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SUMMARY 

 

 Dendrobium Chao Praya Smile was induced to flower in a two-layer (a Gelrite-

solidified medium topped with a layer of liquid medium of the same composition and 

volume) medium within 6 months from seed germination using BA. The functionality of 

the in vitro-developed flowers was verified through sporad analysis and pollen grain 

germination tests. The in vitro-developed flowers were able to form seedpods and 

produce viable seeds upon self-pollination. With successful seed production in culture, 

the plantlets could complete a life cycle entirely in vitro in about 11 months, 

approximately one-third of the time in field-grown plants.  

 Histological analysis revealed that floral transition, as indicated by bolting, in D. 

Chao Praya Smile took place 54 days after growing in a BA-containing liquid medium. 

Subsequently, floral buds developed on the plantlets. During floral transition, the 

expression of DCPSknox, a gene involved in maintaining the indeterminacy of shoot 

apical meristem, was found to decrease. In in vitro-developed flowers, segregation of 

colors was observed - 4 types of flowers with different intensities of pink coloration were 

produced. It was possible that color segregation was naturally occurring as it was found 

that BA treatment did not affect the expression of DCPSCHS, a key gene involved in 

anthocyanin biosynthesis, in the plantlets. One-third of the flowers produced in vitro were 

found to be incomplete with missing or defective floral organs.  

 Using HPLC-ESI-MS/MS, changes in cytokinin and IAA contents were analyzed 

in flowering-induced D. Chao Praya Smile at different growth stages as well as in 

different tissues during floral transition. It was found that iPR significantly increased in 

the plantlet and shoot apex at floral transition. Higher cytokinin/IAA ratios were also 



 vii 

observed in the plantlet and shoot apex at floral transition. Hence, we propose that the 

endogenous cytokinin/IAA ratio, and not the absolute amount of cytokinins, which 

determines flowering in D. Chao Praya Smile. The inductive and inhibitory effects of iPR 

and IAA, respectively, on the flowering in D. Chao Praya Smile were also verified. A 

fragment of DCPSCKX, a gene involved in cytokinin homeostasis, was cloned and its 

expression was found to be strongly stimulated by BA treatment. Finally, a model of 

mechanisms underlying the BA-induction of flowering in D. Chao Praya Smile was 

proposed.  
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Chapter 1 

INTRODUCTION 

 Orchids are grown mainly for the beauty of their flowers. The plants have been 

cultivated and marketed globally as potted plants and cut flowers (Winkelmann et al., 

2006). Despite the increasing demand for these plants, it takes years before flowers can 

be produced in orchid plants, due to the presence of a long juvenile vegetative phase 

(Hew and Yong, 1994). For instance, the juvenile phase of Dendrobium hybrids before 

first flowering can range from 3.5 to 7.5 years (Wee, 1971). Therefore, various tissue 

culture methods have been developed to shorten the juvenile phase in orchids, and to 

induce flowering in vitro in order to achieve flowering in a shorter period of time. To 

date, flowering in vitro has been successfully induced in Cymbidium (Kostenyuk et al., 

1999; Chang and Chang, 2003), Dendrobium (de Melo Ferreira et al., Hee et al., 2007; 

Sim et al., 2007; Tee et al., 2008; Wang et al., 2009), Phalaenopsis (Duan and Yazawa, 

1995) and ×Doriella  (Duan and Yazawa, 1994) orchids. Cytokinins, such as BA (6-

benzyladenine) and thidiazuron, were used in the tissue culture methods for flowering 

induction.  

 Even with the successful induction of in vitro flowering in some orchid species, 

the mechanisms underlying the flowering induction process remained elusive. In other 

plant species such as Arabidopsis thaliana, Nicotiana tabacum and Sinapis alba, 

cytokinins have always been suggested and implicated as important factors relating to 

floral transition (Chaudhury et al., 1993; Dewitte et al., 1999; Bernier et al., 2002). In 

these plant species, cytokinin content in the plant would be markedly elevated during 

floral transition (Chaudhury et al., 1993; Dewitte et al., 1999; Bernier et al., 2002). 



 2 

Moreover, cytokinins have been proposed as the mobile physiological signals that trigger 

the initiation of flowering in S. alba upon long-day induction (Bernier et al., 1993). In 

orchids, the physiological importance of cytokinins in flowering was mainly observed in 

field experiments involving foliar spray or injection of cytokinins (Sakai et al., 2000; 

Blanchard and Runkle, 2008). 

 The objective of this project was to investigate the morphological, hormonal and 

genetical changes in the early in vitro flowering in Dendrobium Chao Praya Smile. D. 

Chao Praya Smile was induced to flower in vitro using BA. Viable orchid seeds were 

produced in culture by self-pollinating the in vitro-developed flowers. At different growth 

stages of flowering induction, morphological changes in the shoot apical meristem of D. 

Chao Praya Smile were studied to determine the timing of floral transition in the 

plantlets. The development of the flowers produced in vitro was observed for color 

segregation. The expression of DCPSCHS (anthocyanin biosynthetic gene) was 

investigated in order to find out if BA treatment has caused color segregation in the 

flowers developed in vitro. The in vitro flowering of D. Chao Praya Smile was then used 

as a model system to investigate the changes in cytokinin and indole-3-acetic acid (IAA) 

content as well as the expression of DCPSCKX (gene of cytokinin 

oxidase/dehydrogenase) at various growth stages, especially during floral transition. It 

was hoped that the information obtained from the study will contribute towards greater 

understanding of the involvement of cytokinins, IAA and DCPSCKX in the in vitro 

flowering in D. Chao Praya Smile. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Phase change and flowering  

Plants pass through a series of distinct developmental phases during their growth. 

In higher plants, these developmental phases take place in the shoot apex. The shoot apex 

undergoes three distinct phases during its post-embryonic development: a juvenile 

vegetative phase, an adult vegetative phase and a reproductive phase (Poethig, 1990). The 

transition from juvenile to adult vegetative phase usually occurs gradually and involves 

subtle changes in the morphology and physiology of the shoot apex. On the other hand, 

transition from vegetative to reproductive or flowering could be abrupt and noticeable 

changes would occur at the shoot apex (Poethig, 1990). Flowering transition is a major 

event in the life of a plant because the shoot apical meristem (SAM) will switch from leaf 

production to the initiation of floral organ. Flowering is a process whereby leaf 

development is suppressed and lateral buds differentiate as flowers of flower-bearing 

branches (Poethig, 2003). A combination of environmental, developmental, hormonal 

and genetic factors determines the eventual transition to flowering. To ensure 

reproductive success, flowering transition will only take place when these factors are 

most favorable. Since flowering leads to sexual reproduction, it is of paramount 

importance in agriculture, horticulture and plant breeding. A number of studies have been 

conducted to investigate factors that affect flowering transition in various plant species 

(de Bouillé et al., 1989; Bernier et al., 1993). 

Orchids have been marketed globally as cut flowers and potted flowering plants. 

Like many other flowering plants, a juvenile phase exists in orchids. Flowering and 
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reproduction can only take place when the orchids have reached a certain size, sufficient 

to maintain the energetic demands of flowering and seed production (Lopez and Runkle, 

2005). When the plants have attained the competency to flower, environmental and 

cultural factors can be provided to induce flowering. 

 

2.2 Factors regulating flowering  

2.2.1 Plant growth regulators 

Plant growth regulators could control the entire development of a plant and its 

interactions with external environment (Reski, 2006). Many studies have suggested that 

cytokinins were direct or indirect factors that led to floral transition. They were shown to 

increase progressively in the terminal buds of Pinus pinea from juvenile to adult phase 

(Valdés, et al., 2004), indicating the importance of this plant growth regulator in 

promoting sexual maturation. Similarly, increased endogenous cytokinin levels have also 

been correlated to flowering in Sinapis alba (Bernier et al., 2002). In Arabidopsis 

thaliana, cytokinin levels were found to increase in a mutant that flowered early 

(Chaudhury et al., 1993). Furthermore, early flowering caused by the constitutive 

expression of pea ABA-responsive 17 (ABR17) in Arabidopsis (Srivastava et al., 2006) 

and Brassica napus (Dunfield et al., 2007) was attributed to increased cytokinin levels in 

the plants. 

Cytokinins in SAM were crucial for floral transition. Higher cytokinin levels were 

detected in the apices of B. napus (de Bouillé et al., 1989), Chenopodium rubrum and 

Chenopodium murale (Machácková et al., 1993) during floral transition. After long-day 

(LD) induction of flowering in S. alba, the phloem sap feeding the shoot apex was found 
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to be enriched with isopentenyladenine (iP)-type cytokinins (Lejeune et al., 1994). The 

accumulation of iP in SAM tissue in S. alba during floral transition has also been 

demonstrated by Jacqmard et al. (2002). It was suggested that the increased iP in the 

SAM could be either transported from leaf into the phloem or locally synthesized because 

apical buds were capable of synthesizing cytokinins (Letham, 1994). Plasmodesmata are 

membrane-lined channels that connect higher plant cells to form a functional intercellular 

communication network of symplasm (Robards and Lucas, 1990). It was shown in S. 

alba that the number of plasmodesmata was dramatically increased in the SAM following 

LD induction of flowering (Ormenese et al., 2000). A similar increase in plasmodesmata 

was observed when BA was applied to the plant (Ormenese et al., 2006). Therefore, it 

was suggested that floral transition induced by LD was mediated by cytokinin. Although 

endogenous cytokinins were important for floral transition, exogenous cytokinin 

application did not cause flowering in S. alba, although it stimulated cell division 

(Jacqmard et al., 1998) and transcription of the SaMADS gene (Bonhomme et al., 2000), 

responses similar to those under LD induction. Therefore, it could be concluded that 

endogenous cytokinin mobilization or synthesis was crucial in floral transition in S. alba.  

Plant growth regulators also appeared to be important in the flowering of 

Dendrobium orchids. It was postulated that photoperiod and low temperature that induced 

flowering in Dendrobium orchids could be associated with changes in the concentrations 

of endogenous plant growth regulators (Goh and Arditti, 1985). Furthermore, injection of 

cytokinin into Dendrobium Jaquelyn Thomas “Uniwai Princess” has been shown to 

increase the number of inflorescences (Sakai et al., 2000). Cytokinins have also been 

shown to regulate inflorescence initiation of field grown Doritaenopsis and Phalaenopsis 
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orchids (Blanchard and Runkle, 2008). These orchids could be induced to flower earlier 

with more inflorescences and flowers per plant when treated with foliar sprays containing 

BA. Although BA promoted flowering in the orchids, it could not completely substitute 

for inductive low temperature. Therefore, it was suggested that cytokinins promoted 

flowering in orchids only when the environmental and cultural factors were in favor of 

flowering (Blanchard and Runkle, 2008). 

 It is well known that flowering in Phalaenopsis hybrida requires a period of low 

temperature (Hew and Yong, 1997). When subjected to high temperature, a condition not 

favoring for floral transition, total cytokinins were reduced and glucoside cytokinins were 

accumulated in the leaves of Phalaenopsis orchid (Chou et al., 2000). In contrast, the 

levels of zeatin (Z), zeatin riboside (ZR) and dihydrozeatin (DHZ) were found to increase 

under low temperature (Chou et al., 2000). This result might indicate that cytokinin 

metabolism could be affected by temperature and that free base and cytokinin ribosides 

might be related to floral transition (Chou et al., 2000). Although many studies have 

indicated that cytokinins were important factors in flowering, the effect of cytokinins on 

flowering induction in field-grown orchids was not consistent. BA application to field-

grown Miltoniopsis orchid hybrids was shown to promote the growth of new vegetative 

shoots and reduced the number of plants with inflorescence (Matsumoto, 2006). The 

reduction of flowering could be alleviated by the application of gibberellic acid (GA) in 

the BA treated plants.  

Ascorbic acid-deficient mutants of Arabidopsis were shown to flower early 

irrespective of photoperiod when compared with the wild type (Kotchoni et al., 2009). 

Conversely, flowering was delayed when the ascorbic acid content was artificially 
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increased. The effect of ascorbic acid on flowering could be related to plant growth 

regulator-mediated signaling processes that regulate floral transition because ascorbic 

acid could serve as cofactor for the synthesis of certain plant growth regulators (Barth et 

al., 2006). Strigolactones, which are carotenoid-derived terpenoid lactones, were recently 

suggested to play a role in inflorescence development by regulating axillary bud 

outgrowth (Waldie et al., 2010). 

It was difficult to draw a conclusion on which cytokinins were crucial in floral 

transition because different cytokinins were predominant in different plant species 

(Lejeune et al., 1988). For example, a significant increase in the endogenous 

concentrations of isopentenyladenosine (iPR) was observed in the root and leaf tissues of 

Arabidopsis upon flowering induction using tricontanol (He and Loh, 2002). In addition, 

treating Arabidopsis plant with iPR was sufficient and effective to induce floral bud 

formation (He and Loh, 2002). The finding was in line with Lejeune et al. (1988) who 

reported that the root exudate of LD-induced S. alba was enriched with iPR. These 

findings appeared to indicate that iPR was involved in floral transition.  

The interplay between cytokinins and IAA could be more important than 

cytokinins alone in regulating floral transition. A lower IAA/cytokinins ratio was 

observed at flowering stage in T. recurvata which was caused by the enhancement of 

cytokinins (Mercier and Endres, 1999). Similarly, flowering induction in longan 

(Dimocarpus longan, Lour.) was found to be associated with elevated Z and ZR in the 

buds and simultaneous decrease in the concentration of IAA, thereby creating a high 

cytokinins/IAA ratio at floral transition (Hegele et al., 2008). In vitro flowering of 

Dendrobium Second Love induced by thidiazuron was associated with increased iPR, ZR 
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and IAA in the shoots (de Melo Ferreira et al., 2006), creating a cytokinins/IAA ratio 

close to 1. All these results indicated that it was not cytokinins, but the ratio of cytokinins 

to IAA in the plant that was crucial in promoting floral transition. 

 

2.2.2 Carbohydrates 

Carbohydrates are important nutrients and energy sources in living organisms. 

During plant growth and development, photoassimilates produced in the leaf are 

translocated to different sinks for utilization or accumulation (Geiger, 1987). Sugars 

could help to regulate the timing of developmental phase change from juvenile to 

reproductive phases by ensuring an adequate supply of materials and energy for the 

successful completion of such transition. It was suggested that increased carbohydrate 

levels, especially sucrose, could promote flowering (Gibson, 2005).  

It was shown in Arabidopsis that application of sucrose to the apical part of the 

plant induced flowering in complete darkness (Roldán et al., 1999). In addition, late-

flowering ecotypes flowered with similar number of leaves as early-flowering ecotypes in 

dark when treated with sucrose. It was suggested that rapid dark flowering of the late-

flowering ecotype was the result of sucrose availability at the aerial part of the plant 

(Roldán et al., 1999). By comparing the flowering induction in wild-type Arabidopsis 

and its starchless (pgm) and starch-in-excess (sex1) mutants, Corbesier et al. (1998) 

indicated that an early and transient increase in carbohydrate export from leaves to 

phloem was critical in floral transition. In Spathiphyllum, sucrose concentration was 

significantly decreased in leaves during floral induction, which was speculated to be 

transported from leaves to the SAM (Dewir et al., 2008). In the process of carbohydrate 
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export, sucrose transporter1 (SUT1) was shown to be crucial for efficient phloem loading 

of sucrose in maize leaves (Slewinski et al., 2009). In sut1 mutants, phloem loading was 

impaired and carbohydrates were accumulated in mature leaves, which subsequently led 

to delayed flowering and stunted tassel development. The results therefore indicated that 

phloem loading and sucrose transport were important in regulating floral transition and 

reproductive development.  

Photosynthetic activity increased in Zantedeschia leaves in response to GA-

stimulated flowering (Kozłowska et al., 2007), indicating a higher demand of 

carbohydrate at floral transition. The study of carbohydrate mobilization in the 

pseudobulb of Oncidium orchid has shown that mannan and pectin accumulated in the 

pseudobulb were converted to starch during the emergence of the inflorescence, which 

was subsequently degraded at floral development stage (Wang et al., 2008a). The study 

also suggested that ascorbic acid, which was produced indirectly in the carbohydrate 

metabolic pathway, could solubilize pectin into oligogalacturonides, which could in turn 

function as signaling molecule in flowering induction (Wang et al., 2008a). 

The importance of carbohydrate in promoting flowering was further implicated by 

the involvement of carbohydrate metabolism enzymes during floral transition. Activity of 

glyceraldehyde 3-phosphate dehydrogenase, a key enzyme in glycolysis, was shown to 

fluctuate in shoot apical meristem of Brassica campestris during transition to flowering 

(Orr, 1987). Such phenomenon probably indicated that carbohydrate oxidation was 

involved during the transitional phase (Orr, 1987). In Arabidopsis thaliana, trehalose-6-

phosphate synthase, the enzyme that catalyzes the first step in trehalose synthesis, was 

also found to be essential in floral transition (Van Dijken et al., 2004). Cell wall 
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invertases are hydrolytic enzymes that cleave sucrose into the monosaccharide glucose 

and fructose. Their role in re-directing photoassimilates to storage organs of plants has 

been demonstrated in various species (Weschke et al., 2003). Expression of cell wall 

invertase in the apical meristem of Arabidopsis has been shown to promote early 

flowering (Heyer et al., 2004). The results therefore indicated the role of carbohydrate 

metabolism enzymes in regulating developmental process. 

Although sugar has been suggested to promote floral transition in many plant 

species, high concentration of sucrose (5 %, w/v) was shown to significantly delay 

flowering time in Arabidopsis and increased the number of leaves at time of flowering 

(Ohto et al., 2001). The effect of high concentrations of sucrose on flowering inhibition 

seemed to be metabolic than osmotic and it was suggested that sugar affected floral 

transition by activating or inhibiting genes controlling floral transition. Besides, although 

sucrose and cytokinins were shown to promote flowering in S. alba, they appeared to 

control different events of the floral transition in the SAM because changes caused by 

cytokinin application were different from those produced by extra-sucrose (Bernier et al., 

2002). 

The ratios of carbohydrate to nitrogen (C:N) supplied to the apical meristem could 

be important at floral transition. It was shown in both S. alba and Arabidopsis that the 

C:N ratio of the phloem sap increased markedly after a single LD induction of flowering 

(Corbesier et al., 2002). The importance of appropriate C:N ratio for flowering has also 

been demonstrated in Torenia fournieri (Tanimoto and Harada, 1981) and Pharbitis nil 

(Ishioka  et al., 1991). 
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2.2.3 Genetics 

Several genes have been identified to regulate the transition from juvenile to 

reproductive phase in plants. In Arabidopsis, HASTY was found to lengthen the juvenile 

phase by reducing the competency of the shoot to respond to LEAFY and APETALA1, 

which regulated flowering time (Telfer and Poethig, 1998). In Oryza sativa, plastochron1 

regulated the duration of the vegetative phase by controlling the rate of leaf production in 

the meristem (Itoh et al., 1998). On the other hand, mori1 mutation lengthened the 

juvenile phase by suppressing the induction of the adult phase (Asai et al., 2002). In 

Lycopersicon esculentum Mill., the UNIFLORA gene was found to play a role in the 

regulation of floral transition and maintenance of inflorescence meristem identity (Dielen 

et al., 2001). In Zea mays, the early phase change (epc) gene has been shown to regulate 

shoot development in the juvenile phase, in which epc mutation shortened the duration of 

juvenile vegetative phase and caused early flowering (Vega et al., 2002). Microarray 

analysis of vegetative phase change in maize also showed that genes involved in 

photosynthesis were largely up-regulated during the juvenile phase, suggesting that maize 

plants were primed for energy production in early vegetative growth (Strable et al., 

2008). In Arabidopsis, a Myb-like transcription factor, REGULATOR OF AXILLARY 

MERISTEMS1 (RAX1), has been shown to play a role in the developmental transition 

from vegetative to reproductive phase (Keller et al., 2006). The rax1-2 mutant flowered 

earlier and contained more GA than the wild-type. RAX1 was therefore suggested to 

negatively regulate GA accumulation and inhibit differentiation of SAM. In S. alba, the 

activation of the MADS box gene, SaMADS A, was suggested as an intermediate event in 
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the cytokinin-triggered signal transduction pathway, which was involved in the regulation 

of floral transition (Bonhomme et al., 2000).  

Chromatin conformation controls gene expression both in undifferentiated and 

differentiated cells. It was reported that chromatin remodeling processes were involved in 

the negative control of flowering time genes including FT (Flowering Locus T), SOC1 

(Suppressor of Overexpression of Constant 1) or AGL19 (Agamous-Like 19) during 

vegetative development and their expression upon flowering induction (Jarillo et al., 

2009). 

The knowledge of floral transition in orchids at the genetic level is limited. Yu 

and Goh (2000) showed that genes involved in transcriptional regulation, cell division 

and several other metabolic events were closely associated with the process of floral 

transition in Dendrobium grex Madame Thong-In. In addition, the DOH1 gene, a class 1 

KNOX gene, could interact with MADS box genes and the down-regulation of DOH1 

caused early flowering in the orchid (Yu et al., 2000).  

 

2.2.4 Florigen  

Florigen refers to the flowering signal that can be transmitted from a flowering 

partner (donor) via a graft union to a non-flowering partner (receptor) (Zeevaart, 2008). 

Physiological approaches using photoperiodic species that can be induced to flowering by 

exposure to a single inductive photoperiod have led to the identification of several 

putative florigens such as sucrose, cytokinins, GAs and reduced N-compounds (Corbesier 

and Coupland, 2006). These compounds were found to be translocated from the leaves to 

the SAM in response to exposure to appropriate day lengths. 
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The roles of plant growth regulators and carbohydrates as florigens, or long-

distance signaling molecules, in promoting floral transition have been reviewed (Bernier 

et al., 2002; Suárez-López, 2005; Wilkie et al., 2008; Mutasa-Göttgens and Hedden, 

2009). GA was shown to promote flowering in Arabidopsis through the activation of 

genes encoding the floral integrators SOC1, LFY (LEAFY) and FT (Mutasa-Göttgens 

and Hedden, 2009). The roles of GAs and cytokinins in long-distance signaling are still 

questionable because different plant species respond in different ways to external 

application of GAs. Also, exogenous cytokinins could induce floral transition only when 

the treatment is combined with other factors slightly inductive for flowering (Suárez-

López, 2005).  

Recent progress towards the understanding of regulatory network of flowering in 

Arabidopsis has shown that FT protein is the main, if not the only, component of the 

universal florigen (Zeevaart, 2008). It was reported that CO (CONSTANS) protein 

accumulated in the leaves of Arabidopsis under LD and induced the expression of FT in 

the phloem companion cells. The FT protein was then transported in the sieve tubes to the 

shoot apex, in which it formed a heterodimer with FD (Flowering Locus D) protein. The 

FD/FT complex then activated expression of SOC1 and AP1 (APETALA1) leading to 

floral initiation (Turck et al., 2008). A considerable increase in the number of 

plasmodesmata in the central zone of SAM was observed during floral transition, 

presumably to enhance intercellular exchange of these long-distance and short-distance 

signals (Milyaeva, 2007). 
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2.3 Shoot apical meristem (SAM) at floral transition 

The SAM is a non-differentiated portion of the shoot apex located above the 

youngest leaf primordium. The SAM generates stems, leaves and lateral shoot meristems 

during the entire shoot ontogeny. Plant developmental stages determine morphogenesis 

of the SAM, which affects the identity of primordial produced at its periphery. SAM 

produces vegetative leaves in the vegetative phase. During the reproductive phase, SAM 

produces either bracts subtending lateral flower primordia, or perianth and reproductive 

organs (Kwiatkowska, 2008). SAM is organized into a central zone, a peripheral zone 

and a rib meristem based on cytological characteristics of the cells. The cells of SAM are 

heterotrophic as they do not contain chlorophylls (Fleming, 2006).  

Temporal and spatial changes of growth and geometry take place at the SAM 

during the transition from vegetative to reproductive phase. The meristem growth 

switches from indeterminate to determinate at floral transition and the degree of 

determinacy depends on the floral architecture (Sablowski, 2007). In the vegetative 

phase, the central zone is the slowest growing region. Early during the floral transition, 

the cell division rate increases in this zone (Kwiatkowska, 2008). Simultaneously, the 

number of cells below the central zone increases, suggesting that portions other than the 

central zone contribute to reproductive organ formation. Besides, the sizes of cells in 

different zones change during floral transition. Cells of the central zone, which are larger 

during vegetative phase than cells of peripheral zone, become smaller at floral transition 

while the cells of the rib meristem increase in size (Kwiatkowska, 2008). In addition to 

changes in the growth and cell division rates of the SAM, floral transition is also 

characterized by the re-organization of symplasmic communication between meristem 
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cells in which the number of plasmodesmata dramatically increases (Ormenese et al., 

2000).  

 

2.3.1 Hormonal and genetic regulation of shoot apical meristem (SAM) 

The SAM is made up of undifferentiated cells that undergo cell division and 

differentiation during the course of plant development, undergo cell division and 

differentiation to produce various organs at different development stages. Therefore, cell 

division and differentiation are tightly controlled processes in plant development. Plant 

growth regulators could regulate growth and patterning of SAM. They have been found 

to be distributed heterogeneously across the SAM and this could be linked to the basic 

aspect of meristem behavior (Veit, 2009). It was suggested that high levels of auxin and 

GA were associated with the initiation of outgrowth of lateral organs. In contrast, high 

levels of cytokinin in the central zone could be linked to the maintenance of 

undifferentiated cells for indeterminate growth (Veit, 2009). Cytokinins have been shown 

to play a significant role in SAM function because reducing endogenous cytokinin 

content resulted in reduced meristem size and occasionally, meristem abortion in 

Arabidopsis (Werner et al., 2003). Auxin, on the other hand, might play a key role in 

determining the site of leaf initiation in SAM. Formation of leaf primordia was blocked 

by mutations or chemical treatments that reduced polar auxin transport to the shoot apex, 

which could be overcome by exogenous auxin that induced leaf formation at site of 

application (Reinhardt et al., 2000). Besides, auxin was able to activate ethylene 

dependent responses that limited growth of SAM (Woeste et al., 1999). Brassinosteroids 

were reported to have additive or synergistic effects on auxin responses and could 
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therefore be potentially related to the dynamic behavior of SAM (Belkhadir and Chory, 

2006). Spatial regulation of brassinosteroid activity had been shown to limit plant growth 

and differentiation (Savaldi-Goldstein et al., 2007).  

The interplay between transcription factors has been suggested to determine 

whether the cells within the SAM remain undifferentiated, differentiated into leaves or 

formed secondary meristem, which would subsequently develop into shoots and flowers 

(Long and Benfey, 2006). Among the transcription factors that have been shown to take 

part in the maintenance of SAM, class I KNOTTED1-like homeobox (KNOX) genes were 

proposed as central players in the control of SAM. They ensure the maintenance of SAM 

by repressing the differentiation of cells in the SAM (Hake et al., 2004). KNOX genes, 

such as KNOTTED1 (KN1) in maize and SHOOTMERISTEMLESS (STM) in Arabidopsis, 

were expressed throughout the SAM and down-regulated in the developing leaves 

(Jackson et al., 1994), indicating the importance of these genes in maintaining 

determinacy in SAM. In addition, over-expression of KNAT1, a class 1 KNOX gene, in 

Arabidopsis led to the production of lobe leaves with ectopic meristem (Chuck et al., 

1996). Ectopic expression of KNOX genes in maize also resulted in abnormal cell 

divisions in leaf (Schneeberger et al., 1995). These results indicated that mis-expression 

of KNOX genes was sufficient to induce abnormal cell division and meristem formation.  

The control of cell division and differentiation by KNOX genes probably occur 

through modulation of the hormonal pathway. Over-expression of KNOX in tobacco 

resulted in delayed senescence, a phenomenon similar to plants with increased cytokinin 

levels (Kusaba et al., 1998). Similarly, leaf senescence was delayed and cytokinin levels 
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were elevated in tobacco plants expressing the maize KN1 gene (Ori et al., 1999), 

probably indicating that KNOX genes acted through increasing cytokinin levels.  

Transcription factors have been suggested to co-operate with plant growth 

regulators to balance meristem maintenance and organ production (Shani et al., 2006; 

Long and Benfey, 2006). In Arabidopsis, two types of homeobox genes, KNOX and 

WUSCHEL (WUS), were reported to function in independent and complimentary 

pathways to establish and maintain shoot meristem (Long et al., 1996; Mayer et al., 

1998). More importantly, the two pathways were found to have direct links with 

cytokinins. WUS expressed in SAM was found to repress the type-A RESPONSE 

REGULATOR (ARR) genes (Leibfried et al., 2005), which were primary targets of 

cytokinin signal transduction (To et al., 2004). On the other hand, KNOX proteins 

controlled the balance of cytokinins and GA to establish high cytokinins to GA ratio in 

the SAM, which was essential in maintaining the indeterminacy of SAM (Shani et al., 

2006). To achieve this, KNOX suppressed the GA biosynthetic gene (GA20-ox) and 

activated the cytokinin biosynthetic gene (IPT) (Jasinski et al., 2005; Yanai et al., 2005; 

Sakamoto et al., 2006). Because KNOX expression was restricted in shoot meristem cells, 

this regulation effectively ensured a high cytokinins/GA condition in the SAM. 

Another mechanism that regulated meristem activity, which involved fine-tuning 

of concentrations and spatial distribution of bioactive cytokinins by a cytokinin-activating 

enzyme, was proposed with the isolation of the cytokinin-deficient mutant, lonely guy 

(log), from rice (Kurakawa et al., 2007). The LOG protein was shown to convert inactive 

cytokinin nucleotides directly to bioactive free base with the release of a ribose 5’-

monophosphate. The LOG gene of rice was required to maintain meristem activity and its 
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loss of function caused premature termination of the shoot meristem, reduced panicle 

size, abnormal branching patterns and decreased floral organs (Kurakawa et al., 2007). 

The results thus demonstrated that cytokinins were indeed required in the proliferation of 

undifferentiated meristematic cells in the SAM. It was suggested that the control of 

cytokinin levels by a single and final activation step could provide a powerful system in 

generating a cytokinin gradient which could work as local paracrine signal for the shoot 

meristem function (Kyozuka, 2007).  

It was suggested that the undifferentiated cells in the SAM could autonomously 

produce cytokinins because both KNOX transcription factors and LOG could activate 

cytokinin biosynthesis and were found to be expressed in these meristematic cells 

(Jasinski et al., 2005; Kurakawa et al., 2007). This would be advantageous because it 

could provide a positive reinforcement of the functional identity of the SAM cells by 

generating a high cytokinin environment (Doerner, 2007). In addition, the meristem 

activity could be coupled directly to environmental cues that promoted growth. 

Some novel molecules have also been identified to participate in SAM 

functioning. D class cyclins were shown to play important roles in maintaining cell 

proliferation and coordinating growth in SAM (Dewitte et al., 2007), the activity of 

which could be promoted by cytokinins or sugars (Riou-Khamlichi et al., 2000). MAX 

(more axillary meristems) was shown to suppress the outgrowth of axillary SAMs by 

modifying patterns of auxin transport (Bennett et al., 2006). The expression patterns of 

CYP78A5 class cytochrome p450s in SAM and the abnormal growth phenotypes induced 

by their over-expression in Arabidopsis suggested the role of these molecules in SAM 

regulation (Zondlo and Irish, 1999).  
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2.3.2 KNOX homeobox gene 

Plant homeodomain proteins participate as transcription factors in the regulation 

of a number of developmental processes by activating and/or repressing sets of target 

genes (Chan et al., 1998). KN1 was first identified from a maize mutant that produced 

outgrowth of indeterminate tissue, or “knots” on the leaf (Vollbrecht et al., 1991). It also 

defined the first homeobox gene isolated in plants. KNOX genes can be divided into two 

classes (Kerstetter et al., 1994): Class I genes share sequence similarity with KN1 and are 

expressed in overlapping domains within the SAMs of both monocot and dicot plants. 

Class II genes share lower sequence similarity with KN1 and are expressed in all tissues. 

In Arabidopsis, the KNOX gene family consists of eight KN1 homologues, of which STM, 

BREVIPEDICELLUS (BP), KN1-like in Arabidopsis Thaliana2 (KNAT2) and KNAT6 are 

class I KNOX (KNOXI) genes, while KN3, KN4, KN5 and KN7 are class II KNOX 

(KNOXII) genes (Lincoln et al., 1994; Long et al., 1996). KNOX proteins were proposed 

to belong to the TALE superclass of homeodomain proteins (Burglin, 1997), which were 

capable to interact with a second group of TALE proteins, the BEL1 homeodomain 

(BLH) family (Bellaoui et al., 2001). It was also suggested that different combinations of 

KNOX/BLH transcription factors might regulate different downstream genes. 

KNOXI genes were mainly expressed in the SAM and loss of STM in Arabidopsis 

resulted in defects in SAM development or maintenance (Lincoln et al., 1994; Long et 

al., 1996). They were therefore required for SAM maintenance and establishment of 

shoot architecture. Conversely, transgenic plants over-producing KNOX proteins resulted 

in the formation of ectopic meristems on leaves (Matsuoka et al., 1993). KNOXI genes 

could also be involved in leaf development because failure of down-regulation of its 
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expression in leaf primordia and mature leaves resulted in abnormal leaves (Ori et al., 

2000). It was also shown in Arabidopsis that leaf development required exclusion of 

KNOX expression from leaves because ectopic expression of KNOX caused dramatic 

change in leaf shape (Chuck et al., 1996). There were also evidences indicating the 

involvement of KNOXI genes in defining inflorescence architecture (Douglas et al., 2002; 

Venglat et al., 2002) and lateral root initiation (Dean et al., 2004).  

Various studies have demonstrated the interactions between KNOXI genes and 

plant growth regulators on their coordinated involvement in SAM maintenance and organ 

production. KNOX proteins were suggested to inhibit auxin transport (Tsiantis et al., 

1999), probably indicating a feedback relationship between KNOX protein and auxin. 

KNAT2 was also shown to interact antagonistically with ethylene in the regulation of leaf 

structure and SAM architecture (Hamant et al., 2002). On the other hand, ectopic 

expression of KNOXI genes from rice could increase cytokinin levels in tobacco plants 

(Kusaba et al., 1998). It was also found that KNOXI expression repressed GA activity and 

such interaction was a key component in maintaining SAM (Hay et al., 2002).  

In addition to maintaining the undifferentiated identity of meristem, Helianthus 

tuberosus HtKNOT1 was suggested to play a role in initiating differentiation and/or 

conferring new cell identity because its expression was detected in differentiated floral 

organs such as floral bracts, petals, stamens and carpels (Michelotti et al., 2007). 

Furthermore, its expression was detected in more differentiated flowers in the developing 

ovules and pollen mother cells. It was speculated that HtKNOT1 cooperated with 

additional factors that specifically controlled floral organs and pollen development in H. 

tuberosus (Michelotti et al., 2007). In orchid, DOH1, a class I KNOX gene, was required 
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in floral transition in addition to its role in maintaining plant architecture (Yu et al., 

2000). Transgenic orchid plants expressing antisense mRNA for DOH1 was found to 

produce multiple SAM and caused early flowering (Yu et al., 2000). In contrast to the 

role of KNOX in SAM maintenance, it was found in the moss Physcomitrella patens that 

class I KNOX genes were not involved in SAM maintenance but functioned in sporophyte 

development (Sakakibara et al., 2008). Therefore, it was suggested that the genetic 

networks governing the indeterminate meristem in land plants could be variable.  

 

2.4 Cytokinins and their functions 

Cytokinins are adenine derivatives and can be classified by the configuration of 

their N
6
-side chain as either isoprenoid or aromatic. They are a group of mobile plant 

growth regulators that play crucial roles in plant growth and development. Both 

isoprenoid and aromatic cytokinins are naturally occurring, with the former more 

frequently found and in greater abundance than the latter. Common natural isoprenoid 

cytokinins are trans-zeatin (tZ), isopentenyladenine (iP), dihydrozeatin (DHZ) and cis-

zeatin. Among the four species, tZ and iP are most common in plants (Mok and Mok, 

2001). As for the aromatic cytokinins, ortho-topolin, meta-topolin, their methoxy-

derivatives, and BA are only found in some plant species such as poplar and Arabidopsis 

(Tarkowska et al., 2003). Usually, all natural cytokinin nucleobases have the 

corresponding nucleosides, nucleotides and glycosides.  

Cytokinins are involved in the regulation of apical dominance (Tanaka et al., 

2006), root proliferation (Werner et al., 2001), leaf senescence (Kim et al., 2006), 

phyllotaxis (Giulini et al., 2004), reproductive competence (Ashikari et al., 2005) and 
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nutritional signaling (Takei et al., 2002). More importantly, cytokinins have been shown 

to participate in the maintenance of meristem function (Werner et al., 2003; Kurakawa et 

al., 2007). Tobacco mutants with elevated cytokinin oxidase/dehydrogenase (CKX) 

activity, in which cytokinin degradation was enhanced, showed retarded growth at the 

aerial parts of plants (Werner et al., 2001). The internode length, leaf size and size of 

SAM were also decreased. The observed phenotypes were suggested as the result of the 

reduced rate of cell division, in which cell number decreased while cell size increased. By 

contrast, cytokinins were proposed as negative regulators of cell division in the root 

apical meristem because reducing cytokinins increased the total root mass, which resulted 

from the increased size of the cell division zone in root apical meristem (Werner et al., 

2001).  

Apart from SAM maintenance, cytokinins could regulate carbon fixation, 

assimilation, partitioning of primary metabolites and cell cycle activity, which could all 

determine source or sink strength of the tissues. They were shown to stimulate 

chloroplast biogenesis, chlorophyll synthesis, photosynthetic rate and chloroplast 

development (Kusnetsov et al., 1994; Reski, 1994; Polanská et al., 2007). Various 

transcripts and proteins involved in photosynthetic reactions were shown to be affected 

by cytokinins (Lerbs et al., 1984; Sugiharto et al., 1992). Cytokinins were known to have 

regulatory roles on different cell cycle phases (Dewitte and Murray, 2003), which were 

important in determining sink strength. Werner et al. (2008) demonstrated that the 

capacity of the shoot sink to import and/or utilize carbohydrates was drastically reduced 

in cytokinin-deficient tobacco, which could in turn alter the shoot phenotype. The 

impaired carbohydrate metabolism was associated with reduced activities of invertase 
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enzymes. Cytokinins have been shown to up-regulate the activity of invertase which was 

involved in nutrient mobilization (Ehneβ and Roitsch, 1997). 

The roles of cytokinins in floral transition and reproductive development have 

been investigated through the generation of cytokinin-overproducing (Catterou et al., 

2002) and cytokinin-deficient (Werner et al., 2003) Arabidopsis mutant. The first 

cytokinin-overproducing Arabidopsis mutant, hoc, was capable of auto-regenerating 

shoots without exogenous growth regulators (Catterou et al., 2002). Floral transition was 

delayed in the mutant with increased level of endogenous cytokinins, but the fertility and 

morphology of flowers were not affected.  On the other hand, reduction in endogenous 

cytokinins in cytokinin-deficient mutant was associated with delayed flowering and 

reduced number of flowers (Werner et al., 2003). Morphology and size of flowers of 

cytokinin-deficient mutant were similar to wild-type but the fertility was affected and 

very few seeds were produced.  

 

2.4.1 Biosynthesis, translocation and  perception of cytokinins  

The initial step of cytokinin biosynthesis is catalyzed by adenosine phosphate-

isopentenyltransferase (IPT) to produce iP nucleotides such as iP riboside 5’-triphosphate 

and iP riboside 5’-diphosphate because IPT predominantly uses dimethylallyl 

diphosphate and ATP or ADP as substrates (Kakimoto, 2001). In Arabidopsis, iP 

nucleotides are converted into tZ nucleotides by cytochrome P450 mono-oxygenases, 

encoded by CYP735A1 and CYP735A2 (Takei et al., 2004). To become biologically 

active, iP- and tZ-nucleotides are converted to nucleobase forms through 

dephosphorylation (Chen and Kristopeit, 1981a) and deribosylation (Chen and Kristopeit, 
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1981b). Besides, active cytokinins could be released directly from the nucleotides via the 

reaction catalyzed by cytokinin 5’-monophosphate phosphoribohydrolase (Kurakawa et 

al., 2007). Cytokinins can be inactivated by O-glycosylation at the terminal hydroxyl 

group of the Z-type cytokinins or by N-glycosylation at the N
3
 or N

7
 positions of the 

adenine ring (Sakakibara, 2006). O-glycosylation is reversible and therefore O-

glycosylated cytokinins are regarded as a storage form. The cytokinin ribosides, which 

are also found in abundance in plants, may also be important as stored or transportable 

form (Sakakibara, 2006). By comparing the distribution of cytokinin in Arabidopsis 

plants grown under wind-protected and wind-exposed conditions, Aloni et al. (2005) 

concluded that the bulk of cytokinins was synthesized in the root tips, and exported 

through the xylem to the shoot by transpiration stream.  

Cytokinin biosynthesis was found to be regulated by the spatial expression of 

cytokinin biosynthetic genes IPTs (AtIPTs) in Arabidopsis (Miyawaki et al., 2004). The 

expressions of various genes involved in the synthesis of cytokinins were also found to be 

regulated by plant growth regulators including cytokinins, auxin and abscisic acid 

(ABA). In Arabidopsis, expressions of AtIPT5 and AtIPT7 were promoted by auxin in 

root whereas the expression of AtIPT1, AtIPT3, AtIPT5 and AtIPT7 were negatively 

regulated by cytokinins (Miyawaki et al., 2004). The expressions of CYP735A1 and 

CYP735A2 in roots were up-regulated by cytokinins, but down-regulated by auxin or 

ABA (Takei et al., 2004). On the other hand, CKX, which encodes protein for cytokinin 

degradation, was up-regulated by cytokinins and ABA in maize (Brugiere et al., 2003).  

Translocation of cytokinins was suggested to be mediated by purine permeases 

and nucleoside transporters by sharing the purine and sugar conjugate transport systems, 
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respectively (Bürkle et al., 2003; Hirose et al., 2005). Cedzich et al. (2008) demonstrated 

the presence of both low- and high-affinity transport systems for the uptake of tZ in 

Arabidopsis cell culture. Through the study of kinetic properties and substrate specificity 

of adenine transport, the authors also implied a plant-specific purine permease that played 

a role in adenine transport for scavenging extracellular adenine and possibly in cytokinin 

uptake.  

Cytokinins were perceived and transduced by a two-component signaling system 

(Kakimoto, 2003a). The two-component system consists of two proteins, histidine kinase 

and the response regulator (RR). A model of two-component signal transduction system 

involving type-A Arabidopsis RR and type-B Arabidopsis RR was proposed to elucidate 

the mechanisms of cytokinins in regulating meristem function in Arabidopsis (To et al., 

2008). Cytokinin-mediated nitrogen signaling in maize was suggested to involve Z-type 

cytokinins which triggered the induction of Zea mays RR1 (ZmRR1) in response to 

nitrogen availability (Takei et al., 2001). 

 

2.4.2 Cytokinins as long-distance signals 

In a plant, the shoot and the roots could control each other’s growth by 

exchanging long-distance signals. The most common of these signals were suggested to 

be nutrient or plant growth regulators, which were transported in the xylem and phloem 

sap (Havelange et al., 2000). It has been shown that the amount of cytokinins exported 

from the roots in the xylem sap could determine the degree of shoot branching (Letham, 

1994). In turn, the genotype of the shoot could determine the concentration of cytokinins 

exported from the roots (Beveridge et al., 1997), possibly via a signal originated from 
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shoot. It was found in Pinus seedlings that the shoot-to-root auxin could be stimulated by 

the application of cytokinins to the tap root (Atzmon et al., 1996). Roots experiencing 

stress could also produce and export a chemical signal in the form of plant growth 

regulators to shoot so that growth could be adjusted at adverse conditions (Jackson, 

1997). For example, export of cytokinins from roots to xylem sap increased during water 

stress (Bano et al., 1993). A shoot-to-root-to-shoot physiological loop involving sucrose 

and cytokinins have also been shown in S. alba in the regulation of floral transition 

(Havelange et al., 2000). 

Cytokinins could act as long-distance signaling molecules because they were 

found in the xylem sap (Yong et al., 2000; Kuroha et al., 2002; Kudoyarova et al., 2007). 

The major forms of cytokinins found in the xylem sap were tZ-type cytokinins, such as tZ 

riboside. It therefore appeared that roots were the major site for tZ production and tZ 

riboside could play a role in root-to-shoot acropetal signal. These root-derived signals 

could control the uptake and utilization of assimilates, and biomass distribution in 

response to nitrogen (Sakakibara et al. 2006). Cytokinins were shown to be transported 

across the roots to shoots in maize in response to nitrogen availability (Takei et al., 

2001). Cytokinins were also shown to mediate a signal transduction pathway to 

communicate the nitrogen nutrient status from root-to-shoot via the xylem vessel (Takei 

et al., 2002). This response system could be important for plants to cope with unpredicted 

nitrogen availability in the environment. In contrast to xylem sap, phloem sap was found 

to contain predominantly of iP-type cytokinins (Lejeune et al. 1994; Corbesier et al., 

2003) which might function as basipetal signal. By using S. alba as a model, Kinet et al. 

(1993) suggested that there were shoot-to-root interactions during floral transition and 
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cytokinins played a critical role in this long-distance interaction in the control of 

flowering.  

  

2.4.3 Cytokinins and auxin interactions 

The interaction of cytokinin and auxin was first identified by their ability to 

stimulate cell division when applied to cultured plant cells simultaneously (Miller et al., 

1956). The ratio of cytokinin to auxin was known to determine the type of organs 

regenerated from undifferentiated callus tissue in vitro: high cytokinin to auxin ratio in 

culture media stimulated shoot production, whereas the reverse produced mainly roots 

(Skoog and Miller, 1957). Since then, cytokinin and auxin interactions have been shown 

to take place in several physiological and developmental processes including apical 

dominance, control of cell cycle, lateral root initiation and the regulation of senescence 

(Coenen and Lomax, 1997; Swarup et al., 2002). The interaction could be synergistic, as 

in the case of the regulation of cell cycle, or antagonistic, as in the case of the regulation 

of axillary bud meristems and the formation of the lateral roots.  

The effects of cytokinins on auxin levels appeared to be variable. Exogenous 

application of cytokinins to maize (Bourquin and Pilet, 1990) and pea (Bertell and 

Eliasson, 1992) roots was found to increase the IAA content. Similarly, auxin level 

decreased with increased degradation of cytokinins in Arabidopsis (Werner et al., 2001). 

In contrast, cytokinin was found to have a negative effect on auxin in tobacco, in which 

elevated cytokinin by over-expressing cytokinin biosynthetic gene IPT resulted in lower 

level of IAA (Eklöf et al., 1997).  
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The effect of auxin on cytokinins could be species specific. In tobacco, cytokinin 

levels were reduced in transgenic tobacco that over-produced auxin (Eklöf et al., 1997).  

Auxin increased the breakdown of cytokinins by stimulating CKX, the cytokinin 

degradation enzyme (Zhang et al., 1995). In Arabidopsis, auxin treatment, however, 

increased the expression of cytokinin biosynthesis genes (Miyawaki et al., 2004).  

The interaction between cytokinins and auxin has been shown in some mutant 

studies in which mutation in the metabolism of either plant growth regulator would affect 

the sensitivity of both plant growth regulators. A mutation in the auxin influx carrier, 

aux1, was shown to alter the sensitivity of roots to both cytokinin and auxin (Coenen and 

Lomax, 1997). Similarly, sensitivity to cytokinins and auxin were both affected in polaris 

(pls) mutant that showed defects in root growth (Casson et al., 2002).   

The interactions of cytokinins and auxin have been further studied by 

investigating the overlapping gene expression profiles induced by these two plant growth 

regulators. It was shown that certain genes that were up-regulated upon cytokinin 

treatment were also up-regulated by auxin (Rashotte et al., 2003). However, in a separate 

but similar study using Affimetrix GeneChip, it was found that the majority of the genes 

that were specially induced by cytokinin or auxin were unaffected by the simultaneous 

addition of the second plant growth regulator (Rashotte et al., 2005). The study of 

cytokinin- and auxin-induced gene expression profiles also revealed that the majority of 

the genes under study were regulated independently or in an additive manner. 
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2.4.4 BA and its metabolism 

BA is generally viewed as a synthetic compound. However, BA and its ribosides 

and corresponding nucleotide have been identified as naturally occurring plant products, 

and they formed the major endogenous cytokinin compounds in primary crown gall 

tumor of tomato (Nandi et al., 1989a, b). The detection of BA and its riboside in Pisum 

sativum (Gaudinová et al., 2005) and P. patens (Von Schwartzenberg et al., 2007) further 

indicated that BA was indeed naturally occurring. BA was the most frequently and most 

successfully used cytokinin in micropropagation. Its application has been shown to 

promote chlorophyll retention and formation, increase shoot-to-root ratio, increase 

production of ethylene, lower stomatal resistance, increase leaf expansion and stimulate 

protein synthesis (Van Staden and Couch, 1996). In addition, BA was considered as the 

most active cytokinin in the class of ring-substituted aminopurine (Matsubara, 1990). 

Van Staden (1973) compared the activities of BA, BA riboside and BA nucleotide and 

concluded that BA appeared to be the most active, followed by its ribosides and 

nucleotide.  

It was suggested that plant tissues converted exogenous BA into a great diversity 

of metabolites which included products of ring substitution (ribosides, nucleotides and N-

glucosides), and products of side-chain cleavage (adenine, adenosine and adenosine 5’-

monophosphate) (Letham and Palni, 1983). In Spathiphyllum floribundum, BA uptake 

could be metabolized into BA riboside and BA glucoside (Werbrouck et al., 1995). BA 

and its glucoside were found to be exclusively located in the basal part of the plant while 

BA riboside was located in the basal part, petioles and leaf blade. 
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The uptake and metabolism of BA were studied during shoot organogenesis in 

Petunia leaf explants (Auer et al., 1992). BA was only detected early in the treatment 

before shoot induction period. Instead, BA ribotide formed the major pool of cytokinins 

throughout the shoot induction and organogenesis periods. It was therefore suggested that 

BA ribotide, and not BA itself, was active or acted as a short-term storage form for the 

active cytokinin in petunia shoot organogenesis (Auer et al., 1992). In another study on 

shoot organogenesis of Petunia, exogenously applied BA caused an increase in the 

endogenous cytokinin content, especially the concentrations of iP and iPR (Auer et al., 

1999). Other cytokinins such as Z, ZR and DHZ remained at consistently low levels. The 

activity of CKX also continuously increased upon BA application. These results 

suggested that BA regulated shoot organogenesis in Petunia indirectly by stimulating the 

production of other cytokinins. However, BA was suggested to directly regulate 

morphogenesis in C. rubrum in vitro because no significant changes in endogenous levels 

of isoprenoid cytokinins were observed upon BA application (Balžková et al., 2001).   

 

2.4.5 Cytokinin oxidase/dehydrogenase, CKX (EC 1.5.99.12) 

The biological activity of cytokinins in plants was proposed to be controlled by a 

balance between biosynthesis, interconversion among distinct forms, and transient 

activation by conjugation and catabolic reactions (Sakakibara and Takei, 2002). CKX 

catalyzes the irreversible degradation of cytokinins by N
6
-side-chain cleavage and in 

many plant species is responsible for the majority of metabolic cytokinin inactivation 

(Mok and Mok, 2001). The enzyme was first discovered in the crude extract of cultured 

tobacco tissue (Pačes et al., 1971) and has since been identified in a number of higher 
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plants. The enzyme is a flavin adenine dinucleotide-containing oxidoreductase and has a 

preferred specificity for the substrates iP and its ribosylated form (iPR) yielding adenine 

or adenosine, respectively, and 3-methyl-2-butenal as reaction products (McGaw and 

Horgan, 1983). By contrast, cytokinin nucleotides, O-glucosides and cytokinins with 

saturated side chains are not CKX substrates (Armstrong, 1984). Wheat CKX was found 

to degrade BA at 40-fold less efficiency compared to iPR (Laloue and Fox. 1989). The 

recombinant enzyme AtCKX2 produced in Saccharomyces cerevisiae was also shown to 

react with aromatic cytokinins at a rate of two to three orders lower than using isoprenoid 

cytokinins as substrate (Frébortová et al., 2007). Although CKX displayed low 

degradation activity towards aromatic cytokinins, these cytokinins could induce the 

accumulation of endogenous isoprenoid cytokinins which subsequently became 

substrates of CKX (Kamínek et al., 1997). Exogenous application of cytokinins was 

found to stimulate the level of CKX in tobacco cells (Terrine and Laloue, 1980). 

CKX was suggested to display a dual catalytic mode for cytokinin degradation: a 

low-rate and low-substrate specificity reaction with oxygen as electron acceptor, and a 

high activity and strict specificity for iP and analogous cytokinins with some specific 

electron acceptors (Frébortová et al., 2004). The natural electron acceptor of CKX was 

suggested to be a p-quinone or similar compound. It was found that the enzyme acted as a 

dehydrogenase rather than an oxidase because re-oxidation of the reduced enzyme by 

molecular oxygen was too slow to be of physiological relevance (Frébortová et al., 2004). 

Several potent inhibitors of CKX have been identified, they include N
6
-but-2,3-dienyl-

aminopurine (Suttle and Mornet, 2005), 2-chloro-6-(3-methoxyphenyl)aminopurine and 

2-fluoro-6-(3-methoxyphenyl)aminopurine (Zatloukal et al., 2008).  
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CKX genes have been isolated from maize (Bilyeu et al., 2001), orchids (Yang et 

al., 2003; Wang et al., 2008b), barley and wheat (Galuszka et al., 2004). In Arabidopsis, 

seven distinct CKX-encoding genes have been identified (AtCKX1-AtCKX7) (Werner et 

al., 2001). The predicted proteins are similar in size (~ 60 kD) and have a conserved 

binding site for the cofactor flavin adenine dinucleotide and small highly conserved 

domains possibly involved in substrate recognition and electron transport. In addition, 

individual N-terminal signal peptides indicated different subcellular localizations of the 

AtCKX proteins (Schmülling et al., 2003). The biochemical properties of Arabidopsis 

CKX genes were characterized using transgenic tobacco that over-expressed these genes 

individually (Galuszka et al., 2007). The results showed that Arabidopsis CKXs exhibited 

different activity, pH optima and substrate preferences. It was also suggested that the 

differences between these CKX isoforms could possibly be related to the tertiary 

structures of the enzymes (Galuszka et al., 2007). An overview of Arabidopsis CKX 

gene-expression patterns suggested that the functional specification of the individual 

CKX genes was significantly attributed to their differential regulation by biotic and 

abiotic factors (Werner et al., 2006). Besides, their expression in vascular tissue also 

suggested a function in regulating cytokinin transport.  

CKXs were recently shown to be tightly related to reproduction. Quantitative trait 

loci that increased grain productivity in rice have been identified as OsCKXs (Ashikari et 

al., 2005). Reduced expression of OsCKX2 caused cytokinin accumulation in
 

inflorescence meristems and increased the number of reproductive
 
organs, resulting in 

enhanced grain yield.  
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2.5 Flower development in plant 

The process of flower development is controlled by genes that affect development 

of floral primordial, genes that alter floral symmetry and genes that specify organ identity 

(Schwarz-Sommer et al., 1990). Genetic studies on Arabidopsis indicated that genes 

which regulated cell number in the meristem included CLAVATA (CLV) and WUS while 

genes that affected the number of floral organs included PERIANTH (PAN), ETTIN 

(ETT), WIGGUM (WIG) and SUPERMAN (Weiss et al., 2005). In addition, most of the 

floral homeotic genes that were involved in the establishment of floral organ identity 

were suggested to exert some control over the growth of flowers. Mutation in FLOOZY 

(FZY) gene, which played a major role in floral architecture in petunia produced flowers 

lacking three outer whorls (Tobeňa-Santamaria et al., 2002) which could be due to the 

failure of different primordial to grow.  

Apart from genetic control, plant growth regulator like auxin was suggested to 

play an important role in early flower development (Bennett et al., 1995). Disruption of 

auxin transport by mutation or inhibitors resulted in the production of flowers with 

decreased number of sepals and stamens (Bennett et al., 1995). Although cytokinin 

metabolism was reported to cause the development of abnormal inflorescence in oil 

palms regenerated from tissue culture (Jones et al., 1995), BA was shown to prevent the 

production of deformed flowers in Phalaenopsis orchid when applied on the flowering 

shoots (Chen et al., 1997). Therefore, the effect of cytokinins on floral development 

could be dependent on plant species and the developmental stages of the plant. 
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2.5.1 Control of flower size and color 

The final size of each plant is determined by intrinsic growth rate modulated by 

nutrient availability. It is a modular process that happens throughout the entire lifespan of 

the plant in response to internal developmental patterns and external conditions (Doonan, 

2000). Floral size is one of the traits that play a role in pollination in a number of plant 

species especially when the reproduction of the plant relies on outcrossing with other 

members of the species (Clegg and Durbin, 2003). The control of floral size could be 

separated into two different aspects; one was the control of the number of organs in a 

whorl and the other one in the control of the size of each organ formed within a flower 

(Weiss et al., 2005). Like the rest of the organs in higher organisms, the flower has a 

certain normal size in a species. During floral transition, the SAM produced flowers 

instead of leaves and there were different sets of genes that regulated the cellular 

mechanisms for each developmental step (Weiss et al., 2005).  

The anthocyanin biosynthetic pathway is responsible for the production of 

pigments in plant tissues that give rise to flowers of various colors. The pigments form 

the basis for nearly all pink, red, orange, scarlet, purple, blue and blue-black flower 

colors (Strack and Wray, 1994). The presence of these color pigments makes flower color 

one of the most important characteristics in ornamental plants in view of the fact that 

plant breeding has been directed towards creating new flower colors. The six core 

enzymes involved in this pathway are chalcone synthase (CSH), chalcone-flavanone 

isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), 

anthocyanidin synthase (ANS) and UDP glucose flavonoid 3-oxy-glucosyltransferase 

(UF3GT) (Rausher et al., 1999). Chalcone synthase is a key enzyme in the biosynthesis 
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of anthocyanins because it catalyzes the first committed step of the pathway, which is the 

condensation of three acetate residues from malonyl-CoA with p-coumaroyl-CoA to form 

naringenin chalcone (Springob et al., 2003).  

 

2.5.2 Chalcone synthase, CHS (EC 2.3.1.74) 

Like most of the enzymes in plant secondary metabolism, CHS are encoded by 

small family of genes that originated through duplication over evolutionary time (Durbin 

et al., 2000). This recurrent gene duplication and subsequent differentiation of CHS genes 

were suggested as major adaptive strategies in plant genome evolution. CHS have been 

cloned and characterized from a number of non-orchidaceous plants such as Oryza sativa 

(Shih et al., 2008), Physcomitrella patens (Jiang et al., 2006), Citrus sinensis (Lu et al., 

2009), Saccharum officinarum (Contessotto et al., 2001), Cassia alata (Samappito et al., 

2002) and Psilotum nudum (Yamazaki et al., 2001). The CHS genes identified showed a 

high degree of similarity in their sequence as well as kinetic properties and substrate 

preference (Jiang et al., 2006; Lu et al., 2009). CHS of C. alata was found to accumulate 

predominantly in roots and was therefore suggested to function specifically in the 

biosynthesis of root flavonoids in this Thai medicinal plant (Samappito et al., 2002). P. 

nudum represented a plant with most diverse CHS-superfamily enzymes and it was 

suggested this ability to diversify could provide a survival edge during evolution 

(Yamazaki et al., 2001). Structural analysis revealed that CHS functioned as a 

homodimer of two 42 kD polypeptides (Ferrer et al., 1999). In addition, CHS in rice was 

reported to interact with other enzymes in anthocyanin biosynthesis to form a 

macromolecular complex (Shih et al., 2008).  
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Changes in CHS expression would markedly affect pigment production. A white-

flower mutant of Chinese cabbage-pak-choi was produced by a mutational event in the 

CHS gene (Jiang and Cao, 2008). The unpigmented flower sectors in Petunia hybrida 

‘Red Star’, which exhibited a star-type red and white bicolor pattern, was a result of 

sequence-specific degradation of CHS RNA (Koseki et al., 2005). In view of this, genetic 

transformation of CHS gene has been employed as a tool to modify flower colors in a 

variety of plants. Transformation of antisense CHS gene in purple Eustoma grandiflorum 

produced flowers with colors ranging from small streaks of white to completely white 

(Deroles et al., 1995). It was shown in Torenia fournieri that transformation of CHS gene 

in antisense orientation produced flowers with uniformly light color corolla while 

transformation of the gene in sense orientation produced flowers with whiter tube (Aida 

et al., 2000). The original blue color of Torenia fournieri flowers was also modulated to 

white and pale colors by RNA interference against CHS gene (Fukusaki et al., 2007). 

 Orchid is a large plant family with tremendous variations in flower color. These 

plants could have specific color patterns in the sepals, petals and lips that come in 

blotches, streaks, spots, flushes and shade of different intensity. CHS have been cloned 

from orchids like Bromheadia finlaysoniana (Liew et al., 1998), Dendrobium hybrid 

(Mudalige-Jayawickrama et al., 2005), Phalaenopsis hybrid cv. Formosa rose (Han et al., 

2006) and Oncidium Gower Ramsey (Chiou and Yeh, 2008). Southern-blot analysis of 

orchids indicated the presence of a small multigene CHS family that encoded 

polypeptides of 390 to 394 amino acids with predicted molecular weight of 42 to 43 kD. 

In addition, nucleotide sequence analyses of orchid CHS genes showed 59-68 % 

homology with other plant species (Liew et al., 1998; Han et al., 2006). The expression 
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of CHS in orchids varied from species to species. CHS of B. finlaysoniana was expressed 

in all floral organs whereas CHS of Phalaenopsis hybrida was expressed in petals at early 

flower development and in lip tissue when the flower just opened (Liew et al., 1998; Han 

et al., 2006). Dendrobium CHS was shown to express in floral and vegetative tissues but 

not in pseudobulbs (Mudalige-Jayawickrama et al., 2005). 

 

2.6 In vitro flowering  

The study of in vitro flowering could provide a model system for investigation of 

flower induction and development and a means for conducting microbreeding. In vitro 

flowering has been studied in various orchidaceous and non-orchidaceous plants in which 

cytokinins, alone or coupled with other plant growth regulators, were most prominent to 

induce flowering in vitro.  

 

 2.6.1 In vitro flowering in non-orchidaceous plants 

 Cytokinins have been shown to induce in vitro flowering in Murraya paniculata 

(Jumin and Ahmad, 1999), Pharbitis nil (Galoch et al., 2002), Bambusa edulis (Lin et al., 

2003), Kniphofia leucocephala (Taylor et al., 2005) and rose cv. “First Prize” (Nguyen et 

al., 2006). It was shown in M. paniculata that 95 % of the shoots could be induced to 

flower in vitro using BA and only the flower buds produced by plantlets grown from 

seeds in vitro developed into normal flowers and produced zygotic seeds (Jumin and 

Ahmad, 1999). BA was also found to be more effective than Z and iP to induce in vitro 

flowering in K. leucocephala (Taylor et al., 2005). Auxin, which acted antagonistically 

with cytokinins, could completely nullify the flowering inductive effect of cytokinins in 
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P. nil (Galoch et al., 2002) and bamboo (Lin et al., 2003). Cytokinin was also shown to 

increase the flowering percentage and help in the normal development of floral bud in 

vitro in rose cv. “First Prize” (Nguyen et al., 2006). It was suggested that a high 

cytokinin/auxin ratio was beneficial to induce in vitro flowering in Crocus sativus apart 

from factors such as explants age and culture conditions (Jun et al., 2007). 

 Besides cytokinins, carbohydrates were also shown to promote in vitro flowering 

in some plant species. Sucrose was indispensable for in vitro flowering of Spathiphyllum 

cannifolium in solid culture but high sucrose levels were shown to inhibit flowering 

(Dewir et al., 2006). In addition, sucrose accumulation in the leaves could significantly 

affect the inflorescence size and time to flowering. Carbohydrate was essential for the in 

vitro induction of inflorescence in K. leucocephala in that both the type and concentration 

of sugar influenced the percentage of flowering (Taylor et al., 2007). 

Plant growth regulators other than cytokinins have also been shown to induce 

flowering in vitro. Growth retardants such as paclobutrazol or ethephon could promote in 

vitro flowering in Saposhnikovia divaricata but inhibited flowering and caused the death 

of plantlets at high concentrations (Qiao et al., 2009). Paclobutrazol was shown to 

promote flowering of Euphorbia millii in vitro (Dewir et al., 2007a). GA induction of in 

vitro flowering in S. cannifolium could be stress-related because it was associated with an 

increase in antioxidative enzyme (Dewir et al., 2007b). Silver nitrate and cobalt chloride 

were shown to induce flowering of Capsicum frutescens in vitro (Sharma et al., 2008). It 

was speculated that both chemicals could promote flowering through their roles as 

inhibitors of ethylene biosynthesis and action, respectively.  
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2.6.2 In vitro flowering in orchids 

The Orchidaceae is a large plant family with representatives found in almost all 

parts of the world. It comprises of more than 80 genera with approximately 25,000 

species. Orchid plants generally have a long juvenile phase before they can flower. The 

duration of the juvenile phase in orchids can vary depending on genus, species or hybrid. 

Method to induce in vitro flowering in orchids would have significant impact on the 

orchid industry. A system of early in vitro flowering may allow early assessment of 

certain desired characteristics of the flowers before the clone is mass propagated through 

tissue culture. Furthermore, a method to shorten juvenile phase in orchids could provide a 

model system to study flowering initiation and development. BA represented the most 

promising plant growth regulator to induce in vitro flowering in Cymbidium (Kostenyuk 

et al., 1999; Chang and Chang, 2003), Dendrobium (Hee et al., 2007; Sim et al., 2007; 

Tee et al., 2008), Phalaenopsis (Duan and Yazawa, 1995) and ×Doriella  (Duan and 

Yazawa, 1994), regardless of the starting material of culture. 

 It was reported that BA induced around 40 % of the rhizome-derived shoots of C. 

niveo-marginatum Mak to flowering in vitro (Kostenyuk et al., 1999). The percentage of 

flowering could be markedly increased to nearly 100 % when BA treatment was coupled 

with root excision and a medium of restricted nitrogen supply and phosphorus 

enrichment, although the latter two conditions alone did not induce flowering. In 

addition, GA was found to markedly delay flowering in the Cymbidium under flowering-

promoting conditions. Cytokinins were required for in vitro flowering induction in C. 

ensifolium var. misericors in the presence of naphthalene acetic acid (Chang and Chang, 
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2003). Unlike C. niveo-marginatum Mak, thidiazuron and iP were shown to be more 

effective than BA in flowering induction in C. ensifolium.  

 BA was used to induce in vitro flowering in D. Madame Thong-In in a two-

layered medium (Sim et al., 2007). It was reported that coconut water was required to 

trigger the transitional shoot apical meristem whereas BA enhanced inflorescence stalk 

initiation and flower buds formation in the Dendrobium orchid. Accordingly, the two-

layered medium allowed more than 90 % of flowering in vitro to occur within five 

months from seed germination. The two-layered medium was adopted and successfully 

induced flowering in Dendrobium Chao Praya Smile (Hee et al., 2007). Plantlets of 

Dendrobium Sonia 17 was induced to flower in vitro on half-strength MS solid medium 

supplemented with 20 µM BA (Tee et al., 2008). However, the percentage of flowering 

was low (5 %) on the solid medium.  

Adventitious shoots derived from the nodal sections of floral stalks of 

Phalaenopsis Pink Leopard “Petra” propagated in culture were induced to flowering in 

vitro using BA (Duan and Yazawa, 1995). Flowers produced in vitro were undersized 

and malformed. High concentration of nitrogen was found to inhibit flower development. 

On the other hand, low-temperature treatment, which was required for flowering in field-

grown Phalaenopsis, did not induce flowering in the adventitious shoots, indicating that 

flowering induction in Phalaenopsis in vitro might be different from that in vivo. Floral 

bud formation was initiated in ×Doriella Tiny in medium with BA and appropriate 

content of sucrose and nitrogen (Duan and Yazawa, 1994). Subsequent floral 

development took place in BA-free medium. It was also found that kinetin, iP or coconut 
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water alone was insufficient to induce the formation of floral buds in culture in the 

orchids.  

Certain orchid species have been shown to flower in vitro without supplementing 

plant growth regulators in the culture medium. Oncidium varisocum derived from micro-

inflorescences were shown to flower in vitro after 8-9 months of culture in media 

containing no plant growth regulator (Kerbauy, 1984). In these plantlets, incomplete 

terminal flower was formed at the shoot tip. It was speculated that the origin of the 

explants, kind of light and photoperiod could have triggered the flowering in the orchid 

(Kerbauy, 1984). Seedlings of Psygmorchis pusilla could be induced to form floral spike 

in vitro under LD (20 h) and appropriate temperature on medium without plant growth 

regulator (Vaz et al., 2004). The LD treatment however adversely affected floral bud 

development, inhibited anthesis and reduced flower longevity.  

The objective of the present project is to develop a method to induce early in vitro 

flowering in D. Chao Praya Smile, in view of the fact that the system of in vitro flowering 

could serve as a model for the investigation of flowering induction and flower 

development. Following that, the expression of genes (knox, CHS and CKX) isolated 

from D. Chao Praya Smile will be investigated in relation to flowering in vitro. In 

addition, changes in cytokinins and auxin at different growth stages during floral 

induction, especially at floral transition, in D. Chao Praya Smile will also be studied.   
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Chapter 3 

 

Early In vitro flowering and seed production in culture for Dendrobium Chao Praya 

Smile  

 

3.1 Introduction 

The increase in popularity of orchids in Asia, Europe and the United States has 

led to continued increase in worldwide orchid production (Winkelmann et al., 2006). 

Also, with increasing demand for orchid cut-flowers and potted plants, the need to 

generate new commercial cultivars is constantly expanding. Conventional orchid 

breeding is time consuming, irrespective of the demand for new clones, because orchid 

propagation requires a long period of in vitro culture. Orchid breeding involves 

pollination, seedpod maturation, protocorm development, in vitro growth of seedlings 

and subsequent ex vitro establishment of seedlings. The entire breeding cycle could be 

more than 3 - 5 years depending on the genotypes involved (Kamemoto et al., 1999). For 

instance, it has been shown that breeding Dendrobium hybrids could take up to 5 years 

(Fadelah, 2006). This is primarily due to the long juvenility of these orchids which can 

span up to 30 months. During the juvenile phase, flowering normally does not occur 

under natural conditions (Hew and Yong, 1997). 

To keep in pace with the increasing demand, methods for rapid in vitro 

propagation of orchids have been developed (Nayak et al., 2002; Park et al., 2002; Kuo et 

al., 2005; Martin and Madassery, 2006). To overcome the long juvenile phase of orchid 

cultures, protocols to induce early in vitro flowering have been developed in several 

Dendrobium orchids (Wang et al., 1997; de Melo Ferreira et al., 2006; Sim et al., 2007). 

These early in vitro flowering protocols could shorten the time required for flowering, 

which could be used to get an early indication of floral characteristics. But more 
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importantly, in vitro flowering could be used to fast-track breeding, provided viable seed 

production can be realized with such a system. Production of viable orchid seeds in 

culture following crossing has not been reported to date. The objectives of this chapter 

were: (1) to induce in vitro flowering in D. Chao Praya Smile; (2) to produce seedpods in 

culture with viable seeds by self-pollinating the in vitro-developed flowers; and (3) to 

examine and compare pollen and ovule development in flowers developing in vitro and in 

field. 

 

3.2 Materials and methods 

3.2.1 Plant materials, culture media and culture conditions 

Flowers of D. Chao Praya Smile (Dendrobium Pinky × Dendrobium Kiyomi 

Beauty) were self-pollinated. The seedpods were harvested 120 days after pollination. 

The seeds obtained from the seedpods were germinated aseptically in 90 mm Petri dishes 

with 25 ml of modified Knudson C medium (KC) (Knudson, 1946) supplemented with 2 

% (w/v) sucrose, 15 % (v/v) coconut water and 0.3 % (w/v) Gelrite. All media were 

adjusted to pH 5.3 before autoclaving at 121 ˚C for 20 min. 

Eight-week-old protocorms were transferred to 50 ml of modified KC liquid 

culture medium containing (mg l-1): MgSO4.7H2O (250), KH2PO4 (500), (NH4)2SO4 

(250), Ca(NO3)2.4H2O (500), MnSO4.H2O (5.68) and EDTA-Fe (28) supplemented with 

2 % (w/v) sucrose and 15 % (v/v) coconut water in 100 ml Erlenmeyer flasks on rotary 

shakers at 120 rpm for proliferation. The liquid media were also supplemented with 6-

benzyladenine (BA) at 0 to 22.2 µM. After three rounds of sub-culturing in the liquid 

medium at 3-week intervals, plantlets with 3 to 4 expanded leaves were transferred to 

two-layer (Sim et al., 2007) modified KC medium (containing the same composition as 
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the modified KC liquid culture medium) in Magenta GA7TM containers. The two-layer 

culture media consisted of 50 ml of Gelrite-solidified medium topped with a layer of 

liquid medium of the same volume and composition. All cultures were incubated at 25 ± 

2 ˚C and a 16 h photoperiod of 40 µmol m-2 s-1 from daylight fluorescent lamps. 

 

3.2.2 Effects of coconut water and sucrose on flowering induction 

Protocorms were grown in modified KC liquid media followed by plantlets 

transferring to two-layer modified KC media, both supplemented with 11.1 µM BA and 

varying concentrations of coconut water (CW, 0 – 45 %, v/v) or sucrose (0 – 6 %, w/v). 

Cultures grown in media of varying CW or sucrose concentrations without BA were used 

as controls. The experiments were carried out in triplicates with 20 plantlets in each 

replicate.  

 

3.2.3 Sporad analysis of pollinia 

Pollinia were transferred from in vitro-developed flowers and flowers of field- 

grown plants onto a slide using a pair of fine forceps after removing the operculum. The 

pollinia were mounted in a drop of water and teased apart with a scalpel. One drop of 

acetocarmine (1 %, w/v) was added to the pollen grains and observed under the 

microscope. 

 

3.2.4 Germination of pollen grains in vitro 

Three in vitro-developed flowers that were open for 3 or 4 days were chosen. 

Four halves of pollinia from each flower were transferred, respectively, in a laminar flow 

hood onto 5 ml of solidified modified-Knops’ medium in 35 mm Petri dishes. The 
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modified-Knops’ medium consisted of (mg l-1) H3BO3 (100), Ca(NO3)2.H2O (300), 

MgSO4.7H2O (200), KNO3 (100), sucrose (5 %, w/v) and Gelrite (0.3 %, w/v). 

Observation for germination of pollen grains was carried out after 2, 4, 8 and 12 days of 

incubation at 28 ˚C. For observation under microscope, the germinated pollen grains were 

transferred from the solidified modified-Knops’ medium onto a glass slide with a drop of 

water. The pollen grains were separated with the aid of a needle and a blade. One drop of 

acetocarmine (1 %, w/v) was then added to the pollen grains. For each pollinium, 250 to 

300 pollen grains were examined for germination. 

 

3.2.5 In vitro pollination and seed production in culture 

Plantlets that bore freshly-opened flowers were transferred to fresh two-layer KC 

medium. These in vitro-developed flowers were self-pollinated in a laminar flow hood 

using a pair of forceps. Upon pollination, the plantlets were observed for seedpod 

formation. At 120 days after pollination, the seedpods were harvested and cut open. 

Seeds from these in vitro-developed seedpods were germinated on modified KC medium. 

Plantlets grown from these seeds were further induced to flowering. All statistical 

analyses were carried out using One-Way ANOVA Tukey’s test at 95 % confidence 

level. 

 

3.3 Results 

3.3.1 Inflorescence induction in vitro 

D. Chao Praya Smile was induced to flower within 6 months from seed 

germination using BA in two-layer culture (Fig. 3.1a). The highest percent of flowering  
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Fig. 3.1 In vitro flowering in D. Chao Praya Smile. a) Flowering in D. Chao Praya Smile 
in GA7TM container. Bar = 1 cm. b) Comparison of in vitro flowering and flowering in 
field-grown plant of D. Chao Praya Smile. Bar = 4 cm. 
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(45 %) was induced in plantlets at 11.1 µM BA (Table 3.1). Plantlets grown in BA-free 

medium did not produce inflorescence. Each flowering plantlet produced one 

inflorescence stalk with an average of 3 to 4 flower buds. As for the duration of 

induction, inflorescences were produced earliest at 4 weeks upon transfer to two-layer 

culture at 4.4 and 11.1 µM of BA (Table 3.2), with the highest inflorescence induction 

rate at 11.1 µM of BA after 8 weeks.  It was also observed that both complete and 

incomplete flowers were produced in the plantlets. Complete flowers had all floral 

organs. In incomplete flowers, some of the floral organs were absent. About 50 % of the 

flowering plantlets produced only complete flowers while another 44 % of the flowering 

plantlets produced both complete and incomplete flowers on the same inflorescence 

(Table 3.1). 

 Some plantlets died in the liquid medium containing BA. Plantlet mortality 

increased with increasing BA concentration. Thus about 34 % of the plantlets (n = 100) 

were dead at 22.2 µM of BA after 9 weeks of culture in liquid medium, compared to 5 % 

mortality in BA-free liquid medium. In order to secure more plantlets, they were treated 

with BA only in the two-layer medium. BA treatment at 11.1 µM in two-layer medium 

was sufficient to induce inflorescence production in 42 % of the plantlets (Table 3.3). In 

addition, nearly all inflorescences induced in this late-BA-treatment bore flower buds, 

although the number was lower than those in consecutive BA treatments in both liquid 

and two-layer cultures. To further improve inflorescence induction, morphologically 

normal plantlets in the liquid medium were selected prior to transfer to two-layer 

medium. This screening process increased the inflorescence induction from 45 % to 72 % 

at 11.1 µM BA (Table 3.4). The pre-selection method was useful as none of the 

morphologically abnormal plantlets produced inflorescence. 
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Table 3.1 Inflorescence induction and flower development in D. Chao Praya Smile. 
 

 
 

The plantlets were grown in liquid medium for 9 weeks followed by two-layer medium, 
both of which contained the same concentrations of BA. Scoring of inflorescence 
production and flower bud formation were made at 10 weeks in two-layer culture 
medium when maximum number of flower bud had been formed.  Assessment of flower 
development was made for individual flower bud at bloom. 
#Numbers in the parentheses indicate the number of plantlets with inflorescence stalk. 
†Numbers in parentheses indicate average number of flower bud per inflorescence ± SE. 
Same letters following the parentheses indicate no significant difference among the 
numbers of flower bud (One-Way ANOVA Tukey’s test at 95 % confidence level). 
††Numbers in the parentheses indicate the number of flowering plantlets. 
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Table 3.2 Effects of BA on early inflorescence 
induction in D. Chao Praya Smile. 
 

 
 

The plantlets were grown in liquid medium for 9 weeks followed by two-layer medium, 
both of which contained the same concentrations of BA. Scoring of inflorescence 
production was made at 4 and 8 weeks in the two-layer cultures medium. 
#Numbers in the parentheses indicate the number of plantlets with inflorescence stalk. 
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Table 3.3 Effects of BA on flowering induction in D. Chao Praya Smile. 
 

 
 

Plantlets were grown in BA-free liquid medium for 9 weeks followed by treatment with 
BA of various concentrations in two-layer medium. Scoring of inflorescence production 
and flower bud formation were made at 10 weeks in two-layer medium when maximum 
number of flower bud had been formed. 
#Numbers in the parentheses indicate the number of plantlets with inflorescence stalk. 
†Numbers in parentheses indicate average number of flower bud per inflorescence ± SE. 
Same letters following the parentheses indicate no significant difference among the 
numbers of flower bud (One-Way ANOVA Tukey’s test at 95 % confidence level). 
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Table 3.4 Effects of plantlet selection on the percentage of inflorescence induction in D. 
Chao Praya Smile. 
 

 
 
Selections of 36 morphologically normal and abnormal plantlets, respectively, for each 
treatment were carried out prior to transfer to two-layer medium. 
#Numbers in the parentheses indicate the number of plantlets with inflorescence. 
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The in vitro plantlets were approximately a quarter of the height of the field-

grown plants at flowering and were 40 times lighter in terms of fresh weight (Table 3.5, 

Fig. 3.1b). They produced about the same number of leaves at flowering but the longest 

leaves of in vitro plantlets were 7.5 times shorter than those of field-grown plants. In 

vitro plantlets produced less and smaller flowers than field-grown plants. An average of 4 

flower buds was produced in each in vitro plantlet, with a flower diameter of 2 to 2.5 cm, 

whereas field-grown plants could produce an average of 12 flowers of 4 cm in diameter 

(Table 3.5, Fig. 3.2a and b). Despite the smaller and lower number of flowers produced, 

the flowers produced in vitro could last for up to three weeks after anthesis, compared to 

4 weeks in field-grown plants. The length of stomata on the lower epidermis of leaves of 

the in vitro plantlets and field-grown plants were 30.9 ± 2.0 µm and 38.5 ± 0.4 µm, 

respectively (Fig. 3.2c and 3.2d). Conversely, in vitro plantlets had higher stomatal 

density than field-grown plants, 38 ± 0 and 23 ± 1 per mm2, respectively. 

 

3.3.2 Effects of coconut water and sucrose on flowering induction 

 CW alone, at concentrations of 15 to 45 % (v/v), did not induce flowering in D. 

Chao Praya Smile (Table 3.6). In the presence of 11.1 µM of BA, CW at 15 % (v/v) 

induced the highest percentage of flowering (40 %) in the plantlets without pre-selection 

of plantlets. The percentage of flowering was reduced with increasing CW concentration 

beyond 15 % (v/v) and dropped to 5 % of flowering at 30 % (v/v) of CW. Flowering 

induction was inhibited at 45 % (v/v) of CW. Growth of the plantlets was retarded in 

culture media without CW because their fresh weight, dry weight, plant height, number 

of leaf and leaf size were all reduced, even in the presence of BA (Fig. 3.3, Table 3.7 and 

3.8). On the other hand, the growth of both BA-induced and non-induced plantlets,  
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Table 3.5 Characteristic of field-grown and in vitro D. Chao Praya Smile plants at 
flowering. 
 

 
 

The measurements were made on 10 field-grown plants and 10 in vitro plantlets of D. 
Chao Praya Smile. 
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Fig. 3.2 Comparison of flowers and leaf epidermal peels of D. Chao Praya Smile grown 
in field and in culture. a, b) Flower of field-grown plant and in vitro-developed flower, 
respectively. Bar = 1 cm. c, d) Leaf epidermal peels of D. Chao Praya Smile grown in 
field and in culture, respectively. Bar = 100 µm.  
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Table 3.6 Effects of coconut water (CW) in the culture medium on flowering induction in 
D. Chao Praya Smile. 
 

 
 
Plantlets were grown in liquid medium containing different concentrations of CW with or 
without BA for 9 weeks followed by two-layer medium. Scoring of inflorescence 
production was made at 10 weeks in two-layer medium. 
#Same letters following the numbers indicate no significant difference among the 
percentages of flowering (One-Way ANOVA Tukey’s test at 95 % confidence level). 
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Fig. 3.3 Morphology of D. Chao Praya Smile plantlets after 9 weeks of growth in liquid 
media containing various concentrations of CW with or without BA (11.1 µM). Bar = 1 
cm. 
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Table 3.7 Characteristics of D. Chao Praya Smile plantlets after 9 weeks of growth in BA-free liquid media containing various 
concentrations of CW. 
 

 
 

#Same letters following the numbers of each characteristic indicate no significant difference among the characteristic (One-Way 
ANOVA Tukey’s test at 95 % confidence level). n = 10. 
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Table 3.8 Characteristics of D. Chao Praya Smile plantlets after 9 weeks of growth in liquid media containing various 
concentrations of CW and 11.1 µM of BA. 
 

 
 

#Same letters following the numbers of each characteristic indicate no significant difference among the characteristic (One-Way 
ANOVA Tukey’s test at 95 % confidence level). n = 10. 
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defined by the gain in fresh and dry weight, were enhanced with increasing CW 

concentration. 

Similar to CW, addition of sucrose in the culture medium was not sufficient to 

induce flowering in D. Chao Praya Smile. In the presence of BA, flowering was induced 

at 1 and 2 % (w/v) of sucrose (11.7 ± 4.4 and 36.7 ± 4.4 %, respectively). The plantlets 

thrived well in media without sucrose, in the presence or absence of BA, and contained 

higher fresh weight than those grown in media supplemented with sucrose (Fig. 3.4, 

Table 3.9 and 3.10). In addition, plantlets in media without sucrose appeared greener 

(Fig. 3.4). In contrast, growth of plantlets was retarded with increasing sucrose 

concentration as indicated by the reduction of their fresh weights, plant heights and leaf 

sizes (Fig. 3.4, Table 3.9 and 3.10). Interestingly, water content was the highest in 

plantlets grown in media without sucrose, which was reduced in plantlets grown in 

increasing sucrose concentrations. This was apparent because the dry matter increased in 

plantlets grown in increasing sucrose concentration (Table 3.9 and 3.10).    

 

3.3.3 Pollen and female reproductive organs  

Three in vitro-developed complete flowers produced by plantlets in culture were 

examined for their pollen grains and female reproductive organs, in comparison to 

flowers of field-grown plants. Pollinia derived from the in vitro-developed flowers were 

green and consisted of four halves. They were waxy, 1.8 mm in length and half the 

thickness of the pollinia derived from flowers of field-grown plants (Fig. 3.5a and 3.5b). 

Stigma of the in vitro-developed flower was clear and sticky. Column and ovary of the in 

vitro-developed flower were clearly visible when the flower was dissected along the axis  
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Fig. 3.4 Morphology of D. Chao Praya Smile plantlets after 9 weeks of growth in liquid 
media containing various concentrations of sucrose with or without BA (11.1 µM). Bar = 
1 cm. 
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Table 3.9 Characteristics of D. Chao Praya Smile plantlets after 9 weeks of growth in BA-free liquid media containing various 
concentrations of sucrose. 

 

 
 

#Same letters following the numbers of each characteristic indicate no significant difference among the characteristic (One-Way 
ANOVA Tukey’s test at 95 % confidence level). n = 10. 
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  Table 3.10 Characteristics of D. Chao Praya Smile plantlets after 9 weeks of growth in liquid media containing various 
concentrations of sucrose and 11.1 µM of BA. 

 

 
 

#Same letters following the numbers of each characteristic indicate no significant difference among the characteristic (One-Way 
ANOVA Tukey’s test at 95 % confidence level). n = 10. 
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Fig. 3.5 Comparison of pollinia and female reproductive organs of D. Chao Praya Smile 
grown in field and in culture. a, b) Pollinia derived from flower of field-grown plant and 
in vitro-developed flower, respectively. Bar 1 = mm. c, d) Female reproductive organs in 
flower of field-grown plant and in vitro-developed flower, respectively. col, ov and st 
refer to column, ovary and stigma, respectively. Bar = 5 mm. 
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of symmetry (Fig. 3.5d). These female reproductive organs appeared to be anatomically 

similar to those in flowers of field-grown plants (Fig. 3.5c), albeit smaller. The ovary of 

the in vitro-developed flower was found to be approximately 1cm in length, compared to 

1.5 cm in flowers of field-grown plants. 

 

3.3.4 Sporad analysis germination of pollen grains 

Observation on the pollen grains derived from in vitro-developed flowers showed 

65 % normal tetrad and 35 % triad (Table 3.11). This was similarly observed in the pollen 

grains derived from flowers of field-grown plants in which 79 % of the sporads were 

tetrads. The tetrad pollen grains derived from both in vitro-developed flowers and flowers 

of field-grown plants were about 30-40 µm long (Fig. 3.6a and 3.6b). Monad and dyad, 

which resulted from irregular meiosis, were not observed in both cases. The pollen grains 

derived from in vitro-developed flowers and flowers of field-grown plants germinated on 

modified-Knops’ medium after 2 days of incubation. After 8 days of incubation, 18.2 % 

and 52.8 % of pollen grains derived from in vitro-developed flowers and flowers of field-

grown plants, respectively, germinated (Table 3.11, Fig. 3.6c). 

 

3.3.5 Seed production in culture 

Three out of four in vitro pollinations were successful and led to seedpod 

development (Fig. 3.7a). At the time of maturation, the seedpods were 1.5-1.8 cm in 

length, compared to 2.7-3.0 cm of the seedpods developed in field-grown plants (Fig. 

3.7b and 3.7c). The seedpods developed in vitro were harvested 120 days after pollination 

when they turned slightly yellowish. These seedpods contained yellowish and dust-like  
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Table 3.11 Sporad formation and in vitro germination of pollen grains derived from flowers of field-grown plants and in vitro-
developed flowers. 

 

 
 

 
 
 
 
 
 
 
 



 66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3.6 Sporads and in vitro pollen grain germination. a, b) Sporads derived from flower 
of field-grown plant and in vitro-developed flower, respectively. tet and tri refer to tetrad 
and triad, respectively. Bar = 30 µm. c) Germination of pollen grains derived from in 

vitro-developed flower on modified-Knops’ medium. pt refers to pollen tube. Bar = 30 
µm. 
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Fig. 3.7 Seedpod development and seed production in culture. a) Formation of seedpod in 
a plantlet upon self-pollination of an in vitro-developed flower. Bar = 1 cm. b, c) 
Seedpods developed in field and in culture, respectively. Bar = 1 cm. d, e) Seeds 
produced by field-grown plant and plantlet in culture, respectively. Bar = 1 mm. 
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seeds. The seeds were 428 ± 10 µm in length, shorter than those obtained from seedpods 

developed in field (684 ± 13 µm; Fig. 3.7d and 3.7e). The seeds produced in the in vitro- 

developed seedpods were fertile with more than 90 % developing into protocorms on 

modified KC agar medium after 8 weeks. Each in vitro-developed seedpod produced 500 

to 1000 plantlets. These plantlets produced inflorescences upon induction using BA as 

described earlier (section 3.2.1). 

 

3.4 Discussion 

Reproduction is an important stage of plant development. In orchids, sexual 

reproduction can be effected through flowering resulting in the production of seedpod 

and seeds (Hew and Yong, 1997). In this study, D. Chao Praya Smile was shown to 

flower and produce seeds in culture (Fig. 3.1, Fig. 3.7). Optimal BA concentration was 

required to induce maximum inflorescence production in the plantlets (Table 3.1). The 

two-layer culture system was adopted in D. Chao Praya Smile because it was reported to 

promote normal development of flower buds in orchid (Sim et al., 2007). In these 

experiments, it was observed that plantlets of D. Chao Praya Smile were unable to 

produce inflorescence when they were cultured on Gelrite-solidified medium. 

 Plantlets of D. Chao Praya Smile produced complete and incomplete flowers 

concurrently in culture (Table 3.1). As the aim of this study was to produce seeds in 

culture, the production of complete flowers that resembled the flowers of field-grown 

plants was desired. BA was required for normal development of floral buds in roses 

(Nguyen et al., 2006), which possibly regulated floral development through genes 

controlling shoot apical meristem activity (Lindsay et al., 2006). On the other hand, less 
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flowers were produced in the in vitro plantlets compared to field-grown plants. This 

could be due to the smaller size of in vitro plantlets as the number of flowers produced 

could be affected by plant size (Sletvold, 2002). However, considering the fresh weight 

of the in vitro plantlets (Table 3.5), they actually produced 6 flowers g-1 FW compared to 

1 flower g-1 FW in the field-grown plants. Moreover, the in vitro plantlets produced 

flowers with diameters similar in value to their shoot heights, compared to flowers of 

field-grown plants which had an average diameter approximately one-third of the shoot 

height (Fig 3.1b, Table 3.5). Thus, the in vitro plantlets seemed to have produced 

relatively more and larger flowers than the field-grown plants despite their smaller size. 

Despite the production of a lower number of flowers in the in vitro plantlets, breeding 

success would not be hindered because numerous seeds could be produced in one 

seedpod and would be sufficient for breeding purpose.  In this study, plantlets with 

abnormal leaf arrangement or non-expanding leaves were not selected for inflorescence 

induction. These abnormal plantlets could not produce any inflorescence upon BA 

treatment (Table 3.4). Morphological abnormalities in the plantlets could be the result of 

cytokinin activity because cytokinins have been reported to affect the morphogenesis of 

early seedlings (Nikolić et al., 2006). Selection of morphologically normal plantlets for 

BA treatment would therefore ensure a higher percentage of inflorescence induction. 

CW is the semi-clear liquid endosperm obtained from immature coconuts. It has 

been widely used in plant tissue culture, dueto its unique composition of sugars, vitamins, 

minerals, proteins, amino acids and growth-promoting factors (Arditti and Ernst, 1993). 

However, the precise composition of growth-promoting factors which makes CW an 

efficient nutrient medium remains unknown. The results of this study showed that CW 
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was essential to promote growth D. Chao Praya Smile, without which growth was 

severely stunted (Fig. 3.3, Table 3.7, Table 3.8). Using various sensitive analytical 

methods, cytokinins including iP, DHZ, Z, kinetin, ortho-topolin, DHZ-O-glucoside, Z-

O-glucoside, ZR and kinetin riboside, and other plant growth regulators such as IAA and 

abscisic acid have been identified in CW (Ge et al., 2004; Ge et al., 2005; Ge et al., 2006; 

Ma et al., 2008). Even with such a rich content containing cytokinins and other plant 

growth regulators, CW could not induce flowering in the absence of BA, indicating the 

central role of BA in flowering induction. There is no report of the identification of BA in 

CW and it was suggested that cytokinin compositions in CW could vary depending on the 

origins of the coconuts (Ma et al., 2008). It seems that there is an optimal concentration 

of CW for flowering induction, probably due to the presence of other plant growth 

regulators, such as IAA, in CW which could antagonize the effect of BA. 

Sucrose is commonly used in tissue culture as the carbon source for plant growth. 

Flowering can only take place when there is an adequate supply of sugar to meet the 

energy demand of flowering process. Therefore, increased sugar supply, especially 

sucrose, was suggested to promote flowering (Gibson, 2005). Sucrose has also been 

shown to play a role in the flowering of orchids (Chen et al., 1994). Similar to CW, 

sucrose did not induce flowering in the absence of BA. Besides, flowering did not occur 

in media with BA but containing no sucrose, despite normal growth of plantlets (Fig. 3.4, 

Table 3.9, Table 3.10). Therefore, sucrose was required for flowering but its role was 

secondary to BA. Although sucrose was required for flowering induction, its 

concentration beyond 2 % (w/v) completely inhibited flowering. A similar effect of 

sucrose on flowering was observed in Arabidopsis in which application of the sucrose to 
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apical part of the plant induced flowering (Roldán et al., 1999) but a high concentration 

of sucrose (5 %, w/v) significantly delayed flowering time (Ohto et al., 2001). Sucrose at 

high concentrations adversely affected the growth of D. Chao Praya Smile plantlets, 

which could also be a reason for flowering inhibition. 

 Morphology of pollens and female organs could be correlated to breeding and 

hybridization success (Fratini et al., 2006). Morphological and anatomical examination of 

the pollinia and female organs of in vitro-developed flowers revealed that they were 

similar to flowers of field-grown plants (Fig. 3.5) and were therefore probably functional. 

In the female organs, the column connects stigma to ovary and allows the growth of 

pollen tubes towards the ovule during fertilization. Thus, the production of normal 

flowers with functional reproductive organs is imperative for successful breeding 

attempts using in vitro flowering technology. 

 Pollen quality of the in vitro-developed flowers was assessed by sporad analysis 

and in vitro pollen grain germination because it also determines the breeding success of 

the species. Meiotic behavior and sporads formation have been studied in orchids in 

relation to their fertility (Lee, 1987; Lee, 1988; McConnell and Kamemoto, 1993; Lee, 

1994). In orchid microsporogenesis, regular meiosis results in four microspores grouped 

together, called a tetrad. When meiosis is irregular, polyploid spores in the form of 

monads, dyads or triads will be formed. Pollination of polyploid gametes could result in 

the formation of sexually sub-fertile or infertile progenies (Teoh, 1984). Therefore, a high 

percentage of tetrad formation in the pollen grains derived from in vitro-developed flower 

indicated regular meiosis and pollen fertility of in vitro plantlets. In vitro pollen grain 

germination is regarded as a reliable test of fertility with the assumption that pollen grains 
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capable of germination would be fertile pollen grains (Montaner et al., 2003). However, 

the rate of pollen grain germination in vitro largely depends on the optimization of the 

medium (Heslop-Harrison et al., 1984) and this factor has to be taken into consideration 

while counting germination as an indication of pollen quality. In the present study, 

modified-Knops’ medium promoted the germination of the pollen grains derived from in 

vitro-developed flowers and flowers of field-grown plants (Table 3.11, Fig. 3.6) but 

germination of pollen grains on this medium was slow and the maximum germination 

was observed after 8 days of incubation (Table 3.11). However, the percentage of 

germination of the pollen grains derived from in vitro-developed flowers was lower than 

that derived from flowers of field-grown plants on this medium (Table 3.11). 

 In this study, it was shown that D. Chao Praya Smile could be induced to flower 

early and to produce seeds in culture. In vitro fruit development and fertile seed 

production have been reported in Lycopersicon esculentum (Rao et al., 2005) and Pisum 

sativum L. (Franklin et al., 2000). Despite the low percentage of germination of the 

pollen grains derived from in vitro-developed flowers, pollination of in vitro-developed 

flowers and subsequent seedpod formation produced a large number of seeds sufficient 

for breeding purposes. In the present protocol, the process from seed germination to 

production of the next generation seeds in culture was shortened from over 35 months to 

only about 11 months (Fig. 3.8). The method of seed production in culture would have 

produced 6 generations of progenies with the time that is required for 2 generations in 

conventional orchid breeding (Fig. 3.8). Therefore, seed production in culture would have 

tremendous application in orchid breeding in view of the fact that viable seed production 

is crucial in producing homozygous plants and new hybrids. The breeding period would  
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Fig. 3.8 Comparison of durations between conventional orchid breeding and method of 
seed production in culture. 
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be shortened by using the technology of seed production in culture which would in turn 

significantly decrease the cost of producing new orchid hybrids. 

 

3.5 Concluding remarks 

In this study, D. Chao Praya Smile was successfully induced to flower using BA 

in a two-layer medium within 6 months from seed germination. The percentage of 

flowering could be increased to more than 70 % with careful selection of 

morphologically normal plantlets prior to transfer to the two-layer medium. BA was 

essential in the flowering induction in D. Chao Praya Smile as CW or sucrose alone 

failed to induce flowering in the absence of BA. Despite the smaller and lower number of 

flowers produced in the in vitro plantlets as compared to the field-grown plants, 

morphological examination, sporad analysis and pollen grain germination tests revealed 

that the in vitro-developed flowers were functional and were able to produce viable seeds 

upon self pollination. Indeed, seeds were successfully produced in culture upon self-

pollination of in vitro-developed flowers. Thus, the entire breeding cycle from seed 

germination to next generation seed production could be shortened to 11 months, which 

was shorter than one-third of the time required for breeding in field-grown plants. This 

method of early in vitro flowering and seed production in culture would undoubtedly 

benefit the orchid industry especially the orchid breeding and hybridization programs.   
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Chapter 4 

 

Morphological changes in Dendrobium Chao Praya Smile during induction of 

flowering and development of in vitro flowers 

 

4.1 Introduction 

Plants produce different types of organs at different times during the course of 

development. The identity and morphology of the organs produced at a particular 

position on the shoot is determined by interactions between independently regulated and 

temporally coordinated processes (Poethig, 2003). It was suggested that in various 

species, the juvenile and adult phases of development could be morphologically 

distinguished by certain characteristics such as their phyllotaxis, leaf retention, growth 

habit of lateral branches, thorniness and adventitious root production (Poethig, 1990). For 

example, leaves produced at the juvenile phase are usually smaller and simpler in 

structure than those produced at adult phase. Therefore, one could investigate the 

morphogenetic switch in a higher plant through observation of morphological changes 

along plant development from juvenile, adult to flowering phases. All organs of upper-

ground part in a plant are derived from the apical meristem. Therefore, histological 

analysis of the shoot apex could accurately determine the temporal sequence of each 

developmental phase, especially the floral transition which would be associated with 

more abrupt changes at the shoot apical meristem (SAM) (Kwiatkowska, 2008). 

Segregation of flower colors is common in orchid progenies produced through 

orchid breeding (Kamemoto et al., 1999), which represents a way to produce new orchid 

hybrids. Moreover, each seed derived from a single seedpod could have different genetic 

makeup and therefore different flower traits. In view of this, early in vitro flowering of 
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orchids could serve as a system for an early assessment of the desired characteristics of 

the flowers before the clone is mass-propagated through tissue culture. Up to this date, 

segregation of flower colors in vitro has only been observed in Dendrobium Madame 

Thong-In (Sim et al., 2007). However, it was not known whether color segregation 

observed in the in vitro-developed flowers was the consequence of cytokinin treatment 

incorporated in the culture medium or that it was naturally occurring. The objectives of 

this chapter were: (1) to observe the morphological changes of D. Chao Praya Smile 

cultures and shoot apex during the course of flowering induction; (2) to investigate the 

expression of D. Chao Praya Smile knox (DCPSknox) gene in the plantlets in relation to 

flowering induction; (3) to examine the development and color segregation in flowers 

developed in vitro; and (4) to clone and analyze the expression of D. Chao Praya Smile 

chalcone synthase (DCPSCHS) gene in D. Chao Praya Smile plantlets. 

 

4.2 Materials and methods 

4.2.1 Plant materials, culture media and culture conditions 

Flowers of D. Chao Praya Smile were self-pollinated and the seeds obtained from 

the seedpods were germinated aseptically in 90 mm Petri dishes with 25 ml of modified 

Knudson C medium (KC) (Knudson, 1946) supplemented with 2 % (w/v) sucrose, 15 % 

(v/v) CW and 0.3 % (w/v) Gelrite. All media were adjusted to pH 5.3 before autoclaving 

at 121 ˚C for 20 min. Eight weeks later, the protocorms were transferred to 50 ml of 

modified KC (Knudson, 1946) liquid culture medium supplemented with 2 % (w/v) 

sucrose and 15 % (v/v) CW in 100 ml Erlenmeyer flasks on rotary shakers at 120 rpm for 

proliferation. The liquid media were also supplemented with BA at 0, 4.4, 11.1 or 22.2 
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µM. Plantlets were sub-cultured in liquid medium on day 20 and 38. Subsequently, the 

plantlets were transferred to two-layer modified KC medium in Magenta GA7TM 

containers on day 54. All cultures were incubated at 25 ± 2 ˚C and a 16 h photoperiod of 

40 µmol m-2 s-1 from daylight fluorescent lamps. 

 

4.2.2 Histological analysis 

Apices of non-induced and BA-induced (11.1 µM) plantlets harvested 0, 20 38, 

54 and 80 days after culture were fixed in 2 % (v/v) paraformaldehyde and 0.5 % (v/v) 

glutaraldehyde in phosphate buffer saline (PBS, containing 135 mM NaCl, 2.7 mM KCl, 

1.5 mM KH2PO4 and 8 mM K2HPO4, pH 7.2) under vacuum for 30 min and then at 4 °C 

overnight. The samples were then dehydrated in an ethanol series (60, 70, 85, 100 %, v/v) 

and embedded in paraffin wax. Transverse sections of 10 µm were cut with a rotary 

retracting microtome (Model 5030, Bright, Huntingdon, England) and stained with 

toluidine blue-O. Sections were observed under Olympus BH-2 light microscope and 

images were taken using an Olympus digital camera C-5050.  

 

4.2.3 Morphological measurement 

  Morphological measurements were carried out on sections observed under 

Olympus BH-2 light microscope. Height of the SAM (h1) and stem axis (h2) were 

measured in the apex median longitudinal sections from the top of the SAM to, 

respectively, the base of the rib meristem, or the insertion level of the youngest expanded 

leaves on the stem (Fig. 4.1). SAM width (w) was the distance separating the outer border 

of the peripheral zone (Fig. 4.1). Measurements were carried out in triplicates.  



 78 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.1 Median longitudinal section through the apex of a D. Chao Praya Smile plantlet. 
Section was stained with toluidine blue-O. h1, h2 and w refer to height of the SAM, height 
of the stem axis and width of the SAM, respectively. Height of the SAM and the stem 
axis were measured in the apex median longitudinal section from the top of the SAM to, 
respectively, the base of the rib meristem (as indicated by solid vertical arrow), or the 
insertion level of expanded leaves on the stem (as indicated by broken vertical arrow). 
Measurement of w was indicated by solid horizontal arrow.  Bar = 1 µm. 
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4.2.4 Analysis of development and color segregation of in-vitro developed flowers 

Sixty flower buds produced in vitro in 60 individual plantlets grown from seeds 

derived from a seedpod were randomly selected. At anthesis, the flowers were analyzed 

for their overall morphology and the development of sepals, petals, lip and reproductive 

organs. For the developmentally complete flowers, color intensity and patterns were 

determined in the lip, petals and sepals.  

 

4.2.5 Cloning of D. Chao Praya Smile knox (DCPSknox) and CHS (DCPSCHS) 

genes 

RNA from shoot apices of BA-induced plantlets was isolated using the Plant 

RNeasy extraction kit (Qiagen, Hielden, Germany), followed by cDNA synthesis from 1 

µg of total RNA using random hexamers and ThermoScriptTM Reverse Transcriptase 

(Invitrogen). One twentieth volume of each cDNA was used as a template for PCR 

amplification using the following primers for target genes: DCPSknox: 5’-

GGACCTTACGTCTCCGATGA-3’ (forward), 5’-TTGATCTAGCCCTGTTGCCT-3’ 

(reverse); DCPSCHS: 5’-CTCGTCTCAGCTTCCCAGAC-3’ (forward), 5’-

TATTCCCATACTCCGCAAGC-3’ (reverse). The PCR products were isolated from 1 % 

agarose gels following electrophoresis and cloned into pGEM-T Easy (Promega, 

Madison, WI) and sequenced. Nucleotides sequences were analyzed using a BigDyeTM 

Terminator Cycle Sequencing Ready Reaction Kit and an ABI 3730xl DNA Analyzer 

(Applied Biosystems, Foster City, CA, USA). Nucleotide and amino acid sequence 

alignments were generated using Clustal W (Thompson et al., 1994).  
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4.2.6 Gene expression analysis by semi-quantitative RT-PCR 

Total RNA was isolated using the Plant RNeasy extraction kit (Qiagen, Hielden, 

Germany). For time course analyses of DCPSknox expression, non-induced and BA-

induced (11.1 µM) cultures were harvested 0, 20, 38, 54 and 80 days after culture and 

total RNA was extracted. For tissue-specific DCPSknox expression analysis, total RNA 

was isolated from shoot apices (sa), leaves (l), stems and leaf bases (s + lb) and stem 

bases (sb) from non-induced and BA-induced plantlets 54 days after culture (Fig. 4.2). 

Total RNA was also isolated from the roots of non-induced plantlets. For analysis of 

DCPSCHS expression, total RNA was extracted from five non-induced and five BA-

induced (11.1µM) plantlets 54 days after culture.  The total RNA extracted was reverse-

transcribed for RT-PCR using the same sets of primers for the cloning of DCPSknox and 

DCPSCHS. PCR amplifications began with a 2 min denaturation at 94 ˚C and continued 

for 40 cycles of 94 ˚C for 40 s, 58 ˚C for 1 min, and 72 ˚C for 1 min, followed by a 7 min 

extension at 72 ˚C. Actin gene was used as control and PCR was carried out with the 

primers 5’- GCTGCTCGTGACCTGACTGA-3’ (forward) and 5’- 

ACGGAACCTCTCAGCTCCAA-3’ (reverse), using the same amplification protocol. 

Each PCR product was resolved on 1 % agarose gels and stained with SYBR® Safe 

(Invitrogen). Bands were visualized and analyzed using ImageJ software (v1.42, Wayne 

Rasband, NIH). To minimize sample variations, mRNA expression of the target gene was 

normalized relative to the expression of the house keeping gene Actin. All experiments 

were repeated three times for cDNA prepared for each batch of plantlets or tissues. 
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Fig. 4.2 Various tissues of a D. Chao Praya Smile plantlet. a) Median cross 
section of a non-induced plantlet after 54 days of culture. b) The other side of 
the same plantlet. BA-induced plantlet was similar to non-induced plantlet in 
morphology, but roots were not produced. Shoot apex and stem base of 1 – 
1.5 mm were isolated from the tip and base of the pseudobulb, respectively. 
Tissue sandwiched between the shoot apex and stem base was regarded as 
stem and leaf base. sa, s + lb, sb, r and l refer to shoot apex, stem + leaf base, 
stem base, root and leaf, respectively. Bar = 5 mm.  
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4.3 Results 

4.3.1 Morphological changes in D. Chao Praya Smile cultures at various stages of 

flowering induction 

Growth of the plantlets was observed to increase rapidly from day 0 to day 54 in 

liquid medium containing 11.1 µM BA (Fig. 4.3). BA induction was initiated on 

protocorms with two leaves. After 20 and 30 days of culture, the third and fourth leaves 

were produced, respectively. The leaves produced were more expanded 54 days after 

culture before the plantlets were transferred to the two-layer medium. A similar growth 

pattern was observed in the non-induced plantlets. Growth of BA-induced plantlets was 

not affected by BA treatment because they showed similar fresh and dry weights as non-

induced plantlets after growing in the liquid medium for 54 days; however, BA-induced 

plantlets were noticeably shorter (Fig. 4.4, Table 4.1). Both types of plantlets produced 

two lateral shoots before they were transferred to the two-layer medium. They also had 

similar number of leaves but the leaves in BA-induced plantlets seemed to be wider. The 

most prominent difference between BA-induced and non-induced plantlets was root 

production (Fig. 4.4, Table 4.1). After 54 days of culture, each non-induced plantlet 

produced 6 roots of approximately 2.7 mm in length, whereas each BA-induced plantlet 

produced 1 or no root at all (Table 4.1). Flower buds were formed in BA-induced 

plantlets about 4 weeks after they were transferred to the two-layer medium (80 days 

after culture) in which anthesis took place in 3 weeks (Fig. 4.3). During this time, non-

induced plantlets remained vegetative. It was noticed that BA-induced plantlets started to 

produce root in the two-layer medium and the root system was as extensive as that in the 

non-induced plantlets when flowering took place.  
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Fig. 4.3 Morphology of non-induced and BA-induced (11.1 µM) D. Chao Praya Smile 
plantlets at different days after culture. The plantlets were transferred to the two-layer 
medium after 54 days of culture in liquid medium. Bar = 1 cm. 
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Fig. 4.4 Morphology of D. Chao Praya Smile plantlets grown in liquid media 
containing various concentrations of BA for 54 days. Bar = 8 mm. 
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Table 4.1 Characteristics of D. Chao Praya Smile plantlets cultured in liquid KC medium with various concentrations of BA for 54 days. 
 

 
 
#Same letters following the numbers of each characteristic indicate no significant difference among the characteristic (One-Way 
ANOVA Tukey’s test at 95 % confidence level). n = 10.  
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4.3.2 Morphological changes in the shoot apex  

The SAM of the plantlets contained cells that were smaller than those in the stem 

and expanded leave (Fig. 4.5). Similarly, cells in the newly emerged and non-expanded 

young leaves were distinguishably smaller than those in mature and expanded leaves. It 

was also observed that SAM and non-expanded young leaves were more densely stained 

than the stem and mature leaves. Anatomical changes in the shoot apices of non-induced 

and BA-induced cultures from 0 to 80 days after culture were as shown in Fig. 4.5. It was 

observed that SAM height, width and axis height (measurement as illustrated in Fig. 4.1) 

increased with the growth of plantlets (Fig. 4.6). After 38 days of culture, SAM of BA-

induced plantlets started to expand both in height and width. Noticeably, the stem axis of 

BA-induced plantlets increased dramatically after 54 days of culture (Fig. 4.5h, Fig. 

4.6c), probably indicating bolting in plants. Following the bolting of plants, flower buds 

were produced along the stem axis (Fig. 4.5j). During this period, the shoot apices of 

non-induced plantlets remained non-expanded (Fig. 4.5i). Therefore, it appeared that 

bolting of the plant and floral transition started as early as 54 days after BA treatment 

when the plantlets were grown in liquid medium. Subsequently, flower buds developed in 

the plantlets grown in the two-layer medium.  

 

4.3.3 Cloning and expression of DCPSknox in D. Chao Praya Smile 

Using oligodeoxynucleotide primers that were designed based on the conserved 

regions in Dendrobium orchids knox genes, RT-PCR was carried out using D. Chao 

Praya Smile shoot apex total RNA as template. A PCR product band of approximately 

the correct size (297 bp) was resolved on agarose gel electrophoresis and subsequently  
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Fig. 4.5 Median longitudinal sections through apices of non-induced and BA-induced D. 

Chao Praya Smile plantlets at different days after culture. a, c, e, g and i are sections of 
apices of non-induced plantlets 0, 20, 38, 54 and 80 days after culture, respectively. b, d, 
f, h and j are sections of apices of BA-induced plantlets 0, 20, 38, 54 and 80 days after 
culture, respectively. Developing flower buds were shown in the section of BA-induced 
plantlet after 80 days of culture (j). Bar = 5 µm. 
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Fig. 4.6 SAM height (a), width (b) and stem axis (c) of non-induced (open circles) and 
BA-induced (closed circles) D. Chao Praya Smile cultures at different days after culture. 
Same letters above the closed circles indicate no significant difference among the SAM 
height, width and axis height in (a), (b) and (c), respectively, in the BA-induced cultures 
(One-Way ANOVA Tukey’s test at 95 % confidence level). Asterisks following the 
letters in (a) and (c) indicate significant difference in the SAM height and axis height, 
respectively, between the BA-induced and non-induced cultures at the specific day after 
culture (2-Sample t-test at 95 % confidence level). Vertical bars denote SE. n = 3.  
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purified. Nucleotide sequence analysis revealed that the isolated fragment represented the 

partial sequence of DCPSknox which showed more than 97 % sequence similarity to the 

corresponding regions of KNOXs from D. Madame Thong-In and Dendrobium nobile 

(Fig. 4.7). The fragment also showed 100 % sequence similarity to the corresponding 

regions of KNOX proteins from the Dendrobium orchids (Fig. 4.8). The cloned fragment 

also included the characteristic ELK domain and part of the homeodomain of knox gene. 

The isolated fragment was therefore used to analyze DCPSknox expression in D. Chao 

Praya Smile.  

DCPSknox expression was analyzed at various stages of flowering induction. 

Compared to non-induced plantlets, the expression of DCPSknox was higher in BA-

induced plantlets during the juvenile phase, which was subsequently reduced at floral 

transition and during floral bud development (Fig. 4.9). Besides, DCPSknox expression 

was also analyzed in various tissues of the plantlets after 54 days of culture (Fig. 4.10). 

DCPSknox was found to be highly expressed in the shoot apices of BA-induced and non-

induced plantlets (Fig. 4.10). Below the shoot apex, the stem and leaf base, and the stem 

base also had similar levels of expression of DCPSknox. Expression of DCPSknox was 

low in the leaves of BA-induced plantlet, which was approximately one-tenth of that in 

the shoot apex (Fig. 4.10). Besides, DCPSknox was also expressed in the roots of non-

induced plantlets, at a level close to that in the leaves.  

  

4.3.4 Analyses of development and color segregation of in vitro-developed flowers 

Two thirds of the 60 flowers produced in vitro were developmentally complete; 

the remaining 20 flowers were developmentally abnormal (Fig. 4.11). Analyses of color  
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Fig. 4.7 Nucleotide alignment of partial DCPSknox with knoxs from Dendrobium grex 
Madame Thong-In (DOH1; AJ276389) and Dendrobium nobile (Dnknox; AY608889). 
Sequences were aligned using the CLUSTAL W program (Thompson et al., 1994). The 
positions of nucleotides are given on the right. The stars below each line of alignment 
indicate conserved sites. 
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Fig. 4.8 Amino acid alignment of partial DCPSKNOX with KNOXs from Dendrobium 
grex Madame Thong-IN (DOH1; CAB88029) and Dendrobium nobile (Dnknox; 
AAT72917). Sequences were aligned using the CLUSTAL W program (Thompson et al., 
1994). The KNOX domain, ELK domain and the homeodomain are indicated. The 
positions of amino acids are given on the right. The stars below each line of alignment 
indicate conserved sites. 
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Fig. 4.9 Expression of DCPSknox in D. Chao Praya Smile cultures at juvenile (0, 20 and 
38 days after culture), floral transition (54 days after culture) and flowering (80 days after 
culture) stages. (a) Semi-quantitative RT-PCR analysis of DCPSknox. Flowering was 
induced using 11.1 µM of BA and non-induced plantlets were used as controls. Total 
RNA was extracted and reverse transcribed for the analysis. Expression of Actin gene 
was used as control. (b) Relative levels of DCPSknox transcripts for non-induced (open 
circles) and BA-induced (closed circles) cultures at various stages. Transcript level of 
non-induced cultures at day 0 was arbitrarily set as 1. Transcript levels for DCPSknox 
products were determined by intensity-based quantification of each product using ImageJ 
software. Same letters above the closed circles indicate no significant difference among 
the relative transcript abundances (One-Way ANOVA Tukey’s test at 95 % confidence 
level). Vertical bars denote SE. n = 3. 
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Fig. 4.10 Expression of DCPSknox in different tissues of non-induced and BA-induced 
plantlets after 54 days of culture. (a) Semi-quantitative RT-PCR analysis of DCPSknox in 
different tissues. sa, l, s+lb, sb and r refer to shoot apex, leaf, stem and leaf base, stem 
base and root, respectively. Total RNA was extracted from the respective tissues and 
reverse transcribed for the analysis. Expression of Actin gene was used as control. (b) 
Relative levels of DCPSknox transcripts in different tissues of non-induced and BA-
induced plantlet. Transcript levels of DCPSknox in the shoot apex of non-induced plantlet 
were arbitrarily set as 1. Transcript levels for DCPSknox products were determined by 
intensity-based quantification of each product using ImageJ software. Same letters above 
the bars indicate no significant difference among the relative transcript abundances One-
Way ANOVA Tukey’s test at 95 % confidence level). Vertical bars denote SE. n = 3. 
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Fig. 4.11 Analyses of development and color segregation of in vitro-developed flowers of 
D. Chao Praya Smile. The colors of lip, petal and sepal (pink and pink shade) are 
illustrated in Fig. 4.12. Scoring of characteristics was made on 60 flowers developed in 

vitro. 
#Numbers in the parentheses indicate the percentage of complete flowers.  
†Numbers in the parentheses indicate the percentage of incomplete flowers.  
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and pattern of floral organs in these complete flowers showed that the lips could be 

completely pink or in pink shade, while the petals and sepals could be completely pink, in 

pink shade or completely white. Therefore, color segregation was manifested in flowers 

produced in vitro. Of all the color combinations, flowers with all pink floral organs (Fig. 

4.12d, type-4 flower) and those with pink-shade lips, white sepals and white petals (Fig. 

4.12a, type-1 flower) represented the two major flower types produced in vitro, which 

made up 42.5 and 40 %, respectively, of the complete flowers. The other two flower 

types were those with pink lips, pink-shade petals and white sepals (Fig. 4.12b, type-2 

flower) and those with pink lips, pink petals and pink-shade sepals (Fig. 4.12c, type-3 

flower), which made up 15 and 2.5 %, respectively, of the complete flowers.  

Among the incomplete flowers developed in vitro, about 41.7 % lacked one petal 

and 33.3 % lacked two petals (Fig. 4.11, Fig. 4.13a). One third of the incomplete flowers 

were found to have one sepal missing or with deformed lip (Fig. 4.13b). Under-developed 

male or female reproductive organs were also occasionally observed (Fig. 4.13c and d).    

 

4.3.5 Cloning and expression of DCPSCHS in D. Choa Praya Smile 

RT-PCR was carried out using total RNA from shoot apex as template and 

primers that were designed based upon the conserved regions in Dendrobium orchid 

CHSs. A PCR product band resolved on agarose gel electrophoresis of approximately the 

correct size (295 bp) was purified. Nucleotide sequence analysis revealed that the isolated 

fragment represented the partial sequence of DCPSCHS, showing more than 94 % 

sequence similarity to the corresponding regions of CHSs from Dendrobium orchids (Fig. 

4.14). The fragment also showed 80 and 70 % sequence similarity, respectively, to the 
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Fig. 4.12 Color segregation of D. Chao Praya Smile flowers developed in vitro. Four 
color types were found: a) Pink-shade lip with white petals and sepals (type-1), b) Pink-
shade lip with pink-shade petals and white sepals (type-2), c) Pink lip with pink sepals 
and pink-shade sepals (type-3), and d) Lip, sepals and petals all in pink (type-4). Color 
bars below the pictures indicate the colors of the respective floral organs. L, P and S refer 
to lip, petal and sepal, respectively. The percentage of each type of flowers was also 
indicated below the pictures (n = 40). Bar = 5 mm. 
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Fig. 4.13 Morphology of incomplete flowers produced in vitro. a) Both petals were not 
formed; b) The lip and a sepal were not developed; c) A severely malformed in vitro-
developed flower without lip and petals. The under-developed male reproductive organ 
without the formation of anther cap and pollinia was shown in the inset; d) Incomplete 
flower with severely distorted and unrecognizable male and female reproductive organs 
(inset). Bar = 5 mm. 
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Fig. 4.14 Nucleotide alignment of partial DCPSCHS with CHSs from other orchid species: 
Dendrobium hybrid cultivar "Red bull" (DhcRbCHS; FM209430), Dendrobium hybrid cultivar 
"Kao sa nan" (DhcKsnCHS; FM209429), Dendrobium hybrid cultivar "Uniwai Prince" 
(DhcUPCHS; AY741319), Dendrobium hybrid cultivar "Ear sa kul" (DhcEskCHS; AM490639), 
Dendrobium nobile (DnCHS; DQ462460), Phalaenopsis hybrid cultivar (PhcCHS5; DQ089652) 
and Oncidium Gower Ramsey (OGRCHS; EF570111). Sequences were aligned using the 
CLUSTAL W program (Thompson et al., 1994). The positions of nucleotides are given on the 
right. The stars below each line of alignment indicate conserved sites. 
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corresponding regions of CHSs from Phalaenopsis and Oncidium orchids. At the protein 

level, the deduced amino acid sequence of the isolated fragment showed more than 95 %, 

90 % and 80 % identity, respectively, to the corresponding peptide sequences from 

Dendrobium, Phalaenopsis and Oncidium orchids (Fig. 4.15). In view of the high 

sequence similarity at nucleotide and protein levels, the isolated fragment was used to 

analyze DCPSCHS expression in D. Chao Praya Smile.  

DCPSCHS was expressed at different levels in 5 non-induced and 5 BA-induced 

plantlets after 54 days of culture (Fig. 4.16). The highest and the lowest expression levels 

in the plantlets were within 50 % from the average expression level. DCPSCHS 

expression was generally lower in BA-induced plantlets as compared to that in non-

induced plantlets.  

 

4.4 Discussion 

During plant growth and development, the SAM produces leaves at the vegetative 

phase and floral organs at the reproductive phase. Observation of morphological changes 

of BA-induced and non-induced plantlets indicated that they exhibited similar growth 

pattern in liquid media during the first 54 days of culture, other than the fact that more 

roots were formed in plantlets grown in medium without BA (Fig. 4.3, Fig 4.4). 

Subsequently, flowering was induced in BA-induced plantlets while the non-induced 

plantlets remained vegetative. It was also observed that flowering plantlets produced 

extensive roots just as the non-induced vegetative plantlets (Fig 4.3), and the number of 

leaves produced at flowering (Table 4.1) was similar to that in field-grown plants (Table 

3.5). Therefore, the morphological observation (Fig. 4.3, Fig 4.4, Table 4.1) might imply  
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Fig. 4.15 Amino acid alignment of partial DCPSCHS with CHSs from other orchid 
species: Dendrobium hybrid cultivar "Uniwai Prince" (DhcUPCHS; AAU93767), 
Dendrobium hybrid cultivar "Red bull" (DhcRbCHS; CAR64528), Dendrobium hybrid 
cultivar "Kao sa nan" (DhcKsnCHS; CAR64527), Dendrobium hybrid cultivar "Ear sa 
kul" (DhcEskCHS; CAM32716), Dendrobium nobile (DnCHS; ABE77392), 
Phalaenopsis hybrid cultivar (PhcCHS5; AAY83389) and Oncidium Gower Ramsey 
(OGRCHS; ABS58499). Sequences were aligned using the CLUSTAL W program 
(Thompson et al., 1994). The positions of amino acids are given on the right. The stars 
below each line of alignment indicate conserved sites. 
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Fig. 4.16 Expression of DCPSCHS in non-induced and BA-induced plantlets after 54 
days of culture. (a) Semi-quantitative RT-PCR analysis of DCPSCHS. Total RNA were 
extracted from the plantlets and reverse transcribed for the analysis. Expression of Actin 

gene was used as control. (b) Relative levels of DCPSCHS transcripts in five non-induced 
and five BA-induced plantlets. Transcript level of DCPSCHS in non-induced plantlet 
numbered 1 was arbitrarily set as 1. Transcript levels for DCPSCHS products were 
determined by intensity-based quantification of each product using ImageJ software. 
Same letters above the bars indicate no significant difference among the relative 
transcript abundances (One-Way ANOVA Tukey’s test at 95 % confidence level). 
Vertical bars denote SE. n = 3. 
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that BA induced flowering in D. Chao Praya Smile not by accelerating growth or 

promoting maturation. On the other hand, BA might promote flowering by inhibiting root 

production during early plantlet growth and thereby limited the accumulation of root-

produced substances that inhibited flowering. Apparently, root production did not affect 

flower development once the SAM was committed to flowering. The effect of root 

production on flowering inhibition has been shown in Cymbidium niveo-marginatum 

Mak in which the removal of roots greatly enhanced flowering in the orchid in vitro 

(Kostenyuk et al., 1999). It was also reported in tobacco that a specific signal produced in 

the root could prevent flowering (McDaniel, 1996). 

Temporal and spatial changes of growth would take place at the SAM during 

floral transition. In the development of an inflorescence, leaves would be replaced by 

bracts while flowers would be formed in the bract axils. The SAM growth would remain 

indeterminate for a considerable number of plastochrons until eventually the terminal 

flower was formed (Kwiatkowska, 2008). The histological analyses (Fig 4.5, Fig 4.6) 

successfully identified the juvenile, floral transition and floral bud development phases, 

phases that were associated with different morphological changes in the SAM in BA-

induced plantlets. The timing of floral transition in the system of early in vitro flowering 

in D. Chao Praya Smile was also determined (Fig 4.5, Fig 4.6). In Anagallis arvensis, 

similar quantitative and geometrical analyses were conducted with the shoot apex for the 

comparative investigation of morphogenesis during reproductive and vegetative phases 

(Kwiatkowska and Routier-Kierzkowska, 2009). The SAM of the BA-induced plantlets 

was relatively flat in the juvenile phase. After 54 days of culture, the BA-induced 

plantlets proceeded to floral transition which was characterized by bolting as well as the 
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expansion of SAM both in height and width (Fig 4.5, Fig 4.6). An increase in both the 

meristem volume and apical height was observed in the shoot apex of S. alba at floral 

transition (Bernier, 1997). In addition, these morphological changes preceded the 

initiation of floral primordia, as was observed in the shoot apex of D. Chao Praya Smile 

(Fig 4.5). Bolting or elongation of the stem axis was also observed in shoot apex of 

Arabidopsis (Jacqmard et al., 2003) and Fragaria sp. (Kurokura et al., 2006) at floral 

transition, which was a result of rapid cell division in the central zone of SAM that also 

gave rise to subsequent floral organ formation (Kwiatkowska, 2008). The process of 

flowering in orchids can be separated into two processes: flower initiation and floral 

development (Hew and Yong, 1997). Following initiation, the flower bud will grow and 

its subsequent growth depends on the supply of photoassimilates from leaves and from its 

own photosynthesis. Histological observation (Fig 4.5) showed that floral initiation was 

induced when the plantlets were grown in liquid medium, and floral development took 

place in the two-layer medium. 

knox genes encoded the homeodomain-containing transcription factors, which 

were required for the maintenance of the meristem and proper patterning of organ 

initiation (Hake et al., 2004). knox genes were also found to regulate morphological 

events in Arabidopsis, in which ectopic expression of these genes resulted in reductions 

in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less 

prominent midvein, the repression of adventitious root formation and late flowering 

(Ikezaki et al., 2010). During floral organ differentiation and development, the expression 

of knox genes in Arabidopsis was repressed by Auxin Response Factor6 (ARF6) and 

ARF8, which regulated jasmonic acid biosynthesis (Tabata et al., 2010). KNOX proteins 
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were suggested to act as general orchestrators of growth regulator homeostasis in the 

maintenance of the SAM by simultaneously activating cytokinins and repressing 

gibberellic acid biosyntheses (Jasinski et al., 2005; Yanai et al., 2005). Over-expression 

of knox genes would lead to abnormal cell division and the formation of ectopic 

meristems (Schneeberger et al., 1995; Chuck et al., 1996). It was also shown that 

constitutive expression of knox1 in Taraxacum officinale could change the leaf 

morphology from simple to compound (Müller et al., 2006).  In D. Madame Thong-In, 

DOH1, a class I knox gene, was required to maintain the basic plant architecture, in 

which multiple shoots were produced simultaneously when its expression was reduced 

(Yu et al., 2000).  The partial sequence of DCPSknox was highly similar with the 

corresponding sequences from D. Madame Thong-In and D. nobile, indicating that knox 

gene was conserved among the Dendrobium orchids (Fig. 4.7, Fig 4.8). The expression of 

DCPSknox was studied at different growth stages and in various tissues of D. Chao Praya 

Smile in relation to BA induction of flowering (Fig 4.9). The expression of DCPSknox in 

BA-induced plantlets was marginally but insignificantly higher than that in the non-

induced plantlets during early vegetative development (Fig 4.9). The expression of 

DCPSknox could be affected by BA application because it was reported that cytokinins 

could stimulate KNOX gene expression and vice versa (Kusaba et al., 1998). Although 

knox gene was reportedly involved in the early seedling development of Arabidopsis, its 

expression did not increase with cytokinin treatment (Souček et al., 2007). Similarly, 

expression of BP and STM were not significantly increased in transgenic Arabidopsis 

over-expressing a cytokinin biosynthesis gene (Craft et al., 2005) or in young seedlings 

treated with exogenous cytokinins (Rashotte et al., 2003). Nevertheless, an early and 
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transient increase in the transcript of BP and KNAT4 was observed in Arabidopsis 

seedlings ectopically expressed a cytokinin biosynthesis gene (Hoth et al., 2003). 

Expression of DCPSknox in BA-induced D. Chao Praya Smile plantlets was reduced at 

floral transition and during floral bud development (Fig. 4.9). The expression of kn1 and 

DOH1 in the SAM of Arabidopsis and D. Madame Thong-In, respectively, were also 

found to decrease during floral transition (Lincoln et al., 1994; Yu et al., 2000). The 

reduction in DCPSknox expression at floral transition probably indicated the commitment 

of SAM to floral organ production at these stages considering the function of knox gene 

in maintaining the indeterminacy of SAM.  

knox was expressed in the shoot meristem at all growth stages and played a role in 

morphogenesis (Lincoln et al., 1994). At bolting, the expression of DCPSknox in the 

shoot apex of BA-induced plantlet was not significantly different from that in vegetative 

shoot apex (Fig. 4.10). Yu et al. (2000) reported that the expression of DOH1 would 

remain in the outer cell layers of the inflorescence meristem and throughout the floral 

primordia. DCPSknox was also found to be expressed at a low level in the roots of non-

induced plantlet (Fig 4.10). In contrast, the expression of DOH1 was not detected in the 

roots of D. Madame Thong-In (Yu et al., 2000). In other plant species such as 

Arabidopsis, KNAT6 was expressed in the roots for correct lateral root formation (Dean et 

al., 2004). Moreover, GmKNT1 was found to be strongly expressed in the roots of 

soybean (Liu et al., 2008). Other homologues of KNOX genes in D. Chao Praya Smile 

could be cloned and investigated to better understand the function of these genes in the 

plantlets. 
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Segregation of flower colors is commonly observed in progenies of orchid 

hybridization. For example, the cross between Dendrobium Peewee and Dendrobium 

Chao Praya Gem produced progenies with variations in flower colors (Fadelah, 2006). 

The cross between Dendrobium dicuphum (semi-alba, flower with white sepals and 

petals, and a purple lip) and Dendrobium Phalaenopsis var. compactum ‘Mauna Kea’ 

(alba, flower with all white floral organs) produced uniformly purple offsprings and the 

F2 progenies segregated into three discreet groups: purple, semi-alba and alba 

(Kamemoto et al., 1999). Segregation of flower colors was also observed in D. Madame 

Thong-In plantlets that flowered in vitro in which four distinct flower types were 

produced (Sim et al., 2007). Color segregation was observed in flowers of D. Chao Praya 

Smile produced in vitro with 40 % of them resembling the flowers of the parent plant 

(Fig.4.12, type-1 flower), from which the seeds were derived upon self-pollination. An 

almost equal proportion of the flowers produced were densely pigmented with all pink 

floral organs (Fig 4.12, type-4 flower). The remaining flowers represented the 

intermediate phenotypes between the type-1 and type-4 flowers. Interestingly, in the 

flowers produced in vitro, the lip of the flower appeared to be the center of pink 

coloration that radiated or flushed out to the petals and sepals to give rise to flowers of 4 

color types (Fig 4.12). The gradient flushing of pink coloration to the lips, petals or sepals 

at different intensities would give rise to flowers of type-1, -2 and -3, respectively (Fig 

4.12). Type-4 flowers were formed when the pink coloration from lips was flushed out 

thoroughly to all floral organs. D. Chao Praya Smile is semi-alba because it produces 

flowers with white sepals and petals, and a pink-shade lip, similar to D. dicuphum. It was 

therefore possible that the self-pollination of semi-alba plantlets could produce progenies 
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that segregated into semi-alba, pink and intermediate phenotypes as observed in the in 

vitro flowering of D. Chao Praya Smile. However, a larger sample size would be required 

to obtain an accurate ratio of segregation. 

One-third of the flowers produced in vitro were incomplete due to missing floral 

organs such as sepals, petals, lips or reproductive organs (Fig 4.11, Fig 4.13). Similar 

incomplete or malformed flowers were also produced in Dendrobium “Sonia” (Tee et al., 

2008) and Phalaenopsis Pink Leopard “Petra” (Duan and Yazawa, 1995) plantlets 

induced to flower in vitro. The production of abnormal flowers could be due to the 

metabolism of cytokinins in tissue culture (Jones et al., 1995) in view of the fact that BA 

was used to induce flowering. The absence of floral organs could possibly be due to the 

effects on genes controlling floral organ number such as PAN, ETT, WIG and 

SUPERMAN (Weiss et al., 2005) but there was no evidence indicating the effect of 

cytokinins on these genes up to this date. The observed incomplete flowers could also be 

due to the failure of different floral primordia to grow during flower development. 

Chalcone synthase (CHS) is a key enzyme in the biosynthesis of anthocyanins 

that give rise to color pigments in flowers (Springob et al., 2003). It has been shown in 

Torenia fournieri that the degree of blue coloration in the corolla was affected by the 

expression of CHS gene (Aida et al., 2000; Fukusaki et al., 2007). Therefore, it was 

speculated that the different intensity of pink coloration in the floral organs of in vitro-

developed flowers was attributed to different degrees of CHS expression in D. Chao 

Praya Smile. The gene encoding CHS (DCPSCHS) was cloned from D. Chao Praya 

Smile and its expression was analyzed in BA-induced and non-induced plantlets in order 

to find out whether BA treatment affected CHS expression, which in turn gave rise to 
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flowers of different color intensity (Fig. 4.12, type-1 to type-4 flowers). Partial sequence 

of DCPSCHS showed high similarity at nucleotide and peptide levels with the 

corresponding sequences from Dendrobium, Phalaenopsis and Oncidium orchids (Fig. 

4.14, Fig. 4.15), indicating that CHS was highly conserved among the different orchid 

species. DCPSCHS was found to be expressed differently among the non-induced and 

BA-induced D. Chao Praya Smile plantlets (Fig 4.16), probably indicating that both types 

of plantlets had different degrees of anthocyanin biosynthesis in nature and hence 

pigment production. It could further imply that color segregation observed in the in vitro-

produced flowers was naturally occurring and was not caused by the BA treatment in the 

culture media. Therefore, the in vitro flowering system was suitable for early evaluation 

of flower colors in orchid hybridization as natural flower colors were exhibited in the in 

vitro-developed flowers. Nonetheless, DCPSCHS expression was investigated in the 

vegetative tissues in this study and the gene might not have the same role in the flowers. 

Moreover, other isoforms of CHS gene could be present in D. Chao Praya Smile and yet 

to be investigated. Color segregation in different parts of floral organs could also be 

caused by physiological variation induced by tissue culture. Similarly, the possibility that 

BA treatment could have affected other genes involved in orchid color pigmentation such 

as dihydroflavonol 4-reductase, flavanone 3-hydroxylase and Phenylalanine ammonia-

lyase could not rule out (Yu and Goh, 2001). 
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4.5 Concluding remarks 

Plantlets of D. Chao Praya Smile grew rapidly in modified KC liquid medium 

before they were transferred to the two-layer medium after 54 days of culture, when 4 to 

5 expanded leaves were already produced. Subsequently, flower buds were developed in 

BA-induced plantlets and flowering took place in 105 days after BA treatment. 

Histological analysis revealed the different phases of growth in BA-induced plantlets. 

Most importantly, the BA-induced plantlets were shown to proceed to the flowering 

phase, as indicated by the bolting of the shoot apices, after growing in liquid medium for 

54 days. Therefore, flowering was initiated in the liquid medium while subsequent flower 

development took place in the two-layer medium. A partial sequence of knox 

(DCPSknox) gene was cloned from D. Chao Praya Smile and its expression decreased at 

stages corresponding to floral transition and floral bud development. On the other hand, 

color segregation was observed in the in vitro-developed flowers of D. Chao Praya Smile 

with 4 different color types. The segregation of colors was most likely naturally occurring 

because BA treatment did not affect the expression of DCPSCHS, the gene encoding the 

key enzyme in anthocyanin biosynthesis.  
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Chapter 5 

 

Changes in cytokinins and IAA contents in flowering-induced Dendrobium Chao 

Praya Smile 

 

5.1 Introduction 

Cytokinins and IAA are plant growth regulators that control various aspects of 

plant development as well as the interaction of plant with the external environment 

(Reski, 2006). The involvement of cytokinins in flowering has been demonstrated in 

various plant species. Bernier et al. (1993) proposed that cytokinins could serve as 

flowering signals that were translocated from the root to the shoot in Sinapis alba 

upon flowering induction. In addition, their concentrations were shown to increase 

during floral transition in this plant species (Bernier et al., 2002). Similarly, mutant 

and transgenic Arabidopsis and Brassica napus that flowered early were found to 

have elevated levels of cytokinins (Chaudhury et al., 1993; Srivastava et al., 2006; 

Dunfield et al., 2007). Besides, shoot apices of B. napus, Chenopodium rubrum and 

C. murale were also found to be enriched with cytokinins during floral transition (de 

Bouillé et al., 1989; Machácková et al., 1993). In orchids, the role of cytokinins in 

promoting flowering has been demonstrated in various foliar spray or cytokinin 

injection experiments (Sakai et al., 2000; Blanchard and Runkle, 2008).  

There was no consensus on the type of cytokinins that caused flowering in 

plants. It was found that iPR content in S. alba (Lejeune et al., 1988) was significantly 

increased when grown under flowering-promoting conditions. Similarly in some in 

vitro studies, flowering induction in Arabidopsis (He and Loh, 2002) and Dendrobium 

(Sim et al., 2007) have been correlated with increased iPR content in the plants. On 

the other hand, there were reports indicating that the ratio of cytokinin to auxin was 

closely associated with the developmental phase change to flowering (Mercier and 
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Endres, 1999; de Melo Ferreira et al., 2006; Hegele et al., 2008). All these studies 

across different plant species have indicated that endogenous cytokinins might be 

crucial in the induction of flowering. Also, a sensitive method for the determination of 

cytokinins is essential to reveal the specific roles of cytokinins in flowering induction. 

Therefore, the objectives of this chapter were: (1) to develop a sensitive and efficient 

HPLC-ESI-MS/MS method for the determination and quantification of cytokinins and 

IAA; (2) to analyze the cytokinin and IAA contents in D. Chao Praya Smile at 

different growth stages upon flowering induction; (3) to analyze the cytokinin and 

IAA contents in the shoot apices and other tissues in the plantlets at floral transition; 

and (4) to clone and analyze the expression of cytokinin oxidase/dehydrogenase gene 

(DCPSCKX) in relation to flowering.  

 

5.2 Materials and methods 

5.2.1 Plant materials for the analyses of cytokinins and IAA 

Eight-week-old protocorms of D. Chao Praya Smile germinated from seeds 

were cultured in modified KC liquid culture medium containing (mg l-1): 

MgSO4.7H2O (250), KH2PO4  (500), (NH4)2SO4 (250), Ca(NO3)2.4H2O (500), 

MnSO4.H2O (5.68) and EDTA-Fe (28) supplemented with 2 % (w/v) sucrose, 15 % 

(v/v) coconut water and 11.1 µM BA in 100 ml Erlenmeyer flasks on rotary shakers at 

120 rpm. These BA-induced plantlets were sub-cultured in BA-containing liquid 

media after 20 and 38 days of culture. BA-treatment was continued in two-layer 

modified KC media after 54 days of culture at which the plantlets were allowed to 

grow until flowering (observed after 80 days of culture). BA-induced plantlets were 

harvested 0, 20, 38, 54 and 80 days after culture for the analyses of cytokinins and 

IAA. For tissue-specific analyses of cytokinins and IAA, (a) shoot apices, (b) stems 
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and leaf bases, (c) stem bases and (d) leaves (Fig. 4.2) were isolated from BA-induced 

plantlets after 54 days of culture. Plantlets cultured in media without BA (non-

induced plantlets) were harvested at the same times and used as control. In addition, 

roots were isolated from non-induced plantlets for analysis. 

 

5.2.2 Cytokinin and IAA extraction and separation by high performance liquid 

chromatography (HPLC) 

 Samples were ground in Bieleski solution [chloroform: methanol: formic acid: 

water (25: 60: 5: 10, v/v) at 1 ml per 0.1 g of plant material] (Bieleski, 1964) 

containing deuterium-labeled internal standards for the various compounds (0.5 mM 

for cytokinins and 3.5 mM for IAA), and left to extract overnight at -20 ˚C in the 

dark. The deuterium-labeled compounds were used as internal standards for the 

quantification of each compound. Each sample was then centrifuged at 10,000 g for 

10 min at 4 ˚C and the supernatant was transferred to a clean tube. The pellet was re-

extracted in 4 ml of 80 % methanol for 1 h at 4 ˚ C on rotary shaker, and re-

centrifuged. The supernatants were pooled and loaded on an Oasis HLB cartridge 

(Waters, 60 mg of solid phase), which had been equilibrated with 1 ml of 100 % 

methanol followed by 1 ml of 80 % methanol. The cartridge was rinsed with 500 µl of 

80 % methanol. The purified extract was dried in a vacuum evaporator and 

reconstituted with 400 µl of Milli-Q water acidified with formic acid (at a final 

concentration of 15 mM and pH adjusted to 4.0 using ammonium hydroxide). Prior to 

HPLC separation, the samples were transferred to 1.5 ml Eppendorf tubes and 

centrifuged at 16,000 g for 5 min to remove any particulate matter that might have 

carried over through the purification process. To separate the cytokinins and IAA in 

the sample, 100 µl of the sample were injected into an ÄktaTM purifier (Amersham 
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Pharmacia Biotech) equipped with a 100 mm × 4.6 mm × 3.5 µm XBridgeTM  C18 

column (Waters) and connected to a UV detector monitored at 268 nm. A binary 

solvent system was used; it was comprised of (A) 70 % methanol and (B) Milli-Q 

water acidified with formic acid (at a final concentration of 15 mM and pH adjusted 

to 4.0 using ammonium hydroxide). Separations were performed using segmented 

gradients of methanol from 0 to 20 % in 0.1 column volume (cv) followed by 20 % to 

70 % in 12 cv and finally 70 % to 100 % in 0.1 cv with the flow rate maintained at 0.5 

ml min-1. For elution, fractions of 0.3 ml were collected using a fraction collector. 

Fractions containing the individual cytokinin or IAA, and each of the corresponding 

deuterium-labeled internal standard were pooled, dried in a vacuum evaporator and 

reconstituted in 200 µl of mass spectrometry buffer [50 % (v/v) methanol containing 

15 mM formic acid]. All HPLC data were processed by the Unicorn v4.0 software.  

 

5.2.3 Quantification of cytokinins and IAA by electrospray ionization mass 

spectrometry (ESI-MS/MS) 

Standard solutions (10 µM) for each of the labeled and unlabeled cytokinins 

and IAA were prepared in 50 % methanol (v/v) containing 15 mM formic acid. For 

the selection of diagnostic precursor-to-product ion transitions, 20 µl of 10 µM 

standards for each labeled and unlabeled cytokinins and IAA were injected into the  

API 300TM triple quadrupole mass spectrometer (Applied Biosystems) outfitted with 

an electrospray (ES) ion source. ES capillary and cone voltage were optimized 

(source temperature 100 °C, capillary voltage +2.0 kV, cone voltage 20 V) for the 

production of the requisite molecular (precursor) ions in positive ionization mode. 

The collision energy was then optimized at 20 eV for the dissociation of molecular 

ions into diagnostic fragment (product) ions for each compound. The flow rate of the 
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mobile phase [50 % (v/v) methanol containing 15 mM formic acid] was maintained at 

20 µl min-1. Once the characteristic precursor-to-product ion transitions had been 

determined, calibration curves were generated by preparing serial concentrations of 

each unlabeled compound (0 to 1000 pmol) and analyzed for the product ion peak 

area. Quantification of cytokinins and IAA in the fractions collected from HPLC was 

done by Multiple Reaction Monitoring of [MH]+ (dwell time 0.1 s) and the 

appropriate product ion. All data were processed by the MDS Sciex software. Results 

were expressed in pmol or nmol of cytokinins or IAA per unit of plantlet or tissue 

fresh weight (FW). 

 

5.2.4 Cloning of D. Chao Praya Smile CKX (DCPSCKX) gene 

RNA from shoot apices of BA-induced plantlets was isolated using the Plant 

RNeasy extraction kit (Qiagen, Hielden, Germany), followed by cDNA synthesis 

from 1 µg of total RNA using random hexamers and ThermoScriptTM Reverse 

Transcriptase (Invitrogen). One twentieth volume of each cDNA was used as a 

template for PCR amplification using the following primers for the target gene: 

DCPSCKX: 5’-TCTCCCCTCACTCATTCACC-3’ (forward), 5’-

ATCTCACGCTTTGAGGTGCT-3’ (reverse). The PCR products were isolated from 

1 % agarose gels following electrophoresis and cloned into pGEM-T Easy (Promega, 

Madison, WI) and sequenced. Nucleotide sequences were analyzed using a BigDyeTM 

Terminator Cycle Sequencing Ready Reaction Kit and an ABI 3730xl DNA Analyzer 

(Applied Biosystems, Foster City, CA, USA). Nucleotide and amino acid sequence 

alignments were generated using Clustal W (Thompson et al., 1994).  
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5.2.5 Gene expression analysis by semi-quantitative RT-PCR 

Total RNA was isolated using the Plant RNeasy extraction kit (Qiagen, 

Hielden, Germany). For time course analyses of BA-induction of gene expression, 

non-induced and BA-induced (11.1 µM) D. Chao Praya Smile plantlets were 

harvested on day-0, 20, 38, 54 and 80 after treatment and total RNA was extracted. 

For tissue-specific expression analysis, total RNA was isolated from shoot apices (sa), 

stems and leaf bases (l + lb), stem bases (sb) and leaves (l) from non-induced and BA-

induced (11.1 µM) plantlets after 54 days of culture (Fig. 4.2). Total RNA was also 

isolated from the roots of non-induced plantlets. For treatment-specific expression 

analysis, total RNA was isolated from the shoot apices of plantlets treated with 11.1 

µM BA, 22.2 µM iP, 22.2 µm iPR, 0.5 µm IAA + 11.1µm BA or 2 µm TIBA after 54 

days of culture. Total RNA extracted for the various analyses was reverse-transcribed 

for RT-PCR using the same sets of primers for the cloning of DCPSCKX. PCR 

amplifications began with a 2 min denaturation at 94 ˚C and continued for 40 cycles 

at 94 ˚C for 40 s, 58 ˚C for 1 min, and 72 ˚C for 1 min, followed by a 7 min extension 

at 72 ˚C. Actin gene was used as control and PCR was carried out with the primers 5’- 

GCTGCTCGTGACCTGACTGA-3’ (forward) and 5’- 

ACGGAACCTCTCAGCTCCAA-3’ (reverse), using the same amplification protocol. 

Each PCR product was resolved on 1 % agarose gels and stained with SYBR® Safe 

(Invitrogen). Bands were visualized and analyzed using the ImageJ software (v1.42, 

Wayne Rasband, NIH). To minimize sample variations, mRNA expression of the 

target gene was normalized relative to the expression of the house keeping gene Actin. 

All experiments were repeated three times for cDNA prepared for each batch of 

plantlets or tissues.  
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5.2.6 Effects of iP, iPR, IAA and TIBA on induction of flowering 

Eight-week-old protocorms of D. Chao Praya Smile germinated from seeds 

were cultured in modified KC liquid culture medium supplemented with 2 % (w/v) 

sucrose, 15 % (v/v) coconut water in 100 ml Erlenmeyer flasks on rotary shakers at 

120 rpm. The liquid media were also supplemented with iP (0 – 44.4 µM), iPR (0 – 

44.4 µM), IAA (0 – 2.5 µM, and 11.1 µM of BA) or TIBA (2,3,5-triiodobenzoic acid, 

0 – 10 µM). The plantlets were sub-cultured in the liquid medium after 20 and 38 

days of culture and transferred to the two-layer modified KC medium in Magenta 

GA7TM containers after 54 days of culture. All cultures were incubated at 25 ± 2 ˚C 

and a 16 h photoperiod of 40 µmol m-2 s-1 from daylight fluorescent lamps and 

observed for flowering. 

 

5.3 Results  

5.3.1 Retention times for the cytokinins and IAA separated by HPLC 

All unlabeled analytes {Z, iP, DHZ and their respective derivatives [riboside (-

R), glucoside (-G) and nucleotide (-MP)], BA and IAA} and their respective 

deuterium-labeled internal standards were well separated by HPLC in less than 50 

min (Fig. 5.1a and 5.1b, respectively). For each type of cytokinin, the nucleotide was 

eluted first followed by the glucoside, free base and the riboside. When the analytes 

and their deuterium-labeled internal standards were injected into the HPLC, each 

internal standard was co-eluted with its analyte (Fig 5.1c). Retention times for the 

analytes and internal standards were summarized in Table 5.1. Each co-eluted pair of 

analyte and internal standard was collected separately for quantification in ESI-

MS/MS. 
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Fig. 5.1 Separation of cytokinins and IAA by HPLC. Zeatin (Z), isopentenyladenine 
(iP), dihydrozeatin (DHZ), their derivatives [ribosides (-R), glucosides (-9G) and 
nucleotides (-MP)], 6-benzyladenine (BA) and indol-3-acetic acid (IAA) were 
separated by using XBridgeTM C18 column (Waters). a) HPLC profile of unlabeled 
cytokinins and IAA standards; b) HPLC profile of deuterium-labeled (D-) cytokinins 
and IAA internal standards; and c) co-elution of unlabeled and deuterium-labeled 
standards.  
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Table 5.1 Precursor-to-product ion transitions used in the quantification of cytokinins 
and IAA in D. Chao Praya Smile by ESI-MS/MS. 
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5.3.2 Quantification of cytokinins and IAA by ESI-MS/MS 

Standard solutions comprising the unlabeled analytes and their respective 

deuterium-labeled internal standards were used to identify the appropriate precursor-

to-product ion transition in ESI-MS/MS. The mass spectra of the diagnostic product 

ions for Z-type, iP-type, DHZ-type cytokinins, BA and IAA were shown (Fig. 5.2 to 

5.5). In the case of Z, D-Z, ZR, D-ZR, Z9G, iP-type cytokinins and their internal 

standards, product ions that represented protonated adenine (m/z 136) were selected 

as they formed the major product ions in the fragmentation of precursor ions. 

Similarly, product ions that represented protonated zeatin free base (m/z 220 or m/z 

225 in deuterated internal standards) were selected for D-Z9G, ZMP and D-ZMP 

while product ions that represented protonated dihydrozeatin free base (m/z 222 or 

m/z 225 in deuterated internal standards) were selected for DHZR, D-DHZR, 

DHZ9G, D-DHZ9G, DHZMP and D-DHZMP. In the case of DHZ and D-DHZ,  the 

second major product ions with m/z of 148 and 149, respectively, were selected 

because they produced the same major product ions of m/z 136. Fragmentation of BA 

and D-BA produced single product ion peaks at m/z 91 and 98, respectively, which 

represented the benzyl ion. Major product ions of m/z 130 and 134 were produced in 

the fragmentation of IAA and D-IAA, respectively, and were therefore selected. The 

precursor and characteristic product ion for each unlabeled analyte and their 

deuterium-labeled internal standards that were used for the quantification of 

cytokinins and IAA were summarized in Table 5.1. Calibration curves generated for 

the cytokinins and IAA were linear in the concentration range of 0 – 1000 pmol (R2
 

values of 0.9276 – 1). 
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Fig. 5.2 Fragmentation patterns for labeled and unlabeled Z-type cytokinin standards. 
All compounds were analyzed in the positive-ion mode. a) Precursor (m/z 220.4) and 
product (m/z 136) ions of Z. b) Precursor (m/z 225.5) and product (m/z 136.9) ions of 
D-Z internal standard. c) Precursor (m/z 352.4) and product (m/z 136.9) ions of ZR. 
d) Precursor (m/z 357.3) and product (m/z 136.9) ions of D-ZR internal standard. e) 
Precursor (m/z 382.3) and product (m/z 136) ions of Z9G. f) Precursor (m/z 387.3) 
and product (m/z 225.1) ions of D-Z9G internal standard. g) Precursor (m/z 432.4) 
and product (m/z 220.1) ions of ZMP. h) Precursor (m/z 437.6) and product (m/z 225) 
ions of D-ZMP internal standard. 
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Fig. 5.3 Fragmentation patterns for labeled and unlabeled iP-type cytokinin standards. 
All compounds were analyzed in the positive-ion mode. a) Precursor (m/z 204.2) and 
product (m/z 136) ions of iP. b) Precursor (m/z 210.4) and product (m/z 136.9) ions of 
D-iP internal standard. c) Precursor (m/z 336.4) and product (m/z 136) ions of iPR. d) 
Precursor (m/z 342.2) and product (m/z 136.9) ions of D-iPR internal standard. e) 
Precursor (m/z 366.2) and product (m/z 136) ions of iP9G. f) Precursor (m/z 372.1) 
and product (m/z 136.9) ions of D-iP9G internal standard. g) Precursor (m/z 416.5) 
and product (m/z 136) ions of iPMP. h) Precursor (m/z 422) and product (m/z 136.9) 
ions of D-iPMP internal standard. 
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Fig. 5.4 Fragmentation patterns for labeled and unlabeled DHZ-type cytokinin 
standards. All compounds were analyzed in the positive-ion mode. a) Precursor (m/z 
222.3) and product (m/z 148.1) ions of DHZ. b) Precursor (m/z 225.6) and product 
(m/z 149) ions of D-DHZ internal standard. c) Precursor (m/z 354.4) and product (m/z 
221.9) ions of DHZR. d) Precursor (m/z 357.2) and product (m/z 225.1) ions of D-
DHZR internal standard. e) Precursor (m/z 384.4) and product (m/z 222) ions of 
DHZ9G. f) Precursor (m/z 387.4) and product (m/z 225) ions of D-DHZG internal 
standard. g) Precursor (m/z 434.6) and product (m/z 221.9) ions of DHZMP. h) 
Precursor (m/z 437.3) and product (m/z 225) ions of D-DHZMP internal standard. 
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Fig. 5.5 Fragmentation patterns for labeled and unlabeled BA and IAA standards. All 
compounds were analyzed in the positive-ion mode. a) Precursor (m/z 226.1) and 
product (m/z 91) ions of benzyladenine. b) Precursor (m/z 233.5) and product (m/z 
98.1) ions of D-BA internal standard. c) Precursor (m/z 176.5) and product (m/z 
129.9) ions of IAA. d) Precursor (m/z 181.6) and product (m/z 134) of D-IAA internal 
standard. 
 
 
 
 
 
 
 
 
 
 
 



 124 

5.3.3 Changes in cytokinins and IAA at different growth stages 

The levels of total cytokinins (excluding BA) in D. Chao Praya Smile plantlets 

increased dramatically when they were grown in liquid media as compared to 

protocorms (Fig. 5.6). The concentrations of cytokinins remained in the range of 6 – 8 

nmol g-1 FW during their growth in liquid media for 54 days. BA-induced plantlets 

contained similar concentrations of cytokinins as non-induced plantlets (Fig. 5.6) 

during floral transition (54 days after culture, Fig. 4.3 and 4.5). The levels of total 

cytokinins in both BA-induced and non-induced plantlets started to decrease when 

they were grown in the two-layer media. Floral buds were produced in BA-induced 

plantlets after 80 days of culture (Fig. 4.3). At this stage, the BA-induced plantlets 

contained approximately 70 % more cytokinins than the non-induced plantlets that 

remained vegetative. 

The Z-type cytokinin represented the predominant cytokinin that accounted 

for more than 70 % of the total cytokinins throughout the growth of BA-induced 

plantlets from vegetative to flowering stage (Fig. 5.7). At different growth stages, iP- 

and DHZ-type cytokinins fluctuated between 12 – 21 % and 5 – 15 %, respectively, of 

the total cytokinins. It was noted that the proportion of Z-, iP- and DHZ-type 

cytokinins in BA-induced plantlets during floral transition (54 days after culture) was 

not significantly different from the non-induced vegetative plantlets.   

Z and Z9G were the most prominent Z-type cytokinins in BA-induced 

plantlets in which their concentrations were in the range of 1 to 4 nmol g-1 FW 

throughout the vegetative growth to floral transition (Fig. 5.8). Besides, BA-induced 

plantlets contained approximately 500 pmol  g-1 FW of ZR and less than 100 pmol g-1 

FW of ZMP during these growth stages. At the stage of floral bud development, BA-

induced plantlets contained 50, 80 and 100 % more of Z, Z9G and ZR than the non- 
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Fig. 5.6 Levels of total cytokinins (excluding BA) in non-induced (open symbols) and 
BA-induced (closed symbols) D. Chao Praya Smile at different days after culture. 
Same letters above the closed symbols indicate no significant difference among the 
levels of total cytokinins in the BA-induced plantlets (One-Way ANOVA Tukey’s 
test at 95 % confidence level). Asterisk following the letter indicates significant 
difference in the levels of total cytokinins between the BA-induced and non-induced 
plantlets at the specific day after culture (2-Sample t-test at 95 % confidence level). 
Vertical bars denote SE. n = 3.  
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Fig. 5.7 Percentage composition of Z-, iP- and DHZ-type cytokinins in non-induced 
(a) and BA-induced (b) D. Chao Praya Smile at different days after culture. Same 
letters above the bars indicate no significant difference among the percentage 
compositions of Z-, iP- or DHZ-type cytokinins in the BA-induced plantlets (One-
Way ANOVA Tukey’s test at 95 % confidence level). Vertical bars denote SE. n = 3. 
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Fig. 5.8 Concentrations of zeatin (Z) (a), zeatin riboside (ZR) (b), zeatin-9-glucoside 
(Z9G) (c) and zeatin riboside-5’-monophosphate (ZMP) (d) in non-induced (open 
symbols) and BA-induced (closed symbols) D. Chao Praya Smile at different days 
after culture. Same letters above the closed symbols indicate no significant difference 
among the concentrations of cytokinins in the BA-induced plantlets (One-Way 
ANOVA Tukey’s test at 95 % confidence level). Asterisks following the letters 
indicate significant difference in the concentrations of cytokinins between the BA-
induced and non-induced plantlets at the specific day after culture (2-Sample t-test at 
95 % confidence level). Vertical bars denote SE. n = 3. 
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induced plantlets (Fig. 5.8a, b and d). 

BA-induced plantlets contained 150 to 300 pmol g-1 FW of iP-type cytokinins 

throughout the growth from vegetative phase to flowering (Fig. 5.9). At floral 

transition, BA-induced plantlets contained approximately 68 % more of iPR than the 

vegetative non-induced plantlets (Fig 5.9b). It was also observed that BA-induced 

plantlets contained significantly more iP-type cytokinins (in the range of 70 to 100 %) 

than the non-induced plantlets, when floral buds were being formed. On the other 

hand, the concentrations of DHZ-type cytokinins in BA-induced D. Chao Praya Smile 

remained quite constant at different growth stages (Fig. 5.10). It was noted that BA-

induced plantlets contained 135 % more of DHZMP during floral buds development 

(Fig. 5.10d).  

The concentration of BA in BA-induced plantlets was continuously increasing 

during the vegetative growth and reached its peak during floral transition at 12.7 ± 3 

nmol g-1 FW (Fig. 5.11a). Its concentration was reduced in the two-layer culture 

medium when flower buds were produced. In contrast, BA was not detected in non-

induced plantlets. Conversely, the concentration of IAA in BA-induced plantlets was 

reduced when the treatment started and remained it less than 1 nmol g-1 FW at 

different growth stages till flowering (Fig. 5.11b).  

The ratios of total cytokinins (excluding BA) to IAA were calculated in non-

induced and BA-induced plantlets at various growth stages (Fig. 5.12). The results 

showed that the CKs/IAA ratio was 7.2 folds higher in BA-induced plantlets than the 

non-induced plantlets at floral transition. It was also noted that at the stage of floral 

bud development, BA-induced plantlets showed a 2.8 folds higher CKs/IAA ratio 

than the vegetative non-induced plantlets. 
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Fig. 5.9 Concentrations of isopentenyladenine (iP) (a), isopentenyladenosine (iPR) 
(b), isopentenyladenine-9-glucoside (iP9G) (c) and isopentenyladenosine-5’-
monophosphate (iPMP) (d) in non-induced (open symbols) and BA-induced (closed 
symbols) D. Chao Praya Smile at different days after culture. Same letters above the 
closed symbols indicate no significant difference among the concentrations of 
cytokinins in the BA-induced plantlets (One-Way ANOVA Tukey’s test at 95 % 
confidence level). Asterisks following the letters indicate significant difference in the 
concentrations of cytokinins between the BA-induced and non-induced plantlets at the 
specific day after culture (2-Sample t-test at 95 % confidence level). Vertical bars 
denote SE. n = 3. 
 
 
 
 
 
 
 
 



 130 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.10 Concentrations of dihydrozeatin (DHZ) (a), dihydrozeatin riboside (DHZR) 
(b), dihydrozeatin-9-glucoside (DHZ9G) (c) and dihydrozeatin riboside-5’-
monophosphate (DHZMP) (d) in non-induced (open symbols) and BA-induced 
(closed symbols) D. Chao Praya Smile at different days after culture. Same letters 
above the closed symbols indicate no significant difference among the concentrations 
of cytokinins in the BA-induced plantlets (One-Way ANOVA Tukey’s test at 95 % 
confidence level). Asterisks following the letters indicate significant difference in the 
concentrations of cytokinins between the BA-induced and non-induced plantlets at the 
specific day after culture (2-Sample t-test at 95 % confidence level). Vertical bars 
denote SE. n = 3. 
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Fig. 5.11 Concentrations of benzyladenine (BA) (a) and indole-3-acetic acid (IAA) 
(b) in non-induced (open symbols) and BA-induced (closed symbols) D. Chao Praya 
Smile at different days after culture. Same letters above the closed symbols indicate 
no significant difference among the concentrations of BA or IAA in the BA-induced 
plantlets (One-Way ANOVA Tukey’s test at 95 % confidence level). Asterisks 
following the letters indicate significant difference in the concentrations of BA or 
IAA between the BA-induced and non-induced plantlets at the specific day after 
culture (2-Sample t-test at 95 % confidence level). Vertical bars denote SE. n = 3. 
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Fig. 5.12 Ratios of total cytokinins (excluding BA) to IAA (CKs/IAA) in non-induced 
(open symbols) and BA-induced (closed symbols) D. Chao Praya Smile at different 
days after culture. Same letters above the closed symbols indicate no significant 
difference among the CKs/IAA in the BA-induced plantlets (One-Way ANOVA 
Tukey’s test at 95 % confidence level). Asterisk following the letters indicates 
significant difference in CKs/IAA between the BA-induced and non-induced plantlets 
at the specific day after culture (2-Sample t-test at 95 % confidence level). Numbers 
above the symbols indicate the results of CKs/IAA (BA-induced) divided by 
CKs/IAA (non-induced) at the specific day after culture. Vertical bars denote SE. n = 
3. 
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5.3.4 Changes in cytokinins and IAA in various plant tissues 

Cytokinins and IAA in the shoot apex, stem and leaf base, stem base and leaf 

were analyzed in each of the BA-induced plantlets after 54 days of culture, which was 

at the stage of floral transition. The positions of these tissues were indicated in Fig. 

4.2. Relative distances of these tissues, with respect to the shoot apex, were also as 

illustrated in Fig. 5.13. The shoot apices of both non-induced and BA-induced 

plantlets were enriched with Z-, iP- and DHZ-type cytokinins. The concentrations of 

Z-, iP- and DHZ-type cytokinins in the shoot apices were approximately 4, 2 and 4 

times more, respectively, than those in other plant tissues (Fig. 5.14). In addition, 

there were about 9 % more of iP-type cytokinins in the shoot apices of the BA-

induced plantlets than the non-induced plantlets. Beneath the shoot apices, the stems 

and leaf bases of BA-induced plantlets were found to contain more Z- and iP-type 

cytokinins (26 and 52 %, respectively) than non-induced plantlets (Fig. 5.14a and b). 

Similarly, the stem bases of BA-induced plantlets, which were located farthest away 

from the shoot apices along the stem axis, also contained more Z- and iP-type 

cytokinins (99 and 90 %, respectively). Therefore, in comparison to non-induced 

plantlets, a gradient of significantly higher levels of iP-type cytokinins were found 

along the stem axes of BA-induced plantlets; however, cytokinin concentration 

decreased basipetally. In contrast, DHZ-type cytokinin level in BA-induced plantlets 

was not significantly different from that of the non-induced plantlets in all the tissues 

analyzed (Fig. 5.14c). Leaves of BA-induced and non-induced plantlets contained 

similar concentrations of the three types of cytokinins (Fig. 5.14a, b and c). 

 Among the cytokinins analyzed, other than BA, which was used to induce 

flowering, iPR level was found to increase most significantly in the shoot apex of BA-

induced plantlet at floral transition; thus was approximately 20 % more than that in  
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Fig. 5.13 Relative distances of various tissues in D. Chao Praya Smile plantlet. (a) 
Schematic representation of a non-induced D. Chao Praya Smile after 54 days of 
culture. Various tissues were indicated in the drawing at which cytokinins and IAA 
were analyzed. sa, s + lb, sb, r and l indicate shoot apex, stem + leaf base, stem base, 
root and leaf, respectively. (b) Relative distances of various tissues in the plantlet with 
respect to the shoot apex. The shoot apex and root were arbitrarily assigned as 0 and 
1, respectively, in distances. Numbers in the parentheses indicate the relative 
distances of each tissue measured from the center of the tissue to the shoot apex.  
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Fig. 5.14 Distribution of Z- (a), iP- (b) and DHZ-type (c) cytokinins in various tissues 
of non-induced (dark grey bars) and BA-induced (light grey bars) D. Chao Praya 
Smile plantlets during floral transition. sa, s+lb, sb and l refer to shoot apex, stem + 
leaf base, stem base and leaf, respectively. Same letters above the light grey bars 
indicate no significant difference among the concentrations of cytokinins in the BA-
induced plantlets (One-Way ANOVA Tukey’s test at 95 % confidence level). 
Asterisks following the letters indicate significant difference in the concentrations of 
cytokinins between the BA-induced and non-induced plantlets in the specific type of 
tissue (2-Sample t-test at 95 % confidence level). Vertical bars denote SE. n = 3. 
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the non-induced plantlet (Fig. 5.15). Moreover, there were 82 % more of iPR in the 

leaves of BA-induced plantlet during the change from a vegetative to reproductive 

phase (Fig. 5.16). Besides iPR, there were also 11 % more of Z and iP9G in the shoot 

apex of BA-induced plantlet. In comparison to the non-induced plantlets, the stems 

and leaf bases of BA-induced plantlets showed 24 to 37 % more of Z, ZR, Z9G, iP, 

iP9G and iPMP (Fig. 5.17). Similarly, there were 61 to 114 % more of these 

cytokinins in the stem base of BA-induced plantlet (Fig. 5.18). In contrast, IAA level 

reduced by approximately 50 and 64 % in the shoot apices and stems and leaf bases, 

respectively (Fig. 5.15 and 5.17). BA was detected in all tissues of BA-induced 

plantlet. There was a gradient of BA along the stem axis of BA-induced plantlet in 

which the stem base contained approximately 5.5 times more BA than the shoot apex 

(Fig 5.15, 5.17 and 5.18). In contrast, BA was undetected in non-induced plantlets. 

Apart from this, cytokinins and IAA were also analyzed in the roots of non-induced 

plantlet. Roots were not produced in the BA-induced plantlet during floral transition. 

Roots of non-induced plantlet contained IAA and Z at concentrations above 5.5 nmol 

g-1 FW (Fig. 5.19). They were followed by Z9G and ZR which were present in the 

range of 1.2 to 2.5 nmol g-1 FW. The iP-type cytokinins and DHZ were also detected 

and their levels ranged between 0.47 to 0.71 nmol g-1 FW.  

The ratios of the levels of total cytokinins (excluding BA) to IAA at various 

distances relative to the shoot apex in non-induced and BA-induced plantlets were 

shown in Fig. 5.20. It was noticed that during floral transition, CKs/IAA ratio was 

two-fold higher in the shoot apex of BA-induced plantlet as compared to that in the 

non-induced plantlet. Farther away from the shoot apex, the CKs/IAA ratios were 

similar in BA-induced and non-induced plantlets (Fig. 5.20). 
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Fig. 5.15 Concentrations of cytokinins and IAA in the shoot apices of non-induced 
and BA-induced D. Chao Praya Smile plantlets during floral transition. Asterisks 
indicate significant difference in the concentrations of cytokinins or IAA between 
BA-induced and non-induced plantlets (2-Sample t-test at 95 % confidence level). 
Vertical bars denote SE. n = 3. 
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Fig. 5.16 Concentrations of cytokinins and IAA in the leaves of non-induced and BA-
induced D. Chao Praya Smile plantlets during floral transition. Asterisks indicate 
significant difference in the concentrations of cytokinins or IAA between BA-induced 
and non-induced plantlets (2-Sample t-test at 95 % confidence level). Vertical bars 
denote SE. n = 3. 
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Fig. 5.17 Concentrations of cytokinins and IAA in the stems and leaf bases of non-
induced and BA-induced D. Chao Praya Smile plantlets during floral transition. 
Asterisks indicate significant difference in the concentrations of cytokinins or IAA 
between BA-induced and non-induced plantlets (2-Sample t-test at 95 % confidence 
level). Vertical bars denote SE. n = 3. 
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Fig. 5.18 Concentrations of cytokinins and IAA in the stem bases of non-induced and 
BA-induced D. Chao Praya Smile plantlets during floral transition. Asterisks indicate 
significant difference in the concentrations of cytokinins or IAA between BA-induced 
and non-induced plantlets (2-Sample t-test at 95 % confidence level). Vertical bars 
denote SE. n = 3. 
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Fig. 5.19 Concentrations of cytokinins and IAA in the roots of non-induced D. Chao 
Praya Smile plantlets after being grown in liquid medium for 54 days.  
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Fig. 5.20 Ratios of the levels of  total cytokinins (excluding BA) to IAA (CKs/IAA) 
in BA-induced (closed circles) and non-induced (open circles) D. Chao Praya Smile 
plantlets at various distances from the shoot apices after 54 days of culture. During 
this time, the BA-induced plantlets were undergoing floral transition. Same letters 
above the closed circles indicate no significant difference among the CKs/IAA in BA-
induced plantlets (One-Way ANOVA Tukey’s test at 95 % confidence level). Vertical 
bars denote SE. n = 3. 
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5.3.5 Cloning and expression of DCPSCKX in D. Chao Praya Smile 

RT-PCR was carried out using shoot apex total RNA as template and primers 

that were designed based on the conserved regions in Dendrobium “Sonia” and 

Dendrobium huoshanense. A PCR product band of approximately the correct size 

(465 bp) was resolved on agarose gel electrophoresis and subsequently purified. 

Nucleotide sequence analysis revealed that the isolated fragment represented the 

partial sequence of DCPSCKX, showing 99 and 97 % sequence similarities the 

corresponding regions of CKXs from D. “Sonia” and D. huoshanense, respectively 

(Fig. 5.21). The fragment also showed 98 and 88 % sequence similarities with the 

corresponding regions of CKX proteins from D. “Sonia” and D. huoshanense, 

respectively (Fig. 5.22). The cloned fragment also included part of the characteristic 

FAD-binding domain of CKX genes. The isolated fragment was therefore used as a 

probe to analyze DCPSCKX expression in D. Chao Praya Smile.  

Expression of DCPSCKX was found to increase dramatically in BA-induced 

plantlets and remained significantly higher than the non-induced plantlets throughout 

different stages of growth (Fig. 5.23). Thus, it was apparent that DCPSCKX 

expression was induced by BA treatment. The expression of DCPSCKX in the 

plantlets increased by more than 33 times after they were grown in BA-containing 

liquid medium for 20 days as compared to untreated protocorms. During floral 

transition, the expression of DCPSCKX was 17.4 higher in BA-induced plantlets as 

compared to the non-induced plantlets which remained vegetative at time. The 

expression of DCPSCKX was quite homogenous in the shoot apex, stem and leaf 

base, stem base and leaf of BA-induced plantlets during floral transition (Fig. 5.24) 
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Fig. 5.21 Nucleotide alignment of partial DCPSCKX with CKXs from D. “Sonia” 
(DSCKX1; AJ294542) and D. huoshanense (DhCKX; EF213077). Sequences were 
aligned using the Clustal W program (Thompson et al., 1994). The positions of 
nucleotides are given on the right. The stars below each line of alignment indicate 
conserved sites. 
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Fig. 5.22 Amino acid alignment of partial DCPSCKX with CKXs from D. “Sonia” 
(DSCKX1; CAC17752) and D. huoshanense (DhCKX; ABM98099). Sequences were 
aligned using the Clustal W program (Thompson et al., 1994). The line represents the 
consensus FAD-binding region. FAD-binding motifs (GHS) are underlined. The 
positions of amino acids are given on the right. The stars below each line of alignment 
indicate conserved sites. 
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Fig. 5.23 Expression of DCPSCKX at various growth stages in D. Chao Praya Smile. 
(a) Semi-quantitative RT-PCR analysis of DCPSCKX. Flowering was induced using 
11.1 µM of BA and non-induced plantlets were used as controls. Total RNA was 
extracted and reverse transcribed for the analysis. Expression of Actin gene was used 
as control. (b) Relative levels of DCPSCKX transcripts for BA-induced (closed 
circles) and non-induced (open circles) plantlets at various stages. Transcript levels of 
BA-induced plantlets after 54 days of culture were arbitrarily set as 1. Transcript 
levels for DCPSCKX products were determined by intensity-based quantification of 
each product using the ImageJ software. Numbers above the symbols indicate the 
results of relative transcript abundances (BA-induced) divided by relative transcript 
abundances (non-induced) at the specific day after culture.  Same letters above the 
closed circles indicate no significant difference among the relative transcript 
abundances in BA-induced plantlets (One-Way ANOVA Tukey’s test at 95 % 
confidence level). Asterisks following the letters indicate significant difference in 
relative transcript abundances between the non-induced and BA-induced plantlets at 
the specific day after culture (2-Sample t-test at 95 % confidence level). Vertical bars 
denote SE. n = 3. 
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Fig. 5.24 Expression of DCPSCKX in different tissues of BA-induced D. Chao Praya 
Smile plantlets at floral transition. (a) Semi-quantitative RT-PCR analysis of 
DCPSCKX in different tissues. sa, l, s+lb and sb refer to shoot apex, leaf, stem and 
leaf base and stem base, respectively. Total RNA was extracted from the respective 
tissues and reverse transcribed for the analysis. Expression of Actin gene was used as 
control. (b) Relative levels of DCPSCKX transcripts in different tissues of BA-
induced plantlets. Transcript level of DCPSCKX in shoot apex was arbitrarily set as 1. 
Transcript levels for DCPSCKX products were determined by intensity-based 
quantification of each product using ImageJ software. Vertical bars denote SE. n = 3. 
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5.3.6 Effects of iP, iPR, IAA and TIBA on induction of flowering 

Only a very low percentage of the plantlets (2 ± 1.7 %) were induced to flower 

by 22.2 µM of iP (Table 5.2). In contrast, iPR could induce flowering, as efficient as 

BA, with the highest percentage of flowering (36 ± 6.7 %) achieved at 22.2 µM. On 

the other hand, IAA at as low as 0.25 µM, completely nullified the flowering-

inductive effect of BA. Interestingly, addition of the auxin transport inhibitor, TIBA, 

to the culture medium was found to induce flowering in D. Chao Praya Smile at 1 – 

10 µM (Table 5.2). The highest percentage of flowering (30 ± 8.7 %) was obtained 

with the addition of 2 µM TIBA. Nonetheless, it was observed that approximately 5 

% of the plantlets flowered in media containing no plant growth regulator (Table 5.2). 

Flowering in plant growth regulator-free media was not consistent because only one 

or two plantlets flowered in one or two replicates of the triplicates. In addition, only 

inflorescence stalks were produced in these plantlets and no floral buds were formed.  

Growth of D. Chao Praya Smile plantlets was not affected by the various plant 

growth regulators tested (Fig. 5.25 and Table 5.3). Plantlets grown in media 

containing iP, iPR, IAA or TIBA showed similar morphology as well as FW, dry 

weight, number of leaf and leaf size as those grown in medium containing BA.  

 

5.3.7 Expression of DCPSknox and DCPSCKX in shoot apices of plantlets 

treated with BA, iP, iPR, IAA and TIBA  

The expression of DCPSknox was highest in the shoot apices of D. Chao Praya 

Smile plantlets treated with BA (Fig 5.26). This gene was also expressed in the shoot 

apices of iP, iPR and TIBA treated plantlets, which showed flowering at their 

respective treatment concentrations, at levels lower but close to that in BA-induced 
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Table 5.2 Effects of cytokinins (iP and iPR), auxin (IAA) and auxin transport inhibitor 
(TIBA) on flowering induction in D. Chao Praya Smile.  

 

 
 

Plantlets were grown in liquid medium with varying concentrations of iP, iPR, IAA (and 
11.1 µM BA) or TIBA for 54 days followed by the two-layer medium. Scoring of 
inflorescence production was made at 10 weeks in the two-layer medium. 
#Same letters following the numbers indicate no significant difference among the 
percentages of flowering (One-Way ANOVA Tukey’s test at 95 % confidence level). n = 
3. 
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Fig. 5.25 Morphology of D. Chao Praya Smile plantlets after growing in 
liquid medium supplemented with BA (11.1 µM), iP (22.2 µM), iPR (22.2 
µM), IAA (0.5 µM) + BA (11.1 µM) or TIBA (2 µM) for 54 days. Bar = 8 
mm. 
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Table 5.3 Characteristics of D. Chao Praya Smile plantlets after growing in liquid media supplemented with BA (11.1 µM), iP (22.2 µM), 
iPR (22.2 µM), IAA (0.5 µM) + BA (11.1 µM) or TIBA (2 µM) for 54 days. 

 

 
 

#Same letters following the numbers of each characteristic indicate no significant difference among the characteristic (One-Way ANOVA 
Tukey’s test at 95 % confidence level). n = 10.
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Fig. 5.26 Expression of DCPSknox and DCPSCKX in shoot apices of D. Chao Praya 
Smile plantlets treated with various plant growth regulators after 54 days of culture. 
The plantlets were treated with BA (11.1 µM), iP (22.2 µM), iPR (22.2 µM), IAA (0.5 
µM) + BA (11.1 µM) or TIBA (2 µM). (a) Semi-quantitative RT-PCR analysis of 
DCPSknox and DCPSCKX in the shoot apices of plantlets subjected to various 
treatments. Total RNA was extracted from shoot apices of the plantlets and reverse 
transcribed for the analysis. Expression of Actin gene was used as control. (b) 
Relative levels of DCPSknox (dark grey bars) and DCPSCKX (light grey bars) 
transcripts in shoot apices of plantlets subjected to various treatments. Transcript 
levels of DCPSknox and DCPSCKX in shoot apices of BA-treated plantlets were 
arbitrarily set as 1. Transcript levels for DCPSknox and DCPSCKX products were 
determined by intensity-based quantification of each product using the ImageJ 
software. Same letters above the bars indicate no significant difference among the 
relative transcript abundances (One-Way ANOVA Tukey’s test at 95 % confidence 
level). Vertical bars denote SE. n = 3. 
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plantlets. In contrast, the expression of DCPSknox in the shoot apices of plantlets 

treated with IAA and BA simultaneously, in which no flowering was induced, was 

significantly lower than that in flowering plantlets. Therefore, the expression of 

DCPSknox was in the decreasing order of BA > iPR > iP > TIBA >> IAA + BA 

treatments. 

Similar to DCPSknox, expression of DCPSCKX was the highest in the shoot 

apices of BA-induced plantlets (Fig 5.25). Shoot apices of plantlets treated with iPR, 

TIBA and iP showed similar expression of DCPSCKX, in the range of 30 – 46 % of 

that in BA-induced plantlets. The expression of DCPSCKX was undetected in the 

shoot apices of plantlets treated with IAA and BA simultaneously. Thus, the 

expression of DCPSknox was in the decreasing order of BA > iPR > TIBA, iP 

treatments.  

 

5.4 Discussion 

Most naturally occurring cytokinins are adenine derivatives and can be 

classified by the configuration of their N6-side chain as either isoprenoid or aromatic. 

The development of sensitive analytical methods for the determination of cytokinin 

levels in plant tissues was crucial to elucidate the roles of cytokinins. Various 

methods have been developed for the analysis of cytokinins in plant tissues and they 

include HPLC, gas chromatography and capillary electrophoresis (Tarkowski et al., 

2009) for instance. In the present study, a sensitive and efficient HPLC-ESI-MS/MS 

method for the separation and quantification of various cytokinins and IAA extracted 

from D. Chao Praya Smile was developed (Fig. 5.1 to 5.5 and Table 5.1). The 

development of this method was important because it represented a tool to investigate 

the changes in levels of cytokinins and IAA in the D. Chao Praya Smile plantlets upon 
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flowering induction using BA. HPLC was suggested as a particularly suitable 

technique for cytokinin analysis in view of the facts that cytokinins exhibit gradients 

in polarity and are readily detected by UV absorbance (Chen et al., 1987). Among all 

the methods developed, HPLC-ESI-MS/MS represented the most common method in 

cytokinin analysis (Tarkowski et al., 2009). A HPLC-ESI-MS/MS with Multiple 

Reaction Monitoring was developed as a fast and sensitive method for the 

determination of 16 compounds including IAA and its metabolites (Prinsen et al., 

1997). It was anticipated that HPLC-MS/MS would continue to become important 

tool in cytokinin analysis in plant science because, apart from sensitivity, this method 

could provide structural information based on the fragmentation patterns and 

cytokinins could be analyzed without the need of derivatization (Tarkowski et al., 

2009). 

Analysis of cytokinins and IAA in flowering-induced plants was crucial 

towards the understanding of flowering mechanism in view of the fact that their 

contents could change in flowering-induced plants and could therefore be directly 

related to flowering. In the analysis of cytokinins at various growth stages during 

flowering induction in D. Chao Praya Smile, iPR level increased by more than 1.5 

folds during floral transition (Fig. 5.9b). Furthermore, there were 20 % more of iPR at 

the shoot apex of the plantlet during this transitional phase (Fig. 5.15). The iPR in the 

shoot apex of D. Chao Praya Smile during floral transition could be transported from 

the leaves because there was even a higher concentration of iPR in the leaf tissues 

during floral transition (Fig. 5.16). The present findings were in accordance with other 

reports on different plant species which have indicated the role of cytokinins, 

especially the iP-type cytokinins, in floral transition. In Arabidopsis, cytokinin 

analysis in leaves and leaf exudate in long-day (LD)-induced plants has indicated the 
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role of cytokinins as a component of floral stimulus of leaf origin (Corbesier et al., 

2003). The concentrations of iPR and iPMP markedly increased in the leaf exudate 

during floral transition upon LD induction (Corbesier et al., 2003). Similarly, the 

concentrations of iP-type cytokinins increased in the leaf tissues of Arabidopsis 

following flowering induction using triacontanol, cerium and lanthanum (He and Loh, 

2002). In another LD plant S. alba, iP and iPR levels were found to increase in the 

leaf exudate following inductive LD treatment (Lejuene et al., 1988). In addition, 

there was a 1.5 – 2 folds increase in the levels of iP-type cytokinins in the phloem sap 

feeding the shoot apex (Lejeune et al., 1994). In orchid hybrids such as Dendrobium 

Second Love (de Melo Ferreira et al., 2006) and Dendrobium Madame Thong-In (Sim 

et al., 2008), plantlets induced to flowering in vitro using thidiazuron and BA, 

respectively, were also found to contain significant higher levels of iP and iPR during 

floral transition as compared vegetative plantlets. During flower bud development in 

D. Chao Praya Smile, the levels of Z-type and iP-type cytokinins were found to 

increase. However, it was found in Humulus lupulus that during flower development, 

the levels of Z-type and iP-type cytokinins reduced as compared to vegetative 

development (Villacorta et al., 2008). It was noted in the examples discussed above, 

various modes of flowering induction have been employed which included 

appropriate daylength, chemicals and plant growth regulators. Therefore, all the 

findings appeared to imply that iP and iPR were essential and commonly involved in 

the initiation of flowering in various plant species regardless of the modes of 

induction. However, it is difficult to conclude whether several folds increase in the 

cytokinins can induce different physiological phenomena.  

In the monopodial orchid Aranda deborah, a flowering gradient has been 

reported to exist along the stem axis and it diminished basipetally (Goh, 1975). The 
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nature of the axillary shoots produced upon decapitation, whether vegetative or 

reproductive, was correlated to their position along the stem axis (Goh, 1975). Buds 

nearer to the apex developed into inflorescences while those further away from the 

apex developed into vegetative shoots (Goh, 1975). The flowering gradient has also 

been observed in other monopodial orchids such as Holttumara Maggie Manson and 

Aranthera James Storie (Hew and Yong, 1997). Goh (1974) suggested that the 

flowering gradient could be regulated by the levels of growth substances along the 

stem axis, especially auxin, based on the observation that auxin application stimulated 

vegetative shoot production in decapitated orchids. The hormonal nature of the 

flowering gradient was further substantiated by the findings showing that the aerial 

root tips closer to the apex of flowering Aranda Noorah Alsagoff contained higher 

level of cytokinins than those in non-flowering plant (Zhang et al., 1995). In this 

study, a gradient of iP-type cytokinins was found to exist along the stem axis, with 

concentrations decreasing towards the basal part of BA-induced D. Chao Praya Smile 

plantlet at floral transition (Fig. 5.14). Therefore, it was likely that a flowering 

gradient, which was iP-type cytokinins in nature, existed in this Dendrobium hybrid.  

High cytokinin/IAA ratios have been reported to be essential in the flowering 

of certain plant species such as bromeliads and longan (Mercier and Endres, 1999; 

Hegele et al., 2008). Similarly, floral transition in S. alba was characterized by a 

decrease in the IAA/cytokinins ratio in the apical bud (Sotta et al., 1992). In Vanda 

Miss Joaquim, the endogenous auxin was lower when grown under high irradiance 

that was in favor of flowering, and vice versa (Hew and Yong, 1997). It was 

suggested that the ratio of cytokinin/auxin, rather than the absolute amount of auxin, 

was the important determinant of flowering in this orchid. Auxin was suggested to 

control apical dominance by repressing local biosynthesis of cytokinins in the apical 
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bud (Tanaka et al., 2006). Therefore, cytokinin application probably promoted 

flowering by releasing the buds from apical dominance controlled by auxin (Hew and 

Yong, 1997). This could also explain the flowering-promoting effect of a high 

cytokinins/IAA ratio in plant. In flowering-induced D. Chao Praya Smile plantlets, the 

cytokinins/IAA ratio at floral transition was more than 7 times higher than that in the 

vegetative plantlet (Fig. 5.12). Moreover, the ratio of cytokinins/IAA in the shoot 

apices of flowering-induced plantlets was approximately two folds of those in the 

non-induced plantlets (Fig 5.20). Higher cytokinins/IAA ratio in the BA-induced 

plantlets could be attributed to inhibited root growth in these plantlets. Roots were 

produced extensively in non-induced plantlets and were found to be a significant 

source of IAA (Fig. 5.19). Therefore, the results obtained probably indicated that, 

similar to the case of Vanda Miss Joaquim, it was the cytokinin/IAA ratio and not the 

absolute cytokinin concentration that determined in vitro flowering in D. Chao Praya 

Smile. Nonetheless, the cytokinins/IAA ratio in the flowering-induced D. Second 

Love at floral transition was not higher than that in the vegetative phase (de Melo 

Ferreira et al., 2006) probably due to limited cytokinins analyzed. In view of the fact 

that BA accumulated in the shoot apices of the induced plantlets, it was possible that 

exogenously applied BA could act directly on SAM and induce flowering; and 

cytokinin (including BA) might have a real meaning as hormone function. The 

involvement of endogenous cytokinins in floral induction could be further clarified by 

investigating the expression of cytokinin biosynthesis genes and the changes of 

endogenous cytokinins during floral transition without applying exogenous BA.  

CKX, which has substrates specificity for iP and iPR, plays a significant role 

in cytokinin metabolism in plants by catalyzing the irreversible degradation of 

cytokinins (Mok and Mok, 2001). The results obtained showed that DCPSCKX was 
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markedly upregulated in D. Chao Praya Smile plantlets treated with BA, and 

remained significantly higher than that of the non-induced plantlets at various growth 

stages (Fig. 5.23). Similarly, D. “Sonia” and D. huoshanense CKX genes were found 

to be rapidly upregulated in the presence of BA (Yang et al., 2003; Wang et al., 

2008b). The CKX gene isolated from maize was also shown to be rapidly induced by 

exogenous application of BA at concentration as low as 0.01 µM (Brugière et al., 

2003). A higher expression of DCPSCKX, which is associated with the degradation of 

cytokinins, in the BA-induced plantlets should have resulted in reduced cytokinin 

contents in the plantlets. However, the total cytokinin contents in these plantlets were 

not reduced and their concentrations were similar to those of the non-induced plantlets 

at different growth stages (Fig. 5.6). One of the possible explanations for this 

observation was the stimulation of cytokinin biosynthesis in BA-induced plantlets. It 

has been proposed that exogenously applied BA could trigger a positive feedback 

loop that involved cytokinin biosynthesis to increase the cytokinin content in plant 

(Kamínek et al., 1997). The cytokinins synthesized would in turn serve as substrates 

that stimulated the expression of CKX gene. The enhancement of CKX activity by 

exogenous application of cytokinins could be under transcriptional or translational 

regulation as it was sensitive to inhibitors of RNA and protein synthesis (Chatfield 

and Armstrong, 1988).  

The homogenous expression of DCPSCKX in different tissues in D. Chao 

Praya Smile plantlets at floral transition (Fig. 5.24) probably indicated that DCPSCKX 

response to BA treatment was not tissue specific and cytokinin degradation could take 

place in all tissues. It could further imply that the cytokinin biosynthesis stimulated by 

BA application, if it did exist in D. Chao Praya Smile, was taking place in the entire 
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plantlet during floral transition. Other CKX homologues in D. Chao Praya Smile could 

be investigated to understand the roles of these genes in the plantlets. 

The significant role of iPR in the flowering of D. Chao Praya Smile was 

further substantiated by its capability to induce flowering at efficiency on par with BA 

(Table 5.2). It was deduced that iPR probably acted downstream upon BA treatment 

and participated directly in flowering initiation in the SAM, in view of its 

accumulation at the shoot apex during floral transition. The iPR was not derived from 

its free base because treatment with iP hardly induced flowering in D. Chao Praya 

Smile (Table 5.2). On the other hand, the inhibitory role of IAA on flowering was 

verified by treating BA-induced plantlets with this plant growth regulator (Table 5.2). 

IAA has also been shown to inhibit the photoperiodic induction of flowering in 

Pharbitis nil (Kęsy et al., 2008). It was possible that IAA inhibited flowering in D. 

Chao Praya Smile by disrupting the cytokinin/auxin ratio in the plantlets as it was 

found that TIBA, an auxin transport inhibitor, was able to induce flowering in this 

orchid hybrid (Table 5.2). TIBA application was shown to reduce the amount of IAA 

below the site of application when it was applied at the internode nearest to the shoot 

tip (Ross, 1998) and increased the endogenous cytokinin concentrations (Ito, 2001). 

Therefore, it was likely that TIBA induced flowering in D. Chao Praya Smile (Table 

5.2) by reducing the IAA content and thereby maintaining a higher cytokinin/IAA 

ratio which was in favor to flowering. The flowering-promoting effect of TIBA has 

also been shown in Tulipa gesneriana (Geng et al., 2005). However, TIBA was 

shown to prevent in vitro flowering of Cymbidium niveo-marginatum Mak 

(Kostenyuk et al., 1999) probably indicating the specificity in flowering mechanisms 

in different orchid species. The effects of exogenously applied Z, ZR, DHZ and 

DHZR on flowering induction could also be investigated which may provide 
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suggestive information on the action of these naturally occurring cytokinins; 

especially Z which present at high level in D. Chao Praya Smile.  

DCPSknox and DCPSCKX were probably involved in the BA induction of 

flowering in D. Chao Praya Smile as it was shown that IAA treatment of BA-induced 

plantlets, which nullified the flowering effect of BA (Table 5.2), drastically reduced 

the expression of these two genes (Fig. 5.26). In addition to the role of controlling 

shoot development, DCPSknox might contribute to flowering by increasing the 

cytokinin contents in the plantlets. KNOX proteins have been reported to induce the 

expression of cytokinin biosynthesis gene in Arabidopsis (Yanai et al., 2005) and rice 

(Sakamoto et al., 2006) and hence increased the cytokinin content in the plants. In the 

case of iP and iPR, there was a huge difference in the percentage of flowering despite 

the similar levels of expression of DCPSknox and DCPSCKX (Fig. 5.26). This 

probably indicated the specific role of iPR in flowering induction. DCPSCKX was 

induced because iP and iPR are substrates of CKX (Mok and Mok, 2001). In D. 

“Sonia”, CKX gene was strongly induced by BA and moderately by iP and iPR (Yang 

et al., 2003), as was observed in D. Chao Praya Smile (Fig. 5.26). TIBA is not a 

substrate for CKX.  However, DCPSCKX was expressed in TIBA treated plantlets 

(Fig. 5.26) probably because TIBA increased the cytokinin contents in the plantlet. 

TIBA has been shown to increase the cytokinin levels in the shoot of Japanese pear 

(Ito, 2001). More work would be needed to further elucidate the role of DCPSknox 

and DCPSCKX in flowering induction. 

Bernier et al. (1993) have proposed a model of regulatory loop involving 

sucrose and cytokinins in the control of floral transition in S. alba, a member of the 

Brassicaceae family. In the model, upon perception of LD by leaves, starch was 

mobilized in the leaves and stem while sucrose was transported to both the apical 
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meristem and roots via the phloem. This was followed by the transport of ZR and iPR 

in the xylem from roots to leaves. The final step involved the transport of iP, which 

could be produced locally or converted from iPR, in the phloem from leaves to the 

apical meristem. The apical meristem, enriched with sucrose and iP, then proceeded 

to floral transition (Bernier et al., 1993). The model has been further verified by 

Havelange et al. (2000) using experiments that interrupted phloem and xylem 

transport by bark girdling and growing plants in 100 % relative humidity. 

The model proposed for S. alba could not be adopted for D. Chao Praya 

Smile. Firstly, Tropical Dendrobium hybrids like D. Chao Praya Smile was most 

likely day neutral plants, which were indifferent to daylength (Hew and Yong, 1997). 

Therefore, LD perception that stimulated the translocation of sucrose, which was the 

first step in the proposed model that appeared to trigger the cascade of events leading 

to flowering initiation, might not take place in D. Chao Praya Smile. In addition, the 

results obtained showed that sucrose treatment was insufficient to induce flowering in 

D. Chao Praya Smile (section 3.3.2) and that BA remained as the most important 

factor in flowering induction (Table 3.1). Secondly, root to leaf transport of ZR and 

iPR as proposed in S. alba was unlikely to take place because BA treatment greatly 

inhibited root production in D. Chao Praya Smile (Fig 4.4, Table 4.1). Thirdly, local 

synthesis of iP or conversion of iPR to iP was not seen in the leaves of BA-induced D. 

Chao Praya Smile because its iP concentration was not higher than that in the non-

induced plantlet (Fig. 5.16). Instead, iPR content was higher in the leaves of BA-

induced plantlet (Fig. 5.16), as it was observed in the shoot apex (Fig. 5.15). 

Therefore, it was plausible that iPR, and not iP, participated in flowering initiation in 

D. Chao Praya Smile. Moreover, iPR could induce flowering in D. Chao Praya Smile 

at efficiency similar to BA (Table 5.2). In conclusion, the flowering mechanism might 
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not have been conserved between Brassicaceae and Orchidaceae; the differences 

could arise from the different modes of flowering induction. Nonetheless, it was 

apparent that iP-type cytokinins were significant in the flowering of these two plant 

species.  

 

5.5 Concluding remarks 

A sensitive and efficient HPLC-ESI-MS/MS method to analyze the changes in 

concentrations of cytokinins and IAA in flowering-induced D. Chao Praya Smile was 

developed. It was shown that the level of total cytokinins was not affected upon BA 

treatment and that the concentration of iPR significantly increased in the plantlets 

during floral transition. Besides, it was also found that the cytokinins/IAA ratio in the 

BA-induced plantlets was more than 7 times higher during floral transition than the 

non-induced vegetative plantlets, primarily the result of reduced IAA content in BA-

induced plantlets. Cytokinins and IAA were also analyzed in the various tissues of D. 

Chao Praya Smile undergoing floral transition. Similarly, it was found that the shoot 

apices of BA-induced plantlets contained 20 % more of iPR than the non-induced 

plantlets. It was likely the iPR was transported from the leaves which contained the 

highest concentration of iPR. Besides, a gradient of iP-type cytokinins was observed 

along the stem axes of D. Chao Praya Smile plantlets during floral transition, and this 

was speculated as floral gradient. The shoot apex of D. Chao Praya Smile was also 

found to exhibit a higher cytokinin/IAA ratio during floral transition as a result of 

reduced IAA content. Therefore, it was possible that the endogenous cytokinin/IAA 

ratio, and not the absolute amount cytokinins, determined flowering in D. Chao Praya 

Smile. DCPSCKX was cloned from D. Chao Praya Smile and its expression was 
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drastically upregulated upon BA treatment. Finally, the inductive and inhibitory roles 

of iPR and IAA, respectively, were verified in D. Chao Praya Smile.  
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Chapter 6 

CONCLUSION 

In this study, flowering in Dendrobium Chao Praya Smile was successfully 

induced within 6 months from seed germination in a two-layer medium using 6-

benzyladenine (BA). With careful selection of morphologically normal seedlings prior to 

transfer to the two-layer medium, more than 70 % of the plantlets could be induced to 

flowering in vitro.  The functionality of these in vitro-developed flowers was shown 

through sporad analysis and pollen grain germination. The in vitro-developed flowers 

could be self-pollinated to produce seedpods and viable seeds in culture. This indicated 

the capability of D. Chao Praya Smile to undergo a complete life cycle from seed 

germination to the production of next-generation seeds entirely in culture within a period 

of 11 months. It also implied that orchid breeding could be fast-tracked using in vitro 

flowering and seed production in culture in view of the facts that conventional orchid 

breeding in field-grown plants could take up to several years.  

Morphological examination and histological analysis revealed that D. Chao Praya 

Smile proceeded to floral transition as early as 54 days after BA treatment in liquid 

medium. Subsequent transfer to the two-layer medium allowed the development of floral 

buds. It was also shown that the expression of DCPSknox, which played a role in the 

maintenance of indeterminacy of shoot apical meristem (SAM), was gradually reduced 

during floral transition, probably indicating the commitment of BA-induced plantlets to 

flowering. On the other hand, it was found that both complete and incomplete flowers 

were produced in vitro. Segregation of colors was observed in the complete flowers 

developed in vitro with varying intensity of pink coloration in the lips, petals and sepals. 
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These flowers could be classified into 4 types based on the color intensity in the floral 

organs. To investigate the cause of color segregation, DCPSCHS gene, which was 

involved in anthocyanin production, was cloned and its expression was investigated. The 

results obtained indicated that color segregation in vitro-developed flowers was probably 

naturally occurring as BA-induced and non-induced plantlets showed similar expression 

levels of DCPSCHS. It could also signify that the in vitro flowering system developed 

was suitable for early evaluation of flower characteristics. 

 A HPLC-ESI-MS/MS method was developed to analyze the changes in levels of 

cytokinins and indole-3-acetic acid (IAA) in D. Chao Praya Smile in relation to BA-

induction of flowering. The content of iPR was found to increase in the plantlets during 

floral transition. The shoot apex of the plantlet was found to contain more iPR during this 

phase change which could be transported from the leaves. The significant role of iPR in 

flowering was further substantiated by its capability to induce flowering in D. Chao Praya 

Smile just like BA. The IAA content in BA-induced plantlets was lower than that in the 

non-induced plantlets primarily due to inhibited root growth as the roots were found to 

contain predominantly of IAA. The roots of non-induced plant were found to contain 

predominantly IAA. However, the roots might not be the main source of IAA in view of 

the fact that comparable concentrations of IAA were also detected in other tissues of the 

plantlets. In addition, the shoot apices, leaves and stems of BA-induced plantlets were 

also found to contain IAA during floral transition even when roots were not produced in 

these plantlets. It was reported that the shoot apex was the main site of IAA biosynthesis 

(Normanly et al., 2004). Therefore, it was likely that IAA was synthesized in the shoot 

apices and transported to other tissues in D. Chao Praya Smile plantlets. It was also 
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possible that IAA was synthesized in the roots of D. Chao Praya Smile although evidence 

was not presented in this study. It could be proposed that a higher cytokinins/IAA ratio, 

instead of the absolute amount of cytokinins, could be essential to flowering as it was 

found in the plantlet during floral transition. The inhibitory effect of IAA was verified as 

it could nullify the flowering-inductive effect of BA at concentration as low as 0.25 µM.   

Cytokinin analysis and expression study of DCPSCKX at different growth stages 

provided some clues on the possible mechanisms underlying the BA-induction of 

flowering in D. Chao Praya Smile (Fig. 6.1). It could be proposed that BA induced 

flowering in the plantlets by stimulating a positive feedback loop that relied on cytokinin 

biosynthesis (Kamínek et al., 1997). This could explain well for the presence of 

substantial amount of cytokinins in the plantlets despite the consistent and dramatic 

increase of DCPSCKX expression, which catalyzed the degradation of cytokinins. With 

enhanced cytokinin biosynthesis, iPR could be produced through the dephosphorylation 

of iP nucleotides, which represented the initial products of cytokinin biosynthesis 

(Kakimoto, 2003b). The iPR accumulated in the shoot apex, which could be synthesized 

locally or transported from the leave, then participate in flowering induction. Equally 

important was that BA treatment inhibited root growth in the plantlets, which in turn 

reduced the amount of root-produced IAA and generated a higher cytokinin/IAA ratio in 

the shoot apex that promoted flowering. However, the direct action of BA on flowering 

induction should not be neglected in view of the fact that BA was accumulated in all 

tissues of the plantlets, including the shoot apices. The role of exogenously applied BA 

could only be examined under the condition of no cytokinin biosynthesis.  Nonetheless, 

the actual role of iPR, which accumulated in the shoot apex, in flowering induction  
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Fig. 6.1 Proposed mechanisms underlying the BA-induction of in vitro flowering in D. 

Chao Praya Smile. BA treatment increased the BA content in the plantlets which in turn 

caused the accumulation of natural cytokinins through a positive feedback loop that 

involved cytokinin biosynthesis (route 1, blue arrows). The natural cytokinins 

accumulated served as substrates and stimulated the expression of DCPSCKX. iPR, 

which could be produced through dephosphorylation of iP nucleotides generated in 

cytokinin biosynthesis, stimulated cell division in the SAM and subsequently led to 

flowering. On the other hand, BA treatment inhibited root growth in the plantlets (route 

2, red arrows). In this case, root-produced IAA was reduced and a higher cytokinins/IAA 

ratio that promoted flowering was created in the SAM.  
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remained to be elucidated. It was possible that iPR initiated flowering by stimulating cell  

division in the SAM. Enhanced cell division was shown to be essential before floral 

transition could take place (Jacqmard et al., 2003).  
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Abstract Plantlets of Dendrobium Chao Praya Smile

maintained in vitro were induced to flower, which produced

viable seeds within about 11 months. A two-layer (Gelrite-

solidified layer topped with a layer of liquid medium of the

same volume and composition) culture system containing

benzyladenine (BA) at 11.1 lM induced the highest percent

of flowering (45%) in plantlets within 6 months from ger-

mination. The percentage of inflorescence induction was

increased to 72% by pre-selecting morphologically normal

seedlings prior to two-layer culture. Plantlets in culture

produced both complete (developmentally normal but

smaller than flowers of field grown plants) and incomplete

flowers. Pollen and female reproductive organs of in vitro-

developed complete flowers were morphologically and

anatomically similar to flowers of field grown plants. In

addition, 65% of the pollen grains derived from in vitro-

developed flower were tetrad suggesting that regular meio-

sis occurred during microsporogenesis. The percentage

of germination of pollen grains derived from in vitro-

developed flowers and flowers of field grown plants, incu-

bated on modified Knops’ medium for 8 days, were 18.2 and

52.8%, respectively. Despite a lower percentage of germi-

nation of the pollen grains derived from in vitro-developed

flowers, flowers induced in culture could be self-pollinated

and developed seedpods with viable seeds. Nearly 90% of

these seeds developed into protocorms on germination

in vitro. These seedlings were grown in culture and induced

to flower in vitro again using the same procedure.

Keywords Dendrobium Chao Praya Smile �
In vitro flowering � Seed production in culture �
Sporad analysis � Pollen germination

Introduction

The increase in popularity of orchids in Asia, Europe and the

United States has led to continued increase in worldwide

orchid production (Winkelmann et al. 2006). Also, with

increasing demand for orchid cut-flowers and potted plants,

the need to generate new commercial cultivars is constantly

expanding. Conventional orchid breeding is time consum-

ing, irrespective of the demand for new clones, because

orchid propagation requires a long period of in vitro culture.

Orchid breeding involves pollination, seedpod maturation,

protocorm development, in vitro growth of seedlings and

subsequent ex vitro establishment of seedlings. The entire

breeding cycle could be between 3 and 5 years depending on

the genotypes involved (Kamemoto et al. 1999). For

instance, it has been shown that breeding Dendrobium

hybrids could take up to 5 years (Fadelah 2006). This is

primarily due to the long juvenility of these orchids which

can span up to 30 months. Juvenility refers to the early phase

of plant growth during which flowering does not occur

normally under natural conditions (Hew and Yong 1997).

To keep in pace with the increasing demand, methods

for rapid in vitro propagation of orchids have been devel-

oped (Martin and Madassery 2006; Kuo et al. 2005; Nayak

et al. 2002; Park et al. 2002). To overcome the long

juvenile phase of orchid cultures, protocols to induce early

in vitro flowering have been developed in several Dendr-

obium orchids (Sim et al. 2007; Ferreira et al. 2006; Wang

et al. 1997). These early in vitro flowering protocols could

shorten the time required for flowering, which could be
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used to get an early indication of floral characteristics. But

more importantly, in vitro flowering could be used to fast-

track breeding, provided viable seed production can be

realized with such a system. Production of viable orchid

seeds in culture following crossing has not been reported to

date. The objectives of our study were: (1) to induce

in vitro flowering in Dendrobium Chao Praya Smile; (2) to

produce seedpods in culture with viable seeds by self-

pollinating the in vitro-developed flowers; and (3) to

examine pollen and ovule development in flowers devel-

oping in vitro and in field. In this paper, we report early

seed production in culture in Dendrobium Chao Praya

Smile and discuss its application in orchid breeding.

Materials and methods

Plant materials, culture media and culture conditions

Flowers of Dendrobium Chao Praya Smile (Dendrobium

Pinky · Dendrobium Kiyomi Beauty) were self-pollinated.

The seedpods were harvested 120 days after pollination.

The seeds obtained from the seedpods were germinated

aseptically in 90 mm petri dishes with 25 ml of modified

Knudson C medium (KC, Knudson 1946) supplemented

with 2% (w/v) sucrose, 15% (v/v) coconut water and 0.3%

(w/v) Gelrite. All media were adjusted to pH 5.3 before

autoclaving at 121�C for 20 min.

Eight-week-old protocorms were transferred to 50 ml of

modified KC liquid culture medium containing (mg l�1):

MgSO4�7H2O (250), KH2PO4 (500), (NH4)2SO4 (250),

Ca(NO3)2�4H2O (500), MnSO4�H2O (5.68) and EDTA-Fe

(28) supplemented with 2% (w/v) sucrose and 15% (v/v)

coconut water in 100 ml Erlenmeyer flasks on rotary

shakers at 120 rpm for proliferation. The liquid media were

also supplemented with benzyladenine (BA) at 0–22.2 lM.

After three rounds of sub-culturing in the liquid medium at

3-week intervals, the seedlings were transferred to two-

layer (Sim et al. 2007) modified KC medium (containing

the same composition as the modified KC liquid culture

medium) in Magenta GA7TM containers. The two-layer

culture media consisted of 50 ml of Gelrite-solidified

medium topped with a layer of liquid medium of the same

volume and composition. All cultures were incubated at

25 ± 2�C and a 16 h photoperiod of 40 lmol m�2 s�1

from daylight fluorescent lamps.

Sporad analysis of pollinia

Pollinia were transferred from in vitro-developed flowers

and flowers of field-grown plants onto a slide using a pair

of fine forceps after removing the operculum. The pollinia

were mounted in a drop of water and teased apart with a

scalpel. One drop of acetocarmine (1%, w/v) was added to

the pollen and observed under the microscope.

Pollen germination in vitro

Three in vitro-developed flowers that were open for 3 or

4 days were chosen. Four halves of pollinia from each

flower were transferred, respectively, in a laminar flow

hood onto 5 ml of solidified modified-Knops’ medium in

35 mm petri dishes. The modified-Knops’ medium con-

sisted of (in mg l�1) H3BO3 (100), Ca(NO3)2�H2O (300),

MgSO4�7H2O (200), KNO3 (100), sucrose (5%, w/v) and

Gelrite (0.3%, w/v). Observation for pollen grain germi-

nation was carried out after 2, 4, 8 and 12 days of

incubation at 28�C. For observation under microscope, the

germinated pollen grains were transferred from the solidi-

fied modified-Knops’ medium onto a glass slide with a

drop of water. The pollen grains were teased apart with the

aid of a needle and a blade. One drop of acetocarmine (1%,

w/v) was then added to the pollen grains. For each pol-

linium, 250–300 pollen grains were observed for

germination.

In vitro pollination and seed production in culture

Plantlets that bore freshly-opened complete flowers were

transferred to fresh two-layer KH medium. These in vitro-

developed flowers were self-pollinated in a laminar flow

hood using a pair of forceps. Upon pollination, the plantlets

were observed for seedpod formation. At 120 days after

pollination, the seedpods were harvested and cut open.

Seeds from these in vitro-developed seedpods were ger-

minated on modified KC medium. Seedlings grown from

these seeds were further induced to flowering. All statisti-

cal analyses were carried out using One-way ANOVA

Tukey’s test at 95% confidence level.

Results

Inflorescence induction in vitro

Dendrobium Chao Praya Smile was induced to flower

within 6 months from germination using BA in two-layer

culture (Fig. 1a). The highest percent of flowering (45%)

was induced in plantlets at 11.1 lM BA (Table 1). Plant-

lets grown in BA-free medium did not produce

inflorescence. Each flowering plantlet produced one inflo-

rescence stalk with an average of three to four flower buds.

As for the duration of induction, inflorescences were
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produced earliest at 4 weeks upon transfer to two-layer

culture at 4.4 and 11.1 lM of BA (Table 2), with the

highest inflorescence induction rate at 11.1 lM of BA after

8 weeks. It was also observed that both complete and

incomplete flowers were produced in the plantlets. Com-

plete flowers had all floral organs (Fig. 1b). In incomplete

flowers, some of the floral organs were absent (Fig. 1c, d)

or they were morphologically distorted (Fig. 1e). About

50% of the flowering plantlets produced only complete

flowers while another 44% of the flowering plantlets pro-

duced both complete and incomplete flowers on the same

inflorescence (Table 1).

Some seedlings died in the liquid culture containing BA.

Seedling mortality increased with increasing BA concen-

tration. Thus about 34% of the seedlings (n = 100) were

dead at 22.2 lM of BA after 9 weeks of culture in liquid

medium, compared to 5% mortality in BA-free liquid

medium. In order to secure more seedlings, seedlings were

treated with BA only in the two-layer culture. BA treat-

ment at 11.1 lM in two-layer culture was sufficient to

induce inflorescence production in 42% of the plantlets

(Table 3). In addition, nearly all inflorescences induced in

this late-BA-treatment bore flower buds, although the

number was lesser than that in consecutive BA treatments

in both liquid and two-layer cultures. To further improve

inflorescence induction, morphologically normal seedlings

in the liquid culture were selected prior to transfer to two-

layer culture. This screening process increased the inflo-

rescence induction from 45 to 72% at 11.1 lM BA

(Table 4). The pre-selection method was useful as none of

the morphologically abnormal seedlings produced

inflorescence.

In vitro plantlets produced lesser and smaller flowers

than field grown plants. An average of four flower buds

were produced in each in vitro plantlet with flower

diameter of 2–2.5 cm whereas field grown plants could

produce an average of 12 flowers of 4 cm in diameter

(Fig. 2a, b). The lengths of stomata on lower epidermis of

leaves of the in vitro plantlets and field grown plants were

30.9 ± 2.0 and 38.5 ± 0.4 lm, respectively (Fig. 2c, d).

Conversely, in vitro plantlets had higher stomatal density

than field-grown plants, 38 ± 0 and 23 ± 1 per mm2,

respectively.

Pollen and female reproductive organs

Three in vitro-developed complete flowers were examined

for their pollen grains and female reproductive organs

in comparison to flowers of field grown plants. Pollinia

derived from the in vitro-developed flowers were green and

consisted of four halves. They were waxy, 1.8 mm in

length and half the thickness of the pollinia derived from

flowers of field grown plants (Fig. 2e, f). Stigma of the

in vitro-developed flower was clear and sticky. Column and

ovary of the in vitro-developed flower were clearly visible

when the flower was dissected along the axis of symmetry

(Fig. 2h). These female reproductive organs appeared to be

anatomically similar to that in flowers of field grown plants

(Fig. 2g), albeit smaller. The ovary of the in vitro-devel-

oped flower was found to be approximately 1 cm in length,

compared to 1.5 cm in flowers of field grown plants.

Sporad analysis and pollen germination

Observation on the pollen derived from in vitro-developed

flower showed 65% normal tetrad and 35% triad (Table 5).

Similar observation was obtained in the pollen derived

from flowers of field grown plants at which 79% of the

Fig. 1 In vitro flowering and

production of complete and

incomplete flowers. a Flowering

in Dendrobium Chao Praya

Smile in GA7TM container.

Bar 1 cm. b A complete flower.

Bar 5 mm. c–e Incomplete

flowers lacking floral organs or

with totally distorted organs.

Bar 5 mm
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sporads were tetrads. Both the tetrad pollens derived from

in vitro-developed flower and flower of field grown plant

were in the range of 30–40 lm (Fig. 3a, b). Monad and

dyad, which resulted from irregular meiosis, were not

observed in both cases. The pollens derived from in vitro-

developed flowers and flowers of field grown plants ger-

minated on modified-Knops’ medium after 2 days of

incubation. After 8 days of incubation, 18.2 and 52.8% of

pollens derived from in vitro-developed flowers and flow-

ers of field grown plant, respectively, germinated (Table 5,

Fig. 3c).

Seed production

Three out of four in vitro pollinations were successful and

led to seedpod development (Fig. 4a). At the time of

maturation, the seedpods were 1.5–1.8 cm in length,

compared to 2.7–3.0 cm of the seedpods developed in

field (Fig. 4b, c). The seedpods developed in vitro were

harvested 120 days after pollination when they turned

slightly yellowish. These seedpods contained yellowish

and dust-like seeds. The seeds were 428 ± 10 lm in

length, shorter than those obtained from seedpods devel-

oped in the field (684 ± 13 lm; Fig. 4d, e). The seeds

produced in the in vitro-developed seedpods were fertile

with more than 90% developing into protocorms on

modified KC agar medium after 8 weeks. One in vitro-

developed seedpod produced 500–1,000 seedlings. These

seedlings produced inflorescences upon induction using

BA.

Table 1 Inflorescence induction and flower development in Dendrobium Chao Praya Smile

BA

(lM)

No. of

plantlets

% Plantlet with % Flowering plantlet producing

Inflorescence

stalka
Flower budb Both complete

and incomplete

flowersc

Complete

flowers onlyc
Incomplete

flowers onlyc

0 22 0 0 0 0 0

4.4 36 14 (5) 8 (3 ± 1) a 67 (2) 33 (1) 0

11.1 20 45 (9) 45 (3 ± 1) a 33 (3) 56 (5) 11 (1)

22.2 15 27 (4) 27 (5 ± 1) a 50 (2) 50 (2) 0

The seedlings were grown in liquid culture for 9 weeks followed by two-layer culture, both of which containing the same concentrations of BA.

Scoring of inflorescence production and flower bud formation were made at 10 weeks in two-layer culture when maximum number of flower bud

had been formed. Assessment of flower development was made for individual flower bud at bloom
a Numbers in the parentheses indicate the number of plantlets with inflorescence stalk
b Numbers in parentheses indicate average number of flower bud per inflorescence ± SE. Same letters following the parentheses indicate no

significant difference among the numbers of flower bud
c Numbers in the parentheses indicate the number of flowering plantlets

Table 2 Effects of BA on early inflorescence induction in Dendrobium
Chao Praya Smile

BA

(lM)

No. of

plantlets

Plantlet with inflorescence (%)

4 weeksa 8 weeksa

0 32 0 0

4.4 30 7 (2) 17 (5)

11.1 26 8 (2) 39 (10)

22.2 18 0 22 (4)

The seedlings were grown in liquid culture for 9 weeks followed by

two-layer culture, both of which containing the same concentrations

of BA. Scoring of inflorescence production was made at 4 and

8 weeks in the two-layer cultures
a Numbers in the parentheses indicate the number of plantlets with

inflorescence stalk

Table 3 Effects of BA on flowering induction in Dendrobium Chao

Praya Smile

BA in two-layer

culture (lM)

No. of

plantlets

% Plantlet with

Inflorescence stalka Flower budsb

0 30 0 0

4.4 29 34 (10) 34 (3 ± 0) a

11.1 24 42 (10) 38 (3 ± 1) a

22.2 22 36 (8) 36 (4 ± 1) a

Seedlings were grown in BA-free liquid medium for 9 weeks fol-

lowed by treatment with BA of various concentrations in two-layer

culture. Scoring of inflorescence production and flower bud formation

were made at 10 weeks in two-layer culture when maximum number

of flower bud had been formed
a Numbers in the parentheses indicate the number of plantlets with

inflorescence stalk
b Numbers in parentheses indicate average number of flower bud per

inflorescence ± SE. Same letters following the parentheses indicate

no significant difference among the numbers of flower bud
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Discussion

Reproduction is an important stage of plant development.

In orchids, sexual reproduction can be effected through

flowering resulting in the production of seedpod and seeds

(Hew and Yong 1997). In this study, Dendrobium Chao

Praya Smile was shown to flower and produce seeds in

culture. Optimal BA concentration was required to induce

maximum inflorescence production in the plantlets. Two-

layer culture system was adopted in Dendrobium Chao

Praya Smile because this culture system was reported to

promote normal development of flower buds in orchid (Sim

et al. 2007). In our experiments, we have observed that

plantlets of Dendrobium Chao Praya Smile were unable to

produce inflorescence when they were cultured on Gelrite-

solidified medium.

Plantlets of Dendrobium Chao Praya Smile produced

complete and incomplete flower concurrently in in vitro

culture. As the aim of our study was to produce seeds in

culture, production of complete flowers that resemble the

flowers of field grown plants was desired. BA was required

for normal development of floral buds in roses (Vu et al.

2006), which possibly regulated floral development

through genes controlling shoot apical meristem activity

(Lindsay et al. 2006). On the other hand, a lesser number of

flowers were produced in in vitro plantlets compared to

field grown plants. This could be due to the smaller size of

in vitro plantlets as reproductive output could be affected

by plant size (Sletvold 2002). Despite the production of a

lesser number of flowers in in vitro plantlets, breeding

success would not be hindered because numerous seeds

can be produced in one seedpod and would be sufficient for

breeding. In our study, seedlings with abnormal leaf

arrangement or non-expanding leaves were not selected for

inflorescence induction. These abnormal seedlings could

not produce any inflorescence upon BA treatment. Mor-

phological abnormalities in the Dendrobium seedlings

could be the result of cytokinin activity because cytokinins

have been reported to affect the morphogenesis of early

seedlings (Nikolić et al. 2006). Selection of morphologi-

cally normal seedlings for BA treatment would therefore

ensure a higher percentage of inflorescence induction.

Morphologies of pollen and female organs could be

correlated to breeding and hybridization success (Fratini

et al. 2006). Morphological and anatomical examination of

pollens and female organs of in vitro-developed flowers

revealed that they were similar to flowers of field grown

plants and were therefore probably functional. In the

female organs, column connects stigma to ovary and allows

Table 4 Effects of seedlings selection on rate of inflorescence

induction in Dendrobium Chao Praya Smile

BA

(lM)

Inflorescence production (%)

Morphologically

normal plantletsa
Morphologically

abnormal plantletsa

0 0 0

4.4 53 (19) 0

11.1 72 (26) 6 (2)

22.2 22 (8) 0

Selections of 36 morphologically normal and abnormal seedlings,

respectively, for each treatment were carried out prior to transfer to

two-layer culture
a Numbers in the parentheses indicate the number of plantlets with

inflorescence

Fig. 2 Comparison of

reproductive organs and leaf

epidermal peels of Dendrobium
Chao Praya Smile grown in field

and in culture. a, b Flower of

field grown plant and in vitro-

developed flower, respectively.

Bar 1 cm. c, d Leaf epidermal

peels of Dendrobium Chao

Praya Smile grown in field and

in culture, respectively.

Bar 100 lm. e, f Pollinia

derived from flower of field

grown plant and in vitro-

developed flower, respectively.

Bar 1 mm. g, h Female

reproductive organs in flower of

field grown plant and in vitro-

developed flower, respectively.

col, ov and st refer to column,

ovary and stigma, respectively.

Bar 5 mm
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the growth of pollen tubes towards the ovule during fer-

tilization. Thus, production of normal flowers with

functional reproductive organs is imperative for successful

breeding attempts using in vitro flowering technology.

Pollen quality of the in vitro-developed flowers was

assessed by sporad analysis and in vitro pollen germination

because it also determines breeding success. Meiotic

behavior and sporads formation have been studied in

orchids in relation to their fertility (Lee 1994, 1987, 1988;

McConnell and Kamemoto 1993). In orchid microsporo-

genesis, regular meiosis results in four microspores

grouped together, called a tetrad. When meiosis is irregu-

lar, polyploid spores in the form of monads, dyads or triads

will be formed. Pollination of polyploid gametes could

result in the formation of sexually sub-fertile or infertile

progenies (Teoh 1984). Therefore, high percentage of tet-

rad formation in the pollen derived from in vitro-developed

flower indicated regular meiosis and pollen fertility of

in vitro plantlets. In vitro pollen germination is regarded as

a reliable test of fertility with the assumption that pollen

capable of germination would be fertile pollen (Montaner

et al. 2003). However, the rate of pollen germination

in vitro largely depends on optimization of the medium

(Heslop-Harrison et al. 1984) and this factor has to be taken

into consideration while counting germination as an indi-

cation of pollen quality. In our study, modified-Knops’

medium promoted germination of the pollens derived from

in vitro-developed flowers and flowers of field grown

plants but germination on this medium was slow and

maximum germination was observed after 8 days of

Fig. 3 Sporads and in vitro pollen germination. a, b Sporads derived

from flower of field grown plant and in vitro-developed flower,

respectively. tet and tri refer to tetrad and triad, respectively.

Bar 30 lm. c Germination of pollens derived from in vitro-developed

flower on modified-Knops’ medium. pt refers to pollen tube.

Bar 30 lm

Fig. 4 Seedpod development

and seed production in culture.

a Formation of seedpod in a

plantlet upon self-pollination of

an in vitro-developed flower.

Bar 1 cm. b, c Seedpods

developed in field and in

culture, respectively. Bar 1 cm.

d, e Seeds produced by field

grown plant and plantlet in

culture, respectively.

Bar 100 lm

Table 5 Sporad formation and in vitro germination of pollen grains derived from flowers of field grown plants and in vitro-developed flowers

Pollen grains derived from Sporad formation Pollen germination (%)

Total sporad observed Total sporad observed (%) Incubation (days)

Triad Tetrad 2 4 8

Flowers of field grown plant 214 21 79 15.5 29.8 52.8

In vitro-developed flowers 280 35 65 3 5.5 18.2
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incubation. However, the percentage of germination of the

pollens derived from in vitro-developed flowers was lower

than that derived from flowers of field grown plants on this

medium.

In this study, we have shown that Dendrobium Chao

Praya Smile could be induced to flower early and produce

seeds in culture. In vitro fruit development and fertile seed

production have been reported in Lycopersicon esculentum

(Rao et al. 2005) and Pisum sativum L. (Franklin et al.

2000). Despite the low percentage of germination of pollen

derived from in vitro-developed flowers, pollination of

in vitro-developed flowers and subsequent seedpod for-

mation have produced a large number of seeds sufficient

for breeding purposes. In our protocol, the process from

seed germination to production of the next generation seeds

in culture has been shortened from over 35 months to only

about 11 months. The method of seed production in culture

would have produced six generations of progenies with the

time required for two generations in conventional orchid

breeding (Fig. 5). Therefore, seed production in culture

would have tremendous application in orchid breeding in

view of the fact that viable seed production is crucial in

producing homozygous plants and new hybrids. Therefore,

the use of our technology of seed production in culture

would shorten the breeding period and in turn significantly

decrease the cost of producing new orchid hybrids.
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