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Summary

SUMMARY

Mean residual life (MRL), representing how much longer components will work for
from a certain point of time, is an important measure in reliability analysis and
modeling. It offers condensed information for various decision-making problems,
such as optimizing burn-in test, planning accelerated life test, establishing warranty
policy, and making maintenance decision. Realizing the importance of the mean
residual life, this thesis focuses on the modeling (Chapter 3 and Chapter 4) and

analysis (Chapter 5 and Chapter 6) based on this characteristic.

This thesis studies both parametric models and nonparametric methods, which
are the two common ways in reliability modeling. In Chapter 3, a parametric model is
developed for a simple, closed-formed upside-down bathtub-shaped mean residual life
(UBMRL). This model is derived from the derivative function of MRL, instead of
reliability function and failure rate function that are often used in model construction.
We first characterize the derivative function and develop a general form for the model.
Based on the general form, a suitable function is selected as a starting point of the

derivation of the new UBMRL model. The MRL function and the failure rate function
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are further studied. Numerical examples and comparisons indicate that the new model
performs well in modeling lifetime data with bathtub-shaped failure rate function and

UBMRL function.

Besides the parametric model, we propose a nonparametric method for the
estimation of decreasing MRL (DMRL) with Type II censored data (Chapter 4). This
method is based on the comparison between two estimators of the reliability function,
the Kaplan-Meier estimator and an estimator derived from the empirical MRL
function. Based on data generated from Weibull and gamma distributions, simulation
results indicate that the new approach is able to give good performance and can

outperform some existing parametric methods when censoring is heavy.

Moreover, the analysis of the relationship between MRL and other reliability
measures is another important issue. Hence, Chapter 5 focuses on the relations
between MRL and the failure rate function by studying the effect of the change of one
characteristic on the other characteristic. The range that the MRL will decrease
(increase) if the associated failure rate function is increased (decreased) to a certain
level is investigated. On the other hand, the difference of two failure rate function is
also studied in the case that their corresponding MRL functions are ordered. Some
inequalities are established to indicate upper or lower bound on the extent of change.

The application of the inequalities is also discussed.

As an extension of the MRL of single items that is discussed in foregoing
chapters, the MRL of systems is investigated in Chapter 6. We discuss MRL of series
and parallel systems with independent and identically distributed components; and

obtain the relationships between the change points of MRL functions for systems and
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for components. Compared with the change point for single components assuming
that it exists, the change point for a series system occurs later. For a parallel system,
its change point is located before that for the components, if it exists at all. Moreover,
for both types of systems, the distance between the change points for systems and for
components increases with the component number. In addition, the MRL of a parallel

system with two non-identical components is briefly discussed in a graphic way.
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Chapter 1: Introduction

CHAPTER 1 INTRODUCTION

This thesis contributes to some methodological and analytical issues concerning Mean
Residual Life (MRL) in reliability analysis. In this introductory chapter, some
background information is provided, which is followed by motivations of the research
on MRL. We then give the scope and objective of our study. Finally, a summary of the

contents of this thesis and its structure are presented.

1.1 Background information

The study of lifetimes is a prevailing and important topic for researchers. Actuaries
may be interested in the lifetime of a person to determine the amount of premium he
should pay for his annuity. Biostatisticians may investigate the lifetimes of cancer
patients who are subject to different therapies. Reliability engineers may be concerned
about the lifetime of a light bulb or a private computer so that proper warranties or

maintenance can be planned.

However, the lifetimes of either humans or products always differ from one to
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another. Leibniz, a famous mathematician and philosopher, said “no leaves are ever
exactly alike”. Even for the products made from the same materials and under the
same process, their lifetimes vary from each other due to some uncontrollable factors,
such as the float of temperature and moisture. One way to deal with this kind of
uncertainty is to measure it in terms of probability, which is the essence of reliability
analysis. Reliability, regarded as quality over time, was textually defined in Leemis

(1995) as follows,

“The reliability of an item is the probability that it will adequately perform its
specified purpose for a specified period of time under specified environmental

conditions.”

In reliability analysis, lifetimes are treated as random variables subject to
probability distributions, either continuous or discrete distributions. The most famous
distribution used in reliability analysis is exponential distribution, which is the
simplest model in describing lifetimes. But the application of this distribution is
limited in practice, because few components have the property of lack of memory.
Compared to exponential distribution, Weibull, lognormal, inverse Gaussian and other

distributions are more flexible in modeling different types of failure mechanisms.

As lifetimes are assumed to follow probability distributions, the reliability is
usually measured by a function of time that can represent the distributions. There are
five main characteristics used to measure reliability: the reliability function, the
probability density function, the failure rate function, the cumulative failure rate
function, and the MRL function. Although these five functions are actually equivalent

in the sense of probability (i.e. knowing any one of them, the other four functions can

2
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be uniquely determined), each of them provides different descriptions for the lifetimes
of products. The reliability function interprets the possibility that items will last for a
certain period of time. The probability density function describes how frequently
products fail at each time point. The failure rate function indicates the instantaneous
risk an item faces. The cumulated failure rate function gives the information about the
expected number of failures that will occur by some time point. The MRL presents
how much longer components will work from a certain point of time. According to
their different statistical meanings, these five characteristics are often used to make
various decisions with different focuses. In this thesis, the MRL will be extensively

discussed and studied in the aspects of reliability modeling, analysis, and application.

Conceptually, the MRL function is derived from residual life, a conditional
random variable. For an item that has survived a period of time, its residual life is
defined as a random variable conditioning on the time it has experienced. This
measure contains two aspects of information, the lifetime of an item and the fact that
this item has been working for some time period without failure. Because of its dual

characters, residual life is widely applied in reliability engineering.

In engineering reliability tests, we often consider the residual life of a device.
For example, in a step-stress accelerated life test, the life of a specimen corresponding
to current stress is actually the residual life of this specimen after the previous testing
steps. (Tang et al., 1996). Another instance is burn-in test, which eliminates weak
components before releasing strong components. The lifetimes of the passed

components are residual lives as well.

The applications of residual life in maintenance have also drawn much
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attention. An aircraft whose mileage is ten thousand miles may need a properly
scheduled maintenance plan for its engines to ensure its next 1000-mile flight. In
industries, an accurate prediction of the residual life of machines will conduce
proactive maintenance processes that would help to minimize downtime of machinery

and production (Yan et al., 2004).

However, for the decision making in maintenance and tests, such as the
determination of optimal time for stopping a burn-in procedure or executing a repai,
it is inconvenient to define and analyze a series of residual lives according to different
survival times. Hence the MRL function, generated as the expectation of residual life,
is helpful in making such decisions. An extensive literature review on the property
and modeling of the MRL will be presented in Chapter 2 in order to discuss the
extensive research on the MRL function in literature and to demonstrate the

importance of the MRL in reliability analysis.

1.2 Research motivation

In practice, before analyzing the MRL function and making decisions, we always need
to estimate the MRL function from the data of failure times. The two common ways in

modeling are parametric modeling and nonparametric method.

For the parametric modeling, an underlying distribution needs to be
predetermined before the analysis of failure data. One important distribution family is
Weibull family that is developed based on Weibull distribution (Weibull, 1951),

including exponentiated Weibull distribution (Mudholkar & Srivastava, 1993),
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additive Weibull distribution (Xie & Lai, 1996), generalized Weibull model (Lai et al.,
2003) and extended Weibull distribution (Chen, 2000 ; Xie et al., 2002). Besides,
there are also other distributions, such as generalized gamma distribution (Gupta &
Lvin, 2005a) and generalized lognormal distribution (Gupta & Lvin, 2005b). All these
models, with different parameters, have both monotonic and non-monotonic MRL
functions; thus they are able to model lifetimes exhibiting different types of MRL.
However, for these existing models, the MRL functions are of complicated forms,
which usually involve an integral of a reliability function that is not of a closed form.
This problem motivates the formulation of a new class of life distribution, which has
different characteristics from the existing models, such as a new model with some
form of the MRL function. Obviously, this kind of new model will make the analysis

based on MRL easier.

Compared to the parametric modeling assuming underlying distributions,
nonparametric methods use only failure data to estimate the MRL function regardless
of the forms of models and thus introduce less bias. Yang (1978) proposed the
empirical MRL function for complete data, which is the first and basic nonparametric
estimation for the MRL function. Based on this estimator, several other MRL
estimators for complete data were also constructed (Zhao & Qin, 2006; Kochar et al.,
2000). Moreover, the case of random right censorship was considered in the
estimation of the MRL function. Li (1997) presented a confidence bound for the MRL.
Statistical inference for the MRL under random right censoring was provided by Na &
Kim (1999) and Qin & Zhao (2007). In contrast to numbers of studies on the
randomly right censoring, only a few papers in literature focused on the estimation of
the MRL under extreme right censorship. This is because that it is more difficult to

5
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deal with the lost information in extreme right censoring than in other types of
censoring. In Guess & Park (1991), only conservative confidence intervals were
presented under extreme right censorship. Hence, other feasible methods are expected

and required for the estimation of the MRL function.

Besides studying only the MRL function itself, the relationship between the
MRL and the failure rate function is another important issue in reliability analysis.
This is because these two characteristics are closely related to each other and the
comparison between them is helpful in decision-making and estimation. In literature,
many works have found that the MRL function is closely related to the failure rate
function. Bryson & Siddiqui (1969), Gupta & Akman (1995a), and Tang et al. (1999)
proved that the shape of the MRL function depends on the shape of the failure rate
function for both monotonic and non-monotonic cases. Also, Gupta & Kirmani (1987)
proved that the failure rate ordering dominates the MRL ordering and proposed a
sufficient condition under which the reverse also holds. These studies discussed the
relationship between the MRL and the failure rate function mainly from a qualitative
point of view. Only a few papers tried to quantify the relations of the two functions.
Finkelstein (2003a) gave a quantitative analysis on how the MRL changes with
increased failure rate, but unfortunately he did not give any concrete result on the
extent of change. Hence, more quantitative analysis on the relationship would be
useful and meaningful in reliability for both theory and application. Moreover, most
discussions focused on the effect that the failure rate function has on the
corresponding MRL, such as limiting property and shape, as the failure rate function
usually can be explicitly expressed. But, sometimes, it may be easier to start from the
MRL function. For example, it is more convenient to get the empirical estimation of

6
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the MRL than of the failure rate function, because the failure rate function encounters
derivative function, whose estimation is hard to be obtained. Therefore, some
quantitative studies on the relationship between MRL and failure rate function are

required as a complement to those existing works.

Compared to the MRL of single items considered in all the previous studies,
the MRL function of systems also plays a significant role. The system reliability is
often studied at either system level or component level. If a system is analyzed at
system level, then it is treated as a whole without considering its inner structure and
thus can be similarly discussed as a single item. For component level, the structure of
a system always needs to be clearly defined, because in this case, the reliability of a
system is determined by the allocation and the properties of components; see Leemis
(1995) for a systematic definition and an annotated overview. In literature, several
papers discussed the properties of MRL that series and parallel systems can preserve
from their components. Abouammoh & El-Neweihi (1986) showed that parallel
systems inherit the DMRL from components. The reversed preservation ageing
properties for series and parallel systems were discussed in Li & Yam (2005),
Belzunce et al. (2007a), and Li & Xu (2008). These works made great contributions to
the preservation behaviors of series and parallel systems, but they did not investigate
the shape of the MRL function. Hence, the study of the MRL’s shape, especially the
non-monotonic shape, is needed for series and parallel systems, as such analysis
would help to determine whether application decisions should be made at system level

or component level.
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1.3 Research scope and objective

The aim of this research was to make a comprehensive study on reliability modeling

and analysis based on mean residual life. The specific aims of this research were:

e To propose a parametric model with relatively simple and closed-form upside-
down bathtub-shaped MRL (UBMRL) from the starting point of the derivative
function of the MRL; to study the general form of the proposed model so that

a new way for the definition of probability distributions could be established.

e To develop a nonparametric method to estimate DMRL under extreme right
censorship by comparing two estimators of the reliability function, the Kaplan-
Meier estimator (Kaplan & Meier, 1958) and an estimator derived from

empirical MRL function (Yang, 1978).

e To quantitatively study the relationships between the MRL function and the
failure rate function by establishing some inequalities; to utilize the
inequalities to construct bounds for one characteristic based on the other

characteristic.

e To study the MRL functions for series and parallel systems that are composed
of components with UBMRL; to compare the MRL of systems with the MRL

of components in terms of changing point.

Results of the present study would enhance our understanding of the properties,
modeling, and applications of the MRL function. The proposed model with relatively
simple and closed-form UBMRL may provide more accurate description for the

lifetime of items and also may be of great importance in decision making based on the
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MRL function in terms of its shape; and the general form of the proposed model could
shed light on a new definition of probability distributions. The nonparametric
estimation of the MRL under extreme right censorship may provide an innovative
method to deal with information loss due to censoring. The study of the relationship
between the MRL and the failure rate function may provide guidelines on how to
control the deterioration of products more efficiently. The results on change point of
the MRL function for series and parallel systems may lead to a better understanding of

the role of redundancy that is usually built into systems.

In this thesis, the MRL function refers to continuous, differentiable and
univariate MRL function, which is most commonly used in reliability analysis
compared to discrete and multivariate MRL. The same assumptions are also applied to
other probability characteristics, such as the reliability function and the failure rate
function etc. Moreover, in most parts of our research on the MRL, only DMRL and
UBMRL are considered, because they are two most natural and simplest shapes in real
life application and other more complex curves, if needed, can be easily obtained by
combining the DMRL and UBMRL. Additionally, all the calculation and simulation

experiments are based on the platform provided by the software “Mathematica”.

1.4 Organization of the thesis

This thesis consists of seven chapters and focuses on the study of the MRL in two
aspects, reliability modeling and reliability analysis. For the modeling issue, a
parametric model with UBMRL and the general form are proposed and studied in

Chapter 3; in Chapter 4, a nonparametric method is developed to estimate the MRL

9
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function with Type II censored data. In the analysis part, Chapter 5 analyzes the
relationships between the MRL and the failure rate function and applies the results for
the estimation of bounds for the two functions. In Chapter 6, change points of the
MRL functions for series and parallel systems are discussed and compared with
change point of the MRL for single components in terms of location. Finally, a
conclusion of the entire work as well as some potential future research topics is given

in Chapter 7. A graphic summary of the content of each chapter is shown in Figure 1.1.

[ 1. Introduction ]

\ 4
[ 2. Literature review ]

N
[ I

Reliability modeling Reliability analysis
\ 4 v
[ 3. A general model for UBMRL } [ 5. MRL and failure rate function }
v v
4. DMRL estimation with Type II 6. MRL of series and parallel systems
censored data

v
[ 7. Conclusions and future }

research

Figure 1.1 Structure of the thesis.

In the next chapter, the papers on MRL in literature will be extensively

reviewed so that a better comprehension of how our research was originated and what

10
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our results will contribute can be achieved, as well as the challenges associated with
various aspects of the research on the MRL. The topics covered in the next chapter
include definitions and properties of the MRL and other characteristics, the parametric
and nonparametric modeling of the MRL, the MRL of systems, and also some

common uses in practice.

11
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CHAPTER 2 LITERATURE REVIEW

The MRL function has been widely used in fields of reliability, statistics, and
insurance. In literature, many useful results have been derived in various aspects of
the MRL, such as the properties, the shape, the estimation, and the application etc. A
recent and detailed review of the MRL in reliability analysis was presented in Chapter
4 of Lai & Xie (2006). In this chapter, we focus on the existing works most related to
this thesis and give a focused but informative survey in support of our research.
Definitions and properties of the MRL and other related reliability measures are first
presented in Section 2.1. Section 2.2 presents a comprehensive review on parametric
models and nonparametric estimation for the MRL. Section 2.3 discusses the MRL for

coherent systems. In Section 2.4, some applications of the MRL are given.

2.1 Definitions and properties

The MRL function, the failure rate function, and the reliability function are
mathematically defined and explained in this section. Also, according to different

shapes of the MRL and the failure rate function, various classes of life distributions

13
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are defined and categorized. After that, the properties of the MRL are studied and
compared to that of the failure rate function, which is considered reciprocal with the

MRL function.

2.1.1 Basic definitions and concepts

Suppose 7 is a continuous non-negative random variable with cumulative

distribution function (CDF) F(¢), probability density function (PDF) f(¢), and
reliability function R(¢#) =1— F(¢). Define the residual life random variable at age ¢
by 7, =T —t|T > t; see Banjevic (2008) for discussion. If E[T] < oo, then the MRL

function exists and is defined as the expectation of the residual life

m(t):E(T—t|T>t):$J.:OR(x)dx, >0, @.1)

It 1s easy to show that MRL determines distributions uniquely; see Langford (1983)
and Wesolowski & Gupta (2001) for example. The reason for this fact is that the MRL

function m(t) is equivalent to the reliability function R(?) in the sense of probability;

and the reliability function is known to be able to determine probability distributions.

In (2.1), the MRL m(¢) is mathematically defined as a function of R(¢). On the other

hand, we can also express R(¢) in terms of m(¢)

_mO )1
R= exp{ L e dx}, 0. 2.2)

Another characteristic that is closely related to the MRL, as mentioned

frequently in previous chapter, is the failure rate function r(¢).

14
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r(t):%, £>0. (2.3)

Since m(¢) is assumed differentiable in this thesis, it can be shown that

m'(¢) = m(£)r(t) —1. (2.4)

As m(t) >0 and r(¢) >0, we have m'(t) > —1, which means the slope of the MRL
should be always no less than —1. Equation (2.4) also implies that the shape of m(¢)

depends on both m(¢) and r(¢).

Also, the failure rate function can be used to define the reliability function

R(1) = exp[— I Ot r(x)dxj. 2.5)

Together with (2.1) — (2.5), it can be concluded that, the MRL function m(¢), the
failure rate function »(z), and the reliability function R(#) are equivalent in the sense

that all of them are able to uniquely determine the distribution; and knowing any one
of them, the other two could be obtained given that they exist. In addition, the
transform and the combination of these measures are also found to be able to
characterize distributions; see Roy (1993), Ruiz & Navarro (1994), Navarro et al.
(1998), Navarro & Ruiz (2004), Sankaran & Sunoj (2004), Gupta & Kirmani (2004),

and Xekalaki & Dimaki (2005) for discussion.
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2.1.2 Mean residual life classes

Different MRL classes describe different aging properties. In general, the MRL
classes can be divided into two groups based on the behavior of the MRL function:
monotonic and non-monotonic. The monotonic aging classes for the MRL function
include distributions with decreasing mean residual life (DMRL) and with increasing
mean residual life (IMRL). The non-monotonic MRL classes have much more types
of distributions. Some known classes are upside-down bathtub-shaped MRL
(UBMRL), bathtub-shaped MRL (BMRL) and new better than used in expectation
(NBUE), etc. As the MRL function is closely related to the failure rate function, the
MRL classes are also linked to the classes defined via the failure rate function, such as
increasing failure rate (IFR), decreasing failure rate (DFR), bathtub-shaped failure
rate (BFR) and upside-down bathtub-shaped failure rate (UBFR), etc. Next,
mathematical definitions of different distribution classes are presented and a chain of
implication used to indicate the connection between some of these classes is also

given.

Definition 2.1 A distribution is said to be DMRL (IMRL) if the mean residual life

function m(¢) is decreasing (increasing) in ¢, i.e. m'(¢) <0 for t >0 or m'(¢) >0 for

t20.

As explained in Lai & Xie (2006), DMRL means that, the older an item is, the
smaller is its MRL, and IMRL implies that an older item has longer MRL. Similar to
monotonic MRL class, the definition for the class with increasing (decreasing) failure

rate function (IFR, DFR) is
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Definition 2.2 A distribution is said to be IFR (DFR) if the failure rate function r(¢)

is increasing (decreasing) in ¢, i.e. '(¢) >0 for t >0 or »'(¢) <0 for t > 0.

Bryson & Siddiqui (1969) showed that [FR (DFR) implies DMRL (IMRL) and
claimed that DMRL does not imply IFR by giving a counter example. Similar
problem was also studied in Lillo (2000). Sufficient conditions under which MRL also

dominates the failure rate function will be presented in Section 2.1.3.

There are also several aging notions representing the non-monotonic behavior

of the MRL m(t) . One of the most popular classes is UBMRL, which is developed on

the basis of the corresponding failure rate class, BFR. These bathtub distribution
classes plays an important role in reliability, because this type of distribution classes
usually could be observed in the lifetime of a population containing both normal and
inferior products (Lawless, 1982; Kao, 1959; Bebbington et al., 2007a). An intuitive
explanation is that, due to the initial quick die-out of inferior products, the overall
reliability of the population improves exhibiting a DFR and an IMRL, and then enters
a stable period with relatively constant MRL and failure rate before finally wears out
with an IFR and a DMRL, as the normal products start to deteriorate. In literature,
there are several definitions for UBMRL and BFR. Mi (1995) defined a bathtub curve

by three segments: increasing (decreasing), constant and decreasing (increasing).

Definition 2.3 A real valued function g(7) with support [0,00) has a bathtub (upside-
down bathtub) shape if there exists 0 <7, < ¢, <o such that

(a) g(¢) is strictly decreasing (increasing) if 0 <t <¢;;

17



Chapter 2: Literature Review

(a) g(¢) is constant if £, <t <t,;and

(a) g(¢) is strictly increasing (decreasing) if ¢ > ¢, .

In Definition 2.3, if #, =¢, =0, g(¢) becomes a strictly increasing function; if
t, =t, =, g(t) is strictly decreasing; in general, if #, =t,, the interval with constant

degenerates to a single point. Obviously, strictly monotonic function is a special case

in this definition.

To avoid ambiguity and distinguish monotonic case from bathtub classes, we
adopt the definition in Glaser (1980) to describe the UBMRL and BFR in this thesis,
which defined the bathtub shape via the derivative functions and assumed that the
constant period in Definition 2.3 degenerates to a point. In fact, the UBMRL and the
BFR defined in Glaser (1980) can also refer to increasing initially then decreasing
mean residual life (IDMRL) and decreasing initially then increasing failure rate

(DIFR). Typical curves of UBMRL and BFR are displayed in Figure 2.1.

Definition 2.4 A distribution is said to be UBMRL if there exists a ¢, such that the
MRL function m(t) is increasing for 0<¢<¢, and then decreasing for 7> ¢, i.e.
m'(t)>0for 0<t<t,, m'(t)=0for t=¢t, and m'(¢t) <0 for ¢t >¢,. And ¢, is called

change point of m(?).

Definition 2.5 A distribution is said to be BFR if there exists a v, such that the failure
rate function 7(¢) is decreasing for 0 <7< v, and then decreasing for ¢>v,, ie.

r'(t)<0for 0<t<v,, r'(t)=0for t=v, and »'(#) >0 for > v,. And v, is called
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change point or critical point of 7(z).

3 m(t)
2.5
2
1.5
1
0.5-L x(t)
2 4 6 g 10 12

Figure 2.1 Typical curves of UBMRL and BFR.

Since the MRL m(¢) and the failure rate function »(¢) are assumed to be

continues and differentiable in this thesis, it is reasonable to define the life classes in
terms of the behaviors of their derivatives. Thus without being specific, it is
understood that the acronyms UBMRL and BFR that appear throughout the rest of
this thesis are defined by Definition 2.4 and 2.5 respectively. In addition, the
distribution classes with BMRL and UBFR also can be analogically defined, but these
two classes are seldom encountered in practical reliability engineering, because it is

unrealistic the case that the older an time is, the better is its performance.

Other definitions of bathtub classes were also presented in Deshpande &
Suresh (1990), Mitra & Basu (1995), and Haupt & Schabe (1997). More general MRL
classes, which extend monotonic MRL and UBMRL, were also considered and
defined based on either mean time to failure, i.e. m(0), such as new better than used
in expectation (NBUE), new worse used in expectation (NWUE) in Barlow &
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Proschan (1981a). Then the new better than used in failure rate (NBUFR), new worse
than used in failure rate (NWUFR) distribution classes can be correspondingly

defined in the failure rate function (Deshpande et al., 1986).

Definition 2.6 A distribution with mean g = m(0) is said to be NBUE if m(¢) < u for
all > 0; similarly, a NWUE distribution is such a distribution that m(z) > x for all

t=>0.

Definition 2.7 A distribution is said to be NBUFR if r(0)<r(¢) for all 1>0 ;

similarly, a NWUFR distribution is such a distribution that »(0) > r(¢) forall t>0.

The classes in a group often can be connected by some chains of implications
(Deshpande et al., 1986; Kochar & Wiens, 1987) and also closely linked to the failure

rate classes with similar monotonicity.

IFR (DFR) ——> NBUFR (NWUFR)
DMRL (IMRL) ———> NBUE (NWUE)

In a similar manner, we can define more general classes based on the non-
monotonic behavior of MRL. Mitra & Basu (1995) proposed new worse then better
than used in expectation (NWBUE) and new better then worse than used in
expectation (NBWUE) distributions; and also showed that {UBMRL} < {NWBUE}

and {BMRL} c {NBWUE}.

Definition 2.8 A lifetime distribution with mean g =m(0) is said to be NWBUE if
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there exists a point 0 < 7 < o such that

0 >u, fort<rt
m ;
<u, fort>t

Similarly, a NBWUE distribution satisfies that there exists a point 0 < 7 < oo such that

0 <u, fort<rt
m .
>u, fort>t

Besides, there are also other classes, which are developed by comparing m(t)
with the MRL at a specified time point, like better MRL at #, in Kulasekera & Park

(1987). Further and recent discussions of distribution classes can refer to Belzunce et
al. (2004), Ahmad et al. (2005), and Al-Zahrani & Stoyanov (2008). In Sun & Zhang
(2009), a class of transformed mean residual life models was proposed for fitting

survival data under right censoring.

2.1.3 Properties and relations with failure rate function

Since the definition of MRL was proposed, the associated properties have been
studied for over a half century. An early extensive discussion on theoretical properties
of the MRL might date back to Cox (1962). Limiting properties of the MRL were
provided in Meilijson (1972) and Beirlant et al. (1992). Recently, Bradley & Gupta
(2003) investigated limiting behaviors of the MRL and derived an asymptotic
expansion which could give a good approximation for the MRL when time variable is
large. Another study on the similar topic was also conducted in their work Gupta &

Bradley (2003).
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Compared to the studies considering only the MRL function itself, many more
works in literature focus on the relationship with other characteristics, especially the
failure rate function. This is because the failure rate function, to some extent, could be
treated as the reciprocal of the MRL. In Calabria & Pulcini (1987), an asymptotic
relationship between the MRL and the failure rate function was derived by applying

the L’Hospital’s rule to (2.1)

lim m(f) = lim —— .
t—o0 t—>o r(z)

given that the latter limit exists and is finite. Besides limiting behaviors, this
reciprocity between the MRL and the failure rate function exists through the entire
time period. Finkelstein (2003a) generally discussed the reduction in MRL due to an
extra risk represented by increased failure rate. Based on it, Bebbington et al. (2008)
assumed that the extra risk could be modeled by a constant failure rate and further

discussed in details the effect of such a risk on the change of MRL.

In addition to above works, the other two issues reflecting the reciprocity are
curve shape and partial ordering, which have attracted much attention in literature.
Thus, in the following, the papers on the relationships between the MRL and the

failure rate function are surveyed in the aspects of these two issues.
e Shapes of the MRL and the failure rate function

Bryson & Siddiqui (1969) proved that IFR (DFR) implies DMRL (IMRL) and
claimed that the converse proposition is not true by giving a counter example. In Ghai

& Mi (1999), a sufficient condition is provided for a DMRL (IMRL) distribution that
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is also IFR (DFR).

Theorem 2.1 Let m(t) be a MRL and r(t) be the corresponding failure rate function.
Then
(1) If m(t) is increasing and concave, then r(t) is decreasing;

(1) If m(t) is decreasing and convex, then r(t) is increasing.

Motivated by the relationship between the monotonic MRL and failure rate
classes, one may conjecture that the UBMRL distribution class is also closely related
to the BFR class. As early as two decades ago, Rajarshi & Rajarshi (1988) pointed
out that the relationship between UBMRL and BFR could be empirically observed
“from the life tables of human and animal populations”. A general result on the

relation between the non-monotonic classes of m(¢) and r(¢) was given in both Gupta

and Akman (1995a) and Mi (1995).

Theorem 2.2 Suppose r(t) is of bathtub shape (BFR), then

(1) m(t) is DMRL if r(0)ym(0) <1,

(2) m(t) is UBMRL if r(0)m(0)>1.

On the other hand, if r(t) is of upside-down bathtub shape (UBFR), then
(1) m(t) is IMRL if r(0)m(0)>1;

(2) m(t) is BMRL if r(0)m(0) <1.

Based on Theorem 2.2, some useful results were derived for the change points

of non-monotonic MRL and failure rate functions that are defined in Definition 2.4
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and 2.5. Detailed proofs of the following theorem can refer to Mi (1995), Guess et al.

(1998), and Tang et al. (1999).

Theorem 2.3 Suppose r(t) is of bathtub shape (BFR) with a change point v,. If
r(0)m(0) >1, then m(t) is UBMRL with a unique change point t, € (0,v,), ie.

ty <V,. Otherwise, m(t) is DMRL.

A similar conclusion also can be made for the UBFR and BMRL classes.

These results indicate that the change point of a non-monotonic MRL m(¢) always
occurs prior to the change point of its related failure rate function »(z). They also
show that the shape of a non-monotonic m(#) depends on the shape of the
corresponding 7(¢), which is also true for monotonic MRL and failure rate function

discussed before.

On the other hand, the shape of a non-monotonic MRL, the same as the
monotonic case, cannot determine the shape of the failure rate function. In Ghai & Mi
(1999), a sufficient condition under which UBMRL implies BFR was developed, as
shown in Theorem 2.4. Although the bathtub curve defined in their paper follows
Definition 2.3 which includes a constant period, the results still can be applied to our

interested UBMRL and BFR in Definition 2.4 and 2.5 by some modifications.

Theorem 2.4 Let m(t) is UBMRL with a change point t,. Suppose there exist
t, €ty,0) such that m(t) is concave on [0,t,) and convex on [t;,©). If m'(t)is

convex on [t,t,), then one of the following alternatives is true for r(t):
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(1) r(t) exhibits a bathtub shape (Definition 2.2) that has two change points, say
vV, <V, where ty <v,<v, <t
(2) r(t) exhibits a bathtub shape that has a unique change points, say v,,; where

ty<Vvy<t.

Furthermore, Tang et al. (1999) and Bekker & Mi (2003) studied change
points of a roller-coaster shaped MRL function, a more complex curve with increasing
and decreasing segments appearing alternately, and found that the number and
location of the change points are determined by the corresponding failure rate
function and the derivative function of MRL. Similar results were obtained in Bekker
& Mi (2003) and Gupta & Gupta (2000) when considering the crossings of two MRL
functions as well as two failure rate functions. They found that the crossing points of
two MRL functions also depend on those of the corresponding failure rate functions in
terms of number and location. More general discussions on the shape of the MRL can

be found in Finkelstein (2002) and Mi (2004).

e MRL ordering and failure rate ordering

As pointed out in the forgoing sections, the MRL, the failure rate function, and the
reliability function are equivalent to each other. Moreover, the shape of the failure rate
function often could determine the shape of the MRL. An interesting question is
whether a partial ordering with respect to one characteristic would imply the same

partial ordering with respect to another characteristic.

Definition 2.9 Consider two life time random variables X and Y with reliability
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function R, (¢) and R, (?), respectively,
(1) Stochastic ordering: X >¢; ¥V if Ry (¢) 2R, (¢) forall t>0;
(2) Failure rate ordering: X 2z ¥ if r(£) <1y (¢) forall £20;

(2) Mean residual life ordering: X >z, Y if my (2) 2 my (¢) forall £ >20.

Gupta & Kirmani (1987) proved that failure rate ordering implies MRL
ordering and under some sufficient condition, two random variables that are subject to

a MRL ordering also have the same failure rate ordering.

Theorem 2.5 Let X and Y be two life time random variables with reliability function

R (t) and Ry (t). Then

(1) ry (1) <1y (1) = my () 2 my (1),
(2) Suppose m () 2 my(t) and my(t)/my(t) is a non-decreasing function for all

t20, then ry(t) <1y ().

Due to the close dependence between the MRL and the failure rate function ,
Finkelstein (2006) reviewed some common relationships between MRL ordering and
failure rate ordering and showed that failure rate ordering leads to the corresponding
ultimate mean residual life ordering with some assumptions. Hu et al. (2004) did a
unified study on the two orderings from a new point of view of likelihood ratio
ordering with different degrees. Frostig (2006) studied the sum of several dependent
Bernoulli distributed random variables in MRL ordering. Also, the relationship
between MRL ordering and other partial orderings was dealt with in other works.

Kochar & Wiens (1987) extensively studied MRL ordering, NBUE ordering and
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NBUFR order ordering, etc. Belzunce et al. (1999) discussed Laplace order and
ordering of residual lives. Reversed MRL ordering, also called mean inactive time

ordering was considered in Nanda et al. (2006) and Li & Xu (2006).

2.2 Reliability modeling

Reliability modeling, which in fact refers to lifetime data modeling, aims to find out
underlying failure mechanisms of items and describe their failure behaviors in a
proper way, so that accurate predictions and correct decisions could be made. This
thesis focuses on how to model and analyze lifetime data in terms of the MRL
function. There are two main methods in modeling: parametric modeling and
nonparametric estimation. In parametric modeling, different probability distributions
with various parameters are used to fit diverse lifetime data. Maximum likelihood
estimation (MLE) and least square estimation (LSE) are the two most common
approaches in estimating distribution parameters. For nonparametric estimation, as its
name shows, this type of estimation does not assume any distribution and obtain the

MRL function from data empirically.

e Test of exponentiality versus different MRL classes

To assure the effective fitness of data, statistical tests are always conducted before the
modeling to identify different aging classes defined on MRL. Commonly, the tests are
proposed for exponentiality, i.e. constant MRL, against other MRL class alternative.
One graphic and intuitive test method is derived from total time on test (TTT) test

(Bergman & Klefsjo, 1984). Formally, the TTT transform of a distribution with CDF
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F(¢) and reliability function R(¢)is defined as
y F(x)
H; (x):J' R(u)du, 0<x<1.
0

And scaled TTT transform is
¢ (x) = Hi (x)/ HE (1).

By studying the derivative function of @, (x) with respect to x , we have that ¢, (x)
is concave for IFR and convex for DFR, and has an s-shape for bathtub shape
distribution. The following Figure 2.2 summarizes shapes of ¢ (x) for different

classes.

513
~
0
~

=

o

constant

bathtub

Figure 2.2 Scaled TTT transform for different distribution classes.

There are also plenty of other statistical tests established in literature.
Bandyopadhyay & Basu (1990), Ahmad (1992), El-Bassiouny & Alwasel (2003), and
Li et al. (2006) proposed tests for constant MRL against DMRL. Chen et al. (1983),

Aly (1990), Lim & Koh (1996), and Abu-Youssef (2002) dealt with the problem of
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monotonic MRL classes. Tests for distinguishing exponentiality from non-monotonic
MRL classes were presented in Hawkins et al. (1992), Na & Lee (2003), and Anis &
Mitra (2005). In Dauxois (2003), a more general test was established for exponential
distribution versus non-exponential’s. Lim & Park (1998) used a test to detect trend
change in MRL. A detailed discussion and comparison of classical and recent tests can

be found in Henze & Meintanis (2005).

2.2.1 Parametric models

Parametric models are regarded as useful tools in extracting and summarizing the
information from failure data. The two common statistical techniques are MLE and
LSE. In literature, numerous parametric distributions have been proposed to model
different types of failure data that have either a monotone MRL or UBMRL. The most
famous distribution in reliability is exponential distribution, which is the simplest
model and the only continuous distribution with constant MRL. But the application of
this distribution is limited, because few items in practice that have not failed may be
statistically as good as new. Although the applicability is restricted, the exponential
distribution still plays an important role in lifetime modeling; and its reliability

function, failure rate function and MRL function are

R(t) =exp(—At) r(t)=A1 m(t) =% for A >0,t>0.

e  Weibull family

In practice, mechanical items typically deteriorate over time and hence are more likely

to have an increasing failure rate instead of constant. In this case, the exponential
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distribution is inappropriate to be used for modeling. As a generalization of the
exponential distribution, Weibull distribution, proposed by Weibull (1951), has

constant, strictly increasing, and strictly decreasing failure rate. For o, >0, t >0,

R(t) = e /) ,

wt) = fa PPt e e
B
m(t) = a e’ r(%j (1 - 1(%[3 H ,

where 1(y,x)=T(y)" J. u’"'e™du is the incomplete gamma function with y > 0 and
0

x>0. When g =1, it degenerates to the exponential distribution; when £ >1, the
failure rate function r(¢) is increasing and the MRL m(¢) decreases and approaches 0;

when £ <1, r(¢) is decreasing to 0 and m() is increasing to infinity.

However, when the failure rate function and the MRL function are non-
monotonic such as having a bathtub shape, the Weibull distribution would be unable
to give goodness-of-fit. In literature, several modified Weibull models were developed

to deal with the modeling of non-monotonic MRL, especially UBMRL.
0 Exponentiated Weibull distribution

One of the modified Weibull distributions is exponentiated Weibull

distribution proposed by Mudholkar & Srivastava (1993).
R =1-(1-expl-(/a)' )", @ pov > 0.

This model was derived from a parallel system with its components following the
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Weibull distribution by generalizing the parameter that represents component number.

When fv <1, this model has BFR and UBMRL. The reliability measures of this

distribution were summarized in Nassar & Eissa (2003).
O Additive Weibull distribution

Compared to the exponentiated Weibull distribution, the additive Weibull
distribution proposed by Xie & Lai (1996) is based on series systems composed of

two components.

R(t) = exp(— (at)b - (ct)d ), a,b,c,d >0.

It is easy to find that the reliability function of this distribution is the product of two

Weibull’s with parameters a,b and c¢,d respectively. For 5>1 and d <1, a BFR and

a UBMRL would occur. An intuitive explanation is that a BFR could be produced by

paralleling an IFR distribution and a DFR distribution.

Lai et al. (2004) generalized the additive model by adding a constant to the
failure rate function, so that a MRL function with comparatively longer stable period

could be obtained. The reliability function of this generalized additive model is
b d
R(t) = exp(— ct—(at) —(ct) ), a,b,c,d >0.
0 Modified Weibull distribution

Moreover, Lai et al. (2003) considered a modified Weibull distribution having

the reliability function given by

R(?) :exp(—atbe’“), A>0,a>0,b>0.
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When 0 < b <1, this distribution has a BFR and a UBMRL. One distinct advantage of
this model is that the change point of its failure rate function has a closed form, which

is

It is clear that this change point 7, depends on only 5 and 4.

0 Weibull extension distribution

In addition, Chen (2000) introduced a new two-parameter Weibull extension

capable of describing bathtub curves.
R(t) =explali—e” ), 2. p>0.

This model is also called the exponential power model in literature. To enhance the
applicability of this distribution, Xie et al. (2002) modified and improved this
distribution by adding an extra scale parameter. The reliability function of the

improved model with an additional scale parameter is

R(t) = explaali—e"'®" ), A, > 0.

Direct deduction reveals that this distribution could model BFR and UBMRL failure

dataif f<1.

0 Sectional models with two or more Weibull distributions

Another kind of Weibull extensions with UBMRL are sectional distributions,

which combines two or more Weibull distribution. Murthy & Jiang (1997) constructed
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a sectional model with two Weibull distributions.

R(t) =

where 1 = (02 (8/m V" ) ", p= B/ cand y = (1= o

When g, <1, 8, >1 and the change point of the failure rate function is set at ¢, the

model would have a BFR and a UBMRL. A generalized sectional model involving
three Weibull distributions can be found in Jiang & Murthy (1997). It is straight to use
the sectional models to model non-monotonic MRL, as for example a UBMRL
distribution can be composed of an IMRL Weibull and a DMRL Weibull. But the
disadvantage of sectional models is that in these models, too many parameters are

involved and thus more data are always needed for estimation.
O Other Weibull related distributions

There are also other Weibull related models that can display BFR and
UBMRL, for example, a three-parameter modified Weibull distribution in Marshall &
Olkin (1997) and the recent odd Weibull distribution in Cooray (2006). For MRL with
complex shape, one construction technique is to mix two or more Weibull
distributions. A graphic representation of a two mixed-Weibull distribution was given
in Jiang & Kececioglu (1992). Gupta & Gupta (1996) presented a general approach to

study the Weibull mixture in terms of the failure rate and MRL functions.

Because of the definition of MRL involving an integral of the reliability
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function, most of these modified Weibull models do not have their MRL in an explicit
analytical expression. Hence, the analysis of the MRL functions is often carried out
numerically. A graphical study on the behavior of the MRL functions for different
Weibll extensions was given in Lai et al. (2004). More detailed discussion of Weibull

family can refer to Murthy et al. (2004).
e Other distribution families
0 Gamma distribution

Gamma distribution is the second important generalization of the exponential
distribution. But the gamma distribution is less popular than the Weibull distribution
in lifetime modeling, because its reliability function is intractable (expressed as

transcendental function). The probability density function is given by

f(z)_F(K)(/u) et A,k>0.

The distribution is IFR and DMRL if x > 1, DFR and IMRL if x <1, and exponential
if x =1. Different from the Weibull distribution of which the MRL goes to either
infinity or 0, the MRL of the gamma distribution will approaches a positive constant,

1/ A . This fact indicates a lifetime with a gamma distribution has an exponential tail.
O Inverse Gaussian distribution

Another distribution also with constant MRL and failure rate tail is the inverse

Gaussian distribution.

34



Chapter 2: Literature Review

-’

2%t

A
f()= ﬁexp[

],/1,/1>0.

This distribution has UBFR and BMRL for all values of 4 and u. As t > «, its

MRL function approaches 2 ,uz/ A . Unfortunately, the inverse Gaussian cannot

describe the lifetime with UBMRL and BFR. A comprehensive study of the inverse

Gaussian distribution was presented in Chhikara & Folks (1989).
0 Lognormal distribution

Similar to the inverse Gaussian, the lognormal distribution also has only
UBFR and BMRL. Its reliability function is expressed via the CDF for a standard

normal random variable @ .

R(t)zl—q)(logt—_ﬂ],,uzo,a>0.
O

Change points of the failure rate function and the MRL for the lognormal distribution
were studied in Gupta et al. (1997). In practical application, the lognormal distribution
may be less popular than the inverse Gaussian distribution, because as ¢ — oo, its
failure rate function goes to 0 and the MRL increases to infinity. This implies that
almost no failure will occur for items with long operating hours, which is not realistic

in practice.

O Other distributions

The expressions of the MRL functions for normal, gamma and lognormal
distributions were studied in Govil & Aggarwal (1983). To make these distributions

capable of modeling different types of lifetime data, the expansion of distribution
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falimiy is always needed. Gupta & Lvin (2005a, b) discussed a gamma-type model
and a generalized lognormal model by introducing extra parameters. Ghitany (1998)
and Agarwal & Al-Saleh (2001) also generalized the gamma distribution and analyzed
its statistical properties. Weighted and mixed inverse Gaussian was studied in Gupta

& Akman (1995b) and Gupta & Akman (1997) respectively.

Interests also arise for other models, such as the Pareto distribution, Pearson
family and other distributions. Xekalaki & Dimaki (2005) identified Pareto and Yule
distribution by their reliability measures. Generalized Pareto distributions were
studied by Asadi (2004), Tavangar & Asadi (2005), and Tavangar & Asadi (2008).
Besides, Asadi (1998) and Sankaran & Nair (2000) discussed Pearson family of
distributions. The characterizations of beta distribution were reviewed in Nadarajah &
Gupta (2004). Moreover, Gupta et al. (1996), Gupta et al. (1999), Ghitany et al.
(2005), and Gupta et al. (2008) studied Burr type XII, log-logistic, Topp-Leone, and
Hurwitz-Lerch Zeta distributions respectively. A distribution family with linear MRL
was characterized in Korwar (1992). In Joseph & Kumaran (2008), generalized
lambda distribution family was used to derive single unified expressions for the MRL

of all non negative univariate continuous distributions.

2.2.2 Nonparametric estimation

Nonparametric estimation, without any preliminary assumption of distribution,
depends only on lifetime data and provides estimates of characteristics empirically.
Compared to parametric method that has good performance for small sample size,

nonparametric method usually gives satisfactory estimation when the size of available
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data is large. In the last several decades, various nonparametric studies have been

conducted for the MRL function with different focuses.

e Empirical estimation for MRL function

Based on the well known Kaplan-Meier estimator (Kaplan & Meier, 1958), Yang
(1978) proposed the empirical estimation for MRL function and proved its asymptotic

uniformity in the sense of probability. Let 7,7, .. liy5e L5 Eyiry oo,y DE OTdered

potential failure times of n independent and identically distributed items, then the

empirical MRL function is

1 n
m(t) = th—t, 0<t<t,,, , 2.6
(1) n_l(t)z @ " (2.6)

i=I(f)+1

where [(¢) =max{i:f, <t} . Based on this estimator, many efforts have been

contributed to the study and the modification of the empirical MRL estimator in order

to deal with different types of lifetime data.

One important technique is to utilize the kernel method, which is derived from
functional analysis. In Kulasekera (1991) and Na & Kim (1999), smooth
nonparametric estimations of the MRL were presented for complete and right
censored data. Ruiz & Guillamon (1996) and Guillamon et al. (1998) proposed
nonparametric recursive estimators for MRL based on kernel density estimator and
kernel reliability estimator under mixing dependence conditions. Chaubey & Sen
(1999) modified the weighted scheme in kernel reliability function and proposed a
new estimator for MRL by integrating the kernelled reliability function. A special

kernel reliability estimator was also presented by Swanepoel & Van Graan (2005).
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Under the assumption that samples come from a same but unkown distribution,
Abdous & Berred (2005) applied the local linear fitting technique as well as kernel

methods on the empirical function to produce a smooth estimator.

There are also some works with focus on specified aspects of the MRL.
Ahmad (1982) discussed the estimation for the MRL of multi-component systems.
Lahiri & Park (1991) was interested in the tail estimation of MRL and used Dirichlet
process prior to derive empirical Bayes estimators. For some special MRL distribution
classes, relatively simple estimations were studied and proposed. Ebrahimi (1998)
estimated the MRL with finite population. In Kochar et al. (2000), a very simple
estimation for monotone MRL class was developed, which utilizes the order sample
just before a specified time point. Hu et al. (2002) dealt with the MRL estimation of
two ordered MRL functions. In Ghebremichael (2009), the estimation of the MRL was

studied assuming that the MRL was banded by two other MRL functions.

e Confidence bounds for MRL function

Guess & Park (1991) constructed conservative confidence intervals for MRL with
censored data. For large samples, Li (1997) developed nonparametric confidence
intervals for components as well as for systems and renewal processes. In Zhao & Qin
(2006) and Qin & Zhao (2007), empirical likelihood ratio was used to estimate
confidence bands for the MRL with both complete and right randomly censored data.
Korczak (2001) proposed simple upper bounds for DMRL and NBUE distribution

classes.
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e Estimations for changing points

The estimation of change point for non-monotonic MRL was also considered in
literature. Ebrahimi (1991) obtained an estimator for change point of MRL function
for the distributions that have a “general” increasing MRL, which has a constant
period after its initial increasing. Mitra & Basu (1995) considered change-point

estimation for UBMRL distribution classes.

In addition to parametric models and nonparametric estimation, some semi-
parametric models were also proposed and studied. One popular model that has
gained many extensions is proportional MRL model, which was originally proposed
by Oakes & Dasu (1990). As a extension of the proportional MRL model, a regression
model was developed in Maguluri & Zhang (1994). Recently, Chen et al. (2005) used

counting process theory to establish a inference procedure.

2.3 Mean residual life of systems

The previous sections are concerned with the MRL function for a single item or a
system that is studied at system level. Most often, systems need to be investigated at
system level by incorporating the information of their components, as this would lead
to a better understanding of the underlying failure mechanism of complex systems. If
a system is analyzed at component level, its inner structure needs to be clearly defined,
because the structure, which mainly refers to the allocation and the properties of
components, determines the reliability of the system; see Leemis (1995) for a

systematic definition and an annotated overview.
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As a main reliability measure, the MRL function has gained much attention for
a better understanding of the reliability of systems. This section will give a brief
summary on the MRL for systems, practically for parallel systems, series systems, and

k-out-of-n systems, which are common structures in industry.

e Different definitions for the MRL function of systems

A k-out-of-n system is such a system that consists of » independent and identically
distributed components and functions as long as least & components are working. In
other words, a k-out-of-n system will stop working if n—k+1 components fail,
which indicates that the lifetime of a k-out-of-n system equals to the lifetime of the

(n—k +1) th failed component. Particularly, the series systems and parallel systems

are 1-out-of-n and n-out-of-n systems, respectively.

Suppose that a system consists of n (n >1) independent and identically
distributed components. Let 7}, 7,,..., T, be the lifetimes of n components and assume
that 77, i =1,...,n, are continuous and non-negative random variables with reliability
function R(¢). Denote by T,,,T,,,..., T, ordered lifetimes of n components. Then,
the lifetime of a k-out-of-n system can be represented by that of the (n—k +1) th

order statistic 7,_,,,., . And the lifetimes of a series system and a parallel system are

1

l:n

and 7., .

Because of the concern of system structure, different definitions for the MRL
of systems have been proposed in order to accurately describe the lifetimes of systems

with various operating conditions. A nature definition of the MRL function for
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systems directly comes from that for single component in (2.1). Denote by M,., (?)

the MRL function of k-out-of-n systems, then we have

M ()=E(T, 1 =T, i1 > 1)

Conditioning on the (n —k)th failure time, Belzunce et al. (1999) defined the

residual life and the MRL of k-out-of-n systems.
RLSk,n,t = (Tn—k+1 mn Tn—k:n | ]—;1—]( m = t) ’
Mk,n(t) = E(Tnkarl:n - Tnfk:n | Tnfk:n = t) .

In their work, the MRL function could be interpreted as the additional lifetime to be

gained by using a (k — 1)-out-of-n system instead of a k-out-of-n system.

In Bairamov et al. (2002), a new definition of MRL was proposed for parallel
systems with the condition that no failure occurs at a specified time point.
Mrlz,n(t) = E(Tn:n —t | Tl:n > t) .
Motivated by this idea, Asadi & Bayramoglu (2005) extended the definition in

Bairamov et al. (2002) and gave a series of MRL functions for parallel systems by

conditioning on the (n —r + 1) th lifetime of components.

M/:,n(t) :E(Tn:n _t|Tr:n > Z‘)'

It is obvious that the above definition method could provide n different MRL
functions for a parallel system. Similar results also can be found in Asadi &

Bayramoglu (2006) for k-out-of-n systems.
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M/:’n(t):E(Tn _t|Tr:n>t),1§r§n—k+1.

—k+1:n

In addition, Eryilmaz (2008) studied the lifetime of a combined k-out-of-n &

consecutive k-out-of-n system.

e Properties of systems

For certain definition of the MRL of systems, its distributional properties are of great
interest for further reliability analysis. The comparison between the MRL of systems
and of components was investigated in Lim & Koh (1997). Khaledi & Shaked (2007)
studied the systems with warning lights that come up when failures of components
occur, and derived upper and lower bound on the MRL of systems. In Li & Zhao
(2006), the general residual life of k-out-of-n systems, which is similar to the
definition in Asadi & Bayramoglu (2006), was discussed in terms partial orderings.
Navarro et al. (2006) and Navarro et al. (2008) talked about basic reliability properties
of systems with exchangeable components following exponential and pareto
distributions respectively. In Sadegh (2008), a parallel system with independent but
non-identical components was studied based on generalized MRL. Gurler &
Bairamov (2009) also considered systems with non-identical components and
evaluated the relationship between the MRL of systems and that of its components.
Furthermore, both Li & Zhang (2008) and Li & Zhao (2008) took into consideration

residual life and inactivity time of systems.

Furthermore, several papers discussed the properties of MRL that systems
could preserves from their components. Abouammoh & El-Neweihi (1986) showed

that parallel systems inherit DMRL from components. Asadi & Goliforushani (2008)
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proved that k-out-of-n systems also have this preservation property. The reversed
preservation ageing properties for series and parallel systems were discussed in Li &
Yam (2005), Belzunce et al. (2007a) and Li & Xu (2008). Considering partial
orderings for components and systems, Singh & Vijayasree (1991) and Eryilmaz
(2007) found that usual ordering is preserved under the formation of consecutive .-
out-of-n systems but the MRL ordering does not hold. When comparing two parallel
systems, Kochar & Xu (2007) showed that the system with more reliable components

has longer lifetime.

2.4 Some applications

Two main applications of MRL in reliability engineering are the determination of
optimal burn-in time in burn-in tests and the planning of optimal policy in
maintenance. In this section, we want to review some decision making policies for the

two application areas based the MRL.

Burn-in is a testing procedure to eliminate inferior products from product
population before they are released and shipped to customers or factories. In general,
burn-in tests is considered to be expensive and the cost increases with the increase of
testing time. So the determination of optimal burn-in time, the best time to stop burn-
in procedure, is crucial in production and sales, as the trade-oft between high product

quality and low burn-in cost need to be balanced.

The product population, which is composed of inferior and normal products, is

often considered to have a BFR or a UBMRL. This is rational, because after infant
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period caused by inferior products, only normal products survive and the population
enters a stable period before the normal products begin to wear out. Hence, in fact,
burn-in tests deal with the beginning infant period and the optimal burn-in time often
refers to the time epoch that marks the end of the infant period. By far, various criteria
related to the MRL have been established for burn-in tests, see Park (1985) and Block

& Savits (1997) for a summary. There are mainly three kinds of criteria:

C1) To maximize the MRL function;
C2) To balance other functions derived from the MRL;

C3) To minimize a cost function related to the MRL.

Based on C1, the optimal burn-in time is actually the change point of the MRL,
which has been extensively discussed in Section 2.1.3. A discussion also can be found
in Block et al. (1999). Besides the criterion of maximizing MRL function, other
characteristics related to the MRL are utilized to determine the optimal burn-in time.
Block et al. (2002) determined the optimal burn-in time by balancing the MRL and
residual variance. Bebbington et al. (2006) tried to utilize curvature to obtain the time
as well as the useful period. There are also some cost related criteria based on the
MRL. This type of models often assumes that the profit from selling products is
proportional to MRL. Example cost functions were presented in Chang (2000) and
Cha et al. (2008). In addition, the problem of burn-in on the population with a
generalized bathtub curve was considered; see Bebbington et al. (2007a) and Cha

(2006).

As pointed out in Guess et al. (1992), the optimal burn-in plan obtained from

one reliability measure does not necessarily imply the optimal for the other measure.
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In Section 2.1.3, we have known that the time at which the MRL reaches its maximum
always occurs before the time that corresponds to the smallest failure rate. Xie et al.
(2004) discussed the difference between change points of the MRL and the failure rate
function and tried to use it as an index for the length of the useful\stable period. A

statistical inferential theory was given by Bebbington et al. (2007b).

Burn-in tests are conducted before the release of products while maintenance
and repair are carried out either during production process or when products have
been deployed and put into use. Lee & Lee (1999) studied the optimal proportion of
perfect repair when systems have DMRL. Mi (2002) considered age-replacement
problem with computers and determined their optimal work size. Yue & Cao (2001)
compared replacement policy with stochastic orders under shock models. Moreover,
Cha et al. (2004) investigated optimal burn-in plan assuming that failed components

during burn-in can be restored by a repair.

Besides the burn-in and maintenance problems discussed above, there are
many other studies on MRL function in practice. Some aspects with the real

application of the MRL and the residual life are broadly listed.

e Product technology

Wiklund (1998) discussed on-line prediction of cutting tool life by two statistical
approaches. Herzog et al. (2009) predicted the residual life of machines and

components based on data from hydraulic systems.

e Economics and social studies
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In Sohn & Lee (2008), a competing risk model was proposed to estimate customers’
MRL under a new phone system. They studied three competing causes that might
affect the MRL of customers: pricing policy, quality of communication, and
usefulness of service, and also different groups of customers with respect to their sex

and age.

e Survival analysis

In survival analysis, bathtub curves are often used to describe the mortality of diseases.
Often, the mortality of a disease is considered to reach a peak after some finite period
and then declines gradually. We can conjecture that, the patients who suffer from this
disease probably have their MRL initially decreasing due to the abrupt attack of the
disease, and then entering a stable period due to body’s resistance before finally

recovering to a normal level when the disease ultimately disappears.

Besides, the MRL function also has wide applications in many other areas,

such as life insurance, demography, management science, and even financial market.
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CHAPTER 3 A GENERAL MODEL FOR UPSIDE-
DOWN BATHTUB-SHAPED MEAN RESIDUAL LIFE'

3.1 Introduction

For many mechanical and electronic components, the failure rate function has a
bathtub shape; the failure rate function is decreasing initially, and then flattens out
before it increases again. The corresponding MRL function is usually of upside-down
bathtub shape. Many papers deal with models for BFR and UBMRL. For example,
Mudholkar & Srivastava (1993) proposed an exponentiated Weibull model. Xie & Lai
(1996) proposed an additive Weibull model with BFR. Another three-parameter
generalized Weibull distribution was presented by Xie et al. (2002), which modified
the model introduced by Chen (2000). Recently Cooray (2006) derived the odd
Weibull family. Besides these generalized Weibull distributions, other useful models

with UBMRL and BFR were also discussed; see Ghitany et al. (2005) and Gupta &

! Part of the work in this chapter is published in IEEE Transactions on Reliability.

“A model for upside-down bathtub-shaped mean residual life and its properties”, IEEE Transactions on
Reliability, 2009, 58(3), pp. 425-431.

47



Chapter 3: A General Model for Upside-down Bathtub-shaped MRL

Lvin (2005b) for examples. A recent text by Lai et al. (2004) contains several chapters

dealing with the general issues.

However, for these existing models, the MRL functions are of complicated
forms, which usually involve an integral of a reliability function that is not of a closed
form. This problem motivates the formulation of a new class of life distribution,
which has different characteristics from the existing models, such as a new model
with some form of the MRL function. This new model type will make analyses based
on MRL easier to conduct, including activities such as the determination of useful
periods based on the curvature of MRL (Bebbington et al., 2006), the study of
proportional MRL models (Zhao & Elsayed, 2005), the analysis of the distance
between the change points of MRL and failure rate functions (Xie et al., 2004), and

the study of MRL for coherent systems (Asadi & Goliforushani, 2008).

In this chapter, a model with UBMRL is proposed with the starting point of the
derivative function of MRL. A general framework is studied in Section 3.2. Section
3.3 is devoted to propose the new model. We also investigate its distributional
properties and parameter estimation. We use two sets of lifetime data in Section 3.4 to
illustrate the application of the new model, along with some comparative studies. The
model application in decision making is discussed in Section 3.5. In section 3.6, a
nonlinear regression method based on MRL function is proposed for the estimation of

parameters and also compared with MLE. Finally, Section 3.7 is a conclusion part.
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3.2 A general framework

The derivative of the MRL function, when it exists, measures how the MRL function
changes as the value of the input changes, and then determines the behavior and shape
of the MRL. It could be simpler than the MRL itself. For example, if the derivative of
an MRL has one crossing of zero from above, then the MRL is of upside-down
bathtub shape. Hence we could find a simple function for the derivative of the

UBMRL function rather than for the MRL function itself.

As shown in Definition 2.4, a differentiable MRL function m(¢) is said to be
of upside-down bathtub shape if for some ¢, its derivative function m'(¢) satisfies

m'(t)>0if 0<t<t,, m'(t)=0if t=t,,and m'(t) <0 if t > ¢,.

Moreover the derivative of UBMRL should approach 0 as ¢ goes to infinity,

i.e. m'(t) >0, as t - o ; otherwise, the MRL would become negative. A typical

curve of such a derivative function is depicted in Figure 3.1.

m' (t)

0.5}

-0.25¢
-0.5¢
-0.75¢}

Figure 3.1 A desired shape of the derivative of MRL function m'(z) .
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Here the aim is to find a function capable of representing the derivative
function of MRL with the desired shape. A general way to construct a suitable
function is to multiply a continuous function, which has positive values before some
time point and after that goes to negative, by a function of which the limit as ¢
approaches infinity is zero. The idea behind this general way is that to find a fast
convergent function so that the tail of the positive and then negative function could be
lifted up to 0. Following this idea, such a function can be expected to be the derivative

of the MRL function.

I(t)=g,(t)-g,(¢t) 1s a multiplicative function in which the following

requirements are true.

Requirement 1. g (f) is a continuous function that satisfies that for some ¢,
g, (1)>0 for 0<r<t", g (t)=0 for t=1" and g,(1)<0 for t>1 .

Requirement 2. g,(¢) is a continuous, positive function with g,(t) >0 as t >,
and g,(t)-g,(t) >0 ast > 0.

Requirement 3. The general integral of /(¢) should be positive and exists at any time,

<00,

and also finite at time 0: i.c. jl(t)dt >0 forall £>0,and j 1(6)dt

t=0

Requirement 4. /(1) > —1.

Proposition 3.1 4 smooth function is the derivative of UBMRL if and only if it can be

written in the form of the multiplicative function [(t).
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Proof: “If part”: A function that satisfies Requirement 1 and 2 must decrease initially
to negative values before it increases and approaches to 0 asymptotically.

Requirement 3 and 4 guarantee that the general integral of /(¢) is a MRL function,
which has the following two properties.
PI. m(t):J. m'(£)> 0, forall £ >0, and m(0)< .

P2. m'(t) =m(t)r(t)—1>-1, forall t>0.
A function that fulfills the four requirements can be the derivative of UBMRL.

“Only if part”: For an arbitrarily chosen UBMRL m(¢), we denote by ¢, its
change point. We have m'(¢#) >0 for ¢t <t¢,, m'(t) =0 for t =¢, and m'(¢) <0 when
t>t,; also m'(t) >0 as t > . As m'(¢) is continuous, m'(¢) has lower bounds.
Denote by 7, the time at which m'(¢) reaches its smallest value. We have m'(z,) <0.

Then two continuous functions could be constructed,

_ m,;(t))’ t<rt, -m'(zy), t<71,
_ m(7 _ ' 2
SO gy &0 _oF
m’(t) 4 0 m (TO)

It is easy to verify that m'(¢) = g,(¢) - g,(¢). Let t = t,. We also can find that

g,(1) 1is a continuous function, and positive before ¢" and negative after ¢ . Moreover,
g,(t) is positive and continuously approaches 0 when time ¢ goes to infinity. As
m'(t) is a derivative function of MRL, Requirement 3 and 4 for /(¢) are satisfied.

Here completes the proof. m
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The proposition implies that the derivative of UBMRL is equivalent to the

multiplicative function /(¢) . Hence, the function /(¢) can be regarded as a reliability

characteristic that could be utilized to determine probability distributions. In other

words, a distribution could be developed based on any function in the form of /(¢) . In

next section, a proper candidate from the multiplicative functions will be used as a

starting point of the derivation of the new UBMRL model.

3.3 The UBMRL model

3.3.1 Construction of the model

Based on the general form of the multiplicative function in the previous section, the
function considered in this paper is a linear function multiplied with an exponential

function

l(t)=(a—bt)exp(—ct), a,b,c>0,t>0, (3.1)
with conditions
"C;b <0, and (3.2)
c
—lé—éexp(—ﬁ—l) (3.3)
c b

For (3.1), both (a—bt), and exp(—ct) are simple functions for g,(¢) and g,(¢).
Their multiplication can be integrated easily, and the general integral of /(¢) preserves
the same form as /(¢) itself. Equations (3.2) and (3.3) are derived from Requirement 3

and 4 for the multiplicative function respectively to ensure the feasibility of /(¢) as
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the derivative function of MRL. See next subsection for the derivations of (3.2) and

(3.3).

From the above discussion, a model with UBMRL is derived in terms of the

MRL function

ac—b

m(z)=(9z— . jexp(—ct), a,b,c>0,120, (3.4)
C C

with constraints (3.2) and (3.3).

Let a =b/c, f=—(ac—b)/c*,y =c. Then the model in (3.4) with the constraints

(3.2) and (3.3) can be reduced to

m(t) =(at+ p)exp(-yt), a,B,y >0, t>0, (3.5

where

a exp(& - 2) <l1. (3.6)

(94

The derivative function of the MRL is

m'(t) = (- ayt+a - fy)exp(-yt). (3.7)

3.3.2 Derivation of (3.2) and (3.3)

e Derivation of (3.2)

Requirement 3 implies that the general integral of /(¢#) should be greater than 0, which

is
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J.l(t)dt = —l(a —bt)exp(—ct) + %exp(— ct)+A20,
c c

where A is an integration constant. Because the general integral increases first and
then decreases, its smallest values will be attained at 1=0 or t =0 . So the above

formula is equivalent to the two inequalities

:_“C+b+A>o¢mde0m

=A>0. (3.8)

t=00

2
t=0 C

juow

By applying to (3.8) the fact that the MRL function is usually assumed to achieve 0 as

t > o,i.e. A=0, we can obtain (3.2). m

o Derivation of (3.3)

Formula (3.3) is derived from Requirement 4 which indicates that /(z) > —1 for all

t 20, which is equivalent to mion I(t) > —1. Solving the equation dl(¢)/dt =0 yields
=

the time point corresponding to the minimum of /(¢) , denoted by 7,
TO = + I

b ¢

Hence, we obtain the inequality

Gl ot )t

which is (3.3). m
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3.3.3 Failure rate function and other functions

The corresponding failure rate function r(¢) is

(1) = m'(t)+1 _ (— ayt+a —ﬂy)exp(— y/t)+ 1
m(t) ((xt +,6)exp(—}/t) . (3.9)

The reliability function is then given by

m(0) b
R(t) = (e ) p[ L ) dxj

_ Bexp(yo) _ [fexp(y x)
=@t B exp( L—a“ﬂ dxj (3.10)

_ Pexp(r) exp| — lexp[— QJ[F(O —&J - F(O —yt- &ﬂ
(at+p) a a T« ’ a

where T'(a,x) = J. u“"e™du is the upper incomplete gamma function.

Remark 3.1: Suppose that the MRL function ultimately approaches a positive
constant instead of 0, and then (3.2) should be replaced by (3.8) in Section 3.3.2. This
change will introduce a more general model with UBMRL, which will approach a

constant instead of 0 as time ¢ goes to infinity.

Remark 3.2: The parameters a, b, and ¢ of (3.1) are set positive in this paper. In
fact, the expansion of their domains will enable the distribution to present different
types of MRL. Assume ¢ >0, as it is a scale parameter. There are four cases: 1) a > 0
and »>0, UBMRL; 2) a>0 and b<0, increasing MRL; 3) a<0 and 6>0,

decreasing MRL; and 4) a <0 and <0, bathtub-shaped MRL. This is because,
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according to (3.1), the signs of parameters a and b determine the sign of (a — bt)

and thus further determine the positive or negative of the derivative function /(¢) .

3.3.4 Shapes and changing points of MRL and failure rate functions

Figure 3.2 and Figure 3.3 show respectively the MRL and the failure rate functions of

the new model. They are plotted with parameters ¢ =4, f=0.5, and y =1 for the

solid line; and ¢ =2, =1, and y =1 for the dashed line.

From the derivative of MRL (3.1) or (3.7), it is easy to obtain the change point

of the MRL function

L (3.11)
[04

Based on (3.5), solving r'(¢) =0 yields the change point of the failure rate function,

denoted by v, .

AN Wt N (3.12)

where z, is the solution to the equation ze” = bexp(—ac/b)/c = aexp(By/a —1).
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m(t)

Figure 3.2 Example UBMRL functions.

r(t)

Figure 3.3 Example BFR functions.

The result of 7, <v, validates the theorem proved by Gupta and Akman

(1995a) that the change point of MRL function always precedes the change point of
failure rate function. Furthermore, (3.11) suggests that the changing point of the MRL

function ¢, approaches 0 as the parameter a gets close to 0. But in this case, the

change point of the corresponding failure rate function v, remains strictly greater
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than 0 because v, > ¢,. Hence, when a =0, the new model will degenerate into the

one with a decreasing MRL and a BFR function. This phenomenon gives an example
for the fact that BFR does not necessarily imply UBMRL and also supports the

theorem in Gupta and Akman (1995a).

An underlying explanation to this unusual instant is that the failure rate
function at time 0 is finite for this degenerative model, which is different from the
other existing models with infinite initial failure rates. More similar cases with BFR
and decreasing MRL may refer to the distributions with a < 0 mentioned in Remark

3.2. From (3.11), we find that as a < 0, the change point of m(¢) is also less than 0.
This implies that m(z) is strictly DMRL with m'(0) < 0. But the failure rate function

is still of bathtub shape with a change point v, .

It is also of interest to study the property of the change point of the derivative

of the MRL function m'(¢), denoted by z,,. From (3.6), we get an inequality

0<zye” = aexp(& - lj <exp(l), (3.13)
a

which implies 0 < z, <1. Then we obtain

_£S2_£:£+l:% (3.14)
a y o«

which means that in this model the change point of m'(¢) , denoted as 7, is
positioned after the change point of the failure rate function v,. So 7, can be used as

the time epoch that marks the start of the useful life period during which the failure
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rate function is considered to be stable.

3.3.5 Parameter estimation

Parameter estimation is an important issue in lifetime data analysis. Maximum
likelihood estimation (MLE) can be used to estimate the parameters of the new model,
for either complete data, or censored data. For the case of complete data, let

tay Sto <. <1, be the exact ordered failure times from a sample of size n. The

m =" =

underlying log-likelihood function for these complete data is given by

U(a,b,¢) = A =0 L(t gyl 3y sl 0 7)) = Zln flty) = Z(ln F(t,)+InR(t,))
i=1 i=1

= Z{ln[(— ay g +o— ﬂj/)exp(— 14 t(i))+ 1]— 21n(atm + ﬂ)+ 2yt + ln(ﬂ)
i=1 . (3.15)

_éexp[_%j[r(o,—%)—F(O’_”_%ﬂ}

By taking the partial derivatives of the above function with respect to «, £, and y,
and equating them to zero, three equations can be obtained. Solving the equations will
yield the MLE for the three parameters o, f, and y . For cases involving censoring,
the log-likelihood functions in (3.15) will be added with the logarithm of reliability
functions corresponding to the censored time points. Moreover, based on the second
partial derivatives of the log-likelihood function, we can obtain the Fisher information

matrix and use it to estimate confidence intervals for the three parameters.

Based on the second partial derivatives of the log-likelihood function, the

3x3 observed information matrix, from Fisher information matrix, is given by
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%A 02 A A |
o’ 8adf  oady
d*A d*A *A
0Boa op:  oPdy
*A *A *A
| oyoa  oyop oy

da=a, p=p,y=7
where @, B, 7 are the estimated parameters from MLE.

By inverting the matrix, we can obtain the local estimates of the covariance

matrix

Var(@)  Cow(4,B) Cow(a,p)
Cov(a,f3) Var(f) Cow(B,7)|=0""
Cov(é,7) Cow(B,7)  Var(p)

The standard errors of the parameter estimators can be computed from the
diagonal of the above matrix. Since the parameters of this model must be positive, the
logarithm of them, i.e. Ina, In S, Iny, can be treated as normally distributed. Hence
the two-sided approximate confidence intervals for these three parameters, at

confidence level &, are constructed as follows, where z_, is the 1-6/2 percentile
2

of the standard normal distribution.

R zlié./Var(d)/d a
e LT @
e ?
ﬂ B zlié\/Var(ﬁ)//} ﬂ B
= e 2 , =" .
v L Z s\ Var(ﬂ)/ﬂ
e ?
R zliL;«/Var(}?)/;? 7’/‘
= 2 =
]/U ]/e s 7/L 217L$ Var(}?)/}?
e 2
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In this model, both the parameter estimates and the confidence intervals

should be computed numerically, because the equations and the matrices can not be

analytically solved.

3.4 Two application examples

Two data sets are used in this section to illustrate the modeling and estimation

procedure. One is the widely used data set of 50 failure times from Aarset (1987); the

other data set with the 18 exact failure times is taken from Example 2 in Wang (2000).

3.4.1 Example 3.1

In this example, the lifetime data from the testing of 50 devices reported in Aarset

(1987) are used. The data are shown in Table 3.1.

Table 3.1

Lifetimes of 50 devices from Aarset (1987).

01 02 1 1 1 1
21 32 36 40 45 46
79 82 82 83 84 84

1 2 3 6 7 11 12 18 18 18 18 18
47 50 55 60 63 63 67 67 67 67 72 75
84 85 8 8 8 85 86 86

Plotting empirical failure rate function (Klein & Moeschberger, 2003) based

on the data shows that the failure rate function could be approximately of bathtub

shape (Figure 3.4).

The result in Figure 3.4 indicates that it may be reasonable to consider our new

distribution to model the failure data. Using the maximum likelihood method, and the

log-likelihood function in (3.15), we get the estimates for the parameters of the new

61



Chapter 3: A General Model for Upside-down Bathtub-shaped MRL

model: & =3.3097, ,B =44.1388, and 7 =0.04428. The estimated parameters satisfy

the constraint required by our model shown in (3.6). From Figure 3.4, we can see that
the fitted model has its failure rate function rather close to the empirical failure rate

function.

r(t)

t

2‘0 4IO 6IO 8IO 1 O 0
Figure 3.4 The failure rate function for the model (bold line) and the empirical failure rate
function (jagged line).

Some generalized Weibull models are also used to fit the data, compared to the
new model in terms of Akaike Information Criterion (AIC) values (Akaike, 1974).
Their estimated parameters and the AIC values are listed in Table 3.2. The plots of the
failure rate functions of different models are given in Figure 3.5. Moreover, the MRL

function plot of the new model is presented in Figure 3.6.

The results in Table 3.2 indicate that the AIC value of the new model is
smaller than the other distributions except for the additive Weibull model. But it
should be noted that the additive Weibull model contains more parameters than others,

though it has the smallest AIC value. Hence our new model still gives a satisfying

62



Chapter 3: A General Model for Upside-down Bathtub-shaped MRL

goodness-of-fit to the lifetime data.

Table 3.2  The estimated parameters and AIC values of different models.

Model Estimated parameters (MLE) AIC
The exponentiated Weibull 4=515,0=0.134, 6=90 463.13
(Mudholkar & Srivastava, 1993)

The modified Weibull extension 4 =13.747, 5 =0.5877, 1=0.00876 469.29
(Xie et al., 2002)

The modified Weibull a=0.0624 , 5 =0.3548, /{ =0.02332 460.31
distribution

(Lai et al., 2003)

The additive Weibull model a=0.01178 , l; =82 , c=0.016 , 62 =07 420.38
(Xie & Lai, 1996)

New model G=33097, f=44.1388, 7 =0.04428 447.76

Moreover, see in Figure 3.5 that the failure rate functions of the five models
behave differently from each other. We find it interesting that the new model seems to
be an integration of the additive Weibull model, and the other three distributions in
terms of the shape, and the change point of the failure rate function. The failure rate
function of the new model performs a moderate behavior compared to the flat additive
Weibull, and the other three steep Weibull models; and its change point locates
between the change points of the additive Weibull, and of the others. So it may
suggest that the new model is likely to provide all-sided information compared to the

other four distributions.

In addition, the graphical description for the MRL function can be easily
offered by our new model. By observing Figure 3.6, we find that the location of the
change point is around 10, which means that the burn-in test for such product types
could be terminated around that time. Hence, the overall performances suggest that

the new model is the most reasonable one to be chosen.
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Exponentiated
Modified

Modified Extension
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Figure 3.5 The failure rate function plot based on different models in Table 3.2.

m(t)

: : ‘ : — t
20 40 60 80 100

Figure 3.6 The MRL function for the new model in Table 3.2.

3.4.2 Example 3.2

This example adopts the data for the time to failure of 18 electronic devices reported

by Wang (2000). The data are shown in Table 3.3.
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Table 3.3  Time to failure of 18 electronic devices from Wang (2000).

5 11 21 31 46 75 98 122 145 165 195 224 245 293 321 330 350 420

Similar to the previous example, the data also suggest that the failure rate
function could be bathtub-shaped (Figure 3.7). Fitting these data to the new model by
MLE produces estimates for the three parameters: a =1.7694 , ,5’ =171.564, and
7 =0.00823 , which also satisfy constraint (3.6). In Figure 3.7, the graphic

comparison of the failure rate function of the new model to the empirical failure rate

function indicates good performance of the new distribution.

r(t)

0.015¢

0.0125¢

0.0075

0.005¢

0.0025¢

t

160 260 360 460
Figure 3.7 The failure rate function for the model (bold line) and the empirical failure rate
function (jagged line).

For the generalized Weibull distributions, the estimated parameters, and AIC
values are listed in Table 3.4. The plots of the failure rate functions of the different
models are presented in Figure 3.8, while the MRL plot of the new model is in Figure
3.9. The results in Table 3.4 show that the new model has the smallest AIC value

among the distributions employed in this example. Hence this new distribution is
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competitive for modeling the lifetime data with BFR or UBMRL.

Table 3.4  The estimated parameters and AIC values of different models.

Model Estimated parameters (MLE) AIC

The exponentiated Weibull G =17.8522, 0 =0.09286 , 6=391.19 222.494
(Mudholkar & Srivastava, 1993)

The modified Weibull extension G =134.049 , ﬁ =0.75226, 1=0.00255 224234
(Xie et al., 2002)

The modified Weibull distribution a=0.01493 , 5 =0.6468, /"{ =0.003612 223.866
(Lai et al., 2003)

(Xie & Lai, 1996) . ’ ’ ’
d =6.3505
New model &=1.7694, f=171.564, 7 =0.00823 222.108

(en}
o

100
0.008 Modified

0.006

0.004 "

New model

—_— Exponentiated
Modified Extension

—-— Modified

- Additive

E— New Model

Figure 3.8 The failure rate function plot based on different models in Table 3.4.

Figure 3.8 depicts the different shapes of the failure rate functions of the
different models. Similar to the previous example, the new model behaves in a
moderate manner compared to the Weibull related distributions. The failure rate

function of the new model is steeper than that of the additive Weibull distribution, but
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flatter than the failure rate functions of other three Weibull models; also the change
point of the new model locates between the change points of the additive Weibull, and
of the others. All these show that the new model is able to provide the results that
combine the information provided by other models. Based on the plot in Figure 3.9,
we can obtain the approximate optimum time for burn-in tests or the near optimum

replacement time. Our model compares favorably with other models.

m(t)

160+
140+
120+
100

80t

60

' ' ' ot
100 200 300 90

Figure 3.9 The MRL function for the new models in Table 3.4.

3.5 Model application in decision making

Bathtub curves are useful in reliability related decision making. One of the uses is to
determine the optimum burn-in time in the case when the products have extremely
high failure rate during the infant mortality period. After the useful period,
replacement should be carried out to prevent failures from occurring when the

products enter the wear-out period.

For those components that survive burn-in tests, it is the remaining lifetime
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that will be of interest to most people. The mean of the remaining lifetime is the MRL

function m(¢) . Therefore, the most common criterion to select the optimum burn-in

time b" is by maximizing the MRL function (Block & Savits, 1997)

m(b") = max (7). (3.16)

Because our model has a UBMRL, the optimum burn-in time " is in fact the change

point of the MRL function, i.e. " = ty=1y-pla.

The burn-in time b  can also be obtained by minimizing the failure rate

function, which means b =v, . In practical applications, the former decision of
b' = t, 1s usually preferred, because it is popularly believed that the period between

t, and v, should be flat enough to be considered part of the useful life period. Thus,

stopping the burn-in test when the MRL reaches its maximum should be more

economical than when the failure rate function reaches its minimum.

There are also other criteria under which the optimum burn-in time could be
determined. Suppose the product is considered acceptable when its MRL is more than

m, ; then the optimum burn-in time can be determined by
m(t) = (at+ p)exp(—=yt)=m,. (3.17)

If the product can only be released when the failure rate function falls below 7, , then

the optimum burn-in time can be obtained by solving

B (— ayt+ a—ﬂy)exp(—;/t)+1 B
r(t) = (at . ﬁ)exp(—yt) =7,. (3.18)
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It is worth noting that, for (3.17) and (3.18), the optimum burn-in time should be the

smaller of the two solutions.

Similar criteria can be used in determining the optimum replacement time
when the product enters the worn-out period. If the product should be replaced by a

new one when the MRL is less than m_, then the optimum time can be obtained by

solving

m(t) = (at + B)exp(—yt) = m,. (3.19)

If the product is considered risky when the failure rate function becomes higher than

r., then the optimum replacement time can be determined by

B (— ayt+a —ﬂy)exp(— ;/t)+1 B
r(t) = (at+ﬁ)exp(—yt) =7.. (3.20)

Because the MRL function is of upside-down bathtub shape, there are also two
solutions to (3.19). But the optimum replacement time should be the solution with the

higher value. Also for (3.20), the larger root should be chosen.

Example: Consider the fitted model in Section 3.4.1 with the estimated parameters
a =3.3097, ,é =44.1388, and 7 =0.04428. From (3.11), obtain the change point of

the MRL function as

to=1/7— /& =9.2463. (3.21)
Hence, under (3.16), a burn-in test can be terminated at the time point of b* =9.2463 .
The formula (3.21) indicates that the optimum burn-in time 5~ has a closed form.

69



Chapter 3: A General Model for Upside-down Bathtub-shaped MRL

Thus, further analysis for * can be carried out, such as confidence bound.

If this product is considered acceptable when its MRL is higher than 48, then
under the criterion (3.17) we may stop burn-in test at the time of 3.9024, which is the

smaller root to (3.3097¢+44.1388)exp(—0.04428¢) =48.

If the product should be replaced when its MRL falls below 36, then the
optimum time for replacement under the criterion (3.19) can be computed as 32.4664,

which is the larger solution of (3.3097¢+44.1388)exp(—0.04428¢) = 36.

Similarly, other decisions can be similarly made under the criteria related to

the failure rate function, as shown in (3.18) and (3.20).

3.6 Nonlinear regression method based on the MRL

As the MRL of the new model is in closed form, nonlinear regression on the MRL is
another feasible approach for parameter estimation. The regression data are composed
of failure times and their corresponding MRL. The MRL at each failure time is
calculated by the empirical MRL function proposed by Yang (1978). For ordered
t

failure times ¢ .» 1, » the empirical MRL function (¢) is given by

2> 7(2)>

m(t) =

1 n

where i =0,1,...,n and #,, =0. And m(t)=0 forall ¢t > Ly -

In this nonlinear regression, the basis function is m(¢) = (at+ fB)exp(—yt)
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with parameters «, £, ¥ and a variable ¢. The data consist of a variable vector

(t(o), Lays by s oo t(H)) and a response vector (n%(t(o)), Ml )y oo n%(t(nfl))). Then the

estimates of the parameters will be chosen to minimize the sum of squared

n—1
residuals Z Oe,-2 , where e, is the difference between the true value and the
i=

regressed value of responses.

Remark 3.3: Due to the large variation in the tail of the empirical MRL, it maybe
suggested to drop the last several time points in the time vector. For example, it could

be better to use (t(o),t(l),t(z),..., t(H)) for regression rather than

(t(o), Lays Lay s oo t(n_l)) . And so as to the response vector.

For parallel comparison, the data set of Example 3.2 in Section 3.4 is used to
do nonlinear regression. The reason to choose Example 3.2 is that no tie for failure
times needs to be dealt with in this example. Denote the regression estimates for the
three parameters as & , ﬁ and 7 respectively. The estimation results are given below,

as well as the plotting of the fitted MRL functions from both nonlinear regression and
MLE in Figure 3.10. We can find that, both the numerical and the graphic
comparisons show that the nonlinear regression could produce goodness-of-fit results

that are comparable to the results obtained from MLE.

e Example 3.2

For Nonlinear regression, the estimates for parameters are & =1.9074 , ﬁ =175.144,

% =0.00814 . And the fitted MRL 7i(¢) is
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i(f) = (175.144 + 1.9074 ) exp(~0.008147) .

The estimation results obtained from MLE, as shown in Section 3.4, are & =1.7694 ,

A

B=171.564, 7 =0.00823. And the fitted MRL 7i(¢) is

wi(t) = (171.564 +1.7694£) exp(~0.00823¢) .

m(t)
175¢
150}
125¢
100+

75}

50}

100 200 300 400

Figure 3.10 The fitted MRL by nonlinear regression (solid line) and MLE (grey line).

To evaluate the accuracy of the nonlinear regression estimation and compare it
with MLE, we conduct a simulation experiment based on data generated from this
new UBMRL model with m(¢) =(2¢+1)exp(—¢) . The simulation results are
computed from 500 replications with sample size n = 50. The accuracy of methods is
measured by mean squared errors of the estimated values for three parameters. For
parameter «, the mean squared errors for nonlinear regression estimation and MLE

are defined by

500
mse,® = % Zi:l (@ - ),

1 500 '
MLE A 2
mse =— E a. —a).
“ 500 i=1( ! )
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The errors for parameter £ and y can be similarly defined. Table 3.5 lists the mean
squared errors computed from simulation replications for the two methods
respectively. The results shown in the table indicate that nonlinear regression fitting
based on the MRL function performs well in the estimation of parameters. For £, the
regression method produces much smaller error compared to the MLE. For « and y,
the accuracy of the regression can be considered to be comparable to that of the MLE.

Hence, it is suitable to apply the nonlinear regression for estimating the parameters of

this new UBMRL model.

Table 3.5 Mean squared errors for nonlinear regression estimation and MLE.

mse.® mse

a 0.563888 0.455305

B 0.022219  0.11361
/4 0.045588 0.027294

MLE
L]

3.7 Conclusion

In this chapter, a new distribution capable of modeling UBMRL and BFR is presented
and studied. Compared to other existing distributions, this new model is derived from
the derivative function of MRL, instead of reliability function and failure rate function
that are often used in model construction; and has the MRL function in a simple,
closed form. Hence the analysis and the application of the MRL function in further
reliability analysis can be easily carried out. The parameters of this new model are
estimated by MLE. Numerical examples and comparisons indicate that the new model
performs well in modeling lifetime data with bathtub-shaped failure rate function and

UBMRL function. Hence this new model serves as a good alternative when a bathtub
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shaped function should be prescribed. In addition, data fitting based on the MRL
function shows great feasibility of being an alternative to parameter estimation.
However, the empirical MRL for larger failure time would suffer greater variance due
to fewer available data, and thus may significantly influence the regression result and
introduce more error. Hence, more endeavors should be made to control the effect of
large variance that occurs at large failure time; and further investigation may be

needed for the use of the regression method in parameter estimation.

74



Chapter 4: DMRL Estimation with Type II Censored Data

CHAPTER 4 DECREASING MEAN RESIDUAL LIFE
ESTIMATION WITH TYPE II CENSORED DATA?

Compared to the parametric modeling assuming underlying distributions,
nonparametric methods use only failure data to estimate the MRL function regardless
of the forms of models and thus introduce less bias. In literature, various methods
have been proposed to estimate reliability measures empirically. Given a set of failure

data, how to estimate the MRL in a nonparametric way is a challenging problem.

4.1 Introduction

Yang (1978) proposed the empirical MRL function for complete data, which is the
first and basic nonparametric estimation for the MRL function. Based on this
estimation, several other MRL estimations were constructed, such as confidence

bands established in Zhao & Qin (2006) and a simple estimator for the monotone

% Part of the work in this chapter is published in IEEE Transactions on Reliability.

“Nonparametric estimation of decreasing mean residual life with type II censored data”, IEEE
Transactions on Reliability, 2010, 59(1), pp.38-44.
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MRL class proposed in Kochar et al. (2000).

Besides the estimation for complete data, the estimation of the MRL function
in censoring has gained much attention, because censoring occurs frequently as it is
often impractical to obtain the lifetimes of all the items on test. For example, highly
reliable components used in an aircraft usually produce zero failure during testing
stage. In literature, many works concerned with the MRL estimation under random
censorship. Li (1997) established confidence bounds for the MRL function using
randomly right censored data. The statistical inference for the MRL in random

censoring was also presented in Na & Kim (1999) and Qin & Zhao (2007).

In contrast to the considerable studies of the estimation of the MRL for
complete and randomly censored data, only a few papers focused on the estimation in
extreme right censoring. This may be due to the fact that the data collected under such
censorship cannot provide enough information over the whole time period. Suppose
that the last failure data we get is the time point of 10. This means that the data
collected before 10 are the only information we have. Hence, for the empirical
reliability function, only the segment before 10 can be constructed by the Kaplan-
Meier estimator (Kaplan & Meier, 1958). The values beyond the censoring time can
be either constant or decreasing because of the lack of further data. Figure 4.1
presents the three alternatives for behaviors of the reliability function beyond the
largest observation. This kind of diversity makes the problem of estimating the MRL

complicated and unforeseen.

In Guess & Park (1991), confidence intervals of monotonic MRL in extreme

right censoring were presented, but these bounds cannot give good performances
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when the MRL increases or decreases rapidly. Hence other feasible methods are

expected to serve as alternatives to estimate monotonic MRL function.

In this chapter, we introduce a new method for the estimation of DMRL with
Type II censored data. The method estimates the MRL without assuming any
distribution. The main idea is to estimate mean time to failure by comparing two
estimators for the reliability function. One estimator is the Kaplan-Meier estimator
and the other is derived from the empirical MRL function in Yang (1978).
Theoretically, this approach is also applicable to IMRL. But the estimation of IMRL is
not discussed in this work, because we find that the empirical function for IMRL is
not stable in heavy Type II censoring. Fortunately, IMRL is less common than DMRL
in real life. The organization of this chapter is as follows. In Section 4.2, we propose
the method and the estimation procedure. Section 4.3 presents simulation results and
compares the new approach to some parametric methods. Finally, some concluding

remarks are given in Section 4.4.

t

10 15 20

|

Figure 4.1 The curves of three possible reliability functions under censorship.
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4.2 A methodology based on empirical functions

4.2.1 The empirical MRL function

Suppose the lifetime of items 7' is a continuous non-negative random variable with

the reliability function R(¢) and the MRL function m(z) . Let

Loyslinysennsl

My Laysresliyolinyl

()2 Lriny > Iy DE OTdered potential failure times of n independent and

identically distributed items. If the data is complete, i.e. all of the n exact failure

times are known, the empirical MRL function can be easily estimated by

m(t) 0~ 4.1
1(;)1 %:H , 4.1)
1 s(t)
n—1(0) nu Z to |t 0st<t, (4.2)

where s(f) =max{i:¢, <t} and i = Zt(”

In Type II censoring, because the information of some failure times is lost due

to the termination of tests, we have only the first »(r < n) lifetimes, where 7 is a

predetermined number. Hence using (4.1) and (4.2) to get estimation becomes

infeasible, unless the mean time to failure x is provided or can be estimated from

another way instead of fz. If x is known, then we can estimate the MRL function by

i
D
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But at most time, & is unknown. Hence, in order to complete (4.3), we need to obtain

the information about x# by a method rather than /.

4.2.2 Two estimators of the reliability function

In this work, we want to calculate a good estimate for the mean time to failure y by
controlling the difference between two estimators of the reliability function according
to some criteria. One is the Kaplan-Meier estimator, while the other is obtained from

(2.2) and (4.3). For convenience, we quote (2.2) here.

_m© o]
Ry=2 exp{ L e dx}, 120, 2.2)

The Kaplan-Meier estimator, the common estimation for the reliability function, is

given by

n—i

k(t(,.)) = d=lr (4.4)

The second estimator, denoted by R(7), is obtained by substituting (4.3) into (2.2)

. 7(0 S
R(t;) = MGXP{_ Dty - t(k—l))}, (4.5)

(i) = m(l ()

where ¢, =0 and m(0)= .

(0)

In order to make (4.5) close to (2.2) enough, we adjust each term in the sum by

averaging the MRL at two adjacent failure times
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- 70 " 2
R(t;)) = m(0) exp{— (e ‘f(kl))}. (4.6)

m(t ;) = m(t ) +m(l )

Theoretically, the two estimators, ﬁ(t) and R(f), must be equal to each other.

However, due to the limited data and the approximation of integral by summation,

they become different, which is shown in Figure 4.2. From Figure 4.2, by treating u

as a variable, we observe that ﬁ(t(,)) irregularly oscillates at the beginning, and after

a certain 4, it starts to decline and finally approximates to ﬁ(t(r>) as u goes to

infinity. (This observation is supported in theory by Proposition 4.1 and 4.2.) An

explanation to the early oscillation is that too small g cannot guarantee positive
empirical MRL () at the beginning and thus make R (%) unstable. Thus, the true
value of u for all failure data should be able to make empirical MRL positive at all

t =1,...,r. It is rational because the empirical MRL for complete data at each point

>
in time are always positive. Hence, we can say that mean time to failure x# should be

at the stable period shown in Figure 4.2.

Moreover, as E(t(,.)) declines to ﬁ(t(i)) at the stable period, the distance of

E(t(i)) and ﬁ(t(i)) is in fact a decreasing function of mean time to failure . This
monotonicity implies that it is a one-to-one correspondence between the distance of
E(t(i)) and Ié(t(i)), and u. Every possible distance between E(t(,.)) and ﬁ(t(i)) can
be mapped by exactly one . On the other hand, once the distance is determined, we

can map it to a unique x . Thus, this indicates that the true x should be at some point
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at which the distance between E(t(i)) and f((t(i)) is equal to a certain small value. As

long as the distance at the true value of u is determined, then the true x can be
easily obtained. Hence, we aim to utilize failure data to calculate a suitable value for

the distance between E(t(l.)) and fE(t(i)) to get u.

0.85

Figure 4.2 The behaviors of E(t(r)) with respect to i (r =10,n = 50).

However, for different failure data, E(t(l.)) has different shapes, and the u
after which E(z‘(i)) becomes stable also differs. This variety also happens in the

decreasing trend of the distance between E(t(,.)) and f%(t(,.)). Therefore, it would be
better to incorporate the information contained in failure data into the choosing of a
proper value for the distance between E(t(i)) and f%(t(,.)). A feasible way is to
establish a suitable quantitative relationship between failure data and the distance of

E(t(l.)) and Ié(t(l.)) , so that the choosing procedure could be carried out via the

relationship. But before that, a measure needs to be selected to characterize and
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summarize the information that failure data have.

Proposition 4.1 E(t(l.)) , i=1..,r, 1s a decreasing function of u, for sufficiently

large u.
Proposition 4.2 E(t(l.)) - f?(t(l.)) as u—> oo, fori=1,.,r.

See Section 4.2.3 for proofs.
4.2.3 Proofs of Proposition 4.1 and 4.2

e Proof of Proposition 4.1

Note that ﬁ(t(i)),i =1,...,r 1s a strictly positive function. Hence to prove Proposition
4.1 is equivalent to prove log(ﬁ(t(l.) )) is a decreasing function of u for sufficiently

large . Based on the formula (4.6) that is the definition of R (¢4)) » we have that

- ) . S 2ty — L)
0g(R(t;)) = log((0)) —log((t;))) kzz; it g_yy) +m(t )

2(t ey = tkry)
m(t_yy) + M)

(4.7)

= Z(log(nw(k_l))) —log(ii(t ) -
k=1

where ¢, =0 and i =1,...,r.

Now the aim is to prove that every term in the summation is a decreasing

function of u for sufficiently large . Since gn%(t(i)) = L_, the partial derivative
u n—i
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of the summation term in (4.7) with respect to  is as follows

2(tx) —tory)
m(l_yy) + m(t )
1 n 1 n 20ty = t—ry) ( n n J
=— . —— . + - - . + .
m(tg_y) n—k+1 m(ty) n—k (m(l(k_l))—i-m(t(k)))z n—-k+1 n-k

0 N .
8_,& (10{%(’"@(/(1) ) — IOg(m(’f(k) ) —

(4.8)
For convenience, we denote
m(t(k—l)) =au—b,
Filty) = ayp— by,
m(l_y)) +m(t ) = aypu — by, (4.9)

where

k-1 k
n n 2 e > JLe)
k

a=—-">:,4a, = , b = +t, , b, = +t,, a,=a, +a,,
T @ | (k-1)> D2 (k> 43 1T a

n—k n—k+1 n-—

by=b +b,. (4.10)

Then together with (4.9) and (4.10), (4.8) can be re-written in terms of

a.,b,i=1273,

12710

a, (azlu -b, )(azuu — b, )2 —-a, (alll'l - b, )(a3lu — b, )2 + z(t(k) - t(k—l))a3 (azlu - b, )(a3,u — b, )2
(al/J - b, )(azlu - b, )(aslu - b, )2

4.11)

Since the denominator is strictly positive, the sign of (4.11) depends only on its

numerator. It is easy to see that the numerator is a quadratic function and the
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coefficient of the quadratic term, denoted by C,, is given by

C, =a,(2a,ab, —a;’b,)+a, 2a,a, b, +a," b))+ 2ty )@, a, ag

=a, ((—al b,+a,b)a, + 2(t(k> —t(,{_l))a1 az) (4.12)

From (4.10) and (4.12), we can get

k , k—lt
C n Z~: ) n Z-: 0] n n
2 J=1 ¢ Jj=1 +

— —+ .
a, n—k+1| n-k OV n—k| n—k+1 n—-k+1 n-k

n n
n—-k+1 n—k

+2(t ) — 1))

2

n k k=1
S — {[— D o~ (=R + Dt (ke 1)r(k1)}

1 1

2
n (t(k) - t(k—l))

= [—(n—kﬂ)x( ! + ! j+2}
(n—k+1)(n—k) n—k+1 n—k

- n (t(k)_t(k—l)) |:—(I’l—k+l)><( 2 j+2:|
(n—k+1)(n—k) n—k+1
=0

(4.13)

Since a; >0, we have C, <0. Thus the quadratic function that is the numerator of

(4.11) is less than O for sufficiently large x, which implies (4.11) is strictly negative.

So is the formula (4.8). Now it is obtained that

2(t 4y = t-ry)
m(t_yy) +m(t )

%[log(m(t(k_l) ) —log(m(t,))) - ] <0. (4.14)

By (4.7) and (4.14), the result shown in Proposition 4.1 is obtained. m
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e Proof of Proposition 2

From Equation (4.3), it is easy to see that m(f;)) — ©,i=1,...,r as u —> . Hence, it

is obtained that as 4 — «©

" 2

= m(t ) +m(t )

Moreover, as p — o

m(0) 7 n—i

it ) - (W_lelt(k)))/(n—i)—t(i) n

Therefore, based on the formula (4.4) and (4.6), we can get as y — o

R(t;) = R(ty), fori=1,..r.

Hence the proof of Proposition 4.2 is complete. m

4.2.4 A estimation procedure to estimate mean time to failure and the MRL

Many characteristics could be served as the measure for different failure data, such as

the sum of all failure data, etc. In this work, we aim to find a suitable measure, which
could be used to establish some relationship with the difference of R(¢) and R(¢) at

the true 4, so that given failure data, we could utilize the relationship to calculate the

distance of R(¢) and IAQ(t) and then the true value of x. The search of this kind of

measures could be conducted by simulation based on some probability distributions. A

brief description of the search procedure is as follows. For convenience, denote the
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difference of R(¢) and Ié(t) at u by D,,.

Search procedure
Step 1: Choose a characteristic C as the measure;

Step 2: Generate several data sets of different sample sizes from a predefined

distribution with different known parameters;

Step 3: For each data set, compute the value of C and their true mean g, i.e.

M, from the distribution;
Step 4: Compute vector (C, D, ) for each data set and plot the vectors;

Step 5: Observe whether the plotted points have some trend or randomly
spread; if trends exist, fit it with a suitable basis function, otherwise, go
back to Step 1.

One simple measure is directly derived from E(t(i))—ﬁ(t(i)), i=1,..,r. For

convenience, we treat R (t0) —ﬁ(t(i)) as a function of x and denote it by
d,(1)=R(t,)~ R(t,),i=1,..,r.
Also denote by g, the smallest value of the following set A, as R(f) must be
positive and non-increasing.
A={ueR" ity | 4) >0 & R(tgy | 1) > Rty | 1,1 =1} (415)

pp=minA (4.16)
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Denote by g(-) a transformation of d,(u),i=1...,r . Let the characteristic C

summarizing failure data be g(d,(x,),....d, (#,)), and the distance of R(¢) and Ié(t)

be D, =g(d,(4),....,d, (1)) . The relationship between C and D, is represented by
h(-).

g(d, (1), d, (1)) = h(g(d, (14,)s-..d, (11,))), (4.17)

where A(-) is a fitted function obtained from simulations to represent the relationship.

In this work, we let g(-) be the average on d,(u),i=1,...,r
1 r
&(d, ()l (1)) =~ > d, (). (4.18)
re3

Then (4.17) comes to
1< 1<
;;dxu) = h[;;di(ul )j . (4.19)

The function A(-) ‘s for different censor degrees defined as 1—r/n are listed in Table

4.1. These h() ’s are obtained by fitting the data  sets

(Zf_l d, (1) / 7, Z'_l d;(u) / r) , which are generated from Weibull distribution with

different parameters and different sample size n. Although these A(-)’s are based on

Weibull distribution, the simulation results show that they are also applicable for

gamma distribution.

Given a group of censored failure data, solving (4.19) would produce a value
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for the mean time to failure . Denote by z the root of (4.19). By substituting zZ

into (4.3), we can obtain the estimate for the MRL function. The procedure is

summarized as follows.

Estimation procedure

Step 1:Based on failure data, construct 71(¢), R(¢)and R(¢) as a function of

i by (4.3), (4.4) and (4.6) respectively ;
Step 2:Find out x, by (4.15) and (4.16) and compute Z.r_ldi(ﬂﬂ/’”;

Step 3:Choose a proper /4(-) from Table 4.1 and compute i by (4.19);

Step 4: Estimate the MRL function by m(¢ | i = i) .

Table 4.1  The function A(-) for different censor degrees.

Censor degree
=1l-r/n h(x)
01 exp(0.116463)x" 014
02 exp(0.021660)x" %7
03 exp(—0.008806)x" %55!%8
0.4 exp(—0.101985)x" "7
05 exp(—0.165095)x" "%
06 exp(—0.196420)x" "7
07 exp(—0.351714)x""*"*
08 exp(—0.693084)x" !4
0.9 exp(—1.251287)x" "
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Remark 4.1: This work gives a possible way as shown in (4.19) for estimation. The

function g(-) can be other transformations rather than (4.17). Also, /(-) can be other
goodness-of-fit functions. The x, can be other baseline index rather than the smallest

value of the set A .

4.3 Simulation Study

Some simulation studies are presented to show the performance of the proposed
procedure. We estimate the MRL based on data obtained from Weibull distribution
and gamma distribution, and also compare this new approach to some common
parametric methods with respect to the accuracy of estimation. The results indicate
that our new approach is able to give good performance and can surpass the

parametric methods when censoring is heavy.

4.3.1 Estimation results

The following two figures display some trials of the estimation for DMRL and
compare them with the true MRL. In both figures, the bold line refers to the true MRL
while the others are the plotting of different trials of the estimation. Figure 4.3 shows
the fitting results of Weibull distribution with shape parameter 2 and scale parameter 1,
Weibull (2, 1). The results for gamma distribution with shape parameter 4 and scale
parameter 10, gamma (4, 10), are shown in Figure 4.4. The comparisons between the
fitted and the real MRL functions suggest that in general, the new method could
provide nice performances on the estimation of DMRL, because all the estimated

curves are located not far away from the original one and have their decreasing trend
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similar to that of the true curve.

Figure 4.3 Comparison between real MRL (bold line) and estimated MRL function: Weibull
distribution (2, 1) with censor degree of 0.4.

30

Figure 4.4 Comparison between real MRL (bold line) and estimated MRL function: gamma
distribution (4, 10) with censor degree of 0.7.

4.3.2 Comparisons between the new and some parametric methods

To compare our new approach to the two main parametric methods - Maximum
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Likelihood Estimation (MLE) and Least Square Estimation (LSE), the simulations are
conducted for Weibull distribution and gamma distribution. We assume that the
underlying distribution for the parametric methods is the Weibull model because of its
popularity in reliability engineering. This means that, the underlying distribution is
true when failure data comes from a Weibull distribution, and is misspecified if failure

data comes from a gamma distribution.

Table 4.2 and Table 4.3 list the simulation results, which are computed from
100 replications with sample size n = 50, 100 and censor degrees of 0.4, 0.8. The
accuracy of each estimation method is accessed by the following error, which is

calculated as the average on squared errors of MRL at each failure data points.

r

Z (r;l(t(i)) - m(t(i) ))2

i=1

error = (4.20)

]/' 2

where m(t;)) and m(¢;) are the real and the estimated MRL at 7, respectively. The

three approaches are compared in terms of the average value of their errors and the

related variance, which are obtained from replications.

The results in both tables suggest that the new method performs well in the
MRL estimation. From Table 4.2, we find that when the underlying distribution is
correctly set, the new method is rather comparable to the MLE although not

outperforming it, and can become slightly better when the available data size is small.
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Table 4.2

Simulation results for Weibull distribution with shape and scale parameters (3, o).

Censor degree = 0.8

E(error) V(error) | E(error) V(error) | E(error) V(error) | E(error) V(error)
n=50 | (2,1 (2,10) 4,1 (4, 10)
MLE | 0.12020 0.08546 | 8.49816 243.087 | 0.00577 0.00019 | 1.45244 2.29518
LSE 2.31773  114.053 134256 304758 | 0.09201 0.02635 | 11.8314 2885.79
New 0.06153  0.00969 | 6.96069 138.004 | 0.05205 0.02180 | 5.4182 130.368
n=100 | (2, 1) (2,10) 4,1 (4, 10)
MLE | 0.03250 175.92 5.16342 17592 0.00459  0.00019 | 0.95798 2.27858
LSE 0.30707 993954 | 74.2731 99395.4 | 0.04978 0.02635 | 5.96174 878.98
New 0.08377 230.502 | 8.31186 230.502 | 0.08575 0.02180 | 6.84384 201.102
Censor degree = 0.4

E(error)  V(error) | E(error) V(error) | E(error) V(error) | E(error) V(error)
n=50 | (2,1 (2,10) 4,1 (4, 10)
MLE | 0.01105 0.00017 | 0.73780 1.22898 | 0.00093 4.79E-06 | 0.18087 0.05136
LSE 0.03432  0.00336 | 7.17336 426.079 | 0.01005 0.00028 | 0.51578 1.34699
New 0.01265 0.00023 1.1846 1.80366 | 0.00492 3.98E-05 | 0.83706  6.63227
n=100 | (2, 1) (2,10) 4,1 (4, 10)
MLE | 0.00561 5.58E-05 | 0.49964 0.49052 | 0.00054 1.53E-06 | 0.09579 0.01450
LSE 0.02880 0.01104 | 1.74981 9.38191 | 0.00427  9.34E-05 | 0.36001 0.41472
New 0.00928 0.00023 | 0.81377 1.03232 | 0.01173 0.00013 | 1.26495 2.19568

The results in Table 4.3 show that, if the underlying distribution is wrongly

chosen, the new method is still able to produce accurate and stable estimation for the

MRL function and has better performances than the MLE most of time, especially

when the censoring is heavy. Moreover, we find that our new procedure always gives

more favorable estimation than the LSE regardless of censor degree, parameter and

sample size. It is worth noting that the new method is a nonparametric approach, and

thus much easier to be used in computation compared to the MLE and the LSE, which

may need starting values. So it is a good choice to utilize this new approach to

estimate the MRL function when the data is Type II censored.

92



Chapter 4: DMRL Estimation with Type II Censored Data

Table 4.3

Simulation results for gamma distribution with shape and scale parameters (b,a).

Censor degree = 0.8

E(error)  V(error) | E(error)  V(error) | E(error)  V(error) | E(error) V(error)
n=50 | (2,1 (2,10) 4,1 (4,10)
MLE | 0.72308 1.52889 | 49.304 2516.8 1.15582  0.97629 | 245.158 1.71E+6
LSE 7.34984 3783.09 | 762.888 1.01E+7 | 2.92106  54.5256 | 164.471 91396.2
New 0.45416 0.14771 | 49.2319 2218.71 | 1.17507 2.90153 | 69.9264 5256.86
n=100 | (2, 1) (2,10) 4,1 (4, 10)
MLE | 0.36442 0.16574 | 41.7359 2550.8 0.663986 0.408652 | 316.79 1.13E+7
LSE 0.92661 14.5942 | 505.796 4.10E+6 | 0.836309 1.67657 | 261.396 1.49E+6
New 0.29363 0.09623 | 32.6164 1101.96 | 0.915245 4.53443 | 79.1259 23393.9
Censor degree = 0.4

E(error) V(error) | E(error) V(error) | E(error)  V(error) | E(error) V(error)
n=50 | (2,1 (2,10) 4,1 (4,10)
MLE | 0.13415 0.02018 | 18.3118 4476.89 | 0.282167 0.055064 | 65.6198 138549
LSE 0.37964 0.04597 | 36.4742 167584 | 0.33516  0.105586 | 31.764 1069.76
New 0.14089 0.03615 | 20.996 306.921 | 0.289309 0.060875 | 29.7066 705.183
n=100 | (2, 1) (2,10) 4,1 (4,10)
MLE | 0.07421 0.00489 | 8.62614 420.743 | 0.198012 0.030083 | 287.337 434006
LSE 0.11412 0.01572 | 16.0043  739.35 0.277023 0.056159 | 25.4535 642.129
New 0.11199 0.01139 | 9.31751 105.047 | 0.135272 0.030934 | 17.1018 538.297
4.4 Conclusion

In this chapter, a new estimation procedure for the DMRL function has been

introduced by comparing two estimations of the reliability function. Simulation results

indicate the good performance of the new method for the distributions with DMRL,

especially when censor degree is relatively high and data size is small. Further

research may try to improve the proposed method and extend the idea so that more

DMRL can be estimated in a nonparametric way, as well as IMRL or UBMRL, since

the current method cannot provide satisfactory estimations for these two MRL classes.
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Chapter 5: Relationship between MRL and Failure Rate Function

CHAPTER S RELATIONSHIP BETWEEN MEAN
RESIDUAL LIFE AND FAILURE RATE FUNCTION

After studying the MRL itself in the previous chapters, this chapter will focus on the
relationship between the MRL and the failure rate function, and discuss the effect of
the change of one characteristic on the other characteristic, as these two characteristics
are closely related to each other. This type of study would give comprehensive
descriptions for aging behaviors of products, and also provide guidelines on how to

control the deterioration of products more efficiently.

5.1 Introduction

The MRL and the failure rate function are two important measures used to describe
failure times. Although these two functions depict aging behaviors in different ways,
both of them are in fact equivalent to the reliability function in the sense of probability;
moreover, the characteristic of one function is always related to that of the other.
Therefore, much attention has been addressed to the relationship between these two

functions, for better decision-makings in reliability engineering, such as shock process,
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burn-in, maintenance schedule, etc.

In literature, the MRL and the failure rate functions have been extensively
studied and compared from various aspects, such as shape, change point and partial
ordering. For shape, Bryson and Siddiqui (1969) proved that the IFR (DFR) implies
the DMRL (IMRL), while Gupta and Akman (1995a) showed that the characteristic of
the non-monotonic MRL depends on its mean and the failure rate at time zero. The
properties of the change points for the MRL and the failure rate functions with roller-
coaster shape were discussed in Bekker and Mi (2003). Also Tang et al. (2004)
investigated the distance between the change points for MRL and failure rate
functions. Furthermore, the partial orderings of these two characteristic play key roles
in the field of reliability. Analogical to the fact that the failure rate function determines
the trend of the MRL function, Gupta and Kirmani (1987) proved that the failure rate
ordering dominates the MRL ordering and proposed a sufficient condition under with
the MRL ordering also implies the failure rate ordering. A systematic review on the
relationships between the MRL and the failure rate function is presented in Section

2.1.3.

The studies mentioned before discussed the relationship between the two
functions mainly from a qualitative point of view. Hence, as a complement, doing
some quantitative analysis would be useful and meaningful in reliability for both
theory and applications. In this chapter, we aim to study the effect of the change of
one characteristic on the other characteristic. Some inequalities are established to
indicate upper or lower bound on the extent of change. The application of the

inequalities is also discussed. In Section 5.2, we study the range that the MRL will
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decrease (increase) if the associated failure rate is increased (decreased) to a certain
level. Two examples are used for illustration. In section 5.3, the difference of two
failure rate functions is investigated when their corresponding MRL functions are
ordered. The result is shown to be useful in estimating failure rate function based on

MRL that can be empirically estimated. Finally, conclusions are given in Section 5.4

5.2 From failure rate function to MRL

Finkelstein (2003a) introduced characteristics to measure the difference between two
MRL functions and discussed how the MRL changes from a baseline to a more risky
environment with increased failure rate function. One characteristic used to
quantitatively measure the difference between two MRL functions is called Dyri-

distance

Dyge (1) =my (1) —m, (2), t20.

The other is relative characteristic that is defined based on the ratio of two MRL

functions.

m, (1)

RDMRL (H)=1- ml(l‘) 5

t>0

In this section, we want to extend the study in Finkelstein (2003a) and further study
the extent that the MRL will be affected by the change of the corresponding failure

rate function.
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5.2.1 Some results on MRL due to the change of failure rate function

In reliability, failure rate function is a characteristic that measures the instantaneous
risk an item faces at a certain time. As risks change in diverse environments, the
failure rate function might also vary. The failure rate function may be increased due to
an extra risk; or it will become smaller if a production process is improved. There are
two main ways to model the change of the failure rate function. One is to use the

additive failure rate models and the other is via the proportional failure rate model.

The independent additive model is describe in the following way

r () =r(t)+ A1), t>0, (5.1)

where A(?) is a failure rate function representing additional independent risks.

The proportional hazards model is given by

rp(t)=zr(t), t=0, (5.2)

where z is a constant or some parameter.

In this section, we are interested in how the MRL function would respond

when the associated failure rate function varies via the above two models. Let T}, 7,
be two lifetime random variables with the MRL functions m, (¢), m,(¢) and the failure

rate functions r(¢), r, (t) . Without loss of generalization, we assume that

R <n(t), t=0.

Because the failure rate ordering implies the MRL ordering, it is easy to see that
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m(t) 2 m,(t), t=0.

In the following Theorem 5.1 and Theorem 5.2, some inequalities are established to

show the difference of two MRL functions, m,(¢) and m,(¢), if the failure rate
functions, 7 (¢) and r,(¢), are related through the additive model and the proportional

model.

Theorem 5.1: Suppose that the MRL functions m,(t) and m,(t) are bounded. Denote
constant, positive upper bound and lower bound for m,(t) and m,(t) by

Ciy» C1L» Cou» Cop Tespectively. z is a constant andz 2 1. Then

(1) [flsrz—(t)SZ, we have
1 (1)

0<m(t)—m,(t) <(z=1Dcyy

c
If the constant z satisfies that 1 < z < —3Y— we also have
Clu ~—CiL

z
(Z)IfrzT(gZzZl, we have
n

z—1

)clLZO.
z

m,(t)—m,(t) 2 (z—1)c,; 20 and ml(t)—mz(t)Z(

Proof: For part (1), denote m,(t) = m,(t) +(z —1)c,; as the MRL function of another
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lifetime random variable. The corresponding failure rate r;(¢)is given by

r3(t):mé(t)+1:mé(t)+l:rz(t) mz(l‘)

my(?) ms(t) my(£)+(z— ey

Since g(x) = al
x+a

, a > 01s an increasing function of x, we can get

c 1
) <nr(t 20U =—nr(r).
(O <n(0) 2= 2n(0)

As 1< ”27(3 < z, we obtain that 7,(¢) <r,(¢)/z < r(¢t) < r,(¢) . This inequality implies
i

that my(¢) = m,(¢) + (z —l)cy, 2 my(t) 2 m,(t), which is equivalent to

0<m(t)—my(t) < (z=1)cyy -

Let m,(f) = ml(t)—(z_ljcw. As1<z<—U o (r)=0and so m,(t)
z Civ 1L

is an MRL function. The corresponding failure rate 7,(#)is

r4(t):mg(z)+1:m1’(t)+1:rl(t) m (1)

my () my, (1) m ()~ (z-Vey [z

Since , a > 01s an decreasing function for x > a, we have

X—da

2l -
a0 =70 ey —(z=Deyy /2 ~ 70

As 1< FZT(Z)) <z, then r,(¢) 2 zr;(¢) 2 r,(t) 2 r;(¢) . From this inequality, we can get
n(
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z

m4<r>=m1(z)—( —

jclU < m,(t) < m,(t), which is equivalent to

0 < m, () — my(t) < (Z—_ljcw .
z
The proof of Part (2) is similar. m

Theorem 5.2: Suppose that the MRL functions m,(t) and m,(t) are bounded. Denote
constant, positive upper bound and lower bound for m,(t) and m,(t) by

Cly» Ci» Cous Cop Tespectively. | is a constant andl > 0. Then

(1) If 0<r,(t)—nr(t)<l, we have

1< ml(t)

<1+/l-cy;
my () v

1 oen()

If the constant | satisfies that | < min{
Gu  Cu

}, we also have

jem®

(2) If ry(t) —n(¢t) > 1, we have

MmO g, s1and MO 1y
my (1) my(t) 1=l-c,
Proof: For part (1), denote m;(¢) :%ml(t) is the MRL function of another
+ /- CIU

lifetime random variable. The associated failure rate r;(¢) is given by
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mg(t)+1:m1'(t)+l+ ley () + ley .
my(t)  m(t)  m(t) T my()

r(t) =

. a . : .
Since g(x) =—, a > 0is a decreasing function of x, we can get
X

R 2 R0+ U = () +1
Cy

As 0<r(t)—nr(t)<l, we have that ry(t) > r(t)+1>r,(¢t) 2r,(t) . This inequality

implies that m,(¢) > m, (1) 2 m5(t) = m,(t), which is

-CU

1< Mm@

<1+/-¢c;.
m, (1) v

Denote m,(t) = m, (1) . Because [ < min{i,w} , my (1) =0

1=1-cyy Cou Cu

and my > —1.So m,(t)is a MRL function. The associated failure rate r,(z) is

my(D)+1_my()+1 Ly = () lcyy

my (1) my(t)  my(2) my(t)

n(t) =

. a . ) . .
Since g(x)=—, a <0 is an increasing function of x, we can get
X

lc
M<K -—L=n-1.
Gy

Because 0<r,(¢)—r(¢t)<[, it can be obtained that r,(¢t) = r(¢) 2r,(t) -1 2 r,(¢) .

This inequality implies that m,(¢) < m,(¢) < m;(t) = %mz (), which can be
pa— . c2U
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m () < 1

rewritten as 1 < < .

Part (2) can be similarly proved. m

Consider the exponential distribution as a special case. Let T}, T, be random
variables subject to the exponential distribution with the failure rate 4, and A, and
Ay <A, . Then their associated MRL function are gz =1/4;, and u,=1/4,

respectively. For convenience, we choose ¢, =c¢;;, = 1y, Coyy =€y = My .

Case 1: If 1< A,/ A, <z, then we have izl%, which is in fact u, Zl,ul. Then
2 ‘M z

it i1s easy to get the difference between g and g, satisfying that

-1 -1 1 11 .
My — My < z oy = z ¢y - For A4,/ A, 2z, we can obtain — < ——, which is in
z z AL, z A

1 -1 -1 .
fact p, <— . Then py —p, 2 z W= z ¢, - This is for Theorem 5.1.
z z z

Case 2: If A,-A4, </, we have &S1+L , which 1is equivalent with
1 1

iSl+l,ul =1+1lc;;. For 4, =4, 21, we can obtain %21+ﬂi,which is in fact
Hy 1 1

Aoy [y, =1+1c,, . This is an example for Theorem 5.2.
H

5.2.2 Numerical examples and practical implication

The results presented in the previous section can be easily interpreted in common
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probability distributions such as the Weibull distribution as well as the extended

Weibull model and the lognormal distribution.

Example 5.1: Suppose random variable 7, follows Weibull distribution with
R, (1) = exp(—#°) and r(t) = 3¢*. The MRL function of T,, m,(t), is a decreasing
function of ¢, so it is easy to see that m,(¢) < E[T,]=m,(0) for all #>0. If there is
another random variable 7, with its failure rate function #(#) such that
0.7r,(t) < 1(t) < r,(¢), then according to Theorem 5.1, the MRL of 7, m,(¢), falls in
to the band composed of m,(¢) and m,(t)+(1/0.7-1)E[T,] , 1ie.
m,(t) <my(t) <m,(t)+(1/0.7-1)E[T,]. Figure 5.1 shows the plots of the MRL and
the failure rate functions of 7, and 7, , as well as 0.7n(¢f) and

my(t)+(1/0.7=1)E[T,].

Example 5.2: Suppose random variable 7} follows a distribution with 7 (¢) = 0.24¢>.
The corresponding MRL of 7}, m,(¢), is a decreasing function of 7, so we have
my(t) < E[T;]=m,(0) for all £ >0. If there is another random variable 7, with its
failure rate function 7,(¢) such that r(¢)<r(#)<r(t)+0.4 , then according to
Theorem 5.2, the MRL function of 7, , m,(¢), is bounded by m,(¢)/(1+0.4E[T}])
and m(t), 1.e. m(¢)/(1+0.4E[T;]) <m,(t) <m(t) . The corresponding MRL and

failure rate functions are plotted in Figure 5.2.
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Ti:

Figure 5.1 The plots of the MRL and the failure rate function for 7}, 7, in Example 5.1.

e Practical implication

One important application is related to point process of recurrent event, particularly a
shock process that acts on an object (Finkelstein, 2003a). Suppose the lifetime of an

object T is a random variable with reliability function R(z) and failure rate function

r(t). Let {P, ¢t =0} denote a non-homogeneous Poisson process of an additional
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0.5 1 1.5 2 2.5 3

I: —— I,: ——  n®+04, m@)/A1+E[T;]): -----

Figure 5.2 The plots of the MRL and the failure rate funcitons for 77, 7, in Example 5.2.

harmful shock, which is independent of lifetime 7', but with a certain probability
would cause failure of the object. Assume that the rate of the shock process is

A(t) and the probability that the occurrence of the shock results in failure rate is €(z).

Block et al. (1985) and Finkelstein (2003b) showed that, under this only shock

process, the survival probability of the object at time ¢, denoted by G(¢), comes to

G(t) = ROR, (1), (53)
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where R, (f) = exp(— I;H(u)/l(u)du}

Obviously, this setting can be described by the independent additive model in (5.1). It
can be seen that, with an additional risk from the shock process, the failure rate

function that the object faces, denoted by 7, (¢), is a sum of its original failure rate

function and the one introduced by the process.

rg(t) =r(t)+ 0(t)A(1) . (5.4)
Based on either (5.3) or (5.4), the loss in MRL due to the shock could be calculated,

given that the information of 8(¢) and A(¢) is exactly known. But sometimes it is

difficult to obtain full knowledge of the shock process, and thus maybe only part of
information is available, such as upper or lower bounds. Then, in this case, Theorem

5.2 can be applied to get a range of the MRL loss.

On the other hand, the proportional hazards model is widely used in both
reliability engineering and biostatistics to analyze the effect that some time-

independent covariates have on the failure rate (hazard rate) of an object. Often the z
in (5.2) is expressed as an exponential function, z = exp(ﬁTZ), where Z =(Z,,...,Z,))
is a vector of fixed covariates and p = (f,,...,,,) is a unknown parameter vector. For

example, we may be interested to assess the risk of smokers being exposed to lung
cancer, and want to find out attributes that have effects on the risk. Based on the
proportional hazards model, we may choose four time-independent covariates like sex,
weight, blood pressure, race, and also a suitable baseline failure rate function with

some unknown parameters. Then the following model can be established.
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r, (1) = exp(B' Z)r(1, ). (5.5)
where r(t,a) is a baseline failure rate function. The unknown parameters can be
estimated with data collected from patients, and estimated model can further be used
to make statistical inferences. Given confidence intervals of parameters, the lost

expected lifetime due to an increase in blood pressure can be obtained by Theorem 5.1.

5.3 From MRL to failure rate function

The foregoing section studies the change of the MRL due to the change of the
corresponding failure rate function. This section focuses on the comparison between
two failure rate function when their related MRL are ordered. This study would
benefit the estimation of bounds on failure rate function, as the estimation could be

conducted in the following way.

Step 1: Find two MRL functions such that the band between them covers the
empirical MRL function estimated from failure data;

Step 2: Use the two failure rate functions associated with the two MRL to
construct the bounds for the desired failure rate function.
5.3.1 Some results on failure rate function for ordered MRL

It is known that MRL ordering does not necessarily imply failure rate ordering. To
make the implication valid, a sufficient condition, which was proposed in Gupta &

Kirmani (1987) and is also shown as Theorem 2.5 in Chapter 2, is that the ratio of
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smaller MRL over larger MRL should be a non-decreasing function. With this
condition, a larger MRL function corresponds to a smaller failure rate function. In
other words, for estimation, an upper (lower) bound of MRL function would produce

a lower (upper) bound for the associated failure rate function.

Although this sufficient condition is simple, the disadvantage is that the
behavior of ratio cannot be directly observed from the plotting of two functions. Also,
the estimation is sensitive to the sufficient condition, which is not easy to fulfill when
the empirical MRL is encountered. This is because, the empirical MRL is not a
smooth function, and thus the ratio of the empirical MRL to its upper bound MRL
may not be a non-decreasing function all the time, so as to the ratio of the lower
bound MRL to the empirical MRL function. This possibility would result in the
crossing of the two failure rate functions inverted from the MRL bounds, as well as

the crossings of these two failure rate functions and the interested failure rate function.

Hence, more intuitive characteristics are expected as alternatives for the
sufficient condition, so that bounds for the failure rate function can be easily obtained
by graphically analyzing the related MRL functions. Also more robust estimation

methods are needed.

Under the condition that the difference of two MRL function is monotonic, an
inequality for two failure rate functions is established as shown in Theorem 5.3. This

inequality can be further used to estimate bounds on failure rate function.

Theorem 5.3 Let T, and T, be two life time random variables with reliability
function R,(t) and R,(t). Then
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(1) DMRL Class

Suppose m,(t) and m,(t) are decreasing functions, m,(t)=m,(¢t) , and

m,(t) —m,(t) is a non-decreasing function of t, then

1 .
@ @

n(0) -

(2) IMRL class
Suppose m,(t) and m,(t) are increasing functions, m,(t) = m,(t), and m,(t) —m,(t)

is a non-increasing function of t, then

1
mz(t).

n(t)—%mﬁrz(t)—

Proof: For part (1), as m,(t) —m,(¢) is a non-decreasing function of 7, it follows that

for t>0

my(1) —my(1) 20
Since m,(¢) and m,(¢) are DMRL, we have

my(1) <0, my (1) <0

Because m,(¢) > m,(t) 2 0, by simple deduction, we have

m(0) _ mi0)
my(t)  my(0)-

Based on (2.4), we have
r(t)zmé(t)+1gm{(t)+ 1 () o,
’ my(t) "~ om(0) my(t) T my(e) my(e)
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Rewrite the above inequality as

1
m, (1) .

n(r)—m#(t)z@(m—

So Part (1) is proved. Part (2) can be similarly proved. m

5.3.2 The application in estimating bounds for failure rate function

As a direct application of Theorem 5.3, the estimation for bounds on failure rate
function is summarized in the following corollary. The methodology presented is
applied to monotonic MRL class. But more complicated MRL function also could be

handled by treating it as a combination of monotonic MRL functions.

Corollary 5.1 Suppose T, T, and T, are nonnegative random variables with the
failure rate functions r(t), r(t), r,(t) and the MRL functions m(t), m(t), m,(t).

Without loss of generality, assume that m,(t) > m(t) > m,(t).

(1) DMRL class

If m(t), m(t), m,(t) are decreasing MRL functions and satisfy m,(t)—m(t) and

m(t) —m,(t) are increasing functions of t, then we have

! +L<r(t)<r(t)— ! +L
my(t)  m(r) ] m(t) m(t)- (5.6)

() -

2) IMRL class

If m(t), m(t), m,(t) are increasing MRL functions and satisfy m,(t)—m(t) and
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m(t) —m, (t) are decreasing functions of t, then we have

Ly L sisna L

2O o (z) m(t)’

(5.7)

Let ).t )t

(iyssloy be ordered failure times of n identical and
independent items with the MRL function m(¢) and the failure rate function r(¢).

Based on Yang (1978), the empirical MRL function can be estimated by (2.6). We

quote (2.6) here for reference.

m(t) =

tn—t, for 0<t< t,
() 2.6
n— l< ), Z,W 26)

where [(f) = max{i :t, <t}.

Based on the plot of n(#,)),7=1,...,n, we can graphically find two random

variables 7; and 7, , which follow parametric distributions such that the related MRL
functions m, (¢) and m,(¢) satisfy the conditions described in Corollary 5.1 at least in

the interval [0, 7,)]. Then together with (2.6) and (5.6) or (5.7) would yield the

bounds for the failure rate function r(¢). The procedure is summarized as follows.

Estimation procedure

Step 1: Use the data to compute the empirical MRL function mi(¢) by (2.6);
Step 2: Determine the trend of m(¢) ;

Step 3: Find 7} and 7, such that the conditions in Corollary 5.1 are satisfied;
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Step 4: Compute the lower and upper bounds by (5.6) or (5.7).

Remark 5.1: Because 7(¢) is not a smooth curve but m,(¢) and m,(¢) are smooth
everywhere, m, () —m(t) and m(t) —m,(t) cannot be increasing over time. Hence the
choosing of 7; and 7, can be empirically done. Alternatively, the trend of

m,(t)—m(t) and m(¢)—m,(t) can be determined by some statistical tests.

5.3.3 Simulation results and sensitivity analysis

e Simulation results

Simulations are conducted on a data set of sample size 50 generated from Weibull
distribution with scale parameter 1 and shape parameter 3.6, i.e. Weibull
(a=1,4=3.6). Let T} and T, follow Weibull (a=0.8, f=1.9) and Weibull
(a=2, p=7). The plots of the empirical MRL function as well as the MRL
function of 7; and 7, are shown in Figure 5.3. By (5.1), we can compute the upper
and lower bounds of r(¢) for the target Weibull (a =1, # = 3.6), which are plotted in

Figure 5.4.

The figures show that the new method does well in estimating the bounds for
the failure rate function, except the later part of the lower bound. From Figure 5.4, it
is found that the lower bound for DMRL may be inaccurate when ¢ is large (refer to

the dashed line when ¢ >1.05). This is because that 71(¢) tends to 0 as £ — oo in most
situations and thus it becomes very difficult to find a random variable 7, such that

m(t)—m,(t) is an increasing function for large ¢.
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0.2 0.4 0.6 0.8 1 1.2 1.4

empirical m(t): upper bound: ——  lower bound: -------

Figure 5.3 The plotting of the empirical MRL function and the MRL functions of 7| and 7,
for DMRL class.
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real r(¢):

upper bound: ——  lower bound: -------

Figure 5.4 The plotting of the real failure rate function and the estimated upper bound and
lower bound for DMRL class.

It is also worth noting that m,(¢) —m(¢) and m(¢) —m,(¢) are not increasing

everywhere, as shown in Figure 5.3, but the final result is not affected. A possible
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explanation is that m,(¢) —m(t) and m(t) —m,(¢) really increase with time ¢, as the

real MRL function m(¢) is a smooth function.

Simulations are also conducted on data obtained from an IMRL distribution,
Weibull (a=1, #=0.6). And 7, and 7, are Weibull (=028, f=0.8) and
Weibull (a¢=4.5, f=0.3) respectively. The corresponding plots are shown in

Figure 5.5 and Figure 5.6.

These two figures also indicate that the new method could provide good
performance in estimation of bounds for IMRL class, except the later part of the upper
bound. The reason for this phenomenon may be due to the large variation of the tail of
the empirical MRL function for IMRL, which is caused by too few data points that

can be collected for large 7.

empirical m(t): upper bound: ——  lower bound: -------

Figure 5.5 The plotting of the empirical MRL function and the MRL functions of 7} and 7,
for IMRL class.

115



Chapter 5: Relationship between MRL and Failure Rate Function

real »(t): ——  lower bound: ——  upper bound: -------

Figure 5.6 The plotting of the real failure rate function and the estimated upper bound and
lower bound for IMRL class.

e Sensitivity analysis

In fact, the two random variables 7} and 7, can be arbitrarily chosen and thus infinite
pairs of bounds can be constructed. So it is helpful and useful to analyze the influence

of the choices of 7} and 7, on the estimation results. The following three sets of
figures graphically show how the choosing of 7; and 7, affects the estimation of the

bounds for the failure rate function. In these figures, two gray lines are added,

compared to Figure 5.3 and Figure 5.4, to represent another choice of 7; and 7, . For

convenience, we denote the new 7 and 7, by 7, and T, respectively, to distinguish
from 7; = Weibull (¢ =0.8, f=19) and 7, = Weibull (¢ =2, f=7) defined in

the previous. Also denote by mf (t) and m; (¢) the related MRL functions.

In Figure 5.7, the MRL functions of 7, and 7, are almost parallel and
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my (1) < ml* (¢). Also it can be seen that the corresponding upper bound estimated from
m,(t) is closer to the real failure rate function than the bound estimated from mr (7).
This observation indicates that the distance between m,(¢) and m(¢) has an effect on
the width of the bounds: the nearer m,(¢) is to ni(¢), the narrower the bound will be.

Similar conclusion also can be drawn from the lower bounds related to 7, and T} .

0.2° 0.1-0.8--08 " 1 1.2 1.4

Figure 5.7 Parallel MRL and the associated failure rate functions.

Figure 5.8 and Figure 5.9 show the relation between the slope of the MRL

function and the width of the bounds. In both figures, m,(¢) is less than ml* (1), 1.e.
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my (1) < ml*(t). From Figure 5.8, we can find that m, (¢) — m(¢) increases less rapidly
than mr (t)—m(¢) and the bound estimated from m,(#) is narrower than that

estimated from mf (1).

Figure 5.8 MRL with the same value at time 0 and the associated failure rate functions.

A similar situation is also shown in Figure 5.9: m,(#) —m(¢) increases more rapidly
but the bound estimated from m,(¢) is wider. Upon these findings, we may conclude

that a lower increase speed of m, () —m(¢) implies a narrower bound. The above
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analysis suggests that it is better to choose such 7, and 7, that their MRL functions
are close to m(¢) and the distances, m, () —m(t) and m(t)—m,(t), increase relatively

slowly with time ¢.

t

b o 2 e

0.2 0.4 -0.5--0.8 1 1.2 1.4

Figure 5.9 MRL with the same value at time 7(,,) and the associated failure rate functions.

Moreover, it is worth noting that the differences of the bounds, which are
constructed by different 7, and 7,, are very small. This means that to some extent, the

new method is robust. Hence this new method is favorable in the inference of the
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failure rate function.

5.4 Conclusion

This chapter focuses on the relationship between the MRL and the failure rate
functions as these two characteristics are closely related to each other. We discuss the
effect that the change of one characteristic has on the other characteristic and proposes
some inequalities to quantify the range of change. The results show that (1) the
change of MRL can be related to the extreme value of the MRL function and the
failure rate function; (2) the range that failure rate function varies has a link with the
MRL function and the derivative of MRL function. Based on these results, when exact
information of the two functions is unavailable, upper and lower bounds for MRL
function and failure rate function could be obtained based the inequalities that are

shown in theorems proposed in this chapter.

In particular, based on the inequalities, an estimation method was introduced
to estimate bounds for the failure rate function based on empirical MRL function. The
simulation results indicate good and robust performance of this new approach.
However, errors caused by arbitrarily choosing of the two random variables are
unavoidable. Therefore, further research may focus on how to examine these errors

from the statistical point of view.
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CHAPTER 6 CHANGE POINT OF MEAN RESIDUAL
LIFE OF SERIES AND PARALLEL SYSTEMS®

The foregoing chapters are mainly concerned with the MRL of single items or a
system that is treated as a whole. However, because a system is often complex and
composed of several components, its reliability is in fact determined by its inner
structure, which refers to the allocation and the properties of components. Therefore,
it is of great importance to analyze how a particular structure impacts the reliability of
a system. In this chapter, we will focus on the change point of the MRL for series and
parallel systems, and investigate the effect that system structure has on the location of
change point. The study of the change point, at which the MRL changes the trend, is
important, as its location provides useful information on the most reliable time of an

item.

3 Part of the work in this chapter is published in Australian & New Zealand Journal of Statistics.

“On the change point of the mean residua life of series and parallel systems”, Australian & New
Zealand Journal of Statistics, 2010, 52(1), pp.109-121.
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6.1 Introduction

In coherent systems (Triantafyllou & Koutras, 2008), series systems and parallel
systems are two most important structures, as they are fundamental in the design of
most complex systems that are common in real life. These two basic structures have
been extensively investigated in reliability evaluation. In this chapter, we focus on the
MRL of series systems and parallel systems, as the MRL is a key measure in
reliability analysis since it represents how much longer an item will work for (Lai &

Xie, 2006; Navarro & Hernandez, 2008).

Because systems are composed of components, an interesting question is how
a system is related to its components in terms of MRL. Several papers discussed this
problem from the angle of preservation properties for series and parallel systems.
Abouammoh & El-Neweihi (1986) showed that parallel systems inherit DMRL from
components, and the reversed preservation ageing properties for series and parallel
systems were discussed in Li & Yam (2005), Belzunce et al. (2007a), and Li & Xu
(2008). The current work focuses on the systems with independent and identically
distributed (i.1.d.) components. We investigate the relationship between the systems
and their components by comparing the change points of their respective MRLs. The
change point, at which the MRL reaches its maxima or minima and begins to change
the trend, provides useful information on the most reliable time of an item (Block et

al., 1999), i.e., the time at which the item has maximum reliability.

In literature, there are many papers on the location of the change point of MRL.
Gupta and Akman (1995a) showed that the change point of the MRL is located before
that of the failure rate function. This issue was also discussed in Tang et al. (1999),
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Finkelstein (2002), Bradley & Gupta (2003), and Mi (2004). Recently, Belzunce et al.
(2007b) found that an extra constant risk will postpone the change point of MRL, and
some numerical examples were provided in Bebbington et al. (2008). Motivated by
these works, the purpose of this chapter is to extend their research to system structures
and to investigate the effect of the series and parallel structures on the position of the

change point of the MRL function.

Assume that all components in a system are i.i.d. and have UBMRL and BFR.
This chapter explores the relation between the change points of the systems’ MRL and
of the components’ MRL with respect to the location. After presenting the concepts
and general results on MRL for series and parallel systems in Section 6.2, it is shown
in Section 6.3 that the change point of the MRL for series systems is located after the
change point for single components; but for parallel systems, the situation is opposite
— the change point of a parallel system occurs prior to that for its components.
Furthermore, we find that the difference in the positions of the change points between
systems and components increases with the number of components. For illustration,
an example is given in Section 6.4. In addition, a brief graphical study on a parallel
system with two independent but non-identically distributed components is executed

in Section 6.5. Finally, Section 6.6 gives some concluding remarks.

6.2 Definitions and background

Suppose that a system consists of n (n > 1) independent and identically distributed

components. Let 7;, 7,...., T, be the lifetimes of n components and assume that they
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are continuous and non-negative random variables with reliability function R(¢). If
E(T};) < o, the MRL for components, denoted by m(), is given by (2.1).
I R(x)dx

m(t)=E(T, —t|T >t)=fRT.

The associated failure rate function (2.3), given the density function f(7), is

_f0

r(t) R():

Suppose that both m(¢) and r(¢) are differentiable, then we have the equation (2.4).

m'(t) =m(t)r(t)—1.

It is well-known that the MRL and the failure rate function are equivalent to each
other and also to the reliability function. Hence, both the MRL and the failure rate
functions are able to uniquely determine the distribution of the lifetime of items.
However, these two functions usually have opposite monotonic trends and represent
the aging behavior of a component from different points of view. For example, an

increasing failure rate function implies a decreasing MRL function.

6.2.1 MRL of series system

Let 7,,,T.

Ln> *2imo*"

., T be ordered lifetimes of n components. As a series system is

defined as a system which functions if and only if all components function, then its

lifetime can be represented by the first ordered statistic 7}, . So the reliability function

of the series system, denoted by Rg(?) , is
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Ry(1)=Pr(T., > 1) = (R())", t20. (6.1)

The MRL function and the failure rate function, denoted by M (¢) and r(7)

respectively, are given by

ﬁes (x)dx
MS(t) :E(len _t|Tl:n > t) :tRT
) S (6.2)
J; (R(x))' dx
(R
and
rs(t)=n ggg =nr(t). (6.3)

6.2.2 MRL of parallel system

A parallel system is a collection of components which works if and only if at least one
component works. Hence, the lifetime of parallel systems is actually equal to the nth

ordered component failure time, which is 7., . Thus, the corresponding reliability

function, denoted by Rp(?), is
Ry(t)=Pr(T,., >1)=1-(1-R(?))". (6.4)

The related MRL function of parallel systems, denoted by M (¢), is represented by
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r;ep(x)dx
MP(t) = E(Tn:n —1| Ty > f :tR—(t)
P

) f(l—(l—R(x))”)dx

 1-(1-R))'

(6.5)

It can be seen that M (¢) i1s defined under the condition that the whole system does

not fail at time 7. If we consider the condition that none of the components fails

before time ¢, another definition of the MRL function of parallel systems can be
proposed. This new MRL function, denoted by M Il,(t) , 1s defined as the expectation

of remaining life of a parallel system given no failed component by time ¢ .

Mathematically, this MRL function is represented as

My (1) = E(T,,, ~t|Ty, > 1)
Jm{l_(l_@j de. (6.6)
t R(?)

For detailed discussion of Mll,(t) , see Bairamov et al. (2002) and Asadi &

Bayramoglu (2005).

6.3 The change points of mean residual life of systems

Suppose the lifetimes 7, i =1,...,n, of components have an UBMRL with the change
point #,, and a bathtub-shaped failure rate with the critical point v,. This means, for
t, >0 and v, > 0, the derivatives of m(¢) and r(¢) satisfy

m'(¢t) >0, fort €[0,¢,), m'(t)=0,t=1t, m'(¢) <0, fort > 1¢,, (6.7)
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r'(t) <0, fort€[0,v,), (t)=0, t=v,,r(t)>0,fort>v,.

Because the change point of the MRL must be smaller than the critical point of the

failure rate function (Gupta & Akman, 1995a), we have ¢, < v,.

As systems are composed of components, it is natural to believe that the
properties of the MRL function of systems should be associated to the properties of
MRL of components. In this section, we explore how the redundancy makes an

impact on the position of the change point of the MRL. In the following, the MRL of
series systems, Mg(¢), and the MRL of parallel systems, M (¢) and M 113 (¢), will be

investigated and compared to ¢, which is the change point of m(%).

6.3.1 The change point of the MRL for series systems

The MRL and the failure rate function of series systems are defined in (6.2) and (6.3).

As shown in (6.3), the failure rate function of series systems 7;(¢) is proportional to
r(t); hence ry(¢) is also of bathtub shape and with the same critical point of r(z),
namely v, . Because the change point of MRL must be before the critical point of
failure rate, the change point of M¢(#) must be less than v,,. A question is where the
change point of M((#) is compared to the location of #,. The following theorem
proves that the change point of the MRL for series systems is located between ¢, and

Theorem 6.1 Suppose that the MRL of components m(t) is of upside-down bathtub
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shape with change point t,, and the failure rate function, r(t), is of bathtub shape
with critical point v,. Then the change point of the MRL of series systems M(t)

exists and is larger than t.

Proof: First, we prove that the derivative of M¢(#) is positive at #,. From (6.2), we

have

M (6)-R(t)" = L " R(x)"dx = j, : R(x)”_ld(— jxoﬁe(u)duj

_ R(x)”l(— j Ozoe(u)duj

- j " (n-DR()"(- f(x))[— j}(u)du}dx (6.8)

— R(t)"! I R(u)du r (n = 1)R(x)" F(x)m(x)dx.

Dividing both sides of (6.8) by R(z)", we obtain

R(x)

M(ey=m(e)= " (n —1)[ R

j m(x)r(x)dx. (6.9)

Taking the derivative of (6.9) with respect to ¢ yields

MY(t) = M(t) - nr(t) + m'(£) — m(£)r(2). (6.10)

Because ¢, is the change point of m(?), thatis, m'(¢,) =0, we have

Mg(ty) = Mg(ty) - nr(ty) —m(ty)r(t,)

Z(”'Ms(to)_m(to))"’(to)- (510

Substituting (6.9) into (6.11) produces
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M(t) = (n — 1>{Ms(ro) - j[ ﬁﬁ;ﬁ ))J m(x)r(x)dx} (1)
=(n- 1)[Lj{%) (1- m(x)r(x))dx} -r(ty) (6.12)

—_(n- 1)[ .[, w( 11;((;:))} m'(x)de 1),

The MRL m(¢) is decreasing for ¢ > ¢, ; that is, m'(¢#) <0 for ¢ > ¢,. So we obtain

M(1,)> 0. (6.13)

Next, we prove the existence of the change point. It is assumed that the failure

rate function of single components, r(¢), is bathtub-shaped with critical point v, .
Then we have that the failure rate of systems 7;(¢) is also bathtub-shaped, decreasing
from time 0 to v, and then increasing for ¢ > v,,. From Tang et al. (1999), we have

that M(¢) is a decreasing function on (v,, «) and has at most one change point.

From this together with (6.13), we can conclude that there must be a unique

change point of M(¢) between ¢, and v,. m

Theorem 6.1 provides the upper and lower bounds for the change point of the
MRL for series systems, which are v, and ¢, respectively. It also shows that the
series structure postpones the change point of MRL. This means that the change point

of the MRL for multi-component series systems must be located after the change

point for a single component. Considering a single component as a degenerate series
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system, we can find that the increase of the number of components will make the

change point of the MRL occur later. This is shown in the next corollary.

Corollary 6.1 The change point of M(t) increases with n.

Proof: The proof of Theorem 6.1 is in fact valid not only for integers n > 1, but also
for any real numbers, n, greater than 1. Hence, this proposition can be considered in
this way: for arbitrarily chosen positive integers n and m (m >n > 1), if we treat the
system consisting of # components as a “new” component, then the system composed
of m components can be regarded as a system consisting m/n the “new”

components. Applying Theorem 6.1 yields the results. m

6.3.2 The change point of the MRL for parallel systems

We now consider the MRL functions of parallel systems, M,(#) and M I],(t). The

following Theorem 6.2 proves that the change point of the MRL for parallel systems

M, (¢), if it exists, 1s located prior to ¢ .

Theorem 6.2 Suppose that m(t) is of upside-down bathtub shape with the change

point t,, and r(t) is of bathtub-shape with critical point v,. Then the MRL of
parallel systems, Mp(t), is strictly decreasing on [t,,, ©). This means that the change

point of My (t), if it exists, is smaller than t,.

Proof: See the Section 6.3.3 for the proof. m
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As shown in Corollary 6.2, the change point of the MRL for parallel systems
occurs earlier with an increase of the number of components. This result, together
with Corollary 6.1, indicates that series and parallel structures have opposite effects

on the location of the change point.

Corollary 6.2 The change point of M (¢), if it exists, decreases with 7.

Proof: The proof is similar to that of Corollary 6.1. m

As shown in the following Theorem 6.3, the generalized MRL of a parallel
system, M 11, (#), also has its change point located before #,. This result is consistent

with Theorem 6.2 and hence supports the fact that the parallel structure can bring

forward the change point of the MRL.

Theorem 6.3 Suppose that m(t) is of upside-down bathtub shape with change pointt,,

and r(t) is of bathtub-shape with critical point v,. Then the generalized MRL of
parallel systems, M 113 (1), is strictly decreasing on [t,, ©), that is, the change point of

M}; (1), ifit exists, is smaller than t,.

Proof: From (2.9)-(2.11) in Asadi & Bayramoglu (2005), we have
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j “n(R(1) = ROV R(x)dx

dM (1) —(0) -1
dt R(®)"
r 2(R(1) - R(x))' ™ R(x)dx
=m'(t) + r(t) = —m(t)

R(®)"

As m'(t) <0 for t €[t,, ), the above equation can be written as

My 1 r,{l_ R(x)]“ RO e )

dt  r(t) R(?) R(?)

(6.14)

(6.15)

The failure rate function is defined to be positive; that is, »(¢) > 0. Hence, to prove

that M (¢) is strictly decreasing on [#), ), we only need to prove that the right side

of (6.15) is less than 0 for any ¢ within {t ity <t< oo}.

From (6.6), we have

L (1RO Lol R@) (1 -
Vo= [1 (l R(r)de J [l (1 R(r)N R(x)ﬂdeR(”)d”)

o, ROYN 1\
_{1 (1 R(r)j J( R(x)jLR(”)d”

©
t

n—1 n
q [_,{l_m] s ]+[l_(l_R<x>] j—f@ymmdwx
‘ R(1) R(t) | R(x) R(t) ) | R(x)* P«

=

n—1 n
Lo (- _R(x)) R |, [, RKx)
ML(6) = m(1) L [n[l R(t)j R0 [1 (1 R(t)] Dr(x)m(x)dx.(6.l6)

By using the expression for m(z) from (6.16), the right-hand side of (6.15) becomes
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R@) )  R(@)

n-1 n
_ [~ R RMX) |, ([, RKx) 3
_ L n[l R(t)J R [1 (1 R(t)j ]](1 r(m(x))dx (6.17)

n n-1
_ J' (1 - @J + n(l - R(x)) R(x) _ 1} (= m'(x) )dx.
¢ R(?) R(1) R(?)

Note that 0 < R(x)/ R(¢) <1 for ¢ < x <. So applying Lemma 1 yields (see Section

n—1
j n[l—R(x)j RO e —mo)

6.3.3)

n n—1
(l—wJ +n(l—@) @—1<0, t<x<oo,
R(?) R(?) R(?)

Furthermore, as ¢, is the change point of m(¢r) , we have —m'(x)>0 for
ty <t < x <o . Therefore, it follows that the last line of (6.17) is less than 0.

Equivalently, the right-hand side of (6.15) is also less than O for ¢ > ¢, ; that is

n—1
J. n(l—@] @dx—m(t)<0, ty <t <oo. [ |
t R(?) R(?)

Remark 6.1: The change point of either M (¢) or M 113 (¢) may be non-existent. The

non-existence of the change point implies that the MRL function decreases with time
t along the entire time axis; that is, DMRL. Moreover, the change point may not be
unique. This means that the MRL function may be of roller-coaster shape, with

increasing and decreasing segments appearing alternately.

Remark 6.2: Corollary 6.1 and 6.2 show that, for both systems, the distance between
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the change points of the MRL for systems and for components increases with an

increase in the number of components.

6.3.3 Proof of Theorem 6.2

Lemma 6.1 For o >1,

(1-x)%+a(l-x)*"'x-1<0, forxe(0,1]

Proof: Let g(x)=(1-x)* +a(l—x)“"x—1. Taking derivative on g(x) with respect

to x yields,

g'(x)=—a(a-D(1-x)""*x.

Because 0 < x <1, we have g'(x)<0. That is, g(x) is a decreasing function on

[0, 1]. Note that g(0) =0. Sowe get g(x) <0 for 0<x<1.m

Lemma 6.2 For a >1,

a(l—x)**%x

B _ a2 . _ a-1
(a—-DA-x)"""x-(1-x)"" + (-

>0, forxe(0,1).

Proof: Note that, as 0 <1—x <1, we have
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L o=0)""x
1-(1-x)*

e @-D1-0x(1-(1-x7)- -0 (1= (1= 0)*)+ al - x)* x>0

Sa@-D1-0)"2x+(1-x) x-(1-x)“"+1-x)**">0

S @-D1-x)%x+1-x)x-(1-x)""+1-x)>*" >0

S@-Dx+(1-x)*x-1-x)+(1-x)*">0

Sax-1+1-x)>0

(a-DA-x)2x—(1-x)*" >0

Let h(x) = ax—1+(1—x)“. Taking derivative on A4(x) with respect to x yields,

W(x)=a—-al-x)*".

Because 0<x <1 and @ >1, we have 0 < (1—x)*" <1. So A'(x) > 0. That is, h(x)

is an increasing function on (0,1). As A(0)=0, A(x)>0 holds for 0<x<1.m

Proof of Theorem 6.2

Taking derivative of (6.5) with respect to ¢, we get

dM (1) _ J, -0 reoy All-ROYR@)
dt 1-(1-R@))' 1-(1-R@))'

(t)-1

jw(l—(l—R(x))” )a’x 1 (19
_ ()4 1) 2 HU=RO)TRO o)
1-(1-R@))' 1-(1-R@))'
As m'(t) <0 for t €[t,,), the above equation can be written as,
dMp(t) 1 _ J., (1 ~(1=R))" )dx n(1=R®)"'RY) no). (6.19)

d ()  1-(1-R@®)) 1-(1-R())"
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Note that r(z) > 0. Hence, to prove that M,(¢) is strictly decreasing on [#,, ®©) is

equivalent to prove the right hand side of (6.19) <0 forany ¢ in {f:¢, <t <oo}.

Based on (6.5), we have

MP(t)-(l—(l—R(t))”):J.:Ol—(l—R(x))"dx

_ (1—(1—R<t>)")%j}(u>duj

~ J‘OO —n(1-R(x))"™ (= R(x))f (x) - (1 ~(1-R))" )f(x) J.O;{(u)du dx
t (R(x))2 }

= (1 ~(1-R@)) )m(t) - j, - (n(l —R(x))""R(x) - (1 ~(1-R(x))" )) m(x)r(x)dx.

Dividing both sides of the above equation by 1— (1 - R(t))" , we obtain

_[OO (”(1 ~R(x))'"'R(x) - (1 —(1-R(x))" ))m(x)r(x)dx

My (2) = m(t) ~ (1 RO) (6.20)
According to Lemma 6.1, because 0 < R(x) <1,
n(1-R(x))"™ RGo) - 1= (1= R(x))" )< 0. 6.21)
Also, as ¢, is the change point of m(#), we have
0<m(x)r(x)<1 forty<t<x<oo. (6.22)

From (6.20)-(6.22), we can get
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()= Mo (1) _[m(”(l—R(x))"_lR(x)—(l—(l—R(x))”) (x)r(x)dx
m(t) = Mp(t) +

1-(1-R@))'
y _[ (1= RGOy RGx) - (1 - (1= RE)Y .
> Mp(1) + L (_RO)Y (6.23)
Jﬂo n(1—R(x))"" R(x)dx
1=(-re)y
Substituting the inequality of (6.23) into the right hand side of (6.19) yields
J -y i =ROVRG)
1-(1-R(®))" 1-(1-R(2))" (624)
L (1= (1= R Jax al-ROP RO j (1= R(x))"™ R(x)dx
S (RO 1-(1-R®))' 1-(1-R@®))"

Now we need to prove the right hand side of (6.24) is less than 0, i.e.

J-:O (1 - (1 - R(x))" }Ix

1-(1-R())"

n(l=R@®))' " R(t) - j Oon(l —R(x))"'R(x)dx <0. (6.25)

Note that

n(1-R(x))" " R(x)dx

_ « _ n—1 ; _ ® _(1_ n
_ L n(1- R(x)) R(x) T, d[ I (1= (- R@w) )iuj (6.26)

'[w(l—(l—R(x))”}/x o) R 2
Ry RO RO -2,

—
8

where
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*( d [ n(l= R R) [ ) i j
7l x| =| 1-(1=R(u))'du |dx-
-[ (dx( 1_(1_R(x))n J] J.x ( (u)) u \dx
From (6.26), the inequality (6.25) is equivalent to Z <0.

As 0 < R(u) <1, a sufficient condition for Z <0 is

jg(a—lﬁx»”*R09J>o,fm¢0<t<x<um. (6:27)
dx\ 1-(1-R(x))"

By extending the derivative, we get

d[@—Ruﬁ“Rui

x| 1-(1-R(0)

_ (n=D(1=RM™))"*RX).S(x) = (1= R®))"" f(x)
1-(1-R(x))"
(=R R®E - R®) F()
(1-(1=R(x))")*
f(x)

=— 27 I (m-D(1- 2 (1= p-l
1—@—Ruﬁ”&" (1= R@)7 R = (1= R@))™ +

n(1-R(x))" ™ R(x)
1-(1-Rx))" )

From Lemma 6.2 and 0 < R(x) <1, we have

1= RO)J"R(x)

0.
1-(1-R(x))"

(- D1~ RGO R(e) i~ R+

Together with the fact that f(x)>0 and 0< R(u) <1, we can get (6.27) and thus

prove the theorem. =

138



Chapter 6: Change point of MRL of Series and Parallel Systems

6.4 An illustrative example and application

In this section, an example is utilized to illustrate the theorems and their applications

in burn-in test.

6.4.1 An example

Suppose that the lifetime of each component follows the modified Weibull distribution
(Lai et al., 2003) with the reliability function R(¢) = exp(—t**e"). The corresponding

MRL function for components is of upside-down bathtub shape, shown by the bold
lines in the following three figures. From (6.2), (6.5) and (6.6), we obtain the MRL for

series systems Mg(¢), the MRL for parallel systems M, (¢) and the generalized MRL

My(1)

I exp(—n x*® e )dx
Ms(t): :

eXp(—n t0.25€t)

J.:O (1 - (1 —exp(—x"%e” )y‘ )dx

M= 1- (1 - exp(—to'zset)y

My(t) = J.:O (1 - (1 —exp(®%e’ — xo'zsex)y')dx )

These three MRL functions, with different number of components, are plotted

in Figure 6.1, Figure 6.2, and Figure 6.3 respectively.
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n=1: n=2.—— n=3---- n=4:

Figure 6.1 The plotting of the MRL of components (bold line) and the MRL function of series
system with » components. The solid circles mark the locations of the change points.

Mp (t)

n=1: n=2.—— n=3---- n=4:

Figure 6.2 The plotting of the MRL of components (bold line) and the MRL function of parallel
system with » components. The solid circles mark the locations of the change points.
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Figure 6.3 The plotting of the MRL of components (bold line) and the generalized MRL of
parallel system with n components. The solid circles mark the locations of the change points.

From Figure 6.1, we see that the change point of M(¢) is located after ¢, = 0.0914,

which is the change point of m(¢) (the solid circle on the bold line). Figure 6.2 and

6.3 show that the change points of both M,(¢) and M Il,(t) are located prior to ¢,
These observations are consistent with the results presented in the three theorems.
Moreover, as shown in Figure 6.1, the change point for series system is an increasing
function of n, which is proved by Corollary 6.1. We also find from Figure 6.2 that the

change point may not exist for M(¢) (with n =4); but, if it exists, it will decrease

with the number of components 7, as stated in Corollary 6.2.

6.4.2 Some practical applications

These results are useful in decision making in reliability analysis, such as burn-in tests
for a coherent system (Block & Savits, 1997). For example, consider a parallel system

composed of individual components. If a system is considered to be a survivor only
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when none of the components fails during the burn-in test, then M () can be used to
determine the optimal burn-in time. This is rational because no customer wants to buy
a system with any faulty component. So we may suggest that by the criteria of

maximizing the MRL function, the burn-in test can be terminated at the change point

of My(t).

Another important issue for systems in burn-in test is at which stage burn-in is
most effective. For the above case, our conclusion is that burn-in at system level is

better, because the change point for the system is located prior to f,, which is the
change point for a single component. Hence for the burn-in test for this system, the
optimal time can be set at the change time of M 11) (¢). This means that the test can be

terminated if all components of this system are still functioning at the change time.

Furthermore, if consider the MRL functions Mg (¢) and M,(¢), we may suggest that

burn-in tests should be carried out at component level for a series system and at

system level for a parallel system.

Moreover, the optimization of component number in parallel systems is also of
great interest in reliability analysis. As shown in Theorem 6.2, the greater the number
of components in a parallel system is, the smaller is the change point of the MRL for
the system. In other words, more components would shorten optimal burn-in time for
a parallel system by the criteria of maximizing the MRL function, and also increase
the reliability of the system. However, more components always mean more expense.
Hence, it would be necessary and helpful to determine the optimal number of

components that should be allocated in a parallel system.
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Denote by ¢ the cost of one component, ¢, the set-up cost, ¢, the burn-in

cost per unit burn-in time, p the profit obtained from per unit working time, and b,

the optimal burn-in time for an » - component parallel system. Then the net profit that
an n - component parallel system could produce can be expressed by the following

cost function.

*

Profit(n) = p-M, ,(b,)—c,—c-n—c, b (6.28)

n?

where M, , () is the MRL function of a parallel system with » components in (6.5).

Clearly, the optimal component number could be obtained by maximizing (6.28).

Denote by n” the optimal number. We have

n' =arg (max Proﬁt(n)).

n neN

Following the example in Section 6.4.1, let c=0.9, ¢, =2, ¢, =12, and p=9.5.

Based on (6.28), a profit table corresponding to different numbers of components can

be established, as shown in Table 6.1.

Table 6.1 Net profits for different component numbers.

b, M,,(b,) Profit(n)

n

0.0914 0.4444 1.2123
0.0368 0.528 1.1718
0.00064 0.6245 1.2254

0 0.7169 1.2107
0.7904 1.0091
0.8492 0.6674
0.8976 0.2271
0.9384 -0.2853

0N N L AW N~ S

S O o O
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From the table, it can be found that the profit achieves the maximum of 1.2254 when
n =3. So we may conclude that under this scenario, a parallel system is suggested to
be assembled with three components, and be put into a burn-in test for 0.0064 unit

time before it is shipped out and sold to customers.

6.5 Parallel system with two different components

Previous discussions are based on the assumption that all components in a system are
independent and identical. A straight extension is to study systems with independent
but non-identical components (Zhao & Balakrishnan, 2009a; Zhao & Balakrishnan,
2009b). However, due to the different properties from component to component, it is
difficult to investigate the change point of the MRL of this type of systems
analytically. To obtain explicit results is almost an infeasible task, although it does
play an important role in system reliability analysis. Hence, in this section, we focus
on the MRL of parallel systems with only two different components and carry out a

brief analysis on change point of the MRL in a graphic way.

6.5.1 Exponential distributed component

Consider a parallel system of two independent but unnecessarily identical components

having respective life distributions as exponential distribution, R,(?)=exp(-4;?),

R, (t) = exp(—=A,¢) . Then the reliability function of the system is
Rty=1-(1—e* Ji-e ).

The failure rate function (¢) and the MRL function m(t) are
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e) = le M e — (A + Ay)e M
e h g eThl T AA ’

Ly LAl _ 1 A=At
A S T
e 4 oThl _ g

m(t) =

so that the derivative of the MRL function is

m'(t) =m(t)r(t) -1
_ A A = A+ A (l—e )+ A, (1—e™)
D2 (A + A (€M7 4 oMMl oA L) _pemh el

Barlow & Proschan (1981b) (Page 83) showed that the failure rate function of

this parallel systems is of upside-down bathtub shape (UBFR) for 4, # 4, . According

to Theorem 2.2, because m'(0) =—-1<0 or m(0)r(0) =0 <1, the MRL function m(¢)

is of bathtub shape, i.e. BMRL. Denote by ¢, the change point of m(¢). Figure 6.4

plots the location of ¢, for different combinations of A, and A,. From Figure 6.4, we

can find that, the location of ¢, is small when there is large difference between A, and

A,;if 4, and A, become close to each other, then the change point #, tends to infinity.

This is because, when A, =4, , r(¢) is an increasing function and m(¢) is a

decreasing function, which means no change point exists. Moreover, the figure shows

that for 4, > 4, , the change point ¢, decreases with the increase of 4, , and increases

as A, becomes larger. Similar phenomenon also can be observed in case of 4, < 4,.
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Figure 6.4 Locations of #, for different A, and A,.

6.5.2 UBMRL type component

As proved in Theorem 6.2, parallel structure would make the change point of MRL
occur earlier. Hence, it is of great interest to generally investigate the effect that
parallel structure has on the change point of MRL of components, when the
components have different lifetime distributions. Here, following Section 6.5.1, we
further graphically study parallel systems composed of two non-identical UBMRL
components, whose lifetimes follow same distribution but with different parameters.

The three-parameter UBMRL distribution studied in this section is also modified
Weibull distribution (Lai et al., 2003) R(t):exp(— atbe’u); see Section 2.2.1 for

discussion.

In this study, to evaluate the effect of each parameter on the location of change

point, we let two parameters of both components be the same, and fix the third
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parameter of one component by treating the other one as a variable.

In a two-component parallel system, let one component have reliability

function R, (¢) = exp(— t0‘25e0'25’) and the other component have its reliability function

with unknown parameters, i.e. R,(|a) = exp(— at®®e’>! ), R,(t|b)= exp(— tPe"%! ),
R,(t|A)= exp(— 102 eH ) Figure 6.5, 6.6 and 6.7 describe the behaviors of change

point of the MRL for the parallel system with respect to a, b and A respectively.

In each plot, the -& line depicts the behavior of the change point of MRL for
the parallel system, the 4 horizontal line corresponds to the change point of MRL for
R,(?), and the = curve represents the location of the change point for R,(¢|-). From
the figures, we can find that, for all three parameters, the change point for systems
seems to be always smaller than the larger one of the two change points for
components. Also, Figure 6.5 and Figure 6.7 show that, as the values of parameter a
and A increase, the change point of MRL for systems approaches the smaller change
point for two components. As larger values of @ and A corresponds to lower
reliability, the phenomenon may imply that, the large difference in reliability of two
components would make the change point of MRL of systems close to the smallest

change point of components.
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Change point of MRL
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Figure 6.7 Change point for parallel systems with parameter 4 — modified Weibull distribution.

6.6 Conclusion

In this chapter, we first investigate the MRL functions of series systems and parallel
systems assuming that both systems are composed of i.i.d. components with UBMRL
and bathtub-shaped failure rate. It is shown that that the change point of the MRL for
a series system is located after the change point for single components while the
change point for a parallel system occurs earlier than that for components. Also, a
brief graphic study on parallel systems with two non-identical components is carried
out. We find that the change point of the MRL for such parallel systems tends to be
smaller than the larger change point for components, and seems to approach the
smaller change point for components when two components are greatly different from
each other in reliability. Further research may focus on the change point of the MRL

of k-out-of-n systems (Beutner, 2008; Gurler & Bairamov, 2008) and other complex
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systems. The MRL of the systems with independent but not necessary identical
components (Hu et al., 2001; Sadegh, 2008) is also worth of further investigation. We

might expect some results similar to the work in this chapter.
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CHAPTER 7 CONCLUSIONS AND FUTURE
RESEARCH

7.1  Summary of results

This thesis made a study on analysis and reliability modeling based on continuous and

univariate mean residual life.

This research proposed a model with relatively simple upside-down bathtub-
shaped MRL. To ensure the MRL function has a closed form, the model was
constructed by choosing a suitable function for the derivative function of the MRL,
instead of the reliability function and the failure rate function. This is because the
existing models derived from the latter two functions usually involve an integral of
the reliability function that is not a closed form. The study also compared the new
model to some existing distributions and showed that the new model is capable of
integrating the characteristics of other distributions to provide all-sided information.
The study also showed that the new model can provide accurate descriptions of the
lifetime of products. Moreover, based on the simple MRL of the new model, the

optimum time for both burn-in test and replacement can be easily determined. Hence
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the research indicates that the model with simple MRL is a good choice in modeling

failure data when the data exhibit an upside-down bathtub shape.

Besides the proposed parametric model, this research also developed a
nonparametric estimator of the decreasing MRL function in Type II censoring. The
estimation procedure was established by comparing two estimators of the reliability
function, of which one is the Kaplan-Meier estimator, and the other is obtained from
the empirical MRL function. The comparison of this new method and two common
parametric methods showed that this new approach provides comparable even better
performances especially when censor degree is high. Therefore this new method is
recommended for construction of the estimator of the MRL function when the

information of the underlying distribution is limited and the censored data are large.

Moreover, the relationship between the MRL and the failure rate function is of
great importance in reliability analysis. This work studied how the change of one
characteristic affects the other characteristic and proposed some inequalities to
quantify the range of change. The results are useful and helpful in calculating upper
and lower bounds for MRL and failure rate functions. More specifically, based on the
inequalities, an estimation method was introduced to estimate bounds for the failure
rate function based on empirical MRL function. Simulation results and analysis
showed that this method could provide good performance in estimation, and to some

extent, it could be considered as a robust approach.

As an extension of the MRL of single items that form the focus in all the
previous studies, the MRL of systems were investigated in the research. The MRL

functions of series and parallel systems were compared to that of their components in
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terms of change point, under the assumption that components have UBMRL. It was
shown that the change point of the MRL for series systems is located after the change
point for single components; but for parallel systems, the change point for systems
precedes that for its components. Furthermore, it was found that the difference in the
positions of the change points between systems and components increases with the
number of components. In addition, the MRL of parallel systems with two non-
identical components was briefly and graphically studied. We found that the change
point of the MRL for such parallel systems tends to be prior to the larger change point
for components, and seems to approach the smaller change point for components

when the difference between the reliability of two components is relatively great.

7.2  Possible future research

As pointed out in the previous section, a suitable and simple function was chosen for
the derivative of the UBMRL in constructing parametric models. To extend the model,
further research should be carried out to study the derivation of more complicated
MRL, such as roller-coaster shaped MRL, because the study of this type of MRL is
another interesting and meaningful topic. Similar to the general framework discussed
in this work, it should be also a worthwhile endeavor to study reliability models with

more complicated MRL by considering the derivative of the MRL in a general way.

Also, the regression method used to estimate model parameters based on the
MRL function needs further investigation. The empirical MRL at a certain point of
time depends on only the failure data larger than the time point. So this indicates that

the empirical MRL for larger failure time would suffer greater variance due to fewer
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available data, and thus may significantly influence the regression result and introduce
more error. More endeavors should be made to control the affect of large variance
that occurs at large failure time. One possible way to reduce the affect of variance is to
directly remove the empirical MRL at last several data points. The optimization of the
number and the procedure of dropping data points need an extensive study. Another
possible solution is to take into account the empirical variance defined in Yang (1978),
which is related to process theory. We may expect that confidence band could be

established to give more information on the accuracy of the regression results.

In the nonparametric estimation in Type II censoring, this research focused
on only the DMRL functions and did not provide any results on other types of the
MRL, such as the increasing MRL. This is because the DMRL is the most common
one in practice. But it will be helpful if the IMRL functions can be estimated in a
nonparametric way, since the combined work, including the estimation of both the
decreasing and the increasing MRL, would benefit the estimation of the MRL with
complex shapes. Another useful extension is to discuss other censoring types, such as
Type I censoring, or to consider truncation cases. For Type I censoring, the main idea
could be similar and may need only some small modification. To deal with left
truncation, we may artificially generate some failure data before the truncated time
based on those observed failure times, so that the empirical MRL function could be
directly apply to the data set that are composed of the truncated real data and the

artificially generated data.

Another estimation approach for the MRL regardless of underlying

distributions is to utilize data transformation method. Many transformation functions
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has been proposed in literature, and the most famous one is the Box-Cox power

transformation

(=112, A#0

h(y,A) = .

It is known that the Box-Cox transformation could approximate data to normal
distribution. Hence, we could estimate the MRL function by using the transformation
function and the normal distribution. Given failure data, a feasible method may be as
follows: (1) first transform failure data by the transformation function above, and treat
A as unknown parameters as well as mean and variance for normal distribution, i.e.

4 and o ; (2) use failure data to estimate the three parameters by MLE; (3) calculate

and the MRL function for the normal distribution and transform it back to the MRL
for original distribution. As shown in Yang & Tsui (2004), extra variance would be
introduced due to the unknown parameter 4. So accuracy analysis of this method
may be needed, as well as a comparison study between this method and other existing

methods.

For the bounds of the failure rate function, only monotonic MRL class is
considered in this thesis. A further research may extend the results to more general
MRL classes by properly combining the DMRL and IMRL cases. Moreover, since the
proposed method is shown to be robust by the graphical sensitivity analysis, it would

be helpful to explore the underlying mechanism of the robustness of the method.

Another interesting topic is mixture, as this is an important phenomenon in

reliability engineering. For example, a population that involves normal and inferior
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products can be described by a mixture. In literature, there are known results
concerning the behaviors of the failure rate functions under mixture. Because of the
importance of the MRL, it will be helpful to study the effect of mixture on the MRL,
as well as the relationship between mixtures on the failure rate function and on the

MRL function.

This thesis is mainly about analysis and reliability modeling based on MRL.
The studies presented in the first few chapters all deal with the MRL function of
single items, and only Chapter 6 proved some results on the MRL of series and
parallel systems. Since a system is a collection of components, we can treat the MRL
of systems as a concept extended from the MRL of single items. Therefore, it should
be very meaningful to conduct an in-depth study on the MRL of systems by applying

the theories about the MRL of single items in this research to systems.

Following the topic in Chapter 6, it may be of great interest to study different
kinds of systems that are composed of different kinds of components. We could
generalize series and parallel systems studies to k-out-of-n systems. The “independent
and identically distributed” assumptions for components also could be released by
introducing dependence between components or assuming each component subject to
different probability distributions. Furthermore, crossing properties of the MRL could
be discussed. Suppose that the MRL functions of two components are crossed at a
certain point in time. We may be curious about whether series and parallel structures
would change the crossing point by some regulations, which might be related to the

theorems proved in Chapter 6.

In addition, as shown in the scope, this thesis focuses on univariate and
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continuous MRL function, because the lifetime of an item, either human beings or
components, is often considered to be continuous. But in practice, when
measurements are taken at discrete time, discrete distribution will give better
modeling, analysis and interpretation. For example, the crack of a dam is always
measured for every fixed duration of operation. The reliability of software may be
indexed by the number of failures during a certain period of time. In these cases,
discrete distributions are more useful. Therefore, to conduct an analysis and study on

discrete MRL function would also of great importance in reliability field.

Recently, residual life distribution is defined and predicted based on
degradation models that utilizes degradation-based sensory signals; see Gebraeel et al.
(2009) for example. The fast development of this research topic attributes to the
immense technology improvement, which results in the production of highly reliable
items whose failure is often hardly to be observed. Hence, in order to obtain
information on the failure time of such types of items, some degradation-based
sensory signals are selected and used to detect the degradation process of the highly
reliable items and measure their failure times indirectly. For example, the fatigue
crack-size of the alloy and the lumen could be used as signals to describe the
degradation of a fluorescent light bulb. In literature, most papers assume Wiener
process as the underlying process. But some real study implies that gamma process
seems to be able to provide a better description. So this gives a guideline for a further

topic of the development of residual life and MRL based on gamma process.
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