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Abstract

Face image appearance may change due to a variety of factors (or modes)

such as the person’s identity, lighting condition and expression. We pro-

pose a method for representing these appearance changes as a mixture

of different modes in different subspaces. These subspaces are simulta-

neously extracted in the following manner: we first transform the data

to the whitened space and then perform Fisher Discriminant Analysis

(FDA) to find mutually orthogonal discriminant subspaces for different

modes based on their respective labeling information. The proposed

method could be used for dimension reduction and face recognition.

To validate the effectiveness of the method, we have tested it on the

Multi-PIE database. Experiment results of dimension reduction show

satisfactory visual quality and those of face recognition show superior

performance compared to PCA and LDA.
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Chapter 1

Introduction

1.1 Overview

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Illustration of different modes of facial image variation. (a) (b) (c)
Variation of person identity. (d) (e) (f) Variation of expression. (g) (h) (i) Variation
of illumination condition.

1



CHAPTER 1. Introduction

Face images are generated by the interaction of multiple factors (or modes)

related to the person’s identity, illumination condition, expression, and viewpoint,

etc. Figure 1.1 shows some examples of face images with multiple variation modes.

In real-life applications, we are often more interested in one particular factor

than others. For example, a face recognition system needs to recognize a person’s

identity regardless of his/her expression or pose; a lip-reader will concentrate only

on the expression; in face image synthesis, we wish to be able to modify certain

factors of the face images (e.g. expression, lighting) while keeping the others

invariant (e.g. identity). The understanding of how these different factors affect

the appearance of a face image, and the relationships between them, is thus critical.

Particularly, we are interested in (but not restricted to) the following issues:

• Given a face image, can we identify the components of the image correspond-

ing to different variation modes?

• Can we extract these components separately?

• Are these components independent among them?

These issues are clearly related but also have subtle differences. The first one

is mainly concerned with understanding the face images, e.g. the main causes

for appearance variation and the corresponding components embedded in the

face images. A typical application scenario is face recognition, where we are

interested in identifying the component of a face image which reflects the person’s

identity. The second issue goes one level higher: we are not only interested in

identifying these variation components, we wish to extract them separately; this

implicitly requires that these components have no overlapping regions and are

indeed separable. The third issue imposes more constraints than the previous one:

if the different variation components can indeed be extracted separately, we ask

whether these components are independent among them. We are interested in this

issue because only when this condition is satisfied can we manipulate the different

components separately without affecting the others. For example, in face image

synthesis, we may wish to be able to manipulate the expression and illumination

condition of a face image without changing the person’s identity.

2



CHAPTER 1. Introduction

To date, there is no consensus regarding answers to the above questions. The

main reason is that there is no general understanding of how the face space1 looks

like and most of the time, the above issues have been approached in an application-

oriented manner. Numerous algorithms have been proposed to better understand

the variation of the face images subject to various factors and their effectiveness

varies in different application scenarios. Eigenface [27, 28] finds principal components

(PCs) with different weights (or energy) to represent face images efficiently. The PCs

are uncorrelated, but there is no information regarding the variation factor associated

with each PC, thus none of the issues above are answered. Fisherface [2] extracts

discriminant subspaces for face recognition; it only considers the variation factor of

person identity, and aims to project all other types of variation out of the discriminant

subspaces, thus providing a partial answer to the first two issues above. Costen et

al. [8] attempt to find functional face subspaces, each containing information

regarding a certain variation factor, but there are overlapping regions among these

face subspaces, thus fail to address the second and third issues. TensorFace [29,

30, 31, 32] successfully extracts the face subspaces of the different variation factors

using multi-linear algebra, but avoids to discuss the inherent separability and

independence of these factors explicitly, thus the third issue remains.

1.2 Our Approach

Figure 1.2 illustrates the analysis framework of the thesis. Firstly, we whiten the

data set to decorrelate the axes of the vectors represented by the face images. Sec-

ondly, analysis is carried out in the whitened space2, and subspaces which purely

contains information of a given mode are extracted based on labeling information

of the specific mode. These extracted subspaces which contain information of dif-

ferent variation modes constitute the Subspace of interest in the whitened data

space. Particularly, face recognition can be carried out by studying projections of

the images onto the subspace which contains information regarding the people’s

1The space spanned by all the face images with all possible variation modes, including the
person’s identity, expression, illumination and pose. Attempts of studying this space can be found
at [25, 34].

2As will be defined in Section 3.2.

3



CHAPTER 1. Introduction

Figure 1.2: Illustration of the analysis framework of the thesis.

identity. A dimension reduction procedure can be performed by projecting the

face images onto the Subspace of interest and reconstructing them using only the

basis of that subspace. Finally, the Subspace of interest in the whitened data space

is reverse-whitened to be mapped back to the original data space; similarly for

the reconstructed face images. The reverse-whitened face images in the original

data space can then be used as the reconstructed face images. Figure 1.3 shows an

example of a reconstructed image using (reverse-whitened) orthogonal variation

components in the whitened data space.

The whitened space is decomposed3 into orthogonal subspaces in the following

form:

D = Upeople ⊕Uillumination ⊕Uexpression ⊕ · · · ⊕R (1.1)

where D denotes the whitened data space, U denotes the subspaces of different

3As we shall see in Section 4.3, the decomposition holds under certain assumptions, which are
usually satisfied in applications related to face images.

4



CHAPTER 1. Introduction

(a) Original Image (b) Person identity

component

(c) Illumination com-

ponent

(d) Expression compo-

nent

(e) Reconstructed im-

age using the three com-

ponents

Figure 1.3: Illustration of face image reconstruction using our method.

modes, R denotes the subspace containing information which have not yet been

captured, and⊕denotes an orthogonal direct sum4 of the subspaces (thus there is no

overlapping region and they are uncorrelated). The orthogonal direct sum of differ-

ent U constitutes, in the fact, the Subspace of interest. The orthogonal decomposition

in the whitened data space corresponds to in fact an oblique decomposition in the

original data space, as demonstrated in Section 3.2.5. This implies that even if the

components corresponding to different variation modes are inherently correlated,

we could still find an uncorrelated embedding in the whitened space.

Our method, in fact, combines ideas from several existing approaches. Firstly,

our approach is based on the Fisher Discriminant Analysis (FDA), and the extracted

subspace of a particular mode is the most discriminating subspace for the mode.

Secondly, our analysis is carried out in the whitened data space , in which the axes

are uncorrelated (as in PCA) and normalized in inverse proportion to their covari-

ance (as in AAM functional face subspaces). This data space has shown desirable

properties in face recognition as studied in [36]. Finally, our method is similar to

Tensorfaces in that we achieve a clean decomposition of face images into several

subspaces characterized by the corresponding variation mode (with an additional

residual term). Our method constructs the mutually orthogonal subspaces in the

whitened space, regardless of their correlation in the original subspace (where most

probably they are highly correlated), unlike TensorFaces which implicitly embed the

assumption of uncorrelatedness in their representation.

4If a space S is written as the direct sum of subspaces S1, . . . ,Sn, then we have S = S1 + · · · + S2,
and Si

⋂
S j = ∅ for i , j. The direct sum is orthogonal if Si ⊥ S j for i , j.

5



CHAPTER 1. Introduction

1.3 Contributions and Applications

The thesis is built upon, consolidates and reformulates previous (published and un-

published) works in [35, 36, 37, 38, 39] and proposes an analysis framework for the

study of face image variations. More specifically, our approach can extract different

variation components of face images separately, which improves understanding of

face images and allows easy manipulation of image appearance.

As indicated in Figure 1.1, our method could easily be applied to face recogni-

tion, dimension reduction and face image synthesis5.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 is a literature survey

on related works in the fields of face recognition and dimension reduction. Chapter

3 provides the mathematical background of some terms and algorithms which will

be used frequently in later chapters. Chapter 4 lays the theoretical foundation for

the development of our method, which is critical for the understanding for later

chapters. Chapter 5 is the core of the theoretical development of our method.

Chapter 6 demonstrates the strengths of our method in two domains: face image

decomposition and face recognition. Finally, Chapter 7 concludes the thesis.

1.5 Notations

For the convenience of presentation, we shall use the same notation system in this

thesis. Scalar variables will be denoted using uppercase or lowercase italicized

letters, such as D, N, rt; vectors will be denoted using lowercase boldface letters,

such as x, m; matrices will be denoted using uppercase boldface letters, such as S,

A. Table 1.1 provides a list of the description of the symbols used in this thesis.

5The application to face synthesis is not discussed in this thesis.

6



CHAPTER 1. Introduction

Table 1.1: Notations
Notation Description

N Number of data points

D Dimension of the original data space

Li Set of data points belonging to Class i

St, Sb, Sw Total, between-class, within-class scatter matrices

S̃t, S̃b, S̃w Whitened total, between-class, within-class scatter ma-
trices

Ht, Hb, Hw Total, between-class, within-class precursor matrices

H̃t, H̃b, H̃w Whitened total, between-class, within-class precursor
matrices

rt Rank of original total scatter matrix

rw Rank of original within-class scatter matrix

rb Rank of original between-class scatter matrix

a Original data point

m Centroid of data

mi Centroid of data points belonging to Class i

1 Vector with all ones

0 Vector with all zeros

A Matrix whose columns are data points

U Eigenvector matrix

D Eigenvalue matrix

Mp Labeling matrix whose columns denote the class labels
of corresponding data points

V1 Eigenvector matrix for the Identity Space

V3 Eigenvector matrix for the Variation Space

P Final projection matrix of an algorithm

7



Chapter 2

Literature Survey

2.1 Face Recognition Algorithms

The past thirty years has been a prolific period for research on face recognition. A

wide range of machine learning techniques have been proposed and experimented

for this application. In this section, two categories of algorithms are reviewed:

subspace-based (Section 2.1.1 to 2.1.5) and template-based algorithms (Section 2.1.6

and 2.1.7).

In the first category, face image are treated as vectors of pixel intensities which

lie on a high-dimensional space, and statistical modeling is used to project these

vectors to lower-dimensional subspaces which contain information for classifica-

tion. Face recognition is then performed in these subspaces. In the second category,

face images are characterized by a certain template and a set of parameters and

face recognition is performed based on the parameters.

2.1.1 Eigenface

Turk and Pentland [27] proposes to use Principal Component Analysis (PCA) to

reduce the dimension of face image vectors and to represent them using only

a small number of principal components, called Eigenfaces. The technique of

PCA suggests a compact representation of high-dimensional data by perform-

ing a dimensionality-reducing linear projection that maximizes the scatter of data

samples. This feature is naturally appealing for appearance-based face recognition

8



CHAPTER 2. Literature Survey

which compares 2D faces pixel-wise and treats them as high-dimensional vectors.

It is also widely used as a preprocessing tool to perform dimensionality reduction

prior to classification analysis.

The mathematical formulation of PCA is the following. Let column vectors

{xi}(i=1..N) denote the image vectors from the gallery, which make up the columns of

data matrix X i.e. X = [x1x2 · · · xN]. Let m denote the mean of {xi}, i.e. m = 1
N

∑N
i=1 xi.

The scatter matrix of X is defined by

SX =

N∑

i=1

(xi −m)(xi −m)⊤ (2.1)

Then we seek a projection transformation matrix W such that the scatter of the

transformed data (y = W⊤(x − m)) is maximized. Thus we have the following

criterion function:

W = arg max
|W|=1
|SY|

= arg max
|w|=1
|W⊤SXW| (2.2)

It can be shown that the solution of Equation 2.2 are in fact the matrix consisting

of the eigenvectors of SX, which can be found by diagonalizing SX
1:

SX = UDU⊤

Here U is an orthogonal matrix consisting of the eigenvectors of C, and D is

a diagonal matrix consisting of corresponding eigenvalues. The eigenvalues are

non-negative and sorted in decreasing order.

Thus the projection matrix W is:

W = [u1u2 · · ·uk] (2.3)

where u j ( j = 1, . . . , k) are the first k columns of U which contain the most energy2.

1SX is a real symmetric matrix, so it is always diagonaliable
2The energy of an eigenvector is measured by the corresponding eigenvalue.

9



CHAPTER 2. Literature Survey

The low-dimensional representation of X is:

Y =W⊤(X −M) (2.4)

where M = [m · · ·m] is the matrix whose columns consist of the mean of X. And

given a low-dimensional representation, the reconstruction (i.e. the mapping to

the original data space) is the following formula:

X =WY +M (2.5)

Figure 2.1 shows examples of seven eigenfaces constructed from 15 face images

of the publicly available Yale Face Database3.

Two important properties of PCA need to be highlighted:

• Minimum Squared Error. PCA has the minimum mean squared reconstruc-

tion error among all linear transformations4. More precisely, for any linear

transformation Ŵ, the mean squared reconstruction error is always greater

than or equal to that of PCA, i.e.

E[||ǫŴ||2] ≥ E[||ǫPCA||2] (2.6)

• Decorrelation. Since the covariance matrix of Y is diagonal by construction,

any two different elements yi,y j(i , j) are uncorrelated. That means mutual

correlation between any two samples in X is removed by the projection.

Although PCA provides the best low-dimensional approximation of the original

data, it is not optimal for classification since it does not make use of any class

information. However, Eigenface has inspired many researchers and acted as the

basis of many methods. It is often used as a benchmark for comparison purpose.

3http://cvc.yale.edu/projects/yalefaces/yalefaces.html
4A linear transformation P may not necessarily be a projection, characterized by P2 = P. We

shall see such an example in later chapters: the whitening transform described in Section 3.2 is a
linear transform which is not a projection.

10
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eignface 1 eignface 2 eignface 3 eignface 4

eignface 5 eignface 6 eignface 7 mean face

Figure 2.1: Seven eigenfaces constructed from 15 face images in Yale Face Database.
They are ordered in decreasing order of their eigen-energy. The last image is the
mean face.

2.1.2 Fisherface

Belhumeur et al. [2] propose to use Fisher Discriminant Analysis (FDA) to perform

face recognition. FDA belongs to a more general type of methods, Linear Discrim-

inant Analysis (LDA), which aims to find a projection direction to best separate the

classes. More specifically, FDA uses the Fisher Criterion as the objective function

which measures the degree of separation between classes .

The mathematical formulation is the following: each gallery image is denoted

by a vector xi (i = 1, 2, . . . ,N), each belonging to exact one class L j ( j = 1, . . . ,C).

The number of data samples in Class L j is denoted by N j. Obviously, N =
∑c

i=1 Ni.

The mean of class L j is denoted by m j i.e. m j =
1

N j

∑
xi∈L j

xi. The mean of all data

11
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m = 1
N

∑N
i=1 xi. The between-class scatter matrix Sb and the within-class scatter

matrix Sw are defined by

Sb =

c∑

i=1

ni(mi −m)(mi −m)T (2.7)

Sw =

c∑

i=1

∑

x∈Li

(x − xi)(x −mi)
T (2.8)

The objective function of FDA is the following:

W = arg max
|W|=1

|W⊤SbW|
|W⊤SwW|

Equation 2.1.2 can be interpreted as maximizing the between-class scatter of the

projected samples (the numerator) and while minimizing the within-class scatter

(the denominator).

It can be shown that under certain conditions5, the column vectors of the solution

to Equation 2.1.2 are in fact solutions to the following equation:

S−1
w Sbw = λw (2.9)

i.e. w is an eigenvector of S−1
w Sb, and λ is the corresponding eigenvalue.

In practice, there are two common shortcomings of FDA:

• The Small Size Size problem (SSS) [16]. When the number of training samples

are small compared to the dimension, the scatter matrices (particularly Sw)

would be singular and Equation 2.9 would be ill defined.

• The Overfitting problem. Empirically FDA has shown to be very sensitive to

the sampling power of the training data, and if the underlying distribution

of the whole data space is very different from that of the training data, FDA

would very probably perform badly.

5Particularly, the non-singularity of Sw
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Table 2.1: Comparison of PCA and LDA w.r.t common classification issues
Method Objective

Function
Representation

Ability
Discrimination

Ability
Over-
fitting

problem

Sensitivity
to sample

size

PCA arg max
|W|=1

|W⊤StW| Optimal Sub-optimal No No

LDA arg max
|W|=1

|W⊤SbW|
|W⊤SwW| N.A. Optimal Yes Yes

Comparison: Eigenface vs Fisherface While FDA seeks a transformation matrix

to maximize the ratio between the between-class scatter and within-class scatter,

PCA seeks a transformation matrix maximizing the total scatter of projected data

(which is the sum of between-class scatter and within-class scatter).

It is generally believed that for face recognition, algorithms based on LDA are

superior to those based on PCA. However, [21] shows that PCA could outperform

LDA when the training data set is small and that PCA is less sensitive to whether

the training set samples well the underlying distribution.

Table 2.1 provides a summary of the relative strengths and weaknesses of PCA

and LDA.

2.1.3 FFKT

Zhang and Sim [35, 36] proposes to perform FDA in the whitened data space, in

which the Fisher Criterion can be easily evaluated. They also show that by working

in the whitened data space, many previous discriminant subspace algorithms (such

as PCA + Null Space) can be analyzed in a unifying framework.

As this technique is intimately related to the theory of this thesis, we shall the

delay the detailed explanation to Chapter 4.

2.1.4 Tensorface

Vasilescu and Terzopoulos [29, 30, 31]propose to model face images within the

framework of multi-linear algebra. Multi-linear algebra is a high-order gener-

alization of linear algebra. Correspondingly, the basic element is the tensor, a

generalization of vectors (1st order tensor) and matrices (2nd order tensor), in which

points are indexed by N parameters. Vasilescu and Terzopoulos proposes to model

13
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the ensembles of face images by an N−mode tensor, in which each mode corre-

sponds to a particular attribute of the face image (e.g. person identity, expression,

etc). For example, a face image is uniquely determined, given the person’s iden-

tity, expression, lighting conditions, etc. The Singular Value Decomposition (SVD)

for matrices also admit a generalized version for tensors, called the N − mode

SVD, which orthogonalizes the N mode spaces6 and decomposes the tensor as the

Mode −N product of N orthogonal spaces, as follows:

D = Z×1U1 ×2U2 · · · ×NUN (2.10)

This operation enables

• Dimension reduction The truncation of insignificant components ofUi gives

a reduced model of the data set (although this is not optimal unlike the matrix-

SVD case).

• Independent manipulation of coefficients of different modes This is because

the Ui are mutually orthogonal after the N − mode SVD. This property is

particularly useful for applications such as face image synthesis and face

expression transfer.

2.1.5 Kernel Methods

As an attempt to circumvent the limitation of linear methods in a non-linear data

space, kernel methods (typically KPCA [22, 40] or KLDA[1, 20, 33] have been pro-

posed to uncover the nonlinear structure embedded in the data space of face images.

This is done by computing the higher order statistics, instead of relying on second-

order statistics as linear methods do. More specifically, the data are mapped to

a (usually high-dimensional) feature space and the inner product of points in the

feature space is defined by a certain kernel function of points in the original data

space. Once the inner product is defined, PCA or LDA can then be performed

on the feature space without explicitly knowing the kernel functions. Common

kernels include Gaussian, polynomial and Sigmoid functions.

6As we shall see in later chapters, the statistical interpretation of orthogonalization in linear
algebra is decorrelation.
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Table 2.2: Comparison of linear and kernel methods
Method Information used Sensitivity of

performance to
parameters/kernels

Reconstruction Interpretabil-
ity

Linear First two moment
statistics

No Easy Easy

Kernel High-Order-Statistics
(HOS)

Yes Hard Hard

Kernel methods can be seen as a generalization of existing linear modeling

methods in that different kernels may be applied to represent different structure

of the underlying space. PCA and LDA are special cases of kernel methods when

the kernel is chosen to be the first-order polynomial. However, as the underlying

structure of the space of face images is still unknown, the proper choice of the

kernel function and corresponding parameters for face image modeling remains

unknown and can only be tested and decided empirically. For applications such as

face recognition, the performance of kernel methods are in general very sensitive

to the choice of kernel functions and parameters. Huang et al. [15] discuss about

optimal choices of the kernel parameters.

Unlike appearance-based modeling, template-based modeling methods char-

acterize face images using a certain template model, and a set of parameters. Thus

within each model, a face image is uniquely determined once given the set of

parameters.

2.1.6 AAM

An active appearance model (AAM) [6, 7] is a statistical model which consists of a

shape model and a gray-level appearance model. The AAM is constructed from a

set of exemplar training images with labeled landmark points.

The shape model is computed by applying PCA on all the shape data (points

coordinates), and the appearance model is built by applying another PCA on the

sampled grey-level values of the interested region (area surrounded by the marked

points). Then a united model is constructed by applying PCA to the concatenation

of the shape model parameters and the appearance model parameters. A face image

is thus uniquely determined given a the AAM parameters and new images can be
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Figure 2.2: Illustration of AAM construction. Figure extracted from [14].

synthesized by specifying the parameter values. Figure 2.2 shows the procedure

of AAM model building.

To represent a given face image, an iterative search is used to obtain an optimal

AAM parameter which minimizes the error between the given image and the

one synthesized by AAM. From a certain starting point (usually the mean shape

and mean appearance), the parameters are refined iteratively until convergence.

This procedure assumes implicitly that the given image can be written as a linear

combination of those in the database in terms of their shape coordinates and texture

values. This requires a large training data set which is representative of face images

that the model is likely to encounter. In [7], a training set of 400 images of faces is

used to construct the AAM. Each image in the set is labeled with 122 points. The

generated shape model is consisted of 23 parameters and appearance model 113

parameters. The final AAM has 80 parameters. Once a given face image is properly

represented, face recognition could be performed on the AAM parameters using

classification methods such as LDA.

Costen et al. ([8]) further attempts to study the facial variation subspaces within

the space defined by AAM. They apply an iterative algorithm to find functional

face subspaces which span sets of faces which vary in different ways.
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Table 2.3: Comparison of subspace-based and template-based algorithms
Algorithms Pros Cons

Subspace-
based

• Implementation is straight-
forward

• Time and space complexities are
relatively low

• Size of training data set is scal-
able

• Performance deteriorates if train-
ing data set samples badly the
underlying distribution

• Performance deteriorates if as-
sumptions regarding the under-
lying distribution fail

• Sensitive to registration errors

Template-
based

• Make use of domain knowledge

• Face synthesis is easy

• (Much) Manual marking is
needed

• Training data set has to be suffi-
ciently big

• Time and space complexities are
high

2.1.7 3D Morphable Model

The 3D morphable model is the 3D counterpart of the 2D AAM and is created using

a 3D face database of laser scans([3, 4, 5]). It consists of a shape model, built upon

the 3D coordinates on the face surface, and a texture model, built upon the color

values of every 3D point. Given a new face image, the model fitting process is a

2D-to-3D fitting, thus additional rendering parameters need to be included in the

model. A particular advantage of the method is that it allows easier and more

flexible modeling and manipulation of pose and illumination variations of faces

compared with 2D models.

2.2 Dimension Reduction Algorithms

The problem of dimensionality reduction regularly arise in the fields of science and

engineering, when there are large volumes of high-dimensional data. There are in

general two objectives for performing dimension reduction:
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• Reduce space storage

• Facilitate understanding and visualization of the (potentially complex) data

structure

The two objectives are related in that they both involve a mapping from a high-

dimensional (high-dim) space to a low-dimensional (low-dim) one. However, they

differ on a very important ground. The emphasis of the former is on reconstruction

but not representation: it requires that the original data vectors could be (faithfully)

reconstructed from the low-dim mapping, and is not concerned with how well the

low-dim mapping represent the original data structure. In contrast, the emphasis

of the later is on representation rather than reconstruction: it seeks a low-dim

representation to uncover the embedded structure hidden in the high-dimensional

observations, but does not requires reconstruction. In other words, reconstruction

(the first objective) requires an additional mapping from the low-dim space to the

original high-dim one, whereas representation does not; representation (the second

objective) requires that the internal structure of the original data distribution be

maximally preserved in the low-dim space, whereas reconstruction does not.

Different algorithms have been proposed to cater for different objectives. Subspace-

based modeling, a population technique for reconstruction-oriented dimension re-

duction, is discussed in Section 2.2.1. Manifold learning which is population for

representation-oriented dimension reduction, is discussed in Section 2.2.2, 2.2.3 and

2.2.4.

2.2.1 PCA

PCA has been discussed is Section 2.1.1 as a face recognition technique. However, as

also noted in Section 2.1.1, PCA is optimal for representation but not classification.

2.2.2 MDS

Multidimensional Scaling (MDS) [9] covers a variety of techniques in the area of

multivariate data analysis. In manifold learning for face images, we are mainly

interested in one of them: classical MDS, which is a metric-based technique which
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aims to uncover the embedded structure hidden in the high-dim observations

based on interpoint distances. More precisely, it seeks a low-dim mapping so

that Euclidean distances in the low-dim space best preserve the original interpoint

distances.

Mathematically9, given a distance matrix10 DX of the high-dim vectors X, MDS

seeks a low-dim data matrix Y which minimizes the cost function

Y = arg min‖τ(DX) − τ(DY)‖L2 (2.11)

where DY denotes the matrix of Euclidean distances of vectors in Y and the τ

operator converts distances to inner products and is defined by τ(D) = −HSH
2

, with

S being the matrix of squared distances and H is the “centering matrix”.

It is proved in [34] that MDS is equivalent to PCA when the distance metric in

the original high-dim space is Euclidean. In that case, the solution to Equation 2.11

is in fact the principal component scores of PCA.

2.2.3 Isomap

Isomap [26] builds upon classical MDS using the geodesic, or shortest-path, distance

as the distance metric for the high-dim vectors. It consists of three steps:

• For each point, determine its neighborhood points on the manifold and rep-

resent the relations in a weighted graph,

• Estimate the geodesic distances between all pairs of points by computing

their shortest path distances in the weighted graph,

• Apply classical MDS to matrix of geodesic distances to get a low-dim repre-

sentation.

In sum Isomap seeks to capture the intrinsic geometry of the data by computing

the geodesic manifold distances and then uses MDS to find a low-dim mapping to

preserve this geometric structure. Since it is built upon geodesic manifold distances,

MDS is capable of uncovering nonlinear structures hidden in the high-dim space.

9The mathematical formulation here is based upon that in [26].
10i.e. DX(i, j) = ‖xi − x j‖F, where F denotes a certain distance metric, such as Euclidean distance.
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Table 2.4: Comparison of subspace-based modeling and manifold learning
Approaches Pros Cons

Subspace-
based
Modeling

• Computation is efficient

• Reconstruction is easy

• Uncover statistical relationships
among data points

• Assumptions about the underly-
ing structure of data may not be
true

Manifold
learning

• Uncover the embedded nonlin-
ear structure

• Cannot reconstruct samples
based on low-dim mapping

• Need sufficient samples to cor-
rectly model the structure

2.2.4 LLE

Locally Linear Embedding (LLE) finds a low-dim mapping that best preserves the

local neighborhood of each point. More specifically, LLE consists of three steps:

• For each point, determine its neighborhood,

• Compute the weights that best reconstruct each point as a linear combination

of its neighboring points,

• Compute the low-dim embedding vectors best reconstructed by the weights.

In sum Isomap seeks to capture the intrinsic geometry of the data using local

neighborhoods and these overlapping local neighborhoods collectively provide

information for the global geometry. Since it is built upon local neighborhoods,

MDS is also capable of uncovering nonlinear structures hidden in the high-dim

space.

2.2.5 Discussion

Table 2.4 summarizes the strengths and weaknesses of the two categories of meth-

ods discussed in this section.
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2.3 Summary

Table 2.5 summarizes the algorithms reviewed in this section in terms of their

applications. For comparison purposes, we have also listed our method MMDA in

the table.

We have used three suitability levels to describe the application of different

algorithms to different tasks: Good, Acceptable, Poor. By Good, we mean that either

the method has been specifically designed for a certain application, or the method

has shown empirically satisfactory performance. By Acceptable, we mean that

the method was not designed for, but can be applied to a certain task, and the

performance is acceptable but not optimal. By Poor, we mean that the method has

not been designed for the task and is rarely used for that particular task.

For the task of classification, appearance-based methods LDA and FFKT and

template-based methods AAM and 3D MM have generally shown reasonably good

performance. However, we note that it would not be fair to compare the per-

formance of appearance-based and template-based methods since they different

inputs and have different time complexities. PCA was initially designed for data

representation and not classification, but it is now wildly used in the face recogni-

tion literature and has become a benchmark in the field. There has been extensive

research of the application of Kernel PCA and Kernel LDA to face recognition, but

the performance is largely dependent on the choice of kernel functions and param-

eters. Both Isomap and LLE have been tested for face recognition, but these attempts

have mostly been exploratory.

For the task of dimension reduction, PCA has been proved to provide the best

lower-dimensional representation in terms of RMSE11 among all linear transforma-

tions and it is natural to do reconstruction with PCA since it is simply an orthogonal

projection. Manifold methods MDS, Isomap and LLE have mainly been designed

to visualize the structure of the data (i.e. for representation), but reconstruction is

not straight-forward since the mapping is nonlinear. Tensorface and MMDA have

shown reasonably good performance for image representation and reconstruction

is straight-forward since they use multi-linear or linear representation. Finally,

LDA, FFKT and Kernel PCA/LDA are rarely used for dimension reduction.

11I.e., root mean square error
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We have used two levels to denote the relative complexities of different methods.

Tensorface, AAM and 3D MM require optimization procedures and are much more

time-consuming compared to other methods, of which the implementation is rather

straight-forward.

By comparison, we see that our method MMDA allows a good compromise

between different tasks and time complexity.
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Table 2.5: Summary of algorithms and their suitability for different tasks

Algorithms Suitability for Classification
Suitability for Dimension Reduction Time
Representation Reconstruction Complexity

Appearance-based
Subspace

PCA Acceptable Poor Poor Low
LDA Good Poor Poor Low
FFKT Good Poor Poor Low

KPCA/KLDA Acceptable Poor Poor Low
TensorFace Acceptable Acceptable Acceptable High

MMDA Good Acceptable Acceptable Low

Manifold
MDS Poor Good Poor Low

Isomap Poor Good Poor Low
LLE Poor Good Poor Low

Template-based
AAM Acceptable Poor Poor High

3D MM Acceptable Poor Poor High

2
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Chapter 3

Basic Concepts

3.1 Scatter matrices and Precursor matrices

3.1.1 Definition

Let A = {a1, . . . , aN}, ai ∈ RD denote a data set of given D-dimensional vectors. Each

vector belongs to exactly one of the C classes {L1, . . . ,LC}. The number of vectors

in class Li is denoted by Ni, thus we have N =
∑C

i=1 Ni. The between-class scatter

matrix Sb ∈ RD×D, the within class scatter matrix Sw ∈ RD×D and the total scatter

matrix St ∈ RD×D are defined as follows:

St =

N∑

i=1

(ai −m)(ai −m)⊤ = HtH
⊤
t (3.1)

Sb =

C∑

i=1

Ni(mi −m)(mi −m)⊤ = HbH
⊤
b (3.2)

Sw =

C∑

i=1

Si
w =

C∑

i=1

∑

a∈Li

(ai −mi)(ai −mi)
⊤ = HwH⊤w (3.3)

where Si
w denotes individual within-class scatter matrices, mi denotes the mean

of vectors in Class i and m is the global mean of A. The matrices Hb ∈ RD×C and

Hw ∈ RD×N, and Ht ∈ RD×N are the precursor matrices of the between-class scatter
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matrix, the within-class scatter matrix and the total scatter matrix respectively,

Hb = [
√

N1(m1 −m), . . . ,
√

NC(mC −m)], (3.4)

Hw = [A1 −m1 · 1⊤1 , . . . ,AC −mC · 1⊤C], (3.5)

Ht = [a1 −m, . . . , aN −m]. (3.6)

Here, 1i = (1, . . . , 1)⊤ ∈ RNi and Ai is the data matrix for class Li.

It can be easily proved that

St = Sb + Sw (3.7)

3.1.2 Rank

The rank of a matrix A is defined as the maximal number of linearly independent

columns of A. This is equivalent to say that the rank of a matrix is the dimension

of the space spanned by its column vectors. As we shall see throughout the thesis,

this quantity is of particular interest to us since it conveys information about the

dimensionality of a given set of data vectors.

For high-dimensional data (i.e. D > N), we have the following observations

with respect to the rank of scatter and precursor matrices1:

Rank(Sb) = Rank(Hb) ≤ C − 1 (3.8)

Rank(Sw) = Rank(Hw) ≤ N − C (3.9)

Rank(St) = Rank(Ht) ≤ N − 1 (3.10)

The proof is provided in Theorem A.4 in Appendix A.

Remark 3.1.1. For all the scatter and corresponding precursor matrices defined in 3.1.1,

we have Range(S) = Range(H) 2.

1For detailed proof, please refer to Appendix A.
2The range of matrix is defined as the space spanned by it columns.
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Using Equations 3.8 and 3.1, the proof is straight-forward and is omitted here.

We shall use the following notations throughout the thesis:

rb := Rank(Sb) (3.11)

rw := Rank(Sw) (3.12)

rt := Rank(St) (3.13)

with

rb ≤ C − 1 (3.14)

rw ≤ N − C (3.15)

rt ≤ N − 1 (3.16)

3.1.3 Efficient Eigen-Decomposition

Scatter matrices defined in 3.1.1 are all positive semi-definite, thus they always

yield an eigen-decomposition 3. More precisely, all scatter matrices can be written in

the form of

S = HH⊤ =
[
U U⊥

] 
D 0

0 0






U⊤

U⊤⊥


 = UDU⊤ (3.17)

where D is a diagonal matrix containing the positive4 eigenvalues of S, and U

and U⊥ are orthogonal matrices5 containing the eigenvectors of S.

For high dimensional data (i.e.,D ≫ N), the size S ∈ RD×D is huge, and the

computation of its eigen-decomposition is extremely resource-consuming. On the

other hand, a related matrix defined as

S̄ = H⊤H (3.18)

3which is closely related to the singular value decomposition of precursor matrices.
4All eigenvalues of S are non-negative because it is positive semi-definite.
5In thesis, we shall call a matrix orthogonal if its column vectors are orthogonal with each other,

although the mathematical definition for orthogonal matrix is much stricter.
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has a much smaller size and remains positive semi-definite. If there is a simple

link between the eigenvectors and eigenvalues of S and R, then S can be eigen-

decomposed much more efficiently. Remark 3.1.1 establishes this link.

Remark 3.1.1. x is an eigenvector of the matrix S = HH⊤ corresponding to a positive

eigenvalueλ > 0 if and only if H⊤x is an eigenvector of the matrix S̄ = H⊤H corresponding

to the same eigenvalue λ. If x is a unit vector, then H⊤x is of norm
√
λ.

Based on Remark 3.1.1, we could choose to diagonalize HH⊤ or H⊤H, whichever

is smaller. This would guarantee to find an orthogonal basis for Range(St), the space

we are mainly interested in.

3.2 Whitening Transform

3.2.1 Definition

If the total scatter matrix St is eigen-decomposed in the following manner:

St =
[
U U⊥

] 
D 0

0 0






U⊤

U⊤⊥


 (3.19)

where D is a diagonal matrix with positive decreasing eigenvalues of St, and

columns of U and U⊥ represent eigenvectors corresponding to positive and zero

eigenvalues, then the whitening transform is defined as:

P := UD−
1
2 (3.20)

The whitening transform is also called the Fukunaga-Koontz Transform (FKT) [12]

[17] in the context of binary classification problems. We shall use the term FKT to

denote the transform of Equation 3.20 when dealing with classification problems

in later chapters.

3.2.2 Interpretations

The whitening transform is composed of two procedures:
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• U rotates the coordinate system to decorrelate the axes, i.e. the new total

scatter matrix S̃t = P⊤S̃tS is a diagonal matrix. This procedure is exactly the

same as in PCA.

• D−
1
2 normalizes the axes so that each dimension has the same extent (or

weight) in the new coordinate system, i.e. the diagonal entries of the new

total scatter matrix are all equal S̃t = P⊤StP = I.

Similar to PCA, the whitening transform only decorrelates the axes (based on

second-order statistics), which means that the new axes are not necessarily inde-

pendent (with additional constraints on higher-order statistics) with each other.

However, it is proved that [10] if the sample vectors follow a normal distribution,

then the resulting axes are indeed independent with each other.

3.2.3 Algorithm

Algorithm 1 describes the whitening transform. The most expensive operations

involved are matrix multiplication and eigen-decomposition. Thus the time com-

plexity is O(DN2) or O(ND2) (whichever is smaller) and the space complexity is

O(DN).

Algorithm 1 Whitening transform of a given data matrix

Input: Data matrix A ∈ RD×N

Output: Whitened data matrix Ã ∈ Rrt×N.
1: Compute Ht of data matrix A.
2: Compute the eigenvector matrix U and eigenvalue matrix D for St based on

Remark 3.1.1 and compute the whitening transform P = UD−
1
2 .

3: Ã = (P)⊤A.

3.2.4 Reverse whitening

For Chapter 4 and 5, we whiten the given data matrix before carrying out the

analysis. Furthermore, we have to be able to transform the data from the whitened

data space back to the original space. This is easily done using the following

transform that we shall term as Reverse whitening:
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Q := UD
1
2 (3.21)

More precisely, a typical analysis framework in this thesis would be the follow-

ing. Given a data matrix A, we shall perform the following three procedures:

• Whiten the data using Ã = (P)⊤A, where P is defined in Equation 3.20 on

Page 27.

• Perform analysis on Ã to obtain ˆ̃A.

• Reverse-whiten the data using Â = Q ˆ̃A.

Â would be the final output of the analysis.

3.2.5 Decomposition and Reconstruction

The rest of the thesis is mainly concerned with the decomposition and reconstruc-

tion in the whitened data space. We shall demonstrate in this section that there is a

close relationship between the decomposition and reconstruction in the whitened

and original space.

Since the whitening transform is a full-ranked linear transform, there is a one-

to-one correspondence between the original data set and the whitened points.

Thus any decomposition and reconstruction in the whitened space has a corre-

sponding effect in the original space. A legitimate question to ask is whether the

decomposition and reconstruction in the whitened space can be carried forward

to the original space. In order to study this question, let’s firstly investigate the

relationship between the projections in the two spaces.

Figure 3.1 shows the effect of whitening and reverse-whitening procedures.

Figure 3.1(a) shows data points generated from a Gaussian distribution of zero

mean and a covariance matrix of [2,1;1,1]. Figure 3.1(b) shows whitened data points

after the whitening procedure. Figure 3.1(c) shows projections of the whitened

points onto two orthogonal directions. Figure 3.1(d) shows the effect of reverse-

whitening the projected points back to the original space.

Thus we have the following important remark:
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(a) (b) (c) (d)

Figure 3.1: illustration of the whitening and reverse-whitening procedures. (a)
Original data points following a Gaussian distribution. (b) Whitened data points
(c) Projections of whitened data points to two orthogonal directions. (d) Projections
reverse-whitened to the original data space.

Remark 3.2.1. Correspondence of Projections In general, an orthogonal projection in

the whitened data space corresponds to, in fact, an oblique projection in the original data

space.

Here, as well as in the rest of the thesis, we refer to projection in the strict linear-

algebra sense: a linear mapping P is a projection if and only if we have P2 = P.

Intuitively, this means that multiple actions of the operation result in the same

effect as one operation. A projection is orthogonal if and only if P = P⊤, otherwise

it is an oblique projection.

Mathematically, we could derive the projection formula as follows. If we denote

the whitening transform as W, the orthogonal projection in the whitened space as

V, the reverse-whitening transform as Wr, then the linear mapping is

P =WrVV⊤W⊤ (3.22)

= (UD
1
2 )VV⊤(UD−

1
2 )⊤ (3.23)

To verify whether P is a projection, we perform the following computations:

P2 = (UD
1
2 )VV⊤(UD−

1
2 )⊤(UD

1
2 )VV⊤(UD−

1
2 )⊤ (3.24)

= (UD
1
2 )VV⊤D−

1
2 U⊤UD

1
2 VV⊤(UD−

1
2 )⊤ (3.25)

= (UD
1
2 )VV⊤(UD−

1
2 )⊤ (3.26)

= P (3.27)
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Here we have used the fact that U⊤U = I and V⊤V = I, since both matrices are

orthogonal.

Therefore P is indeed a projection. Moreover, we could easily see that it is not

an orthogonal projection, since P⊤ , P.

Remark 3.2.1 implies that the decomposition and reconstruction are justified in

the original space. In fact, if we carry out the following three steps:

• Apply whitening transform to the dataset,

• Perform component extraction and dimension reduction in the whitened

space,

• Apply reverse whitening to project the points in the whitened space back to

the original space,

Then the component extraction and dimension reduction in the whitened space

correspond to the same operations in the original space, but through oblique pro-

jections (unlike orthogonal projections as in the whitened space).

Therefore, compared with Isomap or LLE which provide a good representation

of the nonlinear data structure but which do not allow easy reconstruction based

on the lower-dimensional representation, the method presented in this thesis could

naturally handle reconstruction.
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Chapter 4

Theoretical Foundation: Discriminant

Subspace Analysis

The content of this chapter is built upon [36, 37, 38].

A common approach to classification problems in a high-dimensional data space

is dimension reduction. By projecting the data to a lower-dimensional subspace,

we wish that the class-discriminating information is preserved or even accentuated.

The judicious choice of the subspace is thus critical. FLD is a traditional method

commonly used for choosing an optimal subspace.

This chapter provides an analysis of FLD in a non-traditional context: the

whitened data space. We shall see that insights can be obtained by examining the

properties of scatter matrices in this space and we have a neat decomposition of

the whitened space into subspaces with different discriminating power.

At the end of the chapter, we shall have a clear picture of what the whitened

space looks like: its decomposition into orthogonal subspaces, each containing dif-

ferent degrees of discriminating information, and the structure of these subspaces.

In this chapter, we shall assume that the given data matrix has been whitened

before any analysis is carried out.
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CHAPTER 4. Theoretical Foundation: Discriminant Subspace Analysis

4.1 Measure of Discriminating Power

In this section, we shall describe the criterion we use to measure the discriminating

power of a subspace. We are going to see that the Fisher criterion can be written

explicitly in the whitened data space in terms of eigenvalue ratios; thus we propose

to use these eigenvalue ratios as the measure of discriminating power of any given

subspace.

Firstly, Let’s apply FKT (defined in 3.2) to whiten the data matrix A, we have

Ã = P⊤A (4.1)

S̃b + S̃w = P⊤SbP + P⊤SwP (4.2)

= P⊤StP

= S̃t

= I

Remark 4.1.1. We note that the rank of the scatter matrices are preserved after the whiten-

ing transform:

Rank(S̃t ∈ Rrt×rt) = rt (4.3)

Rank(S̃b ∈ Rrt×rt) = rb (4.4)

Rank(S̃w ∈ Rrt×rt) = rw (4.5)

(4.6)

The proof is provided in Theorem A.4 in Appendix A.

If x is any eigenvector of S̃b, then

S̃bx = λx (4.7)

⇒ S̃wx = (1 − λ)x (4.8)

This implies that S̃b and S̃w share the same eigen-basis and their corresponding

eigenvalues are complementary (i.e. their sum is equal to one). More precisely, we

have the following eigen-decompositions:
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Table 4.1: Direct sum decomposition of whitened data space
Subspaces with

Eigenvalue ratio

Basis vectors Relationship to S̃w and

S̃b

Rank

I (
λi

b

λi
w
= ∞) {vi|λi

w = 0, λi
b
= 1} Null(S̃w) ∩ Range(S̃b) rt − rw ≤ C − 1

II (0 <
λi

b

λi
w
< ∞) {vi|0 < λi

w, λ
i
b
< 0} Range(S̃w) ∩ Range(S̃b) rb + rw − rt ≤

min(C − 1,N − C)

III (
λi

b

λi
w
= 0) {vi|λi

w = 1, λi
b
= 0} Range(S̃w) ∩Null(S̃b) rt − rb ≤ N − C

S̃b = VΛbV
⊤ (4.9)

S̃w = VΛwV⊤ (4.10)

I = Λb + Λw (4.11)

where V ∈ Rrt×rt is the orthogonal eigenvector matrix (i.e. whose columns

{vi}i=1,...,rt are eigenvectors of S̃b and S̃w, Λb,Λw ∈ Rrt×rt are diagonal eigenvalue

matrices with non-negative entries1.

If we denote the eigenvalues of S̃b and S̃w corresponding to the eigenvector vi

as λi
b

and λi
w (with λi

b
+ λi

w = 1,∀i = 1, . . . , rt) , then the eigenvalue ratio
λi

b

λi
w

can be

shown to be equivalent to the FLD criterion in the whitened space [36]. This is our

measure of discriminating power of the eigenvector vi.

4.2 Discriminant Subspaces

If we denote the eigenvalues of S̃b and S̃w corresponding to the eigenvector vi as λi
b

and λi
w (with λi

b
+ λi

w = 1,∀i = 1, . . . , rt) , we can partition the common eigenbasis

{vi}i=1,...,rt according to the value ratio
λi

b

λi
w

. This is equivalent to decomposing the

whitened data space in the form of direct sum 2 of subspaces I, II and III, as shown

in Table 4.1.

1This is because covariance matrices are always semi-positive definite.
2If a space S is written as the direct sum of subspaces S1, . . . ,Sn, then we have S = S1 + · · · + S2,

and Si

⋂
S j = ∅ for i , j. The direct sum is orthogonal if Si ⊥ S j for i , j.
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Theses subspaces are orthogonal to each other because their bases are orthogo-

nal to each other.

4.3 Identity Space and Variation Space

4.3.1 Definition

Let’s first coin two terms for Subspaces I and III, the rationale of which will become

clear as we proceed to explore their properties.

Identity Space := Subspace I (4.12)

Variation Space := Subspace III (4.13)

Let’s denote V1 and V3 as the matrices whose columns consist of the bases of

the Identity Space and Variation Space.

4.3.2 Properties

Theorem 4.3.1 and 4.3.2 lay the foundation for our discriminant analysis of later

chapters.

Theorem 4.3.1. Property of Identity Space We have

V⊤1 ãi = V⊤1 m̃k,∀ãi ∈ Lk (4.14)

or equivalently,

V⊤1 (ãi − m̃k) = 0,∀ãi ∈ Lk (4.15)

The proof is detailed in [37].

From Equation 4.14, we see that in the Identity Space, all samples of Class Lk

project onto the class mean m′
k
= V⊤

1
m̃k ∈ Rrt−rw , and all within-class variations

(ãi−m̃k)
3 of Class Lk is projected to the zero vector. This means that the the quantity

m′
k

alone can be used represent the identity of Class Lk in the Identity Space. In other

3We note that they are the columns of H̃w
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words, the Identity Space contains only between-class variation information, but no

within-class variation information.

We shall coin the term:

Identity Vectors := {m′k}k=1,...,C (4.16)

to denote projection of the class samples onto the Identity Space. We know from

4.3.1 that all samples project to the Identity vector and thus in the Identity Space, each

Identity Vector represents a class.

Theorem 4.3.2. Property of Variation Space We have

∀ k, V⊤3 m̃k = 0. (4.17)

The proof is detailed in [38].

Theorem 4.3.2 states that within the Variation Space, the means of all classes are

the same, i.e., the origin. Thus this subspace contains no information regarding the

between-class variation. It only tells about how the vectors are distributed around

the means, i.e. the within-class variations.

4.3.3 Geometric Structure

Due to the special properties of the Identity Space and Variation Space, we study the

geometric structure of these two subspaces in this section.

Theorem 4.3.3. Geometric Structure of Identity Space If there are equal number of

samples in each class, then the identity vectors mk
′ lie on a simplex, i.e., the magnitude of

all identity vectors and the angles between them are the same.

The proof is detailed in [37].

Figure 4.1 illustrates the geometric structure of the Identity Space.

Theorem 4.3.4. Geometric Structure of Variation Space The Variation Space has the

following structure:

• Projections of different classes to this subspace are orthogonal to each other.
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(a) (b) (c)

Figure 4.1: Illustration of the Identity Sphere. (a) When C = 2, it degenerates into
a straight line and the identity vectors are ends of the line; (b) When C = 3, it is
a circle in 2D space and the identity vectors are vertices of a regular triangle; (c)
When C = 4, it is a sphere in 3D space and the identity vectors are vertices of a
regular tetrahedron. Figure extracted from [37].

• Projections of sample vectors from the same class to this subspace lie on a simplex,

i.e. the magnitude of these vectors and angles between them are the same.

The proof is detailed in [38].

Figure 4.2 shows an example of Variation Space for two classes N1 = 2 and

N2 = 3.

Figure 4.2: Illustration of the geometric structure of Variation Space. Note that
different shapes (or colors) represent distinct classes. Class One has two data
samples, and both are orthogonal to Class Two, which has three samples evenly
distributed on a circle. Figure extracted from [38].
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4.3.4 Conditions for Maximum Rank

We know from Table 4.1 on Page 34 that the maximum rank of the Identity Space

and the Variation Space is C − 1 and N − C respectively. As we have shown that

the Identity Space is the most discriminating as it contains purely between-class

information, we wish this subspace to exist to its maximum extent. Theorem 4.3.5

provides sufficient conditions for this situation.

Theorem 4.3.5. Conditions for Maximum Rank of Identity and Variation Space

The Identity Space and the Variation Space achieve their maximum rank if the following

two conditions are satisfied:

• D ≤ N − 1

• Null(S̃t) = {1 ∈ Rrt}, i.e. the sample vectors are linearly independent, except for the

constraint that they sum up to the zero vector4.

In this case, Subspace II doesn’t exist and the whitened data space is composed of only

Identity and Variation Space.

The proof is detailed in [37].

4.3.5 Decomposition of Space

From Table 4.1 we know that

Subspace II = Range(S̃b) ∩ Range(S̃w) (4.18)

If the conditions of Theorem 4.3.5 are satisfied, then Subspace II doesn’t exist, which

implies that

Range(S̃b) ∩ Range(S̃w) = ∅ (4.19)

4This is because we have the freedom to choose the origin of the space to be the center of the
data space without loss of generality.
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Furthermore, we know from Table 4.1 that

R
rt = Identity Space ∪ Variation Space (4.20)

= (Null(S̃w) ∩ Range(S̃b)) ∪ (Range(S̃w) ∩Null(S̃b)) (4.21)

= Range(S̃b) ∪ Range(S̃w) (4.22)

Combining Equation 4.19 and 4.20, we know that

Identity Space = Range(S̃b) = Null(S̃w) (4.23)

Variation Space = Range(S̃w) = Null(S̃b) (4.24)

Range(S̃w) ⊥ Range(S̃b) (4.25)

Theorem 4.3.6 follows directly.

Theorem 4.3.6. Decomposition of whitened data space The whitened data space can

be written as an orthogonal direct sum 5 of the following subspaces:

R
rt = Range(S̃t) = Range(S̃b) ⊕ Range(S̃w) (4.26)

= Range(S̃b)︸     ︷︷     ︸
Identity Space

⊕Range(S̃t
1
) ⊕ · · · ⊕ Range(S̃t

C
)

︸                                ︷︷                                ︸
Variation Space

(4.27)

and we have

Rank(Whitened data space) = Rank(S̃t) = D −N + 1, (4.28)

Rank(Identity Space) = Rank(S̃b) = C − 1, (4.29)

Rank(Variation Space) =

C∑

i=1

Rank(S̃i
t) (4.30)

=

C∑

i=1

(Ni − 1) (4.31)

= N − C (4.32)

5If a space S is written as the direct sum of subspaces S1, . . . ,Sn, then we have S = S1 + · · · + S2,
and Si

⋂
S j = ∅ for i , j. The direct sum is orthogonal if Si ⊥ S j for i , j.
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Chapter 5

Multimodal Discriminant Analysis

The content of this chapter is built upon [23, 36, 39].

Chapter 4 has provided us with a framework of analysis to search for the most

discriminating subspace for dimension reduction in the whitened data space. We

have seen that the Identity Space is the most discriminating subspace because it

only contains information regarding the class identity of a given data vector. By

projecting the sample vectors to this subspace, the class information is maximally

preserved.

In this chapter, we shall discuss algorithms which compute the Identity Spaces of

multimodal data. Multimodal data are formulated as data obtained as the result of

interaction of multiple factors, each of which we shall term as mode. For instance,

face images are resultant of interaction of the person’s identity, the pose of head,

the lighting condition and the type of facial expression. As such, each data vector

contains labeling information regarding multiple modes.

In many respects, multimodal analysis is similar to regression analysis. In

regression analysis, the dependent variable is modeled as a function of the in-

dependent variables, corresponding parameters and an error term. Similarly, in

multimodal analysis, a data vector is modeled as a function (in our case, as a

linear combination) of several vectors, each belonging to a class under a certain

mode, and a residue. The difference between them is that regression analysis usu-

ally works in the continuous domain, whereas multimodal analysis works in the

discrete domain.
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In this chapter, we shall assume that the given data matrix has been whitened

before any analysis is carried out. We shall following the notations from Chapter 4

except that we omit the tilde for whitened matrices (the only type that we encounter

in this chapter).

5.1 FFKT

We shall start with unimodal analysis in this section, i.e., with one label for each

vector. The algorithm for computing the Identity Space in the unimodal case can

be inferred directly from the analysis of Chapter 4. We shall call the algorithm

the Fisher-Fukunaga-Koontz Transform, because of its close relationship with the

whitening transform (i.e. FKT) and FDA.

5.1.1 Algorithm

The detailed algorithm is described in Algorithm 2. The most expensive operation

involved is eigen-decomposition of Hb ∈ Rrt×C. Thus the time complexity is O(rtC
2)

and the space complexity is O(Nrt) (we know that rt ≤ N).

Algorithm 2 Computation of projection matrices for the Identity Space and Variation
Space based on FFKT

Input: Whitened data matrix A ∈ Rrt×N, Labeling matrix L ∈ R1×N

Output: Projection matrix V = [V1,V3],where V1 ∈ Rrt×rb and V3 ∈ Rrt×(rt−rb) are the
eigenvector matrices of the Identity Space and Variation Space.

1: Compute Hb ∈ Rrt×C of data matrix A.
2: Compute the eigenvector matrix V = [V1V3] of Sb based on Hb and Remark

3.1.1, where V1 corresponds to eigenvectors with eigenvalue 1 and V3 with
eigenvalue 0.

For the convenience of notation, we shall overload the term FFKT with the

following operation.

Definition 5.1.1. Given a whitened data matrix A = [a1, . . . , aN] ∈ RD×N and a labeling

matrix, each entry denoting the label of the corresponding column vector in A, the
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operation FFKT is defined as

V = [V1,V3] = FFKT(A,L) (5.1)

where V1 and V3 are orthogonal eigenvector matrices for the Identity and Variation

Space of A, as computed by Algorithm 2, and [V1,V3] is a square orthogonal matrix
1.

5.1.2 Vector Decomposition and Representation

Once we obtain the projection matrices V1 and V3 of the Identity Space and the

Variation Space, we could decompose any whitened sample vector ã ∈ Li in the

following manner2:

ã = V1V⊤1 ã +V3V⊤3 ã (5.2)

= V1V⊤1 ã +Vi
3(Vi

3)⊤ã (5.3)

where V1, V3 and Vi
3 denote the orthogonal eigenvector matrices for the Identity

Space, the Variation Space and individual variation space of Class Li (i.e. Range(S̃i
w))

respectively.

In Equation 5.3, ã is decomposed into an identity component which contains

only the between-class information and a variation component which contains

information regarding its variation within its class.

5.2 Recursive FFKT

This section and the next section will address the topic of Multimodal discriminant

analysis, i.e., each vector is associated with several labels.

For the ease of demonstration of concepts, we shall assume that the structure

of the data sample is a Cartesian product of different modes. Let’s take the PIE

database [24] for example. Each of the 68 persons has seven poses and photos are

1This is equivalent to a rotation of the coordinate system.
2The same remark holds for any a ∈ RN−1, with an additional term in Equation 5.2: a projection

term to the null space of the data matrix Null(St)
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taken for each pose under 21 different lighting conditions. Thus there are 68×7×21

photos in total.

Mathematically, we consider a data sample A, in which each vector is associated

with M labels, i.e. we have M modes of classification. We use M labeling matrices

{Mp}p=1,...,M to represent the labels under different modes. Assuming that for each

labeling mode p, there are Cp number of classes, and Np samples per class. There is

exactly one vector corresponding to each possibility of labeling [l1, . . . , lM], where

lp ∈ {1, . . . ,Cp}. Thus we have the following relationships:

N =

M∏

p=1

Cp (5.4)

Np =
∏

q,p

Cq (5.5)

N = NpCp (5.6)

The central idea of the section is to perform FFKT3 recursively to the whitened

data space, with a different labeling for each iteration, to extract the class informa-

tion for different modes step by step. However, this approach needs justification,

because the extraction of the class-identity components based on different modes

may be correlated, i.e. the identity component of a mode may contain identity

information of another mode.

This section is structured as follows. Section 5.2.1 justifies the approach of Recur-

sive FFKT regarding the issue of correlation among different identity components.

Section 5.2.3 provides the mathematical formulation and detailed algorithm of Re-

cursive FFKT. Finally, Section 5.2.4 provides the formula for vector decomposition

and representation using the projection matrices computed by Recursive FFKT.

5.2.1 Beyond FFKT

We know from Section 5.1 that FFKT allows us to extract class-identity information

of a given data sample based on its labeling information. At the presence of

several modes of labeling, a natural question arises: can we extract class-identity

3As defined in 5.1.1
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information under these different modes separately?

Firstly, let’s take a closer look at FFKT. Suppose we perform FFKT on A, based

on labeling matrix M1, to obtain:

V(1) = [V(1)

1
V

(1)
3

] = FFKT(A(1),L(1)) (5.7)

The projection of A to the new FFKT-transformed space is:

A(2) = (V(1))⊤A = [V(1)

1
V

(1)
3

]⊤A (5.8)

If we further apply FFKT to A(2),

V(2) = [V(2)

1
V

(2)
3

] = FFKT(A(2),L(2)) (5.9)

let’s study the relationship between V(1) and V(2).

We note that the projection matrices for the extraction of class-identity compo-

nent under Mode 1 and Mode 2 are respectively:

P(1) = V
(1)

1
(5.10)

P(2) = V(1)V
(2)

1
(5.11)

The multiplication term V(1)in Equation 5.11 indicates a rotation of the coordi-

nate system, since V(2) is computed based on A(2), whose coordinate system is a

rotation (i.e. multiplication by V(1)) of that of A. In other words, P(1) and P(2) are

projection matrices defined in the space of A, so that the extraction of class-identity

components of A can be performed by (P(1))⊤A and (P(2))⊤A directly.

If we calculate the mean of each class under a different mode, e.g. based on
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labeling matrix M2, we have

m
(2)

k
=
∑

ai∈L
(2)
k

a
(2)

i
(5.12)

=
1

N2

∑

ai∈L
(2)
k

[V(1)

1
V

(1)
3

]⊤a
(2)

i
(5.13)

= [
1

N2

∑

ai∈L
(2)
k

V
(1)

1
a

(2)

i

1

N2

∑

ai∈L
(2)
k

V
(1)
3

a
(2)

i
]⊤ (5.14)

= [01×(C1−1) 1

N2

∑

ai∈L
(2)
k

(V(1)
3

)⊤a
(2)

i
]⊤ (5.15)

Thus we have

H
(2)

b
= [m(2)

1
· · ·m(2)

C2 ] =



0(C1−1)×rt

...


 (5.16)

then we have

V
(2)

1
=



0(C1−1)×rt

...


 (5.17)

since V
(2)

1
is the basis for the Identity Space under Mode 2 and we know from

Equation 4.23 Section 4.3.5 that

Identity Space = Range(Sb) = Range(Hb) (5.18)

Intuitively this means that the Identity Space under Mode M2 doesn’t contain

any class identity information of Mode M1.

Mathematically, if we want to extract the class-identity component under Mode

2, then the projection matrix is

P(2) = V(1)V
(2)

1
= [V(1)

1
V

(1)
3

]



0(C1−1)×rt

X


 = V

(1)
3

X (5.19)

thus we have

Range(P(2)) ⊆ Range(V(1)
3

) (5.20)
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Therefore, we have

Range(P(2)) ⊥ Range(P(1)) (5.21)

since P(1) = V
(1)

1
and V

(1)
3
⊥ V

(1)

1
.

Equation 5.21 indicates that if we perform FFKT on A(2) under the classification

Mode M2, the extracted class-identity information is uncorrelated with the class-

identity information obtained earlier under Mode M1, i.e. it does not contain any

class-identity information of Mode M1. This means that we could perform FFKT

recursively to extract uncorrelated class-identity information of data vectors under

different modes.

5.2.2 Mathematical Formulation

Based on our analysis in Section 5.2.1, the mathematical formulation for the calcu-

lation of the projection matrix V
(p)

R
for Mode Mp (p = 1, . . . ,M)under the recursive

procedure is:

V
(p)

R
=


FFKT(A(p),Mi) if p = 1,

FFKT{[FFKT(A(p−1),Mp−1)]⊤A(p−1),Mp)} if p > 1
(5.22)

5.2.3 Algorithm

Algorithm 3 provides an implementation for Equation 5.22. The time complexity

is O(MrtC
2) and the space complexity is O(MNrt) (with rt ≤ N).

We note that V
(p)

R
is the projection matrix in the coordinate system of A(p), which

is a rotation of the original coordinate system, and needs to be rotated back if it is to

be applied to the original data matrix A. It can be shown easily from the algorithm

(more precisely, Line 4 that the rotation matrix is (
∏p−1

q=1
V

q

R
).

Therefore, the final projection matrix for identity component extraction of Mode

Mp (p = 1, . . . ,M) is:

P
(p)

R
=


V

(p)

R,1
if p = 1,

(
∏p−1

q=1
V

q

R
)V

p

R,1
if p > 1

(5.24)

The extraction of the identity component under Mode Mp is given by (P
(p)

R
)⊤A.
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Algorithm 3 Computation of projection matrices for Identity Space and Variation
Space for multimodal data based on R-FFKT

Input: Whitened training data matrix A ∈ Rrt×N, Labeling matrices Mp ∈ R1×N

(p = 1, . . . ,M)

Output: Projection matrices V
p

R
= [V

(p)

R,1
V

(p)

R,3
] ∈ Rrt×rt for extraction of identity and

variation components under Mode Mp (p = 1, . . . ,M)
1: Initialization: let X = A
2: for all p = 1 to M do
3: Compute the projection matrix of data matrix X with labeling matrix Mp

V
(p)

R
= [V

(p)

1
V

(p)

3
] = FFKT(X,Mp) (5.23)

4: Let X = (V
(p)

R
)⊤X

5: end for

5.2.4 Vector Decomposition and Representation

Given the projection matrices V
p

R,1
∈ R(N−1)×(Cp−1) for the Identity Spaces of mode p

(p = 1, . . . ,M), the data matrix can be decomposed as

X =

M∑

p=1

V
p

R,1
(V

p

R,1
)⊤ +V0V⊤0 X (5.25)

where V0 ∈ R(N−1)×r0 is the residual space, r0 = N −∑M
p=1 Cp +M − 1.

5.3 MMDA

The objective of the analysis in this section is the same as in Section 5.2. MMDA

seeks to extract identity information at the presence of several labeling modes. The

difference from Recursive FFKT is: MMDA computes the projection matrices for

different modes directly, instead of working on the rotated data samples recursively

as in Section 5.2.

Similar to Recursive FFKT, MMDA requires justification since the extracted iden-

tity components for different modes may be correlated, i.e., the identity compo-

nents for one mode may contain class-identity information of another. This is

an undesirable situation since data samples can’t be decomposed into orthogonal
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components, which can be analyzed independently.

The structure of the section is the following. Section 5.3.2 describes the algorithm

for MMDA and provides a justification of the approach regarding the correlation of

different identity components. Section 5.3.3 shows that MMDA is in fact equivalent

to Recursive FFKT described in Section 5.2. Finally, Section 5.2.4 provides the

formula for vector decomposition and representation using the projection matrices

computed by MMDA.

5.3.1 Mathematical Formulation

We first state the mathematical formulation for the calculation of the projection

matrix V
(p)

M
for Mode Mp (p = 1, . . . ,M)by MMDA

V
(p)

M
= [V

(p)

M,1
V

(p)

M,3
] = FFKT(A,Mp) (5.26)

Equation 5.27 is straight forward: MMDA computes the projection matrices for

all modes at one shot, based on the corresponding labeling matrices.

Theorem 5.3.1 justifies the approach of MMDA by proving that the identity

spaces of different modes are orthogonal to each other, thus the extracted identity

information of different modes are uncorrelated.

Theorem 5.3.1. If V
(p)

M,1
and V

(q)

M,1
are projection matrices to the Identity Space for Modes

Mp and Mq, then

(V
(p)

M,1
)⊤V

(q)

M,1
=


I if p = q

0 if p , q.
(5.27)

The proof is detailed in [39].

The final projection matrix identity component extraction of Mode Mp (p =

1, . . . ,M)is:

P
p

M
= V

(p)

M,1
(5.28)

The extraction of the identity component under Mode Mp is given by (P
(p)

M
)⊤A.
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5.3.2 Algorithm

Algorithm 4 provides a direct implementation of Equation 5.27. The time com-

plexity is O(MrtC
2) and the space complexity is O(r2

t ). We note that Algorithm 4 is

superior to Algorithm 3 in terms of space complexity.

Algorithm 4 Computation of projection matrices for Identity Space and Variation
Space for multimodal data based on MMDA

Input: Whitened training data matrix A ∈ Rrt×N, Labeling matrices Mp ∈ R1×N

(p = 1, . . . ,M)

Output: Projection matrices V
p

R
= [V

(p)

R,1
V

(p)

R,3
] ∈ Rrt×rt for extraction of identity and

variation components under Mode Mp (p = 1, . . . ,M)
1: for all i = 1 to M do
2: Compute the projection matrix of data matrix A with labeling matrix Mp

Vi
M = [Vi

M,1Vi
M,3] = FFKT(A,Li) (5.29)

3: end for

5.3.3 Equivalence to Recursive FFKT

Both Recursive and MMDA compute projection matrices for Identity Spaces of differ-

ent modes based on FFKT. It is thus natural to ask about the relationship between

the outputs of the two algorithms. In this section, we are going to show that MMDA

and Recursive FFKT are in fact equivalent.

Theorem 5.3.1 states that if there is a rotation of the coordinate system, the output

of the FFKT algorithm is rotated similarly. Intuitively, this makes sense since the

computation of FFKT is in fact based on eigen-decomposition of whitened scatter

matrices.

Theorem 5.3.1. If P is the output of FFKT for data matrix A with labeling matrix L, and

W is a unitary matrix (i.e. square and orthogonal), then W⊤P is the output of FFKT for

data matrix W⊤A with the same labeling matrix L, i.e.

P = FFKT(A,L)
W unitary
=⇒ W⊤P = FFKT(W⊤A,L) (5.30)

The proof is provided in Appendix B.1.
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With Theorem 5.3.1, we are ready to show the equivalence between MMDA and

Recursive FFKT.

Theorem 5.3.2. If P
(p)

R
and P

(p)

M
are the outputs of Recursive FFKT and MMDA for data

matrix A and Mode Mp, then we have:

P
(p)

R
= P

(p)

M
(5.31)

The proof is detailed in Appendix B.2.

5.3.4 Vector Decomposition and Representation

Given the projection matrices V
p

M,1
∈ R(N−1)×(Cp−1) for the Identity Spaces of mode p

(p = 1, . . . ,M), the data matrix can be decomposed as

X =

M∑

p=1

V
p

M,1
(V

p

M,1
)⊤ +V0V⊤0 X (5.32)

where V0 ∈ R(N−1)×r0 is the residual space, r0 = N −
∑M

p=1 Cp +M − 1.
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Chapter 6

Experiments

In this section, we test the theory of MMDA in two applications: face image

decomposition and face recognition.

6.1 Face dataset

In our experiments, a subset of the Multi-PIE database [13] is used. The database

contains 337 subjects, imaged under 15 viewpoints and 19 illumination conditions

in up to four recording sessions.

Our dataset is chosen in the following manner. We first eliminate subjects who

are not present in all the four sessions and who wear glasses. There are 64 subjects

who remain. Then we use photos of these 64 subjects recorded during Session

02. There are 19 illumination conditions and three expressions (neutral, surprise,

squint) in Session 02. Thus there are in total 64 × 19 × 3 photos in our dataset.

6.2 Face Recognition

In this section, we carry out face recognition experiments. This is done by projecting

probe images to the Identity Space of the training data labeled according to their

person identity (computed using Algorithm 4 on Page 49). Similar to Section 6.3, we

shall investigate the power of MMDA in different scenarios: two modes and three

modes.
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6.2.1 Recognition across Illumination

In this experiment, we perform face recognition across illumination. Our dataset

consists of the 64 subjects with neutral expression taken under 19 illuminations.

There are in total 64 × 19 images.

In face recognition, the small-sample-size problem is common. We thus evaluate

the performance under such situations. We randomly choose n training samples

from each subject, n = 2, 4, 6, 8, 10, 12, and the remaining samples are used for

testing. Moreover, for each set of the n training samples, we repeat sampling for

10 times to compute the mean recognition rate. We compare MMDA with two

popular methods in face recognition: PCA and LDA1.

Figure 6.1 shows that MMDA consistently outperforms PCA and LDA and the

overall accuracies increase with the number of training samples from each class.

6.2.2 Recognition across Expression

In this experiment, we perform face recognition across expression. Our dataset

consists of the 64 subjects taken without flash and with three expressions: neutral,

surprise and squint. There are in total 64 × 3 images.

Similar to Section 6.2.1, we randomly choose n training samples from each

subject, n = 1, 2, and the remaining samples are used for testing. Moreover, for

each set of the n training samples, we repeat sampling for 10 times to compute the

mean recognition rate. We compare MMDA, PCA and LDA.

Figure 6.2 shows that MMDA still consistently outperforms PCA and LDA in

this setting, although the overall accuracies degrade compared to Section 6.2.1.

This may be due to the fewer training images in this setting and that the expression

variation is harder to capture than that of illumination since it might not be linear.

6.2.3 Recognition across Illumination and Expression

In this experiment, we perform face recognition across illumination and expression.

Our dataset consists of the 64 subjects with three expressions (neutral, surprise and

1Our implementation of LDA is based on the Regularized LDA discussed in [19]. On our dataset,
this implementation has shown to be superior to Fisherface
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Figure 6.1: Accuracy curves for recognition across illumination on Multi-PIE im-
ages with varying training samples. The accuracy shown is the mean rate computed
from 10 runs.

squint) taken under 19 illuminations. There are in total 64 × 19 × 3 images.

Similar to Section 6.2.1 and 6.2.2, we randomly choose n training samples from

each subject, n = 5, 10, 15, 20, 25, 30, and the remaining samples are used for testing.

Moreover, for each set of the n training samples, we repeat sampling for 10 times

to compute the mean recognition rate. We compare MMDA with PCA and LDA2.

Figure 6.1 shows that MMDA consistently outperforms PCA and LDA and the

overall accuracies increase with the number of training samples from each class.

Experiment results as demonstrated in Figure 6.1, 6.2, and 6.3 show that at the

presence of illumination and/or expression variation, the discriminating power of

the Identity Space of data labeled according to their person identity is significantly su-

perior to that of the subspaces used by LDA or PCA. This is consistent to the finding

2Our implementation of LDA is based on the Regularized LDA discuss in [18, 19]. On our dataset,
this implementation has shown to be superior than Fisherface.
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Figure 6.2: Accuracy curves for recognition across expression on Multi-PIE images
with varying training samples. The accuracy shown is the mean rate computed
from 10 runs.

in [35], although they only performed recognition experiments across illumination.

6.3 Factor Component Extraction and Reconstruction

of Face Images

In this experiment, we implement Algorithm 4 on Page 49 to extract the person

identity, illumination and/or expression information of face images.

More precisely, we perform the following procedures as outlined in Section

3.2.4:

• Whiten the dataset using Equation 3.20;

• Use Algorithm 4 to obtain the projection matrices to Identity Spaces of different
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Figure 6.3: Accuracy curves for recognition across illumination and expression on
Multi-PIE images with varying training samples. The accuracy shown is the mean
rate computed from 10 runs.

modes in the whitened data space;

• Perform component extraction and reconstruction in the whitened domain;

• Reverse-whiten the data using Equation 3.21.

Similar to Section 6.2, we shall compare our method with PCA. However, we

shall omit comparison with LDA. This is because LDA is rarely used for dimension

reduction and reconstruction purposes, although this is theoretically possible since

it only involves linear orthogonal projections. (PCA, on the other hand, has become

a benchmark in the face recognition literature, although it was initially not designed

for the application.)
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6.3.1 Two Modes

We first train our MMDA model with two modes: person identity and illumination.

For this purpose, we use a dataset consisting of 10 subjects under 14 illumination

conditions with neutral expression.

We first find the projection matrices for Identity Spaces of Mode Person Identity

and Illumination. In order to visualize the Identity Spaces, we show, in Figure 6.4

and 6.5, the Identity Vectors defined in Section 4.3.2 under the two modes.

Figure 6.4: Identity Vectors for Mode Person Identity (The training dataset contains
two modes: Person Identity and Illumination)

Figure 6.5: Identity Vectors for Mode Illumination (The training dataset contains
two modes: Person Identity and Illumination)

In Figure 6.9, we show four examples of the extraction of Person Identity and

Illumination components using MMDA. The second and third columns are the ex-

tracted components, and then the reconstructed images by MMDA (using Equation

5.32 without the residual term) and PCA (using the same number of coefficients)

are shown on the fourth and fifth columns.
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We note that in this setting, although the RMSE of MMDA-reconstructed image

is larger than that of PCA-reconstructed image, the visual qualities are of no signif-

icant difference. In addition, MMDA achieves a clean and accurate decomposition

of the images into two variation components.

6.3.2 Three Modes

In this section, we train our MMDA model with three modes: person identity,

illumination and expression. For this purpose, we use a dataset consisting of the

same 10 subjects under 14 illumination conditions, with three expressions: neutral,

surprise and squint.

Similar to Section 6.3.1, We find the projection matrices for Identity Spaces of

Mode Person Identity, Illumination and Expression. We visualize the Identity Spaces

by showing the Identity Vectors under the three modes:

Figure 6.6: Identity Vectors for Mode Person Identity (The training dataset contains
three modes: Person Identity, Illumination and Expression)

Again, in Figure 6.10, we show four examples of the extraction of Person Iden-

tity, Illumination and Expression components using MMDA. The second, third and

fourth columns are the extracted components, and then the reconstructed images

by MMDA (using Equation 5.32 without the residual term) and PCA (using the

same number of coefficients) are shown on the fifth and sixth columns.

We note that both the extracted variation component of person identity and the

reconstructed image using MMDA degrades compared to Figure 6.9 in terms of

visual quality. In our setting, this is mainly due to the discrete nature of expression
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Figure 6.7: Identity Vectors for Mode Illumination (The training dataset contains
three modes: Person Identity, Illumination and Expression)

Figure 6.8: Identity Vectors for Mode Expression (The training dataset contains three
modes: Person Identity, Illumination and Expression)

variation. For example, we have no information regarding the transition between a

neutral expression and a surprise. This is unlike the illumination variation, of which

the change is rather smooth. We suspect that if we could have a video recording

of the transitions between different expressions of the subjects, the decomposition

results would be improved significantly.
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(a) (b) (c) (d) RMSE: 3.29 (e) RMSE: 1.21

(f) (g) (h) (i) RMSE: 2.71 (j) RMSE: 1.46

(k) (l) (m) (n) RMSE: 4.61 (o) RMSE: 2.04

(p) (q) (r) (s) RMSE: 3.71 (t) RMSE: 1.81

Figure 6.9: Two-mode scenario: Illustration of the extraction of variation compo-
nents and the reconstruction of face images. 1st column: original images. 2nd
column: person identity component. 3rd column: illumination component. 4th
column: reconstructed image using components in the 2nd and 3rd columns. 5th
column: reconstructed image using PCA with the same number of coefficients as
in the 4th column.
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(a) (b) (c) (d) (e) RMSE:4.92 (f) RMSE:1.64

(g) (h) (i) (j) (k) RMSE:5.71 (l) RMSE:3.12

(m) (n) (o) (p) (q) RMSE:2.90 (r) RMSE:2.07

(s) (t) (u) (v) (w) RMSE:6.22 (x) RMSE:2.65

Figure 6.10: Three-mode scenario: Illustration of the extraction of variation com-
ponents and the reconstruction of face images. 1st column: original images. 2nd
column: person identity component. 3rd column: illumination component. 4th
column: expression component. 5th column: reconstructed image using compo-
nents in the 2nd, 3rd and 4th columns. 6th column: reconstructed image using
PCA with the same number of coefficients as in the 5th column.
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Conclusion

7.1 Summary

The essential idea of the thesis is to use the most discriminant subspace of a certain

mode (e.g. person identity, illumination or expression) as the most representative

subspace. This is justified by the fact that the data has been whitened before the

analysis is carried out, so that all the axes are weighted equally and all information

regarding the representation of a certain mode comes from the labels. We have

provided direct answers to the three issues raised in Section 1.1:

• We have identified the component of a face image corresponding to a cer-

tain variation mode as the Identity Space of the corresponding mode in the

whitened data space, as described in Chapter 4;

• We can extract these components separately by performing MMDA in the

whitened data space, as described in Chapter 5;

• The extracted components are uncorrelated1 in the whitened space, as de-

scribed in Chapter 5. However, their reconstruction in the original data space

(after reverse-whitening) may still be correlated, as described in 3.2.5. This

indicates that we have in fact uncovered an uncorrelated embedding (in the

whitened space) of the inherently correlated variation components.

1If the data distribution follows a Gaussian distribution, uncorrelatedness is equivalent to inde-
pendence. Otherwise, it is a less stronger argument since it only imposes constraints on second-order
statistics.
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More precisely, the extraction of the face subspace involves the following two

steps:

• Whiten the data to decorrelate and normalize the axes, as described in Section

3.2;

• Find the Identity Spaces, i.e., the most discriminating subspaces, for each

mode based on different labeling information, and the identity vectors in the

whitened space, as described in Chapter 5

We note that the subspace obtained in this manner lies, in fact, in the whitened

data space. If we wish to extract the component of an image related to a certain

mode, the procedures are the following:

• Whiten the image

• Compute the projection of the whitened image to the Identity Space of the

mode

• Reverse-whiten the projected image to the original space

We have tested the effectiveness of the framework in two applications: factor

extraction and reconstruction of face images, and face recognition. We have seen

that in the first application, MMDA does a great job (in terms of visual quality)

at the presence of two modes (person identity and illumination), but degrades

significantly when an additional mode (expression) is present. Very possibly this

is due to the discreet nature of the expression data available in our dataset (i.e. we

have no information regarding the transition between any two expressions). In the

second application, MMDA outperforms traditional methods (PCA and LDA) in

all cases, which verifies our claim that the Identity Space is the most discriminating

subspace (for the mode of person identity).

At the same time, the method also has several constraints:

• It assumes a linear representation of the face image space and it relies on

second-order statistics;
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• Its generalization ability is limited, as with PCA or LDA, and the effectiveness

of the model in terms of representation and classification power is intimately

related to the nature of the training data with respect to the underlying data

space.

7.2 Contributions

This thesis has the following contributions:

• Consolidates and provides a unifying formulation for previous (published

and unpublished) works on FKT, FFKT and MMDA in [35],[36], [37], [38] and

[39];

• Proves the equivalence of two multimodal extensions of FFKT: Recursive FFKT

and MMDA put forward in [23] and [39] respectively.

• Empirically validates the algorithm of MMDA in the applications of face

recognition and dimension reduction.

7.3 Future Directions

The focus of this thesis has been rather theoretical and work needs to be done

to improve the applicability of the theory. We propose the following for future

research directions:

• Use video recordings which show smooth facial expression transitions to

better learn the subspace of facial expressions;

• Apply the method to face image synthesis, such as the transfer of facial

expressions;

• Apply the method to types of data other than face images (for example, music

recordings), since the method proposed in this thesis is potentially applicable

to any multi-modal data with high dimensions.
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Appendix A

Rank of Scatter Matrices and

Precursor Matrices

Theorem A.1. Rank-Nullity Theorem The rank and the nullity of a matrix add up

to the number of columns of the matrix. Specifically, if A is an m × n matrix, then

Rank(A) +Nullity(A) = n.

The proof of this theorem can be found in any linear algebra textbook such as

[11].

Lemma A.2. For any given matrix A, we have

Rank(A⊤A) = Rank(AA⊤) = Rank(A) (A.1)

Proof. Secondly, we have

A⊤Ax = 0

⇒ xA⊤Ax = |Ax|2 = |Ax| = 0

⇒ Ax = 0 (A.2)

and

Ax = 0

⇒ A⊤Ax = 0 (A.3)
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Equations A.2 and A.3 give us

Ax = 0 ⇔ A⊤Ax = 0 (A.4)

which means the nullity of A is equal to the nullity A⊤A.

Moreover, we notice they have the same number of columns. Thus we have

Rank(A) = Rank(A⊤A) (A.5)

Similarly, we have

Rank(A⊤) = Rank(AA⊤) (A.6)

We further notice that [11]

Rank(A) = Rank(A⊤) (A.7)

Combining Equations A.5, A.6, A.7, and Theorem A.1 the statement is proved.

�

Lemma A.3. For any matrix A and full rank matrix U1, we have

Rank(U⊤A) = Rank(A) (A.8)

Proof. Since U is of full rank [11], we have

U⊤Ax = 0

⇒ Ax = 0 (A.9)

Obviously we also have

Ax = 0

⇒ U⊤Ax = 0 (A.10)

Thus U⊤A and A have the same null space.

Moreover, they have the same number of columns.

1A m × n matrix is of full rank if its rank is equal to min(m,n)
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Therefore, using Theorem A.1, the statement is proved. �

Theorem A.4. Let S be any of the three scatter matrices S ∈ {St,Sw,St}, H be the

corresponding precursor matrix H ∈ {Ht,Hw,Ht}, S̃ be the corresponding whitened scatter

matrix scatter matrices S̃ ∈ {S̃t, S̃w, S̃t}, and H̃ be the corresponding whitened precursor

matrices {H̃t, H̃w, H̃t}. Their ranks are equal, i.e.,

Rank(S) = Rank(H) = Rank(S̃) = Rank(H̃) (A.11)

Proof. Since S = HH⊤ and S̃ = H̃H̃⊤ , we have

Rank(S) = Rank(H) (A.12)

Rank(S̃) = Rank(H̃) (A.13)

based on Lemma A.2.

Since H̃ = P⊤H, where P 2 is of full rank (P ∈ RD×rt and Rank(P) = rt), we have

Rank(H) = Rank(H̃) (A.14)

based on Lemma A.3.

Combining Equations A.12, A.13 and A.14, the statement is proved. �

2Defined in Section 3.2.
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Appendix B

Equivalence of Recursive FFKT and

MMDA

B.1 Proof of Theorem 5.3.1

First, let’s start with a lemma.

Lemma B.1.1. If U is an eigenvector matrix for A, and V is a unitary matrix (i.e. square

and orthogonal), then V⊤U is an eigenvector matrix for V⊤AV.

Proof. If D is the similarity matrix of A corresponding to the eigenvector matrix U,

i.e.

A = UDU⊤ (B.1)

then we have

V⊤AV = (V⊤U)D(V⊤U)⊤ (B.2)

The statement follows directly from Equation B.2.

�

Proof. In order to prove the statement, let’s recall the algorithm of FFKT on Page

41. We shall denote the variables encountered during the computation on the right

hand side of Equation 5.30 with a bar on top. For example, let’s denote Ā =W⊤A.
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Firstly, the whitening transforms Q and Q̄ are computed based on the total

scatter matrix St = AA⊤ and S̄t = ĀĀ⊤ = W⊤StW. Based on Lemma B.1.1, we

know that Q̄ =W⊤Q.

Secondly, the whitening transform is applied to the between-class scatter ma-

trices:

S̃b = Q⊤SbQ (B.3)

and

¯̃Sb = Q̄⊤S̄bQ̄ = (W⊤Q)⊤(W⊤SbW)(W⊤Q) = Q⊤SbQ = S̃b (B.4)

Thirdly, the projection matrices V and V̄ to the Identity Space and Variation

Space are computed as the eigenvector matrices corresponding to the unit and zero

eigenvalues of S̃b and ¯̃
bS. We know from the previous step that S̃b =

¯̃
bS, thus we

have V = V̄.

Finally, the final projection matrices are computed as P = QV and P̄ = Q̄pV̄ =

W⊤QV. Therefore we have P̄ =W⊤P. �

B.2 Proof of Theorem 5.3.2

Proof. We recall from Section 5.2.3 and 5.3.2 that

P
(p)

R
=


V

(p)

R,1
if p = 1,

(
∏p−1

q=1
V

q

R
)V

p

R,1
if p > 1

(B.5)

P
p

M
= V

(p)

M,1
(B.6)

Let’s consider two cases.

• p = 1

In this case, we have

V
(p)

R
= [V

(p)

R,1
V

(p)

R,3
] = FFKT(A,Mp) (B.7)

V
(p)

M
= [V

(p)

M,1
V

(p)

M,3
] = FFKT(A,Mp) (B.8)
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thus obviously

P
(p)

R
= P

(p)

M
(B.9)

• p > 1

We see from Algorithm 3 that, after iteration p, the data matrix X is computed

as

X = (V(1)
R

)⊤ · · · (V(p)

R
)⊤A (B.10)

= (V(1)
R
· · ·V(p)

R
)⊤A (B.11)

Since ∀p = 1, . . . ,M, V
(p)

R
is a unitary matrix, their product is also a unitary

matrix. Thus Theorem 5.3.1 applies and we have

V
(p)

R
= FFKT(X,Mp) (B.12)

= FFKT((V(1)
R
· · ·V(p−1))⊤A,Mp) (B.13)

= (V(1)
R
· · ·V(p−1))⊤FFKT(A,Mp) (B.14)

= (V(1)
R
· · ·V(p−1)

R
)⊤V

(p)

M
(B.15)

which leads to

V
(p)

M
= V

(1)
R
· · ·V(p−1)

R
V

(p)

R
(B.16)

and thus we have

V
(p)

M,1
= V

(1)
R
· · ·V(p−1)

R
V

(p)

R,1
(B.17)

(since V
(p)

M,1
and V

(p)

R,1
are the first Cp − 1 columns of V

(p)

M
and V

(p)

R
respectively)

Combining Equation B.5, B.6 and B.17, we have for p > 1,

P
(p)

R
= P

(p)

M
(B.18)

�
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