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Abstract

Both coverage and connectivity are the fundamental pedooa measures of the service
provided by wireless sensor networks. Coverage reprebemtsvell the sensing goal of
the network is accomplished, and connectivity represeois ell the information can
be delivered among the sensor nodes or to the central clemtfdlanaging network cov-
erage and connectivity is thus important in sensor networkss thesis focuses on the
coverage and connectivity management problem in wirelessas networks. The cov-
erage and connectivity management functions are classifieanicroscale management
and macroscale management according to the geographadahgithin which the sensor
nodes collaborate.

This thesis first investigates several important coverageannectivity management
problems according to this categorization. In particuiarthe microscale coverage and
connectivity control problem, a Configurable Coverage ¢volt (CCP) is proposed to
control the “on” and “off” of the sensor nodes and meanwhiknmtaining network cov-
erage and connectivity. CCP is an efficient and lightweighbtgxol, in which each node
makes decision based only on the collaboration betweendtd heighbors. Unlike ex-
isting protocols, CCP targets coverage of oalportion of the network, where can be
freely configured by the network administrators.

For the problem of microscale connectivity monitoring, aliag based protocol
(H?CM) is proposed for efficient neighbor table collection. I8oling neighbor tables
from individual sensor nodes are generally hard due to thle Gommunication cost. By
utilizing connectivity-based constraints and severahimgtechniques, HCM allows the
central controller to collect the neighbor tables from iagted sensor nodes with very
high probability, but with much lower communication cost.

Lastly, for macroscale topological hole detection and rtoinig, a simple but pow-
erful algorithm based on the connectivity changes of thes@enodes is proposed. The
algorithm first distributively elects the set of indicatades, and only the indicator nodes
are required to send their information to the central cdlarorlhe location and size of the
hole can be fairly accurately estimated using the inforamafrom only a few indicator
nodes.

The thesis then integrates these individual managemetaqmis and functions into

Vi



a unified coverage and connectivity management system hvatiows the network ad-
ministrators to monitor and control the network coveragd eonnectivity, from both
microscale and macroscale level. The dependencies of théiselual components are
analyzed and system initialization and operation sequeaeexplained.

Vil
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

The technologies of semiconductors, wireless commuimeatand computing have en-
joyed rapid developmentin the twentieth century. Micra@ssors, wireless radio transceivers
and batteries have been greatly improved in terms of pedono®, size and price. This
progress, together with the marked advances in the areacobseinsors, has allowed the
integration of automatic sensing, embedded computing areless networking, at low
cost, to quickly become a reality.

Low-power and tiny sensor nodes, each empowered with thigyadfisensing, com-
putation and wireless communication, enable a broad rahg@mications. They are
normally deployed on large scale over the geographic regianterest, and cooperate
among themselves distributively for various sensing,kireg; and actuation tasks. The
potential applications of these networked sensors ararens: e.g., habitat monitoring,
environmental monitoring, smart home and office, inventaagking, precision agricul-
ture, transportation, military, health care, and many more

Wireless sensor networks (WSNs), consisting of hundredstousands of such
smart sensor nodes, have received a lot of attention rgcebtiring the past decade,

many testbeds and commercial products have been built hbldat observations [66],



ocean water monitoring [2], avalanche rescue [70], and avespon tracking [6], just to
name a few. Itis not hard to foresee that with further advamntéechnologies, networked
tiny sensors will soon be integrating into people’s evewaletivities and transforming the
way people understand and manage the environment. In faeless sensor networks
are considered to be one of the most important technoloasiay revolutionize the
world [34, 33, 83, 22].

The advantages of wireless sensors over traditional wines ¢ie in their ability to
perform wireless communication and distributed local pesing. These sensor nodes
can be easily deployed in many hard-to-reach or hazarditotsathat are inaccessible to
wired sensors. The large-scale deployment of wirelessosesworks allows the sensor
nodes to be placed closer to the phenomena being monitodethas resulting in larger
signal-to-noise ratio and higher possibility of line-afist sensing. On the other hand,
distributed local processing among low-cost and densepteyed sensors is not only a
cheaper solution compared to expensive and sparselyydphloired sensors but also
provides more accuracy and robustness.

However, despite the many benefits of wireless sensor nk$ywmost sensor network

applications encounter one or more of the following chajkesn

e Sensor nodes are untethered and hence energy consumptibaorigcal impor-
tance. The limited bandwidth of wireless communicatiors® areates additional

barriers.

e Sensor nodes are deployed in an ad hoc manner and most ofdteegls and

algorithms used are distributed in nature.

e Sensor nodes often operate in a dynamic environment. Thgyfailat any time

and the wireless links are time-varying.

e Computation, storage and memory efficiencies need to béutlgreonsidered in

many cases due to the size and cost requirements of sens@rkeipplications.



o Different sensor network applications impose differeguieements and constraints
on the system design and it is not possible to have one untfiectsre that works

for all.

On one hand, wireless sensor networks have a bright futartheoother hand, there
are a large number of technical challenges awaiting to bidedc This has spurred
tremendous research interest in sensor networks sinceith#980s: ranging from phys-
ical layer to application layer, and from low level signabpessing to high level security
issues. This thesis focuses on two of the most important amdisimental research areas

in wireless sensor networks, namely coverage and conitgctiv

1.2 Coverage and Connectivity in WSNs

Coverage is a measure of the quality of service provided bgna® network. Due to
the attenuation of energy propagation, each sensor node $&ssing gradient, in which
the accuracy and probability of sensing and detection adtienas the distance to the
node increases. The total coverage of the whole networkleefore be defined as the
union (including possible cooperative signal processof@ll nodes’ sensing gradients.
It represents how well each point in the sensing field is adeA coverage hole refers
to a continuous area (or volume in 3-dimensional space)arsnsing field that is not
covered by any sensor node, i.e., the events that occurtadhwa coverage hole cannot
be sensed nor detected.

Figure 1.1(a) shows a coverage example where the sensidgigtraf a sensor node
is modeled as a binary disk. Every point within the sensimijusRs of a sensor node is
considered to be covered by the node. The union of all thesd@kns the total coverage
of the network. The region of interest is enclosed by a regeam the Figure. The
shadowed region is not covered by any sensor node and thesleogd to be a coverage
hole.

Similarly, connectivity represents how well the sensoresith the network are “con-

3



(a) Coverage and coverage hole (b) Connectivity graph

Figure 1.1: lllustrations of coverage and connectivity.

nected” to each other. Itis a fundamental property of a wggkensor network, for many
upper-layer protocols and applications, such as disetbstgnal processing, data gath-
ering and remote control, require the network to be congec8&nce the sensor nodes
communicate via wireless medium, a node can only directkyttethose that are in close
proximity to itself (within its communication range). If @ssor network is modeled as
a graph with sensor nodes as vertices and direct commuomdatks between any two
nodes as edges, by a connected network we mean the grapmecosh

Figure 1.1(b) shows the connectivity graph of the same setodes as in Figure
1.1(a). The communication model in this example is also aryinlisk model where if
the distance between two nodes is greater than the comntionicangeR., they cannot
talk to each other directly. Every node in Figure 1.1(b) cammunicate with every
other node, either directly or indirectly via some internagéelnodes. The network is thus
connected.

Although coverage and connectivity have many differentesy are not unrelated.
In fact, a covered network and a connected network are glosklted due to their com-
mon requirement on the geographical placement of sens@snaddcompletely covered
network requires that each point in the sensing region t@kered by at least one sensor

node. This implies that the distance between a node andosesi neighbor cannot be



(a) Covered region and connected nodes (b) Coverage hole and topological hole

Figure 1.2: Relationship between coverage and connegctivit

larger than some threshold to avoid coverage holes. A simmilplication can be drawn
from a connected network.

Coverage is generally a stronger constraint on sensor rladerpent because it re-
guireseverypoint in the region to be covered by at least one node. If are “well”
covered by a set of sensor nodes, these nodes are likely tavdd® tonnected if the
communication radius is large enough. It is proven [99, 18&} with the binary disk
sensing and communication modelsRif> 2Rs, a completely covered network implies a
connected network. On the contrary, connectivity doesmpty coverage regardless the
relationship betweeR. andRs. However, if the set of sensor nodes are “well” connected,
the region where these connected nodes are deployed iskabotd be “well” covered
by intuition.

The intuition behind this result can be explained using agpnexample shown in
Figure 1.2(a). A point that is just outside the sensing rasfgeodeA has to be covered
by another node (nod®in the example). This implies that the distance betw&amdB
must be less thanRR. The two nodes are then connected to each othigs # 2Rs. On
the other hand, when nodeand nodeB are connected, the region betwe&andB is

likely to be well covered if the sensing ranBgis not too small.



The relationship between coverage and connectivity cank@sunderstood in terms
of coverage and topological holes. As defined previouslpwerage hole is a geograph-
ical region where events cannot be detected by any senser od the other hand, a
topological hole or a routing hole is a kind of connectivityomaly which causes the
routing path between two nodes to be unnecessarily longvel® their physical loca-
tions. Because both types of holes are created due to thelagnsor nodes in the hole
regiont, a coverage hole generally implies a topological hole irstimae region, and vice
versa (excluding boundary conditions). This is especiallg when the size of hole is
much larger than both the sensing and communication ranges.

An example is shown in Figure 1.2(b), where a topologicakhslcreated in the
area of interest. The messages from nAdeve to be routed along the boundary of the
topological hole to reach nod& If the sensing rang®s is small compared to the size
of the hole, the topological hole naturally implies a cogerdnole in the same region.

Similarly, a coverage hole implies a topological hole too.

1.3 Coverage and Connectivity Management

Due to the large variety of application requirements andsptay parameters of sensor
nodes, the problems involving coverage and connectivayhéghly diverse. Taking cov-
erage as an example, according to the different applicatpectives, coverage can be
classified into point coverage, barrier coverage, and apsarage [15, 45]. Each of
the classification can be further subclassified. Furtheemeach of the problem can be
tackled from different angles according to assumptionskether a centralized or dis-
tributed algorithm is required, the sensing and commuitnahodel used, and the avail-
ability and accuracy of localization.

It is generally difficult, if not impossible, to construct mgle framework that solves

all problems. This thesis focuses on the problem of arearageeand connectivity man-

lwith the exception that the topological holes or routinggsatan also be created due to obstacles.



agement, which is defined as the activities, methods an@gduwes to monitor and control
the network sensing coverage (area coverage) and conhedtivnvolves the functions
of coverage and connectivity planning, monitoring and reaiance according to user
needs.

Network management is by itself a broad topic. The networkagament functions
are traditionally categorized into the well-known FCAP&u(t, configuration, account-
ing, performance and security) in ISO Telecommunicatioas&ement Network model.
However, this categorization is defined for broad-senssar&tmanagement and does not
directly apply when the focus is narrowed down to coverage @nnectivity manage-
ment. In this work, the coverage and connectivity managerfoections are categorized
into microscalemanagement anghacroscalenanagement according to the geographical
scale upon which the collaboration between sensor nodes #ce.

Microscale management controls network coverage and ctigitg by monitoring
and controlling each node’s local coverage and connegtitibnly requires collaboration
among the sensor nodes in close proximity (e.g., the 1-higihbers). Management tasks
like local coverage and connectivity monitoring [27, 29)verage control [107, 99], and
topology control [88, 14] belong to this category. As oppgbsemicroscale management,
management in macroscale level involves collaboratiorengsr nodes that are far away
geographically. Management tasks like topological holenaary detection and coverage
hole boundary detection [100, 21] fall under this category.

The categorization of microscale and macroscale managesiesstified by the fact
that coverage and connectivity problems can be investigatéboth microscale level,
where the focus is on the coverage and connectivity of iddi&i components, and macroscale
level, where the focus is on the coverage and connectivity avarge geographical scale.
For example, collecting each sensor node’s connectivigggtrbor table) information
at the central controller belongs to the problem of micresscannectivity monitoring.
While monitoring a large-scale topological hole belongshe problem of macroscale

connectivity monitoring.
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Figure 1.3: Coverage and connectivity management system.

The microscale management and macroscale management cardprecisely de-
fined using the concept of OSI network model. Microscale caye and connectivity
management resides in data link layer and provides coverageconnectivity support
for network layer protocols. On the other hand, macroscalem@ge and connectivity
management resides in application layer and provides ageesnd connectivity support
for other application layer protocols.

Figure 1.3 shows the general coverage and connectivity gegment architecture in
sensor networks. It categorizes the coverage and conitgctimnagement functions into
four categories: microscale monitoring, microscale adhirg, macroscale monitoring
and macroscale controlling. The thesis mainly works on tledlems in the first three
categories, which are enclosed in bolded lines in the figuoealization is an important
property for coverage and connectivity management, fortrpasblems involving cov-
erage and connectivity require some form of localizatioppgut. This is also shown in

Figure 1.3.

1.4 Problem Formulation and Thesis Contribution

This thesis addresses the following questions relateddactiverage and connectivity

monitoring and controlling at both microscale and macrleskevels.
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1. How to control the sensor nodes’ behavior such that therege and connectivity
requirements are satisfied? Sensor nodes are normally epkyed in the sensing
region to enhance system reliability. To save energy, onharmdial collection of
nodes need to be active at any particular time while maiimgithe coverage and
connectivity requirements. This problem belongs to thegaty of microscale

coverage (area coverage) and connectivity control.

2. How to collect each sensor node’s local connectivitynmfation at the central con-
troller? Collecting each sensor node’s local connecti¢gighbor table) gener-
ally encounters very high communication cost. This is beeaach node’s neigh-
borhood information is normally very large and it has to beted to the central
controller via multiple hops periodically (for continuoosnnectivity monitoring).
Thus, microscale connectivity monitoring at low commutimacost is not a trivial

problem and requires careful study.

3. How to detect and monitor the large-scale coverage orlagpzal holes in sen-
sor network? Large-scale coverage and topological holedeanaturally derived
from microscale coverage and connectivity informatioemikd at the central con-
troller. However, if only macroscale information is reqadr solving it at the mi-
croscale level is generally not efficient. More efficientalghms on large-scale
hole detection and monitoring are needed. This problenmigslto the category of

macroscale coverage and connectivity monitoring.

Note that simply solving these problems is not difficult, tdmallenges lie in the fact
that the proposed solutions have to be efficient and scalglieiency in sensor networks
requires low communication overhead and low energy coss i§kan important measure
due to the fact that the sensor nodes are untethered andgablsebatteries. Scalability
is also an important measure because of possibility of \emgetscale deployments. In
addition, distributed solutions are preferred in most aces rather than centralized ones

to ensure resiliency.



This thesis systematically investigates these coverageamnectivity management

problems. In particular, this thesis proposes:

1. A distributed node scheduling algorithm for microscalgerage and connectivity
control. The proposed protocol relies on the distance eséisnof the neighboring
sensor nodes and does not require network localizationik&most existing re-
search that works on complete coverage, the protocol wark&dial coverage and

the coverage objective can be configured by the network adtrators.

2. An efficient way for partial or complete microscale cortiety collection. The
problem is tackled by three components (vector distana@ymBlfilters and signa-
ture hashing). By smart combination of these componergs)¢hwork connectivity
can be collected at different level of details with low commmation cost. The pro-

posed protocol is supported by the theoretical analysisloarB filters.

3. An efficient algorithm for large-scale hole detection,mtaring and estimation by
observing the network connectivity changes. Based on therdétical analysis on
the geometric properties of holes, the holes can be detectddstimated using

only a few indicator nodes, which requires very low commatian cost.

All these proposed protocols are simple, lightweight arey@aimplement, and they
achieve the coverage and connectivity management olgsotnith much lower commu-
nication cost compared to existing protocols.

The thesis then integrates these proposed solutions imdfiadicoverage and con-
nectivity management system, which allows the network agstrators to monitor and
control the network coverage and connectivity, at both ascale and macroscale levels
2. The dependencies of these individual components are zethnd system initializa-

tion and operation sequences are explained.

2This thesis only provides the conceptual design of the memagt architecture. The implementation
of the management system is left for future work.
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1.5 Thesis Organization

Chapter 2 briefly introduces various localization techegwith the main focus on two
localization techniques: connectivity-based localimatand sequentially distance-based
localization, for the proposed unified coverage and corivigctnanagement framework
relies on these two techniques. The related work in coveaageonnectivity monitoring
and controlling, both in microscale and macroscale, is gigen.

Chapter 3 presents the design of Configurable Coveraged@tqfGCP) — a node
scheduling protocol for microscale coverage control. Toal @f CCP is to schedule the
on and off of the sensor nodes for energy saving while maiimgithe network coverage
and connectivity. CCP allows partial network coverage tjvtiite configurable coverage
parameten) thus using a smaller number of active nodes compare to @lstthat pro-
vide full coverage.

Chapter 4 presents3@M — a microscale connectivity monitoring protocol 2GM
is an efficient way to encode the neighborhood informatioradh sensor nodes, such
that the communication cost of microscale connectivityemion can be much reduced.
H2CM utilizes several methods under different situationgfieroptimal information col-
lection.

Chapter 5 presents an efficient large-scale topologica tletection and monitoring
protocol. The protocol relies on the information of maximaamnectivity change in the
network due to the formation of the hole to detect the holeestiinate its size. Note that
although the protocol is targeted at topological holesréisalts obtained can be regarded
as coverage holes too if the hole sizes detected are large.

Chapter 6 presents a unified coverage and connectivity neamagf framework, by
integrating the previously proposed solutions. Conclusiand possible future work are

shown in Chapter 7.
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Chapter 2

Related Work

As mentioned in previous chapter, localization is an imgatrproperty for coverage and
connectivity management. In this chapter, various loadlin techniques will be briefly
introduced first, with the main focus on two localizationheijues: connectivity-based
localization and sequentially distance-based locabratirhe unified coverage and con-
nectivity management framework proposed in this thesiegan these two localization
techniques. The related work in coverage and connectiviagitaring and controlling,

both at microscale and macroscale levels, will then be given

2.1 Localization Techniques

Localization is the process of discovering the two-dimenal or three-dimensional po-
sitions of sensor nodes. It is an important property for cage and connectivity man-
agement. Most problems involving coverage and connegtivdm microscale coverage
control, to macroscale hole monitoring (e.g., knowing tleéeHocation and size), re-
quire some form of localization. This section introduceseaeyal background on the
existing localization approaches, with the focus on twaesypf localization techniques:

connectivity-based and sequential distance-based tatiamin.
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2.1.1 A Brief Summary on Localization Techniques

Various localization schemes can be classified into twogcaies in literature: range-
based approaches and range-free approaches. Range-ppsegiches assume that the
range information among the sensor nodes (e.g., distamteekative directions) is avail-
able, while range-free approaches do not require any rarigemation.

Several hardware technologies provide the capability tasuee the distance and
relative directions between two sensor nodes. These témdias include Time of Ar-
rival (TOA), Time Difference of Arrival (TDOA), Received &nal Strength (RSS) and
Angle of Arrival (AOA). All these techniques estimate thetdince or angle information
among the sensor nodes with some hardware support. Ladatizdgorithms based on
TOA or TDOA, such as Global Positioning System [49] and thekett system [80], nor-
mally have high accuracy. However, they all require expanand energy-consuming
devices and their accuracy also rely on the line-of-sigimal propagation. On the other
hand, RSS and AOA [73] based techniques have relatively lmwracy, because they
normally suffer from signal fading and Doppler effect. Reitg researchers have found
that the techniques such as TOA, TDOA and AOA can achievesibaticuracy in an
ultra-wideband system over a normal wireless system [44].

Range-based localization methods assume that the sendes ace equipped with
one or several of the ranging techniques introduced abotey €an be mainly classi-
fied into two categories: the global localization algorithamd the sequential localization
algorithms. The global localization algorithms localizethe sensor nodes simultane-
ously, either by relating the ranging information to somera nodes- [49, 80], or by
some centralized computation using the collected rangifaymation among the sensor
nodes [8, 55, 89, 64]. On the other hand, the sequentialifatan algorithms localizes
the sensor nodes sequentially (and mostly distributivetyng local ranging information
[32,7,72,73]

Rage-free localization methods are generally more cdsttfe and lightweight than

1Anchor nodes are a small set of selected nodes whose losa@ierknown.
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range-based localization, due to the fact that they do rmptire any special hardware de-
vices. The Centroid method [11] requires that the anchove kary large transmission
ranges such that each node can hear from multiple anchoes sdisor nodes estimate
their locations by calculating the center of all the ancliocan hear. APIT [46] lets each
node estimate whether it resides inside or outside thegliearbounded by the anchors it
can hear, and locations can be estimated by overlappingidmgle regions that a sensor
node could possibly reside in. Embedding approaches [30@2ely on various opti-
mization techniques to centrally project the nodes to theographical locations using
only connectivity information. Connectivity-based medsq74, 62] utilize the hop count
information to several anchors for sensor node localipatio

Each localization algorithm has its own advantages andctef@hroughout the rest
of this thesis, we only utilize the connectivity-based aistiathce-based localization meth-

ods.

2.1.2 Connectivity-based Localization

Connectivity-based localization algorithms only utila@nectivity information (e.g. hop
count). They are lightweight and do not require extra hardveaevices. Although they
may have large localization errors, these errors do notecaigmificant impact on some
applications such as connectivity monitoring (Chapterrt) mmacroscale hole detection
and monitoring (Chapter 5).

DV-hop [74] is probably the simplest connectivity-baseddlization method. The
system contains sormenchornodes whose locations are known. Each node measures
its hop counts to the anchors. DV-hop relies on the heuridtiroportionality between
the distance and hop countisotropicnetworks. The system firstly estimates the average
distance-per-hop from anchor locations and the hop coumbsig the anchors. Each node
then estimates its own distance to the anchors using thedwoy mformation. The final
location of each sensor node can be decided by trilaterggijn The localization error

of DV-hop can be in the scale of the sensor communicatione&gHowever, such an
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error is tolerable for applications such as monitoring & Varge hole whose size is much
larger tharR..

Rendered Path (REP) [62] is another connectivity-basedlilation algorithm. Un-
like DV-hop, it mainly targets on the scenario ahisotropicnetworks where there is
possibility of holes. In the presence of holes, the Eucliddiatance between two sensor
nodes may not be estimated using hop count because thesthpatie between them can
be curved by the intermediate holes and the proportionaisumption in DV-hop does
not hold. REP solves this problem by constructing some aitwles and rendering an-
other path which routes around these virtual holes. By coimgahe shortest path and
rendered path between two nodes, the distance can be atg@stimated. The localiza-

tion error of REP is only slightly higher than DV-hop algbint.

2.1.3 Sequential Distance-based Localization

Connectivity-based approaches cannot support some apphs which require a small
localization error. For example, for the application of ro&cale coverage control (Chap-
ter 3), the localization error shall be at least smaller tharsensing rang®s. Connectivity-
based localization schemes have localization errors upgaange oR., which is nor-
mally larger tharRs. Under these circumstances, more accurate distance-luersdida-
tion can be utilized.

While various distance estimation methods have been intexdiin the previous sec-
tion, this section focuses on sequential distance-basadization — how to distributively
construct the location information of each sensor nodes filoe (estimated) distance
information among the neighbors.

In [72], Moore et al. propose a complete solution for suchusegjal localization
when the distance estimation among the direct neighbordiaea errors. The work is
based on the notion @bbust quadrilateral Quadrilaterals are the smallest unit that can
be unambiguously localized in isolation. Figure 2.1(a)veh@ fully connected quadri-

lateral in which all the 6 pairwise distances between the fmdes are known. Such a
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(a) A globally rigid quadrilateral. (b) Two quads sharing three vertices.

Figure 2.1: Globally rigid structures.

Figure 2.2: Robust quadrilateral.

quadrilateral igylobally rigid [32], i.e., the relative positions of the four nodes are uriq
up to a global rotation, translation, and reflection. Twdbglity rigid quadrilaterals shar-
ing three common vertices which forms a five-vertex graphsis globally rigid. This is
shown in Figure 2.1(b), where two quallBCD andACED share the same verticAsC
andD.

However, the global rigidity does not guarantee a uniquizag@on of graph when
there are errors in distance estimation. It is proven in {fid{ the graph realization is free
of flip errors when

whered is the minimum distance out of the six known distances in aglyg rigid quadri-

lateral, 0 is the minimum angle explained below, adgi, is the threshold defined from
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distance estimation errors. As shown in Figure 2.8.8 the minimum internal angle
for all the four trianglesAABC, AABD, AACD and ABCD, andd is the minimum edge.
Therefore, when a globally rigid quadrilateral also sastquation 2.1, the probability
of graph realization with no flip error is bounded. Such a qiigral is calledrobust
guadrilateral Based on the concept of robust quadrilateral, the neigh@parodes can

sequentially estimate their relative locations usin@teiation.

2.2 Related Work in Coverage and Connectivity

Both network coverage and connectivity are the fundamereebrmance measures of
the service provided by wireless sensor networks. Coveregeesents how well the
sensing goal of the network is accomplished, and connéctigpresents how well the
information can be delivered among the sensor nodes or toehiigal controller. In this

section, the state of the art in research related to covenagieonnectivity is introduced.
As illustrated in Chapter 1, the management of coverage andectivity is mainly about

monitoring and controlling, in both microscale level andanuscale level. The related

work presented in this section is also categorized in this wa

2.2.1 Coverage and Connectivity Preserving Node Schedugn

The aim of node scheduling is to select a minimum number oflutly-nodes that are
active at any time, so that requirements on coverage, oremivity, or both are still ful-
filled. By doing so, the network energy cost can be minimizaed] the network lifetime
can be prolonged. These node scheduling problems are atsetistes regarded as den-
sity control problems. They control the “on” and "off” of dasensor node (i.e., control
the connectivity or topology of the network) to save enekglgile maintaining the net-
work microscale coverage or connectivity (or both). They thierefore categorized into
the microscale coverage and connectivity control problentisis thesis.

GAF [101] divides a region into rectangular grids using loma information, and
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ensures that the maximum distance between any pair of nodejacent grids is within

the transmission range of each other. Only the leader in gadhstays awake. The

leader election scheme in each grid takes the battery usagedccount. The leaders
form a dynamic routing backbone for packet forwarding. SHA8] adaptively decides

whether a node should be working or sleeping based on cawityamong its neighbors.

Only the selected coordinators are active to conserve gn8ame MAC layer protocols

[95, 79, 104, 105] for wireless sensor networks also aim tmtas node sleep schedule.
The nodes are dynamically woken up by the MAC protocols taterenergy efficient

network topologies.

In [94], Tian and Georganas proposed an algorithm that esghie complete cover-
age using the concept sponsored areaWhenever a sensor node receives a packet from
one of its working neighbors, it calculates its sponsored &defined as the maximal sec-
tor of the node’s sensing circle covered by its neighborssey circle). If the union of
all the sponsored areas of a sensor node cover the sensiitg afithe node, the node
turns itself off. The sponsored area is only defined when taes are within sensing
range of each other. The neighbors lying outside the semangg are not considered al-
though they can contribute to the node coverage. An impregesion of [94] is proposed
in [57]. The authors introduced the concept of effectiveghbor nodes for calculating
the node coverage accurately. Results in [57] show thatrbyeogsed protocol is able to
outperform the protocol in [94] by about 30% in terms of readgahe actual number of
nodes required for maintaining the original coverage.

Zhang and Hou [107] proposed the Optimal Geographic Der@uytrol (OGDC)
protocol based on certain optimality conditions of coveragd connectivity for large-
scale sensor networks. The authors first proved that whemmeomcation range is at
least two times the sensing randg® ¢ 2Rs), a completely covered network guarantees
connectivity. Thus, one can work on the optimal coverag®leras without considering
network connectivity. In OGDC, the sensor nodes decide drethey should turn on

or off themselves distributively by observing whether tlaeg at or close to the optimal
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(a) NodesA, B andC are free to move (b) NodesA andB are fixed

Figure 2.3: Illustrations of the optimal node positionsrignimum overlap in coverage.

positions for coverage. It defines the notion of ttressing pointsas the intersection
points of the sensing circles of two nodes. To cover one grggsoint of two nodes
with minimum overlap, only one node should be used and theeceof the three nodes
should form an equilateral triangle with side-lengtBRs, as illustrated in Figure 2.3(a).
Furthermore, to cover one crossing point of two nodes whosgipns are fixed, the third
node has to be on the perpendicular bisector of the segmeantcting the other two
nodes, which is shown in Figure 2.3(b).

In [99], the authors introduced the close relationship leetwcoverage and connec-

tivity with the following theorems,

Theorem 2.1 For a set of sensors that at least 1-cover a convex region@ctimmuni-

cation graph is connected ifR> 2Rs.

Theorem 2.2 A set of nodes that k-cover a convex region A forms a k-coedectmmu-

nication graph if R > 2Rs.

Theorem 2.3 For a set of sensors that k-cover a convex region A, the imteonnectivity

is 2k if Re > 2Rs.

19



They then proposed the Coverage and Configuration ProtG€P] that configures the
network for different degrees of coverage. For the cade.af 2Rs, the combination of
CCP and SPAN [19] can provide both the network coverage andeatiivity.

[51] describes a method to determine if an are&-overed by checking the the
perimeter of a sensing circle. An aresisovered if and only if each sensor node in the
network isk-perimeter-covered. The paper provides both algorithntHerbinary disk
sensing modelktUC) and algorithm for non-disk sensing modkINC). The proposed
method is extended to an algorithm that finds the set of nodiesprovidek-coverage.
k-UC andk-NC are centralized protocols.

Yan et al. [103] proposed a distributed density control et capable of providing
differentiated coverage based on different requirementifierent areas of the network.
Each node decides its own on-duty time by observing its rmEigdi advertisement.

In [43], the authors analyzed the number of random sensiigihbers (nodes within
sensing range) required for some confidence of redundantheafurrent node, as well
as the probability of complete redundancy based on the nuaflbendom sensing neigh-
bors. This approach is based purely on random point pros¢Bsesson Point Process),
it is also based on sponsored area (as in [94]) which may peothefficient results.

In [53], the authors proposed a way to totally eliminate tbenmunication cost of
coverage calculation. This is a grid-based approach wigenely one node will be awake
in each grid, and by doing so, nodes do not need to know thénberghg node informa-

tion.

2.2.2 Other Coverage and Topology Control Protocols

Existing literature in node scheduling (or density contedgorithms for coverage and
connectivity maintenance are summarized in the previocisose However, not all cov-
erage and connectivity control protocols are based on tyeasntrol. In this section,
several other coverage and topology control problems &mduaced.

In contrast to the static sensor networks, nodes in mohils@seetworks are capable
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of moving in the sensing filed. Such networks are able todgfitoy themselves starting
from an initial location configuration. The nodes would maveund the area of interest
such that coverage in the sensing field is maximized whilenéte/ork connectivity is
also maintained (and the moving distance shall also be nuemh).

Wang et al. [98] proposed three distributed protocols fobitesensors using Voronoi
diagram: vector-based algorithm (VEC), Voronoi-baseaatgm (VOR) and min-max
algorithm (Minmax). VEC pushes the sensors from densellogep areas to the sparsely
deployed areas. Two sensors exert a repulsive force whgrateeclose. VOR pulls the
sensor nodes towards their local maximum coverage pointh Eansor node locally
moves towards the farthest Voronoi vertex. The Minmax atgor is similar to VOR. It
moves each sensor node inside its Voronoi polygon to a poatt that the distance from
its farthest Voronoi vertex is minimized.

Potential field algorithms [50, 78] move the mobile nodesigsghe concept of po-
tential field. Each node is subjected to two kinds of foréggyer, Which causes the nodes
to rebel from each other to increase the coverageRagges Which causes the nodes to
attract each other to remain the necessary connectivitsedeg/irtual force algorithms
[109, 110] operate in a similar way. Each node is subjectéoreée kinds of forces: obsta-
cles exert repulsive forces, areas of preferential coeeeagrt attractive forces, and other
sensor nodes exert attractive or repulsive forces depgratirthe distance and orienta-
tion. The virtual force algorithm is a centralized one, whtte computation is performed
in a cluster head. In [48], the authors proposed the condegéatric force that depends
on the internode distance and local current densiiy-

Bidding-based algorithm [97] is mainly targeted on the secenwhere only partial
of the sensor nodes are mobile. Each static node calcutateslibased on the distance
to the farthest Voronoi vertex. It then finds the closest eobode whose base price is
lower than this bid. The mobile node considers all bids amdsethe highest bid among
its neighboring static nodes.

The power-based topology control algorithms are to dynaltyichange the node
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transmission power in order to maintain some property ofdbemunication graph
(mainly connectivity) and meanwhile the energy consumpfar packet delivery is to
be minimized. There are a lot of work in this area and only a few listed here.
[88, 14, 82, 65] try to optimize the transmission power lea that the resulting topology
is well connected. Under the total power minimization obyex; topology control prob-
lems for many graph properties (e.g., connectedness, ledudidmeter) are known to
be NP-hard and approximation algorithms for many such problhave been developed
[56, 14, 59].

There are a different set of coverage problems that work ep#th exposure in the
network. [68] defines a sensor coverage metric called diamee that can be used as a
measurement of quality of service provided by a particutsssr network. Centralized
optimum algorithms that take polynomial time are proposeéualuate paths that are
best and least monitored in the sensor network. [67] furitherstigates the problem of
how well a target can be monitored over a time period whileaves along an arbitrary
path with an arbitrary velocity in a sensor network. LocadiZxposure-based coverage
and location discovery algorithms are proposed in [69].] [@8estigates both minimal
and maximal exposure path problems. It proves that maxin@d®ure path is NP-hard
because it is equivalent to finding the longest path in anrentéid weighted graph. It pro-
poses several heuristics on this problem: random path steyrshortest-path heuristic,

best-point heuristic and adjusted best-point heuristic.

2.2.3 Connectivity Monitoring

Connectivity monitoring is another important managemasks in sensor networks. The
network connectivity information provides important soppfor various management
functions such as debugging and root-cause analysis. [n [manathan et al. pro-
posed a sensor network debugging system called Sympatlohwdiuires connectivity
information from the sensor nodes for root-cause causeysisal The authors simply

assume that each sensor node periodically sends its neitgiile to central controller.
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Since the testbed on which they experiment is small, thi®isarserious issue. In [85],
the authors proposed a protocol that each node locally wrsnis 1-hop neighbors and
the neighborhood information aggregates along the pathdaentral controller. This
approach utilizes the bitmap structure and is only applectba relatively small network.

In [28], the authors proposed TopDisc algorithm for senstworks with its applica-
tions to network management. The idea of the algorithm isni di set of distinguished
nodes (minimum dominating set), using their neighborhodormation to construct the
approximate topology of the network. In graph theorydaminating setfor a graph
G = (V,E) is a subseD of V such that every vertex not iD is joined to at least one
member oD by some edge. The problem of finding timnimum dominating s€éMDS)
is NP-complete. TopDisc is a heuristic algorithm for distitive MDS election based
on the idea of node coloring. Only those nodes in MDS will ydphck to the topology
discovery probes, thereby reducing the communicationhmaat of the process.

STREAM [27, 29] is a multi-resolution topology retrievalgbocol which makes a
tradeoff between topology details and resources expenbleel algorithm makes use of
Minimal Virtual Dominating Set (MVDS) to define the distinghed nodes that will re-
sponse the topology probes. The construction of MVDS relnethe concept of virtual ra-
dius, who defines a set of virtual neighbors that are withenintual radius of each node.
By adjusting the virtual radius, the MVDS of different restibn can be constructed, and
the multi-resolution topology retrieval can be achieved.

In [18], the authors propose a mesh based topology retredgalrithm with slow
moving nodes in wireless ad hoc networks. Each node haspteufiarents to which the
local communicable neighbor information will be sent, ahdst the algorithm is more
error resilient.

The topology discovery algorithms mentioned above try tectea small percentage
of the nodes who will respond to the topology discovery psplaed each of these nodes
may only send partial neighborhood information to the adrdontroller. Therefore, the

total communication cost can be tradeoff for the accuraayetivork topology informa-
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tion. In [108], the problem of complete topology discovesyliscussed, the work is based
on the assumption that location information is availablee ieighborhood pattern is also
assumed to have strong correlation with the distance betagmir of the sensor nodes.

By making use of these information, the cost of topologyiegal can be much reduced.

2.2.4 Macroscale Hole Recognition

Existing research in hole detection can be classified into ¢éategories: sampling-based
methods, statistical methods, geometric methods anddgall methods.

Examples of sampling-based methods can be found in [42] @hld [42] presents
an algorithm that continuously monitors a subset of the@emsdes (samples) to detect
large-scale event. When an event occurs, the sample nodesletbct the event will
report to the central controller. The task is to estimateetrent area by knowing which
sample nodes detect the event. The detection algorithmresgine knowledge of the
event geometry (e.g. circle or rectangle) for estimatiothefevent size and shape. This
work also assumes that the location information of all thesee nodes is known to the
central controller and the set of samples has to be pre-ctadpo a centralized way to
ensure best performance.

[91] presents a sampling method to detect and estimateg/striame cuts in the net-
work using sample nodes. By knowing which sample nodes raleglfto send informa-
tion to the central controller, the line that cuts the netwoan be estimated using some
geometric properties. The location information is alsauassd in this algorithm.

In [100, 39, 40], the problems of boundary detection usimplogical methods are
investigated. In [100], Yue Wang et al. proposed an algorittndetect the inner and outer
boundary of holes by topological method. The boundary dietealgorithm is motivated
by an observation that holes in a sensor field create irregatin hop count distances.
Simply, the shortest path tree rooted at one node naturgiijt™ around the hole. The
work identifies the “cut”: the set of nodes where shortedtgat distinct homotopy types

terminate and touch each other, trapping the holes betvineen. tThe nodes in a cut can
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be identified based on the fact that their common ancestdndarshortest path tree is
fairly far away, at the other side of the hole. by removindedi#nt branches of the cut,
multiple holes are virtually merged into one hole. The alijpon then refines the “coarse”
boundary to recognize both inner and outer boundaries ahtiléple holes.

In [39, 40], Stefan Funke et al. proposed to detect a bounasing the concept of
isolevel. It observes that the end nodes of each isolevelrmg of hop counts to a root
node are either on the inner boundary of the hole, or on ther tmatundary. The protocol
firstly builds the isolevel by grouping neighbors with sanmogp ftounts, and then dis-
tributively builds the shortest-path tree to a randomlgsedd node within each isolevel.
The end points of the shortest-path trees are on the boundliinpugh these algorithms
[100, 40] are able to recognize the sensor nodes on bounddrhay do not require any
impractical information (e.g., location information onlry disk assumption of commu-
nication range), they generally involve a number of mes$lageling, thus generating a
large amount of message exchanges. Moreover, these piotanee to be run periodi-
cally for dynamic hole detection.

Geometric methods are presented in [36, 58, 24]. In [36]gFaral. identified the
properties ofveak stuck nodandstrong stuck nodeAll the stuck nodes must be on the
boundary of the hole. These stuck nodes can be identifiedljacsing only neighbor-
hood information. This work assumes that accurate locatitormation is known, and
the communication model of the sensor nodes is the binakyndiglel. [58] assumes that
connectivity information is available and the communicatmodel is the quasi-binary
disk model. By recognizing the structures of a “flower”, admited algorithm on bound-
ary node detection is proposed. [24] presents a hole-finaliggyithm based on the fact
that the shortest-path distance (in hop count) is largertir@distance between two nodes
when the direct path between the two nodes is “cut” by the.l@}eobserving how much
“longer” the shortest-path is compared to the distancehtie information can be esti-
mated. In these works, the boundary of holes can be dete&ibdtively and locally.

Although these algorithms can efficiently detect nodes enbibundary, accurate loca-
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tion information is required and the communication modeaiasmally considered to be
binary-disk or quasi-binary-disk model. These requiretmane practical.

Notice that for the boundary recognition algorithms [100, 46, 58], even after the
nodes on the boundary are locally identified, from managémant of view, the central
controller or network administrator is still unable to abtéglobal” information of the
hole (e.g., size or shape) until all or a subset of these nmabesundary send information
to the sink.

All the approaches described so far are proactive. Thexetbey may be executed
even if no hole has been formed. Statistical based hole l@oyrktection methods [24,
38, 37] are based on the changes in node density or numbeligifboes and can be
considered as reactive. However, these protocols needke assumptions on the node
density and node placement distribution. In addition, elghbors need to be maintained
in the nodes’ neighbor table. This is usually not the cas¢éh@sensor nodes often only
keep track of a small set of “good” neighbors in order to redaommunication and
energy cost. All nodes on the boundary will also report cleandetected, generating
unnecessary overhead.

Finally, work in event boundary detection can also be foum@1, 75, 102, 92, 63].
These works try to detect and construct the boundary of sgresient (not the boundary
of topological hole). Detecting event boundary is gengrsimpler than hole boundary
because the sensor nodes on the edge of the event bound&ryovathat they are on the
boundary based on their sensor readings. In [41, 47, 12 e#8]ient compression and

representation of the event boundary are also studied.
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Chapter 3

Coverage-Preserving Node Scheduling

3.1 Introduction

Low-cost sensor devices are failure-prone. In typical senstworks, these devices are
deployed in higher than necessary densities to meet valesign specifications. In order
to conserve energy and prolong network lifetime, at any tinsgant, only a portion of
these sensors are required to be active while others opar&keep” or inactive mode.
However, if too many nodes are turned off, coverage hole®edarmed and the network
can be disconnected. In this chapter, the problem of nodedsding for energy saving
and meanwhile the network coverage is still preserved isstigated. A Configurable
Coverage Protocol (CCP) is proposed.

CCP makes uses of the distance between two nodes rathehthaadtual locations.
Distance information among nodes is easier to obtain themrate global location infor-
mation. In addition, CCP allows the trade-off between cagerand node usage (i.e., the
number of active nodes). It can be configured to cover at egsirtion of the area with
high probability. For complete coverage £ 1), CCP is comparable to OGDC [107] in
terms of coverage and number of active nodes required. Stranlshows that for 90%
coverage, 22% node savings can be achieved. E.g., for the awmsity of 10, about

400 active nodes can support 90% coverage while about 5B@ actdes are required to
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support full coverage.

Setting the value afl allows the network administrator to flexibly control the nogen
of active nodes in the network and the coverage level. Famela for a security mon-
itoring scenario, the value af can be set to 100% during night time and set to 80% or
even smaller during day time.

The main aim of CCP is to schedule the “on” and “off” of the sensodes and
preserve the microscale network coverage. The overallorgtaoverage requirement
can also be achieved if local coverage is preserved. CCPradcitly maintains the
network connectivity. Therefore, the work presented iis tthapter serves the purpose
of microscale coverage and (implicit) connectivity cohtrat last, one shall notice that
the vacancy estimation scheme proposed in CCP also proxidey to compute the mi-
croscale vacancy of the given network, and thus can alse sesra management function

for microscale coverage monitoring.

3.2 System Model

The sensor nodes are assumed to be deployed in high densityth®swhole area of
interest, such that the network is completely connectedlamdrea is fully covered. The
sensing model is the binary disk model, i.e., each node hassirg radiuds and all
points located withirfRs of a sensor node are considered to be covered by the node.
Each node maintains the distance information to its diregjhbors. It can be built
on top of the distance estimation scheme proposed in Se8tigmevertheless, it will
also work with any other distance estimation schemes oraigsco-ordinate localization
schemes as long as the error is constrained to be within d potadn of the sensing
radiusRs. We do not assume any communication pattern in the chaptaretkr, note
that the distance estimation methods in Section 3.7 assuméisenergy-level binary

disk communication model.
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Figure 3.1: Average vacancy in percentage v.s. maximumlimaten error, withRg
normalized to 1

3.3 Effects of Localization Errors on Coverage

In most WSN coverage protocols, knowing the exact locatioeach sensor node is es-
sential to determine how well the whole network is coveredwelver, accurate and low
cost localization is still a big research challenge as dised in Section 2.1. In fact, the
accuracy of the localization scheme used is often deteavbg@pplication requirements.
Accurate location information normally requires extra gutation, storage, communica-
tion and even hardware cost. In this section, we study thaatgf localization errors on
optimal coverage protocols, taking OGDC [107] as an example

The model of localization error may vary depending on déferlocalization algo-
rithms and sensor operating environments. To keep the siuthle, we define a simple
circular uncertainty model: the location obtained by a liaeéion algorithm is uniformly
distributed in a circular region centered around the adtealtion of the node. The radius
of the circular region ifRmax Which is also the maximum possible localization error.

Most coverage algorithms try to build a coverage set distrely such that minimum
number of sensors are used to cover the entire region oesttein this section, OGDC
protocol is used to study the effect of location errors. Gamntivity is not considered for

simplicity.
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Simulation results of coverage vacancy with respect to mawi localization error
Rmaxfor OGDC is shown in Figure 3.1. The simulated area is 30 unit length andRs is
normalized to 1. It can be seen that mean vacancy increatiefoaalization error. When
the maximum localization errdnax = Rs, the vacancy is around 10% of total region to
be monitored. When the maximum localization error reach®sthe vacancy increases
to around 15%. As the localization error increases furttiex,number of active nodes
selected by the algorithm approaches that of a random &weiect

Another interesting observation is that when there ardilcatgon errors, larger node
density produces larger vacancy. This is due to the propHEr®GDC that uses the
minimum number of sensors to cover the region. With the apsiom of no location
error, a larger node density means that nodes closer to aldbgations can be found. As
a result, the algorithm will generate a sparser active nogeltgy, and is therefore less

tolerant to localization errors.

3.4 Overview of Configurable Coverage Protocol (CCP)

In this section, we present the configurable coverage pob{@CP), which only makes
use of the distance information among the neighboring no@&P allows the users to
specify the coverage objectiee in which at leastr portion of the network is covered.
In order to ensure that the coverage objective will be metag W compute or estimate
the vacancy of the network in a distributed manner (with atdigtance information) is
needed.

The approach used in CCP is shown in Figure 3.2. Given a seattokanodes, the
area is divided into non-overlapping triangles (withoutsidering boundary effects), and
the vertices of these triangles are the active nodes. Thanegds estimated within each
of the triangle. For a large WSN, by ensuring that coverageatige is met locally (in
each triangle), the global coverage which is computed a%i% will be satisfied too,

whereV; is the vacancy in trianglg andT; is the area of the triangle.
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Figure 3.2: Illustration of coverage and vacancy estinmtio

The basic idea of CCP is to sequentially select an additinodé to be active such
that the ratio of the size of the vacangyj)inside the newly formed triangle to the area
of the triangle Tj) should be less than or equal te-Ir. In CCP, each node distributively
elects itself based on the existing edges/triangles that hlready been formed and the
vacancy values of possible new triangles if it is active.lEaade will start a timer based
on the vacancy value of the new triangle formed by itself axidtig edges, and once
a node decides to be active, it will broadcast power on in&tiom first and other nodes
will implicitly cancel their timers.

Note that in order to ensure the correctness of CCP, it isssacg that active nodes
are added one at a time and this is built into the protocolgtesBy adding only one
active node at a time, a unique sequence of active nodesameldt Such a sequence
will generate a unique set of triangles formed by adding aaawe node to two existing
active nodes. This set of unique triangles covers the eatga of interest (excluding
boundary effects) and the triangles do not overlap, engthiat there is no double count-
ing of vacant and covered area. The time complexity of théoea will be linear to the
number of nodes in the network. Because sensor nodes tiigmesckiets in milliseconds,

for a tens of thousands active node network, the total tinteefvhole process can be as
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short as tens of seconds. For an even larger network, thegg@an start from multiple

regions so that triangles are built up at different regiomsutaneously.

3.4.1 Vacancy Inside Triangle

While the vacancy may be easily identified graphically ougiy, computing the exact
values ofVj using only distance information among nodes is more coragga. Before
we formally describe CCP, it is essential to have a look at tewacancies inside the
triangles can be calculated.

Given the distances between each pair of the sensor nodds, a@eandds, the area

of the triangle is,

T(d1,d2,d3) = \/S(S—dl)(S—dz)(S—dg), (3.1

wheres = %(dl—i— d2 +ds3). The common coverage between any pair of the nodes with

distanced, whered < 2R, is given by

f(d) :2R§arcco$%)—g\/4R§—d2. (3.2)

The vacancy of the several cases shown in Figure 3.3 can be calculatéy. 84w
circle in the figures represent the sensing radius. The p&rge of vacancy inside the
triangle can then be evaluated Wy T.

However, for some other cases as will be listed in the nexdestipn, the vacancy is
not in a simple form as shown in Figure 3.3. We call these etxwepl cases. CCP tries

to avoid such cases during selection of active nodes.

3.4.2 Exceptional Cases of Vacancy Calculation

Note that for the cases shown in Figure 3.3, the sensing ra@em “good” positions
where the angles of the triangle are “balanced”. These caselse easily identified using

the distance information and the vacancy inside the treaoglculated in a very simple
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Figure 3.3: Trianglevacancycalculation Yax0(b)V=T- %T{Rg f(dy) —|—f(d2)
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and standard way. Figure 3.4 shows the exceptional casee Wigeesimple formula does
not apply.

For exceptional cases (a), (b) and (c) shown in Figure 3edpthblem comes from
the fact that one edge of the triangle crosses all threeesirdh addition, it can also be
observed that in these cases, the angles inside the tr&aaggehighly imbalanced. In

cases (a) and (b), one of the angles is very large while in(€sene of the angles is very

@) (b)

Figure 3.4: Exceptional cases of triangle vacancy calmrat
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small.

In exceptional case (d) shown in Figure 3.4(d), the vacamtye left triangle (shaded)
is actually affected by one of the nodes in the other triangl¢he right. The vacancy in
the left triangle is smaller than the vacancy compute udiegcalculation stated in the
previous section. In this situation, the vacancy is ovanegtd and the global objective
a can still be satisfied. It can also be observed that case &hvesys linked to cases (a)
and (b).

These exceptional cases cover all the exceptional passibil For example, by ob-
serving Figure 3.3(c), it can be seen that Figure 3.4(a)asotily possible exceptional
case when there are two intersections among the threesirtleese exceptional cases
are not desirable. In particular, in cases (a) to (c), thawey is difficult to compute. In
fact, we would further argue that these cases should alsudideal because they poten-
tially increase the number of active nodes that are needdbddsame coverage objective.
The inefficiency of cases (a) and (b) can be explained usirexample shown in Figure
3.5(a). NodesA andB are known active nodes, if nod&decides to be active because
the vacancy in triangl&BCis smaller than the predefined value, then ngdeill not be
selected based on the ed§€ because there is a very large vacancy in trialighe€. A
node that is closer to edg&C has to be elected, which is no@ein this example. On
the other hand, as shown in Figure 3.5(b), if n&ldecides to be active based on edge
AB, the final results will be triangl&BE and BCE, which is better than the example in
Figure 3.5(a) because the former example tends to have mtive aodes than the later
one, even though in both cases, the average objective isTheas, when bothe andC
hears information about edde, E should elect itself first, a8 is undesirable.

Case (c) only happens when no8leandB are too close to each other. For a suffi-
ciently high node density, case (c) is not likely to happéns also undesirable because
the amount of redundancy is high.

In conclusion, in order to design an efficient distributeglogithm for configurable

coverage, the exceptional cases should be avoided bedaes@rovide less efficient
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(b)

Figure 3.5: lllustration of inefficiency caused by exceptibcases a and b

solutions and the vacancy for these cases are hard to dalcidawever, depending on

the actual placement, it may not be possible to avoid thesesaampletely. Nevertheless,
for most node densities of interest where complete covesagessible, these cases are
rare (from the simulations in Section 3.6). Hence, even whesge cases are included and

no vacancy is assumed (instead of computing the actual ggidhe error is small.

3.4.3 Node Selection Constraint

As previously mentioned, in CCP, active nodes are added bmaetiane. In the new
node selection process, the set of active sensor nodes mugirmected at all times
(connectivity constraint) and the exceptional cases aedlyn previous section shall be
avoided as much as possible (angle constraint). Thus,glthenselection process, nodes
that satisfy both connectivity and angle constraints ansiciered first. If both constraints
cannot be met at the same time, then connectivity constmaitairally takes priority over

the angle constraint.
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Connectivity Constraints

CCP tries to elect a subset of sensor nodes that aoymartion of the environment, it
does not consider the connectivity of the network formedhgyéctive sensor nodes. To
maintain network connectivity in CCP, a node should onlyumiéer itself if it is able
to communicate with both end vertices of the edge. Thus, edge of the triangles is

connected, and the whole network is then connected.

Angle Constraints

From observation, the exceptional cases in Figure 3.4 amelyrwhen there are small
(or large) angles inside the triangle. These small or largges will cause imbalance in
the length of edges, and thus may cause the imbalance inaiasan adjacent triangles.
In order to avoid the exceptional cases, small (or large)esng the triangles should be
avoided. Therefore, CCP selects the node not only basecearattancy values inside the
triangle, it also tries to select the triangle that maximi#ge minimum angle. Note that
this is different from the concept of Delaunay triangulatio

As discussed, the exceptional cases in Figure 3.4(a) arfd)&re undesirable. For
a dense network, it is better to eliminate all such possiggdito form a triangle of such
cases, i.e., the nodes that will form exceptional triangl#isnot perform any action. As
shown in Figure 3.6(a), considering the connectivity caist and avoiding the excep-
tional cases, only the nodes in the shadowed area shouldeterfgr the active nodes.
The minimum angles formed by the competing nodes and the slugdd bef3;. Any
node that has an angle smaller tif@rwill just ignore the new triangle and edge message.

The value of3; can be calculated by,
B1= arcsir(%). (3.3)

Note that the value oB; can be up to whend is close to 0. Thus, even when

network is dense, such constraint shall not be performechwathig small.
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Figure 3.6: Angle constraints.

Another constraint in angle is shown in Figure 3.6(b). Wherode decides to be-
come active and form a new triangle, it will broadcast the @oan message. All other
nodes that are within the communication range of this nodlehwar this broadcast and
try to cancel their timers. It is thus essential for everyetitht is trying to compete for
the new vertex to hear this message. These nodes should steatoed in the shadowed
area in Figure 3.6(b), in which every node is able to direciynmunicate with other

nodes. The shadowed area is limited by affjlewvhich is calculated by,

R.+d

B2 = arcco$ R

). (3.4)

Nodes that can form an angle larger thraax 31, 32) meet the angle constraints and
are preferred. For a sufficiently dense network, one or mooes will be able to meet

this angle constraints in most cases.

Rigidity Constraints

It is possible that given only distance information, thetek position of a node to some
of its neighbors cannot be determined (i.e., the local desgagraph is not rigid, the node
can possibly be on either side of an edge), especially where thre errors in distance
estimation. In CCP, any node who cannot form robust quddrdato existing triangles

will not elect itself as an active node.

37



It should be mentioned that, the angle constraints in pusvgection also help in
dealing with distance errors because maximizing the mimnangle is able to help the
protocol tolerate more distance errors without affectimgrobustness of the local distance

graph [72].

3.5 CCP Details

In this section, we present the details of the CCP algorithm.

3.5.1 Selection of Starting Node

At the initial selection phase, all nodes are in the “UNDEENY state. A node should
volunteer to be the starting node with probabilgy The value ofp should be a small
value such that it is not likely to have many volunteer stgrthodes in each round of
selection.

When a node decides to be a starting node, it first waits fan@doma timets uniformly
distributed within[0,tsmad. tsmaxCan be any reasonably large values, for example, 20
times the maximum transmission time. This waiting time isdi® reduce the probability
of having multiple starting nodes but is not crucial for tleerectness of CCP. If the node
does not hear any messages from neighboring nodes withtrwill change its state to
“ON” and broadcast the power on message. If it receives amepon messages from

neighbor nodes, it will simply cancel the timer.

3.5.2 First Edge and First Triangle Formation

After the first starting node broadcasts the power on messdigeeighbors around the
starting node will set a timdg. If the timer fires, the node will change its state to "ON”.
The value ot is based on the distance to the starting ndde

When a node turns "ON”, it broadcasts power on message tegetith the edge

information. The edge information includes the local umigadi of the two end nodes as
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well as the length of the edge.

Upon receiving the edge information, the neighboring nodéset a timert,. If the
timer fires, the node turns "ON” and form the first triangle.eWalue oft, depends on
the vacancy as well as the angles inside the triangle it forms

The node will broadcast the power on message together vathigngle information.
The information includes the id of the three vertices andehgth of the three edges. This
message also has information about the new edges genexatbis triangle (there are
normally two new edges). All nodes will save the trianglesifed associated with itself
(i.e. if a node is a vertex of the triangle, it will save thimhgle information). All nodes
that hear the triangle information and locate at the sane\with the broadcasting node

will cancel their timers.

3.5.3 Node Selection Process

Upon receiving the triangle and new edge message, only thades that are located at
different sides of the new edge with the triangle will penficeictions. Each node will first
examine whether it has any triangle associated with itsglfsbhare a common vertex with
the new edge. If there is, it will then look at the edge coningdtself and the common
vertex, to see whether the edge has two triangles assoeiéted. The node will take
no action if there are already two triangles associated thithedge. If there is only one
triangle associated with the edge, and it satisfies the eggaquirement, it will announce
the creation of a new triangle with only one new edge immedijaf his approach always
tries to close the region around the common node first.

Otherwise, all other nodes set tinterbased on the vacancy and angles to the new
edges. The node that fires first turns itself "ON” and annouheeexistence of a new
triangle with two new edges. All nodes that hear the new gliemformation will cancel
their timert,. Based on the triangle information broadcast by its neighbehen a node
notices that it is within one of the triangles formed, it taiitself "OFF”. The protocol

terminates when all nodes are either in the "ON” or "OFF” atat
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3.5.4 Discussions
Starting Node Probability p

The value ofp should be small enough so that in the ideal case, only one imotihe

whole network becomes starting node. This can be a valuqq% sa

Timer t1

The timert; should be based on the distance to the initial startup nodsedon the
heuristics used in CCP, the optimal distance should be the kshgth of the equilateral
triangle which exactly has vacancy of-la.

The value oft; is then calculated bty = a(d, —d) if d < do, andt; = a(d —dy) +¢
if d > do, wherea, c are constants andis used to degrade the distances that are larger

than optimal (which may cause more vacancy).

Timer to

The value ot, can be calculated by the vacancy, as well as the minimum aimgkvalue

b

of tp is computed as|% — af + TENER)

+ ¢, whereas, ap, ag are the angles of the
triangle,a, b andc are constantsc is the penalty for the nodes that have vacancy larger
than predefined value. It is O for the nodes that have vacamejlexr than predefined

value.

Joint of Different Sets of Sensor Nodes

The above protocol description only considers the situdtiat there is only one starting

node. Once there are more than one starting nodes, if thereaspecial considerations,

most probably there will be multiple sets of active sensoteeend of the algorithm.
When a node hears a broadcast of triangle message from asethad sensor nodes

(differentiated by the ID defined by the starting node), il onsider the joining of the
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new edges associated with itself and the new edges assbuidkethe triangle if any of

the possible triangles satisfy the vacancy requirements.

3.6 Performance Evaluation

3.6.1 Simulation Setup

In all sets of simulations, we normalize the sensing raByi® be 1. The communication
rangeR; is set to be 3. The world size is a 3B0 square. The communication range is
set to 3 times larger than sensing range so that the CCP igabtdect the nodes that
leave some vacancy. The valueRafandRs vary significantly for different sensor nodes
and different applications, however, in a typical netwavkeless communication ranges
is generally several times larger than sensing range. We-sdi = 0.5 for CCP as the
weights of vacancy and angle constraint respectively isiaiulations.

The relative localization scheme in the simulation assutma&isthe nodes are able to
dynamically change the transmission power levels. Two pdswels are used to estimate
the distances, one is wifR. = 2 and one ik = 1. Note that the value d®; = 3 is used
for CCP packet transmission, it is not used in distance esitom.

The performance matrices are the average vacancy and tHeenofractive nodes to

monitor the environments after applying CCP.

3.6.2 Performance of CCP and OGDC

In the first set of experiments, we compare the performande@C@® and OGDC with

both algorithms using the same distance estimate obtasiad the scheme described in

Section 3.7. To make CCP comparable to OGDC, we set the gelgectivea to 1.

In addition, we modify OGDC protocol to use distance infotim@arather than position.
The simulation results are shown in Figure 3.7. It can be mesethat CCP with

o = 1 has very similar performance to OGDC. Overall, OGDC hasghty better per-
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Figure 3.8: CCP with Coverage Objectiae=1,0.95,0.9,0.8

formance because CCP does not try to minimize node redupdaricsimply tries to
select the nodes that leave no vacancy and satisfy the amggdéraints. However, the per-
formance degradation is small. Using the same distanaa&ss, the vacancy achieved

by OGDC is less than.2% lower and the number of nodes needed is reduced by less than
1%.

It is interesting to note that for both OGDC and CQP=£ 1), there is always some
amount of uncovered area (about 298%) in the network. The vacancy is a result of the
distance estimation error. In addition, when node densitpw, the amount of vacancy
increases due to insufficient coverage. Therefore, in thsgorce of location or distance

estimation error, it may not be meaningful to demand coregtevverage even when net-
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work density is high. In our simulation setup, only coveratgective of 098 or below

can be achieved for both OGDC and CCP.

3.6.3 Performance of CCP witha < 1

In the second set of experiments, we evaluate the perforenain€CCP if the objectivex

is set to a value less than 1. The resultsdet 1,0.95,0.9 and 08 are shown in Figure
3.8. We have observed that for valuesidbetween 0.98 and 1.0, there is little difference
in terms of average vacancy and number of active nodes neAdedresult, they are not
shown in Figure 3.8.

From Figure 3.8(a), we can see that CCP is able to meet theag®/ebjectives most
of the time. There are two reasons why the objective may notdte First, the network
density is too low and there are insufficient nodes. Secound,td distance estimation
errors. Nevertheless, it can be observed that even wher2 and the distance error is
about 01R;, the mean vacancy is still very close to the objective.

In Figure 3.8(b), whem is decreased from.Q to 0.95, the number of active nodes
required is about 91% of the total nodes required whiea 1. The decrease in nodes
required fora values of 09 and 08 are 22% and 29% respectively. The results can be
explained as follow. Whei is decreased to 95% the savings (9%) is limited by the
number of nodes that contribute less than 5% of additionahabzed coverage. The
biggest savings (12%) comes from moving from 95% to 90% @mewhen many more
redundant nodes can be found. However, when coverage wkjecturther decreased to
80%, the amount of redundancy is already low and furthemggvis only 7%. Further
reduction in coverage objective will not be an effective wayeduce the number of nodes

required.
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3.7 Neighbor Node Distance Estimation

As shown in the previous section, distributed distancestddscalization relies on the
distance estimates among the neighboring sensor nodesislséction, we propose a
simple distance estimation algorithm which can provideugioaccuracy to support mi-
croscale coverage and connectivity control that will besprged in Chapter 3. In fact,
for microscale coverage and connectivity control, globahlization is not required. Dis-
tance estimations among the neighbors are sufficient bec¢hayg provide local rigidity

such that the relative locations among neighboring node®ealetermined. In this sec-
tion, we will present an algorithm to perform distance eation, using only connectivity

information.

3.7.1 Assumptions and Notations

We assume that the sensor nodes are randomly distributddngea2-dimensional region
with densityA. Thus, node distribution can be estimated as a Poisson paogéss. The
uniform binary disk communication model is assumed. All §emsor nodes have the
same communication ranggz.

The binary disk communication model is generally not trueeel world. Therefore,
algorithms proposed based on such an assumption may notimprictice. However,
this problem is not too severe for the application of distaestimation. We will show via
simulation in the later section that the binary disk modé#éhsorks for distance estimation
when the communication range of a sensor node is not a peifels.

We use capital letter such Ado represent a region of interest, adglis the random
variable for the number of nodes inside regi&n na represents the actual number of
nodes inside region&. When the context is cleaA will also be used to represent the

area of a region.
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3.7.2 Basic ldea and Problem Formulation

For binary disk communication model, the common area cavlyegthe communication
circles of two neighbor nodes has a one-to-one correspaedenthe distance between
the two nodes. Therefore, in order to estimate the distahisegquivalent to estimating
the common area covered by the communication circles oftbereighbor nodes.
Intuitively, given the fixed node densidy the larger a region is, the more likely nodes
will be located inside the region. Conversely, given a regiontainingh nodes, the larger
the value oh s, the larger the area is likely to be. The above statemeetsupported by

the following two facts.

Fact 3.1 For a Poisson point process with node dengifythe probability that Iy nodes

locate inside an region A (with area A) follows Poisson disttion.

—AA n
p(Na =) = & (M 35)

and E(NA> = AA, V(NA) = AA.

Fact 3.2 For a Poisson point process with node dengifythe area of the region Athat

exactly contains n nodes follows Gamma distribution.

)\ef)\A()\A)nfl

A=A =""7)

(3.6)

and E(An) = n/\, V(Ay) = n/A%.

Thus, for each sensor node, it can make use of the local comatiom graph (num-
ber of common communicable neighbors between two neighhowdes) to estimate the
common communication areas and then the distances bettgedirand its neighboring
nodes.

The basic idea can be explained as follow. In Figure 3.9, ttankced between two

nodesA andB is to be estimated. L&k andB be the region of communication circles of
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Figure 3.9: The number of common neighbors of two nodes carsbd to estimate the
distance between the two nodes.

nodeA and nodeB respectively. The common region of regirandB is X. Also, let
there beny nodes inA, n, nodes iNB, andny, nodes inX. Intuitively, whend is small,ny
is large andhy andn, are small. Conversely, whehis large,ny is small, whilen; andny
are large. Hence, by taking into account the valuagph, andny, d can be estimated.
As ng, Ny andny are correlated, the problem can be redefined as follow. Gign
nk) nodes inA— X, (np — ny) nodes inB — X, andny nodes inX, what is the estimated
distanced between nodé and nodeB? In the following analysis, we leh, n, andc

denote(ng — ny), (Np — Ny), andny respectively to simplify the expressions.

3.7.3 Maximum Likelihood Distance Estimation

Maximum likelihood estimation is used to estimate the siz¥ and thus the distanae
The probability of having a certain number of nodes insidar@a given the value of the
area is given in Equation 3.5.

We need to find the value of which maximizes (let = AA = AB andt = AX),
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M = p(c[X)p(m|A—X)p(n|B—X)
e M (AX)C e MAX (N (A—X))Me MEX)(\(B—X))"

c! m! n!
_ e 22tc(a—t)mn" (3.7)
c'min!
Maximizing Equation 3.7 is same as maximizing the value &f]n
InM = —2a+t+cInt+ (m+n)In(a—t) —In(min!c!) (3.8)
Let 9M — 0 we have,
Solving the above equation we get,
X:—(m+n+c—a)-|—\/(m+n+c—a)2—|—4ac (3.10)

2\

If X < Xmnin, we can seX = Xmin, and if X > Xmax We can seX = Xmax Where
Xmin = (¥~ Y3)R2, andXmax = TIRZ.

Results obtained using Equation 3.10 turn out to be faidgaurate when node den-
sity is low. This is because the number of nodes within comoation range is too small
to provide good accuracy, though the accuracy is much bettésigh node density. The
approach taken to improve the estimation accuracy is teass the number of samples
through the use of multiple transmission power levels. Bywa the transmission power,
the sensor nodes can communicate with different sets ohherg. This additional infor-
mation helps to improve the estimation accuracy.

Take an example of two power level sensor nodes, as showigumd=8.10. The two

sensor nodes have 2 communication ré@ii andRe (Re1 < Rc2), and communication
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Figure 3.10: Distance estimation based on 2 transmissimepievels

covered areas by the two power levels &ie= B; = TiRZ;, andA; = B, = TiR%,. By
adjusting the power levels, there are 4 combination of edtons,A; with By, Az with
B>, A1 with By, and lastlyA; with B1. For the case of\1,B1 and Ay, By, the maximum
likelihood estimation proposed above still works.

For the two cases with different communication radii, agie maximum likelihood

estimation method can be used.

M = p(c[X) p(m|(Ar — X) p(n|Az — X)
e—)\X ()\X)C e—)\(Al—X) ()\(Al . X)>m e—)\(Az—X) ()\(AZ . X))n

c! ml n!
e MALHA) X (AX)C(NAL — AX)M(AAZ — AX)"
= (3.11)
cimin!
To find the maximum value of M (= AX, a= AAz, andb = AA)), let
INM = —(a+b)+t+cInt+min(a—t)+nin(b—t) —In(c!min!) (3.12)

Letdl(r;tM :1+%+£+m:0,weget

t3+ (m+n+c—a—b)t>+ (ab—ac—bc—an—bm)t +abc=0 (3.13)
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The equation can be solved by any approximation algorithmesiloic formula. For a

cubic equation

X4 ax2+px+y=0 (3.14)
let Q= 9538 R 2-%0B2N 4nqg — arccos\/%. The solution for the cubic equation
is then,

8 «a
pu— —2 — —
X1 \/60053 3
0-+2
Xo = —2,/Qcos 2 n_% (3.15)
—2
X3 = —2\/6005e 3 n—%

Cubic equation generally has three solutions (if real smhstexist). We have the

following theorem regarding the three real solutions.

Theorem 3.1 Given the problem defined above, there are three solutigisand & for
the cubic equation, and assume< to < t3, then ¢ is the point where M reaches the

global maxima.

Proof: The solutiort must be less thaaandb, becauseX must be less thaf; and
A.

Observingf (t) = t>+ (m+n+c—a—b)t? + (ab—ac— bc—an—bm)t +abg it is
clear thatf (0) > 0, f(a) < 0 andf(b) > 0. Thust; < 0,0<t; <a anda<tz3<b. tzis
the only feasible solution. ]

The final estimates can be calculated as the average of theagst on four possible

combinations.

3.7.4 Evaluation

A set of simulations are run to evaluate the performancesifidce estimation schemes.
We compare the performance of using one and two transmipswer levels. The com-

munication rang&; of the single power level is normalized to 1 and the commuitoa
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Figure 3.11: Distance estimation error (98% percentile anghn) v.s. node density.
Single and dual power levels are indicated as (1) and (2gsely.

Figure 3.12: Radio pattern examples with DOB®and 02 respectively. [46]

ranges of two power levels a1 = 0.5 andRx = 1 respectively. The results are show
in Figure 3.11. It can be clearly seen that with low node dgntie estimation based on

multiple transmission power gives significant improvensent estimation accuracy. The
performance of the estimation improves with the increasingode density.

The mean distance estimation error can be reduced to 2Redbr node density
larger than 5 using two transmission power levels. At sudtendensity, the 98% per-
centile values is less than 10%Ryf,.

Next, we relax the assumption on the perfect binary disk camaoation model. In-
stead, we adopt the model suggested in [46]. In this modetetls a lower bound and
upper bound on signal propagation. Beyond the upper bouindodes are out of com-
munication range; and within the lower bound, every nodeuiargnteed to be within

communication range. In between lower and upper boundeéegjrirregularity (DOI) is
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used to denote the irregularity of the radio pattern. DOlgfreed as the maximum radio
range variation per unit degree change in the directiondibrpropagation. Figure 3.12
shows an example of radio irregularity with the value of DA)®and 02 respectively
(DOl of value 0 is the same as the perfect binary disk model).

Figure 3.13 shows how the estimation (two power levels)reranies with DOI (as-
sume upper bound is 1 and lower bound.Bfor the first power level, and upper bound is
0.5 and lower bound is.@5 for the second power level). It can be observed that esBtma
error increases almost linearly with DOI. With a relativaligh irregularity (DOI=0.2) in
communication range, and with two power level of estimattbe average error can still
be confined in about 15% &».

Finally, in order to execute the estimation algorithm, éhierstill the need to estimate
the node density. Our simulation result shows that for awaryg deployed sensor field
with sufficiently high node density\(> 10), the local node density can be approximated
with an error less than 10% if the densities of all 1-hop nleayk are averaged. Hence, it

is possible to estimate the node density locally even ifitifrmation is not available.
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3.8 Summary

In this chapter a configurable coverage protocol (CCP) whggs only distances among
the neighboring nodes is proposed. CCP is able to estimatesttancies distributively
and the global coverage objectimecan be maintained. Using simulation, the effects of
distance estimation error on coverage density controbpas (OGDC) are investigated.
CCP performs very similar to OGDC for complete coverage. &gxing the constraints
of complete coverage, CCP is able to generate a subset arssrdes which is smaller
than the number of nodes required for a complete coveragdasfita simple distance

estimation algorithm which can be utilized by CCP is proposed evaluated.
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Chapter 4

Microscale Connectivity Monitoring

4.1 Introduction

In traditional centralized network management, netwopotogy is one of the key pa-
rameters that needs to be known in order to perform opesatike performance man-
agement, fault detection and isolation, and capacity phanriarge displays showing the
network topology are common sights in Network Operationt€@sn(NOC). In the Inter-
net, despite the fact that the control and ownership ardyhdistributed, researchers have
also attempted to gain understanding of the Internet tggolExamples include [3], [1],
[106] and [31]. Knowledge of Internet topology allows reséeers to better understand
important issues such as Internet growth, routing behayard DDoS attacks.

In wireless sensor networks, in addition to tackling tradial network issues such
as fault monitoring/debugging and root-cause analysik f&hnectivity information also
helps in ways that are unique to how sensor networks opdfateexample, it is observed
in [17] that connectivity statistics can be used to computamtopological density, study
the impact of link asymmetry, evaluate geographical rguaigorithms, and assess be-
haviors of algorithms that depend on spatial correlation.

The complete network connectivity graph is formed by aggtieg the microscale

connectivity information (neighbor tables) of all the sensodes in the region of inter-
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est. Microscale connectivity monitoring is thus an impottamanagement task in sensor
networks.

However, obtaining the local connectivity information eifintly in wireless sensor
networks is generally a hard problem. First, the neighbodhioformation at each sensor
node is large. This is especially true for a dense networs(té neighbors per node).
Second, connectivity is highly unpredictable due to low powansmission, limited en-
ergy resource, ad-hoc deployment and factors such as @dsst@ed movement in the
environment. As connectivity of wireless links can vary otimme, nodes need to send
information to the central controller periodically or oerdand, via multiple hops. The
cost can be significant due to the limited energy and bantiwedtources available on the
sensor nodes.

As stated in Chapter 2, previous protocols either reducauhger of nodes that will
send their neighborhood information to a central contr¢28, 27, 29], or let each sensor
node send a subset of its neighbors to the central conti@fer29]. Both approaches
result in significant loss of accuracy.

In this chapter, we propose a Hop-count and Hashing-basedectvity Monitoring
(H2CM) algorithm, a flexible and efficient algorithm to obtainncectivity information
of the nodes located in the area of interest (monitored NotEEM is based on divide-
and-conquerapproach, in which several techniques are combined to délalvarious
network and neighbor set sizes. These techniques are (19dwt filtering, (2) Bloom
filter and (3) use of a single hash value as checksum. By vatyia amount of infor-
mation exchanged, €M is able to provide different levels of connectivity infoation
accuracy.

H2CM is flexible in that each node can be individually configutedprovide the
desired accuracy. As a result, nodes deemed more impodatuacconfigured to provide
more accurate connectivity information.?€M is efficient in reducing communication
cost, even when complete connectivity information of thdewis required.

At last, a simple application of connectivity monitoring ede failure detection will
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be studied. By combining #CM with the concept of dominating set, the communication

cost can be drastically reduced compared to traditional daltection methods.

4.2 System Model

There areT nodes in the network and each node has a unique global ID.IDhésin
be its own MAC address or assigned by any ID assignment pybtbat ensures the
globally unique property [76]. Through pre-planning or @&dime initialization process,
the central controller is assumed to be aware of the idestdf the deployed nodes.

The size of node IR (in number of bits) is at leastog(T)| bits, i.e.,t > [log(T)].

In this chapter, we use log to represent logarithm of basel&artherwise mentioned.
Let X = {x1,...,Xn } be the set of neighbors of a nodandm; be the size oK. When
the context is clear, we also us&to representry andX to represenk;.

Connectivity information is uni-directional (links can Bsymmetric, which is com-
mon in wireless networks [17, 4]). Based on existing link @a@@ment process using
periodic beacons, each node determines the set of conmegitgtbor nodes with incom-
ing links. The definition of a connected neighbor dependserapplication domain. For
example, a nodé can be considered to be connected to nBdfeat least one of the last
several beacon packets transmitteddgan be received big.

The connectivity monitoring process is performed by thetrarcontroller and the
individual nodes to be monitored. Monitoring can be perfednfor a single node, the
whole network, or any subset of nodes. Each monitored nat#ssts own neighborhood

information to the central controller via possibly mulggiops.
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Figure 4.1: An illustration of the ring model.

4.3 Cost Analysis

4.3.1 Cost of Microscale Connectivity Monitoring

The communication cost is affected by the following factensmber of hops in the rout-
ing path, amount of data sent by the source node, data aggdemathe intermediate
relay nodes and wireless transmission overhead (e.g.nsetiasion due to noise or in-
terference). In this work, we only consider the first two fmst We do not consider
retransmissions of packets nor aggregation of data in teenmrediate nodes.

Assume a node iB hops away from the central controller and the amount of reigh
borhood data to be sent at this nodg,ithe communication cost for the central controller
to know the neighborhood information of this node is simplly

The analysis on the communication cost of a complete neigjaloal discovery can
be based on a simple model calk&uy modelas shown in Figure 4.1. In [20], the authors
show that the number of hoph)(and geometric distancel) that a packet travels, in

high-density networks and a broadcast percolation sagraan be well approximated by

d
Re
wireless nodes. Based on this, ring model can be used tozthlg communication cost

the following relation:h = [5-], whereR; is the average communication radius of the

of connectivity discovery [27, 29]. Though this estimatidoes not work well in low-
density networks, the accuracytioes not affect the intuition behind. For simplicity of

analysis, we do not consider boundary conditions, and ¢rdynbdes inside the circle of
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radiusD = HR; are counted, wherB is the maximum radius of the area of interest and
H is the maximum number of hops.

As shown in Figure 4.1, the nodes that &reops away from the central controller
lie between the circles of radfh — 1)R. andhR;, and we call this region rin, where

h e [1,H]. The area of rindn is given by,
m(hRe)® — ((h— 1)Re)? = m(2h— 1)RE (4.1)

Thus, there are on averag@(2h — 1)R2 nodes located in ring, where) is the average
network node density.
Assumel is the average amount of neighborhood data to be sent at eaeh the

total average cost to retrieve the complete connectivithefwhole network is given by,

% ATIRZI (2h—1)h
h=1

- %AnRgl (4H3+3H2 —H) (4.2)

For a complete connectivity discovery, the tekns highly related to the communi-
cation radiugR. and network node densily. If we assume each node simply sends all of
its neighbor IDs, in a unit disk graph modélk= O(AR2). The total communication cost
shown in Equation 4.2 is theB(A?R¢H3), which increases rapidly with network size and
node density.

A node in ringh sends its own neighborhood data, as well as relayed dataftasn

inringsh+1,..., andH. The average amount of data to be sent at a node irhriag

sH A2 — 1)r2
AT(2h—1)r2
H2—h2+2h—1

= S (4.3)
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Note that each node in ring 1 has to send a totaH &f amount of data wherkis
O(Ar2).

From Equations 4.2 and 4.3, it can be observed that therenarevays to reduce
the communication cost. One way is to only let a small porbdmodes transmit its
own neighborhood information, such as MDS and MVDS in [28,Z9]. By doing so,
the value ofA in Equation 4.2 and 4.3 can be reduced. However, such an agpian
significantly reduce the accuracy of the connectivity infation. Another way is to let
each node send less data, such thiatreduced. In [27, 29], each node also sends only
a subset of its neighbor IDs. Again, these approaches asadt i@ significant loss of
neighborhood information.

In this paper, our approach to cost reduction is throughaiedud . Unlike previous
approaches, our approach redutesith no or little loss of neighborhood information.
It is worthy noting that reducindg) has no conflicts with reducing the number of nodes
who transmit their neighborhood information. One can stibose to use MDS-based

approach [28] orthogonally with our work. More details ahewn in Section 4.10.

4.3.2 Related Encoding Techniques

This section summarizes other possible techniques in emgdgdnd possibly reducing)
the amount of dath sent by each node and their corresponding limitations. § besh-
niques include direct transmission, bitmap, and hashing.

Direct Transmission: In the most direct form, a node transmits its neighbor IDs
directly to the central controller. Without consideringethacket overheads, the size of
data to be sent imt bits, wherem is number of neighbors of the node aini the size
in bit of the node’s ID. Whemt is small, e.g. in a sparsely deployed network, direct
transmission may be the most appropriate mechanism.

Bitmap Representation: With bitmap, each node transmits a bit string of slzé&
the central controller. The central controller decidestiveenodek is a neighbor of node

i by looking at thek!" bit in the bit string node transmits. The size of data transmitted is
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at leasfT bits if the bitmap representation is compact. Note that &gmwill only be more
efficient than direct transmission whan> % ort > }n

For large network whergé > mandm< % direct transmission is more efficient than
bitmap. For mid-size network with relatively high densitymay be larger thaﬁ and
bitmap is more efficient.

If we consider the case where the bitmap can be efficientlyptessed, the data
size can be even smaller, especially for large sensor nkeswetowever, in any case, the
maximal compression is lower bounded by (ﬁg > m(log(T) —log(m)) [77].

Since the physical address of a sensor node (e.g., MAC a&jdras be 16 bits or
even 32 bits and more, the identities of the sensor nodestodeximapped to position in
the bitmap for efficient representation. Such a mappingsieete performed in advance
and nodes have to be informed if there are changes to the ntagfor a sensor network
where self organization is important, use of pre-configuard static information is a
serious drawback.

Exact Membership Testing Using Hashing:Hashing is a common solution to com-
press the data for membership information. The space esdjtorhash the neighbor IDs
such that they can be decodexhctlyis also lower bounded by Iqg,) [16].

In summary, considering both bitmap compression and hgskile maximum sav-
ings in theory over direct transmissionmdogm. The reduction iéo%—m < :8%1. Asmis
number of neighbors of a node, the reduction is small whenétwork size is large with

respect to communication range.

4.4 Overview of HHCM

In this section, we describe’l@M, a Hop vector distance and Hashing-based Connectivity
Monitoring scheme.
The central controller is assumed to maintain three setedés for each monitored

nodei. The three sets are:
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¢ Vi, the set of confirmed neighbors of nade
e Uj, the set of nodes whose relationship with nodannot be determined,

e W, the set of confirmed non-neighbors of nade

Letvi = |Vi|, uy = |Ui| andw; = |W].

Note thatW is introduced only for convenience of the description anesdoot have
to be maintained in practice. Initially; andW are emptyU; contains all other nodes in
the network except node At all times, the union of, V;, W, andU; forms the set of all
nodes in the network.

Each sensor nodetransmits its own connectivity information to central aatier.
Intuitively, H2CM tries to reducey; and increase; at central controller using the com-
bination of several techniques so that the most appropieatenique can be applied in
different situations. The objective is to achieve the dabsmccuracy with the minimum
communication cost, where the accuracy is defineéﬁby?ecall thaim is the number of
connected neighbor nodes with incoming links. Heq‘?‘l—;eg 1.

The first technique of the algorithm applies when the valu‘e#{—om andu; are
large. The technique utilizes hop count to compute hop vetistance between nodes
to identify possible set of neighbors. The valueupfind thus% maintained at central
controller can be effectively reduced. This is presente8aation 4.5.

The second technique involves the use of Bloom filters for@aamate membership
testing. This technique is most appropriate Wlﬁ‘@ﬁs less than some bounded value (see
Section 4.6.3). Our use of Bloom filter is unique in two way#st; traditional Bloom
filter can only remove non-members (move elements ftgrto W). In our approach,
Bloom filter can also confirm nodes as members (move elementslf; to ;). Second,
we use a combination of normal and counting Bloom filters ddpe on the values of
m;, Ui andyv;. The details are presented in 4.6.2. Analysis on the betmwaioBloom

filters is provided in Section 4.6.3.

60



In the third technique, ifn —v; andy; are small enough, a node can use hashing to
generate fingerprint of aity nodes to help the central controller identify the complete s
of its neighbors. The discussion is presented in Section 4.7

Data needed for the techniques applied can be combined smagle packet resulting
in only one transmission from each monitored nade Section 4.8, we describe how all

these techniques are put together.

4.5 Hop Vector Distance-based Neighborhood Constraints

In order to more “accurately” decide if two nodes can be nleggh, location information
is the most natural neighborhood constraint. Only nodesatewithin the maximum
communication distance can be neighbors. However, |ad#ahiz itself is a challenging
research issue and often incurs substantial overheadislwtitk, we propose the use of
hop vector distance computed from connectivity based iat#bn [74] to remove a large
amount of non-neighbors for each node wfeis large.

We assume at the end of the localization process, the cexanatoller knows the
locations of all nodes. While the hop count localizationgass and collecting of location
information from all nodes incur substantial cost, thisqass will only need to be per-
formed once. It can be reused for later cycles of connegtoatlection or update as long
as there is no substantial change of this initialized hoptoto the relative locations of
the neighbors. For a large network, taking into account #ie @ reducing the candi-
date set for all nodes and the cost amortized over many nrorgtoycles, the benefit can
easily outweigh the cost.

Assume that there ai®anchors in the network and each node maintains its own hop
count to theS anchors in a hop count vectéhn;1,...,his). The hop vector distance

between two nodesand j is calculated using 3-norm distance between two hop count

61



vectors, i.e.,

S
d= (;ms—hjsP) (4.4)

A lower norm like 2-norm is not desirable because it is noeabldifferentiate the
two cases where two nodes have absolute hop count differauters (2,0,0,0,0,...,0)
and (1,1,1,1,0,...,0). 3-norm provides enough accuraclffierentiate most cases for a
small value ofS. One the other hand, 3-norm is just enough and larger normaraeh to
calculate in computational limited sensor nodes.

Each node sends to the central controller the ID of the neighbde with the largest
hop vector distance. With this information, the centraltcolter can move nodes froty;
toW (reducey;). All nodes with larger hop vector distance cannot be a rmglf node
i. The utility of the hop vector distance based technique ierims of the size of potential
neighbors irJ; relative to the actual neighbor sing after this phase.

We evaluate the utility of the hop vector distance using $atnen. The network area
is varied from 2x 2 to 32x 32 and maximum transmission range is normalized to 1. The
number of anchorSis set from 1 to 8 and the node densitgimulated is from 5 to 30. In
order to generate graphs with different characteristiesalso define two parametdisk
connectivity (LC)andlink asymmetricity (LA)Link connectivity is defined as the ratio
of node pairs that are able to communicate (at least in oreetihin) to nodes that are
within maximum communication range. Link asymmetricitylefined as the percentage
of asymmetric links over the total number of uni-directibaad bi-directional links.

The result of one specific case whea: 10,LC = 0.8 andLA= 0.2 is shown in Figure
4.2. The trends are similar for other cases. Figure 4.2@yslthe ratio of averageand
m versus the network size as well as the number of ancBoM/ithout the hop vector
distance based filtering technique (number of ancl$«s0), the value of% increases
fast with the network size, wher@ andm are expected values efandm. It can be
observed that, with 4 anchors, the ratio of averagedm s less than 3 even for very

large network. A larger number of anchors only performs nmaity better.
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Figure 4.2: Effects of hop vector distance based technique.

Figure 4.2(b) shows the distribution of neighbors verseshbp vector distance
whenS= 4. The top graph shows the probability that a node with a §pdwp vector
distance away from nodas actually a neighbor af The middle graph shows hop vector
distance for all node pairs (2560x2559) with respect to the vector distance. The
distribution of actual number of neighbors of a node withpees tod is shown in the
bottom figure. We can see that when the hop vector distancemhbdes is greater
than 2, the probability that they are neighbors drops to atrdo It in turn shows the
effectiveness of how hop vector distance can be used to egtiecvalue ofj;.

From the results, we can see that, filtering based on hopngistance is very useful
for reducing the size dfl;, especially in large sensor networks. However, utilizimg h
vector distance based approach alone is apparently nogbrimmcause although it effec-
tively removes elements froty at the central controller, it does not help in determining
which of the remaining elements W are actually neighbors. In the next two sections,

we present Bloom filter-based approach that can effectinelye elements frord; to V.
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Figure 4.3: Examples of Bloom filters.

4.6 Bloom Filter-based Connectivity Monitoring

4.6.1 Bloom Filter Preliminaries

Before we go into the details of the basic idea of our Blooreffitpproach, some funda-
mental knowledge on Bloom filters is introduced.

A Bloom filter [9, 10] is a simple and space-efficient probeit data structure that
belongs to the class of approximate membership testerveas igi [16]. It is used to rep-
resent a set with much less space requirement than diregigsenting the entire whole
set. Membership testing over Bloom filters is simple and fagugh a small probabil-
ity of false positives may present. Recently Bloom filtersehleen widely applied in
networking areas such as distributed caching [35, 86], ppaverlay networks [13],
measurement [60], and many others.

The standard form of Bloom filter represents aXet {x,...,Xm} using a bit array
of lengthb bits. There must also deindependent hash functiohs, ..., hy defined, and
each of the function hashes any value in the universal toweafirangg1, b| uniformly.

To construct the Bloom filter, the Wik (x) of the bit array is set to 1 for eadke [1,K]
and for each elemente X. To check whether an elemeyis in X, we simply check
whether the bit positionis;(y) for all i € [1,k] are 1. Itis clearly seen thatyfis indeed a
member ofX, it will never be considered not. Howeveryifs not a member oX, there is
a possibility that it can be considered as a membeét @alse positive). This is illustrated

in Figure 4.3(a), wherg, is considered to be in s&tandys» is not.
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The false positive probability can be approximated as [10],

1—>km)kz (1— e km/byk (4.5)

(1-(1-3

Given fixed values om andb, the value ok that minimizes the false positive probability
is,

b
k=In2_ (4.6)

In another word, given fixed values of andk, increasingo (using more space) always

reduces the false positive probability but the most efficggre ofb is,
b= (loge)km 4.7)

There is another formulation of Bloom filter which takes aylstly different form.
The bit array of sizd is divided intok disjoint bit arrays of siz§ each. Each of the hash
functionsh; to hx has an output range ¢f, t—lz]. To construct the Bloom filter, set the bit
positionh;(x) of bit arrayi to be 1 for eachx € X. The membership testing is similar
to the standard form. This process is shown as an examplgund=#.3(b), wherg; is
considered to be in sét andys, is not.

Again, there is probability of false positives, the falsesiige probability can be
approximated as,

(- (@M~ (@ -e ko 48)

which is asymptotically close to the false positive ratetahslard Bloom filter.
Given fixed values o andb, the value ok that minimizes the false positive proba-
bility is given by,
k=In2— (4.9)
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And given fixed values am andk, the most efficient bit array size is,
b
Ko (logeym (4.10)

Note that the false positive probability of the second fosrasymptotically larger
than first of standard form (although the difference is sjnakcause the following in-
equality always holds,

Kk 1

(1= < (@-p)m (4.12)

A more general form of Bloom filter is to expand each bit in thteabray into ac bit
counter. This is also known as the counting Bloom filter [3&henever an element i
is hashed into an entry, we increase the counter associdtethat entry by 1 if there is
no overflow (greater tharf2- 1). Hence, a counting Bloom filter provides an exact count
of the number of items that match that entry if there is no theer Note that whert = 1,
it becomes a normal Bloom filter described above.

We choose to use the second form of Bloom filter in our desigtoahectivity dis-
covery protocol. This is because the second form allowsemental update through
sending smaller pieces of data, each using a different hegttion, and it also allows the
easier combination of results from several bit arrays udiffgrentc values. In the rest
of the paper, when we mention Bloom filter, we refer this sed@nmmulation of Bloom

filter.

4.6.2 Basic ldea

To apply Bloom filter in the context of connectivity monitog, we assume each noide
sends the central controll& rounds of counting Bloom filters with number of bits per
entry fromc; to ¢, for round 1 to round; respectively. For each round of Bloom filter,
the bit positions are set according to the hash values di@klements in neighbor set

using the corresponding hash function.
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Upon receiving the Bloom filters from a nodethe central controller is then able to
remove some nodes froly to W (reduceu;), as well as fromJ; to V; (reduceu; and
increasey;) according to the properties described below.

Non-member Removal Property: The first property of a Bloom filter is the same as
the traditional usage of Bloom filters explained in Sectigh 4. We call itNon-member
Removalbproperty. Upon receiving the bit array from a node, the @ montroller tests
each element iJj and moves those that are not neighbors ftgnto W. After enough
rounds of non-member removal frodh to W, the setU; will be Vi and the central con-
troller can confirm the membership of 81e.g., by checking the length bf is equal to
the total number of neighbors of a node).

Membership Confirmation Property: The second property of Bloom filter applies
whenX; C (U; UV;), which means the initial guess of a node’s neighborhoodinébion
at the central controllet)) by hop vector distance based scheme contains exactlyeall th

neighbors of that node. We then have the following theorem.

Theorem 4.1 Hash each element in; ¥ito a counting Bloom filter with number of bits
per entry ¢ (c> 1). Assuming the value of the counting Bloom filter at entrys{ j3, then
if there are only §j) elements in WUV, that hash into entry j, then the 5 elements in

U; UV, that hash into entry j must all be in X

Proof: This can be proved by contradiction. Consider one elemeint i that
hashes into entry but is not inX;. SinceX; C (U; UV;), the number of elements K that
hashes into entry cannot exceed(j) — 1, which is a contradiction because there are at
leasts(j) elements irX hashed into entry. O

Upon receiving Bloom filter data from a node, the central catgr can confirm that
some elements ik are inX;. We call thisMembership Confirmatioproperty. This
is an interesting property because unlike the traditiorsalge of Bloom filters, which
probabilistically tests whether an element is in the sely n@ are able to confirm some

portion of the elements are in the set. These elements aredrimmU; toV;. Note that
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X={X1, X3, X4, X5, Xg} U={X1, X2, X3, X4, X5, Xs, X7, Xg, Xo} V={} W={}

X1 X3 Xg X5 Xg

Round 1

GOBLRNN b |9

Move to V Move to W

X={X1, X3, X4, X5, Xo} U={X1, X2, X4, X5} V={X3, Xo} W={Xs, X7, Xg}
X1 X3 X4 X5 Xog @ X3 Xg @

Round 2 PR
0o]1]2]1]1][0]0o]0] =) @1110000ﬂ

Move to V Move to W

X={X1, X3, X4, X5, Xg} U={} V={X1, X3, X4, X5, Xo} W={X2, Xg, X7, Xg}

Figure 4.4: Bloom filter properties.

this property is not utilized in traditional Bloom filter ajpgations becausk; is generally
not a subset dfl UV; whereas in our casy is always a subset &f; U V.

Counting Removal Property: This property only applies for a counting Bloom filter
with bits per entryc greater than 1. One property of the counting Bloom filter & ih
supports deletion of an element when there is no overflowe®@as this property, the
central controller can remove some elements of confirmed &&m the counting Bloom
filter if overflow does not occur. We call this property@sunting Removalroperty. Give
a Bloom filter bit array, this property should be applied igpible before the previous two
properties to be applied.

An example showing how these properties can be applied srshoFigure 4.4. In
the example, initialyJ = {x1, X2, X3, X4, Xs, Xs, X7, Xg, X9 }, V @andW are empty. Two rounds
of Bloom filters are applied with first round a normal Bloomdilvithc; = 1 and second
round a counting Bloom filter witls, = 2. After first round xg, X7 andxg are moved into
W because they all hash into a bit in the bit array with value.otf0andxg are moved
toV according to membership confirmation property becausedbreethe only nodes that
hash into the bit array with bit value of 1. In round 2, firstpuniting removal property is
applied &3 andxg), then according to non-member removal propegys moved intoN
and according to membership confirmation propettyxs andxs are moved intd/.

Integrating these three properties together, the centratraller is able to remove
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some of the non-neighbors fradi toW, and it is also able to move the confirmed neigh-
bors fromU; to V;. Note that for non-member removal property, a normal Blodtarfis
more efficient than a counting Bloom filter, whereas for mership confirmation prop-
erty and counting removal property, a counting Bloom fileebetter than a normal one
because there is less probability of overflow. The challeraye is when to use a normal
Bloom filter (c = 1) and when to use a counting Bloom filter¥ 1) and of what size. We

answer this question in the next section.

4.6.3 Theoretical Analysis

In the following analysis, we assume the set of neighbor IDa aode to beX, the
confirmed neighbor set of this node at central controllere® pand the non-confirmed
neighbor set of this node at central controller tdheLetm= |X|, v=|V| andu = |U]|.
AlsoletY =V UU andn=|Y|=v+u. Note thatv C X andX CY. LetZ=V +U —X
andz= |Z| = v+u—m. Zis therefore the set of non-members (but central contradler
still not sure) inJ.

For a Bloom filter sequence & = [cy,...,Ck], the number of total bits required is
bz'j‘zlcj = mlog(e) ZIJ-(:]_CJ'. This value increases linearly with To reduce the total
number of bits required has to be bounded to a small value.

In this section, we investigate the effectiveness of hofedeht sequences of Bloom
filtersC help in identifying neighbors and non-neighbors. We willfianalyze the behav-
ior of normal Bloom filters, followed by counting Bloom fili®r The behavior of several

rounds of mixed normal and counting Bloom filters will be saedat the end.

Normal Bloom Filters

Hashingm elements into a bit array of size= mlog(e), the probability thaith bit is
setj timesP(m,b,s(i) = j) (or in shortP(m,b, j), or simplyP(j)) is given by binomial

distribution,
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- -P(0) (4.12)

After a node hashes all its neighbor Xein a normal Bloom filter and sends the data
to the central controller, the central controller will haalhnodes inU andV into the
same size of bit array. The expected number of non-membesnmah be removed from
U is given byP(0)z. The number of non-member nodes that still remaitJiis then
(1-P(0))z

Without considering those nodes alreadyifwithout considering counting removal
property), the number of nodes that can be confirmed by th&atesontroller to be
neighbors is, the number of bits in the bit string that only aode inX hashes into
(P(m,b,1)b), times the probability that for any bit, none of the nod&ifnon-member

nodes) is hashed into. This is given by

P(1)bP(z b,0) (4.13)

whereP(z b, 0) is the probability that a bit remains 0 by hashingodes into bit array

size ofb. The percentage of nodes that will be confirmed by the ceatraroller is then

p= w =P(1)P(zb,0)(loge) (4.14)

Similarly, in consecutivék rounds of normal Bloom filters (i.eg; = 1V € [1,k]),

the average non-member nodeddrat roundj is zj = (1— P(0))/=Yz, and the aver-
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age percentage of nodes that can be identified byjttheoundp; is given by (without

considering the nodes that have been confirmed by previaunss),
pj = P(1)P(z(1—P(0))1~Y) b,0)(loge) (4.15)

Counting Bloom Filters

In general, a counting Bloom filter is not as space-effici@mpared to a normal Bloom
filter for the purpose of non-member removal. However, it talerate overflows so
that the membership confirmation and counting removal ptgmgan be applied more
efficiently. We will only consider counting Bloom filter af= 2 in this section for the
following two reasons. First, we want to use Bloom filter toyide better performance
in reducing communication cost than direct transmissiocomhpressed data. A Bloom
filter of c > 2 is too costly. Second, in our application, when 2, the gain of tolerance
on overflow is small compare = 2.

Without considering the set of confirmed neighb&sEquation 4.13 can be gener-
alized to,

(P(1) 4+ 2P(2) +3P(3))bP(z,b,0) (4.16)

Note that for normal Bloom filters in sequence of two, the ltotamber of nodes

identified is (excluding/),

(P1+ P2 — p1p2)m (4.17)

where,p1,p2 are given in Equation 4.15.

Comparing Equations 4.16 and 4.17, we have the followingréma,

Theorem 4.2 Two consecutive normal Bloom filter will be better than a dovghBloom
filter with c= 2in terms of number of neighbors can be confirmed by the certrafoller

(without considering those that has already been confirmeprévious rounds), if and
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only if,
21og0.7661

log(1— (Iogle)m)

(4.18)
where n is the total number of nodes in U and V, m is the size of X.

Proof: Assumemis large, scP(m,b, j) ~ 2(Tgle)m

The number of identified nodes by the central controller by tensecutive Bloom

whenj is small.

filter is given by Equation 4.17, by 1 counting Bloom filterof 2 is given by Equation
4.16, let,

(4.17)— (4.16) > 0
= (0.5a%+0.5a—0.25a%)m—0.9667°m > 0
= 0.25a%+0.466%—0.5< 0

= 0<a<0.7661 (4.19)

wherea= (1— m)i

Thus, wherz=n—m > M, two consecutive normal Bloom filter will be
log(1—- (Ioge)m)
better than a counting Bloom filter with= 2. O

However, what has been analyzed on counting Bloom filter relpibased on the
non-member removal and membership confirmation propert@sunting Bloom filter
has one more advantage: if the central controller has ajrelmhtified some portion of
elements to be iX, these elements can be deleted from the counting Bloonsfiftdrere
is no overflow.

Recall thatv = |V| is the number of nodes that have already been identified by the
central controller. By deleting them from the counting Biodilter, there will be more
“0” entries available which can be useful in non-member reshproperty. Since = 2, it
is possible to delete those that have already been identifilgdvhen number of elements

hashed into the bitis 1 or 2.
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The probability that an identified node can be deleted froooBi! filter is given by,

P(1)+2P(2) _ P(1)+2P(2)
SLPO) e (4.20)

For those entries where one or two elements are hashed elating) the element(s)

will give more 0 bits. Thus, the increase of percentage ot9ibj

(loge)P(1)v+ (loge)2P(2)Xv
(logeym

— P(l)%JrZP(Z)V—mZZ (4.21)

Whenv is close tom, the increase in number of O entries is large. Removing more
non-members will help member confirmation and non-membeoval in the next round,
and will help to increase the chance of successfully usirggefiorint hashing for identifi-
cation explained in Section 4.7.

Thus, when the central controller already knows a largeqodf the nodes, sending
one counting Bloom filter is probably an advantage becaustyfin has already been
reduced to a small value when the central controller haa@r&nown a large portion of
the neighbors of node Second, counting Bloom filter will remove more non-members
which is an advantage for the next round.

The discussion leads to the following heuristic. If the nemaf confirmed neighbors
(v) is small comparing to the actual number of neighbaons (wo normal Bloom filters
(c=1) tends to perform better a counting Bloom filter with- 2) of the same total size,

and vice versa.

Bloom Filters of k Rounds

In this section, we will try to generalize the previously mened heuristic to multiple
rounds ¢& 2) of normal and counting Bloom filter. The goal is to use jusiwggh Bloom

filter data so that the number of unconfirmed noalesv is smaller than some pre-defined

73



value or small enough to utilize a simple fingerprint value domplete identification
(Section 4.7).

For each round, if it is normal Bloom filter, we have

pi = P(1)P(zb,0)loge
Z=(1-P(0))z

p'=p+p—pip (4.22)
If it is a counting Bloom filter ofc = 2, we have

pi = (P(1) +2P(2) +3P(3))P(z b,0) loge
Z = (1—P(0)—P(1)p—2P(2)p?)z

P =p+pi—pp (4.23)

whereZ andp’ are the updated value afind p for the next round respectively.

The final total percentage of nodes can be identified in agasatien,

Y P— > ppit > PiPiPs—- .. (4.24)

i=T .k i=1.kJ=i+1.k i=1.k j=i{Tks=j+1.k

It's direct form is hard to derive but numerical solutions @asy to calculate. As an
illustration, we plot the percentage of neighbors confirragdhe central controller for
m= 30 in Figure 4.5 for different values of initial uncertairt seet. Values of different
le<=1 cj are plotted, where; is the value ot for the Bloom filter size at roungl We use
[c1,...,c4 to represent Bloom filters &€ rounds. In the plots, all combinations of using
c=1or 2to sum to the values 2, 3 and 4 are compared. The resutithier values om
are similar to Figure 4.5 except that the crossover pointsioat different values.

From the figure, it can be observed that the Bloom filter secgi¢hat starts with

c; = 1 always outperforms those that starts with= 2. This coincides with the theorem
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Figure 4.5: Comparison of consecutive Bloom filters=£ 30).
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shown in Section 4.6.3. From Section 4.5, we also see thhtusing hop vector distance
as a filter,% is between 2 to 2.5 whe®= 4 (i.e., initial value oft input to Bloom filters
is between 60 to 75). This corresponds to 40% to 60% of neightoobe confirmed in
the best case in Figure 4.5(a), 65% to 85% in Figure 4.5(ln),8&% to 95% in Figure
4.5(c).5 ¢j =4 with sequence [1 1 2] or [1 1 1 1] are good choices under thiaon.
Given the neighbor set siza (known at node), as well as initial uncertain set size
Uj, nodei is able to estimate the best Bloom filter sequence it reqiorethe central con-
troller to confirm at least the pre-defined percentage offvimags given by Equation 4.24.
Considering the limited computational resources, thes@temns may seem complex for
implementation on the sensor nodes. Fortunately, in ouicgtions, the rati(% is almost
always below 2.5 after the first technique is applied. Thusvalues 012'1-‘:10,- tends to

be small to give a good performance.

4.7 Fingerprint Hashing

Because Bloom filter is a probabilistic structure, as moight#r nodes are recognized,
fewer new members can be confirmed at the next round. To céahplecognize all the
neighbors, a large amount of rounds may be required.

However, if most of the neighbors have been recognized bgeh&al controller, a
node can just simply choose to hash all its neighbor IDs irfingerprint value (say 32
bits), and append this fingerprint value to the bit arraysgasied by the Bloom filter to the
central controller. After applying Bloom filter on the bitays, the central controller may
perform search using the hash value to obtain the comp#tteflneighbors if needed.

The cost of searching is upper bounded(hy,). If the central controller sets the
search threshold per node to®1€hen any value ofi < 22 can be searched, independent
of the value ofm— v (since (ﬁ) < 10°). Similarly, if the search threshold is 4,0then
u<12is always fine.

In cases where the central controller finds it too expensiygetform the search, it
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can ask for more rounds of Bloom filters data from those nodés;h would be very
few in number. Finally, note that since hash values candmllthere is a very small
probability that some neighbors are falsely identified froodes inU. However, the
collision probability is very small wheu is small and hash value is sufficiently large.

It is also worth noting that, with fingerprint hashing, thenqaete neighborhood in-
formation of each node can be obtained with very high prditgbiHowever, its commu-
nication cost can be even smaller than the scheme withowrfingt hashing where only
a percentage of neighbors could be obtained, because féortner case, fewer rounds
of Bloom filters can be required. This is verified by comparing simulation results in

Sections 4.9.1 and 4.9.2.

4.8 Flow of H2CM

4.8.1 Connectivity Initialization

There are two parts to the execution, one on the central @tertand the other on the
nodes monitored. We only show the pseudo code on the moditmées in Algorithm
1. In addition, for ease of explanation, we only show the algm for complete connec-
tivity (with fingerprint hashing). If only a pre-defined perdage of neighbors is required
and additional computation cost is also allowed at centratroller, the node has to esti-
mate and compare the communication costs of the schemesmdtivithout fingerprint
hashing, and chooses the one with lower cost. This is natdec in Algorithm 1.

Each monitored node first estimates the required Bloom fiégjuence such that
the communication cost can be minimized while the searctiirgshold can be satisfied
(line 1-15). Note that this estimation is based on the faat imgerprint hashing will be
applied. If the fingerprint hashing will not be applied, tlstimation shall be based on the
percentage of neighbors confirmed as analyzed in Sectio8. A Bis is not shown in the
pseudo code.

The value olu (line 18) is closely related to the network parameters ssdimiacon-
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Algorithm 1 H2CM at Each Monitored Node
Require: Neighbor tableX, hop count location of neighbors, neighbor ratiand search-
ing thresholdhresh
1: function BFSEQUENCHuU, m, b, thresh
2 nBins« 1, search«— oo
3 while search> threshdo
4 for ce {c| S c[i] =nBinsc[i] =1 or 2} do
5: Calculatez andv using Equation 4.24
6
7
8
9

Uu«<—mM—v+2z
if (") <searchthen
search— (', ), bfs—c

: end if
10: end for
11: nBins— nBins+ 1

12: end while

13: return bfs

14: end function

15:

16: | «— argmaxcx d;

17: m+« |X|,u« [am],b < [log(e)m]|,s«+ mlog(|T|)
18: ¢ < BFSequenden,u, b,thresh

19: if log(|T|) +b(3 cli]) + sizeofsig) > sthen

20: Send IDs directly

21: else

22:  Allocate space olb(5 cli]) bits

23:  forie[l,len(c)| do

24: Do Bloom filtering of each neighbor IDs
25: end for

26: sig < signatures of neighbor IDs

27: Send I0j], Bloom filter andsig

28: end if
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Figure 4.6: Packet format for connectivity monitoring.

nectivityandlink asymmetricityand it can be obtained in several ways. A node can either
estimate locally based on the valuawbr obtain from central controller’s broadcast mes-
sage. The simulation in Section 4.5 shows that with hop ceector based localization
and with relatively low link connectivity and high link asynetricity, 2nto 2.5mis the
good approximation on upper bound wfi.e., in line 18,a = 2 to 25). We will also
apply this settings in our evaluation of large scale senstwaorks.

After computing the Bloom filter bit sequence, a check (lirl§'ds performed to
see if it is better to simply send the node IDs directly indtegatherwise, the Bloom filter
sequence and fingerprint of the neighbor IDs are sent to titeateontroller (line 24-29).

The packet format is shown in Figure 4.6. The two fields (F af) &e used to
identify if the data is encoded using directly neighbor IDgmap, Bloom filter or any
other compression schemes. The figldand 1Dax are used to indicate the number of
neighbors seen and largest hop vector distance. The rergdgites (BFDATA and SIG)

are used to store the Bloom filter sequence and fingerpriat dat

4.8.2 Connectivity Update

Since the connectivity changes over time, the algorithm mesd to be applied period-
ically. However, if the connectivity of the whole network eknot change too much,
collecting the connectivity information from scratch metically may not be a good idea.
The common way to perform incremental update is by diffea¢mbethod, i.e., a node
will only report to the central controller about what hasmpead.

The proposed algorithm can be easily extended to this diftel update process,

as shown in Algorithm 2. For the set of neighbors that has beeroved, the original

INote that in the evaluation section, to compare the perfooaaf HHCM with other techniques like
maximal compression of bitmap, this check is not performed.
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Algorithm 2 Connectivity Update Algorithm (At Each Node)
Require: Old neighbor tableX, added neighbor se;, removed neighbor séf;, hop
count vector (or location) information of neighbors, ahdesh
| < argmaxex +x1-x20
Moid < | X[, Mnew— [ X+ X1 — X
My« [Xq|, U1 = [0Mhew, b1 — [log(e)my |
My« [Xa|, Uz <~ Myjg, b « [log(e)my|
s min(|T|, Mhewdog(|T|))
c1 = BFSequencen, up, by, tresh)
c; = BFSequenaermy, up, by, tresh)
if log(|T|) 4+ ba(3 c1[i]) +ba(3 c2i]) + 2sizeofsig) > sthen

Send change of neighbor IDs (or Bitmaps) directly
else

Allocate space oby (3 c1]i]) +bo(3 c2fi]) bits

for i € [1,len(cy)] do

Do Bloom filtering of each neighbor IDs
end for
for i € [1,len(cp)] do
Do Bloom filtering of each neighbor IDs

end for

sigy < fingerprint of added neighbor IDs

sig « fingerprint of removed neighbor IDs
20: Send I0i], Bloom filter andsig
21: end if

CNTRrONR

PR R R R R R R R R
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neighbor set at the central controller becomes the initnentain setJ. Each node
knows the exact value dtJ| and number of neighbors that have been removed, so it
may estimate the Bloom filter sequence required with goodracy. For the set of new
neighbors, the initial uncertain st is the one constrained by the hop vector distance
minus the original neighbor set. Same algorithm as intredun previous sections can

be applied.

4.8.3 Further Extensions

The algorithm presented is for a single connectivity thoéghlt is possible to extend the
approach to monitor discrete link quality values with a dmamber of discrete levels.
For example, to retrieve the link quality information of adeo we can first apply the
connectivity monitoring algorithm introduced startingrm the lowest link quality. Once
the neighborhood information for the lowest link qualitykisown, we proceed with the
next higher link quality by setting the initial uncertaint$e be the set of confirmed

neighbors in the previous round. The algorithm proceetihélhighest link quality.

4.9 Evaluation

In this section, we show our evaluation results using batiuation and testbed experi-
ments. In the simulations, we assume that the packets caeliberdd without any loss.
In fact, as long as the hop vectors of sensor nodes are knotlie tentral controller, any
subsequent packet losses only affect the information acgusf the node that initiates
the packet, and they do not affect the overall correctnegstiitiency of the algorithm.
Also note that since energy consumption of sensor nodesméndded by wireless com-

munication costs, in the simulations, we only consider tiramunication costs.
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A [] [1] [11] [111] | 112]
- u m-v | u m-v | u m-v | u m-v | u m-v
519 [10 |10 [6.6 [53]3.3 |23|1.4 |1.0]/0.6
10|46 |21 |27 |15 |15 |9.8 |8.1]53 |3.7]20
20|105|42 |64 |34 |38 |23 |21 |13.9|10 |5.9
30| 16663 |103|52 |57 |36 |31 |22 |17 |9.2

Table 4.1: Average values af and(m; — v;) after applying Bloom filter.

4.9.1 Large Network without Fingerprint Hashing

In the first set of experiments, we evaluate the performahcermmectivity monitoring in
a large network using hop vector distance filtering and Blditter. Fingerprint hashing
is not performed.

In order to compare the simulation results with the analysSection 4.6.3, and to
illustrate the performance of different sequences of Blditiers, we choose to use a fixed
sequence of Bloom filter. Therefore, the setplised is the same for all nodes (instead
of depending om as proposed in the algorithm).

We simulate a large network of size 3232 with node density varying from 5 to 30
(uniform distribution) per unit square. The maximum wisdeeommunication range is
normalized to 1. Each node has a unique ID of size 16 bits,iwtan support a network
of size 26

We do not take the communication cost of finding hop vectar aunsideration due
to the following reasons. Firstly, it is a fixed cost. Afteethop vector distances have
been sent to the central controller, as long as the sensesmminot move, this hop vector
information can be reused for all subsequent connectiviipitoring cycles. Secondly,
the cost of hop vector is relative small when the number oesdd be monitored is large
and the cost can be amortized over many monitoring cycles.

While a wide range of link connectivity and asymmetricitwbdeen evaluated, we
will only show the result for the setting of link connectivénd link asymmetry equal to

0.8 and 0.2 respectively. The communication cost is sgtg =0, 1, 2, 3 or 4.
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Figure 4.7: Performance hop vector and Bloom filter.

Table 4.1 shows the average valuesuadnd m— v for different node density after
utilizing the bit patterns generated by different sequesfogs. The integers within the
square braces denote the valuegjfised. Note that [] means no Bloom filter data is
utilized (only the hop vector distance based scheme is pedd).

It can be observed that for low node density, such as 5, evidoutiany Bloom filter,
it is still possible to search based on fingerprint value ihpatational threshold is set to
10°. Even for high node density, a Bloom filter sequence of [1 1&] still allow the
central controller to confirm about 90% of the neighbors lfaitt applying fingerprint
hashing).

Figure 4.7(a) shows the results when different combinatafic; are used with dif-
ferent node densities. The result shows that sequence [pdriJrms better than that of
[1 11 1]. This coincides with the results in Figure 4.7(b).1[1 1] is better than [1 1 2]
only when initial uncertain set siaeis much larger than number of neighbaons

Figure 4.7(b) shows the average neighborhood informaton gt each node versus
the percentage of neighbors confirmed for different Blooterfisequences. The line
(MC) in the plot shows the neighborhood data required toéettral controller confirm
the same percentage of neighbors using maximal compres3ibe result shows that
by using Bloom filters, the cost is strictly less than (abod¥sto 60% of) the cost of

maximal compression.
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In summary, using only the hop vector distance based schathéha same Bloom
filters settings for all nodes, the central controller caroiaztain the complete neighbor-
hood information whely ¢; < 4. However, if one does not require 100% of neighborhood
information, hop vector distance based scheme and Blooensfiiire able to achieve up
to 60% of savings in communication comparing to maximal cagsgion for the same
amount of confirmed neighbors. The result will also imprdveach node chooses the
sequence; based on the average number of neighbors, which can be ireptedhusing

the same flow shown in 4.8.

4.9.2 Performance in Large Network

In this simulation, we evaluate the performance 8O in large sensor networks. All
three techniques are used and the length of the fingerprat iss32 bits. The network
setting is same as previous section.

First, as an illustration of the utility of the fingerprinhe cumulative distribution
function for number of searches required after the Bloorarfsequence [1 1 2] is applied
is shown in Figure 4.8(a). It can be seen that a large porfioodes (80%) requires little
or no additional computational (1@r less) even for high node density»f= 30. If one
allows a search cost limit of £0then for node density of 10x10,000 nodes), close to
100% of all neighbors can be found in all our simulations.N¥bde density of 30, less
than 5% of nodes will require larger Bloom filter sequengeq; > 4).

The communication costs of different connectivity monitgrapproaches are shown
in Figure 4.8(b). They are maximal compression (MC), figgdequence of [1 1 2] for
all nodes (BF [1 1 2]) and two cases where each node choo$Bkdm filter sequence
such that the number of searches required at central clamtislsmaller than 1Dand
10* respectively. These are labeled as VafBF) and VarBR10%). In the algorithm, we
assume tha#—{ is 2.5 after hop vector distance filtering.

For fixed Bloom filter sequence, the savings is about half tst of maximal com-

pression. VarBFLOP) achieves the most savings. At low node density, the savings io
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85%. Even at high node density, the reduction is 65%. Theargment of VarBF10%)
over static sequence is small, indicating that significaatsh cost may be needed before
the Bloom filter sequence can be shortened.

VarBF(10°) is able to obtain all neighbor information in most cases pkéer the
highest node density. When node density is 30, we observéahkess than 3% of the
nodes, the computational cost needed at the central clemteakceeds 19 Among these
nodes with unconfirmed neighbors, the average number ofnfineed links is 17 out of

an average of 66 neighbors.

4.9.3 Performance in Mid-Size Network

In this section, we study the performance of our algorithra medium size sensor net-
work using simulation. The network is a4 square and node density varies from 5 to 30.
The average total number of nodes in the network is from 8@ As sensor testbeds
with hundreds of nodes have been built (e.g. the Kansei s¢estbbed P]), networks of
such sizes are of practical interest.

Figure 4.8(c) shows the result of average data requiredcit pade for MC and
VarBF(10P). Each data point is an average of 100 runs. 4 beacons arengsédgerprint
is 32 bits. The link connectivity used is 0.8 and asymmeatrisiO.2. The result shows that
communication cost can be reduced by 40% to 70%. The numherooinfirmed links is
very small. However, we observe that, among all the simufatistances, a very small
number of nodes wrongly identify their set of neighbors duedllision of fingerprint (6

out of 160,000 cases).

4.9.4 Connectivity Update

In this section, we evaluate the performance 8€MI for differential update where 10%
of the existing links are removed and same number of new lnmkeng random chosen

neighbor pairs are added. Simulation result is shown inrigigus(d). With VarBF(16),
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the communication cost varies from about 35% to 45% of the gssig MC at high
density. At low node density, the cost of VarBF£1@an be higher as only few neighbors

have changed. Nevertheless, the total cost is small as well.

4.9.5 Testbhed Evaluation

In this section, we present evaluation on a 34 node testbel@ mqa of a combination of
Mica2 and Mica2Dot nodes installed in a typical indoor offem®/ironment. We show
that HHCM can be efficiently implemented in TinyOS and run in actuegldyment using
real sensor motes. In our implementation, we use only 83 lafeNesC code and 600
bytes of extra image size (code size).

In the evaluation, 33 nodes sent connectivity informatma single Mica2 mote (cen-
tral controller) via the collection tree. Link layer packetransmissions are also enabled
to cope with possible packet losses. Since the number osiodee network is small, we
do not consider hop count information and only apply Bloomerfiand fingerprint based
hashing. The total data size required per node REM is 40 bits (21 bit hash), which is
the same as using bitmap. Note that sending neighbor IDstljireequires much larger
data size compared to’8M and bitmap.

Also note that in TinyOS 2.x, each node at most maintains 1€t faseful” neighbors
at link layer to save the memory (RAM) and maintenance cost.aAesult, the Bloom
filter size is always 10lo@) ~ 15 bits. Thus, each node sends the number of neighbors
(4 bits), one round of Bloom filter of size 15 bits, and a fingaripof size 21 bits. The
total data size is 40 bits, which is the same as using optinralap. Note that sending
neighbor IDs directly requires at least 60 bits per nodeabse each node ID requires at
least 6 bits for 34 node network. Using default identifieesoz 16 bits, the cost will be
160 bits instead. at least 60 bits per nodes because eaclhhoetpires at least 6 bits for
34 node network. Using default identifier size of 16 bits,¢hst will be 160 bits instead.

We run the experiment over 12 hours and obtained over 40Qi3kogs of the overall

connectivity. Due to the small fingerprint size, the codiisprobability of the fingerprint
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Figure 4.9: Distributed node failure detection.

is about 04%. When we increase the data size to 48 bits and set the fingdp29 bits,

we do not find any collisions during the experiments.

4.10 A Simple Application — Node Failure Detection

Knowing the connectivity information at the central cofigncan greatly facilitate vari-
ous management tasks such as root-cause analysis andyboebuagging. In this section,
we present a simple application of connectivity monitorindetecting node failures in

the network.

4.10.1 Node Failure Detection

The simplest approach to node failure detection is to leh eansor node periodically
send heartbeat messages to the central controller [81]e @wccentral controller does
not hear heartbeat messages from a particular node overaal értime, it concludes
that the node has failed. A major disadvantage of this agrathat it is not bandwidth-
efficient.

Distributed node failure detection algorithms can incuwéo communication but

require collaboration among neighbor nodes for decisiokinga However, such ap-
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proaches may experience inevitable false positives. Ameiais shown in Figure 4.9.
When an obstacle (the shadowed bar region in the figure) blttekdirect communica-
tion link between nod@& and nodeB, nodeA may falsely conclude that nodgfails. The
correct decision can only be made when nddmllaborates with another node say node
C, who knows the presence of noBeHowever, node€ andA may not be able to com-
municate directly. Enabling coordination among thesemicty disconnected nodes in
a distributed manner is a challenging problem. In [85], thiénars propose a protocol that
each node locally monitors its 1-hop neighbors and the mé&tion aggregates along the
path to the central controller. However, this approachaad the bitmap structure and is
not scalable because the packet size will increase lineattythe total number of nodes
in the network.

Using connectivity information collected from all nodesngsH?CM, node failure
detection can be trivially done at the central controlleawdver, if all the nodes in the
network send their connectivity, the amount of redundafdrimation is excessive. For
the purpose of node failure detection, only a small subsebdés is needed. In the rest of
this section, we present an algorithm to select the subseidds to send and update their
connectivity information to the central controller so thia¢ node failure can be detected

efficiently and accurately.

4.10.2 Connectivity-based Node Failure Detection

The proposed algorithm is based on the concept of dominaghd=or a communication
graphG(V, E) of a sensor network, whekérepresents the sensor nodes Bn@presents
the direct communication links, a dominating set is a subkétwhere each node M is
either in the dominating set or has at least a neighbor in dneirgkting set. An example
of dominating set is shown in Figure 4.10, where the grey ad@éong to the dominating
set.

It is clear that for the purpose of node failure detectiory time nodes in the dominat-

ing set need to send and update their neighborhood infoematithe central controller.
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Figure 4.10: lllustration of a dominating set.

The detailed algorithm is discussed below.

Initialization: In the initialization phase, each node distributively eldemselves
to join the dominating set. All the nodes in the dominatingssnd their neighbor table
to the central controller, utilizing the3€M algorithm proposed. The problem of mini-
mum dominating set is NP-complete. However, finding the mimn is not necessary for
this specific application. This is because the network cotivigy constantly fluctuates
due to the unstable wireless links, and for each time ing@shapshot) of the network
connectivity, the minimum dominating set may contain adgogrtion of different subset
of nodes, which is hard to maintain. Although a minimum dcetiimy set can save the
communication cost in initialization phase, it is likelydost more in maintenance phase.

In this paper, we utilize the simple idea of building a maximadependent set pro-
posed in [25]. A subset of the nodes@nis said to be independent if it does not contain
two adjacent nodes. It is maximal if it does not have a propéependent superset. A
maximal independent set is also a dominating set. The loig&d maximal independent
set election algorithm is straightforward and is shown ig@glthm 3.

Each node maintains two states: whether it is a dominatt¢origs to the dominating
set), and if it is not a dominator, whether it is dominateds(halirect neighbor who is a
dominator). If a node decides to join the dominating setyaigldcasts a JOIN message

to its direct neighbors to announce that it is a dominatod. itldirect neighbors will
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Algorithm 3 Dominating Set Initialization
Require: Neighbor tablex

1: dominator— flase dominated— false
2: while dominator= falseanddominated= falsedo
3 N < non-dominated neighbors X
4 if ID <min{n e N} then
5: Send JOIN message
6
7
8
9

dominator— true
end if
- end while

10: Upon receive JOIN message
11: if dominator= falsethen

12: dominated— true

13: end if

mark themselves as dominated. Only a non-dominated nodéhaghemallest ID among
all its non-dominated neighbors can nominate itself as aidator. Note that the algo-
rithm finds an independent set, where no two direct neighbotis elect themselves as
dominators.

Dominating Set Maintenance: As wireless links are not stable, a dominated node
may temporally lose connection to a dominator, and two dators may be temporally
connected to each other and thus breaking the property epamtent set. Under these
situations, the dominating set maintenance protocol idee

We require that the neighbor table of each node includes ame field: the degree of
domination. A node witlk distinct direct neighbors who are dominators has a donmgati
degree ok (k-dominated). This information can be easily exchanged apadin1-hop
neighbors. Once more than one dominators become diredtlnaig, the dominator with
smallest number of 1-dominated neighbors will choose tedélae dominating set. It will
broadcast a QUIT message and declare that it is not a domaratanore. Note that after
a dominator leaves the dominating set, it is dominated. -dsrhinated neighbors will
become non-dominated.

A dominated node can become non-dominated if it loses theetdaonnections to

all dominators. All non-dominated nodes in the maintengittese elect themselves for
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new dominators so that they are all dominated. The electidased on two criteria: (1)
whether those non-dominated nodes have been dominatatsefathe dominating set)
before; (2) the smallest node ID. The first criterion is togphelduce the communication
cost, because for those who have been dominators befoseth@nupdate on neighbor-
hood information are required to be sent to the central otiatr

Dominators periodically send neighborhood informatiomeighborhood update to
the central controller using the propose#d protocol (including the update protocol).
Note that due to the link instability, some nodes may be indominated states tempo-
rally. This will cause temporal false positives in nodeuedl detection. These temporal
false positives can be resolved soon because once a nomatechnodes is dominated (or
becomes a dominator), its status will be sent to the centraraller immediately. The
central controller can effectively reduce the false pesitiate by observing over some

time period before announcing the failure of nodes.

4.10.3 Evaluation

We simulate a network of size>88, where the node transmission range is normalized to
1. Unlike the previous section, packet losses are intragditwéndicate link fluctuations.
The packet losses over any direct communication pairs argatted by a uniform ran-
dom variable (independent geographically) with mean eqtathe defined packet loss
rate. Each node broadcast “HELLO” messages periodicalllyiaa node does not hear
“HELLO” messages from a neighbor over three cycles, it wahsider that the link is
broken. Note that HELLO message are broadcasted and theceretransmission. We
assume that link level retransmission for unicast is abtéetd with the possible message
losses. Thus the neighborhood data can still be reliablgc@ld at the central controller.
We compare the communication cost of the proposed protocthle standard data
collection method where each node periodically send heatttmessages to the central
controller. We do not consider the cost of retransmissi@tabse retransmission has

same impact on both protocols. The average data generatetge for the standard
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Figure 4.11: Communication cost for node failure detection

method (each round) is the size of node ID. Therefore, inréigull, we only show
the normalized average data generated per node for theggdpootocol. Note that for
H2CM, the variable size Bloom filter with search limit of & utilized.

Since the simulated area is fixed, the number of nodes in threndding set elected
in the initialization phase is about 35-40 nodes for all nddesities evaluated.

The communication cost for the initialization phase andnteaiance phase are differ-
ent since in the initialization phase, the dominators ageired to send all neighborhood
information to the central controller. The average dataireg for each node is only 20%
to 40% of the normal data collection method. In the mainteeghase, the average data
per node is much smaller. With 20% of packet loss rate, thenmonication overhead
(including both update data for old dominators and new r@ghood information for
new dominators) is only 5% to 10% of the simple heartbeat otwetiwWhen the packet
loss rate is increased to 40%, the average overhead per siatii only 13% to 15% of
the heartbeat approach.

When the loss rate is 20%, the instant false positive is 0/3%61 When loss increases
to 40%, instant false positive increases t@%. If the central controller announces the
failure of a node only when not hearing any information oftthade over two cycles of
connectivity information gathering, the false positivéereaecomes 3% and 08% for

packet loss rate of 20% and 40% respectively.
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4.11 Summary

In this chapter, we presented?&M that can efficiently monitor connectivity of wireless
sensor networks for various sizes. Given estimates of ttveank size and node density,
HCM selects one or more techniques to obtain connectivitynu@ition results show
that HHCM works best for large network-(1000 nodes) achieving savings of up to 85%
compare to maximal compression of neighborhood inforrmageen to achieve the com-
plete connectivity information. We also have demonstr#hed the algorithm is practical
and can be easily implemented on TinyOS with little overhé&aally, an application of

connectivity monitoring is presented.
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Chapter 5

Macroscale Topological Hole Detection

and Monitoring

5.1 Introduction

A topological hole in wireless sensor networks is a kind dfvoek topology anomaly. It
is the phenomenon that the routing path between two nodemecessarily long relative
to their physical locations. In the continuous domain, ahislsimply interpreted as a
phenomenon that the geodesic path between some pair of ints ponot a straight line.
The causes of holes include fire, explosion, jamming attfglkisitroduced by intruders
or impairment of wireless links due to obstacles.

In this chapter, the problem of dynamic detection and moimitpof macroscale topo-
logical holes is investigated. Specifically, we would likedietect the formation of a hole
in the network, estimate its size (in terms of breadth andiddpfined later) and con-
tinuously monitor its transformation (e.g. expansion,tcaction, or movement), if any.
Knowing the answers to these questions can greatly faeiltacisions related to public
safety and network administration. For example, with krexlgle of the topological hole,
we can quickly gauge the impact (e.g. extent of fire damagmide if deployment of

more sensor nodes is needed, and possibly identify whemamijgg attacker is and its
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activity. Note that we focus on the detectionlafge-scaletopological holes as it may
not be worthwhile detecting holes that do not cause sigmifioatwork changes [100].
Also note that, although the focus in this chapter is on togickl holes, as introduced in
Chapter 1, in most cases, a large-scale topological hokxjsiValent” to a coverage hole
due to the lack of nodes in the same area.

Finding holes in sensor networks has been extensivelyedudiliterature [100, 40,
36]. Most of the work focuses on identifying static holeg(grecognizing all the bound-
ary nodes of a static hole). To detect and monitor the dynawofibioles, these protocols
have to be run periodically, which is neither cost-efficient feasible in real-time because
they normally involve many rounds of global message floodi@®, 40]. The approach
in this chapter is based on the observation that hole foonatieates irregularities in the
network connectivity and the changes in the network conwigctontains important in-
formation about the hole. The approach is reactive and camuation is triggered only
when a hole is formed, unlike a polling/sampling based metlvbere communication
needs to be performed periodically. In addition, we do nrapt to map the boundary
of the hole, which is expensive since many nodes need to I¢ifidd. Instead, only a
small number of dynamically identifiaddicator nodesare required to report their status
to the sink nodes. We believe that this is the first attemptdgige such reactive detection
and monitoring mechanism for topological holes.

The main contributions in this chapters are as follows. (h)approach to detect
holes dynamically based on only connectivity changes isgreed. (2) The topological
properties of thendicators nodesare identified. How indicator nodes can be locally
elected efficiently is also shown. The proposed algorithiy mwvolves the “local” nodes
around the hole and thus the communication cost is small aomdpto global message
flooding. (3) Algorithms on identifying the type of hole tisformation (e.g. expansion,
contraction or movements), and estimating the hole (or pgr@t of a transforming hole)
based on connectivity changes detected by the indicatasack proposed. (4) Lastly,

some additional properties of indicator nodes are shownw Hese properties can be
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used to estimate the hole size even without localizatioormétion is proposed.

5.2 Simple Hole Detection

In this section, a simple hole detection algorithm basedlmengesin connectivity is
presented. Hence, if a hole is already present in the iniéployment, the algorithm will

not be triggered and existing hole detection algorithm®[B®] will be needed.

5.2.1 Network Connectivity Model

A large number of sensor nodes is assumed to be deployed gicaréuring the initial
deployment, network connectivity information is distried in the form ofn (n > 1)
shortest path trees rooted ratsource nodegor anchors). The source nodes should be
well-separated from each other. They can be centrally alémtor distributively selected
using the proposed algorithms in [61].

Each node locally maintains a hop count vector torttemurce nodes, and periodi-
cally broadcasts this hop count vector to its neighborss&meessages can be embedded
in the “hello” messages required for link maintenance and thcur minimum extra com-
munication cost. For example, for a system witkource nodes and limited to 255 hops
or less, the extra data required for each “hello” messagéigdes. The “hello” message
broadcast interval i$,¢)10. A Node switches parent when it does not hear from its current
parent (on the tree rooted from a particular source nodej aftimeout value of .

For the time being, we will assume that one and only one halag@and stays static

afterwards. The problem of dynamic hole and multiple holésbe addressed later.

5.2.2 Connectivity Based Hole Detection

Intuitively, when a hole forms, connectivity informatioramtained at the sensor nodes
changes. By letting the sensor nodes observe their own cowiteechanges, the forma-

tion of the hole can be detected.
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Figure 5.1: Hop count changes versus link fluctuations.

The basic hole detection mechanism is very simple. If a nais fihat its hop count
to any source node increases by at least a threshold vhltiee node concludes that a
hole has formed and sends a message to the sink nodes.

The first question that arises isvhat should the value of H beThe appropriate
threshold depends on temporary link quality fluctuatioret tilesult in changes of the
connectivity information over time. We determine this v@atbhrough simulation.

The simulation result for average maximum hop count chaerge by nodes due to
link quality fluctuations, which results in packet losseg shown in Figure 5.1(a). In
the simulationsTpyo is set to Jheiio, and the node density and packet loss rate are varied.
Figure 5.1(b) shows the distribution of maximum hop coursrayes for all the nodes for
the scenario where the average node degree is 15 and paskeatie is 30%. Simulation
time is 3000 seconds.

The simulation results show that the maximum hop count chdoigany node in a
large network affected by the link fluctuations is small gohlor 2 hops for most nodes).

There is a trade-off in selection of the threshold valuet i too small, there will be
a lot of false positives, and if it is too large, the algoritkem only detect relatively large
holes. We set the hop count change threshbld be5. This is the value at which it is
unlikely to have false positives in hole detection, and \efltee size of the hole starts to

have significant impact on the network (a packet has to bsitnéated at least 5 more hops
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to go around the hole towards some source node). A smalkestibid of 4 or even 3 can

be used if some false positives can be tolerated and detexftemaller holes is required.
This simple hole detection is obviously insufficient. Thees be many nodes that

detect changes in hop counts more thann the rest of the paper, we will introduce the

idea of indicator nodes and how they can be utilized.

5.3 Indicator Nodes and Their Properties

When a hole forms, many nodes in the network detect chandespircount. Letting all
of them send information to the sink nodes is expensive.

Unlike many previous protocols [100, 40, 36, 58, 24] thattrydentify all nodes on
the boundary, we only require a few nodes to convey inforomaéibout the hole to the
sinks. We call these nodes thadicator nodes This section describes the topological

properties of these nodes and explain why they are uniquexgmattant.

Definition 5.1 After the formation of a new hole, the setindlicator nodes|; (i € [1,n])

are the nodes that have the largest changes in hop countéveka a source nodg.s

In the rest of this section, we show several important pitigef indicator nodes
which will be useful later. In particular, we show that (1) iadicator node must lie on
the boundary of a new hole, (2) the convex hull of all indicatodes provides a lower
bound on the convex hull of the hole.

These properties will be discussed and proven in the comtimdomain, in which the
indicator nodes will be referred to as thnlicator points With sufficient node density,
the properties of indicator points in continuous domainloaapproximated to sensor de-
ployment in discrete domain. The properties of indicatanfsain continuous domain can
be viewed as an approximation to sensor development inadesdomain with sufficient
node density.

First, we introduce some basic definitions in computatige@metry in the continu-

ous domain [71].
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Figure 5.2: lllustrations in continuous domain.

5.3.1 Definitions and Preliminaries

Let F be a closed polygonal space in a 2-D plane referred feeasspacend letse F
be a point called the source point. L@tconsists oim (open, bounded) simple polygonal
obstacles/holes. In the rest of the section, we assfinte be unbounded an@ is the
complement of free spacg. We will focus on polygon holes as many other shapes can
be approximated as polygons. Nétdenotes the set of vertices §h. V also denotes the
vertices of the boundary of the inner holes/obstaclesThis is shown in Figure 5.2(a)
whereO is the shadowed area enclosedyo vs andV is the set{vy,Vo,V3,Va,Vs5}.

Geodesigath is defined as the shortest obstacle-avoiding pathrilpet)) denote a
geodesic path from a poiqtto a pointg, wherep,q € #. Letl(p,q) be the length of
T(p,q) and|pq be the Euclidean length betwegprandqg. In Figure 5.2(a)7t(s, p) is the
path{s,v1, p}.

The pointr is root of p if for some geodesic patti(s, p), r is the last vertex along
(s, p)\{ p} at whichti(s, p) turns. The set of all roots qf is denoted byg (p). In Figure
5.2(a),v1 is the root ofpand R (p) = {v1}.

The Shortest path mg@BPMs, 0), is a partition of7 into maximal regions (called
cells) that correspond to sets of points with the same rosébof roots with respect ®
More formally, SPMs, O) is the partitioning off into cellsC(R ) =P{xe F|R = R.(X)}
corresponding to subsets C V | J{s}.

If ® = {v} is a singleton, it is easy to show that{v}) is two-dimensional (i.e., a
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region in the plane) and connected. As shown in Figure 5.2(4y, }) is the area shaded
by horizontal lines, i.e., all points in that area have saooev;. If R = {v;,v;} is a pair,
then one can show th@( X)) is one-dimensional (i.e., a curve) and possibly discoratkect
We callC({vi,v;}) thebisectorof verticesv; andv;. The intersection of the bisector
and the boundary of a hole is called thisector point In Figure 5.2(a), the curve that
containsp; and p; is the bisector of;3 andv,, i.e., all points along the curve have same
root set{vs,va}. p1 is the bisector point. I} has cardinality of at least three, théfR)
is either empty or a single point, called S®M-vertex

Finally, two results that will be useful later are statedoel

e Each bisector is the union of a finite set of closed subarcscof@amon hyperbola.
(A straight line is considered to be a degenerate case of erbgla.) There is at

least one bisector point on the boundary of each obsta@dg

e Shortest path frons to any point inF among the set of polygon obstacless a

polygonal path whose inner vertices are vertice® ¢26].

5.3.2 Properties of Indicator Points

Let O and F be the initial hole space and free space respectivelyGirahd ¥’ be the
new hole space and free space after a new dlakeformed. We assume there is only one
new hole and leave the discussions on more than one new hdextion 5.7. We further

assume that’ does not intersect with any of the existing hole®in

Definition 5.2 For any point p in¥’, the geodesic distance change of p relative to a
source point s upon the formation of the new holezigd, p) — 1 (s, p) . Theindicator
points are defined as the points with largest change in geodesiartistamong all points

in F'.

Theorem 5.1 Upon formation of a new hole’othe indicator points must lie on the

boundary of & If o’ is a convex polygon, the indicator points are also the bimggoints

of d.
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Figure 5.3: Proof of Theorem 5.1.

Proof: As shown in Figure 5.3(a), lstbe an arbitrary source point and the geodesic
pathTiz (s, p) passes througty, vs,. .., andvg. We also use to representy as it is the
root of pin #. Assume that the geodesic distancgdb s changes due to the new hole
0, i.e.,0 “cuts” T (s, p) at some places.

The basic idea here is to prove that for any such ppjittis always possible to locate
a pointp’ on the boundary of the hot# such thap’ has a larger geodesic distance change
compared t@.

(Case 1)We first look at the situation whed has direct impact on the geodesic
distance ofp, i.e., the last segment in the patiz (s, p) wp is blocked byo'. Letr (the
pointvy) be the root ofpin . Let p’ be the intersection point of the boundaryafind
the segmentp such thatp’ is closest tgp alongrp, i.e., pp is fully in #’. Letr’ be the
root of p’ in F’. An example is shown in Figure 5.3(b), whers the root ofp in F and

r’ is the root ofp’ in .
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The geodesic distance frogto pin 7 is given by definition

lf(sv p):If(s,r)—|—|rp|. (5.1)

Sincep’ is on the segmeny, it is easily seen that the geodesic distance fsdmp’
is given by

le (s, ') =lg(sr)+][rp. (5.2)

Similarly, the geodesic distance frasio p’ in spacef’ is

IT’<S7 p’):lj—,(s,rl)_|_‘r’p/|. (5-3)

For the geodesic distance frosrto p in ¥/, we consider the following two cases.
Whenr'p is also fully in F’, i.e., neither the original holes i@, nor the new hole’

intersects with the segmerip,

lgi(s,p) <lgi(s,r')+|r'p|. (5.4)

We then have,

(Ig(sp)=lg(sP)) = (r(sp)=ls(sp)

v

r'o'| —[rp’| +|rp| —r'p|
= |r'p'|+|ppP|—|r'p| >0 (5.5)

The last inequality is given by triangle inequality. Eqtyaholds only wherp is the
same ay/, i.e., pis on the boundary af'.

The second case is whelp is not fully in #”, i.e., it is either blocked by the holes in
original hole spac®, or by some parts of the new hatg or both.

Since both’p’ andpp' are in ¥/, one of the obstacle avoiding path (needs not to be

the minimum) fromr’ to p is shown in Figure 5.3(c). This path can be constructed by
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going around theonvex hulbf all the obstacles inside the triangl@’p. In this case,

lg(s,p) <lgi(sr)) +.Z|ri_1ri|. (5.6)

We then have,

(Ig(sp)=lg(sP)) = (x(sp)=ls(sp)

n
> /| Irp/| el = 3 fricar
i=
n

= Ir’p’|+|pd|—_zl|ri71ri| >0 (5.7)

The last inequality in Equation 5.7 can be proven in many waye simplest intu-
ition behind (also used in [71]) is to consider Figure 5.3odl by imagining an elastic
rubber band that is initially around three nails on the baand, p’ andp. If the p’ is
removed, the length of the rubber band will “shrink” to thésaroundr,...,r,. Again,
the equality only holds whep is the same ap'.

From Equations 5.5 and 5.7, we can see that for any go{nbt on the boundary)
that the last segmenmitp or rp is blocked byo’, there is always a poin’ on the boundary
of o that has larger geodesic change tipan

(Case 2)If the holed’ does not blocksp, it must intersect at some other places with
Tiz (S, p). Assumey' is the closet intersection point along pathriy (s, p), and assume
P’ is on segmemnt;v;, 1. This is shown in Figure 5.3(d).

The geodesic distance jf of pointr andp arel #(s,r) andl ¢ (s,p) =l #(s,r) +|rp|
respectively. Similarly, the geodesic distance ahdpin 7' arel4(s,r) andl #/(s, p) <
l#:(s,r) + |rp| respectively. The last inequality is based on the fact tasegmentp is
not blocked by any hole.

Thus,

(g (1) =lg(sr)) = (g(sp)=l#(s,p) =0 (5.8)
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It can be seen that the geodesic distance change of pfit is at least as large as
p. Similarly, the geodesic distance changeof; is at least as large ag, and so on. We
have already proven that the geodesic distance changeisflarger than the geodesic
distance change of, 1. Thusp’ has a larger geodesic distance change than

For a convex hole, as shown in Figure 5.3(e), asspprandp, are two points on the
same edge of the convex hale and bothp; and p, are affected by'. Further assume
that p; and py lie on the same side of the bisector introducedbySinced is a convex
hole, p; andp, must have the same rodtwhich is one of the vertex af. Briefly, using
similar techniques as above, it can be shown that the gendesance change qf; is

smaller tharp,. ]

Corollary 5.1 If a point p moves farther away from the boundaryabfilong the direction
of the last segment of geodesic path(s, p), the change in geodesic distance becomes

monotonically smaller.

This is a natural extension of Theorem 5.1. Intuitively, wiaepoint is farther away
from a hole, the impact of the hole on that point is smaller.
For n source points, there aresets of indicator pointsl{,... |,). These indicator

points provide a natural size estimate for the hole. D

Theorem 5.2 The convex hull of all the indicator points into I, gives the lower bound
on the convex hull of the hole. If the hole is a convex hols,gblygon lower bounds the

hole itself.

Proof: The set of indicator points are on the boundary of the hole ddnvex hull
of all the indicator points must locate inside the convex biithe hole. If the hole is a
convex polygon, the convex hull of the hole is the boundarthefhole. Therefore, for a
convex hole, the convex hull of the indicator nodes mustteasside the hole boundary.

[
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One example is shown in Figure 5.3(f), the convex hole is tlehby the shadowed
polygon. For 4 source points fros to s, the 4 indicator point; to p4 are on the
boundary of the hole. The convex polygon boundegbyo ps is the lower bound of the

hole.

Corollary 5.2 Given a source poing, there is one and only one indicator point for a

convex hole.

Proof: For a new convex hole and a given source pgjrinere must be some part
on the boundary of the hole that is not affected by the hate, their geodesic distance
does not change after the hole is formed. As proven in theffodheorem 5.1, if we
go either clockwise or counterclockwise along the boundéiire convex hole from this
part, the geodesic distance change increases. Since thgecb&geodesic distance is
continuous, according to intermediate value theoremetharst be one and exactly one
crossing point on the boundary, which is the indicator point ]

Corollary 5.2 coincides with one conclusion drawn in [7Xjerte is at least one bi-
sector point on the boundary of each obstacle. Note thatlisector point” in [71] is
slightly different from our definition, it may also be the émnsection of bisectors caused
by other holes on the boundary of the new hole. Therefore onclasion of “one and
only one” does not conflict with the “at least one” finding.

In the next few sections, we will illustrate how indicatordes can be dynamically

identified and used.

5.4 Indicator Node Election and Hole Detection

5.4.1 Indicator Node Election

When a node detects the presence of a hole as indicated bgieniffiop count change
(see Section 5.2), it will entandicator node electiophase. In this phase, each node

locally maintains the maximum hop count changes tatkeurce nodes in the network.
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A node will also broadcagndicator election update messagesits direct neighbors
when (1) it just enters the indicator election phase, (2a& hew updates on hop counts
or maximum hop count changes it knows to any of the sourceqyau€3) theindicator
election updategimer with periodTieypdatefires. The conditions are used to control the
speed of the election process and also deal with possiblsagedosses. The indicator
election message includes a node’s own hop counts tm @urce nodes, as well as
the maximum hop count changes it knows so far. The size of aywdicket is A bytes
(assuming hop count does not exceed 255).

When a node does not receive any new updates Bftgiseconds and believes it has
the maximum hop count change in its neighborhood with rddpesome source node, it
declares itself an indicator node.

From Theorems 5.1, such a node always exists and can be detdrimcally because
hop count change is continuous. There is a tradeoff in setectf the value ofTigto
between speed of detection and false positives of earlgtiete If it is too large, election
time is long, which will cause large delay. If it is too smafiany nodes may prematurely
declare themselves as the indicator nodes, causing ursaggdalse positives.

Once an indicator node is elected, it will send its initiafldimal hop counts relative
to all n source nodes to the sinks. Its immediate neighbors canr@ilyosuppress their
own messages even if they are indicator nodes. Ihteeurce nodes also act as multiple
sinks, the elected indicator node can smartly send thenrdtion to the sink that has least
hop count change (avoiding holes). Note that when nodesgitegly declare themselves
as the indicator nodes, there will be false positives anchexterhead. However, this does
not affect the result as long as messages from the actuahbitedinodes are received by
the sink nodes. The sink nodes can filter out the false pesi®asily. One can either
let the indicator nodes wait before they send final hop cobahges, or let the indicator
nodes send their hop count changes whenever there is soratespd

If a node finds that it has neighbors who have larger hop ccamges than itself, it

will quickly enter inactive state until it receives new upea Once an inactive node does
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not receive any update for some time, it will exit the indaraglection phase.

5.4.2 Hole Detection

In Figures 5.4(a) to 5.4(d), we illustrate four cases of gimgl the indicator election
algorithm using 4 source nodes for different hole shape® néiwork consists of 4300
nodes randomly placed in a unit square of size<3D (unit is maximum communication
range). The average node degree in these examples is 15.uiifiEers on the 4 corners
show the location of the source nodes and numbers on the bBouafithe hole show the
location of the elected indicator nodes correspondingeafhpropriate source nodes.

It can be observed that for all the holes (a circle, a normaler polygon, a line
barrier and a concave polygon), the indicator nodes are erbttundary of the hole.
While not obvious from the figures, the nodes are indeed tldesithat change most in
hop counts in the whole network.

In Figure 5.4(c), there are no indicator nodes for sourceeaddand 3 because no
node in the network has hop count change exceeding the tideshwith respect to these
source nodes. Figures 5.5(a) and 5.5(b) are the enlargexhregclosed by a square in
Figures 5.4(b) and 5.4(d) respectively. It can be seen tteirtdicator nodes are also

close to the bisector (shown as a curve in Figure 5.5(a)) émnaex hole.

5.4.3 Delay and Communication Cost

Using a circular hole placed in the middle of the network, weasure the average time
and total message overhead needed to elect the indicates nddere are 4 source nodes
at the corners and the average node degree is set to 15.

The time taken to identify an indicator node, after a holersfed, is dominated by
the following timers/time intervals: (I)pto, timeout before switching parent; (Zjeiio,
hello packet interval; (3)iransmit, average per-hop transmission time; @) pdate interval

for rebroadcasting the indicator election update message;(5) Tieto, interval before
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(a) Indicator nodes of the convex hole in Fig@bg Indicator nodes of the concave hole in Figure
5.4(b) 5.4(d)

Figure 5.5: Locations of indicator nodes. Blue line shoveshifsector cut.

declaring as the indicator node. In the simulations, wdig@t = 2sandTheio = 5s. The
values ofTp, is always 3 timedhe o as stated before. The valuesiQf,pgateandTieto are
set to 1 and 6 seconds respectively. Thensmit iS set to 2nswhich is about the packet
transmission time of a MicaZ mote.

The average delay is shown in Figure 5.6(a). We can see thaldlay increases
slowly and linearly with the size of the hole (for a circle b@xample, the size is deter-
mined by its diameter). Due to the immediate update poliandicator election phase,
the delay is dominated by tH@e 1o in hole detection phase whereby a node has to wait for
sufficient change in connectivity. Once the hole is detedteslindicators will be elected
quickly.

The communication cost of the algorithms is only affectedh®ysize of the hole. A
larger size hole can cause more nodes to entbcator electionphase. It can be seen in
Figure 5.6(b) that the total communication cost is almogiiant to number of nodes in
the network or the size of the network (for a fixed node depsifire cost only increases
with the size of the hole. The total number of nodes that entéicator election phase

are about 150, 810 and 2100 for hole diameter (measure ioumiaximum transmission
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Figure 5.6: Delay and communication cost

range) of 10, 15 and 20 respectively. The average number s§ages sent for active
nodeis thus only about 3 to 5 messages. Overhead is low becausedjoeity of the
nodes will quickly enter inactive state.

Normalized to the total number of nodes for the largest ngtwonulated (network
size of 80x 80), the overhead for the hole diameter of 20 is only 0.3 nggsgar node
per detection. Therefore, compare to other approachesl lmas®pology method (e.g.
[100, 40]) which require multiple rounds of message floodmg approach is much more

efficient.

5.5 Continuous Indicator Node Election and Its Applica-
tion

Each node has to continuously monitor the hop count chahgesghout the whole hole-
monitoring period. Optimization technigues such as logginly the key event points can
be adopted, but this is not our main purpose of this paper. ikl assume that each
node has enough memory to log its hop count changes overaegytime.

In the previous section, it is assumed that a new hole forndsstays static after-
wards. Examples of such holes include jamming holes caugeditiuders [5], sudden
failure of a large potion of the sensor nodes, or a sudderpggang obstacle. However,

many other types of holes are dynamic in nature, e.g., halesad by spreading of fire,
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or by a moving jamming attacker. A hole can expand, contractave (i.e., hole trans-
formation) continuously. Such hole dynamics can be moattdry continuous indicator

node election.

5.5.1 Continuous Indicator Node Election

While the basic election algorithm is similar to the one regd in the previous section,
two new issues have to be addressed for the case of continanuosctivity changes.

First, different delays are incurred in locating the intlicanodes corresponding to
different source nodes for a particulasle instancdi.e., the snapshot of the hole at a par-
ticular time). Messages from different sets of indicatode® corresponding to different
hole instances will be interleaved when they reach the souodes.

In order to solve this problem, the sink has to synchronieettlessages, by knowing
which messages correspond to which hole instance. In ouoaglp, this is accomplished
by adding a round number to thdicator node election messadeor each indicator node
elected, the indicator node will increase the round numidénenever a node finds that
it is using a round number smaller than what its neighbor @adicasting, the node will
update its round number. The sinks will then relate the evesing the round numbers.

The second issue arises because it takes time to detectieatordhode and some in-
dicator nodes may not be detected if the transformatioroi¢ast relative to the detection
time.

In order to address the second problem, the indicator nadti@h needs to be “fast
enough”. Therefore, the indicator node detection periazlkhbe less than the time it
takes the hole to expand/contract/move by one average lstgnde. This is because,
from the time that the original parent of one real indicatod® is “destroyed”, to the
time that the indicator node is elected and its hop countfi¢osburce node are fully
updated, the indicator node cannot be “destroyed”. In ot@@ccurately monitor holes
with a faster transformation speed, the delay for indicatmfe election needs to be re-

duced correspondingly by reducing valuesT@fipdate@nd Tieto. With the default values
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(Tieupdate= 1s andTieto = 6s), the maximum hole transformation speed that the system
can monitor is about.Q average hop count per second. If these values are reduced to
Tieupdate= 0.2s andTieto = 1s, the maximum hole transformation speed is aboditzver-
age hop count per second. For a typical wireless commuaicatinge of 50 meters,D
average hop count corresponds to a hole transforming sgeekm/h, and 04 average
hop count corresponds to a hole transforming speed k72

Finally, it is interesting to note that if we expand the deion of indicator nodes to
include nodes whose hop count change is 1 hop less than (af tejthe maximum hop
count change, a much faster hole transformation speed csupiperted since many more
nodes would report their connectivity. This is of course ebst of higher communication

overhead and lower estimation accuracy as well.

5.5.2 Hole Transformation Application

Continuous election of indicator nodes can be used to tracistormation of holes over
time. We assume that there are only three possible tranafmmns, namely expanding,
contracting and moving. Furthermore, only one transforomatay occur at any time.
An example of hole expansion is the case when fire spreadsarsghsor nodes are de-
stroyed. An example of contraction or movement of a holeesctise where an interferer
varies its power or move.

The transformation type identification algorithm is simgfehe original hop counts
of the elected indicator nodes relative to their source sade decreasing (when the round
number increases) for atl source nodes, the hole is expanding; and vice versa. If the
original hop counts of some indicator nodes relative torteurce nodes are increasing,
and some are decreasing (when the round number incredsehple is moving.

Note that it is possible to estimate the velocity of hole $farmation by observing
the location (locations can be estimated through conngcinformation) changes of dif-
ferent indicator nodes at different rounds. The value of/&ecity is estimated by finding

the location differences at different rounds, and the anfgtee velocity is estimated by
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Figure 5.7: Transformation type identification

the direction of location changes at different rounds.

5.5.3 Evaluation

In the evaluation, we set the average node degree to be 1fdivator election up-
date timer to be 4and hole transformation speed to h@®of average communication
range per second (this is about 0.06 hop per second). Innhdations, change in hole
transformation type occurs every 200s. The goal is for thk & identify what type of
transformation is occurring quickly.

Figure 5.7(a) shows the transformation of a circle hole. Tétesolid line shows
the original transformation type and the blue dotted onevshbe estimation at the sink.
The numbers representing the states of the hole are 1 fqr2dier expanding, 3 for
contracting and 4 for moving. It can be clearly seen that pixtt a large initial delay,
the sink has an accurate view on what type of transformaliemole is doing. Measured
in terms of correctness over time, the accuracy is aBdéb (without considering the
initial and final phases).

Figure 5.7(b) shows the case for an irregular hole whergallyita circle is di-
vided into eight (45) sectors and each sector experiences different speed ahéxp
ing/contracting (004 to Q06 of average communication range per second) or moving
(0.05 of average communication range per second). We cathaeeven with sudden

changes in the indicator nodes from one sector to the adjaeetor, the average accu-
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racy is still abouB8%

5.6 Hole Estimation Using Indicator Nodes

5.6.1 Estimation with Localization Information

A final application of the indicator node is its use to estienable location and size. This
estimation works for both static and dynamic holes, as |laipa indicator nodes for the
hole or hole instance can be successfully elected.

In order to provide information on hole location and sizapnedorm of localization
information is needed. In [74], a simple localization metl@sed on only connectivity
information (hop counts) is proposed. In [62], Li et al. pmets a method on connectivity-
based localization in the presence of holes. These workiggs\an accuracy of 50% to
100% of communication range, which is acceptable giventti@hole to be monitored
is relatively large. In this section, we will utilize suchclization schemes for indicator
node location estimation. If the locations of source nodeskaown, they can be used as
localization beacon nodes as well.

The proposed hole estimation algorithm is based on two fe.ckarst, from Theorem
5.2, the convex hull of indicator nodes provides a lower liban the convex hull of the
hole. Second, the hop count changes of indicator nodes sarbalused to estimate the
hole. The second factor is based on the intuition that wheslaik larger, the hop count
changes of its indicator nodes are also larger.

We propose a grid based algorithm to integrate both facidis.area is divided into
grids, and if the grid is inside the estimated area, weightided to that grid. Note that
the algorithm runs on the central controller.

Firstly, for all grids within the convex hull of all indicatmodes (using the estimated
location), a weight ofv; is added. Secondly, for each source ngdélentify the corre-
sponding indicator nodp;. If there are more than one indicator nodes, use their cehter

gravity asp;. For eachs;, plot a rectangle such that:
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(a) Estimate of Figure 5.4(a) (b) Estimate of Figure 5.4(b)

(c) Estimate of Figure 5.4(c) (d) Estimate of Figure 5.4(d)

Figure 5.8: Hole estimation
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1. One edge is perpendicularg; and passes through.

2. One edge is perpendiculargg; and passes throug) wherepj is another indica-

tor node on the hole boundary closessto

3. The two remaining edges are parallel and perpendiculduetovo previous edges.
It is also symmetric with respect gpp; and the distance between them is estimated

using the hop count changes of the indicator npde

For all grids within this rectangle, a weight b is added.
One shall note that the proposed algorithm gives more atrxuesult for convex
holes. For concave holes, the contribution from the secaotbf may over estimate the

hole size.

5.6.2 Evaluation

In the simulations, we assume the valuewafandw, are the same and the weights from
all contributors sum to 1.

Figures 5.8(a) to 5.8(d) show the results for estimatiorefiioles in Figures 5.4(a)
to 5.4(d) respectively. The results in Figures 5.8(a) t¢cd.8how that for convex holes,
the locations, sizes and shapes of the holes can be fairhapgloximated. The result is
not as good for the concave polygon shown in Figure 5.8(dauee the estimation due
to the second factor may be larger than the actual hole siea Wie indicator nodes are
at the concave edges. Nevertheless, even for arbitrargsh@peorem 5.2 states that the

convex hull of the indicator points is contained within tleeex hull of the hole.

5.6.3 Estimation Without Localization Information

Without localization information, estimation of a holeloperty relating to size and using
only a small number of indicator nodes is difficult. In thixsen, we show that the

changes in geodesic distance of indicator points, i.e.;teimum changes of geodesic
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distance of all the points in the network, can provide amestie on the size of the hole
formed.

However, the proposed estimation is applicable only to egriwles. To see why
it is difficult to provide estimate on hole size using only icetor nodes for arbitrary
shapes, consider a spiral like hole. The indicator point heageeep inside the spiral. The
geodesic distance change of the indicator point can be piopal to the total “length”
of the spiral and thus be much larger than the “size” of the hNkvertheless, we believe
that the result is still interesting as many of the “natutables of interest, for example,
those due to fire, explosion or jamming can be approximatediagex.

We first formally define the size of a convex hole in continudomain.

Definition 5.3 Consider a line that joins the source point s and its corregping indica-
tor point p. Theoreadth of a convex hole with respect to the source point s is the leoigt
projection of the hole onto the direction perpendicularhe tine sp. Similarly, theepth
of a convex hole is the length of projection of the hole on&dinection parallel to the

line sp.

This is illustrated in Figure 5.9(a), whelbaepresents breadth addepresents depth.

We first present the results for the special case of convesstibht are self-symmetric
with respect to the linep(e.g., a circle-like hole is always self-symmetric withpest to
sp.

We first present the results for the special case of convesshibht are self-symmetric

with respect to the linsp.

Lemma 5.1 For a new convex hol€' that is self-symmetric with respect to the line con-
necting the source poistand its corresponding indicator poiptthe change in geodesic
distance of the indicator point increases monotonicallyemvii) the distance between
source poins and the boundary of the hole decreases along thes|in@i) the breadth of

the hole increases; and (iii) the depth of the hole decreases
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Figure 5.9: Breadth and depth

Proof: (i) Since the hole is symmetric with respectdp, the indicator point (also
the bisector point) does not change wisanoves closer to the hole.

As shown in Figure 5.9(c), the geodesic distance changeiof pavhensis at the
position of sz is Alz = |sgVe| + |VeVv1| + [Vap| — |Ssp|. Similarly, the geodesic distance
change ofp whensiis ats; ands; are Al = |spvg| + |Veva| + [vap| — [s2p| and Aly =
|S1Vs5| 4 |VsVe| + |VeVa | + V1P| — [S1p| respectively. Itis easy to see thisy — Al, > 0 and
Al, —Alz > 0.

(i) and (iii) can be proven in a similar way. O

Theorem 5.3 For a convex hole that is self-symmetric with respect to the $p, the
change in geodesic distance of the indicator pdihis a lower bound on the breadth of

the hole with respectto s. I.&\| <b.

Proof: This comes naturally from the Lemma 5.1. Wheis on the boundary of
the new hole, and the depth of the hole is close to 0, i.e., the ik a line barrier with

infinitely small interior, the change in geodesic distantcpant p is largest (for the same
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breathb), andAl = b. ]

Before stating the next theorem, we need another definition.

Definition 5.4 Consider a hole, 9a source point s and an indicator point p relative to s
(on the boundary of'd. We say s isvell separated from d if o’ is completely located on

one side of the line that passes through s and is perpenditukp.

This is illustrated in Figure 5.9(bkis well separated from the hole because the hole
is located completely on one side of the dashed line perpelatitosp.

Now, we can state the result for arbitrary convex hole.

Theorem 5.4 For an arbitrary convex hole, if the source point s is well aeted from

the hole Al < 2b.

Theorem 5.4 states that the breadth of a convex hole is loamrddd by half of the
largest geodesic distance chanfe>(1/2). The intuition behind is that the longer the
largest change in geodesic distance, the bigger the sizel@f Tihe proof of the theorem
is as follows.

Proof: Consider an arbitrary convex hole, the source poins which iswell sepa-
rated from o, and the corresponding indicator pomt The linesp separate® into two
partso, ando,. This is shown in Figure 5.9(b), whesp separates the hole (the cross
hatched area) into; (enclosed by blue lines amulp) ando; (enclosed by red lines and
p'p).

Create the mirror image ajj ando, with respect to linesp. Name theno; ando;
respectively. Let the union aj and its virtual imageo, be o, (Figure 5.9(d)), and let
the union ofo, and its virtual image; beo, (Figure 5.9(e)). If eitheo; or o, is treated
as the new hole (rather tham), it has the same indicator poiptand the same geodesic
distance changAl at the pointp as the holeo. More importantly, botlo; ando, are
self-symmetric with respect to the lisgn. Assume the breath @k is by, the breath oo,

is by, and the breath of the real hatas b.
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Sincespintersects the boundary ofat either an edge or a vertex at pomit is easy
to see that at least one of ando, have an interior angle of less than or equal to°180
the pointp. Without loss of generality, we assurog(Figure 5.9(d)) has an interior angle
of less than 180at p.

If sis well separated from, s must lie outside the convex hull of. If we treat the
convex hull ofo; as the new hole, the indicator point is still@atue to the self-symmetry
property, the breath of the convex hull of is the same as the breathaf (b1) and the
change in geodesic distancepis still Al. From Theorem 5.3) < b;. Sinceb = blLZbZ,
we haveAl < 2b— b, < 2b. O

Theorems 5.3 and 5.4 show that change in geodesic distaribe afdicator point
provides a lower bound for the breadth of the convex holddfgeodesic distance change
of an indicator point i€\l, then one can conclude that the breadth of the hole with cespe
tosis at least} if we assume the hole is convex. If the hole to be detecteddsvhrto
be a circle (always self-symmetric with respect to the Bipg the breadth (diameter) of
the hole is then at leatll. The geodesic distandd can be estimated using hop counts

times the average hop progress.

5.7 Discussions

Effects of existing holes

The presence of existing holes does not affect the correstokindicator node identifi-
cation. However, if the existing hole is between the new faold the source node, the
change in hop count may be reduced thus making the deteatonilgrity coarser than
expected.

Figure 5.10(a) shows a network of 12,000 nodes placed on>a%0square. The
newly created hole is the circle shown in the middle and ishk#d by existing holes to
source node 0 and 2. The indicator node for source node O itldmestorrectly elected

because the size of existing hole that blocks the new holeal sThe indicator node for
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Figure 5.10: Effect of existing holes

source 2 fails to be elected (no node in the network has hoptahange larger than 5)
due to the large existing hole on the bottom-right cornewveseless, the hole can still
be detected through three other indicator nodes.

In general, a new hole will always be detected unless exgistotes disrupt hopcount
change detection to all source nodes. However, in termslefdipe estimation, the size
can possibly be underestimated as shown in 5.10(b).

One way to deal with this problem is to utilize more sourceesydo that the possi-
bility of new hole being “blocked” from all the source nodexbmes smaller. The source
nodes can be randomly distributed within the network. The ohigher communication
overhead.

In order to maximize the probability that the new holes caddtected and accurately
estimated, one can also manually allocate the location®wfce nodes based on the
boundary information of existing holes, which can be det@ctsing static hole boundary
recognition protocols [100, 39]. The manual allocation @firce nodes is similar to the

well-known art gallery problem which has been extensivalgied in literature.
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Formation of more than one holes

When multiple holes are formed at the same time, properfiiseoindicator nodes still
hold and the identification process is the same. In fact, timeber of indicators detected
per source node provides a quick answer to the number of the fusmed in the network.
However, the issue of accuracy arise when the new and gxistles are too close
together. When holes are not sufficiently well separateely thay be considered as a
single hole. This is a natural consequence of our model adiihited by the granularity
of detection. When the holes are sufficiently far apart, edvpusly presented results

hold.

5.8 Summary

In this chapter, the problem of topological hole detectind eonitoring using only con-
nectivity information is considered. The detection of hiolemation is done by observing
the connectivity changes of the network. The location, arzé shape of the hole can be
estimated using only information from a few indicator nad&s algorithm that identifies
the hole transformation type is also proposed. These #fgosiare simple to implement
and efficient. The estimation accuracy is also satisfiabiéhf® administrators to detect

the significance of the hole.
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Chapter 6

The Coverage and Connectivity

Management System

Several important microscale and macroscale coverageosmectivity management pro-
tocols have been proposed in the previous chapters. Inltlajster, we show how these
individual management protocols and functions can worktiogr to form a management
system based on the unified network assumptions. This ahaple serves a design of

the management architecture and is not implemented.

6.1 Basics of WSN Management

Typically speaking, network management is a service thgi@ys a variety of tools and
devices to assist the human users to monitor and maintaindtveork. However, the
management protocols on traditional wired networks do retty apply to WSNs. For
example, monitoring and controlling each individual com@ot are common practices in
wired networks, while they are not energy-efficient nor abkd for sensor networks.
Figure 6.1 shows a simple management architecture for saesworks. In this ex-
ample, each sensor node is treated as a network device aad hgent software running

on itself. The “sink” can be treated as an intermediate roltee manager is able to send
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Figure 6.1: A simple management architecture for wirelessar networks

polling messages to any sensor node, and any sensor node te abnd alert messages
to manager. Depending on different applications, therddcba different management
architectures.

Management functions are the key components of the managesystem. Any
service to the users will need to make use of one or severaageament functions to
complete the task. An example list of possible managemaenttifans that need to be

provided by a sensor network management architectureesl liselow [87].

Environmental monitoring function

e Topology discovery function

¢ Node deployment function

e Network connectivity discovery function
e Energy map generation function

e Synchronization function

e Coverage area supervision function

¢ Node localization discovery function

125



6.2 A Unified Coverage and Connectivity Management

System

6.2.1 System Model

As illustrated in Chapter 1, WSN management is configuratioented. Before the cov-
erage and connectivity management system is proposed;stemsassumptions, models,
and configurations are introduced first.

This thesis focuses on the middle-size and large-size mk$atbat consist of hun-
dreds and thousands of sensor nodes. The management ofl astwakk with only tens
of nodes is generally less challenging. These large amdwgisor nodes are randomly
deployed in the region of interest with higher than necegsdansity, and the network is
assumed to be at least connected and covered. All the prdpuaeagement solutions in
this thesis are scalable and can work with very high nodeiyeiis&ch node has a unique
node ID. These sensor nodes cooperate among themselvesithrat and distributive
manner. As shown in Figure 6.1, there are one or more root:iiek nodes or central
controllers) who act as gateways between the sensor netmarkhe outside world.

Localization is assumed to be available to every coveragecannectivity manage-
ment component. Most of the proposed protocols in this $reessume that the connectivity-
based localization scheme is utilized. A connectivitydmhlocalization scheme can pro-
vide enough localization accuracy for most of the coveragkcmnnectivity management
functions, such as microscale connectivity discovery aadrescale hole monitoring. To
maintain a connectivity-based localization, we assumithigsie are several anchor nodes
(or source nodes) in the network. The absolute or at leastelhéve locations among
these anchors are known. The anchor nodes can also act amthedes. Each sensor
node locally maintains its hop counts to all of these ancloates so that they can be
coarsely localized based on any trilateration algorithrds 62].

As mentioned in Chapter 3, microscale coverage managennectidns require more
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accurate localization information. In this thesis, disg@mstimation is assumed to be
available for microscale coverage management. The diststamation error is assumed
to be well bounded, i.e., to be within a small percentage efsgtnsor nodes’ sensing
range. It should be noted that distance (with errors) is &ermegequirement than local-

ization since it only reflects the relative locations amoimg meighboring sensor nodes.
Distance estimation cannot be converted to global levellipation easily due to the pos-
sible error aggregation.

The network is assumed to maintain a tree-based informetitbection model, where
various information, once distributively processed, istde the root nodes via the infor-
mation collection trees. Communication reliability is@kBsssumed in this thesis, unless
explicitly stated otherwise. The reliability can be sugpdrby link layer retransmissions

for unicast packet losses.

6.2.2 The Coverage and Connectivity Management System

Several efficient coverage and connectivity managemenoqots have been proposed

in the previous chapters, including microscale coveragecamnectivity monitoring and
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controlling, as well as macroscale topological hole deecind monitoring. In this sec-
tion, we show how these individual management protocolperaively form a unified

coverage and connectivity management system, based orysteersmodel illustrated

in the previous section. The aim of the management systempsovide the users and
administrators a range of services and tools to achieveoerage and connectivity man-
agement goals, from both microscale and macroscale levels.

The proposed management system is shown in Figure 6.2. Bhensys constructed
using various coverage and connectivity management fumgtiwhich in turn support
different management services to the users or administratdhe upper layer. In other
words, the management services shown in the figure repradseservices provided by
the central controller to the users or administrators; dednhanagement functions run
on each individual sensor node to support the managementeer The solid arrows
in the figure represent the relation‘supports”, i.e., if an arrow is drawn fronX to 'Y,
it indicates that the function or servi¢éis supported by the function or servive A
dashed arrow fronX to Y indicates thak is passively affected by. These individual

management components are explained in details as follows.

Localization Management Functions

Localization functions, although do not fit in the categofyetwork coverage and con-
nectivity management, are the fundamental support foouarcoverage and connectivity

management tasks. They are therefore included in the pedpoanagement system.

e Connectivity Updater: The connectivity updater updates a node’s hop counts to
the anchor nodes by listening for the periodic “HELLO” megsafrom its neigh-
bors. This hop count information is maintained as a hop ceector. Note that the
connectivity updater is passively affected by the node dglee because different
sets of active nodes results in different network topologg thus influences the

hop counts to the anchors.
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e Connectivity-based Localizer: The connectivity-based localizer estimates a node’s

location utilizing the hop count vector provided by the ceativity updater [74, 62].

e Distance Estimator: The distance estimator component proposed in Section 3.7
is utilized to support node scheduling for microscale cagercontrol. Since the
proposed solution is based on the number of common neighbooag the directly

commutable pairs, it has to be aware of the neighbor managgmatocol.

Coverage and Connectivity Management Functions

The coverage and connectivity management functions foenbéisis for all the coverage

and connectivity management services in the upper layer.

e Node Scheduler:The node scheduler schedules the active or inactive stbseso
sor nodes based on the required network coverage and coygthe parameter
a). The user or network administrator can adjust the paramet€his is supported

by a control message flooding component which is not showmnarfigure.

e H2CM: The H2CM component compresses a node’s neighbor tabledqttpose
of connectivity monitoring (and node failure detectiort)islsupported by the hop
vectors provided by the connectivity updater componenshtiuld be noted that
H2CM only requires the hop vectors collected during the ifitiion phase. Any
subsequent hop vector changes needs not to be knowr®yIHThis is different
from the indicator node election component who requireshibge vectors to be

updated periodically.

¢ Indicator Node Election: The indicator node election component monitors the
network connectivity change based on the updated hop cofarmation. It main-
tains a history of connectivity update and starts the irtdicalection process once

the connectivity changes beyond some threshold.
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¢ Neighbor Management: The neighbor management component is responsible for
maintaining each sensor node’s neighbor table. Differeategies in managing the
neighbor tables affect the network connectivity, and cqosetly affect the node
scheduler and distance estimator. In this thesis, eachis@sumed to maintain
all the active neighbors in its neighbor table regardlesb®hetwork node density,
which simplifies the design of the coverage and connectivaypagement functions

affected by the neighbor management component.

Management Services

The coverage control services utilizes the node schedalsave the network energy.
The user or administrator controls the network coverageshyng) thea parameter. The
connectivity monitoring service monitors the completeartial) network connectivity
information, using the BICM component. As stated in Chapter 4, the node failure datect
service is only active when the connectivity monitoringvéee is inactive. The monitor-
ing of large holes in macroscale level is provided by the hi@gection and monitoring
service. It utilizes the indicator node election comporard the connectivity-based lo-

calizer to identify and estimate the location and size ofibile.

6.3 Management System Operation

6.3.1 System Initialization

This section explains the system initialization procedse meighbor management com-
ponent and the connectivity updater are first initializedtrBof them can be initialized by
“HELLO” message broadcasting. Once the hop count vectdtstanchor nodes (before
the node scheduler is run) are available, they are collegtethe information collection
tree to the root nodes. This information is used by t€M component later.

Some nodes will then turn into inactive mode according todéeision of the node
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scheduler. They will stay inactive for a long period so théiteo components are not
frequently affected, until the node scheduler is re-runr a/eelatively long period or
disabled. The connectivity updater and the connectivitgda localizer will then start
running, right after the node scheduling process has fidistiehe HCM component
and the indicator node election component are the last twagement functions to start
operating.

The flow diagram of the above described initialization pesas illustrated in Figure

6.3.

6.3.2 Normal System Operation

Once the system is initialized, the individual functionsl @ervices can operate on their
own to a large extent, which has already been explained aildiethe previous chapters.
In this section, the flow diagram of these components are sanmed, which is shown in
Figure 6.4.

The active node scheduling process is started by eitherdbe scheduling timer

or the re-scheduling request from users or administrafidrs.node scheduling protocol
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for coverage and connectivity control will then be perfodnéfter the active node re-
scheduling, those components that rely on the node schreclueponent, such as the
H2CM and indicator node election components, are re-iniigali

The connectivity monitoring process is started by the cotiiéy monitoring timer.
The neighbor tables of the selected active sensor nodesoleeted to the root nodes
using H*CM protocol. Connectivity-based debugging and root-camsgysis or the node
failure detection will then be performed.

The hole monitoring process is started by the event thage laole forms in the net-
work and the network topology (reflected by the hop counts)dignificantly changed.
The indicator node election process will then be perfornifabn receiving the informa-
tion from the elected indicator nodes, the root nodes wilheste the location and size of

the hole.
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Chapter 7

Conclusion and Future Work

The modern research on wireless sensor networks starteddadi®80 [23] driven by
the military applications, however, the technology for #reansors was not quite ready
at that time. During the last decade, due to the rapid dewsdop of various enabling
technologies for sensors, research on sensor networkegamed significant attention.
Besides the original military applications, wireless semgetworks are now used in many
industrial and civilian applications, including industrprocess monitoring and control,
environment and habitat monitoring, healthcare appbcestj home automation, traffic
control, and etc. The idea of wireless sensors is in fact siieg that the small sensors
are expected to be everywhere in the future world [84].

However, research in wireless sensor networks encountany challenges due to
their unique characteristics: large-scale deploymestriduted protocol design, limited
resources, harsh environments, and many more. Wirelessrseetworks are also con-
figuration oriented. Different application requiremertdgferent types of sensor nodes,
and different system model and assumptions may result irptisgly different problem
formulation and protocol design.

This thesis focuses on the management aspect of a sensarkeparticularly, the
coverage and connectivity management. Several protoaatsamitoring and controlling

the network coverage and connectivity, both in microscalé macroscale levels, were
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proposed. The detailed research results and contributithss thesis are summarized in

the next section.

7.1 Research Summary

As stated in Chapter 1, the coverage and connectivity managefunctions are catego-
rized into monitoring and controlling of the network covgeaand connectivity, in both
microscale level and macroscale level. In this thesis glesnponents were studied in
separate chapters. The integration of these componenta imified coverage and con-
nectivity management framework was then proposed in Chépte

The Configurable Coverage Protocol (CCP) proposed in Ch&pserves the pur-
pose of micrascale coverage and connectivity control. Méde, the vacancy estimation
scheme proposed in CCP also provides a way to compute thesoale vacancy of the
given network, and thus also serves as a management furictiomicroscale coverage
monitoring. CCP allows the trade-off between coverage atttrusage (i.e., the number
of active nodes). It can be configured to use a small numbectofeanodes to cover at
leasta portion of the area with high probability. CCP only makessuséthe distance
between two nodes rather than their actual locations.

CCP is a completely distributed and lightweight protocolenheach node makes
decision based on the collaboration between its local meigh For complete cover-
age & = 1), CCP was comparable to the near optimal OGDC protocol] [t0iérms of
coverage and number of active nodes required. By relaxiagtimstraints of complete
coverage, CCP was able to generate a subset of sensor nodasnals smaller than the
number of nodes required for a complete coverage, e.g.,whe®0%, 22% node sav-
ings could be achieved comparing to the case of full coveraigg whert = 80%, 29%
savings could be achieved. E.g., for the node density of BOu400 active nodes can
support 90% coverage while about 530 active nodes are ezhjarsupport full coverage.

The reduction in the number of active nodes is much more tharedduction of coverage.
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The complete network connectivity graph is formed by aggtieg the microscale
connectivity information (neighbor tables) of all the sensodes in the region of interest.
An efficient microscale connectivity monitoring protocdd&M was proposed in Chapter
4. H’CM is an efficient way to encode the neighborhood informatbreach sensor
nodes, such that the communication cost of microscale atinitg collection can be
much reduced. By varying the amount of information exchdngCM is able to provide
different level of connectivity information accuracy. THECM algorithm is practical and
can be easily implemented on TinyOS with little overhead.

Simulation results showed that for a large networKLQ00 nodes) with node densities
varying from 5 to 30, over 999% of all links were discovered and the communication
savings varied from 65% to 85% compare to maximal comprassimeighborhood in-
formation. For a medium size network (a few hundred nodé®)1840% to 70% savings
could be achieved. We implemented®M in a sensor testbed with 34 MICA2 nodes.
The algorithm was implemented using less than 80 lines of0#$ code and about 600
bytes of ROM image size (code size). Even with such a smalarét the total commu-
nication cost was comparable to the cost of using maximalpecession.

Node failure detection is also a simple application 3. By combining HCM
with the concept of dominating set, the communication cast loe drastically reduced
compare to traditional data collection method. The avecagemunication cost was only
20% to 40% of the normal data collection method. This is ai@mt improvement since
H2CM achieves much better performance even compare to theetiesd maximal data
compression in information theory.

Chapter 5 presented an efficient macroscale topological detiection and monitor-
ing protocol. The protocol is based on the observation thkg formation creates irregu-
larities in the network connectivity and the changes in teevork connectivity contains
important information about the hole. The approach is rea@nd communication is
triggered only when a hole is formed, unlike a polling/samgplbased method where

communication needs to be performed periodically. In aoldjtthe aim of the protocol
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is not to map the boundary of the hole, which is expensiveesimany nodes need to be
identified. Instead, only a small number of dynamically idfeed indicator nodesare
required to report their status to the sink nodes. The pt@seof these indicator nodes
are investigated and utilized to estimate the location &relaf the hole, as well as the
possible hole transformation types.

Simulation results showed that the location and size of tleshcould be fairly ac-
curately estimated with only the information from indicatmdes. For a large network
(more than 30000 sensor nodes), the communication overhead for the hebeeter of
20 was only about 0.3 message per node per hole detectedy wagcsmall compare to
existing methods.

All these proposed solutions to the coverage and conngctivinagement compo-
nents described in Chapter 3, 4 and 5 are distributed ahgosit They are efficient in
communication and energy cost and scalable to a very largelanse wireless sensor
network. A unified coverage and connectivity managememésaork was proposed in
Chapter 6. The framework maps all these described indivchraponents into the man-
agement functions and services. The dependencies amasgyfrections and services

were carefully investigated.

7.2 Future Work

There are several possible extensions to the research weskrmied in this thesis. Al-
though the management framework proposed in Chapter édeslomany microscale and
macroscale coverage and connectivity management fuiscsind services, it can hardly

be considered as a complete framework.

e Although the CCP protocol proposed in Chapter 3 controlatiieroscale cover-
age and connectivity, there are apparently many other flations of the problem
coverage and connectivity control. The most obvious exteris to extend CCP to

supportk-coverage an#i-connectivity.
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e The CCP protocol only focuses on the microscale coverageamaectivity con-
trol. An extension to this work is to use the proposed vacastiynation method for
macroscale coverage monitoring. Macroscale coveragetarong is an important
management service that is not included in the managemamnefvork proposed

in this thesis.

e The macroscale hole monitoring is investigated in Chaptérte problem of mit-
igating macroscale holes, such as the node deployment sshienavoid the for-
mation of large holes, as well as the node redeployment sehi¢mneliminate the
existing holes are not studied in this thesis. These compsrman be investigated

as future work to make the proposed management framewor& coonplete.

e The research work in this thesis heavily relies on connigthased localization,
which in turn relies on the assumption of Poisson randomepfent of sensor
nodes. This assumption does not cause trouble for the mistpooposed for mi-
croscale coverage and connectivity monitoring. Howewueis an important as-
sumption for macroscale connectivity and coverage mangoespecially for hole
monitoring and estimation. The impact of other distribnf@f node placement to
the macroscale connectivity and coverage monitoring canvastigated as future

work.

At last, although the individual management functions a@mdises have been ex-
tensively simulated, and some of them have been implememedested on real sensor
network testbed, the simulation and testbed implemematidhe proposed framework

has not been evaluated and can be considered as future work.
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