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Summary

This thesis contributes to control literature in the following three topics: (1) Forced

and subharmonic oscillation in relay feedback systems, (2) Design of sinusoidal

dither in relay feedback systems, and (3) Limit cycles in quantized feedback sys-

tems.

Forced oscillations is a phenomenon where the external signal causes oscilla-

tions of the same frequency to occur in the system. The necessary and sufficient

conditions for forced and subharmonic oscillations (FO and SO, respectively) in an

externally driven single loop relay feedback system (RFS) are analyzed. It is shown

that FO of any frequency will always occur in the RFS if and only if the amplitude

of the external forcing signal is larger than some minimum. This minimum ampli-

tude is determined by graphical/numerical approaches. In contrast, the existence

of SO is dependent on both the amplitude and frequency of the external signal.

Interestingly, one may not be able to obtain any SO for arbitrary frequencies even

if the amplitude of the external signal is large. Given this important fundamental

difference, the range of frequencies where SO can exists is also determined, along

with the necessary minimum amplitude of the external signal required for the SO

vii
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to occur.

The use of dithers to achieve signal stabilization and quenching of limit cycles

is well known in nonlinear systems. The idea is similar to the phenomenon of

forced oscillations (FO). This idea is used to design a dither signal which results

in reduced oscillation amplitudes. The minimum dither frequency, fmin, which

satisfies this amplitude reduction specification is determined. fmin, is also shown

to be independent of the dither shape. The design of an optimal sinusoid with the

least amplitude is also presented. Analytical expressions for fmin are obtained for

first and second order plants. For higher order systems, the identification of fmin

using the Tsypkin loci is shown.

In the last part of this thesis, a more general nonlinearity (the quantizer) in

a feedback system is studied. It is well known that a quantized feedback system

can be stabilised by increasing the resolution of the quantizer. However, limit

cycles have also been found under certain conditions at high resolution. These

necessary and sufficient conditions for the existence of limit cycles are examined.

Solutions for the limit cycle period and switching instants obtained via the inverse-

free Newton’s method are used to assess the stability of the limit cycle under high

resolution with the Poincaré map. The stability of the limit cycle can be identified

by evaluating the magnitude of eigenvalues of the Jacobian of the Poincaré map.

Analytical results on the existence of limit cycles in first systems are presented.

The bounds on the quantization resolution for stable limit cycles in a second order

system are also identified.
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Chapter 1

Introduction

1.1 Motivation

The advent of automation in various fields of engineering encouraged the develop-

ments and applications of control theory. In the area of linear control, extensive

results were developed. However, in many real life systems, nonlinearities are com-

monly present. Classical nonlinear control theory lays the foundation for many

advanced studies in modern control today. Nevertheless, some problems remain

open and their solutions are sought. In this thesis, some of these problems are

studied. They are listed as follows.

A. Forced and Subharmonic Oscillations under Relay Feedback

Relay feedback as a control technique has received much attention since 1887

when Hawkins discovered that a temperature control system has a tendency to

oscillate under discontinuous control. Continued attention on relay feedback was

due to its widespread use in mechanical and electro-mechanical applications. Since

1
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then, the study of the relay feedback system (RFS) has been spurred on by the

modern developments in supervisory switched systems and variable structure con-

trollers. The latest application of relay feedback is in the use of its limit cycling

properties which are useful in controller tuning and identification (Bernardo and

Johansson, 2001; Tsypkin, 1984; Lin et al., 2002).

The application of the RFS in a wide range of settings has prompted extensive

studies on its behaviour. Due to the switching nature of the relay, the RFS is

essentially nonlinear and the output of the relay is discontinuous at its switching

instants. Thus, the RFS naturally falls into the class of non-smooth systems whose

study is well covered in (Filippov, 1988). The complex dynamics associated specif-

ically with the relay results in various interesting phenomena such as the existence

of fast switches, sliding motion and limit cycling. The existence of fast switches and

sliding motion has been extensively studied in (Johansson et al., 1999), (Bernardo

and Johansson, 2001) and (Fridman, 2002) while some global stability results of

limit cycles in the RFS were shown in (Goncalves et al., 1999).

There is also substantial literature in the general area of non-smooth dynamical

systems with external excitation. Two classical examples are (Feigin, 1970) and

(Nordmark, 1991). Other works include (Feigin, 1974; Feigin, 1994; A. Gelig,

1998; Piccardi, 1994). Such externally forced RFS are also observed in multi-loop

controller tuning, originally introduced by Astrom and Hagglund in 1984 (Åström

K J, 1984) and later extended to multi-loop processes in (Loh et al., 2000), wherein

signals from one loop drives another loop and cause a change in the oscillation

behaviours in the other loops. With the extension of the auto-tuning techniques to
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multivariable systems, a better understanding of FO was given in (Lim et al., 2005).

Our quest to study the externally driven RFS (see Figure 1.1) also has to

do with the existence of other physical phenomena which includes self-excited

oscillations. Such self oscillations disturb the normal operation of the system

and cause increased wear and tear of system elements. In some cases, the stress

created by the self oscillations can be reduced by inducing FO or SO of lower

amplitudes. Simulation studies were performed on the missile roll control system in

(Taylor, 2000; Gibson, 1963). By inducing FO or SO of an appropriate frequency,

smaller oscillations as compared to the system’s self oscillations were obtained.

For example, with an external sinusoidal signal of frequency ω = 84.9 rad/s and

amplitude R = 0.1 and 0.55, SO and FO were obtained respectively, as shown

in Figure 1.2. The advantage is that the FO and SO amplitudes are much lower

than that of the self-oscillations. In (Luigi Iannelli, 2003a; Luigi Iannelli, 2003b;

Luigi Iannelli, 2006; Naumov, 1993; A. A. Pervozvanski, 2002; Mossaheb, 1983),

damping of self-excited oscillations by external signals was also shown. All these

applications motivate the need to identify exact conditions required to achieve FO

and SO in an externally driven RFS.

There are many methods which attempt to predict the existence of oscillations

in RFS. The most common approach being the describing functions. Time domain

approaches are also presented in (Hamel, 1949; J.K.-C. Chung, 1966; Q.-G. Wang,

2003). Other methods by Tsypkin (Tsypkin, 1984) and Atherton (Atherton, 1982)

attempted to identify the amplitude of the external forcing signal required for FO

and SO. However, they did not present explicit minimum requirements on the
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Fig. 1.1. Single loop with external forcing signal.
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Fig. 1.2. Amplitudes due to FO and SO are lower than that of self oscillation.
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external signal. Neither was there clear distinctions between FO and SO. Unlike

FO, the prediction of SO is more difficult because they cannot be observed for all

f(t) of arbitrary frequencies and amplitudes. Furthermore, under small differences

in conditions, the order of SO also changes. This problem is illustrated in Figure

1.3 where the order of SO changes from ν = 7 to ν = 9 when θ (which is the

initial phase of f(t)) changes from 3.7726 rad to 0 rad with all other conditions

unchanged.
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Fig. 1.3. (a) SO of ν = 7 obtained with θ = 3.7726. (b) SO of ν = 9 obtained with
θ = 0.

In the thesis, the minimum conditions required for FO and SO to occur in a

RFS are presented. As a result of the analysis, a fundamental difference between

FO and SO was uncovered. In particular, we show that FO is always possible at

any frequency if and only if certain minimum conditions on the external signal
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are met. This, however, does not apply to SO. SO requires specific conditions

involving the frequency and amplitude of the external signal. Further new results

involving the orders of SO were also obtained from our analysis.

B. Design of Amplitude Reduction Dithers in Relay Feedback Sys-

tems

Switching is an important concept widely used to control certain behaviours

in a system. In power electronics, for instance, switching is used effectively in

the control of converters. The problem with switching, however, is that it causes

great difficulties in the analysis of the behaviour in the overall nonlinear system,

especially for discontinuous systems involving relays. For example, in the dithered

RFS considered in Luigi Iannelli et al. (Luigi Iannelli, 2003a; Luigi Iannelli, 2003b),

only an approximate analysis was proposed despite having a very specific dither

signal. Their analysis led to a lower bound of the dither frequency which guarantees

the stability of the nonsmooth system. The final bound was also shown to be

conservative.

As pointed out in Pervozvanski and Canuda de Wit (A. A. Pervozvanski, 2002),

rigorous analysis for dithered discontinuous system such as that of a dithered

RFS cannot be achieved using conventional methods. The common approach is

generally to approximate the original discontinuous dithered system with a smooth

system. Stability can be proven for a sufficiently high dither frequency by the use of

the classical averaging theory, formerly developed by Zames and Shneydor(Zames

and Falb, 1968; G. Zames, 1977; G. Zames, 1976) for continuous nonlinear systems.

Other related works can be found in Mossaheb(Mossaheb, 1983), Luigi Iannelli et
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al.(Luigi Iannelli, 2006) and Lehman and Bass(Brad Lehman, 1996). Their results

showed that a sufficiently high frequency dither can reduce the limit cycles in the

dithered system to a negligible ripple but exact conditions on the dither periods

and amplitudes were not given.

In our previous work on forced oscillation in RFS (Loh et al., 2000; Lim et al.,

2005), we have given very specific conditions for the design of external sinusoidal

dither signals that can induce oscillations of the same frequency as this dither

signal. The analysis given was exact and does not rely on any approximation

theory. The results were also necessary and sufficient. In this part of the thesis,

we extend the results in (Loh et al., 2000; Lim et al., 2005) to design sinusoidal

dither signals that will result in stable oscillations of arbitrarily low amplitudes. A

lower bound on the dither frequency, fmin, (equivalently an upper bound, T ∗
f , on

the dither period) is first determined based on the response of the linear system to

square wave inputs. For dithers with period Tf < T ∗
f , the oscillation amplitudes

in the RFS can be guaranteed to decrease monotonically with decreasing Tf . The

amplitude of the sinusoidal dither signal can be designed based on the analysis

in (Loh et al., 2000; Lim et al., 2005). This result is much stronger than other

previous results because bounds obtained are tight and requires no approximation.

It exploits the specific structure of the relay and the linear system, allowing exact

responses to be written and analyzed.

Our analysis is also not limited to the sinusoidal dither. In fact, it applies to

any periodic symmetric dither signals of other shapes. This is because as long as

the dither amplitude is sufficiently large to induce forced oscillations of period Tf
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in the system, the input to the plant is always a symmetric square wave due to the

relay switchings. Thus the plant’s steady state output is only dependent on the

relay’s switching period Tf and is independent of the actual shape of the dither

signal. Therefore, the identification of the bound on the dither period in this paper

can be applied to other dither shapes.

C. Limit Cycles in Quantized Feedback Systems under High Quanti-

zation Resolution

As early as 1956, Kalman studied the effect of quantization in a sampled

data system and pointed out that the feedback system with a quantized con-

troller would exhibit limit cycles and chaotic behaviour(Kalman, 1956; Toshim-

itsu U, 1983). Since then, many methods have been proposed to eliminate limit

cycles in SISO and MIMO quantized feedback systems such as increasing the quan-

tization resolution, dithering the quantizer with a DC signal and stabilising con-

trollers design etc (Curry, 1970; R.K. Miller and Farrel, 1989; K, 1991; Juha Kau-

raniemi, 1996; J.D. Reiss, 2005; Delchamps, 1990; Fu and Xie, 2005). As compared

to the other methods, the most direct method which is to increase the quantizer

resolution, will be examined in this paper.

In the current literature, a standard assumption is that the quantizer param-

eters are fixed in advance and cannot be changed. However, in a real-life system

like the digital camera, the resolution can be easily adjusted in real time(Liberzon,

2003). Hence, we adopt the approach that the quantizer resolution can be adjusted.

In this paper, the problem structure we examine is the hybrid system, which is a

continuous-time system with a uniform quantizer in feedback. The recent paper
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(Brockett & Liberzon, 2000) shows that if a linear system can be stabilised by

a linear feedback law, then it can also be globally asymptotically stabilised by a

hybrid quantized feedback control policy.

Under high quantizer resolution, the uniform quantizer resembles a linear gain

with many minute switches. Hence, if the continuous-time system is stable un-

der negative closed loop feedback, the hybrid system is indeed expected to sta-

bilise. In fact, many control methodologies derive stability by increasing the

quantization resolution.(R.W. Brockett, 2000; Liberzon, 2003) However, in this

paper, we present the existence of limit cycles under high quantizer resolution.

There exist literature on the conditions required for limit cycles (Marcus Rubens-

son, 2000; Goncalves, 2005) but the problem under high resolution has not been

examined, to the best of our knowledge. Thus, there is a need to study the be-

haviour of the system under high resolution in greater depth.

For the evaluation of the limit-cycle properties of the hybrid system, the inverse-

free Newton’s method is used(Y. Levin, 2003). As the inverse Jacobian for the

hybrid system does not exist in many cases, the conventional Newton’s method

cannot be applied. Multiple solutions of the switching instants and period can be

obtained with the inverse-free Newton’s method, depending on the initial states

of the system. Due to multiple discrete levels in the quantizer, it provides an

additional degree of freedom for the limit-cycle characteristics. For instance, both

a 1-step limit cycle and a 2-step limit cycle can be reached with different initial

conditions in a hybrid system with a 40 step quantizer and the switching instants

and the periods of each limit cycle can differ. Thus, the limit cycle solution is
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non-unique, unlike the relay (1-step quantizer) feedback system. This additional

degree of freedom can be reduced by fixing the number of levels expected in a limit

cycle. If so, we are able to identify the limit cycle solution through the necessary

conditions required. A further check on the stability of the limit cycle via the

Poincaré map reveals the existence of the limit cycle in the system.

1.2 Contributions

In this thesis, new results in forced and subharmonic oscillations for relay feedback

systems are given. The idea from forced oscillations is applied to design sinusoidal

dither signals that will result in stable oscillations of arbitrarily low amplitudes.

For a more general nonlinearity, the quantizer, the conditions for the existence

and stability of limit cycles in quantized feedback systems under high quantization

resolution are examined. Detailed contributions in each of these areas are given as

follows:

A. Forced and Subharmonic Oscillations under Relay Feedback

The necessary and sufficient conditions for forced and subharmonic oscillations

(FO and SO, respectively) in an externally driven single loop relay feedback system

(RFS) are examined. It is shown that FO of any frequency will always occur in the

RFS if and only if the amplitude of the external forcing signal is larger than some

minimum. This minimum amplitude can be determined by graphical/numerical

approaches. In contrast, the existence of SO is dependent on both the amplitude

and frequency of the external signal. The main contribution of this thesis lies in the
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discovery of this fundamental difference between FO and SO. FO is possible for any

frequency of the external forcing signal as long as its amplitude was sufficiently

large. This was however not the case for SO. A complex relationship between

frequency, amplitude and ν exists for SO. Specifically, not all forcing signals can

drive the RFS at any order ν even if the amplitude of the external signal is large.

The ranges of frequencies where SO of certain orders can be obtained were derived.

Results for FOPDT plants were completely given. Other behaviours for higher

order plants were also presented.

B. Design of Amplitude Reduction Dithers in Relay Feedback Sys-

tems

The idea from the phenomenon of FO is used to design a dither signal which

results in reduced oscillation amplitudes. The minimum dither frequency, fmin,

which satisfies this amplitude reduction specification is determined. fmin, is also

shown to be independent of the dither shape. Furthermore, if the dither is a

sinusoid, the design of an optimal sinusoid with the least amplitude is presented.

Analytical expressions for fmin are obtained for first and second order plants. For

higher order systems, it is shown how the Tsypkin loci can be used to identify

fmin. Two motivating examples on the missile roll control system and the control

of a DC motor is presented.

C. Limit Cycles in Quantized Feedback Systems under High Quanti-

zation Resolution

For a more general nonlinearity (the quantizer), the existence of limit cycles

under high quantizer resolution is examined. It is well known that a quantized
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feedback system can be stabilised by increasing the resolution of the quantizer.

However, limit cycles have also been found under certain conditions at high reso-

lution. These necessary and sufficient conditions for the existence of limit cycles

are examined. Solutions for the limit cycle period and switching instants obtained

via the inverse-free Newton’s method are used to assess the stability of the limit

cycle under high resolution with the Poincaré map. The stability of the limit cycle

can be identified by evaluating the magnitude of eigenvalues of the Jacobian of the

Poincaré map. Analytical results on the existence of limit cycles in first systems

are presented. The bounds on the quantization resolution for stable limit cycles in

a second order system are also identified.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents the results on the forced and

subharmonic oscillations in an externally driven single loop relay feedback system

(RFS). In the subsequent Chapter 3, the idea of forced oscillations is extended to

design dithers in relay feedback systems that will result in stable oscillations of

arbitrarily low amplitudes. Chapter 4 examines the conditions for limit cycles in a

quantized feedback system under high quantization resolution. Finally, conclusions

and suggestions for further works are drawn in Chapter 5.



Chapter 2

Forced and Subharmonic

Oscillations under Relay Feedback

2.1 Introduction

In this chapter, the minimum conditions required for FO and SO to occur in a RFS

are presented. As a result of the analysis, a fundamental difference between FO

and SO was uncovered. In particular, we show that FO is always possible at any

frequency if and only if certain minimum conditions on the external signal are met.

This, however, does not apply to SO. SO requires specific conditions involving the

frequency and amplitude of the external signal. Further new results involving the

orders of SO were also obtained from our analysis.

The chapter is organised as follows. The problem formulation is presented in

Section 2.2 and the necessary and sufficient conditions for periodic switching and

their analysis are shown in Section 2.3. Section 2.4 analyses the existence of the

13
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SO orders, ν, and presents the simulation results. Conclusions are given in Section

2.5.

2.2 Problem Formulation

Consider the RFS with an external forcing signal, f(t), as shown in Figure 2.1.

G(s) is a linear system whose state-space representation is

ż(t) = Az(t) + Bu(t− L), (2.1)

c(t) = Cz(t),

where A ∈ Rm×m is assumed to be Hurwitz and non-singular; B ∈ Rm×1 and

C ∈ R1×m; z ∈ Rm×1 is the state vector; L ≥ 0 is the time delay; u(t), c(t) ∈ R are

the input and output, respectively. The ideal relay is given by

u(t) =





h, y(t) < 0;

−h, y(t) ≥ 0,

(2.2)

where h > 0 and y(t) is the output of the RFS. The external forcing signal is a

sinusoid given by

f(t) = R sin(ωt + θ), (2.3)

with period denoted by T = 2π/ω. Thus,

y(t) = c(t) + f(t). (2.4)

The transfer function of G(s) is then given by

G(s) = e−sLC(sI − A)−1B.
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For the simplicity and convenience of our derivation, we assume that the plant is

stable, i.e. lims→∞ G(s) = 0, and denote the system presented by (2.1)–(2.4) as

ΣL.

( )u t  r(t)  ( )x t  

0( ) sin( )ff t R t !" #  

( )c t  ( )y t  #  

$  

 #  

 #  
  G(s)

Fig. 2.1. Single loop with external forcing signal.

Define the switching plane

F(t) := {z(t) : Cz(t) + f(t) = 0},

which is the (m − 1)-dimension hyperplane where the total output vanishes, as

illustrated in Figure 2.2. On either side of F(t), the feedback system is linear.

From (2.1), when Cz(t)+f(t) > 0, ż(t) = Az(t)−Bh, while when Cz(t)+f(t) < 0,

ż(t) = Az(t) + Bh. Since f(t) is an independent input, a sufficiently large f(t)

guarantees the consecutive switchings of z(t) on F(t), which does not tend to any

fixed point of the linear system.

Definition 2.1 (Forced and Subharmonic Oscillations). For ΣL, if there exists

tf > 0 and some t0 ≥ 0 such that the output of the relay, u(t), satisfies

1. u(t + tf/2) ≡ −u(t),∀t ≥ t0;
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Cz(t) + f(t) < 0

y(t) = 0

Cz(t) + f(t) > 0

Fig. 2.2. Illustration of switching plane.

2. Tf = min{tf} = νT = 2νπ/ω, ν ∈ N+ is odd,

then u(t) switches periodically with a fundamental period, Tf = νT , after t > t0.

We define forced oscillation (FO) to be the case when ν = 1 and subharmonic

oscillation (SO) corresponds to when ν > 1.

Remark 2.1. The time t = t0 marks either the beginning of or any time after steady

state switching has occurred or after all initial transients have decayed. In this

chapter, we also assume t0 to correspond to a positive relay switch.

Remark 2.2. Steady state switching in a RFS is not limited to only FO or SO. There

are other types of switchings which are characterised by more complex switchings

which are not investigated in this chapter.

Figure 2.3 shows some possible oscillation patterns of ΣL. The SO in Figure

2.3 is of order ν = 3 because the frequency of f(t) is 3 times that of the relay
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switchings. When neither FO or SO exists, self oscillations of frequency ωs may

be seen or some complex switchings may also occur. In Figure 2.3, an example of

complex oscillation is shown where the time intervals between relay switchings is

not a constant. Sometimes these are referred to as quasi-periodic oscillations.
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Fig. 2.3. Different oscillations in an externally driven RFS.

For t > t0 + ∆t, ∆t > 0, following the periodic switchings of the relay, the

output, c(t), can be expressed in terms of the frequency responses of the plant

c(t0 + ∆t) =
4h

π

∞∑

k=odd

1

k
Im

{
G(jkωf )e

jkωf∆t
}

. (2.5)

where ωf = 2π/Tf is the frequency of the relay switchings.

In time domain, by assumption in Remark 2.1, we have the following state
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responses :

ż(t) = Az(t)−Bh t ∈ (t0, t0 + L)

ż(t) = Az(t) + Bh t ∈ (t0 + L, t0 + Tf/2)

(2.6)

By solving for z(t) under the constraint that z(t0) = −z(t0 + Tf/2), we obtain

z(t0 + ∆t) =





eAtz(t0) +
(
I − eA∆t

)
A−1Bh, ∆t ∈ [0, L];

eAtz(t0) +
(
2eA(∆t−L) − eA∆t − I

)
A−1Bh, ∆t ∈ [L, Tf/2].

(2.7)

where z(t0) = − (
I + eATf /2

)−1 (
2eA(Tf /2−L) − eATf /2 − I

)
A−1Bh.

With these in mind, we now investigate: (i) the minimum amplitude R, and,

(ii) the frequency ranges (ω) of f(t), for the existence of FO or SO.

2.3 Conditions for Periodic Switching

Without loss of generality, we set t0 = 0 and rewrite ∆t as t. At the switching

instants corresponding to t = mTf/2, m = 0, 1, 2, . . ., the output, y(t), of ΣL

satisfies

y(mTf/2) = 0, (−1)mẏ(mT−
f /2) < 0 (2.8)

Since (2.8) is imposed only at every half period, it is insufficient to guarantee

switchings at only these points, as shown in Figure 2.3. In order to prevent addi-

tional switchings in between, another condition is required as follows :

(−1)my(t) < 0, t ∈ (mTf/2, (m + 1)Tf/2) . (2.9)

It is well known that (2.8) is only a necessary condition for switching. It exists

only if stability of the limit cycles can be guaranteed. One sufficient condition that
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guarantees this stability is given by Atherton (Atherton, 1982) as the following

lemma.

Lemma 2.1 (Atherton 1982, (Atherton, 1982)). For the RFS given by (2.1)–(2.4),

stable FO or SO exist if

(−1)mẏ(mTf/2) ≤ − 2h

πKc

, (2.10)

where Kc is critical gain of the linear element, G(s).

The proof of Lemma 2.1 is based on incremental gain. More details can be

found in (Atherton, 1982). With this, we now have the following necessary and

sufficient conditions for FO or SO.

Proposition 2.1. For the RFS in (2.1) - (2.4), FO or SO will exist if and only

if the following conditions are satisfied:

(C1) y(mTf/2) = 0, m = 0, 1, 2, . . .

(C2) (−1)mẏ(mTf/2) ≤ − 2h
πKc

< 0

(C3) (−1)my(t) < 0 t ∈ (mTf/2, (m + 1)Tf/2).

(2.11)

Proof. Necessity : It is obvious that when stable FO or SO takes place, (C1)-(C3)

are satisfied.

Sufficiency : Conditions (C1) and (C2) ensures stable periodic switching at every

t = mTf/2, m = 0, 1, 2, . . . and by further requiring (C3), additional switchings

between t = mTf/2 and t = (m + 1)Tf/2 will not occur. Subsequently, steady

periodic switchings are sustained.
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Remark 2.3. The key point is that (C1) and (C3) are only necessary conditions

and cannot guarantee stable limit cycles. (C2), on the other hand, guarantees

stability and hence the existence of (C1) and (C2).

Remark 2.4. As the conditions in Proposition 2.1 are necessary and sufficient, it

suffices to consider (C1) - (C3) for only one half period. Thus in the subsequent

analysis, it is convenient to consider only m = 0.

As shown in (2.4), the output of the RFS y(t) is a summation of the plant

output and the external forcing signal. Thus, the (C1) - (C3) are conditions on

the external forcing signal for FO or SO. Proposition 2.1 can now be used to

determine the minimum amplitude, Rmin, of the external sinusoid, f(t), required

for FO or SO to occur in the RFS. Rmin is determined by

Rmin = max {Rmin 1, Rmin 2} (2.12)

where Rmin 1 and Rmin 2 are the minimum amplitudes of f(t) which satisfy (C1) -

(C2), and (C3) respectively.

2.3.1 Determination of Rmin 1 and Rmin 2

For the RFS (2.1)–(2.4) under periodic switching with frequency, ωf , recall from

(2.5) (with t0 = 0 and ∆t = t) that

c(t) =
4h

π

∞∑

k=odd

1

k
Im

{
G(jkωf )e

jkωf t
}

(2.13)

ċ(t) =
4hωf

π

∞∑

k=odd

Re
{
G(jkωf )e

jkωf t
}

. (2.14)
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Hence, at t = 0 (corresponding to ∆t = 0),

c(0) =
4h

π

∞∑

k=odd

1

k
Im{G(jkωf )}, (2.15)

ċ(0) =
4hωf

π

∞∑

k=odd

Re{G(jkωf )}+ h lim
s→∞

sG(jkωf ) (2.16)

where h lims→∞ sG(jkωf ) represents the steady state gain of the plant. Based on

c(t) and ċ(t), the Tsypkin locus ((Tsypkin, 1984; Atherton, 1982)), Λ(ωf ), which

is essentially the phase portrait of c(t) at t = 0 for different values of ωf , can be

written as :

Λ(ωf ) , 1

ωf

ċ(0) + jc(0)

=
4h

π

∞∑

k=odd

{
Re{G(jkωf )}+ j

1

k
Im{G(jkωf )}+ h lim

s→∞
sG(jkωf )

}
.(2.17)

Rewriting f(t) = R sin(ωt + θ) = R sin(νωf t + θ) the same way and denoting it by

g(ν, θ), yields

g(ν, θ) =
1

ωf

ḟ(0) + jf(0) = νR cos θ + jR sin θ. (2.18)

Since y(t) = c(t) + f(t),

1

ωf

ẏ(0) + jy(0) = Λ(ωf ) + g(ν, θ).

Conditions (C1) and (C2) are thus equivalent to

Im{Λ(ωf ) + g(ν, θ)} = 0, (2.19)

Re{Λ(ωf ) + g(ν, θ)} < − 2h

πKc

. (2.20)

respectively. If one plots the Tsypkin locus, Λ(ωf ) for arbitrary frequencies of

ω = νωf on the complex plane, one may view the vertical line through the point
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(− 2h
πKc

+ j0) as the stability line. This line, together with the real axis, divides

the complex plane into 4 quadrants and this has substantial significance in the

graphical determination of the minimum R required for FO or SO at any frequency.

The derivation of this minimum R depends on where the frequency of f(t) lies with

respect to these 4 quadrants, and this will be shown later.

Derivation of Rmin1 from conditions (C1) and (C2). It follows from (C1) that

Im{Λ(ωf )} = c(0) = Cz(0) = −Im{g(ν, θ)} = −R sin θ. (2.21)

which yields

θ = π + sgn(Cz(0)) sin−1

( |Cz(0)|
R

)
= π + sgn(Cz(0)) sin−1

(
1

λ

)
, (2.22)

which requires λ = R/|Cz(0)| ≥ 1. It therefore follows that for any ω,

R ≥ |Cz(0)|. (2.23)

Condition (C2) implies that

Re{Λ(ωf ) + g(ν, θ)} = Re{Λ(ωf )}+ R cos θ ≤ − 2h

πKc

. (2.24)

Substituting (2.22) into (2.24) gives

Re{Λ(ωf )}+ R cos θ = Re{Λ(ωf )} −
√

R2 − |Cz(0)|2 ≤ − 2h

πKc

, (2.25)

which is equivalent to

√
R2 − |Cz(0)|2 ≥

(
Re{Λ(ωf )}+

2h

πKc

)
. (2.26)

Two cases of different frequencies are considered.
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Case 1 : Frequencies for which Re{Λ(ωf )} ≤ −2h/(πKc) or for which the Tsypkin

locus lies to the left of the stability line . In this case, Re{Λ(ωf )}+2h/(πKc) ≤ 0.

Since (2.23) is always necessary, therefore (2.26) will never be violated and it

follows that minimum R is |Cz(0)| = |c(0)|.

Case 2 : Frequencies for which Re{Λ(ωf )} > −2h/(πKc) or for which the Tsypkin

locus lies to the right of the stability line. In this case, Re{Λ(ωf )}+2h/(πKc) > 0.

Solving (2.26) yields

R ≥
√
|Cz(0)|2 +

(
Re{Λ(ωf )}+

2h

πKc

)2

=

∣∣∣∣Λ(ωf ) +
2h

πKc

∣∣∣∣ . (2.27)

Hence the minimum R is at least
∣∣∣Λ(ωf ) + 2h

πKc

∣∣∣.

In summary, from (C1) and (C2), we have the following conditions for Rmin1 :

Rmin 1 =





|Im{Λ(ωf )}| = |c(0)|, if Re{Λ(ωf )} ≤ d−2h
πKc

(2.28a)
∣∣∣∣Λ(ωf ) + d

2h

πKc

∣∣∣∣ , if Re{Λ(ωf )} > d−2h
πKc

(2.28b)

Rmin1 can always be obtained graphically from a plot of Λ(ωf ).

On the complex plane, consider quadrants which are numbered anticlockwise

from 1 to 4 starting from the top right hand region to the right of the stability line.

An example of this is illustrated in Figure 2.4. For ωf in each of these quadrants,

the following holds :

Quadrants 1 & 4 : Re{Λ(ωf )} > d−2h
πKc

, λ > 1

Quadrants 2 & 3 : Re{Λ(ωf )} ≤ d−2h
πKc

, λ = 1

As θ depends on the sign of Cz(0), its value can also be visualized graphically.

In quadrants 1 and 4 where λ > 1, θ is computed according to (2.22). In quadrants

2 and 3 where λ = 1, θ = 0.5π and θ = 1.5π respectively. A summary of Rmin1
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2

3

2

11
sin

11
sin

f

min1
R

Fig. 2.4. Illustration of θ on the complex plane.

and θ is as follows :

Quadrants 1 & 4: Rmin 1 =

∣∣∣∣Λ(ωf ) +
2h

πKc

∣∣∣∣ = λ|Cz(0)|,

θ = π + sgn(Cz(0)) sin−1

(
1

λ

)

Quadrants 2 & 3: Rmin 1 = |Im{Λ(ωf )}| = |Cz(0)|,

θ =
3π

2
or

π

2
.

Remark 2.5. It should be noted that θ corresponds to the phase at absolute t = t0,

as opposed to the original θ of f(t). This notation is consistent when t0 is assumed

to be zero.

Derivation of Rmin2 from conditions (C3). Condition (C3) requires

y(t) < 0, t ∈ (0, Tf/2) , (2.29)
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which, by (2.3) and (2.4),

y(t) = c(t) + f(t) = c(t) + R sin(ωt + θ). (2.30)

Substituting (2.22) and (2.30) into (2.29) yields,

y(t) = c(t) + R sin(ωt) cos θ + R cos(ωt) sin θ

= c(t)− sin(ωt)

√
R2 − (Cz(0))2 − cos(ωt)Cz(0) < 0,

which leads to

√
R2 − (Cz(0))2 >

c(t)− Cz(0) cos(ωt)

sin(ωt)
, t ∈ (0, Tf/2). (2.31)

Since ω = νωf , the right hand side of (2.31) is always finite for ν = 1. Hence, one

can always find an Rmin2 as follows :

Rmin2 = max
t∈(0,Tf /2)

c(t)− Cz(0) cos(ωt)

sin(ωt)
. (2.32)

Since (C1) - (C3) are necessary and sufficient conditions for steady state oscil-

lations, the overall minimum R should be

Rmin = max {Rmin 1, Rmin 2} . (2.33)

Rmin1 relates to the minimum amplitude of f(t) required to achieve periodic switch-

ing at intervals of Tf/2, whereas Rmin2 relates to the minimum amplitude of f(t)

required for no additional switchings in between periods. Therefore, for any f(t)

with frequency ω, FO at frequency ωf = ω is always possible as long as its ampli-

tude, R, is set to be at least larger than Rmin.

For SO corresponding to ν > 1, the RHS of (2.31) may become positively

infinite for some values of t = mTf/(2ν) where m < ν. When this happens, a finite
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solution to (2.31) may not exists and SO fails. However, there are some frequencies,

ω, where the response, c(t) at t = mTf/(2ν), is such that the numerator of (2.31)

is negative when the denominator is zero. For such cases, the RHS of (2.31) is

negative infinity at these time instants and any R ≥ |Cz(0)| satisfies (2.31) at

that time instant. When this occurs, Rmin2 is once again given by (2.32) and SO

becomes possible for these frequencies.

The following example demonstrates this problem.

Example 2.1. Consider a second order system with

A =




0 1

−4 −6


 , B =




0

4


 , C =

[
1 0

]
, L = 1. (2.34)

For this plant, the stability line corresponds to a vertical line at d− 2h
πKc

= −0.248.

Figure 2.5 plots the Tsypkin locus for a range of frequencies, nπ/L < ωf ≤

(n + 1)π/L, n = 0, 1, 2. Note that the range of frequencies is deliberately pa-

rameterized in terms of integer values of n and the delay term, L. The significance

of this will be obvious in Section 2.4. Consider the frequency of 0.6 rad/s on Λ(ωf )

which is to the right of the stability line or in Quadrant 4, Rmin1 is as indicated in

Figure 2.5. Figure 2.6 shows the plot of Rmin1, Rmin2 from calculations, and Rmin

from simulation. It can be observed that for ωf ≥ 0.8, Rmin = Rmin1 ≈ Rmin2.

For ωf < 0.8, Rmin is determined by Rmin2. For higher frequencies correspond-

ing to n = 1 and n = 2, Rmin is better predicted by Rmin1. The predicted

Rmin = max(Rmin1, Rmin2) are close to the simulated values. It is thus verified

that max(Rmin1, Rmin2) can indeed provide the Rmin required. For this plant, it
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can be checked that SO does not exist at every frequency. For example, at ωf = 3

rad/s, no SO can be obtained no matter how large R is.
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Fig. 2.5. Tsypkin locus for a second order plant.
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Fig. 2.6. Rmin comparison for plant in (2.34).

2.3.2 Frequency Ranges of External Signal for SO

Section 2.3.1 shows how SO may not always be possible depending on the inequality

of (2.31) which, in turn, depends on the specific frequency of f(t). It was shown
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that the existence of SO requires the following condition :

c(t)− Cz(0) cos ωt < 0 at t = mTf/(2ν), m < ν. (2.35)

By analysing (2.35) carefully, the range of ω for the existence of SO can be deter-

mined. The result is captured in the following proposition.

Proposition 2.2. SO is possible for all frequencies, ω ∈ Ω, where

Ω =
⋂

Ωm, m = 1, 2, · · · , ν − 1, (2.36)

and Ωm is the solution set of ω for the following inequalities:

CeA mπ
ω z(0) + C

(
I − eA mπ

ω

)
A−1Bh + (−1)m+1Cz(0) < 0, t ∈ (0, L), (2.37)

CeA mπ
ω z(0) + C

(
2eA(mπ

ω
−L) − eA mπ

ω − I
)

A−1Bh + (−1)m+1Cz(0) < 0, t ∈ (L, νT/2).(2.38)

Furthermore, the minimum R required of f(t) satisfies (2.33).

Proof. It was established in Section 2.3.1 that the frequencies for which SO is

possible satisfy (2.35). Accordingly, at t = mTf/(2ν) = mT/2, (2.35) becomes

c(mT/2)− Cz(0) cos mπ < 0, m = 1, 2, . . . , ν − 1 (2.39)

Using c(t) = Cz(t) with z(t) from (2.7), we have

c(mT/2) =





C
[
emAT/2z(0) +

(
I − emAT/2

)
A−1Bh

]
, t ∈ [0, L];

C
[
emAT/2z(0) +

(
2eA(mT/2−L) − emAT/2 − I

)
A−1Bh

]
, t ∈ [L, νT/2]

(2.40)

where

z(0) = − (
I + eATf /2

)−1 (
2eA(Tf /2−L) − eATf /2 − I

)
A−1Bh.
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Since cos mπ = (−1)m, (2.39) leads to (2.37) and (2.38) using (2.40). For each

m, inequalities (2.37) and (2.38) admit possible ranges of frequencies, Ωm. The

total solution is therefore an intersection of all possible intervals ie Ω =
⋂

Ωm, m =

1, 2, . . . , ν − 1. Finally, the requirement of Rmin follows from Section 2.3.1.

In summary, therefore, if one wishes to determine if SO of order ν is possible

using an external signal, f(t) = sin(ωt+ θ), then T which corresponds to ω should

first satisfy (2.37) and (2.38). Subsequently, the minimum Rmin which enforces

this SO can be derived from Rmin = max{Rmin 1, Rmin 2}. Similarly, if one wishes

to enforce FO in the RFS, then one should set R according to the same Rmin

formula. No frequency check is required since FO is always possible as long as

R > Rmin.

It should be clear at this stage that Rmin has a complex relationship with the

frequency, ω, in the case of FO. In the case of SO, this relationship is further

complicated by the order, ν, at which SO can exists. Specifically, given ω, several

orders of SO may be possible and thus for each, ν, there is an associated Rmin. Let

this ν-specific Rmin be denoted by Rν,min. Its dependency on frequency is ignored

in order not to complicate the notation.

Suppose Ω = [ω1, ω2]. Then the above analysis implies that for a given f(t)

with an amplitude R and frequency ω, if

R1,min > R ≥ Rν,min, ν > 1, (2.41)

then since R < R1,min, FO cannot happen but SO of order ν should be observable

in the RFS. This is demonstrated in the following example.
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Example 2.2. Consider a FOPDT plant

G(s) =
1

s + 1
e−s

with A = B = C = L = 1 and zero initial conditions. Values of Rν,min are plotted

against T/2 in Figure 2.7 where ω = 2π/T is the frequency of f(t). If T/2 falls

within the bounds indicated in Figure 2.7 for each ν and R1,min > R ≥ Rν,min, we

expect that SO of order ν will be observed. For example, for ν = 3, SO will occur

for the range 0.418 < T/2 < 0.643 obtained from (2.37) and (2.38). If f(t) has

T/2 = 0.6, then R1,min = 0.545 and R3,min = 0.2288. If R = 0.2289 is set, then SO

of order 3 occurs with this f(t). This is illustrated in Figure 2.8 where the frequency

of f(t) is 3 times that of the relay switches. Note that although the self oscillating

period Ts = 3.019s, the third subharmonic is achieved for 2.508 < 3T < 3.8580.

The 3rd subharmonic exists with a period around that of self oscillation.
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Fig. 2.7. Dependence of SO on R and T/2.

Observe also that for a particular R in Figure 2.7, SO of different νs should

theoretically be possible by varying the frequency of f(t). Figure 2.9 shows a plot
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Fig. 2.8. Example where the desired SO with ν = 3 is obtained.

of the relay switching intervals against ti for a constant R = 0.145 where ti denotes

the integer number of relay switches. The frequency of f(t) was varied by varying

T/2 in the simulation to obtain the different orders of SO. As can be seen, in the

first set of 60 switches, f(t) has a frequency corresponding to T/2 = 0.16 and the

figure indicates that the relays were switching at intervals of (9 × 0.16 = 1.44)

which means SO of ν = 9 is taking place. In the next set of switches from ti = 60

to ti = 110, T/2 was changed to 0.165 and this resulted in relay switching intervals

of (0.165× 9 = 1.485) which still implies SO of order 9. Subsequently, after more

changes in T/2, at about ti = 250, with the same R but T/2 = 0.2, the relay

switching interval drops to (0.2 × 7 = 1.4) which implies SO of order 7. This

interesting set of results illustrates the complex relationship between T , ν and R.
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Fig. 2.9. Different νs obtained with a fixed R and varying T/2.

2.4 Limits of ν in SO

The results thus far have focused on the requirement of R and ω in f(t) which

will cause FO or SO in a RFS. In the case of SO, further analysis is necessary to

determine whether there are fundamental limits imposed by the structure of G(s)

on the limits of ν in the SO. The question is whether any order is always possible

or are there upper limits of ν for a given plant? This problem is addressed in this

section.

2.4.1 SO analysis for first order plants

Corollary 2.1. For first order plants without delay (L = 0) in the RFS of Figure

2.1, it is not possible for SO of any order to exist.

Proof. According to Proposition 2.2, the left hand side (LHS) of (2.38) satisfies

LHS = 2C(I + eAν T
2 )−1[eAmT/2 − I]A−1Bh > 0 for all ν. (2.42)

Since (2.42) violates (2.38) for all ν, no SO can take place for this class of plants.
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Corollary 2.2. For FOPDT plants,

1. SO of order ν ≥ 2n + 3 cannot exist, where n ∈ Z+ is determined by

nT/2 < L < (n + 1)T/2. (2.43)

2. For each order ν < 2n + 3, the range of T is bounded by

Γ

(ν + 1)A
<

T

2
<

Γ

(ν − 1)A
, (2.44)

where Γ = ln(eAL + eA(ν T
2

+L)− eAν T
2 ). Furthermore, this range of frequencies

does not overlap for adjacent orders, ν and ν + 2.

Proof. (i) At t = mT/2, when m is an even positive integer and m < ν, substituting

L < (n + 1)T/2 into the LHS of (2.38), we have

LHS = 2C(I + eAν T
2 )−1[eA(ν T

2
−L) + eA(m T

2
−L) − eA(ν T

2
) − I]A−1Bh

> 2C(I + eAν T
2 )−1[eA(ν T

2
−(n+1)T

2
) + eA(m T

2
−(n+1)T

2
) − eA(ν T

2
) − I]A−1Bh

= 2C(I + eAν T
2 )−1[(eA(n + 1)

T

2
− I)(I − eA(ν T

2
−(n+1)T

2
))]A−1Bh

> 0 for ν > 2(n + 1)

Hence the violation of (2.38) occurs for ν > 2(n + 1). Therefore SO of order

ν ≥ 2n + 3 cannot exists.

(ii) Analysis of (2.37) and (2.38) for FOPDT plants leads to

T

2
>

1

(ν + 1)A
Γ (2.45)

T

2
<

1

(ν − 1)A
Γ, (2.46)
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respectively, where Γ = ln(eAL + eA(ν T
2

+L) − eAν T
2 ) > 0. Thus for each ν < 2n + 3,

the frequency range for each ν is

Γ

(ν + 1)A
<

T

2
<

Γ

(ν − 1)A
.

Next we show that the range of T for adjacent orders, ν and ν + 2 does not

overlap. Consider two adjacent ν’s, ν = 2j − 1 and ν = 2j + 1. For each ν, the

range of T/2 is given by

ν = 2j − 1





T
2

> 1
(2j−1)A

ln(eAL − eA2j T
2 )− ln(I − eAL) = C1

T
2

< 1
(2j−1)A

ln(eAL − eA(2j−2)T
2 )− ln(I − eAL) = C2

ν = 2j + 1





T
2

> 1
(2j+1)A

ln(eAL − eA(2j+2)T
2 )− ln(I − eAL) = C3

T
2

< 1
(2j+1)A

ln(eAL − eA2j T
2 )− ln(I − eAL) = C4.

Thus

ν = 2j − 1 : C1 < T/2 < C2

ν = 2j + 1 : C3 < T/2 < C4

C4 < C1

Therefore the range of frequencies for ν = 2j − 1 and ν = 2j + 1 where j ∈ N+,

does not overlap. This is illustrated in Figure 2.10.

Example 2.3. For a FOPDT plant, where A = −1/3, B = 1, C = 1/3 and L = 2,

the bounds of T for each ν can be calculated from (2.44). These are plotted in

Figure 2.10 along with the possible ν’s obtained from simulations. Figure 2.10 also

indicates the partitioning of T in terms of n according to (2.43). This figure also



Chapter 2. Forced and Subharmonic Oscillations under Relay Feedback 35

confirms that SO of order ν ≥ 2n + 3 cannot occur for this plant. For example,

for n = 2, ν ≥ 7 cannot be obtained but ν = 3, 5 are both possible. It can also be

observed that there are no overlaps in frequency for two adjacent orders.
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Fig. 2.10. Plot of the bounds for example 2.3, ’o’: Calculated, ’¤’:Simulated.

2.4.2 SO analysis for higher order plants

The SO analysis for higher order systems is not as easy as first order plants.

Nevertheless, some observation can still be obtained. For example, SO of order

ν ≥ 2n + 3 can exist and the range of T for each ν is not distinct. We show these

observations through a few examples.

Example 2.4. Consider a third order delayed plant, G(s) = e−s

(s+1)3
. The range of

T/2 for which each ν exists is plotted in Figure 2.11. It can be observed that for

some T/2, SO of order ν ≥ 2n+3 cannot be excluded. For example, for n = 1, SO

of orders ν = 3, 5, 7 are possible. However, in this example, the frequency ranges

are also distinct.
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Fig. 2.11. Plot of the bounds for example 2.4, ’o’: Calculated, ’¤’:Simulated.

Example 2.5. Consider a fourth order non-delayed plant, G(s) = −s+0.2
s4+2s3+1.31s2+0.34s+0.03

.

In this case, T cannot be parameterized in terms of n. Nevertheless, Figure 2.12

also shows the distinctiveness of the frequency ranges for each ν.
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Fig. 2.12. Plot of the bounds for example 2.5, ’o’: Calculated, ’¤’:Simulated.

Example 2.6. Consider a second order non-delayed plant, G(s) = −s+0.2
s2+6s+7

with

zero initial state vector. Figure 2.13 shows the plot of the calculated bounds and

the simulated bounds for ν = 3, 5, 7. These bounds overlap one another, indicating

that multiple orders of SO are possible for a single frequency of f(t). The actual

ν that occurs depend on the magnitude of R.
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Fig. 2.13. Plot of bounds for example 2.6, ’o’: Calculated, ’¤’:Simulated.

Figure 2.14 is a plot of the relay switching time intervals when the RFS was

driven by a f(t) with varying amplitude, R, and fixed frequency corresponding

to T
2

= 0.12. The amplitude R was varied according to the values in Table 2.1.

Initially, with R = 0.12 and FO (ν = 1) was observed. After a period of time, R

was changed to R = 0.0871 and ν = 9 was observed even though the frequency of

f(t) remained unchanged. By changing R further, SO with ν = 11, 13, 15, 17 were

observed. This example shows that several νs can occur for a given T/2 depending

on the magnitude, R, of f(t).
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Fig. 2.14. Multiple νs of SO observed for example 2.6 with varying R.
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Table 2.1. Table of R and Rν,min for example 2.6.

ν 1 9 11 13 15 17
Rν,min 0.11 0.087 0.057 0.033 0.015 0.0015

R 0.12 0.0871 0.0571 0.0331 0.0151 0.0016

Example 2.7. In this example, G(s) = s+0.2
s4+0.03s+0.34s2+1.31s+2

was simulated with

zero initial conditions. The bounds of T/2 (through the simulation) for each ν are

shown in Figure 2.15. It appears that the predicted bounds are not accurate when

compared to the simulated bounds.

At T/2 = 0.699, when the initial state vector was changed to z(0) = [−0.3955;−0.4220

; 0.09896; 0.1838] and f(t) was set with R = 0.1358 > R3,min = 0.1357 and

θ = 4.6783 rad, SO of order ν = 3 occurred at the first switch. When θ was

reset to θ = 0, ν = 5 occurred after some initial transients. The oscillations are

shown in Figure 2.16. This result suggests that initial conditions also play a role

in determining what is achievable in terms of ν. By further varying initial condi-

tions and θ, it was possible to obtain simulation bounds which are closer to our

calculations. This is shown in Figure 2.17 for the same G(s). The calculated and

simulated bounds are now almost identical. The effect of varying the initial state

vector is best illustrated in Figure 2.18 which is a plot of the state z3 against z4.

R is fixed at 0.26931 and the initial state vector, z0 is varied from [0;0;0;0] to

[1;1;0;0.5]. It can be seen that the trajectories of z(t) tend towards two different

limit cycles of orders, ν = 3 and ν = 5. Interestingly, our analysis appears to

give tight bounds of the frequencies even though the complexities due to initial
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conditions were never considered in our analysis.
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Fig. 2.15. Effect of only varying R for example 2.7, ’o’: Calculated bounds,
’¤’:Simulated bounds.

2.5 Conclusion

In this chapter, the conditions for stable FO and SO to occur in a sinusoidally

forced single loop RFS were examined. It was found that the external forcing

signal requires a minimum amplitude, Rmin, for either FO or SO to occur. A

combination of a graphical approach using the Tsypkin Locus and a numerical

approach was used to determine this Rmin.

The main contribution of this chapter lies in the discovery of the fundamental

difference between FO and SO. FO is possible for any frequency of the external

forcing signal as long as its amplitude was sufficiently large. This was however

not the case for SO. A complex relationship between frequency, amplitude and ν

exists for SO. Specifically, not all forcing signals can drive the RFS at any order ν

(except ν = 1) even if the amplitude of the external signal is large. The ranges of
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Fig. 2.16. (a) SO of ν = 3 obtained with θ = 4.6783. (b) SO of ν = 5 obtained
with θ = 0.
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Fig. 2.18. Effect of the initial condition for example 2.7.

frequencies where SO of certain orders can be obtained were derived. Results for

FOPDT plants were completely given. Other behaviours for higher order plants

were also presented.



Chapter 3

Design of Amplitude Reduction

Dithers in Relay Feedback

Systems

3.1 Introduction

In our previous chapter on forced oscillation in RFS, we have given very specific

conditions for the design of external sinusoidal dither signals that can induce os-

cillations of the same frequency as this dither signal. The analysis given was exact

and does not rely on any approximation theory. The results were also necessary and

sufficient. In this chapter, we extend the results in Chapter 2 to design sinusoidal

dither signals that will result in stable oscillations of arbitrarily low amplitudes.

The use of dithers to achieve signal stabilization and quenching of limit cycles

is well known in nonlinear systems. The idea is similar to the phenomenon of

42
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forced oscillations (FO). This idea is used to design a dither signal which results

in reduced oscillation amplitudes. Our analysis applies to any periodic symmetric

dither signals of other shapes. This is because as long as the dither amplitude

is sufficiently large to induce forced oscillations of period Tf in the system, the

input to the plant is always a symmetric square wave due to the relay switchings.

Thus the plant’s steady state output is only dependent on the relay’s switching

period Tf and is independent of the actual shape of the dither signal. Therefore,

the identification of the bound on the dither period in this chapter can be applied

to other dither shapes.

This chapter is organized as follows. The problem formulation is presented in

Section 3.2. Section 3.3 presents the numerical approach to identify the bound

on the dither period. Complete solutions for first and second order plants will

be presented in Section 3.5. Section 3.6 shows that the analysis can be used with

other dither shapes. Applications on the missile roll control system and the control

of a DC motor are given in Section 3.7. Section 3.8 presents the conclusions.

3.2 Problem Formulation

Consider the RFS with a sinusoidal dither signal, f(t), as shown in Fig. 3.1. The

linear system, G(s), is assumed to have a state space description and together with
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the relay element, the closed loop RFS is given by

ż(t) = Az(t) + Bu(t− L) (3.1)

c(t) = Cz(t) (3.2)

y(t) = c(t) + f(t) = c(t) + R sin(ωf t) (3.3)

u(t) =





h y(t) < 0

−h y(t) ≥ 0

(3.4)

where h > 0, u, c ∈ R are the plant’s input and output, respectively, z ∈ Rm×1 is

the state vector, L > 0 is the time delay between u and c, A ∈ Rm×m is Hurwitz

and assumed to be non-singular, B ∈ Rm×1 and C ∈ R1×m. In the frequency

domain, G(s) = e−sLC(sI − A)−1B and lim
s→∞

G(s) = 0. Under these conditions,

the RFS would generally exhibit oscillatory behaviour. The problem we address is

( )u t  r(t)  ( )x t  

0( ) sin( )ff t R t !" #  

( )c t  ( )y t  #  

$  

 #  

 #  
  G(s)

Fig. 3.1. RFS with external forcing signal.

the design of f(t) to achieve a reduction in the amplitude of oscillations in the RFS.

The approach is based on the concept of forced oscillations (FO) (Tsypkin, 1984).

Our analysis starts with the identification of the bound, T ∗
f , below which the

oscillation amplitude decreases monotonically as Tf decreases. This analysis is only

meaningful if we are able to ensure that FO exists for any Tf . It has been shown in
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Chapter 2 that FO exists if and only if R ≥ Rmin. Using a high Rmin will not induce

high oscillations in the system as the relay output into the plant is at a fixed height.

The switching of the relay under FO induces smaller oscillations, as compared to

self oscillations. This method differs from variable structure controllers like sliding

mode controllers as only the feedback is the error signal. In order to facilitate the

discussion and analysis, the results on the conditions for FO are reproduced from

Chapter 2 as follows :

Proposition 3.1. For the RFS in (3.2)-(3.4), FO exists with frequency ωf if

and only if the amplitude, R, of the sinusoidal dither, f(t) = R sin ωf t, satisfies

R ≥ Rmin where

Rmin = max{Rmin1, Rmin2}

Rmin1 =





|c(0)| if Re(Λ(ωf )) ≤ − 2h
πKc∣∣∣Λ(ωf ) + 2h

Kc

∣∣∣ if Re(Λ(ωf )) > − 2h
πKc

Rmin2 = max
t∈(0,Tf /2)

c(t)− Cz(0) cos ωf t

sin ωf t

Λ(.) is the Tsypkin locus and Kc is the critical gain of G(s). c(0) and z(0) are the

plant output and state vector corresponding to the positive switch of the relay at

steady state.

Proof. See Chapter 2.

As mentioned in the previous chapter, a Tsypkin locus is defined as :

Λ(ωf )
4
=

1

ωf

ċ(0, Tf ) + jc(0, Tf ).
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Rmin1 and Rmin2 are both finite and it follows that if R ≥ Rmin, FO is guaranteed

to occur in the RFS. Therefore, for a sinusoidal dither, FO can always be enforced

in the RFS if R is sufficiently large.

3.3 Identification of T ∗
f

Regardless of the dither shape, when the RFS undergoes steady state oscillations

of frequency ωf = 2π/Tf , the input to the linear element, G(s), is a square wave

with period, Tf . The response of G(s) is also periodic with maximum amplitudes

which are dependent on the amplitude and frequency of the input square wave.

The relationship between the maximum amplitudes and the frequency of the input

signal is nonlinear. It is conceivable that for G(s) with multiple lightly damped

modes, one can expect that the function of maximum output amplitudes with

respect to the frequency of the input square wave will exhibit several local maxima

as shown in Figure 3.2, simulated for G(s) = 1000/(s5 +6s4 +58s3 +211s2 +629s+

471). In this example, T ∗
f = 1.04 is identified to be the first peak in Figure 3.2

since for all frequencies above fmin = 2π/T ∗
f the amplitude of the output of G(s)

decreases steadily.

In this section, a simple approach is proposed for finding T ∗
f . We begin by

assuming that the dither signal is able to generate FO in the loop which is of the

same frequency as the dither. This assumption follows from Proposition 3.1.

Thus consider the steady state plant output, c(t, Tf ) for an input square wave
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Fig. 3.2. Plot of the amplitude of oscillation against Tf/2 for G(s) = 1000/(s5 +
6s4 + 58s3 + 211s2 + 629s + 471).

with period Tf where

c(t, Tf ) = CeAtz(0) +

∫ t

0

eA(t−τ)Bhdτ (3.5)

z(0) = −(I + eA
Tf
2 )−1(2eA(

Tf
2
−(L−n

Tf
2

))

−eA(
Tf
2

) − I)(−1)nA−1Bh. (3.6)

It follows that

ċ(t, Tf ) = C(Az(t) + Bu(t− L)).

Since this is a steady state analysis, time t = 0 is chosen to correspond to the

positive switching edge of the relay. Furthermore, the above formulation is written

for the general case when n
Tf

2
< L ≤ (n + 1)

Tf

2
where n = floor(2L

Tf
).

Suppose the maximum amplitude of c(t, Tf ) occurs at t = t0 where

t0(Tf ) = arg max
t∈R

c(t, Tf ). (3.7)

The peak amplitude occurring at t = t0 can be written as :

c(t0, Tf ) = CeAt0z(0) + C(eAt0 − I)A−1Bh. (3.8)
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To further determine the peak amplitude with respect to Tf , differentiate c(t0, Tf )

with respect to Tf as follows :

dc(t0, Tf )
dTf

= CeAt0Az(0)
dt0
dTf

+ CeAt0 dz(0)
dTf

+ CeAt0Bh
dt0
dTf

(3.9)

Equating (3.9) to zero, the turning points of c(t0, Tf ) with respect to Tf can be

obtained either analytically or numerically. The set (0, T ∗
f ) where the amplitude of

oscillation decreases monotonically with Tf can then be identified. This is shown

in Figure 3.3 for a plant with transfer function G(s) = 1
s2+2s+20

where T ∗
f = 1.4414.
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Fig. 3.3. Plot of the amplitude of oscillation against Tf/2 for G(s) = 1
s2+2s+20

.

Remark 3.1. It should be noted that ċ(t, Tf ) is continuous except for G(s) with

relative degree one. In such cases, the discontinuities occur at t = L−n
Tf

2
following

a relay switch, like in Figure 2.4. Thus the maximum output also occurs at t0 =
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L−n
Tf

2
. Hence for such systems, the maximum output, c(t0, Tf ), can be completely

written.

Remark 3.2. The minimum amplitude, Rmin of the sinusoidal dither that can en-

force FO in the RFS is determined by Proposition 3.1.

For non-sinusoidal dithers, FO can also be enforced if the magnitude is arbi-

trarily large. As long as FO is achieved, the relay switches with an amplitude of

h and c(t, Tf ) is independent of the dither shape. This also implies that T ∗
f is

independent of the exact dither signal shape. This is a significant breakthrough

because T ∗
f applies to all periodic dithers of any shape. This is further discussed

in Section 3.6. In much of the current literature, results have only been for very

specific dither shapes and furthermore, their analyses have mostly been approxi-

mate, in many cases using averaging to achieve their approximate results(Luigi Ian-

nelli, 2003a; Luigi Iannelli, 2003b; Brad Lehman, 1996).

The solution to
c(t0,Tf )

dTf
= 0 is not a trivial one and can only be solved for

simple G(s), as will be shown in Section 3.5. For higher order plants, it is generally

inconvenient to solve this numerically. In the next section, we will show how the

generalized Tsypkin Locus can be used to graphically determine T ∗
f and c(t0, T

∗
f ).
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3.4 Solution of T ∗
f using the Generalized Tsypkin

Locus

The Tsypkin locus (Tsypkin, 1984) is one approach that has been used to solve

for the existence of limit cycles in a RFS. It is an exact method which has been

used extensively in (Lim et al., 2005) to find the minimum conditions for forced

oscillations to occur in a RFS. However in this chapter, we require the generalized

Tsypkin locus defined as :

Λ(t, ωf )
4
=

1

ωf

ċ(t, Tf ) + jc(t, Tf ).

Thus a generalized Tsypkin locus is a three dimensional plot involving (t, c, ċ) and

parameterized by the frequency, ωf . The conventional Tsypkin locus is a special

case where t = 0.

In the problem formulation for the identification of T ∗
f , there are 2 unknowns,

t0 and T ∗
f . Suppose a series of generalized Tsypkin loci is plotted for different

values of t. For each t, the Tsypkin locus may cut the c- and ċ-axes a number of

times. Each of the crossings at the c-axis represents a turning point (ċ(t, Tf ) = 0)

of c(t, Tf ) for the dither signal of period Tf . If several Tsypkin loci for different t

are examined at the c-axis for the same Tf , the result is a series of turning points

of c(t, Tf ) corresponding to FO at Tf . Accordingly, the maximum value of |c(t, Tf )|

(denoted as |c(t0, Tf )|) can thus be located. If this process is extended for different

Tf , the maximum of |c(t0, Tf )| over all Tf can likewise be identified. Thus, T ∗
f is

also determined. This method is demonstrated in the following example.
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Example 3.1. Consider a fourth order plant with transfer function, G(s) =

1
s4+6s3+23s2+20s+26

, with complex roots at s = −2.657± 3.2928i and s = −0.343 ±

1.1553i. A series of Tsypkin Loci, c(t, Tf ) against ċ(t, Tf )/ωf is plotted for t =

0.05, 0.1, 0.15, 0.2049, 0.25, 0.3, as shown in Figure 3.4. It can be seen that the

maximum |c(t, Tf )| is 0.0893 and it occurs at t = 0.2049 = t0. The intersection of

the Tsypkin locus, c(0.2049, Tf ) vs ċ(0.2049, Tf ) with the plane ċ(t, Tf )/ωf = 0 is

Tf = 2.76. This gives T ∗
f = 2.76.
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Fig. 3.4. Plot of the generalized Tsypkin Locus in example 3.1.

In the following section, some closed form solutions for T ∗
f for a number of

special cases are presented.
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3.5 Special Cases

Proposition 3.2. For first order plants with delay, c(t0, Tf ) increases monotoni-

cally with respect to Tf . Also, T ∗
f = ∞ and t0(Tf ) = L−nTf/2 for n = floor(2L

Tf
).

It also follows that limTf→0 c(t0, Tf ) = 0.

Proof. In first order systems with delay, at steady state, c(t, Tf ) should be written

in two parts due to the discontinuity resulting from the delay :

c1(t, Tf ) = CeAtz(0) + C(eAt − I)A−1Bh(−1)n+1 t ∈ [0, L− n
Tf

2
] (3.10)

c2(t, Tf ) = CeAtz(0) + C(2eA(t−L+n
Tf
2

) − eAt − I)A−1Bh(−1)n t ∈ [L− n
Tf

2
,
Tf

2
] (3.11)

where z(0) is given in (3.6) and n = floor(2L
Tf

). It is assumed that the initial

condition z(0) corresponds to the positive switching edge of the relay at steady

state. It follows that

ċ1(t, Tf ) = CeAtAz(0) + CeAtBh(−1)n+1 t ∈ (0, L− n
Tf

2
] (3.12)

ċ2(t, Tf ) = CeAtAz(0) + C(2eA(t−L+n
Tf
2

) − eAt)Bh(−1)n t ∈ [L− n
Tf

2
,
Tf

2
] (3.13)

Note that z(0) is positive (negative) when n is odd (even) and |CeAtAz(0)| <

|CeAtBh|. Accordingly, ċ1(t, Tf ) is positive (negative) when n is odd (even) while

ċ2(t, Tf ) is negative (positive) for the same n. This implies that c(t, Tf ) is either

increasing or decreasing monotonically in each time segment and the maximum
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amplitude occurs at t = L− nTf/2 = t0. This maximum is given by :

|Cz(L− n
Tf

2
, Tf )|

= |CeA(L−n
Tf
2

)z(0) + C(I − eA(L−n
Tf
2

))(−1)nA−1Bh|

= |C(I − 2eA
Tf
2 (I + eA

Tf
2 )−1)A−1Bh|

= |C(
I − eA

Tf
2

I + eA
Tf
2

)A−1Bh| → 0 as Tf → 0 and A is Hurwitz. (3.14)

Remark 3.3. For such plants, any self-oscillations can be quenched or reduced

easily by an external dither signal with a frequency higher than that of the self-

oscillations.

Example 3.2. Consider G(s) = e−s

s+1
. The undithered and dithered RFS of period

Tf = 0.8 and 0.3 are plotted in Figure 3.5. It can be seen that the amplitude of

the dithered system is smaller than that of the undithered case. The minimum

amplitude of the dither signal required to produce the desired oscillations are

R = 0.54, 0.38 for Tf/2 = 0.8, 0.3 respectively. Figure 3.6 plots the amplitude of

the oscillation for a range of periods of the dither signal. From the figure, it can be

seen that the smaller the period of the dither signal, the smaller is the amplitude

of oscillations in the RFS.

Proposition 3.3. For second order plants with distinct (λ1, λ2) and repeated (λ1)

roots, c(t0, Tf ) increases monotonically with respect to Tf . Also T ∗
f = ∞ and
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Fig. 3.5. Self oscillation and FO of differing Tf/2 in example 3.2.

(i) for distinct roots, t0(Tf ) = 1
λ1−λ2

ln
(

tanh(0.25λ2Tf )−1

tanh(0.25λ1Tf )−1

)
and t0(T

∗
f ) = limTf→0 t0(Tf ) =

0.

(ii) for repeated roots, t0(Tf ) =
0.5Tf

− sinh(0.5λ1Tf )+1+cosh(0.5λ1Tf )
and t0(T

∗
f ) = limTf→∞ t0(Tf ) =

Tf/2.

In addition, limTf→0 c(t0, Tf ) = 0.

Proof. For a second order system with repeated roots at λ1, its state space repre-

sentation is A = [0 1; −λ2
1 2λ1], b = [0 1]T , c = [1 0] where λ1 < 0. The states of

z(0) are given by z1(0) =
−0.5λ1Tf+sinh(λ1Tf )

λ2
1(1+cosh(0.5λ1Tf ))

and z2(0) = − 0.5Tf

1+cosh(0.5λ1Tf )
.

Equating
dc(t0,Tf )

dt0
to zero,

t0 =
−z2(0)

z2(0)λ1 − λ2
1z1(0) + 1

=
0.5Tf

− sinh(0.5λ1Tf ) + 1 + cosh(0.5λ1Tf )
> 0. (3.15)
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Fig. 3.6. Plot of the amplitude of oscillation against Tf/2 in example 3.2.

The change in the output amplitude w.r.t. Tf ,

dc(t0, Tf )

dTf

= CeAt0
dz(0)

dTf

= eλ1t0(
dz1(0)

dTf

− λ1t0
dz1(0)

dTf

+ t0
dz2(0)

dTf

). (3.16)

The factor in (3.16),

dz1(0)
dTf

− λ1t0
dz1(0)
dTf

+ t0
dz2(0)
dTf

=
0.5Tf sinh(0.5λ1Tf )
(1 + cosh(0.5λ1Tf ))2

+ t0(− 1
cosh(0.5λ1Tf )

) < 0

which implies that the output c(t0, Tf ) is monotonically decreasing and the ampli-

tude |c(t0, Tf )| increases with Tf . Thus, similar to the first order case, T ∗
f = ∞. For

(3.15), the factor − sinh(0.5λ1Tf )+ 1 + cosh(0.5λ1Tf ) decreases to 0 exponentially

as Tf tends to ∞ and limTf→∞ t0 = 0.5Tf .

For a second order plant with distinct real roots, its state space representation

in controllable canonical form is A = [0 1; −λ1λ2 (λ1 + λ2)], B = [0 1]T and
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C = [1 0] where λ1 < λ2 < 0 are the roots of the plant.

A closed form solution for t0 is

t0 =
1

λ1 − λ2

ln(
λ1λ2z1(0)− λ2z2(0)− 1

λ1λ2z1(0)− λ1z2(0)− 1
) > 0. (3.17)

The change in the output amplitude w.r.t. Tf ,

dc(t0, Tf )

dTf

= eλ1t0(λ2
dz1(0)

dTf

) + eλ2t0(
dz2(0)

dTf

− λ1
dz1(0)

dTf

) (3.18)

where z1(0) =
−λ2 tanh(0.25λ1Tf )+λ1 tanh(0.25λ2Tf )

λ2
1λ2−λ1λ2

2
and z2(0) =

− tanh(0.25λ1Tf )+tanh(0.25λ2Tf )

λ1−λ2

are the states of z(0) and t0 = 1
λ1−λ2

ln
(

tanh(0.25λ2Tf )−1

tanh(0.25λ1Tf )−1

)
.

In (3.18),

λ2
dz1(0)

dTf

= 0.5sech(0.25λ1Tf ) > 0

and

dz2(0)

dTf

− λ1
dz1(0)

dTf

= −0.5sech(0.25λ2Tf ) < 0.

Thus from (3.18),

dc(t0, Tf )

dTf

< 0 since λ1 < λ2 < 0.

Hence the output c(t0, Tf ) (|c(t0, Tf )|) decreases (increases) monotonically with

increasing Tf . Once again, Tf∗ = ∞. For (3.17), as Tf tends to ∞, t0 tends to

0.

Example 3.3. Consider G(s) = 1
s2+5s+6

, with poles at λ1 = −2 and λ2 = −3. The

Tsypkin Locus is shown in Figure 3.7(a). The magnitude of c(Tf/2, Tf ) increases

as Tf/2 increases and saturates at c(Tf/2, Tf ) = −0.1667 when T ∗
f = ∞. The am-

plitude of the oscillation is plotted against Tf/2 in Figure 3.7(b). From the figure,
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it can be seen that the larger the period of oscillation, the larger the amplitude

|c(t0, Tf )|.
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Fig. 3.7. (a)Plot of the Tsypkin Locus in example 3.3. (b)Plot of the amplitude
of oscillation against Tf/2 in example 3.3.

Proposition 3.4. For second order plants with complex roots a± jb, c(t0, Tf ) in-

creases monotonically for Tf ∈ (0, T ∗
f ) where T ∗

f = π
b
. Also, t0(Tf ) = 1

b
tan−1( bz2(0)

(a2+b2)z1(0)−az2(0)−1
)

where z1(0) =
−asin(bTf )+bsinh(aTf )

b(a2+b2)(cos(bTf )+cosh(aTf ))
and z2(0) =

−sin(bTf )

b(cos(bTf )+cosh(aTf ))
. It follows

that t0(T
∗
f ) = π

b
.

Proof. For a second order plant with complex roots, a± jb, its state space repre-

sentation can be written as A = [0 1; −(a2 + b2) 2a], B = [0 1]T , C = [1 0] and

the turning point t0 of the output is given by

t0 =
1

b
tan−1(

bz2(0)

(a2 + b2)z1(0)− az2(0)− 1
) (3.19)

where z1(0) =
−asin(bTf )+bsinh(aTf )

b(a2+b2)(cos(bTf )+cosh(aTf ))
and z2(0) =

−sin(bTf )

b(cos(bTf )+cosh(aTf ))
.

For t = t0, the output amplitude for varying Tf is given by (3.8). The bound

T ∗
f where the amplitude of oscillation c(t0, Tf ) decreases monotonically with Tf for
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the set (0, T ∗
f ) is determined by equating (3.9) to zero, which gives

CeAt0
dz(0)

dTf

= 0. (3.20)

Solving (3.20) gives
Tf

2
= mπ

b
where m ∈ N+. Thus, for a second order system

with complex roots, the amplitude of the limit cycle decreases monotonically with

decreasing period for Tf ∈ (0, T ∗
f ) where T ∗

f = 2π
b

and the corresponding t0 = π
b
.

Example 3.4. Consider a second order plant with transfer function, G(s) =

1
s2+2s+20

, with complex roots at s = −1 ± 4.36j. The Tsypkin Locus in Figure

3.8(a) shows that the outer spiral with c(Tf/2, Tf ) increases in magnitude from

zero to about 0.15 before spiralling in with lower magnitudes. Hence the maxi-

mum Tf corresponding to maximum magnitude can be determined by the point

which crosses the c-axis or the point corresponding to ċ(Tf/2, Tf ) = 0. This gives

T ∗
f /2 = 0.7207. The amplitude of the oscillation is plotted against the period of

oscillation in Figure 3.8(b) which verifies the results obtained from the Tsypkin

Locus. From the figure, it can be seen that for T ∗
f /2 = 0.7207, the maximum

amplitude is about 0.15.

3.6 Quenching with Other Dither Signals

In this section, we show that the T ∗
f obtained for the sinusoidal dither remains valid

in the same RFS when dithers of other shapes are applied. This is an interesting

and new discovery as it means that quenching is now possible for any kind of
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Fig. 3.8. (a)Plot of the Tsypkin Locus in example 3.4. (b)Plot of the amplitude
of oscillation against Tf/2 in example 3.4.

periodic signal in a RFS. The results are only dependent on the linear element in

the RFS.

Consider the second order plant with transfer function, G(s) = 1
s2+2s+20

in

Example 3.4 with an external triangular dither signal. The amplitude of the os-

cillation is plotted against the period of oscillation in Figure 3.9(a) which shows

that T ∗
f /2 = 0.7207 and verifies the results in Section 3.5. At Tf/2 = 0.7207, u(t),

c(t) and f(t) are plotted in Figure 3.9(b). It can be checked from the figure that

ċ(Tf/2, 1.4415) = 0 and the maximum amplitude is about 0.15.

For the same RFS as above, consider a composite dither which is a combination

of two sinusoids. If this dither has a sufficiently large amplitude to achieve FO at

the fundamental frequency of the composite dither, the same T ∗
f applies. The

composite dither is shown in Figure 3.10(b). The plot of c(t0, Tf ) against Tf/2

shown in Figure 3.10(a) is identical to that of Figure 3.9(a). The resulting c(t, T ∗
f )

is also identical to Figure 3.9(b).
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Fig. 3.9. (a) Maximum oscillation amplitudes with triangular dithers. (b) Plot of
u(t), c(t) and f(t) for Tf/2 = 0.7207.

3.7 Applications

In this section, the analysis of two motivating examples will be presented and a

comparison between the performance of different dither shapes will be carried out.

Example 3.5. The following problem is posed by (Gibson, 1963), converted to SI

units by (Taylor, 2000) and adapted to illustrate our problem. A common problem

in the control of a missile is the limitation of the tendency of the missile to roll, or

spin about its axis. Aerodynamic surfaces are considered undesirable and difficult

to design due to the change in air density experienced by the missile and would be

ineffective except for the short time the missile is in the atmosphere. A common

solution is to mount a pair of control jet on the missile, one to produce torque about

the roll axis in the clockwise sense and one in the counterclockwise sense. The force

exerted by each jet is F0 = 445N and the moment arms are R0 = 0.61m. The

moment of inertia about the roll axis is J = 4.68N ·m/s2. Let the control jets and
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Fig. 3.10. (a)Maximum oscillation amplitudes with composite sinusoidal dithers.
(b)Plot of u(t), c(t) and f(t) for Tf/2 = 0.7207.

associated servo actuator have a hysteresis h = 22.24N and two lags corresponding

to time constants of 0.01s and 0.05s. To control the roll motion, there is roll and

roll rate feedback with gains of Kp = 1868N/radian and Kv = 186.8N · /radian

respectively. The block diagram is shown in Figure 3.11. The self oscillation and

dithered response are shown in Figure 3.12 where Tf/2 = 0.037 and amplitude of

0.55. It can be verified that the oscillations are indeed reduced. Figure 3.13 plots

c(t, Tf ) with sinusoidal dither and sawtooth dither where Tf/2 = 0.037. It can be

seen that the oscillation amplitudes are the same in both cases.

Example 3.6. Consider the case of a DC motor whose model is given in Figure

3.14 (adapted from (Luigi Iannelli, 2003b)). The DC motor is modeled as an

electric (armature) circuit subsystem with a given armature resistance Ra and

inductance La and a mechanical subsystem with inertia J and viscous coefficient

β. The motor provides a torque proportional to the armature current ia through

the torque constant kt and a counter electromagnetic force proportional to the rotor
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Fig. 3.11. Block diagram of the Missile Roll-Control problem.
(Taylor, 2000)
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Fig. 3.12. (a)Comparison of the oscillation amplitudes in example 3.5.
(b)Comparison of the steady state oscillation amplitudes in example 3.5.

speed through the constant ke. The angular position of the shaft θ is measured

by using a rotational potentiometer whose gain is kpot. The motor supply voltage

is ±Va and is obtained through a full bridge DC/DC converter (H-bridge). This

power amplifier has a logic input that selects a positive or negative supply voltage

to the DC motor. The control loop is closed by feeding in the negative of the sum

of the position and the dither signal. The output of the relay is the input of the
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Fig. 3.13. Plot of c(t) with sinusoidal and sawtooth dithers.

H-bridge driver. By introducing the state vector x =




θ

ω

ia




, we have

ẋ(t) =




0 1 0

0 −β
J

kt

J

0 − ke

La
− R

La




x(t)±




0

0

Va

La




, C = [−kpot 0 0]

The closed loop transfer function is

ktkpotVaL

JLLas3 + (βL + R1J)Las2 + (βR1 + ktke)Las
.

The system exhibited self oscillation, FO and SO with the following set of param-

eters. Va = 5V , R1 = 2.510Ω, La = 0.530mH, kt = ke = 5.700mV/rad · s−1,

β = 0.411mN · cm/rad · s−1, J = 31.400g · cm2, kpot = 3/2πV/rad, Tf/2 = 0.005

and amplitude 0.05. It is shown in Figure 3.15 that the amplitudes of the oscilla-

tions are indeed reduced with a dither frequency higher than that of self oscillation.

Figure 3.16 plots the oscillation amplitudes for a sine dither and a sawtooth dither

where the dither amplitudes are 0.07 and frequencies at 100 Hz. It can be seen

that the oscillation amplitudes are the same in both cases.
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Fig. 3.14. Model of the DC motor in example 3.6.

3.8 Conclusion

In this chapter, the potential of using a dither in arbitrarily reducing inherent

system oscillations has been illustrated. The bound on the dither period, T ∗
f was

determined and shown to be independent of the dither shape. The analysis is

exact and results can be obtained from the generalized Tsypkin Loci. For first and

second order real plants, it was shown that T ∗
f = ∞ which implies that quenching

can be achieved with arbitrarily small amplitudes.
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Chapter 4

Limit Cycles in Quantized

Feedback Systems under High

Quantization Resolution

4.1 Introduction

In Chapters 2 and 3, we have given necessary and sufficient conditions for the

existence of forced and subharmonic oscillations in relay feedback systems. In

this chapter, we extend the periodic switching conditions in Chapter 2 to analyse

the existence of self oscillations in certain quantized feedback systems under high

quantization resolution (small quantization step size) and no external forcing sig-

nals. Like the relay in Chapter 2, the output of the quantizer is discontinuous at

its switching instants. However, the quantizer is a more general nonlinearity as

compared to the relay, due to its switchings at multiple discrete levels. Due to

66
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their switching nature, the relay and the quantized feedback systems share some

similarities in terms of behaviours like self oscillations. Similar to the relay feed-

back system, the quantized feedback system will self oscillate when the necessary

and sufficient conditions are satisfied, like in Chapter 2.

An evaluation of the extended periodic switching conditions in Chapter 2 un-

covers the existence of self oscillations for some, but not all systems under high

quantization resolution. In particular, we show that multiple limit cycle solutions

of the switching instants and period can be obtained, depending on the initial

states of the system. Further analysis on the stability of the limit cycle via the

Jacobian of the Poincaré map reveals numerical bounds on the quantization step

size. In some cases, the limit cycle is found to be stable for quantization step size

as small as 0.005.

This chapter is structured as follows. The problem formulation is discussed

in Section 4.2. In Section 4.3, the analysis on the necessary conditions for the

existence and stability of limit cycles are shown. Further results on the identifi-

cation of the bounds on the quantization step size are presented in Section 4.3.3.

Conclusions are given in Section 4.4.
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4.2 Problem Formulation

Consider the quantized feedback system in Figure 4.1 with a finite limit midtread

quantizer Q∆(x). The linear system, G(s), is assumed to have a state space de-

scription given by

ż(t) = Az(t) + Bu(t) (4.1)

c(t) = Cz(t)

with

u = j∆, (j − 0.5)∆ < x ≤ (j + 0.5)∆ (4.2)

|u| ≤ M, x > M + 0.5∆orx ≤ −M − 0.5∆ (4.3)

where j ∈ Z, u, c ∈ R are the input and output, respectively, z ∈ Rm×1 is the

state vector, A ∈ Rm×m is Hurwitz and assumed to be non-singular, B ∈ Rm×1,

C ∈ R1×m, M, ∆ ∈ R are the saturation limit and step size of the quantizer

respectively and x(t) = −c(t) where x(t) is the feedback error. We define the

quantizer, Q(.) = Q∆(x) by the formula

Q∆(x) =





M, if x > M + 0.5∆

−M, if x ≤ −M − 0.5∆

b x
∆

+ 0.5c∆, if −M − 0.5∆ < x ≤ M + 0.5∆

(4.4)

where ∆ = 2M/(k − 1) for k being the number of quantization levels. This is

illustrated in Figure 4.2 for the quantizer with ∆ = 5 and M = 10.

In order to maintain a constant saturation limit, we preset the quantization

step size ∆ as ∆ = 2M/(k − 1) where k is the number of quantization levels and
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( )c t

  G(s)    Q(.) ( )x t ( )u t

Fig. 4.1. Quantized feedback system.

refer to the quantization resolution as an inverse function of the step size, ∆. Thus,

it is expected that as the number of quantization level k increases, the quantization

step size ∆ will decrease and result in a higher quantization resolution. Thus as

the quantization step size decrease, the slope of the quantizer will decrease.

It is also required that the system in Figure 4.1 is asymptotically stable when

Q(.) = 1. This forms the basis of our study for self oscillations when Q(.) is

replaced by a quantizer. When Q(.) is an uniform quantizer the self oscillations

that it may induce in the system is then examined. This self oscillation may be

induced by non-zero initial conditions in the quantized feedback system.

In time domain, the state trajectory of z(t) for a k-level limit cycle can be

expressed as



Chapter 4. Limit Cycles in Quantized Feedback Systems under High
Quantization Resolution 70

z(t) =





eA(t)z(0) +
∫ t

0
eA(t−τ)B∆dτ, 0 < t < τ1

eA(t−τ1)z(τ1) +
∫ t

τ1
eA(t−τ)B2∆dτ, τ1 < t < τ2

...

eA(t−τk′−1)z(τk′−1) +
∫ t

τk′−1
eA(t−τ)Bk′∆dτ, τk′−1 < t < τk′

eA(t−τk′ )z(τk′) +
∫ t

τk′
eA(t−τ)B(−(k′ − 1)∆)dτ, τk′ < t < τk′+1

...

eA(t−τ2k′−2)z(τ2k′−2) +
∫ t

τ2k′−2
eA(t−τ)B(−∆)dτ, τ2k′−2 < t < τ2k′−1

(4.5)

where τi s are the time instants when the state trajectory traverses the switching

planes. In our study, we denote the time instants where periodic switching occur

as (0, τ1, τ2, . . . , τ2k′−1, T/2) where k′ = 0.5(k− 1), k is the number of quantization

levels and T/2 is the half-period of the symmetrical limit cycle.

Example 4.1. Consider an example of a limit cycle for a 5-level quantizer and

a plant with transfer function G(s) = 6.5
s3+s2+2s+4

. For the 5-level quantizer(k =

5, ∆ = 5,M = 10), the switching planes occur at (−1.5∆,−0.5∆, 0.5∆, 1.5∆) and

the switching time instants, (0, τ1, ..., τj, T/2), j ≤ 3 are as shown in Figure 4.2,

where t = 0 is relative to a positive switching edge.

The existence of self oscillations will be determined by extending the periodic

switching conditions similar to those in Chapter 2. The stability of the limit cycles

will be analysed through the Jacobian of the Poincaré map. By further examining

the limits on the eigenvalues of the Jacobian, limits on the quantization step size

can be obtained. Thus, numerical bounds on the quantization step size where
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Fig. 4.2. 5-level limit cycle.

stable self oscillations exist, can be determined. In the next section, the necessary

conditions for the existence of limit cycles and the stability of the limit cycles

under high quantization resolution are shown.

4.3 Analysis

In this section, the extension of the periodic switching conditions in Chapter 2 will

be presented, followed by the analysis on the limit cycle stability. Lastly, results

on special cases will be shown.

4.3.1 Limit Cycles

The necessary conditions for limit cycles will be examined in this section. The

derivation of the limit cycle solution will be presented.

Proposition 4.1. Consider the quantized feedback system given in (4.1) and (4.2).

Assume that there exists a symmetric k-level periodic solution with switching times
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(τ1, τ2, . . . τ2k′−1) and period T where k′ = 0.5(k−1). An extension of the necessary

conditions in (2.8) leads to the following.

Cz(τi) = CeA(τj−τi)z(τi) + C

∫ τj

τi

eA(t−τ)Bw∆dτ = −(w − 0.5)∆ (4.6)

Cz(T/2) = CeA(T/2−τ2k′−1)z(τ2k′−1) = 0.5∆

where τ0 = 0, i = j − 1 , j = 1, 2, . . . , 2k′ − 1, w = k − |v| and v = −k + 1,−k +

2, . . . , k − 2, k − 1.

Additionally,

∂Cz(t)

∂t
|t=τp < 0

∂Cz(t)

∂t
|t=τq > 0

∂Cz(t)

∂t
|t=τT/2

> 0 (4.7)

where p = 1, 2, . . . , k′ − 1 and q = k′, k′ + 1, . . . , 2k′ − 1.

Furthermore, the periodic solution is obtained with the initial condition

z(0) = −z(T/2) (4.8)

Proof. The proof is similar to that in Proposition 2.1 and equations (4.6)-(4.8) is

equivalent to the necessary conditions in Proposition 2.1.

Remark 4.1. Note that the Jacobian of the Poincaré map, J = ∂Cz(t)
∂t

|t=τT/2
and

(4.7) can be verified from Figure 4.2 where the derivatives at the switching instants

satisfy (4.7).
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Rearranging the equations in (4.6) and (4.7),

Cz(τi) + (w − 0.5)∆ = 0 (4.9)

Cz(T/2)− 0.5∆ = 0 (4.10)

The solution of (4.9) is (τ1, τ2, . . . , τ2k′−1, T/2, z0
m) where z0

m is the state at the

m-th switching point and m = 0, 1, 2, . . . , 2k′−1. Denoting the system of nonlinear

equations (4.9) by F ,

F (b) = 0 (4.11)

where b = [τ1; τ2; . . . ; τ2k′−1; T, z0
m].

By the inverse-free Newton’s Method, let F1 = 1
2
F T F and denote J1 = F T J

where J is the jacobian ∂F/∂b. By the updating algorithm,

bn = bn−1 − F1
J1

‖J1‖2
,

bn can be iteratively updated until the error bn − bn−1 converges to zero. The

effectiveness of this method is verified by the example below.

Example 4.2. Consider the plant with transfer function, G(s) = 6.5
s3+4s2+2s+1

and

a 3-level quantizer where M = ∆ = 5 in closed loop feedback. In the absence of the

quantizer, the plant is asymptotically stable under unity feedback gain. With the

3-level quantizer, a limit cycle of 1 step with (τ1, T ) = (1.5302, 4.4646) is obtained,
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as shown in Figure 4.3. By the inverse-free Newton’s method, after 1500 iterations,

J =




−14.0990 0 7.0259 1.5717

−23.4021 9.9244 7.8565 1.9069

−1.4069 −0.7110 1.0406 0.0353

1.7068 −0.7961 −0.3640 0.8996




(4.12)

b1500 − b1499 = 10−4




−0.1115

−0.0337

−0.0392

−0.0090




(4.13)

and (τ1, T, z2(0), z3(0)) = (1.5306, 4.4646,−.0117,−0.4832). Note that in the Ja-

cobian of the solution, J11, J22, J33, J44 correspond to the gradient at the switching

instants. It is evident that the solution satisfies all the necessary conditions in

(4.7) as J11 < 0, J22 > 0, J33 > 0, J44 > 0.

In the next section, the stability of the limit cycles will be studied.

88 89 90 91 92 93 94 95 96 97 98
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Fig. 4.3. 3-level limit cycle.
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4.3.2 Stability of Limit Cycles

In this section, the local stability of the limit cycle with the computed switch-

ing times and period, will be checked by studying the effect of perturbations

at each switching time instant. The Jacobian of the Poincaré map is used for

this purpose, similar to (K.J.Åström, 1995; H. Olsson, 2001; Mario di Bernardo,

2001). For a k-level odd symmetric limit cycle, the switching time instants are

(0, τ1, τ2, . . . , τ2k′−1, T/2) where k′ = 0.5(k − 1). It will be shown in the proof that

if these 2k′ switching instants are analysed, the eigenvalues of 2k′ Jacobians re-

sulting from the Poincaré maps originating from each switching time instant, is

required to be inside the unit disk. A further examination reveals that the Jaco-

bians have the same eigenvalues and it suffices to examine the eigenvalue of one

Jacobian, as shown in the Proposition below.

Proposition 4.2 (Local stability). Consider the system with closed loop quantized

feedback in Figure 4.1. Assume that there is a k-level symmetric periodic solution.

Let zm
0 be the state of the system when it traverses each switching plane and w∆

be the corresponding quantizer output value where m = 0, 1, 2, . . . , 2k′ − 1 and

w = k− |v| and v = −k + 1,−k + 2, . . . , k− 2, k− 1.. The corresponding Jacobian

of the Poincaré map is given by

W =
k−1∏
i=1

Wi (4.14)

where

Wi = (I − νiC

Cνi

)Φi (4.15)
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and Φi = eA(τi−τi−1), τ0 = 0, νi = Aai + Bw∆. The limit cycle is locally stable if

and only if all eigenvalues of W are inside the unit disk.

Proof. Consider the trajectory resulting from the perturbed initial condition z(0) =

a0 + δa0. The perturbation is chosen such that it satisfies the switching condition

C(a0 + δa0) = −0.5∆. (4.16)

The perturbed solution is

z(t) = eAt(a0 + δa0) +

∫ t

0

eA(t−s)Bu(s)ds. (4.17)

Assume that the solution reaches the first switching plane at time τ1 + δτ1. Hence,

z(τ1 + δτ1) = eA(τ1+δτ1)(a0 + δa0)−
∫ τ1+δτ1

0

eA(τ1+δτ1−s)dsB∆ (4.18)

= Φ1(I + Aδτ1)(a0 + δa0) + (I + Aδτ1)(

∫ τ1

0

eAwdwB∆ + B∆δτ1)

= z(τ1) + Φ1δa0 + (Az(τ1) + B∆)δτ1 + O(δ2)

= a1 + Φ1δa0 + ν1δτ1 + O(δ2)

where z(τ1) = a1, Φ1 = eAτ1 and ν1 = Aa1 + B∆. For Ca1 = Cz(τ1 + δτ1), we get

δτ1 = −CΦ1

Cν1

δa0 + O(δ2)

.

Inserting this in (4.18) gives

z(τ1 + δτ1) = a1 + (I − ν1C

Cν1

)Φ1δa0 + O(δ2) (4.19)

The perturbation at time τ1 + δτ1 is thus given by δa1 = (I − ν1C
Cν1

)Φ1δa0 + O(δ2).
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In the same way, we can study how the perturbation δa1 of a1 affects the

solution at time τ1 + δτ1 + τ2 + δτ2. We get

z(τ1 + δτ1 + τ2 + δτ2) = a2 + (I − ν2C

Cν2

)Φ2δa1 + O(δ2) (4.20)

= a2 + (I − ν2C

Cν2

)Φ21(I − ν1C

Cν1

)Φ1δa0 + O(δ2).(4.21)

We follow through the same analysis till time τ1+δτ1+τ2+δτ2+· · ·+T/2+δT/2.

Finally,

z(τ1+δτ1+τ2+δτ2+ · · ·+T/2+δT/2) = −a0+
k−1∏
i=1

(I− νiC

Cνi

)Φiδa0+O(δ2). (4.22)

Thus, the Jacobian of the Poincaré map is given by (4.14).

Next, consider the trajectory resulting from the perturbed initial condition

z(τ1) = a1 + δa1. We follow through the same analysis and the jacobian of the

Poincaré map is

W = (
k−1∏
i=2

Wi)W1 (4.23)

where

Wi = (I − νiC

Cνi

)Φi (4.24)

and Φi = eA(τi−τi−1), τ0 = 0, νi = Aai + Bw∆.

If we let Q = W1(
∏k−1

i=2 Wi) and P = (
∏k−1

i=2 Wi)W1, left-multiply Q by Φ−1
1 and

right-multiply Q by Φ−1
k−1,

Φ−1
1 QΦ−1

k−1 = (I − Φ−1
1

ν1C

Cν1

Φ1)(
k−2∏
i=2

Wi)(I − νk−1C

Cνk−1

) (4.25)
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Left-multiply P by (I − Φ−1
1

ν1C
Cν1

Φ1),

(I − Φ−1
1

ν1C

Cν1

Φ1)P = (I − Φ−1
1

ν1C

Cν1

Φ1)(
k−1∏
i=2

Wi)W1

= Φ−1
1 QΦ−1

k−1Φk−1W1

= Φ−1
1 QΦ1(I − Φ−1

1

ν1C

Cν1

Φ1)

⇒ (I − Φ−1
1

ν1C

Cν1

Φ1)P = Φ−1
1 QΦ1(I − Φ−1

1

ν1C

Cν1

Φ1)

Let S = (I − Φ−1
1

ν1C
Cν1

Φ1) and Q′ = Φ−1
1 QΦ1,

SP = Q′S

SPS−1 = Q′

As Q′ = Φ−1
1 QΦ1 and Φ1 is always invertible, the eigenvalues of Q′ and Q have

the same eigenvalues. This further implies that P and Q also have the same

eigenvalues.

We have now shown that (
∏k−1

i=2 Wi)W1 has the same eigenvalues as (
∏k−1

i=1 Wi).

By following the same steps for perturbations at the other switching instants, we

can derive a Jacobian for each switching instant. Starting from perturbation at

z(τ1), the corresponding Jacobian will be (
∏k−1

i=3 Wi)W1W2. Similar to the proof

above, the eigenvalues of (
∏k−1

i=3 Wi)W1W2 is the same as in (
∏k−1

i=1 Wi). This

applies for the perturbations at all other switching instants. Thus, we find that

the eigenvalues of all the jacobians are similar and hence the requirement for the

eigenvalues of one Jacobian to be in the unit circle suffices. This completes the

proof.
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Remark 4.2. The local stability of each traversal point of the limit cycle is checked

in the proposition. Note that without the computed switching times and period,

the jacobian W cannot be evaluated.

Remark 4.3. One of the eigenvalues of the jacobian is 0 as C is a left eigenvector

of (I − νiC
Cνi

).

In Equation (4.23), νi is a function of the quantization step size, ∆. Thus,

the Jacobian J is also a function of ∆. Thus, the limits on the eigenvalues of the

Jacobian matrix, |Λ(W ) < 1| implies limits on the quantization step size. However,

given the complexity of the solution of the Jacobian for high orders plants, explicit

solutions for the limits on the quantization step size cannot be determined for

all systems. Hence, the limits on ∆ are demonstrated on a simple second order

system, as shown in Proposition 4.3.

Example 4.3. Consider the same plant in example 4.2 with ∆ = 2.5 and M = 5.

A 2-step limit cycle solution

(τ1, τ2, τ3, T, z1(0), z2(0), z3(0)) = (0.5347, 1.2953, 1.8123, 4.4532, 0.1918, 0.9040,−0.4305)

is obtained by solving (4.11). This is verified in simulation, as shown in Figure 4.5

and 4.4. The states z1(0), z2(0) and z3(0) are verified in Figure (4.8) where z0i(m)

represents the mth zero-crossings and i = 1, 2, 3. The solution is locally stable by

Proposition 4.2. The eigenvalues of (4.14) are 0.0101606, 0.3296, 0 which are in the

unit disk.
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Fig. 4.4. 2 step limit cycle with ∆ = 2.5.

By solving (4.11), we also found that the quantizer with a step size of ∆ = 0.05

produced a 2-step limit cycle

(τ1, τ2, τ3, T, z1(0), z2(0), z3(0)) =

(0.5330, 1.2984, 1.8136, 4.454, 0.003836, 0.01795,−0.0085).

By Proposition 4.2, we find that the eigenvalues are 0.0102, 0.3304, 0, which are

within the unit disk and the limit cycle is locally stable. This has been verified in

simulation using a 41-level quantizer.

For ∆ = 5/20 = 0.25, M=5 and k=41, the quantizer output u(t) converged

to a 2-step limit cycle of amplitude 2 × 0.25 = 0.5, as shown in Figure 4.6. If we
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further decrease the step size ∆ to 0.05, M=5 and k=201, the quantizer output

again converged to a 2-step limit cycle of amplitude 2 × 0.05 = 0.1, as shown in

Figure 4.7. As the quantization step size decreased from 0.25 to 0.05, the quantizer

output amplitude has decreased accordingly but the 2 step limit cycle remains at

steady state.

In the next section, results for special cases on first and second order systems

are presented. For first order systems, the conditions where self oscillations cannot

occur are determined. In second order systems, the limits on the quantization step

size for stable self oscillations are identified.

4.3.3 Special Cases

A. First order plants without delay

For first order plants without delay, it is generally well known that first order

plants do not self oscillate under relay feedback. It can be checked that a first

order non-delayed plant does not self oscillate when placed in closed loop with a

quantizer as follows.

From (4.5), we can derive that

Cz(T/2) = CeA(T/2−τ2k′−1)z(τ2k′−1)

= eA(T/2−τ2k′−1)Cz(τ2k′−1)

Applying the conditions in (4.6),

0.5∆ = eA(T/2−τ2k′−1)(−0.5∆) (4.26)
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As eA(T/2−τ2k′−1) > 0, we know that (4.26) cannot be possible. Thus, self

oscillation cannot occur with first order plants without delay.

B. First order plants with delay

In first order systems with a 1-step quantizer and delay where 0 < L < τ and

0 < τ < T/2, the necessary conditions (4.6) and (4.8) are satisfied when T/2 <

L + τ < T and T > 2L + τ . This is shown as follows.

Consider two cases: 0 < L + τ < T/2 and T/2 < L + τ < T .

Case 1: 0 < L + τ < T/2

Cz(τ) = CeAτz(0)− C(I − eA(τ−L))A−1B∆ (4.27)

= −0.5eAτ∆− C(I − eA(τ−L))A−1B∆ (4.28)

For a limit cycle to exist, Cz(τ) = −0.5∆. As the right hand side of (4.27) is

positive, no limit cycle is possible for 0 < L + τ < T/2.

Case 2: T/2 < L + τ < T

Cz(τ) = CeAτz(0)− CeA(T/2−L)(eA(τ+L−T/2) − I)A−1B∆ (4.29)

= −0.5eAτ∆− CeA(T/2−L)(eA(τ+L−T/2) − I)A−1B∆ (4.30)

The right hand side in (4.29) is negative and the switching condition Cz(τ) =

−0.5∆ may be satisfied. Next, the switching condition at t = T/2 is examined.

Cz(T/2) = CeAτz(0) + CeA(L)(eA(T−2L−τ) − I)A−1B∆ (4.31)
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If the switching condition at t = T/2 is satisfied,

0.5(I + eAτ )∆ = CeA(L)(eA(T−2L−τ) − I)A−1B∆ (4.32)

eA(T−2L−τ) − I < 0 (4.33)

T > 2L + τ (4.34)

The necessary conditions at t = τ and t = T/2 have been examined. By

Proposition 4.1, W = 0 for first order plants. The eigenvalue λ(W ) is within

the unit disk. Thus, the limit cycle for first order plants is also locally stable by

Proposition 4.1. Hence, for first order plants with delay, a limit cycle can exist for

T/2 < L + τ < T and T > 2L + τ .

C. Second order plants

For second order plants with state space representation,A = [0 1; −λ1λ2 (λ1 +

λ2)], B = [0 1]T and C = [c 0] where λ1 < λ2 < 0 are the roots of the plant, limit

cycles may not always exist. For second order systems with delay, a limit cycle

may exist if the necessary conditions in (4.6) and (4.7) are satisfied. As previously

mentioned in Section 4.3.2, the limits on the eigenvalues of the Jacobian matrix,

|λ(W )| < 1 in Proposition 4.2 allows us to calculate the limits on the quantization

step size. This is demonstrated on a second order system with a 3-level quantizer,

as shown in the proposition below.

Proposition 4.3. For a second order plant in negative feedback with a 3-level
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quantizer, the limit cycle with solution set (τ, T, L) is locally stable if and only if

∆ > max
z2(0)∈R

{∆1}, (4.35)

max
z2(0)∈R

{∆2} < ∆ < min
z2(0)∈R

{∆3}, (4.36)

∆ > max
z2(0)∈R

{∆3, ∆4} (4.37)

or

∆ < min
z2(0)∈R

{∆1}, (4.38)

max
z2(0)∈R

{∆4} < ∆ < min
z2(0)∈R

{∆3}, (4.39)

∆ > max
z2(0)∈R

{∆3} (4.40)

where

∆1 =

−2z2(0)(λ1eλ1L+0.5λ2T+2λ1τ−λ2eλ2L+0.5λ1T+2λ2τ )

λ1λ2(eλ2L+0.5λ1T+2λ2τ−eλ1L+0.5λ2T+2λ1τ )+2e0.5(λ1+λ2)T (eλ1τ−eλ2τ )
(4.41)

∆2 =

−2z2(0)(λ1eλ1L+0.5λ2T+2λ1τ−λ2e0.5λ1T+λ2L+2λ2τ )

λ1λ2(eλ2L+λ1T+2λ2τ−eλ1L+λ2T+2λ1τ+eλ2L+0.5λ1T+2λ2τ−eλ1L+0.5λ2T+2λ1τ )+2e0.5(λ1+λ2)T (eλ1τ−eλ2τ )

(4.42)

∆3 = 2z2(0)
λ1λ2

(4.43)

∆4 =

2z2(0)(λ1eλ1L+0.5λ2T+2λ1τ−λ2e0.5λ1T+λ2L+2λ2τ+λ2eλ1T+λ2L+2λ2τ−λ1eλ1L+λ2T+2λ1τ )

λ1λ2(eλ2L+λ1T+2λ2τ−eλ1L+λ2T+2λ1τ−eλ2L+0.5λ1T+2λ2τ+eλ1L+0.5λ2T+2λ1τ )−2e0.5(λ1+λ2)T (eλ1τ−eλ2τ )

(4.44)

where λ1λ2(e
λ2L+0.5λ1T+2λ2τ − eλ1L+0.5λ2T+2λ1τ ) + 2e0.5(λ1+λ2)T (eλ1τ − eλ2τ ) > 0.
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Proof. By expanding the limits on the eigenvalues of the Jacobian matrix, |λ(W )| <

1, the results (4.35) to (4.40) are obtained. (4.35)-(4.37) and (4.38)-(4.40) are de-

rived corresponding to 0 < λ < 1 and −1 < λ < 0 respectively.

From Proposition 4.3, if quantization step size ∆ > max{∆1 ∆2, ∆3, ∆4}, the

limit cycle is locally stable.

Consider an example, A =




0 1

−0.5 −1


, B =




0

1


, C =

[
6.5 0

]
,

L = 1. For this plant at ∆ = 0.0005, the limit cycle (τ, T, z1(0), z2(0)) =

(2.819, 3.002,−0.0000387,−0.0004985) exists. By Proposition 4.3, the limit cycle

(τ, T ) = (2.819, 3.002) is stable for 0.000233131 < ∆ < 0.0001849, 0.00849123 <

∆ < 0.0132733, ∆ > 0.0132733. This further confirms the existence of limit cycles

at ∆ = 0.0005. The limit cycle is shown in Figure 4.9(a). The states z1(0), z2(0) are

also verified in 4.9(b) where z0i(m) represents the mth zero-crossings and i = 1, 2.

In this section, the stability of the limit cycle has been investigated. The limit

cycle stability can be determined by evaluating the magnitude of the eigenvalues

of the Jacobian W . In a particular example, it was found that the quantizer

output converged to a 2-step limit cycle of a small amplitude at small quantization

step sizes. Note that by increasing quantization resolution, a 2-step limit cycle

with a small amplitude was still obtained. The special cases examined, reveals

the conditions required for limit cycles to exist. For a second order plant with a

3-level quantizer, the bounds of the quantization step size for stable limit cycles

have been identified. For higher order plants, explicit expressions for the bounds

on the quantization step size cannot be identified due to the numerical difficulties
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in solving for ∆.

4.4 Conclusions

In this chapter, the necessary conditions for the existence of limit cycles with

various levels and their stability have been examined in continuous time. A study

of the local stability of the limit cycles was performed by analysing the eigenvalues

of the Jacobian of the Poincaré map for each switching instant. It was shown that

the Jacobians for each switching instant have the same eigenvalues and it suffices to

analyse only one Jacobian. At high quantization resolution, the system with the

uniform quantizer may converge exponentially to a limit cycle whose amplitude

is related to ∆. The stability of the limit cycle can be identified by evaluating

the magnitude of the eigenvalues of the Jacobian W of the Poincaré map. It was

found that stable limit cycles can still exist under high quantization resolution.

In a particular example, the quantizer output converged to a 2-step limit cycle of

a small amplitude at small quantization step sizes. The special cases examined,

reveal the conditions required for limit cycles to exist. For a second order plant

with a 3-level quantizer, the bounds on the quantization resolution for which limit

cycles exist, are shown.
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Chapter 5

Conclusions

5.1 Main Findings

In this thesis, several new results are obtained. Briefly, the results are summarised

as follows:

A. Forced and Subharmonic Oscillations under Relay Feedback

The conditions for stable FO and SO to occur in a sinusoidally forced single

loop RFS were examined. It was found that the external forcing signal requires

a minimum amplitude, Rmin, for either FO or SO to occur. A combination of a

graphical approach using the Tsypkin Locus and a numerical approach was used to

determine this Rmin. The main contribution of this chapter lies in the discovery of

the fundamental difference between FO and SO. FO is possible for any frequency of

the external forcing signal as long as its amplitude was sufficiently large. This was

however not the case for SO. A complex relationship between frequency, amplitude

and ν exists for SO. Specifically, not all forcing signals can drive the RFS at

90
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any order ν even if the amplitude of the external signal is large. The ranges of

frequencies where SO of certain orders can be obtained were derived. Results for

FOPDT plants were completely given. Other behaviours for higher order plants

were also presented.

B. Design of Amplitude Reduction Dithers in Relay Feedback Sys-

tems

Using the idea from forced oscillations, the potential of using a dither in arbi-

trarily reducing inherent system oscillations has been illustrated. The bound on

the dither period, T ∗
f was determined and shown to be independent of the dither

shape. The analysis is exact and results can be obtained from the generalized

Tsypkin Loci. For first and second order real plants, it was shown that T ∗
f = ∞

which implies that quenching can be achieved with arbitrarily small amplitudes.

C. Limit Cycles in Quantized Feedback Systems under High Quanti-

zation Resolution

In this chapter, the necessary conditions for the existence of limit cycles with

various quantizer levels and their stability were examined in continuous time. A

study of the local stability of the limit cycles was performed by analysing the

eigenvalues of the Jacobian of the Poincare map for each switching instant. It was

shown that the Jacobians for each switching instant have the same eigenvalues

and it sufficed to analyse only one Jacobian. As the number of quantization level

k increased, the system with the uniform quantizer converged exponentially to a

limit cycle whose amplitude is related to ∆. One of the parameters that affects the

stability of the limit cycle solution is the quantization step size ∆. The limits on
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∆ was identified by evaluating the magnitude of the eigenvalues of the Jacobian

W for a range of ∆. In a particular example, it was found that the quantizer

output converged to a 2-step limit cycle of a small amplitude at small quantization

step sizes. Note that by increasing quantization resolution, a 2-step limit cycle

with a small amplitude was obtained. The special cases examined, revealed the

conditions required for limit cycles to exist. For a second order plant with a 3-level

quantizer, the effects of the quantization step size on the existence of limit cycles

were examined.

5.2 Suggestions for Further Work

Some topics remain open and are recommended for future work.

A. Forced and Subharmonic oscillations for general nonlinearities

The analysis of forced and subharmonic oscillations for relay feedback systems

have been analysed and presented in this proposal. A natural extension of the

results in this proposal is to examine the same switching conditions for other

types of nonlinear systems and to determine the exact requirements for forced and

subharmonic oscillations to occur. The choice of a meaningful system for analysis is

critical. The behaviours of sinusoidally forced nonlinear systems which are smooth

and continuous have been widely studied but that is not for the case of non-smooth

continuous systems. The reason is as follows.

For autonomous systems, we can analyse the stability of the equilibrium points
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easily whereas in non-autonomous systems with an external sinusoidal forcing sig-

nal, we may only achieve boundness of solutions. The problem of stability analysis

is even more difficult in non-smooth continuous systems, as the local Lipschitz

condition is obviously violated. Hence, for non-smooth continuous systems, even

boundness of solutions cannot be proved easily. Although it is a great challenge to

try to analyse such systems but it might still be a worthwhile attempt as the bifur-

cation of fixed points and periodic solutions and chaos arising from such systems

have received great attention in recent years.

B. Subharmonics control, Chaos control and switching bifurcations

The work on bifurcations and chaos control for nonlinear systems have been

extensive. Some examples are as follows. The bifurcations and the route to chaos

for an externally forced dry friction oscillator was studied in Mario di Bernardo

(2003). In G. Bagni and Tesi (2004) and M. Basso and Giovanardi (2002), a

central issue in bifurcations and chaos control application is addressed. In those

papers, the design of controllers are proposed to ensure stable periodic motions in

sinusoidally forced nonlinear systems, thereby achieving chaos control.

We have seen in this proposal that only a small amplitude is required to generate

SO in the case of piecewise linear systems. Thus, they are extremely sensitive to

tiny perturbations. These tiny perturbations which could exist due to noise in the

environment could lead to chaotic behaviour. On the other hand, its sensitivity to

perturbations could also be used to stabilise and control the system to regular and

predictable dynamical behaviour like SO. One can study this behaviour for future

work.
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