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Summary

The design and verification of concurrent and real-time systems are notoriously difficult problems.

Among the software validation techniques, model checking approach has been proved to be suc-

cessful as an automatic and effective solution. In this thesis, we study the verification of concurrent

and real-time systems using model checking approach.

First, we design an integrated formal language for concurrent and real-time modeling, which com-

bines high-level specification languages with mutable datavariables and low-level procedural codes

for the purpose of efficient system analysis, in particular,model checking. Timing requirements are

captured using behavior patterns likedeadline, time out, etc. A formal semantic model is defined

for this language.

Based on this modeling language, we investigate LTL verification problem with focus of fairness

assumptions, and refinement checking problem with following results.

1. We propose a unified on-the-fly model checking algorithm tohandle a variety of fairness

assumptions, which is further tuned to support parallel verification in multi-core architecture

with shared memory. We apply the proposed algorithm on a set of self-stabilizing population

protocols, which only work under global fairness. One previously unknown bug is discovered

in a leader election protocol. Population protocols are designed for networks with large or

even unbounded number of nodes, which gives the space explosion problem. To solve this

problem, we develop a process counter abstraction technique to handle parameterized systems

under fairness. We show that model checking under fairness is feasible, even without the

knowledge of process identifiers.

2. Based on the ideas in FDR, we present an on-the-fly model checking algorithm for refinement

checking, incorporated with advanced model checking techniques. This algorithm is success-

fully applied in automatic linearizability verification and conformance checking between Web

Services.

Symbolic model checking is capable of handling large state space. We present an alternative solution



for LTL verification using bounded model checking approach.Hierarchical systems are encoded as

SAT problems. The encoding avoids exploring the full state space for complex systems so as to

avoid state space explosion.

To support verification of real-time systems, we propose an approach using a fully automated ab-

straction technique to build an abstract finite state machine from the real-time model. We show that

the abstraction has finite state and is subject to model checking. Furthermore, it weakly bi-simulates

the concrete model and we can perform LTL model checking, refinement checking and even timed

refinement checking upon the abstraction.

The results of this thesis are embodied in the design and implementation of a self-contained frame-

work: Process Analysis Toolkit (PAT), which supports composing, simulating and reasoning of con-

current and real-time systems. This framework includes allof the proposed techniques: deadlock-

freedom, reachability, LTL checking, refinement checking and etc. PAT adopts an extensible design,

which allows new languages and verification algorithms to besupported easily. Currently, three

modules have been developed in PAT. The experiment results show that PAT is capable of verifying

systems with large number of states and complements the state-of-the-art model checkers in several

aspects.

Key words: Formal Verification, Concurrent and Real-time Systems, Model Checking, PAT,

LTL Model Checking, Fairness, Partial Order Reduction, Process Counter Abstraction, Re-

finement Checking, Bounded Model Checking, Timed Zone Abstraction, Timed Refinement

Checking, Population Protocol, Linearizability, Web Service Conformance
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Chapter 1

Introduction

The design and verification of concurrent and real-time systems are notoriously difficult problems.

In particular, the interaction of concurrent processes in large systems often leads to subtle bugs

that are extremely difficult to discover using the conventional techniques of simulation and testing.

Automated verification based on model checking promises a more effective way of discovering

design errors, which has been used successfully in practiceto verify complex software systems.

1.1 Motivation and Goals

With the fast development of IT industry, our reliance on thefunctioning of software systems is

growing rapidly. These systems are becoming more and more complicated and are massively en-

croaching on daily life, e.g., the Internet, embedded systems, mobile devices and so on. This is

especially true for concurrent and real-time systems, which have concurrent executions, shared

resources and timing factors. Failure is unacceptable for mission critical systems like electronic

commerce, telephone switching networks, air traffic control systems, medical instruments, and nu-

merous other examples. We frequently read of incidents where catastrophic failure is caused by an

error in software systems, as some examples listed below.

1
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• Pentium bug: Intel Pentium II chip, released in 1994 produced error in floating point division.

Cost: $475 million

• Ariane 5 failure: In December 1996, the Ariane 5 rocket exploded 40 seconds after takeoff,

by an overflow generated by converting a 64-bit floating-point number into a 16-bit integer.

Cost: $400 million

• Therac-25 accident: A software failure caused wrong dosages of x-rays.

Cost: Human Loss.

In a recent example, the 2010 Toyota recall that can cost excess of 2 billion USD has been quite

surprising for the people, who have been acquainted with thesuccessful history of this company.

Much of the cost, damage to the company’s reputation, and theuncertainty regarding the nature

of the problems, could have been avoided if the correctness of the software components has been

established beyond doubt.

Clearly, the need for reliable software systems is crucial.As the involvement of such systems in

our lives increases, so too does the burden for ensuring their correctness. Therefore, it will become

more important to develop methods that increase our confidence in the correctness of such systems.

The principal validation methods for complex systems are simulation, testing, deductive verification,

and model checking. Model checking is a method of automatically verifying concurrent systems in

which a finite state model of a system is compared with a correctness requirement. The process

of model checking can be separated into system modeling, requirement specification and verifica-

tion. It has a number of advantages over other traditional approaches. This method has been used

successfully in practice to verify complex circuit design and communication protocols.

In this thesis, our research focuses on model checking of concurrent and real-time systems. In partic-

ular, we have tried to address four issues related to model checking: (i) proposing a formal language

to model concurrent and real-time systems, (ii) exploring efficient model checking algorithms and

reduction techniques, (iii) implementing a toolkit to support effective software verification, and (iv)
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applying the proposed model checking techniques in different domains. The concrete issues that

require more research efforts are elaborated below in the order of the process of model checking.

System Modeling

Formal modeling languages and notations have much to offer in the achievement of technical quality

in system development. Precise notations and languages help to make specifications unambiguous

while improving intuitiveness, increasing consistency and making it possible to detect errors auto-

matically with the support of effective tools. Over the lastfew decades, many formal modeling lan-

guages have been proposed [108, 222, 75, 183, 150, 120, 155, 10]. Formal modeling languages and

notations are generally logic-based formalisms, which aredivided into two groups, state-oriented

formalisms, including VDM [120], Z [222], Object-Z [75], etc., and event-oriented formalisms,

including Communicating Sequential Processes (CSP) [108], CCS [155], Timed CSP [183],π-

calculus [155], etc. The formalisms based on the notion of state machines1 include finite state

machines, Statecharts [104], Petri-net [165], Timed Automata [10], etc.

We are particular interested in the event-based modeling languages like CSP, CCS for their rich

set of concurrent operators and compositional structure (to achieve a modular design by nature).

CSP has passed the test of time. It has been widely accepted and influenced the design of many

recent programming and specification languages. Nonetheless, modeling systems with non-trivial

data structures and functional aspects completely using languages like CSP remains difficult. In

order to solve the problem, many specification languages integrating process algebras like CSP or

CCS with state-based specification languages like the Z language or Object-Z have been proposed.

The state-based language component is typically used to specify the data states of the system and

the associated data operations in a declarative style. Examples includeCircus [221] (i.e., an inte-

gration of CSP and the Z language), CSP-OZ [86] (i.e., an integration of CSP and Object-Z) and

TCOZ [152] (i.e., an integration of Timed CSP and Object-Z).However, because declarative speci-

fication languages like Z are very expressive and not executable, automated analyzing (in particular,

1State machine is a model of behavior composed of a number of states.
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model checking) of systems modeled using the integrated languages is extremely difficult.

During the last decade or so, a popular approach for specifying real-time systems is based on the

notation Timed Automata [10, 149]. Timed Automata are powerful in designing real-time models

with explicit clock variables. Real-time constraints are captured by explicitly setting/reseting clock

variables. Models based on Timed Automata often adapt a simple structure, e.g. a network of Timed

Automata with no hierarchy [135]. The benefit is that efficient model checking is made feasible.

Nonetheless, designing and verifying hierarchical real-time systems is becoming an increasingly

difficult task due to the widespread applications and increasing complexity of such systems. As a

result, users often need to manually cast high-level compositional time patterns into a set of clock

variables with carefully calculated clock constraints. The process is tedious and error-prone.

One goal of this thesis is to design an integrated modeling language for concurrent and real-time

systems, which is sufficiently expressive, but is still subject to model checking.

Requirement Specification and Verification

Critical system requirements like safety, liveness and fairness play important roles in system spec-

ification, verification and development. Safety propertiesensure that something undesirable never

happens. Liveness properties state that something desirable must eventually happen. Fairness prop-

erties state that if something is enabled sufficiently often, then it must eventually happen. Often,

fairness assumptions are necessary to prove liveness properties.

Over the last decades, specification and verification of safety properties (e.g., deadlockfreeness and

reachability) have been studied extensively. The concept of liveness itself is problematic [132].

Fairness constraints have been proved to be an effective wayof expressing liveness, and is also

important in system specification and verification. For instance, without fairness constraints, verify-

ing of liveness properties may often produce counterexamples which are due to un-fair executions,

e.g., a process or choice is infinitely ignored. State-basedfairness constraints have been well stud-

ied in automata theory based on accepting states, e.g., in the setting of Büchi/Rabin/Streett/Muller

automata [209]. It has been observed that the notion of fairness is not easily combined with the
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bottom-up type of compositionality (of process algebra forinstance [170]), which is important for

attacking the complexity of system development. Existing model checkers are ineffective with re-

spect to fairness [202]. It is desirable to develop effective fairness verification algorithm. Especially

it is proven that the correctness of recently developed population protocols requires fairness [14, 88].

In this thesis, we focus on liveness properties expressed inLinear Temporal Logics (LTL)2, which

allows potentially on-the-fly verification algorithms to bedeveloped [61].

In order to verify hierarchical systems, more general specifications like refinement relation are

needed. In these cases, the requirement is modeled using an abstract model rather than a logic

formula, which gives more expressive power. FDR (Failures-Divergence Refinement) [175] is the

de factorefinement analyzer, which has been successfully applied invarious domains. Based on the

model checking algorithm presented in [175] and later improved with other reduction techniques

presented in [179], FDR is capable of handling large systems. Nonetheless, since FDR was initially

introduced, model checking techniques have evolved much further in the last two decades. A num-

ber of effective reduction methods have been proposed whichgreatly enlarge the size the systems

that can be handled. Some noticeable ones include partial order reduction, symmetry reduction,

predicate abstraction, etc. It is worth revisiting this algorithm by incorporating new techniques.

For the real-time systems, previous works [135, 35, 35, 217,207, 33] focus on the flat modeling

structure, like Timed Automata. Verification for hierarchical languages is less studied. To the

best of our knowledge, there are few verification support forTimed CSP, e.g. the theorem proving

approaches documented in [40, 101], the translation to UPPAAL models [70, 71] and the approach

based on constraint solving [72]. Regarding the timed refinement checking, tool support is also

very limited. One of the reasons is that Timed Automata, which extended Büchi Automata with

clocks [10], is designed to capture infinite languages. The refinement checking (or equivalently

the language inclusion) problem is undecidable in the setting of Timed Automata [10], because the

language of Timed Automata is not closed under complement. Effective verification algorithms and

reduction techniques are always desirable when real-time is involved.

2For model checking, there is no practical complexity advantage to restrict oneself to a particular temporal logic [80].
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Model checking approach works only with finite state space3 and suffers from the state space explo-

sion problems. We need to develop advanced techniques to cope with this limitation. First, symbolic

model checking have been proved as a successful representation for state graph, which can handle

large system state up to1020 [44], which may be a promising approach for verifying hierarchical

systems. Second, effective reduction techniques have beendeveloped during the last two decades,

e.g., partial order reduction [214], symmetry reduction, etc. Therefore, problem specific reduction

can be developed when we design the verification algorithms.Third, to handle infinite state spaces,

sound abstraction techniques are required, e.g. to handle infinite number of similar processes or

apply model checking in real number clocks. Fourth, additional computation resources can be used

to speed up the verification, e.g., parallel verification using multi-core CPU.

Tool Support

Effective tool development has always been the focus of model checking community. Since 1980,

there is an ample set of model checkers developed. General propose model checkers for concurrent

systems include NuSMV [53], SPIN [111], mCRL2 [102] and so on. Verification tools for real-time

systems include UPPAAL [135], KRONOS [35], RED [217], Timed COSPAN [207], Rabbit [33]

and so on. The success of these tools is shown in establishingthe correctness of various systems

and finding critical bugs in published algorithm and real-world applications. With the focus on the

performance, most tools ignore the following aspects in their design, which may limit their usage.

Usability To be a useful tool, model checkers should be self-containedand offer user friendly

interfaces to support system editing, animated simulation, and parameterized verification.

Extensibility Most tools are designed for certain systems or favor for particular requirements. Ex-

tensibility of new model checking algorithm or input modeling language is rarely mentioned.

A structural design shall make the support of new algorithm or language relative easy by

reusing the existing model checking algorithms and libraries.

3Though this is generally true, a considerable amount of effort has been expended on applying model checking to

infinite state models [140, 84, 4].
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To add to our understanding of the field, we aim to develop efficient model checker with the consid-

eration of the above points.

1.2 Summary of Contributions

The main results of this thesis are embodied in the design andimplementation of Process Analysis

Toolkit (PAT), a self-contained framework for the automatic analysis of concurrent and real-time

systems. The contributions of this thesis can be summarizedas follows:

• We design an integrated formal language4 for concurrent and real-time modeling, which com-

bines high-level specification languages with mutable datavariables and low-level procedural

codes for the purpose of efficient system analysis, in particular, model checking. Timing

requirements for real-time systems are captured using behavior patterns likedeadline, time

out, etc. Instead of explicitly manipulating clock variables (as in Timed Automata), the time

related process constructs are designed to build on implicit clocks. Furthermore, we formally

define the semantic model for the language, which facilitates PAT to perform sound and com-

plete system verification.

• We develop a unified on-the-fly model checking algorithm which handles a variety of fair-

ness including process-level weak/strong fairness, event-level weak/strong fairness, strong

global fairness, etc. The algorithm extends previous work on model checking based on find-

ing strongly connected components (SCC). To give flexibility, we propose several fairness

annotations on individual events, which allows effective reduction techniques used together

with the proposed fairness verification. Furthermore, we present a parallel version of the

proposed algorithm in multi-core shared-memory architecture. The parallel algorithm is per-

formed on-the-fly with little overhead. Experimental results (see Section 4.7) show that our

4The proposed language borrows syntax and semantics of CSP. Though it is not compositional as original CSP, all the

verification algorithms presented in this thesis require nocompositionality.
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algorithm is more effective compared to SPIN to prove or disprove fairness enhanced sys-

tems. The parallel algorithm is shown to be scalable to the number of CPU-cores, especially

when a system search space contains many SCCs. We apply the proposed fairness model

checking algorithms on a set of self-stabilizing population protocols for ring networks, which

only work under fairness. We report on our model checking results. Especially, we discover

one previously unknown bug in a leader election protocol [118].

• We develop a novel technique for model checking parameterized systems under fairness,

against Linear Temporal Logic (LTL) formulae. We show that model checking under fairness

is feasible, even without the knowledge of process identifiers. This is done by systematically

keeping track of the local states from which actions are enabled / executed within any infinite

loop of the abstract state space. We develop necessary theorems to prove the soundness of

our technique, and also present efficient on-the-fly model checking algorithms.

• Based on the ideas in FDR [175], we present a on-the-fly model checking algorithm for re-

finement relations verification. Our algorithm is designed to incorporate advanced model

checking techniques, e.g. partial order reduction, to analyze event-based hierarchical system

models.

• We apply the refinement checking algorithm to automaticallycheck linearizability [107]

based on refinement relations from abstract specifications to concrete implementations. Our

method avoids the often difficult task of determining linearization points in implementations,

but can also take advantage of linearization points if they are given. We have checked a va-

riety of implementations of concurrent objects, includingthe first algorithms for the mailbox

problem [19] and scalable NonZero indicators [78].

• We apply the refinement checking algorithm to automaticallycheck consistency between Web

Service choreography and Web Service orchestration by showing conformance relationship

between the choreography and the orchestration. The algorithm is further extended with data

support and specialized optimizations for Web services.

• We presents a bounded model checking approach to verify LTL properties using composi-
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tional encoding of hierarchical systems as satisfiability (SAT) problems. State-of-the-art SAT

solvers are then applied for bounded model checking. The encoding avoids exploring the full

state space for complex systems so as to avoid state space explosion. The experiment re-

sults show that our approach has a competitive performance for verifying systems with large

number of states.

• We propose an approach for modeling and verifying hierarchical real-time systems, which

uses a fully automated abstraction technique to build an abstract finite state machine from the

real-time model. The idea is to dynamically create clocks tocapture constraints introduced by

the timed process constructs. A clock may be shared for many constructs in order to reduce

the number of clocks. Further, the clocks are deleted as early as possible. During system

exploration, a constraint on the active clocks is maintained and solved using techniques based

on Difference Bound Matrix (DBM [68]). We show that the abstraction has finite state and is

subject to model checking. Further, it weakly bi-simulatesthe concrete model and, therefore,

we may perform sound and complete LTL model checking or refinement checking upon the

abstraction. To facilitate timed refinement checking, we formally define a timed trace seman-

tics and a timed trace refinement relationship. We extend thezone abstraction technique to

preserve timed event traces; hence timed refinement checking is possible. We provide the first

solution for model checking Timed CSP and timed refinement checking.

• We develop Process Analysis Toolkit (PAT), a self-contained tool to support composing, sim-

ulating and reasoning of different concurrent systems. PATimplements all proposed model

checking techniques catering for checking deadlock-freeness, reachability, LTL checking,

refinement checking and etc. To achieve good performance, advanced techniques are imple-

mented like partial order reduction, process counter abstraction, bounded model checking,

parallel model checking, etc. PAT is designed to be a genericframework, which can be easily

extended to support a system with new languages syntax and verification algorithms. The

experiment results show that PAT is capable of verifying systems with large number of states

and complements the state-of-the-art model checkers in many aspects.
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1.3 Thesis Outline and Overview

In this section, we briefly present the outline of the thesis and overview of each chapter.

Chapter 2 is devoted to an introduction of model checking techniques in the order of model checking

process. First, systems are modeled using Kripke structures. Second, specification can be written

using temporal logic, particular LTL. Last, the verification is done using dedicated algorithms with

reduction techniques like partial order reduction. The basics about real-time model checking are

explained in the end of this chapter.

Chapter 3 introduces an integrated modeling language with formally defined syntax and operational

semantics. The semantics model is interpreted using Labeled Transition System (LTS). A multi-lift

system and Fischer’s algorithm are used to illustrate the language.

In Chapter 4, we study the LTL verification problem under different fairness assumptions. A fair-

ness model checking approach based on Tarjan’s SCC detection algorithm is proposed. To give

flexibility, we propose several fairness annotations on individual events, which allow effective re-

duction techniques used together with the proposed fairness verification. Furthermore, we present a

parallel version of the proposed algorithm for multi-core shared-memory architecture.

In Chapter 5, we apply the algorithms developed in Chapter 4 to self-stabilizing population proto-

cols. One previously unknown bug is discovered in a leader election protocol [118]. Population

protocols are designed on a large or even unbounded number ofsimilar processes, which raises the

state explosion problem. To solve this problem, we propose aprocess counter abstraction technique.

Chapter 6 introduces trace refinement relations and proposes a refinement checking algorithm incor-

porated with advanced reduction techniques, like partial order reduction. In Chapter 7, we apply the

proposed refinement algorithm on linearizability checkingand web service conformance checking.

Chapter 8 presents a compositional encoding of hierarchical processes as satisfiability (SAT) prob-

lem and then applies state-of-the-art SAT solvers for bounded model checking. This encoding avoids

exploring the full state space for complex systems so as to deal with state space explosion.
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Chapter 9 explains our solution to verify hierarchical real-time systems. We develop an automated

abstraction technique to build an abstract finite state machine from the real-time model. We show

that the abstraction has finite state and is amenable to modelchecking. Further, we present al-

gorithms for LTL model checking, refinement checking and timed refinement checking upon the

abstraction.

Chapter 10 presents PAT, a general framework to support composing, simulating and reasoning

of different concurrent systems. The system architecture,workflow, functionalities and details of

existing modules are explained in this chapter.

Chapter 11 summaries the contributions of the thesis and discusses future research directions.

1.4 Publications from the Thesis

Most of the work presented in this thesis has been published or accepted in international conference

proceedings or journals.

The work in Chapter 3 was presented atThe3rd IEEE International Symposium on Theoretical

Aspects of Software Engineering TASE’09 (July 2009)[194]. The work in Section 4.5 was pre-

sented atThe10th International Conference on Formal Engineering Methods ICFEM’08 (Novem-

ber 2008)[202]. The work in Section 4.6 is accepted atThe11th International Conference on

Formal Engineering Methods ICFEM’09 (December 2009)[147]. The work in Section 5.1 to Sec-

tion 5.3 was used as a basis for the paper presented atThe3rd IEEE International Symposium on

Theoretical Aspects of Software Engineering TASE’09 (July2009)[144]. The work in Section 5.4

to Section 5.7 is accepted atThe16th International Symposium on Formal Methods FM’09 (Novem-

ber 2009)[204]. The work in Chapter 6 was presented in an invited paperat The3rd International

Symposium on Leveraging Applications of Formal Methods, Verification and Validation ISoLA’08

(October 2008)[193]. The work in Section 7.1 to Section 7.3 is accepted atThe16th International

Symposium on Formal Methods FM’09 (November 2009)[143]. One case study in Section 7.3

was published inThe21st International Conference on Software Engineering and Knowledge En-
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gineering SEKE’09 (July 2009)[225]. The work in Chapter 8 was presented in a paper atThe

2nd IEEE International Symposium on Theoretical Aspects of Software Engineering TASE’08 (June

2008) [199], and a journal article in2nd volume ofThe Frontiers of Computer Science in China

journal [200]. The work in Chapter 9 is accepted atThe11th International Conference on Formal

Engineering Methods ICFEM’09 (December 2009)[203]. The work in Chapter 10 was the basis for

the paper published inThe30th International Conference on Software Engineering ICSE’08(May

2008) [146], and the paper published inThe21st International Conference on Computer Aided

Verification CAV’09 (June 2009)[197].

Part of Chapter 4 has been submitted for publication [195]. Apaper including the web service con-

formance checking presented in Section 7.4 to Section 7.7 has been submitted for publication [198].

Part of Section 9.2.3 has been submitted for publication [201]. I also made contributions to other

publications [145, 73] which are remotely related this thesis.

For all the publications mentioned above, I have contributed substantially in both theory develop-

ment and tool implementation.



Chapter 2

Background

The principal validation methods for complex systems include testing, simulation, deductive verifi-

cation, and model checking.Simulationandtestingapproaches send the test signal at input-points

and check the signal at the output-points. These two methodsmay become very expensive for

complex, asynchronous systems. More importantly, they cover only a limited subset of possible be-

haviors.Deductive verificationuses axioms and proof rules to prove the correctness of the systems,

which can handle infinite state systems. However, it is a manual approach, very time-consuming

and can only be used by experts.Model checkingis an automatic approach for verifying finite state

systems. It differs from other methods in two crucial aspects: (1) it does not aim of being fully

general, and (2) it is fully algorithmic and of low computational complexity1.

After two decades’ development, model checking has covereda wide area including a number of

different approaches (e.g. explicit model checking, symbolic model checking, probabilistic model

checking, etc.) and techniques (e.g. partial order reduction, binary decision diagrams, abstraction,

symmetry reduction, etc.). In this chapter, we cover basic knowledge of model checking and con-

cepts related to this thesis. The remainder of the chapter isorganized as follows. Section 2.1 gives

a brief introduction to model checking. Section 2.2 explains how the systems should be modeled in

1The complexity of most model checking algorithms is proportional to the state space or the product of the state space

and property.

13
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model checking approaches. Section 2.3 enumerates severalspecifications and related algorithms

to verify them. Section 2.4 covers the background knowledgeof real-time model checking.

2.1 Basics of Model Checking

Model checking [58] is a verification technique that explores all possible system states in a brute-

force manner. Therefore, model checking is not feasible forinfinite state space systems, which is

caused by unbounded data size or infinite number of processes. The performance of model checking

approach is related to the size of the system state space. It is a real challenge to examine the

largest possible state space that can be handled by limited processors and memories. State-of-the-

art model checkers can handles state space of about108 to 109 states [111] with explicit state-space

enumeration. The main challenge in model checking is dealing with the state space explosion

problem. This problem occurs in systems with many components that can interact with each other

or data structures with many different values. In such cases, the number of global states can be

enormous. The linear increment of the interaction or data values will give exponential increment of

the state space. For example, a concurrent program withk processes can have a state graph of size

exp(k). During the last ten years, considerable research works have been focusing on this problem.

The process of model checking consists of several tasks. First of all, system design is converted

into a formalism accepted by model checking tools. The requirement of the systems is abstracted

as logic specifications. One common example is temporal logic, which can assert how the behavior

of the system evolves over time. The verification of the specification against the system model is

generally conducted automatically. If the result is negative, the user is often provided with a witness

trace (or counterexample). The analyzing of the error tracemay require modifications to the model

and repeat the model checking process. Each process of the model checking, namely modeling,

specification and verification, will be explained in the following sections.
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2.2 System Modeling

First of all, we convert the system, which should be examined, into a formalism accepted by a model

checking tool. Formal modeling is a difficult and critical step. Sometimes, owing to limitations on

time and memory, the modeling of a design may require the use of abstraction. It may not be

so simple to provide the model, because on the one hand relevant or important points must be

represented in the model, on the other hand unnecessary details should be eliminated. For example,

when reasoning about a communication protocol we may want tofocus on the exchange of messages

and ignore the actual contents of the messages.

A state(or configuration) is a snapshot or instantaneous description2 of the system that captures

program counter and the values of the variables at a particular instant of time. The state change as

the result of some action of the system is described by transitions, which is a pair of states with an

action (or event) linking them. A computation of a system is a finite or infinitesequence of states

where each state is obtained from the previous state by some transition. We use a state transition

graph called aKripke structure[113] to formally model a system.

Definition 1 (Kripke structure) Let AP be a non-empty set of atomic propositions. AKripke

structureM over a set of atomic propositionsAP is a four-tupleM = (S ,S0,R,L), whereS

is a finite set of states;S0 ⊆ S is the set of initial states;R ⊆ S × S is a transition relation;

L : S → 2AP is a function that labels each state with the set of atomic propositions true in this

state.

A Kripke structure is a graph having the reachable states of the system as nodes and state transitions

of the system as edges. It also contains a labeling of the states of the system with properties that hold

in each state. In this thesis, we adopt an event-based formalism. Therefore we extend the transitions

in Kripke structure with events (denoted asΣ) to link the pair of states.

2The components of state are determined by the actual modeling language. See Section 3.1.2 for the state definition

of the proposed modeling language in this thesis.
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2.3 Specification and Verification

Specifications are the properties that the design must satisfy. There are different ways to express

properties. In state-based formalisms, properties are generally stated using temporal logics to spec-

ify how the system evolves over time. These properties are divided into two categories: safety prop-

erties and liveness properties. In this section, we presentthe common properties and algorithms

(and techniques) used to verify them.

2.3.1 Safety Property

A safety property is a property stating that “something bad never happens". Generally, safety re-

quirements include the absence of deadlocks and similar critical states that can cause the system to

crash.

Deadlock Sequential programs that are not subject to divergence (e.g., endless loops) have a ter-

minal state, which has no outgoing transitions. For concurrent systems, however, computations

typically do not terminate. In such case, terminal states are undesirable and mostly represent a de-

sign error. Apart from simple design errors where it has beenforgotten to indicate certain activities,

in most cases such terminal states indicate adeadlock. A deadlock occurs if the complete system

is in a terminal state, although at least one component is in a(local) nonterminal state. A typical

deadlock scenario occurs when components mutually wait foreach other to progress.

A more general form of safety property can be stated as a logicformula of the atomic propositions,

e.g.,¬(cs0 ∧ cs1) is a safety property for mutual exclusion problem meaning that process 0 and

process 1 cannot be in the critical section at the same time.

To verify safety properties, we simply need to conduct a depth first search (or breadth first search)

in the state space. During the search, if the reached state isundesirable (e.g., having no outgoing

transitions in case of deadlock checking), then we detect anevidence trace as a counterexample.

The algorithm (based on depth first search) has been implemented in PAT, which gives a linear time

complexity in the size of the state space.
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Note that, in the event-oriented world, deadlock-freedom is a liveness property rather than safety

property. In practice, safety and liveness do not apply wellin a pure event-based formalism. “Some-

thing" that happens (or not) is really a configuration of the system and/or its environment, not nec-

essarily an observable event. In this thesis, we treat deadlock as a safety property.

2.3.2 Liveness Properties and Linear Temporal Logics

Different from safety properties, liveness properties mean that “something good" will eventually

happen. Safety properties are violated in finite time, liveness properties are violated in infinite time,

i.e., by infinite system runs. For example, in a mutual exclusion algorithm, typical examples of

liveness properties are including:

• (eventually) each process will eventually enter its critical section;

• (repeated eventually) each process will enter its criticalsection infinitely often;

• (starvation freedom) each waiting process will eventuallyenter its critical section.

To model liveness properties, the common practice is to useTemporal Logics, e.g.Computation Tree

Logic (CTL)[55], Linear Temporal Logic (LTL)[188] andCTL* [56]. It is known that, for purposes

of model checking, there is no practical complexity advantage to restrict oneself to a particular

temporal logic [80]. In this thesis, we focus on LTL as the algorithms proposed later are consistent

with LTL model checking.

Definition 2 LetPr be a set of propositions andΣ be a set of events. A LTL formula is,

φ ::= p | a | ¬φ | φ ∧ ψ | Xφ | 2φ | 3φ | φUψ

wherep ranges overPr anda ranges overΣ. Letπ = 〈s0, e0, s1, e1, · · · , ei , si , · · ·〉 be an infinite
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execution. Letπi be the suffix ofπ starting fromsi .

πi � p ⇔ si � p

πi � a ⇔ ei−1 = a

πi � ¬φ ⇔ ¬(πi � φ)
πi � φ ∧ ψ ⇔ πi � φ ∧ πi � ψ
πi � Xφ ⇔ πi+1 � φ
πi � 2φ ⇔ ∀ j ≥ i • πj � φ
πi � 3φ ⇔ ∃ j ≥ i • πj � φ
πi � φUψ ⇔ ∃ j ≥ i • πj � ψ ∧ ∀ k | i ≤ k ≤ j − 1 • πj � φ

Informally, Xφ meansφ has to hold at the next state.2φ meansφ has to hold at all states in the

execution.3φ meansφ eventually has to hold in some state of the execution.φUψ means thatφ

has to hold at least untilψ, which holds at the current or a future position.

Using LTL, safety properties can be specified as formula2¬p, wherep is the undesired property.

Regarding the three liveness properties in the mutual exclusion example, they can be formulated as

follows, wherecsi means the processi is in the critical section, andwaitingi means the processi

is in the waiting state.

• (eventually)3csi ;

• (repeated eventually)23csi ;

• (starvation freedom)2(waitingi ⇒ 3csi).

Note that because we are dealing with an event-based formalism (see Chapter 3 for the proposed

language) in this thesis, it would be meaningful if the properties may concern both states and events.

For instance,waitingi andcsi in the examples above are events. The simplicity of writing formulae

concerning events as in the above examples is not purely a matter of aesthetics. It may yield gains

in time and space (refer to examples in [50]).

Explicit state model checking uses a graph to represent a Kripke structure with nodes for states and

edges for transitions. The input model is converted into a corresponding automatonM, and the

negation of the LTL specificationφ is translated into a Büchi automatonB¬φ. Then, the emptiness
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of the product ofM andB¬φ is checked. If the product is not empty, a counterexample is reported.

Algorithms (of model checking finite state systems) based onthe explicit state enumeration could

be improved if only a fraction of the reachable states are explored. In many cases, it is possible to

avoid constructing the entire state space of the model. Thisis because the states of the automaton

are generated only when needed, while checking the emptiness of its intersection with the property

automatonB. This tactic is calledon-the-flymodel checking [61, 110]. Instead of constructing

the automata for bothM andB¬φ first, we will only construct the property automatonB¬φ. We

then use it to guide the construction of the system automatonM while computing the product.

In this way, we may frequently construct only a small portionof the state space before we find a

counterexample to the property being checked.

One advantage of on-the-fly model checking is that when computing the intersection of the system

automatonM with the property automatonB, some states ofM may never be generated at all.

Another advantage of the on-the-fly procedure is that a counterexample may be found before com-

pleting the construction of the intersection of the two automata. Once a counterexample has been

found and reported, there is no need to complete the construction. Interested readers can refer to

Section 4.3 for more details of this approach.

2.3.3 Partial Order Reduction

Systems that consist of a set of components that cooperatively solve a certain task are quite com-

mon in practice, e.g. hardware systems, communications protocols, distributed systems, and so on.

Typically, such systems are specified as the parallel composition of n processes. The state space of

this specification equals in worst case the product of the state spaces of the components. A major

cause of this state space explosion is the representation ofparallel by means of interleaving. Inter-

leaving is based on the principle that a system run is a totally ordered sequence of actions. In order

to represent all possible runs of the systems, all possible interleaving of actions of components need

to be represented. For checking a large class of properties,however, it is sufficient to check only

some representative of all these interleavings.
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For example, if two processes both increment an integer variable in successive steps, the end result

is the same regardless of the order in which these assignments occur. The underlying idea of this

approach is to reduce the interleaving representation intoa partial-order representation. System

runs are now no longer totally ordered sequences, but partially ordered sequences. Thepartial

order reductiontechnique [213, 164] aims at reducing the size of the state space that needs to be

explored by model checking algorithms. It exploits the commutativity of concurrently executed

transitions, which result in the same state when executed indifferent orders.

The method consists of constructing a reduced state graph. The full state graph, which may be

too big to fit in memory, is never constructed. The behaviors of the reduced graph are a subset

of the behaviors of the full state graph. The justification ofthe reduction method shows that the

behaviors that are not present do not add any information. More precisely, it is possible to define

an equivalence relation among behaviors such that the checked property cannot distinguish between

equivalent behaviors. If a behavior is not present in the reduced state graph, then an equivalent

behavior must be included.

2.4 Model Checking Real-time Systems

Computers are frequently used in critical applications where predictable response times are essential

for correctness. Such systems are calledreal-time systems. Examples of such applications include

controllers for aircraft, industrial machinery and robots. Due to the nature of such applications,

errors in real-time systems can be extremely dangerous, even fatal. Guaranteeing the correctness of

a complex real-time system is an important and nontrivial task.

There are two time semantics in the definition of real-time systems. Discrete-time semantics [11]

requires that all time readings are integers and all clocks increment their readings at the same time.

The other choice is dense-time semantics [9], which means that time readings can be rational num-

bers or real numbers and all clocks increment their readingsat a uniform rate. We discuss the two

semantics in the following paragraphs.
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2.4.1 Discrete-time Systems

When time is discrete, possible clock values are nonnegative integers, and events can only occur

at integer time values. This type of model is appropriate forsynchronous systems, where all of the

components are synchronized by a single global clock. The duration between successive clock ticks

is chosen as the basic unit for measuring time. This model hasbeen successfully used for reasoning

about the correctness of synchronous hardware designs for many years.

In discrete-time models, we require that there is a single global clock. Therefore, there is a sim-

ple and obvious way [133] to support it: introduce a clock variable now , whose value represents

the current time, and model the passage of time with aTick action that incrementsnow . For a

continuous-time specification,Tick might increment now by any real number; for a discrete-time

specification, it increments now by 1. Timing bounds on actions are specified with one of three

kinds of timer variables: a countdown timer is decremented by theTick action, a count-up timer is

incremented byTick , and an expiration timer is left unchanged byTick . A countdown or count-up

timer expires when its value reaches some value; an expiration timer expires when its value minus

now reaches some value. An upper-bound timing constraint onwhen an actionA must occur is

expressed by an enabling condition on theTick action that prevents an increase in time from vio-

lating the constraint; a lower-bound constraint on whenA may occur is expressed by an enabling

condition onA that prevents it from being executed earlier than it should be.

Alternative approaches are using quantitative temporal analysis for discrete-time systems [81, 46].

These approaches extend CTL withbounded untiloperator [81] to support the specification of tim-

ing constraints between two actions. One example query can be that “it is always true thatp may

be followed byq within 3 time units". Verification algorithms are then developed for this extended

modal logic in the similar way of CTL model checking. To increase the scalability, symbolic model

checking technique is integrated with this solution [46].
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2.4.2 Dense-time Systems

Compared to discrete-time, dense-time is the natural modelfor asynchronous systems, because the

separation of events can be arbitrarily small. This abilityis desirable for representing causally

independent events in an asynchronous system. Moreover, noassumptions need to be made about

the speed of the environment when this model of time is assumed. In discrete-time modeling, it is

necessary to separate time by choosing some fixed time quantum so that the delay between any two

events will be a multiple of this time quantum. This may limitthe accuracy with which systems can

be modeled. Also the choice of a sufficiently small time quantum to model an asynchronous system

accurately may blow up the state space so that verification isno longer possible.

During the last two decades, a number of specification languages are proposed for modeling dense-

time systems, e.g.Timed Automata[10, 149],Timed Process Algebra[223, 174, 182],Timed Inter-

val Calculus[85], Timed Statecharts[117] and so on. The verification approaches include model

checking, simulation, theorem proving and so on. Theorem proving [51, 52] is proved to be a

successful means to verify systems with real-valued clock variables. However, model checking

technique is difficult to apply in this case since it is designed for finite state systems. Therefore,

abstraction is needed to apply model checking. This thesis focuses on the abstraction technique of

dense-time models with rational-valued clock values.

Among the specification languages,Timed Automatahas become the standard modeling technique

in designing real-time models. Timed Automata are finite state machines equipped with clocks

variables (ranging over rational numbers). The elapse of the time can be modeled as clock variables

updating, and execution of the model can be constrained by guard expressions involving clocks.

This definition provides a general way to annotate state transition graphs with timing constraints

using finitely many rational-valued clock variables. In order to obtain a finite representation for the

infinite state space of rational-valued clocks, abstraction techniques likeclock regions[8] andclock

zones[68, 224] are used to verify real-time models. Based on thesetechniques, a number of efficient

verification tools for Timed Automata have been developed, e.g. UPPAAL [135], KRONOS [35],

RED [217], Timed COSPAN [207] and Rabbit [33].



Chapter 3

System Modeling

System modeling is very important and highly non-trivial. The choice of specification language is an

important factor in the success of the entire development. The language should cover several facets

of the requirements and the model should reflect exactly (up to abstraction of irrelevant details) an

existing system or a system to be built. The language should have a semantic model suitable to study

the behaviors of the system and to establish the validity of desired properties. A formal semantic

model is highly desirable, which can act as the basis for a variety of system development activities,

e.g., system simulation, visualization, verification or prototype synthesis.

In this chapter, we introduce an event-based modeling language for concurrent systems and real-

time systems. This language has a rich set of operators for concurrent communications and time

calculations. It is used as the modeling language in the restof the thesis and our PAT tool.

The remainder of this chapter is organized as follows. Section 3.1 presents CSP#, the modeling

language for concurrent systems with formal syntax (in Section 3.1.1) and semantic model (in Sec-

tion 3.1.2). The discussion in Section 3.1.3 explains the semantic relationship between CSP and

CSP#. Section 3.1.4 demonstrates a CSP# model of a multi-lift system. Section 3.2 presents the

language extensions of CSP# for modeling real-time systems. Several timed process constructs are

introduced in Section 3.2.1, and their semantics is explained in Section 3.2.2. Section 3.2.3 demon-

23
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strates the real-time system modeling using Fischer’s mutual exclusion algorithm. Section 3.3 dis-

cusses related works and summarizes the chapter.

3.1 Concurrent System Modeling

Many specification languages have been proposed for the modeling of concurrent systems. High-

level languages like CSP (Communicating Sequential Processes) [108] and CCS (Calculus of Com-

municating Systems) [155] use mathematical objects as abstractions to represent systems or pro-

cesses. System behaviors are described as process expressions combined with a rich set of hierar-

chical operators, e.g., deterministic or nondeterministic choice, parallel composition and recursion.

The operators are associated with elegant algebraic laws for system analysis.

The original CSP derives its full name from the built-in syntactic constraint that processes belong to

the sequential subset of the language. CSP has passed the test of time. It has been widely accepted

and influenced the design of many recent programming and specification languages. Nonetheless,

modeling systems with non-trivial data structures and functional aspects completely using languages

like CSP remains difficult. A characteristic of CSP is that processes have disjoint local variables,

which was influenced by Dijkstra’s principle ofloose coupling[67]. CSP supports inter-process

communication through message passing but not shared memory, i.e., shared variables. It has long

been known (see [108] and [177], for example) that one can model a variable as a process parallel

to the one that uses it. The user processes then read from, or write to, the variable by CSP commu-

nication. Though feasible, this is painful for systems withnon-trivial data structures (e.g., arrays)

and operations (e.g., array sorting). Therefore, ‘syntactic sugars’ like shared variables are mostly

welcome.

In order to solve the problem, many specification languages integrating process algebras like CSP

or CCS with state-based specification languages like Z language [222], Object-Z [189], have been

proposed. The state-based language component is typicallyused to specify the data states of the

system and the associated data operations in a declarative style. Examples includeCircus [221]

(an integration of CSP and the Z language), CSP+OZ [86, 190] (an integration of CSP and Object-
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Z), CCS+Z [205] (an integration of CCS and the Z language) andTCOZ [152] (an integration of

Timed CSP [181] and Object-Z). However, because declarative specification languages like Z are

very expressive and not executable, automated analyzing (in particular, model checking) of systems

modeled using the integrated languages is extremely difficult.

In this chapter, we propose an alternative solution, i.e., instead of specifying data states and opera-

tions in declarative languages, they are given as procedural codes. We propose a modeling language

named CSP# (short for communicating sequential programs, pronounced as ‘CSP sharp’) which

combines high-level modeling operators with low-level programs, for the purpose of concurrent

system modeling and verification. We demonstrate that data operations can be naturally modeled

as terminating sequential programs, which then can be composed using high-level concurrency op-

erators.The idea is to treat sequential terminating programs as atomic non-communicating events.

CSP# models are executable with complete operational semantics, and therefore subject to system

simulation and, more importantly, fully automated system verification techniques like model check-

ing. CSP# is supported by the CSP module in PAT (see Section 10.3.1) and has been applied to

model and verify a number of systems.

3.1.1 Syntax

Integrating a highly abstract language like CSP with programming codes leads to many compli-

cations. Our design principle is to maximally maintain CSP’s core elegance in specifying process

synchronization, while also allowing state-based behaviors.

A motivating example

We use a multi-lift system as a running example in this section. The reason for choosing the multi-

lift system is that it has complicated dynamic behaviors as well as nontrivial data states. Further-

more, the single-lift system has been modeled using many modeling languages including CSP [220].

The system contains multiple components, e.g., the users, the lifts, the floors, the internal button

panels, etc. There are non-trivial data components and dataoperations, e.g., the internal requests



3.1. CONCURRENT SYSTEM MODELING 26

and external requests and the operations to add/delete requests. For simplicity, we assume there

is no central controller for assigning external requests. Instead, each lift functions on its own to

find and serve requests, in the following way. Initially, a lift resides at the ground level ready to

travel upwards. Whenever there is a request (from the internal button panel or outside button) for

the current residing floor, the lift opens the door and later closes it. Otherwise, if there are requests

for a floor on the current traveling direction (e.g., a request for floor 3 when the lift is at floor 1

traveling upwards), then the lift keeps traveling on the current direction. Otherwise, the lift changes

its direction. Other constraints on the system include thata user may only enter a lift when the door

is open, there could be an internal request if and only if there is a user inside, etc.

Sequential Programs as Events

Shared variables offer an alternative means of communication among processes (which reside at

the same computing device or are connected by wires with negligible transmission delay). They

record the global state and make the information available to all processes. In the lift example, the

internal/external requests can be naturally modeled as shared arrays. Note that the global variables in

the lift model are not the real memory used in the distributedlifts, but rather the modeling abstraction

of them. To model the real lift systems, more details (e.g. the user request and systems memory)

need to be included. In CSP#, they are declared as follows.

1. #defineNoOfFloor 3;
2. #defineNoOfLift 2;
3. var extUpReq [NoOfFloor ];
4. var extDownReq [NoOfFloor ];
5. var intRequests[NoOfLift ][NoOfFloor ];
6. var doorOpen[NoOfLift ];

wheredefine andvar are reserved keywords. The former defines a global constant,e.g.,NoOfFloor

which denotes the number of floors andNoOfLift which denotes the number of lifts. The latter de-

fines a variable, e.g.,extUpReq array andextDownReq array which store external requests of each

floor (the index of the arrays corresponds to the floor level).Two dimensional arrayintRequests

stores internal requests raised from the users inside the lifts, since each lift hasNoOfFloor number
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intRequests[i ][level ] = 0;
if (dir > 0) {

extUpReq [level ] = 0;
} else{

extDownReq [level ] = 0;
}

Figure 3.1: CSP# codes for clearing requests

of internal request buttons.doorOpen array captures the doors’ states of all lifts. Each variables are

updated during the execution of the lift. CSP# has a weak typesystem (like JSP) and therefore type

information is not necessary for variable declaration. By default, all the above defined are treated

as arrays of integers. In particular, elements inextUpReq (or extDownReq) are binary: 1 atj -th

position means that there is a request for travelingupwards(or downwards) at j -th floor; 0 means

no request. Two dimensional arrayintRequests stores internal requests from all lifts. In particular,

the internal request for thej -th floor from thei -th lift is stored atintRequests[i ][j ] in the array.

Elements inintRequests are binary: 1 means that the floor has been requested and 0 means not

requested. Elements in arraydoorOpen range from−1 to NoOfFloor − 1. The i -th element of

doorOpen is−1 if and only if the door ofi -th lift is closed and it isj such thatj ≥ 0 if and only if

the i -th lift has opened door atj -th floor. We assume that initially all doors are closed. We remark

if the Z language is used for specification, specific types forelements in the arrays may be defined

to constrain their values.

Associated with the variables are data operations which query or modify the variables. In the lift

system, whenever a lift opens its door, the requests must be updated accordingly. For instance,

the codes shown in Figure 3.1 clear the requests when thei -th lift opens the door atlevel-th floor.

Let dir be the current traveling direction (1 for upwards and -1 for downwards). The first line

clears internal requests, by simply resetting the respective position in arrayintRequests to 0. The

rest clears external requests. Only the request along the lift’s traveling direction is cleared. A

more complicated operation is to determine whether there are requests along the current traveling

direction, so as to determine whether a lift should keep traveling in the same direction or to change
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index = level + dir ;
result [i ] = 0;
while (index ≥ 0 ∧ index < NoOfFloor ∧ result [i ] == 0) {

if (extUpReq [index ] 6= 0 ∨ extDownReq [index ] 6= 0 ∨ intRequests[i ][index ] 6= 0) {
result [i ] = 1;

} else{
index = index + dir ;

}
}

Figure 3.2: CSP# codes for searching requests

direction. This operation may beimplementedby the codes in Figure 3.2, wherelevel is a variable

recording the floor that the lift is residing at,index is a loop counter andresult [i ] records the result

(0 for no such request and 1 for yes). A while-loop is used to search for a request along the current

traveling direction, e.g., if the lift is traveling upwards, we search for a request for (or from) an

upper floor. The search stops when the ground or top floor is reached.

A system may contain multiple data operations, each of whichis terminatingand is assumed to

be executedatomically. They can be implemented using the CSP# syntax as shown above, or they

can be implemented using existing programming languages. For instance, we offer the keyword

call in PAT to allow invocation of data operations (as atomic events) implemented externally as C#

static methods in CSP# models. Data operations may be invoked alternatively or in parallel. From

another point of view, data operations are events associated with an optional sequential terminating

program. For instance, the program in Figure 3.2 may be labeled as eventcheckIfToMove.i .level ,

which then can be used to constitute CSP process expressions, e.g., see Figure 3.3 and 3.5. Data

races are prevented by not allowing synchronization of events containing procedural code. In this

sense, data operations are not “events" as in CSP, but rather(atomic) computations that are inserted

in the model.
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Composing Programs

The high-level compositional operators in CSP capture common system behavior patterns. They are

very useful in system modeling. Furthermore, process equivalence can be proved by appealing to

algebraic laws which are defined for the operators. In CSP#, we reuse most of the operators and

integrate them with our extensions in a rigorous way so as to maximally preserve the algebraic laws.

A CSP# specification may contain multiple process definitions. A process definition gives a pro-

cess expression a name, which can be referenced in process expressions. The following is a BNF

description1 of the process expression.

P = Stop | Skip – primitives
| e{prog} → P – event prefixing
| ch!exp → P | ch?x → P – channel communications
| P \X – hiding
| P ; Q – sequential composition
| P 2 Q | P ⊓ Q – choice operators
| if b {P} else {Q} – conditional choice
| [b]P – state guard
| P ‖ Q – parallel composition
| P ||| Q – interleave composition
| P △ Q – interrupt
| ref (Q) – process reference

whereP ,Q are processes,e is a name representing an event with an optional sequential program2

prog , X is a set of event names (e.g.,{e1, e2}), b is a Boolean expression,ch is a channel,exp is an

expression, andx is a variable.

Stop is the process that communicates nothing, also called deadlock. Skip = X→ Stop, whereX

is the special event of termination. Event prefixinge → P performse and afterwards behaves as

processP . If e is attached with a program (event prefixing of this type is calleddata operation), the

program is executed atomically together with the occurrence of the event. Hiding processP \ X

makes all occurrences of events inX not to be observed or controlled by the environment of the

1Refer to PAT’s user manual for ASCII version of the symbols.
2The grammar rules for the sequential program can be found in PAT user manual.
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process. Sequential composition,P ; Q , behaves asP until its termination and then behaves as

Q . External choiceP 2 Q is solved only by the occurrence of a visible event3. On the contrast,

internal choiceP ⊓ Q is solved non-deterministically. Conditional choice4 if b {P} else {Q}

behaves asP if b evaluates to true, and behaves asQ otherwise. Process[b]P waits until condition

b becomes true and then behaves asP . Note that[b]P does not block and will be dropped in

choice operators if other choices are selected. Notice thatit is different from if b {P} else {Q}.

One distinguishing feature of CSP is alphabetized multi-processes parallel composition. LetP ’s

alphabet, written asαP , be the events inP excluding the special invisible eventτ . ProcessP ‖ Q

synchronizes common events in the alphabets ofP andQ excludingnon-communicating events(see

Section 3.1.2 for detailed discussion). In contrast, processP ||| Q runs all processes independently

(except for communication through shared variables and synchronous channels5). ProcessP △ Q

behaves asP until the first occurrence of a visible event fromQ . A process expression may be

given a name for referencing. Recursion is supported by process referencing.

CSP# supports global variables, including boolean/integer variables, multi-dimensional arrays and

user defined data structure6, which are globally accessible, process parameters which are accessible

in the respective process expression and local variables which are accessible in one data operation.

We restrict the use of local variables in general. In particular, local variables introduced as process

parameters or variables to store channel inputs cannot be modified by event associated programs.

They can, however, be modified indirectly. The following illustrates alternative ways of achieving

the same effect.

P(x ) = add{x = x + 1} → P(x ); –× process parameters cannot be modified.
P(x ) = add → P(x + 1); –X
var x ; P() = add{x = x + 1} → P(); –X

Process parameters cannot be modified, hence they can take their values at the point of introduction.

3In CSP, symbolτ is introduced as the internal action in the operational semantics only. In CSP#, we abuse this

notation to denote invisible events: internal actions fromhiding, resolution of a choice or dereferencing of a process

variable. Any event other thanτ is called visible event.
4In CSP#, we also introduceifb for conditional choice with busy waiting on the condition.
5Note that in original CSP,P ||| Q does not allow communication through shared channels.
6In PAT, user defined data structure can be created using external C# library.
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This restriction allows us to perform efficient system verification. The reason is that, in this setting,

it is sufficient to store only the valuation of the global variables and the process expression (with

process parameters replaced with their values) when we explore the system states. Compared to

software model checking, we can safely omit theprogram stack(which, combined with recursions,

is very complicated to maintain) from the global state.

Besides global variables and data operations, the most noticeable extension to CSP is the use of

asynchronous channels, which again can be supported in CSP by explicitly modeling the commu-

nication buffer. Nonetheless, explicitly supporting themin CSP# is not only for users’ convenience

but also for possibly more efficient mechanical system exploration. Given a channelch with pre-

defined buffer size, processch!exp → P evaluates the expressionexp (with the current valuation

of the variables) and puts the value into the tail of the respective buffer and behaves asP . Process

ch?x → P gets the top element in the respective buffer, assigns it to variablex and then behaves as

P . Sending/receiving multiple messages at once is supported. If a channel has buffer size 0, it is a

synchronous channel, whose input and output communications must occur synchronously.

Definition 3 (System model)A system model is a 3-tupleS = (Var , initG ,P), whereVar is a set

of global variables (including channels),initG is the initial valuation of the variables andP is a

process.

Figure 3.3 presents a processLift which concisely models the behavior of one lift. Notice thatthe

process has multiple parameters, namelyi which is an identifier of the lift,level which denotes

the residing floor anddir which denotes the current traveling direction (1 for traveling upwards

and -1 for downwards). The condition at line 7 is used to checkwhether there is a request for the

current floor, with the correct traveling direction if it is external. If yes, then the door is opened,

the requests for the floor are cleared (using the code presented in Figure 3.1), and then the door

is closed. Otherwise, the lift checks whether to continue traveling on the same direction (using

the code presented in Figure 3.2). If the result is 1 (line 13), then the lift moves to the next floor.

Otherwise, the lift checks whether it need to change direction (line 21). If there is no request in

all directions, then the lift will idle at the current level.In this example, we have events which are
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7. Lift(i , level , dir) = if ((dir > 0 ∧ extUpReq [level ] == 1)
8. ∨ (dir < 0 ∧ extDownReq [level ] == 1) ∨ intRequests[i ][level ] == dir){
9. opendoor .i{doorOpen[i ] = level ; *code shown in Figure 3.1*} →
10. closedoor .i{doorOpen[i ] = −1} → Lift(i , level , dir)
11. } else{
12. checkToMoveAlong .i .level{*code shown in Figure 3.2*} →
13. if (result [i ] == 1){moving .i .dir →
14. if (level + dir == 0 ∨ level + dir == NoOfFloors − 1){
15. Lift(i , level + dir ,−1 ∗ dir)
16. } else{Lift(i , level + dir , dir)}
17. } else{
18. if ((level == NoOfFloors − 1 ∧ dir == −1)
19. ∨ (level == 0 ∧ dir == 1)) {Lift(i , level , dir)}
20. else{
21. checkDir .i .level{*code shown in Figure 3.2 with -1*dir*} →
22. if (result [i ] == 1){changedir .i .level → Lift(i , level ,−1 ∗ dir)}
23. else{idle.i .level → Lift(i , level , dir)}
24. }
25. }
26. };

Figure 3.3: CSP# model of the lift

associated with programs and simple events likemoving .i .dir . The rest of the system model is

presented in Section 3.1.4.

3.1.2 Semantics

In the section, we present operational semantics of CSP# models, which translates a model into a

Labeled Transition System (LTS). The sets of behaviors can be extracted from the operational se-

mantics, thanks to congruence theorems. The complication due to conflicts between global variables

and CSP operational semantics (e.g. calculation of processalphabets) is discussed.
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[ skip ]

(V ,Skip)
X
→ (V ,Stop)

[ prefix ]

(V , e{prog} → P)
e
→ (upd(V , prog),P)

c is not full in V
[ out ]

(V , c!exp → P)
c!eva(V ,exp)

→ (app(V , c!exp), P)

P =̂ Q , (V ,Q)
∗

→ (V ′
,Q ′)

[ def ]

(V ,P)
∗

→ (V ′
,Q ′)

c is not empty inV
[ in ]

(V , c?x → P)
c?top(c)
→ (pop(V , c?x), P)

V � b, (V , P)
e
→ (V ′

, P ′)
[ guard ]

(V , [b]P)
e
→ (V ′

,P ′)

V � b, (V ,P)
x
→ (V ′

,P ′)
[ con1 ]

(V , if b {P} else {Q})
x
→ (V ′

,P ′)

V 6� b, (V , Q)
x
→ (V ′

,Q ′)
[ con2 ]

(V , if b {P} else {Q})
x
→ (V ′

,Q ′)

(V ,P)
x
→ (V ′

,P ′), x ∈ αP , x 6∈ αQ
[ pa1 ]

(V ,P ‖ Q)
x
→ (V ′

,P ′ ‖ Q)

(V , Q)
x
→ (V ′

,Q ′), x ∈ αQ , x 6∈ αP
[ pa2 ]

(V , P ‖ Q)
x
→ (V ′

, P ‖ Q ′)

(V ,P)
x
→ (V ,P ′), (V ,Q)

x
→ (V ,Q ′), x ∈ αP ∩ αQ

[ pa3 ]

(V ,P ‖ Q)
x
→ (V ,P ′ ‖ Q ′)

wheree ∈ Σ; eτ ∈ Σ ∪ {τ}; x ∈ Σ ∪ {X} and∗ ∈ Σ ∪ {τ,X}

Figure 3.4: CSP# firing rules

Operational Semantics

In order to define the operational semantics of a system model, we first define the notion of system

configuration to capture the global system state during system executions.

Definition 4 (System configuration) A systemconfiguration(or state) is composed of two compo-

nents(V ,P) whereV is a function mapping a variable name (or a channel name) to its value (or

a sequence of items in the buffer), which we refer to as a valuation function, andP is a process

expression.

The operational semantics is presented as firing rules associated with each process construct. The

rules naturally extend the operational semantics for CSP [41] and Timed CSP [181]. LetΣ denote
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the set of all visible events andτ7 denote the set of all invisible events8. For simplicity, we as-

sume a functionupd(V , prog) which, given a sequential programprog andV , returns the modified

valuation functionV ′ according to the semantics of the program. We writeV � b (or V 6� b)

to denote that conditionb evaluates to true (or false) givenV . We write eva(V , exp) to denote

the value of the expression evaluated with variable valuations inV . To abuse notations, we write

app(V , ch!exp) to denote the functionV ′ in which the respective channel buffer is appended with

eva(V , exp). We writepop(V , ch?x ) to denote the functionV ′ in which the top element (written

astop(V , ch)) in the respective channel buffer is removed.

Figure 3.4 illustrates part of the firing rules. The rest can be found in the Appendix A. Ruleprefix

captures how event associated with sequential programs arehandled, i.e., the occurrence of the event

and program is simultaneous and appears, to the system, to beatomic. Notice that, this is the only

way global variables are modified. Ruleout andin capture the semantics of channel output/input.

We remark that there are two rules (con1 andcon2) associated withif b {P} else {Q}, whereas

only one rule (guard) is associated with[b]P . Therefore, ifb is false given[b]P , then the process

will block until b becomes true.

The semantics of parallel compositionP ‖ Q are captured using three rules. EitherP or Q can

make a move if the eventx is not in their common alphabets (see rulepar1 andpar2), otherwiseP

andQ have to synchronize onx (see rulepar3). Notice that the event in a data operation is called

non-communicating event, which is excluded from the alphabet in CSP#. For instance, assumex is

a global variable,

P() = a{x = x + 1} → Stop;
Q() = a{x = x + 2} → Stop;

Given the above, eventa is not synchronized in the parallel composition ofP() andQ(). The

intuition is that data operations are local actions, instead of communications. This prevents syn-

chronizing events associated with different data operations but with the same name (e.g.,a in the

above example) and syntactically avoids potential data race.

7Since invisible events are indistinguishable, we sometimes also useτ to represent an arbitrary invisible event.
8Invisible events are internal actions from hiding, resolution of a choice or dereferencing of a process variable.
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Labeled Transition Systems

The semantics of a modelS is defined using a Labeled Transition System (LTS) as follows.

Definition 5 (Labeled Transition System (LTS)) Given a modelS = (Var , initG ,P), let Σ de-

note the set of all visible events inP andτ9 denote the set of all invisible events, andΣτ beΣ ∪ τ .

The labeled transition system corresponding toS is a 3-tupleLS = (S , init ,→), whereS is a set

of configurations,init ∈ S is the initial configuration(initG ,P), and→⊆ S ×Στ ×S is a labeled

transition relation.

Note that the labeled transition relationship→ for CSP# processes conforms to the operational

semantics presented in Figure 3.4 and the Appendix A.

For configurationss, s ′ ∈ S ande ∈ Στ , we writes
e
→ s ′ to denote(s, e, s ′) ∈→, ande is called

the engaged event of transitions e
→ s ′. The set of enabled events ats is enabled(s) = {e : Στ |

∃ s ′ ∈ S , s
e
→ s ′}. We writes

e1,e2,···,en
→ s ′ iff there exists1, · · · , sn+1 ∈ S such thatsi

ei→ si+1 for

all 1 ≤ i ≤ n, s1 = s andsn+1 = s ′, ands
τ∗
→ s ′ iff s = s ′ or s

τ,···,τ
→ s ′. The set of configurations

reachable froms by performing zero or moreτ transitions isτ∗(s) = {s ′ : S | s
τ∗
→ s ′}. Let Σ∗

be the set of finite traces.tr : Σ∗ is a sequence of visible events.s
tr
⇒ s ′ if and only if there exist

e1, e2, · · · , en ∈ Στ such thats
e1,e2,···,en
→ s ′. tr = 〈e1, e2, · · · , en〉 ↾ τ is the trace with invisible

events removed, andtr ↾ X removes the events inX from the sequencetr . The set of traces ofL

is traces(L) = {tr : Σ∗ | ∃ s ′ ∈ S , init
tr
⇒ s ′}. A finite execution of L is a finite sequence of

alternating configurations/events〈s0, e0, s1, e1, · · · , en , sn+1〉 wheres0 = init andsi
ei→ si+1 for

all 0 ≤ i ≤ n. An infinite execution is an infinite sequence〈s0, e0, s1, e1, · · · , ei , si , · · ·〉 where

s0 = init andsi
ei→ si+1 for all i ≥ 0.

We remark that the total behaviors of a LTSL can be represented by its all possible executions.

This is similar to the semantic model of TCOZ [171] consisting of events and variable values10.

9Since invisible events are indistinguishable, we sometimes also useτ to represent an arbitrary invisible event.
10TCOZ builds on the strengths of Object-Z and Timed CSP. Interested readers can refer to [171] for its semantic

model.
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The trace semantics (i.e.traces(L)) is an event-projection of the executions, which explains the

behaviors related to events only.

Given a LTS(S , init ,→), the size ofS can be infinite for two reasons. First, the variables may have

infinite domains or the channels may have infinite buffer size. We require (syntactically) that the

sizes of the domains and buffers are bounded. Second, processes may allow unbounded replication

by recursion, e.g.,P = (a → P ; c → Skip) 2 b → Skip, or P = a → P ||| P . In this thesis

(except Section 5.6), we consider only LTSs with a finite number of states for practical reasons. In

particular, we bound the sizes of value domains and the number of processes by constants. In our

examples, bounding the sizes of value domains also bounds the depths of recursions.

A model is deadlock-free if and only if there does not exist a finite execution〈s0, e0, s1, e1, · · · , en ,

sn+1〉 such thatsn+1 is a deadlock state, i.e., no firing rules are applicable given sn+1. Given a

propositionp, a state satisfying the predicate is reachable (or equivalently p is reachable) if and

only if there exists a finite execution〈s0, e0, s1, e1, · · · , en , sn+1〉 such thatsn+1 = (Vn+1,Pn+1)

andVn+1 � p.

3.1.3 Discussion

The modeling power of CSP# is demonstrated via its syntax andsemantics definitions. For all the

operators borrowed from CSP, the operational semantics arekept in CSP#. However, the introduc-

tion of variable and states in CSP# sacrifices some algebra properties of the original CSP, particu-

larly compositionality . Compositionality means the behaviors meaning of a complex process is

determined by the meanings of its constituent processes andthe rules used to combine them. CSP

language iscompositional with respect to properties expressed constraints upon possible traces

or upon combinations (called failures) of traces and sets ofevents that may then be refused (re-

fer to Section 6.1 for detailed definition of failures and refusal). Any universal property proven

of the traces or failures of a process remains true when that process is placed in combination with

others. Equally, a refinement of a component induces a refinement of the complete system. We

refer this property asevent-based compositionality . For example, given processP1,P2 andQ , if
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traces(P1) = traces(P2) holds, thentraces(P1 || Q) = traces(P2 || Q). However the following

CSP# processes do not preserve this property.

var amount = 0;
P1() = pay{amount = 5} → P1();
P2() = pay{amount = 15} → P2();
Q() = [amount > 10](accept{amount = 0} → Q());

wheretraces(P1) = traces(P2), but traces(P1 || Q) 6= traces(P2 || Q) because the guard

conditionamount > 10 is affected by the assignments in the differentpay events.

It is clear that the use of shared variables in CSP# influence process behaviors. It has long been

known that one can model a variable as a process parallel to the one that uses it [108, 177]. The user

processes then read from, or write to, the variable by CSP communication. However, introducing

variable directly in CSP abstracts out these details, whichaffects some language properties. This

result is not surprising, because the semantics of CSP# is explained by executions rather than purely

traces. If considering the system behavior as executions (including both event and states), CSP# may

be viewed asexecution-based compositional11. In the given example, the executions ofP1 and

P2 are not equivalent, therefore it is not a counterexample ofexecution-based compositionality . If

focusing on theevent-based compositionality , CSP# is not a direct extension of CSP. On the other

hand, the execution semantic model does not limit the usefulness of CSP#, and all the verification

algorithms presented in this thesis require no compositionality and the results do not rely on any

semantic relationship between CSP and CSP#.

CSP assumes an open environment, in which we cannot insist that some enabled events can be en-

gaged or an external choice is resolved in a particular direction. To prove any property involving

a notion of occurrence, engagement or performance (which isrelated to the discussion in Chap-

ter 4, 6, 8 and 9), we must assume some closure property or equivalently, that the process is place in

an environment where it provides the sole constraint upon the occurrence of the events concerned.

That is, that these events are effectively “internal”, or that we have a closed global view.

11To prove this, we need to formally present the denotational semantics of CSP#, which can be defined in a similar

way as TCOZ [171]. We leave this as one future work.
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3.1.4 Case Study: a Multi-lift System

In this section, we complete the case study of the multi-liftmodel. Our modeling is related to the

previous lift system model presented in [151]. In addition,we demonstrate how to write critical

system properties as assertions. In this model, we assume there is no central controller to coordinate

the lifts, hence multiple lifts may simultaneously competeto serve a single floor.

Figure 3.5 shows the rest of the model. In particular, line 27defines the rest of the variables (which

are used in Figure 3.2). Lines 28 to 38 model users’ behavior in the lift system. At line 28, the

behavior of three users is defined as the interleaving of eachuser, where||| x : {i ..j}@P(x ) =

P(i) ||| · · · ||| P(j ). Behavior of a user is specified as processaUser at line 29. Each user may

initially be at any floor. This is captured using indexed external choice. The user pushes a button

(for traveling upwards or downwards, specified asExternalPush(pos)) and then waits for the lift

to come (specified asWaiting(pos)).

A casestatement, which is a syntactic sugar for multiple if-then-else statements, is used in process

ExternalPush(pos). We remark that the conditions in the case statement are evaluated in the order

until one which evaluates to be true is found. Otherwise, thedefault branch is taken. In the example,

if the user is at the ground floor or the top one, only one direction to travel can be requested.

Otherwise, the user may choose either to go upwards or downwards. Lines 31 to 34 capture how the

external requests are updated.

The user then waits for the door opened at the user’s floor (captured by conditiondoorOpen[i ] ==

pos at line 36) and then enters the lift. We remark that this modelallows users to enter the lift with

the wrong traveling direction (which may happen in real world). After making an internal request,

the user may exit when the door is opened again at his/her destination floor. The lift system is

modeled as the interleaving of users and multiple lifts at line 39. Initially, the lifts are residing at the

ground floor, ready to travel upwards. In this example, we demonstrate how variable updates and

concurrency operators may be used together seamlessly to capture system behavior.

Once we have a model, we may use PAT to simulate its behaviors.Alternatively, we may write

assertions about critical system properties and invoke thePAT model checkers to examine the model
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27. var index ; var result [NoOfLift ];
28. Users() =||| x : {0..2}@aUser();
29. aUser() =2 pos : {0..NoOfFloor − 1}@(ExternalPush(pos); Waiting(pos));
30. ExternalPush(pos) = case{
31. pos == 0 : pushup.pos{extUpReq [pos] = 1} → Skip

32. pos == NoOfFloor − 1 : pushdown.pos{extDownReq [pos ] = 1} → Skip

33. default : pushup.pos{extUpReq [pos ] = 1} → Skip 2
34. pushdown.pos{extDownReq [pos] = 1} → Skip

35. };
36. Waiting(pos) =2 i : {0..NoOfLift − 1}@([doorOpen[i ] == pos]enter .i →
37. 2 x : {0..NoOfFloor − 1}@(push.x{intRequests[i ][x ] = 1} →
38. [doorOpen[i ] == x ]exit .i .x → User()));
39. LiftSystem() = Users() ||| (||| x : {0..NoOfLift − 1}@Lift(x , 0, 1));
40. #assertLiftSystem() deadlockfree;
41. #definepr1 extUpReq [0] > 0;
42. #definepr2 extUpReq [0] == 0;
43. #assertLiftSystem() � 2(pr1⇒ 3pr2) ∧ 23moving .0.1

Figure 3.5: CSP# model of the lifts system

in order to find counterexamples. In particular, line 40 asserts that the lift system is deadlock-free.

Line 43 states a LTL property (refer to Section 2.3.2) asserting that (1) a request at the ground

floor (defined as the proposition at line 41) must eventually be served (defined as the proposition

at line 42), and (2) the eventmoving .0.1 must always eventually occur (i.e.,0-th lift must always

eventually move upwards).

3.2 Real-time System Modeling

Specification and verification of real-time systems are important research topics which have practi-

cal implications. During the last decade or so, a popular approach for specifying real-time systems

is based on the notation Timed Automata [10, 149]. Timed Automata are powerful in designing

real-time models with explicit clock variables. Real-timeconstraints are captured by explicitly set-

ting/resetting clock variables. A number of automatic verification support for Timed Automata have

proven to be successful [135, 35, 35, 217, 207, 33].
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Models based on Timed Automata often adapt a simple structure, e.g. a network of Timed Automata

with no hierarchy [135]. The benefit is that efficient model checking is made feasible. Nonetheless,

designing and verifying hierarchical real-time systems isbecoming an increasingly difficult task due

to the widespread applications and increasing complexity of such systems. High-level requirements

for real-time systems are often stated in terms ofdeadline, time out, and timed interrupt [130,

74, 141]. In industrial case studies of real-time system verification, system requirements are often

structured into phases, which are then composed sequentially, in parallel, alternatively, etc [105,

134]. Unlike Statechart (with clocks) or timed process algebras, Timed Automata lack of high-level

compositional patterns for hierarchical design. As a result, users often need to manually cast those

terms into a set of clock variables with carefully calculated clock constraints. The process is tedious

and error-prone.

In remaining sections, we investigate an alternative approach for modeling hierarchical real-time

systems by extending CSP# with additional behavioral patterns which are useful in modeling and

analyzing real-time systems. Examples aredeadline (which constrains a process to terminate within

some time units),timed interrupt , etc. Instead of explicitly manipulating clock variables (as in

Timed Automata), the time related process constructs are designed to build on implicit clocks.

3.2.1 Syntax

In this section, we introduce the language extensions of CSP# for modeling real-time systems.

Definition 6 (Timed process) A timed process is defined by the following grammar.

P = ∗CSP# Process Constructs∗
| Wait [d ] – delay
| P timeout [d ] Q – timeout
| P interrupt [d ] Q – timed interrupt
| P deadline[d ] – deadline

whereP andQ range over processes, andd is an integer constant.

Based on CSP#, a number of timed process constructs can be used to capture common real-time

system behavior patterns. Without loss of generality, we assumed is an integer constant. Process
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Wait [d ] idles for exactlyd time units. In processP timeout [d ] Q , the first observable event ofP

shall occur befored time units elapse (since the process starts). Otherwise,Q takes over control

after exactlyd time units elapse. ProcessP interrupt [d ] Q behaves exactly asP (which may

engage in multiple observable events) untild time units elapse, and thenQ takes over control.

ProcessP deadline[d ] constrainsP to terminate befored time units. In this setting, clock variables

are made implicit and hence they cannot be compared with eachother directly, which potentially

allows efficient clock manipulation and hence system verification.

In this thesis, we adopt the dense-time semantic model, in which clock values are isomorphic to

a dense series of rational numbers, meaning that there is always a rational number between any

two rational numbers. This choice preserves the advantage of dense-time model over discrete-time

model (see Section 2.3.2), but still allows us to perform model checking by using some abstraction

technique (see Chapter 9). We know that a set of rational numbers can be converted an ‘equivalent’

set of integer numbers by multiplying their least common multiple. This fact allows us to only

consider integer values in the modeling language presentedabove12.

3.2.2 Semantics

Similar to the operational semantics of CSP#, we present thefiring rules for the timed process

constructs. Recall that, a transition of the system is of theform c
x
→ c′ wherex ∈ Σ ∪ {τ,X},

andc andc′ are the system configurations before and after the transition respectively. In real-time

modeling, we introduce the timed transition label. Lett denotes a non-negative integer number,

c
t
→ c′ denotes a transition oft time units elapsing. In the following, we present the firing rules

which are associated with the timed process constructs, adopting the approach in [181].

t ≤ d
[ de1 ]

(V ,Wait [d ])
t
→ (V ,Wait [d − t ])

[ de2 ]
(V ,Wait [0])

τ

→ (V ,Skip)

The above captures behaviors of processWait [d ]. Rulede1 states that the process may idle for any

amount of time as long as it is less than or equal tod time units; Rulede2 states that the process

12Using integer numbers is for the simplification of modeling,but not an approximation.



3.2. REAL-TIME SYSTEM MODELING 42

terminates immediately afterd becomes 0.

(V ,P)
x
→ (V ′,P ′)

[ to1 ]
(V ,P timeout [d ] Q)

x
→ (V ′,P ′)

(V ,P)
τ

→ (V ′,P ′)
[ to2 ]

(V ,P timeout [d ] Q)
τ

→ (V ′,P ′ timeout [d ] Q)

(V ,P)
t
→ (V ,P ′), t ≤ d

[ to3 ]

(V ,P timeout [d ] Q)
t
→ (V ,P ′ timeout [d − t ] Q)

[ to4 ]
(V ,P timeout [0] Q)

τ

→ (V ,Q)

If an observable eventx can be engaged byP , thenP timeout [d ] Q becomesP ′ (rule to1). An

invisible transition does not solve thechoice (rule to2). If P may idle for less than or equal tod

time units, so is the composition (ruleto3). Whend becomes 0,Q takes over control by a silent

transition (ruleto4).

(V ,P)
x
→ (V ′,P ′)

[ it1 ]
(V ,P interrupt [d ] Q)

x
→ (V ′,P ′ interrupt [d ] Q)

(V ,P)
t
→ (V ,P ′), t ≤ d

[ it2 ]

(V ,P interrupt [d ] Q)
t
→ (V ,P ′ interrupt [d − t ] Q)

[ it3 ]
(V ,P interrupt [0] Q)

τ

→ (V ′,Q)

Rule it1 states that ifP engages in eventx , P interrupt [d ] Q becomesP ′ interrupt [d ] Q . Rule

it2 states that ifP may idle for less than or equal tod time units, so is the composition. Whend

time units elapse,Q takes over by aτ -transition.

(V ,P)
x
→ (V ′,P ′)

[ dl1 ]
(V ,P deadline[d ])

x
→ (V ′,P ′ deadline[d ])

(V ,P)
t
→ (V ,P ′), t ≤ d

[ dl2 ]

(V ,P deadline[d ])
t
→ (V ,P ′ deadline[d − t ])

Intuitively, P deadline[d ] behaves exactly asP except that it must terminate befored time units.
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3.2.3 Case Study: Fischer’s Algorithm

Fischer’s algorithm [87] is a timed mutual exclusion algorithm. It allowsn timed processes (iden-

tical up to renaming of process identifiers) to access a shared resource in mutual exclusion. The

following models Fischer’s algorithm of three processes.

var x = −1;
var ct = 0;
Proc(i) = [x == −1]Active(i);
Active(i) = (update.i{x = i} → Skip) deadline [δ]; Wait [ǫ];

if (x == i) {
cs.i{ct = ct + 1} → exit .i{ct = ct − 1; x = −1} → Proc(i)

} else{
Proc(i)

};
Protocol = Proc(0) ‖ Proc(1) ‖ Proc(2);

whereδ andǫ are two integer constants withδ < ǫ; x andct are global variables. The protocol

is modeled as processProtocol , which is the parallel composition of three processes. Eachof the

three processes attempts to enter the critical section whenx is -1, i.e. no other process is currently

attempting. Once the process is active, it setsx to its identity i within δ time units (captured by

deadline[δ]). Then it idles forǫ time units (captured byWait [ǫ]) and then checks whetherx is still

i . If so, it enters the critical section and leaves later. Otherwise, it restarts from the beginning.

3.3 Summary

In this chapter, we proposed a combination of high-level specification languages with low-level

procedural codes and time patterns for analyzing concurrent and real-time systems. A multi-lift

system and Fischer’s algorithm are used to illustrate the language. We remark that this language has

been applied to model and verify a variety of systems, ranging from recently proposed distributed

algorithms, concurrent programming algorithms to real-world systems like the pacemaker system.

Previously unknown bugs have been discovered. Furthermore, we formally defined the semantic

models, which facilitate PAT to perform sound and complete system verification.
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This chapter is related to research on integrated formal methods, in particular, works on integrating

state-based specification and event-based specification [221, 86, 152, 142, 192, 190, 205, 184, 45].

Different from previous approaches, our modeling languageis designed for automated system anal-

ysis. Therefore, it is fully operational and supported by PAT. CSP+B [45, 184] (a combination

of CSP and the B language) approach is similar to ours, but ourlanguage is closer to imper-

ative programming language and accepts external (C#) programs. Two other languages are de-

signed for similar purposes, namely machine readable CSP (which we will refer to asCSPM ) sup-

ported by the refinement checker FDR [176] andPromelawhich is supported by the model checker

SPIN [110]. Compared toCSPM , CSP# supports additional language features like shared vari-

ables, asynchronous communication channels and event associated programs, which offers users

great flexibility in modeling. Furthermore, we give an interpretation of state/event Linear Tem-

poral Logic (see Section 2.3.2) in CSP# semantics framework, which allows temporal logic based

model checking of CSP# models. Compared toPromela, CSP# supports more process constructs

(e.g. parallel operator), i.e.,Promelais based on a subset of CSP, whereas all CSP models are valid

CSP# models. In particular, CSP# inherits13 the classic trace, stable failures and failures/divergence

semantics (formally defined in Chapter 6) from CSP [108] , andtherefore, allows us to perform a

variety of refinement checking.

The real-time modeling proposed in this chapter is related to hierarchical specification based on

process algebras for real-time systems, which has been studied extensively, e.g. the algebra of timed

processes ATP [187, 159], CCS + real time [223] and Timed CSP [174, 182]. A remotely related

modeling language is Statecharts with clocks [117], which too is compositional. This work follows

the approach of Timed CSP and significantly extends the notion to cover a wide range of application

domains.

13Since variables can be modeled as a process parallel to the one that uses them, then one CSP# model can be converted

to a CSP model directly. Hence the trace, stable failures andfailures/divergence semantics is inherited from CSP.



Chapter 4

Model Checking Fairness Enhanced

Systems

In the area of software system verification, fairness, whichis concerned with a fair resolution of

non-determinism, is often necessary and important to proveliveness properties (see Section 2.3.2).

Fairness is an abstraction of the fair scheduler in a multi-threaded programming environment or the

relative speed of the processors in distributed systems. Without fairness, verification of liveness

properties often produces unrealistic loops during which one process or event is infinitely ignored

by the scheduler or one processor is infinitely faster than others. It is important to rule out those

counterexamples and utilize the computational resource toidentify the real bugs. However, system-

atically ruling out counterexamples due to lack of fairnessis highly non-trivial. It requires flexible

specification of fairness as well as efficient verification under fairness.

In this chapter, we focus on formal system analysis under fairness assumptions. The objective

is to deliver a framework which model checks Linear TemporalLogic (LTL) properties (see Sec-

tion 2.3.2) against concurrent systems functioning under avariety of fairness assumptions.

The remainder of the chapter is organized as follows. The next section gives the background infor-

mation about model checking with fairness. Section 4.2 gives the formal definitions of a family of

45
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fairness notions. Section 4.3 develops necessary theoriesfor model checking. Section 4.4 presents

a sequential algorithm for verification under fairness. Section 4.5 introduces an alternative way for

specifying and verifying event-based systems with fairness. Section 4.6 proposes a parallel version

of the fairness model checking algorithm in the multi-core architecture with share-memory. Sec-

tion 4.7 gives the experiment results of the proposed algorithms. Section 4.8 discusses related works

and summarizes the chapter.

4.1 Background

Fairness and model checking with fairness have attracted much theoretical interests for decades [100,

131, 127, 202]. Their practical implications in system/software design and verification have been

discussed extensively. Recent development on distributedsystems showed that there are a family

of fairness notions, including a newly formulated fairnessnotion named strong global fairness [88],

which are crucial for designing self-stabilizing distributed algorithms [14, 16, 88, 47]. Because

the algorithms are designed to function under fairness, model checking of (implementations of) the

algorithms thus must be carried out under the respective fairness constraints.

Existing model checkers are ineffective with respect to fairness (which is demonstrated by the exper-

iments below and in Section 4.7). One way to apply existing model checkers for verification under

fairness constraints is to re-formulate the property so that fairness constraints become premises of

the property. A liveness propertyφ is thus verified by showing the truth value of the following

formula.

fairness assumptions ⇒ φ – F1

This practice is, though flexible, deficient for two reasons.Firstly, model checking is PSPACE-

complete in the size of the formula. In particular, automata-based model checking relies on con-

structing a Büchi automaton from the LTL formula. The size ofthe Büchi automaton is exponential

to the size of the formulas. Thus, it is infeasible to handle large formulas, whereas a typical system

may have multiple fairness constraints. For example, SPIN is a popular LTL model checker [111].

The algorithm it uses for generating Büchi automata handlesonly a limited number of fairness
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Property n Time (Sec.) Memory #Büchi States

(
∧n

i=123pi)⇒ 23q 1 0.08 466Kb 74

same above 3 4.44 27MB 1052

same above 5 > 3600 > 1Gb −

(
∧n

i=1(23pi ⇒ 23qi))⇒ 23s 1 0.13 487Kb 134

same above 2 1.58 10Mb 1238

same above 4 4689.24 > 1Gb −

Table 4.1: Experiments on LTL to Büchi automata conversion

constraints. Table 4.1 shows experiments on the time and space needed for SPIN to generate the

automaton from the standard notions of fairness (see Section 4.2). n is the number of fairness

constraints.

The experiments are made on a 3.0GHz Pentium IV CPU and 1 GB memory executing SPIN 4.3,

where “−” means infeasible. The results show that it takes a non-trivial amount of time to han-

dle 5 fairness constraints. Secondly, partial order reduction which is one of important reduction

techniques for model checking distributed systems becomesineffective. Partial order reduction

ignores/postpones invisible events, whereas given F1 all events/propositions presented infairness

constraintsare visible and therefore cannot be ignored or postponed.

In [161], Panget al applied the SPIN model checker to establish the correctnessof a family of

population protocols. Only protocols relying on a notion ofweak fairness operating on very small

networks were verified because of the problems discussed above. Protocols relying on a notion of

stronger fairness (e.g., strong fairness or strong global fairness) are beyond the capability of SPIN

even for the smallest network1 (e.g., a network with 3 nodes). It is important to develop an effective

approach and toolkit which can handle larger networks because real counterexamples may only be

present in larger networks, as shown in Section 4.7.

An alternative method is to design specialized verificationalgorithms which take fairness into

1A network consists of multiple mobile nodes which interact with each other to carry out a computation. Each node

can be seen as a process. Refer to Section 5.1 for more details.
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account while performing model checking. The focus of existing model checkers has been on

process-level weak fairness, which, informally speaking,states that every process shall make infi-

nite progress if always possible (refer to detailed explanation in Section 4.2). For instance, SPIN

has implemented a model checking algorithm which handles this kind of fairness. The idea is to

copy the global reachability graphK + 2 times (forK processes) so as to give each process a fair

chance to progress. Process-level strong fairness is not supported because of its complexity. It has

been shown that process-level fairness may not be sufficient, e.g., for population protocols.

In this chapter, we present a unified on-the-fly model checking algorithm which handles a variety

of fairness including process-level weak/strong fairness, event-level weak/strong fairness, strong

global fairness, etc. The algorithm extends previous work on model checking based on finding

strongly connected components (SCC). The detailed approach is explained in the rest of the chapter.

4.2 Fairness Definitions

In this section, we present the formal definitions of a variety of fairness assumptions. The modeling

language is CSP# (see Section 3.1), which is interpreted as Labeled Transition Systems (LTS).

Recall that, given a LTSL = (S , init ,→), s
e
→ s ′ denotes that(s, e, s ′) is a transition in→, e

is the engaged event of transitions e
→ s ′, andenabled(s) is the set of enabled events ats (refer

to Section 3.1.2). To distinguish with enabled process defined below, we introduce the equivalent

notationenabledEvt(s) for enabled(s). If the system is constituted by multiple processes runningin

parallel, we writeenabledPro(s) to be the set of enabled processes, which may make a move given

the system states. Given a transitions e
→ s ′, we writeengagedEvt(s, e, s ′) to denote{e}, and

engagedPro(s, e, s ′) to be the set of the participating processes, which have madesome progress

during the transition.engagedPro(s, e, s ′) is not empty only when the states is an interleave or

parallel composition2. For example,engagedPro(P1 ‖ P2 ‖ P3, e,P1 ‖ P ′
2 ‖ P3) = {P2}. Notice

that if e is synchronized by multiple processes, the set contains allthe participating processes.

2Process level fairness is not meaningful if the system has nocurrency.
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Because our targets are nonterminating concurrent systems, and fairness affects infinite not finite

system behaviors, we focus on infinite system executions in the following. Finite behaviors are ex-

tended to infinite ones by appending infinite idling events atthe rear. Without fairness constraints,

a system may behave freely as long as it starts with an initialstate and conforms to the transition

relation. A fairness constraint restricts the set of systembehaviors to only those fair ones. Given a

LTL propertyφ, verification under fairness is to verify whether all fair executions of the system sat-

isfy φ. In the following, we review a variety of fairness assumptions and illustrate their differences

using examples.

Definition 7 (Event-level weak fairness)Let E = 〈s0, e0, s1, e1, · · ·〉 be an execution.E satisfies

event-level weak fairness, if and only if for every evente, if e eventually becomes enabled forever

in E , thenei = e for infinitely manyi , i.e.,32 e is enabled ⇒ 23 e is engaged .

Event-level weak fairness (EWF)[131] states that if an event becomes enabled forever after some

steps, then it must be engaged infinitely often. An equivalent formulation is that every computation

should contain infinitely many positions at which evente is disabled or has just been engaged. The

latter is known as justice condition [138]. Intuitively, itmeans that an enabled event shall not be

ignored infinitely. Or equivalently some state must be visited infinitely often (e.g., accepting states

in Büchi automata).

Definition 8 (Process-level weak fairness)Let E = 〈s0, e0, s1, e1, · · ·〉 be an execution.E satis-

fies process-level weak fairness, if and only if for every processp, if p eventually becomes enabled

forever inE , thenp ∈ engagedProc(si , ei , si+1) for infinitely manyi , i.e.,32 p is enabled ⇒23 p is engaged .

Process-level weak fairness (PWF)states that if a process becomes enabled forever after some steps,

then it must be engaged infinitely often. From another point of view, PWF guarantees that each

process is only finitely faster than the others; otherwise there will be some always enabled process

with no progress, which violates the fairness assumption.

Weak fairness (or justice condition) has been well studied and verification under weak fairness has
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(a) (b)

a b a b

proc P proc Qproc W

Figure 4.1: Event-level weak fairness vs. process-level weak fairness

been supported to some extent, e.g., PWF is supported by the SPIN model checker [111]. Given the

LTS in Figure 4.1(a), the property23 a is true under EWF. Eventa is always enabled and, hence,

by definition it must be infinitely often engaged. The property is, however, false under no fairness or

PWF. The reason that it is false under PWF is that the processW may make progress infinitely (by

repeatedly engaging inb) without ever engaging in eventa. Alternatively, if the system is modeled

using two processes as shown in Figure 4.1(b),23 a becomes true under PWF (or EWF) because

both processes must make infinite progress and therefore both a andb must be engaged infinitely.

This example suggests that, different from PWF, EWF is not related to the system structure. In

general, process-level fairness may be viewed a special case of event-level fairness. By a simple

argument, it can be shown that PWF can be achieved by labelingall events in a process with the

same name and applying EWF.

Definition 9 (Event-level strong fairness)LetE = 〈s0, e0, s1, e1, · · ·〉 be an execution.E satisfies

event-level strong fairness if and only if, for every evente, if e is infinitely often enabled, thene = ei

for infinitely manyi , i.e.,23 e is enabled ⇒ 23 e is engaged .

Event-level strong fairness (ESF)has been identified by different researchers. It is namedstrong

fairnessin [132] (by contrast to weak fairness defined above). In [88], it is named strong local

fairness (in comparison to strong global fairness defined below). It is also known ascompassion

condition [166]. ESF states that if an event is infinitely often enabled, it must be infinitely often

engaged. It is particularly useful in the analysis of systems using semaphores, synchronous com-

munication, and other special coordination primitives. Given the LTS in Figure 4.2(a), the property23 b is false under EWF but true under ESF. The reason is thatb is not always enabled (i.e., it is

disabled at the left state) and thus the system is allowed to always take thec branch under EWF. It
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b
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[x=1]ca{x:=0}b{x:=1}
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proc P proc Q

proc W

Figure 4.2: Event-level strong fairness and process-levelstrong fairness

is infinitely often enabled, and thus, the system must engagein b infinitely under ESF.

Definition 10 (Process-level strong fairness)Let E = 〈s0, e0, s1, e1, · · ·〉 be an execution.E sat-

isfies process-level strong fairness if and only if, for every processp, if p is infinitely often enabled,

thenp ∈ engagedProc(si , ei , si+1) for infinitely manyi , i.e.23 p is enabled⇒ 23 p is engaged.

The process-level correspondence isprocess-level strong fairness (PSF). Intuitively, PSF means

that if a process is repeatedly enabled, it must eventually make some progress. Given the LTS in

Figure 4.2(b), the property23 c is false under PWF but true under PSF. The reason is that eventc

is guarded by conditionx = 1 and therefore is not repeatedly enabled.

Verification under (event-level/process-level) strong fairness (or compassion condition) has been

discussed previously, e.g., in the setting of Streett automata [99, 106], fair discrete systems [124] or

programming codes [158]. Nonetheless, there are few established tool support for formal verifica-

tion under strong fairness [100] to the best of our knowledge. The main reason is the computational

complexity. For instance, it is claimed too expensive to support in SPIN [111]. We, however, show

that reasonably efficient model checking under strong fairness can be achieved (refer to experiment

results in Section 4.7).

Definition 11 (Strong global fairness) Let E = 〈s0, e0, s1, e1, · · ·〉 be an execution.E satisfies

strong global fairness if and only if, for everys, e, s ′ such thats e
→ s ′, if s = si for infinite many

i , si = s and ei = e and si+1 = s ′ for infinitely manyi . i.e. 23 (s, e, s ′) is enabled⇒ 23
(s, e, s ′) is engaged.
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Figure 4.3: Strong global fairness

Strong global fairness (SGF)was suggested by Fischer and Jiang in [88]. It states that if astep(from

s to s ′ by engaging in evente) is enabled infinitely often, then it must actually be taken infinitely

often3. Different from the previous notions of fairness, SGF concerns about both events and states,

instead of events only. It can be shown by a simple argument that SGF is stronger than ESF. Because

it concerns about both events and states, it is ‘event-level’ and ‘process-level’. Strong global fairness

requires that an infinitely enabled event must be taken infinitely often inall contexts, whereas ESF

only requires the enabled event to be taken inonecontext. Figure 4.3 illustrates the difference with

two examples. Under ESF, state 2 in Figure 4.3(a) may never bevisited because all events are

engaged infinitely often if the left loop is taken infinitely.As a result, property23 state 2 is false.

Under SGF, all states in Figure 4.3(a) must be visited infinitely often and therefore23 state 2

is true. Figure 4.3(b) illustrates their difference when there are non-determinism. Both transitions

labeleda must be taken infinitely under SGF, which is not necessary under ESF or EWF. Thus,

property23 b is true only under SGF. Many population protocols rely on SGF, e.g., protocols

presented in [14, 88]. As far as the authors know, there are noprevious works on model checking

under SGF.

A number of other fairness notions have been discussed by various researchers, e.g., unconditional

event fairness [128] which will be discussed in Section 4.5,hyper-fairness which is of only the-

atrical interests as stated in [132] and event-level weak local/global fairness in [88]. We skip their

definitions and remark that our approach can be extended to handle other kinds of fairness.

3The definition in [88] is for unlabeled transition systems. We slightly changed it so as to suit the setting of LTS.

Nonetheless, both capture the same intuition.
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4.3 Model Checking under Fairness as Loop/SCC Searching

Given a LTSL and a LTL formulaφ, model checking is about searching for an execution ofLwhich

fails φ. In automata-based model checking, the negation ofφ is translated to an equivalent Büchi

automatonB¬φ, which is then composed with the LTS representing the systemmodel. We omit the

detailed algorithms for translating LTL formula to Büchi automaton. Interested readers can refer

to [97]. To be able to explain our algorithm, first we formallydefine Büchi automaton as follows.

Definition 12 Büchi automaton A Büchi automaton is a tupleB = (Σ,B , ρ, b0,F ), whereΣ is an

alphabet,B is a set of Büchi states,ρ : B × Σ is a nondeterministic transition function,b0 ∈ B is

an initial state, andF ⊆ B is a set of accepting states.

A run ofB over an infinite wordw = a1a2 . . . is an infinite sequence〈b0, b1 . . .〉, whereb0 is initial

state andbi ∈ ρ(bi−1, ai ) for all i ≥ 1. A run 〈b0, b1 . . .〉 is accepting toB if there is some accepting

state inB that repeats infinitely often.

Model checking under fairness is to search for an infinite execution which is accepting to the Büchi

automaton and at the same time satisfies the fairness constraints. In the following, we writeL � φ

to mean that the LTS satisfies the property under no fairness,i.e., every execution ofL satisfiesφ.

We writeL �EWF φ (L �PWF φ) to mean thatL satisfiesφ under event-level (process-level) weak

fairness;L �ESF φ (L �PSF φ) to mean thatL satisfiesφ under event-level (process-level) strong

fairness, andL �SGF φ to mean thatL satisfiesφ under strong global fairness.

Without loss of generality, we assume thatL contains only finite states. By a simple argument, it

can be shown that the system contains an infinite execution ifand only if there exists a loop. An

execution of the product ofL andB¬φ is a sequence of alternating states/events

R
j
i = 〈(s0, b0), e0, · · · , (si , bi), ei , · · · , (sj , bj ), ej , (sj+1, bj+1)〉

wheresi is a state ofL, bi is a state ofB¬φ, si = sj+1 and bi = bj+1. We skip the details

on constructing the product and refer the readers to [126].R
j
i is accepting if and only if the se-

quence〈b0, b1, · · · , bk , · · ·〉 is accepting toB¬φ, i.e., the sequence visits at least one accepting state
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of B¬φ infinitely often. R
j
i is fair under certain notion of fairness if and only if the sequence

〈s0, e0, s1, e1, · · · , sk , ek , · · ·〉 is. Furthermore, we define the following sets.

alwaysEvt(Rj
i ) = {e | ∀ k : {i , · · · , j}, e ∈ enabled(sk )}

alwaysPro(Rj
i ) = {p | ∀ k : {i , · · · , j}, p ∈ enabledPro(sk )}

onceEvt(Rj
i ) = {e | ∃ k : {i , · · · , j}, e ∈ enabled(sk )}

oncePro(Rj
i ) = {p | ∃ k : {i , · · · , j}, p ∈ enabledPro(sk )}

onceStep(Rj
i ) = {(s, e, s ′) | ∃ k{i , · · · , j}, s = sk ∧ (s, e, s ′) ∈→)}

engagedEvt(Rj
i ) = {e | ∃ k : {i , · · · , j}, e = ek}

engagedPro(Rj
i ) = {p | ∃ k : {i , · · · , j}, p ∈ engagedPro(sk , ek , sk+1)}

engagedStep(Rj
i ) = {(s, e, s ′) | ∃ k{i , · · · , j − 1}, s = sk ∧ e = ek ∧ s ′ = sk+1)}

Intuitively, setalwaysEvt(Rj
i )/alwaysPro(Rj

i ) is the set of events/processes which are always en-

abled during the loop. SetonceEvt(Rj
i )/oncePro(Rj

i )/onceStep(Rj
i ) is the set of events/processes/steps

which are enabled at least once during the loop. SetengagedEvt(Rj
i )/engagedPro(Rj

i )/engagedStep(Rj
i )

is the set of events/processes/step which are engaged during the loop.

Lemma 4.3.1 LetL = (S , init ,→) be a LTS;B be a Büchi automaton equivalent to the negation

of a LTL formulaφ. LetRj
i be an arbitrary loop in the product ofL andB.

• L �EWF φ if and only if there does not existR
j
i such thatalwaysEvt(Rj

i ) ⊆ engagedEvt(Rj
i )

andR
j
i is accepting.

• L �PWF φ if and only if there does not existR
j
i such thatalwaysPro(Rj

i ) ⊆ engagedPro(Rj
i )

andR
j
i is accepting.

• L �ESF φ if and only if there does not existRj
i such thatonceEvt(Rj

i ) ⊆ engagedEvt(Rj
i )

andR
j
i is accepting.

• L �PSF φ if and only if there does not existRj
i such thatoncePro(Rj

i ) ⊆ engagedPro(Rj
i )

andR
j
i is accepting.

• L �SGF φ if and only if there does not existR
j
i such thatonceStep(Rj

i ) ⊆ engagedStep(Rj
i )

andR
j
i is accepting.
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The lemma can be proved straightforwardly by contradiction. By the lemma, a system fails the

property under certain fairness if and only if there exists aloop which satisfies the fairness but fails

the property. Modeling checking under fairness is hence reduced to loop searching.

In the following we introduce the basic definitions in graph theory to ease the discussion later.

Definition 13 (Directed Graph) A directed graph or digraph is a pair G = (V,E), where set V

contains the vertices and set E contains ordered pairs of vertices (i.e. directed edges).

Definition 14 (Strongly Connected Component (SCC))A strongly connected component of a di-

rected graphG is a maximal set of verticesC ⊂ V such that for every pair of verticesu and v ,

there is a directed path fromu to v and a directed path fromv to u.

Note that each graph can have more than one SCCs. A SCC is terminal if and only if any transition

starting from a vertex in the SCC must end with a vertex in the SCC. If a directed graph is the

transition system of the product ofL andB, the vertices are of form(s, b), wheres is a state in

L and b is a state inB. We say a SCCS of such graph is accepting if and only if there exists

one vertex(s, b) in S such thatb is an accepting state ofB. In an abuse of notations, we refer

to S as the strongly connected subgraph in the following context. To further abuse notations, we

write alwaysEvt(S ) (alwaysPro(S ), onceEvt(S ), oncePro(S ), onceStep(Rj
i ), engagedEvt(S ),

engagedPro(S ) or engagedStep(Rj
i )) to denote the set obtained by applying the function to a loop

which traverses all states ofS .

Lemma 4.3.2 LetL be a LTS;B be a Büchi automaton equivalent to the negation of a LTL formula

φ; S be a strongly connected subgraph in the product ofL andB.

• L �ESF φ if and only if there does not existS such thatS is accepting andonceEvt(S ) ⊆

engagedEvt(S ).

• L �PSF φ if and only if there does not existS such thatS is accepting andoncePro(S ) ⊆

engagedPro(S ).
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The above lemma can be proved by a simple argument. It shows that model checking under fairness

can be reduced to strongly connected subgraph searching.

Lemma 4.3.3 LetL be a LTS;B be a Büchi automaton equivalent to the negation of a LTL formula

φ. LetS be a SCC in the product ofL andB.

• L �EWF φ if and only if there does not existS such thatS is accepting andalwaysEvt(S ) ⊆

engagedEvt(S ).

• L �PWF φ if and only if there does not existS such thatS is accepting andalwaysPro(S ) ⊆

engagedPro(S ).

Proof. We prove the event-level weak fairness part of the lemma and remark that the other part can

be proved similarly. It can be shown that a system failsφ under event-level weak fairness if and only

if there exists one strongly connected subgraphC such thatC is accepting andalwaysEvt(C ) ⊆

engagedEvt(C ). Hence, it is sufficient to show that there exists such aC if and only if there exists

a SCCS such thatS is accepting andalwaysEvt(S ) ⊆ engagedEvt(S ).

if : If there exists such a SCCS , then we simply letC beS .

only if : If there exists such subgraphC , the SCCS which containsC is accepting and satisfies

alwaysEvt(S ) ⊆ engagedEvt(S ) sincealwaysEvt(S ) ⊆ alwaysEvt(C ) andengagedEvt(C ) ⊆

engagedEvt(S ). This concludes the proof. 2
The lemma shows that model checking under weak fairness can be reduced to SCC searching. The

following lemma reduces model checking under strong globalfairness to searching for a terminal

SCC inL4.

Lemma 4.3.4 Let L be a LTS;B be a Büchi automaton equivalent to the negation of a LTL for-

mula φ. L �SGF φ if and only if there does not exist a SCCS such thatS is accepting and

onceStep(Rj
i ) ⊆ engagedStep(Rj

i ).

4A terminal SCC in the product ofL andB may not be constituted by a terminal SCC inL.
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Proof. By lemma 4.3.1,L fails φ under strong global fairness if and only if there existsR
j
i in

the product ofL andB such thatRj
i satisfies strong global fairness andR

j
i is accepting.L fails φ

under strong global fairness if and only if there exists a strongly connected subgraphC such thatC

satisfies strong global fairness andC is accepting. Hence, it is sufficient to show that there exists

such a subgraphC if and only if there exists a SCCS such thatS which satisfies the constraint.

if : This is proved trivially.

only if : Assume that there exists such a subgraphC . Let x (C ) = {s | ∃ b (s, b) ∈ C} be the

states ofL which constituteC andt(C ) = {(s, e, s ′) | s ∈ x (C ) ∧ s ′ ∈ x (C ) ∧ ∃(s, b), (s, b ′) :

C (s, b)
e
→ (s ′, b ′)} be the transition ofL which constitute the strongly connected subgraph. By

contradiction, it can be shown thatx (C ) (together with the transitions int(C )) forms one terminal

SCC inL. Let S be the SCC containingC . It can be shown thatx (S ) (together with the transitions

in t(S )) forms the same terminal SCC. Therefore,S must satisfy the constraint. 2
4.4 An Algorithm for Modeling Checking under Fairness

In the area of LTL model checking, the two best known enumerative sequential algorithms based

on fair-cycle detection are the Nested Depth First Search (NDFS) algorithm [61, 109] and SCC-

based algorithms [202, 197] based on Tarjan’s algorithm forstrongly connected components (SCCs)

detection [206]. NDFS has been implemented in the model checker SPIN [111]. The basic idea is to

perform one DFS first to reach a target state (i.e., an accepting state in the setting of Büchi automata)

and then perform second DFS from that state to check whether it is reachable from itself. It has been

shown the NDFS works efficiently for model checking under no fairness [111]. Nonetheless, it is

not suitable for verification under fairness [111] because whether an execution is fair depends on

the whole path instead of one state. In recent years, model checking based on SCC has been re-

investigated and it has been shown that it yields comparableperformance [99]. In this chapter, we

extend the existing SCC-based model checking algorithms [99] to cope with different notions of

fairness. The algorithm is inspired by early work on emptiness check of Streett automata [106].

Figure 4.4 presents the algorithm. It is based on Tarjan’s algorithm for identifying SCCs (which is
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proceduremc(States,Transitions,Fair)
1. while there are un-visited states
2. let scc := tarjan(States,Transitions);
3. mark states inscc as visited;
4. if isFair(scc) then – *
5. generate a counterexample; – *
6. return false; – *
7. else – *
8. scc = prune(scc,Fair); – *
9. if ¬mc(scc,Transitions) then – *
10. return false; – *
11. endif – *
12. endif – *
13. endwhile
14. return true;

Figure 4.4: Algorithm for sequential model checking under fairness
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Figure 4.5: Model checking example

linear time in the number of graph edges [206]). It searches for fair strongly connected subgraph

on-the-fly. The basic idea is to identify one SCC at a time and then check whether it is fair or not. If

it is, the search is over. Otherwise, the SCC is partitioned into multiple smaller strongly connected

subgraphs, which are then checked recursively one by one. Figure 4.5 presents a running example,

i.e., the product of a LTS and a Büchi automaton. Notice that state 2 is an accepting state.

Assume thatStates is the set of states andTransitions is the set of transitions5. The method takes

three inputs, i.e.,States, Transitions and a fairness typeFair (of value either EWF, PWF, ESF,

PSF or SGF). At the top level is a while-loop, which stops onlyif all states have been visited. At

5both of which may be constructed on-the-fly instead of known before-hand.
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line 2, Tarjan’s algorithm (an improved version) is used to identify a SCC [99]. If the foundscc is

fair, a fair loop which traverses all states/transitions inthe SCC is generated as a counterexample

(at line 5) and we conclude that the property is not true at line 6. We skip the details on generating

the loop in this thesis and remark that it could be a non-trivial task (refer to [124]). Without fairness

assumptions, a SCC is fair if and only if it is accepting to theBüchi automaton (i.e. Büchi fair).

Given the LTS presented in Figure 4.5,tarjan method identifies two SCCs, i.e.,scc1 which is

composed of state 1 only andscc2 which is composed of state 0, 2 and 3. The order in which SCCs

are found is irrelevant to the correctness of the algorithm.If state 2 is explored before state 1, at line

3, scc states is the set of states inscc2.

If scc is not fair, a procedureprune (at line 8) is used to prunebad statesfrom scc. Bad states

are the reasons why the SCC is not fair. For instance, state 0 (where the eventa is enabled) is a

bad state inscc2 under event-based strong fairness because eventa is never engaged inscc2 (i.e.,

a 6∈ engagedEvt(ssc2)). State 3 is a bad state under strong global fairness becausethe step from

state 3 to state 1 viac is not part of the SCC. The intuition behind the pruning is that there may

be a fair strongly connected subgraph in the remaining states after eliminating the bad states. By

simply modifying theprune method, the algorithm can be used to handle different fairness. Refer

to details in Section 4.4.1.

If some states have been pruned, a recursive call (line 9) is made to check whether there is a fair

strongly connected subgraph within the remaining states. The call terminates in two ways. One is

that a fair subgraph is found (at line 6) and the other is that all states inscc are pruned (at line 14).

If the recursive call returns true, there is no fair subgraphand we continue with another SCC until

all states are checked.

4.4.1 Coping with Different Notions of Fairness

In this section, we show how to customize theprune function so as to handle different fairness. Let

S be a strongly connected subgraph. The following defines the pruning methods for event-based
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weak fairness.

prune(S ,EWF ) =






S if alwaysEvt(S ) ⊆ engagedEvt(S );

∅ otherwise.

If there exists an evente which is always enabled (i.e.,e ∈ alwaysEvt(S )) but never engaged (i.e.,

e 6∈ engagedEvt(S )), by definitionS does not satisfy event-level weak fairness. If a SCC does not

satisfy event-level weak fairness, none of its subgraphs do, becausee is always enabled in any of its

subgraphs but never engaged. As a result, either all states are pruned or none of them is. Similarly,

the following defines the pruning function for process-level weak fairness.

prune(S ,PWF ) =






S if alwaysPro(S ) ⊆ engagedPro(S );

∅ otherwise.

In the case event-level (process-level) strong fairness, astate is pruned if and only if there is an

event (process) enabled at this state but never engaged in the subgraph. By pruning the state, the

event (process) may become never enabled and therefore not required to be engaged. The following

defines the pruning function for event-level and process-level strong fairness.

prune(S ,ESF ) = {s : S | enabledEvt(s) ⊆ engagedEvt(S )}
prune(S ,PSF ) = {s : S | enabledPro(s) ⊆ engagedPro(S )}

By lemma 4.3.4, a SCC may constitute a counterexample to a property under strong global fairness

if and only if the SCC satisfies strong global fairness and is accepting. Therefore, we prune all states

if it fails strong global fairness.

prune(S ,SGF ) =






S if onceStep(S ) ⊆ engagedStep(S );

∅ otherwise.

We remark that the time complexity of theprune functions are all linear in the number of edges of

the SCC.

Given the LTS in Figure 4.5, under event-level strong fairness, state 0 is pruned fromscc2 be-

causeenabledEvt(state 0) = {a, c} 6⊆ engagedEvt(scc2). After that the only remaining strongly

connected subgraph contains state 2 and 3, now state 3 wherec is enabled is considered as a bad

state becausec is not engaged in the subgraph. State 2 is then pruned for being a trivial strongly

connected subgraph which fails event-level strong fairness.
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4.4.2 Complexity and Soundness

The time complexities for verification under no fairness, EWF or PWF or SGF are similar, i.e.,

all linear in the number of system transitions. All states inone SCC are discarded at once in all

cases and, therefore, no recursive call is necessary. Furthermore, theprune function is linear in the

number of transitions of a SCC. SPIN’s model checking algorithm under PWF increases the run-

time expense of a verification run by a factor that is linear inthe number of running processes. In

comparison, our algorithm is less expensive for weak fairness. This is evidenced by the experiment

results presented in Section 4.7. Verification under ESF or PSF is in general expensive. In the

worst case (i.e., the whole system is strongly connected andonly one state is pruned every time),

the tarjan method may be invoked at most#S times, where#S is the number of system states.

Thus, the time complexity is bounded by#S × #T where#T is the number of transitions. In

practice, however, if the property is false, a counterexample is usually identified quickly, because

our algorithm constructs and checks SCCs on-the-fly. Even ifthe property is true, our experience

suggests that the worst case scenario is rare in practice. Instead of performing detailed complexity

analysis (refer to the discussion presented in [106]), we illustrate the performance of our algorithm

using real systems in Section 4.7.

Next, we argue the total correctness of the algorithm. The algorithm is terminating because by

assumption, the number of states is finite, and the number of visited states and pruned states are

monotonically increasing.

Theorem 4.4.1 LetL be a LTS. Letφ be a property. LetF be a fairness type (i.e., EWF, PWF, ESF,

PSF or SGF).L �F φ if and only if the algorithm returns true.

Proof. CaseEWF: By lemma 4.3.1,L �EWF φ if and only if there does not exist a SCCS such

thatalwaysEvt(S ) ⊆ engagedEvt(S ) andS is accepting. Given any SCCS , the algorithm returns

false if and only if it does so at line 8 because the recursive call at line 9 always returns true (by the

definition ofprune(S ,T ,EWF )). Therefore, it returns false if and only ifS is accepting (so that

the condition at line 5 is true) andalwaysEvt(S ) ⊆ engagedEvt(S ) (so that the condition at line 7

is true). If there does not exist such a SCC, the algorithm returns true. If the algorithm returns true,
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there must not be such a SCC. Therefore,F �EWF φ if and only if the algorithm returns true.

CasePWF: Similarly as above.

CaseESF: By lemma 4.3.3,L �ESF φ if and only if there does not exist a strongly connected

subgraphC such thatonceEvt(C ) ⊆ engagedEvt(C ) andC is accepting. IfC itself is a SCC,

it must be found (by the correctness of Tarjan’s algorithm and function prune(S ,T ,ESF )) and

the algorithm returns false ifC is accepting. If it is contained in one (and only one) SCC, by the

correctness ofprune(S ,T ,ESF ), its states are never pruned. As a result, it is identified when all

other states in the SCC are pruned or a fair strongly connected subgraph containing all its states is

identified. In either case, the algorithm returns false if and only if such a fair strongly connected

subgraph is found. Equivalently, it returns true if and onlyif there are no such subgraphs. Therefore,

F �ESF φ if and only if the algorithm returns true.

CasePSF: Similarly as above.

CaseSGF: By lemma 4.3.4,L �SGF φ if and only if there does not exist a SCCS such thatS

satisfies strong global fairness is accepting. The algorithms returns false if and only if it is at line 8

because the recursive call at line 9 always returns true (by the definition ofprune(S ,T ,SGF )). By

definition ofprune(S ,T ,SGF ), the control reaches line 8 if and only if the SCC is terminal and is

accepting. Thus,F �SGF φ if and only if the algorithm returns true. 2
4.5 Event Annotated Fairness

In this section, we present an alternative (and more flexible) approach, which allows users to as-

sociate fairness to only part of the systems or associate different parts with different notions of

fairness. The motivation is twofold.

Firstly, previous approaches treat every event or state equally, i.e., fairness is applied to every

event/state. In practice, it may be that only certain eventsare meant to be fair.For instance,

when verifying open systems, fairness/liveness assumptions are often associated with environmental

events as a way to capture assumptions on the environment.In such case, if event-level or process-

level fairness is applied, it is clearly overwhelming. Our remedy is to allow users to associate
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fairness assumptions with individual events by labeling events with fairness marks6. PAT supports

a number of fairness annotations on events. We examine threeof them in the following.

• Unconditional event fairness is written asf (a). An execution of the system is fair if and only

if a occurs infinitely often.

• Weak event fairness is written aswf (a). An execution of the system is fair if and only ifa

occurs infinitely often if it is always enabled from some point on.

• Strong event fairness is written assf (a). An execution of the system is fair if and only ifa

occurs infinitely often if it is enabled infinitely often.

Unconditional event fairness [128] does not depend on whether the event is enabled or not, and

therefore, is stronger than weak/strong event fairness. Itmay be used to annotate events which are

known to be periodically engaged. For instance, the following process models a natural clock.

Clock() = tick → Clock();

By annotatingtick with unconditional event fairness, we require that the clock must progress in-

finitely and the system (in which the clock and other components execute in parallel) disallows

unrealistictimelock, i.e., execution of infinite events which takes finite time. Unconditional event

fairness (like other event annotations) can be used to mechanically reduce the size of the property.

For instance, given the property23 a ⇒ 23 b. We may mechanically annotatea in the model

with unconditional event fairness and verify23 b instead. The semantics of weak (strong) event

fairness is similar to event-level weak (strong) fairness defined in Section 4.2 except it is associated

with individual events (by contrast to all events)7. Event annotated fairness may be viewed as the

dual image of accepting states in automata theory, e.g., same as only selected states are marked

accepting, only selected events are annotated.

6An alternative way is to identify a set of events separately from the model itself, which is in theory equivalent, but

cumbersome in practice. It is especially true if an event maybe constituted by process parameters or even global variables.
7Strong global fairness concerns with both events and statesand hence no corresponding event annotation is defined.
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The other motivation of event annotated fairness is that it makes partial order reduction (see Sec-

tion 2.3.3) possible (to some extent) for model checking with strong fairness. The algorithm pre-

sented in Figure 4.4, i.e., a SCC-based explicit model checking algorithm, undoubtedly suffers from

state space explosion, especially when the whole system is strongly connected. Partial order reduc-

tion is one of the important techniques to tackle the problem, which sometimes works surprisingly

well for concurrent systems. For instance, assume that event a andb are independent and the prop-

erty to verify is deadlock-freeness, it is sufficient to explore only one of the two outgoing transitions

at state 0 in the LTS of Figure 4.3(a).

For classic model checking, a set of conditions which must besatisfied by the chosen subset of

enabled events have been proposed to guarantee sound verification against ‘X’-free LTL formulas.

Efficient heuristic algorithms which calculate over-approximations of the subset were explored [58].

One such heuristic algorithm has been implemented in PAT. However, the conditions and algorithms

may not work for verification under fairness. Following results proved in [39], it can be shown that

partial order reduction is applicable to verification underEWF or PWF. However, though every

execution which satisfies strong fairness in the full state graph has an equivalent execution (up to

re-ordering of independent events) in the reduced state graph, it may not satisfy strong fairness and

thus verification result over the reduced state graph may notbe valid. Similarly, with strong global

fairness the reduced state graph may not contain a fair loop even if the full state graph does. For

instance, given the LTS in Figure 4.3(a) and assume thata andb are independent. The reduced

graph may only contain state 0 and 1, which contains no loop which satisfies strong global fairness.

In [163], it was suggested that by considering events dependent to each other if they can enable

or disable each other, partial order reduction can be applied to some extent for verification under

fairness. Nonetheless, in previous approaches, because all events must be considered, virtually all

events become inter-dependent and therefore no reduction is possible. In PAT, partial order reduction

is disabled for model checking under strong fairness or strong global fairness. Nonetheless, for

systems with event annotated fairness, it remains possibleto apply partial order reduction to events

which are irrelevant to the fairness annotations.

The algorithm presented in Figure 4.4 can be applied to checksystems with event annotated fairness
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with slight modification. The basic idea remains, i.e., finding a strongly connected subgraph which

satisfies the fairness constraints. Only events with fairness annotations are considered this time (by

contrast to all events). We remark that annotating all events with weak (strong) fairness is equivalent

to associate event-level weak (strong) fairness with the whole system. Methodtarjan is modified

to cope with partial order reduction, following the heuristic function in [58]. In addition, we define

an event to befairness visibleif it enables or disables an event annotated with fairness and require

that if the chosen set of events is a strict subset of the enabled events, the subset must not contain

fairness visible events.The intuition is that only independent events which are irrelevant to fairness

are subject to partial order reduction. Notice that this checking has time complexity linear in the

number of enabled events. The soundness follows from the discussion in [39, 163].

Functionprune is also modified to examine only the annotated events. It is defined as follows.

prune(S ,Anno) =






∅ if there existsf (e) ande 6∈ engagedEvt(S );

∅ if alwaysEvt(S ) ∩ wf (Σ) 6⊆ engagedEvt(S );

{s : S | enabledEvt(s) ∩ sf (Σ) ⊆ engagedEvt(S )};

otherwise.

A SCC S is fair with respect to the event annotated fairness if and only if: all events which are

annotated with unconditional event fairness are containedin the setengagedEvt(S ); if an event is

annotated with weak event fairness and is enabled ateverystate in the SCC, then the event is con-

tained inengagedEvt(S ); and if an event is annotated with strong fairness and is enabled atsome

state in the SCC, then the event is contained inengagedEvt(S ). If a SCC does not satisfy uncon-

ditional or weak event fairness, it is abandoned all together. If a state enables an event annotated

with strong fairness which is never engaged in the SCC, then it is pruned. For instance, given the

LTS in Figure 4.5, if eventa is annotated with strong fairness, state 0 is a bad state inscc2. It is

not if it is annotated with no or weak fairness. By a similar argument (to that of Theorem 4.4.1), the

soundness of the algorithm can be proved.



4.6. A MULTI-CORE MODEL CHECKING ALGORITHM 66

4.6 A Multi-Core Model Checking Algorithm

Rapid development in hardware industry has brought the prevalence of multi-core systems with

shared-memory, which enabled the speedup of various tasks by using parallel algorithms. The LTL

model checking problem is one of the difficult problems to be parallelized or scaled up to multi-

core systems. In this section, we present an on-the-fly parallel model checking algorithm based

on the Tarjan’s SCC detection algorithm presented in Section 4.4. The proposed parallel algorithm

allows the verification to make full use of a multi-core CPU inthe shared-memory architecture.

The approach can be applied to general LTL model checking or with different fairness assumptions.

Further, it is orthogonal to state space reduction techniques like partial order reduction.

4.6.1 Shared-Memory Platform

We work with a model based on threads that share all memory, although they have separate stacks

in their shared address space and a special thread-local storage to store thread-private data. Our

working environment is .NET framework (version 2.0) in Microsoft Windows platform, with its

implementation of threads as lightweight processes. Switching contexts among different threads

is cheaper than switching contexts among full-featured processes with separate address spaces, so

using threads in the system incurs only a minor penalty.

Critical Sections, Locking and Lock Contention In a shared-memory setting, access to memory,

that may be used for writing by more than a single thread, has to be controlled through the use of

mutual exclusion, otherwise, race conditions will occur. This is generally achieved through use

of mutex8. A thread wishing to enter a critical section has to lock9 the associated mutex, which

may block the calling thread if the mutex is locked already bysome other thread. An effect called

resource or lock contention is associated with this behavior. This occurs, when two or more threads

happen to need to enter the same critical section (and therefore lock the same mutex), at the same

8A mutex is a common name for a program object that negotiates mutual exclusion among threads, also called a lock.
9In .NET framework, keywordlock is used to achieve this effect.
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time. If critical sections are long or they are entered very often, contention starts to cause observable

performance degradation, as more and more time is spent waiting for mutexes.

Memory Management and Thread Communication In our setting, we assume that all resources

are allocated from the managed heap. Objects are automatically freed when they are no longer

needed by the application. The communication between threads can be achieved simply by object

reference passing.

4.6.2 Parallel Fairness Model Checking Algorithm

The SCC-based verification algorithm presented in the previous section is highly recursive and

employs a sequential DFS search, which exhibits some challenges in parallelism.

scc1 scc2
scc4

scc3

The sequential algorithm in Figure 4.4 can be illustrated inthe figure above. When a SCC is de-

tected, it will be analyzed and pruned until empty or there isa counterexample detected (scc4 in

above graph). Taking a close look at the algorithm, we observe that there are four actions applied in

each detected SCC: (1) fairness testing (line 4), (2) bad states pruning (line 8), (3) counterexample

generation (line 5), (4) recursive sub-SCC detection (line9). The first three actions are local to the

detected SCC. Although the recursive sub-SCC detection is complicated, we can create a local copy

of the Tarjan algorithm to search for “SCC” in the pruned states. In this way, each SCC can be pro-

cessed independent. Therefore, we can put the workload of SCC analysis into separate threads to

achieve concurrency. Inspired by these observations, we present a SCC-based parallel model check-

ing algorithm with four parts:Tarjan thread , SCC worker thread , SCC worker thread pool and

parallel model checker . The detailed algorithms are illustrated as follows.



4.6. A MULTI-CORE MODEL CHECKING ALGORITHM 68

stopped = false;
procedure run(threadPool ,States,Transitions)
1. visited = ∅;
2. while there are states inStates but not invisited

3. if stopped then {return ; }
4. let scc = tarjan(States,Transitions);
5. visited = visited ∪ scc;
6. if forking conditions then
7. threadPool .forkWorkerThread(scc,Transitions);
8. else
9. processscc locally
10. endif
11. endwhile
12. return ;

Figure 4.6: Tarjan thread implementation

Tarjan thread Figure 4.6 presents the implementation ofTarjan thread , which identifies all

SCCs using Tarjan’s algorithm. Tarjan thread has one publicvariablestopped and the thread starting

procedurerun. stopped is a control variable to stop this thread (line 3) as soon as a worker thread

reports a counterexample. WhenTarjan thread starts, therun procedure will perform a DFS

to detect all SCCs in the search space using Tarjan’s algorithm. This process is similar tomc

procedure in Figure 4.4. When a SCCscc is detected at line 4, if the forking conditions at line 6

are satisfied, then a new SCC worker thread will be forked and added in to the worker thread pool

(line 7). Otherwisescc will processed locally in theTarjan thread (line 9). This local process

is the same as theSCC worker thread (which will be explained later), which stops this thread if

there is a counterexample is found. Forking conditions can be that the size ofscc is bigger than

some threshold or the thread pool is full. We add this checking to achieve better efficiency and

workload balance. If the size ofscc is small (e.g., only few nodes), the overhead of creating a thread

is much bigger than processing it locally. If the thread poolis full, processing the foundscc locally

is probably more efficient than creating a long waiting queuein the thread pool.
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threadQueue = empty queue; jobFinished = false;
procedure forkWorkerThread(States,Transitions)
1. lock(threadQueue);
2. if (¬jobFinished)
3. let wt = new workerThread(States,Transitions);
4. registerwt .termination to threadTermination procedure
5. threadQueue.enqueue(wt);
6. endif
7. unlock(threadQueue);

procedure threadTermination(thread)
8. lock(threadQueue);
9. if thread produces counterexample∧ ¬jobFinished then
10. terminate all other threads
11. terminate tarjan thread
12. jobFinished = true;
13. endif
14. threadPool .remove(thread)
15. unlock(threadQueue);

procedure allThreadsJoin()
16. while(has running threads)
17. busy wait
18. endwhile

Figure 4.7: Thread pool implementation

SCC worker thread SCC worker thread works on a detected SCC to report whether the SCC

contains a counterexample or not within the given SCC statesand transitions. It basically resembles

the code from line 4 to 12 (highlighted using*) in Figure 4.4. If the detected SCC is not fair, it will

prune the states according to the given fairness type. Otherwise it will terminate and return false. If

the prunedscc has fewer states, a local copy of the Tarjan’s algorithm willcontinue the searching.

Upon the termination ofSCC worker thread , a notification will send to the thread pool to notify

the result.
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SCC worker thread pool The implementation of theSCC worker thread pool is presented

in Figure 4.7. The thread pool has a working queuethreadQueue10 to store all active worker

threads. Private variablejobFinished indicates whether a counterexample has been found or not.

ProcedureforkWorkerThread creates a new worker thread (line 3) and puts it into the working

queue (line 5), if the counterexample is not found (line 2). Alock is used onthreadQueue (at

line 1 and 7) to preventTarjan thread working too fast to add two or more threads at same time.

This is possible because during the process of forking the first thread,Tarjan thread may find

another SCC and want to fork a new thread. At line 4, we register the termination event of the

worker thread to procedurethreadTermination, which means upon the termination of the worker

thread, the thread pool will be notified and procedurethreadTermination will be triggered. When

procedurethreadTermination is triggered, if the termination thread has located a counterexample

and no one does it before (line 9), thread pool will terminate11 all other active threads (line 10) and

Tarjan thread (by settingstopped flag to true) (line 11). FlagjobFinished is set to true at line

12, hence new threads shall not be forked anymore.!jobFinished checking in line 9 is necessary

to prevent terminating same threads twice. In the end, the termination thread is removed from

thread pool in line 12. During this processthreadQueue is locked to prevent data race. Procedure

allThreadsJoin does busy-waiting until all threads terminate.

Parallel model checker Lastly, parallel model checker is shown in Figure 4.8. It conducts the

verification by creating theTarjan thread and thread pool. OnceTarjan thread starts, it will wait

for Tarjan thread to join (i.e., successfully terminate) (line 3). The termination can be that all states

are explored, or a counterexample is found locally, orstopped flag is set to false. Afterwards, it will

wait for thread pool to terminate (line 4). The procedure will return false if any counterexample is

found intarjan thread or any worker thread.

10In our implementation,threadQueue is realized by System.Threading.ThreadPool object in .NETFramework. The

thread scheduling is managed by the thread pool automatically.
11Thread termination can be achieved by thread killing or asking the thread to voluntarily give up. The second way is

safer and adopted in our approach. One example is the stoppedflag inTarjan thread .
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procedure pmc(States,Transitions)
1. initialize worker thread poolthreadPool

2. let tarjan = tarjanThread .run(threadPool ,States ,Transitions);
3. tarjan.join();
4. threadPool .allThreadsJoin();
5. if counterexample is foundthen
6. return false;
7. return true;

Figure 4.8: Parallel model checker implementation

4.6.3 Complexity and Soundness

In this section, we discuss the complexity of the parallel model checking algorithm and prove its

soundness.

For the parallel version of the algorithm, the time and spacecomplexity is exactly same as the

sequential version as discussed in Section 4.4.2. This is not surprising because the parallel algorithm

simply splits SCC analysis into worker threads. The parallel algorithm is designed for a shared

memory framework, the SCCs and their transitions are sharedbetweenTarjan thread and worker

threads. There is no communication overhead. If to migrate this approach into distributed systems,

we may consider to pass SCC only and let the worker threads to build the transitions locally to

avoid the communication overhead. This is because the number of transitions of a SCC is often

much larger than the number of vertices.

If the verification result is true, the number of states and transitions visited in the parallel and se-

quential version are same. If there is a counterexample, theparallel version may visit more states

depending on when the counterexample is identified. If a counterexample is present in the first few

SCCs encountered during the search, then the sequential version may find one quickly, while the

parallel version may have forked multiple threads to searchin more SCCs. Hence parallel version

visits more states and transitions. On the other hand, if a counterexample is present only in the last

few SCCs, the parallel version can be faster than the sequential version if the counterexample is

identified quickly in one worker thread, which then terminates all other SCC checking. This is ev-
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idenced by the experiment results presented in Section 4.7.2. Notice that when there are more than

one counterexamples in the system, it is possible that the parallel verification may produce different

counterexample at different runs.

Regarding the soundness, the following theorem states the correctness of the parallel algorithmpmc.

We argue the total correctness of the parallel algorithm by showing it is terminating and equivalent

to the sequentialmc algorithm.

Theorem 4.6.1 LetL be a LTS. Letφ be a property. LetF be a fairness type (i.e., EWF, PWF, ESF,

PSF or SGF).L �F φ if and only if the algorithmpmc returns true.

Proof. Firstly, we show that thepmc algorithm is terminating. By the assumption, we know that the

number of states is finite, so is the number of the SCCs. InTarjan thread , the number of visited

states and the pruned states are monotonically increasing,hence the Tarjan thread is terminating.

Worker threads are terminating since they are working on thedetected SCC and the number of

pruned states are monotonically increasing. Since the number of SCC is finite, worker thread pool

is terminating. Thereforepmc is terminating.

Secondly, we show thatpmc returns the same result asmc. The key of this proof is to prove that

each SCC analysis is independent of each other. If this true,then checking the SCCs in parallel

is same as checking them sequentially. We have listed the four actions performed in the SCCs in

Section 4.6.2, which can be applied independently.

Lastly, the correctness of data sharing and race condition prevention by using locks have been

discussed in Section 4.6.1. We skip it here. 2
Following the above theorem, we conclude that the sequential algorithm and the parallel algorithm

are equivalent in terms of correctness. Therefore as long asthe reduction is compatible with sequen-

tial algorithm, then it is compatible with the parallel algorithm. For example, Section 4.5 shows

that partial order reduction is possible12 by employing fairness annotations on individual events,

12In general, fairness verification conflicts with partial order reduction.
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which means this technique can also be used with our parallelalgorithm. We remark thatpmc is

orthogonal to state reduction techniques like partial order reduction, symmetry reduction or data

abstraction. Intuitively, the parallel algorithm would perform better since it may utilize more CPU

power. Nonetheless, thread forking/terminating or communication between threads can be costly.

We present detailed analysis using real-world examples as well as hand crafted examples in the next

section.

4.7 Experiments

In this section, we demonstrate the effectiveness of the sequential version and parallel version of

fairness model checking algorithms using experiments on both benchmark systems as well as re-

cently developed population protocols, which require fairness for correctness.

4.7.1 Experiments for Sequential Fairness Verification

Table 4.2 summarizes the verification statistics on recently developed population protocols. The

unit of time measurement is second. Notice that “−” means either out of memory or more than

4 hours. The protocols include leader election for completenetworks (LE C ) [88], for rooted

trees (LE T ) [47], for odd sized rings (LE OR) [118], for network rings (LE R) [88] and token

circulation for network rings (TC R) [14]. The property is that eventually always there is one and

only one leader in the network, i.e.,32oneLeader . Correctness of all these algorithms relies on

different notions of fairness. For simplicity, fairness isapplied to the whole system. As a result,

partial order reduction is only applied for verification under no or weak fairness, but not strong

fairness or strong global fairness.

We remark that event-level fairness or strong global fairness is required for these examples. As

discussed in Section 4.2, PWF is different from EWF. In orderto compare PAT with SPIN for

verification with EWF, we twist the models so that each event in population protocols is modeled as

a process. By a simple argument, it can be shown that for such models, EWF is equivalent to PWF.
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Model Size EWF ESF SGF

Result PAT SPIN Result PAT Result PAT

LE C 6 Yes 26.7 229 Yes 26.7 Yes 23.5

LE C 7 Yes 152.2 1190 Yes 152.4 Yes 137.9

LE C 8 Yes 726.6 5720 Yes 739.0 Yes 673.1

LE T 9 Yes 10.2 62.3 Yes 10.2 Yes 9.6

LE T 11 Yes 68.1 440 Yes 68.7 Yes 65.1

LE T 13 Yes 548.6 3200 Yes 573.6 Yes 529.6

LE OR 3 No 0.2 0.3 No 0.2 Yes 11.8

LE OR 5 No 1.3 8.7 No 1.8 − −

LE OR 7 No 15.9 95 No 21.3 − −

LE R 4 No 0.3 < 0.1 No 0.7 Yes 19.5

LE R 6 No 1.8 0.2 No 4.6 − −

LE R 8 No 11.7 1.7 No 28.3 − −

TC R 5 No < 0.1 < 0.1 No < 0.1 Yes 0.6

TC R 7 No 0.2 0.1 No 0.2 Yes 13.7

TC R 9 No 0.4 0.2 No 0.4 Yes 640.2

Table 4.2: Population protocols experiments: with Core 2 CPU 6600 at 2.40GHz and 2GB RAM

Nonetheless, model checking under PWF in SPIN increases theverification time by a factor that is

linear in the number of processes. By modeling each event as aprocess, we increase the number of

processes and therefore un-avoidably increase the SPIN verification time by a factor that is constant

(in the number of events per process for network rings) or linear (in the number of network nodes

for complete network). SPIN has no support for ESF, PSF or SGF. Thus, the only way to model

check under strong fairness or strong global fairness in SPIN is to encode the fairness constraints as

part of the property. However, even for the smallest network(with 3 nodes), SPIN needs significant

amount of time to construct (very large) Büchi automata fromthe property. Therefore, we conclude

that it is infeasible to use SPIN for such a purpose and omit the experiment results from the table.

We remark that in theory, strong fairness can be transformedto weak fairness by paying the price of

one Boolean variable [124]. Nonetheless, the property again needs to be augmented with additional
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clauses after the translation, which is again infeasible.

All of the algorithms fail to satisfy the property without fairness. The algorithm for complete net-

works (LE C ) or trees (LE T ) requires at least EWF, whereas the rest of the algorithms require

SGF. It is thus important to be able to verify systems under strong fairness or strong global fairness.

Notice that the token circulation algorithm for network rings (TC R) functions correctly for a net-

work of size 3 under EWF. Nonetheless, EWF is not sufficient for a network with more nodes, as

shown in the table. The reason is that a particular sequence of message exchange which satisfies

EWF only needs the participation of at least 4 network nodes.This suggests that our improvement

in terms of the performance and ability to handle different forms of fairness has its practical value.

A few conclusions can be drawn from the results in the table. Firstly, in the presence of counterex-

amples, PAT usually finds one quickly (e.g., onLE R andTC R under EWF or strong fairness).

It takes longer to find a counterexample forLE OR mainly because there are too many possible

initial configurations of the system (exactly25∗N whereN is network size) and a counterexample

is only present for particular initial configurations. Secondly, verification under ESF is more ex-

pensive than verification with no fair, EWF or SGF. This conforms to theoretical time complexity

analysis. The worst case scenario is absent from these examples (e.g., there are easily millions

of transitions/states in many of the experiments). Lastly,PAT outperforms the current practice of

verification under fairness. PAT offers comparably better performance on verification under weak

fairness (e.g., onLE C andLE T ) and makes it feasible to verify under strong fairness or strong

global fairness. This allows us to discover bugs in systems functioning with strong fairness. Exper-

iments onLE C andLE T (for which the property is only false under no fairness) showminor

computational overhead for handling a stronger fairness.

Table 4.3 shows verification statistics of benchmark systems to show other aspects of our algorithm.

Because of the deadlock state, the dining philosophers model (DP(N ) for N philosophers and

forks) does not guarantee that a philosopher always eventually eats (23eat0) whether with no

fairness or strong global fairness. This experiment shows PAT takes little extra time for handling

the fairness assumption. We remark that PAT may spend more time than SPIN on identifying a

counterexample in some cases. This is both due to the particular order of exploration and the
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Model Property Result Fairness PAT(sec) SPIN(sec)

DP(10) 23eat0 No no 0.8 < 0.1

DP(13) 23eat0 No no 9.8 < 0.1

DP(15) 23eat0 No no 56.1 < 0.1

DP(10) 23eat0 No strong global fairness 0.8 −

DP(13) 23eat0 No strong global fairness 9.8 −

DP(15) 23eat0 No strong global fairness 56.0 −

MS(10) 23work0 Yes event-level strong fairness 9.3 −

MS(12) 23work0 Yes event-level strong fairness 105.5 −

MS(100) 23work0 Yes event annotated strong fairness 3.1 −

MS(200) 23work0 Yes event annotated strong fairness 15.5 −

PETERSON(3) bounded bypass Yes process-level weak fairness 0.1 1.25

PETERSON(4) bounded bypass Yes process-level weak fairness 1.7 > 671

PETERSON(5) bounded bypass Yes process-level weak fairness 58.9 −

Table 4.3: Experiment results on benchmark systems

difference between model checking based on nested DFS and model checking based on identifying

SCCs. PAT’s algorithm relies on SCCs. If a large portion of the system is strongly connected, it

takes more time to construct the SCC before testing whether it is fair or not. In this example, the

whole system contains one large SCC and a few trivial ones including the deadlock state. If PAT

happens to start with the large one, the verification may takeconsiderably more time.

Milner’s cyclic scheduler algorithm (MS (N ) for N processes) is a showcase for the effectiveness of

partial order reduction. We apply fairness in two differentways, i.e., one applying ESF to the whole

system and the other applying only to inter-process communications13. In the latter case, partial

order reduction allows us to prove the property over a much larger number of processes (e.g., 200 vs

12). Peterson’s mutual exclusive algorithm (PETERSON (N )) requires at least PWF to guarantee

bounded by-pass [6], i.e., if a process requests to enter thecritical section, it eventually will. The

13A general guideline for annotating event fairness is that, communication events are more unlikely to be annotated as

local events are under the control of the local scheduler.
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property is verified under PWF in both PAT and SPIN. PAT outperforms SPIN in this setting as well.

4.7.2 Experiments for Multi-core Fairness Verification

In this section, we present the experiments results on parallel fairness model checking algorithm.

Table 4.4 summarizes the verification statistics on dinningphilosophers problem (DP ), and recently

developed population protocols (LE C [88], LE R [88] andTC R [14]). We modify theDP

model so that it is deadlock-free (i.e., by letting one of thephilosophers to pick up the forks in a

different order). The property is that a philosopher never starves indefinitely, i.e.,23eat .0, where

eat .0 is the event of 0-th philosopher eating. The property for theleader election protocols is that

eventually always there is one and only one leader in the network, i.e.,32oneLeader . Correctness

of all these algorithms relies on different notions of fairness.

In our experiments below,Size denotes the number processes in the models. Besides the execution

time of the sequential algorithm (mc) and parallel algorithm (pmc), we present additional mea-

surements which reflect the how much workloadpmc can put in parallel if the verification result is

true14. One is the average size of nontrivial SCCs (denoted asAvg SCC Size) and the number of

SCC (denoted as#SCC ). A SCC is trivial if and only if it has only one state. Intuitively, the par-

allel algorithm gains more saving with larger and more SCCs.The other is the ratio of the number

of states of all (non-trivial) SCCs and the whole state space(denoted asSCC Ratio). Intuitively, a

higherSCC Ratio shall lead to more saving. The forking condition is that the SCC must have at

least 100 states. ‘-’ means out of memory. The unit of time measurement is second.

Regarding the threads scheduling, there are two approaches. The first approach is to manually assign

a newly created thread to a free CPU-core. If all CPU-cores are used, the new thread is pushed

into the working queue and wait.The second approach is to make each thread as operating system

thread15, and let the OS CPU scheduler to do the scheduling. We compared the two approaches,

14When the property is false,SCC Ratio can be different for different runs.
15In our implementation, we use System.Threading.ThreadPool object in .NET framework 2.0 to create system threads

in Microsoft Windows system.
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Model Size Avg SCC SCC EWF ESF SGF

/#SCC Ratio Res. mc pmc Res. mc pmc Res. mc pmc

DP 5 67/13 0.36 No 0.08 0.08 Yes 0.22 0.20 Yes 0.19 0.19

DP 6 178/21 0.38 No 0.13 0.13 Yes 0.97 0.84 Yes 0.86 0.78

DP 7 486/31 0.4 No 0.38 0.37 Yes 4.62 3.39 Yes 4.42 3.38

DP 8 1368/43 0.41 No 1.41 1.33 Yes 29.3 19.5 Yes 32.9 22.1

LE C 5 34/43 0.58 Yes 4.04 3.66 Yes 4.03 3.65 Yes 3.66 3.49

LE C 6 48/103 0.64 Yes 23.1 21.3 Yes 23.1 21.5 Yes 21.9 20.1

LE C 7 66/227 0.68 Yes 128 124 Yes 129 124 Yes 134 127

LE C 8 86/479 0.71 Yes 604 600 Yes 615 607 Yes 721 684

LE R 3 9/268 0.36 No 0.11 0.11 No 0.12 0.12 Yes 1.40 1.27

LE R 4 9/2652 0.4 No 0.11 0.28 No 0.59 0.60 Yes 21.7 15.7

LE R 5 9/25274 0.42 No 0.71 0.72 No 2.22 2.19 Yes 587 456

TC R 6 84/2 0.01 No 0.11 0.11 No 0.11 0.11 Yes 2.20 2.38

TC R 7 210/2 0.01 No 0.14 0.14 No 0.15 0.16 Yes 11.3 12.3

TC R 8 330/3 0.01 No 0.19 0.20 No 0.25 0.23 Yes 69.6 72.9

TC R 9 756/3 0.01 No 0.27 0.31 No 0.36 0.37 Yes 494 573

Table 4.4: Experiment results on a PC running Windows XP with2.83 GHz quad-core Intel Q9550

CPU and 2 GB memory

it shows that when the size of the SCCs is big, the two approaches have same results. When the

number of SCCs is big, the second approach is more efficient. We applied second approach in our

experiments.

In Table 4.4, we can see that when the verification result is false, eitherpmc or mc can be faster,

which is expected. When the verification result is true,pmc is faster in most of the cases, except

in the case of model checking theTC R example under strong global fairness. In this particular

example,SCC ratio is very low (0.01), which means that there are many trivial SCCs. Furthermore,

there are only few non-trivial SCCs. As a result, there is little work that can be separated out for

the worker threads to speed up the model checking, and the communication overhead makespmc

slower. On the other hand, thepmc slowdown in this case is only several percents ofmc, which



4.7. EXPERIMENTS 79

Model Size Avg SCC/ SCC EWF ESF SGF

#SCC Ratio Res. mc pmc Res. mc pmc Res. mc pmc

PAR1 5 10001/5 0.2 No 1.75 2.11 Yes 22.5 12.0 Yes 11.3 6.97

PAR1 6 10001/6 0.2 No 1.74 2.07 Yes 27.1 14.8 Yes 13.6 8.13

PAR1 7 10001/7 0.2 No 1.71 2.29 Yes 31.2 16.7 Yes 15.9 9.14

PAR1 8 10001/8 0.2 No 1.71 2.16 Yes 36.1 18.0 Yes 18.1 10.6

PAR1 9 10001/9 0.2 No 1.71 2.15 Yes 40.6 20.9 Yes 20.4 11.9

PAR1 10 10001/10 0.2 No 1.73 2.15 Yes 45.3 22.6 Yes 22.81 13.07

PAR2 4 20000/5 0.5 No 5.46 7.12 NA - - Yes 8.87 5.52

PAR2 5 20000/6 0.5 No 6.05 9.53 NA - - Yes 18.3 8.64

PAR2 6 20000/7 0.5 No 6.39 10.5 NA - - Yes 21.4 9.32

PAR2 7 20000/8 0.5 No 6.90 11.4 NA - - Yes 24.5 9.69

PAR2 8 20000/9 0.5 No 7.77 11.7 NA - - Yes 27.9 11.82

PAR2 9 20000/10 0.5 No 8.06 12.8 NA - - Yes 30.9 13.68

PAR3 7 2000/8 1 No 0.29 0.20 Yes 412 118 Yes 0.41 0.28

PAR3 8 2000/9 1 No 0.21 0.24 Yes 463 136 Yes 0.45 0.29

PAR3 9 2000/10 1 No 0.25 0.23 Yes 516 156 Yes 0.49 0.31

Table 4.5: Experiment results on a PC running Windows XP with2.83 GHz quad-core Intel Q9550

CPU and 2 GB memory

shows that the communication overhead inpmc is low.

Table 4.5 summarizes the verification statistics on some hand craft examples to show the potential

effectiveness of the parallel algorithm. We create three models (PAR1, PAR2 andPAR3) such

that their state spaces contain several SCCs, each of which has a big number of states. As a result,

worker threads can be dispatched with substantial workload. Correctness of all these algorithms

requires ESF and SGF.

In Table 4.5, we can see thatpmc is working well inPAR1 example, where the average SCC size

is big and the SCC ratio is not very low. The performance is even better (60% speedup) when the

SCC ratio increases to 0.5 inPAR2 example. ThePAR3 example almost produces the ideal case

(72% speedup) such that the four cores are fully loaded. Since there are more SCCs than cores,
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(a) Results on Intel Core2 6600 CPU (b) Results on Intel Q9550CPU

Figure 4.9: Experimental results for scalability testing

further speedup could be achieved if there were more cores. ESF case inPAR2 gives a worst

case mentioned in Section 4.3 for strong fairness checking,hence it ends up with out of memory

exception.

The experiment results in Table 4.4 and 4.5 confirm that the speedup of parallel verification relies

on the size and the number of non-trivial SCCs. Each SCC has four analysis actions as described

in Section 4.6.2. If the size of SCCs is big and/or the number of SCCs is more than the number of

cores, each worker thread will make full use of the availableCPU-cores. Overall,pmc performs

better thanmc for big average SCC size and high SCC ratio.

To study the scalability of our approach with different number of CPU cores, we conduct the same

experiments (model checking examples in Table 1 andPARA1 example under strong global fair-

ness)16 on a dual-core CPU (Figure 4.9 (a)) and a quad-core CPU17 (Figure 4.9 (b)). The coordinate

of each point(x , y) in the graphs representsmc execution time andpmc execution time of a model

correspondingly. From the figures we can see that, points in Figure 4.9 (a) are scattered between line

16PARA2 andPARA3 have high average SCC size and SCC ratio which is rare in real systems, so we exclude them

in the salability testing.
17Since we calculate the speedup ofpmc compared tomc, the absolute speed of the two CPUs is not important.
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y = x andy = 2x , while points in Figure 4.9 (b) are scattered between liney = 2x andy = 3x .

The average speedup of the parallel algorithm is22.9% for quad-core CPU and11.2% for dual-core

CPU. This suggests that our approach is scalable for more CPUcores in general.

Besides PAT, there are a number of model checkers which are designed for similar application do-

mains. It is, however, not easy to compare PAT with them. For instance, the refinement checker

FDR does not support shared variables/arrays, and therefore, FDR’s model is significantly different

from PAT’s. Further, FDR has no support for multi-core. The model checker SPIN supports verifi-

cation of LTL properties. The multi-core parallel algorithm in SPIN is designed for model checking

based on nested depth-first search. Nested depth-first-search works well for verification under no

fairness. It can be twisted to perform model checking under fairness in the price of significant

computational overhead, which has been shown in [197]. As a result, it makes little sense here to

compare performance of our parallel algorithm with SPIN’s.

4.8 Summary

In summary, we developed a model checking approach to verifyfairness enhanced systems based

on Tarjan’s SCC detection algorithm. Our approach is holistic, which does not only take care of

LTL verification but also checks the fairness constraints satisfaction in one goal. Furthermore, we

presented a parallel version of the proposed algorithm for in multi-core shared-memory architec-

ture. We showed that our sequential algorithm is effective to prove or disprove both benchmark

systems and newly proposed distributed algorithms. The experimental results on real world systems

suggested our parallel algorithm is efficient and scalable to multi-cores.

The research on categorizing fairness/liveness, motivated by system analyzing of distributed or con-

current systems, has a long history [131, 138, 18, 96]. A richset of fairness notions have been

identified during the last decades, e.g., weak or strong fairness in [131], justice or compassion con-

ditions in [138], hyperfairness in [21, 132], strong globalor local fairness recently in [88], etc. This

chapter summarizes a number of fairness notions which are closely related to distributed system
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verification and provides a framework to model check under different fairness constraints. Other

works on categorizing fairness/liveness have been evidenced in [173, 128, 166, 216].

This chapter is related to research on system verification under fairness [100, 131, 88]. Our model

checking algorithm is related to previous works on emptiness checking for Büchi automata [126,

111, 99] and Streett automata [124, 99, 137, 106]. In this chapter, we apply the idea to the automata-

based model checking framework and generalize it to handle different fairness assumptions. In

a way, our algorithm integrates the two algorithms presented in [99, 106] and extends them in

a number of aspects to suit our purpose. Furthermore, model checking algorithms under strong

fairness have been proposed in [99] and [137]. In both works,a similar pruning process is involved.

Regarding LTL parallel verification, there are various approaches in the literature. Holzmann pro-

posed a parallel extension of the SPIN model checker in [112]. In this SPIN extension, the algorithm

for checking safety properties scales well to N-core systems. However, the algorithm for liveness

checking, which is based on the original SPIN’s nested DFS algorithm, can only be applied in dual-

core systems. Whereas, our approach is scalable to N-core system and can also handle different

forms of fairness, while SPIN handles only process level weak fairness. Lafuente [129] presented

a cycle localization algorithm based on nested DFS, which isvery similar to our ideas. In their

approach, the main thread performs the first DFS to identify an accepting state, and the worker

threads perform the second DFS to detect the fair cycle starting from the accepting state. Com-

pared to this solution, our approach has the advantage that each SCC will be checked by one and

only one worker thread. A different approach to shared-memory model checking is presented in

[114], based on CTL* translation to Hesitant Alternating Automata. The proposed algorithm uses

so-called non-emptiness game for deciding validity of the original formula and is therefore largely

unrelated to the algorithms based on fair-cycle detection.Barnat, Chaloupka and Pol gave a com-

prehensive survey [24] in the distributed SCC decomposition algorithms [37, 38, 89, 49, 36, 23, 25].

However, these algorithms are designed for distributed systems and have quadratical or cubic order

of complexity.



Chapter 5

Applications of Fairness Model

Checking

Recently, the population protocol model [20] has emerged asan elegant computation paradigm for

describing mobile ad hoc networks. One essential property of population protocols is that with

respect to all possible initial configurations all nodes must eventually converge to the correct output

values (or configurations), which is a typical liveness property. To guarantee that such kind of

properties can be achieved, fairness assumption is required. A number of population protocols

have been proposed and studied [14, 16, 88, 118, 15]. Most of them only work ifglobal fairness

(see Section 5.1) is imposed. Furthermore, it was shown thatwithout global fairness uniform self-

stabilizing leader election in rings is impossible [88].

In this chapter, we apply the fairness model checking algorithms developed in Chapter 4 on a set

of self-stabilizing population protocols for ring networks to show the effectiveness of the proposed

algorithms. The choice of ring topology reduces the interactions of nodes and also makes our

models scale up easily. We select protocols for two-hop coloring and orienting nodes and protocols

for leader election and token passing. All these protocols only work under global fairness. We

report on our model checking results. Especially, we present one previously unknown bug in a

leader election protocol [118], which can only be identifiedusing PAT (as far as we know).

83
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We notice that population protocols are designed on a large or even unbounded number of behav-

iorally similar processes, which raises the state explosion problem of the model checking approach.

To solve this problem, we propose a fair model checking algorithm with process counter abstraction.

Our on-the-fly checking algorithm enforces fairness by keeping track of the local states from where

actions are enabled / executed within an execution trace without maintaining the process identifiers.

We show the usability of this technique via the automated verification of several real-life protocols.

The remainder of the chapter is organized as follows. In Section 5.1, we introduce the population

protocol model. Section 5.2 presents the population protocols studied in this chapter. The model

checking results are summarized in Section 5.3. The processcounter abstraction starts from Sec-

tion 5.4 with the system model definitions and process counter representation. Section 5.5 presents

how to perform model checking under fairness without the knowledge of process identifiers. Sec-

tion 5.6 discusses how to handle infinitely many processes. Section 5.7 discusses experimental

results of the counter abstraction. Section 5.8 concludes this chapter.

5.1 The Population Protocol Model

The population protocol model [20] is proposed recently as acomputation paradigm for describing

mobile ad hoc networks, consisting of multiple mobile nodeswhich interact with each other to

carry out a computation. Application domains of the protocols include wireless sensor networks

and biological computers. In this section, we briefly introduce the population protocol model. More

details are available in [14, 88].

In the population protocol model, the underlying network can be described as a directed graph

G = (V ,E ) without multi-edges and self-loops. Each vertex represents a simple finite-state sens-

ing device, and each edge(u, v) means thatu as aninitiator could possibly interact withv as a

responder.

Definition 15 (Population Protocol Model) Apopulation protocol modelis specified as a six-tuple

P = (Q , C,X ,Y ,O , δ), which contains
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• a finite setQ of states,

• a setC of configurations,

• a finite setX of input symbols,

• a finite setY of output symbols,

• an output functionO : Q → Y , and

• a transition functionδ : (Q ×X )× (Q × X )→ 2Q×Q .

If (p′, q ′) ∈ δ((p, x ), (q , y)), then we write((p, x ), (q , y)) → (p′, q ′) and call it a transition.

Whenδ always maps to a set that only contains a single pair of states, then we call the protocol

deterministic.

A configurationC is a mappingC : V → Q assigning to each node its internal state, and an

input assignmentα : V → X specifies the input for each node. LetC andC ′ be configura-

tions,α be an input assignment, andu, v be different nodes. If there is a pair(C ′(u),C ′(v)) ∈

δ((C (u), α(u)), (C (v), α(v))), we say thatC goes toC ′ via edgee = (u, v) by transition

((C (u), α(u)), (C (v), α(v))) → (C ′(u),C ′(v)), abbreviated to(C , α)
e
−→ C ′. A pair of a

transitionr and an edgee constitutes anactionσ = (r , e). If C goes toC ′ via some edge, thenC

can go toC ′ in onestep, written as(C , α)→ C ′.

An executionis an infinite sequence of configurations and assignments(C0, α0), (C1, α1), . . . ,

(Ci , αi ), . . ., such thatC0 ∈ C and for eachi , (Ci , αi ) → Ci+1. Different fairness assump-

tions on population protocol models can be defined on the system executions in the same way as in

Section 4.2. The fairness constraint is imposed on the scheduler to ensure that the protocol makes

progress. In population protocols, the required fairness condition will make the system behave

nicely eventually, although it can behave arbitrarily for an arbitrarily long period [20]. That is why

most of population protocols [14, 16, 88, 118, 15] only work if global fairnessis assumed. For

instance, Fischer and Jiang [88] have proved that without global fairness uniform self-stabilizing

leader election in rings is impossible. Several protocols are presented in the next section to further

explain the ideas.
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5.2 Population Ring Protocol Examples

In this section, we take a set of self-stabilizing population protocols for ring networks. A distributed

system or a population protocol is said to beself-stabilizing[66] if it satisfies the following two

properties:

• convergence: starting from an arbitrary configuration, the system is guaranteed to reach a

correct configuration;

• closure: once the system reaches a correct configuration, it cannot become incorrect any more.

This means that in our modeling of these protocols, we have totake all possible initial configurations

into account, and the checked properties have the form of32property . The choice of ring topology

makes it less demanding when we model the interactions of nodes and it also makes our models

easily scale up to larger instances. We have selected protocols for two-hop coloring and orienting

nodes and protocols for leader election and token passing. Note that all these protocols only work

under global fairness.

In the population protocol model, one protocol consists ofN nodes, numbered from0 to N − 1.1 A

protocol is usually described by a set of interaction rules between an initiatoru and a responderv .

Such rules have conditions on the state and the input of the initiator and the responder, and specify

the state of the initiator and the responder if a transition can be taken.

5.2.1 Two hop coloring

A protocol to make nodes to recognize their neighbors in a ring is presented in [15]. In fact, it is

a general algorithm that enables each node in a degree-bounded graph to distinguish between its

neighbors. The graph is colored such that any two nodes adjacent to the same node have different

colors. More precisely, for each nodev , if u andw are distinct neighbors ofv , thenu andw must

1In the following discussion, we setN as three for simplicity.
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have different colors.(u,w) is called atwo-hoppair. In this chapter, we restrict ourselves to rings,

and three colors suffice the purpose (see [15]).

Each nodeu in a ring has two state components,color [u] encodes the color of nodeu andF [u] is

a bit array, indexed by colors. Initially,color [u] andF [u] can have arbitrary values. The following

description defines the interaction between an initiatoru and a responderv .

if F [u][color [v ]] 6= F [v ][color [u]] then
color [u]← color ′[u]; F [u][color [v ]] = F [v ][color [u]];

else
F [u][color [v ]] = ¬F [u][color [v ]]; F [v ][color [u]] = ¬F [v ][color [u]];

endif

One edge (or interaction)(u, v) is synchronized ifF [u][color [v ]] = F [v ][color [u]], then these

two nodes do not change their color but flip their bits (F [u][color [v ]] andF [v ][color [u]]). On the

other hand, nodeu is nondeterministically recolored, and it copiesF [v ][color [u]] of nodev as its

bit F [u][color [v ]]. The statementcolor [u] ← color ′[u] means one of the three possible colors is

nondeterministically assigned as the new color ofu. The CSP# model of this protocol is shown in

detailed in example 5.2.1. In [15], a deterministic versionof two-hop coloring is given as well (see

below). Instead of nondeterministically assigning all possible colors to the initiatoru, its color is

updated ascolor [u]← (color [u] + r [u]) mod C . The additional state componentr [u] is a local bit

for nodeu that flits wheneveru acts as the initiator of an interaction. We also model and analyze

this protocol in CSP#.

if F [u][color [v ]] 6= F [v ][color [u]] then
color [u]← (color [u] + r [u]) mod C ; F [u][color [v ]] = F [v ][color [u]];

else
F [u][color [v ]] = ¬F [u][color [v ]]; F [v ][color [u]] = ¬F [v ][color [u]];

endif
r [u]← ¬r [u];

Example 5.2.1 (Two-hop Coloring Protocol)A self-stabilizing population protocol for two-hop

coloring is proposed [15]. This algorithm can guarantee that the neighbors of a node in a ring have

different colors. Figure 5.1 presents (part of) its model inCSP#. Line 1 defines two global constants

(N andC of value 3) and global variables.N models the network size, i.e., number of nodes andC
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1. #defineN 3; #defineC 3; var color [N ]; var F [N ][C ];

2. Inter(u, v) =

3. if (F [u][color [v ]] 6= F [v ][color [u]]){

4. act1.u.v{F [u][color [v ]] = F [v ][color [u]]; color [u] = 0; } → Inter(u, v)

5. 2 act2.u.v{F [u][color [v ]] = F [v ][color [u]]; color [u] = 1; } → Inter(u, v)

6. 2 act3.u.v{F [u][color [v ]] = F [v ][color [u]]; color [u] = 2; } → Inter(u, v)

7. } else{
8. act4.u.v{F [u][color [v ]] = 1− F [u][color [v ]];

9. F [v ][color [u]] = 1− F [v ][color [u]]; } → Inter(u, v)

10. };

11. Init() = ...

12. Protocol() = Init(); ||| x : {0..N − 1}@(Inter(x , (x + 1)%N ) ||| Inter((x + 1)%N , x ));

13. #definethcolor (color [0] 6= color [2] ∧ color [1] 6= color [2] ∧ color [0] 6= color [1]);

14. #assertProtocol() �32thcolor ;

Figure 5.1: CSP# Model for two hop coloring protocol

models the number of colors. Arraycolor models the color of each node.F is a bit array for each

node, indexed by colors. Next, line 2 to 10 defines how an initiator u interacts with a responder

v , which captures the essence of the protocol. Every time there is an interaction in the network,

the initiator and responder must update themselves according to a set of pre-defined rules. A rule

is applicable only if the guarding condition (e.g.,F [u][color [v ]] 6= F [v ][color [u]]) is satisfied.

An action (e.g.,act1.u.v ) may be attached with variables updating (e.g.,color [u] = 0). Line 12

models the two-hop coloring protocol as processProtocol , which starts with processInit (which

initializes the system in every possible configuration and is omitted here). After initialization, the

system is the interleaving (modeled by the operator|||) of nodes’ interactions in the network. Which

nodes can interact reflects the topology of the network. The LTL property is32thcolor (defined

as an assertion at line 14), where3 and2 are modal operators which read aseventuallyandalways

respectively (refer to Section 2.3.2 for details).thcolor (defined at line 13) is a proposition which

states that the neighbors of a node in a ring have different colors (for rings of size three). end
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5.2.2 Orienting undirected rings

Given a ring colored by protocols in Section 5.2.1, it is possible to have a protocol that gives a sense

of orientation to each node on an undirected ring [15]. Afterthe orienting, (1) each node has exactly

one predecessor and one successor, the predecessor and successor of a node are different; (2) for

any two nodesu andv , u is the predecessor ofv if and only if v is the successor ofu, for any edge

(u, v), eitheru is the predecessor ofv or v is the predecessor ofu.

Each nodeu in a ring has three state components:color [u] encodes the color of nodeu, precolor [u]

the color of its predecessor, andsuccolor [u] the color of its successor. Initially, all nodes are two-

hop colored (arraycolor satisfies the two-hop coloring property),precolor [u] andsuccolor [u] can

have arbitrary values. The following description defines the interaction between an initiatoru and a

responderv . The CSP# model of this protocol is shown in Figure B.1 in Appendix B.

if color [v ] == precolor [u] ∧ color [v ] 6= succolor [u] then
succolor [v ]← color [u];

elseifcolor [v ] == succolor [u] ∧ color [v ] 6= precolor [u] then
precolor [v ] ← color [u];

else
precolor [u] ← color [v ]; succolor [v ]← color [u];

endif

5.2.3 Leader election

In this section, we study a leader election protocol in oriented odd rings. The following description

is partially taken from [118, 15]. Supposing each node has alabel bit, a maximal sequence of

alternating labels is called a segment. According to the orientation of the ring, the head and tail of a

segment can be defined in a natural way. One edge of the form(0, 0) or (1, 1) connecting the tail of

one segment to the head of another segment is called abarrier edge. For a nodeu in a ring, it has

four state components:leader [u] states whether the node is a leader,label [u] is its label,probe[u]

is 1 if u holds a probe token, andphase[u] alternates between 0 and 1 to make each barrier alternate

between firing a probe and moving forward. The protocol consists of several parts. In the basic part,

the barriers move clockwise around the ring. Each barrier advances by flipping the label bit of the
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second node on the barrier (the head of the next segment). When two barriers collide, they cancel

out each other. Because the ring size is odd, there is always at least one barrier. In the rest of the

protocol, the leader bullet and probe marks are manipulated. Probes are sent out by the barrier in

a clockwise direction and absorbed by any leader they run into. If a probe meets the barrier on its

way back, it is converted to leader. Leaders firebulletscounter-clockwise around the ring. Bullets

are absorbed by the barrier, but they kill any leaders they encounter along the way. The description

of an interaction between an initiatoru and a responderv in the protocol (taken from [118], p.66)

is as follows. The CSP# model of this protocol is shown in Figure B.2 in Appendix B.

if label [u] == label [v ] then
if probe[u] == 1 then leader [u]← 1; probe[u]← 0 endif

bullet [v ]← 0
if phase[u] == 0 then phase[u]← 1; probe[v ]← 1;
elseifprobe[v ] == 0 then

label [v ] = ¬label [v ]; phase[v ]← 0
endif

elseif leader [v ] == 1 then
if bullet [v ] == 1 then leader [v ]← 0 elsebullet [u]← 1 endif

else
if bullet [v ] == 1 then bullet [v ]← 0; bullet [u]← 1 endif
if probe[u] == 1 then probe[u]← 0; probe[v ]← 1 endif

endif

Counterexample. We have analyzed this protocol in PAT, and found one counterexample. We

consider a ring of size three, nodes are numbered as 0, 1 and 2.The counterexample found by

PAT can be described as follows: it is an infinite execution containing a loop,u is the node for the

initiator andv for the responder of one interaction according to the protocol description. The exe-

cution can start with a configurationbullet = [1, 1, 1], label = [1, 1, 1], leader = [1, 1, 0], phase =

[1, 1, 1], probe = [1, 1, 0].

1. Sincelabel [2] == label [0], probe[2] == 0, phase[2] == 1 andprobe[0] == 1, we have

bullet [0]← 0. (u = 2 andv = 0)

2. Then sincelabel [0] == label [1], probe[0] == 1, phase[0] == 1 andprobe[1] == 1, we

haveleader [0] ← 1, probe[0] ← 0, andbullet [1]← 0. (u = 0 andv = 1)
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3. Then sincelabel [2] == label [0], probe[2] == 0, phase[2] == 1 andprobe[0] == 0, we

havebullet [0]← 0, label [0] ← 1− label [0], andphase[0] ← 0. (u = 2 andv = 0)

4. Then sincelabel [1] == label [2], probe[1] == 1, phase[1] == 1 andprobe[2] == 0, we

haveleader [1] ← 1, probe[1]← 0, bullet [2]← 0, label [2] ← 1− label [2] andphase[2]← 0.

(u = 1 andv = 2)

5. Then sincelabel [2] == label [0], probe[2] == 0 andphase[2] == 0, we havebullet [0]← 0,

phase[2] ← 1 andprobe[0] ← 1. (u = 2 andv = 0)

Now, we have reached a configuration withbullet = [0, 0, 0], label = [0, 1, 0], leader = [1, 1, 0],

phase = [0, 1, 1], probe = [1, 0, 0].2 From here, we have a loop. Within this loop, all actions

enabled at reachable configurations of the loop are executed. But these configurations contain more

than two leaders. Hence, this infinite execution is global fair but not self-stabilizing for leader

election. The loop is given below.

1. Sincelabel [2] == label [0], probe[2] == 0, phase[2] == 1 andprobe[0] == 1, we have

bullet [0]← 0. (u = 2 andv = 0)

2. Then sincelabel [0] 6= label [1], leader [1] == 1 andbullet [1] == 0, we havebullet [0] ← 1.

(u = 0 andv = 1)

3. Then sincelabel [0] 6= label [1], leader [1] == 1 andbullet [1] == 0, we havebullet [0] ← 1.

(u = 0 andv = 1)

4. Then sincelabel [2] == label [0], probe[2] == 0, phase[2] == 1 andprobe[0] == 1, we

havebullet [0]← 0. (u = 2 andv = 0)

The last step in the loop leads us back to the starting configuration of the loop. We have com-

municated this counterexample to the author of [118], it is confirmed as a valid counterexample

2 As the protocol is self-stabilizing, the counterexample can start directly from here. We keep the first part just to

faithfully represent the infinite trace found by PAT.
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which has escaped simulations of the protocol [119]. The reason to the counterexample is the fol-

lowing [119]. In the explanation of the protocol, it says that “probes are sent out by the barrier in

a clockwise direction and absorbed by any leader they run into". The second half of the sentence

is missing from the pseudo code description. The protocol also requires consistent ordering of the

position of tokens within each node (in the order of leader, bullet, and probe clockwise). A barrier

edge should only generate a probe at the responder if the responder is not a leader. Otherwise, the

probe would be able to pass the leader token. In the description, this property is not preserved either.

Modifications of the description have been made in [15]. We also modeled the revised version of the

protocol, and found no counterexample. By this case study, we emphasize that without the newly

developed model checking algorithm in Chapter 4 for efficient verification under (global) fairness, it

is impossible to find such an error in a pseudo code description of a population protocol, especially

when a protocol tends to be intuitively more complicated.

5.2.4 Token circulation

The token circulation protocol in directed rings depicted below is proposed in [14, 15]. The desired

behavior of this protocol can be described as follows: (1) there is only one node who holds the

token; (2) a node does not obtain again until every other nodehas obtained a token once; (3) each

node can have the token infinitely often.

Rule 1. ((∗ b, N ), (∗ b, L)) → ((− b), (+ b̄))
Rule 2. ((∗ b, ∗), (∗ b̄, N )) → ((− b), (+ b))

It is assumed that every node passes the token to next one right after getting it. Furthermore, the

protocol also requires the existence of a leader. Informally, there is a static node with the leader

markL, and all other nodes have the non-leader markN in every configuration. The state of each

node is represented by a pair in{−,+} × {0, 1}. + means that the node is holding a token and

− means the opposite. The second part of a state of a node is called the label. The∗ here denotes

an always-matched symbol. On the left hand side, the symbolb matches either0 or 1 and b̄ is its

complement. It should be noticed that different occurrences of b in a same rule refer to the same
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value. The input for each node informs them who is leader, which is unique in the network. When

two nodes interact, if the responder is the leader, it sets its label to the complement of the initiator’s

label; otherwise the responder copies the label from the initiator. If an interaction triggers a label

change, a token is passed from the initiator to the responder. If a token is not present at the initiator,

a new token is generated.

The CSP# model of this protocol is shown in Figure B.3 in the Appendix B. We only give the

assertion for the first property. The other two can be defined in a similar way. The states of the

whole system are represented by three arrays of bits (leader [N ], token[N ] andlabel [N ]). Without

loss of generality, we assume that node0 is always the leader. Therefore, we could simply set

each node a fixed input (leader [i ]) for leader election without considering complicated details of a

dynamic leader election process, which we have analyzed in Section 5.2.3.

5.3 Experiments of Population Protocols

In this section, we present the experimental results on the set of ring protocols presented in previous

sections. Table 5.1 collects the experimental results. Forthe two-hop coloring protocol, there

are two version:1 for nondeterministic and2 for deterministic. For the orienting undirected ring

protocol, both properties in Figure B.1 are checked. Leaderelection protocol is only checked for

odd rings as required. The experiment testbed is a PC runningWindows XP SP3 with 2.83GHz

Intel Q9550 CPU and 4 GB memory. In the table, “−” means out of memory.

From the table, firstly it shows that the number of states, transitions and running time increase

rapidly (exponentially) with the number of nodes in rings, especially for two-hop coloring and

leader election protocols. The reason is that these protocols use more state components than the

others, e.g., the arrays. This conforms to the theoretical results. Secondly, we show that PAT is

effective, it can handle millions states in hundreds of seconds (which is compatible to SPIN). Notice

that SPIN is infeasible for verifying the protocols becauseit does not support the fairness notions3.

3SPIN supports only process-level weak fairness.
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Model Property Ring Size Result #States #Transitions Time (Sec)

two-hop coloring1 32thcolor 3 Yes 122856 1972174 43.3

two-hop coloring1 32thcolor 4 NA − − −

two-hop coloring2 32thcolor 3 Yes 983016 9473998 627

two-hop coloring2 32thcolor 4 NA − − −

orienting rings 32property1 3 Yes 3200 28540 0.61

orienting rings 32property2 3 Yes 3221 28163 0.64

orienting rings 32property1 4 Yes 69766 883592 18.1

orienting rings 32property2 4 Yes 66863 794662 17.5

orienting rings 32property1 5 Yes 1100756 18216804 601

orienting rings 32property2 5 Yes 1021851 15486265 536

orienting rings 32property1 6 NA − − −

leader election 32oneleader 3 Yes 55100 216699 10.6

leader election 32oneleader 5 NA − − −

token circulation 32onetoken 6 Yes 21559 105577 2.86

token circulation 32onetoken 7 Yes 91954 514703 14.9

token circulation 32onetoken 8 Yes 388076 2446736 88.6

Table 5.1: Experiment results of population protocols

Although we are bound to check relatively small instances ofthe protocols, the newly developed

verification techniques in Chapter 4, does complement existing model checkers with the improve-

ment in terms of performance and ability to handle differentforms of fairness. It enables us to

establish the correctness of these protocols under global fairness or, in the case of the leader elec-

tion protocol, to identify bugs. Readers can compare the result presented in Section 4.7 on a similar

verification practice using SPIN. The argument for using model checking techniques in general, is

that, if there is a bug in the protocol design, probably it is present in a small network. On the other

hand, to apply model checking on large number of nodes, we need to apply advanced reduction or

abstraction techniques in the verification to conquer the state explosion problem. This motivates

the algorithm of fairness model checking with process counter abstraction, which is presented in

following sections.
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5.4 Process Counter Abstraction

All the protocols in the previous sections are designed on a large (or even unbounded) number

of behaviorally similar processes of the same type. Such systems, refereed as parameterized sys-

tems, frequently arise in distributed algorithms and protocols (e.g., cache coherence protocols, con-

trol software in automotive / avionics), where the number ofbehaviorally similar processes is un-

bounded during system design, but is fixed later during system deployment. Thus, the deployed

system contains fixed, finite number of behaviorally similarprocesses. However during system

modeling/verification it is convenient to not fix the number of processes in the system for the sake

for achieving more general verification results. A parameterized system represents an infinite fam-

ily of instances, each instance being finite-state. Property verification of a parameterized system

involves verifying thatevery finite state instance of the systemsatisfies the property in question.

A common practice for analyzing parameterized systems can be to fix the number of processes to

a constant (as we did in the verification of population protocols). To avoid state space explosion,

the constant is often small (smaller than 10 in our population protocols experiments), compared

to the size of real applications. Model checking is then performed in the hope of finding a bug

which is exhibited by a fixed (and small) number of processes.This practice can be incorrect

because the real size of the systems is often unknown during system design (but fixed later during

system deployment). It is also difficult to fix the number of processes to a “large enough" constant

such that the restricted system with fixed number of processes is observationally equivalent to the

parameterized system with unboundedly many processes. Computing such alarge enough constant

is undecidable after all, since the parameterized verification problem is undecidable [17]. It is

difficult to apply model checking to the problem directly.

Since parameterized systems contain a large number of behaviorally similar processes, a natural

state space abstraction is to group the processes based on which state of the local transition systems

they reside in [167, 63, 168]. Thus, instead of saying “process 1 and 3 are in states, and process

2 is in statet", we simply say “2 processes are in states and 1 is in statet". Such an abstraction

reduces the state space by exploiting a powerful state spacesymmetry, as often evidenced in real-life
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concurrent systems such as a caches, mutual exclusion protocols and network protocols. Verification

by traversing the abstract state space here produces a soundand complete verification procedure.

However, if the total number of processes is unbounded, the aforementioned counter abstraction

still does not produce a finite state abstract system. The count of processes in a local state can still

beω (unbounded number), if the total number of processes isω. We can adopt acutoff number, so

that any count greater than thecutoff number is abstracted toω. This yields a finite state abstract

system, which allows sound but incomplete verification procedure, e.g., any LTL property verified

in the abstract system holds for all concrete finite-state instances of the system, but not vice-versa.

In this chapter, we develop a novel technique for model checking parameterized systems under

fairness, against LTL formulae. We show that model checkingunder fairness is feasible, even

without the knowledge of process identifiers. This is done bysystematically keeping track of the

local states from which actions are enabled / executed within any infinite loop of the abstract state

space. We develop necessary theorems to prove the soundnessof our technique, and also present

efficient on-the-fly model checking algorithms.

5.4.1 System Models

We begin with formally defining our system model, which is a specialized one (compared to Defi-

nition 3 in Section 3.1.1) that the system process is a parallel composition of identity processes.

Definition 16 (System Model) A system model is a structureS = (VarG , initG ,Proc) where

VarG is a finite set of global variables,initG is their initial valuation andProc is a parallel com-

position of multiple processesProc = P1 ‖ P2 ‖ · · · such that each processPi = (Si , initi ,→i) is

a labeled transition system.

We assume that all global variables have finite domains and each Pi has finitely many local states.

A local state represents a program text together with its local context (e.g. valuation of the local

variables). Two local states are equivalent if and only if they represent the same program text and

the same local context. LetState be the set of all local states. We assume thatState has finitely
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proc Reader proc Writer

R0 R1
startread{counter++}

stopread{counter--} stopwrite{writing:=false}

startwrite{writing:=true}
W0 W1

[counter==0 && !writing]

global variables: int counter = 0; bool writing = false; 

[!writing]

Figure 5.2: Readers/writers model

many elements. This disallows unbounded non-tail recursion which results in infinite different local

states.Proc may be composed of infinitely many processes. Each process has a unique identifier.

In an abuse of notation, we usePi to represent the identifier of processPi when the context is clear.

Notice that two local states from different processes are equivalent only if the process identifiers

are irrelevant to the program texts they represent. Processes may communicate through global

variables, (multi-party) barrier synchronization or synchronous/asynchronous message passing. It

can be shown that parallel composition‖ is symmetric and associative.

Example 5.4.1 Figure 5.2 shows a model of the readers/writers problem, which is a simple protocol

for the coordination of readers and writers accessing a shared resource. The protocol, referred as

RW , is designed for arbitrary number of readers and writers. Several readers can read concurrently,

whereas writers require exclusive access. Global variablecounter records the number of readers

which are currently accessing the resource;writing is true if and only if a writer is updating the

resource. A transition is of the form[guard ]name{assignments}, whereguard is a guard condition

which must be true for the transition to be taken andassignments is a simple sequential program

which updates global variables. The following are properties which are to be verified.2!(counter > 0 ∧ writing) – Prop123counter > 0 – Prop2

PropertyProp1 is a safety property which states that writing and reading cannot occur simultane-

ously. PropertyProp2 is a liveness property which states that always eventually the resource can be

accessed by some reader. end



5.4. PROCESS COUNTER ABSTRACTION98

In order to define the operational semantics of this specialized system model, we re-define the notion

of system configuration defined in Definition 4 in Section 3.1.2, which is referred to asconcrete

configurations. This terminology distinguishes the notion from the state space abstraction and the

abstract configurations which will be introduced later.

Definition 17 (Concrete Configuration) Let S be a system model. A concrete configuration ofS

is a pair (v , 〈s1, s2, · · ·〉) wherev is the valuation of the global variables (channel buffers may be

viewed as global variables), andsi ∈ Si is the local state in which processPi is residing.

A system transition is of the form(v , 〈s1, s2, · · ·〉) →Ag (v ′, 〈s ′1, s
′
2, · · ·〉) where the system con-

figuration after the transition is(v ′, 〈s ′1, s
′
2, · · ·〉) andAg is a set of participating processes. For

simplicity, setAg (short foragent) is often omitted if irreverent. A system transition could be one

of the following forms:

(i) a local transition ofPi which updates its local state (fromsi to s ′i ) and possibly updating global

variables (fromv to v ′). An example is the transition fromR0 to R1 of a reader. In such a case,Pi

is the participating process, i.e.,Ag = {Pi}.

(ii) a multi-party synchronous transition among processesPi , · · · ,Pj . Examples are message send-

ing/receiving through channels with buffer size 0 (e.g., asin Promela [111]) and alphabetized barrier

synchronization in the classic CSP. In such a case, local states of the participating processes are up-

dated simultaneously. The participating processes arePi , · · · ,Pj .

(iii) process creation ofPm by Pi . In such a case, an additional local state is appended to the

sequence〈s1, s2, · · ·〉, and the state ofPi is changed at the same time. Assume for now that the

sequence〈s1, s2, · · ·〉 is always finite before process creation. It becomes clear inSection 5.6 that

this assumption is not necessary. In such a case, the participating processes arePi andPm .

(iv) process deletion ofPi . In such case, the local state ofPi is removed from the sequence

(〈s1, s2, · · ·〉). The participating process isPi .

Definition 18 (Concrete Transition System)Let S = (VarG , initG ,Proc) be a system model,
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whereProc = P1 ‖ P2 ‖ · · · such that each processPi = (Si , initi ,→i) is a local transi-

tion system. The concrete transition system correspondingto S is a 3-tupleTS = (C , init , →֒)

whereC is the set of all reachable system configurations,init is the initial concrete configuration

(initG , 〈init1, init2, · · ·〉) and →֒ is the global transition relation obtained by composing thelocal

transition relations→i in parallel.

An execution ofS is an infinite sequence of configurationsE = 〈c0, c1, · · · , ci , · · ·〉wherec0 = init

andci →֒ ci+1 for all i ≥ 0. Given an execution in the setting of parameterized system,we can de-

fineprocess-level weak fairness(see Definition 8),process-level strong fairness(see Definition 10)

andstrong global fairness(see Definition 11) in a similar way as in Section 4.2.

Given theRW model presented in Figure 5.2, it can be shown thatRW � Prop1. It is, however, not

easy to prove it using standard model checking techniques. The challenge is that many or unbounded

number of readers and writers cause state space explosion. Also,RW fails Prop2 without fairness

constraint. For instance, a counterexample is〈startwrite, stopwrite〉∞ , i.e., a writer keeps updating

the resource without any reader ever accessing it. This is unreasonable if the system scheduler is

well-designed or the processors that the readers/writers execute on have comparable speed. To avoid

such counterexamples, we need to perform model checking under fairness.

5.4.2 Process Counter Representation

Parameterized systems contain behaviorally similar or even identical processes. Given a configura-

tion (v , 〈· · · , si , · · · , sj , · · ·〉), multiple local states4 may be equivalent. A natural “abstraction” is to

record only how many copies of a local state are there.

Let S be a system model. An alternative representation of a concrete configuration is a pair(v , f )

wherev is the valuation of the global variables andf is a total function from a local state to the

set of processes residing at the state. For instance, given that R0 is a local state in Figure 5.2,

f (R0) = {Pi ,Pj ,Pk} if and only if reader processesPi , Pj andPk are residing at stateR0. This

4The processes residing at the local states may or may not havethe same process type.
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representation is sound and complete because processes at equivalent local states are behavioral

equivalent and‖ composition is symmetric and associative (so that processes ordering is irrelevant).

Furthermore, given a local states and processes residing ats, we may consider the processes indis-

tinguishable (as the process identifiers must be irrelevantgiven the local states are equivalent) and

abstract the process identifiers. That is, instead of associating a set of process identifiers with a local

state, we only count the number of processes. Instead of setting f (R0) = {Pi ,Pj ,Pk}, we now set

f (R0) = 3. In this and the next section, we assume that the total number of processes is bounded.

Definition 19 (Abstract Configuration) LetS be a system model. An abstract configuration ofS

is a pair (v , f ) wherev is a valuation of the global variables andf : State → N is a total function5

such thatf (s) = n if and only ifn processes are residing ats.

Given a concrete configurationcc = (v , 〈s0, s1, · · ·〉), let F(〈s0, s1, · · ·〉) returns the functionf

(refer to Definition 19) — that is,f (s) = n if and only if there aren states in〈s0, s1, · · ·〉 which are

equivalent tos. Further, we writeF(cc) to denote(v ,F(〈s0, s1, · · ·〉)). Given a concrete transition

c →Ag c′, the corresponding abstraction transition is written asa →֒Ls a ′ wherea = F(c) and

a ′ = F(c′) andLs (short for local-states) is the local states at which processes inAg are. That is,

Ls is the set of local states from which there is a process leaving during the transition. We remark

thatLs is obtained similarly asAg is.

Given a states and an abstract configurationa, enabled(s, a) to be true if and only if∃ a ′, a →֒Ls

a ′ ∧ s ∈ Ls, i.e., a process is enabled to leaves in a. For instance, given the transition system in

Figure 5.3,Ls = {R0} for the transition fromA0 to A1 andenabled(R0,A1) is true.

Definition 20 (Abstract Transition System) Let S = (VarG , initG ,Proc) be a system model,

whereProc = P1 ‖ P2 ‖ · · · such that each processPi = (Si , initi ,→i ) is a local transition

system. An abstract transition system ofS is a 3-tupleAS = (C , init , →֒) whereC is the set of all

reachable abstract system configurations,init ∈ C is (initG ,F(initG , 〈init1, init2, · · ·〉)) and →֒

is the abstract global transition relation.

5In PAT, the mapping from a local state to 0 is always omitted for memory saving.
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A0: ((writing,false),(counter,0),(R0,2),(R1,0),(W0,2),(W1,0))
A1: ((writing,false),(counter,1),(R0,1),(R1,1),(W0,2),(W1,0))

A3: ((writing,true),(counter,0),(R0,2),(R1,0),(W0,1),(W1,1))
A2: ((writing,false),(counter,2),(R0,0),(R1,2),(W0,2),(W1,0))

A2 A0 A3A1
stopread stopread startwrite

stopwritestartreadstartread

Figure 5.3: Readers/writers model

We remark that the abstract transition relation can be constructedwithoutconstructing the concrete

transition relation, which is essential to avoid state space explosion. Given the model in Figure 5.2,

if there are 2 readers and 2 writers, then the abstract transition system is shown in Figure 5.3.

A concrete execution ofTS can be uniquely mapped to an execution ofAS by applyingF to every

configuration in the sequence. For instance, letX = 〈c0, c1, · · · , ci , · · ·〉 be an execution ofTS (i.e.,

a concrete execution), the mapped execution ofAS is L = 〈F(c0),F(c1), · · · ,F(ci ), · · ·〉 (i.e., the

abstract execution). In an abuse of notation, we writeF(X ) to denoteL. Notice that the valuation

of the global variables are preserved. Essentially, no information is lost during the abstraction. It

can be shown thatAS � φ if and only if TS � φ.

5.5 Fair Model Checking Algorithm with Counter Abstraction

Process counter abstraction may significantly reduce the number of states. It is useful for verifying

safety properties. However, it conflicts with the notion of fairness. A counterexample to a liveness

property under fairness must be a fair execution of the system. By Definition 8 and 10, the knowl-

edge of which processes are enabled or engaged is necessary in order to check whether an execution

is fair or not. In this section, we develop the necessary theorems and algorithms to show that model

checking under fairness constraints is feasible even without the knowledge of process identifiers.

By assumption the total number of processes is finite, the abstract transition systemAS has finitely

many states. An infinite execution ofAS must form a loop (with a finite prefix). Assume that the
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loop starts with indexi and ends withk , written asLk
i = 〈c0, · · · , ci , ci+1, · · · , ci+k , ci+k+1〉where

ci+k+1 = ci . We define the following functions to collect loop properties and use them to define

fairness later.

always(Lk
i ) = {s : State | ∀ j : {i , · · · , i + k}, enabled(s, cj )}

once(Lk
i ) = {s : State | ∃ j : {i , · · · , i + k}, enabled(s, cj )}

leave(Lk
i ) = {s : State | ∃ j : {i , · · · , i + k}, cj →֒Ls cj+1 ∧ s ∈ Ls}

Intuitively, always(Lk
i ) is the set of local states from where there are processes, which are ready to

make some progress, throughout the execution of the loop;once(Lk
i ) is the set of local states where

there is a process which is ready to make some progress, at least once during the execution of the

loop; leave(Lk
i ) is the set of local states from which processes leave during the loop. For instance,

given the abstract transition system in Figure 5.3,X = 〈A0,A1,A2〉∞ is a loop starting with index

0 and ending with index2. always(X ) = ∅; once(X ) = {R0,R1,W 0}; leave(X ) = {R0,R1}.

The following lemma checks whether an execution is fair by only looking at the abstract execution.

Lemma 5.5.1 Let S be a system model;X be an execution ofTS ; Lk
i = F(X ) be the respective

abstract execution ofAS . (1). always(Lk
i ) ⊆ leave(Lk

i ) if X is weakly fair; (2). once(Lk
i ) ⊆

leave(Lk
i ) if X is strongly fair.

Proof: (1). AssumeX is weakly fair. By definition, if states is in always(Lk
i ), there must be

a process residing ats which is enabled to leave during every step of the loop. If it is the same

processP , P is always enabled during the loop and therefore, by Definition 8, P must participate

in a transition infinitely often becauseX is weakly fair. Therefore,P must leaves during the loop.

By definition,s must be inleave(Lk
i ). If there are different processes enabled ats during the loop,

there must be a process leavings, so thats ∈ leave(Lk
i ). Thus,always(Lk

i ) ⊆ leave(Lk
i ).

(2). AssumeX is strongly fair. By definition, if states is in once(Lk
i ), there must be a process

residing ats which is enabled to leave during one step of the loop. LetP be the process. BecauseP

is infinitely often enabled, by Definition 8,P must participate in a transition infinitely often because

X is strongly fair. Therefore,P must leaves during the loop. By definition,s must be inleave(Lk
i ).2
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The following lemma generates a concrete fair execution if an abstractfair execution is identified.

Lemma 5.5.2 LetS be a model;Lk
i be an execution ofAS . (1). There exists a weakly fair execution

X of TS such thatF(X ) = Lk
i if always(Lk

i ) ⊆ leave(Lk
i ); (2). If once(Lk

i ) ⊆ leave(Lk
i ), there

exists a strongly fair executionX of TS such thatF(X ) = Lk
i .

Proof: (1). By a simple argument, there must exist an executionX of TS such thatF(X ) = Lk
i .

Next, we show that we can unfold the loop (of the abstract fairexecution) as many times as necessary

to let all processes make some progress, so as to generate a weakly fair concrete execution. Assume

P is the set of processes residing at a states during the loop. Becausealways(Lk
i ) ⊆ leave(Lk

i ),

if s ∈ always(Lk
i ), there must be a transition during which a process leavess. We repeat the loop

multiple times and choose a different process fromP to leave each time. The generated execution

must be weakly fair.

(2). Similarly as above. 2
The following theorem shows that we can perform model checking under fairness by examining the

abstract transition system only.

Theorem 5.5.3 LetS be a system model. Letφ be a LTL property.(1). S �wf φ if and only if for

all executionsLk
i of AS we havealways(Lk

i ) ⊆ leave(Lk
i ) ⇒ Lk

i � φ; (2). S �sf φ if and only if

for all executionLk
i of AS we haveonce(Lk

i ) ⊆ leave(Lk
i )⇒ Lk

i � φ.

Proof: (1). if part: Assume that for allLk
i of AS we haveLk

i � φ if always(Lk
i ) ⊆ leave(Lk

i ), and

S 6�wf φ. By definition, there exists a weakly fair executionX of TS such thatX 6� φ. Let Lk
i

beF(X ). By lemma 5.5.1,always(Lk
i ) ⊆ leave(Lk

i ) and henceLk
i � φ. Because our abstraction

preserves valuation of global variables,Lk
i 6� φ asX 6� φ. We reach a contradiction.

only if part: Assume thatS �wf φ and there existsLk
i of AS such thatalways(Lk

i ) ⊆ leave(Lk
i ), and

Lk
i 6�wf φ. By lemma 5.5.2, there must existX of TS such thatX is weakly fair. Because process

counter abstraction preserves valuations of global variables,X 6� φ. Hence, we reach contradiction.

(2). Similarly as above. 2
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Thus, in order to prove thatS satisfiesφ under fairness, we need to show that there is no execution

Lk
i of AS such thatLk

i 6� φ and the execution satisfies an additional constraint for fairness, i.e.,

always(Lk
i ) ⊆ leave(Lk

i ) for weak fairness oronce(Lk
i ) ⊆ leave(Lk

i ) for strong fairness. Or, if

S 6�wf φ, then there must be an executionLk
i of AS such thatLk

i satisfies the fairness condition and

Lk
i 6� φ. In such a case, we can generate a concrete execution.

Following the above discussion, fair model checking parameterized systems is reduced to searching

for particular loops inAS . We amend those SCC based algorithms presented in Chapter 4 to cope

with weak or strong fairness and process counter abstraction. GivenAS and a propertyφ, model

checking involves searching for an execution ofAS which failsφ. In automata-based model check-

ing, the negation ofφ is translated to an equivalent Büchi automatonB¬φ, which is then composed

with AS . Notice that a state in the produce ofAS andB¬φ is a pair(a, b) wherea is an abstract

configuration ofAS andb is a state ofB¬φ.

Given a transition system, a strongly connected subgraph isa subgraph such that there is a path

connecting any two states in the subgraph. An MSCC is a maximal strongly connected subgraph.

Given the product ofAS andB¬φ, let scg be a set of states which, together with the transitions

among them, forms a strongly connected subgraph. We sayscg is accepting if and only if there

exists one state(a, b) in scg such thatb is an accepting state ofB¬φ. In an abuse of notation, we

refer toscg as the strongly connected subgraph in the following. The following lifts the previously

defined functions on loops to strongly connected subgraphs.

always(scg) = {y : State | ∀ x : scg , enabled(y , x )}
once(scg) = {y : State | ∃ x : scg , enabled(y , x )}
leave(scg) = {z : State | ∃ x , y : scg , z ∈ leave(x , y)}

always(scg) is the set of local states such that for any local state inalways(scg), there is a process

ready to leave the local state for every state inscg ; once(scg) is the set of local states such that

for some local state inonce(scg), there is a process ready to leave the local state for some state

in scg ; and leave(scg) is the set of local states such that there is a transition inscg during which

there is a process leaving the local state. Given the abstract transition system in Figure 5.3,scg =

{A0,A1,A2,A3} constitutes a strongly connected subgraph.always(scg) = nil; once(scg) =

{R0,R1,W 0,W 1}; leave(scg) = {R0,R1,W 0,W 1}.
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procedure checkingUnderWeakFairness(AS ,B¬φ)

1. while there are un-visited states inAS ⊗B¬φ

2. use the improved Tarjan’s algorithm to identify one SCC, sayscg ;
3. if scg is accepting toB¬φ andalways(scg) ⊆ leave(scg)

4. generate a counterexample andreturn false;
5. endif
6. endwhile
7. return true;

Figure 5.4: Model checking algorithm under weak fairness

Lemma 5.5.4 LetS be a system model. There exists an executionLk
i ofAS such thatalways(Lk

i ) ⊆

leave(Lk
i ) if and only if there exists an MSCCscc of AS such thatalways(scc) ⊆ leave(scc).

Proof: The if part is trivially true. Theonly if part is proved as follows. Assume there exists

executionLk
i of AS such thatalways(Lk

i ) ⊆ leave(Lk
i ), there must exist a strongly connected

subgraphscg which satisfiesalways(scg) ⊆ leave(scg). Let scc be the MSCC which contains

scg . We havealways(scc) ⊆ always(scg), therefore, the MSCCscc satisfiesalways(scc) ⊆

always(scg) ⊆ leave(scg) ⊆ leave(scc). 2
The above lemma allows us to use MSCC detection algorithms for model checking under weak

fairness. Figure 5.4 presents an on-the-fly model checking algorithm based on Tarjan’s algorithm

for identifying MSCCs. The idea is to search for an MSCCscg such thatalways(scg) ⊆ leave(scg)

andscg is accepting. The algorithm terminates in two ways, either one such MSCC is found or all

MSCCs have been examined (and it returns true). In the formercase, an abstract counterexample is

generated. In the latter case, we successfully prove the property. Given the system presented in Fig-

ure 5.3,{A0,A1,A2,A3} constitutes the only MSCC, which satisfiesalways(scg) ⊆ leave(scg).

The complexity of the algorithm is linear in the number of transitions ofAS .

Lemma 5.5.5 LetS be a system model. There exists an executionLk
i of AS such thatonce(Lk

i ) ⊆

leave(Lk
i ) if and only if there exists a strongly connected subgraphscg of AS such thatonce(scg) ⊆

leave(scg).
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procedure checkingUnderStrongFairness(AS ,B¬φ, states)

1. while there are un-visited states instates
2. use Tarjan’s algorithm to identify a subset ofstates which forms a SCC, sayscg ;
3. if scg is accepting toB¬φ

4. if once(scg) ⊆ leave(scg)
5. generate a counterexample andreturn false;
6. else ifcheckingUnderStrongFairness(AS ,B¬φ, scg \ bad(scg)) is false
7. return false;
8. endif
9. endif
10. endwhile
11. return true;

Figure 5.5: Model checking algorithm under strong fairness

We skip the proof of the lemma as it is straightforward. The lemma allows us to extend the algorithm

proposed in [202] for model checking under strong fairness.Figure 5.5 presents the modified algo-

rithm. The idea is to search for a strongly connected subgraph scg such thatonce(scg) ⊆ leave(scg)

andscg is accepting. Notice that a strongly connected subgraph must be contained in one and only

one MSCC. The algorithm searches for MSCCs using Tarjan’s algorithm. Once an MSCCscg is

found (at line 2), ifscg is accepting and satisfiesonce(scg) ⊆ leave(scg), then we generate an

abstract counterexample. Ifscg is accepting but failsonce(scg) ⊆ leave(scg), instead of throwing

away the MSCC, we prune a set ofbad statesfrom the SCC and then examinate the remaining states

(at line 6) for strongly connected subgraphs. Intuitively,bad statesare the reasons why the SCC

fails the conditiononce(scg) ⊆ leave(scg). Formally,

bad(scg) = {x : scg | ∃ y , y 6∈ leave(scg) ∧ y ∈ enabled(y , x )}

That is, a states is bad if and only if there exists a local statey such that a process may leave

y at states and yet there is no process leavingy given all transitions inscg . By pruning all bad

states, there may be a strongly connected subgraph in the remaining states satisfying the fairness

constraint.

The algorithm is partly inspired by the one presented in [106] for checking emptiness of Streett

automata. Soundness of the algorithm follows the discussion in [202, 106]. It can be shown that any
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state of a strongly connected subgraph which satisfies the constraints is never pruned. As a result, if

there exists such a strongly connected subgraphscg , a strongly connected subgraph which contains

scg or scg itself must be found eventually. Termination of the algorithm is guaranteed because the

number of visited states and pruned states are monotonically increasing. The complexity of the

algorithm is linear in#states ×#trans where#states and#trans are the number of states and

transitions ofAS respectively. A tighter bound on the complexity can be foundin [106].

5.6 Counter Abstraction for Infinitely Many Processes

In the previous sections, we assume that the number of processes (and hence the size of the abstract

transition system) is finite and bounded. If the number of processes is unbounded, there might

be unbounded number of processes residing at a local state, e.g., the number of reader processes

residing atR0 in Figure 5.2 might be infinite. In such a case, we choose acutoff number and then

apply further abstraction. In the following, wemodifythe definition of abstract configurations and

abstract transition systems to handle unbounded number of processes.

Definition 21 Let S be a system model with unboundedly many processes. LetK be a positive

natural number (i.e., the cutoff number). An abstract configuration ofS is a pair (v , g) wherev

is the valuation of the global variables andg : State → N ∪ {ω} is a total function such that

g(s) = n if and only ifn(≤ K ) processes are residing ats andg(s) = ω if and only if more than

K processes are ats.

Given a configuration(v , 〈s0, s1, · · ·〉), we define a functionG similar to functionF , i.e.,G(〈s0, s1,

· · ·〉)) returns functiong (refer to Definition 21) such that given any states, g(s) = n if and only if

there aren states in〈s0, s1, · · ·〉 which are equivalent tos andg(s) = ω if and only if there are more

thanK states in〈s0, s1, · · ·〉 which are equivalent tos. Furthermore,G(c) = (v ,G(〈s0, s1, · · ·〉)).

The abstract transition relation ofS (as per the above abstraction) can be constructed without con-

structing the concrete transition relation. We illustratehow to generate an abstract transition in the

following. Given an abstract configuration(v , g), if g(s) > 0, a local transitionfrom states to state
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A2 A0 A3A1
stopread startwrite

stopwritestartread

stopread

startread

A0: ((writing,false),(counter,0),(R0,inf),(R1,0),(W0,inf),(W1,0))
A1: ((writing,false),(counter,1),(R0,inf),(R1,1),(W0,inf),(W1,0))
A2: ((writing,false),(counter,inf),(R0,inf),(R1,inf),(W0,inf),(W1,0))
A3: ((writing,true),(counter,0),(R0,inf),(R1,0),(W0,inf),(W1,1))

startread

stopread

Figure 5.6: Abstract readers/writers model

s ′, creating a process with initial stateinit may result in different abstract configurations(v , g ′)

depending ong . In particular,g ′ equalsg except thatg ′(s) = g(s) − 1 andg ′(s ′) = g(s ′) + 1 and

g ′(init) = g(init)+1 assumingω+1 = ω, K +1 = ω andω−1 is eitherω or K . We remark that

by assumptionState is a finite set and therefore the domain ofg is always finite. This allows us to

drop the assumption that the number of processes must be finite before process creation. Similarly,

we abstract synchronous transitions and process termination.

Theabstract transition systemfor a system modelS with unboundedly many processes, written as

RS (to distinguish fromAS ), is now obtained by applying the aforementioned abstract transition

relation from the initial abstract configuration.

Example 5.6.1 Assume that the cutoff number is 1 and there are infinitely many readers and writers

in the readers/writers model. Becausecounter is potentially unbounded and, we markcounter as

a special process counter variable which dynamically counts the number of processes which are

reading (at stateR1). If the number ofreadingprocesses is larger than the cutoff number,counter

is set toω too. The abstract transition systemARW is shown in Figure 5.6. The abstract transition

system may contain spurious traces. For instance, the trace〈start , (stopread)∞〉 is spurious. It is

straightforward to prove thatARW � Prop1 based on the abstract transition system. end

The abstract transition system now has only finitely many states even if there are unbounded number

of processes and, therefore, is subject to model checking. As illustrated in the preceding example,

the abstraction is sound but incomplete in the presence of unboundedly many processes. Given an

executionX of TS , let G(X ) be the corresponding execution of the abstract transition system. An
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executionL of RS is spurious if and only if there does not exist an executionX of TS such that

G(X ) = L. Because the abstraction only introduces execution traces(but does not remove any),

we can formally establish a simulation relation (but not a bisimulation) between the abstract and

concrete transition systems, that is,RS simulatesTS . Thus, while verifying a LTL propertyφ we

can concludeTS � φ if we can show thatRS � φ. Of course,RS � φ will be accomplished by

model checking under fairness.

The following re-establishes Lemma 5.5.1 and (part of) Theorem 5.5.3 in the setting ofRS . We skip

the proof as they are similar to that of Lemma 5.5.1 and Theorem 5.5.3 respectively.

Lemma 5.6.2 Let S be a system model,X be an execution ofTS andLk
i = G(X ) be the corre-

sponding execution ofRS . We have(1). always(Lk
i ) ⊆ leave(Lk

i ) if X is weakly fair;(2).once(Lk
i )

⊆ leave(Lk
i ) if X is strongly fair.

Theorem 5.6.3 LetS be a system model andφ be a LTL property.(1). S �wf φ if for all execution

tracesLk
i of RS we havealways(Lk

i ) ⊆ leave(Lk
i ) ⇒ Lk

i � φ; (2). S �sf φ if for all execution

tracesLk
i of RS we haveonce(Lk

i ) ⊆ leave(Lk
i )⇒ Lk

i � φ;

The reverse of Theorem 5.6.3 is not true because of spurious traces. We remark that the model

checking algorithms presented in Section 5.5 are applicable to RS (as the abstraction function is

irrelevant to the algorithm). By Theorem 5.6.3, if model checking of RS (using the algorithms

presented in Section 5.5 under weak/fairness constraint) returns true, we conclude that the system

satisfies the property (under the respective fairness).

5.7 Experiments of Process Counter Abstraction

In this section, we conduct experiments on real-life systems to demonstrate the effectiveness of the

process counter abstraction technique. The experimental results are summarized in the Table 5.2,

where NA means not applicable (hence not tried, due to limit of the tool); NF means not feasible

(out of 2GB memory or running for more than 4 hours). The data is obtained with Intel 9550 CPU at
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Model #Proc Property No Fairness Weak Fairness Strong Fairness

Result PAT SPIN Result PAT SPIN Result PAT SPIN

LE 10 32 one leader false 0.04 0.02 true 0.06 320 true 0.06 NA

LE 100 32 one leader false 0.04 0.02 true 0.27 NF true 0.28 NA

LE 1000 32 one leader false 0.04 NA true 2.26 NA true 2.75 NA

LE 10000 32 one leader false 0.04 NA true 23.9 NA true 68.8 NA

LE ∞ 32 one leader false 0.06 NA true 265 NA true 464 NA

KV 2 PropKvalue false 0.05 0 true 0.6 1.14 true 0.6 NA

KV 3 PropKvalue false 0.05 0 true 4.56 61.2 true 4.59 NA

KV 4 PropKvalue false 0.05 0.02 true 29.2 NF true 30.2 NA

KV 5 PropKvalue false 0.06 0.02 true 175 NF true 187 NA

KV ∞ PropKvalue false 0.12 NA ? NF NA ? NF NA

Stack 5 Propstack false 0.06 0.02 false 0.78 NF false 0.74 NA

Stack 7 Propstack false 0.06 0.02 false 11.3 NF false 12.1 NA

Stack 9 Propstack false 0.06 0.02 false 159 NF false 192 NA

Stack 10 Propstack false 0.05 0.02 false 596 NF false 780 NA

ML 10 23 access true 0.11 21.5 true 0.11 107 true 0.11 NA

ML 100 23 access true 1.04 NF true 1.04 NF true 1.04 NA

ML 1000 23 access true 11.0 NA true 11.1 NA true 11.1 NA

ML ∞ 23 access true 13.8 NA true 13.8 NA true 13.8 NA

Table 5.2: Experimental results of process counter abstraction

2.83GHz and 2GB RAM. We compared PAT with SPIN [111] on model checking under no fairness

or weak fairness. Notice that SPIN does not support strong fairness and is limited to 255 processes.

The first model (LE ) is a self-stabilizing leader election protocol for complete networks (i.e., any

pair of nodes are connected) [88]. The property is that eventually always there is one and only one

leader in the network, i.e.,32 one leader . PAT successfully proved the property under weak or

strong fairness for many or unbounded number of network nodes (with cutoff number 2). SPIN

took much more time to prove the property under weak fairness. The reason is that the fair model

checking algorithm in SPIN copies the global state machinen + 2 times (forn processes) so as to

give each process a fair chance to progress, which increasesthe verification time by a factor that is

linear in the number of network nodes.
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The second model (KV ) is a K-valued register [22]. A shared K-valued multi-reader single-writer

registerR can be simulated by an array ofK binary registers. The complete model can be found in

Example 7.2.1 in Section 7.2.1. Aprogressproperty we tested is thatPropKvalue = 2(read inv →3read res), i.e., a reading operation (read inv ) eventually returns some valid value (read res).

With no fairness, both PAT and SPIN identified a counterexample quickly. Because the model con-

tains many local states, the size ofAS increases rapidly. PAT proved the property under weak/strong

fairness for 5 processes, whereas SPIN was limited to 3 processes with weak fairness.

The third model (Stack ) is a lock-free stack [210]. In concurrent systems, in orderto improve the

performance, stacks can be implemented by a linked list shared by arbitrary number of processes.

Each push or pop operation keeps trying to update the stack until no other process interrupts. The

property of interest is that a process must eventually be able to update the stack, which can be

expressed as the LTLPropstack = 2(push inv → 3push res) where eventpush inv (push res)

marks the starting (ending) ofpush operation. The property is false even under strong fairness.

The fourth model (ML) is the Java meta-lock algorithm [5]. In Java language, any object can be

synchronized by different threads via synchronized methods or statements. The Java meta-locking

algorithm is designed to ensure the mutually exclusive access to an object. A synchronized method

first acquires a lock on the object, executes the method and then releases the lock. The property is

that always eventually some thread is accessing the object,i.e.,23 access, which is true without

fairness. This example shows that the computational overhead due to fairness is negligible in PAT.

In another experiment, we use a model in which processes all behave differently (so that counter

abstraction results in no reduction) and each process has many local states. We then compare the

verification results with or without process counter abstraction. The result shows the computational

and memory overhead for applying the abstraction is negligible. In summary, the enhanced PAT

model checker complements existing model checkers in termsof not only performance but also the

ability to perform model checking under weak or strong fairness with process counter abstraction.
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5.8 Summary

In the literature, a number of population protocols have been proposed to solve problems in wireless

sensor networks. The correctness of these protocols relieson global fairness, which makes their

automatic verification using existing model checkers expensive or even infeasible. In this chapter,

we have applied proposed fairness model checking algorithms, designed to handle verification under

fairness more efficiently, to a set of self-stabilizing population ring protocols. We have shown

that the model checking algorithm allows us to successfullyverify instances of these protocols.

Moreover, it has helped us to identify one previously unknown bug in a leader election protocol.

During the analysis, we have faced the infamous state explosion problem (see Table 5.1). To solve

this problem, we studied model checking under fairness withprocess counter abstraction. We pre-

sented a fully automatic method for property checking underfairness with process counter abstrac-

tion. We showed that fairness can be achieved without the knowledge of process identifiers. We

have shown the effectiveness of our approach by conducting experiments on real-world systems.

Pang et al [161] applied the SPIN model checker to establish the correctness of a family of popu-

lation protocols. Only small networks (i.e., with few nodes) were verified under weak fairness in

SPIN. Theorem proving is used in verifying population protocols with arbitrary size [64]. However,

translating protocols into theorem prover accepted formalism and manual proof make this approach

difficult to apply. PAT can handle global fairness required for the correctness of most population

protocols, which makes PAT an ideal candidate for automatically verifying population protocols.

The works closest to counter abstraction approach are the methods presented in [63, 168, 167]. In

particular, verification of liveness properties under fairness is addressed in [167]. In [167], the fair-

ness constraints for the abstract system are generated manually (or via heuristics) from the fairness

constraints for the concrete system. Different from the above works, our method handles one (pos-

sibly large) instance of parameterized systems at a time anduses counter abstraction to improve

verification effectiveness. In addition, fairness conditions are integrated into the on-the-fly model

checking algorithm which proceeds on the abstract state representation - making our method fully

automated. Our method is also related to work on symmetry reduction [82, 57].



Chapter 6

Refinement Checking

The previous chapters have been focused on temporal logic model checking. An alternative ap-

proach is refinement checking, which has been successfully demonstrated by FDR [175]. In this

chapter, we enrich PAT with this capability.

Hoare’s classic Communicating Sequential Processes (CSP [108]) has been a rather successful

event-based modeling language for decades. Theoretical development on CSP has advanced for-

mal methods in many ways. Its distinguishable features likealphabetized parallel composition have

proven to be useful in modeling a wide range of systems.

FDR (Failures-Divergence Refinement) is thede factoanalyzer for CSP, which has been success-

fully applied in various domains. Based on the model checking algorithm presented in [175] and

later improved with other reduction techniques presented in [179], FDR is capable of handling large

systems. Nonetheless, since FDR was initially introduced,model checking techniques have evolved

much further in the last two decades. Quite a number of effective reduction methods have been pro-

posed which greatly enlarge the size the systems that can be handled. Some noticeable ones include

partial order reduction, symmetry reduction, predicate abstraction, etc. In this chapter, we present

a on-the-fly refinement checking algorithm designed to incorporate advanced model checking tech-

niques to analyze event-based hierarchical systems.

113



6.1. FDR AND REFINEMENT CHECKING 114

The remainder of the chapter is organized as follows. We briefly introduce FDR and its refinement

checking in Section 6.1. Section 6.2 proposes a refinement checking algorithm integrated with

partial order reduction. Section 6.3 presents the experimental results of the proposed algorithm,

compared with FDR model checker. Section 6.4 concludes thischapter.

6.1 FDR and Refinement Checking

Failures-Divergence Refinement (FDR [175]) is a well-established model checker for CSP. Different

from temporal logic based model checking, using FDR, safety, liveness and combination properties

can be verified by showing a refinement relation from the CSP model of the system to a CSP process

capturing the properties. In addition, FDR verifies whethera process is deadlock-free or not. In the

following, we review the notions of different refinement/equivalence relationship in terms of labeled

transition systems (see Section 3.1.2).

Given a modelS = (Var , initG ,P), let L = (S , init ,→) be the LTS ofS. Let s, s ′ be members

of S , Σ denote the set of all visible events inP , τ denote the set of all invisible events, andΣτ be

Σ ∪ τ . We define the following notions.

• enabled(s) = {e : Στ | ∃ s ′ • s
e
→ s ′}. A states is stable if and only ifτ 6∈ enabled(s).

• mrefusal(s) = Σ \ enabled(s) is the maximum refusal set, i.e., the maximum set of events

which can be refused.

• A state is a divergence statediv(s) if and only if s can be extended with infiniteτ transitions.

• The set of divergence traces ofL, written asdivergence(L), is {tr : Σ∗ | ∃ tr ′, tr ′ is a prefix

of tr ∧ ∃ s : S , init
tr ′
→ s ∧ div(s)}. Note that if some prefix of a given trace is a divergence

trace, the given trace is too.

• The set of failures ofL, written asfailures(L), is {(tr ,X ) : Σ∗ × 2Σ | ∃ s : S , init
tr
→ s ∧

X ⊆ Σ \ enabled(s)} ∪ {(tr ,Σ) : Σ∗ × 2Σ | tr ∈ divergence(L)}. Note that the system

state reached by a divergence state may refuse all events.
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The following defines refinement and equivalence.

Definition 22 (Refinement and Equivalence)LetLim = (Sim , initim ,→im) be a LTS represent-

ing an implementation. LetLsp = (Ssp , initsp , →sp) be a LTS representing a specification.

Lim refinesLsp in the trace semantics, written asLim ⊒T Lsp, if and only if traces(Lim ) ⊆

traces(Lsp). Lim refinesLsp in the stable failures semantics, written asLim ⊒F Lsp, if and

only if failures(Lim ) ⊆ failures(Lsp). Lim refinesLsp in the failures/divergence semantics,

written asLim ⊒D Lsp , if and only if failures(Lim ) ⊆ failures(Lsp) and divergence(Lim) ⊆

divergence(Lsp). Lim equalsLsp in the trace (stable failures/failures divergence) semantics if and

only if they refine each other in the respective semantics.

Different refinement relationship can be used to establish different properties. Safety can be verified

by showing a trace refinement relationship. Combination of safety and liveness is verified by show-

ing a stable failures refinement relationship if the system is divergence-free or otherwise by showing

a failures/divergences refinement relationship. The reader should refer to [178] for a discussion on

the expressiveness of CSP refinement. In the following, we write Im ⊒ Sp to meanLIm ⊒ LSp

whenever it will not cause confusion. Internally, equivalence relationships may be used to simplify

process expressions, e.g.,P 2 P is replaced byP for simplicity.

Example 6.1.1 The following models the classic dining philosophers [108],

Phil(i) = get .i .(i + 1)%N → get .i .i → eat .i →
→ put .i .(i + 1)%N → put .i .i → think .i → Phil(i)

Fork(i) = get .i .i → put .i .i → Fork(i) 2
get .(i − 1)%N .i → put .(i − 1)%N .i → Fork(i)

Pair(i) = (Phil(i) ‖ Fork(i)) \ {get .i .i , put .i .i , think .i}

College = (‖
N−1

i=0
Pair(i)) \

⋃N−1
i=0 {get .i .(i + 1)%N , put .i .(i + 1)%N }

whereN is a global constant (i.e., the number of philosophers),get .i .j (put .i .j ) is the action of

the i -th philosopher picking up (putting down) thej -th fork andfc is a global variable recording

the amount of food that has been consumed. The system is composed ofN philosopher-fork-pairs

running in parallel. Figure 6.1 is the transition system ofCollege with N = 2. All events except

the bolded ones are invisible.
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Figure 6.1: LTS for 2 dining philosophers

Assume that the following process is used to capture the property for the dining philosophers:

Prop =̂‖N−1
i=0 Eat(i) whereEat(i) = eat .i → Eat(i). It can be shown thatCollege trace-refines

Prop (given a particularN ). Informally speaking, that means it is possible for each philosopher to

eat, i.e.,{eat .0, · · · , eat .(N − 1)}∗ are traces ofCollege. In order to show that it isalwayspossible

for him/her to eat, we need to establishCollege ⊒F Prop, which is not true, i.e., assumeN = 2,

(〈get .0.1, get .1.0〉, {eat .0, eat .1}) is in failures(College) but notfailures(Prop). end

In order to check refinement, every reachable state of the implementation reachable from the initial

state via some trace must be compared with every state of the specification reachable via the same

trace. There may be many such states in the specification due to nondeterminism. In FDR, the

specification is firstly normalized so that there is exactly one state corresponding to each possible

trace. A state in the normalized LTS is a set of states which can be reached by the same trace

from the initial state. For instance, Figure 6.2 shows the normalized LTS of the one presented in

Example 6.1.1.

Definition 23 (Normalized LTS) Let (S , init ,→) be a LTS. The normalized LTS is(NS ,Ninit ,

NT ) whereNS is the set of subsets ofS , Ninit = τ∗(init), andNT = {(P , e,Q) | P ∈ NS ∧

Q = {s : S | ∃ v1 : P , ∃ v2 : S , (v1, e, v2) ∈→∧ s ∈ τ∗(v2)}}.

Given a normalized states ∈ NS ,

• enabled(s) is
⋃

x∈s enabled(x ),

• mrefusal(s) is {mrefusal(x ) | x ∈ s}, which is a set of maximum refusal sets,

• div(s) is true if and only if there existsx ∈ s such thatdiv(x ) is true.
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Figure 6.2: Normalized LTS for 2 dining philosophers

Given a LTS constructed from a process, the normalized LTS corresponds the normalized process.

A state in the normalized LTS groups a set of states in the original LTS which are all connected by

τ -transitions. Given a trace, exactly one state in the normalized LTS is reached. FDR then traverses

through every reachable states of the implementation and compares them with the corresponding

normalized states in the specification (refer to the algorithm presented in [175]).

6.2 An Algorithm for Refinement Checking

This section is devoted to algorithms for refinement checking. We start with reviewing a slightly

modified on-the-fly checking algorithm based on the one implemented in FDR and then improve it

with partial order reduction.

6.2.1 On-the-fly Refinement Checking Algorithm

Let Spec = (Ssp , initsp ,→sp) be a specification andImpl = (Sim , initim ,→im) be an imple-

mentation. Refinement checking is reduced to reachability analysis of the product ofImpl and

normalizedSpec. It has been shown that such an approach works well for certain models [179].

Nonetheless, because normalization in general is computationally expensive, it may not be always

desirable. Thus, we adopted an alternative approach. Figure 6.3 presents the on-the-fly refinement

checking algorithm. The algorithm similarly performs a reachability analysis in the product of the

implementation and the normalized specification. The difference is that normalization is brought

on-the-fly as well.
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procedure refines(Impl ,Spec)
0. checked := ∅;
1. pending .push((initim , τ

∗(initsp)));
2. while pending 6= ∅

3. (Im,NSp) := pending .pop();
4. checked := checked ∪ {(Im,NSp)};
5. if ¬(enabled(Im) \ {τ} ⊆ enabled(NSp)) – C1
6. ∨ (τ 6∈ Im ∧ ¬ existSuperSet(mrefusal(Im),mrefusal(NSp))) – C2
7. ∨ (¬ div(NSp) ∧ div(Im)) – C3
8. return false;
9. else
10. foreach (Im ′,NSp′) ∈ next(Im,NSp)

11. if (Im ′,NSp′) 6∈ checked

12. pending .push((Im ′ ,NSp′));
13. endif
14. endfor
15. endif
16. endwhile
17. return true;

Figure 6.3: Algorithm:refines(Impl ,Spec)

Details of the following procedures are skipped for brevity. Proceduretau(S ) explores all outgoing

transition ofS and returns the set of states reachable fromS via a τ -transition. We remark that

this procedure will be refined later. Procedureτ∗(S ) is implemented using a depth-first-search

procedure. The set of states reachable fromS via only τ transitions is returned. For instance,

given the LTS in Example 6.1.1,τ∗(0) returns{0, 1, 2, 6, 7, 11}. The proceduretau(S ) is applied

repeatedly until allτ -reachable states are identified. ProcedureexistSuperSet(x ,Y ) wherex is a

set andY is a set of sets returns true if and only if there existsy in Y such thatx ⊆ y .

Depending on the type of refinement relationship, the algorithm performs a depth-first search for

a pair(Im,NSp) whereIm is a state of the implementation andNSp is a state of the normalized

specification such that, the enabled events ofIm is not a subset of those ofNSp (C1), or Im is

stable and there does not exist a state inNSp which refuse all events which are refused byIm

(C2), or Im diverges but notNSp (C3). The algorithm returns true if no such pair is found. Note



6.2. AN ALGORITHM FOR REFINEMENT CHECKING 119

procedurenext(Im,NSp)
0. toReturn := ∅

1. foreach e ∈ enabled(Im)
2. if e == τ
3. foreach Im ′ ∈ tau(Im)
4. toReturn := toReturn ∪ {(Im ′,NSp)};
5. endfor
6. else
7. NSp′ := {s | ∃ x : NSp, x

e
→ x ′ ∧ s ∈ τ∗(x ′)};

8. foreach Im ′ such that Im e
→ Im ′

9. toReturn := toReturn ∪ {(Im ′,NSp′)};
10. endfor
11. endif
12. endfor
13. return toReturn;

Figure 6.4: Algorithm:next(Im,NSp)

that if C1 is satisfied, a counterexample is found for any refinement checking; if C2 is satisfied,

a counterexample is found for stable failures refinement checking or failure/divergence refinement

checking; ifC3 is satisfied, a counterexample is found for fairlure/divergence refinement checking

only. The procedure for producing a counterexample is skipped for simplicity. Producing the short-

est counterexample requires a breath-first-search after identifying the faulty state. Line 10 to 14 of

algorithmrefines explores new states of the product and pushes them into the stackpending . The

procedurenext is presented in Figure 6.4. Given a pair(Im,NSp), it returns a set of pairs of the

form (Im ′,NSp′) for each enabled event inIm. If the event is visible,NSp′ is a successor ofNSp

via the event andIm ′ is the successor ofIm via the same event. Otherwise,Im ′ is a successor of

Im via aτ -transition andNSp′ is Sp. Because normalization is brought on-the-fly, it is sometimes

possible to find a counterexample before the specification iscompletely normalized. The soundness

of the algorithm follows the soundness discussion in [175].
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6.2.2 Partial Order Reduction

As any model checking algorithm, refinement checking suffers from state space explosion. A num-

ber of attempts have been applied to reduce the search space [179]. This section describes the one

implemented in PAT based on partial order reduction. Our reduction realizes and extends the early

works on partial order reduction for process algebras and refinement checking presented in [214]

and [219]. The inspiration of the reduction is that events may be independent, e.g.,think .i is mu-

tually independent of each other. GivenP = P1 ‖ · · · ‖ Pn and two enabled eventse1 ande2, e1 is

dependent ofe2, written asdep(e1, e2), and vice versa only if one of the following is true,

• e1 ande2 are from the same processPi .

• e1 = e2 so that they may be synchronized, e.g.,get .i .i of processPhil(i) andget .i .i of

processFork(i).

• e1 updates a variable whiche2 depends on or vice versa, e.g., becauseeat .i updates a global

variable, alleat .i are inter-dependent.

Two events are independent if they are not dependent. Because the ordering of independent events

may be irrelevant to a given property, we may deliberately ignore some of the ordering so as to

reduce the search space. Partial order reduction may be applied to a number of places in algorithm

refines, namely, the proceduretau(S ) (and thereforetauclosure) andnext . Since indexed parallel

composition (and indexed interleaving) is the main source of state space explosion, we assume that

Im is of the form(V , (P1 ‖ P2 ‖ · · · ‖ Pn) \ X ) in the following and show how it is possible to

only explore a subset of the enabled transitions and yet preserve the soundness.

We start with applying partial order reduction to the procedure tau. Note thattau is applied to the

specification or implementation independently. Thus, as long as we guarantee that the reduced state

space (of eitherImpl or Spec) is failures/divergence equivalent to the full state space, we prove that

there is a refinement relationship in the reduced state spaceif and only if there is one in the full state

space. Figure 6.5 show our algorithm for selecting a subset of the τ -transitions. In the algorithm
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procedure tau ′(Im)
0. nextmoves := stubborn tau(Im);
1. if (nextmoves 6= ∅) then return nextmoves; else return tau(Im);

procedure stubborn tau(Im)
0. foreach Pi

1. por := enabledPi
(Im) ⊆ {τ} ∪ X ∧ enabledPi

(Im) = current(Pi)
2. foreach e ∈ enabledPi

(Im)
3. por := por ∧ ¬ loop(e) ∧ ∀ e ′ : Σj , j 6= i ⇒ ¬ dep(e, e ′)
4. endfor
5. if por then

6 return {(((· · · ‖ P ′
i ‖ · · ·) \X ),V ,C ′) | (Pi ,V ,C )

e
→ (P ′

i ,V ,C ′)};
7. endif
8. endfor
9. return ∅;

Figure 6.5: Algorithm:tau ′(Im) andstubborn tau(Im)

tau ′, we try to identify one set ofτ -transitions which are independent of the rest. If such a subset

is found (i.e., the algorithmstubborn tau returns a non-empty set of successors), only the subset is

explored further. Otherwise (i.e.,stubborn tau returns an empty set), all possibleτ -transitions are

explored. Instubborn tau, the idea is to identify one processPi such that allτ -transitions from

Pi are independent of those from other processes. Note that this approach is most effective with

τ -transition generated from one process only. It is possibleto handleτ -transition generated from

multiple processes with a slightly more complicated procedure (which we skip for brevity). The

details of the following simple procedures have been skipped. GivenIm = (V ,P), enabledPi
(Im)

is the set of enabled event from componentPi , i.e., enabled(Im) ∩ enabled((V ,Pi )). For in-

stance, givenCollege with N = 2, enabled(Pair(0)) is {get .0.1}. current(Pi) is the set of

events that could be enabled in processPi given the most cooperative environment. For instance,

current(Phil(i)) = {get .i .(i +1)%N } despite whether the fork is available or not.loop(e) is true

if and only if performing this event results in a state on the search stack, i.e., forming a cycle.

A processPi is considered a candidate only if all enabled events fromPi result inτ -transitions

(i.e.,enabledPi
(Im) ⊆ {τ}∪X ) and no other transition could be possibly enabled given a different
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environment (i.e.,enabledPi
(Im) = current(Pi)). The former is required because we are only

interested inτ -transitions. The latter (partly) ensures that no disabledevent fromPi is enabled

before executing an event fromPi . Furthermore, all enabled events fromPi must not form a cycle

(so that an enabled event is not skipped for ever) or dependent on an enabled event from some other

component. For detailed discussion on the intuition behindthese conditions, refer to [58].

Example 6.2.1 Assume thatN = 2 and the following is the current process expression,

((think .0→ Phil(0) ‖ put .1.0→ Fork(0)) \ {get .0.0, put .0.0, think .0}) ‖
(((get1.1→ eat .1→ put .1.0→ put .1.1→ think .1→ Phil(1)) ‖ Fork(1))
\{get .1.1, put .1.1, think .1}) \ {get .0.1, get .1.0, put .0.1, put .1.0}

where the first philosopher has just put down both forks whilethe second one has just picked up

his first fork. Twoτ -transitions are enabled, i.e., one due tothink .0 and the other due toget .1.1.

The algorithmtau ′ would return only the successor state after performingget .1.1 (assuming it is

not on the stack). This is the only event enabled for the second component of the outer parallel

composition is theτ transition due toget .1.1 (and thus the condition at line 1 ofstubborn tau is

satisfied). Becauseget .1.1 is local to the component,por is true after the loop from line 2 to line 4.

end

The above algorithms apply partial order reduction toτ -transitions only.tauclosure is refined as

well since it is based ontau ′. Unlike FDR, PAT is capable of applying partial order reduction to

visible events. Because bothImpl andSpec must make corresponding transitions for a visible event,

reduction for visible events is complicated. A conservative approach has been implemented in PAT.

Figure 6.6 present the algorithm, i.e., the refinednext . If Im is not stable, we apply the algorithm

stubborn tau to identify a subset ofτ -transitions (line 1). If no such subset exists, the pair(Im,Sp)

is fully expanded (line 11). An algorithmstubborn visible similar tostubborn tau is used to check

if a given visible evente is a candidate for partial order reduction. Functionprocesses(e) returns all

process components (of the parallel composition) whose alphabet containse. Firstly, we choose a

possible candidate fromIm using the algorithmstubborn visible. Evente is chosen if and only if,

for each process inprocesses(e), e is the only event from the process which can be enabled and all
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procedurenext ′(Im,Sp)
0. if τ ∈ enabled(Im)
1. nextmoves := stubborn tau(Im);
2. if (nextmoves 6= ∅) then return nextmoves;
3. else
4. foreach e ∈ enabled(Im)
5. por := stubborn visible(Im, e);
6. foreach S ∈ Sp

7. por := por ∧ stubborn visible(S , e);
8. endeach
9. if por then return {(Im ′, tauclosure(Sp′)) | Im

e
→ Im ′ ∧ Sp

e
→ Sp′}

10. endeach
11. return next(Im,Sp);

procedure stubborn visible(Im, e)
0. por := ¬ loop(e) ∧ ∀ e ′ : Σj • e ′ 6= e ⇒ ¬ dep(e, e ′);
1. foreach Pi ∈ processes(e)
2. por := por ∧ enabledPi

(Im) = current(Pi ) = {e};
3. return por ;

Figure 6.6: Algorithm:next ′(Im,Sp) andstubborn visible(Im, e)

other enabled events are independent ofe and performinge does not result in a state on the stack.

Next, we check ife satisfies the same set of conditions for each state in the normalized state of the

specification. If it does,e is used to expand the search tree at line 9 (and all other enabled events are

ignored). In order to find suche efficiently, the candidate events are selected in a pre-defined order,

i.e., events which have the least number of associated processes are chosen first. The soundness of

the partial order reduction algorithms is proved as follows.

Proof: The proof consists of two steps. Firstly, because the algorithm tau ′ applies to one model

only (whereasnext ′ must coordinate both the implementation and the specification), it is sufficient

to show that the reduction regardingτ -transitions (i.e., the algorithmstubborn tau) preserves fail-

ures/divergence equivalence. Secondly, we show that the reduction regarding visible events (i.e., the

algorithmnext ′) is sound.
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Given a LTS(S , init ,→), let Σ be the set of events,ΣI be the set of invisible events andΣV be the

set of visible events. A stubborn set generator is a functionÄ: S → 2Σ such that for everys ′0, s
′
n ,

ands0, s1, . . . ∈ S , e ∈ Ä(s0), ande1, e2, . . . ∈ Σ− Ä(s0). The set Ä(s) is called a stubborn set.

In [214], the following sufficient conditions has been proved to preserve CSP failures divergence

equivalence.

Ä0 If enabled(s0) 6= ∅ then Ä(s0) ∩ enabled(s0) 6= ∅

Ä1 If there are a trace〈s0, e0, s1, e1, · · · , en , sn , 〉 and(sn , e, s
′
n), then there ares ′0, . . . , s

′
n−1 ∈ S

such that〈s ′0, e0, s1, e1, · · · , en , s
′
n , 〉 and(s0, e, s

′
0).

Ä2 If there are a trace〈s0, e0, s1, e1, · · · , en , sn , 〉 and(s0, e, s
′
0), then there ares ′1, . . . , s

′
n ∈ S such

that〈s ′0, e0, s1, e1, · · · , en , s
′
n , 〉 and(sn , e, s

′
n ).

Ä3 If there are a trace〈s0, e0, s1, e1, · · ·〉 and (s0, e, s
′
0), then there ares ′1, s

′
2, . . . ,∈ S such that

〈s ′0, e0, s
′
1, e1, · · · , 〉.

Ä4 For everys ∈ S̈, eitherΣV∩ Ä(s) ∩enabled(s) = ∅ or ΣV ⊆ Ä(s) (or both).

Ä5 ∀ s ∈ S̈:∀ e ∈ enabled(s) : ∃ s ′ ∈S̈: s
e1,e2,···,en
→ s ′ ∧ e ∈Ä(s).

Ä6 For everys ∈ S̈, if ΣI ∩ enabled(s) 6= ∅, then Ä(s) ∩ ΣI ∩ enabled(s) 6= ∅.

It is thus sufficient to prove that the reduction regardingτ -transitions satisfies the sufficient condi-

tions. In the following, letE be the reduced set of successors (i.e., the stubborn set Ä(s)) andF be

the full set. Notice that the result returned by algorithmstubborn tau is returned by algorithmtau ′

or next ′ if and only if it is not empty (line 1 oftau ′ and line 2 ofnext ′). Thus, as long asF is not

empty,E is not empty. By line 3 of algorithmstubborn tau, transitions other than those selected in

E are all independent of those inE . By line 1 ofstubborn tau, because the set of possibly enabled

events must be the same of the set enabled event from the component, a transition from the com-

ponent must remain disabled unless a transition from the components has been taken. By theorem

3.2 of [214], Ä0, Ä1, Ä2, Ä3 hold. Because onlyτ -transitions are reduced intau ′, condition Ä4 is

trivial. By the condition¬ loop(e) at line 3 ofstubborn tau, no action will be ignored forever, and
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thus Ä5 holds. Ä6 is trivial for the same reason as for Ä4. By theorem 4.2 and 5.3 in [214], the

reduction regardingτ -transitions preserves trace/failures/divergence equivalence and thus is sound.

In order to prove that algorithmnext ′ is sound, we need to prove (in addition to the above) that the

reduction regarding visible events are sound as well. We reuse the results which have been proved

in [219] and show that the sufficient conditions proposed in [219] have been full-filled. Firstly, C1

and C3 in [219] are trivial true. Because of line 0 and 2 ofstubborn visible, an action dependent

(saye) on an action selected can only be executed after some actionselected has been executed.

There are two cases in which this might be violated. In both ofthese cases, some transition (saya)

independent ofe are executed, eventually enabled a transition that is dependent one. In the first

case, ifa belongs to some other components. A necessary condition forthis to happen is thata is

dependent one. This is prevented by line 1. In the other case,a belongs to the same component of

e, which is not possible because we require thatcurrent(Pi ) = {e}. The same argument applies

to line 6 to 8 which guarantees that no action dependent one is executed beforee is executed (and

there C1in [219] is proved). C2 in [219] is guaranteed by the condition¬ loop(e). Therefore, we

conclude the reduction is sound. 2
Example 6.2.2 Let P(i) = a.i → b.i → P(i). Assume the specification and implementation is

defined as:Spec =‖2i=0 P(i) andImpl =‖1i=0 P(i). Assume we need to show thatImpl trace-

refinesSpec. Initially, two events are enabled inImpl , i.e.,a.0 anda.1. Assume thata.0 is selected

first, becauseloop(a.0) is false anda.0 is independent of all other enabled events (i.e.,a.1), the

condition at line 0 of algorithmstubborn visible is satisfied. Becausea.0 is the only event that

would possibly be enabled fromP(0), the condition at line 2 is satisfied too. Thus,a.0 is a possible

candidate for partial order reduction forImpl . Similarly, it is also a candidate forSpec (which is

the only state in the normalized initial state). Therefore,we only need to explorea.0 initially. end
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6.3 Experiments

We compare PAT with FDR using benchmark models for refinementchecking. For the sake of a

fair comparison, all models use only standard CSP features which are supported by both. Table 6.1

shows the experiment results for three models, obtained on a2.0 GHz Intel Core Duo CPU and 1

GB memory. In the table, “−” means out of memory. Since FDR has no direct support for variables,

the experiments use three examples with process definitionsonly.

The first example is the classic dining philosopher problem,whereN is the number of philosophers

and forks. Because of the modeling, partial order reductionis not effective for this example. As a

result, PAT handles about107 states (about 11 philosophers and forks) in a reasonable amount of

time. FDR performs extremely well for this example because of the strategy discussed in [179].

Namely, it builds up a system gradually, at each stage compressing the subsystems to find an equiv-

alent process with (for this particular example) many less states. Notice that with manual hiding (to

localize some events), PAT performs much better. The secondexample is the classic readers/writers

problem, in which the readers and writers coordinate to ensure correct read/write ordering.N is

the number of readers/writers. Reduction in PAT is very effective for this example. As a result,

PAT handles a few hundreds of readers/writers efficiently, whereas FDR suffers from state space

explosion quickly (forN = 18). The third example is the Milner’s cyclic scheduling algorithm,

in which multiple processes are scheduled in a cyclic fashion. Partial order reduction is extremely

effective for this model. As a result, PAT handles hundreds of processes, whereas FDR handles less

than 14 processes. The experiment results show our best effort so far on automated model check-

ing of an extended version of CSP. It by no means suggests the limit of our tool. We believe that

by incorporating more reduction techniques (e.g., symmetry reduction) as well as fine-tuning the

implementation, the performance of PAT can be improved significantly.

We remark that we are using the intuitive modeling in these examples. FDR compression techniques

are not fully explored.
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Model N Property Result PAT (sec.) FDR (sec.)

Dining Philosophers 5 P [T= S true 0.28125 0.067

Dining Philosophers 6 P [T= S true 0.8593 0.069

Dining Philosophers 8 P [T= S true 13.78 0.076

Dining Philosophers 10 P [T= S true 430.28 0.107

Dining Philosophers 12 P [T= S true - 0.319

Reader/Writers 12 P [T= S true < 1 0.812

Reader/Writers 14 P [T= S true < 1 6.906

Reader/Writers 16 P [T= S true < 1 81.247

Reader/Writers 18 P [T= S true < 1 -

Reader/Writers 50 P [T= S true 1.097 -

Reader/Writers 100 P [T= S true 9 -

Reader/Writers 200 P [T= S true 77.515 -

Milner’s Cyclic Scheduler 11 P [T= S true < 1 19.011

Milner’s Cyclic Scheduler 12 P [T= S true < 1 89.421

Milner’s Cyclic Scheduler 13 P [T= S true < 1 419.021

Milner’s Cyclic Scheduler 14 P [T= S true < 1 -

Milner’s Cyclic Scheduler 50 P [T= S true 2.406 -

Milner’s Cyclic Scheduler 100 P [T= S true 9.765 -

Milner’s Cyclic Scheduler 200 P [T= S true 60.453 -

Table 6.1: Experiment results for refinement checking

6.4 Summary

In this chapter, we studied refinement checking problem. We started with the definitions of trace

refinement and equivalence. Based on the FDR approach, we proposed an on-the-fly refinement

checking algorithm, incorporated with partial order reduction. Experiments suggest that our ap-

proach is effective compared to FDR. Though we have shown cases where PAT outperforms FDR,

we believe that a full comparison is yet to be carried out withmore experiments.

Refinement checking of CSP programs is an area that has been widely explored. There has been
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research on techniques that require human assistance. Thiswork ranges from completely manual

proof techniques, such as Josephs’ work on relational approaches to CSP refinement checking [122],

to semi-automated techniques where humans must provide hints to guide a theorem prover in check-

ing refinements [76, 208, 116, 190]. Second, there has been work on fully automated techniques to

CSP refinement checking [175], the state of the art being embodied in the FDR tool [175]. Leuschel

and Butler [139] proposed a refinement checking approach forB language based on the searching

and tabling techniques of logic programming. However theirapproach is not on-the-fly. Kundu,

Lerner and Gupta [125] developed an automatic solution for refinement checking of infinite data

size. Their approach uses theorem proving to handle infinitestate space, which can also be combined

with our solution. Regarding partial order reductions, a number of algorithms have been previously

proposed for partial order reduction which is trace/failures/divergence preserving, e.g. [214, 219].

The algorithms presented in the chapter may be considered aslightweight realization and extension

of those presented in [214, 219].



Chapter 7

Applications of Refinement Checking

Refinement checking is a useful verification technique, which has many applications. As one exam-

ple, Allen and Garlen have shown how CSP programs can be used as types to describe the interfaces

of software components [7]. The refinement relation becomesa sub-typing relation, and refinement

checking can then be used to determine if two components, whose interfaces are specified using

CSP programs, are compatible. In this chapter, we demonstrate the usefulness of refinement check-

ing using two examples, namely, linearizability verification for concurrent objects and Web Service

conformance checking.

Linearizability is an important correctness criterion forimplementations of concurrent objects. Au-

tomatic checking of linearizability is challenging because it requires checking that 1) all executions

of concurrent operations be serializable, and 2) the serialized executions be correct with respect to

the sequential semantics. In the first half of this chapter, we describe a new method to automat-

ically check linearizability based on refinement relationsfrom abstract specifications to concrete

implementations. Our method avoids the often difficult taskof determining linearization points

in implementations, but can also take advantage of linearization points if they are given. The re-

finement verification algorithm developed in the previous chapter is used to automatically check

a variety of implementations of concurrent objects, including the first algorithms for the mailbox

problem [19] and Scalable NonZero Indicators [78]. Our system is able to prove or find all known

129
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and injected bugs in these implementations.

In recent years, many Web Service composition languages have been proposed. Web Servicechore-

ographydescribes collaboration protocols of cooperating Web Service participants from a global

view. Web Serviceorchestrationdescribes collaboration of the Web Services in predefined patterns

based on local decision about their interactions with one another at the message/execution level.

In the second part of this chapter, we present a model-based method to close the gap between the

two views. Building on the strength of advanced model checking techniques, Web Service chore-

ography and orchestration are verified against against eachother (to show that they are consistent).

Specialized optimization techniques are developed to handle large Web Service models.

The rest of the chapter is structured in two parts. The first part talks about linearizability checking.

Section 7.1 gives the definition of linearizability. Section 7.2 shows how to express linearizability

using refinement relations in general. Section 7.3 presentsexperimental results of linearizability

checking. The second part talks about Web Service conformance checking. Section 7.4 introduces

the background about Web Service and conformance checking.Section 7.5 introduces the modeling

languages to capture Web Service compositions. Section 7.6discusses how to verify Web Services.

Section 7.7 presents experimental results to show its scalability. Section 7.8 concludes this chapter.

7.1 Linearizability

Linearizability [107] is an important correctness criterion for implementations of objects shared by

concurrent processes, where each process performs a sequence of operations on the shared objects.

Informally, a shared object islinearizable if each operation on the object can be understood as

occurring instantaneously at some point, called thelinearization point, between its invocation and

its response, and its behavior at that point is consistent with the specification for the corresponding

sequential execution of the operation.

One common strategy for proving linearizability of an implementation (used in manual proofs or

automatic verification) is to determine linearization points in the implementation of all operations
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and then show that these operations are executed atomicallyat the linearization points [78, 13, 215].

However, for many concurrent algorithms, it is difficult or even impossible to statically determine

all linearization points. For example, in the K-valued register algorithm (Section 10.2.1 of [22]),

linearization points differ depending on the execution history. Furthermore, the linearization points

determined might be incorrect, which can give wrong resultsof linearizability. Therefore, it is

desirable to have automatic solutions to verifying these algorithms without knowing linearization

points. However, existing methods for automatic verification without using linearization points

either apply to limited kinds of concurrent algorithms [218] or are inefficient [215].

In this chapter, we describe a new method for automatically checking linearizability based on re-

finement relations from abstract specifications to concreteimplementations. Our method does not

rely on knowing linearization points, but can take advantage of them if given. The method exploits

model checking of finite state systems specified as concurrent processes with shared variables, and

is not limited to any particular kinds of concurrent algorithms. We exploit powerful optimizations

to improve the efficiency and scalability of our checking method.

Refinement requires that the set of execution traces of a concrete implementation be a subset of

that of an abstract specification. Thus, we express linearizability as trace refinement of operation

invocations and responses from the abstract specification to the concrete implementation, where the

abstract specification is correct with respect to sequential semantics. The idea of refinement has been

explored before: Alur et al. [12] showed that linearizability can be cast as containment of two regular

languages on a semi-commutative alphabet, and Derrick et al. [65] expressed linearizability as non-

atomic refinement of Object-Z and CSP models. Some similar approaches [59, 69, 148] prove

linearizability using trace simulation. In this following, we give a general and rigorous definition of

linearizability, regardless of the modeling language used, using refinement.

7.1.1 Formal Definition

Linearizability [107] is a safety property of concurrent systems, over sequences of events corre-

sponding to the invocations and responses of the operationson shared objects.
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In a shared memory modelM, O = {o1, . . . , ok} denotes a set ofk shared objects,P = {p1, . . . ,

pn} denotes a set ofn processes accessing the objects. Shared objects support a set of operations,

which are pairs of invocations and matching responses. Every shared object has a set of states that

it could be in. Asequential specificationof a (deterministic) shared object1 is a function that maps

every pair of invocation and object state to a pair of response and a new object state.

The behavior ofM is defined asH , the set of all possible sequences of invocations and responses

together with the initial states of the objects. A historyσ ∈ H induces an irreflexive partial order

<σ on operations such thatop1 <σ op2 if the response of operationop1 occurs inσ before the invo-

cation of operationop2. Operations inσ that are not related by<σ are concurrent.σ is sequential iff

<σ is a strict total order. Letσ|i be the projection ofσ on processpi , which is the subsequence ofσ

consisting of all invocations and responses that are performed bypi . Letσ|oi
be the projection ofσ

on objectoi , which is the subsequence ofσ consisting of all invocations and responses of operations

that are performed on objectoi .

A sequential historyσ is legal if it respects the sequential specifications of the objects.More specifi-

cally, for each objectoi , if sj is the state ofoi before the invocation of thej -th operationopj in σ|oi
,

then response ofopj and the resulting new statesj+1 of oi follow the sequential specification ofoi .

For example, a sequence of read and write operations of an object is legal if each read returns the

value of the preceding write if there is one, and otherwise itreturns the initial value. Every history

σ of a shared memory modelM must satisfy the following basic properties:

Correct interaction For each processpi , σ|i consists of alternating invocations and matching re-

sponses, starting with an invocation. This property prevents pipeliningoperations.

ClosenessEvery invocation has a matching response. This property preventspendingoperations.

In addition to these two, liveness property is also important here to guarantee the progress of the

systems. Even if the model satisfies linearizability, it maynot progress as desired. For instance,

1More rigorously, the sequential specification is for atypeof shared objects. For simplicity, however, we refer to both

actual shared objects and their types interchangeably in this chapter.
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even under a fair scheduler push/pop in Treiber’s stack algorithm [210] might never terminate if

there is always another concurrent push/pop. According to Section 2.3.2, liveness properties can

be formulated as Linear Temporal Logic (LTL) formulae and checked using standard LTL model

checkers (with or without the assumption of a fair scheduler).

Given a historyσ, a sequential permutationπ of σ is a sequential history in which the set of op-

erations as well as the initial states of the objects are the same as inσ. The formal definition of

linearizability is given as follows.

Linearizability There exists a sequential permutationπ of σ such that

1. for each objectoi , π |oi
is a legal sequential history (i.e.π respects the sequential

specification of the objects), and

2. if op1 <σ op2, thenop1 <π op2 (i.e.,π respects the run-time ordering of operations).

Linearizability can be equivalently defined as follows: In every historyσ, if we assign increasing

time values to all invocations and responses, then every operation can be shrunk to a single time

point between its invocation time and response time such that the operation appears to be completed

instantaneously at this time point [148, 22]. This time point for each operation is called itslineariza-

tion point. Linearizability is a safety property [148], so its violation can be detected in a finite prefix

of the execution history.

Linearizability is defined in terms of the interface (invocations and responses) of high-level oper-

ations. In a real concurrent program, the high-level operations are implemented by algorithms on

concrete shared data structures, e.g., using a linked list to implement a shared stack object. There-

fore, the execution of high-level operations may have complicated interleaving of low-level actions.

Linearizability of a concrete concurrent algorithm requires that, despite complicated low-level inter-

leaving, the history of high-level invocation and responseevents still has a sequential permutation

that respects both the run-time ordering among operations and the sequential specification of the

objects. This idea is formally presented in the next sectionusing refinement relations in a process

algebra extended with shared variables.
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7.2 Linearizability as Refinement Relations

In this section, we show how to create high-level linearizable specifications and how to use a refine-

ment relation from an implementation model to a specification model to define linearizability.

7.2.1 Model Construction

To create a high-level linearizable specification for a shared object, we rely on the idea that in any

linearizable history, any operation can be thought of as occurring at some linearization point. We

define the specification LTSLsp = (Ssp , initsp ,→sp) for a shared objecto as follows. Every ex-

ecution of an operationop of o on a processpi includes three atomic steps: the invocation action

inv(op)i , the linearization actionlin(op)i , and the response actionres(op, resp)i . The lineariza-

tion actionlin(op)i performs the computation based on the sequential specification of the object. In

particular, it maps the invocation and the object state before the operation to a new object state and

a response, changes the object to the new state, and buffers the responseresp locally. The response

actionres(op, resp)i generates the actual responseresp using the buffered result from the lineariza-

tion action. Each of the three actions is executed atomically without being interfered by any other

action, but the three actions of one operation may interleave with the actions of other operations. In

Lsp , all inv(op)i andres(op, resp)i are visible events, whilelin(op)i are invisible events.

In a LTSLsp = (Ssp , initsp ,→sp), each processpi has (a) an idle statespi ,0, (b) a states(op)pi ,1

for every operationop of object o, representing the state after the invocation ofop but before

the linearization action ofop, and (c)s(op, resp)pi ,2 for every operationop and every possible

responseresp of this operation, representing the state after the linearization action ofop but before

the response ofop. ThenSsp is the cross product of all object values and all process states. initsp

is the combination of the initial value of objecto andspi ,0’s for all processespi . For s ∈ Ssp , let

svo be the value of objecto encoded ins, spi
be the state ofpi in s, ands−pi

ands−pi ,−vo be the

states excludingspi
and excludingspi

andsvo , respectively. The labeled transition relation→sp is

such that for(s, e, s ′) ∈→, (a) if e = inv(op)i , thens−pi
= s ′−pi

, spi
= spi ,0, ands ′pi

= s(op)pi ,1;

(b) if e = lin(op)i , thens−pi ,−vo = s ′−pi ,−vo
, spi

= s(op)pi ,1, ands ′pi
= s(op, resp)pi ,2, such
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that s ′vo
andresp are the new object value and the response, respectively, based on the sequential

specification of objecto as well as the old object statesvo and the statespi
= s(op)pi ,1 of process

pi ; (c) if e = res(op, resp)i , thens−pi
= s ′−pi

, spi
= s(op, resp)pi ,2, ands ′pi

= spi ,0.

Example 7.2.1 (K-valued register) We use a shared K-valued single-reader single-writer register

algorithm (Section 10.2.1 of [22]) to demonstrate the ideasabove. The linearizable abstract model

is defined as follows, whereR is the shared register with initial valueK , andM is a local variable

to store the value read fromR.

ReaderA() = read inv → read{M = R} → read res.M → ReaderA();
WriteA(v) = write inv .v → write{R = v} → write res → Skip;
WriterA() = (WriteA(0) 2WriteA(1) 2 . . . 2WriteA(K − 1)); WriterA();
RegisterA() = (ReaderA() |||WriterA())\{read ,write};

TheReaderA process repeatedly reads the value of registerR and stores the value in local variable

M . Eventread res.M returns the value inM . WriteA(v) writes the given valuev into R. Event

write inv .v stores the valuev to be written into the register. TheWriterA process repeatedly

writes a value in the range of0 to K − 1. External choices are used here to enumerate all possible

values.RegisterA interleaves the reader and writer processes and hides theread andwrite events

(linearization actions). The only visible events are the invocation and response of the read and write

operations. This model generates all the possible linearizable traces.

Given a LTSLim = (Sim , initim ,→im) that supposedly implements objecto, the visible events of

Lim are thoseinv(op)i ’s andres(op, resp)i ’s. For example, the following models an implementa-

tion of aK -valued register using an arrayB of K binary registers (storing only0 and1).

Reader() = read inv → UpScan(0);
UpScan(i) = if(B [i ] == 1){DownScan(i − 1, i)}else{UpScan(i + 1)};
DownScan(i , v) = if(i < 0){read res.v → Reader()}

else{if (B [i ] == 1){DownScan(i − 1, i)}else{DownScan(i − 1, v)}};
Write(v) = write inv .v → τ{B [v ] = 1; } →WriterScan(v − 1);
WriterScan(i) = if(i < 0){write res → Skip}

else{τ{B [i ] = 0; } →WriterScan(i − 1)};
Writer() = (Write(0) 2 Write(1) 2 . . . 2 Write(K )); Writer();
Register() = Reader() |||Writer();
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TheReader process first does a upward scan from element0 to the first non-zero elementi , and

then does a downward scan from elementi − 1 to element0 and returns the index of last element

whose value is1. Eventread res.v returns this index as the return value of the read operation.The

Write(v) process first sets thev -th element ofB to 1, and then does a downward scan to set all

elements beforei to 0. Note that in this implementation, the linearization pointfor Reader is the

last point where the parameterv in DownScan process is assigned in the execution. Therefore,

the linearization point can not be statically determined. Instead, it can be in eitherUpScan or

DownScan. We remark that one liveness property can be verified by modelchecking2read inv ⇒3read res where2 and3 are modal operators which read asalwaysandeventuallyrespectively.2end

Theorem 7.2.2 characterizes linearizability of the implementation through a refinement relation and

thus establishes our approach to verifying linearizability. Different versions of this result appeared

in distributed computing literature, for example, in Lynch’s book [148], Theorems 13.3-13.5.

Theorem 7.2.2 All traces ofLim are linearizable iffLim ⊒T Lsp.

Proof (sketch). Sufficient condition: For any traceσ ∈ traces(Lim ), becauseLim ⊒T Lsp, σ

is also a trace ofLsp . Let ρ be the execution history ofLsp that generates the traceσ. We define

the sequential permutationπ of σ as the reordering of operations inσ in the same order as the

linearization actionslin(op)i ’s of all operationsop and all processespi in ρ. If op1 <σ op2, the

linearization action ofop1 must be ordered before the linearization action ofop2 in ρ, and thus

op1 <π op2. It is also easy to verify thatπ is a legal sequential history of objecto, since the

linearization action of every operation inρ is the only action in the operation that affects the object

state based on its sequential specification, and the order ofoperations inπ respects the order of

linearization actions inρ.

Necessary condition: Let σ be a trace ofLim . By assumptionσ is linearizable. We need to show

thatσ is also a trace ofLsp . Sinceσ is linearizable, there is a sequential permutationπ of σ such that

π respects both the sequential specification of objecto and the run-time ordering of the operations in
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σ. We construct an execution historyρ of Lsp from σ andπ as follows. Starting from the first event

of σ, for any evente in σ, (a) if it is an invocation event, append it toρ; (b) if it is a response event

res(op, resp)i , locate the operationop in π, and for each unprocessed operationop′ by a processj

beforeop in π, processop′ by appending a linearization actionlin(op′)j to ρ, following the order

of π; finally appendlin(op)i andres(op, resp)i to ρ. It is not difficult to show that the execution

historyρ constructed this way is indeed a history ofLsp . Moreover, obviously the trace ofρ is σ.

Therefore,σ is also a trace ofLsp . 2
The above theorem shows that to verify linearizability of animplementation, it is necessary and

sufficient to show that the implementation LTS is a refinementof the specification LTS as we defined

above. This provides the theoretical foundation of our verification of linearizability. Notice that

the verification by refinement given above does not require identifying low-level actions in the

implementation as linearization points, which is a difficult (and sometimes even impossible) task.

In fact, the verification can be automatically carried out without any special knowledge about the

implementation beyond knowing the implementation code.

In some cases, one may be able to identify certain events in animplementation as linearization

points. We call these linearization events. For example, three linearization events have been iden-

tified in the stack algorithm [13]. In these cases, we can makethese events visible and hide other

events (including the invocation and response events) and verify refinement relation only for these

events. More specifically, we obtain a specification LTSL′
sp by the following two modifications to

Lsp : (a) for each linearization actionlin(op)i , we change it tolin(op, resp)i so that the response

resp computed by this linearization action is included; and (b) all linearization actions are visible

while all inv(op)i andres(op, resp)i are invisible. LetL′
im be an implementation LTS such that its

linearization events are visible and all other events are invisible, and its linearization events are also

specified aslin(op, resp)i .

Theorem 7.2.3 LetL′
sp andL′

im be the specification and implementation LTSs such that lineariza-

tion events are specified aslin(op, resp)i and are the only visible events. IfL′
im ⊒T L′

sp , then

the implementation is linearizable. Conversely, if the implementation is linearizable, andit can be

shown that no other actions in the implementation can be linearization actions, thenL′
im ⊒T L′

sp .
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The proof of this theorem is straight forwards, hence ignored. With this theorem, the verification of

linearizability could be more efficient based on only linearization events. However, one important

remark is that, as stated in the theorem, to make refinement a necessary condition of linearizabil-

ity in this case, one has to show that no other actions in the implementation can be linearization

points. In other words, the determined linearization points have to be complete. Otherwise, even

if the verification finds a counterexample for the refinement relation, we cannot conclude that the

implementation is not linearizable since we may have failedin determining all possible linearization

events. Examples of implementations modeled using linearization points can be found in [196].

7.2.2 Verification of Linearizability

With the results from Theorem 7.2.2 and 7.2.3, we can use the refinement checking algorithm pre-

sented in Section 6 to verify linearizability of an implementation of concurrent objects. Several

improvements that are specialized to linearizability verification are suggested in the following.

Partial order reduction (POR) in the refinement checking works without knowledge of linearization

points. Nonetheless, having the knowledge would allow us totake full advantage of POR. Because

linearization points are the only places where data consistency must be checked, we may amend

the above algorithm to perform data consistency check at thelinearization points. As a result,

encoding relevant data as part of the event is not necessary and the model contains fewer events,

which translates to fewer traces. Furthermore, because only the linearization points need to be

synchronized, we may hide all other visible events toτ -transitions that are subject to POR.

Besides partial order reduction, our approach is compatible with other state space reduction tech-

niques or abstract interpretation techniques. Distributed algorithms and protocols are usually de-

signed for a large number of similar processes. They are therefore subject to symmetric reduc-

tion [83]. For instance, different writers (i.e.,WriterA(i)) in Example 7.2.1 are symmetric and

therefore, it is sound (subject to property-specific conditions) to only explore one writer and con-

clude the same for all other writers. If the processes are identical, then it is subject to process counter

abstraction 5.4. For example, in the concurrent stack algorithm, the processes invoking push and
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pop are symmetric and therefore, we only keep track of the number of processes, instead of the

exact processes. In this way, we may prove the property for arbitrary number of processes.

7.3 Experiments of Linearizability Checking

Our method has been applied to a number of concurrent algorithms, includingregister—the K-

valued register algorithm2 in Example 7.2.1,stack—a concurrent stack algorithm [210],queue—a

concurrent non-blocking queue algorithm in Figure 3 of [154], buggy queue—an incorrect queue

algorithm [186], andmailbox and SNZI—the first algorithms for the mailbox problem [19] and

scalable Non-Zero indicators [78], respectively. We remark that the mailbox problem and SNZI

are complicated algorithms that are not formally verified before. Both algorithms use sophisticated

data structures and control structures, so the linearization points are difficulty to determine. The

verification details of the two algorithms can be found in [196] and [225] respectively.

Table 7.1 summarizes part of our experiments, where ‘-’ means out of memory or more than 4

hours, and ‘(points)’ means that linearization points are given. The number of states and running

time increase rapidly with data size and the number of processes, e.g., 3 processes forregister,

stack, queue, andSNZI vs. 2 processes. The results conform to theoretical results[12]: model

checking linearizability is in EXPSPACE for both time and space. When linearization points are

known, the complexity is still EXPSPACE, but the state space reduces significantly since the state

spaces of implementation and specification are smaller. We show that the speedup of knowing

linearization points is in the order ofO(2k ·2n ·(k2n−kn)), wherek is the size of the shared object

and n is the number of processes [196]. Use of partial order reduction effectively reduces the

search space and running time in most cases, includingstackandqueue, and especiallymailbox

andSNZIbecause their algorithms have multiple internal transitions. Forregister, the state space is

reduced but running time increases because of computational overhead. Forbuggy queue[186], the

counterexamples (discovered firstly in [60]) are produced quickly after exploring only part of the

state space.

2We extend this example with 2 readers and 1 writer. The correctness is verified using PAT.
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Algorithm #Proc. Linearizable Time(sec) #States Time(sec) #States

w/o POR w/o POR with POR with POR

4-valuedregister 2 true 6.14 50893 5.72 43977

5-valuedregister 2 true 44.9 349333 60.4 307155

6-valuedregister 2 true 297 2062437 789 1838177

3-valuedregisterwith 3 true 294 479859 393 361255

2 readers and 1 writer

stackof size 12 2 true 138 540769 65.9 395345

stackof size 14 2 true 411 763401 99.4 599077

stackof size 2 3 true - - 4321 4767519

stackof size 12 (points) 2 true 0.62 9677 0.82 9677

stackof size 14 (points) 2 true 0.82 12963 1.11 12963

stackof size 2 (points) 3 true 1.14 10385 1.56 10385

stackof size 2 (points) 4 true 37.6 219471 49.4 219471

queueof size 6 2 true 134 432511 86.2 343446

queueof size 8 2 true 256 104582 218 938542

buggy queueof size 10 2 false 10.9 32126 6.87 32126

buggy queueof size 20 2 false 52.73 105326 41.1 105326

mailboxof 3 operations 2 true 71.6 272608 27.8 120166

mailboxof 4 operations 2 true 2904 9928706 954 3696700

SNZIof size 2 2 true 1298 712857 322 341845

SNZIof size 3 3 true - - 6214 8451568

Table 7.1: Experiment results on a PC with 2.83 GHz Intel Q9550 CPU and 2 GB memory

Vechev and Yahav [215] also provided automated verification. Their approach needs to find a lin-

earizable sequence for each history, whose worst-case timeis exponential in the length of the history,

as it may have to try all possible permutations of the history. As a result, the number of operations

they can check is only 2 or 3. In contrast, our approach handles all possible interleaving of opera-

tions given sizes of the shared objects. Because of partial order reduction and other optimizations,

our approach is more scalable than theirs. For instance, we can verify stacks of size 14, which

means any number of stack operations that contain up to 14 consecutive push operations.

Note that experiments in Section 6.3 suggest that PAT is faster than FDR for systems without vari-
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ables. Modeling variables using processes and lack of partial order reduction will make FDR even

slower. Therefore we skip comparison with FDR on these examples.

7.4 Web Service and Conformance Checking

The Web Services paradigm promises to enable rich, dynamic,and flexible interoperability of highly

heterogeneous and distributed Web-based platforms. In recent years, many Web Service composi-

tion languages have been proposed. There are two different viewpoints in the area of Web Service

composition. Web Servicechoreographydescribes collaboration protocols of cooperating Web Ser-

vice participants from a global point of view. An example is WS-CDL (Web Service Choreography

Description Language [48]). Web Serviceorchestrationrefers to Web Service descriptions which

take a local point of view, which describes collaborations of the Web Services in predefined patterns

based on local decision about their interactions with one another at the message/execution level.

A representative is WS-BPEL (Web Service Business Process Execution Language [121]), which

models business processes by specifying the work flows of carrying out business transactions.

Informally, a choreography may be viewed as a contract amongmultiple corporations, i.e., a spec-

ification of requirements (which may not be executable). An orchestration is the composition of

concrete services provided by each corporation who realizes the contract. The distinction between

choreography and orchestration resembles the well studieddistinction between sequence diagrams

(which describes inter-object system interactions, taking a global view) and state machines (which

may be used to describe intra-object state transitions, taking a local view).

In this chapter, we focus on the conformance checking problem between a choreography or an

orchestration, i.e., whether they are consistent with eachother. Solving either problem is however

highly non-trivial. For instance, because Web Services aredesigned for potentially large number

of users3 (who may invoke the services simultaneously), verifying Web Services based on model

checking techniques must cope with state space explosion due to concurrent service invocations.

3In reality, the number is bounded by the thread pool size of the underlying operating system. See discussion in [93].
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The solution for the consistency checking is to show conformance relationship (i.e., existence of

a weak simulation relationship) between the choreography and the orchestration. The algorithm is

based on the refinement checking algorithm in Section 6, further extended with data support and

specialized optimizations for Web Services.

7.5 Web Service Modeling

In this section, we present modeling languages which are expressive enough to capture all core

features of Web Service choreography and orchestration. There are two reasons for introducing

intermediate modeling languages for Web Services. First, heavy languages like WS-CDL or WS-

BPEL are designed for machine consumption and therefore arelengthy and complicated in structure.

Moreover, there are mismatches between WS-CDL and WS-BPEL.For instance, WS-CDL allows

channel passing whereas WS-BPEL does not. The intermediatelanguages focus on the interactive

behavioral aspect. The languages are developed based on previous works of formal models for WS-

CDL and WS-BPEL [48, 172, 169]. They cover all main features like synchronous/asynchronous

message passing, channel passing, process forking, parallel composition, shared variables, etc. Sec-

ond, based on the intermediate languages and their semanticmodels (namely, labeled transition

systems), our verification and synthesis approaches is not bound to one particular Web Service lan-

guage. For instance, newly proposed orchestration languages like Orc [156] can be easily supported.

This is important because Web Service languages evolves rapidly. Being based on intermediate lan-

guages gives us opportunity to quickly cope with new syntaxes or features (e.g., by tuning the

preprocessing component).

7.5.1 Choreography: Syntax and Semantics

The following is the core syntax for building models of Web Service choreography4, e.g., in WS-

CDL. Additional language features like variables, arrays and assertions are illustrated using exam-

4The ASCII version of the syntax can be found in PAT user manual.
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ples in later sections. LetI (short of interaction), J be terms of choreography. LetA,B range

over Web service roles;ch range over communication channels;svr range over a set of pre-setup

service invocation channels (refer to discussion later);c̃h denote a sequence of channels;x range

over variables;b be a predicate over only the variables andexp be an expression.

I ::= Stop – inaction
| Skip – termination
| svr(A,B , c̃h)→ I – service invocation
| ch(A,B , exp)→ I – channel communication
| x := exp; I – assignment
| if b I else J – conditional
| I 2 J – choice
| I ||| J – service interleaving
| I; J – sequential

We assume that each role is associated with a set of local variables and there are no globally shared

variables among roles. This is a reasonable assumption as each role (which is a service) may be

realized in a remote computing device. Informally,svr(A,B , c̃h), wheresvr is pre-defined service

invocation channel, states that roleA invokes a service provided by roleB through channelsvr . A

service invocation channel is one which is registered with aservice repository so that the service

is subject for invocation.c̃h is a sequence of session channels which are created for this service

invocation only. Notice that because the same service shallbe available all the time, service channel

svr is reserved for service invocation only.ch(A,B , exp) wherech is a session channel states that

roleA sends the messageexp to roleB through channelch.

x := exp assigns the value ofexp to the variablex . Without loss of generality, we always require

that the variables constitutingexp and x must be associated with the same role5. If b evaluates

to true, if b I else J behaves asI, otherwiseJ . Given a variablex (a conditionb), we write

role(x ) (role(b)) to denote the associated role.I 2 J is an unconditional choice (i.e., choice of

two unguarded working units in WS-CDL) betweenI andJ , depending on whichever executes

first. I ||| J denotes two interactions running in parallel. Notice that there are no message commu-

nications betweenI andJ . Two choreographes executing in a sequential order is written asI; J .

We remark that recursion is supported by referencing a choreography name.

5This is a well-formedness rule which can be checked easily.
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1. BuySell() = B2S (Buyer ,Seller , {Bch})→ Session();

2. Session() = Bch(Buyer ,Seller ,QuoteRequest)→ Bch(Seller ,Buyer ,QuoteResponse.x )→

3. if (x ≤ 1000){

4. Bch(Buyer ,Seller ,QuoteAccept)→ Bch(Seller ,Buyer ,OrderConfirmation) →

5. S2H (Seller ,Shipper , {Bch,Sch})→

6. (Sch(Shipper ,Seller ,DeliveryDetails.y) → Stop

7. ||| Bch(Shipper ,Buyer ,DeliveryDetails.y) → Stop)

8. }else{
9. Bch(Buyer ,Seller ,QuoteReject)→ Session()

10. 2 Bch(Buyer ,Seller ,Terminate) → Stop

11. };

Figure 7.1: A sample choreography

The syntax above is expressive enough to capture the core Webservice choreography features6.

For instance, channel passing is supported as we are allowedto transfer a sequence of channels

on service invocation. Figure 7.1 presents a sample choreography, which illustrates how to use this

language to model Web Services. The choreography coordinates three roles (i.e.,Buyer , Seller and

Shipper ) to complete a business transaction. At line 1, theBuyer communicates with theSeller

through service channelB2S to invoke its service. ChannelBch which is sent along the service

invocation is to be used as a session channel for the session only. In theSession, theBuyer firstly

sends a messageQuoteRequest to theSeller through channelBch. At line 2, theSeller responds

with some quotation valuex , which is a variable. Notice that in choreography, the valueof x may

be left unspecified at this point. At line 5, theSeller sends a message through the service channel

S2H to invoke a shipping service. Notice that the channelBch is passed onto theShipper so that

the shipper may contact theBuyer directly. At line 6 and 7, theShipper sends delivery details to

theBuyer andSeller through the respective channels. The rest is self-explanatory.

Given a choreography model, a system configuration is a 2-tuple (I,V ), whereI is a choreography

andV is a mapping from the variables to their values, i.e., from data variables to their valuations

or from channel variables to channel instances. A transition is expressed in the form of(I,V )
e
→

6Higher order processes, which can be used to model Java applet, are excluded. They can be easily integrated into the

framework.
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(I ′,V ′). The transition rules are presented in Figure 7.2. Ruleinv1 captures service invocation,

where eventsvr !c̃h occurs. Afterwards, ruleinv2 becomes applicable so that the service invoking

request is ready to be received. At the same time, a copy of thechoreography is forked. This

is because a service may be invoked multiple times, possiblysimultaneously, by different service

users and all service invocations must conform to the choreography. In fact, in the standard practice

of Web Services, a service is embodied by a shared channel in the form of URLs or URIs through

which many users can throw their requests at any time. For instance, different processes acting as

Buyers may invoke the service provided by theSeller . All Buyers must follow the communication

sequence. Furthermore, in order to match the reality (and make things more interesting), we assume

that both service invocation and channel communication areasynchronous in this work. As a result,

service invocation (or channel communication) is divided into two events, i.e, the event of issuing

a service invocation (or channel output) and the event of receiving a service invocation (or channel

input). This is captured by rulesinv1, inv2, ch1 andch2. For simplicity, we assume that a function

eval returns the value of an expressionexp given the valuation of variablesV . Ruleassign updates

variable valuations. Ruleref captures referencing, i.e., ifI is defined to beJ , they have the same

behavior. The rules for other constructs resembles those for CSP# in Section 3.1, hence ignored.

Given a choreographyI, we build a labeled transition system (LTS)LI = (S , init ,→) in the

same way as in Section 3.1.2 based on the operational semantic rules. We skip the details here. In

order to verify properties about the choreography, we use model checking techniques to explore all

traces of the transition system. One complication is that the choreography’s behavior may depend

on environmental input which is only known during runtime with the execution of an orchestration.

For instance, the price quote provided by theSeller is unknown given only the choreography in

Figure 7.1. We discuss this issue in Section 7.6.

7.5.2 Orchestration: Syntax and Semantics

A Web Service orchestrationO is composed of multiple roles, each of which is specified as an

individual process. A slightly different syntax is used to build orchestration models. The reason is

that orchestration takes a local view and therefore all primitive actions are associated with a single
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[ inv1 ]

(svr(A,B , c̃h)→ I,V )
svr !c̃h
→ (svr?(B , c̃h)→ I ||| svr(A,B , c̃h)→ I,V )

[ inv2 ]

(svr?(B , c̃h)→ I,V )
svr?c̃h
→ (I,V )

[ ch1 ]

(ch(A,B , exp)→ I,V )
ch!v
→ (ch?(B , v)→ I,V )

[ ch2 ]

(ch?(B , v)→ I,V )
ch?v
→ (I,V )

eval(exp,V ) = v
[ assign ]

(x := exp; I,V )
τ

→ (I,V ′ ⊕ x 7→ v)

whereX is the special event of termination

Figure 7.2: Choreography structural operational semantics

role. LetP (short ofprocess) andQ be the processes, which describe behaviors of a role. Assume

thatP plays the roleA in the orchestration, written asP@A.

P ::= Stop | Skip – primitives
| inv !c̃h → P – service invoking
| inv?x̃ → P – service being invoked
| ch!exp → P – channel output
| ch?x → P – channel input
| x := exp; P – assignment
| if b P else Q – conditional branching
| P 2 Q – orchestration choice
| P ||| Q – interleaving
| P ; Q – sequential

Processinv !c̃h → P invokes a service through service channelinv and then behaves as specified

by P . Or a service can be invoked byinv?x̃ → P where x̃ is a sequence of channel variables

which store the received channels. A process may send (receive) a message through a channelch

by ch!exp → P (ch?x → P ). To match the reality, we always assume that the communication

channels between different processes are asynchronous (and with a fixed buffer size) in this work.
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Let c be a channel;C be a channel valuation function;notempty(c,C ) be true iff the buffer is not

empty;notfull(c,C ) be true iff the buffer is not full;top(c,C ) be the top element in the buffer.

For simplicity, letC ⊕ (c, x ) beC ⊕ c 7→ C (c) a 〈x 〉 (wherea is sequence concatenation), i.e.,

adding the element to the respective channel. Similarly, let C ⊖ c be the resultant channel valuation

function with the top element inc removed.

notfull(inv ,C )
[ invoking ]

(inv !c̃h → P ,VA,C )
inv !c̃h
→ (P ||| (inv !c̃h → P),VA,C ⊕ (inv , c̃h))

notempty(inv ,C )
[ invoked ]

(inv?x̃ → P ,VA,C )
inv?top(inv ,C )

→ (P ,VA ⊕ x̃ 7→ top(inv ,C ),C ⊖ inv)

notfull(ch,C )
[ output ]

(ch!exp → P ,VA,C )
ch!exp
→ (P ,VA,C ⊕ (ch, exp))

notempty(ch,C )
[ input ]

(ch?x → P ,VA,C )
ch?top(ch,C )
→ (P ,VA ⊕ x 7→ top(ch,C ),C ⊖ ch)

Figure 7.3: Orchestration structural operational semantics

The rest are similar to those of choreography.

Similarly, we define the operational semantics. LetVA be the valuation of the variables associated

with the roleA. LetC be a valuation function of the channels, which maps a channelto the sequence

of items in the buffer.C is a set of tuples of the formc 7→ m̃sg . A configuration of the process is

a 3-tuple(P ,VA,C ). Part of the firing rules for local steps of a process are presented in Figure 7.3

and the rest are skipped for the their similarity with the constructs in CSP# (refer to Section 3.1.2).

We remark that as in choreography, service invocation in orchestration forks a new copy of the

service (see ruleinv in Figure 7.3) and thus allows potentially many concurrent service invocations.

In reality, however, the number of overlapping service invocations is bounded by the maximum

number of threads the underlying operating system allows [93]. In next section, we discuss how to

capture this constraint and at the same time perform efficient verification. Because an orchestration
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Role Buyer {

var counter = 0;

Main() = B2S !{Bch} → Session();

Session() = Bch!QuoteRequest → counter++; Bch?QuoteResonse.x →

if (x ≤ 1000){

Bch!QuoteAccept → Bch?OrderConfirmation

→ Bch?DeliveryDetails.y → Stop

}

else if(counter > 3){Bch!QuoteReject → Session()} else{Stop};

}

Role Seller {

var x = 1200;

Main() = B2S?{ch} → Session();

Session() = ch?QuoteRequest → ch!QuoteResonse.x → (ch?QuoteAccept →

ch!OrderConfirmation → S2H !{ch,Sch} → Sch?DeliveryDetails.y →

Stop 2 ch?QuoteReject → Session());

}

Role Shipper {

var detail = “01/11/2009”;

Main() = S2H ?{ch1, ch2} →

(ch1!DeliveryDetails.detail → Stop ||| ch2!DeliveryDetails.detail → Stop);

}

Figure 7.4: A simple orchestration

is the cooperation of multiple roles/processes, the behaviors of the processes must be composed in

order to obtain the global behavior. Given two processes, e.g.,P andQ , playing different roles, e.g.,

A andB , the composition is written asP@A ‖ Q@B . Figure 7.5 shows the respective semantic

rules, i.e., a global step is constituted of a local step by eitherP or Q .

Following the rules, given an orchestration with multiple roles, each of which is specified as a pro-

cess defined above, we may build a LTS. The executions of the orchestration equal to the executions

the LTS. Similarly, we define traces of an orchestration asτ -filtered traces of the LTS. Given an

orchestrationO, let traces(LO) be the set of finite executions. Figure 7.4 presents an orchestration

which implements the choreography in Figure 7.1. Each role is implemented as a separate compo-

nent. Each component contains variable declarations (optional) and process definitions. We assume

that the processMain defines the computational logic of the role after initialization. We remark that
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the orchestration generally contains more details than thechoreography, e.g., the variablecounter

in Buyer constraints the number of attempts the buyer would try before giving up.

7.6 Web Service Conformance Verification

In this section, we define conformance between a choreography and an orchestration based on trace

refinement and present an approach to verify it by showing refinement relationships. The verification

is performed under the constraints of bounded (many) service invocations.

As discussed above, both choreography and orchestration can be translated into LTSs. An orches-

trationO is valid if and only if it is weakly equivalent to the choreographyI, i.e., traces(LO) =

traces(LI ). This can be verified by showing that the orchestration weakly simulates the choreog-

raphy andvice versa. By the assumption that the ranges of the variables are finiteand the number

of concurrent service invocations are bounded, the LTS has finite number of states. As a result, we

can use the refinement checking algorithm proposed in Chapter 6 to check trace refinement. Given

a choreography and an orchestration, the algorithm works byconstructing the synchronous product

of the two LTSs and then performing a reachability analysis.For instance, in order to verify that

the orchestration conforms to the choreography, the algorithm searches for a pair of states, one of

the choreography and the other of the orchestration, such that the state of the orchestration can per-

form more (visible) events than that of the choreography. Ifsuch a state is found, then we find a

counterexample. Otherwise, we establish the refinement relationship.

A main challenge for verifying practical Web Services by model checking is state space explosion.

There are multiple causes of state space explosion. Two of them are 1) the numerous different

interleaving of processes executing concurrently in service orchestration and 2) the large number7

of concurrent service invocations. In the following, we discuss two optimization techniques which

have been adopted to cope with the above causes.

Firstly, the algorithm is improved with partial order reduction, to reduce the number of possible

7An operating system would like dozens or even thousands of concurrent threads.
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interleaving (particularly for orchestration). Events performed by single service role (e.g., local

variable updates in service choreography or orchestration) are often independent with the rest of the

system and hence are subject to reduction. For instance, theaction of updating variablecounter in

Figure 7.4 results in an invisible event, which is independent of actions performed by other roles like

Seller orShipper . During model checking, if this action is enabled (togetherwith actions performed

by other roles), we only expand the system graph using this action and postpone the rest8. By this

way, we build a smaller LTS and therefore checks deadlock-freeness, safety and liveness more

efficiently. For refinement checking, we apply this reduction in two ways. One is to apply partial

order reduction separately to invisible events of either the choreography or the orchestration. Notice

that this reduction is trace preserving and therefore is sound for refinement checking. The other one

is to apply reduction to visible events of the choreography and the orchestration at the same time.

Secondly, by a simple argument, it can be shown that the following algebraic laws are true; where

I, J andK are choreographes.

I ||| J = J ||| I
(I ||| J ) ||| K = I ||| (J ||| K)

Naturally, different invocations of the same Web Service are similar or even identical. By the above

laws, the interleaving of multiple choreographes can be sorted (in certain fixed ordering) without

changing the system behaviors. Therefore, if the choreography is in the form ofI ||| · · · ||| I |||

· · ·, it is equivalent whether the firstI makes a transition or the second does. For verification of

deadlock-freeness, safety or liveness properties, it is thus sound to pick one of the transitions and

ignore the others. In general, this reduction could reduce the number of states up to the factor

of N ! whereN is the number of identical components. This reduction is inspired by research on

model checking parameterized systems [115] and [79]. Furthermore, the process counter abstraction

presented in Section 5.4 can also be applied here.

There are a number of other algebraic laws which may help to reduce the number of states (e.g.,

I 2 J = J 2 I). Nonetheless, it is a balance between the computational overhead (for the

additional checking) and gain in state reduction. In our implementation (refer to Section 10.3.3),

8This reduction is subject to other constraints, e.g., the resultant state must not be on the search stack.
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(P ,VA,C )
e
→ (P ′,V ′

A,C
′)

(P@A ‖ Q@B ,VA ∪ VB ,C )
e
→ (P ′@A ‖ Q@B ,V ′

A ∪ VB ,C
′)

(Q ,VB ,C )
e
→ (Q ′,V ′

B ,C
′)

(P@A ‖ Q@B ,VA ∪ VB ,C )
e
→ (P@A ‖ Q ′@B ,V ′

A ∪ VB ,C
′)

Figure 7.5: Process composition rules

a set of specially chosen algebraic laws are used to detect equivalence of system configurations,

including the symmetry and associativity laws of|||, ‖ and2, etc.

Choreography may contain free variables (for environment inputs), which must be instantiated dur-

ing execution time. This is achieved by synchronizing the valuations of the choreography and

orchestration whenever a free variable is used. For instance, when checking conformance between

the orchestration in Figure 7.4 and the choreography in Figure 7.1, after theSeller sends out the

messageQuoteResponse.1200 (wherex is 1200), the variablex in the choreography is instanti-

ated to1200. Similarly, the session channel names of the service invocations in the choreography

must be instantiated to the actual channel names of service invoking in the orchestration. For in-

stance, channelBch in Figure 7.1 is instantiated tobch after the synchronization step between

B2S (Buyer ,Seller , {Bch}) in Figure 7.1 andB2S !{bch} in Figure 7.4.

7.7 Experiments of Conformance Checking

We have conducted experiments on multiple case studies, including ones fromwww.oracle.comand

from [48, 172]. We are currently applying PAT to several large WS-CDL and WS-BPEL models.

We thus demonstrate the scalability of our verification approach, using two models. One is the

online store example presented in Figure 7.1 and Figure 7.4.Instead of one buyer and one service

invocation, we amend the model so that multiple users are allowed to use the services multiple times.

The other is the service for travel arrangement. Its WS-BPELmodel and WS-CDL specification are



7.7. EXPERIMENTS OF CONFORMANCE CHECKING 152

Online Shopping Refinement Checking Result
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Figure 7.6: Experiments for conformance verification

available athttp://www.comp.nus.edu.sg/~pat/cdl/. A number of clients invoke the business process,

specifying the name of the employee, the destination, the departure date, and the return date. The

BPEL process checks the employee travel status (through a Web Service). Then it checks the prices

for the flight ticket with multiple airlines (through Web Services). Finally, the BPEL process selects

the lowest price and returns the travel plan to each client.

Figure 7.6 shows PAT’s efficiency using the two examples, obtained on a PC with Intel Q9500 CPU

at 2.83GHz and 4GB RAM. In the online store example, we allow buyers to invoke the service

repeatedly. As a result, the orchestration is deadlock-free. In the travel arrangement example, one

client invokes the service only once. Because the number of concurrent service invocations is bound

by the maximum number of threads allowed, the system reachesa deadlock state after exhausting

all threads. This is consistent with the finding in [93]. We verify that the orchestration conforms to

the choreography using the refinement checking algorithm, as shown in Figure 7.6. In both cases,

the number of states and the verification time increase rapidly. Yet, PAT is able to confirm that the

orchestration conforms to the choreography with a few buyers/clients using the service concurrently.

In a nutshell, PAT explores107 states in a reasonable amount of time, which suggests that PAT is

comparable to FDR in terms of efficiency9.

9LTSA-WS or WS-Engineer takes a different approach and therefore we skip the performance comparison here.
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7.8 Summary

In this chapter, we presented two applications of refinementchecking.

First, we showed that linearizability can be expressed using a refinement relation, hence can be

verified using refinement checking algorithm. Several case studies show that our approach is capa-

ble of verifying practical algorithms and identifying bugsin faulty implementations. Several future

directions are possible. Algorithms that accept an infinitenumber of threads or unbound data struc-

tures make model checking impossible. Symmetric properties among threads can reduce infinite

number of threads to a small number. Shape analysis or integration with thereat prover can also be

incorporated into the model checking to handle unbounded data size.

Second, we present model-based methods for fully automaticanalysis of Web Service compositions,

in particular, linking two different views of Web Services.Our methods build on the strength of

advanced model checking techniques. In particular, we verify whether designs of Web Services

from two different views are consistent or not, by on-the-flyrefinement checking with specialized

optimizations.

In terms of modeling of linearizability, our approach is based on the trace refinement of LTSs, which

is similar to [12]. The non-atomic refinement defined in [65] separates the data explicitly as state-

based formalism Object-Z. This modeling requires to have the knowledge of linearization points,

and also prevents automatic verification techniques such asmodel checking to be used. Lineariz-

ability checking is a much studied research area, since it isa central property for the correctness of

concurrent algorithms. Herlihy and Wing [107] present a methodology for verifying linearizability

by defining a function that maps every state of an concurrent object to the set of all possible abstract

values representing it. Vafeiadis et. al. [212] use rely-guarantee reasoning to verify linearizabil-

ity for a family of implementations for linked lists. Neither of them requires statically determined

linearization points, but they are manual. Verification using theorem provers (e.g., PVS) is another

approach [69, 59]. In these works, algorithms are proved to be linearizable by using simulation

between input/output automata modeling the behavior of an abstract set and the implementation.

However, theorem prover based approach is not automatic. Conversion to IO automata and use of
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PVS require strong expertise. Wang and Stoller [218] present a static analysis that verifies lineariz-

ability for an unbounded number of threads. Their approach detects certain coding patterns, which

are known to be atomic regardless of the environment. This solution is not complete (i.e., not ap-

plicable to all algorithms). Amit et al. [13] presented a shape difference abstraction that tracks the

difference between two heaps. This approach works well if the concrete heap and the abstract heap

have almost identical shapes. Recently, Manevich et al. [153] and Berdine et al. [31] extended it to

handle larger number and unbounded number of threads, respectively. Vafeiadis [211] further im-

proved this solution to allow linearization points in different threads. The main limitation of these

approaches is that users need to provide linearization points, which are unknown for some algo-

rithms. In [215], Vechev and Yahav provided two methods for linearizability checking. The first

method is a fully automatic, but inefficient as discussed in Section 7.3. The second method requires

algorithm-specific user annotations for linearization points, which is not generic.

Web Service conformance checking is related to research on verifying Web Services, particularly,

the line of work by Fosteret al presented in [94, 95, 93, 91]. They proposed to apply model-based

verification for Web Services. Their approach is to build Finite State Processes (FSP) model from

Web services and then apply verification techniques based onFSP to verify Web Services. For in-

stance, conformance between choreography and orchestration is verified by showing a bi-simulation

relationship between the respective FSP models. In particular, they identified the model of resource

constraint in Web Service verification [93] and proposed to perform verification under resource

constraints. In addition, they developed a tool named LTSA-WS [95] (and later WS-Engineer [92]).

Our work can also be categorized as model-based verification, and is similar to theirs. Our approach

complements their works in a number of aspects. Firstly, ourmodel is based on a modeling lan-

guage which is specially designed for Web service composition with features like channel passing,

shared variables/arrays, service invocation with servicereplication, etc. Secondly, our verification

algorithms employ specialized optimizations for Web Services verification, e.g., model reduction

based on algebraic properties of the models, partial order reduction for orchestration with multiple

local computational steps, etc. These optimizations allowus to handle large state space and poten-

tially large Web Services. Our work is remotely related to formal modeling and verification of Web

Services [73, 157, 169, 123]. Our languages are inspired from the languages proposed in [48, 172].



Chapter 8

Bounded Model Checking of

Compositional Processes

Model checking techniques presented in previous chapters rely on exhaustive search through ex-

plicit representations of the state space and suffers from the state space explosion problem. To

overcome this problem, verification techniques like SAT-based bounded model checking [54] have

been proved to be successful in verifying a variety of systemmodels.

Applying bounded model checking to compositional process algebras is, however, not a trivial task.

One challenge is that the number of system states for processalgebra models is not statically known,

whereas exploring the full state space is computationally expensive. This chapter presents a compo-

sitional encoding of hierarchical processes as SAT problems and then applies state-of-the-art SAT

solvers for bounded model checking. The encoding avoids exploring the full state space for complex

systems so as to deal with state space explosion. The boundedmodel checking technique is used to

validate system models against event-based temporal properties. The experiment results show that

this approach can handle large systems.

The remainder of this chapter is organized as follows. Section 8.1 discusses some background of

bounded model checking. Section 8.2 presents how to encode the semantics of compositional pro-
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cesses as Boolean formulae at the same time avoiding state space explosion. Section 8.3 introduces

the encoding of the LTL properties and the verification problem. Section 8.4 presents the experi-

mental results. Section 8.5 concludes this chapter.

8.1 Background

The original proposal of model checking relies on exhaustive search through explicit representations

of reachable system states [58], which is known asexplicit model checking. It suffers from thestate

space explosionproblem. Later,symbolic model checkingwas proposed to overcome this problem

by enumerating states symbolically (typically based on thenotion of BDDs [42, 44]).

However, human intervention may be required to fine-tune thevariable ordering so as to reduce the

size of BDDs. In recent years,bounded model checking[54] have been proposed to complement

explicit model checking and symbolic model checking with great success. The idea is to encode

finite state machines (as well as the properties to be verified) as a Boolean formula that is satisfiable

if and only if the underlying state machine can realize a finite sequence of transitions that reaches

states of interest, and then apply state-of-the-art SAT solvers [2] to produce counterexamples (if

any) efficiently. If such a path segment cannot be found at a given lengthk , the search is continued

for largerk . With the rapid development of SAT solvers, we believe bounded model checking is

promising for formal verification.

Previous works on model checking have been historically centered around state machines. Model

checking techniques have only been applied to event-based formalisms to a limited extent. To our

best knowledge, bounded model checking has not yet been applied to event-based languages like

CSP [108] or CCS [155]. One of the reasons is that unlike in circuit verification [53] (where en-

coding the transition relation is rather straightforward), encoding the semantics of compositional

processes using Boolean formulae is nontrivial. The numberof system states for process algebra

models is not statically known and exploring the full state space is computationally expensive. This

chapter presents a compositional encoding of hierarchicalprocesses as SAT problems. State-of-the-

art SAT solvers are then applied for bounded model checking.The encoding avoids exploring the
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full state space for complex systems so as to avoid state space explosion. Based on the idea, we

have implemented bounded model checking in PAT. The advantages of applying bounded model

checking instead of symbolic model checking include that SAT tools usually need far less hand ma-

nipulation than BDDs. The experiment results show that our toolkit has a competitive performance

for verifying systems with large number of states.

In this chapter, we only consider a subset of CSP# with no variables and channels (i.e., essentially

the original CSP language). Because the newly added features in CSP#, e.g., variables, channels,

etc., increase the complexity of the encoding process, which makes the bound model checking

ineffective. This is also the reason that we do not pursue this direction further. With the rapid

development of SAT solver, we believe this bottleneck can beresolved.

8.2 Encoding of Processes

This section is dedicated to a discussion on how to encode a given processP in CSP# as Boolean

formulae for bounded model checking. We start with encodingsimple processes by explicitly build-

ing their labeled transition systemLP and then discuss how to encode processes for which building

LP is not feasible. Note that variables and channels are ignored in this chapter. Hence system

configurations have only the process component. We remark that the encoding technique is not

restricted to CSP#.

8.2.1 Encoding Simple Processes

A processP can be encoded by firstly constructingLP and then encodingLP . Given a LTS, a

property to verify and a boundk , we need to translate the LTS and the negation of the property

into a propositional formula which is satisfiable if and onlyif there is a trace of lengthk which

violates the property (i.e., a counterexample). Thus, we need to find an efficient encoding of states,

events, and the transition relation. GivenL = (S , init ,→), we need⌈log2 #S⌉ Boolean variables

to encode the states. Let−→xs i = 〈xs1
i , xs

2
i , · · ·〉 be a finite sequence of Boolean variables used to
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encode the states reached afteri − 1 steps. The encoding of a state is a Boolean formulaπ over−→xs i

such thatπ(−→xs i ) = 1 if and only if the valuation of the variables uniquely identifies the state. Or

equivalently, a state is associated with a unique binary number and each Boolean variable represents

one bit of the number. Similarly, we use⌈log2 #αL⌉ Boolean variables to encode the alphabet of

L. Let−→xe i be the variables used to encode the events. A transition is encoded as a Boolean formula

of the following form,

π(−→xs i) ∧ π(−→xe i) ∧ π(−→xs i+1)

where−→xs i+1 is a set of fresh variables used to encode the post-state. LetΠ denote the encod-

ing function which maps a state or event to a Boolean formula given a set of Boolean variables.

Π(P1,−→xs i ) ∧ Π(e,−→xe i) ∧ Π(P2,−→xs i+1) where(P1, e,P2) ∈→ is the Boolean coding of the tran-

sition in the above form. Informally, this formula guarantees that if the transition is to be taken,

the pre/post-state and event must beP1/P2 ande respectively. The transition relation→ is encoded

as the disjunction of all possible transitions, i.e., any encoded transition may be taken if it can be

satisfied.

Ti =
∨
{Π(P1,−→xs i ) ∧ Π(e,−→xe i) ∧ Π(P2,−→xs i+1) | (P1, e,P2) ∈→}

Given a boundk for bounded model checking, the encoded transition relation must be appliedk -

times. Every time a fresh set of variables must be used to encode the engaged event as well as the

target state. Thus, we need(k + 1) × ⌈log2 #S⌉+ k × ⌈log2 #Σ⌉ Boolean variables to represent

states1 . . sk+1 ande1 . . ek wheres1 = init .

Definition 24 An encoding of a LTS is 4-tupleE = (I,Ti ,−→xs i ,−→xe i) whereI = Π(init ,−→xs1) is the

encoded initial state,Ti is the encoded transition relation as defined above,−→xs i are the variables

used to encode the source state ofTi and−→xe i are the variables used to encode the labeling events of

transitions ofTi .

Given a LTSL and its encodingE , we sayE is sound if and only ifE andL are trace-equivalent,

i.e., every trace allowed byL must be allowed byE andvice versa. The above encoding of a LTS

is sound as we can show that the encoded transition relation conforms to→ and the encoded initial
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condition conforms toinit . Given an encoding of the systemE , a propertyφ to verify and a bound

k , the propositional formula constructed is of the followingform,

[[E , φ]]k =̂ I ∧
∧k

i=1 Ti ∧ [[¬φ]]k

where [[¬φ]]k is the encoded negation of the given property (with regards to k ). We leave it to

Section 8.3 for detailed discussion. A satisfiability solution to the above formula gives a counterex-

ample of the property, which satisfies the initial conditionand the transition relation up tok -steps

and violates the property.

In the following,we useEP to denote the encoding ofP . Explicitly constructingLP = (SP , initP ,

→P ) is however not always desirable for several reasons. Firstly, SP (and therefore→P ) may not

be finite. For instance, processes likeP =̂ b → Skip 2 (a → P ; c → Skip) or P =̂ a → (P |||

P) allow unbounded recursion or replication and, thus, may result in infinite reachable process

expressions. Our experiences, however, show that processes of the above forms are rather rare in

practice. Without loss of generality, we assume thatSP is always finite. Optimally, the number

of Boolean variables needed to encodeSP is ⌈log2 #SP⌉. However, determining the exact size of

SP requires traversing through all reachable states, which isoften undesirable due to state space

explosion. For instance, assume#SQ = n, the interleaving ofm copies ofQ (sayP ) hasnm

states. One remedy is to encode theLQ (if its size is manageable) and then composeEQ to generate

EP so as to avoid constructingLP .

8.2.2 Composing Encodings

A rich set of operators can be used to compose processes as illustrated in Section 3.1. Among all

operators, the indexed parallel composition or indexed interleaving (which we refer to as indexed

concurrency) causes state space explosion. GivenP which contains indexed concurrency, instead

of buildingLP we shall deduceEP from the encoding of its sub-components. In the following, we

show how to compose the encoding of sub-components for various composition. In order to draw

connections between transitions of different processes running in parallel, a global event-to-Boolean

encoding is established beforehand. In the following, letΠ(e,−→xe) be the formula encodinge using
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variables−→xe. Given−→xs i = 〈xs1
i , xs

2
i , · · · , xs

n
i 〉 where i ∈ {1, 2} as two sequences of Boolean

variables of the same length, we write−→xs1 ⇔ −→xs2 to meanxs1
1 ⇔ xs1

2 ∧ xs2
1 ⇔ xs2

2 ∧ · · · ∧

xsn
1 ⇔ xsn

2 . To further abuse notations, we write−→xs1 ∪ −→xs2 to denote the sequence of variables

which contains both variables in−→xs1 and−→xs2 and is sorted according to the unique variables ID.

Definition 25 Let P = |||
n

j=1
Pj . Let EPj = (IPj ,T

Pj

i ,−→xs
Pj

i ,−→xe
Pj

i ). The encoding ofP is

(IP ,T P
i ,−→xsP

i ,
−→xeP

i ), whereIP =
∧n

j=1 I
Pj ,−→xsP

i =
⋃n

j=1
−→xs

Pj

i ,−→xeP
i = −→xe

Pj

i andT P
i =

∨n
j=1(T

Pj

i

∧
∧

m 6=j (
−→xsPm

i ⇔ −→xsPm
i+1)).

Note that the variables used to encode eachPj are disjoint. The encoded initial condition ofP is

the conjunction of the encoded initial conditions of each sub-component. Intuitively, this says that

when the composition is initialized, all sub-components must be at its initial state. The predicate

−→xsPm
i ⇔ −→xsPm

i+1 means thatPm remains in the same state. The encoded transition relation is the

disjunction of a set of clauses, each of which states that a transition ofPj may be taken and the states

of other sub-components are unchanged. Thus, any transition of a sub-component can be taken

without affecting other sub-components. Indexed parallelcomposition is handled similarly. The

complication is that the alphabet of a sub-component may actually contain more events than those

constitute the process expression. The following definition shows that by manipulating the encoded

transition relations of the sub-components, the encoded transition relation of the composition shall

be exactly the conjunction of the encoded transition relations of the sub-components.

Definition 26 LetP = ‖
n

j=1
Pi . LetEPj = (IPj ,T

Pj

i ,−→xs
Pj

i ,−→xe
Pj

i ). The encoding ofP is (IP ,T P
i ,

−→xsP
i ,
−→xeP

i ) whereIP =
∧n

j=1 I
Pj ,−→xsP

i =
⋃n

j=1
−→xs

Pj

i ,−→xeP
i = −→xe

Pj

i , andT P
i is defined as follows,

T P
i =

∧n
j=1(T

Pj

i ∨
∨
{Π(e,−→xei ) ∧ −→xs i ⇔ −→xs i+1 | e 6∈ αPj ∧ e ∈ αP ∪ {τ}})

The transition relationT
Pj

i is extended with clauses to allow events not inαPi but inαP (including

τ ) to occur freely without changing the status of this sub-component. Because the encoded transi-

tion relation of each sub-component is conjuncted and we usethe same set of variables to encode

the events, an event can be engaged if and only if every sub-component participates in it. This con-

struction guarantees that the encoded transition relationof the composition allows only runs which

conform to the semantics. It avoids constructingLP by paying the price of extra transitions.
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Example 8.2.1 The following specifies the classic dining philosophers problem [108],

Phil(i) = think .i → get .i .(i + 1)%N → get .i .i
→ eat .i → put .i .(i + 1)%N → put .i .i → Phil(i);

Fork(i) = get .i .i → put .i .i → Fork(i) 2
get .((i − 1)%N ).i → put .((i − 1)%N ).i → Fork(i);

Phils(N ) = ‖
N−1

i=0
(Phil(i) ‖ Fork(i));

whereN is the number of philosophers,get .i .j (put .i .j ) is the action of thei -th philosopher picking

up (putting down) thej -th fork. AssumingN = 5 andx1, x2, x3 are used to encode the events, the

event encoding is shown in the following table (and the rest are ignored for brevity).

Event Encoding Event Encoding

think .0 ¬ x1 ∧ ¬ x2 ∧ ¬ x3 put .0.1 x1 ∧ ¬ x2 ∧ ¬ x3

get .0.1 ¬ x1 ∧ ¬ x2 ∧ x3 put .0.0 x1 ∧ ¬ x2 ∧ x3

get .0.0 ¬ x1 ∧ x2 ∧ ¬ x3 get .4.0 x1 ∧ x2 ∧ ¬ x3

eat .0 ¬ x1 ∧ x2 ∧ x3 put .4.0 x1 ∧ x2 ∧ x3

The following is the encoded transition relationT Phil(0)‖Fork(0)
1 .

T
Phil(0)
1 ∧ T

Fork(0)
1

∨ (x1 ∧ x2 ∧ ¬ x3 ∧ x4 ⇔ x7 ∧ x5 ⇔ x8 ∧ x6 ⇔ x9)
∨ (x1 ∧ x2 ∧ x3 ∧ x4 ⇔ x7 ∧ x5 ⇔ x8 ∧ x6 ⇔ x9))
∨ (¬ x1 ∧ ¬ x2 ∧ ¬ x3 ∧ x10 ⇔ x12 ∧ x11 ⇔ x13)
∨ (¬ x1 ∧ ¬ x2 ∧ x3 ∧ x10 ⇔ x12 ∧ x11 ⇔ x13))
∨ (¬ x1 ∧ x2 ∧ x3 ∧ x10 ⇔ x12 ∧ x11 ⇔ x13))
∨ (x1 ∧ ¬ x2 ∧ ¬ x3 ∧ x10 ⇔ x12 ∧ x11 ⇔ x13))

wherex4, x5, x6 (x7, x8, x9) are used to encode the pre-state (post-state) ofPhil(0) andx10, x11 (x12,

x13) are used to encode the pre-state (post-state) ofFork(0). end

A large class of systems can be specified as an indexed parallel composition or indexed interleaving

of multiple sub-components which have relatively small number of states, e.g.,PhilsN is specified

as an indexed parallel composition of philosopher and fork fairs. For such systems, we encode each

sub-component by explicitly constructing the LTS and then apply the above construction to build

the composed transition relation. Nonetheless, if a processP which contains indexed concurrency is
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further composed with other processes using operators like△,2 and; , or amended using operators

like \, we shall be able to deduce the encoding of the composition from the encoding ofP (and

others). For instance, assuming the given process isPhils(N ); Q , we must not explore all states of

Phils(N ) in order to encode the given process.

Definition 27 Let P = M 2 N . Let EM = (IM ,T M
i ,−→xsM

i ,
−→xeM

i ) be the encoding ofM . Let

EN = (IN ,T N
i ,−→xsN

i ,
−→xeN

i ). The encoding ofP is (IP ,T P
i ,−→xsP

i ,
−→xeP

i ) whereIP = IM ∧ IN ,

−→xsP
i = −→xsM

i ∪
−→xsN

i ∪ {xci}, −→xe
P
i = −→xeM

i = −→xeN
i , andT P

i = (xci ∧ T
M
i ∧ xci+1) ∨ (¬ xci ∧

T N
i ∧ ¬ xci+1) wherexci is a fresh control variable.

The encoded initial condition has no constraints onxc1 and thusxc1 can be either true or false

initially (which means transitions fromP or Q can be taken). Once one of the choices has been

taken,xci remains the same asxc1 for all i and thus a later step must respect the choice made at the

first step. This captures the semantics of choices. Note that⊓ is handled in the same way as2, and

⊓ is equivalent to2 in the trace semantics [108].

Definition 28 Let P = M △ N . Let EM = (IM ,T M
i ,−→xsM

i ,
−→xeM

i ) be the encoding ofM . Let

EN = (IN ,T N
i ,−→xsN

i ,
−→xeN

i ). The encoding ofP is (IP ,T P
i ,−→xsP

i ,
−→xeP

i ) whereIP = IM ∧ IN ,

−→xsP
i = −→xsM

i ∪
−→xsN

i ∪ {xci}, −→xe
P
i = −→xeM

i = −→xeN
i , andT P

i = (¬ xci ∧ T
M
i ∧ ¬ xci+1) ∨ (T N

i ∧

xci+1) wherexci is a fresh control variable.

Interrupt can be viewed as a biased choice. Note that¬ xci is true if and only ifM has not yet

been interrupted. If a transition ofTM is taken,xci+1 remains false so that next transition can be

taken fromTM or TN . Whenever a transition ofTN is taken,xci+1 must be true, which forbids all

transitions fromTM .

Definition 29 Let P = M ; N . Let EM = (IM ,T M
i ,−→xsM

i ,
−→xeM

i ) be the encoding ofM . Let

EN = (IN ,T N
i ,−→xsN

i ,
−→xeN

i ). The encoding ofP is (IP ,T P
i ,−→xsP

i ,
−→xeP

i ) whereIP = IM ∧ ¬ xc1,

−→xsP
i = −→xsM

i ∪
−→xsN

i ∪{xci},−→xe
P
i = −→xeM

i = −→xeN
i , andT P

i is defined as follows: wherexci is a fresh

variable,

¬ xci ∧ T
M
i ∧ (¬Π(X,−→xe i) ∧ ¬ xci+1 ∨ Π(X,−→xe i) ∧ xci+1 ∧ I

N ) ∨ xci ∧ T
N
i
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Initially, ¬ xc1 must be true. Note that¬ xci is true if and only ifM has not yet terminated. Intu-

itively, a sequential composition can be viewed a delayed choice whereby transitions fromN can

only be taken after aX transition has been taken inM . xci andIN is true once a transition ofM

labeled withX has been taken. Because transitions fromM are guarded with¬ xci , no transition

from M can be taken afterwards.

Other compositional operators are handled similarly by manipulating the encoded transition rela-

tions of the sub-components and introducing control variables if necessary. For instance, if some

events of an encoded process are to be hidden (i.e.,P \A), those events are renamed, i.e., the labele

of a transition is encoded asΠ(τe ,−→xei) instead ofΠ(e,−→xei ). Note that hiding different events results

in differentτ transitions. This prevents synchronization between different hidden events.

Given a processP , if P contains no indexed concurrency, we constructLP and then apply the

encoding in Section 3.1. Otherwise, each sub-component of the indexed interleaving or parallel

composition is encoded first. The encoding ofP is then composed by applying the compositional

encoding. If a sub-component of the indexed interleaving orparallel (sayQ ) contains indexed

concurrency as well, the same procedure is repeated so as to encodeQ . Note that for processes like

P = a → P ||| · · · ||| P , this construction is not feasible (and thus we have to construct LP ).

Nonetheless, for most interesting systems in which there isno unbounded replication (or recursion),

this construction not only terminates but results in Boolean formulae of manageable size, which can

be efficiently solved by SAT-solvers.

Theorem 8.2.2 Let P be a process.EP is the encoding ofP as defined above.EP is trace-

equivalent toLP .

This theorem states that our encoding is sound. It is proved by structural induction. The base case is

when a process contains no indexed concurrency, i.e., the encoding in Definition 24 is sound. Then

we prove the induction step by showing the compositional encoding preserves the equivalence. We

skipped the proof for brevity.
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8.3 LTL Properties Encoding and Verification

In this section, we focus on LTL verification using bounded model checking techniques.

Let B¬φ be the Büchi automaton constructed from a LTL property¬φ. In the explicit model

checking approach, the product ofB¬φ and P is generated (same as in SPIN). Explicit model

checking is to determine the emptiness ofLP × B , i.e., explore on-the-fly whether the product

contains a loop which is composed of at least one accepting state. Finite traces are extended to

infinite ones in a standard way. In the presence of a counterexample, on-the-fly model checking

usually produces a trace leading to a bad state or a loop quickly (refer to Section 8.4). However, the

counterexample produced may be extremely long because it relies on a depth first search. Bounded

model checking may then be used to produce a shorter trace which leads to the same bad state or

loop. Though because of the Büchi automata, the generated counterexample may not be the shortest.

Nonetheless, our bounded model checker can be used as a separate model checker.

Example 8.3.1 The following is the Büchi Automaton generated from the negation of the formula23eat0 ∧ 23eat1,

s0s1 s2

*

-eat0

-eat0

-eat1

-eat1

wheres0 is the initial state,s1 ands2 are two accepting states and∗ means the transition is un-

guarded.¬ e means the transition can be labeled with any event bute. end

For bounded model checking, becauseLP may not be built, we encode the Büchi automaton and

then compose it with the encoding of the model (i.e.,EP ). Given a guardg labeled with a transition

of B , let Π(g ,−→xeB
i ,
−→xsB

i+1) be the encoded guard, e.g.,Π(e,−→xeB
i ) if g is an evente or¬Π(e,−→xeB

i )

if g is an event¬ e or Π(g1,−→xe
B
i ,
−→xsB

i+1) ∧ Π(g2,−→xe
B
i ,
−→xsB

i+1) if g is g1 ∧ g2.

Definition 30 Let P be a process. LetEP = (IP ,T P
i ,−→xsP

i ,
−→xe i). Let B be a Büchi automaton

(S , I ,T ,F ) . EB = (IB ,T B
i ,−→xsB

i ,
−→xe i) where

T B
i =

∨
{ΠB (s,−→xsB

i ) ∧ Π(g ,−→xeB
i ,
−→xsB

i+1) ∧ ΠB (s ′,−→xsB
i+1) | (s, g , s

′) ∈ T}
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The encoding of the product ofP andB is (I,Ti ,−→xs i ,−→xei ) whereI = IB ∧ IP ,−→xs i = −→xsP
i ∪
−→xsB

i

andTi = T P
i ∧ T

B
i .

BecauseP andB share the same alphabet as well as the variables to encode theevents, transitions

of P andB are always synchronized.P violates the property if and only if the language ofP×B is

not empty. LetFB (−→xsi ) =
∨
{ΠB (s,−→xsi ) | s is an accepting state of B} be the encoded accepting

states. The following theorem states the correctness of ourbounded model checking.

Theorem 8.3.2 Given a processP , and a Büchi automatonB constructed from¬φ, let EP×B =

(I,Ti ,−→xs i ,−→xe i) be the encoding ofP ×B . Letk to be a bound. The following formula is satisfiable

iff there is a counterexample of sizek .

[[P , φ]]k = I ∧
∧k

i=1 Ti ∧ [[¬φ]]k , where [[¬φ]]k is
∨k−1

i=1 {
−→xsk ⇔

−→xsi ∧
∨k

j=i{F
B (−→xsj )}}

The proof is sketched in the following. A solution to[[P , φ]]k is an assignment oftrue or false to
⋃k+1

i=1
−→xs i and

⋃k
i=1
−→xei as well as the control variables (if any), from which we can identify a finite

run 〈s1, e1, s2, e2, · · · , sk , ek , sk+1〉. BecauseI must be true,s1 is an initial state. BecauseTi must

be true, by Theorem 8.2.2,si
ei⇒ si+1 for all 1 ≤ i ≤ k . Thus, the sequence of states/events

identified must be a run ofP (as well as a finite prefix of a trace ofφ). The constraint[[¬φ]]k states

that the finite run must contain a loop, i.e.,xsk ⇔ xsi for somei , and the loop must contain at least

one accepting state, i.e., there exists somej satisfyingj ≥ i ∧ j ≤ k such thatsj is accepting.

Therefore, the finite run identifies an infinite trace which isallowed byP and violatesφ.

8.4 Experiments

In this section, we present a number of experiments to show the feasibility of applying SAT-based

model checking to process algebras. The effectiveness of our compositional encoding is straightfor-

ward. If compositional encoding is applied, the encoding time is often negligible and the size of the

formula is comparable to that of the formula generated by constructing the LTS1.

1Depends on whether the processes are strongly coupled or not.
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Figure 8.1: Performance evaluation with a 2.0 GHz Intel CoreDuo CPU and 1 GB memory

For timely efficiency, we compare PAT with FDR and SPIN. We choose SPIN over others because it

is the most established explicit model checker and its inputlanguage is loosely based on CSP. Note

that partial order reduction, which partly makes SPIN very successful, has been implemented in

PAT. We choose not to compare our bounded model checker with NuSMV [53] because it focuses a

different application domain (i.e., circuit verification), in which often the transition relation is known

statically. Our bounded model checker has been evaluated with two award wining SAT solvers, i.e.,

MiniSAT and RSAT [2].

Figure 8.1 summarizes the performance using three benchmark models, i.e., the dining philoso-

pher problem as in Example 8.2.1 (against the property23eat0 ∧ 23eat1 · · ·23eatN−1), the

classic readers/writers problem and Milner’s cyclic scheduler. This model describes a protocol

for coordination ofN readers andN writers accessing a shared resource. The property to ver-
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ify is reachability of an erroneous situation (i.e., wrong readers/writers coordination). Milner’s

cyclic scheduler describes a scheduler forN concurrent processes. The processes are scheduled

in cyclic fashion so that the first process is reactivated after theN -th process has been activated.

The property to verify is that a process must eventually be scheduled. Details of the models and

more experiments can be found at [1]. Since FDR supports refinement checking only, to prove a

liveness property written in LTL, a property model needs to be constructed. For example, we use

Prop = eat0 → Prop 2 eat1 → Prop . . . 2 eatN−1 to express the property mention above.

The results are obtained by showing a (failure) refinement relationship between the system model

and a process capturing the property to verify. For the dining philosopher example (the left-upper

chart), our on-the-fly explicit model checker (referred as PAT-Exp) performs best to produce a coun-

terexample. Our bounded model checker (referred as PAT-SAT) outperforms SPIN for 13 or more

philosophers. The main reason is that the LTL to Büchi automata conversion in SPIN suffers from

large LTL formulae, i.e., takes more time and produces bigger automata. All verifiers outperforms

FDR (except PAT-SAT for small number of philosophers because of the encoding overhead), which

is not feasible for more than 12 philosophers. For the readers/writers example, all verifiers except

FDR produces a counterexample efficiently. Note that for every experiment SPIN takes less than

a few seconds to build model-specific executables. For the Milner’s example, the full state space

(which is exponentially increasing without partial order reduction) must be explored because the

property to verify is true. SAT outperforms FDR for 12 or moreprocesses. This suggests that

SAT-based model checking has the potential to handle large state space. Moreover, the current im-

plementation of PAT-SAT may be improved by orders of magnitude should we incorporate recently

development on incremental bounded model checking and more[191, 226]. Nonetheless, bounded

model checking currently is mainly for falsification (if without a proper threshold bound). The time

taken by SPIN and PAT-Exp remains constant. This should be credited to the partial order reduction.

The right-bottom chart summarizes the performance our SAT-based verifier in terms of the size of

the generated formula, the time needed for encoding and solving against the number of states of

the model. The estimated number of states increase exponentially whereas the number of Boolean

variables and the time needed increase much slower.

Note that the experimental results presented in this section on FDR can be improved significantly
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with a slightly different modeling, which is subject to FDR’s hierarchical compression [176].

8.5 Summary

In summary, we have developed a way to encode compositional system models without explicitly

exploring all reachable states. Experiment results show that our approach does verification rather

efficiently. Though presented in the framework of CSP#, our encoding of compositional processes

may be applied to other formal specification languages and notations.

In literature, there have been a number of bounded model checkers dedicated to different specifica-

tion languages. Some noticeable ones include the first bounded model checker [34], NuSMV [53]

and UCLID [43]. However, as far as the authors know, there hasnot yet been a bounded model

checker dedicated to process algebras, which have a compositional nature.



Chapter 9

Verification of Real-time Systems

Ensuring the correctness of computer system used in life-critical systems is crucial and challenge.

This is especially true when the correctness of a real-worldsystem depend on quantitative tim-

ing, e.g., the pacemaker system. Specification and verification of real-time systems are important

research topics which have practical implications.

Recall that the real-time system modeling language proposed in Chapter 3 supports a rich set of

concurrent operators as well as hierarchical timed constructs. It is nontrivial to offer efficient me-

chanical verification support for this modeling language because of the infinite domains of the ra-

tional clock values. In this chapter, we develop a fully automated abstraction technique to build an

abstract finite state machine from the model. The idea is to dynamically create clocks to capture

constraints introduced by the timed process constructs. A clock may be shared for many constructs

in order to reduce the number of clocks. During system exploration, a constraint on the active clocks

is maintained and solved using Difference Bound Matrix (DBM[68]). We show that the abstraction

is finite state and is subject to model checking. Further, it weakly bi-simulates the concrete model

and, therefore, we may perform sound and complete LTL-X (i.e. LTL without the next operator)

model checking, refinement checking or even timed refinementchecking upon the abstraction.

The remainder of the chapter is organized as follows. Section 9.1 presents the zone abstraction

using dynamical clocks. Section 9.2 discusses the soundness of the abstraction and its implication

169
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on model checking. Section 9.3 presents the verification algorithms for LTL checking, refinement

checking and timed refinement checking. Section 9.4 concludes this chapter.

9.1 Zone Abstraction

Model checking is applicable to finite state systems. Nonetheless, the number of concrete configu-

rations (and hence the concrete transition system) is infinite because of the time transitions. In the

following, we apply zone abstraction to build an abstract configuration system. Different from zone

abstraction applied to Timed Automata [68, 224], we dynamically create/delete a set of clocks to

precisely encode the timing requirements. We show that the abstract transition system is finite state

and subject to model checking.

9.1.1 Clock Activation and De-activation

A clock is a variable ranging from 0 to some bounded natural number. Given a configuration

(V ,P), a clock is necessary to measure time elapsing if, and only if, a timed process (e.g.Wait [d ],

P timeout [d ] Q , P interrupt [d ] Q , or P deadline[d ]) has been enabled. If a timed process (say

Wait [d ]) is enabled, we associate a clock (saytm) with the process to record time elapsing (writ-

ten asWait [d ]tm ). The timing requirements can be captured using a constraint on the valuation

of the clock. During system execution, multiple clocks may be used to capture quantitative timing

constraints. A clock may become irrelevant as soon as the related process takes a transition. For

instance, ifP in P timeout [d ]tm Q engages in an observable event, then the process transforms

to P ′ and clocktm becomes irrelevant. It is known that model checking of real-time systems is

exponential in the number of clocks. Therefore, it is desirable to use clocks only necessary and

discharge them as early as possible.

Definition 31 (Abstract system configuration) An abstract system configuration is a triple(V ,P ,

D), whereV is a variable valuation,P is a process andD is a zone.
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A zoneis the maximal set of clock valuations satisfying a set of primitive clock constraints. A

primitive constraint on a clock is of the formtm ∼ d wheretm is a timer,d is a constant and∼

is≥, = or≤. Since clocks are implicit, clock readings cannot be compared directly. A zone is not

empty if and only if the constraint is true. We writeD [t ] to be the constraints on clockt in zoneD .

Next, we show how to systematically activate and de-activate clocks using processWait [d ] and

P timeout [d ] Q as examples. Lett be a fresh clock. Given an abstract configuration, we define

functionA(P , t) to recursively determine whether a clock is necessary and associate the clock with

the relevant process constructs. A clock is necessary if andonly if one (or more) timed pattern has

just been enabled. For instance,

A(Wait [d ]t ′ , t) = Wait [d ]t ′

A(Wait [d ], t) = Wait [d ]t

whereWait [d ]t ′ denotes that the timed process is associated with a clockt ′, whereasWait [d ]

denotes that it has not been associated with a clock. The intuition is for the former case,A does

nothing andt is not used (since it is not necessary to introduce another clock); for the latter case,A

associatest the the timer process. The following shows how to applyA to processP timeout [d ] Q .

A(P timeout [d ]t ′ , t) = P timeout [d ]t ′ Q

A(P timeout [d ] Q , t) = A(P) timeout [d ]t A(Q)

If a clock t ′ has already been associated withP timeout [d ] Q , then functionA simply returns the

process. Otherwise, it is associated witht and furtherA is applied to the sub-processesP and

Q recursively. The complete definition of functionA is presented in Figure 9.1. In an abuse of

notation, given an abstract configurationc = (V ,P ,D), we writeA(c) to be(V ,A(P),D ∧ t =

0) if t is used; otherwiseA(c) is simplyc.

A runtime clock may later be discarded when the time-relatedprocess has evolved such that the

reading of the clock is no longer relevant. For instance, theclock associated withP timeout [d ] Q

can be discarded whenP engages in an observable event. It should be clear that we canidentify

the set of active runtime clocks by a similar procedure. To minimize clocks, all in-active runtime

clocks, and the associated timing constraints, shall be pruned fromD . We assume a functionD

which performs clock de-activation in a sound and complete way.
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A(P 2 (or ‖ or |||) Q , t) = A(P , t) 2 (or ‖ or |||) A(Q , t)
A(P ; Q , t) = A(P , t); Q

A(P \X , t) = A(P , t) \X

A(P , t) = A(Q , t) – if P is defined asQ
A(Wait [d ], t) = A(Wait [d ]t )
A(P timeout [d ] Q , t) = A(P , t) timeout [d ]t A(Q , t)
A(P interrupt [d ] Q , t) = A(P , t) interrupt [d ]t A(Q , t)
A(P deadline[d ], t) = A(P , t) deadline[d ]t

Figure 9.1: Clock activation:A(P , t) is P except the above cases

9.1.2 Zone Abstraction

We defineD↑ = {t + d | t ∈ D ∧ d ∈ R+}, i.e. the zone obtained by delaying arbitrary amount

of time. Notice that all clocks take the same pace. Next, we define function ι to compute the

zone which can be reached by idling from a given abstract system configuration [224], presented

in Figure 9.2. Given the current zoneD , processP timeout [d ]tm Q may keep idling as long asP

may keep idling and the reading of clocktm is less or equal tod (so thattimeout does not occur).

The rest are similarly defined.

In the following, we define the firing rules based on the abstract system configurations. The idea

is to eliminate time transitions altogether and use the timing constraint to ensure that the time-

related process constructs behave correctly. An abstract transition is of the form(V ,P ,D)
x
→֒

(V ′,P ′,D ′), wherex ∈ Σ ∪ {X, τ}.
[ ade ]

(V ,Wait [d ]tm ,D)
τ

→֒ (V ,Skip,D↑ ∧ tm = d)

ProcessWait(d) idles for exactlyd time units and then engages in eventτ and the process trans-

forms toSkip. Intuitively, it should be clear that this is ‘equivalent’ to the concrete firing rules (see

Section 3.2.2). We will define what equivalence means later in this section.

(V ,P ,D)
τ

→֒ (V ′,P ′,D ′)
[ ato1 ]

(V ,P timeout [d ]tm Q ,D)
τ

→֒ (V ′,P ′ timeout [d ]tm Q ,D ′ ∧ tm ≤ d)

(V ,P ,D)
x
→֒ (V ′,P ′,D ′)

[ ato2 ]

(V ,P timeout [d ]tm Q ,D)
x
→֒ (V ′,P ′,D ′ ∧ tm ≤ d)
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ι(V ,Stop,D) = D↑

ι(V ,Skip,D) = D↑

ι(V , e → P ,D) = D↑

ι(V , [b]P ,D) = D↑

ι(V ,P 2 (or ‖ or |||) Q ,D) = ι(V ,P ,D) ∧ ι(V ,Q ,D)
ι(V ,P ; Q ,D) = ι(V ,P ,D)
ι(V ,P \X ,D) = ι(V ,P ,D)
ι(V ,Wait [d ]tm ,D) = D↑ ∧ tm ≤ d

ι(V ,P timeout [d ]tm Q ,D) = ι(V ,P ,D) ∧ tm ≤ d

ι(V ,P interrupt [d ]tm Q ,D) = ι(V ,P ,D) ∧ tm ≤ d

ι(V ,P deadline[d ]tm ,D) = ι(V ,P ,D) ∧ tm ≤ d

ι(V ,P ,D) = ι(V ,Q ,D) – if P =̂ Q

Figure 9.2: Idling calculation

[ ato3 ]

(V ,P timeout [d ]tm Q ,D)
τ

→֒ (V ,Q , tm = d ∧ ι(V ,P ,D))

Depending on when the first event ofP takes place and whether it is observable,P timeout [d ] Q

behaves differently in three ways. An observable transition of P must occur no later thand time

units since the process is enabled (ruleato1 andato2). If the first transition is observable, then the

choiceis resolved (ruleato2). If it is silent, then the it transforms toP ′ timeout [d ] Q . If P may

delay more thand time units (captured by the constraintι(V ,P ,D)), then it times out after exactly

d time units (ruleato3). The constrainttm = d ∧ ι(V ,P ,D) means that the delay is exactlyd

time units andP must be idling during the period.

(V ,P ,D)
x
→֒ (V ′,P ′,D ′)

[ ait1 ]

(V ,P interrupt [d ]tm Q ,D)
x
→֒ (V ′,P ′ interrupt [d ]tm Q ,D ′ ∧ tm ≤ d)

[ ait2 ]

(V ,P interrupt [d ]tm Q ,D)
τ

→֒ (V ,Q , tm = d ∧ ι(V ,P ,D))

ProcessP interrupt [d ] Q behaves differently in two ways. Transitions ofP must take place no

later thand time units since the process is enabled (ruleait1). If P delay more thand time units

(captured by the constraintι(V ,P ,D)), then it is interrupted after exactlyd time units (ruleait2).

(V ,P ,D)
x
→֒ (V ′,P ′,D ′), x 6= X

[ adl ]

(V ,P deadline[d ]tm ,D)
x
→֒ (V ′,P ′ deadline[d ]tm ,D

′ ∧ tm ≤ d)
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Figure 9.3: An example of abstract timed transition system

P deadline[d ] behaves exactly asP except that any transition must occur befored time units.

The rest of the firing rules is present in Appendix C. A transition is valid if, and only if, it conforms

to the firing rules and the resultant zone is not empty. Intuitively, this means that a transition must

be allowed by the untimed system and at the same time satisfy the additional timing requirement.

Definition 32 (Abstract transition system) Let S = (Var , init ,P) be a system model. The ab-

stract transition system corresponding toS is a LTSLSa = (Ca , inita , →֒) whereCa is the set of

reachable valid abstract system configurations,inita is the initial configuration(init ,P , true) and

→֒ is the smallest transition relation satisfying∀ c, c′ : Ca , c
e
→֒ c′ ⇔ A(c)

e
→֒ D(c′).

Example 9.1.1 (A simple example)Assume a model(∅,∅,P) with no variable andP is (a →

Wait [5]; b → Stop) interrupt [3] c → Stop. The abstract transition system is shown in Figure 9.3,

where transition labelτ is skipped for simplicity. Let〈t1, t2〉 be a sequence of clocks. The following

illustrates how to construct the abstract transition system. Lets0 be(∅,P , true).

• Step 1: applyA to s0 to get

s1 = (∅, (a →Wait [5]; b → Stop) interrupt [3]t1 c → Stop, t1 = 0)

• Step 2: apply ruleait1 to s1 to get

s2 = (∅, (Wait [5]; b → Stop) interrupt [3]t1 c → Stop, 0 ≤ t1 ≤ 3)

Notice that(t1 = 0)↑ equals tot1 ≥ 0.

• Step 3: applyD to s2. The result is exactlys2. We obtain the transition from state 1 to state 2.

• Step 4: apply ruleait2 to s1 to get

s3 = (∅, (c → Stop), t1 ≥ 0 ∧ t1 = 3)

Notice thatι(∅, a →Wait [5]; b → Stop, t1 = 0) is t1 ≥ 0.
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• Step 5: applyD to s3 to gets4 = (∅, (c → Stop), true). We remark that becauset1 becomes

inactive, it is pruned from the constraint. This generates the transition from state 1 to state 3.

• Step 6: applyA to s2 to get

s5 = (∅, (Wait [5]t2 ; b → Stop) interrupt [3]t1 c → Stop, 0 ≤ t1 ≤ 3 ∧ t2 = 0)

• Step 7: apply ruleait1 to s5, we get

s6 = (∅, (Skip; b → Stop) interrupt [3]t1 c → Stop, 0 ≤ t1 ≤ 3 ∧ t2 = 5)

Notice that the timing constraint is false given that all timers take the same pace. Refer to

next section on how this is discovered systematically.

• Step 8: apply ruleait2 to s5 to get

s7 = (∅, c → Stop, t1 ≥ 0 ∧ t2 ≥ 0 ∧ t2 ≤ 5 ∧ t1 = 3)

• Step 9: applyD to s7 to gets4. Notice that both clocks are inactive and therefore pruned.

This generates the transition from state 2 to state 3.

• Lastly, we generate the transition from state 3 to state 4. Notice that this transition involves

no quantitative timing.

end

9.1.3 Zone Operations

In order to construct and verify the abstract transition system, we need efficient and sound proce-

dures to manipulate zones. For instance, we need to determine whether a zone is empty or not. The

procedure must be sound (so that invalid configurations are ruled out) and complete (so that a valid

configuration is not missed).

A zoneD can be equally represented as a difference bound matrices (DBM). Let {t1, t2, · · · , tn}

be a set ofn clocks. Lett0 be a dummy clock whose value is always 0. A DBM representing a

constraint on the clocks containsn+1 rows, each of which containsn+1 elements. LetD i
j represent
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entry(i , j ) in the matrix. A DBM represents the constraint:∀ i : 0 . . n, ∀ j : 0 . . n, ti − tj ≤ D i
j .

The most important property of DBM is that there is a relatively efficient procedure to compute a

unique canonical form. Given a DBM in canonical form, checking whether the zone is empty or

not is as easy as looking up an entry in the matrix. DBM has beenwell studied [68, 29, 30]. In the

following, we introduce the relevant DBM operations/properties. We skip the discussion on rest of

the zone operations (e.g.D↑, adding a constraint, etc.) as they resemble the discussionin [30].

Calculate canonical form In theory, there are infinite different timing constraints which represent

the zone. For instance,0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 is equivalent to0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤

3 ∧ t2 ≤ 1000. In order to systematically compare two zones, we compute their unique canonical

forms. In other words, we compute the tightest bound on each clock difference. If the clocks are

viewed as vertices in a weighted graph and the clock difference as the label on the edge connecting

two clocks, the tightest clock difference is the shortest path between the respective vertices. The

Floyd-Warshall algorithm [90] thus can be used to compute the canonical from. Given that this

algorithm is cubic in the number of clocks, it is desirable toreduce the number of clocks. Besides,

the algorithm must be invoked if necessary and ideally (if possible) the result of performing an

operation on a canonical DBM should be canonical.

Check satisfiability In order to construct the abstract transition system, it is essential to check

whether a zone is empty. Given the DBM representing a zone, itis unsatisfiable if, and only if,

there is a clock which has a negative difference from itself,i.e. tk − tk < 0 for somek so that

the constraint is false. If the DBM is in canonical form, thenthere exists at least oneD i
i which is

negative. Further, it can be shown that the DBM is false if, and only if, D0
0 is negative. Therefore,

we compute the canonical form whenever it is necessary to check for satisfiability.

Add clocks In our setting, clocks may be introduced during system exploration. Assume the new

clock is tk and the given DBM is canonical. The following shows how the DBM is updated with

entries fortk . For all i , D i
k = D i

0 andDk
i = D0

i as the new clock always starts with value 0. By a

simple argument, it can be shown the resultant DBM is canonical.
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t0 t1 · · · ti · · · tk−1 tk

t0 0 d0
1 · · · d0

i · · · d0
k−1 0

t1 d1
0 ∗ · · · * · · · * d

1
0

· · · · · · · · · · · · · · · · · · · · · · · ·

ti d i
0 ∗ · · · ∗ · · · ∗ d

i
0

· · · · · · · · · · · · · · · · · · · · · · · ·

tk−1 dk−1
0 ∗ · · · ∗ · · · * d

k−1

0

tk 0 d
0
1
· · · d

0

i
· · · d

0

k−1
0

Prune clocks Because entries in a canonical DBM represent the tightest bound on clock differ-

ences, pruning clocks is to remove the relevant row and column in the table. It should be clear that

the remaining DBM is canonical, i.e. the bounds can not be possibly tightened with less constraints.

Notice that the number of reachable timing constraints in canonical form are finite as proved in [68].

As a result, the abstraction system is finite state and therefore subject to model checking1.

Example 9.1.2 (DBM manipulation example)The following illustrates how the DBM is trans-

formed through system exploration in Example 9.1.1.

The DBM obtained after Step 7 is indeed false, i.e.D0
0 is −2 after applying the Floyd-Warshall

algorithm. end

1assume that the variable domains are finite and the reachableprocess expressions are finite.
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9.2 Verification of Real-time Systems

In this section, we prove that our abstraction is sound and complete with respect to a number of

properties. The abstract transition system is shown to be equivalent to the concrete transition sys-

tem using a specialized bi-simulation relationship [136].We then show that three different system

verification methods are sound.

In the concrete transition system, if a configuration(V ′,P ′) can be reached from(V ,P) by idling

only, we write (V ,P)  (V ′,P ′). By a simple argument, it can be shown that if(V ,P)  

(V ′,P ′), thenV = V ′. We write(V ,P)
x
 (V ′,P ′) if, and only if, there exists(V ,P1), (V ′,P2)

such that(V ,P) (V ,P1) and(V ,P1)
x
→ (V ′,P2) and(V ′,P2) (V ′,P ′).

Definition 33 (Time abstract bi-simulation) Let S = (Var , init ,P) be a model. LetLSc =

(Cc , initc ,→) andLSa = (Ca , inita , →֒) be the concrete and abstract transition systems.Lc and

La are time abstract bi-similar (hereafter bi-similar) if, and only if, there exists a binary relation

R : Cc → Ca such that(initc, inita) ∈ R and∀ x : Σ ∪ {X, τ}; c = (Vc,Pc); a = (Va ,Pa ,Da)

such that(c, a) ∈ R implies,

• Vc = Va ,

• if c
x
 c′, then for somea ′, a

x
→֒ a ′ and(c′, a ′) ∈ R.

• if a
x
→֒ a ′, then for somec′, c

x
 c′ and(c′, a ′) ∈ R.

We say thatc anda are bi-similar, written asc ∼ a, if, and only if, there existsR such that the

transition systems are bi-similar. Notice thatLc andLa are bi-similar if, and only if,initc ∼ inita .

Theorem 9.2.1 LetS = (Var , init ,P) be a system model.LSc andLSa are time abstract bi-similar.

Proof: Let S = (Var , i ,P) be the model;Lc andLa be the concrete and abstract transition system

respectively. By definition, it suffices to construct a binary relation which satisfies the condition.

The theorem is proved by structural induction on the all types of process expressions. The following

are the base cases.
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• Stop: R = {(i ,Stop) 7→ (i ,Stop, true)}. Trivially true.

• Skip: R = {(i ,Skip) 7→ (i ,Skip, true), (i ,Stop) 7→ (init ,Stop, true)}. Trivially true.

• Wait [d ]: R = {(i ,Wait [d ]) 7→ (i ,Wait [d ], true), (i ,Skip) 7→ (i ,Skip, true),

(i ,Stop) 7→ (i ,Stop, true)}. The transition(i ,Wait [d ])
τ
 (i ,Skip) of Lc corresponds

to the transition(i ,Waid [d ], true)
τ
→֒ (i ,Skip, true). Notice that the clock introduced by

functionA would be pruned byD. The rest is trivial.

Next, we prove the induction step.

• e{prg} → P : (i , e{prg} → P) and(i , e{prg} → P , true) are bi-similar since(i , e{prg}

→ P)
e
 (prg(i),P) (by ruleas1 andas2) and(i , e{prg} → P , true)

e
→֒ (prg(i),P , true)

(by ruleaev ), and(prg(i),P) ∼ (prg(i),P , true) (by hypothesis).

• [b]P : if i � b, then[b]P behaves exactly asP (rule gu2 and ruleagu), hence by hypothesis,

(i , [b]P) ∼ (i , [b]P , true). If i 6� b, then [b]P behaves exactly asStop (rule gu1 and no

abstract firing rule), hence(i , [b]P) ∼ (i , [b]P , true).

• P 2 Q : P 2 Q behaves either asP or Q , in both cases, by hypothesis(i ,P 2 Q) ∼

(i ,P 2 Q , true).

• P ⊓ Q . Similarly as above.

• P ‖ Q : there is one-to-one correspondence on the concrete firing rules (rulepa1, pa2 and

pa3) and the abstract firing rules ((ruleapa1, apa2 andapa3)). It is clear that by hypothesis

(i ,P ‖ Q) ∼ (i ,P ‖ Q , true).

• P ||| Q . Similarly as above.

• P ; Q . Similarly as above.

• P timeout [d ] Q : let the associated clock betm. We show that each abstract transition is

possible if and only if there is a corresponding concrete transition (i ,P)  (i ′,P ′). Rule

ato1 is applicable if and only iftm ≤ d and (i ,P ,D) may perform aτ -transition. By
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hypothesis,(i ,P ,D) may perform aτ -transition if and only if(i ,P) does. By ruleto2, to3

andto4, a τ of P may happen if and only iftm ≤ d . Therefore, we conclude ruleato1 is

applicable if and only if there is a corresponding concrete transition. Similarly, we argue that

rule ato2 andato3 are applicable if and only if there is a corresponding concrete transition.

This concludes that(i ,P timeout [d ] Q) ∼ (i ,P timeout Q , true).

• P interrupt [d ] Q : Similarly as above.

• P waituntil [d ]: rule awu1 is applicable if and only ifx is notX or (V ,P ,D) is capable of

performingx . By hypothesis,(V ,P) must be able to performx . Ruleawu2 is applicable if

and only iftm ≥ d , this is implied by rulewu3 and hypothesis (and vice versa). Lastly, rule

awu3 is implied by rulewu2 andwu4.

• Similarly as above. 2
By definition, it suffices to construct a binary relation which satisfies the condition. Time abstract bi-

simulation is strong enough to guarantee soundness on verification of a number of useful properties.

9.2.1 LTL-X Model Checking

In this section, we study the verification of LTL formulae (see Section 2.3.2) without the next oper-

ator (i.e. LTL-X), constituted by propositions on global variables. Notice that no clocks are allowed

in the property. The philosophy is that a critical property may often be independent of the speed

of the hardware on which the system is deployed, whereas the model of the implementation shall

incorporate known hardware limitations.

Example 9.2.2 Given the Fischer’s algorithm in Section 3.2.3, the following are some critical prop-

erties.2ct ≤ 1 – safety property2(x = i ⇒ 3cs.i) – liveness property
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where2 and3 read as ‘always’ and ‘eventually’. The first property precisely states mutual exclu-

sion, i.e., at all time, there must not be 2 or more processes in the critical section. The second states

that if processi is attempting to access the shared resource, it must eventually do so. end

In order to reflect model checking results on the abstract transition system to the original system,

we need to establish that the abstract transition system is equivalent to the concrete one with respect

to LTL-X formulae. The idea is to show stutter equivalence between traces of the abstract system

and the concrete system. Given two tracestr1 = 〈V0,V1, · · ·〉 andtr2 = 〈V ′
0,V

′
1, · · ·〉, tr1 andtr2

are stutter equivalent if, and only if,tr1 andtr2 can be partitioned into blocks, so that the variable

valuation in thek -th block intr1 is the same as those in thek -th block oftr2. Formally,tr1 is stutter

equivalent totr2 if, and only if, there are two infinite sequences of integers0 < i0 < i1 < · · · and

0 < j0 < j1 < · · · such that for every blockk ≥ 0 holdsVsik
= Vsik+1 = · · · = Vsik+1−1 = V ′

sjk
=

V ′
sjk+1

= · · · = V ′
sjk+1−1

. It is known thattr1 satisfies a LTL-X property if, and only if,tr2 does.

Let φ be such a property, we writeL ⊢ φ to denote that the labeled transition systemL satisfiesφ,

i.e. every trace ofL satisfiesφ.

Lemma 9.2.3 Let S = (Var , initG ,P) be a system model. For every trace of the concrete tran-

sition systemLc , there is a stutter equivalent trace of the abstract transition systemLa and vice

versa.

The above lemma can be proved by structural induction or implied from Theorem 9.2.1. Conse-

quently, the following theorem can be proved straightforwardly.

Theorem 9.2.4 LetS = (Var , initG ,P) be a system model. Letφ be a LTL-X formula constituted

by propositions onVar . LSc � φ if, and only if,LSa � φ.

9.2.2 Refinement Checking

In this section, we investigate an alternative verificationschema for finite system executions. That

is, to verify whether the system satisfies the property by showing a refinement relationship between
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the system and a model which models the property. Chapter 6 presents a variety of refinement rela-

tionships, e.g. trace-refinement, stable failures refinement and failures/divergence refinement [108].

In order to check refinement between two (timed) models, timeabstraction must be applied to both

models.

Example 9.2.5 Given the Fischer’s algorithm in Section 3.2.3, a natural question is whetherǫ and

δ are necessary or their values would make a difference. Equivalently, the former is to ask whether

(init , uProcotol) whereinit = {x 7→ −1, ct 7→ 0} anduProcotol defined as follows, trace-refines

the original one(init ,Procotol).

uProc(i) = [x == −1]uActive(i);
uActive(i) = update.i{x = i} →

if (x == i) {
cs.i{ct = ct + 1} → exit .i{ct = ct − 1; x = −1} → uProc(i)

} else{
uProc(i)

};
uProtocol = uProc(0) ‖ uProc(1) ‖ uProc(2);

By showing trace refinement in both directions, we may establish trace equivalence. Or, the users

may change the value ofǫ andδ check for equivalence. end

We have defined refinement and equivalence relations betweentwo concrete models in Definition 22

in Section 6.1. In the following, we argue that it is sound andcomplete to show stable failures re-

finement (i.e. assuming both models are divergence-free) between the abstraction transition systems

in order to show failures refinement between the concrete models.

Theorem 9.2.6 LetSi wherei ∈ {1, 2} be two models.S1 refinesS2 in stable failures semantics

iff traces(LS1
a ) ⊆ traces(LS2

a ) andfailures(LS1
a ) ⊆ failures(LS2

a ).

By Theorem 9.2.1, it should be clear that our abstraction preserves failures. Intuitively, this is

because not only observable transitions but alsoτ -transitions are preserved by the abstraction. The

theorem can then be proved straightforwardly. We remark that it is clear the failures refinement

subsumes trace-refinement and, therefore, it too can be supported by only checking the abstract

transition systems.
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9.2.3 Timed Refinement Checking

We have looked at the refinement checking without the consideration of timed transitions. To in-

clude timed transitions, we need to include the time stamps in the traces.

We assume a global clocktG which starts (with reading 0) whenever the system starts. Weequip a

system configuration(V ,P) withe a clock valuet , written as(V ,P)t wheret is the current reading

of tG . The changes oft in the firing rules presented in Section 3.2.2 can be calculated easily by

adding the elapsed time in the transition. Assume thatǫ ∈ R+ is a real number denoting the event

of time elapsing. Given a transition(V ,P)t → (V ′,P ′)t ′ , we havet ′ = t + ǫ in rulede1, to3, it2

andde2, andt ′ = t in rest rules.

A timed event is an event associated with a time stamp, written asx@t wheret is the reading of

tG whenx occurs, i.e. a timestamp. A run of a modelS = (Var , initG ,P) is afinite sequence of

alternating configurations and timed events, i.e.

〈(V0,P0)t0, x1@t1, (V1,P1)t1 , x2@t2, · · · , xn@tn , (Vn ,Pn)tn 〉

such thatV0 = initG , P0 = P , t0 = 0 and(Vi ,Pi )ti
xi+1
→ (Vi+1,Pi+1)ti+1 for all i . An execution

of S is a finite sequence of timed events〈x1@t1, x2@t2, · · · , xn@tn〉 such that there exists a corre-

sponding run〈(V0,P0)t0 , x1@t1, · · · , xn@tn , (Vn ,Pn)tn 〉. Given an executionE , letE ↾X where

X is a set of event names be the sequence generated by removing events with a name inX from

the sequence.E is divergent if and only ifE can be extended with infiniteτ -events and possibly

ǫ-events.E is timed divergent if and only ifE can be extended with infiniteǫ-events andτ -events.

A model is (timed) divergence-free if and only it contains no(timed) divergent executions.

Example 9.2.7 The following illustrates a model which is not timed divergence-free. Assume there

are no variables and the process is defined as follows:P = Wait [5]; P . The empty execution is

timed divergent since it can be extended with the sequence〈5, τ, 5, τ, · · ·〉. end

A sequence of observable timed eventstr is a trace ofS if and only if there exists an executionE

such thattr = E ↾ R+ ↾ {τ}. Let traces(S) denote the set of all traces of modelS. Let I andS
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be two system models.I trace-refinesS, written asI ⊒T S, if and only if traces(I) ⊆ traces(S).

A timed safety property can be proved by showing a timed tracerefinement relationship from an

implementation to a hand-crafted specification which captures the property.

Example 9.2.8 Assume a modelI which contains two eventsstart andend . Further, the property

is thatend must occur within 5 seconds sincestart occurs. In order to show theI satisfies the

property, we can show thatI refines (in timed traces semantics) the following specification: S =

start → (end → S) within[5]. end

An abstract timed event is written ase@D , which denotes thate may occur at any time point in

D . An execution ofLSa is a finite sequence of abstract timed events〈e0@D0, e1@D1, · · · , en@Dn〉

such thatci
ei→a ci+1 andci = (Vi ,Pi ,Di ) for all i andc0 = inita .

Because a clock is associated with a process construct and weassume the reachable process expres-

sions are finite, only finitely many runtime clocks are necessary at the same time. Further, because

there exists a clock ceiling for all runtime clocks, we can apply zone normalization [30] on runtime

clocks so that there are finitely many zones with respects to runtime clocks only (i.e. excludingtG

from each zone).

Theorem 9.2.9 LetS = (Var , initG ,P) be a model.〈a1@t1, a2@t2, · · · , an@tn〉 is a trace ofS

if and only if there exists a trace ofLSa , 〈a1@D1, a2@D2, · · · , an@Dn〉, such thatti ∈ Di [tG ] for

all i .

In the theorem above,ti ∈ Di [tG ] means that valuetG = ti is a solution of the constraint repre-

sented byDi [tG ]. The theorem states that abstraction is sound and complete with respect to timed

traces semantics. We prove this theorem using the followingauxiliary theorem, which subsumes

Theorem 9.2.9. Theorem 9.2.10 states that not only observable timed event sequences but all timed

event sequences are preserved.

Theorem 9.2.10LetS = (Var , init ,P) be a model.〈e1@t1, e2@t2, · · · , en@tn〉 is an execution

of S if and only if there exists an execution ofLSa , 〈e1@D1, e2@D2, · · · , en@Dn〉, such thatti ∈

Di [tG ] for all i ,.
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Proof: The theorem is proved by structural induction, on process expression types. The base cases

are thatP is Stop or Wait [d ]. Notice thatSkip = X→ Stop. The base cases are straightforward.

Assume thatP is enabled at timet0, the clock associated withP is t , the current valuation isV and

the current zone isD . The following proves the induction step for the case thatP isP timeout [d ] Q .

• only-if : There are three cases according to ruleto1 to to4. If e1 is a τ event generated by

rule to2, we gett1 − t0 ≤ d (since ruleto3 is applicable only whend is positive). By

hypothesis, lete1@D ′
1 be the abstract timed event generated by ruleato1. Sincet1 ∈ D ′

1[tG ]

(by hypothesis) andt ≤ d (by t1 − t0 ≤ d), we conclude thatt1 ∈ D1[tG ]. The same

argument applied to the case wheree1 is an observable event generated by ruleto1. If e1 is

a τ event generated by ruleto4, thent1 − t0 = d . Let e1@D ′
1 be the abstract timed event

generated by ruleato3. Sincet1 ∈ D ′
1[tG ] (by hypothesis) andt = d (sincet1 − t0 = d), we

conclude thatt1 ∈ D1[tG ]. Therefore, we prove the only-if part.

• if : There are three cases according to ruleato1 to ato3. If e1@D1 is generated by ruleato1,

D1[tG ] ⇒ t ≤ d . Let e1@D ′ be the abstract timed event generated byP . By hypothesis,

there existse1@t1, a timed event generated byP such thatt1 ∈ D ′. By rule to1 andto2, t ′1

satisfiest ′1 ≤ d , and hencet1 ∈ D1[tG ]. Similarly, we prove the other cases.

By similar argument on each and every types of process expression, we prove that the theorem

holds. Further, it is straightforward to conclude that Theorem 9.2.9 holds given the above theorem.2
By Theorem 9.2.9, given two modelsI andS, it is sufficient to show thatLIa trace-refinesLSa in

order to verify thatI trace-refinesS. Nonetheless, because the reading oftG is unbounded,LSa and

LIa have infinite number of states2. In this section, we show how to overcome this problem.

Normalization To verify thatLIa trace-refinesLSa , we need to normalize (or equivalently deter-

minize) LSa . Unlike normalization Timed Automata (which is infeasible[10]), normalization in

2Zone normalization ontG does not work.
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this setting follows the standard subset construction. A state of the normalized transition system

(referred as normalized state) is a subset of states which are connected byτ -transitions. The in-

tuition is that given a trace only one normalized state is reached. Given an abstract configuration

ca , let τ∗(ca) is the set of abstraction configurations which can be reachedfrom ca via 0 or more

τ -transitions in֒→.

Definition 34 Let S = (Var , initG ,P) be a model;LSa = (Ca , inita , →֒) be the abstract tran-

sition system. The normalized abstract transition system is (Cn , initn , →֒n) whereCn is a set of

normalized states,initn = τ∗(inita) and →֒n is a labeled transition relation satisfying the follow-

ing condition:P
e
→֒n Q if and only ifQ = {ca : Ca | ∃ c1 : P , c1

e
→֒ c′2 ∧ ca ∈ τ

∗(c′2)}.

We define the traces based on the normalized transition system in the standard way. It can be

shown that the above normalization is timed trace preserving. We remark that normalization is not a

pre-request for our refinement checking algorithm, insteadthe normalized transition system is con-

structed on-the-fly. Figure 9.3 in Example 9.1.1 illustrates how the transition system is normalized

using dotted ellipses. The initial normalized state contains state 1 and 3 (since state 3 can be reached

from state 1 via aτ -transition).

A refinement checking algorithm (e.g. the one for un-timed refinement checking in the FDR refine-

ment checker [178]) works by normalizingLSa and then comparing states ofLIa with the normalized

states. It reports a counterexample if and only if a state ofLIa enablesmore than the normalized

state ofS (which is reached via the same trace) does. The following defines what isenabledin the

timed setting.

Given an abstract configuration, the set of enabled events isa set of abstract timed events. That is,

enabled(c) is a set of pairs(a,D [tG ]) such thata is an observable event andD is a zone which tells

whena is enabled, i.e. there exists an abstract configuration(V ,P ,D) such thatc
a
→֒ (V ,P ,D).

Notice that only reading oftG is interested. Multiple abstract timed events with the sameevent name

may be present inenabled(c). In the following, we assume that abstract timed events withthe same

event are always grouped together in a set of abstract timed events, by applying the following rule:
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{· · · , e@D1[tG ], e@D2[tG ], · · ·} = {· · · , e@D1[tG ] ∪ D2[tG ], · · ·}3. Given two sets of abstract

timed eventsE1 andE2, E1 ⊆ E2 if and only if for all e@D in E1, there existse@D ′ in E2 such

that D ⊆ D ′. Given a normalized statecn , we write enabled(cn ) to mean the set{x | ∃ ca :

cn . x ∈ enabled(ca)}. Similarly, we assume that abstract timed events with the same event are

grouped together.

The algorithm LetI andS be two system models. Let the corresponding abstract transition systems

beLIa = (C I
a , initIa , →֒

I) andLSa = (C S
a , initSa , →֒

S) respectively. Further, let(C S
n , initSn , →֒

S
n )

be the normalized transition system ofLSa . In an abuse of notations, given an abstraction config-

uration ca = (V ,P ,D), we write ca [t := 0] to mean(V ,P ,D ′) whereD ′ = Dt :=0, i.e. the

configuration with clockt being reset.

The algorithm presented in Figure 9.4 verifies whetherI refinesS. The idea is to construct the

synchronous product ofLIa andLSn on-the-fly whilst searching for a state-pair(i , sn ) : C I
a × C S

n

of the product such thati enables more events thansn does. The algorithm is inspired by the one

used in FDR and follows its soundness/completeness argument. In order to guarantee termination,

the reading oftG must be bounded. This is achieved by resettingtG when synchronizingI andS.

Notice thattG is never pruned during the clock de-activation.

As in standard reachability testing, two data structures are maintained, i.e. a stack namedworking

to store all reachable state-pairs which are yet to be explored and a set namedvisited to record

all visited state-pairs. At line 2, the initial state of the product is pushed into theworking stack.

If there is a state-pair(i , sn) yet to explored (so that the condition at line 5 is satisfied),and if i

enables more events thansn (i.e. satisfying the condition at line 7), the algorithm returns false (and

reports a counterexample). Otherwise, we generate state-pairs from(i , sn ) and push them into stack

working . Notice that ifi ′ can be reached fromi by aτ -transition inLIa , then(i ′, sn ) is a state of

the product. We remark that all visible events must be engaged synchronously byLIa andLSa . That

is, if i ′ can be reached fromi by a ands ′n can be reached fromsn by a, then(i ′, s ′n) is a state of the

product. Further, clocktG is reset whenever a visible event is synchronously engaged (line 14 and

3DBM is not closed under union. Nonetheless, it does not matter here.
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procedure refines(I,S)
1. Stackworking := 〈〉; Setvisited := ∅;
2. working .push(initIa , initSn );
3. while working 6= 〈〉
4. (i , sn ) := working .pop();
5. if (i , sn) 6∈ visited

6. visited := visited ∪ (i , sn);
7. if enabled(i) 6⊆ enabled(sn )
8. return false;
9. endif
10. foreach i ′ s.t. (i , τ, i ′) ∈→֒I

11. working .push(i ′, sn );
12. endfor
13. foreach a, i ′ s.t. (i , a, i ′) ∈→֒I

14. foreach s ′n s.t. s ′n = {x [tG := 0] | ∃ c : sn . (c, a, x ) ∈→֒S}
15. working .push(i ′[tG := 0], τ∗(s ′n ))
16. endfor
17. endfor
18. endif
19. endwhile
20. return true;

Figure 9.4: Algorithm:refines(Impl ,Spec)

15). The soundness of the algorithm is stated in the following theorem.

Theorem 9.2.11LetI andS be two models. Algorithmrefines(I,S) returns true if and only ifI

refinesS. It terminates if both areI andS are timed divergent-free.

Proof: The theorem has two parts. The first is that the result is sound. The second is that the

algorithm terminates under some condition.

Partial correctness If we never resetTG , algorithmrefine resembles the refinement checking al-

gorithm used in FDR, then the theorem follows the soundness and completeness argument pre-

sented in [176]. Next, we argue that resettingtG as in the algorithm is sound and complete

as follows. I does not refineS if and only if there existstr = 〈a1@t1, a2@t2, · · ·〉 such that

tr ∈ traces(I) ∧ tr 6∈ traces(S). Let tr i be the prefix oftr , i.e.,tr i = 〈a1@t1, · · · , ai@ti〉 . By
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a simple argument, it can be shown thatI does not refineS if and only if there existsi such that

tr i a 〈ai+1@ti+1〉 is a trace ofI but notS. Next, we prove the theorem using an induction oni .

• Base case: if i = 0, no resetting oftG is necessary, we conclude the theorem holds.

• Induction step: Assume thattr i ∈ traces(I) ∧ tr i ∈ traces(S) and there existsai+1@ti+1

such thattr i a 〈ai+1@ti+1〉 is a trace ofI but notS. Now, assumetG starts with−ti . There

existsai+1@ti+1 − ti such thattr i a 〈ai+1@ti+1 − ti〉 is a trace ofI but notS, where

ti+1 − ti is the reading oftG after resetting at stepi . This justifies that resettingtG is sound

and complete.

Terminating By assumption, all variables have finite domains and there are only finite process

expressions, and therefore, it remains to show that the number of zones are finite. Further by as-

sumption, bothI andS are timed divergent-free, this implies that throughτ -transitions only, there

are only finitely many partitioned ontG ’s reading. Because we resettG every time an observable

event is engaged, we have only finitely many zones since all run-time clocks are bounded (and have

finitely partitions since only integers are allowed as time constants). 2
Notice that in order to guarantee that the algorithm can terminate, bothI andS must be timed

divergence-free. This assumption is reasonable for two reasons. Firstly, it is relatively straight-

forward to check whether a model is timed divergent-free or not. A simple approach is to apply

zone abstraction without using the global clocktG . Assume the abstract transition system isLa .

The model is timed divergence-free if and only ifLa does not contain a loop which contains only

τ -transitions and time elapsing. Existence of such a loop canbe checked using well-studied algo-

rithms like nested Depth-First-Search or Tarjan’s algorithm for strongly connected components4.

Secondly, without explicit hiding, a model which is not timed divergence-free is often problem-

atic. Furthermore, timed divergence due to hiding of observable events can be avoided by carefully

crafting the specification model. This is illustrated in thenext section using a pacemaker case study.

4The latter has been implemented in PAT.
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Model Size Property States/Transitions PAT (sec.)

Fischer 4 2ct ≤ 1 3452/8305 0.22

Fischer 5 2ct ≤ 1 26496/73628 2.49

Fischer 6 2ct ≤ 1 207856/654776 27.7

Fischer 7 2ct ≤ 1 1620194/5725100 303

Fischer 4 2(x = i ⇒3cs .i) 5835/16776 0.53

Fischer 5 2(x = i ⇒3cs .i) 49907/169081 5.83

Fischer 6 2(x = i ⇒3cs .i) 384763/1502480 70.5

Fischer 4 Protocol refines uProtocol 7741/18616 5.22

Fischer 5 Protocol refines uProtocol 72140/201292 126.3

Fischer 6 Protocol refines uProtocol 705171/2237880 3146

Railway Control 5 deadlock-free 4551/6115 0.42

Railway Control 6 deadlock-free 27787/37482 3.07

Railway Control 7 deadlock-free 195259/263641 24.2

Railway Control 8 deadlock-free 1563177/2111032 223.1

Railway Control 5 2(appr .1→3leave.1) 8137/10862 0.95

Railway Control 6 2(appr .1→3leave.1) 50458/67639 6.58

Railway Control 7 2(appr .1→3leave.1) 359335/482498 58.63

Table 9.1: Experiment results of LTL and refinement checking

9.3 Experiments

The techniques presented in this chapter have been implemented in PAT. We separate the experi-

ments on LTL and refinement checking with timed refinement checking. The data are obtained with

Intel Core 2 Quad 9550 CPU at 2.83GHz and 2GB memory.

LTL and Refinement Checking

In the following, we present the experiment results on two benchmark models. Table 9.1 shows the

experiment results on the Fischer’s mutual exclusion algorithm and a railway control system [224].
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In both examples, PAT performs reasonably well. It handles107 states/transition in a few hours,

which is comparable to existing model checkers [111, 179]. Further, a simple experiment shows

that the computational overhead of calculating clocks/DBMs is around one third of the overall time.

The data on UPPAAL [135] or RED [217] verifying the same models has been omittedfrom the

table. Because UPPAAL and PAT are based on a different modeling language, the results must be

taken with a grain of salt. The state graph generated from a PAT model may contain unnecessary

τ -transitions introduced by the compositional process constructs, e.g. theτ in rule ato3. In hand-

crafted UPPAAL models, however, theτ -transitions may be removed by carefully manipulating the

clock guards and grouping clock guards and events on the sametransition. In such a setting, verifi-

cation of the UPPAAL is faster (by a factor related to the number of suchτ -transitions). However,

our experiment show that if we manually construct a PAT modeland a UPPAAL model with the

same state graph, then PAT and UPPAAL have a similar performance.

Timed Refinement Checking

The refinement checking algorithm is computationally complex, specially when the specification

model is highly non-deterministic (i.e. normalization is EXP-time). In this section, we show that

our approach is still practically useful.

Case studyA pacemaker is an electronic implanted device which functions to regulate the heart beat

by electrically stimulating the heart to contract and thus to pump blood throughout the body. Quan-

titative timing is crucial to pacemaker. Common pacemakersare designed to correct bradycardia,

i.e. slow heart beats. A pacemaker mainly performs two functions, i.e. pacing and sensing. Sensing

is to monitor the heart’s natural electrical activity, helping the pacemaker to gather information on

the heart beats and react accordingly. Pacing is when a pacemaker sends electrical stimuli, i.e. tiny

electrical signals, to heart through a pacing lead, which start a heartbeat. A model of the pace-

maker is of the following form:Heart ‖ Sensing ‖ Pacing where processHeart models normal

or abnormal heart condition; processSensing andPacing model the two functions. A pacemaker

can operate in many different modes, according to the implanted patient’s heart problem. All three

components above may be different in different modes. For instance, the following models one of
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the simple models, namely the AAT mode.

AAT = Heart || Sensing || Pacing(LRI )
Sensing = if (SA == 1){atomic{pulseA→ senseA→ Skip}; Sensing}

else{pulseA→ Sensing};
Pacing(X ) = (atomic{senseA→ paceA{SA = 0} → Skip}

timeout [X ] (paceA{SA = 0} → Skip) within[0]); Wait [URI ];
(enableSA{SA = 1} → Pacing(LRI − URI )) within[0];

whereURI andLRI are constants representing upper rate interval (i.e. the fastest a normal heart

can beat) and lower rate interval (i.e. the slowest a normal heart can beat). Processheart generates

two eventspluseA (i.e. atrial does a pulse) andpluseV (i.e. ventral does a pulse), periodically for

a normal heart or within one of them missing once a while for anabnormal heart. ProcessSensing

synchronizes withheart onpluseA and engages in eventsenseA immediately. Processatomic{P},

once started, continues to execute without interleaving until blocked. SA is flag telling whether it

is necessary to monitor atria (1 for necessary). ProcessPacing synchronizes withSensing on

eventsenseA and paces a heart (captured by eventpaceA) if a heart pace is missing (captured by

timeout). We skip the details here. Interested readers can refer to [28].

We model all 16 different modes and verify that the pacemakersatisfies multiple specification. An

essential property is that the pacemaker must restore normal heart condition, which can be modeled

by the following process.

Spec = paceA→ Started

Started = (paceA→ Started) within[URI ,LRI ]

whereP within[m,n] requires thatP must react withinm to n time units. Intuitively,Spec means

that following onepaceA, the nextpaceA must occur withinURI to LRI time units. Because

the specification only concerns eventpaceA, other events must be ignored. One solution is to

hide the rest of the events using the hiding operator. For instance, we may verify thatAAT \

{pulseA, senseA, enableSA} refinesSpec in order to show that the pacemaker satisfies the property.

In general, hiding events may introduce timed divergent traces, which then makes the refinement

checking algorithm non-terminating5. An alternative way is to verifyAAT refinesSpec ||| Dummy

5Also the maximal progress assumption on hidden events may change system behaviors.
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Model Size Property States/Transitions Result Time (s)

Pacemaker - deadlock-free 302442/2405850 true 92.1

Pacemaker - correctness 986342/2608226 true 122

Fischer 4 mutual exclusion 9941/34244 true 0.78

Fischer 5 mutual exclusion 141963/599315 true 17.2

Fischer 6 mutual exclusion 2144610/10795380 true 401

Fischer 6 bounded bypass 2429/8065 false 0.36

Fischer 7 bounded bypass 9213/34611 false 1.47

Fischer 8 bounded bypass 32785/137417 false 6.16

Fischer 9 bounded bypass 91665/425966 false 21.1

Fischer 10 bounded bypass 300129/1542020 false 79.8

Fischer 11 bounded bypass 693606/3880577 false 214

Railway Control 4 bounded waiting 918/1359 true 0.45

Railway Control 5 bounded waiting 4764/7199 true 3.21

Railway Control 6 bounded waiting 28782/43795 true 26.2

Railway Control 7 bounded waiting 201444/307071 true 238

Table 9.2: Experiment results of timed refinement checking

where processdummy is defined as follows.

Dummy = pulseA→ Dummy 2 senseA→ Dummy 2 enableSA→ Dummy

As a result,Dummy will synchronize the irrelevant observable events withAAT . By a simple

argument, it can be shown that this is sound and complete.

Table 9.2 summarizes part of our experiments on demonstrating the scalability of our method using

the pacemaker system and benchmark systems. The pacemaker contains little concurrency and

hence is verified efficiently. Using refinement relationship, we can encode a variety of different

properties [178], including mutual exclusion, bounded by-pass, etc. The experiment on Fischer’s

mutual exclusion algorithm shows that PAT finds a counterexample efficiently. It is time consuming

if a system contains multiple parallel processes and the property is true. Nonetheless, PAT handle

107 states in a few hours which is comparable to model checkers like SPIN and UPPAAL.
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9.4 Summary

In this chapter, we studied model checking of hierarchical real-time systems. Based on the real-time

modeling language proposed in Section 3.2, we developed a fully automated abstraction technique

to build an abstract finite state machine from the real-time model. We showed that the abstraction

has finite state and is subject to model checking. Further, itweakly bi-simulates the concrete model

and, therefore, we may perform sound and complete LTL-X model checking, refinement checking

and even timed refinement checking upon the abstraction.

This chapter is related to verification of real-time systems. Verification support has been devel-

oped for hierarchical specification based on process algebras (e.g. the algebra of timed processes

ATP [187, 159], CCS + real-time [223], Timed CSP [183], etc).A preliminary PVS encoding of

Timed CSP was presented in [40], which rely heavily on user interactions. In [224], a constraint

solving method was proposed to verify CCS + real time. Several model checkers have been devel-

oped with Timed Automata [10] being the core of their input languages [135, 35, 207]. The zone

abstraction is closely related to works presented in [224].The difference is that we use implicit

clocks and support the hierarchical specification. The soundness discussion of our abstraction is

inspired by [136]. There are few verification support for Timed CSP, e.g. the theorem proving ap-

proach documented in [40, 101], the translation to UPPAAL models [70, 71] and the approach based

on constraint solving [72]. The PAT model checker is the firstdedicated verification tool support for

Timed CSP models. In addition, PAT complements UPPAAL with the ability to check full LTL-X

property and check refinement relationship.

To the best of our knowledge, there are few tool support for timed refinement checking. One of the

reasons is that Timed Automata, which extended Büchi Automata with clocks [10], is designed to

capture infinite languages. The refinement checking problemis undecidable in the setting of Timed

Automata, because the language of Timed Automata is not closed under complement. Our approach

is, however, decidable because we are based on finite timed trace semantics. As a price to pay, our

method is limited to verify timed safety properties or bounded liveness properties. This is justified

by the fact that most of the verified properties are safety properties [103].



Chapter 10

Tool Implementation: Process Analysis

Toolkit

Concurrent systems exhibit complex behaviors. System simulation and verification become more

and more demanding as the complexity grows. It is highly desirable to have automatic tool support

for the system analysis. In this chapter, we present ProcessAnalysis Toolkit (PAT) [1], which is a

self-contained framework to support composing, simulating and reasoning of concurrent systems.

PAT provides user friendly interfaces for system modeling and simulation. Most importantly, PAT

implements various model checking algorithm and optimization techniques developed in the previ-

ous chapters. PAT is designed to be a general framework, which can be easily extended to support

systems with new languages syntax and verification algorithms. Currently, three modules have been

developed in PAT: Communicating Sequential Processes (CSP) module, Real-time System (RTS)

module and Web Service (WS) module.

The remainder of the chapter is organized as follows. Section 10.1 provides an architecture overview

of PAT. Section 10.2 presents PAT’s system design. Section 10.3 discusses the three modules cur-

rently developed in PAT in details. Section 10.4 reviews related work and concludes.
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10.1 Overview of PAT

Critical system requirements like safety, liveness and fairness play important roles in software spec-

ification, development and testing. It is desirable to have handy tools to simulate the system be-

haviors and verify critical properties. Process Analysis Toolkit (PAT) [1] was initially designed

to investigate system verification under fairness assumptions [202]. Later, we have successfully

demonstrated PAT as an analyzer for process algebras in [146]. Since then, PAT has been evolved

to be a self-contained framework to support analysis of concurrent and real-time systems.

PAT provides simple installation, wizard like guidance andusers friendly interfaces. System mod-

els can be easily composed with the help of featured editing functions. The models can then be

simulated using automatic animations. Most importantly, PAT implements various model checking

techniques (proposed in the previous chapters) catering for checking deadlock-freeness, divergence-

freeness, reachability, LTL properties with fairness assumptions (see Chapter 4), refinement relation

checking (see Chapter 6) and etc. To achieve good performance, advanced techniques are imple-

mented in PAT, e.g. partial order reduction (see Section 6.2.2), process counter abstraction (see

Section 5.4), bounded model checking (see Chapter 8), parallel model checking (see Section 4.6),

etc. We have used PAT to model and verify a variety of systems,ranging from recently proposed

distributed algorithms, security protocols to real-worldsystems like the pacemaker system [28].

Previously unknown bugs have been discovered (see Section 5.2.3). The experiment results show

that PAT is capable of verifying systems with large number ofstates and complements the state-of-

the-art model checkers in some cases.

Starting from PAT 2.0, we have applied a layered design to support the analysis of the different

system/languages by implementing them as plug-in modules.Figure 10.1 shows the architecture

design of PAT. For each supported system (e.g., distributedsystem, real-time system, service ori-

ented computing, bio-system, security protocols and sensor network), a dedicated module is created

in PAT, which identifies the (specialized) language syntax,well-formness rules as well as (opera-

tional) formal semantics. For instance, the CSP module is developed for the analysis of concurrent

system modeled in CSP#. The operational semantics of the target language translates the behaviors



10.1. OVERVIEW OF PAT 197

Figure 10.1: PAT architecture

of a model into Labeled Transition Systems (LTS). LTS servesas the internal representations of the

input models, which can be automatically explored by the verification algorithms or used for simu-

lation. To perform model checking on LTSs, the number of states in the LTSs needs to be finite. For

systems with infinite behaviors (e.g., real time clocks or infinite number of processes), abstraction

techniques are needed. Examples of abstraction techniquesinclude data abstraction, process counter

abstraction (see Section 5.4), clock zone abstraction (seeSection 9.1), environment abstraction, etc.

The verification algorithms perform on-the-fly explorationof the LTSs. If any counterexample is

identified during the exploration, then it can be animated inthe simulator. The advantage of this de-

sign allows the developed model checking algorithms to be shared by all modules. To create a new

module in PAT, users simply need to develop a parser for the target modeling language and language

construct classes which define their operational semantics. With the help of predefined APIs, exam-

ples and tools (e.g. automatic parser generator), developing a module for a new language becomes

relatively easy and requires less expertise1.

1Experiences suggest that a new module can be developed in months or even weeks.
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Till now, three modules have been developed. CSP module supports modeling and verification

of general concurrent systems, especially under a variety of fairness assumptions. RTS module

provides analysis for real-time systems which are specifiedusing hierarchical timed processes. WS

module supports modeling and verification of Web service orchestration and choreography. In the

future, we plan to develop modules supporting sensor network, UML (state chart and sequence

diagrams), security domain (security protocols) and so on.

Starting from 2007, PAT (current version 2.7) has come to a stable stage with solid testing and

various applications. More than 50 build-in examples (including all examples and case studies in

this thesis) are embedded in PAT. PAT has been used by a numberof institutions as a research or

educational tool. It has attracted more than 400 downloads from 93 organizations in 23 countries

and regions. Currently, there are 1213 classes with more than 110K LOC in PAT’s source code.

We continue the development with the aim of developing an easy-to-use, powerful and efficient

analysis toolkit for multiple domains. A complete PAT history and user information can be found in

Appendix D.

10.2 System Design

PAT is implemented in C# 2.0 for the benefits of Object-Oriented design and competitive per-

formance. PAT adopts a hierarchical design. The class diagram in Figure 10.2 shows the hori-

zontal view of the system design. The system consists of two basic packages:PAT .GUI and

PAT .Common. PAT .GUI contains all graphical user interface classes.PAT .Common contains

all basic entities and associations that other language modules can use and follow. Each module is

packed into a package and implements necessary classes by following the design interfaces.

Abstract classModuleFacadeBase in PAT .Common package defines the module interface by

adopting the Façade design pattern. It has three public methods to do the parsing, show simula-

tor window and model checker window.SimulatorGUI andModelCheckerGUI are the graphic

user interface classes for simulation and model checking, which can be used by all modules. In

addition, the two classes can be overridden according to newdisplay requirements. The internal
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Figure 10.2: Class diagram of PAT

representation of system models are stored asSpecification objects, which are composed by a col-

lection of Processes andAssertions. Process is the base class for all language constructs with

an abstract methodMakeOneMove, which should be overridden in all sub-classes according to

operational semantics of the language constructs. For example, MakeOneMove method inSkip

class returns aStop process and unchanged valuation together with the termination eventX (by

following skip rule in Section 3.1.2).Assertion is the base class of all assertions with an abstract

methodVerify , which should be overridden in the sub-classes to implementthe actual verification

algorithms. InPAT .Common package, several basic model checking algorithms have beenimple-

mented and can be shared by all modules. Each assertion has one Configuration that represents

the initial configuration of the LTS to be verified (refinementassertion has two initial configura-

tions for the implementation and specification respectively). Each configuration has aProcess and

aValuation of the global variables and channels, which conforms to our definition of the configura-

tion in Section 3.1.2. The LTS of a model to be checked is generated dynamically in theAssertions

by keeping on invoking theMoveOneStep method, starting from the initial configuration.

Every module needs to implementModuleFacade interface (by inheritingModuleFacadeBase
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Figure 10.3: Workflow of CSP module

class) in order to communicate withPAT .GUI package. The internal process constructs (e.g.

parallel composition, sequential compositions, choice process and so on) need to inheritProcess

class. New assertions can also be implemented by inheritingAssertion class or its subclasses.

Parser class needs implemented in each module according to its language syntax.Configuration

andValuation classes can be customized in each module. For instance, RTS module redefines the

two classes in order to store the DBM data structure (see Section 9.1.3) and manipulate clocks in

MoveOneStep method. Each module is compiled into a Dynamic Linked Library (DLL), which

can be loaded at run-time by thePAT .GUI package.

PAT .GUI package loads the syntax files of different modules at the initialization, which stores

the syntax color and DLL linking information. When users want to parse, simulate or verify an

input model, the linked DLL is loaded into the system dynamically and the corresponding interface

method is invoked.

In the vertical view, four components constitute to PAT, namely the editor, the parser, the simulator

and the verifiers. Figure 10.3 demonstrates the design of CSPModule. The editor is featured with

powerful text editing, syntax highlighting, multi-documents environment, etc. The parser transforms

the system models and the properties into internal representation asProcesses andAssertions. The
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simulator allows users to perform various simulation taskson the input models: complete states

generation of execution graph, automatic simulation, userinteractive simulation, trace replay and

etc. The simulator is also used to visualize Büchi automata generated from the negation of LTL

assertions and counterexamples generated by the verifiers.Common verifiers are used to deal with

different properties efficiently.

10.3 PAT Modules

In this section, we introduce the three modules and their major functionalities developed so far. We

focus on the unique features for each module. The common functions like model editing, simulation,

deadlock and reachability analysis are omitted.

10.3.1 CSP Module

CSP module is designed for analyzing general concurrent systems. CSP module supports a rich

modeling language CSP# (see Section 3.1 and PAT user manual [1]). Distinguished from existing

model checkers, CSP module found its strength in two unique aspects.

Firstly, the LTL model checking algorithm in CSP module is designed to handle a variety of fair-

ness constraints efficiently. Two different approaches forverification under fairness are supported

in PAT, targeting different users. For ordinary users, one of the following options may be chosen

and applied to the whole system:weak fairness or strong local/global fairness. The model checking

algorithm works by identifying one bundle of fair executions (within a SCC) at a time and checks

whether the desirable property is satisfied. In general, however, system level fairness may some-

times be overwhelming. The worst case complexity is high and, worse, partial order reduction is

not feasible for model checking under strong local/global fairness. A typical scenario for network

protocols is that fairness constraints are associated withonly messaging but not local actions. We

thus support an alternative approach, which allows users annotate individual actions with fairness.

Notice that this option is only for advanced users who know exactly which part of the system needs
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fairness constraints. Nevertheless this approach is much more flexible, i.e., different parts of the sys-

tem may have different fairness. Furthermore, it allows partial order reduction over actions which

are irrelevant to the fairness constraints, which allows usto handle much larger systems. Other

effective reduction techniques supported by CSP module including process counter abstraction (see

Section 5.4 for more details), which reduces state space dramatically by grouping similar processes

in interleaving composition. Furthermore, CSP module provides a parallel verification option (see

Section 4.6) for LTL properties to make best use of multi-core CPU.

Secondly, CSP module allows users to reason about behaviorsof a system as a whole by refinement

checking. Refinement checking (see Chapter 6) is to verify whether an implementation’s behav-

iors follow the specification’s. CSP module supports six notions of refinements based on different

semantics, namely trace refinement/equivalence, stable failures refinement/equivalence, failures di-

vergence refinement/equivalence. A refinement checking algorithm (see Section 6.2) is used to

perform refinement checking on-the-fly.

10.3.2 Real-time System Module

Real-time system (RTS) module supports analysis of real-time systems. In RTS module, a system

is modeled using a hierarchical timed process with mutable data (see Section 3.2). Additional

behavioral patterns which are useful in modeling and analyzing real-time systems are introduced.

Examples aredeadline (which constrains a process to terminate within some time units), timed

interrupt , etc. Instead of explicitly manipulating clock variables (as in Timed Automata), the

time related process constructs are designed to build on implicit clocks. Based on the clock zone

abstraction (see Chapter 9), RTS module is designed to support dense-time semantic model (in

contrast to discrete-time or continuous-time), i.e., all clock values are rational numbers. RTS module

supports only integer numbers, since a set of rational numbers can be converted an ‘equivalent’ set

of integer numbers by multiplying the least common multiple.

RTS module provides efficient mechanical verification support for a number of properties, deadlock-

freeness, (timed) divergence-freeness, reachablity, etc. LTL-X (i.e. LTL without next operator)
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model checking or trace refinement checking (without time transitions in the specification) are sup-

ported based on the clock abstraction techniques developedin Chapter 9.

For timed refinement checking, RTS module uses a timed trace semantics (i.e. a mapping from a

model to a set of finite timed event sequences) and a timed trace refinement relationship (i.e. a

model satisfies a specification if and only if the timed tracesof the models are a subset of those

of the specification). The verification algorithm developedfor timed refinement checking (see Sec-

tion 9.2.3) will verify that a system model is consistent with a specification by showing a refinement

relationship. A timed event sequence is presented as a counterexample if there is no such refinement

relationship. For the timed refinement checking, PAT requires that the implementation or specifica-

tions are not divergent, otherwise the shared clock will notbe bounded.

10.3.3 Web Service Module

The Web Services paradigm promises to enable rich, dynamic,and flexible interoperability of highly

heterogeneous and distributed web-based platform. There are two different viewpoints in the area

of Web Service composition. Web Servicechoreographydescribes collaboration protocols of co-

operating Web Service participants from a global view. Web Serviceorchestrationdescribes col-

laboration of the Web Services in predefined patterns based on local decision about their interaction

with one another at the message/execution level, which is a local view.

WS module is developed to offer practical solutions to for two important issues in Web Services

paradigm. First, if both the choreography and orchestration are given, it is important to guarantee

that the two views are consistent, by showing that the orchestration conforms to the choreography.

Second, given only a choreography, it is necessary to check whether it is implementable and synthe-

size a prototype implementation (if possible). In WS module, conformance is verified by showing

weak simulation relationship using an on-the-fly model checking algorithm. A scalable lightweight

approach is used to solve the synthesis problem.

Figure 10.4 shows the workflow of WS module. Given a choreography or an orchestration, a pre-

processing component is used to extract relevant information and build a simplified model in inter-
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Figure 10.4: WS module workflow

mediate languages (see Section 7.5), which are designed to capture behaviors of choreography and

orchestration. Both languages (for choreography and orchestration) have their own parsers, com-

pilers as well as formal operational semantics. Therefore,users can quickly write a Web Service

model and analyze it using our visualized simulator, verifier and synthesizer.

Given a choreography, WS module can statically analyze whether it is well-formed, for instance

whether it can be implemented in a distributed setting without introducing unexpected behaviors. If

the choreography is not implementable, WS module generatesan implementable one, by injecting

extra message passing into the choreography. Otherwise, WSmodule may be used to automatically

generate a prototype orchestration (which may later be refined and translated to a WS-BPEL docu-

ment). If an orchestration is provided, the conformance checker allows users to verify whether the

orchestration is valid with respect to the choreography. Choreography may contain free variables

(for environment inputs), which must be instantiated during execution time. This is achieved by

synchronizing the environments (of the choreography and the orchestration) whenever a free vari-

able is used. WS module offers other verification options as well, in particular, deadlock-freeness

checking, LTL model checking, etc.
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10.4 Summary

In summary, we have developed a self-contained framework PAT for specification, simulation and

verification of concurrent and real-time systems. PAT adopts an extensible design, which allows new

languages and verification algorithms to be supported easily. Three modules have been developed to

support the analysis of different systems. Experiment results show that PAT does verification rather

efficiently.

As a temporal logic model checker, PAT is related to the modelchecking tools like NuSMV [53],

SPIN [111], mCRL2 [102] and so on. Compared to these tools, PAT adopts event-based modeling

language with the emphasis of fairness verification. Betterusability and extensibility are the ad-

vantages of PAT. Bogor [77] is another extensible model checker developed as a plugin of Eclipse.

It allows user to extend the base language to support new language features, but can not be fully

customized with desired syntax and semantic model.

For refinement checking, PAT is related to tools on equivalence/refinement checking (or language

containment checking), e.g. FDR [176], ARC [162] and ProBE [3]. Compared with FDR, PAT per-

forms an on-the-fly verification with partial order reduction. ARC (Adelaide Refinement Checker)

is a refinement checker based on ordered binary decision diagrams (BDD). It has been shown that

ARC outperforms FDR in a few cases [162]. PAT adapts an explicit approach for model checking.

It has long been known there are pros and cons choosing an explicit approach or a BDD approach

(refer to comparisons between SPIN and NuSMV). Nonetheless, we may incorporate BDD in the

future. ProBE is a simulator developed by Formal Method Europe to interactively explore traces of

a given process. The simulator embedded in PAT has the full functionality of ProBE.

In terms of real-time verification, PAT is related to a numberof automatic verification support for

Timed Automata, including UPPAAL [135], KRONOS [35], RED [217], Timed COSPAN [207],

Rabbit [33]. Different from the Timed Automata approach, PAT model checker is the first dedi-

cated verification tool support for hierarchical real-timemodeling languages (like Timed CSP) by

adapting advanced verification techniques. In addition, PAT complements UPPAAL with the ability

to check full LTL-X properties and refinement relationship.To the best of our knowledge, there are
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few verification support for Timed CSP, e.g. the theorem proving approach documented in [40, 101],

the translation to UPPAAL models [70, 71] and the approach based on constraint solving[72]. Re-

garding to the timed refinement checking, there is no tool support to the best of our knowledge. One

of the reasons is that it has been proved that the refinement checking (or equivalently the language

inclusion) problem in the setting of Timed Automata [10] is undecidable. Other negative results

include that Timed Automata cannot be determinized. It has been proved [160] that language in-

clusion checking against a Timed Automaton with one clock, however, is decidable. We show that

timed refinement checking (under an assumption onτ -transitions) is decidable in our setting. The

timed systems we tackle correspond to a special subclass of Timed Automata (i.e. with one clock

only andτ -transitions, and all states are accepting). As a price to pay, direct comparison of clocks’

values are disallowed and our method is limited to verify timed safety properties (or bounded live-

ness properties). The latter is justified by the fact that most of the verified properties are safety

properties [103].

WS module is related to works on verifying Web Services. In particular, it is closely related to

LTSA-WS [95], which translates Web Service model into Finite State Processes (i.e., a simple

modeling language) and then verifies conformance by showinga bi-simulation relationship. Dif-

ferent from their approach, WS module is based on languages specially designed for Web Services

and supports features like channel passing, shared variables/arrays, service invocation with service

replication, etc.



Chapter 11

Conclusion

This chapter concludes the thesis. Section 11.1 summarizesthe contribution of this thesis and

Section 11.2 discusses some on-going and future directions.

11.1 Summary of the Thesis

In this thesis, we focused on the verification of concurrent and real-time systems using model check-

ing approach. The main outcome is Process Analysis Toolkit (PAT), which is a self-contained frame-

work to support composing, simulating and reasoning of concurrent and real-time systems. We used

PAT to model and verify a variety of systems, ranging from recently proposed distributed algorithms,

concurrent systems to real-world applications. In the following, we summarize the contributions of

the thesis, which are all implemented in PAT.

First of all, we designed an event-based modeling language for concurrent and real-time systems.

This language integrates high-level specification languages with mutable data variables and low-

level procedural codes. Timing requirements for real-timesystems are captured using behavior

patterns. With the formally defined syntax and operational semantics, the system models can be

translated into labeled transition systems, which are suitable for model checking.

207
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One of the main focuses of this thesis is LTL verification withfairness assumptions. We developed

an on-the-fly LTL model checking algorithm for fairness enhanced systems based on SCC search-

ing. This algorithm gives a unified solution that handles a variety of fairness, e.g. process-level

weak/strong fairness, event-level weak/strong fairness and strong global fairness. To achieve better

performance, the algorithm was further changed to support parallel verification in multi-core archi-

tecture with shared memory. We applied the proposed fairness model checking algorithms on a set

of self-stabilizing population protocols for ring networks, which only work under global fairness.

One previously unknown bug in a leader election protocol [118] was discovered using PAT. Pop-

ulation protocols are designed for network with large or even unbounded number of nodes, which

raises the space explosion problem. To solve this problem, aprocess counter abstraction technique

was developed for model checking parameterized systems under fairness. We showed that model

checking under fairness is feasible, even without the knowledge of process identifiers.

The second focus of this thesis is refinement checking. Our modeling language is an event-based

formalism, whose behaviors can be captured using event traces. Following the trace semantics in

CSP [108], we developed a trace refinement verification algorithm to verify complex properties

beyond the expressiveness power of LTL. Advanced model checking techniques, like partial order

reduction was incorporated into the proposed algorithm. Todemonstrate the usefulness of refine-

ment checking, we presented two applications. First, we verified linearizability based on refinement

relations from concrete implementations to linearizable abstract specifications. We have checked

a variety of implementations of concurrent objects, including the first algorithms for the mailbox

problem [19] and scalable NonZero indicators [78]. Second,we applied the refinement checking

algorithm to automatically check consistency between Web Service choreography and Web Service

orchestration by showing conformance relationship between them.

As an attempt to handle large state space, we used bounded model checking technique [54] to

verify LTL properties using compositional encoding of hierarchical systems as SAT problems. The

encoding avoids state space explosion by exploring only thepartial state space. The experiment

results showed that our approach has a competitive performance for verifying systems with large

number of states. However, this approach was limited by the performance of the SAT solver and
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hard to scale up for encoding of variables. Therefore, we didnot continue in this direction.

We remark that in theory we can encode the property model as temporal logic formulae (as temporal

logic is typically more expressive than LTS) and then apply temporal-logic based model checking

to verify the property (e.g. SCC-based LTL verification). Itis, however, impractical. For instance,

LTL model checking is exponential in the size of the formulaeand therefore it cannot handle formu-

lae which encode non-trivial property model. In short, refinement checking allows users to verify

a different class of properties from temporal logic formulae. Comparing the three verification sup-

port, SCC-based LTL verification is more efficient than refinement checking and bounded model

checking when the LTL formula is small. Bounded model checking is good for the verification with

limited search depth or counterexamples.

Real-time systems are not subject to model checking directly because of the infinite clock values.

To support the automatic verification of real-time systems,we proposed a clock zone abstraction

technique to build an abstract finite state machine from the real-time model, which makes the model

checking feasible. In our approach, clocks are created dynamically to capture constraints introduced

by the timed process constructs, and deleted if they are not used by any process. Clocks may be

shared for many constructs so that the number of clocks used is minimum. We proved that this

abstraction has finite state and it weakly bi-simulates the concrete model, which allows us to perform

sound and complete LTL model checking or refinement checkingupon the abstraction. To reason

about behaviors involving time, we formally defined a timed trace semantics and a timed trace

refinement relationship. We extended the zone abstraction technique to preserve timed event traces,

hence timed refinement checking is possible.

11.2 On-going and Future Works

We are actively developing PAT. In this section, we discuss some on-going and future works sur-

rounding the PAT development.
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11.2.1 Tool Development

Starting with modeling languages, CSP# and its real-time extension are quite expressive for mod-

eling concurrent and real-time systems. We are planning to introduce new language features, in-

cluding user defined data structures, variables of real values, higher order processes. Adding new

features is not a matter of arithmetic, each of these features requires substantial effort in both re-

search and implementation. User defined data structures canbe implemented using external C#

code with proper interfaces interacting with PAT. To support real values, data abstraction is needed

to reduce the continuous domains into discrete ones. For thereal-time systems, we would like to

add the syntax for explicit clocks and the notion of urgent events [62], which can considerably sim-

plify the modeling process. Another aspect related to the modeling is the model conversion from

existing languages. We are working on the automatic conversion from Promela models [111] (the

input language for SPIN) to CSP# models. This is feasible because Promela is a subset of precess

algebra, and CSP# covers most syntax of Promela. The benefit of this conversion is to attract more

users of other tools to start using PAT. Another targeting language is Petri-net [165] for its simple

structure based on labeled transition systems.

To improve the usability of PAT, we are working of two directions. First, we are providing the

advanced editing features for system modeling like refactoring functions and IntelliSense (code

auto completion). Examples of refactoring functions are “go to definition for selected variable or

process", “find usage of selected variable and process", “extract selected text as another process",

etc. IntelliSense is an auto completion technique based on the user input, which is handy when there

are more libraries. Second, graphical system input as supported by Uppaal [135] and TINA [32] is

extremely helpful for starting users. Our plan is to implement the drag-and-drop model creation in

the future.

To improve the reliability of PAT, there are two possible strategies. The first strategy is to create

more testing cases. We are using unit testing tool (e.g. NUnit) to perform unit testing and integration

testing. With the rapid increasing of the functionalities,more testing cases are needed. The second

strategy is to use verification tools like Spec# [27] and Contracts [26] to conduct both static and
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dynamic verifications on pre-conditions, post-conditions, loop invariants, assertions and so on.

11.2.2 Model Checking Techniques

To develop new model checking algorithms and related techniques has top priority in PAT. We have

identified five possible directions.

First, we plan to investigate methods to combine well-knownstate space reduction techniques. we

know that systems that accept an infinite number of threads orunbound data structures make model

checking impossible. Symmetric properties among threads can reduce infinite number of threads to

a small number. Data abstraction for infinite domain data variables can also be incorporated into the

model checking to handle unbounded data size. These solutions are valuable for our model checking

algorithms and refinement checking algorithms.

Second, we are interested in adopting symbolic representation techniques, like Binary Decision

Diagrams (BDD) [42]. Our bounded model checking solution islimited by the performance of SAT

solvers. Since BDD has been used to handle extremely large number of states (many orders of

magnitude larger than could be handled by the explicit-state algorithms), implementation based on

BDD may make bound model checking scalable for compositional models.

Third, we are interested in automatic detection of symmetryrelations. Reductions based on symme-

try relations have been investigated during the last decade. Most of these approaches requires users

to provide the symmetry relations, which makes this technique impractical. This is the reason why

SPIN does not support symmetry reduction. Therefore, automatical discover of symmetry relations

from the model is worth investigating. One possible solution is to detect symmetry relations by

analyzing program structures statically.

Last, we plan to look in to probabilistic model checking techniques, which can help to analyze

systems which exhibit random or probabilistic behavior. Particular, the integration of probabilistic

model checking with fairness assumptions and refinement checking techniques is interesting to us.
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11.2.3 Module Development

Since PAT offers a flexible design, implementing new modulesis particularly interesting. Our tar-

get domains include orchestration language, security protocol, sensor network (particular NesC

language [98]). Orc language [156] is a modeling language for distributed and concurrent program-

ming, which provides uniform access to computational services, including distributed communi-

cation and data manipulation. The only verification supportfor Orc language is the approach by

converting Orc models to Timed Automata, hence using UPPAAL [73] to do the verification. Direct

support of Orc language in PAT is possible, because Orc is an algebra like language extended with

clocks. CSP has been used to model and verify security protocol with great success [185, 180]. The

common approach is to convert security model into CSP, and use FDR to do the verification. Direct

supporting security modeling language will make the verification simpler and more effective. The

verification of sensor network model is done by converting NesC language into Promela, which is a

subset of CSP#. Therefore, developing a module to support NesC language is straightforward.
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Appendix A

Operational Semantics of CSP#

The following are firing rules associated with process constructs other than those discussed in Sec-

tion 3.1.2. Lete ∈ Σ, eτ ∈ Σ ∪ {τ}, x ∈ Σ ∪ {X} and∗ ∈ Σ ∪ {τ,X}.

(V ,P)
e
→ (V ′,P ′), e ∈ X

[ hide1 ]
(V ,P \X )

τ
→ (V ′,P ′)

(V ,P)
x
→ (V ′,P ′), x 6∈ X

[ hide2 ]
(V ,P \X )

x
→ (V ′,P ′ \X )

(V ,P)
eτ→ (V ′,P ′)

[ seq1 ]
(V ,P ; Q)

eτ→ (V ′,P ′; Q)

(V ,P)
X
→ (V ′,P ′)

[ seq2 ]
(V ,P ; Q)

τ
→ (V ′,Q)

(V ,P)
x
→ (V ′,P ′)

[ ch1 ]
(V ,P 2 Q)

x
→ (V ′,P ′)

(V ,Q)
x
→ (V ′,Q ′)

[ ch2 ]
(V ,P 2 Q)

x
→ (V ′,Q ′)

(V ,P)
τ
→ (V ′,P ′)

[ ch3 ]
(V ,P 2 Q)

x
→ (V ′,P ′ 2 Q)

(V ,Q)
τ
→ (V ′,Q ′)

[ ch4 ]
(V ,P 2 Q)

τ
→ (V ′,P 2 Q ′)

[ non1 ]
(V ,P ⊓ Q)

τ
→ (V ,P)

[ non2 ]
(V ,P ⊓ Q)

τ
→ (V ,Q)

(V ,P)
x
→ (V ′,P ′)

[ int1 ]
(V ,P ||| Q)

x
→ (V ′,P ′ ||| Q)

(V ,Q)
x
→ (V ′,Q ′)

[ int2 ]
(V ,P ||| Q)

x
→ (V ′,P ||| Q ′)
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(V ,P)
X
→ (V ′,P ′), (V ,Q)

X
→ (V ′,Q ′)

[ int3 ]

(V ,P ||| Q)
X
→ (V ′,P ′ ||| Q ′)

(V ,P)
∗
→ (V ′,P ′)

[ inter1 ]
(V ,P △ Q)

∗
→ (V ′,P ′ △ Q)

(V ,Q)
e
→ (V ′,Q ′)

[ inter2 ]
(V ,P △ Q)

e
→ (V ′,Q ′)

(V ,Q)
τ
→ (V ′,Q ′)

[ inter3 ]
(V ,P △ Q)

τ
→ (V ′,P △ Q ′)



Appendix B

CSP# Models of Population Protocols

1. #defineN 3; #defineC 3;
2. var color [N ]; var precolor [N ]; var succolor [N ];
3. Interaction(u, v) = if (color [v ] == precolor [u] ∧ color [v ] 6= succolor [u]){
4. act1.u.v{succolor [v ] = mycolor [u]} → Interaction(u, v)
5. } else if(color [v ] == succolor [u] ∧ color [v ] 6= precolor [u]){
6. act2.u.v{precolor [v ] = color [u]; } → Interaction(u, v)
7. } else{
8. act3.u.v{precolor [u] = color [v ]; succolor [v ] = color [u]}
9. → Interaction(u, v)
10. };
11. Init() = ...
12. OrientingUndirected() = Init(); ||| x : {0..N − 1}@(Interaction(x , (x + 1)%N )
13. ||| Interaction((x + 1)%N , x ));
14. #defineproperty1 (x : {0..N − 1}@precolor [x ] 6= succolor [x ]));
15. #defineproperty2 (...);
16. #assertOrientingUndirected() � 32property1;
17. #assertOrientingUndirected() � 32property2;

Figure B.1: CSP# model for orienting undirected ring protocol
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1. #defineN 3;
2. var leader [N ]; var label [N ]; var probe[N ]; var phase[N ]; var bullet [N ];
3. Interact(u, v) =
4. [label [u] == label [v ] ∧ probe[u] == 1 ∧ phase[u] == 0]
5. act1.u.v{leader [u] = 1; probe[u] = 0; bullet [v ] = 0; phase[u] = 1;
6. probe[v ] = 1;} → Interact(u, v)
7. 2 [label [u] == label [v ] ∧ probe[u] == 1 ∧ phase[u] == 1 ∧ probe[v ] == 0]
8. act2.u.v{leader [u] = 1; probe[u] = 0; bullet [v ] = 0;
9. label [v ] = 1− label [v ]; phase[v ] = 0;} → Interact(u, v)
10. 2 ...
11. 2 [label [u] 6= label [v ] ∧ leader [v ] == 0 ∧ bullet [v ] == 1 ∧ probe[v ] == 0]
12. act11.u.v{bullet [u] = 1; bulllet [v ] = 0;} → Interact(u, v)
13. Init() = ...
14. LeaderElection() = Init(); (||| x : 0..N − 1@Interaction(x , (x + 1)%N ));
15. #defineleaderelection (leader [0] + leader [1] + leader [2] == 1);
16. #assertLeaderElection() � 32leaderelection;

Figure B.2: CSP# model for leader election protocol in odd rings

1. #defineN 3;
2. var leader [N ]; var label [N ]; var token[N ];
3. Rule1(u, v) = [!leader [u] ∧ leader [v ] ∧ label [u] == label [v ]]
4. (rule1.u.v{token[u] = 0; token[v ] = 1; label [v ] = 1− label [u];}
5. → Rule1(u, v));
6. Rule2(u, v) = [!leader [v ] ∧ label [u] 6= label [v ]]
7. (rule2.u.v{token[u] = 0; token[v ] = 1; label [v ] = label [u];}
8. → Rule2(u, v));
9. Init() = ...
10.TokenCirculation() = Init(); (||| x : 0..N − 1@(Rule1(x , (x + 1)%N )
11. ||| (Rule2(x , (x + 1)%N ));
12. #defineonetoken (token[0] + token[1] + token[2] == 1);
13. #assertTokenCirculation() � 32onetoken;

Figure B.3: CSP# model for token circulation protocol



Appendix C

Operational Semantics of Abstract

Real-Time System

The following are abstract firing rules associated with process constructs other than those discussed

in Section 9.1.2. Lete ∈ Σ andx ∈ Σ ∪ {X}.

[ aki ]

(V ,Skip,D)
X
→֒ (V ,Stop,D↑)

V � b
[ agu ]

(V , [b]P ,D)
τ

→֒ (V ,P ,D↑)

[ aev ]

(V , e{prg} → P ,D)
e
→֒ (prg(V ),P ,D↑)

(V ,P ,D)
x
→֒ (V ′,P ′,D ′)

[ aex1 ]

(V ,P | Q ,D)
x
→֒ (V ′,P ′,D ′ ∧ ι(V ,Q ,D))

(V ,Q ,D)
x
→֒ (V ′,Q ′,D)

[ aex2 ]

(V ,P | Q ,D)
x
→֒ (V ′,Q ′,D ′ ∧ ι(V ,P ,D))

(V ,P ,D)
e
→֒ (V ′,P ′,D ′), e 6∈ αQ

[ apa1 ]

(V ,P ‖ Q ,D)
e
→֒ (V ′,P ′ ‖ Q ,D ′ ∧ ι(V ,Q ,D))
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(V ,Q ,D)
e
→֒ (V ′,Q ′,D ′), e 6∈ αP

[ apa2 ]

(V ,P ‖ Q ,D)
e
→֒ (V ′,P ‖ Q ′,D ′ ∧ ι(V ,P ,D))

(V ,P ,D)
e
→֒ (V ,P ′,D ′), (V ,Q ,D)

e
→֒ (V ,Q ′,D ′′), e ∈ αP ∩ αQ

[ apa3 ]

(V ,P ‖ Q ,D)
e
→֒ (V ,P ′ ‖ Q ′,D ′ ∧ D ′′)

(V ,P ,D)
x
→֒ (V ′,P ′,D ′), x 6= X

[ ase1 ]

(V ,P ; Q ,D)
x
→֒ (V ′,P ′; Q ,D ′ ∧ (X 6∈ init(V ,P) ∨ D))

(V ,P ,D)
X
→֒ (V ′,P ′,D ′)

(V ,P ; Q ,D)
τ

→֒ (V ,Q ,D ∧ D ′)

(V ,P ,D)
x
→֒ (V ′,P ′,D ′),Q =̂ P

(V ,Q ,D)
x
→֒ (V ′,P ′,D ′)
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PAT History

PAT project started from July, 2007 in National University of Singapore. PAT was named Libra orig-

inally for its emphasis on the fairness model checking. Soon, it was renamed to PAT because of the

conflict with Microsoft search engine. After finishing LTL verification under fairness assumption,

we looked at the bounded model checking, which resulted a bounded model checker for CSP. How-

ever, we found that bounded model checking was difficult to apply for variables. Since we were

expending the modeling languages quickly, we decided to stop the development of the bounded

model checker. At the same time, the on-the-fly refinement checking algorithm was quickly imple-

mented in PAT by following the ideas in FDR.

In year 2008, we started to look for applications of the modelchecking algorithms developed. Our

first application is to apply fairness model checking on population protocols, which gave a success-

ful result with a bug discovered. The second application wasto verify linearizability. After several

attempts, we found refinement checking can be applied to it directly. In ICSE 2008, we successfully

demonstrated PAT as an analysis toolkit for CSP [146]. Afterthat we started the development of

Web Service module with an architecture redesign.

Starting from 2009, we looked at the real-time verification since there is very few tool support for

Timed CSP. RTS module was completely finished in September 2009. We also looked reduction and
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optimizations for fairness model checking, for example themulti-core support and process counter

abstraction.

Currently, PAT version 2.7.0 is public available at our web site [1]. We keep in working on the

improvements of every aspect of the system. Our aim is to develop an easy-to-user, powerful and

efficient analysis toolkit for concurrent systems.

PAT Users

As a research tool, PAT has been used by quite a number of institutions for various purposes. Till

now, there are more than 400 downloads from 93 organizationsin 23 countries and regions.

PAT has also been used for teaching two courses (CS4211 Advanced Software Engineering and

CS5232 Formal Methods) in National University of Singapore. More than 300 students are using

it as an educational tool for learning process algebra and model checking. PAT’s development

involved with collaboration of Microsoft Research Asia. Weworked with theory group in Microsoft

Research Asia to model checking distributed algorithms with successful results. PAT has been used

as a model checker for web service choreography verificationat Peking University in China.

Maturity and Robustness

After two years’ development, PAT has come to a stable stage with solid testing. The toolkit has

developed as a self-contained application with user friendly design. The editing functions are com-

plete. The detailed debugging message will be popped up for syntax errors. A rich set of simulation

and model checking options are also provided for different requirements.

Currently the system contains 1213 classes with more than 110K LOC. We have conducted heavy

testing to guarantee the correctness. Internally, we have acomplete set of unit testing for the whole

system. For the black-box testing, PAT has been used to modelhundreds of systems with differ-

ent properties. Currently, there are 50 built-in examples in PAT ranging from classical concurrent
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algorithms, math puzzles, real world problems (e.g., pace maker), population protocols, security

protocols and recently published distributed algorithms (e.g., mailbox problem).

For scalability, the model checker in PAT is capable of handling tens of millions states within several

hours, which is compatible to SPIN. The simulator can display up to several hundreds of states

within the readability. The whole system has gone through syntax changes twice and once system

redesign. The Object-Oriented design is incorporated maximally, which makes the language and

properties extension easily and independently.


	Introduction
	Motivation and Goals
	Summary of Contributions
	Thesis Outline and Overview
	Publications from the Thesis

	Background
	Basics of Model Checking
	System Modeling
	Specification and Verification
	Safety Property
	Liveness Properties and Linear Temporal Logics
	Partial Order Reduction

	Model Checking Real-time Systems
	Discrete-time Systems
	Dense-time Systems


	System Modeling
	Concurrent System Modeling
	Syntax
	Semantics
	Discussion
	Case Study: a Multi-lift System

	Real-time System Modeling
	Syntax
	Semantics
	Case Study: Fischer's Algorithm

	Summary

	Model Checking Fairness Enhanced Systems
	Background
	Fairness Definitions
	Model Checking under Fairness as Loop/SCC Searching
	An Algorithm for Modeling Checking under Fairness
	Coping with Different Notions of Fairness
	Complexity and Soundness

	Event Annotated Fairness
	A Multi-Core Model Checking Algorithm
	Shared-Memory Platform
	Parallel Fairness Model Checking Algorithm
	Complexity and Soundness

	Experiments
	Experiments for Sequential Fairness Verification
	Experiments for Multi-core Fairness Verification

	Summary

	Applications of Fairness Model Checking
	The Population Protocol Model
	Population Ring Protocol Examples
	Two hop coloring
	Orienting undirected rings
	Leader election
	Token circulation

	Experiments of Population Protocols
	Process Counter Abstraction
	System Models
	Process Counter Representation

	Fair Model Checking Algorithm with Counter Abstraction
	Counter Abstraction for Infinitely Many Processes
	Experiments of Process Counter Abstraction
	Summary

	Refinement Checking
	FDR and Refinement Checking
	An Algorithm for Refinement Checking
	On-the-fly Refinement Checking Algorithm
	Partial Order Reduction

	Experiments
	Summary

	Applications of Refinement Checking
	Linearizability
	Formal Definition

	Linearizability as Refinement Relations
	Model Construction
	Verification of Linearizability

	Experiments of Linearizability Checking
	Web Service and Conformance Checking
	Web Service Modeling
	Choreography: Syntax and Semantics
	Orchestration: Syntax and Semantics

	Web Service Conformance Verification
	Experiments of Conformance Checking
	Summary

	Bounded Model Checking of Compositional Processes
	Background
	Encoding of Processes
	Encoding Simple Processes
	Composing Encodings

	LTL Properties Encoding and Verification
	Experiments
	Summary

	Verification of Real-time Systems
	Zone Abstraction
	Clock Activation and De-activation
	Zone Abstraction
	Zone Operations

	Verification of Real-time Systems
	LTL-X Model Checking
	Refinement Checking
	Timed Refinement Checking

	Experiments
	Summary

	Tool Implementation: Process Analysis Toolkit
	Overview of PAT
	System Design
	PAT Modules
	CSP Module
	Real-time System Module
	Web Service Module

	Summary

	Conclusion
	Summary of the Thesis
	On-going and Future Works
	Tool Development
	Model Checking Techniques
	Module Development


	Operational Semantics of CSP#
	CSP# Models of Population Protocols
	Operational Semantics of Abstract Real-Time System
	PAT History

