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SUMMARY 

Mean residual life (MRL), representing how much longer components will work for 

from a certain point of time, is an important measure in reliability analysis and 

modeling.  It offers condensed information for various decision-making problems, 

such as optimizing burn-in test, planning accelerated life test, establishing warranty 

policy, and making maintenance decision. Realizing the importance of the mean 

residual life, this thesis focuses on the modeling (Chapter 3 and Chapter 4) and 

analysis (Chapter 5 and Chapter 6) based on this characteristic. 

This thesis studies both parametric models and nonparametric methods, which 

are the two common ways in reliability modeling. In Chapter 3, a parametric model is 

developed for a simple, closed-formed upside-down bathtub-shaped mean residual life 

(UBMRL). This model is derived from the derivative function of MRL, instead of 

reliability function and failure rate function that are often used in model construction. 

We first characterize the derivative function and develop a general form for the model. 

Based on the general form, a suitable function is selected as a starting point of the 

derivation of the new UBMRL model. The MRL function and the failure rate function 
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are further studied. Numerical examples and comparisons indicate that the new model 

performs well in modeling lifetime data with bathtub-shaped failure rate function and 

UBMRL function. 

Besides the parametric model, we propose a nonparametric method for the 

estimation of decreasing MRL (DMRL) with Type II censored data (Chapter 4). This 

method is based on the comparison between two estimators of the reliability function, 

the Kaplan-Meier estimator and an estimator derived from the empirical MRL 

function. Based on data generated from Weibull and gamma distributions, simulation 

results indicate that the new approach is able to give good performance and can 

outperform some existing parametric methods when censoring is heavy. 

Moreover, the analysis of the relationship between MRL and other reliability 

measures is another important issue. Hence, Chapter 5 focuses on the relations 

between MRL and the failure rate function by studying the effect of the change of one 

characteristic on the other characteristic. The range that the MRL will decrease 

(increase) if the associated failure rate function is increased (decreased) to a certain 

level is investigated. On the other hand, the difference of two failure rate function is 

also studied in the case that their corresponding MRL functions are ordered. Some 

inequalities are established to indicate upper or lower bound on the extent of change. 

The application of the inequalities is also discussed. 

As an extension of the MRL of single items that is discussed in foregoing 

chapters, the MRL of systems is investigated in Chapter 6. We discuss MRL of series 

and parallel systems with independent and identically distributed components; and 

obtain the relationships between the change points of MRL functions for systems and 
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for components. Compared with the change point for single components assuming 

that it exists, the change point for a series system occurs later. For a parallel system, 

its change point is located before that for the components, if it exists at all. Moreover, 

for both types of systems, the distance between the change points for systems and for 

components increases with the component number. In addition, the MRL of a parallel 

system with two non-identical components is briefly discussed in a graphic way. 
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CHAPTER 1 INTRODUCTION 

This thesis contributes to some methodological and analytical issues concerning Mean 

Residual Life (MRL) in reliability analysis. In this introductory chapter, some 

background information is provided, which is followed by motivations of the research 

on MRL. We then give the scope and objective of our study. Finally, a summary of the 

contents of this thesis and its structure are presented.  

1.1  Background information 

The study of lifetimes is a prevailing and important topic for researchers. Actuaries 

may be interested in the lifetime of a person to determine the amount of premium he 

should pay for his annuity. Biostatisticians may investigate the lifetimes of cancer 

patients who are subject to different therapies. Reliability engineers may be concerned 

about the lifetime of a light bulb or a private computer so that proper warranties or 

maintenance can be planned.  

However, the lifetimes of either humans or products always differ from one to 
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another. Leibniz, a famous mathematician and philosopher, said “no leaves are ever 

exactly alike”. Even for the products made from the same materials and under the 

same process, their lifetimes vary from each other due to some uncontrollable factors, 

such as the float of temperature and moisture. One way to deal with this kind of 

uncertainty is to measure it in terms of probability, which is the essence of reliability 

analysis. Reliability, regarded as quality over time, was textually defined in Leemis 

(1995) as follows,   

“The reliability of an item is the probability that it will adequately perform its 

specified purpose for a specified period of time under specified environmental 

conditions.” 

In reliability analysis, lifetimes are treated as random variables subject to 

probability distributions, either continuous or discrete distributions. The most famous 

distribution used in reliability analysis is exponential distribution, which is the 

simplest model in describing lifetimes. But the application of this distribution is 

limited in practice, because few components have the property of lack of memory. 

Compared to exponential distribution, Weibull, lognormal, inverse Gaussian and other 

distributions are more flexible in modeling different types of failure mechanisms. 

As lifetimes are assumed to follow probability distributions, the reliability is 

usually measured by a function of time that can represent the distributions. There are 

five main characteristics used to measure reliability: the reliability function, the 

probability density function, the failure rate function, the cumulative failure rate 

function, and the MRL function. Although these five functions are actually equivalent 

in the sense of probability (i.e. knowing any one of them, the other four functions can 
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be uniquely determined), each of them provides different descriptions for the lifetimes 

of products. The reliability function interprets the possibility that items will last for a 

certain period of time. The probability density function describes how frequently 

products fail at each time point. The failure rate function indicates the instantaneous 

risk an item faces. The cumulated failure rate function gives the information about the 

expected number of failures that will occur by some time point. The MRL presents 

how much longer components will work from a certain point of time. According to 

their different statistical meanings, these five characteristics are often used to make 

various decisions with different focuses. In this thesis, the MRL will be extensively 

discussed and studied in the aspects of reliability modeling, analysis, and application. 

Conceptually, the MRL function is derived from residual life, a conditional 

random variable. For an item that has survived a period of time, its residual life is 

defined as a random variable conditioning on the time it has experienced. This 

measure contains two aspects of information, the lifetime of an item and the fact that 

this item has been working for some time period without failure. Because of its dual 

characters, residual life is widely applied in reliability engineering. 

In engineering reliability tests, we often consider the residual life of a device. 

For example, in a step-stress accelerated life test, the life of a specimen corresponding 

to current stress is actually the residual life of this specimen after the previous testing 

steps. (Tang et al., 1996). Another instance is burn-in test, which eliminates weak 

components before releasing strong components. The lifetimes of the passed 

components are residual lives as well. 

The applications of residual life in maintenance have also drawn much 
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attention. An aircraft whose mileage is ten thousand miles may need a properly 

scheduled maintenance plan for its engines to ensure its next 1000-mile flight. In 

industries, an accurate prediction of the residual life of machines will conduce 

proactive maintenance processes that would help to minimize downtime of machinery 

and production (Yan et al., 2004). 

However, for the decision making in maintenance and tests, such as the 

determination of optimal time for stopping a burn-in procedure or executing a repair, 

it is inconvenient to define and analyze a series of residual lives according to different 

survival times. Hence the MRL function, generated as the expectation of residual life, 

is helpful in making such decisions. An extensive literature review on the property 

and modeling of the MRL will be presented in Chapter 2 in order to discuss the 

extensive research on the MRL function in literature and to demonstrate the 

importance of the MRL in reliability analysis. 

1.2  Research motivation 

In practice, before analyzing the MRL function and making decisions, we always need 

to estimate the MRL function from the data of failure times. The two common ways in 

modeling are parametric modeling and nonparametric method.  

For the parametric modeling, an underlying distribution needs to be 

predetermined before the analysis of failure data. One important distribution family is 

Weibull family that is developed based on Weibull distribution (Weibull, 1951), 

including exponentiated Weibull distribution (Mudholkar & Srivastava, 1993), 
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additive Weibull distribution (Xie & Lai, 1996), generalized Weibull model (Lai et al., 

2003) and extended Weibull distribution (Chen, 2000 ; Xie et al., 2002). Besides, 

there are also other distributions, such as generalized gamma distribution (Gupta & 

Lvin, 2005a) and generalized lognormal distribution (Gupta & Lvin, 2005b). All these 

models, with different parameters, have both monotonic and non-monotonic MRL 

functions; thus they are able to model lifetimes exhibiting different types of MRL. 

However, for these existing models, the MRL functions are of complicated forms, 

which usually involve an integral of a reliability function that is not of a closed form. 

This problem motivates the formulation of a new class of life distribution, which has 

different characteristics from the existing models, such as a new model with some 

form of the MRL function. Obviously, this kind of new model will make the analysis 

based on MRL easier.  

Compared to the parametric modeling assuming underlying distributions, 

nonparametric methods use only failure data to estimate the MRL function regardless 

of the forms of models and thus introduce less bias. Yang (1978) proposed the 

empirical MRL function for complete data, which is the first and basic nonparametric 

estimation for the MRL function. Based on this estimator, several other MRL 

estimators for complete data were also constructed (Zhao & Qin, 2006; Kochar et al., 

2000). Moreover, the case of random right censorship was considered in the 

estimation of the MRL function. Li (1997) presented a confidence bound for the MRL. 

Statistical inference for the MRL under random right censoring was provided by Na & 

Kim (1999) and Qin & Zhao (2007). In contrast to numbers of studies on the 

randomly right censoring, only a few papers in literature focused on the estimation of 

the MRL under extreme right censorship. This is because that it is more difficult to 
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deal with the lost information in extreme right censoring than in other types of 

censoring. In Guess & Park (1991), only conservative confidence intervals were 

presented under extreme right censorship. Hence, other feasible methods are expected 

and required for the estimation of the MRL function. 

Besides studying only the MRL function itself, the relationship between the 

MRL and the failure rate function is another important issue in reliability analysis. 

This is because these two characteristics are closely related to each other and the 

comparison between them is helpful in decision-making and estimation. In literature, 

many works have found that the MRL function is closely related to the failure rate 

function. Bryson & Siddiqui (1969), Gupta & Akman (1995a), and Tang et al. (1999) 

proved that the shape of the MRL function depends on the shape of the failure rate 

function for both monotonic and non-monotonic cases. Also, Gupta & Kirmani (1987) 

proved that the failure rate ordering dominates the MRL ordering and proposed a 

sufficient condition under which the reverse also holds. These studies discussed the 

relationship between the MRL and the failure rate function mainly from a qualitative 

point of view. Only a few papers tried to quantify the relations of the two functions. 

Finkelstein (2003a) gave a quantitative analysis on how the MRL changes with 

increased failure rate, but unfortunately he did not give any concrete result on the 

extent of change. Hence, more quantitative analysis on the relationship would be 

useful and meaningful in reliability for both theory and application. Moreover, most 

discussions focused on the effect that the failure rate function has on the 

corresponding MRL, such as limiting property and shape, as the failure rate function 

usually can be explicitly expressed. But, sometimes, it may be easier to start from the 

MRL function. For example, it is more convenient to get the empirical estimation of 
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the MRL than of the failure rate function, because the failure rate function encounters 

derivative function, whose estimation is hard to be obtained. Therefore, some 

quantitative studies on the relationship between MRL and failure rate function are 

required as a complement to those existing works. 

Compared to the MRL of single items considered in all the previous studies, 

the MRL function of systems also plays a significant role. The system reliability is 

often studied at either system level or component level. If a system is analyzed at 

system level, then it is treated as a whole without considering its inner structure and 

thus can be similarly discussed as a single item. For component level, the structure of 

a system always needs to be clearly defined, because in this case, the reliability of a 

system is determined by the allocation and the properties of components; see Leemis 

(1995) for a systematic definition and an annotated overview. In literature, several 

papers discussed the properties of MRL that series and parallel systems can preserve 

from their components.  Abouammoh & El-Neweihi (1986) showed that parallel 

systems inherit the DMRL from components. The reversed preservation ageing 

properties for series and parallel systems were discussed in Li & Yam (2005), 

Belzunce et al. (2007a), and Li & Xu (2008). These works made great contributions to 

the preservation behaviors of series and parallel systems, but they did not investigate 

the shape of the MRL function.  Hence, the study of the MRL’s shape, especially the 

non-monotonic shape, is needed for series and parallel systems, as such analysis 

would help to determine whether application decisions should be made at system level 

or component level. 
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1.3  Research scope and objective 

The aim of this research was to make a comprehensive study on reliability modeling 

and analysis based on mean residual life. The specific aims of this research were: 

• To propose a parametric model with relatively simple and closed-form upside-

down bathtub-shaped MRL (UBMRL) from the starting point of the derivative 

function of the MRL; to study the general form of the proposed model so that 

a new way for the definition of probability distributions could be established. 

• To develop a nonparametric method to estimate DMRL under extreme right 

censorship by comparing two estimators of the reliability function, the Kaplan-

Meier estimator (Kaplan & Meier, 1958) and an estimator derived from 

empirical MRL function (Yang, 1978). 

• To quantitatively study the relationships between the MRL function and the 

failure rate function by establishing some inequalities; to utilize the 

inequalities to construct bounds for one characteristic based on the other 

characteristic. 

• To study the MRL functions for series and parallel systems that are composed 

of components with UBMRL; to compare the MRL of systems with the MRL 

of components in terms of changing point. 

Results of the present study would enhance our understanding of the properties, 

modeling, and applications of the MRL function. The proposed model with relatively 

simple and closed-form UBMRL may provide more accurate description for the 

lifetime of items and also may be of great importance in decision making based on the 
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MRL function in terms of its shape; and the general form of the proposed model could 

shed light on a new definition of probability distributions. The nonparametric 

estimation of the MRL under extreme right censorship may provide an innovative 

method to deal with information loss due to censoring. The study of the relationship 

between the MRL and the failure rate function may provide guidelines on how to 

control the deterioration of products more efficiently. The results on change point of 

the MRL function for series and parallel systems may lead to a better understanding of 

the role of redundancy that is usually built into systems.  

In this thesis, the MRL function refers to continuous, differentiable and 

univariate MRL function, which is most commonly used in reliability analysis 

compared to discrete and multivariate MRL. The same assumptions are also applied to 

other probability characteristics, such as the reliability function and the failure rate 

function etc. Moreover, in most parts of our research on the MRL, only DMRL and 

UBMRL are considered, because they are two most natural and simplest shapes in real 

life application and other more complex curves, if needed, can be easily obtained by 

combining the DMRL and UBMRL. Additionally, all the calculation and simulation 

experiments are based on the platform provided by the software “Mathematica”. 

1.4  Organization of the thesis  

This thesis consists of seven chapters and focuses on the study of the MRL in two 

aspects, reliability modeling and reliability analysis. For the modeling issue, a 

parametric model with UBMRL and the general form are proposed and studied in 

Chapter 3; in Chapter 4, a nonparametric method is developed to estimate the MRL 



 
Chapter 1: Introduction 

10 

 

function with Type II censored data. In the analysis part, Chapter 5 analyzes the 

relationships between the MRL and the failure rate function and applies the results for 

the estimation of bounds for the two functions. In Chapter 6, change points of the 

MRL functions for series and parallel systems are discussed and compared with 

change point of the MRL for single components in terms of location.  Finally, a 

conclusion of the entire work as well as some potential future research topics is given 

in Chapter 7. A graphic summary of the content of each chapter is shown in Figure 1.1. 

 
 
 
 
 

 

In the next chapter, the papers on MRL in literature will be extensively 

reviewed so that a better comprehension of how our research was originated and what 

1. Introduction 

2. Literature review 

Reliability modeling Reliability analysis 

3. A general model for UBMRL 
 

4. DMRL estimation with Type II 
censored data 

5. MRL and failure rate function 
 

6. MRL of series and parallel systems
 

7. Conclusions and future 
research 

Figure 1.1 Structure of the thesis. 
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our results will contribute can be achieved, as well as the challenges associated with 

various aspects of the research on the MRL. The topics covered in the next chapter 

include definitions and properties of the MRL and other characteristics, the parametric 

and nonparametric modeling of the MRL, the MRL of systems, and also some 

common uses in practice.
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CHAPTER 2 LITERATURE REVIEW 

The MRL function has been widely used in fields of reliability, statistics, and 

insurance. In literature, many useful results have been derived in various aspects of 

the MRL, such as the properties, the shape, the estimation, and the application etc. A 

recent and detailed review of the MRL in reliability analysis was presented in Chapter 

4 of Lai & Xie (2006). In this chapter, we focus on the existing works most related to 

this thesis and give a focused but informative survey in support of our research. 

Definitions and properties of the MRL and other related reliability measures are first 

presented in Section 2.1. Section 2.2 presents a comprehensive review on parametric 

models and nonparametric estimation for the MRL. Section 2.3 discusses the MRL for 

coherent systems. In Section 2.4, some applications of the MRL are given.  

2.1  Definitions and properties  

The MRL function, the failure rate function, and the reliability function are 

mathematically defined and explained in this section. Also, according to different 

shapes of the MRL and the failure rate function, various classes of life distributions 
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are defined and categorized. After that, the properties of the MRL are studied and 

compared to that of the failure rate function, which is considered reciprocal with the 

MRL function.  

2.1.1 Basic definitions and concepts 

Suppose T  is a continuous non-negative random variable with cumulative 

distribution function (CDF) )(tF , probability density function (PDF) )(tf , and 

reliability function )(1)( tFtR −= . Define the residual life random variable at age t  

by tTtTTt >−= | ; see Banjevic (2008) for discussion. If ∞<][TE , then the MRL 

function exists and is defined as the expectation of the residual life 

 .0,)(
)(

1)|()( ≥=>−= ∫
∞

tdxxR
tR

tTtTEtm
t

 (2.1) 

It is easy to show that MRL determines distributions uniquely; see Langford (1983) 

and Wesolowski & Gupta (2001) for example. The reason for this fact is that the MRL 

function )(tm  is equivalent to the reliability function )(tR  in the sense of probability; 

and the reliability function is known to be able to determine probability distributions. 

In (2.1), the MRL )(tm  is mathematically defined as a function of )(tR . On the other 

hand, we can also express )(tR  in terms of )(tm  

 0,
)(

1exp
)(
)0()(

0
≥

⎭
⎬
⎫

⎩
⎨
⎧
−= ∫ tdx

xmtm
mtR

t
. (2.2) 

Another characteristic that is closely related to the MRL, as mentioned 

frequently in previous chapter, is the failure rate function )(tr . 
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 0,
)(
)()( ≥= t

tR
tftr . (2.3) 

Since )(tm  is assumed differentiable in this thesis, it can be shown that 

 1)()()( −=′ trtmtm . (2.4) 

As 0)( ≥tm  and 0)( ≥tr , we have 1)( −≥′ tm , which means the slope of the MRL 

should be always no less than 1− . Equation (2.4) also implies that the shape of )(tm  

depends on both )(tm  and )(tr .  

Also, the failure rate function can be used to define the reliability function 

 ⎟
⎠
⎞

⎜
⎝
⎛−= ∫

t
dxxrtR

0
)(exp)( . (2.5) 

Together with (2.1) – (2.5), it can be concluded that, the MRL function )(tm , the 

failure rate function )(tr , and the reliability function )(tR  are equivalent in the sense 

that all of them are able to uniquely determine the distribution; and knowing any one 

of them, the other two could be obtained given that they exist. In addition, the 

transform and the combination of these measures are also found to be able to 

characterize distributions; see Roy (1993), Ruiz & Navarro (1994), Navarro et al. 

(1998), Navarro & Ruiz (2004), Sankaran & Sunoj (2004), Gupta & Kirmani (2004), 

and Xekalaki & Dimaki (2005) for discussion.  
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2.1.2 Mean residual life classes 

Different MRL classes describe different aging properties. In general, the MRL 

classes can be divided into two groups based on the behavior of the MRL function: 

monotonic and non-monotonic. The monotonic aging classes for the MRL function 

include distributions with decreasing mean residual life (DMRL) and with increasing 

mean residual life (IMRL). The non-monotonic MRL classes have much more types 

of distributions. Some known classes are upside-down bathtub-shaped MRL 

(UBMRL), bathtub-shaped MRL (BMRL) and new better than used in expectation 

(NBUE), etc. As the MRL function is closely related to the failure rate function, the 

MRL classes are also linked to the classes defined via the failure rate function, such as 

increasing failure rate (IFR), decreasing failure rate (DFR), bathtub-shaped failure 

rate (BFR) and upside-down bathtub-shaped failure rate (UBFR), etc. Next, 

mathematical definitions of different distribution classes are presented and a chain of 

implication used to indicate the connection between some of these classes is also 

given.  

Definition 2.1 A distribution is said to be DMRL (IMRL) if the mean residual life 

function )(tm  is decreasing (increasing) in t , i.e. 0)( <′ tm for 0≥t  or 0)( >′ tm for 

0≥t .  

As explained in Lai & Xie (2006), DMRL means that, the older an item is, the 

smaller is its MRL, and IMRL implies that an older item has longer MRL. Similar to 

monotonic MRL class, the definition for the class with increasing (decreasing) failure 

rate function (IFR, DFR) is 
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Definition 2.2 A distribution is said to be IFR (DFR) if the failure rate function )(tr  

is increasing (decreasing) in t , i.e. 0)( >′ tr for 0≥t  or 0)( <′ tr for 0≥t .  

Bryson & Siddiqui (1969) showed that IFR (DFR) implies DMRL (IMRL) and 

claimed that DMRL does not imply IFR by giving a counter example. Similar 

problem was also studied in Lillo (2000). Sufficient conditions under which MRL also 

dominates the failure rate function will be presented in Section 2.1.3. 

There are also several aging notions representing the non-monotonic behavior 

of the MRL )(tm . One of the most popular classes is UBMRL, which is developed on 

the basis of the corresponding failure rate class, BFR. These bathtub distribution 

classes plays an important role in reliability, because this type of distribution classes 

usually could be observed in the lifetime of a population containing both normal and 

inferior products (Lawless, 1982; Kao, 1959; Bebbington et al., 2007a). An intuitive 

explanation is that, due to the initial quick die-out of inferior products, the overall 

reliability of the population improves exhibiting a DFR and an IMRL, and then enters 

a stable period with relatively constant MRL and failure rate before finally wears out 

with an IFR and a DMRL, as the normal products start to deteriorate. In literature, 

there are several definitions for UBMRL and BFR. Mi (1995) defined a bathtub curve 

by three segments: increasing (decreasing), constant and decreasing (increasing). 

Definition 2.3 A real valued function  )(tg  with support ),0[ ∞  has a bathtub (upside-

down bathtub) shape if there exists ∞≤≤≤ 210 tt  such that 

(a) )(tg  is strictly decreasing (increasing) if 10 tt ≤≤ ; 
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(a) )(tg  is constant if 21 ttt ≤≤ ; and 

(a) )(tg  is strictly increasing (decreasing) if 2tt ≥ . 

In Definition 2.3, if 021 == tt , )(tg  becomes a strictly increasing function; if 

∞== 21 tt , )(tg  is strictly decreasing; in general, if 21 tt = , the interval with constant 

degenerates to a single point. Obviously, strictly monotonic function is a special case 

in this definition.   

To avoid ambiguity and distinguish monotonic case from bathtub classes, we 

adopt the definition in Glaser (1980) to describe the UBMRL and BFR in this thesis, 

which defined the bathtub shape via the derivative functions and assumed that the 

constant period in Definition 2.3 degenerates to a point. In fact, the UBMRL and the 

BFR defined in Glaser (1980) can also refer to increasing initially then decreasing 

mean residual life (IDMRL) and decreasing initially then increasing failure rate 

(DIFR). Typical curves of UBMRL and BFR are displayed in Figure 2.1. 

Definition 2.4 A distribution is said to be UBMRL if there exists a 0t  such that the 

MRL function )(tm  is increasing for  00 tt <≤  and then decreasing for 0tt > , i.e. 

0)( >′ tm for 00 tt <≤ , 0)( =′ tm for 0tt =  and 0)( <′ tm for 0tt > . And 0t  is called 

change point of )(tm . 

Definition 2.5 A distribution is said to be BFR if there exists a 0ν  such that the failure 

rate function )(tr  is decreasing for 00 ν<≤ t  and then decreasing for 0ν>t , i.e. 

0)( <′ tr for 00 ν<≤ t , 0)( =′ tr for 0ν=t  and 0)( >′ tr for 0ν>t . And 0ν  is called 
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change point or critical point of )(tr . 

 

Figure 2.1 Typical curves of UBMRL and BFR. 

 

Since the MRL )(tm  and the failure rate function )(tr  are assumed to be 

continues and differentiable in this thesis, it is reasonable to define the life classes in 

terms of the behaviors of their derivatives. Thus without being specific, it is 

understood that the acronyms UBMRL and BFR that appear throughout the rest of 

this thesis are defined by Definition 2.4 and 2.5 respectively. In addition, the 

distribution classes with BMRL and UBFR also can be analogically defined, but these 

two classes are seldom encountered in practical reliability engineering, because it is 

unrealistic the case that the older an time is, the better is its performance. 

Other definitions of bathtub classes were also presented in Deshpande & 

Suresh (1990), Mitra & Basu (1995), and Haupt & Schabe (1997). More general MRL 

classes, which extend monotonic MRL and UBMRL, were also considered and 

defined based on either mean time to failure, i.e. )0(m , such as new better than used 

in expectation (NBUE), new worse used in expectation (NWUE) in Barlow & 
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Proschan (1981a).  Then the new better than used in failure rate (NBUFR), new worse 

than used in failure rate (NWUFR) distribution  classes can be correspondingly 

defined in the failure rate function (Deshpande et al., 1986). 

Definition 2.6 A distribution with mean )0(m=μ  is said to be NBUE if μ≤)(tm  for 

all 0≥t ; similarly, a NWUE distribution is such a distribution that μ≥)(tm  for all 

0≥t . 

Definition 2.7 A distribution is said to be NBUFR if )()0( trr ≤  for all 0≥t ; 

similarly, a NWUFR distribution is such a distribution that )()0( trr ≥  for all 0≥t . 

The classes in a group often can be connected by some chains of implications 

(Deshpande et al., 1986; Kochar & Wiens, 1987) and also closely linked to the failure 

rate classes with similar monotonicity. 

 

 

In a similar manner, we can define more general classes based on the non-

monotonic behavior of MRL. Mitra & Basu (1995) proposed new worse then better 

than used in expectation (NWBUE) and new better then worse than used in 

expectation (NBWUE) distributions; and also showed that {UBMRL} ⊂  {NWBUE} 

and {BMRL} ⊂  {NBWUE}. 

Definition 2.8 A lifetime distribution with mean )0(m=μ  is said to be NWBUE if 

NBUE (NWUE) 

NBUFR (NWUFR) 

DMRL (IMRL) 

IFR (DFR) 
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there exists a point ∞<< τ0  such that 

 
⎩
⎨
⎧

≥≤
<≥
τμ
τμ

t
t

tm
for,
for,

)( ; 

Similarly, a NBWUE distribution satisfies that there exists a point ∞<< τ0  such that 

 
⎩
⎨
⎧

≥≥
<≤
τμ
τμ

t
t

tm
for,
for,

)( . 

Besides, there are also other classes, which are developed by comparing )(tm  

with the MRL at a specified time point, like better MRL at 0t  in Kulasekera & Park 

(1987). Further and recent discussions of distribution classes can refer to Belzunce et 

al. (2004), Ahmad et al. (2005), and Al-Zahrani & Stoyanov (2008). In Sun & Zhang 

(2009), a class of transformed mean residual life models was proposed for fitting 

survival data under right censoring. 

2.1.3 Properties and relations with failure rate function 

Since the definition of MRL was proposed, the associated properties have been 

studied for over a half century. An early extensive discussion on theoretical properties 

of the MRL might date back to Cox (1962). Limiting properties of the MRL  were 

provided in Meilijson (1972) and Beirlant et al. (1992). Recently, Bradley & Gupta 

(2003) investigated limiting behaviors of the MRL and derived an asymptotic 

expansion which could give a good approximation for the MRL when time variable is 

large. Another study on the similar topic was also conducted in their work Gupta & 

Bradley (2003). 
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Compared to the studies considering only the MRL function itself, many more 

works in literature focus on the relationship with other characteristics, especially the 

failure rate function. This is because the failure rate function, to some extent, could be 

treated as the reciprocal of the MRL. In Calabria & Pulcini (1987), an asymptotic 

relationship between the MRL and the failure rate function was derived by applying 

the L’Hospital’s rule to (2.1) 

 
)(

1lim)(lim
tr

tm
tt ∞→∞→

= ,  

given that the latter limit exists and is finite. Besides limiting behaviors, this 

reciprocity between the MRL and the failure rate function exists through the entire 

time period. Finkelstein (2003a) generally discussed the reduction in MRL due to an 

extra risk represented by increased failure rate. Based on it, Bebbington et al. (2008) 

assumed that the extra risk could be modeled by a constant failure rate and further 

discussed in details the effect of such a risk on the change of MRL.  

In addition to above works, the other two issues reflecting the reciprocity are 

curve shape and partial ordering, which have attracted much attention in literature. 

Thus, in the following, the papers on the relationships between the MRL and the 

failure rate function are surveyed in the aspects of these two issues. 

• Shapes of the MRL and the failure rate function 

Bryson & Siddiqui (1969) proved that IFR (DFR) implies DMRL (IMRL) and 

claimed that the converse proposition is not true by giving a counter example. In Ghai 

& Mi (1999), a sufficient condition is provided for a DMRL (IMRL) distribution that 
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is also IFR (DFR). 

Theorem 2.1 Let )(tm  be a MRL and )(tr  be the corresponding failure rate function. 

Then 

(1) If )(tm  is increasing and concave, then )(tr  is decreasing; 

(1) If )(tm  is decreasing and convex, then )(tr  is increasing. 

Motivated by the relationship between the monotonic MRL and failure rate 

classes, one may conjecture that the UBMRL distribution class is also closely related 

to the BFR class.  As early as two decades ago, Rajarshi & Rajarshi (1988) pointed 

out that the relationship between UBMRL and BFR could be empirically observed 

“from the life tables of human and animal populations”.  A general result on the 

relation between the non-monotonic classes of )(tm  and )(tr  was given in both Gupta 

and Akman (1995a) and Mi (1995). 

Theorem 2.2 Suppose )(tr  is of bathtub shape (BFR), then 

(1) )(tm  is DMRL if 1)0()0( ≤mr ; 

(2) )(tm  is UBMRL if 1)0()0( >mr . 

On the other hand, if )(tr  is of upside-down bathtub shape (UBFR), then 

(1) )(tm  is IMRL if 1)0()0( ≥mr ; 

(2) )(tm  is BMRL if 1)0()0( <mr . 

Based on Theorem 2.2, some useful results were derived for the change points 

of non-monotonic MRL and failure rate functions that are defined in Definition 2.4 
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and 2.5. Detailed proofs of the following theorem can refer to Mi (1995), Guess et al. 

(1998), and Tang et al. (1999).  

Theorem 2.3 Suppose )(tr  is of bathtub shape (BFR) with a change point 0ν . If 

1)0()0( >mr , then )(tm  is UBMRL with a unique change point ),0( 00 ν∈t , i.e. 

00 ν<t . Otherwise, )(tm  is DMRL. 

A similar conclusion also can be made for the UBFR and BMRL classes. 

These results indicate that the change point of a non-monotonic MRL )(tm  always 

occurs prior to the change point of its related failure rate function )(tr . They also 

show that the shape of a non-monotonic )(tm  depends on the shape of the 

corresponding )(tr , which is also true for monotonic MRL and failure rate function 

discussed before.  

On the other hand, the shape of a non-monotonic MRL, the same as the 

monotonic case, cannot determine the shape of the failure rate function. In Ghai & Mi 

(1999), a sufficient condition under which UBMRL implies BFR was developed, as 

shown in Theorem 2.4. Although the bathtub curve defined in their paper follows 

Definition 2.3 which includes a constant period, the results still can be applied to our 

interested UBMRL and BFR in Definition 2.4 and 2.5 by some modifications. 

Theorem 2.4 Let )(tm  is UBMRL with a change point 0t . Suppose there exist 

),[ 01 ∞∈ tt  such that )(tm  is concave on ),0[ 1t  and convex on ),[ 1 ∞t . If )(tm′ is 

convex on ),[ 10 tt , then one of the following alternatives is true for )(tr : 
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 (1) )(tr  exhibits a bathtub shape (Definition 2.2) that has two change points, say 

21 νν <  ; where 1210 tt ≤<≤ νν ; 

(2) )(tr  exhibits a bathtub shape that has a unique change points, say 0ν ; where 

100 tt ≤≤ν . 

Furthermore, Tang et al. (1999) and Bekker & Mi (2003) studied change 

points of a roller-coaster shaped MRL function, a more complex curve with increasing 

and decreasing segments appearing alternately, and found that  the number and 

location of the change points are determined by the corresponding failure rate 

function and the derivative function of MRL. Similar results were obtained in Bekker 

& Mi (2003) and Gupta & Gupta (2000) when considering the crossings of two MRL 

functions as well as two failure rate functions. They found that the crossing points of 

two MRL functions also depend on those of the corresponding failure rate functions in 

terms of number and location. More general discussions on the shape of the MRL can 

be found in Finkelstein (2002) and Mi (2004). 

• MRL ordering and failure rate ordering 

As pointed out in the forgoing sections, the MRL, the failure rate function, and the 

reliability function are equivalent to each other. Moreover, the shape of the failure rate 

function often could determine the shape of the MRL. An interesting question is 

whether a partial ordering with respect to one characteristic would imply the same 

partial ordering with respect to another characteristic.  

Definition 2.9 Consider two life time random variables X and Y  with reliability 
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function )(tRX  and )(tRY , respectively,  

(1) Stochastic ordering: YX ST≥  if )()( tRtR YX ≥  for all 0≥t ; 

(2) Failure rate ordering: YX FR≥  if )()( trtr YX ≤  for all 0≥t ; 

(2) Mean residual life ordering: YX MRL≥  if )()( tmtm YX ≥  for all 0≥t . 

Gupta & Kirmani (1987) proved that failure rate ordering implies MRL 

ordering and under some sufficient condition, two random variables that are subject to 

a MRL ordering also have the same failure rate ordering. 

Theorem 2.5 Let X and Y  be two life time random variables with reliability function 

)(tRX  and )(tRY . Then 

 (1) )()()()( tmtmtrtr YXYX ≥⇒≤ ; 

(2) Suppose )()( tmtm YX ≥  and )(/)( tmtm XY  is a non-decreasing function for all 

0≥t , then )()( trtr YX ≤ . 

Due to the close dependence between the MRL and the failure rate function , 

Finkelstein (2006) reviewed some common relationships between MRL ordering and 

failure rate ordering and showed that failure rate ordering leads to the corresponding 

ultimate mean residual life ordering with some assumptions. Hu et al. (2004) did a 

unified study on the two orderings from a new point of view of likelihood ratio 

ordering with different degrees. Frostig (2006) studied the sum of several dependent 

Bernoulli distributed random variables in MRL ordering. Also, the relationship 

between MRL ordering and other partial orderings was dealt with in other works. 

Kochar & Wiens (1987) extensively studied MRL ordering, NBUE ordering and 
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NBUFR order ordering, etc. Belzunce et al. (1999) discussed Laplace order and 

ordering of residual lives. Reversed MRL ordering, also called mean inactive time 

ordering was considered in Nanda et al. (2006) and Li & Xu (2006). 

2.2  Reliability modeling 

Reliability modeling, which in fact refers to lifetime data modeling, aims to find out 

underlying failure mechanisms of items and describe their failure behaviors in a 

proper way, so that accurate predictions and correct decisions could be made. This 

thesis focuses on how to model and analyze lifetime data in terms of the MRL 

function. There are two main methods in modeling: parametric modeling and 

nonparametric estimation. In parametric modeling, different probability distributions 

with various parameters are used to fit diverse lifetime data. Maximum likelihood 

estimation (MLE) and least square estimation (LSE) are the two most common 

approaches in estimating distribution parameters. For nonparametric estimation, as its 

name shows, this type of estimation does not assume any distribution and obtain the 

MRL function from data empirically.  

• Test of exponentiality versus different MRL classes 

To assure the effective fitness of data, statistical tests are always conducted before the 

modeling to identify different aging classes defined on MRL. Commonly, the tests are 

proposed for exponentiality, i.e. constant MRL, against other MRL class alternative.  

One graphic and intuitive test method is derived from total time on test (TTT) test 

(Bergman & Klefsjo, 1984). Formally, the TTT transform of a distribution with CDF 
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)(tF  and reliability function )(tR is defined as 

 10,)()(
)(

0

1
1

≤≤= ∫
−

− xduuRxH
xF

F . 

And scaled TTT transform is 

 )1()()( 11 −−= FFF HxHxφ . 

By studying the derivative function of )(xFφ  with respect to x  , we have that )(xFφ  

is concave for IFR and convex for DFR, and has an s-shape for bathtub shape 

distribution. The following Figure 2.2 summarizes shapes of )(xFφ  for different 

classes. 

constant

IFR

DFR

bathtub

 

Figure 2.2 Scaled TTT transform for different distribution classes. 

 

There are also plenty of other statistical tests established in literature. 

Bandyopadhyay & Basu (1990), Ahmad (1992), El-Bassiouny & Alwasel (2003), and 

Li et al. (2006) proposed tests for constant MRL against DMRL. Chen et al. (1983), 

Aly (1990), Lim & Koh (1996), and Abu-Youssef (2002) dealt with the problem of 

)(xFφ

x
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monotonic MRL classes. Tests for distinguishing exponentiality from non-monotonic 

MRL classes were presented in Hawkins et al. (1992), Na & Lee (2003), and Anis & 

Mitra (2005). In Dauxois (2003), a more general test was established for exponential 

distribution versus non-exponential’s. Lim & Park (1998) used a test to detect trend 

change in MRL. A detailed discussion and comparison of classical and recent tests can 

be found in Henze & Meintanis (2005).  

2.2.1 Parametric models 

Parametric models are regarded as useful tools in extracting and summarizing the 

information from failure data. The two common statistical techniques are MLE and 

LSE. In literature, numerous parametric distributions have been proposed to model 

different types of failure data that have either a monotone MRL or UBMRL. The most 

famous distribution in reliability is exponential distribution, which is the simplest 

model and the only continuous distribution with constant MRL. But the application of 

this distribution is limited, because few items in practice that have not failed may be 

statistically as good as new. Although the applicability is restricted, the exponential 

distribution still plays an important role in lifetime modeling; and its reliability 

function, failure rate function and MRL function are 

 0,0for1)()()exp()( ≥>==−= ttmtrttR λ
λ

λλ .  

• Weibull family 

In practice, mechanical items typically deteriorate over time and hence are more likely 

to have an increasing failure rate instead of constant. In this case, the exponential 
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distribution is inappropriate to be used for modeling. As a generalization of the 

exponential distribution, Weibull distribution, proposed by Weibull (1951), has 

constant, strictly increasing, and strictly decreasing failure rate. For 0, >βα , 0≥t , 

 ( )βα/)( tetR −= , 

 ( )βαββαβ /1)( tettr −−−= , 
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where dueuyxyI u
x

y −−− ∫Γ=
0

11)(),(  is the incomplete gamma function with 0>y  and 

0>x . When 1=β , it degenerates to the exponential distribution; when 1>β , the 

failure rate function )(tr  is increasing and the MRL )(tm  decreases and approaches 0; 

when 1<β , )(tr  is decreasing to 0 and )(tm  is increasing to infinity. 

However, when the failure rate function and the MRL function are non-

monotonic such as having a bathtub shape, the Weibull distribution would be unable 

to give goodness-of-fit. In literature, several modified Weibull models were developed 

to deal with the modeling of non-monotonic MRL, especially UBMRL.  

o Exponentiated Weibull distribution  

One of the modified Weibull distributions is exponentiated Weibull 

distribution proposed by Mudholkar & Srivastava (1993).  

 ( )( )( ) 0,,,exp11)( >−−−= νβαα
νβttR . 

This model was derived from a parallel system with its components following the 
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Weibull distribution by generalizing the parameter that represents component number. 

When 1<βν , this model has BFR and UBMRL. The reliability measures of this 

distribution were summarized in Nassar & Eissa (2003). 

o Additive Weibull distribution 

Compared to the exponentiated Weibull distribution, the additive Weibull 

distribution proposed by Xie & Lai (1996) is based on series systems composed of 

two components.  

 ( ) ( )( ) 0,,,,exp)( >−−= dcbatctatR db . 

It is easy to find that the reliability function of this distribution is the product of two 

Weibull’s with parameters ba,  and dc,  respectively. For 1>b  and 1<d , a BFR and 

a UBMRL would occur. An intuitive explanation is that a BFR could be produced by 

paralleling an IFR distribution and a DFR distribution.   

Lai et al. (2004) generalized the additive model by adding a constant to the 

failure rate function, so that a MRL function with comparatively longer stable period 

could be obtained. The reliability function of this generalized additive model is 

 ( ) ( )( ) 0,,,,exp)( >−−−= dcbatctacttR db . 

o Modified Weibull distribution 

Moreover, Lai et al. (2003) considered a modified Weibull distribution having 

the reliability function given by 

 ( ) 0,0,0,exp)( ≥>>−= baetatR tb λλ . 
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When 10 <≤ b , this distribution has a BFR and a UBMRL. One distinct advantage of 

this model is that the change point of its failure rate function has a closed form, which 

is 

 
λ

τ bb −
=0 . 

It is clear that this change point 0τ  depends on only b  and λ . 

o Weibull extension distribution 

In addition, Chen (2000) introduced a new two-parameter Weibull extension 

capable of describing bathtub curves. 

 ( )( ) 0,,1exp)( >−= βλλ
βtetR . 

This model is also called the exponential power model in literature. To enhance the 

applicability of this distribution, Xie et al. (2002) modified and improved this 

distribution by adding an extra scale parameter. The reliability function of the 

improved model with an additional scale parameter is 

 ( )( ) 0,,,1exp)( )/( >−= βαλλα
βαtetR . 

Direct deduction reveals that this distribution could model BFR and UBMRL failure 

data if 1<β . 

o Sectional models with two or more Weibull distributions 

Another kind of Weibull extensions with UBMRL are sectional distributions, 

which combines two or more Weibull distribution. Murthy & Jiang (1997) constructed 



 
Chapter 2: Literature Review 

33 

 

a sectional model with two Weibull distributions. 

 

( )( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∞<≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

≤≤−

=
ttt

ttt

tR
*

2

*
1

,exp

0,/exp

)(
2

1

β

β

η
γ

η

 

where ( )( ) )/(1
21

* 2121
ββββ ηβη

−
=t , 21 βββ = , and *)1( tβγ −= . 

When 11 <β , 12 >β  and the change point of the failure rate function is set at *t , the 

model would have a BFR and a UBMRL. A generalized sectional model involving 

three Weibull distributions can be found in Jiang & Murthy (1997). It is straight to use 

the sectional models to model non-monotonic MRL, as for example a UBMRL 

distribution can be composed of an IMRL Weibull and a DMRL Weibull. But the 

disadvantage of sectional models is that in these models, too many parameters are 

involved and thus more data are always needed for estimation. 

o Other Weibull related distributions 

  There are also other Weibull related models that can display BFR and 

UBMRL, for example, a three-parameter modified Weibull distribution in Marshall & 

Olkin (1997) and the recent odd Weibull distribution in Cooray (2006). For MRL with 

complex shape, one construction technique is to mix two or more Weibull 

distributions. A graphic representation of a two mixed-Weibull distribution was given 

in Jiang & Kececioglu (1992). Gupta & Gupta (1996) presented a general approach to 

study the Weibull mixture in terms of the failure rate and MRL functions.  

Because of the definition of MRL involving an integral of the reliability 
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function, most of these modified Weibull models do not have their MRL in an explicit 

analytical expression. Hence, the analysis of the MRL functions is often carried out 

numerically. A graphical study on the behavior of the MRL functions for different 

Weibll extensions was given in Lai et al. (2004). More detailed discussion of Weibull 

family can refer to Murthy et al. (2004). 

• Other distribution families 

o Gamma distribution  

Gamma distribution is the second important generalization of the exponential 

distribution. But the gamma distribution is less popular than the Weibull distribution 

in lifetime modeling, because its reliability function is intractable (expressed as 

transcendental function). The probability density function is given by 

 ( ) 0,,
)(

)( 1 >
Γ

= −− κλλ
κ
λ λκ tettf . 

The distribution is IFR and DMRL if 1>κ , DFR and IMRL if 1<κ , and exponential 

if 1=κ . Different from the Weibull distribution of which the MRL goes to either 

infinity or 0, the MRL of the gamma distribution will approaches a positive constant, 

λ/1 . This fact indicates a lifetime with a gamma distribution has an exponential tail. 

o Inverse Gaussian distribution 

Another distribution also with constant MRL and failure rate tail is the inverse 

Gaussian distribution. 
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This distribution has UBFR and BMRL for all values of λ  and μ . As ∞→t , its 

MRL function approaches λμ 22 . Unfortunately, the inverse Gaussian cannot 

describe the lifetime with UBMRL and BFR. A comprehensive study of the inverse 

Gaussian distribution was presented in Chhikara & Folks (1989). 

o Lognormal distribution 

Similar to the inverse Gaussian, the lognormal distribution also has only 

UBFR and BMRL. Its reliability function is expressed via the CDF for a standard 

normal random variable Φ . 

 0,0,log1)( >≥⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−= σμ
σ

μttR . 

Change points of the failure rate function and the MRL for the lognormal distribution 

were studied in Gupta et al. (1997). In practical application, the lognormal distribution 

may be less popular than the inverse Gaussian distribution, because as ∞→t , its 

failure rate function goes to 0 and the MRL increases to infinity.  This implies that 

almost no failure will occur for items with long operating hours, which is not realistic 

in practice.  

o Other distributions 

The expressions of the MRL functions for normal, gamma and lognormal 

distributions were studied in Govil & Aggarwal (1983). To make these distributions 

capable of modeling different types of lifetime data, the expansion of distribution 
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falimiy is always needed. Gupta & Lvin (2005a, b) discussed a gamma-type model 

and a generalized lognormal model by introducing extra parameters. Ghitany (1998) 

and Agarwal & Al-Saleh (2001) also generalized the gamma distribution and analyzed 

its statistical properties. Weighted and mixed inverse Gaussian was studied in Gupta 

& Akman (1995b) and Gupta & Akman (1997) respectively.  

Interests also arise for other models, such as the Pareto distribution, Pearson 

family and other distributions. Xekalaki & Dimaki (2005) identified Pareto and Yule 

distribution by their reliability measures. Generalized Pareto distributions were 

studied by Asadi (2004), Tavangar & Asadi (2005), and Tavangar & Asadi (2008). 

Besides, Asadi (1998) and  Sankaran & Nair (2000) discussed Pearson family of 

distributions. The characterizations of beta distribution were reviewed in Nadarajah & 

Gupta (2004). Moreover, Gupta et al. (1996), Gupta et al. (1999), Ghitany et al. 

(2005), and Gupta et al. (2008) studied Burr type XII, log-logistic, Topp-Leone, and 

Hurwitz-Lerch Zeta distributions respectively. A distribution family with linear MRL 

was characterized in Korwar (1992). In Joseph & Kumaran (2008), generalized 

lambda distribution family was used to derive single unified expressions for the MRL 

of all non negative univariate continuous distributions. 

2.2.2 Nonparametric estimation 

Nonparametric estimation, without any preliminary assumption of distribution, 

depends only on lifetime data and provides estimates of characteristics empirically. 

Compared to parametric method that has good performance for small sample size, 

nonparametric method usually gives satisfactory estimation when the size of available 



 
Chapter 2: Literature Review 

37 

 

data is large. In the last several decades, various nonparametric studies have been 

conducted for the MRL function with different focuses. 

• Empirical estimation for MRL function 

Based on the well known Kaplan-Meier estimator (Kaplan & Meier, 1958), Yang 

(1978) proposed the empirical estimation for MRL function and proved its asymptotic 

uniformity in the sense of probability. Let )()1()()()2()1( ,...,,,...,...,, nrri tttttt +  be ordered 

potential failure times of n  independent and identically distributed items, then the 

empirical MRL function is 

 )(
1)(

)( 0,
)(

1)(ˆ n

n

tli
i tttt

tln
tm ≤≤−

−
= ∑

+=

 ,  (2.6) 

where }:max{)( )( ttitl i ≤= . Based on this estimator, many efforts have been 

contributed to the study and the modification of the empirical MRL estimator in order 

to deal with different types of lifetime data.  

One important technique is to utilize the kernel method, which is derived from 

functional analysis. In Kulasekera (1991) and Na & Kim (1999), smooth 

nonparametric estimations of the MRL were presented for complete and right 

censored data. Ruiz & Guillamon (1996) and Guillamon et al. (1998) proposed 

nonparametric recursive estimators for MRL based on kernel density estimator and 

kernel reliability estimator under mixing dependence conditions. Chaubey & Sen 

(1999) modified the weighted scheme in kernel reliability function and proposed a 

new estimator for MRL by integrating the kernelled reliability function. A special 

kernel reliability estimator was also presented by Swanepoel & Van Graan (2005). 
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Under the assumption that samples come from a same but unkown distribution, 

Abdous & Berred (2005) applied the local linear fitting technique as well as kernel 

methods on the empirical function to produce a smooth estimator. 

There are also some works with focus on specified aspects of the MRL. 

Ahmad (1982) discussed the estimation for the MRL of multi-component systems. 

Lahiri & Park (1991) was interested in the tail estimation of MRL and used Dirichlet 

process prior to derive empirical Bayes estimators. For some special MRL distribution 

classes, relatively simple estimations were studied and proposed. Ebrahimi (1998) 

estimated the MRL with finite population. In Kochar et al. (2000), a very simple 

estimation for monotone MRL class was developed, which utilizes the order sample 

just before a specified time point. Hu et al. (2002) dealt with the MRL estimation of 

two ordered MRL functions. In Ghebremichael (2009), the estimation of the MRL was 

studied assuming that the MRL was banded by two other MRL functions.  

• Confidence bounds for MRL function 

Guess & Park (1991) constructed conservative confidence intervals for MRL with 

censored data. For large samples, Li (1997) developed nonparametric confidence 

intervals for components as well as for systems and renewal processes. In Zhao & Qin 

(2006) and Qin & Zhao (2007), empirical likelihood ratio was used to estimate 

confidence bands for the MRL with both complete and right randomly censored data. 

Korczak (2001) proposed simple upper bounds for DMRL and NBUE distribution 

classes. 
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• Estimations for changing points 

The estimation of change point for non-monotonic MRL was also considered in 

literature. Ebrahimi (1991) obtained an estimator for change point of MRL function 

for the distributions that have a “general” increasing MRL, which has a constant 

period after its initial increasing. Mitra & Basu (1995) considered change-point 

estimation for UBMRL distribution classes.  

In addition to parametric models and nonparametric estimation, some semi-

parametric models were also proposed and studied. One popular model that has 

gained many extensions is proportional MRL model, which was originally proposed 

by Oakes & Dasu (1990). As a extension of the proportional MRL model, a regression 

model was developed in  Maguluri & Zhang (1994). Recently, Chen et al. (2005) used 

counting process theory to establish a inference procedure.  

2.3  Mean residual life of systems  

The previous sections are concerned with the MRL function for a single item or a 

system that is studied at system level. Most often, systems need to be investigated at 

system level by incorporating the information of their components, as this would lead 

to a better understanding of the underlying failure mechanism of complex systems.  If 

a system is analyzed at component level, its inner structure needs to be clearly defined, 

because the structure, which mainly refers to the allocation and the properties of 

components, determines the reliability of the system; see Leemis (1995) for a 

systematic definition and an annotated overview.  
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As a main reliability measure, the MRL function has gained much attention for 

a better understanding of the reliability of systems.  This section will give a brief 

summary on the MRL for systems, practically for parallel systems, series systems, and 

k-out-of-n systems, which are common structures in industry.  

• Different definitions for the MRL function of systems 

A k-out-of-n system is such a system that consists of n  independent and identically 

distributed components and functions as long as least k  components are working. In 

other words, a k-out-of-n system will stop working if 1+− kn  components fail, 

which indicates that the lifetime of a k-out-of-n system equals to the lifetime of the 

)1( +− kn th failed component. Particularly, the series systems and parallel systems 

are 1-out-of-n and n-out-of-n systems, respectively.  

Suppose that a system consists of )1( >nn  independent and identically 

distributed components. Let nTTT ...,,, 21  be the lifetimes of n components and assume 

that niTi ...,,1, = , are continuous and non-negative random variables with reliability 

function )(tR . Denote by nnnn TTT ::2:1 ...,,,  ordered lifetimes of n  components. Then, 

the lifetime of a k-out-of-n system can be represented by that of the )1( +− kn th 

order statistic nknT :1+− . And the lifetimes of a series system and a parallel system are 

nT :1  and nnT : .  

Because of the concern of system structure, different definitions for the MRL 

of systems have been proposed in order to accurately describe the lifetimes of systems 

with various operating conditions. A nature definition of the MRL function for 
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systems directly comes from that for single component in (2.1). Denote by )(: tM nk  

the MRL function of k-out-of-n systems, then we have 

 )|()( :1:1, tTtTEtM nknnknnk >−= +−+− . 

Conditioning on the )( kn − th failure time, Belzunce et al. (1999) defined the 

residual life and the MRL of k-out-of-n systems.  

 )|( :::1,, tTTTRLS nknnknnkntnk =−= −−+− , 

 )|()( :::1, tTTTEtM nknnknnknnk =−= −−+− . 

In their work, the MRL function could be interpreted as the additional lifetime to be 

gained by using a (k – 1)-out-of-n system instead of a k-out-of-n system. 

In Bairamov et al. (2002), a new definition of MRL was proposed for parallel 

systems with the condition that no failure occurs at a specified time point.  

 )|()( :1:
1

, tTtTEtM nnnnn >−= . 

Motivated by this idea, Asadi & Bayramoglu (2005) extended the definition in 

Bairamov et al. (2002) and gave a series of MRL functions for parallel systems by 

conditioning on the )1( +− rn th lifetime of components.  

 )|()( ::, tTtTEtM nrnn
r

nn >−= . 

It is obvious that the above definition method could provide n  different MRL 

functions for a parallel system. Similar results also can be found in Asadi & 

Bayramoglu (2006) for k-out-of-n systems.  
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 11),|()( ::1, +−≤≤>−= +− knrtTtTEtM nrnkn
r

nk . 

In addition, Eryilmaz (2008) studied the lifetime of a combined k-out-of-n & 

consecutive k-out-of-n system. 

• Properties of systems 

For certain definition of the MRL of systems, its distributional properties are of great 

interest for further reliability analysis. The comparison between the MRL of systems 

and of components was investigated in Lim & Koh (1997). Khaledi & Shaked (2007) 

studied the systems with warning lights that come up when failures of components 

occur, and derived upper and lower bound on the MRL of systems. In Li & Zhao 

(2006), the general residual life of k-out-of-n systems, which is similar to the 

definition in Asadi & Bayramoglu (2006), was discussed in terms partial orderings.  

Navarro et al. (2006) and Navarro et al. (2008) talked about basic reliability properties 

of systems with exchangeable components following exponential and pareto 

distributions respectively. In Sadegh (2008), a parallel system with independent but 

non-identical components was studied based on generalized MRL. Gurler & 

Bairamov (2009) also considered systems with non-identical components and 

evaluated the relationship between the MRL of systems and that of its components. 

Furthermore, both Li & Zhang (2008) and Li & Zhao (2008) took into consideration 

residual life and inactivity time of systems. 

Furthermore, several papers discussed the properties of MRL that systems 

could preserves from their components. Abouammoh & El-Neweihi (1986) showed 

that parallel systems inherit DMRL from components. Asadi & Goliforushani (2008) 
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proved that k-out-of-n systems also have this preservation property. The reversed 

preservation ageing properties for series and parallel systems were discussed in Li & 

Yam (2005), Belzunce et al. (2007a) and Li & Xu (2008). Considering partial 

orderings for components and systems, Singh & Vijayasree (1991) and Eryilmaz 

(2007) found that usual ordering is preserved under the formation of consecutive k-

out-of-n systems but the MRL ordering does not hold. When comparing two parallel 

systems, Kochar & Xu (2007) showed that the system with more reliable components 

has longer lifetime. 

2.4  Some applications 

Two main applications of MRL in reliability engineering are the determination of 

optimal burn-in time in burn-in tests and the planning of optimal policy in 

maintenance. In this section, we want to review some decision making policies for the 

two application areas based the MRL.  

Burn-in is a testing procedure to eliminate inferior products from product 

population before they are released and shipped to customers or factories. In general, 

burn-in tests is considered to be expensive and the cost increases with the increase of 

testing time. So the determination of optimal burn-in time, the best time to stop burn-

in procedure, is crucial in production and sales, as the trade-off between high product 

quality and low burn-in cost need to be balanced.  

The product population, which is composed of inferior and normal products, is 

often considered to have a BFR or a UBMRL. This is rational, because after infant 
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period caused by inferior products, only normal products survive and the population 

enters a stable period before the normal products begin to wear out. Hence, in fact, 

burn-in tests deal with the beginning infant period and the optimal burn-in time often 

refers to the time epoch that marks the end of the infant period. By far, various criteria 

related to the MRL have been established for burn-in tests, see Park (1985) and Block 

& Savits (1997) for a summary.  There are mainly three kinds of criteria:  

C1) To maximize the MRL function;  

C2) To balance other functions derived from the MRL; 

C3) To minimize a cost function related to the MRL. 

Based on C1, the optimal burn-in time is actually the change point of the MRL, 

which has been extensively discussed in Section 2.1.3. A discussion also can be found 

in Block et al. (1999). Besides the criterion of maximizing MRL function, other 

characteristics related to the MRL are utilized to determine the optimal burn-in time. 

Block et al. (2002) determined the optimal burn-in time by balancing the MRL and 

residual variance. Bebbington et al. (2006) tried to utilize curvature to obtain the time 

as well as the useful period. There are also some cost related criteria based on the 

MRL. This type of models often assumes that the profit from selling products is 

proportional to MRL. Example cost functions were presented in Chang (2000) and 

Cha et al. (2008). In addition, the problem of burn-in on the population with a 

generalized bathtub curve was considered; see Bebbington et al. (2007a) and Cha 

(2006).  

As pointed out in Guess et al. (1992), the optimal burn-in plan obtained from 

one reliability measure does not necessarily imply the optimal for the other measure. 
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In Section 2.1.3, we have known that the time at which the MRL reaches its maximum 

always occurs before the time that corresponds to the smallest failure rate. Xie et al. 

(2004) discussed the difference between change points of the MRL and the failure rate 

function and tried to use it as an index for the length of the useful\stable period.  A 

statistical inferential theory was given by Bebbington et al. (2007b). 

Burn-in tests are conducted before the release of products while maintenance 

and repair are carried out either during production process or when products have 

been deployed and put into use. Lee & Lee (1999) studied the optimal proportion of 

perfect repair when systems have DMRL. Mi (2002) considered age-replacement 

problem with computers and determined their optimal work size. Yue & Cao (2001) 

compared replacement policy with stochastic orders under shock models. Moreover, 

Cha et al. (2004) investigated optimal burn-in plan assuming that failed components 

during burn-in can be restored by a repair.  

Besides the burn-in and maintenance problems discussed above, there are 

many other studies on MRL function in practice. Some aspects with the real 

application of the MRL and the residual life are broadly listed.  

• Product technology 

Wiklund (1998) discussed on-line prediction of cutting tool life by two statistical 

approaches. Herzog et al. (2009) predicted the residual life of machines and 

components based on data from hydraulic systems. 

• Economics and social studies 
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In Sohn & Lee (2008), a competing risk model was proposed to estimate customers’ 

MRL under a new phone system. They studied three competing causes that might 

affect the MRL of customers: pricing policy, quality of communication, and 

usefulness of service, and also different groups of customers with respect to their sex 

and age. 

• Survival analysis 

In survival analysis, bathtub curves are often used to describe the mortality of diseases. 

Often, the mortality of a disease is considered to reach a peak after some finite period 

and then declines gradually. We can conjecture that, the patients who suffer from this 

disease probably have their MRL initially decreasing due to the abrupt attack of the 

disease, and then entering a stable period due to body’s resistance before finally 

recovering to a normal level when the disease ultimately disappears.  

Besides, the MRL function also has wide applications in many other areas, 

such as life insurance, demography, management science, and even financial market. 
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CHAPTER 3 A GENERAL MODEL FOR UPSIDE-
DOWN BATHTUB-SHAPED MEAN RESIDUAL LIFE1 

3.1  Introduction 

For many mechanical and electronic components, the failure rate function has a 

bathtub shape; the failure rate function is decreasing initially, and then flattens out 

before it increases again. The corresponding MRL function is usually of upside-down 

bathtub shape. Many papers deal with models for BFR and UBMRL. For example, 

Mudholkar & Srivastava (1993) proposed an exponentiated Weibull model. Xie & Lai 

(1996) proposed an additive Weibull model with BFR. Another three-parameter 

generalized Weibull distribution was presented by Xie et al. (2002), which modified 

the model introduced by Chen (2000). Recently Cooray (2006) derived the odd 

Weibull family. Besides these generalized Weibull distributions, other useful models 

with UBMRL and BFR were also discussed; see Ghitany et al. (2005) and Gupta & 

                                                 
 
1 Part of the work in this chapter is published in IEEE Transactions on Reliability.  

“A model for upside-down bathtub-shaped mean residual life and its properties”, IEEE Transactions on 
Reliability, 2009, 58(3), pp. 425-431. 
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Lvin (2005b) for examples. A recent text by Lai et al. (2004) contains several chapters 

dealing with the general issues. 

However, for these existing models, the MRL functions are of complicated 

forms, which usually involve an integral of a reliability function that is not of a closed 

form. This problem motivates the formulation of a new class of life distribution, 

which has different characteristics from the existing models, such as a new model 

with some form of the MRL function. This new model type will make analyses based 

on MRL easier to conduct, including activities such as the determination of useful 

periods based on the curvature of MRL (Bebbington et al., 2006), the study of 

proportional MRL models (Zhao & Elsayed, 2005), the analysis of the distance 

between the change points of MRL and failure rate functions (Xie et al., 2004), and 

the study of MRL for coherent systems (Asadi & Goliforushani, 2008). 

In this chapter, a model with UBMRL is proposed with the starting point of the 

derivative function of MRL. A general framework is studied in Section 3.2. Section 

3.3 is devoted to propose the new model. We also investigate its distributional 

properties and parameter estimation. We use two sets of lifetime data in Section 3.4 to 

illustrate the application of the new model, along with some comparative studies. The 

model application in decision making is discussed in Section 3.5. In section 3.6, a 

nonlinear regression method based on MRL function is proposed for the estimation of 

parameters and also compared with MLE. Finally, Section 3.7 is a conclusion part. 
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3.2  A general framework 

The derivative of the MRL function, when it exists, measures how the MRL function 

changes as the value of the input changes, and then determines the behavior and shape 

of the MRL. It could be simpler than the MRL itself. For example, if the derivative of 

an MRL has one crossing of zero from above, then the MRL is of upside-down 

bathtub shape. Hence we could find a simple function for the derivative of the 

UBMRL function rather than for the MRL function itself.  

As shown in Definition 2.4, a differentiable MRL function )(tm  is said to be 

of upside-down bathtub shape if for some 0t  its derivative function )(tm′  satisfies 

0)( >′ tm  if 00 tt <≤ , 0)( =′ tm  if 0tt = , and 0)( <′ tm  if 0tt > . 

Moreover the derivative of UBMRL should approach 0 as t  goes to infinity, 

i.e. 0)( →′ tm , as ∞→t ; otherwise, the MRL would become negative. A typical 

curve of such a derivative function is depicted in Figure 3.1. 

 

Figure 3.1 A desired shape of the derivative of MRL function )(tm′ . 
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Here the aim is to find a function capable of representing the derivative 

function of MRL with the desired shape. A general way to construct a suitable 

function is to multiply a continuous function, which has positive values before some 

time point and after that goes to negative, by a function of which the limit as t  

approaches infinity is zero. The idea behind this general way is that to find a fast 

convergent function so that the tail of the positive and then negative function could be 

lifted up to 0. Following this idea, such a function can be expected to be the derivative 

of the MRL function.  

)()()( 21 tgtgtl ⋅=  is a multiplicative function in which the following 

requirements are true.  

Requirement 1. )(1 tg  is a continuous function that satisfies that for some *t , 

0)(1 >tg  for *0 tt <≤ , 0)(1 =tg  for *tt =  and 0)(1 <tg  for *tt > .  

Requirement 2. )(2 tg  is a continuous, positive function with 0)(2 →tg  as ∞→t , 

and 0)()( 21 →⋅ tgtg  as ∞→t . 

Requirement 3. The general integral of )(tl  should be positive and exists at any time, 

and also finite at time 0; i.e. 0)( >∫ dttl  for all 0≥t , and ∞<
=∫ 0

)(
t

dttl . 

Requirement 4. 1)( −≥tl . 

Proposition 3.1 A smooth function is the derivative of UBMRL if and only if it can be 

written in the form of the multiplicative function )(tl . 
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Proof: “If part”: A function that satisfies Requirement 1 and 2 must decrease initially 

to negative values before it increases and approaches to 0 asymptotically. 

Requirement 3 and 4 guarantee that the general integral of )(tl  is a MRL function, 

which has the following two properties. 

P1. 0)()( >′= ∫ tmtm , for all 0≥t , and ∞<)0(m . 

P2. 11)()()( −≥−=′ trtmtm , for all 0≥t . 

A function that fulfills the four requirements can be the derivative of UBMRL.  

“Only if part”: For an arbitrarily chosen UBMRL )(tm , we denote by 0t  its 

change point. We have 0)( >′ tm  for 0tt < , 0)( =′ tm  for 0tt =  and 0)( <′ tm  when 

0tt > ; also 0)( →′ tm  as ∞→t . As )(tm′  is continuous, )(tm′  has lower bounds. 

Denote by 0τ  the time at which )(tm′  reaches its smallest value. We have 0)( 0 <′ τm . 

Then two continuous functions could be constructed,  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
′
′

−

≤
′
′

−
=

0
0

0
0

1
,

)(
)(

,
)(

)(

)(
ττ

τ
τ

t
tm

m

t
m

tm

tg , ( )
⎪⎩

⎪
⎨
⎧

>
′
′

−

≤′−
=

0
0

2
00

2 ,
)(

)(
),(

)( τ
τ

ττ

t
m

tm
tm

tg . 

It is easy to verify that )()()( 21 tgtgtm ⋅=′ . Let 0
* tt = . We also can find that 

)(1 tg  is a continuous function, and positive before *t and negative after *t . Moreover, 

)(2 tg  is positive and continuously approaches 0 when time t  goes to infinity. As 

)(tm′ is a derivative function of MRL, Requirement 3 and 4 for )(tl  are satisfied.  

Here completes the proof.  ■ 
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The proposition implies that the derivative of UBMRL is equivalent to the 

multiplicative function )(tl . Hence, the function )(tl  can be regarded as a reliability 

characteristic that could be utilized to determine probability distributions. In other 

words, a distribution could be developed based on any function in the form of )(tl . In 

next section, a proper candidate from the multiplicative functions will be used as a 

starting point of the derivation of the new UBMRL model. 

3.3  The UBMRL model  

3.3.1 Construction of the model 

Based on the general form of the multiplicative function in the previous section, the 

function considered in this paper is a linear function multiplied with an exponential 

function  

 ( ) ( )ctbtatl −−= exp)( , 0,, >cba , 0≥t ,  (3.1) 

with conditions  

 02 <
−

c
bac , and (3.2) 

 ⎟
⎠
⎞

⎜
⎝
⎛ −−−≤− 1exp1

b
ac

c
b . (3.3) 

For (3.1), both )( bta − , and )exp( tc−  are simple functions for )(1 tg  and )(2 tg . 

Their multiplication can be integrated easily, and the general integral of )(tl  preserves 

the same form as )(tl  itself. Equations (3.2) and (3.3) are derived from Requirement 3 

and 4 for the multiplicative function respectively to ensure the feasibility of )(tl  as 
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the derivative function of MRL. See next subsection for the derivations of (3.2) and 

(3.3). 

From the above discussion, a model with UBMRL is derived in terms of the 

MRL function  

 ( )ct
c

bact
c
btm −⎟

⎠
⎞

⎜
⎝
⎛ −

−= exp)( 2 , 0,, >cba , 0≥t , (3.4) 

with constraints (3.2) and (3.3). 

Let ( ) ccbaccb =−−== γβα ,, 2 . Then the model in (3.4) with the constraints 

(3.2) and (3.3) can be reduced to 

 0,0,,),exp()()( ≥>−+= ttttm γβαγβα ,  (3.5) 

where  

 12exp ≤⎟
⎠
⎞

⎜
⎝
⎛ −
α
βγα .  (3.6) 

The derivative function of the MRL is 

 ( ) ( )tttm γβγααγ −−+−=′ exp)( . (3.7)    

3.3.2 Derivation of (3.2) and (3.3) 

• Derivation of (3.2) 

Requirement 3 implies that the general integral of )(tl  should be greater than 0, which 

is 
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 ( ) ( ) ( ) 0expexp1)( 2 ≥Δ+−+−−−=∫ ct
c
bctbta

c
dttl ,   

where Δ  is an integration constant. Because the general integral increases first and 

then decreases, its smallest values will be attained at 0=t  or ∞=t . So the above 

formula is equivalent to the two inequalities 

 0)( 2
0

>Δ+
+−

=
=∫ c

bacdttl
t

, and 0)( ≥Δ=
∞=∫ t

dttl . (3.8)  

By applying to (3.8) the fact that the MRL function is usually assumed to achieve 0 as 

∞→t , i.e. 0=Δ , we can obtain (3.2). ■ 

• Derivation of (3.3) 

Formula (3.3) is derived from Requirement 4 which indicates that 1)( −≥tl  for all 

0≥t , which is equivalent to 1)(min
0

−≥
≥

tl
t

. Solving the equation 0)( =dttdl  yields 

the time point corresponding to the minimum of )(tl , denoted by 0τ  

 
cb

a 1
0 +=τ .   

Hence, we obtain the inequality 

 11exp1exp1)1( −≥⎟
⎠
⎞

⎜
⎝
⎛ −−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−=+

b
ac

c
b

cb
ac

cb
aba

cb
al .   

which is (3.3). ■                                     
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3.3.3 Failure rate function and other functions 

The corresponding failure rate function )(tr  is 

 

( ) ( )
( ) ( )tt

tt
tm

tmtr
γβα
γβγααγ

−+
+−−+−

=
+′

=
exp

1exp
)(

1)()(
.  (3.9) 

The reliability function is then given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣
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⎠
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t
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,0,0exp1exp
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)exp(

)exp(exp
)(
)exp(

)(
1exp

)(
)0()(

0

0

 (3.10) 

where dueuxa
x

ua∫
∞

−−=Γ 1),(  is the upper incomplete gamma function.  

Remark 3.1: Suppose that the MRL function ultimately approaches a positive 

constant instead of 0, and then (3.2) should be replaced by (3.8) in Section 3.3.2. This 

change will introduce a more general model with UBMRL, which will approach a 

constant instead of 0 as time t  goes to infinity. 

Remark 3.2: The parameters a , b , and c  of (3.1) are set positive in this paper. In 

fact, the expansion of their domains will enable the distribution to present different 

types of MRL. Assume 0>c , as it is a scale parameter. There are four cases: 1) 0>a  

and 0>b , UBMRL; 2) 0>a  and 0<b , increasing MRL; 3) 0<a  and 0>b , 

decreasing MRL; and 4) 0<a  and 0<b , bathtub-shaped MRL. This is because, 
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according to (3.1), the signs of parameters a  and b  determine the sign of )( bta −  

and thus further determine the positive or negative of the derivative function )(tl .  

3.3.4 Shapes and changing points of MRL and failure rate functions 

Figure 3.2 and Figure 3.3 show respectively the MRL and the failure rate functions of 

the new model. They are plotted with parameters 4=α , 5.0=β , and 1=γ  for the 

solid line; and 2=α , 1=β , and 1=γ  for the dashed line. 

From the derivative of MRL (3.1) or (3.7), it is easy to obtain the change point 

of the MRL function 

 
α
β

γ
−==

1
0 b

at .  (3.11) 

Based on (3.5), solving 0)( =′ tr  yields the change point of the failure rate function, 

denoted by 0ν . 

 
α
β

γ
ν −

+
=+= 00

0
1 z

c
z

b
a ,  (3.12) 

where 0z  is the solution to the equation ( ) ( )1expexp −=−= αβγαcbacbez z .  
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Figure 3.2 Example UBMRL functions. 

 

 

Figure 3.3 Example BFR functions. 

 

The result of 00 ν<t  validates the theorem proved by Gupta and Akman 

(1995a) that the change point of MRL function always precedes the change point of 

failure rate function. Furthermore, (3.11) suggests that the changing point of the MRL 

function 0t  approaches 0 as the parameter a  gets close to 0. But in this case, the 

change point of the corresponding failure rate function 0ν   remains strictly greater 
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than 0 because 00 t>ν . Hence, when 0=a , the new model will degenerate into the 

one with a decreasing MRL and a BFR function. This phenomenon gives an example 

for the fact that BFR does not necessarily imply UBMRL and also supports the 

theorem in Gupta and Akman (1995a). 

An underlying explanation to this unusual instant is that the failure rate 

function at time 0 is finite for this degenerative model, which is different from the 

other existing models with infinite initial failure rates. More similar cases with BFR 

and decreasing MRL may refer to the distributions with 0<a  mentioned in Remark 

3.2. From (3.11), we find that as 0<a , the change point of )(tm  is also less than 0. 

This implies that )(tm  is strictly DMRL with 0)0( <′m . But the failure rate function 

is still of bathtub shape with a change point 0ν . 

It is also of interest to study the property of the change point of the derivative 

of the MRL function )(tm′ , denoted by 0τ . From (3.6), we get an inequality 

 )1exp(1exp0 0
0 ≤⎟

⎠
⎞

⎜
⎝
⎛ −=<
α
βγαzez ,  (3.13) 

which implies 10 0 ≤< z . Then we obtain 

 0
0

0
121 τ

α
β

γα
β

γ
ν =+=−≤−

+
=

cb
az ,  (3.14) 

which means that in this model the change point of )(tm′ , denoted as 0τ , is 

positioned after the change point of the failure rate function 0ν . So 0τ  can be used as 

the time epoch that marks the start of the useful life period during which the failure 
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rate function is considered to be stable.  

3.3.5 Parameter estimation 

Parameter estimation is an important issue in lifetime data analysis. Maximum 

likelihood estimation (MLE) can be used to estimate the parameters of the new model, 

for either complete data, or censored data. For the case of complete data, let 

)()2()1( ... nttt ≤≤≤  be the exact ordered failure times from a sample of size n . The 

underlying log-likelihood function for these complete data is given by 

 ))(ln)((ln)(ln),,;,...,,(ln),,( )(
1

)(
1

)()()2()1( i

n

i
i

n

i
in tRtrtftttLcbal +===Λ= ∑∑

==

γβα

( ) ( )[ ] ( ) ( ){

⎭
⎬
⎫
⎥
⎦

⎤
⎢
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⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−Γ−⎟

⎠
⎞

⎜
⎝
⎛ −Γ⎟

⎠
⎞

⎜
⎝
⎛−−

+++−+−−+−=∑
=

α
βγγ
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βγ
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βγ

α

βγβαγβγααγ

t

tttt
n

i
iiii

,0,0exp1

ln2ln21expln
1

)()()()(

 . (3.15) 

By taking the partial derivatives of the above function with respect to α , β , and γ , 

and equating them to zero, three equations can be obtained. Solving the equations will 

yield the MLE for the three parameters α , β , and γ . For cases involving censoring, 

the log-likelihood functions in (3.15) will be added with the logarithm of reliability 

functions corresponding to the censored time points. Moreover, based on the second 

partial derivatives of the log-likelihood function, we can obtain the Fisher information 

matrix and use it to estimate confidence intervals for the three parameters. 

Based on the second partial derivatives of the log-likelihood function, the 

33×  observed information matrix, from Fisher information matrix, is given by 
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where γβα ˆ,ˆ,ˆ  are the estimated parameters from MLE.  

By inverting the matrix, we can obtain the local estimates of the covariance 

matrix  

 1

)ˆ()ˆ,ˆ()ˆ,ˆ(

)ˆ,ˆ()ˆ()ˆ,ˆ(
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The standard errors of the parameter estimators can be computed from the 

diagonal of the above matrix. Since the parameters of this model must be positive, the 

logarithm of them, i.e. γβα ln,ln,ln , can be treated as normally distributed. Hence 

the two-sided approximate confidence intervals for these three parameters, at 

confidence level δ , are constructed as follows, where 
21 δ−z  is the 2/1 δ−  percentile 

of the standard normal distribution. 
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In this model, both the parameter estimates and the confidence intervals 

should be computed numerically, because the equations and the matrices can not be 

analytically solved.  

3.4  Two application examples 

Two data sets are used in this section to illustrate the modeling and estimation 

procedure. One is the widely used data set of 50 failure times from Aarset (1987); the 

other data set with the 18 exact failure times is taken from Example 2 in Wang (2000). 

3.4.1 Example 3.1 

In this example, the lifetime data from the testing of 50 devices reported in Aarset 

(1987) are used. The data are shown in Table 3.1. 

 

Table 3.1 Lifetimes of 50 devices from Aarset (1987). 

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18
21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 72 75
79 82 82 83 84 84 84 85 85 85 85 85 86 86   

 

Plotting empirical failure rate function (Klein & Moeschberger, 2003) based 

on the data shows that the failure rate function could be approximately of bathtub 

shape (Figure 3.4).  

The result in Figure 3.4 indicates that it may be reasonable to consider our new 

distribution to model the failure data. Using the maximum likelihood method, and the 

log-likelihood function in (3.15), we get the estimates for the parameters of the new 
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model: 3097.3ˆ =α , 1388.44ˆ =β , and 04428.0ˆ =γ . The estimated parameters satisfy 

the constraint required by our model shown in (3.6). From Figure 3.4, we can see that 

the fitted model has its failure rate function rather close to the empirical failure rate 

function. 

 

Figure 3.4 The failure rate function for the model (bold line) and the empirical failure rate 
function (jagged line). 

 

Some generalized Weibull models are also used to fit the data, compared to the 

new model in terms of Akaike Information Criterion (AIC) values (Akaike, 1974). 

Their estimated parameters and the AIC values are listed in Table 3.2. The plots of the 

failure rate functions of different models are given in Figure 3.5. Moreover, the MRL 

function plot of the new model is presented in Figure 3.6.  

The results in Table 3.2 indicate that the AIC value of the new model is 

smaller than the other distributions except for the additive Weibull model. But it 

should be noted that the additive Weibull model contains more parameters than others, 

though it has the smallest AIC value. Hence our new model still gives a satisfying 
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goodness-of-fit to the lifetime data.  

 

Table 3.2 The estimated parameters and AIC values of different models. 

Model Estimated parameters (MLE) AIC 
The exponentiated Weibull 
(Mudholkar & Srivastava, 1993)

15.5ˆ =α , 134.0ˆ =θ , 90ˆ =σ  463.13 

The modified Weibull extension
(Xie et al., 2002) 

13.747ˆ =α , 5877.0ˆ =β , 00876.0ˆ =λ  469.29 

The modified Weibull 
distribution 
(Lai et al., 2003) 

0624.0ˆ =a , 3548.0ˆ =b , 02332.0ˆ =λ  460.31 

The additive Weibull model 
(Xie & Lai, 1996) 

01178.0ˆ =a , 82ˆ =b , 016.0ˆ =c , 7.0ˆ =d  420.38 

New model 3.3097ˆ =α , 1388.44ˆ =β , 04428.0ˆ =γ  447.76 

 

Moreover, see in Figure 3.5 that the failure rate functions of the five models 

behave differently from each other. We find it interesting that the new model seems to 

be an integration of the additive Weibull model, and the other three distributions in 

terms of the shape, and the change point of the failure rate function. The failure rate 

function of the new model performs a moderate behavior compared to the flat additive 

Weibull, and the other three steep Weibull models; and its change point locates 

between the change points of the additive Weibull, and of the others. So it may 

suggest that the new model is likely to provide all-sided information compared to the 

other four distributions.  

In addition, the graphical description for the MRL function can be easily 

offered by our new model. By observing Figure 3.6, we find that the location of the 

change point is around 10, which means that the burn-in test for such product types 

could be terminated around that time. Hence, the overall performances suggest that 

the new model is the most reasonable one to be chosen. 
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Modified Extension

Modified
Exponentiated

Additive
New model

 

Figure 3.5 The failure rate function plot based on different models in Table 3.2. 

 

 

Figure 3.6 The MRL function for the new model in Table 3.2. 

 

3.4.2 Example 3.2 

This example adopts the data for the time to failure of 18 electronic devices reported 

by Wang (2000). The data are shown in Table 3.3.  



 
Chapter 3: A General Model for Upside-down Bathtub-shaped MRL 

65 

 

 

Table 3.3 Time to failure of 18 electronic devices from Wang (2000). 

5 11 21 31 46 75 98 122 145 165 195 224 245 293 321 330 350 420

 

Similar to the previous example, the data also suggest that the failure rate 

function could be bathtub-shaped (Figure 3.7). Fitting these data to the new model by 

MLE produces estimates for the three parameters: 7694.1ˆ =α , 564.171ˆ =β , and 

00823.0ˆ =γ , which also satisfy constraint (3.6). In Figure 3.7, the graphic 

comparison of the failure rate function of the new model to the empirical failure rate 

function indicates good performance of the new distribution.  

 

Figure 3.7 The failure rate function for the model (bold line) and the empirical failure rate 
function (jagged line). 

 

For the generalized Weibull distributions, the estimated parameters, and AIC 

values are listed in Table 3.4. The plots of the failure rate functions of the different 

models are presented in Figure 3.8, while the MRL plot of the new model is in Figure 

3.9. The results in Table 3.4 show that the new model has the smallest AIC value 

among the distributions employed in this example. Hence this new distribution is 
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competitive for modeling the lifetime data with BFR or UBMRL.  

 

Table 3.4 The estimated parameters and AIC values of different models. 

Model Estimated parameters (MLE) AIC 
The exponentiated Weibull 
(Mudholkar & Srivastava, 1993) 

8522.7ˆ =α , 09286.0ˆ =θ , 19.391ˆ =σ  222.494

The modified Weibull extension 
(Xie et al., 2002) 

049.134ˆ =α , 75226.0ˆ =β , 00255.0ˆ =λ  224.234

The modified Weibull distribution
(Lai et al., 2003) 

01493.0ˆ =a , 6468.0ˆ =b , 003612.0ˆ =λ  223.866

The additive Weibull model 
(Xie & Lai, 1996) 

0043.0ˆ =a , 8612.0ˆ =b , 002747.0ˆ =c , 
3505.6ˆ =d  

224.154

New model 7694.1ˆ =α , 564.171ˆ =β , 00823.0ˆ =γ  222.108

 

Modified Extension

Modified Additive

Exponentiated

New model

 

Figure 3.8 The failure rate function plot based on different models in Table 3.4. 

 

Figure 3.8 depicts the different shapes of the failure rate functions of the 

different models. Similar to the previous example, the new model behaves in a 

moderate manner compared to the Weibull related distributions. The failure rate 

function of the new model is steeper than that of the additive Weibull distribution, but 
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flatter than the failure rate functions of other three Weibull models; also the change 

point of the new model locates between the change points of the additive Weibull, and 

of the others. All these show that the new model is able to provide the results that 

combine the information provided by other models. Based on the plot in Figure 3.9, 

we can obtain the approximate optimum time for burn-in tests or the near optimum 

replacement time. Our model compares favorably with other models. 

 

Figure 3.9 The MRL function for the new models in Table 3.4. 

3.5  Model application in decision making 

Bathtub curves are useful in reliability related decision making. One of the uses is to 

determine the optimum burn-in time in the case when the products have extremely 

high failure rate during the infant mortality period. After the useful period, 

replacement should be carried out to prevent failures from occurring when the 

products enter the wear-out period. 

For those components that survive burn-in tests, it is the remaining lifetime 
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that will be of interest to most people. The mean of the remaining lifetime is the MRL 

function )(tm . Therefore, the most common criterion to select the optimum burn-in 

time *b  is by maximizing the MRL function (Block & Savits, 1997) 

 )(max)(
0

* tmbm
t≥

= .  (3.16) 

Because our model has a UBMRL, the optimum burn-in time *b  is in fact the change 

point of the MRL function, i.e. αβγ //10
* −== tb .  

The burn-in time *b  can also be obtained by minimizing the failure rate 

function, which means 0
* ν=b . In practical applications, the former decision of 

0
* tb =  is usually preferred, because it is popularly believed that the period between 

0t  and 0ν  should be flat enough to be considered part of the useful life period. Thus, 

stopping the burn-in test when the MRL reaches its maximum should be more 

economical than when the failure rate function reaches its minimum. 

There are also other criteria under which the optimum burn-in time could be 

determined. Suppose the product is considered acceptable when its MRL is more than 

bm ; then the optimum burn-in time can be determined by 

 bmtttm =−+= )exp()()( γβα .  (3.17) 

If the product can only be released when the failure rate function falls below br , then 

the optimum burn-in time can be obtained by solving 

 ( ) ( )
( ) ( ) brtt

tttr =
−+

+−−+−
=

γβα
γβγααγ

exp
1exp)( .  (3.18) 
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It is worth noting that, for (3.17) and (3.18), the optimum burn-in time should be the 

smaller of the two solutions. 

Similar criteria can be used in determining the optimum replacement time 

when the product enters the worn-out period. If the product should be replaced by a 

new one when the MRL is less than cm , then the optimum time can be obtained by 

solving  

 cmtttm =−+= )exp()()( γβα .  (3.19) 

If the product is considered risky when the failure rate function becomes higher than 

cr , then the optimum replacement time can be determined by 

 ( ) ( )
( ) ( ) crtt

tttr =
−+

+−−+−
=

γβα
γβγααγ

exp
1exp)( .               (3.20) 

Because the MRL function is of upside-down bathtub shape, there are also two 

solutions to (3.19). But the optimum replacement time should be the solution with the 

higher value. Also for (3.20), the larger root should be chosen.  

Example: Consider the fitted model in Section 3.4.1 with the estimated parameters 

3097.3ˆ =α , 1388.44ˆ =β , and 04428.0ˆ =γ . From (3.11), obtain the change point of 

the MRL function as  

 2463.9ˆ/ˆˆ/10 =−= αβγt .  (3.21) 

Hence, under (3.16), a burn-in test can be terminated at the time point of 2463.9* =b . 

The formula (3.21) indicates that the optimum burn-in time *b  has a closed form. 
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Thus, further analysis for *b  can be carried out, such as confidence bound. 

If this product is considered acceptable when its MRL is higher than 48, then 

under the criterion (3.17) we may stop burn-in test at the time of 3.9024, which is the 

smaller root to 48)04428.0exp()1388.443097.3( =−+ tt .  

If the product should be replaced when its MRL falls below 36, then the 

optimum time for replacement under the criterion (3.19) can be computed as 32.4664, 

which is the larger solution of .36)04428.0exp()1388.443097.3( =−+ tt   

Similarly, other decisions can be similarly made under the criteria related to 

the failure rate function, as shown in (3.18) and (3.20). 

3.6  Nonlinear regression method based on the MRL 

As the MRL of the new model is in closed form, nonlinear regression on the MRL is 

another feasible approach for parameter estimation. The regression data are composed 

of failure times and their corresponding MRL. The MRL at each failure time is 

calculated by the empirical MRL function proposed by Yang (1978). For ordered 

failure times )()2()1( ...,,, nttt , the empirical MRL function )(ˆ tm  is given by  

 )(1)(ˆ
1 )( tt

in
tm

n

ik k −
−

= ∑ +=
    for )1()( +<≤ ii ttt ,  

where ni ...,,1,0=  and 0)0( =t . And 0)(ˆ =tm  for all )(ntt ≥ .  

In this nonlinear regression, the basis function is )exp()()( tttm γβα −+=  
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with parameters α , β , γ  and a variable t . The data consist of a variable vector 

( ))1()2()1()0( ...,,,, −ntttt  and a response vector ( ))(ˆ...,),(ˆ),(ˆ )1()1()0( −ntmtmtm . Then the 

estimates of the parameters will be chosen to minimize the sum of squared 

residuals ∑ −

=

1

0
2n

i ie , where ie  is the difference between the true value and the 

regressed value of responses. 

Remark 3.3: Due to the large variation in the tail of the empirical MRL, it maybe 

suggested to drop the last several time points in the time vector. For example, it could 

be better to use ( ))3()2()1()0( ...,,,, −ntttt  for regression rather than 

( ))1()2()1()0( ...,,,, −ntttt  . And so as to the response vector.  

For parallel comparison, the data set of Example 3.2 in Section 3.4 is used to 

do nonlinear regression. The reason to choose Example 3.2 is that no tie for failure 

times needs to be dealt with in this example. Denote the regression estimates for the 

three parameters as α~ , β~  and γ~  respectively.  The estimation results are given below, 

as well as the plotting of the fitted MRL functions from both nonlinear regression and 

MLE in Figure 3.10. We can find that, both the numerical and the graphic 

comparisons show that the nonlinear regression could produce goodness-of-fit results 

that are comparable to the results obtained from MLE.  

• Example 3.2  

For Nonlinear regression, the estimates for parameters are 9074.1~ =α , 144.175~
=β , 

00814.0~ =γ . And the fitted MRL )(~ tm  is 
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       )00814.0exp()9074.1144.175()(~ tttm −+= . 

The estimation results obtained from MLE, as shown in Section 3.4, are 7694.1ˆ =α , 

564.171ˆ =β , 00823.0ˆ =γ . And the fitted MRL )(ˆ tm  is 

       )00823.0exp()7694.1564.171()(ˆ tttm −+= . 

 

Figure 3.10 The fitted MRL by nonlinear regression (solid line) and MLE (grey line). 
 

To evaluate the accuracy of the nonlinear regression estimation and compare it 

with MLE, we conduct a simulation experiment based on data generated from this 

new UBMRL model with )exp()12()( tttm −+= . The simulation results are 

computed from 500 replications with sample size 50=n . The accuracy of methods is 

measured by mean squared errors of the estimated values for three parameters.  For 

parameter α , the mean squared errors for nonlinear regression estimation and MLE 

are defined by 

 
.)ˆ(
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The errors for parameter β  and γ  can be similarly defined. Table 3.5 lists the mean 

squared errors computed from simulation replications for the two methods 

respectively.  The results shown in the table indicate that nonlinear regression fitting 

based on the MRL function performs well in the estimation of parameters. For β , the 

regression method produces much smaller error compared to the MLE. For α  and γ , 

the accuracy of the regression can be considered to be comparable to that of the MLE. 

Hence, it is suitable to apply the nonlinear regression for estimating the parameters of 

this new UBMRL model.  

 

Table 3.5 Mean squared errors for nonlinear regression estimation and MLE. 

 regmse•  MLEmse•
α 0.563888 0.455305
β 0.022219 0.11361

 γ 0.045588 0.027294

3.7  Conclusion 

In this chapter, a new distribution capable of modeling UBMRL and BFR is presented 

and studied. Compared to other existing distributions, this new model is derived from 

the derivative function of MRL, instead of reliability function and failure rate function 

that are often used in model construction; and has the MRL function in a simple, 

closed form. Hence the analysis and the application of the MRL function in further 

reliability analysis can be easily carried out. The parameters of this new model are 

estimated by MLE. Numerical examples and comparisons indicate that the new model 

performs well in modeling lifetime data with bathtub-shaped failure rate function and 

UBMRL function. Hence this new model serves as a good alternative when a bathtub 
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shaped function should be prescribed. In addition, data fitting based on the MRL 

function shows great feasibility of being an alternative to parameter estimation. 

However, the empirical MRL for larger failure time would suffer greater variance due 

to fewer available data, and thus may significantly influence the regression result and 

introduce more error.  Hence, more endeavors should be made to control the effect of 

large variance that occurs at large failure time; and further investigation may be 

needed for the use of the regression method in parameter estimation. 
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CHAPTER 4 DECREASING MEAN RESIDUAL LIFE 
ESTIMATION WITH TYPE II CENSORED DATA2 

Compared to the parametric modeling assuming underlying distributions, 

nonparametric methods use only failure data to estimate the MRL function regardless 

of the forms of models and thus introduce less bias. In literature, various methods 

have been proposed to estimate reliability measures empirically.  Given a set of failure 

data, how to estimate the MRL in a nonparametric way is a challenging problem. 

4.1  Introduction 

Yang (1978) proposed the empirical MRL function for complete data, which is the 

first and basic nonparametric estimation for the MRL function. Based on this 

estimation, several other MRL estimations were constructed, such as confidence 

bands established in Zhao & Qin (2006) and a simple estimator for the monotone 

                                                 
 
2 Part of the work in this chapter is published in IEEE Transactions on Reliability. 

“Nonparametric estimation of decreasing mean residual life with type II censored data”, IEEE 
Transactions on Reliability, 2010, 59(1), pp.38-44. 
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MRL class proposed in Kochar et al. (2000).  

Besides the estimation for complete data, the estimation of the MRL function 

in censoring has gained much attention, because censoring occurs frequently as it is 

often impractical to obtain the lifetimes of all the items on test. For example, highly 

reliable components used in an aircraft usually produce zero failure during testing 

stage. In literature, many works concerned with the MRL estimation under random 

censorship. Li (1997) established confidence bounds for the MRL function using 

randomly right censored data. The statistical inference for the MRL in random 

censoring was also presented in Na & Kim (1999) and Qin & Zhao (2007). 

In contrast to the considerable studies of the estimation of the MRL for 

complete and randomly censored data, only a few papers focused on the estimation in 

extreme right censoring. This may be due to the fact that the data collected under such 

censorship cannot provide enough information over the whole time period. Suppose 

that the last failure data we get is the time point of 10. This means that the data 

collected before 10 are the only information we have. Hence, for the empirical 

reliability function, only the segment before 10 can be constructed by the Kaplan-

Meier estimator (Kaplan & Meier, 1958). The values beyond the censoring time can 

be either constant or decreasing because of the lack of further data. Figure 4.1 

presents the three alternatives for behaviors of the reliability function beyond the 

largest observation. This kind of diversity makes the problem of estimating the MRL 

complicated and unforeseen. 

In Guess & Park (1991), confidence intervals of monotonic MRL in extreme 

right censoring were presented, but these bounds cannot give good performances 
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when the MRL increases or decreases rapidly. Hence other feasible methods are 

expected to serve as alternatives to estimate monotonic MRL function. 

In this chapter, we introduce a new method for the estimation of DMRL with 

Type II censored data. The method estimates the MRL without assuming any 

distribution. The main idea is to estimate mean time to failure by comparing two 

estimators for the reliability function. One estimator is the Kaplan-Meier estimator 

and the other is derived from the empirical MRL function in Yang (1978). 

Theoretically, this approach is also applicable to IMRL. But the estimation of IMRL is 

not discussed in this work, because we find that the empirical function for IMRL is 

not stable in heavy Type II censoring. Fortunately, IMRL is less common than DMRL 

in real life. The organization of this chapter is as follows. In Section 4.2, we propose 

the method and the estimation procedure. Section 4.3 presents simulation results and 

compares the new approach to some parametric methods. Finally, some concluding 

remarks are given in Section 4.4. 

 

Figure 4.1 The curves of three possible reliability functions under censorship. 
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4.2  A methodology based on empirical functions 

4.2.1 The empirical MRL function 

Suppose the lifetime of items T  is a continuous non-negative random variable with 

the reliability function )(tR  and the MRL function )(tm . Let 

)()1()()()2()1( ,...,,,...,...,, nrri tttttt +  be ordered potential failure times of n  independent and 

identically distributed items. If the data is complete, i.e. all of the n  exact failure 

times are known, the empirical MRL function can be easily estimated by 

 tt
tln

tm
n

tli
i −

−
= ∑

+= 1)(
)()(

1)(ˆ  ,               (4.1) 

                                                  )(

)(

1
)( 0,ˆ

)(
1

n

ts

i
i ttttn

tln
<≤−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
= ∑

=

μ  (4.2) 

where  }:max{)( )( ttits i ≤=  and ∑
=

=
n

i
it

n
1

)(
1μ̂ .  

In Type II censoring, because the information of some failure times is lost due 

to the termination of tests, we have only the first )( nrr < lifetimes, where r  is a 

predetermined number. Hence using (4.1) and (4.2) to get estimation becomes 

infeasible, unless the mean time to failure μ  is provided or can be estimated from 

another way instead of μ̂ . If μ  is known, then we can estimate the MRL function by  

 rit
in

tn
tm i

i

k k
i ,...,1,)(ˆ )(

1 )(
)( =−

−

−
=

∑ =
μ

. (4.3) 
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But at most time, μ  is unknown. Hence, in order to complete (4.3), we need to obtain 

the information about μ  by a method rather than μ̂ . 

4.2.2 Two estimators of the reliability function  

In this work, we want to calculate a good estimate for the mean time to failure μ  by 

controlling the difference between two estimators of the reliability function according 

to some criteria. One is the Kaplan-Meier estimator, while the other is obtained from 

(2.2) and (4.3). For convenience, we quote (2.2) here. 

 0,
)(

1exp
)(
)0()(

0
≥

⎭
⎬
⎫

⎩
⎨
⎧
−= ∫ tdx

xmtm
mtR

t
. (2.2) 

The Kaplan-Meier estimator, the common estimation for the reliability function, is 

given by 

 ri
n

intR i ,...,1,)(ˆ
)( =

−
= .   (4.4) 

The second estimator, denoted by )(~ tR , is obtained by substituting (4.3) into (2.2) 

 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⋅−= ∑
=

−
−

i

k
kk

ki
i tt

tmtm
mtR

1
)1()(

)1()(
)( )(

)(ˆ
1exp

)(ˆ
)0(ˆ

)(~
,   (4.5) 

where  0)0( =t  and μ=)0(m̂ .  

In order to make (4.5) close to (2.2) enough, we adjust each term in the sum by 

averaging the MRL at two adjacent failure times  
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 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⋅
+

−= ∑
=

−
−

i

k
kk

kki
i tt

tmtmtm
mtR

1
)1()(

)()1()(
)( )(

)(ˆ)(ˆ
2exp

)(ˆ
)0(ˆ

)(~
.   (4.6) 

Theoretically, the two estimators, )(ˆ tR  and )(~ tR , must be equal to each other. 

However, due to the limited data and the approximation of integral by summation, 

they become different, which is shown in Figure 4.2. From Figure 4.2, by treating μ  

as a variable, we observe that )(~
)(rtR  irregularly oscillates at the beginning, and after 

a certain μ , it starts to decline and finally approximates to )(ˆ
)(rtR  as μ  goes to 

infinity. (This observation is supported in theory by Proposition 4.1 and 4.2.)  An 

explanation to the early oscillation is that too small μ  cannot guarantee positive 

empirical MRL )(ˆ )(itm  at the beginning and thus make )(~
)(itR  unstable. Thus, the true 

value of μ  for all failure data should be able to make empirical MRL positive at all 

rit i ,...,1,)( = . It is rational because the empirical MRL for complete data at each point 

in time are always positive. Hence, we can say that mean time to failure μ  should be 

at the stable period shown in Figure 4.2. 

Moreover, as )(~
)(itR  declines to )(ˆ

)(itR  at the stable period, the distance of 

)(~
)(itR  and )(ˆ

)(itR  is in fact a decreasing function of mean time to failure μ . This 

monotonicity implies that it is a one-to-one correspondence between the distance of 

)(~
)(itR  and )(ˆ

)(itR , and μ . Every possible distance between )(~
)(itR  and )(ˆ

)(itR  can 

be mapped by exactly one μ . On the other hand, once the distance is determined, we 

can map it to a unique μ . Thus, this indicates that the true μ  should be at some point 
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at which the distance between )(~
)(itR  and )(ˆ

)(itR  is equal to a certain small value. As 

long as the distance at the true value of μ  is determined, then the true μ  can be 

easily obtained. Hence, we aim to utilize failure data to calculate a suitable value for 

the distance between )(~
)(itR  and )(ˆ

)(itR  to get μ . 

 

Figure 4.2 The behaviors of )(~
)(rtR  with respect to μ )50,10( == nr . 

 

However, for different failure data, )(~
)(itR  has different shapes, and the μ  

after which )(~
)(itR  becomes stable also differs. This variety also happens in the 

decreasing trend of the distance between )(~
)(itR  and )(ˆ

)(itR . Therefore, it would be 

better to incorporate the information contained in failure data into the choosing of a 

proper value for the distance between )(~
)(itR  and )(ˆ

)(itR . A feasible way is to 

establish a suitable quantitative relationship between failure data and the distance of  

)(~
)(itR  and )(ˆ

)(itR , so that the choosing procedure could be carried out via the 

relationship. But before that, a measure needs to be selected to characterize and 



 
Chapter 4: DMRL Estimation with Type II Censored Data 

82 

 

summarize the information that failure data have.  

Proposition 4.1 )(~
)(itR , ri ,...,1= , is a decreasing function of μ , for sufficiently 

large μ . 

Proposition 4.2 )(ˆ)(~
)()( ii tRtR →  as ∞→μ , for ri ,...,1= . 

See Section 4.2.3 for proofs. 

4.2.3 Proofs of Proposition 4.1 and 4.2 

• Proof of Proposition 4.1 

Note that ritR i ,...,1),(~
)( =  is a strictly positive function. Hence to prove Proposition 

4.1 is equivalent to prove ))(~log( )(itR  is a decreasing function of μ  for sufficiently 

large μ . Based on the formula (4.6) that is the definition of )(~
)(itR , we have that  
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       (4.7) 

where 0)0( =t  and ri ...,,1= . 

Now the aim is to prove that every term in the summation is a decreasing 

function of μ  for sufficiently large μ . Since 
in

ntm i −
=

∂
∂ )(ˆ )(μ

, the partial derivative 
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of the summation term in (4.7) with respect to μ  is as follows 
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  (4.8) 

For convenience, we denote 

 11)1( )(ˆ batm k −=− μ ,  

 22)( )(ˆ batm k −= μ , 

 33)()1( )(ˆ)(ˆ batmtm kk −=+− μ , (4.9) 
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Then together with (4.9) and (4.10), (4.8) can be re-written in terms of 

3,2,1,, =iba ii , 
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  (4.11)                         

Since the denominator is strictly positive, the sign of (4.11) depends only on its 

numerator. It is easy to see that the numerator is a quadratic function and the 
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coefficient of the quadratic term, denoted by 2C , is given by 

 321)1()(1
2

333122
2

333212 )(2)2()2( aaattbabaaababaaaC kk −−+++−−=   
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From (4.10) and (4.12), we can get 
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  (4.13) 

Since 03 >a , we have 02 <C . Thus the quadratic function that is the numerator of 

(4.11) is less than 0 for sufficiently large μ , which implies (4.11) is strictly negative. 

So is the formula (4.8). Now it is obtained that  
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By (4.7) and (4.14), the result shown in Proposition 4.1 is obtained. ■ 
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• Proof of Proposition 2  

From Equation (4.3), it is easy to see that ritm i ,...,1,)(ˆ )( =∞→  as ∞→μ . Hence, it 

is obtained that as ∞→μ  

 1)(
)(ˆ)(ˆ

2exp
1

)1()(
)()1(

→
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⋅
+

−∑
=

−
−

i

k
kk

kk
tt

tmtm
. 

Moreover, as ∞→μ  

 
n

in

tintntm
m

i
i

k k
i

−
→

−−⎟
⎠
⎞⎜

⎝
⎛ −

=

∑ = )(1 )(
)( )())(ˆ
)0(ˆ

μ

μ . 

Therefore, based on the formula (4.4) and (4.6), we can get as ∞→μ  

 )(ˆ)(~
)()( ii tRtR → , for ri ,...,1= . 

Hence the proof of Proposition 4.2 is complete. ■ 

4.2.4 A estimation procedure to estimate mean time to failure and the MRL 

Many characteristics could be served as the measure for different failure data, such as 

the sum of all failure data, etc. In this work, we aim to find a suitable measure, which 

could be used to establish some relationship with the difference of )(~ tR  and )(ˆ tR  at 

the true μ , so that given failure data, we could utilize the relationship to calculate the 

distance of )(~ tR  and )(ˆ tR  and then the true value of μ . The search of this kind of 

measures could be conducted by simulation based on some probability distributions. A 

brief description of the search procedure is as follows. For convenience, denote the 
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difference of )(~ tR  and )(ˆ tR  at μ  by μD .  

Search procedure 

Step 1: Choose a characteristic C  as the measure; 

Step 2: Generate several data sets of different sample sizes from a predefined 

distribution with different known parameters; 

Step 3: For each data set, compute the value of C  and their true mean μ , i.e. 

0μ  from the distribution; 

Step 4: Compute vector (C ,
0μD ) for each data set and plot the vectors; 

Step 5: Observe whether the plotted points have some trend or randomly 

spread; if trends exist, fit it with a suitable basis function, otherwise, go 

back to Step 1. 

One simple measure is directly derived from ritRtR ii ,...,1),(ˆ)(~
)()( =− . For 

convenience, we treat )(ˆ)(~
)()( ii tRtR −  as a function of μ  and denote it by 

 ritRtRd iii ,...,1),(ˆ)(~)( )()( =−=μ . 

Also denote by 1μ  the smallest value of the following set Λ , as )(~ tR  must be 

positive and non-increasing. 

 },...,1),|(~)|(~&0)|(~:{ )1()()( ritRtRtRR iii =>>∈=Λ +
+ μμμμ ,   (4.15) 

 Λ= min1μ . (4.16)  
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Denote by )(⋅g  a transformation of ridi ,...,1),( =μ . Let the characteristic C  

summarizing failure data be ))(),...,(( 111 μμ rddg , and the distance of )(~ tR  and )(ˆ tR  

be ))(),...,(( 1 μμμ rddgD = . The relationship between C  and μD  is represented by 

)(⋅h . 

 ( )))(),...,(())(),...,(( 1111 μμμμ rr ddghddg = , (4.17) 

where )(⋅h  is a fitted function obtained from simulations to represent the relationship.   

In this work, we let )(⋅g  be the average on ridi ,...,1),( =μ  

 )(1))(),...,((
1

1 μμμ ∑
=

=
r

i
ir d

r
ddg . (4.18) 

Then (4.17) comes to  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

==

)(1)(1
1

11

μμ
r

i
i

r

i
i d

r
hd

r
. (4.19) 

The function )(⋅h  ‘s for different censor degrees defined as nr /1− are listed in Table 

4.1. These )(⋅h ’s are obtained by fitting the data sets 

⎟
⎠
⎞⎜

⎝
⎛ ∑∑ ==

rdrd
r

i i
r

i i 11 1 )(,)( μμ , which are generated from Weibull distribution with 

different parameters and different sample size n . Although these )(⋅h ’s are based on 

Weibull distribution, the simulation results show that they are also applicable for 

gamma distribution.  

Given a group of censored failure data, solving (4.19) would produce a value 
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for the mean time to failure μ . Denote by μ~  the root of (4.19). By substituting μ~  

into (4.3), we can obtain the estimate for the MRL function. The procedure is 

summarized as follows. 

Estimation procedure 

Step 1: Based on failure data, construct )(ˆ tm , )(ˆ tR and )(~ tR  as a function of 

μ  by (4.3), (4.4) and (4.6) respectively ; 

Step 2: Find out 1μ  by (4.15) and (4.16) and compute rd
r

i i∑ =1 1)(μ ; 

Step 3: Choose a proper )(⋅h  from Table 4.1 and compute μ~   by (4.19); 

Step 4: Estimate the MRL function by )~|(ˆ μμ =tm . 

 

Table 4.1 The function )(⋅h  for different censor degrees. 

Censor degree 

nr /1−=  )(xh  

0.1 
051466.1)116463.0exp( x  

0.2 
064074.1)021660.0exp( x  

0.3 
088188.1)008806.0exp( x−  

0.4 
102799.1)101985.0exp( x−  

0.5 
128530.1)165095.0exp( x−  

0.6 
169706.1)196420.0exp( x−  

0.7 
199348.1)351714.0exp( x−  

0.8 
211148.1)693084.0exp( x−  

0.9 
221111.1)251287.1exp( x−  
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Remark 4.1: This work gives a possible way as shown in (4.19) for estimation. The 

function )(⋅g  can be other transformations rather than (4.17). Also, )(⋅h  can be other 

goodness-of-fit functions. The 1μ  can be other baseline index rather than the smallest 

value of the set Λ . 

4.3  Simulation Study 

Some simulation studies are presented to show the performance of the proposed 

procedure. We estimate the MRL based on data obtained from Weibull distribution 

and gamma distribution, and also compare this new approach to some common 

parametric methods with respect to the accuracy of estimation. The results indicate 

that our new approach is able to give good performance and can surpass the 

parametric methods when censoring is heavy. 

4.3.1 Estimation results 

The following two figures display some trials of the estimation for DMRL and 

compare them with the true MRL. In both figures, the bold line refers to the true MRL 

while the others are the plotting of different trials of the estimation. Figure 4.3 shows 

the fitting results of Weibull distribution with shape parameter 2 and scale parameter 1, 

Weibull (2, 1). The results for gamma distribution with shape parameter 4 and scale 

parameter 10, gamma (4, 10), are shown in Figure 4.4. The comparisons between the 

fitted and the real MRL functions suggest that in general, the new method could 

provide nice performances on the estimation of DMRL, because all the estimated 

curves are located not far away from the original one and have their decreasing trend 
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similar to that of the true curve.  

 

Figure 4.3 Comparison between real MRL (bold line) and estimated MRL function: Weibull 
distribution (2, 1) with censor degree of 0.4. 

 

 

Figure 4.4 Comparison between real MRL (bold line) and estimated MRL function: gamma 
distribution (4, 10) with censor degree of 0.7. 

 

4.3.2 Comparisons between the new and some parametric methods 

To compare our new approach to the two main parametric methods - Maximum 



 
Chapter 4: DMRL Estimation with Type II Censored Data 

91 

 

Likelihood Estimation (MLE) and Least Square Estimation (LSE), the simulations are 

conducted for Weibull distribution and gamma distribution. We assume that the 

underlying distribution for the parametric methods is the Weibull model because of its 

popularity in reliability engineering. This means that, the underlying distribution is 

true when failure data comes from a Weibull distribution, and is misspecified if failure 

data comes from a gamma distribution. 

Table 4.2 and Table 4.3 list the simulation results, which are computed from 

100 replications with sample size n = 50, 100 and censor degrees of 0.4, 0.8. The 

accuracy of each estimation method is accessed by the following error, which is 

calculated as the average on squared errors of MRL at each failure data points. 

 

( )
r

tmtm
r

i
ii∑

=

−

= 1

2
)()( )()(ˆ

error ,   (4.20)  

where )( )(itm  and )(ˆ )(itm are the real and the estimated MRL at )(it  respectively. The 

three approaches are compared in terms of the average value of their errors and the 

related variance, which are obtained from replications. 

The results in both tables suggest that the new method performs well in the 

MRL estimation. From Table 4.2, we find that when the underlying distribution is 

correctly set, the new method is rather comparable to the MLE although not 

outperforming it, and can become slightly better when the available data size is small.  
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Table 4.2 Simulation results for Weibull distribution with shape and scale parameters ),( αβ . 

 
Censor degree = 0.8  
 E(error) V(error) E(error) V(error) E(error) V(error) E(error) V(error)
n=50 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.12020 0.08546 8.49816 243.087 0.00577 0.00019 1.45244 2.29518
LSE 2.31773 114.053 134.256 304758 0.09201 0.02635 11.8314 2885.79
New 0.06153 0.00969 6.96069 138.004 0.05205 0.02180 5.4182 130.368
 
n=100 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.03250 175.92 5.16342 175.92 0.00459 0.00019 0.95798 2.27858
LSE 0.30707 99395.4 74.2731 99395.4 0.04978 0.02635 5.96174 878.98 
New 0.08377 230.502 8.31186 230.502 0.08575 0.02180 6.84384 201.102
         
Censor degree = 0.4 
 E(error) V(error) E(error) V(error) E(error) V(error) E(error) V(error)
n=50 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.01105 0.00017 0.73780 1.22898 0.00093 4.79E-06 0.18087 0.05136
LSE 0.03432 0.00336 7.17336 426.079 0.01005 0.00028 0.51578 1.34699
New 0.01265 0.00023 1.1846 1.80366 0.00492 3.98E-05 0.83706 6.63227
 
n=100 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.00561 5.58E-05 0.49964 0.49052 0.00054 1.53E-06 0.09579 0.01450
LSE 0.02880 0.01104 1.74981 9.38191 0.00427 9.34E-05 0.36001 0.41472
New 0.00928 0.00023 0.81377 1.03232 0.01173 0.00013 1.26495 2.19568

 

The results in Table 4.3 show that, if the underlying distribution is wrongly 

chosen, the new method is still able to produce accurate and stable estimation for the 

MRL function and has better performances than the MLE most of time, especially 

when the censoring is heavy. Moreover, we find that our new procedure always gives 

more favorable estimation than the LSE regardless of censor degree, parameter and 

sample size. It is worth noting that the new method is a nonparametric approach, and 

thus much easier to be used in computation compared to the MLE and the LSE, which 

may need starting values. So it is a good choice to utilize this new approach to 

estimate the MRL function when the data is Type II censored. 
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Table 4.3 Simulation results for gamma distribution with shape and scale parameters ).,( ab  

 
Censor degree = 0.8  
 E(error) V(error) E(error) V(error) E(error) V(error) E(error) V(error)
n=50 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.72308 1.52889 49.304 2516.8 1.15582 0.97629 245.158 1.71E+6
LSE 7.34984 3783.09 762.888 1.01E+7 2.92106 54.5256 164.471 91396.2
New 0.45416 0.14771 49.2319 2218.71 1.17507 2.90153 69.9264 5256.86
 
n=100 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.36442 0.16574 41.7359 2550.8 0.663986 0.408652 316.79 1.13E+7
LSE 0.92661 14.5942 505.796 4.10E+6 0.836309 1.67657 261.396 1.49E+6
New 0.29363 0.09623 32.6164 1101.96 0.915245 4.53443 79.1259 23393.9
         
Censor degree = 0.4 
 E(error) V(error) E(error) V(error) E(error) V(error) E(error) V(error)
n=50 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.13415 0.02018 18.3118 4476.89 0.282167 0.055064 65.6198 138549 
LSE 0.37964 0.04597 36.4742 16758.4 0.33516 0.105586 31.764 1069.76
New 0.14089 0.03615 20.996 306.921 0.289309 0.060875 29.7066 705.183
 
n=100 (2, 1)   (2, 10)   (4, 1)   (4, 10)   
MLE 0.07421 0.00489 8.62614 420.743 0.198012 0.030083 287.337 434006 
LSE 0.11412 0.01572 16.0043 739.35 0.277023 0.056159 25.4535 642.129
New 0.11199 0.01139 9.31751 105.047 0.135272 0.030934 17.1018 538.297

4.4  Conclusion 

In this chapter, a new estimation procedure for the DMRL function has been 

introduced by comparing two estimations of the reliability function. Simulation results 

indicate the good performance of the new method for the distributions with DMRL, 

especially when censor degree is relatively high and data size is small. Further 

research may try to improve the proposed method and extend the idea so that more 

DMRL can be estimated in a nonparametric way, as well as IMRL or UBMRL, since 

the current method cannot provide satisfactory estimations for these two MRL classes.
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CHAPTER 5 RELATIONSHIP BETWEEN MEAN 
RESIDUAL LIFE AND FAILURE RATE FUNCTION 

After studying the MRL itself in the previous chapters, this chapter will focus on the 

relationship between the MRL and the failure rate function, and discuss the effect of 

the change of one characteristic on the other characteristic, as these two characteristics 

are closely related to each other.  This type of study would give comprehensive 

descriptions for aging behaviors of products, and also provide guidelines on how to 

control the deterioration of products more efficiently. 

5.1  Introduction 

The MRL and the failure rate function are two important measures used to describe 

failure times. Although these two functions depict aging behaviors in different ways, 

both of them are in fact equivalent to the reliability function in the sense of probability; 

moreover, the characteristic of one function is always related to that of the other. 

Therefore, much attention has been addressed to the relationship between these two 

functions, for better decision-makings in reliability engineering, such as shock process, 
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burn-in, maintenance schedule, etc.  

In literature, the MRL and the failure rate functions have been extensively 

studied and compared from various aspects, such as shape, change point and partial 

ordering. For shape, Bryson and Siddiqui (1969) proved that the IFR (DFR) implies 

the DMRL (IMRL), while Gupta and Akman (1995a) showed that the characteristic of 

the non-monotonic MRL depends on its mean and the failure rate at time zero. The 

properties of the change points for the MRL and the failure rate functions with roller-

coaster shape were discussed in Bekker and Mi (2003). Also Tang et al. (2004) 

investigated the distance between the change points for MRL and failure rate 

functions. Furthermore, the partial orderings of these two characteristic play key roles 

in the field of reliability. Analogical to the fact that the failure rate function determines 

the trend of the MRL function, Gupta and Kirmani (1987) proved that the failure rate 

ordering dominates the MRL ordering and proposed a sufficient condition under with 

the MRL ordering also implies the failure rate ordering. A systematic review on the 

relationships between the MRL and the failure rate function is presented in Section 

2.1.3. 

The studies mentioned before discussed the relationship between the two 

functions mainly from a qualitative point of view. Hence, as a complement, doing 

some quantitative analysis would be useful and meaningful in reliability for both 

theory and applications. In this chapter, we aim to study the effect of the change of 

one characteristic on the other characteristic. Some inequalities are established to 

indicate upper or lower bound on the extent of change. The application of the 

inequalities is also discussed. In Section 5.2, we study the range that the MRL will 
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decrease (increase) if the associated failure rate is increased (decreased) to a certain 

level. Two examples are used for illustration. In section 5.3, the difference of two 

failure rate functions is investigated when their corresponding MRL functions are 

ordered. The result is shown to be useful in estimating failure rate function based on 

MRL that can be empirically estimated. Finally, conclusions are given in Section 5.4 

5.2  From failure rate function to MRL   

Finkelstein (2003a) introduced characteristics to measure the difference between two 

MRL functions and discussed how the MRL changes from a baseline to a more risky 

environment with increased failure rate function. One characteristic used to 

quantitatively measure the difference between two MRL functions is called DMRL-

distance 

 0),()()( 21MRL ≥−= ttmtmtD . 

The other is relative characteristic that is defined based on the ratio of two MRL 

functions. 

 0,
)(
)(

1)(
1

2
MRL ≥−= t

tm
tm

tRD . 

In this section, we want to extend the study in Finkelstein (2003a) and further study 

the extent that the MRL will be affected by the change of the corresponding failure 

rate function. 
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5.2.1 Some results on MRL due to the change of failure rate function 

In reliability, failure rate function is a characteristic that measures the instantaneous 

risk an item faces at a certain time.  As risks change in diverse environments, the 

failure rate function might also vary. The failure rate function may be increased due to 

an extra risk; or it will become smaller if a production process is improved. There are 

two main ways to model the change of the failure rate function. One is to use the 

additive failure rate models and the other is via the proportional failure rate model.  

The independent additive model is describe in the following way  

 0),()()( ≥+= tttrtrA λ , (5.1) 

where )(tλ  is a failure rate function representing additional independent risks.                         

The proportional hazards model is given by 

 0),()( ≥= ttrztrP ,  (5.2) 

where z is a constant or some parameter.  

In this section, we are interested in how the MRL function would respond 

when the associated failure rate function varies via the above two models. Let 21, TT  

be two lifetime random variables with the MRL functions )(),( 21 tmtm  and the failure 

rate functions )(),( 21 trtr . Without loss of generalization, we assume that 

 )()( 21 trtr ≤ ,    0≥t .  

Because the failure rate ordering implies the MRL ordering, it is easy to see that 
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 )()( 21 tmtm ≥ ,    0≥t .   

In the following Theorem 5.1 and Theorem 5.2, some inequalities are established to 

show the difference of two MRL functions, )(1 tm  and )(2 tm , if the failure rate 

functions, )(1 tr  and )(2 tr , are related through the additive model and the proportional 

model. 

Theorem 5.1: Suppose that the MRL functions )(1 tm  and )(2 tm are bounded. Denote 

constant, positive upper bound and lower bound for )(1 tm  and )(2 tm  by 

LULU cccc 2211 ,,,  respectively.  z  is a constant and 1≥z . Then  

(1)  If z
tr
tr
≤≤

)(
)(1

1

2 ,  we have 

  Ucztmtm 221 )1()()(0 −≤−≤ ; 

If the constant z  satisfies that 
LU

U

cc
cz

11

11
−

≤≤ , we also have 

 Uc
z

ztmtm 121
1)()(0 ⎟
⎠
⎞

⎜
⎝
⎛ −

≤−≤ . 

(2) If 1
)(
)(

1

2 ≥≥ z
tr
tr ,  we have 

  0)1()()( 221 ≥−≥− Lcztmtm  and 01)()( 121 ≥⎟
⎠
⎞

⎜
⎝
⎛ −

≥− Lc
z

ztmtm . 

Proof: For part (1), denote Ucztmtm 223 )1()()( −+=  as the MRL function of another 
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lifetime random variable. The corresponding failure rate )(3 tr is given by  

 
Ucztm

tmtr
tm

tm
tm

tmtr
22

2
2

3

2

3

3
3 )1()(

)()(
)(

1)(
)(

1)()(
−+

=
+′

=
+′

= . 

Since 0,)( >
+

= a
ax

xxg is an increasing function of x ,  we can get 

 )(1
)1(

)()( 2
22

2
23 tr

zczc
ctrtr

UU

U =
−+

≤ . 

As z
tr
tr
≤≤

)(
)(1

1

2 , we obtain that )()(/)()( 2123 trtrztrtr ≤≤≤ . This inequality implies 

that )()()1()()( 21223 tmtmcztmtm U ≥≥−+= , which is equivalent to 

 Ucztmtm 221 )1()()(0 −≤−< .  

Let Uc
z

ztmtm 114
1)()( ⎟
⎠
⎞

⎜
⎝
⎛ −

−= . As 
LU

U

cc
cz

11

11
−

≤≤ , 0)(4 ≥tm and so )(4 tm  

is an MRL function. The corresponding failure rate )(4 tr is  

 
zcztm

tmtr
tm

tm
tm

tmtr
U11

1
1

4

1

4

4
4 )1()(

)()(
)(

1)(
)(

1)()(
−−

=
+′

=
+′

= . 

Since 0, >
−

a
ax

x is an decreasing function for ax > , we have 

 )(
)1(

)()( 1
11

1
14 trz

zczc
ctrtr

UU

U =
−−

≥ . 

As z
tr
tr
≤≤

)(
)(1

1

2 , then )()()()( 1214 trtrtzrtr ≥≥≥ . From this inequality, we can get 
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)()(1)()( 12114 tmtmc
z

ztmtm U ≤≤⎟
⎠
⎞

⎜
⎝
⎛ −

−= , which is equivalent to 

 Uc
z

ztmtm 121
1)()(0 ⎟
⎠
⎞

⎜
⎝
⎛ −

≤−< .  

The proof of Part (2) is similar.  ■ 

Theorem 5.2: Suppose that the MRL functions )(1 tm  and )(2 tm are bounded. Denote 

constant, positive upper bound and lower bound for )(1 tm  and )(2 tm  by 

LULU cccc 2211 ,,,  respectively. l  is a constant and 0≥l . Then  

(1)  If ltrtr ≤−≤ )()(0 12 ,  we have 

  Ucl
tm
tm

1
2

1 1
)(
)(1 ⋅+≤≤ ; 

If the constant l  satisfies that 
⎭
⎬
⎫

⎩
⎨
⎧

<
U

L

U c
trc

c
l

2

22

2

)(,1min , we also have 

 
Ucltm

tm

22

1

1
1

)(
)(1

⋅−
≤≤ . 

(2) If ltrtr >− )()( 12 ,  we have 

  11
)(
)(

1
2

1 ≥⋅+≥ Lcl
tm
tm  and 1

1
1

)(
)(

22

1 ≥
⋅−

≥
Lcltm

tm . 

Proof: For part (1), denote )(
1

1)( 1
1

3 tm
cl

tm
U⋅+

=  is the MRL function of another 

lifetime random variable. The associated failure rate )(3 tr is given by  
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Since 0,)( >= a
x
axg is a decreasing function of x ,  we can get 

 ltr
c
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U

U +=+≥ )()()( 113 . 

As ltrtr ≤−≤ )()(0 12 , we have that )()()()( 1213 trtrltrtr ≥>+≥ . This inequality 

implies that )(
1

1)()()( 1321 tm
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tmtmtm
U⋅+

=≥≥ , which is 
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and 14 −≥′m . So )(4 tm is a MRL function. The associated failure rate )(4 tr  is  
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Since 0,)( <= a
x
axg  is an increasing function of x ,  we can get 

 ltr
c
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U −=−≤ )()()( 2
2

2
24 . 

Because ltrtr ≤−≤ )()(0 12 , it can be obtained that )()()()( 4212 trltrtrtr ≥−≥≥ . 

This inequality implies that )(
1

1)()()( 2
2

312 tm
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tmtmtm
U⋅−

=≤≤ , which can be 
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rewritten as 
Ucltm

tm

22

1

1
1

)(
)(1

⋅−
≤≤ .  

Part (2) can be similarly proved. ■ 

  Consider the exponential distribution as a special case. Let 21, TT  be random 

variables subject to the exponential distribution with the failure rate 1λ  and 2λ  and 

21 λλ ≤ . Then their associated MRL function are 11 /1 λμ =  and 22 /1 λμ =  

respectively. For convenience, we choose 111 μ== LU cc , 222 μ== LU cc . 

Case 1: If z≤≤ 12 /1 λλ , then we have 
12

111
λλ z

≥ , which is in fact 12
1 μμ
z

≥ . Then 

it is easy to get the difference between 1μ  and 2μ  satisfying that 

Uc
z

z
z

z
1121

11 −
=

−
≤− μμμ . For z≥12 / λλ , we can obtain 

12

111
λλ z

≤ , which is in 

fact 12
1 μμ
z

≤ . Then Lc
z

z
z

z
1121

11 −
=

−
≥− μμμ . This is for Theorem 5.1. 

Case 2: If l≤− 12 λλ , we have 
11

2 1
λλ

λ l
+≤ , which is equivalent with 

Ucll 11
2

1 11 +=+≤ μ
μ
μ . For l≥− 12 λλ , we can obtain 

11

2 1
λλ

λ l
+≥ , which is in fact  

Lcll 11
2

1 11 +=+≥ μ
μ
μ . This is an example for Theorem 5.2. 

5.2.2 Numerical examples and practical implication 

The results presented in the previous section can be easily interpreted in common 
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probability distributions such as the Weibull distribution as well as the extended 

Weibull model and the lognormal distribution. 

Example 5.1: Suppose random variable 2T  follows Weibull distribution with 

)exp()( 3
2 ttR −=  and 2

2 3)( ttr = . The MRL function of 2T , )(2 tm , is a decreasing 

function of t , so it is easy to see that  )0(][)( 222 mTEtm =≤  for all 0≥t . If there is 

another random variable 1T  with its failure rate function )(1 tr such that 

)()()(7.0 212 trtrtr << , then according to Theorem 5.1, the MRL of 1T , )(1 tm , falls in 

to the band composed of )(2 tm  and ][)17.0/1()( 22 TEtm −+ , i.e. 

][)17.0/1()()()( 2212 TEtmtmtm −+<< . Figure 5.1 shows the plots of the MRL and 

the failure rate functions of 1T  and 2T , as well as )(7.0 2 tr  and 

][)17.0/1()( 22 TEtm −+ . 

Example 5.2: Suppose random variable 1T  follows a distribution with 2
1 24.0)( ttr = . 

The corresponding MRL of 1T , )(1 tm , is a decreasing function of t , so we have 

)0(][)( 111 mTEtm =≤  for all 0≥t . If there is another random variable 2T  with its 

failure rate function )(2 tr such that 4.0)()()( 121 +<< trtrtr , then according to 

Theorem 5.2, the MRL function of 2T , )(2 tm , is bounded by ])[4.01/()( 11 TEtm +  

and )(1 tm , i.e. )()(])[4.01/()( 1211 tmtmTEtm <<+  . The corresponding MRL and 

failure rate functions are plotted in Figure 5.2. 
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Figure 5.1 The plots of the MRL and the failure rate function for 1T ,  2T  in Example 5.1. 

 

• Practical implication 

One important application is related to point process of recurrent event, particularly a 

shock process that acts on an object (Finkelstein, 2003a). Suppose the lifetime of an 

object T  is a random variable with reliability function )(tR  and failure rate function 

)(tr . Let }0,{ ≥tPt  denote a non-homogeneous Poisson process of an additional  

1T :                    2T :                   )(7.0 2 tr , ])[)17.0/1()( 22 TEtm −+ :     
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Figure 5.2 The plots of the MRL and the failure rate funcitons for 21, TT  in Example 5.2. 

 

harmful shock, which is independent of lifetime T , but with a certain probability 

would cause failure of the object. Assume that the rate of the shock process is 

)(tλ and the probability that the occurrence of the shock results in failure rate is )(tθ . 

Block et al. (1985) and Finkelstein (2003b) showed that, under this only shock 

process, the survival probability of the object at time t , denoted by )(tG , comes to 

 )()()( tRtRtG λ= , (5.3) 

1T :                     2T :                    4.0)(1 +tr , ])[1/()( 11 TEtm + :     
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where ⎟
⎠
⎞

⎜
⎝
⎛−= ∫

t
duuutR

0
)()(exp)( λθλ . 

Obviously, this setting can be described by the independent additive model in (5.1). It 

can be seen that, with an additional risk from the shock process, the failure rate 

function that the object faces, denoted by )(trG , is a sum of its original failure rate 

function and the one introduced by the process.  

 )()()()( tttrtrG λθ+= .  (5.4) 

Based on either (5.3) or (5.4), the loss in MRL due to the shock could be calculated, 

given that the information of )(tθ  and )(tλ  is exactly known. But sometimes it is 

difficult to obtain full knowledge of the shock process, and thus maybe only part of 

information is available, such as upper or lower bounds. Then, in this case, Theorem 

5.2 can be applied to get a range of the MRL loss. 

On the other hand, the proportional hazards model is widely used in both 

reliability engineering and biostatistics to analyze the effect that some time-

independent covariates have on the failure rate (hazard rate) of an object. Often the z  

in (5.2) is expressed as an exponential function, ( )ZβTexp=z , where )...,,( 1 mZZ=Z  

is a vector of fixed covariates and )...,,( 1 mββ=β  is a unknown parameter vector. For 

example, we may be interested to assess the risk of smokers being exposed to lung 

cancer, and want to find out attributes that have effects on the risk. Based on the 

proportional hazards model, we may choose four time-independent covariates like sex, 

weight, blood pressure, race, and also a suitable baseline failure rate function with 

some unknown parameters. Then the following model can be established. 
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 ),()exp()( T αZβ trtrp = . (5.5) 

where ),( αtr  is a baseline failure rate function. The unknown parameters can be 

estimated with data collected from patients, and estimated model can further be used 

to make statistical inferences. Given confidence intervals of parameters, the lost 

expected lifetime due to an increase in blood pressure can be obtained by Theorem 5.1.  

5.3  From MRL to failure rate function 

The foregoing section studies the change of the MRL due to the change of the 

corresponding failure rate function. This section focuses on the comparison between 

two failure rate function when their related MRL are ordered. This study would 

benefit the estimation of bounds on failure rate function, as the estimation could be 

conducted in the following way. 

Step 1: Find two MRL functions such that the band between them covers the 

empirical MRL function estimated from failure data;  

Step 2: Use the two failure rate functions associated with the two MRL to 

construct the bounds for the desired failure rate function.  

5.3.1 Some results on failure rate function for ordered MRL 

It is known that MRL ordering does not necessarily imply failure rate ordering. To 

make the implication valid, a sufficient condition, which was proposed in Gupta & 

Kirmani (1987) and is also shown as Theorem 2.5 in Chapter 2, is that the ratio of 
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smaller MRL over larger MRL should be a non-decreasing function. With this 

condition, a larger MRL function corresponds to a smaller failure rate function. In 

other words, for estimation, an upper (lower) bound of MRL function would produce 

a lower (upper) bound for the associated failure rate function. 

Although this sufficient condition is simple, the disadvantage is that the 

behavior of ratio cannot be directly observed from the plotting of two functions. Also, 

the estimation is sensitive to the sufficient condition, which is not easy to fulfill when 

the empirical MRL is encountered. This is because, the empirical MRL is not a 

smooth function, and thus the ratio of the empirical MRL to its upper bound MRL 

may not be a non-decreasing function all the time, so as to the ratio of the lower 

bound MRL to the empirical MRL function. This possibility would result in the 

crossing of the two failure rate functions inverted from the MRL bounds, as well as 

the crossings of these two failure rate functions and the interested failure rate function. 

Hence, more intuitive characteristics are expected as alternatives for the 

sufficient condition, so that bounds for the failure rate function can be easily obtained 

by graphically analyzing the related MRL functions. Also more robust estimation 

methods are needed.  

Under the condition that the difference of two MRL function is monotonic, an 

inequality for two failure rate functions is established as shown in Theorem 5.3. This 

inequality can be further used to estimate bounds on failure rate function.  

Theorem 5.3 Let 1T  and 2T  be two life time random variables with reliability 

function )(1 tR  and )(2 tR . Then 
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(1) DMRL Class 

Suppose )(1 tm  and )(2 tm  are decreasing functions, )()( 21 tmtm ≥ , and 

)()( 21 tmtm −  is a non-decreasing function of t , then  

)(
1)(

)(
1)(

2
2

1
1 tm

tr
tm

tr −≥− ; 

 (2) IMRL class 

Suppose )(1 tm  and )(2 tm  are increasing functions, )()( 21 tmtm ≥ , and )()( 21 tmtm −  

is a non-increasing function of t , then  

 
)(

1)(
)(

1)(
2

2
1

1 tm
tr

tm
tr −≤− . 

Proof:  For part (1), as )()( 21 tmtm −  is a non-decreasing function of t , it follows that 

for 0≥t  

 0)()( 21 ≥′−′ tmtm .  

Since )(1 tm  and )(2 tm  are DMRL, we have 

 0)(,0)( 21 <′<′ tmtm .  

Because 0)()( 21 ≥> tmtm , by simple deduction, we have 

 )(
)(

)(
)(

1

1

2

2

tm
tm

tm
tm ′
≤

′
.  

Based on (2.4), we have  

 )(
1

)(
1)(

)(
1

)(
)(

)(
1)()(

21
1

21

1

2

2
2 tmtm

tr
tmtm

tm
tm

tmtr +−=+
′

≤
+′

= .  
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Rewrite the above inequality as 

 
)(

1)(
)(

1)(
2

2
1

1 tm
tr

tm
tr −≥− . 

So Part (1) is proved. Part (2) can be similarly proved. ■ 

5.3.2 The application in estimating bounds for failure rate function 

As a direct application of Theorem 5.3, the estimation for bounds on failure rate 

function is summarized in the following corollary. The methodology presented is 

applied to monotonic MRL class. But more complicated MRL function also could be 

handled by treating it as a combination of monotonic MRL functions.  

Corollary 5.1 Suppose T , 1T  and 2T  are nonnegative random variables with the 

failure rate functions )(tr , )(1 tr , )(2 tr  and the MRL functions )(tm , )(1 tm , )(2 tm . 

Without loss of generality, assume that )()()( 21 tmtmtm >> . 

(1) DMRL class  

If )(tm , )(1 tm , )(2 tm  are decreasing MRL functions and satisfy )()(1 tmtm − and 

)()( 2 tmtm −  are increasing functions of t , then we have 

 )(
1

)(
1)()(

)(
1

)(
1)(

1
1

2
2 tmtm

trtr
tmtm

tr +−<<+− . (5.6) 

2) IMRL class  

If )(tm , )(1 tm , )(2 tm are increasing MRL functions and satisfy )()(1 tmtm − and 
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)()( 2 tmtm − are decreasing functions of t , then we have 

 
)(

1
)(

1)()(
)(

1
)(

1)(
1

1
2

2 tmtm
trtr

tmtm
tr +−>>+− . (5.7) 

Let )()()2()1( ...,,...,,, ni tttt  be ordered failure times of n  identical and 

independent items with the MRL function )(tm  and the failure rate function )(tr . 

Based on Yang (1978), the empirical MRL function can be estimated by (2.6). We 

quote (2.6) here for reference. 

 n

n

tli
i tttt

tln
tm <≤−

−
= ∑

+=

0for,
)(

1)(ˆ
1)(

)( .                (2.6) 

where { }ttitl i ≤= :max)( . 

Based on the plot of nitm i ...,,1),(ˆ )( = , we can graphically find two random 

variables 1T  and 2T , which follow parametric distributions such that the related MRL 

functions )(1 tm  and )(2 tm  satisfy the conditions described in Corollary 5.1 at least in 

the interval ],0[ )(nt . Then together with (2.6) and (5.6) or (5.7) would yield the 

bounds for the failure rate function )(tr . The procedure is summarized as follows. 

Estimation procedure 

Step 1: Use the data to compute the empirical MRL function )(ˆ tm by (2.6); 

Step 2: Determine the trend of )(ˆ tm ; 

Step 3: Find 1T  and 2T  such that the conditions in Corollary 5.1 are satisfied; 
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Step 4: Compute the lower and upper bounds by (5.6) or (5.7). 

Remark 5.1: Because )(ˆ tm  is not a smooth curve but )(1 tm  and )(2 tm  are smooth 

everywhere, )(ˆ)(1 tmtm − and )()(ˆ 2 tmtm − cannot be increasing over time.  Hence the 

choosing of 1T  and 2T  can be empirically done. Alternatively, the trend of 

)(ˆ)(1 tmtm −  and )()(ˆ 2 tmtm −  can be determined by some statistical tests. 

5.3.3 Simulation results and sensitivity analysis 

• Simulation results 

Simulations are conducted on a data set of sample size 50 generated from Weibull 

distribution with scale parameter 1 and shape parameter 3.6, i.e. Weibull 

( 1=α , 6.3=β ). Let 1T  and 2T  follow Weibull ( 8.0=α , 9.1=β ) and Weibull 

( 2=α , 7=β ).  The plots of the empirical MRL function as well as the MRL 

function of 1T  and 2T  are shown in Figure 5.3. By (5.1), we can compute the upper 

and lower bounds of  )(tr  for the target Weibull ( 1=α , 6.3=β ), which are plotted in 

Figure 5.4. 

The figures show that the new method does well in estimating the bounds for 

the failure rate function, except the later part of the lower bound. From Figure 5.4, it 

is found that the lower bound for DMRL may be inaccurate when t is large (refer to 

the dashed line when 05.1>t ). This is because that )(ˆ tm  tends to 0 as ∞→t  in most 

situations and thus it becomes very difficult to find a random variable 2T  such that 

)()(ˆ 2 tmtm −  is an increasing function for large t .   
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Figure 5.3 The plotting of the empirical MRL function and the MRL functions of 1T  and 2T  
for DMRL class. 

 

 

Figure 5.4 The plotting of the real failure rate function and the estimated upper bound and 
lower bound for DMRL class. 

 

It is also worth noting that )(ˆ)(1 tmtm −  and )()(ˆ 2 tmtm −  are not increasing 

everywhere, as shown in Figure 5.3, but the final result is not affected.  A possible 

real )(tr :                  upper bound:                   lower bound:     

empirical )(tm :                  upper bound:                   lower bound:    
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explanation is that )()(1 tmtm −  and )()( 2 tmtm −  really increase with time t , as the 

real MRL function )(tm  is a smooth function.   

Simulations are also conducted on data obtained from an IMRL distribution, 

Weibull ( 1=α , 6.0=β ). And 1T  and 2T  are Weibull ( 28.0=α , 8.0=β ) and 

Weibull ( 5.4=α , 3.0=β ) respectively.  The corresponding plots are shown in 

Figure 5.5 and Figure 5.6.  

These two figures also indicate that the new method could provide good 

performance in estimation of bounds for IMRL class, except the later part of the upper 

bound. The reason for this phenomenon may be due to the large variation of the tail of 

the empirical MRL function for IMRL, which is caused by too few data points that 

can be collected for large t . 

 

 

 

Figure 5.5 The plotting of the empirical MRL function and the MRL functions of 1T  and 2T  
for IMRL class. 

 

empirical )(tm :                  upper bound:                   lower bound:    
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Figure 5.6 The plotting of the real failure rate function and the estimated upper bound and 
lower bound for IMRL class. 

 

• Sensitivity analysis 

In fact, the two random variables T1 and T2 can be arbitrarily chosen and thus infinite 

pairs of bounds can be constructed. So it is helpful and useful to analyze the influence 

of the choices of 1T  and 2T  on the estimation results. The following three sets of 

figures graphically show how the choosing of 1T  and 2T  affects the estimation of the 

bounds for the failure rate function. In these figures, two gray lines are added, 

compared to Figure 5.3 and Figure 5.4, to represent another choice of 1T  and 2T . For 

convenience, we denote the new 1T  and 2T  by *
1T  and *

2T  respectively, to distinguish 

from 1T  = Weibull ( 8.0=α , 9.1=β ) and 2T  = Weibull ( 2=α , 7=β ) defined in 

the previous. Also denote by )(*
1 tm  and  )(*

2 tm  the related MRL functions.  

In Figure 5.7, the MRL functions of 1T  and *
1T  are almost parallel and 

real )(tr :                  lower bound:                   upper bound:     
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)()( *
11 tmtm < . Also it can be seen that the corresponding upper bound estimated from 

)(1 tm  is closer to the real failure rate function than the bound estimated from )(*
1 tm .  

This observation indicates that the distance between )(1 tm  and )(ˆ tm  has an effect on 

the width of the bounds: the nearer )(1 tm  is to )(ˆ tm , the narrower the bound will be. 

Similar conclusion also can be drawn from the lower bounds related to 2T  and *
2T . 

 

 
Figure 5.7 Parallel MRL and the associated failure rate functions. 

 

Figure 5.8 and Figure 5.9 show the relation between the slope of the MRL 

function and the width of the bounds. In both figures, )(1 tm  is less than )(*
1 tm , i.e. 
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)()( *
11 tmtm < . From Figure 5.8, we can find that )(ˆ)(1 tmtm −  increases less rapidly 

than )(ˆ)(*
1 tmtm −  and the bound estimated from )(1 tm  is narrower than that 

estimated from )(*
1 tm .  

 

 

 
Figure 5.8 MRL with the same value at time 0 and the associated failure rate functions. 

 

A similar situation is also shown in Figure 5.9: )(ˆ)(1 tmtm −  increases more rapidly 

but the bound estimated from )(1 tm  is wider. Upon these findings, we may conclude 

that a lower increase speed of )(ˆ)(1 tmtm −  implies a narrower bound. The above 
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analysis suggests that it is better to choose such 1T  and 2T  that their MRL functions 

are close to )(ˆ tm  and the distances, )(ˆ)(1 tmtm −  and )()(ˆ 2 tmtm − , increase relatively 

slowly with time t .  

 

 

 
Figure 5.9 MRL with the same value at time )(nt  and the associated failure rate functions. 

 

Moreover, it is worth noting that the differences of the bounds, which are 

constructed by different 1T  and 2T , are very small. This means that to some extent, the 

new method is robust. Hence this new method is favorable in the inference of the 
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failure rate function. 

5.4  Conclusion 

This chapter focuses on the relationship between the MRL and the failure rate 

functions as these two characteristics are closely related to each other. We discuss the 

effect that the change of one characteristic has on the other characteristic and proposes 

some inequalities to quantify the range of change. The results show that (1) the 

change of MRL can be related to the extreme value of the MRL function and the 

failure rate function; (2) the range that failure rate function varies has a link with the 

MRL function and the derivative of MRL function. Based on these results, when exact 

information of the two functions is unavailable, upper and lower bounds for MRL 

function and failure rate function could be obtained based the inequalities that are 

shown in theorems proposed in this chapter. 

In particular, based on the inequalities, an estimation method was introduced 

to estimate bounds for the failure rate function based on empirical MRL function. The 

simulation results indicate good and robust performance of this new approach. 

However, errors caused by arbitrarily choosing of the two random variables are 

unavoidable. Therefore, further research may focus on how to examine these errors 

from the statistical point of view.  
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CHAPTER 6 CHANGE POINT OF MEAN RESIDUAL 
LIFE OF SERIES AND PARALLEL SYSTEMS3 

The foregoing chapters are mainly concerned with the MRL of single items or a 

system that is treated as a whole. However, because a system is often complex and 

composed of several components, its reliability is in fact determined by its inner 

structure, which refers to the allocation and the properties of components. Therefore, 

it is of great importance to analyze how a particular structure impacts the reliability of 

a system.  In this chapter, we will focus on the change point of the MRL for series and 

parallel systems, and investigate the effect that system structure has on the location of 

change point. The study of the change point, at which the MRL changes the trend, is 

important, as its location provides useful information on the most reliable time of an 

item.  

                                                 
 
3 Part of the work in this chapter is published in Australian & New Zealand Journal of Statistics. 

“On the change point of the mean residua life of series and parallel systems”, Australian & New 
Zealand Journal of Statistics, 2010, 52(1), pp.109-121. 
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6.1  Introduction 

In coherent systems (Triantafyllou & Koutras, 2008), series systems and parallel 

systems are two most important structures, as they are fundamental in the design of 

most complex systems that are common in real life. These two basic structures have 

been extensively investigated in reliability evaluation. In this chapter, we focus on the 

MRL of series systems and parallel systems, as the MRL is a key measure in 

reliability analysis since it represents how much longer an item will work for (Lai & 

Xie, 2006; Navarro & Hernandez, 2008).  

Because systems are composed of components, an interesting question is how 

a system is related to its components in terms of MRL. Several papers discussed this 

problem from the angle of preservation properties for series and parallel systems. 

Abouammoh & El-Neweihi (1986) showed that parallel systems inherit DMRL from 

components, and the reversed preservation ageing properties for series and parallel 

systems were discussed in Li & Yam (2005), Belzunce et al. (2007a), and Li & Xu 

(2008). The current work focuses on the systems with independent and identically 

distributed (i.i.d.) components. We investigate the relationship between the systems 

and their components by comparing the change points of their respective MRLs. The 

change point, at which the MRL reaches its maxima or minima and begins to change 

the trend, provides useful information on the most reliable time of an item (Block et 

al., 1999), i.e., the time at which the item has maximum reliability. 

In literature, there are many papers on the location of the change point of MRL. 

Gupta and Akman (1995a) showed that the change point of the MRL is located before 

that of the failure rate function. This issue was also discussed in Tang et al. (1999), 
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Finkelstein (2002), Bradley & Gupta (2003), and Mi (2004). Recently, Belzunce et al. 

(2007b) found that an extra constant risk will postpone the change point of MRL, and 

some numerical examples were provided in Bebbington et al. (2008). Motivated by 

these works, the purpose of this chapter is to extend their research to system structures 

and to investigate the effect of the series and parallel structures on the position of the 

change point of the MRL function. 

Assume that all components in a system are i.i.d. and have UBMRL and BFR. 

This chapter explores the relation between the change points of the systems’ MRL and 

of the components’ MRL with respect to the location. After presenting the concepts 

and general results on MRL for series and parallel systems in Section 6.2, it is shown 

in Section 6.3 that the change point of the MRL for series systems is located after the 

change point for single components; but for parallel systems, the situation is opposite 

– the change point of a parallel system occurs prior to that for its components. 

Furthermore, we find that the difference in the positions of the change points between 

systems and components increases with the number of components. For illustration, 

an example is given in Section 6.4. In addition, a brief graphical study on a parallel 

system with two independent but non-identically distributed components is executed 

in Section 6.5. Finally, Section 6.6 gives some concluding remarks. 

6.2  Definitions and background 

Suppose that a system consists of )1( >nn  independent and identically distributed 

components. Let nTTT ...,,, 21  be the lifetimes of n components and assume that they 



 
Chapter 6: Change point of MRL of Series and Parallel Systems 

124 

 

are continuous and non-negative random variables with reliability function )(tR . If 

∞<)( iTE , the MRL for components, denoted by )(tm , is given by (2.1). 

 
)(

)(
)|()(

tR

dxxR
tTtTEtm t

ii
∫
∞

=>−= .  

The associated failure rate function (2.3), given the density function )(tf , is  

 
)(
)()(

tR
tftr = .  

Suppose that both )(tm  and )(tr  are differentiable, then we have the equation (2.4). 

 1)()()( −=′ trtmtm .  

It is well-known that the MRL and the failure rate function are equivalent to each 

other and also to the reliability function. Hence, both the MRL and the failure rate 

functions are able to uniquely determine the distribution of the lifetime of items. 

However, these two functions usually have opposite monotonic trends and represent 

the aging behavior of a component from different points of view. For example, an 

increasing failure rate function implies a decreasing MRL function. 

6.2.1 MRL of series system 

Let nnnn TTT ::2:1 ...,,,  be ordered lifetimes of n  components. As a series system is 

defined as a system which functions if and only if all components function, then its 

lifetime can be represented by the first ordered statistic nT :1 . So the reliability function 

of the series system, denoted by )(S tR  , is 
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 ( ) 0,)()(Pr)( :1S ≥=>= ttRtTtR n
n . (6.1) 

The MRL function and the failure rate function, denoted by )(S tM  and )(S tr  

respectively, are given by 
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 (6.2) 

and 

 )(
)(
)()(S tnr

tR
tfntr == . (6.3) 

6.2.2 MRL of parallel system 

A parallel system is a collection of components which works if and only if at least one 

component works. Hence, the lifetime of parallel systems is actually equal to the nth 

ordered component failure time, which is nnT : .  Thus, the corresponding reliability 

function, denoted by )(P tR , is 

 ( )nnn tRtTtR )(11)Pr()( :P −−=>= . (6.4) 

The related MRL function of parallel systems, denoted by )(P tM , is represented by 
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It can be seen that )(P tM  is defined under the condition that the whole system does 

not fail at time t . If we consider the condition that none of the components fails 

before time t , another definition of the MRL function of parallel systems can be 

proposed. This new MRL function, denoted by )(1
P tM , is defined as the expectation 

of remaining life of a parallel system given no failed component by time t . 

Mathematically, this MRL function is represented as  
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For detailed discussion of )(1
P tM , see Bairamov et al. (2002) and Asadi & 

Bayramoglu (2005). 

6.3  The change points of mean residual life of systems 

Suppose the lifetimes niTi ...,,1, = , of components have an UBMRL with the change 

point 0t , and a bathtub-shaped failure rate with the critical point 0ν . This means, for 

00 >t  and 00 >ν , the derivatives of )(tm  and )(tr  satisfy 

 000 for ,0)(,0)(),,0[for ,0)( tttmtttmtttm ><′==′∈>′ ， , (6.7) 
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 000 for ,0)(,,0)(),,0[for ,0)( ννν >>′==′∈<′ ttrttrttr . 

Because the change point of the MRL must be smaller than the critical point of the 

failure rate function (Gupta & Akman, 1995a), we have 00 ν<t .  

As systems are composed of components, it is natural to believe that the 

properties of the MRL function of systems should be associated to the properties of 

MRL of components. In this section, we explore how the redundancy makes an 

impact on the position of the change point of the MRL. In the following, the MRL of 

series systems, )(S tM , and the MRL of parallel systems, )(P tM  and )(1
P tM , will be 

investigated and compared to 0t , which is the change point of )(tm . 

6.3.1 The change point of the MRL for series systems  

The MRL and the failure rate function of series systems are defined in (6.2) and (6.3). 

As shown in (6.3), the failure rate function of series systems )(S tr  is proportional to 

)(tr ; hence )(S tr  is also of bathtub shape and with the same critical point of )(tr , 

namely 0ν . Because the change point of MRL must be before the critical point of 

failure rate, the change point of )(S tM  must be less than 0ν . A question is where the 

change point of )(S tM  is compared to the location of 0t . The following theorem 

proves that the change point of the MRL for series systems is located between 0t  and 

0ν .  

Theorem 6.1 Suppose that the MRL of components )(tm  is of upside-down bathtub 
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shape with change point 0t , and the failure rate function, )(tr , is of bathtub shape 

with critical point 0ν . Then the change point of the MRL of series systems )(S tM  

exists and is larger than 0t . 

Proof: First, we prove that the derivative of )(S tM  is positive at 0t . From (6.2), we 

have 
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Dividing both sides of (6.8) by ntR )( , we obtain 
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Taking the derivative of (6.9) with respect to t  yields 

  )()()()()()( SS trtmtmtnrtMtM −′+⋅=′ . (6.10) 

Because 0t  is the change point of )(tm , that is , 0)( 0 =′ tm , we have 
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 (6.11) 

Substituting (6.9) into (6.11) produces 
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The MRL )(tm  is decreasing for 0tt > ; that is, 0)( <′ tm  for 0tt > . So we obtain 

 0)( 0S >′ tM . (6.13)

  

Next, we prove the existence of the change point. It is assumed that the failure 

rate function of single components, )(tr , is bathtub-shaped with critical point 0ν . 

Then we have that the failure rate of systems )(S tr  is also bathtub-shaped, decreasing 

from time 0 to 0ν  and then increasing for 0ν>t . From Tang et al. (1999), we have 

that )(S tM  is a decreasing function on ),( 0 ∞ν  and has at most one change point.  

From this together with (6.13), we can conclude that there must be a unique 

change point of )(S tM  between 0t  and 0ν . ■ 

Theorem 6.1 provides the upper and lower bounds for the change point of the 

MRL for series systems, which are 0ν  and 0t  respectively. It also shows that the 

series structure postpones the change point of MRL. This means that the change point 

of the MRL for multi-component series systems must be located after the change 

point for a single component. Considering a single component as a degenerate series 
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system, we can find that the increase of the number of components will make the 

change point of the MRL occur later. This is shown in the next corollary. 

Corollary 6.1 The change point of )(S tM  increases with n .  

Proof: The proof of Theorem 6.1 is in fact valid not only for integers 1>n ,  but also 

for any real numbers, n , greater than 1. Hence, this proposition can be considered in 

this way: for arbitrarily chosen positive integers n  and m  ( 1>> nm ), if we treat the 

system consisting of n  components as a “new” component, then the system composed 

of m  components can be regarded as a system consisting nm /  the “new” 

components. Applying Theorem 6.1 yields the results. ■ 

6.3.2 The change point of the MRL for parallel systems 

We now consider the MRL functions of parallel systems, )(P tM  and )(1
P tM . The 

following Theorem 6.2 proves that the change point of the MRL for parallel systems 

)(P tM , if it exists, is located prior to 0t .  

Theorem 6.2 Suppose that )(tm  is of upside-down bathtub shape with the change 

point 0t , and )(tr  is of bathtub-shape with critical point 0ν .  Then the MRL of 

parallel systems, )(P tM , is strictly decreasing on ),[ 0 ∞t . This means that the change 

point of )(P tM , if it exists, is smaller than 0t . 

Proof:  See the Section 6.3.3 for the proof. ■ 
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As shown in Corollary 6.2, the change point of the MRL for parallel systems 

occurs earlier with an increase of the number of components. This result, together 

with Corollary 6.1, indicates that series and parallel structures have opposite effects 

on the location of the change point. 

Corollary 6.2 The change point of )(P tM , if it exists,  decreases with n . 

Proof: The proof is similar to that of Corollary 6.1.  ■ 

As shown in the following Theorem 6.3, the generalized MRL of a parallel 

system, )(1
P tM , also has its change point located before 0t . This result is consistent 

with Theorem 6.2 and hence supports the fact that the parallel structure can bring 

forward the change point of the MRL.  

Theorem 6.3 Suppose that )(tm  is of upside-down bathtub shape with change point 0t , 

and )(tr  is of bathtub-shape with critical point 0ν . Then the generalized MRL of 

parallel systems, )(1
P tM , is strictly decreasing on ),[ 0 ∞t , that is, the change point of 

)(1
P tM , if it exists, is smaller than 0t . 

Proof: From (2.9)-(2.11) in Asadi & Bayramoglu (2005), we have 
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As 0)( ≤′ tm  for ),[ 0 ∞∈ tt , the above equation can be written as 
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The failure rate function is defined to be positive; that is, 0)( >tr . Hence, to prove 

that )(1
P tM  is strictly decreasing on ),[ 0 ∞t , we only need to prove that the right side 

of (6.15) is less than 0 for any t  within { }∞<< ttt 0: .  

From (6.6), we have 
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By using the expression for )(tm  from (6.16), the right-hand side of (6.15) becomes 



 
Chapter 6: Change point of MRL of Series and Parallel Systems 

133 

 

 ( )

( ) .)(1
)(
)(

)(
)(1

)(
)(1

)()(1
)(
)(11

)(
)(

)(
)(1

)(
)(
)(

)(
)(1

1

1

1

∫

∫

∫

∞ −

∞ −

∞ −

′−⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

t

nn

t

nn

t

n

dxxm
tR
xR

tR
xRn

tR
xR

dxxmxr
tR
xR

tR
xR

tR
xRn

tmdx
tR
xR

tR
xRn

 (6.17) 

Note that 1)(/)(0 ≤< tRxR  for ∞<≤ xt .  So applying Lemma 1 yields (see Section 

6.3.3) 
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Furthermore, as 0t  is the change point of )(tm , we have 0)( >′− xm  for 

∞<≤< xtt0 . Therefore, it follows that the last line of (6.17) is less than 0. 

Equivalently, the right-hand side of (6.15) is also less than 0 for 0tt > ; that is 
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Remark 6.1: The change point of either )(P tM  or )(1
P tM  may be non-existent. The 

non-existence of the change point implies that the MRL function decreases with time 

t  along the entire time axis; that is, DMRL. Moreover, the change point may not be 

unique. This means that the MRL function may be of roller-coaster shape, with 

increasing and decreasing segments appearing alternately.  

Remark 6.2: Corollary 6.1 and 6.2 show that, for both systems, the distance between 
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the change points of the MRL for systems and for components increases with an 

increase in the number of components.  

6.3.3 Proof of Theorem 6.2 

Lemma 6.1 For 1>α , 

 ]1,0( ,01)1()1( 1 ∈<−−+− − xforxxx αα α . 

Proof: Let 1)1()1()( 1 −−+−= − xxxxg αα α . Taking derivative on )(xg  with respect 

to x yields, 

  xxxg 2)1)(1()( −−−−=′ ααα . 

Because 10 ≤≤ x , we have 0)( <′ xg . That is, )(xg  is a decreasing function on 

]1,0[ . Note that 0)0( =g . So we get 0)( <xg  for 10 ≤< x . ■ 

Lemma 6.2 For 1>α , 
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xxxxx α
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Proof: Note that, as 110 <−< x , we have 
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 Let αα )1(1)( xxxh −+−= . Taking derivative on )(xh  with respect to x yields, 

  1)1()( −−−=′ ααα xxh . 

Because 10 << x  and 1>α , we have 1)1(0 1 <−< −αx . So 0)( >′ xh . That is, )(xh  

is an increasing function on )1,0( .  As 0)0( =h , 0)( >xh  holds for 10 << x . ■ 

Proof of Theorem 6.2 

Taking derivative of (6.5) with respect to t , we get 
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 (6.18) 

As 0)( ≤′ tm  for ),[ 0 ∞∈ tt , the above equation can be written as, 
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Note that 0)( >tr . Hence, to prove that )(P tM  is strictly decreasing on ),[ 0 ∞t  is 

equivalent to prove the right hand side of (6.19) 0<  for any t  in }:{ 0 ∞<< ttt .  

Based on (6.5), we have 

( )( ) ( )

( )( )
( ) ( ) ( )( )

( )

( )( ) ( ) ( )( )( ) .)()()(11)()(1)()(11

)(
)(

)()(11)()()(1

)(
)(

1)(11

)(11)(11)(

1

2

1

P

∫

∫ ∫

∫

∫

∞
−

∞ ∞−

∞∞

∞

−−−−−−−=

−−−−−−
−

−
−−=

−−=−−⋅

t

nnn

t x

nn
tx

n

t

nn

dxxrxmxRxRxRntmtR

dxduuR
xR

xfxRxfxRxRn

duuR
xR

tR

dxxRtRtM

  

Dividing both sides of the above equation by ( )ntR )(11 −− , we obtain 
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According to Lemma 6.1, because 1)(0 ≤< xR ,  

 ( ) ( )( ) 0)(11)()(1 1 <−−−− − nn xRxRxRn . (6.21) 

Also, as 0t  is the change point of m(t),  we have  

 ∞<≤<<< xttxrxm 0for1)()(0 .  (6.22) 

From (6.20)-(6.22), we can get  
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Substituting the inequality of (6.23) into the right hand side of (6.19) yields 
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Now we need to prove the right hand side of (6.24) is less than 0, i.e. 

 
( )( )
( )

( ) ( ) 0)()(1)()(1
)(11

)(11
11 ≤−−−⋅

−−

−−

∫
∫ ∞

−−

∞

t

nn
n

t

n

dxxRxRntRtRn
tR

dxxR
.  (6.25) 

Note that  

 

( )

( )
( )

( )( )

( )( )
( )

( ) ,)()(1
)(11

)(11

)(11
)(11

1)()(1

)()(1

1

1

1

ZtRtRn
tR

dxxR

duuRd
xR

xRxRn

dxxRxRn

n
n

t

n

t x

n
n

n

t

n

−−⋅
−−

−−
=

⎟
⎠
⎞

⎜
⎝
⎛ −−−

−−
−=

−

−

∞

∞ ∞
−

∞
−

∫

∫ ∫
∫

 (6.26) 

where 
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From (6.26), the inequality (6.25) is equivalent to 0<Z .  

As 1)(0 << uR , a sufficient condition for 0<Z  is  
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By extending the derivative, we get 
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From Lemma 6.2 and 1)(0 << xR , we have 
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Together with the fact that 0)( >xf  and 1)(0 << uR , we can get (6.27) and thus 

prove the theorem.      ■ 
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6.4  An illustrative example and application 

In this section, an example is utilized to illustrate the theorems and their applications 

in burn-in test. 

6.4.1 An example 

Suppose that the lifetime of each component follows the modified Weibull distribution 

(Lai et al., 2003) with the reliability function )exp()( 25.0 tettR −= . The corresponding 

MRL function for components is of upside-down bathtub shape, shown by the bold 

lines in the following three figures. From (6.2), (6.5) and (6.6), we obtain the MRL for 

series systems )(S tM , the MRL for parallel systems )(P tM  and the generalized MRL 

)(1
P tM  
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These three MRL functions, with different number of components, are plotted 

in Figure 6.1, Figure 6.2, and Figure 6.3 respectively.  
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n = 1:                n = 2:                 n = 3:                 n = 4:  

Figure 6.1 The plotting of the MRL of components (bold line) and the MRL function of series 
system with n components. The solid circles mark the locations of the change points. 

 

n = 1:                n = 2:                 n = 3:                 n = 4:  

Figure 6.2 The plotting of the MRL of components (bold line) and the MRL function of parallel 
system with n components. The solid circles mark the locations of the change points. 
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n = 1:                n = 2:                 n = 3:                 n = 4:  

Figure 6.3 The plotting of the MRL of components (bold line) and the generalized MRL of 
parallel system with n components. The solid circles mark the locations of the change points. 

 

From Figure 6.1, we see that the change point of )(S tM  is located after 0914.00 =t ,  

which is the change point of )(tm  (the solid circle on the bold line). Figure 6.2 and 

6.3 show that the change points of both )(P tM  and )(1
P tM  are located prior to 0t . 

These observations are consistent with the results presented in the three theorems. 

Moreover, as shown in Figure 6.1, the change point for series system is an increasing 

function of n , which is proved by Corollary 6.1. We also find from Figure 6.2 that the 

change point may not exist for )(S tM  (with 4=n ); but, if it exists, it will decrease 

with the number of components n , as stated in Corollary 6.2. 

6.4.2 Some practical applications 

These results are useful in decision making in reliability analysis, such as burn-in tests 

for a coherent system (Block & Savits, 1997). For example, consider a parallel system 

composed of individual components. If a system is considered to be a survivor only 
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when none of the components fails during the burn-in test, then )(1
P tM  can be used to 

determine the optimal burn-in time. This is rational because no customer wants to buy 

a system with any faulty component. So we may suggest that by the criteria of 

maximizing the MRL function, the burn-in test can be terminated at the change point 

of )(1
P tM .  

Another important issue for systems in burn-in test is at which stage burn-in is 

most effective. For the above case, our conclusion is that burn-in at system level is 

better, because the change point for the system is located prior to 0t , which is the 

change point for a single component. Hence for the burn-in test for this system, the 

optimal time can be set at the change time of )(1
P tM . This means that the test can be 

terminated if all components of this system are still functioning at the change time. 

Furthermore, if consider the MRL functions )(S tM  and )(P tM , we may suggest that 

burn-in tests should be carried out at component level for a series system and at 

system level for a parallel system. 

Moreover, the optimization of component number in parallel systems is also of 

great interest in reliability analysis. As shown in Theorem 6.2, the greater the number 

of components in a parallel system is, the smaller is the change point of the MRL for 

the system. In other words, more components would shorten optimal burn-in time for 

a parallel system by the criteria of maximizing the MRL function, and also increase 

the reliability of the system. However, more components always mean more expense. 

Hence, it would be necessary and helpful to determine the optimal number of 

components that should be allocated in a parallel system.  
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Denote by c  the cost of one component, 0c  the set-up cost, bc  the burn-in 

cost per unit burn-in time, p the profit obtained from per unit working time, and *
nb  

the optimal burn-in time for an n - component parallel system. Then the net profit that 

an n - component parallel system could produce can be expressed by the following 

cost function.  

 *
0

*
,P )()(Profit nbnn bcnccbMpn ⋅−⋅−−⋅= , (6.28) 

where )(,P tM n  is the MRL function of a parallel system with n  components in (6.5). 

Clearly, the optimal component number could be obtained by maximizing (6.28). 

Denote by *n  the optimal number. We have 

 ( ))(Profitmaxarg* nn
Nnn ∈

= . 

Following the example in Section 6.4.1, let 9.0=c , 20 =c , 2.1=bc , and 5.9=p . 

Based on (6.28), a profit table corresponding to different numbers of components can 

be established, as shown in Table 6.1.  

 

Table 6.1 Net profits for different component numbers. 

n  
*
nb  )( *

,P nn bM )(Profit n
1 0.0914 0.4444 1.2123
2 0.0368 0.528 1.1718
3 0.0064 0.6245 1.2254
4 0 0.7169 1.2107
5 0 0.7904 1.0091
6 0 0.8492 0.6674
7 0 0.8976 0.2271
8 0 0.9384 -0.2853
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From the table, it can be found that the profit achieves the maximum of 1.2254 when 

3=n . So we may conclude that under this scenario, a parallel system is suggested to 

be assembled with three components, and be put into a burn-in test for 0.0064 unit 

time before it is shipped out and sold to customers. 

6.5 Parallel system with two different components 

Previous discussions are based on the assumption that all components in a system are 

independent and identical. A straight extension is to study systems with independent 

but non-identical components (Zhao & Balakrishnan, 2009a; Zhao & Balakrishnan, 

2009b). However, due to the different properties from component to component, it is 

difficult to investigate the change point of the MRL of this type of systems 

analytically. To obtain explicit results is almost an infeasible task, although it does 

play an important role in system reliability analysis. Hence, in this section, we focus 

on the MRL of parallel systems with only two different components and carry out a 

brief analysis on change point of the MRL in a graphic way. 

6.5.1 Exponential distributed component 

Consider a parallel system of two independent but unnecessarily identical components 

having respective life distributions as exponential distribution, )exp()( 11 ttR λ−= , 

)exp()( 22 ttR λ−= . Then the reliability function of the system is 

 ( )( )tt eetR 21 111)( λλ −− −−−= . 

The failure rate function )(tr  and the MRL function )(tm  are 
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so that the derivative of the MRL function is 
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Barlow & Proschan (1981b) (Page 83) showed that the failure rate function of 

this parallel systems is of upside-down bathtub shape (UBFR) for 21 λλ ≠ . According 

to Theorem 2.2, because 01)0( <−=′m  or  10)0()0( <=rm , the MRL function )(tm  

is of bathtub shape, i.e. BMRL. Denote by 0t  the change point of )(tm . Figure 6.4 

plots the location of 0t  for different combinations of 1λ  and 2λ . From Figure 6.4, we 

can find that, the location of 0t  is small when there is large difference between 1λ  and 

2λ ; if 1λ  and 2λ  become close to each other, then the change point 0t  tends to infinity. 

This is because, when 21 λλ = , )(tr  is an increasing function and )(tm  is a 

decreasing function, which means no change point exists. Moreover, the figure shows 

that for 21 λλ > , the change point 0t  decreases with the increase of 1λ , and increases 

as 2λ  becomes larger. Similar phenomenon also can be observed in case of  21 λλ < . 
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Figure 6.4 Locations of 0t  for different 1λ  and 2λ . 

 

6.5.2 UBMRL type component 

As proved in Theorem 6.2, parallel structure would make the change point of MRL 

occur earlier. Hence, it is of great interest to generally investigate the effect that 

parallel structure has on the change point of MRL of components, when the 

components have different lifetime distributions. Here, following Section 6.5.1, we 

further graphically study parallel systems composed of two non-identical UBMRL 

components, whose lifetimes follow same distribution but with different parameters. 

The three-parameter UBMRL distribution studied in this section is also modified 

Weibull distribution (Lai et al., 2003) ( )tbeattR λ−= exp)( ; see Section 2.2.1 for 

discussion.  

In this study, to evaluate the effect of each parameter on the location of change 

point, we let two parameters of both components be the same, and fix the third 
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parameter of one component by treating the other one as a variable.  

In a two-component parallel system, let one component have reliability 

function ( )tettR 25.025.0
1 exp)( −=  and the other component have its reliability function 

with unknown parameters, i.e. ( )teatatR 25.025.0
2 exp)|( −= , ( )tbetbtR 25.0

2 exp)|( −= , 

( )tettR λλ 25.0
2 exp)|( −= . Figure 6.5, 6.6 and 6.7 describe the behaviors of change 

point of the MRL for the parallel system with respect to a , b  and λ  respectively.  

In each plot, the ▲ line depicts the behavior of the change point of MRL for 

the parallel system, the ♦ horizontal line corresponds to the change point of MRL for 

)(1 tR , and the ■ curve represents the location of the change point for )|(2 ⋅tR . From 

the figures, we can find that, for all three parameters, the change point for systems 

seems to be always smaller than the larger one of the two change points for 

components. Also, Figure 6.5 and Figure 6.7 show that, as the values of parameter a  

and λ  increase, the change point of MRL for systems approaches the smaller change 

point for two components. As larger values of a  and λ  corresponds to lower 

reliability, the phenomenon may imply that, the large difference in reliability of two 

components would make the change point of MRL of systems close to the smallest 

change point of components. 
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Figure 6.5 Change point for parallel systems with parameter a – modified Weibull distribution. 

 

Figure 6.6 Change point for parallel systems with parameter b – modified Weibull distribution. 
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Figure 6.7 Change point for parallel systems with parameter λ – modified Weibull distribution. 

6.6  Conclusion 

In this chapter, we first investigate the MRL functions of series systems and parallel 

systems assuming that both systems are composed of i.i.d. components with UBMRL 

and bathtub-shaped failure rate. It is shown that that the change point of the MRL for 

a series system is located after the change point for single components while the 

change point for a parallel system occurs earlier than that for components.  Also, a 

brief graphic study on parallel systems with two non-identical components is carried 

out. We find that the change point of the MRL for such parallel systems tends to be 

smaller than the larger change point for components, and seems to approach the 

smaller change point for components when two components are greatly different from 

each other in reliability. Further research may focus on the change point of the MRL 

of k-out-of-n systems (Beutner, 2008; Gurler & Bairamov, 2008) and other complex 
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systems. The MRL of the systems with independent but not necessary identical 

components (Hu et al., 2001; Sadegh, 2008) is also worth of further investigation. We 

might expect some results similar to the work in this chapter.  
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CHAPTER 7 CONCLUSIONS AND FUTURE 
RESEARCH 

7.1  Summary of results 

This thesis made a study on analysis and reliability modeling based on continuous and 

univariate mean residual life.  

This research proposed a model with relatively simple upside-down bathtub-

shaped MRL. To ensure the MRL function has a closed form, the model was 

constructed by choosing a suitable function for the derivative function of the MRL, 

instead of the reliability function and the failure rate function. This is because the 

existing models derived from the latter two functions usually involve an integral of 

the reliability function that is not a closed form. The study also compared the new 

model to some existing distributions and showed that the new model is capable of 

integrating the characteristics of other distributions to provide all-sided information. 

The study also showed that the new model can provide accurate descriptions of the 

lifetime of products. Moreover, based on the simple MRL of the new model, the 

optimum time for both burn-in test and replacement can be easily determined. Hence 
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the research indicates that the model with simple MRL is a good choice in modeling 

failure data when the data exhibit an upside-down bathtub shape.    

Besides the proposed parametric model, this research also developed a 

nonparametric estimator of the decreasing MRL function in Type II censoring. The 

estimation procedure was established by comparing two estimators of the reliability 

function, of which one is the Kaplan-Meier estimator, and the other is obtained from 

the empirical MRL function. The comparison of this new method and two common 

parametric methods showed that this new approach provides comparable even better 

performances especially when censor degree is high. Therefore this new method is 

recommended for construction of the estimator of the MRL function when the 

information of the underlying distribution is limited and the censored data are large. 

Moreover, the relationship between the MRL and the failure rate function is of 

great importance in reliability analysis. This work studied how the change of one 

characteristic affects the other characteristic and proposed some inequalities to 

quantify the range of change. The results are useful and helpful in calculating upper 

and lower bounds for MRL and failure rate functions. More specifically, based on the 

inequalities, an estimation method was introduced to estimate bounds for the failure 

rate function based on empirical MRL function. Simulation results and analysis 

showed that this method could provide good performance in estimation, and to some 

extent, it could be considered as a robust approach. 

As an extension of the MRL of single items that form the focus in all the 

previous studies, the MRL of systems were investigated in the research. The MRL 

functions of series and parallel systems were compared to that of their components in 
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terms of change point, under the assumption that components have UBMRL. It was 

shown that the change point of the MRL for series systems is located after the change 

point for single components; but for parallel systems, the change point for systems 

precedes that for its components. Furthermore, it was found that the difference in the 

positions of the change points between systems and components increases with the 

number of components. In addition, the MRL of parallel systems with two non-

identical components was briefly and graphically studied. We found that the change 

point of the MRL for such parallel systems tends to be prior to the larger change point 

for components, and seems to approach the smaller change point for components 

when the difference between the reliability of two components is relatively great. 

7.2  Possible future research 

As pointed out in the previous section, a suitable and simple function was chosen for 

the derivative of the UBMRL in constructing parametric models. To extend the model, 

further research should be carried out to study the derivation of more complicated 

MRL, such as roller-coaster shaped MRL, because the study of this type of MRL is 

another interesting and meaningful topic. Similar to the general framework discussed 

in this work, it should be also a worthwhile endeavor to study reliability models with 

more complicated MRL by considering the derivative of the MRL in a general way.  

Also, the regression method used to estimate model parameters based on the 

MRL function needs further investigation. The empirical MRL at a certain point of 

time depends on only the failure data larger than the time point. So this indicates that 

the empirical MRL for larger failure time would suffer greater variance due to fewer 
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available data, and thus may significantly influence the regression result and introduce 

more error.  More endeavors should be made to control the affect of large variance 

that occurs at large failure time. One possible way to reduce the affect of variance is to 

directly remove the empirical MRL at last several data points. The optimization of the 

number and the procedure of dropping data points need an extensive study. Another 

possible solution is to take into account the empirical variance defined in Yang (1978), 

which is related to process theory. We may expect that confidence band could be 

established to give more information on the accuracy of the regression results.  

  In the nonparametric estimation in Type II censoring, this research focused 

on only the DMRL functions and did not provide any results on other types of the 

MRL, such as the increasing MRL. This is because the DMRL is the most common 

one in practice. But it will be helpful if the IMRL functions can be estimated in a 

nonparametric way, since the combined work, including the estimation of both the 

decreasing and the increasing MRL, would benefit the estimation of the MRL with 

complex shapes. Another useful extension is to discuss other censoring types, such as 

Type I censoring, or to consider truncation cases. For Type I censoring, the main idea 

could be similar and may need only some small modification. To deal with left 

truncation, we may artificially generate some failure data before the truncated time 

based on those observed failure times, so that the empirical MRL function could be 

directly apply to the data set that are composed of the truncated real data and the 

artificially generated data. 

Another estimation approach for the MRL regardless of underlying 

distributions is to utilize data transformation method. Many transformation functions 
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has been proposed in literature, and the most famous one is the Box-Cox power 

transformation 
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It is known that the Box-Cox transformation could approximate data to normal 

distribution. Hence, we could estimate the MRL function by using the transformation 

function and the normal distribution. Given failure data, a feasible method may be as 

follows: (1) first transform failure data by the transformation function above, and treat 

λ  as unknown parameters as well as mean and variance for normal distribution, i.e. 

μ  and σ ; (2) use failure data to estimate the three parameters by MLE; (3) calculate 

and the MRL function for the normal distribution and transform it back to the MRL 

for original distribution. As shown in Yang & Tsui (2004), extra variance would be 

introduced due to the unknown parameter λ . So accuracy analysis of this method 

may be needed, as well as a comparison study between this method and other existing 

methods. 

For the bounds of the failure rate function, only monotonic MRL class is 

considered in this thesis. A further research may extend the results to more general 

MRL classes by properly combining the DMRL and IMRL cases. Moreover, since the 

proposed method is shown to be robust by the graphical sensitivity analysis, it would 

be helpful to explore the underlying mechanism of the robustness of the method.  

Another interesting topic is mixture, as this is an important phenomenon in 

reliability engineering. For example, a population that involves normal and inferior 
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products can be described by a mixture. In literature, there are known results 

concerning the behaviors of the failure rate functions under mixture. Because of the 

importance of the MRL, it will be helpful to study the effect of mixture on the MRL, 

as well as the relationship between mixtures on the failure rate function and on the 

MRL function. 

  This thesis is mainly about analysis and reliability modeling based on MRL. 

The studies presented in the first few chapters all deal with the MRL function of 

single items, and only Chapter 6 proved some results on the MRL of series and 

parallel systems. Since a system is a collection of components, we can treat the MRL 

of systems as a concept extended from the MRL of single items. Therefore, it should 

be very meaningful to conduct an in-depth study on the MRL of systems by applying 

the theories about the MRL of single items in this research to systems. 

Following the topic in Chapter 6, it may be of great interest to study different 

kinds of systems that are composed of different kinds of components. We could 

generalize series and parallel systems studies to k-out-of-n systems. The “independent 

and identically distributed” assumptions for components also could be released by 

introducing dependence between components or assuming each component subject to 

different probability distributions. Furthermore, crossing properties of the MRL could 

be discussed. Suppose that the MRL functions of two components are crossed at a 

certain point in time. We may be curious about whether series and parallel structures 

would change the crossing point by some regulations, which might be related to the 

theorems proved in Chapter 6. 

In addition, as shown in the scope, this thesis focuses on univariate and 
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continuous MRL function, because the lifetime of an item, either human beings or 

components, is often considered to be continuous. But in practice, when 

measurements are taken at discrete time, discrete distribution will give better 

modeling, analysis and interpretation. For example, the crack of a dam is always 

measured for every fixed duration of operation. The reliability of software may be 

indexed by the number of failures during a certain period of time. In these cases, 

discrete distributions are more useful. Therefore, to conduct an analysis and study on 

discrete MRL function would also of great importance in reliability field.  

Recently, residual life distribution is defined and predicted based on 

degradation models that utilizes degradation-based sensory signals; see Gebraeel et al. 

(2009) for example. The fast development of this research topic attributes to the 

immense technology improvement, which results in the production of highly reliable 

items whose failure is often hardly to be observed. Hence, in order to obtain 

information on the failure time of such types of items, some degradation-based 

sensory signals are selected and used to detect the degradation process of the highly 

reliable items and measure their failure times indirectly. For example, the fatigue 

crack-size of the alloy and the lumen could be used as signals to describe the 

degradation of a fluorescent light bulb. In literature, most papers assume Wiener 

process as the underlying process. But some real study implies that gamma process 

seems to be able to provide a better description. So this gives a guideline for a further 

topic of the development of residual life and MRL based on gamma process.
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