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Abstract

Many real-world problems involve the simultaneous optimization of several competing objectives
and constraints that are difficult, if not impossible, to solve without the aid of powerful optimization
algorithms. As no one solution is optimal to all objective in the presence of conflicting specifications,
the optimization algorithms must be capable of generating a set of alternative solutions, representing
the tradeoffs between the objectives. Evolutionary algorithms, a class of population-based stochastic
search technique, have shown general success in solving complex real-world multi-objective optimiza-
tion problems, where conventional optimization tools failed to work well. Its main advantage lies
in its capability to sample multiple candidate solutions simultaneously, hence enabling the entire
set of Pareto-optimal solutions to be approximated in a single algorithmic run. Much work has
been devoted to the development of multi-objective evolutionary algorithms in the past decade and
it is increasingly finding application to the diverse fields of engineering, bioinformatics, logistics,
economics, finance, and etc.

This thesis focuses particularly on investment portfolio management, an important subject in
the field of economics and finance, where the central theme is the professional management of an
appropriate mix of financial assets to satisfy specific investment goals. The decision process will
typically involve issues such as asset allocation, security selection, performance measurement, man-
agement styles and etc. Due to the complexity of these issues, classical optimization tools from
the realm of operations research are restricted to a limited set of problems and/or the optimization
models have to accept strong simplifications. These restrictions have thus motivated the develop-
ment and application of evolutionary optimization techniques for this purpose. As such, the primary
motivation of this thesis is to provide a comprehensive treatment on the design and application of
multi-objective evolutionary algorithms to address the several key issues involved with investment
portfolio management, namely asset allocation and portfolio management style.

For asset allocation, the mean-variance model developed by Harry Markowitz, widely regarded
as the foundation of modern portfolio theory, is considered to provide the quantitative framework for
this optimization problem. A generic multi-objective evolutionary algorithm designed specifically for
portfolio optimization is proposed and its feasibility is evaluated based on a rudimentary instantiation
of the mean-variance model. Avenues to incorporate user preferences into the portfolio construction
process are examined also. In addition, real-world constraints arising from business/industry regu-
lations and practical concerns are incorporated to enhance the realism of the mean-variance model
and the impacts on the efficient frontier are studied.

The second part of this work is concerned with portfolio management style, which can be broadly
classified as active and passive. While active management relies on the belief that excess yields over
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market average are attainable by exploiting market inefficiencies, passive management centers on ef-
ficient financial markets and aims to replicate returns-risk profiles similar to market indices. For the
former, security selection through technical analysis is studied, where a multi-objective evolutionary
platform is developed to optimize technical trading strategies capable of yielding high returns at
minimal risk. Popular technical indicators used commonly in real-world practices are used as the
building blocks for these strategies, which hence allow the examination of their trading characteris-
tics and behaviors on the evolutionary platform. In the aspect of passive management, a realistic
instantiation of the index tracking optimization problem that accounted for stochastic capital injec-
tions, practical transactions cost structures and other real-world constraints is formulated and used
to evaluate the feasibility of the proposed multi-objective evolutionary platform that simultaneously
optimized tracking performance and transaction costs throughout the investment horizon.
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Chapter 1

Investment Portfolio Management

Investment portfolio management is the professional management of an appropriate mix of financial

assets to meet specific investment goals for the benefit of the investors. In modern financial markets,

there is a huge variety of asset classes in which one may invest their wealth. They broadly range from

traditional financial products like stocks, bonds, money markets and cash to alternative investments

like commodities, financial derivatives, hedge funds, real estate, private equity, as well as venture

capital. While some are standardized products that are publicly quoted and traded on exchanges,

others are specially engineered to cater for specific needs of the investor and are traded over the

counter, hence associated with lower liquidity.

Faced with an extensive range of financial assets with distinct characteristics, the crux of the

problem lies in finding the optimal portfolio mix to meet investor needs. The optimization process

will involve issues like asset allocation, security selection, performance measurement, management

styles and etc. and the main objective in investment portfolio management is to deliver solutions

for these issues. Without any loss in generality, this work will specifically focus on asset allocation

and management styles. For brevity, discussions and empirical analyzes will be restricted to equity

portfolios though the generality of the proposed solution techniques allows extensibility to other asset

classes.

The problem of asset allocation focuses on the allocation of fund to each portfolio asset so as

to maximize the (expected) consumption utility during a specified investment period and/or total

wealth at the end of the investment period. The first half of this chapter will present a brief overview

of the mean-variance model pioneered by Harry Markowitz [166] (one of the earliest and prominent

1
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work in the field of investment portfolio management) and highlight some of its limitations. This

model will be used subsequently in this work as the quantitative framework for the asset allocation

problem.

Portfolio management style can be broadly classified as active and passive. While active man-

agement relies on the belief that excess yields over market average are attainable by exploiting

market inefficiencies, passive management centers on efficient financial markets and aims to replicate

returns-risk profiles similar to market indices. The second half of this chapter will provide a general

introduction to these styles and highlight some of their key differences.

1.1 Asset Allocation via Mean-Variance Analysis

Asset allocation is one of the crucial steps in investment portfolio management, which determines the

proportion of fund to be invested in each portfolio constituent. Security selection will then follow

where the appropriate securities for each portfolio subset are being determined. Following that,

asset allocation will be triggered again to determine the appropriate mix in each portfolio subset.

While various approaches (like tactical asset allocation, insured asset allocation and etc) exist for

this purpose, this work will specifically focus on mean-variance analysis.

1.1.1 Mean-Variance Model

Portfolio management entails elements of stochastic optimization as returns from financial instru-

ments are probabilistic in nature. Figure 1.1 compares the daily stock prices of DBS and UOB (the

two largest local banks in Singapore) from the period 01012008 to 05082008. Clearly, it is impossible

to foretell the future price movement of each stock as their relative performance varied with time.

As such, performance measurement and analysis of financial products and investment portfolios as

a whole should involve statistical and/or probabilistic elements. One trivial approach is to describe

individual stock price returns via probability distribution and measure portfolio performance with

the aggregate expected returns. However, asset allocation based on this naive objective will led to

unreasonable portfolio choices [19].

To investigate this further, consider an investor allocating all of his wealth to N different assets

indexed by i = 1, ..., N and the returns of each asset is a random variable ri with expected value
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Figure 1.1: Daily price series of DBS and UOB (i.e. the two largest bank stocks in terms of capital-
ization value in the Straits Times Index, Singapore) for the period between 01012008 and 05082008.

µi = E(ri). The fraction of wealth invested in asset i is represented by a decision variable wi which

is bounded by 0 ≤ wi ≤ 1, assuming short-selling is dis-allowed. The expected portfolio returns will

be simply as follows:

E(
n∑

i=1

riwi) =
n∑

i=1

E(ri)wi =
n∑

i=1

µiwi (1.1)

Consequently, The asset allocation problem can be formalized as follows:

max
n∑

i=1

µiwi (1.2)

s.t.
n∑

i=1

wi = 1, wi ≥ 0

The solution to (1.2) is rather trivial, as it simply involves choosing the stock with the maximum

expected return, i∗ = arg maxi=1,...,n µi and setting wi∗ = 1. Intuitively, this portfolio is analogous

to putting all of the eggs in one single basket which is extremely risky. This simple example highlights

the importance of supplementing the expected returns with other information. A natural extension



CHAPTER 1. 4

in this context is the incorporation of risk measures and the most common measure for this purpose

is the standard deviation of the expected returns. Typically, higher risk is associated with greater

dispersion of returns around the expected value, as it translates to greater uncertainty of future

returns.

The asset universe in (1.2) is reduced to the two assets in Figure 1.1. Their expected returns,

E(rDBS) and E(rUOB) are 0.60% and -0.20% respectively (based on the historical price series) and

their standard deviation (σDBS and σDBS) are 0.40% and 0.42% respectively. On face value, it

can be concluded that the investor should allocate all his wealth to DBS due to it having a higher

expected returns and lower standard deviation, which corresponds to lower risk. However, this

analysis is not complete, as the correlation between them has been neglected. Including UOB can

offer diversification benefits, if their returns are not highly correlated in a positive sense i.e. if DBS

performs poorly, UOB might perform well to mitigate the loss.

The variance for this two-asset portfolio is as follows:

σ2 = V ar(wDBSrDBS + wUOBrUOB)

= w2
DBSσ2

DBS + w2
UOBσ2

UOB + 2wDBSwUOBσDBS,UOB (1.3)

where wDBS and wUOB represent the proportion of wealth invested in DBS and UOB respectively and

σDBS,UOB denotes the covariance between them. Generalizing this relationship for larger problem

sets, the equation for variance is as follows:

σ2 =
n∑

i=1

n∑

j=1

wiwjσi,j (1.4)

where σi,j denotes the covariance between asset i and j.

Different weight combinations will correspond to different portfolios characterized by their ex-

pected returns and standard deviation. Ideally, an investor will want to maximize the expected re-

turn and minimize returns variance. This principle forms the fundamentals of the famous Markowitz

mean-variance model [166], where the problem can be formulated as such,

• For a given upper bound of σ2 for the variance of the portfolio return, find an admissible

portfolio π∗ such that µ(π∗) is maximal under all admissible portfolio π, with σ2(π∗) ≤ σ2.
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• For a given lower bound of µ for the mean of the portfolio return, find an admissible portfolio

π∗ such that σ2(π∗) is minimal under all admissible portfolio π, with µ(π∗) ≥ µ.

Applying the mean-variance analysis for the two-stocks (i.e. DBS and UOB) asset allocation

problem, different weight combination were considered and the risk-return profile of the different

portfolios are plotted in Figure 1.2. As the two objectives are inherently conflicting in nature, the

optimum solutions will essentially comprise of a set of solution illustrating the trade-off between

them. Intuitively, an investor will want the highest return for a given level of risk. As such, only the

upper bound of the plot will be considered which is commonly known as the efficient frontier.
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Figure 1.2: Plot showing the risk-return profiles by considering different weights combinations in the
two-asset (i.e. DBS and UOB) portfolio optimization problem. Efficient frontier is highlighted in
bold.

1.1.2 Limitations of Markowitz Model

The essence of mean-variance analysis is to construct portfolios amongst the pool of assets available,

offering the highest expected returns and lowest risk possible. In this single-period decision problem,

a one-off decision will be made at the beginning of the investment period with no further actions

thereafter. The aim is to maximize the terminal wealth at the end of the period. Till date, this
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model still holds great importance in real-world applications and is widely considered in financial

institutions.

Despite its prominent role in financial theory, the mean-variance model has constantly been

the subject of widespread criticism. For example, the fundamental assumption of a perfect market

without taxes and transactions costs, where securities are infinitely divisible and therefore can be

traded in any fraction, is highly unrealistic in practical context. Also, the normality assumption

in returns distribution contradicts the rather well-known observations that empirical distribution

of asset returns exhibit non-symmetry and excess kurtosis. The direct implication is that the first

two moments of expected return and variance are insufficient to describe the portfolio fully and

higher moments are required. These limitations have consequently motivated further development

to improve its realism and relevance to the asset allocation problem in real-world.

Related literatures have extended the mean-variance model by modifying the existing objective

functions. Particularly, Arnone et al. [8] and Loraschi et al. [154] considered downside risk (i.e.

distribution of the downside returns) in place of the returns volatility. Alternatively, additional

objective functions have been incorporated to enhance the original model. For example, Fieldsend

et al. [82] considered the portfolio size as an additional objective to be optimized, allowing the

2-dimensional cardinality constrained frontier for any particular cardinality to be obtained directly.

Other objectives considered in literature included surplus variance [229], portfolio Value-at-Risk

[229], annual dividend [72] and asset ranking [72]. Also, as portfolio managers often face a number of

realistic constraints arising from pre-specified investment mandates, business/industrial regulations

and other practical issues [221], these constraints have been incorporated into mean-variance model

in related works.

Being cast in a single-period framework, the mean-variance model essentially represents a passive

buy-and-hold strategy that remained indifferent to the ever-changing market conditions. Clearly, it is

counter-intuitive to assume a static relationship for the different assets in the portfolio. For example,

correlation will typically rise in stock market crashes, just when diversification is most needed. This

has thus motivated the consideration of the dynamic nature of investment portfolio management

with the work of Merton [169, 170] being widely regarded as the real starting point in the field of

continuous-time portfolio management. Hybrid variants like multi-period portfolio management also

exist where the investment horizon is split into discrete time periods and the mean-variance criteria
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are considered in every period. Portfolio rebalancing strategies and transaction costs are important

considerations in multi-period and dynamic portfolio management.

1.2 Investment Portfolio Management Styles

Portfolio management styles could be broadly classified into passive or active. While active manage-

ment relies on the belief that excess yields over market average are attainable by exploiting market

inefficiencies, passive management centers on efficient financial markets and aims to replicate similar

returns-risk profiles as market indices. There is an inherent tradeoff between these two styles, i.e.

the low-cost but less-exciting alternative of passive investing versus the higher-cost but potentially

more lucrative alternative of active investing [197].

Before reviewing them in detail, it is imperative to introduce the efficient market hypothesis

[78]. Essentially, this hypothesis asserts that financial markets are “informationally efficient ”, or

that price on traded financial assets already reflect all known information and therefore are unbiased

in the sense that they reflect the collective beliefs of all investors about future prospects. As such,

it is not possible to consistently outperform the market by using any information that the market

already knows. Information or news here denotes anything that may affect prices, is unknowable in

the present and thus appears randomly in the future.

1.2.1 Active Portfolio Management

Active portfolio management is an attempt by the manager to make specific investments with the

goal of outperforming a pre-determined benchmark index, net of transaction costs, on a risk-adjusted

basis. The central belief is that the financial markets are not efficient and such opportunities can

be exploited for profits. As such, mangers are essentially “betting ”against markets being perfectly

efficient and these “bets ”can be broadly categorized into fundamental and technical.

The realm of fundamental analysis is one where mispricing might temporarily exist in the short

term before market forces rectified this pricing discrepancy in the long run. Fundamentalists will

analyze the market forces of demand and supply to determine the intrinsic value of financial assets

and enter (exit) the market if it is below (above) its intrinsic value, which is a sign of undervaluation
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(overvaluation). The unit of interest here could be a particular security name, where its market

price is compared against the valuation implied from financial statement analysis discounted cash

flow model, or escalate to asset class level, where the relative value between the various asset classes

are assessed. It can also be based on specific sector classification like industrial (manufacturing,

construction, finance), product (consumer, industrial, services), perceived characteristics (growth,

cyclical, stable) and etc.

In stark contrast, technicians completely ignore market fundamentals and decide solely based

on market action i.e. the past history of market prices and trading action. The central idea is that

all available information is already reflected in the market prices, hence rendering the usefulness of

fundamental analysis. Through the extrapolation of historical price patterns, technicians assume

either past stock price trends will continue in the same direction or they will reverse themselves.

In the context of investment portfolio management, active management views can be reflected in

asset allocation where for example the portfolio weights for undervalued securities are temporarily

increased at the expense of overvalued securities, until the abnormalities have been rectified. These

views can be considered in security selection where for example, technical indicators being used to

limit the entire stock universe to a manageable list of “potential ”names.

Clearly, the effectiveness of an actively-managed investment portfolio obviously depends on the

skill of the manager. In reality, the majority of active mangers rarely outperform their index counter-

parts over long periods of time, for example, the Standard & Poor’s Index Versus Active scorecards

demonstrate that only a minority of actively managed mutual funds usually beat Standard & Poor’s

various index benchmarks. In fact, this minority percentage tends to shrink further as the compari-

son period lengthens. Accounting for all expenses, underperformance is possible even if the portfolio

outperforms the market. Nevertheless, active management remains an attractive strategy within

market segments that are less likely to be fully efficient, such as investments in small cap stocks.

1.2.2 Passive Portfolio Management

While active management relies on the belief that excess yields over market average are attainable

by exploiting market inefficiencies, passive management centers on efficient financial markets and

aims to replicate similar returns-risk profiles as market indices. The implicit assumption here is
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that financial markets are efficient and no financial strategy can regularly outperform the market

average. As such, the objective here is to generate market returns by replicating financial indexes as

best as possible. There exist many different types of indexes for various broad market categories, for

example equity indexes (S&P 500 & Nasdaq composite index), indexes for small capitalization stocks

(Russell 2000) and value/growth oriented stocks (Russell Value/Growth index), indexes for world

regions (MSCI World), as well as for smaller regions, individual countries and the type of countries

(emerging Asia markets). There exist also customized passive portfolios, known as completeness fund,

that are constructed to complement active portfolios that do not cover the entire market. Instead

of the published indexes highlighted, these funds will track customized indexes that incorporate the

characteristics of stocks not covered by the active managers.

Even though passive portfolio management has a straightforward goal of matching the portfolio

returns with respect to an underlying index, uncontrollable factors like cash inflows/outflows, com-

pany mergers and bankruptcies and etc, will translate to inevitable discrepancies in returns over

time. While index funds generally aim to minimize turnover and transaction fees, rebalancing is

undoubtedly essential also to prevent their returns from lagging the underlying index in the long

run. This subject will be discussed in further detail later in Chapter 7.

1.3 Thesis Overview

The central theme in investment portfolio management is to manage an appropriate mix of financial

assets to satisfy certain specified investment goals and this process requires portfolio managers to ad-

dress various issues like asset allocation, security selection, performance measurement, management

styles and etc. Many of these issues have been formulated as optimization problems and are widely

studied in literature works. However, due to their sheer complexity, classical optimization tools from

the realm of operations research were restricted to a limited set of problems and/or the corresponding

optimization models had to accept strong simplifications. These restrictions have thus motivated the

development and application of evolutionary optimization techniques for this purpose, as they have

shown general success in solving complex real-world optimization problems from the diverse fields of

engineering, bioinformatics, logistics, economics, finance, and etc. The primary motivation of this
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work is to provide a comprehensive treatment on the design and application of multi-objective evolu-

tionary algorithms to address the issues involved with investment portfolio management, particularly

asset allocation and management styles.

This thesis is organized as such. The first two chapters will provide the necessary background

information on the subject matters. This chapter in particular focused on investment portfolio man-

agement and highlighted some of the associated issues that will be investigated further in subsequent

chapters. Chapter 2 will continue with a brief overview on the key concepts and design issues in-

volved with evolutionary multi-objective optimization, as well as a short introduction on memetic

algorithms, a synergetic combination of global and local search strategies that corresponds to an

effective and efficient optimization model.

Following that, Chapter 3 will formally introduce multi-objective evolutionary algorithm as the

optimization platform for investment portfolio management. Specifically, this chapter will examine

how the chromosomal representation and variation operations of evolutionary optimizers can be

extended for the purpose of portfolio optimization and how algorithmic performance can be further

enhanced via local search strategies and dynamism operators.

The rest of this thesis is divided into two main parts, with each part focusing on different aspect

of investment portfolio management. The first part, comprising of Chapter 4 and 5, will focus on

asset allocation. Specifically, the mean-variance model developed by Harry Markowitz, which is

widely regarded as the foundation of modern portfolio theory, will be considered here to provide a

quantitative framework for the asset allocation problem. Chapter 4 will evaluate the feasibility of the

proposed multi-objective evolutionary platform based on a rudimentary instantiation of the mean-

variance model and examine avenues to incorporate preferences into the decision-making process via

a memetic model. In Chapter 5, real-world constraints arising from business/industry regulations

and practical concerns will be incorporated to improve the realism of the mean-variance model and

their impacts on the efficient frontier will be studied.

The second part of this thesis is concerned with the two distinct portfolio management styles. Ac-

tive management, specifically technical analysis in the context of security selection, will be considered

in Chapter 6. A multi-objective evolutionary platform that optimizes technical trading strategies

capable of yielding high returns at minimal risk will be proposed. Popular technical indicators used
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commonly in real-world practices will be used as the building blocks for these strategies, hence allow-

ing the examination of their trading characteristics and behaviors on the multi-objective evolutionary

platform. Subsequently, Chapter 7 will switch to passive management, where a realistic instanti-

ation of the index tracking optimization problem that accounted for stochastic capital injections,

practical transactions cost structures and other real-world constraints will be formulated and used

subsequently to evaluate the feasibility of the proposed multi-objective evolutionary platform that

simultaneously optimized tracking performance and transaction costs throughout the investment

horizon.

Conclusions are drawn in Chapter 8, where the key contributions are summarized and avenues

for future works are highlighted.

1.4 Summary

In this chapter, a general introduction to investment portfolio management, particularly asset allo-

cation and management styles, was provided. Some of the associated issues that will be investigated

further in subsequent chapters were highlighted also. An overview of the thesis was provided at the

end of the chapter. For brevity, many details pertaining to investment portfolio management were

specifically omitted and interested readers are referred to standard textbooks for further clarifica-

tion.



Chapter 2

Evolutionary Multi-Objective

Optimization

2.1 Introduction

Many real-life problems require the simultaneous optimization of several non-commensurable and

often competing objectives. In the context of investment portfolio management as an example,

building up a portfolio that targets excess risk-adjusted yield over the aggregate market returns

will encompass several objectives like maximizing the expected returns of the portfolio constituents,

minimizing the aggregate returns volatility of the portfolio, minimizing the transaction costs in

the purchase of the securities and etc. Besides these conflicting objectives, several constraints in

accordance to the investment mandate and business/industrial regulations have to be considered,

for example, maintaining specific exposure to a particular industrial sector and/or market region,

limiting excessively concentrated holdings for diversification benefits and etc.

In general, multi-objective optimization (MOO) involves the balancing of the different objectives

in the optimization problem, each according to their right level of importance, and search for the

optimum or best compromise between them, whilst keeping within the various constraints. Compar-

atively, single-objective (SO) optimization is concerned with finding the one solution that optimizes

the sole objective function of the underlying problem. Unlike SO optimization where a complete

12
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ordering of the solutions exists, MOO presents a possibly uncountable set of solutions that represent

alternative trade-offs between the various objectives. The search for the optimal set of solutions in

MOO is often an extremely difficult search problem. In fact, multi-objective problems, including the

Markowitz’s mean-variance model, are in general NP-complete [10].

Evolutionary optimizers, a class of stochastic search techniques, have been gaining significant

attention from the research community in the field of MOO, due to its success in solving complex

real-world optimization problems with various competing specifications. In fact, conventional evolu-

tionary optimizers, including evolutionary algorithms, particle swarm optimization and ant colony

optimization, and they have been extensively applied to portfolio optimization. As most of these

meta-heuristics models adopt a population-based search approach, they are especially well-suited

for MOO due to their ability to sample a pool of solutions simultaneously during the optimization

progress.

The remainder of this chapter is organized as such. It will start with a formal definition of the

key principles underlying MOO, followed by a discussion on the optimality conditions in the presence

of multiple objectives. The latter part of the chapter will present a short overview on the various

type of evolutionary optimizers considered in this thesis, namely evolutionary algorithms and particle

swarm optimization and a brief discussion on how they can be extended for the purpose of MOO in

general.

2.2 Multi-Objective Optimization

2.2.1 Problem Definition

Without any loss in generality, a minimization multi-objective problem (MOP) can be formally

defined as follows [243]:

min
~x∈<n

~f (~x) = {f1(~x), f2(~x), ..., fm(~x)} (2.1)

s.t. ~g(~x) > 0,~h(~x) = 0
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where ~x is the vector of decision variables bounded by the decision space, Ω : ~x ∈ <n and ~f is the set

of objectives to be minimized. The functions ~g and ~h represent the set of inequality and equality con-

straints that defines the feasible region of the n-dimensional continuous or discrete feasible solution

space. The MOP’s evaluation function,F : Ω → Λ, maps decision variables ~x to objective vectors

~f as illustrated in Figure 2.1 for the case where n = 3 and m = 2. Depending on the underlying

objective functions and constraints of the particular MOP, this mapping might not be unique and

may be one-to-many or many-to-one. The objective vectors will directly determine the optimality of

the solution.

Decision Variable Space


x
3


Objective Space


x
2


x
1


f
1
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2


Figure 2.1: Evaluation mapping function between the decision variable space and objective space in
MOO.

2.2.2 Pareto Optimality

In single objective optimization, the feasible set is completely ordered according to the objective

function. For any given set of solution, the best solution can be clearly defined according to their

corresponding objective value. The goal thus is to simply find the solution that maximizes/minimizes

the objective function. However, in the case of MOO where several objectives are involved, the

ordering of the solution set becomes complicated. Early approaches aggregated the various objectives
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into a single, parameterized objective function, hence congregating the multiple objectives into a

single objective. Classical representatives of this class of techniques are the weighting method, the

constraint method, goal programming and the min-max approach. However, limitations pertaining

to these methods include high computational cost, prior knowledge of the problem required, bias

towards certain regions of the trade-off curve and etc. Hence, it is imperative that an alternative

notion of optimality is needed in MOO.

The Pareto optimality is a standard of judgment in which the optimum allocation of the resources

are not attained as long as it is possible to make at least one individual better off in its own estimate

while keeping the others as well off in their own estimate. In the realm of MOO, especially during

the total absence of information regarding the preferences or importance of each objective, ranking

scheme based upon the Pareto dominance is regarded as an appropriate approach to represent the

strength of each individual in MOO [224]. The formal definitions of Pareto dominance are as follows

[243]:

Definition 2.1: Weak Dominance:~f1 ∈ ~F M weakly dominates ~f2 ∈ ~F M , denoted by ~f1 � ~f2 iff f1,i ≤

f2,i ∀i ∈ {1, 2, ..., M} and f1,j < f2,j ∃j ∈ {1, 2, ..., M}

Definition 2.2: Strong Dominance: ~f1 ∈ ~F M strongly dominates ~f2 ∈ ~F M , denoted by ~f1 ≺

~f2 iff f1,i < f2,i ∀i ∈ {1, 2, ...,M}

Definition 2.3: Incomparable: ~f1 ∈ ~F M is incomparable with ~f2 ∈ ~F M , denoted by ~f1 ∼ ~f2 iff f1,i >

f2,i ∃i ∈ {1, 2, ..., M} and f1,j < x2,j ∃j ∈ {1, 2, ...,M}

The various Pareto Dominance relationships are illustrated in Figure 2.2, which depicts a refer-

ence solution and four different regions highlighted in different shades of grey. Solutions located in

region A dominate the reference solution as the latter is worse in both objectives when compared

to the former. Similarly, solutions located in region D are dominated by the reference solution.

Solutions located in regions B and C are incomparable to the reference solution because it is not

possible to establish any superiority of one solution over the other i.e. solutions in the region C are

better only in f2 while solutions in the region B are better only in f1. Lastly, solutions located at

the boundaries between region B/C and D are weakly dominated by the reference solution. It can

be easily noted that there is a natural ordering of these relations: ~f1 ≺ ~f1 ⇒ ~f1 � ~f1 ⇒ ~f1 ∼ ~f2.

With the concepts of Pareto dominance properly defined, the concept of Pareto optimality is

defined as follows [243]:
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Figure 2.2: Illustration of the Pareto Dominance relationship between candidate solutions and the
reference solution.

Definition 2.4: Pareto Optimal Front: The Pareto optimal front, denoted as PFTrue, is the set of

non-dominated solutions with respect to the objective space such that PFTrue = {~f∗
i |@~fj ≺ ~f∗

i , ~fj ∈

~F m}

Definition 2.5: Pareto Optimal Set: The Pareto optimal set, denoted as PTrue, is the set of solutions

that are non-dominated in the objective space such that PTrue = {~x∗
i |@~F (~xj) ≺ ~F (~x∗

i ), ~F (~xj) ∈ ~F m}

The various concepts of Pareto optimality are illustrated in Figure 2.3. Solutions lying on

the boundary between the infeasible region and feasible region are Pareto Optimal with respect to

decision search space, since no other solutions can possibly dominate them. This boundary represents

PFTrue that corresponds to the set of solutions in PTrue.

2.2.3 Optimization Goals

Clearly, it will be impossible to find the entire PTrue which most likely constitutes infinite elements.

On a more practical note, what can be done instead is to find a set of solutions, PKnown within the

limited computational resources, which when plotted in the objective space, generates a Pareto front,

PFKnown that can best represent PFTrue. An example of such an approximation is illustrated by the
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Figure 2.3: Illustration of the various concepts of Pareto Optimality.

set of non-dominated solutions denoted by the circles residing along the PFTrue in Figure 2.3. The

definition of quality of the discovered solution set, PFKnown contains multiple criteria [43, 62, 261]:

• Proximity: Minimizing the distance between PFTrue and PFKnown.

• Spread: Maximizing the spread of the solution in PFKnown.

• Spacing: Obtaining a good distribution of generated solutions along PFKnown.

Figure 2.4 compares two different sets of PFKnown and the plots illustrate the superiority of one

set over the other in each of the optimization goals. While the first optimization goal of convergence

is the first and foremost consideration for all optimization problems in general, the second and third

optimization goals of maximizing diversity are entirely unique to MOO. The rationale of finding a

diverse and uniformly distributed PFKnown is to provide the decision maker sufficient information

about the trade-offs between the different solutions before the final decision is made. It should also

be noted that the optimization goals of convergence and diversity are inherently conflicting in nature,

which explains why MOO is much more difficult than single-objective optimization.
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Figure 2.4: Plots comparing two different sets of solutions (white circles versus black circles), where
each plot illustrates the superiority of the set of white circles over the black circles in terms of (a)
proximity, (b) Spread and (c) Spacing.

2.3 Evolutionary Optimization

Traditional operational research approaches in MOO typically entails the transformation of the

original problem into a single-objective problem and employs point-by-point algorithms such as

branch-and-bound to iteratively obtain a better solution. Such approaches have several limitations

including the requirement of the multi-objective problems to be well-behaved (i.e. differentiability

or satisfying the Kuhn-Tucker conditions), sensitivity to the shape of the PFTrue and the generation

of only one solution for each simulation run. On the other hand, evolutionary optimizers that are

inspired by biological or physical phenomena have been gaining increasing acceptance as a flexible

and effective alternative to such optimization problems in the recent years.

2.3.1 Evolutionary Algorithm

Evolutionary algorithm (EA) stands for a class of stochastic optimization methods that adopts Dar-

win’s principle on “survival of the fittest” and emulate the natural biological evolution mechanism.

Technically, EA comprises of several evolutionary meta-heuristics model, namely, genetic algorithm

[108], evolutionary programming [84] and evolutionary strategy [196]. Interestingly, evolutionary
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strategy is the only paradigm developed for the purpose of optimization; genetic algorithm was

designed as a general adaptive system while evolutionary programming is developed as a learning

process to create artificial intelligence. However, no distinction will be made between these different

evolutionary computation models and they will be collectively known as EA here.

Using strong simplifications, this approach modifies a set of candidate solutions based on the

two basic principles of evolution: selection and variation. Selection represents the competition for

resources among living beings in which the better ones are more likely to survive and pass down their

genetic information. This is simulated via a stochastic selection process, where each solution is given

a chance to reproduce a certain number of times, dependent on their quality. The other principle,

variation, imitates natural capability of creating “new” living beings by means of recombination and

mutation. In this context, it is concerned with how potential new solutions can be generated from

existing solutions at hand.

Essentially, EA maintains a population of individuals and each individual represents a possible

solution to the optimization problem at hand. These individuals are encoded as chromosomes to epit-

ome the mechanics of DNA blueprint for living organisms, allowing the propagation of information

through variation and the inheritance of desirable properties by offspring solutions. When decoded,

they generate a set of decision variables which represent a particular point in the objective function

space. The optimality of each chromosome can thus be determined, depending on how “well” the

various constraints and objectives in the problem are satisfied.

The algorithmic flow of the general EA is illustrated in Figure 2.5. It will start by initializing

a random population of candidate solutions. Based on their fitness, the better individuals will be

selected as parents to seed the next generation. Variation operation will subsequently be applied

to them to generate a new set of candidate solutions. These offspring will compete with the old

individuals based on their fitness for a place in the next generation. By subjecting the population of

individuals through this process for generations, the individuals will evolve to adapt to the environ-

ment, accompanied by an overall rise in the fitness level of the population. This cycle will terminate

when either a set of candidate solutions with sufficient quality had been found or a predefined com-

putational limit had been reached. The archive represents the elitist strategy [60], which is used

to preserve the best individuals found into the next generation. The underlying motivation is to

prevent the lost of good individuals due to the stochastic nature of the evolution process. De Jong
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[60] found that elitism could improve the performance of EAs in general although there is a potential

danger of premature convergence.
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Figure 2.5: Algorithmic flow of a general MOEA presented as a flowchart.

Selection and variation represent the underlying force driving the search dynamics of EA. The

former removed low-quality individuals from the population, so that high quality individuals have a

higher chance to be reproduced. This has the effect to focus the search on particular portions of the

search space and to increase the average quality within the population. Mimicking the stochastic

nature of evolution, the latter generates new solutions within the search space by the variation of

existing ones. While selection acts as a force pushing for quality, variation creates novelty [73]. Their

combined effect generally leads to improved fitness values during runtime.

Although the underlying principles are simple, these algorithms have proven themselves as a

general, robust and powerful search mechanism. The strength of EA lies in their population-based

search approach, which will generate higher diversity in the search space and reduce the likelihood

to converge to the local optimum. However, this easily translates to higher computational costs for

administrating the population pool.

2.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a form of population (swarm)-based optimization technique

developed by Kennedy and Eberhart [128], which is inspired by the social behaviors of animals.

In PSO, the position of the particles denotes candidate solutions to the optimization problem and

their movements, influenced by its current position, memory and social knowledge of the swarm, are

regarded as the search process for better solutions. PSO operates based on the social adaptation of
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information, where the memory of each particle allows knowledge of good solutions, i.e. its previous

best position and the location of the global best solution, to be retained throughout the entire

optimization process. This allows constructive cooperation between particles, as particles in the

swarm share information between them [121].

Standard particle swarm optimizer maintains a swarm of particles that represent the potential

solutions to the problem on hand. Each particle ~x = {x1, x2, ..., xn} embeds the relevant information

regarding the decision variables and is associated with a fitness that provides an indication of its

performance in the objective space. Each particle will keep track of its previous best position

(pbest), denoted by ~pb = {pb,1, pb,2, ..., pb,n} and its corresponding fitness. Apart from pbest, each

particle also has knowledge on the best position found so far by all the solutions (gbest), denoted by

~pg = {pg,1, pg,2, ..., pg,n}.

In essence, the trajectory of each particle is updated according to its own flying experience as

well as to that of the best particle in the swarm. At each time step, t, each particle will be accelerated

towards its pbest and the gbest. The velocity update equation (2.2) and position update equation

(2.3) are described as follows:

~v(t) = I × ~v(t − 1) + c1 × rand()× (~pb − ~x(t − 1)) + c2 × rand() × (~pg − ~x(t − 1)) (2.2)

~x(t) = ~x(t − 1) + ~v(t) (2.3)

where I is the inertia weight which balances the global exploitation and local exploration abilities

of the particles, cl and c2 are acceleration constants, rand() are random values between 0 and 1.

Iterative updating of their positions based on (2.2) and (2.3) will result in the entire swarm “flocking”

towards the optimal vector, whilst each particle moving randomly.

The major strength of PSO lies in their simplicity in implementation and high computational

efficiency in solving optimization problems [129]. The nature of their representation makes them

well suited for numerical optimization problems, which in the context of portfolio optimization, will

be applicable in optimizing the asset allocation aspect of the problem.
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2.3.3 Multi-Objective Evolutionary Algorithm

Since the pioneering effort of Schaffer [209], many different evolutionary techniques for MOO have

been proposed with the aim of fulfilling the three optimization goals described previously. While

most of the early works are largely based on the computational models of genetic algorithm [108], evo-

lutionary programming [84] and evolutionary strategy [196], other biologically inspired models such

as particle swarm optimization , differential evolution , cultural algorithms , and artificial immune

systems have been extended for MOO in recent years. Though these algorithms are distinctively dif-

ferent in methodology, their distinctions between them have become increasingly vague as researchers

sought to exploit the advantages offered by the different algorithms in a common platform. Issues on

hybridizing different evolutionary paradigm, which is otherwise known as Memetic algorithms will

be discussed in greater details in the next subsection.

As highlighted earlier, MOO requires researchers to address many similar issues that are unique

to multi-objective problems for example, maintaining the diversity of the PFknown. These issues are

invariant to the type of evolutionary computation model applied. Therefore, no distinction will be

made between them and these techniques developed for MO optimization are collectively referred to

as multi-objective evolutionary algorithm (MOEA) in this thesis.

The general MOEA framework is identical to the pseudo code shown in Figure 2.5. EA and

MOEA are essentially similar with both models involving an iterative adaptation of a set of solutions

until a pre-specified optimization goal/stopping criterion is met. What sets these techniques apart is

the increased emphasis on diversity in the solution set by the latter. This is actually a consequence of

the optimization goals described in the previous section. Particularly, the search dynamics must drive

the solutions toward the PFtrue as well as distribute the individuals uniformly along the discovered

PFknown. The evolutionary operators and elitism strategy updating must also take diversity into

consideration to encourage and maintain a diverse solution set.

According to [159], simple MOEA tends to converge towards a single solution, failing the MOO

goals in achieving a good spread and distribution in the obtained PFknown. This necessitated

the development of diversity operators that can maintain substantial amount of diversity in the

evolving population, allowing the MOEA to perform a multi-directional search simultaneously to

discover multiple, widely different solutions. Depending on the manner in which solution density
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is measured, the different density assessment techniques can be broadly categorized under distance-

based, grid-based, and distribution-based. Interested readers are referred to [60, 100, 131] which

introduce some of the most frequently used diversity operators in evolutionary MOO.

One of the main design issues of diversity operators is whether the density assessment is com-

puted in the decision space or objective space. While some works advocated the former since this

is where the decision variables are searched upon [224], most work reported in the literature applied

density assessment in the objective space due to the optimization goals of obtaining a well-distributed

PFknown. There has been works that considered density assessment in both objective and decision

spaces simultaneously [9, 107, 203]. Nevertheless, Tan et al [232] pointed out that the choice essen-

tially depends on what is desired for the underlying problem.

Elitist strategy represents an important component of MOEA due to its significant impact on

the algorithmic performance [261]. In fact, various studies have shown that elitism is a theoretical

necessity for MOEA convergence [134, 204, 205]. Elitism involves two closely related processes,

namely, the preservation of good solutions and the reinsertion of these solutions into the evolving

population.

The first issue is concerned with the type of solutions to be stored in the archive. This issue is

further complicated by the restriction in archive size due to limited computing and memory resources

in practical implementation. Most works enforce a bounded set of elitist solutions which requires a

truncation process when the size of the elitist solutions exceeds a predetermined bound. This process

is normally based on some form of density assessment discussed earlier. However, other measures

such as hypervolume [133] and relaxed forms of Pareto dominance have been applied as well [64, 190].

The second issue is concerned with the “exploration versus exploitation” dilemma, where a

higher degree of exploitation attained through the reintroduction of elitist solutions leads to the

lost of diversity while too much exploration leads to slow convergence rates. Insufficient diversity

will result in MOEA failing to attain a well-distributed PFKnown, and in the worst case, premature

convergence to local optimal solutions

2.3.4 Memetic Algorithm

The design of global optimization techniques is governed by two competing goals, namely global

reliability and local refinement [239]. The former is required to ensure that every region of the
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search space is covered to provide a reliable estimate of the global optimum and the latter to further

refine the good solutions by concentrating search effort around their neighborhood. Many global

optimization techniques achieved these two goals by adopting a combination of global and local

search strategy.

Although evolutionary meta-heuristics have shown general success in solving complex real-world

optimization problems with various conflicting specifications, they suffer from slow convergence to-

wards the optimum due to their strong stochastic bias [185, 95] and poor accuracy of the evolved

solutions due to the lack of local refinement [141]. Memetic algorithms (MA), motivated by the

apparent need to employ both global and local search strategy to provide an effective global op-

timization method, extend evolutionary meta-heuristics by incorporating local search operators to

complement the evolutionary operators. With this synergetic combination, the evolutionary opera-

tors will perform an adaptive, global sampling of the search space that actively generates solutions

in new basins of attraction [104] throughout the evolution, while the local optimizers will efficiently

refine these solutions and identify the corresponding local optimum within each basin. Studies have

shown the relative advantages of MA over evolutionary meta-heuristics in terms of solution quality

and computational efficiency [14, 176, 184, 185, 187, 259, 260].

Ong and Keane [185] investigated the suitability effects of the local search operators (along with

the appropriate parameter setting) for the optimization problem in hand and, backed by empirical

studies [104, 140], commented that without the correct application of local search, MA may not

perform at its optimal level or worse, it may perform poorer than using the evolutionary meta-

heuristics alone. Hart [104] brought up several questions that should be addressed in designing local

optimizers for evolutionary search. Chiam et al. [46] extend these questions and proposes four main

issues involving the implementation of evolutionary local search, namely as follows:

• Type of local optimizer

• Integration approach

• Candidate solutions for local search

• Computational balance between global and local search
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The varied suitability of different local search strategy for various optimization problems has

consequently motivated the development of a wide variety of local optimizer in literature. Early

local optimizers were just simple random perturbation about the search space by adding zero mean

normal deviates to the different dimensions of the candidate solution. Subsequently, motivated by

the steepest descent method, local optimizers used gradient information and perturbed solutions

in preferred direction towards the optimum. However, the former might introduce inefficiency into

the algorithm, while the latter will fail in discontinuous or non-differentiable search space. Of more

recent issue, evolutionary optimizers like PSO, ant colony optimization [102, 149, 258] and even EA

itself [68, 214, 257] are increasingly being used directly as local optimizer itself, though this will

generally increase computational cost [56] due to higher computational overhead.

The next design issue addresses how the local optimizer is being integrated into the evolutionary

search. Some of the possible approaches include two-phase implementation, Lamarckian learning and

Baldwin learning. In the first approach, the evolutionary search will be employed first to identify

promising regions containing the global optimum, and then local search will be applied for fine tuning

[98, 193, 199]. Studies have been conducted to validate the two-phase approach and the simulation

results have been promising [14, 132, 220]. However, Ku et al. [141] highlighted that most of the

optimization problems used in these studies could be handled easily by the local search operator

itself. As such, the true capability of two-phase implementation can only be evaluated with test

problems that cannot be solved by the local search strategy alone.

Lamarckian learning is based on the heritability of acquired characteristics, where an organism

can pass on characteristics that it acquired during its lifetime to its offspring. The application of

Lamarckian learning in evolutionary search is rather straightforward. Local search will be applied to

candidate solutions at pre-specified intervals of the evolutionary search and if their fitness improved,

these solutions (together with their associated fitness) will be returned to the population for further

evolution [25, 255] . In contrast to Lamarckian learning, only the improved fitness is inherited by the

children after the local search in Baldwinian learning, hence the learned traits are lost. While the

capability of Baldwinian learning has been demonstrated in several instances [1, 106], some empirical

studies have demonstrated its inefficiency in wasting precious computational resource [85, 125, 248].

The third issues tackle the selection issue of choosing appropriate solutions from the evolving

population for local enhancement [104]. The candidate solutions for the local search could be either
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the best solution obtained by the evolutionary search [173], offspring solutions that satisfy certain

requirements or simply every child generated by the evolutionary operators. Of course, every scheme

has their strengths and limitations. For example, the infrequent activation of local search in the first

scheme might not provide significant improvement [173], while the third scheme might reduce the

overall computational efficiency [101] by wasting precious computational resources on solutions with

low likelihood of becoming best solution. Lastly, for the second scheme, an appropriate criteria to

determine suitable candidate solutions is required, otherwise benefits gained from local optimization

might not be significant [138].

Although the application of local search operators will usually improve algorithmic performance,

it might increase computational cost in terms of higher fitness evaluation, depending on their efficacy

and efficiency. As such, it is important to determine how the limited computation resource should

be allocated between the evolutionary search and local search i.e. the frequency in which the local

search is triggered and the number of fitness evaluations to be included in each iteration [104]. A

delicate balance should be maintained between evolutionary search and local search to prevent any

under-utilization in either of the search strategy [113] . This is especially important for population-

based optimizer like EA and PSO due to their high computational overhead. The manner to adjust

the computational balance depends on how local search is invoked during the evolutionary search,

for example the local search probability [113, 189] , the local/global ratio [144] , the size and type of

neighborhood structure [140] and etc.

2.4 Summary

Most real-world optimization problems naturally comprised of multiple objectives that are inherently

conflicting to each other. A formal definition of multi-objective optimization was presented in this

chapter, together with concepts of Pareto dominance, which is used to quantify the optimality

of solutions in the presence of multiple objectives. Under time and resources limitations, related

works in MOO have increasingly turned to evolutionary computation, which has proven to be an

effective and efficient optimization tool for this purpose. A brief overview on the different variants

of evolutionary optimizers that will be considered in this work was also presented.
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Extending MOEA for Portfolio

Optimization

3.1 Introduction

This chapter will look at how the generic MOEA platform can be extended for the purpose of portfolio

optimization. The central theme in portfolio optimization involves asset selection and allocation i.e.

selecting the appropriate subset to be included in the portfolio and determining their corresponding

proportions. The first two sections will propose an order-based chromosomal representation for

portfolio and a set of variations operator specific to the proposed chromosomal data structure. The

later half of this chapter will focus instead on algorithmic enhancements to the MOEA platform.

Specifically, an PSO-EA memetic model will be introduced that can improve overall algorithmic

performance via a local search strategy of fine-tuning asset weights of the portfolio. Next, dynamic

optimization will be considered and the proposed dynamic archiving will be useful in later chapters

where multi-period portfolio optimization is examined.

3.2 Chromosomal Representation for Portfolio Structure

MOEA maintains a population of chromosome, where each of them represents a potential solution

to the optimization problem, which in the context of portfolio management is a portfolio of assets.

27



CHAPTER 3. 28

In related literature, different types of representation have been proposed. The most direct repre-

sentation is to use a real-number vector that denotes the weight composition of the various assets in

the portfolio [65]. Before the fitness evaluation, the total weight is normalized to one to satisfy the

budget constraint.

However, better algorithmic performance can be obtained, if a problem specific representation

is adopted instead. Streichert et. al [225] observed that the optimal portfolio normally comprised of

only a limited number of the available assets. As such, a hybrid representation was proposed, where

an additional binary string is included to reflect the existence of the assets in the portfolio. Such a

scheme facilitates the removal and adding of assets to portfolios, resulting in smaller portfolios gen-

erally. This representation has been popular in related literature [221, 227, 225, 240]. Alternatively,

the weight vector can just comprise of a few assets that are randomly chosen prior to the algorithmic

run [7, 174] . This approach provides a simple solution to the fixed cardinality constraint that limits

the portfolio size to a particular value.

3.2.1 Order-Based Representation

An alternative representation for portfolio management will be introduced here. It is essentially an

order-based representation, where each chromosome comprises of two vectors, an integer vector that

contains the identity tags of the various assets available and a real number vector, denoting their

corresponding weights. Figure 3.1 shows an instance of this representation for a problem with eight

assets available.
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Figure 3.1: A chromosomal instance for the ordered based representation proposed based on eight
assets available.

To find the portfolio associated with this chromosome, an empty portfolio will first be initialized

and assets be added iteratively, as per their order in the asset vector. This procedure will terminate

once the accumulated weight of the portfolio exceed one or when all the available assets are in the
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portfolio. The total weights for the assets in the portfolio will then be normalized to one to satisfy

the budget constraint. After which, the associated fitness functions can be evaluated to determine its

optimality. The number of assets added to the empty portfolio denotes the portfolio size or cardinal.

Figure 3.2 illustrates the fitness evaluation procedures for the chromosome in Figure 3.1, where the

assets are added to the empty portfolio until the third assets as the accumulated weights exceed one.
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Figure 3.2: Fitness evaluation for the chromosome in Figure 3.1. Assets are iteratively added into
the portfolio until the accumulated weights exceed one. The various weights in the portfolio are then
normalized to one to satisfy the budget constraint.

As each asset is added iteratively into the portfolio for the order-based representation, direct

monitoring and control of the weight values for each asset is possible at their point of inclusion.

As such, constraint handling techniques can be executed instantaneously to repair any infeasibility.

Further details of the constraint handling techniques will be furnished in the later chapters.

3.2.2 Empirical Study & Analysis

The chromosome initialization process involves randomly permuting the order of the asset vector

and generating the weights from certain probability distribution. The most direct approach is to

adopt the uniform distribution ranging from 0 to 1.

wi = U (0, 1) (3.1)

where wi denotes the weight value of the i− th asset and U (0, 1) represents the uniform distribution

function on the interval [0, 1]. However, this will correspond to a mean weight of 0.5, which implies
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that on average, only two to three assets are required to fill up an empty portfolio. As such,

simple implementation of this representation will tend to generate portfolio of smaller cardinality.

Specifically, the average portfolio size for 100,000 randomly generated chromosomes is around 2.7

with a standard deviation of 0.9.

A simple solution to increase the average portfolio size will be to impose a maximum limit for

the various weight values during initialization, as follows:

wi = U (0, 1)× WMax (3.2)

where WMax denotes the maximum weight value. The average size of the portfolio generated will

vary with the value of WMax. For example, the average portfolio size for 100,000 randomly generated

chromosomes with WMax of 0.1 is around 20.7 with a standard deviation of 2.6. To investigate further,

a set of values were considered for WMax ∈ {5.0, 2.0, 1.0, 0.5,0.2, 0.1,0.05} and 100,000 chromosomes

of maximum length 30 were randomly generated. Figure 3.3 illustrates the boxplot depicting the

distribution of the portfolio size for the chromosomes under different values of WMax. Evidently,

lower WMax will translate to larger portfolio sizes. Even though, the weights are capped at a limit

of 1.0, larger WMax were considered also for investigative purposes and in such cases, the average

portfolio sizes actually decreases. Nevertheless, although the imposition of WMax can help to tune

the portfolio cardinality, the diversity of the initial population remained fairly low. “0 ∼ 0.2 ” in

Figure 3.3 represents the case where each chromosome is assigned a different WMax value, derived

from a uniform distribution on the interval [0, 0.2]. Interestingly, a random WMax will arbitrarily

enhance the diversity of the initial population.

To put the earlier results into perspective, it will be instructive to compare the distribution

of portfolio size within a random population generated via the different representation schemes.

Specifically, real-number representation, hybrid representation and several variants of order-based

representation with different WMax were considered. Table 3.1 summarizes the statistical information

on the portfolio size distribution under the various representation schemes. Expectedly, real-number

representation resulted in portfolio comprising of all the different assets due to the low probability

of generating a zero to completely exclude the asset from the portfolio. Conversely, hybrid repre-

sentation has an average portfolio size of 15, due to the 50% probability of obtaining a ‘1 ’in the
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Figure 3.3: Average portfolio size (maximum 30) for 100,000 randomly generated chromosomes with
different weight limits. ‘0 – 0.2’denotes the case where each chromosome is assigned a different Wmax
value, derived from a uniform distribution on the interval [0, 0.2].

binary vector. Adopting a random WMax will improve the standard deviation of the cardinality dis-

tribution. Figure 3.4 provides a graphical illustration on the frequency distribution of the portfolio

size for the different representation schemes. Clearly, the application of a random WMax results in

better population distribution in terms of diversity and spread.

At times, it will be useful to generate portfolios with specific size, for example in addressing

cardinality constraints or directing the evolutionary search towards particular region in the search

space. The empirical results earlier revealed that the average portfolio size of random chromosome

can be tuned by varying WMax. While WMax of 1 will result in an average portfolio size of 2 to

3, decreasing WMax to 0.1 will increase average portfolio size to around 20 to 21. However, from a

user’s perspective, it will be more convenient to specify a target portfolio size (KTarget), instead of

tuning WMax.

Theoretically, to obtain an average portfolio size of KTarget, the expected value of each weight

should be 1/ KTarget. Generally, this can be done by considering any random distribution with

mean 1/ KTarget. One instance of such function can be obtained by a simple modification of (3.2),
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Table 3.1: Statistical Information on the portfolio size (maximum 30) for 100,000 randomly generated
chromosomes with different representation schemes.

Representation Portfolio Size Portfolio Size
(Average) (Standard Deviation)

Real Number Representation (RR) 30.0 0.0
Hybrid Representation (HR) 15.0431 2.7467
Order-based representation with WMax of 1.0
(ORW1)

2.7209 0.8769

Order-based representation with WMax of 0.5
(ORW0.5)

4.6695 1.2415

Order-based representation with WMax of 0.1
(ORW0.1)

20.6711 2.6236

Order-based representation with random
WMax between 0 and 0.2 (ORW0∼0.2)

20.8934 3.9084
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Figure 3.4: Distribution of portfolio size (maximum 30) for 100,000 randomly generated chromosomes
with different representation schemes.
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by defining an appropriate value for WMax as shown below

wi = U (0, 1) × 2
KTarget

(3.3)

In this case, the expected value of each weight will just be, E(wi) = 0.5 × 2
KTarget

= 1
KT arget

,

resulting in the targeted portfolio size of KTarget. The simulation setup earlier will be repeated here

to evaluate the validity of (3.3). Considering various values of KTarget ranging from 2 to 30 in step

size of 2, the corresponding population distribution of the portfolio size were plotted in Figure 3.5.

Clearly, the average portfolio size corresponds accurately to the pre-specified KTarget, exhibiting the

flexibility and extensibility of OR in practical implementation. It might be expedient at times to
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Figure 3.5: Box plots illustrating the portfolio size distribution (maximum 30) for 100,000 randomly
generated chromosomes with different value of KTarget.

define a targeted range instead of a specific value. For this purpose, the following weight generation

function is proposed

wi = U (0, 1)× 2
U (KMinTarget, KMaxTarget)

(3.4)

where KMaxTarget and KMinTarget respectively denotes the maximum and minimum KTarget. To

evaluate the validity of (3.4), three different target ranges i.e. {10, 20}, {5, 10} and {20, 25} were
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considered (respectively denoted by ORK10−20, ORK5−10 and ORK20−25) and the corresponding

frequency distribution were plotted in Figure 3.6. KTarget of 15 (ORK15) was included also for

comparison purposes. Expectedly, (3.4) allows the initialization of a portfolio set with cardinal

falling within the pre-specified targeted range. This further exhibit the flexibility and extensibility

of the proposed order-based representation.
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Figure 3.6: Distribution of portfolio size (maximum 30) for 100,000 randomly generated chromosomes
with different targeted range.

3.3 Variation Operation

3.3.1 Crossover and Mutation Operators

Since conventional crossover or mutation operators are not suitable for the data structure of the

order-based representation, representation-specific variation operators have to be designed. The

proposed crossover operation is illustrated in Figure 3.7. Given two parent chromosomes, a crossover

point will be randomly selected. Each chromosome will retain their original value before the crossover

point and the remaining values after it will be rearranged in accordance with the order in the other

chromosome, i.e. the alleles {5,2,7} in chromosome 1 are rearranged to {2,5,7}, in the order in which
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these three values appear in chromosome 2. The corresponding weight vector will be reshuffled

accordingly also.
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Figure 3.7: Single-point crossover. Genes after the crossover point are swapped between the two
parent chromosomes.

However, not all assets in the chromosome are included in the portfolio as illustrated in Figure

3.2. As such, neutral variation [202] (where redundancy in the genotype nullified the effects of

variation) might arise if the crossover point is selected amongst them. While advocates of neutral

variation argued that the increased connectivity of the search space will enhance the phenotype

reachability [71], hence improving the overall evolutionary search [53, 92, 124], some empirical studies

argued the contrary [76, 201] . Nevertheless this topic remains highly debatable and interested

readers are refereed to [45, 202] for further discussion. To isolate any algorithmic influence based on

neutral variation, the crossover point is selected only amongst the assets considered in the portfolio.

Specifically, the crossover point will be chosen within the mean portfolio sizes for the two parent

chromosomes.

The mutation operation is just a simple procedure of swapping the asset and weights of two

randomly selected alleles in a single chromosome, as illustrated in Figure 3.8. Subsequently, standard

Gaussian mutation will be applied to the corresponding weights values. Again to prevent neutral

variation, it should be ensured that at least one of the selected assets should be within the portfolio.

Both the variation operations discussed earlier are typically used for order-based representation.
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Figure 3.8: Bit-swap mutation i.e. position of randomly chosen genes are swapped.
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3.3.2 Empirical Study & Analysis

To compare the algorithmic characteristic of the proposed variation operators for the order-based

representation with other conventional variation operators, quantitative analysis, in the form of

mutation and crossover innovation [192] , were conducted. Before discussing the simulation specifics,

it is necessary to introduce metrics to quantify the distance in the phenotype search space. Distance

in the phenotype search space will be measured as follows:

D(~x, ~y) =
N∑

i=1

| xi − yi | (3.5)

where ~x and ~y are two real-number vectors of length N , denoting the weights composition of the N

different assets in a portfolio.

Mutation innovation (MI), which measures the phenotype distance between a pair of mutated

and original solution, is a random variable that quantifies the degree of “innovation” being introduced

by the mutation operator and its distribution can reflect several locality properties. Generally, higher

MI will be desirable to enhance exploration efforts in the evolutionary search while lower MI will be

suitable for local exploitation.

The different mutation operators compared in this simulation study are summarized in Table 3.2.

Essentially, different mutation operators under the various representation schemes were considered.

Mutation on binary and real values respectively involved a bit-flip operation and Gaussian mutation.

Pm was arbitrarily set at 0.05.

100,000 chromosomes were randomly generated and the various mutation operators were applied.

Their MI distribution were computed and plotted in Figure 3.9(a). Since RR involves only the

permutation of the weight vectors, movement in the prototype search space were restricted to the

tuning of the weight composition of the various assets in the portfolio. Consequently, MI for RR

averaged between 0 and 1. Conversely, with the inclusion of the binary vector in HR, asset can

be removed or added into the portfolio simply by inverting the binary alleles. The resultant MI

distribution is more evenly spread. Generally, HRSame and HRDiff have similar MI distribution i.e.

peak at one and converge to 0 for larger values of MI. Unlike the previous mutation operators, the MI

distribution of ORSwap and ORMut dipped when MI equal to 1. This is because the swap operation
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Table 3.2: Description of the various mutation operators in comparison.

Notation Representation Schemes Description of mutation operators

RR Real Representation Each weight value will be mutated with a
probability of Pm

HRSame Hybrid Representation Both the binary and weight value of an allele
will be mutated together with a probability of
Pm

HRDiff Hybrid Representation Each binary and weight value will be mutated
independently with a probability of Pm

ORSwap Order-based Representation Both the binary and weight value of an allele
will be swapped by another randomly chosen
allele with a probability of Pm

ORMut Order-based Representation Both the binary and weight value of an allele
will be swapped by another randomly chosen
allele with a probability of Pm, followed by a
mutation of the weight value

requires two assets in the portfolio to be swapped, thus translating to a movement of at least 2 units

in the search space. Overall, ORMut, generated larger degree of movement in the phenotype search

space.

According to Raidl and Gottleib [192], it will be instructive also to investigate the case where

the chromosomes are actually modified after the mutation operation i.e. MI> 0. The conditional

expected values E(MI|MI> 0) and standard deviations σ(MI|MI> 0) were calculated and listed in

Table 3.3, with the corresponding distribution plotted in Figure 3.9(b). Adhering to the earlier

simulation results, RR attained considerably lower E(MI) and E(MI|MI> 0) while ORmut attained

significantly higher E(MI|MI> 0), after isolating chromosomes that are not affected by the mutation

operation.

As mutation is iteratively applied during the evolutionary search progress, the distribution of

MI after successive mutation should be studied also. For this purpose, the phenotype distance

between the original solutions and the one created after k ∈ {1, 2, 3, 4,8,16,32,64,128, 256, 512,1000}

mutations were calculated, denoted as MIk. The empirically obtained means values, E(MIk|MIk> 0)

and standard deviations, σ(MIk|MIk> 0) over the number of mutation k were plotted in Figure 3.10.
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Figure 3.9: Empirical Distribution of (a) MI and (b) MI > 0 for 100,000 randomly generated
chromosomes under different mutation operations.

Table 3.3: Statistical information on the MI distribution attained by the various mutation operators.

Mutation Operators E(MI) σ(MI) E(MI|MI> 0) σ(MI|MI> 0)

RR 0.6114 0.4256 0.6782 0.3945
HRSame 1.7022 1.315 1.9676 1.2152
HRDiff 1.9248 1.2813 2.0553 1.2186
ORSwap 1.7267 1.9689 3.2749 1.5108
ORMut 4.4817 4.0682 5.6833 3.7628

RR attained noticeably lower MIk over the various values of k, due to the nature of the mutation

operation. While the rest of the mutation operators converged to the same E(MIk|MIk> 0) for large k,

ORmut attained a significantly higher σ(MIk|MIk> 0) relative to the various operators. Clearly from

the empirical results, ORmut consistently generate solutions that were further away from the original

solutions, which will be beneficial in exploring the search space and providing genetic diversity within

the evolving population. The rest of the mutation operators generate solutions that were closer to

the original solutions, which was, on the other hand, more beneficial for local exploitation purposes.

Extending the analysis to the crossover operation, crossover innovation, CI, which measures the

phenotype distance between an offspring and its phenotypically closer parent, is considered instead.
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Figure 3.10: Empirical distributions of (a) E(MIk|MIk> 0) and (b)σ(MIk|MIk> 0) over the number
of mutation, k, for the various mutation operators

The expected value of CI strongly depends also on the original phenotype distance between the

parents where a larger distance will most likely induce higher CI. The different crossover schemes

for the various representations considered in this simulation study are summarized in Table 3.4.

The crossover probability was arbitrarily set as 0.80. 100,000 pairs of chromosome were randomly

generated and the various crossover operators were applied accordingly.

The resultant distribution of CI and CI> 0 are plotted in Figure 3.11 and the corresponding

statistical information are summarized in Table 3.5. As it is possible for the parent and offspring

chromosomes to be identical even after the crossover operation due to neutral variation, the pro-

portion of CI 6=0 was tabulated also. Again, as crossover operation of RRSIN and RRUNI only

involve the varying of the weight vector, significantly lower CI was attained. On the other hand,

even with the same crossover operators, HRSIN and HRUNI obtained higher CI due to the inclusion

of the binary vector that allows the removal of assets from portfolio. Lastly, ORANY and ORAV E

have similar CI distribution after removing cases of neutral variation. Clearly, the imposition of

the requirements to select the crossover point within viable assets reduced the occurrence of neutral

variation by around 18%.
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Table 3.4: Description of the various crossover operators in comparison.

Notation Representation Schemes Description of crossover operators

RRSIN Real Representation Single Point Crossover i.e. given two parent
chromosomes, a crossover point will be ran-
domly selected and each chromosome will re-
tain their original value (for the weight vector)
before the crossover point with the remaining
values swapped

RRUNI Real Representation Uniform Crossover i.e. Given two parent chro-
mosomes, each weight value will be randomly
swapped with the corresponding weight value
with a probability of pc

HRSIN Hybrid Representation Single Point Crossover i.e. given two parent
chromosomes, a crossover point will be ran-
domly selected and each chromosome will re-
tain their original value (for both the weight
and binary vector) before the crossover point
with the remaining values swapped

HRUNI Hybrid Representation Uniform Crossover i.e. given two parent chro-
mosomes, weight and binary value of an al-
lele will be randomly swapped with the cor-
responding values of the other parent with a
probability of pc

ORANY Order-based Representation Single Point Crossover as described earlier
with crossover point randomly selected any-
where in the chromosome

ORAV E Order-based Representation Single Point Crossover as described earlier
with crossover point randomly selected within
the mean portfolio sizes for the two parent
chromosomes
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Figure 3.11: Empirical Distribution of CI (left) and CI> 0 (right) for 100,000 randomly generated
chromosomes with different XO scheme

Table 3.5: Statistical information on the MI distribution attained by the various mutation operators.

Mutation Operators E(CI) σ(CI) E(CI|CI> 0) σ(CI|CI> 0) Proportion of CI 6=0

RRSIN 0.1552 0.1246 0.1732 0.1192 89.59%
RRUNI 0 0 0 0 54.33%
HRSIN 3.0514 2.6629 3.6037 2.5267 84.67%
HRUNI 2.6583 3.421 4.2716 3.4517 62.23%
ORANY 3.2452 3.2618 5.3507 2.5053 60.65%
ORAV E 4.209 3.1371 5.3924 2.4953 78.05%

3.4 Local Search Operator

The design of global optimization techniques is governed by two competing goals, namely global

reliability and local refinement [239]. The former is required to ensure that every region of the

search space is covered to provide a reliable estimate of the global optimum and the latter to further

improve the good solutions by concentrating search effort around their neighborhood. Many global

optimization techniques achieved these two goals by adopting a combination of global and local

search strategy.

Although EAs have shown general success in solving complex real-world optimization problems
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with various conflicting specifications, they suffer from slow convergence towards the optimum due

to their strong stochastic bias [185, 95] and poor accuracy of the evolved solutions due to the lack of

local refinement [141]. Memetic algorithms (MAs), motivated by the apparent need to employ both

global and local search strategy to provide an effective global optimization method, extend EA by

incorporating local search operators to complement the evolutionary operators. With this synergetic

combination, the evolutionary operators will perform an adaptive, global sampling of the search

space that actively generates solutions in new basins of attraction [104] throughout the evolution,

while the local optimizers will efficiently refine these solutions and identify the corresponding local

optimum within each basin. Studies have shown the relative advantages of MA over EA in terms of

solution quality and computational efficiency [14, 176, 184, 185, 187, 259, 260].

Motivated by the compensatory property of EA and particle swarm optimizer (PSO) [30, 31, 121,

191], where the latter can enhance individuals generated by the evolutionary operators by sharing

information between each other and their individually learned knowledge [121], a variety of MA that

hybridize EA and PSO have been proposed in literature and applied widely in several real-world

applications [31, 30, 98, 95, 96, 97, 121, 122, 123, 193, 199] and simulation results have verified the

superiority of such MA over the lone applications of EA and PSO.

In general, EA and PSO can be hybridized in various approaches, for example, a simple two-

phase approach where one algorithm is applied after the other [98, 193, 199] or interleavingly during

the evolutionary search [95, 96, 97]. Alternatively, adopting one algorithm as the main evolution-

ary platform, the other can be encapsulated within, for example introducing the velocity operator

into EA [31, 30, 121, 122, 123] or the mutation operator into PSO [77]. However, these approaches,

which involve the application of EA and PSO interchangingly on the entire population/swarm during

evolution, are only applicable for optimization problems that allow the same chromosome/particle

representation under the two different algorithmic paradigms. Thus, they will have difficulty extend-

ing to optimization problems where the local optimizers operate in a reduced search space, hence

requiring them to be applied independently to each candidate solution.

For this purpose, an EA-PSO hybrid model that specifically adopts PSO as a local optimizer

to fine-tune each candidate solution individually will be introduced here. This memetic model will

be especially suitable for the type of representation introduced earlier. Accounting for the high

computational overheads of population-based optimization techniques, the candidate solution will
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be limited to the best solution found in the evolutionary search. The local optimizer will be triggered

regularly during evolution for continual fine-tuning.

3.4.1 EA-PSO Memetic Models

As described earlier, the EA paradigm is based on basic concepts from the biological model of

evolution, where the search dynamic of EA is driven by biologically inspired evolutionary operators

like selection, crossover and mutation. The crossover and mutation operator manipulate and create

potential solutions, while the selection operator provides the necessary convergence pressure. The

strength of EA lies in their population-based search approach, which will generate higher diversity

in the search space, reducing the likelihood to converge to the local optimum. Similar to EA, PSO

is a form of population (swarm)-based optimization technique developed by Kennedy and Eberhart

[128], which is inspired by the social behaviors of animals. In PSO, the position of the particles

denotes candidate solutions to the optimization problem and their movements, influenced by its

current position, memory and social knowledge of the swarm, are regarded as the search process for

better solutions. EA and PSO possess compensatory property where the advantage of one algorithm

can be the remedy for the other’s weakness [31, 30, 121, 191].

PSO operates based on the social adaptation of information, where the memory of each particle

allows knowledge of good solutions, i.e. its previous best position and the location of the global

best solution, to be retained throughout the entire evolution. This allows constructive cooperation

between particles, as particles in the swarm share information between them [121]. On the contrary,

EA operates based on evolution from generation to generation (as opposed to single generation in

PSO) by treating solutions from different generations distinctly. This results in valuable information

being discarded at the end of generation as the algorithm starts almost randomly at each generation

[31]. Particles of PSO will never be removed even if they are impossible to be the best solution,

resulting in wastage of computational resources [31]. On the other hand, every individual in EA

compete for survival where inferior parents are replaced by superior offspring at each generation. In

addition, the crossover and mutation operator of EA generally helps in creating higher diversity in

the evolving population as opposed to the velocity operator of PSO [30].

Empirical studies have revealed several characteristics about EA and PSO in general. [98] con-

ducted comparative studies to investigate their differences, i.e. the fast convergence of PSO [244]
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and the reliability of global convergence of EA with enough generations, and suggested how they

can be hybridized. Farsangi et al. [81] identified several parameter and problems setting that will

influence their algorithmic performance.

A variety of EA-PSO hybrids have been proposed in literature. Grosan et al. [98] exploited the

fast convergence of PSO and global reliability of EA and proposed the two-phase implementation

of EA and PSO to solve geometrical place problems. Similar approaches have been adopted in the

optimization of Profiled Corrugated Horn antenna [193, 199] and the simulation studies revealed

that better algorithmic performance is achieved by first starting with PSO followed by EA. Alter-

natively, EA and PSO can be applied interchangingly during the evolutionary search by defining

a hybridization coefficient that dictates the use of PSO and EA during the evolution [95, 96, 97].

Simulation results favored hybridization coefficients that are biased towards PSO, suggesting that

the basic PSO can be significantly improved by using a small percentage of evolutionary operation

during the evolution [96].

On the other hand, another type of EA-PSO hybrids adopts one of the algorithms as the main evo-

lutionary platform and encapsulates the operators of the other algorithm within its search progress.

For example, adopting EA as the main evolutionary platform, PSO can be applied to improve certain

solutions in the population during the evolution, for example, the enhancement of the upper-half of

the best performing solutions (elites) at every generation [30, 31, 121, 122, 123]. On the other hand,

PSO could be used as the main evolutionary platform instead and evolutionary operators are added

to complement the velocity operator, for example applying mutation on random particles chosen

from the swarm [77] or introducing selection operation into the algorithm [6].

In the various memetic approaches discussed, EA and PSO could be implemented interchang-

ingly during the optimization search, where the evolved offspring could be simply merged to form

the particle swarm or parental chromosomes could be selected from the swarm of particles. However,

this is only applicable for optimization problems that allow the same chromosome/particle repre-

sentation under the two different algorithmic paradigms. Thus, such approaches will have difficulty

extending to optimization problems where the local optimizers operate in a reduced search space,

hence requiring them to be applied independently to each candidate solution.

Consider the portfolio management as an example, where a hybrid representation of binary and

real-number vectors was adopted to respectively denote the inclusion of an asset within the portfolio
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and its corresponding proportion with respect to the available budget. While EA can be applied to

simultaneously optimize the composition and weights of the portfolio, with PSO as a local optimizer

to fine-tune the weight vector [48]. As each of the evolved portfolio has different binary vector,

the different optimal weight vector, corresponding to the different portfolio composition, requires the

local optimizer to be independently applied to candidate solutions. As such, the previous approaches

of simply combining evolved offspring to form the particle swarm for the implementation of PSO is

not applicable here as the local optimizer operators work on a reduced search space.

For this purpose, this paper proposes an EA-PSO hybrid model that specifically adopts PSO

as a local optimizer to fine-tune each candidate solution individually. As for the candidate solu-

tions, considering the high computational overheads of population-based optimization approaches,

the memetic model limits the application of PSO to the best solution found in the evolutionary

search. Since PSO operates on a population-based level, a particle swarm has to be generated from

the candidate solution. Also, PSO will be invoked regularly during the evolution for the continual

fine-tuning of the solutions.

Without any loss of generality, this particular MA, representing a hybridization of EA and PSO,

with the latter used as a local optimizer for local fine tuning, will be denoted as EAPSO. It should be

highlighted that the various operators in EAPSO has been deliberately made as generic as possible

for the generality of the simulation results.

3.4.2 Knapsack Problem as a Proxy for Portfolio Optimization

The classical 0-1 knapsack problem is defined by a knapsack of capacity C and a set of N objects

O = {o1, ..., oN}. Each of these objects, oi has a value vi and a weight αi, where i = 1, ..., N . The

problem amounts to selecting a subset S ⊆ O of objects such that their combined value is maximal

and the total weight does not exceed the knapsack capacity C. The mathematical description is as

follows:

max
N∑

i=1

bivi (3.6)

s.t.
N∑

i=1

biαi ≤ Cbi ∈ {0, 1}, i = 1, ..., N
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where b = {b1, ..., bN} is a binary vector that denotes the inclusion/exclusion of objects in the

knapsack i.e. bi=1 means that the i-th object is included in the knapsack and vice versa.

The fractional knapsack problem extends the original problem specifications by allowing the

knapsack to be filled with fractional proportion of the objects. Each object will be available in a

certain amount with different value per unit weight, vi = vi

ri
. The problem is to fill the knapsack

with the material mix, ~x = {x1, ..., xN} of maximal value, as stated in (3.6). However, this extension

actually trivializes the problem as it can now be easily solved by the greedy algorithm where the

object with the largest value per unit weight is being iteratively inserted into the knapsack [126]

until it is full. The simplicity of the FKP can be attributed to the clear definition of the search space

where the marginal value contribution of each objects is known.

max
N∑

i=1

vixi (3.7)

s.t.
N∑

i=1

xi ≤ C, 0 ≤ xi ≤ 1

In more general form, FKP (otherwise known as NFKP) can be defined as follows:

maxf(~x) (3.8)

s.t. g(~x) ≤ C,~x = {x1, ..., xn} ∈ <N

where f(~x) and g(~x) are continuous functions. There is a huge variety of problem which can be

construed based on this general definition [26], including portfolio optimization. For a clearer illus-

tration, the problem definition of NFKP, and portfolio optimization are described below respectively,

• Selecting the appropriate objects to be included in the knapsack and determining their corre-

sponding proportions.

• Selecting the appropriate assets to be included in the portfolio and determining their corre-

sponding proportions.

Exploiting the structural similarity of these problems, a particular instance of NFKP will be

formulated and implemented as the preliminary test platform for the proposed EA-PSO hybrid
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model. Such a test platform will allow the problem settings to be changed easily for the investigation

of the algorithmic characteristics and provide insight to the algorithmic performance when extended

to portfolio optimization later.

From the problem description, NFKP can be further decomposed into two smaller problems,

namely determining which items to be included in the knapsack and their corresponding proportion.

As such, apart from ~x, a binary vector could be introduced to denote the inclusion and exclusion of

the objects in the knapsack, so as to facilitate the removal and adding of objects to the knapsack.

Similar hybrid representation has been adopted in portfolio optimization as discussed in the earlier

sections.

The objective/fitness function for the proposed test problem is as follows:

minF (~x,~b, ~xG, ~bG) =
N∑

i=1

bG,i × bi× | xG,i − xi | + | bG,i − bi | (3.9)

s.t. ~x, ~xG ∈ <N , bi, bG,i ∈ {0, 1}

where ~xG and ~bG denotes the optimal weight and binary vector respectively. Essentially, the solution

representation of NFKP is retained and the objective is to minimize the discrepancy between the

optimized solutions, (~x,~b) and the global solution, ( ~xG, ~bG). A fixed penalty (denoted by | bG,i −

bi |) will be imposed when there is a mismatch of objects i.e. an object is present in the optimal

combination but missing from the solution or vice versa and a variable penalty (denoted by bG,i×bi× |

xG,i − xi |) proportional to the weight mismatch. The weight constraint was removed for generality.

A new set of ( ~xG, ~bG) will be randomly generated before every algorithmic run.

This is essentially a noisy problem where for a given solution (~x,~b), ~x might not be suitable

for the corresponding ~b, resulting in inaccurate fitness evaluation [256]. As such, the use of local

optimizer in this case is actually to estimate the optimal ~x for each ~b for a more accurate fitness

evaluation. Clearly, the various EA-PSO hybrid models reviewed are not applicable here due to the

different ~b of each solutions, corresponding to different optimal ~x.

3.4.3 Simulation Setup

The proposed EAPSO will adopt a hybrid representation, consisting of a binary vector,~b and real

vector,~x of length, N to denote the inclusion of objects in the knapsack and their corresponding pro-
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portion. For the generation of the particle swarm, Nlocal ~x will be randomly generated by performing

Gaussian mutation on every weight alleles of the candidate solution with bi = 1, corresponding to

their positions in the search space. A velocity vector, ~v = {v1, v2, ..., vn} will be generated subse-

quently for each of the Nlocal particles, where vi will be set to zero if bi = 0, so as to keep the

irrelevant weight vector unchanged during the PSO algorithm. It should be highlighted that the HR

was considered over OR to enhance the generality of the results.

Unless otherwise stated, the parameter configuration of EAPSO in the simulation studies, in-

cluding those in the subsequent sections, will follow Table 3.6. In all simulations, 30 independent

runs were made. Also for a more accurate and fairer comparison, the same random seed was assigned

to each set of runs to ensure that they started with the same initial population and possessed the

same set of { ~xG, ~bG}.

Table 3.6: Algorithmic parameter settings of EAPSO for the simulation study.

General Fitness Evaluation 500,000
N 200

Runs 30
EA (Global) Population Size 100

Archive Size 1
Selection Binary tournament selection
Crossover Single point crossover with probability 0.8
Mutation Bit flip mutation with probability 1

N

PSO (Local) Generation Interval, Glocal Variable
Population size, Nlocal Variable

Time Step, Tlocal Variable
Inertia 0.7

Individual weights 1.49
Sociality weight 1.49

The inclusion of local search operation generally introduces additional computational cost in the

aspect of fitness evaluations. As discussed earlier, two important design issues of local optimizer

are their frequency and their application duration [104]. This is especially crucial in this case since

PSO, being a population-based stochastic optimizer, has significant effects on computational load.

Clearly, these issues are directly affected by the parameter setting of Glocal, Nlocal and Tlocal. As a
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result, for this study, five different values for Glocal were considered i.e. 20, 50, 100, 200 and 500.

Specifically, Glocal of 20 will mean that PSO will be applied at every 20 evolutionary generations of

EAPSO. Each application of PSO will be limited to 2,500 fitness evaluations, which will be varied

with different proportions between Nlocal and Tlocal . The different settings of Glocal , Nlocal and Tlocal

are shown in Table 3.7. EAPSO with Glocal = 0 will operate exactly like an EA without any local

optimizer.

Table 3.7: Different parameter settings for Glocal, Nlocal and Tlocal and their corresponding index
and notation.

Algorithm Index Algorithm notation Glocal Nlocal Tlocal

1 EA 0 0 0
2 EAPSO20a 20 25 100
3 EAPSO20b 20 50 50
4 EAPSO20c 20 100 25
5 EAPSO50a 50 25 100
6 EAPSO50b 50 50 50
7 EAPSO50c 50 100 25
8 EAPSO100a 100 25 100
9 EAPSO100b 100 50 50
10 EAPSO100c 100 100 25
11 EAPSO200a 200 25 100
12 EAPSO200b 200 50 50
13 EAPSO200c 200 100 25
14 EAPSO500a 500 25 100
15 EAPSO500b 500 50 50
16 EAPSO500c 500 100 25

3.4.4 Simulation Result & Discussion

Figure 3.12 plots the fitness value attained under the various algorithmic configurations after 500,000

fitness evaluations, with zero being the optimal value. Clearly, the algorithmic performance is better

for smaller Nlocal and will deteriorate instead for larger Nlocal . As such, given a limited number

of fitness evaluation, it will be advisable to assign smaller Nlocal with longer Tlocal for PSO as a

local optimizer. Different setting of Glocal will also affect its efficacy, where larger Glocal nullified its



CHAPTER 3. 50

effect on the algorithmic performance of EAPSO, since PSO is not invoked as frequently to induce

a significant impact on the evolutionary search. Conversely for smaller Glocal, although the perfor-

mance improvements for smaller Nlocal were significantly better, the performance deterioration for

large Nlocal was amplified also, reflecting the high sensitivity of EAPSO to the parameter settings of

Nlocal and Tlocal . Lastly, the deteriorative algorithmic performance observed for certain algorithmic

configurations corresponded to the empirical claims in [104, 140], where without the correct appli-

cation of the local optimizer, MA may not perform at its optimal level or worse, poorer than using

EA alone.
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Figure 3.12: Fitness attained by the various algorithms after 500,000 fitness evaluation illustrated
in box plots.

Figure 3.13 shows the evolutionary trace of the fitness function for three selected algorithmic

configuration (EA, EAPSO20a and EAPSO100a) in one of the simulation runs. The evolutionary

trace was analyzed in terms of fitness evaluations rather than the number of generations, as the

former represents substantially how many times the fitness function has been evaluated by EAPSO

in order to reach the optimization goals, which is more directly related to the computational load.

To add more insight to the optimization process, the hamming distance between the global binary

vector, ~bG and that of the existing solution,~b was included also to measure the discrepancy in the

composition layout of the knapsack, whilst ignoring their proportion.
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Figure 3.13: Evolutionary traces of the fitness and hamming distance for the best solution of (a)EA,
(b) EAPSO20a and (c) EAPSO100a in one of the simulation run.

From the evolutionary traces in Figure 3.13(a), there is always a large discrepancy between the

hamming distance and objective value which means that EA failed to identify the optimal weight

vector associated with its current ~b. However, the implementation of PSO for local fine tuning

eliminates this discrepancy by rapidly identifying the optimal ~w for each ~b as shown in Figure

3.13(b) and 3.13(c). Although larger Glocal will result in significant fitness improvement at each

application as compared to smaller Glocal as reflected by the sharper dips in the fitness trace, the

latter allows immediate adjustment to any changes in ~b.

To further investigate the algorithmic efficiency for different settings of Glocal , the following algo-

rithmic configurations were considered, namely EAPSO20a, EAPSO50a, EAPSO100a, EAPSO200a

and EAPSO500a, and their mean fitness improvements over the 30 runs whenever the local search

was triggered were plotted in Figure 3.14. Clearly, the marginal fitness improvement from PSO gen-

erally decreases as the evolutionary search progresses, most probably due to the general decline of the

discrepancy between ~x and ~b as seen in Figure 3.13, which limits the improvements for PSO. Closer

examination of Figure 3.14 reveals that the mean fitness improvement of EAPSO20a is high initially,

but falls steeply to zero during the evolution, while there are still noticeable fitness improvements

for bigger Glocal even at the late stage of evolution.

Table 3.8 gives a more detailed comparison on the performance for the different settings of Glocal ,

showing the mean objective values attained by the various algorithms, with the standard deviation

shown in parentheses. Statistical test (ANOVA) revealed that the average objective value attained

by EAPSO20a, EAPSO50a and EAPSO100a are statistically similar and significantly lower than the
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Figure 3.14: Mean fitness improvements whenever PSO was triggered at different fitness evaluations
by EALS-20a, EALS-50a, EALS-100a and EALS-500a.

other two configurations, illustrating the robustness of the setting of Glocal. Although EAPSO20a

generated the highest fitness improvements amongst the different settings, these improvements are

computationally inefficient as they are achieved via a significant amount of fitness evaluations. In-

stead, EAPSO200a generated higher improvements per fitness evaluation. Clearly, the correct setting

of Glocal plays an important role in balancing the local and genetic search. Over-utilization of lo-

cal search will undermine the important role of diversity by the evolutionary operators [113], while

under-utilization will limit the effectiveness of the local search to rectify the discrepancy between the

binary and weight vector as reflected by the performance of EALS-500a.

3.4.5 Effects of Varying Problem Settings

The earlier results illustrated the algorithmic performance improvements of evolutionary search with

the appropriate application of PSO for local fine-tuning. This section will assess the generality of

the previous observations with further simulation studies involving varying problem specifications.

Generally, the problem difficulty will be affected by the number of available objects, N and the

proportion of zero in ~bg , denoted as Pzero. As N directly controls the size of the search space, its
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Table 3.8: Detailed performance comparison for different settings of Glocal.

Algorithm
notation

Objective
Value
Attained

Total
Fitness
Improve-
ments

Fitness
Evalua-
tions

Fitness Improve-
ments per fitness
Evaluations

Percentage of
Total Fitness
Evaluations

EAPSO20a 0.0464
(0.0171)

36.0593 280000 1.29E-04 56%

EAPSO50a 0.0185
(0.0104)

23.792 167500 1.42E-04 34%

EAPSO100a 0.0468
(0.0278)

14.9145 100000 1.49E-04 20%

EAPSO200a 0.1369
(0.0817)

8.4172 55000 1.53E-04 11%

EAPSO500a 0.2699
(0.1509)

2.9206 23000 1.27E-04 5%

effect on the problem difficulty is rather intuitive. Pzero was set at 0.5 for the earlier simulations,

which implies that 50% of ~bg, on average, will comprise of zero. In general, larger Pzero will result

in optimal knapsack comprising of lesser objects and vice versa for smaller Pzero.

66 combinations of 6 values of N (i.e. N = {50, 100, 150, 200, 250,300} and 11 values of Pzero

(i.e. Pzero = {0.0, 0.1, 0.2, 0.3,0.4, 0.5,0.6, 0.7,0.8, 0.9,1.0} were considered. Selected algorithmic

configurations (EA, EAPSO20a and EAPSO200a) were applied to the test problem with different

combinations of N and Pzero under the stopping criteria of 100,000 fitness evaluations.

Figure 3.15 shows the mean objective value attained under different problem settings, where a

lower bar indicates lower objective value closer to the optimal value of zero. Clearly, the overall

problem difficulty, reflected by the optimality of the solution attained under the same algorithmic

configurations, increases with N and decreases with Pzero. This is rather intuitive since the former

directly control the size of the search space while the latter affects the dimension of the weight vector

to be optimized.

Figure 3.16 shows the mean fitness improvement attained at the different problem settings.

There is a hill from the bottom-left corner to the top-right corner in the Pzero − N plane, which

marks the problem setting for greater algorithmic improvements by PSO. Basically, for large N
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Figure 3.15: Mean fitness attained by (a) EA, (b) EAPSO20a and (c) EAPSO200a at different setting
of N and Pzero.

and small Pzero, the problem difficulty is higher due to the larger search space, resulting in limited

improvements even when PSO is being applied. In fact, when Pzero = 0 and N = 300, EAPSO200a

registered performance deterioration. On the other hand, for simpler problem settings of small N

and large Pzero, the various algorithms were able to converge to the global optimum within the

100,000 fitness evaluations, resulting in minimal performance improvements.
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Figure 3.16: Mean fitness improvement for (a) EAPSO20a and (b) EAPSO200a with respect to EA
at different setting of N and Pzero.

However, the importance of local optimizer in simple problems should not be under-estimated.

Figure 3.17 plots the number of fitness evaluation required to reach with 5% of the optimal solutions
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for the various algorithmic configurations to assess their convergence speed, with the maximum fitness

evaluation being capped at 10,000,000. The algorithmic improvements with the application of the

local optimizer is clearly reflected in Figure 3.17 where EAPSO20a and EAPSO200a consistently

requires lesser fitness evaluations to converge to the vicinity of the optimal solution across most of

the problem settings as compared to EA.
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Figure 3.17: Number of fitness evaluation required to reach within 5% of the optimal value for (a)
EA, (b)EAPSO20a and (c) EAPSO200a at different setting of N and Pzero.

To put these results into context, the ratio of the fitness evaluation taken by EAPSO20a and

EAPSO200a to that required by EA are calculated and shown in Figure 3.18. A ratio close to one will

mean that the implementation of PSO does not affect the convergence time by much, while a value

closer to zero will mean that EAPSO took only a small proportion of the computation time required

by EA to converge. The low fitness evaluation ratio attained by EAPSO20a and EAPSO200a across

the various problem setting is a clear indication of the algorithmic advantages of introducing PSO as

a local fine tuning operator in evolutionary search. The relatively higher ratio obtained at the top

corner is probably due to the implementation of the fitness evaluation cap, which prematurely end the

algorithmic run of EA despite its sub-optimality. It should be highlighted in the case where Pzero=1,

the problem essentially involves optimizing ~b only. As such, the implementation of PSO, which is in

charge of optimizing ~w, will only result in the wastage of unnecessary computation resource.
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Figure 3.18: . Ratio of the number of fitness evaluation required to reach within 5% of the optimal
solution for (a) EAPSO20a and (b) EAPSO200a to that required by EA at different setting of N

and Pzero.

3.5 Dynamic Archiving Operator

3.5.1 Dynamic Optimization

Many real-world optimization problems involve complex and dynamic environments, where the ob-

jective functions, problem instance or constraints might vary with time, consequently altering the

optimal solution. An example will be in portfolio management, where the portfolio must be continu-

ally monitored and rebalanced to adjust to the ever-changing market conditions. A problem of such

nature is denoted as a dynamic optimization problem. In such a context, the optimization goal not

only encompasses obtaining a good approximation of the optimal solution, but also adapting it to

environmental changes over time.

In a certain sense, dynamic optimization problems can be regarded as the consecutive optimiza-

tion of a series of different time-invariant optimization problems with the constraints of solving each

problem before the next time instant of change. Hence, the most direct approach is to treat the

problems in each time instant of change separately and restart the optimization process whenever

changes in the problem environment are detected [194]. However, this approach demands the op-

timization techniques to have a high convergence speed, especially when the frequency of changes
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in the environment is high. Also, re-initialization of the evolving population constitutes a loss of

genetic materials from the previous generations, which might be useful if the environment changes

are not drastic. Lastly, this explicit restart approach assumes that any changes in the environment

could be identified, which unfortunately might not always be the case [120] .

Reviewing the related literature works, several key algorithmic characteristics that should be

present in the optimization techniques when handling dynamic optimization problems have been

identified. There are, namely,

• High convergence speed.

• Sufficient genetic diversity to initiate a new search for the optimum.

• Ability to detect changes in the problem environment.

• Exploitation of past information whenever applicable.

These characteristics will enable the optimization techniques to possess the necessary flexibility

to adapt accordingly to the time-varying optimum. Amongst the various optimization techniques

available in literature, the adaptability nature of EA seems to be particularly suitable for such

problems. In recent years, there have been growing interests in applying EA for dynamic optimization

problems, motivating the development of several variants for this purpose [21, 22, 120, 175]. The

following subsections will surveys the various related works in this area and subsequently proposed

an archiving strategy that preserve useful information gained in the past, enabling the continuous

adaptation of the underlying EA to the changing environment. The modified NFKP from the earlier

section will be modified to a dynamic optimization problem, serving as the simulation testbed for

the proposed method.

3.5.2 Handling Dynamism in Evolutionary Optimization

One of the problems facing traditional EA when solving dynamic optimization problems is that after

the algorithm has converged to the existing optimum, it will have difficulty adapting to the new

environment when a change occurs [254]. As such, it is necessary for the EA to maintain diversity

throughout the evolutionary progress to adapt to the dynamic environment. Diversity here refers to
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the distribution of the solutions with respect to each other in the decision search space and/or the

fitness landscape. Jin and Branke [120] classified the various approaches of dynamic evolutionary

optimization into four different categories:

• Diversity Introduction: New genetic materials are explicitly added to the evolving population

upon the detection of environment changes. Random restart represents the most direct example

for this approach, where the evolving population is re-initialized whenever the environment

changes. Alternatively, the mutation probability could be increased to generate more diverse

solutions, for example, via hyper-mutation [50] or variable local search [242]. However, without

proper archiving available, this introduced diversity might be at the expense of useful genetic

materials of the previously fit individuals. The challenge here hence lies in introducing the

appropriate amount of diversity. Specifically, too little will not be sufficient to improve the

convergence speed, while too much might impede the evolutionary progress instead.

• Diversity maintenance: The basic idea is to maintain diversity throughout the evolutionary

progress since a diverse population pool is instrumental for EA to adapt to environmental

changes rapidly i.e. the probability of finding the solutions to a new problem is higher if the

individuals are widely spread in the search space. One particular example is random immigrant

approach [94], where randomly generated individuals are inserted into the evolving population

to replace the existing individuals at specific intervals of the evolutionary progress. Sharing

or crowding mechanisms (measured with respect to the decision search space and/or fitness

landscape) [34] maintain diversity throughout the evolutionary progress. Nevertheless, the

general consensus is that the continual focus on diversity during the evolutionary progress

might impede evolutionary convergence.

• Explicit/Implicit Memory: If the optimum might repeatedly return to its pervious locations,

a memory structure could be incorporated into the EA to provide information from its past

generations. Generally, memory-based approaches could be classified into implicit and explicit

memory. The former refers to the encoding of useful information from the past generations in

the representation structure of the EA [99, 103, 147, 207]. Such approach is known as redundant

representation as the chromosomal structure contains more information than necessary to define
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the phenotype. Contrarily, explicit memories adopt specific archiving strategies to store and

retrieve useful information throughout the evolutionary progress.

• Multiple Populations: The basic idea in multiple populations is to simultaneously maintain

presences in different regions of the search space, so as to detect or track any environment

changes or emergence of new optimal region [20, 23, 241, 249]. Typically, at any time, a

population will be exploiting the current optimal region while the rest of the population will

be exploring the search space. Jin and Branke [120] described such a strategy as a kind of

diverse, self-adaptive memory.

Though the various approaches differed in their general principles and implementation, their

underlying motivation are inherently similar i.e. to provide EA with sufficient genetic diversity so

that it can adapt to the new environment when a change occurs. While random restart stands

at one end of the extreme of increasing the maximal diversity to the evolving population, this

scheme does not significantly improve EA’s capability in handling dynamic optimization problems.

The explanation is that it is often hard for these randomly generated individuals or the more diverse

solutions to establish themselves when the evolving population already contains highly fit individuals.

Ideally, the individuals stored in the memory should be above-average optimality and well distributed

across promising areas of the search space.

As such, the archiving strategy proposed here aims to simultaneously maximize genetic diversity

(in the decision space) and minimize proximity with the current optimal solution (in the objective

landscape). While multi-objective formulation is conventionally being utilized to address the inher-

ent trade-offs between several objectives in optimization problems, multi-objective formulation is

employed here as an archiving strategy to sustain a population pool that can maintain a tradeoff

between the two stipulated objectives i.e. optimality and diversity. Simply said, the optimization

problem tackled will remain a single-objective problem but the archive will adopt a multi-objective

formulation. Such a formulation will prevent the archive from converging to the sole objective.

Besides deciding on the type of individuals to be stored, an archiving strategy should also com-

prise of replacement and retrieval strategies. As archive normally faced size constraint, replacement

strategies dictates the manner in which the new individuals replaced the existing solutions. Possible

approaches include deleting the individuals, which when deleted, will maximize the genetic diversity
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of the archive or removing older and poorer solutions by arbitrarily defining some ranking function.

Here, the proposed archiving strategy will simply adopt crowding measure, specifically niche count,

and remove solutions with higher niche count.

Retrieval strategies are concerned with how the archived solutions are being utilized during the

evolutionary progress. There could be a continuous injection of archived solutions to the evolving

population, which represents the diversity maintenance approach. However, such scheme might be

detrimental to algorithmic convergence. As such, retrieval will only occur after the environment

changes. The fitness of the best solution in terms of optimality will be re-evaluated at every genera-

tion and environment changes will be indicated by a deterioration of its fitness. Lastly, retrieval here

denotes the merging of the evolving evolution and the archived solutions and selecting the survivors

based on tournament selection.

3.5.3 Simulation Setup

To evaluate the feasibility of the proposed archiving strategy, the modified NFKP formulated earlier

will be modified into a dynamic optimization problem. To simulate a dynamic environment, the

problem landscape is periodically changed every τ generations during the evolutionary progress. The

change here essentially refers to the application of the mutation operation on the global solution,

( ~xG, ~bG). Apart from τ , another problem parameter α, is introduced here, which dictates the severity

of the change at each instant. Specifically, the value of α, indicates the number of times in which

( ~xG, ~bG) is mutated at each instant.

The algorithmic performance is measured by the average fitness of the best solutions at every

generation.

fbest =
1
G

G∑

t=1

fbest,t (3.10)

where G is the maximal generation and fbest,t is the fitness of the best solutions at time t. For each

simulation, 30 independent runs were made. Also for a more accurate and fairer comparison, the

same random seed was assigned to each set of runs to ensure that they started with the same initial

population and possessed the same set of ( ~xG, ~bG).
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The evolutionary platform considered here will be similar to that in the earlier section, where

a hybrid representation consisting of a binary vector, ~b and real vector, ~x of length, N to denote

the inclusion of objects in the knapsack and their corresponding proportion is considered. Unless

otherwise stated, the parameter configuration of EAPSO in the simulations, including those in the

subsequent sections, will follow Table 3.9.

Table 3.9: Detailed performance comparison for different settings of Glocal.

Fitness Evaluation 100,000
N 20

Runs 30
Population Size 100

Archive Size 1/100 with niche radius of 0.01
Selection Binary tournament selection
Crossover Single point crossover with probability 0.8
Mutation Bit flip mutation with probability 1

N

The proposed archiving strategy will be referred to as multi-objective memory (MOM) and

will be compared with other test algorithms, as briefly summarized in Table 3.10. MOM will be

evaluated against random restart (RR) and multi-objective archive (MOA), a modification of MOM

where retrieval occurs at every generation. The two techniques can be categorized under diversity

introduction and maintenance approaches respectively. The basic EA is included also to serve as the

basis of comparison.

3.5.4 Simulation Result & Discussion

With τ and α respectively set at 100 generation (equivalent to 10,000 fitness evaluations) and 5, the

evolutionary traces of the average fbest,t in 30 simulations attained by each algorithm are plotted in

Figure 3.19. In general,fbest,t deteriorated abruptly at the stipulated generations but gradually im-

proved as the algorithms adapted to the environment changes. Figure 3.19(a) illustrates the inherent

self-adaptive capability of EA in dynamic environments, where even at the absence of dynamism-

handling operators, reasonable algorithmic performance was attained. The external archive reduced
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Table 3.10: Empirical values of the mutation innovation MI attained by the various mutation oper-
ators.

Notation Techniques Description of mutation schemes

EA Standard EA Archive of size one to store the solution with
the highest fitness at every generation.

EA-RR Standard EA with RR Evolving population will be re-initialized
whenever environmental changes are detected.

EA-MOA Standard EA with MOA Archive stores solutions of high optimality and
diversity. Retrieval occurs at every genera-
tion.

EA-MOM Standard EA with MOM Archive stores solutions of high optimality and
diversity. Retrieval occurs only when environ-
mental changes are detected.

the sudden drop in fitness at every τ due to the enhanced genetic diversity provided. Comparing

Figure 3.19(c) and 3.19(d), continual retrieval clearly impeded the evolutionary convergence process.

The distribution of the average fbest,t and the hamming distance attained by the test algorithms

are plotted in box-plots, as shown in Figure 3.20. Generally, the external archive enabled EA-MOA

and EA-MOM to attain a lower average fitness (Hamming), implying that these two algorithms were

able to track the combination relatively well. Statistical tests involving ANOVA and multiple com-

parison tests revealed that these differences are significant. Overall EA-MOM attained a significantly

lower fbest,t as compared to the other algorithms.

It will be instructive to analyze the evolutionary traces of fbest,t in greater details to reveal further

insight about their algorithmic characteristics. Figure 3.21 presents the closed-up illustration of the

fitness traces of the various algorithms from generation 400 to 500. Clearly, fitness deteriorates

significantly at the onset of the environment changes, but more severe for both EA and EA-RR.

However, they managed to converge rapidly and eventually dip below EA-MOA. Overall EA-MOM

remained robust to environment changes and was able to adapt rapidly to new environments.

Figure 3.22 compares the evolutionary traces of the average generic diversity in the evolving

population for the various test algorithms in the same period. The corresponding trace of the

archive for EA-MOA and EA-MOM was included also. The genetic diversity of EA remains stable
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Figure 3.19: Evolutionary traces of the average fitness and hamming distance for the best solution
of (a) EA, (b) EA-RR, (c) EA-MOA and (d) EA-MOM in 30 simulations.

at the value of 1, except for the slight jumps after the environment changes. On the contrary, genetic

diversity for EA-RR increased significantly at every τ due to the re-initialization of the evolving

population, before settling back to 1 eventually. Despite so, EA-RR was not able to translate the

enhanced genetic diversity to better algorithmic performance. Interestingly, although the archives of

EA-MOA and EA-MOM maintained high diversity throughout the evolutionary progress, diversity

in their evolving population was pronouncedly low, especially for the latter. Also, the change in

diversity for EA-MOA at every τ is more gradual as compared to EA-RR. From fitness evaluation

500,000 to 520,000, diversity generally increased as the external archive was consistently introducing
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Figure 3.20: Box plot comparing the distribution of Hamming and Euclidean fitness of EA, EA-RR,
EA-MOA and EA-MOM in 30 simulations.
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Figure 3.21: Evolutionary traces (closed-up illustration) of the average fitness for the best solution
in the 30 simulations from generation 400 to 500.
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fresh genetic materials into the evolving population. However, as the general fitness level in the

evolving population improved, the archived solutions were compromised in the selection process,

resulting in a gradual drop of diversity in the evolving population.
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Figure 3.22: Evolutionary traces of the average genetic diversity in 30 simulations from generation
400 to 500 in the evolving population of EA, EA-RR, EA-MOA and EA-MOM and in the archive of
EA-MOA and EA-MOM.

To examine the test algorithms under different dynamic environments, τ and α were varied. The

set of values {1, 5, 10, 20,50,100, 200,500,1000} were considered for these two problem parameters.

The average fbest,t attained by the test algorithms under the set of problem parameters is plotted

in Figure 3.23. Same scales were chosen for the various plots to facilitate comparison. Intuitively,

environments which change dramatically at a high frequency are hardest to track. As such, the worst

algorithmic performance was generally at τ = 1 and α = 1000. Interestingly, the effect of τ on the

algorithmic performance is more pronounced as compared to α, where the increase in τ triggered

a larger improvement in fbest,t attained as compared to a decrease in α. Also, the marginal fitness

improvement diminished for large values of α and τ .

The algorithmic performance of EA, EA-RR, EA-MOA and EA-MOM can be compared easier
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Figure 3.23: Mean area for (a) EA, (b) EA-RR, (c) EA-MOA and (d) EA-MOM at different setting
of τ and α at the end of 500,000 fitness evaluations.

by analyzing the difference of their fbest,t directly. The difference in fbest,t of EA-RR over EA

in the various problem settings were calculated and plotted in Figure 3.24. A positive difference,

which corresponds to EA-RR having a higher fbest,t than EA, indicates that EA-RR performed

worse than EA in that particular setting. Also, as a mere difference in the average fbest,t cannot be

blindly regarded as performance difference between the algorithms due to the stochastic nature of

the evolutionary platform, statistical tests should be included to improve credibility of the results.

Particularly, the one-tailed t-test at a 0.05 level of significance was considered. It evaluates the

viability of the null hypothesis, where the mean difference in fbest,t between the two algorithms
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in comparison is purely stochastic. The result of the statistical analysis is shown in Table 3.11.

The signs “+”, “-” and “=” respectively denotes that EA-RR is significantly worse, significantly

better and statistically indistinguishable relative to EA. The inclusion of RR actually worsened the

capability of EA in handling dynamic environments for low values of τ and α. This is expected as

EA-RR at τ = 1 is analogous to solving an optimization problem with pure random search. Also,

in slight environmental changes for low values of α, it will be better to exploit information from

previous generations, rather than re-initializing a new population pool. Larger τ will negate the

necessity of RR as there is ample time to adjust to the dynamic environments.
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Figure 3.24: Difference of the mean area differences (random-normal) over 30 runs of normal archive
versus MO archive. Positive difference indicates cases where area of normal archive is more than
area of MO archive.

Putting the effects of the archiving strategy into perspective, Figure 3.25 compares the perfor-

mance of EA-MOA and EA-MOM with respect to EA. In this case, a positive difference indicates that

EA has a higher fbest,t as compared to EA-MOA/EA-MOM. The corresponding statistical analysis

is tabulated in Table 3.12 to 3.14. Clearly, EA-MOA only managed to outperform EA for smaller τ .

This is expected as the continual injection of diversity to the evolving population in EA-MOA will
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Table 3.11: Statistical Results (t-test at 0.05 significance level) of comparing EA over EA-RR in the
various problem settings. The signs “+”, “-”and “=”respectively denotes EA is significantly better,
significantly worse and statistically indistinguishable relative to EA-RR.

α τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100 τ = 200 τ = 500 τ = 1000

1 + + + + + + = = =
5 + + + + + + + + +
10 + + + + + + + + +
20 + - - - - = + = +
50 + - - - - - - = -
100 + - - - - - - - =
200 + - - - - - - - =
500 + - - - - - - - -
1000 + - - - - - - - -

indirectly impair algorithmic convergence. As such, for large τ where there are ample time to adjust

to the environment changes, the self-adaptability of EA is sufficient to cope with the environment

changes. Overall, EA-MOM consistently outperformed EA under the different problem settings,

demonstrating the capability of the archiving strategy in providing genetic diversity throughout the

evolutionary progress without impairing the convergence speed.

Table 3.12: Statistical Results (t-test at 0.05 significance level) of comparing EA-MOA over EA in the
various problem settings. The signs “+”, “-”and “=”respectively denotes EA-MOA is significantly
better, significantly worse and statistically indistinguishable relative to EA.

α τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100 τ = 200 τ = 500 τ = 1000

1 + + + - - - - - -
5 + + + + = - - - -
10 + + + + + - - - -
20 + + + + + = - - -
50 + + + + + + - - -
100 + + + + + + - - -
200 + + + + + + - - -
500 + + + + + = - - -
1000 + + + + + + - - -
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Figure 3.25: Difference of the mean area differences (random-normal) over 30 runs of normal archive
versus MO archive. Positive difference indicates cases where area of normal archive is more than
area of MO archive.

Table 3.13: Statistical Results (t-test at 0.05 significance level) of comparing EA-MOM over EA in the
various problem settings. The signs “+”, “-”and “=”respectively denotes EA-MOM is significantly
better, significantly worse and statistically indistinguishable relative to EA.

α τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100 τ = 200 τ = 500 τ = 1000

1 + + + + + + + + +
5 + + + + + + + + +
10 + + + + + + + + +
20 + + + + + + + + +
50 + + + + + + + + +
100 + + + + + + + + +
200 + + + + + + + + +
500 + + + + + + + + +
1000 + + + + + + + + +

Table 3.14 compares the algorithmic performance of EA-MOA and EA-MOM directly. At τ = 1,

there is no significant differences in their algorithmic performance, as EA-MOA , similar to EA-

MOM in this case, referred to the archive at every generation due to the frequent changes. Overall

EA-MOM outperformed EA-MOA over most of the problem settings except for the large values of α
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at τ = 5. This observation suggests that it might be beneficial to consider a retrieval strategy that

refers to the archived solution less often under certain problem setting.

Table 3.14: Statistical Results (t-test at 0.05 significance level) of comparing EA-MOM over EA-
MOA in the various problem settings. The signs “+”, “-”and “=”respectively denotes EA-MOM is
significantly better, significantly worse and statistically indistinguishable relative to EA-MOA.

α τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100 τ = 200 τ = 500 τ = 1000

1 = + + + + + + + +
5 = + + + + + + + +
10 = + + + + + + + +
20 = - + + + + + + +
50 = - + + + + + + +
100 = - + + + + + + +
200 = - + + + + + + +
500 = - + + + + + + +
1000 = - + + + + + + +

3.6 Summary

This chapter discusses how the general MOEA can be extended for portfolio optimization. An order-

based representation, which will be used in the evolutionary platform for subsequent chapters, was

introduced. It main advantages lies in its better control in the type of asset forming the portfolio,

allowing direct monitoring and control of the weight values for each asset at their point of inclusion.

Flexibility of the proposed representation was exhibited also, where simple modifications to the

initialization schemes allow the portfolio set of different pre-specified sizes to be formed.

Representation-specific variation operators were introduced subsequently. Preliminary empirical

studies conducted compared their inherent algorithmic characteristics with other conventional varia-

tion operators under RR and HR. Generally, the proposed variation schemes attained higher MI and

CI, which will be useful in the exploration of the search space and maintaining the genetic diversity

throughout the evolutionary progress.

Lastly, a local search operator and an archiving strategy that could improve the algorithmic

performance of MOEA were introduced in the last two sections. The former is essentially a PSO-EA
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hybrid model that can significantly improve efficacy and efficiency in algorithmic convergence. On

the other hand, the latter represents a memory-based approach that enhances the capability of EA

to deal with dynamic optimization problems. Details on their relevance to portfolio management will

be apparent in the subsequent chapters where more advanced problem formulation are considered.



Chapter 4

Mean-Variance Analysis and

Preference Handling

4.1 Introduction

This chapter is mainly devoted to the mean-variance analysis introduced by Markowitz [166]. Es-

sentially, the central idea underlying the mean-variance model is that investors should not only be

concerned with the realized returns, but also the risk involved with the asset holdings, measured by

the standard deviation of the portfolio return in this case. As such, in the portfolio optimization pro-

cess, the dual criteria of maximizing the expected returns and minimizing the associated risk should

ideally be considered simultaneously, hence motivating the formulation of this problem in the domain

of multi-objective optimization. This first part of this chapter will consider the fundamental mean-

variance model and evaluate the feasibility of the proposed evolutionary multi-objective model, while

the second part investigates the incorporation of preference criteria into the optimization process.

4.2 Markowitz Mean-Variance Model

In the Markowitz model, a perfect market without taxes and transactions costs was assumed, where

short sales are disallowed and securities are infinitely divisible and can be traded in any (non-negative)

72
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fraction. Investors, assumed to be rational price-takers, will make their sole investment decision prior

to the investment horizon in constructing a portfolio of assets, with their aim being to maximize

their terminal wealth at the end of the period. The mathematical formulation of the Markowitz

model is as follows:

min f1 =
N∑

i=1

N∑

j=1

wiwjσij (4.1)

min f2 =
N∑

i=1

wiµi (4.2)

subjected to
N∑

i=1

wi = 1 (4.3)

0 ≤ wi ≤ 1, i = 1, ..., N (4.4)

where N is the number of assets available, µi is the expected return of asset i, σij represents the

covariance between assets i and j and wi is the decision variable denoting the composition of asset i

in the portfolio as a proportion of the total available capital. The goal in this optimization problem

is to construct portfolios amongst the N assets i.e. finding the appropriate weight vector, ~w, that

can simultaneously satisfy the two conflicting objectives, namely, minimize the total variance (4.1),

denoting the risk associated with the portfolio, whilst maximizing its expected returns (4.2). (4.3)

gives the budget constraint for a feasible portfolio, while (4.4) requires all investment to be positive

i.e. short selling is not allowed.

Essentially, the optimization problem is to find portfolios amongst the N assets that satisfy these

two objectives simultaneously. As these two objectives are conflicting in nature, an optimal portfolio

is one that has the maximum return with the minimum risk and the optimal solution in this case will

comprise of a set of optimal portfolio illustrating the trade-off between these two objectives. This

solution set, when plotted in the objective space will constitute the Pareto front, or more commonly

known as efficient frontier in this context, as represented by FF in Figure 4.1.

Early related works were mainly single-objective approaches where one of the objectives is op-

timized, whilst pre-specifying a targeted value for the other objectives. However, the difficulty in

specifying the targeted value is that it might not be within the efficient frontier. Alternatively, a
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Figure 4.1: Illustration of the Efficient Frontier, FF

weighted function of the two objectives could be defined as such

maxλf1 − (1 − λ)f2 (4.5)

where different values of λ ∈ [0, 1] will direct the search to different regions of the efficient frontier

due to the varying emphasis on the portfolio’s risk and expected return. An approximation of the

efficient frontier can be obtained via repeated algorithmic iterations with different values of λ. This

highlights the primary disadvantage of single-objective approaches, as repeated algorithmic iterations

are required to obtain an approximation of the entire efficient frontier as opposed to a direct multi-

objective formulation for this problem. Furthermore, a multi-objective search will result in a more

diverse search of the decision space resulting in better algorithmic convergence, as demonstrated by

the subsequent simulations.

By casting this problem into the domain of multi-objective optimization, more flexible prob-

lem formulation are allowed and the basic mean-variance model can be extended to consider more

meaningful objective functions. Particularly, Arnone et al. [8] and Loraschi et al. [154] considered



CHAPTER 4. 75

downside risk (i.e. distribution of the downside returns) in place of the return variance (1). Alter-

natively, additional objective functions have been incorporated to enhance the original model. To

handle the cardinality constraints, Fieldsend et al. [82] considered the cardinal as an additional

objective to be optimized. This approach allowed the direct extraction of the 2-dimensional cardi-

nality constrained frontier for any particular cardinality. Other additional objectives considered in

literature included surplus variance [229], portfolio value at risk [229], annual dividend [72] and asset

ranking

4.3 Optimization Techniques for Portfolio Optimization

The main task in portfolio optimization is to select k out of N assets and optimize their weights so as

to satisfy the objectives without violating the constraints. As demonstrated by Maringer [163], this

is a NP-hard problem where the computational complexity scaled exponentially with the decision

search space, for example the number of available assets, N or the size of the portfolio, K. As such,

complete enumeration of the different possible decision variables is practically not feasible.

Analytic, closed-formed solutions, which are often desirable in optimization problems, are only

available if simple modifications are applied to the Markowitz model, for example, omitting the

non-negativity constraints from the basic model [17, 155, 237, 238]. As such, numerous optimization

tools from the realm of Operations Research have been proposed, which include linear program-

ming, quadratic programming, dynamic programming, greedy algorithm, gradient search and etc.

These traditional approaches typically entail the transformation of the original problem into a single-

objective problem and employs point-by-point algorithms. Even so the constraints set have to be

modified to suit the optimization tools like network flow model [63], linear programming [135], interior

point algorithm [231], ’branch and cut’ approach [16], simplex model [250].

The major drawback with these methods is that they generally require the problem to be well-

behaved, i.e. differentiability, satisfying the Kuhn-Tucker conditions or the problem specifics to be

expressible under a certain format, as these techniques might not be proficient in handling the non-

linear objectives and constraints functions within reasonable computational resources. In practical

implementation, the portfolio optimization problems are often reformulated to suit the specifics of
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the optimization tools. As a consequence, their application is restricted to a limited set of prob-

lems and/or the model had to accept strong simplifications. This imposes a limit on the realism

of the problem formulation as real-world situation usually garner a complex set of constraints and

objectives.

These restrictions have motivated the development and application of evolutionary optimizers

techniques like evolutionary algorithms, ant colony optimization [7], particle swarm optimization and

etc. Amongst them, EA represents the more popular approach [251, 252, 40, 218, 35, 42]. Essentially,

EA is implemented to optimize the asset composition in the portfolio and/or their corresponding

proportion. Most of these works revolved around the Markowitz mean-variance model under a single-

objective formulation, though slight modifications were made to improve the underlying model. In

a separate study, Busetti compared EA performance with Tabu search and concluded that the

former was better under that particular formulation. Similarly, PSO has been extensively applied

on portfolio optimization and has been extended to improve its algorithmic performance [58, 139,

253, 41]. Similar to EA, single objective formulation of the portfolio optimization were considered

namely minimize the risk with a targeted return value [253, 41], weighted approach [139], Sharpe

ratio [58].

As discussed in the earlier chapters, their main advantages are its diverse search effort which will

enhance the algorithmic convergence and its flexibility in implementation, where the evolutionary

paradigm can be readily adapted to address the different problem specifics and constraints. The

latter has resulted in works addressing more realistic constraints in portfolio optimization in the

recent literature. However, it should be mentioned that the optimization process within polynomial

time come at the expense of their optimality [222] , as the stochastic nature of such meta-heuristics

could only guarantee feasible and near-optimum solutions. Nevertheless, in most real-world problems,

speed is often of greater importance as compared to exact optimality.

Of more recent interest, there has been an increasingly number of works considering a multi-

objective formulation of this problem, which represents a more direct approach given the underlying

nature of the problem. Such formulation is more robust to the shape of the Pareto-front and approx-

imation of the entire efficient frontier only requires one single iteration as opposed to conventional

single-objective approaches. Also, such a formulation allows the consideration of more complex and

sophisticated objective function. Specifically, in this chapter, a multi-objective evolutionary platform



CHAPTER 4. 77

will be considered and applied to several test data. Subsequently in the second part of the chapter,

preferences will be incorporated into the optimization process and it will be demonstrated how the

evolutionary platform can be adapted as such.

4.4 Evolutionary Multi-Objective Portfolio Optimization

4.4.1 Simulation Setup

The evolutionary platform adopted was a generic elitist MOEA that maintained a fixed-size popu-

lation and an archive to store the best solution discovered. Both the population and the archive are

assigned a size of 100 each. The order-based representation proposed was adopted and the length of

each chromosome depends on the number of assets available in each problem. In each generation,

mating individuals were selected via binary tournament from the combined population of the existing

evolved solutions and archive. The selection criterion was based on Pareto dominance. In the event

of a tie, the niche count would be employed. Specifically, a niche radius of 0.01 in the normalized ob-

jective space was considered. The mechanism of niche sharing was used in the tournament selection

as well as diversity maintenance in the archive. The mating individuals would subsequently undergo

variation operation i.e. crossover probability of 0.8 and bit-wise mutation of 1
N

to produce offspring

for the next generation. The generational stopping criteria were varied for each problem based on

their level of difficulty. Specifically, each problem was run sufficiently until their performance can be

properly differentiated.

The proposed evolutionary model was applied to the basic portfolio optimization model to evalu-

ate its basic feasibility. The various representation discussed earlier was considered also to investigate

their algorithmic influence on the optimization process, namely the real vector representation [65],

hybrid representation [225] and the order-based representation. The various algorithms configura-

tions are described in Table 4.1. Prior investigations revealed that uniform crossover resulted in

better algorithmic performance for the former two representations. As for the proposed order-based

representation, the different initialization techniques mentioned earlier will be considered.
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Table 4.1: Description of the various algorithmic configurations in the simulations for unconstrained
portfolio optimization.

Algorithm Configurations Notation

Real number representation with uniform crossover RR
Hybrid representation with uniform crossover HR
Order-based representation without WMax OR-1
Order-based representation with WMax of 0.1 OR-2
Order-based representation with random WMax OR-3

4.4.2 Performance Metrics

Unlike single-objective optimization, there are several goals in multi-objective optimization [240],

most notably proximity and diversity. The former describes the accuracy of the solution set while

the latter measures how well the solution set is defined. Despite so, most of the studies in evolutionary

portfolio optimization did not include diversity measures and statistical analysis that are commonly

used in the performance assessment of multi-objective optimizers. While generational distance [221]

and average relative distance to the efficient frontier [240, 75] have been used on separate occasion,

other related works merely illustrate the efficient frontier attained [229, 7, 152].

In this paper, a set of proximity and diversity measures will be adopted that is commonly used in

multi-objective optimization. The Generational Distance metric, GD was used to measure proximity.

It quantifies how “far” the approximation of the efficient frontier found (EFKnown) is from the actual

efficient frontier (EFTrue)[243, 51] and is defined as

GD = (
1
m

m∑

i=1

d2
i )

1
2 (4.6)

where m is the number of solutions found, di is the Euclidean distance (in objective space) between

the member i in EFKnown and its nearest member of EFTrue. A low GD signifies that EFKnown is

very close to the efficient frontier.

As for diversity, it depends on factors like the spread and spacing of the solution set. The former

can be measured by the Maximum Spread, MS metric [261] which measures how well the efficient
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frontier is covered by EFKnown through the hyper-boxes formed by the extreme function values

observed in both fronts. In order to normalize the metric, this metric is modified as

MS =

√√√√ 1
L

L∑

i=1

(
maxm

i=1 f i
m − minm

i=1 f i
m

F max
i − F min

i

)2 (4.7)

where f i
l is the l-th objective of member i, F max

i and F min
i are the maximum and minimum of the

l-th objective in EFKnown and L denotes the number of objectives. The greater the value of MS is,

the more the area of EFTrue is covered by EFKnown.

For the latter, the metric of spacing, S which measures how “evenly” solutions in EFKnown are

distributed is chosen. It is defined as

S =

√√√√ 1
m

m∑

i=1

(di − di)2

d
(4.8)

where di is the Euclidean distance (in objective space) between the member i and its nearest member

in EFKnown. S will be low if the members in EFKnown are evenly distributed.

4.4.3 Simulation Result & Discussion

A set of portfolio optimization problems obtained from the OR-library [11] will be considered here to

comprehensively evaluate the evolutionary model proposed. These problems contain the estimated

returns and the covariance matrix for groups of assets in different stock market indices. Their details

are summarized in Table 4.2. The difficulty of these problems is directly related to the number of

assets available.

30 independent simulation runs were performed for all simulations and the same random seed

was assigned to each set of the runs so that all algorithms start with the same initial population.

The simulation results are illustrated by box plots in order to provide a statistical comparison of the

performances for the various algorithms. Since a mere difference in the average of the qualitative

metrics cannot be blindly regarded as performance difference between the algorithms, statistical test,

namely the analysis of variance (ANOVA) is used to examine the significance of the mean difference

between the various results.
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Table 4.2: Description of Simulation Data Sets.

Problem Index Data Source Number of Assets

PORT1 Hong Kong, Hang Seng 31
PORT2 German, DAX 100 85
PORT3 British FTSE 100 89
PORT4 U.S. S&P 100 98
PORT5 Japanese Nikkei 225 225

Table 4.3: The average portfolio size and its corresponding standard deviation for the various solu-
tions attained by the various algorithms in the different problems.

RR HR OR-1 OR-2 OR-2

PORT1 30.99 4.74 3.30 4.38 3.52
(0.031) (0.48) (0.35) (0.62) (0.28)

PORT2 84.98 15.68 4.64 9.77 7.21
(0.043) (2.67) (0.82) (1.08) (1.50)

PORT3 88.98 16.84 4.27 9.23 7.02
(0.042) (2.97) (0.74) (1.67) (0.91)

PORT4 97.99 24.09 6.15 13.60 12.08
(0.0264) (3.08) (0.63) (1.23) (2.30)

PORT5 224.95 65.81 4.48 8.73 5.65
(0.089) (11.16) (0.57) (1.19) (1.24)

The boxplots of the various performance metrics are illustrated in Figure 4.2. Varying stopping

criteria are considered for different problems to compensate for their relative difficulty i.e. maximum

generations of 100 for PORT1, 300 for PORT2, PORT3 and PORT4 and 500 for PORT5. The perfor-

mance of RR was significantly poorer than the rest, especially in terms of diversity of the EFKnown

attained, as reflected by their low values of MS. This was due to the nature of the representation,

which favored large portfolio sizes that were near to N , as verified by Table 4.3. As such, EFKnown

for RR was limited to the region of low return and risk due to excessive diversification and thus

failed to cover the entire efficient frontier. This is illustrated in Figure 4.3, which depicts EFKnown

obtained by RR in PORT4.
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Figure 4.2: Box plots illustrating GD, MS and S obtained under the different algorithms for the
different problems with varying stopping criteria.
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Figure 4.3: EFKnown of PORT4 obtained by RR in one of the algorithmic runs, with the correspond-
ing EFTrue denoted by the dotted-line.

ANOVA tests revealed no significant differences between the GD attained by HR and OR-3.

However, there were significant differences in the degree in which they satisfied the diversity goal of

attaining a solution set that spans the entire EFTtue. Except for PORT1 and PORT3, the ANOVA

test revealed that OR-3 actually attained a significantly higher MS as compared to HR. Figure 4.4

and 4.7 compare the EFKnown obtained by HR and OR-3 in PORT2 and PORT4 and they clearly

illustrate the difference in diversity under these two representations, in accordance with the box plots.

It is evident from Figure 4.6 that OR-3 was able to attain a set of solutions that is close to EFTtue

with sufficient level of diversity for the rest of the problems. However, it is noticeable that certain

regions of EFTtue were not well-defined. Hence to further improve the algorithmic performance of

OR-3 in terms of diversity, local search operators could be deployed in future works to improve the

algorithmic convergence.

A closer examination of the box plots in Figure 4.2 reveals differences in the algorithmic per-

formance for the various initialization techniques. As discussed earlier, OR-1 will favor smaller

portfolios, thus the algorithm will work with fewer assets initially and then gradually increases the
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Figure 4.4: EFKnown obtained by (a)HR and (b)OR-3 for PORT2 in one of the algorithmic runs,
with the corresponding EFTrue denoted by the dotted-line.
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Figure 4.5: EFKnown obtained by (a)HR and (b)OR-3 for PORT4 in one of the algorithmic runs,
with the corresponding EFTrue denoted by the dotted-line.
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Figure 4.6: EFKnown obtained by OR3 for (a)PORT1, (b)PORT3 and (c)PORT4 in one of the
algorithmic runs, with the corresponding EFTrue denoted by the dotted-line.
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Figure 4.7: Evolutionary trace of the (a) average portfolio sizes and the (b) corresponding standard
deviation in PORT3 for three different algorithms i.e. OR1, OR2 and OR3.

portfolio size during the evolutionary search progress. This can be observed from the evolutionary

traces of the portfolio sizes in Figure 4.7. On the other hand, the application of the fixed initialization

limits of 0.1 or random initialization increased the initial portfolio sizes, with the latter providing

more diversity in the initial population, as observed in Figure 4.7(b).

The importance of diversity in the initial population is reflected in the evolutionary traces of

the objective space. The diverse initial population generated by OR-3 as compared to OR-1 (Figure

4.8(a) versus 4.9(a)) resulted in a more diverse set of solutions (in terms of MS) being evolved

eventually at generation 100.
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Figure 4.8: EFKnown attained by OR1 at different generation i.e. (a) generation 0, (b) generation
50 and (c) generation 100 in PORT3, with the corresponding EFTtue denoted by the dotted-line.
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Figure 4.9: EFKnown attained by OR3 at different generation i.e. (a) generation 0, (b) generation
50 and (c) generation 100 in PORT3, with the corresponding EFTtue denoted by the dotted-line.

4.5 Handling Preferences in Portfolio Optimization

4.5.1 Preferences in Multi-Objective Optimization

The MOO process broadly comprises of three main stages, namely measurement, search and decision

making [52]. Most work related to EMO tends to focus on the second aspect, while the first aspect

is addressed once the underlying formulation of the MOP can be mathematically defined. Decision

making, on the other hand, is less studied since most of the time it is unnecessary, as it is implicit in

the search process itself. MOO are concerned with problems of multiple conflicting objectives and in

the absence of information regarding the relative importance between them, a set of Pareto optimal

solution will ultimately be yield where any improvements in one objectives can only be obtained at

the expense of degradation of the other objectives [83]. Ultimately, the decision maker has to select
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one single solution (or a particular region) from the Pareto optimal set, depending critically on his

preferences towards the various objectives and/or the solution characteristics specifics i.e. robustness

of the solution.

According to Horn [109], preferences can be specified a prior (before the search process), a

posteriori (after the search process) or interactively (during the search process) to the evolutionary

paradigm. Preferences towards different objective functions can be implemented by a weighting /util-

ity function that combines all objectives into a single objective function. Alternatively, dominance

relationship can be redefined in the case of ε-dominance [145], α-dominance [112] and s-dominance

[208] to incorporate users’ preferences into the dominance ranking. The emphasis on the various

objectives in accordance to the weights will drive the algorithmic convergence to the appropriate

region.

Alternatively, the decision maker could be particularly interested in certain regions of the Pareto

front. In related works, such preferences are generally expressed in the form of reference points,

where the objective is to reach a Pareto front region located near them. Deb et al. [61] proposed a

Euclidean distance measure which acts as a secondary selection criterion to promote solutions that

are nearer to the pre-specified reference point. Subsequently, a weighted stress function method

was proposed which allows the decision maker to control the dispersion of the solution around the

targeted region [83]. These two methods represent a prior approaches which require the definition of

the reference vector before the algorithmic run. An a posteriori approach was proposed by Miettinen

[172] where a weighted metrics is used to select solutions that are closer to the ideal criteria vector

after the optimization process. The problem with reference vector is that the decision maker needs

to have certain knowledge about the best solutions or regions of the Pareto front, which could be

hard, especially for a prior approaches.

4.5.2 Capital Asset Pricing Model

Even though knowledge of the efficient frontier is important, often, portfolio managers are only

interested in specific regions or points along the efficient frontier in practical situations, for example

the efficient portfolio as described in the capital asset pricing model (CAPM). The key principles

underlying CAPM are illustrated in Figure 4.10. The point, Rf represents the risk-free return
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available in the market to an individual, for example through government treasury bills. Line CC

denotes the capital market line, which is a straight line that passes through Rf and is tangential to

the efficient frontier, FF. The point, a, at the intersection of CC and FF is the efficient portfolio. The

significance of the efficient portfolio is that any combination of it and the risk-free asset, attainable

by either lending or borrowing at the rate of Rf , will allow the individual to operate any point on the

capital market line and above the efficient frontier, resulting in higher returns for any given amount

of risk than any portfolio of risky assets on FF.

R
f


C


C


a


Return


Risk


F


F


Figure 4.10: Illustration of the CAPM.

Mathematically, the efficient portfolio is the point on the efficient frontier that can maximize the

objective function as follows [49]:

maxF3 =
F2 − Rf

F1
(4.9)

where Rf is the risk-free rate. Essentially, the problem is to maximize the gradient of the tangential

line to the efficient frontier originating from the risk-free rate. This value is otherwise, more commonly

known as the Sharpe ratio which measures the excess return (or Risk Premium) per unit of risk in
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an investment asset or a trading strategy [216].

Contrary to the portfolio optimization problem introduced earlier, the optimization problem of

finding the efficient portfolio essentially combined the original two objectives into a single objective

function. While the direct approach is to formulate this as a single-objective problem, this chapter

considered the third objective as a preference criterion in the original dual-objective problem model

i.e. (4.1) and (4.2) being the main objectives while (4.9) denotes the secondary criterion. The

motivation for such a formulation is that the original multi-objective formulation will maintain

the genetic diversity within the evolving population while the secondary objective will drive the

algorithmic convergence towards the preferred region. Similar to the previous a prior approaches,

the additional objective will be regarded as a secondary criterion in the selection process after the

optimality comparison. To provide the additional stimulus, the PSO local search operator will be

incorporated into the evolutionary platform, focusing on improving solutions with respect to the

secondary criterion.

4.5.3 Simulation Setup

Three different evolutionary platforms were considered here so as to evaluate the feasibility of the

proposed memetic model in handling preference criterion in multi-objective portfolio optimization.

The first evolutionary platform adopted was identical to the one used in section 3.4 (single objective

version), adopting the hybrid representation of a binary vector, ~b and real vector, ~x to denote

the inclusion/exclusion of each individual assets in the portfolio and their corresponding weights.

Algorithmic configuration adopted was as per the earlier simulations and the objective is to search

for the efficient portfolio (4.9). To satisfy the budget constraint (4.3), the weights of the relevant

assets in the portfolio will be normalized to one before the fitness evaluation.

The second EA extended the above-mentioned EA into the multi-objective domain, by incorpo-

rating Pareto-based ranking technique and diversity preservation mechanism. The selection criterion

was based on Pareto ranking and in the event of a tie, the niche count was employed. The mechanism

of niche sharing was used in the tournament selection as well as diversity maintenance in the archive.

Both objectives (4.1) and (4.2) were simultaneously considered. The archive size was expanded to

100 to store the non-dominated solutions obtained during the algorithmic run.
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Lastly, for the third EA, preference was incorporated into the optimization process of the previous

multi-objective EA, by simply adding (4.9) into the selection process after the optimality criteria

[49]. This allowed the evolutionary search to be focused on the preferred regions, resulting in the

solutions converging nearer to the efficient portfolio, hence providing more alternatives around the

targeted region.

In the various evolutionary approaches, PSO, being a single objective approach, will optimize

(4.9) solely. While the candidate solution is obvious for the first case since there is only one solution

in the archive at any time, the candidate solution for the latter two cases will be the solution with

the maximum value for (4.9) in the archive.

The algorithmic index, notations and descriptions of the various evolutionary approaches are

summarized in Table 4.4. Following previous simulation results that advocates lower Nlocal with

respect to Tlocal , two algorithmic configurations, {Glocal, Nlocal , Tlocal} were considered here i.e.

{20, 25, 100} and {100, 25, 100}. For brevity, simulation result of varying Nlocal and Tlocal were not

considered here though simulations do revealed similar observations as the previous studies.

The various algorithms were applied to a set of portfolio optimization problems obtained from

the OR-library [11], which contains the estimated returns and the covariance matrix for groups of

assets in different stock market indices. The details of the test problems are summarized in Table

4.2. Three different Rf were considered for each problems, namely the 25%, 50% and 75% percentile

of the returns, which corresponded to different efficient portfolios. The various values are listed in

Table 4.5 and Figure 4.11 gives a clear illustration of how these values are obtained in each problem.

4.5.4 Simulation Result & Discussion

The algorithmic performances were evaluated based on the number of fitness evaluations required

to reach within 5% of the optimal fitness for the respective problem and Rf . The mean fitness

evaluations taken in 30 runs are illustrated in boxplots, as shown in Figure 4.12-4.16. In most cases,

the MO approach located the preferred region since the efficient portfolio is ultimately part of the

efficient frontier. However, there were improvements in the convergence time to obtain solutions

in the vicinity of the preferred region after introducing the preference knowledge in the selection

criteria. Interestingly, these improvements were especially significant whenever there was a large
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Table 4.4: Description of the various algorithms configurations considered in the simulation for
portfolio optimization.

Algorithm Index Algorithm notation Description

1 SO Single-objective EA
2 SO-LS20 Single-objective EA with PSO applied at every 20

generations
3 SO-LS100 Single-objective EA with PSO applied at every 100

generations
4 MO Multi-objective EA
5 MO-LS20 Multi-objective EA with PSO applied at every 20

generations
6 MO-LS100 Multi-objective EA with PSO applied at every 100

generations
7 pMO Preference-based Multi-objective EA
8 pMO-LS20 Preference-based Multi-objective EA with PSO ap-

plied at every 20 generations
9 pMO-LS100 Preference-based Multi-objective EA with PSO ap-

plied at every 100 generations

Table 4.5: Description of the Rf values for the various problems (optimal F3 highlighted in paren-
theses).

Problem PORT1 PORT2 PORT3 PORT4 PORT5

25% Rf 0.0034 0.0030 0.0026 0.0028 0.0010
(3.2402) (11.0774) (8.2546) (9.1543) (4.0154)

50% Rf 0.0068 0.0059 0.0053 0.0056 0.0020
(0.9591) (4.0934) (2.5864) (2.6803) (2.3330)

75% Rf 0.0102 0.0089 0.0079 0.0083 0.0030
(0.1315) (0.3799) 0.1835) (0.3351) (0.8283)
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Figure 4.11: Illustration of different risk-free returns considered and the corresponding optimal
solution.

performance difference between SO and MO. For example, the significant algorithmic improvement

in PORT2 for 75%-Rf corresponded to the huge performance difference between SO and MO, while

the contrary was observed for 25%-Rf . The performance difference actually reflected the difficulty in

locating the efficient portfolio on the efficient frontier and hence the level of improvement attainable

when local optimizer is implemented. As such, application of pMO will be more justified in the case

of when there is huge performance difference between SO and MO. Nevertheless, overall, pMO was

able to converge faster to the efficient portfolio as compared to SO, yet at the same time, offer more

alternatives in the vicinity of the preferred region.

Generally, the application of local search improved the convergence time of the algorithms.

Nevertheless, this is dependent on Glocal, where more significant improvements are generated when

the local search is triggered more frequently, in accordance to the earlier observations. This was

especially prominent in simpler problems (lesser number of assets) like PORT1, where the algorithm

had converged before the local search could apply any positive effects on it. Overall, the application

of both preference selection criteria and local search resulted in the fastest convergence to the efficient
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Figure 4.12: Fitness evaluations required to reach within 5% of the optimal fitness for the various
algorithms in PORT1 with (a) Rf = 0.0034 (b) Rf =0.0068 (c) Rf =0.0102.
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Figure 4.13: Fitness evaluations required to reach within 5% of the optimal fitness for the various
algorithms in PORT2 with (a) Rf = 0.0030 (b) Rf = 0.0059 (c) Rf = 0.0089.

portfolio.

Interestingly, performance improvements were generally more significant for higher value of Rf .

This could be due to the higher return and lower risk associated with higher Rf , which correspond

to portfolio of smaller assets. The significant performance improvements corresponded to the obser-

vations in section 3.4.5 for global binary vector with higher Pzero.

EFKnown attained under the various algorithmic configurations are plotted in Figure 4.17.

Clearly, a generic application of EA will have difficulty converging to the efficient portfolio in this

case. However, with the implementation of local search or preference selection criteria, more solutions

were found near the preferred region with the latter being better. Nevertheless, with the implemen-

tation of both local search and preference selection criteria, better solutions were attained. This
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Figure 4.14: Fitness evaluations required to reach within 5% of the optimal fitness for the various
algorithms in PORT3 with (a) Rf =0.0026 (b) Rf=0.0053 (c) Rf =0.0079.

SO SOLS20 SOLS100 MO MOLS20 MOLS100 pMO pMOLS20pMOLS100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
5

F
itn

es
s 

E
va

lu
at

io
ns

(a)

SO SOLS20 SOLS100 MO MOLS20 MOLS100 pMO pMOLS20pMOLS100

0

1

2

3

4

5

6

7

8

9

x 10
4

F
itn

es
s 

E
va

lu
at

io
ns

(b)

SO SOLS20 SOLS100 MO MOLS20 MOLS100 pMO pMOLS20pMOLS100
0

1

2

3

4

5

6

x 10
4

F
itn

es
s 

E
va

lu
at

io
ns

(c)

Figure 4.15: Fitness evaluations required to reach within 5% of the optimal fitness for the various
algorithms in PORT4 with (a) Rf =0.0028 (b) Rf =0.0056 (c) Rf =0.0083.
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Figure 4.16: Fitness evaluations required to reach within 5% of the optimal fitness for the various
algorithms in PORT5 with (a) Rf =0.0010 (b) Rf =0.0020 (c) Rf =0.0030.
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Figure 4.17: EFKnown attained by (a) MO, (b) MOLS20, (c) pMO and (d) pMOLS20 for PORT3
with Rf = 0.0079 within 10,000 fitness evaluations. The corresponding efficient portfolio and the
efficient frontier are denoted by the star and dotted-line respectively.

is shown clearer in Figure 4.18, which presents a close-up illustration of EFKnown in the preferred

region.

4.6 Summary

This chapter casts the Markowitz model into the multi-objective optimization domain and studied

the application of the evolutionary platform discussed in Chapter 3. Generally, the ordered-based
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Figure 4.18: Close-up illustration of EFKnown attained by pMO and pMOLS20 in the preferred
region. The corresponding efficient portfolio and the efficient frontier are denoted by the star and
dotted-line respectively.

representation was able to find reasonable approximation for the efficient frontier in the various

data sets. Lastly, the incorporation of preference-based techniques into the proposed evolutionary

platform enhances its capability as a decision support system for portfolio managers in real-world

implementation. Nevertheless, it is necessary to extend the evolutionary optimization model to

handle other realistic constraints like round-lot constraints and transaction costs and evaluate its

viability and practicality on more comprehensive test problems. This will be addressed in the next

chapter.



Chapter 5

Handling Realistic Constraints in

Portfolio Optimization

5.1 Introduction

Although Markowitzs mean-variance model of portfolio selection represents one of the best known

models in finance, this simplistic model failed to describe the complexities of the real world in an

adequate fashion, as portfolio managers often face various constraints in the real world of investment

management arising from pre-specified investment mandates, business/industrial regulations and

other practical issues [221]. Many of these constraints have been deliberately left out in academic

studies, mainly to accommodate the limitations of classical optimization techniques.

One important aspect in investment portfolio management is that most of the risk diversification

in a portfolio can be achieved with a small, yet well chosen, set of assets [74]. Empirically, systematic

risk, i.e. the proportion of risk dependent only on the market becomes negligible when the number

of assets in a portfolio exceeds approximately 20-25, though there have been recent evidences that

this threshold might have increased to around 50 in recent years [32]. As such, asset allocation is

often preceded by the question of whether to include the asset in the first place. The inclusion of

cardinality constraints (i.e. explicit restrictions on the number of different assets in the portfolio) in

the Markowitz mean-variance model will result in a mixed integer nonlinear optimization problem,

96
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which is typically unsolvable under classical optimization tools. While recent developed optimization

techniques allowed such constraints to be considered, in-depth analysis that examined how these

constraints affect the search progress and the efficient frontier attainable are sorely lacking.

Apart from the diminishing risk premiums, large portfolio size will typically involve higher man-

agement and maintenance costs, for example transaction costs, which is an inevitable factor in the

construction and management of investment portfolios. While related literature works have modeled

transaction costs as a fixed charge and/or a proportional element that is directly linked to the traded

volume, transaction costs in real-world market practices often comprised of multi-tiered structures

that are significantly more complicated to model. In fact, the precise treatment of transactions costs

in portfolio optimization will lead to a non-convex problem landscape, in which numerical methods

will typically fail. An intuitive extension after transaction costs will be the consideration of round-lot

constraints (i.e. assets in the portfolio to be in exact multiples of the trading lots), which will further

complicate the underlying optimization problem.

This motivation of this chapter is to incorporate the above-highlighted constraints into the

Markowitz mean-variance model and evaluate the capability of the multi-objective evolutionary

platform in handling these constraints, hence providing a viable platform to study the nature of the

portfolio optimization problem in greater depths. Most importantly, the multi-objective formula-

tion of the portfolio optimization problem allows the study of the entire efficient frontier attainable

under the various constraints, which is otherwise not possible under conventional single-objective

approaches. Specifically, two sets of constraints will be investigated, namely cardinality constraint

with buy-in thresholds, followed by round-lot constraint with transaction cost. Their corresponding

sections will discuss their incorporation into the problem model, the associated constraint handling

techniques, followed by empirical analysis.

5.2 Review of Realistic Constraints in Portfolio Optimization

In the real world of investment management, portfolio managers often face a number of realistic con-

straints arising from pre-specified investment mandates, business/industrial regulations and other

practical issues [221]. Examples of such constraints include (not exhaustively) floor and ceiling con-
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straint, cardinality constraint, round-lot constraint, transaction cost inclusion, turnover constraint,

trading constraint [163].

5.2.1 Floor and Ceiling Constraints

The floor and ceiling constraint, otherwise known as buy-in thresholds, specify the lowest and highest

limits on the proportion of each asset that can be held in a single portfolio. The former prevents

excessive administrative costs for very small holdings, which have negligible influence on the perfor-

mance of the portfolio, while the latter rules out excessive exposure to any one portfolio constituent

as part of institutional diversification policy [57]. This constraint is formulated as such,

ai ≤ wi ≤ bi, 0 ≤ ai ≤ bi ≤ 1 (5.1)

where ai and bi denotes respectively the minimum and maximum weights that can be held for asset

i (i = 1, 2.., N ) in the portfolio. While floor constraint has been actively studied in related literature

[7, 72, 206, 221, 225, 226, 227, 228], the general floor and ceiling constraint has been less explored.

5.2.2 Cardinality Constraint

Investors and fund managers often limit the number of assets in their portfolio for ease in management

and monitoring and/or to avoid excessive operational and maintenance costs. On the other hand,

a limit on the minimum number of assets in the portfolio will be required to capture diversification

benefits. Cardinality constraints denote the limits on the maximum and minimum numbers of assets

that a portfolio can hold and they can be expressed as follows:

Carl ≤
N∑

i=1

zi ≤ Caru, 0 ≤ Carl ≤ Caru ≤ N (5.2)

where zi = 1 if wi > 0 and zi = 0, otherwise and Carl and Caru respectively denote the lower and

upper cardinal limit. This constraint has been simplified in several related works, where either the

inequality restriction in 5.2 is replaced by an equality restriction instead i.e. portfolios are restricted

to a pre-specified cardinal size [7, 37, 72, 163, 225, 226, 227, 228] or only the maximum cardinality

constraint is considered [221, 206, 164].
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5.2.3 Round-lot Constraint

Round-lot constraint requires the number of each asset in the portfolio to be in exact multiples of

the trading lots [152, 221]. The round-lot constraint can be expressed as

ki mod li = 0 (5.3)

where ki denotes the number of units purchased for asset i and li represents its corresponding lot

size. Typically, the inclusion of round-lot constraint will require a relaxation of the budget constraint

(4.3) as the total capital will not be of exact multiples of the minimum lot prices for the various

assets.

5.2.4 Turnover Constraint

Turnover constraints are trading limits defined by practitioners to safeguard against excessive trans-

action cost slippages [212]. Essentially, they are upper variation bounds for asset holding in the

portfolio between trading periods. The implicit assumption behind this indirect control of trans-

action costs is that if proportional transaction cost is considered and they are equal across assets,

controlling turnover is analogous to controlling transaction cost. Turnover constraints can be ex-

pressed as such

max(wi − w0
i , 0) ≤ Bi (5.4)

max(w0
i − wi, 0) ≤ Si (5.5)

where w0
i represents existing holding proportion of asset i prior to the portfolio construction, while

Bi and Si denote respectively the maximum purchase and sales of asset i between trading periods.

Generally, Bi and Si will vary in different period in accordance to the market conditions.

5.2.5 Trading Constraint

Contrary to turnover constraints, trading constraints impose minimum limits on buying and selling

of tiny quantities of assets due to practical reasons, for example, high fixed costs linked to transaction
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[57]. As such, higher transacted volumes is required to distribute the overheads. Trading constraints

can be expressed as such

wi = 0 or wi ≥ w0
i + Bi (5.6)

wi = 0 or wi ≤ w0
i − Si (5.7)

Where w0
i represents the holding proportion of asset i prior to the portfolio construction, while

Bi and Si denotes respectively the minimum purchase and sales of asset i between trading periods.

Generally, the incorporation of transaction costs into the optimization problem will indirectly control

the turnover and trading constraints.

5.2.6 Transaction Costs

Transaction costs associated with the purchase and sales of assets are inevitable in real-world prac-

tices. Typically, these costs could be variable and/or proportional to the traded volume. In other

cases, a lower limit (i.e. minimum fee per transaction) might be imposed and/or they might come

with a fixed component (i.e. fixed fee per transaction). Mathematically, the various transaction cost

function can be expressed as such,

TCt = f(v) =





η ,fixed cost only

λv ,proportional cost only

max (λv, η) ,proportional cost with lower limit

η + λv ,proportional plus fixed cost

(5.8)

for some constant η, λ, where 0 < η < 1 and λ > 0 and for some traded value v. Although the various

cost structures have been considered extensively in related academic works, they do not correspond

exactly to actual market practices, where transaction costs often comprised of a multi-tiered cost

structure with different cost functions applied within different ranges of the traded value. Such

formulation will lead to discontinuities and/non-concavity in the set of feasible portfolio selection,

where traditional approaches like quadratic or linear programming will fail. As such, heuristic

and evolutionary approaches were considered [57, 161] instead, which are capable of handling such

problem landscapes.
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5.3 Handling Cardinality Constraint with Buy-in Threshold

The cardinality constraints and the buy-in threshold will be considered here. The section will begin

with a brief discussion on the corresponding constraint handling techniques, before presenting the

empirical analysis on the effects of the efficient frontier attainable under these constraints.

5.3.1 Constraint Handling Technique for Buy-In Threshold

This constraint requires asset weight values to be within a specific range. As such, the conventional

strategy of normalizing the total weight to one so as to meet the budget constraint is no longer

applicable here, since the normalized weights might not be within the limits. Related works focus

only on floor constraint and the conventional approach is to arbitrarily add the minimum weight to

any infeasible assets. A simple technique is proposed here to handle the general floor and ceiling

constraints, which involves modifying the fitness evaluation operation whilst maintaining the same

representation and variation operation and other evolutionary operators.

The proposed order-based representation allows direct control on the manner in which the assets

are introduced into the portfolio and any infeasibility can be immediately repaired. As such, the floor

and ceiling constraints are regarded as hard constraints here. The modified fitness evaluation will still

initialize an empty portfolio. Subsequently, assets will be added iteratively, with their corresponding

weights adjusted to the floor and ceiling constraint as shown in (5.9).

wa
i = ai + (bi − ai) × wi (5.9)

Assets will be added to the portfolio until the total weight of the portfolio exceeds one. At

this stage, case-dependent correction techniques will be applied to ensure the feasibility of the final

portfolio constructed. A total of 3 different cases have been identified:

1. After removing the last added asset, the remaining weight is between the floor and ceiling

limits: In this case, the weight of the last added asset can simply be reassigned so that its

adjusted weight is equivalent to the remainder needed to attain a total weight of one.
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2. After removing the last added asset, the remaining weight is less than the floor limits: This

case can be further subdivided into two different scenarios.

(a) After removing the second last added asset, the remaining weight is between the floor

and ceiling limits: This will mean that its weight can simply be reassigned so that the

adjusted weight is equivalent to the remainder that it needed to attain a weight counter

of one. The portfolio will contain all the assets considered so far and the adjusted asset.

(b) After removing the second last added asset, the remaining weight is outside the floor and

ceiling limits: for this case, all the weight vectors will simply be readjusted by either

increasing or decreasing them by a predefined percentage.

This modified fitness evaluation will ensure that all the solutions generated during the evolution-

ary search progress will always be feasible with respect to this constraint.

5.3.2 Constraint Handling Technique for Cardinality Constraint

Related works in literature have considered cardinality constraint as a hard constraint and generalized

the inequality restriction by an equality constraint. As such, a fixed number of assets are arbitrarily

selected based on the fixed cardinal value before the weights are normalized to satisfy the other

constraints. Similar techniques can be employed to satisfy the maximal cardinality constraints [164,

206, 221] by setting the weights of excess assets to be zero. However, such techniques might have

difficulties dealing with ceiling constraints as the excess weights cannot be arbitrarily assigned to

other assets.

This chapter considers the general cardinality constraint as a soft constraint instead. Repair

operation, as described in Figure 5.1, is used to correct the feasibility of the chromosome. Specifically,

the various values in the weight vector will be increased/decreased when its associated portfolio size is

too high/low, so that fewer/more assets will be required in the re-evaluation. This simple procedure

will help to adjust the portfolio size of infeasible chromosomes back to the feasible range.

Due to the presence of infeasible solutions in the evolving population, the selection operation

will have to factor this into consideration also. Basically, the feasibility of the portfolio will take

priority over the optimality of the solutions. This is applicable for both the parent selection and the

survivor selection.
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IF
 number of asset > maximum cardinal

Increase
 all weights by k % 


else IF
 number of asset < minimum cardinal 

Decrease 
all weights by k %


end IF


Figure 5.1: Pseudo code of the repair operation for cardinality infeasibility.

5.3.3 Simulation Result & Discussion

Simulation results in Section 4.4.3 demonstrated the capability of the proposed order-based repre-

sentation in generating better approximation of the efficient frontier as compared to other represen-

tations. This section will extend the evolutionary platform to the constrained portfolio optimization

model and evaluate its constraint handling ability with respect to the floor and ceiling constraint

and cardinality constraint. Particularly, this study will be restricted to PORT3 and the generational

stopping criteria will be extended to 1000 to ensure algorithmic convergence.

Before examining simulation results, it will be instructive to analyze how portfolio size changes

along the efficient frontier in general. Figure 5.2 plots the portfolio risk against its size for all the

solutions obtained by OR3 for PORT3 in 30 runs. Clearly, smaller portfolio sizes were associated with

higher risk bands while larger portfolio sizes possessed smaller risk due to diversification. As such,

the imposition of floor and ceiling constraint and cardinality constraint, which limit the portfolio

sizes, will influence the level of return and risk attainable, thus restricting the optimal solutions to

certain regions of the original efficient frontier.

Particularly in the context of floor and ceiling constraint, the former will force a minimal exposure

to those lower-returning assets, while the latter will prevent the high optimal level of exposure to

high returns assets, again forcing an exposure to lower-returning assets. This will ultimately reduce

the overall portfolios return, resulting in suboptimal portfolio. To verify this hypothesis, two sets

of floor and ceiling constraints: {1%, 2%} and {10%, 11%} were considered and the constrained

EFknown are shown in Figure 5.3. Clearly, with this constraint, it was not possible to approximate

the entire efficient frontier and EFknown attained were limited to the low risk-return region.

To further investigate the effects of floor and ceiling constraint on portfolio sizes, different values

of the constraint were considered and the average portfolio sizes obtained under the various instances
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Figure 5.2: Plot of risk against portfolio size obtained by OR3 in PORT3.
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Figure 5.3: Constrained EFknown attained for PORT3 with floor and ceiling constraint of (a) {1%,
2%} and (b) {10%, 11%}, with the corresponding unconstrained EFTrue denoted by the dotted-line.
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is shown in Figure 5.4. The dark region denotes the infeasible case where the floor constraint was

higher then the ceiling constraint. With the floor and ceiling constraint, the average portfolio size

generally increased as compared to 7.02 in the unconstrained case. By using a higher ceiling con-

straint, larger weights values were possible, resulting in the reduction of the portfolio size. Similarly,

increasing the floor constraint will have the same effect as larger weights values were required. Com-

paring the two set of constraint considered, {1%, 2%} attained a larger portfolio size, resulting in

the attainable Pareto front to be situated near the low risk and return region in Figure 5.3(a) due to

excessive diversification. On the other hand, increasing the constraints values to {10%, 11%} allowed

higher riskreturn portfolio to be attained and stretched the attainable EFknown upwards as shown

in Figure 5.3(b).
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Figure 5.4: Average portfolio size obtained for various values of floor and ceiling constraint.

Contrary to the floor and ceiling constraints, cardinality constraint influences the portfolio size

directly. As such, the cardinality-constrained efficient frontier might be discontinuous, as certain

portfolios will not be available for the rational investor [37]. Figure 5.5 shows the effects of adopting

a fixed cardinality constraint and the discontinuity phenomenon is clearly evident here where the

tight cardinality constraint confined the constrained EFknown to the high risk region as efficient risk

diversification is ruled out.
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Figure 5.5: Constrained EFknown attained for PORT2 with cardinality constraints (a) {2, 2} (b) {3,
3}, with the corresponding unconstrained EFTrue denoted by the dotted-line.

However, as the cardinality limits were relaxed, the constrained EFknown became more contin-

uous as illustrated in Figure 5.6 where the constraints were relaxed to {2,3} and {1,4} respectively.

However, the low risk-return regions were not very well defined since large portfolio sizes were not

possible under these constraints. Nevertheless, it should be highlighted that the actual effects on

the constrained frontier ultimately depend on the extent of relaxation in the cardinality constraints.

Similar observations were witnessed in the case for higher values of cardinality constraints, where

the only difference was that the constrained EFknown were now confined to the low-risk region.

To further evaluate the generality of the constraint handling technique, both floor and ceiling

constraint and cardinality constraint was considered together. Previous result have shown that for

a floor and ceiling constraint of {1%, 12%}, the portfolio size ranged from 15 to 35 with a mean

value of 23. Adopting this value of floor and ceiling constraint, different cardinality constraints were

considered and the constrained EFknown were compared to that obtained without the cardinality

constraint. Generally, the proposed constraint handling technique was able to attain an EFknown

that satisfied both the constraints. Different level of cardinality constraints restricted the constrained

EFknown to different risk-return region i.e. the cardinality constraint {15, 20} which was below

the mean portfolio size corresponded to the higher risk-return region while the higher cardinality

constraint corresponded to the lower risk-return region. Figure 5.8(c) shows that if the cardinality
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Figure 5.6: Constrained EFknown attained for PORT3 with cardinality constraints (a) {2, 3} (b) {1,
4}, with the corresponding unconstrained EFTrue denoted by the dotted-line.
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Figure 5.7: Constrained EFknown attained for PORT3 with cardinality constraints (a) {35, 35} (b)
{32, 38}, with the corresponding unconstrained EFTrue denoted by the dotted-line.
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Figure 5.8: Constrained EFknown attained for PORT3 with combined floor and ceiling constraints
and cardinality constraints respectively at {1%, 12%} and (a) {15, 20}, (b) {25, 30} and (c) {50,
55}, with the corresponding unconstrained EFTrue denoted by the dotted-line.

constraint was fixed outside the optimal portfolio size range, it will result in a suboptimal Pareto

front. It should be highlighted that if these constraints are too rigid, there might be a possibility

that there will not be any feasible portfolio. Take for example a maximum cardinality of 3 and a

ceiling constraint of 0.1, the minimum portfolio size based on the latter i.e. 10 could not possibly

satisfy the cardinality constraint under any circumstances.

5.4 Handling Round-Lot Constraint with Transaction Costs

Most portfolio selection models in related literature works assumed the perfect fractionability of

security values, where each asset can be conveniently represented by a real variable. However in

market practices, securities are instead negotiated as an integer multiple of a minimum transaction

lot. Essentially, lot size represents the standardized quantity of a financial instrument as specified

by the associated regulatory body and it denotes the minimum quantity in which the security may

be traded. For example, one lot typically denotes 1,000 units of share in Singapore, though the lot

sizes varies for different asset classes and markets. Without any loss in generality, lot size of 1,000

will be the standard convention for the rest of this chapter.

More often than not, related works in literature often denotes transaction costs as a fixed fee

component [36, 70, 183, 213] and/or a variable fee that is proportional to the traded amount [2,

59, 69, 219]. However, this does not correspond to actual market practices, where transaction costs
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Table 5.1: Transaction fee structure for the four major brokers in Singapore. Information was
extracted from their corresponding websites as of 14/04/2008.

Traded Value POEMS (Non-

Advisory)

DMG & Partners Secu-

rities Pte Ltd

DBS Vickers UOB

Online Offline/

Phone

Online Offline/

Phone

Online Offline/

Phone

Online

Minimum 25 40 25 40 25 40 25

less than 50k 0.280 0.375 0.275 0.500 0.280 0.375 0.275

50k to 100k 0.220 0.300 0.220 0.400 0.220 0.300 0.275

more than 100k 0.180 0.225 0.180 0.250 0.180 0.225 0.275

instead comprised of a multi-tiered cost structure where different cost functions applied within certain

ranges of the traded volume as shown in Table 5.1, which provides a breakdown of the transaction

fee structures for the four major brokers in Singapore. Firstly, a fixed minimum cost is required if

the traded value falls below a critical value. Secondly, the proportional constant will decrease for

higher traded values to encourage higher trading activity for their clients. Lastly, depending on the

trading medium, there will be different tiered cost structure.

The transaction cost structure of POEMS can be mathematically formulated as a set of piecewise

affine functions [143]. Without any loss in generality, this will be the formulation considered in this

chapter also.

TC(vi) =





0 vi ≤ 0

25 0 < vi ≤ 25

0.0028vi 25 < vi ≤ 50000

0.0022vi 50000 < vi ≤ 100000

0.0018vi 100000 < vi

(5.10)

where vi denotes the transacted value of asset i. The impact of transaction cost will be a function of

the investors initial capital, as it will chalk up a huge proportion of the portfolio value if the capital

is excessively small. Consequently, the calculation of the expected returns has to be re-adjusted to

compensate for transaction costs also.
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5.4.1 Problem Formulation

The mean variance model considered earlier in chapter 4 will be extended here to include transac-

tion costs and lot constraints, mathematically formulated in (5.11) to (5.14) below. The variables

notations are listed in Table 5.2.

min f1 =
N∑

i=1

N∑

j=1

wiwjσij (5.11)

min f2 =
∑N

i=1 pikiµi −
∑N

i=1 TC(vi)
C

(5.12)

subjected to

ki mod li = 0 (5.13)

N∑

i=1

pikiµi +
N∑

i=1

TC(vi) ≤ Cmax (5.14)

Table 5.2: Variable notations for the portfolio optimization problem.

Variable Notation Description

N Total number of distinct assets available
Cmax Maximum capital available to the investor for investment
C Capital utilized in the portfolio build-up (excluding transaction costs)
pi Market price of asset i

ki Number of asset i included in the portfolio
li trading lots of asset i

wi Composition of asset i in the portfolio as a proportion of the total available
capital (wi = piki

C )
σij covariance between assets i and j
µi expected return of asset i

TC(vi) Transaction cost function (5.10), where vi = pi × ki

Essentially, the portfolio volatility remained unchanged (5.11), the price volatility of the indi-

vidual assets are independent to transaction costs. On the other hand, the expected return will be

reduced by the transaction costs incurred during the portfolio build-up, resulting in a downward shift
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in the efficient frontier. This will be investigated further later. (5.13) denotes the lot constraint.

Consequently, the inclusion of (5.13) will require a relaxation of the budget constraint (5.14), where

the aggregate portfolio value and the associated build up cost should be lower than the allocated

budget. This formulation assumes that there are no prior holdings in the portfolio.

The expected returns, µi for each asset and covariance matrix were based on 291 weekly price

data from 31 different stocks in the Hang Seng Index (Hong Kong) from the period of March 1992

to September 1997 [11]. µi for each asset was simply the compounded return (annualized) based

on the historical data (5.15). Meanwhile, the covariance matrix was derived by considering the

annualized historical covariance between the different assets (5.16). The factor
√

52 in (5.16) denotes

the annualizing factor (assuming a 52 weeks base).

ri =
T∏

t=1

(1 + ri)
52
T − 1 (5.15)

σ =
√

52 ×

√√√√ 1
T − 1

T∑

t=1

((t) − ti)2 (5.16)

While more sophisticated methods to estimate the expected returns and covariance matrix are

available in literature, they will not be considered here as this work focuses on the portfolio selection

rather than the predicative capability of the model. Figure 5.9 depicts the efficient frontier and the

expected returns and volatilities of the individual assets.

The proposed representation can be easily extended to handle the lot constraint, in a similar

fashion to floor and ceiling constraints. Essentially, for every asset that is added into the portfolio,

they will first be adjusted based on the floor and ceiling constraints. Following that, they will be

rounded down to the largest weight available (5.17). Similar to techniques proposed by Skolpadungket

et al. [2007], the remainder of the budget will be allocated to the assets in existing portfolio provided

that the ceiling constraint is not satisfied and to the assets outside the portfolio if the floor constraint

can be satisfied.

w′′
i = w′

i − mod
ci

C
(5.17)
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Figure 5.9: Volatility and Expected Return of considered stocks and the associated efficient frontier
(line).

5.4.2 Simulation Result & Discussion

This section presents the simulation results to investigate the impact of lot constraints and trans-

action costs on the efficient frontier. The closing prices of the 31 assets in the dataset considered

ranged from 8.25 to 410.04 with an average of 66.20. Based on an initial capital of 10k, a single lot

of the cheapest stock will constitute 8.25% of the total portfolio value and a single lot of the most

expensive stock could not be afforded at all. Technically, the effect of lot constraint is equivalent

to setting floor and ceiling constraints to each and every stock in addition to a granularity level in

which an investor can split his capital [163]. In this case, the conventional assumption of arbitrarily

divisible assets does not apply here. On the contrary, large investors with more capital will enjoy

finer granularity and less stringent floor and ceiling constraints. Clearly, the impact of the lot size

constraint will be more significant for smaller investors as compared to larger investors.

To investigate this in greater details, various capitals i.e. {10k, 50k, 100k, 500k, 1000k, 5000k}

were considered and their corresponding EFknown are plotted in Figure 5.10. Evidently, the capital

size significantly influences the EFknown achievable, especially for C ≤ 10k. Essentially, expensive

securities will be ruled out with limited capital and replaced with cheaper alternatives, hence de-
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grading the optimality of portfolio that required these securities. Also, the impact of lot constraints

is more pronounced for portfolios at the lower risk level, which is of higher cardinal generally. This

can be clearly seen in the case for C=10k, where the resultant EFknown is very similar to the uncon-

strained efficient frontier at high risk level, but is shifted downwards at the low risk level. Evidently,

there seems to be a certain capital threshold where below which, there will be considerable impact

on the efficient frontier.
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Figure 5.10: EFknown attained at the end of 30 algorithmic runs for lot size of 1000 at various level
of C, with the corresponding unconstrained EFTrue denoted by the dotted-line.

A smaller lot size of 100 was considered under similar simulation settings and the resultant

EFknown were plotted in Figure 5.11. Interestingly, EFknown for C=10k with lot size of 100 is

identical to that when C=100k with lot size of 1000. This is expected as the two distinct problem

settings essentially represents the same optimization problem i.e. reducing the lot size by a factor of

10 is equivalent to increasing the available capital by a factor of 10. Consequently, the reduced lot

size relaxed the capital threshold where the efficient frontier will be considerably impacted. Also,

the constrained EFknown remained highly similar to the unconstrained efficient frontier beyond that

threshold.

To investigate the characteristics of the portfolios along the EFknown attained, Figure 5.12 plots
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Figure 5.11: The efficient frontier attained at the end of 30 algorithmic runs for lot size of 100 at
various level of capital, with the corresponding unconstrained EFTrue denoted by the dotted-line.

the average portfolio size and returns at risk intervals of 0.05 from 0.15 to 0.5. The capital is fixed

at 100k here and a set of lot size was considered i.e. {1, 10, 100, 1000}. Generally, the cardinal

size decreases as risk level increases, which is a key characteristic of risky portfolio discussed earlier.

Also, larger lot sizes reduced the cardinal of the optimum portfolio at each risk interval, as investors

are forced to assume larger positions, resulting in smaller portfolio size. This impact is especially

significant for low risk level. Lastly, the similarity of EFknown for lot size 1 and 10 implies that the

impact of the lot constraints is ultimately dependent on the lot size and the budget available.

Intuitively, the inclusion of transaction cost will deteriorate the efficient frontier further. As

briefly discussed earlier, transaction cost will reduce the expected return of the portfolio, causing a

downward shift in the efficient frontier. The impact is likely to be a function of C, similar to the lot

constraint earlier. Intuitively, larger C will translate to a proportional cost structure as each security

will be substantially invested. As such, the magnitude of the downward shift in the efficient frontier

will be approximately equal to the lowest transaction rates i.e. 0.18% in this context. However,

for smaller C, the efficient frontier will be shifted further downwards and due to transaction cost

being structured as a set of piecewise affine functions, the shift will most likely to be non-linear.
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Figure 5.12: Average Cardinal Size (left) and Returns (right) at various levels of risk level (interval
of 0.05) for different lot size at C=100k.

Transaction cost can constitute a significant proportion of the portfolio if the budget is extremely

low.

Figure 5.13 plots the EFknown attained for different capital inclusive of transaction costs only.

The set of capitals were considerably of small value so as to illustrate the effect of transaction cost.

Clearly, lowering budget will result in a non-linear downward shift in EFknown as hypothesized and

the impact is linear for high capital as shown in Figure 5.13, a close-up view on a particular portion

in Figure 5.14.

Lot constraint and transaction cost are considered simultaneously and the resultant EFknown

under different capital are plotted in Figure 5.15. The earlier results suggested that the detrimental

effects of lot constraint stepped in earlier than transaction cost at higher C. Particularly at C = 10K,

the inclusion of lot constraint result in significant changes in EFknown (Figure 5.10) as opposed to

the transaction cost (Figure 5.13). As such, the EFknown in Figure 5.14 are seemingly similar to

that in Figure 5.10. The insignificance of transaction cost is partly attributed to the single period

instantiation of the portfolio optimization problem where only portfolio build-up cost is considered.

Its significance will be more pronounced where they are cumulated in multi-period portfolio opti-

mization, as the portfolio adjust its holding frequently in the investment horizon to adapt to the

market conditions. This will be further investigated in the next chapter.
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Figure 5.13: The efficient frontier attained at the end of 30 algorithmic runs for no lot with trans cost
at various level of capital, with the corresponding unconstrained EFTrue denoted by the dotted-line.
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Figure 5.14: Close-up view of Figure 5.13.
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Figure 5.15: The efficient frontier attained at the end of 30 algorithmic runs for no lot with trans cost
at various level of capital, with the corresponding unconstrained EFTrue denoted by the dotted-line.

5.5 Summary

This chapter considered two set of constraints that are typically found in real-world investment

portfolio management, namely cardinality constraint with buy-in thresholds and round-lot constraint

with transaction cost. A discussion on the incorporation of these constraints into the portfolio

optimization model and the corresponding constraint handling techniques was provided. Clearly,

EFknown attained were affected by the inclusion of these constraints, depending on its stringency.

Nevertheless, the empirical studies illustrated the viability of the proposed evolutionary approach in

attaining feasible EFknown under the various constraints. Further studies based on proper statistical

tests are necessary for the proper evaluation of the constraint handling capability of the algorithm

in term of its effectiveness and efficiency. This will be reserved for future work, as currently, there

are no other proposed MOEA that can operate under these constraints.



Chapter 6

Investigating Technical Trading

Strategies via EMOO

6.1 Introduction

The development of technical trading strategies (TTS) has always been an important financial sub-

ject, garnering vast amount of interest from researchers for many years. Essentially, TTS are trading

rules based on technical analysis - forecasting of future market movements based on the past history

of market actions. However, this methodology directly contradicts the Efficient Market Hypothesis

[78], which states that future market prices are completely random and thus unpredictable since all

the information available is already being reflected in the current market prices. In more technical

terms, the stochastic movement of markets prices is purely Markovian [136]. As such, economists

have always been highly skeptical over TTS in general [179].

Nevertheless, TTS are still widely used by professional traders [88]. For example, more then

90% of the traders in London adopt technical analysis for financial forecasting [236] and a survey

based in Hong Kong further underlined the popularity of technical analysis, especially in short time

horizons [156]. Furthermore, recent empirical studies have shown that the market is less efficient

than was originally believed. Li and Tsang [148] classified these supporting evidences into two main

categories, namely systematic dependencies in security returns [33, 114, 153] and excess returns

118
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earned by the technical rules [27, 115, 146, 157, 247]. These empirical studies are realizable due to

the rapid development of communication and trading facilities over the past two decades, allowing

financial markets to be scrutinized in greater depth than is previously impossible. The availability

of high-quality and high-frequency data enabled TTS to be evaluated more accurately as compared

to traditional methods of performance evaluation [150]. Overall, these various factors have further

motivated academic interest in the development of TTS lately.

Early related works mainly revolved around the evaluation of ad-hoc specified TTS that are

already widely used by traders [3, 27, 79, 78]. However, these empirical studies were most likely to

be spurious as such practices represent a form of data snooping due to the inherent bias in ex-post

evaluation [195]. The more appropriate alternative is to develop TTS on an ex-ante premise, for

instance, evolutionary computation, a type of stochastic search technique that is widely adopted due

to its capability in dealing with highly complicated search space.

One of the earliest works in evolutionary TTS (ETTS) was done by Allen and Karjalainen (1995,

1999), where genetic programming was applied to generate technical trading rules in the stock market.

Subsequently, many approaches based on evolutionary computation have been proposed and applied

successfully to various financial data. In most existing works, the returns generated are usually

used as the sole fitness measure, without accounting for the associated risk involved. However,

such an approach is inadequate as TTS generally spend less time in the market and its returns are

less volatile as compared to the buy-and-hold strategy [5]. Furthermore, it fails to account for the

different degrees of risk averseness in every individual, corresponding to different preferences between

risk and returns. Neely [178] explicitly asserted the importance of risk adjustment for the evaluation

of TTS and the measure of their consistency with market efficiency [195, 217, 116, 130, 28, 67].

Ideally, TTS should have high profitability with the minimal risk possible. Unfortunately, these

two criteria are inherently conflicting by virtue of the risk-returns tradeoff, where higher returns can

be rendered only when subjected to a higher possibility of being lost. Hence, given the underlying

nature of this optimization problem, it will certainly be instructive to cast it directly into the multi-

objective domain, where the risk and returns of TTS are optimized concurrently. As such, this

outlines the primary motivation for this chapter, where a multi-objective evolutionary platform will

be constructed to investigate TTS from such a context. The evolutionary platform will maximize

the total returns as per existing single-objective-based approaches, and concurrently minimizes risk,
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which is measured here by the proportion of trading period in the open position. Furthermore, the

building blocks of the TTS will primarily comprise of popular technical indicators used commonly

in real-world practices, which allows the examination of their trading characteristics and behaviors

on the multi-objective evolutionary platform.

The remainder of this chapter is organized as such. A brief discussion on technical trading

strategy will be provided, followed by a formal introduction to the multi-objective evolutionary

platform. Section 6.4 presents the extensive simulation result and analysis, focusing on the insights

achievable under a multi-objective formulation of this problem and the investigation on the trading

characteristics of the popular technical indicators used in real-world practices.

6.2 Technical Trading Strategies

Traders can be broadly classified into two main categories, namely fundamentalists and technicians.

Although both ultimately aim to forecast market price movements, their approaches and underlying

principles differ greatly. Fundamentalists will analyze the market forces of demand and supply to

determine its intrinsic value and enter (exit) the market if it is below (above) its intrinsic value,

which is a sign of undervaluation (overvaluation). In stark contrast, technicians completely ignore

the market fundamentals and decide solely based on market action i.e. the past history of market

prices and trading action. Nevertheless, Murphy [177] highlighted that market prices tend to lead

the known fundamentals, as price movements are usually triggered by unforeseen events. As such,

usually by the time the price movements is explicated, the technician are already reaping the rewards

for their early entry and analyzing for exit signal. Thus, technical analysis has been the more popular

choice among traders, especially in short term trades [88, 156, 236].

Technical analysis itself can be broadly classified into two main categories: subjective and ob-

jective [246]. Subjective technical analysis or chart analysis focuses on the identification of specific

visual patterns in the price history that corresponds to favorable market movements. However, as the

visual interpretation of patterns varies between individuals, it is difficult to formalize its associated

set of trading rules. On the other hand, objective technical analysis comprises of well defined rules or

indicators that generate trading signal on whether to buy, sell, hold or wait. As such, their accuracy
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can be indisputably quantified. The ETTS considered in this chapter will be solely comprised of

indicators based on objective technical analysis.

Broadly, these technical indicators (TI) can be defined as such,

TI : {Pt, ...Pt−n+1} → [−1, 1] (6.1)

where TI : {Pt, ...Pt−n+1} = −1 and TI : {Pt, ...Pt−n+1} = 1 corresponds to a sell and buy trading

signal respectively based on the market action, P from the current time, t to a backward period of

length, n. In general, P can refer to the closing prices, highest or lowest daily prices, volume traded

or etc. depending on the type of TI used. While the intervals between consecutive P , could range

from daily to longer durations like weekly, monthly or even yearly [13, 111] daily trading period will

be considered in this chapter.

In general, a trading agent can enter the market in a long position, where the agent purchases

and owns the financial asset and will profit if the price of the asset goes up, or in a short position,

which refers to the practice of selling asset not owned by the seller, in the hope of repurchasing them

later at a lower price. This is done so as to profit from an expected decline in price of the financial

asset. The timing and type of market entry will ultimately depends on the overall trading decision of

a TTS, which is in turn based on the individual signals generated from its constituent TI [54, 177].

In this chapter, for a TTS compromising of a set of m TI, the various trading signals from the TI

will be combined via a weighted sum and the resultant trading decisions, D, are defined as follows,

D : {TI1, ..., T Im} →





Strong Buy if TIBuy high < D ≤ 1

Weak Buy if TIBuy low < D ≤ TIBuy high

Hold if TISell low < D ≤ TIBuy low

Weak Sell if TISell high < D ≤ TISell low

Strong Sell if −1 ≤ D ≤ TISell high

(6.2)

where −1 < TISell high < TISell low < 0 < TIBuy low < TIBuy high < 1 represents the four thresh-

olds that governs the traders decision with respect to the current weighted trading signal from the

various TI. Specifically, the agent will enter the market in a long (short) position when the decision
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is strong buy (strong sell) and exit when the signal weakened to weak buy (weak sell) or worse. Also,

under this definition, it is possible for an agent to switch position instantaneously, for example, an

agent in a long position, originally due to a strong buy, will switch directly to a short position if D

suddenly drops below lower than TISell high.

The following is a brief description of some of the TI widely used by real-world traders that

will be used subsequently as the building blocks for the TTS. Moving average (MA) is simply the

weighted average of a certain period of data and for example a simple 10-day MA of the closing prices

is calculated by adding up the closing prices for past 10 days and dividing the total by 10. Other

types of MA include weighted MA and exponential MA, which adopts different weight coefficients.

This relationship can be generalized as follow:

MA(t, n) =
∑t

i=t−n+1 wipi

n
(6.3)

where pi and wi refer to the closing price and its corresponding weight at time i, while t and n

denotes the current time and the length of the period considered respectively

MA is typically used to detect the underlying trend direction and provide the relevant trading

signal. The most common approach is the double-crossover method as formulated in (6.4), where

two MA of different periods, n1 and n2, are considered, where n1 < n2. Basically, if the short-term

(n1) MA is larger then the long-term (n2) MA, it corresponds to an upward trend in the price, hence

generating a buy signal and vice versa. Multiple MA crossover signals are sometimes considered also

to act as alert and conformation signal (Murphy, 1999).

TIMA(n1, n2, t) =





1 MA(t, n1) − MA(t, n2) > 0

−1 MA(t, n1) − MA(t, n2) ≤ 0
(6.4)

Popular period combinations for the double crossover method are 5-20 and 10-50, though, other

period has been considered also. A shorter MA, which is generally more sensitive, will trade more

actively. Although earlier trading signals will thus be generated, resulting in more profitable trades,

this will come at the expense of higher transaction cost and increase the likelihood of false signal. As

such, the optimal parameter setting should allow the TI to possess a certain degree of sensitiveness

so as to react immediately to market movements and is yet insusceptible to false signals.
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Relative Strength Index (RSI), a popular price momentum oscillator, measures the strength of

market movement by comparing the magnitude of its recent gains to the magnitude of its recent

losses and it can be mathematically expressed as such,

RSI(t, n) = 100 − 100
1 + RS

, RS =
AG

AL
(6.5)

=
100 × AG

AG + AL

where RS is calculated as the ratio of two exponentially smoothed moving averages, AG
AL . AG and AL

are respectively the average price gain and price drop from the current time, t to a backward period

of length, n. Similarly to MA, a shorter time period will result in oscillations of higher frequency

and amplitude, increasing its sensitivity to market movements.

RSI will typically oscillate within the range between 0 and 100, reflecting the market condition

and the popular interpretation of RSI is to look for oversold levels below a specified low threshold

(Low) and overbought levels above a specified high threshold (High), which can be formalized into

the technical rule in (6.6). Trading signal will be generated when the RSI exceeds either threshold,

otherwise it will correspond to a holding signal of 0.

TIRSI(n, t, High, Low) =





1 RSI(t, n) < Low

0 Low < RSI(t, n) < High

−1 RSI(t, n) > High

(6.6)

Stochastic oscillator (SO) is a momentum or price velocity indicator that measures the position

of a stock compared with its most recent trading range. Specifically, it measures the relationship

between the closing price, CL of a stock and its highest high, HH and lowest low, LL from the

current time, t to a backward period of length, n. The underlying rationale is that closing prices

near the top of the range implies accumulation (buying pressure) and those near the bottom of the

range indicate distribution (selling pressure). As such, reading below the specified low threshold

or above the specified high threshold corresponds to an oversold and overbought market; hence the

appropriate decision signal will be generated. This raw stochastic value is denoted as %K, which is
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then smoothed with a simple moving average to produce %D. There are several ways to interpret

SO and one of the popular methods is described as follows. Basically, %D will be the 3 day moving

average of %K and ,similar to RSI, trading signal will be generated when both %D and %K exceeds

either threshold, otherwise it will correspond to a holding signal of 0.

%K(t, n) = 100× CL(t) − LL(t, n)
HH(t, n) − LL(t, n)

(6.7)

%D = 3 Period Moving Average of %K

TISO(n, t, High, Low) =





1 %K, %D < Low

−1 %K, %D > High

0, otherwise

(6.8)

While the various TI, discussed so far, have been used extensively in the financial market as a

decision tool for investors or by economists to explain market phenomena, their underlying charac-

teristics have not been fully explored before in the context of evolutionary platform. As such, the

multi-objective evolutionary platform that will be introduced in the next section will evolve TTS

based on these TI as the building blocks and investigate their trading characteristics, particularly

their frequency in generating trading signals and their level of participation in the market.

6.3 Multi-Objective Evolutionary Platform for ETTS

Evolutionary computation is a class of stochastic search technique that has been gaining significant

attention from the research community in the recent years for its success in solving real-world prob-

lems that are inherently complex with various competing specifications. The EA paradigm is largely

inspired by the biological process of evolution, where potential solutions are encoded as chromosomes

to epitomize the mechanics of DNA blueprint of living organisms, so as to allow the inheritance of

desirable properties to offspring solutions and the propagation of information through genetic varia-

tion. The primary advantage of ETTS is that a resolute definition of the general form for the trading
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rules is not required and the search can be conducted efficiently in a nondifferentiable space of rules

[179] on an ex-ante approach. This section presents the multi-objective evolutionary platform that

will be used for the optimization of ETTS. The various features of the evolutionary platform will be

introduced in turn before describing its overall algorithmic flow.

6.3.1 Variable-length Representation for Trading Agents

Depending on the representation and the evolutionary operators, evolutionary computation can be

further classified into genetic algorithm, genetic programming, evolutionary strategies and evolu-

tionary programming, with the former two being the more popular approach for the optimization

of ETTS. The main difference between genetic algorithm and genetic programming lies in their

representation. The former adopts pseudo-chromosomal (binary) strings to encode the informa-

tion describing the underlying ETTS. The encoded information can be a masking string to in-

clude/exclude the use of certain TI [136, 245] or a direct parameter encoding of its constituent TI

[119, 150, 151, 180, 210, 211]. On the other hand, genetic programming uses hierarchical variable-

length strings symbolizing decision trees. The non-terminal nodes could be arithmetic, Boolean or

conditional function and the terminal nodes could be variables or constant that serves as arguments

of the functions [5, 39, 88, 148, 179].

The former representation is simple and straightforward and because of the fixed structure, the

underlying trading rules are easily interpretable. However, since the chromosomes are constrained

to certain pre-defined structures, the novelty of the TTS evolvable will be limited. While this is

not an issue in the tree-based representation in genetic programming, the complexity of its search

space might be too high for efficient optimization and the evolved solutions are often plagued with

redundancy [5, 91]. Considering their fair share of advantages and limitations, the chromosomal

representation adopted actually represents a hybrid between these two representations.

In real-world practices, technical investors usually based their trading decision on a set of TI

with varying degree of importance. Their parameters will consistently be tweaked and tuned based

on the traders experience and their past performance of the corresponding TI. To emulate such

characteristics in the evolutionary platform postulated, trading agent are modeled as a set of decision

thresholds and TI of different weights and parameters (defined in (6.2)) that will govern its trading
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activity, as illustrated in Figure 6.1. Adopting such a variable-length chromosomal representation

[38, 234, 235], TI could be added and removed from the trading agent during the evolutionary process

to adapt to the market conditions. Apart from possessing such flexibility, the underlying trading

rules associated with each trading agent are comprehensible.
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Figure 6.1: Variable-length chromosomal representation for the trading agents, which essentially
comprised of a weighted combination of a set of commonly-used TI in real practices.

The description for the various genes in the variable-length chromosome is summarized in Table

6.1. The trading agents will build their strategies based on these three different TI and due to the

variable-length chromosomal structure, TI of the same type can exist together in a single chromosome.

Essentially, the optimization process involved finding an optimal combination of TI with appropriate

parameters and weights.

6.3.2 Objective Functions

In related literature, the fitness/optimality of ETTS is either measured by the accuracy of the

predictions made [148, 158, 233] or solely based on its profitability. As the former is more applicable

for classification problem, the latter represents the more intuitive choice for performance evaluation.

Even so, the latter could be measured in different ways, for example, the total asset, namely the
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Table 6.1: Gene Description of the various parameters (general and TI-specific) being optimized.

Technical Indicator Parameters Range

MA Short term period [1,50]
Long term period [1,50]

RSI Period [1,40]
RSI selling threshold [1,50]
RSI buying threshold [50,100]

SO Period [1,40]
SO selling threshold [1,50]
SO buying threshold [50,100]

- Weights [0-1]
- Decision sell threshold [-1,0]
- Decision buy threshold [0,1]

available capital and the value of all holdings, at the end of the trading period [245, 127] or the

area under the total asset graph during the trading period [211]. In other cases, the generated

profits are directly pegged to those generated by the buy-and-hold strategy [5, 88]. However, all

these measures failed to acknowledge the risk involved with the trading activity [178]. As such,

performance measures like Sharpe ratio or Sterling ratio was proposed instead, which can measure

the net profitability after discounting the associated risk [137, 178].

Clearly, the optimization of ETTS involves a delicate balance between its expected returns and

associated risk. As such, contrary to conventional single-objective approaches, where the risk is

completely ignored or the two conflicting objectives of risk and returns are combined into one single

measure known as the risk-adjusted profit, this chapter will model the problem directly as a multi-

objective optimization problem by simultaneously optimizing the returns and risk of the ETTS.

Considering a period of length T , corresponding to a total number of n trades, the total returns

for the period is defined as such,
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Maximize F1 : Total Returns =
n∑

i=1

k × pi,exit

pi,entry
(6.9)

k =





1, short entry

−1, long entry

where pi,entry and pi,exit denotes the price at which the trading agent enter and exits the market

respectively for the ith trade and the multiplier, k is to adjust the returns to compensate for the

different type of entries i.e. a depreciation in asset prices actually corresponds to a profit for a short

entry. In essence, this objective function simply measures the arithmetic total of the percentage

price changes for all the trades made in the trading period. The arithmetic total is considered here

instead of the mean, as a profitable trading rule may forecast rather poorly much of the time, but

perform well overall because it is able to position the trader on the right side of the market during

large moves [179]. Also, the use of percentage changes removes the dependence on entry prices as

compared to absolute value difference. Lastly, this measure accounts entirely for the profitability

and avoids the need to define the order size for each trade.

Risk is defined as the volatility or the uncertainty of the expected returns over the trading period.

For instance, a TTS that yield returns ranging between 4% to 6% is less volatile then one, whose

returns ranges between -40% and 50%, even though their average returns is the same. Standard

risk measures like variance or semi-variance are not suitable here. The former fails to consider that

investors are more averse to negative deviations about the mean returns as compared to positive

returns [15]; while the latter is somehow correlated to the returns i.e. minimizing the semi-variance

will indirectly maximize the total returns. In fact, preliminary investigation that considers them

as the risk measure failed to obtain a Pareto front that could accurately depicts the risk-returns

tradeoff.

Instead, risk will be defined here by the traders exposure to it. Specifically, it will be measured

by the proportion of trading days when an open position is maintained in the market [246] and is

mathematically formulated as such,
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Minimize F2 : Risk Exposure =
1
T

n∑

i=1

ti,exit − ti,entry (6.10)

where ti,entry and ti,exit denotes the time at which the trading agent enter and exits the market

respectively for the ith trade and T refers to the total length of the trading period. Essentially,

staying longer in the market corresponds to a higher exposure to risk like catastrophic events and

market crashes while a shorter period, which is associated with lower risk exposure, will corresponds

to higher liquidity as the available capital is tied up for a lesser time. Such an optimization function

will be in conflicting nature with returns, as higher total returns are usually associated with higher

degree of trading activity, which naturally leads to a longer periods of open position. Even though

risk exposure is being considered here, this measure will, at times, be conveniently referred to as risk

here.

6.3.3 Fitness Evaluation

The fitness evaluation process is concerned with calculating the total returns and risk exposure

associated with each trading agents in the evolving population. During the stipulated trading period,

each TI of the trading agent will generate trading signals on a daily basis based on the current and

historical market actions. The overall trading decision to buy, sell or hold is obtained by considering

the weighted sum of the various individual signals and the decision threshold of the trading agents.

The corresponding fitness values of the trading agent can be subsequently calculated once the trading

schedule is determined.

For a clearer illustration, lets consider an instance of the variable-length chromosome (Figure

6.2) being applied to a hypothetical price series (Figure 6.3) comprising of 250 trading days. The

TTS involved comprises of the three different TI and their respective trading signal within the entire

trading period is illustrated in Figure 6.4. For MA in Figure 6.4(a), a buy signal of 1 will be

generated if the difference is positive and conversely, a sell signal of -1 will be generated, when the

MA difference i.e. MA(t, n1) − MA(t, n2) falls below zero. For RSI and SO, buy signal and sell

signal will be generated when they exceed the buying threshold or fall below the selling threshold

respectively. Otherwise, it will correspond to a hold signal of 0.
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Figure 6.2: An instance of the variable-length chromosome comprising of the three different TI i.e.
MA, RSI and SO.

Clearly from the plots in Figure 6.4, trading signals from the various TI are different in terms of

the trade frequency and duration. MA tends to generate longer buy and sell signal due to the nature

of its definition, while SO generated shorter buy and sell signal but at a higher frequency. Also, due

to the high RSI buying threshold, no buy signals were generated from RSI. A more in-depth analysis

on the characteristic of the various TI will be conducted in section IV.

The overall decision signal, which is the weighted sum of its constituent trading signals, is

illustrated in Figure 6.5. The trading agent will enter the market in a long position, whenever the

decision signal goes above TBuy high of 0.5, denoting a strong buying signal. Correspondingly, it

will exit anytime the decision signal falls below TBuy low of 0.25, as the buying signal has weakened.

Short sell, which is considered also in this model, will be executed vice versa, based on TSell high and

TSell low .

It should be highlighted that, for simplicity in the trading model, it is assumed that the trading

environment is a discrete and deterministic liquid market, where the price is unaffected by the agents

actions. The trading schedule of the agent is tabulated as follow. Altogether, the agent performed

seven trades within this period. While there are no limits on the number of trades conducted, each

complete trade will be subjected to a fixed transaction cost of 0.5% to simulate brokerage charge,
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Figure 6.3: Hypothetical price series comprising of 250 trading days. Trading activity determined
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Figure 6.4: Traces of the trading signals generated by the various TI over the trading period. The
respective thresholds of RSI and SO are denoted by the horizontal dotted lines.
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Figure 6.5: Trace of the overall trading signal (Upward triangle, downward triangle and asterisk
denote long entry, short entry and exit respectively). The respective thresholds are denoted by the
horizontal dotted lines.

interest rate, liquidation costs or other form of costs.

Table 6.2: Trading Schedule of the agent in Figure 6.2 and the calculation of its total returns and
risk exposure with the trading period.

Trade Trade Entry Exit Trading Entry Exit Returns Net
No. type Time Time Period Index Index (%) Returns (%)

1 long 0 34 34 10287 10916 6.11 5.61
2 short 34 73 39 10916 10689 2.08 1.58
3 long 75 80 5 10710 10954 2.28 1.78
4 short 80 105 25 10954 10972 -0.16 -0.66
5 short 108 131 23 11151 11074 0.69 0.19
6 short 132 153 21 11269 11206 0.56 0.06
7 long 193 206 13 10739 11200 4.29 3.79

Total Proportion 160
250

Total Returns 15.85 12.35

The calculation of returns and risk associated with the trading agent shown in Figure 6.2 is

tabulated in Table 6.2. As mentioned earlier, the arithmetic total of each percentage gains net of
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transaction cost and the proportion of days in open position are used to quantify the total returns and

risk exposure respectively. In this particular example, the corresponding fitness values are calculated

to be 12.35% and 0.64 respectively.

6.3.4 Pareto Fitness Ranking

Evolutionary optimization of TTS is cast as a multi-objective problem in this chapter, which involves

the maximization of the total returns and minimization of risk exposure. In contrast to single-

objective optimization, the optimal solutions to a multi-objective optimization problem exist in the

form of alternate tradeoffs known as the Pareto-optimal set. Each objective component of any non-

dominated solution in the Pareto-optimal set can only be improved by degrading at least one of its

other objective components. The Pareto-optimal set when plotted will constitute the risk-return

tradeoff or Efficient Frontier as illustrated in Figure 6.6.

Each point denotes a TTS evolved by the MOEA and the black and gray circles represents

non-dominated and dominated solutions respectively. The former set is the Pareto optimal solution

as their returns cannot be improved further without compromising risk. In the context of single

optimization of ETTS where returns is the sole priority, the evolutionary process will ultimately

drive the solutions towards the extreme point B. This is not applicable for conservative investors,

who prefer lower risk as compared to higher returns. Point A represents the extreme case of a

conservative investor with zero returns due to an empty trading schedule.

In the total absence of information regarding the preference of objectives, the Pareto ranking

scheme is considered to represent the fitness of each trading agent in such a context. Specifically, this

scheme assigns a default minimal ranking for all the non-dominated solutions, while the dominated

solutions will be ranked according to how many other solutions in the population dominate them.

The rank of a solution, i, in the population is

Rank(i) = 1 + ni (6.11)

where ni is the number of ETTS dominating the ith ETTS in the population pool.
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Figure 6.6: Illustration of the risk-returns tradeoff.

6.3.5 Variation Operation

As standard chromosomal representation with well-established variation operators were not consid-

ered here, specific operators need to be designed for this purpose. In evolutionary algorithm, good

combinations of genes are exchanged between different chromosomes of the population via crossover

operators. The crossover operator adopted for the variable-length chromosome is illustrated in Figure

6.7. Essentially, the crossover operation involves combining the TI for the two parent chromosomes

and randomly distributes them amongst the two child chromosomes. The threshold values will be

inherited directly during the process.

The crossover operation will be complemented by a multi-mode mutation operator [234, 235]

in allowing a larger search space to be explored. The primary motivation for such a operator is

that the variable-length chromosome adopted has varying hierarchy, in terms of the different type

of indicators and their corresponding weights and parameters. As such, the multi-mode mutation

operator is to cater for such data structure and allow the variable-length chromosome to be altered

at varying levels. Each mode represents varying degree of perpetuation in the search space and thus

signifies different exploration and exploitation efforts. The various modes are as such:

1. Indictor level: At random, an existing TI is being removed from the trading agent or a random
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Figure 6.7: Illustration of the trade-exchange crossover.

indicator is being initialized and added to it.

2. Parameter level: A TI is being chosen at random and its parameters are subjected to Gaussian

mutation

3. Threshold level: The various TI remain unchanged, while the four threshold values are sub-

jected to Gaussian mutation

These three different modes will be invoked randomly during the mutation operation.
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6.3.6 Algorithmic Flow

The algorithmic flow of the multi-objective evolutionary platform is shown in Figure 6.8. At the

start of the algorithm, the decision signals of the TI under all possible parameter configurations are

pre-calculated. This allows direct access of this information during algorithmic runtime, which will

speed up the computation time required.

• Initialization: The algorithm maintains a fixed size population throughout the evolutionary

process. During the initialization process, trading agents will be randomized until the pop-

ulation is filled. Specifically, it will involve randomly generating a number of TI within a

predefined range of random weights and parameters

• Elitism: Although multi-objective evolutionary algorithms have been implemented in many

different ways, most current state-of-the-art works in general encompasses some form of elitism

in both the archiving and selection process. A fixed size archive is used to store the non-

dominated solutions discovered during the evolutionary process. The archive is updated every

generation, where agents that are not dominated by any members in the archive will be added

into the archive and any members in the archive that are dominated by this new agent will

be removed. The archive helps to ensure convergence by preventing the loss of good solutions

due to the stochastic nature of the evolutionary process. In the selection process, elitism is

implemented by selecting individuals to a mating pool through a binary tournament selection

of the combined archive and evolving population. The selection criterion is based on Pareto

ranking and in the event of a tie, the niche count will be employed. The mechanism of niche

sharing is used in the tournament selection as well as diversity maintenance in the archive.

• Reinsertion: Randomly generated trading agents are added to the evolving population every

generation to complement the variation operation. This allows greater exploration of the

search space and prevents premature convergence by introducing genetic materials that are not

formally present in the initial gene pool. This approach is similar to immigration [24, 211], but

the latter directly replaced the mediocre proportion of the populations by these new solutions.

Such an approach is avoided as the ordering of solutions in multi-objective optimization is not

so straightforward.
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After one complete generation, the evolutionary process will repeat until a predefined number of

generations are reached.
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Figure 6.8: Algorithmic flow of the multi-objective evolutionary platform.

6.4 Simulation Result & Discussion

The viability of the multi-objective evolutionary platform and the TTS evolved will be studied in

this section. The effectiveness of hybridizing multiple TI to form TTS will be investigated first,

followed by an assessment of the generalization performance of the ETTS evolved. The performance

of the ETTS will be compared against the buy-and-hold strategy, which is essentially a long term

investment strategy in which stocks are bought and then held for a long period regardless of the
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market’s fluctuations. The argument for this strategy is actually the Efficient Market Hypothesis

[78], whereby if every security is fairly valued at all times, then there is really no incentives to trade.

This underlying principle behind the buy-and-hold strategy is a stark contrast as compared to that

of technical analysis.

The financial data considered here are the daily trading data of the Straits Times Index (STI), a

market value-weighted stock market index that is based on the stocks of 50 representative companies

listed on the Singapore Exchange. A total of 3368 trading days were considered, which span from

the period 11-08-1992 to 30-12-2005. However, the actual number of trading data used will differ in

the various simulations.

The parametric configurations of the multi-objective evolutionary platform outlined in section III

are summarized in Table 6.3. These parameters have been selected based on a series of preliminary

investigation and parameter tuning. A reinsertion ratio of 0.1 denotes that 10% of the children chro-

mosome at every generation will comprise of randomly generated trading agents, with the remaining

coming from the variation operation. 20 independent runs were made for each simulation with each

set of runs having the same random seed to ensure the same initial population.

Table 6.3: Parameter settings of the multi-objective evolutionary platform used in the simulations.

Parameters Values

Population Size 100
Generation 1000

Crossover Rate 0.8
Mutation Rate 0.1

Reinsertion Ratio 0.1
Maximum Number of Technical Indicators in a Trading Agent 10

Number of Simulation Runs 20

6.4.1 Performance Comparison between Individual TI and Hybrid TI

Many different types of TI had been considered in previous related works on ETTS and the exact

quantity constituting the trading agent can easily vary from one [119] to even hundreds [136]. Despite
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so, the effects of hybridizing several TI as opposed to applying them individually in constructing TTS

have never been studied in-depth before. Thus, this section will investigate whether the hybridization

of TI are synergetic and destructive in nature. For this purpose, different combinations of the three

TI were considered as listed in Table 6.4 and the same evolutionary platform was adopted with the

only difference being the type of TI available as the building blocks for the trading agents during

the evolutionary process. For example, ETTS evolved by D1 will only comprise of MA and RSI, but

not SO.

Table 6.4: Different combinations of TI used to assess the hybridization of TI in the trading agents.

Combination Description Notation

MA only MA
RSI only RSI
SO only SO

MA and RSI D1
MA and SO D2
RSI and SO D3

MA, RSI and SO ALL

The trading agents are optimized based on a 4 year financial data from the period 02-01-2002

to 30-12-2005 as plotted in Figure 6.9. 100 days of historical data prior to the first trading days

are included also, as some TI need a certain amount of historical data in their calculations. Figure

6.10 plots the Pareto fronts evolved by some of the TI combinations in one of the runs. While the

various solutions sets are of varying optimality in terms of Pareto dominance, they clearly illustrate

the inherent tradeoff between total returns and risk exposure. Also, the trading agents evolved are

able to generate high returns in open positions less than 100% of the trading period, i.e. total returns

above 80% with risk exposure around 0.6 by ALL. Comparatively, the total return of the buy-and-

hold strategy is only 44% during this period. Clearly in this context, the buy-and-hold strategy is

suboptimal.

Considering discrete intervals of 0.1 for risk exposure, Figure 6.11 plots the distribution of the

average returns and number of trading agents along the Pareto front obtained by ALL in 20 runs.

The risk-returns tradeoff is again evident in Figure 6.11(a), where the average returns increases for
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Figure 6.9: Daily closing prices of STI used for the optimization of the ETTS.
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higher level of risk exposure. The sudden drop in average returns after risk exposure of 0.8 can be

attributed to the lack of solutions in that region, as illustrated in Figure 6.11(b). In fact, the evolved

Pareto front is not uniform as there is a higher density of solutions at the lower risk-returns region.

The non-uniformity could be due to the general difficulty in finding TTS that can fully exploit all

the price movements and generate exceptionally high returns in the presence of transaction cost.
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Figure 6.11: (a) Average returns and (b) number of trading agents in discrete intervals of Risk
Exposure of 0.1 that were generated by ALL in 20 runs. The vertical line in (a) indicates the
standard deviation of the returns at each discrete level of risk exposure.

Of course, a visual comparison of the Pareto front is not adequate for a complete performance

assessment between the various combinations. Binary quality measures, which compare the domi-

nance relationship between pairs of solutions sets, should be adopted [263]. For this purpose, the

coverage function (C) [262] is included, which gives for a pair of solutions sets (A, B) the fraction

of solutions in B that are weakly dominated by one or more solutions in A. The value C(A, B) = 1

means that all the points in B are dominated by, or equal to the points in A. The opposite, C(A,

B) = 0 represents the scenario, when none of the points in B are covered by the set A. It should

be highlighted that both C(A, B) and C(B, A) have to be considered for a complete performance

assessment.

The coverage metrics represent quantitative measures that describe the quality of the evolved

solution and they are illustrated in box plots in Figure 6.12 to provide the statistical comparison

results. The thick horizontal line within the box encodes the median while the upper and lower ends
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denote the upper and lower percentile respectively. Dashed appendages illustrate the spread and

shape of distribution and crosses represent extreme values.

From the boxplots, the hybrid combinations are clearly better than the individual combinations

where the agents evolved by the former are able to Pareto-dominate a larger percentage of those

generated by the latter in terms of higher returns at a lower risk exposure. Also, the performance

difference between ALL and the individual TI combinations are much more significant than that

of ALL and the dual TI combinations. This seems to suggest some form of diminishing marginal

benefits in considering more TI in the construction of TTS. As such, in this context, excessive TI

should be avoided, which could also help to maintain the complexity of the search space. Of course,

further simulations involving other types of TI should be conducted to validate this hypothesis.

Amongst the individual TI, RSI has the best performance in coverage, as it is able to dominate

a larger proportion of the solutions evolved by MA and SO, yet having a small proportion of its

solution being dominated by them as observed from Figure 6.12(a)-(c). This relationship is similarly

observed for the dual combinations, where D1 and D3 which comprised of RSI perform much better

than D2. Nonetheless, statistical analysis reveals no significant performance difference between D1

and D3.

The two main goals in multiobjective optimization include proximity and diversity [62, 18],

where the former describes the accuracy of the solution set and the latter measures how well the

solution set is defined. While the coverage function compares the proximity relationship between

the various combinations, it is also necessary to assess their diversity relationship by measuring the

extent in which the optimal Pareto front is covered by the evolved solutions as in the Maximum

Spread measure [261]. Of course, Maximum Spread is only applicable for benchmark optimization

problems where the optimal Pareto front is known. Thus, an alternative measure is proposed here,

which simply computes the area in the objective search space covered by the solution sets.

Spread = (returnmax − returnmin) × (riskmax − riskmin) (6.12)

The boxplots in Figure 6.13 illustrates the average spread for the various TI combinations in

20 runs. Interestingly, RSI, which attained better performance in Pareto dominance amongst the

individual strategy, has the lowest spread. On the contrary, D2, which do not include RSI in its



CHAPTER 6. 143

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1

C
(M

A
,a

ll)

(a)

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1

C
(R

S
I,a

ll)

(b)

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1

C
(S

O
,a

ll)

(c)

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1

C
(D

1,
al

l)

(d)

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1
C

(D
2,

al
l)

(e)

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1

C
(D

3,
al

l)

(f)

MA RSI SO D1 D2 D3 ALL

0

0.2

0.4

0.6

0.8

1

C
(A

LL
,a

ll)

(g)

Figure 6.12: Box plots illustrating coverage relationship between the various TI combinations
schemes.

composition, attained the highest spread amongst the various combinations. This seems to suggest

that different TI is instrumental in attaining solutions at different regions of the risk-return tradeoff.

Figure 6.14 compares the Pareto attained by RSI and D2 in one of the runs and it corresponds

accurately to the results so far i.e. D2 was able to diversify over a larger area of the objective but

most of its evolved solutions were dominated by RSI in the low risk-returns region.

To shed light on the underlying differences between the various TI, Figure 6.15 plots the mean

number of trades versus risk exposure for the various TI combinations considered. ETTS, comprising

of MA and/or SO, trade more actively as compared to those consisting of RSI. These characteristics

are actually elucidated by their trading signals in Figure 6.4 also. Comparatively, SO generates buy
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and sell signals at a higher frequency and MA, which, does not have any holding signal at all, tend

to remain at an open position in the market. Also, it is observed that all combinations except RSI

have a stable uptrend. One possible explanation is that the solutions generated by RSI are overly

concentrated in the low risk region, resulting in erratic behavior in the high risk region.
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Figure 6.15: Average number of trades by the trading agents in discrete intervals of Risk Exposure
of 0.1 that were generated by the various TI combinations in 20 runs.

The results so far seem to suggest that RSI aids better in low risk trading, while MA and SO

are more prominent in high risk trading. This is most probably due to the latters higher tendency

to generate buy/sell signal, increasing the possibilities to generate active trading schedule of greater

risk exposure and returns, which will consequently results in higher spread. To further affirm the

trading characteristics of the TI, it will certainly be instructive to investigate the composition of the

various TI in the chromosomes evolved by ALL. Figure 6.17 plots the average weight and frequency

of the various TI in each ETTS obtained by ALL. As the type of TI available is lesser than the

maximum TI allowable for each agent, there could be multiple instances of the same TI in a single

ETTS. Clearly, SO constitutes the largest proportion both in terms of the weights and frequency.

Lastly, to analyze how the composition of TI in the trading agents changes along the risk-returns

tradeoff, Figure 6.18 plots the average weights of the various TI for each trading agent against their

corresponding risk exposure. Clearly from Figure 6.18(b), there is a higher density of solutions in
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Figure 6.16: (a) Mean and (b) variance of the test returns
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Figure 6.17: (a) Average weight and (b) frequency of the individual TI in each trading agent evolved
by ALL
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the low-risk region as compared to the high-risk region. This further reinforces the earlier claims

that associate RSI with conservative trading schedules. To illustrate clearer the composition changes

along the risk-returns tradeoff, interval of 0.1 for the training risk is considered and the mean and

standard deviation of the weights at each interval is plotted in Figure 6.17. As expected, RSI, which

is associated with conservative trading schedules, has higher weights at lower risk, while MA is more

prominent in active trading schedules, where its average weight increases for higher risk. Lastly,

Figure 6.17(c) illustrates that SO forms a significant proportion of the ETTS at the various risk

level, which again could be explained by its balance between the proximity and diversity goals.
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Figure 6.18: Average weight of (a) MA, (b) RSI and (c) SO in each trading agents versus risk
exposure.

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 W
ei

gh
t D

is
tr

ib
ut

io
n 

fo
r 

M
A

Risk Exporsure

(a)

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 W
ei

gh
t D

is
tr

ib
ut

io
n 

fo
r 

R
S

I

Risk Exporsure

(b)

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 W
ei

gh
t D

is
tr

ib
ut

io
n 

fo
r 

S
O

Risk Exporsure

(c)

Figure 6.19: Statistical distribution of the average weight for (a) MA, (b) RSI and (c) SO at discrete
values of risk exposure of 0.1. The vertical lines denote the standard deviation of the weight at each
value of risk exposure.

The various results show that the composition of TI along the risk-returns tradeoff is related
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to their underlying characteristics. As such, the non-uniformity in the risk-returns tradeoff, where

the diversity of solutions decreases at higher level of risk (Figure 6.10(b)), could be due also to the

lack of TI that can generate highly active trading schedules. Thus, more TI should be included in

future related studies. Also, it will be useful to profile these TI for a better understanding of their

trading operation. This information could be useful in the development of local search operators

that can exploit their underlying characteristic, so as to improve the algorithmic convergence of the

evolutionary platform.

6.4.2 Correlation Analysis between Training and Test Performance

The results earlier revealed the trading characteristics of the TI constituting the ETTS. Despite

the high returns generated by the ETTS at various level of risk exposure, the practicality of this

approach will ultimately depend on whether these high returns can be extended to unseen trading

data, which is otherwise known as its generalization performance.

To evaluate its generalization performance, the historical financial data used for the training and

evaluation of ETTS earlier will be further partitioned into two independent set i.e. training and test

set. During the evolutionary process, the fitness of the trading agents will be assessed based on the

training set. The final solutions obtained at the terminal generation will be subsequently applied to

the test set to evaluate its generalization performance, indicating its real efficiency in unseen data.

The total returns and risk exposure in the training and test data will be conveniently referred as

training returns, training risk, test returns and test risk respectively in the rest of the chapter.

The risk-returns tradeoff for the training and test data in one of the run is illustrated in Figure

6.20. As the TTS are evolved with respect to the training data, the risk-returns tradeoff is clearly

evident in Figure 6.20(a). However, such relationship is not evident when the same set of TTS is

applied to the test data. While returns of 60% are achievable at a risk level of 0.2 in the training

data, losses are incurred at the same level of risk in the test data. Clearly, positive returns in the

training data do not necessarily correspond to positive returns in the test data. In fact, the low

correlation between training and test returns was also briefly suggested by Korczak and Lipinski

[137] before, where they observed that applying a fitness measure strongly based on returns usually

result in inefficiencies in test data. As such, they even suggested that profits should be restricted to
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post training assessment. Nevertheless, most single-objective approaches for ETTS are still based

on the underlying assumption of the positive correlation between training and test returns.
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Figure 6.20: Pareto fronts obtained for (a) training data and (b) test data

Thus, before examining the generalization performance of the ETTS in proper, it is important

to understand further the correlation between the performance in the training data and test data.

Specifically, this refers to the correlation analysis of the following four variables: training returns,

training risk, test returns and test risk.

Based on the ETTS found in 10 runs, the correlations between the various variables are plotted

in Figure 6.21. Several interesting insights are revealed in these plots. The plot of training returns

and training risk illustrates accurately the risk-returns tradeoff, while a noisy version can be observed

in the plot of test returns and test risk, despite the low correlation between training returns and test

returns.

Contrary to the assumption in single-objective optimization approach where higher training

returns is associated with higher test returns, this relationship is sorely missing from these plots.

Instead, higher training returns are associated with increased volatility in the expected test returns

as reflected by the widening spread of the solutions. This is illustrated clearer in Figure 6.22, which

plots the mean and the standard deviation (denoted by the vertical lines) of the test returns at

intervals of 10 for the training returns. While the mean test returns does not increase much for

larger values of training returns, there is a general increase in the standard deviation instead.
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Figure 6.21: Correlation between Training Returns, Training Risk, Test Returns and Test Risk.

Noticeably, there is a positive correlation between the training risk and test risk instead, though it

is slightly skewed towards the former, as the fitness function is based on the training data. Nonethe-

less, this positive correlation is rather intuitive. An active TTS will generally generate buy and sell

signals at higher frequency within a trading period. Thus, it is most probable that such a TTS will

consistently generate active schedule for both the training data and test data.

These observations seem to suggest that training and test returns are related indirectly via risk

instead of the direct relationship that is widely assumed in single-objective approaches. Specifically,



CHAPTER 6. 151

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

Total Returns in Training Data(%)

T
ot

al
 R

et
ur

ns
 in

 T
es

t D
at

a(
%

)

Figure 6.22: Statistical distribution of the average Test Returns at discrete values of Training Return
of 10. The vertical lines denote the standard deviation of the weight at each value of risk exposure.

a TTS that yields high training returns is most likely to be associated with higher training risk by

virtue of the risk-returns tradeoff. Due to the positive correlation between the training risk and test

risk, this TTS will most likely trade actively in the test data. Consequently, since it is not optimized

to the test data, this results in test returns of high volatility. The noisy version of the risk-return

frontier in the plot of test returns and test risk could be attributed to these factors. Of course, these

assertions are merely hypothetical and should be further verified by simulations. Nevertheless, it

does show that positive correlation between training returns and test returns assumed in conventional

single-objective approaches of ETTS optimization does not necessarily hold for all cases.

6.4.3 Generalization Performance

To formally evaluate the generalization performance of the ETTS found by the proposed MOEA,

a total of ten different data sets were used to compensate the high dependence of generalization

performance on the choice of the trading period. Each set comprised of one full year of test data,

starting from the first trading day of January to the last trading day of December from the year

1995 to 2005, while the previous three years of trading data were used as the training set as shown in
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Table 6.5. 100 days of historical data prior to the first trading day of the training set were included

also.

Table 6.5: Generalization performance of MOEA over 10 different data sets.

Index Training Set Test set
Start End Start End

96 04-03-1993 29-12-1995 02-01-1996 31-12-1996
97 03-01-1994 31-12-1996 03-01-1997 31-12-1997
98 03-01-1995 31-12-1997 02-01-1998 31-12-1998
99 02-01-1996 31-12-1998 04-01-1999 30-12-1999
00 03-01-1997 30-12-1999 03-01-2000 29-12-2000
01 02-01-1998 29-12-2000 02-01-2001 31-12-2001
02 04-01-1999 31-12-2001 02-01-2002 31-12-2002
03 03-01-2000 31-12-2002 02-01-2003 31-12-2003
04 02-01-2001 31-12-2003 02-01-2004 31-12-2004
05 02-01-2002 31-12-2004 03-01-2005 30-12-2005

Performance evaluation is not as straightforward in multi-objective approach as compared to

single-objective approach. For the latter, the sole solution obtained at the end of the evolutionary

process will be used to quantify the overall generalization performance. However as a set of solutions

will be obtained instead in multi-objective optimization, this led to the selection problem of choosing

the appropriate solutions for the evaluation of its generalization performance. An easy approach is

to simply consider the average performance of the various ETTS obtained but this does not account

for their varying degree of risk averseness.

Instead, ETTS obtained from the training set is classified according to the training risk in regular

interval of 0.1 due to the positive correlation between training and test risk measure. They are then

applied to the test data and the average returns in each group are calculated, as listed in Table 6.6.

The returns for the buy-and-hold strategy are included also as a basis for comparison. It should be

highlighted that the returns of the buy-and-hold strategy are extremely volatile, depending entirely

on the trading period i.e. high returns could be reaped during bull markets where investor confidence

is high, leading to widespread financial asset appreciation, and vice versa for bear markets.

On the other hand, the returns for ETTS are much more conservative. In period where the
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buy-and-hold strategy can yield a profit of 76.60%, it can only achieve a maximum of 20.18% at a

risk level of 0.3. And when the market dropped by 31.72% in 1997, the ETTS are able to generate

positive returns for all risk level. These conservative results could be partly due to the averaging of

solutions within the risk intervals.

Table 6.6: Generalization performance of MOEA over 10 different set of test data.

Index Buy-and- MOEA Returns

hold Returns

Risk Level

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

96 -2.33 0.16 -4.77 -7.48 11.52 6.52 8.09 0 0 0 0 0

97 -31.72 0.28 4.02 1.85 0 5.17 9.41 13.92 0 0 0 0

98 -8.76 0.38 16.75 -1.9 9.82 0 0 -27.18 0 0 0 0

99 76.6 -4.34 -2.18 -0.06 20.18 -7.76 0 0 12.35 9.15 0 0

0 -25.9 1.07 7.89 -0.67 5.11 9.28 -15.12 -8.3 -3.83 -5.57 0 0

1 -14.88 -6.79 -6.89 -12.45 -10.28 -0.07 0 0.31 -7.91 -8.81 0 0

2 -18.01 0.49 -0.24 -1.76 -4.16 -5.79 0 -22.58 -18.74 0 0 0

3 31.58 0.6 3.17 9.48 4.85 1.82 -7.06 -3.75 0 0 0 0

4 14.384 0.04 0.44 -0.61 1.53 0.92 0.96 -1.26 0 2.08 -2.85 0

5 12.89 0.04 -1.58 -4.08 -0.92 -3.79 -1.08 4.35 0 0.06 0 0

Arithmetic 34.31 -8.06 16.61 -17.69 37.64 6.31 -4.79 -44.48 -18.12 -3.09 -2.85 0

Sum

Considering the arithmetic sum of the returns generated by the ETTS at the various risk level,

its test returns can only outperform the buy-and-hold strategy at one particular risk level. However,

it should be highlighted that the returns of the buy-and-hold strategy is attained at the maximum

risk level as this strategy remain in the open position for 100% of the trading period.

To reinforce the claims in the previous section, Figure 6.23 plots the mean and variance of the

test returns versus training risk for the various data sets. In Figure 6.23(a), the mean of the test

returns fluctuates around the zero mark as training risk increases. Positive returns could hence be

obtained if the transaction cost of 0.5% is not considered. This result is consistent to that obtained

by Allen and Karjalainen [5] where their evolved rules did not generate excess returns over buy-and-

hold strategy after the inclusion of transaction costs. The steady increase in the variation of the test

returns in Figure 6.23(b) further verified the hypothesis that higher training returns correspond to

increased volatility in the test returns. The drop after risk level of 0.8 is statistically insignificant
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due to the lack of solutions in that region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−15

−10

−5

0

5

A
ve

ra
ge

 R
et

ur
ns

 in
 T

es
t D

at
a

Risk Exposure in Training Data

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

20

40

60

80

100

R
et

ur
ns

 V
ar

ia
nc

e 
in

 T
es

t D
at

a

Risk Exposure in Training Data

(b)

Figure 6.23: (a) Mean and (b) variance of the test returns for the data sets

Ideally, the multi-objective evolutionary platform could evolve a set of TTS with different level

of risk averseness so as to suit the different types of investors, from conservative to risky. However,

the erratic behaviors in the generalization performance, caused by the low correlation between the

training returns and test returns, complicate the task of choosing the appropriate ETTS for practical

implementation. Nevertheless, the simulation result does reveal some interesting insights to this

problem, in particularly, the observation that the positive correlation between training returns and

test returns assumed in conventional single-objective approaches of ETTS optimization does not

necessarily hold for all cases.

6.5 Summary

In this chapter, a multi-objective evolutionary approach to the development of TTS was investigated

here, where total returns and risk exposure were simultaneously optimized. Popular technical indi-

cators used commonly in real-world practices were used as the building blocks for the trading agents,

allowing the examination of their trading characteristics under an evolutionary platform. The Pareto

front obtained by the algorithm accurately depicts the inherent tradeoff between risk and returns.

The analysis of the TI composition along the risk-return frontier reveals that each TI has varying
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degrees of significance in different regions of the tradeoff surface depending on their underlying char-

acteristic. As such, future work will certainly involve profiling other TI to further understand their

trading characteristics.

The correlation study suggested that the returns from the test and training data are not cor-

related in this context, which is contrary to popular belief in the single-objective approach of this

optimization problem. Instead, higher returns in training data only corresponds to larger volatility in

the returns generated in the test data. This is further reinforced by the erratic trends in the analysis

of the generalization performance. Nevertheless, in order to further validate the evolutionary model

and the empirical results, it is absolutely necessary to subject the evolutionary model to other data

sets and include different TI that are able to detect other market signal not covered by the current

group of TI.



Chapter 7

Dynamic Index Tracking via

Multi-Objective Evolutionary

Optimization

7.1 Introduction

Markets indices - such as the Dow Jones Industrial Average, the NYSE Composite and the Standard

& Poor’s 500 - track the performance of a customized basket of securities that best represent the

underlying financial market/sector. These indices provide an indication of the overall market per-

formance, aiding investors in their investment decision. They function also as benchmarks against

which investors can evaluate the performance of their portfolios. There has been an accelerating

trend in recent decades to create passively managed portfolios that are based on market indices,

known as index funds i.e. an investment vehicle which exhibits only market risk, with all other risks

having been diversified away.

Essentially, index tracking denotes a passive investment strategy targeted to replicate the per-

formance of a specific financial market index, regardless of market conditions. In recent years,

passive portfolio management has been gaining in popularity as empirical studies have revealed

156
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that sustainable and stable yields exceeding market average are rare. In fact, advocates claimed

that passive strategies routinely beat a large majority of actively managed mutual funds after cost

[86, 160, 223]. Since index funds attempt to replicate the holdings of an index, they obviate the need

forand thus many costs ofthe research entailed in active management, leading to a lower “churn”

rate (the turnover of securities which lose fund managers’ favor and are sold, with the attendant cost

of commissions and capital gains taxes).

The direct approach for index tracking is full replication where the index fund is constructed

by weighing the index constituents as per their exact proportion in the underlying index. Though

simple conceptually, it poses significant challenges in real-world implementation. Firstly, certain

index constituents might be held in small quantities which are inconvenient and costly to administer.

Furthermore, the net asset value of the index fund might not be substantial for full index replication.

In lieu of these limitations, partial replication represents a plausible alternative, which considered

only a subset of securities from the index. Nevertheless, the index replication process is complicated

also by random capital flows within the index fund during the investment horizon and dynamically

changing index arising simply from market price movements and/or structural revisions like merger,

stock splits, etc. To adapt to the ever-changing market conditions, the tracker portfolio has to adjust

continually during the investment horizon, otherwise known as rebalancing. As transaction costs

associated with the purchase and sale of securities are inevitable, index replication should provide

means of limiting these costs from scaling up, besides focusing on tracking performance. However,

the reduction of transaction and management costs will typically be at the expense of wider returns

deviations between the tracker funds and the underlying index by virtue of their inherent trade-offs.

Constructing an index fund via partial replication, which involves choosing the appropriate sub-

set of securities constituents and their corresponding proportions, is non-trivial, especially when

the underlying index comprise of many securities as empirical studies have revealed that a mini-

mal number of securities are required for a basic level of tracking performance [188]. While many

optimization tools and heuristic techniques have been considered in related literature, evolutionary

computation, a class of stochastic search technique has been gaining significant attention due to

its success in its capability in dealing with highly complicated search space. Moreover, they can

be extended to multi-objective optimization in handling problems with competing specifications, as

their population-based search approach enables them to sample a pool of solutions simultaneously
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during the optimization process.

This chapter aims to leverage the search capability of evolutionary algorithm and construct an in-

dex tracker system targeted to reduce tracking error and transaction costs simultaneously during the

investment horizon. Furthermore, a multi-period variant of the index tracking optimization problem

will be considered, which requires rebalancing throughout the investment horizon due to changing

market conditions and stochastic capital injections/withdrawals from the investors. Specifically, the

proposed multi-objective evolutionary index tracking optimizer (MOEITO) will be invoked continu-

ally during the investment horizon to align the tracker portfolio to the dynamic market conditions.

Lastly, the inherent flexibility of the evolutionary algorithmic platform allows realistic constraints

like lot constraints, budget constraints and tier-based transaction costs to be considered.

The remainder of this chapter is structured as such. A formal definition of the index tracking op-

timization will follow, covering the general algorithmic flows and the specific objective functions and

constraints. Following that, a brief overview of evolutionary optimizers will be presented, together

with a discussion on how it can be adapted for the purpose of index tracking. Simulation results and

analysis to validate the proposed MOEITO will follow suit before the conclusions are drawn.

7.2 Index Tracking

Index tracking denotes the optimization problem of constructing a portfolio that can replicate the

performance of a financial index, independent of market conditions. While many indices are available

for various asset markets, for example the Standard and Poors 500 Index (S&P500) for US equities,

the Goldman Sachs Commodity Index for commodities, the Lehman Brothers Bond Index for bonds,

etc. [29], this chapter deals exclusively with equity index funds i.e. a portfolio of equities chosen to

reproduce the returns characteristics of a specific equity index.

7.2.1 Variable Notations

Tables 7.1 and 7.2 list the notations for the various variables in the index tracking optimization

problem.
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Table 7.1: Variable notations for the index tracking optimization problem.

Variable Notation Description

N Total number of distinct securities that can be included in the tracker portfolio.
While the set of securities typically mirrors the index constituents, off-index
securities that can proxy the underlying constituents can be considered also.

T = {0, 1, ..., T} The investment horizon is split into T time periods, where each time period,
t is potentially associated with a portfolio decision. The time period can be
daily, weekly, quarterly, etc depending on the rebalancing frequency. Weekly
time period is considered here as the simulation data sets comprised of weekly
price data

Qt = {qt,1, qt,2, ..., qt,N} qt,i represents the quantity of stock i (i = 1, 2, ..., N held in the tracker portfolio
at time t. Collectively, the vector, Qt defines the security composition of the
portfolio. Qt will be updated only (if necessary) at the beginning of the time
period, t and remained constant thereafter until t + 1 (See Figure 7.1).

Pt = {pt,1, pt,2, ..., pt,N} pt,i represents the closing price of stock i at time t. The price vector Pt will
be updated at the end of the time period, t and remained constant thereafter
until the end of t + 1(See Figure 7.1).

It The market value of the index at the end of time period, t.
Rt The index returns at the end of time period, t. Without any loss in generality,

geometric returns is considered here (i.e. Rt = It−It−1
It−1

), though logarithmic
returns are widely considered also.

Vt The aggregate market value of the securities in the tracker portfolio at time
t. Value here could either be based on beginning of the time period, BVt =∑N

i=1 pt−1,iqt,i or end of the time period, EVt =
∑N

i=1 pt,iqt,i. The calcula-
tion difference in calculation is attributed to Pt being the end-of-period price.
Hence, calculation of BVt considered the previous periods price i.e. Pt−1. Vt

in this chapter will referred to EVt by default, as portfolio decisions will be
implemented at the end of each time period based on EVt.

rt The returns of the tracker portfolio for time period t, calculated by rt =
EVt−BVt

BVt
. will remain static over t and any returns are primarily attributed

to price movements of underlying portfolio constituents.
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Table 7.2: Variable notations for the index tracking optimization problem (contd).

Variable Notation Description

Ct The cash position in the tracking portfolio. Due to the finite divisibility of
securities, cash positions in the portfolio are inevitable. Ct > 0 and Ct < 0
represents long and short cash position respectively, which can be modeled to
earn/pay short-term cash rates i.e. Libor, REPO and etc.

∆Ct The change in cash position for time period t, which could be due to interests
due to cash positions, capital injection/withdrawal etc.

TCt Decision on portfolio adjustments (if necessary) will be made and implemented
at the end of each time period and the corresponding transactions will be based
on the closing price. Consequently, the transaction cost will be a function of the
closing price at time period t, the quantity composition held at the beginning
of the time period Qt and the new quantity composition Qt+1, which will take
effect at the beginning of the next time period t + 1 i.e. TC = f(Qt, Qt+1, Pt)

Ft The total value (end period) of the tracker portfolio at time t, which mainly
includes the market value of the securities and the cash at hand net of any
transaction costs incurred at time t, Ft = Vt + Ct − TCt

t


Q
t
 P
t


t+1


Q
t+1
 P
t+1


t+2


Q
t+2
 P
t+2


Figure 7.1: Chronological sequence in which equity prices and portfolio quantity are updated. Prices
will be updated at the end of each time period based on closing market prices. All transaction is
assumed to be executed at the end of the time period based on the updated prices and the new
quantity composition will be reflected at the beginning of the next time period.
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7.2.2 Problem Definition

Mutual funds are collective investment schemes that pool money from investors at large and profes-

sionally managed in accordance to pre-specified investment mandates for example aggressive growth,

capital appreciation, tax-free bond and etc. They can be broadly classified as closed and opened,

where the invested capital for the former remained fixed throughout the investment horizon and port-

folio management for the latter is complicated by capital injections/withdrawals at the discretion of

the investors, hence garnering closer monitoring and management of the funds.

The index tracking optimization problem is analogous to a mutual fund that focuses on index

replication. Based on a fixed capital allocated prior to the investment horizon, an initial portfolio that

could possibly track the underlying index will be built. In this context, the constituent composition

will be determined by MOEITO. Due to the finite divisibility of securities, cash positions in the

portfolio will be inevitable. If the cash position is positive/negative, the fund will earn/pay a pre-

specified money rate, for example repo or Libor rate. The existence of a cash position during the

investment horizon will result in a performance mismatch between the tracker portfolio and the

underlying index arising from differences in index movement versus the money rates. As such, it is

imperative to minimize the cash holdings during this period.

During the investment horizon, returns deviations between the tracker portfolio and the under-

lying index are inevitable due to the manifestation of a static tracker portfolio against the dynamic

market conditions. As such, the tracker portfolio has to continually change its constituent compo-

sition and weighting to overcome serious performance deviation [171]. Typically, frequent portfolio

rebalancing will enable the incorporation of more timely information, ultimately leading to better

tracking performance [89].

Portfolio rebalancing can be triggered at fixed frequency or based on pre-specified criteria. For the

former, portfolio rebalancing will be executed in regular intervals regardless of any market changes.

As the rebalancing frequency will remain static over the investment horizon, inappropriate frequency

will result in excessive transaction costs and/or significant deviations from the desired tracking per-

formance. Typically, higher rebalancing frequency will lead to better tracking performance but

translating to more transactions and hence higher transaction costs [168]. Event-triggered rebalanc-

ing represents a more flexible alternative, where the defined criteria depend on the investors goals
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and preferences. Miao [171] considered market volatility since heightened volatility will result in

structural changes within market indices. Meade and Salkin [168] considered portfolio-specific crite-

ria, namely ex-post tracking error and returns deviations exceeding certain pre-defined limits. In this

context, random capital injection/withdrawals within the investment horizon will also trigger rebal-

ancing, as the excess cash position from injection has to be allocated to relevant equity positions or

existing holdings have to be liquidated to free up cash for redemption. Capital injection/withdrawals

will be broadly referred as injections as withdrawals are simply negative injections.

Rebalancing will occur (if necessary) at the end of each time period, t and the tracker portfolio

will be re-configured with the available capital being the market value of the existing holding Vt,

inclusive of the cash position, Ct. MOEITO will be invoked to re-align the tracker portfolio to the

market conditions at the end of time period, t. After the new tracker portfolio composition has been

determined, transactions will be executed based on Pt, ignoring transaction timing effects, and Qt

will be updated accordingly. Immediate exposure to index constituents is assumed here, which is

viable in real world via derivative instruments that allow investors to get immediate exposure to the

underlying before converting them to equities at later period.

Equation 7.1 describes the temporal relationships between the associated variables during rebal-

ancing, where the consistency of the portfolio value before and after the transactions are maintained.

Essentially, the aggregate market value of the tracker portfolio and the cash position before and after

the transactions should be equal net of the transaction cost and cash changes. In other words, the

cash position at t + 1 will be the cash held at t adjusted for changes in portfolio values due to the

transactions, increment in cash position and the corresponding transaction cost (7.2).

Ct+1 + Pt · Qt = Ct + Pt · Qt+1 + ∆Ct − TCt (7.1)

Ct+1 = Ct + Pt · Qt+1 − Pt · Qt + ∆Ct − TCt (7.2)

At the end of the investment horizon, the entire tracker portfolio will be liquidated and the

performance of the tracker fund over the investment horizon can be quantified.
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7.2.3 Objective Functions

Although the ultimate objective is to build a tracker portfolio with return characteristics identical

to the underlying index, a range of objective functions have been considered in related literature.

Tracking error, a statistical measure that quantifies the returns differences between the tracker port-

folio and the underlying index, is the widely considered measure [12, 55, 118, 168, 215]. Alternatively,

the returns deviations have been viewed from a risk management perspective [89], where risk mea-

sures like Value-at-risk [90, 200] and downside variance/deviation [167] have been implemented as

objective functions. Besides measures specific to returns deviation, supplementary criteria like trans-

action costs and excess returns over the index have been considered also [12, 168, 230]. The former

improves the operational aspect of portfolio management while the latter arises from enhanced in-

dexation strategy [198]. Nevertheless, most literature works so far have considered index tracking

as a single-objective optimization problem, despite the wide range of inherently conflicting objec-

tive functions. The proposed MOEITO will formulate index tracking as a multi-objective problem,

where tracking error and transaction cost will be simultaneously minimized during the optimization

process.

Tracking Error

Tracking error typically centers on the returns deviation between the tracker portfolio and the un-

derlying index. Widely considered measures in related works are the mean square error (7.3) and

tracking error variance (7.4) with the over-bars denoting average value. While MSE directly measures

the cumulative returns differences, TEV measures the deviation of the returns differences which in

case of large portfolio deviations will not be adequately quantified by MSE.

MSE =
1
T

T∑

t=1

(ri − Ri)2 (7.3)

TEV =
1
T

T∑

t=1

[
(ri − Ri) − (r̄i − R̄i)

]2 (7.4)

While the ultimate objective is to optimize a tracker portfolio that could follow the index closely

during the investment horizon, the challenge is that the only information available during portfolio
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build-up i.e. t = 0 are historical price data prior to the investment horizon. Inevitably, the tracking

performance during the optimization process, which is based on historical information, will definitely

be different from its actual performance in the investment horizon. Nevertheless, such methodology

is still widely adopted in almost all related works, as the underlying assumption is that the historic

data contain useful information about the future and consequently, portfolio with desirable past

behavior will replicate similar characteristics in the unseen future. It should be highlighted that the

desired behavior here specifically pertains to the behavior relative to the index and not to the index

itself. Clearly, the applicability of such relationships in the future is highly doubtful as external

shocks to the industry can easily disrupt them in the short term or lead to structural changes. The

highly debatable basis of this assumption motivates the use of ex-ante tracking error, which exhibits

better predictive capability as compared to ex-post tracking error.

Generally, if tracking error is measured historically, it is called realized or ex-post tracking error;

if a model is used to predict tracking error, it is called ex-ante tracking error. The former is more

useful for reporting performance; whereas the latter is basically a predicted TE based on a certain

risk model and is generally used by portfolio managers to control risk. One main difference is that

portfolio composition, which will be stochastic ex-post, is assumed to be stochastic ex-ante [110].

While various types of ex-ante tracking error models exist, from simple equity models which use

beta as a primary determinant to more complicated multi-factor fixed income models, it will simply

be the MSE (7.3) calculated based on the quantity composition implied from the chromosomal

representation of the tracker portfolio subjected to historical returns series.

Transaction Costs

Transaction costs associated with the purchase and sales of securities are inevitable in real-world. For

brevity, discussions on transaction costs are omitted here as they were already covered in Chapter

5. Transaction costs will be directly considered as a objective function here and the transaction

cost function will follow (5.10). The importance of transaction cost in index tracking actually lies

during rebalancing where the portfolio constituents have to realign to the market conditions, as they

can be especially significant for index with many underlying constituents for example, Russell 3000

index and Wilshire 5000 index or during events of radical changes within the index structure. The

level of transaction cost during rebalancing in the proposed index tracking system is controlled by
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the simultaneous optimization of both tracking error and transaction cost, generating a portfolio

with adequate tracking capability yet relatively similar to the existing holdings, translating to lower

transaction cost. As transaction cost can easily scale up with higher rebalancing frequency, especially

in volatile market conditions, rebalancing instances are moderated in the index tracking system where

it will be triggered only when ex-ante tracking error exceed the pre-defined limit.

7.2.4 Constraints

In real-world implementation, the quantity composition of the portfolio will be subjected to the

round-lot and the non-negativity constraints, mathematically formulated as follows:

qi,t mod li = 0 (7.5)

s.t. qi,t ≤ 0

where li denotes the trading lots for asset i. As mentioned in Chapter 5, the round-lot constraint

requires the number of any asset included in the portfolio to be in exact multiples of the normal

trading lots [152, 162, 221]. The inclusion of round-lot constraint will relax the conventional budget

constraint, which will consequently generate excess cash positions in the tracker portfolio during the

investment horizon as denoted by Ct. The non-negativity constraint is defined in (7.5) also, where

only long positions are allowed in the tracker portfolio. While this can be removed for generality,

the non-negativity constraint is included here as index constituents typically assumed long positions

in the underlying index.

7.3 Multi-Objective Evolutionary Optimization

Many different approaches have been proposed for index tracking, ranging broadly from mathemat-

ical/statistical methods like quadratic programming [168], constrained aggregation technique [182]

and factor model [55] to heuristic models like fuzzy logic [80], neural networks [264] time series clus-

tering [87], hierarchical clustering [66], threshold accepting algorithm [93] and simulated annealing

[142]. Interested readers are referred to [12] for a further discussion of related literature works on
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index tracking. Recent developments predominantly relied on heuristic approaches, as they gener-

ally allow flexible problem formulation and avoid cumbersome computational efforts. As highlighted

earlier, the optimization platform considered in this chapter will be based on multi-objective evolu-

tionary algorithms, a class of heuristic technique that has been gaining significant attention for its

capability in dealing with highly complicated search space and multiple objectives throughout the

optimization process.

Based on basic concepts from the biological model of evolution, the search dynamic of evolu-

tionary algorithms are driven by biologically inspired evolutionary operators like selection, crossover

and mutation, which will explore and exploit the associated search space for the optimal solution.

The crossover and mutation operator manipulate and create potential solutions, while the selection

operator provides the necessary convergence pressure. The strength of evolutionary algorithms lies

in their population-based search approach, which will generate higher diversity in the search space,

reducing the likelihood to converge to the local optimum, suitable for tackling high dimensional

search space problems like the index tracking problem [12, 117, 118, 181, 188, 215].

7.3.1 Chromosomal Representation

Evolutionary algorithms maintain a population of chromosome during the optimization process,

where each of them represents a potential solution, which in the context here denotes a portfolio of

equities. Hybrid representation will be considered here with the fitness evaluation function modified

to handle the lot constraint. Consider an index with only 4 underlying constituents, an instance of

the hybrid representation (highlighted in grey) is shown in Figure 7.2. Essentially, the binary vector

denotes the inclusion of securities in the portfolio i.e. bi = 1 means that the i-th security is included,

vice versa. Correspondingly, the weight vector denotes the proportion of capital that is allocated to

each security, which is typically normalized to adhere to the budget constraint.

In the absence of the round-lot constraint, the total capital will be fully expensed and distributed

to the various securities in accordance to the weight vector. As $25 is allocated to the 3rd security

and its market price is $2, this results in 12.5 lots of the 3rd security being bought, violating the

round-lot constraint. Conventionally, this can be rectified by rounding the quantity to the nearest

integer, though this will result in a mismatch between the portfolio value and capital i.e. rounding
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Equities No.
 1
 2
 3
 4

Market Price per Security
 $1 
 $3 
 $2 
 $5 


Binary Vector
 1
 0
 1
 1

Weight Vector
 0.25
 0
 0.25
 0.50


Quantity
 25
 0
 12.5
 10
Without
 Round
-
lot 

Constraint
 Value Allocated
 $25
 $0
 $25
 $50
 $100


Quantity
 25
 0
 13
 10

Round
-
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Value
 $25
 $0
 $26
 $50
 $101

Quantity
 25
 0
 12
 10


Round
-
down

Value
 $25
 $0
 $24
 $50
 $99


Figure 7.2: Illustration the fitness evaluation function in handling the lot constraint.

up (down) the quantity will result in the portfolio value being more (less) than the initial budget,

resulting in the portfolio being overweight (underweight) in securities and underweight (overweight)

in cash. This excess cash position will result in performance mismatch between the tracker portfolio

and the index, depending on the index movements.

To minimize the cash position during the investment horizon whilst maintaining a neutral view

on the index movements, each security quantity will be randomly rounded up or down to the nearest

integer during the fitness evaluation process. As this rounding procedure is an iterative process, the

probability of security quantity being rounded up or down will adjust whether tracker portfolio is

overweight or underweight with respect to the expensed budget. While views on index movements

can be incorporated via changing the proportion of securities quantity being rounded up/down, this

is not considered here as it will escalate tracking error and excess returns over the index is secondary

in this chapter.

7.3.2 Selection Process

Index tracking is formulated as a multi-objective problem in this chapter, which involves the mini-

mization of the ex-ante TE and the transaction costs. In contrast to single-objective optimization,

the optimal solutions for a multi-objective optimization problem exist in the form of alternate trade-

offs known as the Pareto-optimal set. Each objective component of any non-dominated solutions

in the Pareto-optimal set can only be improved by degrading at least one of its other objective
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components. The Pareto-optimal set when plotted will illustrate the trade-off between the various

objectives, as illustrated in Figure 7.3.

Transaction

Cost


A


B


Tracking

Error


Figure 7.3: Illustration of the tradeoff between tracking error and transaction cost.

Each point denotes a potential tracker portfolio and the black and gray circles represent non-

dominated and dominated solutions respectively, where the former denotes the Pareto optimal set

as their tracking error cannot be minimized further without compromising transaction cost. In the

context of single-objective optimization where tracking error is the sole priority, the evolutionary

process will ultimately drive the solutions towards the extreme point B, which might not be eco-

nomical sustainable for index funds in general, as they aim to charge the lowest management fees

possible. Point A represents the extreme case of leaving the tracker portfolio unchanged during the

rebalancing process, resulting in zero transaction cost.

Unlike conventional single-objective approach which will generate a single unique solution at the

end of the optimization process, the multi-objective approach will generate a set of Pareto optimal

solutions instead. In the total absence of information regarding the preference of objectives, this

naturally led to the question of which tracker portfolio should be selected eventually to track the

index. Ideally, the selected tracker portfolio should strike a balance between TE and transaction

cost. The proposed selection methodology is outlined in Figure 7.4. A reference point C is created
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based on the minimal TE and transaction cost of the extreme solutions i.e. points A and B. The

Euclidean distance between each solution and the reference point C is calculated and the solution

closest to C be selected as the tracker portfolio. To prevent any disparity between the two objectives,

each objective value is normalized within their range before calculation of the Euclidean distance.

Transaction

Cost


B


Tracking

Error


A


C


Figure 7.4: Illustration of the selection process for the tracker portfolio.

7.3.3 Dynamic Archiving Operator

Rebalancing the tracker portfolio to the ever-changing market conditions is akin to dynamic opti-

mization where the problem underlying specifications e.g. objective functions, constraints and etc,

vary with time, consequently altering the optimal solution. The most direct approach is to treat

each change as a separate problem and re-initiate the optimization process, whenever changes in the

problem environment are detected [194]. However, the re-initialization of the evolving population

constitutes a loss of genetic materials from the previous optimization, which might otherwise be use-

ful if the environment changes are not drastic. Furthermore, this explicit restart approach assumes

that any changes in the environment could be identified, which unfortunately might not always be

the case [120].

To preserve information between rebalancing occurrences throughout the investment horizon, an
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external archive will be maintained, where the archiving strategy aims to simultaneously maximize

genetic diversity (in the decision space) and minimize proximity with the current optimal solution

(in the objective landscape). The former is indirectly measured by the transaction costs in switch-

ing the portfolio constituents, while the latter can be quantified by the ex-ante TE as well. While

multi-objective formulation is conventionally being utilized to address the inherent trade-offs be-

tween several objectives in optimization problems, multi-objective formulation is employed here as

an archiving strategy to sustain a population pool that can maintain a tradeoff between the two

stipulated archiving objectives i.e. optimality and diversity.

Besides deciding on types of individuals to be stored, an archiving strategy should comprise of

replacement and retrieval strategies. The former will simply be crowding measure based on niche

count and solutions with higher niche count will be removed. Retrieval strategies are concerned with

how the archived solutions are being utilized during the evolutionary progress. Retrieval will occur

at the beginning of each portfolio rebalancing, where the archived solutions will be merged with

a population of random generated solutions and the survivors being selected based on tournament

selection. The archive will be updated at the optimization process where all solution will be re-

evaluated based on the selected tracker portfolio.

7.3.4 Algorithmic Flow of Index Tracking System

The algorithmic flow of the multi-objective evolutionary platform is shown in Figure 7.5. At the start

of the algorithm, the price series of the index and its underlying constituents are loaded to allow

direct access of this information during algorithmic runtime, hence speeding up the computation

time required.

The algorithm maintains a fixed size population throughout the evolutionary process. During the

initialization process, tracker portfolios will be randomized until the population is filled. Specifically,

it will involve randomly generating a set of binary and real vector within the cardinal range of

the index. A fixed size archive is used to store the non-dominated solutions discovered during the

evolutionary process. The archive is updated every generation, where agents that are not dominated

by any members in the archive will be added into the archive and any members in the archive that

are dominated by this new agent will be removed. The archive helps to ensure convergence by
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preventing the loss of good solutions due to the stochastic nature of the evolutionary process. In the

selection process, elitism is implemented by selecting individuals to a mating pool through a binary

tournament selection of the combined archive and evolving population. The selection criterion is

based on Pareto ranking and in the event of a tie, the niche count will be employed. The mechanism

of niche sharing is used in the tournament selection as well as diversity maintenance in the archive.

After one complete generation, the evolutionary process will repeat until a predefined number of

generations are reached.

Problem Initialization


Population Initialization


Fitness Evaluation and

Fitness Pareto Ranking


Archiving


Binary Tourament Selection


Variation


Return Archive

Stopping


Criterion Met?


Figure 7.5: Algorithmic flow of the multi-objective evolutionary platform.
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Table 7.3: Description of Simulation Data Sets.

Problem Index Data Source Number of Constituent

PORT1 Hong Kong, Hang Seng 31
PORT2 German, DAX 100 85
PORT3 British FTSE 100 89
PORT4 U.S. S&P 100 98
PORT5 Japanese Nikkei 225 225

7.4 Single-Period Index Tracking

This section will present the empirical results to validate the proposed MOEITO in a single-period

instantiation of the index tracking optimization problem i.e. portfolio rebalancing will not be con-

sidered.

7.4.1 Data Sets & Simulation Setting

Five data sets obtained from the OR-library [11] were considered here. Specifically, they comprised of

291 weekly price data for five equity indices (and their underlying constituents) from major financial

markets. Table 7.3 provides a brief summary of the data sets. While the stock universe of PORT2,

PORT3 and PORT4 averaged around 90 assets, PORT1 and PORT5 have significantly lesser/more

assets. Typically, greater computational efforts will be demanded to track an index with more

underlying constituents due to a larger search space.

Portfolio composition will typically be based on the historical returns characteristics of the un-

derlying constituents, where past returns profiles are assumed to persist in the future. The usual

evaluation methodology for such predictive/forecasting model will be to split the data set into train-

ing set [1,145], where the model is optimized and test set [146,291], where the performance of the

resulting model is evaluated eventually. Specially, the data set will be split in the proportion [1,145]

and [146,291] respectively. Ideally, the model will attune to the training data via the evolution-

ary optimization process and its performance on the test data will approximate its generalization

capability in real-world implementation.



CHAPTER 7. 173

Table 7.4: Algorithmic parameter settings of MOEITO for the simulations.

Evolutionary Optimizer Total Generations 500
Population Size 100
Archive Size 100
Selection Binary tournament selection
Crossover Uniform crossover with probability 0.9
Mutation Bit-wise mutation with probability 0.01

Index Tracking Initial Capital 100,000,000
Lot Size 1,000

General Simulation Runs 30

The greatest challenge for performance evaluation here lies in the fact that no optimal solution

sets are available for the attained solutions to benchmark against, though conceptually the “optimal”

solution should be zero ex-post TE and transaction costs, which is clearly unrealistic and unattain-

able in real-world implementation. As such, this chapter will assume that MOEITO can provide

a reasonable approximation to the problems by virtue of the works in previous chapters. As such,

the simulations will focus on operational aspects of the index tracking system and the sanity of the

performance variation with respect to changes in the problem settings.

Unless otherwise stated, the parameter configuration of MOEITO in the simulations, including

those in the subsequent sections, are listed in Table 7.4. In all simulations, 30 independent runs were

made. Also for a more accurate and fairer comparison, the same random seed was assigned to each

set of runs to ensure that they started with the same initial population.

7.4.2 Simulation Result & Discussion

Based on the solutions generated by MOEITO over 30 runs in the training sets, the attainable

surfaces (Figure 7.6) clearly illustrate the tradeoff between ex-ante TE and transaction costs. While

the variation range for ex-ante TE differed across problems i.e. 25-50bp in PORT2 versus 21.5-22.5bp

in PORT1, transaction costs averaged between 20-23bp of the initial capital, corresponding to the

average rates in the transaction cost schedule. Even though the transaction cost might seem relatively
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insignificant here, they can scale up considerably later in multi-period rebalancing, especially when

the optimized portfolio differs significantly from the existing holdings.

22.65 22.7 22.75 22.8

21.5

22

22.5

Transaction Cost over Capital (bp)

T
E

 e
rr

or
 (

bp
)

(a) PORT1

20.5 21 21.5 22
25

30

35

40

45

50

Transaction Cost over Capital (bp)

T
E

 e
rr

or
 (

bp
)

(b) PORT2

20.5 21 21.5 22 22.5

30

32

34

36

38

Transaction Cost over Capital (bp)

T
E

 e
rr

or
 (

bp
)

(c) PORT3

22.55 22.6 22.65 22.7 22.75 22.8

16

18

20

22

24

26

28

Transaction Cost over Capital (bp)

T
E

 e
rr

or
 (

bp
)

(d) PORT4

22.3 22.4 22.5 22.6 22.7 22.8

30

35

40

45

Transaction Cost over Capital (bp)

T
E

 e
rr

or
 (

bp
)

(e) PORT5

Figure 7.6: Attainable surface of ex-ante TE against transaction costs (bp, over initial capital) for
the various training sets (over 30 algorithmic runs).

Ideally, the ex-ante TE based on the training data should closely approximate the ex-post TE

attained in the test data, reflecting the generalization capability of the model. Their correlation over

the 30 runs were calculated and shown in Figure 7.7, together with the corresponding scatter-plots.

In general, a positive correlation was observed between the ex-ante and ex-post TE, though the

degree varied widely across the data sets. While high correlations of above 0.9 were attained in

PORT1 (0.9533) and PORT4 (0.9048), implying that lowering ex-ante TE will most likely result in

better tracking performance in these test data, PORT5 attained a significantly lower correlation of

0.4742.

To further evaluate the generalization capability of MOEITO, the ratio of the ex-post TE over

the ex-ante TE for each solution in the various data sets were calculated and their distribution

is summarized in Table 7.5. Higher correlation between ex-ante and ex-post TE in PORT1 and

PORT3 translated to a smaller ratio, illustrating the generalization efficacy of ex-ante TE in these
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80 100 120 140 160 180 200
20

40

60

80

100

120

140

Ex−post TE error (bp)

E
x−

an
te

 T
E

 e
rr

or
 (

bp
)

(b) PORT2 (ρ = 0.8699)
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(c) PORT3 (ρ = 0.8120)
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Figure 7.7: Scatter-plots of ex-ante tracking error versus the ex-post tracking error for the various
solutions attained.

two data sets, which will consequently translate to lesser rebalancing demand and transaction costs

when extended to multi-period index tracking. Conversely, ex-ante TE will underestimate the actual

tracking performance for the rest of the data sets (by a factor of 2 for PORT2!).

Table 7.5: Ratio of Ex-Post TE over Ex-Ante TE.

Problem Index Mean Std Deviation

PORT1 1.2022 0.0546
PORT2 2.0724 0.3437
PORT3 1.0592 0.1374
PORT4 1.8568 0.2779
PORT5 1.7304 0.2742

Nevertheless, this does not exclude ex-ante TE applicability as an objective function for MOEITO.

Figure 7.8 compares the return series of a randomly chosen tracker portfolio against its underlying
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index for PORT2 and PORT5. Despite weak generalization capability in these data sets, the returns

deviations were noticeably small at the initial time steps before widening subsequently. In fact, the

selected tracker portfolio in PORT5 was able to track almost half of the initial test series before

deviating significantly from the underlying index. While this validates the applicability of ex-ante

TE as an objective function in these data sets, rebalancing will be required to be more frequent,

ultimately translating to higher transaction costs.
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Figure 7.8: Return series of the tracker portfolio and the index in the test data for a randomly chosen
algorithmic run.

7.5 Multi-Period Index Tracking

The simulation earlier specifically focused on the generalization capability of MOEITO and the

results revealed reasonable tracking performance of the optimized tracker portfolios, though the

overall generalization capability depends on the underlying nature of the index, which is beyond the

control of the investor. In this section, multi-period index tracking will be considered, representing

a more realistic representation of the real-world.
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7.5.1 Data Sets & Simulation Setting

The five data sets used in the previous section will be extended here. Their return series (Figure

7.9) generally exhibited an upward trend, except for PORT5. To evaluate MOEITO under different

market conditions, PORT6 to PORT10 were created, which are essentially the inverse series of

PORT1 to PORT5 respectively. The data sets were divided into training set and test set in the

proportion [1, 52] and [53, 291] respectively. A smaller training set was considered to enhance the

responsiveness to market changes, while longer test duration allowed the rebalancing strategy to be

evaluated fully.
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Figure 7.9: Return series for the various data sets based at the initial time step.

Besides measuring ex-post TE, beta based on the test performance was calculated also (7.6).

Essentially, it measures the returns correlation of the tracker portfolio and the underlying index,

where a beta of 1 will mean that they share similar returns characteristics. Conversely, a tracker

portfolio that is more volatile than the underlying index will have a beta with (absolute) value of

more than 1 while a tracker portfolio with beta smaller than 1 will mean that it is less sensitive to

the index movement. The coefficient of determination, a statistical measure of the goodness of fit of

the regression model, will be calculated as a complementary measure for beta.

β =
Cov(ri, Ri)

V ar(ri)
(7.6)

To assess the operational sustainability of the index tracking system, the net tracker portfolio

value in excess to the underlying index at the end of the investment horizon i.e. FT − IT will be

determined. The expected value should be close to zero if excess returns deviations and unnecessary
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cash positions are minimized over the entire investment horizon. Annualizing the ratio of the excess

portfolio value over the initial invested capital will yield a rough estimate of the management fees

required to fund the tracker portfolio, ignoring any compounding effects. While any returns made

above the underlying index is entirely secondary, it eliminates the need for management fees and

increases the competitiveness of this strategy.

7.5.2 Simulation Result & Discussion

Single-Period Index Tracking

The single-period problem formulation was re-considered here to provide the base case results for

the rest of this section. Figure 7.10 plots the ex-post TE attained by the selected tracker portfolio

in selected test sets. Although figure 7.10(a) reveals a monotonic rise in ex-post TE straight after

the portfolio build-up, this relationship was not generalized to PORT5 in figure 7.10(b), where the

ex-post TE remained relatively stable for the entire investment horizon before spiking up in the end.

Nevertheless, there are observed spikes in ex-post TE, noticeably for PORT2, due to the absence of

active monitoring and rebalancing, which are unacceptable from the perspective of risk management.
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Figure 7.10: Ex-post TE attained without rebalancing.

Examination of the portfolio and index return series (Figure 7.11) revealed that the spikes in

ex-post TE can be attributed to sharp changes in index returns, which led to huge returns deviations.
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While it might be argued that the deviations are actually positive gains over the index, particularly

for the case of PORT2, these gains are clearly not sustainable as negative returns were observed

when applied to the corresponding inverse data i.e. PORT7.
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Figure 7.11: Return series of the tracker portfolio and the index in the test data for a randomly
chosen algorithmic run.

Rebalancing Strategy

Portfolio rebalancing can be executed periodically or at pre-specified criteria and when triggered,

MOEITO will optimize a new tracker portfolio, accounting for the new market conditions and existing

holdings. Different rebalancing strategies will be considered here to examine their effects on the

overall tracking performance, namely, no rebalancing, periodic rebalancing (i.e. quarterly, semi-

annul and annual basis) and event-driven rebalancing when the ex-ante TE exceeds a pre-specified

limit.

Table 7.6 summarizes the ex-post tracking performance in data sets, PORT1 to PORT5. Ev-

idently, the average ex-post TE over the investment horizon was generally higher without active

rebalancing, together with a lower beta as well. The TE limit in each data set is arbitrarily defined

by rounding down the average ex-post TE attained without rebalancing to the nearest tenth basis

points. As a result, the proportion of trading days in the investment horizon where the TE limit is
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exceeded is generally higher without rebalancing. Particularly, this value exceeded 60% in the case

of PORT3.

Table 7.6: Tracking Performance in data sets (PORT1-5) for different rebalancing strategies. TE
limit for each data set is highlighted in parentheses.

Without Annual Semi- Annual Quarterly TE-Limit
Rebalancing Rebalancing Rebalancing Rebalancing Rebalancing

PORT1 Total Transaction Costs 226,849 410,527 515,634 645,691 346,166

(40bp) Number of Transaction 0.0 4.0 9.0 18.0 2.4
Average Beta 0.97 0.95 0.94 0.94 0.95

Regression Coefficient 0.98 0.99 0.99 0.99 0.99
% of days exceeding TE Limit 34.9% 13.1% 2.7% 0.0% 1.0%

Average Ex-Post TE 46.18 37.81 34.84 32.65 39.38

PORT2 Total Transaction Costs 215,583 508,409 771,173 1,015,400 1,182,152

(70bp) Number of Transaction 0.0 4.0 9.0 18.0 52.0
Average Beta 1.11 1.03 1.01 1.00 1.08

Regression Coefficient 0.87 0.88 0.90 0.90 0.87

% of days exceeding TE Limit 22.3% 22.2% 22.0% 21.9% 21.9%
Average Ex-Post TE 73.75 70.37 63.05 63.85 71.91

PORT3 Total Transaction Costs 210,415 442,362 630,508 878,675 419,763
(40bp) Number of Transaction 0.0 4.0 9.0 18.0 3.4

Average Beta 1.05 0.96 0.94 0.95 0.95
Regression Coefficient 0.91 0.95 0.95 0.95 0.94

% of days exceeding TE Limit 63.5% 13.0% 2.8% 0.1% 1.4%
Average Ex-Post TE 48.03 39.99 37.88 36.41 39.82

PORT4 Total Transaction Costs 226,138 428,120 571,050 726,027 347,983

(40bp) Number of Transaction 0.0 4.0 9.0 18.0 1.9
Average Beta 1.06 1.01 1.00 1.00 1.03

Regression Coefficient 0.93 0.97 0.97 0.98 0.96
% of days exceeding TE Limit 43.0% 2.1% 0.1% 0.0% 0.8%

Average Ex-Post TE 45.18 35.74 32.24 29.72 38.12

PORT5 Total Transaction Costs 182,778 479,429 758,945 1,117,463 370,782

(60bp) Number of Transaction 0.0 4.0 9.0 18.0 2.2
Average Beta 1.08 0.98 0.97 0.97 1.00

Regression Coefficient 0.95 0.96 0.97 0.96 0.96
% of days exceeding TE Limit 23.8% 5.7% 3.0% 1.4% 0.9%

Average Ex-Post TE 63.13 52.43 48.76 49.98 52.29

Periodic rebalancing significantly improved tracking performance, where the ex-post TE dropped

below the pre-defined TE limit, together with the proportion of investment period exceeding the TE

limit. Moreover, a beta closer to 1 was attained together with a higher coefficient of determination.

Evidently, the degree of improvement increased with the rebalancing frequency at the expense of

higher transaction cost, a direct function of the rebalancing frequency and the number of transactions.

Event-triggered rebalancing strategy was able to attune the various data sets. The ex-post TE

attained was generally higher with lower transaction costs (except for PORT2) due to infrequent

rebalancing as the defined TE limit was probably too high. For completeness, the results for the
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inverted data sets are shown in Table 7.7. Evidently, similar observations can be drawn from this

set of results.

Table 7.7: Tracking Performance in data sets (PORT6-10) for different rebalancing strategies. TE
limit for each data set is highlighted in parentheses.

Without Annual Semi- Annual Quarterly TE-Limit

Rebalancing Rebalancing Rebalancing Rebalancing Rebalancing

PORT6 Total Transaction Costs 226,316 288,433 333,168 397,412 276,229
(40bp) Number of Transaction 0 4 9 18 2.4

Average Beta 1.01 1.01 1.02 1.02 1.02
Regression Coefficient 0.99 0.99 1 1 0.99

% of days exceeding TE Limit 48.20% 7.00% 0.30% 0.00% 1.00%
Average Ex-Post TE 34.25 26.74 25.11 25.09 27.9

PORT7 Total Transaction Costs 213,670 400,058 508,173 631,418 777,988
(70bp) Number of Transaction 0 4 9 18 53

Average Beta 1.03 0.89 0.93 0.93 0.86

Regression Coefficient 0.82 0.8 0.82 0.82 0.8
% of days exceeding TE Limit 22.70% 26.20% 22.20% 21.90% 22.30%

Average Ex-Post TE 72.82 76.43 70.93 69.59 75.77

PORT8 Total Transaction Costs 206,832 348,060 463,039 624,765 344,866

(40bp) Number of Transaction 0 4 9 18 3.9
Average Beta 1 0.96 0.96 0.95 0.97

Regression Coefficient 0.92 0.94 0.94 0.95 0.94
% of days exceeding TE Limit 57.00% 13.00% 1.50% 0.10% 1.60%

Average Ex-Post TE 46.96 41.1 38.38 37.6 40.12

PORT9 Total Transaction Costs 225,533 331,914 410,121 512,188 286,451
(40bp) Number of Transaction 0 4 9 18 2

Average Beta 0.92 0.95 0.96 0.97 0.95
Regression Coefficient 0.91 0.94 0.95 0.96 0.93

% of days exceeding TE Limit 55.40% 2.20% 0.40% 0.00% 0.80%
Average Ex-Post TE 44.93 34.32 30.1 27.15 36.84

PORT10 Total Transaction Costs 190,457 405,164 607,917 899,669 399,060
(60bp) Number of Transaction 0 4 9 18 4.2

Average Beta 1.03 0.91 0.93 0.93 0.93
Regression Coefficient 0.96 0.97 0.97 0.97 0.97

% of days exceeding TE Limit 64.00% 14.40% 5.20% 2.10% 1.80%
Average Ex-Post TE 64.56 51.88 51.82 51.87 50.48

Figure 7.12 compares the time series of the ex-ante TE without rebalancing between TE-limit

rebalancing for PORT10 with TE limit of 50bp. The distinct sharp drops in ex-ante TE for the

latter whenever it hit 50bp, illustrated the execution of MOEITO. Consequently, the latter was

able to attain a lower ex-ante TE throughout the investment horizon, resulting to smaller returns

deviations against the underlying index, as shown in Figure 7.12(b) especially for time step 250

onwards. Nevertheless, on a absolute scale, ex-ante TE still remain as a proxy for the expected

ex-post TE, where perfect tracking will not be possible, as reflected in Figure 7.12(b) for time step
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between 150 and 200.
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Figure 7.12: Comparison of the tracking performance without rebalancing versus TE-limit rebalanc-
ing for PORT10 with TE limit of 50bp.

One major challenge of periodic rebalancing is to define a-prior a suitable rebalancing frequency

for different underlying indices. Defining a TE limit is analogous to defining the rebalancing fre-

quency, though TE-limit rebalancing will be more adaptive to the underlying index. To investigate

this further, TE limit of {30, 40, 50,60,70} bps were defined for PORT5 and its corresponding in-

verted series, PORT10, and the tracking performance are summarized in Table 7.8. Clearly, the

rebalancing frequency will scale in accordance to the pre-defined TE limit, resulting in better track-

ing performance while escalating transaction costs. Inevitably, perfect tracking is impossible as

the marginal improvement diminished with smaller TE limit i.e. average ex-post TE for PORT5

remained above 40bp even for smaller TE limit.

The operational sustainability of the index tracking system is measured by the net tracker port-

folio value in excess to the underlying index at the end of the investment horizon. For the index



CHAPTER 7. 183

Table 7.8: Tracking Performance in PORT5 and PORT10 for different TE limits.

TE Limit 30 40 50 60 70

PORT5 Total Transaction Costs 1,522,020 690,085 450,960 370,782 332,117
Number of Transaction 29.2 8.2 3.5 2.2 1.7
Average Beta 0.95 0.95 0.96 1 1.03
Regression Coefficient 0.97 0.97 0.97 0.96 0.96
% of days exceeding TE Limit 12.30% 3.50% 1.50% 0.90% 0.70%
Average Ex-Post TE 41.63 43.95 47.13 52.29 58.21

PORT10 Total Transaction Costs 1,593,563 646,289 399,060 288,735 251,957
Number of Transaction 43.5 10.6 4.2 1.9 1.3
Average Beta 0.94 0.93 0.93 0.92 0.93
Regression Coefficient 0.97 0.97 0.97 0.96 0.96
% of days exceeding TE Limit 18.30% 4.40% 1.80% 0.80% 0.50%
Average Ex-Post TE 46.32 47.72 50.48 53.61 57.19

tracking system to be financially independent, any negative balances should be externally funded by

investors in the form of management fees. The implied management fees for the various data sets are

summarized in Table 7.9, where a positive management fees implied that the fund is self-sustainable

and is able to earn a excess returns over the underlying benchmark. Generally, the excess balances

will flip for the inverted series except for PORT 4 and PORT9. Considering the average implied

management fees between each data series and its corresponding inverted series, the index tracking

system is generally self-sustainable, except in PORT2.

Selection of Tracker Portfolio

As the index tracking optimization problem is formulated here as a multi-objective problem, MOEITO

will generate a set of tracker portfolios that are non-dominated against each other. The methodology

in determining the appropriate tracker portfolio for the test set is outlined in section III and will

be denoted as C-AVE-1. The viability of the proposed selection strategy will be examined in this

sub-section by comparing the corresponding tracker performance with other strategies. Specifically,

two selection strategies based on the lowest TE and transactions cost will be considered, respec-

tively denoted as C-TE and C-TC. Moreover, a single-objective variant of the MOEITO (denoted as
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Table 7.9: Implied Management Fees (Annual).

Mean Standard Deviation

PORT1 1.79% 0.73%
PORT2 -19.16% 1.97%
PORT3 0.16% 2.36%
PORT4 -1.35% 2.09%
PORT5 -3.20% 1.70%
PORT6 -0.73% 0.26%
PORT7 2.60% 0.73%
PORT8 -0.14% 0.77%
PORT9 -0.22% 0.72%
PORT10 0.62% 1.36%

SOEITO), focusing solely on TE, will be considered also.

Table 7.10 and 7.11 plot the simulation results for the different selection strategies in the various

data sets. A lower TE limit was deliberately chosen so as to enhance the performance differences

between the selection strategies. Comparing SOEITO and C-TE, which essentially chose tracker

portfolio based on TE, the statistical average of total transaction cost and ex-post TE attained

by C-TE dominate that obtained by SOEITO in 6 of the data sets (PORT3, 5, 6, 8, 9, 10) i.e.

simultaneously achieving a lower TE and transaction costs, while being dominated only in PORT1.

This result highlighted the enhanced search capability of multi-objective problem formulation over

single objective, as the former will typically trigger a more diverse exploration of the search space.

Interestingly, SOEITO was able to attain a significantly low TE for PORT2 and PORT7, though at

the expense of insanely high transaction costs!

Moving on to C-TE and C-TC, their tracking performances clearly epitomize their selection

strategy where C-TE generally obtaining a lower TE at the expense of higher transaction cost as

compared to C-TC, despite the lower transaction frequency. Comparing the costs per transaction

will reflect the differences between these two strategies clearer. The rationale of C-TC having a

higher transaction frequency is that the selected tracker portfolio will stick to existing holdings and

hence less responsive to changing market conditions. Overall, C-AVE-1 represents a good trade off

between C-TC and C-TE, where the tracking performance in half of the data sets (i.e. PORT3, 5,
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6, 8, 10) dominate that of C-TE and C-TC.

Table 7.10: Tracking Performance in data sets (PORT1-5) for different selection strategies. TE limit
for each data set is highlighted in parentheses.

SOEITO C-TE C-TC C-AVE-1

PORT1 Total Transaction Costs 450,000 552,568 458,050 479,112
(30) Number of Transaction 3.5 4.6 15.7 6.3

Average Beta 0.95 0.95 0.94 0.95
Regression Coefficient 0.99 0.99 0.99 0.99
% of days exceeding TE Limit 1.50% 1.90% 6.60% 2.60%
Average Ex-Post TE 35.01 35.37 36.72 35.55

PORT2 Total Transaction Costs 5,300,000 1,284,767 1,352,339 1,225,089
(60) Number of Transaction 52 52.6 58.4 52.4

Average Beta 1.06 1.03 1.05 1.07
Regression Coefficient 0.91 0.87 0.85 0.87
% of days exceeding TE Limit 21.90% 22.10% 24.50% 22.00%
Average Ex-Post TE 56.75 70.23 81.1 71.84

PORT3 Total Transaction Costs 1,013,333 957,979 722,514 622,625
(30) Number of Transaction 9.1 8.3 35.1 9.5

Average Beta 0.94 0.95 0.93 0.94
Regression Coefficient 0.94 0.95 0.95 0.96
% of days exceeding TE Limit 3.80% 3.50% 14.70% 4.00%
Average Ex-Post TE 40.15 36.41 36.51 35.29

PORT4 Total Transaction Costs 500,000 577,241 495,421 443,090
(30) Number of Transaction 4 4.3 19.8 5

Average Beta 1 1.01 1.01 1.01
Regression Coefficient 0.97 0.97 0.97 0.97
% of days exceeding TE Limit 1.70% 1.80% 8.30% 2.10%
Average Ex-Post TE 33.27 33.18 35.49 33.55

PORT5 Total Transaction Costs 640,000 547,651 516,812 450,960
(50) Number of Transaction 5.4 2.5 9.3 3.5

Average Beta 0.93 0.95 0.96 0.96
Regression Coefficient 0.96 0.97 0.97 0.97
% of days exceeding TE Limit 2.30% 1.10% 3.90% 1.50%
Average Ex-Post TE 54.44 47.19 49.84 47.13
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Table 7.11: Tracking Performance in data sets (PORT6-10) for different selection strategies. TE
limit for each data set is highlighted in parentheses.

SOEITO C-TE C-TC C-AVE-1

PORT6 Total Transaction Costs 380,000 315,126 280,743 276,229
(30) Number of Transaction 2.8 2.5 8 2.4

Average Beta 1.01 1.02 1.02 1.02
Regression Coefficient 0.99 0.99 0.99 0.99
% of days exceeding TE Limit 1.20% 1.10% 3.40% 1.00%
Average Ex-Post TE 28.77 28.13 29.7 27.9

PORT7 Total Transaction Costs 5,400,000 803,839 777,582 753,231
(60) Number of Transaction 53 53 56.2 53

Average Beta 0.96 0.9 0.84 0.89
Regression Coefficient 0.88 0.82 0.79 0.81
% of days exceeding TE Limit 22.30% 22.30% 23.60% 22.30%
Average Ex-Post TE 58.96 71.07 78.62 73.92

PORT8 Total Transaction Costs 1,236,667 745,773 536,930 500,661
(30) Number of Transaction 11.4 9.5 37.1 10.5

Average Beta 0.96 0.96 0.96 0.96
Regression Coefficient 0.94 0.95 0.95 0.95
% of days exceeding TE Limit 4.80% 4.00% 15.60% 4.40%
Average Ex-Post TE 41.74 37.3 36.87 35.69

PORT9 Total Transaction Costs 523,333 421,095 383,651 349,192
(30) Number of Transaction 4.2 4.2 18.9 5

Average Beta 0.96 0.96 0.96 0.96
Regression Coefficient 0.95 0.95 0.94 0.95
% of days exceeding TE Limit 1.80% 1.80% 7.90% 2.10%
Average Ex-Post TE 31.06 30.77 33.13 31.43

PORT10 Total Transaction Costs 846,667 582,562 465,461 399,060
(50) Number of Transaction 7.5 3.5 14 4.2

Average Beta 0.93 0.92 0.92 0.93
Regression Coefficient 0.96 0.97 0.96 0.97
% of days exceeding TE Limit 3.10% 1.50% 5.90% 1.80%
Average Ex-Post TE 59.6 50.59 53.19 50.48
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Stochastic Injection and Withdrawal

To evaluate the tracking capability of the proposed MOEITO in the context of stochastic capital

injections, the invested capital will change at a pre-defined a injection probability, τ . Essentially,

a random number will be generated at each time step and injection will occur when the generated

random is less than the flow probability. Apart from τ , another problem parameter will be defined,

α, which controls the amplitude of the injected capital at each instant. Essentially the injected

capital at each instant will be a random percentage of the existing capital, drawn from a normal

distribution of mean 0 and standard deviation α i.e. N (0, α).τ and α will be arbitrarily set as 0.05

here.

Table 7.12 plots the tracking performance in the various data sets with and without capital

injections. A 1% annual management fees was considered. The random injection implicitly increases

the rebalancing frequency, increasing the transaction frequency and transaction costs. However, TE

was not compromised, in fact, TE actually reduced in most of the data sets i.e. PORT1, 2, 4, 6, 7

and 9. Overall, minimal disruption to the tracking performance was observed.

7.6 Summary

This chapter studied a realistic instantiation of the index tracking optimization problem that ac-

counted for stochastic capital injections and practical real-world transactions cost structures and

constraints. The proposed MOEITO, acting as the evolutionary optimization platform of the index

tracking system, considered the inherent trade-offs between tracking performance and transaction

costs and optimized them simultaneously during the investment horizon. Simulations to validate the

proposed approach were conducted and presented, based on five data sets representing equity indices

from major financial markets. MOEITO was able to balance tracking performances and transaction

costs in out-of-sample test data under the various test scenarios considered. Nevertheless, there re-

mained numerous avenues for future works, which include extending to indices of other asset classes,

a prior assessment on the trackability of index, active cash management to generate excess returns,

etc.
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Table 7.12: Tracking Performance in data sets (PORT1-10) with and without capital injections. TE
limit for each data set is highlighted in parentheses.

PORT1 (30bp) PORT6 (30bp)

w. Injection w/o. Injection w. Injection w/o. Injection

Total Transaction Costs 477,858 677,982 276,332 391,362

Number of Transaction 6.3 15.5 2.4 13.3

Implied Management Fees 4.66% 3.57% -0.45% -0.11%

Average Beta 0.95 0.94 1.02 1.02

Regression Coefficient 0.99 0.99 0.99 1

% of days exceeding TE Limit 2.60% 1.30% 1.00% 0.20%

Average Ex-Post TE 35.54 32.62 27.92 25.81

PORT2 (70bp) PORT7 (70bp)

w. Injection w/o. Injection w. Injection w/o. Injection

Total Transaction Costs 1,233,984 1,498,412 749,349 952,534

Number of Transaction 52.5 61.2 53 61.6

Implied Management Fees -17.49% -18.69% 3.05% 3.35%

Average Beta 1.07 1.02 0.89 0.9

Regression Coefficient 0.87 0.88 0.81 0.83

% of days exceeding TE Limit 22.10% 22.00% 22.30% 22.10%

Average Ex-Post TE 71.59 68.86 73.91 68.17

PORT3 (30bp) PORT8 (30bp)

w. Injection w/o. Injection w. Injection w/o. Injection

Total Transaction Costs 627,864 811,410 499,424 600,119

Number of Transaction 9.6 16.4 10.6 17.5

Implied Management Fees 0.14% -2.24% 0.66% 1.63%

Average Beta 0.94 0.94 0.96 0.96

Regression Coefficient 0.96 0.96 0.95 0.95

% of days exceeding TE Limit 4.10% 2.20% 4.40% 2.50%

Average Ex-Post TE 35.3 35.33 35.84 36.1

PORT4 (30bp) PORT9 (30bp)

w. Injection w/o. Injection w. Injection w/o. Injection

Total Transaction Costs 444,022 646,016 349,339 467,545

Number of Transaction 5 13.6 5 13.2

Implied Management Fees 0.90% 1.47% 0.55% 1.13%

Average Beta 1.01 1.01 0.96 0.97

Regression Coefficient 0.97 0.98 0.95 0.96

% of days exceeding TE Limit 2.10% 0.50% 2.10% 0.60%

Average Ex-Post TE 33.55 30.83 31.45 28.11

PORT5 (60bp) PORT10 (60bp)

w. Injection w/o. Injection w. Injections w/o. Injection

Total Transaction Costs 451,390 921,838 398,312 721,244

Number of Transaction 3.5 13.7 4.2 13.4

Implied Management Fees -0.96% -0.82% 0.86% 1.17%

Average Beta 0.96 0.95 0.93 0.92

Regression Coefficient 0.97 0.97 0.97 0.97

% of days exceeding TE Limit 1.50% 0.90% 1.80% 1.00%

Average Ex-Post TE 47.15 47.37 50.38 50.67
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Conclusions

MOEA is a class of stochastic search methods that have been proving to be very efficient and

effective in solving sophisticated MOP where conventional optimization tools failed to work well. Its

main advantage is its capability to sample multiple candidate solutions simultaneously, a task that

most classical MOO techniques are found to be wanting. Since real-world problems typically comprise

of several non-commensurable and conflicting objectives, MOEA is finding increasingly application

to the diverse fields of engineering, bioinformatics, logistics, economics, finance, and etc, with its

development significantly accelerating in the past decade. Nevertheless, existing works related to the

application of MOEA for investment portfolio management still pales in comparison to the technical

complexities involved in real-world implementations.

8.1 Contributions

This work aims to provide a comprehensive treatment on the design and application of multi-objective

evolutionary algorithms to address several key issues involved with investment portfolio management,

particularly asset allocation and management styles. These issues have been highlighted and avenues

to extend the generic MOEA platform for these purposes were proposed and empirically validated

with datasets from actual equity indices in major financial markets.
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Chapter 3 proposed an order-based representation for portfolio structure that directly control

the type of assets included in the portfolio, hence able to handle more realistic real-world con-

straints. Empirical studies on its influence on the chromosomal population distribution also revealed

its underlying flexibility and extendibility. A set of variations operator specific to the order-based

representation was proposed also, instrumental in search space exploration and maintaining the ge-

netic diversity throughout the evolutionary progress. Lastly, a PSO-EA hybrid model with a local

search strategy of fine-tuning asset weights of the portfolio and a dynamic archiving strategy with

optimization history were proposed. Empirical studies through a modified non-fractional knapsack

problem demonstrated their viability to portfolio optimization.

Chapter 4 considered the mean-variance model directly as a multi-objective optimization prob-

lem and studied the viability of the proposed MOEA platform. Empirical investigations based on

data sets representing equity indices from major financial markets were conducted and reasonable

approximations of the corresponding efficient frontiers were attainable. The superiority of the pro-

posed chromosomal representation and the corresponding variation operators over existing works was

exhibited also. Lastly, the incorporation of preference-based techniques via the proposed PSO-EA

hybrid model demonstrated its capability as a decision support system for portfolio managers in

real-world implementation.

Chapter 5 examined the effects of incorporating realistic constraints into the mean-variance

model. The two set of constraints considered were namely cardinality constraint with buy-in thresh-

olds, and round-lot constraint with transaction cost. The manner to incorporate these constraints

into the problem model and the corresponding constraint handling approaches were presented. The

empirical studies aptly demonstrated their effects on the attainable efficient frontiers, adhering closely

to logical expectations.

Chapter 6 extended MOEA for TTS optimization with maximal total returns and minimal

risk exposure. The building blocks for the trading agents were popular technical indicators used

commonly in real-world practices and evolutionary platform allowed the examination of their trading

characteristics. The Pareto front obtained accurately depicted the inherent tradeoff between risk and

returns and the analysis of the TI composition along the risk-return frontier revealed their underlying

characteristics and varying degrees of significance in different regions of the tradeoff surface. Lastly,

the correlation study suggested that the returns from the test and training data are not correlated in
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this context, contrary to popular beliefs. Instead, higher returns in training data only corresponded

to larger volatility in the returns generated in the test data.

Chapter 7 studied a realistic instantiation of the index tracking optimization problem that ac-

counted for stochastic capital injections and practical real-world transactions cost structures and

constraints. The proposed MOEITO was able to balance the inherent tradeoff between tracking

performance and transaction costs throughout the investment horizon. The TE-limit rebalancing

strategy was instrumental in improving the operational aspects of the index tracking system. Track-

ing performance and transaction costs in out-of-sample data, based on five data sets representing

equity indices from major financial markets, further affirmed its viability in real-world implementa-

tion.

8.2 Future Works

Despite covering several aspects of investment portfolio management under the evolutionary multi-

objective optimization platform, these works barely scratched the surface of what is left to be ad-

dressed. Many operational issues remain to be sorted out and further extensive validations are

absolutely necessary before the proposed models can be extended to real-world implementation. For

example, the empirical analysis was based exclusively on the data set provided by Beasley [11].

Clearly, it will be imperative to further evaluate the proposed evolutionary platform under a larger

range of data sets in the near future. In addition, computational efficiency was considered only in

terms of fitness evaluations. Since the number of evaluations will not be the true case of efficiency in

real-world implementation, another immediate consideration will be the actual computational time

complexity. This will be especially relevant for portfolios involved in real-time electronic trading and

rebalancing.

One major criticism on the mean-variance model is the implicit buy-and-hold investment strategy

assumed in this single-period optimization problem, which is in direct conflict to the ever-changing

market conditions. It will definitely be instructive to consider multi-period or continuous portfolio

optimization model via dynamic correlation models and/or enhance the predicative capability of

the model by replacing historical expected returns with forecasted returns instead. The latter can

leverage on previous works pertaining to time series forecasting under a MOEA platform [48].
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The realistic constraints considered in this work have been delicately isolated so that their in-

dividual and combined impact on the attainable efficient frontier can be studied in greater detail.

Nevertheless, extending to real-world implementation will definitely warrant the simultaneous con-

sideration of the various constraints and stress testing of the evolutionary platform capability in this

aspect is absolutely necessary in future work.

On TTS optimization, the empirical analysis revealed the intrinsic characteristics of the TI con-

sidered, corresponding to different risk-return profile. Future work should certainly involve extending

similar analysis to other TI that are able to detect other market signal not covered by the current

group of TI. Moreover, the empirical studies should be extended to other data sets to further validate

the evolutionary model.

In the aspect of index tracking optimization, this thesis has only started the ball rolling with a

multi-period instantiation of the problem that considered both tracking performance and transaction

costs. The portfolio rebalancing strategy was based on the tracker portfolio deviation with respect

to the underlying index. This model can be further enhanced by incorporating TTS to assess which

index constituents/existing holdings should be acquired / liquated at each rebalancing instances,

thus avoiding unnecessary slippage of asset value in the portfolio. In addition, the independency of

the objective functions with respect to the structure of the proposed MOEITO allows perfect sub-

stitutability to other objective functions that can offer better predicative capability and operational

efficiency, which is definitely a promising avenue for future research.
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