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Abstract

Ordinal Depth from SFM and Its Application in Robust Scene

Recognition

Li Shimiao

Under the purposive vision paradigm, visual data sensing, space representation

and visual processing are task driven. Visual information in this paradigm can

be weak or qualitative as long as it successfully subserves some vision task,

but it should be easy and robust to recover.

In this thesis, we propose the qualitative structure information - ordinal

depth as a computationally robust way to represent 3D geometry obtained

from motion cues and in particular, advocate it as an informative and powerful

component in the task of robust scene recognition.

The first part of this thesis analyzes the computational property of ordinal

depth when being recovered from the motion cues and proposes an active

camera control method - the biomimetic TBL motion as a strategy to robustly

recover ordinal depth. This strategy is inspired by the behavior of insects

from the order hymenoptera (bees and wasps). Specifically, we investigate the

resolution of the ordinal depth extracted via motion cues when facing errors

in 3D motion estimates. It is found that although metric depth estimates are

inaccurate, ordinal depth can still be discerned reliably if the physical depth

difference is beyond a certain discrimination threshold. Findings in this part

of our work suggest that accurate knowledge of qualitative 3D structure can be

ensured in a relatively small local image neighborhood and that resolution of

ordinal depth decreases as the visual angle between points increases. Findings
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also advocate camera lateral motion as a robust way to recovery ordinal depth.

The second part of this thesis proposes a scene recognition strategy that

integrates the appearance-based local SURF features and the geometry-based

3D ordinal constraint to recognize different views of a scene, possibly under

different illumination and subject to various dynamic changes common in nat-

ural scenes.

Ordinal depth information provides the crucial 3D information when deal-

ing with outdoor scenes with large depth relief, and helps to distinguish am-

biguous scenes with repeated local image features. In our investigation, geo-

metrical ordinal relations of landmark feature points in each of the three di-

mensions are found to complement each other under different types of camera

movements and with different types of scene structures. Based on these in-

sights, we propose the 3D ordinal space representation and put forth a scheme

to measure similarities among two scenes represented in this way. This leads us

to a novel scene recognition algorithm which combines appearance information

and geometrical information together.

We carried out extensive scene recognition testing over four sets of scene

databases, consisting mainly of outdoor natural images with significant view-

point changes, illumination changes and moderate changes in scene content

over time. The results show that our scene recognition strategy outperforms

other algorithms that are based purely on visual appearance or exploit global

or semi-local geometrical transformations such as epipolar constraint or affine

constraint.
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Chapter 1

Introduction

1.1 What is This Thesis About?

3D reconstruction has been a key problem since the emergence of the com-

puter vision field. Marr and Poggio founded the theory of computational

vision [65, 66, 64]. According to this theory, 3D representation of the physi-

cal world can be built through three description levels from 2D images [64].

This was applied to the shape from X problems, which aim to reconstruct

full 3D structure from its projections on 2D images using various visual cues

such as texture, shading, stereo, motion etc. It is believed by the Marr school

that reconstructing an internal representation of the physical world is a pre-

requisite for carrying out any vision tasks [32]. However, despite the many

ensuing efforts on 3D reconstruction since the 1980s, it was found that the

shape from X(SFX) problems are ill-posed or very difficult to solve compu-

tationally [115, 29]. Accurate and robust 3D reconstruction from 2D images

seems to be infeasible in practice. Even low-level or mid-level representation is

1
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very difficult to construct accurately. Thus Marr’s paradigm does not lead to

many successful robotic vision applications such as recognition and navigation.

Probably due to the difficulty of 3D reconstruction, researchers have been

seeking alternative approaches to fulfil vision tasks without geometrical recon-

struction. In image based object recognition task, 2D local feature descriptors,

which encode the local visual appearance information, have been the main-

stay since the late 1990s and have been proven to be successful, especially

with the recent development of locally invariant descriptors [62, 9]. In spite

of the success, the visual appearance information encoded by the descriptors

may change significantly when camera has large viewpoint change or when the

lighting condition changes. This limits the power of these 2D local descriptor

methods. To overcome the limitation, the visual appearance information is

often combined with geometrical constraints so as to enhance the discriminat-

ing power of the local feature descriptors [6, 18, 34, 73, 91, 88]. 2D geometrical

constraints [6,18,34,73,91], due to the assumption on the scene structure they

are based on, are always restricted to certain types of objects or scenes. There-

fore, 3D geometrical information is again required in robust recognition tasks.

However, to combine 3D geometrical information with 2D visual appearance

information, we again face the difficulties encountered in the 3D reconstruction

problem.

Contrasting Marr’s paradigm of general-purpose reconstruction is the pur-

posive vision paradigm [3,98]. Its main tenet is that if we consider the specific

vision task we are dealing with, e.g. the recognition task, the situation can

be simplified [86]. Instead of seeking a solution for full 3D reconstruction

following Marr’s paradigm, we may look for some weak or qualitative 3D geo-

metrical information useful for the recognition task and at the same time, can
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be recovered in an easy and robust way from some visual cues.

This thesis aims at finding such robust and useful geometrical information

for vision tasks. We aim to answer the following questions.

• Although the reconstructed 3D structure may in general be inaccurate

due to the computational difficulties in shape from X, can we still ex-

tract some valid and useful geometrical information from the inaccurate

structures?

• How to acquire such geometrical information in a simple and robust way?

• How to use such geometrical information in practical vision tasks?

Specifically, in this thesis, we propose the qualitative structure information

- ordinal depth1 as a computationally robust way to represent 3D geometry in

shape/structure from motion problem and advocate it as a powerful component

in the robust scene recognition task.

The first part of this thesis answers the question "How to recover ", specif-

ically, we analyze ordinal depth’s computational properties when being recov-

ered from the motion cues. Based on these properties, we propose a simple way

called TBL motion, which is inspired from the behavior of biological insects,

to recover ordinal depth robustly. The second part answers the question "How

to use". The invariance properties of ordinal depth w.r.t. camera viewpoint

change are analyzed. Based on these insights, we propose the 3D ordinal space

representation. Finally, we design a strategy to exploit the 3D ordinal space

1By ordinal depth, we mean the order of the distances of points in the physical world to
the observer or camera along the optical axis direction.
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representation successfully in the robust scene recognition task, especially in

the outdoor natural scene environment.

The remainder of this chapter is organized as follows. In Section 1.2 to

Section 1.7, we give brief accounts to the various background topics relevant

to this thesis. Section 1.8 presents a summary of the key contributions of the

thesis. Finally, Section 1.9 presents the organization of the thesis.

1.2 Space Representation and Computational Lim-

itation of Shape from X

Marr’s paradigm aims at recovering metric representation of the space. How-

ever, techniques of shape from X for this purpose suffer from noise in image

measurements and errors in the computation stages. Taking the structure from

motion problem for example, small noise in image velocity measurements can

lead the algorithm to very different solutions. In spite of the many algorithms

proposed for structure from motion, we still lack methods robust to noise in

image velocities, and errors in motion estimates or calibration parameters. Er-

ror analysis of this problem shows that there are inherent ambiguities in the

motion estimation and calibration stage which may cause severe 3D structure

distortions [29, 21, 119]. Similar problems exist in shape recovery from other

visual cues [31,67].

In a vision system, the geometrical information conveyed in a 3D space

representation2 is usually computed by some 3D reconstruction technique.

2By space representation, we mean the way geometrical information of the physical world
structure is described in any vision system.
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However, due to the ill-conditioned and noise sensitive nature of shape from

X, the robustness of this computation should be given a careful evaluation,

especially for vision tasks requiring robust performance.

In this thesis, we present a comprehensive analysis on the computational

robustness of structure from motion algorithms to recover the ordinal depth

information. The insights obtained from this analysis serve as guidelines for

ordinal depth to be exploited in the robust scene recognition task.

1.3 What Can Human Visual System Tell Us?

To find a proper space representation suitable for a wide range of vision tasks,

researchers in cognition and psychophysics have been referring to one of the

most powerful vision systems present in nature - the human vision system.

Many studies were carried out exploring the properties of space representation

in human visual system. It is believed by most researchers that the represen-

tation is anything but Euclidean [106, 50, 38]. This may indicate that human

perception of space is metrically imprecise.

Studies have also been carried out on how humans measure distances in

space. Some psychophysical experiments were designed to test observers’

judgement on interval and ordinal depth measurements [100, 107, 76, 28]. Re-

sults show that human are good at judging the weaker measurements such

as the ordinal measurement. It was suggested that human vision might only

perceive ordinal distance information from sparse points in the space, and

as the number of points increases, metric information could be recovered from

dense ordinal measurements using methods like multi-dimensional scaling [28].

Therefore, it seems that qualitative geometry information might be a key step
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towards finding a proper space representation.

Studies also show that human visual attention changes as subjects are asked

to perform different vision tasks [120, 117]. This shows that the visual data

acquisition process is purposively and actively controlled, rather than being

a passively general process. It implies that vision might be a task-driven

process and thus, geometrical information recovered by SFX could also vary

with different tasks.

Inspired by the above findings from human visual system, this thesis focuses

on understanding the qualitative geometry information, that is, the computa-

tional properties and practical application of ordinal depth. We also propose

a bio-inspired strategy for active acquisition of such geometrical information.

1.4 Purposive Paradigm, Active Vision and Qual-

itative Vision

The fundamental difference between Marr’s reconstruction paradigm and the

purposive paradigm [3, 103] lies in the way they see the final goal of vision.

According to the panel discussion in [13], from the view of the reconstruction

paradigm, the goal of vision is:

• “The description of three dimensional world in terms of the surfaces and

objects present and their physical properties and spatial relationships.”

while from the view of the purposive paradigm, the goal of vision is:

• “The development of fast visual abilities which are tied to specific behav-

iors and which access the scene directly without intervening representa-

tions.”
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In traditional reconstruction paradigm, reconstruction is a task-independent

process and is therefore general-purpose. On the other hand, the purposive

paradigm is task-driven. In the purposive paradigm, data acquisition, space

representation, and the 3D geometry information needed all become task-

oriented.

Data acquisition often becomes an active process in the purposive paradigm.

For example, the eye (or camera) movement can be actively controlled depend-

ing on the information the agent needs for performing the current task and

the status of current scene interpretation. Such data acquisition strategy is

known as the active vision paradigm [4,3, 8].

In another aspect, space representation and 3D reconstruction in the pur-

posive paradigm are used to subserve specific task performing. Only geometry

information needed for the robust performance of the current task is to be

represented and constructed. Such geometry information can be imprecise or

even qualitative in nature; this is in contrast to metric 3D reconstruction in

the reconstruction paradigm. If only the qualitative description of the physical

world is needed for some specific task, the system is said to subscribe to the

qualitative vision paradigm [5, 36]. Qualitative information exhibits greater

invariance to the various factors in vision system such as viewpoint or illu-

mination changes, and noise in data acquisition. It is hoped that qualitative

vision, if proven to be adequate for some specific task, would have more robust

performance than the traditional quantitative system.

In this thesis, we develop a recognition system for individual scene iden-

tification. Our system subscribes to the active vision and qualitative vision

paradigms. We use controlled camera movement though not requiring precise

camera motion to robustly recover the qualitative ordinal depth information.
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Using ordinal depth, we develop the 3D ordinal space representation which

only encodes the ordinal spatial information and couple it successfully to the

task of scene recognition.

1.5 Ordinal Depth

Being the simplest qualitative description of the third dimension of the physical

world, ordinal depth measures the order of the distances of 3D points to the

observer along the viewing direction. Due to its qualitative nature, ordinal

depth information is robust to noise and errors in shape from X [23]. It was

proposed as one of the qualitative structures that can be used in active vision

[36]. However firstly, the computational capability of shape from X algorithms

to judge ordinal depth under different resolutions of depth variation has not

been well analyzed. Secondly, the power of the ordinal depth information has

not been well demonstrated in practical vision tasks.

Ordinal depth is the focus of this thesis. In this thesis, we will gain more

understanding towards this qualitative geometry information, specifically, its

computational properties and practical application. This thesis put ordinal

depth into the proposed 3D ordinal space representation and show how ordinal

depth complements spatial information in the other two dimensions under

different types of camera viewpoint changes.

1.6 Turn-Back-and-Look(TBL) Motion

In this thesis, we adopt an active data acquisition scheme which can acquire

the ordinal depths in a simple and robust manner. For this purpose, we pro-
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pose the use of motion cues, motion being an omnipresent cue for a mobile

agent navigating in the environment. As is well-known, structure from motion

analysis is sensitive to noise [29]. However, Cheong and Xiang [23] showed

that for a certain kind of generic motions, the recovered depths preserve their

depth relief, despite the gross egomotion estimates. Such motion consisting

of a lateral translation plus a rotation is referred to as a lateral motion. The

analysis and experiments in this thesis will further advocate lateral motion as

a robust way to recover ordinal depth.

The ecological relevance of lateral motion is underlined by the prevalence of

lateral motion used by different animals in nature to appreciate distances [112].

In the case of bees and wasps, this type of motion is known as zig-zag flights

in Turn-Back-and-Look (TBL) behavior. In this thesis, we call such flight

the Turn-Back-and-Look (TBL) motion. It was believed [24, 122] that TBL

is important for the bees to recognize these scenes on their return trip. In

our proposed scheme, camera performs a roughly controlled TBL motion to

actively recover the ordinal depths.

1.7 Scene Recognition

Scene recognition is to recognize a specific location that has been previously

visited. This is in contrast to the problem of scene classification or scene cat-

egorization (e.g. [81]) which recognizes scene class. Knowing where I am is

important to visual navigation [7,16,27,45,57,85,92,97,110,116], for instance,

in relation to the SLAM loop closing problem, or to various emerging applica-

tions stemming from large scale image databases of the world [40, 90]. In the

domain of biomimetic navigation, it also forms an integral component of what



1.8. Contribution of the Thesis 10

is known as the place recognition-triggered response [110] — the biological

agent has a set of places in memory that is linked with a learnt set of actions

that it must take once it recognizes that it has returned to the same place

again. Compared to object recognition, robust scene recognition (especially

outdoor natural scene recognition) requires algorithms that are able to deal

with large viewpoint change, illumination change, and natural dynamic change

of the scene itself.

This thesis tackles indoor and outdoor scene recognition problem and shows

that the proposed 3D ordinal space representation is a robust geometry de-

scriptor adequate for this vision task. We have also built up indoor and out-

door databases, which contain extensive sets of scenes with complex changing

effects between reference scene and test scene.

1.8 Contribution of the Thesis

The major contributions of this thesis are summarized as follows:

Computational properties of ordinal depth in structure from motion:

We investigate the resolution of the ordinal depth extracted via motion

cues in the perceived visual space, which is distorted from the physical

space due to errors in the motion estimates. It is found that although

metric depth estimates are inaccurate, ordinal depth can still be dis-

cerned reliably if physical metric depth difference is beyond a certain

discrimination threshold. Moreover, the resolution level of discernible

ordinal depth decreases as the image distance or visual angle between

the point pairs increases. Ordinal depth resolution also decreases as

points receding from the camera or as the speed of the motion com-
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ponent carrying depth information decreases. Ordinal depth resolution

also decreases as image region approaching the focus of expansion (FOE),

which indicates the resolution can be high under camera lateral motion

and provides theoretical support for using TBL motion to extract ordinal

depth. Findings in this part of work suggest that accurate knowledge

of qualitative 3D structure is ensured in a relatively small local image

neighborhood. By fleshing out the computational properties of the qual-

itative visual space perception under estimation uncertainty, we hope to

inspire future computational and psychophysical ventures into the study

of visual space representation.

Scene recognition strategy: We put forth a scene recognition algorithm

that is able to deal with both indoor and outdoor environments. In the

current state of the art, outdoor natural environments without any man-

made structures are deemed to be very challenging. Such scenes remain

largely untouched by robotics and vision researchers due to the lack of

distinguishable landmarks. Our scene recognition strategy is tested on

four databases, consisting of one set for indoor environment and three for

outdoor natural environments without man-made structures. As far as

we are aware, they constitute the most extensive sets of outdoor scenes

for specific scene recognition, covering a spatial extent much more ex-

tensive than those typically encountered in SLAM experiments, and con-

taining much more complex illumination changes and viewpoint effects

than those found in typical object recognition database. These changes

will degrade the performance in methods using 2D local feature match-

ing, even when enhanced with the epipolar or affine constraint [61], as
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we show in the experiment. Nevertheless, our proposed algorithm ex-

hibits good performance on all the four databases, demonstrating its

accuracy and generality. While the visual appearance aspect of SLAM

loop-closing [45,57,85,97] has common grounds with the work described

here, given the large spatial extent encountered in our work, internal

maps and vehicle estimates are apt to be in gross errors and hence not

useful.

TBL motion for active ordinal depth acquisition: By using TBL mo-

tion scheme, ordinal depths can be obtained robustly in an active way,

solely from a gross estimate of the motion parameters. It is thus stripped

of the excess baggage of strict egomotion recovery, much faster, and

more relevant for biological organisms in rapid motions without am-

ple computational resources. TBL motion scheme also raises interesting

questions about the actual role of TBL in insects during navigation.

Some authors [56] have proposed the use of TBL to extract landmarks

only, whereas others [56,99] suggested distance learning from such flights.

However, in the latter works, either no computational details are forth-

coming or restrictive conditions are required of the insect flights (e.g.

translation only, in which case the recovery of relative depths is trivial).

These works have overlooked the robustly obtainable ordinal depths,

even in the presence of camera rotational perturbance.

3D ordinal space representation: We propose the use of weak 3D ge-

ometrical constraint based on an 3D ordinal representation of space.

This constraint is combined with local feature descriptor for robust scene

recognition. Compared to some recent works that exploit global rigid-
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ity for 3D object recognition [15, 88] and scene recognition [57, 92, 97],

we exploit the qualitative geometrical information for scene recognition.

Computing 3D rigid transformation (or tensors among multiple views)

is difficult because, as discussed previously, image appearance changes

substantially under different illumination and different viewpoint espe-

cially in outdoor natural scenes, as well as due to the non-static nature

of natural scenery over time, making local feature matching unreliable.

Instead, we propose the 3D ordinal constraint which uses correlation

to verify the geometrical consistency between the test scene and refer-

ence scene, thus avoid the difficulty of computing transformation with

numbers of outliers. Our weak geometrical characterization is similar

in spirit to those works in 3D object problem [46, 52, 89], because both

have to deal with variability in appearance. However, our task of specific

scene recognition requires a much more powerful geometrical constraint

than the qualitative constraints typically used in these works. For scene

categorization and classification, [54,96] exploit the 2D geometrical con-

figuration of the image sub-regions characterized by their image feature

statistics. Our proposed method not only adopt the 3D geometrical in-

formation, but we are also able to offer a robustness analysis of the 3D

ordinal geometrical consistency with respect to viewpoint change and

errors in the 3D reconstruction stage.

Invariance properties of ordinal depth w.r.t. viewpoint changes: The

use of ordinal depths for vision tasks have been proposed by [36,44,114].

However, its invariance property with respect to viewpoint change have

not been investigated. We carry out such analysis and show clearly that
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3D ordinal measurements provide complementary information to those

provided by 2D ordinal measurements in the image dimension, and are

especially important for certain types of scenes and viewpoint changes.

The analysis also furnishes a scheme which weighs the different pairwise

ordinal relationships appropriately, depending on various factors such as

image separation and separation in depth, so that they can be combined

in a more optimal way.

1.9 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 gives an analytic analysis of the resolution of ordinal depth re-

covered from motion cues when facing errors in 3D motion estimates. Detailed

analysis is carried out under orthographic/weak-perspective camera and per-

spective camera. In particular, lateral motion and forward motion cases are

discussed.

In Chapter 3, an active camera control method - TBL motion is proposed

for fast and robust acquisition of ordinal depth. A simple yet effective algo-

rithm is designed and tested.

Chapter 4 presents a strategy to use ordinal depth in performing scene

recognition task. Firstly, we propose the 3D ordinal space representation. Sec-

ondly, invariance properties of geometrical entities in this space w.r.t. camera

viewpoint changes are analyzed; a similarity measure based on these prop-

erties is developed. Thirdly, we develop a scene recognition scheme which

successfully combines the geometrical information in 3D ordinal space with

the appearance information encoded by SURF feature descriptors.
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Chapter 5 gives extensive experimental testing results on the proposed

scene recognition strategy. These testings are carried out on databases of in-

door and outdoor natural scenes, with various changing effects. The proposed

method is compared with methods based on global and semi-local transfor-

mations. Evaluation of various components of the proposed system is also

provided.

Chapter 6 gives some brief proposals of future work directions and the

conclusion of this thesis.



Chapter 2

Resolving Ordinal Depth in SFM

2.1 Overview

The shape/structure from motion (SFM) problem, which is to recover 3D

structure from motion cues in 2D images, has attracted many concerns in

the last two decades from researchers in the computer vision community and

many other disciplines. Despite the large amount of algorithms proposed, the

estimation of motion and structure is beset by the noise sensitivity problem.

This has led to many error analyses trying to understand the behavior of the

SFM algorithms in the presence of noise [2] [115] [29] [79]. These works have

shown that some motion ambiguities are inherent and errors in the motion

estimates are inevitable.

Since motion errors are inevitable, it is important to understand how the

errors and noise may affect the recovered 3D structure information. A few

works investigating this problem can be found in the literature [101] [21] [23].

It was shown that errors in motion estimates may cause severe systematic

16
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distortion in the estimated depth and metrically accurate depth estimate is

difficult to obtain [21].

However, despite the above works , there is still little understanding about

the nature of the distorted perceived visual space. Are there any systematic

laws governing the uncertainty of the recovered structure? Specifically, al-

though the estimated metric depth might differ significantly from the physical

value, can we still extract some valid and useful information of depth from these

inaccurate estimates? Moreover, instead of recovering the depth of individ-

ual points, robustly recovering some information about the relative positions

among points might be of more importance. Such information extracted may

be of a less precise form, such as ordinal or interval depth measurement [100].

It may be qualitative rather than quantitative. It could be more robustly

achieved than metric depth estimates and might suffice for many vision tasks

such as navigation and recognition. Exploring such geometry information and

its possible applications is important for developing vision systems that sub-

scribe to the purposive vision paradigm [3].

In the computer vision literature, a qualitative description of depth is given

in [5,36]. Qualitative depth representation such as ordinal depth map has been

adopted for visual motion segmentation and independent motion detection

tasks [36, 60, 77, 78]. In the area of visual psychophysics, some psychophys-

ical experiments were designed to test observers’ judgement on interval and

ordinal depth relations [107,76,51]. However, in spite of these works, the com-

putational property of shape from X algorithms to resolve qualitative depth

information from inaccurate metric depth estimates is as yet unknown. Such

an understanding might provide us with better insight about the nature of the

perceived visual space and shed light on a proper space representation whereby
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structure information could be obtained robustly and applied to vision tasks.

In this chapter, we aim to investigate the resolution of the ordinal depth

extracted via motion cues in the perceived visual space, which is distorted from

the physical space due to errors in the motion estimates. Based on a general

model describing how recovered depth is distorted by errors in the motion

estimates, we derive a sufficient condition under which ordinal depth can be

estimated validly. Then the condition is explored under orthographic/weak-

perspective and perspective projection. Image regions that have valid ordinal

depth estimates up to certain levels of resolution are delineated. By studying

the geometry and statistics of these regions, we found that although metric

depth estimates are inaccurate, ordinal depth can still be discerned reliably if

the physical metric depth difference is beyond a certain discrimination thresh-

old. Moreover, the resolution level of discernible ordinal depth decreases as

the image distance or visual angle between the point pairs increases. Or-

dinal depth resolution also decreases as points recede from the camera (as

average depth increases) or as the speed of the motion component carrying

depth information decreases. These findings suggest that accurate knowledge

of qualitative 3D structure is ensured in a relatively small local image neigh-

borhood, which might account for biological foveated vision. By fleshing out

the computational properties of on the qualitative visual space perception un-

der estimation uncertainty, we hope to inspire future computational and psy-

chophysical ventures into the study of visual space representations and their

practical applications in vision systems. The findings in this chapter will be

used as guidelines in developing ordinal depth recovery strategy and applying

ordinal depth information in the scene recognition task in later chapters.

The remainder of this chapter is organized as follows. In Section 2.2, we



2.2. Related Works 19

give a review of the relevant works. Section 2.3 describes depth recovery via

motion and the associated distortion model. Section 2.4 presents the ordi-

nal depth estimator and conditions for its validity (valid ordinal depth(VOD)

condition). Section 2.5 investigates VOD condition under orthographic/weak-

perspective projection and presents analytical results and delineated how var-

ious factors affect the resolution of discernible ordinal depth. Section 2.6 in-

vestigates VOD condition under perspective projection. Section 2.7 discusses

possible implications. Section 2.8 presents a summary.

2.2 Related Works

2.2.1 The Structure from Motion (SFM) Problem

In computer vision, structure from motion(SFM) refers to the process of recov-

ering 3D structure of object/scene from analyzing the image projection of the

3D relative motion between object/scene and the camera. Following Marr’s

reconstruction paradigm and shape from X studies, SFM became one of the

central problems in computer vision since the early 1980s and has attracted

much attention in the ensuing decades. The problem is normally divided into

three subproblems: 1. the measurement of 2D displacement in the image;

2. the recovery of the 3D relative motion; 3. the reconstruction of the 3D

structure. These three subproblems are usually solved in sequence. SFM algo-

rithms can be categorized into two different approaches according to the two

different ways of measuring the image displacement. The differential approach

measures the 2D image velocities (optical flow), while the discrete approach

measures the feature correspondences between the views. The discrete ap-
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proach for SFM is also known as the shape from stereo problem. Our analysis

in this chapter adopts the differential approach.

Early studies in SFM focused on proving that a unique solution exists.

Algorithms were proposed for both the differential case [59,113,1,42] and the

discrete case [58,111]. Most of these algorithms are based on the epipolar con-

straint, which relates 2D image displacement to 3D motion parameters based

on the rigidity assumption, eliminating the unknown 3D structure from the

computation. These early algorithms using the epipolar constraint have closed-

form solution and can be solved linearly. Thus these algorithms are simple and

easy to implement. Other methods include the factorization approach [109],

the pattern recognition approach [35] etc. Reviews for SFM algorithms can be

found in [68,33,79].

However, in practice, SFM algorithms face two problems: ambiguity and

noise sensitivity. Firstly, ambiguity problem refers to the fact that for some

special scene or motion configuration, more than one solution may exist, e.g.

the camera is viewing a planar scene [2,67,101]. Secondly, because measuring

2D displacements from image intensities is an ill-conditioned problem, noise

is inevitable in this process. These noisy measurements are taken as input in

the 3D motion estimation stage. Error analysis of SFM studies the effects of

such noise on the final 3D motion estimates and the recovered 3D structure.

2.2.2 Error Analysis of 3D Motion Estimation in SFM

To design robust practical SFM algorithms, error analysis of SFM has been

carried out to understand the behavior of the algorithms with noisy input [42,

115,68,29,37,80,119]. One major approach is to express the errors in 3D motion
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estimates as bias or variance through statistical analysis [121,115,29]. Another

approach is to characterize the topology of the cost function being minimized

in solving SFM. [37,80,119]. Error analysis of 3D motion estimation has led to

new optimization criteria and numerical methods in SFM [115,48,29,123,63].

Many of these works share common results regarding the noise sensitivity

properties in 3D motion estimation. We briefly summarize these results below:

1. Translation-rotation confounding: When the field of view is small

or depth variation in the scene is not sufficient, a rotation about an

axis parallel to the image plane may easily be confounded with a lateral

translation perpendicular to the axis.

2. Bias towards the viewing direction: The estimated translation tend

to be biased towards the viewing direction if the cost function is not

normalized properly.

3. Bas-relief valley: The plane defined by the true translation and the

viewing direction can be estimated reliably by most algorithms. How-

ever, analysis on the topology of error surface found that there is a valley

lying trough the image centroid and the true focus of expansion (FOE:

the intersection of the translation vector with the image plane). The

estimated FOE is likely to fall into this valley, especially for scenes with

small depth variation. This is related to the well known bas-relief ambi-

guity in 3D structure reconstruction.

2.2.3 Analysis of 3D Structure Distortion in SFM

Error analysis in SFM show that small perturbations in the image measure-

ment input may lead to erroneous solutions in 3D motion estimation. There-
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fore, understanding the effects of errors in 3D motion estimates on 3D structure

reconstruction is important.

The most well-known 3D structure distortion in SFM is the bas-relief am-

biguity [50, 51, 101]. It refers to the confusion between the relative depth of

objects and the amount of camera rotation(in orthographic cameras) or trans-

lation (in perspective camera). Bas-relief ambiguity causes shape distortion on

the 3D structure with a bas-relief effect. Early studies on bas-relief ambiguity

were carried out under orthographic cameras. It was later shown by Szeliski

and Kang [101] that bas-relief ambiguity is significant even with many images

under perspective projection. Besides, bas-relief ambiguity is also observed in

shape from shading problem [12]. However, in spite of the shape distortion,

it is worth noting that recovered depth is monotonically invariant to the true

depth under bas-relief ambiguity.

To obtain further understanding towards how the perceived 3D structure

is distorted by errors in motion estimates, Cheong developed the iso-distortion

framework [21], which is a tool to systematically characterize the depth distor-

tion. The framework was used to explain various phenomena in psychophysi-

cal vision, develop new strategy of independent motion detection, and analyze

the robustness of shape recovery in SFM [20,118]. Based on the iso-distortion

framework, Cheong and Xiang [23] analyzed depth distortion under generic

motions in both calibrated and uncalibrated cases. It was found that depth

information is difficult to recover under forward motion case; while for lateral

motion, although depth is difficult to recover, ordinal depth information is

obtainable.
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2.2.4 Ordinal Depth Information: Psychophysical Insights

Due to the distortion, perceived 3D structure is far from being accurate met-

rically. However, we may still extract some reliable qualitative information

from this inaccurate quantitative structure. On the other hand, it has been

suggested that some vision tasks can be performed on the basis of some qual-

itative structure information such as ordinal or topological relations among

objects; thus explicit knowledge of Euclidean metric structure may not be re-

quired. To build real vision systems based on ordinal geometrical information,

it is important to understand the role of such information in perceiving 3D

space and performing vision tasks.

In Norman and Todd’s study [76], psychophysical experiments were carried

out to test human’s judgement of relative depths of small probe dots using

stereo cue. Discriminations of ordinal depth were found to be more precise

than discriminations of depth intervals. Moreover, performance was higher

when observers evaluated the depth relationships between nearby points in

the projected images, and lower when the points were more widely separated.

These findings indicate that the human visual system is good at measuring

qualitative information (ordinal information), and that accurate knowledge

of 3D structure is limited to small local neighborhood. In [107, 75], shading

and texture cues were used. It was shown that relative depth judgments on

smoothly curved surfaces were influenced by a monotonic depth change. This

result suggests that our visual knowledge of smoothly curved surfaces can

be defined in terms of local, nonmetric order relations. All the above works

demonstrate the importance of ordinal depth information in human visual

perception.
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In [28], Cutting compared among human’s judgement of ordinal depth us-

ing nine different visual cues. Cutting suggested that the perceived spaces are

really ordinal. However, as denser ordinal measurements are obtained, these

spaces converge to a metric space. He further suggested that such convergence

could possibly be realized using multidimensional scaling techniques. This hy-

pothesis places ordinal geometrical information right in the center of 3D space

perception.

2.3 Depth from Motion and its Distortion : A

General Model

We introduce in this section a novel distortion model, which relates recovered

depth to errors in 3D motion estimates. Compared to the iso-distortion frame-

work [21] [23], the model proposed in this section is more general and can be

adapted to other camera models besides the perspective model used in the

iso-distortion framework.

In this chapter, we denote the estimated parameters with the hat symbolˆ

and errors in the estimated parameters with the subscript e. The error of any

estimated parameter l is defined as le = l − l̂. p⊥ is the vector perpendicular

to vector p.

Generally, 2D image velocities ṗ = (ṗx, ṗy)
T due to 3D rigid motion (trans-

lation T = (U, V,W )T and rotation Ω = (α, β, γ)T) between the camera and

the scene under any camera projection model can be written as

ṗ = dg(Z) + ṗindep (2.1)
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where d is the direction in which image velocity carries the depth information;

we call this direction the epipolar direction since it is the direction of epipolar

line in the differential case. g(Z) is a monotonic function of depth Z(Z > 0)

and ṗindep is the component in image velocity independent of depth. Then the

depth information of a scene point can be recovered up to a scale factor as

g(Ẑ) =

(
˜̇p− ˆ̇pindep

)
· n

d̂ · n
(2.2)

where ˜̇p = ṗ + ṗn is the measured image velocity. ṗn is the noise term in the

optical flow measurement which is random and its distribution is up to the

image formation process and the optical flow computation process. n is a unit

vector which specifies a direction. n’s value depends on the approach we use to

recover depth. For example, the epipolar reconstruction approach uses n = d̂;

while reconstruction from normal flow uses local image gradient direction as

n. Concrete forms of Equation (2.1) and (2.2) under weak-perspective and

perspective camera projection models will be given in Section 2.5 and Section

2.6 respectively.

Due to errors in the motion estimates and noise in the optical flow measure-

ments, actual estimate of depth information g(Ẑ)(Ẑ > 0) would be erroneous

and can be readily shown to be related to the true g(Z) as

g
(
Ẑ
)

= ag(Z) + b + c (2.3)

where a, b and c are the distortion factors:

a =
d · n
d̂ · n

= 1 +
de · n
d̂ · n

, b =
ṗindep e · n

d̂ · n
, c =

ṗn · n
d̂ · n

(2.4)
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de and ṗindep e are both functions of the image coordinates and motion errors.

The latter can be regarded as random variables whose distribution functions

rely on the motion estimation process and motion-scene configurations. a , b

and c are undefined when d̂ = 0.

Equation (2.3) shows how the errors in the motion estimates and noise in

the image measurements may distort the actual recovered depth. The error in

the estimates of the epipolar direction de causes a multiplicative distortion in

g(Ẑ), while error in the estimates of the depth independent component ṗindep e

and noise in the optical flow measurement ṗn result in additive distortions.

Note that a, b and c are functions of image coordinates. We denote them

as ai,j, bi,j, ci,j, where i, j are the indices of image pixels. Let matrices A =

[ai,j], B = [bi,j], C = [ci,j]. We call A, B and C the distortion maps, whose

entries are random variables. In each depth recovery process from motion cues,

there exist certain realizations of the distortion maps A, B and C. Figure 2.1

illustrates realizations of the distortion maps A and B given specific motion

configurations and errors in the image velocities under perspective projection.

The depth distortion model described above can be applied into any cam-

era projection model, such as orthographic, weak-perspective, perspective and

catadioptric cameras. Under perspective projection, the distortion factors a,

b and c in the model are related to the distortion factor D in [21] [23] by

D = 1
a+(b+c)Z

.
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Figure 2.1: Realization of the distortion maps A, B under perspective pro-
jection, iso-a contour, iso-b contour are shown. Motion parameters are: focus
of expansion (FOE) (x0, y0) = (26, 30.5), rotation velocity α = 0.005, β =
0.004, γ = 0.0002. Error in FOE estimates: (x0e, y0e) = (8, 9), error in ro-
tation: αe = 0.001, βe = 0.001, γe = 0.00005. Focal length: 50 pixels,
FOV= 90◦, epipolar reconstruction scheme was adopted (n = d̂

‖d̂‖), blue ∗
indicates the true FOE, red ∗ indicates the estimated FOE.

2.4 Estimation of Ordinal Depth Relation

2.4.1 Ordinal Depth Estimator

Suppose Z0 and Z1 are the depths of two scene points P0 and P1, whose im-

age points are p0 and p1. We denote g(Z0) as g0, g(Z1) as g1. The function

sgn(g0 − g1), i.e. the sign of (g0 − g1), reveals the ordinal depth relation-

ship between points P0 and P1, since g(Z) is a monotonic function of depth
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Z(Z > 0). For example, given g(Z) = 1
Z

which is the case under perspective

projection, we have

 sgn (g0 − g1) = 1 Z0 < Z1

sgn (g0 − g1) = −1 Z0 > Z1

(2.5)

2.4.2 Valid Ordinal Depth (VOD) Condition and VOD

Inequality

From Equation (2.3) we only have ĝ0 and ĝ1 at our disposal. Unfortunately,

sgn (ĝ0 − ĝ1) may not reveal the correct ordinal relation information, because

g
(
Ẑ
)

may not be a monotonic function of Z due to the distortion. We now

derive the general condition under which sgn (ĝ0 − ĝ1) is a valid estimator for

ordinal depth relation.

sgn (ĝ0 − ĝ1) is a valid estimator for ordinal depth relation if and only if

sgn (ĝ0 − ĝ1) sgn (g0 − g1) > 0 (2.6)

Referring to (2.3), the above is the same as

((a0g0 − a1g1) + (b0 − b1) + (c0 − c1)) (g0 − g1) > 0 (2.7)

where (a0, b0, c0) and (a1, b1, c1) are realizations of the distortion factors associ-

ated with points p0 and p1. Equation (2.6) or (2.7) is a sufficient and necessary

condition for sgn (ĝ0 − ĝ1) to be a valid estimator for ordinal depth. We call

it the Valid Ordinal Depth (VOD) Condition. It reveals how the distortion

factors may affect the judgement of the ordinal depth relation.
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To obtain more insight into the condition, we define g = g0+g1

2
, a = a0+a1

2
,

4a = a0 − a1, 4b = b0 − b1, 4c = c0 − c1, 4g = g0 − g1. Then it is clear that

a0g0 − a1g1 = a4g +4ag. The VOD Condition (2.7) becomes

(a4g + (4ag +4b +4c))4g > 0 (2.8)

Generally, given a > 0, it can be shown that a sufficient condition (but not

necessary) for (2.8) to be satisfied is

|4g| >
∣∣∣∣4ag +4b +4c

a

∣∣∣∣ (2.9)

We call (2.9) the VOD Inequality. It is a sufficient condition for sgn (ĝ0 − ĝ1)

to be a valid ordinal depth relation estimator given a > 0. If a < 0, depth

order between the two points is ensured to be estimated reversely by the VOD

Inequality.

Equations (2.8) and (2.9) show that when the average of depth function g,

depth function difference 4g, and the difference of the distortion factors of the

two points4a, 4b, and4c satisfy certain conditions defined by the inequality,

ordinal depth can be validly discerned up to a certain resolution even in the

presence of motion errors and image measurement noise. To understand the

VOD Condition and VOD Inequality better, we will look into specific projec-

tion models, reconstruction schemes, and motion configurations in Section 2.5

and Section 2.6 to see how various factors may affect the judgement of ordinal

depth.
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2.5 Resolving Ordinal Depth under Weak-perspective

Projection

We begin our investigation with the orthographic/weak-perspective cameras,

which are good approximations of the perspective camera model under small

FOV (small FOV is usually the case which gives rise to some typical errors in

3D motion estimates). An orthographic/weak-perspective camera belongs to

the affine camera model [95, 41]. Equations associated with these models are

relatively simple and easy to handle. The concepts introduced however can be

applied to the perspective camera model in the next section.

2.5.1 Depth Recovery and Its Distortion under Ortho-

graphic or Weak-perspective Projection

Motion field equations under orthographic and weak-perspective cameras can

be written as follows [22]:

ṗx = −sZβ − sU + γy + δx, ṗy = sZα− sV − γx + δy (2.10)

where δ = 1
s

ds
dt

is the relative changing rate of the scaling factor s (s = 1 for

orthographic camera; s = f

Z
for weak-perspective camera, where f is the focal

length and Z is the average depth of scene points). Here we have d = (−β, α)T ,

g(Z) = sZ. Like under perspective projection, depth can only be recovered

up to a scale factor. The magnitude of frontal rotation is unsolvable. We set

‖d̂‖ = 1, which means we will recover depth information up to a scale factor

k =
√

(α2+β2).



2.5. Resolving Ordinal Depth under Weak-perspective Projection 31

It is known that in the 2-frame motion estimation process under affine

camera, translation parallel to the image plane can only be estimated in the

direction perpendicular to the epipolar direction [22], thus ṗindep can only be

partially estimated. Depth can be recovered as a scaled and offset version of

Ẑ.

g′
(
Ẑ
)

= ksẐ + Zc =

(
˜̇p− ˆ̇pindep−known

)
· n

d̂ · n
(2.11)

where ˆ̇pindep−known =
(
γ̂y + δ̂x,−γ̂x + δ̂y

)T

and Zc = (−sU,−sV )T ·n
d̂·n which is

unknown. Depth distortion due to motion errors and noise can be written as

g′
(
Ẑ
)

= ksẐ + Zc = a (ksZ) + Zc + b + c (2.12)

where a = d·n
d̂·n , b =

ṗindep−known e·n
d̂·n , ṗindep−known e = (γey + δex,−γex + δey)T , c =

ṗn·n
d̂·n .

In the following discussion in this section, we assume the unit vector n in

Equation (2.2) is the same for every feature point; thus Zc is a constant. This

allows relative depth between any two points to be recovered up to a scale

factor. The scaled relative depth between points p0 and p1 can be recovered

as

g(Ẑ0)− g(Ẑ1) = ks4Ẑ = g′(Ẑ0)− g′(Ẑ1) = a(ks4Z) +4b +4c (2.13)

where4Ẑ = Ẑ0 − Ẑ1 and 4Z = Z0 − Z1, a = a0 = a1, 4b = b0 − b1,

4c = c0 − c1.

Specifically, if the epipolar reconstruction scheme (n = d̂

‖d̂‖) is adopted,

we have a = cos φe (φ = tan−1 β
α

and φe is the angle between d and d̂),

b =
(
γep

⊥ + δep
)
· d̂ and c = ṗn · d̂. Note that φ can only be recovered up to
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a 180◦ ambiguity in the model and thus a may be negative. If a < 0, all the

relative depths will be recovered reversely, and the whole scene structure will

be recovered up to a mirror transformation.

2.5.2 VOD Inequality under Weak-perspective Projec-

tion

Here we will consider the VOD Inequality (2.9) under orthographic/weak-

perspective projection. We adopt the epipolar reconstruction scheme where

n = d̂ (the derivation can be modified using other reconstruction schemes).

We then have 4a = 0, 4b =
(
γe4p⊥ + δe4p

)
· d̂, 4c = 4ṗn · d̂ where

4p = p0 − p1, 4ṗn = ṗn0 − ṗn1. We write 4p = r(sin θ, cos θ), where r

indicates the image distance between p0 and p1. After some manipulation,

the VOD Inequality under orthographic/weak-perspective cameras takes the

form
r

|4Z|
< ksε (2.14)

where ε =

∣∣∣∣ cos φe

γe cos(φ̂−θ)+δe sin(φ̂−θ)+4ṗ′n

∣∣∣∣, where 4ṗ′
n = 4ṗn·d̂

r
. ε = ∞ in the

error-free and noise-free ideal case, which implies that VOD inequality is sat-

isfied in the entire image plane. Equation (2.14) shows that for two points, if

the ratio between the image distance r and depth variation |4Z| is less than a

certain value ksε defined by a particular realization of motion errors and noise

in the optical flow measurements, the SFM system can still get a valid ordinal

depth relation judgement even in the presence of errors and noise.



2.5. Resolving Ordinal Depth under Weak-perspective Projection 33

2.5.3 Ordinal Depth Resolution and Discrimination Thresh-

old(DT)

Equation (2.14) can be written as :

|4Z| > DT, DT =
r

ksε
(2.15)

Equation (2.15) indicates that when depth variation is larger than a discrim-

ination threshold(DT), ordinal depth relation can be judged correctly by the

SFM system. DT is an indication of the ordinal depth resolution. It gives

us the smallest depth differencee that ensures ordinal depth can be resolved

correctly by VOD Inequality. The bigger DT is, the poorer the ordinal depth

resolution.

It is noted that DT is a function of r – the distance between p0 and p1 in

the image. Generally, for a certain realization of errors in the motion estimates

and noise in the image velocity, DT increases as r increases. This means

that ordinal depth resolution decreases as image distance increases. Equation

(2.15) further shows that ordinal depth resolution decreases as motion errors

(ε) increase and as the magnitude of the motion component carrying depth

information(frontal rotation here) k decreases.

2.5.4 VOD Function and VOD Region

To have an intuitive understanding of Equation (2.15), we define VOD function

and VOD region as follows:

- VOD function : Given certain realization of errors in the motion es-

timates and noise in the optical flow measurements, for an image point
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p0, if image point pi satisfies the VOD Inequality (2.9) with respect

to p0 for depth variation |4Z| = DT and average depth Z, function

V OD(p0,pi, DT, Z) = 1; otherwise function V OD(p0,pi, DT, Z) = 0.

- VOD region : VOD region R of image point p0 for DT at Z is a set

of image points: R(p0,DT,Z) = {pi|V OD(p0,pi, DT, Z) = 1}.

The VOD region contains all the image points that satisfy the VOD inequality

with respect to p0 given particular DT and Z. Since motion errors and noise

are random, the VOD region is a random region in the image plane.

Figure 2.2 illustrates the realizations of VOD regions for different DT under

certain motion error realizations when the effect of image noise is ignored. As

can be seen, the VOD region of an image point p0 has a band shape under

orthographic/weak-perspective projection. The width of the band increases as

DT increases. The band stretches along the direction of the estimated frontal

rotation axis (φ̂). This anisotropic property is due to the dependence of ε on

θ. We indicate the width of the band region by the biggest circle that can be

drawn inside the region and centered at the investigated point.

2.5.5 Ordinal Depth Resolution and Visual Angle

We now investigate the relationship between the ordinal depth resolution and

the visual angle. Define the visual angle subtended by two image points as

τ = 2 tan−1 r
2f

. The VOD inequality can be written in terms of visual angle

as

|M Z| > 2

εk
tan

τ

2

∣∣Z∣∣ (2.16)
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Figure 2.2: Realization of VOD region of p0 = (0,0)T (p0 is denoted by the red
asterisk) for different DT under weak-perspective projection. VOD region is
bounded by black lines. The big red circles show the width of the region bands.
τ is the visual angle between points on the circle and p0. The rainbow at the
background shows the change of distortion factor b. . Motion parameters
and errors: T = (0.81, 0.2, 0.15)T , Ω = (0.008, 0.009, 0.0001), Z = 35000,
δ = −4.2857e − 006, φe = 28.6◦, δe = 1.0e − 006, γe = 1.0e − 006, ṗn = 0,
f = 250.

This shows that given ε and k, for two image points subtending a visual angel

of τ , the ordinal depth relation between points in this region can be correctly

resolved when the depth variation |M Z| is greater than DT = 2
εk

tan τ
2

∣∣Z∣∣. The

bigger the visual angle, the higher the DT. Therefore, ordinal depth resolution

decreases as visual angle increases. Moreover, ordinal depth resolution also

decreases as average depth Z increases. Figure 2.2 also shows the increase of

DT in the direction perpendicular to the band as the visual angle τ increases.
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2.5.6 VOD Reliability

Practically, the VOD region is stochastic due to the random nature of errors

and noise. To deal with the statistical issue, we define the VOD reliability

of image point pi with respect to the investigated point p0 as

PV OD(p0,pi,DT,Z) = P (V OD(p0,pi, DT, Z) = 1) = P (pi ∈ R(p0,DT,Z)) (2.17)

where P (.) is the probability of certain event. VOD reliability gives us the

probability that image point pi falls inside p0’s VOD region for DT at Z. It

gives us the lower bound of the probability of correct judgement of the depth

order relationship between point p0 and pi (for depth variation bigger than

DT at average depth Z). Particularly, under orthographic/weak-perspective

projection, we have:

PV OD(p0,pi,DT,Z) = P (r < |4Z|ksε) = P (τ < 2tan−1

(∣∣∣∣4Z

Z

∣∣∣∣ εk2
)

) (2.18)

It is clear that, generally, under certain error and noise level, the VOD reli-

ability decreases as the distance r between the points and the visual angle τ

subtended by the points increase.

Figure 2.3 (Top) shows the VOD reliability of image points w.r.t. the

image center p0 for DT = 100 at average depth Z = 35000. This figure

is the result of repeating the SFM process described in [22] 500 times on

1000 randomly generated points when the level of isotropic gaussian noise in

the optical flow is 10%. Figure 2.3 (Bottom) shows the result for different

DT as visual angle increases. It is shown that VOD reliability drops down

significantly as distance between pi and p0 increases. This indicates that for
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Figure 2.3: Top: VOD Reliability of image points w.r.t. the image center
for DT = 100 at Z = 35000. Bottom: VOD Reliability of image points
w.r.t. the image center for different DT at Z = 35000 as visual angle (◦)
between the point pair changes. (U, V,W ) = (0.001, 0.002, 0.001), (α, β, γ) =
(0.004, 0.002, 0.003).
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the same depth variation, ordinal depth judgement by SFM systems for a pair

of closer points can be considered as more reliable and trustworthy. Pairs

of points subtending smaller visual angle have more reliable ordinal depth

judgement. Ordinal depth information is strong in the local image areas within

small visual angle despite the motion uncertainties and noise.

2.6 Resolving Ordinal Depth under Perspective

Projection

In this section, ordinal depth resolution is investigated under perspective pro-

jection. Our analysis is first carried out under pure lateral motion configu-

ration (Section 2.6.1). Lateral motion is a camera 3D motion without any

forward translation component; note that 3D camera rotation can present in

the lateral motion case. The analysis under lateral motion is very similar to

the orthographic/weak-perspective projection analysis above, in the sense that

all points have epipolar lines lying in the same direction. Then the effect of

adding forward motion is analyzed in Section 2.6.2. Results in this Section

will serve as guidelines for developing robust ordinal depth acquisition method

and applying ordinal depth information into scene recognition algorithm in

Chapter 3 and Chapter 4.
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2.6.1 The Pure Lateral Motion Case

We assume that the SFM system knows that a pure lateral motion is executed.

Therefore Ŵ = W = 0. The image velocity equation in this case is

ṗx =
−Uf

Z
− βf + γy +

αxy

f
− βx2

f
, ṗy =

−V f

Z
+ αf − γx− βxy

f
+

αy2

f

(2.19)

We denote the direction of lateral translation (which is also the epipolar

direction in this case) d = (U,V)T√
U2+V2 as (cos φ, sin φ)T . The distortion factors

can be written as a = cos φe, b = f(αe sin φ̂− βe cos φ̂) + γe(cos φ̂y − sin φ̂x) +

O2(x, y), where O2(x, y) = cos φ̂(αexy
f
− βex2

f
)+sin φ̂(−βexy

f
+ αey2

f
) is the second

order term and it only exists under errors in the frontal rotation estimates

(This second order term can be ignored when field of view is small). The

VOD inequality can be written as

|4Z| > DT, DT =
r

ksε
(2.20)

which takes the same form as (2.15) but with the meaning of the parameters

slightly different here. k =
√

U2 + V 2 is the magnitude of lateral translation.

s = f

Z
2 , where Z =

√
Z0Z1 is the geometric mean of the depths of the two

points. ε =

∣∣∣∣ cos φe

γe sin(φ̂−θ)+4O2′+4ṗ′n

∣∣∣∣, where 4O2′ = O2(x0,y0)−O2(x1,y1)
r

.

Figure 2.4 shows the realization of VOD regions of the image center point

under pure lateral motion. When the second-order flow is ignored, the shape of

the region is the same as that under orthographic/weak-perspective projection

(Top). With the second-order flow considered, the lines change to hyperbolae

and the band shapes are distorted (Bottom), though the general topology

remains. Note that the direction of the VOD region band in this case is the
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Figure 2.4: Realization of VOD region of p0 = (0,0)T (denoted by red cross)
for different DT under perspective projection and pure lateral motion. Top:
second order flow ignored. Bottom: second-order flow considered. The VOD
region is bounded by black lines. The background rainbow shows the change
of distortion factor b. Motion parameters and errors are: T = (18, 22, 0)T ,
Te = (15.3, 24.5, 0)T , (translation direction estimation error is −7.3◦), Ωe =
(0.00002, 0.00002, 0.00005), Z = 20000, ṗn = 0, f = 250.
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estimated lateral translation direction (φ̂).

If γe = 0 and second order term is ignored, Equation 2.20 becomes |4Z| >

0. This means any ordinal depth relation is ensured to be recovered correctly.

Such case corresponds to the discussion result in [23]. Compared to the result

in [23], Equation 2.20 further shows that the effect of γe is to reduce the ordinal

depth resolution as image distance between the points increases. This effect is

expressed in an analytic way here.

2.6.2 Adding Forward Motion: The Influence of FOE

Now we add the forward translation component. It is well known that when

the focus of expansion (FOE) is near the image center, the recovered depth is

highly unreliable. This phenomenon is also shown in Figure 2.1, from which

it can be seen that the values of the distortion factors change rapidly near the

estimated FOE. This is in contrast to the lateral motion case, in which FOE

can be regarded as lying at infinity and the distortion factors change slowly

over the image.

Ordinal depth recovery in this forward motion case is of little practicability.

Therefore, our investigation here is restricted to the case that FOE is far away

from the boundary of the image. We use the angle µ = arctan |W |√
U2+V 2 to

indicate the relative amount of forward translation component compared to

the lateral translation. The bigger µ is, the bigger the forward translation

executed, and the nearer the FOE is to the image center. The VOD region with

the forward translation added are shown in Figure 2.5. Several observations

can be noted below:

1. Adding forward translation narrows the width of the VOD region and
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Figure 2.5: Realization of VOD region of p0 = (0,0)T (denoted by red cross)
for different DT under perspective projection with forward translation added
to the motion configuration shown in Figure 2.4. Top: µ = 15◦. Bottom:
µ = 25◦. µe = 0 in both cases. Only first-order optical flow is considered for
the illustration.



2.7. Discussion 43

distorts the band shape. The VOD region is narrower in the image region

nearer to the estimated FOE. However, the topology remains the same

as that under pure lateral motion.

2. The VOD region is bounded by curves which can be shown to pass

through the estimated FOE.

3. The bigger the forward translation component, the more the VOD region

shrinks. Therefore, ordinal depth resolution decreases as image points

approach the FOE. In other words, camera lateral motion (of which

FOE is at infinity) is a good motion configuration for robust ordinal

depth recovery.

2.7 Discussion

2.7.1 Practical Implications

To show the practical implication of the above results, we now compute the

values of DT under lateral motion given values of Z and certain practical

error rate. We use h to denote the ratio between the average translational

flow magnitude and average rotational flow magnitude 1. We assume error in

the rotational estimate is pe(%) of the magnitude of the rotational parameter

and φe = 0(due to the bas-relief valley as we have discussed in Section 2.2).

Then if we ignore the second order distortion effect, it can be readily shown

1Here rotational flow is computed using first order term only with the assumption that√
α2 + β2 � γ.
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τ = 10◦ τ = 20◦ τ = 30◦ τ = 40◦ τ = 50◦ τ = 60◦ τ = 70◦

h = 1 0.8816m 1.8199m 2.8868m 4.1955m 5.9588m 8.6603m 13.7374m
h = 5 0.1763m 0.3640m 0.5774m 0.8391m 1.1918m 1.7321m 2.7475m
h = 20 0.0441m 0.0910m 0.1443m 0.2098m 0.2979m 0.4330m 0.6869m

Table 2.1: DT values for different visual angles under different translation-to-
rotation ratio h. Z = 100m and pe = 5%.

from Equation (2.20) that an upper bound of DT is:

DT ≤
∣∣(tan τ)Zpe

∣∣
h

(2.21)

where τ is the visual angle subtended by the point pair. Table 2.1 shows the

DT values computed from the above equation for different visual angles under

different translation-to-rotation ratio h, given Z = 100m and pe = 5%.

2.7.2 Psychophysical and Biological Implication

Our results show that SFM algorithms can obtain reliable ordinal depth res-

olution within small visual angles despite the motion uncertainties. This is

especially so for lateral motion. Ordinal depth resolution decreases as visual

angle increases. This agrees with the intuition that in human vision, the depth

order of two objects close together can be determined with much greater ease

than that of objects far apart. Moreover, our result is also consistent with the

experimental findings in psychophysics [107] [76] which showed that human

vision gives better judgement of ordinal depth relation and depth intervals for

pairs of close points using stereo or texture depth cue.

From an evolutionary perspective, foveated vision is adopted for many

biological vision systems. For example, humans have a sharp foveated vision.

The spatial resolution of the human eye decreases by more than an order
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of magnitude within a few degrees from the optical axis and at least two

orders at ten degrees from the optical axis. One possible explanation for this

phenomenon may be that depth cues such as motion can only resolve various

levels of depth information precisely in a small visual angle due to errors in ego-

motion estimation, as shown by our results. Therefore, foveated vision might

be an adaptive result of natural selection in response to the computational

capability and limitation of Shape from X modules.

2.8 Summary

In this chapter, the resolution of ordinal depth from the inaccurate metric

depth estimates in SFM was investigated theoretically based on a novel, gen-

eral depth distortion model. It was shown that:

1. In SFM algorithms, although accurate metric depth may be difficult to

obtain due to motion errors, ordinal depth can still be discerned locally if

the actual depth difference is beyond a certain discrimination threshold.

2. The reliable ordinal depth resolution was found to decrease as the visual

angle between point pair increases, as the speed of the motion component

carrying depth information decreases, as scene points recede from the

camera, and as the image points approach the estimated FOE.

These findings are important since they suggest that accurate qualitative 3D

structure information is ensured in small local image neighborhood. Therefore,

it also follows that qualitative structure information, when being used for per-

forming vision tasks, should be carefully weighted according to its resolution

under system errors, as we will do in Chapter 4. Besides, the result in this
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chapter consolidates the conclusion in [23], which advocates lateral motion as

a good active vision strategy to obtain ordinal structure information.



Chapter 3

Robust Acquisition of Ordinal

Depth using Turn-Back-and-Look

(TBL) Motion1

3.1 Background

3.1.1 Turn-Back-and-Look (TBL) Behavior and Zig-Zag

Flight

In behavioral physiology, researchers studied the learning behavior of bees

around food sources. A special behavior called the Turn-Back-and-Look be-

havior (TBL) was observed and studied [56]: when bees depart from a new

food source, they turn around to view it at a short distance, before departing

1The work presented in this chapter was carried out in collaboration with Mr. Ching Lik
Teo.
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Figure 3.1: The Zig-Zag flight of a wasp directed towards a target (large circle)
as seen from above [112]. Notice the significant translational motion that is
almost perpendicular to the target at each arc formed. The complete path is
shown on the right.

for the hive; this behavior was repeated on several successive visits.

In Voss and Zeil’s study, the zig-zag flight of wasps was observed: The in-

sects repeatedly approach objects and start a series of rapidly swaying sideways

movements, roughly perpendicular to their line of sight (see Figure 3.1) [112].

Studies on the occurrence, cessation and re-emergence of zig-zag fights sug-

gested that zig-zag flight happens in ‘Turn-Back-and-Look’ behavior. In this

thesis, we call zig-zag flight in turn-back-and-look behavior the Turn-Back-

and-Look (TBL) Motion.

It was believed [24,122] that TBL behavior and zig-zag flight are important

for the bees to recognize food source scenes on their return trip. It was shown

that zig-zag flights were triggered only by 3D objects [112]. Experiments

[56, 99] have also shown that bees do in fact obtain 3D distance information

from the selected features so as to perform precise landing at feeding sites and

at their nests. Furthermore, Voss and Zeil [112] suggested that zig-zag fights

seem to be a ‘depth from motion’ procedure for the extraction of object-related
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depth information.

3.1.2 Why TBL Motion Is Performed?

By examining the path of zig-zag flight in Figure 3.1, it can be seen that

each arc in the TBL motion is actually a lateral motion without any forward

translation component. Recalling the result in Cheong and Xiang’s work [23],

we know that such lateral motion is especially conductive to depth recovery.

If we further consider the observation that TBL motion is only triggered by

3D objects [112], it is reasonable to say that TBL motion might be performed

for the purpose of obtaining 3D structure information of scenes.

However, to obtain reliable depth information, biological vision system

needs to have mechanism for accurate ego-motion estimation. As we have

discussed in Section 2.2, due to noise in the 2D optical flow measurements,

accurate estimation of 3D motion and depth is difficult. Even under camera

lateral motion, there may be systematic distortion of depth due to errors in

the 3D motion estimates [23]. Therefore, qualitative depth seems to be an

appropriate source of information to exploit. As we have shown in Section 2.6,

ordinal depth can be recovered up to certain resolutions under camera lateral

motion, even under various errors. It is reasonable to suggest that ordinal

depth could be the 3D structure information obtained by TBL motion and

used in high-level recognition tasks.

3.1.3 Active Camera Control and TBL Motion

The central tenet of the active vision paradigm is that a vision system is not

solitary but one part of the perception-and-action system. In such systems,
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sensing, processing and action components work in a cooperative way. Camera

parameters and visual processing are actively controlled in response to the

activity and task context (such as navigation, recognizing persons, obstacle

avoidance) [17].

Active control of camera parameters such as orientation, focus, zoom, aper-

ture, and vergence has been well studied. Through camera parameter controls,

efficiency of visual data sensing can be improved, and the computation in-

volved in early vision can be simplified dramatically. For example, by camera

focus control (gaze control) and resolution control, areas of interest can be

examined at the desired resolution without the high cost of uniform resolution

sensing [17, 87]. Active camera control has been applied to many vision tasks

such as measuring time-to-contact [93], 3D perception from static scenes [82],

face detection and tracking [84] etc.

One way of active camera control is to control camera motion. For example,

in the segmentation of an object from the background, some controlled camera

motion can disambiguate solutions that are otherwise underconstrained [17].

In [25], a camera calibration procedure was developed for an outdoor active

camera system with pan, tilt and zoom control. These active camera systems

make use of the fact that computation of vision tasks can be simplified or

made more robust under some special type of camera motion.

In this chapter, we use TBL motion as a strategy of active camera control

for obtaining robust ordinal depth information. This strategy is inspired by

the zig-zag flight of wasps in TBL behavior. It is based on the insight that

ordinal depth recovery is robust under TBL motion, as we have discussed in

the last subsection.
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3.2 Recovery of Ordinal Depth using TBL Mo-

tion

3.2.1 Camera TBL motion

In our proposed approach, the camera TBL motion is just a relatively simple

lateral motion (comprising of lateral translations and some rotations) facing

the scene, without necessarily carrying out the whole suite of trajectories as

found in the zig-zag flight of some wasps [112]. This strategy can also be

applied to small baseline stereo systems where the two cameras or eyes are

frontally placed, because such configuration is equivalent to a lateral monoc-

ular translation. Since stereo can be treated as a special case of motion, our

formulation will be dealing with the case of motion.

The simple camera TBL motion is a pure translation in the horizontal

direction without any rotation (see Figure 3.2). Under such simple motion,

ordinal depth can be perfectly recovered if the optical flow can be measured

properly. However, carrying out such controlled camera motion needs special

mechanical device. Since ordinal depth recovery can tolerate some errors in

the 3D motion estimation, the precise execution of such an ideal simple camera

TBL motion is not required. We allow some 3D camera rotation and some

camera translation in the vertical direction. These components can be esti-

mated with a relatively gross ego-motion estimation step. Even some small

forward translation component is also allowed, as long as it is relatively small

compared to the lateral translation. As we have discussed in Chapter 2, de-

spite some errors in the estimates of these motion components, ordinal depth

can still be recovered up to certain resolution for points, especially in a local
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Figure 3.2: Simple camera TBL motion

image neighborhood. Thus, a common video camera held by hand performing

a roughly lateral motion, probably with some camera rotation, suffices for our

purpose.

3.2.2 Gross Ego-motion Estimation and Ordinal Depth

Recovery

Now we develop a simple procedure to estimate the camera 3D ego-motion

and the gross depth values which contain robust ordinal depth information,

under camera TBL motion. Here we use the same notations as those used in

Chapter 2.

Optical flow measurement: We measure the optical flow from SURF fea-

ture correspondences [9] between two consecutive video frames (T = 0.8
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as the matching threshold; for details, see [9]). This gives us the optical

flow of salient feature points in the scene (we will give a more comprehen-

sive discussion on what saliency means in our work in Chapter 4). The

reason we use the local feature matching method instead of the dense

optical flow computation [11] is that the extracted features can be read-

ily used in the scene recognition task later as we will show in Chapter

4.

Gross ego-motion estimation: The image velocity equations under lateral

motion are:

ṗx =
−Uf

Z
−βf+γy+

αxy

f
−βx2

f
, ṗy =

−V f

Z
+αf−γx−βxy

f
+

αy2

f

(3.1)

We denote the direction of lateral translation d = (U,V)T√
U2+V2 as (cos φ, sin φ)T

(this is also the epipolar direction). Eliminating depth Z in the above

equations gives us the epipolar constraint:

a cos φ + b sin φ + c(−y sin φ− x cos φ) + d(−xy sin φ + y2 cos φ)

+e(x2 sin φ− xy cos φ) = (−ṗx sin φ + ṗy cos φ)

(3.2)

where a = αf , b = βf , c = γ, d = α
f
, e = β

f
. Suppose the lateral

translation direction φ is known (see below), if we have now more than

five feature points and their optical flow measurements, we can solve for

a, b, c, d and e by linear least square fitting. Then we have f =
√

a
e
,

α = a
f
, β = b

f
and γ = c. In simple camera TBL motion case, φ = 0.

Searching for the translation direction: Since we do not require precise
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control of the camera movement, the camera’s TBL motion has unknown

φ, although it is largely horizontal. We take [−30◦, 30◦] as the search

range for φ. For each possible φ value within the range, we do a linear

least square fitting to solve for α, β, γ and f . The residual error in the

fitting is computed and the φ value with the smallest residual error is

taken as the final estimate φ̂ for the lateral translation direction.

Extracting ordinal depth: Having obtained the gross estimates of φ̂, α̂, β̂,

γ̂ and f̂ , we can compute the depth value of each feature point as:

Ẑ =
f̂ cos φ̂

−ṗx − β̂f̂ + γ̂y + α̂xy

f̂
− β̂x2

f

(3.3)

The Ẑ recovered here is a depth scaled by s = 1√
U2+V 2 . Smoothing is

applied locally to remove noise. The size of this local smoothing neigh-

borhood is chosen empirically so that the noise effect can be removed

without disturbing the fine structure of the scene. Due to the noise sen-

sitive nature of SFM and the simple 3D motion estimation scheme used,

the metric depth value Ẑ is unreliable. However, we can extract the more

reliable ordinal depth information between each pair of feature points pi

and pj by:

sgn(Ẑi − Ẑj) (3.4)

3.3 Dealing With Negative Depth Value

We note that any image noise in the optical flow will add a stochastic com-

ponent to the uncertainty in the ordinal depth recovery, over and above the
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systematic errors caused by the errors in the egomotion estimates. Thus we

need a robust way of handling the depth recovery and in particular those neg-

ative depth estimates. We carry out the following adjustment with regards to

a negative depth estimate Ẑneg recovered at the image location (x, y):

1. If the number of negative depths in a small image neighborhood centered

at (x, y) is less than half of the total number of feature points within this

neighborhood, regard the negativity in Ẑneg as caused by noise, and set

the depth value Ẑneg to the average depth value of those positive depths

in the neighborhood.

2. Otherwise, the negative depth value is caused by the systematic distor-

tion arising from errors in the egomotion estimates. Since it is only the

far depths that yield negative depth estimates [23], set the depth value

Ẑneg to Zmax, where Zmax is the maximum positive depth recovered from

the current scene.

3.4 Experimental Results

We use a SONY hand held video camera to take image sequences of indoor

and outdoor scenes. Approximate camera TBL motion is executed by hand

movement during recording. There will be a more detailed description of the

scene content of these videos in Chapter 5.

Figure 3.3 depicts the recovered ordinal depths, using a color coding scheme

that follows the rainbow sequence; warm colors such as red mean that the fea-

ture points are close to the observer, while cool colors such as violet represent

points that are far away from the observer. Gross 3D motion estimates are
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also shown. It can be seen that depth orders among feature points are well

recovered in both indoor and outdoor environments.

In some environment or under some lighting condition, SURF features can

be sparse (e.g. Figure 3.3: left of second row). This may cause 3D motion

estimation unreliable due to the numerical issues. However, it is shown that

ordinal depth can still be well recovered. It also can be seen that fine structure

like trunk or branch of the tree (Figure 3.3: left of third row) is well recovered.

From the estimated 3D motion shown in Figure 3.3, we can see that the

hand held camera’s motion is not precisely the simple TBL motion. Some

rotations and translation in vertical direction are involved in. It is difficult to

accurately estimate these parameters. Our 3D motion estimation algorithm

only gives gross estimates. However, the errors seem do not affect the robust-

ness of ordinal depth recovery, as we see in Figure 3.3.

3.5 Summary

In this chapter, we develop an active camera motion strategy for robust ac-

quisition of ordinal depth information. The controlled TBL motion used in

the strategy is inspired by biological insect behaviors as well as the computa-

tional properties of ordinal depth from SFM. A simple yet effective algorithm

to recover ordinal depth under the camera TBL motion is designed and tested.
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(15.00◦, 0.0007,−0.0065, 0.0030, 359.9(pixs)) (0.00◦, 0.0024,−0.0050,−0.0002, 567.2(pixs))

(10.00◦, 0.0294, 0.0132,−0.0178, 558.8(pixs)) (−5.00◦,−0.0068, 0.0151, 0.0024, 565.7(pixs))

(−10.00◦, 0.0042,−0.0002,−0.0057, 230.2(pixs)) (−10.00◦,−0.0046, 0.0050, 0.0034, 464.5(pixs))

(−10.00◦,−0.0009,−0.0003, 0.0003, 331.9(pixs)) (−30.00◦,−0.0038, 0.0091, 0.0059, 310.6(pixs))

Figure 3.3: Recovered ordinal depth of feature points in indoor and outdoor
scenes, depicted using the rainbow color coding scheme (red stands for near
depth; violet for far depth). Gross 3D motion estimates (φ̂, α̂, β̂, γ̂, f̂) are
shown under each image.



Chapter 4

Robust Scene Recognition Using

3D Ordinal Constraint

4.1 Background

Due to the difficulty of 3D reconstruction, the reconstruction and the recog-

nition problems are very much treated as separate problems, and 2D local de-

scriptors have been the mainstay of object and scene recognition algorithms.

Despite some success and the invariant properties of many 2D local descriptors,

they cannot deal with large 3D viewpoint changes [72]. Illumination change

is another challenge, especially in uncontrolled outdoor environment. Often,

to accommodate these large changes, the threshold for local feature matching

must be lowered, with the attendant sacrifice of its discriminating power.

To overcome the problem, the local feature approach is often combined

with geometrical constraints to eliminate mismatches or as a verification stage

so as to enhance the discriminating power of the local descriptors. 2D geomet-

58
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rical constraints [6,18,34,73,91] have been proven helpful in object and scene

recognition. However, these constraints are often based on the assumption

that surfaces of objects are planar or at least can be approximated as planes

locally, and that the object has no rotation in depth. In scenes with strong 3D

effects, for instance, natural outdoor environment, such constraints become

highly unstable and complex operations to group image into affine regions be-

comes necessary. Thus, despite the enhanced power of these 2D methods, they

will always be restricted to certain types of objects or scenes.

A handful of work has indeed appeared and showed that it is possible to

implement 3D object recognition, either at the single object level or at the

category level [15, 39, 46, 52, 61, 88, 89, 105]. In these approaches, geometrical

constraints such as epipolar or multi-view constraint are used. However, the

use of these geometrical constraints presupposes the ability to compute the

transformation between the reference view and the test view, which in turn

requires a sufficiently accurate set of point correspondences. The latter is very

much limited by the repeatability of the feature extraction and the difficulty

of matching itself, especially when there are large amounts of clutter and

significant changes in viewing conditions. Due to the large change in image

appearance, one often has to lower the threshold for matching, as mentioned

previously, with the resultant increase in large number of outliers. Under such

situation, fitting a correct global or semi-local transformation is difficult; even

robust methods like RANSAC may fail to work properly.
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4.1.1 2D vs 3D Scene Recognition

The problems discussed above are exacerbated for the problem of outdoor

scene recognition, which is the problem we wish to address in this chapter.

The problem of scene recognition has also been tackled at the 2D and 3D

levels. In the biomimetic navigation community, the simple snapshot model

has been proposed for insect navigation in an outdoor environment [19,53,70],

whereby 2D snapshot of a reference scene is memorized and compared against

the current scene. However, these works have only been validated in arti-

ficially manipulated outdoor environments with obvious landmarks [53, 70],

or only computer simulations have been used to validate the method in the-

ory [19]. Other approaches make domain specific assumption such as a rel-

atively open terrain in which the skyline is assumed to be the most salient

feature and contain all available information [26]. The problem is that real

animals such as insects navigate in complex outdoor environments in which

the selection of landmarks from these scenes is much harder. More impor-

tantly, these snapshot-based models are too simple to withstand viewpoint or

illumination distortion.

An additional difficulty of recognizing outdoor scenes using purely 2D de-

scriptors is that the 2D features returned by algorithms such as SIFT [61, 62]

or SURF [10] are not informative or discriminative enough in such environ-

ment. Many features are alike and repeated in natural surroundings and there

are often no distinctive colors in such environment either. Figure 4.1 illus-

trates such difficulty. In the top pair of images, the SIFT matches between

two views of the same scene are shown. Due to the large viewpoint change,

it can be seen that the SIFT matcher can only return a few correct matches,
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Figure 4.1: SIFT matching in the natural environment. Top: SIFT matches
between two different views of a scene. Bottom: SIFT matches between im-
ages of two different scenes. The same matching threshold is used for both
examples.

together with quite a number of mismatches. On the other hand, the bottom

pair of images of Figure 4.1 show the SIFT matches obtained between images

of two different scenes, using the same matching threshold as used for the top

pair. Even though the scenes are different, a large number of matches are

still obtained due to the presence of locally highly similar landmarks. This

presence of highly similar features on the one hand, coupled with potentially

large viewpoint change on the other, will pose severe difficulties for any 2D

scene recognition schemes based entirely on local features. Lighting changes in

an outdoor environment such as a wooded area further compound the issue as

they are much more complex than the relatively “flat” variety experienced in
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an indoor scene. Complex effects like inter-reflection, vignetting, reflexes, etc.

mean that simple contrast normalization will not work. Under such complex

illumination changes, pure 2D local feature approaches like [19, 27, 53, 70, 85]

are simply ineffective.

While geometry-based information such as the 2D spatial configuration of

the feature points could potentially relieve the problems highlighted in the

preceding paragraph, the presence of large depth discontinuities in the en-

vironment would challenge and limit the effectiveness of these 2D-geometry-

enhanced approaches. For such scenes, the ability to encode some 3D aspects

of the feature landmarks will be crucial. Figure 4.2 shows examples of such

scenes selected from our experimental database; the large depth discontinu-

ities present means that some form of 3D information is required for successful

recognition.

Unfortunately, 3D object recognition techniques such as those discussed in

the opening paragraphs in this section have rarely been extended to the case

of scene recognition due to various reasons. Firstly, the various difficulties

discussed in the previous section, such as appearance variation caused by illu-

mination and viewpoint changes, are multiplied manifold in the case of scene

recognition, especially in the outdoor natural environment with its complex

geometrical structure. Secondly, scene matching should allow mild changes

and deformations as scene content changes somewhat over time (e.g., natural

growth in a forest, erosion by the seashore, parked cars having moved in a

city scene). A strict matching scheme based on global transformations such

as homography or fundamental matrix [57, 92, 97] would fail in this situation.

In addition, due to the potentially large spatial coverage (for instance, to rec-

ognize various places in a wood), it is also impractical to use a large number



4.1. Background 63

Figure 4.2: Examples of scenes with large depth discontinuities on which 2D-
geometry-enhanced approach may fail and 3D method is required.

of views for a specific location as a means to combat the large changes caused

by various factors.

Most existing 3D model-based scene recognition works [26, 30, 45, 74, 102]

either assume that 3D structure information is available from laser range find-

ers [30, 74, 45] or a digital elevation map [102]. Such techniques are too slow

to be useful in real time navigation and are limited by the physical properties

of the objects being scanned which may not yield reliable results. Approaches

such as [57, 92, 97] are based on a mix of appearance matching and epipolar

geometry, as well as the use of non-visual information. However, they have

not tested their approaches in extensive outdoor environments, especially with

outdoor natural scenes under complex illumination changes. Clearly, due to

the difficulty of recovering 3D scene structure from multiple views, such 3D
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information has not been well exploited in the scene recognition problem, es-

pecially in scene recognition systems without recourse to active sensing device

such as laser range sensors. Yet, due to the lack of highly distinguishing land-

marks in natural outdoor scenes, a greater emphasis should be placed upon the

3D geometrical configuration of the landmarks for the successful recognition

of such scenes. In our view, a proper use of 3D information in some form is

crucial to the success of such a system.

4.1.2 Revisiting 3D Representation

Since exact 3D geometry is difficult to recover without recourse to sensing de-

vice, the question then becomes what sort of 3D spatial knowledge is required

and how it is to be obtained. Central to our scene recognition approach is

the usage of ordinal relationships between feature landmarks’ spatial positions

to represent the 3D geometry of the scene. The qualitative nature of ordinal

representation is advantageous for the following reasons. Firstly, it makes the

scene comparison robust to large viewpoint changes, as the spatial orders of

the landmark points in the scene remains invariant to a significant extent to

viewpoint changes. Our particular way of combining the spatial orders in all

three dimensions also complements each other in terms of their stability under

different types of viewpoint changes and for different scene types (as we show

later). Secondly, the scene comparison strategy is also robust against the ad-

dition and deletion of new and old landmarks since the relational ordering of

the remaining original landmarks is likely to remain unchanged. Thus our pro-

posed similarity comparison based on ordinal ranks is robust against clutter

and occlusion. Thirdly, unlike methods based on epipolar constraint, it does
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not require fitting a rigid transformation on the landmark matches and can

thus tolerate certain amount of deformation (e.g., trees have grown in size or

fallen down). Fourthly, the proposed method is proved to be robust to feature

matching outliers. Since unlike most of the existing geometrical constraint

methods, the proposed method does not need to compute a geometrical trans-

formation. Lastly, ordinal information along the third dimension (the depth

dimension) can be obtained in a robust and simple manner without requiring

full egomotion recovery. This has been discussed in Chapter 3.

4.1.3 Organization of this Chapter

The rest of this chapter is organized as follows. In Section 4.2 we propose a 3D

ordinal space representation that qualitatively encodes the scene landmark’s

spatial configuration. We also analyze the robustness of the various ordinal

relationships in different spatial dimensions under viewpoint changes. Section

4.5 addresses the issue of measuring the geometrical similarity between two

scenes encoded in terms of 3D ordinal geometry. In Section 4.6, we present the

full scene recognition system that combines the local appearance information

together with the ordinal spatial constraint.

4.2 3D Ordinal Space Representation

Our proposed ordinal space representation is based on a weak characterization

of the 3D geometric configuration. It is encoded in terms of the ordinal ranks

of the landmark features based on their position along three dimensions: the

two image dimension x and y, and the depth dimension Z. The reason for

using the directly observable image coordinates x and y is that they will not be
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affected by errors in depth recovery, unlike the unknown 3D space coordinates

X and Y (Recall X = xZ
f

and Y = yZ
f

, where f is the camera focal length)

which depend on the estimated depth Z.

Figure 4.3 illustrates the idea of landmark rank. The numbers on the

objects show the ranks of the landmark objects according to the x-coordinate

of the landmarks’ position in the image. Landmark rank has the property that

it is more robust to viewpoint change than the metric coordinate. The arrows

in Figure 4.3 show how the positions of the four landmarks have changed as

the camera shifts to the right (see Figure 4.3, right). Although the landmarks’

x coordinates change in the image when the camera undergoes some viewpoint

change, the ranks remain unchanged.

Landmark rank can be regarded as the result that emerges from all pairwise

comparisons between pairs of landmarks. It can be encoded implicitly as a

matrix Am = {amij} where m is the property upon which the landmarks are

ranked, and the value of entry amij for two landmarks Pi and Pj is defined

as:

amij =


1 if mi > mj

−1 if mi < mj

0 if mi = mj

(4.1)

Clearly, the diagonal entries amii are 0 and amij = −amji. Since we represent

the ordinal relationship along the three dimensions: the two image dimension

x, y, and the depth dimension Z, we have Ax = {axij
}, Ay = {ayij

}, and

AZ = {aZij
}. AZ = {aZij

} represents the ordinal depth information among

landmark points.

In actual fact, not all ordinal relations can be obtained with the same degree

of robustness nor used with the same confidence under viewpoint changes.
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Figure 4.3: Landmark rank (based on the x-coordinate) remains unchanged
under small viewpoint change.

Thus we also associate a confidence factor smij with each of these ordinal

relations. Before formulating these smij, we will first analyze in the following

the factors affecting the robustness of the various ordinal measurements, during

both the depth recovery stage and during the scene recognition stage when

there might be substantial viewpoint changes.

4.3 Robustness of Ordinal Depth Recovery

In Chapter 3, we have argued about the ecological relevance of lateral motion

and highlighted the TBL motion of wasps in particular. We have also designed

an algorithm to recover ordinal depth under controlled camera TBL motion.

It has been shown in Section 2.6 and also in [23] that if we assume that the

contribution of γe is small, and further assume that the quadratic terms in the

rotational error flow is small relative to the other terms due to the limited field

of view, ordinal depth can be recovered correctly in spite of errors in 3D mo-
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tion estimates. Section 2.6 also shows that if the aforementioned assumptions

are violated, global depth ordinality is no longer preserved. However, we can

still obtain ordinality within a neighborhood where the VOD condition is sat-

isfied. The size of this neighborhood depends on the size of the motion errors

and the depth differences; smaller depth difference would need finer motion

estimation for ordinal depth to be resolved. This property in ordinal depth

recovery implies that the 3D spatial information should not be represented

in a homogeneous manner but should have different levels of confidence for

point pairs with different depth differences subtending different visual angles.

This insight will be used for weighting the importance of ordinal depth of each

individual point pair when we compute the global spatial similarity between

two set of points in the 3D ordinal space.

4.4 Stability of Pairwise Ordinal Relations un-

der Viewpoint Change

We now assess the stability property of the pairwise relations in each dimen-

sion (x, y, and Z) with respect to camera viewpoint change during the scene

recognition stage. We denote the camera’s optical center before and after the

viewpoint change as C and C ′ respectively.

4.4.1 Changes to Pairwise Ordinal Depth Relations

We first explore how the depth order of a pair of landmarks i and j may change

as the camera viewpoint varies. We denote the position of the landmark pair

in 3D space as: Pi and Pj. Referring to Figure 4.4, it is obvious that the
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Figure 4.4: Pairwise ordinal depth relation varies as optical axis direction
changes.

value of aZij
depends on the relative orientation between the camera’s optical

axis (CZ) and the line joining Pi and Pj, with the relative order aZij
flipping

value when the viewpoint change brings the optical axis sweeping across the

direction perpendicular to PiPj.

Since camera movements like translation and cyclotorsion (rotation around

the optical axis) does not change the optical axis direction, we first conclude

that the pairwise ordinal depth relation aZij
is invariant to camera translation

and cyclotorsion.

The next question is: how does aZij
change as the camera rotates around

the X- or Y -axis, resulting in changes in the optical axis direction? The

critical point at which aZij
changes values can be obtained by simple algebra

but it is easier to illustrate graphically through Figure 4.5. More specifically,
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Figure 4.5: Pairwise ordinal depth relation under camera rotation around the
Y -axis. The figure is the projection of the scene in Figure 4.4 onto the XCZ
plane. Forbidden orientation zone for C ′Z ′ is indicated by the shaded region
that passes through C ′. For feature pair that are almost fronto-parallel, like
Pi and Pj when viewed from C, small camera rotation around the Y axis may
cause the line of sight C ′Z ′ at the new viewpoint to cross into the forbidden
zone.
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let PXi
and PXj

be the projections of Pi and Pj on the XCZ plane (see

Figure 4.5). Suppose the line joining PXi
and PXj

forms an angle θY with

respect to the line of sight of the camera C at position 1, and suppose there

is an orientation change of 4θY around the Y -axis due to viewpoint change

such that the line joining PXi
and PXj

forms an angle θY +4θY with respect

to the line of sight of the camera C ′ at position 2, then it can be readily

shown that aZij
is invariant to camera rotation around the Y -axis if and only

if cos θY cos(θY +4θY ) > 0. In other words, the orientation of the line PXi
PXj

defines a forbidden orientation zone for the forward direction of camera C ′ (see

the shaded area in Figure 4.5). It is clear that the same arguments also apply

to the rotation about the X-axis. Thus, we conclude that aZij
is invariant to

the camera rotation around the X-axis if and only if cos θX cos(θX +4θX) > 0,

where θX and4θX are defined in a manner similar to θY and4θY respectively.

We can summarize the above results as follows:

Proposition 4.4.1 Pairwise ordinal depth relation aZij
is invariant to:

1. camera translation and cyclotorsion;

2. camera rotation around the Y -axis iff cos θY cos(θY +4θY ) > 0;

3. camera rotation around the X-axis iff cos θX cos(θX +4θX) > 0.

Remark 4.4.1 Given a orientation change of 4θ, one can see that the ordinal

relation is more readily satisfied when θX and θY have small values, which

corresponds to the case when the point pair Pi and Pj stretch along the Z-

direction (we call it an in-depth pair).
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Figure 4.6: Pairwise x relation under camera translation in the XCZ plane is
preserved as long as C ′ does not enter the forbidden zone, which is the half
space indicated by the shaded region. DistX is the shortest camera translation
that will bring about the crossing of this half space.

4.4.2 Changes to Pairwise Ordinal x and y Relations

Now we look into how pairwise ordinal relations in the x or y dimension may

change when the camera viewpoint changes.

From the geometry of a perspective camera, it is intuitively clear that as

long as Pi and Pj remain visible, axij
and ayij

are invariant to pure camera

rotation around the X- or Y -axis (since the projection rays associated with

Pi and Pj remain unchanged). The invariance of the relation can also be

verified algebraically. For instance, for the ordinal relation in x, say xi − xj

of landmarks i and j, after a rotation 4θY about the Y -axis, the new ordinal
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relation in x can be readily obtained as

x′i − x′j =
(xi − xj)(f + f tan24θY )

(f − xi tan4θY )(f − xj tan4θY )
.

where f is the focal length. As the numerator has the same sign as xi−xj, the

sign of the new ordinal relation depends on the sign of the denominator terms

(f−xi tan4θY ) and (f−xj tan4θY ). Clearly we only have to worry about sign

change when xi tan4θY or xj tan4θY are positive. However it is clear from

simple geometry that these two terms (f − xi tan4θY ) and (f − xj tan4θY )

are positive as long as both the landmarks remain visible, thus supporting our

intuitive statement. Similar expression holds for a rotation 4θX about the

X-axis. Thus, ordinal relations in x and y are invariant to any rotation about

the X- and the Y -axis, as long as the points Pi and Pj remain visible.

Unfortunately, for a camera cyclotorsion 4θZ about the Z-axis , we have

for the x relation the following:

x′i − x′j = (xi − xj) cos4θZ − (yi − yj) sin4θZ .

If the rotation 4θZ is substantial, then the ordinal relation in x can change.

Clearly, the ordinal relation in x would be more likely to retain the same sign

if yi ≈ yj. Similar arguments can be applied, mutatis mutandis for the case of

ordinal relation in y.

Next, for viewpoint change involving camera translation, we discuss the

invariance condition for axij
(the extension to ayij

is straightforward). Referring

to Figure 4.6 which again depicts the projection onto the XCZ plane, it is

clear that the plane passing through PXi and PXj and perpendicular to the
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XCZ plane defines a forbidden half-space into which the camera should not

tread. As long as this half-space is not crossed, axij
is unchanged. It also

implies that the shortest camera translation that will bring about the crossing

of this half space is to move along the direction of the shortest line segment

from C to the line PXiPXj (see DistX in Figure 4.6).

We summarize the above results in the following proposition:

Proposition 4.4.2 As long as Pi and Pj remain visible,

1. pairwise ordinal relation axij
and ayij

are invariant to pure camera rota-

tion around the X- or Y -axis.

2. axij
(respectively ayij

) is invariant to camera translation that does not

cross the half space defined by the plane passing through PXi and PXj

(respectively PY i and PY j) and perpendicular to the XCZ plane (respec-

tively Y CZ plane).

3. axij
(respectively ayij

) might be sensitive to camera cyclotorsion 4θZ,

with its sensitivity depending on (yi − yj) (respectively (xi − xj)).

Remark 4.4.2 Other conditions being equal, this means that a favorable con-

dition for the invariance of axij
or ayij

with respect to camera translation is

that the two points Pi and Pj are as fronto-parallel as possible (so that axij

or ayij
is not easy to be disturbed by translation along X or Y direction); or

as far away from the camera as possible(so that axij
or ayij

is not easy to be

disturbed by translation along Z direction), or the two image points are as

widely separated as possible (so that axij
or ayij

is not easy to be disturbed by

cyclotorsion).
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4.4.3 Summary of Effects of Viewpoint Changes

To end this section, we summarize the kinds of changes in landmark ordinal

relations that might arise due to various viewpoint changes.

* Ordinal relation in the Z dimension is likely to be perturbed by view-

point change arising from camera rotation around the X- or Y -axis. The

more in-depth feature pairs there are in the scene, the lower the sensi-

tivity; whereas scenes with more fronto-parallel pairs will have higher

sensitivity. We call the former type of scene an in-depth scene, and the

latter type a fronto-parallel scene. Ordinal relation in the Z dimension

are invariant to any kind of pure camera translation.

* Ordinal relation in the x (y) dimension is likely to be perturbed by

viewpoint change arising from camera translation. Here, in contrast to

the case for ordinal ranks in the Z dimension, the more in-depth feature

pairs there are in the scene, the higher the sensitivity. On the other hand,

these ordinal relations are invariant to pure camera rotation around the

X- or Y -axis.

* Ordinal relation in the x (y) dimension is not sensitive to camera forward

translation in faraway scenes; while given the ordinal depth recovery

property as we have discussed in Chapter 2, recovered ordinal relation

in Z dimension is more reliable in the near scenes.

* Viewpoint change arising from camera cyclotorsion may perturb the or-

dinal relation in the x and y dimension but not the ordinal relation in

the Z dimension.

The above properties are briefly summarized in Table 4.4.3.
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axij
ayij

aZij

horizontal translation change invariant invariant
vertical translation invariant change invariant
forward translation change change invariant

rotation around invariant invariant change
horizontal axis
rotation around invariant invariant change

vertical axis
rotation around change change invariant

optical axis
favorable scene frontal-parallel frontal-parallel in-depth

type scene, scene, scene,
faraway scene faraway scene near scene

Table 4.1: Invariant properties of ordinal relations in x, y, and Z dimensions
to different types of camera movements and in different types of scenes. It can
be seen that different dimensions complement each other.

Clearly, the ordinal relations in the Z dimension behave differently in terms

of their response to types of viewpoint changes, compared to those in the x

and y dimensions. In this sense, the ordinal depth relations capture a com-

plementary aspect of the scene essence different from those in the x and y

direction. We would expect that the ability to capture this aspect of the scene

essence is especially critical for a scene recognition algorithm dealing primarily

with in-depth scenes (e.g. forest scenes). The in-depth property of such scenes

is more conducive toward preserving the invariance of the ordinal depth rela-

tions, while at the same time rendering ordinal x and y relationships highly

unstable.
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4.5 Geometrical Similarity between Two 3D Or-

dinal Spaces

Given correspondences between two groups of 3D scene points, we now pro-

pose a scheme to compare their geometrical similarity, based on the respective

ordinal rankings in the x, y and Z dimensions. To do this, we have to first

construct the global ordinal rankings from the pairwise ordinal relations, with

their individual reliability properly taken into account.

4.5.1 Kendall’s τ and Rank Correlation Coefficient

In the statistical literature, the similarity between two different rankings on

a set of objects is measured by the Rank Correlation Coefficient (RCC) [49].

Normally, the coefficient is a variable within [−1, 1], with 1 indicating perfect

agreement between the two ranks, 0 indicating complete independence, and

−1 indicating perfect disagreement. Many methods have been proposed to

calculate the rank correlation coefficient. We briefly describe Kendall’s τ ,

which will be used in the ensuing development.

Suppose we have a set of N objects O = {O1, O2, . . . , ON}, which are

being considered in relation to two properties represented by α and β. We

may say the that the objects exhibit values α1, α2, . . . , αN according to α and

β1, β2, . . . , βN according to β. These values may be variates or ranks, from

which we can form matrices Aα and Aβ based on the definition in (4.1).

Entries in matrix Aα are denoted by aαij, while entries in matrix Aβ are

denoted by aβij. Denoting by
∑

as summation over all values of i and j from
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1 to N , the Kendall’s τ is defined by the equation:

τ =

∑(
aαijaβij

)
√∑

aα
2
ij

∑
aβ

2
ij

.

Kendall’s τ as formulated treats every relation equally. However, as shown

in Chapter 2 and Section 4.4, the ordinal relations of some pairs of objects

may be more reliable or stable than others. Thus, we propose the Weighted

Kendall’s τ as follows:

τw =

∑(
sijaαijaβij

)
1

N(N−1)
(
∑

sij)
√∑

aα
2
ij

∑
aβ

2
ij

where sij ∈ [0, 1] is the weighting factor of the relation between object pair

Oi and Oj indicating its reliability or stability. The normalizing term is given

by N(N − 1) rather than N2 because all sii are defined to be zero. In the

context of this paper, the two rankings to be compared arise from that of

a test scene and a reference scene over a particular property. The properties

being measured include the x, y, and Z coordinates of the feature matches (the

N objects), generating τx, τy and τZ respectively. The corresponding weighted

version are denoted as τxw, τyw and τZw respectively; how the weighting factor

sij is defined depends on which of the coordinates is being considered and will

be discussed in the next subsection.

Finally, since the pairwise ordinal relations in the x, y and Z dimensions

are differently sensitive to perturbations from various types of camera motions,

we propose the following 3D Rank Correlation Coefficient (3D RCC) that

combines the rank correlation coefficients in all three dimensions so that each
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dimension complements the strength of each other:

τ3D = wZτZ + wxτx + wyτy; (wZ + wx + wy = 1). (4.2)

The weights wZ , wx,wy can be chosen based on our prior knowledge, if any,

about the scene or about the system. For instance, if we have at our disposal

a gravitational sensor, perturbations arising from cyclotorsion would not pose

a serious problem (since it can be compensated) and thus τx and τy would

be more reliable. In the case of the bees and wasps, they are able to use

compass cues available from the sun or the Earth’s magnetic field and take up

a preferred compass orientation, thereby minimizing rotational perturbations

about the X and the Y axis and enhancing the reliability of ordinal relations

in depth. In the absence of such a priori information, we can simply average

the three components to obtain (τ3D = 1
3
(τZ + τx + τy)).

To illustrate how the various RCCs might vary as viewpoint changes, we

choose a typical forest scene from the Brown range image database [55] and

truncate it to a more conventional field of view of 45o(Figure 4.7). We execute

different kinds of viewpoint changes, compute the various RCCs between the

new and the original viewpoint, and plot them in Figure 4.8. It can be seen

that firstly, as camera translation in horizontal (or vertical) direction increases

(Figure 4.8, top left, middle left), the RCC in the x (or y) dimension τx (or

τy) decreases, while that in the Z dimension τZ does not change. Secondly,

as camera rotates around the horizontal (or vertical) axis (Figure 4.8, top

right, middle right), the RCC in the Z dimension τZ decreases , while those

in the x and y dimension do not change. Thirdly, the RCCs in the x and y

dimensions decrease as camera forward translation increases, while that in the
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Figure 4.7: The range image of a forest scene from the Brown range image
database. Intensity represents distance values, with distant object looking
brighter.

Z dimension does not change (Figure 4.8, bottom left). Fourthly, the RCCs

in the x and y decrease as camera’s rotation around the optical axis increases,

while that in Z does not change its value (Figure 4.8, bottom right). The

result is consistent with our summary in Section 4.4.3, showing that RCC in

the depth dimension complements those in the two image dimensions. Finally,

by virtue of capturing this complementary aspect of the scene geometry, the

3D RCC (τ3D) is clearly superior to the 2D RCC (τ2D) under different types

of camera movements (τ2D = 1
2
(τx + τy), τ3D = 1

3
(τx + τy + τZ), see Figure 4.8,

all plots).
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Figure 4.8: Computing RCC on the Brown range data (forest scene): different
RCCs across the views are shown when the camera undergoes different types of
movements. The top, middle and bottom left figures correspond to translations
in the X, Y , and the Z direction respectively, whereas the top, middle and
bottom right figures correspond to rotations around the X, Y , and the Z
direction respectively. The horizontal axis in each plot represents the various
view positions (view 0-9) as the camera moves away from the original position.



4.5. Geometrical Similarity between Two 3D Ordinal Spaces 82

4.5.2 Weighting of Individual Pairs

We now discuss how the pairwise ordinal relations aij should be weighted by

sij, in accordance with the individual pair’s reliability against errors in the

TBL motion estimation and stability under viewpoint changes (as discussed

in Chapter 2 and Section 4.4 in this chapter respectively). The details of

these weighting factors described in this subsection can be skimmed without

affecting the understanding of the rest of this thesis.

Weighting the Pairwise Ordinal Depth Relation

The usefulness of a particular pairwise ordinal depth relation between a pair of

scene points Pi and Pj depends on two factors: 1) the accuracy of the ordinal

depth estimates; 2) the amount of viewpoint change. From Proposition 4.4.1,

we know that the robustness of the ordinal depth relation aZij with respect

to viewpoint change depends on the angle θX and θY (see Figure 4.5). The

smaller these angles are, the more robust the ordinal depth relationship to

viewing direction change. In Chapter 2, we have also seen that the reliability

of the ordinal depth relation with respect to errors in the egomotion estimates

is affected by the image separation of the two feature points, which in turn

can be related to θX and θY given a fixed depth difference. Thus, for both

factors, we can characterize the usefulness of an ordinal depth relation by θX

and θY . In this thesis, we measure these angles from the test scene, but in

principle, either the test scene or the reference scene involved can be used for

the measurement.

For a more concise characterization of the usefulness, we first rotate the

XY Z coordinate system to X ′Y ′Z such that the new X ′-axis is parallel to the
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projection of Pi and Pj on the XY plane. We now only need to characterize

the reliability with one angle θ′Y , since it is indeed the rotation 4θ′Y around

the Y ′-axis that has the greatest perturbance on the ordinal depth relation.

In analogy with the angle θY in Figure 4.5, we have in this rotated coordinate

system:

| tan θ′Y | =
∣∣∣∣X ′

i −X ′
j

Zi − Zj

∣∣∣∣
We define a weighting factor sZij based on θ′Y to indicate the confidence

we can attach to a particular pairwise ordinal depth relationship:

sZij = 1− 2

π
arctan

∣∣∣∣X ′
i −X ′

j

Zi − Zj

∣∣∣∣
where sZij ∈ [0, 1]. The above can be written in terms of the image coordinates

as:

sZij = 1− 2

π
arctan

(
1

f

∣∣∣∣x′ +4x′
Z

4Z

∣∣∣∣)
where x′ =

x′i+x′j
2

, Z =
Zi+Zj

2
, 4x′ = x′i − x′j, and 4Z = Zi − Zj. Clearly,

we do not have the true depths Zi and Zj at our disposal. Thus we have

to replace all the depth quantities with their estimated version. We can also

further introduce a factor k in the above equation inside the bracket to adjust

between the discriminating power and the rate of acceptance:

sZij = 1− 2

π
arctan

(
k

f̂

∣∣∣∣∣x′ +4x′
Ẑ

4Ẑ

∣∣∣∣∣
)

.

For instance, if we want to tolerate large viewpoint change, we could raise

the value of k to discount the more fronto-parallel landmark pairs. Only the

more in-depth pairs, which are robust against large orientation changes, would
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contribute towards computing the rank correlation. In this paper, k = 1.

Weighting the Pairwise x or y Relation

We use the shortest distance (DistX) from the camera center to the border

of the forbidden zone in Figure 4.6 as an indicator of the robustness of the

ordinal x relations axij against viewpoint change caused by camera translation

in the XCZ plane. DistX can be readily shown to be

DistX =

∣∣∣∣∣∣Z(4Zx +4xZ)− 4Z
2

(xiZi + xjZj)√
f 24Z2 + (4Zx +4xZ)2

∣∣∣∣∣∣
where we have used Xi−Xj

Zi−Zj
= 1

f

(
x +4x Z

4Z

)
. Again, we have to replace all the

depth quantities with their estimates. Furthermore, to indicate the reliability

of the ordinal x relation with respect to cyclotorsion (see Proposition 4.4.2), we

further multiply the above with
(
1− |yi−yj |

Ny

)
where Ny is the image dimension

in y:

Dist′X =

∣∣∣∣∣∣ Ẑ(4Ẑx +4xẐ)− 4Ẑ
2 (xiẐi + xjẐj)√

f̂24Ẑ2 + (4Ẑx +4xẐ)2

∣∣∣∣∣∣
(

1− |yi − yj |
Ny

)

Normalizing the above to the interval between 0 and 1, we have

sxij = 1− 2

π
arctan

1

Dist′X
.

Similar expressions can be written for Dist′Y and syij for the case of ayij.

Again, like the preceding subsection, all the quantities are computed from the

test scene.
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Weighting by Matching Score

In addition to sxij, syij, and sZij, we should further weight all ij landmark pairs

according to the quality of the feature matches with respect to the reference

scene, in case one of the feature matches is bad. In particular, each of sxij,

syij, and sZij is further multiplied by the following factor

stij = 1−max(ti, tj)/T (4.3)

where ti ∈ [0, T ] is the matching score when the correspondence for the ith

landmark is established with respect to the reference scene (respectively for

j), and T is the upper threshold for the local feature matching score of an

acceptable match (the smaller ti is, the more reliable the matching).

4.6 Robust Scene Recognition1

Having covered the novel aspect of our ordinal representation, we now briefly

outline the other component steps in our scene recognition system (SRS). The

first step in our approach acquires the landmark features that are salient and

encodes them based on the SURF descriptor [10]. Ordinal depth information

of the landmarks is acquired from TBL motion using a gross egomotion esti-

mation step as described in Chapter 3. A scene recognition strategy is then

proposed based on both the visual appearance of the SURF landmarks and

their 3D geometrical configuration described in terms of the ordinal ranks.

1The work presented in this section was carried out in collaboration with Mr. Ching Lik
Teo [104].
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4.6.1 Salient Point Selection

The first step of our proposed SRS is to extract salient regions in the scene for

reliable recognition in the later stages. We use a modified version of the human

visual saliency (HVS) model [47]. Apart from the intensity and orientation

features in the original HVS model, we incorporate a modified opponent colour

feature based on the Hue, Saturation and Intensity (HSI) color space to handle

illumination changes. Lastly, we have also included two new salient features:

long edges and skyline.

We use the HSI color space because it is more robust to a variety of illumi-

nation changes such as highlights, shading and shadowing [83] caused by the

change in the position of the sun as well as changes in weather conditions. An

example of such drastic change is shown in Figure 4.9. The top left image was

taken under bright sunlight while the top right image was taken at the same

location under diffused lighting from a hazy overcast sky. It can be seen that

the appearance change is drastic. Transforming the original RGB image to the

HSI space, this problem can be alleviated to some extent; this can be seen from

the bottom row of Figure 4.9, which shows the saturation image of the same

two scenes in the top row. Hue is known to be intrinsically unstable at low

intensities; thus we use all three components of the HSI space to complement

each other. Furthermore, for measuring hue similarity, we adopt the modulo

distance operator suggested by [83] to handle the wrap-around nature of the

angular measure hue.

Long edges are known in the literature as an extremely useful and viewpoint

invariant salient feature [43] that are robust against illumination changes and

occlusions. Such long edges were exploited in natural sceneries to reliably
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Figure 4.9: Grayscale(top row) and saturation(bottom row) for the same scene
taken under different illumination conditions.

detect tree trunks for outdoor visual SLAM [7,16]. In this work, the edge map

is extracted by applying the Canny edge detector on the intensity image.

The skyline is used by several authors in past works for scene recognition in

navigation [26,108]. The use of the skyline for scene recognition has also been

hypothesized by behavioural scientists for certain species of bees and wasps

[71]. Skyline offers the advantage that it remains unchanged for significant

changes in the agent’s viewpoint. Motivated by these results, we make use of

the skyline feature whenever it is visible in the image.

We propose a simple scheme where the skyline is detected from an image

by assuming that: 1) the sky is in general at the top half of the image, 2) it

is more luminous (brighter) than the ground, and 3) it contains a higher per-

centage of blue colour component. Furthermore, as the sky contains relatively

few objects, it is relatively textureless compared to the ground that contains

abundant vegetation.
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Figure 4.10: An example outdoor scene with its sky-ground segmentation (top
right), detected skyline (bottom left) and the resulting saliency map (bottom
right).

The first step of the skyline module detects edges using the Canny edge

detector. The algorithm then performs several image morphological opera-

tions of dilation and filling to create a labeled image that should represent

the segmented sky and ground regions. In order to obtain the skyline, pixel

columns are extracted and the first pixel counting from the top that shows a

significant change in luminosity and blueness is classified as the skyline. The

process is repeated until the full width of the image is processed. Figure 4.10

summarizes the various stages in the skyline detection algorithm.

With the five salient features extracted, the saliency algorithm then forms

a saliency map [47] which encodes the 2D spatial position of the most con-

spicuous regions in an image. The higher the conspicuity of that location, the

brighter it will appear on the map. Various image morphological operations are
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then applied on the saliency map to extract the salient regions (ROIs) which

will serve as the initial landmarks for scene recognition (see Figure 4.11). This

step can be summarized as follows:

1. Edges are detected from the input saliency map (Figure 4.11.1) using the

Canny edge detector with an initial predefined threshold, tedge to form

an edge map (Figure 4.11.2).

2. Dilate the edges with a suitably chosen structuring element such that

the broken edges are connected together (Figure 4.11.3). In this work,

disk- and cross-shaped elements are used.

3. The connected edges delimit the edge map into the salient ROIs which are

then filled and counted (Figure 4.11.5). The number of ROIs detected is

returned and if this number is not between the empirically predetermined

minimum and maximum number of salient ROIs desired, the algorithm

goes back to step 1 with a suitably adjusted tedge.

The output is a binary labeled map that identifies salient ROIs (Figure

4.11.7). This map is used as a mask to indicate which regions of the image are

salient for further encoding by SURF in the next subsection.

4.6.2 Encoding the Appearance and Geometry of the

Salient Points

The SURF descriptor [10] attempts to improve the efficiency of the well known

SIFT descriptor [62]. It has been shown in [10] to outperform the current state

of the art (such as SIFT [62] and GLOH [69]) in terms of recognition accu-

racy and speed for recognition applications. This makes the SURF algorithm



4.6. Robust Scene Recognition 90

Figure 4.11: Steps that describe the various stages of extracting the salient
ROIs using various image morphological operations. The initial saliency map
is extracted based on a down-sampled image. The final salient ROIs are boxed
in white and highlighted in green.
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the descriptor of choice for our proposed SRS, in which we apply it to each

component of the HSI space.

At the end of this step, the salient ROIs of the scene are encoded by the

SURF descriptors over the three colour spaces. The SURF descriptor itself is

made up of a 6D localisation component and a 64D description component (for

details, see [10]). We also describe the depth aspect of the scene with the gross

depth value Ẑ recovered from TBL motion (see Equation (3.3)). The gross

depth values recovered under TBL motion are up to a relief transformation

of the true depths, as we have shown in Chapter 2 and Chapter 3. Figure

4.12 depicts ordinal depths extracted from the recovered gross depth values.

Similar results have been shown in Section 3.4. The same color coding scheme

is used here. With these ordinal depths, the 3D RCC can be computed in the

subsequent stage.

4.6.3 Measuring Scene Similarity and Recognition Deci-

sion

Given a test scene sc1 and a reference scene sc2, both encoded by their re-

spective salient SURF descriptors, we first obtain correspondences between

the two sets of SURF features by using the matching algorithm for SIFT de-

scriptors [62]. The threshold for accepting a feature match is purposely set at

a less stringent level so that more matches can be obtained even for large illu-

mination and viewpoint changes. We then measure the similarity of the two

scenes in terms of both the local visual appearance and the overall geometrical

configuration. We call this measure the Global Scene Correlation Coefficient
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Figure 4.12: Ordinal depths extracted from gross depth estimates under TBL
motion, depicted using the rainbow color coding scheme (red stands for near
depth; violet for far depth).

G, which is defined as:

G(sc1, sc2) =

(
Nmatch

Ntot

)q

τ3D (4.4)

where Nmatch and Ntot are the number of matches and the total number of

features with respect to the test scene respectively. The first term Nmatch

Ntot

measures the amount of appearance similarity in terms of the percentage of

feature matches, whereas the second term τ3D is the 3D RCC in Equation (4.2)

that measures the 3D geometrical similarity of the matched feature points. It

functions as geometrical constraint which requires high consistency between
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the ordinal structures of two sets of matching feature landmarks. Here we

name this constraint the 3D ordinal constraint. The parameter q controls

the relative importance attached to the appearance similarity Nmatch

Ntot
and the

geometrical similarity τ3D. In this thesis q is set to 1.

A database of Nref reference images will require Nref pairwise comparisons

with the input test scene, each of which will use Equation (4.4) to compute a

measure of scene similarity. The candidate match, sccand, is the reference scene

that yields the largest Global Scene Correlation Coefficient Gcand. Gcand thus

represents the best match score that is produced by the pairwise comparisons.

A decision threshold Gt is set such that a decision, Df on the test scene

Df =


ACCEPT as positive test scene matching with sccand if Gcand ≥ Gt

REJECT as negative scene if Gcand < Gt

(4.5)

can be made.

4.7 Summary

Now we give a brief summary of this chapter. In this chapter,

firstly, we propose the 3D ordinal space representation which describes the

qualitative structure of a set of landmark points in the scene. This

novel space representation encodes the ordinal ranks of points in two

image dimensions and the depth dimension. Ordinal depth information

encoded in 3D ordinal space representation can be recovered robustly

from the motion cue under camera TBl motion as having been discussed
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in Chapter 3.

Secondly, the invariance properties of entities in the proposed 3D ordinal

space under camera viewpoint change have been well studied. It is found

that information in different dimensions compensates each other for dif-

ferent types of camera movements and in different types of scenes.

Thirdly, we propose the use of rank correlation coefficient - ‘Kendall’s τ ’ in

measuring the global similarity between two sets of points represented in

3D ordinal space. 3D similarity measure τ3D is proposed. We also pro-

pose a weighted version of Kendall’s τ , which gives different importance

to individual point pairs in τ ’s computation. Proper weighting schemes

are developed according to the computational robustness properties and

invariance properties.

Lastly, a new scene recognition strategy has been developed. The strategy

combines the appearance information encoded by local feature descrip-

tors and the geometrical information encoded by 3D ordinal space rep-

resentation. The ordinal structure similarity measure τ3D forms a 3D

ordinal constraint for robust scene recognition. The proposed strategy

also makes use of the human visual saliency (HVS) information while

extracting local features from images. Experiments will be carried out

to test the proposed scene recognition strategy in the next chapter.



Chapter 5

Robust Scene Recognition: the

Experiment

5.1 Experimental Setup1

In order to validate our proposed SRS, four challenging databases, often with

significant image distortions between the test and reference scenes, are created.

They contain image sequences taken from four different environments – in-

door(IND), a sandy shore(UBIN), a tropical rainforest(NS) and a mangrove

forest(SBWR). The sequences were taken with a standard semi-professional

camcorder that was moved with hand to simulate a TBL motion. About one

third of the scenes are chosen to make up the reference database; these scenes

are termed the reference scenes, while the remaining scenes used for testing

are called the test scenes . A summary of the four databases is shown in Ta-

1The work presented in this section was carried out in collaboration with Mr. Ching Lik
Teo [104].
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Table 5.1: The four databases used in the experiments.
Database (Nref , Npos, Nneg) Type
IND (12, 18, 19) Indoor
UBIN (15, 34, 21) Seashore, open
NS (19, 32, 32) Forest, mixed
SBWR (15, 15, 16) Mangrove, enclosed

ble 5.1 where the number of scenes used in each environment is shown as a

triplet (Nref Npos Nneg) which are respectively the number of reference scenes,

positive test scenes and negative test scenes used in the particular database.

All the reference scenes of each database are shown in Figure 5.1, 5.2, 5.3, 5.5.

Each positive test scene corresponds to one reference scene in the database.

Negative test scenes are taken in the same type of environment as the reference

scenes in each database. The full set of images can be downloaded online2.

Some challenging positive test examples from the four databases are shown in

Figure 5.4.

5.1.1 Database IND

This database consists of indoor scenes taken under different lighting con-

ditions. Test scenes are taken under significant viewpoint and illumination

changes from the reference scenes (see Figure 5.1 and Figure 5.4(IND)). This

database verifies the robustness of the proposed scene recognition strategy

against various image distortions due to viewpoint changes and illumination

changes in a structured man-made environment.

2http://www.ece.nus.edu.sg/stfpage/eleclf/robust_SRS.htm

http://www.ece.nus.edu.sg/stfpage/eleclf/robust_SRS.htm
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IND reference database

Figure 5.1: Reference scenes in the IND database.

5.1.2 Database UBIN

This database consists of outdoor images taken predominantly along a sandy

shore and among its sparse coastal vegetation (see Figure 5.2). It is the nesting

habitat of many species of tropical sand-digging wasps where one can see them

executing orientation flights and making foraging trips to and fro their nests

in an unerring manner. The scenes are taken on two different days a month

apart from each other under very different weather conditions. The reference

scenes are taken on a clear sunny day while a portion of the test scenes are

taken under very hazy and dim conditions. Furthermore, the test scenes have

also suffered from significant changes due to natural erosion and the dynamic

nature of a coastal environment. For example, the reference scenes are taken



5.1. Experimental Setup 98

UBIN reference database

Figure 5.2: Reference scenes in the UBIN database.
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NS reference database

Figure 5.3: Reference scenes in the NS database.
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Figure 5.4: Various challenging test (left) and reference scenes (right) of the
four databases, two rows ((t)op,(b)ottom) shown per database. IND: sig-
nificant viewpoint and illumination changes ((t) and (b)), UBIN: clear ver-
sus hazy overcast sky (t) with difference in tide conditions(t), cast shadows
and amount of leaf debris(b), NS: non-uniform illumination changes(t) and
changes in scene content due to rain and tree fall(b), and SBWR: numerous
occlusions due to dense vegetation. See text for a detailed description of each
database.

at low tides while the test scenes are taken at high tides which make this

database challenging (Figure 5.4(UBIN: top)). Human intervention can also

cause scenes taken from similar places to appear very different, e.g., leaf debris

being swept up as well as the addition/removal of man-made objects in the

scene (Figure 5.4(UBIN: bottom)). The skyline is also particularly evident

in such an environment and has been exploited to aid in scene recognition.
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5.1.3 Database NS

This and the next databases contain images with dense foliage and large depth

discontinuities, the kind of images that originally motivate us to develop the

proposed scene recognition scheme. The NS database consists of scenes with

lush green vegetation taken at a primary swamp forest in a nature reserve.

The scenes are varied in structure, from enclosed forests to semi-open clearings

such as streams and ponds (see Figure 5.3). They consist of scenes taken over

three occasions. The first set is taken from the morning till noon time on a

clear day, the second set is taken three weeks later from the period between

the late afternoon and the evening, also on a clear day while the third set is

taken at around noontime on a hazy, cloudy day one week after the second set.

As the first two sets are taken on clear days at very different times, changes

in illumination caused by the movement of the sun are particularly evident.

The effects of shadows and the non-uniform lighting in the environment due

mainly to the foliage can be quite drastic and are particularly challenging

(Figure 5.4(NS: top)). Finally, because of the separation in time between the

three sets of test scenes, changes due to the dynamic nature of the environment

add to the difficulty in recognizing the scenes (Figure 5.4(NS: bottom)).

5.1.4 Database SBWR

In contrast to the ‘openness’ of the UBIN database, SBWR contains rela-

tively complex scenes taken from an enclosed tropical mangrove forest. Due

to the enclosed and dense foliage, there is a much higher percentage of scene

points at near depth, resulting in large depth separation of many point pairs

and the attendant violation of their ordinal relations in x and y as viewpoint
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SBWR reference database

Figure 5.5: Reference scenes in the SBWR database.

changes. Furthermore, as the mangrove environment is dominated by a few

plant species, this database contains many similar-looking vegetation (Figure

5.5). The difficulty in recognition is compounded as the reference scenes are

taken purposely at random points in the mangrove forest, and are thus de-

void of distinct landmarks that would have been used by human observers,

unlike the other two databases of natural scenes. This database tests the pro-

posed scene recognition strategy’s tolerance to such natural scenes with many

occlusions and clutter, common in an enclosed forest.
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5.2 Experimental Results

5.2.1 Recognition Performance and Comparison

We evaluate the overall recognition performance of the proposed SRS in terms

of its positive recognition rate Prec, and negative rejection rate Prej when posi-

tive and negative test scenes from the four databases are presented respectively.

Prec denotes the percentage of positive test scenes that are recognized correctly,

whereas Prej represents the percentage of negative test scenes that are correctly

rejected. Figure 5.6 shows the recognition-rejection curves for our proposed

scene recognition strategy (the outermost red curve in each plot) in the four

databases. The curves are generated while the threshold Gt in Equation (4.5)

changes. It can be seen that our proposed SRS algorithm achieved a consis-

tently high level of performance over all four databases. It also outperforms

the other three methods that we have implemented for comparison. The first

method is that of a simple appearance-based scheme (Figure 5.6, the “SURF

only" curve (in blue)). This scheme is based on the percentage of SURF fea-

ture matches between the test scenes and the reference scenes (G = Nmatch

Ntot
).

It is clear that our proposed SRS outperforms the simple appearance-based

matching method significantly.

We also compare the performance of our proposed SRS with that of an

appearance-based matching method augmented by the epipolar constraint to

remove mismatches (Figure 5.6, the “SURF + epipolar constraint (RANSAC)"

curve (in green)). RANSAC is used to compute the epipolar geometry in a

robust manner. While the epipolar constraint improves the recognition perfor-

mance over the “SURF only" appearance-based method, it is generally inferior

to our proposed method, with the difference in performance much more pro-
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nounced in environments with large depth discontinuities (NS and SBWR).

The third comparison is with the appearance-based matching method aug-

mented with the affine constraint as described in [61] (Figure 5.6, the “SURF +

affine constraint" curve (in black)). We divide the image into 12×8 blocks. In-

side each block, an affine transformation is fitted between the reference block

and the test block. Feature matches which are inconsistent with the affine

model are discarded as mismatches. Figure 5.6 shows that the “SURF + affine

constraint" method is only better than the “SURF only" method, especially

in environments with planar objects where the affine assumption holds (such

as in IND or UBIN). In all four databases, the proposed SRS is shown to

outperform the affine method significantly.

Finally, to demonstrate the ability of the proposed SRS in handling sub-

stantial viewpoint change, natural dynamic scene change or illumination change,

Figure 5.7 and 5.8 depict some specific examples of positive test images suc-

cessfully recognized by the system (Gt is such that Prej is at least 85%).

5.2.2 Component Evaluation and Discussions

This section compares the performance of the different constituent parts of

the proposed SRS so as to understand their contribution to the overall per-

formance. The three curves in each plot of Figure 5.9 respectively show the

result of using the full 3D method with weighting scheme (in which G =

Nmatch

Ntot
×τ3D, τ3D = 1

3
(τxw+τyw+τZw)), that of the 2D method with weighting

scheme (in which G = Nmatch

Ntot
× τ2D, τ2D = 1

2
(τxw + τyw)), and finally that of

the 3D method without weighting scheme (in which G = Nmatch

Ntot
×τ3D, τ3D =

1
3
(τx+τy +τZ)). It can be seen that in general, the 3D method outperforms the
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Figure 5.6: Comparison of the proposed SRS(SURF + 3D ordinal constraint),
the SURF only method, the SURF + Epipolar Constraint (RANSAC) method,
and the SURF + affine constraint method.
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large viewpoint change, large
illumination change

large viewpoint change, large
illumination change

large illumination change large illumination change

large illumination change large illumination change

large viewpoint change large viewpoint change, natural
dynamic scene change

Figure 5.7: Successfully recognized positive test scenes (right image in each
subfigure) and their respective reference matches (left image in each subfig-
ure), despite substantial viewpoint changes, natural dynamic scene changes or
illumination changes.



5.2. Experimental Results 107

natural dynamic scene change large viewpoint change, large
illumination change

large viewpoint change, natural
dynamic scene change large viewpoint change

large viewpoint change large viewpoint change

Figure 5.8: More successfully recognized positive test scenes (right image in
each subfigure) and their respective reference matches (left image in each sub-
figure), despite substantial viewpoint changes, natural dynamic scene changes
or illumination changes.

2D method, with the margin of improvement depending on the type of environ-

ment. In the outdoor forest environment, such as in the NS and especially the

SBWR database, the improvement brought about by the depth dimension is

especially significant. This is due to the presence of the large amount of depth

discontinuities which destroy the 2D configuration of the features once view-

point changes. In the indoor and the coastal environment, where scenes are

mainly made up of large stretches of roughly planar surfaces, the improvement

is not obvious, as 2D geometrical relationship already adequately describes the

scene. Finally, it is also shown that the performance of the proposed SRS is

significantly improved by adopting the proposed weighting scheme discussed
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Figure 5.9: Component evaluation: comparing the 3D weighted scheme, the
2D weighted scheme, and the 3D unweighted scheme over the four databases.

in Section 4.5.2, as not all ordinal relations between feature pairs are equally

reliable.

Next, we demonstrate with specific examples how the RCCs in the different

directions (x, y, and Z) complement each other under different scene types.

Table 5.2 shows the RCC values in the x, y, Z dimensions for two types of

positive test scenes when being matched with their correct references. When

the scene is locally planar or largely fronto-parallel, τxw registers a high value

while τZw is low (examples 1 and 2 in Table 5.2) . On the contrary, when the

scene has large depth variation within a local neighborhood (in-depth scene),

τZw is able to maintain a high value while τxw drops significantly (examples 3
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and 4 in Table 5.2). This complementary nature of τxw and τZw is consistent

with our analysis in Section 4.2 regarding fronto-parallel and in-depth scenes.

It is also noted that τyw maintains high values for both types of scenes. This

is due to the fact that there is very little vertical translation between the dif-

ferent viewpoints in our database (most viewpoints are taken from a standing

position).

positive test scenes
1 2

P = Nmatch

Ntot
0.1408 0.1328

(τxw, τyw, τZw) (0.1978, 0.2283, 0.0139) (0.6190, 0.4533, -0.0761)

positive test scenes
3 4

P = Nmatch

Ntot
0.1807 0.2211

(τxw, τyw, τZw) (-0.0613, 0.2325, 0.3617) (0.0837, 0.1018, 0.2189)

Table 5.2: Rank correlation coefficient in the x, y, and Z dimensions for two
types of scenes. 1 and 2: locally planar or largely fronto-parallel scenes. 3 and
4: in-depth scenes.

Finally, we would like to compare the role played by local appearance

matching and overall geometric configuration. Three positive test examples

are shown in Table 5.3, 5.4, 5.5. These tables show the actual values of Nmatch

Ntot
,

τ3D, and G for the three positive test examples. In these examples, the test

scenes did not have the largest number of feature matches with their correct
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Positive test example 1
Correspondences between ref.(left) and test(right)
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matching with matching with
correct ref. wrong ref.

Nmatch

Ntot
0.1264 < 0.1929

τ3D = 0.2529 > -0.0167
τxw+τyw+τZw

3

G 0.0320 > -0.0032
Nmatch

Ntot
0.0532 < 0.0621

(after RANSAC)

Table 5.3: The comparison between local appearance matching and overall
geometrical consistency: positive test example 1. The top left image pair
represents the correspondences between the test and its correct reference scene;
the middle left image pair represents the correspondences between the test
and the best of the remaining reference scenes (wrong reference scene); the
top right pair and middle right pair represent the correspondences left after
pruning by the epipolar constraint (RANSAC is used); the bottom table shows
the detailed values of Nmatch

Ntot
, τ3D, G, and Nmatch

Ntot
after pruning by the epipolar

constraint (RANSAC).

reference scenes; thus simple appearance-based (“SURF only") method could

not provide the correct scene match no matter what the value of the threshold

Gt in Equation (4.5) is. This lack of feature matches between the test scenes

and their correct reference scenes is due to the significant changes in the im-

age arising from either large viewpoint change ( Table 5.3), large illumination

change ( Table 5.4), or natural dynamic scene change ( Table 5.5). Neverthe-
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less, when the 3D geometrical information is taken into consideration through

the proposed 3D rank correlation, the global scene correlation coefficient G be-

tween the correct pair of images registers the highest value (see the sub-table

in the bottom of Table 5.3, 5.4 and 5.5).

Positive test example 2
Correspondences between ref.(left) and test(right)
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matching with matching with
correct ref. wrong ref.

Nmatch

Ntot
0.1468 < 0.1962

τ3D = 0.3567 > -0.0921
τxw+τyw+τZw

3

G 0.0524 > -0.0181
Nmatch

Ntot
0.0597 > 0.0529

(after RANSAC)

Table 5.4: The comparison between local appearance matching and overall
geometrical consistency: positive test example 2. The top left image pair
represents the correspondences between the test and its correct reference scene;
the middle left image pair represents the correspondences between the test
and the best of the remaining reference scenes (wrong reference scene); the
top right pair and middle right pair represent the correspondences left after
pruning by the epipolar constraint (RANSAC is used); the bottom table shows
the detailed values of Nmatch

Ntot
, τ3D, G, and Nmatch

Ntot
after pruning by the epipolar

constraint (RANSAC).

It is also noteworthy that even when there is quite a number of mismatches

between the test scene and its correct reference scene (Table 5.3, 5.4, 5.5: top

left pair), the 3D RCC (τ3D) still maintains a high value from the correct
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Positive test example 3
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matching with matching with
correct ref. wrong ref.

Nmatch

Ntot
0.1609 < 0.1874

τ3D = 0.3119 > 0.0672
τxw+τyw+τZw

3

G 0.0502 > 0.0126
Nmatch

Ntot
0.0611 < 0.0652

(after RANSAC)

Table 5.5: The comparison between local appearance matching and overall
geometrical consistency: positive test example 3. The top left image pair
represents the correspondences between the test and its correct reference scene;
the middle left image pair represents the correspondences between the test
and the best of the remaining reference scenes (wrong reference scene); the
top right pair and middle right pair represent the correspondences left after
pruning by the epipolar constraint (RANSAC is used); the bottom table shows
the detailed values of Nmatch

Ntot
, τ3D, G, and Nmatch

Ntot
after pruning by the epipolar

constraint (RANSAC).
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feature matches, thus indicating its high degree of robustness against outliers.

In contrast, the last row in the sub-table of Table 5.3, 5.4 and 5.5 clearly shows

that these outliers pose severe problems for methods that employ epipolar

constraint (and generally methods that need to find a transformation). While

the RANSAC-based epipolar constraint manages to disambiguate the second

example (Table 5.4), it cannot successfully handle the first (Table 5.3) and the

third examples (Table 5.5). Even in the second example, our proposed method

produces a bigger difference between the score of the correct scene and those

of the erroneous reference scenes. Clearly the large number of mismatches

has fatally impacted on the ability of RANSAC to find the correct global

minimum (be it the epipolar geometry or the affine transformation). Not

only it cannot eliminate all the outliers between the positive test scene and its

correct reference scene (Table 5.3, 5.4, and 5.5: top right pair in each example),

it also fails to effectively eliminate the mismatches that occur between the test

scene and the erroneous reference scene (Table 5.3, 5.4, and 5.5: middle right

pair in each example). Yet such a large number of outliers is inevitable because

one has to adopt a relatively lenient threshold for the SURF feature matching,

so as to accommodate the potentially big changes between the test and its

correct reference (even relatively small viewpoint and illumination change can

induce significant local appearance change). This situation is excerbated by

the highly similar features present in natural environment (e.g. trees and

foliage), thus generating many feature matches between a test scene (whether

positive or negative) and a non-correct reference scene. In Table 5.6, some

of the negative test examples that have high P = Nmatch

Ntot
value with some

references are shown. However, these feature matches all have low geometrical

consistency, as reflected by the low or negative τ3D values.
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Figure 5.10: Separation of the positive test set and the negative test set in
IND and NS databases (respectively the four rows). Left column: histogram
of the SURF matching percentage (P = Nmatch

Ntot
) for both the positive and

the negative test set. Right column: histogram of the global scene correlation
coeffecient (G) for both the positive and the negative test set. For positive test
scene, P and G are the values between the test scene and its correct reference
scene; for negative test scene, P and G are the biggest values obtained when
the test scene is compared with all the reference scenes.

To demonstrate the increase in discriminating power brought about by

the 3D geometrical information in a more quantitative manner, we plot for

both the positive and negative test set the distribution of the P = Nmatch

Ntot

value (percentage of SURF feature match) in the left column of Figure 5.10

and 5.11, and compare it with the distribution of the G value in the right

column of Figure 5.10 and 5.11. As can be seen from the histograms, there is

a significant degree of overlap in the values of P for the positive (in blue) and
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Figure 5.11: Separation of the positive test set and the negative test set in
UBIN and SBWR databases (respectively the four rows). Left column: his-
togram of the SURF matching percentage (P = Nmatch

Ntot
) for both the positive

and the negative test set. Right column: histogram of the global scene cor-
relation coeffecient (G) for both the positive and the negative test set. For
positive test scene, P and G are the values between the test scene and its
correct reference scene; for negative test scene, P and G are the biggest values
obtained when the test scene is compared with all the reference scenes.

negative (in yellow) test sets, making their separation impossible, whereas for

the measure G, the distribution is in a much more obliging form for separation.

5.3 Summary

In this chapter, we have carried out a number of experiments to evaluate the

performance of the proposed scene recognition strategy. Using 3D ordinal
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constraints allow us to bypass the limitation imposed by global or semi-local

transformation model such as the epipolar constraint or affine constraint; this

is especially relevant in the context of outdoor natural scenes where local

feature descriptors are not very informative and discriminative and the scene

content might change over time. The result is that our scene recognition

algorithm shows good performance on an extensive database of both indoor

and outdoor natural scenes.
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= 0.2069, τ3D = 0.0227, G = 0.0047
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Ntot
= 0.2009, τ3D = 0.0181, G = 0.0036

Table 5.6: Some negative test examples which have high Nmatch

Ntot
value with

some reference scenes. The correspondences and the actual values of Nmatch

Ntot
,

τ3D, G between the test and the reference scene are shown.



Chapter 6

Future Work and Conclusion

6.1 Future Work Directions

Now we sketch some brief proposals of possible future works.

6.1.1 Space Representation: Further Studies

Global vs. Local: The result that ordinal depth resolution decreases as vi-

sual angle increases suggests that accurate ordinal 3D structure recovery

is ensured in small local image neighborhood. If a global space repre-

sentation is desired, how to describe the global links between regions

with locally accurate 3D ordinal structure is an important issue. Such

an issue of mediating between the local and the global could perhaps be

called the glocalization problem.

Ordinal vs. Metric: It was suggested by Cutting [28] that the perceptual

space might be really ordinal and this space converges to a metric space

when the feature points become dense. How to take into account of the

118
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resolution of ordinal structures in the space (as we have discussed in

this thesis) and construct metric information from these ordinal mea-

surements could be interesting future research direction.

6.1.2 Scene Recognition and SLAM

Future work should explore the integration of the proposed scene recognition

strategy to a visual SLAM application on a mobile agent capable of simulating

TBL motion. This will be especially useful for localization in environments

where current navigational technologies (e.g. GPS) remain unusable due to

the thick forest foliage. Furthermore, future work should also focus on how

the reference scenes can be automatically selected. Ideally, reference scenes

should contain certain distinctive and unique features that make them stand

out from the whole database so that place recognition is facilitated. Modeling

how humans organize and choose salient scenes from the database remains a

difficult and open problem. Finally, we hope that our proposed scene recog-

nition system will spur more scene recognition research to focus on outdoor

natural scenes, which remains a challenging problem. The availability of the

online image databases serves this purpose.

6.1.3 Ordinal Distance Information for 3D Object Clas-

sification

Given the work in this thesis which has demonstrated that it is feasible to

exploit 3D qualitative information for performing visual recognition task, one

might be interested in developing other similar schemes and applying them to

other recognition or classification tasks.
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One possible future work could be using the pairwise ordinal distance on

3D objects to perform object classification. Here the ordinal distance could

mean the rank of the distance value between each pair of points on the 3D

object. If we have N feature points on the object, we will have N(N − 1)

distance values to rank. In ordinal multi-dimensional scaling, it is known

that as the number of points is large, an Euclidean model can be embedded

into the set of points of which only ordinal distances among points have been

measured. Such Euclidean model becomes more and more precise as points

become denser [14]. If we consider Cutting’s hypothesis [28] that the human

visual perceptual space is ordinal by its nature, we may suggest that some

high level vision task such as recognition could be carried out based on the

ordinal distances among the feature points in space. In the following, we give

a preliminary test on this possibility using some 3D object models from the

Princeton’s repository of 3D models [94].

We select four models of tables and four models of airplanes from the

repository (Figure 6.1). Our aim is to observe how the ordinal distances among

points on the object may characterize the class of the object (table or plane),

and how the number of feature points may affect such characterization. For

this aim, the models are first aligned manually. We simply sample a number of

vertices from each model. These sampled vertices are uniformly chosen from

all the vertices 1(see Figure 6.2). We order the sampled vertices according to

certain prespecified direction of traversal. The 3D Euclidean distance between

each pair of points on the object is computed. For an object with N sample

1The Computational Geometry Algorithms Library (CGAL) is used.
http://www.cgal.org.
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Table 1 Table 2 Table 3 Table 4

Plane 1 Plane 2 Plane 3 Plane 4

Figure 6.1: Images of models of tables and planes

64 vertices 125 vertices 216 vertices 343 vertices

Figure 6.2: Sampling with different number of vertices.

points, the N(N − 1) distance values are ranked. An N × N rank proximity

matrix is formed with the entry (i, j) denoting the rank of the distance value

between point i and point j (i,j = 1,2, . . . , N).

The rank proximity matrices for the table objects are shown in Figure 6.3

and those for planes are shown in Figure 6.4. It can be seen that matrices

within the same class exhibit similar patterns, whereas the patterns are dif-

ferent between classes. This indicates that the rank proximity matrix carries

object shape information associated with the object class.
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Table 1 Table 2

Table 3 Table 4

Figure 6.3: Rank proximity matrices of table models, computed from 343
sampled vertices.
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Plane 1 Plane 2

Plane 3 Plane 4

Figure 6.4: Rank proximity matrices of plane models, computed from 343
sampled vertices.
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Figure 6.5: Rank proximity matrices with different number of sampled vertices.
Upper row: table class, lower row: plane class. Sample number increases from
left to right (as shown in Figure 6.2).

Another test is carried out to investigate the behavior of the rank proxim-

ity matrices under different number of sampled vertices (see Figure 6.5). It is

shown here that the class pattern becomes more and more unclear as the num-

ber of sampled vertices decreases; however, the topology of the pattern can

still be discerned. This might indicate that the rank proximity matrix still car-

ries the class information under sparse feature points, though the information

becomes weak in the case.

6.2 Conclusion

In this thesis, we have carried out extensive studies focusing on ordinal depth:

from its computational properties from SFM and its robust acquisition from

specific motion cue; to its application in scene recognition. Through these stud-

ies, new theories and techniques have been developed towards understanding

such ordinal/qualitative geometrical information as well as its exploitation in

practical vision systems.
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Firstly, based on the proposed depth distortion model, we have analyzed

the ability of SFM algorithms in judging ordinal depth. Analytic results have

shown that in small image neighborhood, one can get ordinal depth up to cer-

tain resolution. The resolution decreases as the visual angle between the pair

of image points increases. The results imply that a proper space representation

might be non-uniform, with different resolutions varying according to different

sizes of the neighborhoods. Future work can be carried out in developing such

space representations, as we will discuss in more detail in the next section.

Secondly, we analyzed the ordinal depth properties and showed that the

lateral motion is a good strategy for ordinal depth recovery. Based on this

insight, together with the bio-inspired TBL motion, we developed an active

camera control method to acquire robust ordinal depth and use it in our pro-

posed scene recognition system. One feature of our proposed method is that

precise camera control is not required.

Thirdly, we have shown that qualitative spatial information in the two

image dimensions and the depth dimension complement each other in terms

of their stability to camera viewpoint changes and in different types of scenes.

Thus it is crucial to encode the 3D ordinal constraint in our scene recognition

system. Further studies on the invariance properties of various qualitative

geometrical entities might lead us to more robust algorithms for performing

various practical vision tasks.

Fourthly, a scene recognition strategy has been proposed and tested exten-

sively under indoor and outdoor environments. The proposed strategy com-

bines the local feature appearance information together with the 3D ordinal

geometrical information. Results show that our proposed strategy outper-

forms the pure local feature based method as well as methods using global or
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semi-local transformations. Our proposed scene recognition system provides

a successful example of a system subscribing to the purposive and active vi-

sion paradigm. It also demonstrates the feasibility of exploiting 3D qualitative

geometrical information in performing scene recognition.



Appendix A

Acronyms

FOE: Focus of Expansion

FOV: Field of View

RCC: Rank Correlation Coefficient

SFM: Structure from Motion

SRS: Scene Recognition System

TBL: Turn-Back-and-Look

VOD: Valid Ordinal Depth
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Author’s Publications

1. Shimiao Li, Loong-Fah Cheong: Behind the Depth Uncertainty: Re-

solving Ordinal Depth in SFM. European Conference on Computer Vi-

sion (3) 2008: 330-343.

2. Ching Lik Teo, Shimiao Li, Loong-Fah Cheong, Ju Sun: 3D Ordinal

Constraint in Spatial Configuration for Robust Scene Recognition. In-

ternational Conference on Pattern Recognition 2008: 1-5.

3. Loong-Fah Cheong, Shimiao Li: Error Analysis of SFM Under Weak-

Perspective Projection. Asian Conference on Computer Vision (2) 2006:

862-871.

4. Shimiao Li, Loong-Fah Cheong, Ching Lik Teo: 3D Ordinal Geometry

for Scene Recognition Using TBL Motion. submitted to International

Journal of Computer Vision.
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