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The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.

– Mark Weiser
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Abstract

Both coverage and connectivity are the fundamental performance measures of the service

provided by wireless sensor networks. Coverage representshow well the sensing goal of

the network is accomplished, and connectivity represents how well the information can

be delivered among the sensor nodes or to the central controller. Managing network cov-

erage and connectivity is thus important in sensor networks. This thesis focuses on the

coverage and connectivity management problem in wireless sensor networks. The cov-

erage and connectivity management functions are classifiedinto microscale management

and macroscale management according to the geographical scale within which the sensor

nodes collaborate.

This thesis first investigates several important coverage and connectivity management

problems according to this categorization. In particular,for the microscale coverage and

connectivity control problem, a Configurable Coverage Protocol (CCP) is proposed to

control the “on” and “off” of the sensor nodes and meanwhile maintaining network cov-

erage and connectivity. CCP is an efficient and lightweight protocol, in which each node

makes decision based only on the collaboration between its local neighbors. Unlike ex-

isting protocols, CCP targets coverage of onlyα portion of the network, whereα can be

freely configured by the network administrators.

For the problem of microscale connectivity monitoring, a hashing based protocol

(H2CM) is proposed for efficient neighbor table collection. Collecting neighbor tables

from individual sensor nodes are generally hard due to the high communication cost. By

utilizing connectivity-based constraints and several hashing techniques, H2CM allows the

central controller to collect the neighbor tables from interested sensor nodes with very

high probability, but with much lower communication cost.

Lastly, for macroscale topological hole detection and monitoring, a simple but pow-

erful algorithm based on the connectivity changes of the sensor nodes is proposed. The

algorithm first distributively elects the set of indicator nodes, and only the indicator nodes

are required to send their information to the central controller. The location and size of the

hole can be fairly accurately estimated using the information from only a few indicator

nodes.

The thesis then integrates these individual management protocols and functions into

vi



a unified coverage and connectivity management system, which allows the network ad-

ministrators to monitor and control the network coverage and connectivity, from both

microscale and macroscale level. The dependencies of theseindividual components are

analyzed and system initialization and operation sequences are explained.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

The technologies of semiconductors, wireless communications and computing have en-

joyed rapid development in the twentieth century. Microprocessors, wireless radio transceivers

and batteries have been greatly improved in terms of performance, size and price. This

progress, together with the marked advances in the area of microsensors, has allowed the

integration of automatic sensing, embedded computing and wireless networking, at low

cost, to quickly become a reality.

Low-power and tiny sensor nodes, each empowered with the ability of sensing, com-

putation and wireless communication, enable a broad range of applications. They are

normally deployed on large scale over the geographic regionof interest, and cooperate

among themselves distributively for various sensing, tracking, and actuation tasks. The

potential applications of these networked sensors are enormous: e.g., habitat monitoring,

environmental monitoring, smart home and office, inventorytracking, precision agricul-

ture, transportation, military, health care, and many more.

Wireless sensor networks (WSNs), consisting of hundreds and thousands of such

smart sensor nodes, have received a lot of attention recently. During the past decade,

many testbeds and commercial products have been built - birdhabitat observations [66],

1



ocean water monitoring [2], avalanche rescue [70], and armyweapon tracking [6], just to

name a few. It is not hard to foresee that with further advances in technologies, networked

tiny sensors will soon be integrating into people’s everyday activities and transforming the

way people understand and manage the environment. In fact, wireless sensor networks

are considered to be one of the most important technologies that may revolutionize the

world [34, 33, 83, 22].

The advantages of wireless sensors over traditional wired ones lie in their ability to

perform wireless communication and distributed local processing. These sensor nodes

can be easily deployed in many hard-to-reach or hazard locations that are inaccessible to

wired sensors. The large-scale deployment of wireless sensor networks allows the sensor

nodes to be placed closer to the phenomena being monitored and thus resulting in larger

signal-to-noise ratio and higher possibility of line-of-sight sensing. On the other hand,

distributed local processing among low-cost and densely-deployed sensors is not only a

cheaper solution compared to expensive and sparsely-deployed wired sensors but also

provides more accuracy and robustness.

However, despite the many benefits of wireless sensor networks, most sensor network

applications encounter one or more of the following challenges.

• Sensor nodes are untethered and hence energy consumption isof critical impor-

tance. The limited bandwidth of wireless communications also creates additional

barriers.

• Sensor nodes are deployed in an ad hoc manner and most of the protocols and

algorithms used are distributed in nature.

• Sensor nodes often operate in a dynamic environment. They may fail at any time

and the wireless links are time-varying.

• Computation, storage and memory efficiencies need to be carefully considered in

many cases due to the size and cost requirements of sensor network applications.
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• Different sensor network applications impose different requirements and constraints

on the system design and it is not possible to have one unified structure that works

for all.

On one hand, wireless sensor networks have a bright future; on the other hand, there

are a large number of technical challenges awaiting to be tackled. This has spurred

tremendous research interest in sensor networks since the mid-1990s: ranging from phys-

ical layer to application layer, and from low level signal processing to high level security

issues. This thesis focuses on two of the most important and fundamental research areas

in wireless sensor networks, namely coverage and connectivity.

1.2 Coverage and Connectivity in WSNs

Coverage is a measure of the quality of service provided by a sensor network. Due to

the attenuation of energy propagation, each sensor node hasa sensing gradient, in which

the accuracy and probability of sensing and detection attenuate as the distance to the

node increases. The total coverage of the whole network can therefore be defined as the

union (including possible cooperative signal processing)of all nodes’ sensing gradients.

It represents how well each point in the sensing field is covered. A coverage hole refers

to a continuous area (or volume in 3-dimensional space) in the sensing field that is not

covered by any sensor node, i.e., the events that occurred within a coverage hole cannot

be sensed nor detected.

Figure 1.1(a) shows a coverage example where the sensing gradient of a sensor node

is modeled as a binary disk. Every point within the sensing radiusRs of a sensor node is

considered to be covered by the node. The union of all the disks forms the total coverage

of the network. The region of interest is enclosed by a rectangle in the Figure. The

shadowed region is not covered by any sensor node and thus considered to be a coverage

hole.

Similarly, connectivity represents how well the sensor nodes in the network are “con-

3
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(a) Coverage and coverage hole

Rc

A

B C
D

E

(b) Connectivity graph

Figure 1.1: Illustrations of coverage and connectivity.

nected” to each other. It is a fundamental property of a wireless sensor network, for many

upper-layer protocols and applications, such as distributed signal processing, data gath-

ering and remote control, require the network to be connected. Since the sensor nodes

communicate via wireless medium, a node can only directly talk to those that are in close

proximity to itself (within its communication range). If a sensor network is modeled as

a graph with sensor nodes as vertices and direct communication links between any two

nodes as edges, by a connected network we mean the graph is connected.

Figure 1.1(b) shows the connectivity graph of the same set ofnodes as in Figure

1.1(a). The communication model in this example is also a binary disk model where if

the distance between two nodes is greater than the communication rangeRc, they cannot

talk to each other directly. Every node in Figure 1.1(b) can communicate with every

other node, either directly or indirectly via some intermediate nodes. The network is thus

connected.

Although coverage and connectivity have many differences,they are not unrelated.

In fact, a covered network and a connected network are closely related due to their com-

mon requirement on the geographical placement of sensor nodes. A completely covered

network requires that each point in the sensing region to be covered by at least one sensor

node. This implies that the distance between a node and its closest neighbor cannot be

4
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(b) Coverage hole and topological hole

Figure 1.2: Relationship between coverage and connectivity.

larger than some threshold to avoid coverage holes. A similar implication can be drawn

from a connected network.

Coverage is generally a stronger constraint on sensor node placement because it re-

quireseverypoint in the region to be covered by at least one node. If a region is “well”

covered by a set of sensor nodes, these nodes are likely to be “well” connected if the

communication radius is large enough. It is proven [99, 107]that with the binary disk

sensing and communication models, ifRc≥ 2Rs, a completely covered network implies a

connected network. On the contrary, connectivity does not imply coverage regardless the

relationship betweenRc andRs. However, if the set of sensor nodes are “well” connected,

the region where these connected nodes are deployed is also likely to be “well” covered

by intuition.

The intuition behind this result can be explained using a simple example shown in

Figure 1.2(a). A point that is just outside the sensing rangeof nodeA has to be covered

by another node (nodeB in the example). This implies that the distance betweenA andB

must be less than 2Rs. The two nodes are then connected to each other ifRc ≥ 2Rs. On

the other hand, when nodeA and nodeB are connected, the region betweenA andB is

likely to be well covered if the sensing rangeRs is not too small.
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The relationship between coverage and connectivity can also be understood in terms

of coverage and topological holes. As defined previously, a coverage hole is a geograph-

ical region where events cannot be detected by any sensor node. On the other hand, a

topological hole or a routing hole is a kind of connectivity anomaly which causes the

routing path between two nodes to be unnecessarily long relative to their physical loca-

tions. Because both types of holes are created due to the lackof sensor nodes in the hole

region1, a coverage hole generally implies a topological hole in thesame region, and vice

versa (excluding boundary conditions). This is especiallytrue when the size of hole is

much larger than both the sensing and communication ranges.

An example is shown in Figure 1.2(b), where a topological hole is created in the

area of interest. The messages from nodeA have to be routed along the boundary of the

topological hole to reach nodeB. If the sensing rangeRs is small compared to the size

of the hole, the topological hole naturally implies a coverage hole in the same region.

Similarly, a coverage hole implies a topological hole too.

1.3 Coverage and Connectivity Management

Due to the large variety of application requirements and physical parameters of sensor

nodes, the problems involving coverage and connectivity are highly diverse. Taking cov-

erage as an example, according to the different applicationobjectives, coverage can be

classified into point coverage, barrier coverage, and area coverage [15, 45]. Each of

the classification can be further subclassified. Furthermore, each of the problem can be

tackled from different angles according to assumptions like whether a centralized or dis-

tributed algorithm is required, the sensing and communication model used, and the avail-

ability and accuracy of localization.

It is generally difficult, if not impossible, to construct a single framework that solves

all problems. This thesis focuses on the problem of area coverage and connectivity man-

1With the exception that the topological holes or routing holes can also be created due to obstacles.
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agement, which is defined as the activities, methods and procedures to monitor and control

the network sensing coverage (area coverage) and connectivity. It involves the functions

of coverage and connectivity planning, monitoring and maintenance according to user

needs.

Network management is by itself a broad topic. The network management functions

are traditionally categorized into the well-known FCAPS (fault, configuration, account-

ing, performance and security) in ISO Telecommunications Management Network model.

However, this categorization is defined for broad-sense network management and does not

directly apply when the focus is narrowed down to coverage and connectivity manage-

ment. In this work, the coverage and connectivity management functions are categorized

into microscalemanagement andmacroscalemanagement according to the geographical

scale upon which the collaboration between sensor nodes takes place.

Microscale management controls network coverage and connectivity by monitoring

and controlling each node’s local coverage and connectivity. It only requires collaboration

among the sensor nodes in close proximity (e.g., the 1-hop neighbors). Management tasks

like local coverage and connectivity monitoring [27, 29], coverage control [107, 99], and

topology control [88, 14] belong to this category. As opposed to microscale management,

management in macroscale level involves collaboration of sensor nodes that are far away

geographically. Management tasks like topological hole boundary detection and coverage

hole boundary detection [100, 21] fall under this category.

The categorization of microscale and macroscale management is justified by the fact

that coverage and connectivity problems can be investigated at both microscale level,

where the focus is on the coverage and connectivity of individual components, and macroscale

level, where the focus is on the coverage and connectivity over a large geographical scale.

For example, collecting each sensor node’s connectivity (neighbor table) information

at the central controller belongs to the problem of microscale connectivity monitoring.

While monitoring a large-scale topological hole belongs tothe problem of macroscale

connectivity monitoring.
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Figure 1.3: Coverage and connectivity management system.

The microscale management and macroscale management can bemore precisely de-

fined using the concept of OSI network model. Microscale coverage and connectivity

management resides in data link layer and provides coverageand connectivity support

for network layer protocols. On the other hand, macroscale coverage and connectivity

management resides in application layer and provides coverage and connectivity support

for other application layer protocols.

Figure 1.3 shows the general coverage and connectivity management architecture in

sensor networks. It categorizes the coverage and connectivity management functions into

four categories: microscale monitoring, microscale controlling, macroscale monitoring

and macroscale controlling. The thesis mainly works on the problems in the first three

categories, which are enclosed in bolded lines in the figure.Localization is an important

property for coverage and connectivity management, for most problems involving cov-

erage and connectivity require some form of localization support. This is also shown in

Figure 1.3.

1.4 Problem Formulation and Thesis Contribution

This thesis addresses the following questions related to the coverage and connectivity

monitoring and controlling at both microscale and macroscale levels.
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1. How to control the sensor nodes’ behavior such that the coverage and connectivity

requirements are satisfied? Sensor nodes are normally over deployed in the sensing

region to enhance system reliability. To save energy, only apartial collection of

nodes need to be active at any particular time while maintaining the coverage and

connectivity requirements. This problem belongs to the category of microscale

coverage (area coverage) and connectivity control.

2. How to collect each sensor node’s local connectivity information at the central con-

troller? Collecting each sensor node’s local connectivity(neighbor table) gener-

ally encounters very high communication cost. This is because each node’s neigh-

borhood information is normally very large and it has to be routed to the central

controller via multiple hops periodically (for continuousconnectivity monitoring).

Thus, microscale connectivity monitoring at low communication cost is not a trivial

problem and requires careful study.

3. How to detect and monitor the large-scale coverage or topological holes in sen-

sor network? Large-scale coverage and topological holes can be naturally derived

from microscale coverage and connectivity information collected at the central con-

troller. However, if only macroscale information is required, solving it at the mi-

croscale level is generally not efficient. More efficient algorithms on large-scale

hole detection and monitoring are needed. This problem belongs to the category of

macroscale coverage and connectivity monitoring.

Note that simply solving these problems is not difficult, thechallenges lie in the fact

that the proposed solutions have to be efficient and scalable. Efficiency in sensor networks

requires low communication overhead and low energy cost. This is an important measure

due to the fact that the sensor nodes are untethered and powered by batteries. Scalability

is also an important measure because of possibility of very large-scale deployments. In

addition, distributed solutions are preferred in most scenarios rather than centralized ones

to ensure resiliency.
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This thesis systematically investigates these coverage and connectivity management

problems. In particular, this thesis proposes:

1. A distributed node scheduling algorithm for microscale coverage and connectivity

control. The proposed protocol relies on the distance estimates of the neighboring

sensor nodes and does not require network localization. Unlike most existing re-

search that works on complete coverage, the protocol works on partial coverage and

the coverage objective can be configured by the network administrators.

2. An efficient way for partial or complete microscale connectivity collection. The

problem is tackled by three components (vector distance, Bloom filters and signa-

ture hashing). By smart combination of these components, the network connectivity

can be collected at different level of details with low communication cost. The pro-

posed protocol is supported by the theoretical analysis on Bloom filters.

3. An efficient algorithm for large-scale hole detection, monitoring and estimation by

observing the network connectivity changes. Based on the theoretical analysis on

the geometric properties of holes, the holes can be detectedand estimated using

only a few indicator nodes, which requires very low communication cost.

All these proposed protocols are simple, lightweight and easy to implement, and they

achieve the coverage and connectivity management objectives with much lower commu-

nication cost compared to existing protocols.

The thesis then integrates these proposed solutions into a unified coverage and con-

nectivity management system, which allows the network administrators to monitor and

control the network coverage and connectivity, at both microscale and macroscale levels

2. The dependencies of these individual components are analyzed and system initializa-

tion and operation sequences are explained.

2This thesis only provides the conceptual design of the management architecture. The implementation
of the management system is left for future work.
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1.5 Thesis Organization

Chapter 2 briefly introduces various localization techniques with the main focus on two

localization techniques: connectivity-based localization and sequentially distance-based

localization, for the proposed unified coverage and connectivity management framework

relies on these two techniques. The related work in coverageand connectivity monitoring

and controlling, both in microscale and macroscale, is alsogiven.

Chapter 3 presents the design of Configurable Coverage Protocol (CCP) – a node

scheduling protocol for microscale coverage control. The goal of CCP is to schedule the

on and off of the sensor nodes for energy saving while maintaining the network coverage

and connectivity. CCP allows partial network coverage (with the configurable coverage

parameterα) thus using a smaller number of active nodes compare to protocols that pro-

vide full coverage.

Chapter 4 presents H2CM – a microscale connectivity monitoring protocol. H2CM

is an efficient way to encode the neighborhood information ofeach sensor nodes, such

that the communication cost of microscale connectivity collection can be much reduced.

H2CM utilizes several methods under different situations forthe optimal information col-

lection.

Chapter 5 presents an efficient large-scale topological hole detection and monitoring

protocol. The protocol relies on the information of maximumconnectivity change in the

network due to the formation of the hole to detect the hole andestimate its size. Note that

although the protocol is targeted at topological holes, theresults obtained can be regarded

as coverage holes too if the hole sizes detected are large.

Chapter 6 presents a unified coverage and connectivity management framework, by

integrating the previously proposed solutions. Conclusions and possible future work are

shown in Chapter 7.
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Chapter 2

Related Work

As mentioned in previous chapter, localization is an important property for coverage and

connectivity management. In this chapter, various localization techniques will be briefly

introduced first, with the main focus on two localization techniques: connectivity-based

localization and sequentially distance-based localization. The unified coverage and con-

nectivity management framework proposed in this thesis relies on these two localization

techniques. The related work in coverage and connectivity monitoring and controlling,

both at microscale and macroscale levels, will then be given.

2.1 Localization Techniques

Localization is the process of discovering the two-dimensional or three-dimensional po-

sitions of sensor nodes. It is an important property for coverage and connectivity man-

agement. Most problems involving coverage and connectivity, from microscale coverage

control, to macroscale hole monitoring (e.g., knowing the hole location and size), re-

quire some form of localization. This section introduces a general background on the

existing localization approaches, with the focus on two types of localization techniques:

connectivity-based and sequential distance-based localization.
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2.1.1 A Brief Summary on Localization Techniques

Various localization schemes can be classified into two categories in literature: range-

based approaches and range-free approaches. Range-based approaches assume that the

range information among the sensor nodes (e.g., distance and relative directions) is avail-

able, while range-free approaches do not require any range information.

Several hardware technologies provide the capability to measure the distance and

relative directions between two sensor nodes. These technologies include Time of Ar-

rival (TOA), Time Difference of Arrival (TDOA), Received Signal Strength (RSS) and

Angle of Arrival (AOA). All these techniques estimate the distance or angle information

among the sensor nodes with some hardware support. Localization algorithms based on

TOA or TDOA, such as Global Positioning System [49] and the cricket system [80], nor-

mally have high accuracy. However, they all require expensive and energy-consuming

devices and their accuracy also rely on the line-of-sight signal propagation. On the other

hand, RSS and AOA [73] based techniques have relatively low accuracy, because they

normally suffer from signal fading and Doppler effect. Recently, researchers have found

that the techniques such as TOA, TDOA and AOA can achieve better accuracy in an

ultra-wideband system over a normal wireless system [44].

Range-based localization methods assume that the sensor nodes are equipped with

one or several of the ranging techniques introduced above. They can be mainly classi-

fied into two categories: the global localization algorithms and the sequential localization

algorithms. The global localization algorithms localize all the sensor nodes simultane-

ously, either by relating the ranging information to some anchor nodes1 [49, 80], or by

some centralized computation using the collected ranging information among the sensor

nodes [8, 55, 89, 64]. On the other hand, the sequential localization algorithms localizes

the sensor nodes sequentially (and mostly distributively)using local ranging information

[32, 7, 72, 73]

Rage-free localization methods are generally more cost-effective and lightweight than

1Anchor nodes are a small set of selected nodes whose locations are known.
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range-based localization, due to the fact that they do not require any special hardware de-

vices. The Centroid method [11] requires that the anchors have very large transmission

ranges such that each node can hear from multiple anchors. The sensor nodes estimate

their locations by calculating the center of all the anchorsit can hear. APIT [46] lets each

node estimate whether it resides inside or outside the triangles bounded by the anchors it

can hear, and locations can be estimated by overlapping the triangle regions that a sensor

node could possibly reside in. Embedding approaches [30, 52, 90] rely on various opti-

mization techniques to centrally project the nodes to theirgeographical locations using

only connectivity information. Connectivity-based methods [74, 62] utilize the hop count

information to several anchors for sensor node localization.

Each localization algorithm has its own advantages and defects. Throughout the rest

of this thesis, we only utilize the connectivity-based and distance-based localization meth-

ods.

2.1.2 Connectivity-based Localization

Connectivity-based localization algorithms only utilizeconnectivity information (e.g. hop

count). They are lightweight and do not require extra hardware devices. Although they

may have large localization errors, these errors do not cause significant impact on some

applications such as connectivity monitoring (Chapter 4) and macroscale hole detection

and monitoring (Chapter 5).

DV-hop [74] is probably the simplest connectivity-based localization method. The

system contains someanchor nodes whose locations are known. Each node measures

its hop counts to the anchors. DV-hop relies on the heuristicof proportionality between

the distance and hop count inisotropicnetworks. The system firstly estimates the average

distance-per-hop from anchor locations and the hop counts among the anchors. Each node

then estimates its own distance to the anchors using the hop count information. The final

location of each sensor node can be decided by trilateration[54]. The localization error

of DV-hop can be in the scale of the sensor communication range Rc. However, such an
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error is tolerable for applications such as monitoring a very large hole whose size is much

larger thanRc.

Rendered Path (REP) [62] is another connectivity-based localization algorithm. Un-

like DV-hop, it mainly targets on the scenario ofanisotropicnetworks where there is

possibility of holes. In the presence of holes, the Euclidean distance between two sensor

nodes may not be estimated using hop count because the shortest path between them can

be curved by the intermediate holes and the proportionalityassumption in DV-hop does

not hold. REP solves this problem by constructing some virtual holes and rendering an-

other path which routes around these virtual holes. By comparing the shortest path and

rendered path between two nodes, the distance can be accurately estimated. The localiza-

tion error of REP is only slightly higher than DV-hop algorithm.

2.1.3 Sequential Distance-based Localization

Connectivity-based approaches cannot support some applications which require a small

localization error. For example, for the application of microscale coverage control (Chap-

ter 3), the localization error shall be at least smaller thanthe sensing rangeRs. Connectivity-

based localization schemes have localization errors up to the range ofRc, which is nor-

mally larger thanRs. Under these circumstances, more accurate distance-basedlocaliza-

tion can be utilized.

While various distance estimation methods have been introduced in the previous sec-

tion, this section focuses on sequential distance-based localization – how to distributively

construct the location information of each sensor nodes from the (estimated) distance

information among the neighbors.

In [72], Moore et al. propose a complete solution for such sequential localization

when the distance estimation among the direct neighbors canhave errors. The work is

based on the notion ofrobust quadrilateral. Quadrilaterals are the smallest unit that can

be unambiguously localized in isolation. Figure 2.1(a) shows a fully connected quadri-

lateral in which all the 6 pairwise distances between the four nodes are known. Such a
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Figure 2.2: Robust quadrilateral.

quadrilateral isglobally rigid [32], i.e., the relative positions of the four nodes are unique

up to a global rotation, translation, and reflection. Two globally rigid quadrilaterals shar-

ing three common vertices which forms a five-vertex graph is also globally rigid. This is

shown in Figure 2.1(b), where two quadsABCDandACEDshare the same verticesA, C

andD.

However, the global rigidity does not guarantee a unique realization of graph when

there are errors in distance estimation. It is proven in [72]that the graph realization is free

of flip errors when

dsinθ > dmin, (2.1)

whered is the minimum distance out of the six known distances in a globally rigid quadri-

lateral,θ is the minimum angle explained below, anddmin is the threshold defined from
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distance estimation errors. As shown in Figure 2.1.3,θ is the minimum internal angle

for all the four triangles△ABC,△ABD,△ACDand△BCD, andd is the minimum edge.

Therefore, when a globally rigid quadrilateral also satisfies Equation 2.1, the probability

of graph realization with no flip error is bounded. Such a quadrilateral is calledrobust

quadrilateral. Based on the concept of robust quadrilateral, the neighboring nodes can

sequentially estimate their relative locations using trilateration.

2.2 Related Work in Coverage and Connectivity

Both network coverage and connectivity are the fundamentalperformance measures of

the service provided by wireless sensor networks. Coveragerepresents how well the

sensing goal of the network is accomplished, and connectivity represents how well the

information can be delivered among the sensor nodes or to thecentral controller. In this

section, the state of the art in research related to coverageand connectivity is introduced.

As illustrated in Chapter 1, the management of coverage and connectivity is mainly about

monitoring and controlling, in both microscale level and macroscale level. The related

work presented in this section is also categorized in this way.

2.2.1 Coverage and Connectivity Preserving Node Scheduling

The aim of node scheduling is to select a minimum number of on-duty nodes that are

active at any time, so that requirements on coverage, or connectivity, or both are still ful-

filled. By doing so, the network energy cost can be minimized,and the network lifetime

can be prolonged. These node scheduling problems are also sometimes regarded as den-

sity control problems. They control the “on” and ”off” of each sensor node (i.e., control

the connectivity or topology of the network) to save energy,while maintaining the net-

work microscale coverage or connectivity (or both). They are therefore categorized into

the microscale coverage and connectivity control problemsin this thesis.

GAF [101] divides a region into rectangular grids using location information, and
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ensures that the maximum distance between any pair of nodes in adjacent grids is within

the transmission range of each other. Only the leader in eachgrid stays awake. The

leader election scheme in each grid takes the battery usage into account. The leaders

form a dynamic routing backbone for packet forwarding. SPAN[19] adaptively decides

whether a node should be working or sleeping based on connectivity among its neighbors.

Only the selected coordinators are active to conserve energy. Some MAC layer protocols

[95, 79, 104, 105] for wireless sensor networks also aim to maintain node sleep schedule.

The nodes are dynamically woken up by the MAC protocols to create energy efficient

network topologies.

In [94], Tian and Georganas proposed an algorithm that ensures the complete cover-

age using the concept ofsponsored area. Whenever a sensor node receives a packet from

one of its working neighbors, it calculates its sponsored area (defined as the maximal sec-

tor of the node’s sensing circle covered by its neighbor’s sensing circle). If the union of

all the sponsored areas of a sensor node cover the sensing circle of the node, the node

turns itself off. The sponsored area is only defined when the nodes are within sensing

range of each other. The neighbors lying outside the sensingrange are not considered al-

though they can contribute to the node coverage. An improvedversion of [94] is proposed

in [57]. The authors introduced the concept of effective neighbor nodes for calculating

the node coverage accurately. Results in [57] show that the proposed protocol is able to

outperform the protocol in [94] by about 30% in terms of reducing the actual number of

nodes required for maintaining the original coverage.

Zhang and Hou [107] proposed the Optimal Geographic DensityControl (OGDC)

protocol based on certain optimality conditions of coverage and connectivity for large-

scale sensor networks. The authors first proved that when communication range is at

least two times the sensing range (Rc ≥ 2Rs), a completely covered network guarantees

connectivity. Thus, one can work on the optimal coverage problems without considering

network connectivity. In OGDC, the sensor nodes decide whether they should turn on

or off themselves distributively by observing whether theyare at or close to the optimal
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Figure 2.3: Illustrations of the optimal node positions forminimum overlap in coverage.

positions for coverage. It defines the notion of thecrossing pointsas the intersection

points of the sensing circles of two nodes. To cover one crossing point of two nodes

with minimum overlap, only one node should be used and the centers of the three nodes

should form an equilateral triangle with side-length
√

3Rs, as illustrated in Figure 2.3(a).

Furthermore, to cover one crossing point of two nodes whose positions are fixed, the third

node has to be on the perpendicular bisector of the segment connecting the other two

nodes, which is shown in Figure 2.3(b).

In [99], the authors introduced the close relationship between coverage and connec-

tivity with the following theorems,

Theorem 2.1 For a set of sensors that at least 1-cover a convex region A, the communi-

cation graph is connected if Rc≥ 2Rs.

Theorem 2.2 A set of nodes that k-cover a convex region A forms a k-connected commu-

nication graph if Rc≥ 2Rs.

Theorem 2.3 For a set of sensors that k-cover a convex region A, the interior connectivity

is 2k if Rc≥ 2Rs.
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They then proposed the Coverage and Configuration Protocol (CCP) that configures the

network for different degrees of coverage. For the case ofRc < 2Rs, the combination of

CCP and SPAN [19] can provide both the network coverage and connectivity.

[51] describes a method to determine if an area isk-covered by checking the the

perimeter of a sensing circle. An area isk-covered if and only if each sensor node in the

network isk-perimeter-covered. The paper provides both algorithm forthe binary disk

sensing model (k-UC) and algorithm for non-disk sensing model (k-NC). The proposed

method is extended to an algorithm that finds the set of nodes who providek-coverage.

k-UC andk-NC are centralized protocols.

Yan et al. [103] proposed a distributed density control algorithm capable of providing

differentiated coverage based on different requirements in different areas of the network.

Each node decides its own on-duty time by observing its neighbors’ advertisement.

In [43], the authors analyzed the number of random sensing neighbors (nodes within

sensing range) required for some confidence of redundancy ofthe current node, as well

as the probability of complete redundancy based on the number of random sensing neigh-

bors. This approach is based purely on random point processes (Poisson Point Process),

it is also based on sponsored area (as in [94]) which may produce inefficient results.

In [53], the authors proposed a way to totally eliminate the communication cost of

coverage calculation. This is a grid-based approach whereby only one node will be awake

in each grid, and by doing so, nodes do not need to know the neighboring node informa-

tion.

2.2.2 Other Coverage and Topology Control Protocols

Existing literature in node scheduling (or density control) algorithms for coverage and

connectivity maintenance are summarized in the previous section. However, not all cov-

erage and connectivity control protocols are based on density control. In this section,

several other coverage and topology control problems are introduced.

In contrast to the static sensor networks, nodes in mobile sensor networks are capable
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of moving in the sensing filed. Such networks are able to self-deploy themselves starting

from an initial location configuration. The nodes would movearound the area of interest

such that coverage in the sensing field is maximized while thenetwork connectivity is

also maintained (and the moving distance shall also be minimized).

Wang et al. [98] proposed three distributed protocols for mobile sensors using Voronoi

diagram: vector-based algorithm (VEC), Voronoi-based algorithm (VOR) and min-max

algorithm (Minmax). VEC pushes the sensors from densely deployed areas to the sparsely

deployed areas. Two sensors exert a repulsive force when they are close. VOR pulls the

sensor nodes towards their local maximum coverage point. Each sensor node locally

moves towards the farthest Voronoi vertex. The Minmax algorithm is similar to VOR. It

moves each sensor node inside its Voronoi polygon to a point such that the distance from

its farthest Voronoi vertex is minimized.

Potential field algorithms [50, 78] move the mobile nodes using the concept of po-

tential field. Each node is subjected to two kinds of forces:Fcover, which causes the nodes

to rebel from each other to increase the coverage andFdegree, which causes the nodes to

attract each other to remain the necessary connectivity degree. Virtual force algorithms

[109, 110] operate in a similar way. Each node is subjected tothree kinds of forces: obsta-

cles exert repulsive forces, areas of preferential coverage exert attractive forces, and other

sensor nodes exert attractive or repulsive forces depending on the distance and orienta-

tion. The virtual force algorithm is a centralized one, where the computation is performed

in a cluster head. In [48], the authors proposed the concept of electric force that depends

on the internode distance and local current densityµcurr.

Bidding-based algorithm [97] is mainly targeted on the scenario where only partial

of the sensor nodes are mobile. Each static node calculates its bid based on the distance

to the farthest Voronoi vertex. It then finds the closest mobile node whose base price is

lower than this bid. The mobile node considers all bids and service the highest bid among

its neighboring static nodes.

The power-based topology control algorithms are to dynamically change the node
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transmission power in order to maintain some property of thecommunication graph

(mainly connectivity) and meanwhile the energy consumption for packet delivery is to

be minimized. There are a lot of work in this area and only a feware listed here.

[88, 14, 82, 65] try to optimize the transmission power levels so that the resulting topology

is well connected. Under the total power minimization objective, topology control prob-

lems for many graph properties (e.g., connectedness, bounded diameter) are known to

be NP-hard and approximation algorithms for many such problems have been developed

[56, 14, 59].

There are a different set of coverage problems that work on the path exposure in the

network. [68] defines a sensor coverage metric called surveillance that can be used as a

measurement of quality of service provided by a particular sensor network. Centralized

optimum algorithms that take polynomial time are proposed to evaluate paths that are

best and least monitored in the sensor network. [67] furtherinvestigates the problem of

how well a target can be monitored over a time period while it moves along an arbitrary

path with an arbitrary velocity in a sensor network. Localized exposure-based coverage

and location discovery algorithms are proposed in [69]. [96] investigates both minimal

and maximal exposure path problems. It proves that maximal exposure path is NP-hard

because it is equivalent to finding the longest path in an undirected weighted graph. It pro-

poses several heuristics on this problem: random path heuristic, shortest-path heuristic,

best-point heuristic and adjusted best-point heuristic.

2.2.3 Connectivity Monitoring

Connectivity monitoring is another important management tasks in sensor networks. The

network connectivity information provides important support for various management

functions such as debugging and root-cause analysis. In [81], Ramanathan et al. pro-

posed a sensor network debugging system called Sympathy which requires connectivity

information from the sensor nodes for root-cause cause analysis. The authors simply

assume that each sensor node periodically sends its neighbor table to central controller.
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Since the testbed on which they experiment is small, this is not a serious issue. In [85],

the authors proposed a protocol that each node locally monitors its 1-hop neighbors and

the neighborhood information aggregates along the path to the central controller. This

approach utilizes the bitmap structure and is only applicable to a relatively small network.

In [28], the authors proposed TopDisc algorithm for sensor networks with its applica-

tions to network management. The idea of the algorithm is to find a set of distinguished

nodes (minimum dominating set), using their neighborhood information to construct the

approximate topology of the network. In graph theory, adominating setfor a graph

G = (V,E) is a subsetD of V such that every vertex not inD is joined to at least one

member ofD by some edge. The problem of finding theminimum dominating set(MDS)

is NP-complete. TopDisc is a heuristic algorithm for distributive MDS election based

on the idea of node coloring. Only those nodes in MDS will reply back to the topology

discovery probes, thereby reducing the communication overhead of the process.

STREAM [27, 29] is a multi-resolution topology retrieval protocol which makes a

tradeoff between topology details and resources expended.The algorithm makes use of

Minimal Virtual Dominating Set (MVDS) to define the distinguished nodes that will re-

sponse the topology probes. The construction of MVDS relieson the concept of virtual ra-

dius, who defines a set of virtual neighbors that are within the virtual radius of each node.

By adjusting the virtual radius, the MVDS of different resolution can be constructed, and

the multi-resolution topology retrieval can be achieved.

In [18], the authors propose a mesh based topology retrievalalgorithm with slow

moving nodes in wireless ad hoc networks. Each node has multiple parents to which the

local communicable neighbor information will be sent, and thus the algorithm is more

error resilient.

The topology discovery algorithms mentioned above try to select a small percentage

of the nodes who will respond to the topology discovery probes, and each of these nodes

may only send partial neighborhood information to the central controller. Therefore, the

total communication cost can be tradeoff for the accuracy ofnetwork topology informa-
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tion. In [108], the problem of complete topology discovery is discussed, the work is based

on the assumption that location information is available. The neighborhood pattern is also

assumed to have strong correlation with the distance between a pair of the sensor nodes.

By making use of these information, the cost of topology retrieval can be much reduced.

2.2.4 Macroscale Hole Recognition

Existing research in hole detection can be classified into four categories: sampling-based

methods, statistical methods, geometric methods and topological methods.

Examples of sampling-based methods can be found in [42] and [91]. [42] presents

an algorithm that continuously monitors a subset of the sensor nodes (samples) to detect

large-scale event. When an event occurs, the sample nodes who detect the event will

report to the central controller. The task is to estimate theevent area by knowing which

sample nodes detect the event. The detection algorithm requires the knowledge of the

event geometry (e.g. circle or rectangle) for estimation ofthe event size and shape. This

work also assumes that the location information of all the sensor nodes is known to the

central controller and the set of samples has to be pre-computed in a centralized way to

ensure best performance.

[91] presents a sampling method to detect and estimate straight line cuts in the net-

work using sample nodes. By knowing which sample nodes have failed to send informa-

tion to the central controller, the line that cuts the network can be estimated using some

geometric properties. The location information is also assumed in this algorithm.

In [100, 39, 40], the problems of boundary detection using topological methods are

investigated. In [100], Yue Wang et al. proposed an algorithm to detect the inner and outer

boundary of holes by topological method. The boundary detection algorithm is motivated

by an observation that holes in a sensor field create irregularities in hop count distances.

Simply, the shortest path tree rooted at one node naturally “split” around the hole. The

work identifies the “cut”: the set of nodes where shortest paths of distinct homotopy types

terminate and touch each other, trapping the holes between them. The nodes in a cut can
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be identified based on the fact that their common ancestor in the shortest path tree is

fairly far away, at the other side of the hole. by removing different branches of the cut,

multiple holes are virtually merged into one hole. The algorithm then refines the “coarse”

boundary to recognize both inner and outer boundaries of themultiple holes.

In [39, 40], Stefan Funke et al. proposed to detect a boundaryusing the concept of

isolevel. It observes that the end nodes of each isolevel in terms of hop counts to a root

node are either on the inner boundary of the hole, or on the outer boundary. The protocol

firstly builds the isolevel by grouping neighbors with same hop counts, and then dis-

tributively builds the shortest-path tree to a randomly selected node within each isolevel.

The end points of the shortest-path trees are on the boundary. Although these algorithms

[100, 40] are able to recognize the sensor nodes on boundary and they do not require any

impractical information (e.g., location information or binary disk assumption of commu-

nication range), they generally involve a number of messageflooding, thus generating a

large amount of message exchanges. Moreover, these protocols have to be run periodi-

cally for dynamic hole detection.

Geometric methods are presented in [36, 58, 24]. In [36], Fang et al. identified the

properties ofweak stuck nodeandstrong stuck node. All the stuck nodes must be on the

boundary of the hole. These stuck nodes can be identified locally using only neighbor-

hood information. This work assumes that accurate locationinformation is known, and

the communication model of the sensor nodes is the binary disk model. [58] assumes that

connectivity information is available and the communication model is the quasi-binary

disk model. By recognizing the structures of a “flower”, a distributed algorithm on bound-

ary node detection is proposed. [24] presents a hole-findingalgorithm based on the fact

that the shortest-path distance (in hop count) is larger than the distance between two nodes

when the direct path between the two nodes is “cut” by the hole. By observing how much

“longer” the shortest-path is compared to the distance, thehole information can be esti-

mated. In these works, the boundary of holes can be detected distributively and locally.

Although these algorithms can efficiently detect nodes on the boundary, accurate loca-
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tion information is required and the communication model isnormally considered to be

binary-disk or quasi-binary-disk model. These requirements are practical.

Notice that for the boundary recognition algorithms [100, 40, 36, 58], even after the

nodes on the boundary are locally identified, from management point of view, the central

controller or network administrator is still unable to obtain “global” information of the

hole (e.g., size or shape) until all or a subset of these nodeson boundary send information

to the sink.

All the approaches described so far are proactive. Therefore, they may be executed

even if no hole has been formed. Statistical based hole boundary detection methods [24,

38, 37] are based on the changes in node density or number of neighbors and can be

considered as reactive. However, these protocols need to make assumptions on the node

density and node placement distribution. In addition, all neighbors need to be maintained

in the nodes’ neighbor table. This is usually not the case, asthe sensor nodes often only

keep track of a small set of “good” neighbors in order to reduce communication and

energy cost. All nodes on the boundary will also report changes detected, generating

unnecessary overhead.

Finally, work in event boundary detection can also be found in [21, 75, 102, 92, 63].

These works try to detect and construct the boundary of sensing event (not the boundary

of topological hole). Detecting event boundary is generally simpler than hole boundary

because the sensor nodes on the edge of the event boundary canknow that they are on the

boundary based on their sensor readings. In [41, 47, 12, 93],efficient compression and

representation of the event boundary are also studied.
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Chapter 3

Coverage-Preserving Node Scheduling

3.1 Introduction

Low-cost sensor devices are failure-prone. In typical sensor networks, these devices are

deployed in higher than necessary densities to meet variousdesign specifications. In order

to conserve energy and prolong network lifetime, at any timeinstant, only a portion of

these sensors are required to be active while others operatein “sleep” or inactive mode.

However, if too many nodes are turned off, coverage holes canbe formed and the network

can be disconnected. In this chapter, the problem of node scheduling for energy saving

and meanwhile the network coverage is still preserved is investigated. A Configurable

Coverage Protocol (CCP) is proposed.

CCP makes uses of the distance between two nodes rather than their actual locations.

Distance information among nodes is easier to obtain than accurate global location infor-

mation. In addition, CCP allows the trade-off between coverage and node usage (i.e., the

number of active nodes). It can be configured to cover at leastα portion of the area with

high probability. For complete coverage (α = 1), CCP is comparable to OGDC [107] in

terms of coverage and number of active nodes required. Simulation shows that for 90%

coverage, 22% node savings can be achieved. E.g., for the node density of 10, about

400 active nodes can support 90% coverage while about 530 active nodes are required to
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support full coverage.

Setting the value ofα allows the network administrator to flexibly control the number

of active nodes in the network and the coverage level. For example, for a security mon-

itoring scenario, the value ofα can be set to 100% during night time and set to 80% or

even smaller during day time.

The main aim of CCP is to schedule the “on” and “off” of the sensor nodes and

preserve the microscale network coverage. The overall network coverage requirement

can also be achieved if local coverage is preserved. CCP alsoimplicitly maintains the

network connectivity. Therefore, the work presented in this chapter serves the purpose

of microscale coverage and (implicit) connectivity control. At last, one shall notice that

the vacancy estimation scheme proposed in CCP also providesa way to compute the mi-

croscale vacancy of the given network, and thus can also serve as a management function

for microscale coverage monitoring.

3.2 System Model

The sensor nodes are assumed to be deployed in high density over the whole area of

interest, such that the network is completely connected andthe area is fully covered. The

sensing model is the binary disk model, i.e., each node has a sensing radiusRs and all

points located withinRs of a sensor node are considered to be covered by the node.

Each node maintains the distance information to its direct neighbors. It can be built

on top of the distance estimation scheme proposed in Section3.7, nevertheless, it will

also work with any other distance estimation schemes or absolute co-ordinate localization

schemes as long as the error is constrained to be within a small potion of the sensing

radiusRs. We do not assume any communication pattern in the chapter. However, note

that the distance estimation methods in Section 3.7 assumesmulti-energy-level binary

disk communication model.
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Figure 3.1: Average vacancy in percentage v.s. maximum localization error, withRs

normalized to 1

3.3 Effects of Localization Errors on Coverage

In most WSN coverage protocols, knowing the exact location of each sensor node is es-

sential to determine how well the whole network is covered. However, accurate and low

cost localization is still a big research challenge as discussed in Section 2.1. In fact, the

accuracy of the localization scheme used is often determined by application requirements.

Accurate location information normally requires extra computation, storage, communica-

tion and even hardware cost. In this section, we study the impact of localization errors on

optimal coverage protocols, taking OGDC [107] as an example.

The model of localization error may vary depending on different localization algo-

rithms and sensor operating environments. To keep the studysimple, we define a simple

circular uncertainty model: the location obtained by a localization algorithm is uniformly

distributed in a circular region centered around the actuallocation of the node. The radius

of the circular region isRmax, which is also the maximum possible localization error.

Most coverage algorithms try to build a coverage set distributively such that minimum

number of sensors are used to cover the entire region of interest. In this section, OGDC

protocol is used to study the effect of location errors. Connectivity is not considered for

simplicity.
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Simulation results of coverage vacancy with respect to maximum localization error

Rmax for OGDC is shown in Figure 3.1. The simulated area is 30×30 unit length andRs is

normalized to 1. It can be seen that mean vacancy increases with localization error. When

the maximum localization errorRmax = Rs, the vacancy is around 10% of total region to

be monitored. When the maximum localization error reaches 2Rs, the vacancy increases

to around 15%. As the localization error increases further,the number of active nodes

selected by the algorithm approaches that of a random selection.

Another interesting observation is that when there are localization errors, larger node

density produces larger vacancy. This is due to the propertyof OGDC that uses the

minimum number of sensors to cover the region. With the assumption of no location

error, a larger node density means that nodes closer to optimal locations can be found. As

a result, the algorithm will generate a sparser active node topology, and is therefore less

tolerant to localization errors.

3.4 Overview of Configurable Coverage Protocol (CCP)

In this section, we present the configurable coverage protocol (CCP), which only makes

use of the distance information among the neighboring nodes. CCP allows the users to

specify the coverage objectiveα, in which at leastα portion of the network is covered.

In order to ensure that the coverage objective will be met, a way to compute or estimate

the vacancy of the network in a distributed manner (with onlydistance information) is

needed.

The approach used in CCP is shown in Figure 3.2. Given a set of active nodes, the

area is divided into non-overlapping triangles (without considering boundary effects), and

the vertices of these triangles are the active nodes. The vacancy is estimated within each

of the triangle. For a large WSN, by ensuring that coverage objective is met locally (in

each triangle), the global coverage which is computed as 1− ∑Vj

∑Tj
will be satisfied too,

whereVj is the vacancy in trianglej andTj is the area of the triangle.
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Rs

Figure 3.2: Illustration of coverage and vacancy estimation.

The basic idea of CCP is to sequentially select an additionalnode to be active such

that the ratio of the size of the vacancy (Vj ) inside the newly formed triangle to the area

of the triangle (Tj ) should be less than or equal to 1−α. In CCP, each node distributively

elects itself based on the existing edges/triangles that have already been formed and the

vacancy values of possible new triangles if it is active. Each node will start a timer based

on the vacancy value of the new triangle formed by itself and existing edges, and once

a node decides to be active, it will broadcast power on information first and other nodes

will implicitly cancel their timers.

Note that in order to ensure the correctness of CCP, it is necessary that active nodes

are added one at a time and this is built into the protocol design. By adding only one

active node at a time, a unique sequence of active nodes is obtained. Such a sequence

will generate a unique set of triangles formed by adding a newactive node to two existing

active nodes. This set of unique triangles covers the entirearea of interest (excluding

boundary effects) and the triangles do not overlap, ensuring that there is no double count-

ing of vacant and covered area. The time complexity of the protocol will be linear to the

number of nodes in the network. Because sensor nodes transmit packets in milliseconds,

for a tens of thousands active node network, the total time ofthe whole process can be as
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short as tens of seconds. For an even larger network, the process can start from multiple

regions so that triangles are built up at different regions simultaneously.

3.4.1 Vacancy Inside Triangle

While the vacancy may be easily identified graphically or visually, computing the exact

values ofVj using only distance information among nodes is more complicated. Before

we formally describe CCP, it is essential to have a look at howthe vacancies inside the

triangles can be calculated.

Given the distances between each pair of the sensor nodes ared1, d2 andd3, the area

of the triangle is,

T(d1,d2,d3) =
√

s(s−d1)(s−d2)(s−d3), (3.1)

wheres= 1
2(d1 + d2 + d3). The common coverage between any pair of the nodes with

distanced, whered < 2Rs, is given by

f (d) = 2R2
s arccos(

d
2Rs

)− d
2

√

4R2
s−d2. (3.2)

The vacancyV of the several cases shown in Figure 3.3 can be calculated easily. The

circle in the figures represent the sensing radius. The percentage of vacancy inside the

triangle can then be evaluated byV/T.

However, for some other cases as will be listed in the next subsection, the vacancy is

not in a simple form as shown in Figure 3.3. We call these exceptional cases. CCP tries

to avoid such cases during selection of active nodes.

3.4.2 Exceptional Cases of Vacancy Calculation

Note that for the cases shown in Figure 3.3, the sensing nodesare in “good” positions

where the angles of the triangle are “balanced”. These casescan be easily identified using

the distance information and the vacancy inside the triangle calculated in a very simple
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Figure 3.3: Triangle vacancy calculation. (a)V = 0 (b)V = T− 1
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2πR2
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2πR2

s

and standard way. Figure 3.4 shows the exceptional cases where the simple formula does

not apply.

For exceptional cases (a), (b) and (c) shown in Figure 3.4, the problem comes from

the fact that one edge of the triangle crosses all three circles. In addition, it can also be

observed that in these cases, the angles inside the triangles are highly imbalanced. In

cases (a) and (b), one of the angles is very large while in case(c), one of the angles is very

(a) (b) (c) (d)

Figure 3.4: Exceptional cases of triangle vacancy calculation.
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small.

In exceptional case (d) shown in Figure 3.4(d), the vacancy in the left triangle (shaded)

is actually affected by one of the nodes in the other triangleon the right. The vacancy in

the left triangle is smaller than the vacancy compute using the calculation stated in the

previous section. In this situation, the vacancy is over estimated and the global objective

α can still be satisfied. It can also be observed that case (d) isalways linked to cases (a)

and (b).

These exceptional cases cover all the exceptional possibilities. For example, by ob-

serving Figure 3.3(c), it can be seen that Figure 3.4(a) is the only possible exceptional

case when there are two intersections among the three circles. These exceptional cases

are not desirable. In particular, in cases (a) to (c), the vacancy is difficult to compute. In

fact, we would further argue that these cases should also be avoided because they poten-

tially increase the number of active nodes that are needed for the same coverage objective.

The inefficiency of cases (a) and (b) can be explained using anexample shown in Figure

3.5(a). NodesA andB are known active nodes, if nodeC decides to be active because

the vacancy in triangleABC is smaller than the predefined value, then nodeE will not be

selected based on the edgeAC because there is a very large vacancy in triangleEAC. A

node that is closer to edgeAC has to be elected, which is nodeD in this example. On

the other hand, as shown in Figure 3.5(b), if nodeE decides to be active based on edge

AB, the final results will be triangleABE andBCE, which is better than the example in

Figure 3.5(a) because the former example tends to have more active nodes than the later

one, even though in both cases, the average objective is met.Thus, when bothE andC

hears information about edgeAB, E should elect itself first, asC is undesirable.

Case (c) only happens when nodeA andB are too close to each other. For a suffi-

ciently high node density, case (c) is not likely to happen. It is also undesirable because

the amount of redundancy is high.

In conclusion, in order to design an efficient distributed algorithm for configurable

coverage, the exceptional cases should be avoided because they provide less efficient
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Figure 3.5: Illustration of inefficiency caused by exceptional cases a and b

solutions and the vacancy for these cases are hard to calculate. However, depending on

the actual placement, it may not be possible to avoid these cases completely. Nevertheless,

for most node densities of interest where complete coverageis possible, these cases are

rare (from the simulations in Section 3.6). Hence, even whenthese cases are included and

no vacancy is assumed (instead of computing the actual vacancy), the error is small.

3.4.3 Node Selection Constraint

As previously mentioned, in CCP, active nodes are added one at a time. In the new

node selection process, the set of active sensor nodes must be connected at all times

(connectivity constraint) and the exceptional cases analyzed in previous section shall be

avoided as much as possible (angle constraint). Thus, during the selection process, nodes

that satisfy both connectivity and angle constraints are considered first. If both constraints

cannot be met at the same time, then connectivity constraintnaturally takes priority over

the angle constraint.
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Connectivity Constraints

CCP tries to elect a subset of sensor nodes that coverα portion of the environment, it

does not consider the connectivity of the network formed by the active sensor nodes. To

maintain network connectivity in CCP, a node should only volunteer itself if it is able

to communicate with both end vertices of the edge. Thus, eachedge of the triangles is

connected, and the whole network is then connected.

Angle Constraints

From observation, the exceptional cases in Figure 3.4 occuronly when there are small

(or large) angles inside the triangle. These small or large angles will cause imbalance in

the length of edges, and thus may cause the imbalance in vacancies in adjacent triangles.

In order to avoid the exceptional cases, small (or large) angles in the triangles should be

avoided. Therefore, CCP selects the node not only based on the vacancy values inside the

triangle, it also tries to select the triangle that maximizes the minimum angle. Note that

this is different from the concept of Delaunay triangulation.

As discussed, the exceptional cases in Figure 3.4(a) and 3.4(b) are undesirable. For

a dense network, it is better to eliminate all such possibilities to form a triangle of such

cases, i.e., the nodes that will form exceptional triangleswill not perform any action. As

shown in Figure 3.6(a), considering the connectivity constraint and avoiding the excep-

tional cases, only the nodes in the shadowed area should compete for the active nodes.

The minimum angles formed by the competing nodes and the edgeshould beβ1. Any

node that has an angle smaller thanβ1 will just ignore the new triangle and edge message.

The value ofβ1 can be calculated by,

β1 = arcsin(
Rs

d
). (3.3)

Note that the value ofβ1 can be up toπ
2 whend is close to 0. Thus, even when

network is dense, such constraint shall not be performed when d is small.
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Figure 3.6: Angle constraints.

Another constraint in angle is shown in Figure 3.6(b). When anode decides to be-

come active and form a new triangle, it will broadcast the power on message. All other

nodes that are within the communication range of this node will hear this broadcast and

try to cancel their timers. It is thus essential for every node that is trying to compete for

the new vertex to hear this message. These nodes should be constrained in the shadowed

area in Figure 3.6(b), in which every node is able to directlycommunicate with other

nodes. The shadowed area is limited by angleβ2, which is calculated by,

β2 = arccos(
Rc +d
2Rc

). (3.4)

Nodes that can form an angle larger thanmax(β1,β2) meet the angle constraints and

are preferred. For a sufficiently dense network, one or more nodes will be able to meet

this angle constraints in most cases.

Rigidity Constraints

It is possible that given only distance information, the relative position of a node to some

of its neighbors cannot be determined (i.e., the local distance graph is not rigid, the node

can possibly be on either side of an edge), especially when there are errors in distance

estimation. In CCP, any node who cannot form robust quadrilateral to existing triangles

will not elect itself as an active node.
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It should be mentioned that, the angle constraints in previous section also help in

dealing with distance errors because maximizing the minimum angle is able to help the

protocol tolerate more distance errors without affecting the robustness of the local distance

graph [72].

3.5 CCP Details

In this section, we present the details of the CCP algorithm.

3.5.1 Selection of Starting Node

At the initial selection phase, all nodes are in the “UNDECIDED” state. A node should

volunteer to be the starting node with probabilityp. The value ofp should be a small

value such that it is not likely to have many volunteer starting nodes in each round of

selection.

When a node decides to be a starting node, it first waits for a random timets uniformly

distributed within[0, tsmax]. tsmax can be any reasonably large values, for example, 20

times the maximum transmission time. This waiting time is used to reduce the probability

of having multiple starting nodes but is not crucial for the correctness of CCP. If the node

does not hear any messages from neighboring nodes withints, it will change its state to

“ON” and broadcast the power on message. If it receives any power on messages from

neighbor nodes, it will simply cancel the timer.

3.5.2 First Edge and First Triangle Formation

After the first starting node broadcasts the power on message, all neighbors around the

starting node will set a timert1. If the timer fires, the node will change its state to ”ON”.

The value oft1 is based on the distance to the starting noded.

When a node turns ”ON”, it broadcasts power on message together with the edge

information. The edge information includes the local unique id of the two end nodes as
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well as the length of the edge.

Upon receiving the edge information, the neighboring nodeswill set a timert2. If the

timer fires, the node turns ”ON” and form the first triangle. The value oft2 depends on

the vacancy as well as the angles inside the triangle it forms.

The node will broadcast the power on message together with the triangle information.

The information includes the id of the three vertices and thelength of the three edges. This

message also has information about the new edges generated by this triangle (there are

normally two new edges). All nodes will save the triangles formed associated with itself

(i.e. if a node is a vertex of the triangle, it will save this triangle information). All nodes

that hear the triangle information and locate at the same side with the broadcasting node

will cancel their timers.

3.5.3 Node Selection Process

Upon receiving the triangle and new edge message, only thosenodes that are located at

different sides of the new edge with the triangle will perform actions. Each node will first

examine whether it has any triangle associated with itself and share a common vertex with

the new edge. If there is, it will then look at the edge connecting itself and the common

vertex, to see whether the edge has two triangles associatedwith it. The node will take

no action if there are already two triangles associated withthis edge. If there is only one

triangle associated with the edge, and it satisfies the vacancy requirement, it will announce

the creation of a new triangle with only one new edge immediately. This approach always

tries to close the region around the common node first.

Otherwise, all other nodes set timert2 based on the vacancy and angles to the new

edges. The node that fires first turns itself ”ON” and announcethe existence of a new

triangle with two new edges. All nodes that hear the new triangle information will cancel

their timert2. Based on the triangle information broadcast by its neighbors, when a node

notices that it is within one of the triangles formed, it turns itself ”OFF”. The protocol

terminates when all nodes are either in the ”ON” or ”OFF” states.
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3.5.4 Discussions

Starting Node Probability p

The value ofp should be small enough so that in the ideal case, only one nodein the

whole network becomes starting node. This can be a value of say 1
N .

Timer t1

The timert1 should be based on the distance to the initial startup node. Based on the

heuristics used in CCP, the optimal distance should be the edge length of the equilateral

triangle which exactly has vacancy of 1−α.

The value oft1 is then calculated byt1 = a(do−d) if d < do, andt1 = a(d−do)+c

if d > do, wherea, c are constants andc is used to degrade the distances that are larger

than optimal (which may cause more vacancy).

Timer t2

The value oft2 can be calculated by the vacancy, as well as the minimum angle. The value

of t2 is computed asa|VA −α|+ b
min(a1,a2,a3)

+ c, wherea1, a2, a3 are the angles of the

triangle,a, b andc are constants.c is the penalty for the nodes that have vacancy larger

than predefined value. It is 0 for the nodes that have vacancy smaller than predefined

value.

Joint of Different Sets of Sensor Nodes

The above protocol description only considers the situation that there is only one starting

node. Once there are more than one starting nodes, if there are no special considerations,

most probably there will be multiple sets of active sensors at the end of the algorithm.

When a node hears a broadcast of triangle message from another set of sensor nodes

(differentiated by the ID defined by the starting node), it will consider the joining of the
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new edges associated with itself and the new edges associated with the triangle if any of

the possible triangles satisfy the vacancy requirements.

3.6 Performance Evaluation

3.6.1 Simulation Setup

In all sets of simulations, we normalize the sensing radiusRs to be 1. The communication

rangeRc is set to be 3. The world size is a 30×30 square. The communication range is

set to 3 times larger than sensing range so that the CCP is ableto select the nodes that

leave some vacancy. The values ofRc andRs vary significantly for different sensor nodes

and different applications, however, in a typical network,wireless communication ranges

is generally several times larger than sensing range. We seta = b = 0.5 for CCP as the

weights of vacancy and angle constraint respectively in allsimulations.

The relative localization scheme in the simulation assumesthat the nodes are able to

dynamically change the transmission power levels. Two power levels are used to estimate

the distances, one is withRc = 2 and one isRc = 1. Note that the value ofRc = 3 is used

for CCP packet transmission, it is not used in distance estimation.

The performance matrices are the average vacancy and the number of active nodes to

monitor the environments after applying CCP.

3.6.2 Performance of CCP and OGDC

In the first set of experiments, we compare the performance ofCCP and OGDC with

both algorithms using the same distance estimate obtained using the scheme described in

Section 3.7. To make CCP comparable to OGDC, we set the coverage objectiveα to 1.

In addition, we modify OGDC protocol to use distance information rather than position.

The simulation results are shown in Figure 3.7. It can be observed that CCP with

α = 1 has very similar performance to OGDC. Overall, OGDC has a slightly better per-
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Figure 3.7: Comparison between OGDC and CCP
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Figure 3.8: CCP with Coverage Objectiveα = 1,0.95,0.9,0.8

formance because CCP does not try to minimize node redundancy but simply tries to

select the nodes that leave no vacancy and satisfy the angle constraints. However, the per-

formance degradation is small. Using the same distance estimates, the vacancy achieved

by OGDC is less than 0.2% lower and the number of nodes needed is reduced by less than

1%.

It is interesting to note that for both OGDC and CCP (α = 1), there is always some

amount of uncovered area (about 2%−3%) in the network. The vacancy is a result of the

distance estimation error. In addition, when node density is low, the amount of vacancy

increases due to insufficient coverage. Therefore, in the presence of location or distance

estimation error, it may not be meaningful to demand complete coverage even when net-
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work density is high. In our simulation setup, only coverageobjective of 0.98 or below

can be achieved for both OGDC and CCP.

3.6.3 Performance of CCP withα < 1

In the second set of experiments, we evaluate the performance of CCP if the objectiveα

is set to a value less than 1. The results forα = 1,0.95,0.9 and 0.8 are shown in Figure

3.8. We have observed that for values ofα between 0.98 and 1.0, there is little difference

in terms of average vacancy and number of active nodes needed. As a result, they are not

shown in Figure 3.8.

From Figure 3.8(a), we can see that CCP is able to meet the coverage objectives most

of the time. There are two reasons why the objective may not bemet. First, the network

density is too low and there are insufficient nodes. Second, due to distance estimation

errors. Nevertheless, it can be observed that even whenλ = 2 and the distance error is

about 0.1Rc, the mean vacancy is still very close to the objective.

In Figure 3.8(b), whenα is decreased from 1.0 to 0.95, the number of active nodes

required is about 91% of the total nodes required whenα = 1. The decrease in nodes

required forα values of 0.9 and 0.8 are 22% and 29% respectively. The results can be

explained as follow. Whenα is decreased to 95% the savings (9%) is limited by the

number of nodes that contribute less than 5% of additional normalized coverage. The

biggest savings (12%) comes from moving from 95% to 90% coverage when many more

redundant nodes can be found. However, when coverage objective is further decreased to

80%, the amount of redundancy is already low and further savings is only 7%. Further

reduction in coverage objective will not be an effective wayto reduce the number of nodes

required.
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3.7 Neighbor Node Distance Estimation

As shown in the previous section, distributed distance-based localization relies on the

distance estimates among the neighboring sensor nodes. In this section, we propose a

simple distance estimation algorithm which can provide enough accuracy to support mi-

croscale coverage and connectivity control that will be presented in Chapter 3. In fact,

for microscale coverage and connectivity control, global localization is not required. Dis-

tance estimations among the neighbors are sufficient because they provide local rigidity

such that the relative locations among neighboring nodes can be determined. In this sec-

tion, we will present an algorithm to perform distance estimation, using only connectivity

information.

3.7.1 Assumptions and Notations

We assume that the sensor nodes are randomly distributed in alarge 2-dimensional region

with densityλ. Thus, node distribution can be estimated as a Poisson pointprocess. The

uniform binary disk communication model is assumed. All thesensor nodes have the

same communication rangeRc.

The binary disk communication model is generally not true inreal world. Therefore,

algorithms proposed based on such an assumption may not workin practice. However,

this problem is not too severe for the application of distance estimation. We will show via

simulation in the later section that the binary disk model still works for distance estimation

when the communication range of a sensor node is not a perfectcircle.

We use capital letter such asA to represent a region of interest, andNA is the random

variable for the number of nodes inside regionA. nA represents the actual number of

nodes inside regionsA. When the context is clear,A will also be used to represent the

area of a region.
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3.7.2 Basic Idea and Problem Formulation

For binary disk communication model, the common area covered by the communication

circles of two neighbor nodes has a one-to-one correspondence to the distance between

the two nodes. Therefore, in order to estimate the distance,it is equivalent to estimating

the common area covered by the communication circles of the two neighbor nodes.

Intuitively, given the fixed node densityλ, the larger a region is, the more likely nodes

will be located inside the region. Conversely, given a region containingn nodes, the larger

the value ofn is, the larger the area is likely to be. The above statements are supported by

the following two facts.

Fact 3.1 For a Poisson point process with node densityλ, the probability that NA nodes

locate inside an region A (with area A) follows Poisson distribution.

p(NA = n) =
e−λA(λA)n

n!
(3.5)

and E(NA) = λA, V(NA) = λA.

Fact 3.2 For a Poisson point process with node densityλ, the area of the region An that

exactly contains n nodes follows Gamma distribution.

f (An = A) =
λe−λA(λA)n−1

(n−1)!
(3.6)

and E(An) = n/λ, V(An) = n/λ2.

Thus, for each sensor node, it can make use of the local communication graph (num-

ber of common communicable neighbors between two neighboring nodes) to estimate the

common communication areas and then the distances between itself and its neighboring

nodes.

The basic idea can be explained as follow. In Figure 3.9, the distanced between two

nodesA andB is to be estimated. LetA andB be the region of communication circles of
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Figure 3.9: The number of common neighbors of two nodes can beused to estimate the
distance between the two nodes.

nodeA and nodeB respectively. The common region of regionA andB is X. Also, let

there bena nodes inA, nb nodes inB, andnx nodes inX. Intuitively, whend is small,nx

is large andna andnb are small. Conversely, whend is large,nx is small, whilena andnb

are large. Hence, by taking into account the values ofna, nb andnx, d can be estimated.

As na, nb andnx are correlated, the problem can be redefined as follow. Given(na−

nx) nodes inA−X, (nb−nx) nodes inB−X, andnx nodes inX, what is the estimated

distanced between nodeA and nodeB? In the following analysis, we letm, n, andc

denote(na−nx), (nb−nx), andnx respectively to simplify the expressions.

3.7.3 Maximum Likelihood Distance Estimation

Maximum likelihood estimation is used to estimate the size of X and thus the distanced.

The probability of having a certain number of nodes inside anarea given the value of the

area is given in Equation 3.5.

We need to find the value ofX which maximizes (leta = λA = λB andt = λX),
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M = p(c|X)p(m|A−X)p(n|B−X)

=
e−λX(λX)c

c!
e−λ(A−X)(λ(A−X))m

m!
e−λ(B−X)(λ(B−X))n

n!

=
e−2aettc(a− t)m+n

c!m!n!
(3.7)

Maximizing Equation 3.7 is same as maximizing the value of lnM,

lnM =−2a+ t +cln t +(m+n) ln(a− t)− ln(m!n!c!) (3.8)

Let d lnM
dt = 0 we have,

d lnM
dt

= 1+
c
t
−m+n

a− t
= 0 (3.9)

Solving the above equation we get,

X =
−(m+n+c−a)+

√

(m+n+c−a)2+4ac
2λ

(3.10)

If X < Xmin, we can setX = Xmin, and if X > Xmax, we can setX = Xmax. Where

Xmin = (2π
3 −

√
3

2 )R2
c, andXmax= πR2

c.

Results obtained using Equation 3.10 turn out to be fairly inaccurate when node den-

sity is low. This is because the number of nodes within communication range is too small

to provide good accuracy, though the accuracy is much betterfor high node density. The

approach taken to improve the estimation accuracy is to increase the number of samples

through the use of multiple transmission power levels. By varying the transmission power,

the sensor nodes can communicate with different sets of neighbors. This additional infor-

mation helps to improve the estimation accuracy.

Take an example of two power level sensor nodes, as shown in Figure 3.10. The two

sensor nodes have 2 communication radiiRc1 andRc2 (Rc1 ≤ Rc2), and communication
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Figure 3.10: Distance estimation based on 2 transmission power levels

covered areas by the two power levels areA1 = B1 = πR2
c1, andA2 = B2 = πR2

c2. By

adjusting the power levels, there are 4 combination of estimations,A1 with B1, A2 with

B2, A1 with B2, and lastlyA2 with B1. For the case ofA1,B1 andA2,B2, the maximum

likelihood estimation proposed above still works.

For the two cases with different communication radii, again, the maximum likelihood

estimation method can be used.

M = p(c|X)p(m|(A1−X)p(n|A2−X)

=
e−λX(λX)c

c!
e−λ(A1−X)(λ(A1−X))m

m!
e−λ(A2−X)(λ(A2−X))n

n!

=
e−λ(A1+A2)eλX(λX)c(λA1−λX)m(λA2−λX)n

c!m!n!
(3.11)

To find the maximum value of M (t = λX, a = λA1, andb = λA2), let

lnM =−(a+b)+ t +cln t +mln(a− t)+nln(b− t)− ln(c!m!n!) (3.12)

Let d lnM
dt = 1+ c

t + m
t−a + n

t−b = 0, we get

t3+(m+n+c−a−b)t2+(ab−ac−bc−an−bm)t +abc= 0 (3.13)
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The equation can be solved by any approximation algorithms or cubic formula. For a

cubic equation

x3+αx2 +βx+ γ = 0 (3.14)

let Q= α2−3β
9 , R= 2α3−9αβ+27γ

54 , andθ = arccos R√
Q3

. The solution for the cubic equation

is then,

x1 = −2
√

Qcos
θ
3
− α

3

x2 = −2
√

Qcos
θ+2π

3
− α

3
(3.15)

x3 = −2
√

Qcos
θ−2π

3
− α

3

Cubic equation generally has three solutions (if real solutions exist). We have the

following theorem regarding the three real solutions.

Theorem 3.1 Given the problem defined above, there are three solutions t1, t2 and t3 for

the cubic equation, and assume t1 < t2 < t3, then t2 is the point where M reaches the

global maxima.

Proof: The solutiont must be less thana andb, becauseX must be less thanA1 and

A2.

Observingf (t) = t3 +(m+n+c−a−b)t2 +(ab−ac−bc−an−bm)t +abc, it is

clear thatf (0) > 0, f (a) < 0 and f (b) > 0. Thust1 < 0, 0< t2 < a, anda < t3 < b. t2 is

the only feasible solution.

The final estimates can be calculated as the average of the estimates on four possible

combinations.

3.7.4 Evaluation

A set of simulations are run to evaluate the performance of distance estimation schemes.

We compare the performance of using one and two transmissionpower levels. The com-

munication rangeRc of the single power level is normalized to 1 and the communication
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Figure 3.11: Distance estimation error (98% percentile andmean) v.s. node density.
Single and dual power levels are indicated as (1) and (2) respectively.

Figure 3.12: Radio pattern examples with DOI=0.05 and 0.2 respectively. [46]

ranges of two power levels areRc1 = 0.5 andRc2 = 1 respectively. The results are show

in Figure 3.11. It can be clearly seen that with low node density, the estimation based on

multiple transmission power gives significant improvements on estimation accuracy. The

performance of the estimation improves with the increasingof node density.

The mean distance estimation error can be reduced to 2% ofRc2 for node density

larger than 5 using two transmission power levels. At such node density, the 98% per-

centile values is less than 10% ofRc2.

Next, we relax the assumption on the perfect binary disk communication model. In-

stead, we adopt the model suggested in [46]. In this model, there is a lower bound and

upper bound on signal propagation. Beyond the upper bound, all nodes are out of com-

munication range; and within the lower bound, every node is guaranteed to be within

communication range. In between lower and upper bound, degree of irregularity (DOI) is
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used to denote the irregularity of the radio pattern. DOI is defined as the maximum radio

range variation per unit degree change in the direction of radio propagation. Figure 3.12

shows an example of radio irregularity with the value of DOI 0.05 and 0.2 respectively

(DOI of value 0 is the same as the perfect binary disk model).

Figure 3.13 shows how the estimation (two power levels) error varies with DOI (as-

sume upper bound is 1 and lower bound is 0.5 for the first power level, and upper bound is

0.5 and lower bound is 0.25 for the second power level). It can be observed that estimation

error increases almost linearly with DOI. With a relativelyhigh irregularity (DOI=0.2) in

communication range, and with two power level of estimation, the average error can still

be confined in about 15% ofRc2.

Finally, in order to execute the estimation algorithm, there is still the need to estimate

the node density. Our simulation result shows that for a randomly deployed sensor field

with sufficiently high node density (λ ≥ 10), the local node density can be approximated

with an error less than 10% if the densities of all 1-hop neighbors are averaged. Hence, it

is possible to estimate the node density locally even if thisinformation is not available.
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3.8 Summary

In this chapter a configurable coverage protocol (CCP) whichuses only distances among

the neighboring nodes is proposed. CCP is able to estimate the vacancies distributively

and the global coverage objectiveα can be maintained. Using simulation, the effects of

distance estimation error on coverage density control protocols (OGDC) are investigated.

CCP performs very similar to OGDC for complete coverage. By relaxing the constraints

of complete coverage, CCP is able to generate a subset of sensor nodes which is smaller

than the number of nodes required for a complete coverage. Atlast, a simple distance

estimation algorithm which can be utilized by CCP is proposed and evaluated.
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Chapter 4

Microscale Connectivity Monitoring

4.1 Introduction

In traditional centralized network management, network topology is one of the key pa-

rameters that needs to be known in order to perform operations like performance man-

agement, fault detection and isolation, and capacity planning. Large displays showing the

network topology are common sights in Network Operation Centers (NOC). In the Inter-

net, despite the fact that the control and ownership are highly distributed, researchers have

also attempted to gain understanding of the Internet topology. Examples include [3], [1],

[106] and [31]. Knowledge of Internet topology allows researchers to better understand

important issues such as Internet growth, routing behaviors, and DDoS attacks.

In wireless sensor networks, in addition to tackling traditional network issues such

as fault monitoring/debugging and root-cause analysis [81], connectivity information also

helps in ways that are unique to how sensor networks operate.For example, it is observed

in [17] that connectivity statistics can be used to compute mean topological density, study

the impact of link asymmetry, evaluate geographical routing algorithms, and assess be-

haviors of algorithms that depend on spatial correlation.

The complete network connectivity graph is formed by aggregating the microscale

connectivity information (neighbor tables) of all the sensor nodes in the region of inter-
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est. Microscale connectivity monitoring is thus an important management task in sensor

networks.

However, obtaining the local connectivity information efficiently in wireless sensor

networks is generally a hard problem. First, the neighborhood information at each sensor

node is large. This is especially true for a dense network (tens of neighbors per node).

Second, connectivity is highly unpredictable due to low power transmission, limited en-

ergy resource, ad-hoc deployment and factors such as obstacles and movement in the

environment. As connectivity of wireless links can vary over time, nodes need to send

information to the central controller periodically or on-demand, via multiple hops. The

cost can be significant due to the limited energy and bandwidth resources available on the

sensor nodes.

As stated in Chapter 2, previous protocols either reduce thenumber of nodes that will

send their neighborhood information to a central controller [28, 27, 29], or let each sensor

node send a subset of its neighbors to the central controller[27, 29]. Both approaches

result in significant loss of accuracy.

In this chapter, we propose a Hop-count and Hashing-based Connectivity Monitoring

(H2CM) algorithm, a flexible and efficient algorithm to obtain connectivity information

of the nodes located in the area of interest (monitored nodes). H2CM is based on adivide-

and-conquerapproach, in which several techniques are combined to deal with various

network and neighbor set sizes. These techniques are (1) hopcount filtering, (2) Bloom

filter and (3) use of a single hash value as checksum. By varying the amount of infor-

mation exchanged, H2CM is able to provide different levels of connectivity information

accuracy.

H2CM is flexible in that each node can be individually configuredto provide the

desired accuracy. As a result, nodes deemed more important can be configured to provide

more accurate connectivity information. H2CM is efficient in reducing communication

cost, even when complete connectivity information of the nodes is required.

At last, a simple application of connectivity monitoring – node failure detection will
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be studied. By combining H2CM with the concept of dominating set, the communication

cost can be drastically reduced compared to traditional data collection methods.

4.2 System Model

There areT nodes in the network and each node has a unique global ID. ThisID can

be its own MAC address or assigned by any ID assignment protocol that ensures the

globally unique property [76]. Through pre-planning or a one-time initialization process,

the central controller is assumed to be aware of the identities of the deployed nodes.

The size of node IDt (in number of bits) is at least⌈log(T)⌉ bits, i.e.,t ≥ ⌈log(T)⌉.

In this chapter, we use log to represent logarithm of base 2 unless otherwise mentioned.

Let Xi = {x1, . . . ,xmi} be the set of neighbors of a nodei andmi be the size ofXi. When

the context is clear, we also usem to representmi andX to representXi .

Connectivity information is uni-directional (links can beasymmetric, which is com-

mon in wireless networks [17, 4]). Based on existing link management process using

periodic beacons, each node determines the set of connectedneighbor nodes with incom-

ing links. The definition of a connected neighbor depends on the application domain. For

example, a nodeA can be considered to be connected to nodeB if at least one of the last

several beacon packets transmitted byA can be received byB.

The connectivity monitoring process is performed by the central controller and the

individual nodes to be monitored. Monitoring can be performed for a single node, the

whole network, or any subset of nodes. Each monitored node sends its own neighborhood

information to the central controller via possibly multiple hops.
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Figure 4.1: An illustration of the ring model.

4.3 Cost Analysis

4.3.1 Cost of Microscale Connectivity Monitoring

The communication cost is affected by the following factors: number of hops in the rout-

ing path, amount of data sent by the source node, data aggregated in the intermediate

relay nodes and wireless transmission overhead (e.g. retransmission due to noise or in-

terference). In this work, we only consider the first two factors. We do not consider

retransmissions of packets nor aggregation of data in the intermediate nodes.

Assume a node ish hops away from the central controller and the amount of neigh-

borhood data to be sent at this node isI , the communication cost for the central controller

to know the neighborhood information of this node is simplyhI.

The analysis on the communication cost of a complete neighborhood discovery can

be based on a simple model calledring modelas shown in Figure 4.1. In [20], the authors

show that the number of hops (h) and geometric distance (d) that a packet travels, in

high-density networks and a broadcast percolation scenario, can be well approximated by

the following relation:h = ⌈ d
Rc
⌉, whereRc is the average communication radius of the

wireless nodes. Based on this, ring model can be used to analyze the communication cost

of connectivity discovery [27, 29]. Though this estimationdoes not work well in low-

density networks, the accuracy ofh does not affect the intuition behind. For simplicity of

analysis, we do not consider boundary conditions, and only the nodes inside the circle of
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radiusD = HRc are counted, whereD is the maximum radius of the area of interest and

H is the maximum number of hops.

As shown in Figure 4.1, the nodes that areh hops away from the central controller

lie between the circles of radii(h−1)Rc andhRc, and we call this region ringh, where

h∈ [1,H]. The area of ringh is given by,

π(hRc)
2−π((h−1)Rc)

2 = π(2h−1)R2
c (4.1)

Thus, there are on averageλπ(2h−1)R2
c nodes located in ringh, whereλ is the average

network node density.

AssumeI is the average amount of neighborhood data to be sent at each node, the

total average cost to retrieve the complete connectivity ofthe whole network is given by,

H

∑
h=1

λπR2
cI(2h−1)h

=
1
6

λπR2
cI(4H3+3H2−H) (4.2)

For a complete connectivity discovery, the termI is highly related to the communi-

cation radiusRc and network node densityλ. If we assume each node simply sends all of

its neighbor IDs, in a unit disk graph model,I = O(λR2
c). The total communication cost

shown in Equation 4.2 is thenO(λ2R4
cH3), which increases rapidly with network size and

node density.

A node in ringh sends its own neighborhood data, as well as relayed data for nodes

in ringsh+1,. . ., andH. The average amount of data to be sent at a node in ringh is

∑H
i=hλπ(2i−1)r2

c

λπ(2h−1)r2
c

I

=
H2−h2 +2h−1

2h−1
I (4.3)
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Note that each node in ring 1 has to send a total ofH2I amount of data whereI is

O(λr2
c).

From Equations 4.2 and 4.3, it can be observed that there are two ways to reduce

the communication cost. One way is to only let a small portionof nodes transmit its

own neighborhood information, such as MDS and MVDS in [28, 27, 29]. By doing so,

the value ofλ in Equation 4.2 and 4.3 can be reduced. However, such an approach can

significantly reduce the accuracy of the connectivity information. Another way is to let

each node send less data, such thatI is reduced. In [27, 29], each node also sends only

a subset of its neighbor IDs. Again, these approaches also result in significant loss of

neighborhood information.

In this paper, our approach to cost reduction is through reducing I . Unlike previous

approaches, our approach reducesI with no or little loss of neighborhood information.

It is worthy noting that reducingI has no conflicts with reducing the number of nodes

who transmit their neighborhood information. One can stillchoose to use MDS-based

approach [28] orthogonally with our work. More details are shown in Section 4.10.

4.3.2 Related Encoding Techniques

This section summarizes other possible techniques in encoding (and possibly reducing)

the amount of dataI sent by each node and their corresponding limitations. These tech-

niques include direct transmission, bitmap, and hashing.

Direct Transmission: In the most direct form, a node transmits its neighbor IDs

directly to the central controller. Without considering the packet overheads, the size of

data to be sent ismt bits, wherem is number of neighbors of the node andt is the size

in bit of the node’s ID. Whenmt is small, e.g. in a sparsely deployed network, direct

transmission may be the most appropriate mechanism.

Bitmap Representation: With bitmap, each node transmits a bit string of sizeT to

the central controller. The central controller decides whether nodek is a neighbor of node

i by looking at thekth bit in the bit string nodei transmits. The size of data transmitted is
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at leastT bits if the bitmap representation is compact. Note that bitmap will only be more

efficient than direct transmission whenm> T
t or t > T

m.

For large network whereT≫mandm< T
t , direct transmission is more efficient than

bitmap. For mid-size network with relatively high density,m may be larger thanTt and

bitmap is more efficient.

If we consider the case where the bitmap can be efficiently compressed, the data

size can be even smaller, especially for large sensor networks. However, in any case, the

maximal compression is lower bounded by log
(T

m

)

≥m(log(T)− log(m)) [77].

Since the physical address of a sensor node (e.g., MAC address) can be 16 bits or

even 32 bits and more, the identities of the sensor nodes needto be mapped to position in

the bitmap for efficient representation. Such a mapping needs to be performed in advance

and nodes have to be informed if there are changes to the mapping. For a sensor network

where self organization is important, use of pre-configuredand static information is a

serious drawback.

Exact Membership Testing Using Hashing:Hashing is a common solution to com-

press the data for membership information. The space required to hash the neighbor IDs

such that they can be decodedexactlyis also lower bounded by log
(T

m

)

[16].

In summary, considering both bitmap compression and hashing, the maximum sav-

ings in theory over direct transmission ismlogm. The reduction islogm
t < logm

logT . As m is

number of neighbors of a node, the reduction is small when thenetwork size is large with

respect to communication range.

4.4 Overview of H2CM

In this section, we describe H2CM, a Hop vector distance and Hashing-based Connectivity

Monitoring scheme.

The central controller is assumed to maintain three sets of nodes for each monitored

nodei. The three sets are:
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• Vi, the set of confirmed neighbors of nodei,

• Ui, the set of nodes whose relationship with nodei cannot be determined,

• Wi , the set of confirmed non-neighbors of nodei.

Let vi = |Vi|, ui = |Ui| andwi = |Wi |.

Note thatWi is introduced only for convenience of the description and does not have

to be maintained in practice. Initially,Vi andWi are empty.Ui contains all other nodes in

the network except nodei. At all times, the union ofi, Vi , Wi andUi forms the set of all

nodes in the networkT.

Each sensor nodei transmits its own connectivity information to central controller.

Intuitively, H2CM tries to reduceui and increasevi at central controller using the com-

bination of several techniques so that the most appropriatetechnique can be applied in

different situations. The objective is to achieve the desired accuracy with the minimum

communication cost, where the accuracy is defined byvi
mi

. Recall thatmi is the number of

connected neighbor nodes with incoming links. Hence,vi
mi
≤ 1.

The first technique of the algorithm applies when the values of ui
mi

, mi and ui are

large. The technique utilizes hop count to compute hop vector distance between nodes

to identify possible set of neighbors. The value ofui and thusui
mi

maintained at central

controller can be effectively reduced. This is presented inSection 4.5.

The second technique involves the use of Bloom filters for approximate membership

testing. This technique is most appropriate whenui
mi

is less than some bounded value (see

Section 4.6.3). Our use of Bloom filter is unique in two ways. First, traditional Bloom

filter can only remove non-members (move elements fromUi to Wi). In our approach,

Bloom filter can also confirm nodes as members (move elements fromUi to Vi). Second,

we use a combination of normal and counting Bloom filters depending on the values of

mi , ui andvi . The details are presented in 4.6.2. Analysis on the behaviors of Bloom

filters is provided in Section 4.6.3.
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In the third technique, ifmi −vi andui are small enough, a node can use hashing to

generate fingerprint of allmi nodes to help the central controller identify the complete set

of its neighbors. The discussion is presented in Section 4.7.

Data needed for the techniques applied can be combined into asingle packet resulting

in only one transmission from each monitored nodei. In Section 4.8, we describe how all

these techniques are put together.

4.5 Hop Vector Distance-based Neighborhood Constraints

In order to more “accurately” decide if two nodes can be neighbors, location information

is the most natural neighborhood constraint. Only nodes that are within the maximum

communication distance can be neighbors. However, localization itself is a challenging

research issue and often incurs substantial overhead. In this work, we propose the use of

hop vector distance computed from connectivity based localization [74] to remove a large

amount of non-neighbors for each node whenT is large.

We assume at the end of the localization process, the centralcontroller knows the

locations of all nodes. While the hop count localization process and collecting of location

information from all nodes incur substantial cost, this process will only need to be per-

formed once. It can be reused for later cycles of connectivity collection or update as long

as there is no substantial change of this initialized hop counts to the relative locations of

the neighbors. For a large network, taking into account the gain in reducing the candi-

date set for all nodes and the cost amortized over many monitoring cycles, the benefit can

easily outweigh the cost.

Assume that there areSanchors in the network and each node maintains its own hop

count to theS anchors in a hop count vector(hi1, . . . ,hiS). The hop vector distanced

between two nodesi and j is calculated using 3-norm distance between two hop count
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vectors, i.e.,

d = 3

√

√

√

√

(

S

∑
s=1
|his−h js|3

)

(4.4)

A lower norm like 2-norm is not desirable because it is not able to differentiate the

two cases where two nodes have absolute hop count differencevectors (2,0,0,0,0,. . . ,0)

and (1,1,1,1,0,. . . ,0). 3-norm provides enough accuracy todifferentiate most cases for a

small value ofS. One the other hand, 3-norm is just enough and larger norm is harder to

calculate in computational limited sensor nodes.

Each node sends to the central controller the ID of the neighbor node with the largest

hop vector distance. With this information, the central controller can move nodes fromUi

to Wi (reduceui). All nodes with larger hop vector distance cannot be a neighbor of node

i. The utility of the hop vector distance based technique is interms of the size of potential

neighbors inUi relative to the actual neighbor sizemi after this phase.

We evaluate the utility of the hop vector distance using simulation. The network area

is varied from 2×2 to 32×32 and maximum transmission range is normalized to 1. The

number of anchorsSis set from 1 to 8 and the node densityλ simulated is from 5 to 30. In

order to generate graphs with different characteristics, we also define two parameterslink

connectivity (LC)and link asymmetricity (LA). Link connectivity is defined as the ratio

of node pairs that are able to communicate (at least in one direction) to nodes that are

within maximum communication range. Link asymmetricity isdefined as the percentage

of asymmetric links over the total number of uni-directional and bi-directional links.

The result of one specific case whenλ = 10,LC= 0.8 andLA= 0.2 is shown in Figure

4.2. The trends are similar for other cases. Figure 4.2(a) shows the ratio of averageu and

m versus the network size as well as the number of anchorsS. Without the hop vector

distance based filtering technique (number of anchorsS= 0), the value ofum increases

fast with the network size, whereu and m are expected values ofu and m. It can be

observed that, with 4 anchors, the ratio of averageu andm is less than 2.3 even for very

large network. A larger number of anchors only performs marginally better.

62



 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30  35

u/
m

Network Size (n by n)

S=0
S=1
S=2
S=4
S=8

(a) Hop vector distance utility evaluation

0 1 2 3 4 5
0

0.5

1

N
ei

gh
bo

r
P

ro
ba

bi
lit

y

0 1 2 3 4 5
0

5
x 10

4

N
um

T
ot

al
 L

in
ks

0 1 2 3 4 5
0

5
x 10

4

Hop Vector Distance

N
um

T
ot

al
 N

ei
gh

bo
rs

(b) Neighbor probability versus hop vector distance

Figure 4.2: Effects of hop vector distance based technique.

Figure 4.2(b) shows the distribution of neighbors versus the hop vector distanced

whenS= 4. The top graph shows the probability that a node with a specific hop vector

distance away from nodei is actually a neighbor ofi. The middle graph shows hop vector

distance for all node pairs (2560x2559) with respect to the hop vector distanced. The

distribution of actual number of neighbors of a node with respect tod is shown in the

bottom figure. We can see that when the hop vector distance of two nodes is greater

than 2, the probability that they are neighbors drops to almost 0. It in turn shows the

effectiveness of how hop vector distance can be used to reduce the value ofui .

From the results, we can see that, filtering based on hop vector distance is very useful

for reducing the size ofUi, especially in large sensor networks. However, utilizing hop

vector distance based approach alone is apparently not enough because although it effec-

tively removes elements fromUi at the central controller, it does not help in determining

which of the remaining elements inUi are actually neighbors. In the next two sections,

we present Bloom filter-based approach that can effectivelymove elements fromUi toVi .
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x1 x2

0 1 1 0 0 0 1 0 1 0 1 0

y1 y2

0 1 1 0 0 0 1 0 1 0 1 0

(a) A standard Bloom filter

x1 x2

0 0 1 0 0 1 1 0 0 1 0 1

y1 y2

0 0 1 0 0 1 1 0 0 1 0 1

(b) A Bloom filter variant

Figure 4.3: Examples of Bloom filters.

4.6 Bloom Filter-based Connectivity Monitoring

4.6.1 Bloom Filter Preliminaries

Before we go into the details of the basic idea of our Bloom filter approach, some funda-

mental knowledge on Bloom filters is introduced.

A Bloom filter [9, 10] is a simple and space-efficient probabilistic data structure that

belongs to the class of approximate membership testers as given in [16]. It is used to rep-

resent a set with much less space requirement than directly representing the entire whole

set. Membership testing over Bloom filters is simple and fastthough a small probabil-

ity of false positives may present. Recently Bloom filters have been widely applied in

networking areas such as distributed caching [35, 86], p2p and overlay networks [13],

measurement [60], and many others.

The standard form of Bloom filter represents a setX = {x1, . . . ,xm} using a bit array

of lengthb bits. There must also bek independent hash functionsh1, . . . ,hk defined, and

each of the function hashes any value in the universal to a value of range[1,b] uniformly.

To construct the Bloom filter, the bithi(x) of the bit array is set to 1 for eachi ∈ [1,k]

and for each elementx ∈ X. To check whether an elementy is in X, we simply check

whether the bit positionshi(y) for all i ∈ [1,k] are 1. It is clearly seen that ify is indeed a

member ofX, it will never be considered not. However, ify is not a member ofX, there is

a possibility that it can be considered as a member ofX (false positive). This is illustrated

in Figure 4.3(a), wherey1 is considered to be in setX andy2 is not.
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The false positive probability can be approximated as [10],

(1− (1− 1
b
)km)k≈ (1−e−km/b)k (4.5)

Given fixed values ofmandb, the value ofk that minimizes the false positive probability

is,

k = ln2
b
m

(4.6)

In another word, given fixed values ofm andk, increasingb (using more space) always

reduces the false positive probability but the most efficient size ofb is,

b = (loge)km (4.7)

There is another formulation of Bloom filter which takes a slightly different form.

The bit array of sizeb is divided intok disjoint bit arrays of sizebk each. Each of the hash

functionsh1 to hk has an output range of[1, b
k ]. To construct the Bloom filter, set the bit

positionhi(x) of bit array i to be 1 for eachx ∈ X. The membership testing is similar

to the standard form. This process is shown as an example in Figure 4.3(b), wherey1 is

considered to be in setX andy2 is not.

Again, there is probability of false positives, the false positive probability can be

approximated as,

((1− (1− k
b
)m)k≈ (1−e−km/b)k (4.8)

which is asymptotically close to the false positive rate of standard Bloom filter.

Given fixed values ofm andb, the value ofk that minimizes the false positive proba-

bility is given by,

k = ln2
b
m

(4.9)
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And given fixed values ofm andk, the most efficient bit array size is,

b
k

= (loge)m (4.10)

Note that the false positive probability of the second form is asymptotically larger

than first of standard form (although the difference is small), because the following in-

equality always holds,

(1− k
b
)m≤ (1− 1

b
)km (4.11)

A more general form of Bloom filter is to expand each bit in the bit array into ac bit

counter. This is also known as the counting Bloom filter [35].Whenever an element inx

is hashed into an entry, we increase the counter associated with that entry by 1 if there is

no overflow (greater than 2c−1). Hence, a counting Bloom filter provides an exact count

of the number of items that match that entry if there is no overflow. Note that whenc= 1,

it becomes a normal Bloom filter described above.

We choose to use the second form of Bloom filter in our design ofconnectivity dis-

covery protocol. This is because the second form allows incremental update through

sending smaller pieces of data, each using a different hash function, and it also allows the

easier combination of results from several bit arrays usingdifferentc values. In the rest

of the paper, when we mention Bloom filter, we refer this second formulation of Bloom

filter.

4.6.2 Basic Idea

To apply Bloom filter in the context of connectivity monitoring, we assume each nodei

sends the central controllerki rounds of counting Bloom filters with number of bits per

entry fromc1 to cki for round 1 to roundki respectively. For each round of Bloom filter,

the bit positions are set according to the hash values of all the elements in neighbor setXi

using the corresponding hash function.
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Upon receiving the Bloom filters from a nodei, the central controller is then able to

remove some nodes fromUi to Wi (reduceui), as well as fromUi to Vi (reduceui and

increasevi) according to the properties described below.

Non-member Removal Property:The first property of a Bloom filter is the same as

the traditional usage of Bloom filters explained in Section 4.6.1. We call itNon-member

Removalproperty. Upon receiving the bit array from a node, the central controller tests

each element inUi and moves those that are not neighbors fromUi to Wi . After enough

rounds of non-member removal fromUi to Wi , the setUi will be Vi and the central con-

troller can confirm the membership of setVi (e.g., by checking the length ofUi is equal to

the total number of neighbors of a node).

Membership Confirmation Property: The second property of Bloom filter applies

whenXi ⊆ (Ui ∪Vi), which means the initial guess of a node’s neighborhood information

at the central controller (Ui) by hop vector distance based scheme contains exactly all the

neighbors of that node. We then have the following theorem.

Theorem 4.1 Hash each element in Xi into a counting Bloom filter with number of bits

per entry c (c≥ 1). Assuming the value of the counting Bloom filter at entry j iss( j), then

if there are only s( j) elements in Ui ∪Vi that hash into entry j, then the s( j) elements in

Ui ∪Vi that hash into entry j must all be in Xi.

Proof: This can be proved by contradiction. Consider one element isin Ui that

hashes into entryj but is not inXi. SinceXi ⊆ (Ui ∪Vi), the number of elements inXi that

hashes into entryj cannot exceeds( j)−1, which is a contradiction because there are at

leasts( j) elements inX hashed into entryj.

Upon receiving Bloom filter data from a node, the central controller can confirm that

some elements inUi are inXi. We call thisMembership Confirmationproperty. This

is an interesting property because unlike the traditional usage of Bloom filters, which

probabilistically tests whether an element is in the set, now we are able to confirm some

portion of the elements are in the set. These elements are moved fromUi to Vi . Note that
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x1 x3

0 1 0 1 1 0 1

x4 x5 x9
Round 1

0

x2x6x7x8x3 x9

0 1 0 1 1 0 1

x4 x5x1

0

Move to WMove to V

U={x1, x2, x4, x5} W={x6, x7, x8}V={x3, x9}

U={x1, x2, x3, x4, x5, x6, x7, x8, x9} W={ }V={ }

x1 x3

1 2 1 1 0 0 0

x4 x5 x9

0

Round 2
x1 x3

1 1 1 0 0 0 0

x4 x5 x9

0

x2

X={x1, x3, x4, x5, x9}

X={x1, x3, x4, x5, x9}

Move to WMove to V

U={ } W={x2, x6, x7, x8}V={x1, x3, x4, x5, x9}X={x1, x3, x4, x5, x9}

Figure 4.4: Bloom filter properties.

this property is not utilized in traditional Bloom filter applications becauseXi is generally

not a subset ofUi ∪Vi whereas in our caseXi is always a subset ofUi ∪Vi .

Counting Removal Property: This property only applies for a counting Bloom filter

with bits per entryc greater than 1. One property of the counting Bloom filter is that it

supports deletion of an element when there is no overflow. Based on this property, the

central controller can remove some elements of confirmed setVi from the counting Bloom

filter if overflow does not occur. We call this property asCounting Removalproperty. Give

a Bloom filter bit array, this property should be applied if possible before the previous two

properties to be applied.

An example showing how these properties can be applied is shown in Figure 4.4. In

the example, initiallyU = {x1,x2,x3,x4,x5,x6,x7,x8,x9},V andW are empty. Two rounds

of Bloom filters are applied with first round a normal Bloom filter withc1 = 1 and second

round a counting Bloom filter withc2 = 2. After first round,x6, x7 andx8 are moved into

W because they all hash into a bit in the bit array with value of 0. x3 andx9 are moved

toV according to membership confirmation property because theyare the only nodes that

hash into the bit array with bit value of 1. In round 2, firstly counting removal property is

applied (x3 andx9), then according to non-member removal property,x2 is moved intoW

and according to membership confirmation property,x1, x4 andx5 are moved intoV.

Integrating these three properties together, the central controller is able to remove
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some of the non-neighbors fromUi toWi , and it is also able to move the confirmed neigh-

bors fromUi to Vi . Note that for non-member removal property, a normal Bloom filter is

more efficient than a counting Bloom filter, whereas for membership confirmation prop-

erty and counting removal property, a counting Bloom filter is better than a normal one

because there is less probability of overflow. The challengenow is when to use a normal

Bloom filter (c= 1) and when to use a counting Bloom filter (c> 1) and of what size. We

answer this question in the next section.

4.6.3 Theoretical Analysis

In the following analysis, we assume the set of neighbor IDs of a node to beX, the

confirmed neighbor set of this node at central controller to beV, and the non-confirmed

neighbor set of this node at central controller to beU . Let m= |X|, v = |V| andu = |U |.

Also letY = V ∪U andn = |Y|= v+u. Note thatV ⊆ X andX ⊆Y. Let Z = V +U −X

andz= |Z| = v+u−m. Z is therefore the set of non-members (but central controlleris

still not sure) inU .

For a Bloom filter sequence ofC = [c1, . . . ,ck], the number of total bits required is

b∑k
j=1c j = mlog(e)∑k

j=1c j . This value increases linearly withk. To reduce the total

number of bits required,k has to be bounded to a small value.

In this section, we investigate the effectiveness of how different sequences of Bloom

filtersC help in identifying neighbors and non-neighbors. We will first analyze the behav-

ior of normal Bloom filters, followed by counting Bloom filters. The behavior of several

rounds of mixed normal and counting Bloom filters will be studied at the end.

Normal Bloom Filters

Hashingm elements into a bit array of sizeb = mlog(e), the probability thatith bit is

set j timesP(m,b,s(i) = j) (or in shortP(m,b, j), or simplyP( j)) is given by binomial

distribution,
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P( j) = P(m,b, j) =

(

m
j

)(

1
b

) j(

1− 1
b

)m− j

=

(m
j

)

(b−1) j

(

1− 1
b

)m

=

(m
j

)

(b−1) j P(m,b,0)

=

(m
j

)

(b−1) j P(0) (4.12)

After a node hashes all its neighbor setX in a normal Bloom filter and sends the data

to the central controller, the central controller will hashall nodes inU andV into the

same size of bit array. The expected number of non-member nodes can be removed from

U is given byP(0)z. The number of non-member nodes that still remain inU is then

(1−P(0))z.

Without considering those nodes already inV (without considering counting removal

property), the number of nodes that can be confirmed by the central controller to be

neighbors is, the number of bits in the bit string that only one node inX hashes into

(P(m,b,1)b), times the probability that for any bit, none of the node inZ (non-member

nodes) is hashed into. This is given by

P(1)bP(z,b,0) (4.13)

whereP(z,b,0) is the probability that a bit remains 0 by hashingz nodes into bit array

size ofb. The percentage of nodes that will be confirmed by the centralcontroller is then

p =
P(1)bP(z,b,0)

m
= P(1)P(z,b,0)(loge) (4.14)

Similarly, in consecutivek rounds of normal Bloom filters (i.e.,c j = 1∀ j ∈ [1,k]),

the average non-member nodes inU at round j is zj = (1−P(0))( j−1)z, and the aver-
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age percentage of nodes that can be identified by thejth roundp j is given by (without

considering the nodes that have been confirmed by previous rounds),

p j = P(1)P(z(1−P(0))( j−1),b,0)(loge) (4.15)

Counting Bloom Filters

In general, a counting Bloom filter is not as space-efficient compared to a normal Bloom

filter for the purpose of non-member removal. However, it cantolerate overflows so

that the membership confirmation and counting removal property can be applied more

efficiently. We will only consider counting Bloom filter ofc = 2 in this section for the

following two reasons. First, we want to use Bloom filter to provide better performance

in reducing communication cost than direct transmission ofcompressed data. A Bloom

filter of c > 2 is too costly. Second, in our application, whenc > 2, the gain of tolerance

on overflow is small compare toc = 2.

Without considering the set of confirmed neighbors,V, Equation 4.13 can be gener-

alized to,

(P(1)+2P(2)+3P(3))bP(z,b,0) (4.16)

Note that for normal Bloom filters in sequence of two, the total number of nodes

identified is (excludingV),

(p1+ p2− p1p2)m (4.17)

where,p1,p2 are given in Equation 4.15.

Comparing Equations 4.16 and 4.17, we have the following theorem,

Theorem 4.2 Two consecutive normal Bloom filter will be better than a counting Bloom

filter with c= 2 in terms of number of neighbors can be confirmed by the centralcontroller

(without considering those that has already been confirmed in previous rounds), if and
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only if,

n >
2log0.7661

log(1− 1
(loge)m)

+m (4.18)

where n is the total number of nodes in U and V, m is the size of X.

Proof: Assumem is large, soP(m,b, j)≈ 1
2(loge) j j ! when j is small.

The number of identified nodes by the central controller by two consecutive Bloom

filter is given by Equation 4.17, by 1 counting Bloom filter ofc = 2 is given by Equation

4.16, let,

(4.17)− (4.16) > 0

⇒ (0.5a2+0.5a−0.25a3)m−0.9667a2m> 0

⇒ 0.25a2+0.4665a−0.5< 0

⇒ 0 < a < 0.7661 (4.19)

wherea = (1− 1
(loge)m)

z
2 .

Thus, whenz= n−m > 2log0.7661
log(1− 1

(loge)m)
, two consecutive normal Bloom filter will be

better than a counting Bloom filter withc = 2.

However, what has been analyzed on counting Bloom filter is purely based on the

non-member removal and membership confirmation properties. Counting Bloom filter

has one more advantage: if the central controller has already identified some portion of

elements to be inX, these elements can be deleted from the counting Bloom filters if there

is no overflow.

Recall thatv = |V| is the number of nodes that have already been identified by the

central controller. By deleting them from the counting Bloom filter, there will be more

“0” entries available which can be useful in non-member removal property. Sincec= 2, it

is possible to delete those that have already been identifiedonly when number of elements

hashed into the bit is 1 or 2.
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The probability that an identified node can be deleted from Bloom filter is given by,

P(1)+2P(2)

∑m
j=1 jP( j)

=
P(1)+2P(2)

1
loge

(4.20)

For those entries where one or two elements are hashed into, deleting the element(s)

will give more 0 bits. Thus, the increase of percentage of 0 bits is,

(loge)P(1)v+(loge)2P(2) v
mv

(loge)m

= P(1)
v
m

+2P(2)
v2

m2 (4.21)

Whenv is close tom, the increase in number of 0 entries is large. Removing more

non-members will help member confirmation and non-member removal in the next round,

and will help to increase the chance of successfully using fingerprint hashing for identifi-

cation explained in Section 4.7.

Thus, when the central controller already knows a large portion of the nodes, sending

one counting Bloom filter is probably an advantage because firstly n has already been

reduced to a small value when the central controller has already known a large portion of

the neighbors of nodei. Second, counting Bloom filter will remove more non-members,

which is an advantage for the next round.

The discussion leads to the following heuristic. If the number of confirmed neighbors

(v) is small comparing to the actual number of neighbors (m), two normal Bloom filters

(c = 1) tends to perform better a counting Bloom filter withc = 2) of the same total size,

and vice versa.

Bloom Filters of k Rounds

In this section, we will try to generalize the previously mentioned heuristic to multiple

rounds (≥ 2) of normal and counting Bloom filter. The goal is to use just enough Bloom

filter data so that the number of unconfirmed nodesm−v is smaller than some pre-defined
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value or small enough to utilize a simple fingerprint value for complete identification

(Section 4.7).

For each roundi, if it is normal Bloom filter, we have

pi = P(1)P(z,b,0) loge

z′ = (1−P(0))z

p′ = p+ pi − pi p (4.22)

If it is a counting Bloom filter ofc = 2, we have

pi = (P(1)+2P(2)+3P(3))P(z,b,0) loge

z′ = (1−P(0)−P(1)p−2P(2)p2)z

p′ = p+ pi− pi p (4.23)

wherez′ andp′ are the updated value ofzandp for the next round respectively.

The final total percentage of nodes can be identified in average is then,

∑
i=1..k

pi− ∑
i=1..k, j=i+1..k

pi p j + ∑
i=1..k, j=i+1..k,s= j+1..k

pi p j ps− . . . (4.24)

It’s direct form is hard to derive but numerical solutions are easy to calculate. As an

illustration, we plot the percentage of neighbors confirmedby the central controller for

m= 30 in Figure 4.5 for different values of initial uncertain set sizeu. Values of different

∑k
j=1c j are plotted, wherec j is the value ofc for the Bloom filter size at roundj. We use

[c1, . . . ,ck] to represent Bloom filters ofk rounds. In the plots, all combinations of using

c = 1 or 2 to sum to the values 2, 3 and 4 are compared. The results for other values ofm

are similar to Figure 4.5 except that the crossover points occur at different values.

From the figure, it can be observed that the Bloom filter sequence that starts with

c1 = 1 always outperforms those that starts withc1 = 2. This coincides with the theorem
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Figure 4.5: Comparison of consecutive Bloom filters (m= 30).
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shown in Section 4.6.3. From Section 4.5, we also see that with using hop vector distance

as a filter,u
m is between 2 to 2.5 whenS= 4 (i.e., initial value ofu input to Bloom filters

is between 60 to 75). This corresponds to 40% to 60% of neighbors to be confirmed in

the best case in Figure 4.5(a), 65% to 85% in Figure 4.5(b), and 85% to 95% in Figure

4.5(c).∑c j = 4 with sequence [1 1 2] or [1 1 1 1] are good choices under this situation.

Given the neighbor set sizemi (known at nodei), as well as initial uncertain set size

ui , nodei is able to estimate the best Bloom filter sequence it requiresfor the central con-

troller to confirm at least the pre-defined percentage of neighbors given by Equation 4.24.

Considering the limited computational resources, these equations may seem complex for

implementation on the sensor nodes. Fortunately, in our applications, the ratiou
m is almost

always below 2.5 after the first technique is applied. Thus, the values of∑k
j=1c j tends to

be small to give a good performance.

4.7 Fingerprint Hashing

Because Bloom filter is a probabilistic structure, as more neighbor nodes are recognized,

fewer new members can be confirmed at the next round. To completely recognize all the

neighbors, a large amount of rounds may be required.

However, if most of the neighbors have been recognized by thecentral controller, a

node can just simply choose to hash all its neighbor IDs into afingerprint value (say 32

bits), and append this fingerprint value to the bit arrays generated by the Bloom filter to the

central controller. After applying Bloom filter on the bit arrays, the central controller may

perform search using the hash value to obtain the complete list of neighbors if needed.

The cost of searching is upper bounded by
( u

m−v

)

. If the central controller sets the

search threshold per node to 106, then any value ofu≤ 22 can be searched, independent

of the value ofm− v (since
(22

11

)

< 106). Similarly, if the search threshold is 104, then

u≤ 12 is always fine.

In cases where the central controller finds it too expensive to perform the search, it
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can ask for more rounds of Bloom filters data from those nodes,which would be very

few in number. Finally, note that since hash values can collide, there is a very small

probability that some neighbors are falsely identified fromnodes inU . However, the

collision probability is very small whenu is small and hash value is sufficiently large.

It is also worth noting that, with fingerprint hashing, the complete neighborhood in-

formation of each node can be obtained with very high probability. However, its commu-

nication cost can be even smaller than the scheme without fingerprint hashing where only

a percentage of neighbors could be obtained, because for theformer case, fewer rounds

of Bloom filters can be required. This is verified by comparingthe simulation results in

Sections 4.9.1 and 4.9.2.

4.8 Flow of H2CM

4.8.1 Connectivity Initialization

There are two parts to the execution, one on the central controller and the other on the

nodes monitored. We only show the pseudo code on the monitored nodes in Algorithm

1. In addition, for ease of explanation, we only show the algorithm for complete connec-

tivity (with fingerprint hashing). If only a pre-defined percentage of neighbors is required

and additional computation cost is also allowed at central controller, the node has to esti-

mate and compare the communication costs of the schemes withand without fingerprint

hashing, and chooses the one with lower cost. This is not included in Algorithm 1.

Each monitored node first estimates the required Bloom filtersequence such that

the communication cost can be minimized while the searchingthreshold can be satisfied

(line 1-15). Note that this estimation is based on the fact that fingerprint hashing will be

applied. If the fingerprint hashing will not be applied, the estimation shall be based on the

percentage of neighbors confirmed as analyzed in Section 4.6.3. This is not shown in the

pseudo code.

The value ofu (line 18) is closely related to the network parameters such as link con-
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Algorithm 1 H2CM at Each Monitored Node
Require: Neighbor tableX, hop count location of neighbors, neighbor ratioα and search-

ing thresholdthresh.
1: function BFSEQUENCE(u,m,b, thresh)
2: nBins← 1,search← ∞
3: while search> threshdo
4: for c∈ {c|∑c[i] = nBins,c[i] = 1 or 2} do
5: Calculatezandv using Equation 4.24
6: u←m−v+z
7: if

( u
m−v

)

< searchthen
8: search←

( u
m−v

)

,b f s← c
9: end if

10: end for
11: nBins← nBins+1
12: end while
13: return b f s
14: end function
15:

16: j← argmaxi∈X di

17: m← |X|,u← ⌈αm⌉,b←⌈log(e)m⌉,s←mlog(|T|)
18: c← BFSequence(m,u,b, thresh)
19: if log(|T|)+b(∑c[i])+sizeo f(sig)≥ s then
20: Send IDs directly
21: else
22: Allocate space ofb(∑c[i]) bits
23: for i ∈ [1, len(c)] do
24: Do Bloom filtering of each neighbor IDs
25: end for
26: sig← signatures of neighbor IDs
27: Send ID[ j], Bloom filter andsig
28: end if

78



F B F m I D m a x B F D A T A S I G

Figure 4.6: Packet format for connectivity monitoring.

nectivityandlink asymmetricity, and it can be obtained in several ways. A node can either

estimate locally based on the value ofmor obtain from central controller’s broadcast mes-

sage. The simulation in Section 4.5 shows that with hop countvector based localization

and with relatively low link connectivity and high link asymmetricity, 2m to 2.5m is the

good approximation on upper bound ofu (i.e., in line 18,α = 2 to 2.5). We will also

apply this settings in our evaluation of large scale sensor networks.

After computing the Bloom filter bit sequence, a check (line 21)1 is performed to

see if it is better to simply send the node IDs directly instead. Otherwise, the Bloom filter

sequence and fingerprint of the neighbor IDs are sent to the central controller (line 24-29).

The packet format is shown in Figure 4.6. The two fields (F and BF) are used to

identify if the data is encoded using directly neighbor IDs,bitmap, Bloom filter or any

other compression schemes. The fieldsm and IDmax are used to indicate the number of

neighbors seen and largest hop vector distance. The remaining bytes (BFDATA and SIG)

are used to store the Bloom filter sequence and fingerprint data.

4.8.2 Connectivity Update

Since the connectivity changes over time, the algorithm mayneed to be applied period-

ically. However, if the connectivity of the whole network does not change too much,

collecting the connectivity information from scratch periodically may not be a good idea.

The common way to perform incremental update is by differential method, i.e., a node

will only report to the central controller about what has changed.

The proposed algorithm can be easily extended to this differential update process,

as shown in Algorithm 2. For the set of neighbors that has beenremoved, the original

1Note that in the evaluation section, to compare the performance of H2CM with other techniques like
maximal compression of bitmap, this check is not performed.
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Algorithm 2 Connectivity Update Algorithm (At Each Node)
Require: Old neighbor tableX, added neighbor setX1, removed neighbor setX2, hop

count vector (or location) information of neighbors, andthresh.
1: i← argmaxi∈X+X1−X2di

2: mold← |X|,mnew← |X +X1−X2|
3: m1← |X1|,u1←⌈αmnew⌉,b1← ⌈log(e)m1⌉
4: m2← |X2|,u2←mold,b2← ⌈log(e)m2⌉
5: s←min(|T|,mnewlog(|T|))
6: c1 = BFSequence(m1,u1,b1, tresh)
7: c2 = BFSequence(m2,u2,b2, tresh)
8: if log(|T|)+b1(∑c1[i])+b2(∑c2[i])+2sizeo f(sig)≥ s then
9: Send change of neighbor IDs (or Bitmaps) directly

10: else
11: Allocate space ofb1(∑c1[i])+b2(∑c2[i]) bits
12: for i ∈ [1, len(c1)] do
13: Do Bloom filtering of each neighbor IDs
14: end for
15: for i ∈ [1, len(c2)] do
16: Do Bloom filtering of each neighbor IDs
17: end for
18: sig1← fingerprint of added neighbor IDs
19: sig2← fingerprint of removed neighbor IDs
20: Send ID[i], Bloom filter andsig
21: end if
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neighbor set at the central controller becomes the initial uncertain setU . Each node

knows the exact value of|U | and number of neighbors that have been removed, so it

may estimate the Bloom filter sequence required with good accuracy. For the set of new

neighbors, the initial uncertain setU is the one constrained by the hop vector distance

minus the original neighbor set. Same algorithm as introduced in previous sections can

be applied.

4.8.3 Further Extensions

The algorithm presented is for a single connectivity threshold. It is possible to extend the

approach to monitor discrete link quality values with a small number of discrete levels.

For example, to retrieve the link quality information of a node, we can first apply the

connectivity monitoring algorithm introduced starting from the lowest link quality. Once

the neighborhood information for the lowest link quality isknown, we proceed with the

next higher link quality by setting the initial uncertain set to be the set of confirmed

neighbors in the previous round. The algorithm proceeds till the highest link quality.

4.9 Evaluation

In this section, we show our evaluation results using both simulation and testbed experi-

ments. In the simulations, we assume that the packets can be delivered without any loss.

In fact, as long as the hop vectors of sensor nodes are known tothe central controller, any

subsequent packet losses only affect the information accuracy of the node that initiates

the packet, and they do not affect the overall correctness and efficiency of the algorithm.

Also note that since energy consumption of sensor nodes is dominated by wireless com-

munication costs, in the simulations, we only consider the communication costs.
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λ [ ] [1] [1 1] [1 1 1] [1 1 2]
- u m-v u m-v u m-v u m-v u m-v
5 19 10 10 6.6 5.3 3.3 2.3 1.4 1.0 0.6
10 46 21 27 15 15 9.8 8.1 5.3 3.7 2.0
20 105 42 64 34 38 23 21 13.9 10 5.9
30 166 63 103 52 57 36 31 22 17 9.2

Table 4.1: Average values ofui and(mi−vi) after applying Bloom filter.

4.9.1 Large Network without Fingerprint Hashing

In the first set of experiments, we evaluate the performance of connectivity monitoring in

a large network using hop vector distance filtering and Bloomfilter. Fingerprint hashing

is not performed.

In order to compare the simulation results with the analysisin Section 4.6.3, and to

illustrate the performance of different sequences of Bloomfilters, we choose to use a fixed

sequence of Bloom filter. Therefore, the set ofc j used is the same for all nodes (instead

of depending onm as proposed in the algorithm).

We simulate a large network of size 32×32 with node density varying from 5 to 30

(uniform distribution) per unit square. The maximum wireless communication range is

normalized to 1. Each node has a unique ID of size 16 bits, which can support a network

of size 216.

We do not take the communication cost of finding hop vector into consideration due

to the following reasons. Firstly, it is a fixed cost. After the hop vector distances have

been sent to the central controller, as long as the sensor nodes do not move, this hop vector

information can be reused for all subsequent connectivity monitoring cycles. Secondly,

the cost of hop vector is relative small when the number of nodes to be monitored is large

and the cost can be amortized over many monitoring cycles.

While a wide range of link connectivity and asymmetricity have been evaluated, we

will only show the result for the setting of link connectivity and link asymmetry equal to

0.8 and 0.2 respectively. The communication cost is set to∑ j c j = 0, 1, 2, 3 or 4.
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Figure 4.7: Performance hop vector and Bloom filter.

Table 4.1 shows the average values ofu andm− v for different node density after

utilizing the bit patterns generated by different sequenceof c js. The integers within the

square braces denote the values ofc j used. Note that [] means no Bloom filter data is

utilized (only the hop vector distance based scheme is performed).

It can be observed that for low node density, such as 5, even without any Bloom filter,

it is still possible to search based on fingerprint value if computational threshold is set to

106. Even for high node density, a Bloom filter sequence of [1 1 2] can still allow the

central controller to confirm about 90% of the neighbors (without applying fingerprint

hashing).

Figure 4.7(a) shows the results when different combinations of c j are used with dif-

ferent node densities. The result shows that sequence [1 1 2]performs better than that of

[1 1 1 1]. This coincides with the results in Figure 4.7(b). [11 1 1] is better than [1 1 2]

only when initial uncertain set sizeu is much larger than number of neighborsm.

Figure 4.7(b) shows the average neighborhood information sent at each node versus

the percentage of neighbors confirmed for different Bloom filter sequences. The line

(MC) in the plot shows the neighborhood data required to let central controller confirm

the same percentage of neighbors using maximal compression. The result shows that

by using Bloom filters, the cost is strictly less than (about 50% to 60% of) the cost of

maximal compression.
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In summary, using only the hop vector distance based scheme and the same Bloom

filters settings for all nodes, the central controller cannot obtain the complete neighbor-

hood information when∑c j ≤ 4. However, if one does not require 100% of neighborhood

information, hop vector distance based scheme and Bloom filters are able to achieve up

to 60% of savings in communication comparing to maximal compression for the same

amount of confirmed neighbors. The result will also improve if each node chooses the

sequencec j based on the average number of neighbors, which can be implemented using

the same flow shown in 4.8.

4.9.2 Performance in Large Network

In this simulation, we evaluate the performance of H2CM in large sensor networks. All

three techniques are used and the length of the fingerprint used is 32 bits. The network

setting is same as previous section.

First, as an illustration of the utility of the fingerprint, the cumulative distribution

function for number of searches required after the Bloom filter sequence [1 1 2] is applied

is shown in Figure 4.8(a). It can be seen that a large portion of nodes (80%) requires little

or no additional computational (104 or less) even for high node density ofλ = 30. If one

allows a search cost limit of 106, then for node density of 10 (> 10,000 nodes), close to

100% of all neighbors can be found in all our simulations. With node density of 30, less

than 5% of nodes will require larger Bloom filter sequence (∑ j c j > 4).

The communication costs of different connectivity monitoring approaches are shown

in Figure 4.8(b). They are maximal compression (MC), fixedc j sequence of [1 1 2] for

all nodes (BF [1 1 2]) and two cases where each node chooses itsBloom filter sequence

such that the number of searches required at central controller is smaller than 106 and

104 respectively. These are labeled as VarBF(106) and VarBF(104). In the algorithm, we

assume thatui
mi

is 2.5 after hop vector distance filtering.

For fixed Bloom filter sequence, the savings is about half the cost of maximal com-

pression. VarBF(106) achieves the most savings. At low node density, the savings is up to
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Figure 4.8: Performance of H2CM in large and midsize networks.
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85%. Even at high node density, the reduction is 65%. The improvement of VarBF(104)

over static sequence is small, indicating that significant search cost may be needed before

the Bloom filter sequence can be shortened.

VarBF(106) is able to obtain all neighbor information in most cases except for the

highest node density. When node density is 30, we observe that for less than 3% of the

nodes, the computational cost needed at the central controller exceeds 106. Among these

nodes with unconfirmed neighbors, the average number of unconfirmed links is 17 out of

an average of 66 neighbors.

4.9.3 Performance in Mid-Size Network

In this section, we study the performance of our algorithm ina medium size sensor net-

work using simulation. The network is a 4×4 square and node density varies from 5 to 30.

The average total number of nodes in the network is from 80 to 500. As sensor testbeds

with hundreds of nodes have been built (e.g. the Kansei sensor testbed [?]), networks of

such sizes are of practical interest.

Figure 4.8(c) shows the result of average data required at each node for MC and

VarBF(106). Each data point is an average of 100 runs. 4 beacons are used and fingerprint

is 32 bits. The link connectivity used is 0.8 and asymmetricity is 0.2. The result shows that

communication cost can be reduced by 40% to 70%. The number ofunconfirmed links is

very small. However, we observe that, among all the simulation instances, a very small

number of nodes wrongly identify their set of neighbors due to collision of fingerprint (6

out of 160,000 cases).

4.9.4 Connectivity Update

In this section, we evaluate the performance of H2CM for differential update where 10%

of the existing links are removed and same number of new linksamong random chosen

neighbor pairs are added. Simulation result is shown in Figure 4.8(d). With VarBF(106),
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the communication cost varies from about 35% to 45% of the cost using MC at high

density. At low node density, the cost of VarBF(106) can be higher as only few neighbors

have changed. Nevertheless, the total cost is small as well.

4.9.5 Testbed Evaluation

In this section, we present evaluation on a 34 node testbed made up of a combination of

Mica2 and Mica2Dot nodes installed in a typical indoor officeenvironment. We show

that H2CM can be efficiently implemented in TinyOS and run in actual deployment using

real sensor motes. In our implementation, we use only 80 lines of NesC code and 600

bytes of extra image size (code size).

In the evaluation, 33 nodes sent connectivity information to a single Mica2 mote (cen-

tral controller) via the collection tree. Link layer packetretransmissions are also enabled

to cope with possible packet losses. Since the number of nodes in the network is small, we

do not consider hop count information and only apply Bloom filter and fingerprint based

hashing. The total data size required per node for H2CM is 40 bits (21 bit hash), which is

the same as using bitmap. Note that sending neighbor IDs directly requires much larger

data size compared to H2CM and bitmap.

Also note that in TinyOS 2.x, each node at most maintains 10 most “useful” neighbors

at link layer to save the memory (RAM) and maintenance cost. As a result, the Bloom

filter size is always 10log(e) ≈ 15 bits. Thus, each node sends the number of neighbors

(4 bits), one round of Bloom filter of size 15 bits, and a fingerprint of size 21 bits. The

total data size is 40 bits, which is the same as using optimal bitmap. Note that sending

neighbor IDs directly requires at least 60 bits per nodes because each node ID requires at

least 6 bits for 34 node network. Using default identifier size of 16 bits, the cost will be

160 bits instead. at least 60 bits per nodes because each nodeID requires at least 6 bits for

34 node network. Using default identifier size of 16 bits, thecost will be 160 bits instead.

We run the experiment over 12 hours and obtained over 4000 snapshots of the overall

connectivity. Due to the small fingerprint size, the collision probability of the fingerprint
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Figure 4.9: Distributed node failure detection.

is about 0.4%. When we increase the data size to 48 bits and set the fingerprint to 29 bits,

we do not find any collisions during the experiments.

4.10 A Simple Application – Node Failure Detection

Knowing the connectivity information at the central controller can greatly facilitate vari-

ous management tasks such as root-cause analysis and protocol debugging. In this section,

we present a simple application of connectivity monitoring– detecting node failures in

the network.

4.10.1 Node Failure Detection

The simplest approach to node failure detection is to let each sensor node periodically

send heartbeat messages to the central controller [81]. Once the central controller does

not hear heartbeat messages from a particular node over a period of time, it concludes

that the node has failed. A major disadvantage of this approach is that it is not bandwidth-

efficient.

Distributed node failure detection algorithms can incur lower communication but

require collaboration among neighbor nodes for decision making. However, such ap-
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proaches may experience inevitable false positives. An example is shown in Figure 4.9.

When an obstacle (the shadowed bar region in the figure) blocks the direct communica-

tion link between nodeA and nodeB, nodeA may falsely conclude that nodeB fails. The

correct decision can only be made when nodeA collaborates with another node say node

C, who knows the presence of nodeB. However, nodesC andA may not be able to com-

municate directly. Enabling coordination among these potentially disconnected nodes in

a distributed manner is a challenging problem. In [85], the authors propose a protocol that

each node locally monitors its 1-hop neighbors and the information aggregates along the

path to the central controller. However, this approach utilizes the bitmap structure and is

not scalable because the packet size will increase linearlywith the total number of nodes

in the network.

Using connectivity information collected from all nodes using H2CM, node failure

detection can be trivially done at the central controller. However, if all the nodes in the

network send their connectivity, the amount of redundant information is excessive. For

the purpose of node failure detection, only a small subset ofnodes is needed. In the rest of

this section, we present an algorithm to select the subset ofnodes to send and update their

connectivity information to the central controller so thatthe node failure can be detected

efficiently and accurately.

4.10.2 Connectivity-based Node Failure Detection

The proposed algorithm is based on the concept of dominatingset. For a communication

graphG(V,E) of a sensor network, whereV represents the sensor nodes andE represents

the direct communication links, a dominating set is a subsetof V where each node inV is

either in the dominating set or has at least a neighbor in the dominating set. An example

of dominating set is shown in Figure 4.10, where the grey nodes belong to the dominating

set.

It is clear that for the purpose of node failure detection, only the nodes in the dominat-

ing set need to send and update their neighborhood information to the central controller.
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Figure 4.10: Illustration of a dominating set.

The detailed algorithm is discussed below.

Initialization: In the initialization phase, each node distributively elect themselves

to join the dominating set. All the nodes in the dominating set send their neighbor table

to the central controller, utilizing the H2CM algorithm proposed. The problem of mini-

mum dominating set is NP-complete. However, finding the minimum is not necessary for

this specific application. This is because the network connectivity constantly fluctuates

due to the unstable wireless links, and for each time instant(a snapshot) of the network

connectivity, the minimum dominating set may contain a large portion of different subset

of nodes, which is hard to maintain. Although a minimum dominating set can save the

communication cost in initialization phase, it is likely tocost more in maintenance phase.

In this paper, we utilize the simple idea of building a maximal independent set pro-

posed in [25]. A subset of the nodes inG is said to be independent if it does not contain

two adjacent nodes. It is maximal if it does not have a proper independent superset. A

maximal independent set is also a dominating set. The distributed maximal independent

set election algorithm is straightforward and is shown in Algorithm 3.

Each node maintains two states: whether it is a dominator (belongs to the dominating

set), and if it is not a dominator, whether it is dominated (has a direct neighbor who is a

dominator). If a node decides to join the dominating set, it broadcasts a JOIN message

to its direct neighbors to announce that it is a dominator. All its direct neighbors will
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Algorithm 3 Dominating Set Initialization
Require: Neighbor tableX

1: dominator← f lase, dominated← f alse
2: while dominator= f alseanddominated= f alsedo
3: N← non-dominated neighbors inX
4: if ID < min{n∈ N} then
5: Send JOIN message
6: dominator← true
7: end if
8: end while
9:

10: Upon receive JOIN message
11: if dominator= f alsethen
12: dominated← true
13: end if

mark themselves as dominated. Only a non-dominated node whohas smallest ID among

all its non-dominated neighbors can nominate itself as a dominator. Note that the algo-

rithm finds an independent set, where no two direct neighborsboth elect themselves as

dominators.

Dominating Set Maintenance: As wireless links are not stable, a dominated node

may temporally lose connection to a dominator, and two dominators may be temporally

connected to each other and thus breaking the property of independent set. Under these

situations, the dominating set maintenance protocol is needed.

We require that the neighbor table of each node includes one more field: the degree of

domination. A node withk distinct direct neighbors who are dominators has a dominating

degree ofk (k-dominated). This information can be easily exchanged among all 1-hop

neighbors. Once more than one dominators become direct neighbors, the dominator with

smallest number of 1-dominated neighbors will choose to leave the dominating set. It will

broadcast a QUIT message and declare that it is not a dominator any more. Note that after

a dominator leaves the dominating set, it is dominated. Its 1-dominated neighbors will

become non-dominated.

A dominated node can become non-dominated if it loses the direct connections to

all dominators. All non-dominated nodes in the maintenancephase elect themselves for
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new dominators so that they are all dominated. The election is based on two criteria: (1)

whether those non-dominated nodes have been dominators (and left the dominating set)

before; (2) the smallest node ID. The first criterion is to help reduce the communication

cost, because for those who have been dominators before, only the update on neighbor-

hood information are required to be sent to the central controller.

Dominators periodically send neighborhood information orneighborhood update to

the central controller using the proposed H2CM protocol (including the update protocol).

Note that due to the link instability, some nodes may be in non-dominated states tempo-

rally. This will cause temporal false positives in node failure detection. These temporal

false positives can be resolved soon because once a non-dominated nodes is dominated (or

becomes a dominator), its status will be sent to the central controller immediately. The

central controller can effectively reduce the false positive rate by observing over some

time period before announcing the failure of nodes.

4.10.3 Evaluation

We simulate a network of size 8×8, where the node transmission range is normalized to

1. Unlike the previous section, packet losses are introduced to indicate link fluctuations.

The packet losses over any direct communication pairs are controlled by a uniform ran-

dom variable (independent geographically) with mean equals to the defined packet loss

rate. Each node broadcast “HELLO” messages periodically and if a node does not hear

“HELLO” messages from a neighbor over three cycles, it will consider that the link is

broken. Note that HELLO message are broadcasted and there isno retransmission. We

assume that link level retransmission for unicast is able todeal with the possible message

losses. Thus the neighborhood data can still be reliably collected at the central controller.

We compare the communication cost of the proposed protocol to the standard data

collection method where each node periodically send heartbeat messages to the central

controller. We do not consider the cost of retransmissions because retransmission has

same impact on both protocols. The average data generated per node for the standard
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Figure 4.11: Communication cost for node failure detection.

method (each round) is the size of node ID. Therefore, in Figure 4.11, we only show

the normalized average data generated per node for the proposed protocol. Note that for

H2CM, the variable size Bloom filter with search limit of 106 is utilized.

Since the simulated area is fixed, the number of nodes in the dominating set elected

in the initialization phase is about 35-40 nodes for all nodedensities evaluated.

The communication cost for the initialization phase and maintenance phase are differ-

ent since in the initialization phase, the dominators are required to send all neighborhood

information to the central controller. The average data required for each node is only 20%

to 40% of the normal data collection method. In the maintenance phase, the average data

per node is much smaller. With 20% of packet loss rate, the communication overhead

(including both update data for old dominators and new neighborhood information for

new dominators) is only 5% to 10% of the simple heartbeat method. When the packet

loss rate is increased to 40%, the average overhead per node is still only 13% to 15% of

the heartbeat approach.

When the loss rate is 20%, the instant false positive is only 1.3%. When loss increases

to 40%, instant false positive increases to 6.7%. If the central controller announces the

failure of a node only when not hearing any information of that node over two cycles of

connectivity information gathering, the false positive rate becomes 0.3% and 0.8% for

packet loss rate of 20% and 40% respectively.
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4.11 Summary

In this chapter, we presented H2CM that can efficiently monitor connectivity of wireless

sensor networks for various sizes. Given estimates of the network size and node density,

H2CM selects one or more techniques to obtain connectivity. Simulation results show

that H2CM works best for large network (> 1000 nodes) achieving savings of up to 85%

compare to maximal compression of neighborhood information, even to achieve the com-

plete connectivity information. We also have demonstratedthat the algorithm is practical

and can be easily implemented on TinyOS with little overhead. Finally, an application of

connectivity monitoring is presented.
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Chapter 5

Macroscale Topological Hole Detection

and Monitoring

5.1 Introduction

A topological hole in wireless sensor networks is a kind of network topology anomaly. It

is the phenomenon that the routing path between two nodes is unnecessarily long relative

to their physical locations. In the continuous domain, a hole is simply interpreted as a

phenomenon that the geodesic path between some pair of two points is not a straight line.

The causes of holes include fire, explosion, jamming attacks[5] introduced by intruders

or impairment of wireless links due to obstacles.

In this chapter, the problem of dynamic detection and monitoring of macroscale topo-

logical holes is investigated. Specifically, we would like to detect the formation of a hole

in the network, estimate its size (in terms of breadth and depth defined later) and con-

tinuously monitor its transformation (e.g. expansion, contraction, or movement), if any.

Knowing the answers to these questions can greatly facilitate decisions related to public

safety and network administration. For example, with knowledge of the topological hole,

we can quickly gauge the impact (e.g. extent of fire damage), decide if deployment of

more sensor nodes is needed, and possibly identify where a jamming attacker is and its
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activity. Note that we focus on the detection oflarge-scaletopological holes as it may

not be worthwhile detecting holes that do not cause significant network changes [100].

Also note that, although the focus in this chapter is on topological holes, as introduced in

Chapter 1, in most cases, a large-scale topological hole is “equivalent” to a coverage hole

due to the lack of nodes in the same area.

Finding holes in sensor networks has been extensively studied in literature [100, 40,

36]. Most of the work focuses on identifying static holes (e.g., recognizing all the bound-

ary nodes of a static hole). To detect and monitor the dynamics of holes, these protocols

have to be run periodically, which is neither cost-efficientnor feasible in real-time because

they normally involve many rounds of global message flooding[100, 40]. The approach

in this chapter is based on the observation that hole formation creates irregularities in the

network connectivity and the changes in the network connectivity contains important in-

formation about the hole. The approach is reactive and communication is triggered only

when a hole is formed, unlike a polling/sampling based method where communication

needs to be performed periodically. In addition, we do not attempt to map the boundary

of the hole, which is expensive since many nodes need to be identified. Instead, only a

small number of dynamically identifiedindicator nodesare required to report their status

to the sink nodes. We believe that this is the first attempt to provide such reactive detection

and monitoring mechanism for topological holes.

The main contributions in this chapters are as follows. (1) An approach to detect

holes dynamically based on only connectivity changes is presented. (2) The topological

properties of theindicators nodesare identified. How indicator nodes can be locally

elected efficiently is also shown. The proposed algorithm only involves the “local” nodes

around the hole and thus the communication cost is small compared to global message

flooding. (3) Algorithms on identifying the type of hole transformation (e.g. expansion,

contraction or movements), and estimating the hole (or a snapshot of a transforming hole)

based on connectivity changes detected by the indicator nodes are proposed. (4) Lastly,

some additional properties of indicator nodes are shown. How these properties can be

96



used to estimate the hole size even without localization information is proposed.

5.2 Simple Hole Detection

In this section, a simple hole detection algorithm based onchangesin connectivity is

presented. Hence, if a hole is already present in the initialdeployment, the algorithm will

not be triggered and existing hole detection algorithms [100, 39] will be needed.

5.2.1 Network Connectivity Model

A large number of sensor nodes is assumed to be deployed in a region. During the initial

deployment, network connectivity information is distributed in the form ofn (n ≥ 1)

shortest path trees rooted atn source nodes(or anchors). The source nodes should be

well-separated from each other. They can be centrally allocated or distributively selected

using the proposed algorithms in [61].

Each node locally maintains a hop count vector to then source nodes, and periodi-

cally broadcasts this hop count vector to its neighbors. These messages can be embedded

in the “hello” messages required for link maintenance and thus incur minimum extra com-

munication cost. For example, for a system withn source nodes and limited to 255 hops

or less, the extra data required for each “hello” message isn bytes. The “hello” message

broadcast interval isThello. A node switches parent when it does not hear from its current

parent (on the tree rooted from a particular source node) after a timeout value ofTpto.

For the time being, we will assume that one and only one hole forms and stays static

afterwards. The problem of dynamic hole and multiple holes will be addressed later.

5.2.2 Connectivity Based Hole Detection

Intuitively, when a hole forms, connectivity information maintained at the sensor nodes

changes. By letting the sensor nodes observe their own connectivity changes, the forma-

tion of the hole can be detected.
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Figure 5.1: Hop count changes versus link fluctuations.

The basic hole detection mechanism is very simple. If a node finds that its hop count

to any source node increases by at least a threshold valueH, the node concludes that a

hole has formed and sends a message to the sink nodes.

The first question that arises is:what should the value of H be?The appropriate

threshold depends on temporary link quality fluctuations that result in changes of the

connectivity information over time. We determine this value through simulation.

The simulation result for average maximum hop count change seen by nodes due to

link quality fluctuations, which results in packet losses, are shown in Figure 5.1(a). In

the simulations,Tpto is set to 3Thello, and the node density and packet loss rate are varied.

Figure 5.1(b) shows the distribution of maximum hop count changes for all the nodes for

the scenario where the average node degree is 15 and packet loss rate is 30%. Simulation

time is 3000 seconds.

The simulation results show that the maximum hop count change for any node in a

large network affected by the link fluctuations is small (only 1 or 2 hops for most nodes).

There is a trade-off in selection of the threshold value. If it is too small, there will be

a lot of false positives, and if it is too large, the algorithmcan only detect relatively large

holes. We set the hop count change thresholdH to be5. This is the value at which it is

unlikely to have false positives in hole detection, and where the size of the hole starts to

have significant impact on the network (a packet has to be transmitted at least 5 more hops
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to go around the hole towards some source node). A smaller threshold of 4 or even 3 can

be used if some false positives can be tolerated and detection of smaller holes is required.

This simple hole detection is obviously insufficient. Therecan be many nodes that

detect changes in hop counts more thanH. In the rest of the paper, we will introduce the

idea of indicator nodes and how they can be utilized.

5.3 Indicator Nodes and Their Properties

When a hole forms, many nodes in the network detect changes inhop count. Letting all

of them send information to the sink nodes is expensive.

Unlike many previous protocols [100, 40, 36, 58, 24] that tryto identify all nodes on

the boundary, we only require a few nodes to convey information about the hole to the

sinks. We call these nodes theindicator nodes. This section describes the topological

properties of these nodes and explain why they are unique andimportant.

Definition 5.1 After the formation of a new hole, the set ofindicator nodes Ii (i ∈ [1,n])

are the nodes that have the largest changes in hop counts relative to a source node si .

In the rest of this section, we show several important properties of indicator nodes

which will be useful later. In particular, we show that (1) anindicator node must lie on

the boundary of a new hole, (2) the convex hull of all indicator nodes provides a lower

bound on the convex hull of the hole.

These properties will be discussed and proven in the continuous domain, in which the

indicator nodes will be referred to as theindicator points. With sufficient node density,

the properties of indicator points in continuous domain canbe approximated to sensor de-

ployment in discrete domain. The properties of indicator points in continuous domain can

be viewed as an approximation to sensor development in discrete domain with sufficient

node density.

First, we introduce some basic definitions in computationalgeometry in the continu-

ous domain [71].
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Figure 5.2: Illustrations in continuous domain.

5.3.1 Definitions and Preliminaries

Let F be a closed polygonal space in a 2-D plane referred to asfree spaceand lets∈ F

be a point called the source point. LetO consists ofm (open, bounded) simple polygonal

obstacles/holes. In the rest of the section, we assumeF to be unbounded andO is the

complement of free spaceF . We will focus on polygon holes as many other shapes can

be approximated as polygons. LetV denotes the set of vertices inF . V also denotes the

vertices of the boundary of the inner holes/obstaclesO. This is shown in Figure 5.2(a)

whereO is the shadowed area enclosed byv1 to v5 andV is the set{v1,v2,v3,v4,v5}.

Geodesicpath is defined as the shortest obstacle-avoiding path. Letπ(p,q) denote a

geodesic path from a pointp to a pointq, wherep,q ∈ F . Let l(p,q) be the length of

π(p,q) and|pq| be the Euclidean length betweenp andq. In Figure 5.2(a),π(s, p) is the

path{s,v1, p}.

The pointr is root of p if for some geodesic pathπ(s, p), r is the last vertex along

π(s, p)\{p} at whichπ(s, p) turns. The set of all roots ofp is denoted byR (p). In Figure

5.2(a),v1 is the root ofp andR (p) = {v1}.

TheShortest path map, SPM(s,O), is a partition ofF into maximal regions (called

cells) that correspond to sets of points with the same root orset of roots with respect tos.

More formally, SPM(s,O) is the partitioning ofF into cellsC(R ) = P{x∈F |R =R (x)}

corresponding to subsetsR ⊆V
S{s}.

If R = {v} is a singleton, it is easy to show thatC({v}) is two-dimensional (i.e., a
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region in the plane) and connected. As shown in Figure 5.2(a), C({v1}) is the area shaded

by horizontal lines, i.e., all points in that area have same root v1. If R = {vi ,v j} is a pair,

then one can show thatC(R ) is one-dimensional (i.e., a curve) and possibly disconnected.

We callC({vi ,v j}) thebisectorof verticesvi andv j . The intersection of the bisector

and the boundary of a hole is called thebisector point. In Figure 5.2(a), the curve that

containsp1 andp2 is the bisector ofv3 andv4, i.e., all points along the curve have same

root set{v3,v4}. p1 is the bisector point. IfR has cardinality of at least three, thenC(R )

is either empty or a single point, called anSPM-vertex.

Finally, two results that will be useful later are stated below

• Each bisector is the union of a finite set of closed subarcs of acommon hyperbola.

(A straight line is considered to be a degenerate case of a hyperbola.) There is at

least one bisector point on the boundary of each obstacle[71].

• Shortest path froms to any point inF among the set of polygon obstaclesO is a

polygonal path whose inner vertices are vertices ofO [26].

5.3.2 Properties of Indicator Points

Let O andF be the initial hole space and free space respectively, andO ′ andF ′ be the

new hole space and free space after a new holeo′ is formed. We assume there is only one

new hole and leave the discussions on more than one new hole inSection 5.7. We further

assume thato′ does not intersect with any of the existing holes inO.

Definition 5.2 For any point p inF ′, the geodesic distance change of p relative to a

source point s upon the formation of the new hole is lF ′(s, p)− lF (s, p) . Theindicator

points are defined as the points with largest change in geodesic distance among all points

in F ′.

Theorem 5.1 Upon formation of a new hole o′, the indicator points must lie on the

boundary of o′. If o′ is a convex polygon, the indicator points are also the bisector points

of o′.
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Figure 5.3: Proof of Theorem 5.1.

Proof: As shown in Figure 5.3(a), letsbe an arbitrary source point and the geodesic

pathπF (s, p) passes throughv1, v2,. . ., andvk. We also user to representvk as it is the

root of p in F . Assume that the geodesic distance ofp to s changes due to the new hole

o′, i.e.,o′ “cuts” πF (s, p) at some places.

The basic idea here is to prove that for any such pointp, it is always possible to locate

a pointp′ on the boundary of the holeo′ such thatp′ has a larger geodesic distance change

compared top.

(Case 1)We first look at the situation wheno′ has direct impact on the geodesic

distance ofp, i.e., the last segment in the pathπF (s, p) vkp is blocked byo′. Let r (the

point vk) be the root ofp in F . Let p′ be the intersection point of the boundary ofo′ and

the segmentrp such thatp′ is closest top alongrp, i.e., pp′ is fully in F ′. Let r ′ be the

root of p′ in F ′. An example is shown in Figure 5.3(b), wherer is the root ofp in F and

r ′ is the root ofp′ in F ′.
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The geodesic distance froms to p in F is given by definition

lF (s, p) = lF (s, r)+ |rp|. (5.1)

Sincep′ is on the segmentrp, it is easily seen that the geodesic distance froms to p′

is given by

lF (s, p′) = lF (s, r)+ |rp′|. (5.2)

Similarly, the geodesic distance froms to p′ in spaceF ′ is

lF ′(s, p′) = lF ′(s, r
′)+ |r ′p′|. (5.3)

For the geodesic distance froms to p in F ′, we consider the following two cases.

When r ′p is also fully inF ′, i.e., neither the original holes inO, nor the new holeo′

intersects with the segmentr ′p,

lF ′(s, p)≤ lF ′(s, r
′)+ |r ′p|. (5.4)

We then have,

(lF ′(s, p′)− lF (s, p′))− (lF ′(s, p)− lF (s, p))

≥ |r ′p′|− |rp′|+ |rp|− |r ′p|

= |r ′p′|+ |pp′|− |r ′p| ≥ 0 (5.5)

The last inequality is given by triangle inequality. Equality holds only whenp is the

same asp′, i.e., p is on the boundary ofo′.

The second case is whenr ′p is not fully inF ′, i.e., it is either blocked by the holes in

original hole spaceO, or by some parts of the new holeo′, or both.

Since bothr ′p′ andpp′ are inF ′, one of the obstacle avoiding path (needs not to be

the minimum) fromr ′ to p is shown in Figure 5.3(c). This path can be constructed by
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going around theconvex hullof all the obstacles inside the triangler ′p′p. In this case,

lF ′(s, p)≤ lF ′(s, r
′)+

n

∑
i=1
|r i−1r i |. (5.6)

We then have,

(lF ′(s, p′)− lF (s, p′))− (lF ′(s, p)− lF (s, p))

≥ |r ′p′|− |rp′|+ |rp|−
n

∑
i=1
|r i−1r i|

= |r ′p′|+ |pp′|−
n

∑
i=1
|r i−1r i | ≥ 0 (5.7)

The last inequality in Equation 5.7 can be proven in many ways. The simplest intu-

ition behind (also used in [71]) is to consider Figure 5.3(c)and by imagining an elastic

rubber band that is initially around three nails on the boardat r ′, p′ and p. If the p′ is

removed, the length of the rubber band will “shrink” to the nails aroundr1, . . . , rn. Again,

the equality only holds whenp is the same asp′.

From Equations 5.5 and 5.7, we can see that for any pointp (not on the boundary)

that the last segmentvkp or rp is blocked byo′, there is always a pointp′ on the boundary

of o′ that has larger geodesic change thanp.

(Case 2)If the holeo′ does not blockvkp, it must intersect at some other places with

πF (s, p). Assumep′ is the closet intersection point top along pathπF (s, p), and assume

p′ is on segmentvivi+1. This is shown in Figure 5.3(d).

The geodesic distance inF of point r andp arelF (s, r) andlF (s, p) = lF (s, r)+ |rp|

respectively. Similarly, the geodesic distance ofr andp in F ′ arelF ′(s, r) andlF ′(s, p)≤

lF ′(s, r)+ |rp| respectively. The last inequality is based on the fact that the segmentrp is

not blocked by any hole.

Thus,

(lF ′(s, r)− lF (s, r))− (lF ′(s, p)− lF (s, p))≥ 0 (5.8)
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It can be seen that the geodesic distance change of pointr (vk) is at least as large as

p. Similarly, the geodesic distance change ofvk−1 is at least as large asvk, and so on. We

have already proven that the geodesic distance change ofp′ is larger than the geodesic

distance change ofvi+1. Thusp′ has a larger geodesic distance change thanp.

For a convex hole, as shown in Figure 5.3(e), assumep1 andp2 are two points on the

same edge of the convex holeo′, and bothp1 andp2 are affected byo′. Further assume

that p1 andp2 lie on the same side of the bisector introduced byo′. Sinceo′ is a convex

hole,p1 andp2 must have the same rootr ′ which is one of the vertex ofo′. Briefly, using

similar techniques as above, it can be shown that the geodesic distance change ofp1 is

smaller thanp2.

Corollary 5.1 If a point p moves farther away from the boundary ofo′ along the direction

of the last segment of geodesic pathπF (s, p), the change in geodesic distance becomes

monotonically smaller.

This is a natural extension of Theorem 5.1. Intuitively, when a point is farther away

from a hole, the impact of the hole on that point is smaller.

For n source points, there aren sets of indicator points (I1,. . . ,In). These indicator

points provide a natural size estimate for the hole. D

Theorem 5.2 The convex hull of all the indicator points in I1 to In gives the lower bound

on the convex hull of the hole. If the hole is a convex hole, this polygon lower bounds the

hole itself.

Proof: The set of indicator points are on the boundary of the hole. The convex hull

of all the indicator points must locate inside the convex hull of the hole. If the hole is a

convex polygon, the convex hull of the hole is the boundary ofthe hole. Therefore, for a

convex hole, the convex hull of the indicator nodes must locate inside the hole boundary.
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One example is shown in Figure 5.3(f), the convex hole is denoted by the shadowed

polygon. For 4 source points froms1 to s4, the 4 indicator pointsp1 to p4 are on the

boundary of the hole. The convex polygon bounded byp1 to p4 is the lower bound of the

hole.

Corollary 5.2 Given a source points, there is one and only one indicator point for a

convex hole.

Proof: For a new convex hole and a given source points, there must be some part

on the boundary of the hole that is not affected by the hole, i.e., their geodesic distance

does not change after the hole is formed. As proven in the proof of Theorem 5.1, if we

go either clockwise or counterclockwise along the boundaryof the convex hole from this

part, the geodesic distance change increases. Since the change of geodesic distance is

continuous, according to intermediate value theorem, there must be one and exactly one

crossing point on the boundary, which is the indicator point.

Corollary 5.2 coincides with one conclusion drawn in [71]: there is at least one bi-

sector point on the boundary of each obstacle. Note that the “bisector point” in [71] is

slightly different from our definition, it may also be the intersection of bisectors caused

by other holes on the boundary of the new hole. Therefore our conclusion of “one and

only one” does not conflict with the “at least one” finding.

In the next few sections, we will illustrate how indicator nodes can be dynamically

identified and used.

5.4 Indicator Node Election and Hole Detection

5.4.1 Indicator Node Election

When a node detects the presence of a hole as indicated by sufficient hop count change

(see Section 5.2), it will enterindicator node electionphase. In this phase, each node

locally maintains the maximum hop count changes to then source nodes in the network.
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A node will also broadcastindicator election update messagesto its direct neighbors

when (1) it just enters the indicator election phase, (2) it has new updates on hop counts

or maximum hop count changes it knows to any of the source nodes, or (3) theindicator

election updatetimer with periodTieupdatefires. The conditions are used to control the

speed of the election process and also deal with possible message losses. The indicator

election message includes a node’s own hop counts to then source nodes, as well as

the maximum hop count changes it knows so far. The size of sucha packet is 2n bytes

(assuming hop count does not exceed 255).

When a node does not receive any new updates afterTieto seconds and believes it has

the maximum hop count change in its neighborhood with respect to some source node, it

declares itself an indicator node.

From Theorems 5.1, such a node always exists and can be determined locally because

hop count change is continuous. There is a tradeoff in selection of the value ofTieto

between speed of detection and false positives of early detection. If it is too large, election

time is long, which will cause large delay. If it is too small,many nodes may prematurely

declare themselves as the indicator nodes, causing unnecessary false positives.

Once an indicator node is elected, it will send its initial and final hop counts relative

to all n source nodes to the sinks. Its immediate neighbors can optionally suppress their

own messages even if they are indicator nodes. If then source nodes also act as multiple

sinks, the elected indicator node can smartly send the information to the sink that has least

hop count change (avoiding holes). Note that when nodes prematurely declare themselves

as the indicator nodes, there will be false positives and extra overhead. However, this does

not affect the result as long as messages from the actual indicator nodes are received by

the sink nodes. The sink nodes can filter out the false positives easily. One can either

let the indicator nodes wait before they send final hop count changes, or let the indicator

nodes send their hop count changes whenever there is some updates.

If a node finds that it has neighbors who have larger hop count changes than itself, it

will quickly enter inactive state until it receives new updates. Once an inactive node does

107



not receive any update for some time, it will exit the indicator election phase.

5.4.2 Hole Detection

In Figures 5.4(a) to 5.4(d), we illustrate four cases of applying the indicator election

algorithm using 4 source nodes for different hole shapes. The network consists of 4300

nodes randomly placed in a unit square of size 30×30 (unit is maximum communication

range). The average node degree in these examples is 15. The numbers on the 4 corners

show the location of the source nodes and numbers on the boundary of the hole show the

location of the elected indicator nodes corresponding to the appropriate source nodes.

It can be observed that for all the holes (a circle, a normal convex polygon, a line

barrier and a concave polygon), the indicator nodes are on the boundary of the hole.

While not obvious from the figures, the nodes are indeed the nodes that change most in

hop counts in the whole network.

In Figure 5.4(c), there are no indicator nodes for source nodes 1 and 3 because no

node in the network has hop count change exceeding the threshold 5 with respect to these

source nodes. Figures 5.5(a) and 5.5(b) are the enlarged region enclosed by a square in

Figures 5.4(b) and 5.4(d) respectively. It can be seen that the indicator nodes are also

close to the bisector (shown as a curve in Figure 5.5(a)) for aconvex hole.

5.4.3 Delay and Communication Cost

Using a circular hole placed in the middle of the network, we measure the average time

and total message overhead needed to elect the indicator nodes. There are 4 source nodes

at the corners and the average node degree is set to 15.

The time taken to identify an indicator node, after a hole is formed, is dominated by

the following timers/time intervals: (1)Tpto, timeout before switching parent; (2)Thello,

hello packet interval; (3)Ttransmit, average per-hop transmission time; (4)Tieupdate, interval

for rebroadcasting the indicator election update message;and (5)Tieto, interval before
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(a) Indicator nodes of the convex hole in Figure
5.4(b)

(b) Indicator nodes of the concave hole in Figure
5.4(d)

Figure 5.5: Locations of indicator nodes. Blue line shows the bisector cut.

declaring as the indicator node. In the simulations, we setThello = 2sandThello = 5s. The

values ofTpto is always 3 timesThello as stated before. The values ofTieupdateandTieto are

set to 1 and 6 seconds respectively. TheTtransmit is set to 2mswhich is about the packet

transmission time of a MicaZ mote.

The average delay is shown in Figure 5.6(a). We can see that the delay increases

slowly and linearly with the size of the hole (for a circle hole example, the size is deter-

mined by its diameter). Due to the immediate update policy inindicator election phase,

the delay is dominated by theThello in hole detection phase whereby a node has to wait for

sufficient change in connectivity. Once the hole is detected, the indicators will be elected

quickly.

The communication cost of the algorithms is only affected bythe size of the hole. A

larger size hole can cause more nodes to enterindicator electionphase. It can be seen in

Figure 5.6(b) that the total communication cost is almost invariant to number of nodes in

the network or the size of the network (for a fixed node density). The cost only increases

with the size of the hole. The total number of nodes that enterindicator election phase

are about 150, 810 and 2100 for hole diameter (measure in unitof maximum transmission
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Figure 5.6: Delay and communication cost

range) of 10, 15 and 20 respectively. The average number of messages sent for anactive

nodeis thus only about 3 to 5 messages. Overhead is low because themajority of the

nodes will quickly enter inactive state.

Normalized to the total number of nodes for the largest network simulated (network

size of 80×80), the overhead for the hole diameter of 20 is only 0.3 message per node

per detection. Therefore, compare to other approaches based on topology method (e.g.

[100, 40]) which require multiple rounds of message flooding, our approach is much more

efficient.

5.5 Continuous Indicator Node Election and Its Applica-

tion

Each node has to continuously monitor the hop count changes throughout the whole hole-

monitoring period. Optimization techniques such as logging only the key event points can

be adopted, but this is not our main purpose of this paper. We simply assume that each

node has enough memory to log its hop count changes over very long time.

In the previous section, it is assumed that a new hole forms and stays static after-

wards. Examples of such holes include jamming holes caused by intruders [5], sudden

failure of a large potion of the sensor nodes, or a suddenly appearing obstacle. However,

many other types of holes are dynamic in nature, e.g., holes caused by spreading of fire,
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or by a moving jamming attacker. A hole can expand, contract or move (i.e., hole trans-

formation) continuously. Such hole dynamics can be monitored by continuous indicator

node election.

5.5.1 Continuous Indicator Node Election

While the basic election algorithm is similar to the one proposed in the previous section,

two new issues have to be addressed for the case of continuousconnectivity changes.

First, different delays are incurred in locating the indicator nodes corresponding to

different source nodes for a particularhole instance(i.e., the snapshot of the hole at a par-

ticular time). Messages from different sets of indicator nodes corresponding to different

hole instances will be interleaved when they reach the source nodes.

In order to solve this problem, the sink has to synchronize the messages, by knowing

which messages correspond to which hole instance. In our approach, this is accomplished

by adding a round number to theindicator node election message. For each indicator node

elected, the indicator node will increase the round number.Whenever a node finds that

it is using a round number smaller than what its neighbor is broadcasting, the node will

update its round number. The sinks will then relate the events using the round numbers.

The second issue arises because it takes time to detect an indicator node and some in-

dicator nodes may not be detected if the transformation is too fast relative to the detection

time.

In order to address the second problem, the indicator node election needs to be “fast

enough”. Therefore, the indicator node detection period should be less than the time it

takes the hole to expand/contract/move by one average hop distance. This is because,

from the time that the original parent of one real indicator node is “destroyed”, to the

time that the indicator node is elected and its hop counts to the source node are fully

updated, the indicator node cannot be “destroyed”. In orderto accurately monitor holes

with a faster transformation speed, the delay for indicatornode election needs to be re-

duced correspondingly by reducing values ofTieupdateandTieto. With the default values

112



(Tieupdate= 1s andTieto = 6s), the maximum hole transformation speed that the system

can monitor is about 0.1 average hop count per second. If these values are reduced to

Tieupdate= 0.2sandTieto = 1s, the maximum hole transformation speed is about 0.4 aver-

age hop count per second. For a typical wireless communication range of 50 meters, 0.1

average hop count corresponds to a hole transforming speed of 18km/h, and 0.4 average

hop count corresponds to a hole transforming speed of 72km/h.

Finally, it is interesting to note that if we expand the definition of indicator nodes to

include nodes whose hop count change is 1 hop less than (or equal to) the maximum hop

count change, a much faster hole transformation speed can besupported since many more

nodes would report their connectivity. This is of course at acost of higher communication

overhead and lower estimation accuracy as well.

5.5.2 Hole Transformation Application

Continuous election of indicator nodes can be used to track transformation of holes over

time. We assume that there are only three possible transformations, namely expanding,

contracting and moving. Furthermore, only one transformation may occur at any time.

An example of hole expansion is the case when fire spreads and the sensor nodes are de-

stroyed. An example of contraction or movement of a hole is the case where an interferer

varies its power or move.

The transformation type identification algorithm is simple. If the original hop counts

of the elected indicator nodes relative to their source nodes are decreasing (when the round

number increases) for alln source nodes, the hole is expanding; and vice versa. If the

original hop counts of some indicator nodes relative to their source nodes are increasing,

and some are decreasing (when the round number increases), the hole is moving.

Note that it is possible to estimate the velocity of hole transformation by observing

the location (locations can be estimated through connectivity information) changes of dif-

ferent indicator nodes at different rounds. The value of thevelocity is estimated by finding

the location differences at different rounds, and the angleof the velocity is estimated by
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Figure 5.7: Transformation type identification

the direction of location changes at different rounds.

5.5.3 Evaluation

In the evaluation, we set the average node degree to be 15, theindicator election up-

date timer to be 1s and hole transformation speed to be 0.05 of average communication

range per second (this is about 0.06 hop per second). In the simulations, change in hole

transformation type occurs every 200s. The goal is for the sink to identify what type of

transformation is occurring quickly.

Figure 5.7(a) shows the transformation of a circle hole. Thered solid line shows

the original transformation type and the blue dotted one shows the estimation at the sink.

The numbers representing the states of the hole are 1 for idle, 2 for expanding, 3 for

contracting and 4 for moving. It can be clearly seen that except for a large initial delay,

the sink has an accurate view on what type of transformation the hole is doing. Measured

in terms of correctness over time, the accuracy is about94% (without considering the

initial and final phases).

Figure 5.7(b) shows the case for an irregular hole where initially a circle is di-

vided into eight (45◦) sectors and each sector experiences different speed of expand-

ing/contracting (0.04 to 0.06 of average communication range per second) or moving

(0.05 of average communication range per second). We can seethat even with sudden

changes in the indicator nodes from one sector to the adjacent sector, the average accu-
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racy is still about88%.

5.6 Hole Estimation Using Indicator Nodes

5.6.1 Estimation with Localization Information

A final application of the indicator node is its use to estimate hole location and size. This

estimation works for both static and dynamic holes, as long as the indicator nodes for the

hole or hole instance can be successfully elected.

In order to provide information on hole location and size, some form of localization

information is needed. In [74], a simple localization method based on only connectivity

information (hop counts) is proposed. In [62], Li et al. presents a method on connectivity-

based localization in the presence of holes. These work provides an accuracy of 50% to

100% of communication range, which is acceptable given thatthe hole to be monitored

is relatively large. In this section, we will utilize such localization schemes for indicator

node location estimation. If the locations of source nodes are known, they can be used as

localization beacon nodes as well.

The proposed hole estimation algorithm is based on two factors. First, from Theorem

5.2, the convex hull of indicator nodes provides a lower bound on the convex hull of the

hole. Second, the hop count changes of indicator nodes can also be used to estimate the

hole. The second factor is based on the intuition that when a hole is larger, the hop count

changes of its indicator nodes are also larger.

We propose a grid based algorithm to integrate both factors.The area is divided into

grids, and if the grid is inside the estimated area, weight isadded to that grid. Note that

the algorithm runs on the central controller.

Firstly, for all grids within the convex hull of all indicator nodes (using the estimated

location), a weight ofw1 is added. Secondly, for each source nodesi , identify the corre-

sponding indicator nodepi . If there are more than one indicator nodes, use their centerof

gravity aspi . For eachsi , plot a rectangle such that:
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Figure 5.8: Hole estimation
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1. One edge is perpendicular tosi pi and passes throughpi .

2. One edge is perpendicular tosi pi and passes throughp j wherep j is another indica-

tor node on the hole boundary closest tosi .

3. The two remaining edges are parallel and perpendicular tothe two previous edges.

It is also symmetric with respect tosi pi and the distance between them is estimated

using the hop count changes of the indicator nodepi .

For all grids within this rectangle, a weight ofw2 is added.

One shall note that the proposed algorithm gives more accurate result for convex

holes. For concave holes, the contribution from the second factor may over estimate the

hole size.

5.6.2 Evaluation

In the simulations, we assume the value ofw1 andw2 are the same and the weights from

all contributors sum to 1.

Figures 5.8(a) to 5.8(d) show the results for estimation of the holes in Figures 5.4(a)

to 5.4(d) respectively. The results in Figures 5.8(a) to 5.8(c) show that for convex holes,

the locations, sizes and shapes of the holes can be fairly well approximated. The result is

not as good for the concave polygon shown in Figure 5.8(d) because the estimation due

to the second factor may be larger than the actual hole size when the indicator nodes are

at the concave edges. Nevertheless, even for arbitrary shapes, Theorem 5.2 states that the

convex hull of the indicator points is contained within the convex hull of the hole.

5.6.3 Estimation Without Localization Information

Without localization information, estimation of a hole’s property relating to size and using

only a small number of indicator nodes is difficult. In this section, we show that the

changes in geodesic distance of indicator points, i.e., themaximum changes of geodesic
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distance of all the points in the network, can provide an estimate on the size of the hole

formed.

However, the proposed estimation is applicable only to convex holes. To see why

it is difficult to provide estimate on hole size using only indicator nodes for arbitrary

shapes, consider a spiral like hole. The indicator point maylie deep inside the spiral. The

geodesic distance change of the indicator point can be proportional to the total “length”

of the spiral and thus be much larger than the “size” of the hole. Nevertheless, we believe

that the result is still interesting as many of the “natural”holes of interest, for example,

those due to fire, explosion or jamming can be approximated asconvex.

We first formally define the size of a convex hole in continuousdomain.

Definition 5.3 Consider a line that joins the source point s and its corresponding indica-

tor point p. Thebreadth of a convex hole with respect to the source point s is the length of

projection of the hole onto the direction perpendicular to the line sp. Similarly, thedepth

of a convex hole is the length of projection of the hole onto the direction parallel to the

line sp.

This is illustrated in Figure 5.9(a), whereb represents breadth andd represents depth.

We first present the results for the special case of convex holes that are self-symmetric

with respect to the linesp(e.g., a circle-like hole is always self-symmetric with respect to

sp).

We first present the results for the special case of convex holes that are self-symmetric

with respect to the linesp.

Lemma 5.1 For a new convex holeo′ that is self-symmetric with respect to the line con-

necting the source points and its corresponding indicator pointp, the change in geodesic

distance of the indicator point increases monotonically when (i) the distance between

source pointsand the boundary of the hole decreases along the linesp; (ii) the breadth of

the hole increases; and (iii) the depth of the hole decreases.
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Figure 5.9: Breadth and depth

Proof: (i) Since the hole is symmetric with respect tosp, the indicator point (also

the bisector point) does not change whens moves closer to the hole.

As shown in Figure 5.9(c), the geodesic distance change of point p whens is at the

position of s3 is ∆l3 = |s3v6|+ |v6v1|+ |v1p| − |s3p|. Similarly, the geodesic distance

change ofp when s is at s2 ands1 are ∆l2 = |s2v6|+ |v6v1|+ |v1p| − |s2p| and ∆l1 =

|s1v5|+ |v5v6|+ |v6v1|+ |v1p|− |s1p| respectively. It is easy to see that∆l1−∆l2 > 0 and

∆l2−∆l3 > 0.

(ii) and (iii) can be proven in a similar way.

Theorem 5.3 For a convex hole that is self-symmetric with respect to the line sp, the

change in geodesic distance of the indicator point∆l is a lower bound on the breadth of

the hole with respect to s. I.e.,∆l ≤ b.

Proof: This comes naturally from the Lemma 5.1. Whens is on the boundary of

the new hole, and the depth of the hole is close to 0, i.e., the hole is a line barrier with

infinitely small interior, the change in geodesic distance of point p is largest (for the same
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breathb), and∆l = b.

Before stating the next theorem, we need another definition.

Definition 5.4 Consider a hole, o′, a source point s and an indicator point p relative to s

(on the boundary of o′). We say s iswell separated from o′ if o′ is completely located on

one side of the line that passes through s and is perpendicular to sp.

This is illustrated in Figure 5.9(b).s is well separated from the hole because the hole

is located completely on one side of the dashed line perpendicular tosp.

Now, we can state the result for arbitrary convex hole.

Theorem 5.4 For an arbitrary convex hole, if the source point s is well separated from

the hole,∆l < 2b.

Theorem 5.4 states that the breadth of a convex hole is lower bonded by half of the

largest geodesic distance change (b > l/2). The intuition behind is that the longer the

largest change in geodesic distance, the bigger the size of hole. The proof of the theorem

is as follows.

Proof: Consider an arbitrary convex hole,o, the source points which iswell sepa-

rated from o, and the corresponding indicator pointp. The linespseparateso into two

partsol andor . This is shown in Figure 5.9(b), wheresp separates the hole (the cross

hatched area) intool (enclosed by blue lines andp′p) andor (enclosed by red lines and

p′p).

Create the mirror image ofol andor with respect to linesp. Name themo′l ando′r

respectively. Let the union ofol and its virtual imageo′l be o1 (Figure 5.9(d)), and let

the union ofor and its virtual imageo′r beo2 (Figure 5.9(e)). If eithero1 or o2 is treated

as the new hole (rather thano), it has the same indicator pointp and the same geodesic

distance change∆l at the pointp as the holeo. More importantly, botho1 ando2 are

self-symmetric with respect to the linesp. Assume the breath ofo1 is b1, the breath oro2

is b2 and the breath of the real holeo is b.
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Sincespintersects the boundary ofo at either an edge or a vertex at pointp, it is easy

to see that at least one ofo1 ando2 have an interior angle of less than or equal to 180◦ at

the pointp. Without loss of generality, we assumeo1 (Figure 5.9(d)) has an interior angle

of less than 180◦ at p.

If s is well separated fromo, s must lie outside the convex hull ofo1. If we treat the

convex hull ofo1 as the new hole, the indicator point is still atp due to the self-symmetry

property, the breath of the convex hull ofo1 is the same as the breath ofo1 (b1) and the

change in geodesic distance ofp is still ∆l . From Theorem 5.3,∆l ≤ b1. Sinceb = b1+b2
2 ,

we have∆l ≤ 2b−b2 < 2b.

Theorems 5.3 and 5.4 show that change in geodesic distance ofthe indicator point

provides a lower bound for the breadth of the convex hole. If the geodesic distance change

of an indicator point is∆l , then one can conclude that the breadth of the hole with respect

to s is at least∆l
2 if we assume the hole is convex. If the hole to be detected is known to

be a circle (always self-symmetric with respect to the linesp), the breadth (diameter) of

the hole is then at least∆l . The geodesic distance∆l can be estimated using hop counts

times the average hop progress.

5.7 Discussions

Effects of existing holes

The presence of existing holes does not affect the correctness of indicator node identifi-

cation. However, if the existing hole is between the new holeand the source node, the

change in hop count may be reduced thus making the detection granularity coarser than

expected.

Figure 5.10(a) shows a network of 12,000 nodes placed on a 50×50 square. The

newly created hole is the circle shown in the middle and is blocked by existing holes to

source node 0 and 2. The indicator node for source node 0 can still be correctly elected

because the size of existing hole that blocks the new hole is small. The indicator node for

121



0

0

1

1

2

3

3

(a) Case with existing holes (b) Estimate with existing holes

Figure 5.10: Effect of existing holes

source 2 fails to be elected (no node in the network has hop count change larger than 5)

due to the large existing hole on the bottom-right corner. Nevertheless, the hole can still

be detected through three other indicator nodes.

In general, a new hole will always be detected unless existing holes disrupt hopcount

change detection to all source nodes. However, in terms of hole size estimation, the size

can possibly be underestimated as shown in 5.10(b).

One way to deal with this problem is to utilize more source nodes, so that the possi-

bility of new hole being “blocked” from all the source nodes becomes smaller. The source

nodes can be randomly distributed within the network. The cost is higher communication

overhead.

In order to maximize the probability that the new holes can bedetected and accurately

estimated, one can also manually allocate the locations of source nodes based on the

boundary information of existing holes, which can be detected using static hole boundary

recognition protocols [100, 39]. The manual allocation of source nodes is similar to the

well-known art gallery problem which has been extensively studied in literature.
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Formation of more than one holes

When multiple holes are formed at the same time, properties of the indicator nodes still

hold and the identification process is the same. In fact, the number of indicators detected

per source node provides a quick answer to the number of the holes formed in the network.

However, the issue of accuracy arise when the new and existing holes are too close

together. When holes are not sufficiently well separated, they may be considered as a

single hole. This is a natural consequence of our model as it is limited by the granularity

of detection. When the holes are sufficiently far apart, all previously presented results

hold.

5.8 Summary

In this chapter, the problem of topological hole detection and monitoring using only con-

nectivity information is considered. The detection of holeformation is done by observing

the connectivity changes of the network. The location, sizeand shape of the hole can be

estimated using only information from a few indicator nodes. An algorithm that identifies

the hole transformation type is also proposed. These algorithms are simple to implement

and efficient. The estimation accuracy is also satisfiable for the administrators to detect

the significance of the hole.
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Chapter 6

The Coverage and Connectivity

Management System

Several important microscale and macroscale coverage and connectivity management pro-

tocols have been proposed in the previous chapters. In this chapter, we show how these

individual management protocols and functions can work together to form a management

system based on the unified network assumptions. This chapter only serves a design of

the management architecture and is not implemented.

6.1 Basics of WSN Management

Typically speaking, network management is a service that employs a variety of tools and

devices to assist the human users to monitor and maintain thenetwork. However, the

management protocols on traditional wired networks do not directly apply to WSNs. For

example, monitoring and controlling each individual component are common practices in

wired networks, while they are not energy-efficient nor scalable for sensor networks.

Figure 6.1 shows a simple management architecture for sensor networks. In this ex-

ample, each sensor node is treated as a network device and hasan agent software running

on itself. The “sink” can be treated as an intermediate router. The manager is able to send
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Figure 6.1: A simple management architecture for wireless sensor networks

polling messages to any sensor node, and any sensor node is able to send alert messages

to manager. Depending on different applications, there could be different management

architectures.

Management functions are the key components of the management system. Any

service to the users will need to make use of one or several management functions to

complete the task. An example list of possible management functions that need to be

provided by a sensor network management architecture is listed below [87].

• Environmental monitoring function

• Topology discovery function

• Node deployment function

• Network connectivity discovery function

• Energy map generation function

• Synchronization function

• Coverage area supervision function

• Node localization discovery function
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6.2 A Unified Coverage and Connectivity Management

System

6.2.1 System Model

As illustrated in Chapter 1, WSN management is configurationoriented. Before the cov-

erage and connectivity management system is proposed, the system assumptions, models,

and configurations are introduced first.

This thesis focuses on the middle-size and large-size networks that consist of hun-

dreds and thousands of sensor nodes. The management of a small network with only tens

of nodes is generally less challenging. These large amount of sensor nodes are randomly

deployed in the region of interest with higher than necessary density, and the network is

assumed to be at least connected and covered. All the proposed management solutions in

this thesis are scalable and can work with very high node density. Each node has a unique

node ID. These sensor nodes cooperate among themselves in anad hoc and distributive

manner. As shown in Figure 6.1, there are one or more root nodes (sink nodes or central

controllers) who act as gateways between the sensor networkand the outside world.

Localization is assumed to be available to every coverage and connectivity manage-

ment component. Most of the proposed protocols in this thesis assume that the connectivity-

based localization scheme is utilized. A connectivity-based localization scheme can pro-

vide enough localization accuracy for most of the coverage and connectivity management

functions, such as microscale connectivity discovery and macroscale hole monitoring. To

maintain a connectivity-based localization, we assume that there are several anchor nodes

(or source nodes) in the network. The absolute or at least therelative locations among

these anchors are known. The anchor nodes can also act as the root nodes. Each sensor

node locally maintains its hop counts to all of these anchor nodes so that they can be

coarsely localized based on any trilateration algorithms [74, 62].

As mentioned in Chapter 3, microscale coverage management functions require more
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Figure 6.2: The coverage and connectivity management system.

accurate localization information. In this thesis, distance estimation is assumed to be

available for microscale coverage management. The distance estimation error is assumed

to be well bounded, i.e., to be within a small percentage of the sensor nodes’ sensing

range. It should be noted that distance (with errors) is a weaker requirement than local-

ization since it only reflects the relative locations among the neighboring sensor nodes.

Distance estimation cannot be converted to global level localization easily due to the pos-

sible error aggregation.

The network is assumed to maintain a tree-based informationcollection model, where

various information, once distributively processed, is sent to the root nodes via the infor-

mation collection trees. Communication reliability is also assumed in this thesis, unless

explicitly stated otherwise. The reliability can be supported by link layer retransmissions

for unicast packet losses.

6.2.2 The Coverage and Connectivity Management System

Several efficient coverage and connectivity management protocols have been proposed

in the previous chapters, including microscale coverage and connectivity monitoring and
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controlling, as well as macroscale topological hole detection and monitoring. In this sec-

tion, we show how these individual management protocols cooperatively form a unified

coverage and connectivity management system, based on the system model illustrated

in the previous section. The aim of the management system is to provide the users and

administrators a range of services and tools to achieve the coverage and connectivity man-

agement goals, from both microscale and macroscale levels.

The proposed management system is shown in Figure 6.2. The system is constructed

using various coverage and connectivity management functions, which in turn support

different management services to the users or administrators in the upper layer. In other

words, the management services shown in the figure representthe services provided by

the central controller to the users or administrators; and the management functions run

on each individual sensor node to support the management services. The solid arrows

in the figure represent the relation of“supports”, i.e., if an arrow is drawn fromX to Y,

it indicates that the function or serviceX is supported by the function or serviceY. A

dashed arrow fromX to Y indicates thatX is passively affected byY. These individual

management components are explained in details as follows.

Localization Management Functions

Localization functions, although do not fit in the category of network coverage and con-

nectivity management, are the fundamental support for various coverage and connectivity

management tasks. They are therefore included in the proposed management system.

• Connectivity Updater: The connectivity updater updates a node’s hop counts to

the anchor nodes by listening for the periodic “HELLO” messages from its neigh-

bors. This hop count information is maintained as a hop countvector. Note that the

connectivity updater is passively affected by the node scheduler because different

sets of active nodes results in different network topology and thus influences the

hop counts to the anchors.

128



• Connectivity-based Localizer:The connectivity-based localizer estimates a node’s

location utilizing the hop count vector provided by the connectivity updater [74, 62].

• Distance Estimator: The distance estimator component proposed in Section 3.7

is utilized to support node scheduling for microscale coverage control. Since the

proposed solution is based on the number of common neighborsamong the directly

commutable pairs, it has to be aware of the neighbor management protocol.

Coverage and Connectivity Management Functions

The coverage and connectivity management functions form the basis for all the coverage

and connectivity management services in the upper layer.

• Node Scheduler:The node scheduler schedules the active or inactive states of sen-

sor nodes based on the required network coverage and connectivity (the parameter

α). The user or network administrator can adjust the parameter α. This is supported

by a control message flooding component which is not shown in the figure.

• H2CM: The H2CM component compresses a node’s neighbor table for the purpose

of connectivity monitoring (and node failure detection). It is supported by the hop

vectors provided by the connectivity updater component. Itshould be noted that

H2CM only requires the hop vectors collected during the initialization phase. Any

subsequent hop vector changes needs not to be known by H2CM. This is different

from the indicator node election component who requires thehop vectors to be

updated periodically.

• Indicator Node Election: The indicator node election component monitors the

network connectivity change based on the updated hop count information. It main-

tains a history of connectivity update and starts the indicator election process once

the connectivity changes beyond some threshold.
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• Neighbor Management:The neighbor management component is responsible for

maintaining each sensor node’s neighbor table. Different strategies in managing the

neighbor tables affect the network connectivity, and consequently affect the node

scheduler and distance estimator. In this thesis, each nodeis assumed to maintain

all the active neighbors in its neighbor table regardless ofthe network node density,

which simplifies the design of the coverage and connectivitymanagement functions

affected by the neighbor management component.

Management Services

The coverage control services utilizes the node scheduler to save the network energy.

The user or administrator controls the network coverage by setting theα parameter. The

connectivity monitoring service monitors the complete (orpartial) network connectivity

information, using the H2CM component. As stated in Chapter 4, the node failure detector

service is only active when the connectivity monitoring service is inactive. The monitor-

ing of large holes in macroscale level is provided by the holedetection and monitoring

service. It utilizes the indicator node election componentand the connectivity-based lo-

calizer to identify and estimate the location and size of thehole.

6.3 Management System Operation

6.3.1 System Initialization

This section explains the system initialization process. The neighbor management com-

ponent and the connectivity updater are first initialized. Both of them can be initialized by

“HELLO” message broadcasting. Once the hop count vectors tothe anchor nodes (before

the node scheduler is run) are available, they are collectedvia the information collection

tree to the root nodes. This information is used by the H2CM component later.

Some nodes will then turn into inactive mode according to thedecision of the node
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scheduler. They will stay inactive for a long period so that other components are not

frequently affected, until the node scheduler is re-run over a relatively long period or

disabled. The connectivity updater and the connectivity-based localizer will then start

running, right after the node scheduling process has finished. The H2CM component

and the indicator node election component are the last two management functions to start

operating.

The flow diagram of the above described initialization process is illustrated in Figure

6.3.

6.3.2 Normal System Operation

Once the system is initialized, the individual functions and services can operate on their

own to a large extent, which has already been explained in detail in the previous chapters.

In this section, the flow diagram of these components are summarized, which is shown in

Figure 6.4.

The active node scheduling process is started by either the node scheduling timer

or the re-scheduling request from users or administrators.The node scheduling protocol
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Figure 6.4: Illustration of normal system operation.

for coverage and connectivity control will then be performed. After the active node re-

scheduling, those components that rely on the node scheduler component, such as the

H2CM and indicator node election components, are re-initialized.

The connectivity monitoring process is started by the connectivity monitoring timer.

The neighbor tables of the selected active sensor nodes are collected to the root nodes

using H2CM protocol. Connectivity-based debugging and root-causeanalysis or the node

failure detection will then be performed.

The hole monitoring process is started by the event that a large hole forms in the net-

work and the network topology (reflected by the hop counts) has significantly changed.

The indicator node election process will then be performed.Upon receiving the informa-

tion from the elected indicator nodes, the root nodes will estimate the location and size of

the hole.
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Chapter 7

Conclusion and Future Work

The modern research on wireless sensor networks started around 1980 [23] driven by

the military applications, however, the technology for small sensors was not quite ready

at that time. During the last decade, due to the rapid development of various enabling

technologies for sensors, research on sensor networks has regained significant attention.

Besides the original military applications, wireless sensor networks are now used in many

industrial and civilian applications, including industrial process monitoring and control,

environment and habitat monitoring, healthcare applications, home automation, traffic

control, and etc. The idea of wireless sensors is in fact so exciting that the small sensors

are expected to be everywhere in the future world [84].

However, research in wireless sensor networks encounters many challenges due to

their unique characteristics: large-scale deployment, distributed protocol design, limited

resources, harsh environments, and many more. Wireless sensor networks are also con-

figuration oriented. Different application requirements,different types of sensor nodes,

and different system model and assumptions may result in completely different problem

formulation and protocol design.

This thesis focuses on the management aspect of a sensor network, particularly, the

coverage and connectivity management. Several protocols on monitoring and controlling

the network coverage and connectivity, both in microscale and macroscale levels, were
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proposed. The detailed research results and contributionsof this thesis are summarized in

the next section.

7.1 Research Summary

As stated in Chapter 1, the coverage and connectivity management functions are catego-

rized into monitoring and controlling of the network coverage and connectivity, in both

microscale level and macroscale level. In this thesis, these components were studied in

separate chapters. The integration of these components into a unified coverage and con-

nectivity management framework was then proposed in Chapter 6.

The Configurable Coverage Protocol (CCP) proposed in Chapter 3 serves the pur-

pose of micrascale coverage and connectivity control. Meanwhile, the vacancy estimation

scheme proposed in CCP also provides a way to compute the microscale vacancy of the

given network, and thus also serves as a management functionfor microscale coverage

monitoring. CCP allows the trade-off between coverage and node usage (i.e., the number

of active nodes). It can be configured to use a small number of active nodes to cover at

leastα portion of the area with high probability. CCP only makes uses of the distance

between two nodes rather than their actual locations.

CCP is a completely distributed and lightweight protocol where each node makes

decision based on the collaboration between its local neighbors. For complete cover-

age (α = 1), CCP was comparable to the near optimal OGDC protocol [107] in terms of

coverage and number of active nodes required. By relaxing the constraints of complete

coverage, CCP was able to generate a subset of sensor nodes which was smaller than the

number of nodes required for a complete coverage, e.g.,whenα = 90%, 22% node sav-

ings could be achieved comparing to the case of full coverage, and whenα = 80%, 29%

savings could be achieved. E.g., for the node density of 10, about 400 active nodes can

support 90% coverage while about 530 active nodes are required to support full coverage.

The reduction in the number of active nodes is much more than the reduction of coverage.
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The complete network connectivity graph is formed by aggregating the microscale

connectivity information (neighbor tables) of all the sensor nodes in the region of interest.

An efficient microscale connectivity monitoring protocol H2CM was proposed in Chapter

4. H2CM is an efficient way to encode the neighborhood informationof each sensor

nodes, such that the communication cost of microscale connectivity collection can be

much reduced. By varying the amount of information exchanged, H2CM is able to provide

different level of connectivity information accuracy. TheH2CM algorithm is practical and

can be easily implemented on TinyOS with little overhead.

Simulation results showed that for a large network (> 1000 nodes) with node densities

varying from 5 to 30, over 99.99% of all links were discovered and the communication

savings varied from 65% to 85% compare to maximal compression of neighborhood in-

formation. For a medium size network (a few hundred nodes), about 40% to 70% savings

could be achieved. We implemented H2CM in a sensor testbed with 34 MICA2 nodes.

The algorithm was implemented using less than 80 lines of TinyOS code and about 600

bytes of ROM image size (code size). Even with such a small network, the total commu-

nication cost was comparable to the cost of using maximal compression.

Node failure detection is also a simple application of H2CM. By combining H2CM

with the concept of dominating set, the communication cost can be drastically reduced

compare to traditional data collection method. The averagecommunication cost was only

20% to 40% of the normal data collection method. This is a significant improvement since

H2CM achieves much better performance even compare to the theoretical maximal data

compression in information theory.

Chapter 5 presented an efficient macroscale topological hole detection and monitor-

ing protocol. The protocol is based on the observation that hole formation creates irregu-

larities in the network connectivity and the changes in the network connectivity contains

important information about the hole. The approach is reactive and communication is

triggered only when a hole is formed, unlike a polling/sampling based method where

communication needs to be performed periodically. In addition, the aim of the protocol
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is not to map the boundary of the hole, which is expensive since many nodes need to be

identified. Instead, only a small number of dynamically identified indicator nodesare

required to report their status to the sink nodes. The properties of these indicator nodes

are investigated and utilized to estimate the location and size of the hole, as well as the

possible hole transformation types.

Simulation results showed that the location and size of the holes could be fairly ac-

curately estimated with only the information from indicator nodes. For a large network

(more than 30,000 sensor nodes), the communication overhead for the hole diameter of

20 was only about 0.3 message per node per hole detected, which was small compare to

existing methods.

All these proposed solutions to the coverage and connectivity management compo-

nents described in Chapter 3, 4 and 5 are distributed algorithms. They are efficient in

communication and energy cost and scalable to a very large and dense wireless sensor

network. A unified coverage and connectivity management framework was proposed in

Chapter 6. The framework maps all these described individual components into the man-

agement functions and services. The dependencies among these functions and services

were carefully investigated.

7.2 Future Work

There are several possible extensions to the research work presented in this thesis. Al-

though the management framework proposed in Chapter 6 includes many microscale and

macroscale coverage and connectivity management functions and services, it can hardly

be considered as a complete framework.

• Although the CCP protocol proposed in Chapter 3 controls themicroscale cover-

age and connectivity, there are apparently many other formulations of the problem

coverage and connectivity control. The most obvious extension is to extend CCP to

supportk-coverage andk-connectivity.
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• The CCP protocol only focuses on the microscale coverage andconnectivity con-

trol. An extension to this work is to use the proposed vacancyestimation method for

macroscale coverage monitoring. Macroscale coverage monitoring is an important

management service that is not included in the management framework proposed

in this thesis.

• The macroscale hole monitoring is investigated in Chapter 5. The problem of mit-

igating macroscale holes, such as the node deployment schemes to avoid the for-

mation of large holes, as well as the node redeployment schemes to eliminate the

existing holes are not studied in this thesis. These components can be investigated

as future work to make the proposed management framework more complete.

• The research work in this thesis heavily relies on connectivity based localization,

which in turn relies on the assumption of Poisson random placement of sensor

nodes. This assumption does not cause trouble for the protocols proposed for mi-

croscale coverage and connectivity monitoring. However, it is an important as-

sumption for macroscale connectivity and coverage monitoring, especially for hole

monitoring and estimation. The impact of other distributions of node placement to

the macroscale connectivity and coverage monitoring can beinvestigated as future

work.

At last, although the individual management functions and services have been ex-

tensively simulated, and some of them have been implementedand tested on real sensor

network testbed, the simulation and testbed implementation of the proposed framework

has not been evaluated and can be considered as future work.
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