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ABSTRACT 
 

Low cost access to optical communication networks is the backbone of modern day optical 

communication systems for high speed internet data transmission. Cost effective light sources in 

the low loss window, 1.2-1.6 µm, are required for large scale deployment of high performance 

communication network systems.  

Dilute nitrides have been identified as promising material at 1.3 and 1.55 µm emission 

wavelengths for commercial applications in telecommunications. They have attracted 

considerable experimental and theoretical interest due to their unusual physical properties and 

great potential in optoelectronic devices for telecommunication. They exhibit a large reduction in 

bandgap energy due to the addition of small amounts of Nitrogen in GaInAs to form GaInNAs. 

GaInNAs offers several advantages, e.g. type-I band lineup, effective electron confinement, 

higher electron effective mass and lattice matched (pseudomorphic) growth on GaAs substrate 

allowing one to take advantage of mature DBR technology and easy monolithic integration with 

GaAs electronics to provide low-cost, high speed electrical drivers for lasers in high speed 

networks.  

In this work, GaInNAs/GaAs quantum structures are investigated for their structural and optical 

properties. GaInNAs/GaAs quantum wells (QWs) are grown using plasma assisted molecular 

beam epitaxy. Theoretical modeling is performed to estimate the effects of Indium segregation, 



 vii 

short range order and interdiffusion on photoluminescence blueshift in GaInNAs/GaAs QWs. A 

kinetic model is presented to explain the observed Indium segregation trend in GaInNAs due to 

the incorporation of Nitrogen. Theoretical results are presented for the effect of composition 

disorder, resulting from Indium segregation and non-uniform Nitrogen composition on band 

structure and TE and TM mode optical gain of the GaInNAs/GaAs QWs. The presence of 

composition disorder of Indium and Nitrogen in the quantum wells can cause blueshift in 

transition energy, but Indium segregation plays the major role. The transition energy blueshift 

due to Indium segregation is significant only for segregation efficiencies greater than 0.6. 

Composition disorder also tends to increase the threshold current density for GaInNAs/GaAs 

QW lasers. 

Rapid thermal annealing is performed to improve the optical and crystalline qualities of as-

grown GaInNAs material by overcoming crystal defects arising from plasma damage or 

interstitial incorporation of Nitrogen. The undesirable blueshift resulting from annealing is 

studied and explained in terms of two responsible mechanisms: rearrangement of local Nitrogen 

bond configurations N-GamIn4-m (0 ≤ m ≤4), also known as short-range order (SRO), and 

Gallium/Indium atom interdiffusion across the QW/barrier interface. The individual 

contributions from both mechanisms are calculated using an original approach based on a genetic 

algorithm. The activation energies for SRO and interdiffusion are estimated to be 2.3 eV and 

3.25 eV respectively, indicating the important role played by SRO at low temperature and at the 

beginning of annealing process. 

 
Keywords: GaInNAs, Molecular Beam Epitaxy, High resolution X-ray diffraction, 
Photoluminescence, Rapid thermal annealing, Indium segregation, Interdiffusion, Short-range-
order, Genetic algorithm 
 
Thesis Advisors: 

1. Asst Professor Dr. Xiang Ning, NUS. 
 



 viii 

LIST OF FIGURES 

 

Figure 1-1: Wavelength windows in silica based optical fiber (taken from David R. Goff 2002). 3 

Figure 1-2: Increasing Bandwidth usage in Japan [http://www.jpix.ad.jp/en/techncal/traffic.html]

......................................................................................................................................................... 6 

Figure 1-3: The relationship between bandgap energy and lattice constant for nitride-arsenide 

and arsenide-phosphide alloys for long wavelength emission (Henini 2005) ................................ 9 

Figure 2-1: MBE system at the Centre for Optoelectronics. ........................................................ 30 

Figure 2-2: 2×4 surface reconstruction RHEED patterns of a (100) GaAs surface: (a) along 

[𝟏𝟏𝟏𝟏�𝟎𝟎], (b) along [𝟏𝟏𝟏𝟏𝟎𝟎]. ................................................................................................................ 33 

Figure 2-3: RHEED intensity oscillation with growth time for GaAs buffer layer growth ......... 34 

Figure 2-4: (a) HRXRD system at the Centre for Optoelectronics, (b) Schematic diagram 

showing the angle and axis conventions. ...................................................................................... 35 

Figure 2-5: Photoluminescence characteristic of GaInNAs/GaAs qunatum well for as-grown and 

annealed samples. ......................................................................................................................... 41 

Figure 2-6: For 6-band k•p heavy hole, light hole and spin split-off bands in double degeneracy 

are of interest and called as class A. All other bands are denoted as class B. .............................. 46 

Figure 3-1: Schematic structure of samples A, B and C (each with Indium = 33.5%). ............... 62 

Figure 3-2: Schematic diagram showing the exchange process between surface and bulk Indium 

and Gallium atoms. ....................................................................................................................... 63 

Figure 3-3: Calculated Indium composition profiles at substrate temperature 460 0C and a growth 

rate of GaAs 0.57 ML/s. Nominal widths of Ga0.665In0.335As QW and GaAs barrier are 20 ML 



 ix 

and 15 ML, respectively. Segregation length is obtained from decay length at the upper 

heterointerface as shown in inset. ................................................................................................. 66 

Figure 3-4: Segregation length vs. Nitrogen composition for Ga0.665In0.335NyAs1-y QW at growth 

temperature of 460 0C for calculated (LC) and experimental deduced (LSIMS) segregation lengths.

....................................................................................................................................................... 67 

Figure 3-5: The difference between forward and backward exchange rate constants (R1-R2) and 

the segregation energy (Es) vs. the Nitrogen composition for Ga0.665In0.335NyAs1-y QW at growth 

temperature of 460 0C. .................................................................................................................. 69 

Figure 3-6: The equilibrium exchange rate vs. Nitrogen composition curves for 

Ga0.665In0.335NyAs1-y QW at various growth temperatures. Two horizontal lines correspond to 

GaAs growth rate, Vg = 0.57 ML/s and 1 ML/s. .......................................................................... 70 

Figure 3-7: Nitrogen composition vs. growth temperature showing the kinetically limited and 

equilibrium regions for Ga0.665In0.335NAs QW with GaAs growth rate = 0.57 ML/s. .................. 71 

Figure 3-8: Calculated Indium segregation length variation with Nitrogen content in the 

Ga0.665In0.335NAs/GaAs QW for GaAs growth rate (a) growth rate = 0.57 ML/s and (b) growth 

rate = 1 ML/s, at different growth temperatures. .......................................................................... 72 

Figure 3-9: Schematic of GaAs/GaInNAs/GaAs QW structures for 1.3 and 1.55 um emission 

wavelength. ................................................................................................................................... 74 

Figure 3-10: Effect of compressive and tensile strain on the conduction and valence band-edges.

....................................................................................................................................................... 77 

Figure 3-11: Indium segregation profile of Ga0.65In0.35N0.015As0.985 / GaAs single QW with 

different segregation efficiencies. ................................................................................................. 79 



 x 

Figure 3-12:  In-

 

plane strain profile of Ga0.65In0.35N0.015As0.985 / GaAs QW with various Indium 

segregation efficiencies. ................................................................................................................ 80

Figure 3-13: In-

 

plane strain at the regions close to the QW / barrier interfaces as a function of 

segregation efficiency. .................................................................................................................. 81

Figure 3-14: Confinement potentials of electrons in the conduction band, heavy holes and light 

holes in the valence band of the Ga0.65In0.35N0.015As0.985 / GaAs QW (λ~1.3 µm) with various 

segregation efficiencies of Indium atoms. .................................................................................... 82 

Figure 3-15: Transition energies of e1-Hh1 and e1-Lh1 in (A) Ga0.65In0.35N0.015As0.985 / GaAs and 

(B) Ga0.61In0.39N0.03As0.97 / GaAs QW structures as a function of Indium segregation efficiency.

....................................................................................................................................................... 83 

Figure 4-1: Indium and Nitrogen composition profiles for a 7-nm-thick 

Ga0.59In0.41N0.038As0.962/GaAs QW without disorder (structure A, nominal structure with uniform 

compositions and ideal interfaces) and with disorder (structure B, taken from the experimental 

results reported in (Luna 2007) with author’s permission). .......................................................... 87 

Figure 4-2: In-

 

plane strain profiles of a 7-nm-thick Ga0.59In0.41N0.038As0.962/GaAs QW for 

structures A and B. ........................................................................................................................ 88

Figure 4-3: Confinement potentials of electrons in the conduction band, heavy holes and light 

holes in the valence band for structures A and B.......................................................................... 89 

Figure 4-4: Confinement potentials of electrons in the conduction band, heavy holes and light 

holes in the valence band of the Ga0.65In0.35N0.015As0.985 / GaAs QW with various segregation 

efficiencies of Indium atoms without considering Nitrogen disorder. ......................................... 90 

Figure 4-5: Energy dispersion curves for conduction and valence subbands along [100] and [110] 

crystal directions for structures A and B....................................................................................... 91 



 xi 

Figure 4-6: The increase of electron-heavy hole (C1-HH1) transition energies (blueshift) as a 

function of Indium segregation efficiency for structures A and B. .............................................. 93 

Figure 4-7: Optical gain spectra of the TE mode of the Ga0.59In0.41N0.038As0.962/GaAs QW as a 

function of photon energy for structures A and B. ....................................................................... 94 

Figure 4-8: Optical gain spectra of the TM mode of the Ga0.59In0.41N0.038As0.962/GaAs QW as a 

function of photon energy for structures A and B. ....................................................................... 94 

Figure 4-9: Optical gain peak of the TE modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a 

function of the injected carrier concentration for structures A and B. .......................................... 95 

Figure 4-10: Optical gain peak of the TM modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a 

function of the injected carrier concentration for structures A and B. .......................................... 96 

Figure 4-11: Optical gain peak of the TE modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a 

function of the radiative current density for structures A and B................................................... 97 

Figure 4-12: Optical gain peak of the TM modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a 

function of the radiative current density for structures A and B................................................... 97 

Figure 5-1: Numerically calculated transition energy between the first confined states of electron 

and heavy-hole (a) as a function of diffusion length, and (b) as a function of squared-diffusion-

length, the solid-line is a linear fitting for the calculated data. ................................................... 103 

Figure 5-2: Photoluminescence peak energy as a function of annealing time annealed at 680 0C 

(a), 700 0C (b), 750 0C (c), and 800 0C (d). The solid lines are the best fittings by using EPL = 

ΔESRO +E0 +A ×D t, with E0 = 0.9145 eV and A = 0.032 eV/nm2. ............................................ 104 

Figure 5-3: An Arrhenius plot of GaInNAs / GaAs interdiffusion coefficients for temperatures 

between 680 and 800 0C. ............................................................................................................ 106 



 xii 

Figure 5-4: Blueshift in transition energy, Ee1-Hh1, of an 8-nm Ga0.628In0.372N0.015As0.985 / GaAs 

QW as a function of diffusion length for different Nitrogen-bonding configurations (N-In0Ga4 

(□), N-In1Ga3 (○), N-In2Ga2 (△), N-In3Ga1 (▼), and N-In4Ga0 (◊)). ........................................ 108 

Figure 5-5: Transition energy, Ee1-Hh1, of an 8-nm Ga0.628In0.372N0.015As0.985 / GaAs QW as a 

function of Nitrogen-bonding configuration. .............................................................................. 111 

Figure 5-6: Photoluminescence peak energy as a function of annealing time, with annealing 

performed at (a) 680 0C, (b) 700 0C, (c) 750 0C, and (d) 800 0C.  The solid lines are best fits over 

calculated transition energies with blueshifts due to interdiffusion (dotted lines) and SRO 

(dashed lines). ............................................................................................................................. 113 

Figure 5-7: An Arrhenius plot of GaInNAs/GaAs SRO time constants (τ) for temperature range 

between 680 – 800 0C. ................................................................................................................ 115 

 



 xiii 

LIST OF TABLES 

 

Table 1-1: Standardized optical bands for modern day communication ........................................ 4 

Table 1-2: Typical characteristics of different generations of optical fiber transmission systems 

(Viswanathan 2004) ........................................................................................................................ 5 

Table 1-3: Problem, cause and solutions of RF-plasma cell in the MBE growth of dilute nitrides

....................................................................................................................................................... 18 

Table 2-1: Comparison of 6-band, 8-band and 10-band k·p models for dilute nitride material. .. 49 

Table 2-2: General form of the expanded m-band Matrix. Each point in real-space, along the 

quantized z-axis corresponds to an m-row block in this matrix. .................................................. 55 

Table 5-1: The best fitting values of the diffusion coefficient D and the SRO effect ΔESRO for the 

photoluminescence energy blueshifts. ........................................................................................ 105 

Table 5-2: The best fitting values of ΔESRO and τ for different annealing temperatures ............ 114 



 

 xiv 

ACRONYMS 
 

APD   Avalanche photodiode 

BEP   Beam equivalent pressure 

BS   Blueshift 

CBE   Chemical beam epitaxy 

DBR   Distributed Bragg Reflector 

DC   Direct current 

DFB   Distributed feedback (type of laser) 

DMHy   Dimethyl hydrazine 

DQW   Double QW 

DWDM  Dense WDM 

EA   Electro absorptive 

EEL   Edge emitting laser 

FDM   Finite difference method 

FP   Fabry perot 

FWHM  Full width half maximum 

GA   Genetic algorithm 

GSMBE  Gas-source MBE 

HBT   Heterojunction bipolar transistor 

HFET   Heterojunction field effect transistor 

HRXRD  High resolution X-ray diffraction 

K-cell   Knudsen effusion cell 

K·P   k <dot> p model for band structure calculation 

LAN   Local area network 

LED   Light emitting diode 

MAN   Metro area network 

MBE   Molecular Beam Epitaxy 

MOVPE  Metal organic vapor phase epitaxy 

MQW   Multi quantum well 

MZ   Mach-zehnder 

PL   Photoluminescence 

OEIC   Optoelectronic integrated circuits 



 

 xv 

QW   Quantum well 

RF   Radio frequency 

RHEED  Reflection high energy electron diffraction 

RTA   Rapid thermal annealing 

SCL   Strain compensation Layer 

SEM   Scanning electron microscopy 

SIMS   Secondary ion mass spectroscopy 

SL   Superlattice 

SRO   Short Range Order 

SSMBE  Solid-source MBE 

TE   Transverse electric 

TEM   Transmission electron microscopy 

TM   Transverse magnetic  

UHV   Ultra high vacuum 

VCSEL  Vertical cavity surface emitting laser 

WDM   Wavelength division multiplexing 

XRD   X-ray diffraction 

 
 

 
 



 

 xvi 

PUBLICATIONS 
 
 
JOURNAL PUBLICATIONS: 
 
1. V. Dixit, H. F. Liu and N. Xiang, “Effect of Composition Disorders on Band Structure and 

Optical Gain Spectra of GaInNAs/GaAs Quantum Wells,” Japanese Journal of Applied 

Physics, Vol. 48, pp. 081101 (2009). 

2. V. Dixit, H. F. Liu and N. Xiang, “Analysing the thermal-annealing-induced 

photoluminescence blueshifts for GaInNAs/GaAs quantum wells: a genetic algorithm based 

approach”, Journal of Physics D: Applied Physics, Vol. 41, pp. 115103 (2008). 

3. V. Dixit, H. F. Liu, and N. Xiang, “Study of thermal-anneal-induced rearrangement of N-

bonding configurations in GaInNAs/GaAs quantum well” Advanced Materials Research, 

Vol. 31, pp. 209 (2008). 

4. H.F. Liu, V. Dixit and N. Xiang, "Effect of Indium segregation on optical and structural 

properties of GaInNAs /GaAs quantum wells at emission wavelength of 1.3 micron", 

Journal of Applied Physics, Vol. 100, pp. 083518 (2006). 

5. V. Dixit, H. F. Liu and N. Xiang, "Effect of In-segregation on subbands in GaInNAs/GaAs 

quantum wells emission around 1.3 and 1.55 micron", Optical and Quantum Electronics, 

Vol. 38, pp. 963 (2006). 

6. H.F. Liu, V. Dixit and N. Xiang, "Anneal-induced interdiffusion in 1.3-µm GaInNAs/GaAs 

quantum well structures grown by molecular-beam epitaxy”, Journal of Applied Physics, 

Vol. 99, pp. 013503 (2006). 

  



 

 xvii 

CONFERENCE PRESENTATIONS: 
 
1. V. Dixit, H. F. Liu and N. Xiang, “Analyzing the Thermal-Annealing-Induced 

Photoluminescence Blueshifts for GaInNAs/GaAs Quantum Wells capped with dielectric 

films”, The 5th International conference on materials for advanced technologies 

(ICMAT2009) at Singapore, 28 June-3 July 2009. 

2. V. Dixit, H. F. Liu and N. Xiang, “Study of Indium Segregation in GaInNAs/GaAs Quantum 

Wells”, The 5th International conference on materials for advanced technologies 

(ICMAT2009) at Singapore, 28 June-3 July 2009. 

3. V. Dixit, H. F. Liu and N. Xiang, “Effect of Nitrogen on Indium Segregation in 

GaInNAs/GaAs Quantum Wells”, IEEE PhotonicsGlobal at Singapore, 9-11 December 

2008. 

4. V. Dixit, H. F. Liu and N. Xiang, “Kinetic modeling of Indium Segregation in 

GaInNAs/GaAs Quantum Wells”, invited talk at Advanced Heterostructures and 

Nanostructures Workshop (ANHW) at Hawaii, USA, 7-12 December 2008. 

5. V. Dixit, H. F. Liu and N. Xiang, “Optical Gain of Segregated GaInNAs/GaAs Quantum 

Wells at Emission Wavelength of 1.3 micron,” IEEE International Nanoelectronics 

Conference (INEC2008) at Shanghai, China, 24-27 March 2008. 

6. V. Dixit, H. F. Liu and N. Xiang, “Study of thermal-anneal-induced rearrangement of N-

bonding configurations in GaInNAs/GaAs quantum well”, The 4th International conference 

on materials for advanced technologies (ICMAT2007) at Singapore, 1-6 July 2007. 

7. V. Dixit, H.F. Liu and N. Xiang, "Effect of In-Segregation on subbands in GaInNAs/GaAs 

quantum wells for 1.3 and 1.55 micron operation wavelength", The 6th International 

conference on numerical simulation of optoelectronic devices (NUSOD-06) at Singapore, 

11 - 14 September 2006. 

8. H. F. Liu, D. Vivek and N. Xiang, “Interdiffusion and rearrangement of local Nitrogen 

bonding configurations in GaInNAs / GaAs quantum wells grown by molecular beam 



 

 xviii 

epitaxy”, The 3rd Asian Conference on Crystal Growth and Crystal Technology 

(CGCT-3) at Beijing, China, 16-19 October 2005.  

9. N. Xiang, H. F. Liu, J. Kong, V. Dixit and D. Y. Tang, “Dilute nitride semiconductor 

saturable absorber mirror for modelocking Nd:Gd0.64Y0.36VO4 solid state laser”, The 33rd 

International Symposium on Compound Semiconductors (ISCS-33) at Vancouver, 

Canada, 13-17 August 2006. 

10. V. Dixit, H. F. Liu and N. Xiang, “Study of Thermal-Anneal-Induced Rearrangement of N-

Bonding Configurations in GaInNAs/GaAs Quantum Wells,” National University of 

Singapore – National Taiwan University Optoelectronics Student Exchange Workshop 

at Singapore, 27 June 2007.  



Chapter-1 Introduction 

1 

Chapter 1: Introduction 
 

 

The development of lasers has played a significant role in the journey of fiber-optic 

communication systems and continues to hold a great potential for its future. III-V compound 

semiconductors are considered indispensable for their optoelectronic properties and the most 

suitable candidates for light sources in modern telecommunication industry. GaAs, InP, 

GaInAsP, GaInAs and GaInNAs are some of the prominent materials used in the fabrication of 

telecom laser sources. The development of the dilute nitride semiconductor family, during the 

1990s, has opened a new opportunity in bandgap engineering capabilities of III-V compound 

semiconductors. Since the early demonstration of dilute nitride lasers (Kondow 1996), they have 

been identified as promising material for optoelectronic applications. Dilute nitrides have 

attracted considerable research interest for their potential emission in strategic wavelength 

window (1.2-1.6 µm) for telecommunication, unusual physical properties and promising 

integration with low cost GaAs technology.  This chapter explains the importance of dilute 

nitrides in the big picture of telecommunication systems, constituting components and their 

performance requirements. The development of telecommunication systems through various 

technological milestones is described in section 1.1. The role of III-V semiconductors employed 

as telecom lasers is discussed in the section 1.2. Section 1.3 elucidates the prospects and 

challenges of dilute nitrides, which is considered a relatively new class of materials. Motivation 

for this research, research objectives and methodology adopted to meet these goals is described 

in section 1.4. Section 1.5 summarizes the organization of this thesis.  
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1.1 Development of telecommunication systems 
A reliable long distance communication system is a human necessity and a backbone of 

modern civilization. Beginning from the early days of long distance communications, using 

smoke signals and drums, telecommunication systems have developed, through various stages, to 

modern day ultra-high speed optical communications. As communication systems improved, 

certain fundamental limitations presented themselves. The invention of the telephone, by 

Alexander Bell in 1876, was a major breakthrough which led to inter-city communication and 

formation of telephone exchange centers. The telephone networks used electrical carrier signals 

and were limited by their small repeater spacing (the distance that a signal can propagate before 

attenuation requires the signal to be amplified). In December 1901, the invention of wireless 

communication by Guglielmo Marconi set forth the foundation for first wireless communication 

between Britain and Newfoundland, earning him the 1909 Nobel Prize in physics. Later 

developments in wireless communication led to operation in microwave frequency, where bit 

rate was limited by their carrier frequency.  

In the second half of the twentieth century, it was realized that an optical carrier of 

information would have a significant advantage over the existing electrical and microwave 

carrier signals. The first problem in using an optical carrier was the lack of a suitable light 

source. The development of lasers in 1960s helped to overcome the problem of light sources for 

optical carriers. The second problem was related to the development of high-quality optical fiber 

to guide the optical signal to travel from source to destination. In 1966 Kao and Hockham 

proposed optical fibers at Standard Telecommunication Laboratories, when they showed that 

losses in existing glass were due to contaminants, which could potentially be removed.  
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Figure 1-1: Wavelength windows in silica based optical fiber (taken from David R. Goff 2002). 

Figure 1-1 shows the wavelength windows of fiber attenuation for commercial silica 

based optical fiber. The Figure shows the wavelengths, with a local minimum at 0.85, 1.3 and 

1.55 µm. In the first window, at 0.85 µm, the losses are high and therefore it is mostly used for 

short-distance communications. The second window, around 1.3 µm, has much lower losses and 

corresponds to zero dispersion. The third window, around 1.55 µm, is most widely used due to 

the lowest attenuation losses, resulting in the ability to achieve the longest transmission range. 

The fourth window, 1.565-1.625 nm, has been standardized due to the recent advances in optical 

fibers which effectively extend the third window. A source emission wavelength around 1.55 µm 

corresponds to a fiber absorption minimum and matches the gain of fiber amplifiers but is 

limited by undesirable chromatic dispersion (Saleh 1991). Thus the third window requires the 

use of dispersion compensators. Currently commercial silica based optical fibers, in use for long 

haul communication, extend the low loss window from 1.26 to 1.68 µm. The wavelength 
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window favorable for transmission has been standardized for the current technology and is 

shown in the Table 1-1. As shown in this table, the current technology has bridged the second 

and third windows (Rüdiger Paschotta 2008). This is due to advanced fibers with low OH 

content which do not exhibit the peak at 1.4 µm as shown in Figure 1-1. 

Table 1-1: Standardized optical bands for modern day communication 

Band Description Wavelength range 
O-band original 1.26-1.36 µm 
E-band Extended 1.36-1.46 µm 
S-band Short wavelengths 1.46-1.53 µm 
C-band Conventional (Er-

window) 
1.53-1.565 µm 

L-band Long wavelengths 1.565-1.625 µm 
U-band Ultralong wavelengths 1.625-1.675 µm 

The first generation of commercial fiber-optic communication systems came through 

concurrent development of low attenuation optical fiber and compact GaAs semiconductor 

lasers. In 1978, the first generation fiber-optic system was commercially deployed. The first 

generation commercial fiber-optic communication system operated at a wavelength around 0.8 

µm with a bit rate of 45 Mb/s with repeater spacing of up to 10 km (Agrawal 1997). In the early 

1980s, further development of fiber-optic communication led to use of GaInAsP semiconductor 

laser as light source for 1.3 µm wavelength. In 1981, the invention of single-mode fiber helped to 

overcome the limitation due to dispersion to boost system performance. By 1987, these systems 

were operating at bit rates of up to 1.7 Gb/s with repeater spacing up to 50 km. The development 

of dispersion-shifted fibers, which were designed to have minimum dispersion at 1.55 micron, 

eventually allowed fiber-optic systems to be operated at 1.55 µm. These systems had 0.2 dB/km 

loss for commercial 2.5 Gb/s system with repeater spacing in excess of 100 km. In the year 1988, 

the first transatlantic optical fiber based telephone cable, TAT-8, came into operation, forming a 

first undersea 5600 km fiber optic link between the United States and Europe.  
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Increasing demands of high bandwidth and low cost led to the use of optical 

amplification and wavelength-division multiplexing (WDM). Optical amplification reduced the 

need for repeaters and WDM increased the capacity of fiber by allowing data transmission at 

multiple wavelengths. The generic long-haul dense WDM (DWDM) optical communications 

system consists of multiple individually modulated sources with slightly different emission 

wavelengths and optically multiplexed onto a single fiber, which has enabled information 

transport capacity of 1 Tb/s per fiber in commercial systems. These two developments, since 

1992, have revolutionized the telecommunication industry by increasing the system capacity to a 

bit rate of 10 Tb/s in 2001. Recently, bit-rates of up to 14 Tbit/s have been reached over a single 

160 km line using optical amplifiers. The development of fiber-optic communication systems 

can be divided into various generations, which are summarized in the Table 1-2.  

Table 1-2: Typical characteristics of different generations of optical fiber transmission systems (Viswanathan 
2004) 

Generation Typical maximum 
speed distance 
product (Mbps-

km) 

Operating 
wavelength 

(µm) 

Type of fiber Loss 
(dB/km) 

I 45                       
150 

0.85 Multimode            
Graded index 

3                                 
1 

II 500                  
10,000 

1.3 Multimode                    
Graded index 

<1              
<0.3 

III > 10,000 1.3 Single-mode < 0.01 
IV  1.55 Single-mode  
V  2.0 Infrared fibre  

Through the years 1995-2001, the fiber-optic communication industry became associated 

with the dot-com bubble and vast increases in demand for communications bandwidth were 

predicted due to increased use of the Internet and commercialization of various bandwidth-

intensive consumer services. The constantly increasing demand of bandwidth and speed of 

optical networks (e.g., local (LAN), wide (WAN), metro (MAN) and storage (SAN) area 
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network) for Internet and data transmission is increasing exponentially. The bandwidth usage (in 

Japan), from year 1999-2009, is shown as an example in Figure 1-2 (Bit rate (Gb/s) vs. Year). 

 

Figure 1-2: Increasing Bandwidth usage in Japan [http://www.jpix.ad.jp/en/techncal/traffic.html] 

The performance of an optical network is limited by various issues related to high 

switching speed, bandwidth requirements and data transmission rate. Recent development of 

fiber-optic communication focuses on extending the wavelength range over which a WDM 

system can operate. The conventional wavelength window, known as the C band, covers the 

wavelength range 1.53-1.57 µm, and the new dry fiber has a low-loss window promising an 

extension of that range to 1.3-1.6 µm (Huang 2008). The development of cost-effective 

techniques for laser manufacturing and their integration is essential to fulfill the requirement for 

high-speed direct access. Therefore it is at the heart of the system to have reliable optical devices 

at low loss operation wavelength regime. Wavelengths of 1.3 µm and 1.55 µm are particularly 

important for commercial optical silica fibers as they offer zero dispersion and minimum loss 

respectively (Gambin 2002). 
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1.2 Telecommunication lasers and materials 
Fiber-optic communication systems consist of four basic entities: (1) a modulated light 

source, (2) an optical fiber to transmit the modulated light, (3) optical amplifiers to compensate 

for the attenuation of transmission fiber, and (4) a photoreceiver for conversion of optical to 

electrical signals (Agrawal 1997). In such systems, source modulation rate, optical fiber length 

and type, need for optical amplification, and component cost are the prime forces that shape laser 

source performance requirements, such as laser emission wavelength, modulation rate, 

wavelength chirp, and temperature sensitivity. 

Laser sources are needed for two extremes of telecommunication requirements: long-haul 

systems and short-reach systems. Long-haul systems are designed for information transportation 

between major cities with fiber spans typically 100 km to 3000 km and aggregate data rates in 

the range of l00 Gb/s to 1 Tb/s in a single fiber, which require high performance and high speed 

laser design. On the other hand, short reach systems are designed for information transmission 

across a building or an office complex, where focus shifts to lower cost above laser performance. 

Compared to these two extremes for a metropolitan system, laser cost is still of prime concern 

but performance requirements are similar to a long-haul system.  

Telecom lasers are specialized variants of semiconductor lasers specially adapted to 

produce powerful, high-speed optical signals that faithfully transmit voice, data, and video 

signals via optical fiber. The optical system requires additional components such as optical 

modulators, amplifiers, spot size converters, and detectors to monolithically integrate telecom 

lasers for enhancing the functionality along with cost reduction. To avoid signal transmission 

degradation, lasers are designed to produce a single pure output wavelength with minimal 
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spectral width (Ogawa 1982). The need to transport data at high signaling rates requires rapid 

laser modulation of the order of 10 Gb/s. To achieve the extremely high data rates demanded by 

modern optical transmission systems, separate modulators are required (Kaminow and Koch 

1997). Signaling at data rates in excess of 40 GB/s is possible using external modulators. For 

systems employing fiber spans of 200 km and longer an extremely low-frequency chirp is 

required. This objective is achieved by the use of external modulators such as electro-absorptive 

(EA) element (Suzuki 1987) or a Mach-Zehnder (MZ) interferometer (Pollock 1995) on a CW-

operated laser source. Modulation is achieved through voltage control of the relative phase shift 

of two recombined signals. EA modulators are smaller and require lower drive voltages than MZ 

modulators. They lend themselves to monolithic integration, which tends to reduce 

manufacturing costs. However, MZ modulators provide better modulation characteristics than 

EA components (for example, chirp control). In practice, both external modulation schemes are 

employed to meet the various specific needs of long-haul optical communication systems. 

Compound semiconductors, especially III-V compounds, are indispensable for the 

realization of modern optoelectronic devices such as lasers and light emitting diodes (LEDs) 

used in optical communication systems. They offer potential enhancement to the optical network 

by offering technically viable options for the devices employed, i.e., lasers, optical amplifiers, 

repeaters, photodetectors and modulators. However, these structures require heterostructures 

tailoring for desirable bandgaps and bandedge lineups (also known as “bandstructure 

engineering”) by controlling the composition, thickness and stacking of layers of heterostructure, 

which is largely dependent on the miscibility of binary III-V constituents and lattice parameters 

mismatch. GaAs and InP are the two commonly used substrate materials for fabricating 

heterostructures for optoelectronics applications. Figure 1-3 shows the bandgap energy and 
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lattice constants of arsenide-nitride and arsenide-phosphide alloys for long wavelength emission. 

Shaded region below GaAs shows that certain combinations of Indium and N compositions can 

form a GaInNAs layer which is lattice matched to GaAs. 

 

Figure 1-3: The relationship between bandgap energy and lattice constant for nitride-arsenide and 
arsenide-phosphide alloys for long wavelength emission (Henini 2005) 

Currently InP-based uncooled 1.31 µm laser sources can produce more than 20 mW 

power at 85°C and can be directly modulated at up to 10 Gb/s. The improvements in laser 

manufacturing technology have brought down the cost even for distributed feedback (DFB) 

lasers, which makes them popular light sources for short-reach applications. The performance of 

lasers tends to degrade at high operating temperatures resulting in low output power and poor 

modulation characteristics (Bhat 1994). Thus it requires careful optimization of the active region 

quantum well structure. Heat dissipation can be addressed by minimizing device series resistance 

and employing proper heat sinking. A multi-quantum well structure is usually adopted to 

increase the optical confinement factor and reduce laser threshold currents at high temperature 
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(Zory 1993). However, the number of quantum wells is limited by carrier transport problems 

through the quantum well stack and its ability to support single fundamental optical mode.  

Another class of lasers, vertical cavity surface emitting lasers (VCSELs), emits light in a 

cylindrical beam vertically from the surface of a fabricated wafer, and offer significant 

advantages when compared to edge-emitting lasers currently used in the majority of fiber optic 

communications devices. VCSELs can also be manufactured using single step epitaxy. They 

offer advantages of wavelength-tunability, on wafer testing and possibility of forming multiple 

wavelength arrays on patterned substrates (Yuen 1997). A VCSEL consists of two oppositely-

doped distributed Bragg reflectors (DBR) with a cavity layer in between which consists of an 

active region with multiple quantum wells. Current is injected into the active region via a current 

guiding structure. The choice of DBR material is critical for the optimization of VCSEL 

performance. Using a GaAs substrate, the typical GaAs/AlGaAs DBRs used for commercial 850 

nm VCSELs, by adjusting their thickness, can be applied for 1.3-1.6 micron emission. Lateral 

current confinement can be provided using an oxide aperture or proton implant, both well 

established for 850 nm VCSELs. Hence, DBR design and VCSEL processing are all proven. The 

most challenging task is to extend the wavelength of a new active material.  

GaAs based systems have shown good performing VCSEL lasers with high speed up to 

10 Gbps but only for a small range. GaAs-based devices are very attractive for optoelectronics 

applications due to cheaper wafer material and mature processing technology as compared to 

InP-based devices. However, devices based on GaInAs/GaAs material systems can extend device 

operation wavelength only up to 1.20 µm (Sato 1999). In contrast to GaInAs/GaAs based 

devices, long-wavelength VCSEL on an InP substrate using conventional InGaAs or InGaAlAs 
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strained QWs as active region can operate up to 2.1 µm with well understood gain region and 

minimum reliability concern. However, InP-based devices suffer from poor thermal stability 

(lowering of efficiency with increase in temperature) and poor refractive index contrast in InP-

based DBRs. The commonly adopted solution for poor refractive index contrast is to increase the 

number of layers for high reflectivity DBR but it results in high series resistance retarding 

efficient device operation. Various solutions to these problems have been investigated, including 

wafer fusion of DBR to the active layer (Patriarche 1997), metamorphic growth (Goldstein 1998) 

and dielectric growth (Uchiyama 1995). However, these solutions complicate the fabrication 

process, increase cost and may result in unreliable devices (Dudley 1994). Current and optical 

confinements are also major issues to be resolved to reduce the excessive heat generated at the 

active junction. Much of the engineering for 1.55-µm VCSEL has focused on these issues. In an 

attempt to increase the wavelength of conventional GaInAs/GaAs, typical 1.3 micron emission 

can be obtained with 1.5-2% Nitrogen added into GaInAs with 35-38 % Indium. Since dilute 

nitrides are the focus of this thesis, their advantages, challenges and development are discussed 

in the following section.  

1.3 Dilute Nitrides 
Incorporation of a few percent of Nitrogen as a group V element into GaAs or GaInAs, 

i.e. by creating the so-called “dilute nitrides”, has been reported as potential candidate to 

overcome some of the limitations faced by conventional GaInAsP/InP lasers. Initial reports from 

(Weyers 1992) and (Kondow 1996; Kondow 19961; Kondow 19962) provided early 

breakthrough in dilute nitrides research for commercial applications in telecommunication. 

Before Kondow's discovery, it was widely believed that GaInAsP lattice matched to InP was the 

only alloy series that could meet telecommunications requirements. The discovery that 
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communication wavelength lasers could be fabricated on GaAs inspired several research groups 

to initiate work on GaInNAs because of the tremendous processing advantages offered by GaAs 

over InP. 

The incorporation of Nitrogen reduces the bandgap and decreases the lattice constant 

simultaneously, unlike the addition of Ga, In, P, As, Sb where a reduction (increase) in bandgap 

energy is achieved by increasing (decreasing) the lattice constant. This behavior of Nitrogen not 

only reduces the bandgap but also offers opportunity for tailoring band alignments. Both of these 

effects have opened up a new dimension of bandgap engineering. Initially the incorporation of 

Nitrogen was thought as unsuitable for alloying as Nitrogen forms a strong perturbation in the 

GaAs matrix material. Since the last decade, there has been increased interest of researchers in 

this material due to its many advantages. However Nitrogen-induced defects pose several 

technical issues which prevent us from exploiting their potential capabilities in 

telecommunication applications (Buyanova 2004). Potential advantages and recent progress in 

GaInNAs research has created a wide spread interest in this material; which is indicated by 

various reviews for this material (Ustinov 2000; Ager 2002). The potential advantages and the 

limitations of dilute nitrides are listed below. 

Advantages 

GaInNAs can be closely lattice matched to GaAs and offer a type-1 direct band gap in the 

range of telecommunications wavelengths (1.25-1.65 µm) making it an attractive alternative for 

laser materials used in local- and metro-area (LAN, MAN)  communications networks. 

GaInNAs/GaAs heterostructures offer increased conduction band offset as compared with InP-

based heterostructures (Knodow 1996), which leads to a more efficient electron confinement, 
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especially at high temperature. Therefore, the thermal stability of these long wavelength lasers is 

expected to improve with higher values of characteristic temperature and with a higher 

maximum operating temperature than common InP-based lasers. The possible high temperature 

operation can help to remove thermoelectric cooler used to stabilize the laser, thus facilitating 

low-cost emitters for optical communication and interconnection systems. Moreover, GaInNAs 

has a larger electron effective mass (Hetterich 2000; Hai 2000). This provides a better match of 

the valence and conduction band densities of states leading to higher efficiency and higher output 

power (Knodow 1996). 

Compositional control and uniformity of GaInNAs grown by molecular beam epitaxy 

(MBE) is relatively easy compared to metal organic vapor phase epitaxy (MOVPE) growth or to 

As/P control in InGaAsP (LaPierre 1996). This will translate into better yield and far easier scale 

up to larger wafers for lower cost (Henini 2005). 

The larger refractive index difference for lattice matched alloys allows GalnAsN active 

layer to be monolithically combined with high reflectivity GaAs/A1As Bragg mirrors, making 

this material system attractive for the realization of long wavelength VCSELs. VCSELs can be 

straightforwardly fabricated using a well-developed GaAs/AlAs mirror and highly selective 

oxidation of AlAs to form A1Ox for current and optical aperture confinement. The energy band 

engineering, used to minimize heterojunction voltage drops, use intermediate graded layers of 

AlxGa1-xAs or A1As/GaAs superlattices. AlxGa1-xAs, being lattice matched to GaAs, do not 

require difficult compositional control over both column III and column V constituents in a 

quaternary layer, such as GaInAsP, to maintain lattice match (Harris 2002). Thus, GaInNAs on 

GaAs provides easy monolithic integration with GaAs electronics, which will be essential to 
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provide low-cost, high-speed integrated electrical drivers for direct laser modulation in high-

speed networks. This new development of long wavelength lasers on GaAs substrates can fully 

take advantage of well-matured GaAs technology and its higher fabrication yield due to the 

largest size of available GaAs substrates (6-8 inch) as compared with InP (4-6 inch).  

The GaInNAs alloy can also be grown on InP substrates in order to extend the emission 

wavelength range as compared to the conventional GaInAsP alloy. Thus, the whole C- and L-

band emission can be covered using tensile strained GaInAsN/(Ga)In(As)P QWs while the 

emission wavelength range can be further extended far into the infrared, using compressive 

strained QWs structure (Gokhale 1999; Serries 2002). The use of surfactant Sb to form 

quinternary GaInNAsSb has shown some benefits in heterointerface quality with respect to 

GaInNAs and has reached longer wavelengths in MBE-grown QWs (Ha 2002).  

Apart from advantages in laser fabrication, GaInNAs material can be used in solar cell 

applications and electronic devices. The alloy Gal-xInxNyAsl-y is exactly lattice matched to GaAs 

when y = 0.35x and is required in this form for thick epilayers as the third junction in next-

generation solar cells (Friedman 1998). For electronic devices, such as heterojunction bipolar 

transistors (HBTs) and heterojunction field effect transistors (HFETs), dilute nitrides offer 

increased design flexibility as a result of greater freedom in band gap engineering and lattice 

matching (Welty 2004). In terms of lattice-matched structures on silicon, it may be possible to 

grow optical devices based on GaNAs quantum wells (QWs) in GaP barriers (Kondow 19963). 

The introduction of InNSb multiple QWs to InSb-based LEDs and detector structures are 

promising to extend the wavelength of III-V-based emitters and detectors (Johnson 2000; Ashlay 

2003).  
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Limitations 

GaInNAs also faces some challenges to utilize its potential. First of all, GaInNAs is a 

challenging material to grow because the end alloy constituents have different crystal structure: 

InGaN is wurtzite (hexagonal) and InGaAs is zinc-blende (cubic), which results in a large 

miscibility gap in the alloys and potential origin of phase separation. The equilibrium solubility 

of Nitrogen in GaAs is extremely low (Ho 1997). Thus, growing useful material requires that 

growth be carried out under metastable conditions accessible only to advanced growth 

techniques such as MBE and MOVPE. Moreover, group V elements have large differences in 

ionic radii (0.75 Å for Nitrogen as compared to 1.2 Å for Arsenic) and electro-negativities 

(Phillipsin 1973).  

Compositional analysis of this quaternary material is complex especially due to 

challenging quantitative measurement of Nitrogen content. There have been very few reports of a 

quaternary composition with no net strain because it is difficult to incorporate sufficient Nitrogen 

in substitutional lattice sites. Therefore, the dilute nitride epilayer thicknesses employed in dilute 

nitride devices are limited by critical thickness considerations (Henini 2005). 

Although growth by MBE, in comparison to MOVPE, has proven to be easier to fabricate 

better quality devices suitable over a greater range of wavelengths, there are very significant 

challenges to achieve good epitaxy and high optical quality material. One of the issues with 

dilute nitrides is the difficulty associated with the control of the growth parameters to achieve 

good material quality. MOVPE is the preferred technique for large scale production of 

optoelectronic devices. The current challenge is a suitable growth technique to choose an 
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appropriate N-based growth precursor and to optimize specific growth conditions of N-

containing alloys.  

1.3.1 GaInNAs growth  
 

To overcome limitations due to Nitrogen solubility, GaInNAs is grown under metastable 

conditions which are achievable only by advanced growth techniques such as solid or gas-source 

MBE (SSMBE, GSMBE) or MOVPE. MBE and MOVPE can operate far from thermodynamic 

equilibrium and improve Nitrogen incorporation. The most important improvements in N-

containing material quality as well as in laser performance have been mainly obtained by MBE, 

while MOVPE-grown structures appeared to be a step behind (Illek 2002). There is a large 

interest to determine if MOVPE, which is currently the mainstream for production of InP-based 

lasers for telecommunication applications, can also be efficient to grow high performance long 

wavelength GaInAsN-based lasers. The advances made in the growth of dilute nitrides using 

MBE and MOVPE growth are described here. 

MBE growth of GaInNAs 

Nitrogen in normal form is a stable N2 molecule. The use of Nitrogen, in normal form, 

during MBE growth leads to a very small incorporation of Nitrogen interstitials in the Ga(In)As 

matrix. Therefore Nitrogen has to be used in its reactive form such as N-atoms or N* radical. 

Dissociation energy of Nitrogen molecule, 9.76 eV, is very high as compared with dissociation 

energies for Arsenic (3.96 eV) and phosphorous (5.03 eV) molecules (Brewer 1996). Nitrogen 

bond strength happens to be too high for vacuum cracking methods therefore plasma sources 
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such as direct current (DC) plasma or radio frequency (RF) plasma are used for dilute nitride 

growth.  

During the early development of GaInNAs, RF plasma cells normally used for growing 

GaN were adapted for the growth of dilute nitride alloys. The RF plasma is preferred over DC 

plasma because of its low ion count and high atomic dissociation yield (Kirchner 1998), which 

minimizes the ion or electron damage to the epitaxial films from the plasma source during the 

growth of dilute nitrides. The main advantage of RF plasma is the generation of atomic Nitrogen, 

subject to plasma stability. The amount of atomic and excited Nitrogen in the plasma is a 

function of Nitrogen flow, plasma power, and the numbers and diameter of holes in the plasma 

source front cover plate (Henini 2005). In any system, plasma conditions are optimized to 

produce a maximum amount of atomic Nitrogen versus molecular Nitrogen through the emission 

spectrum of the plasma by comparing the ratio of the integrated intensities of atomic N present in 

the plasma (Spruytte 2001).  

MBE growth using RF plasma sources encounters various problems such as plasma stability, ion 

or electron damage to epitaxial films and plasma degradation; these necessitate optimizing 

growth conditions more frequently and lead to differences in growth conditions. The issues 

related to plasma sources and their solutions are summarized in Table 1-3 (Spruytte 1999; 

Spruytte 20011; Henini 2005). 
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Table 1-3: Problem, cause and solutions of RF-plasma cell in the MBE growth of dilute nitrides  

Problems Consequences Cause of the problem Solution 

Plasma stability: 

   (a)  Short term 

   (b)  Long term 

(1) Difference between 
wafers grown in the same 
system 

(2) Differences in growth 
under similar  conditions 

(1) Difficult maintenance of 
stable flow of injected gas 
at low flow rates 

(2) Difficult reproducibility 
due to thermal and power 
instability 

(3) Difficulty in igniting 
and maintaining consistent 
plasma over time 

(1) Improved RF shielding 
of matching network and 
components 

(2) Minimizing the 
duration of plasma 
operation  

(3) Replace the plasma 
crucible  

Contamination due to 
Arsenic cell 

Cell contamination or 
coating the outside of the 
crucible, which reduces RF 
coupling into the plasma 

During growth when the 
plasma cell is off, the cell is 
not heated and Arsenic can 
condense in or on the cell 

Gate valve to isolate the 
cell from the rest of the 
chamber when N is not 
needed 

Temperature and power to 
stabilization time 

(1) Relatively heavy N 
"doping" 

(2) Increased trap density and 
non-radiative recombination 
rate 

Larger N leakage than for 
normal evaporative sources 

(1) Pre-running cell before 
the wafer is loaded and 
growth is started.  

(2) Better shutter designs  

(3) Placing the source 
behind a differentially-
pumped gate valve 

 

Incorporation of N into GaAs differs from crystal growth of other III-V semiconductors 

(such as arsenides, phosphides, or antimonides) as N does not compete for the group-V lattice 

site. The Arsenic and Phosphorous atoms compete for group-V sites in complex ways depending 

upon the growth rate and substrate temperature, therefore they requires many calibration samples 

to know the exact composition obtained during growth. The N incorporation can be controlled by 

varying flow rate or RF power. However, varying power or flow rate can greatly modify plasma 

characteristics and change material quality (Yuen 2004). During dilute nitride-arsenide growth, 

N has been reported to be independent of the Arsenic flux and substrate temperature and shown 

to have inverse dependence on the group-III growth rate (Spruytte 2001). However, the 



Chapter-1 Introduction 

19 

mechanism for this dependence is not well known. The N incorporation is also independent of 

substrate temperature up to temperatures close to normal GaAs growth temperatures of 5800 C 

(Yuen 20041). At very high temperatures, phase segregation occurs and the incorporation 

kinetics is drastically altered.  

The non-radiative recombination has been one of the biggest challenges for all dilute 

nitrides because of the crystal defects arising from low growth temperature and ion induced 

damage from the use of plasma source. The luminescence properties of GalnNAs deteriorate 

rapidly with increasing N composition (Spruytte 20011; Harris 2002). The impact of ion or 

electron damage from the N plasma source on poor luminescence has been reported by several 

authors (Pan 2001; Li 20012; Wistey 2003). The incorporation of N into Ga(In)As also 

deteriorates the crystal quality because of the enormous miscibility gap in this material system 

(Ho 1997). Incorporation of Nitrogen into GaInAs causes various defects such as Nitrogen 

interstitials, Gallium vacancies, and some other complexes. The possible N configurations in 

Ga(In)As matrix grown by molecular beam epitaxy (MBE) are: (1) substitutional NAs (i.e., 

replacing Arsenic sublattices with N atoms), (2) a split interstitial N–As complex (i.e., a Nitrogen 

and an Arsenic atoms on a single Arsenic sublattices site), (3) a split interstitial N–N complex 

(i.e., two Nitrogen atoms on a single Arsenic sublattices site), and (4) an interstitial isolated N 

(Li 20011; Fan 2002).  

These defects lead to poor material quality and limit the Nitrogen mole fraction of 

GaInNAs layer. In order to extend the wavelength of this material system, a large Indium 

composition is needed. For example, about 35% Indium is required in a 7-nm GaInNAs/GaAs 

QW to reach 1.3 µm emissions. The large Indium composition causes high compressive strain in 
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the GaInNAs/GaAs QW. Researchers have employed a tensile strained GaNAs layers adjacent to 

the QW to further extend the wavelength. The insertion of tensile strained GaNAs layer 

compensates for the compressive strain at the QW/barrier interfaces and thus allows greater 

Indium incorporation in the QW for larger wavelength (Kitatani 2000; Li 2001; Pavelescu 2002; 

Liu 2003). However, detailed studies of the GaNAs strain-compensation layer (SCL) effect on 

the optical and structural properties of GaInNAs/GaAs QW upon annealing show a larger 

blueshift in the QWs with strain compensated layers. This larger annealing induced blueshift is 

believed due to the larger vacancy concentration from the GaNAs strain compensation layer (Liu 

20062). 

The epitaxial growth of GaInNAs based structures with abrupt interfaces and high optical 

quality is still a challenge. The abrupt interfaces are hindered by Indium segregation and 

Nitrogen disorder. The incorporation of Indium and Nitrogen is dependent on the growth method 

employed. For plasma-assisted MBE growth, it is reported that the N incorporation is not 

affected by Indium content. However, the influence of N on the incorporation of Indium is 

widely neglected, although strong Indium surface segregation on the growth front has been 

reported in Ga0.85In0.15As/GaAs QWs grown at 460 °C (Martini 2002; Martini 2003), a typical 

temperature used for the growth of GaInNAs by MBE. This segregation prevents us from 

obtaining abrupt interfaces leading to asymmetrical composition profile in the QW. The Indium 

segregation results from the partial incorporation of the Indium in the epilayer, which is believed 

to result from exchange mechanism of Indium and Gallium atoms during the MBE growth 

(Dehaese 1995). Segregation phenomenon has been reported in various systems in the past, such 

as GaInAs, AlGaAs, and InGaP on InP and GaInAs, AlGaAs on GaAs (Muraki 1992).  Our 

research group has reported the Indium segregation in the GaInNAs multi-quantum wells by in 
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situ reflective high-energy electron diffraction (RHEED), ex situ secondary-ion-mass 

spectroscopy (SIMS), and high resolution X-ray diffraction (HRXRD) methods, which reveal 

that enhanced Indium surface segregation can lead to a suppression of the overall Indium 

incorporation (Liu 20064). In this dissertation, we have suggested a possible mechanism for 

enhancement of Indium segregation due to incorporation of Nitrogen. 

MOVPE growth of GaInNAs 

The MOVPE growth of high quality N-containing III-V alloys is quite complex. It 

requires very specific growth conditions that are far from the conditions used for conventional 

GaAs or InP-based semiconductors. To optimize the MOVPE growth conditions for dilute 

nitrides on GaAs substrates, a general growth strategy is adopted: (i) growth of GaNAs to study 

the N incorporation in GaAs, (ii) Optimize the growth conditions for highly strained 

GaInAs/GaAs QW to get the maximum wavelength around 1.2 µm achievable without strain 

relaxation, and (iii) incorporate the minimum N-content required to achieve 1.3 or 1.55 µm 

emission. Typical values of Indium and Nitrogen compositions to attain 1.3 µm emissions are 

around 0.35 and 0.01 respectively. However, the growth control is not straightforward since the 

GaInNAs alloy, group-IlI and group-V compositions, as well as the growth rate are dependent on 

growth temperature and gas phase composition. This complicates the relation between Indium 

and N in GaInNAs alloys by the selection of metal organic sources (Bhat 1998; Friedman 19981; 

Zhou 2003).  

The MOVPE growth requires an efficient N source with, (i) high vapour pressure (> 10 

Torr) at room temperature, (ii) low pyrolysis temperature (< 400 0C) with good stability at 

ambient temperature and (iii) excellent purity and safety. The molecules such as Nitrogen (N2) or 
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ammonia (NH3) have a high thermal stability and cannot be used in the case of a low growth 

temperature regime except using a plasma-cracked gas source (Weyers and Sato 1993). Since a 

Nitrogen plasma source can be only operated at a very low growth pressure it can not be used in 

MOVPE. More complex molecules such as unsymmetrical di-methyl-hydrazine (u-DMHy) offer 

the advantage of a much lower pyrolysis temperature and fit most of the required source 

specifications. DMHy is a liquid source at room temperature with a sufficient vapour pressure of 

130 Torr (Bourret-Courchesne 2000). DMHy has a low dissociation temperature of 420 0C (Lee 

1999) making this N precursor as the most commonly used in epitaxial techniques using all-

gaseous sources such as MOVPE and chemical beam epitaxy (CBE). This chemical compound is 

highly hygroscopic and advanced purification techniques have to be addressed to reduce the 

water content which has been identified as the major impurity of this precursor (Odera 2000). A 

new N source, NF3, has been demonstrated as a more efficient N source as compared with 

DMHy, resulting in a higher N incorporation in GaAs while using lower N precursor 

concentration in the gas phase (Ptak 2002). But NF3 is an oxidizer (contrary to N2, NH3 or 

DMHy), which presents some hazards during its use in a strongly reducing hydrogen-based 

growth atmosphere that is typical of MOVPE (Kurtz 2002). Due to safety reasons, the 

commercial use of NF3 is limited as compared to DMHy. 

It is known that metastable layers, without crystal defects in spite of greater lattice strain, 

beyond the equilibrium critical thickness can be produced at low growth temperature. Therefore, 

to extend the wavelength, the growth of strained GaInNAs/GaAs QWs is carried out at low 

temperature, 470-530 0C (Ougazzaden 1997), as compared with the standard growth temperature 

for arsenide or phosphides (above 650 0C). In the low temperature regime N incorporation is 

controlled only by the fractional flow of DMHy. At higher temperatures the incorporation rate of 
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Nitrogen decreases due to desorption of volatile N-containing species from the surface, which 

can be compensated by increasing the V/Ill ratio. The increase in V/III ratio also improves the 

PL properties of GaInNAs/GaAs QWs by increasing PL intensity and reducing full width half 

maximum (FWHM), as reported by Asplund et al. (Asplund 2000), with a lower thermal 

sensitivity of the PL emission wavelength on growth temperature. A very rich DMHy gas phase 

composition is required to attain a long wavelength emission of GaInNAs QWs, which is 

achieved by increasing the DMHy flow rate as well as by reducing the Arsenic precursor injected 

flow. 

The dependence of N incorporation in GaAs on the growth rate is quite opposite in 

MOVPE and MBE techniques. As the growth rate is lowered, the N-content decreases in the case 

of MOVPE-grown layers using DMHy source and it increases for MBE- or CBE-grown alloys 

using atomic N (Hohnsdorf 1998; Kitani 2000). Such opposite behaviors can be explained by an 

increased desorption of N-based species from the layer surface in the first case and by a constant 

N incorporation rate such as a doping element in the second one. The low growth rate is helpful 

to compensate the reduced surface mobility of N at low temperature and to favor H desorption 

from the surface.  

In this dissertation we study the GaInNAs/GaAs QWs grown using the MBE system. 

Therefore we will be focusing on the qualities of MBE-grown GaInNAs material. 

1.3.2 Annealing and Blueshift 

In spite of the advanced growth techniques such as MBE or MOVPE, it is difficult to 

obtain excellent crystal quality of as-grown dilute nitrides. This is due to III-N-As alloys such as 

GaInNAs and GaNAs are thermodynamically metastable or unstable. The ion damage from the 
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use of Nitrogen plasma source also degrades the crystal quality. Post-growth thermal annealing 

such as rapid thermal annealing (RTA) is effective in improving the crystalline and optical 

qualities of III-N-As, by overcoming the crystal defects arising from plasma damage or 

interstitial incorporation of Nitrogen. Thermal annealing supplies the required heat energy to 

place the atoms to proper lattice sites. Although annealing greatly increases PL intensity it also 

blueshifts the PL peak wavelength. For example, GaInNAs/GaAs (30% Indium and 1 % N) 

emitting 1.3 µm wavelength shows about 50 meV blueshift due to annealing, whereas the 

redshift gained from alloying with Nitrogen is about 150 meV (Kitatani 2000). Since blueshift 

cancels almost one-third of the redshift gained from the inclusion of Nitrogen, therefore this 

issue is very significant. 

Thermal annealing to improve crystalline quality results in undesirable blueshift and has 

been extensively reviewed but the causes have not been clearly elucidated. The increase in 

intensity has been attributed to both the out-diffusion of point defects and an improvement in the 

crystalline quality of the quantum well material. The wavelength shift is large and could be due 

to either or both N out-diffusion and Gallium/Indium interdiffusion (Harmand 2000; Riechert 

2000; Spruytte 20011; Krispin 2001). The PL blueshift caused by atom interdiffusion is 

theoretically obtained from the one dimensional Schrödinger equation using a potential derived 

from Fick’s diffusion equation (Chan 2001; Dang 2005; Ng 2005). However, the fitting of the 

experimental PL blueshift data by just the theoretical Ee1−Hh1 transition (Ng 2005) may 

overestimate the diffusion, especially for low temperature and short-time duration of annealing, 

resulting in considerably smaller activation energy of diffusion (0.6 eV) as compared to those of 

the conventional interdiffusion in GaInAs/GaAs and GaAs/AlGaAs QWs (2.55–3.7 eV) (Gillin 

1993; Wee 1997; Li 1998).  
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Klar et al. attributed the thermal anneal induced blueshift to reorganization of N-bonding 

configuration (Klar 2001). They explained that the rearrangement of Nitrogen-bonding 

configuration forms five discrete sets of bandgap corresponding to N-In0Ga4, N-In1Ga3, N-

In2Ga2, N-In3Ga1, and N-In4Ga0 phases in GaInNAs. Blueshift is now accepted to be largely due 

to local atomic reorganization of Nitrogen-bonding configuration, N-InmGa4-m (0 ≤ m  ≤ 4), in 

short range order (SRO) clusters (Duboz 2002). Similar conclusions were reported by Tournie et 

al.(Tournie 2002), where post-annealing PL measurements from GaInAs and GaAsN did not 

show any blueshift but from GaInNAs it showed a blueshift of 67 meV. In his experiments, X-

ray diffraction (XRD) measurements and transmission electron microscopy (TEM) did not show 

any compositional change in GaInNAs indicating the reorganization of N-bonding configuration. 

Liu et al. reported that SRO is a dominant mechanism for short time annealing and 

Gallium/Indium interdiffusion is a dominant mechanism for long time annealing (Liu 2006).  

Although there are several reports suggesting various mechanisms for blueshift, such as 

Gallium/Indium interdiffusion, N-out diffusion, atomic relaxation (Knodow 2004), and SRO 

there is some consensus over the Gallium/Indium interdiffusion and SRO. However, mostly 

reports study only one phenomenon and neglect others. Also, there is no study into the time 

evolution of blueshift due to SRO. In this study we analyze Gallium/Indium interdiffusion and 

SRO for their individual contribution to the blueshift.  

1.4 Objectives and Organization of Thesis   
The objective of this research is to understand the structural and optical properties of 

MBE grown GaInNAs/GaAs QWs and mechanisms responsible for blueshift. The unusual 
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structural and optical properties arising from the incorporation of small and highly 

electronegative Nitrogen necessitates the investigation of GaInNAs based heterostructures.  

This thesis contains six chapters. The 1st chapter reviews the development of optical 

communication systems, laser materials and the current development of GaInNAs growth, 

processing and its application. Chapter 2 describes the experimental and theoretical techniques 

used in this work. The experimental techniques consist of MBE growth and characterization 

techniques such as X-ray diffraction, reflection high energy electron diffraction and 

photoluminescence. The theoretical techniques deal with band structure modeling, specifically 

the multi-band k·p method and computational techniques which were used for modeling and 

simulating the device characteristics. The work carried out in this study has been divided into 

three parts consisting of chapters 3, 4 and 5.  

Chapter 3 deals with the analysis of the impact of Nitrogen on the structural quality of 

plasma-assisted MBE grown GaInNAs material. The incorporation of Nitrogen degrades the 

optical quality of material and therefore we need to understand and optimize the effect of 

Nitrogen on the growth of dilute nitrides. We have modelled Indium segregation and predict the 

effect of Nitrogen on Indium segregation. In this chapter we also study the effect of Indium 

segregation on the band structure and transition energies of the GaInNAs/GaAs quantum wells.  

In chapter 4, we investigate the effect of Indium segregation on the optical properties and 

gain characteristic of GaInNAs/GaAs QWs. Various computational techniques have been 

employed to understand the effect of composition disorder (non-uniform composition profile of 

Indium and Nitrogen) on band structure and optical gain properties of GaInNAs/GaAs QWs.  In 
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this chapter, the effect of composition disorder on band dispersion and optical gain is calculated 

using a 10-band k·p model and a many body optical gain model.  

Chapter 5 presents analysis of the effect of post-growth annealing on the 

photoluminescence blueshift. This study is motivated by the fact that as-grown materials tend to 

show poor photoluminescence properties due to crystalline defects which can be removed by 

RTA. However, this annealing results in undesirable photoluminescence blueshift. There have 

been various controversial reports proposing different mechanisms responsible for such 

blueshift. Here, we apply a novel computational technique to assess the individual contributions 

of different mechanism towards blueshift. 

Chapter 6 concludes the thesis and proposes future work. In this work several 

computational procedures have been developed using MATLAB, a programming language, to 

model and study observed phenomena such as Indium segregation and photoluminescence 

blueshift.  
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Chapter 2: Experimental and Theoretical 
Techniques 

 

In this work, GaInNAs-based quantum wells (QWs) were grown by a RIBER 32P III-V 

molecular beam epitaxy (MBE) system. The GaInNAs quantum wells were grown on a GaAs 

(100) substrate. Section 2.1 will present the growth and characterization techniques used for the 

GaInNAs QW samples, including MBE (section 2.1.1), reflection high energy electron 

diffraction (RHEED) (section 2.1.2), X-ray diffraction (XRD) (section 2.1.3) and 

photoluminescence (PL) (section 2.1.4).  The RHEED technique is used for in situ monitoring of 

the epitaxial film during the MBE growth. The XRD characterization technique is employed to 

know the composition and thickness of the GaInNAs/GaAs QWs. The PL technique is used to 

determine the emission properties of the quantum well samples. 

The theoretical simulations were used to explain the experimentally measured 

photoluminescence characteristics of the as-grown QWs and the origin of blueshift resulting 

from post-growth annealing. Various phenomena such as Indium segregation (appearance of 

non-abrupt QW/barrier interfaces), interdiffusion and atomic rearrangements were considered in 

the theoretical modeling to explain the observed photoluminescence characteristics. The 

bandstructure and transition energy calculations, for the structures studied, were performed using 

the multiband k•p model. Section 2.2 will describe the theoretical techniques used in the 

bandstructure and optical gain calculation of the dilute nitride QWs, including the k•p 

bandstructure (section 2.2.1). The effect of Nitrogen is described in section 2.2.2. This section 

explains that conventional 6-band and 8-band k•p models are inadequate to explain the strong 
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bandgap bowing in GaInNAs. Thus, band-anticrossing and 10-band k•p model should be used. 

The detailed description of 10-band k•p model is also presented therein. Section 2.2.3 explains 

the use of model solid theory to calculate the band edges, which is particularly useful at 

interfaces. In the section 2.2.4, finite difference (FD) method is explained, which is used to 

calculate bandstructure by solving the 10-band k•p model. Finally, section 2.2.5 explains the 

many-body optical gain model to calculate the optical gain spectrum of the QW structures.  

2.1 Experimental Techniques 
2.1.1 Molecular Beam Epitaxy 

The MBE growth is highly precise and widely employed crystal growth technique, which 

was developed in early 1970s as a means of growing high-purity epitaxial layers of compound 

semiconductors. MBE is an ultra high vacuum (UHV) deposition technique evolved from a 

surface study tool, allows controlling the thickness up to few Angstroms (Bell 1994). Advances 

in MBE technology have lead to a new era of growth concepts and device technologies, such as 

bandgap engineering, quantum size structures, quantum phenomena, delta doping, superlattices 

and strained layer structures. Nowadays MBE is not confined to research field but has got a wide 

use in industries as well.  

MBE growth of epitaxial structures is carried out in an ultra-high vacuum chamber on a 

substrate heated to an elevated temperature. In a solid source MBE system (Cho 1979), the 

constituents of growth material are evaporated by the appropriate solid sources in effusion cells. 

Ultra pure elemental sources are used in the effusion cells to maintain high purity of the epitaxial 

layer. Effusion beam fluxes are controlled by the temperature of the sources in the Knudsen 
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effusion cells (K-cells) to control the constituent elemental composition or carrier doping level in 

the layer grown. 

We use a RIBER 32P III-V solid-source molecular-beam epitaxy (SSMBE) system for 

epitaxial growth. The RIBER 32P III-V SSMBE has a modular configuration, i.e. growth 

chamber, sample exchange load-lock and loading chamber. These three chambers in the MBE 

system are connected by a UHV transfer tube. A base pressure of 10-10 Torr is maintained by 

using an ion pump and a cryogenic helium closed cycle pump as well as a liquid Nitrogen-cooled 

shroud. Figure 2-1 shows the picture of MBE at the Centre for Optoelectronics. 

 

Figure 2-1: MBE system at the Centre for Optoelectronics. 

The growth chamber has eight ports, with Ga, In, Al, Be, Si K-cells sources, Arsenic (As) 

cracker source, and Nitrogen RF plasma source. The As-cracker provides good controllability 

and reproducibility of the flux in controlling the Arsenic composition (Miller 1990). Similarly, 

the RF-Nitrogen source offers better incorporation of Nitrogen due to a low ion count and a high 

atomic dissociation yield (Kirchner 1998). The substrate is placed in a special holder, which 
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faces the K-cells. There is a heater behind the holder to control the temperature for epitaxial 

growth. The growth temperature is monitored by a thermocouple. The MBE system is equipped 

with a RHEED apparatus, quadrupole mass spectrometer for leak detection, and a movable ion 

gauge. A computer remote control is also available to automate the complex growth procedures. 

This system was used to grow dilute nitride QWs. 

The ion gauge used in the growth chamber is essentially a density monitor, the relative 

average velocities of each species must be taken into account when comparing beam equivalent 

pressure (BEP), and the relative fluxes may be calculated from the relative BEP according to 

(Parker 1985) 

�𝐽𝐽𝑥𝑥/𝐽𝐽𝑦𝑦� = �𝑃𝑃𝑥𝑥/𝑃𝑃𝑦𝑦��𝜂𝜂𝑦𝑦/𝜂𝜂𝑥𝑥� �
𝑇𝑇𝑥𝑥/𝑀𝑀𝑥𝑥
𝑇𝑇𝑦𝑦 /𝑀𝑀𝑦𝑦

�
1/2

       (2-1) 

where Jx, Px, Tx and Mx denote flux, BEP, absolute temperature and molecular weight for species 

X, respectively. η is the ionization efficiency relative to Nitrogen and is given by  

�𝜂𝜂/𝜂𝜂𝑁𝑁2� = (0.4 𝑍𝑍/14) + 0.6         (2-2) 
 
where Z is the atomic number (Williams 1985). By substituting these parameters the flux ratios 

can be measured for species like Gallium, Indium etc. 

 Sample preparation 

A clean substrate surface is an important prerequisite for epitaxial growth, since 

contaminants from the atmosphere or other sources can be easily introduced leading to crystal 

defects or degradation of the optical and electrical characteristics of the epitaxial layer. 
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The substrate holders made of molybdenum do not decompose or outgas impurities even 

when heated to 1400°C, thus avoiding contamination. Normally substrates require cleaning 

before MBE growth. However, we use commercial epiready GaAs (100) substrates, which can 

directly be loaded into the MBE loading chamber without any chemical cleaning. The chamber is 

pumped down to ~10-6 Torr after the substrate is loaded. In order to get rid of water molecules or 

particulate contaminants the substrate is heated to 300oC for at least 30 minutes in the loading 

chamber before it is transferred to the growth chamber.  

GaAs has a native oxide layer on the surface. After the GaAs substrate is transferred into 

the growth chamber, the chamber is pumped down to 10-9 Torr and the substrate is heated to 

about 620 0C under the Arsenic overpressure. This desorbs the oxide and makes the surface 

atomically clean. Substrate quality is measured by RHEED with the electron beam focused at a 

low angle to the substrate surface. We also grow a buffer GaAs layer (at 5800C) before the 

heterostructure. In the heterostructure, dilute nitride films are grown at low temperature (4600C) 

to improve the incorporation of Nitrogen and provide suitable growth conditions. 

2.1.2 Reflection High Energy Electron Diffraction 

A reflection high energy electron diffraction (RHEED) apparatus is used for in situ 

monitoring of epitaxial film quality, to know the surface cleanliness and surface reconstruction. 

It is also used to measure the growth rate of the film. Surface quality can be determined from 

RHEED pattern; a clean surface shows a streaky profile whereas surface with roughness shows a 

spotty pattern. RHEED uses high energy electron beam in the range of 5-40 KeV with incidence 

angle at 1-2 degree to the substrate surface, with diffraction pattern forming on the screen 

opposite to source side (Cho 1983). This lower incidence angle makes it surface sensitive. 
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During the growth of the GaAs layer we can observe the surface reconstruction patterns to know 

the status of our growth. Surface reconstruction changes with the Arsenic overpressure. Under 

optimum GaAs growth conditions the surface shows Arsenic terminated (2×4) reconstruction. 

Figure 2-2 shows the (2×4) surface reconstruction pattern during the growth of GaAs buffer 

layer. If we decrease Arsenic overpressure it shifts to (4×2) reconstructed surface.  

 

Figure 2-2: 2×4 surface reconstruction RHEED patterns of a (100) GaAs surface: (a) along [𝟏𝟏𝟏𝟏�𝟎𝟎], (b) 
along [𝟏𝟏𝟏𝟏𝟎𝟎]. 

RHEED intensity oscillation with time can be used to determine the growth rate. Figure 

2-3 shows the change in RHEED intensity during the growth of GaAs buffer layer. The RHEED 

intensity pattern completes one cycle with the completion of every monolayer (ML) due to the 

change in surface coverage. On the layer with increasing surface coverage, the intensity drops 

from maximum to minimum till half surface coverage; then the intensities again increases to 

maximum until full surface coverage. We can get such a cycle to keep repeating for every 

monolayer. From the RHEED oscillation intensity plot, we can determine the GaAs growth rate. 

Figure 2-3, for example, shows that it takes about 14 seconds to complete 11 monolayers, so 

growth rate ≈ 0.8 ML/s. 
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Figure 2-3: RHEED intensity oscillation with growth time for GaAs buffer layer growth 

 

2.1.3 X-ray diffraction 
High resolution X-ray diffraction (HRXRD) is a quick and non-destructive analysis tool 

for epitaxial films. HRXRD analyses have been widely applied for the structural characterization 

of various strained material systems. The information is obtained from the diffraction pattern 

resulting from constructive interference. Diffraction patterns of hetroepitaxial structures contain 

information about their compositions and uniformities, their thicknesses, and the built-in strain 

and strain relaxation. For a full interpretation, simulations based on dynamical scattering theory 

have to be used (Ryang Wie 1994). The diffraction peak is determined by the Bragg law 

expressed as follows 

𝑛𝑛𝑛𝑛 = 2𝑑𝑑ℎ𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃          (2-3) 

where λ is the wavelength of the X-ray, θ is the scattering angle for the nth order diffraction 

pattern, and dhkl is the spacing between (hkl) planes. For a cubic crystal with lattice constant of a, 

the spacing between (hkl) planes dhkl, is given by 

(1/𝑑𝑑ℎ𝑘𝑘𝑘𝑘2 ) = (ℎ2 + 𝑘𝑘2 + 𝑘𝑘2)/𝑎𝑎2        (2-4) 
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The XRD system used in this study is a Philips X'Pert MRD-high resolution double 

crystal X-ray diffractometer. Figure 2-4 shows the double crystal XRD system (a) and schematic 

diagram of axis and angle convention for XRD measurements (b). In Figure 2-4 (b), Ω is the 

angle between the incoming X-ray from the source and the substrate plane, 2Θ is the angle 

between the extended line of incoming X-ray source and the diffracted X-ray, Φ is rotation angle 

around the surface normal of the substrate, and Ψ is the rotation angle about X-axis. Rocking 

curve measurements are done by rocking the sample about the Bragg angle and changing the 

source and detector angle with respect to the sample surface. 

 

 

Figure 2-4: (a) HRXRD system at the Centre for Optoelectronics, (b) Schematic diagram showing the angle 
and axis conventions. 

For GaAs (001)-based structures, a rocking curve (Ω-2Θ) scan along (004) plane is the 

most useful and quite commonly performed X-ray diffraction measurement. The layered 

structure results in different peaks for different lattice mismatches. The crystal quality can be 

easily determined by studying the diffraction peaks. A narrow peak indicates good crystal 

quality. The broadening of peaks occurs mainly due to intrinsic full width half maximum 
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(FWHM) of crystal, monochromator convolution, sample curvature and defect arising from poor 

crystal quality. 

For a sample with single hetroepitaxial layer, the layer thickness can be determined from 

the Pendellösung fringe spacing. The peak separation between substrate and layer is given by,

sB Ω±∆Φ+∆=∆Θ θ , where Φ−=





 ∆−=∆ 2sin(tan ||εθθ BB d

d  Bθε tan)2cos Φ+ ⊥  is due to 

the difference in lattice dhkl spacing, ( ) ΦΦ−−=∆Φ ⊥ cossin||εε is due to difference in the [hkl] 

directions, and Ωs  is the differences in surface orientations. Here, θB is the bragg angle, ε|| is the 

in-plane strain, and ⊥ε  is the out of plane strain. 

However if the lattice plane is parallel to the sample surface (Φ=0) or epilayer is fully strain 

relaxed (ε┴ =ε||) then ∆Φ=0. The difference between substrate and epilayer surface orientation, 

Ωs, arises during growth due to particular arrangement of arriving atoms to minimize surface 

energy. Perpendicular mismatch can be found from two symmetric reflections 𝜀𝜀⊥ =

−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(∆𝜃𝜃) cot 𝜃𝜃𝐵𝐵 . 

 Parallel mismatch can be found from two asymmetric reflections such as 115, 224 or 333. 

From the perpendicular mismatch and the two in-plane mismatches we can find the misfit 

between cubic cells by 𝜀𝜀𝑓𝑓 = �𝜈𝜈𝜀𝜀||[110] + 𝜈𝜈𝜀𝜀||[1�10] + (1 − 𝜈𝜈)𝜀𝜀⊥�/(1 + 𝜈𝜈), where v is the 

Poisson ratio of the epilayer. From this we can get ternary layer composition by using Vegard’s 

law (Vegard 1921). This is accurate for lattice matched layers or pseudomorphically grown 

layers, i.e., (ε|| =0). However as in-plane strain increase there is significant deviation due to 

partial strain relaxation. This effect is known as the Fewster-Curling-Wie effect. The shifting of 

the Bragg peak separation due to the interference effect for a very thin, lattice matched 
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hetroepitaxial layer is found to be dependent on the product of the layer thickness and the lattice 

mismatch. However, peak shifting is found to be independent of sample crystal, X-ray 

wavelength, and the lattice plane (hkl).Therefore in this case we can not use simple peak 

separation but dynamical theory which accounts for the interference effect. 

Similar analysis can be applied to superlattices (SLs) and multiple quantum wells (MQW), 

the period thickness can be found from the spacing of principle interference fringe peaks. Fringe 

peaks follows a periodic trend of fringe pattern. The Nth order SL peaks occur at фp=nπ. The SL 

periodicity p is determined from angular spacing (δθ) of principle SL peaks, by 

( ) ( )Bkp θδθλγ 2sin/= , where, |γh| = sin (θB+ф), ф is the angle between the sample surface and 

the lattice plane (hkl), δθ is the peak separation and θB is the Bragg angle. The principle SL 

peaks are the thickness fringes corresponding to one period of MQW. In between the two 

neighboring principle peaks there are N-2 secondary peaks, which are thickness fringes 

corresponding to the total SL thickness. There, 0th order satellite is related to the average lattice 

parameter of the MQW period, .i.e., average content 

〈𝑥𝑥〉 = �𝑥𝑥𝑤𝑤𝐿𝐿𝑤𝑤/(𝐿𝐿𝑤𝑤 + 𝐿𝐿𝑏𝑏)�         (2-5) 

If layer thicknesses are in the ratio of m: n (both integer) then every (m+n)th SL peak intensity 

will be zero. 

Any interface present also affects the angular position of the zero order SL peak and the 

envelop function profile. The angular split, T, between any pair of satellites is due to the total 

thickness of the MQW. The split Tp between adjacent main (more intense) satellites arises from 

the period thickness, Lp.  
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Sometimes asymmetric broadening of the substrate peak is observed, which is due to the 

tensile strained GaAs layer capping the MQW/SL. However, relaxed superlattice in relation to 

substrate leads to wide satellites and to the absence of thickness fringes. The in-plane relaxation, 

R, can be determined by comparing the position of the 0th order harmonic in symmetric and 

asymmetric reflections, 
||

||

aa
aa

R
L

s

−

−
= , where a|| is the in-plane lattice parameter of the well-layer, 

as is the substrate lattice parameter and aL is the bulk lattice parameter of the well-layer. Analysis 

performed with XRD can also be compared with other measurements such as secondary mass 

spectroscopy (SIMS). 

XRD analysis of a quaternary material system (GaInAsN) is more difficult. To analyze 

composition and thickness, we need to have a ternary material (GaInAs) grown under the same 

conditions to characterize a quaternary material. In the case of GaAs, if we add Indium 

(Nitrogen) lattice constant will increase (decrease) but wavelength will increase due to band gap 

narrowing. So, unique characterization will necessitate having another ternary sample GaInAs 

grown under the same conditions.  

2.1.4 Photoluminescence 

Photoluminescence (PL) is a widely employed nondestructive optical characterization 

technique for understanding various dynamical processes in semiconductors. Dilute nitrides are 

direct band gap semiconductors, thus a PL spectrum is extremely useful in studying their optical 

properties. When photons of higher energy are used to optically excite a smaller band gap 

semiconductor conductor (hν > Eg), it results in the excitation of electrons from the valence band 

to the conduction band generating a non-equilibrium concentration of holes and electrons. An 
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optically excited semiconductor generates photons resulting from electron-hole pair 

recombination. This process is termed photoluminescence, i.e., radiative recombination of 

electron-hole pairs from an optically excited semiconductor. The quality of PL depends on the 

amount of radiative recombination compared to non-radiative recombination. Directional and 

surface state dependence may cause the actual PL intensity to decrease. Accounting for various 

such processes, PL intensity ΦPL has been reported to follow the following expression (Hovel 

1992) 

 Φ𝑃𝑃𝐿𝐿 = (Φ(1− 𝑅𝑅)𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃/𝜋𝜋𝑛𝑛(𝑛𝑛 + 1)2)(𝐿𝐿/𝜏𝜏𝑎𝑎𝑎𝑎𝑑𝑑 𝑠𝑠𝜏𝜏)      (2-6) 

where Φ is the incident photon flux density, R is the reflectivity, θ is the emission angle, n is the 

refractive index, L is the minority carrier diffusion length, τrad is the radiative life time, and sτ is 

the surface recombination velocity. This equation shows the inverse dependence of PL intensity 

with surface recombination. 

Radiative recombinations have been classified into five most commonly observed 

radiative recombination mechanisms (Tajima 1997) i.e., (a) band to band recombination or free 

carrier recombination, (b) free exciton recombination, (c) bound exciton recombination, (d) free-

to-bound recombination, and (e) donor-acceptor-pair (DAP) recombination.  

Band to band recombination is dominant at room temperature but shows weak 

characteristic (due to exciton recombination being dominant) at low temperature particularly for 

material with small effective masses due to large electron orbital radii. When a free electron and 

hole bound together via Coulombic attraction they form a free exciton. Coulombic attraction 

results in exciton binding energy which reduces the photon energy of free exciton recombination 
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slightly less than free carrier recombination. Sometimes an exciton may become bound at 

impurities (donors or accepters). They give rise to sub bandgap radiation i.e. donor to valence 

band or conduction band to acceptor. They show smaller photon energy than the bandgap. The 

transition from donor level to acceptor level is sensitive to the spatial arrangement of the donor 

and acceptor impurity pair, i.e.,  

ℎ𝜈𝜈 = 𝐸𝐸𝑎𝑎 − (𝐸𝐸𝐴𝐴 + 𝐸𝐸𝐷𝐷) − (𝑞𝑞2/𝜀𝜀𝑎𝑎𝜀𝜀0𝑎𝑎)        (2-7) 

where Eg is the bandgap energy, EA is the acceptor energy level, ED is the donor energy level, q 

is the charge of the impurity pair with separation r, and ε0εr is the permittivity of the material. 

Photoluminescence spectroscopy is a useful technique to determine various properties of an 

optically active semiconductor. PL can be used to determine bandgap and recombination 

mechanism of any unknown semiconductor. The free carrier recombination between conduction 

band and valence band corresponds to bandgap of the semiconductor. The PL intensity profile 

due to free carrier recombination shows asymmetry towards high energy side. Different types of 

recombination mechanisms show a characteristic dependence of PL intensity (I) on excitation 

power (P). Exciton recombination follows a linear dependence of PL intensity over excitation 

power, i.e., I ∝ P1 and for free carrier recombination it follows a square dependence, i.e., I ∝ P2, 

whereas for other type of recombination it shows a power between 1 and 2.   

Nonradiative centers degrade optical quality of the crystal. These nonradiative centers 

widen the FWHM of the PL spectrum. Thus, the FWHM of the PL emission spectrum gives an 

indication of material quality. Figure 2-5, for example, shows the PL curves for a typical 

GaInNAs/GaAs QW sample. As we can see that the PL curve for an as-grown sample has 

smaller intensity and larger FWHM, whereas the annealed sample has a better PL characteristic. 
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Figure 2-5: Photoluminescence characteristic of GaInNAs/GaAs qunatum well for as-grown and annealed 
samples. 

PL emission energy is affected by the change in crystal symmetry resulting from strain 

effects in the crystal. Strain splits the degeneracy of the valence band and increases PL emission 

energy in case of compressive strain and vice versa in case of tensile strain. The shift in PL 

emission energy (ΔE) tells us about the nature and amount of strain (σ), i.e., ΔE = σ k. where k is 

the strain coefficient. 

2.2 Theoretical Techniques 
During the growth and post-growth annealing of GaInNAs/GaAs QWs, issues such as 

Indium segregation and photoluminescence blueshift were identified. In order to understand the 

optical properties, such as absorption or gain due to electronic transitions in the presence of an 

optical wave, we have to know the bandstructure, including energy band and the corresponding 

wave functions. There are several models for calculating the energy band structure of 

semiconductors, e.g., multiband k•p (Bardeen 1938; Seitz 1940), empirical tight-binding (Slater 
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1954), and pseudopotential (Phillips 1959) models. Multiband k•p is the most straightforward 

and widely used model for calculating energy bandgap and dispersion for direct bandgap 

semiconductors near the Brillouin zone center in the effective mass approximation.  The 

generalized multiband k•p model includes the effects of strain through the Pikus-Bir 

Hamiltonian (Pikus 1974). Conventionally a 6-band k•p model is used for calculating the 

valence band structure where coupling with the conduction band is negligible. The 8-band k•p 

model takes into account the coupling between the conduction and valence band and is therefore 

useful for narrow bandgap semiconductors. Section 2.2.1 describes the governing theory of the 

k•p model. 

For GaAs, a 6-band k•p model is sufficient for bandstructure calculation as the 

conduction band and valence band at Γ valley are decoupled. Inclusion of Indium reduces the 

bandgap and thus for higher Indium compositions an 8-band k•p model is used. Dilute nitride, 

GaInNAs, consists of a GaInAs host material with a small amount of Nitrogen resulting in a 

large bandgap bowing. Nitrogen is a small and highly electronegative element which forms an 

impurity band in the host structure. The interaction of Nitrogen with the host bandstructure is 

described using a band-anticrossing model. The band anticrossing effect is combined with the 8-

band k•p model, by adding two extra bands corresponding to the N-band, forming the 10-band 

Hamiltonian k•p model. Section 2.2.2 describes the effect of Nitrogen on bandstructure using 

band anticrossing model along with the description of the 10-band k•p model. Section 2.2.3 

describes the model solid theory as used in calculating the band edges especially at the interface 

of the heterostructures. Section 2.2.4 describes the finite difference method that is employed in 

solving the Schrödinger equation under an envelop function scheme. Finally, section 2.2.5 
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explains the many-body optical gain model which is used for calculating the optical gain 

spectrum of the GaInNAs QWs. 

2.2.1 K•P Model 

Multiband k·p is based upon time-independent perturbation theory. This method is 

particularly useful for analyzing the band structure near a particular wave vector (k0), especially 

when it is near an extremum of the band structure. The energy is calculated near a band 

extremum by considering the wave number (measured from the extremum) as a perturbation. 

This method is most reliable in the vicinity of conduction band and valence band edges (k0 =0 

for most III-V direct bandgap semiconductors) which govern most optical and electronic 

phenomena and therefore particularly convenient for interpreting optical spectra. One can obtain 

the analytic expressions for band dispersion and effective masses around high-symmetry points, 

particularly for decoupled conduction and valence bands. 

An electron in a crystal sees a periodic potential due to the ions present at each lattice 

site. Using Bloch’s theorem, the electron wave functions for the periodic lattice potential are 

expressed as 𝜓𝜓𝑛𝑛𝑘𝑘 (𝒓𝒓) = 𝑎𝑎𝑠𝑠 .𝒌𝒌.𝒓𝒓𝑢𝑢𝑛𝑛𝑘𝑘 (𝒓𝒓), where r is the position vector, unk(r+R) = unk(r) is a periodic 

function with the band index n and wave vector k. The translation vector R=n1a1+n2a2+n3a3, 

where a1, a2, and a3 are the unit lattice vectors and n1, n2, and n3 are integers. The electron wave 

function satisfies the Schrödinger equation. Therefore, the functions unk(r) solve the unit cell 

Schrödinger equation, which includes the spin-orbit interaction 

�𝐻𝐻0 + ℏ2𝑘𝑘2

2𝑚𝑚0
+ ℏ

4𝑚𝑚0
2𝑐𝑐2 ∇𝑉𝑉 × 𝒑𝒑.𝝈𝝈 + ℏ

𝑚𝑚0
𝒌𝒌 ∙ 𝒑𝒑 + ℏ2

4𝑚𝑚0
2𝑐𝑐2 ∇𝑉𝑉 × 𝒌𝒌.𝝈𝝈� 𝑢𝑢𝑛𝑛𝑘𝑘 (𝒓𝒓) = 𝐸𝐸𝑛𝑛(𝒌𝒌)𝑢𝑢𝑛𝑛𝑘𝑘 (𝒓𝒓) (2-8) 
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Here, V is the atomic potential; σ is the Pauli spin matrix and )(
2 0

2

0 rV
m
pH +=  is the free 

particle Hamiltonian. The last term on the left hand side is a k-dependent spin-orbit interaction, 

which is small compared to other terms, because the crystal momentum, ħk, is very small as 

compared with the atomic momentum,  p.  The electron velocity in the atomic orbit is much 

larger than the velocity of the wave packet with the wave vectors in the vicinity of k0 (=0). Thus, 

only the first four terms are considered on the left-hand side 

�𝐻𝐻0 + ℏ2𝑘𝑘2

2𝑚𝑚0
+ ℏ

4𝑚𝑚0
2𝑐𝑐2 ∇𝑉𝑉 × 𝒑𝒑.𝝈𝝈 + ℏ

𝑚𝑚0
𝒌𝒌 ∙ 𝒑𝒑� 𝑢𝑢𝑛𝑛𝑘𝑘 (𝒓𝒓) = 𝐸𝐸𝑛𝑛(𝒌𝒌)𝑢𝑢𝑛𝑛𝑘𝑘 (𝒓𝒓)    (2-9) 

At the zone center, k=0 and un0(r) satisfies the simpler equation 

�𝐻𝐻0 + ℏ
4𝑚𝑚0

2𝑐𝑐2 ∇𝑉𝑉 × 𝒑𝒑.𝝈𝝈� 𝑢𝑢𝑛𝑛𝟎𝟎(𝒓𝒓) = 𝐸𝐸𝑛𝑛(𝟎𝟎)𝑢𝑢𝑛𝑛𝟎𝟎(𝒓𝒓)      (2-10) 

For zinc blende materials, e.g., GaInNAs, it is convenient to work with the basis 

functions of definite total angular momentum. By convention, the top of the valence band of the 

unstrained quantum well is set as the zero of energy. The electron wave functions are p-like near 

the top of the valence band and s-like near the bottom of the conduction band. For the electron in 

the conduction band, the basis functions of the lowest energy bands are given by 

1 1 1, ,
2 2 2

iS± ±
=           (2-11) 

with energy Eg, where |S> = S(r) is spherically symmetric.  

For the valence band, the lowest bands are 
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3 3 1 1, ,
2 2 22
3 1 1 1 2 1, , ,
2 2 2 3 26
1 1 1 1 1 1, , ,
2 2 2 23 3

X iY

X iY Z

X iY Z

± ±
= ±

±
= ± +

± ±
= ± ±



  



       (2-12) 

for heavy, light and split-off holes, respectively. The energy is E0 + Δ/3=0 for the heavy and light 

holes and -Δ for the split-off holes, where E0 is the eigenenergy of the degenerate eigenfunctions 

of H0. The split-off energy, Δ, is defined as 

2 2
0

3 | |
4 y x

i V VX p p Y
m c x y

∂ ∂
∆ = −

∂ ∂


        (2-13) 

This Δ is determined experimentally (Chuang 1995). The spin-orbit coupling splits the six-fold 

degeneracy into four-fold degenerate J=3/2 bands (heavy and light hole) and two-fold degenerate 

J=1/2 bands (split-off hole). 

6-band K•P 

The 6-band k•p deals with the six valence bands (heavy-hole, light-hole and spin-orbit 

split-off bands, all doubly degenerate).  

These six valence bands are classified as class A. All other bands are denoted as class B. 

Luttinger-Kohen’s model takes into account the effect of bands in class A on the bands in class 

B. Figure 2-6 shows a pictorial representation of the classification of bands into class A and class 

B. Luttinger-Kohen’s model can also be generalized to include both the conduction bands in 

class A, especially for narrow bandgap semiconductors.  
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Figure 2-6: For 6-band k•p heavy hole, light hole and spin split-off bands in double degeneracy are of interest 
and called as class A. All other bands are denoted as class B. 

For k ≠ 0, the wave functions unk(r) are expanded as a linear superposition of the k=0 

basis eigenfunctions with the valence band wave functions. The effective Hamiltonian is 

determined by considering the band mixing among states of class A along with the perturbative 

influence of class B states. The mixing of the eigenfunctions is caused precisely by the k · p term 

and thus explains the model’s name. 

For the (100) oriented grown cubic semiconductors, the strain tensor elements are given by 

0
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where, a0 and a are the lattice constants of the substrate and the layer respectively. C11 and C12 

are the elastic stiffness coefficients. After strain effects are included, the general result is that the 

effective Hamiltonian for 6x6 k · p theory is given by (Chuang 1995) 

*

* *

*
* * *

*

* *
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      (2-15) 

where 

𝑃𝑃 =
ℏ2

2𝑚𝑚0
𝛾𝛾1𝑘𝑘2 − 𝑎𝑎𝑎𝑎�𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑧𝑧𝑧𝑧 � 

𝑄𝑄 =
ℏ2

2𝑚𝑚0
𝛾𝛾2(𝑘𝑘2 − 3𝑘𝑘𝑧𝑧2) −

𝑏𝑏
2
�𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦 − 2𝜀𝜀𝑧𝑧𝑧𝑧 � 

𝑅𝑅 =
ℏ2

2𝑚𝑚0
√3�−𝛾𝛾2�𝑘𝑘𝑥𝑥2 − 𝑘𝑘𝑦𝑦2� + 2𝑠𝑠𝛾𝛾3𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦� +

√3
2
𝑏𝑏�𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜀𝜀𝑦𝑦𝑦𝑦 � − 𝑠𝑠𝑑𝑑𝜀𝜀𝑥𝑥𝑦𝑦  

𝑆𝑆 =
ℏ2

2𝑚𝑚0
2√3𝛾𝛾3�𝑘𝑘𝑥𝑥 − 𝑠𝑠𝑘𝑘𝑦𝑦�𝑘𝑘𝑧𝑧 − 𝑑𝑑�𝜀𝜀𝑥𝑥𝑧𝑧 − 𝑠𝑠𝜀𝜀𝑦𝑦𝑧𝑧 � 

 
 

where, kx, ky, and kz are the wave vectors and γ1, γ2 and γ3 are Luttinger’s parameters. The 

parameters, av, b and d are Pikus-Bir deformation potential.  

The eigenenergy equation can be formulated using the 6×6 Hamiltonian. By solving the 

eigenenergy formulation the band edge energies and the effective masses can be obtained. 
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2.2.2 Effect of Nitrogen 

The incorporation of Nitrogen into the GaInAs matrix significantly modifies the 

bandstructure. This effect is attributed to the Nitrogen related impurity band, known as the N-

level, in the GaInAs host band structure. The interaction of Nitrogen-localized state with the host 

conduction band modifies the GaInNAs band structure.  

Band Anticrossing 

 
Incorporation of Nitrogen into GaInAs forms a Nitrogen-localized state, EN. EN changes 

with the Nitrogen-bonding configuration and Indium composition as follows (Duboz 2002) 

( ) βyEEiEE GaInGaN −−+= 4/         (2-16) 

where, EGa = 1.65 eV (corresponding to N-Ga4In0 configuration), EIn = 1.9 eV, (corresponding to 

N-Ga0In4 configuration), i = 0-4 is the number of Indium neighbors in the N environment, β = 

0.56 eV is a weight parameter that reflects the effect of Indium composition on EN and y is 

Indium composition in the GaInNAs QW (Klar 2001; Shan 2001).  

EN interacts with the GaInAs conduction band forming an eigenvalue problem 

C

N

E-E -V
=0

-V E-E
          (2-17) 

where EC is the uncoupled conduction band energy at Γ point of GaInAs, V describes the 

coupling between EN and EC, Ga In GaV=[V  + (V -V ) (i/4)] x  (where VGa=2.4, VIn=1.75 and x is 

Nitrogen composition) (Duboz 2002). The interaction of the GaInAs conduction band with 

Nitrogen related localized state results in the splitting of conduction band into two energy levels, 
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E+ and E_, where E+ > E_. E_ is of more interest because it acts as the conduction band of a 

GaInNAs alloy and is given by 

𝐸𝐸− = �𝐸𝐸𝑁𝑁 + 𝐸𝐸𝐶𝐶 − �(𝐸𝐸𝑁𝑁 − 𝐸𝐸𝐶𝐶)2 + 4𝑉𝑉2�/2       (2-18) 

As the Nitrogen-bonding configurations changes from Gallium-rich to Indium-rich, EN 

increases thus increasing the bandgap energy of GaInNAs (Klar 2001). The electron-to-heavy-

hole transition energy, Ee1-Hh1, is calculated by solving the Schrödinger equation for conduction-

band and heavy-hole band under effective mass envelop function scheme (Moore 1988; Chuang 

1995). The physical parameters of GaInNAs at room temperature are mostly obtained by linear 

interpolations among those of the binary parents (i.e., GaAs, InAs, GaN and InN) according to 

Vegard’s law (Vegard 1921). Appendix A lists the parameters used in this study (Strite 1993; 

Kim 1996; Meney 1996; Wright 1997; Li 2000; Park 2000; Vurgaftman 2003).  

Table 2-1: Comparison of 6-band, 8-band and 10-band k·p models for dilute nitride material. 

Model Includes 
conduction-
valence band 
interaction 

Include 
Presence 
of EN 

Electron 
effective mass 

Valence band 
parameters 
used 

10-band Yes Yes InGaAs InGaAs 

8-band Yes No InGaAsN by 
BAC 

InGaAsN 

6+2-band No No InGaAsN by 
BAC 

InGaAsN 

6+4-band No Yes InGaAs InGaAsN 

 

Table 2-1 compares the 6-band, 8-band and 10-band k•p models for dilute nitrides. 

Generally 6-band k·p, described earlier, is sufficient for the bandstructure calculations. But when 

the bandgap becomes narrower and conduction band and valence band show coupling effect 8-
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band k·p becomes more appropriate. Furthermore in the case of dilute nitrides, the existence of 

extra N-level needs to be taken into account to get better results. So, a 10-band k·p model is 

needed. 

10-band K•P 

 
 

The 10-band k·p is considered the most complete and appropriate for the dilute nitrides. 

In our study, we have used the 10-band k·p method as presented by Tomic et al., to calculate the 

GaInNAs/GaAs subband dispersion and the optical gain spectra (Tomic 2003). In the 10-band k · 

p Hamiltonian of GaInNAs, the effect of N perturbation (for small values of y in InxGa1-xAs1−yNy 

layers) is treated by adding ‘Nitrogen band’ coupling to the conduction band of InxGa1-xAs 

(known as host structure). The resulting 10×10 Hamiltonian is given by 

,
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          (2-19) 
where, the following matrix elements are the same as in the conventional 8-band Hamiltonian 

(Chuang 1995; Tomic 2003). 

( ) ( )[ ]( ) ( ) ,/1/23//1
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where, 2 2 2
|| x yk k k= + (kx, ky, and kz are the wave vectors) and the subscripts CB, HH, LH, and SO 

stand for conduction, heavy-hole, light-hole, and split-off bands, respectively. γ1= L
1γ -EP/(3 h

gE ), 

γ2,3= L
2,3γ -EP/(6 h

gE ) are modified Luttinger-Kohn parameters. 𝐸𝐸𝑝𝑝 = 2𝑚𝑚0𝑃𝑃2/ℏ2, where, P is the 

Kane matrix element for the conduction band. 12 112 (1 / )b
hy
b a C CE εδ = − −  describes the effect of 

hydrostatic strain, where ε is the strain in the layer plane and subscript b = N, CB, and VB for 

Nitrogen, conduction and valence band respectively. 12 11(1 2C / )ax vb Cη ε= − +  describes the 

effect of shear strain on the band structure (Chuang 1995).  

EN = Ec0 + ∆ENC + hy
NδE  − (γ − κ) y, describe the band-edge of the N band. The difference 

between the unstrained conduction and Nitrogen-localized state is taken as (∆ENC=0.485 eV) 

(Tomic 2003). VNc describes the interaction between the N and C bands and is given by VNc = 

−β√y. Values for γ and β are 3.5 and 1.675, respectively (Meney 1996).  

2.2.3 Model solid theory 
 

The model solid theory is useful in determining the band offsets accurately for III-V 

heterostructures as required in k·p calculations. The combination of model solid theory (Van de 
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Walle 1989) and modification due to N band (Tomic 2003) can be used to calculate the band-

edge energies. The valence band-edge energy (Ev0) and the conduction band-edge energy (Ec0) of 

the GaInNAs well material relative to GaAs, are expressed as (Chuang 1995) 
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where the last terms on the right hand side of these equations represent the modification due to 

the N band; y is the fraction of N in the structure, α and κ are parameters which are taken to be 

1.55 and 3.5, respectively (Tomic 2003).  

 

2.2.4 Finite difference 
 

This section describes the computational method used in solving the Schrödinger 

equation and the 10-band k·p model.  

Schrodinger Equation 

For GaAs based material, like other III-V materials, conduction and valence band are 

decoupled. In GaAs conduction band minima occurs at symmetrical Γ6 valley.  The energy states 

and wave function of electron, heavy hole and light hole at Γ6 can be calculated using Duke-

Daniel model (BenDaniel 1966). The wave equation has a 1-D Schrödinger-equation-like form 
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where rlΨ  and rlE  are envelop eigenfunctions of the lth subband of electrons (r=e), heavy holes 

(r=HH) or light holes (r=LH), and the eigenenergies respectively.   

We have solved the Equation (2-21) as eigenvalue problem using 1-D finite difference method.  

Coefficients of the eigenmatrix were obtained from fourth order Taylor series expansions. The 

eigenmatrix is given by 

2,21,2,1,12,1 )()()()()( ++−− ++++= nmnnmnnmnnmnnmnmn zCzBzAzBzCH δδδδδ   (2-22) 
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Now on solving the equation of the form [ ] [ ] [ ]ψψ EH =× , we get the transition energies.  

For a compressively strained structure, due to valence band-splitting the heavy hole energy 

increases and the ground state transition corresponds to a transition between the conduction band 

and the heavy hole band. 
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Solving 10-band k·p model 

 

In order to solve the 10-band k·p model, we apply the operator 𝑝𝑝 = −𝑠𝑠ℏ∇ to all kz terms 

in the eigenvalue equation with matrix operator given in 10-band Hamiltonian. This operation is 

done to the kz terms only, since quantization is assumed to be along the z-direction. In doing this, 

it is convenient to note that the resultant matrix takes the form 

1, 1,
2 2

2, 2,11 11 11 1 1 1

2 2
1, 1,1 1 1

, ,

...
... ...

....

z z

z zz z m z m z m

m z m zm z m z m mm z mm z mm

m z m z
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χ χ
χ χ

ε
χ χ
χ χ

− −

   
    ∇ + ∇ + ∇ + ∇ +         =      ∇ + ∇ + ∇ + ∇ +     
      

      (2-23) 

 

where χi,z denote the wavefunction for ith (i=1,2,..m) subband at z coordinate, A and B are the 

coefficients to 2nd and 1st order partial derivatives. The C terms denote potential offsets and all 

other terms not operated on by the momentum operator. All terms A, B, and C are actually z–

dependent functions, though not denoted as such, to ease the notation. To ensure Hermiticity of 

the resulting matrix at the heterostructure interfaces, the discretization scheme as noted in 

Eppenga et al. (Eppenga 1987) has been used, where 
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Applying these expansions to the m-band Hamiltonian (in general, m=10 for 10-band k·p) 

equation results in a matrix of the form shown in Table 2-2.  
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Table 2-2: General form of the expanded m-band Matrix. Each point in real-space, along the quantized z-axis 
corresponds to an m-row block in this matrix. 
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This matrix is then solved using an eigenvalue solver to get the eigenenergies and 

wavefunctions. These eigenenergies and wavefunctions are used to find the conduction (valence) 

subband energies and their envelop functions. The 10-dimensional electron and hole envelope 

wave functions for the QW can be expressed as 
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where L is the period of the QW, n is the index for energy subbands and ,
j

n ma  is the expansion 

coefficient. In order to identify the Nitrogen level (N), conduction band (CB), heavy hole (HH), 



Chapter-2 Experimental and Theoretical Techniques 

56 

light hole (LH), and the split-off (SO) band components in the energy states of the QW, we 

extend the probability functions given by (Ng 20051) 
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By calculating , , , andN CB HH LH SO
n n n n nP P P P P , the constituting components (N, CB, HH, LH 

and SO) of the QW state n can be known. These probability functions are particularly useful in 

identifying the dominant character in a particular energy state and their sum should be one. The 

wave function j
nΦ  can be classified as belonging to the conduction band or valence band 

depending on the position of the energy subband and also the calculated probability functions. 

2.2.5 Optical gain model 
 

After calculating the subband structure, we use the many-body optical gain model to 

calculate the gain spectra. The optical gain, G, is calculated using (Minch 1999; Ng 20051) 
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where Rsp(ħω) is the spontaneous emission rate, fc and fv are Fermi-dirac distributions for 

electrons and holes respectively, ΔF=Efc-Efv is the quasi-Fermi level separation which is 

dependent on the carrier density, ħω is the photon energy, e is electron charge, ε0 is the free-

space dielectric constant, n is the refractive index, c is the speed of light, and c vn nQ is the squared 
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optical transition matrix element (Minch 1999). The line broadening, S(ħω), is modeled using a 

secant-hyperbolic function (Chow 1999) 
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where τin is the intraband relaxation time. The secant-hyperbolic function has shown better 

agreement between experiment and theory of line broadening in semiconductor lasers as 

compared with the commonly used Lorenzian function (Tomic 2003). The intraband relaxation 

time, τin, is taken to be 0.1 ps (Park 1996; Tomic 2003) in our calculations.  
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Chapter 3: Indium Segregation in 
GaInNAs/GaAs QWs 
 
 

 

The growth of high quality III-V compound semiconductor heterostructures has attracted 

a great deal of attention since last few decades. Segregation effect results in non-abrupt 

interfaces and a disordered (non-uniform) composition profile. The phenomenon of segregation 

has attracted considerable research interest because of its influence on optical and structural 

properties of QW structures and devices. However, as mentioned in section 1.4, we need high 

quality GaInNAs QWs for developing commercial GaInNAs lasers. Therefore crystalline quality 

of the active layer, abruptness of interfaces and compositional uniformity has to be improved for 

better laser performance.  

Segregation theory is well established in metallic alloys for a long time as the practical 

impact of segregation at grain boundaries on metal strength has been recognized very early 

(Chadwick 1975). Moreover, many metals can be tested for segregation due to ease in attaining 

near-equilibrium thermodynamic conditions. Impurities segregate at surface or grain boundaries 

and surface composition of alloy is different from the bulk (e.g., the surface of Fe-Cr alloy is Cr-

rich).  This segregation effect has also been reported in various III-V semiconductor alloys, 

where they involve the bulk-surface re-distribution of group-III atoms. Particularly, during 

molecular beam epitaxy (MBE) growth certain Group III atoms tend to partially incorporate in 

the crystal layer and a portion of which remains at the surface. For example, segregation has 

been reported in number of systems such as Indium segregation in GaInAs / GaAs and AlInAs / 
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GaAs (Moison 1989; Schowalter 2006), Al segregation in AlGaAs / GaAs (Massies 1987), and 

Indium segregation in GaInP / GaAs (Mesrine 1996).  

Indium surface-segregation during molecular beam epitaxy has been widely studied by 

several groups (Moison 1989, Muraki 1992, Schowalter 2006). There are several theoretical 

models (such as the equilibrium model, kinetic model and Muraki model) to explain the 

phenomenon of Indium segregation (Moison 1989; Muraki 1992; Dehaese 1995). In order to 

explain the phenomenon of segregation, an exchange mechanism between Indium and Gallium 

was proposed by Moison for Indium segregation in GaInAs/GaAs QWs (Moison 1989). This 

model supposed that the surface layer and bulk layer were in equilibrium. The Indium 

segregation length in GaInAs, grown on GaAs, was shown to increase from 0.8 to 2.9 nm when 

the growth temperature increased from 370 to 520 0C (Muraki 1992). The equilibrium model 

could not explain the relationship between the Indium segregation length and the substrate 

temperature as there did not exist the equilibrium for low temperature growth and high growth-

rate (Dehaese 1995). To overcome this limitation, a kinetic model was proposed by Dehaese et 

al. (Dehaese 1995) and employed by Yamaguchi et al. (Yamaguchi 1997), by introducing the 

element of non-stationarity. Till now, both the equilibrium and kinetic models have been used for 

materials with one group V species, e.g., GaInAs (Dehaese 1995, Yamaguchi 1997), GaInN 

(Inahama 2005) and InAlGaAs (Jensen 1999). In this work, we extend kinetic model for dilute 

nitride with two group-V elements. 

This chapter presents a study on Indium segregation in MBE grown GaIn(N)As/GaAs 

quantum wells. The experimental reports based on reflection high energy electron diffraction 

(RHEED) and secondary ion mass spectroscopy (SIMS) measurement showed the evidence of 

Indium segregation in GaInNAs/GaAs quantum wells (Liu 20064). This chapter is divided into 
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two parts; the first part, section 3.1, studies Indium segregation using kinetic model (Dehaese 

1995), and the second part, section 3.2, studies the effect of Indium segregation on optical 

properties, including band structure and transition energies. Finally, section 3.3 presents the 

conclusion. 

 

3.1 Kinetic modeling of Indium segregation 
 

Incorporation of Nitrogen into GaInAs matrix is recognized as a promising method to 

realize high performance 1.3-1.55 µm lasers. However, the mechanisms controlling the 

incorporation of Indium and Nitrogen to reach the desired wavelength are not well understood. 

For plasma-assisted MBE growth of GaInNAs, it has been reported that Nitrogen incorporation 

is not affected by Indium content (Tournie 2000), while the effect of Nitrogen on Indium 

incorporation is lacking in literature (Luna 2007). Our recent studies suggest enhanced Indium 

segregation due to the incorporation of Nitrogen during the growth of GaInNAs QWs (Liu 

20064). The enhanced Indium segregation in the growth of GaInNAs/GaAs QW has also been 

observed by transmission electron microscopy (Luna 2007). But there has been no systematic 

theoretical investigation on such a phenomenon in GaInNAs material. In order to understand the 

role of Nitrogen, and possibly control abruptness of heterointerface in GaInNAs/GaAs, it is 

necessary to develop a theoretical model considering the effect of Nitrogen on Indium 

incorporation. 

In this section, we develop a kinetic model to study the Indium surface-segregation in 

GaInNAs/GaAs(N) QWs.  GaInNAs/GaAs QW samples were grown using the MBE as 

described in the next section. The segregation length for GaInNAs QW, with different 
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composition, was measured from SIMS. The kinetic model developed by Dehaese et al. has 

explained the segregation phenomenon in the GaInAs/GaAs very well. We extend this kinetic 

model to explain the segregation phenomenon in dilute nitride, GaInNAs, QWs. The modified 

model has been used to predict the Indium segregation lengths for growth temperatures of 400 0C 

to 500 0C, the molecular beam epitaxy growth window for GaInNAs.  

3.1.1 Brief description of experiment 

The samples studied here, A, B and C, are 10-periods Ga0.665In0.335NyAs1-y/GaAs(N) 

multi-quantum wells (MQWs) grown on GaAs (100) substrates by solid-source MBE. The 

nominal thicknesses are 6.1 and 24 nm for the GaInNAs wells and GaAs(N) barriers, 

respectively. The nominal Nitrogen composition in the QWs, y, is 0%, 0.69%, and 3.15% for 

samples A, B and C respectively. Sample A was grown without Nitrogen. Nitrogen was 

generated by a radio-frequency plasma source (Liu 20064). In order to change the incorporation 

of N while keeping otherwise the same growth conditions, i.e. without changing the RF power or 

the N flow rate, we grew the samples by dispersive/direct N mode (Wang 2002). Sample B was 

grown with dispersive N mode for both the QWs and barriers. Sample C was grown with direct 

N mode in the QWs and dispersive N mode in the barriers. The QWs and barriers were grown at 

460 °C. The QW structure was ended with a cap of 100-nm GaAs grown at 580 °C. Figure 3-1 

shows the schematic diagram of these three samples (A, B and C). 

The composition and Indium segregation length of the QW samples were determined by 

secondary-ion-mass spectroscopy (SIMS) (Liu 20064). The segregation lengths were determined 

at the interface between the top GaInNAs QW and the GaAs cap, from SIMS spectra as 



Chapter-3 Indium Segregation in GaInNAs/GaAs QWs 

62 

described by Liu et al in (Liu 20064). This section concentrates on the theoretical modeling of 

Indium segregation using the experimentally measured segregation length. 

 
Figure 3-1: Schematic structure of samples A, B and C (each with Indium = 33.5%). 

3.1.2 Modified kinetic model 
 

In this study, the kinetic model (Dehaese 1995) concerning the analysis of surface 

segregation during the MBE growth of GaInAs/GaAs was adopted. In this model, surface 

segregation is regarded as an exchange between Group III atoms in the surface atomic layer with 

those underneath (the bulk).  
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bulksurface

E

Esurfacebulk GaInGaIn ][][][][
1

2

+⇔+        (3-1) 

where [In] and [Ga] are the compositions of Indium and Gallium atoms participating in the 

exchange process. E1 and E2 are energy barriers for the forward and backward reactions, 

respectively.  

 

Figure 3-2: Schematic diagram showing the exchange process between surface and bulk Indium and Gallium 
atoms. 

Figure 3-2 shows the schematic diagram of the exchange process. The exchange reaction 

proceeds to the right side of Equation 3-1 (Indium exchange from bulk to surface and Gallium 

exchange from surface to bulk) by overcoming an energy barrier E1 and the reverse exchange 

reaction (Gallium exchange from bulk to surface and Indium exchange from surface to bulk) is 

possible by overcoming an energy barrier E2. During MBE growth, Indium and Gallium atoms 

are supplied on the surface while the exchange process continues. In the exchange process, the 

forward and backward exchange rates are R1[In]bulk[Ga]surface and R2[In]surface[Ga]bulk, 

respectively. Where, R1 and R2 are the rate constants for the forward and backward exchange 

reactions and are given by R1 = v𝑎𝑎−(𝐸𝐸1/𝑘𝑘𝑇𝑇) and R2 = v𝑎𝑎−(𝐸𝐸2/𝑘𝑘𝑇𝑇). Here, v is a vibration frequency, 

k is the Boltzmann constant, and T is the substrate temperature. When exchange rates are higher 
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compared to the growth rate (Vg) the bulk and the surface layer will be in the equilibrium, i.e., 

kinetic model (Dehaese 1995) gives the same result as equilibrium model (Moison 1989) and 

Indium segregation depends on the segregation energy, Es = E2 - E1.  

Since the exchange process corresponds to an atomic motion of Indium and Gallium 

atoms, the energy barriers E1 and E2 for GaInAs must be of the order of energy required to break 

the element III–As bonds in arsenide compounds (Moison 1989). Compared to GaInAs, 

GaInNAs has two group-V elements. Therefore the incorporation of Nitrogen is expected to 

change the energy barriers for the exchange process. Since GaInNAs has a small Nitrogen 

composition (dilute nitrides), the energy barriers are modeled linearly as E1,2 (GaInNAs) = E1,2 

(GaInAs) + α1,2 [N]. Here, E1,2(GaInAs) are energy barriers for forward and backward reactions, 

in Equation 3-1, for GaInAs material only. [N] is the Nitrogen composition incorporated, and α1,2 

are proportionality constants for the change in energy barriers with Nitrogen composition. α1,2 

are the parameters to be determined by comparing the simulation with our experimentally 

deduced segregation lengths. 

The incorporated Nitrogen in the GaInNAs tends to form short range order (SRO) 

clusters with Nitrogen bonding configurations, N–InmGa4−m (0 ≤ m ≤ 4) (Klar 2001). The 

cohesive energies of In-As, Ga-As, In-N and Ga-N are 1.55, 1.63, 1.93 and 2.24 eV/bond, 

respectively (Harrison 1989). The cohesive energies of III-N are much higher compared to that 

of III-As. As the bulk Nitrogen composition is small and III-N bonds are much stronger than that 

of III-As bonds, we can neglect the breaking of bulk III-N bonds and assume that only those bulk 

Indium and Gallium atoms bonded with Arsenic will participate in the exchange process. For the 

surface Group III atoms, as they have smaller coordination, the Indium and Gallium atoms in the 
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surface layer are loosely bonded to Arsenic and Nitrogen as compared to the bulk Group III 

atoms. Thus, we consider all the surface Indium and Gallium atoms to participate in the 

exchange process. The Equation (3-1) can be modified as,  

Aswithbondedbulksurface

E

EsurfaceAswithbondedbulk GaInGaIn ,, ][][][][
1

2

+⇔+       (3-2) 

The N–InmGa4−m configuration will affect the effective participation of Indium and 

Gallium atoms in the exchange reaction. Since we are dealing with dilute nitrides, we assume 

that these SRO clusters will be well separated. Thus for N–InmGa4−m configuration, the Equation 

(3-2) can be written as,  

[ ] [ ]])[4(][][][][][
1

2

NmGaInGaNmIn bulksurface

E

Esurfacebulk −−+⇔+−                 (3-3) 

During the growth, Indium and Gallium atoms are supplied on the surface while the 

exchange process continues. Therefore, the continuous equation concerning the Indium 

composition is solved, and, as a result, the profile of Indium composition can be obtained as 

functions of the substrate temperature and the incident flux of III-group material (Dehaese 1995).  

Figure 3-3 presents Indium composition profiles calculated by the kinetic model for 

GaInAs/GaAs heterostructure. The constant values are v = 1×10-l 3 s, E1(GaInAs) = 1.840 eV and 

Es(GaInAs) = 0.20 eV, which are taken from reference (Dehaese 1995). The simulation in Figure 

3-3 has been performed for Ga0.665In0.335As with GaAs growth rate Vg,GaAs = 0.57 ML/s (i.e., 

Ga0.665In0.335As growth rate = 0.86 ML/s) and growth temperature T = 460°C, the same condition 

as in our experiment. Since the segregation length is calculated at the GaInAs/GaAs interface 

when there is no Indium flux. Thus Vg,GaAs is the actual growth rate during the Indium 

segregation into GaAs layer. The segregation length is deduced from the 1/e decay length of 

Indium composition profile at the upper interface (GaAs on GaInAs), shown in the inset of 
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Figure 3-3. The segregation length obtained from Figure 3-3 is 1.12 nm which is very close to 

the segregation length deduced from SIMS measurements for our GaInAs/GaAs sample, 1.14 nm 

(sample A, in Figure 3-1). 

 

Figure 3-3: Calculated Indium composition profiles at substrate temperature 460 0C and a growth rate of 
GaAs 0.57 ML/s. Nominal widths of Ga0.665In0.335As QW and GaAs barrier are 20 ML and 15 ML, 
respectively. Segregation length is obtained from decay length at the upper heterointerface as shown in inset. 
 

3.1.3 Results and discussion 

The model parameters α1 and α2 have been obtained by minimizing the mean square 

error, 

[ ]
1 21 2( ) [ ] [ ]

2[ ( ) ( , ,, )]SIMS c
N

N NL LErr α αα α −= ∑                                   (3-4) 

where LSIMS is the segregation length deduced from SIMS measurements and Lc is the calculated 

segregation length from simulation. The values of α1 and α2 are obtained by minimizing the 

function, Err(α1,α2). The search was carried out in the range of -200 to 200 meV for both α1 and 

α2. The research report (Alt 2001) suggest the presence of N-In0Ga4 as dominant configuration in 
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the as-grown GaInNAs layer, Lc has been calculated for this N-bonding configuration, i.e. with 

m = 0. Pavelescu has reported that while growing the GaAs cap layer, at higher temperature than 

that of the QW growth, the N-bonding configuration changes due to self-annealing effect 

(Pavelescu 2003). Since the Indium segregation occurs at the interface before the GaAs cap layer 

is fully grown, the dominant N-bonding configuration will be the N-bonding configuration 

existing before self-annealing. Moreover, at the cap layer growth temperature, 580 0C, the 

Gallium/Indium interdiffusion coefficient is negligible (Dixit 2008), therefore self-annealing due 

to the cap layer growth does not play an important role in determining the Indium segregation 

length. The values of α1 and α2 obtained from the above procedure are -28.95 and -63.52 meV 

respectively.  

 

Figure 3-4: Segregation length vs. Nitrogen composition for Ga0.665In0.335NyAs1-y QW at growth temperature 
of 460 0C for calculated (LC) and experimental deduced (LSIMS) segregation lengths. 
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Figure 3-4 shows the calculated segregation length, Lc variation with Nitrogen 

composition for Ga0.665In0.335NyAs1-y QW at growth temperature of 460 0C, using α1 and α2. The 

experimental results, LSIMS, are presented as the solid squares. 

The negative values of α1 and α2 indicate reduced energy barriers for the forward and 

backward exchange processes in GaInNAs as compared to those in GaInAs. During the exchange 

reaction bulk Gallium/Indium atoms will break bonds with Arsenic and form bonds at surface 

with Arsenic or Nitrogen. Formation of III-N bond is energetically favorable compared to III-As 

bond due to the larger cohesive energies of III-N bonds. We speculate that the excess energy 

supplied by the formation of III-N bonds may contribute towards lowering the energy barrier for 

the exchange reaction resulting in negative values of α1,2. For the forward reaction Indium atoms 

exchange from bulk to surface and some of the Indium atoms may bond with the Nitrogen at 

surface. The difference between cohesive energies of In-As and In-N, 0.38 eV/bond, will 

contribute towards lowering the energy barrier for forward exchange reaction. Similarly, for the 

backward reaction Gallium atoms will exchange from bulk to surface. The difference between 

cohesive energies of Ga-As and Ga-N, 0.61 eV/bond, may contribute towards lowering the 

energy barrier for backward exchange reaction. The greater cohesive energy difference may be 

responsible for the greater lowering of energy barrier for backward exchange reaction as 

compared to forward exchange reaction, i.e., the larger magnitude of α2 compared to α1.  

Figure 3-5 shows the difference between forward and backward exchange rate constants 

(R1-R2) and the segregation energy (Es) vs. the Nitrogen composition at 460 0C. As Nitrogen 

composition increases the difference between forward and backward exchange rate constants 

(R1-R2) increases, therefore we can expect an increase of Indium segregation length. But, we also 
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notice that Es decreases with Nitrogen composition, which will decrease the Indium segregation. 

It has been established that Indium segregation is predicted by Es only when bulk and surface 

layer are in equilibrium (Dehaese 1995). Thus, we can expect that the Indium segregation will 

follow the trend of (R1-R2) to increase with Nitrogen composition when the exchange rate is 

lower than growth rate, i.e., when the bulk and surface layer are not in equilibrium (kinetically 

limited). Once the exchange rate is equal to or greater than the growth rate, surface and bulk 

layers easily reach to equilibrium. In this situation the Indium segregation will follow the trend 

of Es, i.e., decreases with [N]. 

 

Figure 3-5: The difference between forward and backward exchange rate constants (R1-R2) and the 
segregation energy (Es) vs. the Nitrogen composition for Ga0.665In0.335NyAs1-y QW at growth temperature of 
460 0C. 
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[In]surface[Ga]bulk / [In]bulk[Ga]surface = R1/R2 = exp(Es/kT).        (3-5) 
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The equilibrium exchange rates are calculated, by solving the Equation 3-5, for nominal 

bulk Indium and Gallium compositions. On solving this equation we can get the exchange rates 

at equilibrium as a function of Es thus a function of Nitrogen composition.  

Figure 3-6 shows the exchange rate vs. Nitrogen composition curves for growth 

temperatures of 400 – 500 0C. The equilibrium exchange rate is increasing with the Nitrogen 

composition due to reduced energy barriers. Also shown in Figure 3-6 are horizontal lines 

representing growth rates of Vg = 0.57 ML/s and Vg = 1 ML/s. When the growth rate is higher 

than the exchange rate, the surface monolayer will be quickly formed leaving little time for the 

exchange process to reach equilibrium. The intersection points of exchange rates with growth 

rate will give the transition points from kinetically limited region to equilibrium region for the 

respective growth rate.  

 

Figure 3-6: The equilibrium exchange rate vs. Nitrogen composition curves for Ga0.665In0.335NyAs1-y QW at 
various growth temperatures. Two horizontal lines correspond to GaAs growth rate, Vg = 0.57 ML/s and 1 
ML/s. 
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This result can be used to depict the kinetically limited and equilibrium regions as shown 

in Figure 3-7 which plots the growth temperature vs. the Nitrogen composition. From Figure 3-7 

one can see that for a given Nitrogen composition, as growth temperature increases growth tends 

to go into the equilibrium region (vertical red arrow). Also, for a given temperature with 

increasing Nitrogen composition growth tends to go into the equilibrium region (horizontal green 

arrow). Considering our data for [N] = 0.69% and [N] = 3.15%, they locate at a kinetically 

limited region and equilibrium region respectively. This explains the trend observed in Figure 

3-4 where Indium segregation follows an increasing trend at [N] = 0.69% due to being in 

kinetically limited region. Thus it follows the (R1-R2) ~ [N] trend. When [N] = 3.15%, it is in 

equilibrium region, thus it follows Es ~ [N] trend, i.e., decreases with [N]. 

 

Figure 3-7: Nitrogen composition vs. growth temperature showing the kinetically limited and equilibrium 
regions for Ga0.665In0.335NAs QW with GaAs growth rate = 0.57 ML/s. 
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firstly increases with Nitrogen composition and after a maximum value start to decrease with 

further addition of Nitrogen. The Nitrogen composition corresponding to peak segregation length 

is actually the transition point from kinetically limited region to equilibrium region. We can see 

that the transition point happens at lower [N] for higher temperature. Comparison of Figure 

3-8(a) and (b) also shows that the transition point moves to lower [N] with lower growth rate. 

This can be explained from the Figure 3-6 that for a certain growth temperature, the intersection 

of equilibrium lines with higher growth rate, Vg = 1 ML/s, corresponds to a higher [N], as 

compared to Vg = 0.57 ML/s. At higher growth rate the kinetically limited region expands 

towards higher [N]. This is because at higher growth rate monolayer is quickly formed and thus 

leaving lesser time for the exchange reaction (Dehaese 1995). 

 

Figure 3-8: Calculated Indium segregation length variation with Nitrogen content in the 
Ga0.665In0.335NAs/GaAs QW for GaAs growth rate (a) growth rate = 0.57 ML/s and (b) growth rate = 1 ML/s, 
at different growth temperatures. 
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experimental data. We have currently only three experimental data points available as shown in 

Figure 3-4. A model based on such limited data may not be valid in a general case. More 

experimental data would be needed to validate the model. 

3.2 Effect of segregation on subbands 
In the previous section, we studied the origin of Indium segregation in GaInNAs/GaAs 

QWs. Naturally, a question arises: how does this Indium segregation affect the optical properties 

of GaInNAs QWs? This section studies the effect of Indium segregation on band structure and 

optical transition energies of strained GaInNAs / GaAs quantum wells. As we are looking into 

the applications at 1.3 and 1.55 µm emission wavelengths, the nominal (In, N) compositions in 

the quantum well are chosen accordingly.  

Two GaInNAs/GaAs QW structures, for 1.3 and 1.55 µm respectively, are described in 

section 3.2.1. A simple model developed by (Muraki 1992) is used to calculate the composition 

profiles of the QWs with different segregation efficiencies (a parameter related to the segregation 

length) of Indium atoms. Section 3.2.2 describes the Muraki model. Section 3.2.3 shows the 

corresponding strain profile in the quantum well for various segregation efficiencies. 

Confinement potentials of electron and hole are then derived from composition and strain 

profiles as described in section 3.2.4. The energies of electrons and holes are numerically 

calculated by solving the Schrödinger equation, which includes the effects of valence band 

mixing and strain. Section 3.2.5 presents the results and discussion on the subband energy levels 

and optical transition energy for heavy-hole band and light-hole band as a function of the 

segregation efficiency.  
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3.2.1 The structures studied 

Two single GaInNAs /GaAs quantum well structures have been studied theoretically. The 

GaInNAs /GaAs quantum well has a 7.5-nm thick Ga1-xInxNyAs1-y single QW sandwiched 

between GaAs barriers. Figure 3-9 shows the nominal composition and thickness of the 

GaInNAs/GaAs QW structures. The Indium and N composition are selected as x = 65%, y = 

1.5% for the emission wavelength at 1.3 µm and x = 61%, y = 3.9% for emission wavelength at 

1.55 µm. These compositions are chosen such that the QW is within a critical thickness to avoid 

the creation of dislocations. 

 

Figure 3-9: Schematic of GaAs/GaInNAs/GaAs QW structures for 1.3 and 1.55 um emission wavelength. 

 

3.2.2 Muraki model 

We employ Muraki's model of segregation for consecutive monolayers, but interpolate it 

to form a continuous function of z-axis in growth direction. We assume that the same segregation 

efficiency applies to all the monolayers. The composition profile for segregated QW is 

characterized by a segregation efficiency R that is given by 𝑎𝑎−(𝑑𝑑/𝐿𝐿), here d is the thickness of one 

monolayer and L is segregation length.  During the growth of the QW, the impinging Indium 

atoms are partially (1-R) incorporated into the growing layer with the remaining fraction R 

incorporated into the following layer. Thus, for a single Ga1-xInxNyAs1-y / GaAs quantum well 
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with segregation efficiency, R, composition profile of Indium along the growth direction z is 

given by 

( ) ( ) ( )
( ) ( ) ( )




+≤<−
≤≤−

= −
bww

/dtz/dt
w

z/d

ttztRRx
tzRx

zx
ww1

01

0

0        (3-6) 

where tw and tb are the thicknesses of quantum well and barrier, respectively. Here, x0 is the 

nominal Indium mole fraction for ideal square quantum well. The GaInNAs quantum well starts 

at z = 0. The mole fraction of Nitrogen is assumed to be abrupt based on the experiments that 

Indium does not affect the incorporation of Nitrogen during MBE growth (Pan 20001; Tournie 

2000). Thus, for y0 as mole fraction, Nitrogen profile is expressed as 
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3.2.3 Segregation effect on strain 

The lattices mismatch between the thin QW and thick barriers results in tetragonal 

deformation of the QW lattice. The effect of hydrostatic strain is two-fold; biaxial compressive 

in-plane strain along [100] and [010] directions, and uniaxial shear strain along [001], i.e. crystal 

growth direction. The in-plane strain and uniaxial shear strain across the QW will vary according 

to the composition of Ga1-xInxNyAs1-y due to Indium segregation. The strain for segregated QWs 

can be given by (Chuang 1995) 
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where c11(x, y) and c12(x, y) are elastic stiffness constants. ε(x, y) is the misfit factor between the 

well and barrier depending on Indium and N compositions in the QW, which is negative for 



Chapter-3 Indium Segregation in GaInNAs/GaAs QWs 

76 

compressive strain. Indium segregation modifies the QW structure and the hydrostatic strain, 

leading to a change in the bandgap that can be given by 

∑ ∆±∆−= SEEU rn           (3-9) 

where En is the unstrained bandgap energy, ΔEr and ΔS are the changes in bandgap energy. 

Subscript “r” refers to “c” (conduction band edge) or “v” (valence band edge). The change of the 

band edge due to hydrostatic strain can be expressed as 
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where ar refers to ac (hydrostatic deformation potential of conduction band) or av (hydrostatic 

deformation potential of valence band). ΔS is the change in valence band structure due to shear 

strain. Shear strain breaks the degeneracy of the heavy and light hole bands, shifting the heavy 

hole band up for compressive strain. ΔS can be expressed by 
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where b(x,y) is the shear deformation potential. The conduction band edge can be assumed to be 

unaffected by shear deformation, i.e., ΔS is zero for conduction band. Figure 3-10 summarizes 

the effect of compressive and tensile strain on the band-edges of the conduction and valence 

bands. 
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Figure 3-10: Effect of compressive and tensile strain on the conduction and valence band-edges. 
 

3.2.4 Subband energies 

To calculate the electron, heavy hole and light hole wave functions in the Indium 

segregated Ga1-xInxNyAs1-y / GaAs QWs, we apply the multiple-band effective mass theory in the 

envelop function scheme as described in section 2.2. When calculating we assume that the 

envelope functions satisfy the boundary conditions at the QW interface. The effective mass 

theory has been proved effective in the calculations of a GaAs-based QW with the well width 

down to 2-nm (Moore 1988). Therefore, the error due to the effective mass approximation in the 

calculations of the 7.5-nm GaInNAs / GaAs QW is negligible. In GaInNAs with dilute Nitrogen 

incorporated, the conduction and valence bands are well separated and decoupled. Both the 

minimum in the conduction band and the maximum in the valence band occur at the symmetrical 

Γ6 valley.  
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The composition dependence of bulk bandgap of Ga1-xInxNyAs1-y is calculated using band 

the anti-crossing (BAC) model (Duboz 2002). 

[ ]xVEAsInGaEEAsInGaEAsNInGaE N
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xxgyyxxg

22
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Where 𝐸𝐸𝑎𝑎(𝐺𝐺𝑎𝑎1−𝑥𝑥𝐼𝐼𝑛𝑛𝑥𝑥𝐴𝐴𝑠𝑠) = 𝑥𝑥 𝐸𝐸𝑎𝑎(𝐼𝐼𝑛𝑛𝐴𝐴𝑠𝑠) + (1 − 𝑥𝑥)𝐸𝐸𝑎𝑎(𝐺𝐺𝑎𝑎𝐴𝐴𝑠𝑠) − 𝑥𝑥(1 − 𝑥𝑥)𝐶𝐶, EN = 1.65 -0.31y, 

and V = 3.0 - 0.65y. C is the bowing parameter (0.51 eV) (Li 1999). The band offset ratio, 

𝑄𝑄𝑐𝑐 = ∆𝐸𝐸𝑐𝑐/∆𝐸𝐸0, at the hetero-junctions is chosen to be Qc = 0.8 based on the experimental 

measurements (Hetterich 2000). Here, ∆Ec and ∆E0 are energy differences of the conduction 

bands and band gaps, respectively. 

The electron and hole wave functions at the zone center of the Γ6 valley can be calculated 

separately in accordance with the Ben–Daniel and Duke models (Ben Daniel 1966). The wave 

equation has a form of one-dimensional Schrödinger-like equation as given below  
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where rlψ  and Erl are the eigen wavefunctions and eigenenergies of the subband in level l of 

electrons (r = e), heavy holes (r = Hh), or light holes (r = Lh), 𝑚𝑚𝑎𝑎
∗(𝑧𝑧) is the effective mass and 

Ur(z) is the confinement profile.  

The physical parameters of GaInNAs at room temperature are mostly obtained by linear 

interpolations among those of the binary parents (i.e. GaAs, GaN, InAs, and InN) according to 

Vegard’s law (Vegard 1921). Appendix A presents the parameters used in this study (Strite 

1993; Kim 1996; Meney 1996; Wright 1997; Li 2000; Park 2000; Vurgaftman 2001; Vurgaftman 

2003).  
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The eigenenergy problem, Equation (3-12), can be numerically solved for electrons in 

conduction band and heavy and light holes in valence band separately by using a one-

dimensional finite difference method with the confinement profiles given in Equation (3-9). 

Coefficients of the eigenmatrix were obtained from fourth order Taylor series expansions. The 

detailed procedure has been described in the section 2.2.4 in chapter 2. 

The solution to the equation of the form [ ] [ ] [ ]ψψ EH =×  gives the eigenenergy for each 

band. The optical transition energy e1-Hh1 (e1-Lh1) is then obtained by the energy difference 

between electrons and heavy (light) holes confined in the ground states. 

3.2.5 Results and Discussion 

First of all, we calculate the composition profile in the GaInNAs / GaAs QW for nominal 

and segregated structures.  

 

Figure 3-11: Indium segregation profile of Ga0.65In0.35N0.015As0.985 / GaAs single QW with different segregation 
efficiencies. 
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Figure 3-11 shows the Indium composition profiles across the Ga0.65In0.35N0.015As0.985 / 

GaAs QW modified by the segregation of Indium atoms according to Equation (3-6). For small 

segregation efficiency, the Indium composition maximum does not change but the transition 

point (between Indium < 35% and Indium = 35%) shifts towards the top interface with the 

increase of segregation efficiency R. For segregation efficiency of 0.9, the maximum of Indium 

composition decreases to 33%. Because the N composition does not change across the QW as 

described by Equation 3-7, there is a very thin Indium-poor-GaInNAs interfacial layer at the 

bottom region of the GaInNAs QW and a thin Indium grading GaInAs layer in the region of the 

top barrier close to the interface due to Indium segregation. These composition distributions 

result in abrupt changes in the strain at the interfaces (i.e. z = 0 and 7.5 nm) of the QW. 

 

Figure 3-12:  In-plane strain profile of Ga0.65In0.35N0.015As0.985 / GaAs QW with various Indium segregation 
efficiencies. 
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compressively strained, and the compressive strain increases along the growth direction for 

certain segregation efficiency. Finally, the top barrier area close to the interface that is 

compressively strained due to the segregation induced GaInAs interfacial layer.  

 

Figure 3-13: In-plane strain at the regions close to the QW / barrier interfaces as a function of segregation 
efficiency. 
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of segregation efficiency results in a sharp peak of compressive strain at the top interface (see 

Figure 3-12). However, for R > 0.84 the compressive strain at both sides of the top interface 

begins to decrease due to the decrease of the Indium composition maximum there (see Figure 

3-11). 

 
Figure 3-14: Confinement potentials of electrons in the conduction band, heavy holes and light holes in the 
valence band of the Ga0.65In0.35N0.015As0.985 / GaAs QW (λ~1.3 µm) with various segregation efficiencies of 
Indium atoms. 
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compressive strain. On the contrary, in the top barrier region, along the direction from the 

interface to the barrier region, the conduction band and heavy hole band energies increase while 

that of the light hole decreases. This band diagram results in the confinement of electrons and 

heavy holes in the QW near the top interface (z = 7.5 nm), and the light holes confined in the 

QW near the bottom interface (z = 0). Interestingly, this also suggest a space-indirect transition 

within the QW, between light holes localized in Indium-poor-region and electrons localized in 

Indium-rich region of the quantum well as shown in Figure 3-14, where we see a narrow valley 

for effective localization of light hole in Indium-poor-region. This is similar to the experimental 

observation of space-indirect transition in GaAs/GaAsN/InGaAs hetrostructure between electron 

localized in GaAsN layer and hole localized in InGaAs layer (Egorov 2003). 

 

  

Figure 3-15: Transition energies of e1-Hh1 and e1-Lh1 in (A) Ga0.65In0.35N0.015As0.985 / GaAs and (B) 
Ga0.61In0.39N0.03As0.97 / GaAs QW structures as a function of Indium segregation efficiency. 
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segregation efficiency for (a) Ga0.65In0.35N0.015As0.985 / GaAs QW (λ~1.3 µm) and (b) 

Ga0.61In0.39N0.03As0.97 / GaAs QW (λ~1.55 µm). The optical transition energies of e1-Hh1 and e1-

Lh1 are approximately constant for segregation efficiencies smaller than 0.6 and 0.7, 

respectively, but increase for larger segregation efficiencies. The blue shift in transition energies 

of e1-Lh1 caused by Indium segregation is smaller than that of e1-Hh1 for R > 0.6, corresponding 

to the different effects of segregation on confinement profiles of heavy hole and light hole. It is 

interesting to note that the blue shift in transition energy against the segregation efficiency is the 

same for both QW structures in Figure 3-15. Consider that these two structures have the same 

strain; this observation may imply that the blue shift in transition energy due to segregation is 

mainly affected by strain rather than by the compositions of the QW. We may draw this 

conclusion because the QW materials of the two structures have the same lattice constant and 

different compositions, but the segregation-induced blue shifts in optical transition energies are 

almost the same. 

3.3 Conclusion 
In this chapter, Indium segregation has been studied in GaInNAs/GaAs QWs for its 

origin and the effect on the band structure. The origin of Indium segregation has been studied 

using a kinetic model, where the effect of Nitrogen is explained in terms of activation energy 

barrier lowering for Gallium/Indium exchange across surface and layer underneath (bulk) group-

III sites.  

The effect of Indium segregation on band structure and transition energy is studied for 

GaInNAs / GaAs single QWs emitting at 1.3 µm wavelength. Constant segregation efficiency for 

both the well and barrier were used to model the composition profile. The optical transition 
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energies were numerically calculated for the QWs with various segregation efficiencies of 

Indium atoms. The results indicate that the transition energy starts to blue shift for segregation 

efficiencies larger than 0.6, which is mainly affected by the strain rather than by the composition 

in the QW. We also show a space-indirect transition between light holes localized in Indium-

poor-region and electrons localized in Indium-rich-region of the quantum well. Our calculations 

suggest that photoluminescence is a powerful tool for the investigation of segregation with the 

efficiencies larger than 0.7, but loses their reliability in the case of segregation efficiency smaller 

than 0.7. 
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Chapter 4: Effect of Composition Disorder 
on Optical Gain 

 

The growth of complex heterostructures such as QWs, superlattices, or graded 

heterojunctions requires high quality materials with uniform composition and ideal interfaces.  

However, in actual growth there are several factors which affect the composition profile taking it 

far from ideal. For example, in the last chapter Indium segregation (Indium composition 

disorder) was studied and shown to have significant effect on bandstructure and transition 

energies of GaInNAs/GaAs QWs. For GaInNAs/GaAs QWs, apart from Indium segregation 

there is non-uniformity in Nitrogen profile (Nitrogen composition disorder). Moreover, it is 

known that incorporation of Nitrogen atoms tends to enhance the Indium segregation during the 

growth of GaInNAs/GaAs QW (Liu 20064; Luna 2007).  

Composition disordering in GaInNAs/GaAs QWs has also been reported to significantly 

affect structural and optical properties including gain spectrum of TE and TM modes (Moison 

1989; Schowalter 2006; Chan 2002). Segregation induced asymmetric composition profile 

combined with the non-linear band anticrossing interaction (of GaInAs conduction band and 

higher-lying Nitrogen resonant band) modifies the carrier confinement and the transition 

energies and hence affects the optical gain characteristics significantly (Liu 20061; Schowalter 

2006).  

In this chapter, a detailed theoretical analysis of composition disorder in GaInNAs/GaAs 

single QW is presented. The effects of the composition disorders of Indium and Nitrogen, in a 
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GaInNAs/GaAs single-QW along the growth direction, on the QW’s band structure and further 

on its optical gain spectrum have been studied theoretically.  

4.1 QW Structure 
In this study, the disordered composition profiles are taken from experimental results of 

the MBE grown GaInNAs/GaAs QWs reported by Luna et al. (Luna 2007). The QW consists of 

a 7-nm-thick Ga0.59In0.41N0.038As0.962 QW sandwiched by 30-nm GaAs barriers. The nominal 

Indium and Nitrogen compositions in the QW are 0.41 and 0.038, respectively, which 

correspond to an emission wavelength of 1.55 µm.  

 

Figure 4-1: Indium and Nitrogen composition profiles for a 7-nm-thick Ga0.59In0.41N0.038As0.962/GaAs QW 
without disorder (structure A, nominal structure with uniform compositions and ideal interfaces) and with 
disorder (structure B, taken from the experimental results reported in (Luna 2007) with author’s 
permission). 
 

In order to study the effect of composition disorder, we compare the nominal structure 

with the composition disordered structure. The nominal structure, hereafter referred to as 

structure A, consists of uniform composition profiles of Indium and Nitrogen in the QW and 
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abrupt (ideal) interfaces.  The composition disordered structure, hereafter referred to as structure 

B, has non-uniform Indium and Nitrogen composition profiles in the QW. The interfaces are not 

abrupt. The disordered composition profiles of structure B are taken from experimental results of 

the MBE grown GaInNAs/GaAs QWs (at 4600C) reported by Luna et al.(Luna 2007). Figure 4-1 

shows the Indium and Nitrogen composition profiles in the two structures. 

4.2 Strain and carrier confinement profile 
Based on these composition profiles, we can calculate the in-plane strain profiles (as 

explained in section 2.2.1).  

 

Figure 4-2: In-plane strain profiles of a 7-nm-thick Ga0.59In0.41N0.038As0.962/GaAs QW for structures A and B. 

Figure 4-2 presents the in-plane strain profiles across the nominal and the composition 

disordered QWs. For structure A, two regions can be identified: unstrained GaAs barrier and 

compressively strained GaInNAs QW. For structure B, the strain profile consists of three parts: 

firstly, the bottom GaAs barrier that is unstrained; secondly, the QW area that is compressively 
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strained; and finally, the top barrier area close to the interface that is tensile strained. Indium and 

Nitrogen disorders modify the composition and the in-plane strain across the QW structures, 

which in turn change the carrier confinements for the GaInNAs QW.  

 
Figure 4-3: Confinement potentials of electrons in the conduction band, heavy holes and light holes in the 
valence band for structures A and B. 

Figure 4-3 presents the confinement profiles of the carriers in the conduction band and 

valence band (HH and LH) for the structures A and B. The confinement profiles are determined 

by the variation of bulk material bandgap energy and the in-plane strain. The confinement 

profiles in structure B show narrow valleys that become broader for higher order quantization. 

The QW (in both the structures) is compressively strained and thus the valence band is split into 

HH and LH, where the HH band is pushed up and the LH band is pulled down. Figure 4-3 also 

shows small fluctuations in the potential profiles which indicate a significant possibility of 

carrier traping in the GaInNAs QWs. The experimental report confirms the existence of random 

potential fluctuations due to Nitrogen, which dominate the PL properties at low temperatures 
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(Nomuraa 2005). These potential fluctuations persist even after annealing and are responsible for 

carrier trapping for temperatures up to 100 K (Khee 2005). 

 
Figure 4-4: Confinement potentials of electrons in the conduction band, heavy holes and light holes in the 
valence band of the Ga0.65In0.35N0.015As0.985 / GaAs QW with various segregation efficiencies of Indium atoms 
without considering Nitrogen disorder. 
 

To separate the effects of Indium and Nitrogen disorders we refer to the last chapter 

where effect of Indium segregation (Indium-disorder modeled using Muraki model) was 

discussed while the Nitrogen profile was assumed to be abrupt. Figure 4-4 presents the carrier 

confinement profiles without taking the Nitrogen disorders into account. This result is similar to 

the one presented in section 3.2.5. The light holes and heavy holes are confined towards the first 

and the second interfaces, respectively, while the electrons are confined towards the second 

interface. This implies a smaller probability for e-lh transition. However, when Nitrogen disorder 

is involved as in structure B in Figure 4-3, both the light holes and heavy holes are confined 

towards the second interface within the QW. This shows that the Nitrogen disorder tends to 
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enhance the e-lh transition probability. This is attributed to the enhancement of tensile strain due 

to Nitrogen (Park 2004), which is further magnified by the tendency of Nitrogen to hinder 

Indium incorporation resulting in higher Nitrogen and smaller Indium compositions locally, i.e., 

higher tensile strain (Rubini 2006). 

4.3 Band dispersion 

 

Figure 4-5: Energy dispersion curves for conduction and valence subbands along [100] and [110] crystal 
directions for structures A and B. 
 

Figure 4-5 shows the energy dispersion curves for conduction and valence subbands for 

structures A and B. The envelope function associated with each subband varies with the wave 

vector in the plane of the QW (k||) due to subband coupling giving rise to non-parabolicity. The 

subband states are labeled as Cn, HHn and LHn (n = 1, 2, 3, 4) according to their dominant 

characteristics at k||= 0. The two conduction subbands are designated as C1 and C2, and the five 

valence subbands are designated as HH1, HH2, HH3, LH1, and HH4. C1 and HH1 are the 

ground states for electrons and holes, respectively. The calculated subbands look asymmetric 

along [110] and [100], specialy for HH1 and HH4, which could be due to different effective 
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masses along these two directions. The subbands for structures B are pulled down from the 

valence-band-edge and pushed up from the conduction-band-edge as compared with the structure 

A. This is due to the narrower confinement valley for structure B, which makes the quantization 

energies larger. However, for higher order subbands, in structure B, valley gets broader (see 

Figure 4-3) and HH4 shows a reverse trend for higher k|| (shifting up for structure B as compared 

with structure A). Due to the broadening of the valley for higher order subbands, energies are 

closely spaced compared to the nominal QW, i.e., the separation between HH4 and HH3 is 

smaller for structure B than that of structure A. Interestingly, for structure B, the third (HH3) and 

fourth (LH1) valence subbands overlap at k||=0, which results in enhancement of electron-light 

hole transitions. The band structure also shows non-parabolicity, resulting from band coupling 

which changes the in-plane carrier masses. 

4.4 Effect of Nitrogen disorder on transition energy 
In order to separate the effects of Indium and Nitrogen disorders on optical properties, we 

compare the effect of Indium segregation for two types of QWs, one with a uniform Nitrogen 

composition profile and the other with disordered Nitrogen composition profile. The segregated 

Indium composition is calculated using the Muraki model (Muraki 1992) 

( ) ( )
( ) ( )
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≤≤−

=
− barriernNRRx

wellNnRx
x NnN

n

n ,,1
,1,1

0

0         (4-1) 

where n is the number of monolayers, x0 is the nominal Indium composition (0.41 here), N is 

QW thickness in monolayer, and R is the segregation efficiency.  

Figure 4-6 shows the increase in transition energy (blueshift) due to Indium segregation 

for uniform and disordered Nitrogen composition profiles. The blueshift for structure B is shown 
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as solid round dot, which corresponds to segregation efficiency R= 0.8 (Luna 2007). The solid 

diamond represents the ideal structure A without Indium and N disorder. From Figure 4-6, the 

maximum difference in blueshift energy is only 7 meV between the two curves at any 

segregation efficiency. This implies that certain Nitrogen disorder plays only a minor role in the 

blueshift caused by Indium segregation. One can also see that for both cases (with uniform and 

disordered Nitrogen compositions), the blueshift is negligible for segregation efficiencies R < 

0.6, after which blueshift increases rapidly with Indium segregation. 

 

Figure 4-6: The increase of electron-heavy hole (C1-HH1) transition energies (blueshift) as a function of 
Indium segregation efficiency for structures A and B. 

4.5 Optical gain 
In the optical gain calculation, the first five valance subbands and two conduction 

subbands have been used as there is negligible contribution from higher order subbands to the 

optical gain. The optical gain has been calculated using the method described in section 2.2.5. 

The optical gain of the transverse electric (TE) and transverse magnetic (TM) modes of the 

GaInNAs/ GaAs segregated QWs are shown in Figure 4-7 and Figure 4-8, respectively.  
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Figure 4-7: Optical gain spectra of the TE mode of the Ga0.59In0.41N0.038As0.962/GaAs QW as a function of 
photon energy for structures A and B. 
 

 
Figure 4-8: Optical gain spectra of the TM mode of the Ga0.59In0.41N0.038As0.962/GaAs QW as a function of 
photon energy for structures A and B. 

The injected carrier density is set to be 4.0×1012 cm−2. For compressive-strained 

GaInNAs/GaAs QW structure A, the first three valence subbands are heavy-hole bound states. 

Consequently, the gain of the TE mode is much larger than that of the TM mode, as reported in 

experimental measurements by Kvietkova et al. (Kvietkova 2005), and Hofmann et al. 

(Hofmann 2002). Hofmann et al. used 1.9 % Nitrogen and reported higher TM mode gain than 
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that was reported by Kvietkova who used only 0.1% Nitrogen composition. The higher TM 

mode gain is due to higher Nitrogen composition which increases tensile strain. Since in our case 

the Nitrogen composition is almost double to that of Hofmann et al.’s, therefore we can expect 

even higher TM mode gain compared to the experimental reports of Hofmann et al.. For 

structure B, the gain spectra shift towards the higher photon energy in comparison to structure A. 

As shown in Figure 4-7 and Figure 4-8, the gain peak energy shifts caused by the N disorder are 

36 and 26 meV for the TE and TM modes, respectively. Likewise, the optical gains are increased 

by 27% and 162% for the TE and TM modes, respectively. The larger increase in the optical gain 

of the TM mode is due to the change in the third valence subband, which is HH for structure A 

and an overlap of HH3 and LH1 for structure B. The increase in TM mode optical gain is also 

due to the enhancement of e-lh transition probability as discussed earlier (Park 2004).  

 
Figure 4-9: Optical gain peak of the TE modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a function of the 
injected carrier concentration for structures A and B. 
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Figure 4-10: Optical gain peak of the TM modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a function of the 
injected carrier concentration for structures A and B. 

Figure 4-9 and Figure 4-10 show the gain peak values of the TE and TM modes 

respectively as a function of the injected carrier concentration for structures A and B. For 

structures A and B, gain peaks for TE and TM modes increase monolithically with injected 

carrier concentration. The threshold carrier density for TE mode is 2×1012 cm-2 in both the 

structures A and B. The threshold carrier density for TM mode is 2×1012 cm-2 for structure A and 

1.5×1012 cm-2  for structure B. This supports the idea that disordered structure has significant 

increase in the TM mode gain. 

The radiative current density can be calculated from the emission spectrum using 𝐽𝐽𝑎𝑎𝑎𝑎𝑑𝑑 =

𝑎𝑎𝑡𝑡𝑤𝑤ℏ∫𝑅𝑅𝑠𝑠𝑝𝑝(ℏ𝜔𝜔)𝑑𝑑𝜔𝜔, as described in section 2.2.5. The calculated radiative current density only 

takes into account the carrier injection contributing to the radiation. Figure 4-11 and Figure 4-12 

show the gain values at the peaks of the TE and TM modes respectively, as a function of the 
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radiative current density for structures A and B. It is seen that the gain peaks also increase with 

radiative current density. 

 
Figure 4-11: Optical gain peak of the TE modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a function of the 
radiative current density for structures A and B. 
 
 
 

 
Figure 4-12: Optical gain peak of the TM modes of the Ga0.59In0.41N0.038As0.962/GaAs QW as a function of the 
radiative current density for structures A and B. 
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The threshold current densities of both the TE and TM modes can be determined from 

Figure 4-11 and Figure 4-12, they are 100 A/cm2 (for both the TE and TM modes) for structure A 

and 120 A/cm2 (for both the TE and TM modes) for structure B. Interestingly, for TE mode the 

injected carrier density is same for structures A and B but structure A has smaller threshold 

radiative current density. This is due to the shape of the spontaneous emission spectrum which 

requires larger current desnity to achieve same carrier concentration in structure B. Structure B 

shows a higher threshold current density for both the TE and TM modes as compared with 

structure A. The calculated values of the threshold current density are quite close to the best 

experimental values of GaInNAs (130 A/cm2) reported in the literature (Zhao 2008). The small 

difference is due to not considering confinement factor and optical loss in our simulations. 

4.6 Conclusion 
In conclusion, optical gain characteristic of QW structures with uniform Indium and 

Nitrogen composition profiles were compared with the real experimental composition profiles.  

The subband energy dispersion and optical gain were numerically calculated for the QWs. Both 

the Indium and N disorders can cause the blueshift in transition energy, but Indium disorder 

plays the major role. The disorder also enhances the TM mode optical gain, especially at high 

carrier densities. However, threshold carrier density for the TE mode is same in both the 

disordered structure and the nominal structure. These results may provide important information 

in the design and fabrication of GaInNAs/GaAs based optoelectronic devices. 
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Chapter 5: Thermal Annealing Induced 
Blueshift 
 

 

MBE growth of GaInNAs is carried out at low temperature (< 480 OC) to improve the 

solubility of Nitrogen in GaInAs and to avoid phase separation of GaInNAs into GaInAs and 

GaN (Chalker 2004). However, this leads to a high defect density in the crystal and poor 

photoluminescence (PL) properties. Post-growth thermal annealing is used to remove the defects. 

Although rapid thermal annealing (RTA) improves the PL efficiency of the GaInNAs / GaAs 

quantum wells (QWs), it also causes an undesirable blueshift. This blueshift has been attributed 

to Gallium/Indium interdiffusion across the QW interface (Ng 2005) and reorganization of the 

Nitrogen-bonding configuration, N-InmGa4-m (0 ≤ m  ≤ 4), in short range order (SRO) clusters 

(Pan 2000; Tournie 2002; Liu 20063). Klar et al. (Klar 2001) attributed the blueshift to the SRO 

mechanism and explained that the rearrangement of Nitrogen-bonding configuration forms five 

discrete sets of bandgap corresponding to N-In0Ga4, N-In1Ga3, N-In2Ga2, N-In3Ga1, and N-

In4Ga0 phases in GaInNAs. Similar conclusions were reported by Tournie et al. (Tournie 2002), 

where post-annealing PL measurements from GaInAs and GaAsN did not show any blueshift but 

from GaInNAs it showed a blueshift of 67 meV. In Tournie’s experiments, X-ray diffraction 

(XRD) measurements and transmission electron microscopy (TEM) did not show any 

compositional change in GaInNAs indicating the reorganization of N-bonding configuration. 

There are several reports separately explaining these two phenomena but lack the quantitative 
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contribution from both. In this work we try to understand and explain the individual 

contributions of SRO and interdiffusion. 

In this chapter, we present a detailed analysis of PL blueshift mechanism in an MBE-grown 

GaInNAs/GaAs single QW. PL peak wavelengths from the QW were measured for annealing 

temperatures of 680-800 0C and annealing time up to 3 hours.  Experimental PL blueshift was 

analyzed for individual blueshift components due to the reorganization of the N-bonding 

configuration and the Gallium/Indium interdiffusion across the QW interfaces, using a linear 

model and a genetic algorithm-based approach. In section 5.1, experimental procedures are 

briefly described. In section 5.2, analysis of photoluminescence blueshift using a linear model is 

described. In section 5.3, the PL blueshift as a combined effect of SRO and interdiffusion is 

analyzed using genetic algorithm based approach. Finally, in section 5.4, conclusion is presented. 

5.1 Experiment 
The QW structure analyzed in this study was an 8-nm Ga0.628In0.372N0.015As0.985/GaAs 

single QW grown by solid-source MBE on GaAs (100) substrate. Nitrogen was produced by a 

radio-frequency (RF) plasma source. The QW was sandwiched between the 500-nm GaAs buffer 

and 100-nm GaAs cap layers. The growth temperature of the QW was 460 °C. The GaAs buffer 

and cap layers were grown at 580 °C. After the growth, the as-grown wafer was cut into small 

pieces and the small pieces of samples were repeatedly annealed in a Nitrogen atmosphere of a 

rapid thermal annealing (RTA) chamber at temperatures of Tann = 680, 700, 750, and 800 °C, for 

few seconds to several hours . There were no extra dielectric capping layer on top of the samples, 

but the samples were covered by a GaAs wafer during the annealing.  After the annealing, the PL 

spectra were measured at room temperature using an Accent Rapid Photoluminescence Mapping 
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System (RPM 2045) with a He-Cd laser (325nm) as the excitation light source. We did not do 

the wafer mapping but the measured PL from four pieces of as-grown samples showed up to ±36 

meV difference, which is much smaller then the observed PL blueshift. 

5.2 Linear model based approach 
PL blueshift has been attributed to the phenomenon of Gallium/Indium interdiffusion by 

Ng et al. (Ng 2005). However, blueshift only considering the interdiffusion tends to overestimate 

the extent of diffusion. In this section we show that this blueshift is actually a combination of the 

two phenomena including Gallium/Indium interdiffusion and short-range-order.  

5.2.1 Interdiffusion model 

In order to model blueshift, first of all we construct the interdiffusion model by solving 

Fick's second law of diffusion. For a square quantum well the composition profile of diffusing 

species is given as 

𝐶𝐶(𝑧𝑧) = (𝐶𝐶0/2) �𝑎𝑎𝑎𝑎𝑓𝑓 𝑤𝑤0+2𝑧𝑧
4𝐿𝐿𝐷𝐷

+ 𝑎𝑎𝑎𝑎𝑓𝑓 𝑤𝑤0−2𝑧𝑧
4𝐿𝐿𝐷𝐷

�       (5-1) 

where erf is the error function, C0 is the initial Indium composition, w0 is the thickness of the as-

grown QW, and z is the distance in the growth direction with z = 0 at the well center. The Indium 

composition profile is characterized by a diffusion length annannaD tkTEDL )/exp(0 −= , where 

D0 is diffusion constant, Ea is the activation energy for diffusion, k is the Boltzmann constant, 

Tann is the annealing temperature and tann is the annealing time. The composition profile is used 

to determine the strain profile and resulting potential profile for various subbands (conduction, 

heavy hole and light hole bands) and Ee1-Hh1 transition energies.  
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The interdiffusion across the QW/barrier interfaces affects the characteristic PL energy 

by changing the effective width of the well and, therefore, the energy of the confined levels. This 

also modifies the well composition and band gap energy. For GaAs based materials, such as 

GaInAs and GaInNAs, the conduction and valence bands are decoupled. The minimum in the 

conduction band occurs at symmetrical Γ6 valley. The energy states and wave function of the 

electron, heavy-hole and light-hole at Γ6 can be calculated using the Duke-Daniel model. A 

detailed description of this procedure is given in section 2.2.4. We accommodate lattice 

mismatch by including biaxial in-plane strain and uniaxial shear strain after interdiffusion. The 

uniaxial shear strain results in hole-splitting, which pushes up the heavy-hole energy states. The 

calculated confinement profiles of electrons and heavy holes with various diffusion lengths have 

been used to find the ground state transition energy.  

For the 8-nm Ga0.628In0.372N0.015As0.985 / GaAs QW structure, the transition energy 

between the first confined states of electron and heavy-hole, Ee1-Hh1, as a function of diffusion 

length is shown in Figure 5-1a. Figure 5-1b displays the squared-diffusion-length dependence of 

Ee1-Hh1. The XRD measurements (Liu 2006) and simulations indicate that the diffusion lengths 

are smaller than 2 nm in this study. As evident from Figure 5-1b, within the range of 0-4 nm2 the 

numerically calculated transition energy, Ee1-Hh1, increases linearly with 2
DL , and can be well 

fitted by DtAEE Hhe ×+=− 011  with E0 = 0.9145 eV and A = 0.032 eV/nm2.  
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Figure 5-1: Numerically calculated transition energy between the first confined states of electron and heavy-
hole (a) as a function of diffusion length, and (b) as a function of squared-diffusion-length, the solid-line is a 
linear fitting for the calculated data. 

5.2.2 Linear model 
 

In section 5.2.1 we established that blueshift due to interdiffusion varies linearly with the 

squared diffusion length, i.e., annealing time. We have shown that considering the interdiffusion 

only would over-estimate the extent of interdiffusion (Liu 2006; Ng 2005). This over estimation 

is particularly significant during the early stage of annealing. Figure 5-2 shows the blueshift in 

GaInNAs/GaAs samples where two regions (abrupt and linear) can be easily identified. This 

abrupt blueshift has also been observed in GaInAs / GaAs QWs, and interpreted as an effect of 

strain-induced interdiffusion (Gillin 1993). The PL blueshift at the initial stage of annealing the 

GaInNAs / GaAs QW is faster than that of the GaInAs / GaAs QW grown at the same conditions 

with the same well width and Indium composition. The compressive strain in the GaInNAs / 

GaAs QW is then definitely smaller than that in the GaInAs / GaAs QW. This comparison 

reveals that in GaInNAs / GaAs QW, the effect of strain-induced interdiffusion on the PL 
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blueshift at the initial annealing stage is much less pronounced than that of SRO. Because of a 

lack of knowledge of the annealing time dependence of blueshift due to SRO, ΔESRO, combined 

with the fact that blueshift due to interdiffusion varies linearly with annealing time, 

annSROPL DtAEEE ×++∆= 0 has been used to fit the PL blueshift in the linear region after abrupt 

blueshift. 

5.2.3 Results and discussion 
 
 

 
Figure 5-2: Photoluminescence peak energy as a function of annealing time annealed at 680 0C (a), 700 0C (b), 
750 0C (c), and 800 0C (d). The solid lines are the best fittings by using EPL = ΔESRO +E0 +A ×D t, with E0 = 
0.9145 eV and A = 0.032 eV/nm2. 

Figure 5-2 shows the photoluminescence peak energy for 8-nm 
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680 0C (a), 700 0C (b), 750 0C (c), and 800 0C (d). The solid lines are the best fittings by using 

EPL = ΔESRO +E0 +A ×D t, with E0 = 0.9145 eV and A = 0.032 eV/nm2. The data used for the 

best fitting are summarized in Table 5-1. It is found that the ΔESRO is over a range of 18~28 

meV, which shows a highest value for 700 0C and smallest value for 800 0C annealing 

temperature. Comparison between the theoretical E0 = 0.9145 eV and the PL energy of the as-

grown sample (0.9520 eV) reveals that the ΔESRO caused by ‘self annealing’ is about 37.5 meV. 

The relatively smaller diffusion coefficients obtained (see Table 5-1), as compared with those 

reported in GaInAs /GaAs, GaAs / AlGaAs QW structures, is due to the relatively lower 

annealing temperature studied here (Ryu 1995; Choe 1998).  

Table 5-1: The best fitting values of the diffusion coefficient D and the SRO effect ΔESRO for the 
photoluminescence energy blueshifts. 

Annealing 
Temperature  

Tann (oC) 

D (×10-18 cm2/s) ΔESRO (meV) 

680 0.03 20 
700 0.10 28 
750 0.97 23 
800 3.52 18 

From the data presented in table 5-1, the Arrhenius plot has been constructed according 

to 𝐷𝐷 = 𝐷𝐷0𝑎𝑎−(𝐸𝐸𝐴𝐴/𝑘𝑘𝑇𝑇𝑎𝑎𝑛𝑛𝑛𝑛 ) as shown in Figure 5-3. It can be seen that the activation energy EA for 

interdiffusion is 3.25 eV. This activation energy value is considerably larger than those (~0.6 eV) 

obtained by Ng et.al., where the annealing time durations considered are not longer than 30 s. 

Within this annealing time range, as we discussed above, the PL blueshift is mainly caused by 

SRO, and shows a faster blueshift behavior than the real interdiffusion. The pre-exponential 

factor of D0 obtained from the Arrhenius plot is 5.88×10-3 cm2/s.  
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Figure 5-3: An Arrhenius plot of GaInNAs / GaAs interdiffusion coefficients for temperatures between 680 
and 800 0C. 
 

The fitting by the linear model gives the clue about SRO blueshift and identifies the time 

and temperature during which blueshift is dominated by interdiffusion. However, this model 

ignores the time dependence of the blueshift due to SRO and separately fits the blueshift for 

different annealing temperatures which does not consider the activation energy of SRO. 

Therefore, in next section we consider another model based on genetic algorithm which tries to 
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5.3 Genetic algorithm based approach 
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blueshifts, very limited studies of blueshift caused by the SRO have been reported, particularly 

the time dependence of blueshift due to SRO (Dixit 2008). In this section, we model the time 

dependence of short range order and do the comprehensive analysis of the photoluminescence 

blueshift using the genetic algorithm. 

5.3.1 Short Range Order 

Incorporation of Nitrogen into GaInAs forms Nitrogen-localized state, EN (Duboz 2002). 

EN changes with the Nitrogen-bonding configuration and Indium composition, which has been 

described earlier (section 2.2.2). As the Nitrogen-bonding configurations change from Gallium-

rich to Indium-rich EN increases which increases the bandgap energy of GaInNAs (Klar 2001). 

Here, we analyze the effect of different N-bonding configurations on interdiffusion induced 

blueshift using band anticrossing model (described in section 2.2.2). Here, we analyze the 

blueshift due to interdiffusion, while assuming same Nitrogen-bonding configuration, for each of 

the five possible Nitrogen-bonding configurations. Figure 5-4 shows the numerically calculated 

Gallium/Indium interdiffusion induced blueshifts in Ee1-Hh1 as a function of diffusion length for 

different Nitrogen-bonding configurations. It is clearly seen from Figure 5-4 that when the 

diffusion length is shorter than 2 nm, the effect of Nitrogen-bonding configuration is 

insignificant on the interdiffusion induced blueshift. QW with more Gallium neighbors in N-

bonding configuration shows higher interdiffusion induced blueshift, as shown in Figure 5-4, 

particularly significant for diffusion lengths larger than 2 nm.  This can be attributed to the 

stronger interaction of Nitrogen localized state, EN, with GaInAs conduction band, resulting in a 

different blueshift for different N-bonding configurations. For Gallium rich N-bonding 

configuration, EN is closer to the conduction band. Interdiffusion decreases Indium composition 



Chapter-5 Thermal Annealing Induced Blueshift 

108 

in the QW, particularly for longer diffusion lengths. This strengthens the interaction between EN 

and the GaInAs conduction band (Duboz 2002). 

 
Figure 5-4: Blueshift in transition energy, Ee1-Hh1, of an 8-nm Ga0.628In0.372N0.015As0.985 / GaAs QW as a 
function of diffusion length for different Nitrogen-bonding configurations (N-In0Ga4 (□), N-In1Ga3 (○), N-
In2Ga2 (△), N-In3Ga1 (▼), and N-In4Ga0 (◊)). 

 

5.3.2 Genetic algorithm 

A genetic algorithm (GA) is a search procedure based on population genetics with 

excellent capability without prior information about the nature of the problem (Khreis 2005). 

Implementation of GA involves five basic steps: population initialization, population evaluation, 

selection of parent chromosomes, crossover and mutation, and finally replacing parents with 

offspring. Simulation stops when the repeating process does not show improvement according to 

the pre-set criteria.  
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We use GA to fit the PL peak energy variation as a function of annealing time, with the 

combined blueshift due to interdiffusion and short range order.  An exponential function is 

introduced to profile the rearrangement rate of the Nitrogen-bonding configuration 

∆𝐸𝐸𝑆𝑆𝑅𝑅𝑆𝑆 = ∆𝐸𝐸0(𝑇𝑇𝑎𝑎𝑛𝑛𝑛𝑛 )�1 − 𝑎𝑎−�𝑡𝑡𝑎𝑎𝑛𝑛𝑛𝑛 /𝜏𝜏(𝑇𝑇𝑎𝑎𝑛𝑛𝑛𝑛 )��        (5-2)  

where ΔESRO is the blueshift due to SRO as function of annealing time, ΔE0 is the maximum 

contribution to blueshift by SRO at a particular annealing temperature (Tann), and τ is an 

annealing-temperature-dependent time constant which controls the reorganization rate of 

Nitrogen-bonding configuration. When tann = 2.303 τ, the blueshift due to SRO reaches 90% of 

ΔE0. 

In the employed GA approach four parameters, {Ea, D0, ΔE0, and τ}, have been selected 

for the optimization that forms a chromosome. The first generation is randomly generated within 

the initial solution space with population size, 24 chromosomes. The initial solution space was 

set chosen to be, 0 ≤ τ ≤ 150, 0 ≤ ΔE 0 ≤ 30, based on our results in previous section 5.2. 

However, for different annealing temperatures we had different values of ΔE0 and τ making the 

chromosome size larger. The generated population is evaluated and ranked based on fitness 

function, given by 

𝑎𝑎 = ∑ ∑ [𝐸𝐸𝑃𝑃𝐿𝐿 − ∆𝐸𝐸𝑆𝑆𝑅𝑅𝑆𝑆 − 𝑓𝑓(𝐿𝐿𝐷𝐷)]2
𝑡𝑡𝑎𝑎𝑛𝑛𝑛𝑛𝑇𝑇𝑎𝑎𝑛𝑛𝑛𝑛        (5-3) 

where, EPL is the measured blueshift in PL energy and f(LD) is the blueshift due to interdiffusion 

corresponding to diffusion length LD. f(LD) is calculated by solving the Schrödinger equation. 

Schrödinger equation was solved at 100 intermediate points for diffusion lengths, 0 ≤ LD ≤ 4 nm. 

During optimization f (LD) was calculated from these pre-calculated values, using interpolation.  
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The third step of the GA approach involves the selection of parent chromosomes based 

on fitness functions. Chromosomes with smaller fitness functions are considered fit (close to 

solution) and unacceptable chromosomes are discarded. Surviving chromosomes are paired for 

mating and crossover operation is described by combination procedure. 
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where {Ea1, D01, ΔESRO1, τ1} and {Ea2, D02, ΔESRO2, τ2} are two surviving chromosomes, r is a 

weighted operator (a random number, r ∈ (0, 1)). After mutation surviving chromosomes are 

evaluated and ranked based on fitness functions and genetic operator is repeated until 

termination condition is satisfied, i.e., 2000 future generations of chromosomes do not show any 

improvement within the order of 10-6 in the fitness functions value. The chromosome with 

smaller fitness function value, i.e., least square errors is adapted as a final solution.  

This procedure was repeated 20 times to check the accuracy and consistency of the 

simulation. The best fit values were obtained by refining the individual upper and lower limits 

and relocating in the vicinity of their individual solution space with wide enough range (±20 for τ 

and ±10 for ΔE0). 

GA based approach has also shown excellent accuracy in determining pre-factor and 

activation energy for the diffusion coefficients at different temperatures without a need for an 

Arrhenius plot (Khreis 2005). Moreover, results obtained using a GA search procedure ensures 

self-consistency in the fitting data across our annealing temperature range, 680 – 800 oC.  
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5.3.3 Results and discussion 

Figure 5-5 shows the calculated Ee1-Hh1 transition energies for the 8-nm 

Ga0.628In0.372N0.015As0.985 / GaAs QW with different N-GamIn4-m configurations.  

 
Figure 5-5: Transition energy, Ee1-Hh1, of an 8-nm Ga0.628In0.372N0.015As0.985 / GaAs QW as a function of 
Nitrogen-bonding configuration. 

Measured PL peak energy from the as-grown sample (shown as star in Figure 5-5) is 

close to the calculated transition energy for N-Ga3In1 phase. This indicates that the as-grown 

GaInNAs QW has N-Ga3In1 phase. MBE growth of GaInNAs is carried out under non-

equilibrium conditions where bonding energy favors the atomic arrangement with Ga-N bonds 

instead of In-N bonds (Alt 2001). Thus we assume the SRO configuration of GaInNAs QW 

before the GaAs cap layer growth was N-Ga4In0. GaAs cap layer grown on GaInNAs QW had an 

inherent self-annealing effect due to the higher growths temperature for GaAs than that of 

GaInNAs (Pessa 2003; Hugues 2007). The blueshift due to self-annealing is 29.3 meV, which is 
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obtained by comparing the PL peak energy from the as-grown sample and the calculated Ee1-Hh1 

for N-Ga4In0 phase. This value is supposed to be more accurate compared to the one determined 

earlier using linear model which was without the consideration of N-bonding configurations. 

During the post-growth annealing process two effects, the SRO and Gallium/Indium 

interdiffusion, contribute to the blueshift in the PL emission wavelength. Significant role of local 

strain effect has been reported during the thermal annealing, which changes Nitrogen-bonding 

configuration from Gallium-rich to Indium-rich environment causing blueshift in bandgap (Kurtz 

2001; Chauveau 2004). Rearrangement rate of Nitrogen-bonding configuration is affected by the 

supplied thermal energy showing faster blueshift for higher annealing temperature. On the other 

hand, the Gallium/Indium atoms interdiffusion decreases the Indium composition in the QW thus 

causing blueshift in transition energy.  

Since  the diffusion lengths for these samples are shorter than 2 nm, under the annealing 

conditions studied (Liu 2006), thus using the result from Figure 5-4 we can separate the SRO and 

interdiffusion in analyzing the PL blueshifts in our experiments, i.e., the resultant PL blueshift 

will be the sum of the two individual blueshifts. Figure 5-6 shows the PL peak energy variation 

as a function of annealing time at the annealing temperatures 680, 700, 750 and 800 0C, 

respectively. The GA based fittings, which simultaneously take into account all the Tann and tann 

studied, are shown as the black solid curves for the overall PL transition energies. Also shown in 

Figure 5-6 are the separated simulation curves of SRO (dashed lines) and interdiffusion (dotted 

lines) induced transition energies in PL emissions. The sums of interdiffusion and SRO blueshift 

curves make the GA fitting curves. We can see from Figure 5-6 that interdiffusion induced 

blueshift increases with the annealing time for Tann = 700, 750, and 800 oC. Besides, the higher 
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the Tann, the larger is the interdiffusion induced blueshift (for the same tann). For Tann = 680 oC, 

interdiffusion is negligible and the main contribution for blueshift comes from SRO, in 

agreement with the other experimental reports (Hugues 2007). From the SRO curves we can see 

that the SRO induced blueshift is dominant when tann is short. At long tann the SRO effect is 

negligible while interdiffusion induced blueshift dominates.  

 
Figure 5-6: Photoluminescence peak energy as a function of annealing time, with annealing performed at (a) 

680 0C, (b) 700 0C, (c) 750 0C, and (d) 800 0C.  The solid lines are best fits over calculated transition energies 

with blueshifts due to interdiffusion (dotted lines) and SRO (dashed lines). 

The activation energy for interdiffusion obtained by the GA method is Ea = 3.196 eV. 

This value is close to the Ea = 3.25 eV obtained from the simple linear fitting model, as discussed 

earlier, for the same experimental data. However, the difference in these two values can be 
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explained as follows. As all the annealing temperatures are considered together in the GA based 

fitting the parameters determined will have inherent self-consistency. GA method also removes 

the ambiguity faced by the linear model in identifying the linear region, where it ignores any 

further contribution to blueshift by SRO. 

The parameters, ΔE0 and time constant τ, obtained from the SRO simulation are listed in 

Table 5-2. The average ΔE0 caused by post growth annealing in our experimental temperature 

range is about 17 meV which is smaller than the calculated change in  Ee1-Hh1, 26 meV, for the 

Nitrogen nearest neighbor configuration changes from N-Ga3In1 (as in as-grown sample) to N-

Ga2In2 (see Figure 5-5). The smaller ΔE0 implies that annealing at 680-800 0C results in an N-

bonding with the coexistence of N-Ga3In1 and N-Ga2In2, shown as the open diamond in Figure 

5-5. This is in close agreement with the results reported by Kudraweic et al. (Kudrawiec 2004). 

Table 5-2: The best fitting values of ΔESRO and τ for different annealing temperatures 

Annealing 
Temperature (oC) 

ΔESRO (eV) 
ΔE0 τ (seconds) 

680 17.50±0.57 91.65±7.66 
700 20.10±0.88 59.62±5.74 
750 16.02±0.47 12.62±1.02 
800 13.36±0.57 3.80±0.23 

 
It is interesting to note that ΔE0 first increases with Tann and then decrease when Tann is 

further increased. At the highest Tann studied (800 0C) ΔESRO is the lowest. This is probably due 

to higher diffusion coefficient, which inhibits short range order as there is less probability of 

getting Indium rich environment, i.e., more Indium atoms have diffused out of the quantum well. 

This explanation is supported by other research reports that Indium is the diffusing species, while 

Nitrogen atoms do not diffuse and they remain within the quantum well (Liu 20062).  
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We also note that the time constant τ for SRO induced change in PL energy decreases 

with annealing temperature, varying from 91 sec for 680 0C to 3.8 sec for 800 0C. Figure 5-7 

shows the Arrhenius plot of 1/τ versus 1/kT.  From the Arrhenius plot, we can estimate that the 

activation energy for the SRO rearrangement is 2.37 eV. Comparing with the activation energy 

for interdiffusion, 3.196 eV, the smaller activation energy of SRO rearrangement supports the 

conclusion that the SRO mechanism is dominant at low annealing temperature and at the early 

stage of the annealing process. 

 
Figure 5-7: An Arrhenius plot of GaInNAs/GaAs SRO time constants (τ) for temperature range between 680 
– 800 0C. 

5.4 Conclusion 
In conclusion, we have studied the thermal annealing induced PL blueshift from an 8-nm 

Ga0.628In0.372N0.015As0.985 / GaAs QW. The PL peak energy as a function of annealing time 

duration in the temperature range of 680 – 800 0C have been analyzed using a linear model and a 

genetic algorithm based fitting. The comparison of the two models shows that linear model is a 

good first step in estimating the effect of SRO and interdiffusion but the GA based approach 

offers more insight into the two phenomena. Results based on our theoretical calculations show 
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that the PL blueshift due to interdiffusion is linear with annealing time and independent of 

Nitrogen-bonding configuration when the diffusion length is less than 2 nm. Our calculations 

suggest the N-Ga3In1 bonding configuration in the as-grown QW sample. Post-growth thermal 

annealing changes the configuration to a mixture of N-Ga3In1 and N-Ga2In2. The activation 

energy characterized for SRO rearrangement of the N-bonding configurations is 2.38 eV which 

is smaller than that for the diffusion process. This result implies that SRO should be the 

dominant mechanism that induces PL blueshift at lower annealing temperatures and at the 

beginning of the annealing process. 
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Chapter 6: Conclusion and Future Work 
 

 

6.1 Conclusions 
In conclusion, we have investigated the effect of Indium segregation and thermal 

annealing on optical properties of MBE grown GaInNAs/GaAs QWs for their emission at 1.3 

and 1.55 µm wavelength.  

After realizing that the inclusion of Nitrogen tends to enhance Indium segregation, we 

presented a (primitive) kinetic model to explain the phenomenon of Indium segregation in 

GaInNAs/GaAs QW. This kinetic model, based on Indium/Gallium exchange mechanism, has 

been modified to incorporate the effect of Nitrogen and explain the observed change in Indium 

segregation length with Nitrogen composition. However, for practical purposes we needed to 

know the effect of Indium segregation on the optical properties of the QW. For this purpose, we 

studied the effect of Indium segregation on bandstructure and optical transition energies for 1.3 

and 1.55 µm emission wavelengths. It was concluded that only the segregation efficiencies that 

are larger than 0.6 have significant effect on transition energy. To further consider a more 

realistic situation, we adopted experimentally measured data for Indium and Nitrogen 

compositions in the QW to calculate the optical gain spectra of the GaInNAs/GaAs QW. Using 

the 10-band k·p model and many body optical gain model, the effect of composition disorder 

(Indium segregation and non-uniform Nitrogen profile) on the subband dispersion and optical 

gain spectra of GaInNAs/GaAs QWs was analyzed.  
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After studying the as-grown GaInNAs/GaAs QW structure, we studied the 

photoluminescence blueshift resulting from rapid thermal annealing, which is performed to 

improve the optical and crystalline quality of GaInNAs material by overcoming the crystal 

defects arising from plasma damage or interstitial incorporation of Nitrogen. The undesirable 

blueshift resulting from annealing was studied and explained in terms of two responsible 

mechanisms: rearrangement of local N-bonding configurations and Gallium/Indium atom 

interdiffusion across the QW/barrier interface. Using an original approach based on a genetic 

algorithm, individual contributions from both the mechanisms were calculated. The activation 

energies for SRO and interdiffusion were estimated to be 2.3 eV and 3.25 eV respectively, 

indicating the important role played by SRO at low temperature and at the beginning of 

annealing process. 

6.2 Suggested future work 
In this work, we have presented a kinetic model to incorporate the effect of Nitrogen on 

Indium segregation in GaInNAs/GaAs QWs. However, this model is a preliminary work based 

on few data points. This model can be improved by collecting more experimental data at various 

growth temperatures, growth rate, III/V flux ratio and Nitrogen compositions. Kinetic modeling 

can also be performed for different interfaces such as GaInAs/GaAs, GaInNAs/GaAs, 

GaNAs/GaAs, GaInAs/GaNAs, and GaInNAs/GaNAs. We can also look into alternative theories 

such as rate equation model to further explore the mechanism of Indium segregation. 

We have performed an optical gain spectrum calculation using a 10-band k·p model and 

many body optical gain model. This comprehensive model can be used to calculate the 

characteristic of a complete laser structure made from dilute nitride materials. Also, we would 
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like to explore the photoluminescence blueshift in an alternative QW structure with a spacer 

layer, such as GaNAs strain compensation layer, to look into the origin of interdiffusion and 

comparison of underlying mechanism for N-bonding reconfiguration.  

We have not explored the critical thickness in this work, which would be an interesting 

topic. Although inclusion of Nitrogen reduces the strain, plasma damage and interstitial 

incorporation significantly damage the quality of as-grown GaInNAs layer. It would be 

interesting to look into the real impact of Nitrogen on critical thickness of dilute nitride layers. 
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Appendix A: Material Parameters 
 

 

 

 

 

 

 GaAs InAs GaN InN 

Lattice constant a0 (Å) 5.6533 6.0583 4.46 5.02 

Elastic constant C11 (Gpa) 119 83.29 296 184 

Elastic constant C12 (Gpa) 5.38 4.526 15.4 11.6 

Effective mass mc (M0) 0.0632 0.0213 0.13 0.14 

Effective mass mHH (M0) 0.5 0.517 0.806 0.8 

Effective mass mLH (M0) 0.088 0.024 0.205 0.19 

Bandgap Eg (eV) 1.424 0.354 3.1 0.756 

dEg/dP (×10-6 eV/bar) 11.3 10.2 32.0 22.0 

Shear deformation potential b (eV) -1.7 -1.8 -2.67 -2.67 

Deformation potential constant ac(eV) -7.17 -5.08 -6.17 -2.65 

Deformation potential constant av(eV) 1.16 1.00 0.69 0.7 

Spin orbit split-off potential ΔSO(eV) 0.34     0.41 0.017 0.005 
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