. Lundqvist and P. Stenstrom. An integrated path and timing analysis

method based on cycle-level symbolic execution. Real-Time Systems, 17(2-

3), 1999.

[14] F. Mueller. Timing predictions for multi-level caches. In ACM SIGPLAN

Workshop on Language, Compiler, and Tool Support for Real-Time Sys-

tems, 1997.

[15] F. Mueller. Timing analysis for instruction caches. Real-Time Systems,

18(2-3), 2000.

[16] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-

related preemption delay. In CODES+ISSS, 2003.

[17] F. Nemer and et al. Papabench: A free real-time benchmark. In WCET

Workshop, 2006.

[18] P. Puschner and M. Schoeberl. On composable system timing, task timing,

and WCET analysis. In WCET Workshop, 2008.

[19] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst. Reli-

able performance analysis of a multicore multithreaded system-on-chip. In

CODES+ISSS, 2008.

[20] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.

POWER5 System Microarchitecture. Available on: http://researchweb.

watson.ibm.com/journal/rd/494/sinharoy.html, 2005.

[21] J. Staschulat and R. Ernst. Multiple process execution in cache related

preemption delay analysis. In EMSOFT, 2004.

42

REFERENCES REFERENCES

[22] Sun Microsystems, Inc. UltraSPARC T1 Overview. Available on: http:

//www.sun.com/processors/UltraSPARC-T1/index.xml, 2006.

[23] Y. Tan and V. Mooney. WCRT analysis for a uniprocessor with a unified

prioritized cache. In LCTES, 2005.

[24] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET pre-

diction by separated cache and path analyses. Real-Time Systems, 18(2/3),

2000.

[25] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-

related preemption delay in preemptive real-time systems. In CODES, 2000.

[26] J. Yan and W. Zhang. WCET analysis for multi-core processors with shared

L2 instruction caches. In RTAS, 2008.

43

