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Abstract

The forthcoming generation of mobile communication systems is widely perceived as a

convergence platform, which encompasses both multiple heterogeneous wireless access

technologies and diverse cooperative networking paradigms. Great efforts have been de-

voted to build flexible architecture capable of managing them as a whole.

Meanwhile, wireless user devices become more intelligent.They not only partici-

pate in the resource allocation process by feeding back their channel states, but also can

choose to contribute to the resource provision process by forwarding data for each other.

Opportunities bring new challenges. As mobile devices become smarter, a rational user

can adapt its behavior in order to benefit more from the network, even if doing so may

affect other users and the system’s overall performance.

Thus, the design of resource management schemes for this newera of mobile com-

munication should explore the cooperation possibility among heterogeneous wireless net-

works and their users, while taking the selfish nature of users and their strategic interac-

tions into consideration. This thesis studies the problem of how to deliver Internet access

service cooperatively to (selfish) users using heterogeneous wireless networks, in an effi-

cient, fair, and incentive-compatible manner.

Firstly, this thesis addresses thecoordinated radio resource allocation problemfor

users that are simultaneously covered by multiple overlapping heterogeneous wireless

networks. We propose thecoordinated proportional fairness (CPF)criterion, based on

which a globally fair and efficient allocation decision can be easily computed. AsCPF

decision depends on the input from users, a selfish user may manipulate its channel state

report if doing so can increase its gain from the network. We prove thatCPF allocation

is incentive compatible, i.e., a user’s dominant strategy is to report its channel state hon-

estly. In practice, the single-association setting, wherea mobile station is only associated

with one base station, is often desirable. We show that the solution using the same fair-

ness criterion in single-association setting is both computationally expensive and prone to

user-manipulation. Alternatively, we propose theSelfish Load Balancing (SLB)allocation

scheme, which always converges to a Nash equilibrium, and often achieves performance

near toCPF allocation.

Next, the thesis studies thecooperative resource provision problemfor highly mobile

users in areas where high-bandwidth connection is only available intermittently. We show

that user-contributed mobile forwarding can greatly enhance users’ Internet access expe-

rience. We designMobTorrent, a cooperative, on-demand framework, which uses the

ubiquitous low-bandwidth cellular network as a control channel while forwarding data

through high-bandwidth contacts using aDelay-Tolerant Networking (DTN)approach.
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MobTorrentmakes use of the semi-deterministic knowledge about futurecontacts, so that

the user-contributed mobile forwarding process can be efficiently orchestrated.

To foster cooperation among selfish participants in a DTN environment (e.g., as re-

quired byMobTorrent), we proposeMobiCent, a credit-based incentive system designed

using thealgorithmic mechanism designapproach. We prove that the proposed scheme

is incentive compatible, in the sense that rational nodes will not strategically waste any

transfer opportunity or cheat by creating non-existing contacts.MobiCentalso provides

different pricing mechanisms to cater to client that wants to minimize either payment or

data delivery delay.
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Chapter 1

Introduction

1.1 Convergence of Heterogeneous Wireless Networks

Development in new wireless access technologies and increase in mobile users’ demands

for ubiquitous high-speed Internet access services are driving the deployment of a wide

array of wireless networks, ranging from satellite networks to Wireless Personal Area

Networks, with Wireless Wide Area (Cellular) Networks and Wireless Local Area (Wi-

Fi) Networks being the two most important components in between.

The cellular network has undergone fast evolution in the last few decades [43, 58].

The first generation (1G) dated back to the late 1970’s, such as AMPS (Advanced Mo-

bile Phone Systems), was an analog system providing voice-only service. In the 1990’s,

the second generation (2G), such as GSM (Global System for Mobile communications),

drove the global penetration of mobile telephony into people’s daily life. The transition

to a digital platform also enabled some primitive but very popular data services, such as

SMS (Short Message Services). To meet the rapid growth of demands for data services,

the 2.5G wireless packet switched systems such as GPRS (General Packet Radio Service)

are introduced to offer better support for data applications. The third generation systems

(3G), developed since the late 1990’s, are designed for multimedia communication. With

data rates as high as several Megabits per second (Mbps), person-to-person communi-

1
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Satellite network

Personal Area Networks (Bluetooth, UWB, etc.)

Vertical 
Handover

Horizontal Handover

Cellular Networks (Macro/Micro cell) 

Wi-Fi Networks

Figure 1.1: Layers of heterogeneous wireless networks

cation can be enhanced with high-quality images and videos,and fast access to infor-

mation and services on Internet is also available. 3G standards have several variations.

Among which, UMTS (Universal Mobile Telecommunication System)’s W-CDMA [43]

and Qualcomm’s CDMA2000 [11] are the most widely deployed variants. Both of them

are evolving towards higher data rate, such as HSDPA (High Speed Data Packet Access)

for UMTS, and 1xEV (Evolution) technology (also known as High Data Rate “HDR”)

system for CDMA2000. Thelong term evolutionplans of both systems target to increase

their network capacity further [96]. In contemporary cellular networks, macro-cells each

covering a large area of multiple square kilometers are still the basis to ensure ubiqui-

tous coverage, whereas micro-cells with much smaller footprints are often deployed in

selected areas with high data access demand, to increase thespatial spectrum reuse, thus

network capacity thereof.

Wireless users’ high-speed access requirements that cannot be satisfied timely by cel-

lular network evolution are effectively addressed by WLAN (Wireless Local Area Net-
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work), which is the wireless counterpart of Ethernet. The dominating WLAN standard is

IEEE 802.11 (Wi-Fi) [5], which operates on license-free ISMfrequency bands and sup-

ports high data rate transfer. Wi-Fi networks are widely deployed all around the world.

Service providers are offering hot spot access in airports,hotels and other public areas.

Even residential users can operate as wireless service providers by themselves [37]. While

cellular networks are carefully planned to ensure ubiquitous coverage and meet various

traffic load of different areas, Wi-Fi networks are characterized by clustered and inter-

mittent footprints. In addition, Wi-Fi’s built-in supportfor ad-hoc mode, which allows

wireless terminals to directly communicate with their peers, provides a more flexible net-

working solution compared to the traditional single-hop cellular network architecture,

and it inspires new networking paradigms to be incorporatedinto the convergent wireless

communication platform, which will be discussed later in Section 1.2.

Figure 1.1 illustrates the different layers of existing heterogeneous wireless networks.

As each of these networks has complementary design tradeoffs in coverage, data rates

and many other network parameters, it is widely agreed that they will coexist in the future

and be integrated together to offer mobile users“Always Best Connections”[15, 39].

In addition to horizontal handover in the same layer of wireless network, amulti-mode

wireless terminal, which is equipped with multiple radio interfaces or Software Defined

Radio (SDR) [77], can also vertically handover to another layer when a more suitable

access technology is available, or even simultaneously usemultiple heterogeneous access

technologies to achieve aggregate bandwidth [45].

From the system’s point of view, the convergence of several heterogeneous networks

into a single logical platform also promises thebestof all components, including union

of the network coverage and aggregation of the network capacity. An integrated plat-

form brings the “trunking gain” to the system, by helping service providers manage the

load better, such that the traffic demands varying with location and time can be largely

smoothed. For example, if a Wi-Fi hotspot becomes overloaded, some mobile stations

(MS) associating with the Wi-Fi access point (AP) can be directed to an overlapping 3G
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base station (BS), and vice-versa.

To realize the envisioned benefits, a lot of research [1, 2, 17, 29] has been devoted to

address a multitude of challenges, including: mobility management, AAA (Authentica-

tion, Authorization and Accounting) service, QoS (Qualityof Service) guarantee, access

network capacity provision, core network convergence, etc.

As the supporting network protocols are ready, and the various radio access networks

begin to interwork with each other, the following resource management problem arises:

how to allocate the radio resources from the heterogeneous network components coordi-

nately, such that users can be served in a fair and efficient way?

Existing resource allocation schemes in wireless networksoften exhibit a disconnec-

tion between the following two layers: theinter-cell association control layerthat decides

which BS1 a MS should associate with, and theintra-cell allocation layerthat determines

how radio resource of a single BS should be shared among its associated MSs. On one

hand, the inter-cell association control is often carried out using some simple heuristics,

e.g., assigning a MS to the BS with the best signal strength, or to the BS with the least

population. On the other hand, the intra-cell scheduling isexecuted only based on a local

view. This disconnection often leads the system to a sub-optimal state from a global point

of view.

In Chapter 2 of this thesis, we consider inter-cell association control and intra-cell

allocation together, and propose schemes that allocate theresource fairly and efficiently

in a network-wide context.Fairness, efficiency, andload balancingare incorporated in a

succinct mathematical formulation of the proposedcoordinated radio resource allocation

schemes for such a multi-cell overlapping environment.

1Without ambiguity, we use BS as a general term to refer to bothcellular base station and Wi-Fi access
point.
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1.2 User-contributed Mobile Forwarding

In addition to the coordination of heterogeneous radio access technologies as described

above, convergence of heterogeneous wireless networks also encompasses the integration

of a variety of novel cooperative networking paradigms. Oneprominent direction of

innovation is the incorporation of multi-hop ad-hoc networking model with the traditional

single-hop cellular network architecture. This general paradigm is often called multi-

hop cellular networks (MCNs) [65]. A number of MCN-type frameworks have been

studied. Some of these frameworks propose to deploy dedicated relaying entities for

data forwarding, such as the proposal by Wu et al. [109], and the proposal by Fitzek et

al. [36]. We refer to this type of relay stations as fixed relays. Alternatively, the mobile

users themselves may forward data for each other, as suggested by Lin and Hsu [66],

Wu et al. [111], Aggelou et al. [3], Hsieh et al. [44], Zadeh etal. [112], Luo et al. [69],

Bhargava et al. [13], Hu and Zhang [47], and Lee et al. [59]. Werefer to these forms

of relay stations asmobile relays. We focus on the category ofuser-contributed mobile

forwardingbecause of its greater flexibility and lower cost.

Cellular BS

ClientRelay A
Relay B

Figure 1.2: User-contributed forwarding using a multi-hopend-to-end path

The basic idea of MCN is illustrated in the example of Figure 1.2, where the client

has both a 3G cellular link and a Wi-Fi based peer-to-peer link. As it situates in the

fringe of the 3G cell, it experiences poor channel conditionwith the cellular BS. To make

more efficient use of the spectrum, instead of sending data directly to the client in a

single hop, the cellular BS forwards packets for it to a proxyclient (Relay A) with better
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channel quality. Relay A then uses an ad-hoc network probably composed of other users

(Relay B in this example) and Wi-Fi links to forward the packets to the specified client.

By leveraging a multi-hop path, the client can significantlyimprove its data throughput.

Additionally, the enhanced transmission efficiency of these “resource-inefficient” clients

results in less consumption of radio resources, thus can improve the performance of other

clients in the same cell that are not even aware of the multi-hop forwarding. Furthermore,

the relaying mechanism can effectively extend service coverage area, and can also help

to achieve better load balance by dynamically diverting thetraffic load from a hot cell

(highly loaded cell) to a cool cell (lightly loaded cell) through relay nodes.

In frameworks proposed above, the peer-to-peer connectionis often based on short-

range radio transmission like Wi-Fi, and nodes can communicate with each other only

when they are relatively close. As the locations of mobile users are essentially unplanned

and largely unpredictable, a high-throughput end-to-end path may not exist in many re-

alistic settings with sparse and highly mobile users, like vehicular networks or mobile

human social networks. In particular, if the Internet access gateways are Wi-Fi APs,

which themselves have short transmission range and provideonly intermittent coverage,

the probability of having contemporaneous multi-hop connectivity becomes extremely

low.

While all existing MCN frameworks assume the existence of anend-to-end relay-

ing path, the contemporaneous end-to-end connectivity is not a prerequisite to employ

user-contributed mobile forwarding for delay-tolerant applications, like downloading a

big file from Internet. For such applications, theDelay-Tolerant Networking (DTN)ap-

proach can be used to opportunistically exploit the available intermittent contacts for data

delivery [25, 35, 49, 115]. The proposed DTN solution adoptsthe idea ofstore, carry,

andforward, where a mobile nodestoresandcarries the data until the client or another

mobile relay moves into its vicinity, so that it canforward the data to the latter. The idea

of DTN forwarding is illustrated in Figure 1.3, where Relay Aretrieves the client’s data

from the Wi-Fi AP, carries the data, moves around, and forwards (or replicates) the data
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Wi-Fi AP

Relay A
Relay A
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Relay D

Relay B

Relay B

Forward

Carry

Figure 1.3: User-contributed forwarding using a DTN approach

when it meets another node Relay B. Relay B carries on with thedata, until it meets the

client to complete the data delivery. As contacts are often unpredictable, forwarding (or

replication) of data among mobile relays happens in an opportunistic manner. To increase

the delivery ratio and reduce the delivery delay, data are often propagated along multiple

paths simultaneously (e.g., the AP also replicates the samedata to Relay D as shown in

Figure 1.3), in the hope that at least one of the relays can meet the client.

In Chapter 3 and Chapter 4 of this thesis, we study the resource provision problem

for highly mobile users in areas where high-bandwidth connection is only available inter-

mittently. Previously, the application of DTN routing approach is considered only in sce-

narios without infrastructure support, such as inter-planetary networks, wildlife tracking,

disaster relief team networks, or information delivery forremote villages and nomadic

people. We are the first to introduce the DTN-routing paradigm to enhance the perfor-

mance of cellular network infrastructure. Our results showthat, if the cooperation among

participants can be efficiently orchestrated and properly fostered, user-contributed mobile

forwarding can greatly enhance mobile users’ Internet access experience.
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1.3 Selfish User Behavior and Algorithmic Mechanism

Design

With increased intelligence, the new generation of wireless terminals not only can facili-

tate the radio resource allocation process by feeding back the measured channel state, but

also can contribute to the resource provision process by forwarding data for each other,

as presented above. When users gain more control over their devices, an intelligent and

selfish user can adapt its behavior in order to benefit more from the network, even if doing

so may affect other users and the system’s overall performance.

Thus, the resource allocation and provision schemes for future convergent wireless

networks should take the selfish nature of participants and strategic interactions among

them into consideration.Game theory, andalgorithmic mechanism designin particular,

provide a powerful tool to address these challenges [20, 81,82, 83, 106].

Game theory aims to model situations in which multiple participants select strategies

that have mutual consequences. Following the definitions used by Nisan et al. [82], a game

consists of a set ofn players, 1,2, ...,n. Each playeri has its own set of possible strategies,

saySi. To play the game, each playeri selects a strategysi ∈ Si. We uses= (s1, ...sn) to

denote the vector of strategies selected by the players andS=×iSi to denote the set of all

possible ways in which players can pick strategies. The vector of strategiess∈ Sselected

by the players determines the outcome for each player. If by using a unique strategy, a

user always gets better outcome than using other strategies, independent of the strategies

played by the other players, we say that the strategy is the user’s dominant strategy. If

players select strategies such that, no player can unilaterally change its strategy to gain

more payoff, we say that the game reaches aNash equilibrium. In another word, every

player is playing the best response to others in aNash equilibrium. As can be easily

derived, if each user has adominant strategy, the uniqueNash equilibriumin the game is

for each user to adopt itsdominant strategy.

Game theory has been widely used in social sciences (most notably economics) and
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other areas since it was formally introduced by J. von Neumann and O. Morgenstern in

their 1944 monograph [106]. Computer networks researchershave used game theory

to study Internet, since Internet emerged as a complex ecosystem without any central

control decades ago [82]. However, its application in the research of wireless networks

only began in recent years, as wireless terminals gain increased intelligence and mobile

communication systems evolve towards an increasingly openplatform [20].

To illustrate the strategic interactions among users in theforthcoming mobile com-

munication era, we will introduce two games which naturallyarise in the resource man-

agement problems that this thesis studies.

2Mbps
1Mbps1Mbps

2Mbps

MS m1 MS m2

Wi-Fi AP Cellular 
BS

MS m1
None Wi-Fi Only Cellular Only Both

MS m2

None
0 2 1 3

0 0 0 0

Wi-Fi Only
0 1 1 2

1 0.5 1 0.5

Cellular Only
0 2 0.5 2.5

2 2 1 1

Both
0 1 0.5 1.5

3 2.5 2 1.5

(a)

(b)

Figure 1.4: An association game example

In the example ofassociation gameas illustrated in Figure 1.4 (a), there are two dual-

radio mobile stations, MSm1 and MSm2, as players. Each of them is equipped with both

a cellular interface and a Wi-Fi interface. Both mobile stations locate in the overlapping

coverage area of a Wi-Fi AP and a cellular BS. However, their channel conditions to the
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AP and the BS are different. MSm1 can communicate with the AP at 2Mbps and with

the BS at 1Mbps, while MSm2 can communicate with the AP at 1Mbps and with the BS

at 2Mbps. If the AP or the BS has only a single associated user,that user can monopolize

all radio resource from the AP (or BS), and get a throughput value equal to its link data

rate. Instead, if two users are simultaneously associated with the AP (or BS), the AP (or

BS) implements some scheduling algorithm to divide its radio resource (e.g. transmission

time slot) among them, so that each user only gets a fraction of its link data rate. Without

loss of generality, we assume that both the AP and the BS adoptthe popular time-based

fair scheduling scheme [11, 101], such that the bandwidth allocated to each of the two

users associated with the same AP (or BS) is half of its link data rate.

We assume that both users are running some bandwidth-greedyapplications, so that

each individual always prefers higher bandwidth allocation. For a player, its strategies

include: (1) turn off both interfaces (None), (2) turn on the Wi-Fi interface only (Wi-

Fi Only), (3) turn on the cellular interface only (Cellular Only), and (4) turn on both

interfaces simultaneously to achieve aggregate throughput (Both). The reward matrix (in

terms of the aggregate throughput value for each user) can beeasily calculated as in Figure

1.4 (b) (the left entry for the row player MSm2 and the right entry for the column player

MS m1). Clearly, there are sixteen total outcomes depending on the choice made by each

of the two users.

The unique Nash equilibrium in this game is that both users turn on both of their

interfaces; in each of the other fifteen cases, at least one ofthe players can switch to the

Both strategy to improve its own payoff. On the other hand, a better outcome for both

players happens when MSm1 uses the Wi-Fi interface only, and MSm2 uses the cellular

interface only. However, this is not a Nash equilibrium, since each of the players would

be tempted to turn on its silent interface and thereby increase its throughput.

A similar dilemma happens also in the user-contributed mobile forwarding scenario

as depicted in Figure 1.5 (a). In this example ofmobile forwarding game, we also assume

that there are two mobile stations, MSm1 and MSm2, as players. Each of them has a
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MS m1
Not replicate file A Replicate file A

MS m2

Not replicate file B
0.7 0.6825

0.7 0.9275

Replicate file B
0.9275 0.91

0.6825 0.91

MS m1
File 
A

Client
File 
B

?

(b)

(a)

MS m2

Figure 1.5: A mobile forwarding game example

unique file, which is denoted as file A and file B respectively. Aclient is interested to

get both files. Without loss of generality, we assume that theclient is willing to pay 1

cent for each new file, and the reward will be shared equally among all relays on the DTN

forwarding path with the minimum delay. We assume that both MSm1 and MSm2 have a

probability of 0.7 to meet the client directly, and the two contact probabilities are identical

and independent of each other. Suppose MSm1 and MSm2 meet each other before either

of them meets the client. For each player, its strategies include: (1) not replicate its own

file to the other player, and (2) replicate its own file to the other player.

If no replicate happens between the two nodes, each player can only forward its

own file to the client, for which it monopolizes the reward of 1cent. As each player’s

individual contact probability with the client is 0.7, each of them has an expected reward

of 0.7 cent. Now let us look at the asymmetric setting when MSm1 replicates file A to

MS m2, whereas MSm2 does not replicate file B to MSm1. File A can reach the client

in two ways, either directly from MSm1 in one hop, or via MSm1 and MSm2 in two

hops. Because of the independence assumption, the probability that none of these two
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possibilities happens is(1−0.7)2 = 0.09. As the two possibilities happen with identical

and independent chance, the probability for each of them to happen and happen first is

(1−0.09)/2 = 0.455. On one hand, if file A is delivered first by MSm1 in one hop, MS

m1 monopolizes the 1 cent reward. On the other hand, if file A is delivered first via the

2-hop path consisting of both MSm1 and MSm2, MS m1 need to share the reward with

MS m2. As MS m1 earns reward only from the delivery of file A, its expected gain is

0.455×1+ 0.455×0.5 = 0.6825 cent. For MSm2, in addition to the expected gain of

0.7 cent from delivering file B, it can also benefit from the half cent reward by forwarding

file A, if it meets the client earlier than MSm1. Thus, it has a total expected reward of

0.7+0.455×0.5= 0.9275 cent. Similar analysis can be applied to find the reward for the

situation when MSm2 replicates file B to MSm1, whereas MSm1 does not replicate file

A to MS m2. Finally, when the two MSs carry out mutual replication, both files will be

delivered if at least one MS meets the client. Thus, the delivery probabilities for both files

are 1− (1−0.7)2 = 0.91. The expected total reward is 2×0.91= 1.82 cent. Because of

the symmetry assumption, the expected reward for each MS is 1.82/2 = 0.91 cent.

The expected rewards for the two MSs in the four possible outcomes are summarized

in Figure 1.5 (b). For each outcome, the left entry represents the reward for the row player

MS m2, and the right entry for the column player MSm1. The unique Nash equilibrium

in this game is that both users do not replicate to each other,despite the fact that mutual

forwarding can increase the expected rewards of both players.

These two games clearly demonstrate that the strategic behavior of selfish users may

lead to a sub-optimal state. In fact, both of them are instantiations of the famous Prisoners’

dilemma [82] in their respective settings.

When we design resource management schemes for next generation mobile commu-

nication systems, the rules of how participants play a game and the outcome of the game

under different combinations of users’ strategies, can be taken into consideration, such

that inefficiency could be potentially avoided or minimizedby designing the game care-

fully.
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Algorithmic mechanism design[81, 82] is a subarea of game theory that deals with

the design of games. It studies optimization problems wherethe underlying data, e.g., the

channel states experienced by MS in theassociation game, or the replication opportunities

in themobile forwarding game, area priori unknownto the algorithm designer, and must

be implicitly or explicitly elicited from selfish participants. The high-level goal is to

design a protocol, or “mechanism”, that interacts with participants so thatselfish behavior

yields a desirable outcome. More specifically, a mechanism isincentive compatible, or

strategy-proof, if the dominant strategy of each participant under the designed mechanism

is to reveal its state truthfully. We adopt thealgorithmic mechanism designapproach

when designing and analyzing the resource management schemes for the forthcoming

generation of mobile communication systems.

1.4 Thesis Contributions

In the era of convergent wireless networks, we need to designnew resource management

schemes to explore the cooperation possibility among heterogeneous wireless networks

and their participants, while taking the selfish behavior ofusers and their strategic inter-

actions into consideration. In this thesis, we investigatethe problem of how to deliver

Internet access service cooperatively to (selfish) users using heterogeneous wireless net-

works in an efficient, fair, and incentive-compatible manner.

Cellular Networks (Macro/Micro cell) 

Wi-Fi Networks

Overlapping
Coverage

Intermittent
Coverage

Intermittent
Coverage

Figure 1.6: Heterogeneity in coverage
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While cellular networks are carefully planned to ensure ubiquitous coverage and meet

various traffic load of different areas, Wi-Fi networks are characterized by clustered and

intermittent footprints. As shown in Figure 1.6, the heterogeneous geographic distribu-

tion of network coverage and capacity results in two dramatically different scenarios. On

one hand, in “hot” areas where a large number of user demands are expected, such as

shopping malls, hotels, and airports, densely deployed Wi-Fi and cellular networks often

provide overlapping coverage. In these areas, a multi-modewireless terminal can poten-

tially be associated with one or multiple overlapping BSs. Note that, in such regions,

cellular networks are often deployed as micro-cells (or femtocells), thus provide compa-

rable capacity and coverage as Wi-Fi networks. On the other hand, in the rest of regions,

such as residential areas, natural parks, and highways, high-bandwidth Wi-Fi connection

is available only intermittently, and cellular networks are often deployed as macro-cells,

thus only provide low-speed connection.

Coverage
Perspective

Overlapping Intermittent

System performance

Chapter 2
Chapter 3

Incentive compatibility Chapter 4

Figure 1.7: Thesis road map

To realize the vision of next generation mobile communication systems, which promises

thealways best connectionfor mobile usersanytime, anywhere, anyhow, resource man-

agement schemes for bothoverlapping-coverageandintermittent-coveragescenarios should

be designed carefully. This thesis studies both scenarios.For each scenario, we address

the system design problem from two perspectives, as illustrated in Figure 1.7. Firstly, we

consider the problem of how to achieve efficient system performance, given that users

are fully cooperative. Secondly, we study the incentive compatibility problem, and pro-

vide rigorous analysis to show that cooperation can be fostered in the proposed resource

management schemes. This thesis makes the following contributions:
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• We study thecoordinated radio resource allocation problemfor users being si-

multaneously covered by multiple overlapping heterogeneous wireless networks.

We propose thecoordinated proportional fairness (CPF)allocation scheme, which

makes globally fair and efficient allocation decision amongnetworks. The proposed

allocation decision can be calculated efficiently, and our simulations demonstrate

that the proposed algorithms outperform popular heuristicapproaches, by striking

a good balance between efficiency and fairness, while achieving load balancing

among network components.

• We formulate the resource allocation process as themulti-cell resource allocation

game. The formulated game is associated with a resource allocation rule, which cal-

culates the bandwidth allocation outcome based on the inputfrom the MS players.

A MS can manipulate its channel state report to game the system.

• Using the proposed game theory framework, we analyze the incentive compatibil-

ity of the multi-cell resource allocation gamewith CPF allocation scheme as its

associated rule. We show that amulti-cell resource allocation gamewith CPF al-

location is incentive compatible. However, the positive result does not hold for its

variant in the single-association setting, where a MS is associated with a single BS.

For the single-association setting, we propose theSelfish Load Balancing (SLB)al-

location scheme, which always converges to a Nash equilibrium, and often provides

performance near toCPF allocation.

• To address the challenges of allowing highly mobile users totransfer large amounts

of data in areas with only intermittent but high-bandwidth connections, we pro-

poseMobTorrent, a cooperative, on-demand framework, which uses the ubiquitous

low-bandwidth cellular network as a control channel to exploit the high-bandwidth

intermittent Wi-Fi contacts for data delivery in aDelay-Tolerant Networking (DTN)

approach.

• The scheduling algorithm inMobTorrentmakes use of the semi-deterministic knowl-
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edge about future contacts, so that the user-contributed mobile forwarding process

can be efficiently orchestrated. We derive the achievable performance bound, and

show thatMobTorrentprovides near optimal data delivery performance, in terms of

both the delivery ratio and the delivery delay.

• We consider the incentive design for a DTN environment to foster cooperation

among selfish participants (e.g., as required byMobTorrent). We identifyedge in-

sertion attacksandedge hiding attacksas the two major forms of attacks in a DTN

environment. Both of them are difficult to detect, and can seriously degrade the

performance of DTN routing. We formulate these two attacks in thepath revelation

game, and show that existing incentive schemes are not incentivecompatible.

• We designMobiCent, a credit-based incentive system for DTN. We prove that the

proposed scheme is incentive compatible under the two attacks, in the sense that a

MS cannot increase its reward by launchingedge insertion attacksandedge hiding

attacks. MobiCentalso provides different pricing mechanisms to cater to client that

wants to minimize either payment or data delivery delay.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 studies thecoordinated radio resource allocation problemfor users that

are simultaneously covered by multiple overlapping heterogeneous wireless networks.

We formulate thecoordinated proportional fairness (CPF)resource allocation criterion,

based on which a globally fair and efficient allocation decision can be easily computed.

A multi-cell resource allocation gameis formulated to capture the selfish behavior of

users. Based on which, we prove thatCPF allocation is incentive compatible. We also

formulate the integral version of theCPF problem (Int-CPF) for the practically desirable

single-association setting, and show that it is both computationally expensive and prone to
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user-manipulation. Alternatively, we propose theSelfish Load Balancing (SLB)scheme,

which always leads to a Nash equilibrium, and often achievesperformance near toCPF

allocation.

Chapter 3 and Chapter 4 address the challenges in the intermittent-coverage scenario.

Chapter 3 presentsMobTorrent, a cooperative, on-demand framework to provide Inter-

net access for vehicles.MobTorrentuses the ubiquitous low-bandwidth cellular network

as a control channel, while forwarding data through high-bandwidth contacts in a DTN

paradigm. We study the problem of how to schedule the transmission over intermittent

contacts, such that the amount of data delivered is maximized and the delay is minimized.

After MobTorrent, we present in Chapter 4 the design ofMobiCent, a credit-based

incentive system for DTN.MobiCentis largely motivated by, and directly designed upon

MobTorrent. In this chapter, we formulate thepath revelation gamewith both edge in-

sertion attacks and edge hiding attacks. We characterize the necessary conditions for a

payment scheme to be incentive compatible under edge insertion attacks. Two different

pricing mechanisms are designed to cater to client that wants to minimize either pay-

ment or data delivery delay. We prove that both of the proposed schemes are incentive

compatible. As the two attacks are fundamental to the natureof DTN, we expectMobi-

Cent’s credit-based solution can be extended to foster cooperation in other forms of DTN

systems different fromMobTorrent.

Finally, conclusion and possible future works are presented in Chapter 5.



Chapter 2

Coordinated Proportional Fairness for

Overlapping Cells

2.1 Introduction

Overlapping coverage of wireless base stations (BS1) is a common phenomenon in mo-

bile communication systems. For a particular radio access network, neighboring cells or

sectors overlap with each other. In addition, deployment and inter-operation of a wide

array of wireless access networks, ranging from 3G network to Wi-Fi hotspots, open the

opportunity of overlapping coverage from BSs using heterogeneous radio access tech-

nologies. In such an environment, a multi-mode (e.g., Wi-Fiand 3G capable) MS can

flexibly associate with either a Wi-Fi AP or a 3G BS or simultaneously with both (Wi-Fi

and 3G) BSs.

As the various radio access networks begin to interwork witheach other, the follow-

ing resource management problem arises:how to allocate the radio resources from the

heterogeneous network components coordinately, such thatusers can be served in a fair

and efficient way?

As discussed in Chapter 1, new models and techniques should be developed to address

1Same as in Chapter 1, we use BS as a general term to refer to bothcellular base station and Wi-Fi
access point.
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the resource allocation problem in this new environment forthe following reasons.

Firstly, existing resource allocation schemes in wirelessnetworks often exhibit a dis-

connection between the following two layers: theinter-cell association control layerthat

decides which BS a MS should associate with, and theintra-cell scheduling layerthat

determines how radio resource of a single BS should be assigned among its associated

MSs. On one hand, the inter-cell association control is often carried out using some sim-

ple heuristics, e.g., assigning a MS to the BS with the best signal strength, or to the BS

with the least population. On the other hand, the intra-cellscheduling is executed only

based on a local view. When the association decision is made by selfish MSs, a system

without coordination among BSs often operates in a state farfrom the optimal, as clearly

indicated by the association game example presented in Section 1.3 of Chapter 1.

Secondly, despite the fact that research for wired networksdoes consider routing (the

wired counterpart of inter-cell association control) and scheduling (the wired counterpart

of intra-cell allocation) together, existing models for wired networks fail to capture some

important characteristics that are unique to wireless networks. In this thesis, we focus on

the aspect that a single MS may experience significantly different channel conditions with

different BSs, and a single BS may experience different channel conditions with different

MSs as well. In addition, the wireless networks often rely onindividual MS to measure

and report its current channel states with neighboring BSs,in order to make informed

decisions. This allows an intelligent and selfish MS to game the system by manipulating

its channel report, as to be shown in Section 2.4.3.

In this chapter, we consider the inter-cell association control and intra-cell allocation

together, such that the resource is allocated fairly and efficiently in a network-wide con-

text. The content of this chapter is organized as follows. InSection 2.2, we describe

the system model. In Section 2.3, we review the existing fairness definitions, with an

emphasis onproportional fairness. In Section 2.4, we present ourCoordinated Propor-

tional Fairness (CPF)formulation [24], and show that it can be easily solved as a con-

vex programming problem. Considering the strategic behaviors of users, we formulate
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themulti-cell resource allocation game, and show that theCPF mechanism is incentive

compatible. For the practically attractive single-association scenario, where each MS is

associated with a single BS, Section 2.5 formulates the integral variant of theCPF prob-

lem (Int-CPF) and shows that it is NP-hard. Furthermore, theInt-CPF allocation scheme

is not incentive compatible. Alternatively, we present aSelfish Load Balancing (SLB)

scheme, and analyze its convergence. In Section 2.6, we evaluate the performance of the

various schemes proposed, and compare them to some popular heuristics. Section 2.7

presents the related work. We conclude in Section 2.8.

2.2 System Model

Multi-mode 
terminals

All-IP Core 
network

Integrated Radio 
Access Networks

Wireless 
links

Wired 
Data Path

CRRM
Control PathCommon Radio 

Resource Manager

Figure 2.1: A convergent mobile communication system

Our discussion is based on a convergent system of heterogeneous wireless networks

as shown in Figure 2.1. The main components of the consideredarchitecture are: multi-

mode terminals, all-IP core network, and the integrated radio access networks (RANs)

sitting between them. We briefly describe each of them as follows.

• Multi-mode terminals. Ongoing silicon development enables chipmakers to inte-

grate multiple forms of radio access technologies in a single chipset. For example,

Qualcomm’s Snapdragon chipset for mini-notebooks includes Wi-Fi alongside 3G,



21

Bluetooth, broadcast TV and GPS (Global Positioning System) capabilities [88].

Shipments of Wi-Fi chips in multi-mode mobile handsets are reported to grow by

more than 50 percent in 2008 and reach 56 million units. The Apple iPhone, which

was introduced in 2007 in the U.S. and expanded to more than 70countries in 2008,

helps drive that growth with shipments of more than 10 million units. It also helps

set the tone for the industry, making Wi-Fi capability a standard feature on smart-

phones. This trend is expected to be further boosted by the recent development of

SDR (Software Defined Radio) technologies [77, 102].

• All-IP core network. Wireless core networks are quickly evolving to packet switched

IP-based mechanisms [96]. IP layer shields the applications from the underlying

network technologies, thus enabling much richer set of common services to be pro-

vided independent of the access networks. The open specifications and platforms

also greatly facilitate the creation of new service, and enable the use of cheaper,

faster, and better core equipments.

• Integrated Radio Access Networks. As a bridge between the two components above,

flexible architecture capable of managing a large variety ofcoexisting radio access

networks is being standardized [1, 2, 33]. The proposed Common Radio Resource

Management (CRRM) functions [67, 103] consider the pool of resources in all ra-

dio access technologies (RATs) as a whole, aiming at a betteroverall performance

than that can be achieved by the stand-alone networks. As shown in the figure,

the common radio resource manager can be interpreted as a logical entity which

gathers input from different RATs (such as Wi-Fi networks and 3G networks), and

coordinates resource allocation decisions among them. Both the input and output

controls are carried out using the CRRM functions.

Consider a set of BSs using heterogeneous radio access technologies controlled by

a single common radio resource manager, we assume that each BS has a fixed amount

of radio resource (e.g. channel or transmit power) and operates orthogonally with each
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other. A common example of such a scenario is a 3G BS and an overlapping Wi-Fi AP.

Note that this model is general and is applicable to cases where the BSs use the same

radio technology as long as the channels are orthogonal. Forexample, this simplified

model also roughly captures the current operation mode for both Wi-Fi networks and

high data rate cellular networks. For Wi-Fi networks, 802.11b and 802.11g use the 2.4

GHz ISM band, which is divided into 13 channels each of width 22 MHz but spaced only

5 MHz apart, thus offers 3 non-overlapping channels. 802.11a uses the 5 GHz U-NII

band, which offers 12 non-overlapping channels (in FCC and North America standard).

Given the separation between two non-overlapping channels, the signal on one channel

is sufficiently attenuated to minimally interfere with a transmitter on another channel. In

today’s typical deployment, each Wi-Fi AP operates in asingle channelthat is selected to

be orthogonal to its neighboring APs, if possible. Ideally,there should be no co-channel

APs in the same contention domain. Channel selection for neighboring Wi-Fi APs has

been discussed by Kauffmann et al. [53], and their results demonstrate that interference

among neighboring Wi-Fi APs can be effectively mitigated using the proposed frequency

selection scheme. For cellular networks, we take the widelydeployed High Data Rate

(HDR) networks [11] as an example. Using a dedicated RF carrier, the HDR downlink

for each BS is time multiplexed and transmitted at thefull poweravailable. To date, the BS

location, antenna down-tilt and transmit power are determined at the time of deployment

and hence are not dynamic.

Though in our model we focus on the case that the radio capacities of BSs are fixed

and orthogonal, they can potentially be adapted to improve the network-wise perfor-

mance. On one hand, Wi-Fi channel bonding is used in “Super G”technology, which

bonds two channels of classic 802.11g to double the PHY data rate. On the other hand,

in HDR networks, transmit power control can be applied to mitigate inter-cell interfer-

ence. For future research, we would like to incorporate the BS capacity adaptation into

the consideration of the network-wide radio resource allocation.

We say there is a linkl = (m,b) between a MSm and a BSb if they are able to
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communicate with each other. We call such a pair anadjacent MS-BS pair. The input for

CRRM is the channel states for all adjacent MS-BS pairs. We focus on the downlink from

BS to MS. In wireless networks, the link data rate is determined by the channel condition

between the transceiver and the receiver. For example, in HDR, MSs monitor the pilot

bursts in the downlink channel to estimate the channel conditions in terms of Signal to

Noise Ratio (SNR). This SNR is then mapped into a supported data rate, and fed back in

every time slot to the BS through the data-rate-request channel in the reverse link.

We focus onelastic traffic, which can adapt to the bandwidth allocated by the system.

To simplify the discussion, we assume that a user will consume all the bandwidth allocated

and the queues are backlogged. The allocated bandwidth for aMS on a link is the product

of the link data rate and the fraction of the radio resource allocated by the corresponding

BS. Thus, the bandwidth equals to the link data rate only if the MS monopolizes the radio

resource of the BS. Otherwise, the bandwidth of a MS is a fraction of its link data rate. In

both Wi-Fi networks and HDR networks, time multiplexing is used to share the resource

of BS among its associated MSs, i.e., data transfers to different users are scheduled at

different time slots. Thus, the resource consumptions by different links at the same BS

are orthogonal, and can be linearly summed up. In addition, we assume that there is no

constraint in the number of MSs that can be associated to a BS2.

Because of the lossy nature of wireless communication and the scarcity of spectrum

resource, the wireless links are likely to be the bottleneckof the system described in Fig-

ure 2.1. Thus, a radio resource management scheme, which allocates the combined radio

resource in a fair, efficient, and load-balancing way, is thekey to meet mobile customers’

requirements. Fairness, efficiency, and load balancing need to be considered together

when designing radio resource allocation schemes for such amulti-cell environment. On

one hand, a scheme which maximizes only the aggregate systemthroughput, or equiv-

alently, thearithmetic mean of per-user throughput values, results in the starvation of

2There are 60 Walsh codes for orthogonal transmission in HDR.This puts an upper bound of 60 active
users per BS at any given time. However, the limit of 60 users is rarely reached in practice.
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resource-inefficient users, because it allocates all system resources to the users with the

best link data rate. On the other hand, a scheme which makes users’ allocation data rates

as equal as possible, or equivalently, maximizes theminimum per-user throughput value,

regardless of their link data rate, often results in poor overall system performance in wire-

less networks, as shown in Section 2.3.1. In addition, a scheme considering only each

individual cell can easily lead to unfairness among users located in different areas.

2.3 Fairness Definition

Before we formulate thecoordinated proportional fairness (CPF)resource allocation cri-

terion, we first briefly review several important fairness definitions in computer networks

literature.

2.3.1 Max-min Fairness

The most common understanding of fairness in computer networks is probably themax-

min fairness, as defined by Bertsekas and Gallager [12]: rates are made as equal as pos-

sible subject only to the constraints imposed by link capacities. Formally, consider a

bandwidth allocationR = (Rm,m∈ M), whereM is the set of users, andRm is the band-

width allocated to userm∈ M, we define the sorted bandwidth allocationR = (Rm) as the

users’ allocated bandwidths sorted in non-decreasing order.

Definition 2.1 Max-min Fairness [10]: A feasible bandwidth allocation scheme S∗ is

called max-min fair if and only if, for any other feasible bandwidth allocation S, it satis-

fies: R(S∗) has the same or higher lexicographical value thanR(S), whereR(S) andR(S∗)

are the sorted bandwidth allocation vectors under the two considered schemes S and S∗

respectively.

Although themax-min fairnessis Pareto optimal (i.e., any change to make any MS

better off is impossible without making some other MS worse off), it has been criticized
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for favoring too much of resource-inefficient requests, thus it does not make efficient use

of resource. In addition, there appears to be no clear economic reason why max-min

sharing should be preferred over some other bandwidth allocation schemes.

In particular,max-min fairnessis not efficient for elastic traffic in a multi-rate wireless

communication system as considered in this thesis, becausewhen some MSs use a lower

bitrate than the others, the performance of all MSs sharing the same BS is considerably

degraded to the same level as the worst one, as shown by Heusseet al. [42]. For example,

802.11b products degrade the bitrate from 11 Mbps to 5.5, 2, or 1 Mbps when repeated

unsuccessful frame transmissions are detected. In such a case, a host transmitting at

1 Mbps reduces the throughput of all other hosts transmitting at higher data rates to a

value below 1 Mbps. The basic CSMA/CA channel access method is at the root of this

anomaly: it guarantees an equal long-term channel access probability to all hosts. Once a

host gets the access opportunity, it starts sending a rate-independent length of frame using

its available bitrate. A host captures the channel for a longer time if its bitrate is lower,

thus it penalizes other hosts that use the higher rates.

2.3.2 Proportional Fairness

Compared tomax-min fairness, proportional fairnessas proposed by Kelly [55, 56]

strikes a better balance between efficiency and fairness.

Definition 2.2 Proportional Fairness [55]: A feasible bandwidth allocation scheme S∗

is called proportionally fair if and only if, for any other feasible bandwidth allocation S,

it satisfies:

∑
m∈M

R(S)
m −R(S∗)

m

R(S∗)
m

≤ 0 (2.1)

where R(S)
m and R(S∗)

m are the rates allocated to user m by the two considered schemes

S and S∗ respectively, and M is the set of users.
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The rationale behindproportional fairnesscriterion can be interpreted from multiple

angles as follows.

Engineering Viewpoint

Max-min fairnessdoes not allow any increase of a large sharing if the increaseis at the

cost of some smaller sharing being decreased, even if significant increase for the large

sharing can be achieved with only minor decrease of the smallsharing. Proportional

fairnessrelaxes this restriction by allowing large sharing to increase further with small

sharing decreased, if changes of the assigned bandwidth vectors result in the sum of the

proportional changes to be non-negative, as shown in Equation 2.1. By doing so,propor-

tional fairnessfavors resource-efficient requests more thanmax-min fairness, thus helps

improve system efficiency. On the other hand, although the requirement of non-negative

proportional change is less strict thanmax-min fairness, proportional fairnessstill helps

prevent resource-efficient connections from starving resource-inefficient connections to-

tally. It is shown that bothmax-min fairnessandproportional fairnesscan be viewed

as special cases in a family of fairness definitions strikingdifferent tradeoffs between

efficiency and fairness [56].

Utility Maximization Viewpoint

Whenproportional fairnessis proposed [55], it is associated with the optimization of an

objective function representing the overall utility of theflows in progress. The utility

function chosen is logarithmic function of the allocated bandwidth, where the value of a

flow increases with its allocated bandwidthR in proportional tologR. It is shown that the

“proportional fairness” solution as defined in Equation 2.1 maximizes the logarithmic

sum of the user throughput values, which can be formally written as

S∗ = argmaxS ∑
m∈M

logR(S)
m (2.2)
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It’s easy to see that the optimization of the logarithmic sumof the throughput values

is equivalent to the optimization of their product form.

S∗ = argmaxS ∏
m∈M

R(S)
m (2.3)

Thus, the objective function of proportional fairness is also equivalent to the opti-

mization of thegeometric mean of per-user throughput values, which is thenth root of the

product of all MSs’ throughput values, wheren is the number of MSs.

Game Theory Viewpoint

The utility function approach used by Kelly [55] suffers from the disadvantages that user

utilities or preferences are only known in some qualitativesense. Thus, although reason-

able assumptions can be made on the behavior of utility functions, such an approach by

itself still cannot put fairness definition on the foundation of a solid and precise mathe-

matical framework. Another approach taken by Mazumdar et al. [73] is to consider mea-

surable performance characteristics rather than abstractutility functions. In the context

of elastic traffics, such a key metric is the allocated rate. They propose a game theoretic

framework based on choosing this direct metric. Using theNash bargaining framework

from cooperative game theory[79], they show thatproportional fairnessis in fact aNash

Bargaining Solution (NBS)out of all Pareto Optimal points.NBS is the only equilib-

rium satisfying all fouraxiomsas defined by Nash [79], namely: (1) invariance to affine

transformations, (2) Pareto optimality, (3) independenceof irrelevant alternatives, and (4)

symmetry.

To summarize,proportional fairnesscriterion strikes a good balance between fairness

and system efficiency, maximizes a reasonable overall utility function for elastic traffic,

and satisfies the cooperative game theory axioms abstractedby Nash.

In a single-cell environment for both Wi-Fi networks [101] and cellular networks [11],

the proportional fairness is implemented by allocating (asymptotically) the radio resource
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(rather than bandwidth) of a BS equally among associated MSs, regardless of their dif-

ferent efficiency in using the resource, i.e., their variouslink data rates. If timely channel

feedback is available, channel-aware opportunistic scheduling algorithms [11] are often

employed to exploit the “multi-user diversity”, as in the case of HDR network. In this

work, we consider the time-averaged channel state as input,and assume that the underly-

ing scheduling algorithm of each BS (which can be channel-aware) supports the resource

allocation decision.

2.3.3 Minimum Potential Delay Fairness

Proportional fairnessassumes the utility of a flow is a logarithmic utility function where

the value of a flow increases with its allocated bandwidthR in proportion tologR. An

alternative utility function with decreasing gradient is− 1
R as suggested by Massoulié and

Roberts [71]. It leads to the bandwidth-sharing objective of minimizing the sum of the

reciprocal of rates. This objective may alternatively be interpreted as minimizing the

overall potential delay of the transfers in progress. Formally, minimum potential delay

fairnesscan be written as:

Definition 2.3 Minimum Potential Delay Fairness [71]: A feasible bandwidth alloca-

tion scheme S∗ is called minimum potential delay fair if and only if:

S∗ = argminS ∑
m∈M

1

R(S)
m

(2.4)

where R(S)
m is the rate allocated to user m by scheme S, and M is the set of users.

In the example studied by Massoulié and Roberts [71], they show that this criterion is

intermediate between themax-min fairnessandproportional fairness, in that it penalizes

more (less) severely resource-inefficient MSs than max-min(proportional) fairness, re-

sulting in a larger (smaller) overall throughput. Our evaluations in Section 2.6.2 confirm

this property.
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Among all fairness definitions described above, our proposal is based onproportional

fairness, because it is widely adopted in single-cell environment for both high data rate 3G

network [11] and Wi-Fi network [101]. As discussed above,proportional fairnessstrikes

a good balance between fairness and system efficiency. In addition, its cooperative game

theory interpretation [73] puts it on the foundation of a solid and precise mathematical

framework. We compareproportional fairnessscheme withmax-min fairnessscheme

andminimum potential delay fairnessscheme in Section 2.6.2.

2.4 Coordinated Proportional Fairness

Fair scheduling in wireless networks is often considered ina single-cell context, while

the joint routing-scheduling fairness formulation in wired networks cannot be directly ap-

plied to multi-cell wireless networks. In this section, we adoptproportional fairnessas a

resource allocation criterion suitable for elastic trafficin multi-rate wireless communica-

tion systems, and extend it to the general setting of overlapping cells from heterogeneous

wireless networks, by defining thecoordinated proportional fairness (CPF)allocation

problem.

2.4.1 Formulation

Consider a network with a setB of BSs and a setM of MSs. We letCb be the finite

radio resource capacity of BSb, for b ∈ B. Based on our system model as described

in Section 2.2,Cb is fixed, and is independent of each other. We assume that eachMS

is equipped with sufficient number of radios, thus it can simultaneously associate with

multiple neighboring BSs to achieve aggregate throughput.We will relax this assumption

in Section 2.5.

Recall that a linkl = (m,b) represents an adjacent pair of MS and BS that are able to

communicate with each other. Given a linkl , we useb(l) to denote the corresponding BS,

andm(l) to denote the corresponding MS. We writeL for the set of all links. Ifb = b(l),
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we setAbl to be the required radio resource in BSb to support per unit flow through link

l . If the channel condition betweenm(l) andb(l) is poor, it can only support a low data

rate, thus more radio resource is required to transfer a unitof flow, which implies a higher

resource consumption rate, i.e.,Abl is larger. On the other hand, if a MS-BS link is under

good channel condition, less resource is required to transfer the same amount of data,

i.e., Abl is smaller. As wireless channel state keeps changing with time, the value ofAbl

used in our problem formulation is a time-averaged link state that is relatively stable for

a decision period. Forb 6= b(l), we setAbl = 0, because sending flow over linkl does not

consume any resource of BSb. This defines a matrixA = (Abl,b∈ B, l ∈ L).

For a given MSm, its several links through different BSs may substitute forone

another. Formally, suppose that a MSmhas a subset ofL. We writeHml = 1 if m= m(l),

so that link l serves the MSm, and setHml = 0 otherwise. This defines a 0-1 matrix

H = (Hml,m∈ M, l ∈ L).

A flow patterny= (yl , l ∈ L) supports the ratesx= (xm,m∈ M) if Hy= x, so that the

flows over all links serving the MSm sum to the ratexm.
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BS b2
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Figure 2.2: CPF allocation example I

To illustrate the notations, we look at Figure 2.2 (a), whichdepicts the same setting

as in the association game example in Section 1.3 of Chapter 1. We assume that the
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capacities of both the Wi-Fi APb1 and the cellular BSb2 are 1, thusC=

[

1 1

]T

. Each

of MS m1 and MSm2 is equipped with both a cellular interface and a Wi-Fi interface.

Both MSs locate in the overlapping coverage area of a Wi-Fi APb1 and a cellular BS

b2. However, their channel conditions to the Wi-Fi AP and the cellular BS are different

because of their different locations. MSm1 can communicate with the Wi-Fi AP at a

link data rate of 2Mbps and with the cellular BS at a link data rate of 1Mbps, while

MS m2 can communicate with the Wi-Fi AP at a link data rate of 1Mbps and with the

cellular BS at a link data rate of 2Mbps. There are 4 links corresponding to the 4 adjacent

MS-BS pairs. We denote them asl1 = (m1,b1), l2 = (m1,b2), l3 = (m2,b1), and l4 =

(m2,b2) respectively. The input toCPF allocation problem is: MS setM = {m1,m2},

BS setB = {b1,b2}, link setL = {l1, l2, l3, l4}, BS capacitiesC =

[

1 1

]T

, matrixA =






1
2 0 1 0

0 1 0 1
2






, and matrixH =







1 1 0 0

0 0 1 1






. Note that the allocated bandwidth for

a MS on a link equals to its link data rate only if the MS monopolizes the radio resource

of the corresponding BS. Otherwise, the bandwidth of a MS over a link is the product of

the link data rate and the portion of resource allocated by the corresponding BS.

A flow patterny is feasible ify ≥ 0 andAy≤ C, so that the resource consumed by

wireless links through a BSb sum to not more than its capacity. Based on our system

model as described in Section 2.2, we assume that wireless transmissions are “orthogo-

nal”, thus resource consumed by different links at the same BS can be linearly summed

up.

Formally, theCoordinated Proportional Fairness (CPF) allocationis the optimal

solution for the following problem:

maximize ∑
m∈M

wmlog(xm)

s.t. Hy = x,Ay≤C

over x,y≥ 0 (2.5)
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wherewm > 0 is the weight assigned to different users representing their different

priorities.

We consider only MSs with non-empty set of adjacent BSs, and BSs with non-empty

set of adjacent MSs. Under this assumption, there are feasible allocations with the ob-

jective function bounded away from negative infinity, whichimplies that in the optimal

solution,xm for any MSm is bounded away from 0. Intuitively, not allocatinganyband-

width to a connected user (despite its potentially poor channel condition) is considered

unfair. Without affecting the calculation of the optimal solution, we can safely assume

that each connected userm can get a minimum positive bandwidth allocationε from the

system, which translates to a lower boundwmlog(ε) for m’s utility function. We thus can

define the utility function over the domain ofx≥ ε to ensure that the user’s utility function

is bounded from below. We can further add a constant value (e.g. −wmlog(ε)) to each

user’s utility function, such that its range is within the set of non-negative numbers. Note

that, incorporation of additive constant values into the utility functions does not change

the solution as defined in Equation 2.5.

The objective function is differentiable and strictly concave and the feasible region

is compact. Thus, a maximizing value of(x,y) always exists and can be found by La-

grangian methods. There is a unique optimum for the rate vector x, since the objective

function is a strictly concave function ofx, but there may be many corresponding values

of the flow ratey satisfying the constraints [75, 108].

Bandwidth
Resource

Radio
Resource

(a) Wired network (b) Wireless network

r1

r2

Figure 2.3: Resource sharing in wired and wireless contexts

We briefly discuss the difference between our model and Kelly’s original model for
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wired networks [55].

As shown in Figure 2.3 (a), resources in wired networks are characterized directly in

terms of bandwidth (such as a router’s interface forwardingspeed), and a resource can

serve all routes passing through it with the same efficiency,so data rate and consumed

resource can be treated equivalently. In contrast, to support per unit flow in wireless net-

works, different amount of radio resource (e.g., time slot,spectrum, power, or code words)

is required due to location-dependent and time-varying channel condition, as shown in

Figure 2.3 (b).

Compared to Kelly’s original model for wired networks, our formulation changes

the definition ofA from a 0-1 matrix to a matrix with elements taking non-negative real

values, to characterize the different link-dependent resource consumption rate in wireless

networks.

Note that, bothmax-min fairnessandminimum potential delay fairnesscan be ex-

tended to multi-cell in a similar way [10, 53]. We call themCoordinated Max-min Fair-

nessandCoordinated Minimum Potential Delay Fairness. We will compare the perfor-

mance of these three coordinated fairness definitions in Section 2.6.2 and discuss the

related work in Section 2.7.

2.4.2 Example

Let us look at theCPF allocation in the setting as shown in Figure 2.2.

Using Lagrangian method [108], theCPF solution for the given example is:x =

[2,2]T, y = [2,0,0,2]T. The solution is Pareto-optimal. MSm1 is served totally over link

l1 = (m1,b1), and MSm2 is served over linkl4 = (m2,b2). Bothm1 andm2 are assigned

to their interface with more favorable channel condition, i.e., link with smaller resource

consumption rate.

By considering fairness in a global sense (among all MSs), the CPF allocation so-

lution automatically results in inter-cell load balance. For example, as shown in Figure

2.4, suppose the channel condition between MSm2 and BSb2 deteriorates, and supports
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Figure 2.4: CPF allocation example II

only a link data rate of 0.8Mbps. BS b2 becomes more congested than BSb1, in the

sense that BSb2 requires extra capacity in order to support the original allocation as in

Figure 2.2. The input for theCPF problem becomesA =







1
2 0 1 0

0 1 0 1
0.8






, and matrix

H =







1 1 0 0

0 0 1 1






remains the same. TheCPF solution becomesx = [1.8,0.9]T, and

y = [1.8,0,0.1,0.8]T. TheCPF allocation automatically shifts some load introduced by

m2 from b2 to b1. Note that, the resource-efficient MSm1 has a higher throughput than

the resource-inefficient MSm2.

A third example is shown in Figure 2.5, where an additional active MS m3 appears

in the area covered only by BSb2, thus making the traffic load even more asymmetric.

We denote the new adjacent MS-BS pair as linkl5 = (m3,b2). The matrixA becomes






1
2 0 1 0 0

0 1 0 1
0.8 1






, and the matrixH becomes













1 1 0 0 0

0 0 1 1 0

0 0 0 0 1













. TheCPF solution

becomesx = [1.2,0.6,0.75]T, andy = [1.2,0,0.4,0.2,0.75]T. TheCPF allocation shifts

more load ofm2 from b2 to b1, to free more resource atb2 to servem3.
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Figure 2.5: CPF allocation example III

Note that, under theCPF allocation, individual BS does not enforce time-based fair

allocation among nodes associated with it. As shown in the second and third example,

the CPF solution often requires a MS to be simultaneously assigned to multiple BSs.

Further, the change of a single input parameter may change allocation decision for all

MS-BS pairs. These factors need to be taken into consideration when implementing such

a scheme in practice.

2.4.3 Incentive Compatibility

CPF allocation decision is based on the link state information of all adjacent MS-BS

pairs. In practice, the link data rate is measured by individual MS, which periodically

feeds it back to the common radio resource manager using CRRMfunctions for informed

decision [1, 2, 33]. Thus, an intelligent and selfish MS can manipulate its reported link

states, if it can gain more from the network by doing so.

Based on this observation, amulti-cell resource allocation procedurecan be inter-

preted as a game, where each MS is a player. The strategy of a MSm can be described

as a link data rate vectorRm = (Rmb,b∈ B), whereRmb gives the data rate supported be-
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tween the MSm and a BSb. The resource allocation outcome is calculated according to

the allocation scheme employed by the common radio resourcemanager, and individual

BS enforces the decision. If the reported link data rateRmb between the MSmand the BS

b is not equal to the actual link data rateR∗
mb, the effective data rate will be less thanR∗

mb.

On one hand, ifRmb < R∗
mb, data are transferred by the BS usingRmb. On the other hand,

if Rmb> R∗
mb, data are transferred by the BS at a rate higher than that can be fully decoded

by the MS, the resulted effective data rate becomes lower than that can be achieved by

the most appropriate rateR∗
mb. Note that, by collecting the link state vectorRm from each

m∈ M, the link vectorL, matrixA andH required in calculating theCPF allocation can

be derived accordingly. As over-report can be easily detected [117], we focus on the case

wherem may under-report its channel state, i.e.Rmb≤ R∗
mb.

Formally, amulti-cell resource allocation gameis defined as(M,R∗,R,S,x), where

• M is the set of MS players.

• R∗ = (R∗
m,m∈M) consists of the actual link data rate vectorR∗

m for each MSm∈M.

• R =×mRm,m∈ M, whereRm = {Rm|Rm≤ R∗
m} specifies the strategy space of MS

m. m can choose any link data rate vectorRm ∈ Rm when playing the game.

• S is an allocation scheme that determines the allocation vector based on the speci-

fied channel state inputR∈ R.

• x = (xm,m∈ M) gives the allocated data rate vector.

Theorem 2.1 proves the positive result that in themulti-cell resource allocation game

with CPF as the allocation schemeS, the dominant strategy for any MS is to report its

channel state truthfully. We adopt thealgorithmic mechanism designapproach to ana-

lyze the game. As described in Section 1.3 of Chapter 1,algorithmic mechanism de-

sign[81, 82] studies optimization problems where the underlying data (the link data rates

with neighboring BSs as measured by individual MS in ourmulti-cell resource allocation
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game), is a priori unknownto the algorithm designer (the common radio resource man-

ager in our game), and must be implicitly or explicitly elicited from selfish participants

(through the periodic feedbacks of MSs using CRRM function in our game). The high-

level goal is to design a mechanism (the allocation scheme inour game), that interacts

with participants so thatselfish behavior yields a desirable outcome(a fair and efficient

resource allocation in our game). Recall that, a mechanism is said to beincentive com-

patible, or strategy-proof, if the dominant strategy of each participant under the designed

mechanism is to truthfully reveal its state (each MS reportshonestly its channel state in

our game). In contrast, if a game is not incentive compatible, a MS can gain by cheating

about its state, thus making the system operate under an inefficient state. Even worse,

MSs may keep varying their behavior as response to others’ strategies, which can lead to

instability problem.

Theorem 2.1 A multi-cell resource allocation game with CPF allocation scheme is in-

centive compatible.

Proof: We prove this property by contradiction. We assume that there is a userm∗

which can increase its aggregate bandwidth allocation by not using the truthful strategy.

We denote the allocation decision for the original setting,wherem∗ does not cheat, as

D′ = (x′,y′), and the allocation decision for the new setting, wherem∗ cheats, asD′′ =

(x′′,y′′).

Given a MSm, we denote the subset of its adjacent BSs that allocate strictly more

radio resource to it inD′′ than inD′ asB+(m), i.e.,∀b∈ B+(m),
y′′(mb)

R′′
mb

>
y′(mb)

R′
mb

.

Given a BSb, we denote the subset of its adjacent MSs that get strictly lower radio

resource allocation from it inD′′ than inD′ asM−(b), i.e.,∀m∈ M−(b),
y′′(mb)

R′′
mb

<
y′(mb)

R′
mb

.

Denote the initial BS set asB0 = B+(m∗). Based on our assumption, we havex′′m∗ >

x′m∗. Thus, there must be some BSs which allocate more resource tom∗ in D′′ than inD′.

More specifically,B0 6= /0.

Denote the initial MS set asM0 = ∪b∈B0M
−(b). As a BSb ∈ B0 allocates more
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resource tom∗ in D′′, and in both solutionsD′ andD′′ it allocates all of its resources, it

must reduce allocation to some other MS inD′′. Thus,M0 6= /0.

Consider the Lagrangian form of theCPF problem:

L(x,y;λ,µ)

= ∑
m∈M

wmlog(xm)−λT(x−Hy)+µT(C−Ay)

= ∑
m∈M

(wmlog(xm)−λmxm)+

∑
l∈L

yl (λm(l)−µb(l)Ab(l)l )+ ∑
b∈B

µbCb (2.6)

whereλ = (λm,m∈ M), µ= (µb,b∈ B) are vectors of Lagrange multipliers.

∂L

∂xm
= (wmlog(xm))′−λm (2.7)

∂L

∂yl
= λm(l)−µb(l)Ab(l)l (2.8)

Hence, at a maximum ofL, the following conditions hold:

wm

xm
= λm (2.9)

λm(l) = µb(l)Ab(l)l if yl > 0

≤ µb(l)Ab(l)l if yl = 0 (2.10)

The Lagrange multipliersλ andµ have simple interpretations. We may viewµb as

the implied cost of using unit radio resource of BSb, or alternatively the shadow price

of adding additional radio resource at BSb. λm can be viewed as the weighted charge of

unit flow for MSm.

As x′′m∗ > x′m∗, because of Equation 2.9,λ′′
m∗ < λ′

m∗. Thus, for anyb∈ B0, because of

Equation 2.10,µ′′b < µ′b. Based on Equation 2.10 again, for anym∈ M0, λ′′
m < λ′

m, thus

x′′m > x′m.
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We repeatedly carry out the following set expansion step:

Bn+1 = ∪m∈MnB
+(m)∪Bn (2.11)

Mn+1 = ∪b∈Bn+1M
−(b) (2.12)

As B is a finite set, the process always terminates at somen = n∗ whereBn∗+1 = Bn∗.

For each expansion step, the argument about the change of Lagrange multipliers as in the

initial step can still be applied, thus:x′′m > x′m,∀m∈ Mn∗ .

ConsiderBn∗ andMn∗ . For any MSm∈ Mn∗ , its allocated data rate strictly increases.

For any MSm /∈ Mn∗, its radio resource allocation from any BSb ∈ Bn∗ is not reduced

according to the definitions above. Thus, BSs inBn∗ jointly allocate higher data rate inD′′

to all MS m∈ Mn∗ without affecting their allocation to any MS outsideMn∗ . Combining

the resource allocation decision ofD′′ for BSs inBn∗ and the allocation decision ofD′

for BSs not inBn∗ , we have a feasible allocation solution ˜x for the original setting where

m∗ is honest. For MSm∗, x̃m∗ is the aggregate rate ofm∗ using the actual link data rate,

thus, we have ˜xm∗ ≥ x′′m∗ > x′m∗ . For m∈ Mn∗ andm 6= m∗, their reported data link rates

are the same for the two settings, thus ˜xm ≥ x′′m > x′m. Similarly, for m /∈ Mn∗ , x̃≥ x′. As

the vector ˜x is strictly larger thanx′, this contradicts with the fact thatx′ is Pareto optimal

under the original setting wherem∗ is honest.

2.5 Integral Coordinated Proportional Fairness

The optimal solution for theCPF allocation often requires MSs to be simultaneously

assigned to multiple BSs, which may not be desirable in practice, due to the following

reasons:

• It requires a node to be equipped with multiple simultaneousactive radios. On one

hand, a software defined radio that can dynamically switch todifferent radio access

technologies may not satisfy such requirement, as it cannotsimultaneously present
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in multiple overlapping cells. On the other hand, turning onmultiple radios can

significantly increase the power consumption.

• When a single parameter changes in the network, the allocation decision may be

adjusted globally. This may result in both system instability and excessive signaling

overhead.

• Transport protocol at client may have difficulty to efficiently aggregate bandwidths

from multiple interfaces, especially when the allocated bandwidth of each interface

varies with time [45].

Thus, in this section, we study resource allocation schemesin a single-association

setting, which associates each MS with a single BS.

2.5.1 Formulation and Complexity

The formulation for theCPFallocation can be modified to reflect the additional constraint

in single-association setting.

Formally, theIntegral Coordinated Proportional Fairness (Int-CPF) allocation is

the optimal solution for the following problem:

maximize ∑
m∈M

wmlog(xm)

s.t. Hy = x,Ay≤C

∀m∈ M,∃lm ∈ L,∀l 6= lm,Hmlyl = 0

over x> 0,y≥ 0 (2.13)

If we decouple the solution forInt-CPF allocationscheme into theinter-cell associa-

tion control layerand theintra-cell scheduling layer, we observe that, given its allocated

MSs, the strategy for a BS in the second layer to optimize the defined objective function,

is independent of the association control decision in the first layer and the second layer
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strategy of each other. This is because one MS is served by a single BS, thus, every single

BS should maximize the weighted logarithmic sum of data rates of the MSs assigned to it,

and it can achieve this by employing individual proportional fairness scheduling. As the

second level scheduling is clear, the remaining problem is to decide for each MS which

BS it should associate to.

We show that, forInt-CPF allocationscheme, there does not exist an algorithm that

can find the optimal solution in polynomial time unlessP = NP, i.e., the problem is NP-

hard. Similar to Lenstra et al. [61] and Bu et al. [16], our reduction is via3-dimensional

matchingproblem that is known to be NP-complete. The3-dimensional matchingprob-

lem is stated as follows.

Definition 2.4 Let X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}, Z = {z1, . . . ,zn} be three disjoint

sets with identical size n, and T is a subset of X×Y×Z. That is, T consists of triples

(x,y,z) such that x∈X, y∈Y, and z∈ Z. A T′ ⊆ T is a 3-dimensional matching if|T ′|= n

and∪ti∈T′ti = B∪C∪D. The problem is to find whether such a T′ exists.

Theorem 2.2 Int-CPF allocation problem is NP-hard.

Proof: Consider a3-dimensional matchingproblem whereT consists ofk triples

(k > n) and∪ti∈Tti = B∪C∪D, otherwise the problem becomes trivial. We construct a

correspondingInt-CPF allocationproblem as follows. For each tripeti ∈ T, we create

a corresponding BSti with capacity 1. We create two types of MSs: normal MS and

privileged MS. For each elementm∈ X ∪Y∪Z, we create a corresponding normal MS

m. There are totally 3n normal MSs. A normal MSm is covered by a BSti if and only

if m∈ ti . In addition, we createk− n privileged MSs, which are covered by all BSs.

We assume that the link data rates of all adjacent MS-BS pairsare equal to a constant

R. A normal MS has weight 1, and a privileged MS has weightwp > 2. The weight

of privileged MS is selected such that, if possible, packingthe 3n normal MSs inton

BSs, while assigning each of thek− n privileged MSs into each of the rest ofk− n

BSs, gives the highest value ofUmax= ∑m∈M wmlog(xm) = 3nlog(R
3)+(k−n)wplog(R).
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Thus, it is easy to verify that if there is a 3-dimensional matching solutionT ′, the Int-

CPF allocationproblem achieves the optimal solutionUmax. Conversely, if theInt-CPF

allocationproblem achieves the optimal solutionUmax, there is a3-dimensional matching

solution for the original problem.

Supposewm = 1,∀m∈ M. If we know the congestion vector(Nb,b ∈ B) for the

optimal solution ofInt-CPF problem, whereNb denotes the number of MSs assigned to a

BSb, we can reduce the problem of finding the optimal solution forInt-CPF allocationto

finding the maximum weight perfect k-matching in a bipartitegraph as follows. Consider

the bipartite graphG(M,B,L) whereM denotes the MSs,B denotes the BSs, andL is the

set of adjacent edges. The requirement (k-value) of each MSm∈ M is 1. For a BSb∈ B,

its requirementk(b) = Nb. The weight on each edge(m,b) is set tow(m,b) = log(Rmb
Nb

),

whereRmb is the link data rate between MSm and BSb. The optimalInt-CPF allocation

corresponds to the maximum weight perfect k-matching, as each MS is associated with

one BS, each BS gets the number of MSs as specified by the optimal congestion vector,

and the logarithmic sum of allocated data rates for all MSs ismaximized. Note that the

number of possible congestion vectors is polynomial in the number of MSs|M| and can be

enumerated if the number of BSs|B| is a constant. In our evaluation, we use this approach

to calculate the solution ofInt-CPF allocationfor a constant number of BSs.

2.5.2 Incentive Compatibility

In contrast to the multi-cell allocation game withCPF allocationscheme, the multi-cell

allocation game withInt-CPF allocationscheme is not incentive compatible.

Theorem 2.3 A multi-cell resource allocation game with Int-CPF allocation scheme is

not incentive compatible.

Proof: The theorem can be easily proved by providing counter examples.

In the example of Figure 2.6 (a), there is a MSm1 covered by both a Wi-Fi APb1

and a cellular BSb2, with link data rate of 0.9Mbpsand 2Mbpsrespectively. In addition,
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2Mbps0.9Mbps

1Mbps

(a) MS m1 may cheat to gain

(b) MS m2 may cheat to gain

MS m1
MS m2

MS m2

MS m1

Cellular 
BS b2

Wi-Fi AP b1

Cellular 
BS b2

Wi-Fi AP b1

2Mbps

1Mbps
1.9Mbps

1.1Mbps

Figure 2.6: Cheating under Int-CPF allocation

there is a MSm2 which is covered only by BSb2 with link data rate of 2Mbps. Recall that

each BS’s capacity is fixed, and the bandwidth allocated to a MS on a link is the product

of the link data rate and the fraction of the radio resource allocated by the corresponding

BS. TheInt-CPF allocationis to assign MSm1 to b1, and MSm2 to b2, thusm1 gets

an allocation of 0.9Mbps, andm2 gets an allocation of 2Mbps. However, ifm1 cheats

by hiding its association withb1, i.e., set the data rate of link(m1,b1) to 0, theInt-CPF

allocation is to assign bothm1 andm2 to b2, and allocate half the resource to each of

them. In this case,m1 gets a higher throughput of 1Mbps, whereasm2’s throughput is

reduced to 1Mbps.

This example shows that a MS with multiple adjacent BSs can manipulate its adjacent

BS set, so as to be allocated to its favored BS.

On the other hand, the example of Figure 2.6 (b) shows that, a MS can also manipulate

its reported data rate to increase its benefit by changing other MS’s association. In the

given setting, both MSm1 and MSm2 are covered by both the Wi-Fi APb1 and the
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cellular BSb2. Their link data rates to the AP and the BS are shown in the figure. It is

easy to verify that, theInt-CPF allocationis to assignm1 to b1 andm2 to b2, such that the

throughput ofm1 is 1.9Mbpsand the throughput ofm2 is 1Mbps. If m2 cheats by hiding

its adjacency withb2, i.e., set the data rate of link(m2,b2) to 0, theInt-CPF allocation

will swap the assignment, withm2 associated tob1 andm1 to b2. Thus, the throughput of

m2 increases to 1.1Mbps.

The example of Figure 2.6 (b) also shows that both the optimalIntegral Coordinated

Max-min Fairness[10] and the optimalIntegral Coordinated Minimum Potential Delay

Fairness[71] are not incentive compatible.

As we can scale the data rate such that the aggregate utility in the optimal solution is

strictly greater than 0, while the aggregate utility in aNash equilibriumis 0, theprice of

anarchy, which is defined as the ratio between the optimal social utility and the utility of

the worst Nash equilibrium point of the game is unbounded. For example, in Figure 2.6

(a), the optimal social utility islog(0.9)+ log(2) > 0, whereas the social utility under the

Nash equilibrium point islog(1)+ log(1) = 0.

2.5.3 Selfish Load Balancing: Congestion Game

As Int-CPF allocationdecision is computationally expensive to solve, and does not de-

fine an incentive-compatible game, a natural alternative isto let selfish users decide for

themselves which BS to associate with.

When each MS can make individual association decision directly, instead of themulti-

cell resource allocation gameas defined in Section 2.4.3, we have asingle-association

game.

Formally, asingle-association gameis defined as(M,S,x), where

• M is the set of MS players.

• S= ×mSm denotes the set of all possible ways in which players can pickstrategies.

For each playerm∈ M, Sm denotes its own set of possible strategies, which corre-
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sponds to the subset of BSs with which it can associate. In particular, one strategy

bm ∈ Sm corresponds to the association of MSm with BS bm. A strategy profile

s∈ Sconsists of the vector of each player’s selected strategy, i.e.s= (bm,m∈ M).

• Under the assumption that each BS implements individualproportional fairness

scheduling, and that all users have the same weight, the throughputxm received by

a MSm under a strategy profiles= (bm,m∈ M) can be simply expressed as:

xm(s) =
Rmbm

Nbm(s)
(2.14)

whereRmbm is the link data rate between MSmand its selected BSbm, andNbm(s) is

the congestion level (number of associated users includingMS m) of BS bm under

strategy profiles. Given the freedom to decide its own association, a playerm has

no incentive to cheat about its link data rate, as doing so only decreases its actual

throughput.

For each player in thesingle-association game, its reward (in terms of allocated band-

width) of employing a certain strategy is affected only by the number of other players who

employ the same strategy (choosing the same BS to associate with), rather than who they

are. Thus, this game falls into the class ofcongestion gameswhich is first introduced by

Rosenthal [92].

Rosenthal shows that if the cost (or reward) function is the same for all players choos-

ing the same strategy, then these games possess a rich structure, in particular they always

have a Nash equilibrium in pure strategies. The term of “purestrategy” means each player

deterministicallyplays a single chosen strategy, instead of randomly pickingamong mul-

tiple strategies. This result follows from the existence ofa potential function, which is a

real-valued function defined over the set of strategy profiles having the property that the

gain (or loss) of a player shifting to a new strategy is equal to the corresponding change

of the potential function.

The existence of an exact potential function implies thefinite improvement property
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(FIP): Any sequence of strategy-tuples in which each strategy-tuple differs from the pre-

ceding one in only one coordinate (such a sequence is called apath), and the unique

deviator in each step strictly increases its payoff (animprovement path), is finite. The

first strategy-tuple of a path is called theinitial point; the last one is called theterminal

point. Obviously, anymaximal improvement path, an improvement path that cannot be

extended, is terminated by a Nash equilibrium.

Milchtaich [74] extends the definition ofcongestion gameto allow player-specific

cost (or reward) functions, i.e. different players have different costs (or rewards) by choos-

ing the same strategy, and shows that even these games have a pure Nash equilibrium.

In our setting, different MSs have different wireless link data rate with the same BS,

thus the reward function is player-specific. However, the simple structure of the player-

specific reward function as defined in Equation 2.14 allows usto prove a stronger result

than Milchtaich.

More specifically, Theorem 2.4 shows that thesingle-association gamepossesses

thefinite improvement property (FIP). To prove FIP, we define for every strategy profile

s= (bm,m∈ M) the following potential function:

Φ(s) = ∑
m∈M

log(Rmbm)− ∑
b∈B

log(Nb(s)!) (2.15)

whereRmbm is the link data rate between MSmand its selected BSbm, andNb(s) gives

the number of MSs allocated to a BSb under the strategy profiles. The potential function

is constructed such that the gain (or loss) of a player shifting to a new strategy is equal to

the corresponding change of the potential function, as shown in the proof below. Similar

construction has also been used by Gairing et al. [41] to analyze a delay minimization

congestion game with user-specific cost function.

Theorem 2.4 Single-association game possesses the finite improvement property.

Proof: Consider a selfish steps→ s′ where a playerm∈ M switches from BSb to
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BS b′.

Φ(s′)−Φ(s) = (log(Rmb′)− log(Nb′(s)+1))− (log(Rmb)− log(Nb(s)))

= log(xm(s′))− log(xm(s)) (2.16)

Based on the result, we can formally describe theSelfish Load Balancing (SLB)

scheme as follows. UnderSLBscheme, the common radio resource manager starts from

a feasible allocation decision, and greedily switches a MS to a BS that can improve its

throughput. Only one MS is switched at a time, thus when thereare multiple MSs that

can improve by unilaterally switching association,SLBscheme selects one of them. The

iteration ends until aNash equilibriumis reached, i.e., no user can unilaterally change its

association to achieve a higher throughput.

To make the presentation more concrete, we choose the following strategies when

implementingSLB scheme: (1) We use the popular heuristic ofStrongest-Signal First

(SSF)allocation scheme as the initial allocation vector. InSSFallocation scheme, a MS

is associated with the BS that provides the strongest signalstrength. The decision is made

regardless of the BS’s load. (2) Given a selected MS to switch, if there are multiple BSs

that can improve its allocated rate, we assign the selected MS to a BS that can increase its

allocated bandwidth by the largest percentage. Draws are settled randomly. (3) If there

are multiple MSs that can gain by unilaterally switching association, we select one of

them randomly. Note that, the result of Theorem 2.4 does not rely on the choices made

by our implementation. The convergence property holds for any strategy fitted into the

general framework.

Note that, there can be multiple Nash equilibria in thesingle-association game, and

SLBscheme can converge to any of them. For example, in Figure 2.6(b), there are two

Nash equilibria. In the first equilibrium, MSm1 is associated to BSb1, and MSm2 is

associated to BSb2. In the second equilibrium, the associations are swapped. Individual
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MS can have significantly different bandwidth allocation under different Nash equilibria.

Note that althoughSLBscheme converges, it is not incentive compatible. For example,

MS m2 in Figure 2.6 (b) can hide its association with BSb2, so as to make the system

converge to the second equilibrium instead of the first one.

Despite the fact that it is not incentive compatible,SLB scheme is still a valuable

solution, as no MS can gain by unilaterally changing its association. In addition, our eval-

uation in Section 2.6 shows thatSLBscheme converges quickly and performs close toInt-

CPF scheme. It remains an interesting research problem to design incentive-compatible

resource allocation schemes for single-association setting, such that MSs cannot gain by

cheating, while system can operate in a fair and efficient state.

2.6 Evaluation

2.6.1 Methodology

Our evaluation is based on a customized flow level simulator.The two metrics we con-

sider arearithmetic mean of per-user throughput valuesandgeometric mean of per-user

throughput values. On one hand,arithmetic mean of per-user throughput valuesis the

sum of all MSs’ throughput divided by the number of MSs. It reflects the overall perfor-

mance of the system. Note that although a higherarithmetic meanimplies higher aggre-

gated throughput for all MSs, resource sharing can be very unfair among them. Thus, we

look at thegeometric mean of per-user throughput values, i.e., thenth root of the product

of all MSs’ throughput, wheren is the number of MSs. Measure usinggeometric mean

presents a better trade-off between efficiency and fairness, as a single starved MS makes

thegeometric meanequal to 0.

In Section 2.6.2, we first compare the performance of the three coordinated fairness

definitions, i.e.,Coordinated Proportional Fairness, Coordinated Max-min Fairness, and

Coordinated Minimum Potential Delay Fairness. Section 2.6.3 compares the performance

of the following six schemes that are based onProportional Fairness. For allocation
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schemes that can split a user’s flow among multiple interfaces, we consider:

• Coordinated Proportional Fairness (CPF)scheme, which is the optimal solution

for the convex programming problem as formulated in Equation 2.5. CPF scheme

gives the upper bound of the geometric mean of per-user throughput values.

• Uncoordinated Proportional Fairness (UPF)scheme, where a MS associates to

all neighboring BSs by simultaneously turning on multiple radio interfaces. This

is the Nash equilibrium for the association game as discussed in Chapter 1, and

represents a non-cooperative scenario where all users are selfish and the system is

uncoordinated.

For allocation schemes under single-association constraint that enforces each MS to

associate with only a single BS, we consider:

• Int-CPF scheme, which is the optimal solution for the integral optimization prob-

lem as formulated in Equation 2.13. The problem is proved to be NP hard. However,

for a relatively small number of BSs and constant weight, we are able to find the

optimal solution by iterating through all feasible congestion vector combinations to

find the optimal value among all resulted maximum weighted perfect k-matching

solutions. Note that, we assume that all MSs honestly reporttheir channel states

and association information.

• Selfish Load Balancing (SLB)scheme, which starts fromSSFallocation, and allows

user greedily switch BS to improve its own throughput. User switches in a random

order, and the switching user selects a BS allocating the highest rate. The iteration

ends until a Nash equilibrium is reached, i.e., no user can unilaterally change its as-

sociation to achieve a higher throughput. Theorem 2.4 establishes the convergence

of such a process.

• Strongest-Signal-First (SSF)scheme, which always associates a MS to the BS with

the strongest received signal strength, regardless of its load. SSFscheme is the
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default association method for multiple radio access technologies, including Wi-Fi

networks.

• Least-Population-First (LPF)scheme, which always associates a MS to the BS

with the least number of associated MSs, regardless of the channel condition.LPF

scheme is a classical method for load balancing, especiallyin single-rate cellular

networks.

For fair comparison, we assume that each BS implements individual proportional

fairness scheduling for all schemes above, except for the case of CPF scheme, which

decides for each BS its allocation vector, thus does not necessarily follow the individual

proportional fairness scheduling.

As illustrated in Figure 2.7, our simulation is based on a 600m×600m torustopology

where 9 BSs are placed on a 3 by 3 grid, with the distance between two adjacent BSs set

to 200 meters. All BSs have identical transmission power andoperate on non-interfering

channels. The maximum transmission range of a BS is set to 150meters. The setB(m)

of BSs covering a MSm are determined from MSm’s location by examining whether

its distance to a BS is within 150 meters. We have conducted evaluations for two user

distributions:

Figure 2.7: A torus BS topology

• In uniform setting, users are distributed within the torus uniformly at random;
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• In hot spot setting, out of all MSs generated,κ = 90% are randomly positioned in a

circle-shape hot spot with the radius of 150 meters around the center of a selected

hot BS, as indicated by the shadow area in Figure 2.7.

The percentage of MSs covered by different number of overlapping BSs is shown in

Table 2.1 for the two settings. Both the average and 90% confidence interval (CI) are

shown.

Uniform Hot spot
Mean 90% CI Mean 90% CI

P(|B(m)|=1) 29.1% 17.8% - 40.4% 17.9% 8.9% - 26.7%
P(|B(m)|=2) 65.9% 53.3% - 77.8% 73.7% 64.4% - 84.4%
P(|B(m)|=3) 4.3% 0% - 8.9% 6.9% 0.2% - 13.3%
P(|B(m)|=4) 0.7% 0% - 2.2% 1.5% 0% - 4.4%

E[|B(m)|] 1.77 1.64 - 1.9 1.92 1.77 - 2.07

Table 2.1: Overlapping coverage statistics

The arrival of MSs follows a Poisson process, and the sojourntime of a MS in the

system follows an exponential distribution, both of which are assumed to be independent

of MSs’ allocated throughput for simplicity3. ρ = E[|M|]
|B| is defined as the average number

of active MSs in the system divided by the number of BSs, with default value set to 5. We

use the log-normal shadowing propagation model to calculate the received signal strength

at MS from each of its adjacent BSs. Given the distanced < 150m between a MSm and

a BSb, the received signal powerPdB(d) from b at m is calculated as:

PdB(d) = PdB(d0)−10βlog10
d
d0

+Xσ (2.17)

whered0 = 10m is the reference distance,β = 3 is the path loss exponent, andXσ

is a Normal random variable in dB having a standard deviationof σ = 12dB and zero

mean. The parameters are set to model the typical loss in an urban environment [89]. We

3We note that it takes longer time for a MS with lower bandwidthto download some given amount of
information, however, a MS with lower bandwidth also tends to download less amount of content. We leave
the study of MS behavior to future research.
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set the Signal Noise Ratio (dB) within reference distance toPdB(d0)−PdB(N0) = 35dB,

and use a threshold-based mapping as shown in Table 2.2 to determine the link data rate

accordingly. The selected values are commonly used in 802.11b network [5, 87, 110].

Table 2.3 shows the statistic of the link data rates among adjacent BS-MS pairs. Both the

average and 90% confidence interval (CI) of the probability are presented.

SNR< 3dB 3dB≤ SNR< 8dB 8dB≤ SNR< 15dB 15dB≤ SNR
Rate 1Mbps 2Mbps 5.5Mbps 11Mbps

Table 2.2: Mapping between Signal Noise Ratio and link data rate

Uniform Hot spot
Mean 90% CI Mean 90% CI

P(R=1Mbps) 41.5% 32.5% -50.5% 44.3% 35.0% - 53.6%
P(R=2Mbps) 14.9% 7.9% - 21.9% 15.3% 8.5% - 22.1%

P(R=5.5Mbps) 18.6% 11.8% - 25.4% 18.4% 11.1% - 25.7%
P(R=11Mbps) 25.0% 16.3% - 33.7% 22.0% 14.0% - 30.0%

E[R] (Mbps) 4.48 3.67 - 5.29 4.18 3.48 - 4.88

Table 2.3: Link data rate statistics

2.6.2 Comparison of Various Coordinated Fairness Definitions

This section compares the performance of the three fairnessdefinitions as discussed in

Section 2.3 when they are applied in a multi-cell environment, namelyCoordinated Pro-

portional Fairness (CPF), Coordinated Max-min Fairness, andCoordinated Minimum

Potential Delay Fairness.

As shown in Table 2.4, for uniform setting, under theCoordinated Max-min Fair-

ness, the arithmetic mean of per-user throughput values is less than 30% ofCPF, and

the geometric mean of per-user throughput values is around 40% of CPF. The per-user

throughput performance of theCoordinated Minimum Potential Delay Fairnessallocation

scheme is intermediate between theCoordinated Max-min Fairnessscheme and theCo-

ordinated Proportional Fairnessscheme, in terms of both arithmetic mean and geometric

mean. Similar phenomenon is observed in hot spot setting as well.
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Uniform Hot spot
Arith. Mean Geo. Mean Arith. Mean Geo. Mean

Proportional
average 1.26 0.89 0.93 0.57
90% CI 1.06 - 1.46 0.67 - 1.11 0.64 - 1.22 0.45 - 0.69

Max-min
average 0.36 0.36 0.23 0.23
90% CI 0.26 - 0.46 0.26 - 0.46 0.17 - 0.29 0.17 - 0.29

Minimum
Potential Delay

average 0.89 0.79 0.68 0.51
90% CI 0.69 - 1.09 0.62 - 0.96 0.47 - 0.89 0.39 - 0.63

Table 2.4: Throughput (Mbps) comparison of different coordinated fairness definitions

2.6.3 Performance of Various Schemes

This section compares the performance of the six schemes adopting Proportional Fairness,

namelyCPF, UPF, Int-CPF, SLB, SSF, andLPF.

Figure 2.8 (a) plots the per-user throughput values sorted in non-decreasing order

under the uniform setting, and Figure 2.8 (b) plots the result under the hot spot setting.

Figure 2.8 (c) and (d) provide a zoom-in view of MSs with low bandwidth allocation for

the two settings. Table 2.5 summarizes thearithmeticandgeometricmean (and the 90%

confidence interval) of per-user throughput values under different schemes for the two

settings respectively.

Uniform Hot spot
Arith. Mean Geo. Mean Arith. Mean Geo. Mean

CPF
average 1.26 0.89 0.93 0.57
90% CI 1.06 - 1.46 0.67 - 1.11 0.64 - 1.22 0.45 - 0.69

UPF
average 0.89 0.67 0.73 0.39
90% CI 0.72 - 1.06 0.52 - 0.82 0.49 - 0.97 0.30 - 0.48

Int-CPF
average 1.26 0.89 0.92 0.56
90% CI 1.06 - 1.46 0.67 - 1.11 0.63 - 1.21 0.45 - 0.67

SLB
average 1.26 0.89 0.92 0.56
90% CI 1.06 - 1.46 0.67 - 1.11 0.63 - 1.21 0.45 - 0.67

SSF
average 1.29 0.86 0.98 0.45
90% CI 1.06 - 1.52 0.64 - 1.08 0.63 - 1.33 0.31 - 0.59

LPF
average 1.02 0.63 0.75 0.42
90% CI 0.78 - 1.26 0.48 - 0.78 0.49 - 1.01 0.31 - 0.53

Table 2.5: Arithmetic and geometric mean of per-user throughput values (Mbps)
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(a) Uniform setting
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(b) Hot spot setting
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(c) Uniform setting (Zoom-in)
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(d) Hot spot setting (Zoom-in)

Figure 2.8: Per-user throughput values sorted in non-decreasing order

Coordinated Proportional Fairness (CPF)scheme produces the optimalgeometric

mean of per-user throughput values. This is as expected, because the objective function

of the optimization problem defined in Equation 2.5 can be transformed to the geomet-

ric mean of per-user throughput without affecting the solution. Note that, despite that

Strongest-Signal-First (SSF)scheme often allocates higher throughput thanCPF scheme

to MSs with high bandwidth allocation (as shown in the right region of Figure 2.8 (a) and

(b)), it provides lower throughput for MSs with low bandwidth allocation, especially for

hot spot setting as shown in Figure 2.8 (d). Because of this unfairness, its geometric mean

of per-user throughput is lower thanCPF scheme.

In contrast toCPFscheme,Uncoordinated Proportional Fairness (UPF)scheme per-

forms much worse, providing arithmetic/geometric mean of per-user throughput not only

lower thanCPF scheme, but also inferior to all other schemes except forLPF scheme in
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some cases. This observation holds for both uniform and hot spot settings. The significant

performance gap betweenCPFandUPF strongly advocates the adoption of a coordinated

resource allocation approach for an integrated environment.

Among all allocation schemes for the single-association setting, Int-CPF scheme has

the optimal geometric mean of per-user throughput, which agrees with the optimization

problem defined in Equation 2.13. Its performance is close toCPF scheme under both

uniform setting and hot spot setting. For both settings, thecoordinate-wise performance

gap between the two schemes is never greater than 3.5%, and is less than 1% for more

than 70% of MSs. Our result also shows that,Selfish Load Balancing (SLB)scheme

often has very close performance toInt-CPF scheme, thus toCPF scheme as well. For

around 65% of user distribution in uniform setting,SLB scheme andInt-CPF scheme

make the identical association decision. For 99% of user distributions, the performance

gap between the two schemes is less than 1%. Similar phenomenon is observed under hot

spot setting as well. In fact, such an approximation amongSLBscheme,Int-CPF scheme,

andCPF scheme holds when we vary the traffic load and asymmetry, as demonstrated

later in Figure 2.9 and Figure 2.10. The only case that we observe obvious difference

betweenCPFscheme and the two single-association schemes is when the average number

of MSs per BS is very small (e.g.≤ 3).

Based on this, we make the following observation:By using an (appropriate) single

radio per user, the system can largely achieve the performance when simultaneously using

multiple radios per user.

Among all six schemes,Strongest-Signal-First (SSF)scheme achieves the highest

arithmetic mean of per-user throughput. This is becauseSSFscheme greedily assigns

each MS to the BS providing the best channel condition. However, SSFscheme’s ge-

ometric mean of per-user throughput is lower thanCPF scheme,Int-CPF scheme, and

SLBscheme, because a MS often associates to an overloaded BS that can only allocate a

small portion of its overall radio resource to serve the MS, thus provide low throughput

despite of the high link data rate between them. This situation is particularly common
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in hot spot setting. As shown in Figure 2.8 (d), for hot spot setting, nearly 15% of MSs

have throughput lower than 100 Kilobit per second (Kbps) under SSFscheme, compared

to less than 1% underCPF scheme. For the 15% of MSs with lowest bandwidth alloca-

tion, their throughput underSSFscheme is less than 60% of their throughput underCPF

scheme. Thus,SSFscheme can be unfair to a significant portion of users.

Least-Population-First (LPF)scheme often performs worst in terms of both arith-

metic and geometric mean of per-user throughput, implying that traditional load balancing

technique is not applicable to multi-rate wireless data networks.
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Figure 2.9: Geometric mean of throughput (Mbps) over varying load

Figure 2.9 demonstrates different schemes’ performance under varying load in uni-

form setting. The performance ofInt-CPF scheme and the performance ofSLBscheme

are close to each other in all range of load. Further, the performance gap between they and

the CPF scheme reduces with increased traffic intensity. This is because bothInt-CPF

scheme andSLBscheme allocate resource on a per MS basis. Hence, the largerthe traf-

fic load, the finer the relative granularity of them. In fact, the only case that we observe

obvious difference betweenCPF scheme and the two single-association schemes is when

the average number of MSs per BS is very small (e.g.≤ 3)

Figure 2.10 demonstrates the impact of asymmetric traffic distribution. The figure

shows that the performance of bothInt-CPF scheme andSLBscheme is close toCPF
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Figure 2.10: Geometric mean of throughput (Mbps) over varying traffic distribution asym-
metry

scheme even under highly asymmetric traffic distribution. Such robustness is largely be-

cause both schemes take into account both network load and link data rate. In compari-

son, performance ofSSFscheme deteriorates faster than all other schemes with increasing

traffic asymmetry, andLPF scheme performs better thanUPF scheme under high traffic

asymmetry.

2.6.4 Strategic Interactions under SLB and Int-CPF
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Figure 2.11: Convergence speed of SLB over varying load

Figure 2.11 shows the average number of steps required in thewhole multi-cell sys-
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tem forSLBscheme to converge to a Nash equilibrium, starting from theSSFallocation.

As can be seen from the figure,SLBscheme converges quickly, and the number of steps

required grows linearly with the system load.

While SLBscheme takes strategic interactions among MSs into consideration, Int-

CPF scheme simply ignores them. Our evaluation shows that, up to15% of decision

made byInt-CPF scheme is not a Nash equilibrium in the single-association game. More

specifically, there is at least one MS which can unilaterallychange its association to gain

higher throughput from the network underInt-CPF allocation. As illustrated in Figure

2.6 (a), the user can cheat by hiding all of its adjacent BSs except for its desired BS, so as

to affect theInt-CPF resource allocation decision and increase its own bandwidth.

We observe that, in more than 30% of settings, there are multiple Nash equilibria in

the inducedsingle-association game, meaning that there is at least one MS that can cheat

about its channel state to drive the system to the Nash equilibrium that it prefers.

2.7 Related Work

For cellular networks, schemes that dynamically balance loads among neighboring cells

have been proposed, including directed retry (DR) and directed handoff (DH) [34, 40, 52].

The proposed schemes take advantage of the fact that some MSsmay be able to obtain

sufficient signal strength from multiple cells. With DR scheme, if a call finds its first-

attempted cell has no free channel, it will try for a free channel in any other cell that can

provide sufficient signal strength. The DH scheme takes thisidea further, in that when a

cell has all or almost all of its channels in use, it may, usingDH scheme, direct some of

its MSs to attempt handoff to an adjacent cell, with the goal to redistribute calls in heavily

loaded cells to lighter loaded cells. Both schemes can improve system performance. The

ratio of improvement depends on the percentage of MSs that can communicate with two

or more cells simultaneously, which has been reported to be as high as 30-45 percent by

Everitt [34]. However, these schemes are designed for voicecalls, thus often assume that
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each call consumes a fixed amount of radio resource.

Bianchi and Tinnirello [14] observe that in wireless communication systems, effec-

tive transmission rate depends on the channel quality, thusadmitted calls weight unevenly

in terms of effective resource consumption. They suggest using channel quality informa-

tion to drive load balancing mechanisms and propose two metrics, “Gross Load” and

“Packet Loss”, to quantify the information related to packet level retransmission load.

Using the proposed metrics, they determine the best cell to attach to, during handover

or new request arrival. Their simulation results show the superiority of their proposed

schemes with respect to theLeast-Population-First (LPF)load-balancing scheme. Sang

et al. [95] propose a cross-layer framework to coordinate packet-level scheduling, flow-

level cell selection and handoff, and system-level loadingbalancing based on the load,

throughput, and channel measurements at different layers.In their proposed framework,

an opportunistic scheduling algorithm, theweighted Alpha-Rule, exploits multiuser diver-

sity gain in each cell independently, while providing minimum rate guarantees for MSs.

Each MS adapts to its channel dynamics and the load fluctuations in neighboring cells, in

accordance with MSs’ mobility and their arrivals or departures, by initiating load-aware

handoff and cell selection. The central server adjusts the scheduling parameters of each

cell to coordinate cells’ coverage, or cell breathing, by prompting distributed MS hand-

offs. Across the whole system, BSs and MSs constantly monitor their load, throughput,

or channel quality in order to facilitate the overall systemcoordination. However, both

works are designed for applications with stringent Qualityof Service (QoS) requirement,

such as voice calls, which demand a specified amount of bandwidth. Instead, we focus

on elastic traffic, which can adapt to and make full use of various bandwidth allocation.

While the major metric to be optimized by Bianchi and Tinnirello [14] and Sang et al. [95]

is the blocking rate of MS (or more generally, the probability of not satisfying a user’s

QoS requirement), we aim at a globally fair and efficient allocation decision for elastic

traffics. Because of these differences, we cannot make direct comparison with them.

Bejerano et al. [10] consider the problem of achieving network-wide max-min fair-
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nessusing association control for Wi-Fi networks. The max-min time fairness problem

they consider is intended for single-rate Wi-Fi networks only. Das et al. [27] consider

scheduling schemes in which scheduling decisions are made jointly for a cluster of cells,

thereby enhancing performance through both interference avoidance and dynamic load

balancing. They consider algorithms for two scenarios. In the first scenario, they assume

complete knowledge of the instantaneous channel quality information from each of the

BSs to MSs at the centralized scheduler. In the second scenario, they propose a two tier

scheduling strategy that assumes only the knowledge of the long-term channel conditions

at the centralized scheduler. They demonstrate that significant throughput gains can be

obtained in the case of asymmetric traffic distribution, whereas the gains in the symmetric

case are modest. Since the load balancing is achieved through centralized scheduling,

their scheme can adapt to time-varying traffic patterns dynamically. Both works adopt

max-min fairnessas the criterion for bandwidth allocation.Max-min fairnessis not suit-

able for elastic traffic in multi-rate wireless networks, because it can severely affect the

efficiency of the system as shown in Section 2.6.2.

In a parallel work with similar approach, Bu et al. [16] formulate thegeneralized

proportional fairnessproblem in third generation (3G) wireless data networks, bycon-

sidering proportional fairness in a network-wide context.However, their formulation is

specific to HDR networks. In HDR networks, through a signaling channel, each user

feeds back its channel condition continuously to theproportional fairnessscheduler at

the BS with which it associates. At each time slot, the scheduler at each BS schedules

the user with the largest weight where the weight is the link data rate of the user at the

current time slot divided by the average rate it has receivedso far. Instead, we consider

general wireless networks, which may consist of heterogeneous radio access technolo-

gies (thus, opportunistic scheduling may not be feasible atall). Li et al. [63] consider

thegeneralized proportional fairnessproblem in multi-rate Wi-Fi networks. Their tech-

nique is to intelligently associate users with APs to achieve optimal proportional fairness

in a network of APs. They propose two approximation algorithms with a constant worst-
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case guarantee for the NP-hard problem and demonstrate thatthe algorithms can obtain

both higher aggregate throughput and better fairness than theStrongest-Signal-First (SSF)

AP selection method in the 802.11b standard. The proposed schemes in both works are

essentially approximations to ourInt-CPF scheme. Their evaluations also show that (ap-

proximated)Int-CPF scheme outperforms common heuristics likeSSFscheme andLPF

scheme. However, both works do not consider the incentive compatibility issues.

Kauffmann et al. [53] also consider the fairness among MSs ina network-wide con-

text. They propose the use ofminimum potential delay fairness[71] as the optimization

goal for user association control. Our simulation results in Section 2.6.2 show that this

criterion is intermediate between themax-min fairnessandproportional fairness, in that

it results in a larger (smaller) overall throughput than max-min (proportional) fairness.

There are also works [57, 93] considering the use of multipleorthogonal channels in

wireless mesh networks, where each router is equipped with multiple radios. They focus

on the channel assignment algorithms to maximize throughput over multi-hop path. The

basic theme is to mitigate interference among contending links in a multi-hop path by

assigning them to different channels. In contrast, our workfocuses on how to allocate the

bandwidth of the single-hop downlink from a BS to a MS. We onlyconsider multi-mode

MS and assume that the capacity of BS is fixed. In our system model, the backhaul links

of BSs are over provisioned with different technologies (e.g. using wired networks), and

each BS operates orthogonally with each other. The techniques as proposed in multi-

channel wireless mesh networks can potentially be used to extend our existing works,

e.g., to model the situation that the backhual links of BSs use the same radio technology

as the BS-MS link.

2.8 Summary

This chapter studies thecoordinated radio resource allocation problemfor users that are

simultaneously covered by multiple overlapping cells using heterogeneous radio access
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technologies. We formulate thecoordinated proportional fairness (CPF)resource allo-

cation criterion, based on which a globally fair and efficient allocation decision can be

easily computed. AsCPF decision depends on the input from users, a selfish user may

manipulate its channel state report if doing so can increaseits gain from the network. To

capture this phenomenon, we formulate the resource allocation process as amulti-cell re-

source allocation game, which is associated with a rule to calculate bandwidth allocation

outcome based on the input from the MS players. We prove thatCPF allocation is incen-

tive compatible, in the sense that a user’s dominant strategy is to report its channel state

honestly. In practice, the single-association setting, where each MS is associated with a

single BS, is often desirable. We formulate the integral version of theCPF problem (Int-

CPF) and show that it is both computationally expensive and prone to user-manipulation.

Alternatively, we advocate the adoption of aSelfish Load Balancing (SLB)scheme, which

always leads to a Nash equilibrium, and often achieves performance near to theCPF allo-

cation. We use simulation to evaluate the performance of proposed schemes. The results

show that the proposed algorithms outperform popular heuristic approaches, by striking

a good balance between efficiency and fairness, while achieving load balancing among

component BSs.



Chapter 3

MobTorrent: Cooperative Access for

Delay-Tolerant Mobile Users

3.1 Introduction

For commuters and passengers on public buses, taxis or private vehicles, the most com-

mon and seamless way of getting Internet access is through the use of Wireless Wide Area

(Cellular) Networks, e.g., GPRS, 3G or HSDPA. The cellular radio can be plugged into

the end host (e.g. a laptop) or mounted on the vehicle from which shared network access

is provided to all passengers in the vehicle using an on-board Wi-Fi network1. However,

even though performance of cellular networks has improved significantly over the years,

in particular with the deployment of HSDPA, the aggregate orper user data rate is still

limited by the need to provide ubiquitous coverage to a largenumber of users. In a re-

cent measurement, we observe around 300Kbps download speedfrom a vehicle (with a

1.5Mbps-limit subscription plan) using a local commercialHSDPA network.

Meanwhile, many cities around the world have witnessed large-scale deployment of

open Wi-Fi hotspots. In Singapore, more than 7000 free Wi-Fiaccess points (APs) have

1A shared on-board network enables passengers without cellular subscription (and interface) to access
Internet. In addition, a hand-held device can reduce its power consumption by using the short-range wireless
communication instead of connecting to a remote BS directly. Further, the powerful and well-positioned
vehicle antenna helps improve the wireless communication efficiency with the remote BS.

63
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Cellular networks Wi-Fi networks

BandwidthR
Low - Medium
56Kbps (GPRS) -
14Mbps (HSDPA)

Medium - High
1Mbps (802.11) -
600Mbps (802.11n)

CoverageP Ubiquitous Intermittent (e.g. 20%)
R×P 56Kbps - 14Mbps 200Kbps - 120Mbps

Table 3.1: Complementary characteristics of cellular networks and Wi-Fi networks

been deployed in the last few years in public open areas, shopping malls and commer-

cial buildings. On a smaller scale, in a measurement of our 150 hectares campus in Kent

Ridge, we can observe more than 2000 APs installed in 90 buildings. Strong Wi-Fi signal

can be received from about 25% of the 4km route traveled by thecampus shuttle bus. Re-

cent research works [21, 84] have also demonstrated the feasibility of providing network

access via roadside APs.

On the other hand, Singapore being a city-state, has a dense deployment of public

buses. The largest public transport provider has a fleet of more than 2000 buses. Currently,

almost all buses are equipped with GPS and GPRS device. Whilethe bandwidth provided

by GPRS is sufficient for its main application, an Automatic Vehicle Location (AVL)

system, it is too low to support Internet access service for passengers. Upgrading the

whole system to HSDPA is costly. With such a large number of open Wi-Fi APs available

already, providing network access to moving vehicles through roadside Wi-Fi APs offers

analternativeandcomplementarysolution that can significantly increase the bandwidth

available to the vehicles.

Heterogeneous mobile broadband access architecture for commuters has been sug-

gested previously [17, 91], where multiple network interfaces (e.g. 3G and Wi-Fi) are

available and can be utilized simultaneously. The concept of Always Best Connection

(ABC) is often adopted, where mobile nodes automatically start to use the Wi-Fi network

as soon as an AP is in range. While Wi-Fi provides higher bandwidth at cheaper price,

it is only usable when the vehicle is in range and the contact duration is often short. In

comparison, although the speed of cellular link is lower, ithas higher availability.
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Table 3.1 gives some example figures for the coverage and bandwidth of both net-

works. As described earlier in Chapter 1, both Wi-Fi and cellular networks keep evolving

to meet the increasing demands of mobile users. Meanwhile, other complementary / com-

petitive technologies, such as WiMax, are continuously introduced to the market. Despite

the fact that the various forms of technology advances (e.g.MIMO) can significantly in-

crease the network capacity, spectrum efficiency, and data rate, the tradeoff between cell

coverage (or communication distance) and factors such as spatial reuse, data rate, deploy-

ment cost is fundamental. Thus, we believe that there will bea long-term coexistence

of two forms of networks, i.e., high-bandwidth networks with intermittent coverage, and

lower-bandwidth networks with higher coverage, regardless of the actual technologies

being used. For example, the high-bandwidth intermittent network can be in the form

of femtocells using LTE (Long Term Evolution) technology instead of Wi-Fi hotspots as

discussed here.

Our work focuses on delay-tolerant applications, such as downloading some large

files (e.g. movie) from Internet. Thus, we are interested in the average throughput during a

long time period, in the scale of dozens of minutes, which canbe expressed by multiplying

R, the bandwidth when in connection, withP, the probability of being connected. In

terms of this criterion, Wi-Fi networks provide comparableperformance as, or even higher

performance than cellular networks. For example, a Wi-Fi contact lasting 10 seconds (a

typical contact length in our measurement on a campus bus testbed) with an average data

rate of 11Mbpscan transfer more than 13MegaByteof data (the typical size of a 5-minute

movie clip or four songs in mp3 format). In comparison, it takes a cellular network with

300Kbpsbandwidth more than 5 minutes to complete the same transfer.In addition, Wi-

Fi networks are generally cheaper than cellular networks. The much larger number of

Wi-Fi APs compared to cellular BSs makes Wi-Fi networks scale better with the number

of users in terms of the network capacity.

In order to fully exploit the available high-bandwidth but intermittent contacts, we

proposeMobTorrent [25], an on-demand, user-driven framework designed to optimize
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performance for vehicular network. The approach taken byMobTorrentis different from

existing works in that we use the cellular network mainly as acontrol channel. We also

assume that the mobility information can be predicted with high accuracy using AVL

system and history. In this framework, a mobile client, instead of waiting for contact with

the AP, uses the cellular radio (e.g. GPRS) to inform one (or multiple) selected AP(s) to

prefetch the content. The prefetched data are then replicated on the mobile helpers, and

further propagated by the latter in a store-carry-forward,i.e., Delay-Tolerant Network

(DTN) routing fashion. As a result, instead of limiting high-speed data transfers to a few

short contact periods with the selected APs, high-speed transfers among vehicles can be

opportunistically exploited.

While MobTorrentexploits prefetching and replication, the key component isthe

scheduling algorithm, which replicates the prefetched data by taking into account lo-

cations of the mobile nodes and existing level of data replication. The objective is to

maximize the total amount of data transferred and the average transfer rate to the mobile

clients.

In this work, we first characterize the performance limits ofopportunistic mobile for-

warding through a simple scenario using only one AP. The insight gained is then used to

design the scheduling scheme for inter-vehicle transmission. In the evaluation, we use

testbed measurement to verify the benefit of prefetching anduse trace-driven simulation

to evaluate performance of scheduling. Our results show that MobTorrentprovides sub-

stantial improvement over existing architecture and oftenperforms close to what can be

achieved by an off-line optimal scheduler. In case of multiple APs, our evaluation results

show thatMobTorrentis robust in a variety of settings.

The rest of this chapter is organized as follows. In Section 3.2, we describe the

architecture ofMobTorrent. In Section 3.3, we discuss scheduling issues and analyze the

performance gain. In Section 3.4, we evaluate the performance ofMobTorrent. In Section

3.5, we present related work. We conclude in Section 3.6.
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3.2 System Model

3.2.1 Components

In order to deployMobTorrent, we require wide adoption of GPS devices on vehicles

(e.g., Japan’s vehicle navigation system installation rate is estimated to be as high as 59%,

while Europe and the United States are around 25% [90]). In addition, each vehicle must

be equipped with both Wi-Fi interface and cellular interface. We use the cellular network

mainly as a control channel, so the existing low-bandwidth GPRS suffices. Vehicles are

expected to have an estimation of their travel route. This can be obtained from historical

values or based on locations and digital street maps. We believe that all of these are

reasonable requirements, in particular, for public buses and vehicles that travel on regular

routes.

The components ofMobTorrentare shown in Figure 3.1.

AP Directory

Servers


Internet


Data Store /

Web Servers


3G

coverage


Mobile Customer
 Mobile Helper


WiFi

coverage


Last mile

Access


Road-side

AP


Figure 3.1: MobTorrent framework

• Mobile Clients are vehicles that require help to download data from data store /

web servers through Internet.

• Road-side APsare static Wi-Fi access points reachable from the road. Theyhave

Internet backhaul, and offer their services to mobile clients. They can be residen-

tial gateways in apartments or installed as part of a vehiclenetwork infrastructure
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that is placed along the road, say at bus stops, taxi stands, or traffic lights. Note

that the backhaul downlink bandwidth to these APs can be lower than the wireless

bandwidth available on the 802.11 link. For example, in a residential home, the

downlink speed could be a few Mbps or less, whereas the average Wi-Fi bandwidth

can be over 20Mbps for 802.11g and much higher for 802.11n.

• AP Directory Servers provide location information on available roadside APs.

There are a number of open Wi-Fi AP locators available on the web already, includ-

inghttp://www.openwifispots.com, http://www.fon.com, andhttp://www.whisher.com.

The locations of participating APs need to be in the form of coordinates given in

longitude and latitude, which can be easily found even without GPS by using digital

street maps. Depending on the system requirements, these servers can also maintain

information related to the AP’s reputation and performance. For scalability purpose,

it is likely that the servers are clustered into different geographical regions.

• Mobile Helpers are idle vehicles willing to offer their bandwidth to help peer ve-

hicles with downloading demand.

3.2.2 Control and Data Flow

In this section, we describe a typical operation inMobTorrentdata transfer, as illustrated

in Figure 3.2.

Initially, a mobile client wants to download a (sufficientlylarge) file. Note that small

requests are assigned to the always-on cellular link to minimize their delay. By down-

loading large files via Wi-Fi, the cellular link can be less congested, which benefits the

small requests too. The mobile, with its location known through a GPS device, acquires

the list of APs that are along its travel path. Based on a number of parameters (file size,

location of AP, estimated travel time to the AP), the node selects a set of APs and contacts

them through its cellular interface. For example, as shown in Figure 3.2, 2 data blocks are

needed, while APA1 andA2 are selected.
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Figure 3.2: MobTorrent data downloading process

At time t1, the mobile client requestsA1 to prefetch block 1 andA2 to prefetch block

2, and the two APs begin to download the respective blocks.

At time t2, the blocks are downloaded to the corresponding APs and cached locally.

At time t3, the mobile client travels within the range ofA1 and downloads block 1

from A1. At the same time, the mobile helper, a second bus moving towards the mobile

node, enters the coverage ofA2. A2 sends block 2 to the mobile helper.

At time t4, the mobile client and the mobile helper meet at some point betweenA1

andA2. The mobile helper transfers block 2 to the mobile client, thus completing the

transfer even before the mobile client reachesA2.

In order to efficiently orchestrate the whole downloading process, two questions need

to be answered: (1) How much data should an AP prefetch? (2) How to relay the data to

a client via mobile helpers, so that the amount is maximized and the delay is minimized?

We answer these questions in the next section.
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3.3 Scheduling in MobTorrent

3.3.1 Roles and Functions of Different Mobile Helpers

Before presenting the scheduling algorithm inMobTorrent, we first draw insight from how

opportunistic relay should work in a simple mobility model on a 2-way street. This model

abstracts the major properties for some typical settings, such as commuters on highway,

and public buses with fixed routes within a city.

We consider a relatively sparse vehicle network, where the probability of forming

a contemporaneous multi-hop path is negligible, so single hop forward in each contact

opportunity is the main form of data transfer. Vehicles are assumed to move on a long,

2-way street without divergence in the path. A vehicle movesin one of the two directions

(LEFT or RIGHT) on the road and it never changes its direction. In addition, there is no

overtaking among the vehicles moving in the same direction.We focus on the case of a

single AP in the model.

We define anopportunistic contactas the time period that two peers get in communi-

cation range, and can exchange data with each other directly. To fully describe a contact

between two nodes, we need to record the contact start time and how long it lasts, as well

as the varying link data rate available at each time point during this interval. To keep our

discussion succinct, we define the notation ofcontact capacity, which is the amount of

data that can be exchanged in a contact, i.e. the product of the average data rate and the

length of the contact. Note that the two directions of transfer processes compete for the

same contact duration, so the contact capacity limits the sum of the volumes that can flow

in the two directions. We denote the start time of the contactperiod as thecontact time.

As we assume that the network is relatively sparse, and a single node’s different contacts

do not overlap with each other, the start time of the contact is sufficient for the purpose of

ordering the contacts for a single node according to the sequence they happen.

Given the time and the client’s location when the request is generated, we can cate-

gorize all mobile helpers into the following classes based on their moving directions and
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Figure 3.3: Classes of helpers

positions (relative to the client and the AP) as shown in Figure 3.3:

• Direct relay: mobile nodes that move towards the client and meet the AP after the

request is generated but before they meet the client. As the name suggests, a direct

relay can get data from the AP, carry it, anddirectlysend to the client.

• Forerunner: mobile nodes that move in the same direction as the client andmeet

the AP after the request is generated but before the client meets the AP.

• Indirect relay: mobile nodes that move towards the client and meet the client

before they meet the AP. If every node moves at the same velocity, the condition

to distinguish between direct relay and indirect relay is tocompare its distance to

AP, denoted asdr , with the distanced between client and AP at the same time. As

shown in Figure 3.3, ifdr ≤ d, the relay is a direct relay, otherwise, it is an indirect

relay. Note that when an indirect relay meets the AP, there isno need for the AP

to send data to it, as it will not meet the client or any node that will meet the client

from then on.

The client attaches its mobility trajectory in the request,thus each node can determine

its role for the given request according to its local information about its own mobility

trajectory. They also learn about the mobility trajectory and roles of other helpers through

inter-vehicle contacts. Further details are provided later in Section 3.3.4.

The set of direct relays, forerunners, and indirect relays are denoted asD,F, I respec-

tively. No other mobile nodes can help the transfer for the following reasons:
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• Early node: mobile nodes that have moved past the AP before the request isgener-

ated. They cannot help the data delivery because they cannotreceive data directly

from the AP, or from any vehicle carrying the desired data.

• Late node: mobile nodes that are always behind the client. They cannot help the

data delivery because they cannot send data directly to the client, or to any mobile

node that will meet the client after meeting them.

An example is given in Figure 3.4 (a), which shows the traces of vehicles and their

contacts along the time axis. As explained above, we succinctly denote a contact using 4

parameters, namely{node1, node2, contact time, contact capacity}. As shown in Figure

3.4 (a), at timet1, AP (A) meets the first direct relay (D1) (as their trace intersects),

with contact capacity 2, which is the number marked at the point of intersection. This

contact can be represented as:{A,D1, t1,2}. Similarly, we can write down the rest of

contacts from the figure in their sequence as:{D1,F1, t2,1}; {A,F1, t3,2}; {D1,C, t4,1};

{F1, I1, t5,3}; {C,A, t6,2}; {I1,C, t7,3}.

3.3.2 Performance Limits

In this section, we derive the performance limits by examining an off-line scheduler,

which is assumed to have the information about the complete contact trace through some

oracle.

The two performance metrics of interest are (1) the maximum amount of data sent by

the AP that reaches the client eventually, and (2) the minimum delay to deliver a given

amount of data. We assume that there is sufficient buffer on all nodes to accommodate

packets in transfer, and the only bottleneck is the contact capacity constraint between

nodes.

Denote the contact time and contact capacity between node i and node j byt i
j andC i

j

respectively.t i
j andC i

j are subject to the random fluctuations like traffic jams and network

congestion. In practice, such information is only revealedon-line. Thus, the performance
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of an off-line optimal scheduler serves as an upper bound forwhat can be achieved by an

on-line scheduling scheme. We consider the uncertainties in t i
j andC i

j as resolved in the

following discussions of off-line scheduling performance.

Maximum Data Transfer from AP to Client

The maximum amount of dataC that the AP (denoted as nodeA) can push to the network

and stand a chance to reach client (denoted as nodeC) is:

C = C A
C + ∑

i∈D
C

A
i + ∑

j∈F
C

A
j (3.1)

C is the sum of three parts:C A
C is the amount that can be transferred directly to the

client by the AP,∑i∈D C
A
i is the amount that can be transferred to all direct relays (thus

stand a chance to reach the client) by the AP, and∑ j∈F C
A
j is the amount that can be

transferred to all forerunners by the AP. Sending data to therest of nodes (the indirect

relay and late nodes) is useless. Note that, under our mobility model, all data stored in

forerunner will eventually reach client, as we assume that there is an infinite flow of relays

from the opposite direction. However, if a direct relay cannot replicate all of its data to

the client or to some forerunner in time, the unfinished data will become lost permanently

when the direct relay travels past the client. Thus, the capacity estimated in Equation

(3.1) often cannot be achieved. To minimize such loss, the direct relay replicates its data

to forerunner as soon as possible, so that even if it cannot send the data to the client by

itself, the data can still be forwarded later via forerunnerand other relays. Based on this

observation, a tighter upper bound for the capacity achievable by the AP is:

C
A
C + ∑

i∈D
min(C A

i ,C i
C + ∑

t j
i >tA

i , j∈F

C
i
j)+ ∑

j∈F
C

A
j (3.2)

The second part in Equation 3.2, i.e.,∑i∈D min(C A
i ,C i

C + ∑t j
i >tA

i , j∈F
C i

j) gives the

amount of data that direct relays can get from the AP and replicate to other nodes (in-

cluding the client and forerunners). As to be shown later, a 4-hop scheme can achieve the
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capacity in Equation 3.2. Thus, the bound is tight.

Minimum Delay from AP to Client

In terms of the minimum delay to deliver a set ofn blocks, a lower bound can be ob-

tained by assuming that all contacts between the client and adirect or indirect relay are

fully utilized. However, this bound is also loose because itis possible that some contact

capacity between the client and a relay cannot be fully utilized if the relay does not carry

enough new data. For example, a direct relay may only get 5MB of data from the AP, then

immediately meet the client. If its contact capacity with the client is 10MB, half of the

contact capacity between the direct relay and the client is wasted, as there is no new data

to be transferred.

Given a contact trace, in order to obtain a tight bound for thedelay, we observe that

it is possible to find the maximum amount of data that can reachclient, by modelling it

as a maximum network flow problem. Hence, we can perform an off-line computation

to characterize the performance. Given a sequence of contacts {c1,c2, ...cn} between the

different nodes starting from the request generation time,the graphG = (V,E) for the

network flow problem is constructed in the following way.

• VerticesThere is one vertexA representing the AP, and another vertexC represent-

ing the client. They are the source and destination of the network flow problem.

For each of the non-client vehiclev, if it hasn contacts in the trace, we split it into

n vertices,v1 to vn. These constitute all vertices in graphG. Note that, given a

contact trace, each node’s contacts, which are assumed non-overlapping with each

other, can be ordered according to theircontact times. We say a contact is theith

contact of a node, if it represents the contact with theith node encountered by the

considered node in the given contact trace.

• EdgesFor each contact, we use one (or two) directed edge(s) to represent it in the

graph. For the contact between the AP and the client, we add a directed edge fromA
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toC. For the contact between the AP and a mobile helperv, if this contact is theith

contact of the helper, we add a directed edge fromA to vi . For the contact between

the client and a mobile helperv, if this contact is theith contact of the helper, we

add a directed edge fromvi to C. A single directed edge suffices because only the

specified direction is useful to maximize the network flow from A to C. During the

contact, the data flow should always follow the direction of the edge. For each edge

added, the edge capacity is set to the corresponding contactcapacity.

For a contact between two mobile helpersu andv, if this contact is theith contact

for vehicleu, and jth contact for vehiclev, we add a pair of directed edges between

ui andv j , as both of the two directions may help to maximize the network flow.

These two edges should share the same contact capacity (denoted as setting S1).

However, as detailed below, we can set the capacity of both (instead of the sum of

both) to the contact capacity (denoted as setting S2) without affecting the value of

maximum flow. Finally, we add directed edge with unlimited capacity fromui to

ui+1, for every nodeu and validi. These directed edges represent the fact that a

vehicle can carry the data it received from a previous contact to the next contact. A

finite capacity for this type of edge can be used to model buffer limit if required.

We can show that S1 and S2 have identical maximum flow solutionin the following

way. First, the optimal solution of S2 is no worse than S1, as every feasible solution

of S1 is also a feasible solution of S2. Second, given an optimal solution in S2,

if there are flows over a pair of edges, it can be reduced to a solution with the

same maximum flow using at most one of the edges, by offsettingthe flows in the

opposite directions with each other until one of them becomes 0. By repeating the

above process for all pairs of edges, we can get a feasible solution in S1. Thus, S2’s

solution is no better than S1.

For example, the contact trace as depicted in Figure 3.4 (a) will result in a network

flow graph as shown in Figure 3.4 (b). Given the above formulation, the minimum delay
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for delivering a given amount of data can be calculated efficiently.

With the performance limits known, we next examine several typical schemes starting

from the simplest.

3.3.3 Comparison of Scheduling Schemes

Figure 3.4 (c) shows the volume of data that can reach the client using different schemes,

under Figure 3.4 (a)’s setting.

1-hop scheme

The AP only transfers directly to the client during their contact. Volume of data delivered

is C1−hop = C A
C . In the example, the client can get 2 blocks of data from the APdirectly.

2-hop scheme

In this scheme, the AP sends data to the client and direct relays. A direct relay keeps

the data until it meets the client and sends the data to the client. The amount of data

transferred by a direct relay (i) from the AP to the client is the minimum of the two contact

capacities,C A
i andC i

C. Therefore,C2−hop = C A
C +∑i∈D min(C A

i ,C i
C). In the example, the

client can get 1 additional block of data from the direct relay D1. Note that another block

sent toD1 by the AP is lost due to the low contact capacity betweenD1 and the client.

3-hop scheme

In this scheme, AP sends data to the client, direct relays andforerunners. Although fore-

runners cannot send directly to the client, they can send their data via direct relay or

indirect relay (thus 3 hops). Under our assumption, forerunners can meet enough relays

to dump its data to the client, thus all data sent to forerunners can reach the client eventu-

ally. Therefore,C3−hop = C A
C +∑i∈D min(C A

i ,C i
C)+∑ j∈F C

A
j . In the example, the client

can get 2 additional data blocks from indirect relayI1, which itself gets the data fromF1.
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However, the 2nd block carried byD1 is still lost. Minimizing the loss of directed relay

requires at least a 4-hop delivery.

4-hop scheme

In this scheme, a direct relay saves its data as soon (and as much) as possible to forerun-

ners before meeting the client. This feature minimizes losssince forerunners can always

transfer its data via indirect relay later. 4-hop delivery achieves the capacity as character-

ized in Equation 3.2. In the example, the missing block from 3-hop scheme reaches the

client via four hops:{A,D1}, {D1,F1}, {F1, I1}, {I1,C}.
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Figure 3.5: Scheduling to minimize delay

However, 4-hop is not yet optimal to minimize the delivery delay. Consider the situ-

ation as shown in Figure 3.5. The minimum delay to deliver the1 unit of data is through

5 hops, i.e., the contact of{A,F1}, {F1, I1}, {I1,F2}, {F2, I2}, {I2,C}. Replication among

forerunners (F1 and F2) is necessary to minimize the delay. Note that, the replication

can only be carried among forerunners in one direction, i.e., from a forerunner to another

forerunner moving behind it. For example, data can be replicated from forerunnerF1 to

forerunnerF2, but not vice-versa.
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3.3.4 MobTorrent Scheduling

Based on observations from the previous section, we design the scheduling algorithm of

MobTorrentas follows:

• Meta data: MobTorrentkeeps the following meta information with each data block

k at each relevant node:

1. Reqk: request id2;

2. bk: block id;

3. Ackk: whether this block has reached the client;

4. rk: a (local) estimation of thepersistentreplication level of this block in the

whole system, i.e. the number of mobile helpers that currently possess this

block;

5. IDk: the ID of the forerunner that travels in the most front amongall forerun-

ners that possess this block.

• First hop: We assume that the AP always has new data to be forwarded to the

client. When a data blockk is sent to a forerunnerFj , the latter marksrk = 1 and

IDk = Fj . When a data blockk is sent to a direct relay, the latter marksrk = 0, and

IDk = 0. Replication on direct relay is not counted as a persistentreplication.

• Role determination Each mobile helper can determine its role (whether it is a

direct relay, forerunner, indirect relay, or early/late node), based on the request

information about the client’s mobility trajectory and location of selected AP(s), as

well as its own mobility trajectory. The request information is propagated to mobile

helpers together with the propagation of data, whereas the node’s own mobility

trajectory is predicted locally. In addition, each forerunner appends its mobility

2For each request it currently serves, a helper records information including the client id and its mobility
trajectory, the request start time and deadline, the information about selected AP(s) and mobile helpers for
this request, etc..
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trajectory to the request information before propagating it to the next hop, so that

other nodes can calculate the relative locations of multiple forerunners locally.

• Meta data reconciliation: When two vehiclesA andB meet, they will first ex-

change their meta data. Suppose the replication level estimation of blockk is rA
k

at A, and rB
k at B. After the exchange, both of them will set their estimation to

max(rA
k , rB

k ). For all the following transmissions within this contact, the replication

level of the transmitted block will be updated to the same newvalue at both sides.

AckA
k = AckB

k = AckA
k ∨AckB

k .

• Priority calculation: Priority is calculated for each block to determine its order

of transmission in the given contact. Suppose that the set ofundelivered blocks

(with Ack= f alse) at A is SA, and the set of undelivered blocks atB is SB. After

the exchange, they calculateSA−SB andSB−SA, which are the candidate set to be

sent to each other. The set of undelivered blocks is updated as described later in the

paragraph ofLast hop. A node sorts its candidate blocks according to replication

levels,giving the highest priority to the block with the lowest level of replication.

The level of replication is calculated locally by the two nodes in contact according

to the rules described later in the paragraph ofMinimize loss, Maximize rate, and

Increase replication level. Data block with higher priority is transferred first, thus

has a higher chance to be replicated under the uncertainty ofcontact capacity. In

case of ties, the blocks are sorted byIDk. Therefore, given a blocki replicated

at forerunnerF, another blockj that is not replicated at any forerunner travelling

in front of F (includingF itself) has a higher priority than blocki. This is because

replication can happen only among forerunners in the direction reverse to their mov-

ing direction. Thus, in a long term, blocks from forerunner travelling in front have

more opportunities to be replicated. Given a selected transfer direction among the

contact nodes, data transmission is performed according tothe priority calculated.

Between two mobile helpers, the following three rules, i.e.minimize loss, maximize
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rate, andincrease replication level, take action in order to specify the scheduling of

transmission directions.

• Minimize loss: If one party is a direct relay, it may carry blocks withr i = 0, i.e.,

the data blocks that the relay received directly from the AP and have not yet been

sent to any other node. Whenever such a block exists, transfer opportunity is given

to the direct relay to minimize loss. After the transmission, both parties set the

replication level of the block to 1, and set theID to the ID of the current forerunner.

• Maximize rate: After the loss-minimizing step is done, this rule ensures that a

direct or indirect relay has enoughnewdata so that its contact capacity with the

client can be fully used. Based on the contact capacity statistic between the client

and relays, a thresholdγ is selected to determine whether the amount of data carried

by a relay is sufficient. We setγ as two times the expected contact capacity between

vehicles. While this threshold is not reached yet, transferopportunity is given to the

forerunner. After the transmission, the replication levelof the block is increased by

a value ofα < 1, to capture the fact that it is replicated onto the relay. This value is

less than one because unlike replication on the forerunner,the relay can go past the

client without replicating this data block out and this particular copy is lost. As it is

difficult to determine the “best” value forα, we simply set it to 0.5. Our simulation

results show that performance does not change much when thisvalue is varied.

• Increase replication level:Once the threshold for new data block is reached, data

exchange happens in both directions. Remained candidate blocks from both sides

are merged into a single priority queue sorted by replication level andID. In case of

ties, data stored on the direct or indirect relay is given higher priority, as transferring

it will increase the replication level by 1, whereas the transfer at the other direction

will only increase the replication level byα.

• Last hop: When the direct or indirect relay meets the client, blocks are transferred

from the relay to the client according to their priorities. When the contact finishes,
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the client uses its cellular interface as a control channel to update APs and all fore-

runners about new blocks that it has just received. Note thatthe client does not need

to update direct and indirect relays, as they will be updatedwhen they get contact

with forerunners. Once past the client, a relay removes all of its data for the client

(even those that have not been delivered yet), as there is no more opportunity to

deliver them.

The intuition behind the scheduling scheme can be explainedas follows. When few

data blocks have been delivered, the relays often have sufficient “new” data to fully utilize

the contact capacity with the client. However, as more blocks are delivered, it becomes

harder for the relay to transfer sufficient undelivered datato the client if its contact ca-

pacity with forerunners does not match up well with the amount of undelivered data on

them. As a result, data delivery rate to the client decreasesas more blocks are delivered.

MobTorrentscheduling scheme is designed such that as more blocks are delivered, the

replication level of the undelivered data increases. In this way, data delivery rate can be

maintained at a high level till all blocks are delivered.

Scheduling decisions inMobTorrenthave some similarity in the spirit to the schedul-

ing decisions made in existing DTN routing protocols, e.g.,MaxProp [18] and RAPID [7].

However, inMobTorrent, the information of direction and relative position is fully ex-

ploited to optimize performance.

In the model presented, we have assumed that there is no overtaking and nodes do

not leave the system. TheMobTorrentsystem will work in the presence of overtaking

and path divergence. The impact of these factors will be evaluated using simulation in the

next section.
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Figure 3.6: A snapshot of NUS bus monitoring system

3.4 Performance Evaluation

3.4.1 Testbed Configuration

We build a simpleMobTorrentprototype to evaluate its performance in a real environ-

ment. We equipped 16 campus buses with an on-board LinkSys WRT54GL router as

mobile clients. These clients run on the OpenWRT operating system. Each client is fixed

at a bracket in front of the driver, and draws power from the bus. When the bus is moving,

the client scans and attempts to associate to the campus Wi-Fi network. Once it suc-

cessfully associates with an AP, the client uses a pre-stored map to figure out the valid

IP address that it can use (the school APs along the route belong to several different IP

subnets). We pre-load the mapping between AP and IP subnet onall clients to reduce the

overhead of IP address acquisition. Similar optimization can be done onMobTorrent, as

the AP and the client can exchange IP and authentication information via cellular network

before they meet. Live bus tracking is available athttp://mobtorrent.ddns.comp.nus.edu.sg/.

Figure 3.6 gives a snapshot of the system. The campus shuttlebuses run in a circle from

both directions around the Kent Ridge campus. The average time for a bus to complete

the 4km route is about 20 minutes. Over 120,000 contact statistics are collected from
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File Approach Time Speed Ratio
A pdf file Without prefetching 3.2s 25KBps 68%
(80KB) With prefetching 0.33s 240KBps 98%

OpenWRT firmware Without prefetching 12s 111KBps 45%
(1513KB) With prefetching 1.77s 853KBps 78%

A 3 minute video clip Without prefetching 33s 201.5KBps 16%
(6.5MB) With prefetching 6.7s 993KBps 59%

Table 3.2: Download performance with and without prefetching

more than 1,300 driving hours over a 2 month period. The mean bus-AP contact duration

is around 15s with mean contact capacity around 4.5MB, and the mean bus-bus contact

duration is around 11s with the mean contact capacity around3.2MB.

The evaluation has two parts. First, we evaluate the benefitsof prefetching on the

testbed. Next, we evaluate the benefits of using mobile helpers.

3.4.2 Benefits of Pre-fetching

When a client sends its request to an AP through cellular network before contact, the

AP prefetches the data and stores it locally. In order to evaluate the potential gain, the

client is programmed to download several selected files via the Wi-Fi network. In the

measurement, there were 100 attempts to download each of these files over the Wi-Fi

network when the clients were within range of a campus AP. Three of the selected files

are shown in Table 3.2 together with the average downloadingduration, downloading

speed, and the downloading completion ratio. The completion ratio is computed as the

number of times the files were completely transferred in a single AP-bus contact duration

over the total number of attempts. Note that, as the file size increases, it becomes less

likely that the file can be downloaded successfully in a single attempt. For the largest file

of 6.5MB, complete downloading from Internet without prefetching is possible only 1 in

6 attempts.

For comparison, the files are stored on the APs in advance and downloaded to the

mobile node on request. As shown in Table 3.2, there is a significant improvement of
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Link 25% 50% 75% 95%
End-to-end Internet path 37.6 81.0 160.5 330.6
One hop Wi-Fi Link 2.347 2.742 4.668 26.129

Table 3.3: RTT measurement (ms)

downloading performance for files of all sizes. Note that such improvement is possible

for all downloads made using advance requests, independentof the scheduling algorithm.

A closer look at the source of performance gain reveals that,for the first file with a

small size (80KB), the downloading duration difference is mainly due to the decrease in

RTT (round trip time). Table 3.3 shows the measured RTT distribution for end-to-end

wired Internet Links and the local Wi-Fi link. The end-to-end wired Internet Link RTT

is obtained from the Internet End-to-end performance Measurement (IEPM) with 413

different pairs of nodes across several continents. The local RTT is measured using ARP

packets sent from the client box to the AP. ARP is used becausemany APs on campus do

not response to ping but to ARP request. The measurement shows that the RTT of a local

Wi-Fi link is about one magnitude shorter than a typical RTT over Internet. Shorter RTT

allows TCP to increase its congestion window at a faster rate, which helps to shorten the

downloading time for short files. For the larger files, the speed difference is also due to the

avoidance of bottlenecks in the Internet. Though the download rate constraint from the

server can be alleviated by using parallel downloads, the constraint in the local backhaul

link (such as ADSL, cable, or wireless mesh) cannot be bypassed.

3.4.3 Benefits of Scheduling

We compare performance of the following schemes.

1. 1-hop:The AP only sends data directly to the client. This serves as the baseline for

performance comparison.

2. Random:A scheduling scheme that employs random replications between peers.

When both sides have innovative data for each other (i.e., the data block that the
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other side does not possess yet), one side is randomly selected to transfer a ran-

domly selected innovative data block.

3. Greedy:A scheduling scheme that greedily replicates data in the order of their ex-

pected deductions in the delay to reach the client, following the design of RAPID [7].

The data delivery delay is determined according to the expected time the relay meets

the client. For example, in a contact between a forerunner and a direct relay, transfer

priority is always given to the direction from the forerunner to the direct relay.

4. MobTorrent:As described in Section 3.3.4.

5. Off-line: A download mechanism that has off-line knowledge of contacts, and de-

cides scheduling according to the solution of the network flow problem. This serves

as the upper bound for achievable performance.

Note that, because of the significant difference in settingsand assumptions, we can-

not directly compareMobTorrentwith existing related works, including PROPHET [68],

Spray and Wait [99], MV routing [19], MaxProp [18], and RAPID[7]. For example, in

our testbed, if two nodes just meet each other, the probability that they will meet again

in recent future is almost 0. However, all existing schemes tend to assign a higher meet-

ing probability to this pair of nodes. For a fair comparison,we implement the Random

scheme and Greedy scheme such that, block is never replicated to a node which has no

chance to deliver it to the client, while still keeping theiroriginal salient features. The

Random scheme and Greedy scheme are selected to demonstratethat the heuristics in-

corporated inMobTorrentoutperform the common practice used in existing DTN routing

protocols.

Performance with Single AP and Single client

In this scenario, there is only one AP located on a 2-way street with an infinite flow of

vehicles moving in both directions. The contact capacity isgenerated using the trace
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Figure 3.7: Performance under single-AP, single-client, ideal two-way street setting
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collected from our testbed. 100 rounds of simulation are run, and the average is presented

in Figure 3.7 (a). To make the averaging meaningful, for eachrun, the time and volume is

normalized so that the off-line scheme reaches an optimal volume capacity of 100 at time

clock 100. In the simulation, the average number of forerunners is 5.

As shown in the figure,MobTorrentis close to off-line scheme in terms of both the

volume of data delivered and the delay to deliver data. At time clock 100,MobTorrent,

random, greedyand1-hopschemes deliver 91%, 78%, 71% and 11% of all data respec-

tively.

The random scheme delivers most of the data eventually, but takes much longer than

MobTorrent, due to the coupon collection phenomenon where new data are difficult to

locate towards the end.MobTorrentalleviates such effect by giving priority to data blocks

located only at forerunners travelling behind other forerunners. The greedy scheme does

not reach the volume capacity (with a 20% gap) because the greedy transfer of data from

a forerunner to a direct relay prevents the latter from replicating its data into the network.

As expected, the 1-hop scheme only achieves a small fractionof the available capacity.

Next, we evaluate the impact of varying number of forerunners. The average number

of direct relays is the same as the average number of forerunners. We define theaverage

data rateas the ratio of the total data volume delivered and the time taken to deliver the

last packet (lost packets are ignored). Figure 3.7 (b) and (c) show that when the number

of forerunners (and hence helpers) increases, both the average data rate and the total

volume of data delivered increase. In terms of the average data rate, the rate of increase

for MobTorrenttracks the off-line scheme fairly well, whereas the random and greedy

schemes improve at a slower rate. 1-hop scheme does not benefit from mobile helpers at

all.

Performance with Multiple APs and Multiple clients

We use the mobility and contact trace collected from the testbed to drive the simulation.

In the simulation, the request arrival to the whole system follows a Poisson process with
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the average inter-arrival time of 20s. A running bus is randomly selected as the source of

the request, whose size follows an exponential distribution with mean 5MB. We fix the

number of APs in the network to 5, and vary the number of buses in the network. Note

that the average load in the system does not change with the number of buses.

As shown in Figure 3.8 (a), schemes using mobile helpers improve the data down-

load rate. As the number of buses grows, more mobile forwarding opportunities can be

exploited.

We also investigate the impact of vehicle overtaking by varying the vehicle velocity.

We achieve this by sampling the bus trace of both peak hour when buses tend to move

slower and off-peak hour when buses move faster. As the variation of vehicle velocity

increases, the overtaking probability increases. For example, when the variation increases

to 0.6, the ratio of contacts due to overtaking is 25%. Figure 3.8 (b) shows that the av-

erage data rate remains fairly constant with respect to overtaking, and theMobTorrent

scheduling scheme constantly outperforms other on-line schemes in all velocity variation

settings. Since location information is not explicitly utilized by the other three on-line

schemes, it is not surprising that performance of them remains fairly stable. ForMobTor-

rent, when the relative node locations are not static any more, the performance is fairly

robust for the following reasons. First, inMobTorrent, blocks only possessed by a fore-

runner that is nearer to the client are given higher priorityfor replication. This reduces

the impact of overtaking, since the blocks on a forerunner being overtaken by the client

may have already been delivered when overtaking occurs. Second, when a forerunner is

overtaken by the client or another forerunner, a new opportunistic contact between the

two nodes is created, which would not have occurred without overtaking. The overall

impact of overtaking onMobTorrent’s performance is not significant.

Finally, we investigate the impact of path divergence by making vehicles disappear

from the system suddenly. As shown in Figure 3.8 (c), the performance of all forwarding

schemes degrades as the disappearance rate increases. While MobTorrent’s performance

remains the best among all on-line schemes evaluated, overall performance is similar
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among all schemes when path divergence occurs with a probability higher than 20% per

node per minute.

3.5 Related Work

3.5.1 Multi-hop Cellular Networks

Due to the complementary characteristics of cellular networks and Wi-Fi networks, a

number of research efforts have tried to combine them. In many of these approaches,

only the cellular BSs are gateways to Internet and Wi-Fi networks are used to improve

the performance of the cellular networks infrastructure, e.g., for coverage expansion [3],

load balancing [109], and better channel utilization [69],as discussed in Section 1.2 of

Chapter 1. Hsieh and Sivakumar give a comprehensive survey of these approaches [46].

In comparison, we use the cellular network mainly as a control channel for a vehicle to

send out request and acknowledge the data it has received.

3.5.2 Vehicular Internet Access using Wi-Fi Networks

In the area of vehicular Internet access using Wi-Fi networks, Ott and Kutscher [84] pro-

pose a framework to support so-called drive-through Internet. The key component is a

session protocol (PCMP) that offerspersistentend-to-end communication even though

the vehicles on the road only have intermittent contacts with roadside APs. In their work,

for vehicles with velocity from 40km/h to 180km/h, a few MegaBytes could be trans-

ferred to and from the mobile node using TCP and UDP. As part ofthe MIT Cartel project,

Bychkovsky et al. [21] measure the upload bandwidth available to vehicles in the Boston

metropolitan area using in-situ unplanned open APs. The result is also encouraging. The

upload TCP bandwidth has a median of 30 KBps, and median transfer size per contact

duration is 216 Kilo Bytes. Cabernet [32] further improves the performance by optimiz-

ing both the connection establishment procedure (QuickWiFi) and the transport protocol
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(CTP). Another measurement of Wi-Fi connectivity from moving vehicle is described by

Mahajan et al. [70]. Zhang et al. [114] investigate scheduling issues for vehicle uploading

or downloading from a roadside unit. Balasubramanian et al.[8] propose ViFi, a protocol

that opportunistically exploits base station diversity tominimize disruptions and support

interactive applications for mobile clients. In comparison, we focus on the setting where

roadside Wi-Fi AP only provides partial coverage (around 25% from our measurement or

even lower), so that the main application of interest is delay-tolerant bulk file transfer.

3.5.3 Delay-Tolerant Network Routing

Another direction in the area of vehicular communication isfrom the angle of Delay-

Tolerant Network (DTN). Vahdat and Becker [104] propose the“store-carry-forward”

epidemic routing approach for intermittently connected networks. They use the hop count

of messages to regulate the resource usage. Spyro et al. [99]show that binary splitting

is optimal under certain assumptions for spreading a given number of replicas into the

network. To improve over blind replication, Lendgren et al.[68] propose PROPHET,

which is shown to work better than epidemic routing, based onthe observation that real

users tend to move in a predictable fashion with repeating behavioral patterns. UMASS’s

DieselNet project presents a study of vehicle (public buses) contact time [113], and pro-

poses a series of routing protocols [7, 18, 19]. There are several major differences between

MobTorrentand existing DTN routing works, as most of the latter are designed for the

general case where the mobility pattern is largely structureless, and using historic meet-

ing information is recognized as a good heuristic to estimate future contact probability. In

above systems, the target application is communication among mobile nodes, the target

message delivery delay is often in the scale of hours (e.g., the average delivery delay is

67.5 minutes using epidemic routing in the DieselNet trace [113]), and the target delivery

rate is dozens of packets per hour. Instead, our interest is to use the capacity of inter-

mittently connected networks to supplement the bandwidth of cellular networks, and we

focus on the data transmission between roadside APs and mobile clients. The target de-
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livery delay is in a few minutes, and the target delivery rateis hundreds of Kbps, which is

comparable to that of HSDPA network. To achieve this, we makefull use of the mobility

information from in-situ AVL system.

Zhao et al. [116] and Li and Rus [64] propose to use Mobile ferry routing approach

for data delivery in a sparsely connected network. The main idea is to introduce some

non-randomness in node movement or actively change trajectories to help deliver data.

However, in the scenario we are interested in, it is not likely that nodes will move just to

accommodate communication.

Prefetching has been used extensively to speedup web download [85]. In a vehicular

environment, Balasubramanian et al. propose using prefetching to speed up access to

result of web queries [9]. We use prefetching in a different way, as the uncertainty comes

from the varying contact opportunities instead of the file required.

Chakravorty et al. [23] propose the concept of treating the provision of wide-area

wireless service for mobile users as a free market. Motani etal. [78] and Lee et al. [60]

propose architecture to support a market place over mobile users.

3.6 Summary

In this chapter, we presentMobTorrent, an on-demand, user-driven framework for vehi-

cles to access Internet via roadside static APs and other mobile vehicles on the road.

MobTorrenthas the following components. In order to improve network throughput

performance, prefetching and caching are used to better exploit the short contact time

between AP and client by having the data locally available for transfer. In addition, to

address the issue of low coverage, data can be pushed to mobile helpers so that areas

where Wi-Fi can be used for data transfer are not limited to coverage of static roadside

APs but expand to include areas covered by mobile nodes. Our results based on real world

experiments and trace-driven simulations show thatMobTorrentprovides substantial im-

provement over other existing frameworks.



Chapter 4

MobiCent: an Incentive-compatible

Credit-based System for DTN

4.1 Introduction

Delay-Tolerant Networks are characterized by intermittent connectivity. Such networks

are assumed to experience frequent, long-duration partitioning and often lack an end-to-

end contemporaneous path [35]. As proposed in Chapter 3, in future mobile communi-

cation systems, the high-bandwidth but intermittent wireless connections among partic-

ipants can be exploited using the Delay-Tolerant Networking (DTN) approach, so as to

enhance the performance of traditional cellular networks.MobTorrentdemonstrates the

viability of the proposed approach in vehicular networks. In addition to that, DTN ap-

proach can also be potentially applied to mobile human social networks, where people

carrying wireless mobile devices communicate through low-power high-bandwidth links,

like Ultra WideBand (UWB). The MIT Reality Mining project [76] and the Pocket Switch

Network [48] are examples of mobile human social networks.

In the targeted civilian and commercial environments, the mobile nodes are managed

by autonomous and selfish parties, thus an incentive scheme should be employed to foster

cooperation among participants. However, this opens the possibility that a selfish node

94
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may game the system, by performing hidden actions that increase its own reward from

the incentive scheme while degrading the overall system performance.

For example, if we assume that a fixed amount of reward is to be equally shared

among all nodes on a forwarding path, a selfish node can createSybil nodes [28] and

forge phantom forwarding edges among its Sybil nodes to exaggerate its contribution. In

this way (i.e. edge insertion attack), the node increases its share of the reward. However,

such selfish behavior discourages other nodes from participating in the forwarding. As

another way to maximize its own reward, a selfish node may alsopurposely not forward

data to other relays, betting that it can deliver the data directly to the client and thus keeps

the entire reward. Such an attack (i.e. edge hiding attack) is demonstrated earlier by the

mobile forwarding gameexample in Section 1.3 of Chapter 1. These selfish actions reduce

the network capacity, resulting in both lower delivery ratio and higher delay. In this work,

we focus onrational nodes rather thanmaliciousnodes. A rational node carries out an

action only if doing so can increase its own payoff. In comparison, a malicious node is

willing to take any action that degrades the system’s performance, regardless of its own

payoff.

There are two key challenges in designing the incentive scheme for DTN. First, dis-

connections among nodes are the norm rather than exception.As a result, selfish actions

as described above are extremely difficult to detect. In sharp contrast, traditional end-to-

end connected wireless networks can rely on the mutual control among the autonomous

peers to detect any such deviation. Second, as contacts are often unpredictable in DTN,

the delivery paths cannot be predetermined, but must be discovered along with the for-

warding of data instead. Again, the routing behavior of traditional end-to-end connected

wireless networks is fundamentally different, as the delivery path is often determined be-

fore the actual data pass through. Because of these two differences, existing incentive

schemes for end-to-end connected wireless networks cannotbe directly applied, as will

be elaborated more later in Section 4.7.

In this chapter, we presentMobiCent[26], a credit-based system for DTN.MobiCent
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is largely motivated by, and directly designed uponMobTorrent. On one hand,MobTor-

rentshows that the application of DTN in a commercial environment can be useful. Thus,

a natural follow-up question is how to motivate the nodes to cooperate. On the other hand,

the existence of the highly available control channel inMobTorrentcan facilitate multi-

ple designs in the proposedMobiCentprotocol. However, the attacks as identified and

addressed byMobiCentare fundamental to the nature of DTN, thus,MobiCent’s credit-

based solution can potentially be generalized to foster cooperation in other forms of DTN

systems different fromMobTorrent.

We make the following contributions in this chapter:

1) We identifyedge insertion attacksandedge hiding attacksas the two major forms

of attacks in a DTN environment. It is extremely difficult to detect them in DTN, and they

can seriously degrade the performance of DTN routing.

2) We take the algorithmic mechanism design approach [82] toaddress the two forms

of attacks, and identify the necessary conditions underedge insertion attacksfor a pay-

ment scheme to be incentive compatible, i.e., truthful participation is adopted by selfish

nodes.

3) We propose incentive-compatible payment mechanisms to cater to client that wants

to minimize either payment or data delivery delay.

MobiCentdoes not require detection of selfish actions as it provides incentives for

selfish nodes to behave honestly. In addition,MobiCentdoes not require pre-determined

routing path. It works on top of existing DTN routing protocols to ensure that selfish

actions do not result in larger rewards. To the best of our knowledge,MobiCentis the first

incentive-compatible scheme proposed for replication-based DTN routing protocols.

The rest of this chapter is organized as follows. Section 4.2presents the system model

and formulates the attack model and the path revelation game. The message exchange

protocol to supportMobiCentis described in Section 4.3. We analyze the payment scheme

required to thwartedge insertion attacksin Section 4.4, followed by the mechanisms

designed to combatedge hiding attacksin Section 4.5. Evaluation is presented in Section
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Figure 4.1: MobiCent Framework

4.6. In Section 4.7, we describe related incentive schemes.We conclude in Section 4.8.

4.2 System Model and Problem Formulation

4.2.1 System Model

As assumed inMobTorrent, MobiCentis based on a network model where the nodes can

have access to two different networks. All nodes participate in a mostly disconnected

network, where short-range high-bandwidth links are used for data transfer. At the same

time, some of the nodes (in particular the source and destination nodes) have access to

a mostly available network, where long-range low-bitrate links are used for control mes-

sages.

The network architecture assumed forMobiCentis shown in Figure 4.1. The compo-

nents are:

• Trusted Third Party (TTP) stores key information for all nodes and provides ver-

ification and payment services.

• Helpersare mobile or static nodes (node X, Y, Z in the figure) that willhelp in data

relaying using the high-bandwidth intermittent link. Helpers (except for the source

node) do not need to have a highly available control channel.
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• Mobile Clients are the destination nodes (node C in the figure) which initiate down-

loading. We assume that mobile clients have high-bandwidthbut intermittent links

for data transfer and highly available but low-bandwidth links for control messages.

A typical downloading process inMobiCentbegins with the mobile client requesting

data from a data source that can be another mobile node or a data store / web server

in the Internet. In the former case, the mobile source node needs access to the control

channel in order to initiate packet transfer. In the latter case (as studied inMobTorrent),

the destination node obtains the data via some access points(APs). These APs are special

helpers with Internet access, and they are the data sources within the wireless domain. In

the example of Figure 4.1, data for a request initiated by theclient C before timet1 can

be transferred from the APX to the helper Y at timet1, Y to Z at timet2 and finally to C

at timet3. If data are replicated among the nodes,C can also receive data fromY at time

t4 and the APX directly at timet5. Different paths complement one another, as each of

them is subject to uncertainty.

A detailed description of the system including the message exchange protocol is pre-

sented in Section 4.3. We will first present a brief overview here. We use standard cryp-

tographic techniques and en-route onion encryption [72] toprevent free riding, restrict

strategy set of participantsandhandle dispute among relays and client. More specifically,

each relay encrypts the data payload with a one-time symmetric key before forwarding

it. The key is also sent along with data in an encrypted form, such that only the TTP can

recover the keys. Thus, after a client receives the encrypted data, the only way for the

client to retrieve the decrypted data is to make payment to the TTP in exchange for the

encryption key(s). Similarly, the only way for the relay to get payment is to be involved

in the forwarding process. Note that the lightweight message exchange protocol handles

a wide array of attacks, but it cannot prevent both client andrelay from launching edge in-

sertion attacks and edge hiding attacks, which will be described in detail in Section 4.2.3.

To address these attacks, an incentive compatible payment scheme is needed.
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4.2.2 MobiCent and DTN Routing

MobiCentruns on top of a given DTN routing module, and does not rely on any specific

routing protocol. We first present a generic model of DTN routing. When two nodes

meet, they exchange metadata on the packets they have in their respective buffers. Based

on the information exchanged, each node decides which packets it wants the other node

to transfer (replicate) to it. The order of the packet transfer depends on the priority a node

associates with each packet. The amount of data that can be transferred in a single contact

is dependent on the duration of the opportunistic contact.

Various DTN routing protocols differ mainly on how each packet’s priority is deter-

mined. In the simplest version, all packets have the same priority. However, such simple

stateless epidemic routing is not efficient, and researchers have proposed many improve-

ments. For example, both direct and indirect contact histories are used in PROPHET [68].

In MaxProp [18], a combination of a few parameters, including contact history and packet

hop count, are used to determine a packet’s priority.

MobiCentworks by setting the client’s payment and the relays’ rewards so that nodes

will behave truthfully. Therefore, nodes will always forward packets without adding phan-

tom links, and never waste contact opportunity unless the reward is inadequate or it is the

decision of the underlying routing protocol. As a result, the (best) forwarding paths that

should be discovered by the given routing protocol through replication will be discovered.

4.2.3 Path Revelation Game

Before formulating the problem as apath revelation game, we first define some termi-

nologies.

Definition 4.1 Anedge e represents the opportunistic contact between two nodes, through

which data can be forwarded between them. Formally, an edge eis defined by the two

nodes{v1,v2} in contact (referred to as the edge’s vertices) and the contact time t(e) 1.

1For easy presentation, we assume that contacts do not overlap and have enough capacities to exchange
data. Thus, both the contact duration and its capacity are omitted in our formulation.
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For example, Figure 4.2 plots the scenario depicted in Figure 4.1 as a contact graph

over time axis. In the figure,X meetsY at timet1, and the corresponding edge is denoted

as e = ({X,Y}, t1), whereX andY are e’s vertices. Given a nodev, the set of edges

containing it as a vertex is denoted asE(v).
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Figure 4.2: A contact graph plotted over time axis

Definition 4.2 A contact graph is denoted by G= (V,E), where V is the set of nodes in

the system, and E is the set of edges among the nodes.

In Figure 4.2,V = {X,Y,Z,C}, andE = {({X,Y}, t1), ({Y,Z}, t2), ({Z,C}, t3), ({Y,C}, t4),

({X,C}, t5)}.

Definition 4.3 A forwarding path is a sequence of nodes from the source to the destina-

tion, such that, from each of its nodes, there is an edge to thenext node in the sequence,

and edges appear in non-decreasing contact time.

Given a pathP, Relay(P) is the set of relays on the path. Note that source is consid-

ered as a relay. The number of relays on path|Relay(P)| is defined as the length of the

path. A pathP with lengthn is called an-hop path. At the contact time of its last edge, a

pathP is revealedto the destination.

In Figure 4.2, there are three paths (P1, P2, andP3) from the source nodeX to the des-

tination nodeC. PathP1 consists of three edges:({X,Y}, t1), ({Y,Z}, t2), and({Z,C}, t3)
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(a) Edge Insertion attack
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Figure 4.3: Attacks

in sequence;P2 consists of two edges:({X,Y}, t1) and({Y,C}, t4) in sequence; andP3 is

a 1-hop path consisting of a single edge({X,C}, t5)).

The charge to the client and the reward to the relays are determined by apayment

schemeconsisting of two algorithms, namely, apayment set selection algorithm, deter-

mining which relays should be paid, and apayment calculation algorithm, which deter-

mines how much credit should be paid to each selected relay, and how much should be

charged to the client.

As stated in Section 4.2.1,MobiCentuses its message exchange protocol to constrain

the strategy space of users, so thatedge insertion attacksandedge hiding attacksare the

two major forms of selfish actions that a node can take. We willillustrate how a selfish

node gains from cheating under a natural payment scheme. Theexample is based on the

contact graph in Figure 4.2. Without loss of generality, we assume the use of theearliest-

path fixed-amountpayment scheme. Under the scheme, a client pays for each received

data block a fixed total amount of 3 cents, which is shared equally by all relays on the

earliest delivery path. A helper participates if the payoffis more than 1 cent, thus the

maximum path length is 3.

For illustration purpose, we redraw Figure 4.2 to highlightthe edges that belong to

different paths in Figure 4.3. Thus, some nodes (e.g., the clientC), which are receivers in

multiple edges, are plotted as multiple instances in the figure.
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Figure 4.3 (a) shows an edge insertion attack. In the figure, when a selfish AP X

gets the data, it estimates the delivery probability for allpossible paths, denoted asp(P1),

p(P2), andp(P3) respectively. Recall that the reward per node is3
n cents where n is the

length of the delivery path. Supposep(P1) = 1 andp(P2) = 1
2 + ε(> 0). By creating a

Sybil nodeX∗ and forging a phantom transfer fromX to X∗ before forwarding the data

to Y, X can claim2
3 of the total payment ifP2 succeeds. However, due to this additional

edge,Y will not be able to forward toZ, as the maximum length (3) is reached already.

Thus, pathP1 is not revealed. By launching the edge insertion attack, theexpected reward

of X by forwarding viaY is 3× 2
3 × p(P2) = 1+ 2ε. In comparison, the reward ifX

transfers honestly is only 3× 1
3 × p(P1) = 1. As a result, the selfish behavior of node

X increases its own payoff, but hurts the system performanceby reducing the success

delivery probability from 1 to as low as12 +ε (if p(P3) = 0). The delivery time is delayed

from t3 to no earlier thant4.

The client can also cheat by launching edge insertion attacks. For example, when it

meetsX directly through pathP3, it can pretend to be a relay instead, so that it can recover

some of its payment as the Sybil relay.

Figure 4.3 (b) shows an edge hiding attack. Depending on the estimated delivery

probabilities, nodeX may decide not to forward the packet to other relays at all. Suppose

p(P3) = 2
3 + ε(> 0). In this case, in order to selfishly maximize its own reward, node X

will not forward the data to Y, i.e., hiding the edge({X,Y}, t1). This holds regardless of

the value ofp(P1) andp(P2), and even whenX is allowed to launch edge insertion attacks

(as described above). The selfish behavior of node X hurts thesystem performance, by

reducing the success delivery probability from up to 1, to aslow as 2
3 + ε, and delaying

the delivery time tot5.

GivenG = (V,E), the two attacks can be formalized as:

Definition 4.4 A node v launches anedge insertion attack by creating a Sybil node v′

such that G is modified to G′ = (V ′,E′), where V′ = V ∪ {v′}, and E′ = Ev→(v,v′) ∪

{(v,v′, t)}. Ev→(v,v′) means for any edge e in E(v), the vertex corresponding to node v



103

can be set to either v or v′.

Definition 4.5 A node v launches anedge hiding attack by modifying G to G′ = (V,E−

e), where e∈ E(v).

A selfish node can launch one or both attacks multiple times. Now we can define the

path revelation game formally.

Definition 4.6 A path revelation game is a distributed online game to reveal paths on a

contact graph G.

• Each node (including both relay and client) is a player.

• As an edge e is formed, only its two vertex nodes together can reveal the existence

of the edge.

• The possible strategies of a player are (1) acting honestly,or (2) launching edge

insertion attacks and edge hiding attacks.

• The payment scheme calculates payoff for each player based on the revealed contact

graph.

The payment scheme determines the outcome of the game, and itshould be designed

to discover some desirable path(s) from source(s) to destination (e.g., the earliest path or

the shortest path). More specifically, we design payment schemes to meet the following

goals:

1) Incentive compatible: Truthful participation is adopted by both client and relay,

despite of their selfish nature.

2) Efficient and frugal: If there is at least one path revealed before a given deadline,

the client should be able to recover the data with minimum payment. If a client is willing

to pay more (but still bounded amount) to recover its data as soon as possible, the client

should be able to recover its data upon revelation of the earliest path.
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Among auction games, our work is closest to the well-studiedpath auction game.

In this game, there is a networkG = (V,E), in which each edgee∈ E is owned by an

agent. The true cost ofe is private information and known only to the owner. Given two

vertices, sources and destinationt, the customer’s task is to buy a path froms to t. Path

auction games have been extensively studied and much of the literature has focused on the

Vickrey-Clarke-Groves (VCG) mechanism. In the VCG mechanism, the customer pays

each agent on the winning path (i.e., the path with the minimum amount of total cost) an

amount equal to the highest bid with which the agent would still be on the winning path.

This mechanism is attractive as it is incentive compatible.

Existing works [30, 94] have shown that VCG is vulnerable to false-name manipula-

tion, a form of the Sybil attack. Furthermore, it is well known that VCG is not frugal for

the path auction game [6, 31, 51], i.e., a VCG-based incentive-compatible scheme may

result in very large payment.

A key difference between our work and the work on the path auction game is that in

our work the contact graph is the information to be elicited from the participants, whereas

in the latter, the topology is static and known to all.

In the rest of this chapter, we first present the message exchange protocol to support

MobiCentin Section 4.3. Following that, we analyze the payment algorithm required to

combat edge insertion attacks in Section 4.4, then present the thwarting of edge hiding

attacks in Section 4.5.

4.3 MobiCent Message Exchange Protocol

In MobiCent, we exploit the highly available low-bandwidth control channel at destination

to allow a Trusted Third Party (TTP) to mediate the file transfer process. We will explain

the message flow using file downloading from Internet as an example. The case of a

source node initiating a file transfer to a destination node is similar. Message exchanges

occur in three stages: (1) data request, (2) data forwarding, and (3) data recovery.
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Suppose the TTP’s public and private keys arePT andST respectively, and a partic-

ipating node (helper or client)R’s public and private keys arePR andSR respectively. In

addition,R shares with the TTP a symmetric keykT R.

Each node only needs to know its own public and private keys, the shared secret

key with the TTP and the TTP’s public key. For the TTP, besidesits own public and

private keys, it has to know the shared secret keys and publickeys of all nodes. A new

participating node has to inform the TTP of its public key andchoose the shared secret

key with the TTP. Furthermore, the TTP encrypts the pair{node id, node’s public key}

with its private key and this signature is stored on the participating node.

4.3.1 Data Request

To initiate the downloading process, a clientC first sends the file download requestr =<

C, f , p(), t0, td,α > to the TTP in a secure way.f is the file description including its name,

size, and the approach to locate the file (e.g. URL address).p() is the payment function,

which will be discussed in detail in Section 4.4 and Section 4.5. t0 andtd are the start time

and deadline of the request respectively.α indicates the valid geographical area/region

for the request to propagate.

After receiving and successfully decoding/verifying the request, the TTP encryptsr

with its private key and sendsC the request signatureST(r).

Upon receiving the TTP’s approval,C can then forward< r,ST(r) > to all APs within

the specified areaα. C may need to contact a directory server to find out the list of APs

in the area.

When an AP gets the request, it first checks the validity of thesignature from the TTP,

as well as the file description, the time and area scope. It mayalso consider the amount

of promised payment to decide whether to help or not. If the reward is sufficient, the AP

begins to prefetch the file block by block, with a predetermined block size. These blocks

are then replicated to the helpers using the DTN approach.
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4.3.2 Data Forwarding

Each nodeR maintains a list of blocksL1(R) that it currently holds, and a list of blocks

L2(R) that it has requested but not received yet. When two nodesA and B are near

each other, they can communicate directly via the short-range high-bandwidth link. They

will begin with an exchange of the metadata to reconcile their block listsL1(A), L1(B),

L2(A) andL2(B), and agree on the subset of blocks to be exchanged and the sequence

to exchange blocks. The exact block subsets that are exchanged depend on the routing

algorithm [7, 18, 25].

For theith block of requestr, the message being forwarded consists of three parts

as shown in Figure 4.4 (a). The headerH contains the basic information< r, i,ST(r) >

which remains the same for all hops. The header is followed bythe encrypted data and

supplementary layers, which are being modified and appendedto respectively at every

hop.
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Figure 4.4: Message format

DenoteC0 as the requested content in clear text, andCn as the encrypted content

forwarded by thenth hop node (n = 1,2, ...). Let thenth hop relay be denoted byRn.

Before forwarding a received block with data payloadCn−1 to the next hop, the relay

Rn generates a unique symmetric keykn for the block, and substitutes the data payload

with Cn = Ekn(Cn−1). Note thatkn is only used to encrypt the current block and a new key

is generated for each block encryption.
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In addition, it appends a new supplementary layer with 2 components,Ln[1] and

Ln[2]. The first componentLn[1] contains the current relay’s IDRn, and an encrypted field

of four subfields, namely the previous relay’s idRn−1, the current relay’s idRn, the next

relay’s id Rn+1 and the secret keykn used for data block encryption. The shared secret

key of the TTP andRn is used to encrypt this element. The array of{L j [1]} is the data

that will be forwarded to the TTP later by the mobile client torecover the data. For the

source node, a randomly generated value is used forRn−1.

The second componentLn[2] consists of just one fields, a cryptographic hash (e.g.

using MD5 or SHA-1) of the whole block minus the currently computed hash values,

encrypted using the current relay’s private key (SRN). This component is required for

verification and auditing purpose and is only sent to the TTP when there is a dispute.

The next relayRn+1 first verifies the headerH to make sure that requestr is valid.

Then, the relayRn+1 stores the data block and the identityRn which is needed to generate

the next supplementary layer if it forwards the message further. Before forwarding, it also

needs to verifyLn[2] usingRn’s public key. This key is verified using the TTP’s signature

for the pair{Rn, PRn} obtained fromRn.

Note that a relay node does not need to contact the TTP during the process. This

has two benefits: (1) reduce the load of the TTP, and (2) enablea mobile node without a

highly available control channel to become a relay.

In the forwarding process, for each block, a senderRn needs to perform 2 symmetric

key encryption (over the data payload andLn[1]), and signs 1 fields (Ln[2]) using its own

private key. The receiverRn+1 needs to verifyLn[2] using the sender’s public keyPRn

for each block. The receiver also needs to verify the sender’s public key (per neighbor

overhead) and the TTP’s signature for the request (per request overhead).

4.3.3 Data Recovery

Without loss of generality, suppose the block is delivered from sourceR1 to the clientC

via two store-and-forward hopsR1 → R2 with one-time encryption keyk1, andR2 → C
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with keyk2.

C sends to the TTP (in a secure way) the following key request< r, i,L1[1],L2[1] >

as shown in Figure 4.4 (b).

From this information, the TTP is able to recover the required secret keysk1 andk2.

The TTP then sends{k1,k2} toC.

With these keys,C is able to decrypt the data block using each key in the given

list sequentially until all keys are used and the original text is recovered. At this point,

we assume thatC is able to validate clear text through checksum in the clear text or

application level semantic. If data are valid,C sends confirmation to the TTP. Otherwise,

C sends a dispute with the encrypted data it receives (Cn) and the list of elements in

{Ln[2]} to the TTP.

The TTP settles the credit transfer off-line. In addition, the TTP may broadcast the

ACK for block r, i in the areaα after the request is completed.

If a client does not submit any key request before the deadline, the TTP will assume

that the process fails. All pending data blocks in the network automatically time out.

4.3.4 Protocol Properties

The message exchange protocol has the following properties. First, it prevents free-riding

through the use of en-route onion encryption. More specifically, a client cannot get its

desired content without payment, and a helper cannot get payment without helping with

the forwarding process. Note that, there is no monetary barrier for a potential forwarder

to participate. As the forwarder does not need to decrypt thedata, it does not pay for the

content.

Next, the protocol prevents a node from modifying an existing valid path segment

since each relay encrypts the identities of the previous, current and next relays. Based on

the information contained in the message, the protocol can deterministically detect nodes

that modify the path. Thus a node’s valid strategy space is tomodify its own edges, i.e.,

by launching edge insertion attacks and edge hiding attacks.
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Both communication overhead and computation load on the TTPare minimum. Re-

lays do not need to contact the TTP during forwarding, and payment settlement is per-

formed off-line. Finally, forwarding requires public-keycryptography that may be expen-

sive. We discuss this issue further in Section 4.6.4.

4.4 Thwarting Edge Insertion Attacks

Suppose relays on a delivery path are selected for payment, we consider the design of

payment calculation algorithm to thwart edge insertion attacks. The intuition behind our

design is: (1) To deal with relay’s cheating, we observe thatintroducing Sybil nodes

allows a relay to claim a larger fraction of the total reward,while increasing the delivery

path length. Although we cannot prevent a relay from stealing a larger fraction of rewards

from the total reward (as we cannot distinguish between a real node and a Sybil node),

we can make the total reward decreases as a function of the path length. As long as the

total reward diminishes faster than the increase of a selfishnode’s relative share, the relay

will only decrease its overall reward by introducing Sybil nodes. (2) Similar idea applies

to thwarting edge insertion attacks from the client. More specifically, although we cannot

prevent the client from reclaiming some of its payment back as a Sybil relay, we can

increase its charge as a client according to the path length,such that there is no net gain

for the client.

We consider a general payment schemeS. Given an-hop path, we define the mini-

mum payment to an individual relay in the path asRewardmin
S (n), and define the charge

to a client using an-hop path asChargeS(n).

Lemma 4.1 To prevent a relay from gaining by launching edge insertion attacks,2×

Rewardmin
S (n+1) ≤ Rewardmin

S (n).

Proof: Consider a relayR on an-hop path. SupposeR gets the minimum reward

Rewardmin
S (n). By inserting a Sybil nodeR′, its reward is the sum of the payments to
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two relays on a(n+1)-hop path, which is no less than 2×Rewardmin
S (n+1). In order to

preventR from gaining by doing so, we must have 2×Rewardmin
S (n+1)≤ Rewardmin

S (n).

Lemma 4.2 To prevent a client from gaining by launching edge insertionattacks,

ChargeS(n+1) ≥ChargeS(n)+Rewardmin
S (n+1).

Proof: By appending a phantom edge on an-hop path, a client can gain reward

as the Sybil node. Since the new path containsn+ 1 hops, the reward to the appended

Sybil node is no less thanRewardmin
S (n+1). In order to prevent the client from gaining

by doing so,Rewardmin
S (n+1)−ChargeS(n+1) ≤−ChargeS(n).

Note that, our formulation is general, as it does not excludethe use of other factors to

determine payment. For example, we allow the rewards for different relays on the same

path to be different.

Lemma 4.1 states that the payment scheme should ensure that arelay’s incremental

gain by being paid as multiple Sybil nodes grows slower than the reduction of each in-

dividual’s payment (due to the increase of the path length).Similarly, Lemma 4.2 states

that the incremental increase of a client’s payment for using a longer path is greater than

the reward the client earns as the added Sybil node.

The two lemmas show that existing payment schemes, including the fixed-amount

payment scheme we considered above, as well as others [50, 118] are not incentive com-

patible under edge insertion attacks.

To simplify the presentation without loss of generality, weassume that 1 cent is the

minimum reward required to motivate a relay to participate in the forwarding process.

Lemma 4.1 and Lemma 4.2 together lead to Theorem 4.1.

Theorem 4.1 To enable incentive-compatible forwarding while ensuringdeficit-free for

the TTP2, the payment charged to a client for using a n-hop path is at least2n−1.

2The deficit-free property means that the TTP charges no less credit from the client than the total amount
it pays to the relays. If the deficit-free property is not ensured, malicious node can make profit from phantom
transactions.
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Proof: AsRewardmin
S (n)≥1, from Lemma 4.1, we haveRewardmin

S (i)≥2n−i for 1≤

i ≤ n. Using Lemma 4.2, we have:ChargeS(n)≥∑n
i=1Rewardmin

S (i)≥ ∑n
i=12n−i = 2n−1

While the bound may seem large, we argue that it is feasible tobe adopted in practice,

because:

1) The client can specify the maximum hopN according to its requirement and utility

function to control the maximum possible payment.

2) While the cost of using a smallN (3 to 5) is low, it is sufficient in some typical

DTN scenarios, as will be shown in Section 4.6.

3) Many practical DTN routing algorithms pose a limit on the hop count for better

use of network resources. As an example, Spray and Wait [99] uses no more than 5 hops

to spread 16 copies, a number sufficient in some typical DTN scenarios.

As existing schemes do not satisfy the required property, weintroduce a new incentive-

compatible payment algorithm that minimizes the client’s payment.

Multiplicative Decreasing Reward (MDR)

Given the maximum path lengthN and an arbitrarily small positiveε,

if a n-hop (1≤ n≤ N) path is selected, each relay on the path gets the

same reward of:

RewardMDR(n) = (2+ ε)N−ncents (4.1)

and the client is charged by

ChargeMDR(n) = (2+ ε)N− (2+ ε)N−ncents (4.2)
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Theorem 4.2 Under the MDR payment algorithm, both client and relay have no incentive

to launch edge insertion attacks.

Proof: Under the MDR payment algorithm, if a client on an-hop path launches

edge insertion attacks, and insertsk≥ 1 extra edges, its net payoff is:

k×RewardMDR(n+k)−ChargeMDR(n+k)

= k× (2+ ε)N−n−k− ((2+ ε)N− (2+ ε)N−n−k)

=
k+1

(2+ ε)k(2+ ε)N−n− (2+ ε)N

< (2+ ε)N−n− (2+ ε)N (since ε > 0,k≥ 1)

= −ChargeMDR(n) (4.3)

Hence, a client does not gain by inserting edge. Now let us consider the last relay

Rn on an-hop path. Regardless of the behavior of previous relays (whether some of them

are Sybil nodes or not), ifRn launches edge insertion attacks and insertsk extra edges

(n < n+k≤ N), its reward is:

(k+1)×RewardMDR(n+k)

=
k+1

(2+ ε)k(2+ ε)N−n < RewardMDR(n) (4.4)

Therefore, the dominant strategy forRn is to act truthfully. Similar argument can be

applied iteratively to the previous relays starting from the (n−1)th relay, assuming that

later relays on the path are rational. Therefore, based on iterative elimination of dominated

strategy, all relays adopt truth telling in the unique Nash equilibrium.

Note that truth telling is not dominant strategy for relays except for the last relay

since the strategy of a relay appearing earlier on the path can be affected by an irrational

relay appearing later on the path. However, the game is dominance solvable and all relays

adopt truth telling in the unique Nash equilibrium. The small positiveε in MDR payment
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algorithm is required in the proof to ensure the uniqueness of the Nash equilibrium. We

omit ε in the following discussions for brevity.

Among all payment schemes that satisfy the necessary conditions for incentive com-

patibility, Theorem 4.1 and Theorem 4.2 together imply:

Corollary 4.1 The MDR payment algorithm is the most frugal incentive compatible mech-

anism robust under edge insertion attacks.

Under the MDR payment algorithm, each relay’s individual reward and the sum of

all relays’ rewards decrease with the path length, whereas the client’s payment increases

with the path length. The maximum surplus or overpayment is reached when the longest

path (N hops) is used, which is:ChargeMDR(N)−N×RewardMDR(N) = (2)N − (N+1)

(with ε omitted).

This overpayment can be handled in the following ways. First, some of the overpay-

ment can be considered as payment to the system provider. Second, the overpayment may

be redistributed back to the mobile nodes if the redistribution is incentive compatible.

Cavallo discusses an incentive-compatible redistribution mechanism [22].

MDR alone is sufficient to handle edge insertion attacks given a selected set of relays.

However, edge hiding attacks may affect the set being selected. Thus, MDR algorithm

need to be used together with some payment set selection algorithm, which will be con-

sidered in the next Section.

4.5 Thwarting Edge Hiding Attacks

The high-level idea to thwart edge hiding attacks is to determine an incentive-compatible

relay set by examining a sufficient subset of the paths ever revealed before the deadline.

Intuitively, our solution provides the following two properties: (1) Participating in more

forwarding paths (by replicating to other relays) only increases a node’s probability of

being selected for payment. (2) If a relay participating in multiple paths is selected for
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payment, it will always be paid according to the path that gives it the highest reward,

regardless of the other paths that it participates. This should hold even if its most favorable

path (e.g. direct contact with the client) is revealed laterthan other less-favorable paths. In

another word, participating in more forwarding paths does not decrease a relay’s reward

amount if it is ever selected for payment. The combination ofthese two properties ensures

that a rational relay does not launch edge hiding attacks.

In the following, we present selection algorithms for two types of clients, namely:

• Cost-sensitive client: The client’s goal is to minimize payment under a given dead-

line constraint.

• Delay-sensitive client: The client’s goal is to minimize delay under a given payment

constraint.

While the algorithm for cost-sensitive clients is simpler than the algorithm for delay-

sensitive clients, they share the same intuition as described above. By catering for the two

types of clients, our schemes allow the trade-off between payment and delay. A client

selects the desired scheme explicitly when issuing its request. The two types of clients

can coexist in a single system.

4.5.1 Cost-sensitive Client

min-Cost Selection AlgorithmUnder this algorithm, the forwarding procedure is termi-

nated only at the deadline of the request, or upon revelationof a 1-hop path, whichever is

earlier. The client reports to the TTP the shortest path everrevealed when the terminating

condition is met. Only relays on the reported path are paid. Payments by the client and to

the relays are computed using the MDR algorithm.

Theorem 4.3 Under the min-Cost selection algorithm, both client and relay have no in-

centive to launch edge insertion attacks or edge hiding attacks.
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Proof: We first consider the dominant strategy for the client. The client cannot

arbitrarily fake the shortest path, as in that case it is not able to decode the correct data.

Given that the client pays the least with the real shortest path it can reveal, it has no

incentive to hide the shortest path it is able to get. Finally, Theorem 4.2 states that the

client has no incentive to append any Sybil node on the reported path.

For a given relay, we consider the two attacks sequentially:

1) Edge insertion attack: For a relay on the selected shortest path, Theorem 4.2 states

that inserting edge on the selected path does not benefit the relay. Inserting edge on any

non-selected path only increases its length, and does not make it the shortest path, thus

does not change the payment decision.

2) Edge hiding attack: for a relay on the selected shortest path P, hiding other paths

does not have impact, and hiding the shortest path can resultin two scenarios. First,

another path that does not contain the relay is selected. Second, another path containing

the relay but with length no shorter thanP is selected. In both cases, the relay’s payoff

does not increase, hence there is no incentive for the relay to do so. For a relay not on

the shortest path, hiding any path that containing it does not affect the shortest path being

selected, thus its payoff remains zero.

In Figure 4.5, all paths revealed to the client are shown at their revelation times. The

maximum path lengthN = 3. Note that the client is not shown in the paths. Among all

revealed paths, the client only acceptsP1, P3, andP6, as each of them is the single shortest

path when they are revealed. The client reports the 1-hop path P6 to the TTP att6, as there

is no path shorter can be revealed. The client paysChargeMDR(1) = 23−23−1 = 4 cents,

and relayU on the reported path is paid byRewardMDR(1) = 23−1 = 4 cents.

If the deadlinetd is betweent5 andt6 instead, the client will report pathP3 at the new

td. RelaysY andW onP3 are paid, and each getsRewardMDR(2) = 23−2 = 2 cents, while

the client is charged byChargeMDR(2) = 23−23−2 = 6 cents. The surplus is 6−2×2= 2

cents. Note that, there are multiple sources (nodeU and nodeY) in this example.
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Figure 4.5: Paths revealed over time axis

4.5.2 Delay-sensitive Client

In this case, the decryption keys for data are given to the client by the TTP immediately

when the earliest path is revealed. Designing incentive-compatible scheme for delay-

sensitive clients is more complicated than for cost-sensitive clients because the payment

decision can only be finalized after examining the rest of thepaths. Therefore, a mech-

anism must be incorporated to motivate the client to continue to reveal paths to the TTP

truthfully, even though it already has the decoded data.

Briefly, themin-Delay Selection Algorithmcontains the following three steps:

1) Key revelation and initial payment by client: When the earliest pathP1 is re-

vealed att1, the client immediately decrypts it through the TTP, and is chargedn×2N−1+

(2n−2) cents, whereN is the maximum path length, andn is P1’s hop count.

2) Reimbursement to client for reporting eligible paths: The client continues to

report eligible paths to the TTP, and the client is reimbursed 1 cent for everyeligible path

it reports to the TTP.

3) Payment set selection: Based on the eligible path sequence that the client reports,

the TTP decides the set of relaysR to be paid. OnceR is determined, MDR payment

algorithm is applied overR to calculate the payment to relays.

We discuss the steps in more detail as follows:

Initial payment : In this step, the first portion of the paymentn×2N−1 prevents the



117

client from gaining by inserting a Sybil node in the earliestpath and claiming back the

maximum reward 2N−1 with the inserted Sybil node. The second portion of the payment

2n−2 is the provident fund to pay the client for reporting eligible paths (maximum 2n−2

paths with 1 cent each) in the next step.

For example, in Figure 4.5, the earliest pathP1 is used for decoding the message and

calculation of the client’s initial payment. Asn= 3, the client paysn×2N−1+(2n−2) =

3×23−1+(23−2) = 18 cents.

Eligible path: Ideally, information about all paths can be collected. However, the

number of paths can be unbounded. Furthermore, if there is noeligibility constraint

on the path, the client can fake any number of paths by appending its Sybil nodes on the

earliest path or forging a path with only its Sybil nodes, to earn the reimbursement without

receiving and reporting any real path. We define aneligible pathin the following way.

Definition 4.7 A path P is aneligible path, if and only if the intersection of its relays and

the relays on the earliest path P1 is a unique non-emptysubset of Relay(P1).

Uniquenessis defined in the following way. A pathP is an eligible path if there is no

other eligible pathP′ such thatRelay(P′)∩Relay(P1) = Relay(P)∩Relay(P1).

The eligible path is defined to meet the following three conditions: (1) the size of

the eligible path set must be bounded from above; (2) cheating from the client cannot

increase the eligible path set; and finally (3) the TTP must beable to calculate an incentive

compatible payment based on the eligible path set.

Condition (1) is clearly met since the number of non-empty subsets ofRelay(P1) is

2n−1. Each non-empty subset corresponds to at most one eligiblepath, thus the number

of eligible paths (excludingP1 itself) is bounded by 2n − 2, which corresponds to the

amount we charged in the second portion of the initial payment by the client.

Condition (2) is met for the following two reasons. First, there is no Sybil node inP1,

and the size of eligible path set does not depend on any node outsideRelay(P1). Thus,

the client cannot construct phantom eligible paths. Second, reordering of eligible paths
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does not change the size of the eligible path set. As the client does not gain by altering

the order of the reported paths, we assume that it reports theeligible paths in the order

they are revealed. The client can accumulate all paths, and report them to the TTP in one

message.

Finally, condition (3) is met when the eligible path selection is used in conjunction

with the relay payment set selection to be presented later.

We illustrate the determination of the eligible paths usingFigure 4.5. Among all

paths revealed afterP1, only pathP2, P3, andP5 are eligible. The total reimbursement to

the client for these three eligible paths is 3 cents. PathP4 andP6 are not eligible paths due

to the uniqueness constraint. Note that, the client can hideP2 to makeP4 an eligible path.

However, doing this does not increase the client’s reimbursement. Finally, pathP7 is not

an eligible path because its intersection withP1 is empty.

Payment set selection: Denote the initial payment set asR1 = Relay(P1). The pay-

ment set is updated every time an eligible path is revealed. The update rule is as follows.

Suppose before an eligible pathP is revealed, the payment set isRi . If Ri ∩Relay(P) 6= /0,

then the payment set is updated toRi+1 = Ri ∩Relay(P). Relays in the final payment set

Rk will be paid.

Let us look at the evolution of the payment set in the example given by Figure 4.5. The

eligible paths are{P1, P2, P3, P5}, and the initial payment setR1 = {U,V,W}. P2 updates

the payment set toR2 = Relay(P2)∩R1 = {U,V}. As P3’s intersection withR2 is /0, P3

is not used.P5 updates the payment set toR3 = Relay(P5)∩R2 = {U}, which is the final

payment set. Thus, only relayU is paid, and the reward isRewardMDR(|R3|) = 23−1 = 4

cents.

Note that, the correct calculation of payment set using the above selection algorithm

does not require the revelation of all eligible paths. However, reimbursing all eligible

paths is important to prevent the client from manipulating the report. Otherwise, if the

TTP reimburses the client only for the eligible paths used inthe computation, the client

may have the incentive to hide some eligible paths so as to increase the number of the
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eligible paths needed. This will result in the incorrect (non incentive compatible) compu-

tation of the relay payment set.

We introduce a lemma before we present and prove the main theorem in this section.

Lemma 4.3 Under the payment set selection algorithm specified above, suppose the pay-

ment set isRi at time t, given a relay R∈ Ri , for every eligible path P revealed before t,

R∈ Relay(P) impliesRi −{R} ⊂ Relay(P).

Proof: We prove it by contradiction. SupposeP∗ is the earliest eligible path

that is revealed beforet and satisfies bothR∈ Relay(P∗) and∃R′ 6= R such that,R′ ∈

Ri & R′ /∈ Relay(P∗). Suppose the payment set whenP∗ is revealed isR∗. As P∗

is revealed beforeRi . Ri ⊆ R
∗, thusR′ ∈ R

∗ asR′ ∈ Ri . We have/0 ⊂ Relay(P∗)∩Rk,

asR∈ Relay(P∗)∩Rk. We also haveRelay(P∗)∩Rk ⊂ Rk, asR′ /∈ Relay(P∗)∩Rk but

R′ ∈ Rk. P∗ is the earliest path satisfying this condition, so it shouldbe used to update the

payment set toRelay(P∗)∩R
∗, which results in the removal ofR′ from payment set, and

causes contradiction.

Theorem 4.4 Under the min-Delay allocation algorithm, both client and relay have no

incentive to launch edge insertion attacks and edge hiding attacks.

Proof: First, we show that the client’s dominant strategy is to act truthfully:

1) Edge insertion attack: By inserting a Sybil node into the earliest path (increasing

its length fromn to n+ 1), the client need to pay an extra[(n+ 1)2N−1 +(2n+1−2)]−

[n2N−1 + (2n − 2)] = 2N−1 + 2n cents. What it can earn through the Sybil node is at

most 2N−1 (if the Sybil node is the single relay in the final payment set)plus 2n cents

(by reporting 2n extra eligible paths). As the net payoff is non-positive, the client has no

incentive to insert Sybil node into the earliest path. Inserting Sybil node into latter paths

does not change the eligible path set, thus does not benefit the client either.

2) Edge hiding attack: Hiding the earliest path is against the client’s goal to minimize

the delay to recover data. Hiding latter eligible paths onlyreduces the client’s payoff.

Thus, the client has no incentive to hide path.
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We now prove that the dominant strategy for any relay is to acttruthfully too, by

examining three types of relays in turn.

1) For a relayR in the final payment setRk: On one hand, creating Sybil nodeR′ to

launch an edge insertion attack does not help, because: ifR′ is not in the final payment

set, it does not earnR any extra reward. IfR′ is in the final payment set, the total amount

earned byR andR′ is 2×2N−(|Rk|+1) = 2N−|Rk|, which is equal to the reward of having

R alone. On the other hand, launching edge hiding attacks doesnot benefit as well. IfR

is the only relay in the final payment set, it gets its optimal payment already. IfRk−{R}

is not empty, using Lemma 4.3, all paths containingR also containRk−{R}. UnlessR

eliminates itself from the final payment set, it cannot exclude any node inRk−{R} from

final payment set either.

2) For a relayR not on the earliest path, inserting or hiding edge cannot affect the

revelation of the earliest path, thus does not bring it any reward.

3) Now let us consider a relayR on the earliest path, but is excluded from the final

payment set. Without loss of generality, supposeR is eliminated from payment setRi−1 by

a pathP∗, i.e.,R∈Ri−1 butR /∈Ri . Thus,P∗ satisfiesRi ⊂ Relay(P∗) andR /∈ Relay(P∗).

In addition, using Lemma 4.3, for every pathP containingR that is revealed beforeP∗,

Ri ⊂ Relay(P). Thus, to make itself appear in payment set before the revelation of Pi , R

must makeRi appear in payment set also. In this case,P∗ is always an eligible path to

filter Rout of the payment set. Even ifRcan hide all paths beforePi , Pi becomes the new

earliest path, and it defines a new initial payment set which does not containR at all. In

this case,R still gets zero reward. Creating Sybil node does not preventR (or any of its

Sybil nodes) from being eliminated by pathP∗ either.

Thus, the min-Delay algorithm is incentive compatible.

From Theorem 4.4, we directly have:

Corollary 4.2 The min-Delay allocation algorithm reveals the earliest path, and the

client’s payment is bounded by O(N×2N), where N is the maximum path length allowed.



121

4.6 Performance Evaluation

We evaluateMobiCentusing the widely used traces from the Haggle project [48] andthe

DieselNet project [113], which represent human social networks and vehicular networks

respectively. The Haggle trace [48] is collected in an experiment measuring forty-one

humans’ mobility at the Infocom 2005 conference. The deviceused to collect connection

opportunity data and mobility statistics in the experimentis the Intel iMote. The iMotes

were configured to perform a Bluetooth baseband layer “inquiry” discovering the MAC

addresses of other Bluetooth nodes in range. The DieselNet trace [113] is taken from

UMass DieselNet, a DTN consisting of Wi-Fi nodes attached tobuses. As buses travel

their routes, they encounter other buses and establish pair-wise bus-to-bus connections.

The behavior of inter-contact times is important when considering the delay experienced

by packets in a DTN. This is the time a node has to wait to get in contact with a specific

node, counted from the moment from losing contact with that node. A closer look at

the inter-contact distribution of the two traces shows thatthe inter-contact time in the

Haggle trace tends to be longer than the inter-contact time in the DieselNet trace. For

example, around 20% of inter-contact time in the Haggle trace is longer than 3 hour,

whereas the value is only 10% in the DieselNet trace. This contributes to the difference

in their delivery performance.

MobiCenttreats the routing protocol as a black box and is independentof the spe-

cific algorithm used. Our evaluation uses epidemic routing,and assumes each contact has

sufficient capacity to exchange data. Performance under other routing protocols and con-

strained contact capacity show similar trends, and are not presented here to save space.

Each experiment below is carried out 500 times with different random seeds, and the

average is presented.

We first evaluate the impact of hop count constraint on delivery performance. When

all nodes are honest, we show that even if we set the maximum hop constraintN to a

small value (3 to 5), the delivery performance already approximates the setting without
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Figure 4.6: Impact of hop count constraint

any constraint closely. Next, we evaluate the behavior of selfish nodes operating under the

naturalearliest-path fixed-amountpayment scheme such that cheating may result in gains

for some nodes. We show that cheating becomes the strategy ofthe majority of nodes,

and overall delivery performance degrades significantly. Payment schemes described by

Jakobsson et al. [50] and Zhong et al. [118] have the same vulnerability, as none of them

satisfy the properties we identified for incentive-compatible payment scheme in Section

4.4. Lastly, we show the behavior of selfish nodes operating underMobiCent, and plot

the resulted delivery performance as well as amount of payment by the client.
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4.6.1 Hop Count Limit

To evaluate the impact of hop count limit, we plot the delivery ratio over time where the

maximum hop count is limited to 1 (direct delivery), 2, and 3,against the setting where

there is no hop count constraint. We assume all nodes act honestly.

Figure 4.6 (a) plots the delivery ratio as a function of waiting time for the Haggle

trace under various maximum hop constraints of forwarding path. As shown in the figure,

for any given deadline, the delivery ratio increases with the maximum hop count allowed.

Allowing 2-hop forwarding almost doubles the delivery performance of the 1-hop-only

forwarding, while 3-hop forwarding achieves more than 95% of the delivery ratio at any

given deadline compared to the case without hop count constraint. Though not shown in

the figure, 5-hop forwarding achieves more than 99% of delivery performance. Similar

result is shown in Figure 4.6 (b) for the DieselNet trace. As asmallN such asN (≤ 5)

suffices in most cases, the multiplicatively increasing payment of proposed schemes is

practically affordable, as will be shown later.

4.6.2 Cheating under Earliest-path Fixed-amount Scheme

We study the user behavior under the earliest-path fixed-amount payment scheme, where a

client pays a fixed amount (3 cents) to relays on the earliest path for each block delivered.

The amount is shared equally by all relays on the earliest forwarding path.

Figure 4.7 illustrates the system behavior using the Haggletrace when relays can

cheat by hiding edges or creating Sybil nodes to increase their own payoff. In each round,

each user generates two requests on average. There are two possible strategies: acting

truthfully or cheating. In the first round, all relays start truthfully. After each round, we

assume that each relay has access to the revealed contact graph and varies its strategy in

the next round if it has a higher expected payoff with the new strategy based on its own

experience in the current round.

The nodes’ behavior is shown in Figure 4.7 (a). Starting froma ratio of 100%, the
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Figure 4.7: Evolution of user behavior and delivery performance under earliest-path fixed-
amount payment scheme (Haggle trace)
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Figure 4.8: Evolution of user behavior and delivery performance under earliest-path fixed-
amount payment scheme (DieselNet trace)
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ratio of honest users keeps decreasing and after 10 rounds, the system converges to a

sub-optimal state. Note that, cooperation may still be preferred by some users (20%), as

forwarding to other relay (honestly) increases the chance the node is on the selected path,

which compensates the loss in having to share the reward withothers.

Figure 4.7 (b) shows that the delivery delay increases underattack. The average delay

is increased by 25%. As shown in Figure 4.7 (c), delivery ratio decreases by around 20%

under attack.

Figure 4.8 demonstrates similar trends for the DieselNet trace.

Another way to measure the impact of dishonest nodes is to consider the relative gain

of dishonest nodes vs. the honest nodes. When the ratio of dishonest nodes is fixed at

20%, simulation result shows that they collect more than 33%of the reward for both the

Haggle trace and the DieselNet trace. The average reward of honest participants is re-

duced by around 20%, and is only around half the reward earnedby cheating participants.

When the ratio is increased to 50%, they collect 65% of the reward in the Haggle trace and

75% of reward in the DieselNet trace. In the latter trace, honest node’s reward is reduced

by 50%, and is only 1/3 of the rewards of dishonest nodes. This indicates that a large

portion of dishonest nodes can significantly decrease the reward for honest nodes. This

has the effect of discouraging honest nodes from joining thesystem, further reducing the

overall performance.

4.6.3 MobiCent Performance

In order to evaluate howMobiCentfosters cooperation, we repeat the previous experiment

but with all nodes initially cheating. As shown in Figure 4.9(a), for both the min-Cost

algorithm and the min-Delay algorithm under the Haggle trace, from a state where all

players cheat and each player adapts its behavior based on its experience, all players

converge to the truth-telling strategy very quickly, with 90% choosing to act truthfully

after only 1 round. After 4 rounds, all nodes act truthfully and no node deviates from the

truthful strategy any further. Such behavior applies also to the min-Cost algorithm and
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Figure 4.9: Evolution of user behavior under MobiCent

the min-Delay algorithm for the DieselNet trace, as shown inFigure 4.9 (b).

Figure 4.10 (a) shows the delivery ratios for the Haggle trace using both the min-

Cost algorithm and the min-Delay algorithm. The delivery ratios of both algorithms are

identical and equal to the case where all nodes act honestly.This is expected since both

of these algorithms ensure that there is no edge insertion and hiding attacks.

Figure 4.10 (b) plots the average delay for a client to recover data under both algo-

rithms for the Haggle trace. The deadline is set to 600 minutes (10 hours). Since the first

path received is reported in the min-Delay algorithm, the delay achieved is the same as

the case where all nodes are honest. WhenN = 1, the earliest path is also a 1-hop path,
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thus the delay for both algorithms are identical. WhenN > 1, the min-Delay algorithm

still recovers data in the earliest path, whereas the min-Cost algorithm needs to wait un-

til the revelation of a 1-hop path or the deadline, whicheveris earlier. As shown in the

figure, the delay for the min-Cost algorithm is more than 100%more than the min-Delay

algorithm. The client is compensated for this large increase in delay by having to pay a

smaller amount of money to the TTP.

Figure 4.10 (c) plots the average payment by a client under both algorithms for the

Haggle trace. Recall that, as the maximum hop countN grows, the maximum payment

grows atO(2N) and O(N× 2N) respectively for the min-Cost algorithm and the min-

Delay algorithm. The figure shows that the average payment grows in an exponential

rate. However, as the average length of the earliest path is around 2, the average payment

by a client under the min-Delay algorithm is roughly two times of the average payment

under the min-Cost algorithm. Also recall that, whenN = 3, the performance obtained is

close to the case without hop count constraint, in terms of both delivery ratio and delay.

For N = 3, the average cost for the min-Cost algorithm is 5.36 cents, and the average

cost for the min-Delay algorithm is 12.01 cents. Therefore, the payment is practically

affordable based on the current traces used, despite the exponential growth.

Figure 4.11 demonstrates similar trend under the DieselNettrace.

4.6.4 Implementation Issues

We discuss two implementation issues, namely encryption key size and computation over-

head.

There are two types of encryption keys. Public key encryption used is based on El-

liptic Curve Cryptography (ECC) and 192-bit keys are used. The signature generated is

48 bytes. For symmetric key encryption, 128-bit AES algorithm is used. In order to re-

duce overhead, a 192-bit request identifierr id can be selected with its signature computed

by the TTP. These identifier and signature pairs can be used inthe packet header instead

of the original request stringr. Assuming a 16KB data block and an average path hop



131

count of 2, the average overhead imposed by the header and supplementary layer is about

250 bytes, which is less than 2% of the 16KB data block. Note that since the reward for

breaking theMobiCent’s encryption is relatively small, the one-time key size canbe even

smaller in practice.

In order to evaluate the computation overhead, we measure the encryption and verifi-

cation time of ECC on the target implementation platform, a Soekris Net5501 box. Using

the OpenSSL library, measurements show that the average signing time is 15ms and the

average verification time is 20ms. The results show that these encryption schemes do not

impose significant overhead. In fact, researchers have shown that it is viable to use public-

key cryptography even on low power energy constraint platform using a 8-bit processor

(Atml ATmegal128L), in particular, if ECC is used [107]. Finally, note that these encryp-

tion and verification tasks do not have to be performed in real-time and can be performed

during the disconnected periods between contacts.

4.7 Related Work

In this section, we present related work of incentive schemedesign in both Peer-to-Peer

(P2P) network and wireless network.

4.7.1 Incentive Techniques in P2P Network to Avoid Free-riding

It is widely agreed that some form of incentive is needed for P2P network to overcome

the free-riding problem, i.e., downloading files from the network without uploading any

in return. The three main incentive mechanisms being studied in literature are reputation,

barter (or Tit-for-Tat), and virtual currency.

In general, a P2P reputation scheme is coupled with a servicedifferentiation scheme.

Contributing peers possess good reputations and receive good service from other peers.

For example, peers in the KaZaA file-sharing network [54] build up their reputation scores

by uploading files to others, and are rewarded with higher priority when downloading files
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from others.

Reputation-base approach is known to suffer from the Sybil attack [28] and the white-

washing attack [38]. Douceur [28] coins the name of Sybil attack. In a Sybil attack, a

single malicious peer generates multiple identities that collude with one another. Multiple

colluding peers may boost one another’s reputation scores by giving false praise, or punish

a target peer by giving false accusations. In a whitewashingattack, a peer defects in every

P2P transaction, but repeatedly leaves and rejoins the P2P system using newly created

identities, so that it will never suffer the negative consequences of a bad reputation. The

availability of cheap pseudonyms in P2P systems makes reputation systems vulnerable to

Sybil attacks and whitewashing attacks. Such attacks can also be easily launched in our

target environment.

BitTorrent file-sharing system adopted an incentive mechanism based on barter (or

Tit-for-Tat). By partitioning large files such as movies andsoftware binaries into small

chunks, file-sharing using the BitTorrent protocol necessitates repeat interactions among

peers, allowing cooperation to flourish based on direct reciprocity rather than indirect

reciprocity. Yet, analysis has demonstrated that the BitTorrent protocol can still be ma-

nipulated by selfish peers in their favor, and fixes are suggested [62].

Tit-for-Tat does not suit our target environment, because in our environment, one peer

is likely to want more service from another peer than it couldprovide to that peer. In such

a situation, a credit-based system can better support the asymmetric transactions needed.

The use of virtual currency for incentives has also been proposed in several P2P

content distribution systems, e.g., KARMA [105] and Dandelion [98]. However, they are

designed for connected networks and will not work in a multi-hop setting with frequent

disconnections.

4.7.2 Security Protocol and Incentive Scheme in Wireless Networks

There are a number of incentive schemes for wireless networks. Incentive is needed

for wireless networks with user-contributed forwarding (e.g. mobile ad hoc networks)
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to overcome the free-riding problem, i.e., requesting others for forward its packets, but

avoiding to transmit others’ packets.

Incentive schemes based on micro-payment have been proposed in wireless networks.

FON [37], the largest community-based Wi-Fi ISP, has officially used its Wi-Fi Money to

encourage its member to cooperate. Every time a visitor (non-Fonero) uses a FON Wi-Fi

network, the owner can earn some “dinero” according to the time it connected. How-

ever, they only need to motivate their next-hop neighbor, whereas inMobiCent, multiple

helpers need to cooperate. Jakobsson et al. [50] discuss a micro-payment scheme to en-

courage collaboration in multi-hop cellular networks. Zhong et al. [118] propose Sprite, a

cheat-proof, credit-based system for stimulating cooperation among selfish nodes in mo-

bile ad hoc networks. Anderegg and Eidenbenz [4] and Zhong etal. [117] propose pricing

schemes based on use of VCG mechanism.

These schemes are not suitable for DTNs due to the following reasons. First, a com-

mon assumption adopted in these schemes is that an end-to-end connection between the

source and the destination is established before the data forwarding occurs. Second, the

reported schemes are mainly designed for single path forwarding.

Recently, several works address the incentive problem in delay-tolerant network. She-

vade et al. [97] propose the use of pair-wise Tit-for-Tat (TFT) as incentive mechanism for

DTNs. They enhance their TFT mechanism with generosity and contrition to address

the bootstrapping and link variation problem. However, their proposal is not suitable for

DTN routing scenarios where the delivery path cannot be pre-determined. In addition,

Tit-for-Tat is not suitable for our target environment, where there is a large population

of participants and a peer is likely to want much more servicefrom another peer than it

could provide to that peer. Zhu et al. [119] propose a secure credit-based incentive scheme

for DTNs, with an emphasis on generation and verification of secure bundle. They do not

address the pricing issue. The link insertion (Sybil) attack is not considered in both works.

Newsome et al. [80] and Piro et al. [86] propose mechanisms todefend against the

Sybil attack in wireless networks. The basic idea is to test the resource of a node. Based
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on the observation that a given node only has limited resource (say, a single Wi-Fi radio),

a testing node can assign its neighbors into different channels, and randomly probes for a

neighbor in the channel specified. If a node mimics several Sybil nodes that are assigned

to different channels, as it can only appear in one channel inany given time, the prob-

ability that one of its Sybil nodes is caught is high. Jakobsson et al. [50] use statistic

techniques to detect the Sybil attack in multi-hop cellularnetworks over a long period of

time. However, it is much more difficult to detect the Sybil attack in DTN, where discon-

nection is the norm rather than exception and high user population dynamic is expected.

As a result, these techniques cannot be applied.

4.8 Summary

This chapter presentsMobiCent, a credit-based incentive system for DTN and proves that

it is incentive compatible.MobiCentuses a Multiplicative Decreasing Reward (MDR)

algorithm to calculate payment and supports two types of clients, namely clients that

want to minimize cost or minimize delay. Simulation resultsshow thatMobiCentcan

effectively foster cooperation among selfish nodes with bounded overhead.



Chapter 5

Conclusion and Future Works

Mobile communication system is experiencing a fast and exciting evolution, driven by

both convergence of heterogeneous wireless networks and development of new cooper-

ative networking approaches. Great efforts have been devoted to build flexible architec-

ture capable of managing various network components as a whole, while new network

approaches are being proposed to harvest the potential performance improvement of co-

operation.

Users play a more central role in the stage. With increased intelligence, the new gen-

eration of wireless terminals not only can facilitate the radio resource allocation decision

by feeding back the measured channel state, but also can contribute directly to the re-

source provision process by forwarding data for each other.As users gain more control

over their devices, an intelligent and selfish user can adaptits behavior in order to bene-

fit more from the network, even when doing so may affect other users and the system’s

overall utility.

The design of new cooperative resource allocation and provision schemes should ex-

plore the cooperation possibility among heterogeneous wireless network components and

their users, while taking the selfish nature of users and their strategic interactions into con-

sideration. This thesis systematically investigates several fundamental design problems

of how to deliver Internet access service efficiently to (selfish) users using heterogeneous
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wireless networks.

5.1 Research Summary

As stated in Chapter 1, this thesis studies both the overlapping-coverage scenario and

intermittent-coverage scenario. For each scenario, we approach the problem from both

the system performance perspective and the incentive compatibility perspective.

Chapter 2 focuses on the overlapping-coverage scenario. Itstudies thecoordinated

radio resource allocation problemfor users that are simultaneously covered by multi-

ple overlapping heterogeneous wireless networks. We formulate thecoordinated propor-

tional fairness (CPF)resource allocation criterion, based on which a globally fair and

efficient allocation decision can be easily computed. AsCPF decision depends on the

input from users, a selfish user may manipulate its channel state report if doing so can in-

crease its gain from the network. To capture this phenomenon, we formulate the resource

allocation process as amulti-cell resource allocation game, which is associated with a

rule to calculate bandwidth allocation outcome based on theinput from the MS players.

We prove that a multi-cell resource allocation game withCPFallocation is incentive com-

patible, which means a user’s dominant strategy is to reportits channel state honestly. In

practice, the single-association setting, where a MS is only associated with one BS, is of-

ten desirable. We formulate the integral version of theCPF problem (Int-CPF) and show

that it is both computationally expensive and prone to user-manipulation. Alternatively,

we advocate the adoption of aSelfish Load Balancing (SLB)scheme, which always leads

to a Nash equilibrium, and often achieves performance near to CPF allocation. We use

simulation to evaluate the performance of proposed schemes. Our results show that the

proposed algorithms outperform popular heuristic approaches, by striking a good balance

between efficiency and fairness, while achieving load balancing among component BSs.

Chapter 3 and Chapter 4 focus on the intermittent-coverage scenario. Chapter 3

presentsMobTorrent, a cooperative, on-demand framework, which uses the ubiquitous
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low-bandwidth cellular network as a control channel while forwarding data through high-

bandwidth contacts in a DTN paradigm. We design the architecture ofMobTorrent, and

analyze the problem of how to schedule the transmission overintermittent contacts, such

that the amount of data delivered is maximized and the delay is minimized. We use both

testbed and trace-driven simulation to evaluate the performance ofMobTorrent.

Chapter 4 presentsMobiCent, a credit-based incentive system for DTN. Following

the algorithmic mechanism design approach, we formulate the path revelation game, and

analyze the attack model. A message exchange protocol is carefully constructed to sup-

port the requirement ofMobiCent, and two different algorithms are designed to cater to

client that wants to minimize either payment or data delivery delay. We prove that both

algorithms are incentive compatible, as rational nodes will not purposely waste any op-

portunistic transfer or cheat by creating non-existing contacts to increase their rewards.

To summarize, this thesis analyzes the opportunities and challenges that appear in the

forthcoming generation of mobile communication systems. We develop novel models and

techniques that can be used to exploit the new cooperative opportunities, and address the

challenges to foster cooperation.

5.2 Future Work

There are several possible extensions to the research work presented in this thesis.

• In our system model of overlapping cells, we assume that eachcell has a fixed

amount of radio resource and they operate orthogonally. Forfuture research, we

would like to incorporate the BS capacity adaptation and interference mitigation

into the consideration of the network-wide radio resource allocation.

• For the coordinated resource allocation problem in a convergent platform, we as-

sume that the ownership of radio cards is known by the networkand cannot be mod-

ified by users. Though it is a valid assumption for existing networks, the increase
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of system openness will eventually enable users to game the system by manipu-

lating their radio card ownership as well. A resource allocation scheme should be

designed to address the arising challenges. In addition, itremains a research prob-

lem to design an efficient incentive-compatible scheme for the single-association

setting.

• When studying the incentive compatibility of the radio resource allocation prob-

lem, we focus on preventing users from cheating. As future mobile communication

system is an open environment where even the normal residential users can operate

as service provider, it is important to investigate the design of incentive-compatible

schemes that are robust to cheating of service providers as well.

• MobTorrentis designed for mobile users travelling with vehicles, and the perfor-

mance is evaluated under such settings. We are looking towards the possibility of

applying the idea ofMobTorrentto human social networks. The mobility pattern

of human is shown to be predictable by Srinivasan et al. [100]. However, the un-

certainty tends to be greater, and the properties of the time-varying connectivity

graph are significantly different. In addition, the power consumption constraint of

hand-held devices is much more stringent. These factors raise new challenges that

require systematic investigations.

• It is worth investigating the design of intelligent applications and transport protocols

for mobile users, such that they can fully exploit the complementary characteristics

of two types of networks, one is highly available but with lowbandwidth, and the

other is only available intermittently but provides high-bandwidth connections.

• As the delay-tolerant networking paradigm plays a more important role for mobile

Internet service provision, we are looking towards evaluating MobiCent’s perfor-

mance involving real users. Depending on the characteristics of applications and

user behaviors, further extensions ofMobiCentcan be expected.
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• The MobiCent pricing scheme provides a deterministic guarantee for incentive

compatibility regardless of the mobility pattern of users.If we relax this require-

ment, and aim at providing a stochastic guarantee about the user behavior instead,

better performance can possibly be achieved, in terms of both the frugality and the

efficiency. Further optimization can be expected by customizing the scheme ac-

cording to some specific characteristics of mobility patterns and routing protocols.
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