View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarBank@NUS

MODEL CHECKING CONCURRENT AND REAL-TIME SYSTEMS:
THE PAT APPROACH

LIU YANG
(B.Sc. (Hons.), NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE
2009

https://core.ac.uk/display/48632806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

First and foremost, | am deeply indebted to my supervisors,Oong Jin Song and Dr. Rudy Se-
tiono, for their guidance, advice and encouragement throuigthe course of my doctoral program.
They have given me immense support both in various ways, ane also helped me stay on the

track of doing research.

| am deeply grateful to Dr. Sun Jun, who acts like both a friand co-supervisor in my graduate
study. | thank him for introducing me to the exciting area afdal checking. His supervision and
crucial contribution made him a backbone of this researds.iridolvement with his originality has

triggered and nourished my intellectual maturity that lINvénefit from, for a long time to come.

| am grateful to Dr. Joxan Jaffar, Dr. Chin Wei Ngan and Dr. PT'l§iagarajan for their valuable
suggestions and comments on my research works. | have ktheniéis to Dr. Chen Wei, Dr. Liu

Yanhong, Dr. Abhik Roychoudhury, Dr. Pang Jun, etc for thesiearch collaborations.

To my seniors, Dr. Li Yuanfang, Dr. Chen Chunging, Dr. SurgJibr. Wang H. Hai and Dr. Qin
Shengchao, Feng Yuzhang, and fellow student Zhang XiannKiyau for your support and friend-
ships through my Ph.D. study.

This study was in part funded by the project “Rigorous Dedgtihods and Tools for Intelligent
Autonomous Multi-Agent Systems” and “Advanced ModelingeCking Systems” supported by
Ministry of Education of Singapore and the project “Rel@Bloftware Design and Development for
Sensor Network Systems” supported by National Univerdityingapore Academic Research Fund
and the project “Systematic Design Methods and Tools fordixping Location Aware, Mobile and
Pervasive Computing Systems” supported by Singapore h&tResearch Foundation-Interactive
Digital Media. The School of Computing also provided the fiice for me to present papers in
several conferences overseas. In addition, | have beerueyad by receiving Microsoft Asia

Research Fellowship 2007 and Research Achievement Aw#&@l ZEbr all this, | am very grateful.

Lastly, | wish to thank sincerely and deeply my parents LivoNMaand Zhou Xiuling, who have

taken care of me with great love in these years. | thank my Wafe Chen, for all the love.

Contents

1

Introduction

1.1 Motivation and Godls

1.2 Summary of Confributions e e

1.3 Thesis Outline and Overview

1.4 Publications from the Thelsis

Backgroun

1 Basics of Model Checkihg e

2 SystemModelilg

3 Specification and Verification

3.1 Safety Praope

3.2 liveness Properties and Linear Temporal Logics

3.3 Partial Order Reduction

4 Model Checking Real-time Systéms

4.1 Discrete-time Systems

10

11

13

42 Dense-time Systel

3 System Modeling

3.1 Concurrent System Model

3.1.1 Syntax

3.1.2 Semantics

3.1.3 Discussion

3.1.4 Case Study: a Multi-lift Syst

3.2 Real-time System Model

3.2.1 Syntax

322 Semantics

3.2.3 Case Study: Fischer’s Algorit

3.3 Summalty

4.2 Fairness Definitiohs

41 Background

4.3 Model Checking under Fairness as 1.oop/SCC Sea

4.4 An Algorithm for Modeling Checking under Fair

4.4.1 Coping with Different Notions of Fairn

4.4.2 Complexity and Soundn

CONTENTS i

45

................... 46

45 Event Annotated Fairn

CONTENTS iii

4.6 A Multi-Core Model Checking Algorith

46.1 Shared-Memory Platfo

4.8 Summal

5 Applications of Fairness Model Checkin

5.4.2 Process Counter Represent

5.1 The Population Protocol Madel . . .
5.2 Population Ring Protocol Examples
2.1 Twohopcoloring
5.2.2 Orienting undirected ridgs .
D.2.3 leaderelection
5.2.4 Token circulation
5.3 Experiments of Population Protoc¢ols
5.4 Process Counter Abstraction
.41 System Models

CONTENTS v

5.5 Fair Model Checking Algorithm with Counter Abstraction. 101
5.6 Counter Abstraction for Infinitely Many Processes 107
.7 Experiments of Process Counter Abstrattion 109
D.8 SUMMAKY« « v o e e e e e e e e 211
6 Refinement Checkin 113
G_J_ED_R_a.Ild.R.eﬁnﬂm.enl_C.hﬂdJing 114
6.2 An Algorithm for Refinement Checking 117
ﬁZl_QnihE;ﬂ;LBﬂﬂnﬂnﬁﬂLQhﬂcKlng_Alg.oﬂllhm 117

..................................... 126

6.4 SUMMALY« o o o e e e e e e e e e e e 712
7 __Applications of Refinement Checkin 129
71 linearizability e 130
7.1.1 Formal Definitian 131
7.2 |inearizability as Refinement Relatibns 134
7.2.1 Model Construction 134
7.2.2 \erification of Linearizability 138
7.3 Experiments of Linearizability Checking 139
7.4 Web Service and Conformance Chedking «.o.o... 141

CONTENTS v

7.5 Web Service Modeling e 142
Zil_ChQLQQQLa.D.h;ﬁ_S;LDIaX_a.D.d_S.Emaj'ItiCS 142
7.5.2 Orchestration: Syntax and Semantics 145

7.6 Web Service Conformance Verification. 149

7.7 Experiments of Conformance Checking 151

7.8 SUMMAKY . .« .« v v o e e e e e e e e e 315

8 Bounded Model Checking of Compasitional Procesdges 155

8.1 Backgroudd 156

8.2 Encoding of Processes e 157
8.2.1 Encoding Simple Procedses e 157
8.2.2 Composing Encodings 159

8.5 SUMMAKLY o o e e e e e e e 816
9 Verification of Real-time Syste 169
9.1 Zone Abstraction e e 170
9.1.1 Clock Activation and De-activation 170
9.1.2 Zone Abstraction 172
9.1.3 ZoneOperations 751

CONTENTS i

9.2 \Verification of Real-time Systemsc...... 178
9.21 ITI-XMaodelChecking 8a
022 RefinementChecking, 181

183

9.4 SUMMAKLY« ¢ v o e e e e e e e e e e 419
10 Tool Implementation: Process Analysis Toolkit 195
10.1 Overview Of PAIT o 196
10,2 System Design e 198
10.3 PATModulds o 201
10.3.1 CSPMadule e e e 201
10.3.2 Real-time System Module 202
lQﬁ_BJALeb_SﬁDLLQe_M.Qd.LIIIe 203
104 SUMMATY . . . - v o o e e e e e e e e e 052
11 _Conclusion 207
11.1 Summaryofthe Thekis 207
11.2 On-going and Future Works o . 209
11.2.1 ToolDevelopmdnt 210
11.2.2 Model Checking Techniques n. 211
11.2.3 Module Development 212

CONTENTS i

Operational Semantics of CSP# 233
CSP# Models of Population Protacols 235
Operational Semantics of Abstract Real-Time Syste 237

PAT History 239

Summary

The design and verification of concurrent and real-timeesgstare notoriously difficult problems.
Among the software validation techniques, model checkimgr@ach has been proved to be suc-
cessful as an automatic and effective solution. In thisishege study the verification of concurrent

and real-time systems using model checking approach.

First, we design an integrated formal language for conatiaad real-time modeling, which com-

bines high-level specification languages with mutable datebles and low-level procedural codes
for the purpose of efficient system analysis, in particutasdel checking. Timing requirements are
captured using behavior patterns liteadline time out etc. A formal semantic model is defined

for this language.

Based on this modeling language, we investigate LTL vetiioaproblem with focus of fairness

assumptions, and refinement checking problem with follgwasults.

1. We propose a unified on-the-fly model checking algorithnmdadle a variety of fairness
assumptions, which is further tuned to support parallafieation in multi-core architecture
with shared memory. We apply the proposed algorithm on afslstabilizing population
protocols, which only work under global fairness. One masly unknown bug is discovered
in a leader election protocol. Population protocols ardégiesl for networks with large or
even unbounded number of nodes, which gives the space explooblem. To solve this
problem, we develop a process counter abstraction teahbiguandle parameterized systems
under fairness. We show that model checking under fairre$sasible, even without the

knowledge of process identifiers.

2. Based on the ideas in FDR, we present an on-the-fly modekirtgealgorithm for refinement
checking, incorporated with advanced model checking tigcles. This algorithm is success-
fully applied in automatic linearizability verification drconformance checking between Web

Services.

Symbolic model checking is capable of handling large stadeas. We present an alternative solution

for LTL verification using bounded model checking approadlerarchical systems are encoded as
SAT problems. The encoding avoids exploring the full stgace for complex systems so as to

avoid state space explosion.

To support verification of real-time systems, we propose@raach using a fully automated ab-
straction technique to build an abstract finite state machiom the real-time model. We show that
the abstraction has finite state and is subject to model afgeckurthermore, it weakly bi-simulates
the concrete model and we can perform LTL model checkingpeafent checking and even timed

refinement checking upon the abstraction.

The results of this thesis are embodied in the design anceimguhtation of a self-contained frame-
work: Process Analysis Toolkit (PAT), which supports comsipg, simulating and reasoning of con-
current and real-time systems. This framework includesfaie proposed techniques: deadlock-
freedom, reachability, LTL checking, refinement checking atc. PAT adopts an extensible design,
which allows new languages and verification algorithms tcigported easily. Currently, three
modules have been developed in PAT. The experiment resutg that PAT is capable of verifying
systems with large number of states and complements tleeddt#te-art model checkers in several

aspects.

Key words: Formal Verification, Concurrent and Real-time Systems, Mo@| Checking, PAT,
LTL Model Checking, Fairness, Partial Order Reduction, Process Counter Abstraction, Re-
finement Checking, Bounded Model Checking, Timed Zone Abstction, Timed Refinement

Checking, Population Protocol, Linearizability, Web Senice Conformance

List of Figures

3.1 CSP#codesforclearingrequests oo 27
3.2 CSP#codes for searchingrequests c.cu.... 28
3.3 CSP#madelofthelift 32
3.4 CSPHIiiNg rUl®S e e 33
3.5 CSP#modeloftheliftssystem, 39
4.1 Event-level weak fairness vs. process-level weakdagn. 50
4.2 Event-level strong fairness and process-level stramgdss 51
4.3 Strong global fairndss 52
4.4 Algorithm for sequential model checking under fairhess. 58
A_LMQdﬂI_Qhadﬂng_examJJIe 58
4.6 Tarjan thread implementation e 68
4.7 Thread pool implementation, 69
A.S_EaLaLLaLdeﬂLmedseLimpJﬂmasztion 71
4.9 Experimental results for scalability testing 80

5.1 CSP# Model for two hop coloring protacol 88
.2 Readers/writers mofel 97
5.3 Readers/writers mofel 101
S_A_M.Qd.aLch.enkLng_algmLLhm_undeMLeak_[almtess 105
55_MﬂdﬂLch£mm_aLgQLuhm_undﬁlemng_[aml\ess...................106
5.6 Abstract readers/writers madelo i 108
6.1 LTS for 2 dining philosophers 0. 116
6.2 Normalized LTS for 2 dining philosophers 117
6.3 Algorithm: refines(Impl, Spec)l . . o . o o v o o e e e e e 118
6.4 _Algorithm: nezt(Jm, NSpY o o o 119
6.5 Algorithm: tau’(Im) andstubborn tau(dm) o v o v v o 121
6.6 Algorithm: next'(Im, Sp) andstubborn visible(Im,eY 123
7.1 Asample choreograpghy 144
7.2 __Choreography structural operational semantics 146
B_thmmmﬂmmMmﬂmmljeszntics....................147
7.4 Asimple orchestration e e e 148
7.5 Process compositionrdles. e 151
7.6 Experiments for conformance verification 152

8.1 Performance evaluation with a 2.0 GHz Intel Core Duo CR)1AGB memoi

y .. 166

9.1 Clock activation:A(P,) is P exceptthe abovecabes 172
9.2 lIdling calculation e 173
9.3 An example of abstract timed transition system 174
9.4 Algorithm: refines(Impl, Spec) o 188
MLEALMe 197
10.2 Classdiagram of PAT e e 199
10.3 Workflowof CSP module 200
10.4 WS moduleworkflowo 204
B.1 CSP# maodel for orienting undirected ring protbcol 235
B_Z_QSE#_madeLLQLLeadﬂLaLeman_ummoLm_odd_rlings 236

B.3 CSP# maodel for token circulation protacol 236

Chapter 1

Introduction

The design and verification of concurrent and real-timeesystare notoriously difficult problems.
In particular, the interaction of concurrent processesaméd systems often leads to subtle bugs
that are extremely difficult to discover using the convemiatechniques of simulation and testing.
Automated verification based on model checking promises ee raffective way of discovering

design errors, which has been used successfully in practieerify complex software systems.

1.1 Motivation and Goals

With the fast development of IT industry, our reliance on thectioning of software systems is

growing rapidly. These systems are becoming more and maonlaated and are massively en-
croaching on daily life, e.g., the Internet, embedded systemobile devices and so on. This is
especially true for concurrent and real-time systems, kwiiave concurrent executions, shared
resources and timing factors. Failure is unacceptable fesion critical systems like electronic

commerce, telephone switching networks, air traffic cdrgystems, medical instruments, and nu-
merous other examples. We frequently read of incidents evbatastrophic failure is caused by an

error in software systems, as some examples listed below.

1.1. MOTIVATION AND GOALS 2

e Pentium bug: Intel Pentium Il chip, released in 1994 prodwgreor in floating point division.

Cost: $475 million

e Ariane 5 failure: In December 1996, the Ariane 5 rocket eaptb40 seconds after takeoff,
by an overflow generated by converting a 64-bit floating-poiumber into a 16-bit integer.

Cost: $400 million

e Therac-25 accident: A software failure caused wrong dasafjg-rays.

Cost: Human Loss.

In a recent example, the 2010 Toyota recall that can costsexak?2 billion USD has been quite
surprising for the people, who have been acquainted wittsticeessful history of this company.
Much of the cost, damage to the company’s reputation, anditigertainty regarding the nature
of the problems, could have been avoided if the correctnBsecsoftware components has been

established beyond doubt.

Clearly, the need for reliable software systems is crucha.the involvement of such systems in
our lives increases, so too does the burden for ensuringdbeectness. Therefore, it will become

more important to develop methods that increase our cordeirnthe correctness of such systems.

The principal validation methods for complex systems areifation, testing, deductive verification,
and model checking. Model checking is a method of autonigtiearifying concurrent systems in
which a finite state model of a system is compared with a ctress requirement. The process
of model checking can be separated into system modelingjresgent specification and verifica-
tion. It has a number of advantages over other traditionpiagches. This method has been used

successfully in practice to verify complex circuit desigrdaommunication protocols.

In this thesis, our research focuses on model checking aurcent and real-time systems. In partic-
ular, we have tried to address four issues related to mo@ekatg: (i) proposing a formal language
to model concurrent and real-time systems, (ii) explorifigient model checking algorithms and

reduction techniques, (iii) implementing a toolkit to soppeffective software verification, and (iv)

1.1. MOTIVATION AND GOALS 3

applying the proposed model checking techniques in diffed®mains. The concrete issues that

require more research efforts are elaborated below in ther @f the process of model checking.

System Modeling

Formal modeling languages and notations have much to oftfeeiachievement of technical quality
in system development. Precise notations and languagpsdsiake specifications unambiguous
while improving intuitiveness, increasing consistency amaking it possible to detect errors auto-
matically with the support of effective tools. Over the st decades, many formal modeling lan-
guages have been proposed 108 222, 75,183/ 150, 120,d}5%0tmal modeling languages and
notations are generally logic-based formalisms, whichdareled into two groups, state-oriented
formalisms, including VDM [[120], zZ[1222], Object-Z[I75], & and event-oriented formalisms,
including Communicating Sequential Processes (C5P) [108]S [155], Timed CSF_[183}7-
calculus [155], etc. The formalisms based on the notion aﬂesmachin&include finite state

machines, Statecharis [104], Petri-net]165], Timed Awttan10], etc.

We are particular interested in the event-based modelinguiages like CSP, CCS for their rich
set of concurrent operators and compositional structuredghieve a modular design by nature).
CSP has passed the test of time. It has been widely accepteithfarenced the design of many
recent programming and specification languages. Noneatheteodeling systems with non-trivial
data structures and functional aspects completely usimgukges like CSP remains difficult. In
order to solve the problem, many specification languagegiating process algebras like CSP or
CCS with state-based specification languages like the ik or Object-Z have been proposed.
The state-based language component is typically used tifgplee data states of the system and
the associated data operations in a declarative style. pranmcludeCircus [221] (i.e., an inte-
gration of CSP and the Z language), CSP-0O4 [86] (i.e., argmateon of CSP and Object-Z) and
TCOZ [152] (i.e., an integration of Timed CSP and Objectdwever, because declarative speci-

fication languages like Z are very expressive and not exblgjtautomated analyzing (in particular,

1State machine is a model of behavior composed of a numbeatsfsst

1.1. MOTIVATION AND GOALS 4

model checking) of systems modeled using the integrategliges is extremely difficult.

During the last decade or so, a popular approach for spegifieal-time systems is based on the
notation Timed Automata [10, 149]. Timed Automata are pdutén designing real-time models
with explicit clock variables. Real-time constraints aaptred by explicitly setting/reseting clock
variables. Models based on Timed Automata often adapt desistqucture, e.g. a network of Timed
Automata with no hierarchy [135]. The benefit is that effitievodel checking is made feasible.
Nonetheless, designing and verifying hierarchical reaétsystems is becoming an increasingly
difficult task due to the widespread applications and irgirgpcomplexity of such systems. As a
result, users often need to manually cast high-level coitipoal time patterns into a set of clock

variables with carefully calculated clock constraintseTiocess is tedious and error-prone.

One goal of this thesis is to design an integrated modelingudage for concurrent and real-time

systems, which is sufficiently expressive, but is still &abfo model checking.

Requirement Specification and Verification

Critical system requirements like safety, liveness anahégs play important roles in system spec-
ification, verification and development. Safety properdasure that something undesirable never
happens. Liveness properties state that something diesiralst eventually happen. Fairness prop-
erties state that if something is enabled sufficiently gftBen it must eventually happen. Often,

fairness assumptions are necessary to prove livenessriiegpe

Over the last decades, specification and verification otywaf@perties (e.g., deadlockfreeness and
reachability) have been studied extensively. The concéfiveness itself is problematid_[132].
Fairness constraints have been proved to be an effectiveoivaxpressing liveness, and is also
important in system specification and verification. Foranse, without fairness constraints, verify-
ing of liveness properties may often produce counterexesnhich are due to un-fair executions,
e.g., a process or choice is infinitely ignored. State-béiedess constraints have been well stud-
ied in automata theory based on accepting states, e.g¢ isetting of Blichi/Rabin/Streett/Muller

automatal[209]. It has been observed that the notion ofdafins not easily combined with the

1.1. MOTIVATION AND GOALS 5

bottom-up type of compositionality (of process algebraifstance[[170]), which is important for
attacking the complexity of system development. Existingdel checkers are ineffective with re-
spect to fairness [202]. It is desirable to develop effectairness verification algorithm. Especially
it is proven that the correctness of recently developed latipn protocols requires fairness [14] 88].
In this thesis, we focus on liveness properties expresseheaar Temporal Logics (LTIB which

allows potentially on-the-fly verification algorithms to Beveloped([6i1].

In order to verify hierarchical systems, more general gmations like refinement relation are
needed. In these cases, the requirement is modeled usingsaach model rather than a logic
formula, which gives more expressive power. FDR (Failibasrgence Refinement) [1I75] is the
de factorefinement analyzer, which has been successfully appliedrious domains. Based on the
model checking algorithm presented In_[175] and later inmpdowith other reduction techniques
presented in[179], FDR is capable of handling large syst&setheless, since FDR was initially
introduced, model checking techniques have evolved muthéeuin the last two decades. A num-
ber of effective reduction methods have been proposed vdrigsitly enlarge the size the systems
that can be handled. Some noticeable ones include partal oeduction, symmetry reduction,

predicate abstraction, etc. It is worth revisiting thisaalthm by incorporating new techniques.

For the real-time systems, previous works [135,[35,35] 204,[33] focus on the flat modeling
structure, like Timed Automata. Verification for hierarcii languages is less studied. To the
best of our knowledge, there are few verification supporfTiored CSP, e.g. the theorem proving
approaches documented In[40, 101], the translationAeAdL models [70[711] and the approach
based on constraint solving_[72]. Regarding the timed refer@ checking, tool support is also
very limited. One of the reasons is that Timed Automata, Whigtended Blichi Automata with
clocks [10], is designed to capture infinite languages. Himement checking (or equivalently
the language inclusion) problem is undecidable in therggtif Timed Automata [10], because the
language of Timed Automata is not closed under complemdfective verification algorithms and

reduction techniques are always desirable when real-Srireolved.

2For model checking, there is no practical complexity adgatto restrict oneself to a particular temporal lofid [80].

1.1. MOTIVATION AND GOALS 6

Model checking approach works only with finite state sEamﬂ suffers from the state space explo-
sion problems. We need to develop advanced techniques éonatpthis limitation. First, symbolic
model checking have been proved as a successful représerftatstate graph, which can handle
large system state up i®?° [44], which may be a promising approach for verifying hiefical
systems. Second, effective reduction techniques havedmartoped during the last two decades,
e.g., partial order reduction [2[14], symmetry reductidie, & herefore, problem specific reduction
can be developed when we design the verification algoritAthgd, to handle infinite state spaces,
sound abstraction techniques are required, e.g. to hanfiltétée number of similar processes or
apply model checking in real number clocks. Fourth, add&icomputation resources can be used

to speed up the verification, e.g., parallel verificatiomgsnulti-core CPU.

Tool Support

Effective tool development has always been the focus of inguerking community. Since 1980,
there is an ample set of model checkers developed. Genegas® model checkers for concurrent
systems include NuSMV[53], SPINTI11], mCRLZ[102] and so earification tools for real-time
systems include BraaL [135], KRONOS [35], REDI[21]7], Timed COSPAN [207], Rabkii3]3
and so on. The success of these tools is shown in establiiiengorrectness of various systems
and finding critical bugs in published algorithm and reaHd@pplications. With the focus on the

performance, most tools ignore the following aspects iir thesign, which may limit their usage.

Usability To be a useful tool, model checkers should be self-contaaret offer user friendly

interfaces to support system editing, animated simulatiod parameterized verification.

Extensibility Most tools are designed for certain systems or favor foliQddr requirements. Ex-
tensibility of new model checking algorithm or input moaeglilanguage is rarely mentioned.
A structural design shall make the support of new algorithmtanguage relative easy by

reusing the existing model checking algorithms and lilesari

3Though this is generally true, a considerable amount ofrieffas been expended on applying model checking to

infinite state model< 1140, 84, 4].

1.2. SUMMARY OF CONTRIBUTIONS 7

To add to our understanding of the field, we aim to developiefitamnodel checker with the consid-

eration of the above points.

1.2 Summary of Contributions

The main results of this thesis are embodied in the desigrirapiémentation of Process Analysis
Toolkit (PAT), a self-contained framework for the autoroadinalysis of concurrent and real-time

systems. The contributions of this thesis can be summasgédilows:

e We design an integrated formal Iangﬂ@m concurrent and real-time modeling, which com-
bines high-level specification languages with mutable dat@ables and low-level procedural
codes for the purpose of efficient system analysis, in pdaiic model checking. Timing
requirements for real-time systems are captured usingvimhgatterns likedeadline time
out, etc. Instead of explicitly manipulating clock variables (n Timed Automata), the time
related process constructs are designed to build on irhplagks. Furthermore, we formally
define the semantic model for the language, which facist&&T to perform sound and com-

plete system verification.

e We develop a unified on-the-fly model checking algorithm \uhi@andles a variety of fair-
ness including process-level weak/strong fairness, degat weak/strong fairness, strong
global fairness, etc. The algorithm extends previous waorknodel checking based on find-
ing strongly connected components (SCC). To give flexihilite propose several fairness
annotations on individual events, which allows effectigduction techniques used together
with the proposed fairness verification. Furthermore, wesent a parallel version of the
proposed algorithm in multi-core shared-memory architect The parallel algorithm is per-

formed on-the-fly with little overhead. Experimental reésukee Sectioh4.7) show that our

“The proposed language borrows syntax and semantics of ®@8&gff it is not compositional as original CSP, all the

verification algorithms presented in this thesis requireommpositionality.

1.2. SUMMARY OF CONTRIBUTIONS 8

algorithm is more effective compared to SPIN to prove or mige fairness enhanced sys-
tems. The parallel algorithm is shown to be scalable to tmelmar of CPU-cores, especially
when a system search space contains many SCCs. We applyoihesed fairness model
checking algorithms on a set of self-stabilizing populatiwotocols for ring networks, which
only work under fairness. We report on our model checkingltesEspecially, we discover

one previously unknown bug in a leader election protdco8]11

e We develop a novel technique for model checking parametriz/stems under fairness,
against Linear Temporal Logic (LTL) formulae. We show thatdel checking under fairness
is feasible, even without the knowledge of process idemifi€his is done by systematically
keeping track of the local states from which actions are kexialexecuted within any infinite
loop of the abstract state space. We develop necessaryethgedo prove the soundness of

our technique, and also present efficient on-the-fly modetking algorithms.

e Based on the ideas in FDR[175], we present a on-the-fly mdasgkeng algorithm for re-
finement relations verification. Our algorithm is designedricorporate advanced model
checking techniques, e.g. partial order reduction, toyameatvent-based hierarchical system

models.

e We apply the refinement checking algorithm to automaticatgck linearizability [[10/7]
based on refinement relations from abstract specificatmusricrete implementations. Our
method avoids the often difficult task of determining lineation points in implementations,
but can also take advantage of linearization points if theygaven. We have checked a va-
riety of implementations of concurrent objects, includihg first algorithms for the mailbox

problem [19] and scalable NonZero indicatars|[78].

e We apply the refinement checking algorithm to automaticztilgck consistency between Web
Service choreography and Web Service orchestration byisgogonformance relationship
between the choreography and the orchestration. The tdgois further extended with data

support and specialized optimizations for Web services.

e We presents a bounded model checking approach to verify ltdpgsties using composi-

1.2. SUMMARY OF CONTRIBUTIONS 9

tional encoding of hierarchical systems as satisfiabil#¥) problems. State-of-the-art SAT
solvers are then applied for bounded model checking. Thedamg avoids exploring the full
state space for complex systems so as to avoid state spaosierp The experiment re-
sults show that our approach has a competitive performamoeefifying systems with large

number of states.

We propose an approach for modeling and verifying hieraedhieal-time systems, which
uses a fully automated abstraction technique to build atmadidinite state machine from the
real-time model. The idea is to dynamically create clocksajoture constraints introduced by
the timed process constructs. A clock may be shared for mangtiicts in order to reduce
the number of clocks. Further, the clocks are deleted ay aarpossible. During system
exploration, a constraint on the active clocks is mainthiaed solved using techniques based
on Difference Bound Matrix (DBM]68]). We show that the albstion has finite state and is
subject to model checking. Further, it weakly bi-simuldtes concrete model and, therefore,
we may perform sound and complete LTL model checking or referd checking upon the
abstraction. To facilitate timed refinement checking, weally define a timed trace seman-
tics and a timed trace refinement relationship. We extenddhe abstraction technique to
preserve timed event traces; hence timed refinement clieisqoossible. We provide the first

solution for model checking Timed CSP and timed refinemeatkimg.

We develop Process Analysis Toolkit (PAT), a self-contdital to support composing, sim-
ulating and reasoning of different concurrent systems. idgdlements all proposed model
checking techniques catering for checking deadlock-eeenreachability, LTL checking,
refinement checking and etc. To achieve good performanegnadd techniques are imple-
mented like partial order reduction, process counter abstn, bounded model checking,
parallel model checking, etc. PAT is designed to be a geffremcework, which can be easily
extended to support a system with new languages syntax aifitaton algorithms. The

experiment results show that PAT is capable of verifyingeys with large number of states

and complements the state-of-the-art model checkers iy aspects.

1.3. THESIS OUTLINE AND OVERVIEW 10

1.3 Thesis Outline and Overview

In this section, we briefly present the outline of the theni$ @averview of each chapter.

Chapte[R is devoted to an introduction of model checkingrigies in the order of model checking
process. First, systems are modeled using Kripke strigtiecond, specification can be written
using temporal logic, particular LTL. Last, the verificati®s done using dedicated algorithms with
reduction techniques like partial order reduction. Theidsaabout real-time model checking are

explained in the end of this chapter.

ChaptefB introduces an integrated modeling language withdlly defined syntax and operational
semantics. The semantics model is interpreted using Ladednsition System (LTS). A multi-lift

system and Fischer’s algorithm are used to illustrate thguage.

In Chaptei#, we study the LTL verification problem underefit fairness assumptions. A fair-
ness model checking approach based on Tarjan’s SCC detedgorithm is proposed. To give
flexibility, we propose several fairness annotations orividdal events, which allow effective re-
duction techniques used together with the proposed faresfication. Furthermore, we present a

parallel version of the proposed algorithm for multi-cohaiged-memory architecture.

In Chaptelb, we apply the algorithms developed in Chdpter sklf-stabilizing population proto-
cols. One previously unknown bug is discovered in a leadsstiein protocol [[118]. Population
protocols are designed on a large or even unbounded numbgnitdr processes, which raises the

state explosion problem. To solve this problem, we propgeeeess counter abstraction technique.

ChapteED introduces trace refinement relations and preosafinement checking algorithm incor-
porated with advanced reduction techniques, like parti@oreduction. In Chaptét 7, we apply the

proposed refinement algorithm on linearizability checkamgl web service conformance checking.

Chapte B presents a compositional encoding of hierarchiogesses as satisfiability (SAT) prob-
lem and then applies state-of-the-art SAT solvers for bedndodel checking. This encoding avoids

exploring the full state space for complex systems so asabwidéh state space explosion.

1.4. PUBLICATIONS FROM THE THESIS 11

Chaptei P explains our solution to verify hierarchical fix@e systems. We develop an automated
abstraction technique to build an abstract finite state madnom the real-time model. We show
that the abstraction has finite state and is amenable to nobeeking. Further, we present al-
gorithms for LTL model checking, refinement checking andetilmefinement checking upon the

abstraction.

ChapteID presents PAT, a general framework to support asimg, simulating and reasoning
of different concurrent systems. The system architectwogkflow, functionalities and details of

existing modules are explained in this chapter.

ChapteIll summaries the contributions of the thesis amtiskes future research directions.

1.4 Publications from the Thesis

Most of the work presented in this thesis has been publishadazpted in international conference

proceedings or journals.

The work in Chapte[]3 was presentedTate 3™ IEEE International Symposium on Theoretical
Aspects of Software Engineering TASE'09 (July 2(@9¥]. The work in Sectiofi’4l5 was pre-
sented affthe 10 International Conference on Formal Engineering Method&EM'08 (Novem-
ber 2008)[202]. The work in SectioliL4l6 is accepted Bie 11 International Conference on
Formal Engineering Methods ICFEM’09 (December 20(44]. The work in Sectiof 51 to Sec-
tion[53 was used as a basis for the paper presentétest™ IEEE International Symposium on
Theoretical Aspects of Software Engineering TASE’'09 (d0039)[144]. The work in Sectioi 514
to Sectiori 5l is accepted Bie 16" International Symposium on Formal Methods FM’09 (Novem-
ber 2009)[204]. The work in Chaptdil6 was presented in an invited pap&he3™ International
Symposium on Leveraging Applications of Formal Methodsfidaion and Validation ISOLA'08
(October 2008]193]. The work in Sectiofi.Zl1 to Sectignl’.3 is accepte@rat16t International
Symposium on Formal Methods FM’'09 (November 2J09E]. One case study in Secti@nl7.3

was published imhe21* International Conference on Software Engineering and Kadge En-

1.4. PUBLICATIONS FROM THE THESIS 12

gineering SEKE’09 (July 2009P25]. The work in Chaptefl8 was presented in a paperFtat
274 |EEE International Symposium on Theoretical Aspects divoé Engineering TASE’08 (June
2008)[199], and a journal article i2"¢ volume of The Frontiers of Computer Science in China
journal [200]. The work in Chaptéll 9 is acceptedrae 11*" International Conference on Formal
Engineering Methods ICFEM’09 (December 20(Z03]. The work in Chaptdr_10 was the basis for
the paper published ifihe30% International Conference on Software Engineering ICSENI&y
2008) [144], and the paper published ¥he 215 International Conference on Computer Aided
Verification CAV’09 (June 2009197].

Part of Chaptdrl4 has been submitted for publicafionl[195)aper including the web service con-
formance checking presented in Secfiod 7.4 to SeEfidn & Béan submitted for publication [198].
Part of Sectiof 9.213 has been submitted for publicafiodJJ20also made contributions to other

publications[[145], 73] which are remotely related this thes

For all the publications mentioned above, | have contrithgebstantially in both theory develop-

ment and tool implementation.

Chapter 2

Background

The principal validation methods for complex systems ideltesting, simulation, deductive verifi-
cation, and model checkingimulationandtestingapproaches send the test signal at input-points
and check the signal at the output-points. These two methwals become very expensive for
complex, asynchronous systems. More importantly, thegicomly a limited subset of possible be-
haviors.Deductive verificatioruses axioms and proof rules to prove the correctness of tterag,
which can handle infinite state systems. However, it is a maapproach, very time-consuming
and can only be used by expemdodel checkings an automatic approach for verifying finite state
systems. It differs from other methods in two crucial aspe€l) it does not aim of being fully

general, and (2) it is fully algorithmic and of low computatal complexity.

After two decades’ development, model checking has covaretitle area including a number of
different approaches (e.g. explicit model checking, syimbnodel checking, probabilistic model

checking, etc.) and techniques (e.g. partial order rednchinary decision diagrams, abstraction,
symmetry reduction, etc.). In this chapter, we cover basmMtedge of model checking and con-
cepts related to this thesis. The remainder of the chapteganized as follows. SectiGn®.1 gives

a brief introduction to model checking. Sectonl2.2 exmaiow the systems should be modeled in

1The complexity of most model checking algorithms is projoorl to the state space or the product of the state space

and property.

13

2.1. BASICS OF MODEL CHECKING 14

model checking approaches. Sectiod 2.3 enumerates sepedfications and related algorithms

to verify them. Sectiof 214 covers the background knowlexfgeal-time model checking.

2.1 Basics of Model Checking

Model checkinglI5B] is a verification technique that exptoadl possible system states in a brute-
force manner. Therefore, model checking is not feasiblerfiimite state space systems, which is
caused by unbounded data size or infinite number of proceSkeperformance of model checking
approach is related to the size of the system state space. altréal challenge to examine the
largest possible state space that can be handled by limiteggsors and memories. State-of-the-
art model checkers can handles state space of dbdub 10° states[[111] with explicit state-space
enumeration. The main challenge in model checking is dgalhiith the state space explosion
problem. This problem occurs in systems with many compaentinat can interact with each other
or data structures with many different values. In such gabesnumber of global states can be
enormous. The linear increment of the interaction or dalizegwill give exponential increment of
the state space. For example, a concurrent programiptiocesses can have a state graph of size

exp(k). During the last ten years, considerable research worle en focusing on this problem.

The process of model checking consists of several taskst &firall, system design is converted
into a formalism accepted by model checking tools. The requént of the systems is abstracted
as logic specifications. One common example is temporat |legiich can assert how the behavior
of the system evolves over time. The verification of the dfation against the system model is
generally conducted automatically. If the result is negatihe user is often provided with a witness
trace (or counterexample). The analyzing of the error traag require modifications to the model
and repeat the model checking process. Each process of ttel wloecking, namely modeling,

specification and verification, will be explained in the ¢oling sections.

2.2. SYSTEM MODELING 15

2.2 System Modeling

First of all, we convert the system, which should be examiireéd a formalism accepted by a model
checking tool. Formal modeling is a difficult and criticaégt Sometimes, owing to limitations on
time and memory, the modeling of a design may require the Gsdsiraction. It may not be
so simple to provide the model, because on the one hand melevamportant points must be
represented in the model, on the other hand unnecessailg dét@uld be eliminated. For example,
when reasoning about a communication protocol we may wdattes on the exchange of messages

and ignore the actual contents of the messages.

A state (or configuration is a shapshot or instantaneous descriﬂio’nthe system that captures
program counter and the values of the variables at a patitustant of time. The state change as
the result of some action of the system is described by transj which is a pair of states with an
action (or evenj linking them. A computation of a system is a finite or infinsiequence of states
where each state is obtained from the previous state by samsitton. We use a state transition

graph called &ripke structure[113] to formally model a system.

Definition 1 (Kripke structure) Let AP be a non-empty set of atomic propositions. Kfpke
structure M over a set of atomic propositiond P is a four-tupleM = (S, Sy, R, L), where S
is a finite set of statesSy C S is the set of initial statesR C S x S is a transition relation;
L : S — 247 s a function that labels each state with the set of atomiggsitions true in this

state.

A Kripke structure is a graph having the reachable statdsso$ystem as nodes and state transitions
of the system as edges. It also contains a labeling of thessptthe system with properties that hold
in each state. In this thesis, we adopt an event-based fiermar herefore we extend the transitions

in Kripke structure with events (denoted d¥to link the pair of states.

>The components of state are determined by the actual mgdaliguage. See Sectibi3]1.2 for the state definition

of the proposed modeling language in this thesis.

2.3. SPECIFICATION AND VERIFICATION 16

2.3 Specification and Verification

Specifications are the properties that the design musfisafibere are different ways to express
properties. In state-based formalisms, properties arergbiy stated using temporal logics to spec-
ify how the system evolves over time. These properties aideti into two categories: safety prop-
erties and liveness properties. In this section, we prebentommon properties and algorithms

(and techniques) used to verify them.

2.3.1 Safety Property

A safety property is a property stating that “something baden happens”. Generally, safety re-
guirements include the absence of deadlocks and simikarairstates that can cause the system to

crash.

Deadlock Sequential programs that are not subject to divergence @ndless loops) have a ter-
minal state, which has no outgoing transitions. For comursystems, however, computations
typically do not terminate. In such case, terminal statesuadesirable and mostly represent a de-
sign error. Apart from simple design errors where it has Hesgotten to indicate certain activities,
in most cases such terminal states indicatleadlock A deadlock occurs if the complete system
is in a terminal state, although at least one component is(iocal) nonterminal state. A typical

deadlock scenario occurs when components mutually waédoh other to progress.

A more general form of safety property can be stated as a fogicula of the atomic propositions,
e.g.,—(cso A cs1) is a safety property for mutual exclusion problem meanirag grocess 0 and

process 1 cannot be in the critical section at the same time.

To verify safety properties, we simply need to conduct aliépst search (or breadth first search)
in the state space. During the search, if the reached statedisirable (e.g., having no outgoing
transitions in case of deadlock checking), then we dete@viadence trace as a counterexample.
The algorithm (based on depth first search) has been imptecheénPAT, which gives a linear time

complexity in the size of the state space.

2.3. SPECIFICATION AND VERIFICATION 17

Note that, in the event-oriented world, deadlock-freedsma liveness property rather than safety
property. In practice, safety and liveness do not apply inelpure event-based formalism. “Some-
thing" that happens (or not) is really a configuration of thetem and/or its environment, not nec-

essarily an observable event. In this thesis, we treat delaals a safety property.

2.3.2 Liveness Properties and Linear Temporal Logics

Different from safety properties, liveness properties meeat “something good" will eventually
happen. Safety properties are violated in finite time, kgnproperties are violated in infinite time,
i.e., by infinite system runs. For example, in a mutual excluslgorithm, typical examples of

liveness properties are including:

e (eventually) each process will eventually enter its caitigection;
e (repeated eventually) each process will enter its criseation infinitely often;

¢ (starvation freedom) each waiting process will eventualiier its critical section.

To model liveness properties, the common practice is tdesgoral Logicse.g. Computation Tree
Logic (CTL)[E5], Linear Temporal Logic (LTL[Z88] andCTL* [56]. It is known that, for purposes
of model checking, there is no practical complexity advget#o restrict oneself to a particular
temporal logicl[80]. In this thesis, we focus on LTL as theoainms proposed later are consistent

with LTL model checking.

Definition 2 Let Pr be a set of propositions arid be a set of events. A LTL formula is,
pu=pla|-g|ony|Xo|Od| O | UV

wherep ranges overPr and a ranges oveix. Letm = (sg, ep, $1, €1, -, €i, S, - - -) be an infinite

2.3. SPECIFICATION AND VERIFICATION 18

execution. Letr’ be the suffix ofr starting froms;.

T Ep S s FEp

T Ea Se1=a

TE-g & (1t E¢)

TEQANY ST EOAT E

TEXp ontlEg

TEOe oVi>ienlE¢

TEGCY o 3Ij>ienl k¢

T EUY ©Ij>ien FypAVE|i<k<j—lemlk¢

>
>
Informally, X ¢ meansy has to hold at the next stateip meansy has to hold at all states in the
execution. ¢ meansy eventually has to hold in some state of the executiofia) means that

has to hold at least untib, which holds at the current or a future position.

Using LTL, safety properties can be specified as formmutap, wherep is the undesired property.
Regarding the three liveness properties in the mutual sisiuexample, they can be formulated as
follows, wherecs; means the procegsis in the critical section, andaiting; means the process

is in the waiting state.

e (eventually)o cs;;
e (repeated eventually$ cs;;

e (starvation freedomyi(waiting; = <cs;).

Note that because we are dealing with an event-based femm#étiee Chaptdil 3 for the proposed
language) in this thesis, it would be meaningful if the prtips may concern both states and events.
For instancewaiting; andcs; in the examples above are events. The simplicity of writgriulae
concerning events as in the above examples is not purely teamaditaesthetics. It may yield gains

in time and space (refer to exampleslini[50]).

Explicit state model checking uses a graph to representgk&structure with nodes for states and
edges for transitions. The input model is converted into raesponding automatont, and the

negation of the LTL specification is translated into a Biichi automatéh'¢. Then, the emptiness

2.3. SPECIFICATION AND VERIFICATION 19

of the product ofM andB ¢ is checked. If the product is not empty, a counterexamplegdented.
Algorithms (of model checking finite state systems) basetherexplicit state enumeration could
be improved if only a fraction of the reachable states ardoeg@. In many cases, it is possible to
avoid constructing the entire state space of the model. i§hiecause the states of the automaton
are generated only when needed, while checking the emptoiets intersection with the property
automatons. This tactic is calledbn-the-flymodel checking[161,"110]. Instead of constructing
the automata for botiM and B¢ first, we will only construct the property automatsn'¢. We
then use it to guide the construction of the system automatbrvhile computing the product.
In this way, we may frequently construct only a small portafrthe state space before we find a

counterexample to the property being checked.

One advantage of on-the-fly model checking is that when cdimgpthe intersection of the system
automatonM with the property automatoy, some states aM may never be generated at all.
Another advantage of the on-the-fly procedure is that a esexample may be found before com-
pleting the construction of the intersection of the two ausita. Once a counterexample has been
found and reported, there is no need to complete the cotismmudnterested readers can refer to

Sectior 4B for more details of this approach.

2.3.3 Partial Order Reduction

Systems that consist of a set of components that coopdyatietve a certain task are quite com-
mon in practice, e.g. hardware systems, communicationts@is, distributed systems, and so on.
Typically, such systems are specified as the parallel coitimo®f n processes. The state space of
this specification equals in worst case the product of thie sfgaces of the components. A major
cause of this state space explosion is the representatiparaliel by means of interleaving. Inter-
leaving is based on the principle that a system run is a yobatlered sequence of actions. In order
to represent all possible runs of the systems, all possiléeleaving of actions of components need
to be represented. For checking a large class of propehimegver, it is sufficient to check only

some representative of all these interleavings.

2.4. MODEL CHECKING REAL-TIME SYSTEMS 20

For example, if two processes both increment an integeahigrin successive steps, the end result
is the same regardless of the order in which these assigameatir. The underlying idea of this
approach is to reduce the interleaving representationdrpartial-order representation. System
runs are now no longer totally ordered sequences, but [hartiedered sequences. Tlpartial
order reductiontechnique [[213, 164] aims at reducing the size of the staeesthat needs to be
explored by model checking algorithms. It exploits the cammativity of concurrently executed

transitions, which result in the same state when executdifferent orders.

The method consists of constructing a reduced state graph. fulll state graph, which may be
too big to fit in memory, is never constructed. The behavidrthe reduced graph are a subset
of the behaviors of the full state graph. The justificatiorited reduction method shows that the
behaviors that are not present do not add any informationceMcecisely, it is possible to define
an equivalence relation among behaviors such that the eguoperty cannot distinguish between
equivalent behaviors. If a behavior is not present in thaiced state graph, then an equivalent

behavior must be included.

2.4 Model Checking Real-time Systems

Computers are frequently used in critical applicationslpeedictable response times are essential
for correctness. Such systems are catkl-time systemsExamples of such applications include
controllers for aircraft, industrial machinery and robof3ue to the nature of such applications,
errors in real-time systems can be extremely dangerous,fate. Guaranteeing the correctness of

a complex real-time system is an important and nontrivisi.ta

There are two time semantics in the definition of real-timstays. Discrete-time semanti€si[11]
requires that all time readings are integers and all cloo&sement their readings at the same time.
The other choice is dense-time semanti¢s [9], which meaidithe readings can be rational num-
bers or real numbers and all clocks increment their readahgsuniform rate. We discuss the two

semantics in the following paragraphs.

2.4. MODEL CHECKING REAL-TIME SYSTEMS 21

2.4.1 Discrete-time Systems

When time is discrete, possible clock values are nonnegatiegers, and events can only occur
at integer time values. This type of model is appropriatesforchronous systemshere all of the

components are synchronized by a single global clock. Thatidn between successive clock ticks
is chosen as the basic unit for measuring time. This moddbéas successfully used for reasoning

about the correctness of synchronous hardware designsaioy years.

In discrete-time models, we require that there is a singddajl clock. Therefore, there is a sim-
ple and obvious way [133] to support it: introduce a clockialale now, whose value represents
the current time, and model the passage of time withiek action that incrementsow. For a
continuous-time specificatioriick might increment now by any real number; for a discrete-time
specification, it increments now by 1. Timing bounds on axdtiare specified with one of three
kinds of timer variables: a countdown timer is decrementgethb T'ick action, a count-up timer is
incremented bylick, and an expiration timer is left unchanged Byck. A countdown or count-up
timer expires when its value reaches some value; an expiréither expires when its value minus
now reaches some value. An upper-bound timing constrainvloen an actiond must occur is
expressed by an enabling condition on thek action that prevents an increase in time from vio-
lating the constraint; a lower-bound constraint on wiemay occur is expressed by an enabling

condition onA that prevents it from being executed earlier than it shoeld b

Alternative approaches are using quantitative temporalyars for discrete-time systenis [§1) 46].
These approaches extend CTL withunded untibperator|[81] to support the specification of tim-
ing constraints between two actions. One example query edhdt “it is always true that may
be followed byq within 3 time units". Verification algorithms are then deygéd for this extended
modal logic in the similar way of CTL model checking. To inase the scalability, symbolic model

checking technique is integrated with this solutionl [46].

2.4. MODEL CHECKING REAL-TIME SYSTEMS 22

2.4.2 Dense-time Systems

Compared to discrete-time, dense-time is the natural nmfod@isynchronous systeirsecause the
separation of events can be arbitrarily small. This abiktydesirable for representing causally
independent events in an asynchronous system. Moreovassumptions need to be made about
the speed of the environment when this model of time is asguimediscrete-time modeling, it is
necessary to separate time by choosing some fixed time guauttthat the delay between any two
events will be a multiple of this time quantum. This may lithié accuracy with which systems can
be modeled. Also the choice of a sufficiently small time quamto model an asynchronous system

accurately may blow up the state space so that verification Isnger possible.

During the last two decades, a number of specification lagegiare proposed for modeling dense-
time systems, e.glimed Automatd10,[149], Timed Process Algebf@23,[174/18R];Timed Inter-

val Calculus[85], Timed Statechartfl17] and so on. The verification approaches include model
checking, simulation, theorem proving and so on. Theoreavipg [51,[52] is proved to be a
successful means to verify systems with real-valued clakables. However, model checking
technique is difficult to apply in this case since it is desigtior finite state systems. Therefore,
abstraction is needed to apply model checking. This thesisses on the abstraction technique of

dense-time models with rational-valued clock values.

Among the specification languag@smed Automatdnas become the standard modeling technique
in designing real-time models. Timed Automata are finitdestaachines equipped with clocks
variables (ranging over rational numbers). The elapseeofithe can be modeled as clock variables
updating, and execution of the model can be constrained bydgexpressions involving clocks.
This definition provides a general way to annotate statesifian graphs with timing constraints
using finitely many rational-valued clock variables. In@rtb obtain a finite representation for the
infinite state space of rational-valued clocks, abstradizhniques likelock regiong8|] and clock
zonedb8,[224] are used to verify real-time models. Based on tteg®iques, a number of efficient
verification tools for Timed Automata have been developeg, EPpPAAL [135], KRONOS [[35],

RED [217], Timed COSPANT207] and RabHit[33].

Chapter 3

System Modeling

System modeling is very important and highly non-triviahelchoice of specification language is an
important factor in the success of the entire developmeme. [&anguage should cover several facets
of the requirements and the model should reflect exactlydugbstraction of irrelevant details) an
existing system or a system to be built. The language sha@vd & semantic model suitable to study
the behaviors of the system and to establish the validityesfrdd properties. A formal semantic
model is highly desirable, which can act as the basis for iztyaof system development activities,

e.g., system simulation, visualization, verification astptype synthesis.

In this chapter, we introduce an event-based modeling Egedor concurrent systems and real-
time systems. This language has a rich set of operators farucgeent communications and time

calculations. It is used as the modeling language in theofdbe thesis and our PAT tool.

The remainder of this chapter is organized as follows. 8e&i1 presents CSP#, the modeling
language for concurrent systems with formal syntax (ini8e.1.1) and semantic model (in Sec-
tion[31.2). The discussion in Sectibn—3]1.3 explains theastic relationship between CSP and
CSP#. Sectiobi 3.4 demonstrates a CSP# model of a mubiystem. Sectioh—3.2 presents the
language extensions of CSP# for modeling real-time syst&mgeral timed process constructs are

introduced in Sectiof-3.4.1, and their semantics is expthin Sectiofi:3.2]12. Sectién3.P.3 demon-

23

3.1. CONCURRENT SYSTEM MODELING 24

strates the real-time system modeling using Fischer’s ah@ixclusion algorithm. Sectidn3.3 dis-

cusses related works and summarizes the chapter.

3.1 Concurrent System Modeling

Many specification languages have been proposed for thelmgad concurrent systems. High-
level languages like CSP (Communicating Sequential Pses2$108] and CCS (Calculus of Com-
municating Systems) [155] use mathematical objects asaalisins to represent systems or pro-
cesses. System behaviors are described as process expsesainbined with a rich set of hierar-
chical operators, e.g., deterministic or nondeterministioice, parallel composition and recursion.

The operators are associated with elegant algebraic lavey$tem analysis.

The original CSP derives its full name from the built-in s3attc constraint that processes belong to
the sequential subset of the language. CSP has passedttoktie®. It has been widely accepted
and influenced the design of many recent programming andfiga¢ion languages. Nonetheless,
modeling systems with non-trivial data structures andtional aspects completely using languages
like CSP remains difficult. A characteristic of CSP is thatqesses have disjoint local variables,
which was influenced by Dijkstra’s principle ¢dose couplingl67]. CSP supports inter-process
communication through message passing but not shared meimgrshared variables. It has long
been known (seé¢ [108] and [177], for example) that one carehgariable as a process parallel
to the one that uses it. The user processes then read fronitettey the variable by CSP commu-
nication. Though feasible, this is painful for systems witin-trivial data structures (e.g., arrays)
and operations (e.g., array sorting). Therefore, ‘syitatigars’ like shared variables are mostly

welcome.

In order to solve the problem, many specification languagtegjrating process algebras like CSP
or CCS with state-based specification languages like Z aggliZzZ22], Object-Z1189], have been
proposed. The state-based language component is typicsaly to specify the data states of the
system and the associated data operations in a declargtiee £xamples includ€ircus [221]

(an integration of CSP and the Z language), CSPHOXZ 186, H0integration of CSP and Object-

3.1. CONCURRENT SYSTEM MODELING 25

Z), CCS+Z[205] (an integration of CCS and the Z language) BG@®Z [152] (an integration of
Timed CSP[[181] and Object-Z). However, because declaaipecification languages like Z are
very expressive and not executable, automated analyzimga(ticular, model checking) of systems

modeled using the integrated languages is extremely difficu

In this chapter, we propose an alternative solution, insteiad of specifying data states and opera-
tions in declarative languages, they are given as prockdodas. We propose a modeling language
named CSP# (short for communicating sequential progranssiopnced as ‘CSP sharp’) which
combines high-level modeling operators with low-level gnams, for the purpose of concurrent
system modeling and verification. We demonstrate that dag@sations can be naturally modeled
as terminating sequential programs, which then can be csadpgsing high-level concurrency op-
erators.The idea is to treat sequential terminating programs as &taron-communicating events.
CSP# models are executable with complete operational semaand therefore subject to system
simulation and, more importantly, fully automated systearification techniques like model check-
ing. CSP# is supported by the CSP module in PAT (see SdciichTdGand has been applied to

model and verify a number of systems.

3.1.1 Syntax

Integrating a highly abstract language like CSP with progréng codes leads to many compli-
cations. Our design principle is to maximally maintain CS&bre elegance in specifying process

synchronization, while also allowing state-based behavio

A motivating example

We use a multi-lift system as a running example in this sacfide reason for choosing the multi-
lift system is that it has complicated dynamic behaviors af as nontrivial data states. Further-
more, the single-lift system has been modeled using manghmgdanguages including CSIP220].
The system contains multiple components, e.g., the udedjfts, the floors, the internal button

panels, etc. There are non-trivial data components andogetisations, e.g., the internal requests

3.1. CONCURRENT SYSTEM MODELING 26

and external requests and the operations to add/deletestsquFor simplicity, we assume there
is no central controller for assigning external requeststead, each lift functions on its own to
find and serve requests, in the following way. Initially, f tesides at the ground level ready to
travel upwards. Whenever there is a request (from the iatdnitton panel or outside button) for
the current residing floor, the lift opens the door and laleses it. Otherwise, if there are requests
for a floor on the current traveling direction (e.g., a reqdes floor 3 when the lift is at floor 1
traveling upwards), then the lift keeps traveling on theenirdirection. Otherwise, the lift changes
its direction. Other constraints on the system include dhaer may only enter a lift when the door

is open, there could be an internal request if and only ifal&a user inside, etc.

Sequential Programs as Events

Shared variables offer an alternative means of communitatmong processes (which reside at
the same computing device or are connected by wires withgilelgl transmission delay). They
record the global state and make the information availabldltprocesses. In the lift example, the
internal/external requests can be naturally modeled asdlaarays. Note that the global variables in
the lift model are not the real memory used in the distribuifes] but rather the modeling abstraction
of them. To model the real lift systems, more details (e.g. uber request and systems memory)

need to be included. In CSP#, they are declared as follows.

#define NoOfFloor 3;

#define No OfLift 2;

var eztUpReq[NoOfFloor];

var extDownReq[NoOfFloor];

var intRequests| NoOfLift][NoOfFloor];
var doorOpen[NoOfLift];

S G W=

wheredefine andvar are reserved keywords. The former defines a global constgniNo OfFloor
which denotes the number of floors aiNd OfLift which denotes the number of lifts. The latter de-
fines a variable, e.gext UpReq array andextDownReq array which store external requests of each
floor (the index of the arrays corresponds to the floor lev@lyo dimensional arrayntRequests

stores internal requests raised from the users insidefteesince each lift had/o OfFloor number

3.1. CONCURRENT SYSTEM MODELING 27

intRequests[i|[level] = 0;
if (dir >0){
extUpReq|level] = 0;
} else{
extDownReq|level] = 0;
}

Figure 3.1: CSP# codes for clearing requests

of internal request buttongloorOpen array captures the doors’ states of all lifts. Each vargable
updated during the execution of the lift. CSP# has a weaksyptem (like JSP) and therefore type
information is not necessary for variable declaration. Bfadlt, all the above defined are treated
as arrays of integers. In particular, elementginlUpReq (or extDownReq) are binary: 1 agj-th
position means that there is a request for travelipg/ards(or downward$ at j-th floor; 0 means
no request. Two dimensional arraytRequests stores internal requests from all lifts. In particular,
the internal request for thgth floor from thei-th lift is stored atintRequests[i][j] in the array.
Elements inintRequests are binary: 1 means that the floor has been requested and & metn
requested. Elements in arr@gorOpen range from—1 to NoOfFloor — 1. Thei-th element of
doorOpen is —1 if and only if the door ofi-th lift is closed and it ig such thay > 0 if and only if
the i-th lift has opened door gtth floor. We assume that initially all doors are closed. Waaek

if the Z language is used for specification, specific typesefements in the arrays may be defined

to constrain their values.

Associated with the variables are data operations whiclnygoremodify the variables. In the lift
system, whenever a lift opens its door, the requests muspbtated accordingly. For instance,
the codes shown in FiguEe™B.1 clear the requests wheitindift opens the door alevel-th floor.
Let dir be the current traveling direction (1 for upwards and -1 fowdwards). The first line
clears internal requests, by simply resetting the resgegisition in arrayintRequests to 0. The
rest clears external requests. Only the request along ftisettaveling direction is cleared. A
more complicated operation is to determine whether thexeerjuests along the current traveling

direction, so as to determine whether a lift should keepetimag in the same direction or to change

3.1. CONCURRENT SYSTEM MODELING 28

index = level + dir;
result[i] = 0;
while (index > 0 A index < NoOfFloor A result[i] == 0) {
if (extUpReq|index] # 0V extDownReq[index] # 0 V intRequests|i|[index] # 0) {
result[i] = 1;
} else{
index = index + dir;
}
}

Figure 3.2: CSP# codes for searching requests

direction. This operation may hmplementedy the codes in Figule3.2, whelevel is a variable
recording the floor that the lift is residing atidez is a loop counter anéesult|[i] records the result
(O for no such request and 1 for yes). A while-loop is used &vdefor a request along the current
traveling direction, e.qg., if the lift is traveling upwardae search for a request for (or from) an

upper floor. The search stops when the ground or top floor chesh

A system may contain multiple data operations, each of whidkrminatingand is assumed to
be executedtomically They can be implemented using the CSP# syntax as shown,alrabey
can be implemented using existing programming languages.inStance, we offer the keyword
call in PAT to allow invocation of data operations (as atomic ¢seimplemented externally as C#
static methods in CSP# models. Data operations may be idvalkernatively or in parallel. From
another point of view, data operations are events assdomte an optional sequential terminating
program. For instance, the program in Figurd 3.2 may bedaba&$ eventheckIfToMove.i.level,
which then can be used to constitute CSP process expressignssee Figure—3.3 aidB.5. Data
races are prevented by not allowing synchronization of sveontaining procedural code. In this
sense, data operations are not “events" as in CSP, but (atbenic) computations that are inserted

in the model.

3.1. CONCURRENT SYSTEM MODELING 29

Composing Programs

The high-level compositional operators in CSP capture comsystem behavior patterns. They are
very useful in system modeling. Furthermore, process atprce can be proved by appealing to
algebraic laws which are defined for the operators. In CSR#enuse most of the operators and

integrate them with our extensions in a rigorous way so asaximmally preserve the algebraic laws.

A CSP# specification may contain multiple process definitioA process definition gives a pro-
cess expression a name, which can be referenced in progaessirns. The following is a BNF

descriptioH of the process expression.

P = Stop | Skip — primitives
| e{prog} — P — event prefixing
| chlexp — P | ch?x — P — channel communications
| P\ X — hiding
| P; Q — sequential composition
| PO Q|PNQ — choice operators
| if b{P} else {Q} — conditional choice
| [b]P — state guard
| Pl Q — parallel composition
| Pl @ — interleave composition
| PAQ — interrupt
| ref(Q) — process reference

whereP, () are processesg, is a hname representing an event with an optional sequemdgramH
prog, X is a set of event names (e.§e;, e2}), b is a Boolean expressionk is a channelexp is an

expression, and is a variable.

Stop is the process that communicates nothing, also called agad¥%ip = v — Stop, wherev’
is the special event of termination. Event prefixing— P performse and afterwards behaves as
processP. If e is attached with a program (event prefixing of this type iseckdata operatioi), the
program is executed atomically together with the occurenfcthe event. Hiding procesd \ X

makes all occurrences of eventsinnot to be observed or controlled by the environment of the

!Refer to PAT’s user manual for ASCII version of the symbols.
2The grammar rules for the sequential program can be foun&TiruBer manual.

3.1. CONCURRENT SYSTEM MODELING 30

process. Sequential compositioR,; @, behaves a® until its termination and then behaves as
Q. External choiceP O @ is solved only by the occurrence of a visible eaerﬂ)n the contrast,
internal choiceP M @ is solved non-deterministically. Conditional chdlcg b {P} else {Q}
behaves a# if b evaluates to true, and behavesiastherwise. Proced$]| P waits until condition

b becomes true and then behavesFas Note that[b] P does not block and will be dropped in
choice operators if other choices are selected. Noticeittimdifferent fromif b {P} else {Q}.
One distinguishing feature of CSP is alphabetized muticpsses parallel composition. LEts
alphabet, written as P, be the events i? excluding the special invisible event ProcessP || @
synchronizes common events in the alphabet8 ahd) excludingnon-communicating eventsee
Sectior 3. 1P for detailed discussion). In contrast, pgeée||| @ runs all processes independently
(except for communication through shared variables andtspmous chaan}; Process A @
behaves as’ until the first occurrence of a visible event frog. A process expression may be

given a name for referencing. Recursion is supported bygsoreferencing.

CSP# supports global variables, including boolean/integeaables, multi-dimensional arrays and
user defined data structHreNhich are globally accessible, process parameters wiécharessible

in the respective process expression and local variabléshveine accessible in one data operation.
We restrict the use of local variables in general. In paldicuocal variables introduced as process
parameters or variables to store channel inputs cannot loEfietbby event associated programs.
They can, however, be modified indirectly. The followingiditrates alternative ways of achieving

the same effect.

P(z) = add{z =z + 1} — P(z); — X process parameters cannot be modified.
P(z) = add — P(z +1); -V
var z; P() = add{z =z + 1} — P(); -V

Process parameters cannot be modified, hence they can édtkeetines at the point of introduction.

3In CSP, symbolr is introduced as the internal action in the operational sgicgonly. In CSP#, we abuse this
notation to denote invisible events: internal actions frioiing, resolution of a choice or dereferencing of a process

variable. Any event other thanis called visible event.
“In CSP#, we also introducgh for conditional choice with busy waiting on the condition.
®Note that in original CSFP ||| @ does not allow communication through shared channels.
®In PAT, user defined data structure can be created usingnexi@# library.

3.1. CONCURRENT SYSTEM MODELING 31

This restriction allows us to perform efficient system vedfion. The reason is that, in this setting,
it is sufficient to store only the valuation of the global adulies and the process expression (with
process parameters replaced with their values) when wemxgie system states. Compared to
software model checking, we can safely omit fnegram stackkwhich, combined with recursions,

is very complicated to maintain) from the global state.

Besides global variables and data operations, the mosteadie extension to CSP is the use of
asynchronous channels, which again can be supported in €8#phbcitly modeling the commu-
nication buffer. Nonetheless, explicitly supporting thenCSP# is not only for users’ convenience
but also for possibly more efficient mechanical system empion. Given a channelh with pre-
defined buffer size, process!ezp — P evaluates the expressienp (with the current valuation
of the variables) and puts the value into the tail of the retye buffer and behaves @& Process
ch?x — P gets the top element in the respective buffer, assigns atiabier and then behaves as
P. Sending/receiving multiple messages at once is suppadftadchannel has buffer size 0, it is a

synchronous channel, whose input and output communiatiarst occur synchronously.

Definition 3 (System model) A system model is a 3-tupfe= (Var, initg, P), where Var is a set
of global variables (including channelsjpits is the initial valuation of the variables anfl is a

process.

Figure[3.B presents a procekgt which concisely models the behavior of one lift. Notice thet
process has multiple parameters, namilyhich is an identifier of the lift/evel which denotes
the residing floor andlir which denotes the current traveling direction (1 for trangelupwards
and -1 for downwards). The condition at line 7 is used to chelkther there is a request for the
current floor, with the correct traveling direction if it ixternal. If yes, then the door is opened,
the requests for the floor are cleared (using the code pessémtFigure_311), and then the door
is closed. Otherwise, the lift checks whether to continaeeling on the same direction (using
the code presented in Figurel3.2). If the result is 1 (line #8)n the lift moves to the next floor.
Otherwise, the lift checks whether it need to change dwacfiine 21). If there is no request in

all directions, then the lift will idle at the current levah this example, we have events which are

3.1. CONCURRENT SYSTEM MODELING 32

7. Lift(i, level, dir) = if ((dir > 0 A extUpReq|level] == 1)

8. V (dir < 0 A extDownReq[level] == 1) V intRequests[i][level] == dir){
9. opendoor.i{doorOpenli] = level; *code shown in FigurE3l J* —

10. closedoor.i{doorOpenli| = —1} — Lift(i, level, dir)

11. } else{

12. checkToMoveAlong.i.level{*code shown in FigurEZ3 2* —

13. if (result[i] == 1){moving.i.dir —

14. if (level + dir == 0V level 4+ dir == NoOfFloors — 1){

15. Lift(i, level + dir,—1 * dir)

16. } else{ Lift(i, level + dir, dir)}

17. } else{

18. if ((level == NoOfFloors — 1 A dir == —1)

19. V (level == 0 A dir == 1)) {Lift(i, level, dir)}

20. else{

21. checkDir.i.level{*code shown in FigurE-3l2 with -1*dif¥ —
22. if (result[t] == 1){changedir.i.level — Lift(i,level, —1 * dir)}
23. else{idle.i.level — Lift(i, level, dir)}

24. }

25. }

26. +

Figure 3.3: CSP# model of the lift

associated with programs and simple events tikeing.i.dir. The rest of the system model is

presented in Sectidn-3.1.4.

3.1.2 Semantics

In the section, we present operational semantics of CSP#Isyoghich translates a model into a
Labeled Transition System (LTS). The sets of behaviors eaextracted from the operational se-
mantics, thanks to congruence theorems. The complicatiertiadconflicts between global variables

and CSP operational semantics (e.g. calculation of prapbsbets) is discussed.

3.1. CONCURRENT SYSTEM MODELING 33

[skip | : [prefin]
(V, Skip) % (V, Stop) (V, e{prog} — P) = (upd(V, prog), P)
i fullin vV pP= 1% SV, Q'
cis not full in Cout] Q,(V,Q) = (’Q)[def]
(V,clexp — P) ctevall),emr) (app(V, clexp), P) (V,P) = (V',Q")
¢ is not empty inV/ VEDb(V,P)S (VP
" [in] - [guard |
(V,c?z — P) oFeoR(c) (pop(V, c?z), P) (V,[b]P) = (V', P')
VEDb,(V,P)= (V' P) Vb (V,Q) = (V', Q")
[conl|] [con2]
(V,if b{P} else {Q}) = (V', P') (V,if b{P} else {Q}) = (V', Q)
(V,P) = (V' P),z€aP,zdaQ (V,Q) = (V',Q),z €aQ,z &aP
. [pal] - [pa2 |
(V.P Q) — (VP Q) (V,P| Q) —(V,P|Q)

(V7P)L(V7P/)7(V7 Q)ﬁ(V, Ql),.'L’EOLPﬂOéQ

[pa3]
(V,PlQ = (V,P'| Q)

wheree € ¥ e, e XU {7}z e XU{v}andx € XU {7, v}

Figure 3.4: CSP# firing rules

Operational Semantics

In order to define the operational semantics of a system maadiirst define the notion of system

configuration to capture the global system state duringeaysixecutions.

Definition 4 (System configuration) A systentonfiguration(or statg is composed of two compo-
nents(V, P) whereV is a function mapping a variable name (or a channel name)steatue (or
a sequence of items in the buffer), which we refer to as a tialudunction, andP is a process

expression.

The operational semantics is presented as firing rules iagsoavith each process construct. The

rules naturally extend the operational semantics for C3Pddd Timed CSH181]. Let denote

3.1. CONCURRENT SYSTEM MODELING 34

the set of all visible events an£ denote the set of all invisible eveHIsFor simplicity, we as-
sume a functiorupd (V', prog) which, given a sequential prograpmog and V', returns the modified
valuation functionV’ according to the semantics of the program. We wiite= b (or V b)

to denote that condition evaluates to true (or false) giveri. We write eva(V, exp) to denote
the value of the expression evaluated with variable vadaatin V. To abuse notations, we write
app(V, chlexp) to denote the functior’’’ in which the respective channel buffer is appended with
eva(V, exp). We write pop(V, ch?z) to denote the functior/’’ in which the top element (written

astop(V, ch)) in the respective channel buffer is removed.

Figure[3% illustrates part of the firing rules. The rest caridund in the AppendikJA. Rulerefiz
captures how event associated with sequential progranfegadied, i.e., the occurrence of the event
and program is simultaneous and appears, to the system atoiméc. Notice that, this is the only
way global variables are modified. Rulet andin capture the semantics of channel output/input.
We remark that there are two rulef1 and con2) associated withif b {P} else {Q}, whereas
only one rule guard) is associated witfb] P. Therefore, ifb is false givenb] P, then the process

will block until 5 becomes true.

The semantics of parallel compositidh | ¢ are captured using three rules. Eithferor @) can
make a move if the eventis not in their common alphabets (see rpte'1 andpar2), otherwiseP
and @ have to synchronize on (see rulepar3). Notice that the event in a data operation is called
non-communicating eventhich is excluded from the alphabet in CSP#. For instanssyraer is
a global variable,

P() = a{z = 2 + 1} — Stop;

Q() = a{z =z + 2} — Stop;
Given the above, event is not synchronized in the parallel composition Bf) and Q(). The
intuition is that data operations are local actions, indtecommunications. This prevents syn-
chronizing events associated with different data opeanattout with the same name (e.g.jn the

above example) and syntactically avoids potential date.rac

’Since invisible events are indistinguishable, we sometiaigo use- to represent an arbitrary invisible event.
8Invisible events are internal actions from hiding, resolubf a choice or dereferencing of a process variable.

3.1. CONCURRENT SYSTEM MODELING 35

Labeled Transition Systems

The semantics of a modélis defined using a Labeled Transition System (LTS) as follows

Definition 5 (Labeled Transition System (LTS)) Given a modelS = (Var, initg, P), let X de-
note the set of all visible eventsjhandTH denote the set of all invisible events, andbeX U 7.
The labeled transition system correspondingStes a 3-tuple£S = (S, init, —), whereS is a set
of configurations;nit € S is the initial configuration(initg, P), and—C S x X x S is a labeled

transition relation.

Note that the labeled transition relationship for CSP# processes conforms to the operational

semantics presented in Figlrel3.4 and the AppdnHix A.

For configurations, s’ € S ande € X,, we writes — s’ to denote(s, e, s') €—, ande is called
the engaged event of transitian> s’. The set of enabled events ats enabled(s) = {e : ¥, |
35 € 8,55 s’} Wewrites 257 o iff there existsy, - - -, 5,41 € S such thats; = s, for
all1<i<n,s =sands,y1 = ¢, ands > ¢ iff s = s’ ors 3" . The set of configurations
reachable froms by performing zero or more transitions isr*(s) = {s' : S | s =5 s'}. Letx*
be the set of finite tracesr : ¥* is a sequence of visible events 2 s if and only if there exist
er, e, e, € Xy such thats 257 o/ tr = (ef, en,---, €,) | 7 is the trace with invisible
events removed, andt [X removes the events iX from the sequence-. The set of traces of
is traces(£) = {tr : ©* | 35’ € S, init & §'}. Afinite ezecution of £ is a finite sequence of
alternating configurations/events, ey, si, €1, - -, €n, Sps-1) Wheresy = init ands; = s;; for
all 0 < i < n. Aninfinite exzecution is an infinite sequencésy, ey, s1, €1, -, €;, 8, - -) wWhere

sp = init ands; = s, forall s > 0.

We remark that the total behaviors of a LLScan be represented by its all possible executions.

This is similar to the semantic model of TCOZ[171] consigtof events and variable vall@s

°Since invisible events are indistinguishable, we sometiaigo use- to represent an arbitrary invisible event.
10TCOZ builds on the strengths of Object-Z and Timed CSP. ésted readers can refer fo [171] for its semantic

model.

3.1. CONCURRENT SYSTEM MODELING 36

The trace semantics (i.€races(L)) is an event-projection of the executions, which explafres t

behaviors related to events only.

Given aLTS(S, init, —), the size ofS can be infinite for two reasons. First, the variables may have
infinite domains or the channels may have infinite buffer.sk& require (syntactically) that the
sizes of the domains and buffers are bounded. Second, pescary allow unbounded replication
by recursion, e.g.P = (a — P; ¢ — Skip) O b — Skip, or P = a — P ||| P. In this thesis
(except Sectioh Bl 6), we consider only LTSs with a finite neamdf states for practical reasons. In
particular, we bound the sizes of value domains and the nunfl@ocesses by constants. In our

examples, bounding the sizes of value domains also bouedietiths of recursions.

A model is deadlock-free if and only if there does not exish#diexecutionsy, ey, s1, €1, -, €,
sp+1) such thats, 1 is a deadlock state, i.e., no firing rules are applicablergiye ;. Given a
propositionp, a state satisfying the predicate is reachable (or equithgle is reachable) if and
only if there exists a finite executiofs, ey, s1, €1, -, €, Sp+1) Such thats, 1 = (Vip1, Ppt1)

andV,1 F p.

3.1.3 Discussion

The modeling power of CSP# is demonstrated via its syntaxsantantics definitions. For all the
operators borrowed from CSP, the operational semantickegtein CSP#. However, the introduc-
tion of variable and states in CSP# sacrifices some algebpepfes of the original CSP, particu-
larly compositionality. Compositionality means the behaviors meaning of a complex process is
determined by the meanings of its constituent processeshamailes used to combine them. CSP
language iscompositional with respect to properties expressed constraints uporilj@gsaces

or upon combinations (called failures) of traces and setsvehts that may then be refused (re-
fer to Sectio 611 for detailed definition of failures anduszfl). Any universal property proven

of the traces or failures of a process remains true when tioaeps is placed in combination with
others. Equally, a refinement of a component induces a refineof the complete system. We

refer this property asvent-based compositionality. FOr example, given procegsl, P2 and @, if

3.1. CONCURRENT SYSTEM MODELING 37

traces(P1) = traces(P2) holds, thentraces(P1 || Q) = traces(P2 || Q). However the following

CSP# processes do not preserve this property.

var amount = 0;

P1() = pay{amount = 5} — P1();

P2() = pay{amount = 15} — P2();

Q() = [amount > 10](accept{amount =0} — Q());

where traces(P1) = traces(P2), but traces(P1 || Q) # traces(P2 || @) because the guard

conditionamount > 10 is affected by the assignments in the differgmy events.

It is clear that the use of shared variables in CSP# influenoseegs behaviors. It has long been
known that one can model a variable as a process paralled twrth that uses it [10B, 1I77]. The user
processes then read from, or write to, the variable by CSRwoncation. However, introducing
variable directly in CSP abstracts out these details, whftdcts some language properties. This
result is not surprising, because the semantics of CSP#laiagd by executions rather than purely
traces. If considering the system behavior as executiaohifling both event and states), CSP# may
be viewed aszecution-based composz’tz’ona. In the given example, the executions ®f and

P2 are not equivalent, therefore it is not a counterexample:afution-based compositionality. If
focusing on theevent-based compositionality, CSP# is not a direct extension of CSP. On the other
hand, the execution semantic model does not limit the use$sl of CSP#, and all the verification
algorithms presented in this thesis require no composilitgnand the results do not rely on any

semantic relationship between CSP and CSP#.

CSP assumes an open environment, in which we cannot inatstdme enabled events can be en

gaged or an external choice is resolved in a particular tinmec To prove any property involving

a notion of occurrence, engagement or performance (whicblased to the discussion in Chap-
ter[4[6[8 an{l9), we must assume some closure property aradeptiy, that the process is place in
an environment where it provides the sole constraint uperotiturrence of the events concerned.

That is, that these events are effectively “internal”, @ttive have a closed global view.

1To prove this, we need to formally present the denotatioeaiantics of CSP#, which can be defined in a similar

way as TCOZI[1711]. We leave this as one future work.

3.1. CONCURRENT SYSTEM MODELING 38

3.1.4 Case Study: a Multi-lift System

In this section, we complete the case study of the multirfiftdel. Our modeling is related to the
previous lift system model presented In_[151]. In additiore demonstrate how to write critical
system properties as assertions. In this model, we assureisimo central controller to coordinate

the lifts, hence multiple lifts may simultaneously compeetserve a single floor.

Figure[3b shows the rest of the model. In particular, linel@fines the rest of the variables (which
are used in FigureZ3.2). Lines 28 to 38 model users’ behawidhe lift system. At line 28, the
behavior of three users is defined as the interleaving of eaeh wherg|| z : {i..;}@P(z) =
P@) ||| --- ||| P(4). Behavior of a user is specified as proceé&er at line 29. Each user may
initially be at any floor. This is captured using indexed ex& choice. The user pushes a button
(for traveling upwards or downwards, specifiedfagernalPush(pos)) and then waits for the lift

to come (specified al/aiting(pos)).

A casestatement, which is a syntactic sugar for multiple if-tredse statements, is used in process
ExternalPush(pos). We remark that the conditions in the case statement araateal in the order
until one which evaluates to be true is found. Otherwisedtfeult branch is taken. In the example,
if the user is at the ground floor or the top one, only one diwacto travel can be requested.
Otherwise, the user may choose either to go upwards or domiswiines 31 to 34 capture how the

external requests are updated.

The user then waits for the door opened at the user’s flootycegh by conditiondoorOpen|i] ==
pos at line 36) and then enters the lift. We remark that this madlelvs users to enter the lift with
the wrong traveling direction (which may happen in real whrlAfter making an internal request,
the user may exit when the door is opened again at his/heindgsh floor. The lift system is
modeled as the interleaving of users and multiple liftsreg B9. Initially, the lifts are residing at the
ground floor, ready to travel upwards. In this example, we aiestrate how variable updates and

concurrency operators may be used together seamlessiptioceaystem behavior.

Once we have a model, we may use PAT to simulate its behavidtsrnatively, we may write

assertions about critical system properties and invok@£&iemodel checkers to examine the model

3.2. REAL-TIME SYSTEM MODELING 39

27. var index; var result|[NoOfLift];

28. Users() =[|| = : {0..2}@aUser();

29. aUser() =0 pos : {0..NoOfFloor — 1}@(ExternalPush(pos); Waiting(pos));
30. ExternalPush(pos) = case{

31. pos == 0 : pushup.pos{extUpReq[pos] = 1} — Skip

32. pos == NoOfFloor — 1 : pushdown.pos{extDownReq[pos| = 1} — Skip
33. default : pushup.pos{extUpReq[pos| = 1} — Skip O

oo

34. pushdown.pos{ extDownReq[pos| = 1} — Skip

35. IS

36. Waiting(pos) =0 i : {0..NoOfLift — 1}@([doorOpen[i] == pos|enter.i —
37. O z : {0..NoOfFloor — 1}@(push.z{intRequests|i|[z] = 1} —

38. [doorOpen|i| == z|exit.i.x — User()));

39. LiftSystem() = Users() ||| (||| = : {0..NoOfLift — 1}@Lift(x,0,1));
40. #assert LiftSystem() deadlockfree

41. #defineprl extUpReq[0] > 0;

42. #define pr2 extUpReq[0] == 0;

43. #assert LiftSystem() E O(prl = <&pr2) A OO moving.0.1

Figure 3.5: CSP# model of the lifts system

in order to find counterexamples. In particular, line 40 gsdbat the lift system is deadlock-free.
Line 43 states a LTL property (refer to Section 213.2) assgrthat (1) a request at the ground
floor (defined as the proposition at line 41) must eventuadlysérved (defined as the proposition
at line 42), and (2) the evemtoving.0.1 must always eventually occur (i.@sth lift must always

eventually move upwards).

3.2 Real-time System Modeling

Specification and verification of real-time systems are irtgo research topics which have practi-
cal implications. During the last decade or so, a popularagh for specifying real-time systems
is based on the notation Timed Automatal[10,1149]. Timed Mata are powerful in designing

real-time models with explicit clock variables. Real-tic@nstraints are captured by explicitly set-
ting/resetting clock variables. A number of automatic fieaktion support for Timed Automata have

proven to be successful_[135,135] B5,1217.1207, 33].

3.2. REAL-TIME SYSTEM MODELING 40

Models based on Timed Automata often adapt a simple steictuy. a network of Timed Automata
with no hierarchy[[135]. The benefit is that efficient modetcking is made feasible. Nonetheless,
designing and verifying hierarchical real-time systentseisoming an increasingly difficult task due
to the widespread applications and increasing complexisyich systems. High-level requirements
for real-time systems are often stated in termsle&dline time ouf andtimed interrupt [130,
/4,[141]. In industrial case studies of real-time systenifigation, system requirements are often
structured into phases, which are then composed sequgnitiaparallel, alternatively, etd [105,
134]. Unlike Statechart (with clocks) or timed process htgs, Timed Automata lack of high-level
compositional patterns for hierarchical design. As a tesskrs often need to manually cast those
terms into a set of clock variables with carefully calcuthtdock constraints. The process is tedious

and error-prone.

In remaining sections, we investigate an alternative aggrdor modeling hierarchical real-time
systems by extending CSP# with additional behavioral patteshich are useful in modeling and
analyzing real-time systems. Examples étedline (which constrains a process to terminate within
some time units)timed interrupt, etc. Instead of explicitly manipulating clock variabless (in

Timed Automata), the time related process constructs aigmied to build on implicit clocks.

3.2.1 Syntax

In this section, we introduce the language extensions off3&Hmodeling real-time systems.

Definition 6 (Timed process) A timed process is defined by the following grammar.
P = xCSP# Process Constructsx

| Wait[d] — delay

| P timeout|d] @ — timeout

| P interrupt[d] Q — timed interrupt
| P deadline|d] — deadline

where P and () range over processes, amds an integer constant.

Based on CSP#, a number of timed process constructs can thécusapture common real-time

system behavior patterns. Without loss of generality, veeim®&d is an integer constant. Process

3.2. REAL-TIME SYSTEM MODELING 41

Wait[d] idles for exactlyd time units. In proces® timeout[d] @, the first observable event &f
shall occur beforel time units elapse (since the process starts). Otherwjsekes over control
after exactlyd time units elapse. Proces3 interrupt[d] () behaves exactly a® (which may
engage in multiple observable events) umtitime units elapse, and the) takes over control.
ProcessP deadline|d] constrainsP to terminate beford time units. In this setting, clock variables
are made implicit and hence they cannot be compared with ehen directly, which potentially

allows efficient clock manipulation and hence system veiiio.

In this thesis, we adopt the dense-time semantic model, iohadlock values are isomorphic to
a dense series of rational numbers, meaning that there a&ysle rational number between any
two rational numbers. This choice preserves the advantagense-time model over discrete-time
model (see Sectidn 2.3.2), but still allows us to perform et@tiecking by using some abstraction
technique (see Chapfdr 9). We know that a set of rational Busrdan be converted an ‘equivalent’
set of integer numbers by multiplying their least commontipld. This fact allows us to only

consider integer values in the modeling language preset .

3.2.2 Semantics

Similar to the operational semantics of CSP#, we presenfitimg rules for the timed process
constructs. Recall that, a transition of the system is offdhe ¢ = ¢/ wherez € X U {r,v'},
andc and ¢’ are the system configurations before and after the trangigispectively. In real-time
modeling, we introduce the timed transition label. ltelenotes a non-negative integer number,
¢ % ¢ denotes a transition aftime units elapsing. In the following, we present the firindes
which are associated with the timed process constructgtiadahe approach in [181].

t<d
[del] [de2]

(V, Wait[d])) 5 (V, Wait[d — t]) (V, Wait[0]) = (V, Skip)

The above captures behaviors of proc8&sit[d]. Rule del states that the process may idle for any
amount of time as long as it is less than or equad tiime units; Rulede2 states that the process

12Using integer numbers is for the simplification of modelibgt not an approximation.

3.2. REAL-TIME SYSTEM MODELING 42

terminates immediately aftet becomes 0.

(V. P) = (V', P') [to1]

(V, P timeout[d] Q) = (V', P

(V. P) = (V', P') 02

(V, P timeout[d] Q) = (V', P’ timeout[d] Q)

(V,P)—= (V,P),t<d (03]

(V, P timeout|d] Q) = (V, P’ timeout[d — t] Q)

[tod]

(V, P timeout[0] Q) = (V, Q)

If an observable event can be engaged b¥, then P timeout[d] @ becomesP’ (rule tol). An
invisible transition does not solve th&oice (rule t02). If P may idle for less than or equal
time units, so is the composition (rute3). Whend becomes 0f) takes over control by a silent
transition (ruleto4).

(V,P)= (V' P it1]

(V, P interrupt[d] Q) = (V', P' interrupt[d] Q)

(V,P)= (V,P),t<d 2]

(V, P interrupt[d] Q) RA (V, P interrupt[d — t] Q)

[it3]
(V, P interrupt[0] Q) = (V', Q)

Ruleit1 states that if? engages in event, P interrupt[d] @ becomesP’ interrupt[d] Q. Rule
it2 states that if? may idle for less than or equal tbtime units, so is the composition. When
time units elapseq) takes over by a-transition.

(V,P) S (V',P)

[dil]
(V, P deadline[d]) = (V', P’ deadline[d])

(V,P)= (V,P),t<d (a2

(V, P deadline[d]) - (V, P’ deadline[d — t])

Intuitively, P deadline[d] behaves exactly aB except that it must terminate befodeime units.

3.3. SUMMARY 43

3.2.3 Case Study: Fischer’s Algorithm

Fischer’s algorithm[]87] is a timed mutual exclusion algfum. It allowsn timed processes (iden-
tical up to renaming of process identifiers) to access a dhawource in mutual exclusion. The

following models Fischer’s algorithm of three processes.

varz = = —1;
var ct =0
Proc(i) =[xz == —1]Active(i);

Active(i) = (update.i{z = i} — Skip) deadline [§]; Waitle];
if (z==1){
cs.i{ct = ct +1} — exit.i{ct = ct — 1; x = —1} — Proc(i)
} else{
Proc(1)

b
Protocol = Proc(0) || Proc(1) || Proc(2);

whered ande are two integer constants with< ¢; = and ct are global variables. The protocol
is modeled as proced3rotocol, which is the parallel composition of three processes. Edthe
three processes attempts to enter the critical section whgnl, i.e. no other process is currently
attempting. Once the process is active, it sete its identity ¢ within ¢ time units (captured by
deadline[d]). Then it idles fore time units (captured byVait[e]) and then checks whetheris still

i. If so, it enters the critical section and leaves later. @tiis®e, it restarts from the beginning.

3.3 Summary

In this chapter, we proposed a combination of high-levekHjpation languages with low-level
procedural codes and time patterns for analyzing concumed real-time systems. A multi-lift
system and Fischer’s algorithm are used to illustrate thguage. We remark that this language has
been applied to model and verify a variety of systems, ranfiom recently proposed distributed
algorithms, concurrent programming algorithms to reatlgystems like the pacemaker system.
Previously unknown bugs have been discovered. Furtheymmgedormally defined the semantic

models, which facilitate PAT to perform sound and complgttein verification.

3.3. SUMMARY 44

This chapter is related to research on integrated formatmakst in particular, works on integrating
state-based specification and event-based specificR2dn &6 152 142, 192, 1P0, 205, 184] 45].
Different from previous approaches, our modeling languagkesigned for automated system anal-
ysis. Therefore, it is fully operational and supported byTPBSP+B [45)184] (a combination
of CSP and the B language) approach is similar to ours, butlamguage is closer to imper-
ative programming language and accepts external (C#) gmogyr Two other languages are de-
signed for similar purposes, namely machine readable C8&Rlfwve will refer to asCSP,,) sup-
ported by the refinement checker FOR 11 76] &rdmelawhich is supported by the model checker
SPIN [110]. Compared t@'SP;;, CSP# supports additional language features like shanmgd va
ables, asynchronous communication channels and evertiassbprograms, which offers users
great flexibility in modeling. Furthermore, we give an iqetation of state/event Linear Tem-
poral Logic (see Sectidn Z.3.2) in CSP# semantics framewuahnich allows temporal logic based
model checking of CSP# models. Comparedtomelg CSP# supports more process constructs
(e.g. parallel operator), i.e2romelais based on a subset of CSP, whereas all CSP models are valid
CSP# models. In particular, CSP# inh@ﬁhe classic trace, stable failures and failures/divergenc
semantics (formally defined in Chapfér 6) from CSP[108] , thedlefore, allows us to perform a

variety of refinement checking.

The real-time modeling proposed in this chapter is relatefie¢rarchical specification based on
process algebras for real-time systems, which has beeiedtextensively, e.g. the algebra of timed
processes ATH 187, 159], CCS + real time [223] and Timed (ISR,[182]. A remotely related
modeling language is Statecharts with cloc¢ks [117], whizhis compositional. This work follows
the approach of Timed CSP and significantly extends themédigover a wide range of application

domains.

BSince variables can be modeled as a process parallel tog¢htbaruses them, then one CSP# model can be converted

to a CSP model directly. Hence the trace, stable failuredaihdes/divergence semantics is inherited from CSP.

Chapter 4

Model Checking Fairness Enhanced

Systems

In the area of software system verification, fairness, wilgcboncerned with a fair resolution of
non-determinism, is often necessary and important to pireeeess properties (see Sectlon 2.3.2).
Fairness is an abstraction of the fair scheduler in a mtégded programming environment or the
relative speed of the processors in distributed systemshdii fairness, verification of liveness
properties often produces unrealistic loops during whicl process or event is infinitely ignored
by the scheduler or one processor is infinitely faster th&werst It is important to rule out those
counterexamples and utilize the computational resouradettify the real bugs. However, system-
atically ruling out counterexamples due to lack of fairnissisighly non-trivial. It requires flexible

specification of fairness as well as efficient verificatiomemfairness.

In this chapter, we focus on formal system analysis undendas assumptions. The objective
is to deliver a framework which model checks Linear Tempa@ic (LTL) properties (see Sec-

tion[2Z:3.2) against concurrent systems functioning underrigty of fairness assumptions.

The remainder of the chapter is organized as follows. Thésention gives the background infor-

mation about model checking with fairness. Seclioh 4.2gjite formal definitions of a family of

45

4.1. BACKGROUND 46

fairness notions. Sectign 4.3 develops necessary thdoriesodel checking. Sectidn 4.4 presents
a sequential algorithm for verification under fairness.t®a@.3 introduces an alternative way for
specifying and verifying event-based systems with fasn&ectiol 416 proposes a parallel version
of the fairness model checking algorithm in the multi-coreh@tecture with share-memory. Sec-
tion[4.1 gives the experiment results of the proposed alyos. Sectiofi 418 discusses related works

and summarizes the chapter.

4.1 Background

Fairness and model checking with fairness have attracteth theoretical interests for decades 100,
131,[127[202]. Their practical implications in systemitaafe design and verification have been
discussed extensively. Recent development on distribeyetéms showed that there are a family
of fairness notions, including a newly formulated fairnestion named strong global fairness][88],
which are crucial for designing self-stabilizing distribd algorithms[[14] 1€, 88, 47]. Because
the algorithms are designed to function under fairness eingtecking of (implementations of) the

algorithms thus must be carried out under the respectivegss constraints.

Existing model checkers are ineffective with respect tontzgs (which is demonstrated by the exper-
iments below and in Sectidn 4.7). One way to apply existinglehaheckers for verification under
fairness constraints is to re-formulate the property sofeéieness constraints become premises of
the property. A liveness property is thus verified by showing the truth value of the following
formula.

fairness assumptions = ¢ -F1

This practice is, though flexible, deficient for two reasoisistly, model checking is PSPACE-
complete in the size of the formula. In particular, autorrtziaed model checking relies on con-
structing a Buchi automaton from the LTL formula. The sizéhaf Blichi automaton is exponential
to the size of the formulas. Thus, it is infeasible to handige formulas, whereas a typical system
may have multiple fairness constraints. For example, SBdpopular LTL model checker [1111].

The algorithm it uses for generating Biichi automata handidg a limited number of fairness

4.1. BACKGROUND 47

Property n | Time (Sec.)| Memory | #Blchi States
(N, O0p:) = OO 1 0.08 466Kb 74
same above 3 4.44 27MB 1052
same above 5 > 3600 > 1Gb —
(AL (OOp: = 00C¢)) = 0O0s | 1 0.13 487Kb 134
same above 2 1.58 10Mb 1238
same above 4 4689.24 > 1Gb —

Table 4.1: Experiments on LTL to Blchi automata conversion

constraints. TablE~4.1 shows experiments on the time antespeeded for SPIN to generate the
automaton from the standard notions of fairness (see $ddi@). n is the number of fairness

constraints.

The experiments are made on a 3.0GHz Pentium IV CPU and 1 GBomyegwecuting SPIN 4.3,
where “~" means infeasible. The results show that it takes a normatramount of time to han-
dle 5 fairness constraints. Secondly, partial order redaathich is one of important reduction
techniques for model checking distributed systems becdneffective. Partial order reduction
ignores/postpones invisible events, whereas given Flvatite/propositions presentedfairness

constraintsare visible and therefore cannot be ignored or postponed.

In [161], Panget al applied the SPIN model checker to establish the correctokasfamily of
population protocols. Only protocols relying on a notionagfak fairness operating on very small
networks were verified because of the problems discussegalBwotocols relying on a notion of
stronger fairness (e.g., strong fairness or strong glabaidss) are beyond the capability of SPIN
even for the smallest netWtﬂlée.g., a network with 3 nodes). It is important to develop #ective
approach and toolkit which can handle larger networks exasal counterexamples may only be

present in larger networks, as shown in Sediiah 4.7.

An alternative method is to design specialized verificatagorithms which take fairness into

1A network consists of multiple mobile nodes which interadttweach other to carry out a computation. Each node

can be seen as a process. Refer to SeEfidn 5.1 for more details

4.2. FAIRNESS DEFINITIONS 48

account while performing model checking. The focus of @éxgstmodel checkers has been on
process-level weak fairness, which, informally speakstgies that every process shall make infi-
nite progress if always possible (refer to detailed exglanan Sectio’ZR). For instance, SPIN
has implemented a model checking algorithm which handlisskind of fairness. The idea is to
copy the global reachability grapi + 2 times (for K processes) so as to give each process a fair
chance to progress. Process-level strong fairness is pposied because of its complexity. It has

been shown that process-level fairness may not be suffi@emnt for population protocols.

In this chapter, we present a unified on-the-fly model cherhigorithm which handles a variety
of fairness including process-level weak/strong fairnesgnt-level weak/strong fairness, strong
global fairness, etc. The algorithm extends previous warkmmdel checking based on finding

strongly connected components (SCC). The detailed appiis@&xplained in the rest of the chapter.

4.2 Fairness Definitions

In this section, we present the formal definitions of a vgradtfairness assumptions. The modeling

language is CSP# (see Section 3.1), which is interpretedlsléd Transition Systems (LTS).

Recall that, given a LTE = (S, init, —), s > s’ denotes thats, e, s') is a transition in—, e

is the engaged event of transitien ', and enabled(s) is the set of enabled events afrefer

to Sectior:3.T12). To distinguish with enabled process ddfimelow, we introduce the equivalent
notationenabledEvt(s) for enabled(s). If the system is constituted by multiple processes runiring
parallel, we writeenabledPro(s) to be the set of enabled processes, which may make a move given
the system state. Given a transitions -5 s’, we write engagedEuvt(s, e, s') to denote{e}, and
engagedPro(s, e, s') to be the set of the participating processes, which have rsaihe progress
during the transition.engagedPro(s, e, s’) is not empty only when the stateis an interleave or
parallel compositicHl For examplegngagedPro(Py || P2 || Ps,e, Py || Py || P3) = {P2}. Notice

that if e is synchronized by multiple processes, the set contairtbalbarticipating processes.

2Process level fairness is not meaningful if the system hasirmency.

4.2. FAIRNESS DEFINITIONS 49

Because our targets are nonterminating concurrent syseamsfairness affects infinite not finite
system behaviors, we focus on infinite system executionsdridilowing. Finite behaviors are ex-
tended to infinite ones by appending infinite idling eventthatrear. Without fairness constraints,
a system may behave freely as long as it starts with an isitie and conforms to the transition
relation. A fairness constraint restricts the set of sysbetmaviors to only those fair ones. Given a
LTL property ¢, verification under fairness is to verify whether all faieextions of the system sat-
isfy ¢. In the following, we review a variety of fairness assumpsi@nd illustrate their differences

using examples.

Definition 7 (Event-level weak fairness)Let £ = (s, €, s1, €1, - - -) be an executionE satisfies
event-level weak fairness, if and only if for every evernt e eventually becomes enabled forever

in E, thene; = e for infinitely manyi, i.e., &0 e is enabled = O e is engaged.

Event-level weak fairness (EW[31] states that if an event becomes enabled forever ajtaes
steps, then it must be engaged infinitely often. An equindmmulation is that every computation
should contain infinitely many positions at which everis disabled or has just been engaged. The
latter is known as justice condition_[1138]. Intuitively, means that an enabled event shall not be
ignored infinitely. Or equivalently some state must be gbiinfinitely often (e.g., accepting states

in Buchi automata).

Definition 8 (Process-level weak fairness).et £ = (sg, e, 1, €1, - - -) be an executionE satis-
fies process-level weak fairness, if and only if for evergessp, if p eventually becomes enabled
forever inE, thenp € engagedProc(s;, e;, si+1) for infinitely manyi, i.e., &0 p is enabled =

0o p s engaged.

Process-level weak fairness (PW&tates that if a process becomes enabled forever after $epwe s
then it must be engaged infinitely often. From another pointien, PWF guarantees that each
process is only finitely faster than the others; otherwisedlwill be some always enabled process

with no progress, which violates the fairness assumption.

Weak fairness (or justice condition) has been well studigdirification under weak fairness has

4.2. FAIRNESS DEFINITIONS 50

proc W proc P proc Q
e s O

(@) (b)

Figure 4.1: Event-level weak fairness vs. process-levalkwairness

been supported to some extent, e.g., PWF is supported byPtinerSodel checkel [111]. Given the
LTS in Figure[Z:1(a), the property<$ a is true under EWF. Event is always enabled and, hence,
by definition it must be infinitely often engaged. The propést however, false under no fairness or
PWEF. The reason that it is false under PWF is that the proBéssay make progress infinitely (by
repeatedly engaging ib) without ever engaging in eveat Alternatively, if the system is modeled
using two processes as shown in Figuré 4.1(h); « becomes true under PWF (or EWF) because
both processes must make infinite progress and therefoneskartd b must be engaged infinitely.
This example suggests that, different from PWF, EWF is nlatted to the system structure. In
general, process-level fairness may be viewed a specialafaavent-level fairness. By a simple
argument, it can be shown that PWF can be achieved by labalirmyents in a process with the

same name and applying EWF.

Definition 9 (Event-level strong fairness)Let E = (sy, e, 51, €1, - - -) be an executionE satisfies
event-level strong fairness if and only if, for every ewverit e is infinitely often enabled, then= ¢;

for infinitely manyi, i.e.,0¢ e is enabled = OO e is engaged.

Event-level strong fairness (EShas been identified by different researchers. It is nastiguhg
fairnessin [132] (by contrast to weak fairness defined above). [In ,[&is named strong local
fairness (in comparison to strong global fairness defindowWje It is also known azompassion
condition [166]. ESF states that if an event is infinitelyeoftenabled, it must be infinitely often
engaged. It is particularly useful in the analysis of systersing semaphores, synchronous com-
munication, and other special coordination primitivesvegithe LTS in Figur€4l2(a), the property
O b is false under EWF but true under ESF. The reason isttlignot always enabled (i.e., it is

disabled at the left state) and thus the system is allowethi@ya take the: branch under EWF. It

4.2. FAIRNESS DEFINITIONS 51

proc P proc Q

b
proc W@ b{x:= 1@&::0} ile]c
(b)

@)

Figure 4.2: Event-level strong fairness and process-vehg fairness
is infinitely often enabled, and thus, the system must engagénfinitely under ESF.

Definition 10 (Process-level strong fairness)et £ = (s, e, 51, €1, - - -) be an executionF sat-
isfies process-level strong fairness if and only if, for gy@ocess, if p is infinitely often enabled,

thenp € engagedProc(s;, e;, si+1) for infinitely manyi, i.e. 0<¢ p is enabled= O p is engaged.

The process-level correspondencepiecess-level strong fairness (PSHtuitively, PSF means
that if a process is repeatedly enabled, it must eventuadiigensome progress. Given the LTS in
Figure[4.2(b), the property1> ¢ is false under PWF but true under PSF. The reason is that event

is guarded by conditiom = 1 and therefore is not repeatedly enabled.

Verification under (event-level/process-level) strongniass (or compassion condition) has been
discussed previously, e.g., in the setting of Streett aatarf@9/ 105], fair discrete systems [124] or
programming codes$ [158]. Nonetheless, there are few éstieldl tool support for formal verifica-
tion under strong fairness [100] to the best of our knowledde main reason is the computational
complexity. For instance, it is claimed too expensive tgpsurpin SPIN [111]. We, however, show
that reasonably efficient model checking under strong éaisrcan be achieved (refer to experiment

results in Sectioh417).

Definition 11 (Strong global fairness) Let E = (s, €, s1, €1, - -) be an execution.E satisfies
strong global fairness if and only if, for evesye, s’ such thats = s, if s = s; for infinite many
i,s; = sande; = e ands; 11 = ¢ for infinitely many:. i.e. OO (s,¢€,s’) is enabled= O¢

(s, e, s") is engaged.

4.2. FAIRNESS DEFINITIONS 52

(@) (b)

Figure 4.3: Strong global fairness

Strong global fairness (SGMas suggested by Fischer and Jiang in [88]. It states thatéffrom

s to s’ by engaging in event) is enabled infinitely often, then it must actually be takefinitely
ofterH. Different from the previous notions of fairness, SGF conseabout both events and states,
instead of events only. It can be shown by a simple argumah&6F is stronger than ESF. Because
it concerns about both events and states, it is ‘event:lanel ‘process-level’. Strong global fairness
requires that an infinitely enabled event must be taken tefinbften inall contexts, whereas ESF
only requires the enabled event to be takennecontext. Figur€4]3 illustrates the difference with
two examples. Under ESF, state 2 in Figlrd 4.3(a) may nevevidited because all events are
engaged infinitely often if the left loop is taken infinitelys a result, property1$ state 2 is false.
Under SGF, all states in Figute¥.3(a) must be visited irdipibften and therefore1¢> state 2

is true. Figurd—Z13(b) illustrates their difference whearthare non-determinism. Both transitions
labeleda must be taken infinitely under SGF, which is not necessaneui®F or EWF. Thus,
property < b is true only under SGF. Many population protocols rely on S&§., protocols
presented in[14,88]. As far as the authors know, there amgremious works on model checking

under SGF.

A number of other fairness notions have been discussed yugaresearchers, e.g., unconditional
event fairness [128] which will be discussed in Secfiod #yier-fairness which is of only the-
atrical interests as stated [n_[132] and event-level wea#liglobal fairness in188]. We skip their

definitions and remark that our approach can be extendechttidhather kinds of fairness.

3The definition in [88] is for unlabeled transition systemse Wightly changed it so as to suit the setting of LTS.

Nonetheless, both capture the same intuition.

4.3. MODEL CHECKING UNDER FAIRNESS AS LOOP/SCC SEARCHING3

4.3 Model Checking under Fairness as Loop/SCC Searching

Given a LTSL and a LTL formulap, model checking is about searching for an executiof which
fails ¢. In automata-based model checking, the negation isftranslated to an equivalent Blichi
automaton3™?, which is then composed with the LTS representing the systeatel. We omit the
detailed algorithms for translating LTL formula to Bichitamaton. Interested readers can refer

to [97]. To be able to explain our algorithm, first we formatlgfine Blchi automaton as follows.

Definition 12 Buchi automaton A Buchi automaton is a tufle= (X, B, p, by, F'), whereX is an
alphabet,B is a set of Blchi stateg,: B x X is a nondeterministic transition functiohy € B is

an initial state, andr’ C B is a set of accepting states.

A run of B over an infinite wordw = a; as . . . is an infinite sequencéy, b; . . .), whereby is initial
state and; € p(b;—1, a;) forall i > 1. Arun (b, b; ...) is accepting td if there is some accepting

state inB that repeats infinitely often.

Model checking under fairness is to search for an infinitecetten which is accepting to the Blchi
automaton and at the same time satisfies the fairness dotstia the following, we writeC E ¢

to mean that the LTS satisfies the property under no fairnessevery execution of satisfiesp.
We write £ Fgwr ¢ (£ Fpwr ¢) 1o mean thai satisfiesp under event-level (process-level) weak
fairness;L Fpsr ¢ (L Epsr ¢) to mean thail satisfiesp under event-level (process-level) strong

fairness, and. Egqr ¢ to mean thatC satisfiesp under strong global fairness.

Without loss of generality, we assume thatontains only finite states. By a simple argument, it
can be shown that the system contains an infinite executiandfonly if there exists a loop. An

execution of the product of andB3™¢ is a sequence of alternating states/events
Rz = <(807 bO)a €0, (Si7 bi)a €y (Sja bj)7 Cj, (Sj+17 b]+1)>

wheres; is a state ofC, b; is a state of87¢, s; = sj+1 and b; = b;41. We skip the details
on constructing the product and refer the reader$ fo [1%’]]3 accepting if and only if the se-

quence(bg, by, - - -, by, - - -) is accepting td37?, i.e., the sequence visits at least one accepting state

4.3. MODEL CHECKING UNDER FAIRNESS AS LOOP/SCC SEARCHING4

of B¢ infinitely often. R{f is fair under certain notion of fairness if and only if the seqce

(S0, €0, 51, €1, ", Sk, €k, - -) iS. Furthermore, we define the following sets.

alwaysEvt(Rf_) ={e|Vk:{i,---,j}, e € enabled(s)}
alwaysPro(R}) = {p|Vk:{i,---,j}, p € enabledPro(s;)}

onceEvt(R7) ={e|3Jk:{i,---,j}, e € enabled(sy)}

oncePro(Rz) ={p|3k:{i,---,j}, p € enabledPro(sy)}

onceStep(R) = {(s,e,s') | Tk{i,--,5}, s = sp A (s, e,8) €=)}
engagedEvt(Rz) ={e|Jk:{i,---,j}, e=ex}

engagedPro(R)) = {p | 3k : {i,---,5}, p € engagedPro(sy, ex, sp11)}
engagedStep(R)) = {(s, e,8') | Ik{i,---,j —1}, s=sp Ae=ex A s’ = sp41)}

Intuitively, setalwaysEvt(R])lalwaysPro(R’) is the set of events/processes which are always en-
abled during the loop. SetceEuvt(R!)loncePro(R})lonceStep(R]) is the set of events/processes/steps
which are enabled at least once during the Ioop.eﬁﬁtgedEvt(Rz)/engagede(Rg)/engagedStep(Rg)

is the set of events/processes/step which are engaged) dioeifoop.

Lemma4.3.1LetL = (S, init,—) be a LTS;B be a Biichi automaton equivalent to the negation

of a LTL formula¢. LetR{ be an arbitrary loop in the product of and B.

L Epwr ¢ifand only if there does not exi& such thatalwaysEvt(R)) C engagedEvt(R)

and R/ is accepting.

L Epwr ¢if and only if there does not exi& such thatlwaysPro(R]) C engagedPro(R})

and R/ is accepting.

L Egsr ¢ if and only if there does not exigt! such thatonceEvt(R!) C engagedEut(R?)

and R/ is accepting.

L Epsr ¢ if and only if there does not exi%i{f such thatoncePro(Rg) - engagede(Rg)

and R/ is accepting.

L Escr ¢ ifand only if there does not exi& such thatonceStep(R!) C engagedStep(R!)

and R/ is accepting.

4.3. MODEL CHECKING UNDER FAIRNESS AS LOOP/SCC SEARCHING5

The lemma can be proved straightforwardly by contradicti®y the lemma, a system fails the
property under certain fairness if and only if there exislsog which satisfies the fairness but fails

the property. Modeling checking under fairness is hencaaed to loop searching.

In the following we introduce the basic definitions in grapbdry to ease the discussion later.

Definition 13 (Directed Graph) A directed graph or digraph is a pair G = (V,E), where set V

contains the vertices and set E contains ordered pairs dfcesr (i.e. directed edges).

Definition 14 (Strongly Connected Component (SCC))A strongly connected component of a di-
rected graphG is a maximal set of vertice§' C V such that for every pair of vertices and v,

there is a directed path from to v and a directed path from to «.

Note that each graph can have more than one SCCs. A SCC isi&iifrand only if any transition
starting from a vertex in the SCC must end with a vertex in tR&CSIf a directed graph is the
transition system of the product df and 3, the vertices are of forn(s, b), wheres is a state in

L andb is a state inB. We say a SCCS of such graph is accepting if and only if there exists
one vertex(s, b) in S such thatb is an accepting state @. In an abuse of notations, we refer
to S as the strongly connected subgraph in the following cont@gtfurther abuse notations, we
write alwaysEvt(S) (alwaysPro(S), onceEvt(S), oncePro(S), onceStep(Rg), engagedEuvt(S),
engagedPro(S) or engagedStep(R{)) to denote the set obtained by applying the function to a loop

which traverses all states §f

Lemma 4.3.2 Let £ be a LTS5 be a Biichi automaton equivalent to the negation of a LTL féamu

¢; S be a strongly connected subgraph in the producf @ind 5.
e L Egsr ¢ if and only if there does not exist such thatS is accepting antnceEvt(S) C
engagedEvt(S).

e L Epgr ¢ if and only if there does not exist such thatS is accepting andncePro(S) C

engagedPro(S).

4.3. MODEL CHECKING UNDER FAIRNESS AS LOOP/SCC SEARCHING6

The above lemma can be proved by a simple argument. It shawvsittdel checking under fairness

can be reduced to strongly connected subgraph searching.

Lemma 4.3.3 Let £ be a LTS5 be a Biichi automaton equivalent to the negation of a LTL féamu

¢. LetS be a SCC in the product df and 5.

e L Epwr ¢ifand only if there does not existsuch thatS is accepting andiwaysEvt(S) C

engagedEvt(S).

e L Epwr ¢ifand only if there does not existsuch thatS is accepting andiwaysPro(S) C

engagedPro(S).

Proof. We prove the event-level weak fairness part of the lemmaamérk that the other part can
be proved similarly. It can be shown that a system failsder event-level weak fairness if and only
if there exists one strongly connected subgr@pkuch thatC' is accepting andiwaysEvt(C) C
engagedEvt(C). Hence, it is sufficient to show that there exists suahi iiand only if there exists
a SCCS such thatS is accepting andlwaysEvt(S) C engagedEvt(S).

if: If there exists such a SCE, then we simply letC' be S.

only if: If there exists such subgrapti, the SCCS which containsC' is accepting and satisfies
alwaysEvt(S) C engagedEvt(S) sincealwaysEvt(S) C alwaysEvt(C) and engagedEvt(C) C

engagedEvt(S). This concludes the proof. O

The lemma shows that model checking under weak fairnesseaedoced to SCC searching. The
following lemma reduces model checking under strong glédiahess to searching for a terminal
SCC inEH.

Lemma 4.3.4 Let £ be a LTS;B be a Bichi automaton equivalent to the negation of a LTL for-
mula ¢. £ Egqr ¢ if and only if there does not exist a SCLsuch thatS is accepting and

onceStep(Rg) - engagedStep(Rg).

4A terminal SCC in the product af and3 may not be constituted by a terminal SCCdn

4.4. AN ALGORITHM FOR MODELING CHECKING UNDER FAIRNESS57

Proof. By lemmal4.31l L fails ¢ under strong global fairness if and only if there exiﬁﬁsin
the product of£ and B such thatR{f satisfies strong global fairness aﬁx}i is accepting.L fails ¢
under strong global fairness if and only if there exists argity connected subgrapti such thatC'
satisfies strong global fairness agdis accepting. Hence, it is sufficient to show that there exist
such a subgraph’ if and only if there exists a SCES such thatS which satisfies the constraint.

if: This is proved trivially.

only if: Assume that there exists such a subgréphLet z(C) = {s | 3b (s,b) € C} be the
states ofC which constituteC andt(C) = {(s,e,s') | s € z(C) A s" € z(C) A 3(s,b), (s,b") :

C (s,b) = (s',1")} be the transition of which constitute the strongly connected subgraph. By
contradiction, it can be shown thatC') (together with the transitions it{ C')) forms one terminal
SCCinL. Let S be the SCC containing'. It can be shown that(.S) (together with the transitions

in t(.5)) forms the same terminal SCC. Therefofemust satisfy the constraint. |

4.4 An Algorithm for Modeling Checking under Fairness

In the area of LTL model checking, the two best known enumeratequential algorithms based
on fair-cycle detection are the Nested Depth First SearddH$) algorithm [[61[" 109] and SCC-
based algorithm$ 202, 197] based on Tarjan’s algorithnstfmngly connected components (SCCs)
detection|[[205]. NDFS has been implemented in the modelkene®PIN [111]. The basic idea is to
perform one DFS first to reach a target state (i.e., an acapgtate in the setting of Blichi automata)
and then perform second DFS from that state to check whetiseelichable from itself. It has been
shown the NDFS works efficiently for model checking under aioness[[111]. Nonetheless, it is
not suitable for verification under fairness [111] becausetwer an execution is fair depends on
the whole path instead of one state. In recent years, mo@ekity based on SCC has been re-
investigated and it has been shown that it yields compaizdatiormance[[99]. In this chapter, we
extend the existing SCC-based model checking algorithr@ktf@cope with different notions of

fairness. The algorithm is inspired by early work on empgmeheck of Streett automala [106].

Figure[4.% presents the algorithm. It is based on Tarjagsriahm for identifying SCCs (which is

4.4. AN ALGORITHM FOR MODELING CHECKING UNDER FAIRNESS58

procedure mc(States, Transitions, Fair)
1. while there are un-visited states

2. let scc := tarjan(States, Transitions);

3. mark states icc as visited

4. if isFair(scc) then —*
5. generate a counterexample —*
6. return false; -
7. else -
8. sce = prune(scc, Fair); —*
9. if =mc(sce, Transitions) then —*
10. return false; —*
11. endif —*
12. endif -
13. endwhile

14. return true;

Figure 4.4: Algorithm for sequential model checking underfess

scel e i

Figure 4.5: Model checking example

linear time in the number of graph edgés [R06]). It searcbeddir strongly connected subgraph
on-the-fly. The basic idea is to identify one SCC at a time &ed theck whether it is fair or not. If
it is, the search is over. Otherwise, the SCC is partitioméal multiple smaller strongly connected
subgraphs, which are then checked recursively one by ogerdffLb presents a running example,

i.e., the product of a LTS and a Blichi automaton. Notice tta€< is an accepting state.

Assume thafStates is the set of states anransitions is the set of transitio& The method takes
three inputs, i.e.States, Transitions and a fairness typéuir (of value either EWF, PWF, ESF,
PSF or SGF). At the top level is a while-loop, which stops dhbll states have been visited. At

Sboth of which may be constructed on-the-fly instead of knoafote-hand.

4.4. AN ALGORITHM FOR MODELING CHECKING UNDER FAIRNESS59

line 2, Tarjan’s algorithm (an improved version) is useddentify a SCCI[[99]. If the foundcc is

fair, a fair loop which traverses all states/transitionghie SCC is generated as a counterexample
(at line 5) and we conclude that the property is not true &t inWe skip the details on generating
the loop in this thesis and remark that it could be a nonatitzsk (refer tol[124]). Without fairness
assumptions, a SCC is fair if and only if it is accepting to Biechi automaton (i.e. Blichi fair).
Given the LTS presented in Figute ¥ farjan method identifies two SCCs, i.es¢cl which is
composed of state 1 only ardc2 which is composed of state 0, 2 and 3. The order in which SCCs
are found is irrelevant to the correctness of the algorittistate 2 is explored before state 1, at line

3, scc_states IS the set of states iscc2.

If scc is not fair, a procedur@rune (at line 8) is used to prunbad statedfrom scc. Bad states
are the reasons why the SCC is not fair. For instance, stathér¢ the event is enabled) is a
bad state irscc2 under event-based strong fairness because evenhever engaged iscc? (i.e.,

a ¢ engagedEvt(ssc2)). State 3 is a bad state under strong global fairness betiaeistep from
state 3 to state 1 via is not part of the SCC. The intuition behind the pruning id tih@re may
be a fair strongly connected subgraph in the remaining stter eliminating the bad states. By
simply modifying theprune method, the algorithm can be used to handle different fagn&efer

to details in Sectioh 4.4.1.

If some states have been pruned, a recursive call (line 9ptento check whether there is a fair
strongly connected subgraph within the remaining statbée call terminates in two ways. One is
that a fair subgraph is found (at line 6) and the other is thatates inscc are pruned (at line 14).

If the recursive call returns true, there is no fair subgrapt we continue with another SCC until

all states are checked.

4.4.1 Coping with Different Notions of Fairness

In this section, we show how to customize themne function so as to handle different fairness. Let

S be a strongly connected subgraph. The following defines theiqpy methods for event-based

4.4. AN ALGORITHM FOR MODELING CHECKING UNDER FAIRNESS60

weak fairness.

S if alwaysEvt(S) C engagedEvt(S);
prune(S, EWF) = v (8) € engag (%)
@ otherwise

If there exists an eventwhich is always enabled (i.e¢,€ alwaysEvt(S)) but never engaged (i.e.,
e ¢ engagedEvt(S)), by definition S does not satisfy event-level weak fairness. If a SCC does not
satisfy event-level weak fairness, none of its subgraphbeitause: is always enabled in any of its
subgraphs but never engaged. As a result, either all stagsned or none of them is. Similarly,

the following defines the pruning function for process-leveak fairness.

S if alwaysPro(S) C engagedPro(S);
prune(S, PWF) = Y (8) & engag (5)
& otherwise

In the case event-level (process-level) strong fairnesdate is pruned if and only if there is an
event (process) enabled at this state but never engaged sutiyraph. By pruning the state, the
event (process) may become never enabled and thereforequited to be engaged. The following
defines the pruning function for event-level and procesgstistrong fairness.

prune(S, ESF) = {s: S | enabledEvt(s) C engagedEvt(S)}

prune(S, PSF) = {s : S | enabledPro(s) C engagedPro(S)}
By lemmdZ4.3 1, a SCC may constitute a counterexample togepyounder strong global fairness
if and only if the SCC satisfies strong global fairness andegpting. Therefore, we prune all states

if it fails strong global fairness.

S if Step(S) C dStep(S);
prune(S, SGF) = onceStep(S) C engagedStep(S)

@ otherwise

We remark that the time complexity of theune functions are all linear in the number of edges of
the SCC.

Given the LTS in Figuré—4l5, under event-level strong famestate O is pruned frosrc2 be-
causeenabledEvt(state 0) = {a, ¢} Z engagedEvt(scc2). After that the only remaining strongly
connected subgraph contains state 2 and 3, now state 3 wl®enabled is considered as a bad
state because is not engaged in the subgraph. State 2 is then pruned fog lzeirivial strongly

connected subgraph which fails event-level strong fagnes

4.4. AN ALGORITHM FOR MODELING CHECKING UNDER FAIRNESS61

4.4.2 Complexity and Soundness

The time complexities for verification under no fairness, EW PWF or SGF are similar, i.e.,
all linear in the number of system transitions. All stateoire SCC are discarded at once in all
cases and, therefore, no recursive call is necessary.dfurtie, thevrune function is linear in the
number of transitions of a SCC. SPIN’s model checking atboriunder PWF increases the run-
time expense of a verification run by a factor that is lineathi;n number of running processes. In
comparison, our algorithm is less expensive for weak fagn@his is evidenced by the experiment
results presented in Sectibn4.7. Verification under ESFS¥ B in general expensive. In the
worst case (i.e., the whole system is strongly connectedoahdone state is pruned every time),
the tarjan method may be invoked at mo#tS times, where#S is the number of system states.
Thus, the time complexity is bounded B§S x # T where# T is the number of transitions. In
practice, however, if the property is false, a counterexarngpusually identified quickly, because
our algorithm constructs and checks SCCs on-the-fly. Evémeiforoperty is true, our experience
suggests that the worst case scenario is rare in practisgalh of performing detailed complexity
analysis (refer to the discussion presented 1nl[106]), lustiate the performance of our algorithm

using real systems in Sectibnl4.7.

Next, we argue the total correctness of the algorithm. Therahm is terminating because by
assumption, the number of states is finite, and the numbeisibéd states and pruned states are

monotonically increasing.

Theorem 4.4.1LetL be aLTS. Let be a property. Lef be a fairness type (i.e., EWF, PWF, ESF,
PSF or SGF) L Er ¢ if and only if the algorithm returns true.

Proof. CaseEWF: By lemmd43I1L Frwr ¢ if and only if there does not exist a SCCsuch
that alwaysEvt(S) C engagedEvt(S) andS is accepting. Given any SCE, the algorithm returns
false if and only if it does so at line 8 because the recursilieat line 9 always returns true (by the
definition of prune(S, T, EWF)). Therefore, it returns false if and only §f is accepting (so that
the condition at line 5 is true) andwaysEvt(S) C engagedEvt(S) (so that the condition at line 7

is true). If there does not exist such a SCC, the algorithormsttrue. If the algorithm returns true,

4.5. EVENT ANNOTATED FAIRNESS 62

there must not be such a SCC. Therefdfes gy ¢ if and only if the algorithm returns true.
CasePWEF: Similarly as above.

CaseESF: By lemmd 4313, Egsr ¢ if and only if there does not exist a strongly connected
subgraphC' such thatonceEvt(C) C engagedEvt(C) and C' is accepting. IfC itself is a SCC,

it must be found (by the correctness of Tarjan’s algorithrd &mction prune(S, T, ESF')) and
the algorithm returns false i€’ is accepting. If it is contained in one (and only one) SCC,hwy t
correctness oprune(S, T, ESF), its states are never pruned. As a result, it is identifiednadile
other states in the SCC are pruned or a fair strongly condesttbgraph containing all its states is
identified. In either case, the algorithm returns false il anly if such a fair strongly connected
subgraph is found. Equivalently, it returns true if and dhthiere are no such subgraphs. Therefore,
F Eggr ¢ if and only if the algorithm returns true.

CasePSF: Similarly as above.

CaseSGF: By lemmd 4314, Fsqr ¢ if and only if there does not exist a SCCsuch thatS
satisfies strong global fairness is accepting. The algostheturns false if and only if it is at line 8
because the recursive call at line 9 always returns trueh@definition ofprune(S, T, SGF')). By
definition of prune(S, T, SGF), the control reaches line 8 if and only if the SCC is termimal &

accepting. ThusF Fgqr ¢ if and only if the algorithm returns true. O

4.5 Event Annotated Fairness

In this section, we present an alternative (and more flexidnbgroach, which allows users to as-
sociate fairness to only part of the systems or associatereliit parts with different notions of

fairness. The motivation is twofold.

Firstly, previous approaches treat every event or statallggu.e., fairness is applied to every
event/state. In practice, it may be that only certain evanésmeant to be fair.For instance,

when verifying open systems, fairness/liveness assumygie often associated with environmental
events as a way to capture assumptions on the environnmestich case, if event-level or process-

level fairness is applied, it is clearly overwhelming. Oemedy is to allow users to associate

4.5. EVENT ANNOTATED FAIRNESS 63

fairness assumptions with individual events by labelingnes with fairness malgs PAT supports

a number of fairness annotations on events. We examine ¢fithkem in the following.

e Unconditional event fairness is written A&:). An execution of the system is fair if and only

if a occurs infinitely often.

e Weak event fairness is written ag'(a). An execution of the system is fair if and only df

occurs infinitely often if it is always enabled from some pain.

e Strong event fairness is written a5(a). An execution of the system is fair if and only df

occurs infinitely often if it is enabled infinitely often.

Unconditional event fairnes§ [128] does not depend on vendtie event is enabled or not, and
therefore, is stronger than weak/strong event fairnessait be used to annotate events which are

known to be periodically engaged. For instance, the folhguwprocess models a natural clock.

Clock() = tick — Clock();

By annotatingtick with unconditional event fairness, we require that the kclowst progress in-
finitely and the system (in which the clock and other comptsmexecute in parallel) disallows
unrealistictimelock i.e., execution of infinite events which takes finite timenddnditional event
fairness (like other event annotations) can be used to mexdily reduce the size of the property.
For instance, given the property$ o = 00 b. We may mechanically annotatein the model
with unconditional event fairness and verify¢> b instead. The semantics of weak (strong) event
fairness is similar to event-level weak (strong) fairnesrd in Sectiof 412 except it is associated
with individual events (by contrast to all evegﬁs)zvent annotated fairness may be viewed as the

dual image of accepting states in automata theory, e.g.e samonly selected states are marked

accepting, only selected events are annotated.

An alternative way is to identify a set of events separatedynfthe model itself, which is in theory equivalent, but

cumbersome in practice. Itis especially true if an event beagonstituted by process parameters or even global vesiabl
’Strong global fairness concerns with both events and stasence no corresponding event annotation is defined.

4.5. EVENT ANNOTATED FAIRNESS 64

The other motivation of event annotated fairness is thatakes partial order reduction (see Sec-
tion [Z3.3) possible (to some extent) for model checkindhwitong fairness. The algorithm pre-
sented in Figurel4, i.e., a SCC-based explicit model dhgagorithm, undoubtedly suffers from
state space explosion, especially when the whole systetroisggdy connected. Partial order reduc-
tion is one of the important techniques to tackle the problefrich sometimes works surprisingly
well for concurrent systems. For instance, assume that evand b are independent and the prop-
erty to verify is deadlock-freeness, it is sufficient to explonly one of the two outgoing transitions

at state 0 in the LTS of Figute3.3(a).

For classic model checking, a set of conditions which mussdiesfied by the chosen subset of
enabled events have been proposed to guarantee soundatierfiagainst ‘X’-free LTL formulas.
Efficient heuristic algorithms which calculate over-appnaations of the subset were exploreédi[58].
One such heuristic algorithm has been implemented in PAlvgder, the conditions and algorithms
may not work for verification under fairness. Following rigsproved in[[39], it can be shown that
partial order reduction is applicable to verification un@@F or PWF. However, though every
execution which satisfies strong fairness in the full stagwoly has an equivalent execution (up to
re-ordering of independent events) in the reduced stafghgiiamay not satisfy strong fairness and
thus verification result over the reduced state graph map@eglid. Similarly, with strong global
fairness the reduced state graph may not contain a fair leep i the full state graph does. For
instance, given the LTS in FiguEe’#.3(a) and assume dhend b are independent. The reduced
graph may only contain state 0 and 1, which contains no lodptwdatisfies strong global fairness.
In [163], it was suggested that by considering events degmeni each other if they can enable
or disable each other, partial order reduction can be appliesome extent for verification under
fairness. Nonetheless, in previous approaches, becdusgenats must be considered, virtually all
events become inter-dependent and therefore no redustimssible. In PAT, partial order reduction
is disabled for model checking under strong fairness omgtrglobal fairness. Nonetheless, for
systems with event annotated fairness, it remains podsitelpply partial order reduction to events

which are irrelevant to the fairness annotations.

The algorithm presented in Figure .4 can be applied to chgstems with event annotated fairness

4.5. EVENT ANNOTATED FAIRNESS 65

with slight modification. The basic idea remains, i.e., fingda strongly connected subgraph which
satisfies the fairness constraints. Only events with fagranotations are considered this time (by
contrast to all events). We remark that annotating all evesith weak (strong) fairness is equivalent
to associate event-level weak (strong) fairness with theleveystem. Methodarjan is modified

to cope with partial order reduction, following the heudstinction in [58]. In addition, we define
an event to bdairness visibldf it enables or disables an event annotated with fairnedsequire
thatif the chosen set of events is a strict subset of the enabluis\the subset must not contain
fairness visible event3.he intuition is that only independent events which ardexrant to fairness
are subject to partial order reduction. Notice that thisckivg has time complexity linear in the

number of enabled events. The soundness follows from ticesifon in[[3D, 163].

Functionprune is also modified to examine only the annotated events. Itfineld as follows.

1%} if there existsf(e) ande ¢ engagedEvt(S);
& if alwaysEvt(S) N wf(X) € engagedEvt(S);

)

{s: 8| enabledEvt(s) N sf(X) C engagedEvt(S)};

prune(S, Anno) =

otherwise

A SCC S is fair with respect to the event annotated fairness if anlgl in all events which are
annotated with unconditional event fairness are containgde setengagedEvt(S); if an event is
annotated with weak event fairness and is enableyatystate in the SCC, then the event is con-
tained inengagedEwvt(S); and if an event is annotated with strong fairness and isledaisome
state in the SCC, then the event is containedripagedEvt(S). If a SCC does not satisfy uncon-
ditional or weak event fairness, it is abandoned all togetlfea state enables an event annotated
with strong fairness which is never engaged in the SCC, thisnpruned. For instance, given the
LTS in Figure[4.b, if event: is annotated with strong fairness, state 0 is a bad statecih It is

not if it is annotated with no or weak fairness. By a similaguanent (to that of Theorem4.%.1), the

soundness of the algorithm can be proved.

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 66

4.6 A Multi-Core Model Checking Algorithm

Rapid development in hardware industry has brought theapgeee of multi-core systems with
shared-memory, which enabled the speedup of various tgslsitg parallel algorithms. The LTL

model checking problem is one of the difficult problems to beafielized or scaled up to multi-

core systems. In this section, we present an on-the-fly lphrabdel checking algorithm based
on the Tarjan’s SCC detection algorithm presented in Se@id. The proposed parallel algorithm
allows the verification to make full use of a multi-core CPUtle shared-memory architecture.
The approach can be applied to general LTL model checkingtbrdifferent fairness assumptions.

Further, it is orthogonal to state space reduction teclasidiee partial order reduction.

4.6.1 Shared-Memory Platform

We work with a model based on threads that share all memdhguah they have separate stacks
in their shared address space and a special thread-locagstto store thread-private data. Our
working environment is .NET framework (version 2.0) in Mispft Windows platform, with its
implementation of threads as lightweight processes. &imitccontexts among different threads
is cheaper than switching contexts among full-featuredtgsses with separate address spaces, S0

using threads in the system incurs only a minor penalty.

Critical Sections, Locking and Lock Contention In a shared-memory setting, access to memory,
that may be used for writing by more than a single thread, & tcontrolled through the use of
mutual exclusion, otherwise, race conditions will occumhisTis generally achieved through use
of mute}B. A thread wishing to enter a critical section has to [otke associated mutex, which
may block the calling thread if the mutex is locked alreadysbyne other thread. An effect called
resource or lock contention is associated with this belhaViois occurs, when two or more threads

happen to need to enter the same critical section (and trerkdck the same mutex), at the same

8A mutex is a common name for a program object that negotiatesahexclusion among threads, also called a lock.
%In .NET framework, keywordock is used to achieve this effect.

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 67

time. If critical sections are long or they are entered vdtgrg contention starts to cause observable

performance degradation, as more and more time is spenhgvéir mutexes.

Memory Management and Thread Communication In our setting, we assume that all resources
are allocated from the managed heap. Objects are autothafieeed when they are no longer
needed by the application. The communication betweendkrean be achieved simply by object

reference passing.

4.6.2 Parallel Fairness Model Checking Algorithm

The SCC-based verification algorithm presented in the pmsvisection is highly recursive and

employs a sequential DFS search, which exhibits some ciogtein parallelism.

The sequential algorithm in Figute.4 can be illustratethinfigure above. When a SCC is de-
tected, it will be analyzed and pruned until empty or thera iunterexample detectegk{4 in
above graph). Taking a close look at the algorithm, we olestrat there are four actions applied in
each detected SCC: (1) fairness testing (line 4), (2) badsstauning (line 8), (3) counterexample
generation (line 5), (4) recursive sub-SCC detection @neThe first three actions are local to the
detected SCC. Although the recursive sub-SCC detectiaonpbicated, we can create a local copy
of the Tarjan algorithm to search for “SCC” in the prunedesatn this way, each SCC can be pro-
cessed independent. Therefore, we can put the workload Gf @f@lysis into separate threads to
achieve concurrency. Inspired by these observations, esept a SCC-based parallel model check-
ing algorithm with four partsZarjan thread, SCC worker thread, SCC worker thread pool and

parallel model checker. The detailed algorithms are illustrated as follows.

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 68

stopped = false;

procedure run(threadPool, States, Transitions)
1. visited = @;

2. while there are states ifitates but not invisited
3. if stopped then {return; }

4. let scc = tarjan(States, Transitions);

5. visited = wvisited U scc;

6. if forking conditions then

7. threadPool.forkWorker Thread(scc, Transitions);
8. else

9. processsce locally

10. endif

11. endwhile

12. return ;

Figure 4.6: Tarjan thread implementation

Tarjan thread Figure[£® presents the implementation Bfrjan thread, which identifies all
SCCs using Tarjan’s algorithm. Tarjan thread has one pubhiablestopped and the thread starting
procedurerun. stopped is a control variable to stop this thread (line 3) as soon asr&av thread
reports a counterexample. Whéhurjan thread starts, therun procedure will perform a DFS
to detect all SCCs in the search space using Tarjan’s ahgoritThis process is similar tewc
procedure in FigurE.4. When a SGe: is detected at line 4, if the forking conditions at line 6
are satisfied, then a new SCC worker thread will be forked ald@c in to the worker thread pool
(line 7). Otherwisescc will processed locally in thelarjan thread (line 9). This local process
is the same as th€C'C worker thread (which will be explained later), which stops this thread if
there is a counterexample is found. Forking conditions cathlt the size ofcc is bigger than
some threshold or the thread pool is full. We add this checkmachieve better efficiency and
workload balance. If the size ofc is small (e.g., only few nodes), the overhead of creatingestth

is much bigger than processing it locally. If the thread pedull, processing the founskc locally

is probably more efficient than creating a long waiting quieuie thread pool.

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 69

threadQueue = empty queue; jobFinished = false;
procedure fork WorkerThread(States, Transitions)
1. lock(threadQueue);

2. if (—jobFinished)

3 let wt = new workerThread(States, Transitions);

4. registerwt.termination to threadTermination procedure
5. threadQueue.enqueue(wt);

6 endif

7. unlock(threadQueue);

procedure thread Termination(thread)
8. lock(threadQueue);

9. if thread produces counterexample-jobFinished then
10. terminate all other threads

11. terminate tarjan thread

12. jobFinished = true;

13. endif

14. threadPool.remove(thread)

15. unlock(threadQueue);

procedure allThreadsJoin()

16. while(has running threads
17. busy wait

18. endwhile

Figure 4.7: Thread pool implementation

SCC worker thread SCC worker thread works on a detected SCC to report whether the SCC
contains a counterexample or not within the given SCC statddransitions. It basically resembles
the code from line 4 to 12 (highlighted using) in Figure[4.3. If the detected SCC is not fair, it will
prune the states according to the given fairness type. ®tbeit will terminate and return false. If
the prunedscc has fewer states, a local copy of the Tarjan’s algorithm edhtinue the searching.
Upon the termination ofC'C' worker thread, a notification will send to the thread pool to notify

the result.

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 70

SCC worker thread pool The implementation of th&CC' worker thread pool is presented

in Figure[4Y. The thread pool has a working queﬂ@adQueu to store all active worker
threads. Private variabl@bFinished indicates whether a counterexample has been found or not.
Procedurefork WorkerThread creates a new worker thread (line 3) and puts it into the vagyki
queue (line 5), if the counterexample is not found (line 2).lo&k is used onthreadQueue (at
line 1 and 7) to prevenfarjan thread working too fast to add two or more threads at same time.
This is possible because during the process of forking tise thiread, Tarjan thread may find
another SCC and want to fork a new thread. At line 4, we regibie termination event of the
worker thread to procedurehread Termination, which means upon the termination of the worker
thread, the thread pool will be notified and procedtread Termination will be triggered. When
procedurethread Termination is triggered, if the termination thread has located a coertanple
and no one does it before (line 9), thread pool will term other active threads (line 10) and
Tarjan thread (Dy settingstopped flag to true) (line 11). FlagobFinished is set to true at line
12, hence new threads shall not be forked anymbi@.Finished checking in line 9 is necessary
to prevent terminating same threads twice. In the end, theination thread is removed from
thread pool in line 12. During this procesigeadQueue is locked to prevent data race. Procedure

allThreadsJoin does busy-waiting until all threads terminate.

Parallel model checker Lastly, parallel model checker is shown in FiguréZl18. It conducts the
verification by creating th&@arjan thread and thread pool. Onc@arjan thread starts, it will wait
for Tarjan thread to join (i.e., successfully terminate) (line 3). The teration can be that all states
are explored, or a counterexample is found locallytopped flag is set to false. Afterwards, it will
wait for thread pool to terminate (line 4). The procedurd veturn false if any counterexample is

found intarjan thread or any worker thread.

01 our implementationthreadQueue is realized by System.Threading. ThreadPool object in .IREGMmework. The

thread scheduling is managed by the thread pool automistical
"Thread termination can be achieved by thread killing orrapkine thread to voluntarily give up. The second way is

safer and adopted in our approach. One example is the stépgad Tarjan thread.

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 71

procedure pmc(States, Transitions)
initialize worker thread poolhreadPool
let tarjan = tarjanThread.run(threadPool, States, Transitions);
tarjan.join();
threadPool.allThreadsJoin();
if counterexample is fountthen
return false;
return true;

NSOt N

Figure 4.8: Parallel model checker implementation

4.6.3 Complexity and Soundness

In this section, we discuss the complexity of the paralledeia@hecking algorithm and prove its

soundness.

For the parallel version of the algorithm, the time and speamplexity is exactly same as the
sequential version as discussed in Sedfion¥.4.2. Thig Eunprising because the parallel algorithm
simply splits SCC analysis into worker threads. The pdrallgorithm is designed for a shared
memory framework, the SCCs and their transitions are shagttleenTarjan thread and worker
threads. There is no communication overhead. If to migrageapproach into distributed systems,
we may consider to pass SCC only and let the worker threadsil the transitions locally to
avoid the communication overhead. This is because the nuoflieansitions of a SCC is often

much larger than the number of vertices.

If the verification result is true, the number of states amadgitions visited in the parallel and se-
guential version are same. If there is a counterexamplepdhalel version may visit more states
depending on when the counterexample is identified. If atsvarample is present in the first few
SCCs encountered during the search, then the sequentsbivenay find one quickly, while the

parallel version may have forked multiple threads to searchore SCCs. Hence parallel version
visits more states and transitions. On the other hand, iliateoexample is present only in the last
few SCCs, the parallel version can be faster than the segu®&etsion if the counterexample is

identified quickly in one worker thread, which then terméasagll other SCC checking. This is ev-

4.6. AMULTI-CORE MODEL CHECKING ALGORITHM 72

idenced by the experiment results presented in SeCiioll. ANatice that when there are more than
one counterexamples in the system, it is possible that tai@averification may produce different

counterexample at different runs.

Regarding the soundness, the following theorem statestheatness of the parallel algorithpm.c.
We argue the total correctness of the parallel algorithmhmyving it is terminating and equivalent

to the sequentialnc algorithm.

Theorem 4.6.1 Let L be aLTS. Let be a property. Lef be a fairness type (i.e., EWF, PWF, ESF,
PSF or SGF)L Er ¢ if and only if the algorithmpmec returns true.

Proof. Firstly, we show that themc algorithm is terminating. By the assumption, we know that th
number of states is finite, so is the number of the SCCsldrjan thread, the number of visited
states and the pruned states are monotonically incredsemge the Tarjan thread is terminating.
Worker threads are terminating since they are working ondetected SCC and the number of
pruned states are monotonically increasing. Since the auofilSCC is finite, worker thread pool

is terminating. Therefor@mc is terminating.

Secondly, we show thatmc returns the same result asc. The key of this proof is to prove that
each SCC analysis is independent of each other. If this thes checking the SCCs in parallel
is same as checking them sequentially. We have listed threafttions performed in the SCCs in

SectiofZ.6R, which can be applied independently.

Lastly, the correctness of data sharing and race conditieseption by using locks have been

discussed in Sectidn 4.6.1. We skip it here. i

Following the above theorem, we conclude that the sequexgjarithm and the parallel algorithm
are equivalent in terms of correctness. Therefore as lotigeagduction is compatible with sequen-
tial algorithm, then it is compatible with the parallel atgbm. For example, Sectidn-4.5 shows

that partial order reduction is posslaeby employing fairness annotations on individual events,

2In general, fairness verification conflicts with partial erdeduction.

4.7. EXPERIMENTS 73

which means this technique can also be used with our pagdfjetithm. We remark thagtmc is
orthogonal to state reduction techniques like partial oréduction, symmetry reduction or data
abstraction. Intuitively, the parallel algorithm wouldrfiem better since it may utilize more CPU
power. Nonetheless, thread forking/terminating or comication between threads can be costly.
We present detailed analysis using real-world examplesfiss/hand crafted examples in the next

section.

4.7 Experiments

In this section, we demonstrate the effectiveness of thaesg@l version and parallel version of
fairness model checking algorithms using experiments d@h benchmark systems as well as re-

cently developed population protocols, which requirenfags for correctness.

4.7.1 Experiments for Sequential Fairness Verification

Table[42 summarizes the verification statistics on regedgleloped population protocols. The
unit of time measurement is second. Notice that Tneans either out of memory or more than
4 hours. The protocols include leader election for compievorks (F_C) [88], for rooted

trees (E_T) [41], for odd sized rings{E_OR) [118], for network rings LE_R) [88] and token

circulation for network rings T'C_R) [14]. The property is that eventually always there is ong an
only one leader in the network, i.eJoneLeader. Correctness of all these algorithms relies on
different notions of fairness. For simplicity, fairnessaigplied to the whole system. As a result,
partial order reduction is only applied for verification @ncho or weak fairness, but not strong

fairness or strong global fairness.

We remark that event-level fairness or strong global fasnis required for these examples. As
discussed in Sectidn 4.2, PWF is different from EWF. In ordecompare PAT with SPIN for
verification with EWF, we twist the models so that each evemtdpulation protocols is modeled as

a process. By a simple argument, it can be shown that for suckelsy EWF is equivalent to PWF.

4.7. EXPERIMENTS 74

Model | Size EWF ESF SGF
Result| PAT | SPIN | Result| PAT | Result| PAT
LE_C 6 Yes 26.7 229 Yes 26.7 Yes 23.5
LE_C 7 Yes | 152.2 | 1190 Yes | 1524 | Yes | 137.9
LE_C 8 Yes | 726.6 | 5720 Yes | 739.0 Yes | 673.1
LE_T 9 Yes 10.2 | 62.3 Yes 10.2 Yes 9.6
LE.T 11 Yes 68.1 440 Yes 68.7 Yes 65.1
LE_T 13 Yes | 548.6 | 3200 Yes | 573.6 Yes | 529.6
LE_OR 3 No 0.2 0.3 No 0.2 Yes 11.8
LE_OR 5 No 1.3 8.7 No 1.8 — —
LE_OR 7 No 15.9 95 No 21.3 — —
LE_R 4 No 0.3 <0.1 No 0.7 Yes 19.5
LE_R 6 No 1.8 0.2 No 4.6 — —
LE_R 8 No 11.7 1.7 No 28.3 — —
TC_R 5 No <01 | <01 No <0.1| Yes 0.6
TC_R 7 No 0.2 0.1 No 0.2 Yes 13.7
TC_R 9 No 0.4 0.2 No 0.4 Yes | 640.2

Table 4.2: Population protocols experiments: with Core 2@B00 at 2.40GHz and 2GB RAM

Nonetheless, model checking under PWF in SPIN increasegetifecation time by a factor that is
linear in the number of processes. By modeling each evenpescass, we increase the number of
processes and therefore un-avoidably increase the SPifitagon time by a factor that is constant
(in the number of events per process for network rings) @dir(in the number of network nodes
for complete network). SPIN has no support for ESF, PSF or. 3@#&s, the only way to model
check under strong fairness or strong global fairness ilN$o encode the fairness constraints as
part of the property. However, even for the smallest netwatith 3 nodes), SPIN needs significant
amount of time to construct (very large) Biichi automata ftbenproperty. Therefore, we conclude
that it is infeasible to use SPIN for such a purpose and oraiettperiment results from the table.
We remark that in theory, strong fairness can be transfoimegtak fairness by paying the price of

one Boolean variablé T124]. Nonetheless, the propertynageéds to be augmented with additional

4.7. EXPERIMENTS 75

clauses after the translation, which is again infeasible.

All of the algorithms fail to satisfy the property withoutifiaess. The algorithm for complete net-
works (LE_C) or trees (LE_T) requires at least EWF, whereas the rest of the algorithiopsine
SGF. It is thus important to be able to verify systems undengtfairness or strong global fairness.
Notice that the token circulation algorithm for networkgs(7'C_R) functions correctly for a net-
work of size 3 under EWF. Nonetheless, EWF is not sufficienafaetwork with more nodes, as
shown in the table. The reason is that a particular sequehtessage exchange which satisfies
EWF only needs the participation of at least 4 network nodéss suggests that our improvement

in terms of the performance and ability to handle differemtrfs of fairness has its practical value.

A few conclusions can be drawn from the results in the tabiestlf, in the presence of counterex-
amples, PAT usually finds one quickly (e.g., 6/_R and TC'_R under EWF or strong fairness).
It takes longer to find a counterexample foE_OR mainly because there are too many possible
initial configurations of the system (exacfy*¥ where N is network size) and a counterexample
is only present for particular initial configurations. Sedly, verification under ESF is more ex-
pensive than verification with no fair, EWF or SGF. This canie to theoretical time complexity
analysis. The worst case scenario is absent from these ée@ufgg., there are easily millions
of transitions/states in many of the experiments). La§ly outperforms the current practice of
verification under fairness. PAT offers comparably betenfgrmance on verification under weak
fairness (e.g., o E_C and LE_T) and makes it feasible to verify under strong fairness amsgr
global fairness. This allows us to discover bugs in systamstfoning with strong fairness. Exper-
iments onLFE_C and LE_T (for which the property is only false under no fairness) shoimor

computational overhead for handling a stronger fairness.

Table[4.B shows verification statistics of benchmark systenshow other aspects of our algorithm.
Because of the deadlock state, the dining philosophers In{éale(N) for N philosophers and
forks) does not guarantee that a philosopher always evgnems (1 eat0) whether with no
fairness or strong global fairness. This experiment shofilstBkes little extra time for handling
the fairness assumption. We remark that PAT may spend muoeettian SPIN on identifying a

counterexample in some cases. This is both due to the partiotder of exploration and the

4.7. EXPERIMENTS 76

Model Property Result Fairness PAT(sec)| SPIN(sec)
DP(10) OO eat0 No no 0.8 <0.1
DP(13) < eat0 No no 0.8 <0.1
DP(15) < eat0 No no 56.1 <0.1
DP(10) OO eat0 No strong global fairness 0.8 —
DP(13) OO eat0 No strong global fairness 9.8 —
DP(15) O eat0 No strong global fairness 56.0 —
MS(10) OO work0 Yes event-level strong fairness 9.3 —
MS(12) OO work0 Yes event-level strong fairness 105.5 —
MS(100) OO work0 Yes | eventannotated strong fairness 3.1 —
MS(200) OO work0 Yes | eventannotated strong fairness 15.5 —
PETERSON(3)| bounded bypass Yes process-level weak fairness 0.1 1.25
PETERSON(4)| bounded bypass Yes process-level weak fairness 1.7 > 671
PETERSON(5)| bounded bypass Yes process-level weak fairness| 58.9 —

Table 4.3: Experiment results on benchmark systems

difference between model checking based on nested DFS adel iftecking based on identifying
SCCs. PAT’s algorithm relies on SCCs. If a large portion & $ystem is strongly connected, it
takes more time to construct the SCC before testing whethgfair or not. In this example, the
whole system contains one large SCC and a few trivial ondadimg the deadlock state. If PAT

happens to start with the large one, the verification may ¢aksiderably more time.

Milner’s cyclic scheduler algorithmA{S (N) for N processes) is a showcase for the effectiveness of
partial order reduction. We apply fairness in two differesatys, i.e., one applying ESF to the whole
system and the other applying only to inter-process comaationgi. In the latter case, partial
order reduction allows us to prove the property over a mugfetanumber of processes (e.g., 200 vs
12). Peterson’s mutual exclusive algorithttKTERSON (N)) requires at least PWF to guarantee

bounded by-pas$][6], i.e., if a process requests to entarrifial section, it eventually will. The

13A general guideline for annotating event fairness is thammunication events are more unlikely to be annotated as

local events are under the control of the local scheduler.

4.7. EXPERIMENTS 77

property is verified under PWF in both PAT and SPIN. PAT outmens SPIN in this setting as well.

4.7.2 Experiments for Multi-core Fairness Verification

In this section, we present the experiments results onlphfairness model checking algorithm.
Table[43 summarizes the verification statistics on dinpimigpsophers problemiP), and recently
developed population protocold.£_C [88], LE_R [B8] and TC_R [14]). We modify theDP
model so that it is deadlock-free (i.e., by letting one of piindosophers to pick up the forks in a
different order). The property is that a philosopher netangs indefinitely, i.e. g eat.0, where
eat.0 is the event of O-th philosopher eating. The property forl#agler election protocols is that
eventually always there is one and only one leader in thear&pie., SOonelLeader. Correctness

of all these algorithms relies on different notions of fass.

In our experiments belowfize denotes the number processes in the models. Besides thdierec
time of the sequential algorithm»{c) and parallel algorithmymc), we present additional mea-
surements which reflect the how much worklgadc can put in parallel if the verification result is
tru@. One is the average size of nontrivial SCCs (denoted@asSCC Size) and the number of
SCC (denoted agSC(C). A SCC is trivial if and only if it has only one state. Intwly, the par-
allel algorithm gains more saving with larger and more SCQ® other is the ratio of the number
of states of all (hon-trivial) SCCs and the whole state sgdeaoted asCC Ratio). Intuitively, a
higher SCC' Ratio shall lead to more saving. The forking condition is that tl&CSmust have at

least 100 states. ‘-’ means out of memory. The unit of timesueament is second.

Regarding the threads scheduling, there are two approathedirst approach is to manually assign
a newly created thread to a free CPU-core. If all CPU-coresuged, the new thread is pushed
into the working queue and wait.The second approach is teeraakh thread as operating system

threa@, and let the OS CPU scheduler to do the scheduling. We couhplheetwo approaches,

“When the property is fals&C'C' Ratio can be different for different runs.
5n our implementation, we use System.Threading. Threaldtject in .NET framework 2.0 to create system threads

in Microsoft Windows system.

4.7. EXPERIMENTS 78

Model | Size | Avg SCC| SCC EWF ESF SGF
#SCC | Ratio | Res.| mc | pmc| Res.| mc | pmc| Res.| mc | pmc
DP 5 67/13 0.36 | No | 0.08 | 0.08 | Yes | 0.22 | 0.20 | Yes | 0.19 | 0.19
Dp 6 178/21 | 0.38 | No | 0.13 | 0.13 | Yes | 0.97 | 0.84 | Yes | 0.86 | 0.78
DP 7 486/31 0.4 No | 0.38 | 0.37 | Yes | 4.62 | 3.39 | Yes | 442 | 3.38
Dp 8 1368/43 | 0.41 | No | 1.41 | 1.33 | Yes | 29.3 | 19.5 | Yes | 32.9 | 22.1
LE_C 5 34/43 0.58 | Yes | 4.04 | 3.66 | Yes | 4.03 | 3.65 | Yes | 3.66 | 3.49
LE_C 6 48/103 | 0.64 | Yes | 23.1 | 21.3 | Yes | 23.1 | 21.5 | Yes | 21.9 | 20.1
LE_C 7 66/227 | 0.68 | Yes | 128 | 124 | Yes | 129 | 124 | Yes | 134 | 127
LE_C 8 86/479 | 0.71 | Yes | 604 | 600 | Yes | 615 | 607 | Yes | 721 | 684
LE_R 3 9/268 0.36 | No | 0.11 | 0.11 | No | 0.12 | 0.12 | Yes | 1.40 | 1.27
LE_R 4 9/2652 0.4 No | 0.11 | 0.28 | No | 0.59 | 0.60 | Yes | 21.7 | 15.7
LE_R 5 9/25274 | 0.42 | No | 0.71 | 0.72 | No | 2.22 | 2.19 | Yes | 587 | 456
TC_R 6 84/2 0.01 | No | 0.11 { 0.11 | No | 0.11 | 0.11 | Yes | 2.20 | 2.38
TC_R 7 210/2 0.01 | No | 0.14 | 0.14 | No | 0.15 | 0.16 | Yes | 11.3 | 12.3
TC_R 8 330/3 0.01 | No | 0.19 | 0.20 | No | 0.25 | 0.23 | Yes | 69.6 | 72.9
TC_R 9 756/3 0.01 | No | 0.27 | 0.31 | No | 0.36 | 0.37 | Yes | 494 | 573

Table 4.4: Experiment results on a PC running Windows XP &i88 GHz quad-core Intel Q9550
CPU and 2 GB memory

it shows that when the size of the SCCs is big, the two appesablave same results. When the
number of SCCs is big, the second approach is more efficieatapilied second approach in our

experiments.

In Table[4Z#, we can see that when the verification resultlse faitherpmc or mc can be faster,
which is expected. When the verification result is trueic is faster in most of the cases, except
in the case of model checking tHBC'_R example under strong global fairness. In this particular
example SCC ratio is very low (0.01), which means that there are many trivial SCCs. Furthermore
there are only few non-trivial SCCs. As a result, there telitvork that can be separated out for
the worker threads to speed up the model checking, and thenooioation overhead makesnc

slower. On the other hand, thenc slowdown in this case is only several percentsmaf which

4.7. EXPERIMENTS 79

Model | Size | Avg SCC/| SCC EWF ESF SGF

#SCC Ratio | Res.| mc | pmc| Res.| mc | pmc | Res.| mc pmc
PAR1 5 10001/5 0.2 No | 1.75 | 2.11 | Yes | 22.5 | 12.0 | Yes | 11.3 6.97
PAR1 6 10001/6 0.2 No | 1.74 | 2.07 | Yes | 27.1 | 14.8 | Yes | 13.6 8.13
PAR1 7 10001/7 0.2 No | 1.71 | 2.29 | Yes | 31.2 | 16.7 | Yes | 15.9 9.14
PAR1 8 10001/8 0.2 No | 1.71 | 2.16 | Yes | 36.1 | 18.0 | Yes | 18.1 10.6
PAR1 9 10001/9 0.2 No | 1.71 | 2.15 | Yes | 40.6 | 20.9 | Yes | 20.4 11.9
PAR1 | 10 | 10001/10| 0.2 No | 1.73 | 2.15 | Yes | 45.3 | 22.6 | Yes | 22.81 | 13.07
PAR2 4 20000/5 0.5 No | 546 | 7.12 | NA - - Yes | 8.87 5.52
PAR2 5 20000/6 0.5 No | 6.05 | 9.53 | NA - - Yes | 18.3 8.64
PAR2 6 20000/7 | 0.5 No | 6.39 | 10.5 | NA - - Yes | 214 | 9.32
PAR2 7 20000/8 0.5 No | 6.90 | 11.4 | NA - - Yes | 24.5 9.69
PAR2 8 20000/9 | 0.5 No | 7.77 | 11.7 | NA - - Yes | 27.9 | 11.82
PAR2 9 20000/10| 0.5 No | 8.06 | 12.8 | NA - - Yes | 30.9 | 13.68
PAR3 | 7 2000/8 1 No | 0.29 | 0.20 | Yes | 412 | 118 | Yes | 0.41 | 0.28
PAR3 8 2000/9 1 No | 0.21 | 0.24 | Yes | 463 | 136 | Yes | 0.45 | 0.29
PAR3 | 9 2000/10 1 No | 0.25 | 0.23 | Yes | 516 | 156 | Yes | 0.49 | 0.31

Table 4.5: Experiment results on a PC running Windows XP ®i88 GHz quad-core Intel Q9550

CPU and 2 GB memory
shows that the communication overheagbinc is low.

Table[Z5 summarizes the verification statistics on some keaft examples to show the potential
effectiveness of the parallel algorithm. We create threeleto(PAR1, PAR2 and PAR3) such

that their state spaces contain several SCCs, each of whgh hig number of states. As a result,
worker threads can be dispatched with substantial workl@aaokrectness of all these algorithms

requires ESF and SGF.

In Table[Z5, we can see thatnc is working well in PAR1 example, where the average SCC size
is big and the SCC ratio is not very low. The performance iséhetter (0% speedup) when the
SCC ratio increases to 0.5 iP4 R2 example. ThePA R3 example almost produces the ideal case

(72% speedup) such that the four cores are fully loaded. Singe e more SCCs than cores,

4.7. EXPERIMENTS 80

Sequential Executions Time (secot

50 —

404

30 +

20 +

10 +

10 20 30 40
Parallel Executions Time (seconds)

50

Sequential Executions Time (secot

50 +

404

30 -

204

10 20 30 40
Parallel Executions Time (seconds)

50

(a) Results on Intel Core2 6600 CPU (b) Results on Intel QI5B0

Figure 4.9: Experimental results for scalability testing

further speedup could be achieved if there were more cor&F dase inPAR2 gives a worst
case mentioned in Section 4.3 for strong fairness checkiegce it ends up with out of memory

exception.

The experiment results in Talle .4 dnd 4.5 confirm that tleedip of parallel verification relies
on the size and the number of non-trivial SCCs. Each SCC hasafmalysis actions as described
in SectioZ6P. If the size of SCCs is big and/or the numb&QGCs is more than the number of
cores, each worker thread will make full use of the availd®igJ-cores. Overallpmc performs

better thanmc for big average SCC size and high SCC ratio.

To study the scalability of our approach with different nienbf CPU cores, we conduct the same
experiments (model checking examples in Table 1 BAdkR A1 example under strong global fair-
ness@ on a dual-core CPU (Figufe 4.9 (a)) and a quad-coreBlElUgure[Z} (b)). The coordinate
of each pointz, y) in the graphs representsc execution time angmc execution time of a model

correspondingly. From the figures we can see that, pointgur€[4.9 (a) are scattered between line

18 pA RA2 and PARA3 have high average SCC size and SCC ratio which is rare inyet#ras, so we exclude them

in the salability testing.
Since we calculate the speeduppefic compared tonc, the absolute speed of the two CPUs is not important.

4.8. SUMMARY 81

y = z andy = 2z, while points in Figuré4]9 (b) are scattered between fine 2z andy = 3z.
The average speedup of the parallel algorith2Ri9% for quad-core CPU antll.2% for dual-core

CPU. This suggests that our approach is scalable for morec©Rds in general.

Besides PAT, there are a number of model checkers which argral for similar application do-
mains. It is, however, not easy to compare PAT with them. Rstaince, the refinement checker
FDR does not support shared variables/arrays, and therdf@R’s model is significantly different
from PAT’s. Further, FDR has no support for multi-core. Thed®l checker SPIN supports verifi-
cation of LTL properties. The multi-core parallel algorittin SPIN is designed for model checking
based on nested depth-first search. Nested depth-firgthsearks well for verification under no
fairness. It can be twisted to perform model checking undenéss in the price of significant
computational overhead, which has been showin In|[197]. Assall; it makes little sense here to

compare performance of our parallel algorithm with SPIN’s.

4.8 Summary

In summary, we developed a model checking approach to visiifigess enhanced systems based
on Tarjan’s SCC detection algorithm. Our approach is holisthich does not only take care of
LTL verification but also checks the fairness constraintsfetion in one goal. Furthermore, we
presented a parallel version of the proposed algorithmrfanilti-core shared-memory architec-
ture. We showed that our sequential algorithm is effectiv@rove or disprove both benchmark
systems and newly proposed distributed algorithms. Therexental results on real world systems

suggested our parallel algorithm is efficient and scalablaulti-cores.

The research on categorizing fairness/liveness, mothvatesystem analyzing of distributed or con-
current systems, has a long history [181,1138,[18, 96]. A sehof fairness notions have been
identified during the last decades, e.g., weak or strongdag in[[13[], justice or compassion con-
ditions in [138], hyperfairness in[2[L, 132], strong globalocal fairness recently in[88], etc. This

chapter summarizes a number of fairness notions which aselgl related to distributed system

4.8. SUMMARY 82

verification and provides a framework to model check undifemint fairness constraints. Other

works on categorizing fairness/liveness have been evetbeimc[173] 128, 166, 216].

This chapter is related to research on system verificatiaeufairness {100, 131, 88]. Our model
checking algorithm is related to previous works on empsnasecking for Blchi automata [1126,
111,/99] and Streett automala [124][99,1137] 106]. In thiptenawe apply the idea to the automata-
based model checking framework and generalize it to hanifflereht fairness assumptions. In
a way, our algorithm integrates the two algorithms preskme[99, [106] and extends them in
a number of aspects to suit our purpose. Furthermore, mdwekmng algorithms under strong

fairness have been proposed(inl[99] dnd [137]. In both warlssnilar pruning process is involved.

Regarding LTL parallel verification, there are various agahes in the literature. Holzmann pro-
posed a parallel extension of the SPIN model checkérin [Ih2his SPIN extension, the algorithm
for checking safety properties scales well to N-core systeRowever, the algorithm for liveness
checking, which is based on the original SPIN’s nested DE8rthm, can only be applied in dual-
core systems. Whereas, our approach is scalable to N-cstensyand can also handle different
forms of fairness, while SPIN handles only process levelkWaaness. Lafuente [129] presented
a cycle localization algorithm based on nested DFS, whickery similar to our ideas. In their
approach, the main thread performs the first DFS to identifaecepting state, and the worker
threads perform the second DFS to detect the fair cycleirgjafitom the accepting state. Com-
pared to this solution, our approach has the advantage dlcht @CC will be checked by one and
only one worker thread. A different approach to shared-mgmuaodel checking is presented in
[114], based on CTL* translation to Hesitant Alternatingt&mata. The proposed algorithm uses
so-called non-emptiness game for deciding validity of thigimal formula and is therefore largely
unrelated to the algorithms based on fair-cycle detecti®gernat, Chaloupka and Pol gave a com-
prehensive survey/ [24] in the distributed SCC decompasiigorithms|[3¥, 38, 89, 40, B6.123.125].
However, these algorithms are designed for distributetesys and have quadratical or cubic order

of complexity.

Chapter 5

Applications of Fairness Model

Checking

Recently, the population protocol model[20] has emergeahaslegant computation paradigm for
describing mobile ad hoc networks. One essential propdriyopulation protocols is that with
respect to all possible initial configurations all nodes newgntually converge to the correct output
values (or configurations), which is a typical liveness grop To guarantee that such kind of
properties can be achieved, fairness assumption is requifenumber of population protocols
have been proposed and studied [14,[16/88| [118, 15]. Mosieal bnly work ifglobal fairness
(see SectiohBl1) is imposed. Furthermore, it was shownatitlabut global fairness uniform self-

stabilizing leader election in rings is impossitilel[88].

In this chapter, we apply the fairness model checking algms developed in ChaptEl 4 on a set
of self-stabilizing population protocols for ring netwarto show the effectiveness of the proposed
algorithms. The choice of ring topology reduces the intgmas of nodes and also makes our
models scale up easily. We select protocols for two-hoprizwaand orienting nodes and protocols
for leader election and token passing. All these protocaly work under global fairness. We
report on our model checking results. Especially, we pitesan previously unknown bug in a

leader election protocadl [118], which can only be identifissihg PAT (as far as we know).

83

5.1. THE POPULATION PROTOCOL MODEL 84

We notice that population protocols are designed on a larg¥en unbounded number of behav-
iorally similar processes, which raises the state exptoproblem of the model checking approach.
To solve this problem, we propose a fair model checking &lgorwith process counter abstraction.
Our on-the-fly checking algorithm enforces fairness by kegfrack of the local states from where
actions are enabled / executed within an execution tradeowitmaintaining the process identifiers.

We show the usability of this technique via the automatedivation of several real-life protocols.

The remainder of the chapter is organized as follows. Ini@egL1, we introduce the population

protocol model. Sectiofd.2 presents the population podsostudied in this chapter. The model
checking results are summarized in Secfion 5.3. The prammsster abstraction starts from Sec-
tion[5.4 with the system model definitions and process coustgesentation. Secti@n’b.5 presents
how to perform model checking under fairness without theskedge of process identifiers. Sec-
tion [5.8 discusses how to handle infinitely many processesctigh[G5.Y discusses experimental

results of the counter abstraction. Secfion 5.8 conclutieshapter.

5.1 The Population Protocol Model

The population protocol model[20] is proposed recently esraputation paradigm for describing
mobile ad hoc networks, consisting of multiple mobile nogdsch interact with each other to
carry out a computation. Application domains of the protedoclude wireless sensor networks
and biological computers. In this section, we briefly introd the population protocol model. More

details are available 14, B8].

In the population protocol model, the underlying network de described as a directed graph
G = (V, E) without multi-edges and self-loops. Each vertex represargimple finite-state sens-
ing device, and each edde, v) means that. as aninitiator could possibly interact with as a

responder

Definition 15 (Population Protocol Model) A population protocol modés specified as a six-tuple
P =(Q,C,X,Y,0,6), which contains

5.1. THE POPULATION PROTOCOL MODEL 85

e a finite set() of states,

e a setC of configurations,

¢ afinite setX of input symbols,

¢ afinite setY of output symbols,

e an output functiorO : ¢ — Y, and

e atransition function : (Q x X) x (Q x X) — 29*@,

If (p',q¢") € 6((p,z),(q,y)), then we write((p,z),(q,y)) — (p’,q¢") and call it a transition.
When§ always maps to a set that only contains a single pair of stidtea we call the protocol

deterministic

A configuration C' is a mappingC' : V — @ assigning to each node its internal state, and an
input assignmentr : V — X specifies the input for each node. Létand C’ be configura-
tions, o be an input assignment, and v be different nodes. If there is a pdi€’(u), C'(v)) €
5((C(u),a(u)), (C(v),a(v))), we say thatC goes toC’ via edgee = (u,v) by transition
(C(u),a(u)),(C(v),a(v))) — (C'(u),C"(v)), abbreviated tq C, o) —= C’. A pair of a
transitionr and an edge constitutes amctiono = (r, e). If C goes toC’ via some edge, the@

can go toC’ in onestep written as(C, o) — C'.

An executionis an infinite sequence of configurations and assignmefigsay), (C1, 1), ...,
(Ci,a;),. .., such thatCy € C and for eachi, (C;, ;) — Ciyq1. Different fairness assump-
tions on population protocol models can be defined on thesyskecutions in the same way as in
SectioZP. The fairness constraint is imposed on the siddeth ensure that the protocol makes
progress. In population protocols, the required fairnessdition will make the system behave
nicely eventually, although it can behave arbitrarily farabitrarily long period([20]. That is why
most of population protocols T14, 116,188, 118] 15] only wdrlgliobal fairnessis assumed. For
instance, Fischer and Jiarig [88] have proved that withaahadlfairness uniform self-stabilizing
leader election in rings is impossible. Several protocadspeesented in the next section to further

explain the ideas.

5.2. POPULATION RING PROTOCOL EXAMPLES 86

5.2 Population Ring Protocol Examples

In this section, we take a set of self-stabilizing populatwotocols for ring networks. A distributed
system or a population protocol is said to $ef-stabilizing[66] if it satisfies the following two

properties:

e convergence starting from an arbitrary configuration, the system isrgoteed to reach a

correct configuration;

¢ closure once the system reaches a correct configuration, it cameohbe incorrect any more.

This means that in our modeling of these protocols, we hatakall possible initial configurations
into account, and the checked properties have the forgroproperty. The choice of ring topology
makes it less demanding when we model the interactions aéshadd it also makes our models
easily scale up to larger instances. We have selected pistior two-hop coloring and orienting
nodes and protocols for leader election and token passintg fdat all these protocols only work

under global fairness.

In the population protocol model, one protocol consist®/afodes, numbered frothto N — 1E| A
protocol is usually described by a set of interaction rulesveen an initiatow, and a responder.
Such rules have conditions on the state and the input of ttigtar and the responder, and specify

the state of the initiator and the responder if a transitiem loe taken.

5.2.1 Two hop coloring

A protocol to make nodes to recognize their neighbors in @ ismpresented i _[15]. In fact, it is
a general algorithm that enables each node in a degree-edwgrdph to distinguish between its
neighbors. The graph is colored such that any two nodesetjao the same node have different

colors. More precisely, for each nodeif « andw are distinct neighbors af, then« andw must

!In the following discussion, we sé{ as three for simplicity.

5.2. POPULATION RING PROTOCOL EXAMPLES 87

have different colors(u, w) is called atwo-hoppair. In this chapter, we restrict ourselves to rings,

and three colors suffice the purpose (seé [15]).

Each nodev in a ring has two state components/or|[u]| encodes the color of nodeand F[u] is
a bit array, indexed by colors. Initiallyolor|[u] and F[u] can have arbitrary values. The following

description defines the interaction between an initiatand a responder.

if Flu][color[v]] # F[v][color[u]] then

color|u] « color'[u]; Flu][color[v]] = F[v][color|u]];
else
Flu][color[v]] = = Flul[color[v]]; F[v][color[u]] = —~Fv][color|u]];
endif
One edge (or interaction)u, v) is synchronized ifF[u][color[v]] = Fv][color[u]], then these

two nodes do not change their color but flip their bii§] [color[v]] and F[v][color[u]]). On the
other hand, node is nondeterministically recolored, and it copiB$v|[color[u]] of nodewv as its

bit F[u][color|v]]. The statementolor|[u] < color’'|u] means one of the three possible colors is
nondeterministically assigned as the new color.ofThe CSP# model of this protocol is shown in
detailed in examplE®5.2.1. IATL5], a deterministic versidmwo-hop coloring is given as well (see
below). Instead of nondeterministically assigning allgibke colors to the initiatow, its color is
updated asgolor|u] < (color[u]+ r[u]) mod C. The additional state componert:] is a local bit
for nodew that flits whenever, acts as the initiator of an interaction. We also model andyaea

this protocol in CSP#.

if Flu][color[v]] # F[v][color[u]] then

color|u] < (color[u] + r[u]) mod C; Flu][color[v]] = F[v][color|u]];
else

Flu][color[v]] = =F[u][color[v]]; F[v][color[u]] = —F[v][color(u]];
endif
rlu] — —rlul;

Example 5.2.1 (Two-hop Coloring Protocol) A self-stabilizing population protocol for two-hop
coloring is proposed_[15]. This algorithm can guarante¢ e neighbors of a node in a ring have
different colors. FigurEGl1 presents (part of) its mode€l8P#. Line 1 defines two global constants

(V and C of value 3) and global variable®V models the network size, i.e., number of nodes @nd

5.2. POPULATION RING PROTOCOL EXAMPLES 88

1. #defineN 3; #define C' 3; var color[N]; var F[N][C];
2. Inter(u,v) =

3. if (F[u][color[v]] # Flv][color[u]]){

4. actl.u.v{Flu][color[v]] = F[v][color[u]]; color[u] =0; } — Inter(u,v)
5. O act2.u.v{F[u][color[v]] = F[v][color[u]]; color[u] =1; } — Inter(u,v)
6. O act3.u.v{F[u][color[v]] = F[v][color[u]]; color[u] =2; } — Inter(u,v)
7. } else{

8. actd.u.v{Fu][color[v]] =1 — F[u][color[v]];

9. Flv][color[u]] =1 — F[v][eolor[u]]; } — Inter(u,v)

10. i

11. Init() = ...

12. Protocol() = Init(); ||| = : {0..N — 1}@(Inter(z, (x + 1)%N) ||| Inter((z + 1)%N, z));
13. #definethcolor (color[0] # color[2] A color[1] # color[2] A color[0] # color[1]);
14. #assertProtocol() E & Otheolor

Figure 5.1: CSP# Model for two hop coloring protocol

models the number of colors. Arraylor models the color of each nodé. is a bit array for each
node, indexed by colors. Next, line 2 to 10 defines how anaiitiz interacts with a responder
v, which captures the essence of the protocol. Every timestisean interaction in the network,
the initiator and responder must update themselves acaptdia set of pre-defined rules. A rule
is applicable only if the guarding condition (e.dg[u][color[v]] # F[v][color|u]]) is satisfied.
An action (e.g.,actl.u.v) may be attached with variables updating (eaglor|[u] = 0). Line 12
models the two-hop coloring protocol as procédstocol, which starts with procesg&it (which
initializes the system in every possible configuration andmitted here). After initialization, the
system is the interleaving (modeled by the opergtpof nodes’ interactions in the network. Which
nodes can interact reflects the topology of the network. THepgroperty is<>Othcolor (defined
as an assertion at line 14), whereand are modal operators which readeagentuallyandalways
respectively (refer to Sectidn 2.8.2 for details)color (defined at line 13) is a proposition which

states that the neighbors of a node in a ring have differdotE¢or rings of size three). end

5.2. POPULATION RING PROTOCOL EXAMPLES 89

5.2.2 Orienting undirected rings

Given aring colored by protocols in Section’5]2.1, it is fldesto have a protocol that gives a sense
of orientation to each node on an undirected ring [15]. Attterorienting, (1) each node has exactly
one predecessor and one successor, the predecessor aesksuat a node are different; (2) for
any two nodes: andv, u is the predecessor ofif and only if v is the successor af, for any edge

(u,v), eitheru is the predecessor ofor v is the predecessor af

Each node: in a ring has three state componentsior|[u] encodes the color of nodg precolor|u]

the color of its predecessor, ardccolor|u] the color of its successor. Initially, all nodes are two-
hop colored (arrayolor satisfies the two-hop coloring propertyyecolor|u] and succolor|u] can
have arbitrary values. The following description definesittieraction between an initiatarand a

respondew. The CSP# model of this protocol is shown in Figlrel B.1 in Apfir[B.

if color[v] == precolor[u] A color[v] # succolor[u] then
succolor[v] < color|ul;

elseif color[v] == succolor[u] A color[v] # precolor[u] then
precolor|[v] < color|ul;

else
precolor[u] < color[v]; succolor[v] < color|ul;

endif

5.2.3 Leader election

In this section, we study a leader election protocol in agdrodd rings. The following description

is partially taken from[[118, 15]. Supposing each node h#abal bit, a maximal sequence of
alternating labels is called a segment. According to thentation of the ring, the head and tail of a
segment can be defined in a natural way. One edge of the(foim or (1, 1) connecting the tail of

one segment to the head of another segment is caltedireer edge. For a node in a ring, it has

four state componentseader|u| states whether the node is a leadebel[u] is its label, probe|u]

is 1if w holds a probe token, anthase[u] alternates between 0 and 1 to make each barrier alternate
between firing a probe and moving forward. The protocol «iasif several parts. In the basic part,

the barriers move clockwise around the ring. Each barrigamcks by flipping the label bit of the

5.2. POPULATION RING PROTOCOL EXAMPLES 90

second node on the barrier (the head of the next segment)n Wiwebarriers collide, they cancel
out each other. Because the ring size is odd, there is alvidgasdi one barrier. In the rest of the
protocol, the leader bullet and probe marks are manipula®edbes are sent out by the barrier in
a clockwise direction and absorbed by any leader they run iifita probe meets the barrier on its
way back, it is converted to leader. Leaders hudletscounter-clockwise around the ring. Bullets
are absorbed by the barrier, but they kill any leaders thep@mter along the way. The description
of an interaction between an initiatarand a responder in the protocol (taken from]118], p.66)
is as follows. The CSP# model of this protocol is shown in Fefig.2 in AppendiB.
if label[u] == label[v] then

if probe[u] == 1then leader[u] <« 1; probe[u] « 0 endif
bullet[v] < 0
if phase[u] == 0 then phase[u] « 1; probe[v] « 1;
elseif probe[v] == 0 then
label[v] = —label]v]; phase[v] « 0
endif
elseif leader[v] == 1 then
if bullet[v] == 1then leader|v] < 0 elsebullet[u] «— 1 endif
else
if bullet[v] == 1then bullet[v] < 0; bullet[u] « 1 endif
if probe[u] == 1 then probe[u] < 0; probe[v] — 1 endif
endif

Counterexample. We have analyzed this protocol in PAT, and found one couxdenple. We
consider a ring of size three, nodes are numbered as 0, 1 afthe counterexample found by
PAT can be described as follows: it is an infinite executiontaiming a loop,u is the node for the
initiator andw for the responder of one interaction according to the padtdescription. The exe-
cution can start with a configuratidnullet = [1,1, 1], label = [1,1, 1], leader = [1,1,0], phase =
[1,1,1], probe = [1,1,0].

1. Sincelabel[2] == label]0], probe[2] == 0, phase[2] == 1 and probe[0] == 1, we have
bullet[0] < 0. (v = 2 andv = 0)

2. Then sincdabel[0] == label[1], probe[0] == 1, phase[0] == 1 andprobe[l] == 1, we
haveleader[0] < 1, probe[0] « 0, andbullet[1] < 0. (v = 0 andv = 1)

5.2. POPULATION RING PROTOCOL EXAMPLES 91

3. Then sincdabel[2] == label|0], probe[2] == 0, phase[2] == 1 andprobe[0] == 0, we
havebullet[0] < 0, label[0] «— 1 — label[0], andphase[0] < 0. (v = 2 andv = 0)

4. Then sincdabel[l] == label[2], probe[l] == 1, phase[l] == 1 andprobe[2] == 0, we
haveleader[l] < 1, probe[l] < 0, bullet[2] < 0, label[2] < 1— label[2] andphase[2] < O.
(v =1andv =2)

5. Then sincdabel[2] == label[0], probe[2] == 0 andphase[2] == 0, we havebullet[0] < 0,
phase[2] «— 1 andprobe[0] <« 1. (u = 2 andv = 0)

Now, we have reached a configuration withilet = [0, 0, 0], label = [0,1,0], leader = [1,1,0],
phase = [0,1,1], probe = [1,0,0]d4 From here, we have a loop. Within this loop, all actions
enabled at reachable configurations of the loop are execBtgdhese configurations contain more
than two leaders. Hence, this infinite execution is global fat not self-stabilizing for leader

election. The loop is given below.

1. Sincelabel[2] == label]0], probe[2] == 0, phase[2] == 1 andprobe[0] == 1, we have
bullet[0] < 0. (v = 2 andv = 0)

2. Then sincéabel[0] # label[1], leader[1] == 1 andbullet[1] == 0, we havebullet[0] < 1.
(u=0andv =1)

3. Then sincéabel[0] # label[l], leader[1] == 1 andbullet[1] == 0, we havebullet[0] < 1.
(v =0andv =1)

4. Then sincdabel[2] == label[0], probe[2] == 0, phase[2] == 1 and probe[0] == 1, we

havebullet[0] < 0. (v = 2 andv = 0)

The last step in the loop leads us back to the starting coumtlignr of the loop. We have com-

municated this counterexample to the author[of [118], itasficmed as a valid counterexample

2 As the protocol is self-stabilizing, the counterexampla start directly from here. We keep the first part just to

faithfully represent the infinite trace found by PAT.

5.2. POPULATION RING PROTOCOL EXAMPLES 92

which has escaped simulations of the protoCol [119]. Theaedo the counterexample is the fol-
lowing [119]. In the explanation of the protocol, it saystttyarobes are sent out by the barrier in
a clockwise direction and absorbed by any leader they rui.inthe second half of the sentence
is missing from the pseudo code description. The protosa equires consistent ordering of the
position of tokens within each node (in the order of leadelleh and probe clockwise). A barrier

edge should only generate a probe at the responder if therméspis not a leader. Otherwise, the
probe would be able to pass the leader token. In the desurjghis property is not preserved either.
Modifications of the description have been madé. in [15]. V¥e ahodeled the revised version of the
protocol, and found no counterexample. By this case studyemphasize that without the newly
developed model checking algorithm in Chapler 4 for effici@nification under (global) fairness, it

is impossible to find such an error in a pseudo code desaripfi@a population protocol, especially

when a protocol tends to be intuitively more complicated.

5.2.4 Token circulation

The token circulation protocol in directed rings depictedblv is proposed i [14,15]. The desired
behavior of this protocol can be described as follows: (&rdhis only one node who holds the
token; (2) a node does not obtain again until every other iadeobtained a token once; (3) each

node can have the token infinitely often.

Rule L ((x b, N),(xb, L)) — ((—b),(+ b))
Rule 2 ((+ b, *),(x b, N)) — ((=0),(+))

It is assumed that every node passes the token to next orteaftgh getting it. Furthermore, the
protocol also requires the existence of a leader. Infoym#ikere is a static node with the leader
mark L, and all other nodes have the non-leader mirkn every configuration. The state of each
node is represented by a pair{r,+} x {0,1}. + means that the node is holding a token and
— means the opposite. The second part of a state of a nodeasd ¢tladl label. The here denotes
an always-matched symbol. On the left hand side, the symibwhtches eithed or 1 and b is its

complement. It should be noticed that different occurrerafeh in a same rule refer to the same

5.3. EXPERIMENTS OF POPULATION PROTOCOLS 93

value. The input for each node informs them who is leaderckvis unique in the network. When
two nodes interact, if the responder is the leader, it setalitel to the complement of the initiator’s
label; otherwise the responder copies the label from th@iai. If an interaction triggers a label
change, a token is passed from the initiator to the respoifdetoken is not present at the initiator,

a new token is generated.

The CSP# model of this protocol is shown in FiglirelB.3 in thepépdix[B. We only give the
assertion for the first property. The other two can be definea similar way. The states of the
whole system are represented by three arrays of kitgdr[N], token|[N] andlabel[N]). Without
loss of generality, we assume that ndties always the leader. Therefore, we could simply set
each node a fixed inputeader|i]) for leader election without considering complicated detaf a

dynamic leader election process, which we have analyzeddhid®[5.2.B.

5.3 Experiments of Population Protocols

In this section, we present the experimental results ondhefsing protocols presented in previous
sections. Tabl€ Bl 1 collects the experimental results. tli@rtwo-hop coloring protocol, there
are two version:' for nondeterministic and for deterministic. For the orienting undirected ring
protocol, both properties in FigufeB.1 are checked. Leatkstion protocol is only checked for
odd rings as required. The experiment testbed is a PC runingows XP SP3 with 2.83GHz

Intel Q9550 CPU and 4 GB memory. In the table,"means out of memory.

From the table, firstly it shows that the number of stategjsitons and running time increase
rapidly (exponentially) with the number of nodes in ringspecially for two-hop coloring and
leader election protocols. The reason is that these pristasg more state components than the
others, e.g., the arrays. This conforms to the theoretesllts. Secondly, we show that PAT is
effective, it can handle millions states in hundreds of sdsdwhich is compatible to SPIN). Notice

that SPIN is infeasible for verifying the protocols becaiisikes not support the fairness notgns

3SPIN supports only process-level weak fairness.

5.3. EXPERIMENTS OF POPULATION PROTOCOLS 94

Model Property Ring Size| Result| #States | #Transitions| Time (Sec)
two-hop coloring & Othcolor 3 Yes 122856 1972174 43.3
two-hop coloring | < Otheolor 4 NA - - -
two-hop coloring OOthcolor 3 Yes | 983016 9473998 627
two-hop coloring | < Otheolor 4 NA — — —

orienting rings | GOpropertyl 3 Yes 3200 28540 0.61
orienting rings | &Oproperty?2 3 Yes 3221 28163 0.64
orienting rings | &Opropertyl 4 Yes 69766 883592 18.1
orienting rings | &Oproperty?2 4 Yes 66863 794662 17.5
orienting rings | &Opropertyl 5 Yes | 1100756 | 18216804 601
orienting rings | &Oproperty?2 5 Yes | 1021851 | 15486265 536
orienting rings | GOpropertyl 6 NA — — —

leader election | &GOoneleader 3 Yes 55100 216699 10.6
leader election | &GOoneleader 5 NA - — —

token circulation | $Oonetoken 6 Yes 21559 105577 2.86
token circulation | $&Oonetoken 7 Yes 91954 514703 14.9
token circulation | <$Oonetoken 8 Yes 388076 2446736 88.6

Table 5.1: Experiment results of population protocols

Although we are bound to check relatively small instancethefprotocols, the newly developed
verification techniques in Chaptér 4, does complementiegishodel checkers with the improve-
ment in terms of performance and ability to handle differimins of fairness. It enables us to
establish the correctness of these protocols under glabakgs or, in the case of the leader elec-
tion protocol, to identify bugs. Readers can compare thdtrpeesented in Sectidn 4.7 on a similar
verification practice using SPIN. The argument for using el@thecking techniques in general, is
that, if there is a bug in the protocol design, probably itrssent in a small network. On the other
hand, to apply model checking on large number of nodes, we tweapply advanced reduction or
abstraction techniques in the verification to conquer tagestxplosion problem. This motivates
the algorithm of fairness model checking with process cauabstraction, which is presented in

following sections.

5.4. PROCESS COUNTER ABSTRACTION95

5.4 Process Counter Abstraction

All the protocols in the previous sections are designed oargel (or even unbounded) number
of behaviorally similar processes of the same type. Suctes\s refereed as parameterized sys-
tems, frequently arise in distributed algorithms and mrol® .9, cache coherence protocols, con-
trol software in automotive / avionics), where the numbebeiaviorally similar processes is un-
bounded during system design, but is fixed later during systeployment. Thus, the deployed
system contains fixed, finite number of behaviorally simpaocesses. However during system
modeling/verification it is convenient to not fix the numbéipoocesses in the system for the sake
for achieving more general verification results. A paramzel system represents an infinite fam-
ily of instances, each instance being finite-state. Prgpegtification of a parameterized system

involves verifying thakvery finite state instance of the systeatisfies the property in question.

A common practice for analyzing parameterized systems eao fix the number of processes to
a constant (as we did in the verification of population prote)c To avoid state space explosion,
the constant is often small (smaller than 10 in our populapiootocols experiments), compared
to the size of real applications. Model checking is then grenked in the hope of finding a bug
which is exhibited by a fixed (and small) number of process€his practice can be incorrect
because the real size of the systems is often unknown duwystgra design (but fixed later during
system deployment). It is also difficult to fix the number abgesses to a “large enough” constant
such that the restricted system with fixed number of proceissebservationally equivalent to the
parameterized system with unboundedly many processespt@om such darge enough constant
is undecidable after all, since the parameterized verifingproblem is undecidable _[17]. It is

difficult to apply model checking to the problem directly.

Since parameterized systems contain a large number of iloe&lay similar processes, a natural
state space abstraction is to group the processes basedanstaie of the local transition systems
they reside in[[167, 63, 168]. Thus, instead of saying “pssck and 3 are in state and process
2 is in statet", we simply say “2 processes are in statand 1 is in state”. Such an abstraction

reduces the state space by exploiting a powerful state syatmetry, as often evidenced in real-life

5.4. PROCESS COUNTER ABSTRACTION96

concurrent systems such as a caches, mutual exclusiorcpi®tnd network protocols. Verification
by traversing the abstract state space here produces a aadntbmplete verification procedure.
However, if the total number of processes is unbounded, filvermentioned counter abstraction
still does not produce a finite state abstract system. Thetadprocesses in a local state can still
bew (unbounded number), if the total number of processes /e can adopt autoff numberso

that any count greater than tlatoff number is abstracted to. This yields a finite state abstract
system, which allows sound but incomplete verification poure, e.g., any LTL property verified

in the abstract system holds for all concrete finite-stattaimces of the system, but not vice-versa.

In this chapter, we develop a novel technique for model dngckarameterized systems under
fairness, against LTL formulae. We show that model checkinder fairness is feasible, even
without the knowledge of process identifiers. This is donesystematically keeping track of the
local states from which actions are enabled / executed nvéhy infinite loop of the abstract state
space. We develop necessary theorems to prove the sourafrasgstechnique, and also present

efficient on-the-fly model checking algorithms.

5.4.1 System Models

We begin with formally defining our system model, which is adplized one (compared to Defi-

nition[3 in Sectiod3.T]1) that the system process is a ghi@mposition of identity processes.

Definition 16 (System Model) A system model is a structu® = (Varg, initg, Proc) where
Varq is a finite set of global variablespit is their initial valuation andProc is a parallel com-
position of multiple processeBroc = P; || Ps || - - - such that each proced’; = (.5;, init;, —;) is

a labeled transition system.

We assume that all global variables have finite domains acld Bahas finitely many local states.
A local state represents a program text together with italloontext (e.g. valuation of the local
variables). Two local states are equivalent if and only éythepresent the same program text and

the same local context. Leéttate be the set of all local states. We assume #ate has finitely

5.4. PROCESS COUNTER ABSTRACTION97

global variables: int counter = 0; bool writing = false;

\ ['writing] \ [counter==0 && 'writing]
startread{counter++ startwrite{writing:=true
R1 WO w1l
stopread{counter--} stopwrite{writing:=false}
proc Reader proc Writer

Figure 5.2: Readers/writers model

many elements. This disallows unbounded non-tail recansioich results in infinite different local
states. Proc may be composed of infinitely many processes. Each procasa hiaique identifier.

In an abuse of notation, we ugg to represent the identifier of proceBswhen the context is clear.
Notice that two local states from different processes atgvatgnt only if the process identifiers
are irrelevant to the program texts they represent. Presesmy communicate through global
variables, (multi-party) barrier synchronization or sgranous/asynchronous message passing. It

can be shown that parallel compositifis symmetric and associative.

Example 5.4.1 Figure[5.? shows a model of the readers/writers problenghnikia simple protocol
for the coordination of readers and writers accessing aghasource. The protocol, referred as
RW , is designed for arbitrary number of readers and writersef@readers can read concurrently,
whereas writers require exclusive access. Global variahleter records the number of readers
which are currently accessing the resoureeiting is true if and only if a writer is updating the
resource. A transition is of the forfppuard]name{ assignments}, whereguard is a guard condition
which must be true for the transition to be taken ansignments is a simple sequential program

which updates global variables. The following are progsrtvhich are to be verified.

O!(counter > 0 A writing) — Propy
OO counter > 0 — Props

Property Prop, is a safety property which states that writing and readinghoaoccur simultane-
ously. PropertyProps is a liveness property which states that always eventuadlyésource can be

accessed by some reader. end

5.4. PROCESS COUNTER ABSTRACTION98

In order to define the operational semantics of this speeidlsystem model, we re-define the notion
of system configuration defined in Definiti@h 4 in Sectiond, Which is referred to asoncrete
configurations This terminology distinguishes the notion from the statace abstraction and the

abstract configurations which will be introduced later.

Definition 17 (Concrete Configuration) LetS be a system model. A concrete configuratiors of
is a pair (v, (s1, s2, - - -)) wherew is the valuation of the global variables (channel buffersyrha

viewed as global variables), ang € S; is the local state in which proced3 is residing.

A system transition is of the forrfw, (s1, s2,--+)) —a,4 (v',(s1,s3,---)) where the system con-
figuration after the transition isv’, (sq, s5,--+)) and Ag is a set of participating processes. For
simplicity, setAg (short foragent) is often omitted if irreverent. A system transition coukl ene

of the following forms:

(i) a local transition ofP; which updates its local state (frospto s/) and possibly updating global
variables (fromw to v’). An example is the transition frofi0 to R1 of a reader. In such a cask,;

is the participating process, i.elg = {P;}.

(i) a multi-party synchronous transition among procesBgs- -, P;. Examples are message send-
ing/receiving through channels with buffer size 0 (e.gind&romelal|11ll]) and alphabetized barrier
synchronization in the classic CSP. In such a case, lodaisstdi the participating processes are up-

dated simultaneously. The participating processes’are -, P;.

(i) process creation ofP,, by P;. In such a case, an additional local state is appended to the
sequence sy, s, - - -), and the state oP; is changed at the same time. Assume for now that the
sequencesi, s, - - -) is always finite before process creation. It becomes cle&ettion5.b that

this assumption is not necessary. In such a case, the patiig processes aré and P,,.

(iv) process deletion of?;. In such case, the local state &f is removed from the sequence

((s1, s2,---)). The participating process ;.

Definition 18 (Concrete Transition System)Let S = (Varg, initg, Proc) be a system model,

5.4. PROCESS COUNTER ABSTRACTION99

where Proc = P; || Py || --- such that each procesB;, = (S, nit;,—;) is a local transi-
tion system. The concrete transition system correspontdir®) is a 3-tuple Ts = (C, init, —)
where C' is the set of all reachable system configurationst is the initial concrete configuration
(initg, (inity, inite, - - -)) and — is the global transition relation obtained by composing kbeal

transition relations—; in parallel.

An execution ofS is an infinite sequence of configuratiofis= (cy, ¢1,- -, ¢;, - - -) Wherecy = init
andc¢; — ¢; 11 for all + > 0. Given an execution in the setting of parameterized systatan de-
fine process-level weak fairnegsee DefinitiorB)process-level strong fairnegsee Definitiori_1I0)

andstrong global fairnesg¢see Definitio IlL) in a similar way as in Sect[onl4.2.

Given theRW model presented in Figuke®.2, it can be shown it = Prop,. Itis, however, not
easy to prove it using standard model checking technigues chiallenge is that many or unbounded
number of readers and writers cause state space explosisn,. IV fails Prop, without fairness
constraint. For instance, a counterexamplgisrtwrite, stopwrite)®°, i.e., a writer keeps updating
the resource without any reader ever accessing it. Thisrisasonable if the system scheduler is
well-designed or the processors that the readers/wrixexsée on have comparable speed. To avoid

such counterexamples, we need to perform model checkingr daiiness.

5.4.2 Process Counter Representation

Parameterized systems contain behaviorally similar on @lentical processes. Given a configura-
tion (v, (---,si,---,s;,---)), multiple local stat&may be equivalent. A natural “abstraction” is to

record only how many copies of a local state are there.

Let S be a system model. An alternative representation of a cnconfiguration is a paifv, f)
wherev is the valuation of the global variables afids a total function from a local state to the
set of processes residing at the state. For instance, g0 is a local state in Figure_3.2,

f(RO) = {P;, P;, P;,} if and only if reader processd3;, P; and P;, are residing at statB0. This

“The processes residing at the local states may or may notihegame process type.

5.4, PROCESS COUNTER ABSTRACTION 100

representation is sound and complete because processggialent local states are behavioral

equivalent and composition is symmetric and associative (so that prosesskering is irrelevant).

Furthermore, given a local stateand processes residingsgtwe may consider the processes indis-
tinguishable (as the process identifiers must be irrelegaen the local states are equivalent) and
abstract the process identifiers. That is, instead of astgogia set of process identifiers with a local
state, we only count the number of processes. Instead ofg¢(tR0) = { P;, P;, Py}, we now set

f(R0O) = 3. In this and the next section, we assume that the total nunfg@poesses is bounded.

Definition 19 (Abstract Configuration) LetS be a system model. An abstract configuratiois of
is a pair (v, f) wherev is a valuation of the global variables arfd: State — N is a total functio

such thatf(s) = n if and only ifn processes are residing at

Given a concrete configuratiort = (v, (s, s1,---)), let F({so, s1,---)) returns the functiory
(refer to DefinitioZIP) — that isf (s) = n if and only if there aren states in(sy, s, - - -) which are
equivalent tos. Further, we writeF (cc) to denote(v, F((so, s1,- - -))). Given a concrete transition
¢ — 44 ¢, the corresponding abstraction transition is writteruas-; o’ wherea = F(c¢) and
o' = F(c') and Ls (short for local-states) is the local states at which preegsnAg are. That is,
Ls is the set of local states from which there is a process lgadiming the transition. We remark

that Ls is obtained similarly aslg is.

Given a states and an abstract configuratian enabled(s, a) to be true if and only il a’, a —
a’ A\ s € Ls, i.e., aprocess is enabled to leavim a. For instance, given the transition system in

Figure[5:B,Ls = { R0} for the transition fromA0 to A1 andenabled(R0, A1) is true.

Definition 20 (Abstract Transition System) Let S = (Varg, initg, Proc) be a system model,
where Proc = P; || P2 || --- such that each procesB; = (5;, init;, —,;) is a local transition
system. An abstract transition systenSas a 3-tupleAs = (C, init,—) whereC'is the set of all
reachable abstract system configurationsit € C'is (initq, F(initg, (init1, inita, - - -))) and—

is the abstract global transition relation.

%In PAT, the mapping from a local state to 0 is always omittechfiemory saving.

5.5. FAIR MODEL CHECKING ALGORITHM WITH COUNTER ABSTRAQVIO 101

startread startread & stopwrite
@ ~~stopread-~ ~~_stopread” start
AO: ((writing,false),(counter,0),(R0,2),(R1,0),(W0,2),(W1,0
Al: ((writing,false),(counter,1),(R0,1),(R1,1),(W0,2),(W1,0
A2: ((writing,false),(counter,2),(R0,0),(R1,2),(W0,2),(W1,0

A3: ((writing,true),(counter,0),(R0,2),(R1,0),(W0,1),(W1,1)

Figure 5.3: Readers/writers model

We remark that the abstract transition relation can be ocactstdwithoutconstructing the concrete
transition relation, which is essential to avoid state spa@losion. Given the model in Figurelb.2,

if there are 2 readers and 2 writers, then the abstract ti@msystem is shown in Figufe’.3.

A concrete execution of s can be uniquely mapped to an executiomdgf by applyingF to every
configuration in the sequence. For instanceXlet (¢, c1,- -, ¢;,- - -) be an execution of s (i.e.,

a concrete execution), the mapped executiod 8is L = (F(¢g), F(c1), -+, F(¢;),---) (i.e., the
abstract execution). In an abuse of notation, we wFi{&{') to denoteL. Notice that the valuation
of the global variables are preserved. Essentially, narinédion is lost during the abstraction. It

can be shown thals F ¢ if and only if Ts E ¢.

5.5 Fair Model Checking Algorithm with Counter Abstraction

Process counter abstraction may significantly reduce theeu of states. It is useful for verifying
safety properties. However, it conflicts with the notion aiffiess. A counterexample to a liveness
property under fairness must be a fair execution of the sys&y Definition[8 andIl0, the knowl-
edge of which processes are enabled or engaged is necaseadgii to check whether an execution
is fair or not. In this section, we develop the necessaryréras and algorithms to show that model

checking under fairness constraints is feasible even witthee knowledge of process identifiers.

By assumption the total number of processes is finite, theadidransition system s has finitely

many states. An infinite execution dfs must form a loop (with a finite prefix). Assume that the

5.5. FAIR MODEL CHECKING ALGORITHM WITH COUNTER ABSTRAQVYIO 102

loop starts with index and ends with, written asL’; = (€0, Ciy Cit1, "+ Citk, Citk+1) Where
ciirr1 = ¢i- We define the following functions to collect loop propestiend use them to define
fairness later.

always(L¥) = {s : State |Vj : {i,---,i+ k}, enabled(s,c;)}

once(L¥) = {s: State|3j:{i,---,i+k}, enabled(s,c;)}

leave(LY) = {s: State |3j: {i,--,i+k}, ¢; —Ls ¢j+1 A s € Ls}
Intuitively, always(LF) is the set of local states from where there are processeshwane ready to
make some progress, throughout the execution of the leog;(L) is the set of local states where
there is a process which is ready to make some progress,sableee during the execution of the
loop; leave(LY) is the set of local states from which processes leave duniadoop. For instance,
given the abstract transition system in Figuré 53+~ (A0, A1, A2)* is a loop starting with index
0 and ending with inde®. always(X) = &; once(X) = {RO, R1, WO0}; leave(X) = {R0, R1}.

The following lemma checks whether an execution is fair by twoking at the abstract execution.

Lemma 5.5.1 Let S be a system modelX be an execution of s; Li? = F(X) be the respective
abstract execution ofls. (1). always(LF) C leave(L}) if X is weakly fair; (2). once(LF) C

leave(L¥) if X is strongly fair.

Proof: (1). AssumeX is weakly fair. By definition, if states is in always(L¥), there must be
a process residing atwhich is enabled to leave during every step of the loop. I§ithe same
processP, P is always enabled during the loop and therefore, by Defimi@pP must participate
in a transition infinitely often because is weakly fair. ThereforeP must leaves during the loop.
By definition, s must be inleave(L¥). If there are different processes enabled during the loop,

there must be a process leavingso thats € leave(LF). Thus,always(LY) C leave(L¥).

(2). AssumeX is strongly fair. By definition, if state is in once(L}), there must be a process
residing ats which is enabled to leave during one step of the loop.R bk the process. Becauge

is infinitely often enabled, by Definitidd 8 must participate in a transition infinitely often because
X is strongly fair. ThereforeP must leaves during the loop. By definitions must be ineave(L}).

a

5.5. FAIR MODEL CHECKING ALGORITHM WITH COUNTER ABSTRAQVYIO 103

The following lemma generates a concrete fair execution lastractair execution is identified.

Lemma 5.5.2 LetS be a model,L* be an execution ods. (1). There exists a weakly fair execution
X of Ts such thatF(X) = L if always(LY) C leave(L¥); (2). If once(L¥) C leave(LF), there
exists a strongly fair executioX of T's such thatF(X) = L¥.

2

Proof: (1). By a simple argument, there must exist an execulioof Ts such thatF(X) = L.
Next, we show that we can unfold the loop (of the abstracefadicution) as many times as necessary
to let all processes make some progress, so as to generakly ¥egr concrete execution. Assume
P is the set of processes residing at a statiiring the loop. Becaus@ways(LY) C leave(L}),

if s € always(LY), there must be a transition during which a process leav&¥e repeat the loop
multiple times and choose a different process frBrio leave each time. The generated execution

must be weakly fair.

(2). Similarly as above. O

The following theorem shows that we can perform model chrgckinder fairness by examining the

abstract transition system only.

Theorem 5.5.3 LetS be a system model. Letbe a LTL property.(1). S .y ¢ if and only if for
all executionsLt of As we havealways(L¥) C leave(LF) = L¥ F ¢; (2). S Fy ¢ if and only if

for all executionL? of As we haveonce(L¥) C leave(LY) = L¥ F ¢.

Proof: (1). if part: Assume that for all? of As we haveL! F ¢ if always(L¥) C leave(L¥), and
S Fur ¢. By definition, there exists a weakly fair executighof T's such thatX 7 ¢. Let Lk
be F(X). By lemma&Ell glways(LF) C leave(L¥) and hencdl} = ¢. Because our abstraction
preserves valuation of global variabldg, ¥ ¢ as X ¥ ¢. We reach a contradiction.

only if part: Assume tha$ =, ¢ and there exists? of As such thatlways(L¥) C leave(L¥), and
Lk Fur ¢. By lemmaBR, there must exidt of T's such thatX is weakly fair. Because process

counter abstraction preserves valuations of global viasaly’ & ¢. Hence, we reach contradiction.

(2). Similarly as above. O

5.5. FAIR MODEL CHECKING ALGORITHM WITH COUNTER ABSTRAQNYIO 104

Thus, in order to prove tha satisfiesp under fairness, we need to show that there is no execution
L% of As such thatL? & ¢ and the execution satisfies an additional constraint fondas, i.e.,
always(LY) C leave(L¥) for weak fairness obnce(L¥) C leave(LF) for strong fairness. Or, if

S Hur ¢, then there must be an executibh of As such thatZ} satisfies the fairness condition and

L% & ¢. In such a case, we can generate a concrete execution.

Following the above discussion, fair model checking patenmed systems is reduced to searching
for particular loops inds. We amend those SCC based algorithms presented in Chhmteopé
with weak or strong fairness and process counter abstrac@ven As and a property), model
checking involves searching for an executiondgf which fails ¢. In automata-based model check-
ing, the negation of is translated to an equivalent Buchi automakbn,, which is then composed
with As. Notice that a state in the produce 4§ andB— 4 is a pair(a, b) wherea is an abstract

configuration ofds andb is a state of3— 4.

Given a transition system, a strongly connected subgraphsisbgraph such that there is a path
connecting any two states in the subgraph. An MSCC is a madstrangly connected subgraph.
Given the product ofAds and B—,, let scg be a set of states which, together with the transitions
among them, forms a strongly connected subgraph. Wes@ais accepting if and only if there
exists one statéa, b) in scg such thath is an accepting state &, 5. In an abuse of notation, we
refer toscg as the strongly connected subgraph in the following. Thieviehg lifts the previously

defined functions on loops to strongly connected subgraphs.

always(scg) = {y : State |V : scg, enabled(y,x)}
once(scg) = {y: State | Jx : scg, enabled(y,x)}
leave(scg) = {z: State | zx,y : scg, z € leave(z,y)}

always(scg) is the set of local states such that for any local stat@imys(scg), there is a process
ready to leave the local state for every statesd; once(scg) is the set of local states such that
for some local state imnce(scg), there is a process ready to leave the local state for sortee sta
in scg; andleave(scg) is the set of local states such that there is a transitiastgrduring which
there is a process leaving the local state. Given the absteasition system in Figule8.3¢g =
{A0, A1, A2, A3} constitutes a strongly connected subgraplways(scg) = nil; once(scg) =
{R0O, R1, W0, W1}; leave(scg) = {RO, R1, W0, W1}.

5.5. FAIR MODEL CHECKING ALGORITHM WITH COUNTER ABSTRAQVYIO 105

procedure checking Under WeakFairness(As, B—)

1. while there are un-visited states ity ® B—

use the improved Tarjan’s algorithm to identify one SCC, say
3 if scg is accepting td3— , andalways(scg) C leave(scg)
4. generate a counterexample aeturn false

5. endif
6.

7.

o

endwhile
return true;

Figure 5.4: Model checking algorithm under weak fairness

Lemma 5.5.4 LetS be a system model. There exists an executfoof As such thatalways(L¥) C

leave(L¥) if and only if there exists an MSC&c of As such thatalways(scc) C leave(sce).

Proof: Theif part is trivially true. Theonly if part is proved as follows. Assume there exists
executionL¥ of As such thatalways(L¥) C leave(L¥), there must exist a strongly connected
subgraphscg which satisfiesalways(scg) C leave(scg). Let scc be the MSCC which contains
scg. We havealways(scc) C always(scg), therefore, the MSCGecc satisfiesalways(scc) C

always(scg) C leave(scg) C leave(sce). O

The above lemma allows us to use MSCC detection algorithmsnfwlel checking under weak
fairness. Figur€hl4 presents an on-the-fly model checHoyithm based on Tarjan’s algorithm
for identifying MSCCs. The idea is to search for an MS&g such thatlways(scg) C leave(scg)
andscg is accepting. The algorithm terminates in two ways, either such MSCC is found or all
MSCCs have been examined (and it returns true). In the focame, an abstract counterexample is
generated. In the latter case, we successfully prove theepso Given the system presented in Fig-
ure[5B,{ 40, A1, A2, A3} constitutes the only MSCC, which satisfievays(scg) C leave(scg).

The complexity of the algorithm is linear in the number ofis#ions ofAs.

Lemma 5.5.5 LetS be a system model. There exists an executfoof As such thatonce(L¥) C
leave(L¥) if and only if there exists a strongly connected subgraghof As such thatonce(scg) C

leave(scg).

5.5. FAIR MODEL CHECKING ALGORITHM WITH COUNTER ABSTRAQYIO 106

procedure checking UnderStrongFairness(As, B— 4, states)
1. while there are un-visited states stutes
2. use Tarjan’s algorithm to identify a subsetsafites which forms a SCC, saycg;

3 if scg is accepting td3— 4

4 if once(scg) C leave(scg)

5. generate a counterexample aeturn false;

6. else if checking UnderStrongFairness(As, B— 4, scg \ bad(scg)) is false
7 return false;

8 endif

9 endif

10. endwhile

11. return true;
Figure 5.5: Model checking algorithm under strong fairness

We skip the proof of the lemma as it is straightforward. Therea allows us to extend the algorithm
proposed in[[202] for model checking under strong fairn&sgure[5.b presents the modified algo-
rithm. The idea is to search for a strongly connected sulbgrapsuch thabnce(scg) C leave(scg)
andscg is accepting. Notice that a strongly connected subgraph beusontained in one and only
one MSCC. The algorithm searches for MSCCs using Tarjagsrigthm. Once an MSCGcy is
found (at line 2), ifscg is accepting and satisfiesice(scg) C leave(scg), then we generate an
abstract counterexample. dég is accepting but failence(scg) C leave(scg), instead of throwing
away the MSCC, we prune a setliFd stategrom the SCC and then examinate the remaining states
(at line 6) for strongly connected subgraphs. Intuitivédgd statesare the reasons why the SCC

fails the conditiononce(scg) C leave(scg). Formally,

bad(scg) = {x : scg | Jy, y & leave(scg) N y € enabled(y,z)}

That is, a states is bad if and only if there exists a local stajesuch that a process may leave
y at states and yet there is no process leavipgiven all transitions inscg. By pruning all bad
states, there may be a strongly connected subgraph in thedmeig states satisfying the fairness

constraint.

The algorithm is partly inspired by the one presented_in [¥06 checking emptiness of Streett

automata. Soundness of the algorithm follows the discasgif?02,/106]. It can be shown that any

5.6. COUNTER ABSTRACTION FOR INFINITELY MANY PROCESSES07

state of a strongly connected subgraph which satisfies ti&raints is never pruned. As a result, if
there exists such a strongly connected subgeapha strongly connected subgraph which contains
scg or scg itself must be found eventually. Termination of the alduritis guaranteed because the
number of visited states and pruned states are monotgnicaiteasing. The complexity of the
algorithm is linear in#states x #trans where#states and#trans are the number of states and

transitions of4ds respectively. A tighter bound on the complexity can be foimfL0g].

5.6 Counter Abstraction for Infinitely Many Processes

In the previous sections, we assume that the number of meséand hence the size of the abstract
transition system) is finite and bounded. If the number otesses is unbounded, there might
be unbounded number of processes residing at a local stgtefbe number of reader processes
residing atR0 in Figure[22 might be infinite. In such a case, we choosetaff humber and then
apply further abstraction. In the following, weodifythe definition of abstract configurations and

abstract transition systems to handle unbounded numbeoocégses.

Definition 21 Let S be a system model with unboundedly many processesK e a positive
natural number (i.e., the cutoff number). An abstract camfigon of S is a pair (v, g) wherew

is the valuation of the global variables and: State — N U {w} is a total function such that
g(s) = nifand only ifn(< K) processes are residing atand g(s) = w if and only if more than

K processes are at.

Given a configuratiorv, (so, s1, - - -)), we define a functio similar to functionF, i.e.,G({so, s1,
--+))) returns functiory (refer to Definitio{ZIL) such that given any statey(s) = n if and only if
there aren states in(sy, s1, - - -) which are equivalent te andg(s) = w if and only if there are more

than K states in(sg, s1, - - -) which are equivalent te. FurthermoreG(c) = (v, G({(so, s1,"*))).

The abstract transition relation &f(as per the above abstraction) can be constructed without co
structing the concrete transition relation. We illustriatev to generate an abstract transition in the

following. Given an abstract configuratidn, g), if g(s) > 0, alocal transitionfrom states to state

5.6. COUNTER ABSTRACTION FOR INFINITELY MANY PROCESSES08

startread
startread startread stopwrlte
stoprea
W ~~stopread-~ startw

Al: ((writing,false),(counter,1),(R0,inf),(R1,1),(W0,inf),(W1,0
A2: ((writing,false),(counter,inf),(R0,inf),(R1,inf),(WO0,Inf),(W1,0))
A3: ((writing,true),(counter,0),(R0,inf),(R1,0),(WO0,inf),(W1,1))

AO: Writing,falsei,gcounter,O;,ERO,lnfg,ERl,Og,%WO,Inf;,g\;Vl,O;;

Figure 5.6: Abstract readers/writers model

s’, creating a process with initial statei¢t may result in different abstract configuratiofvs g’)
depending ory. In particular,¢’ equalsg except thaty'(s) = g(s) — 1 andg’(s’) = g(s') + 1 and
g'(init) = g(init) + 1 assumingu+1 = w, K +1 = w andw — 1 is eitherw or K. We remark that
by assumptiorState is a finite set and therefore the domaingak always finite. This allows us to
drop the assumption that the number of processes must lebifitre process creation. Similarly,

we abstract synchronous transitions and process termimnati

The abstract transition systerior a system mode$ with unboundedly many processes, written as
Rs (to distinguish fromAgs), is now obtained by applying the aforementioned abstractsition

relation from the initial abstract configuration.

Example 5.6.1 Assume that the cutoff number is 1 and there are infinitelyymaaders and writers
in the readers/writers model. Becausamnter is potentially unbounded and, we matéunter as

a special process counter variable which dynamically ot number of processes which are
reading (at staté1). If the number ofeadingprocesses is larger than the cutoff numbenter

is set tow too. The abstract transition systedr;; is shown in Figuré€sl6. The abstract transition
system may contain spurious traces. For instance, the {saee, (stopread)®) is spurious. It is

straightforward to prove that gy F Prop; based on the abstract transition system. end

The abstract transition system now has only finitely mangstaven if there are unbounded number
of processes and, therefore, is subject to model checkisgliustrated in the preceding example,
the abstraction is sound but incomplete in the presencelmumdedly many processes. Given an

executionX of Ts, let G(X) be the corresponding execution of the abstract transigistes1. An

5.7. EXPERIMENTS OF PROCESS COUNTER ABSTRACTIONO09

executionL of Rg is spurious if and only if there does not exist an executlomnf 7Ts such that
G(X) = L. Because the abstraction only introduces execution trémesdoes not remove any),
we can formally establish a simulation relation (but not sirbulation) between the abstract and
concrete transition systems, that i& simulatesTs. Thus, while verifying a LTL property we
can concludels E ¢ if we can show thaiRs E ¢. Of course,Rs E ¢ will be accomplished by

model checking under fairness.

The following re-establishes Lemra®’l5.1 and (part of) Teele. 5.8 in the setting dfs. We skip
the proof as they are similar to that of Lemma3.5.1 and Theff&. 3 respectively.

Lemma 5.6.2 Let S be a system modeX be an execution of's and L¥ = G(X) be the corre-
sponding execution @ts. We have 1). always(L¥) C leave(LF) if X is weakly fair;(2).once(L¥)

C leave(LF) if X is strongly fair.

Theorem 5.6.3 LetS be a system model ardbe a LTL property(1). S =, ¢ if for all execution
traces L} of Rs we havealways(L¥) C leave(LY) = LF F ¢; (2). S Fy ¢ if for all execution

tracesL? of Rs we haveonce(LF) C leave(LY) = L¥ F ¢;

The reverse of Theorei 5.6.3 is not true because of spuniaoest We remark that the model
checking algorithms presented in Sectionl 5.5 are appbcabRs (as the abstraction function is
irrelevant to the algorithm). By Theoreln'5).3, if model ckiag of Rs (using the algorithms
presented in Sectidn®.5 under weak/fairness constratijns true, we conclude that the system

satisfies the property (under the respective fairness).

5.7 Experiments of Process Counter Abstraction

In this section, we conduct experiments on real-life systemmdemonstrate the effectiveness of the
process counter abstraction technique. The experimesgalts are summarized in the Tabl€el5.2,
where NA means not applicable (hence not tried, due to lifnihe tool); NF means not feasible

(out of 2GB memory or running for more than 4 hours). The datbtained with Intel 9550 CPU at

5.7. EXPERIMENTS OF PROCESS COUNTER ABSTRACTION10

Model | #Proc Property No Fairness Weak Fairness Strong Fairness
Result | PAT | SPIN | Result| PAT | SPIN | Result| PAT | SPIN
LE 10 OO one leader | false | 0.04 | 0.02 true | 0.06 | 320 true | 0.06 | NA
LE 100 OO one leader | false | 0.04 | 0.02 true | 0.27 | NF true | 0.28 | NA
LE 1000 | & one leader | false | 0.04 | NA true | 2.26 | NA true | 2.75| NA
LE 10000 | &GO one leader | false | 0.04 | NA true | 23.9| NA true | 68.8| NA
LE %9 OO one leader | false | 0.06 | NA true 265 NA true 464 NA
KV 2 Propgyatue false | 0.05 0 true 0.6 | 1.14 true 0.6 NA
KV 3 Propgyatue false | 0.05 0 true | 4.56| 61.2 true | 459 | NA
KV 4 Proprvatue false | 0.05| 0.02 true | 29.2| NF true | 30.2| NA
KV 5 Proprvatue false | 0.06 | 0.02 true 175 | NF true 187 | NA
KV 00 Propryatue false | 0.12| NA ? NF NA ? NF NA
Stack 5 Propstack; false | 0.06 | 0.02 false | 0.78 | NF false | 0.74 | NA
Stack 7 Propstack; false | 0.06 | 0.02 false | 11.3 | NF false | 12.1| NA
Stack 9 Propstack; false | 0.06 | 0.02 false | 159 NF false | 192 NA
Stack 10 Propstact false | 0.05| 0.02 | false | 596 | NF false | 780 | NA
ML 10 < access true 0.11| 215 true 0.11 | 107 true 0.11| NA
ML 100 < access true 1.04 | NF true 1.04 | NF true 1.04 | NA
ML 1000 < access true 11.0| NA true 11.1| NA true 11.1| NA
ML 00 < access true 13.8| NA true 13.8| NA true 13.8| NA

Table 5.2: Experimental results of process counter aligirac

2.83GHz and 2GB RAM. We compared PAT with SP[N[111] on modhelaking under no fairness

or weak fairness. Notice that SPIN does not support strangefss and is limited to 255 processes.

The first model LLE) is a self-stabilizing leader election protocol for conplaetworks (i.e., any
pair of nodes are connected) [88]. The property is that exadigtalways there is one and only one
leader in the network, i.eO one leader. PAT successfully proved the property under weak or
strong fairness for many or unbounded number of network si¢aith cutoff number 2). SPIN
took much more time to prove the property under weak fairn&ge reason is that the fair model
checking algorithm in SPIN copies the global state machine?2 times (forn processes) so as to
give each process a fair chance to progress, which incréasegrification time by a factor that is

linear in the number of network nodes.

5.7. EXPERIMENTS OF PROCESS COUNTER ABSTRACTION11

The second model(V) is a K-valued registei [22]. A shared K-valued multi-reagiegle-writer
registerR can be simulated by an array &f binary registers. The complete model can be found in
ExampldZ.Z1l in Sectidn 7.2.1. gkogressproperty we tested is th#trop ke = O(read_inv —
Oread_res), i.e., a reading operationdad_inv) eventually returns some valid valueeqd_res).
With no fairness, both PAT and SPIN identified a countereXargpickly. Because the model con-
tains many local states, the sizeAy¥ increases rapidly. PAT proved the property under weakigtro

fairness for 5 processes, whereas SPIN was limited to 3 gsesewith weak fairness.

The third model §tack) is a lock-free stack [210]. In concurrent systems, in otdémprove the
performance, stacks can be implemented by a linked liseshlay arbitrary number of processes.
Each push or pop operation keeps trying to update the stadknorother process interrupts. The
property of interest is that a process must eventually be sblupdate the stack, which can be
expressed as the LTPropgacr, = O(push_inv — Opush_res) where evenpush_inv (push_res)

marks the starting (ending) pfush operation. The property is false even under strong fairness

The fourth model {/L) is the Java meta-lock algorithrnl [5]. In Java language, djgab can be
synchronized by different threads via synchronized mettarcstatements. The Java meta-locking
algorithm is designed to ensure the mutually exclusive gt®an object. A synchronized method
first acquires a lock on the object, executes the method amdréleases the lock. The property is
that always eventually some thread is accessing the obecta access, which is true without

fairness. This example shows that the computational oaertee to fairness is negligible in PAT.

In another experiment, we use a model in which processeshiive differently (so that counter
abstraction results in no reduction) and each process hag loeal states. We then compare the
verification results with or without process counter alzdiosm. The result shows the computational
and memory overhead for applying the abstraction is ndgégiIn summary, the enhanced PAT
model checker complements existing model checkers in tefmst only performance but also the

ability to perform model checking under weak or strong fagmwith process counter abstraction.

5.8. SUMMARY 112

5.8 Summary

In the literature, a number of population protocols haventeposed to solve problems in wireless
sensor networks. The correctness of these protocols m@liegobal fairness, which makes their
automatic verification using existing model checkers espenor even infeasible. In this chapter,
we have applied proposed fairness model checking algositdesigned to handle verification under
fairness more efficiently, to a set of self-stabilizing plapion ring protocols. We have shown
that the model checking algorithm allows us to successfudliify instances of these protocols.

Moreover, it has helped us to identify one previously unkndng in a leader election protocol.

During the analysis, we have faced the infamous state arplgsoblem (see Tab[g3.1). To solve
this problem, we studied model checking under fairness pirititess counter abstraction. We pre-
sented a fully automatic method for property checking uridieness with process counter abstrac-
tion. We showed that fairness can be achieved without thevlauge of process identifiers. We

have shown the effectiveness of our approach by conductipgrienents on real-world systems.

Pang et all[161] applied the SPIN model checker to estaldtistcorrectness of a family of popu-
lation protocols. Only small networks (i.e., with few noflegere verified under weak fairness in
SPIN. Theorem proving is used in verifying population poatig with arbitrary size [64]. However,
translating protocols into theorem prover accepted fasmaind manual proof make this approach
difficult to apply. PAT can handle global fairness required the correctness of most population

protocols, which makes PAT an ideal candidate for autoralifiwerifying population protocols.

The works closest to counter abstraction approach are thigoohe presented i [68, 168, 167]. In
particular, verification of liveness properties underrfass is addressed in[167]. [n.[167], the fair-
ness constraints for the abstract system are generatedaltyafuu via heuristics) from the fairness

constraints for the concrete system. Different from thevabworks, our method handles one (pos-
sibly large) instance of parameterized systems at a timeuaed counter abstraction to improve
verification effectiveness. In addition, fairness cormudifi are integrated into the on-the-fly model
checking algorithm which proceeds on the abstract stateseptation - making our method fully

automated. Our method is also related to work on symmetnyctexh 82 [57].

Chapter 6

Refinement Checking

The previous chapters have been focused on temporal logilelnebecking. An alternative ap-
proach is refinement checking, which has been successfeityodstrated by FDR_[175]. In this

chapter, we enrich PAT with this capability.

Hoare’s classic Communicating Sequential Processes (T&])[has been a rather successful
event-based modeling language for decades. Theoretigalogenent on CSP has advanced for-
mal methods in many ways. Its distinguishable featuresdigbabetized parallel composition have

proven to be useful in modeling a wide range of systems.

FDR (Failures-Divergence Refinement) is tihe factoanalyzer for CSP, which has been success-
fully applied in various domains. Based on the model chegllgorithm presented im [1F5] and
later improved with other reduction techniques presemdi49], FDR is capable of handling large
systems. Nonetheless, since FDR was initially introduosatjel checking techniques have evolved
much further in the last two decades. Quite a number of @feeceduction methods have been pro-
posed which greatly enlarge the size the systems that caanukdd. Some noticeable ones include
partial order reduction, symmetry reduction, predicatstralgtion, etc. In this chapter, we present
a on-the-fly refinement checking algorithm designed to ipomate advanced model checking tech-

niques to analyze event-based hierarchical systems.

113

6.1. FDR AND REFINEMENT CHECKING 114

The remainder of the chapter is organized as follows. Wdlbiii@roduce FDR and its refinement
checking in Sectiofi_6l1. Sectidnb.2 proposes a refinemeaattkelyg algorithm integrated with
partial order reduction. Sectidn 6.3 presents the expetimheesults of the proposed algorithm,

compared with FDR model checker. Secfiod 6.4 concludesHapter.

6.1 FDR and Refinement Checking

Failures-Divergence Refinement (FOR[L75]) is a well-egthbd model checker for CSP. Different
from temporal logic based model checking, using FDR, safiggness and combination properties
can be verified by showing a refinement relation from the CSéeainaf the system to a CSP process
capturing the properties. In addition, FDR verifies whetherocess is deadlock-free or not. In the
following, we review the notions of different refinementi@alence relationship in terms of labeled

transition systems (see Sectlon3.1.2).

Given a modelS = (Var, initg, P), let L = (9, init, —) be the LTS ofS. Let s, s’ be members
of S, X denote the set of all visible events ity 7 denote the set of all invisible events, abd be

> U . We define the following notions.

e cnabled(s) = {e: X, | 3’ @ s 5 s'}. Astates is stable if and only ifr ¢ enabled(s).

e mrefusal(s) = X\ enabled(s) is the maximum refusal set, i.e., the maximum set of events

which can be refused.
¢ A state is a divergence stafév(s) if and only if s can be extended with infinitetransitions.

e The set of divergence traces ©f written asdivergence(L), is {tr : ¥* | 3¢/, tr' is a prefix
of tr Ads: S, init LGP div(s)}. Note that if some prefix of a given trace is a divergence

trace, the given trace is too.

e The set of failures ofZ, written asfailures(L), is {(tr, X) : ©* x 2% | s : S, init s A
X C %\ enabled(s)} U{(tr,X) : ¥* x 2¥ | tr € divergence(L)}. Note that the system

state reached by a divergence state may refuse all events.

6.1. FDR AND REFINEMENT CHECKING 115

The following defines refinement and equivalence.

Definition 22 (Refinement and Equivalence)Let L, = (Sim, initim, —im) be a LTS represent-
ing an implementation. LeL,, = (S, inity,, —4,) be a LTS representing a specification.
Ly refinesLy, in the trace semantics, written &;,,, 2, Ly, if and only if traces(Liy,) C
traces(Lsp). Lim refinesLy, in the stable failures semantics, written 8s,, 2, L, if and
only if failures(Lim) C failures(Lspy). Lim refines Ly, in the failures/divergence semantics,
written asL;,, J, Ly, if and only if failures(Lim,) C failures(Ls,) and divergence(Lip,) C
divergence(Lsp). Lim €qualsLy, in the trace (stable failures/failures divergence) serieanif and

only if they refine each other in the respective semantics.

Different refinement relationship can be used to estabiiérent properties. Safety can be verified
by showing a trace refinement relationship. Combinatioratdty and liveness is verified by show-
ing a stable failures refinement relationship if the systedivergence-free or otherwise by showing
a failures/divergences refinement relationship. The restoleuld refer to[[178] for a discussion on
the expressiveness of CSP refinement. In the following, weewm 3 Sp to meanl;,, 3 Lg,

whenever it will not cause confusion. Internally, equivale relationships may be used to simplify

process expressions, e.g.0 P is replaced byP for simplicity.

Example 6.1.1 The following models the classic dining philosophérs [108]

Phil(i) = get.i.(i +1)%N — get.i.i — eat.i —
— put.i.(i +)AN — put.i.i — think.i — Phil(i)
Fork(i) = get.i.i — put.i.i — Fork(i) O
get.(i — 1)%N.i — put.(i — 1)%N.i — Fork(1)
Pair(i) = (Phil(4) || Fork(i)) \ {get.i.i, put.i.i, think.i}
College = (||, Pair(i)) \ UM {get.i.(i + 1)%N, put.i.(i + 1)%N}

where N is a global constant (i.e., the number of philosophegs),i.j (put.i.j) is the action of
the i-th philosopher picking up (putting down) theth fork andfc is a global variable recording
the amount of food that has been consumed. The system is sachpdN philosopher-fork-pairs
running in parallel. FigurE®@.1 is the transition system(flege with N = 2. All events except

the bolded ones are invisible.

6.1. FDR AND REFINEMENT CHECKING 116

get.1. get.0.1
S eat0, get.o'oﬁ%‘}@get,l.l -y eatl o
put.0.1 -4 gt put.1.0
9

2 put.0.0 5 think.0 0 think.1 10 put.1.1

Figure 6.1: LTS for 2 dining philosophers

Assume that the following process is used to capture theeptypgor the dining philosophers:
Prop 2”?:01 Eat(i) whereEat(i) = eat.i — Fat(i). It can be shown thafollege trace-refines
Prop (given a particulatV). Informally speaking, that means it is possible for eacitogbpher to
eat, i.e.{eat.0,- -, eat.(N —1)}* are traces oCollege. In order to show that it ialwayspossible
for him/her to eat, we need to establi€hilege 3, Prop, which is not true, i.e., assumeé = 2,

((get.0.1, get.1.0), { eat.0, eat.1}) is in failures(College) but notfailures(Prop). end

In order to check refinement, every reachable state of theemmgntation reachable from the initial
state via some trace must be compared with every state op#uifisation reachable via the same
trace. There may be many such states in the specificationodoendeterminism. In FDR, the
specification is firstly normalized so that there is exactig gtate corresponding to each possible
trace. A state in the normalized LTS is a set of states whichtmareached by the same trace
from the initial state. For instance, Figurel6.2 shows thematized LTS of the one presented in
Exampld&.TH.

Definition 23 (Normalized LTS) Let (S, init,—) be a LTS. The normalized LTS(i&'S, Ninit,
NT) where NS is the set of subsets 6f, Ninit = 7*(init), and NT = {(P,e, Q) | P € NS A
Q={s:S|3v:P, Jua: 85, (v1,e,1) E=As € T"(1)}}.

Given a normalized statec NS,
o enabled(s) is|J,c, enabled(x),
o mrefusal(s) is {mrefusal(z) | € s}, which is a set of maximum refusal sets,

e div(s) is true if and only if there exists € s such thatdiv(z) is true.

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 117

0 1,2,6,7,8,9 eat.0

Figure 6.2: Normalized LTS for 2 dining philosophers

Given a LTS constructed from a process, the normalized LT&sponds the normalized process.
A state in the normalized LTS groups a set of states in theénalig TS which are all connected by

T-transitions. Given a trace, exactly one state in the nde@@lILTS is reached. FDR then traverses
through every reachable states of the implementation ampaces them with the corresponding

normalized states in the specification (refer to the algoripresented ir [175]).

6.2 An Algorithm for Refinement Checking

This section is devoted to algorithms for refinement chagkiWe start with reviewing a slightly
modified on-the-fly checking algorithm based on the one impleted in FDR and then improve it

with partial order reduction.

6.2.1 On-the-fly Refinement Checking Algorithm

Let Spec = (Ssp, inits,, —5p) be a specification andémpl = (Siy,, initiy,, —m) be an imple-
mentation. Refinement checking is reduced to reachabihlyais of the product ofmpl and
normalizedSpec. It has been shown that such an approach works well for cemaidels [179].
Nonetheless, because normalization in general is conguddiy expensive, it may not be always
desirable. Thus, we adopted an alternative approach. éifi@rpresents the on-the-fly refinement
checking algorithm. The algorithm similarly performs aaieability analysis in the product of the
implementation and the normalized specification. The difiee is that normalization is brought

on-the-fly as well.

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 118

procedure refines(Impl, Spec)

0. checked := @,

1. pending.push((initimy, , 7 (initsp)));
2. while pending # @

3. (Im, NSp) := pending.pop();

4. checked := checked U {(Im, NSp)};

5. if —(enabled(Im) \ {7} C enabled(NSp)) -C1
6. V (17 & Im A — existSuperSet(mrefusal(Im), mrefusal(NSp))) -C2
7. V (= div(NSp) A div(Im)) -C3
8. return false;

9. else

10. foreach (Im’, NSp') € next(Im, NSp)

11. if (Im’, NSp') & checked

12. pending.push((Im’, NSp'));

13. endif

14. endfor

15. endif

16. endwhile

17. return true;

Figure 6.3: Algorithm:refines(Impl, Spec)

Details of the following procedures are skipped for breviyoceduréau(S) explores all outgoing
transition of S and returns the set of states reachable fivwia a r-transition. We remark that
this procedure will be refined later. ProceduréS) is implemented using a depth-first-search
procedure. The set of states reachable fr$maia only 7 transitions is returned. For instance,
given the LTS in ExamplE®6.1.%,*(0) returns{0,1,2,6,7,11}. The proceduréau(S) is applied
repeatedly until all--reachable states are identified. ProcedurgtSuperSet(z, Y') wherez is a

set andY is a set of sets returns true if and only if there exists Y such that: C y.

Depending on the type of refinement relationship, the algoriperforms a depth-first search for
a pair(Im, NSp) where Im is a state of the implementation aibp is a state of the normalized
specification such that, the enabled eventdmfis not a subset of those @Sp (Cl), or Im is
stable and there does not exist a stateVisp which refuse all events which are refused by

(C2), or Im diverges but notVSp (C3). The algorithm returns true if no such pair is found. Note

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 119

procedure next(Im, NSp)
0. toReturn := &

1. foreach e € enabled(Im)
2. ife==r

3. foreach Im’ € tau(Im)

4. toReturn := toReturn U {(Im’, NSp)};
5. endfor

6. else

7. NSp' :={s|3z:NSp,xz 5 2/ Ase1*(z")};
8. foreach Im’ such that Im = Im’

9. toReturn := toReturn U {(Im’, NSp')};
10. endfor

11. endif

12. endfor

13. return toReturn;

Figure 6.4: Algorithm:nezt(Im, NSp)

that if C1 is satisfied, a counterexample is found for any refinementlchg; if C2 is satisfied,
a counterexample is found for stable failures refinementldihg or failure/divergence refinement
checking; ifC3 is satisfied, a counterexample is found for fairlure/diesce refinement checking
only. The procedure for producing a counterexample is glddpr simplicity. Producing the short-
est counterexample requires a breath-first-search agtatifging the faulty state. Line 10 to 14 of
algorithmrefines explores new states of the product and pushes them intodblkestnding. The
procedurenezt is presented in Figufe8.4. Given a péim, NSp), it returns a set of pairs of the
form (Im', NSp') for each enabled event im. If the event is visible NSp’ is a successor aVSp
via the event andm’ is the successor dfn via the same event. Otherwisky’ is a successor of
I'm via ar-transition andVSp’ is Sp. Because normalization is brought on-the-fly, it is sometim
possible to find a counterexample before the specificatioarigpletely normalized. The soundness

of the algorithm follows the soundness discussion in[175].

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 120

6.2.2 Partial Order Reduction

As any model checking algorithm, refinement checking ssffeym state space explosion. A num-
ber of attempts have been applied to reduce the search §bé&ije This section describes the one
implemented in PAT based on partial order reduction. Ouunctdn realizes and extends the early
works on partial order reduction for process algebras afiderent checking presented [n[214]
and [219]. The inspiration of the reduction is that eventy & independent, e.ghink.7 is mu-
tually independent of each other. Givén= P, || --- || P, and two enabled events and e, ¢; is

dependent oé,, written asdep(e;, e2), and vice versa only if one of the following is true,

e ¢; andey are from the same process.

e ¢; = e SO that they may be synchronized, egrt.i.i of processPhil(i) and get.i.i of

processFork(i).

e ¢ updates a variable whic#y depends on or vice versa, e.g., becatge; updates a global

variable, alleat.i are inter-dependent.

Two events are independent if they are not dependent. Bed¢hasrdering of independent events
may be irrelevant to a given property, we may deliberatefyoig some of the ordering so as to
reduce the search space. Partial order reduction may bie@ppla number of places in algorithm
refines, namely, the proceduru(S) (and thereforgauclosure) andnext. Since indexed parallel
composition (and indexed interleaving) is the main soufcgaie space explosion, we assume that
Im is of the form(V,(Py || P2 || --- || P,) \ X) in the following and show how it is possible to

only explore a subset of the enabled transitions and yeepreshe soundness.

We start with applying partial order reduction to the pragedau. Note thattau is applied to the
specification or implementation independently. Thus, ag s we guarantee that the reduced state
space (of eithefmpl or Spec) is failures/divergence equivalent to the full state spaeeprove that
there is a refinement relationship in the reduced state spawd only if there is one in the full state

space. FigurE8l5 show our algorithm for selecting a sulfstttecr-transitions. In the algorithm

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 121

procedure tau’(Im)
0. nextmoves := stubborn_tau(Im);
1. if (nextmoves # @) then return nextmoves; else return tau(Im);

procedure stubborn_tau(Im)
0. foreach P;
1. por := enabledp,(Im) C {7} U X A enabledp,(Im) = current(P;)

2 foreach e € enabledp,(Im)

3 por := por A = loop(e) ANV e' :%;,5 # i= —dep(e,e)

4 endfor

5. if por then

6 return {(((--- | P} | --)\ X), V. C') | (P, V,C) = (P, V,C")};
7. endif

8. endfor

9. return @;

Figure 6.5: Algorithm:tau’(Im) and stubborn_tau(Im)

tau’, we try to identify one set of-transitions which are independent of the rest. If such asub
is found (i.e., the algorithmtubborn_tau returns a non-empty set of successors), only the subset is
explored further. Otherwise (i.estubborn_tau returns an empty set), all possibtdransitions are
explored. Instubborn_tau, the idea is to identify one proces$} such that allr-transitions from

P; are independent of those from other processes. Note tlsaapigiroach is most effective with
T-transition generated from one process only. It is posdibleandler-transition generated from
multiple processes with a slightly more complicated pracedwhich we skip for brevity). The
details of the following simple procedures have been skip@venim = (V, P), enabledp,(Im)

is the set of enabled event from componéht i.e., enabled(Im) N enabled((V, P;)). For in-
stance, givenCollege with N = 2, enabled(Pair(0)) is {get.0.1}. current(P;) is the set of
events that could be enabled in procésgyiven the most cooperative environment. For instance,
current(Phil(i)) = {get.i.(i+1)%N } despite whether the fork is available or nbiop(e) is true

if and only if performing this event results in a state on tearsh stack, i.e., forming a cycle.

A processP; is considered a candidate only if all enabled events figmesult in7-transitions

(i.e., enabledp, (Im) C {7} U X) and no other transition could be possibly enabled giverfferdnt

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 122

environment (i.e.enabledp, (Im) = current(P;)). The former is required because we are only
interested inr-transitions. The latter (partly) ensures that no disatl@eent from P; is enabled
before executing an event frofy. Furthermore, all enabled events frdPp must not form a cycle
(so that an enabled event is not skipped for ever) or depéidesmn enabled event from some other

component. For detailed discussion on the intuition bettede conditions, refer tb [58].

Example 6.2.1 Assume thatV = 2 and the following is the current process expression,

((think.0 — Phil(0) || put.1.0 — Fork(0)) \ {get.0.0, put.0.0, think.0}) ||
(((getl.1 — eat.l — put.1.0 — put.1.1 — think.1 — Phil(1)) || Fork(1))
\{get.1.1, put.1.1, think.1}) \ {get.0.1, get.1.0, put.0.1, put.1.0}

where the first philosopher has just put down both forks wthite second one has just picked up
his first fork. Twor-transitions are enabled, i.e., one dugiik.0 and the other due tget.1.1.
The algorithmtau’ would return only the successor state after performjagl.1 (assuming it is
not on the stack). This is the only event enabled for the stommponent of the outer parallel
composition is ther transition due tgyet.1.1 (and thus the condition at line 1 efubborn_tau is
satisfied). Becausget.1.1 is local to the componenpor is true after the loop from line 2 to line 4.

end

The above algorithms apply partial order reduction-itvansitions only. tauclosure is refined as
well since it is based omau’. Unlike FDR, PAT is capable of applying partial order redoictto
visible events. Because bathupl and.Spec must make corresponding transitions for a visible event,
reduction for visible events is complicated. A conseneatipproach has been implemented in PAT.
Figure[6.6 present the algorithm, i.e., the refimedt. If Im is not stable, we apply the algorithm
stubborn_tau to identify a subset of-transitions (line 1). If no such subset exists, the pait, Sp)

is fully expanded (line 11). An algorithmtubborn_visible similar to stubborn_tau is used to check

if a given visible event is a candidate for partial order reduction. Functioncesses(e) returns all
process components (of the parallel composition) whodeahkgt containg. Firstly, we choose a
possible candidate fromn using the algorithmstubborn_visible. Evente is chosen if and only if,

for each process iprocesses(e), e is the only event from the process which can be enabled and all

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 123

procedure next'(Im, Sp)
0. if 7 € enabled(Im)
1. nextmoves := stubborn_tau(Im);
if (nextmoves # @) then return nexztmoves;
else
foreach e € enabled(Im)
por := stubborn_visible(Im, e);
foreach S € Sp
por := por N\ stubborn_visible(S, e);
endeach
if por then return {(Im’, tauclosure(Sp')) | Im = Im’ A Sp 5 Sp'}
10. endeach
11. return next(Im, Sp);

© XN O W

procedure stubborn_visible(Im, e)

0. por := —loop(e) ANVe' :3; 0¢e #e= dep(e,e);

1. foreach P; € processes(e)

2. por := por A enabledp,(Im) = current(P;) = {e};
3. return por;

Figure 6.6: Algorithm:nezt’(Im, Sp) andstubborn_visible(Im, e)

other enabled events are independent ahd performinge does not result in a state on the stack.
Next, we check ife satisfies the same set of conditions for each state in thealiaed state of the
specification. If it doese is used to expand the search tree at line 9 (and all othereshalénts are
ignored). In order to find such efficiently, the candidate events are selected in a pre-etkinder,
i.e., events which have the least number of associated sgeseare chosen first. The soundness of

the partial order reduction algorithms is proved as follows

Proof: The proof consists of two steps. Firstly, because the dlguariau’ applies to one model
only (whereasiezt’ must coordinate both the implementation and the specifichtit is sufficient
to show that the reduction regardingtransitions (i.e., the algorithmtubborn_tau) preserves fail-
ures/divergence equivalence. Secondly, we show that thuetien regarding visible events (i.e., the

algorithmnext’) is sound.

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 124

Given a LTS(S, init, —), let X be the set of eventy;; be the set of invisible events aiti, be the
set of visible events. A stubborn set generator is a funclios — 2* such that for every), s/,,
andsg, s1,... € S,e € A(sp), andey, ea,... € X— A(sg). The set As) is called a stubborn set.
In [214], the following sufficient conditions has been prove preserve CSP failures divergence

equivalence.

A If enabled(sy) # @ then A(sy) N enabled(sy) # @

A, If there are a tracéso, e, s1, €1, * » €n, Sn,) and(s,, e, s.), then there are/, ..., s, _, € S
such that(s), eg, s1, €1, -, en, sh,,) and(so, €, 8§)-

A, Ifthere are atracésy, ey, s1, €1, €n, Sn,) @and(so, €,), then there arey, ..., s/, € S such
that (s, eo, s1, €1, -, en, s,) and(sy, e, s,).

As If there are a tracéso, e, s1, €1, --) and (s, e, s5), then there are], s}, ..., € S such that
<S(/)7 €0, S{v €1y, "y >

A, Foreverys € S, eithers yN A(s) Nenabled(s) = @ or Xy C A(s) (or both).
As Vs eS:Ve e enabled(s) : 35" €S:s T S A e €A(s).

Ag Foreverys € S, if ©; N enabled(s) # @, then As) N X N enabled(s) # @.

It is thus sufficient to prove that the reduction regardinansitions satisfies the sufficient condi-
tions. In the following, letE be the reduced set of successors (i.e., the stubborn(sgt@nd F be
the full set. Notice that the result returned by algorithtmabborn_tau is returned by algorithmau’

or next’ if and only if it is not empty (line 1 ofau’ and line 2 ofnext’). Thus, as long a§' is not
empty, F' is not empty. By line 3 of algorithmtubborn_tau, transitions other than those selected in
E are all independent of those i By line 1 of stubborn_tau, because the set of possibly enabled
events must be the same of the set enabled event from the oempa transition from the com-
ponent must remain disabled unless a transition from thepooents has been taken. By theorem
3.2 of [214], Ay, A1, Ao, A3 hold. Because only-transitions are reduced ifau’, condition A, is

trivial. By the condition— loop(e) at line 3 of stubborn_tau, no action will be ignored forever, and

6.2. AN ALGORITHM FOR REFINEMENT CHECKING 125

thus A; holds. A is trivial for the same reason as for; ABy theorem 4.2 and 5.3 i [2114], the

reduction regarding-transitions preserves trace/failures/divergence afgice and thus is sound.

In order to prove that algorithmezt’ is sound, we need to prove (in addition to the above) that the
reduction regarding visible events are sound as well. Wegeréle results which have been proved
in [219] and show that the sufficient conditions propose®ite] have been full-filled. Firstly, C1
and C3in[[21D] are trivial true. Because of line 0 and &tfbborn_visible, an action dependent
(say e) on an action selected can only be executed after some asiented has been executed.
There are two cases in which this might be violated. In botthe$e cases, some transition (sdy
independent ok are executed, eventually enabled a transition that is dipgrone. In the first
case, ifa belongs to some other components. A necessary conditiahigoto happen is that is
dependent om. This is prevented by line 1. In the other cagdyelongs to the same component of
e, which is not possible because we require thatrent(P;) = {e}. The same argument applies
to line 6 to 8 which guarantees that no action dependentisrexecuted before is executed (and
there C1in[[21B] is proved). C2 il [21L9] is guaranteed by thedition — loop(e). Therefore, we

conclude the reduction is sound. O

Example 6.2.2Let P(i) = a.i — b.i — P(i). Assume the specification and implementation is
defined as:Spec :Hfzo P (i) and Impl :Hi}:O P(i). Assume we need to show thatpl trace-
refinesSpec. Initially, two events are enabled impl, i.e.,a.0 anda.1. Assume that.0 is selected
first, becauséoop(a.0) is false anda.0 is independent of all other enabled events (ieel), the
condition at line 0 of algorithrmstubborn_visible is satisfied. Because.0 is the only event that
would possibly be enabled frof(0), the condition at line 2 is satisfied too. Thus) is a possible
candidate for partial order reduction fdinpl. Similarly, it is also a candidate fd¥pec (which is

the only state in the normalized initial state). Therefave,only need to explore.0 initially. end

6.3. EXPERIMENTS 126

6.3 Experiments

We compare PAT with FDR using benchmark models for refinernbatking. For the sake of a
fair comparison, all models use only standard CSP featuhéshvare supported by both. Tallel6.1
shows the experiment results for three models, obtained2f &Hz Intel Core Duo CPU and 1

GB memory. In the table,~” means out of memory. Since FDR has no direct support foatdes,

the experiments use three examples with process definiiolys

The first example is the classic dining philosopher problehereN is the number of philosophers
and forks. Because of the modeling, partial order redudtarot effective for this example. As a
result, PAT handles about’ states (about 11 philosophers and forks) in a reasonablerznod
time. FDR performs extremely well for this example becausthe strategy discussed in [179].
Namely, it builds up a system gradually, at each stage caamg the subsystems to find an equiv-
alent process with (for this particular example) many léates. Notice that with manual hiding (to
localize some events), PAT performs much better. The seexauthple is the classic readers/writers
problem, in which the readers and writers coordinate to rensarrect read/write orderingV is
the number of readers/writers. Reduction in PAT is veryaife for this example. As a result,
PAT handles a few hundreds of readers/writers efficientlyengas FDR suffers from state space
explosion quickly (forN = 18). The third example is the Milner’s cyclic scheduling aligfam,

in which multiple processes are scheduled in a cyclic fashiRartial order reduction is extremely
effective for this model. As a result, PAT handles hundrddsracesses, whereas FDR handles less
than 14 processes. The experiment results show our best &fféar on automated model check-
ing of an extended version of CSP. It by no means suggests$ntiteof our tool. We believe that
by incorporating more reduction techniques (e.g., symynetduction) as well as fine-tuning the

implementation, the performance of PAT can be improvedifsagmtly.

We remark that we are using the intuitive modeling in thesamles. FDR compression techniques

are not fully explored.

6.4. SUMMARY 127

Model N | Property | Result | PAT (sec.)| FDR (sec.)
Dining Philosophers 5 P[T=S true 0.28125 0.067
Dining Philosophers 6 P[T=S true 0.8593 0.069
Dining Philosophers 8 P[T=S true 13.78 0.076
Dining Philosophers 10 | P[T=S true 430.28 0.107
Dining Philosophers 12 | P[T=S true - 0.319
Reader/Writers 12 | P[T=S true <1 0.812
Reader/Writers 14 | P[T=S true <1 6.906
Reader/Writers 16 | P[T=S true <1 81.247
Reader/Writers 18 | P[T=S true <1 -
Reader/Writers 50 | P[T=S true 1.097 -
Reader/Writers 100| P[T=S true 9 -
Reader/Writers 200| P[T=S true 77.515 -
Milner's Cyclic Schedulery 11 | P[T=S true <1 19.011
Milner's Cyclic Schedulerl 12 | P[T=S true <1 89.421
Milner's Cyclic Schedulerl 13 | P[T=S true <1 419.021
Milner's Cyclic Schedulery 14 | P[T=S true <1 -
Milner’s Cyclic Schedulery 50 | P[T=S true 2.406 -
Milner's Cyclic Scheduler; 100 | P[T=S true 9.765 -
Milner's Cyclic Scheduler; 200 | P [T=S true 60.453 -

Table 6.1: Experiment results for refinement checking

6.4 Summary

In this chapter, we studied refinement checking problem. tA&esl with the definitions of trace
refinement and equivalence. Based on the FDR approach, wegao an on-the-fly refinement
checking algorithm, incorporated with partial order reflut. Experiments suggest that our ap-
proach is effective compared to FDR. Though we have showesoabkere PAT outperforms FDR,

we believe that a full comparison is yet to be carried out withre experiments.

Refinement checking of CSP programs is an area that has beetywixplored. There has been

6.4. SUMMARY 128

research on techniques that require human assistance wdtksranges from completely manual
proof techniques, such as Josephs’ work on relational appes to CSP refinement checkihg [122],
to semi-automated techniques where humans must provitkethiguide a theorem prover in check-
ing refinements 746, 208, 1166, 190]. Second, there has bednomdully automated techniques to
CSP refinement checking [1I75], the state of the art being dretdon the FDR tool[[175]. Leuschel
and Butler [139] proposed a refinement checking approacB fanguage based on the searching
and tabling techniques of logic programming. However tlagproach is not on-the-fly. Kundu,
Lerner and Gupta [125] developed an automatic solutiondgbnement checking of infinite data
size. Their approach uses theorem proving to handle inBtate space, which can also be combined
with our solution. Regarding partial order reductions, mbar of algorithms have been previously
proposed for partial order reduction which is trace/fagidivergence preserving, e.g. [2[4,1219].
The algorithms presented in the chapter may be considergghaseight realization and extension

of those presented in [214, 219].

Chapter 7

Applications of Refinement Checking

Refinement checking is a useful verification technique, tvhigs many applications. As one exam-
ple, Allen and Garlen have shown how CSP programs can be ssgpes to describe the interfaces
of software component5][7]. The refinement relation beccsrgsh-typing relation, and refinement
checking can then be used to determine if two componentssevhterfaces are specified using
CSP programs, are compatible. In this chapter, we demdash@ usefulness of refinement check-
ing using two examples, namely, linearizability verificatifor concurrent objects and Web Service

conformance checking.

Linearizability is an important correctness criterion iimplementations of concurrent objects. Au-
tomatic checking of linearizability is challenging becauiisrequires checking that 1) all executions
of concurrent operations be serializable, and 2) the ssrdhlexecutions be correct with respect to
the sequential semantics. In the first half of this chapter,describe a new method to automat-
ically check linearizability based on refinement relatidresn abstract specifications to concrete
implementations. Our method avoids the often difficult taskdetermining linearization points
in implementations, but can also take advantage of lina@oia points if they are given. The re-
finement verification algorithm developed in the previouaptkr is used to automatically check
a variety of implementations of concurrent objects, inaigdthe first algorithms for the mailbox

problem [19] and Scalable NonZero Indicatdrsl[78]. Oureaysts able to prove or find all known

129

7.1. LINEARIZABILITY 130

and injected bugs in these implementations.

In recent years, many Web Service composition languagestean proposed. Web Servitore-
ographydescribes collaboration protocols of cooperating Web iSerparticipants from a global
view. Web Servicerchestrationdescribes collaboration of the Web Services in predefinédnos
based on local decision about their interactions with ormler at the message/execution level.
In the second part of this chapter, we present a model-bas#lsoohto close the gap between the
two views. Building on the strength of advanced model chegkechniques, Web Service chore-
ography and orchestration are verified against against@éeh (to show that they are consistent).

Specialized optimization techniques are developed toledae Web Service models.

The rest of the chapter is structured in two parts. The firdttpéks about linearizability checking.
SectiorZIL gives the definition of linearizability. Seati6.2 shows how to express linearizability
using refinement relations in general. Secfiol 7.3 preseqgerimental results of linearizability
checking. The second part talks about Web Service confarenahecking. Sectidn 1.4 introduces
the background about Web Service and conformance chec®ewjior_Zb introduces the modeling
languages to capture Web Service compositions. SeclibdistGsses how to verify Web Services.

Sectior_ZF presents experimental results to show itshtiplaSection[Z.8 concludes this chapter.

7.1 Linearizability

Linearizability [107] is an important correctness critgrifor implementations of objects shared by
concurrent processes, where each process performs a seqi@perations on the shared objects.
Informally, a shared object iBnearizableif each operation on the object can be understood as
occurring instantaneously at some point, calledlihearization point between its invocation and
its response, and its behavior at that point is consistetht thé specification for the corresponding

sequential execution of the operation.

One common strategy for proving linearizability of an implentation (used in manual proofs or

automatic verification) is to determine linearization psiim the implementation of all operations

7.1. LINEARIZABILITY 131

and then show that these operations are executed atormat#tg linearization point§ [78, 113, 215].
However, for many concurrent algorithms, it is difficult are@ impossible to statically determine
all linearization points. For example, in the K-valued stgr algorithm (Section 10.2.1 df]22]),
linearization points differ depending on the executiondris Furthermore, the linearization points
determined might be incorrect, which can give wrong resofttinearizability. Therefore, it is

desirable to have automatic solutions to verifying thegmrthms without knowing linearization

points. However, existing methods for automatic verifmativithout using linearization points

either apply to limited kinds of concurrent algorithras [Rd8 are inefficient[[215].

In this chapter, we describe a new method for automaticdigcking linearizability based on re-
finement relations from abstract specifications to condarefdgementations. Our method does not
rely on knowing linearization points, but can take advaatafjthem if given. The method exploits
model checking of finite state systems specified as condyprenesses with shared variables, and
is not limited to any particular kinds of concurrent alglnits. We exploit powerful optimizations

to improve the efficiency and scalability of our checking huost.

Refinement requires that the set of execution traces of arenonplementation be a subset of
that of an abstract specification. Thus, we express lingaitizy as trace refinement of operation
invocations and responses from the abstract specificatitiretconcrete implementation, where the
abstract specification is correct with respect to sequesgraantics. The idea of refinement has been
explored before: Alur et al_]12] showed that linearizapittan be cast as containment of two regular
languages on a semi-commutative alphabet, and Derrick [§5}lexpressed linearizability as non-
atomic refinement of Object-Z and CSP models. Some similpragghes[159, 69, 148] prove
linearizability using trace simulation. In this followinge give a general and rigorous definition of

linearizability, regardless of the modeling language ussihg refinement.

7.1.1 Formal Definition

Linearizability [107] is a safety property of concurrentssyms, over sequences of events corre-

sponding to the invocations and responses of the operatiosbared objects.

7.1. LINEARIZABILITY 132

In a shared memory modét, O = {04, ..., ox} denotes a set df shared objectsP = {py, ...,
pn} denotes a set of processes accessing the objects. Shared objects supeofaoperations
which are pairs of invocations and matching responses.yBrared object has a set of states that
it could be in. Asequential specificatioaf a (deterministic) shared objEds a function that maps

every pair of invocation and object state to a pair of resp@rsl a new object state.

The behavior ofM is defined ad7, the set of all possible sequences of invocations and resgon
together with the initial states of the objects. A histerye H induces an irreflexive partial order
<, 0n operations such thap; <, op- if the response of operatiafp; occurs ino before the invo-
cation of operatiorvp,. Operations i that are not related by, are concurrents is sequential iff

<, is a strict total order. Let|; be the projection of on proces®;, which is the subsequence of
consisting of all invocations and responses that are paddrbyp;. Leto|,, be the projection of

on objecto;, which is the subsequence @tonsisting of all invocations and responses of operations

that are performed on objea.

A sequential history is legal if it respects the sequential specifications of the objedtse specifi-
cally, for each object;, if s; is the state ob; before the invocation of thgth operationop; in of,,,
then response afp; and the resulting new state, ; of o; follow the sequential specification of.
For example, a sequence of read and write operations of actdbjlegal if each read returns the
value of the preceding write if there is one, and otherwisetitrns the initial value. Every history

o of a shared memory mod@l must satisfy the following basic properties:

Correct interaction For each procesg;, o|; consists of alternating invocations and matching re-

sponses, starting with an invocation. This property pressipelining operations.

ClosenessEvery invocation has a matching response. This propertyeptependingoperations.

In addition to these two, liveness property is also impdrteere to guarantee the progress of the

systems. Even if the model satisfies linearizability, it nmay progress as desired. For instance,

IMore rigorously, the sequential specification is faypeof shared objects. For simplicity, however, we refer to both

actual shared objects and their types interchangeablysciiapter.

7.1. LINEARIZABILITY 133

even under a fair scheduler push/pop in Treiber’s stackridiigo [210] might never terminate if
there is always another concurrent push/pop. Accordingetii®[Z.3.P, liveness properties can
be formulated as Linear Temporal Logic (LTL) formulae anédalted using standard LTL model

checkers (with or without the assumption of a fair scheduler

Given a historyo, a sequential permutation of o is a sequential history in which the set of op-
erations as well as the initial states of the objects are ¢ineesas ino. The formal definition of

linearizability is given as follows.

Linearizability There exists a sequential permutationf o such that

1. for each objecb;, 7 |,, is a legal sequential history (i.er respects the sequential

specification of the objects), and

2. if op1 <, opo, thenop; <, ops (i.e.,w respects the run-time ordering of operations).

Linearizability can be equivalently defined as follows: Wrery historyo, if we assign increasing
time values to all invocations and responses, then eversabpe can be shrunk to a single time
point between its invocation time and response time sudhtibaoperation appears to be completed
instantaneously at this time point148] 22]. This time péon each operation is called iiseariza-
tion point Linearizability is a safety properti/ [148], so its violati can be detected in a finite prefix

of the execution history.

Linearizability is defined in terms of the interface (invboas and responses) of high-level oper-
ations. In a real concurrent program, the high-level opmmatare implemented by algorithms on
concrete shared data structures, e.g., using a linkealistglement a shared stack object. There-
fore, the execution of high-level operations may have caraf#d interleaving of low-level actions.

Linearizability of a concrete concurrent algorithm regsithat, despite complicated low-level inter-
leaving, the history of high-level invocation and respoesents still has a sequential permutation
that respects both the run-time ordering among operatindsttee sequential specification of the
objects. This idea is formally presented in the next seatiging refinement relations in a process

algebra extended with shared variables.

7.2. LINEARIZABILITY AS REFINEMENT RELATIONS 134

7.2 Linearizability as Refinement Relations

In this section, we show how to create high-level lineardieapecifications and how to use a refine-

ment relation from an implementation model to a specificatrmdel to define linearizability.

7.2.1 Model Construction

To create a high-level linearizable specification for a slaybject, we rely on the idea that in any
linearizable history, any operation can be thought of asiwittg at some linearization point. We
define the specification LTS, = (S, inits,, —,) for a shared object as follows. Every ex-
ecution of an operatioap of o on a proces®; includes three atomic steps: the invocation action
inv(op);, the linearization actiorin(op);, and the response actions(op, resp),;. The lineariza-
tion actionlin(op); performs the computation based on the sequential spewficaitthe object. In
particular, it maps the invocation and the object statereetfte operation to a new object state and
a response, changes the object to the new state, and bb#erssponseesp locally. The response
actionres(op, resp); generates the actual respomsep using the buffered result from the lineariza-
tion action. Each of the three actions is executed atorgigathout being interfered by any other
action, but the three actions of one operation may inteel@gth the actions of other operations. In

Lsy, all inv(op); andres(op, resp); are visible events, whilén(op); are invisible events.

Ina LTS Ly, = (Ssp, inits,, —4p), €ach procesg; has (a) an idle stats,, o, (b) a states(op),, 1
for every operationop of object o, representing the state after the invocationopfbut before
the linearization action obp, and (c)s(op, resp),, » for every operatiorop and every possible
responseresp of this operation, representing the state after the limaidn action ofop but before
the response afp. ThenS,, is the cross product of all object values and all processstatit,,
is the combination of the initial value of objeatands,, o's for all processeg;. Fors € S, let
sy, be the value of object encoded ins, s, be the state op; in s, ands_,, ands_,, _,, be the
states excludings,, and excludings,, ands,, , respectively. The labeled transition relatien,, is
such that for(s, e, s) €—, () if e = inv(op);, thens_,, = 5", sp, = sp, 0, ands, = s(0p)p, 1;

(b) if e = lin(op);, thens_,, _,, = s’ sp; = 8(0p)p;1, @nds, = s(op, resp)y, 2, such

—Pi,—Vo’

7.2. LINEARIZABILITY AS REFINEMENT RELATIONS 135

thats;, andresp are the new object value and the response, respectivelgd lmasthe sequential
specification of object as well as the old object statg and the stats,, = s(op),, 1 of process

pi; (€) if e = res(op, resp)i, thens_,, = s' s, = s(op, resp)y, 2, ands,, = sy, 0.

Example 7.2.1 (K-valued register) We use a shared K-valued single-reader single-writer tegis
algorithm (Section 10.2.1 of [22]) to demonstrate the iddagve. The linearizable abstract model
is defined as follows, wherg is the shared register with initial valu€, and M is a local variable

to store the value read from.

ReaderA() = read_inv — read{M = R} — read_res.M — ReaderA();
WriteA(v) = write_inv.v — write{R = v} — write_res — Skip;

WriterA() = (WriteA(0) O WriteA(1) O ... O WriteA(K — 1)); WriterA();
RegisterA() = (ReaderA() ||| WriterA())\{read, write};

The ReaderA process repeatedly reads the value of regiBtand stores the value in local variable
M. Eventread_res.M returns the value id/. WriteA(v) writes the given value into R. Event
write_inv.v stores the value to be written into the register. Th&riterA process repeatedly
writes a value in the range 6fto K — 1. External choices are used here to enumerate all possible
values. RegisterA interleaves the reader and writer processes and hidegdlieand write events
(linearization actions). The only visible events are th@aation and response of the read and write

operations. This model generates all the possible linalaléztraces.

Given a LTSL,, = (Sim, initin,, — i) that supposedly implements objegtthe visible events of
L are thosenv(op);’s andres(op, resp);’s. For example, the following models an implementa-

tion of a K-valued register using an arrdyof K binary registers (storing onlyand1).

Reader() = read_inv — UpScan(0);
UpScan(i) = if(B[i] == 1){DownScan(i — 1,1)}else{ UpScan(i + 1)};
DownScan(i,v) = if (i < 0){read_res.v — Reader()}

els€{if (B[i] == 1){ DownScan(i — 1,1i)}else DownScan(i — 1,v)}};
Write(v) = write_inv.v — 7{Blv] = 1; } — WriterScan(v — 1);

WriterScan(i) = if(i < 0){write_res — Skip}

elsg7{BJi]| = 0; } — WriterScan(i —1)};
Writer() = (Write(0) O Write(1) O ... O Write(K)); Writer();
Register() = Reader() ||| Writer();

7.2. LINEARIZABILITY AS REFINEMENT RELATIONS 136

The Reader process first does a upward scan from elentetat the first non-zero elemerit and
then does a downward scan from element 1 to element) and returns the index of last element
whose value id. Eventread_res.v returns this index as the return value of the read operafibe.
Write(v) process first sets the-th element ofB to 1, and then does a downward scan to set all
elements beforé to 0. Note that in this implementation, the linearization pdmt Reader is the
last point where the parameterin DownScan process is assigned in the execution. Therefore,
the linearization point can not be statically determinedstead, it can be in eithet/pScan or
DownScan. We remark that one liveness property can be verified by mduetkingtiread_inv =
Oread_res whereJ and<> are modal operators which readasaysandeventuallyrespectively.

dend

Theoren_Z.Z]2 characterizes linearizability of the impatation through a refinement relation and
thus establishes our approach to verifying linearizabhilRifferent versions of this result appeared

in distributed computing literature, for example, in Lyrschook [148], Theorems 13.3-13.5.

Theorem 7.2.2 All traces ofL;,, are linearizable iffL;,, 3, L.

Proof (sketch). Sufficient condition For any tracer € traces(Liny), because.;,, J, Ly, o

is also a trace of,,. Let p be the execution history af,, that generates the trace We define
the sequential permutatiom of ¢ as the reordering of operations énin the same order as the
linearization actiongin(op);’s of all operationsop and all processes; in p. If op; <, ops, the
linearization action ofop; must be ordered before the linearization actioropf in p, and thus
op1 < opy. Itis also easy to verify that is a legal sequential history of objeat since the
linearization action of every operation jnis the only action in the operation that affects the object
state based on its sequential specification, and the ordepearations inr respects the order of

linearization actions ip.

Necessary condition Let o be a trace of.;,,. By assumptiorv is linearizable. We need to show
thato is also atrace of,,. Sinceo is linearizable, there is a sequential permutatiaf o such that

« respects both the sequential specification of ohjexrtd the run-time ordering of the operations in

7.2. LINEARIZABILITY AS REFINEMENT RELATIONS 137

o. We construct an execution histopyof L, from o and~ as follows. Starting from the first event
of o, for any event in o, (a) if it is an invocation event, append it po (b) if it is a response event
res(op, resp);, locate the operationp in 7, and for each unprocessed operatign by a procesg
beforeop in 7, processop’ by appending a linearization actidin(op’); to p, following the order
of ; finally appendlin(op); andres(op, resp); to p. Itis not difficult to show that the execution
history p constructed this way is indeed a historyaf,. Moreover, obviously the trace gfis o.

Therefore is also a trace of),. O

The above theorem shows that to verify linearizability ofiaplementation, it is necessary and
sufficient to show that the implementation LTS is a refinenoéttie specification LTS as we defined
above. This provides the theoretical foundation of ourfigaiion of linearizability. Notice that
the verification by refinement given above does not requieatit/ing low-level actions in the
implementation as linearization points, which is a diffiq@nd sometimes even impossible) task.
In fact, the verification can be automatically carried outheut any special knowledge about the

implementation beyond knowing the implementation code.

In some cases, one may be able to identify certain events implementation as linearization
points. We call these linearization events. For exampleetfinearization events have been iden-
tified in the stack algorithm[13]. In these cases, we can ntiaiee events visible and hide other
events (including the invocation and response events) anty vefinement relation only for these
events. More specifically, we obtain a specification Ll];§ by the following two modifications to
Ly, (a) for each linearization actiotin(op);, we change it tdin(op, resp); so that the response
resp computed by this linearization action is included; and (b)irearization actions are visible
while all inv(op); andres(op, resp); are invisible. LetZ = be an implementation LTS such that its
linearization events are visible and all other events arsilie, and its linearization events are also

specified agin(op, resp); .

Theorem 7.2.3 Let L, and L;,,, be the specification and implementation LTSs such thatrirea
tion events are specified @ (op, resp); and are the only visible events. if,, 3, L,,, then
the implementation is linearizable. Conversely, if thelenpentation is linearizable, antican be

shown that no other actions in the implementation can badiration actionsthenZ; , 3, L.

7.2. LINEARIZABILITY AS REFINEMENT RELATIONS 138

The proof of this theorem is straight forwards, hence igdoiith this theorem, the verification of
linearizability could be more efficient based on only lineation events. However, one important
remark is that, as stated in the theorem, to make refinemeatessary condition of linearizabil-
ity in this case, one has to show that no other actions in th@eimentation can be linearization
points. In other words, the determined linearization mohmve to be complete. Otherwise, even
if the verification finds a counterexample for the refinemefation, we cannot conclude that the
implementation is not linearizable since we may have faitedktermining all possible linearization

events. Examples of implementations modeled using linatoin points can be found in[196].

7.2.2 \ferification of Linearizability

With the results from TheoremlZ.2.2 and 712.3, we can useefiriement checking algorithm pre-
sented in Sectiohl 6 to verify linearizability of an implerntegion of concurrent objects. Several

improvements that are specialized to linearizability figstion are suggested in the following.

Partial order reduction (POR) in the refinement checkingka@rithout knowledge of linearization
points. Nonetheless, having the knowledge would allow uake full advantage of POR. Because
linearization points are the only places where data casigt must be checked, we may amend
the above algorithm to perform data consistency check atirlearization points. As a result,
encoding relevant data as part of the event is not necesadrtha model contains fewer events,
which translates to fewer traces. Furthermore, becausetballinearization points need to be

synchronized, we may hide all other visible eventsmansitions that are subject to POR.

Besides patrtial order reduction, our approach is comgatililh other state space reduction tech-
niques or abstract interpretation techniques. Distribaigorithms and protocols are usually de-
signed for a large number of similar processes. They arefibrer subject to symmetric reduc-
tion [83]. For instance, different writers (i.el¥riterA(i)) in Example[ZZ1l are symmetric and
therefore, it is sound (subject to property-specific caadg) to only explore one writer and con-
clude the same for all other writers. If the processes ardiichd, then it is subject to process counter

abstractior 5]4. For example, in the concurrent stack dkgoy the processes invoking push and

7.3. EXPERIMENTS OF LINEARIZABILITY CHECKING 139

pop are symmetric and therefore, we only keep track of thelbmurof processes, instead of the

exact processes. In this way, we may prove the property bitrary number of processes.

7.3 Experiments of Linearizability Checking

Our method has been applied to a number of concurrent dlgusitincludingregister—the K-
valued register algoritl%in ExampleZZl stack—a concurrent stack algorithrh [21Q@jueue—a
concurrent non-blocking queue algorithm in Figure 3[of [1%uggy queue-an incorrect queue
algorithm [186], andmailbox and SNZthe first algorithms for the mailbox problern_[19] and
scalable Non-Zero indicator5_[[78], respectively. We rdataat the mailbox problem and SNZI
are complicated algorithms that are not formally verifietbbe Both algorithms use sophisticated
data structures and control structures, so the lineasizgibints are difficulty to determine. The

verification details of the two algorithms can be found inglLand [225] respectively.

Table[Z1 summarizes part of our experiments, where ‘-’ meart of memory or more than 4
hours, and ‘(points)’ means that linearization points davery The number of states and running
time increase rapidly with data size and the number of psmEs®se.g., 3 processes fagister,
stack queue and SNZIvs. 2 processes. The results conform to theoretical reflitfs model
checking linearizability is in EPSPACE for both time and space. When linearization points are
known, the complexity is still EPSPACE but the state space reduces significantly since the state
spaces of implementation and specification are smaller. Me shat the speedup of knowing
linearization points is in the order a(2+2"(**"=k")) ‘where¥ is the size of the shared object
and n is the number of processes |196]. Use of partial order réotuctffectively reduces the
search space and running time in most cases, inclustiackand queue and especiallymailbox
andSNZlIbecause their algorithms have multiple internal transgtid-orregister, the state space is
reduced but running time increases because of computhtiveehead. Fobuggy queu¢l8d], the
counterexamples (discovered firstly In]60]) are producerthkdy after exploring only part of the

state space.

2\We extend this example with 2 readers and 1 writer. The ctimess is verified using PAT.

7.3. EXPERIMENTS OF LINEARIZABILITY CHECKING 140

Algorithm #Proc. | Linearizable | Time(sec) | #States | Time(sec)| #States
w/o POR | w/o POR | with POR | with POR
4-valuedregister 2 true 6.14 50893 5.72 43977
5-valuedregister 2 true 44.9 349333 60.4 307155
6-valuedregister 2 true 297 2062437 789 1838177
3-valuedregisterwith 3 true 294 479859 393 361255
2 readers and 1 writer
stackof size 12 2 true 138 540769 65.9 395345
stackof size 14 2 true 411 763401 99.4 599077
stackof size 2 3 true - - 4321 4767519
stackof size 12 (points) 2 true 0.62 9677 0.82 9677
stackof size 14 (points) 2 true 0.82 12963 111 12963
stackof size 2 (points) 3 true 1.14 10385 1.56 10385
stackof size 2 (points) 4 true 37.6 219471 49.4 219471
queueof size 6 2 true 134 432511 86.2 343446
queueof size 8 2 true 256 104582 218 938542
buggy queuef size 10 2 false 10.9 32126 6.87 32126
buggy queuef size 20 2 false 52.73 105326 41.1 105326
mailboxof 3 operations 2 true 71.6 272608 27.8 120166
mailboxof 4 operations 2 true 2904 9928706 954 3696700
SNZlof size 2 2 true 1298 712857 322 341845
SNZlof size 3 3 true - - 6214 8451568

Table 7.1: Experiment results on a PC with 2.83 GHz Intel @6BU and 2 GB memory

Vechev and Yahav [215] also provided automated verificatibimeir approach needs to find a lin-
earizable sequence for each history, whose worst-caséstiewponential in the length of the history,
as it may have to try all possible permutations of the histéya result, the number of operations
they can check is only 2 or 3. In contrast, our approach harallgpossible interleaving of opera-
tions given sizes of the shared objects. Because of partlal eduction and other optimizations,
our approach is more scalable than theirs. For instance,aweverify stacks of size 14, which

means any number of stack operations that contain up to 1gecative push operations.

Note that experiments in Sectibnl6.3 suggest that PAT isifdlsan FDR for systems without vari-

7.4. WEB SERVICE AND CONFORMANCE CHECKING 141

ables. Modeling variables using processes and lack ofgbariiler reduction will make FDR even

slower. Therefore we skip comparison with FDR on these eXesnp

7.4 Web Service and Conformance Checking

The Web Services paradigm promises to enable rich, dynamicflexible interoperability of highly
heterogeneous and distributed Web-based platforms. émtgears, many Web Service composi-
tion languages have been proposed. There are two differ@mpwints in the area of Web Service
composition. Web Servicghoreographydescribes collaboration protocols of cooperating Web Ser-
vice participants from a global point of view. An example iSWZDL (Web Service Choreography
Description Language [48]). Web Servioechestrationrefers to Web Service descriptions which
take a local point of view, which describes collaboratiohthe Web Services in predefined patterns
based on local decision about their interactions with ormthaar at the message/execution level.
A representative is WS-BPEL (Web Service Business Processuion Language [121]), which

models business processes by specifying the work flows ofingrout business transactions.

Informally, a choreography may be viewed as a contract amauigiple corporations, i.e., a spec-
ification of requirements (which may not be executable). Achestration is the composition of
concrete services provided by each corporation who resattze contract. The distinction between
choreography and orchestration resembles the well stutiéticiction between sequence diagrams
(which describes inter-object system interactions, kirglobal view) and state machines (which

may be used to describe intra-object state transitionsygaklocal view).

In this chapter, we focus on the conformance checking protdetween a choreography or an
orchestration, i.e., whether they are consistent with edleclr. Solving either problem is however
highly non-trivial. For instance, because Web Servicesdasigned for potentially large number
of user (who may invoke the services simultaneously), verifyingbV@&ervices based on model

checking techniques must cope with state space explosiertadooncurrent service invocations.

3In reality, the number is bounded by the thread pool size®iiiderlying operating system. See discussiofiih [93].

7.5. WEB SERVICE MODELING 142

The solution for the consistency checking is to show con&oroe relationship (i.e., existence of
a weak simulation relationship) between the choreograpiaytiae orchestration. The algorithm is
based on the refinement checking algorithm in Sedflon ehduréxtended with data support and

specialized optimizations for Web Services.

7.5 Web Service Modeling

In this section, we present modeling languages which areesgjwe enough to capture all core
features of Web Service choreography and orchestratiorereTare two reasons for introducing
intermediate modeling languages for Web Services. Fiesiyy languages like WS-CDL or WS-
BPEL are designed for machine consumption and therefolergthy and complicated in structure.
Moreover, there are mismatches between WS-CDL and WS-BP@&linstance, WS-CDL allows
channel passing whereas WS-BPEL does not. The intermddregaages focus on the interactive
behavioral aspect. The languages are developed basedwiougrerorks of formal models for WS-
CDL and WS-BPEL[I48, 172, 169]. They cover all main featuike synchronous/asynchronous
message passing, channel passing, process forking gba@ihposition, shared variables, etc. Sec-
ond, based on the intermediate languages and their senmatlels (namely, labeled transition
systems), our verification and synthesis approaches isaustcoto one particular Web Service lan-
guage. Forinstance, newly proposed orchestration lamgudg Orcl[156] can be easily supported.
This is important because Web Service languages evolvellyapeing based on intermediate lan-
guages gives us opportunity to quickly cope with new syrgaxefeatures (e.g., by tuning the

preprocessing component).

7.5.1 Choreography: Syntax and Semantics

The following is the core syntax for building models of WelnSee choreograpiﬂ(e.g., in WS-

CDL. Additional language features like variables, arrayd assertions are illustrated using exam-

4The ASCII version of the syntax can be found in PAT user manual

7.5. WEB SERVICE MODELING 143

ples in later sections. Léf (short ofinteraction), J be terms of choreography. Let, B range
over Web service roles:h range over communication channeds; range over a set of pre-setup
service invocation channels (refer to discussion latet)denote a sequence of channelsiange

over variablesp be a predicate over only the variables angl be an expression.

7 ::= Stop —inaction
| Skip — termination
| sur(A,B,ch) — I —service invocation
| ch(A,B,exp) — T — channel communication
| z:=exp; T — assignment
| if bT else J — conditional
| 70O J — choice
| ZII|TJ — service interleaving
| 7, J — sequential

We assume that each role is associated with a set of locablesi and there are no globally shared
variables among roles. This is a reasonable assumptionchsrel@ (which is a service) may be
realized in a remote computing device. Informallyy (A4, B, c7L), wheresvr is pre-defined service
invocation channel, states that roleénvokes a service provided by role through channetvr. A
service invocation channel is one which is registered witlerice repository so that the service
is subject for invocation.ch is a sequence of session channels which are created foretiises
invocation only. Notice that because the same service Bballailable all the time, service channel
sur is reserved for service invocation onlyi (A, B, exp) wherech is a session channel states that

role A sends the messagep to role B through channeth.

x := exp assigns the value afrp to the variabler. Without loss of generality, we always require
that the variables constitutingep and x must be associated with the same Hold&f b evaluates
to true,if b I else J behaves ag, otherwise7. Given a variabler (a conditionb), we write
role(x) (role(b)) to denote the associated rof€.d 7 is an unconditional choice (i.e., choice of
two unguarded working units in WS-CDL) betwe&nand 7, depending on whichever executes
first. Z ||| J denotes two interactions running in parallel. Notice thaté are no message commu-
nications betweeff and.7. Two choreographes executing in a sequential order isemrasz; 7.

We remark that recursion is supported by referencing a olgoaphy name.

5This is a well-formedness rule which can be checked easily.

7.5. WEB SERVICE MODELING 144

1. BuySell() = B2S(Buyer, Seller,{Bch}) — Session();
2. Session() = Bch(Buyer, Seller, QuoteRequest) — Bch(Seller, Buyer, QuoteResponse.x) —

3. if (z <1000){

4 Bch(Buyer, Seller, QuoteAccept) — Bch(Seller, Buyer, Order Confirmation) —
5 S2H (Seller, Shipper, { Bch, Sch}) —

6 (Sch(Shipper, Seller, DeliveryDetails.y) — Stop

7. ||| Beh(Shipper, Buyer, DeliveryDetails.y) — Stop)

8 telse

9 Bch(Buyer, Seller, QuoteReject) — Session()

10. O Bch(Bugyer, Seller, Terminate) — Stop

11. I8

Figure 7.1: A sample choreography

The syntax above is expressive enough to capture the cores@/glze choreography featLHes
For instance, channel passing is supported as we are allmwednsfer a sequence of channels
on service invocation. Figufe].1 presents a sample chaapbyg which illustrates how to use this
language to model Web Services. The choreography cooeditiatee roles (i.eBuyer, Seller and
Shipper) to complete a business transaction. At line 1, theer communicates with th&eller
through service channd?2S to invoke its service. Channdélch which is sent along the service
invocation is to be used as a session channel for the sesgipnimthe Session, the Buyer firstly
sends a messagguoteRequest to the Seller through channeBch. At line 2, theSeller responds
with some quotation valug, which is a variable. Notice that in choreography, the valie may

be left unspecified at this point. At line 5, tt#ller sends a message through the service channel
S2H to invoke a shipping service. Notice that the chanBet is passed onto th&hipper so that
the shipper may contact theuyer directly. At line 6 and 7, theShipper sends delivery details to

the Buyer and Seller through the respective channels. The rest is self-exglanat

Given a choreography model, a system configuration is al2-tdp V'), whereZ is a choreography
and V' is a mapping from the variables to their values, i.e., froradeariables to their valuations

or from channel variables to channel instances. A tramsiexpressed in the form ¢f, V) 5

®Higher order processes, which can be used to model Java aglexcluded. They can be easily integrated into the

framework.

7.5. WEB SERVICE MODELING 145

(Z’, V). The transition rules are presented in Fiduré 7.2. Ruld captures service invocation,
where eventur!ch occurs. Afterwards, rulénv2 becomes applicable so that the service invoking
request is ready to be received. At the same time, a copy ofhbesography is forked. This
is because a service may be invoked multiple times, possibtyltaneously, by different service
users and all service invocations must conform to the clypegdny. In fact, in the standard practice
of Web Services, a service is embodied by a shared channet ifotm of URLs or URIs through
which many users can throw their requests at any time. Ftaros, different processes acting as
Buyers may invoke the service provided by theller. All Buyers must follow the communication
sequence. Furthermore, in order to match the reality (arke: tdngs more interesting), we assume
that both service invocation and channel communicatiomsyachronous in this work. As a result,
service invocation (or channel communication) is dividewb itwo events, i.e, the event of issuing
a service invocation (or channel output) and the event @ivewy a service invocation (or channel
input). This is captured by rulesv1, inv2, chl andch2. For simplicity, we assume that a function
eval returns the value of an expressierp given the valuation of variablek. Rule assign updates
variable valuations. Ruleef captures referencing, i.e., dfis defined to bg7, they have the same

behavior. The rules for other constructs resembles thasg3&# in Sectiof 311, hence ignored.

Given a choreographg, we build a labeled transition system (LTSf = (5, init, —) in the

same way as in Sectign_3.1L.2 based on the operational semales. \We skip the details here. In
order to verify properties about the choreography, we usgeainthecking techniques to explore all
traces of the transition system. One complication is thatctioreography’s behavior may depend
on environmental input which is only known during runtimeiwtihe execution of an orchestration.
For instance, the price quote provided by t&ler is unknown given only the choreography in

Figure[Z1. We discuss this issue in Secfion 7.6.

7.5.2 Orchestration: Syntax and Semantics

A Web Service orchestratio® is composed of multiple roles, each of which is specified as an
individual process. A slightly different syntax is used tolth orchestration models. The reason is

that orchestration takes a local view and therefore all piimmactions are associated with a single

7.5. WEB SERVICE MODELING 146

[invl]

(sur(A, B, ch) — I, V) surich (sur?(B, ch) — T ||| sur(A, B, ch) — I, V)

. [inv2]
(sur?(B, ch) — T, V) 5" (T, V)

[chl]

chlv

(ch(A,B,exp) = I,V) = (ch?(B,v) —=ZI,V)

[ch2]

ch?v

(ch?(B,v) —=Z,V) = (Z,V)

eval(exp, V) =wv
[assign]

(z:=exp; Z,V) S (T, V' @z v)
wherev is the special event of termination

Figure 7.2: Choreography structural operational semsntic

role. Let P (short ofproces$ and () be the processes, which describe behaviors of a role. Assume

that P plays the roled in the orchestration, written a3@A.

P ::= Stop | Skip — primitives
| inv!ch — P — service invoking
| inv?z — P — service being invoked
| chlexp — P — channel output
| ch?z — P — channel input
| z:=exp; P — assignment
| if b P else Q — conditional branching
| POQ — orchestration choice
| Pl @ — interleaving
| P; @ — sequential

Processinv!ch — P invokes a service through service chanitel and then behaves as specified
by P. Or a service can be invoked byiv7z — P wherez is a sequence of channel variables
which store the received channels. A process may send\eaimessage through a channkl

by chlexp — P (ch?x — P). To match the reality, we always assume that the commuaicat

channels between different processes are asynchronodisv{tma fixed buffer size) in this work.

7.5. WEB SERVICE MODELING 147

Let ¢ be a channel(be a channel valuation functionptempty(c, C') be true iff the buffer is not
empty; notfull(c, C') be true iff the buffer is not fullitop(c, C') be the top element in the buffer.
For simplicity, letC & (¢,z) be C & ¢ — C(c) ~ (z) (where™ is sequence concatenation), i.e.,
adding the element to the respective channel. Similatiy('le ¢ be the resultant channel valuation
function with the top element in removed.

notfull(inv, C) [invoking |

invlch

(invlch — P, Va, C) "S5 (P ||| (inv'ch — P), Va, C @ (inv, ch))

notempty(inv, C) [invoked]

v ?top(inv,C)

(inv?E — P, V4, C) — (P, Va® I+ top(inv, C), C S inv)

notfull(ch, C) [output]

chlexp

(chlezp — P, Va, C) "= (P, Va, C & (ch, exp))

notempty(ch, C)

[input]
ch?top(ch,C)
—

(ch?x — P, Va, C) (P, Va®x— top(ch, C),C & ch)

Figure 7.3: Orchestration structural operational seroanti

The rest are similar to those of choreography.

Similarly, we define the operational semantics. et be the valuation of the variables associated
with the roleA. Let C be a valuation function of the channels, which maps a chdortleé sequence
of items in the buffer.C' is a set of tuples of the form — m3sg. A configuration of the process is
a 3-tuple(P, V4, C). Part of the firing rules for local steps of a process are ptesen Figurd 713
and the rest are skipped for the their similarity with thestancts in CSP# (refer to Sectibn 311.2).
We remark that as in choreography, service invocation imestation forks a new copy of the
service (see rulénv in Figure[ZB) and thus allows potentially many concurrentise invocations.

In reality, however, the number of overlapping service cateons is bounded by the maximum
number of threads the underlying operating system allowg [[@ next section, we discuss how to

capture this constraint and at the same time perform effigignification. Because an orchestration

7.5. WEB SERVICE MODELING 148

Role Buyer {
var counter = 0;
Main() = B2SY{Bch} — Session();
Session() = Bch!QuoteRequest — counter++; Bch?QuoteResonse.x —
if (z <1000){
Bceh! QuoteAccept — Bceh? OrderConfirmation
— Bch?DeliveryDetails.y — Stop

}
else if (counter > 3){ Bch! QuoteReject — Session()} else{Stop};
}
Role Seller {
var T = 1200;
Main() = B2S5?{ch} — Session();
Session() = ch?QuoteRequest — ch!QuoteResonse.x — (ch? QuoteAccept —
ch! OrderConfirmation — S2H!{ch, Sch} — Sch? DeliveryDetails.y —
Stop O ch? QuoteReject — Session());
¥
Role Shipper {
var detail = “01/11/20097;
Main() = S2H?{chl, ch2} —
(ch1!DeliveryDetails.detail — Stop ||| ch2!DeliveryDetails.detail — Stop);
}

Figure 7.4: A simple orchestration

is the cooperation of multiple roles/processes, the behadf the processes must be composed in
order to obtain the global behavior. Given two processes, B.and (), playing different roles, e.g.,
A and B, the composition is written aB@A || Q@B. Figure[Zb shows the respective semantic

rules, i.e., a global step is constituted of a local step theeiP or Q.

Following the rules, given an orchestration with multipideis, each of which is specified as a pro-
cess defined above, we may build a LTS. The executions of tiestration equal to the executions
the LTS. Similarly, we define traces of an orchestrationrdstered traces of the LTS. Given an
orchestratiorO, let traces(L£) be the set of finite executions. Figl€l7.4 presents an dreties
which implements the choreography in Figlird 7.1. Each slmplemented as a separate compo-
nent. Each component contains variable declarationsofogidi and process definitions. We assume

that the process/ain defines the computational logic of the role after initialiaa. We remark that

7.6. WEB SERVICE CONFORMANCE VERIFICATION 149

the orchestration generally contains more details tharctioeeography, e.g., the variableunter

in Buyer constraints the number of attempts the buyer would try leefiving up.

7.6 Web Service Conformance Verification

In this section, we define conformance between a choreog@amd an orchestration based on trace
refinement and present an approach to verify it by showingesfent relationships. The verification

is performed under the constraints of bounded (many) seimi®cations.

As discussed above, both choreography and orchestratiohectranslated into LTSs. An orches-
tration © is valid if and only if it is weakly equivalent to the choreaghyZ, i.e., traces(£°) =
traces(LT). This can be verified by showing that the orchestration weskhulates the choreog-
raphy andvice versa By the assumption that the ranges of the variables are finiiethe number
of concurrent service invocations are bounded, the LTS hie fiumber of states. As a result, we
can use the refinement checking algorithm proposed in ChBitecheck trace refinement. Given
a choreography and an orchestration, the algorithm workhgtructing the synchronous product
of the two LTSs and then performing a reachability analysisr instance, in order to verify that
the orchestration conforms to the choreography, the dlgorsearches for a pair of states, one of
the choreography and the other of the orchestration, sttt state of the orchestration can per-
form more (visible) events than that of the choreographysutth a state is found, then we find a

counterexample. Otherwise, we establish the refinemeationship.

A main challenge for verifying practical Web Services by mlothecking is state space explosion.
There are multiple causes of state space explosion. Twoenf thre 1) the numerous different
interleaving of processes executing concurrently in serarchestration and 2) the large nurﬁ)er
of concurrent service invocations. In the following, weatiss two optimization techniques which

have been adopted to cope with the above causes.

Firstly, the algorithm is improved with partial order retioo, to reduce the number of possible

’An operating system would like dozens or even thousandsrafureent threads.

7.6. WEB SERVICE CONFORMANCE VERIFICATION 150

interleaving (particularly for orchestration). Eventsfpemed by single service role (e.g., local
variable updates in service choreography or orchestijagignoften independent with the rest of the
system and hence are subject to reduction. For instancagctioe of updating variableounter in
Figure[Z% results in an invisible event, which is independé actions performed by other roles like
Seller or Shipper. During model checking, if this action is enabled (togethi¢h actions performed
by other roles), we only expand the system graph using thigraand postpone the rgslBy this
way, we build a smaller LTS and therefore checks deadlosériess, safety and liveness more
efficiently. For refinement checking, we apply this reduttio two ways. One is to apply partial
order reduction separately to invisible events of eitherdtoreography or the orchestration. Notice
that this reduction is trace preserving and therefore iaddor refinement checking. The other one

is to apply reduction to visible events of the choreograpiny the orchestration at the same time.

Secondly, by a simple argument, it can be shown that thewollp algebraic laws are true; where

7, J andK are choreographes.

g =7z

) NMKE=Z (T Il K)
Naturally, different invocations of the same Web Serviasamilar or even identical. By the above
laws, the interleaving of multiple choreographes can be&edafin certain fixed ordering) without
changing the system behaviors. Therefore, if the chor@bgrés in the form ofZ ||| --- ||| Z |||
.-+, it is equivalent whether the fir§t makes a transition or the second does. For verification of
deadlock-freeness, safety or liveness properties, itus ffiound to pick one of the transitions and
ignore the others. In general, this reduction could redheenumber of states up to the factor
of N! whereN is the number of identical components. This reduction ipinesl by research on
model checking parameterized systems[115] and [79]. Euribre, the process counter abstraction

presented in Sectidn®.4 can also be applied here.

There are a number of other algebraic laws which may helpdoce the number of states (e.g.,
7 0 J = J 0 7). Nonetheless, it is a balance between the computatiorexthead (for the

additional checking) and gain in state reduction. In ourlengentation (refer to Sectidn_10.B.3),

8This reduction is subject to other constraints, e.g., tealtant state must not be on the search stack.

7.7. EXPERIMENTS OF CONFORMANCE CHECKING 151

(P,Va,C) S (P, V},C)

(P@A || Q@B, VAU Vp, 0) % (PP@A || Q@B, V4 U Vg, C')

(Qa VBa C) _8> (le Véa C/)
(P@A || Q@B, VAU Vp, CO) % (P@A || Q'@B, V4 U Vg, C)

Figure 7.5: Process composition rules

a set of specially chosen algebraic laws are used to detedtaégnce of system configurations,

including the symmetry and associativity laws|gf || and O, etc.

Choreography may contain free variables (for environmetitis), which must be instantiated dur-
ing execution time. This is achieved by synchronizing thkiatons of the choreography and
orchestration whenever a free variable is used. For instamboen checking conformance between
the orchestration in Figule—T.4 and the choreography inrEigid, after theSeller sends out the
messageluote Response. 1200 (wherez is 1200), the variable: in the choreography is instanti-
ated t01200. Similarly, the session channel nhames of the service im@tain the choreography
must be instantiated to the actual channel names of semwo&ing in the orchestration. For in-
stance, channeBch in Figure[Z1 is instantiated toch after the synchronization step between

B2S(Buyer, Seller,{Bch}) in Figure[Z1 and325!{bch} in Figure[Z%.

7.7 Experiments of Conformance Checking

We have conducted experiments on multiple case studidading ones fronwww.oracle.conand
from [48,[172]. We are currently applying PAT to several &iyS-CDL and WS-BPEL models.
We thus demonstrate the scalability of our verification apph, using two models. One is the
online store example presented in Figlird 7.1 and Figulel@sdead of one buyer and one service
invocation, we amend the model so that multiple users avevatl to use the services multiple times.

The other is the service for travel arrangement. Its WS-BRibdel and WS-CDL specification are

7.7. EXPERIMENTS OF CONFORMANCE CHECKING 152

Online Shopping Refinement Checking Result Travel Agent Refinement Checking Result

100000000 10000000
—4— Number of States

—— Number of Transitions
—aA— Execution Time (seconds)

—&— Number of States
—— Number of Transitions
100000 | —A— Execution Time (seconds)

10000000

1000000

e

1000000

100000
10000

10000
1000
Q 1000
S
= 100
= 100
10
10
n 1

Number of Buyers Number of Clients

Value

Figure 7.6: Experiments for conformance verification

available atttp://www.comp.nus.edu.sg/~pat/cd¥ number of clients invoke the business process,
specifying the name of the employee, the destination, tipariere date, and the return date. The
BPEL process checks the employee travel status (throughbeSékice). Then it checks the prices
for the flight ticket with multiple airlines (through Web S@res). Finally, the BPEL process selects

the lowest price and returns the travel plan to each client.

Figure[Z® shows PAT’s efficiency using the two examplesaioled on a PC with Intel Q9500 CPU
at 2.83GHz and 4GB RAM. In the online store example, we allayebs to invoke the service
repeatedly. As a result, the orchestration is deadloak-fte the travel arrangement example, one
client invokes the service only once. Because the numbearrafurrent service invocations is bound
by the maximum number of threads allowed, the system reazldesdlock state after exhausting
all threads. This is consistent with the findinginl[93]. Weifyethat the orchestration conforms to
the choreography using the refinement checking algoritnshawn in Figur&6. In both cases,
the number of states and the verification time increase lsapi@t, PAT is able to confirm that the
orchestration conforms to the choreography with a few laigkents using the service concurrently.
In a nutshell, PAT explore$0” states in a reasonable amount of time, which suggests tiatsPA

comparable to FDR in terms of efficiefity

SLTSA-WS or WS-Engineer takes a different approach and fhexave skip the performance comparison here.

7.8. SUMMARY 153

7.8 Summary

In this chapter, we presented two applications of refineroketking.

First, we showed that linearizability can be expressedguaimefinement relation, hence can be
verified using refinement checking algorithm. Several casdies show that our approach is capa-
ble of verifying practical algorithms and identifying buigsfaulty implementations. Several future

directions are possible. Algorithms that accept an infinitember of threads or unbound data struc-
tures make model checking impossible. Symmetric progedaimong threads can reduce infinite
number of threads to a small number. Shape analysis or aitegrwith thereat prover can also be

incorporated into the model checking to handle unboundéal size.

Second, we present model-based methods for fully autormaditysis of Web Service compositions,
in particular, linking two different views of Web ServiceQur methods build on the strength of
advanced model checking techniques. In particular, weyerhether designs of Web Services
from two different views are consistent or not, by on-therflfinement checking with specialized

optimizations.

In terms of modeling of linearizability, our approach is &d®n the trace refinement of LTSs, which
is similar to [12]. The non-atomic refinement definedlinl [6¶tes the data explicitly as state-
based formalism Object-Z. This modeling requires to haeekiowledge of linearization points,
and also prevents automatic verification techniques suchaaiel checking to be used. Lineariz-
ability checking is a much studied research area, sinceitentral property for the correctness of
concurrent algorithms. Herlihy and Wing [107] present alrodblogy for verifying linearizability
by defining a function that maps every state of an concurrejecoto the set of all possible abstract
values representing it. Vafeiadis et. &l. [212] use relgrgatee reasoning to verify linearizabil-
ity for a family of implementations for linked lists. Neithef them requires statically determined
linearization points, but they are manual. Verificatiomgsiheorem provers (e.g., PVS) is another
approach[]69. 59]. In these works, algorithms are provedetdinearizable by using simulation
between input/output automata modeling the behavior oftmtract set and the implementation.

However, theorem prover based approach is not automatinvetsion to 10 automata and use of

7.8. SUMMARY 154

PVS require strong expertise. Wang and Stoller [218] pitesetatic analysis that verifies lineariz-
ability for an unbounded number of threads. Their approaatkals certain coding patterns, which
are known to be atomic regardless of the environment. THigiso is not complete (i.e., not ap-
plicable to all algorithms). Amit et all_[13] presented aphalifference abstraction that tracks the
difference between two heaps. This approach works welkiitibncrete heap and the abstract heap
have almost identical shapes. Recently, Manevich ef aB][abd Berdine et al[[31] extended it to
handle larger number and unbounded number of threads,cteshe Vafeiadis [[2111] further im-
proved this solution to allow linearization points in diéat threads. The main limitation of these
approaches is that users need to provide linearizationtgpaivhich are unknown for some algo-
rithms. In [215], Vechev and Yahav provided two methods foearizability checking. The first
method is a fully automatic, but inefficient as discussedaati®n[Z.8. The second method requires

algorithm-specific user annotations for linearizationnp®i which is not generic.

Web Service conformance checking is related to researclentyimg Web Services, particularly,
the line of work by Fosteet al presented in [94, 95, 93.91]. They proposed to apply modséth
verification for Web Services. Their approach is to buildiféirstate Processes (FSP) model from
Web services and then apply verification techniques basdesénto verify Web Services. For in-
stance, conformance between choreography and orchestistierified by showing a bi-simulation
relationship between the respective FSP models. In péatjdney identified the model of resource
constraint in Web Service verification 93] and proposed @dfggrm verification under resource
constraints. In addition, they developed a tool named LV88{95] (and later WS-Engine€r [92]).
Our work can also be categorized as model-based verificatahis similar to theirs. Our approach
complements their works in a number of aspects. Firstly,roadel is based on a modeling lan-
guage which is specially designed for Web service compusitiith features like channel passing,
shared variables/arrays, service invocation with semaépdication, etc. Secondly, our verification
algorithms employ specialized optimizations for Web Sggsiverification, e.g., model reduction
based on algebraic properties of the models, partial oethration for orchestration with multiple
local computational steps, etc. These optimizations allewo handle large state space and poten-
tially large Web Services. Our work is remotely related torfal modeling and verification of Web

Services|[/B, 157, 168, 123]. Our languages are inspirad fhe languages proposed In[48,1172].

Chapter 8

Bounded Model Checking of

Compositional Processes

Model checking techniques presented in previous chaptdyson exhaustive search through ex-
plicit representations of the state space and suffers flamnstate space explosion problem. To
overcome this problem, verification techniques like SASdshbounded model checkirig [54] have

been proved to be successful in verifying a variety of systemdels.

Applying bounded model checking to compositional procdgstaas is, however, not a trivial task.
One challenge is that the number of system states for pratgsisra models is not statically known,
whereas exploring the full state space is computationaibpeesive. This chapter presents a compo-
sitional encoding of hierarchical processes as SAT problarmd then applies state-of-the-art SAT
solvers for bounded model checking. The encoding avoid®erg the full state space for complex
systems so as to deal with state space explosion. The boomoidel checking technique is used to
validate system models against event-based temporal fiexpeThe experiment results show that

this approach can handle large systems.

The remainder of this chapter is organized as follows. 8efffi1 discusses some background of

bounded model checking. Sectionl8.2 presents how to enbedeetmantics of compositional pro-

155

8.1. BACKGROUND 156

cesses as Boolean formulae at the same time avoiding state egplosion. Sectidn 8.3 introduces
the encoding of the LTL properties and the verification pealnl Sectiofi 84 presents the experi-

mental results. Sectidn 8.5 concludes this chapter.

8.1 Background

The original proposal of model checking relies on exhaestearch through explicit representations
of reachable system statés|[58], which is knowexaslicit model checkindt suffers from thestate
space explosioproblem. Latersymbolic model checkingas proposed to overcome this problem

by enumerating states symbolically (typically based omibtgon of BDDs [42] 44]).

However, human intervention may be required to fine-tunevéinble ordering so as to reduce the
size of BDDs. In recent yearbounded model checkirfg4] have been proposed to complement
explicit model checking and symbolic model checking witkarsuccess. The idea is to encode
finite state machines (as well as the properties to be veriied Boolean formula that is satisfiable
if and only if the underlying state machine can realize adisgquence of transitions that reaches
states of interest, and then apply state-of-the-art SAVessl[2] to produce counterexamples (if
any) efficiently. If such a path segment cannot be found avengiengthk, the search is continued
for larger k. With the rapid development of SAT solvers, we believe badhcthodel checking is

promising for formal verification.

Previous works on model checking have been historicallyered around state machines. Model
checking techniques have only been applied to event-basethfisms to a limited extent. To our

best knowledge, bounded model checking has not yet beeredfpl event-based languages like
CSP [108] or CCSI[185]. One of the reasons is that unlike ioudtirverification [53] (where en-

coding the transition relation is rather straightforwareiicoding the semantics of compositional
processes using Boolean formulae is nontrivial. The nurobsystem states for process algebra
models is not statically known and exploring the full stgtace is computationally expensive. This
chapter presents a compositional encoding of hierarchroalesses as SAT problems. State-of-the-

art SAT solvers are then applied for bounded model checKitg encoding avoids exploring the

8.2. ENCODING OF PROCESSES 157

full state space for complex systems so as to avoid statee spquiosion. Based on the idea, we
have implemented bounded model checking in PAT. The adgastaf applying bounded model
checking instead of symbolic model checking include that bls usually need far less hand ma-
nipulation than BDDs. The experiment results show that oolkit has a competitive performance

for verifying systems with large number of states.

In this chapter, we only consider a subset of CSP# with nakes and channels (i.e., essentially
the original CSP language). Because the newly added fsatui@SP#, e.g., variables, channels,
etc., increase the complexity of the encoding process, iwhiakes the bound model checking
ineffective. This is also the reason that we do not pursu divection further. With the rapid

development of SAT solver, we believe this bottleneck carelelved.

8.2 Encoding of Processes

This section is dedicated to a discussion on how to encodeea girocess’ in CSP# as Boolean
formulae for bounded model checking. We start with encodintple processes by explicitly build-
ing their labeled transition systed?’ and then discuss how to encode processes for which building
LF is not feasible. Note that variables and channels are ignioréhis chapter. Hence system
configurations have only the process component. We rematkifile encoding technique is not

restricted to CSP#.

8.2.1 Encoding Simple Processes

A processP can be encoded by firstly constructif” and then encoding”. Given a LTS, a
property to verify and a bounél, we need to translate the LTS and the negation of the property
into a propositional formula which is satisfiable if and offlghere is a trace of lengttk which
violates the property (i.e., a counterexample). Thus, vegliie find an efficient encoding of states,
events, and the transition relation. Givén= (S, init, —), we needlog, #S5] Boolean variables

to encode the states. L&¥; = (zs},zs2,---) be a finite sequence of Boolean variables used to

8.2. ENCODING OF PROCESSES 158

encode the states reached after 1 steps. The encoding of a state is a Boolean formubaer zs;
such thatr(zs;) = 1 if and only if the valuation of the variables uniquely idéie the state. Or
equivalently, a state is associated with a unique binarybairand each Boolean variable represents
one bit of the number. Similarly, we uség, #«L] Boolean variables to encode the alphabet of
L. Let7¢; be the variables used to encode the events. A transitiorcten as a Boolean formula

of the following form,

m(T8;) A m(Te;) N m(T8iy1)

where s, is a set of fresh variables used to encode the post-statell ldetnote the encod-
ing function which maps a state or event to a Boolean formidanga set of Boolean variables.
II(P1,738;) A (e, zé;) A TI(P2,T$;4+1) Where(Py, e, P2) €— is the Boolean coding of the tran-
sition in the above form. Informally, this formula guaraggethat if the transition is to be taken,
the pre/post-state and event mustihéP, and e respectively. The transition relation is encoded
as the disjunction of all possible transitions, i.e., angagled transition may be taken if it can be

satisfied.

T, = \/{H(Pl, ﬁz) A H(e, ﬁl) AN H(PQ, ﬁi—i—l) | (Pl, e, PQ) €—>}

Given a bound; for bounded model checking, the encoded transition relatiost be applied-
times. Every time a fresh set of variables must be used todenttee engaged event as well as the
target state. Thus, we neél + 1) x [log, #S5| + k x [log, #3] Boolean variables to represent

states; .. si1 ande; .. e Wheres; = init.

Definition 24 An encoding of a LTS is 4-tuple= (Z,7;, 73,, 7¢;) whereZ = Il(init, 73,) is the
encoded initial state7; is the encoded transition relation as defined aboi&g, are the variables
used to encode the source state&7pandzé; are the variables used to encode the labeling events of

transitions of7;.

Given a LTSL and its encoding, we say€ is sound if and only i and L are trace-equivalent,
i.e., every trace allowed bg must be allowed by andvice versa The above encoding of a LTS

is sound as we can show that the encoded transition relatioiorgns to— and the encoded initial

8.2. ENCODING OF PROCESSES 159

condition conforms tanit. Given an encoding of the systefna propertye to verify and a bound

k, the propositional formula constructed is of the followiogm,
[€,6lk =T AN T A [6l

where[— ¢] is the encoded negation of the given property (with regands)t We leave it to
Sectior 8B for detailed discussion. A satisfiability simlntto the above formula gives a counterex-
ample of the property, which satisfies the initial conditanmd the transition relation up to-steps

and violates the property.

In the following,we us&” to denote the encoding @. Explicitly constructingC? = (57, init”
—") is however not always desirable for several reasons. ¥istl (and therefore—") may not

be finite. For instance, processes liRe= b — Skip O (e« — P; ¢ — Skip)or P = a — (P |||

P) allow unbounded recursion or replication and, thus, maultes infinite reachable process
expressions. Our experiences, however, show that prace$ske above forms are rather rare in
practice. Without loss of generality, we assume th4tis always finite. Optimally, the number
of Boolean variables needed to encatféis [log, #S]. However, determining the exact size of
S* requires traversing through all reachable states, whiditén undesirable due to state space
explosion. For instance, assur#es? = n, the interleaving ofin copies ofQ (say P) hasn™
states. One remedy is to encode e (if its size is manageable) and then compé&8eto generate

£F so as to avoid constructing’ .

8.2.2 Composing Encodings

A rich set of operators can be used to compose processesisigaiied in Section3.1. Among all
operators, the indexed parallel composition or indexegrli@aving (which we refer to as indexed
concurrency) causes state space explosion. Givevhich contains indexed concurrency, instead
of building £ we shall deduc€” from the encoding of its sub-components. In the following, w
show how to compose the encoding of sub-components forusdgompaosition. In order to draw
connections between transitions of different processasimg in parallel, a global event-to-Boolean

encoding is established beforehand. In the followingllgt, 7¢) be the formula encoding using

8.2. ENCODING OF PROCESSES 160

variableszé. Givenzs; = (wzsl,zs?,---,xs") wherei € {1,2} as two sequences of Boolean
variables of the same length, we writ8; < 73, to meanzs{ < zs3 A zs? & xs3 A -+ A
zsf' < zsy. To further abuse notations, we wriig; U s to denote the sequence of variables

which contains both variables it¥; and s, and is sorted according to the unique variables ID.

Definition 25 Let P = |Hj”:1 P, Leteh = (78,7 7 zél7). The encoding off is
(TP, 7 WP wl), whereT? = NI_ TP, 0 = Ui, B], ®l = w2 and TP = Vi (T,”
A N (B & T)).

Note that the variables used to encode eRglare disjoint. The encoded initial condition &fis
the conjunction of the encoded initial conditions of each-samponent. Intuitively, this says that
when the composition is initialized, all sub-componentssihe at its initial state. The predicate
7{™ < 731 means that,, remains in the same state. The encoded transition relaitmei
disjunction of a set of clauses, each of which states thataition of P; may be taken and the states
of other sub-components are unchanged. Thus, any transifia sub-component can be taken
without affecting other sub-components. Indexed paraighposition is handled similarly. The
complication is that the alphabet of a sub-component mayaHigtcontain more events than those
constitute the process expression. The following defimisibows that by manipulating the encoded
transition relations of the sub-components, the encodetsition relation of the composition shall

be exactly the conjunction of the encoded transition refetiof the sub-components.

Definition 26 LetP = ||"_ P;. Lete” = (P, 7" 7] 7¢!7). The encoding oP is (I, T,
73!, mé;) whereZ” = NI, IV, @8] = U, ﬁfj, zel = ;ﬁfj, and7.” is defined as follows,

TP = No(T,7 v V{6, 7)) ATy & Ty | e € aPj A e € aP U {7}})

The transition relatioﬂ’ip-"' is extended with clauses to allow events nakif; but ina P (including

7) to occur freely without changing the status of this sub-ponent. Because the encoded transi-
tion relation of each sub-component is conjuncted and weheseame set of variables to encode
the events, an event can be engaged if and only if every smipaoent participates in it. This con-
struction guarantees that the encoded transition relafitime compaosition allows only runs which

conform to the semantics. It avoids constructifig by paying the price of extra transitions.

8.2. ENCODING OF PROCESSES 161

Example 8.2.1 The following specifies the classic dining philosopherspm [108],

Phil(i) = think.i — get.i.(i + 1)%N — get.i.i

— eat.i — put.i.(i + 1)%N — put.i.i — Phil(i);
Fork(i) = get.i.i — put.i.i — Fork(i) O

get ((z - 1)%).i — put.((i — 1)%N).i — Fork(i);
Phils(N) = H thl) || Fork(7));

whereN is the number of philosopherget.i.j (put.i.j) is the action of the-th philosopher picking
up (putting down) thg-th fork. AssumingN = 5 andxy, 22, 23 are used to encode the events, the
event encoding is shown in the following table (and the resignored for brevity).

Event Encoding Event Encoding

think.0 | mxy A —ap A —xg | put.0.1 | o3 A D A —ag

get.0.1 —xy A Txe N ag put.0.0 T A T A\ T3

get.0.0 =z A2 A a3 get.4.0 1 A 22 A a3

eat.0 1z AN xe A xg put.4.0 1 N\ 22 N\ X3

The following is the encoded transition relatig "/(O)17or(0).

,]—1Phil(0) A ,]—1Fork(0)

V(o ANsg A a3 N ag < a7 A\ 15 < 13 N T < 19)
V(B Ao ANa3s ANag < 17 ANas < 13 A\ 26 < 19))
\/(_|LE1/\"LEQ/\"I;J,/\I10<:>.T12/\.T11<:>.T13)
\/(_|£L‘1/_\162/\IB3/\£E10<:>£L‘12/\ZL‘11<:>£L‘13))
\/(_|LE1/\ng$3/\$10@$12/\$11©$13))
\/(ml/\—|x2/\—|x3/\$10<:>m12/\$11<:>$13))

wherezy, x5, 6 (27, 23, 29) are used to encode the pre-state (post-stat€)df0) andzg, 211 (212,

x13) are used to encode the pre-state (post-staté&pof(0). end

A large class of systems can be specified as an indexed pamaiiposition or indexed interleaving
of multiple sub-components which have relatively small bemof states, e.gPhilsy is specified

as an indexed parallel composition of philosopher and fansf For such systems, we encode each
sub-component by explicitly constructing the LTS and thpplathe above construction to build

the composed transition relation. Nonetheless, if a pgoPesghich contains indexed concurrency is

8.2. ENCODING OF PROCESSES 162

further composed with other processes using operatorglike and; , or amended using operators
like \, we shall be able to deduce the encoding of the compositimm the encoding of* (and
others). For instance, assuming the given proceg%i& (N); @, we must not explore all states of

Phils(N) in order to encode the given process.

Definition 27 Let P = M O N. LeteM = (zM 7M mM 7M) be the encoding oM. Let
EN = (N, TN Y 7). The encoding of is (27, 7,7, L, 7!) whereZ? = M A TV,
wl =M oYU {ae), »P =M = 2N, and TP = (we; A TM A zeifr) V (mae; A

TiN A = zeiy1) Whereze; is a fresh control variable.

The encoded initial condition has no constraintsa@p and thuszc; can be either true or false
initially (which means transitions fron® or () can be taken). Once one of the choices has been
taken,zc; remains the same as; for all s and thus a later step must respect the choice made at the
first step. This captures the semantics of choices. Notétimhandled in the same way &s and

M is equivalent tad in the trace semantics [108].

Definition 28 LetP = M A N. LeteM = (M TM :M 72M) be the encoding oM. Let
EN = (N, TN Y 7). The encoding of is (27, 7,7, L, 7!) wherez? = M A IV,
wl =M uzmY U {e), @l =M = 7N, and TS = (mxe; A TM A = zei) V(TN A

zciy1) Whereze; is a fresh control variable.

Interrupt can be viewed as a biased choice. Note that; is true if and only if M/ has not yet
been interrupted. If a transition df,; is taken,zc;.1 remains false so that next transition can be
taken fromT}; or Tx. Whenever a transition df'y is taken,zc; 1 must be true, which forbids all

transitions fromT",.

Definition 29 Let P = M; N. Let&M = (ZM,7M,mM 7)) be the encoding oM. Let
EN = (ZN, TN mN 7l). The encoding of is (27, 7.0, ! 7¢l) whereZ? = TM A = ¢,
P =mMuml Uz}, el =M = :Y, andT.” is defined as follows: whetre:; is a fresh
variable,

—xe; NTM A (AT, 7)) A —acir VINV, 78;) A veipr NIV V me; AN TN

8.2. ENCODING OF PROCESSES 163

Initially, — zc; must be true. Note that z¢; is true if and only ifM has not yet terminated. Intu-
itively, a sequential composition can be viewed a delayasicehwhereby transitions fronv can
only be taken after & transition has been taken 1. zc; andZ” is true once a transition af/
labeled withy" has been taken. Because transitions fifvare guarded with- z¢;, no transition

from M can be taken afterwards.

Other compositional operators are handled similarly by imdating the encoded transition rela-
tions of the sub-components and introducing control véemid necessary. For instance, if some
events of an encoded process are to be hidden]EI.\eA), those events are renamed, i.e., the label
of a transition is encoded &K ., 7e;) instead oflI(e, ze;). Note that hiding different events results

in different 7 transitions. This prevents synchronization between wiffehidden events.

Given a process, if P contains no indexed concurrency, we constrdét and then apply the
encoding in Section 3.1. Otherwise, each sub-componertieoinidexed interleaving or parallel
composition is encoded first. The encodingiofs then composed by applying the compositional
encoding. If a sub-component of the indexed interleavingamallel (say(@) contains indexed
concurrency as well, the same procedure is repeated so asddex). Note that for processes like
P =a— P|||-- ||| P, this construction is not feasible (and thus we have to coast?).
Nonetheless, for most interesting systems in which thame isnbounded replication (or recursion),
this construction not only terminates but results in BoolEamulae of manageable size, which can

be efficiently solved by SAT-solvers.

Theorem 8.2.2Let P be a process.£” is the encoding ofP as defined above£” is trace-

equivalent taZ”.

This theorem states that our encoding is sound. It is proyesirbctural induction. The base case is
when a process contains no indexed concurrency, i.e., twdiy in Definitiod 24 is sound. Then
we prove the induction step by showing the compositionabdimg preserves the equivalence. We

skipped the proof for brevity.

8.3. LTL PROPERTIES ENCODING AND VERIFICATION 164

8.3 LTL Properties Encoding and Verification

In this section, we focus on LTL verification using boundeddeiachecking techniques.

Let B~ % be the Biichi automaton constructed from a LTL propefity. In the explicit model
checking approach, the product 8f ¢ and P is generated (same as in SPIN). Explicit model
checking is to determine the emptiness@f x B, i.e., explore on-the-fly whether the product
contains a loop which is composed of at least one acceptatg. sFinite traces are extended to
infinite ones in a standard way. In the presence of a couraarpbe, on-the-fly model checking
usually produces a trace leading to a bad state or a looplgieifer to Sectiol 814). However, the
counterexample produced may be extremely long becaude’ on a depth first search. Bounded
model checking may then be used to produce a shorter tracdhwdads to the same bad state or
loop. Though because of the Biichi automata, the generatederexample may not be the shortest.

Nonetheless, our bounded model checker can be used as ateapadel checker.

Example 8.3.1 The following is the Blchi Automaton generated from the tiegeof the formula

O eaty N O eaty,

cat0

eat0 -eatl @
-eat -eatl

where s0 is the initial state,s1 and s2 are two accepting states andneans the transition is un-

guarded.— e means the transition can be labeled with any eventbut end

For bounded model checking, becaus® may not be built, we encode the Biichi automaton and
then compose it with the encoding of the model (&). Given a guard; labeled with a transition

of B, letII(g,7¢”, 75,) be the encoded guard, e.fi(e, 7¢?7) if g is an event or ~II(e, 7é?)

if gisanevente orl(g, 72, B2) A (go, 2, T2 1) if gis g1 A go.

Definition 30 Let P be a process. Lef” = (Z7, 7.7 7!, 7¢;). Let B be a Biichi automaton
(S,I,T,F).EB = (I8, 75,8, 7;) where
TP = VTP (s, 7)) Al(g, 2], 80) ATTP (s, 1) | (s,9,8") € T}

8.4. EXPERIMENTS 165

The encoding of the product & and B is (Z, 7;, 73;, 7¢;) whereZ = 78 A 77, 13, = @Y uzsP
and7; = T,V N TP,

BecauseP and B share the same alphabet as well as the variables to encodedhis, transitions
of P andB are always synchronized violates the property if and only if the languagefk B is
not empty. LetFB(zs;) = \/{I1% (s, 7s;) | s is an accepting state of}Ebe the encoded accepting

states. The following theorem states the correctness diaumded model checking.

Theorem 8.3.2 Given a process, and a Biichi automato® constructed from ¢, let E7*F =
(Z,7;,7s,,wé;) be the encoding aP x B. Letk to be a bound. The following formula is satisfiable

iff there is a counterexample of sike

[P,¢]k =T A Ni—y Ti A [6], where [- @]y, is Vi {75} < 7s; A VI_{FB (z5))}}

The proof is sketched in the following. A solution @, ¢], is an assignment dfue or falseto
Uit 7, andJY_, 72; as well as the control variables (if any), from which we caeniify a finite

run (s, er, S2, €2, -, Sk, €k, Sk+1). Becaus& must be trueg,; is an initial state. Becausg must

be true, by Theorel"8.2.2, =4 siv1 forall 1 < ¢ < k. Thus, the sequence of states/events
identified must be a run aP (as well as a finite prefix of a trace @j. The constrainf— ¢]; states
that the finite run must contain a loop, i.es; < xs; for somei, and the loop must contain at least
one accepting state, i.e., there exists sgnsatisfying; > i A j < k such thats; is accepting.

Therefore, the finite run identifies an infinite trace whichllswed by P and violates.

8.4 Experiments

In this section, we present a number of experiments to shevietisibility of applying SAT-based
model checking to process algebras. The effectivenessrafomupositional encoding is straightfor-
ward. If compositional encoding is applied, the encodinggtis often negligible and the size of the

formula is comparable to that of the formula generated bytranting the LTH.

!Depends on whether the processes are strongly coupled.or not

8.4. EXPERIMENTS 166

Dining Philosophiers Readers-Writers

10000

100000 oR SPIN ® —e—FDR —m—SPIN

PAT-Exp —¢—PAT-SAT PAT-Exp —¢—PAT-SAT

10000
1000

- 1000 {

)

Time(Sec

100

10
10

5 6 7 8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16 17

Milner's Scheduler Dining Philosopher SAT Experiments
1E+22
100000 ol —e— No. of Vars
—e—FDR —m—SPIN 1E+20 —m—Est. No. of States -
Time (Sec.)
PAT-Exp —¢PAT-SAT 1E+18

10000
1E+16

1E+14

1000 16412

1E+10

1E+08
1E+06
10000
100 -

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (Sec.)

100

Figure 8.1: Performance evaluation with a 2.0 GHz Intel Gowe CPU and 1 GB memory

For timely efficiency, we compare PAT with FDR and SPIN. WeaswSPIN over others because it
is the most established explicit model checker and its ilgnguage is loosely based on CSP. Note
that partial order reduction, which partly makes SPIN vargcessful, has been implemented in
PAT. We choose not to compare our bounded model checker wiSMY [53] because it focuses a
different application domain (i.e., circuit verificatiom) which often the transition relation is known
statically. Our bounded model checker has been evaluatbdwo award wining SAT solvers, i.e.,

MiniSAT and RSAT [2].

Figure[81 summarizes the performance using three benghmeadels, i.e., the dining philoso-
pher problem as in Example_8.R.1 (against the properyeaty A O$eat - - - O eaty 1), the
classic readers/writers problem and Milner’s cyclic selied This model describes a protocol

for coordination of NV readers andV writers accessing a shared resource. The property to ver-

8.4. EXPERIMENTS 167

ify is reachability of an erroneous situation (i.e., wrorgaders/writers coordination). Milner’s
cyclic scheduler describes a scheduler /orconcurrent processes. The processes are scheduled
in cyclic fashion so that the first process is reactivatedrafie N-th process has been activated.
The property to verify is that a process must eventually theedaled. Details of the models and
more experiments can be found @t [1]. Since FDR supportseratmt checking only, to prove a
liveness property written in LTL, a property model needs ¢ocbnstructed. For example, we use
Prop = eaty — Prop O eaty — Prop... O eaty_1 t0 express the property mention above.
The results are obtained by showing a (failure) refinemdatioaship between the system model
and a process capturing the property to verify. For the dipihilosopher example (the left-upper
chart), our on-the-fly explicit model checker (referred A$-Exp) performs best to produce a coun-
terexample. Our bounded model checker (referred as PAT-8éperforms SPIN for 13 or more
philosophers. The main reason is that the LTL to Biichi autarnanversion in SPIN suffers from
large LTL formulae, i.e., takes more time and produces bigggomata. All verifiers outperforms
FDR (except PAT-SAT for small number of philosophers beeanafshe encoding overhead), which
is not feasible for more than 12 philosophers. For the redeters example, all verifiers except
FDR produces a counterexample efficiently. Note that foryeegperiment SPIN takes less than
a few seconds to build model-specific executables. For theeks example, the full state space
(which is exponentially increasing without partial ordeduction) must be explored because the
property to verify is true. SAT outperforms FDR for 12 or mgmocesses. This suggests that
SAT-based model checking has the potential to handle laege space. Moreover, the current im-
plementation of PAT-SAT may be improved by orders of magtetshould we incorporate recently
development on incremental bounded model checking and [@8s226]. Nonetheless, bounded
model checking currently is mainly for falsification (if wibut a proper threshold bound). The time
taken by SPIN and PAT-Exp remains constant. This shoulddwmiited to the partial order reduction.
The right-bottom chart summarizes the performance our 5#5ed verifier in terms of the size of
the generated formula, the time needed for encoding andhgohgainst the number of states of
the model. The estimated number of states increase expalhenthereas the number of Boolean

variables and the time needed increase much slower.

Note that the experimental results presented in this seciioFDR can be improved significantly

8.5. SUMMARY 168

with a slightly different modeling, which is subject to FBRiierarchical compression [176].

8.5 Summary

In summary, we have developed a way to encode compositigetéra models without explicitly
exploring all reachable states. Experiment results shavdabr approach does verification rather
efficiently. Though presented in the framework of CSP#, maoeing of compositional processes

may be applied to other formal specification languages atatinos.

In literature, there have been a number of bounded modekehededicated to different specifica-
tion languages. Some noticeable ones include the first lmslintbdel checkel [34], NuUSMV_[53]
and UCLID [43]. However, as far as the authors know, therenmsyet been a bounded model

checker dedicated to process algebras, which have a cdiopathature.

Chapter 9

Verification of Real-time Systems

Ensuring the correctness of computer system used in lifiealrsystems is crucial and challenge.
This is especially true when the correctness of a real-wsyktem depend on quantitative tim-
ing, e.g., the pacemaker system. Specification and vetificaff real-time systems are important

research topics which have practical implications.

Recall that the real-time system modeling language prabos€hapter 3 supports a rich set of
concurrent operators as well as hierarchical timed coctstrdt is nontrivial to offer efficient me-

chanical verification support for this modeling languageawuse of the infinite domains of the ra-
tional clock values. In this chapter, we develop a fully aébed abstraction technique to build an
abstract finite state machine from the model. The idea is taaycally create clocks to capture
constraints introduced by the timed process constructdoékenay be shared for many constructs
in order to reduce the number of clocks. During system egfilam, a constraint on the active clocks
is maintained and solved using Difference Bound Matrix (Df8g]). We show that the abstraction
is finite state and is subject to model checking. Furthergidkly bi-simulates the concrete model
and, therefore, we may perform sound and complete LTL-X [il& without the next operator)

model checking, refinement checking or even timed refinertesmtking upon the abstraction.

The remainder of the chapter is organized as follows. Sefid presents the zone abstraction

using dynamical clocks. SectifnP.2 discusses the sousdrig¢he abstraction and its implication

169

9.1. ZONE ABSTRACTION 170

on model checking. Sectidn®.3 presents the verificatioardlgns for LTL checking, refinement

checking and timed refinement checking. Sediioh 9.4 coesltidis chapter.

9.1 Zone Abstraction

Model checking is applicable to finite state systems. Nagle#ls, the number of concrete configu-
rations (and hence the concrete transition system) is tefbécause of the time transitions. In the
following, we apply zone abstraction to build an abstractfiguration system. Different from zone

abstraction applied to Timed Automafa[68, 224], we dynaithiccreate/delete a set of clocks to
precisely encode the timing requirements. We show thathib&act transition system is finite state

and subject to model checking.

9.1.1 Clock Activation and De-activation

A clock is a variable ranging from 0 to some bounded naturahlmer. Given a configuration

(V, P), aclock is necessary to measure time elapsing if, and gréytifned process (e.dVait[d],

P timeout[d] @, P interrupt[d] @, or P deadline[d]) has been enabled. If a timed process (say
Wait[d]) is enabled, we associate a clock (sa&y) with the process to record time elapsing (writ-
ten asWait[d|;,). The timing requirements can be captured using a constoairthe valuation

of the clock. During system execution, multiple clocks mayused to capture quantitative timing
constraints. A clock may become irrelevant as soon as tlhgerkprocess takes a transition. For
instance, ifP in P timeout[d]s, @ engages in an observable event, then the process transforms
to P’ and clocktm becomes irrelevant. It is known that model checking of teaé systems is
exponential in the number of clocks. Therefore, it is déde@do use clocks only necessary and

discharge them as early as possible.

Definition 31 (Abstract system configuration) An abstract system configuration is a trigl&’, P,

D), whereV is a variable valuation P is a process and is a zone.

9.1. ZONE ABSTRACTION 171

A zoneis the maximal set of clock valuations satisfying a set ofiive clock constraints. A
primitive constraint on a clock is of the formn ~ d wheretm is a timer,d is a constant ane-
is >, = or <. Since clocks are implicit, clock readings cannot be comgairectly. A zone is not

empty if and only if the constraint is true. We wrif&f¢] to be the constraints on cloe¢kin zoneD.

Next, we show how to systematically activate and de-a&ivddcks using proces®ait[d] and

P timeout[d] @) as examples. Let be a fresh clock. Given an abstract configuration, we define
function A(P, t) to recursively determine whether a clock is necessary asutage the clock with
the relevant process constructs. A clock is necessary ibahydif one (or more) timed pattern has

just been enabled. For instance,

A(Wait[d]y, t) = Wait[d]y

A(Wait[d], t) = Wait[d];
where Wait[d], denotes that the timed process is associated with a afoakhereasWait|d|
denotes that it has not been associated with a clock. Theiamus for the former cased does
nothing and is not used (since it is not necessary to introduce anotbek)lfor the latter cased

associates the the timer process. The following shows how to applio process’ timeout[d] Q.
A(P timeout[d];,t) = P timeout[d]y Q
A(P timeout[d] Q,t) = A(P) timeout[d]: A(Q)
If a clock ¢’ has already been associated withimeout[d] @, then functionA simply returns the
process. Otherwise, it is associated witnd furtherA is applied to the sub-processé&sand
Q recursively. The complete definition of functiof is presented in Figure9.1. In an abuse of
notation, given an abstract configuration= (V', P, D), we write A(c¢) to be(V, A(P),D AN t =

0) if ¢ is used; otherwisel(¢) is simply c.

A runtime clock may later be discarded when the time-relgtentess has evolved such that the
reading of the clock is no longer relevant. For instance ctbek associated wit® timeout[d] Q
can be discarded wheR engages in an observable event. It should be clear that wieatify
the set of active runtime clocks by a similar procedure. Toimize clocks, all in-active runtime
clocks, and the associated timing constraints, shall begatdrom D. We assume a functio®

which performs clock de-activation in a sound and completg. w

9.1. ZONE ABSTRACTION 172

A(P O (07“ [or [Il) @, 1) = A(P,t) B (or || or [|[) A(Q, t)

A(P; Q1) —A(P,1); Q

A(P\Xt = AP, t)\ X

A(P,t) =A(Q,1) —if P is defined ag)
A(Wait[d], t) = A(Wait[d]:)

A(P timeout[d] Q,t) = A(P,t) timeout[d]; A(Q,1)

A(P interrupt]d] Q,t) = A(P,t) interrupt|d]; A(Q,1t)

A(P deadline[d], t) = A(P,t) deadline[d],

Figure 9.1: Clock activationA(P, t) is P except the above cases

9.1.2 Zone Abstraction

We defineD! = {t +d | t € D A d € R, }, i.e. the zone obtained by delaying arbitrary amount
of time. Notice that all clocks take the same pace. Next, Winédunction. to compute the
zone which can be reached by idling from a given abstracesysonfiguration[[224], presented
in Figure[3.2. Given the current zor, processP timeout[d];, @ may keep idling as long aB
may keep idling and the reading of clo¢k is less or equal t@ (so thattimeout does not occur).

The rest are similarly defined.

In the following, we define the firing rules based on the abstsgistem configurations. The idea
is to eliminate time transitions altogether and use then@rgonstraint to ensure that the time-
related process constructs behave correctly. An abstraasition is of the form(V, P, D) <

(V',P',D"),wherez € XU {Vv,7}.
[ade]

(V, Wait[d)pm, D) < (V, Skip, DT A tm = d)

ProcessWait(d) idles for exactlyd time units and then engages in everand the process trans-
forms to Skip. Intuitively, it should be clear that this is ‘equivalenti the concrete firing rules (see
SectiorT3.ZR). We will define what equivalence means latéhis section.

(V,P,D)< (V',P',D')

[atol]
(V, P timeout[d]ym Q,D) < (V', P timeout[d]pm Q,D' A tm < d)

(V,P,D)< (V! P, D)

[ato2]
(V, P timeout[d]ym Q,D) <> (V',P',D' A tm < d)

9.1. ZONE ABSTRACTION 173

t(V, Stop, D) =D

t(V, Skip, D) = DI

u(V,e— P,D) = D!

WV, [b]P, D) =D!

WV, PO (or | or ||]) @, D) =u(V,P,D)N(V,Q,D)
(V,P; Q,D) —(V,P,D)

(V,P\ X, D) = (V,P,D)

oV, Wait[d] i, D) =Dl Atm < d

oV, P timeout[d]m Q,D) =u(V,P,D)ANtm <d
oV, Pinterrupt[d]y, Q,D)=u(V,P,D)ANtm <d
(V, P deadlme[ltm, D) =uV,P,D)ANtm <d
u(V,P,D) =(V,Q,D) —-ifP=Q

Figure 9.2: Idling calculation

- [ato3]

(V, P timeout[d]m, Q,D) — (V,Q,tm=d A (V,P,D))
Depending on when the first event Bftakes place and whether it is observalifetimeout|[d] @
behaves differently in three ways. An observable transitb P must occur no later thad time
units since the process is enabled (rutel andato2). If the first transition is observable, then the
choiceis resolved (ruleato2). If it is silent, then the it transforms t8’ timeout[d] Q. If P may
delay more thar time units (captured by the constraui’, P, D)), then it times out after exactly
d time units (ruleato3). The constraintm = d A «(V, P, D) means that the delay is exacty
time units andP must be idling during the period.

(V,P,D) < (V',P',D')
[aitl]

(V, P interrupt|d)im Q,D) < (V', P’ interrupt[d]sm Q,D' A tm < d)

[ait2]

(V, P interrupt[d]m @, D) < (V,Q,tm=d N (V,P,D))

ProcessP interrupt[d] @ behaves differently in two ways. Transitions Bfmust take place no
later thand time units since the process is enabled (ruld). If P delay more thani time units
(captured by the constraintV', P, D)), then it is interrupted after exactlytime units (ruleait2).

(V,P,D)S (V! P'\D),z # v
[adl]

(V, P deadline[d)m, D) < (V', P’ deadline[d],, D' A tm < d)

9.1. ZONE ABSTRACTION 174

Figure 9.3: An example of abstract timed transition system

P deadline[d] behaves exactly aB except that any transition must occur befdréme units.

The rest of the firing rules is present in Appendix C. A tranosiis valid if, and only if, it conforms
to the firing rules and the resultant zone is not empty. livilit, this means that a transition must

be allowed by the untimed system and at the same time satisfgdditional timing requirement.

Definition 32 (Abstract transition system) LetS = (Var, init, P) be a system model. The ab-
stract transition system corresponding $ois a LTSLS = (C,, init,, —) where C, is the set of
reachable valid abstract system configuratiofisi, is the initial configuration(init, P, true) and

< is the smallest transition relation satisfyitvte, ¢’ : Cy, ¢ <> ¢’ < A(c) <> D(c)).

Example 9.1.1 (A simple example)Assume a modela, &, P) with no variable andP is (¢ —
Wait[5]; b — Stop) interrupt[3] ¢ — Stop. The abstract transition system is shown in Fidure 9.3,
where transition labet is skipped for simplicity. Lett;, t;) be a sequence of clocks. The following

illustrates how to construct the abstract transition systeet sy be (&, P, true).
e Step 1: applyA to sy to get
s1 = (@, (a — Wait[5]; b — Stop) interrupt[3];, ¢ — Stop,t; = 0)
e Step 2: apply rulesit1 to s; to get
so = (@, (Wait[5]; b — Stop) interrupt[3];, ¢ — Stop,0 < t; < 3)
Notice that(# = 0) equals ta; > 0.

e Step 3: applyD to s5. The result is exactly,. We obtain the transition from state 1 to state 2.

e Step 4: apply rulexit2 to s; to get
s3 = (9, (c — Stop), 1 2 0 A t1 = 3)

Notice that.(&, a — Wait[5]; b — Stop,ty = 0)ist; > 0.

9.1. ZONE ABSTRACTION 175

e Step 5: applyD to s3 to getsy = (&, (¢ — Stop), true). We remark that becaugsebecomes

inactive, it is pruned from the constraint. This generatesttansition from state 1 to state 3.

e Step 6: applyA to sy to get

s5 = (@, (Wait[5]4,; b — Stop) interrupt[3];, ¢ — Stop,0 < t; <3 Aty =0)

e Step 7: apply rulexitl to s5, we get

s¢ = (@, (Skip; b — Stop) interrupt[3];, ¢ — Stop,0 < t; <3 A tp =5)

Notice that the timing constraint is false given that alldns take the same pace. Refer to

next section on how this is discovered systematically.

e Step 8: apply rulexit2 to s5 to get

87:(@,C—>St0p,t1ZO/\tQZO/\t2§5/\t1:3)

e Step 9: applyD to s; to getsy. Notice that both clocks are inactive and therefore pruned.

This generates the transition from state 2 to state 3.

e Lastly, we generate the transition from state 3 to state 4icBldhat this transition involves

no quantitative timing.

end

9.1.3 Zone Operations

In order to construct and verify the abstract transitiortesys we need efficient and sound proce-
dures to manipulate zones. For instance, we need to detemfiather a zone is empty or not. The
procedure must be sound (so that invalid configurationsideel out) and complete (so that a valid

configuration is not missed).

A zone D can be equally represented as a difference bound matridg8l\CLet {¢, to, -, t,}
be a set ofn clocks. Letty be a dummy clock whose value is always 0. A DBM representing a

constraint on the clocks contains-1 rows, each of which contains+-1 elements. LeDji represent

9.1. ZONE ABSTRACTION 176

entry (i, j) in the matrix. A DBM represents the constraikiti : 0..n, Vj:0..n, t; — t; < D;
The most important property of DBM is that there is a reldyivefficient procedure to compute a
unique canonical form. Given a DBM in canonical form, checkivhether the zone is empty or
not is as easy as looking up an entry in the matrix. DBM has a#hstudied [68]_ 29, 30]. In the
following, we introduce the relevant DBM operations/prafgs. We skip the discussion on rest of

the zone operations (e.§.!, adding a constraint, etc.) as they resemble the discuss{Ba].

Calculate canonical form In theory, there are infinite different timing constraintsieh represent
the zone. Forinstance,< t; <3 A0<t —tp < 3isequivalenttd < t; <3A0<t —t <

3 A to < 1000. In order to systematically compare two zones, we compuie timique canonical
forms. In other words, we compute the tightest bound on ebutk clifference. If the clocks are
viewed as vertices in a weighted graph and the clock differexs the label on the edge connecting
two clocks, the tightest clock difference is the shortesh fietween the respective vertices. The
Floyd-Warshall algorithm[[20] thus can be used to compuedhnonical from. Given that this
algorithm is cubic in the number of clocks, it is desirablegduce the number of clocks. Besides,
the algorithm must be invoked if necessary and ideally ($giole) the result of performing an

operation on a canonical DBM should be canonical.

Check satisfiability In order to construct the abstract transition system, itsseatial to check
whether a zone is empty. Given the DBM representing a zoris,uhsatisfiable if, and only if,
there is a clock which has a negative difference from itsedf, i, — t, < 0 for somek so that
the constraint is false. If the DBM is in canonical form, thaere exists at least ong! which is
negative. Further, it can be shown that the DBM is false il anly if, Dg is negative. Therefore,

we compute the canonical form whenever it is necessary tckdioe satisfiability.

Add clocks In our setting, clocks may be introduced during system eatilon. Assume the new
clock ist;, and the given DBM is canonical. The following shows how theNDB updated with
entries fort,. For alli, D} = D} andD}f = D? as the new clock always starts with value 0. By a

simple argument, it can be shown the resultant DBM is cambnic

9.1. ZONE ABSTRACTION 177

to | o | |] T tx

to 0 dy || d || dY 0

t da R R T * d3

ti g * * * dy
tk—l d01671 * * * d1571

ti 0 dil) - d? . dﬂ71 0

Prune clocks Because entries in a canonical DBM represent the tightastcdon clock differ-
ences, pruning clocks is to remove the relevant row and aolimnthe table. It should be clear that

the remaining DBM is canonical, i.e. the bounds can not bsiplystightened with less constraints.

Notice that the number of reachable timing constraints imoical form are finite as proved in]68].

As a result, the abstraction system is finite state and thieresiubject to model checking

Example 9.1.2 (DBM manipulation example) The following illustrates how the DBM is trans-

formed through system exploration in Examiple 9.1.1.

Ll y tolt1 |t tolt1 |t tolt1 [t2
tol stept —L UM pepe — 12U 106 2010100 step7 10|0[0[-3] To|-21-5-7
to(()) + 1[0[0]" t0002t3303_e€t33035t31—2—4
h]0]0 h[3]0 [0]0]0 LI510[0| &112[4
Step4 Step8
s to |1 |t
tg_gSteEo 0 t00-30.5't69 to
t°30 0 t13[0]3 t|0
1 t]00]0]0

The DBM obtained after Step 7 is indeed false, i¥.is —2 after applying the Floyd-Warshall

algorithm. end

Tassume that the variable domains are finite and the reachiaddess expressions are finite.

9.2. VERIFICATION OF REAL-TIME SYSTEMS 178

9.2 \rification of Real-time Systems

In this section, we prove that our abstraction is sound amdpbete with respect to a number of
properties. The abstract transition system is shown to be&va&gnt to the concrete transition sys-
tem using a specialized bi-simulation relationslip_[136F then show that three different system

verification methods are sound.

In the concrete transition system, if a configuratidff, P’) can be reached froi/, P) by idling
only, we write (V, P) ~ (V’,P’). By a simple argument, it can be shown thaf if, P) ~
(V',P"), thenV = V'. We write(V', P) < (V', P') if, and only if, there exist§ V', P;), (V', P)
suchthat V, P) ~ (V, Py)and(V, P;) 5 (V' Py) and(V', Py) ~ (V' P").

Definition 33 (Time abstract bi-simulation) Let S = (Var,init, P) be a model. LetlS =
(C., init., —) and LS = (C,, init,,—) be the concrete and abstract transition systemis.and
L, are time abstract bi-similar (hereafter bi-similar) if, dronly if, there exists a binary relation
R : C. — C, such that(init., init,) € RandVz : S U{v,7}; ¢ = (Ve, Pe); a = (Va, Py, Dy)

such that(c, a) € R implies,

L VC - Vav

o if ¢ % ¢/, then for some/, « < o’ and(c/, a’) € R.

e if « < o/, then for some’, ¢ <~ ¢ and(¢/, d') € R.
We say thatc and o are bi-similar, written ag ~ a, if, and only if, there exist§R such that the
transition systems are bi-similar. Notice thatand £, are bi-similar if, and only if jnit. ~ init,.

Theorem 9.2.1LetS = (Var, init, P) be a system modef$ and £$ are time abstract bi-similar.

Proof: LetS = (Var, i, P) be the modelL. andL, be the concrete and abstract transition system
respectively. By definition, it suffices to construct a binaglation which satisfies the condition.
The theorem is proved by structural induction on the all $ygigorocess expressions. The following

are the base cases.

9.2. VERIFICATION OF REAL-TIME SYSTEMS 179

e Stop: R = {(i, Stop) — (i, Stop, true)}. Trivially true.
o Skip: R = {(i, Skip) — (i, Skip, true), (i, Stop) — (init, Stop, true)}. Trivially true.

o Wait[d]: R = {(i, Wait[d]) — (i, Wait[d], true), (i, Skip) — (i, Skip, true),
(i, Stop) + (i, Stop, true)}. The transition(i, Wait[d]) ~~ (i, Skip) of L. corresponds
to the transition(i, Waid|[d), true) < (i, Skip, true). Notice that the clock introduced by

function.A would be pruned byp. The rest is trivial.
Next, we prove the induction step.

o e{prg} — P: (i,e{prg} — P)and(i,e{prg} — P,true) are bi-similar sincei, e{prg}
— P) % (prg(i), P) (by ruleas1 andas2) and(i, e{prg} — P, true) <> (prg(i), P, true)
(by rule aev), and(prg(i), P) ~ (prg(i), P, true) (by hypothesis).

e [b]P: if i E b, then[b] P behaves exactly aB (rule gu2 and ruleagu), hence by hypothesis,
(i,[b]P) ~ (i,[b]P,true). If i i b, then[b]P behaves exactly aStop (rule gul and no
abstract firing rule), hendg, [b|P) ~ (i, [b] P, true).

e P O @: P O) behaves either aB or @, in both cases, by hypothesis, P O Q) ~
(i, P O Q, true).

e P M (. Similarly as above.

e P || Q: there is one-to-one correspondence on the concrete fuleg (rulepal, pa2 and

pa3) and the abstract firing rules ((rut@al, apa2 andapad)). Itis clear that by hypothesis
(i, P | @)~ (1, P || Q,true).

e P ||| @. Similarly as above.
e P: (). Similarly as above.

e P timeout[d] @Q: let the associated clock be:. We show that each abstract transition is
possible if and only if there is a corresponding concretesiten (i, P) ~ (i’, P'). Rule

atol is applicable if and only iftm < d and (i, P, D) may perform ar-transition. By

9.2. VERIFICATION OF REAL-TIME SYSTEMS 180

hypothesis(i, P, D) may perform ar-transition if and only if(i, P) does. By ruleto2, to3
andto4, at of P may happen if and only ifm < d. Therefore, we conclude rul&ol is
applicable if and only if there is a corresponding concredadition. Similarly, we argue that
rule ato2 and ato3 are applicable if and only if there is a corresponding caectensition.

This concludes thati, P timeout[d] Q) ~ (i, P timeout Q, true).
e P interrupt[d] @: Similarly as above.

e P waituntil[d]: rule awul is applicable if and only if: is notv” or (V, P, D) is capable of
performingz. By hypothesis(V', P) must be able to perform. Rule awu? is applicable if
and only iftm > d, this is implied by rulewu3 and hypothesis (and vice versa). Lastly, rule

awu3 is implied by rulewu2 andwu4.

e Similarly as above.

By definition, it suffices to construct a binary relation whiatisfies the condition. Time abstract bi-

simulation is strong enough to guarantee soundness orcediofn of a number of useful properties.

9.2.1 LTL-X Model Checking

In this section, we study the verification of LTL formulae sgectio 2.3]2) without the next oper-
ator (i.e. LTL-X), constituted by propositions on globatigdles. Notice that no clocks are allowed
in the property. The philosophy is that a critical propertgymoften be independent of the speed
of the hardware on which the system is deployed, whereas tueinof the implementation shall

incorporate known hardware limitations.

Example 9.2.2 Given the Fischer’s algorithm in Sectibn-3]2.3, the follogvare some critical prop-

erties.

Oct <1 — safety property
Oz =i = Oes.i) — liveness property

9.2. VERIFICATION OF REAL-TIME SYSTEMS 181

where and ¢ read as ‘always’ and ‘eventually’. The first property pretysstates mutual exclu-
sion, i.e., at all time, there must not be 2 or more processt®icritical section. The second states

that if process is attempting to access the shared resource, it must eVigrdoaso. end

In order to reflect model checking results on the abstraositian system to the original system,
we need to establish that the abstract transition systequisaent to the concrete one with respect
to LTL-X formulae. The idea is to show stutter equivalencesaen traces of the abstract system
and the concrete system. Given two traegs= (Vy, Vi,---) andtre = (V{, V{,---), try andiry

are stutter equivalent if, and only ify; and¢r, can be partitioned into blocks, so that the variable
valuation in thek-th block intry is the same as those in theth block of tr,. Formally, ¢ry is stutter

equivalent totr, if, and only if, there are two infinite sequences of intedeks iy < i1 < --- and

0 <jo <ji <---suchthatforeveryblock > 0holdsVy, = Vs, ., ==V, _, =V, =
vsfjk+1 S Vs’jkﬂil. It is known thattr; satisfies a LTL-X property if, and only ify» does.

Let ¢ be such a property, we writé - ¢ to denote that the labeled transition systéraatisfiesy,

i.e. every trace of satisfiesp.

Lemma 9.2.3 LetS = (Var,initg, P) be a system model. For every trace of the concrete tran-
sition systen’., there is a stutter equivalent trace of the abstract traositsystem’, and vice

versa.

The above lemma can be proved by structural induction orieddrom Theoreni 8.211. Conse-

guently, the following theorem can be proved straightfadia

Theorem 9.2.4LetS = (Var, initg, P) be a system model. Letbe a LTL-X formula constituted

by propositions orVar. LS = ¢ if, and only if, £S5 = ¢.

9.2.2 Refinement Checking

In this section, we investigate an alternative verificasoshema for finite system executions. That

is, to verify whether the system satisfies the property byvitg a refinement relationship between

9.2. VERIFICATION OF REAL-TIME SYSTEMS 182

the system and a model which models the property. ChBptezsepts a variety of refinement rela-
tionships, e.g. trace-refinement, stable failures refimtraed failures/divergence refinemeni [108].
In order to check refinement between two (timed) models, @bvstraction must be applied to both

models.

Example 9.2.5 Given the Fischer’s algorithm in Sectibn—312.3, a naturastion is whethee and
0 are necessary or their values would make a difference. Blgumitly, the former is to ask whether
(init, uProcotol) whereinit = {x — —1, ct — 0} anduProcotol defined as follows, trace-refines

the original onginit, Procotol).

uProc(i) = [z == —1]JuActive(i);
uActive(i) = update.i{zx =i} —
if (z=="1){
cs.i{ct = ct + 1} — exit.i{ct = ct — 1; £ = —1} — uProc(i)
} else{
uProc(1)
¥

uProtocol = uProc(0) || uProc(1) || uProc(2);

By showing trace refinement in both directions, we may esfaltiace equivalence. Or, the users

may change the value efands check for equivalence. end

We have defined refinement and equivalence relations betweeroncrete models in Definitidn 22
in Sectio&L. In the following, we argue that it is sound anthplete to show stable failures re-
finement (i.e. assuming both models are divergence-free)desm the abstraction transition systems

in order to show failures refinement between the concretesisod

Theorem 9.2.6 LetS; wherei € {1,2} be two modelsS; refinessS, in stable failures semantics

iff traces(LSY) C traces(L£5?) and failures(L3') C failures(L£3?).

By Theorem[@.2]1, it should be clear that our abstractiosemes failures. Intuitively, this is
because not only observable transitions but als@nsitions are preserved by the abstraction. The
theorem can then be proved straightforwardly. We remarkittia clear the failures refinement
subsumes trace-refinement and, therefore, it too can beodadpby only checking the abstract

transition systems.

9.2. VERIFICATION OF REAL-TIME SYSTEMS 183

9.2.3 Timed Refinement Checking

We have looked at the refinement checking without the coreid® of timed transitions. To in-

clude timed transitions, we need to include the time stampisd traces.

We assume a global cloak which starts (with reading 0) whenever the system startsefj@ a
system configuratiofV, P) withe a clock valug, written as(V', P); wheret is the current reading
of t¢. The changes of in the firing rules presented in Sectibn-312.2 can be calkedlatsily by
adding the elapsed time in the transition. Assume ¢hatR_, is a real number denoting the event
of time elapsing. Given a transitiqri’, P), — (V', P')y, we havet’ = t + e in rule del, to3, it2

andde2, andt’ = ¢t in rest rules.

A timed event is an event associated with a time stamp, wrater @t wheret is the reading of
t¢ whenz occurs, i.e. a timestamp. A run of a model= (Var, initg, P) is afinite sequence of

alternating configurations and timed events, i.e.

(Vo, Po)tg, :1@t1, (V1, P1) 4, 2@y, - - -, 2, @by, (Vi Pr),,)

such thatVy = initq, Py = P, tg = 0 and(V;, P)y, =" (Vig1, Pis1)s,.,, for all i. An execution

i1
of S is a finite sequence of timed events @t , 7. @ts, - - - , ©, @t,,) such that there exists a corre-
sponding run(Vo, Po) 4, 21 @t1, - - -, 2, @ty (Vi, Pp)y,). Given an executiodr, let E' | X where
X is a set of event names be the sequence generated by remueimg with a name i from
the sequenceF is divergent if and only if£ can be extended with infinite.events and possibly
e-events.F is timed divergent if and only i can be extended with infiniteevents and--events.

A model is (timed) divergence-free if and only it contains(timed) divergent executions.

Example 9.2.7 The following illustrates a model which is not timed divemge-free. Assume there
are no variables and the process is defined as folldWs: Wait[5]; P. The empty execution is

timed divergent since it can be extended with the sequénee5, 7, - -). end

A sequence of observable timed evefitss a trace ofS if and only if there exists an executidn

such thattr = E [Ry | {7}. Let traces(S) denote the set of all traces of model LetZ andS

9.2. VERIFICATION OF REAL-TIME SYSTEMS 184

be two system modelq. trace-refinesS, written asZ 1, S, if and only if traces(Z) C traces(S).
A timed safety property can be proved by showing a timed traieement relationship from an

implementation to a hand-crafted specification which cagstthe property.

Example 9.2.8 Assume a model which contains two eventgart and end. Further, the property
is that end must occur within 5 seconds sineéurt occurs. In order to show the satisfies the
property, we can show thdt refines (in timed traces semantics) the following specificatS =

start — (end — S) within[5]. end

An abstract timed event is written a0 D, which denotes tha¢ may occur at any time point in
D. An execution ofcﬁ is a finite sequence of abstract timed evemat® Dy, e; @D, - - -, e, @D),)

such that; E)a Cit1 andc; = (Vz, P;, Dl) for all 5 andco = mnit,.

Because a clock is associated with a process construct angdsuene the reachable process expres-
sions are finite, only finitely many runtime clocks are neagssit the same time. Further, because
there exists a clock ceiling for all runtime clocks, we caplgzone normalizatior [30] on runtime
clocks so that there are finitely many zones with respectaritime clocks only (i.e. excluding

from each zone).

Theorem 9.2.9LetS = (Var, initg, P) be a model.(a; @t , a, @to, - - -, a, @1,) is a trace ofS
if and only if there exists a trace @, (a1 @Dy, ax@Ds, - - - , a,, @D,,), such thatt; € D;[t¢] for

all 4.

In the theorem above; € D;[t;] means that valug; = ¢; is a solution of the constraint repre-
sented byD;[ts]. The theorem states that abstraction is sound and compittteespect to timed

traces semantics. We prove this theorem using the followimngliary theorem, which subsumes
Theoren8.2]9. Theoren 9.2110 states that not only obdertiaied event sequences but all timed

event sequences are preserved.

Theorem 9.2.10LetS = (Var, init, P) be a model.(e; @t;, e2@t2, - - - , €, @t,,) iS an execution
of S if and only if there exists an executionbf, (e1@D1, e2@Ds, - -, ,@D,,), such thatt; €

D;[t¢] for all 4,.

9.2. VERIFICATION OF REAL-TIME SYSTEMS 185

Proof: The theorem is proved by structural induction, on procegsession types. The base cases
are thatP is Stop or Wait[d]. Notice thatSkip = v' — Stop. The base cases are straightforward.
Assume thaf” is enabled at timé&,, the clock associated with is ¢, the current valuation i$ and

the current zone i®. The following proves the induction step for the case tha P timeout[d] Q.

e only-if: There are three cases according to malé to to4. If e; is ar event generated by
rule to2, we gett; — tg < d (since ruleto3 is applicable only whenl is positive). By
hypothesis, let; @D; be the abstract timed event generated by ud. Sincet; € D [t]
(by hypothesis) and < d (by t; — & < d), we conclude that, € D;[tz]. The same
argument applied to the case wheieis an observable event generated by male If e is
a T event generated by rule4, thent; — ¢y = d. Let e;@D; be the abstract timed event
generated by ruleto3. Sincet; € Dj[tg] (by hypothesis) and = d (sincet; — ty = d), we

conclude that, € D;[t¢]. Therefore, we prove the only-if part.

e if: There are three cases according to i€l to ato3. If e;@D; is generated by ruletol,
Di[tg] = t < d. Let @D’ be the abstract timed event generatedrbyBy hypothesis,
there exists; @t, a timed event generated By such thatt; € D’. By rule tol andto2, t{

satisfiest; < d, and hence; € D;[t¢]. Similarly, we prove the other cases.

By similar argument on each and every types of process eipreswe prove that the theorem
holds. Further, it is straightforward to conclude that Tie@a@. 2. holds given the above theorem.

a

By Theoren{@.219, given two modelsands, it is sufficient to show thatZ trace-refinesC$ in
order to verify thatZ trace-refiness. Nonetheless, because the readingoifs unboundedﬁf and

E{ have infinite number of sta%sln this section, we show how to overcome this problem.

Normalization To verify that £Z trace-refinesCS, we need to normalize (or equivalently deter-

minize) £5. Unlike normalization Timed Automata (which is infeasifji)]), normalization in

2Zone normalization org does not work.

9.2. VERIFICATION OF REAL-TIME SYSTEMS 186

this setting follows the standard subset construction. adestf the normalized transition system
(referred as normalized state) is a subset of states whe&le@mected by -transitions. The in-
tuition is that given a trace only one normalized state ished. Given an abstract configuration
cq, let 7 (¢,) is the set of abstraction configurations which can be reafiioed ¢, via O or more

T-transitions in—.

Definition 34 LetS = (Var, initg, P) be a model;,LS = (C,, init,, —) be the abstract tran-
sition system. The normalized abstract transition sys&e(d}j,, init,,,—,) where C,, is a set of
normalized statespit, = 7*(init,) and—,, is a labeled transition relation satisfying the follow-

ing condition: P <%, Qifandonly ifQ = {c, : Co | Jer: P, ¢1 <> ¢h A cq € T5(c))}-

We define the traces based on the normalized transitionmsyisighe standard way. It can be
shown that the above normalization is timed trace presgriive remark that normalization is not a
pre-request for our refinement checking algorithm, insteachormalized transition system is con-
structed on-the-fly. Figule 9.3 in Example9]1.1 illustsatew the transition system is normalized
using dotted ellipses. The initial normalized state caorgtatate 1 and 3 (since state 3 can be reached

from state 1 via a-transition).

A refinement checking algorithm (e.g. the one for un-timdithesnent checking in the FDR refine-
ment checkel [178]) works by normalizingy’ and then comparing states 6f with the normalized
states. It reports a counterexample if and only if a stat€’penablesmorethan the normalized
state ofS (which is reached via the same trace) does. The followingndgfivhat isnabledin the

timed setting.

Given an abstract configuration, the set of enabled evertsés of abstract timed events. That is,
enabled(c) is a set of pair§a, D[ts]) such that is an observable event aitlis a zone which tells
whena is enabled, i.e. there exists an abstract configurdtionP, D) such thate < (V,P,D).
Notice that only reading of; is interested. Multiple abstract timed events with the savemt name
may be present ianabled(c). In the following, we assume that abstract timed events thigtsame

event are always grouped together in a set of abstract timettse by applying the following rule:

9.2. VERIFICATION OF REAL-TIME SYSTEMS 187

{---,e@D[tg], e@Ds[tg],---} = {--,e@D1[tg] U Dg[tG],---}H. Given two sets of abstract
timed eventst, and E», Ey, C E if and only if for all e@D in E;, there existe @D’ in E5 such
that D C D’. Given a normalized state,, we write enabled(c,) to mean the sefz | J¢, :
cn. © € enabled(cy)}. Similarly, we assume that abstract timed events with timeesavent are

grouped together.

The algorithm LetZ andS be two system models. Let the corresponding abstract timmsiystems
be £ = (CI,initl,—T)andLS = (CF, inits ,—S) respectively. Further, I6tCS, inits, %)
be the normalized transition system©f. In an abuse of notations, given an abstraction config-
urationc, = (V,P,D), we write ¢,[t := 0] to mean(V, P, D’) whereD’ = D;._, i.e. the

configuration with clock being reset.

The algorithm presented in Figure®.4 verifies whethaefinesS. The idea is to construct the

synchronous product o and £5 on-the-fly whilst searching for a state-péi s,,) : CZ x C3

of the product such thatenables more events thap does. The algorithm is inspired by the one
used in FDR and follows its soundness/completeness arguitmeorder to guarantee termination,

the reading of; must be bounded. This is achieved by resettingvhen synchronizin@ ands.

Notice thatts is never pruned during the clock de-activation.

As in standard reachability testing, two data structuresnaaintained, i.e. a stack namedrking
to store all reachable state-pairs which are yet to be esghland a set namedsited to record
all visited state-pairs. At line 2, the initial state of theoguct is pushed into theorking stack.
If there is a state-paifi, s,) yet to explored (so that the condition at line 5 is satisfieat) if :
enables more events thay (i.e. satisfying the condition at line 7), the algorithmurets false (and
reports a counterexample). Otherwise, we generate st@tefpm(i, s,,) and push them into stack
working. Notice that ifi’ can be reached fromby ar-transition in£Z, then(4', s,,) is a state of
the product. We remark that all visible events must be erdjagachronously byZ and£S. That
is, if i’ can be reached fromby a ands/, can be reached from, by a, then(7’, s,) is a state of the

product. Further, clockg is reset whenever a visible event is synchronously engdgedld and

3DBM is not closed under union. Nonetheless, it does not magee.

9.2. VERIFICATION OF REAL-TIME SYSTEMS 188

procedure refines(Z,S)

1. Stack working := (); Setwvisited := &;
2. working.push(initl , init);

3. while working # ()

4. (i, 8p) := working.pop();

5. if (i,s,) & visited

6. visited := visited U (i, sp,);

7. if enabled(i) € enabled(s,)

8. return false;

9. endif

10. foreachi’ s.t. (i, 7,i') €—7

11. working.push(i’, sy);

12. endfor

13. foreach a, i’ s.t. (i, a, i) €—T

14. foreach s/, s.t. s, = {z[tg :=0] | ¢ : 8,. (¢, a,7) €=}
15. working.push(i'[ta := 0], 7*(s},))
16. endfor

17. endfor

18. endif

19. endwhile

20. return true;

Figure 9.4: Algorithm:refines(Impl, Spec)
15). The soundness of the algorithm is stated in the follgvifreorem.

Theorem 9.2.11LetZ andS be two models. Algorithmefines(Z, S) returns true if and only i

refinesS. It terminates if both ar€ and S are timed divergent-free.

Proof: The theorem has two parts. The first is that the result is sodrw second is that the

algorithm terminates under some condition.

Partial correctness|If we never resetl’, algorithmrefine resembles the refinement checking al-
gorithm used in FDR, then the theorem follows the soundnadscampleteness argument pre-
sented in[[176]. Next, we argue that resettifig as in the algorithm is sound and complete
as follows. Z does not refineS if and only if there existsr = (a1 @t;, ax@ty, - - -) such that

tr € traces(Z) A tr ¢ traces(S). Lettr! be the prefix oftr, i.e., tr’ = (a1 @ty,- -+, a;@t;) . By

9.2. VERIFICATION OF REAL-TIME SYSTEMS 189

a simple argument, it can be shown tZatloes not refing if and only if there exists such that

tr* ™ {a;+1@t;1 1) is a trace off but notS. Next, we prove the theorem using an inductionion

e Base caseif 7 = 0, no resetting ot is necessary, we conclude the theorem holds.

e Induction step: Assume thatr® € traces(Z) A tr' € traces(S) and there exists; 1 @t;11
such thattr® ™ (a; 1 @t;,1) is a trace off but notS. Now, assume starts with—t;. There
exists a; 1 @t; 11 — t; such thattr® ™ (a;11@t; 11 — t;) is a trace ofZ but notS, where
ti+1 — t; is the reading ot after resetting at step This justifies that resettingy; is sound

and complete.

Terminating By assumption, all variables have finite domains and theeeoaty finite process
expressions, and therefore, it remains to show that the auwftzones are finite. Further by as-
sumption, botliZ andS are timed divergent-free, this implies that througkransitions only, there
are only finitely many partitioned oty;’s reading. Because we resit every time an observable
event is engaged, we have only finitely many zones sinceraflinoe clocks are bounded (and have

finitely partitions since only integers are allowed as tiroastants). O

Notice that in order to guarantee that the algorithm can iteata, bothZ and S must be timed
divergence-free. This assumption is reasonable for twsorea Firstly, it is relatively straight-
forward to check whether a model is timed divergent-free ar @ simple approach is to apply
zone abstraction without using the global clagk Assume the abstract transition systentis
The model is timed divergence-free if and onlyJf does not contain a loop which contains only
T-transitions and time elapsing. Existence of such a loopbeachecked using well-studied algo-
rithms like nested Depth-First-Search or Tarjan’s al¢ponitfor strongly connected compondhts
Secondly, without explicit hiding, a model which is not tichdivergence-free is often problem-
atic. Furthermore, timed divergence due to hiding of oketalesrevents can be avoided by carefully

crafting the specification model. This is illustrated in thext section using a pacemaker case study.

“The latter has been implemented in PAT.

9.3. EXPERIMENTS 190

Model Size Property States/Transitiong PAT (sec.)
Fischer 4 Oct <1 3452/8305 0.22
Fischer 5 Oct <1 26496/73628 2.49
Fischer 6 Oct <1 207856/654776 27.7
Fischer 7 Oct <1 1620194/572510(303
Fischer 4 O(z =i = $ces.i) 5835/16776 0.53
Fischer 5 O(z =i = Oes.i) 49907/169081 5.83
Fischer 6 O(z =i = Oes.a) 384763/1502480, 70.5
Fischer 4 Protocol refines uProtocol 7741/18616 5.22
Fischer 5 | Protocol refines uProtocol 72140/201292 126.3
Fischer 6 Protocol refines uProtocol | 705171/2237880, 3146
Railway Control| 5 deadlock-free 4551/6115 0.42
Railway Control| 6 deadlock-free 27787/37482 3.07
Railway Control| 7 deadlock-free 195259/263641 24.2
Railway Control| 8 deadlock-free 1563177/2111032 223.1
Railway Control| 5 O(appr.l1 — Oleave.1) 8137/10862 0.95
Railway Control| 6 O(appr.1 — Oleave.1) 50458/67639 6.58
Railway Control| 7 O(appr.l1 — Oleave.1) 359335/482498 58.63

Table 9.1: Experiment results of LTL and refinement checking

9.3 Experiments

The techniques presented in this chapter have been imptethenPAT. We separate the experi-
ments on LTL and refinement checking with timed refinementkimg. The data are obtained with

Intel Core 2 Quad 9550 CPU at 2.83GHz and 2GB memory.

LTL and Refinement Checking

In the following, we present the experiment results on twachenark models. Tab[e.1 shows the

experiment results on the Fischer's mutual exclusion &lyorand a railway control systern [224].

9.3. EXPERIMENTS 191

In both examples, PAT performs reasonably well. It hand@sstates/transition in a few hours,
which is comparable to existing model checkérs [111] 17QjctHer, a simple experiment shows

that the computational overhead of calculating clocks/BB#around one third of the overall time.

The data on BPAAL [135] or RED [21T] verifying the same models has been omitteth the
table. Because RPAAL and PAT are based on a different modeling language, thetsesuwist be
taken with a grain of salt. The state graph generated fromTarfddel may contain unnecessary
T-transitions introduced by the compositional process ttoats, e.g. the in rule ato3. In hand-
crafted LPPAAL models, however, the-transitions may be removed by carefully manipulating the
clock guards and grouping clock guards and events on the sansition. In such a setting, verifi-
cation of the WpraAL is faster (by a factor related to the number of saetnansitions). However,
our experiment show that if we manually construct a PAT maatel a LPPAAL model with the

same state graph, then PAT anar4AL have a similar performance.

Timed Refinement Checking

The refinement checking algorithm is computationally cawrpkpecially when the specification
model is highly non-deterministic (i.e. normalization iXEtime). In this section, we show that
our approach is still practically useful.

Case studyA pacemaker is an electronic implanted device which fumdtito regulate the heart beat
by electrically stimulating the heart to contract and thmpump blood throughout the body. Quan-
titative timing is crucial to pacemaker. Common pacemalkgeesdesigned to correct bradycardia,
i.e. slow heart beats. A pacemaker mainly performs two fanst i.e. pacing and sensing. Sensing
is to monitor the heart’s natural electrical activity, Hatpthe pacemaker to gather information on
the heart beats and react accordingly. Pacing is when a p&eersends electrical stimuli, i.e. tiny
electrical signals, to heart through a pacing lead, whiet s heartbeat. A model of the pace-
maker is of the following form:Heart || Sensing || Pacing where proces#leart models normal
or abnormal heart condition; proceSensing and Pacing model the two functions. A pacemaker
can operate in many different modes, according to the intethpatient’s heart problem. All three

components above may be different in different modes. Fiairce, the following models one of

9.3. EXPERIMENTS 192

the simple models, namely the AAT mode.

AAT = Heart || Sensing || Pacing(LRI)
Sensing = if (SA == 1){atomic{pulseA — senseA — Skip}; Sensing}
else{pulseA — Sensing};
Pacing(X) = (atomic{senseA — paceA{SA =0} — Skip}
timeout[X | (paceA{SA = 0} — Skip) within[0]); Wait[URI];
(enableSA{SA = 1} — Pacing(LRI — URI)) within[0];

where URI and LRI are constants representing upper rate interval (i.e. stedba normal heart
can beat) and lower rate interval (i.e. the slowest a normaittcan beat). Processart generates
two eventspluseA (i.e. atrial does a pulse) anduseV/ (i.e. ventral does a pulse), periodically for
a normal heart or within one of them missing once a while foalamormal heart. Procesgnsing
synchronizes wittheart on pluseA and engages in evesgnse A immediately. Procesgtomic{ P},
once started, continues to execute without interleavirtd bilocked. SA is flag telling whether it
is necessary to monitor atria (1 for necessary). Pro¢&ssng synchronizes withSensing on
eventsenseA and paces a heart (captured by evemteA) if a heart pace is missing (captured by

timeout). We skip the details here. Interested readers can ref2&fo [

We model all 16 different modes and verify that the pacemakésfies multiple specification. An
essential property is that the pacemaker must restore hbeagt condition, which can be modeled

by the following process.

Spec = paceA — Started
Started = (paceA — Started) within[URI, LRI]

whereP within|[m, n] requires that” must react withinn to n time units. Intuitively,Spec means
that following onepaceA, the nextpaceA must occur withinURI to LRI time units. Because
the specification only concerns evemiceA, other events must be ignored. One solution is to
hide the rest of the events using the hiding operator. Fdarmte, we may verify that AT \
{pulseA, senseA, enableSA} refinesSpec in order to show that the pacemaker satisfies the property.
In general, hiding events may introduce timed divergertdesa which then makes the refinement

checking algorithm non—terminatngAn alternative way is to verifyd AT refinesSpec ||| Dummy

SAlso the maximal progress assumption on hidden events naygehsystem behaviors.

9.3. EXPERIMENTS 193

Model Size Property States/Transitions| Result| Time (s)
Pacemaker - deadlock-free | 302442/2405850| true 92.1
Pacemaker - correctness 986342/2608226 | true 122

Fischer 4 | mutual exclusion 9941/34244 true 0.78

Fischer 5 | mutual exclusion 141963/599315 | true 17.2

Fischer 6 | mutual exclusion 2144610/10795380 true 401

Fischer 6 bounded bypass 2429/8065 false 0.36

Fischer 7 bounded bypass 9213/34611 false 1.47

Fischer 8 bounded bypass 32785/137417 false 6.16

Fischer 9 bounded bypass 91665/425966 false 21.1

Fischer 10 | bounded bypasg 300129/1542020| false 79.8

Fischer 11 | bounded bypasg 693606/3880577| false 214

Railway Control| 4 bounded waiting 918/1359 true 0.45
Railway Control| 5 bounded waiting 4764/7199 true 3.21
Railway Control| 6 bounded waiting 28782/43795 true 26.2
Railway Control| 7 bounded waiting| 201444/307071 | true 238

Table 9.2: Experiment results of timed refinement checking

where procesgummy is defined as follows.

Dummy = pulseA — Dummy O senseA — Dummy O enableSA — Dummy

As a result, Dummy will synchronize the irrelevant observable events witdT. By a simple

argument, it can be shown that this is sound and complete.

Table[9.2 summarizes part of our experiments on demonirétie scalability of our method using
the pacemaker system and benchmark systems. The pacenoakains little concurrency and
hence is verified efficiently. Using refinement relationshi@ can encode a variety of different
properties[[178], including mutual exclusion, boundedpags, etc. The experiment on Fischer’s
mutual exclusion algorithm shows that PAT finds a countaergta efficiently. It is time consuming
if a system contains multiple parallel processes and thpapty is true. Nonetheless, PAT handle

107 states in a few hours which is comparable to model checkersSIPIN and WPAAL.

9.4, SUMMARY 194

9.4 Summary

In this chapter, we studied model checking of hierarchieal-time systems. Based on the real-time
modeling language proposed in Secfiod 3.2, we developeliysafutomated abstraction technique
to build an abstract finite state machine from the real-tinoeleh We showed that the abstraction
has finite state and is subject to model checking. Furtheedkly bi-simulates the concrete model
and, therefore, we may perform sound and complete LTL-X rholdecking, refinement checking

and even timed refinement checking upon the abstraction.

This chapter is related to verification of real-time systerigrification support has been devel-
oped for hierarchical specification based on process ageferg. the algebra of timed processes
ATP [187,[159], CCS + real-time_[223], Timed CSP_[183], etd) preliminary PVS encoding of
Timed CSP was presented ih_[40], which rely heavily on us@ractions. Inl[224], a constraint
solving method was proposed to verify CCS + real time. Séveoael checkers have been devel-
oped with Timed Automaté [10] being the core of their inputdaagesl[135, 3%, 2D7]. The zone
abstraction is closely related to works presented_inl[224]e difference is that we use implicit
clocks and support the hierarchical specification. The doess discussion of our abstraction is
inspired by [136]. There are few verification support for €inCSP, e.g. the theorem proving ap-
proach documented ih [40, 101], the translation tPaL models [70|711] and the approach based
on constraint solvind [42]. The PAT model checker is the fleddicated verification tool support for
Timed CSP models. In addition, PAT complementsPdAaL with the ability to check full LTL-X

property and check refinement relationship.

To the best of our knowledge, there are few tool support foet refinement checking. One of the
reasons is that Timed Automata, which extended Biichi Autaméh clocks [10], is designed to

capture infinite languages. The refinement checking proldamdecidable in the setting of Timed
Automata, because the language of Timed Automata is nadlesder complement. Our approach
is, however, decidable because we are based on finite timeel $emantics. As a price to pay, our
method is limited to verify timed safety properties or boeddiveness properties. This is justified

by the fact that most of the verified properties are safetpenties [103].

Chapter 10

Tool Implementation: Process Analysis
Toolkit

Concurrent systems exhibit complex behaviors. Systemlation and verification become more
and more demanding as the complexity grows. It is highlyrde to have automatic tool support
for the system analysis. In this chapter, we present Protealysis Toolkit (PAT) [1], which is a
self-contained framework to support composing, simugptind reasoning of concurrent systems.
PAT provides user friendly interfaces for system modeling asimulation. Most importantly, PAT
implements various model checking algorithm and optinidratechniques developed in the previ-
ous chapters. PAT is designed to be a general frameworkhvdaia be easily extended to support
systems with new languages syntax and verification algostiCurrently, three modules have been
developed in PAT: Communicating Sequential Processes) @®Bule, Real-time System (RTS)

module and Web Service (WS) module.

The remainder of the chapter is organized as follows. S&lfld] provides an architecture overview
of PAT. Sectior_I0J2 presents PAT's system design. SeEfldd discusses the three modules cur-

rently developed in PAT in details. Sectibn 0.4 reviewated work and concludes.

195

10.1. OVERVIEW OF PAT 196

10.1 Overview of PAT

Critical system requirements like safety, liveness anchésis play important roles in software spec-
ification, development and testing. It is desirable to haaedy tools to simulate the system be-
haviors and verify critical properties. Process AnalysmlKit (PAT) [2] was initially designed

to investigate system verification under fairness assumgt{202]. Later, we have successfully
demonstrated PAT as an analyzer for process algebras i [$4&e then, PAT has been evolved

to be a self-contained framework to support analysis of goeat and real-time systems.

PAT provides simple installation, wizard like guidance ausérs friendly interfaces. System mod-
els can be easily composed with the help of featured editingtions. The models can then be
simulated using automatic animations. Most importantyi Pnplements various model checking

techniques (proposed in the previous chapters) caterimgh&rking deadlock-freeness, divergence-
freeness, reachability, LTL properties with fairness agstions (see ChaptEl 4), refinement relation
checking (see ChaptEl 6) and etc. To achieve good perfoenaivanced techniques are imple-
mented in PAT, e.g. partial order reduction (see SedfioB.process counter abstraction (see
Sectio5.K), bounded model checking (see Chdpter 8),I@lanabdel checking (see Sectibn}.6),
etc. We have used PAT to model and verify a variety of systeargying from recently proposed

distributed algorithms, security protocols to real-wosligstems like the pacemaker systeéml [28].
Previously unknown bugs have been discovered (see S&€cHG).5The experiment results show
that PAT is capable of verifying systems with large numbestafes and complements the state-of-

the-art model checkers in some cases.

Starting from PAT 2.0, we have applied a layered design tpaeuphe analysis of the different

system/languages by implementing them as plug-in modwegure[I0.1l shows the architecture
design of PAT. For each supported system (e.g., distribsystem, real-time system, service ori-
ented computing, bio-system, security protocols and seretwork), a dedicated module is created
in PAT, which identifies the (specialized) language syntegll-formness rules as well as (opera-
tional) formal semantics. For instance, the CSP modulevsldped for the analysis of concurrent

system modeled in CSP#. The operational semantics of thettimnguage translates the behaviors

10.1. OVERVIEW OF PAT 197

Distributed algorithms, Web services, bio-systems, security protocols, sensor networks, etc.
o :
& Concurrent Module Real-time Module Wb Servie Bio-system Module
D Module
B8
=
o=
=
g
&
o)
(&}
@
E 2 Reachability Analysis, LTL Model Checking, Refinement T
% = Checking, Probabilistic Model Checking, etc.
<

Figure 10.1: PAT architecture

of a model into Labeled Transition Systems (LTS). LTS sengethe internal representations of the
input models, which can be automatically explored by théigation algorithms or used for simu-
lation. To perform model checking on LTSs, the number okstat the LTSs needs to be finite. For
systems with infinite behaviors (e.g., real time clocks dinite number of processes), abstraction
techniques are needed. Examples of abstraction techriimglede data abstraction, process counter
abstraction (see Sectibnb.4), clock zone abstractiongeetor{3.1l), environment abstraction, etc.
The verification algorithms perform on-the-fly exploratiohthe LTSs. If any counterexample is
identified during the exploration, then it can be animatetthénsimulator. The advantage of this de-
sign allows the developed model checking algorithms to lageshby all modules. To create a new
module in PAT, users simply need to develop a parser for tigetanodeling language and language
construct classes which define their operational semamiith the help of predefined APls, exam-
ples and tools (e.g. automatic parse;ienerator), devejapmodule for a new language becomes

relatively easy and requires less expetiise

1Experiences suggest that a new module can be developed ihsramreven weeks.

10.2. SYSTEM DESIGN 198

Till now, three modules have been developed. CSP moduleosigopodeling and verification

of general concurrent systems, especially under a variefgimess assumptions. RTS module
provides analysis for real-time systems which are specifs#ulg hierarchical timed processes. WS
module supports modeling and verification of Web servicéestration and choreography. In the
future, we plan to develop modules supporting sensor n&waML (state chart and sequence

diagrams), security domain (security protocols) and so on.

Starting from 2007, PAT (current version 2.7) has come toahlststage with solid testing and
various applications. More than 50 build-in examples (idaig all examples and case studies in
this thesis) are embedded in PAT. PAT has been used by a nwhbestitutions as a research or
educational tool. It has attracted more than 400 downloaaia B3 organizations in 23 countries
and regions. Currently, there are 1213 classes with more 168K LOC in PAT'’s source code.
We continue the development with the aim of developing aly-&asise, powerful and efficient
analysis toolkit for multiple domains. A complete PAT histand user information can be found in

AppendixD.

10.2 System Design

PAT is implemented in C# 2.0 for the benefits of Object-Omentiesign and competitive per-
formance. PAT adopts a hierarchical design. The class aliagn FigureC’IOR shows the hori-
zontal view of the system design. The system consists of @aiclpackagesPAT.GUI and
PAT.Common. PAT.GUI contains all graphical user interface classed.1’. Common contains
all basic entities and associations that other languagaul@®dan use and follow. Each module is

packed into a package and implements necessary classeolyrfg the design interfaces.

Abstract classModuleFacadeBase in PAT.Common package defines the module interface by
adopting the Facade design pattern. It has three publicadstto do the parsing, show simula-
tor window and model checker windovwtimulatorGUI and ModelCheckerGUI are the graphic

user interface classes for simulation and model checkiriggtwecan be used by all modules. In

addition, the two classes can be overridden according todisplay requirements. The internal

10.2. SYSTEM DESIGN 199

PAT.Common PAT.GUI
‘ LTLAssertion ‘ Assertion
- Specification 1 SimulatorGul ModuieFacadeBase PATMainForm
DeadlockAssertion | i |- g1 Model:Specification
] > Ve lee | L1
ReﬁnementAssertio‘ A 0 g» Simuiate() (> Parseinmodelsting) [[]|@P LoadModule(in name)
‘ <y StartSimulation() m"} ParseButtonClick()
1.2 1t O SiartModelChecking() 5 SimulationButtonClick()
Valuation Configuration Process ModelCheckerGUI EI?’ VerificationButtonClick()
1 Channels | 1 &l
Variables
a » MoveOneStep() » MoveOneStep() g» Verify()

TR ki

| csp b [ws RTS
PAT.RTS Sytax Sytax Sytax
RTSValuati RTSConfiguration | [Parallel Choice ‘RTSSpeciﬂcation| RTSModuleFacade File File File

& 1 ¢» Parse(in modsl)

{» MovelOneStep() Sequential Interleave RTSParser < StartSimulation() PAT.CSP
{» StartModelChecking()

RTSRefinementAssertion
L 1 ModelCheckerRTSUI
PAT.WS

Figure 10.2: Class diagram of PAT

representation of system models are storefmasification objects, which are composed by a col-
lection of Processes andAssertionS. Process is the base class for all language constructs with
an abstract method/ake OneMove, which should be overridden in all sub-classes according to
operational semantics of the language constructs. For @eamlake OneMove method inSkip
class returns &top process and unchanged valuation together with the terromatenty” (by
following skip rule in Sectio-3.112) Assertion is the base class of all assertions with an abstract
method Verify, which should be overridden in the sub-classes to implettienactual verification
algorithms. InPAT.Common package, several basic model checking algorithms haveibgse-
mented and can be shared by all modules. Each assertion @asoefiguration that represents
the initial configuration of the LTS to be verified (refinemesisertion has two initial configura-
tions for the implementation and specification respegtjveétach configuration has Brocess and

a Valuation of the global variables and channels, which conforms to efindion of the configura-
tion in SectiorZ3.T12. The LTS of a model to be checked is gaadrdynamically in thel ssertions

by keeping on invoking théd/ove OneStep method, starting from the initial configuration.

Every module needs to implemeModuleFacade interface (by inheritingModuleFacadeBase

10.2. SYSTEM DESIGN 200

) Reachablitity — Deadlock Refinement |
LTL Assersions aggertions Assertions Assertions |

S [B

,,

Simulator —>< Graphic Viewer

Simulator

,,,,,,,,,,,, SN

1

(Counterexamples)
,,,,,,,,,,,,,,,,,,,,,,,,, o y____
|
1| Explicit On-the-fly Model Checking | Reachability Deadlock Refinement 1
|| Supporting Fairness Assumptions |Model Checker | Model Checker | Model Checke:
|

Verifiers

Figure 10.3: Workflow of CSP module

class) in order to communicate witRAT.GUI package. The internal process constructs (e.g.
parallel composition, sequential compositions, choicess and so on) need to inhefitocess
class. New assertions can also be implemented by inherdissgrtion class or its subclasses.
Parser class needs implemented in each module accorditglémguage syntaxConfiguration

and Valuation classes can be customized in each module. For instance, Rii@eredefines the
two classes in order to store the DBM data structure (sead®d€il.3) and manipulate clocks in
MoveOneStep method. Each module is compiled into a Dynamic Linked Liprd@LL), which

can be loaded at run-time by tidT. GUI package.

PAT.GUI package loads the syntax files of different modules at th&liziation, which stores
the syntax color and DLL linking information. When users wamparse, simulate or verify an

input model, the linked DLL is loaded into the system dynaaitycand the corresponding interface

method is invoked.

In the vertical view, four components constitute to PAT, e&nthe editor, the parser, the simulator
and the verifiers. Figule_10.3 demonstrates the design ofNI&Rile. The editor is featured with
powerful text editing, syntax highlighting, multi-docunte environment, etc. The parser transforms

the system models and the properties into internal reptasem asProcesses andA ssertions. The

10.3. PAT MODULES 201

simulator allows users to perform various simulation taskshe input models: complete states
generation of execution graph, automatic simulation, ugeractive simulation, trace replay and
etc. The simulator is also used to visualize Biichi automatseted from the negation of LTL

assertions and counterexamples generated by the vertiersmon verifiers are used to deal with

different properties efficiently.

10.3 PAT Modules

In this section, we introduce the three modules and theionfapctionalities developed so far. We
focus on the unique features for each module. The commotidmsdike model editing, simulation,

deadlock and reachability analysis are omitted.

10.3.1 CSP Module

CSP module is designed for analyzing general concurrenieérsygs CSP module supports a rich
modeling language CSP# (see Secfion 3.1 and PAT user mdijuaDjstinguished from existing

model checkers, CSP module found its strength in two unigpeds.

Firstly, the LTL model checking algorithm in CSP module isig@ed to handle a variety of fair-
ness constraints efficiently. Two different approachesvésification under fairness are supported
in PAT, targeting different users. For ordinary users, ohthe following options may be chosen
and applied to the whole systemeak fairness or strong local/global fairnesshe model checking
algorithm works by identifying one bundle of fair executsofwithin a SCC) at a time and checks
whether the desirable property is satisfied. In general.eliew system level fairness may some-
times be overwhelming. The worst case complexity is high awatse, partial order reduction is
not feasible for model checking under strong local/glola@iness. A typical scenario for network
protocols is that fairness constraints are associatedamih messaging but not local actions. We
thus support an alternative approach, which allows useretate individual actions with fairness.

Notice that this option is only for advanced users who knoacéy which part of the system needs

10.3. PAT MODULES 202

fairness constraints. Nevertheless this approach is mach fiexible, i.e., different parts of the sys-
tem may have different fairness. Furthermore, it allowdiglaorder reduction over actions which
are irrelevant to the fairness constraints, which allowgoubandle much larger systems. Other
effective reduction techniques supported by CSP moduledirgy process counter abstraction (see
Sectior 5.M for more details), which reduces state spaeeadi@ally by grouping similar processes
in interleaving composition. Furthermore, CSP module ey a parallel verification option (see

SectiorT4.b) for LTL properties to make best use of multiecGPU.

Secondly, CSP module allows users to reason about behafiarsystem as a whole by refinement
checking. Refinement checking (see Chapter 6) is to verifgtiadr an implementation’s behav-
iors follow the specification’s. CSP module supports sixors of refinements based on different
semantics, namely trace refinement/equivalence, stahlestarefinement/equivalence, failures di-
vergence refinement/equivalence. A refinement checkingrittign (see Sectiof8.2) is used to

perform refinement checking on-the-fly.

10.3.2 Real-time System Module

Real-time system (RTS) module supports analysis of res-8ystems. In RTS module, a system
is modeled using a hierarchical timed process with mutabla ¢see Section—3.2). Additional
behavioral patterns which are useful in modeling and amadyzeal-time systems are introduced.
Examples areleadline (which constrains a process to terminate within some times)rtimed
interrupt, etc. Instead of explicitty manipulating clock variabless (in Timed Automata), the
time related process constructs are designed to build ohicitnglocks. Based on the clock zone
abstraction (see Chaptgr 9), RTS module is designed to gugponse-time semantic model (in
contrast to discrete-time or continuous-time), i.e., laitk values are rational numbers. RTS module
supports only integer numbers, since a set of rational nesrdan be converted an ‘equivalent’ set

of integer numbers by multiplying the least common multiple

RTS module provides efficient mechanical verification supfos a number of properties, deadlock-

freeness, (timed) divergence-freeness, reachablity, ET¢.-X (i.e. LTL without next operator)

10.3. PAT MODULES 203

model checking or trace refinement checking (without tiraeditions in the specification) are sup-

ported based on the clock abstraction techniques developg@&dapteiD.

For timed refinement checking, RTS module uses a timed traweustics (i.e. a mapping from a
model to a set of finite timed event sequences) and a timed tefmement relationship (i.e. a
model satisfies a specification if and only if the timed tragEthe models are a subset of those
of the specification). The verification algorithm developedtimed refinement checking (see Sec-
tion[@.Z.3) will verify that a system model is consistentiwatspecification by showing a refinement
relationship. Atimed event sequence is presented as aaredample if there is no such refinement
relationship. For the timed refinement checking, PAT rezgithat the implementation or specifica-

tions are not divergent, otherwise the shared clock willoeobounded.

10.3.3 Web Service Module

The Web Services paradigm promises to enable rich, dynamicflexible interoperability of highly
heterogeneous and distributed web-based platform. Therava different viewpoints in the area
of Web Service composition. Web ServichBoreographydescribes collaboration protocols of co-
operating Web Service participants from a global view. WebviBe orchestrationdescribes col-
laboration of the Web Services in predefined patterns baséatal decision about their interaction

with one another at the message/execution level, whichasal View.

WS module is developed to offer practical solutions to foo twiportant issues in Web Services
paradigm. First, if both the choreography and orchesmadi® given, it is important to guarantee
that the two views are consistent, by showing that the otcdtésn conforms to the choreography.
Second, given only a choreography, it is necessary to chbekhar it is implementable and synthe-
size a prototype implementation (if possible). In WS moduatenformance is verified by showing
weak simulation relationship using an on-the-fly model &g algorithm. A scalable lightweight

approach is used to solve the synthesis problem.

Figure[IO.# shows the workflow of WS module. Given a chorguiyyaor an orchestration, a pre-

processing component is used to extract relevant infoamathd build a simplified model in inter-

10.3. PAT MODULES 204

(Choreography (WS-CDL) O (Orchestration (WSBPEL) O

J

I Abstract lAbstract
¥

(Chor Model (» Conformance Checker |+ Orch Model %

T
% |s strongly connected?

l Yes J
Chaor Generator Synthesizer Simulator
Counterexample

!No
h 4

Figure 10.4: WS module workflow

mediate languages (see Secfiod 7.5), which are designegbtiore behaviors of choreography and
orchestration. Both languages (for choreography and stciteon) have their own parsers, com-
pilers as well as formal operational semantics. Therefasers can quickly write a Web Service

model and analyze it using our visualized simulator, verdied synthesizer.

Given a choreography, WS module can statically analyze lvehét is well-formed, for instance

whether it can be implemented in a distributed setting withiotroducing unexpected behaviors. If
the choreography is not implementable, WS module genesatésplementable one, by injecting
extra message passing into the choreography. OtherwisentdBle may be used to automatically
generate a prototype orchestration (which may later bee@famd translated to a WS-BPEL docu-
ment). If an orchestration is provided, the conformanceck&eallows users to verify whether the
orchestration is valid with respect to the choreographyor€bgraphy may contain free variables
(for environment inputs), which must be instantiated dgiraxecution time. This is achieved by
synchronizing the environments (of the choreography aadthhestration) whenever a free vari-
able is used. WS module offers other verification options @k, particular, deadlock-freeness

checking, LTL model checking, etc.

10.4. SUMMARY 205

10.4 Summary

In summary, we have developed a self-contained framewolkfBAspecification, simulation and
verification of concurrent and real-time systems. PAT aslaptextensible design, which allows new
languages and verification algorithms to be supportedyedsiree modules have been developed to
support the analysis of different systems. Experimentit@stow that PAT does verification rather

efficiently.

As a temporal logic model checker, PAT is related to the molflecking tools like NuSMVI[53],

SPIN [111], mCRL2[[102] and so on. Compared to these tool3, &fopts event-based modeling
language with the emphasis of fairness verification. Betsability and extensibility are the ad-
vantages of PAT. Bogol [77] is another extensible model kbiredeveloped as a plugin of Eclipse.
It allows user to extend the base language to support newadaegfeatures, but can not be fully

customized with desired syntax and semantic model.

For refinement checking, PAT is related to tools on equiva@éefinement checking (or language
containment checking), e.g. FDR1176], ARC[162] and ProBE Compared with FDR, PAT per-
forms an on-the-fly verification with partial order reducticARC (Adelaide Refinement Checker)
is a refinement checker based on ordered binary decisionadisg(BDD). It has been shown that
ARC outperforms FDR in a few cases [162]. PAT adapts an ekplpproach for model checking.
It has long been known there are pros and cons choosing aiciegpiproach or a BDD approach
(refer to comparisons between SPIN and NuSMV). Nonethelesanay incorporate BDD in the
future. ProBE is a simulator developed by Formal Method Rerm interactively explore traces of

a given process. The simulator embedded in PAT has the futtionality of ProBE.

In terms of real-time verification, PAT is related to a numbgrutomatic verification support for

Timed Automata, including BrPAAL [135], KRONOS [35], REDI[[21I7], Timed COSPAN_[207],

Rabbit [33]. Different from the Timed Automata approach,TRAodel checker is the first dedi-

cated verification tool support for hierarchical real-timedeling languages (like Timed CSP) by
adapting advanced verification techniques. In additiol; E&mplements BPAAL with the ability

to check full LTL-X properties and refinement relationshije. the best of our knowledge, there are

10.4. SUMMARY 206

few verification support for Timed CSP, e.g. the theorem pmigapproach documented [n 40, 101],
the translation to BPAAL models[[/D[711] and the approach based on constraint sq¥#]g Re-
garding to the timed refinement checking, there is no togbsttyo the best of our knowledge. One
of the reasons is that it has been proved that the refinemenkicly (or equivalently the language
inclusion) problem in the setting of Timed Automalal[10] isdecidable. Other negative results
include that Timed Automata cannot be determinized. It leentproved([180] that language in-
clusion checking against a Timed Automaton with one clockydwver, is decidable. We show that
timed refinement checking (under an assumptionaransitions) is decidable in our setting. The
timed systems we tackle correspond to a special subclasengfdTAutomata (i.e. with one clock
only andr-transitions, and all states are accepting). As a price ypgieect comparison of clocks’
values are disallowed and our method is limited to verifyeithsafety properties (or bounded live-
ness properties). The latter is justified by the fact thattmebshe verified properties are safety

properties[[103].

WS module is related to works on verifying Web Services. Irtipalar, it is closely related to
LTSA-WS [95], which translates Web Service model into Einitate Processes (i.e., a simple
modeling language) and then verifies conformance by shoaihgsimulation relationship. Dif-
ferent from their approach, WS module is based on langugmsally designed for Web Services
and supports features like channel passing, shared v@siablays, service invocation with service

replication, etc.

Chapter 11

Conclusion

This chapter concludes the thesis. Secfion]11.1 summaittizesontribution of this thesis and

SectiorITPR discusses some on-going and future directions

11.1 Summary of the Thesis

In this thesis, we focused on the verification of concurrewtr@al-time systems using model check-
ing approach. The main outcome is Process Analysis To®RT), which is a self-contained frame-
work to support composing, simulating and reasoning of coeat and real-time systems. We used
PAT to model and verify a variety of systems, ranging fronerdly proposed distributed algorithms,
concurrent systems to real-world applications. In theofeihg, we summarize the contributions of

the thesis, which are all implemented in PAT.

First of all, we designed an event-based modeling languagedncurrent and real-time systems.
This language integrates high-level specification langsagith mutable data variables and low-
level procedural codes. Timing requirements for real-tegetems are captured using behavior
patterns. With the formally defined syntax and operatioeahantics, the system models can be

translated into labeled transition systems, which areblatfor model checking.

207

11.1. SUMMARY OF THE THESIS 208

One of the main focuses of this thesis is LTL verification wiihiness assumptions. We developed
an on-the-fly LTL model checking algorithm for fairness emted systems based on SCC search-
ing. This algorithm gives a unified solution that handles aetg of fairness, e.g. process-level
weak/strong fairness, event-level weak/strong fairnesisstrong global fairness. To achieve better
performance, the algorithm was further changed to supaoetllel verification in multi-core archi-
tecture with shared memory. We applied the proposed farmexiel checking algorithms on a set
of self-stabilizing population protocols for ring netwstkwhich only work under global fairness.
One previously unknown bug in a leader election protocoB]Mas discovered using PAT. Pop-
ulation protocols are designed for network with large omeuebounded number of nodes, which
raises the space explosion problem. To solve this problggm@ess counter abstraction technique
was developed for model checking parameterized systenmer daidness. We showed that model

checking under fairness is feasible, even without the kadge of process identifiers.

The second focus of this thesis is refinement checking. Ouwletirgy language is an event-based
formalism, whose behaviors can be captured using everdggrdeollowing the trace semantics in
CSP [108], we developed a trace refinement verification ahgorto verify complex properties
beyond the expressiveness power of LTL. Advanced modelkamgtechniques, like partial order
reduction was incorporated into the proposed algorithmddmonstrate the usefulness of refine-
ment checking, we presented two applications. First, wiéiedlinearizability based on refinement
relations from concrete implementations to linearizaliistiact specifications. We have checked
a variety of implementations of concurrent objects, ingigdthe first algorithms for the mailbox
problem [19] and scalable NonZero indicatdrsi[78]. Secawel applied the refinement checking
algorithm to automatically check consistency between Watvi€e choreography and Web Service

orchestration by showing conformance relationship betwkem.

As an attempt to handle large state space, we used boundeel siatking technique_[54] to
verify LTL properties using compositional encoding of lierhical systems as SAT problems. The
encoding avoids state space explosion by exploring onlyptrtal state space. The experiment
results showed that our approach has a competitive perfarenior verifying systems with large

number of states. However, this approach was limited by #rpnance of the SAT solver and

11.2. ON-GOING AND FUTURE WORKS 209

hard to scale up for encoding of variables. Therefore, wendiccontinue in this direction.

We remark that in theory we can encode the property modehgsael logic formulae (as temporal
logic is typically more expressive than LTS) and then appinporal-logic based model checking
to verify the property (e.g. SCC-based LTL verification)islthowever, impractical. For instance,
LTL model checking is exponential in the size of the formudae therefore it cannot handle formu-
lae which encode non-trivial property model. In short, refirent checking allows users to verify
a different class of properties from temporal logic forneul&omparing the three verification sup-
port, SCC-based LTL verification is more efficient than rafieat checking and bounded model
checking when the LTL formula is small. Bounded model cheghks good for the verification with

limited search depth or counterexamples.

Real-time systems are not subject to model checking diréeitause of the infinite clock values.
To support the automatic verification of real-time systemws,proposed a clock zone abstraction
technique to build an abstract finite state machine fromeahktime model, which makes the model
checking feasible. In our approach, clocks are createdmdigadly to capture constraints introduced
by the timed process constructs, and deleted if they are seat by any process. Clocks may be
shared for many constructs so that the number of clocks wsadnimum. We proved that this
abstraction has finite state and it weakly bi-simulates timexete model, which allows us to perform
sound and complete LTL model checking or refinement checkpan the abstraction. To reason
about behaviors involving time, we formally defined a timegcé semantics and a timed trace
refinement relationship. We extended the zone abstraammique to preserve timed event traces,

hence timed refinement checking is possible.

11.2 On-going and Future Works

We are actively developing PAT. In this section, we discus®es on-going and future works sur-

rounding the PAT development.

11.2. ON-GOING AND FUTURE WORKS 210

11.2.1 Tool Development

Starting with modeling languages, CSP# and its real-tintereskon are quite expressive for mod-
eling concurrent and real-time systems. We are planningttoduce new language features, in-
cluding user defined data structures, variables of reakgalbigher order processes. Adding new
features is not a matter of arithmetic, each of these femtwwguires substantial effort in both re-
search and implementation. User defined data structurebeamplemented using external C#
code with proper interfaces interacting with PAT. To suppeal values, data abstraction is needed
to reduce the continuous domains into discrete ones. Fartlddime systems, we would like to
add the syntax for explicit clocks and the notion of urgerrgs [62], which can considerably sim-
plify the modeling process. Another aspect related to thdeatiiog is the model conversion from
existing languages. We are working on the automatic cormrefsom Promela model$ [111] (the
input language for SPIN) to CSP# models. This is feasiblabse Promela is a subset of precess
algebra, and CSP# covers most syntax of Promela. The behgfis @onversion is to attract more
users of other tools to start using PAT. Another targetimgilege is Petri-net [165] for its simple

structure based on labeled transition systems.

To improve the usability of PAT, we are working of two direxis. First, we are providing the
advanced editing features for system modeling like refarggofunctions and IntelliSense (code
auto completion). Examples of refactoring functions are tg definition for selected variable or

process”, “find usage of selected variable and processtidixselected text as another process”,
etc. IntelliSense is an auto completion technique baseldeouder input, which is handy when there
are more libraries. Second, graphical system input as stgupby Uppaalll135] and TINA32] is

extremely helpful for starting users. Our plan is to implatthe drag-and-drop model creation in

the future.

To improve the reliability of PAT, there are two possibleasdgies. The first strategy is to create
more testing cases. We are using unit testing tool (e.g. Ntinperform unit testing and integration
testing. With the rapid increasing of the functionalitiespre testing cases are needed. The second

strategy is to use verification tools like Spet#l[27] and @it [26] to conduct both static and

11.2. ON-GOING AND FUTURE WORKS 211

dynamic verifications on pre-conditions, post-conditidosp invariants, assertions and so on.

11.2.2 Model Checking Techniques

To develop new model checking algorithms and related teclas has top priority in PAT. We have

identified five possible directions.

First, we plan to investigate methods to combine well-kn@tate space reduction techniques. we
know that systems that accept an infinite number of threadslmound data structures make model
checking impossible. Symmetric properties among threadseduce infinite number of threads to
a small number. Data abstraction for infinite domain datalsées can also be incorporated into the
model checking to handle unbounded data size. These swudre valuable for our model checking

algorithms and refinement checking algorithms.

Second, we are interested in adopting symbolic represemtégchniques, like Binary Decision
Diagrams (BDD)[[4R2]. Our bounded model checking solutiolinited by the performance of SAT
solvers. Since BDD has been used to handle extremely lamydbeuof states (many orders of
magnitude larger than could be handled by the expliciestégorithms), implementation based on

BDD may make bound model checking scalable for compositiomalels.

Third, we are interested in automatic detection of symmmtiations. Reductions based on symme-
try relations have been investigated during the last dedddst of these approaches requires users
to provide the symmetry relations, which makes this tealmignpractical. This is the reason why
SPIN does not support symmetry reduction. Therefore, aatical discover of symmetry relations
from the model is worth investigating. One possible sohuti® to detect symmetry relations by

analyzing program structures statically.

Last, we plan to look in to probabilistic model checking teictues, which can help to analyze
systems which exhibit random or probabilistic behaviortiPalar, the integration of probabilistic

model checking with fairness assumptions and refinememkaig techniques is interesting to us.

11.2. ON-GOING AND FUTURE WORKS 212

11.2.3 Module Development

Since PAT offers a flexible design, implementing new modiggzarticularly interesting. Our tar-
get domains include orchestration language, securityopobt sensor network (particular NesC
languagell98]). Orc language [156] is a modeling languagédifiributed and concurrent program-
ming, which provides uniform access to computational sesi including distributed communi-
cation and data manipulation. The only verification suppartOrc language is the approach by
converting Orc models to Timed Automata, hence usimgAAL [[73] to do the verification. Direct
support of Orc language in PAT is possible, because Orc idgata like language extended with
clocks. CSP has been used to model and verify security miotath great succes§ [185, 180]. The
common approach is to convert security model into CSP, aadrDR to do the verification. Direct
supporting security modeling language will make the veatfan simpler and more effective. The
verification of sensor network model is done by converting@l&anguage into Promela, which is a

subset of CSP#. Therefore, developing a module to suppa€Nsnguage is straightforward.

Bibliography

(1]

(2]
(3]
(4]

(5]

(6]

[7]

(8]

9]

PAT: An Enhanced Simulator, Model Checker and Refinen@gcker for Concurrent and Real-time

Systems. http://pat.comp.nus.edu.sg/.
SAT Competition. http://www.satcompetition.org/.
Process Behaviour Explorer (ProBE), 2003. http://wigel.com/probedownload.html.

P. A. Abdulla, A. Bouajjani, and M. Miiller-Olm. Abstraxtollection — software verification: Infinite-
state model checking and static program analysiSditware Verification: Infinite-State Model Check-

ing and Static Program Analysi®agstuhl Seminar Proceedings, Dagstuhl, Germany, 2006.

O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. Rdaishna, and D. White. An Efficient Meta-
Lock for Implementing Ubiquitous Synchronization. Pmoceedings of the International Conference
on Object Oriented Programming, Systems, Languages anlitApipns (OOPSLA 1999pages 207—
222, 1999.

K. Alagarsamy. Some Myths About Famous Mutual Exclusdgorithms. SIGACT News34(3):94—
103, 2003.

R. Allen and D. Garlan. A Formal Basis for Architecturab@hection ACM Transactions on Software
Engineering and Methodologg(3), 1997.

R. Alur and D. Dill. Model-Checking for Real-Time Systsmin Proceedings of the 5th IEEE Sympo-
sium on Logic in Computer Science (LICS 19%&)ges 414-425, 1990.

R. Alur and D. L. Dill. Automata for Modeling Real-time Stems. InProceedings of the 7th In-
ternational Colloquium on Automata, Languages and Prograng (ICALP 1990)pages 322-335,
1990.

213

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY 214

R. Alur and D. L. Dill. A Theory of Timed Automatal heoretical Computer Scienck26(2):183-235,
1994.

R. Alur and T. A. Henzinger. A Really Temporal Logigournal of the ACM41:181-204, 1994.

R. Alur, K. Mcmillan, and D. Peled. Model-checking of ffectness Conditions for Concurrent Ob-
jects. InProceedings of the 11th IEEE Symposium on Logic in Compugien&e (LICS 1996 pages
219-228. IEEE, 1996.

D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Quamison under Abstraction for Verifying
Linearizability. InProceedings of the 19th International Conference on CompAiided Verification
(CAV 2007)volume 4590 of NCS pages 477-490. Springer, 2007.

D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. S&dfilizing Population Protocols. Proceed-
ings of the 9th International Conference on Principles dtbibuted Systems (OPODIS 200&)lume
3974 ofLNCS pages 103-117, 2005.

D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. S#bilizing Population ProtocolsACM
Transactions on Autonomous and Adaptive Syst8(43:643—644, 2008.

D. Angluin, M. J. Fischer, and H. Jiang. Stabilizing Gensus in Mobile Networks. IRroceedings
of the 2006 International Conference on Distributed Cormauin Sensor Systems (DCOSS 2006)
volume 4026 oLNCS pages 37-50, 2006.

K. Apt and D. Kozen. Limits for Automatic Verification dfinite-State Concurrent Systeniaforma-
tion Processing Letter22(6):307-309, 1986.

K. R. Apt, N. Francez, and S. Katz. Appraising Fairneskanguages for Distributed Programming.
Distributed Computing2(4):226—-241, 1988.

M. K. Arguilera, E. Gafni, and L. Lamport. The Mailbox élem. InProceedings of the 22nd
International Symposium on Distributed Computing (DISO&0pages 1-15. Springer, 2008.

J. Aspnes and E. Ruppert. An Introduction to PopulaBootocols.Bulletin of the European Associ-
ation for Theoretical Computer Scien@3:98-117, 2007.

P. C. Attie, N. Francez, and O. Grumberg. Fairness anpelfgirness in Multi-Party Interactions.
Distributed Computing6(4):245-254, 1993.

H. Attiya and J. Welch.Distributed Computing: Fundamentals, Simulations, andawated Topics
John Wiley & Sons, Inc., Publication, 2004.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY 215

J. Barnat, J. Chaloupka, and J. V. D. Pol. Improved iated Algorithms for SCC Decomposition.
ENTCS 198(1):63-77, 2008.

J. Barnat, J. Chaloupka, and J. V. D. Pol. Distributegokithms for SCC Decompositiofo appear
in Journal of Logic and Computatio2009.

J. Barnat and P. Moravec. Parallel Algorithms for FnrgiSCCs in Implicitly Given Graphs. IFormal
Methods: Applications and Technolqgwlume 4346 o£ NCS pages 316—330, 2006.

M. Barnett, M. Fahndrich, P. de Halleux, F. Logozzo, &hdillmann. Exploiting the Synergy between
Automated-Test-Generation and Programming-by-Conttad®roceedings of the 31th International

Conference on Software Engineering (ICSE 2009) Compapiages 401-402, 2009.

M. Barnett, K. R. M. Leino, K. Rustan, M. Leino, and W. Sdte. The Spec# Programming System:
An Overview. InProceedings of the International Workshop of Constructmd Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS 2pa4gs 49—-69. Springer, 2004.

S. S. Barold, R. X. Stroopbandt, and A. F. Sinnaeévardiac Pacemakers Step by Step: an lllustrated
Guide Blachwell Publishing, 2004.

G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and WETfficient Timed Reachability Analysis
Using Clock Difference Diagrams. Iroceedings of the 11th International Conference on Cosrput
Aided Verification (CAV 1999yolume 1633 oL.NCS pages 341-353. Springer, 1999.

J. Bengtsson and W. Yi. Timed Automata: Semantics, Atgms and Tools. Irectures on Concur-
rency and Petri Netsvolume 3098 o NCS pages 87-124. Springer, 2003.

J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, & dSagiv. Thread Quantification for Con-
current Shape Analysis. IRroceedings of the 20th International Conference on CoemAtded
Verification (CAV 2008)pages 399-413. Springer, 2008.

B. Berthomieu and F. Vernadat. Time Petri Nets Analygith TINA. In Proceedings of the 3rd
International Conference on the Quantitative EvaluaitdrSgstems (QEST 20Q6)ages 123-124,
2006.

D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A Tool fobB-Based Verification of Real-Time
Systems. IrProceedings of the 15th International Conference on CompAitded Verification (CAV
2003) pages 122-125. Springer-Verlag, 2003.

BIBLIOGRAPHY 216

[34] A. Biere, A. Cimatti, E. M. Clarke, and Y. S. Zhu. SymboNModel Checking without BDDs. IRPro-
ceedings of the 5th International Conference of Tools amgbéthms for Construction and Analysis
of Systems (TACAS 1999pnges 193-207. Springer, 1999.

[35] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, aBdYovine. Kronos: A Model-Checking
Tool for Real-Time Systems. IRroceedings of the 10th International Conference on CommpAided
Verification (CAV 1998)volume 1427 o NCS pages 546-550. Springer, 1998.

[36] L.Brim,I. Cerna, P. Krcal, and R. Pelanek. Distributdd. Model Checking Based on Negative Cycle
Detection. InProceedings of the 21st International Conference of Fotinda of Software Technology
and Theoretical Computer Science (FSTTCS 20@dges 96—-107, 2001.

[37] L. Brim, I. Cerna, P. Moravec, and J. Simsa. Acceptingd@cessors are Better than Back Edges
in Distributed LTL Model-Checking. IfProceedings of the 5th International Conference of Formal
Methods in Computer-Aided Design (FMCAD 200#8ges 352—-366, 2004.

[38] L. Brim, I. Cerna, P. Moravec, and J. Simsa. How to Orderti¢es for Distributed LTL Model-
Checking Based on Accepting PredecessorsPrbbteedings of the 4th International Workshop on
Parallel and Distributed Methods in verifiCation (PDMC 2Q0pages 1-12, 2005.

[39] L. Brim, I. Cerna, P. Moravec, and J. Simsa. On Combirfagtial Order Reduction with Fairness
Assumptions. IrProceedings of the 11th International Workshop Formal Mdth Applications and
Technology (FMICS 2006Yyolume 4346 of.NCS pages 84-99, 2006.

[40] P. Brooke.A Timed Semantics for a Hierarchical Design NotatidPhD thesis, University of York,
1999.

[41] S. D. Brookes, A. W. Roscoe, and D. J. Walker. An Operati®@Gemantics for CSP. Technical report,
1986.

[42] R. E. Bryant. Graph-Based Algorithms for Boolean FimttManipulation. IEEE Transactions on
Computers35(8):677-691, 1986.

[43] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergenesting in Term-Level Bounded Model
Checking. InProceedings of the 12th Advanced Research Working Cormfei@n Correct Hardware
Design and Verification Methods (CHARME 20033ges 348-362, 2003.

[44] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang. Symbolic Model Checking:
102Y States and Beyondnformation and Computatiqre8(2):142-170, 1992,

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY 217

M. J. Butler and M. Leuschel. Combining CSP and B for Sfieation and Property Verification.
In Proceedings of the 12th International Symposium on Formethidds (FM 2005)pages 221236,
2005.

S. V. Campos and E. M. Clarke. Real-time Symbolic Modak€king for Discrete Time Models.
Theories and experiences for real-time system developpages 129-145, 1994,

D. Canepa and M. Potop-Butucaru. Stabilizing Tokene®abs for Population ProtocolS€omputing
Research Repository (CoRRps/0806.3471, 2008.

M. Carbone, K. Honda, N. Yoshiba, R. Milner, G. Brownda®. Ross-Talbot. A Theoretical Basis of
Communication-Centred Concurrent ProgrammzD-Working Notg2006.

I. Cerna and R. Pelanek. Distributed Explicit Fair GyEletection: Set Based Approach.Rroceed-
ings of the 10th International SPIN Workshop on Model Chegldoftware (SPIN 20022002.

S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, an®&iha. State/Event-Based Software Model
Checking. InProceedings of the 4th International Conference on Integgtdrormal Methods (IFM
2004) pages 128-147, 2004.

C. Q. Chen, J. S. Dong, and J. Sun. A Verification Systerfiimed Interval Calculus. IRProceedings
of the 30th International Conference on Software Engimege(ICSE 2008)pages 271-280. ACM,
2008.

C. Q. Chen, J. S. Dong, J. Sun, and A. Martin. A Verificatiystem for Interval-based Specification
LanguagesACM Transactions on Software Engineering and Methodqlag99. Accepted.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchigli M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Mo@é&lecking. InProceedings of the
14th International Conference on Computer Aided Verifma({CAV 2002)pages 359-364, 2002.

E. M. Clarke, A. Biere, R. Raimi, and Y. S. Zhu. Bounded db Checking Using Satisfiability
Solving. Formal Methods in System Desidi®(1):7—34, 2001.

E. M. Clarke and E. A. Emerson. Design and Synthesis aficByonization Skeletons Using
Branching-Time Temporal Logic. Ibogic of Programspages 52—71, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automaterification of Finite State Concurrent
Systems Using Temporal Logic Specifications: A Practicapiyach. InProceedings of the 10th
ACM Symposium on Principles of Programming Languages (PT#83) pages 117-126, 1983.

BIBLIOGRAPHY 218

[57] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symnyelin Temporal Logic Model Checking. In
Proceedings of the 5th International Conference on Conitied Verification (CAV 1993yolume
697 of LNCS pages 450-462. Springer, 1993.

[58] E. M. Clarke, O. Grumberg, and D. A. Peleddodel CheckingThe MIT Press, 2000.

[59] R. Colvin, S. Doherty, and L. Groves. Verifying Concemt Data Structures by SimulatioBlectronic
Notes in Theoretical Computer Scien&87(2):93-110, 2005.

[60] R. Colvin and L. Groves. Formal Verification of an Arr@®ased Nonblocking Queue. Rroceedings
of the 10th International Conference on Engineering of Clemgomputer Systems (ICECCS 2Q05)
pages 507-516. IEEE, 2005.

[61] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. YannaisakMemory-Efficient Algorithms for the
Verification of Temporal Propertieformal Methods in System Desidi(2/3):275-288, 1992.

[62] J. Davies.Specification and Proof in Real-Time CSPambridge University Press, 1993.

[63] G. Delzanno. Automatic Verification of Parameterizeat@ie Coherence Protocols.Rroceedings of

the 12th International Conference on Computer Aided Vatiim (CAV 2000)pages 53—68, 2000.

[64] Y. Deng and J.-F. Monin. Verifying Self-stabilizing palation Protocols with Coq. IRroceedings of
the 3rd IEEE International Symposium on Theoretical AspetSoftware Engineering (TASE 2008)
pages 201-208. IEEE Computer Society, 2009.

[65] J. Derrick, G. Schellhorn, and H. Wehrheim. Provingéanizability Via Non-atomic Refinement. In
Proceedings of the 5th International Conference on integgdormal Methods (IFM 2007yolume
4591 of LNCS pages 195-214. Springer, 2007.

[66] E. W. Dijkstra. Self-stabilizing Systems in Spite ofdibuted ControlCommunications of the ACM
17(11):643-644,1974.

[67] E. W. Dijkstra. Programming: From Craft to Scientificddipline. Ininternational Computing Sym-
posium 1977pages 23-30, 1977.

[68] D. L. Dill. Timing Assumptions and Verification of FirgtState Concurrent Systems. Aatomatic

Verification Methods for Finite State Systemslume 407 oLLNCS pages 197-212. Springer, 1989.

[69] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Forrdatification of a Practical Lock-free Queue
Algorithm. In Proceedings of the 24th International Conference on Forfieahniques for Networked

and Distributed Systems (FORTE 200¢)lume 3235 of NCS pages 97-114. Springer, 2004.

BIBLIOGRAPHY 219

[70] J. S. Dong, P. Hao, S. Qin, J. Sun, and Y. Wang. Timed PetteTCOZ to Timed Automata. In

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Proceedings of the 6th International Conference on FormagjiReering Methods (ICFEM 2004)
volume 3308 oLNCS pages 483-498. Springer, 2004.

J. S. Dong, P. Hao, S. C. Qin, J. Sun, and W. Yi. Timed AwtanPatternslEEE Transactions on
Software Engineering34(6):844-859, 2008.

J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning MiftioTimed CSP Based on Constraint
Solving. InProceedings of the 8th International Conference on FornrajiBeering Methods (ICFEM
2006) volume 4260 of. NCS pages 342—-359. Springer, 2006.

J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification ofr@uutation Orchestration Via Timed Au-
tomata. InProceedings of the 8th International Conference on FormadiBeering Methods (ICFEM
2006) volume 4260 of. NCS pages 226—245. Springer, 2006.

J. S. Dong, B. P. Mahony, and N. Fulton. Modeling Air¢rifission Computer Task Rates. In
Proceedings of the 6th International Symposium on Formahilgs (FM 1999)page 1855, 1999.

R. Duke, G. Rose, and G. Smith. Object-Z: a specificdtmguage advocated for the description of
standardsComputer Standards and Interfacd§(5-6):511-533, 1995.

B. Dutertre and S. Schneider. Using a PVS Embedding & @5Verify Authentication Protocols.
In Proceedings of the 10th International Conference on TheoR¥oving in Higher Order Logics
(TPHOL 1997) pages 121-136. Springer-Verlag, 1997.

M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby. BuildinYour Own Software Model Checker
Using the Bogor Extensible Model Checking Framework.Phceedings of the 17th International

Conference on Computer Aided Verification (CAV 20papes 148—-152, 2005.

F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: ScalatNonZero Indicators. IfProceedings
of the 26th ACM Symposium on Principles of Distributed CamguPODC 2007) pages 13 — 22.
ACM, 2007.

E. A. Emerson and V. Kahlon. Reducing Model Checkinghaf Many to the Few. I®Proceedings of
the 13th International Conference on Automated DeducthE 2000) pages 236—254, London,
UK, 2000. Springer-Verlag.

E. A. Emerson and C. L. Lei. Modalities for Model CheagirBranching Time Logic Strikes back.
Science of Computer Programmirg(3):275-306, 1987.

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

BIBLIOGRAPHY 220

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. SrinivasaQuantitative Temporal Reasoning. In
Proceedings of the 2nd International Workshop on Computded\ Verification (CAV 1991 pages
136-145, London, UK, 1991. Springer-Verlag.

E. A. Emerson and A. P. Sistla. Utilizing Symmetry wheiodél-Checking under Fairness Assump-
tions: An Automata-Theoretic ApproachCM Transactions on Programming Languages and Systems
(TOPLAS)19(4):617-638, 1997.

E. A. Emerson and R. J. Trefler. From Asymmetry to Full Syatry: New Techniques for Symmetry
Reduction in Model Checking. IRroceedings of the 8th Advanced Research Working Confexamc

Correct Hardware Design and Verification Methods (CHARMB9Ppages 142-156, 1999.

J. Esparza. Verification of Systems with an Infinite &t8pace. Ith Summer School Modeling and

Verification of Parallel Processepages 183—-186, 2000.

C. J. Fidge, I. J. Hayes, A. P. Martin, and A. K. Wabenho#s Set-Theoretic Model for Real-Time
Specification and Reasoning. Mioceedings of the 4th International Conference on Mathemaf

Program Construction (MPC 1999ages 188—-206. Springer-Verlag, 1999.

C. Fischer. CSP-OZ: a combination of object-Z and CS®Proceedings of the 1st International
Conference on Formal Methods for Open Object-Based Distith Systems (FMOODS 199pages
423-438. Chapman & Hall, Ltd., 1997.

M. J. Fischer. (personal communication with leslie paort), June 1985.

M. J. Fischer and H. Jiang. Self-stabilizing Leaderdfitsn in Networks of Finite-state Anonymous
Agents. InProceedings of the 10th International Conference on Pples of Distributed Systems
(OPODIS 2006)volume 4305 o NCS pages 395—-409. Springer, 2006.

K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang.There a Best Symbolic Cycle-Detection Al-
gorithm? InProceedings of the 7th International Conference of ToolsAlgorithms for Construction
and Analysis of Systems (TACAS 20@&hyges 420-434. Springer, 2001.

R. W. Floyd. Algorithm 97: Shortest Pat@ommunications of the ACN§(6):345, 1962.

H. Foster. Tool Support for Safety Analysis of Servicengposition and Deployment Models. In
Proceedings of the IEEE International Conference on Weli&es (ICWS 2008)pages 716-723,
2008.

H. Foster. WS-Engineer 2008. Broceedings of the 6th International Conference on Se+llidented
Computing (ICSOC 2008yolume 5364 o NCS pages 728-729, 2008.

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

BIBLIOGRAPHY 221

H. Foster, W. Emmerich, J. Kramer, J. Magee, D. S. Rosenpand S. Uchitel. Model Check-
ing Service Compositions under Resource ConstraintsPréceedings of the 6th joint meeting of
the European Software Engineering Conference and the A@SSFT International Symposium on
Foundations of Software Engineering (ESEC/SIGSOFT FSE)2pfges 225-234, 2007.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. ModalelbaVerification of Web Service Composi-
tions. InProceedings of the 18th IEEE International Conference otoated Software Engineering

(ASE 2003)pages 152-163, 2003.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-\VSool for model-based verification of
web service compositions and choreographyPioceedings of the 28th International Conference on
Software Engineering (ICSE 200®gges 771-774, 2006.

N. FrancezFairness Texts and Monographs in Computer Science. Springer-yetla86.

P. Gastin and D. Oddoux. Fast LTL to Blchi Automata Thatien. In Proceedings of the 13th
International Conference on Computer Aided VerificatioAYQ001) pages 53-65. Springer, 2001.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, an€bller. The NesC Language: A Holistic
Approach to Networked Embedded SystemsPtaceedings of the ACM SIGPLAN 2003 conference
on Programming Language Design and Implementation (PLM3(pages 1-11. ACM, 2003.

J. Geldenhuys and A. Valmari. More Efficient On-the-fljLL Verification with Tarjan’s Algorithm.
Theoretical Computer Sciencg45(1):60-82, 2005.

D. Giannakopoulou, J. Magee, and J. Kramer. Checkiogiess with Action Priority: Is it Fair? In
Proceedings of the 7th ACM SIGSOFT Symposium on the Fowndaif Software Engineering (FSE
1999) volume 1687 of. NCS pages 511-527, 1999.

T. Gothel and S. Glesner. Machine Checkable Timed G8Proceedings of the First NASA Formal
Methods Symposium (NFM 2008)ASA Conference Publication, 2009.

J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, Bhdan Weerdenburdhe Formal Specification
Language mCRL2BFI, 2007.

N. Halbwachs. Delay Analysis in Synchronous PrograimsProceedings of the 5th International
Conference on Computer Aided Verification (CAV 199apes 333—-346. Springer, 1993.

D. Harel. Statecharts: A Visual Formulation for CoeplSystems.Science of Computer Program-

ming 8(3):231-274, 1987.

BIBLIOGRAPHY 222

[105] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formaddi&ling and Analysis of an Audio/video
Protocol: an Industrial Case Study using UPPAAL.Pimceedings of the 18th IEEE Real-Time Sys-
tems Symposium (RTSS 1998ges 2-13, 1997.

[106] M. R. Henzinger and J. A. Telle. Faster Algorithms flee Nonemptiness of Streett Automata and for
Communication Protocol Pruning. Froceedings of the 5th Scandinavian Workshop on Algorithm

Theory (SWAT 1996pages 16-27, 1996.

[107] M. Herlihy and J. M. Wing. Linearizability: A Correctiss Condition for Concurrent Object&CM
Transactions on Programming Languages and Systems (TOPL2ES):463—-492, 1990.

[108] C. A. R. Hoare. Communicating Sequential Processdaternational Series on Computer Science.

Prentice-Hall, 1985.

[109] G. Holzmann, D. Peled, and M. Yannakakis. On Nested®Dépst Search. IfProceedings of the 2nd
International SPIN Workshop on Model Checking SoftwardSI®96) pages 23-32, 1996.

[110] G. J. Holzmann. The Model Checker SPINEEE Transactions on Software Engeeri3(5):279—
295, 1997.

[111] G. J. HolzmannThe SPIN Model Checker: Primer and Reference ManAddison Wesley, 2003.

[112] G. J. Holzmann and D. Bosnacki. The Design of a MulécBktension of the SPIN Model Checker.
IEEE Transactions on Software Engineeri38(10):659-674, 2007.

[113] G. E. Hughes and M. J. Creswdlihtroduction to Modal Logic Methuen, 1977.

[114] C. P.Inggsand H. Barringer. CTL* model checking on arsld-memory architecturBormal Methods
in System Desigr29(2):135-155, 2006.

[115] C. N. Ip and D. L. Dill. Verifying Systems with Replicead Components in Murphi. IRroceed-
ings of the 8th International Conference on Computer Aidexdfi¢ation (CAV 1996)pages 147-158,
London, UK, 1996. Springer-Verlag.

[116] Y. Isobe and M. Roggenbach. A Generic Theorem ProveL®® Refinement. I®roceedings of
the 11th International Conference of Tools and AlgorithorsGonstruction and Analysis of Systems
(TACAS 2005)pages 108-123, 2005.

[117] F. Jahanian and A. K. Mok. Modechart: A Specificatiomgaage for Real-Time System$EEE
Transactions on Software Engineerjrf)(12):933-947,1994.

[118] H. Jiang.Distributed Systems of Simple Interacting AgeRisD thesis, Yale University, 2007.

BIBLIOGRAPHY 223

[119] H. Jiang. Personal Communications, 2008.
[120] C. B. JonesSystematic Software Development Using \\Mventice-Hall International(UK) Ltd.

[121] D. Jordan and J. Evdemon. Web Services Business Rrdeescution Language Version 2.0.
http://www.oasis-open.org/specs/#wsbpelv2.0, Apr 2007

[122] M. B. Josephs. A State-based Approach to Communigd@rocesses.Distributed Computing
V3(1):9-18, March 1988.

[123] R. Kazhamiakin, P. K. Pandya, and M. Pistore. Reprasem, Verification, and Computation of
Timed Properties in Web. IRroceedings of the IEEE International Conference on Welvi€es
(ICWS 2006)pages 497-504. IEEE Computer Society, 2006.

[124] Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model €irg with Strong Fairnes$ormal Methods
and System Desig28(1):57-84, 2006.

[125] S. Kundu, S. Lerner, and R. Gupta. Automated Refiner@dtcking of Concurrent Systems. In
Proceedings of the 2007 IEEE/ACM International ConfereaneComputer-Aided Design (ICCAD
2007) pages 318-325, Piscataway, NJ, USA, 2007. IEEE Press.

[126] O. Kupferman and M. Y. Vardi. An Automata-Theoreticgxpach to Reasoning about Infinite-State
Systems. IrProceedings of the 12th International Conference on CompAiided Verification (CAV
2000) volume 1855 of. NCS pages 36-52. Springer, 2000.

[127] R. P. KurshanComputer-Aided Verification of Coordinating Processese Butomata-Theoretic Ap-

proach Princeton university press, 1995.

[128] M. Z. Kwiatkowska. Event Fairness and Non-interleavConcurrencyormal Aspects of Computing
1(3):213-228, 1989.

[129] A. L. Lafuente. Simplified Distributed LTL Model Cheiclg by Localizing Cycles. Technical report,

Institute of Computer Science, Albert-Ludwings Univeisireiburg, 2002.

[130] L. M. Lai and P. Watson. A Case Study in Timed CSP: ThdrBad Crossing Problem. IAfroceedings
of the International Workshop of Hybrid and Real-Time SystéHART 1997)pages 69—-74, 1997.

[131] L. Lamport. Proving the Correctness of MultiprocessdgPams. IEEE Transactions on Software
Engineering3(2):125-143, 1977.

[132] L. Lamport. Fairness and HyperfairneBsstributed Computing13(4):239-245, 2000.

BIBLIOGRAPHY 224

[133] L. Lamport. Real-Time Model Checking Is Really Simpla Proceedings of the 14th Advanced Re-
search Working Conference on Correct Hardware Design amiis&tion Methods (CHARME 2005)
pages 162-175, 2005.

[134] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. sTiag Real-time Embedded Software us-
ing UPPAAL-TRON: an Industrial Case Study. Rroceedings of the International Conference on
Embedded Software (EMSOFT 20059 ges 299-306, 2005.

[135] K. G. Larsen, P. Pettersson, and Y. Wang. Uppaal in aizlt International Journal on Software
Tools for Technology Transfet(1-2):134-152,1997.

[136] K. G. Larsen and W. Yi. Time-abstracted Bisimulatioimplicit Specifications and Decidability.
Information and Computatiqri34(2):75-101, 1997.

[137] T. Latvala and K. Heljanko. Coping with Strong FairseEundamenta Informaticaet3(1-4):175—
193, 2000.

[138] D. J. Lehmann, A. Pnueli, and J. Stavi. Impartialitystice and Fairness: The Ethics of Concur-
rent Termination. IrProceedings of the 8th Colloquium on Automata, LanguagdsPaagramming
(ICALP 1981) volume 115 olLNCS pages 264-277, 1981.

[139] M. Leuschel and M. J. Butler. Automatic Refinement Qtieg for B. In Proceedings of the 7th
International Conference on Formal Engineering Method&HEEM 2005) pages 345-359, 2005.

[140] M. Leuschel and T. Massart. Infinite State Model Chegldy Abstract Interpretation and Program
Specialisation. IrProceedings of the 9th International Workshop on Logic Paogming Synthesis
and Transformationpages 62—-81, 1999.

[141] M. Lindahl, P. Pettersson, and Y. Wang. Formal Desiggh Analysis of a Gearbox Controlleinter-
national Journal on Software Tools for Technlogy Trans&F{T) 3(3):353—-368, 2001.

[142] S.Y.Liu, A.J. Offutt, C. Ho-Stuart, Y. Sun, and M. Oht&0OFL: A Formal Engineering Methodology
for Industrial ApplicationslEEE Transactions on Software Engeerji2g(1):24—45, 1998.

[143] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model Checking kiariability via Refinement. IRroceedings
of the 16th International Symposium on Formal Methods (FXI®®009. Accepted.

[144] Y. Liu, J. Pang, J. Sun, and J. Zhao. Efficient Verificatof Population Ring Protocols in PAT. In
Proceedings of the 3rd IEEE International Symposium on Téteal Aspects of Software Engineering
(TASE 2009)pages 81-89, 2009.

BIBLIOGRAPHY 225

[145] Y. Liu and J. Sun. Algorithmic Design Using Object-Z fiwig XML Queries EvaluationElectronic
Notes in Theoretical Computer Scient&1(2):107-124, 2006.

[146] Y. Liu, J. Sun, and J. S. Dong. An Analyzer for Extendeahipositional Process Algebras. In
Proceedings of the 30th International Conference on Saoéwngineering (ICSE 2008) Companion
Volume pages 919-920. ACM, 2008.

[147] Y. Liu, J. Sun, and J. S. Dong. Scalable Multi-Core Mo@kecking Fairness Enhanced Systems.
In Proceedings of the 11th International Conference on ForEradineering Methods (ICFEM 2009)
Dec 2009. Accepted.

[148] N. Lynch. Distributed Algorithms Morgan Kaufmann, 1997.

[149] N. A. Lynch and F. W. Vaandrager. Action Transducerd aimed Automata.Formal Aspects of
Computing 8(5):499-538, 1996.

[150] B. P. Mahony and J. S. Dong. Blending Object-Z and Ti@&P: An Introduction to TCOZ. In
Proceedings of the 20th International Conference on Soévizmgineering (ICSE 1998pages 95—
104, Kyoto, Japan, 1998.

[151] B. P. Mahony and J. S. Dong. Network Topology and a CasdySn TCOZ. InProceedings of the
11th International Conference of Z Users (ZUM 199&8)lume 1493 ot NCS pages 308—-327, 1998.

[152] B. P. Mahony and J. S. Dong. Timed Communicating ObjectlEEE Transactions on Software
Engineering26(2):150-177, 2000.

[153] R. Manevich, T. Lev-Ami, M. Sagiv, G. Ramalingam, andé&rdine. Heap Decomposition for Con-
current Shape Analysis. IRroceedings of the 15th International Static Analysis Sysnpn (SAS
2008) pages 363-377. Springer, 2008.

[154] M. M. Michael and M. L. Scott. Nonblocking Algorithmsid Preemption-Safe Locking on Multipro-
grammed Shared Memory Multiprocessalseurnal of Parallel and Distributed Computing1:1-26,
1998.

[155] R. Milner. A Calculus of Communicating SystenSpringer-Verlag, 1980.

[156] J. Misra and W. Cook. Computation Orchestration: AiBésr Wide-area ComputingSoftware and
Systems Modeling (SoSyM)1):83-110, March 2007.

[157] L. Momtahan, A. Martin, and A. W. Roscoe. A Taxonomy aéb\Services Using CSP. Rroceedings
of the International Workshop on Web Languages and Formahbts (WLFM 2005)pages 71-87,
2005.

BIBLIOGRAPHY 226

[158] M. Musuvathi and S. Qadeer. Fair Stateless Model Chngckn Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Impietien (PLDI 2008) pages 362—
371. ACM, 2008.

[159] X. Nicollin and J. Sifakis. The Algebra of Timed Proses, ATP: Theory and Applicatiomformation
and Computation114(1):131-178,1994.

[160] J. Ouaknine and J. Worrell. On the Language Inclusicobem for Timed Automata: Closing a
Decidability Gap. InProceedings of the 19th IEEE Symposium on Logic in Compuien&e (LICS
2004) pages 54-63, 2004.

[161] J. Pang, Z. Q. Luo, and Y. X. Deng. On Automatic Verifioatof Self-stabilizing Population Proto-
cols. InProceedings of the 2nd IEEE International Symposium on fHtieal Aspects of Software

Engineering (TASE 2008pages 185-192. IEEE, 2008.

[162] A. Parashkevov and J. Yantchev. ARC - a Tool for EffitiBefinement and Equivalence Checking
for CSP. InProceedings of the IEEE International Conference on Aldpons and Architectures for

Parallel Processing (ICA3PP 1998)ages 68-75, 1996.

[163] D. Peled. All from One, One for All: on Model Checking idg Representatives. IRroceedings of
the 5th International Conference on Computer Aided Vetifice(CAV 1993)volume 697 ofLNCS
pages 409-423, 1993.

[164] D. Peled. Combining Partial Order Reductions with Be-fly Model-Checking. IrfProceedings of
the 6th International Conference on Computer Aided Vetifiea(CAV 1994)pages 377-390, 1994.

[165] C. A. Petri. Fundamentals of a Theory of Asynchronmferimation Flow. InProceedings of IFIP
Congresspages 386—-390, 1963.

[166] A. Pnueliand Y. Sa’ar. All You Need Is Compassion.Amceedings of the 9th International Con-
ference on Verification, Model Checking and Abstract Intetgtion (VMCAI 2008)volume 4905 of
LNCS pages 233-247, 2008.

[167] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1, inf€ounter Abstraction. IProceedings of the
14th International Conference on Computer Aided Verifmat{CAV 2002)volume 2204 ofLNCS
pages 107-122, 2002.

[168] F. Pong and M. Dubois. A New Approach for the Verificatiof Cache Coherence Protocol&EE
Transactions on Parallel and Distributed Syste®@):773—787, 1995.

BIBLIOGRAPHY 227

[169] G. Pu, J. Shi, Z. Wang, L. Jin, J. Liu, and J. He. The \4tioh and Verification of WSCDL. In
Proceedings of the 14th Asia-Pacific Software Engineeriagf€ence (APSEC 20Q0f)ages 81-88.
IEEE Computer Society, 2007.

[170] A. Puhakka and A. Valmari. Liveness and Fairness irc€se-Algebraic Verification. IRroceedings

of the 12th International Conference on Concurrency ThéG®NCUR 2001)pages 202—-217, 2001.

[171] S. C. Qin, J. S. Dong, and W.-N. Chin. A Semantic Fouiotiator TCOZ in Unifying Theories of
Programming. IrProceedings of International Symposium of Formal Method®e (FME 2003)
pages 321-340, 2003.

[172] Z. Y. Qiu, X. P. Zhao, C. Cai, and H. L. Yang. Towards thedretical foundation of choreography.
In Proceedings of the 16th International World Wide Web Carfee (WWW 2007pages 973-982,
2007.

[173] J.-P. Queille and J. Sifakis. Fairness and Relategd®ti@s in Transition Systems - A Temporal Logic
to Deal with FairnessActa Informaticae19:195-220, 1983.

[174] G. M. Reed and A. W. Roscoe. A Timed Model for CommurimaiSequential Processes. Pmo-
ceedings of the 13th Colloquium on Automata, Languages angr&mming (ICALP 1986)olume
226 of LNCS pages 314-323. Springer, 1986.

[175] A. W. Roscoe. Model-checking CSRA classical mind: essays in honour of C. A. R. Hograges
353-378, 1994.

[176] A. W. RoscoeThe Theory and Practice of Concurrend3rentice-Hall, 1997.

[177] A. W. Roscoe. Compiling Shared Variable Programs @8P. InProceedings of PROGRESS work-
shop 20012001.

[178] A.W. Roscoe. On the Expressive Power of CSP Refinenfrenmal Aspects of Computing7(2):93—
112, 2005.

[179] A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hida, D. M. Jackson, and J. B. Scattergood.
Hierarchical Compression for Model-Checking CSP or How e €k 160 Dining Philosophers for
Deadlock. InProceedings of the 1st International Conference of TootkAlgorithms for Construction

and Analysis of Systems (TACAS 199apges 133-152, 1995.

[180] P. Y. A. Ryan and S. A. Schneider. An Attack on a Recergiuthentication Protocol. A Cautionary
Tale. Information Processing Letter§5(1):7-10, 1998.

BIBLIOGRAPHY 228

[181] S. Schneider. An Operational Semantics for Timed A&farmation and Computatiqri16(2):193—
213, 1995.

[182] S. SchneideiConcurrent and Real-time Systems: the CSP Approdechn Wiley and Sons, 2000.

[183] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, Ré¢d, and A. W. Roscoe. Timed CSP:
Theory and Practice. IRroceedings of the Real-Time: Theory in Practice, REX Waspages
640-675, London, UK, 1992. Springer-Verlag.

[184] S. Schneider and H. Treharne. Communicating B MachiheProceedings of the 2nd International
Conference of B and Z Users (ZB 200@ages 416—435. Springer, 2002.

[185] S. A. Schneider and R. Delicata. Verifying Securitpt®cols: An Application of CSP. I25 Years
Communicating Sequential Processgages 243-263, 2004.

[186] C. H. Shann, T. L. Huang, and C. Chen. A Practical Noakitog Queue Algorithm Using Compare-
and-Swap. IrProceedings of the 7th International Conference on Palalted Distributed Systems

(ICPADS 2000)pages 470-475. IEEE, 2000.

[187] J. Sifakis. The Compositional Specification of Timg&d®ms - A Tutorial. IrProceedings of the 11th
International Conference on Computer Aided Verificatiod{YC1999) volume 1633 oL NCS pages
2—7. Springer, 1999.

[188] A. P. Sistla and E. Clarke. The Complexity of Propasitil Temporal LogicsThe Journal of ACM
32:733-749, 1986.

[189] G. Smith.The Object-Z Specification Languad€uwer Academic Publishers, 2000.

[190] G. Smith and J. Derrick. Specification, Refinement aadfi¢ation of Concurrent Systems - an inte-
gration of Object-Z and CSHrormal Methods in Systems Desjdi8:249-284, May 2001.

[191] O. Strichman. Accelerating Bounded Model Checkin§afety Propertieszormal Methods in System
Design 24(1):5-24, 2004.

[192] J. Sun and J. S. Dong. Design Synthesis from Intenacind State-Based SpecificationlEEEE
Transactions on Software Engineerjrg?(6):349-364, 2006.

[193] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Rtadsilntroducing a Process Analysis Toolkit.
In Proceedings of the 3rd International Symposium on Leveagdipplications of Formal Methods,
Verification and Validation (ISOLA 2008)ages 307—-322. Springer, 2008.

BIBLIOGRAPHY 229

[194] J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. IntegratingcHjration and Programs for System Model-
ing and Verification. IProceedings of the 3rd IEEE International Symposium on Téteal Aspects
of Software Engineering (TASE 200pages 127-135, 2009.

[195] J. Sun, Y. Liu, J. S. Dong, and J. Pang. A Unified Framé&for Model Checking under Fairness.

Submitted for review.

[196] J. Sun, Y. Liu, J. S. Dong, and J. Pang. Towards a Todtkit Flexible and Efficient Ver-
ification under Fairness. Technical Report TRB2/09, Natiodniv. of Singapore, Dec 2008.

http://www.comp.nus.edu.sg/~pat/report.ps.

[197] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towardsible¥erification under Fairness. Proceed-
ings of the 21th International Conference on Computer AMadfication (CAV 2009)pages 702—-708,

Grenoble, France, June 2009.

[198] J.Sun, Y. Liu, J. S. Dong, and G. G. Pu. Model-based ®rstor Linking Web Service Choreography

and Orchestration. Submitted for review.

[199] J. Sun, Y. Liu, J. S. Dong, and J. Sun. Bounded Model &hgof Compositional Processes. Pno-
ceedings of the Second IEEE International Symposium onrétiead Aspects of Software Engineering
(TASE 2008)pages 23—-30. IEEE Computer Society, 2008.

[200] J. Sun, Y. Liu, J. S. Dong, and J. Sun. Compositionaldgimg for Bounded Model Checkingdrron-
tiers of Computer Science in China(4):368—-379, November 2008.

[201] J. Sun, Y. Liu, J. S. Dong, F. Wang, L. A. Tuan, and M. Zteverifying Safety Critical Compositional

Real-time Systems by Refinement Checking. Submitted foenev

[202] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Specifying Medifying Event-based Fairness En-
hanced Systems. Proceedings of the 10th International Conference on Forarajineering Methods

(ICFEM 2008) pages 318-337. Springer, Oct 2008.

[203] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Verifying 8fat Timed CSP using Implicit Clocks
and Zone Abstraction. IRroceedings of the 11th International Conference on ForErajineering

Methods (ICFEM 2009)Dec 2009. Accepted.

[204] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. DongirmModel Checking of Parameterized
Systems. IrProceedings of the 16th International Symposium on Formethidds (FM 2009)2009.
Accepted.

BIBLIOGRAPHY 230

[205] K. Taguchiand K. Araki. The State-Based CCS Semalfdic€oncurrent Z Specification. IICFEM,
pages 283-292, 1997.

[206] R. Tarjan. Depth-first Search and Linear Graph Aldoris. SIAM Journal on Computin@:146-160,
1972.

[207] S. Tasiran, R. Alur, R. P. Kurshan, and R. K. Braytonrifying Abstractions of Timed Systems. In
Proceedings of the 7th International Conference on Corenay Theory (CONCUR 1996jolume
1119 ofLNCS pages 546-562, 1996.

[208] H. Tejand B. Wolff. A Corrected Failure-Divergence W for CSP in Isabelle/HOL. IRroceedings
of the 4th International Symposium on Formal Methods (FM7)98997.

[209] W. Thomas. Automata on Infinite Objectdandbook of theoretical computer science (vol. B): formal

models and semantigsages 133—-191, 1990.

[210] R. K. Treiber. Systems Programming: Coping with Halaim. Technical Report RJ 5118, IBM
Almaden Research Center, 1986.

[211] V. Vafeiadis. Shape-Value Abstraction for Verifyihinearizability. InProceedings of the 10th In-
ternational Conference on Verification, Model Checkingd &fostract Interpretation (VMCAI 2009)
pages 335-348. Springer, 2009.

[212] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Ry Correctness of Highly-concurrent Lin-
earisable Objects. IRroceedings of the 11th ACM SIGPLAN Symposium on PrincgridsPractice
of Parallel Programming (PPoPP 2008)ages 129-136. ACM, 2006.

[213] A. Valmari. A Stubborn Attack On State Explosion.Rroceedings of the 2nd International Workshop
on Computer Aided Verification (CAV 199papges 156-165, 1991.

[214] A. Valmari. Stubborn Set Methods for Process AlgebtasProceedings of the Workshop on Parital
Order Methods in Verification (PMIV 1998)ages 213-231, 1996.

[215] M. Vechev and E. Yahav. Deriving Linearizable Fingiged Concurrent Objects. Proceedings of
the 2008 ACM SIGPLAN Conference on Programming Languag@esd Implementation (PLDI
2008) pages 125-135. ACM, 2008.

[216] H. Vélzer, D. Varacca, and E. Kindler. Defining Fairaesn Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR 2008pes 458-472. Springer, 2005.

BIBLIOGRAPHY 231

[217] F. Wang, R. Wu, and G. Huang. Verifying Timed and Linébtbrid Rule-Systems with RED. In
Proceedings of the 17st International Conference on Softzagineering & Knowledge Engineering
(SEKE 2005)pages 448-454, 2005.

[218] L. Wang and S. Stoller. Static Analysis of AtomicityrfBrograms with Non-blocking Synchroniza-
tion. In Proceedings of the 10th ACM SIGPLAN Symposium on PrincapiesPractice of Parallel
Programming (PPoPP 2005pages 61-71. ACM, 2005.

[219] H. Wehrheim. Partial Order Reductions for FailuredifRement. Electronic Notes in Theoretical
Computer Scieng7, 1999.

[220] J. Woodcock. Formal Specification of the Lift Probleim M. Harandi, editorProceedings of the 4th
IEEE International Workshop on Software Specification aedibn (IWSSD 1987)EEE Press, 1987.

[221] J. Woodcock and A. Cavalcanti. The Semantics of CirdasProceedings of the 2nd International
Conference of B and Z Users (ZB 200@ages 184—203. Springer, 2002.

[222] J. Woodcock and J. Daviedsing Z: Specification, Refinement, and Prdtrientice-Hall International,
1996.

[223] W. Yi. CCS + Time = An Interleaving Model for Real Time 8gms. InProceedings of the 18th
Colloguium on Automata, Languages and Programming (ICA281), volume 510 ofLNCS pages
217-228. Springer, 1991.

[224] W.Yi, P. Pettersson, and M. Daniels. Automatic Vedfion of Real-time Communicating Systems
by Constraint-Solving. IfProceedings of the 14th International Conference on Forfeghniques for

Networked and Distributed Systems (FORTE 19p4yes 243-258. Chapman & Hall, 1994.

[225] S. J. Zhang, Y. Liu, J. Sun, J. S. Dong, W. Chen, and Y. li. LFormal Verification of Scalable
NonZero Indicators. IfProceedings of the 21st International Conference on Soé\Eagineering &

Knowledge Engineering (SEKE 2009ages 406—411, 2009.

[226] W. Zhang. SAT-Based Verification of LTL Formulas. Pmoceedings of the 11th International Work-
shop FMICS 2006pages 277—-292, 2006.

BIBLIOGRAPHY 232

Appendix A

Operational Semantics of CSP#

The following are firing rules associated with process aoiest other than those discussed in Sec-

tion[3I12. Lete € ¥, e, e XU{r},z e X U{v}andx e S U{r, v }.

(V,P) 5 (V',P)ecX

[hidel |
(V,P\ X)Z (V' P
(V,P) S (V' P)

- [seql |

(V,pP; Q)= (V',P'; Q)
(V,P)&(V/,P/) eh]
(V,POQ) N (V’,P')
(V,P)L(V’,P’) [eh3]

(V,POQ)=(V,PoQ)

- [nonl]
(V, P11 Q)— (V,P)

(V,P) 5 (V' P int1]

(V.PIIQ) = (V. PlQ

(V,P) = (V',P),a ¢ X

[hide2]
(V,P\X)5 (V' P\ X)
‘/ / /
(V,P)% (V' P {seq2]

(V,P; Q)= (V',Q)

(V.Q)= (V. Q")
(V,POQ)= (V' Q)

[ch2]

(V,Q) = (V. @)
(V,POQ)= (V',PDOQ)

[chd]

[non2]

(V,P1Q) - (V,Q)

(V.Q) = (V. Q") [int2]

(V.PIIQ) = (V. PIQ)

233

Appendix A. Operational Semantics of CSP# 234

(v, P) % (v, P, (V, Q) L (V! Q)

[int3]
VPl QL v, P Q)
(vV.p) = (V. P [interl | V.9~ (V. @) [inter2 |
(V.PAQ) S (VP AQ) (V.PAQ) S (V' Q)

.9 = (@) [inter3]

(V,PA Q)5 (V,PAQ"

Appendix B

CSP# Models of Population Protocols

1. #defineN 3; #defineC 3;
2. var color|N]; var precolor[N]; var succolor|N];

3. Interaction(u,v) = if (color[v] == precolor[u] A color|[v] # succolor|u]){

4. actl.u.v{succolor[v] = mycolor[u]} — Interaction(u, v)
5. } else if (color[v] == succolor[u] A color|[v] # precolor|u]){
6. act2.u.v{precolor|v] = color[u]; } — Interaction(u,v)
7. } else{

8. act3.u.v{precolor|u] = color|v]; succolor[v] = color[u]}
9. — Interaction(u, v)

10. %

11. Init() = ...

12. OrientingUndirected() = Init(); ||| = : {0..N — 1}@(Interaction(x, (z + 1)%N)
13. ||| Interaction((z + 1)%N, x));

14. #definepropertyl (z : {0..N — 1}@precolor|[z] # succolor|z]));
15. #defineproperty?2 (...);

16. #assertOrientingUndirected() E OOpropertyl;

17. #assertOrientingUndirected() E &Oproperty?2;

Figure B.1: CSP# model for orienting undirected ring protoc

235

Appendix B. CSP# Models of Population Protocols 236

1. #defineN 3;
2. var leader|[N]; var label[N]; var probe[N]; var phase[N]; var bullet[N];
3. Interact(u,v) =

4. [label[u] == label[v] A probe[u] == 1 A phase[u] == 0]

5. actl.u.v{leader[u] = 1; probe[u] = 0; bullet[v] = 0; phase[u] = 1,

6. probe[v] = 1;} — Interact(u, v)

7. O [label[u] == label[v] A probe[u] == 1 A phase[u] == 1 A probe[v] == 0]
8. act2.u.v{leader[u] = 1; probe[u] = 0; bullet[v] = 0;

9. label[v] = 1 — label[v]; phase[v] = 0;} — Interact(u,v)

10. O..

11. O [label[u] # label[v] A leader|[v] == 0 A bullet[v] == 1 A probe[v] == 0]
12. act1l.u.v{bullet[u] = 1; bulllet[v] = 0;} — Interact(u,v)

13. Init() = ...

14. LeaderElection() = Init(); (||| = : 0..N — 1@Interaction(z, (z + 1)%N));
15. #defineleaderelection (leader|0] + leader(1] + leader([2] == 1);
16. #assertLeaderElection() E &Oleaderelection;

Figure B.2: CSP# model for leader election protocol in oddsi

1. #defineN 3;

2. var leader[N]; var label[N]; var token|[N];

3. Rulel(u,v) = [lleader[u] A leader[v] A label[u] == label[v]]

4. (rulel.u.v{token[u] = 0; token[v] = 1; label[v] = 1 — label[u];}
5. — Rulel(u,v));

6. Rule2(u,v) = [lleader[v] A label[u] # label]v]]

7. (rule2.u.v{token|u] = 0; token[v] = 1; label[v] = label]ul;}
8. — Rule2(u, v));

9. Init() = ...

10. TokenCirculation() = Init(); (||| z : 0..N — 1@(Rulel(z, (z + 1)%N)

11. || (Rule2(z, (z +1)%N));

12. #defineonetoken (token[0] + token[1] 4 token[2] == 1);
13. #assert Token Circulation() E &Oonetoken;

Figure B.3: CSP# model for token circulation protocol

Appendix C

Operational Semantics of Abstract

Real-Time System

The following are abstract firing rules associated with psscconstructs other than those discussed

in Sectio 9.IPR. Let € X andz € X U {v'}.

VED
[aki | [agu |

(V, Skip, D) 4 (V, Stop, D) (V,[b]P,D) < (V,P,D)

[aev]
(V,e{prg} — P, D) < (prg(V), P, D)

(V,P,D) < (V',P',D')
[aexl]

(V,P|Q,D)S (V/,P',D'Au(V,Q,D))

V,0,D) (V!,Q', D
(V,Q,D) = (V',Q", D) [aca2]

(V,P|Q,D)S (V/,Q', D' Au(V, P, D))

(V.P,D)<S (V! P, D), e & aQ
[apal]

(V,P | QD)< (V',P'|| QD' Au(V,Q,D))

237

Appendix C. Operational Semantics of Abstract Real-TinsgeBy 238

(V,Q,D)<> (V',Q',D'), e & aP
[apa2 |

(V,P| QD)< (V',P| Q,D' Au(V,P,D))

(V,P,D)< (V, P, D), (V,Q,D) <> (V,Q',D"),e € aPNaQ

[apa3 |
(V,P | QD)= (V,P'|| Q,D' AD")
(V,P,D)S (V! P'\D),z #V
[asel]
(V,P; QD)< (V',P'; QD' A (v & init(V,P) V D))
(v.P,D) L (v, P, DY) (V.P.D)< (V! P\, D), Q= P

(V,P; Q,D)<% (V,Q,D A D) (V,Q,D) = (V',P',D)

Appendix D

PAT History

PAT project started from July, 2007 in National UniversifyfSingapore. PAT was named Libra orig-
inally for its emphasis on the fairness model checking. Sdavmas renamed to PAT because of the
conflict with Microsoft search engine. After finishing LTL ngcation under fairness assumption,
we looked at the bounded model checking, which resulted ademimodel checker for CSP. How-
ever, we found that bounded model checking was difficult fol\afor variables. Since we were

expending the modeling languages quickly, we decided tp #te development of the bounded
model checker. At the same time, the on-the-fly refinementkihg algorithm was quickly imple-

mented in PAT by following the ideas in FDR.

In year 2008, we started to look for applications of the mathelcking algorithms developed. Our
first application is to apply fairness model checking on pation protocols, which gave a success-
ful result with a bug discovered. The second application teasrify linearizability. After several
attempts, we found refinement checking can be applied todttly. In ICSE 2008, we successfully
demonstrated PAT as an analysis toolkit for CSP[146]. Atet we started the development of

Web Service module with an architecture redesign.

Starting from 2009, we looked at the real-time verificatiomcs there is very few tool support for

Timed CSP. RTS module was completely finished in Septemli#9. 20e also looked reduction and

239

Appendix D. PAT History 240

optimizations for fairness model checking, for examplerthdti-core support and process counter

abstraction.

Currently, PAT version 2.7.0 is public available at our wetle §1]. We keep in working on the
improvements of every aspect of the system. Our aim is toldewan easy-to-user, powerful and

efficient analysis toolkit for concurrent systems.

PAT Users

As a research tool, PAT has been used by quite a number dlinmtis for various purposes. Till

now, there are more than 400 downloads from 93 organizaiio®8 countries and regions.

PAT has also been used for teaching two courses (CS4211 AeldaBoftware Engineering and
CS5232 Formal Methods) in National University of Singapawore than 300 students are using
it as an educational tool for learning process algebra andeinchecking. PAT’'s development
involved with collaboration of Microsoft Research Asia. Werked with theory group in Microsoft
Research Asia to model checking distributed algorithmb wiitccessful results. PAT has been used

as a model checker for web service choreography verificatidteking University in China.

Maturity and Robustness

After two years’ development, PAT has come to a stable statesslid testing. The toolkit has
developed as a self-contained application with user fiieddsign. The editing functions are com-
plete. The detailed debugging message will be popped uyftas errors. A rich set of simulation

and model checking options are also provided for differequirements.

Currently the system contains 1213 classes with more th@K 1DC. We have conducted heavy
testing to guarantee the correctness. Internally, we haoenplete set of unit testing for the whole
system. For the black-box testing, PAT has been used to nmotelreds of systems with differ-

ent properties. Currently, there are 50 built-in exampteBAT ranging from classical concurrent

Appendix D. PAT History 241

algorithms, math puzzles, real world problems (e.g., paakem), population protocols, security

protocols and recently published distributed algoritheng.(mailbox problem).

For scalability, the model checker in PAT is capable of hexgdiens of millions states within several

hours, which is compatible to SPIN. The simulator can displp to several hundreds of states
within the readability. The whole system has gone througtiasychanges twice and once system
redesign. The Object-Oriented design is incorporated malky, which makes the language and

properties extension easily and independently.

	Introduction
	Motivation and Goals
	Summary of Contributions
	Thesis Outline and Overview
	Publications from the Thesis

	Background
	Basics of Model Checking
	System Modeling
	Specification and Verification
	Safety Property
	Liveness Properties and Linear Temporal Logics
	Partial Order Reduction

	Model Checking Real-time Systems
	Discrete-time Systems
	Dense-time Systems

	System Modeling
	Concurrent System Modeling
	Syntax
	Semantics
	Discussion
	Case Study: a Multi-lift System

	Real-time System Modeling
	Syntax
	Semantics
	Case Study: Fischer's Algorithm

	Summary

	Model Checking Fairness Enhanced Systems
	Background
	Fairness Definitions
	Model Checking under Fairness as Loop/SCC Searching
	An Algorithm for Modeling Checking under Fairness
	Coping with Different Notions of Fairness
	Complexity and Soundness

	Event Annotated Fairness
	A Multi-Core Model Checking Algorithm
	Shared-Memory Platform
	Parallel Fairness Model Checking Algorithm
	Complexity and Soundness

	Experiments
	Experiments for Sequential Fairness Verification
	Experiments for Multi-core Fairness Verification

	Summary

	Applications of Fairness Model Checking
	The Population Protocol Model
	Population Ring Protocol Examples
	Two hop coloring
	Orienting undirected rings
	Leader election
	Token circulation

	Experiments of Population Protocols
	Process Counter Abstraction
	System Models
	Process Counter Representation

	Fair Model Checking Algorithm with Counter Abstraction
	Counter Abstraction for Infinitely Many Processes
	Experiments of Process Counter Abstraction
	Summary

	Refinement Checking
	FDR and Refinement Checking
	An Algorithm for Refinement Checking
	On-the-fly Refinement Checking Algorithm
	Partial Order Reduction

	Experiments
	Summary

	Applications of Refinement Checking
	Linearizability
	Formal Definition

	Linearizability as Refinement Relations
	Model Construction
	Verification of Linearizability

	Experiments of Linearizability Checking
	Web Service and Conformance Checking
	Web Service Modeling
	Choreography: Syntax and Semantics
	Orchestration: Syntax and Semantics

	Web Service Conformance Verification
	Experiments of Conformance Checking
	Summary

	Bounded Model Checking of Compositional Processes
	Background
	Encoding of Processes
	Encoding Simple Processes
	Composing Encodings

	LTL Properties Encoding and Verification
	Experiments
	Summary

	Verification of Real-time Systems
	Zone Abstraction
	Clock Activation and De-activation
	Zone Abstraction
	Zone Operations

	Verification of Real-time Systems
	LTL-X Model Checking
	Refinement Checking
	Timed Refinement Checking

	Experiments
	Summary

	Tool Implementation: Process Analysis Toolkit
	Overview of PAT
	System Design
	PAT Modules
	CSP Module
	Real-time System Module
	Web Service Module

	Summary

	Conclusion
	Summary of the Thesis
	On-going and Future Works
	Tool Development
	Model Checking Techniques
	Module Development

	Operational Semantics of CSP#
	CSP# Models of Population Protocols
	Operational Semantics of Abstract Real-Time System
	PAT History

