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Abstract

The forthcoming generation of mobile communication systésnwidely perceived as a
convergence platform, which encompasses both multipkerbgéneous wireless access
technologies and diverse cooperative networking parasliganeat efforts have been de-
voted to build flexible architecture capable of managingrlas a whole.

Meanwhile, wireless user devices become more intelligd@iey not only partici-
pate in the resource allocation process by feeding back ¢hannel states, but also can
choose to contribute to the resource provision processtwafaoling data for each other.
Opportunities bring new challenges. As mobile devices trecemarter, a rational user
can adapt its behavior in order to benefit more from the ndtwavren if doing so may
affect other users and the system’s overall performance.

Thus, the design of resource management schemes for thisnaegf mobile com-
munication should explore the cooperation possibility agibeterogeneous wireless net-
works and their users, while taking the selfish nature ofsiaad their strategic interac-
tions into consideration. This thesis studies the probléhoua to deliver Internet access
service cooperatively to (selfish) users using heterogehetreless networks, in an effi-
cient, fair, and incentive-compatible manner.

Firstly, this thesis addresses tbeordinated radio resource allocation probleior
users that are simultaneously covered by multiple oventeppeterogeneous wireless
networks. We propose theoordinated proportional fairness (CPFyiterion, based on
which a globally fair and efficient allocation decision camdrasily computed. AEPF
decision depends on the input from users, a selfish user maipuiate its channel state
report if doing so can increase its gain from the network. \\de/@ thatCPF allocation
is incentive compatible, i.e., a user’s dominant strategy ireport its channel state hon-
estly. In practice, the single-association setting, wiaemgobile station is only associated
with one base station, is often desirable. We show that theigo using the same fair-
ness criterion in single-association setting is both cammpanally expensive and prone to
user-manipulation. Alternatively, we propose Safish Load Balancing (SLB)location
scheme, which always converges to a Nash equilibrium, atesh @ichieves performance
near toCPF allocation.

Next, the thesis studies tlteoperative resource provision probldar highly mobile
users in areas where high-bandwidth connection is onlyablaiintermittently. We show
that user-contributed mobile forwarding can greatly emeamsers’ Internet access expe-
rience. We desigiMobTorrent a cooperative, on-demand framework, which uses the
ubiquitous low-bandwidth cellular network as a control el while forwarding data
through high-bandwidth contacts usingolay-Tolerant Networking (DTNapproach.



MobTorrentmakes use of the semi-deterministic knowledge about futoiméacts, so that
the user-contributed mobile forwarding process can beeiffily orchestrated.

To foster cooperation among selfish participants in a DTNrenment (e.g., as re-
quired byMobTorren), we proposeMobiCent a credit-based incentive system designed
using thealgorithmic mechanism desigapproach. We prove that the proposed scheme
is incentive compatible, in the sense that rational noddst strategically waste any
transfer opportunity or cheat by creating non-existingtaots. MobiCentalso provides
different pricing mechanisms to cater to client that wantmtnimize either payment or
data delivery delay.
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Chapter 1

Introduction

1.1 Convergence of Heterogeneous Wireless Networks

Development in new wireless access technologies and seiaanobile users’ demands
for ubiquitous high-speed Internet access services avengrihe deployment of a wide
array of wireless networks, ranging from satellite netvgotéx Wireless Personal Area
Networks, with Wireless Wide Area (Cellular) Networks andréléss Local Area (Wi-
Fi) Networks being the two most important components in leetw

The cellular network has undergone fast evolution in thefas decades [43, 58].
The first generation (1G) dated back to the late 1970’s, sschMPS (Advanced Mo-
bile Phone Systems), was an analog system providing vaiteservice. In the 1990's,
the second generation (2G), such as GSM (Global System fdail&ocommunications),
drove the global penetration of mobile telephony into pespdaily life. The transition
to a digital platform also enabled some primitive but verpplar data services, such as
SMS (Short Message Services). To meet the rapid growth ohddmfor data services,
the 2.5G wireless packet switched systems such as GPRSr@bEBaeket Radio Service)
are introduced to offer better support for data applicatiorhe third generation systems
(3G), developed since the late 1990’s, are designed forimediia communication. With

data rates as high as several Megabits per second (Mbpsprpt-person communi-
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Figure 1.1: Layers of heterogeneous wireless networks

cation can be enhanced with high-quality images and vidaog,fast access to infor-
mation and services on Internet is also available. 3G stdsd@ave several variations.
Among which, UMTS (Universal Mobile Telecommunication 8&m)’'s W-CDMA [43]
and Qualcomm’s CDMA2000 [11] are the most widely deployedards. Both of them
are evolving towards higher data rate, such as HSDPA (Higle&pata Packet Access)
for UMTS, and 1xEV (Evolution) technology (also known as hiQata Rate “HDR”)
system for CDMA2000. Thong term evolutiomplans of both systems target to increase
their network capacity further [96]. In contemporary cidlunetworks, macro-cells each
covering a large area of multiple square kilometers arétbgl basis to ensure ubiqui-
tous coverage, whereas micro-cells with much smaller fadtpare often deployed in
selected areas with high data access demand, to increasgattie spectrum reuse, thus
network capacity thereof.

Wireless users’ high-speed access requirements thatdamsatisfied timely by cel-

lular network evolution are effectively addressed by WLANieless Local Area Net-



work), which is the wireless counterpart of Ethernet. Thenolating WLAN standard is
IEEE 802.11 (Wi-Fi) [5], which operates on license-free |8&Quency bands and sup-
ports high data rate transfer. Wi-Fi networks are widelyloyggd all around the world.
Service providers are offering hot spot access in airpbdtels and other public areas.
Even residential users can operate as wireless servicelprewy themselves [37]. While
cellular networks are carefully planned to ensure ubigustooverage and meet various
traffic load of different areas, Wi-Fi networks are chardaetal by clustered and inter-
mittent footprints. In addition, Wi-Fi's built-in suppofor ad-hoc mode, which allows
wireless terminals to directly communicate with their pe@rovides a more flexible net-
working solution compared to the traditional single-hofiutar network architecture,
and it inspires new networking paradigms to be incorporatexthe convergent wireless
communication platform, which will be discussed later it 1.2.

Figure 1.1 illustrates the different layers of existingdregeneous wireless networks.
As each of these networks has complementary design tradeoffoverage, data rates
and many other network parameters, it is widely agreed kegtwill coexist in the future
and be integrated together to offer mobile us&kvays Best Connections[15, 39].

In addition to horizontal handover in the same layer of veissl network, anulti-mode
wireless terminglwhich is equipped with multiple radio interfaces or Softev®efined
Radio (SDR) [77], can also vertically handover to anothgefavhen a more suitable
access technology is available, or even simultaneouslynudtiple heterogeneous access
technologies to achieve aggregate bandwidth [45].

From the system’s point of view, the convergence of sevartdrbgeneous networks
into a single logical platform also promises thestof all components, including union
of the network coverage and aggregation of the network ¢gpadn integrated plat-
form brings the “trunking gain” to the system, by helpingwsee providers manage the
load better, such that the traffic demands varying with iocaand time can be largely
smoothed. For example, if a Wi-Fi hotspot becomes overldaseme mobile stations

(MS) associating with the Wi-Fi access point (AP) can bealee to an overlapping 3G



base station (BS), and vice-versa.

To realize the envisioned benefits, a lot of research [1, 229]/has been devoted to
address a multitude of challenges, including: mobility agament, AAA (Authentica-
tion, Authorization and Accounting) service, QoS (QuabfyService) guarantee, access
network capacity provision, core network convergence, etc

As the supporting network protocols are ready, and the uaniadio access networks
begin to interwork with each other, the following resourcamagement problem arises:
how to allocate the radio resources from the heterogeneetisark components coordi-
nately, such that users can be served in a fair and efficiegPwa

Existing resource allocation schemes in wireless netwoftes exhibit a disconnec-
tion between the following two layers: tir@er-cell association control layethat decides
which BS' a MS should associate with, and théa-cell allocation layerthat determines
how radio resource of a single BS should be shared amongsiteiased MSs. On one
hand, the inter-cell association control is often carriatiusing some simple heuristics,
e.g., assigning a MS to the BS with the best signal strengttg the BS with the least
population. On the other hand, the intra-cell schedulirexecuted only based on a local
view. This disconnection often leads the system to a sultrapstate from a global point
of view.

In Chapter 2 of this thesis, we consider inter-cell assmriatontrol and intra-cell
allocation together, and propose schemes that allocateeioeirce fairly and efficiently
in a network-wide context-airness efficiency andload balancingare incorporated in a
succinct mathematical formulation of the proposedrdinated radio resource allocation

schemes for such a multi-cell overlapping environment.

Iwithout ambiguity, we use BS as a general term to refer to bellnlar base station and Wi-Fi access
point.



1.2 User-contributed Mobile Forwarding

In addition to the coordination of heterogeneous radio ss&technologies as described
above, convergence of heterogeneous wireless networkeat®mpasses the integration
of a variety of novel cooperative networking paradigms. @neminent direction of
innovation is the incorporation of multi-hop ad-hoc neting model with the traditional
single-hop cellular network architecture. This generabgam is often called multi-
hop cellular networks (MCNSs) [65]. A number of MCN-type framorks have been
studied. Some of these frameworks propose to deploy dedicalaying entities for
data forwarding, such as the proposal by Wu et al. [109], aedptoposal by Fitzek et
al. [36]. We refer to this type of relay stations as fixed relaglternatively, the mobile
users themselves may forward data for each other, as segdegtLin and Hsu [66],
Wu et al. [111], Aggelou et al. [3], Hsieh et al. [44], Zadehakt[112], Luo et al. [69],
Bhargava et al. [13], Hu and Zhang [47], and Lee et al. [59]. réfer to these forms
of relay stations amobile relays We focus on the category oker-contributed mobile

forwardingbecause of its greater flexibility and lower cost.

Cellular BS
(@)
—————— \ ~~~~~~~‘\
N
N - 8
W3- - 0

~~~~~~ “ RelayB "

______________ Relay A -~ Client

Figure 1.2: User-contributed forwarding using a multi-teoyl-to-end path

The basic idea of MCN is illustrated in the example of Figur2, Where the client
has both a 3G cellular link and a Wi-Fi based peer-to-ped. liAs it situates in the
fringe of the 3G cell, it experiences poor channel conditiatih the cellular BS. To make
more efficient use of the spectrum, instead of sending daecttli to the client in a

single hop, the cellular BS forwards packets for it to a prokgnt (Relay A) with better



channel quality. Relay A then uses an ad-hoc network pretaiyhposed of other users
(Relay B in this example) and Wi-Fi links to forward the paiske the specified client.
By leveraging a multi-hop path, the client can significamthprove its data throughput.
Additionally, the enhanced transmission efficiency of ehresource-inefficient” clients
results in less consumption of radio resources, thus carowveghe performance of other
clients in the same cell that are not even aware of the maftiforwarding. Furthermore,
the relaying mechanism can effectively extend service ramesarea, and can also help
to achieve better load balance by dynamically divertingttaéic load from a hot cell
(highly loaded cell) to a cool cell (lightly loaded cell) tugh relay nodes.

In frameworks proposed above, the peer-to-peer conneistioften based on short-
range radio transmission like Wi-Fi, and nodes can comnateiwith each other only
when they are relatively close. As the locations of mobikerssre essentially unplanned
and largely unpredictable, a high-throughput end-to-egitth pnay not exist in many re-
alistic settings with sparse and highly mobile users, likligular networks or mobile
human social networks. In particular, if the Internet ascgateways are Wi-Fi APs,
which themselves have short transmission range and prowvilgeintermittent coverage,
the probability of having contemporaneous multi-hop catingy becomes extremely
low.

While all existing MCN frameworks assume the existence oktad-to-end relay-
ing path, the contemporaneous end-to-end connectivitptisamprerequisite to employ
user-contributed mobile forwarding for delay-toleranplgations, like downloading a
big file from Internet. For such applications, tBelay-Tolerant Networking (DTNgp-
proach can be used to opportunistically exploit the avilatiermittent contacts for data
delivery [25, 35, 49, 115]. The proposed DTN solution addpesidea ofstore carry,
andforward, where a mobile nodstoresandcarriesthe data until the client or another
mobile relay moves into its vicinity, so that it céorward the data to the latter. The idea
of DTN forwarding is illustrated in Figure 1.3, where Relayrétrieves the client’s data

from the Wi-Fi AP, carries the data, moves around, and faie/gor replicates) the data
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Figure 1.3: User-contributed forwarding using a DTN apploa

when it meets another node Relay B. Relay B carries on witld#te, until it meets the
client to complete the data delivery. As contacts are oftgoredictable, forwarding (or
replication) of data among mobile relays happens in an dppstic manner. To increase
the delivery ratio and reduce the delivery delay, data aengfropagated along multiple
paths simultaneously (e.g., the AP also replicates the skat@eto Relay D as shown in
Figure 1.3), in the hope that at least one of the relays can theelient.

In Chapter 3 and Chapter 4 of this thesis, we study the resqanavision problem
for highly mobile users in areas where high-bandwidth catior is only available inter-
mittently. Previously, the application of DTN routing appch is considered only in sce-
narios without infrastructure support, such as inter-plary networks, wildlife tracking,
disaster relief team networks, or information delivery femote villages and nomadic
people. We are the first to introduce the DTN-routing panadtg enhance the perfor-
mance of cellular network infrastructure. Our results siiwat, if the cooperation among
participants can be efficiently orchestrated and propesyered, user-contributed mobile

forwarding can greatly enhance mobile users’ Internetsegperience.



1.3 Selfish User Behavior and Algorithmic Mechanism
Design

With increased intelligence, the new generation of wirgkesminals not only can facili-
tate the radio resource allocation process by feeding lecknieasured channel state, but
also can contribute to the resource provision process hyaialing data for each other,
as presented above. When users gain more control over #heged, an intelligent and
selfish user can adapt its behavior in order to benefit more fhe network, even if doing
so may affect other users and the system’s overall perforenan

Thus, the resource allocation and provision schemes fardutonvergent wireless
networks should take the selfish nature of participants émadegjic interactions among
them into considerationGame theoryandalgorithmic mechanism design particular,
provide a powerful tool to address these challenges [2083183, 106)].

Game theory aims to model situations in which multiple pgvants select strategies
that have mutual consequences. Following the definitioed bg Nisan et al. [82], a game
consists of a set af players, 12, ....n. Each player has its own set of possible strategies,
sayS. To play the game, each playieselects a strategy € §. We uses= (sg,...Sy) to
denote the vector of strategies selected by the playerSand;S to denote the set of all
possible ways in which players can pick strategies. Theovedtstrategies € Sselected
by the players determines the outcome for each player. Ifdiygua unique strategy, a
user always gets better outcome than using other strajégilependent of the strategies
played by the other players, we say that the strategy is teesudominant strategy If
players select strategies such that, no player can urdlpt@hange its strategy to gain
more payoff, we say that the game reaché@¢aah equilibrium In another word, every
player is playing the best response to others iNash equilibrium As can be easily
derived, if each user hasdmminant strategythe uniqueNash equilibriumn the game is
for each user to adopt itominant strategy

Game theory has been widely used in social sciences (maablgaconomics) and



other areas since it was formally introduced by J. von Neumaard O. Morgenstern in
their 1944 monograph [106]. Computer networks researchave used game theory
to study Internet, since Internet emerged as a complex staaywithout any central
control decades ago [82]. However, its application in tre=aech of wireless networks
only began in recent years, as wireless terminals gainaseit intelligence and mobile
communication systems evolve towards an increasingly pfsform [20].
To illustrate the strategic interactions among users infénticoming mobile com-

munication era, we will introduce two games which naturallige in the resource man-

agement problems that this thesis studies.

()

Wi-Fi AP Cellular

\\\\\

o -
14 S
- S

.
________

e

(@)
MS m, -
None Wi-Fi Only Cellular Only Both
MS m,
0 2 1 3
None
0 0 0 0
- 0 1 1 2
Wi-Fi Only
1 0.5 1 0.5
0 2 0.5 25
Cellular Only
2 2 1 1
0 1 0.5 15
Both
3 25 2 15
(b)

Figure 1.4: An association game example

In the example o&ssociation gamas illustrated in Figure 1.4 (a), there are two dual-
radio mobile stations, M8y and MSny, as players. Each of them is equipped with both
a cellular interface and a Wi-Fi interface. Both mobile istas$ locate in the overlapping

coverage area of a Wi-Fi AP and a cellular BS. However, the@noel conditions to the



10

AP and the BS are different. M®; can communicate with the AP at 2Mbps and with
the BS at 1Mbps, while M8y can communicate with the AP at 1Mbps and with the BS
at 2Mbps. If the AP or the BS has only a single associated thsgniser can monopolize
all radio resource from the AP (or BS), and get a throughplutevaqual to its link data
rate. Instead, if two users are simultaneously associatictme AP (or BS), the AP (or
BS) implements some scheduling algorithm to divide itsoadsource (e.g. transmission
time slot) among them, so that each user only gets a fracfiis link data rate. Without
loss of generality, we assume that both the AP and the BS ddemtopular time-based
fair scheduling scheme [11, 101], such that the bandwidticaled to each of the two
users associated with the same AP (or BS) is half of its lirtk date.

We assume that both users are running some bandwidth-gapgdigations, so that
each individual always prefers higher bandwidth allogatiéor a player, its strategies
include: (1) turn off both interfacedNpng, (2) turn on the Wi-Fi interface onlyWi-

Fi Only), (3) turn on the cellular interface onlyCéllular Only), and (4) turn on both
interfaces simultaneously to achieve aggregate througBmih). The reward matrix (in
terms of the aggregate throughput value for each user) caadily calculated as in Figure
1.4 (b) (the left entry for the row player Mi&, and the right entry for the column player
MS my). Clearly, there are sixteen total outcomes depending ®ctibice made by each
of the two users.

The unique Nash equilibrium in this game is that both usems ¢ both of their
interfaces; in each of the other fifteen cases, at least otteegilayers can switch to the
Both strategy to improve its own payoff. On the other hand, a beittkcome for both
players happens when M§; uses the Wi-Fi interface only, and M8, uses the cellular
interface only. However, this is not a Nash equilibriumcsirach of the players would
be tempted to turn on its silent interface and thereby irseréta throughput.

A similar dilemma happens also in the user-contributed hedbrwarding scenario
as depicted in Figure 1.5 (a). In this exampleraibile forwarding gamewe also assume

that there are two mobile stations, Mi& and MSmy, as players. Each of them has a
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.....

MS my
Not replicate file A Replicate file A
MS m,
) ] 0.7 0.6825
Not replicate file B
0.7 0.9275
. ! 0.9275 0.91
Replicate file B
0.6825 0.91

Client

(b)

Figure 1.5: A mobile forwarding game example

unique file, which is denoted as file A and file B respectivelycli&gnt is interested to
get both files. Without loss of generality, we assume thattieat is willing to pay 1
cent for each new file, and the reward will be shared equallyrajall relays on the DTN
forwarding path with the minimum delay. We assume that bo8r and MSm;, have a
probability of Q7 to meet the client directly, and the two contact probabdgiare identical
and independent of each other. Supposer&and MSm, meet each other before either
of them meets the client. For each player, its strategidadec (1) not replicate its own
file to the other player, and (2) replicate its own file to thieestplayer.

If no replicate happens between the two nodes, each playeowmly forward its
own file to the client, for which it monopolizes the reward otdnt. As each player’s
individual contact probability with the client isD, each of them has an expected reward
of 0.7 cent. Now let us look at the asymmetric setting when mSeplicates file A to
MS mp, whereas MSm, does not replicate file B to M8y. File A can reach the client
in two ways, either directly from M$m in one hop, or via MSm and MSny, in two

hops. Because of the independence assumption, the pribpétat none of these two
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possibilities happens id — 0.7)2 = 0.09. As the two possibilities happen with identical
and independent chance, the probability for each of thenmappén and happen first is
(1—-0.09)/2=0.455. On one hand, if file A is delivered first by M in one hop, MS
my monopolizes the 1 cent reward. On the other hand, if file A lweleed first via the
2-hop path consisting of both Mi®&; and MSnmp, MS my need to share the reward with
MS mp. As MS my earns reward only from the delivery of file A, its expectedngai
0.455x 14 0.455x 0.5 = 0.6825 cent. For M3, in addition to the expected gain of
0.7 cent from delivering file B, it can also benefit from the hahtreward by forwarding
file A, if it meets the client earlier than M®8y. Thus, it has a total expected reward of
0.7+0.455x 0.5=0.9275 cent. Similar analysis can be applied to find the renarthi
situation when MSm, replicates file B to MSmn, whereas M3 does not replicate file
A to MS mp. Finally, when the two MSs carry out mutual replication, béites will be
delivered if at least one MS meets the client. Thus, the degliprobabilities for both files
are 1— (1—0.7)2 = 0.91. The expected total reward is<®0.91 = 1.82 cent. Because of
the symmetry assumption, the expected reward for each M8232= 0.91 cent.

The expected rewards for the two MSs in the four possiblearaé&s are summarized
in Figure 1.5 (b). For each outcome, the left entry represtret reward for the row player
MS my, and the right entry for the column player Mi&. The unique Nash equilibrium
in this game is that both users do not replicate to each aflespite the fact that mutual
forwarding can increase the expected rewards of both @ayer

These two games clearly demonstrate that the strategiwioelud selfish users may
lead to a sub-optimal state. In fact, both of them are ingtohs of the famous Prisoners’
dilemma [82] in their respective settings.

When we design resource management schemes for next genenabile commu-
nication systems, the rules of how participants play a gamiettae outcome of the game
under different combinations of users’ strategies, canakert into consideration, such
that inefficiency could be potentially avoided or minimizegddesigning the game care-

fully.
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Algorithmic mechanism desigB1, 82] is a subarea of game theory that deals with
the design of games. It studies optimization problems wtiereinderlying data, e.g., the
channel states experienced by MS in&lssociation gameor the replication opportunities
in themobile forwarding gamearea priori unknownto the algorithm designer, and must
be implicitly or explicitly elicited from selfish participas. The high-level goal is to
design a protocol, or “mechanism?”, that interacts withipgrants so thaselfish behavior
yields a desirable outcomeMore specifically, a mechanism iilscentive compatibleor
strategy-proofif the dominant strategy of each participant under thegiesi mechanism
is to reveal its state truthfully. We adopt tladgorithmic mechanism desigapproach
when designing and analyzing the resource management sshiemthe forthcoming

generation of mobile communication systems.

1.4 Thesis Contributions

In the era of convergent wireless networks, we need to desginresource management
schemes to explore the cooperation possibility among bgésreous wireless networks
and their participants, while taking the selfish behaviousdrs and their strategic inter-
actions into consideration. In this thesis, we investighteproblem of how to deliver

Internet access service cooperatively to (selfish) useng ieterogeneous wireless net-

works in an efficient, fair, and incentive-compatible mamne

Intermittent Overlapping Intermittent
Coverage Coverage Coverage

((é))

T

________

Wi-Fi Networks

Figure 1.6: Heterogeneity in coverage
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While cellular networks are carefully planned to ensurgulious coverage and meet
various traffic load of different areas, Wi-Fi networks aha@acterized by clustered and
intermittent footprints. As shown in Figure 1.6, the hetgoeous geographic distribu-
tion of network coverage and capacity results in two dracadlyi different scenarios. On
one hand, in “hot” areas where a large number of user demaedsxaected, such as
shopping malls, hotels, and airports, densely deployedsind cellular networks often
provide overlapping coverage. In these areas, a multi-naoadess terminal can poten-
tially be associated with one or multiple overlapping BSsoteNthat, in such regions,
cellular networks are often deployed as micro-cells (orttaalls), thus provide compa-
rable capacity and coverage as Wi-Fi networks. On the othied hin the rest of regions,
such as residential areas, natural parks, and highways;daigdwidth Wi-Fi connection
is available only intermittently, and cellular networke aften deployed as macro-cells,

thus only provide low-speed connection.

Coverage _ _

Perspective Overlapping Intermittent

System performance Chapter 3
- _— Chapter 2

Incentive compatibility Chapter 4

Figure 1.7: Thesis road map

To realize the vision of next generation mobile communarasiystems, which promises
the always best connectidior mobile usersanytime, anywhere, anyhowesource man-
agement schemes for badlierlapping-coveragandintermittent-coveragsecenarios should
be designed carefully. This thesis studies both scenafioseach scenario, we address
the system design problem from two perspectives, as ilitestrin Figure 1.7. Firstly, we
consider the problem of how to achieve efficient system perdmce, given that users
are fully cooperative. Secondly, we study the incentive patibility problem, and pro-
vide rigorous analysis to show that cooperation can befedti® the proposed resource

management schemes. This thesis makes the following batitns:
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e We study thecoordinated radio resource allocation problefor users being si-
multaneously covered by multiple overlapping heterogesesireless networks.
We propose theoordinated proportional fairness (CPBJlocation scheme, which
makes globally fair and efficient allocation decision amaoetyorks. The proposed
allocation decision can be calculated efficiently, and annugations demonstrate
that the proposed algorithms outperform popular heurggtigroaches, by striking
a good balance between efficiency and fairness, while aiciggdead balancing

among network components.

e We formulate the resource allocation process asrib#i-cell resource allocation
game The formulated game is associated with a resource altocaile, which cal-
culates the bandwidth allocation outcome based on the inputthe MS players.

A MS can manipulate its channel state report to game thergyste

e Using the proposed game theory framework, we analyze tlentive compatibil-
ity of the multi-cell resource allocation gameith CPF allocation scheme as its
associated rule. We show thatraulti-cell resource allocation gameith CPF al-
location is incentive compatible. However, the positiveuledoes not hold for its
variant in the single-association setting, where a MS is@ated with a single BS.
For the single-association setting, we proposeSékish Load Balancing (SLBJ-
location scheme, which always converges to a Nash equifihrand often provides

performance near t6PF allocation.

e To address the challenges of allowing highly mobile usetsatasfer large amounts
of data in areas with only intermittent but high-bandwidtimoections, we pro-
poseMobTorrent a cooperative, on-demand framework, which uses the uioggii
low-bandwidth cellular network as a control channel to ekghe high-bandwidth
intermittent Wi-Fi contacts for data delivery ilelay-Tolerant Networking (DTN)

approach.

e The scheduling algorithm iMobTorrentmakes use of the semi-deterministic knowl-
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edge about future contacts, so that the user-contributddlenforwarding process
can be efficiently orchestrated. We derive the achievabt®peance bound, and
show thatMobTorrentprovides near optimal data delivery performance, in terms o

both the delivery ratio and the delivery delay.

We consider the incentive design for a DTN environment tdefosooperation
among selfish participants (e.g., as requiredvimpTorren). We identifyedge in-
sertion attackandedge hiding attackas the two major forms of attacks ina DTN
environment. Both of them are difficult to detect, and carosisty degrade the
performance of DTN routing. We formulate these two attaokbepath revelation

game and show that existing incentive schemes are not inceotingatible.

We designMobiCent a credit-based incentive system for DTN. We prove that the
proposed scheme is incentive compatible under the twokattatthe sense that a
MS cannot increase its reward by launchedge insertion attackandedge hiding
attacks MobiCentalso provides different pricing mechanisms to cater tantlieat

wants to minimize either payment or data delivery delay.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 studies theoordinated radio resource allocation probleior users that

are simultaneously covered by multiple overlapping hefen@ous wireless networks.

We formulate thecoordinated proportional fairness (CPFgsource allocation criterion,

based on which a globally fair and efficient allocation diecican be easily computed.

A multi-cell resource allocation gamis formulated to capture the selfish behavior of

users. Based on which, we prove tIGRF allocation is incentive compatible. We also

formulate the integral version of tl&PF problem (nt-CPF) for the practically desirable

single-association setting, and show that it is both coatpartally expensive and prone to
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user-manipulation. Alternatively, we propose ®elfish Load Balancing (SLBrheme,
which always leads to a Nash equilibrium, and often achigeztrmance near tGPF
allocation.

Chapter 3 and Chapter 4 address the challenges in the ittiEemincoverage scenario.
Chapter 3 presentglobTorrent a cooperative, on-demand framework to provide Inter-
net access for vehicleslobTorrentuses the ubiquitous low-bandwidth cellular network
as a control channel, while forwarding data through highelvedth contacts in a DTN
paradigm. We study the problem of how to schedule the trassaom over intermittent
contacts, such that the amount of data delivered is maxaha@nd the delay is minimized.

After MobTorrent we present in Chapter 4 the designMbbiCent a credit-based
incentive system for DTNMobiCentis largely motivated by, and directly designed upon
MobTorrent In this chapter, we formulate thgath revelation gamevith both edge in-
sertion attacks and edge hiding attacks. We characterezedbessary conditions for a
payment scheme to be incentive compatible under edge imsettacks. Two different
pricing mechanisms are designed to cater to client that sMenminimize either pay-
ment or data delivery delay. We prove that both of the propasdemes are incentive
compatible. As the two attacks are fundamental to the natiuBerN, we expectMobi-
Cents credit-based solution can be extended to foster coaperat other forms of DTN
systems different fronvilobTorrent

Finally, conclusion and possible future works are preskimeéhapter 5.



Chapter 2

Coordinated Proportional Fairness for

Overlapping Cells

2.1 Introduction

Overlapping coverage of wireless base stationst{BSa common phenomenon in mo-
bile communication systems. For a particular radio accessark, neighboring cells or
sectors overlap with each other. In addition, deploymenitiater-operation of a wide
array of wireless access networks, ranging from 3G netwoikitFi hotspots, open the
opportunity of overlapping coverage from BSs using hetenegus radio access tech-
nologies. In such an environment, a multi-mode (e.g., Waikdl 3G capable) MS can
flexibly associate with either a Wi-Fi AP or a 3G BS or simuéansly with both (Wi-Fi
and 3G) BSs.

As the various radio access networks begin to interwork @éth other, the follow-
ing resource management problem aridesw to allocate the radio resources from the
heterogeneous network components coordinately, sucluieas can be served in a fair
and efficient way?

As discussed in Chapter 1, new models and techniques shedkeMeloped to address

1same as in Chapter 1, we use BS as a general term to refer tawdlaitar base station and Wi-Fi
access point.

18
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the resource allocation problem in this new environmentHerfollowing reasons.

Firstly, existing resource allocation schemes in wiretestsvorks often exhibit a dis-
connection between the following two layers: theer-cell association control layethat
decides which BS a MS should associate with, andintra-cell scheduling layethat
determines how radio resource of a single BS should be assigmong its associated
MSs. On one hand, the inter-cell association control isoferied out using some sim-
ple heuristics, e.g., assigning a MS to the BS with the bgstasistrength, or to the BS
with the least population. On the other hand, the intraseteduling is executed only
based on a local view. When the association decision is madellish MSs, a system
without coordination among BSs often operates in a statiedar the optimal, as clearly
indicated by the association game example presented irp8dcB of Chapter 1.

Secondly, despite the fact that research for wired netwadokes consider routing (the
wired counterpart of inter-cell association control) andesluling (the wired counterpart
of intra-cell allocation) together, existing models forad networks fail to capture some
important characteristics that are unique to wireless asv In this thesis, we focus on
the aspect that a single MS may experience significantlgdifft channel conditions with
different BSs, and a single BS may experience different cbbronditions with different
MSs as well. In addition, the wireless networks often relyirmfividual MS to measure
and report its current channel states with neighboring B&srder to make informed
decisions. This allows an intelligent and selfish MS to ganeestystem by manipulating
its channel report, as to be shown in Section 2.4.3.

In this chapter, we consider the inter-cell associatiortraband intra-cell allocation
together, such that the resource is allocated fairly andieffily in a network-wide con-
text. The content of this chapter is organized as follows.Ségtion 2.2, we describe
the system model. In Section 2.3, we review the existinqiéss definitions, with an
emphasis omroportional fairness In Section 2.4, we present o@oordinated Propor-
tional Fairness (CPFYormulation [24], and show that it can be easily solved asra co

vex programming problem. Considering the strategic befrawf users, we formulate
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the multi-cell resource allocation gamand show that th€PF mechanism is incentive
compatible. For the practically attractive single-asatioh scenario, where each MS is
associated with a single BS, Section 2.5 formulates thgateariant of theCPF prob-
lem (Int-CPF) and shows that it is NP-hard. Furthermore, lilteCPF allocation scheme
is not incentive compatible. Alternatively, we presenselfish Load Balancing (SLB)
scheme, and analyze its convergence. In Section 2.6, weatgdhe performance of the
various schemes proposed, and compare them to some populastits. Section 2.7

presents the related work. We conclude in Section 2.8.

2.2 System Model

Integrated Radio
Access Networks

e T AP Core WHBIESS
P - ! network
i :
Multi-mode 1 i R
terminals ' (( )) i Data path
."’.. 0.":'.. : i
[ p— U8 L
i Common Radio Control Path
i Resource Manager

Figure 2.1: A convergent mobile communication system

Our discussion is based on a convergent system of heterogeméreless networks
as shown in Figure 2.1. The main components of the considetecture are: multi-
mode terminals, all-IP core network, and the integratedradcess networks (RANS)

sitting between them. We briefly describe each of them as\ill

e Multi-mode terminals Ongoing silicon development enables chipmakers to inte-
grate multiple forms of radio access technologies in a siobipset. For example,

Qualcomm’s Snapdragon chipset for mini-notebooks indutfe Fi alongside 3G,
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Bluetooth, broadcast TV and GPS (Global Positioning Syyteapabilities [88].
Shipments of Wi-Fi chips in multi-mode mobile handsets aorted to grow by
more than 50 percent in 2008 and reach 56 million units. Thelé@hone, which
was introduced in 2007 in the U.S. and expanded to more thaouttries in 2008,
helps drive that growth with shipments of more than 10 millimits. It also helps
set the tone for the industry, making Wi-Fi capability a siaml feature on smart-
phones. This trend is expected to be further boosted by ttemtelevelopment of
SDR (Software Defined Radio) technologies [77, 102].

e All-IP core network Wireless core networks are quickly evolving to packet siaetd
IP-based mechanisms [96]. IP layer shields the applicaticom the underlying
network technologies, thus enabling much richer set of comservices to be pro-
vided independent of the access networks. The open spéoifisaand platforms
also greatly facilitate the creation of new service, andon#he use of cheaper,

faster, and better core equipments.

¢ Integrated Radio Access Networldss a bridge between the two components above,

flexible architecture capable of managing a large varietyoeiisting radio access
networks is being standardized [1, 2, 33]. The proposed ComiRadio Resource
Management (CRRM) functions [67, 103] consider the pooksburces in all ra-
dio access technologies (RATs) as a whole, aiming at a beterall performance
than that can be achieved by the stand-alone networks. Asrshothe figure,

the common radio resource manager can be interpreted ascallegtity which

gathers input from different RATs (such as Wi-Fi networkd && networks), and
coordinates resource allocation decisions among themh 8etinput and output

controls are carried out using the CRRM functions.

Consider a set of BSs using heterogeneous radio acces®legi®s controlled by
a single common radio resource manager, we assume that &bla$Ba fixed amount

of radio resource (e.g. channel or transmit power) and ¢ogei@thogonally with each
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other. A common example of such a scenario is a 3G BS and atappéerg Wi-Fi AP.

Note that this model is general and is applicable to casesanhe BSs use the same
radio technology as long as the channels are orthogonal.eXxample, this simplified
model also roughly captures the current operation mode dtin kVi-Fi networks and
high data rate cellular networks. For Wi-Fi networks, 8@b.and 802.11g use the 2.4
GHz ISM band, which is divided into 13 channels each of widzivtHz but spaced only
5 MHz apart, thus offers 3 non-overlapping channels. 8G2udes the 5 GHz U-NII
band, which offers 12 non-overlapping channels (in FCC aodiNAmerica standard).
Given the separation between two non-overlapping chantiedssignal on one channel
is sufficiently attenuated to minimally interfere with arisaitter on another channel. In
today’s typical deployment, each Wi-Fi AP operates sirggle channethat is selected to
be orthogonal to its neighboring APs, if possible. Idedhgre should be no co-channel
APs in the same contention domain. Channel selection fghbering Wi-Fi APs has
been discussed by Kauffmann et al. [53], and their resultsothstrate that interference
among neighboring Wi-Fi APs can be effectively mitigatethgghe proposed frequency
selection scheme. For cellular networks, we take the widelgloyed High Data Rate
(HDR) networks [11] as an example. Using a dedicated RFearattie HDR downlink
for each BS is time multiplexed and transmitted atftiepoweravailable. To date, the BS
location, antenna down-tilt and transmit power are deteechiat the time of deployment
and hence are not dynamic.

Though in our model we focus on the case that the radio capsot BSs are fixed
and orthogonal, they can potentially be adapted to imprbeenetwork-wise perfor-
mance. On one hand, Wi-Fi channel bonding is used in “Supete@inology, which
bonds two channels of classic 802.11g to double the PHY déta On the other hand,
in HDR networks, transmit power control can be applied tagaie inter-cell interfer-
ence. For future research, we would like to incorporate tBecBpacity adaptation into
the consideration of the network-wide radio resource alio.

We say there is a link = (m,b) between a MSn and a BSb if they are able to
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communicate with each other. We call such a paiadjacent MS-BS pairThe input for
CRRM is the channel states for all adjacent MS-BS pairs. Wad@n the downlink from
BS to MS. In wireless networks, the link data rate is deteadiby the channel condition
between the transceiver and the receiver. For example, iR,HNDSs monitor the pilot
bursts in the downlink channel to estimate the channel ¢mmdi in terms of Signal to
Noise Ratio (SNR). This SNR is then mapped into a supportéalrdée, and fed back in
every time slot to the BS through the data-rate-requestraian the reverse link.

We focus orelastic traffig which can adapt to the bandwidth allocated by the system.
To simplify the discussion, we assume that a user will coresalrthe bandwidth allocated
and the queues are backlogged. The allocated bandwidtiM& @n a link is the product
of the link data rate and the fraction of the radio resourtmated by the corresponding
BS. Thus, the bandwidth equals to the link data rate onlygf\t& monopolizes the radio
resource of the BS. Otherwise, the bandwidth of a MS is airadf its link data rate. In
both Wi-Fi networks and HDR networks, time multiplexing sedl to share the resource
of BS among its associated MSs, i.e., data transfers toréiffausers are scheduled at
different time slots. Thus, the resource consumptions bgrént links at the same BS
are orthogonal, and can be linearly summed up. In additi@emassume that there is no
constraint in the number of MSs that can be associated t?a BS

Because of the lossy nature of wireless communication amdaarcity of spectrum
resource, the wireless links are likely to be the bottlersddke system described in Fig-
ure 2.1. Thus, a radio resource management scheme, whaclat@é the combined radio
resource in a fair, efficient, and load-balancing way, iskineto meet mobile customers’
requirements. Fairness, efficiency, and load balancing t@de considered together
when designing radio resource allocation schemes for sauhi@&cell environment. On
one hand, a scheme which maximizes only the aggregate syisteaghput, or equiv-

alently, thearithmetic mean of per-user throughput valyessults in the starvation of

2There are 60 Walsh codes for orthogonal transmission in HIDi& puts an upper bound of 60 active
users per BS at any given time. However, the limit of 60 userariely reached in practice.
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resource-inefficient users, because it allocates all systsources to the users with the
best link data rate. On the other hand, a scheme which makes afiocation data rates
as equal as possible, or equivalently, maximizesti@mum per-user throughput value
regardless of their link data rate, often results in pooraleystem performance in wire-
less networks, as shown in Section 2.3.1. In addition, ameh&onsidering only each

individual cell can easily lead to unfairness among useratkx in different areas.

2.3 Fairness Definition

Before we formulate theoordinated proportional fairness (CPgsource allocation cri-
terion, we first briefly review several important fairnesfmgons in computer networks

literature.

2.3.1 Max-min Fairness

The most common understanding of fairness in computer mksais probably thenax-
min fairnessas defined by Bertsekas and Gallager [12]: rates are madpiakas pos-
sible subject only to the constraints imposed by link caesi Formally, consider a
bandwidth allocatiolR = (Ry, m € M), whereM is the set of users, ari@, is the band-
width allocated to usen € M, we define the sorted bandwidth allocati®r- (Ry) as the

users’ allocated bandwidths sorted in non-decreasing.orde

Definition 2.1 Max-min Fairness [10]: A feasible bandwidth allocation schemé B
called max-min fair if and only if, for any other feasible lovidth allocation S, it satis-
fies: R(S) has the same or higher lexicographical value til® , whereR(S andR(S)
are the sorted bandwidth allocation vectors under the twostttered schemes S antd S

respectively.

Although themax-min fairnesss Pareto optimal (i.e., any change to make any MS

better off is impossible without making some other MS worg @ has been criticized



25

for favoring too much of resource-inefficient requestssthuoes not make efficient use
of resource. In addition, there appears to be no clear ecen@ason why max-min
sharing should be preferred over some other bandwidthadltmtschemes.

In particularmax-min fairnesg not efficient for elastic traffic in a multi-rate wireless
communication system as considered in this thesis, beevause some MSs use a lower
bitrate than the others, the performance of all MSs shahiegsame BS is considerably
degraded to the same level as the worst one, as shown by Hewdspl2]. For example,
802.11b products degrade the bitrate from 11 Mbps to 5.5t 2,Mbps when repeated
unsuccessful frame transmissions are detected. In suckea aahost transmitting at
1 Mbps reduces the throughput of all other hosts transmgitiinhigher data rates to a
value below 1 Mbps. The basic CSMA/CA channel access methatlthe root of this
anomaly: it guarantees an equal long-term channel accebalpitity to all hosts. Once a
host gets the access opportunity, it starts sending amdependent length of frame using
its available bitrate. A host captures the channel for adornigne if its bitrate is lower,

thus it penalizes other hosts that use the higher rates.

2.3.2 Proportional Fairness

Compared tomax-min fairnessproportional fairnessas proposed by Kelly [55, 56]

strikes a better balance between efficiency and fairness.

Definition 2.2 Proportional Fairness [55]: A feasible bandwidth allocation schemé S
is called proportionally fair if and only if, for any other &sible bandwidth allocation S,

it satisfies:

RS _RS)
(S)

A .

where Fﬁqs) and I%‘ng) are the rates allocated to user m by the two considered scheme

S and Srespectively, and M is the set of users.
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The rationale behingroportional fairnesriterion can be interpreted from multiple

angles as follows.

Engineering Viewpoint

Max-min fairnesgloes not allow any increase of a large sharing if the incresaaethe
cost of some smaller sharing being decreased, even if signifincrease for the large
sharing can be achieved with only minor decrease of the sshalling. Proportional
fairnessrelaxes this restriction by allowing large sharing to irmse further with small
sharing decreased, if changes of the assigned bandwidthrseesult in the sum of the
proportional changes to be non-negative, as shown in EquatilL. By doing sopropor-
tional fairnessfavors resource-efficient requests more thaax-min fairnessthus helps
improve system efficiency. On the other hand, although theirement of non-negative
proportional change is less strict tharax-min fairnessproportional fairnessstill helps
prevent resource-efficient connections from starvinguessinefficient connections to-
tally. It is shown that bothmax-min fairnessnd proportional fairnesscan be viewed
as special cases in a family of fairness definitions strildifterent tradeoffs between

efficiency and fairness [56].

Utility Maximization Viewpoint

Whenproportional fairnesss proposed [55], it is associated with the optimizationmof a
objective function representing the overall utility of tHews in progress. The utility
function chosen is logarithmic function of the allocatedddaidth, where the value of a
flow increases with its allocated bandwidRhn proportional tdogR It is shown that the
“proportional fairness” solution as defined in Equation 2.1 maximizes the logarithmi

sum of the user throughput values, which can be formallytenias

S' = argmax va IogR<nS) (2.2)
me
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It's easy to see that the optimization of the logarithmic safrthe throughput values

is equivalent to the optimization of their product form.

S' = argmax l_lA R,(ns) (2.3)
me

Thus, the objective function of proportional fairness isoakquivalent to the opti-
mization of thegeometric mean of per-user throughput valueich is then' root of the

product of all MSs’ throughput values, wherés the number of MSs.

Game Theory Viewpoint

The utility function approach used by Kelly [55] suffersindhe disadvantages that user
utilities or preferences are only known in some qualitasigase. Thus, although reason-
able assumptions can be made on the behavior of utility fomst such an approach by
itself still cannot put fairness definition on the foundatiaf a solid and precise mathe-
matical framework. Another approach taken by Mazumdar.473] is to consider mea-
surable performance characteristics rather than absttidity functions. In the context
of elastic traffics, such a key metric is the allocated rateeyTpropose a game theoretic
framework based on choosing this direct metric. UsingNlash bargaining framework
from cooperative game theofy9], they show thaproportional fairnesss in fact aNash
Bargaining Solution (NBSput of all Pareto Optimal pointsNBSis the only equilib-
rium satisfying all fouraxiomsas defined by Nash [79], namely: (1) invariance to affine
transformations, (2) Pareto optimality, (3) independesfderelevant alternatives, and (4)

symmetry.

To summarizeproportional fairnesgriterion strikes a good balance between fairness
and system efficiency, maximizes a reasonable overaltyufiinction for elastic traffic,
and satisfies the cooperative game theory axioms abstragtedsh.

In a single-cell environment for both Wi-Fi networks [10hjccellular networks [11],

the proportional fairness is implemented by allocatingif@stotically) the radio resource
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(rather than bandwidth) of a BS equally among associated, gardless of their dif-
ferent efficiency in using the resource, i.e., their varitiis data rates. If timely channel
feedback is available, channel-aware opportunistic adireglalgorithms [11] are often
employed to exploit the “multi-user diversity”, as in theseaof HDR network. In this
work, we consider the time-averaged channel state as iapdtassume that the underly-
ing scheduling algorithm of each BS (which can be channelrajwsupports the resource

allocation decision.

2.3.3 Minimum Potential Delay Fairness

Proportional fairnessassumes the utility of a flow is a logarithmic utility funatievhere
the value of a flow increases with its allocated bandwitim proportion tologR An
alternative utility function with decreasing gradienH% as suggested by Massoulié and
Roberts [71]. It leads to the bandwidth-sharing objectizenmimizing the sum of the
reciprocal of rates. This objective may alternatively beeipreted as minimizing the
overall potential delay of the transfers in progress. Fdgmaiinimum potential delay

fairnesscan be written as:

Definition 2.3 Minimum Potential Delay Fairness [71]: A feasible bandwidth alloca-

tion scheme Sis called minimum potential delay fair if and only if:

1
S" = argming — (2.4)
2R
where Fﬁns) is the rate allocated to user m by scheme S, and M is the seed.us

In the example studied by Massoulié and Roberts [71], theywshat this criterion is
intermediate between theax-min fairnesandproportional fairnessin that it penalizes
more (less) severely resource-inefficient MSs than max{prioportional) fairness, re-
sulting in a larger (smaller) overall throughput. Our ewions in Section 2.6.2 confirm

this property.
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Among all fairness definitions described above, our projgesmsed omproportional
fairness because it is widely adopted in single-cell environmenbfuth high data rate 3G
network [11] and Wi-Fi network [101]. As discussed abgweportional fairnesstrikes
a good balance between fairness and system efficiency. Ihaddts cooperative game
theory interpretation [73] puts it on the foundation of aid@nd precise mathematical
framework. We compareroportional fairnessscheme withmax-min fairnesscheme

andminimum potential delay fairnessheme in Section 2.6.2.

2.4 Coordinated Proportional Fairness

Fair scheduling in wireless networks is often considered 8ingle-cell context, while
the joint routing-scheduling fairness formulation in vdneetworks cannot be directly ap-
plied to multi-cell wireless networks. In this section, waoatproportional fairnessas a
resource allocation criterion suitable for elastic traiffienulti-rate wireless communica-
tion systems, and extend it to the general setting of ovpitapcells from heterogeneous
wireless networks, by defining th@ordinated proportional fairness (CPRllocation

problem.

2.4.1 Formulation

Consider a network with a s& of BSs and a sel of MSs. We letC, be the finite
radio resource capacity of Bl§ for b € B. Based on our system model as described
in Section 2.2C, is fixed, and is independent of each other. We assume that\&ch
is equipped with sufficient number of radios, thus it can $iameously associate with
multiple neighboring BSs to achieve aggregate throughpetwill relax this assumption
in Section 2.5.

Recall that a link = (m, b) represents an adjacent pair of MS and BS that are able to
communicate with each other. Given a linkve useb(l) to denote the corresponding BS,

andm(l) to denote the corresponding MS. We wiiitéor the set of all links. Ifb = b(l),
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we setAy to be the required radio resource in B$ support per unit flow through link
I. If the channel condition between(l) andb(l) is poor, it can only support a low data
rate, thus more radio resource is required to transfer ad@ifiaw, which implies a higher
resource consumption rate, i.8y, is larger. On the other hand, if a MS-BS link is under
good channel condition, less resource is required to teartke same amount of data,
i.e., Ay is smaller. As wireless channel state keeps changing with,tthe value of\,
used in our problem formulation is a time-averaged linkesthat is relatively stable for
a decision period. Fdr # b(l), we setA, = 0, because sending flow over lihkloes not
consume any resource of BSThis defines a matriA = (Ay,b € B,l € L).

For a given MSm, its several links through different BSs may substitute doe
another. Formally, suppose that a Mfhas a subset af. We writeHy = 1 if m=m(l),
so that linkl serves the MSn, and setH,; = 0 otherwise. This defines a 0-1 matrix
H=Hmn,meM,l €l).

A flow patterny = (y;,| € L) supports the rates= (xm,me M) if Hy = x, so that the

flows over all links serving the Mg sum to the ratem,.

() cellular
Wi-FiAP b
‘l//lm """"""""""""""""" é BSh

,,,, -~
o ~ ~ - -
- s - 7’

"1 l3:1Mbps | l,:1Mbps f‘* s
; ——————— - ~~2‘ rgj

MSm, T T e MS m,
@)
2
M ={m,,m}, lo1o 1100 1 2 0
B={b,, by}, A=|2 1 {0 01 1} _u - X:H o
L={l,,1, 1,1} 0107
IR IREIRVIL] 2 2

(b)

Figure 2.2: CPF allocation example |

To illustrate the notations, we look at Figure 2.2 (a), whildpicts the same setting

as in the association game example in Section 1.3 of Chaptéie assume that the
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capacities of both the Wi-Fi AB; and the cellular B®, are 1, thu€ = [ 11 ]T. Each
of MS my and MSnvy, is equipped with both a cellular interface and a Wi-Fi irded.
Both MSs locate in the overlapping coverage area of a Wi-FibARnd a cellular BS
b,. However, their channel conditions to the Wi-Fi AP and thkutar BS are different
because of their different locations. M can communicate with the Wi-Fi AP at a
link data rate of 2Mbps and with the cellular BS at a link dedgerof 1Mbps, while
MS mp can communicate with the Wi-Fi AP at a link data rate of 1Mbpd with the
cellular BS at a link data rate of 2Mbps. There are 4 linksesponding to the 4 adjacent
MS-BS pairs. We denote them &s= (my,bs), I2 = (M, bp), Iz = (mp,by), andly =
(mp,by) respectively. The input t&€PF allocation problem is: MS sé¥l = {m;, mp},
BS setB = {bs, by}, link setL = {l4,12,13,14}, BS capacitie€ = { 1 1 ]T, matrix A =

01

o

1100
, and matrixH = . Note that the allocated bandwidth for

010 0011
a MS on a link equals to its link data rate only if the MS mondages the radio resource

NI

Nl =

of the corresponding BS. Otherwise, the bandwidth of a MS av@k is the product of
the link data rate and the portion of resource allocated bythresponding BS.

A flow patterny is feasible ify > 0 andAy < C, so that the resource consumed by
wireless links through a B8 sum to not more than its capacity. Based on our system
model as described in Section 2.2, we assume that wirekssntrissions are “orthogo-
nal”, thus resource consumed by different links at the sa®e&h be linearly summed
up.

Formally, theCoordinated Proportional Fairness (CPF) allocationis the optimal

solution for the following problem:

maximize Wmlog(Xm)
2
s.t. Hy=xAy<C

over xy=>0 (2.5)
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wherewn, > 0 is the weight assigned to different users representinig diéerent
priorities.

We consider only MSs with non-empty set of adjacent BSs, &ésl\Bith non-empty
set of adjacent MSs. Under this assumption, there are feaaibcations with the ob-
jective function bounded away from negative infinity, whiatplies that in the optimal
solution,xy, for any MSmis bounded away from 0. Intuitively, not allocatiagy band-
width to a connected user (despite its potentially poor nkehnondition) is considered
unfair. Without affecting the calculation of the optimal@ioon, we can safely assume
that each connected usercan get a minimum positive bandwidth allocatiofrom the
system, which translates to a lower bouwmdog(e) for m's utility function. We thus can
define the utility function over the domain > € to ensure that the user’s utility function
is bounded from below. We can further add a constant valge (ewnylog(€)) to each
user’s utility function, such that its range is within theé senon-negative numbers. Note
that, incorporation of additive constant values into thiétytfunctions does not change
the solution as defined in Equation 2.5.

The objective function is differentiable and strictly cane and the feasible region
is compact. Thus, a maximizing value ©fy) always exists and can be found by La-
grangian methods. There is a unique optimum for the rateovectince the objective

function is a strictly concave function a&f but there may be many corresponding values

l mmmm \J

Bandwidth Radio
Resource Resource

of the flow ratey satisfying the constraints [75, 108].

(a) Wired network (b) Wireless network

Figure 2.3: Resource sharing in wired and wireless contexts

We briefly discuss the difference between our model and ketlgiginal model for
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wired networks [55].

As shown in Figure 2.3 (a), resources in wired networks asgastierized directly in
terms of bandwidth (such as a router’s interface forwardipged), and a resource can
serve all routes passing through it with the same efficiesaydata rate and consumed
resource can be treated equivalently. In contrast, to stippo unit flow in wireless net-
works, different amount of radio resource (e.g., time sipgctrum, power, or code words)
is required due to location-dependent and time-varyingisBbhcondition, as shown in
Figure 2.3 (b).

Compared to Kelly’s original model for wired networks, owrrhulation changes
the definition ofA from a 0-1 matrix to a matrix with elements taking non-negateal
values, to characterize the different link-dependentugssoconsumption rate in wireless
networks.

Note that, bothmax-min fairnes&nd minimum potential delay fairnessan be ex-
tended to multi-cell in a similar way [10, 53]. We call thedoordinated Max-min Fair-
nessand Coordinated Minimum Potential Delay Fairnes#/e will compare the perfor-
mance of these three coordinated fairness definitions itidde2.6.2 and discuss the

related work in Section 2.7.

2.4.2 Example

Let us look at theCPF allocation in the setting as shown in Figure 2.2.

Using Lagrangian method [108], tH@PF solution for the given example isx =
[2,2]T,y=1[2,0,0,2|". The solution is Pareto-optimal. M8, is served totally over link
l1 = (my,by), and MSmy, is served over linky = (mp, by). Bothm; andmyp are assigned
to their interface with more favorable channel conditioa,,ilink with smaller resource
consumption rate.

By considering fairness in a global sense (among all MSg)CiRF allocation so-
lution automatically results in inter-cell load balanceor Example, as shown in Figure

2.4, suppose the channel condition between¥&nd BSh, deteriorates, and supports
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Figure 2.4: CPF allocation example Il

only a link data rate of @8Mbps BS by becomes more congested than BS in the

sense that B®, requires extra capacity in order to support the originacaltion as in

1
5 01 O
Figure 2.2. The input for th€PF problem becomeA = 2 , and matrix
010 45
1100 _ :
H= remains the same. TI@PF solution becomes = [1.8,0.9]T, and
0011

y=[1.8,0,0.1,0.8]". TheCPF allocation automatically shifts some load introduced by
mp from by to b;. Note that, the resource-efficient M& has a higher throughput than
the resource-inefficient MBy,.

A third example is shown in Figure 2.5, where an additionéivadS mg appears
in the area covered only by Bi%, thus making the traffic load even more asymmetric.

We denote the new adjacent MS-BS pair as ligik= (mg,bz). The matrixA becomes

11000
01 0 0 , _
, and the matrid becomes| 0 0 1 1 0. TheCPFsolution
0104 1

0 00O01
becomes = [1.2,0.6,0.75]T, andy = [1.2,0,0.4,0.2,0.75|". The CPF allocation shifts

more load ofmp, from b, to by, to free more resource b to servems.
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Figure 2.5: CPF allocation example 11|

Note that, under th€PF allocation, individual BS does not enforce time-based fair
allocation among nodes associated with it. As shown in tleerset and third example,
the CPF solution often requires a MS to be simultaneously assigoeaiultiple BSs.
Further, the change of a single input parameter may chahgeatibn decision for all
MS-BS pairs. These factors need to be taken into consideratnen implementing such

a scheme in practice.

2.4.3 Incentive Compatibility

CPF allocation decision is based on the link state informatibralbadjacent MS-BS
pairs. In practice, the link data rate is measured by indi&idMS, which periodically
feeds it back to the common radio resource manager using CRRa&fions for informed
decision [1, 2, 33]. Thus, an intelligent and selfish MS camimaate its reported link
states, if it can gain more from the network by doing so.

Based on this observation,naulti-cell resource allocation proceduan be inter-
preted as a game, where each MS is a player. The strategy ofra 848 be described

as a link data rate vect®,, = (Rnn, b € B), whereRy, gives the data rate supported be-
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tween the MSmand a BSb. The resource allocation outcome is calculated according t
the allocation scheme employed by the common radio resonareger, and individual
BS enforces the decision. If the reported link data Rytgbetween the M®1and the BS
bis not equal to the actual link data rd®,, the effective data rate will be less thRf,.
On one hand, iRmp < RY,,, data are transferred by the BS usRg,. On the other hand,
if Rmp> Ry, data are transferred by the BS at a rate higher than thatecanlypdecoded
by the MS, the resulted effective data rate becomes lower tiiiat can be achieved by
the most appropriate rai . Note that, by collecting the link state vec®y, from each
m € M, the link vectorlL, matrix A andH required in calculating th€PF allocation can
be derived accordingly. As over-report can be easily detefd17], we focus on the case
wherem may under-report its channel state, R < Ri,

Formally, amulti-cell resource allocation gameis defined agM, R*, R, S x), where
e M is the set of MS players.
¢ R" = (R}, me M) consists of the actual link data rate ved®jfor each MSme M.

o R= xRy, me M, whereRy, = {Rn|Rn < R}, } specifies the strategy space of MS

m. mcan choose any link data rate vecky € R, when playing the game.

e Sis an allocation scheme that determines the allocatiorovéetsed on the speci-

fied channel state inpR € R.
e X= (Xm,me M) gives the allocated data rate vector.

Theorem 2.1 proves the positive result that inrindti-cell resource allocation game
with CPF as the allocation schen% the dominant strategy for any MS is to report its
channel state truthfully. We adopt tlaégorithmic mechanism desigapproach to ana-
lyze the game. As described in Section 1.3 of Chaptaxldorithmic mechanism de-
sign[81, 82] studies optimization problems where the undedylata (the link data rates

with neighboring BSs as measured by individual MS in uiti-cell resource allocation
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game, is a priori unknownto the algorithm designer (the common radio resource man-
ager in our game), and must be implicitly or explicitly efed from selfish participants
(through the periodic feedbacks of MSs using CRRM functioour game). The high-
level goal is to design a mechanism (the allocation schenmiirgame), that interacts
with participants so thatelfish behavior yields a desirable outcotadfair and efficient
resource allocation in our game). Recall that, a mecharsssaid to beéncentive com-
patible, or strategy-proofif the dominant strategy of each participant under thegiesd
mechanism is to truthfully reveal its state (each MS replooisestly its channel state in
our game). In contrast, if a game is not incentive compatiélS can gain by cheating
about its state, thus making the system operate under dicieef state. Even worse,
MSs may keep varying their behavior as response to otheegégies, which can lead to

instability problem.

Theorem 2.1 A multi-cell resource allocation game with CPF allocatiocheme is in-

centive compatible.

Proof: We prove this property by contradiction. We assume thaetiea usem*
which can increase its aggregate bandwidth allocation byising the truthful strategy.
We denote the allocation decision for the original settiwerem* does not cheat, as
D’ = (X,Yy), and the allocation decision for the new setting, whetecheats, a®” =
(X", y").

Given a MSm, we denote the subset of its adjacent BSs that allocatelgtmore

radio resource to it i’ than inD’ asB*(m), i.e.,Vb € BT (m), 3&”;“) 5 Yy
b b

Given a BSbh, we denote the subset of its adjacent MSs that get strioctgigadio

resource allocation from it iB” than inD’ asM~(b), i.e.,Yyme M~ (b), W”?‘Z < %

Denote the initial BS set & = B™ (m*). Based on our assumption, we hayfe >

X Thus, there must be some BSs which allocate more resourneitoD” than inD’.
More specificallyBg # 0.

Denote the initial MS set ablp = Upcg,M~(b). As a BSb € By allocates more
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resource tan* in D”, and in both solution®’ andD” it allocates all of its resources, it
must reduce allocation to some other M®ith Thus,Mg # 0.

Consider the Lagrangian form of ti&PF problem:

L(X,Y; A W)
— Z\Awmlog(xm) — AT (x—Hy) +u" (C—Ay)
- EM(wmlog(xm) — AmXm) +

me

> N Amity = Hog)Auy) + > MeCo (2.6)
leL beB

whereA = (Am,me M), p= (p, b € B) are vectors of Lagrange multipliers.

oL

e (Wmlog(Xm))" —Am (2.7)
m

oL

v Am(t) — Ho()Po() (2.8)

Hence, at a maximum df, the following conditions hold:

W,
E”‘ = Am (2.9)
Amity = HomPoay if i >0
< HpyAoy ifyr =0 (2.10)

The Lagrange multiplierad andp have simple interpretations. We may vigy as
the implied cost of using unit radio resource of BSor alternatively the shadow price
of adding additional radio resource at BSA,, can be viewed as the weighted charge of
unit flow for MS m.

As X > X, because of Equation 2.8, < Ap.. Thus, for anyb € Bp, because of

Equation 2.10p < 1. Based on Equation 2.10 again, for amy= Mo, Ay, < Ay, thus
Xm > X
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We repeatedly carry out the following set expansion step:

Bn+1 - UmeMnBJr(m) U Bn (211)

I\/|n+1 = UbeBMlMi(b) (2-12)

As B is a finite set, the process always terminates at somen* whereBy: 1 = Bp-.
For each expansion step, the argument about the change i@rigegmultipliers as in the
initial step can still be applied, thugy, > X, Ym € M.

ConsideBy- andMp:. For any MSm € M+, its allocated data rate strictly increases.
For any MSm ¢ My, its radio resource allocation from any BSc By is not reduced
according to the definitions above. Thus, BSBjnjointly allocate higher data rate B’
to all MS m € My without affecting their allocation to any MS outsitig;:. Combining
the resource allocation decision Bf' for BSs inB,- and the allocation decision @’
for BSs not inB,«, we have a feasible allocation solutigfof the original setting where
m* is honest. For M3n*, X is the aggregate rate af* using the actual link data rate,
thus, we havesy > X7, > X .. Forme My andm # m*, their reported data link rates
are the same for the two settings, thus> X, > X, Similarly, form¢ Mg, X > X'. As

the vectorx’s strictly larger tharX, this contradicts with the fact thatis Pareto optimal

under the original setting wherg* is honest. ]

2.5 Integral Coordinated Proportional Fairness

The optimal solution for theCPF allocation often requires MSs to be simultaneously
assigned to multiple BSs, which may not be desirable in m@ctue to the following

reasons:

e It requires a node to be equipped with multiple simultaneaative radios. On one
hand, a software defined radio that can dynamically switchfferent radio access

technologies may not satisfy such requirement, as it casimatltaneously present
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in multiple overlapping cells. On the other hand, turningmultiple radios can

significantly increase the power consumption.

e When a single parameter changes in the network, the altocdgcision may be
adjusted globally. This may result in both system instibéind excessive signaling

overhead.

e Transport protocol at client may have difficulty to efficigraggregate bandwidths
from multiple interfaces, especially when the allocateddvaidth of each interface

varies with time [45].

Thus, in this section, we study resource allocation schamassingle-association

setting which associates each MS with a single BS.

2.5.1 Formulation and Complexity

The formulation for the€CPF allocation can be modified to reflect the additional constrai
in single-association setting.
Formally, thelntegral Coordinated Proportional Fairness (Int-CPF) allocationis

the optimal solution for the following problem:

maximize Wml0g(Xm)
2
st. Hy=xAy<C
vme M, Jm e LVl # Im,Huyi =0

over x>0,y>0 (2.13)

If we decouple the solution fdnt-CPF allocationscheme into thenter-cell associa-
tion control layerand theintra-cell scheduling layerwe observe that, given its allocated
MSs, the strategy for a BS in the second layer to optimize #iméd objective function,

is independent of the association control decision in tls l&@yer and the second layer
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strategy of each other. This is because one MS is served bgle 8S, thus, every single
BS should maximize the weighted logarithmic sum of datasratehe MSs assigned to it,
and it can achieve this by employing individual proportidiagrness scheduling. As the
second level scheduling is clear, the remaining problera detide for each MS which
BS it should associate to.

We show that, foint-CPF allocationscheme, there does not exist an algorithm that
can find the optimal solution in polynomial time unlé3s- NP, i.e., the problem is NP-
hard. Similar to Lenstra et al. [61] and Bu et al. [16], ouruetibn is via3-dimensional
matchingproblem that is known to be NP-complete. T3elimensional matchingrob-

lem is stated as follows.

Definition 2.4 Let X= {X1,.... %}, Y ={Y1,...,¥n}, Z={21,...,2y} be three disjoint
sets with identical size n, and T is a subset of X x Z. That is, T consists of triples
(x,Y,2) such that>e X,yeY,and z Z. AT C T is a 3-dimensional matching|if’| = n

andUgcti = BUCUD. The problem is to find whether such aékists.
Theorem 2.2 Int-CPF allocation problem is NP-hard.

Proof: Consider a3-dimensional matchingroblem wherel' consists ok triples
(k> n) andUtctti = BUCUD, otherwise the problem becomes trivial. We construct a
correspondingnt-CPF allocationproblem as follows. For each trigee T, we create
a corresponding B§ with capacity 1. We create two types of MSs: normal MS and
privileged MS. For each elemente X UY UZ, we create a corresponding normal MS
m. There are totally 8 normal MSs. A normal M3n is covered by a B if and only
if met. In addition, we creat& — n privileged MSs, which are covered by all BSs.
We assume that the link data rates of all adjacent MS-BS pagr®qual to a constant
R. A normal MS has weight 1, and a privileged MS has weiygt> 2. The weight
of privileged MS is selected such that, if possible, packimg 31 normal MSs inton
BSs, while assigning each of the— n privileged MSs into each of the rest &—n

BSs, gives the highest value Bfnax= 3 mem Wml0g(Xm) = 3nlog(§) + (k—n)wplog(R).
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Thus, it is easy to verify that if there is a 3-dimensional chatg solutionT’, the Int-
CPF allocationproblem achieves the optimal solutibif,ax. Conversely, if thént-CPF
allocationproblem achieves the optimal solutigp,ay, there is &8-dimensional matching
solution for the original problem. O
Supposewy = 1,¥Vm € M. If we know the congestion vectdNy, b € B) for the
optimal solution ofint-CPF problem, wheré\, denotes the number of MSs assigned to a
BS b, we can reduce the problem of finding the optimal solutionri6iCPF allocationto
finding the maximum weight perfect k-matching in a bipargjtaph as follows. Consider
the bipartite grapls(M, B,L) whereM denotes the MSE denotes the BSs, aridis the
set of adjacent edges. The requirement (k-value) of eacim3/ is 1. For aBS € B,
its requiremenk(b) = N,. The weight on each edden,b) is set tow(m,b) = Iog('f\lm—;’),
whereRnp is the link data rate between M8and BSh. The optimalint-CPF allocation
corresponds to the maximum weight perfect k-matching, ab 865 is associated with
one BS, each BS gets the number of MSs as specified by the dpgtmgestion vector,
and the logarithmic sum of allocated data rates for all MSsagimized. Note that the
number of possible congestion vectors is polynomial in thalper of MS§M| and can be
enumerated if the number of B is a constant. In our evaluation, we use this approach

to calculate the solution dht-CPF allocationfor a constant number of BSs.

2.5.2 Incentive Compatibility

In contrast to the multi-cell allocation game wi@PF allocationscheme, the multi-cell

allocation game withnt-CPF allocationscheme is not incentive compatible.

Theorem 2.3 A multi-cell resource allocation game with Int-CPF allocat scheme is

not incentive compatible.

Proof: The theorem can be easily proved by providing counter exasnpl
In the example of Figure 2.6 (a), there is a M covered by both a Wi-Fi AB;

and a cellular B®,, with link data rate of ®Mbpsand 2Mbpsrespectively. In addition,
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Figure 2.6: Cheating under Int-CPF allocation

there is a MSm, which is covered only by B8, with link data rate of bps Recall that
each BS’s capacity is fixed, and the bandwidth allocated td&saoM a link is the product
of the link data rate and the fraction of the radio resourtmated by the corresponding
BS. Thelnt-CPF allocationis to assign MSm to by, and MSm, to by, thusm, gets
an allocation of ®Mbps andmy, gets an allocation of Mbps However, ifm; cheats
by hiding its association withy, i.e., set the data rate of linkm,b;) to 0, thelnt-CPF
allocationis to assign bothm; andmp to by, and allocate half the resource to each of
them. In this caseym gets a higher throughput oMbps whereasm’s throughput is
reduced to Mbps

This example shows that a MS with multiple adjacent BSs campoiate its adjacent
BS set, so as to be allocated to its favored BS.

On the other hand, the example of Figure 2.6 (b) shows thag adn also manipulate
its reported data rate to increase its benefit by changingr &t&’s association. In the

given setting, both MSm and MSny, are covered by both the Wi-Fi AB; and the
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cellular BShy. Their link data rates to the AP and the BS are shown in thedigliris
easy to verify that, thent-CPF allocationis to assigmm to b; andmp to by, such that the
throughput ofmy is 1L.9Mbpsand the throughput afy, is IMbps If mp cheats by hiding
its adjacency withpy, i.e., set the data rate of linkmp, by) to O, thelnt-CPF allocation
will swap the assignment, wittm, associated tb; andmy to by. Thus, the throughput of
My increases to 1IMbps O

The example of Figure 2.6 (b) also shows that both the optimedjral Coordinated
Max-min Fairnesg410] and the optimalntegral Coordinated Minimum Potential Delay
Fairnesg[71] are not incentive compatible.

As we can scale the data rate such that the aggregate utilitygioptimal solution is
strictly greater than 0, while the aggregate utility iNash equilibriums 0, theprice of
anarchy which is defined as the ratio between the optimal sociatytihd the utility of
the worst Nash equilibrium point of the game is unbounded.example, in Figure 2.6
(a), the optimal social utility i$0g(0.9) +log(2) > 0, whereas the social utility under the
Nash equilibrium point isog(1) +1og(1) = 0.

2.5.3 Selfish Load Balancing: Congestion Game

As Int-CPF allocationdecision is computationally expensive to solve, and do¢sleo
fine an incentive-compatible game, a natural alternatiie Ist selfish users decide for
themselves which BS to associate with.

When each MS can make individual association decisiontiiréestead of thenulti-
cell resource allocation gamas defined in Section 2.4.3, we havsiagle-association
game

Formally, asingle-association gameés defined agM, S x), where
e M isthe set of MS players.

e S= xSy denotes the set of all possible ways in which players cangiieltegies.

For each playem € M, S, denotes its own set of possible strategies, which corre-
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sponds to the subset of BSs with which it can associate. kicpkar, one strategy
bm € Sn corresponds to the association of M8&with BS by,. A strategy profile

s € Sconsists of the vector of each player’s selected strategyg + (b, me M).

e Under the assumption that each BS implements indiviguaportional fairness
scheduling, and that all users have the same weight, theghputx, received by

a MSmunder a strategy profie= (bm,me M) can be simply expressed as:

_ R,
Nby,(S)

Xm(S) (2.14)

whereRyy, is the link data rate between Mfand its selected BBy, andN, (S) is
the congestion level (number of associated users includiBgn) of BS b, under
strategy profiles. Given the freedom to decide its own association, a playbas
no incentive to cheat about its link data rate, as doing sp detreases its actual

throughput.

For each player in theingle-association gamés reward (in terms of allocated band-
width) of employing a certain strategy is affected only by tumber of other players who
employ the same strategy (choosing the same BS to assodihjerather than who they
are. Thus, this game falls into the classcohgestion gameshich is first introduced by
Rosenthal [92].

Rosenthal shows that if the cost (or reward) function is #reesfor all players choos-
ing the same strategy, then these games possess a richiisruciparticular they always
have a Nash equilibrium in pure strategies. The term of “gtnegegy” means each player
deterministicallyplays a single chosen strategy, instead of randomly pickingng mul-
tiple strategies. This result follows from the existencapbtential functionwhich is a
real-valued function defined over the set of strategy pofi@ving the property that the
gain (or loss) of a player shifting to a new strategy is eqadhe corresponding change
of the potential function.

The existence of an exact potential function impliesfihge improvement property
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(FIP): Any sequence of strategy-tuples in which each stratepletdiffers from the pre-
ceding one in only one coordinate (such a sequence is calfthy and the unique
deviator in each step strictly increases its payoff ifaprovement path is finite. The
first strategy-tuple of a path is called thmtial point; the last one is called therminal
point Obviously, anymaximal improvement patlan improvement path that cannot be
extended, is terminated by a Nash equilibrium.

Milchtaich [74] extends the definition afongestion gaméo allow player-specific
cost (or reward) functions, i.e. different players havéedént costs (or rewards) by choos-
ing the same strategy, and shows that even these games haneeMgsh equilibrium.

In our setting, different MSs have different wireless lirdt¢al rate with the same BS,
thus the reward function is player-specific. However, tmepte structure of the player-
specific reward function as defined in Equation 2.14 allowsysrove a stronger result
than Milchtaich.

More specifically, Theorem 2.4 shows that thiegle-association gampossesses
thefinite improvement property (FIPYo prove FIP, we define for every strategy profile

s= (bm,me M) the following potential function:

O(8)= 3 10g(Ruty) ~ 5 109(No(s)1) (2.15)
me B

whereRnyy, is the link data rate between Mand its selected BB, andNy(s) gives
the number of MSs allocated to a BSinder the strategy profile The potential function
is constructed such that the gain (or loss) of a player sigifib a new strategy is equal to
the corresponding change of the potential function, as showhe proof below. Similar
construction has also been used by Gairing et al. [41] toyaeah delay minimization

congestion game with user-specific cost function.
Theorem 2.4 Single-association game possesses the finite improve mogrrty.

Proof: Consider a selfish step— s where a playem € M switches from BS to
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BSb'.

D(s) —d(s) = (log(Rmy) —10g(Ny(s)+1)) — (log(Rmp) —10g(No(s)))

= log(xm(s)) —log(xm(s)) (2.16)

[]

Based on the result, we can formally describe 8wdfish Load Balancing (SLB)
scheme as follows. Und&LBscheme, the common radio resource manager starts from
a feasible allocation decision, and greedily switches a M8 BS that can improve its
throughput. Only one MS is switched at a time, thus when thesemultiple MSs that
can improve by unilaterally switching associati®@i,Bscheme selects one of them. The
iteration ends until &ash equilibriums reached, i.e., no user can unilaterally change its
association to achieve a higher throughput.

To make the presentation more concrete, we choose the fotlostrategies when
implementingSLB scheme: (1) We use the popular heuristicStfongest-Signal First
(SSF)allocation scheme as the initial allocation vectorSi8Fallocation scheme, a MS
is associated with the BS that provides the strongest sgjreaigth. The decision is made
regardless of the BS’s load. (2) Given a selected MS to switthere are multiple BSs
that can improve its allocated rate, we assign the selec®tb\d BS that can increase its
allocated bandwidth by the largest percentage. Draws #@ledseandomly. (3) If there
are multiple MSs that can gain by unilaterally switchingaasation, we select one of
them randomly. Note that, the result of Theorem 2.4 doesealgptan the choices made
by our implementation. The convergence property holds fyrsirategy fitted into the
general framework.

Note that, there can be multiple Nash equilibria in $ivegle-association gamend
SLBscheme can converge to any of them. For example, in Figuréh?.éhere are two
Nash equilibria. In the first equilibrium, M8y, is associated to B8;, and MSny, is

associated to B8,. In the second equilibrium, the associations are swappetivitdual
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MS can have significantly different bandwidth allocatiordandifferent Nash equilibria.
Note that althouglSLBscheme converges, it is not incentive compatible. For examp
MS mp in Figure 2.6 (b) can hide its association with B§ so as to make the system
converge to the second equilibrium instead of the first one.

Despite the fact that it is not incentive compatib&,B scheme is still a valuable
solution, as no MS can gain by unilaterally changing its eisdgimn. In addition, our eval-
uation in Section 2.6 shows th&t. Bscheme converges quickly and performs clodato
CPF scheme. It remains an interesting research problem tome@signtive-compatible
resource allocation schemes for single-associatiomgetiuich that MSs cannot gain by

cheating, while system can operate in a fair and efficiet¢ sta

2.6 Evaluation

2.6.1 Methodology

Our evaluation is based on a customized flow level simuldtbe two metrics we con-
sider arearithmetic mean of per-user throughput valslgeometric mean of per-user
throughput values On one handarithmetic mean of per-user throughput valisghe
sum of all MSs’ throughput divided by the number of MSs. Iteets the overall perfor-
mance of the system. Note that although a higitehmetic meanmplies higher aggre-
gated throughput for all MSs, resource sharing can be vefginaimong them. Thus, we
look at thegeometric mean of per-user throughput valties, then'" root of the product
of all MSs’ throughput, whera is the number of MSs. Measure usiggometric mean
presents a better trade-off between efficiency and fairrassa single starved MS makes
thegeometric meaequal to 0.

In Section 2.6.2, we first compare the performance of theetbo®rdinated fairness
definitions, i.e.Coordinated Proportional Fairnes€oordinated Max-min Fairnesand
Coordinated Minimum Potential Delay Fairnes3ection 2.6.3 compares the performance

of the following six schemes that are basedRnoportional Fairness For allocation
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schemes that can split a user’s flow among multiple intesfase consider:

e Coordinated Proportional Fairness (CPBcheme, which is the optimal solution
for the convex programming problem as formulated in Eque®®. CPF scheme

gives the upper bound of the geometric mean of per-userdghimut values.

e Uncoordinated Proportional Fairness (UPFRcheme, where a MS associates to
all neighboring BSs by simultaneously turning on multipdelio interfaces. This
is the Nash equilibrium for the association game as discuss€hapter 1, and
represents a non-cooperative scenario where all userglfishsand the system is

uncoordinated.

For allocation schemes under single-association constitzat enforces each MS to

associate with only a single BS, we consider:

¢ Int-CPF scheme, which is the optimal solution for the integral ofation prob-
lem as formulated in Equation 2.13. The problem is proveetdB hard. However,
for a relatively small number of BSs and constant weight, veeable to find the
optimal solution by iterating through all feasible cong@stvector combinations to
find the optimal value among all resulted maximum weightedege k-matching
solutions. Note that, we assume that all MSs honestly rdpeit channel states

and association information.

e Selfish Load Balancing (SLBrheme, which starts fro@SFallocation, and allows
user greedily switch BS to improve its own throughput. Usetahes in a random
order, and the switching user selects a BS allocating theeisigrate. The iteration
ends until a Nash equilibrium is reached, i.e., no user cdaterally change its as-
sociation to achieve a higher throughput. Theorem 2.4 kshais the convergence

of such a process.

e Strongest-Signal-First (SSBrheme, which always associates a MS to the BS with

the strongest received signal strength, regardless obdd. ISSFscheme is the
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default association method for multiple radio access telduies, including Wi-Fi

networks.

e Least-Population-First (LPFscheme, which always associates a MS to the BS
with the least number of associated MSs, regardless of thaenet conditionLPF
scheme is a classical method for load balancing, especmblingle-rate cellular

networks.

For fair comparison, we assume that each BS implementsithdil/ proportional
fairness scheduling for all schemes above, except for tke 0BCPF scheme, which
decides for each BS its allocation vector, thus does notssaciy follow the individual
proportional fairness scheduling.

As illustrated in Figure 2.7, our simulation is based on ar6@®00m torustopology
where 9 BSs are placed on a 3 by 3 grid, with the distance bettveeadjacent BSs set
to 200 meters. All BSs have identical transmission powergpetate on non-interfering
channels. The maximum transmission range of a BS is set toriE56rs. The seB(m)
of BSs covering a M3n are determined from M&1's location by examining whether
its distance to a BS is within 150 meters. We have conductetliatrons for two user

distributions:

Figure 2.7: A torus BS topology

¢ In uniform settingusers are distributed within the torus uniformly at ranglom
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¢ In hot spot settingout of all MSs generated,= 90% are randomly positioned in a
circle-shape hot spot with the radius of 150 meters arouadémter of a selected

hot BS as indicated by the shadow area in Figure 2.7.

The percentage of MSs covered by different number of ovpnhapBSs is shown in

Table 2.1 for the two settings. Both the average and 90% caméel interval (CI) are

shown.
Uniform Hot spot
Mean 90% CI Mean 90% CI

P(|B(m)|=1) | 29.1%| 17.8% - 40.4%) 17.9%| 8.9% - 26.7%
P(|B(m)|=2) | 65.9% | 53.3% - 77.8%) 73.7%| 64.4% - 84.4%
P(|B(m)|=3) | 4.3% 0% - 8.9% 6.9% | 0.2%-13.3%
P(|B(m)|=4) | 0.7% 0% - 2.2% 1.5% 0% - 4.4%

E[IB(m)|] | 1.77 1.64-1.9 1.92 1.77 - 2.07

Table 2.1: Overlapping coverage statistics

The arrival of MSs follows a Poisson process, and the sojtore of a MS in the
system follows an exponential distribution, both of which assumed to be independent
of MSs’ allocated throughput for simplicityp = % is defined as the average number
of active MSs in the system divided by the number of BSs, witfadlt value setto 5. We
use the log-normal shadowing propagation model to caletireg received signal strength
at MS from each of its adjacent BSs. Given the distashee150m between a MS$n and

a BSh, the received signal pow&g(d) from b atmis calculated as:

d
Pas(d) = Pys(do) — 10(3|0910d—o +Xg (2.17)

wheredy = 10m is the reference distancp,= 3 is the path loss exponent, aXg
is a Normal random variable in dB having a standard deviadioa = 12dB and zero

mean. The parameters are set to model the typical loss inbam @nvironment [89]. We

3We note that it takes longer time for a MS with lower bandwitittownload some given amount of
information, however, a MS with lower bandwidth also termlddwnload less amount of content. We leave
the study of MS behavior to future research.
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set the Signal Noise Ratio (dB) within reference distance;tfdy) — Pys(No) = 35dB,
and use a threshold-based mapping as shown in Table 2.2¢ordiee the link data rate
accordingly. The selected values are commonly used in 82gtwork [5, 87, 110].
Table 2.3 shows the statistic of the link data rates amoracadi BS-MS pairs. Both the

average and 90% confidence interval (Cl) of the probabilgypaesented.

SNR< 3dB | 3dB< SNR< 8dB | 8dB< SNR< 15dB | 15dB < SNR
Rate| 1Mbps 2Mbps 5.5Mbps 11Mbps

Table 2.2: Mapping between Signal Noise Ratio and link daie r

Uniform Hot spot
Mean 90% ClI Mean 90% ClI
P(R=1Mbps | 41.5% | 32.5% -50.5%| 44.3% | 35.0% - 53.6%
P(R=2Mbpg | 14.9% | 7.9% -21.9% | 15.3%| 8.5% - 22.1%
P(R=5.5Mbpg | 18.6%| 11.8% - 25.4%| 18.4%| 11.1% - 25.7%
P(R=11Mbpg | 25.0%| 16.3% - 33.7%| 22.0% | 14.0% - 30.0%
E[R] (Mbps) | 4.48 3.67-5.29 4.18 3.48 -4.88

Table 2.3: Link data rate statistics

2.6.2 Comparison of Various Coordinated Fairness Definitins

This section compares the performance of the three fairefsitions as discussed in
Section 2.3 when they are applied in a multi-cell environtneamelyCoordinated Pro-
portional Fairness (CPF)Coordinated Max-min Fairnesand Coordinated Minimum
Potential Delay Fairness

As shown in Table 2.4, for uniform setting, under tBeordinated Max-min Fair-
ness the arithmetic mean of per-user throughput values is leas 80% ofCPF, and
the geometric mean of per-user throughput values is aroQfa &f CPF. The per-user
throughput performance of ti&ordinated Minimum Potential Delay Fairnesocation
scheme is intermediate between eordinated Max-min Fairnesscheme and th€o-
ordinated Proportional Fairnesscheme, in terms of both arithmetic mean and geometric

mean. Similar phenomenon is observed in hot spot settingells w
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Uniform Hot spot

Arith. Mean | Geo. Mean| Arith. Mean | Geo. Mean

Proportional average 1.26 0.89 0.93 0.57
90%Cl| 1.06-1.46| 0.67-1.11| 0.64-1.22| 0.45-0.69

Max-min average 0.36 0.36 0.23 0.23
90% Cl| 0.26-0.46 | 0.26-0.46| 0.17-0.29| 0.17-0.29

Minimum average 0.89 0.79 0.68 0.51
Potential Delay | 90% CI| 0.69-1.09 | 0.62-0.96| 0.47-0.89| 0.39-0.63

Table 2.4: Throughput (Mbps) comparison of different camated fairness definitions

2.6.3 Performance of Various Schemes

This section compares the performance of the six schemgsiag®roportional Fairness,
namelyCPF, UPF, Int-CPF, SLB SSF, andLPF.

Figure 2.8 (a) plots the per-user throughput values sortetbn-decreasing order
under the uniform setting, and Figure 2.8 (b) plots the tasutler the hot spot setting.
Figure 2.8 (c) and (d) provide a zoom-in view of MSs with lowndwidth allocation for
the two settings. Table 2.5 summarizes éinighmeticandgeometriomean (and the 90%
confidence interval) of per-user throughput values undéerént schemes for the two

settings respectively.

Uniform Hot spot

Arith. Mean | Geo. Mean| Arith. Mean | Geo. Mean

CPE average 1.26 0.89 0.93 0.57
90%Cl| 1.06-1.46| 0.67-1.11| 0.64-1.22| 0.45-0.69

UPE average 0.89 0.67 0.73 0.39
90% Cl| 0.72-1.06 | 0.52-0.82| 0.49-0.97| 0.30-0.48

Int-CPE average 1.26 0.89 0.92 0.56
90%Cl| 1.06-1.46| 0.67-1.11| 0.63-1.21| 0.45-0.67

SLB average 1.26 0.89 0.92 0.56
90%Cl| 1.06-1.46| 0.67-1.11| 0.63-1.21| 0.45-0.67

SSE average 1.29 0.86 0.98 0.45
90% Cl| 1.06-1.52| 0.64-1.08| 0.63-1.33| 0.31-0.59

LPE average 1.02 0.63 0.75 0.42
90% Cl| 0.78-1.26| 0.48-0.78| 0.49-1.01| 0.31-0.53

Table 2.5: Arithmetic and geometric mean of per-user thinpug values (Mbps)
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Figure 2.8: Per-user throughput values sorted in non-dsirg order

Coordinated Proportional Fairness (CPFRcheme produces the optinggometric

mean of per-user throughput valueBhis is as expected, because the objective function

of the optimization problem defined in Equation 2.5 can basiarmed to the geomet-

ric mean of per-user throughput without affecting the dolut Note that, despite that

Strongest-Signal-First (SSBLheme often allocates higher throughput t&&¥ scheme

to MSs with high bandwidth allocation (as shown in the rigdgion of Figure 2.8 (a) and

(b)), it provides lower throughput for MSs with low bandwhdillocation, especially for

hot spot setting as shown in Figure 2.8 (d). Because of tHanmess, its geometric mean

of per-user throughput is lower th&PF scheme.

In contrast taCPF schemeUncoordinated Proportional Fairness (UPBEheme per-

forms much worse, providing arithmetic/geometric meanestyser throughput not only

lower thanCPF scheme, but also inferior to all other schemes exceptRé scheme in
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some cases. This observation holds for both uniform anddutsettings. The significant
performance gap betwe&@PF andUPF strongly advocates the adoption of a coordinated
resource allocation approach for an integrated envirommen

Among all allocation schemes for the single-associatittingg Int-CPF scheme has
the optimal geometric mean of per-user throughput, whigleegwith the optimization
problem defined in Equation 2.13. Its performance is cloSER& scheme under both
uniform setting and hot spot setting. For both settings cthwrdinate-wise performance
gap between the two schemes is never greater tt,3and is less than 1% for more
than 70% of MSs. Our result also shows th@glfish Load Balancing (SLBcheme
often has very close performanceltd-CPF scheme, thus t€PF scheme as well. For
around 65% of user distribution in uniform settingl.-B scheme andnt-CPF scheme
make the identical association decision. For 99% of useriloligions, the performance
gap between the two schemes is less than 1%. Similar phemoneabserved under hot
spot setting as well. In fact, such an approximation anf®ngschemelnt-CPF scheme,
and CPF scheme holds when we vary the traffic load and asymmetry, mewsrated
later in Figure 2.9 and Figure 2.10. The only case that wergbsabvious difference
betweerCPF scheme and the two single-association schemes is whendraganumber
of MSs per BS is very small (e.g= 3).

Based on this, we make the following observati8y:using an (appropriate) single
radio per user, the system can largely achieve the perfoomarhen simultaneously using
multiple radios per user.

Among all six schemesStrongest-Signal-First (SSKEcheme achieves the highest
arithmetic mean of per-user throughputhis is becaus&SFscheme greedily assigns
each MS to the BS providing the best channel condition. Hewe&SFscheme’s ge-
ometric mean of per-user throughput is lower tl@2RF scheme]nt-CPF scheme, and
SLBscheme, because a MS often associates to an overloadedtB&nhanly allocate a
small portion of its overall radio resource to serve the MfBistprovide low throughput

despite of the high link data rate between them. This siina particularly common
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in hot spot setting. As shown in Figure 2.8 (d), for hot spadtisg, nearly 15% of MSs
have throughput lower than 100 Kilobit per second (Kbps)an&EFscheme, compared
to less than 1% unde€PF scheme. For the 15% of MSs with lowest bandwidth alloca-
tion, their throughput unde8SFscheme is less than 60% of their throughput urCieF
scheme. ThusSSFscheme can be unfair to a significant portion of users.
Least-Population-First (LPFscheme often performs worst in terms of both arith-
metic and geometric mean of per-user throughput, imphhagitraditional load balancing

technique is not applicable to multi-rate wireless datavoeks.

3.5

Geo. avg. of throughput (Mbps)

System load

Figure 2.9: Geometric mean of throughput (Mbps) over vayyoad

Figure 2.9 demonstrates different schemes’ performanderurarying load in uni-
form setting. The performance &it-CPF scheme and the performance&ifBscheme
are close to each other in all range of load. Further, thepadnce gap between they and
the CPF scheme reduces with increased traffic intensity. This isbgse botint-CPF
scheme an&LBscheme allocate resource on a per MS basis. Hence, the thegeaf-
fic load, the finer the relative granularity of them. In fatte tonly case that we observe
obvious difference betweddPF scheme and the two single-association schemes is when
the average number of MSs per BS is very small (€8)

Figure 2.10 demonstrates the impact of asymmetric trafBtridution. The figure

shows that the performance of bdtit-CPF scheme an&LB scheme is close t€PF
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Figure 2.10: Geometric mean of throughput (Mbps) over vayyiaffic distribution asym-
metry

scheme even under highly asymmetric traffic distributiomctSrobustness is largely be-
cause both schemes take into account both network load @ddita rate. In compari-
son, performance @SFscheme deteriorates faster than all other schemes witkdsicrg
traffic asymmetry, antlPF scheme performs better thHPF scheme under high traffic

asymmetry.

2.6.4 Strategic Interactions under SLB and Int-CPF

O R, N WAoo N

Average steps to converge

1 2 3 4 5 6 7
System load

Figure 2.11: Convergence speed of SLB over varying load

Figure 2.11 shows the average number of steps required iwhbke multi-cell sys-
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tem for SLBscheme to converge to a Nash equilibrium, starting fronSt&eallocation.
As can be seen from the figur8l.Bscheme converges quickly, and the number of steps
required grows linearly with the system load.

While SLB scheme takes strategic interactions among MSs into caasiole, Int-
CPF scheme simply ignores them. Our evaluation shows that, ub% of decision
made byint-CPF scheme is not a Nash equilibrium in the single-associatéonegy More
specifically, there is at least one MS which can unilatereitignge its association to gain
higher throughput from the network undiet-CPF allocation. As illustrated in Figure
2.6 (a), the user can cheat by hiding all of its adjacent BSeor its desired BS, so as
to affect thelnt-CPF resource allocation decision and increase its own bandwidt

We observe that, in more than 30% of settings, there are pleilash equilibria in
the inducedsingle-association gameneaning that there is at least one MS that can cheat

about its channel state to drive the system to the Nash bguitn that it prefers.

2.7 Related Work

For cellular networks, schemes that dynamically balanaddamong neighboring cells
have been proposed, including directed retry (DR) and ticbleandoff (DH) [34, 40, 52].
The proposed schemes take advantage of the fact that somenklSke able to obtain
sufficient signal strength from multiple cells. With DR soie if a call finds its first-
attempted cell has no free channel, it will try for a free alelnn any other cell that can
provide sufficient signal strength. The DH scheme takesideia further, in that when a
cell has all or almost all of its channels in use, it may, uddtg)scheme, direct some of
its MSs to attempt handoff to an adjacent cell, with the goaétistribute calls in heavily
loaded cells to lighter loaded cells. Both schemes can ivgsgstem performance. The
ratio of improvement depends on the percentage of MSs timat@amunicate with two
or more cells simultaneously, which has been reported tslegh as 30-45 percent by

Everitt [34]. However, these schemes are designed for \a@ls, thus often assume that
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each call consumes a fixed amount of radio resource.

Bianchi and Tinnirello [14] observe that in wireless comnaation systems, effec-
tive transmission rate depends on the channel qualityatiostted calls weight unevenly
in terms of effective resource consumption. They suggesguhannel quality informa-
tion to drive load balancing mechanisms and propose twoicsettGross Load” and
“Packet Loss”, to quantify the information related to paclkeel retransmission load.
Using the proposed metrics, they determine the best celitdalrato, during handover
or new request arrival. Their simulation results show thgesiority of their proposed
schemes with respect to theast-Population-First (LPFJoad-balancing scheme. Sang
et al. [95] propose a cross-layer framework to coordinattk@ialevel scheduling, flow-
level cell selection and handoff, and system-level loadiatancing based on the load,
throughput, and channel measurements at different layetbeir proposed framework,
an opportunistic scheduling algorithm, theighted Alpha-Rulexploits multiuser diver-
sity gain in each cell independently, while providing minim rate guarantees for MSs.
Each MS adapts to its channel dynamics and the load fluchsitioneighboring cells, in
accordance with MSs’ mobility and their arrivals or depeesy by initiating load-aware
handoff and cell selection. The central server adjusts¢heduling parameters of each
cell to coordinate cells’ coverage, or cell breathing, bgrmppting distributed MS hand-
offs. Across the whole system, BSs and MSs constantly motiitsr load, throughput,
or channel quality in order to facilitate the overall systeoordination. However, both
works are designed for applications with stringent Quaditervice (QoS) requirement,
such as voice calls, which demand a specified amount of baltldwinstead, we focus
on elastic traffic, which can adapt to and make full use ofoteggibandwidth allocation.
While the major metric to be optimized by Bianchi and Tinllo§l4] and Sang et al. [95]
is the blocking rate of MS (or more generally, the probapitif not satisfying a user’s
QoS requirement), we aim at a globally fair and efficient@loon decision for elastic
traffics. Because of these differences, we cannot maketdioagparison with them.

Bejerano et al. [10] consider the problem of achieving nekweide max-min fair-
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nessusing association control for Wi-Fi networks. The max-mine fairness problem
they consider is intended for single-rate Wi-Fi network$yorDas et al. [27] consider
scheduling schemes in which scheduling decisions are nogatéyjfor a cluster of cells,
thereby enhancing performance through both interferenoslance and dynamic load
balancing. They consider algorithms for two scenarioshéfirst scenario, they assume
complete knowledge of the instantaneous channel qualityrimation from each of the
BSs to MSs at the centralized scheduler. In the second soettey propose a two tier
scheduling strategy that assumes only the knowledge obtigeterm channel conditions
at the centralized scheduler. They demonstrate that signifthroughput gains can be
obtained in the case of asymmetric traffic distribution, velas the gains in the symmetric
case are modest. Since the load balancing is achieved thiargralized scheduling,
their scheme can adapt to time-varying traffic patterns oyoally. Both works adopt
max-min fairnessas the criterion for bandwidth allocatioMax-min fairnesss not suit-
able for elastic traffic in multi-rate wireless networkschese it can severely affect the
efficiency of the system as shown in Section 2.6.2.

In a parallel work with similar approach, Bu et al. [16] forlate thegeneralized
proportional fairnesgproblem in third generation (3G) wireless data networksctny-
sidering proportional fairness in a network-wide contextwever, their formulation is
specific to HDR networks. In HDR networks, through a sigmplathannel, each user
feeds back its channel condition continuously to pineportional fairnessscheduler at
the BS with which it associates. At each time slot, the sclezcat each BS schedules
the user with the largest weight where the weight is the liatadate of the user at the
current time slot divided by the average rate it has receseethr. Instead, we consider
general wireless networks, which may consist of heterogemeadio access technolo-
gies (thus, opportunistic scheduling may not be feasiblalat Li et al. [63] consider
the generalized proportional fairnegsgoblem in multi-rate Wi-Fi networks. Their tech-
nique is to intelligently associate users with APs to achigptimal proportional fairness

in a network of APs. They propose two approximation algonigtwith a constant worst-
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case guarantee for the NP-hard problem and demonstratthéhatgorithms can obtain
both higher aggregate throughput and better fairness tieedtiongest-Signal-First (SSF)
AP selection method in the 802.11b standard. The propodesirses in both works are
essentially approximations to olmt-CPF scheme. Their evaluations also show that (ap-
proximated)int-CPF scheme outperforms common heuristics I8®&Fscheme and PF
scheme. However, both works do not consider the incentimgedtibility issues.
Kauffmann et al. [53] also consider the fairness among M3snetwork-wide con-
text. They propose the use wfinimum potential delay fairne$g1] as the optimization
goal for user association control. Our simulation resultSeéction 2.6.2 show that this
criterion is intermediate between theax-min fairnessndproportional fairnessin that
it results in a larger (smaller) overall throughput than max (proportional) fairness.
There are also works [57, 93] considering the use of multpileogonal channels in
wireless mesh networks, where each router is equipped wittipte radios. They focus
on the channel assignment algorithms to maximize througbyer multi-hop path. The
basic theme is to mitigate interference among contendimigslin a multi-hop path by
assigning them to different channels. In contrast, our vieckises on how to allocate the
bandwidth of the single-hop downlink from a BS to a MS. We atdyisider multi-mode
MS and assume that the capacity of BS is fixed. In our systenemtia backhaul links
of BSs are over provisioned with different technologieg.(@ising wired networks), and
each BS operates orthogonally with each other. The tecbkrigs proposed in multi-
channel wireless mesh networks can potentially be usedtenéxour existing works,
e.g., to model the situation that the backhual links of BSsthe same radio technology

as the BS-MS link.

2.8 Summary

This chapter studies treordinated radio resource allocation probleor users that are

simultaneously covered by multiple overlapping cells gdieterogeneous radio access
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technologies. We formulate theordinated proportional fairness (CPFgsource allo-
cation criterion, based on which a globally fair and effitiahocation decision can be
easily computed. AS€PF decision depends on the input from users, a selfish user may
manipulate its channel state report if doing so can incréagmin from the network. To
capture this phenomenon, we formulate the resource albocptocess as multi-cell re-
source allocation gamevhich is associated with a rule to calculate bandwidthcallimn
outcome based on the input from the MS players. We provedR&tallocation is incen-
tive compatible, in the sense that a user’s dominant styasetp report its channel state
honestly. In practice, the single-association settinggneteach MS is associated with a
single BS, is often desirable. We formulate the integrasigar of theCPF problem (nt-
CPF) and show that it is both computationally expensive and @toruser-manipulation.
Alternatively, we advocate the adoption dalfish Load Balancing (SLBrheme, which
always leads to a Nash equilibrium, and often achieves pradoce near to th€ePF allo-
cation. We use simulation to evaluate the performance qigsed schemes. The results
show that the proposed algorithms outperform popular Bgampproaches, by striking
a good balance between efficiency and fairness, while aiclgdgad balancing among

component BSs.



Chapter 3

MobTorrent: Cooperative Access for

Delay-Tolerant Mobile Users

3.1 Introduction

For commuters and passengers on public buses, taxis oteviehicles, the most com-
mon and seamless way of getting Internet access is throeglsthof Wireless Wide Area
(Cellular) Networks, e.g., GPRS, 3G or HSDPA. The celluéio can be plugged into
the end host (e.g. a laptop) or mounted on the vehicle fronclhvéinared network access
is provided to all passengers in the vehicle using an onebdasFi network®. However,
even though performance of cellular networks has improigrafgcantly over the years,
in particular with the deployment of HSDPA, the aggregat@er user data rate is still
limited by the need to provide ubiquitous coverage to a langmber of users. In a re-
cent measurement, we observe around 300Kbps download &peed vehicle (with a
1.5Mbps-limit subscription plan) using a local commer¢i&@DPA network.

Meanwhile, many cities around the world have withessecklaicale deployment of

open Wi-Fi hotspots. In Singapore, more than 7000 free WWieeess points (APs) have

1A shared on-board network enables passengers withoutaresubscription (and interface) to access
Internet. In addition, a hand-held device can reduce itsgpea@nsumption by using the short-range wireless
communication instead of connecting to a remote BS direétlyrther, the powerful and well-positioned
vehicle antenna helps improve the wireless communicaffarency with the remote BS.

63
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Cellular networks Wi-Fi networks

Low - Medium Medium - High
BandwidthR 56Kbps (GPRS) - 1Mbps (802.11) -

14Mbps (HSDPA) 600Mbps (802.11n)
CoverageP Ubiquitous Intermittent (e.g. 20%)
RxP 56Kbps - 14Mbps 200Kbps - 120Mbps

Table 3.1: Complementary characteristics of cellular eks and Wi-Fi networks

been deployed in the last few years in public open areas,pé@mnalls and commer-
cial buildings. On a smaller scale, in a measurement of oQrhEgtares campus in Kent
Ridge, we can observe more than 2000 APs installed in 90ibgdd Strong Wi-Fi signal
can be received from about 25% of the 4km route traveled bgdhgus shuttle bus. Re-
cent research works [21, 84] have also demonstrated thibilegof providing network
access via roadside APs.

On the other hand, Singapore being a city-state, has a depéeycthent of public
buses. The largest public transport provider has a fleet of than 2000 buses. Currently,
almost all buses are equipped with GPS and GPRS device. Wkilsandwidth provided
by GPRS is sufficient for its main application, an Automatiehi¢le Location (AVL)
system, it is too low to support Internet access service &sspngers. Upgrading the
whole system to HSDPA is costly. With such a large number ehdyi-Fi APs available
already, providing network access to moving vehicles thhowadside Wi-Fi APs offers
an alternativeandcomplementargolution that can significantly increase the bandwidth
available to the vehicles.

Heterogeneous mobile broadband access architecture fimmaters has been sug-
gested previously [17, 91], where multiple network inteea (e.g. 3G and Wi-Fi) are
available and can be utilized simultaneously. The concéptiways Best Connection
(ABC) is often adopted, where mobile nodes automaticadlyt $v use the Wi-Fi network
as soon as an AP is in range. While Wi-Fi provides higher baditivat cheaper price,
it is only usable when the vehicle is in range and the contacttn is often short. In

comparison, although the speed of cellular link is lowehngis higher availability.
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Table 3.1 gives some example figures for the coverage andnidtihdof both net-
works. As described earlier in Chapter 1, both Wi-Fi andutatlnetworks keep evolving
to meet the increasing demands of mobile users. Meanwliier oomplementary / com-
petitive technologies, such as WiMax, are continuousiyothiiced to the market. Despite
the fact that the various forms of technology advances (dIy1O) can significantly in-
crease the network capacity, spectrum efficiency, and dégathe tradeoff between cell
coverage (or communication distance) and factors suchedmbpeuse, data rate, deploy-
ment cost is fundamental. Thus, we believe that there wilh beng-term coexistence
of two forms of networks, i.e., high-bandwidth networkswimtermittent coverage, and
lower-bandwidth networks with higher coverage, regasllelsthe actual technologies
being used. For example, the high-bandwidth intermittetivork can be in the form
of femtocells using LTE (Long Term Evolution) technologgiead of Wi-Fi hotspots as
discussed here.

Our work focuses on delay-tolerant applications, such agntimding some large
files (e.g. movie) from Internet. Thus, we are interestetiédverage throughput during a
long time period, in the scale of dozens of minutes, whichamexpressed by multiplying
R, the bandwidth when in connection, with the probability of being connected. In
terms of this criterion, Wi-Fi networks provide comparapéformance as, or even higher
performance than cellular networks. For example, a Wi-Iatact lasting 10 seconds (a
typical contact length in our measurement on a campus btetBsvith an average data
rate of 1 Mbpscan transfer more than M&gaByteof data (the typical size of a 5-minute
movie clip or four songs in mp3 format). In comparison, itdala cellular network with
30K bpsbandwidth more than 5 minutes to complete the same transfaddition, Wi-

Fi networks are generally cheaper than cellular networlkse much larger number of
Wi-Fi APs compared to cellular BSs makes Wi-Fi networks estatter with the number
of users in terms of the network capacity.

In order to fully exploit the available high-bandwidth butermittent contacts, we

proposeMobTorrent[25], an on-demand, user-driven framework designed tonmopé
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performance for vehicular network. The approach takeibpTorrentis different from
existing works in that we use the cellular network mainly aatrol channel. We also
assume that the mobility information can be predicted witfhhaccuracy using AVL
system and history. In this framework, a mobile client, @ast of waiting for contact with
the AP, uses the cellular radio (e.g. GPRS) to inform one (dtipie) selected AP(s) to
prefetch the content. The prefetched data are then repdicat the mobile helpers, and
further propagated by the latter in a store-carry-forwael, Delay-Tolerant Network
(DTN) routing fashion. As a result, instead of limiting higpeed data transfers to a few
short contact periods with the selected APs, high-speedfes among vehicles can be
opportunistically exploited.

While MobTorrentexploits prefetching and replication, the key componerthes
scheduling algorithm, which replicates the prefetched dat taking into account lo-
cations of the mobile nodes and existing level of data rapfbo. The objective is to
maximize the total amount of data transferred and the aedragsfer rate to the mobile
clients.

In this work, we first characterize the performance limitepportunistic mobile for-
warding through a simple scenario using only one AP. Thayhtgjained is then used to
design the scheduling scheme for inter-vehicle transomssin the evaluation, we use
testbed measurement to verify the benefit of prefetchingusedrace-driven simulation
to evaluate performance of scheduling. Our results shoiMiod Torrentprovides sub-
stantial improvement over existing architecture and offerforms close to what can be
achieved by an off-line optimal scheduler. In case of mldtfPs, our evaluation results
show thatMobTorrentis robust in a variety of settings.

The rest of this chapter is organized as follows. In Sectidh ®e describe the
architecture oMobTorrent In Section 3.3, we discuss scheduling issues and analgze th
performance gain. In Section 3.4, we evaluate the perfocenafMobTorrent In Section

3.5, we present related work. We conclude in Section 3.6.
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3.2 System Model

3.2.1 Components

In order to deployMobTorrent we require wide adoption of GPS devices on vehicles
(e.g., Japan’s vehicle navigation system installatios imséstimated to be as high as 59%,
while Europe and the United States are around 25% [90]). diitiad, each vehicle must
be equipped with both Wi-Fi interface and cellular integfa@/e use the cellular network
mainly as a control channel, so the existing low-bandwidBRS suffices. Vehicles are
expected to have an estimation of their travel route. ThiskEaobtained from historical
values or based on locations and digital street maps. WeuMeethat all of these are
reasonable requirements, in particular, for public busésvahicles that travel on regular
routes.

The components dflobTorrentare shown in Figure 3.1.

AP Directory Data Store /
Servers Web Servers

Last mile
Access

Road-side
AP

3G WiFi
coverage 5 coverage
Mobile Customer Mobile Helper

Figure 3.1: MobTorrent framework

e Mobile Clients are vehicles that require help to download data from date $to

web servers through Internet.

e Road-side APsare static Wi-Fi access points reachable from the road. Theg
Internet backhaul, and offer their services to mobile ¢ieThey can be residen-

tial gateways in apartments or installed as part of a velmetevork infrastructure
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that is placed along the road, say at bus stops, taxi standsgffic lights. Note
that the backhaul downlink bandwidth to these APs can berltwan the wireless
bandwidth available on the 802.11 link. For example, in adexgial home, the
downlink speed could be a few Mbps or less, whereas the aw&adri bandwidth

can be over 20Mbps for 802.11g and much higher for 802.11n.

e AP Directory Servers provide location information on available roadside APs.
There are a number of open Wi-Fi AP locators available on e already, includ-
ing http://www.openwifispots.cqimttp://www.fon.comandhttp://www.whisher.com
The locations of participating APs need to be in the form ardmates given in
longitude and latitude, which can be easily found even witl@&PS by using digital
street maps. Depending on the system requirements, thesessean also maintain
information related to the AP’s reputation and performarka® scalability purpose,

it is likely that the servers are clustered into differendgephical regions.

e Mobile Helpers are idle vehicles willing to offer their bandwidth to helpgreve-

hicles with downloading demand.

3.2.2 Control and Data Flow

In this section, we describe a typical operatioiMobTorrentdata transfer, as illustrated
in Figure 3.2.

Initially, a mobile client wants to download a (sufficientrge) file. Note that small
requests are assigned to the always-on cellular link tormza their delay. By down-
loading large files via Wi-Fi, the cellular link can be lessigested, which benefits the
small requests too. The mobile, with its location known tlgio a GPS device, acquires
the list of APs that are along its travel path. Based on a numbgarameters (file size,
location of AP, estimated travel time to the AP), the nodedsla set of APs and contacts
them through its cellular interface. For example, as showsigure 3.2, 2 data blocks are

needed, while ARA1 andA2 are selected.
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Figure 3.2: MobTorrent data downloading process
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At time t1, the mobile client requesisl to prefetch block 1 and2 to prefetch block
2, and the two APs begin to download the respective blocks.

At time to, the blocks are downloaded to the corresponding APs andeddohbally.

At time t3, the mobile client travels within the range Al and downloads block 1
from Al. At the same time, the mobile helper, a second bus movingrtsithe mobile
node, enters the coverageAfl. A2 sends block 2 to the mobile helper.

At time t4, the mobile client and the mobile helper meet at some poitwdenAl
andA2. The mobile helper transfers block 2 to the mobile cliehtistcompleting the
transfer even before the mobile client reach2s

In order to efficiently orchestrate the whole downloadinggaesss, two questions need
to be answered: (1) How much data should an AP prefetch? (@)tbloelay the data to
a client via mobile helpers, so that the amount is maximizetitae delay is minimized?

We answer these questions in the next section.
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3.3 Scheduling in MobTorrent

3.3.1 Roles and Functions of Different Mobile Helpers

Before presenting the scheduling algorithnMobTorrent we first draw insight from how
opportunistic relay should work in a simple mobility modal®2-way street. This model
abstracts the major properties for some typical settingsh &s commuters on highway,
and public buses with fixed routes within a city.

We consider a relatively sparse vehicle network, where téability of forming
a contemporaneous multi-hop path is negligible, so singfe forward in each contact
opportunity is the main form of data transfer. Vehicles asuaned to move on a long,
2-way street without divergence in the path. A vehicle mameme of the two directions
(LEFT or RIGHT) on the road and it never changes its directioraddition, there is no
overtaking among the vehicles moving in the same directita.focus on the case of a
single AP in the model.

We define aropportunistic contacas the time period that two peers get in communi-
cation range, and can exchange data with each other dir@ctliglly describe a contact
between two nodes, we need to record the contact start tiche@m long it lasts, as well
as the varying link data rate available at each time poininhduhis interval. To keep our
discussion succinct, we define the notatiorcoftact capacity, which is the amount of
data that can be exchanged in a contact, i.e. the produce@urage data rate and the
length of the contact. Note that the two directions of trangirocesses compete for the
same contact duration, so the contact capacity limits theafithe volumes that can flow
in the two directions. We denote the start time of the comacibd as theontact time.
As we assume that the network is relatively sparse, and ¢éesnagle’s different contacts
do not overlap with each other, the start time of the contastifficient for the purpose of
ordering the contacts for a single node according to theesempithey happen.

Given the time and the client’s location when the requeseisegated, we can cate-

gorize all mobile helpers into the following classes basedheir moving directions and



71

Late nodes Clrent Forerunner w
e ec; w . _ )L

. d o
o 5 ey am e
Early nodes Direct relays Indirect relays

Figure 3.3: Classes of helpers
positions (relative to the client and the AP) as shown in Fegi3:

e Direct relay: mobile nodes that move towards the client and meet the APtatte
request is generated but before they meet the client. Asaimersuggests, a direct

relay can get data from the AP, carry it, atidectly send to the client.

e Forerunner: mobile nodes that move in the same direction as the clientrza®t

the AP after the request is generated but before the clieatatiee AP.

e Indirect relay: mobile nodes that move towards the client and meet the client
before they meet the AP. If every node moves at the same Weltloé condition
to distinguish between direct relay and indirect relay isampare its distance to
AP, denoted ad,, with the distance& between client and AP at the same time. As
shown in Figure 3.3, ifl, < d, the relay is a direct relay, otherwise, it is an indirect
relay. Note that when an indirect relay meets the AP, thermiaeed for the AP
to send data to it, as it will not meet the client or any nodé wilh meet the client

from then on.

The client attaches its mobility trajectory in the requésis each node can determine
its role for the given request according to its local infotima about its own mobility
trajectory. They also learn about the mobility trajectong &oles of other helpers through
inter-vehicle contacts. Further details are provided lst&ection 3.3.4.

The set of direct relays, forerunners, and indirect relagslanoted ab, F, | respec-

tively. No other mobile nodes can help the transfer for thieWang reasons:
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(c) Performance of schemes

Figure 3.4: A simple two-way street example
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e Early node: mobile nodes that have moved past the AP before the requipstés-
ated. They cannot help the data delivery because they caeraive data directly

from the AP, or from any vehicle carrying the desired data.

e Late node: mobile nodes that are always behind the client. They canglptthe
data delivery because they cannot send data directly tditgmg,r to any mobile

node that will meet the client after meeting them.

An example is given in Figure 3.4 (a), which shows the tradeshicles and their
contacts along the time axis. As explained above, we sutgidenote a contact using 4
parameters, namelyjnodel, node2, contact time, contact capdcitfxs shown in Figure
3.4 (a), at timetl, AP (A) meets the first direct relayp() (as their trace intersects),
with contact capacity 2, which is the number marked at thatpaii intersection. This
contact can be represented g%, D1,t1,2}. Similarly, we can write down the rest of
contacts from the figure in their sequence €33, F1,t2,1}; {A F1,t3,2}; {D41,C,t4,1};
{F1,11,t5,3}; {C,A/t6,2}; {I1,C,17,3}.

3.3.2 Performance Limits

In this section, we derive the performance limits by examgnan off-line scheduler,
which is assumed to have the information about the comptettact trace through some
oracle.

The two performance metrics of interest are (1) the maximorount of data sent by
the AP that reaches the client eventually, and (2) the mimndelay to deliver a given
amount of data. We assume that there is sufficient buffer lomogales to accommodate
packets in transfer, and the only bottleneck is the contapacity constraint between
nodes.

Denote the contact time and contact capacity between natnade | byc} and c}
respectivelyt} andcji are subject to the random fluctuations like traffic jams artd/oek

congestion. In practice, such information is only reveaedine. Thus, the performance
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of an off-line optimal scheduler serves as an upper bound/f@t can be achieved by an
on-line scheduling scheme. We consider the uncertaimiﬁlsaind C} as resolved in the

following discussions of off-line scheduling performance

Maximum Data Transfer from AP to Client

The maximum amount of datathat the AP (denoted as no#gcan push to the network

and stand a chance to reach client (denoted as Gpde

c=ct+ EDciAJr Z:cj’* (3.1)
ic je

¢ is the sum of three partg:£ is the amount that can be transferred directly to the
client by the APy ;.p ¢/ is the amount that can be transferred to all direct relayss(th
stand a chance to reach the client) by the AP, Zingd- ch is the amount that can be
transferred to all forerunners by the AP. Sending data tadkeof nodes (the indirect
relay and late nodes) is useless. Note that, under our robibhdel, all data stored in
forerunner will eventually reach client, as we assume tiexit is an infinite flow of relays
from the opposite direction. However, if a direct relay cainreplicate all of its data to
the client or to some forerunner in time, the unfinished dalido@come lost permanently
when the direct relay travels past the client. Thus, the dgpastimated in Equation
(3.1) often cannot be achieved. To minimize such loss, trectielay replicates its data
to forerunner as soon as possible, so that even if it canmok e data to the client by
itself, the data can still be forwarded later via forerunaed other relays. Based on this
observation, a tighter upper bound for the capacity acbievay the AP is:

&+ Yy min(chce+ Y o)+ Z: cf (3.2)
e t)>tA jeF 1<

The second part in Equation 3.2, i.&;cpmin(c, ¢k + St jer c}) gives the

amount of data that direct relays can get from the AP andaaigito other nodes (in-

cluding the client and forerunners). As to be shown laterh@@d scheme can achieve the
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capacity in Equation 3.2. Thus, the bound is tight.

Minimum Delay from AP to Client

In terms of the minimum delay to deliver a setmblocks, a lower bound can be ob-
tained by assuming that all contacts between the client atickat or indirect relay are
fully utilized. However, this bound is also loose becauge fiossible that some contact
capacity between the client and a relay cannot be fullyzgtiiif the relay does not carry
enough new data. For example, a direct relay may only lgi& 6f data from the AP, then
immediately meet the client. If its contact capacity witke ttlient is 1MB, half of the
contact capacity between the direct relay and the clienast@d, as there is no new data
to be transferred.

Given a contact trace, in order to obtain a tight bound fordélay, we observe that
it is possible to find the maximum amount of data that can redient, by modelling it
as a maximum network flow problem. Hence, we can perform atir@fcomputation
to characterize the performance. Given a sequence of ¢egtaccy, ...c,} between the
different nodes starting from the request generation titne,graphG = (V,E) for the

network flow problem is constructed in the following way.

e \ertices There is one verte representing the AP, and another vei@represent-
ing the client. They are the source and destination of thevar&t flow problem.
For each of the non-client vehicle if it hasn contacts in the trace, we split it into
n vertices,v! to V. These constitute all vertices in gragh Note that, given a
contact trace, each node’s contacts, which are assumedvaolapping with each
other, can be ordered according to thentact times We say a contact is th&"
contact of a node, if it represents the contact withith@mode encountered by the

considered node in the given contact trace.

e EdgesFor each contact, we use one (or two) directed edge(s) tesept it in the

graph. For the contact between the AP and the client, we atld@et edge fronA
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to C. For the contact between the AP and a mobile help#ithis contact is thét"
contact of the helper, we add a directed edge ffotn V. For the contact between
the client and a mobile helper if this contact is thé'" contact of the helper, we
add a directed edge from to C. A single directed edge suffices because only the
specified direction is useful to maximize the network flownfra to C. During the
contact, the data flow should always follow the directionhaf €dge. For each edge

added, the edge capacity is set to the corresponding caapatity.

For a contact between two mobile helperandy, if this contact is the'" contact

for vehicleu, andjt" contact for vehicley, we add a pair of directed edges between
u' andvl, as both of the two directions may help to maximize the netvitmw.
These two edges should share the same contact capacityi¢deassetting S1).
However, as detailed below, we can set the capacity of bo#tgad of the sum of
both) to the contact capacity (denoted as setting S2) witatbecting the value of
maximum flow. Finally, we add directed edge with unlimitegh@eity fromu' to

u'*1, for every nodeu and validi. These directed edges represent the fact that a
vehicle can carry the data it received from a previous cantethe next contact. A

finite capacity for this type of edge can be used to model bliffet if required.

We can show that S1 and S2 have identical maximum flow solurtitre following
way. First, the optimal solution of S2 is no worse than S1 yasyefeasible solution
of S1 is also a feasible solution of S2. Second, given an @ptgolution in S2,
if there are flows over a pair of edges, it can be reduced to @tisolwith the
same maximum flow using at most one of the edges, by offsatim@ows in the
opposite directions with each other until one of them beMeBy repeating the
above process for all pairs of edges, we can get a feasihlé@oln S1. Thus, S2’s

solution is no better than S1.

For example, the contact trace as depicted in Figure 3.4 i(edesult in a network

flow graph as shown in Figure 3.4 (b). Given the above fornutathe minimum delay
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for delivering a given amount of data can be calculated effitty.
With the performance limits known, we next examine seveyatal schemes starting

from the simplest.

3.3.3 Comparison of Scheduling Schemes

Figure 3.4 (c) shows the volume of data that can reach thietalgng different schemes,

under Figure 3.4 (a)’s setting.

1-hop scheme

The AP only transfers directly to the client during their tawt. Volume of data delivered

IS C1-hop = C@. In the example, the client can get 2 blocks of data from theliké&xtly.

2-hop scheme

In this scheme, the AP sends data to the client and diregtgelA direct relay keeps
the data until it meets the client and sends the data to tleetcliThe amount of data
transferred by a direct relay) from the AP to the client is the minimum of the two contact
capacitiesc* andct. Thereforeco_nop= &+ Sicpmin(cf, cb). In the example, the
client can get 1 additional block of data from the directydly. Note that another block

sent toD; by the AP is lost due to the low contact capacity betwBerand the client.

3-hop scheme

In this scheme, AP sends data to the client, direct relaydaedunners. Although fore-
runners cannot send directly to the client, they can senid tla¢a via direct relay or
indirect relay (thus 3 hops). Under our assumption, foreeus can meet enough relays
to dump its data to the client, thus all data sent to forertsioan reach the client eventu-
ally. Therefore,c3_hop= C&+ Ticomin(c?, ct) + ¥ jer €. In the example, the client

can get 2 additional data blocks from indirect relgywhich itself gets the data froif.
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However, the 24 block carried byD1 is still lost. Minimizing the loss of directed relay

requires at least a 4-hop delivery.

4-hop scheme

In this scheme, a direct relay saves its data as soon (and&w amipossible to forerun-

ners before meeting the client. This feature minimizes $irsse forerunners can always
transfer its data via indirect relay later. 4-hop delivethiaves the capacity as character-
ized in Equation 3.2. In the example, the missing block fremp scheme reaches the

client via four hops{A,D1}, {D1,F1}, {F1,11}, {I1,C}.

Location

A
l. relay I,
l. relay I,
l. relay I,

AP A
F.runner F,
F.runner F,

Client C

Figure 3.5: Scheduling to minimize delay

However, 4-hop is not yet optimal to minimize the deliveryaye Consider the situ-
ation as shown in Figure 3.5. The minimum delay to deliverlthumit of data is through
5 hops, i.e., the contact A\ F1 }, {F1,11}, {11, R}, {F2, 12}, {12,C}. Replication among
forerunners 1 and ) is necessary to minimize the delay. Note that, the reptinat
can only be carried among forerunners in one direction,fr@m a forerunner to another
forerunner moving behind it. For example, data can be rafdot from forerunneF; to

forerunnerf, but not vice-versa.
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3.3.4 MobTorrent Scheduling

Based on observations from the previous section, we desgadheduling algorithm of

MobTorrentas follows:

e Meta data: MobTorrentkeeps the following meta information with each data block

k at each relevant node:

1. Req: request id:;
2. by: block id;
3. Ack: whether this block has reached the client;

4. rg: a (local) estimation of theersistentreplication level of this block in the
whole system, i.e. the number of mobile helpers that cugrgrassess this

block;

5. IDy: the ID of the forerunner that travels in the most front amahdorerun-

ners that possess this block.

e First hop: We assume that the AP always has new data to be forwarded to the
client. When a data block is sent to a forerunnéd¥j, the latter marksx = 1 and
IDy = Fj. When a data block is sent to a direct relay, the latter marks= 0, and

IDk = 0. Replication on direct relay is not counted as a persisegiication.

e Role determination Each mobile helper can determine its role (whether it is a
direct relay, forerunner, indirect relay, or early/latede®y based on the request
information about the client’s mobility trajectory and &imn of selected AP(s), as
well as its own mobility trajectory. The request informatis propagated to mobile
helpers together with the propagation of data, whereas dlde’s own mobility

trajectory is predicted locally. In addition, each foremen appends its mobility

2For each request it currently serves, a helper recordgirgtion including the client id and its mobility
trajectory, the request start time and deadline, the in&bion about selected AP(s) and mobile helpers for
this request, etc..
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trajectory to the request information before propagatirig the next hop, so that

other nodes can calculate the relative locations of melfipterunners locally.

Meta data reconciliation: When two vehicleA and B meet, they will first ex-
change their meta data. Suppose the replication level astimof blockk is r@
atA, andrf atB. After the exchange, both of them will set their estimation t
maxrf, rg). For all the following transmissions within this contattetreplication

level of the transmitted block will be updated to the same realue at both sides.
Ack = AckE = Ack v Acke.

Priority calculation: Priority is calculated for each block to determine its order
of transmission in the given contact. Suppose that the sahdélivered blocks
(with Ack= false at Ais Sa, and the set of undelivered blockskis Sg. After

the exchange, they calcula®g — Sg andSg — Sa, which are the candidate set to be
sent to each other. The set of undelivered blocks is updatddscribed later in the
paragraph of.ast hop A node sorts its candidate blocks according to replication
levels,giving the highest priority to the block with the lowest lleoEreplication
The level of replication is calculated locally by the two lesdn contact according
to the rules described later in the paragraptMaiimize loss Maximize rate and
Increase replication levelData block with higher priority is transferred first, thus
has a higher chance to be replicated under the uncertairdgragict capacity. In
case of ties, the blocks are sorted I3x. Therefore, given a blockreplicated

at forerunnef=, another blockj that is not replicated at any forerunner travelling
in front of F (includingF itself) has a higher priority than blodk This is because
replication can happen only among forerunners in the doeceverse to their mov-
ing direction. Thus, in a long term, blocks from forerunnawelling in front have
more opportunities to be replicated. Given a selected feagérection among the
contact nodes, data transmission is performed accorditigetpriority calculated.

Between two mobile helpers, the following three rules,m@imize lossmaximize
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rate, andincrease replication levetake action in order to specify the scheduling of

transmission directions.

Minimize loss: If one party is a direct relay, it may carry blocks with= 0, i.e.,
the data blocks that the relay received directly from the A& laave not yet been
sent to any other node. Whenever such a block exists, tramgp®rtunity is given
to the direct relay to minimize loss. After the transmissiboth parties set the

replication level of the block to 1, and set th2 to the ID of the current forerunner.

Maximize rate: After the loss-minimizing step is done, this rule ensures tn
direct or indirect relay has enougtewdata so that its contact capacity with the
client can be fully used. Based on the contact capacitystiabetween the client
and relays, a thresholds selected to determine whether the amount of data carried
by a relay is sufficient. We sgtas two times the expected contact capacity between
vehicles. While this threshold is not reached yet, trangbgortunity is given to the
forerunner. After the transmission, the replication lexehe block is increased by

a value ofa < 1, to capture the fact that it is replicated onto the relays Value is
less than one because unlike replication on the forerutimerglay can go past the
client without replicating this data block out and this partar copy is lost. Asitis
difficult to determine the “best” value far, we simply set it to 0.5. Our simulation

results show that performance does not change much whevethisis varied.

Increase replication level: Once the threshold for new data block is reached, data
exchange happens in both directions. Remained candidatksfrom both sides
are merged into a single priority queue sorted by replicdgoel andD. In case of
ties, data stored on the direct or indirect relay is giveimargriority, as transferring

it will increase the replication level by 1, whereas the sfanat the other direction

will only increase the replication level hy.

Last hop: When the direct or indirect relay meets the client, bloclksteansferred

from the relay to the client according to their prioritiesh@h the contact finishes,
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the client uses its cellular interface as a control charmaptlate APs and all fore-
runners about new blocks that it has just received. Notelieatlient does not need
to update direct and indirect relays, as they will be updatben they get contact
with forerunners. Once past the client, a relay removesfédt @lata for the client
(even those that have not been delivered yet), as there isone apportunity to

deliver them.

The intuition behind the scheduling scheme can be explasddllows. When few
data blocks have been delivered, the relays often haveisuffinew” data to fully utilize
the contact capacity with the client. However, as more Bale delivered, it becomes
harder for the relay to transfer sufficient undelivered datthe client if its contact ca-
pacity with forerunners does not match up well with the anta@frundelivered data on
them. As a result, data delivery rate to the client decreasesore blocks are delivered.
MobTorrentscheduling scheme is designed such that as more blocks larerelé, the
replication level of the undelivered data increases. Is Way, data delivery rate can be
maintained at a high level till all blocks are delivered.

Scheduling decisions iMobTorrenthave some similarity in the spirit to the schedul-
ing decisions made in existing DTN routing protocols, evaxProp [18] and RAPID [7].
However, inMobTorrent the information of direction and relative position is fukx-
ploited to optimize performance.

In the model presented, we have assumed that there is n@kwvgrtand nodes do
not leave the system. ThHdobTorrentsystem will work in the presence of overtaking
and path divergence. The impact of these factors will beuatatl using simulation in the

next section.
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Figure 3.6: A snapshot of NUS bus monitoring system

3.4 Performance Evaluation

3.4.1 Testbed Configuration

We build a simpleMobTorrentprototype to evaluate its performance in a real environ-
ment. We equipped 16 campus buses with an on-board LinkSyS5M®L router as
mobile clients. These clients run on the OpenWRT operatystesn. Each client is fixed
at a bracket in front of the driver, and draws power from the Mihen the bus is moving,
the client scans and attempts to associate to the campus héitlvork. Once it suc-
cessfully associates with an AP, the client uses a predtmiag to figure out the valid
IP address that it can use (the school APs along the routadpétoseveral different IP
subnets). We pre-load the mapping between AP and IP subradt dients to reduce the
overhead of IP address acquisition. Similar optimizatian be done oMobTorrent as
the AP and the client can exchange IP and authenticatiomnaftion via cellular network
before they meet. Live bus tracking is availabléni://mobtorrent.ddns.comp.nus.edu.sg/
Figure 3.6 gives a snapshot of the system. The campus shusi#s run in a circle from
both directions around the Kent Ridge campus. The averageftr a bus to complete

the 4km route is about 20 minutes. Over 120,000 contactsttiare collected from
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File Approach Time Speed | Ratio

A pdf file Without prefetching 3.2s | 25KBps | 68%
(80KB) With prefetching | 0.33s| 240KBps | 98%
OpenWRT firmware | Without prefetchingl 12s | 111KBps | 45%
(1513KB) With prefetching | 1.77s| 853KBps | 78%

A 3 minute video clip| Without prefetching 33s | 201.5KBps| 16%
(6.5MB) With prefetching | 6.7s | 993KBps | 59%

Table 3.2: Download performance with and without prefetghi

more than 1,300 driving hours over a 2 month period. The maarP contact duration
is around 15s with mean contact capacity around 4.5MB, aadntdan bus-bus contact
duration is around 11s with the mean contact capacity arGu2idB.

The evaluation has two parts. First, we evaluate the berwdfpsefetching on the

testbed. Next, we evaluate the benefits of using mobile relpe

3.4.2 Benefits of Pre-fetching

When a client sends its request to an AP through cellular or&twefore contact, the
AP prefetches the data and stores it locally. In order touatalthe potential gain, the
client is programmed to download several selected fileshe@aWi-Fi network. In the
measurement, there were 100 attempts to download each s# fies over the Wi-Fi
network when the clients were within range of a campus APe@luf the selected files
are shown in Table 3.2 together with the average downloadurgtion, downloading
speed, and the downloading completion ratio. The compiegttio is computed as the
number of times the files were completely transferred in glsiAP-bus contact duration
over the total number of attempts. Note that, as the file sizeeases, it becomes less
likely that the file can be downloaded successfully in a grgtempt. For the largest file
of 6.5MB, complete downloading from Internet without pttefeng is possible only 1 in
6 attempts.

For comparison, the files are stored on the APs in advance andloaded to the

mobile node on request. As shown in Table 3.2, there is afgignt improvement of
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Link 25% | 50% | 75% | 95%
End-to-end Internet path 37.6 | 81.0 | 160.5| 330.6
One hop Wi-Fi Link 2.347| 2.742| 4.668| 26.129

Table 3.3: RTT measurement (ms)

downloading performance for files of all sizes. Note thathsuprovement is possible
for all downloads made using advance requests, indepentithre scheduling algorithm.
A closer look at the source of performance gain reveals fbathe first file with a
small size (80KB), the downloading duration difference @imhy due to the decrease in
RTT (round trip time). Table 3.3 shows the measured RTT ifigtion for end-to-end
wired Internet Links and the local Wi-Fi link. The end-toeewired Internet Link RTT
is obtained from the Internet End-to-end performance Messant (IEPM) with 413
different pairs of nodes across several continents. Tha RET is measured using ARP
packets sent from the client box to the AP. ARP is used becaasy APs on campus do
not response to ping but to ARP request. The measuremensghatwthe RTT of a local
Wi-Fi link is about one magnitude shorter than a typical RVErdnternet. Shorter RTT
allows TCP to increase its congestion window at a faster vétech helps to shorten the
downloading time for short files. For the larger files, theespeifference is also due to the
avoidance of bottlenecks in the Internet. Though the doachi@te constraint from the
server can be alleviated by using parallel downloads, thetcaint in the local backhaul

link (such as ADSL, cable, or wireless mesh) cannot be bygohss

3.4.3 Benefits of Scheduling

We compare performance of the following schemes.

1. 1-hop: The AP only sends data directly to the client. This serveb@adaseline for

performance comparison.

2. Random:A scheduling scheme that employs random replications letvpeers.

When both sides have innovative data for each other (i.e.d#ta block that the
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other side does not possess yet), one side is randomly eglectransfer a ran-

domly selected innovative data block.

3. Greedy:A scheduling scheme that greedily replicates data in therastitheir ex-
pected deductions in the delay to reach the client, follgwive design of RAPID [7].
The data delivery delay is determined according to the degdane the relay meets
the client. For example, in a contact between a forerunreaatirect relay, transfer

priority is always given to the direction from the forerunte the direct relay.
4. MobTorrent: As described in Section 3.3.4.

5. Off-line: A download mechanism that has off-line knowledge of costaand de-
cides scheduling according to the solution of the network flooblem. This serves

as the upper bound for achievable performance.

Note that, because of the significant difference in settamgbassumptions, we can-
not directly compardobTorrentwith existing related works, including PROPHET [68],
Spray and Wait [99], MV routing [19], MaxProp [18], and RAP[D]. For example, in
our testbed, if two nodes just meet each other, the probakilat they will meet again
in recent future is almost 0. However, all existing schenees to assign a higher meet-
ing probability to this pair of nodes. For a fair comparisam implement the Random
scheme and Greedy scheme such that, block is never reglimatenode which has no
chance to deliver it to the client, while still keeping theniginal salient features. The
Random scheme and Greedy scheme are selected to demotisdtdtee heuristics in-
corporated irMobTorrentoutperform the common practice used in existing DTN routing

protocols.

Performance with Single AP and Single client

In this scenario, there is only one AP located on a 2-way swéé an infinite flow of

vehicles moving in both directions. The contact capacitgeserated using the trace
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collected from our testbed. 100 rounds of simulation are and the average is presented
in Figure 3.7 (a). To make the averaging meaningful, for eaahthe time and volume is
normalized so that the off-line scheme reaches an optimaiwecapacity of 100 at time
clock 100. In the simulation, the average number of foreeusiis 5.

As shown in the figureMobTorrentis close to off-line scheme in terms of both the
volume of data delivered and the delay to deliver data. Aetolock 100MobTorrent
random greedyandl1-hopschemes deliver 91%, 78%, 71% and 11% of all data respec-
tively.

The random scheme delivers most of the data eventuallyakestmuch longer than
MobTorrent due to the coupon collection phenomenon where new dataifficaild to
locate towards the enéilobTorrentalleviates such effect by giving priority to data blocks
located only at forerunners travelling behind other fonerers. The greedy scheme does
not reach the volume capacity (with a 20% gap) because tleelgteansfer of data from
a forerunner to a direct relay prevents the latter from ogpiing its data into the network.
As expected, the 1-hop scheme only achieves a small fragtitire available capacity.

Next, we evaluate the impact of varying number of foreruan&he average number
of direct relays is the same as the average number of foreranie define thaverage
data rateas the ratio of the total data volume delivered and the tirkertao deliver the
last packet (lost packets are ignored). Figure 3.7 (b) anhdhow that when the number
of forerunners (and hence helpers) increases, both thegeetata rate and the total
volume of data delivered increase. In terms of the averatgerdée, the rate of increase
for MobTorrenttracks the off-line scheme fairly well, whereas the randord greedy
schemes improve at a slower rate. 1-hop scheme does notthiesrefimobile helpers at

all.

Performance with Multiple APs and Multiple clients

We use the mobility and contact trace collected from théotabsto drive the simulation.

In the simulation, the request arrival to the whole systelhoies a Poisson process with
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the average inter-arrival time of 20s. A running bus is rantyoselected as the source of
the request, whose size follows an exponential distrilbuwgh mean B1B. We fix the
number of APs in the network to 5, and vary the number of buséisd network. Note
that the average load in the system does not change with thbenof buses.

As shown in Figure 3.8 (a), schemes using mobile helpersawgpthe data down-
load rate. As the number of buses grows, more mobile fornmgrdpportunities can be
exploited.

We also investigate the impact of vehicle overtaking by wagyhe vehicle velocity.
We achieve this by sampling the bus trace of both peak hounwhses tend to move
slower and off-peak hour when buses move faster. As theti@riaf vehicle velocity
increases, the overtaking probability increases. For @@mwhen the variation increases
to 0.6, the ratio of contacts due to overtaking is 25%. Figure B)&hows that the av-
erage data rate remains fairly constant with respect totakiag, and theMlobTorrent
scheduling scheme constantly outperforms other on-liherses in all velocity variation
settings. Since location information is not explicitlylized by the other three on-line
schemes, it is not surprising that performance of them nesfairly stable. FoMobTor-
rent, when the relative node locations are not static any moeep#rformance is fairly
robust for the following reasons. First, MobTorrent blocks only possessed by a fore-
runner that is nearer to the client are given higher pridotyreplication. This reduces
the impact of overtaking, since the blocks on a forerunnergevertaken by the client
may have already been delivered when overtaking occur©n8eevhen a forerunner is
overtaken by the client or another forerunner, a new oppdstiec contact between the
two nodes is created, which would not have occurred witheettaking. The overall
impact of overtaking oMobTorrents performance is not significant.

Finally, we investigate the impact of path divergence by imgikehicles disappear
from the system suddenly. As shown in Figure 3.8 (c), thegoeréance of all forwarding
schemes degrades as the disappearance rate increasesMéhilorrents performance

remains the best among all on-line schemes evaluated, lbperéformance is similar
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among all schemes when path divergence occurs with a pidapdigher than 20% per

node per minute.

3.5 Related Work

3.5.1 Multi-hop Cellular Networks

Due to the complementary characteristics of cellular neter@and Wi-Fi networks, a

number of research efforts have tried to combine them. Inynwdirihese approaches,
only the cellular BSs are gateways to Internet and Wi-Fi net® are used to improve
the performance of the cellular networks infrastructurg,,dor coverage expansion [3],
load balancing [109], and better channel utilization [68],discussed in Section 1.2 of
Chapter 1. Hsieh and Sivakumar give a comprehensive sufiese approaches [46].
In comparison, we use the cellular network mainly as a cbwetrannel for a vehicle to

send out request and acknowledge the data it has received.

3.5.2 Vehicular Internet Access using Wi-Fi Networks

In the area of vehicular Internet access using Wi-Fi netwotkt and Kutscher [84] pro-
pose a framework to support so-called drive-through lrgerihe key component is a
session protocol (PCMP) that offepersistentend-to-end communication even though
the vehicles on the road only have intermittent contactk vaadside APs. In their work,
for vehicles with velocity from 40km/h to 180km/h, a few MeBgtes could be trans-
ferred to and from the mobile node using TCP and UDP. As pahteoMIT Cartel project,
Bychkovsky et al. [21] measure the upload bandwidth avigladvehicles in the Boston
metropolitan area using in-situ unplanned open APs. Thdtrissalso encouraging. The
upload TCP bandwidth has a median of 30 KBps, and medianférasize per contact
duration is 216 Kilo Bytes. Cabernet [32] further improvis performance by optimiz-

ing both the connection establishment procedure (QuickVeifd the transport protocol
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(CTP). Another measurement of Wi-Fi connectivity from muaywvehicle is described by
Mahajan et al. [70]. Zhang et al. [114] investigate schedpissues for vehicle uploading
or downloading from a roadside unit. Balasubramanian ¢8ppropose ViFi, a protocol

that opportunistically exploits base station diversityrtmimize disruptions and support
interactive applications for mobile clients. In compariswe focus on the setting where
roadside Wi-Fi AP only provides partial coverage (aroun#ZBom our measurement or

even lower), so that the main application of interest is glétderant bulk file transfer.

3.5.3 Delay-Tolerant Network Routing

Another direction in the area of vehicular communicatiorirean the angle of Delay-
Tolerant Network (DTN). Vahdat and Becker [104] propose ‘thtere-carry-forward”
epidemic routing approach for intermittently connectetivoeks. They use the hop count
of messages to regulate the resource usage. Spyro et akle@]that binary splitting
is optimal under certain assumptions for spreading a giwenber of replicas into the
network. To improve over blind replication, Lendgren et[&8] propose PROPHET,
which is shown to work better than epidemic routing, basetherobservation that real
users tend to move in a predictable fashion with repeatihgWweral patterns. UMASS’s
DieselNet project presents a study of vehicle (public busestact time [113], and pro-
poses a series of routing protocols [7, 18, 19]. There arerabmajor differences between
MobTorrentand existing DTN routing works, as most of the latter are glesil for the
general case where the mobility pattern is largely stretésss, and using historic meet-
ing information is recognized as a good heuristic to esemature contact probability. In
above systems, the target application is communicatiomgmaobile nodes, the target
message delivery delay is often in the scale of hours (dng.average delivery delay is
67.5 minutes using epidemic routing in the DieselNet trdde3]), and the target delivery
rate is dozens of packets per hour. Instead, our interestusé the capacity of inter-
mittently connected networks to supplement the bandwiéitetular networks, and we

focus on the data transmission between roadside APs andewiibnts. The target de-
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livery delay is in a few minutes, and the target delivery iateundreds of Kbps, which is
comparable to that of HSDPA network. To achieve this, we niakeise of the mobility
information from in-situ AVL system.

Zhao et al. [116] and Li and Rus [64] propose to use Mobileyfeouting approach
for data delivery in a sparsely connected network. The ndea iis to introduce some
non-randomness in node movement or actively change togsiestto help deliver data.
However, in the scenario we are interested in, it is notVikkeht nodes will move just to
accommodate communication.

Prefetching has been used extensively to speedup web dawvfdb]. In a vehicular
environment, Balasubramanian et al. propose using phefefdo speed up access to
result of web queries [9]. We use prefetching in a differeayvas the uncertainty comes
from the varying contact opportunities instead of the filguiead.

Chakravorty et al. [23] propose the concept of treating ttevigion of wide-area
wireless service for mobile users as a free market. Motaal. §78] and Lee et al. [60]

propose architecture to support a market place over mobdesu

3.6 Summary

In this chapter, we preseMobTorrent an on-demand, user-driven framework for vehi-
cles to access Internet via roadside static APs and otheitenaicles on the road.
MobTorrenthas the following components. In order to improve networktighput
performance, prefetching and caching are used to bettdoiexipe short contact time
between AP and client by having the data locally availabtetfansfer. In addition, to
address the issue of low coverage, data can be pushed toenh@hiers so that areas
where Wi-Fi can be used for data transfer are not limited tege of static roadside
APs but expand to include areas covered by mobile nodes.eSults based on real world
experiments and trace-driven simulations show MabTorrentprovides substantial im-

provement over other existing frameworks.



Chapter 4

MobiCent: an Incentive-compatible

Credit-based System for DTN

4.1 Introduction

Delay-Tolerant Networks are characterized by intermittamnectivity. Such networks
are assumed to experience frequent, long-duration penitityy and often lack an end-to-
end contemporaneous path [35]. As proposed in Chapter 8ttinef mobile communi-
cation systems, the high-bandwidth but intermittent veissl connections among partic-
ipants can be exploited using the Delay-Tolerant NetwayKIDTN) approach, so as to
enhance the performance of traditional cellular netwoMsbTorrentdemonstrates the
viability of the proposed approach in vehicular networks.atdition to that, DTN ap-
proach can also be potentially applied to mobile human soetaorks, where people
carrying wireless mobile devices communicate through pmwer high-bandwidth links,
like Ultra WideBand (UWB). The MIT Reality Mining project ] and the Pocket Switch
Network [48] are examples of mobile human social networks.

In the targeted civilian and commercial environments, tiobile nodes are managed
by autonomous and selfish parties, thus an incentive schieouddsbe employed to foster

cooperation among participants. However, this opens tissipiity that a selfish node

94
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may game the system, by performing hidden actions thataseré&s own reward from
the incentive scheme while degrading the overall systeriopeance.

For example, if we assume that a fixed amount of reward is togoally shared
among all nodes on a forwarding path, a selfish node can cBddi¢ nodes [28] and
forge phantom forwarding edges among its Sybil nodes togetade its contribution. In
this way (i.e. edge insertion attack), the node increaseshiire of the reward. However,
such selfish behavior discourages other nodes from patiogin the forwarding. As
another way to maximize its own reward, a selfish node maymisposely not forward
data to other relays, betting that it can deliver the datectly to the client and thus keeps
the entire reward. Such an attack (i.e. edge hiding attactmonstrated earlier by the
mobile forwarding gamexample in Section 1.3 of Chapter 1. These selfish actionseed
the network capacity, resulting in both lower deliveryoaind higher delay. In this work,
we focus orrational nodes rather thamaliciousnodes. A rational node carries out an
action only if doing so can increase its own payoff. In congmar, a malicious node is
willing to take any action that degrades the system’s peréorce, regardless of its own
payoff.

There are two key challenges in designing the incentiveraehfer DTN. First, dis-
connections among nodes are the norm rather than excepsoaresult, selfish actions
as described above are extremely difficult to detect. Ingshantrast, traditional end-to-
end connected wireless networks can rely on the mutual @oartnong the autonomous
peers to detect any such deviation. Second, as contact$taneunpredictable in DTN,
the delivery paths cannot be predetermined, but must bewsed along with the for-
warding of data instead. Again, the routing behavior ofitradal end-to-end connected
wireless networks is fundamentally different, as the dginpath is often determined be-
fore the actual data pass through. Because of these twaodtiffes, existing incentive
schemes for end-to-end connected wireless networks céendirectly applied, as will
be elaborated more later in Section 4.7.

In this chapter, we preselobiCent[26], a credit-based system for DTNlobiCent
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is largely motivated by, and directly designed updabTorrent On one handMobTor-
rentshows that the application of DTN in a commercial environhoam be useful. Thus,

a natural follow-up question is how to motivate the nodetmperate. On the other hand,
the existence of the highly available control channéViobTorrentcan facilitate multi-
ple designs in the proposédobiCentprotocol. However, the attacks as identified and
addressed biMobiCentare fundamental to the nature of DTN, thi¥pbiCents credit-
based solution can potentially be generalized to fostepexiion in other forms of DTN
systems different fronviobTorrent

We make the following contributions in this chapter:

1) We identifyedge insertion attackandedge hiding attackas the two major forms
of attacks in a DTN environment. It is extremely difficult tetdct them in DTN, and they
can seriously degrade the performance of DTN routing.

2) We take the algorithmic mechanism design approach [82( tlvess the two forms
of attacks, and identify the necessary conditions urdige insertion attacki®r a pay-
ment scheme to be incentive compatible, i.e., truthfulip@etion is adopted by selfish
nodes.

3) We propose incentive-compatible payment mechanismetéo to client that wants
to minimize either payment or data delivery delay.

MobiCentdoes not require detection of selfish actions as it providesritives for
selfish nodes to behave honestly. In additiglobiCentdoes not require pre-determined
routing path. It works on top of existing DTN routing proté&€a®o ensure that selfish
actions do not result in larger rewards. To the best of ounkedge MobiCentis the first
incentive-compatible scheme proposed for replicatioseddD TN routing protocols.

The rest of this chapter is organized as follows. Sectiopre&ents the system model
and formulates the attack model and the path revelation garhe message exchange
protocol to supporobiCentis described in Section 4.3. We analyze the payment scheme
required to thwaredge insertion attacksx Section 4.4, followed by the mechanisms

designed to comba&tdge hiding attacks Section 4.5. Evaluation is presented in Section
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Figure 4.1: MobiCent Framework

4.6. In Section 4.7, we describe related incentive schelfvesonclude in Section 4.8.

4.2 System Model and Problem Formulation

4.2.1 System Model

As assumed iMobTorrent MobiCentis based on a network model where the nodes can
have access to two different networks. All nodes parti@pata mostly disconnected
network, where short-range high-bandwidth links are usedl&ta transfer. At the same
time, some of the nodes (in particular the source and déstinaodes) have access to
a mostly available network, where long-range low-bitrat&d are used for control mes-
sages.

The network architecture assumed kobiCentis shown in Figure 4.1. The compo-

nents are:

e Trusted Third Party (TTP) stores key information for all nodes and provides ver-

ification and payment services.

e Helpersare mobile or static nodes (node X, Y, Z in the figure) that ilp in data
relaying using the high-bandwidth intermittent link. Hetp (except for the source

node) do not need to have a highly available control channel.
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e Mobile Clients are the destination nodes (node C in the figure) which ieitiaivn-
loading. We assume that mobile clients have high-bandviddthintermittent links

for data transfer and highly available but low-bandwidtik$ for control messages.

A typical downloading process iMobiCentbegins with the mobile client requesting
data from a data source that can be another mobile node oraasttat / web server
in the Internet. In the former case, the mobile source no@el:i@access to the control
channel in order to initiate packet transfer. In the latesec(as studied iNobTorren),
the destination node obtains the data via some access phigs These APs are special
helpers with Internet access, and they are the data sourttes thie wireless domain. In
the example of Figure 4.1, data for a request initiated byctieamt C before time; can
be transferred from the AR to the helper Y at timé, Y to Z at timet, and finally to C
at timets. If data are replicated among the nodés;an also receive data frovhat time
t4 and the APX directly at timets. Different paths complement one another, as each of
them is subject to uncertainty.

A detailed description of the system including the messagkange protocol is pre-
sented in Section 4.3. We will first present a brief overvieseh We use standard cryp-
tographic techniques and en-route onion encryption [74jrevent free ridingrestrict
strategy set of participanendhandle dispute among relays and cliektore specifically,
each relay encrypts the data payload with a one-time synuriety before forwarding
it. The key is also sent along with data in an encrypted founhghat only the TTP can
recover the keys. Thus, after a client receives the enaiygié¢a, the only way for the
client to retrieve the decrypted data is to make paymentadlthP in exchange for the
encryption key(s). Similarly, the only way for the relay tetgpayment is to be involved
in the forwarding process. Note that the lightweight messaghange protocol handles
a wide array of attacks, but it cannot prevent both clientrately from launching edge in-
sertion attacks and edge hiding attacks, which will be dlesdrin detail in Section 4.2.3.

To address these attacks, an incentive compatible paymiest® is needed.
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4.2.2 MobiCent and DTN Routing

MobiCentruns on top of a given DTN routing module, and does not relyrmnspecific
routing protocol. We first present a generic model of DTN imyit When two nodes
meet, they exchange metadata on the packets they havernmnasgeective buffers. Based
on the information exchanged, each node decides which tsitkeants the other node
to transfer (replicate) to it. The order of the packet trangkepends on the priority a node
associates with each packet. The amount of data that caars#drred in a single contact
is dependent on the duration of the opportunistic contact.

Various DTN routing protocols differ mainly on how each pet priority is deter-
mined. In the simplest version, all packets have the saneeifyriHowever, such simple
stateless epidemic routing is not efficient, and reseasdm@re proposed many improve-
ments. For example, both direct and indirect contact hiess@re used in PROPHET [68].
In MaxProp [18], a combination of a few parameters, inclgdiontact history and packet
hop count, are used to determine a packet’s priority.

MobiCentworks by setting the client’s payment and the relays’ rewaalthat nodes
will behave truthfully. Therefore, nodes will always fomglgpackets without adding phan-
tom links, and never waste contact opportunity unless thaneis inadequate or it is the
decision of the underlying routing protocol. As a resulg {best) forwarding paths that

should be discovered by the given routing protocol throgghication will be discovered.

4.2.3 Path Revelation Game

Before formulating the problem aspath revelation gamewe first define some termi-

nologies.

Definition 4.1 Anedgee represents the opportunistic contact between two noadesidgh
which data can be forwarded between them. Formally, an edgedefined by the two

nodes{vy,Vv»} in contact (referred to as the edge’s vertices) and the cdritene te) 2.

IFor easy presentation, we assume that contacts do not peertshave enough capacities to exchange
data. Thus, both the contact duration and its capacity artteahin our formulation.
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For example, Figure 4.2 plots the scenario depicted in Eigut as a contact graph
over time axis. In the figure meetsy at timets, and the corresponding edge is denoted

ase= ({X,Y},t1), whereX andY aree’s vertices. Given a node, the set of edges

containing it as a vertex is denotedB&&y).
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Figure 4.2: A contact graph plotted over time axis

Definition 4.2 A contact graph is denoted by G= (V,E), where V is the set of nodes in

the system, and E is the set of edges among the nodes.

In Figure 4.2 = {X,Y,Z,C}, andE = {({X,Y},t2), ({Y,Z},t2), ({Z,C},t3), ({Y,C},ta),
({X,C} t5)}.

Definition 4.3 A forwarding path is a sequence of nodes from the source to the destina-
tion, such that, from each of its nodes, there is an edge tod¢enode in the sequence,

and edges appear in non-decreasing contact time.

Given a patlP, Relay(P) is the set of relays on the path. Note that source is consid-
ered as a relay. The number of relays on p&blayP)| is defined as the length of the
path. A pathP with lengthn is called an-hop path. At the contact time of its last edge, a
pathP is revealedto the destination.

In Figure 4.2, there are three patl®s,(P,, andP3) from the source nodx to the des-
tination nodeC. PathP; consists of three edge&t X, Y},t1), ({Y,Z},t2), and({Z,C},t3)
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Figure 4.3: Attacks

in sequencel, consists of two edgesg{X,Y},t1) and({Y,C},t4) in sequence; anBs is
a 1-hop path consisting of a single edd&,C},ts)).

The charge to the client and the reward to the relays arerdeted by apayment
schemeconsisting of two algorithms, namely,payment set selection algorithmeter-
mining which relays should be paid, angpayment calculation algorithpwhich deter-
mines how much credit should be paid to each selected rat@yhaw much should be
charged to the client.

As stated in Section 4.2.MobiCentuses its message exchange protocol to constrain
the strategy space of users, so tbdge insertion attackandedge hiding attackare the
two major forms of selfish actions that a node can take. Weillviitrate how a selfish
node gains from cheating under a natural payment schemeexémaple is based on the
contact graph in Figure 4.2. Without loss of generality, wsuane the use of thearliest-
path fixed-amounpayment scheme. Under the scheme, a client pays for eadwad@ce
data block a fixed total amount of 3 cents, which is sharedlggbg all relays on the
earliest delivery path. A helper participates if the paysffnore than 1 cent, thus the
maximum path length is 3.

For illustration purpose, we redraw Figure 4.2 to highliie edges that belong to
different paths in Figure 4.3. Thus, some nodes (e.qg., that€@), which are receivers in

multiple edges, are plotted as multiple instances in thedigu
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Figure 4.3 (a) shows an edge insertion attack. In the figureerma selfish AP X
gets the data, it estimates the delivery probability fopaBsible paths, denoted p&; ),
p(P), andp(Ps) respectively. Recall that the reward per nod% ents where n is the
length of the delivery path. SupposéP;) =1 andp(P.) = %+s(> 0). By creating a
Sybil nodeX* and forging a phantom transfer frokto X* before forwarding the data
toY, X can claim% of the total payment iP, succeeds. However, due to this additional
edge,Y will not be able to forward t&, as the maximum length (3) is reached already.
Thus, pathP; is not revealed. By launching the edge insertion attackexipected reward
of X by forwarding viaY is 3 x % x p(P2) =1+ 2¢. In comparison, the reward X
transfers honestly is only 8% x p(P1) = 1. As a result, the selfish behavior of node
X increases its own payoff, but hurts the system performdoyceeducing the success
delivery probability from 1 to as low a§+s (if p(P3) =0). The delivery time is delayed
from t3 to no earlier thary.

The client can also cheat by launching edge insertion adtale&r example, when it
meetsX directly through patls, it can pretend to be a relay instead, so that it can recover
some of its payment as the Sybil relay.

Figure 4.3 (b) shows an edge hiding attack. Depending on stimated delivery
probabilities, nod&X may decide not to forward the packet to other relays at albpBae
p(Ps) = §+e(> 0). In this case, in order to selfishly maximize its own rewarafje X
will not forward the data to Y, i.e., hiding the edgg€X,Y},t1). This holds regardless of
the value ofp(P1) andp(P,), and even wheiX is allowed to launch edge insertion attacks
(as described above). The selfish behavior of node X hurtsytsiem performance, by
reducing the success delivery probability from up to 1, tdnoasas% + ¢, and delaying
the delivery time tds.

GivenG = (V, E), the two attacks can be formalized as:

Definition 4.4 A node v launches aedge insertion attack by creating a Sybil node’ v
such that G is modified to 'G= (V/,E’), where V =V U {V}, and E = E¥"W) U

{(wV,t)}. EY"() means for any edge e in(8), the vertex corresponding to node v
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can be set to either v of'v

Definition 4.5 A node v launches agdge hiding attack by modifying G to G= (V,E —

e), where e E(v).

A selfish node can launch one or both attacks multiple timesv e can define the

path revelation game formally.

Definition 4.6 A path revelation game is a distributed online game to reveal paths on a

contact graph G.

e Each node (including both relay and client) is a player.

e As an edge e is formed, only its two vertex nodes togetheresagal the existence

of the edge.

e The possible strategies of a player are (1) acting honestly2) launching edge

insertion attacks and edge hiding attacks.

e The payment scheme calculates payoff for each player bawstbe cevealed contact

graph.

The payment scheme determines the outcome of the game,sralitl be designed
to discover some desirable path(s) from source(s) to degim(e.g., the earliest path or
the shortest path). More specifically, we design paymergrsels to meet the following
goals:

1) Incentive compatibteTruthful participation is adopted by both client and relay
despite of their selfish nature.

2) Efficient and frugal If there is at least one path revealed before a given deadlin
the client should be able to recover the data with minimumpant. If a client is willing
to pay more (but still bounded amount) to recover its dateoas sis possible, the client

should be able to recover its data upon revelation of theéesapath.
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Among auction games, our work is closest to the well-stughath auction game
In this game, there is a netwofk = (V,E), in which each edge € E is owned by an
agent. The true cost @is private information and known only to the owner. Given two
vertices, source and destinatiom, the customer’s task is to buy a path frato t. Path
auction games have been extensively studied and much ofdreglire has focused on the
Vickrey-Clarke-Groves (VCG) mechanism. In the VCG meckanithe customer pays
each agent on the winning path (i.e., the path with the mininamnount of total cost) an
amount equal to the highest bid with which the agent woulblstion the winning path.
This mechanism is attractive as it is incentive compatible.

Existing works [30, 94] have shown that VCG is vulnerablegisé-name manipula-
tion, a form of the Sybil attack. Furthermore, it is well knothat VCG is not frugal for
the path auction game [6, 31, 51], i.e., a VCG-based incerdmpatible scheme may
result in very large payment.

A key difference between our work and the work on the pathiangame is that in
our work the contact graph is the information to be elicitexhf the participants, whereas
in the latter, the topology is static and known to all.

In the rest of this chapter, we first present the message egehaotocol to support
MobiCentin Section 4.3. Following that, we analyze the payment atligor required to
combat edge insertion attacks in Section 4.4, then prekerthtvarting of edge hiding

attacks in Section 4.5.

4.3 MobiCent Message Exchange Protocol

In MobiCent we exploit the highly available low-bandwidth control cm&| at destination
to allow a Trusted Third Party (TTP) to mediate the file trangfrocess. We will explain
the message flow using file downloading from Internet as ampi@ The case of a
source node initiating a file transfer to a destination nedamilar. Message exchanges

occur in three stages: (1) data request, (2) data forwardimg)(3) data recovery.
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Suppose the TTP’s public and private keys BreandSr respectively, and a partic-
ipating node (helper or clieni's public and private keys afé; and Sg respectively. In
addition,R shares with the TTP a symmetric kieyg.

Each node only needs to know its own public and private kdys,shared secret
key with the TTP and the TTP’s public key. For the TTP, besite®wn public and
private keys, it has to know the shared secret keys and pkiyis of all nodes. A new
participating node has to inform the TTP of its public key aiose the shared secret
key with the TTP. Furthermore, the TTP encrypts the pawde id, node’s public kéy

with its private key and this signature is stored on the pigditing node.

4.3.1 Data Request

To initiate the downloading process, a cli€hfirst sends the file download request <

C, f,p(),to,tq,0 > to the TTP in a secure way.is the file description including its name,
size, and the approach to locate the file (e.g. URL addr@$$)s the payment function,
which will be discussed in detail in Section 4.4 and Sectidnt4 andty are the start time
and deadline of the request respectivatyindicates the valid geographical area/region
for the request to propagate.

After receiving and successfully decoding/verifying tieguest, the TTP encrypts
with its private key and send3the request signatu& (r).

Upon receiving the TTP’s approv&,can then forward< r, Sy (r) > to all APs within
the specified area. C may need to contact a directory server to find out the list o AP
in the area.

When an AP gets the request, it first checks the validity oétgeature from the TTP,
as well as the file description, the time and area scope. Itatsmyconsider the amount
of promised payment to decide whether to help or not. If theard is sufficient, the AP
begins to prefetch the file block by block, with a predeterdiblock size. These blocks

are then replicated to the helpers using the DTN approach.
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4.3.2 Data Forwarding

Each nodeR maintains a list of block&.;(R) that it currently holds, and a list of blocks
L2(R) that it has requested but not received yet. When two nédasd B are near
each other, they can communicate directly via the shogedmgh-bandwidth link. They
will begin with an exchange of the metadata to reconcilertbleick listsLL1(A), L1(B),
Lo(A) andLLy(B), and agree on the subset of blocks to be exchanged and thensequ
to exchange blocks. The exact block subsets that are exedatepend on the routing
algorithm [7, 18, 25].

For theit" block of request, the message being forwarded consists of three parts
as shown in Figure 4.4 (a). The headtercontains the basic information r,i, Sr(r) >
which remains the same for all hops. The header is followethbyencrypted data and
supplementary layers, which are being modified and appetwlegspectively at every

hop.

Header H | Encrypted data C_ | Supplementary Layers L[]

Msg:

’ Ry Bk Ry RR, 1K)

n+l’ 'n

Sg, (MD(H.C,L[I-L,[2))

(@)
Key request: <r, i, L,[1], --,L [1])> }_.
Client TTP
Key reply: <k, k >or Reject |

(b)

Figure 4.4: Message format

DenoteCyp as the requested content in clear text, &jdas the encrypted content
forwarded by the'" hop nodefi = 1,2, ...). Let then" hop relay be denoted b,

Before forwarding a received block with data payl@ad1 to the next hop, the relay
R, generates a unique symmetric Keyfor the block, and substitutes the data payload
with C, = Ex,(Ch—1). Note thatk, is only used to encrypt the current block and a new key

is generated for each block encryption.
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In addition, it appends a new supplementary layer with 2 comepts,L,[1] and
Ln[2]. The first componerit,[1] contains the current relay’s IR,, and an encrypted field
of four subfields, namely the previous relay’sRd 1, the current relay’s idR,, the next
relay’s id Ry.1 and the secret kel, used for data block encryption. The shared secret
key of the TTP andr, is used to encrypt this element. The array{bf[1]} is the data
that will be forwarded to the TTP later by the mobile clientrézover the data. For the
source node, a randomly generated value is usegfor.

The second componeht[2] consists of just one fields, a cryptographic hash (e.g.
using MD5 or SHA-1) of the whole block minus the currently qmrted hash values,
encrypted using the current relay’s private k&g). This component is required for
verification and auditing purpose and is only sent to the TTiemthere is a dispute.

The next relayR, 1 first verifies the headdd to make sure that requesis valid.
Then, the relayr, ;1 stores the data block and the idenfRywhich is needed to generate
the next supplementary layer if it forwards the messagaéurBefore forwarding, it also
needs to verif\ty[2] usingRy’s public key. This key is verified using the TTP’s signature
for the pair{R,, Pr,} obtained fronR,.

Note that a relay node does not need to contact the TTP dure@rocess. This
has two benefits: (1) reduce the load of the TTP, and (2) eraafiebile node without a
highly available control channel to become a relay.

In the forwarding process, for each block, a serfi@eneeds to perform 2 symmetric
key encryption (over the data payload dnyl]), and signs 1 fieldsl[2]) using its own
private key. The receiveR,.1 needs to verifyLy[2] using the sender’s public keg,
for each block. The receiver also needs to verify the seageiblic key (per neighbor

overhead) and the TTP’s signature for the request (per stguerhead).

4.3.3 Data Recovery

Without loss of generality, suppose the block is deliveredf sourceR; to the clientC

via two store-and-forward hod?; — R» with one-time encryption kel;, andR, — C
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with key ko.

C sends to the TTP (in a secure way) the following key requesi, L1[1], L2[1] >
as shown in Figure 4.4 (b).

From this information, the TTP is able to recover the reguisecret key&; andk,.
The TTP then sendgks, ko} to C.

With these keys(C is able to decrypt the data block using each key in the given
list sequentially until all keys are used and the originat ise recovered. At this point,
we assume that is able to validate clear text through checksum in the clear or
application level semantic. If data are valZisends confirmation to the TTP. Otherwise,
C sends a dispute with the encrypted data it recei@3$ &nd the list of elements in
{Ln[2]} to the TTP.

The TTP settles the credit transfer off-line. In additidme fTTP may broadcast the
ACK for blockr,i in the areax after the request is completed.

If a client does not submit any key request before the deagdiive TTP will assume

that the process fails. All pending data blocks in the nektveartomatically time out.

4.3.4 Protocol Properties

The message exchange protocol has the following propeRies, it prevents free-riding
through the use of en-route onion encryption. More spedifica client cannot get its
desired content without payment, and a helper cannot gehg@atywithout helping with

the forwarding process. Note that, there is no monetarydyeor a potential forwarder
to participate. As the forwarder does not need to decryptitia, it does not pay for the
content.

Next, the protocol prevents a node from modifying an exgstralid path segment
since each relay encrypts the identities of the previousenotiand next relays. Based on
the information contained in the message, the protocol eterehinistically detect nodes
that modify the path. Thus a node’s valid strategy space msddify its own edges, i.e.,

by launching edge insertion attacks and edge hiding attacks
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Both communication overhead and computation load on thedféninimum. Re-
lays do not need to contact the TTP during forwarding, andvgayt settlement is per-

formed off-line. Finally, forwarding requires public-keyyptography that may be expen

sive. We discuss this issue further in Section 4.6.4.

4.4 Thwarting Edge Insertion Attacks

Suppose relays on a delivery path are selected for paymentowsider the design of
payment calculation algorithm to thwart edge insertioacks. The intuition behind our
design is: (1) To deal with relay’s cheating, we observe thabducing Sybil nodes
allows a relay to claim a larger fraction of the total rewaathjle increasing the delivery
path length. Although we cannot prevent a relay from stgadifarger fraction of rewards
from the total reward (as we cannot distinguish between lan@@e and a Sybil node),
we can make the total reward decreases as a function of thdguagth. As long as the
total reward diminishes faster than the increase of a selfisle’s relative share, the relay
will only decrease its overall reward by introducing Syloldes. (2) Similar idea applies
to thwarting edge insertion attacks from the client. Morecsfically, although we cannot
prevent the client from reclaiming some of its payment bagkaaybil relay, we can
increase its charge as a client according to the path lesgti, that there is no net gain
for the client.

We consider a general payment schegné&siven an-hop path, we define the mini-
mum payment to an individual relay in the pathl%swar(g"”(n), and define the charge

to a client using a-hop path a€harges(n).

Lemma 4.1 To prevent a relay from gaining by launching edge insertittacks, 2 x

Reward(n+ 1) < Reward"(n).

Proof: Consider a relayr on an-hop path. Suppose gets the minimum reward

Rewartg"”(n). By inserting a Sybil nod®, its reward is the sum of the payments to
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two relays on &n+1)-hop path, which is no less thanReward™(n+1). In order to
preventR from gaining by doing so, we must havecReward'"(n+1) < Reward"(n).

[

Lemma 4.2 To prevent a client from gaining by launching edge insertittacks,

Chargey(n+ 1) > Charges(n) + Reward""(n+ 1).

Proof: By appending a phantom edge om-dop path, a client can gain reward
as the Sybil node. Since the new path containsl hops, the reward to the appended
Sybil node is no less thaReward'"(n+1). In order to prevent the client from gaining
by doing soReward!"(n+ 1) — Charges(n+1) < —Charges(n). ]

Note that, our formulation is general, as it does not excthdaise of other factors to
determine payment. For example, we allow the rewards féereint relays on the same
path to be different.

Lemma 4.1 states that the payment scheme should ensureréay’a incremental
gain by being paid as multiple Sybil nodes grows slower tlenreduction of each in-
dividual's payment (due to the increase of the path lenddimilarly, Lemma 4.2 states
that the incremental increase of a client’s payment forgisitonger path is greater than
the reward the client earns as the added Sybil node.

The two lemmas show that existing payment schemes, inguthe fixed-amount
payment scheme we considered above, as well as others [B0arELnot incentive com-
patible under edge insertion attacks.

To simplify the presentation without loss of generality, assume that 1 cent is the
minimum reward required to motivate a relay to participatehe forwarding process.

Lemma 4.1 and Lemma 4.2 together lead to Theorem 4.1.

Theorem 4.1 To enable incentive-compatible forwarding while ensuriagicit-free for

the TTF, the payment charged to a client for using a n-hop path isat2" — 1.

2The deficit-free property means that the TTP charges no tesl érom the client than the total amount
it pays to the relays. If the deficit-free property is not eeslimalicious node can make profit from phantom
transactions.
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Proof: AsReward""(n) > 1, from Lemma 4.1, we haeward"(i) > 2"~ for 1 <

i <n. Using Lemma 4.2, we hav€harges(n) > 5" ; Reward"(i) > 3" ;21 =211
[

While the bound may seem large, we argue that it is feasilide srdopted in practice,
because:

1) The client can specify the maximum hiNpaccording to its requirement and utility
function to control the maximum possible payment.

2) While the cost of using a smal (3 to 5) is low, it is sufficient in some typical
DTN scenarios, as will be shown in Section 4.6.

3) Many practical DTN routing algorithms pose a limit on thaphcount for better
use of network resources. As an example, Spray and Wait @4 no more than 5 hops
to spread 16 copies, a number sufficient in some typical DTe¥&Gos.

As existing schemes do not satisfy the required propertyniseduce a new incentive-

compatible payment algorithm that minimizes the clientigment.

Multiplicative Decreasing Reward (MDR)
Given the maximum path lengtid and an arbitrarily small positive,
if a n-hop (1< n < N) path is selected, each relay on the path getg the

same reward of:

Rewarqipr(n) = (2+¢)N"cents (4.1)

and the client is charged by

Chargaupr(n) = (24¢)N — (2+¢)N"cents (4.2)
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Theorem 4.2 Under the MDR payment algorithm, both client and relay havewentive

to launch edge insertion attacks.

Proof: Under the MDR payment algorithm, if a client onnehop path launches

edge insertion attacks, and insekts 1 extra edges, its net payoff is:

k x Rewardypr(n+ k) —Chargaupr(n+ k)

= kx+e)N""K_(2+e)N— (24N
= (:_—:Sl)k(ZJrs)N‘” —(2+¢e)N

< (24eN"—(24+¢)N (since £>0,k>1)

= —Chargeupr(n) (4.3)

Hence, a client does not gain by inserting edge. Now let usidenthe last relay
R, on an-hop path. Regardless of the behavior of previous relaygifvdr some of them
are Sybil nodes or not), iR, launches edge insertion attacks and inskrtra edges

(n<n+k<N), its reward is:

(k+1) x Rewardipr(n+k)

— (:Isl)k(ZJrs)N” < Rewargypr(n) (4.4)

Therefore, the dominant strategy g is to act truthfully. Similar argument can be
applied iteratively to the previous relays starting frora th — 1)”‘ relay, assuming that
later relays on the path are rational. Therefore, baseeoative elimination of dominated
strategy, all relays adopt truth telling in the unique Naghikbrium.

[]

Note that truth telling is not dominant strategy for relayxsept for the last relay
since the strategy of a relay appearing earlier on the pattbeaffected by an irrational
relay appearing later on the path. However, the game is dom@solvable and all relays

adopt truth telling in the unique Nash equilibrium. The dmakitivee in MDR payment
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algorithm is required in the proof to ensure the uniquenésiseoNash equilibrium. We
omit € in the following discussions for brevity.
Among all payment schemes that satisfy the necessary aomslibr incentive com-

patibility, Theorem 4.1 and Theorem 4.2 together imply:

Corollary 4.1 The MDR payment algorithm is the most frugal incentive cdibjgmech-

anism robust under edge insertion attacks.

Under the MDR payment algorithm, each relay’s individuavaed and the sum of
all relays’ rewards decrease with the path length, whetgasltent’'s payment increases
with the path length. The maximum surplus or overpaymergasied when the longest
path (N hops) is used, which iChargepr(N) — N x Rewargipr(N) = (2)N — (N +1)
(with € omitted).

This overpayment can be handled in the following ways. Fasine of the overpay-
ment can be considered as payment to the system providem&ebe overpayment may
be redistributed back to the mobile nodes if the redistrdsuts incentive compatible.
Cavallo discusses an incentive-compatible redistrilouti@chanism [22].

MDR alone is sufficient to handle edge insertion attacksrgaveelected set of relays.
However, edge hiding attacks may affect the set being sslecthus, MDR algorithm
need to be used together with some payment set selectionthigpwhich will be con-

sidered in the next Section.

4.5 Thwarting Edge Hiding Attacks

The high-level idea to thwart edge hiding attacks is to deiee an incentive-compatible
relay set by examining a sufficient subset of the paths eveated before the deadline.
Intuitively, our solution provides the following two progiees: (1) Participating in more
forwarding paths (by replicating to other relays) only geses a node’s probability of

being selected for payment. (2) If a relay participating ialtiple paths is selected for
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payment, it will always be paid according to the path thaegiit the highest reward,
regardless of the other paths that it participates. Thialshwld even if its most favorable
path (e.g. direct contact with the client) is revealed Itan other less-favorable paths. In
another word, participating in more forwarding paths doatsdecrease a relay’s reward
amountif itis ever selected for payment. The combinatiothe$e two properties ensures
that a rational relay does not launch edge hiding attacks.

In the following, we present selection algorithms for twpéyg of clients, namely:

e Cost-sensitive clienfThe client’s goal is to minimize payment under a given dead-

line constraint.

e Delay-sensitive clienfThe client’'s goal is to minimize delay under a given payment

constraint.

While the algorithm for cost-sensitive clients is simpleaut the algorithm for delay-
sensitive clients, they share the same intuition as desttabove. By catering for the two
types of clients, our schemes allow the trade-off betwegmeat and delay. A client
selects the desired scheme explicitly when issuing itsesiguThe two types of clients

can coexist in a single system.

45.1 Cost-sensitive Client

min-Cost Selection Algorithm Under this algorithm, the forwarding procedure is termi-
nated only at the deadline of the request, or upon revelafiariL-hop path, whichever is
earlier. The client reports to the TTP the shortest path exeraled when the terminating
condition is met. Only relays on the reported path are paagntents by the client and to

the relays are computed using the MDR algorithm.

Theorem 4.3 Under the min-Cost selection algorithm, both client ancyehave no in-

centive to launch edge insertion attacks or edge hidingcata
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Proof: We first consider the dominant strategy for the client. Thentlcannot
arbitrarily fake the shortest path, as in that case it is bt# to decode the correct data.
Given that the client pays the least with the real shorte8t fiecan reveal, it has no
incentive to hide the shortest path it is able to get. Findllyeorem 4.2 states that the
client has no incentive to append any Sybil node on the redquath.

For a given relay, we consider the two attacks sequentially:

1) Edge insertion attack: For a relay on the selected shqrégis, Theorem 4.2 states
that inserting edge on the selected path does not benefigldnye inserting edge on any
non-selected path only increases its length, and does ric ihthe shortest path, thus
does not change the payment decision.

2) Edge hiding attack: for a relay on the selected shortaktahiding other paths
does not have impact, and hiding the shortest path can restio scenarios. First,
another path that does not contain the relay is selectecin8ganother path containing
the relay but with length no shorter th&nis selected. In both cases, the relay’s payoff
does not increase, hence there is no incentive for the reldp tso. For a relay not on
the shortest path, hiding any path that containing it do¢sffiect the shortest path being
selected, thus its payoff remains zero. O

In Figure 4.5, all paths revealed to the client are showneit tvelation times. The
maximum path lengtiN = 3. Note that the client is not shown in the paths. Among all
revealed paths, the client only accepisPs, andPs, as each of them is the single shortest
path when they are revealed. The client reports the 1-hdpHado the TTP atg, as there
is no path shorter can be revealed. The client g&yargepr(1) = 23 _23-1— 4 cents,
and relayU on the reported path is paid [Rewardipr(1) = 23~1 = 4 cents.

If the deadlindq is betweens andtg instead, the client will report pat®s at the new
tq. Relaysy andW onP; are paid, and each geRewargpr(2) = 23-2 =2 cents, while
the client is charged b@hargeypr(2) = 2° — 232 =6 cents. The surplusis62x 2 =2

cents. Note that, there are multiple sources (lddad nodeY) in this example.
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Figure 4.5: Paths revealed over time axis

4.5.2 Delay-sensitive Client

In this case, the decryption keys for data are given to tlemthy the TTP immediately
when the earliest path is revealed. Designing incentivegatible scheme for delay-
sensitive clients is more complicated than for cost-semestlients because the payment
decision can only be finalized after examining the rest ofpihs. Therefore, a mech-
anism must be incorporated to motivate the client to comtitaureveal paths to the TTP
truthfully, even though it already has the decoded data.

Briefly, themin-Delay Selection Algorithm contains the following three steps:

1) Key revelation and initial payment by client.: When the earliest path; is re-
vealed aty, the clientimmediately decrypts it through the TTP, anchisrgedch x 2N—1 4
(2" —2) cents, wherd is the maximum path length, amds P;’s hop count.

2) Reimbursement to client for reporting eligible paths The client continues to
report eligible paths to the TTP, and the client is reimbdirseent for evergligible path
it reports to the TTP.

3) Payment set selectionBased on the eligible path sequence that the client reports
the TTP decides the set of relagsto be paid. Onc& is determined, MDR payment
algorithm is applied oveR to calculate the payment to relays.

We discuss the steps in more detail as follows:

Initial payment : In this step, the first portion of the paymeank 2N-1 prevents the
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client from gaining by inserting a Sybil node in the earlipath and claiming back the
maximum reward B~ with the inserted Sybil node. The second portion of the payme
2" — 2 is the provident fund to pay the client for reporting eligipaths (maximum2- 2
paths with 1 cent each) in the next step.

For example, in Figure 4.5, the earliest pRihs used for decoding the message and
calculation of the client’s initial payment. As= 3, the client pays x 2N-1 4+ (2" —2) =
3x 23714 (22 -2) =18 cents.

Eligible path: Ideally, information about all paths can be collected. Idwer, the
number of paths can be unbounded. Furthermore, if there igligibility constraint
on the path, the client can fake any number of paths by appgriidi Sybil nodes on the
earliest path or forging a path with only its Sybil nodes,aogthe reimbursement without

receiving and reporting any real path. We definebgible pathin the following way.

Definition 4.7 A path P is areligible path if and only if the intersection of its relays and

the relays on the earliest path B aunigque non-emptgubset of Relgy;).

Uniguenesss defined in the following way. A patR is an eligible path if there is no
other eligible pati?’ such thaRelayP’) "RelayP;) = RelayP) NRelayPy).

The eligible path is defined to meet the following three ctinds: (1) the size of
the eligible path set must be bounded from above; (2) chgdtom the client cannot
increase the eligible path set; and finally (3) the TTP mustie to calculate an incentive
compatible payment based on the eligible path set.

Condition (1) is clearly met since the number of non-emptysets ofRelayP;) is
2" — 1. Each non-empty subset corresponds to at most one eljzglkite thus the number
of eligible paths (excludindp; itself) is bounded by 2— 2, which corresponds to the
amount we charged in the second portion of the initial payrbgrnhe client.

Condition (2) is met for the following two reasons. Firsgté is no Sybil node iy,
and the size of eligible path set does not depend on any ndadaleRelayP;). Thus,

the client cannot construct phantom eligible paths. Secmratdering of eligible paths
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does not change the size of the eligible path set. As thetaiees not gain by altering
the order of the reported paths, we assume that it reportsligible paths in the order
they are revealed. The client can accumulate all paths,epattrthem to the TTP in one
message.

Finally, condition (3) is met when the eligible path selentis used in conjunction
with the relay payment set selection to be presented later.

We illustrate the determination of the eligible paths usiigure 4.5. Among all
paths revealed afté?, only pathP,, Ps, andPs are eligible. The total reimbursement to
the client for these three eligible paths is 3 cents. Pa#mdP; are not eligible paths due
to the uniqueness constraint. Note that, the client can®ide makeP, an eligible path.
However, doing this does not increase the client’s reimdoaent. Finally, pati; is not
an eligible path because its intersection Weihis empty.

Payment set selectionDenote the initial payment set & = Relay(P;). The pay-
ment set is updated every time an eligible path is revealbd.update rule is as follows.
Suppose before an eligible pdths revealed, the payment sefiis If R; NRelayP) # 0,
then the payment set is updatedio 1 = RN RelayP). Relays in the final payment set
Ry will be paid.

Let us look at the evolution of the payment set in the examipkadoy Figure 4.5. The
eligible paths ard Py, P, Ps, Ps}, and the initial payment s&; = {U,V,W}. P, updates
the payment set t&; = RelayP,) "R = {U,V}. As Ps’s intersection withR; is 0, Ps
is not usedPs updates the payment setlka = RelayPs) "Ry = {U }, which is the final
payment set. Thus, only rel&y is paid, and the reward Rewargypr(|R3|) =231 =4
cents.

Note that, the correct calculation of payment set using bue@ selection algorithm
does not require the revelation of all eligible paths. Hosveveimbursing all eligible
paths is important to prevent the client from manipulating teport. Otherwise, if the
TTP reimburses the client only for the eligible paths usethenxcomputation, the client

may have the incentive to hide some eligible paths so as tease the number of the
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eligible paths needed. This will result in the incorrectr{macentive compatible) compu-
tation of the relay payment set.

We introduce a lemma before we present and prove the maingiimeia this section.

Lemma 4.3 Under the payment set selection algorithm specified aboyppase the pay-
ment set IR; at time t, given a relay R R;, for every eligible path P revealed before t,

R € RelayP) impliesR; — {R} C RelayP).

Proof: We prove it by contradiction. Suppos$¥ is the earliest eligible path
that is revealed beforeand satisfies botR € RelayP*) and 3R # R such thatR €
R; & R ¢ RelayP*). Suppose the payment set whhis revealed isR*. As P*
is revealed befor&®;. R; C R*, thusR € R* asR € R;. We haved C RelayP*) N Ry,
asR € RelayP*) NRg. We also havaRelayP*) "Ry C R, asR ¢ RelayP*) N Ry but
R € Rk. P* is the earliest path satisfying this condition, so it shdagdused to update the
payment set t&Relay P*) "IR*, which results in the removal & from payment set, and

causes contradiction. Il

Theorem 4.4 Under the min-Delay allocation algorithm, both client arelay have no

incentive to launch edge insertion attacks and edge hiditarks.

Proof: First, we show that the client’s dominant strategy is to adhfully:

1) Edge insertion attack: By inserting a Sybil node into thdiest path (increasing
its length fromn to n+ 1), the client need to pay an extia 4 1)2N-1 + (2M1 - 2)] —
[n2N=1 4 (2" - 2)] = 2N-1 1 2" cents. What it can earn through the Sybil node is at
most N1 (if the Sybil node is the single relay in the final payment sgtis 2' cents
(by reporting 2 extra eligible paths). As the net payoff is non-positive, thient has no
incentive to insert Sybil node into the earliest path. IhegrSybil node into latter paths
does not change the eligible path set, thus does not berettiémt either.

2) Edge hiding attack: Hiding the earliest path is againstifent’s goal to minimize
the delay to recover data. Hiding latter eligible paths alguces the client’s payoff.

Thus, the client has no incentive to hide path.
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We now prove that the dominant strategy for any relay is totrauthfully too, by
examining three types of relays in turn.

1) For a relayR in the final payment séky: On one hand, creating Sybil no&eto
launch an edge insertion attack does not help, becaug€:sfnot in the final payment
set, it does not earR any extra reward. IR is in the final payment set, the total amount
earned byR andR is 2 x 2N~ (R«+1) — oN=IR which is equal to the reward of having
R alone. On the other hand, launching edge hiding attacks nimdsenefit as well. IR
is the only relay in the final payment set, it gets its optinmlmpent already. IRy — {R}
is not empty, using Lemma 4.3, all paths containihglso contairRx — {R}. UnlessR
eliminates itself from the final payment set, it cannot egelany node iRy — {R} from
final payment set either.

2) For a relayR not on the earliest path, inserting or hiding edge cannetcathe
revelation of the earliest path, thus does not bring it amard.

3) Now let us consider a relay on the earliest path, but is excluded from the final

payment set. Without loss of generality, suppBseeliminated from payment sg_1 by
a pathP*, i.e.,Re Rj_; butR ¢ R;. Thus,P* satisfieR; C RelayP*) andR ¢ RelayP*).
In addition, using Lemma 4.3, for every pa@hcontainingR that is revealed before*,
R; C RelayP). Thus, to make itself appear in payment set before the réwelaf P', R
must makeR; appear in payment set also. In this caBejs always an eligible path to
filter R out of the payment set. Evenffcan hide all paths befoi@, P' becomes the new
earliest path, and it defines a new initial payment set whassdot contailR at all. In
this caseR still gets zero reward. Creating Sybil node does not preRgatr any of its
Sybil nodes) from being eliminated by pa# either.

Thus, the min-Delay algorithm is incentive compatible. ]

From Theorem 4.4, we directly have:

Corollary 4.2 The min-Delay allocation algorithm reveals the earliestlpaand the

client’'s payment is bounded by(®x 2V), where N is the maximum path length allowed.
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4.6 Performance Evaluation

We evaluatéMobiCentusing the widely used traces from the Haggle project [48]thed
DieselNet project [113], which represent human social net&and vehicular networks
respectively. The Haggle trace [48] is collected in an eixpent measuring forty-one
humans’ mobility at the Infocom 2005 conference. The deuszd to collect connection
opportunity data and mobility statistics in the experimierthe Intel iMote. The iMotes
were configured to perform a Bluetooth baseband layer “myguliscovering the MAC
addresses of other Bluetooth nodes in range. The Diesetalst {113] is taken from
UMass DieselNet, a DTN consisting of Wi-Fi nodes attacheduses. As buses travel
their routes, they encounter other buses and establistwpgrbus-to-bus connections.
The behavior of inter-contact times is important when coeisng the delay experienced
by packets in a DTN. This is the time a node has to wait to gebimtact with a specific
node, counted from the moment from losing contact with tleaten A closer look at
the inter-contact distribution of the two traces shows that inter-contact time in the
Haggle trace tends to be longer than the inter-contact timtee DieselNet trace. For
example, around 20% of inter-contact time in the Haggleetiaclonger than 3 hour,
whereas the value is only 10% in the DieselNet trace. Thisribnres to the difference
in their delivery performance.

MobiCenttreats the routing protocol as a black box and is indepenalietite spe-
cific algorithm used. Our evaluation uses epidemic routamgl, assumes each contact has
sufficient capacity to exchange data. Performance under otliting protocols and con-
strained contact capacity show similar trends, and are resiepted here to save space.
Each experiment below is carried out 500 times with diffenemdom seeds, and the
average is presented.

We first evaluate the impact of hop count constraint on dgliperformance. When
all nodes are honest, we show that even if we set the maximyrchostraintN to a

small value (3 to 5), the delivery performance already aypprates the setting without
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Figure 4.6: Impact of hop count constraint

any constraint closely. Next, we evaluate the behaviorliEeenodes operating under the

naturalearliest-path fixed-amoumpyment scheme such that cheating may result in gains

for some nodes. We show that cheating becomes the stratabg ofiajority of nodes,

and overall delivery performance degrades significanthynient schemes described by

Jakobsson et al. [50] and Zhong et al. [118] have the samesability, as none of them

satisfy the properties we identified for incentive-comipiatipayment scheme in Section

4.4. Lastly, we show the behavior of selfish nodes operatimdguMobiCent and plot

the resulted delivery performance as well as amount of payimethe client.
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4.6.1 Hop Count Limit

To evaluate the impact of hop count limit, we plot the delveatio over time where the
maximum hop count is limited to 1 (direct delivery), 2, anda8ainst the setting where
there is no hop count constraint. We assume all nodes acstipne

Figure 4.6 (a) plots the delivery ratio as a function of wagttime for the Haggle
trace under various maximum hop constraints of forwardey pAs shown in the figure,
for any given deadline, the delivery ratio increases withrttaximum hop count allowed.
Allowing 2-hop forwarding almost doubles the delivery mermance of the 1-hop-only
forwarding, while 3-hop forwarding achieves more than 95%he delivery ratio at any
given deadline compared to the case without hop count @nstiThough not shown in
the figure, 5-hop forwarding achieves more than 99% of deliperformance. Similar
result is shown in Figure 4.6 (b) for the DieselNet trace. AsrallN such aN (< 5)
suffices in most cases, the multiplicatively increasingrpegt of proposed schemes is

practically affordable, as will be shown later.

4.6.2 Cheating under Earliest-path Fixed-amount Scheme

We study the user behavior under the earliest-path fixedsatpayment scheme, where a
client pays a fixed amount (3 cents) to relays on the earlagbtfor each block delivered.
The amount is shared equally by all relays on the earliestdading path.

Figure 4.7 illustrates the system behavior using the Hagglee when relays can
cheat by hiding edges or creating Sybil nodes to increasedive payoff. In each round,
each user generates two requests on average. There are gaiblpstrategies: acting
truthfully or cheating. In the first round, all relays statthfully. After each round, we
assume that each relay has access to the revealed conatctagié varies its strategy in
the next round if it has a higher expected payoff with the neategy based on its own
experience in the current round.

The nodes’ behavior is shown in Figure 4.7 (a). Starting feonmatio of 100%, the
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ratio of honest users keeps decreasing and after 10 roumelsystem converges to a
sub-optimal state. Note that, cooperation may still begsretl by some users (20%), as
forwarding to other relay (honestly) increases the chaneaobde is on the selected path,
which compensates the loss in having to share the rewardoivigrs.

Figure 4.7 (b) shows that the delivery delay increases uattigck. The average delay
is increased by 25%. As shown in Figure 4.7 (c), deliveryordécreases by around 20%
under attack.

Figure 4.8 demonstrates similar trends for the DieselNettr

Another way to measure the impact of dishonest nodes is widenthe relative gain
of dishonest nodes vs. the honest nodes. When the ratio ledribst nodes is fixed at
20%, simulation result shows that they collect more than 88%e reward for both the
Haggle trace and the DieselNet trace. The average rewardrafsh participants is re-
duced by around 20%, and is only around half the reward edineteating participants.
When the ratio is increased to 50%, they collect 65% of therdwn the Haggle trace and
75% of reward in the DieselNet trace. In the latter trace gsbnode’s reward is reduced
by 50%, and is only A3 of the rewards of dishonest nodes. This indicates thatge lar
portion of dishonest nodes can significantly decrease tharcefor honest nodes. This
has the effect of discouraging honest nodes from joining¥tstéem, further reducing the

overall performance.

4.6.3 MobiCent Performance

In order to evaluate hoMobiCentfosters cooperation, we repeat the previous experiment
but with all nodes initially cheating. As shown in Figure 429, for both the min-Cost
algorithm and the min-Delay algorithm under the Haggledrdoom a state where all
players cheat and each player adapts its behavior based empéerience, all players
converge to the truth-telling strategy very quickly, witB% choosing to act truthfully
after only 1 round. After 4 rounds, all nodes act truthfulhdano node deviates from the

truthful strategy any further. Such behavior applies atsthe min-Cost algorithm and
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Figure 4.9: Evolution of user behavior under MobiCent

the min-Delay algorithm for the DieselNet trace, as showfRigure 4.9 (b).

Figure 4.10 (a) shows the delivery ratios for the Hagglegrasing both the min-
Cost algorithm and the min-Delay algorithm. The deliveryjasof both algorithms are
identical and equal to the case where all nodes act honddtiy.is expected since both
of these algorithms ensure that there is no edge insertidhiaimg attacks.

Figure 4.10 (b) plots the average delay for a client to recoa¢a under both algo-
rithms for the Haggle trace. The deadline is set to 600 ms(it@ hours). Since the first
path received is reported in the min-Delay algorithm, thiaylachieved is the same as

the case where all nodes are honest. WIHen 1, the earliest path is also a 1-hop path,
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thus the delay for both algorithms are identical. WiNep- 1, the min-Delay algorithm
still recovers data in the earliest path, whereas the mist-@lgorithm needs to wait un-
til the revelation of a 1-hop path or the deadline, whichasezarlier. As shown in the
figure, the delay for the min-Cost algorithm is more than 1006&6e than the min-Delay
algorithm. The client is compensated for this large inceaasdelay by having to pay a
smaller amount of money to the TTP.

Figure 4.10 (c) plots the average payment by a client under &igorithms for the
Haggle trace. Recall that, as the maximum hop cougrows, the maximum payment
grows atO(2V) and O(N x 2N) respectively for the min-Cost algorithm and the min-
Delay algorithm. The figure shows that the average paymewsyin an exponential
rate. However, as the average length of the earliest patousd 2, the average payment
by a client under the min-Delay algorithm is roughly two ter@& the average payment
under the min-Cost algorithm. Also recall that, wher= 3, the performance obtained is
close to the case without hop count constraint, in terms tf delivery ratio and delay.
For N = 3, the average cost for the min-Cost algorithm i8@cents, and the average
cost for the min-Delay algorithm is 121 cents. Therefore, the payment is practically
affordable based on the current traces used, despite tlmexfal growth.

Figure 4.11 demonstrates similar trend under the Diesdlset.

4.6.4 Implementation Issues

We discuss two implementation issues, namely encryptigisize and computation over-
head.

There are two types of encryption keys. Public key encryptised is based on El-
liptic Curve Cryptography (ECC) and 192-bit keys are usekle Signature generated is
48 bytes. For symmetric key encryption, 128-bit AES aldoritis used. In order to re-
duce overhead, a 192-bit request identifigican be selected with its signature computed
by the TTP. These identifier and signature pairs can be ustxdipacket header instead

of the original request string Assuming a 16KB data block and an average path hop
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count of 2, the average overhead imposed by the header apsgntary layer is about
250 bytes, which is less than 2% of the 16KB data block. Nodé $ince the reward for
breaking theMobiCents encryption is relatively small, the one-time key size bareven
smaller in practice.

In order to evaluate the computation overhead, we measemnitryption and verifi-
cation time of ECC on the target implementation platformpak3is Net5501 box. Using
the OpenSSL library, measurements show that the averagmgiime is 15ms and the
average verification time is 20ms. The results show thattkasryption schemes do not
impose significant overhead. In fact, researchers haverstt@tit is viable to use public-
key cryptography even on low power energy constraint ptatfasing a 8-bit processor
(Atml ATmegall128L), in particular, if ECC is used [107]. Rilty, note that these encryp-
tion and verification tasks do not have to be performed intiea and can be performed

during the disconnected periods between contacts.

4.7 Related Work

In this section, we present related work of incentive schdasgn in both Peer-to-Peer

(P2P) network and wireless network.

4.7.1 Incentive Techniques in P2P Network to Avoid Free-rithg

It is widely agreed that some form of incentive is needed 2P Retwork to overcome
the free-riding problem, i.e., downloading files from théwark without uploading any
in return. The three main incentive mechanisms being siuidiéterature are reputation,
barter (or Tit-for-Tat), and virtual currency.

In general, a P2P reputation scheme is coupled with a setliffeeentiation scheme.
Contributing peers possess good reputations and receoa ggyvice from other peers.
For example, peers in the KaZaA file-sharing network [54]dup their reputation scores

by uploading files to others, and are rewarded with high@rjyiwhen downloading files
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from others.

Reputation-base approach is known to suffer from the Syfiaitk [28] and the white-
washing attack [38]. Douceur [28] coins the name of Sybackt In a Sybil attack, a
single malicious peer generates multiple identities tbfitide with one another. Multiple
colluding peers may boost one another’s reputation scgrgs/ing false praise, or punish
a target peer by giving false accusations. In a whitewashiitagk, a peer defects in every
P2P transaction, but repeatedly leaves and rejoins the y2€ns using newly created
identities, so that it will never suffer the negative consaages of a bad reputation. The
availability of cheap pseudonyms in P2P systems makesagpuisystems vulnerable to
Sybil attacks and whitewashing attacks. Such attacks canba easily launched in our
target environment.

BitTorrent file-sharing system adopted an incentive meigmamased on barter (or
Tit-for-Tat). By partitioning large files such as movies auaftware binaries into small
chunks, file-sharing using the BitTorrent protocol nedesss repeat interactions among
peers, allowing cooperation to flourish based on directprecity rather than indirect
reciprocity. Yet, analysis has demonstrated that the Bi€fd protocol can still be ma-
nipulated by selfish peers in their favor, and fixes are sugdg62].

Tit-for-Tat does not suit our target environment, becansrir environment, one peer
is likely to want more service from another peer than it cqariovide to that peer. In such
a situation, a credit-based system can better support yimenastric transactions needed.

The use of virtual currency for incentives has also been gseg in several P2P
content distribution systems, e.g., KARMA [105] and Damate[98]. However, they are
designed for connected networks and will not work in a miadip setting with frequent

disconnections.

4.7.2 Security Protocol and Incentive Scheme in Wireless Megorks

There are a number of incentive schemes for wireless neswvohkcentive is needed

for wireless networks with user-contributed forwardingg(emobile ad hoc networks)
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to overcome the free-riding problem, i.e., requesting i&tier forward its packets, but
avoiding to transmit others’ packets.

Incentive schemes based on micro-payment have been prbijposieless networks.
FON [37], the largest community-based Wi-Fi ISP, has offligiased its Wi-Fi Money to
encourage its member to cooperate. Every time a visitor-ffarero) uses a FON Wi-Fi
network, the owner can earn some “dinero” according to time tit connected. How-
ever, they only need to motivate their next-hop neighboemnhs inrMobiCent multiple
helpers need to cooperate. Jakobsson et al. [50] discussra-payment scheme to en-
courage collaboration in multi-hop cellular networks. Aget al. [118] propose Sprite, a
cheat-proof, credit-based system for stimulating codp@ramong selfish nodes in mo-
bile ad hoc networks. Anderegg and Eidenbenz [4] and Zhoaly Et17] propose pricing
schemes based on use of VCG mechanism.

These schemes are not suitable for DTNs due to the follovéagans. First, a com-
mon assumption adopted in these schemes is that an end-eanection between the
source and the destination is established before the datarding occurs. Second, the
reported schemes are mainly designed for single path fdimgr

Recently, several works address the incentive problemlayetelerant network. She-
vade et al. [97] propose the use of pair-wise Tit-for-TatTJ &s incentive mechanism for
DTNs. They enhance their TFT mechanism with generosity amdricion to address
the bootstrapping and link variation problem. Howeverijrtheoposal is not suitable for
DTN routing scenarios where the delivery path cannot bedptermined. In addition,
Tit-for-Tat is not suitable for our target environment, wiehere is a large population
of participants and a peer is likely to want much more serfrioe another peer than it
could provide to that peer. Zhu et al. [119] propose a seqaditebased incentive scheme
for DTNs, with an emphasis on generation and verificatiorectise bundle. They do not
address the pricing issue. The link insertion (Sybil) &iaecot considered in both works.

Newsome et al. [80] and Piro et al. [86] propose mechanisnaetend against the

Sybil attack in wireless networks. The basic idea is to testrésource of a node. Based
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on the observation that a given node only has limited reso{sa&y, a single Wi-Fi radio),
a testing node can assign its neighbors into different cblanand randomly probes for a
neighbor in the channel specified. If a node mimics severhil 8pdes that are assigned
to different channels, as it can only appear in one channahyngiven time, the prob-
ability that one of its Sybil nodes is caught is high. Jakobsst al. [50] use statistic
techniques to detect the Sybil attack in multi-hop cellmetworks over a long period of
time. However, it is much more difficult to detect the Sybtbak in DTN, where discon-
nection is the norm rather than exception and high user ptipnldynamic is expected.

As a result, these techniques cannot be applied.

4.8 Summary

This chapter presentdobiCent a credit-based incentive system for DTN and proves that
it is incentive compatible MobiCentuses a Multiplicative Decreasing Reward (MDR)
algorithm to calculate payment and supports two types @ntdi, namely clients that
want to minimize cost or minimize delay. Simulation resudt®ow thatMobiCentcan

effectively foster cooperation among selfish nodes withnolea overhead.



Chapter 5

Conclusion and Future Works

Mobile communication system is experiencing a fast andtiexcievolution, driven by
both convergence of heterogeneous wireless networks amdogenent of new cooper-
ative networking approaches. Great efforts have been dévotbuild flexible architec-
ture capable of managing various network components as &eywvbile new network
approaches are being proposed to harvest the potentiarpenice improvement of co-
operation.

Users play a more central role in the stage. With increagetligence, the new gen-
eration of wireless terminals not only can facilitate théioaresource allocation decision
by feeding back the measured channel state, but also caribtaatdirectly to the re-
source provision process by forwarding data for each otAsrusers gain more control
over their devices, an intelligent and selfish user can atpthavior in order to bene-
fit more from the network, even when doing so may affect otlsersiand the system’s
overall utility.

The design of new cooperative resource allocation and gi@vischemes should ex-
plore the cooperation possibility among heterogeneousl@ss network components and
their users, while taking the selfish nature of users and $rgitegic interactions into con-
sideration. This thesis systematically investigates re¢fandamental design problems

of how to deliver Internet access service efficiently tof(sk) users using heterogeneous

135
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wireless networks.

5.1 Research Summary

As stated in Chapter 1, this thesis studies both the overlgpgoverage scenario and
intermittent-coverage scenario. For each scenario, weoapp the problem from both
the system performance perspective and the incentive diblipaperspective.

Chapter 2 focuses on the overlapping-coverage scenargtudies thecoordinated
radio resource allocation problerfor users that are simultaneously covered by multi-
ple overlapping heterogeneous wireless networks. We flat@thecoordinated propor-
tional fairness (CPF)esource allocation criterion, based on which a globaliy dad
efficient allocation decision can be easily computed. G&F decision depends on the
input from users, a selfish user may manipulate its chanat stport if doing so can in-
crease its gain from the network. To capture this phenomemefformulate the resource
allocation process as raulti-cell resource allocation gameavhich is associated with a
rule to calculate bandwidth allocation outcome based onret from the MS players.
We prove that a multi-cell resource allocation game WBF allocation is incentive com-
patible, which means a user’s dominant strategy is to rafsochannel state honestly. In
practice, the single-association setting, where a MS ig asdociated with one BS, is of-
ten desirable. We formulate the integral version of@ problem (nt-CPF) and show
that it is both computationally expensive and prone to unsanipulation. Alternatively,
we advocate the adoption ofSelfish Load Balancing (SLBrheme, which always leads
to a Nash equilibrium, and often achieves performance me@PF allocation. We use
simulation to evaluate the performance of proposed sche@asresults show that the
proposed algorithms outperform popular heuristic apgreagchy striking a good balance
between efficiency and fairness, while achieving load af@hamong component BSs.

Chapter 3 and Chapter 4 focus on the intermittent-coverageasio. Chapter 3

presentdMobTorrent a cooperative, on-demand framework, which uses the uiogii
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low-bandwidth cellular network as a control channel whidesfarding data through high-
bandwidth contacts in a DTN paradigm. We design the ardhitemfMobTorrent and
analyze the problem of how to schedule the transmissioniotenmittent contacts, such
that the amount of data delivered is maximized and the dslayimimized. We use both
testbed and trace-driven simulation to evaluate the padace ofMobTorrent

Chapter 4 presentglobiCent a credit-based incentive system for DTN. Following
the algorithmic mechanism design approach, we formulaéth revelation game, and
analyze the attack model. A message exchange protocolatultgrconstructed to sup-
port the requirement d¥lobiCent and two different algorithms are designed to cater to
client that wants to minimize either payment or data dejivid&lay. We prove that both
algorithms are incentive compatible, as rational nodekneil purposely waste any op-
portunistic transfer or cheat by creating non-existingtaots to increase their rewards.

To summarize, this thesis analyzes the opportunities aalieciyes that appear in the
forthcoming generation of mobile communication systems.dévelop novel models and
techniques that can be used to exploit the new cooperatperamities, and address the

challenges to foster cooperation.

5.2 Future Work

There are several possible extensions to the research weskried in this thesis.

e In our system model of overlapping cells, we assume that ealtthas a fixed
amount of radio resource and they operate orthogonally.fufare research, we
would like to incorporate the BS capacity adaptation andrfetence mitigation

into the consideration of the network-wide radio resoutt®ation.

e For the coordinated resource allocation problem in a cg®ardrplatform, we as-
sume that the ownership of radio cards is known by the netadcannot be mod-

ified by users. Though it is a valid assumption for existinguoeks, the increase
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of system openness will eventually enable users to gameysters by manipu-

lating their radio card ownership as well. A resource allimrascheme should be
designed to address the arising challenges. In additioemains a research prob-
lem to design an efficient incentive-compatible scheme Herdingle-association

setting.

e When studying the incentive compatibility of the radio neise allocation prob-
lem, we focus on preventing users from cheating. As futurbile@ommunication
system is an open environment where even the normal regtles¢rs can operate
as service provider, it is important to investigate the glesif incentive-compatible

schemes that are robust to cheating of service providergkhs w

e MobTorrentis designed for mobile users travelling with vehicles, amel perfor-
mance is evaluated under such settings. We are looking tiewhe possibility of
applying the idea oMobTorrentto human social networks. The mobility pattern
of human is shown to be predictable by Srinivasan et al. [16@wever, the un-
certainty tends to be greater, and the properties of the-¥amgng connectivity
graph are significantly different. In addition, the powensomption constraint of
hand-held devices is much more stringent. These factas reew challenges that

require systematic investigations.

e Itis worth investigating the design of intelligent applicas and transport protocols
for mobile users, such that they can fully exploit the compatary characteristics
of two types of networks, one is highly available but with lbandwidth, and the

other is only available intermittently but provides higardwidth connections.

e As the delay-tolerant networking paradigm plays a more irtgw role for mobile
Internet service provision, we are looking towards evahgaiobiCents perfor-
mance involving real users. Depending on the characiesisti applications and

user behaviors, further extensions\bbiCentcan be expected.
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e The MobiCent pricing scheme provides a deterministic guarantee fornice
compatibility regardless of the mobility pattern of uselfswe relax this require-
ment, and aim at providing a stochastic guarantee aboutsirebehavior instead,
better performance can possibly be achieved, in terms of thetfrugality and the
efficiency. Further optimization can be expected by custongithe scheme ac-

cording to some specific characteristics of mobility paiseand routing protocols.
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