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Summary 
 

Antigenic diversity of viruses is a significant obstacle to the development of effective 

therapeutic and prophylactic vaccines. Mapping T-cell epitopes among highly 

variable viral variants and analysing their antigenic diversity presents us with a unique 

opportunity to improve our understanding of immune responses to viruses and help 

identify peptide targets for vaccine formulation. This thesis presents a novel 

bioinformatics approach focusing on systematic analyses of antigenic diversity in 

dengue virus (DENV) sequences. 

Large-scale antigenic diversity analyses presented in this thesis a) provides 

evidence that there are limited number of antigenic combinations in protein sequence 

variants of a viral species and b) suggests that a selection of short, highly conserved 

sequence fragments of viral proteome that also include promiscuous T-cell epitopes, 

applicable at the human population level, are sufficient to cover antigenic diversity of 

complete viral proteomes (such fragments will be referred to as PE for brevity). 

The most important contribution of this thesis is that it provided the first, 

comprehensive identification and characterization of DENV PEs. Forty-four, highly 

conserved DENV PEs were identified and the majority was found to be immune-

relevant by their correspondence to both known and putative promiscuous T-cell 

epitopes. Thus, these DENV PEs represent good targets for the development of 

vaccines and further experimental validation. 

We defined the criteria for PEs, in the context of viral diversity, and 

developed the novel combination of bioinformatics and experimental approaches for 

their identification and characterization. The approach enables the design of a pipeline 

for large-scale systematic analysis of PEs within any other pathogen. The pipeline 

provides an experimental basis for the design of peptide-based vaccines that are 



 viii 

targeted to both the majority of the genetic variants of the pathogen, and the majority 

of human population. The generic nature and usefulness of the approach to other 

flaviviruses was demonstrated through the application of the pipeline to West Nile 

virus (WNV), which also enabled comparative analysis of characteristics of PEs 

between DENV and WNV. Such comparative analysis across pathogens of interest 

may provide insights into the design of better vaccine strategies. 

An interesting and important finding made in this study was that there are 

significant differences in the conservation patterns between proteome/protein and the 

PE sites of flaviviruses, and that the patterns varied between PE sites, despite the 

flaviviruses sharing common ancestral origin, genomic architecture, and 

functional/structural roles of their proteins. This suggests that PEs may not be suitable 

for the formulation of a pan-Flavivirus vaccine and that vaccines need to be 

developed specific to each Flavivirus, preferentially using species-specific PEs. 

This thesis provides important insights into antigenic diversity and represents 

a seminal contribution to the field of dengue immunoinformatics, still in its infancy. 

The methodology pipeline offers a paradigm shift for the field of reverse vaccinology 

as it enables systematic screening of all known pathogen data for PEs and includes 

multiple additional criteria for assessment of their conservation – a departure from the 

traditional approach where only a single or a small number of strains are studied with 

limited analyses of conservation. 
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Chapter 1 Introduction 
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Viruses transmitted by blood-feeding arthropods1 are among the most significant 

causes of emerging infectious diseases (Gubler, 2001). Of the approximately 130 

arthropod-borne viruses (arboviruses) known to cause disease in humans (Gubler, 

2001), dengue viruses (DENVs) are among the most common and medically 

important human pathogens (Whitehead et al., 2007). DENV infection is a major 

health, environmental and economic problem across the globe, with most of the 

burden spread over the tropical and subtropical areas (Whitehead et al., 2007). The 

virus is transmitted between humans primarily by the Aedes aegypti mosquito, and it 

causes a spectrum of manifestations ranging from an asymptomatic infection to severe 

disease. Disease appears most often as dengue fever (DF), while severe forms include 

dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) (Whitehead et 

al., 2007). Currently, over three billion people in more than 100 countries are at risk 

of dengue virus infection. Estimated 50-100 million cases of DF, and hundreds of 

thousands of cases of severe forms (DHF or DSS) occur annually (Whitehead et al., 

2007). Despite decades of effort, at present, no effective therapeutic or prophylactic 

vaccine exists to ease the global dengue disease burden (Whitehead et al., 2007). A 

detailed understanding of both the virus and the human immune system will help us 

develop better vaccine strategies (Brusic and August, 2004). 

The unique feature of DENVs compared to other flaviviruses is that they exist 

in nature as four genetically and immunologically distinct serotypes referred to as 

dengue virus serotype 1, 2, 3, and 4 (DENV-1, -2, -3 and -4) (Henchal and Putnak, 

1990), each capable of causing infection in humans. Genetic differences are larger 

between viruses belonging to different serotypes than between viruses belonging to 

the same serotype. The immune responses elicited in humans after infection with a 

                                                
1 Arthropods include crustaceans, insects, arachnids, and centipedes. Crustaceans are not known as DV 
vectors. 
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DENV are abundant and directed against multiple targets within the DENV proteome 

(Brinton and Dispoto, 1988). Cellular immune responses, which confer protection 

and/or viral clearance, are an essential part of the specific immune responses to 

DENV infection (Kurane et al., 1990; Whitehead et al., 2007). The specificities of 

such responses are governed by major histocompatibility complex (MHC) restricted 

presentation of pathogen-derived peptides. Human MHC is known as human 

leukocyte antigen (HLA). The peptide/HLA complexes act as recognition labels, 

which display the contents of host cells to the surveying T cells of the immune 

system. Peptides that are recognized by the T cells and trigger immune responses are 

called T-cell epitopes. These epitopes are targets of cellular immune responses and 

are critical for triggering immune responses against cells infected by viruses (Hudson 

and Ploegh, 2002; Watts and Amigorena, 2001).  

T-cell epitopes in DENV proteome are subject to changes (antigenic 

variation), which arise mainly from mutations and partially from recombinations of 

the genome (Wang et al., 2002a; Wang et al., 2002b). Genetic variation leading to 

amino acid substitution in T-cell epitopes of viruses, such as dengue (Beaumier et al., 

2008; Imrie et al., 2007; Zivny et al., 1999; Zeng et al., 1996), influenza (Berkhoff et 

al., 2007; Rimmelzwaan et al., 2004; Price et al., 2000; Voeten et al., 2000), and HIV 

(Ueno et al., 2007; Klenerman et al., 2002; Wagner et al., 1999; Harcourt et al., 

1998), often results in the decrease or elimination of T-cell response through reduced 

binding affinity of antigenic peptides to HLA molecules or T-cell receptors (Locher et 

al., 2004). Antigenic variation enables variant viruses to escape immune recognition 

and prevents the build-up of specific immunity against viral variants (Haydon and 

Woolhouse, 1998; Sloan-Lancaster and Allen, 1996). Significant antigenic variation 

exists among the DENV strains, especially between serotypes (Zeng et al., 1996). 
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Consequently, T-cell immunity to strains of one serotype is not necessarily effective 

against another serotype (Beaumier et al., 2008), and may not even be effective 

against variant strains of the same serotype as has been observed with DENV 

antibody epitopes (Zulueta et al., 2006; Blaney et al., 2005; Endy et al., 2004). 

Further, antigenic differences between DENV strains are thought to be crucial factors 

in complications associated with secondary DENV infections involving a serotype 

different from that of the primary infection. Such differences often lead to immune 

enhancement leading to DHF/DSS (Beaumier et al., 2008; Welsh and Fujinami, 2007; 

Mongkolsapaya et al., 2006; Mongkolsapaya et al., 2003; Welsh and Rothman, 2003). 

Antigenic diversification of viruses, therefore, results in an increased pool of non-

immune hosts with potential for severe disease symptoms. It also presents a 

significant obstacle for the development of therapeutic and prophylactic vaccines 

(Gaschen et al., 2002). Mapping of T-cell epitopes across dengue variants and 

analysis of their antigenic diversity will improve our understanding of immune 

response to viral variants and help identify peptide targets for vaccine formulation. 

T-cell epitopes are traditionally mapped by combination of experimental2 

methods (Sette et al., 2001). A systematic analysis of a single protein involves 

generation of synthetic overlapping peptides spanning the whole length of the protein, 

followed by biochemical and functional assays of the peptides for binding to one or 

several HLA molecules. Binding peptides identified from these assays are then tested 

for recognition by T cells in functional assays. However, mapping of T-cell epitopes 

in DENV is not a trivial task, given the considerable sequence variation exhibited by 

the virus, between and within serotypes (Wang et al., 2002a), as well as its propensity 

to frequently generate new sequences (Rico-Hesse, 1990; Trent et al., 1983). Large 

                                                
2 Throughout this thesis, the term “experiment” describes procedures of “wet-lab” or laboratory bench. 
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number of dengue sequences is currently available in public databases (26,247 as of 

February 2009). These numbers render the first experimental step - synthesis and 

testing of a large number of peptides – impractical. Further increasing the difficulty of 

the task is the high polymorphism of HLA molecules (Lauemoller et al., 2001). As 

the definition of a T-cell epitope is HLA dependent, the high polymorphism of HLA 

molecules in human population means that diversity of a large number of HLA 

specific epitopes needs to be analysed. Currently, nearly 4,600 different HLA 

molecules (as of April 2010) have been characterized in the human population 

(www.ebi.ac.uk/imgt/hla/stats.html). Taken together, the numbers of viral peptide 

variants and the numbers of HLA variants present an astronomical combinatorial 

diversity to be addressed (Brusic and August, 2004). A dismal reality of the whole 

mapping process is the fact that the natural prevalence of T-cell epitopes specific to a 

particular HLA allele in pathogen sequences is very low, approximately 0.1-5% 

(Brusic and Zeleznikow, 1999). This implies that from the large number of peptides 

tested, only a few will represent true T-cell epitopes for the specific HLA analyzed. 

Therefore, mapping of T-cell epitopes in DENV proteomes is analogous to the 

proverbial “finding needles in a haystack”. Interdisciplinary approaches that combine 

bioinformatics, knowledge-based systems, and predictive models on one side, with 

biochemical and immunological approaches on the other side are essential for 

resolving the combinatorial complexity of DENV vaccine development. 

The classification of HLA alleles into supertypes, which are groups of HLA 

alleles with similar peptide binding specificity (Sette and Sidney, 1999; Sette and 

Sidney, 1998), provides a means to help reduce the complexity arising from HLA 

diversity. It is estimated that the large diversity of HLA molecules in the human 

population can be classified into 20-30 supertypes (Brusic and August, 2004; 
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Doytchinova et al., 2004; Lund et al., 2004; Sette and Sidney, 1999). An HLA 

supertype includes a set of HLA molecules that typically have very similar primary 

sequences; they bind largely overlapping sets of peptides and, mostly belong to the 

same serotype. Thus, by mapping promiscuous epitopes for each of the major HLA 

supertypes, extensive human population coverage across different ethnic groups can 

be achieved (Sette and Sidney, 1999). Hence, to provide broad population coverage, it 

is useful to study T-cell epitopes in the context of HLA supertypes. Computational 

models can be used to identify candidate HLA-supertype restricted binding peptides 

from pathogen sequences; these peptides are potential promiscuous T-cell epitopes. 

Potential T-cell epitopes pre-selected by computational analysis can be rapidly 

validated by a small number of key experiments (Brusic et al., 2004; De Groot and 

Rappuoli, 2004; De Groot et al., 2002). Computational models in combination with 

experimental validation provided us a means for systematic study of antigenic 

conservation and variability of the large number of DENV sequences, available in 

public databases. 

To date, mapping of T-cell epitopes in DENV and analysis of their diversity 

has focused on studies of a small number of common HLA molecules and, thus, only 

a small number of T-cell epitopes have been identified. Prior to work reported in this 

thesis, advanced bioinformatics tools have not been applied to mapping and diversity 

analysis of potential T-cell epitopes in DENV. Earlier applications have been 

generally limited to very simple methods, such as analysing for the occurrence of 

amphipathic segments, Rothbard-Taylor tetra/pentamer motifs and presence of alpha 

helix-preferring amino acids (Vazquez et al., 2002; Kutubuddin et al., 1991). These 

methods are of low accuracy and therefore not suitable for large-scale analysis applied 

in this work. 
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To our knowledge, none of the current DENV vaccine strategies 

systematically address the issue of antigenic diversity of this virus. These studies 

typically focus on analysis of limited strains/antigens (Rothman, 2004). Such 

approaches are not optimal for the development of broadly protective vaccine. An 

ideal dengue vaccine must be effective in providing long-lasting immunity against 

multiple antigenic variants of all the four DENV serotypes simultaneously and must 

be applicable to a large proportion of the human population. However, despite 

decades of work, the existing strategies have not produced such a vaccine formulation 

that covers the diversity of the four DENV serotypes and the human population. 

Though it has been recognized that a successful dengue vaccine must be tetravalent 

(addressing all the four serotypes), candidate DENV vaccines currently under 

development only consider a single variant from each serotype (Whitehead et al., 

2007; Rothman et al., 1989). This approach has limitations because such formulations 

are not likely to provide a good coverage of the inter- and intra-serotype antigenic 

diversity of the virus. Furthermore, methods for rational selection of dengue strains 

and antigens, which are crucial for successful vaccination strategies, are currently not 

well established (Boggiano et al., 2005; Duffy et al., 2005; Innis and Eckels, 2003; 

Gaschen et al., 2002). Selection of candidate strains to be included as vaccine 

components are mainly based on their reactogenicity3 and immunogenicity4 (Innis and 

Eckels, 2003). Such a vaccine composition may not always match the circulating 

strain even though they appear to be immunologically similar; this selection may limit 

vaccine effectiveness (Smith et al., 2004). In addition, the candidate vaccine antigens 

are not optimized to the HLA profile of the human population since they are not 

selected based on possessing optimal set of targets of immune responses that are 

                                                
3 The capacity to produce adverse reactions. Least reactogenic strains are suitable for vaccine design. 
4 The capacity of an antigen to stimulate an immune response. 
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recognized in the context of HLA supertypes. Thus, the large diversity of the human 

immune system at the population level may limit the effectiveness of the vaccines 

developed to target certain sub-populations, or specific viral variants only. 

This thesis describes original findings arising from the application of a 

systematic bioinformatics approach in our study of antigenic conservation and 

variability of DENV, and the relevance of these findings to the cellular arm of the 

immune system. A large-scale study of antigenic diversity of DENV was performed 

using a novel computational method. The author then developed a systematic 

bioinformatics methodology to identify and characterize peptides that cover antigenic 

diversity (such peptides will be referred to as PE for brevity) of the virus in the 

context of the host immune system polymorphism. The ability to encompass DENV 

antigenic diversity within a relatively small number of peptidic targets is important for 

the study of vaccine formulation targeting protection of a broad population. Future 

developments will require a combination of both bioinformatics and experimental 

approaches. The work described in this thesis presents a bioinformatics pipeline for 

rational selection of vaccine candidates and being generic, this method can be applied 

to any other pathogen. This was demonstrated through its additional applications to 

the West Nile virus (WNV) and other viruses, which enabled comparative analysis of 

characteristics of PEs between these pathogens. The author explored a more general 

conservation pattern by comparing the DENV PEs to corresponding sequences in 28 

other viruses of the genus Flavivirus. 

This work represents a novel contribution to the field termed “reverse 

vaccinology”, whereby genome/proteome information is used to advance the study of 

vaccine formulations in silico in combination with targeted experimentation. Reverse 

vaccinology is a recently developed paradigm (Muzzi et al., 2007) which uses 
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knowledge-based approach; it combines high-throughput screening with traditional 

empirical approach to vaccine development. This approach has produced several 

successful vaccines: such as Meningococcus-B (commercially available), Hepatitis B 

(commercially available), and Hepatitis C (in clinical trials). The work described in 

this thesis focuses on the bioinformatics component of reverse vaccinology approach. 

It provides important insights into understanding antigenic diversity of flaviviruses 

and describes newly developed methodology that enables both a global view and 

detailed analyses of viral proteome diversity and their implications for vaccine 

targeting. 

 

1.1 Research topic 
 

Vaccine target discovery involves studying the sequence diversity of both pathogens 

and human immune system to identify and characterize relevant peptides. Large 

amounts of sequence data produced by genomics and proteomics projects and large-

scale screening of pathogen-host and antigen-host interactions are already available in 

public databases and are continuing to grow rapidly. The availability and growth of 

such large data sets are particularly relevant for vaccine target discovery as they offer 

the information needed for a comprehensive survey of targets and their antigenic 

diversity. However, experimental methods traditionally used for the study of vaccine 

targets are not practical for the study of large number of targets. A systematic 

bioinformatics approach is therefore necessary to manage and handle such large data 

for screening and selection of minimal set of candidate targets that can be validated by 

a relatively small number of key experiments. The combination of computational 

approaches and experimental validation, enable systematic investigation of antigen 



 10 

sequences suitable as targets for vaccine formulation; this combination enables new 

analyses that may lead to new insights into vaccine formulations (De Groot and 

Rappuoli, 2004; De Groot et al., 2002). 

The main scope of this work focuses on the discovery of peptidic targets for 

vaccine formulations that cover the antigenic diversity of the four DENV serotypes 

and mapping these T-cell epitopes to the HLA polymorphism of human population. 

This thesis addresses a multi-dimensional problem arising from virus-host 

interactions, shown in Figure 1.1. 

 

Data cleaning, error correction and alignment of sequences

Collection of sequence data from public databases 

Analysis of conservation and variability of viral proteins

Identification of PEs

Functional and structural analysis of PEs 

Analysis of distribution of PEs across known sequences of other 
flaviviruses, other viruses and organisms

Analysis of HLA binding peptides and putative T-cell epitopes within 
PEs

Experimental validation of the putative conserved T-cell epitopes
 

 
Figure 1.1: Multi-dimensional issues arising from virus-host interactions 
addressed in this thesis. 

 

Additional dimensions that need to be studied, beyond the scope of this thesis, 

include the assessment of immunological relevance of the identified and validated 

conserved T-cell epitopes and assessment of their suitability for vaccine formulation. 
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These experimental studies can be performed in transgenic mice, or using human 

blood. Transgenic mice data have been shown to be relevant for understanding human 

immune responses (Alexander et al., 2003; Tishon et al., 2000; Sette et al., 1994). 

Together, all these multiple dimensions pose an astronomical level of combinatorial 

complexity that can only be addressed through a combination of bioinformatics and 

experimental approaches. 

This thesis focuses on a systematic and comprehensive computational 

characterization of antigenic conservation and variability of DENV. It also studies the 

effect of antigenic diversity to immune responses mediated by T cells, given the HLA 

polymorphism in human population. These results offer insights into genetic and 

antigenic variability in DENV and their effects to developing effective strategies for 

vaccine formulation against DENV infection. Both arms of the adaptive immune 

response (humoral and cellular) are important for protection against disease and 

clearance of virus. This work focuses on the cellular arm. The specific goals of this 

work are to develop a rational strategy for selection of dengue vaccine targets 

covering antigenic diversity through application of a systematic bioinformatics 

approach, addressing the specific issues highlighted in Figure 1.1. 

 

1.2 Contributions 
 

One of the main contributions of this work is the evidence that there are limited 

number of antigenic combinations in variant protein sequences of a viral species and 

that a selection of short, highly conserved sequence fragments of viral proteome that 

also include promiscuous T-cell epitopes, applicable at the human population level, 

are sufficient to cover antigenic diversity of complete viral proteomes. These insights 

were gained by performing a large-scale antigenic diversity analysis of DENV using a 
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novel in silico method, the specifications of which were designed and validated by the 

author. The method utilizes a well-defined metric that can be used with large number 

of sequences (either full length or partial). Importantly this method is multiple 

sequence alignment (MSA) independent. This makes the method robust, because 

MSA-based methods tend to fail when a) large number of sequences need to be 

aligned, b) when it is difficult to generate correct alignments because of significant 

sequence differences, or c) when sequences contain repeats. This method, therefore, 

has direct application to the analysis of any virus, in particular those that show high 

diversity and/or rapid evolution, such as influenza A virus and human 

immunodeficiency virus (HIV), which are difficult to align. 

The most important, original contribution that the author provides is the first 

comprehensive report on identification and characterization of DENV peptides that 

cover antigenic diversity (PEs). PEs are short, conserved viral sequence fragments of 

the proteome that contain promiscuous T-cell epitopes. Forty-four (44) sequence 

fragments of at least nine amino acids in length were found to be highly conserved 

and present in ≥80% of all recorded DENV sequences (hereafter these 44 potential 

DENV PEs are referred to as pan-DENV sequences). The majority of these sequences 

contain putative T-cell epitopes promiscuous to multiple HLA class I and/or class II 

supertypes. Limited experimental validation of a number of these pan-DENV 

sequences proved that they contain experimentally determined promiscuous T-cell 

epitopes. These 44 pan-DENV sequences represent a set of potential candidate DENV 

vaccine targets. The observations that pan-DENV sequences have been relatively free 

of mutations (low peptide entropy) within the complete set of recorded sequences, 

with a number of them being important for viral structure and function, suggest that 

there is a high probability that they will remain conserved in the future. In general, the 
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pan-DENV sequences have relevance to multiple applications, including potential 

targets for prophylactic, therapeutic and diagnostic purposes. 

We defined the criteria for PEs, in the context of viral diversity, by application 

of the combination of bioinformatics and experimental validation approaches 

described herein for the identification and characterization of immuno-relevant and 

highly conserved peptides. This methodology provides a novel pipeline for large-scale 

and systematic analysis of PEs of other pathogen. The bioinformatics pipeline 

represents the starting point for the selection of experiments that will validate vaccine 

targets relevant for vaccine design against multiple variants of viruses and effective 

for large portion of the human population. Thus, it significantly reduces effort and 

cost of experimentation while still providing for systematic screening. The pipeline 

consists of three components, namely data collection, processing and analysis. The 

first two components are needed to ensure that the collected data is comprehensive 

and “clean”5 of errors, discrepancies and irrelevant sequences that may propagate into 

the subsequent analysis process shown in Figure 1.1. 

The specifications for all the methods in the pipeline were designed by the 

author of this thesis Asif M. Khan (data collection, processing and all analyses 

methods, but excluding experimental validation). The author is grateful to people who 

contributed to this work including Dr. Olivo Miotto (contributed software tools for 

data collection, processing and analysis of conservation and variability), Dr. Eduardo 

Nascimento (experimental validation for DENV), and Dr. Kuen-Ok Jung 

(experimental validation for WNV). This work has been done under the supervision 

of Prof. J. Thomas August, Prof. Vladimir Brusic and Assoc./Prof. Tan Tin Wee. The 

author of this thesis alone applied the methods and tools to the study of DENV. 

                                                
5 Errors, discrepancies and irrelevant sequences were minimized to the extent possible. 
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The generic nature of the pipeline developed by the author was demonstrated 

through additional application to WNV and other viruses, such as Japanese 

encephalitis virus (JEV), yellow fever virus (YFV), Hepatitis A virus (HAV) and 

hantavirus (HV), by undergraduate students (Koo Qiying – WNV; George Au Yeung 

– JEV; Rashmi Sukumaran – YFV; Natascha May Thevasagayam – HAV; Hu Yongli 

– HV) of Dr. Tan Tin Wee’s lab (Department of Biochemistry, National University of 

Singapore), under the supervision and with assistance from the author of this thesis. 

The results of the analyses enable comparative analysis for the assessment of 

similarities and differences in the characteristics of PEs across pathogens of interest, 

which may provide insights into the design of better vaccine strategies. 

A key finding made in this study was that there are significant differences in 

the conservation patterns between proteome/protein and PE sites of flaviviruses, and 

that the patterns varied between PE sites, despite the viruses sharing common 

ancestral origin, genomic architecture and functional/structural role of their proteins. 

This is probably in response to the adaptation of each virus to the different vector-host 

interaction environment. This suggests that PEs may not be suitable for the 

formulation of a pan-Flavivirus vaccine. Instead our results indicate that vaccines 

need to be developed specific to each Flavivirus, preferentially using the species-

specific PEs. 

In summary, this work provides important insights into antigenic diversity of 

DENV and other flaviviruses. It represents a significant contribution to the fledgling 

field of dengue immunoinformatics (see Chapter 2.4). The methodology pipeline, 

developed as a key component of this project, brings significant advancement to the 

field of reverse vaccinology as it enables systematic screening of all known pathogen 

data for PEs and includes multiple additional criteria for assessment of their 
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conservation. This represents a departure from the traditional approach where a single 

strain or a small number of pathogen strains are studied with limited in silico analyses 

of conservation to identify putative antigens as vaccine targets (Vernikos, 2008; 

Ulmer et al., 2006). 

 

1.3 Organization of this thesis 
 

This thesis consists of eight chapters. Chapters 1 and 2, respectively, provide an 

introduction to the theme and a literature review. Literature review introduces relevant 

readings about dengue virus, its antigenic diversity, mapping targets of immune 

responses in dengue viral genomes, current status and application of bioinformatics. 

Chapter 3 describes our large-scale antigenic diversity analysis of T-cell epitopes in 

DENV, while Chapter 4 reports the identification and characterization of DENV PEs 

and analysis of their potential HLA associations. These peptide sequences are 

potential candidates for DENV vaccine formulation. In Chapter 5, a pipeline 

combining systematic bioinformatics and experimental approaches for rational 

selection of peptide-based vaccine candidates is presented. The generic nature and 

usefulness of the pipeline to other flaviviruses is demonstrated in Chapter 6, coupled 

with comparative analysis of PEs between DENV and WNV. Chapter 7 describes 

conservation pattern of DENV PEs with corresponding sequences across other viruses 

of the genus Flavivirus. Original findings of the research undertaken in this thesis are 

summarized and discussed in Chapter 8, together with conclusions and proposed 

future directions. 

The work presented in this thesis has been published in a series of journal 

articles. These include: Khan et al. (2006a) – the large-scale analysis of antigenic 

diversity of T-cell epitopes in DENV (Chapter 3); Khan et al. (2008) – Chapter 4, 
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where peptide fragments of DENV proteins that cover antigenic diversity of the four 

serotypes are identified and characterized; Khan et al. (2006b) – Chapter 5, which 

describes a generic, systematic bioinformatics methodology for rational selection of 

vaccine candidates that cover antigenic diversity; Koo, Khan et al. (2009a) – Chapter 

6, demonstrates the generic nature and usefulness of the systematic bioinformatics 

approach to flaviviruses by describing its application to sequence data of WNV, and 

comparing the characteristics of PEs between DENV and WNV. 
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Chapter 2 Literature Review 
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2.1 Dengue virus (DENV) 
 

DENVs are mosquito-borne pathogens of the family Flaviviridae, genus Flavivirus, 

which are phylogenetically related to other important human pathogens, such as 

yellow fever (YFV), Japanese encephalitis (JEV), and West Nile (WNV) viruses, 

among others. DENV is an enveloped, single-stranded, positive-sense RNA virus 

(~11 kb) that has one large open reading frame encoding a single polyprotein 

precursor of approximately 3,400 amino acids (~350 kDa), which is subsequently 

cleaved into 10 proteins by viral and host proteases: three structural (capsid, C; 

precursor membrane and membrane, prM/M; envelope, E) and seven nonstructural 

(NS) proteins (NS1, 2a, 2b, 3, 4a, 4b and 5) (Figure 2.1 and Table 2.1). 

 

 

 

 
 

 
Figure 2.1: Organization of the DENV genome and proteome. A single open 
reading frame in the genome is translated into a single polyprotein that is 
cleaved by proteases to yield 10 viral proteins, of which three are structural and 
seven are nonstructural. [Adapted from Henchal and Putnak (1990)]. 
 

 

Key Description
 
C Capsid protein 
prM Precursor membrane protein 
E Envelope protein 
 
NS1 Nonstructural protein 1 
NS2a Nonstructural protein 2a 
NS2b Nonstructural protein 2b 
NS3 Nonstructural protein 3 
NS4a Nonstructural protein 4a 
NS4b Nonstructural protein 4b 
NS5 Nonstructural protein 5

Structural 

Non-structural 

5’–
’

–3’ Structural genes Nonstructural genes 

Proteolytic processing 

C prM E NS1 2a 2b 3 4a 4b 5 
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Table 2.1: Reference record for each DENV serotype from the NCBI Entrez 
Protein database (Benson et al., 2006), providing the size in amino acids for the 
10 protein products and the polyprotein. 
 

DENV  
protein 

NCBI accession number for each DENV serotype reference record and the size 
of each protein and polyprotein in amino acids 

DENV-1 DENV-2 DENV-3 DENV-4 

AAF59976 P14340 AAM51537 AAG45437 

C 114 114 114 113 

prM 166 166 166 166 

E 495 495 493 495 

NS1 352 352 352 352 

NS2a 218 218 218 218 

NS2b 130 130 130 130 

NS3 619 618 619 618 

NS4a 150 150 150 150 

NS4b 249 248 248 245 

NS5 899 900 900 900 

Total 3392 3391 3390 3387 

 

Replication of viral RNA occurs in the cytoplasm in association with virus induced 

membrane structures and is mediated by the NS proteins. Structural proteins, 

enclosing the RNA, form the virus particle. The functions of the individual DENV 

proteins reviewed in (Lindenbach and Rice, 2003) are summarized in Table 2.2. 
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Table 2.2: Functions of proteins encoded by the DENV genome. 
 

Protein Function(s) Reference(s) 

C Packaging of genomic RNA by forming nucleocapsid core.
Mediates lipid membrane integration. May play a role in 
virion assembly 

(Lindenbach and Rice, 
2003; Markoff et al., 
1997)  

prM Cleavage of M from prM appears to be a crucial and 
terminal event in virion morphogenesis. prM may act as 
chaperone for folding of E protein. 

(Henchal and Putnak, 
1990) 

E Entry into host. (Henchal and Putnak, 
1990) 

NS1 Possible role in RNA replication and pathogenesis. May be 
involved in assembly of the viral replicase complex and its 
localization to cytoplasmic membranes. 

(Wallis et al., 2004)

NS2a Required for proper proteolytic processing of the C terminus 
of NS1. 

(Falgout et al., 1989)

NS2b Forms a protease complex with NS3 which processes the 
viral polyprotein into separate proteins. Molecular chaperone 
in assisting the folding of NS3 to active conformation. 

(Leung et al., 2001)

NS3 Forms a protease complex with NS2b which processes the 
viral polyprotein into separate proteins. Implicated to play 
the role of RNA-dependent RNA helicase. 

(Leung et al., 2001; 
Zhang et al., 1992) 

NS4a & 
NS4b 

Might be RNA replication complex cofactors along with 
NS5. May help anchor replicase components to cellular 
membranes. 

(Preugschat and 
Strauss, 1991; Henchal 
and Putnak, 1990) 

NS5 RNA dependent RNA polymerase (Henchal and Putnak, 
1990) 

 

2.1.1 DENV infection in humans 
 

DENV infection is a major mosquito-borne viral disease of humans, causing 

significant problem in tropical and subtropical countries. The disease ranges from 

asymptomatic infection, undifferentiated fever, or dengue fever (DF) to severe dengue 

hemorrhagic fever (DHF) with or without shock. The infection can be caused by any 

one of the four related, but genetically and antigenically distinct, DENV serotypes. 

Immunity to one serotype does not protect from infection by other serotypes 

(Whitehead et al., 2007; Halstead, 1988). Secondary infection, caused by a serotype 

different from one that caused primary infection, may result in severe manifestations, 

such as DHF and DSS. Recent advances in our knowledge of pathogenesis and of the 
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immune responses elicited by DENVs emphasise the crucial role of the adaptive 

immune system in the control of infection (Whitehead et al., 2007; Rothman, 2004). 

Understanding the interactions between the adaptive immune system and DENV is, 

therefore, important for effective strategies of vaccine development against the virus. 

 

2.1.2 Adaptive immune responses in DENV infection 
 

The adaptive immune response to DENV infection contributes to the resolution of the 

infection and has a major role in protection from re-infection. Both humoral 

(antibody) and cellular (T cell) components of the adaptive response are important for 

protection from infection and clearance of the virus (Whitehead et al., 2007; 

Rothman, 2004; Kurane et al., 1990). An ideal DENV vaccine should contain immune 

targets specific to both responses and for all the four serotypes. Since this study 

focuses on the cellular arm, antibody responses are, therefore, only briefly reviewed. 

The humoral response involves antibodies produced by B-cells, which 

recognize both linear and conformational B-cell epitopes on the surface of DENV. 

Conformational neutralizing epitopes are the primary focus of DENV research on 

humoral responses. However, unlike linear B-cell epitopes, reliable computational 

tools for prediction of conformational epitopes are almost non-existent due to their 

complex structure (Kulkarni-Kale et al., 2005). 

Cellular immune responses, such as cytotoxic and helper T-lymphocyte 

responses, are an essential part of the specific immune responses to DENV infections 

(Kurane et al., 1990). Cytotoxic and helper T cells, respectively, help eliminate or 

control viral infections by direct killing of cells infected with viruses (Bjorkman and 

Parham, 1990) or producing secondary signals to regulate both humoral immunity (B-

cells) and cell-mediated immunity (Pulendran and Ahmed, 2006; Zinkernagel and 
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Hengartner, 2004; Esser et al., 2003). B and T cells are known to target most of 

dengue viral proteins as several immunogenic6 epitopes have been reported for each 

of the proteins. Immune responses to a subset of epitopes derived from an infectious 

pathogen can be sufficient for competent protection; thus, immune recognition of 

every potential epitope derived from a pathogen's proteome does not appear to be 

required for immune responses and protection (De Groot, 2004). 

 

2.2 Antigenic diversity of T-cell epitopes in DENV 
 

DENVs exist in nature as four genetically distinct serotypes. There is a considerable 

sequence difference between the four serotypes (Holmes and Burch, 2000). All the 

four serotypes are mutually distinct to the similar degree and there are suggestions 

that they constitute different “species” of Flavivirus (Kuno et al., 1998). Sequence 

comparison studies showed 30-40% amino acid difference between serotypes 

(Mongkolsapaya et al., 2003; Fu et al., 1992). The amino acid differences within each 

serotype are lower but is sufficiently large to warrant the definition of clusters of 

DENV variants (Zhang et al., 2005a; Holmes and Burch, 2000). 

 

2.2.1 Mutation and recombination 
 

Viral diversity across DENV genomes is a result of variation accumulated mainly 

through mutation (Holmes and Burch, 2000), which is partly due to the non-

proofreading and, thus, error-prone nature of the viral RNA polymerase. The random 

mutation frequency of DENV is similar to other RNA viruses that show large 

                                                
6 Immunogenic is defined as capable of inducing an immune response; however it does not necessarily 
mean that this response will be useful or protective. Some immunogenic epitopes can actually enhance 
the disease. 
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diversity, such as human immunodeficiency virus (HIV) or hepatitis C virus (HCV) 

(Wang et al., 2002a; Wang et al., 2002b). Another important generator of sequence 

diversity for DENV is recombination, which involves exchange of genome segments 

between different strains (Tolou et al., 2001; Uzcategui et al., 2001; Holmes et al., 

1999; Worobey et al., 1999). 

The accumulation of mutation and recombination in DENV is a continuing 

process (Monath, 1994). There is a continuous increase in the number of newly 

emerging dengue variants that are unique among the members of each DENV 

serotype as well as between the serotypes (Rico-Hesse, 1990; Trent et al., 1983). Our 

knowledge of the sequence diversity within each DENV serotype has risen 

dramatically in recent years, and the diversity is expected to further increase, 

recombine, and mix globally (Henchal and Putnak, 1990). The increasing sequence 

(genetic) diversity increases antigenic diversity because some of the changes 

introduced in the sequences result in changes to the T-cell epitopes through antigenic 

variation. 

 

2.2.2 Antigenic variation: a challenge for vaccine design 
 

A problem in developing a tetravalent DENV vaccine is the viral diversity (Rothman, 

2004), with rather low intra-serotype, but high inter-serotype variability, resulting in 

both serotype-specific and serotype cross-reactive T-cell epitopes (Livingston et al., 

1995). This variability of related structures gives rise to a large number of variant 

peptide sequences with one or more amino acid differences that may function as 

alternative epitopes, or altered peptide ligands (Sloan-Lancaster and Allen, 1996), and 

affect anti-DENV host immunity (Mongkolsapaya et al., 2006; Welsh and Rothman, 

2003). Antigenic variation can diminish, enhance or even not affect the recognition of 
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viral variants by the host immune system (Takahashi et al., 1989). For example, in a 

study by Zeng et al., (1996), a T-cell clone from a dengue patient tolerated a single 

conservative amino acid substitution from I to V at position two of the epitope peptide 

sequence WITDFVGKTVW (HLA-DR15 restricted), however, most other amino acid 

changes in this peptide abrogated the recognition. Immune escape by dengue variants 

often result in increased morbidity and mortality, and recurrent epidemics (Holmes 

and Burch, 2000; Henchal and Putnak, 1990). 

In addition, immune enhancement due to cross-reactive T-cell responses may 

play a role in triggering deleterious immune responses, such as virus-induced 

immunopathology. In the case of DENV, the serotype causing secondary disease is 

almost always different than the serotype that induced immune response during 

primary infection (Rothman, 2004). Therefore, the antibodies and memory T cells 

induced by the primary infection typically encounter proteins containing epitopes that 

differ in sequence from their original targets protein. These differences may result in 

cross-reactive responses that contribute to the potentially fatal DSS/DHF through 

enhancement of the lysis of dengue virus-infected cells (Mongkolsapaya et al., 2006; 

Welsh and Rothman, 2003). In this thesis, the author presents a method that enables 

selection of targets that cover a large proportion of viral sequence diversity. However, 

this methodology does not address the dengue virus-specific problem of protection 

versus immunopathology during secondary infections with a different serotype. 

 

2.2.3 Covering antigenic diversity 
 

Because of the significant increase of our knowledge of viral genomics and 

accumulated data, investigating antigenic diversity as an initial step in vaccine 

formulation research is necessary and prudent. Current strategies to address antigenic 
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diversity of virus for vaccine development include two intuitive, but contrasting 

approaches, (i) making use of conserved or consensus epitopes that represent multiple 

variants (Sette et al., 2001; De Groot et al., 2005; Gao et al., 2004), and (ii) utilizing 

multiple variable epitopes to represent the diverse variants, such as by using chimeric 

antigens containing fragments from diverse populations (Fischer et al., 2007; 

Thomson et al., 2005; Locher et al., 2004), including multiple strain variants of the 

same antigen (Slobod et al., 2005), or generating and displaying antigen diversity in 

vivo (Garcia-Quintanilla, 2007). However, none of these approaches have been 

explored in the field of DENV research and they do not provide insight into the 

relationship between genetic and antigenic diversity. Moreover, it is not clear how 

effective and feasible will these approaches be at circumventing the increasing future 

antigenic diversity in vaccine development. A systematic bioinformatics approach to 

analyzing antigenic diversity can aid in resolving these impending issues and provide 

valuable insights to help improve vaccine development strategies. Therefore, it is 

critical to define new methods to study antigenic diversity for vaccine development. 

Antigenic diversity analysis of viral antigens is an important pre-requisite to mapping 

T-cell epitopes. 

 

2.3 Mapping and analyzing antigenic diversity of T-cell epitopes in 
DENV 
 

2.3.1 Promiscuous T-cell epitopes: targets for mapping and analysis 
 

Helper and cytotoxic T lymphocytes mediate cellular immune responses via the T-cell 

receptors (TCR) that recognize T-cell epitopes presented on cell surfaces by HLA 

molecules (Figure 2.2). HLA class I molecules, expressed on the surface of most 

nucleated cells, present endogenous epitopes, synthesized and processed in the 
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cytoplasm, to CD8+ cytotoxic T Lymphocytes (CTLs) that eventually kill the infected 

cells (Shastri et al., 2002; Bjorkman and Parham, 1990). CD8+ cells are important in 

conferring immune response against intracellular viruses. On the other hand, HLA 

class II molecules display exogenously derived epitopes on the surface of professional 

antigen presenting cells (APCs), such as dendritic cells, B-cells and macrophages, for 

immune recognition by CD4+ helper T cells. Activated helper T cells produce 

secondary signals for activation of both T cells and B cells (Pulendran and Ahmed, 

2006; Zinkernagel and Hengartner, 2004; Esser et al., 2003). 

 

 
Figure 2.2: A schematic depicting the ternary complex7 of the cellular immune 
arm. The complex comprises HLA class I or II molecule presenting pathogen-
derived peptide, processed in the target cell, to the T-cell receptor (TCR) of the 
surveying T-cell of the immune system. 
 

The recognition of peptides by the T cells are restricted by the rules/patterns 

governing the binding affinity and specificity of HLA molecules (Rammensee, 1995). 

The HLA class I groove binds to antigenic peptides of length mainly 8-11 amino 

acids, with nine amino acids being the typical length (Rammensee, 1995). HLA class 

II molecules have an open groove and bind longer peptides (12-25 amino acids in 

length) through a nine amino acids long core-binding region with flanking residues 

protruding outside of the groove (Rammensee, 1995). Some HLA class II associated 

peptides are reported to have multiple binding cores (Tong et al., 2006). 
                                                
7 It is a term used to describe the peptide/HLA/TCR complex. 

T-Cell 
Target Cell TCR 
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HLA genes are the most diverse of all human genes (Williams, 2001), with 

nearly 3,800 alleles in the human population identified to date (as of August 2009 - 

www.anthonynolan.org.uk/HIG). This diversity is important because it increases the 

spectrum of immune responses that individuals can mount, ensuring that no single 

pathogen can “wipe out” the entire population (Trachtenberg et al., 2003). However, 

this diversity also increases the difficulty for the development of vaccines that will be 

effective across the population. The ability to trigger an effective T-cell response is 

partly determined by the HLA phenotype of the individual and different individuals 

have different HLA alleles (MacDonald et al., 2001). Each individual has three to six 

different class I and at least that many class II HLA alleles (Brusic et al., 2004; 

Cunha-Neto, 1999). Hence, a given vaccine may not induce identical protective 

immune responses in all individuals; instead, a spectrum of immune response is 

observed in the population (Ovsyannikova et al., 2004). The discovery of similar 

binding specificity among different alleles of both class I and class II HLA molecules, 

termed as supertypes or supermotifs, provides a means to help reduce the complexity 

arising from HLA diversity (Sette and Sidney, 1999) and is a basis for the 

development of vaccines for significant population coverage. Peptides capable of 

binding to all or the majority of the molecules that belong to an HLA supertype are 

termed as “promiscuous peptides” (Brusic et al., 2002) (Figure 2.3). Some peptides 

are also promiscuous in the context of multiple HLA supertypes, largely due to the 

combinatorial clustering. 

 The majority of HLA alleles (both class I and II) in human population can be 

grouped into approximately 20-30 different supertypes (Brusic and August, 2004; 

Doytchinova et al., 2004; Lund et al., 2004; Sette and Sidney, 1999). For example, 

the A2 supertype comprises more than 75 HLA-A2 alleles (Sidney et al., 2008) of 
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which 14 are well studied, namely A*0201, *0202, *0203, *0204, *0205, *0206, 

*0207, *0208, *0209, *0210, *0211, *0212, *0213, and *0214; it should be noted that 

belonging to an HLA group by sequence similarity does not ensure membership 

within the same supertype, for example A*6802 and A*6901 are not subtypes of A2 

group but they belong to the A2 supertype. Major characterised class I supertypes 

include A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62 (Sette and 

Sidney, 1999) (www.cbs.dtu.dk/services/NetCTL), while major class II supertypes 

include DR, 8 DQ1, DQ2, DQ3, DPw1, DPw2, DPw4, and DPw6 (Doytchinova and 

Flower, 2005; Southwood et al., 1998). A list of major class I and II supertypes and 

their allelic members that are well-studied are defined in (Sidney et al., 2008) and 

(Doytchinova and Flower, 2005), respectively. 

The frequency at which the supertype alleles are expressed in various 

ethnicities is remarkably high (Sette and Sidney, 1999). For instance, regardless of 

ethnicity or gender, alleles of each of the four HLA class I supertypes (A2, A3, B44, 

and B7) are present in approximately 35-55% of the general population (Sette and 

Sidney, 1999; Sidney et al., 1996), while class II DR supertype alleles alone are 

present in every individual, with seven most common alleles (DRB1*0101, 

DRB1*0401, DRB5*0101, DRB1*1501, DRB1*0701, DRB1*0901, and 

DRB1*1302) present in more than 80% of the general population (Southwood et al., 

1998). In contrast, the frequency of most individual HLA allelic forms varies 

significantly amongst different ethnic groups (Sette and Sidney, 1999). By combining 

promiscuous peptide epitopes that are specific to major HLA class I and II supertypes, 

extensive population coverage across different ethnic groups can be achieved. 

Promiscuous epitopes of a supertype are, therefore, attractive targets for the study of 

                                                
8 In this thesis, DR supertype refers to the main HLA-DR supertype defined by Southwood et al. 
(1998). At least two additional groups of HLA-DR have been proposed elsewhere. 
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antigenic diversity and vaccine design, because they are relevant to a large proportion 

of the human population. 

 

 

Figure 2.3: The concept of promiscuous peptides and HLA supertypes. A peptide 
(YYAVTNIFNY) capable of binding to multiple HLA molecules (B*3501, 
B*3503, B*5101-3, B*5301, B*7801) sharing similar peptide binding specificity is 
termed as a promiscuous peptide and the grouping of the functionally similar 
HLA alleles is referred to as a supertype. The HLA molecules bound by the 
promiscuous peptide YYAVTNIFNY are associated with the B07 supertype 
(Sidney et al., 2008). 
 

2.3.2 Current status of mapping and analyzing T-cell epitopes in DENV 
 

Several studies have indicated that nearly all DENV structural and nonstructural 

proteins are able to elicit T-cell responses in humans (Table 2.3) (Bashyam et al., 

2006; Simmons et al., 2005; Rothman, 2004; Brinton et al., 1998; Bukowski et al., 

1989). The exceptions are NS2a and NS2b, for which there is still no clear evidence 

to suggest that they can induce cellular immune response. The structural proteins are 

noted as predominant source of helper T-cell epitopes, while the NS proteins mainly 

contain cytotoxic T-cell epitopes (Roehrig, 2003). 

 

Table 2.3: DENV proteins reported to elicit T-cell responses in humans. 
 

DENV proteins
C prM E NS1 NS2a NS2b NS3 NS4a NS4b NS5 
    ? ?     

 

YYAVTNIFNY 

B*3501 B*3503 B*5301B*5101-3 B*7801 
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Currently, only a limited number of human T-cell epitopes have been 

experimentally mapped in DENV proteins (see Table 2.4 and Appendix 1; as of 

March 2007). The proteins of DENV-2 are the most commonly studied, with 50 

epitopes identified across all the proteins. In contrast, DENV-1 and DENV-4 are least 

studied, each having 15 epitopes mapped for C, E, NS3, NS4a and NS4b proteins. 

Minimal length T-cell epitopes have been mapped in eight of 10 structural and 

nonstructural DENV proteins; only NS1, NS2a and NS2b remain unmapped (though 

NS1 has been shown to elicit cellular responses). Among the proteins that are 

mapped, NS3 appears to be the best studied, with 54 epitopes mapped across the four 

DENV serotypes. 

DENV epitopes are observed to recognize and bind an assortment of HLA 

alleles (Table 2.5 and Appendix 1). T-cell epitopes have been characterized for 12 

different HLA alleles, with A*0201 being the most common. NS3, which contains the 

majority of known DENV epitopes, showed extensive HLA-restriction, covering nine 

of the studied 12 alleles. In contrast, characterized epitopes from the other dengue 

proteins are restricted by at most two alleles. The HLA-restrictions for a large number 

of the elucidated epitopes (38/50) were not reported. In addition, studies reporting 

epitopes promiscuous to multiple alleles of an HLA supertype are almost non-

existent. Further, the reported T-cell epitopes have not been analysed collectively to 

determine their sequence diversity (antigenic diversity). Antigenic diversity was 

previously studied only in a small number of T-cell epitopes (Screaton and 

Mongkolsapaya, 2006; Welsh and Rothman, 2003). 
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Table 2.4: A summary of experimentally mapped DENV T-cell epitopes, their HLA-restrictions and the DENV serotype from which 
they were identified (DV1, 2, 3 and 4 represent DENV serotype 1, 2, 3 and 4, respectively). This data is up to date as of March 2007. 
 

DENV protein C prM E NS1 NS2a NS2b NS3 NS4a NS4b NS5 

No. of epitopes mapped 8 3 13 

NA NA NA 

54 5 8 2 

No. of promiscuous 
epitope(s) 

1 NA NA 3 NA NA NA 

Serotype / 
No. of epitopes 

DV1 DV2 DV3 DV4 DV2 DV1 DV2 DV3 DV4 DV1 DV2 DV3 DV4 DV1 DV2 DV3 DV4 DV1 DV2 DV3 DV4 DV2 

1 4 1 2 3 2 9 2 2 9 28 14 8 1 2 1 1 2 2 2 2 2 

 
 
Table 2.5: HLA-restrictions of experimentally mapped DENV T-cell epitopes and the number of epitopes associated with each HLA 
allele. 
 

DENV 
protein 

HLA restricting molecule 

A*0201 A*11 A*24 A*33 B*07 B*35 B*60 B*62 DPw2 DPw4 DR1 DRB*1501 Unknown 

C - - - - - - - - - 5 1 - 3 
prM - - - - - - - - - - - - 3 

E 4 - - - 2 - - - - - - - 7 
NS3 - 7 3 1 2 3 1 2 2 - - 11 24 
NS4a 4 - - - - - - - - - - - 1 
NS4b 8 - - - - - - - - - - - - 
NS5 - 2 - - - - - - - - - - - 
Total 16 9 3 1 4 3 1 2 2 5 1 11 38 
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2.3.3 Systematic mapping and analysis of antigenic diversity of T-cell 
epitopes 
 

T-cell epitopes are mapped by use of experimental methods (Sette et al., 2001). A 

systematic analysis of a single protein involves generation of overlapping synthetic 

peptides spanning the whole length of the protein, followed by biochemical and 

functional assays of the peptides for binding to an HLA molecule (Figure 2.4). 

Binding peptides identified from these assays are then tested for recognition by T-

cells (clones generated from human peripheral blood mononuclear cells - PBMC). 

The whole process is then repeated for other HLA molecules and overlapping 

synthetic peptides of other length to search for promiscuous epitopes. 

Because peptide binding to HLA molecules is a prerequisite for T-cell 

recognition, testing binding of peptides of varying length to a large number of HLA 

molecules would require an extensive experimental effort and is the main bottleneck 

of the whole process. For example, a 495 amino acids long DENV envelope antigen 

contains 488 overlapping 8-mers (8 amino acid peptides). Testing the binding 

specificity of all these overlapping peptides for a single individual (generally, up to 14 

HLA molecules; www.enabling.org/ia/celiac/doc/cel-hla.rtf) requires cloning, 

expression, and purification of the HLA molecules followed by almost 7,000 binding 

assays. This would then have to be repeated for overlapping peptides of other lengths. 
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Figure 2.4: Experimental method for mapping T-cell epitopes. An all-inclusive 
systematic analysis of a single protein would involve the synthesis of overlapping 
peptides (designated by Pn, where n is the number of overlapping peptides) 
spanning the whole length of the protein followed by biochemical and functional 
assays of the peptides for binding to HLA molecules (designated by Hn, where n 
is the number of HLA molecules). Peptides identified from these assays are then 
tested for recognition by T-cells. Peptides that are recognized by the T-cells and 
trigger an immune response are T-cell epitopes. 
 

Because of the cost of peptides and limited amount of human peripheral blood 

samples, experimental approaches are combined with a number of prediction tools 

developed for screening of HLA binders (Brusic et al., 2004; Sylvester-Hvid et al., 

2002). This combination of pre-screening and targeted experimentation has 

dramatically accelerated the process of epitope mapping as the judicious use of the 

tools enable large number of unnecessary laboratory experiments to be avoided. HLA-

binding peptides have been proven to minimize the time and the cost of T-cell epitope 

mapping (Brusic et al., 2004). Highly accurate predictions can diminish discovery 

cost by 10-20 folds (De Groot et al., 2002; Kast et al., 1994). 

 Traditionally, computational approaches, such as sequence alignment and/or 
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phylogenetic programs, are used to assess the antigenic diversity of mapped T-cell 

epitopes. However, these approaches are not suitable for analysis of antigenic 

diversity because they do not analyze the sequences in the context of their interaction 

with the immune system. For example, instead of analyzing epitope diversity at single 

amino acid level, it should be analyzed according to a window size reflective of the 

epitope size recognized by the immune system (8-22 amino acids). Therefore, there is 

a need to customize the existing tools for immunological applications or develop new 

methods/tools for the purpose of antigenic diversity analysis. 

 

2.4 Application of bioinformatics to analysis of viral T-cell epitopes 
 

Mapping and analyzing the antigenic diversity of T-cell epitopes in all DENV 

proteins across the four serotypes is a formidable task; aside from the time-consuming 

and laborious nature of peptide screening, other factors also contribute making this 

process highly challenging. They include the large size of pathogen proteomes 

(including their variant strains) (Muzzi et al., 2007; De Groot and Rappuoli, 2004), 

the great diversity of HLA molecules, (Sette et al., 2001), the low (~1-5%) natural 

prevalence of T-cell epitopes for a given protein (Brusic and Zeleznikow, 1999), as 

well as restrictions imposed by high cost of peptides synthesis and limited amount of 

human peripheral blood available for experimentation. 

Bioinformatics tools can facilitate the process of epitope mapping by 

identifying peptides that can potentially elicit T-cell responses. Such tools have been 

available for many years now – Kutubuddin et al. (1991) and Vazquez et al. (2002) 

utilized basic bioinformatics methods (Rothbard and Taylor’s pattern method and 

amphipathic α-helix formation) to predict potential T-cell epitopes in the DENV 

envelope and prM proteins, respectively, prior to experimental validation. However, 
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bioinformatics did not feature prominently in earlier DENV research and its 

incorporation into wet lab procedures appears to be a recent trend. 

Several papers describing the application of advanced prediction tools to study 

DENV epitopes have been published in the recent years. For example, Bashyam et al. 

(2006) used an advanced epitope prediction algorithm (BIMAS) to generate a series 

of nonamers that were predicted to possess the HLA-A*0201 binding motif. Sanchez 

et al. (Sanchez et al., 2006) also used the BIMAS algorithm to predict B*60-, A*24- 

and A*2-binding peptides. Mazumder et al. (Mazumder et al., 2007) used NetMHC to 

predict HLA class I binding peptides and MHCPred and RANKPEP to predict Class 

II binders from the E protein. However, applications of these tools at large-scale to 

predict and analyze all available DENV sequence data in public databases was not 

performed. 

Limited application of bioinformatics in mapping and analyzing DENV 

epitopes in the past may be attributed to the lack of the desired accuracy of the 

prediction tools. Accumulation of experimental data coupled with ongoing efforts to 

improve software performance based on the understanding of complex molecular 

events involved in antigen processing and presentation has led to greater reliability 

(85-95% accuracy) of the recent advanced tools and web-servers (Lin et al., 2008; 

Wang et al., 2008). Sophisticated prediction methods for major steps of HLA class I 

and II antigen processing and presentation pathways have been developed, reviewed 

in (Brusic et al., 2004). The list of servers for prediction of antigen processing and 

HLA binding are provided in Table 2.6. Prediction tools are also being directly linked 

to information derived from microarray, proteomics, and other technologies to 

provide more information on the potential antigens (Grandi, 2003; De Groot and 

Rothman, 1999). In addition, efforts are underway to standardize peptide binding 
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affinity assays, which can greatly facilitate utilization of the growing bank of HLA-

peptide information (Petrovsky et al., 2003; Stenman, 2001). Therefore, there is an 

urgent need for the DENV-human immunome9 research field to integrate 

bioinformatics (specifically immunoinformatics) as a key part of the experimental 

strategy as it has the potential to revolutionise the way researcher study the 

interactions between the virus and host immune response for therapeutic and/or 

prophylactic purposes. 

                                                
9 The immunome is defined as the full set of pathogen’s antigens interacting with the host immune 
system 
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Table 2.6: An overview of bioinformatics prediction servers for mapping putative T-cell epitopes. 
 

Prediction parameters Prediction tool URL/Reference Remarks 

Antigen processing: 
Proteasome cleavage 

MAPPP
Proteasome cleavage prediction 

http://www.mpiib-berlin.mpg.de/MAPPP/cleavage.html 

 - NetChop http://www.cbs.dtu.dk/services/NetChop/ 
PAProC http://www.paproc.de/ 

Pcleavage http://www.imtech.res.in/raghava/pcleavage/ 

Antigen processing: 
TAP binding 

PREDTAP (Zhang et al., 2006) 
 - SVMTAP http://www-bs.informatik.uni-tuebingen.de/Services/SVMTAP/ 

TAPPred http://www.imtech.res.in/raghava/tappred/ 

Antigen processing: 
HLA binding 

BIMAS http://www-bimas.cit.nih.gov/molbio/hla_bind/ HLA Class I, single allele 
HLA Epitope binding prediction http://hlaligand.ouhsc.edu/prediction.htm

IEDB Analysis Resource 
MHC-I binding predictions 

http://tools.immuneepitope.org/analyze/html/mhc_binding.html 
HLA Class I,  
promiscuous epitopes MAPPP 

MHC-I binding prediction 
http://www.mpiib-berlin.mpg.de/MAPPP/binding.html 

MMBPred http://www.imtech.res.in/raghava/mmbpred/ 
HLA Class I, promiscuous 
epitopes, prediction of 
mutated HLA binders 

NetMHC http://www.cbs.dtu.dk/services/NetMHC 
HLA Class I, single allele PREDEP http://margalit.huji.ac.il/ 

SMM http://zlab.bu.edu/SMM/ 
FDR4  http://www.imtech.res.in/raghava/fdr4/submit.html 

HLA Class II, single allele 
HLA-DR4Pred http://www.imtech.res.in/raghava/hladr4pred/ 

IEDB Analysis Resource 
MHC Binding Prediction 

http://tools.immuneepitope.org/tools/matrix/iedb_input?matrixClass=II 

MOT http://www.imtech.res.in/raghava/mhc/page4.html 
MHC2Pred http://www.imtech.res.in/raghava/mhc2pred/

HLA Class II,  
promiscuous epitopes 

ProPred http://www.imtech.res.in/raghava/propred/ 

TEPITOPE (Bian and Hammer, 2004) 
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Prediction parameters Prediction tool URL/Reference Remarks 

ARB Matrix http://epitope.liai.org:8080/tools/matrix/iedb_input?matrixClass=I,II 
HLA Class I & II, single 
allele 

MHC binder prediction http://www.vaccinedesign.com/ 

HLA Class I & II, 
promiscuous epitopes, 
selects best predictions 
from five algorithms  

HLAPred http://www.imtech.res.in/raghava/hlapred/ 
HLA Class I & II, 
promiscuous epitopes 

MHC-BPS http://bidd.cz3.nus.edu.sg/mhc/ HLA Class I & II,  
single allele MHCPred http://www.jenner.ac.uk/MHCPred

MULTIPRED (Zhang et al., 2005b) 
HLA Class I & II, 
promiscuous epitopes,  
predicts hotspots 

SVMHC http://www-bs.informatik.uni-tuebingen.de/Services/SVMHC HLA Class I & II,  
single allele SVRMHC prediction server http://svrmhc.umn.edu/SVRMHCdb/

SYFPEITHI http://www.syfpeithi.de/Scripts/MHCServer.dll/EpitopePrediction.htm 
HLA Class I & II, 
promiscuous epitopes 

Antigen processing: 
Integrating HLA class I 

binding, TAP binding, and 
proteasomal cleavage 

predictions 

EpiJen http://www.jenner.ac.uk/EpiJen/ Single HLA allele 
MHC-I ligand processing 

predictions 
http://tools.immuneepitope.org/analyze/html/mhc_processing.html Promiscuous epitopes 

MHC-pathway http://www.mhc-pathway.net/ Single HLA allele 
NetCTL http://www.cbs.dtu.dk/services/NetCTL/ Promiscuous epitopes 
WAPP http://www-bs.informatik.uni-tuebingen.de/WAPP Single HLA allele 

nHLAPred http://www.imtech.res.in/raghava/nhlapred/ Promiscuous epitopes, 
does not predict TAP 
binding 
 

PEPVAC http://bio.dfci.harvard.edu/PEPVAC/
ProPred-I http://www.imtech.res.in/raghava/propred1/
RankPep http://bio.dfci.harvard.edu/Tools/rankpep.html

Patterns of T-cell epitopes CTLPred http://www.imtech.res.in/raghava/ctlpred/ -
Immunological hotspots 
(clusters of promiscuous 

epitopes) 
Hotspot Hunter  (Zhang et al., 2008)  - 
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2.5 Chapter summary 
 

 Analysis of antigenic diversity of T-cell epitopes is necessary to develop 

strategies to cover the diversity and aid in rational selection of vaccine targets. 

Antigenic diversity analysis of viral antigens is an important pre-requisite to 

mapping T-cell epitopes. 

 The discovery of similar binding specificity among different alleles of both 

class I and class II HLA molecules, termed as supertypes or supermotifs, helps 

reduce the diversity of the HLA molecules and provides a basis for the 

development of vaccines effective at the population level. Therefore, T-cell 

epitopes that are promiscuous to multiple alleles of an HLA supertype are 

attractive targets to map and analyse for antigenic diversity. 

 A limited number of human T-cell epitopes have been experimentally mapped 

in DENV proteins to date. 

 Experimental approaches are combined with a number of prediction tools to 

accelerate the process of epitope mapping as the judicious use of the tools 

enable large number of laboratory experiments to be avoided. Highly accurate 

predictions can diminish discovery cost by 10-20 folds. However, mapping 

putative T-cell epitopes in dengue proteins using bioinformatics tools is hardly 

existent. 

 A systematic bioinformatics-based approach to proteome-wide mapping and 

analysis of potential DENV T-cell epitopes can provide important insights into 

covering antigenic diversity and improving the efficacy of research by 

assisting in selection of critical experiments for vaccine formulation. 
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Chapter 3 Large-scale Analysis of Antigenic Diversity of T-
Cell Epitopes in Dengue Virus 
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3.1 Introduction 
 

While there is a correspondence between genetic and antigenic evolution of viruses, 

genetic changes can result in disproportionately large antigenic changes (Smith et al., 

2004; Morvan et al., 1990). Though genetic and antigenic diversity in DV strains is 

evident (Rico-Hesse, 2003), large-scale and detailed systematic analyses that explore 

their relationship have not been reported. Earlier studies of genetic diversity focused 

on clade diversity and replacement (Zhang et al., 2005a), mutation spectra (Chao et 

al., 2005), conserved regions (Schein et al., 2005) and implications for clinical 

manifestations (Holmes and Burch, 2000). While studies of antigenic diversity 

(diversity of targets of immune responses in protein sequences) focused on 

experimental mapping of limited T-cell epitopes (Simmons et al., 2005; 

Mongkolsapaya et al., 2003; Loke et al., 2001; Kurane et al., 1998; Gagnon et al., 

1996) and subsequent analysis of their diversity. Understanding this relationship 

between genetic and antigenic diversity is important for the study of vaccine 

development, especially in rapidly mutating viruses. In the study reported in this 

chapter, the author focuses on protein sequence diversity, and thus only considers 

genetic variations (non-synonymous mutations) that affect the protein sequences. 

We developed a bioinformatics method to analyze antigenic diversity in the 

context of T-cell mediated immune responses (Khan et al., 2006a). Antigenic 

diversity of more than 9000 DV protein sequences reported in the NCBI Entrez 

Protein database (Wheeler et al., 2005) were studied. The study aimed to identify a 

minimal set of sequences that encodes the complete antigenic diversity of short 

peptides from all known sequences of DV serotypes. Short peptides, principally 9-

mers were studied because they represent the predominant length of binding cores of 

T-cell epitopes. The relationship between short-peptide antigenic diversity and protein 
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sequence diversity of DV was analysed; the analysis was performed at two time 

points (reported data up to June 2004 and up to December 2005) to help understand 

the effects of the accumulation of sequence data to the relationship. The effects of 

sequence determinants on antigenic diversity of short peptides were also assessed. 

This study provided a framework for large-scale, systematic analysis of antigenic 

diversity for the protein sequences of any virus. 

The author would like to declare here that the method developed for antigenic 

diversity analysis and the results for the up to June 2004 time point data set are part of 

his MSc thesis (Khan, 2005) with the National University of Singapore. In 

consultation with his supervisors, the author determined that it was necessary to 

update the study, because the availability of new DV sequences in public databases 

(157% increase) would (i) produce a statistically more accurate representation of 

antigenic diversity of T-cell epitopes in DV, ii) provide additional validation of the 

method using independent data set, and iii) help assess how increases in sequences 

affects the relationship between antigenic and genetic diversity. 

 

3.2 Materials and methods 
 

3.2.1 Dengue virus data collection 
 

All DV protein sequence entries present in the NCBI Entrez Protein database (Brown 

et al., 2003) were collected in June 2004 (comprising all reported data up to June 

2004) and then again in December 2005 (comprising all reported data up to December 

2005). Data retrieval was performed through the NCBI taxonomy browser (Wheeler 

et al., 2005) and the respective taxonomy ID for each of the dengue serotypes (DV1-
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4) are 11053, 11060, 11069 and 11070. The collected entries for both time points 

were processed separately using identical procedures. 

 

3.2.2 Data processing: cleaning and grouping 
 

Data compiled from public databases are prone to errors and discrepancies 

(Srinivasan et al., 2002), which if not corrected may obscure the results of analyses. 

Therefore, the author inspected the collected DV entries and corrected errors and 

discrepancies. Individual protein sequences were extracted from collected entries for 

each DV serotype and grouped according to the 10 dengue proteins for analysis. The 

extraction and grouping was facilitated by creating a searchable database (McGinnis 

and Madden, 2004) of all collected DV sequences and performing blast (parameters: 

filter – no; expect – 100; descriptions & alignments – 20,000) against the database by 

use of a sample sequence for each DV protein. The sample sequences were obtained 

from the NCBI Entrez Protein database (Wheeler et al., 2005) reference record for 

each dengue serotype (DV1: AAF59976; DV2: P14340; DV3: AAM51537; DV4: 

AAG45437). A total of 40 blast searches were performed (4 serotypes x 10 proteins 

of each serotype) and the blast hits obtained for each search were all the data available 

for the respective protein in the collected DV records. The cleavage site information 

for each dengue protein was used to assess the reliability of the blast results and filter 

out irrelevant hits. The cleavage site information was obtained from the annotation of 

the NCBI Entrez Protein database reference records and the literature (Osatomi and 

Sumiyoshi, 1990). 

Duplicate or identical sequences were then removed from the resulting 

datasets of each DV protein and the unique sequences were retained for further 
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analysis. Both full length and partial unique sequences of each dengue serotype 

protein were used in all the analysis, unless indicated otherwise in the sections below.  

 

3.2.3 Extent of amino acid variation within and across DV serotype proteins 
 

Pairwise percentage amino acid identity for the full length unique sequences of each 

dengue protein, intra- and inter-serotype, was computed by use of ClustalW 1.83 

(Thompson et al., 1994) with default parameters. This was done to survey the extent 

of amino acid variation in the latest, comprehensive dengue dataset of 2005. 

 

3.2.4 Protein sequence and antigenic diversity analysis of DV 
 

In this study, protein sequence diversity of a dengue protein was defined as the total 

number of unique sequences reported in the dataset for the protein. Sequences having 

at least a single amino acid difference between them were considered as unique.  

Antigenic diversity of a dengue protein was defined in this study as the 

minimal set of unique sequences required to represent the complete set of overlapping 

9-mer peptides encoded by all unique sequences reported in the protein dataset. A 

bioinformatics method that performs exhaustive search to determine the minimal set 

for a given protein was developed. The method comprises of two steps: (a) generation 

of a set of overlapping 9-mers from the entire length of all unique sequences reported 

in the protein dataset, followed by (b) identification of a minimal set of unique 

sequences that represents all the unique 9-mers. The union of such sets for all the 10 

proteins of a dengue serotype represents the antigenic diversity of the proteins for the 

serotype. The specifications for the method were defined and validated by the author 
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and the computer program for the method was written in Perl and C languages by 

Seah Seng Hong, a programmer in the supervisor’s lab. 

In the first step of the method, overlapping 9-mers from the entire length of 

each unique sequence are generated because the whole length is assumed to contain 

T-cell epitopes. This assumption was based, firstly, on the estimate that from a 

complete set of overlapping peptides (9 or 10-mers) spanning a protein, on average, 

0.1-5% of the peptides will bind to any particular HLA molecule (Brusic and 

Zeleznikow, 1999). Secondly, given the large number of HLA molecules (more than 

2532 known as of September 2006; www.ebi.ac.uk/imgt/hla/stats.html), the vast 

majority of the complete set of overlapping peptides are highly likely to bind at least 

one molecule from the total HLA pool. Thus, each overlapping peptide is a potential 

T-cell epitope. Further, this assumption ensured the coverage of all possible candidate 

9-mer T-cell epitopes that can be present across the entire length of the unique 

sequence. Antigenic diversity study was focused on 9-mers because they represent the 

predominant length of HLA class I T-cell epitopes, as well as the binding core of 

HLA class II T-cell epitopes (Rammensee, 1995). Furthermore, we performed a 

preliminary analysis using 8-mers and 10-mers, which did not produce notably 

different results compared to the analysis of 9-mers (data not shown). A small number 

of 9-mers derived from the unique sequences contained unknown residues (denoted 

by “X”) and, hence, were excluded from the analysis because they were antigenically 

non-informative. 

 

3.2.5 Determining the effects of sequence determinants on antigenic diversity 
 

The effects of two sequence determinants were studied on antigenic diversity: i) the 

number of viral sequences in the studied set and ii) the length of protein antigens. The 
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study was performed on unique sequences of the DV2 envelope protein (retrieved in 

2005) because it provided a sufficiently large and well-defined dataset (198 full length 

sequences). Test datasets with different numbers of sequences (20, 40, 60, 80, 100, 

120 and 140 sequences) and different lengths (23, 46, 128, 138, 276 and 460 aa) were 

randomly derived from the envelope dataset with repeated sampling (20 repeats). Any 

duplicate sequences were removed from the test datasets. The minimal set of 

sequences that represents the complete short-peptide antigenic diversity was 

determined for each test dataset. These minimal sets were used to analyze the effects 

of the sequence determinants on antigenic diversity. 

 

3.3 Results 
 

3.3.1 DV serotype protein datasets 
 

Data of June 2004 (Table 3.1), collected from the NCBI Entrez Protein database, 

contained a total of 3699 sequences representing the 10 proteins encoded by the 

genomes of the four serotypes (Table 2.1 and Figure 2.1). The number of these 

reported sequences increased nearly three-fold during the following 18 months (9512 

sequences; see Table 3.1). The removal of duplicates (identical protein sequences) 

reduced these collected sequences to 1318 (2004) and 2419 (2005) unique sequences 

(Table 3.1). More than 64% of the sequences collected in 2004 were identical and, 

thus, redundant, and the redundancy increased by approximately 10% in 2005 (to 

75%). The number of reported unique sequences varied greatly among the proteins, 

ranging from 69 NS4a to 998 E sequences in the 2005 set (Table 3.2). Minor errors of 

annotation, mainly of the cleavage sites, were identified for 17 sequences (Appendix 

2) and the source databases of these sequences, such as NCBI and Swiss-Prot, were 
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notified for correction. An offshoot development of this, beyond the scope of this 

thesis, was that the reporting of the DV annotation errors by the author of this thesis 

to the personnel (Philippe Le Mercier et al.,) at the Swiss-Prot database made them 

later realize that it was not an isolated case specific to DENV; it was a general 

problem for sequence records in public databases of many other viruses. This 

observation in particular, among other reasons, made them start an international 

initiative to correct such problems across public databases by developing common 

standards for virus sequence records, such as a standard nomenclature to name virus 

isolates. Towards this initiative, the author contributed in proposing the nomenclature 

specifications. 

 

Table 3.1: Number of collected and unique protein sequences for each dengue 
serotype as of 2004 and 2005 and the corresponding increase in data between the 
two time points. 
 

Dengue 
serotype 

Data retrieved in 2004 (#) Data retrieved in 2005 (#) 
Increase 

(#) 

Collected 
sequences 

Unique 
sequences 

Collected 
sequences 

Unique 
sequences 

Collected 
sequences 

Unique 
sequences 

DV1 744 359 2318 724 1574 365 

DV2 1426 507 3351 697 1925 190 

DV3 597 230 2520 678 1923 448 

DV4 932 222 1323 320 391 98 

Total 3699 1318 9512 2419 5813 1101 
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Table 3.2: Total number of unique sequences for the proteins of the four DV 
serotypes, as of 2004 and 2005. 
 

Protein 

No. of unique sequences 
(all four serotypes) 

2004 2005 

C 107 196 

prM 126 220 

E 495 998 

NS1 150 224 

NS2a 95 142 

NS2b 59 78 

NS3 80 164 

NS4a 37 69 

NS4b 57 88 

NS5 112 240 

Total 1318 2419 

 
 
3.3.2 Intra- and inter-serotype amino acid sequence variability of DV proteins 
 

Earlier studies of dengue proteins, mainly E and NS1 (Holmes and Twiddy, 2003; 

Twiddy et al., 2003; Twiddy et al., 2002; Fu et al., 1992; Rico-Hesse, 1990), have 

shown substantial amino acid sequence diversity both within and between the 

serotypes. In this study, the extent of amino acid variation among DVs was surveyed 

by calculating pairwise percentage amino acid identity of unique sequences for each 

dengue protein, intra- and inter-serotype, using the large dengue data set of 2005. The 

intra- and inter-serotype percentage sequence identities (PSI) for all dengue proteins 

are shown in Table 3.3. 
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Table 3.3: Minimum and maximum percentage sequence identity range for each 
dengue protein, intra- and inter-serotype. The average percentage sequence 
identities (PSI) are shown for inter-serotype comparisons. 
 

C 

 DV1 DV2 DV3 DV4 
Average
PSI (%)

prM 

 DV1 DV2 DV3 DV4 
Average
PSI (%) 

DV1 88-99    

65 

DV1 92-99   

68 
DV2 56-75 81-99   DV2 62-75 79-99   
DV3 75-84 53-66 91-99  DV3 75-82 60-72 93-99  
DV4 61-68 57-69 54-60 94-99 DV4 62-67 60-71 64-70 96-99 

E 

 DV1 DV2 DV3 DV4 
Average
PSI (%)

NS1 

 DV1 DV2 DV3 DV4 
Average
PSI (%) 

DV1 89-99    

65 

DV1 93-99   

72 
DV2 58-70 80-99   DV2 68-75 85-99   
DV3 72-79 60-69 92-99  DV3 77-80 69-75 94-99  
DV4 58-66 55-65 61-64 94-99 DV4 67-70 68-73 70-74 93-99 

NS2a 

 DV1 DV2 DV3 DV4 
Average
PSI (%)

NS2b 

 DV1 DV2 DV3 DV4 
Average
PSI (%) 

DV1 90-99    

39 

DV1 93-99   

60 
DV2 36-40 93-99   DV2 56-62 95-99   
DV3 43-48 35-40 93-99  DV3 66-70 58-63 96-99  
DV4 35-39 33-36 36-41 89-99 DV4 56-62 54-59 56-59 94-99 

NS3 

 DV1 DV2 DV3 DV4 
Average
PSI (%)

NS4a 

 DV1 DV2 DV3 DV4 
Average
PSI (%) 

DV1 97-99    

79 

DV1 92-99   

60 
DV2 78-80 96-99   DV2 56-61 96-99   
DV3 84-86 79-81 97-99  DV3 63-68 56-63 92-99  
DV4 75-77 75-77 77-79 97-99 DV4 56-60 59-64 56-62 94-99 

NS4b 

 DV1 DV2 DV3 DV4 
Average
PSI (%)

NS5 

 DV1 DV2 DV3 DV4 
Average
PSI (%) 

DV1 95-99    

78 

DV1 96-99   

77 
DV2 75-79 95-99   DV2 77-79 95-99   
DV3 81-85 75-79 97-99  DV3 80-82 77-79 96-99  
DV4 75-78 77-81 76-79 97-99 DV4 73-76 72-75 74-77 95-99 

 

The intra-serotype percentage sequence identity was between 92% and 99%, 

except for C, prM, E and NS1 of DV2, which showed minimum sequence identities 

ranging from 79% to 89%. In contrast, the average inter-serotype percentage sequence 

identity was in the range of 60-79%, except for NS2a. The NS3, NS4b and NS5 

proteins are highly conserved across the serotypes, with average sequence identities in 

the range of 77-79%, probably because of their involvement in forming the RNA 

replication complex (Preugschat and Strauss, 1991). The NS2a protein is the most 

diverse across the serotypes (average PSI of 39%), though it is highly conserved 

within each serotype. The inter-serotype diversity observed for NS2a is comparable to 
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the inter-Flavivirus diversity of the envelope protein, which shows approximately 

40% amino acid identity (Mukhopadhyay et al., 2005). 

 

3.3.3 Minimal sequence sets representing DV antigenic diversity 
 

In addition to identical protein sequences, another source of sequence redundancy, 

relevant to this study, is the presence of antigenically redundant sequences. These 

sequences exist because of the identity of many amino acid residues among the 

individually unique protein sequences, resulting in the presence of T-cell epitopes that 

are identical among viral variants. Antigenically redundant sequences can be removed 

without loss of information on antigenic diversity among the sequences in a dataset. 

For example, in a dataset of three sequences, if all the overlapping 9-mers in one 

sequence have a match in at least one of the other two sequences, the antigenic 

diversity of this sequence can be covered by the other two sequences combined, thus 

rendering the first sequence antigenically redundant (Figure 3.1). 

After the removal of duplicate sequences, the removal of antigenically 

redundant sequences using the bioinformatics method resulted in a further reduction 

of the number of dengue unique sequences to a total of 969 (2004 set) or 1684 (2005 

set). These two sets represent the complete antigenic diversity of short peptides for all 

four dengue serotypes (Table 3.4). The increase in the number of unique sequences 

required to represent the complete antigenic diversity of short peptides in the four 

dengue serotypes in 2005, compared to 2004, is an indication that more short-peptide 

antigenic diversity was found in the new sequences accumulated in the database. 

However, the percentage of unique sequences required to represent the complete 

short-peptide antigenic diversity of all four dengue serotypes in 2005 decreased (from 

74% in 2004 to 70% in 2005) because of an increase in antigenic redundancy. This 
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observation indicates that the increase in the number of unique protein sequences 

(representing protein sequence diversity) deposited in public databases is generally 

accompanied by a slower increase in short-peptide antigenic diversity. 

 

A) Three unique sequences from the NCBI Entrez Protein database. 
 

1854039 ASIILEFFLMVLLIPEPDRQRT  
17129648 ASIILEFFLMVLLIPEPDRLRT  
37963458 ASIILEFLLMVLLIPEPDRQRT  

 ******* *********** **  
Consensus ASIILEFFLMVLLIPEPDRQRT  

Variable residues        L           L   
   
B) Overlapping 9-mers generated from the three unique sequences 
represent all the inherent antigenic variations, with respect to 
potential 9-mer T-cell epitopes. 
 
>37963458 >1854039 >17129648 
ASIILEFLLMVLLIPEPDRQRT ASIILEFFLMVLLIPEPDRQRT ASIILEFFLMVLLIPEPDRLRT
asiilefll ASIILEFFL ASIILEFFL 
 siilefllm  SIILEFFLM  SIILEFFLM 
  iilefllmv   IILEFFLMV   IILEFFLMV 
   ilefllmvl    ILEFFLMVL    ILEFFLMVL 
    lefllmvll     LEFFLMVLL     LEFFLMVLL 
     efllmvlli      EFFLMVLLI      EFFLMVLLI 
      fllmvllip       FFLMVLLIP       FFLMVLLIP 
       llmvllipe        FLMVLLIPE        FLMVLLIPE 
        LMVLLIPEP        LMVLLIPEP        LMVLLIPEP
         MVLLIPEPD        MVLLIPEPD         MVLLIPEPD
          VLLIPEPDR          VLLIPEPDR          VLLIPEPDR
           LLIPEPDRQ            LLIPEPDRQ            llipepdrl 
            LIPEPDRQR             LIPEPDRQR             lipepdrlr 
             IPEPDRQRT              IPEPDRQRT              ipepdrlrt

 

Figure 3.1: Definition of antigenically redundant sequences. A) The three 
sequences (NCBI GI no.: 1854039, 17129648 and 37963458) are each unique, and 
residues that vary among them are shown. B) Overlapping 9-mers generated 
from the three unique sequences represent all the inherent antigenic variations, 
with respect to potential 9-mer T-cell epitopes. Although the three sequences are 
each unique, they share identical 9-mers. 9-mers shown in uppercase are those 
with an identical match in two of the unique sequences analyzed, while those in 
bold uppercase have an identical match in all three sequences; unique 9-mers are 
shown in lowercase. All the 9-mers in sequence 1854039 have a match in at least 
one of the other two sequences; thus, the antigenic diversity of this sequence can 
be covered by the other two sequences combined, rendering the sequence 
1854039 antigenically redundant. Hence, the minimal number of sequences 
required to represent antigenic diversity for this dataset is two. 
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Table 3.4: Reduction of the number of unique dengue sequences by removal of 
antigenically redundant sequences. 
 

Dengue 
serotype 

Data retrieved in 2004 Data retrieved in 2005 

Unique 
sequences 

(#) 

Minimal antigenic set 

Unique 
sequences 

(#) 

Minimal antigenic set 

Unique 
sequences 

(#) a 

Percentage of 
unique sequences

(%) b 

Unique 
sequences 

(#) a 

Percentage of 
unique sequences

(%) b 

DV1 359 244 68% 724 493 68% 

DV2 507 368 73% 697 466 67% 

DV3 230 180 78% 678 482 71% 

DV4 222 177 80% 320 243 76% 

Total 1318 969 74% 2419 1684 70% 
a Minimal number of unique sequences that represent complete short-peptide (9-mer) antigenic 

diversity of dengue unique sequences collected from the NCBI Entrez Protein database  
b Percentage of unique sequences that represent complete short-peptide (9-mer) antigenic diversity of 

dengue unique sequences collected from the NCBI Entrez Protein database 

 

3.3.4 Characterization and application of sequence variables that affect 
antigenic diversity 
 

The author examined the effects of sequence determinants, such as number and length 

of sequences, on short-peptide antigenic diversity of DV. These analyses were carried 

out using test datasets of different numbers of sequences (20, 40, 60, 80, 100, 120 and 

140 sequences) and different lengths (23, 46, 128, 138, 276 and 460 aa) that were 

randomly selected from the set of DV2 envelope protein sequences, with repeated 

sampling of 20 times. Antigenic diversity analysis of each test dataset was performed 

to identify a minimal set of sequences that represents the complete short-peptide 

antigenic diversity for each dataset. These minimal sets were used to analyze the 

effects of the sequence determinants on antigenic diversity. 
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3.3.5 Effects of number of sequences on short-peptide antigenic diversity 
 

An increase in the number of unique sequences in a dataset reduces the fraction 

required to represent the complete short-peptide antigenic diversity (Table 3.5). This 

observation reflects an asymptotic relationship between the number of unique 

sequences and the percentage of the complete short-peptide antigenic diversity that is 

covered (Figure 3.2). Asymptotic curves were observed for all the proteins of the four 

dengue serotypes (data not shown). The shape of the curve indicates that a single 

sequence will cover only a small proportion of the total short-peptide antigenic 

diversity and that for proteins with a large number of unique sequences, the addition 

of a single new variant sequence has little effect on the overall antigenic diversity. 

 

Table 3.5: Effects of number of unique DV serotype 2 (DV2) envelope sequences 
(N) on short-peptide (9-mer) antigenic diversity. The mean and standard error 
(SE) values are shown for random repeated sampling of 20 times. 
 
Number of unique sequences 
(N) 

20 40 60 80 100 120 140 

Length of sequences 460 aa 460 aa 460 aa 460 aa 460 aa 460 aa 460 aa 

Minimal number of unique 
sequences that represent 
complete short-peptide 
antigenic diversity 
(Mean ± SE) 

18 ± 0.30 32 ± 0.54 46 ± 0.70 58 ± 0.87 70 ± 0.87 80 ± 0.87 90 ± 0.71

Percentage of unique 
sequences that represent 
complete short-peptide 
antigenic diversity (%) 
(Mean ± SE) 

90 ± 1.5 80 ± 1.35 77 ± 1.17 73 ± 1.09 70 ± 0.87 67 ± 0.73 64 ± 0.51
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Figure 3.2: Short-peptide (9-mer) antigenic diversity as a function of number of 
sequences. Short-peptide antigenic diversity has an asymptotic relationship to 
number of unique DV serotype 2 (DV2) envelope sequences (N). Each curve 
shows the cumulative percentage coverage of short-peptide antigenic diversity. 
Vertical bars represent standard error for repeated random sampling of 20 
times. 
 

3.3.6 Effects of length of sequences on short-peptide antigenic diversity 
 

A decrease in the length of sequences of a dataset reduces the fraction required to 

represent the complete short-peptide antigenic diversity of the dataset (Table 3.6). 

This reduction was achieved by removal of two types of redundancy: identical 

fragments and antigenically redundant fragments. The number of identical fragments 

increases significantly with a decrease in the length of the fragments because of the 

limited variability associated with smaller size. Hence, the effect of sequence length is 

significant, especially for very short fragments (23 aa), for which only ~7% of the 

unique fragments were required to represent complete antigenic diversity of the short 

fragments (a reduction of ~93%). Overall, the results indicate that short-peptide 

antigenic diversity has a near-linear relationship to sequence length (Figure 3.3). 
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Table 3.6: Effects of length of DV serotype 2 (DV2) envelope protein sequences 
on short-peptide (9-mer) antigenic diversity. The mean and standard error (SE) 
values are shown for random repeated sampling of 20 times. 
 

Length of fragments 
100% 

(460 aa) 
60% 

(276 aa) 
30% 

(138 aa) 
20% 

(92 aa) 
10% 

(46 aa) 
5% 

(23 aa) 
Number of fragments 187 187 187 187 187 187
Number of unique fragments 187 131 82 58 27 17
Minimal number of fragments that 
represent complete short-peptide 
antigenic diversity (Mean ± SE) 

111 ± 0.11 74 ± 0.11 48 ± 0.17 38 ± 0.10 24 ± 0.10 14 ± 0.10

Percentage of fragments that 
represent complete short-peptide 
antigenic diversity (%) (Mean ± SE)

59 ± 0.06 40 ± 0.06 26 ± 0.09 20 ± 0.05 13 ± 0.05 7 ± 0.05 
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Figure 3.3: Short-peptide (9-mer) antigenic diversity as a function of length of 
sequences. Short-peptide antigenic diversity shows a linear relationship to the 
sequence length of DV serotype 2 (DV2) envelope protein. 
 

3.3.7 Summary of results 
 

In summary, the number of unique protein sequences required to represent complete 

antigenic diversity of short peptides in DV was significantly smaller than that required 
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to represent complete protein sequence diversity (Figure 3.4). Assessment of factors 

that determine antigenic diversity revealed asymptotic relationship of short-peptide 

antigenic diversity to number of unique protein sequences and near-linear relationship 

to sequence length. 

 

 

 

 

 

 

 
 
 

 
 

 
Figure 3.4: Flowchart summarizing the steps undertaken to identify the 
antigenically relevant unique sequences in the DV. 
 

3.4 Discussion 
 

In this study, a systematic bioinformatics approach was applied to collect, clean, 

organize and analyze the antigenic diversity of short peptides in reported protein 

sequence data of DV. A computational method was developed for the analysis of 

antigenic diversity of short peptides within DENV proteins. This method was applied 

for the analysis of short-peptide antigenic diversity of DV to determine a minimal 

sequence set that encodes the complete antigenic diversity of linear epitopes within 

each DV serotype. The relationship between short-peptide antigenic diversity and 

protein sequence diversity of DV were studied and the effects of sequence 

 

Collected sequences3699 9512 

June 2004 December 2005 

Genotypic variant 
unique sequences 1318 2419 

Antigenically relevant 
unique sequences 

969 1684 

Removal of identical 
sequences 

Removal of antigenically 
redundant sequences 
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determinants on viral antigenic diversity were also explored. Our analysis showed that 

the minimal number of unique sequences required to represent complete antigenic 

diversity of linear epitopes in DV is significantly smaller than that required to 

represent complete protein sequence diversity. Short-peptide antigenic diversity 

shows an asymptotic relationship to the number of unique sequences and linear 

relationship to the length of protein antigens. 

The minimal sequence set that encodes the complete short-peptide antigenic 

diversity for each DV serotype was derived through removal of identical sequences 

and antigenically redundant sequences (Table 3.4 and Figure 3.4). Both reductions 

occurred without any loss of information on antigenic diversity among the sequences. 

The largest reduction was accomplished through the removal of identical sequences, 

since only 36% (year 2004) or 25% (year 2005) of the sequences were unique. The 

identical sequences originated from DV strains that were unique variants with respect 

to the whole polyprotein, but were identical to other dengue strains with respect to 

individual proteins, resulting in many duplicate protein sequences. The removal of 

antigenically redundant sequences also involved a significant proportion of the 

sequences, approximately one-third of all unique sequences (2004: 26%; 2005: 30%), 

reflecting the high antigenic redundancy among the DV variants, which often differed 

by only a few amino acids. Despite significant reduction achieved by reducing the 

collected sequences to minimal sequences, a large number of protein sequences, 969 

in 2004 and 1684 in 2005, were still required to represent the complete short-peptide 

antigenic diversity of DV. 

It is clear that antigenic diversity in the reported dengue sequences is large. 

With many asymptomatic human and animal carriers of DVs representing a huge 

reservoir for emergence of new strains (Schein et al., 2005; Holmes and Twiddy, 
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2003; Halstead and Deen, 2002), the diversity is expected to increase, although at a 

progressively slower pace. This is because antigenic redundancy increases when the 

number of sequences increases; it was observed that when the dataset for a particular 

protein reaches approximately 200 sequences, the effect of addition of new sequences 

to increasing antigenic diversity is marginal. 

Our study of factors that affect antigenic diversity provided insight into 

dealing with the increasing T-cell epitope antigenic diversity in the context of vaccine 

development. Length of sequences had the largest effect on short-peptide antigenic 

diversity. Asymptotic behaviour of antigenic diversity increase was observed for the 

increase in the number of sequence variants. Selection of the region of the sequence 

also had some effect (data not shown) – the higher the conservation of the region, the 

lesser the diversity, with complete conservation being ideal. For practical purposes of 

vaccine formulation, antigenic diversity cannot be represented by whole protein 

sequences because it is not feasible to use these sequences for systematic 

experimental analysis: they are long and their number is increasing rapidly. The 

implication is that conventional vaccination strategies, which utilize whole attenuated 

pathogen with little knowledge of the specificity of immune responses they elicit, may 

not be suitable for providing protection from multiple variants of viruses. 

Furthermore, it may be difficult to optimize such vaccine according to the HLA 

profile of the population receiving the vaccine (Brusic and August, 2004; 

Ovsyannikova et al., 2004), as neither the T-cell epitopes and nor their HLA 

restrictions are known. 

A more effective vaccine strategy that the author proposes is to focus on short, 

conserved segments of proteins (~ <100 aa) that are known to be specific targets of 

immune responses (such as T-cell epitopes specific to particular HLA alleles). To deal 



59 
 

with the diversity of the immune system, it is important to map the T-cell epitopes 

relative to the HLA supertypes (Sette and Sidney, 1999; Sette et al., 2001), such as T-

cell epitopes promiscuous to HLA-DR or other supertypes. For a set of sequences, by 

identifying the minimal number of short, conserved peptides that represent antigenic 

diversity relevant to each supertype and combining them, the complete antigenic 

diversity relevant to multiple supertypes can be covered in a “divide-and-conquer” 

approach. This may provide a promising basis for multivalent peptide-based vaccine 

against DV. The concept of using conserved, supertype restricted epitopes to target 

pathogen antigenic diversity and as peptide-based vaccine targets is also supported by 

others (Sette et al., 2001; Sylvester-Hvid et al., 2002; De Groot et al., 2005). 

There are some caveats to be considered in this study. First, it is well-known 

that not all HLA-restricted epitopes are 9-mers (Rammensee, 1995). This may impact 

the interpretation of our results, which were based only on 9-mers, and hence may not 

give a true representation of dengue T-cell epitope antigenic diversity. 9-mers were 

selected because they represent the typical size of HLA class I T-cell epitopes, as well 

as the binding core of HLA class II T-cell epitopes (Rammensee, 1995). Nevertheless, 

similar analysis with peptides of 8-mers and 10-mers showed no significant difference 

as compared to the analysis of 9-mers (data not shown). 

The second caveat is the sampling bias in DV sequences reported in the public 

databases. Only dengue sequences that have been studied are reported, and viruses 

collected in accessible locations, associated with notable disease outbreaks or of 

known immunological properties are preferentially studied. Consequently, certain 

dengue proteins have been studied intensively, while the others remained largely 

unstudied. For example, sequences of the envelope protein, known to be important for 

immunological activity and viral entry into host (Kurane et al., 1998; Preugschat and 
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Strauss, 1991), were the most abundant in our dataset (3183 sequences for all four 

serotypes), while that of NS4a, which is relatively unknown for immunological 

activity, was under-represented. In addition, for majority of the proteins, a large 

portion of the reported sequences were incomplete in length. For example, 95% of 

DV2 NS5 collected sequences were incomplete in length (data not shown). However, 

the data used in this study was the most representative available and the large sample 

size for majority of the proteins helps to decrease the margin of error due to sampling 

bias. In addition, the reported sequences represent highly pathogenic strains isolated 

during dengue outbreaks. 

 

3.5 Conclusions 
 

This study has provided evidence that there are limited number of antigenic 

combinations in variant protein sequences of a viral species and that short regions of 

the viral proteins are sufficient to cover antigenic diversity of T-cell epitopes. The 

approach described here has direct application to the analysis of other viruses, in 

particular those that show high diversity and/or rapid evolution, such as influenza A 

virus and HIV. Preliminary results of analysis to other viruses by my colleagues in the 

lab (Mr. Kenneth Lee Xunjian on West Nile virus and Ms. Heiny Tan on Influenza 

A), applying the computational methodology developed, showed similar result of 

limited antigenic combination in variant protein sequence of a viral species. 

 

3.6 Chapter summary 
 

Background: Antigenic diversity in DV strains has been studied, but large-scale and 

detailed systematic analyses have not been reported. In this study, a bioinformatics 
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method for analyzing viral antigenic diversity in the context of T-cell mediated 

immune responses is described. The method was applied to study the relationship 

between short-peptide antigenic diversity and protein sequence diversity of DV. The 

effects of sequence determinants on viral antigenic diversity were also studied. Short 

peptides, principally 9-mers were studied because they represent the predominant 

length of binding cores of T-cell epitopes, which are important for formulation of 

vaccines. 

Results: The analysis showed that the number of unique protein sequences 

required to represent complete antigenic diversity of short peptides in DV was 

significantly smaller than that required to represent complete protein sequence 

diversity. Short-peptide antigenic diversity showed an asymptotic relationship to the 

number of unique protein sequences, indicating that for large sequence sets (~200) the 

addition of new protein sequences has marginal effect to increasing antigenic 

diversity. A near-linear relationship was observed between the extent of antigenic 

diversity and the length of protein sequences, suggesting that, for the practical 

purpose of vaccine development, antigenic diversity of short peptides from DV can be 

represented by short, conserved regions of sequences (~<100 aa) within viral antigens 

that are specific targets of immune responses (such as T-cell epitopes specific to 

particular HLA alleles), in particular promiscuous T-cell epitopes. 

Conclusions: This study provides evidence that there are limited number of 

antigenic combinations in protein sequence variants of a viral species and that short, 

conserved regions of the viral protein are sufficient to cover antigenic diversity of T-

cell epitopes. The approach described herein has direct application to the analysis of 

other viruses, in particular those that show high diversity and/or rapid evolution, such 

as influenza A virus and human immunodeficiency virus (HIV). 
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Chapter 4 Identification and Characterization of Dengue 
Virus Peptides that Cover Antigenic Diversity (PEs) 
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4.1 Introduction 
 

Based on the insights gained from the analysis presented in Chapter 3, we have 

focused on short, conserved sequence fragments that contain promiscuous T-cell 

epitopes to cover antigenic diversity, for the practical purpose of vaccine 

development. Therefore, the author analysed all available DENV sequence data in 

public databases to identify and characterize peptides that cover antigenic diversity 

(PEs) of the virus: sequence regions conserved across sequences of the four DENV 

serotypes (pan-DENV sequences) and are immunologically relevant in the context of 

HLA supertypes. 

Bioinformatics-based approaches were used to (a) extract all DENV sequences 

available in public databases (as of December 2007), (b) identify pan-DENV 

sequences, (c) analyze the evolutionary stability of the pan-DENV sequences, (d) 

characterize the structure-function relationship and distribution in nature of the pan-

DENV sequences, and (e) examine the immune relevance of the conserved sequences 

as potential promiscuous T-cell epitopes that are applicable to the majority of the 

human population worldwide (Sette and Sidney, 1999). The pan-DENV sequences 

were also correlated to previously reported T-cell epitopes and those identified in 

HLA transgenic mice (Tg) by a collaborator of the author. 

The author clarifies here that the bioinformatics analyses, which are the scope 

of this thesis, were performed by the author himself and that the experimental 

validation was done independently as a full-overlapping study, the results of which 

the author used to validate his findings. 
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4.2 Materials and methods 
 

4.2.1 Methodology overview 
 

The bioinformatics approaches adopted in this study are summarized in Figure 4.1. 

These include three major steps that involve creating the database, analysis of 

potential T-cell epitopes, and experimental validation. 

 

 
 

Figure 4.1: Overview of bioinformatics and experimental approaches employed 
for identification and analysis of pan-DENV sequences. 
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4.2.2 Dengue virus data collection and sequence organization 
 

DENV protein sequences were retrieved from the NCBI Entrez Protein database in 

December 2005 (included reported data as of December 2005), and again in 

December 2007 (included reported data as of December 2007) for validation 

purposes, by use of a taxonomy ID search via the NCBI taxonomy browser (Wheeler 

et al., 2005). The taxonomy IDs for DENV-1 to -4 are 11053, 11060, 11069 and 

11070, respectively. The data for 2007 were processed separately from the 2005 

dataset, but using identical procedures. 

The sequences for the proteins C, prM, E, NS1, NS2a, NS2b, NS3, NS4a, 

NS4b and NS5 of each serotype were extracted from the database records and 

grouped according to the steps described in Chapter 3.2.2. The resulting datasets for 

each serotype protein were then aligned by use of ClustalX 1.83 (Thompson et al., 

1997) with default parameters, followed by manual inspection and correction of 

misalignments. The alignments, which comprised both full length and partial 

sequences, were then subjected to a number of analyses. Identical sequences were not 

removed from the alignments, unless otherwise indicated in the sections below, 

because they reflected the incidence of the corresponding DENV isolates in nature. 

 

4.2.3 Identification of pan-DENV sequences 
 

The DENV protein sequences were examined by a consensus-sequence based 

approach (Novitsky et al., 2002) to identify sequence fragments that were common 

across the four serotypes. The consensus-sequence approach was used because it 

helps compress a multiple sequence alignment of a protein into a single consensus 

sequence encoding only predominant residues. This facilitates identification of 
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sequence fragments across the serotype proteins that are not only common but also 

highly represented in each serotype.  

The consensus sequences for the proteins of each serotype (intra-serotype 

consensus) were first derived by multiple sequence alignments to select the 

predominant residue at each amino acid position. The four intra-serotype consensus 

sequences for a given protein (one from each serotype) were then aligned to reveal 

sequence fragments, at least nine amino acids long that were identical across each of 

the serotypes. This minimum length was chosen because it represents the binding core 

length of a majority of HLA-restricted T-cell epitopes (Rammensee et al., 1995). 

Only sequence fragments that were identical in at least 80% of the sequences of each 

of the four serotypes were retained for further analyses. The 80% intra-serotype 

representation cut-off was chosen because 44 of the 46 sequence fragments that were 

common across the four DENV serotypes exhibited intra-serotype representation of ≥ 

81%, and the two that did not, had significantly lower representation (~56-67%) in 

one of the four serotypes. Peptides with residue X in the alignment were ignored from 

the percentage representation (i.e. frequency) computation. 

 

4.2.4 Entropy analysis of pan-DENV sequences 
 

Shannon’s entropy (Shannon, 1948) was used to quantify the diversity of DENV 

protein sequences within each serotype (intra-serotype diversity) and across all 

DENVs (pan-DENV diversity), and to assess the predicted evolutionary stability of 

the identified pan-DENV sequences. All entropy analyses were carried out by using 

the in-house developed Antigenic Variability Analyser tool (AVANA; for which the 

author of this thesis contributed significantly with user specifications and testing 

cases) (Miotto et al., 2008). For immunological applications, the entropy measure for 
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antigenic sequences was based on nonamer peptides (Rammensee et al., 1995), 

centered at any given position in the alignment. Applying Shannon’s formula, the 

nonamer peptide entropy H(x) at any given position x in the alignment was computed 

by  
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where p(i, x) is the probability of a particular nonamer peptide i being centered at 

position x. The entropy value increases with n(x), the total number of peptides 

observed at position x. It is also affected by the relative frequency or probability of the 

peptides, such that it decreases when one peptide is highly represented in the 

sequences. In theory, nonamer entropy values can range from 0, for a position with 

completely conserved nonamer peptide in all sequences analyzed, to 39 (log2 209); in 

practice, however, the upper bound is very much lower as natural sequences of a 

protein family tend to be closely related. Currently available highly diverse HIV 

protein sequences peak at an entropy value of eight (data not shown). 

Since peptide entropy is computed at a nonamer’s center position, the first and 

last four positions in each protein alignment are not assigned peptide entropy values. 

Only sequences that contain a valid amino acid at position x in an alignment are used 

for the entropy computation, and nonamers containing only gaps are ignored. 

Although gaps tend to occur in high-diversity regions, proteins that have a high 

fraction of gaps have reduced statistical support, yielding artificially low entropy 

values; thus, positions with more than 50% of the sequences containing gaps are 

discarded. Both complete and partial protein sequences can be used in the entropy 

computation because of the statistical nature of the entropy measure. 

For finite-size sets of sequences, entropy computations are affected by the 

sequence count in the alignment. For an alignment of N sequences, alignment size 
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bias is proportional to 1/N (Paninski, 2003). This relationship allows a correction for 

size bias by applying to each alignment a statistical adjustment that estimates entropy 

values for an infinitely-sized alignment with analogous peptide distribution. To obtain 

such an estimate, the alignment was repeatedly randomly sampled to create smaller 

alignments of varying size, whose entropy was measured. At each alignment position, 

the entropy of these subset alignments of size N was plotted against 1/N, using a 

linear regression to extrapolate the entropy estimate for N. The regression’s 

coefficient of determination (r2) was used as a goodness-of-fit of the resulting 

estimate. In this study, size bias correction was applied to all entropy calculations, so 

that alignment sequence counts could be ignored in comparisons. All entropy values 

reported herein are therefore infinite-size set estimates, rather than the values directly 

computed from the alignments. 

 

4.2.5 Nonamer variant analysis of pan-DENV sequences 
 

Data from entropy analysis were used to study the distribution of the representation of 

nonamer variant peptides in pan-DENV and non pan-DENV sequences regions, 

within and across the serotypes. Variant nonamers for a given position x in the 

alignment were defined as all nonamers that differed by at least one amino acid from 

the predominant nonamer (peptide that was contained in the majority of the 

sequences) at the position. Therefore, for any given position x in the alignment, the 

combined representation of all nonamers was computed by subtracting the percentage 

representation of the predominant peptide from 100%. 
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4.2.6 Functional and structural analyses of pan-DENV sequences 
 

The known and putative structural and functional properties of pan-DENV sequences 

were searched in the literature and by use of the Prosite (Hulo et al., 2006), via 

ScanProsite (de Castro et al., 2006), and Pfam (Bateman et al., 2004) databases. 

When possible, the sequences were mapped on the three-dimensional (3-D) structures 

of available DENV antigen (Ag) in the Protein Data Bank (PDB) (Berman et al., 

2000) (www.pdb.org) by use of ICM-Browser version 3.3 (www.molsoft.com). X-ray 

diffraction 3-D structures were visualized by use of the Corey, Pauling and Koltun 

(cpk) representation in the ICM-Browser. 

 

4.2.7 Identification of pan-DENV sequences common to other viruses and 
organisms 
 

Pan-DENV sequences that overlapped at least nine consecutive amino acid sequences 

of other viruses and organisms were identified by performing BLAST search against 

all viral protein sequences reported at NCBI (as of July 2007), excluding DENV 

sequences (parameters set: limit by Entrez query “txid10239[Organism:exp] NOT 

txid12637[Organism:exp]”; checked the option “automatically adjust parameters for 

short sequences”; unchecked the “low-complexity filter”; alignment option set to a 

maximum of “20,000” hits). Similar BLAST searches were carried out against protein 

sequences of all organisms excluding viruses (parameters set: limit by Entrez query 

“Root[ORGN] NOT Viruses[ORGN] NOT txid81077[ORGN]”; checked the option 

“automatically adjust parameters for short sequences”; unchecked the “low-

complexity filter”; alignment option set to a maximum of “20,000” hits). The 

keyword “NOT txid81077 [ORGN]” was used to remove artificial sequence hits. 
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4.2.8 Identification of known and predicted pan-DENV HLA supertype 
binding sequences 
 

Both literature search and query against the Immune Epitope Database (Peters et al., 

2005) (www.immuneepitope.org) were performed to detect reported immunogenic, 

human T-cell epitopes (both class I and II) of DENV that either fully or partially 

overlapped with the pan-DENV sequences. In addition, dedicated algorithms based on 

several prediction models were used to identify candidate putative HLA-binding 

sequences to multiple HLA class I and II supertype alleles within the pan-DENV 

sequences. Putative HLA supertypes class I-restricted peptides were identified by use 

of NetCTL (Larsen et al., 2005), Multipred (Zhang et al., 2005b), ARB (Bui et al., 

2005), and class II-restricted peptides by Multipred and TEPITOPE (Bian and 

Hammer, 2004). Further, the intra-serotype representation of the putative T-cell 

epitopes was analyzed. 

The NetCTL 1.2 algorithm (www.cbs.dtu.dk/services/NetCTL) predicts 

peptides restricted by 12 HLA class I supertypes (A1, A2, A3, A24, A26, B7, B8, 

B27, B39, B44, B58 and B62). The algorithm integrates the predictions of HLA 

binding, proteasomal C-terminal cleavage and transport efficiency by the transporter 

associated with antigen processing (TAP) molecules. HLA binding and proteasomal 

cleavage predictions are performed by an artificial neural networks (ANN) method, 

while TAP transport efficiency is predicted using a weight matrix method. The 

parameters used for NetCTL prediction were: 0.15 weight on C terminal cleavage 

(default), 0.05 weight on TAP transport efficiency (default), and 0.5 threshold for 

HLA supertype binding, which was reported to be optimal (sensitivity (SN), 0.89 and 

specificity (SP), 0.94) in a large benchmark study containing more than 800 known 

class I T-cell epitopes (Larsen et al., 2005). 
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The TEPITOPE software (2000 beta version; courtesy of J. Hammer) utilizes 

quantitative matrix-based motifs, obtained from experimental scanning of the binding 

of P1-anchored designer peptides to soluble HLA-DR molecules in in-vitro 

competition assays, to predict peptides binding to 25 common HLA-DR alleles 

(DRB1*0101, *0102, *0301, *0401, *0402, *0404, *0405, *0410, *0421, *0701, 

*0801, *0802, *0804, *0806, *1101, *1104, *1106, *1107, *1305, *1307, *1311, 

*1321, *1501, *1502, and DRB5*0101) (Bian and Hammer, 2004; Sturniolo et al., 

1999). The parameters for TEPITOPE predictions were: 5% quantitative threshold 

and putative epitopes with a 10-fold inhibitory residue included. Nonamer peptides 

predicted to bind at least 10 out of the 25 HLA-DR alleles were selected as putative 

supertype-restricted epitopes. 

Multipred is a computational system for the prediction of peptides that bind to 

HLA class I supertypes A2 and A3 and class II HLA-DR supertype (Zhang et al., 

2005b) (the author was significantly involved in the development of this system). The 

HLA alleles selected to represent these supertypes by Multipred were as follows: A2 

supertype, A*0201, *0202, *0203, *0204, *0205, *0206, *0207 and *0209; A3 

supertype, A*0301, *0302, *1101, *1102, *3101, *3301 and *6801; DR supertype, 

DRB1*0101, *0301, *0401, *0701, *0801, *1101, *1301, and *1501. Hidden Markov 

model (HMM) and ANN methods are the predictive models of Multipred; both have 

been optimized and show similar performances (Zhang et al., 2005b). The sum 

thresholds used for prediction of peptides restricted to the three HLA supertypes by 

ANN and HMM methods were: A2, 31.33 (ANN; SN = 0.80 and SP = 0.83) and 

47.08 (HMM; SN = 0.80 and SP = 0.78); A3, 24.53 (ANN; SN = 0.90 and SP = 0.95) 

and 37.58 (HMM; SN = 0.80 and SP = 0.87); and DR, 23.42 (ANN; SN = 0.90 and 
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SP = 0.92) and 51.08 (HMM; SN = 0.90 and SP = 1.00). Consensus predictions of the 

two methods were taken as final predictions for each HLA supertype. 

The ARB matrix (epitope.liai.org:8080/matrix/matrix_prediction.jsp) method 

is based on a matrix of coefficients to predict IC50 values (Bui et al., 2005). The HLA 

class I alleles predicted by ARB were grouped according to the current supertype 

classification (Sette et al., 2003; Sette and Sidney, 1999) and supertypes containing 

more than two alleles predicted by the system were selected, namely A2 (A*0201, 

*0202, *0203, *0206, and *6802), A3 (A*0301, *1101, *3101, *3301 and *6801), B7 

(B*0702, A*3501, *5101, *5301, and *5401), and B44 supertypes (B*4001, *4002, 

*4402, *4403, and *4501). The prediction threshold value chosen for optimum 

sensitivity and specificity was IC50 ≤ 1000 nM and nonamer peptides predicted to 

bind three or more alleles of the supertype were considered as putative promiscuous 

HLA supertype-restricted epitopes. 

 

4.2.9 ELISpot analysis of HLA-DR restricted epitopes in pan-DENV 
sequences 
 

Experimental validation was performed to examine whether the pan-DENV sequence 

contained targets of cellular immune responses. All the experiments were kindly 

performed by our collaborator Dr. Eduardo Nascimento from the Johns Hopkins 

University School of Medicine, in Baltimore, Maryland, USA. All experiments were 

approved by the Johns Hopkins University Institutional Animal Care and Use 

Committee. Murine H-2 class II-deficient, HLA-DR2 (Vandenbark et al., 2003), 

HLA-DR3 (Madsen et al., 1999; Strauss et al., 1994), HLA-DR4 (referred to as 

DR4/IE) (Ito et al., 1996) and HLA-DR4/human CD4 (huCD4) (Cope et al., 1999; 

Fugger et al., 1994) transgenic mice were used, bred and maintained in the Johns 
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Hopkins University School of Medicine Animal Facility. Specific pathogen-free 

(SFP) colonies were maintained in a helicobacter-negative mice facility. The HLA-

DR expression of the experimental transgenic mice was evaluated by flow cytometry. 

Mice were immunized subcutaneously at the base of the tail, twice at two 

weeks interval, with pools of overlapping peptides covering the DENV-3 protein (15-

17 aa, overlapping by 10-11 aa) (Schafer-N Inc., Copenhagen, Denmark; BEI 

Resources, Manassas, VA). Peptide pools (73-155 peptides per pool) contained 1 g 

of each peptide and were emulsified (1:1) in TiterMax adjuvant (TiterMax USA, 

Inc.). An aqueous preparation of TiterMax (1:1) was used as a negative control. Two 

weeks after the second immunization, the mice were sacrificed and HLA-DR-

restricted CD4 T-cell responses were assessed by ex vivo IFN- ELISpot assay using 

CD8-depleted splenocytes. Each target peptide was tested in duplicate. Spot-forming 

cell (SFC) counts were normalized to 106 cells. The results were considered 

significant when the average SFC minus two standard deviations (SD) was greater 

than the average of the background plus 2 SD; and the average values were greater 

than 10 SFC per 106 splenocytes. The initial screening assays were performed with 

peptide matrices (Roederer and Koup, 2003), followed by assays with the relevant 

individual peptides (Nascimento et al., manuscript in preparation). 

 

4.3 Results 
 

4.3.1 Dengue virus serotype protein datasets 
 

A total of 9,512 and 12,404 complete and partial DENV protein sequences were 

collected from the NCBI Entrez Protein database in December 2005 and again in 

December 2007, respectively, representing an increase of approximately 30% (2892 
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sequences) in the 24-months interval (Table 4.1). The total number of sequences 

(2007) varied from 4,011 for DENV-2 to 1,415 for DENV-4 and from 3,845 for E to 

523 for NS4a proteins. Most of the individual protein sequences originated from 

DENV strains that were unique variants with respect to the entire polyprotein, but 

were identical to other strains with respect to individual proteins (Khan et al., 2006a). 

 

4.3.2 Conserved pan-DENV sequences 
 

The consensus-sequence approach identified a total of 44 pan-DENV sequences of at 

least nine amino acids that were present in ≥ 80% of all sequences of each DENV 

serotype for both 2005 and 2007 datasets (Figure 4.2; Table 4.2). Strikingly, 34 of the 

44 (~77%) were conserved in ≥ 95% of all reported DENV sequences. The size of the 

pan-DENV sequences ranged from nine to 22 amino acids, with a combined size of 

514 residues, corresponding approximately to 15% of the complete DENV 

polyprotein (~3390 amino acids) (Table 4.3). The vast majority (42/44) of the pan-

DENV sequences were localized in the NS proteins, with 17, 12, 7 and 5 sequences 

found in NS5, NS3, NS1 and NS4b, respectively, and 1 in the NS4a protein. Notably, 

the remaining two pan-DENV sequences were localized in the E protein. No pan-

DENV sequence was found in the C, prM, NS2a and NS2b proteins. The largest size 

of the combined pan-DENV sequences was in the NS5 protein, representing a total of 

215 amino acid positions covering ~24% of the protein, followed by NS3, NS1 and 

NS4b with 122, 74 and 69 amino acid positions covering ~20, ~21 and ~28% of the 

corresponding proteins, respectively. The two pan-DENV sequences in the E protein 

had a combined size of only 25 amino acids, corresponding to ~5% of the protein. 
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Table 4.1: Number and distribution of reported DENV protein sequences. 
 

DENV 
protein b 

No. of sequences a

DENV-1  DENV-2 DENV-3 DENV-4  Total

2005 2007   2005 2007 2005 2007 2005 2007   2005 2007 Increase

C 194 298  266 311 414 547 117 122  991 1278 287

prM 206 311  353 404 458 590 207 225  1224 1530 306

E 852 1051  1277 1518 716 910 338 366  3183 3845 662

NS1 410 565  640 752 201 308 142 159  1393 1784 391

NS2a 150 238  132 173 90 169 121 125  493 705 212

NS2b 136 224  130 163 104 183 40 44  410 614 204

NS3 98 186  145 178 216 297 30 34  489 695 206

NS4a 91 178  128 162 70 151 28 32  317 523 206

NS4b 89 176  129 163 70 150 109 113  397 602 205

NS5 92 179  151 187 181 267 191 195  615 828 213

Total 2318 3406  3351 4011 2520 3572 1323 1415  9512 12404 2892

a Collected from the NCBI Entrez Protein database 
b Manually processed after multiple sequence alignments and use of the known DENV cleavage sites
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Figure 4.2: Pan-DENV sequences and their representations in the four DENV 
serotypes. The 44 pan-DENV sequences of at least nine amino acids that were 
found present in ≥ 80% of the recorded sequences of each DENV serotype are 
shown. The representation values are shown for the 2005 dataset; see Table 4.2 
for values of both 2005 and 2007 datasets. Amino acid positions were numbered 
according to the sequence alignments of the four DENV serotypes. The 
corresponding proteins are indicated on the left. 
 

In large-scale proteome analyses such as this study, bias may result from the 

collection of completely or partially overlapping redundant sequences, corresponding 

to identical or highly similar circulating DENV isolates sequenced by various dengue 

surveillance programs in different countries. Although to some extent this redundancy 

may be accepted as a reflection of the incidence of the corresponding DENV isolates 

in nature, the author assessed its potential bias effect by repeating the analysis of 

conservation after discarding duplicate sequences from the datasets. The analysis of 

unique sequences identified all the same pan-DENV sequences that were identified 

when including duplicates (Figure 4.2), except for NS112-20, NS125-35 and NS5597-616. 

Therefore, the presence of duplicates in the DENV datasets did not significantly affect 

the results. Although the removal of duplicates does not fully compensate for biases in 

the datasets, the removal of highly similar sequences, which may have been generated 

from relatively large sequencing efforts in single outbreaks, was deemed undesirable, 

since such arbitrary selection would introduce additional bias. 
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Table 4.2: The intra-serotype percentage representation of pan-DENV 
sequences. 
 

DENV 
protein 

Pan-DENV sequence a 

% intra-serotype representation b 

DENV-1 DENV-2 DENV-3 DENV-4 

2005 2007 2005 2007 2005 2007 2005 2007

E 97VDRGWGNGCGLFGKG111 97.8 98.2 98.0 98.3 100.0 99.8 95.0 95.4
252VLGSQEGAMH261 95.5 96.4 98.5 98.3 98.1 98.6 99.7 99.7

NS1 12ELKCGSGIF20 99.5 99.2 94.9 94.3 83.1 85.9 98.6 98.7
25VHTWTEQYKFQ35 98.6 99.0 95.1 95.3 99.0 98.6 95.0 94.8
193AVHADMGYWIES204 100.0 99.5 94.9 95.5 96.5 93.6 96.4 93.8
229HTLWSNGVLES239 96.8 97.7 95.8 96.3 96.6 98.1 100.0 97.0
266GPWHLGKLE274 100.0 100.0 94.4 92.1 99.1 99.5 100.0 100.0
294RGPSLRTTT302 93.7 95.9 99.1 99.3 98.3 98.5 100.0 100.0
325GEDGCWYGMEIRP337 98.1 98.0 97.0 97.1 98.2 99.0 100.0 100.0

NS3 46FHTMWHVTRG55 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
148GLYGNGVVT156 100.0 100.0 99.3 99.4 100.0 100.0 100.0 100.0
189LTIMDLHPG197 100.0 100.0 98.6 98.9 100.0 100.0 100.0 97.0
256EIVDLMCHATFT267 99.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0
284MDEAHFTDP292 98.9 98.9 100.0 100.0 100.0 100.0 100.0 100.0
296AARGYISTRV305 96.7 97.7 100.0 100.0 97.3 98.1 100.0 100.0
313IFMTATPPG321 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
357GKTVWFVPSIK367 98.9 99.4 100.0 91.7 99.4 99.6 96.3 96.8
383VIQLSRKTFD392 81.1 89.8 98.5 98.8 98.3 98.9 100.0 100.0
406VVTTDISEMGANF418 97.8 98.9 98.5 98.8 97.8 98.5 100.0 100.0
491EAKMLLDNI499 96.7 98.3 100.0 100.0 99.4 99.6 100.0 100.0
537LMRRGDLPVWL547 98.9 99.4 100.0 92.2 99.4 99.2 92.6 90.3

NS4a 126QRTPQDNQL134 97.7 98.9 100.0 100.0 100.0 100.0 100.0 100.0

NS4b 35PASAWTLYAVATT47 100.0 100.0 100.0 100.0 100.0 99.3 100.0 100.0
118HYAIIGPGLQAKATREAQKR137 98.9 98.9 95.3 95.7 100.0 100.0 98.2 98.2
139AAGIMKNPTVDGI151 95.5 97.7 97.6 97.5 97.1 98.7 100.0 100.0
213FWNTTIAVS221 97.7 98.9 100.0 100.0 100.0 100.0 98.2 98.2
223ANIFRGSYLAGAGL236 100.0 100.0 100.0 100.0 97.1 98.7 99.1 99.1

NS5 6GETLGEKWK14 92.0 96.0 98.5 98.8 100.0 100.0 100.0 100.0
79DLGCGRGGWSYY90 100.0 100.0 98.5 98.2 100.0 100.0 100.0 100.0
104TKGGPGHEEP113 90.8 94.8 98.5 98.8 100.0 100.0 100.0 100.0
141DTLLCDIGESS151 100.0 99.4 100.0 99.4 100.0 100.0 100.0 100.0
209PLSRNSTHEMYW220 100.0 100.0 100.0 98.8 100.0 100.0 100.0 100.0
302TWAYHGSYE310 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
342AMTDTTPFGQQRVFKEKVDTRT363 100.0 99.4 98.4 98.7 98.7 99.2 96.3 96.8
450CVYNMMGKREKKLGEFG466 100.0 99.4 92.1 93.7 96.1 97.5 100.0 100.0
468AKGSRAIWYMWLGAR482 96.6 98.3 100.0 100.0 98.1 98.7 100.0 100.0
505SGVEGEGLH513 100.0 100.0 95.3 95.7 98.7 98.8 100.0 100.0
531YADDTAGWDTRIT543 97.7 98.9 100.0 100.0 99.4 99.6 100.0 100.0
568IFKLTYQNKVV578 100.0 99.4 96.9 95.7 96.9 97.9 100.0 100.0
597DQRGSGQVGTYGLNTFTNME616 95.4 93.1 83.1 81.0 97.5 98.3 96.3 96.8
658RMAISGDDCVVKP670 100.0 100.0 100.0 100.0 95.6 97.1 100.0 100.0
707VPFCSHHFH715 97.7 98.9 100.0 100.0 100.0 100.0 96.3 96.8
765LMYFHRRDLRLA776 100.0 100.0 98.5 98.8 98.1 98.8 100.0 100.0
790PTSRTTWSIHA800 98.9 98.3 98.4 98.8 98.1 98.7 100.0 100.0

a Amino acid positions numbered according to the sequence alignments of the four DENV serotypes 
b Rounded to 1 decimal place 
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Table 4.3: Distribution and size of the pan-DENV sequences. 
 

DENV 
 protein  

Size 
(aa) 

Pan-DENV sequences a 

No. Size b % of protein c

C 113-115 0 0 0 

prM 166 0 0 0 

E 493-495 2 25 5 

NS1 352 7 74 21 

NS2a 218 0 0 0 

NS2b 130 0 0 0 

NS3 618-619 12 122 20 

NS4a 150 1 9 6 

NS4b 245-249 5 69 28 

NS5 900-904 17 215 24 

Total 3387-3398 44 514 15 

a Sequences of at least nine amino acids that were represented in ≥ 80% of all DENV 

sequences of each serotype 
b Combined amino acid size of all pan-DENV sequences in the protein 
c Percentage of the combined pan-DENV sequence size over that of the corresponding 

protein size 

 

4.3.3 Evolutionary stability of pan-DENV sequences 
 

The evolutionary diversity of each DENV serotype, and the four serotypes combined, 

was studied by use of Shannon’s entropy (Shannon, 1948), modified to examine the 

variability of nonamer peptide sequences, as described in the Methods (section 4.2.4). 

The entropy of the proteome of the recorded viruses of each serotype showed 

numerous long regions of low entropy (≤ 1), reflecting the relatively high degree of 

intra-serotype sequence conservation, in particular in the NS3, NS4b and NS5 

proteins (Figure 4.3 A-D). Of note, however, there were marked differences in the 

relative degree of entropy of each protein between the four DENV serotypes. For 

example, NS4b had the least diversity of the proteins of three serotypes, but was 
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replaced in DENV-2 by NS2b, which was the second most variable in DENV-3. The 

consequence of the differences in the sequences of each protein between the four 

serotypes was a marked increase in the peptide entropy across the DENV 1-4 

proteomes (Figure 4.3 E), except for 44 sharply defined regions of low nonamer 

entropy (≤ 0.5) where the sequences were highly conserved in all DENVs (Figure 4.3 

E), with no significant difference between the 2005 and 2007 datasets (Table 4.4). 

The pan-DENV sequences were localized in these 44 regions, with majority of them 

exhibiting entropy values of ≤ 0.3, corresponding to intra-serotype representation of ≥ 

90%. Thus, the congruent consensus- and entropy-based analyses of the DENV 

nonamer peptides revealed highly conserved and evolutionarily stable pan-DENV 

sequences distributed in several viral proteins, despite the marked viral diversity 

defining multiple DENV serotypes, genotypes and variants (Holmes and Burch, 

2000). Because of this stability, we predict that the pan-DENV sequences are likely to 

remain conserved in the future. 
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Figure 4.3: Shannon entropy of nonamer peptides within and across DENV 
serotypes sequences. The entropy values were computed from the alignments of 
DENV sequences using the Antigenic Variability Analyzer software, as described 
in Chapter 4.2.4. Values were plotted for DENV-1 (A), DENV-2 (B), DENV-3 
(C), DENV-4 (D), and all four DENV serotypes (E) sequences (2005 dataset). 
Entropy values around protein cleavage sites are non significant, since the 
corresponding positions cannot be the center of a nonamer (see Chapter 4.2.4). 
The triangles below indicate the locations of the pan-DENV sequences in the 
corresponding proteins. 
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Table 4.4: Pan-DENV sequences, entropy and representation of variants. 
 

DENV 
protein 

Pan-DENV sequence a 
Peptide entropy b % variant representation c

2005 2007 2005 2007

E 97VDRGWGNGCGLFGKG111 0.2 0.2 1-2 1
252VLGSQEGAMH261 0.2 0.2 1-2 1-2 

NS1 12ELKCGSGIF20 0.5 0.5 5 5
25VHTWTEQYKFQ35 0.3 0.3 3 2-3
193AVHADMGYWIES204 0.3 0.3 2-3 2-3
229HTLWSNGVLES239 0.3 0.3 3 2-3
266GPWHLGKLE274 0.2 0.3 3 3
294RGPSLRTTT302 0.2 0.2 3 2
325GEDGCWYGMEIRP337 0.2 0.2 < 1-2 < 1-2

NS3 46FHTMWHVTRG55 0.0 0.0 0 0
148GLYGNGVVT156 < 0.1 < 0.1 < 1 < 1 
189LTIMDLHPG197 0.1 0.1 1 1
256EIVDLMCHATFT267 < 0.1 < 0.1 < 1 < 1
284MDEAHFTDP292 < 0.1 0.1 < 1 < 1 
296AARGYISTRV305 0.2 0.2 2 1
313IFMTATPPG321 0.0 < 0.1 0 < 1
357GKTVWFVPSIK367 0.1 0.2 < 1-1 1-2 
383VIQLSRKTFD392 0.4 0.3 5 4
406VVTTDISEMGANF418 0.2 0.1 1-2 1
491EAKMLLDNI499 0.1 0.1 1 1 
537LMRRGDLPVWL547 0.1 0.2 1 3

NS4a 126QRTPQDNQL134 0.1 < 0.1 1 < 1

NS4b 35PASAWTLYAVATT47 0.0 < 0.1 0 < 1 
118HYAIIGPGLQAKATREAQKR137 0.2 0.2 1-2 1
139AAGIMKNPTVDGI151 0.2 0.2 2 1-2
213FWNTTIAVS221 0.1 0.1 1 1 
223ANIFRGSYLAGAGL236 0.1 < 0.1 0-1 0- < 1

NS5 6GETLGEKWK14 0.2 0.2 2 2
79DLGCGRGGWSYY90 0.1 0.1 1 < 1-1 
104TKGGPGHEEP113 0.2 0.2 3 2
141DTLLCDIGESS151 0.0 < 0.1 0 0- < 1
209PLSRNSTHEMYW220 0.0 0.1 0 < 1 
302TWAYHGSYE310 0.0 0.0 0 0
342AMTDTTPFGQQRVFKEKVDTRT363 0.1 0.1 0-1 0-1
450CVYNMMGKREKKLGEFG466 0.3 0.2 1-3 1-2 
468AKGSRAIWYMWLGAR482 0.1 0.1 < 1-1 < 1-1
505SGVEGEGLH513 0.2 0.2 2 2
531YADDTAGWDTRIT543 0.1 0.1 < 1-1 < 1-1 
568IFKLTYQNKVV578 0.2 0.2 2 2
597DQRGSGQVGTYGLNTFTNME616 0.4 0.3 1-5 1-5
658RMAISGDDCVVKP670 0.2 0.1 1-2 1 
707VPFCSHHFH715 0.1 0.1 1 1
765LMYFHRRDLRLA776 0.1 0.1 1 1
790PTSRTTWSIHA800 0.2 0.1 1-2 1 

a Amino acid positions numbered according to the sequence alignments of the four DENV serotypes 
b Maximum nonamer peptide entropy across all DENV sequences (rounded to 1 decimal place) 
c Minimum and maximum percentage representation of nonamer variants in all DENV sequences 

(rounded to whole number)
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4.3.4 Representation of nonamer variants in pan-DENV sequences 

 

The combined representation of variant peptides that differed by at least one amino 

acid from the predominant peptide was analyzed at each nonamer position in the 

protein alignments. Examples of this analysis for DENV-3 proteins are shown in 

Table 4.5. Nonamers that lacked entropy (zero entropy) had one sequence in all of the 

recorded virus isolates, and therefore had no variants. Positions with high entropy can 

contain many different variant peptides, each at lesser (or equal) frequency than the 

predominant peptide. The combined representation of variant peptides at each 

nonamer position across the proteome of each individual DENV serotype was 

generally low, representing less than 10% of the corresponding sequences, except for 

some positions where it was more than 50% (Figure 4.4 A-D). Notably, the nonamer 

position with the highest combined variant representation for each DENV serotype 

was found in the nonstructural proteins and not the structural ones, with 

representation values ranging from ~61 to ~78% (DENV-1: NS5, DENV-2: NS5, 

DENV-3: NS2a, and DENV-4: NS1 and NS3 proteins). When representations of 

variants across all DENVs were calculated, the majority of all nonamer sites 

contained variants that together represented ~60-85% of the total DENV sequences at 

that site (the highest representation of ~85% was in the NS1 protein) (Figure 4.4 E). 

This was in striking contrast to the 0 to ~5% combined representation of variants at 

each nonamer position in the pan-DENV sequences, with no significant difference 

between the 2005 and 2007 datasets (Table 4.4). The majority of all nonamer sites in 

the pan-DENV sequences lacked variant or contained variants that together 

represented < 1% of all recorded DENVs. These data further illustrate the extremely 

high genetic stability of the 44 pan-DENV sequences, among all recorded DENV 
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sequences and demonstrate that irrespective of the high variability between the 

sequences of the four DENV serotypes, the representation of variants in the pan-

DENV sequences was almost negligible. 

 

Table 4.5: Examples of distribution of variant nonamer peptides in DENV-3. 
 

DENV-3 
protein 

Nonamer 
position 

No. of 
sequences 

Nonamer 
peptides a 

Representation 
of peptides 

Combined % 
representation 
of variants b 

Nonamer 
entropy c 

E 14 479 DFVEGLSGA 479 (100%) 0 0

NS2a 176 64 LAGISLLPV 
LAGVSLLPV 
LAGVSLLPL 
LAVISLLPV 
LAGISLLPL 
LAGISLFPV 
LAGISLMPV 

25 (39%)
11 (17%) 
9 (14%) 
9 (14%) 
6 (9%) 
2 (3%) 
2 (3%)

61 2.4

NS4a 86 68 SIGLICVVA 
SIGLICVIA 
SIGLICVIV 
SIGLICVAA 

39 (57%)
19 (28%) 
8 (13%) 
2 (3%)

43 1.5

a The predominant peptide is underlined, the differences are shown in boldface 
b Variants include all the peptides at the position, except the predominant 
c Entropy value of all the peptides at the position (predominant peptide included) 
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Figure 4.4: Variant nonamer peptides within and across DENV serotype 
sequences. The percentage of sequences that contained variant peptides at each 
nonamer position are shown for DENV-1 (A), DENV-2 (B), DENV-3 (C), DENV-
4 (D), and all four DENV serotypes (E) (2005 dataset). Values around protein 
cleavage sites are non significant (see Figure 4.3). The triangles below indicate 
the locations of the pan-DENV sequences in the corresponding proteins. 
 

4.3.5 Functional and structural correlates of pan-DENV sequences 
 

Highly conserved protein sequences are likely to represent critical sites and domains 

(Valdar, 2002). A search of the literature and the Prosite and Pfam databases (Hulo et 

al., 2006; Bateman et al., 2004) revealed that 27 of the 44 pan-DENV sequences were 

associated with biological activities (Table 4.6). The two pan-DENV sequences in the 

E protein correspond to the fusion peptide (positions 98 to 110) and dimerisation 

domain (Modis et al., 2004; Allison et al., 2001). In NS3, one pan-DENV sequence 

corresponds to the peptidase family S7 (Flavivirus serine protease) domain and 

comprised the His-51 catalytic residue (Murthy et al., 1999), three sequences 

correspond to known/putative Flavivirus Asp-Glu-Ala-Asp/His (DEAD/H) domain 

associated with ATP-dependent helicase activity (Xu et al., 2005), and two sequences 

were predicted to be required for cell attachment and targeting signal for microbodies. 

In NS5, one pan-DENV sequence corresponds to the conserved methyltransferase 

(MTase) S-adenosyl-L-methionine binding motif I (positons 77-86) involved in viral 

RNA capping (Egloff et al., 2002), and two sequences correspond to RNA dependent 

RNA polymerase (RdRp) domain (Yap et al., 2007). Furthermore, six of the 27 pan-

DENV sequences were predicted to exhibit post-translational modification(s), 

including N-glycosylation, protein kinase C and casein kinase II phosphorylation, N-

myristoylation and/or amidation (Table 4.6). 

It is generally recognized that amino acids buried inside proteins are subject to 

greater interactions and packing constraints (Haydon and Woolhouse, 1998) than 



88 
 

those exposed on the outer surface. Although none of the DENV protein structures in 

the PDB (Berman et al., 2000) was full length, 19 of the 44 pan-DENV sequences 

could be mapped on the available crystallographic models of the E ectodomain 

(Accession No. 1OAN; 394 out of 493-495 residues), NS3 (1BEF and 2BMF, 181 and 

451 out of 618-619 residues, respectively) and NS5 fragments (1R6A, 295 out of 900-

904 residues). Eleven of the 19 pan-DENV sequences were buried, two partially 

exposed and six exposed at the surface of the corresponding structures (Appendix 3). 

However, these results should be considered preliminary until full length 3-D 

structures are available. 
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Table 4.6: Functional and structural properties of pan-DENV sequences. 
 

DENV 
protein 

Pan-DENV sequence a Functional domains and motifs b Putative post-transcriptional modifications b 

E 97VDRGWGNGCGLFGKG111 Dimerisation Domain, Fusion Peptide N-Myristoylation
252VLGSQEGAMH261 Dimerisation Domain -

NS1 12ELKCGSGIF20 - N-Myristoylation
25VHTWTEQYKFQ35 - CKII
294RGPSLRTTT302 - PKC
325GEDGCWYGMEIRP337 - N-Myristoylation

NS3 46FHTMWHVTRG55 Peptidase S7 -
148GLYGNGVVT156 - N-Myristoylation
189LTIMDLHPG197 - CKII
256EIVDLMCHATFT267 DEAD/H Domain -
284MDEAHFTDP292 DEAD/H Domain -
296AARGYISTRV305 Microbodies C-Terminal Targeting Signal PKC
313IFMTATPPG321 DEAD/H Domain -
357GKTVWFVPSIK367 - PKC
383VIQLSRKTFD392 - PKC
537LMRRGDLPVWL547 Cell Attachment -

NS4a 126QRTPQDNQL134 - CKII

NS4b 213FWNTTIAVS221 - N-Glycosylation
223ANIFRGSYLAGAGL236 - N-Myristoylation

NS5 6GETLGEKWK14 - CKII
79DLGCGRGGWSYY90 FtsJ-like Methyltransferase Domain N-Myristoylation
209PLSRNSTHEMYW220 - N-Glycosylation, CKII
450CVYNMMGKREKKLGEFG466 - Amidation
505SGVEGEGLH513 - CKII
597DQRGSGQVGTYGLNTFTNME616 RdRp Catalytic Domain N-Myristoylation, CKII
658RMAISGDDCVVKP670 RdRp Catalytic Domain CKII
790PTSRTTWSIHA800 - PKC
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a Amino acid positions numbered according to the sequence alignments of the four DENV serotypes 
b Described in the literature and/or identified using the Prosite (Hulo et al., 2006) and Pfam (Bateman 

et al., 2004) databases. Prosite (PS) and Pfam (PF) accession numbers: PS00001, N-Glycosylation; 

PS00005, Protein Kinase II Phosphorylation (PKC); PS00006, Casein Kinase II Phosphorylation 

(CKII); PS00008, N-Myristoylation; PS00009, Amidation; PS00016, Cell Attachment; PS00342, 

Microbodies C-terminal Targeting Signal; PS50507, RNA-dependent RNA polymerase (RdRp) 

Catalytic Domain; PF00869, Dimerisation Domain; PF00949, Peptidase S7; PF01728, FtsJ-like 

Methyltransferase; PF07652, Flavivirus DEAD/H Domain. 

 

4.3.6 Distribution of pan-DENV sequences in nature 
 

Twenty-seven (27) of the 44 pan-DENV sequences overlapped at least nine amino 

acid sequences of as many as 64 other viruses of the family Flaviviridae, genus 

Flavivirus (Figure 4.5). Zika virus shared 22 of the 27 sequences; Ilheus and 

Kedougou viruses, 18; and representatives of some of the significant human 

pathogens, West Nile, St. Louis encephalitis, Japanese encephalitis, Yellow fever and 

Tick-borne encephalitis viruses, shared from 16 to 9 pan-DENV sequences. Thirteen 

(13) of the 27 sequences represented NS5, of which nine were present in at least 27 

Flavivirus species; nine represented NS3, of which two were found in 35 and 23 

species; one E sequence was found in 19 species; and the remaining were in NS1 and 

NS4b (Figure 4.6; Table 4.7). Five (5) of the 27 were associated with known 

biological activities (NS579-90 MTase, NS5658-670 RdRp, NS346-55 peptidase S7, NS3284-

292 DEAD/H and E97-111 dimerisation/fusion domains). Interestingly, two sequences, 

NS3406-418 and NS5597- 616, overlapped nine amino acid sequences of the cell fusing 

agent virus polyprotein-like protein from the mosquito Aedes albopictus (Crochu et 

al., 2004), and the phage-related tail fibre protein-like protein from the bacterium 

Chromohalobacter salexigens DSM 3043, respectively. 

The representation of the pan-DENV sequences ranged from high to low 

across reported sequences of several of the highly studied flaviviruses (Table 4.7): St. 
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Louis encephalitis, West Nile, Japanese encephalitis, Murray Valley encephalitis, 

Usutu, Kokobera, Ilheus, Tick-borne encephalitis, Langat, Omsk hemorrhagic fever, 

Louping ill, Powassan, Kyasanur forest disease and Yellow fever viruses. Protein 

sequence data for the rest of the flaviviruses that shared pan-DENV sequences was 

limited (< 10 sequences) in the public database. 



92 
 

 
 

Figure 4.5: Number of pan-DENV sequences conserved in other flaviviruses. 
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Figure 4.6: Number of other flaviviruses sharing the Pan-DENV sequences. 
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Table 4.7: Distribution of pan-DENV sequences in other flaviviruses. 
 

DENV 
protein 

Pan-DENV sequence a 
Species 

(#) b 
Percentage representation (%) | number of sequence analyzed c 

LEV WNV JEV MVE UV KBV IH TBEV LV OMSK LIV PV KFDV YFV 

E 97VDRGWGNGCGLFGKG111 19 97|77 97|276 97|250  82|179 

NS1 12ELKCGSGIF20 2   
294RGPSLRTTT302 3 3|58   
325GEDGCWYGMEIRP337 10 90|30 96|138 31|186   

NS3 46FHTMWHVTRG55 23  89|19 87|23 
256EIVDLMCHATFT267 3   
284MDEAHFTDP292 10 99|134 98|54   
296AARGYISTRV305 3 9|98 4|137   
313IFMTATPPG321 11 96|26 100|134 98|53   
357GKTVWFVPSIK367 8 94|141  17|12  
383VIQLSRKTFD392 1   
406VVTTDISEMGANF418 35 34|77 91|146 21|248  68|25  
491EAKMLLDNI499 1   

NS4b 223ANIFRGSYLAGAGL236 1   

NS5 6GETLGEKWK14 4   
79DLGCGRGGWSYY90 37 77|35 96|140 20|244  82|38 83|18 40|10 78|27 
104TKGGPGHEEP113 9 93|28 89|148   
141DTLLCDIGESS151 13 100|134 < 1|268  84|25 
209PLSRNSTHEMYW220 31 90|29 100|134  61|28 100|17 95|22 
302TWAYHGSYE310 1   
342AMTDTTPFGQQRVFKEKVDTRT363 29 33|79 50|272 18|289 18|17 23|13 25|12 32|34 60|45 51|41 
450CVYNMMGKREKKLGEFG466 35 24|103 33|344 69|74 20|15  7|14 14|14 63|27 11|19 41|41 23|90 
468AKGSRAIWYMWLGAR482 44 32|19  62|13 82|22 42|12 41|41 11|208 
531YADDTAGWDTRIT543 59 90|30 73|193 88|58  80|10 69|26 93|14 84|19 85|26 
658RMAISGDDCVVKP670 27 73|37 50|272 95|55 50|10  47|34 3|37 
707VPFCSHHFH715 33  100|19 100|13 76|17 95|22 
765LMYFHRRDLRLA776 37 64|42 91|151 83|59  44|18  
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a Amino acid positions numbered according to the sequence alignments of the four DENV serotypes 
b Species (#) column indicates the number of viral species that shared at least nine consecutive amino 

acids of the pan-DENV sequence 
c Percentage representation (rounded to whole number) of the pan-DENV sequences is only shown for 

viral species with ≥ 10 total sequences reported at the NCBI Entrez Protein database. These viral 

species included: LEV, St. Louis encephalitis virus; WNV, West Nile virus; JEV, Japanese encephalitis 

virus; MVE, Murray Valley encephalitis virus; UV, Usutu virus; KBV, Kokobera virus; IH, Ilheus 

virus; TBEV, Tick-born encephalitis virus; LV, Langat virus; OMSK, Omsk hemorrhagic fever virus; 

LIV, Louping ill virus; PV, Powassan virus; KDFV, Kyasanur forest disease virus; and YFV, Yellow 

fever virus. However, despite having a total of ≥ 10 sequences reported, some of these viruses had less 

than 10 of the relevant conserved sequence (indicated by cells shaded in grey). Empty cells indicate no 

match between the pan-DENV sequences and the Flavivirus. 

 

4.3.7 Known and predicted HLA supertype-restricted, pan-DENV T-cell 
epitopes 
 

Literature survey and database search revealed that 10 of the pan-DENV sequences (9 

in NS3, one in E) overlapped by nine or more amino acids 15 previously reported 

DENV T-cell epitopes immunogenic in human. Their HLA restriction, when known, 

showed both class II (DR*15, DPw2) and class I (A*11) specificities (Table 4.8). 

Further evaluation of the immune-relevance of the pan-DENV sequences included a 

search for candidate putative promiscuous HLA supertype-restricted T-cell epitopes 

within these regions by use of several computational algorithms: NetCTL (Larsen et 

al., 2005), Multipred (Zhang et al., 2005b), ARB (Bui et al., 2005) and TEPITOPE 

(Bian and Hammer, 2004). Overall, 34 of 44 (~77%) pan-DENV sequences (Figure 

4.7), identified in the NS5, NS3, NS1, E and NS4a proteins were predicted to contain 

100 supertype-restricted binding nonamers (Appendix 4). The majority (88/100) of 

the predicted promiscuous HLA-binding nonamers were present in ≥ 95% of the 

sequences of each DENV serotype (Appendix 5). Thirty-one (~91%) of the 34 

putative supertype pan-DENV sequences contain HLA-binding nonamers for multiple 

HLA supertypes. Clusters (hotspots) of two or more overlapping HLA-binder 
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nonamer core peptides were present in 27 (~79%) of the 34 putative supertype pan-

DENV sequences. About half (14/27) of these clusters contain three or more nonamer 

binders overlapping by eight amino acids, covering most or the entire corresponding 

conserved region. 

 

Table 4.8: Human T-cell epitopes within the pan-DENV sequences. 
 

DENV 
protein 

Pan-DENV sequence a 

Immunogenic T-cell epitopes b 

Sequence c 
T 

subset 
HLA Ag Reference(s) d

E 252VLGSQEGAMH261 KKQDVVVLGSQEGAM - - 1

NS3 46FHTMWHVTRG55 TFHTMWHVTRGAVLM CD4 - 1

 148GLYGNGVVT156 KVVGLYGNGVVTRSG CD4 DR*15 1

 189LTIMDLHPG197 KRLTIMDLHPGAGKT CD4 - 2

  RKLTIMDLHPGSGKT CD4 - 2

  RKLTIMDLHPGAGKT CD4 - 2

  RNLTIMDLHPGSGKT CD4 - 2

 256EIVDLMCHATFT267 EHTGREIVDLMCHAT CD4 - 1

  EIVDLMCHATFTMRL CD4 - 1

  EIVDLMCHAT CD4 DPw2 3,4

 284MDEAHFTDP292 LIIMDEAHFTDPASI - - 1

 313IFMTATPPG321 AGIFMTATPPGSRDP - - 1

 357GKTVWFVPSIK367 TVWFVPSIK CD8 A*11 5

 383VIQLSRKTFD392 KKVIQLSRKTFDSEY - - 1

 406VVTTDISEMGANF418 NDWDFVVTTDISEMG - - 1

a Amino acid positions numbered according to the sequence alignments of the four DENV serotypes 
b Dashes, not determined 
c Sequences present in the pan-DENV sequences are underlined 
d 1 - (Simmons et al., 2005); 2 - (Mangada and Rothman, 2005); 3- (Kurane et al., 

1993); 4 - (Okamoto et al., 1998); 5 - (Loke et al., 2001) 
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Figure 4.7: Putative HLA supertype-restricted, pan-DENV T-cell epitopes pre-
screened by computational algorithms. Amino acid positions of the pan-DENV 
sequences are numbered according to the sequence alignments of the four DENV 
serotypes; the corresponding DENV proteins are indicated on the left. Predicted 
HLA-restricted T-cell epitopes were identified using NetCTL, Multipred, ARB 
and TEPITOPE algorithms (see Chapter 4.2.8). 
 

 
 
 
 
 



98 
 

4.3.8 Immunogenicity of HLA-DR-restricted pan-DENV sequences in HLA 
transgenic mice 
 

The immunogenicity of the pan-DENV sequences was also analyzed by assays of 

peptide-specific HLA-restricted T-cell responses in murine H-2 class II-deficient, 

HLA-DR transgenic mice expressing three prototypic HLA-DR alleles, corresponding 

to the divergent subgroups HLA-DR2 (DRB1*1501), HLA-DR3 (DRB1*0301), and 

HLA-DR4 (DRB1*0401). Mice were immunized with pools of overlapping peptides 

covering the sequences of the E, NS1, NS3, and NS5 proteins of DENV-3, and HLA-

DR-restricted CD4 T-cell responses were assessed by IFN- ELISpot assays using 

CD8-depleted splenocytes. Thirty peptides eliciting positive T-cell responses in the 

HLA transgenic mice contain nine or more consecutive amino acids of 22 pan-DENV 

sequences, that were localized in the NS5 (11), NS3 (6), NS1 (4), and E proteins (one) 

(Table 4.9). Overall, 9, 10 and 18 peptides elicited positive responses in HLA-DR2, -

DR3, and/or -DR4 transgenic mice, respectively; 20 correspond to sequences of NS5, 

10 of NS3, six of NS1, and one of E. Furthermore, at least seven of the pan-DENV 

sequences, all localized in the NS5 and NS1 proteins, contain promiscuous T-cell 

epitopes for multiple HLA-DR alleles (Table 4.9). These data, together with those 

previously reported (Table 4.8), showed that 26 of the 44 pan-DENV sequences, 

distributed predominantly in the NS5 and NS3 proteins, and to a lesser extent in NS1 

and E, contain numerous HLA-restricted class II and/or class I epitopes demonstrated 

by assays of T-cell responses in vivo. 
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Table 4.9: Immunogenicity of the pan-DENV sequences in HLA-DR transgenic mice. 
 

DENV 
protein 

Pan-DENV sequence b 

Ag-specific CD4 T-cell responses a 

Peptide sequences 

(DENV-3) c 

IFN--SFC/106splenocytes ± SD d

DR2 DR3 DR4 

E 252VLGSQEGAMH261 PEVVVLGSQEGAMHT - - 88 ± 34 

NS1 193AVHADMGYWIES204 AVHADMGYWIESQKN - 17 ± 1 - 
 229HTLWSNGVLES239 WPKSHTLWSNGVLES - 129 ± 3* - 
  HTLWSNGVLESDMII - 131 ± 103 37 ± 3 
 266GPWHLGKLE274 HTQTAGPWHLGKLE - 333 ± 6 - 
 294RGPSLRTTT302 TRGPSLRTTTVSGKL - - 11 ± 4 

NS3 189LTIMDLHPG197 KKRNLTIMDLHPGSG - - 50 ± 16

 296AARGYISTRV305 ASIAARGYISTRVGM 40 ± 14 - -

  ARGYISTRVGMGEAA 9 ± 4 - -

 313IFMTATPPG321 EAAAIFMTATPPGTA - - 474 ± 116

  IFMTATPPGTADAFP - - 323 ± 287

 357GKTVWFVPSIK367 TDFAGKTVWFVPSIK 48 ± 15 - -

  GKTVWFVPSIKAGND 396 ± 14 - -

 383VIQLSRKTFD392 KKVIQLSRKTFDTEY - 21 ± 3 -

 406VVTTDISEMGANF418 FVVTTDISEMGANFK - - 408 ± 104

  TDISEMGANFKADRV - 152 ± 33 -

NS5 302TWAYHGSYE310 DENPYKTWAYHGSYEVK 126 ± 10* - 14 ± 5

  TWAYHGSYEVKATGSA 161 ± 20* - 63 ± 17

 342AMTDTTPFGQQRVFKEKVDTRT363 MVTQMAMTDTTPFGQQR - - 28 ± 0*
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 450CVYNMMGKREKKLGEFG466 GSCVYNMMGKREKKLGE - - 13 ± 2

 505SGVEGEGLH513 NSYSGVEGEGLHKLGYI - - 184 ± 15

 531YADDTAGWDTRIT543 KIPGGAMYADDTAGWDT - - 46 ± 3

 568IFKLTYQNKVV578 ANAIFKLTYQNKVVKVQ 577 ± 384 - 24 ± 9*

 597DQRGSGQVGTYGLNTFTNME616 VMDIISRKDQRGSGQVG - 88 ± 1 -

 658RMAISGDDCVVKP670 VERLKRMAISGDDCVVK - 159 ± 24 16 ± 6

  MAISGDDCVVKPIDDRF - 249 ± 39 -

 707VPFCSHHFH715 DWQQVPFCSHHFHELIM 32 ± 8* 34 ± 11 -

 765LMYFHRRDLRLA776 MYFHRRDLRLASNAI 75 ± 16* - 33 ± 9

 790PTSRTTWSIHA800 VHWVPTSRTTWSIHAHH - - 83 ± 1

  SRTTWSIHAHHQWMTTE - - 122 ± 46

a Assessed by IFN- ELISpot assay in HLA-DR2 (DRB1*1501), HLA-DR3 (DRB1*0301) and HLA-DR4 (DRB1*0401) transgenic mice immunized with DENV-3 

peptides (see Chapter 4.2.8) 
b Amino acid positions numbered according to the sequence alignments of the four DENV serotypes 
c Sequences present in the pan-DENV sequences are underlined 
d SFC, spot-forming cells; SD, standard deviation. Representative results from at least 2 immunized transgenic mice are shown, except when indicated by an asterisk 

(*) 



 101

4.4 Discussion 
 

In this study, the author identified and characterized pan-DENV sequences that were 

highly conserved in the majority of the reported sequences of each serotype. The 

author regards all the 44 pan-DENV sequences as potential candidate DENV PEs 

even though only 34 were predicted to contain promiscuous T-cell epitopes, as there 

is a possibility of the remaining 10 to also be immunologically relevant in the context 

of the HLA supertypes predicted or others when experimentally validated. The 

characterization of the 44 elucidated pan-DENV sequences shed several insights into 

the nature of these sequences and their multiple potential applications. 

The large number of sequences analyzed (12,404 as of December 2007), and 

their wide spatial and temporal (1945-2007; based on all DENV records with 

available annotation - data not shown) distribution, offered information for a broad 

survey of DENV diversity in nature. The significant sequence variations between the 

proteins of the four DENV serotypes represent a cardinal issue for the development of 

a tetravalent DENV vaccine that provides robust protection against each DENV 

serotype. Subtle amino acid substitutions within T-cell epitopes restricted by a given 

HLA allomorph, such as in the event of sequential heterologous infections, or 

between a vaccine formulation and a subsequent natural infection (Rothman, 2004), 

can dramatically alter the phenotype of the specific T cells, resulting in a wide range 

of effects from agonism to antagonism (Nishimura et al., 2004; Kalergis and 

Nathenson, 2000; Madrenas and Germain, 1996; Sloan-Lancaster and Allen, 1996; 

Evavold et al., 1993). Because of the extent of intra-serotype (1 to 21%) and inter-

serotype (14 to 67%) amino acid variability among DENV isolates (Chapter 3; (Khan 

et al., 2006a)), many nonamer T-cell epitopes contain single or multiple amino acid 

difference(s). When the four DENV serotypes were analyzed together, a majority of 
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the nonamer positions across the proteome exhibited variants that together were 

present in ~60 to ~85% of all sequences. The frequencies of variant peptides across 

the four DENV serotypes suggest that vaccine strategies incorporating whole DENV 

immunogens, such as inactivated and recombinant subunit vaccines, live attenuated 

viruses, or chimeric viruses expressing structural DENV genes, have potential to elicit 

T-cell responses to altered peptide ligands. This phenomenon is also likely to occur in 

individuals exposed to several flaviviruses, such as DENV, JEV and YFV that are co-

circulating in regions of Asia, India or South America, or following vaccination 

(Moran et al., 2008). 

While the immune correlates of DENV protection remain poorly documented, 

there is evidence that both neutralizing antibody and specific T-cell mediated 

responses are required (Whitehead et al., 2007; Rothman, 2004). The incorporation of 

defined HLA-restricted T-cell epitopes within DENV vaccine candidates might 

improve vaccine efficiency by increasing T-cell help to sustain a robust, long-lived 

immunity, and possibly through direct cytostatic and cytotoxic effects on infected 

cells. For tetravalent formulations, it may be relevant to focus primarily on sequences 

that are conserved in all four DENV serotypes and to avoid the regions of T-cell 

immunity that are highly variable, unless they are strictly serotype-specific and intra-

serotype conserved (Mangada and Rothman, 2005; Mongkolsapaya et al., 2003). An 

additional criterion for the selection of T-cell targets is the need for epitopes with 

broad HLA representation, as it has been emphasized in the recognition of HLA 

supertypes (Sette et al., 2001; Sette and Sidney, 1999). The 44 pan-DENV sequences 

of at least 9 aa, covering 514 aa or about 15% of the complete DENV polyprotein of 

~3390 aa, and conserved in at least 80% of all recorded DENV sequences (34 of the 

44 (~77%) were conserved in ≥ 95% of DENV sequences) are attractive candidates 
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for this purpose as they satisfy these selection criteria: i) highly conserved across all 

four serotypes, ii) low variant representation iii) broad HLA coverage. 

Further, identified conserved sequences have shown remarkable stability over 

the entire history of DENV sequences deposited in the NCBI Entrez Protein database, 

as illustrated by their low peptide entropy values. In addition, 27 of the pan-DENV 

sequences were conserved in 64 other flaviviruses, as further evidence of prolonged 

evolutionary stability within this genus, as previously discussed by others (Billoir et 

al., 2000; Kuno et al., 1998; Henchal and Putnak, 1990). Interestingly, two of the pan-

DENV sequences are also present in the proteomes of non-viruses, such as Aedes 

albopictus mosquito and the bacterium Chromohalobacter salexigens, possibly 

because of genetic recombination between phyla (Crochu et al., 2004). It is likely that 

the pan-DENV sequences have been under selection pressure to fulfill critical 

biological and/or structural properties, some of which have been identified for the E 

(fusion peptide, dimerization domain), NS3 (peptidase S7, DEAD/H domains) and 

NS5 proteins (MTPase, RdRp domains) (Yap et al., 2007; Xu et al., 2005; Modis et 

al., 2004; Egloff et al., 2002; Allison et al., 2001; Murthy et al., 1999). Hence, these 

conserved sequences are unlikely to significantly diverge in newly emerging DENV 

isolates in the future, and thus further support their utility as targets for the 

development of specific anti-viral compounds and vaccine candidates. 

Although the conservation of the pan-DENV sequences to other flaviviruses 

suggests that they are likely to be conserved in the future due to their 

structural/functional importance, it also posits that potential variants can originate 

from these flaviviruses, following co-infection or vaccination and secondary 

infection. The analysis of distribution of PEs of a virus of interest (target pathogen) in 

other viruses and organisms, therefore, provides a platform to assess the potential risk 
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of altered peptide ligands to PEs of the target pathogen, resulting from sequence 

conservation to other viruses. PEs of a target pathogen also found in other viruses, but 

with a low representation, have a high potential for altered peptide ligand effect due to 

the large number of potential variants that can be contributed by these other viruses. 

Further, it should be noted that variants can also originate from viruses that are not 

from the same genus as the target pathogen. T-cells in nature have been observed to 

cross-react with different viral species (heterologous immune responses) (Welsh and 

Fujinami, 2007). For example, T-cells specific to distinct Influenza A virus antigens 

cross-reacted with Hepatitis C virus (HCV) (Wedemeyer et al., 2001), HIV (Acierno 

et al., 2003) and Epstein-Barr virus (EBV) (Clute et al., 2005) antigens. Thus, while 

the consequences of such extensive possible cross-reactive immunity are hypothetical, 

the author proposes, for vaccine formulation, that it is prudent to select PEs that are 

specific to the pathogen and, thus, representative of a minimal number of variant 

sequences across other viral species. By selecting sequences with minimized variant 

representation for vaccine formulation, the likelihood that a vaccinated individual, in 

their lifetime, will be exposed to variant determinant sequences, either from the target 

pathogen or other viruses, is greatly reduced. Rational selection of such sequences is 

critical because factors, such as globalization, increase in travel and increase in life 

expectancy, are continuously increasing the risk of infection by multiple viruses. 

A number of the pan-DENV sequences were predicted to be promiscuous to 

multiple HLA supertypes, in addition to multiple alleles of a given HLA supertype. 

Such a degree of promiscuity has previously been observed by others for DENV 

(Gagnon et al., 1996) and HIV peptides (Wilson et al., 2003), among others. The 

existence of conserved T-cell epitopes specific for multiple HLA supertypes further 

supports their potential as vaccine targets, since they would provide broader 
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population coverage (Wilson et al., 2003). Many of the predicted HLA binding 

nonamers were localized in clusters, as has also observed in HLA transgenic mice 

immunized with WNV proteins and DNA encoding the SARS coronavirus N protein 

(Gupta et al., 2006), and has been reported in studies of HIV serotype 1 proteins 

(Brown et al., 2003; Surman et al., 2001; Shankar et al., 1996; Berzofsky et al., 

1991), the outer membrane protein of Chlamydia trachomatis (Kim and DeMars, 

2001), and other antigens (Gupta et al., 2006). 

The global approach described herein provides a framework and methodology 

for large-scale and systematic analysis of PEs of other pathogens, in particular for 

rapidly evolving viruses such as Influenza A virus (Heiny et al., 2007) and HIV 

(Wilson et al., 2003). These studies will offer insights into their diversity and 

evolutionary history, together with providing critical data for rational vaccine 

development, structure-based design of candidate inhibitory compounds, and 

improvement of the current diagnostic methods (Leyssen et al., 2000). 

 

4.5 Chapter summary 
 

Background: Short, conserved viral sequence fragments that contain promiscuous T-

cell epitopes are attractive candidates to cover antigenic diversity and for vaccine 

formulation. Therefore, the author analysed all available DENV sequence data in 

public databases to identify and characterize peptides that cover antigenic diversity 

(PEs) of the virus: sequence regions conserved across sequences of the four DENV 

serotypes (pan-DENV sequences) and are immunologically relevant in the context of 

HLA supertypes. 

Results: A large-scale identification and analysis of evolutionarily highly 

conserved amino acid sequences of the entire DENV proteome, with a focus on 
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sequences of nine amino acids or more, and thus immune-relevant as potential T-cell 

epitopes was undertaken. DENV protein sequence data were collected from the NCBI 

Entrez Protein database in 2005 (9,512 sequences) and again in 2007 (12,404 

sequences). Forty-four (44) sequences (pan-DENV sequences), mainly those of 

nonstructural proteins and representing ~15% of the DENV polyprotein length, were 

identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 

thirty-four (~77%) were present in ≥ 95% of sequences of each DENV serotype, and 

27 (~61%) were conserved in other flaviviruses. The frequencies of variants of the 

pan-DENV sequences were low (0 to ~5%), as compared to variant frequencies of 

~60 to ~85% in the non pan-DENV sequence regions. The majority of the conserved 

sequences were shown to be immunologically relevant: 34 contain numerous 

predicted HLA supertype-restricted peptide sequences, and 26 contain T-cell epitopes 

identified by studies with HLA-transgenic mice and/or reported to be immunogenic in 

humans. 

Conclusions: The author identified and characterized 44 pan-DENV 

sequences as potential DENV candidate PEs. The conservation of these sequences 

through the entire recorded DENV genetic history supports their possible value for 

diagnosis, prophylactic and/or therapeutic applications. The combination of 

bioinformatics and experimental approaches applied herein provides a framework for 

large-scale and systematic analysis of PEs of other pathogens, in particular, for 

rapidly mutating viruses, such as Influenza A virus and HIV. 
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Chapter 5 A Systematic Bioinformatics Pipeline for Rational 
Selection of Vaccine Candidates Targeting Antigenic 
Diversity 
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5.1 Introduction 
 

New developments in bioinformatics and other computational methodologies, 

combined with the broad versatility in the design and synthesis of genetic (DNA) 

vaccines, underlay new strategies for the novel design of antigen-specific, peptide-

based vaccines against the many pathogens, such as HIV and influenza, that have 

been observed to be resistant to conventional vaccine therapy (Sette and Fikes, 2003; 

Sette et al., 2001). Early clinical trials of peptide-based vaccines for HIV, malaria and 

tuberculosis have produced promising results (Robinson and Amara, 2005; Wilson et 

al., 2003), supporting the protective and therapeutic uses of these vaccines. T-cell 

epitopes, important for cytolytic and regulatory responses to pathogens (Pulendran 

and Ahmed, 2006; Zinkernagel and Hengartner, 2004; Esser et al., 2003), are 

necessary elements of these vaccines. The rational selection of protein antigen 

sequences that function as T-cell epitopes in vaccine formulations is therefore crucial 

for successful application of this vaccination strategy (Brusic and August, 2004; Sette 

et al., 2001). 

This selection of pathogen antigen sequences to be included in peptide-based 

vaccines must address several determinative issues. The goal is to identify relevant T-

cell epitopes, both HLA class I and II that are both effective and sufficient in vaccine 

protection against pathogen challenge. A major question is the degree of protection 

that can be achieved without the concomitant administration of neutralizing antibody 

epitopes. Vaccines must also protect a broad spectrum of human population against as 

wide a variety of pathogenic strains as possible. It is therefore important to choose 

epitopes that cover antigenic diversity: the diversity of both the pathogen and the host; 

short sequence fragments of the antigen that are conserved in all or majority of the 

pathogen isolates and variants and contain high concentration of promiscuous T-cell 
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epitopes that bind to several alleles of HLA supertypes for maximal population 

coverage (Sette and Sidney, 1999) satisfy these requirements. The bioinformatics-

based approaches serve as a means to enhance the optimal selection of potential 

targets of immune response followed by experimental validation, typically by testing 

these antigen sequences in immunological assays. In this chapter, the author describes 

a combined bioinformatics and molecular strategy for vaccine development focusing 

on covering antigenic diversity (identification and characterization of PEs). 

 

5.2 Framework for rational selection of peptide-based vaccine 
targets that cover antigenic diversity 
 

5.2.1 Data collection and preparation 
 

Predictions about future mutations are derived from past the evolutionary history. It is 

therefore important to collect sequences that are as representative as possible of the 

genetic variants of the pathogen, over extended periods of time and broad 

geographical ranges. Ideally, all available protein sequences pertaining to the 

pathogen should be collected from major public databases, such as the NCBI Entrez 

Protein database (www.ncbi.nlm.nih.gov/entrez). Since public databases often contain 

errors and discrepancies, a data cleaning process is needed to correct such anomalies 

(Khan et al., 2006a; Khan et al., 2006b; Srinivasan et al., 2002). For example, 

annotation errors and discrepancies in 17 DV records were identified and corrected 

prior to analysis (Appendix 2). While several methods are available, the author found 

our in-house ABK structural rule-based approach (Miotto et al., 2005) well suited to 

this type of task, allowing fully annotated sets of over 40,000 influenza protein 

sequences to be cleaned and independently verified in two weeks. The cleaned dataset 

is then grouped according to established classification, such as based on 
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genotype/serotype/clade, and the resulting grouped datasets are then further sub-

grouped according to the proteins coded by the pathogen to facilitate systematic 

analysis. For example, in the case of DENV, the dataset was grouped according the 

four genetically distinct serotypes, and then further sub-grouped according to the 10 

proteins coded by the proteome. For viruses with multiple groups, a combined dataset 

is also necessary for the purpose of combined analysis. For example, a dataset 

containing the NS1 proteins of the four dengue virus serotypes. 

 

5.2.2 Identification of conserved sequences 
 

The identification of conserved sequence fragments is an initial step to cover 

pathogen genomic variation. In some cases, such as HIV, influenza A viruses and 

dengue viruses, this variation is extensive. Multiple sequence alignments of pathogen 

proteins are examined by a consensus-sequence based approach (Novitsky et al., 

2002) for the selection of sequences conserved in the large majority of variants. For 

pathogens with multiple groups (clades, serotypes or subtypes), pan-group consensus 

sequences should be obtained by aligning consensus sequences derived from each of 

the different groups (Figure 5.1), rather than by analyzing pan-group alignments that 

combine sequences from all groups. This prevents over-represented groups from 

biasing the derived consensus sequence. Identification of conserved alignment sites is 

based on the representation (frequency) of the consensus residue among all sequences 

in the alignment. Depending on the variability exhibited by different pathogen groups, 

the cut-off intra-group representation for conserved sequences may be set from 50% 

to 100%. For example, in the DV analysis, conserved sites common across the four 

serotypes were selected, exhibiting at least 80% representation in each of the four 

serotypes (Figure 5.2). For immunological applications, a minimum conserved 
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sequence length of nine amino acids is required because this represents the typical 

length of peptides that bind to HLA molecules (Rammensee et al., 1995). 

 

 
 
Figure 5.1: Steps involved in determining sequence fragments conserved across 
the four serotypes in NS3 protein using a consensus-sequence-based approach. 
A) The consensus sequence for NS3 protein is derived for each serotype (DV1-4) 
from their respective multiple sequence alignment. Each residue in the consensus 
sequence represents the predominant residue at that position in the 
corresponding multiple sequence alignment. B) The four consensus sequences of 
NS3 protein (one from each serotype) are aligned to reveal sequence fragments 
that are at least nine amino acids long and identical across the four consensus 
sequences. 
 

DV1  CONSENSUS   SGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVFQEGVFHTMWHVTRGAVLMYQ… 
DV2  CONSENSUS   AGVLWDVPSPPPVGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHK… 
DV3  CONSENSUS   SGVLWDVPSPPETQKAELEEGVYRIKQQGIFGKTQVGVGVQKEGVFHTMWHVTRGAVLTHN… 
DV4  CONSENSUS   SGALWDVPSPAATQKATLSEGVYRIMQRGLFGKTQVGVGIHMEGVFHTMWHVTRGSVICHE… 
    * *** ***     * *  * *** * *  *  * * *   ** ********** *     

B. Align the consensus sequences of NS3 protein from each serotype (DV1 to DV4) to 
identify fragments at least nine amino-acids long in length and common across the four 

serotypes (conserved sequences are boxed). 

Collected sequences of NS3 protein for the four dengue serotypes. 

A. Align NS3 protein sequences of each serotype separately, to derive an NS3 
consensus sequence for each serotype. In this example, DV1 serotype is shown. 

 
DV1 81984837   SGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVFQEGVFHTMWHVTRGAVLMYQ… 
DV1 56698932   SGVLWDTPSPPEVERAVLDDGIYRIMQRGLLGRSQVGVGVFQENVFHTMWHVTRGAVLMYQ… 
DV1 14485524   SGVLWDTPSPPEVERAVLDDGIYRIMQRGLLGRSQVGVGVFQENVFHTMWHVTRGAVLMYQ… 
DV1 27656963   SGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVFQDGVFHTMWHVTRGAVLMYQ… 
    .      . 
    .      . 
DV1 CONSENSUS  SGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVFQEGVFHTMWHVTRGAVLMYQ… 
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Protein Pan-serotype sequence Percentage conservation (%)

46FHTMWHVTRG55

148GLYGNGVVT156

189LTIMDLHPG197

256EIVDLMCHATFT267

284MDEAHFTDP292

296AARGYISTRV305

313IFMTATPPG321

357GKTVWFVPSIK367

383VIQLSRKTFD392

406VVTTDISEMGANF418

491EAKMLLDNI499

537LMRRGDLPVWL547

DV1 DV2
DV3 DV4

10080 90
NS3

 
 
Figure 5.2: Dengue pan-serotype conserved sequences of the NS3 protein and 
their intra-serotype representation. The amino acid positions are numbered 
according to the aligned sequences of dengue proteins from all four serotypes. 
 

5.2.3 Entropy-based analysis of conserved sequence variability 
 

Consensus-based methods consider each alignment site independently. However, 

vaccine targets are short peptides, typically 9-mers, whose combinatorial composition 

can produce great diversity even when adjacent sites have highly conserved residues. 

A more robust method based on entropy (Shannon, 1948) can measure the degree of 

variability of peptides of any length, and infer their evolutionary stability. Entropy, H, 

representing the variability of nonamer peptides (9-mers) centered at any given 

alignment site, is computed from the probability, pa of each nonamer peptide a 

occurring at that site: 
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a
aa ppH 2log  

 
Peptides centered at any given position partially overlap peptides centered at 

neighbouring positions. Low entropy characterizes stable peptides, and an entropy 

value of 0 indicates a 100% conserved nonamer. Entropy rises with increasing 

variability of a site, and is affected both by the number of peptides at that site, and 

also by their respective frequency. The AVANA antigenic variability analyzer tool 

(Miotto et al., 2008) can perform peptide entropy analysis. Figure 5.3 shows intra- 

and pan-serotype peptide entropy plots for dengue virus NS3 protein. The data shows 

that each of the four serotypes has distinct patterns of highly conserved and variable 

regions. Thus, the pan-serotype low entropy regions are restricted to discrete short 

regions, which correspond to the conserved sequences selected by the consensus-

sequence method. 
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Figure 5.3: Peptide entropy plots for intra- and pan-serotype alignments of 
dengue virus NS3 protein (intra-serotype: DV1, DV2, DV3, DV4; pan-serotype: 
DV). The peptide entropy value at each position is based on the frequency of 
nonamer peptides present at that position in the protein’s alignment. All 12 
identified pan-serotype conserved sequences of NS3 protein were found to be 
localized in the pan-serotype conserved antigenic regions of the protein ( ), with 
values ranging from 0 to 0.4, indicating the high probability that these sequences 
will remain conserved in the future. 
 

5.2.4 Functional and structural correlates of conserved sequences 
 

It is recognized that conserved protein sequences generally represent important 

functional domains (Valdar, 2002), and their mutations would be detrimental to the 

survival of the pathogen. The functions of conserved sequences can be elucidated by 

databases that comprise data on protein families, domains and functional sites, such as 

the Pfam (Bateman et al., 2004) (www.sanger.ac.uk/Software/Pfam) and Prosite 
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(Hulo et al., 2006) (au.expasy.org/prosite) databases. Mapping the location of a 

conserved sequence on the 3-D structure of the protein may also provide relevant 

information (Figure 5.4). Many such 3-D structures are available in the PDB (Berman 

et al., 2000). 

 

A) 
 

B) 
 

 
Figure 5.4: Molecular location of dengue NS3 pan-serotype conserved sequences 
(148GLYGNGVVT156 and 189LTIMDLHPG197) shown on the 3-D structure. A) A 
major portion of 148GLYGNGVVT156 conserved sequence (in red) is localized in 
the buried region of the 3-D structure. B) Most of the 189LTIMDLHPG197 
conserved sequence (in red) is localized in the exposed region of the 3-D 
structure. This suggests that the conserved sequence 148GLYGNGVVT156 is less 
likely to mutate compared to 189LTIMDLHPG197, though both share identical 
level of intra-serotype percentage representation (Haydon and Woolhouse, 1998). 
 

5.2.5 Distribution of conserved sequences in nature 
 

Potential vaccine targets should be analyzed for specificity to the target pathogen. In 

vaccine design, epitopes common to other pathogens could either be useful by 

inducing cross-protection, or detrimental by inducing altered peptide ligand effect 

(Rothman, 2004; Sloan-Lancaster and Allen, 1996; Evavold et al., 1993). Identified 

conserved sequences should therefore be submitted to a BLAST search against all 

protein sequences at NCBI, excluding the target pathogen. If the sequences are found 

in other pathogens, the extent of their representation should be analyzed. For example, 
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many dengue virus conserved sequences are found widely present in other 

flaviviruses. 

 

5.2.6 Characterization of candidate promiscuous T-cell epitopes 
 

5.2.6.1 Algorithms for prediction of HLA binding peptides. 
 

Dedicated algorithms based on distinct prediction models are used to locate putative 

promiscuous T-cell epitopes for HLA class I or II supertypes within conserved 

sequences. Computational epitope prediction systems, such as NetCTL (Larsen et al., 

2005) (www.cbs.dtu.dk/services/NetCTL), MULTIPRED (Zhang et al., 2005b) and 

TEPITOPE (Bian and Hammer, 2004) have been proven to be effective in accurately 

mapping T-cell epitopes. When selecting peptides for experimental validation, 

putative epitopes predicted by multiple models are chosen, since consensus 

predictions from a combination of models have been shown to be more accurate than 

individual model predictions (Donnes and Kohlbacher, 2005; Larsen et al., 2005). 

In addition to being promiscuous with respect to multiple alleles of an HLA 

supertype, some putative T-cell epitopes exhibit multiple-supertype promiscuity. This 

additional form of promiscuity has been observed in several viruses, such as dengue 

(Gagnon et al., 1996) and HIV (Wilson et al., 2003). T-cell epitopes specific to 

multiple HLA supertypes are advantageous for vaccine design because they 

effectively increase the numbers of epitopes to which an individual can respond, and 

provide much more extensive coverage of the population (Wilson et al., 2003). 
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5.2.6.2 Immunological hotspots. 
 

Putative promiscuous T-cell epitopes may be localized in clusters, as reported in 

studies of HIV-1 (Brown et al., 2003; Surman et al., 2001; Shankar et al., 1996; 

Berzofsky et al., 1991) and the outer membrane of Chlamydia trachomatis (Kim and 

DeMars, 2001), among others (Gupta et al., 2006; Srinivasan et al., 2004). The 

clusters are also ideal for developing peptide-based vaccines because they contain 

multiple promiscuous epitopes. MULTIPRED (Zhang et al., 2005b) and Hotspot 

Hunter (Zhang et al., 2008) can be used to predict HLA supertype-specific 

immunological hotspots in pathogen sequences. 

 

5.2.7 Altered ligand effects 
 

The genotypic differences between primary and secondary pathogens, or between the 

vaccine and challenge infection, constitute a critical consideration for protective and, 

in some cases, pathologic immunity (Rothman, 2004). Because of intra- and inter-

group sequence variability, most T-cell epitope sequences may contain single or 

multiple amino acid differences within and between the groups. Variants of the 

putative promiscuous T-cell epitopes are identified among the reported sequences in 

the pathogen groups, and their representation within the group and across groups is 

observed. Variants of a putative epitope at a given alignment position comprise all 

nonamers at that site that possess at least one amino acid difference. Putative epitopes 

with no or low variant representation (~100% conserved) are potentially advantageous 

in avoiding altered peptide ligand effects. 
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5.2.8 Experimental Validation 
 

5.2.8.1 Survey of reported human T-cell epitopes within the conserved sequences 
 

Predictions of T-cell epitopes of the conserved sequences can in many cases be 

conformed (commonly without identification of the specific allele, however) by 

reports of experimentally confirmed T-cell epitopes. Therefore, search against both 

extant literature and the Immune Epitope Database (www.immuneepitope.org) is 

performed for reported human T-cell epitopes (both class I and II) that fully or 

partially overlap with identified conserved sequences. For example, eight reported 

human NS3 T-cell epitopes of DV correspond to the predicted promiscuous T-cell 

epitopes in the NS3 conserved sequences (Table 5.1). 

 

Table 5.1: Human T-cell epitopes in dengue virus NS3 pan-serotype conserved 
sequences. 
 

Protein Pan-serotype sequence a 
Reported T-cell epitopes 

Reference(s) 

NS3 46FHTMWHVTRG55 (Simmons et al., 2005)

148GLYGNGVVT156 (Simmons et al., 2005; Kurane et al., 1995) 

189LTIMDLHPG197 (Mangada and Rothman, 2005) 

256EIVDLMCHATFT267 (Simmons et al., 2005; Okamoto et al., 1998; Kurane et 
al., 1993) 

313IFMTATPPG321 (Simmons et al., 2005)

357GKTVWFVPSIK367 (Loke et al., 2001; Mathew et al., 1996) 

383VIQLSRKTFD392 (Simmons et al., 2005)

406VVTTDISEMGANF418 (Simmons et al., 2005)

537LMRRGDLPVWL547 (Simmons et al., 2005)
aThe amino acid positions are numbered according to the aligned sequences of dengue proteins from 

all four serotypes 
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5.2.8.2 Experimental validation of bioinformatics screening 
 

Experimental measurements for validation of computational predictions are necessary 

for accurate interpretation of results. Such measurements currently include HLA 

binding assays (Sidney et al., 1998), immunization of HLA transgenic mice and 

ELISpot assay for peptide-specific T-cell activation (Rosloniec et al., 1997) and of 

pathogen infected human subjects. Dr. Nascimento (Johns Hopkins University, USA), 

a collaborator of the author performed functional assessment of the dengue virus NS1 

conserved sequences: four were predicted to contain HLA-DR epitopes and three of 

these four were confirmed by ELISpot assay with T-cell activation peptides that 

closely mimic the conserved sequences (Table 5.2). An additional two that were also 

ELISpot positive were not predicted to bind to DR molecules. In summary, of seven 

conserved NS1 sequences, five contain HLA-DR T-cell epitopes and at least three are 

promiscuous for multiple HLA-DR alleles. The predictive models are helpful in 

selecting antigen sequences for additional study of immune responses, especially for 

sequences predicted by multiple algorithms. 

 

Table 5.2: IFN-gamma ELISpot responses of CD4-depleted splenocytes from 
HLA transgenic mice immunized with peptides overlapping dengue virus NS1 
pan-serotype conserved sequences. 
 

Pan-serotype sequence a 
Predicted 
DR-2, -3, -4 b 

ELISpot positive 
HLA transgenic 
mouse c 

ELISpot activation peptide d 

12ELKCGSGIF20 DR-2 DR-2 13LKCGSGIFVTNEVHT27

25VHTWTEQYKFQ35 DR-4 DR-3 and -4 25VHTWTEQYKFQADSP39

193AVHADMGYWIES204 DR-2 and -3 None 193AVHADMGYWIESQKN207

229HTLWSNGVLES239 DR-3 and -4 DR-3 and -4 229HTLWSNGVLESDMII243

266GPWHLGKLE274 None DR-3 and -4 265AGPWHLGKLELDFNY279

294RGPSLRTTT302 None DR-4 293TRGPSLRTTTVSGKL307

325GEDGCWYGMEIRP337 None None 325GEDGCWYGMEIRPIS339
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a The amino acid positions are numbered according to the aligned sequences of dengue proteins from 

all four serotypes 
b Prediction for DR alleles was performed by use of MULTIPRED (Zhang et al., 2005b), TEPITOPE 

(Bian and Hammer, 2004) and ARB (Bui et al., 2005)  
c The ELISpot assays were performed for DR-2, DR-3 and DR-4 transgenic mice 
d ELISpot activation peptides are the actual peptides used to test the ELISpot 

 

5.3 Conclusion 
 

The bioinformatics pipeline developed for DENV proved generic as it was 

successfully applied to several viruses, such as WNV (Chapter 6), a close relative of 

DENV, and a number of other viruses (data not shown). Thus, the approach described 

in this thesis represents a template for the analysis of other pathogens. It provides a 

novel and generalized approach to the formulation of peptide-based vaccines targeting 

a broad diversity of pathogens and applicable to the human population at large. This 

new methodology is a significant contribution to the field of reverse vaccinology 

(Vernikos, 2008; Ulmer et al., 2006) as it enables the systematic screening and 

analyses of pathogen data which would otherwise be impossible to carry out 

experimentally, due to too many pathogen sequences (high viral diversity) and 

variations in immune system among individuals (extensive polymorphism of HLA). 

This approach therefore significantly reduces the efforts and cost of experimentation, 

while providing for systematic screening and analyses of pathogen proteomes.  

Existing reverse vaccinology approaches focused on identifying conserved, 

HLA supertype restricted epitopes (Sette et al., 2001; Sylvester-Hvid et al., 2002; 

Wilson et al., 2003; De Groot et al., 2005) as vaccine targets, rely on application of 

bioinformatics/immunoinformatics tools to identify such epitopes, but with limited 

additional characterizations and typically do not involve study of all available 

pathogen data. Our approach supports analysis of all available pathogen data and 
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includes steps for additional characterizations of the epitopes, such as variant analysis 

and distribution in nature, among others. These two steps in particular have received 

little attention and are important to study the reported sequence population of the 

pathogen of interest and going beyond to those of all other species for evolutionarily 

related sequences that may act as variants to the conserved epitopes identified. These 

steps are necessary to identify conserved epitope sequences that are pathogen specific, 

with none or minimal number of variant sequences within or across other pathogen 

species. Variant epitopes are hypothesized to cause deleterious immune responses 

(see sections 2.2.2 and 4.4 for more information). 

 

5.4 Chapter summary 
 

Peptide-based vaccines provide a new strategy for prophylactic and therapeutic 

application of pathogen-specific immunity. A critical requirement of this strategy is 

the identification and selection of T-cell epitopes as vaccine targets that cover 

antigenic diversity. This chapter described current methodologies for the selection 

process, with DENV as a model system. A combination of publicly available 

bioinformatics algorithms and computational tools are used to screen and select 

potential PEs – conserved pathogen sequence fragments that act as potential T-cell 

epitopes of HLA supertype alleles. The selected sequences are tested for biological 

function by their activation of T-cells of HLA transgenic mice and of pathogen 

infected subjects. This approach provides an experimental basis for the design of 

pathogen specific, T-cell epitope peptide-based vaccines that are targeted to majority 

of the genetic variants of the pathogen, and are effective for a broad range of 

differences in HLAs among the global human population. 
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Chapter 6 Application of Antigenic Diversity Analysis 
Pipeline to West Nile Virus and Comparative Analysis to 
Dengue Virus
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6.1 Introduction 
 

WNV infects humans through incidental zoonotic transmission from birds via 

mosquitoes (Marfin et al., 2001). The majority of infected individuals remain 

asymptomatic; however, about 20% experience mild flu-like symptoms, and 

approximately 1 in 150 develop severe illness, including meningoencephalitis (Hayes 

et al., 2005; Petersen et al., 2003). The virus is now endemic in many parts of the 

world, including Africa, Asia, Europe, Middle East, and most recently in the western 

hemisphere, including the United States, Mexico, and Canada (Lanciotti et al., 1999). 

At present, there is no registered human vaccine or specific therapy for prevention or 

treatment of WNV infection. 

WNV exhibits significant sequence diversity. Five distinct genotypes have 

been identified by phylogenetic analyses of the C-prM-E region by others (Bondre et 

al., 2007). Their complete genomes differ from each other by 20-25% (Bondre et al., 

2007). Herein, the author describes the identification and characterization of 

conserved, protein sequence fragments of WNV that contain promiscuous T-cell 

epitopes, and thus cover antigenic diversity (WNV PEs). 

The bioinformatics pipeline developed for DENV proved generic and useful to 

other flaviviruses as it was successfully applied to several of them, such as WNV, 

JEV and YFV, and a number of non-flaviviruses (HV and HAV) (data not shown). 

The results of the analyses enable comparative analysis of PEs between viruses 

assessing their similarities and differences, which may provide insights into the design 

of better vaccine strategies. In this chapter, the results of the applications of the 

pipeline to WNV and the comparative analysis of PEs between WNV and DENV are 

described to demonstrate the usefulness of the approach to flaviviruses. 
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6.2 Materials and methods 
 

6.2.1 West Nile virus (WNV) data preparation, selection and alignment 
 

WNV is a mosquito-borne pathogen with genomic and proteomic structure similar to 

that of DENV (Chapter 2.1) (Horga and Fine, 2001; Petersen and Roehrig, 2001). 

WNV protein sequence records were retrieved from the NCBI Entrez Protein database 

in June 2007 by searching the NCBI taxonomy browser for WNV (taxonomy ID 

11082). The sequences of the WNV proteins (C, prM, E, NS1, NS2a, NS2b, NS3, 

NS4a, NS4b and NS5) were extracted from the downloaded database records and 

grouped according to the method described in Chapter 4.2.2, using sample protein 

sequences from the WNV reference record P06935 in the NCBI Entrez Protein 

database. The resulting dataset of each protein was then aligned by use of MUSCLE 

v3.6 (Edgar, 2004) with default parameters, followed by manual inspection and 

correction of misalignments. The alignments, which comprised both full length and 

partial sequences, were then subjected to a number of analyses. Identical sequences 

were not removed from the alignments, unless otherwise indicated in the sections 

below. 

In large-scale proteomic analyses such as this study, bias may result from the 

collection of redundant sequences, derived from identical or highly similar WNV 

isolates sequenced by surveillance programs. Duplicate sequences (2,206) were 

retained for the analysis because they reflect the incidence of the corresponding WNV 

isolates in nature and, further, they do not affect the identification of WNV sequences 

that are completely (100%) conserved. As for the highly similar sequences, which 

may have been generated from large sequencing projects during single outbreaks; 
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their removal was deemed undesirable, since such arbitrary selection would introduce 

additional bias. 

 

6.2.2 Amino acid difference between WNV protein sequences 
 

Pairwise percentage amino acid difference for the full length unique sequences of 

each WNV proteins was computed by use of ClustalW 1.83 with default parameters. 

This was done to survey the extent of amino acid variation in the WNV data of 2007. 

 

6.2.3 Nonamer entropy analysis of WNV sequences 
 

Entropy analysis was carried out as described in Chapter 4.2.4 by use of AVANA, to 

study the evolutionary diversity of WNV protein sequences over the period which the 

sequences were collected. 

 

6.2.4 Nonamer variant analysis of WNV sequences 
 

The conservation and variability of nonamer sequences in the WNV protein 

alignments were further analyzed to study the representation of nonamer peptides 

variant to the predominant peptide at a given position x in the alignment, following 

the guidelines in the Chapter 4.2.5. 

 

6.2.5 Identification of completely conserved WNV sequences (pan-WNV 
sequences) 
 

Completely conserved sequences (pan-WNV sequences) of at least nine amino acids 

and fully identical in all the sequences analyzed (100% representation) were identified 

from the multiple sequence alignment of each protein. Peptides with the unknown 
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residue X in the alignments were ignored. The threshold of 100%, which is ideal, was 

used for this virus because of the higher level of conservation exhibited by the virus, 

unlike DENV. 

 

6.2.6 Structure-function analysis of pan-WNV sequences 
 

The reported and putative functional properties of pan-WNV sequences were searched 

in the literature and by use of the Prosite database and Pfam databases. The conserved 

sequences were also mapped onto the 3-D structures of WNV proteins if they were 

available in the PDB. See Chapter 4.2.6 for details. 

 

6.2.7 Identification of pan-WNV sequences common to other viruses and 
organisms 
 

Pan-WNV sequences that were common to at least nine consecutive amino acids of 

other viruses were identified by performing BLAST search against protein sequences 

of all other viruses reported at NCBI (as of August 2007) (parameters: limit by Entrez 

query “txid10239[Organism:exp] NOT txid11082[Organism:exp]”; “automatically 

adjust parameters for short sequences” option disabled; “low-complexity” filter 

disabled; alignments: 20,000; expect threshold: 200,000, or 20,000, or 2,000 until a 

valid result was obtained; word size: 2; matrix: PAM30; gap costs: “Existence: 9, 

Extension: 1”; compositional adjustments: no adjustment). Similar BLAST searches 

were carried out against protein sequences of all organisms excluding viruses 

(parameters: limit by Entrez query “Root[ORGN] NOT Viruses[ORGN] NOT 

txid81077[ORGN]”; “automatically adjust parameters for short sequences” option 

disabled; “low-complexity” filter disabled; alignments: 20,000; expect threshold: 

200,000, or 20,000, or 2,000 until a valid result is obtained; word size: 2; matrix: 
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PAM30; gap costs: “Existence: 9, Extension: 1”; compositional adjustments: no 

adjustment). Artificial sequence hits were removed by the “NOT txid81077[ORGN]” 

keyword. 

 

6.2.8 Identification of known and predicted WNV HLA-supertype binding 
epitopes 
 

Both literature and the Immune Epitope Database were analyzed to identify 

previously reported HLA class I and II human T-cell epitopes of WNV that 

overlapped at least nine consecutive amino acids of pan-WNV sequences. In addition, 

four prediction models were used to identify candidate WNV sequences that bind to 

multiple HLA class I or II supertype alleles (see Chapter 4.2.8). 

 

6.2.9 Comparative analysis of PEs between WNV and DENV 
 

The identified and characterized PEs of WNV were compared against those of 

DENV, described in Chapter 4, to study the level of conservation between the viruses 

and identify characteristics common between the PEs of the viruses. 

 

6.3 Results 
 

6.3.1 WNV protein sequence datasets 
 

A total of 2,746 complete and partial WNV protein sequences were retrieved from the 

NCBI Entrez Protein database as of June 2007 (Table 6.1). The large number of 

sequences analyzed and their wide spatial and temporal (1955-2007; based on WNV 

NCBI records with available annotation) distribution enabled a broad survey of WNV 

diversity in nature. The distribution of these sequences varied considerably among the 
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different proteins (from 141 NS4b sequences to 927 E sequences). Comparisons of 

amino acid variations between the full length unique sequences of the 10 WNV 

proteins showed that C had the highest range of amino acid differences across the 

sequences (up to 23%), while NS4b had the lowest (up to 8%) (Table 6.1).  

 

6.3.2 Evolutionary stability of WNV 
 

The evolutionary diversity of WNV was studied by computing entropy for analysis of 

immunologically relevant nonamer peptide sequences. The entropy plot revealed the 

evolutionary variability of nonamer sequences across the WNV proteome (Figure 

6.1). The vast majority of nonamer positions exhibited low to moderate entropy ( 

1.0), indicating lower probability of mutations occurring over time. Many regions had 

zero entropy signifying no change throughout the recorded history of the virus. Peak 

or near peak entropy values (~2) were observed in the E, NS4a and NS5 proteins. The 

NS5 protein known to be one of the most conserved across Flavivirus proteins, had 

the highest percentage of completely conserved nonamer regions, but also exhibited 

high entropy in regions at the C-terminal of the protein. Overall, entropy analysis 

revealed numerous highly conserved and evolutionarily stable WNV sequences 

distributed throughout the viral proteins, indicative of high genetic stability of WNV, 

despite its adaptability to global emergence. 
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Table 6.1: Number of WNV protein sequences retrieved from NCBI and their 
maximum percentage amino acid difference over the protein length. 
 

WNV 
protein 

Total length 
(aa) b 

No. of sequences analysed a 
% maximum amino-acid 

difference c 

C 123 264 23  

prM 167 417 19 

E 497 927 12 

NS1 352 164 16 

NS2a 231 143 20 

NS2b 131 146 10 

NS3 619 146 10 

NS4a 149 142 14 

NS4b 256 141 8 

NS5 905 256 10 

Total 3430 2746 - 

a Retrieved from NCBI Entrez Protein database on 28th June 2007 
b Approximate size indicated in number of amino acids 
c Maximum percentage amino-acid difference for each WNV protein, computed using ClustalW 
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Figure 6.1: Peptide entropy plots for WNV protein alignments.
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6.3.3 Representation of variant WNV sequences 
 

Completely conserved nonamer site with zero variants were numerous and the 

occurrence of variant nonamer sequences across the WNV proteome was generally 

low, less than 10% of all WNV recorded sequences at most positions (Figure 6.2). 

The position with the highest representation of variant nonamer sequences (49%) was 

found in the nonstructural protein NS4a. Overall, the data suggests a low probability 

of immune response challenges from variant WNV T-cell epitopes, due to a high 

representation of historically conserved sequences of the WNV proteome in the 

known virus population. 

 

6.3.4 Completely conserved pan-WNV sequences 
 

A total of 88 completely conserved sequence fragments (pan-WNV sequences) were 

identified across the whole proteome (Table 6.2). The length of these fragments 

ranged from 9 to 29 amino acids, covering a total length of 1,169 amino acids (~34%) 

of the complete WNV polyprotein length (3,430 aa) (Table 6.3). The C protein had no 

pan-WNV sequence, which is consistent with the large number of amino acid 

differences (23%) observed in this protein compared to other WNV proteins (Table 

6.1). The NS3 and NS5 proteins contained the greatest number of pan-WNV 

sequences, 25 in NS3 (spanning 48% of the protein length) and 30 in NS5 (51% of the 

protein length). The other nonstructural proteins NS1, NS2a, NS2b, NS4a and NS4b 

collectively contained a total of 24 completely conserved sequences, covering 11% to 

40% of their respective protein lengths. In contrast, the variability of the structural 

proteins was much greater: prM had only two pan-WNV sequences (14% of the 

protein length), while E had seven (18% of the protein length). 
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Figure 6.2: Percentage representation of nonamer variants in relation to the predominant nonamer peptide for all nonamer positions in 
WNV protein alignments. 
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Table 6.2: Completely conserved sequence fragments (pan-WNV sequences) of 
WNV proteins. 
 

WNV 
protein 

Length 
(aa) 

Pan-WNV sequence a 

C - None 
prM 14 125-ESWILRNPGYALVA-138 

10 158-LLLLVAPAYS-167 
E 11 001-FNCLGMSNRDF-011 

14 104-GCGLFGKGSIDTCA-117 
9 293-LKGTTYGVC-301 
19 338-SVASLNDLTPVGRLVTVNP-356 
12 370-ELEPPFGDSYIV-381 
10 417-LGDTAWDFGS-426 
12 449-LFGGMSWITQGL-460 

NS1 11 058-RSVSRLEHQMW-068 
9 114-GWKAWGKSI-122 
9 154-EVEDFGFGL-162 
10 195-HSDLSYWIES-204 
25 209-TWKLERAVLGEVKSCTWPETHTLWG-233 
11 276-DFDYCPGTTVT-286 
10 313-CRSCTLPPLR-322 
10 328-GCWYGMEIRP-337 

NS2a 10 004-DMIDPFQLGL-013 
15 69-NSGGDVVHLALMATF-83 

NS2b 10 001-GWPATEVMTA-010 
14 012-GLMFAIVGGLAELD-025 
9 032-PMTIAGLMF-040 
11 108-SAYTPWAILPS-118 

NS3 10 001-GGVLWDTPSP-010 
10 020-TGVYRIMTRG-029 
10 052-TTKGAALMSG-061 
10 063-GRLDPYWGSV-072 
10 074-EDRLCYGGPW-083 
12 108-NVQTKPGVFKTP-119 
12 131-PTGTSGSPIVDK-142 
13 145-DVIGLYGNGVIMP-157 
11 161-YISAIVQGERM-171 
12 191-VLDLHPGAGKTR-202 
9 235-ALRGLPIRY-243 
27 256-EIVDVMCHATLTHRLMSPHRVPNYNLF-282 
14 288-HFTDPASIAARGYI-301 
12 310-AAAIFMTATPPG-321 
10 337-QTEIPDRAWN-346 
10 357-GKTVWFVPSV-366 
16 385-QLNRKSYETEYPKCKN-400 
11 408-TTDISEMGANF-418 
11 422-RVIDSRKSVKP-432 
11 451-TAASAAQRRGR-461 
16 470-GDEYCYGGHTNEDDSN-485 
9 487-AHWTEARIM-495 
11 526-LRGEERKNFLE-536 
9 540-TADLPVWLA-548 
10 563-WCFDGPRTNT-572 

NS4a 15 019-KTWEALDTMYVVATA-033 
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WNV 
protein 

Length 
(aa) 

Pan-WNV sequence a 

11 043-ALEELPDALQT-053 
13 101-GTKIAGMLLLSLL-113 
20 115-MIVLIPEPEKQRSQTDNQLA-134 

NS4b 9 039-PATAWSLYA-047 
13 068-TSLTSINVQASAL-080 
9 085-RGFPFVDVG-093 
12 138-AQRRTAAGIMKN-149 
10 156-VATDVPELER-165 
22 208-VTLWENGASSVWNATTAIGLCH-229 

NS5 10 001-GGAKGRTLGE-010 
9 060-AKLRWLVER-068 
17 079-DLGCGRGGWCYYMATQK-095 
22 107-GPGHEEPQLVQSYGWNIVTMKS-128 
10 141-DTLLCDIGES-150 
10 152-SSAEVEEHRT-161 
9 168-VEDWLHRGP-176 
16 208-RNPLSRNSTHEMYWVS-223 
12 235-MTSQVLLGRMEK-246 
10 259-NLGSGTRAVG-268 
13 299-NHPYRTWNYHGSY-311 
18 318-SASSLVNGVVRLLSKPWD-335 
29 340-VTTMAMTDTTPFGQQRVFKEKVDTKAPEP-368 
10 375-VLNETTNWLW-384 
18 404-KVNSNAALGAMFEEQNQW-421 
10 440-EREAHLRGEC-449 
12 451-TCIYNMMGKREK-462 
29 472-GSRAIWFMWLGARFLEFEALGFLNEDHWL-500 
16 504-NSGGGVEGLGLQKLGY-519 
13 533-YADDTAGWDTRIT-545 
10 548-DLENEAKVLE-557 
15 571-IELTYRHKVVKVMRP-585 
23 596-ISREDQRGSGQVVTYALNTFTNL-618 
12 620-VQLVRMMEGEGV-631 
19 662-RMAVSGDDCVVKPLDDRFA-680 
14 689-MSKVRKDIQEWKPS-702 
18 704-GWYDWQQVPFCSNHFTEL-721 
27 741-GRARISPGAGWNVRDTACLAKSYAQMW-767 
21 769-LLYFHRRDLRLMANAICSAVP-789 
12 792-WVPTGRTTWSIH-803 

a Numbers prefixing and affixing sequences represent start and end positions in the protein alignment
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Table 6.3: Number of pan-WNV sequences, their length in amino acids and 
percentage coverage of total protein length. 
 

WNV 
protein 

Total  
length  
(aa) a 

Pan-WNV sequences 

Number Length (aa) % of total protein length (aa) b 

C 123 0 0 0 

prM 167 2 24 14 

E 497 7 87 18 

NS1 352 8 95 27 

NS2a 231 2 25 11 

NS2b 131 4 44 34 

NS3 619 25 296 48 

NS4a 149 4 59 40 

NS4b 256 6 75 29 

NS5 905 30 464 51 

Total 3430 88 1169 34 
a Approximate length indicated in number of amino acids, according to the reference protein sequence 

described in the Methods 
b Approximate percentage rounded off to nearest whole number 

 

6.3.5 Functional and structural analysis of pan-WNV sequences 
 

Sequences conserved throughout the evolutionary history of rapidly mutating RNA 

viruses are thought to be critical for structure and/or function. A search in the Prosite 

and Pfam databases revealed that 50 of the 88 pan-WNV sequences are known to be 

associated with putative or known biological functions and/or structure (Table 6.4); 

the biological significance of the remaining 38 sequences is still to be determined. In 

the E protein, two pan-WNV sequences correspond to the fusion loop and 

dimerisation domain (Kanai et al., 2006), while two correspond to immunoglobulin-

like domain, attributed to putative receptor binding sites (Mukhopadhyay et al., 

2003). One NS1 sequence corresponds to the putative ATP/GTP binding site p-loop 

motif, likely to be involved in helicase activity (Li et al., 1999). NS3 contained four 
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pan-WNV sequences that correspond to the peptidase family S7 (Flavivirus serine 

protease) domain (Erbel et al., 2006), and four that correspond to known/putative 

Flavivirus Asp-Glu-Ala-Asp/His (DEAD/H) domain associated with ATP-dependent 

helicase activity (Feito et al., 2008). NS5 contained 17 sequences corresponding to 

the RNA dependent RNA polymerase (RdRp)/catalytic domain (Mackenzie et al., 

2007; Malet et al., 2007). Furthermore, 33 of the 50 pan-WNV sequences were 

predicted to exhibit post-translational modification(s), including N-glycosylation, 

protein kinase C (PKC), casein kinase II (CKII) and tyrosine kinase (TK) 

phosphorylation, N-myristoylation and/or amidation. 

 Amino acid residues exposed and protruding on the surface of viral proteins 

are generally subject to fewer packing constraints and residue interactions as 

compared to those buried within protein interiors. Thirty of the 88 pan-WNV 

sequences could be mapped on available, but incomplete, WNV protein structures 

obtained from the PDB (E protein, 2HG0; NS3, 2IJO; and NS5, 2HFZ) (Appendix 6). 

Five pan-WNV sequences were mostly buried and an equal number of pan-WNV 

sequences were partially exposed (13) or largely exposed (12). These results should 

be considered preliminary until full length 3-D structures are available. 
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Table 6.4: Reported biological properties of pan-WNV sequences. 
 

WNV 
protein 

Pan-WNV sequence Functional domains and motifs a Putative post-transcriptional modifications a 

E 1-FNCLGMSNRDF-11 Dimerisation domain PKC, CKII

104-GCGLFGKGSIDTCA-117 Dimerisation domain, Fusion Loop N-myristoylation

293-LKGTTYGVC-301 - N-myristoylation

338-SVASLNDLTPVGRLVTVNP-356 Immunoglobulin-like domain CKII

370-ELEPPFGDSYIV-381 Immunoglobulin-like domain -

417-LGDTAWDFGS-426 - CKII

NS1 58-RSVSRLEHQMW-68 - CKII

114-GWKAWGKSI-122 ATP/GTP-binding site motif A (P-loop) -

209-TWKLERAVLGEVKSCTWPETHTLWG-233 - PKC, CKII

328-GCWYGMEIRP-337 - N-myristoylation

NS2a 69-NSGGDVVHLALMATF-83 - CKII

NS2b 12-GLMFAIVGGLAELD-25 - N-myristoylation

NS3 52-TTKGAALMSG-61 - PKC

74-EDRLCYGGPW-83 Peptidase S7 -

108-NVQTKPGVFKTP-119 Peptidase S7 -

131-PTGTSGSPIVDK-142 Peptidase S7 -

145-DVIGLYGNGVIMP-157 Peptidase S7 N-myristoylation

191-VLDLHPGAGKTR-202 DEAD/H domain N-myristoylation

256-EIVDVMCHATLTHRLMSPHRVPNYNLF-282 DEAD/H domain PKC

288-HFTDPASIAARGYI-301 DEAD/H domain -

310-AAAIFMTATPPG-321 DEAD/H domain -

385-QLNRKSYETEYPKCKN-400 - TK
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422-RVIDSRKSVKP-432 - PKC

470-GDEYCYGGHTNEDDSN-485 - CKII, N-myristoylation

NS4a 101-GTKIAGMLLLSLL-113 - N-myristoylation

115-MIVLIPEPEKQRSQTDNQLA-134 - CKII

NS4b 208-VTLWENGASSVWNATTAIGLCH-229 - N-glycosylation, CKII

NS5 1-GGAKGRTLGE-10 - CKII, N-myristoylation

79-DLGCGRGGWCYYMATQK-95 - PKC, N-myristoylation

107-GPGHEEPQLVQSYGWNIVTMKS-128 - PKC

152-SSAEVEEHRT-161 - CKII

208-RNPLSRNSTHEMYWVS-223 - N-glycosylation, CKII

299-NHPYRTWNYHGSY-311 RdRp -

318-SASSLVNGVVRLLSKPWD-335 RdRp -

340-VTTMAMTDTTPFGQQRVFKEKVDTKAPEP-368 RdRp -

375-VLNETTNWLW-384 - N-glycosylation

404-KVNSNAALGAMFEEQNQW-421 RdRp -

451-TCIYNMMGKREK-462 RdRp Amidation

472-GSRAIWFMWLGARFLEFEALGFLNEDHWL-500 RdRp -

504-NSGGGVEGLGLQKLGY-519 RdRp N-myristoylation

533-YADDTAGWDTRIT-545 RdRp -

571-IELTYRHKVVKVMRP-585 RdRp PKC

596-ISREDQRGSGQVVTYALNTFTNL-618 RdRp/ RdRp catalytic domain CKII, N-myristoylation

620-VQLVRMMEGEGV-631 RdRp -

662-RMAVSGDDCVVKPLDDRFA-680 RdRp/ RdRp catalytic domain CKII

689-MSKVRKDIQEWKPS-702 RdRp -

704-GWYDWQQVPFCSNHFTEL-721 RdRp -

741-GRARISPGAGWNVRDTACLAKSYAQMW-767 RdRp N-myristoylation

769-LLYFHRRDLRLMANAICSAVP-789 RdRp -
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792-WVPTGRTTWSIH-803 RdRp PKC
a Prosite (PS) and Pfam (PF) accession numbers: PS00001, N-glycosylation site; PS00005, Protein kinase C phosphorylation (PKC) site; PS00006, Casein kinase II (CKII) 

phosphorylation site; PS00007, tyrosine kinase (TK) phosphorylation site; PS00008, N-myristoylation site; PS00009, Amidation site; PS00017, ATP/GTP-binding site motif 

A (P-loop); PS50507, RNA-directed RNA polymerase (RdRp) catalytic domain; PF00869, dimerisation domain; PF00949, Peptidase S7; PF00972, RNA-directed RNA 

polymerase (RdRp); PF02832, Immunoglobulin-like domain; PF07652, Flavivirus DEAD/H domain.
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6.3.6 Distribution of pan-WNV sequences in nature 
 

Sixty-seven (67) of the 88 pan-WNV sequences (~76%) overlapped at least nine 

amino acid sequences of as many as 68 other viruses of the family Flaviviridae, genus 

Flavivirus (Figure 6.3). Each of these 67 sequences matched at least one and at most 

61 Flavivirus species (Figure 6.4 and Appendix 7). Murray valley encephalitis virus 

shared 49 of the 67 pan-WNV sequences; Japanese encephalitis and Usutu virus 

shared 47 and 41, respectively; and representatives of some of the important human 

pathogens, St. Louis encephalitis, dengue, tick-borne encephalitis, and yellow fever 

viruses shared from 36 to 11 of the 67 pan-WNV sequences. The representation of 

these pan-WNV sequences ranged from low to high across reported sequences of the 

several well studied flaviviruses, including dengue (DENV), Japanese encephalitis 

(JEV), Louping ill (LIV), Omsk hemorrhagic fever (OMSK), Powassan (PV), St. 

Louis encephalitis (LEV), Tick-borne encephalitis (TBEV), and Yellow fever (YFV) 

(Appendix 7). For example, the pan-WNV sequence E104-117 was present in 99% of 

the 245 E protein JEV sequences, while E293-301 was present in only 1% of the 256 E 

protein JEV sequences. 

Fifty-eight (58) of the 67 pan-WNV sequences shared by other flaviviruses 

were from the non-structural proteins. Of the 27 pan-WNV sequences found in NS5, 

10 were present in at least 30 Flavivirus species; while of the 16 represented in NS3, 

three were found in between 25 and 34 other species; the remaining 15 sequences 

were contained in non-structural proteins NS1 (7), NS2a (2), NS2b (1), NS4a (3) and 

NS4b (2). Nine (9) of the 67 pan-WNV sequences shared by flaviviruses originated 

from the structural proteins E (7) and prM (2); one of the E protein sequences was 

present in 31 species.  
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Remarkably, five of the 88 pan-WNV sequences (prM158-167, NS3408-418, 

NS4b208-229, NS51-10, and NS5504-519) shared nine consecutive amino acids with seven 

non-viral species. The nonamer sequence from prM158-166 is found in the bacterium 

Acidiphilium cryptum JF-5; NS3409-417 in the mosquito Aedes albopictus; NS4b218-226 

in the Japanese rice Oryza sativa (japonica cultivar-group); NS52-10 in the bacterium 

Actinomyces odontolyticus; NS5504-512 in the bacteria Burkholderia ambifaria MC40-6 

and Burkholderia cepacia AMMD; and NS506-514 in the bacterium Methylobacterium 

extorquens PA1. 
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Figure 6.3: Pan-WNV sequences conserved in other flaviviruses. 
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Figure 6.4: Number of other flaviviruses sharing the pan-WNV sequences. 
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6.3.7 Known and predicted HLA supertype-restricted, pan-WNV T-cell 
epitopes 
 

Literature survey and IEDB database search revealed that three of the pan-WNV 

sequences (2 in NS3, and one in NS5) overlapped at least nine amino acids of three 

previously reported WNV T-cell epitopes immunogenic in human, with their HLA 

restriction, when known, showed both class I (B*07) and II (DR2) specificities (Table 

6.5). Further evaluation of the immune-relevance of pan-WNV sequences included a 

search for candidate putative promiscuous HLA supertype-restricted T-cell epitopes 

within these regions by use of NetCTL, Multipred, ARB and TEPITOPE prediction 

tools. Seventy-eight (78) of the 88 pan-WNV sequences (~89%) (Figure 6.5) was 

predicted to contain 271 supertype-restricted binding nonamers (Appendix 8). Of 

these sequences, 62 contain nonamers predicted to bind to multiple HLA supertypes. 

Clusters of predicted binders, two or more overlapping nonamer peptides, with 

identical HLA supertype-restrictions, known as hotspots (Zhang et al., 2008; Zhang et 

al., 2005b), were found in 41 of the 78 sequences. Seven (7) of the 78 sequences had 

three sequential nonamers overlapping by eight amino acids. As these sequences are 

completely conserved, all of these epitopes are found in all reported WNV strains. 

In addition, 44 pan-WNV sequences were found to contain sequences of at 

least nine amino acids present in 54 CD4+CD8- and/or CD4-CD8+ IFN- ELISpot 

positive peptides (Table 6.6), identified by peptide-specific T-cell responses of murine 

H-2 class I or II-deficient transgenic mice, expressing prototypic class I HLA-A2 

(A*0201), -A24 (A*2402) and -B7 (B*0702), and class II HLA-DR2 (DRB1*1501), -

DR3 (DRB1*0301) and -DR4 (DRB1*0401) alleles, and immunized with overlapping 

peptides covering the entire WNV proteome (unpublished data of our collaborator 

Jung KO et al., of Johns Hopkins University, Maryland, USA). Twenty-three (23) of 



 145

the 44 pan-WNV sequences that overlapped the ELISpot positive peptides correspond 

to positive HLA-DR supertype-restricted T-cell epitope predictions by either 

Multipred or TEPITOPE (Table 6.6 and Appendix 8). The experimental data revealed 

that 11 out of 44 pan-WNV sequences, localized in prM, E, NS1, NS3, NS4a, NS4b 

and NS5, were promiscuous for at least two HLA-DR alleles; the promiscuity of nine 

of these 11 pan-WNV sequences were correctly predicted (Appendix 8). In summary, 

combined with previously reported data for human WNV T-cell epitopes from 

literature and public database (Table 6.5), at least 44 of the 88 pan-WNV sequences 

contain numerous HLA-restricted class I and/or class II epitopes demonstrated by in 

vivo T-cell response assays. 

 

Table 6.5: WNV sequences with human T-cell epitopes elucidated by other 
studies. 
 

WNV 
protein 

Pan-WNV sequence 

Reported T-cell epitopes immunogenic in humans

Sequence a T-cells HLA 
restriction

Reference(s) b

NS3 145-DVIGLYGNGVIMP-157 VIGLYGNGV CD4 DR2 (Kurane et al., 
1995) 

 256-EIVDVMCHATLTHRLMSPHRVPNYNLF-282 SPHRVPNYNL CD8 B07 (De Groot et 
al., 2001) 

NS5 704-GWYDWQQVPFCSNHFTEL-721 FCSNHFTEL - - 1021472
a Epitope amino acids matching the pan-WNV sequences are underlined 

b 1021472 is an accession number of a record in the Immune Epitope Database 
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A 
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B 
 

 

 
Figure 6.5: Candidate HLA supertype-restricted, pan-WNV T-cell epitopes 
predicted by computational algorithms. Results for C, prM, E, NS1, NS2a, NS2b 
and NS3 protein are shown in panel A, while panel B for NS4a, NS4b, and NS5. 
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Table 6.6: Pan-WNV sequences with human T-cell epitopes identified by use of HLA transgenic mice. 
 

WNV 
protein 

Pan-WNV sequence a 
T-cell epitopes immunogenic in HLA transgenic mice 

ELISpot activation peptide b ELISpot positive HLA transgenic mouse 

prM 125-ESWILRNPGYALVA-138* LVKTESWILRNPGYALVA DR2 & DR4 

 LRNPGYALVAAVIGWML A24, B7 & DR2 

158-LLLLVAPAYS-167* RVVFVVLLLLVAPAYS A2, DR2, DR3 & DR4 
E 104-GCGLFGKGSIDTCA-117* RGWGNGCGLFGKGSI DR3 & DR4 

293-LKGTTYGVC-301* EKLQLKGTTYGVCSKAFK DR4 

370-ELEPPFGDSYIV-381 KVLIELEPPFGDSYIVV DR4 

449-LFGGMSWITQGL-460* FRSLFGGMSWITQGLLGA A2, DR2 & DR3 

NS1 209-TWKLERAVLGEVKSCTWPETHTLWG-233* RLNDTWKLERAVLGEVK DR4 

276-DFDYCPGTTVT-286* EGRVEIDFDYCPGTTVTL DR4 

313-CRSCTLPPLR-322 GKLITDWCCRSCTLPPLR DR3 & DR4 

328-GCWYGMEIRP-337 SGCWYGMEIRPQRHDEK DR4 

NS2a 69-NSGGDVVHLALMATF-83* FAESNSGGDVVHLALMA DR4 

NS2b 1-GWPATEVMTA-10* GWPATEVMTAVGLMFAIV DR4 

108-SAYTPWAILPS-118* ISAYTPWAILPSVVGFWI A24, B7 & DR4 

NS3 1-GGVLWDTPSP-10 GGVLWDTPSPKEYKK B7 & DR4 

52-TTKGAALMSG-61 WHTTKGAALMSGEGRL DR3 

074-EDRLCYGGPW-083 GSVKEDRLCYGGPWKLQH A2 

145-DVIGLYGNGVIMP-157 PIVDKNGDVIGLYGNGVI A2 

 VIGLYGNGVIMPNGSYI A2 
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161-YISAIVQGERM-171* YISAIVQGERMDEPIPA A2 & DR2 

191-VLDLHPGAGKTR-202 MLRKKQITVLDLHPGAGK A2 & DR2 

 VLDLHPGAGKTRRILPQI DR2 

235-ALRGLPIRY-243 VAAEMAEALRGLPIRY DR4 

 EALRGLPIRYQTSAVPR DR4 

256-EIVDVMCHATLTHRLMSPHRVPNYNLF-282* PREHNGNEIVDVMCHATL A2, DR2 & DR4 

 IVDVMCHATLTHRLMSPH DR2 

 TLTHRLMSPHRVPNYNLF A2 & DR2 

310-AAAIFMTATPPG-321 KVELGEAAAIFMTATPPG A2 

337-QTEIPDRAWN-346 LQTEIPDRAWNSGYEWI A2 

422-RVIDSRKSVKP-432 EMGANFKASRVIDSRKSV A2 

470-GDEYCYGGHTNEDDSN-485 CYGGHTNEDDSNFAHW A2 & DR3 

487-AHWTEARIM-495 AHWTEARIMLDNINM A2 & DR3 

526-LRGEERKNFLE-536 EYRLRGEERKNFLELLR A2 & DR2 

563-WCFDGPRTNT-572* DRRWCFDGPRTNTIL DR3 

NS4a 19-KTWEALDTMYVVATA-33* HFMGKTWEALDTMYVVA DR2 & DR4 

115-MIVLIPEPEKQRSQTDNQLA-134* VLIPEPEKQRSQTDNQLA DR4 
NS4b 39-PATAWSLYA-47 GEFLLDLRPATAWSLYAV DR2 

 PATAWSLYAVTTAVLTPL DR2 & DR3 

68-TSLTSINVQASAL-80* DYINTSLTSINVQASALF DR3 & DR4 

208-VTLWENGASSVWNATTAIGLCH-229* LITAAAVTLWENGASSVW DR3 & DR4 
NS5 107-GPGHEEPQLVQSYGWNIVTMKS-128* LVQSYGWNIVTMKSGVDV DR3 

152-SSAEVEEHRT-161 CDIGESSSSAEVEEHRTI B7 

 SAEVEEHRTIRVLEMV A2, B7 & DR2 
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208-RNPLSRNSTHEMYWVS-223* SRNSTHEMYWVSRASGNV DR2 

451-TCIYNMMGKREK-462 ECHTCIYNMMGKREKK A2 

472-GSRAIWFMWLGARFLEFEALGFLNEDHWL-500 AKGSRAIWFMWLGARFL A24 

 WFMWLGARFLEFEALGFL A24 

596-ISREDQRGSGQVVTYALNTFTNL-618* REDQRGSGQVVTYALNTF DR2 

 GQVVTYALNTFTNLAVQL DR2 & DR4 

620-VQLVRMMEGEGV-631* NTFTNLAVQLVRMMEGEGV DR4 

704-GWYDWQQVPFCSNHFTEL-721* GWYDWQQVPFCSNHFTEL DR4 

741-GRARISPGAGWNVRDTACLAKSYAQMW-767 DTACLAKSYAQMWLLLYF A24 

769-LLYFHRRDLRLMANAICSAVP-789* YAQMWLLLYFHRRDLRLM B7 & DR4 

792-WVPTGRTTWSIH-803 NWVPTGRTTWSIHAGGEW DR4 
a Pan-WNV sequences that are predicted, either by Multipred or TEPITOPE, to contain at least one HLA-DR supertype-restricted binding nonamer are indicated by an 

asterisk (*) 
b Epitope amino acids matching the pan-WNV sequences are underlined 
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6.3.8 Similarities and differences between PEs of WNV and DENV 
 

In contrast to WNV (average entropy: 0.23 to 0.51), the sequences of the combined 

serotypes of DENV are highly diverse (average inter-serotype entropy: 1.6 to 2.6), 

with only 44 pan-DENV sequences, representing 15% of the proteome length, that are 

present in 80% or more of the sequences of each serotype; unlike WNV (88 pan-

WNV sequences of 100% representation representing 34% of the proteome), only two 

of the 44 sequences were completely conserved in all the four serotypes (2007 

dataset). However, the conservation and variability of the individual DENV serotypes 

(average intra-serotype entropy: 0.2 to 1.0) is comparable to WNV. 

Despite the differences in the number, length and representation of the pan-

DENV and pan-WNV sequences, they share several common characteristics. Both 

pan-DENV and pan-WNV sequences have shown remarkable stability over the entire 

recorded history of their sequences. It is likely that these sequences have been under 

selection pressure to fulfill critical biological and/or structural properties (a number of 

them have been shown to be important for structure and function). In addition, 

majority of these sequences of both viruses shared extensive conservation with other 

flaviviruses (76% of pan-WNV sequences matched 68 flaviviruses, while 61% of pan-

DENV sequences matched 64), in particular those of DENV, despite the great 

variability of the virus. Consequently, the number of species specific sequences for 

both viruses was similar (17 pan-DENV and 21 pan-WNV sequences). Interestingly, a 

number of both pan-WNV and pan-DENV sequences displayed conservation 

extending to non-viruses, suggesting active recombination between phyla. In addition, 

many of the pan-DENV and pan-WNV sequences are immunologicall relevant. 

Overall, these results insinuate that the PEs of other flaviviruses are also likely to 

share similar characteristics. 
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6.4 Discussion 
 

In the 70 years following the discovery of WNV in Africa in 1937 (Smithburn et al., 

1940), there has been 100% conservation of 88 pan-WNV sequences in the reported 

data, corresponding collectively to 1169 aa or ~34% of the 3,430 aa total composition 

of the viral proteome. The remaining 66% of the proteome contained one or more 

amino acid variants within each nonamer segment across the reported WNV 

sequences. Most of the pan-WNV sequences were found in the non-structural 

proteins. Quantitatively, 40% (1058/2643 aa) of the amino acids of the non-structural 

proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5) comprised the pan-WNV 

sequences, compared to only 14% (111/787 aa) of the structural proteins (C, prM and 

E). This marked difference in the evolutionary conservation/variability of the viral 

proteins can be attributed to greater demands on the integrity of nonstructural proteins 

in their viral functional roles (Lindenbach and Rice, 2003), and possibly to the 

selective advantage of modified structural proteins in the adaptation to host immune 

responses. This evolutionary history of the conserved protein sequences extends to 

other members of the Flaviviridae family, with 67 of the 88 pan-WNV sequences 

shared among at least 68 other flaviviruses. Many of the identified critical biological 

and/or structural properties are associated with the conserved sequences; for example, 

the E dimerisation domain and fusion loop (Kanai et al., 2006; Mukhopadhyay et al., 

2003), NS3 peptidase S7, DEAD/H domain (Feito et al., 2008; Erbel et al., 2006), and 

NS5 proteins RdRp domain (Mackenzie et al., 2007; Malet et al., 2007). Hence, these 

conserved sequences are unlikely to significantly diverge in newly emerging WNV 

isolates in the future, and represent attractive targets for the development of 

diagnostics, specific anti-viral compounds and vaccine candidate targets. In short, 

they can be defined as multi-purpose immutable, functional and immunological tags 
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of WNV. 

It is also noteworthy that nine consecutive amino acids of five of the pan-

WNV sequences are also present in non-viral proteomes, the Aedes albopictus 

mosquito, Oryza sativa Japanese rice and several bacteria. This overlap of pan-WNV 

sequences with non-viral sequences is possibly coincidental, but is likely to be 

statistically significant as the probability of randomly matching a nonamer is almost 

negligible (1/(209)). WNV protein sequences found in the proteomes of bacteria are 

possibly due to integration of some unknown virus into the bacterial genome (Biswas 

et al., 2005; Gottesman and Weisberg, 2004). Similarly, the NS3 nonamer sequence 

fragment found in the Asian Tiger mosquito (Aedes albopictus), is possibly due to 

genetic recombination between phyla (Crochu et al., 2004). Unexpectedly, a nonamer 

of WNV NS4b protein was found in a single instance within a plant pathogenesis-

related protein from Japanese rice (Oryza sativa), which functions as plant defense 

system against pathogens (Freeman, 2003). 

There is evidence that many of the conserved sequences are immunologically 

relevant in humans. Numerous (44/88) contain at least nine amino acids overlapping 

with a total of 54 peptides that have been reported to be immunogenic in humans 

and/or HLA transgenic mice. In addition, putative T-cell epitopes were predicted by 

computational analysis for 12 major HLA class I supertypes and for class II DR 

supertype, with broad application to the immune responses of human population 

worldwide. Some of the putative T-cell epitopes were predicted to be promiscuous to 

multiple HLA supertypes as has been observed with several viruses (Khan et al., 

2008). These findings of the limited variability of WNV sequences relevant to cellular 

immunity point to the probable success in the development of a WNV vaccine as 

compared to the history of failure of candidate vaccines against the much more highly 
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variable Flavivirus, such as DENV (Khan et al., 2008). 

The results obtained herein enabled a comparative analysis of PEs between 

DENV and WNV by comparing and contrasting the number of identified PEs and 

their characteristics, such as i) future conservation potential (entropy analysis), ii) 

conservation breadth - number of other viruses sharing the exact sequence of the PE 

of the target pathogen (i.e. at least nine consecutive amino acids threshold used 

herein), iii) conservation depth - frequency or representation of the PE sequence of 

the target pathogen in all known sequences of the other viruses that share the 

sequence, iv) functional-structural relevance, v) altered peptide ligand potential by 

variants of the target pathogen or other viruses that share the PE and vi) 

immunogenicity potential. Such comparative analysis help i) quantify the level of 

conservation of the viruses being compared, and ii) identify features common or 

different to PEs of viruses of interest, which will contribute to better understanding of 

PEs across pathogens and may provide insights into better design of vaccine 

strategies. 

 

6.5 Chapter summary 
 

Background: The systematic bioinformatics approach described in Chapter 5 was 

applied to WNV, a close relative of DENV, to demonstrate the generic nature of the 

approach and perform a comparative analysis to DENV of sequences that cover 

antigenic diversity. The comparative analysis will help elucidate similarities and 

differences in the characteristics of PEs between pathogens of interest, which may 

provide insights into the design of better vaccine strategies. 

Results: The author describes a large-scale analysis of the entire WNV 

proteome, aimed at identifying and characterizing WNV PEs. This study, which used 
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2,746 WNV protein sequences collected from the NCBI Entrez Protein database, 

focused on analysis of peptides of nine amino acids or more, which are 

immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the 

diversity of WNV sequences, revealed the presence of numerous evolutionarily stable 

nonamer positions across the proteome (entropy value of  1). The representation 

(frequency) of nonamers variant to the predominant peptide at these stable positions 

was, generally, low ( 10% of the WNV sequences analyzed). Eighty-eight fragments 

of length 9-29 amino acids, representing ~34% of the WNV polyprotein length, were 

identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of 

the 88 completely conserved sequences, 67 are also present in other flaviviruses, and 

several have been associated with the functional and structural properties of viral 

proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved 

sequences are potentially immunogenic, while 44 contain experimentally confirmed 

human T-cell epitopes. The results obtained herein enabled a comparative analysis of 

PEs between DENV and WNV. In contrast to WNV, the sequences of the combined 

serotypes of DENV are highly diverse, with only 44 pan-DENV sequences; however, 

the conservation and variability of the individual DENV serotypes is comparable to 

WNV. Further, despite the differences in the number, length and representation of the 

DENV and WNV PEs, they share several common characteristics. 

Conclusions: This study identified a comprehensive catalogue of completely 

conserved WNV sequences, many of which are shared by other flaviviruses, and a 

majority is potential epitope. These sequences constitute as potential WNV candidate 

PEs. The complete conservation of these immunologically relevant sequences through 

the entire recorded WNV history suggests they will be valuable as components of 

peptide-specific vaccines or other therapeutic applications, for sequence-specific 
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diagnosis of a wide-range of Flavivirus infections, and for studies of homologous 

sequences among other flaviviruses. The identification and characterization of WNV 

PEs enabled a comparative analysis of PEs between DENV and WNV, which helped 

quantify the level of conservation of the viruses being compared and identify common 

characteristics of the PEs between the viruses. 
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Chapter 7 Conservation Patterns of PEs across Dengue 
Virus and Other Members of the Genus Flavivirus
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7.1 Introduction 
 

The family Flaviviridae consists of evolutionary related flaviviruses that have 

common ancestral origin, genomic architecture and their proteins have similar 

functional/structural role (Solomon and Mallewa, 2001; Henchal and Putnak, 1990). 

Our antigenic diversity analysis of both DENV and WNV (described in Chapter 4 and 

6) revealed extensive conservation of the majority of the PEs of each virus across 

numerous flaviviruses. This similarity could possibly have positive (cross-protection) 

or negative (altered ligand effect), or both implications to vaccine design, in part 

depending on the two dimensions of conservation – the breadth and depth. We define 

breadth as the number of viruses that share the PE sequence of interest, while depth is 

the level of representation of the PE in each of the viruses shared. For example, the 

PE 141DTLLCDIGESS151 (pan-DENV sequence of the NS5 protein) was observed to 

be common across 13 different flaviviruses (breadth), with a depth ranging from low 

(< 1%), high (84%) to complete representation (100%) in the reported sequences of 

these viruses (Table 4.7). PEs with extensive breadth and high depth are good 

candidates for pan-Flavivirus peptide-based vaccine design. 

However, because the analysis of depth and breadth of PEs only considered 

the flaviviruses that shared the specific PE, it does not provide a holistic view of the 

conservation pattern of a given PE to evolutionary related flaviviruses that share or do 

not share this PE. Complementing the analysis of depth and breadth, the evolutionary 

relationship of PEs across flaviviruses can be studied to better understand their 

conservation pattern and assess the possibility of a pan-Flavivirus vaccine. 

In this study, the author utilized evolutionary distance to investigate 

conservation pattern of PEs across flaviviruses. In addition, the stability of the 

relationship observed at the PE level was benchmarked against at the proteome and 
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protein level. Phylogenetic approach is well-suited for this analysis as it provides a 

holistic view of the relationship amongst the sequences of the species analysed, 

without restricting to the perspective of a single species sequence, such as to DENV 

and WNV in the analysis of breadth and depth in the earlier chapters (Chapters 4 and 

6). This analysis helps reveal the conservation pattern between PEs of viruses of the 

same genus in terms of evolutionary distance and may provide new insights into 

vaccine design. Flaviviruses are a good model for this comparative analysis because 

they have similar genomic architecture and code for the same 10 proteins (Henchal 

and Putnak, 1990).  

 

7.2 Materials and methods 
 

7.2.1 Data 
 

Evolutionary analysis of DENV and 28 other flaviviruses was performed at the 

proteome, protein and PE levels using phylogenetic approach. At the time of analysis 

(November 2008), complete proteome (polyprotein) sequences of only 29 flaviviruses 

(including DENV) were available at the NCBI Entrez Protein database, which 

included: TBEV, Tick-borne encephalitis virus; WNV, West Nile virus; DENV, 

dengue virus (comprising DENV1, 2, 3, and 4); OMSK, Omsk hemorrhagic fever 

virus; KFDV, Kyasanur forest disease virus; KRV, Kamiti River virus; JEV, Japanese 

encephalitis virus; LV, Langat virus; CF, Culex flavivirus; TBV, Tamana bat virus; 

UV, Usutu virus; PV, Powassan virus; AP, Apoi virus; RBV, Rio Bravo virus; MVE, 

Murray Valley encephalitis virus; LIV, Louping ill virus; CFAV, Cell fusing agent 

virus; EV, Entebbe bat virus; RFV, Royal Farm virus; LEV, St. Louis encephalitis 

virus; MMLV, Montana myotis leukoencephalitis virus; MV, Modoc virus; YFV, 
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Yellow Fever virus; KBV, Kokobera virus; IH, Ilheus virus; IV, Iguape virus; BV, 

Bussuquara virus; SV, Sepik virus; YV, Yokose virus. These flaviviruses were 

considered to be representative of the genus flavivirus as they represented 11 out of 

the 14 Flavivirus taxonomy group classification available at the NCBI (Table 7.1).  

 

Table 7.1: NCBI taxonomy group classification of selected flaviviruses a.  
 

Flavivirus group Flavivirus group member virus species 

Aroa virus Iguape virus, Bussuquara virus 

Dengue virus group Dengue virus 

Japanese encephalitis virus group 
West Nile virus, Japanese encephalitis virus, Usutu virus, 
Murray Valley encephalitis, St. Louis encephalitis virus 

Kokobera virus group Kokobera virus 

Modoc virus group Modoc virus 

Mosquito-borne viruses Ilheus virus, Sepik virus 

Ntaya virus group Yokose virus 

Rio Bravo virus group Apoi virus, Rio Bravo virus, Entebbe bat virus 

Seaborne tick-borne virus group - 

Spondweni virus group - 

Tick-borne encephalitis virus group 
Tick-borne encephalitis virus, Omsk hemorrhagic fever 
virus, Kyasanur forest disease virus, Langat virus, 
Powassan virus, Louping ill virus, Royal Farm virus 

Yaounde virus - 

Yellow fever virus group Yellow Fever virus 

Unclassified Flavivirus 
Kamiti River virus, Culex flavivirus, Tamana bat virus, 
Cell fusing agent virus, Montana myotis leukoencephalitis 

a Data obtained from www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=11051. 
 

For the analysis at the protein level, all the proteins that contained the pan-

DENV sequences were studied (structural: E; non-structural: NS1, NS3, NS4a, NS4b 

and NS5) to ensure results representative of the different proteins in the proteome. For 

the analysis at the PE level, peptides from the respective protein of the flaviviruses 

that corresponded to the pan-DENV sequences were extracted for the study. 
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7.2.2 Analysis 
 

Phylogenetic trees were generated for the polyprotein proteomes, proteins and the PEs 

using the PROTDIST, followed by the NEIGHBOR program of PHYLIP 3.6a2 

(Felsenstein, 1989). The parameters used for the two programs are as follows: 

PROTDIST – “JTT” for “categories model”, “No” for “gamma distribution of rates 

among positions”, “Yes” for “one category of substitution rates”, “No” for “use 

weights for positions”, and “No” for “analyze multiple data sets” option; NEIGHBOR 

– “neighbor-joining” for “neighbor-joining or UPGMA tree”, “Yes” for “outgroup 

root”, “No” for “lower-triangular data matrix”, “No” for upper-triangular matrix, 

“No” for “subreplicates”, “No” for “randomize input order of species”, and “No” for 

“analyze multiple data sets” option). Hepatitis C virus genotype 6 proteome sequence 

(Accession no. YP_001469634.1) was used as the outgroup and rooted tree diagrams 

were generated with the TREEVIEW program (Page, 2002). The pan-DENV 

sequences 296AARGYISTRV305 (NS3) and 35PASAWTLYAVATT47 (NS4b) were 

excluded from the analysis because of technical difficulty in generating their trees 

using the alignment data extracted from the flaviviruses. In addition, the pan-DENV 

sequence 383VIQLSRKTFD392 (NS3) was ignored because the corresponding sequence 

in the DENV1 strain was a rare variant. 

 
 
7.3 Results 
 

The family Flaviviridae consists of closely related flaviviruses. Based on the 

phylogenetic tree of the proteome sequences (Figure 7.1) of the selected 29 

flaviviruses (including DENV), they grouped into eight clusters. The clustering 

patterns at the proteome and the protein level were generally consistent, particularly 
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evident in the E protein (Figure 7.2 A). However, minor exceptions were revealed by 

the analysis at the protein level (Figure 7.2 and Appendix 9). For example, the cluster 

at the proteome level (Figure 7.1) containing TBV, CF, KRV, and CFAV was 

separated into independent clusters i) CF, KRV and CFAV, and ii) TBV in the NS3 

protein (Figure 7.2 B). 

At the PE level (Figure 7.3 and Appendix 9), the clustering patterns of the 

flaviviruses were significantly different from the patterns observed at the proteome 

and protein levels. For example, the virus KBV sequence at the proteome level 

(Figure 7.1) formed a cluster by itself, which was close to the DENV cluster, while at 

the protein level (Figure 7.2) it was in the same cluster as DENV, however, at the PE 

level (pan-DENV sequence 97VDRGWGNGCGLFGKG111 in the E protein; Figure 

7.3) it not only grouped but shared the same exact sequence with viruses that were 

distant to it at the proteome and protein level (such as AP, EV, MMLV, RBV, SV, 

YFV, and YV); in contrast, at this PE level, DENV was distant to the KBV group. 

Further, the relationship observed amongst the viruses at the PE level varied from one 

PE to another; for example, the grouping of KBV for the PE 252VLGSQEGAMH261 in 

the E protein was different from that of 97VDRGWGNGCGLFGKG111 described 

earlier.  

In addition, as observed in Chapter 4 and 6 for DENV and WNV, respectively, 

generally, a number of the viruses showed zero antigenic distance (shared identical 

sequence) at the PE level; however, the grouping and the number of viruses exhibiting 

such zero antigenic distance varied from PE to PE. For example, the identity and the 

number of viruses exhibiting zero antigenic diversity for PE 

97VDRGWGNGCGLFGKG111 in the E protein (group 1: KFDV, LIV, LV, OMSK, 

RBV and TBEV; group 2: AP, EV, MMLV, RBV, SV, YFV, YV, and KBV; group 3: 
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JEV, MVE, and UV; group 4: DENV1, DENV2, DENV3, DENV4, IH, LEV, and 

WNV; group 5: CF and CFAV) varied significantly from the PE 

252VLGSQEGAMH261 of the same protein (group 1: DENV1, DENV2, DENV3, and 

DENV4; group 2: BV, LEV, MVE, UV, WNV, and IV; group 3: LIV, LV, OMSK, 

and TBEV).  

In summary, the clustering patterns at the proteome and the protein level were 

generally consistent, with minor exceptions for some of the proteins. At the PE level, 

the clustering patterns of the flaviviruses were significantly different from the patterns 

observed at the proteome and protein level. Further, the patterns varied from one PE 

to another. In addition, generally for each PE, a number of the viruses showed zero 

antigenic distance (shared identical sequence); however, the grouping and the number 

of viruses exhibiting such zero antigenic distance also varied from PE to PE. The 

main differences between the proteome, protein, and PE groupings are shown in 

Figure 7.4. 
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Figure 7.1: Phylogenetic relationship of polyprotein proteomes of selected 29 flaviviruses. The grouping of the viruses into phylogenetic 
clusters is indicated by the dotted red lines. 
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A) Envelope (E) 
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B) NS3 
 

 
 
Figure 7.2: Phylogenetic relationship of A) the highly diverse envelope and B) the highly conserved NS3 protein of selected 29 
flaviviruses. The grouping of the viruses into phylogenetic clusters is indicated by the dotted red lines. See Appendix 9 for the results of 
the other proteins analysed. 
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E 97VDRGWGNGCGLFGKG111 E 252VLGSQEGAMH261 

 
NS3 46FHTMWHVTRG55 NS3 148GLYGNGVVT156 
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NS3 189LTIMDLHPG197 

 
 

NS3 256EIVDLMCHATFT267 

 

NS3 284MDEAHFTDP292 NS3 313IFMTATPPG321 
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NS3 357GKTVWFVPSIK367 NS3 406VVTTDISEMGANF418 

 
NS3 491EAKMLLDNI499 NS3 537LMRRGDLPVWL547 

 
Figure 7.3: Phylogenetic relationship of PEs across selected flaviviruses. Only PEs from the envelope (E) and NS3 proteins are shown. 
See Appendix 9 for the results of the PEs from other proteins. 
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A) Proteome D) PE (E 252VLGSQEGAMH261) 

B) Envelope (E) protein F) PE (NS3 406VVTTDISEMGANF418) 
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C) NS3 protein E) PE (NS3 537LMRRGDLPVWL547) 

 
 
Figure 7.4: Differences in evolutionary relationships across the proteome, protein, and PE groupings. 
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7.4 Discussion 
 

The phylogenetic trees at the proteome and protein levels indicated that the 

evolutionary patterns across flaviviruses are generally consistent. However, the 

analyses at the PE levels revealed that this is not true for the PE sites. The 

phylogenetic analysis of PEs across different flaviviruses revealed that different 

evolutionary pressures are likely to be acting upon the viruses (as shown by clustering 

of flaviviruses into multiple phylogenetic groups for the same PE site) and this 

pressure appears to be different for PEs from different regions of the protein (as 

illustrated by variation of the clustering patterns between PE sites). This suggests that 

for flaviviruses, the pattern of evolution of PEs between the viruses is generally 

different, despite sharing a common ancestral origin, genomic architecture and 

functional/structural role. This is probably in response to the adaptation or fitness of 

each virus to the different vector-host interaction environment. 

The results emphasize the great complexity of conservation patterns of PEs in 

flaviviruses. Generally proteomes and proteins share similar overall properties. 

However, specific patterns of peptide conservation are not shared to the same extent 

and the patterns of similarity vary from peptide to peptide. An implication of this to 

peptide-based vaccine design is that pan-Flavivirus vaccine is unlikely. This is mainly 

because for a given PE sequence, viruses that are not part of the zero antigenic 

distance group (i.e. do not share the exact same PE sequence) but are closely related 

by a short antigenic distance, represent potential contributors of altered peptide 

ligands, upon co-infection, or secondary infection following vaccination or primary 

infection of the virus of interest. Further, PEs that exhibit zero antigenic distance 

across majority of the flaviviruses are rare, and those that do show extensive virus 

coverage (breadth) generally do not have the required depth (high representation of 
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the PE in each of the viruses shared). This reduces the number of PEs with good 

breadth and depth for experimental validation; this can be too small a starting number 

to guarantee success in the subsequent selections steps of vaccine design. It can be 

argued that a combination of PEs with both high breadth and depth can be utilized to 

cover the antigenic diversity of all the flaviviruses, however, because the individual 

PEs will still have viruses with short antigenic distance, the potential for altered 

ligand effect only multiplies. This could be further compounded by the inconsistent 

evolutionary pattern between PEs, suggesting unpredictable dynamics of evolution of 

PE sequences in future strains of the flaviviruses. All these suggest development of 

vaccines specific for each Flavivirus species and point to the direction of exploring 

species-specific PE sequences as peptide-based vaccine targets. Our pipeline (Chapter 

5) is ideal for the identification and characterization of such targets. 

 

7.5 Chapter summary 
 

Background: The family Flaviviridae consists of evolutionary related flaviviruses, 

including DENV and WNV, with common ancestral origin. Our antigenic diversity 

analysis of both DENV and WNV revealed extensive conservation of the majority of 

the PEs of each virus across numerous members of the genus Flavivirus. However, 

because this analysis of PEs only considered the flaviviruses that shared the specific 

PE, it does not provide a holistic view of the conservation pattern of a given PE to 

evolutionary related flaviviruses that share or do not share the PE. Complementing 

the analysis of depth and breadth, the evolutionary relationship of PEs across 

flaviviruses can be studied to better understand their conservation pattern and assess 

the possibility of a pan-Flavivirus vaccine. In this study, the author utilized 

evolutionary distance to investigate conservation pattern of PEs across flaviviruses. In 
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addition, this was benchmarked against at the proteome and protein level to assess for 

the stability of the relationship observed at the PE level. 

Results: Evolutionary analysis of DENV and 28 other flaviviruses was 

performed at the proteome, protein and PE levels using phylogenetic approach. 

Flaviviruses are ideal for this comparative analysis because they have similar genomic 

architecture and code for the same 10 proteins. Based on the phylogenetic tree of the 

proteome sequences of the selected 29 flaviviruses (including DENV), they grouped 

into eight clusters. However, analysis at the protein level revealed that there were 

differences in the clustering pattern. Nevertheless, the clustering pattern at the 

proteome and the protein level were generally consistent. At the PE level, the 

clustering patterns of the flaviviruses were significantly different from those observed 

at the proteome and protein levels. The flaviviruses clustered into multiple 

phylogenetic groups for the same PE region and the patterns varied between the PE 

sites. This suggests that for flaviviruses, the pattern of evolution of PEs between the 

viruses is generally different, despite sharing a common ancestral origin, genomic 

architecture and functional/structural role. This is probably in response to the 

adaptation or fitness of each virus to the different vector-host interaction environment. 

Conclusions: The results emphasize the great complexity of conservation 

patterns of PEs in flaviviruses. Generally proteomes and proteins share similar overall 

properties. However, specific patterns of peptide conservation are not shared to the 

same extent and the patterns of similarity vary from peptide to peptide. An 

implication of this to peptide-based vaccine design is that pan-Flavivirus vaccine is 

unlikely and suggests development of vaccines specific for each Flavivirus species, 

preferentially selecting the species-specific PE sequences. Our pipeline is ideal for the 

identification and characterization of such targets. 
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Chapter 8 General Discussions, Conclusions and Future 
Work 
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8.1 Antigenic diversity and implications for vaccine design 
 

Reverse vaccinology, a bottom-up genomic approach, has been successfully applied 

to the development of vaccines against pathogens that were previously not suited to 

such development (Vernikos, 2008; Rappuoli and Covacci, 2003; Rappuoli, 2000). 

The pre-requisite for this approach is the sequence data of the target pathogen, which 

acts as input to various bioinformatics algorithms for prediction of putative antigens 

that are likely to be successful vaccine targets. These candidates can then be validated 

by a small number of key experiments in the lab. The approach has been successfully 

applied to the development of universal vaccines against group B Streptococcus 

(Maione et al., 2005) and vaccine candidates against MenB (Pizza et al., 2000), 

among others (Rappuoli and Covacci, 2003). Reverse vaccinology is a promising 

method for the high-throughput discovery of candidate vaccine targets that have the 

potential to mirror the dynamics and antigenic diversity of the target pathogen 

population, which includes the diversity of the interacting partner, the immune 

system. However, a big challenge to this end is the need to understand how vaccine 

developers can cover antigenic diversity, and develop a systematic approach to 

rationally screen pathogen data to select candidate vaccine targets that cover the 

diversity. 

This thesis provides important insights into methods for covering antigenic 

diversity and is a significant contribution to the field of reverse vaccinology as it 

provides a pipeline to systematically screen and analyse pathogen data for peptides 

that cover antigenic diversity (PEs) prior to experimental validation. The pipeline 

helps efficiently deal with the astronomical combinatorial diversity possible between 

the numerous pathogen sequences and the highly polymorphic HLA binding partners 

of the immune system. 
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In this thesis, to better our understanding of antigenic diversity and explore 

ways to cover this diversity through antigenic peptides, the author utilized a 

systematic bioinformatics approach to study the relationship between genetic and 

antigenic diversity and examined the effect of sequence determinants, such as length 

and number of antigens, to antigenic diversity. Based on the insights gained, the 

author defined the criteria for peptides that cover antigenic diversity (PE). A large-

scale systematic analysis was then performed to identify and characterize PEs from 

the large DENV sequences data available in public databases (>12,000). The 

methodology employed for the identification and characterization of PEs in DENV 

was then formulated as a generic systematic bioinformatics pipeline for similar 

analysis of other viruses. The pipeline was applied to WNV (and a number of other 

viruses) to demonstrate the generic nature and usefulness of the pipeline to 

flaviviruses and the results of WNV were used to perform a comparative analysis of 

its PEs to DENV. Further, conservation pattern of sequences across 28 flaviviruses 

corresponding to the DENV PEs were analysed. This was done to assess the stability 

of the conservation of the PEs across the flaviviruses, which share a common 

ancestral origin, genomic architecture and functional/structural role (Solomon and 

Mallewa, 2001; Henchal and Putnak, 1990). 

Comprehensive DENV sequence data was collected, filtered of errors, and 

grouped before any analysis was performed. A computational method was developed 

for analysis of antigenic diversity of T-cell epitopes in DENV. The several advantages 

of the method include i) simple metric utilized ii) applicable for analysis of large 

number of sequences, either complete or partial and iii) most importantly, it does not 

require multiple sequence alignment of the sequence data, which can be difficult to 

achieve without misalignments for highly variable sequences. Through the application 
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of the method to DENV sequence data, the author demonstrated that complete 

coverage of antigenic diversity can be achieved by focusing on short regions of 

proteins. Covering the complete antigenic diversity in the context of all the possible 

different HLA molecules in the human population requires a large number of full-

length protein sequences, which is not practical for the purpose of vaccine 

formulation using the traditional whole immunogen or the subunit vaccine strategy. 

Therefore, for us to focus on short conserved peptides and still cover the HLA 

polymorphism, we have to address the issue in a divide and conquer approach in the 

context of peptide-based vaccine strategy by identifying conserved peptides that are 

promiscuous to multiple HLA alleles (HLA supertype restricted epitopes). According 

to Sette et al., (1999), such targets for six or more of the major HLA supertypes are 

sufficient to capture the HLA polymorphism of nearly the whole human population. 

To the best knowledge of the author, this thesis provides the first large-scale 

and complete identification and characterization of PEs of the four DENV serotype 

sequences (the pan-DENV sequences). Experimental validation in HLA transgenic 

mice and correspondence to reported T-cell epitopes immunogenic in humans provide 

evidence that the PEs are immunologically relevant and gives an indication of the 

reliability of the predictions for presence of promiscuous T-cell epitopes in the PEs. 

The author proposes that PEs present in viral genomes are immutable 

functional tags, unlikely to change in the future, as indicated by the i) low peptide 

entropy they exhibited ii) their relevance to critical structure and function iii) 

extensive conservation with other genus members, such as other flaviviruses. This 

evolutionary stability of PEs over their entire known history makes them highly 

attractive candidates for therapeutic, prophylactic and diagnostic purposes, potentially 
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effective against a broad spectrum of the pathogen variants, including both existing 

and yet to emerge. 

One of the features of DENV is the extensive protein sequence variability 

between the serotypes, and differences between similar amino acid sequences of T-

cell epitopes recognized by the same HLA molecule in the event of multiple 

Flavivirus infection, or between a vaccine and subsequent pathogen challenge, are 

hypothesized to have an important role in the development of pathological immunity 

(Rothman, 2004). In this context, the PEs exhibiting none to almost negligible variant 

representation (0 to 5%) are likely to subvert pathological immunity. This negligible 

variant representation means that the probability of the immune system of an 

individual meeting a variant sequence of the four serotypes is very low, and, thus, 

minimizing the probability of altered peptide ligand effect potentially resulting in 

deleterious immune response. This feature of PEs provides another reason for their 

consideration in vaccine design. However, potential variants could also originate from 

flaviviruses that share the PEs, following co-infection or vaccination and secondary 

infection by these viruses homologous to DENV. It is, therefore, essential to assess 

the risks of occurrence of very similar sequences in other pathogens for the purpose of 

vaccine formulation. The comparative analysis of the distribution of PEs in nature 

serves as a starting point in this direction. Selecting PEs that are pathogen specific is 

one way of reducing the altered peptide ligand effect potential from other viruses. 

The global bioinformatics and experimental approaches described in this 

thesis for DENV proved generic and useful to other flaviviruses as it was successfully 

applied. Thus, the generic approach can be used as a pipeline for similar large-scale 

analysis of other viruses. This is a significant contribution to the field of reverse 

vaccinology as it enables further filtering and analyses of ORFs identified in silico 
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from pathogen genomic data to select for PEs prior to experimental validation, thus, 

greatly reducing the efforts and cost of experimentation, while providing for 

systematic screening. 

Application of the pipeline to other viruses enables comparative analysis of 

the characteristics of PEs between viruses. For example, it allowed comparison of the 

PEs of different viruses in the multi-dimensional context of i) number of PEs, ii) 

future conservation potential (entropy analysis), iii) conservation breadth - number of 

other viruses sharing the exact sequence of the PE (i.e. at least nine consecutive 

amino acids threshold used herein), iv) conservation depth - frequency or 

representation of the shared PE sequence in all known sequences of the corresponding 

virus, v) functional-structural relevance, vi) altered ligand potential by variants of the 

virus of interest or other viruses that share the PE, and vii) immunogenicity potential. 

Such comparative analysis will contribute to better understanding of PEs across 

pathogens and may provide insights into better design of vaccine strategies. 

The conservation pattern analysis of PEs across different flaviviruses showed 

that the pattern of evolution of PEs between the viruses is complex, despite them 

sharing a common ancestral origin, genomic architecture and functional/structural 

role. This is probably in response to the adaptation of the virus to the different vector-

host interaction environment. Implications of this to T-cell epitope peptide-based 

vaccine design include i) that pan-Flavivirus vaccine is not likely feasible, and ii) that 

for a particular PE, members of the same cluster that are not identical to each other 

but closely related (not sharing zero antigenic distance), represent potential 

contributors of altered peptide ligands. Our results indicate that vaccines need to be 

developed specific for each Flavivirus species, and that species-specific PEs are 
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attractive targets for research in this direction, which can be identified by application 

of our pipeline. 

 

8.2 Strategies for dengue vaccine development 
 

Dengue infection is a major worldwide medical problem, potentially affecting more 

than three billion people in more than 100 countries. No vaccine is currently licensed 

for human use. A vaccine is, therefore, urgently needed to lessen the global dengue 

disease burden. A successful dengue vaccine must be capable of simultaneously 

inducing a high level of long-lasting immunity to all four serotypes, to reduce the risk 

of potentially fatal DHF/DSS. Current dengue vaccine research focuses on several 

strategies (Hatch et al., 2008; Whitehead et al., 2007), such as live-attenuated or 

inactivated viruses, infectious clone-derived vaccines, immunogens vectored by 

various recombinant systems, subunit immunogens and DNA vaccine. The major 

focus is on the use of live-attenuated and infectious clone-derived vaccines. The other 

strategies, such as DNA and subunit vaccines, that focus on key parts of the pathogen 

are in early stages of development. Overall, the results to date appear inconclusive yet 

encouraging (Hatch et al., 2008; Wilder-Smith and Deen, 2008; Whitehead et al., 

2007). 

Developing a vaccine against DENV is a challenging task because of the 

antigenic diversity of the virus and the diversity of the immune system within the 

human host population. Understanding variation, both in the immune system and 

DENV, is necessary for dengue vaccine formulation. Current dengue vaccine 

strategies aim to cover the diversity between the four serotypes through simultaneous 

immunization with single strains of the four serotypes. However, utilizing a single 

strain of the four serotypes does not guarantee coverage of the diversity within and 



182 
 

between the serotypes, in particular when it is not known which of the epitopes in 

each of the strains will be targeted and recognized by the immune system. Recent 

studies even caution against the dogma that immunity to one homologous DENV 

serotype is protective against all subtype variants of the serotype (Zulueta et al., 2006; 

Blaney et al., 2005; Endy et al., 2004). Studies with antibodies against DENV-3 

showed that they do not always neutralize all known subtype variants of the serotype; 

similar results are expected for T-cell epitopes. Currently, methods for rational 

selection of dengue strains and antigens, which is crucial for successful vaccination 

(Boggiano et al., 2005; Duffy et al., 2005; Gaschen et al., 2002), are not well 

established (Innis and Eckels, 2003). Further, the candidate vaccine antigens are not 

selected on the basis of possessing targets of immune responses that are recognized in 

the context of HLA supertypes. Thus, the large diversity of the human immune 

system at the population level may limit the effectiveness of the vaccines developed 

to certain proportion of the population only. 

To tackle these issues, based on the results observed in this thesis, the author 

proposes peptide- or subunit-based vaccine approach as an ideal strategy to cover the 

diversity of both the virus and the human immune system. This involves focusing on 

short segments of the virus that are conserved, virus-specific and contain promiscuous 

T-cell epitopes (in the context of HLA supertypes), in addition to utilizing conserved 

neutralizing antibody epitopes, instead of using the “natural” form of the pathogen or 

selecting protein components of the pathogen. DNA vaccines using multi-epitope 

approach (Sette and Fikes, 2003) produced by recombinant technology are suitable for 

this purpose. 

A commonly cited concern associated with the use of conserved epitopes is 

that they are generally reported to be poorly immunogenic (Wilson et al., 2003; Parra 
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et al., 2000) and non immunodominant (Delves et al., 1997). Immunogenicity can be 

improved by using adjuvants (Petrovsky and Aguilar, 2004) and high-affinity HLA-

binding peptides, which have proven to be highly predictive of immunogenicity in the 

case of several viral pathogens (Altfeld et al., 2001; Alexander et al., 1997; Doolan et 

al., 1997; Sette et al., 1994). To address the immunodominance issue, it is important 

that epitope selection is not restricted to completely conserved sequences; instead, 

selection should include highly conserved sequences, such as those that exhibiting ≥ 

80% representation in the known data, in order to include epitopes that are slightly 

variable, since immunodominant epitopes are generally localized in the variable 

regions of a virus. In addition, a selection bias toward highly conserved epitopes for 

peptide-based vaccines might offset the lack of immunodominance of conserved 

epitopes because it is thought that the absence of variable immunodominant epitopes 

may enhance the immunodominance of those that are conserved (Delves et al., 1997). 

Antigenic drift due to strong immunologic pressure is also a concern with the peptide-

based vaccine approach (Thomas et al., 2006). A single amino acid change, even 

involving a conservative substitutions, can abolish recognition by T-cells (Sloan-

Lancaster and Allen, 1996). To mitigate this effect, immunization strategies should be 

designed to induce cellular immune responses against multiple conserved epitopes of 

the virus. 

Vaccine development is a complex process that includes data analysis, design 

of vaccine components, safety and efficacy determination and clinical trials. 

However, understanding the available data is an important first step that has proved to 

be increasingly critical to the success of subsequent steps. This work on dengue 

informatics represents an effort to complete the first step of virus sequence analysis in 

a systematic manner. 
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8.3 Vaccine informatics and future vaccines 
 

Vaccines have proved to be among most powerful medical interventions. However, 

traditional vaccination strategies have clearly showed their limits for the development 

of effective vaccines against a number of disease agents. Recent advances in 

immunology and in genomics of disease agents now allow for rational design of 

genetically defined vaccines. These advances have led to the generation of large 

amount of data related to the immune system and of disease-agents. Nevertheless, 

currently available data represents only a tiny fraction of the natural library and data 

continues to accumulate at an exponential rate (Brusic and Petrovsky, 2003). The 

exponential growth of vaccine related data has created a need for better data 

management and analysis. Vaccine informatics provides a means for systematic study 

of large number of vaccine related data, enables selection of key experiments and 

facilitates experimental design. It is a practical science applied to the quest for 

designing new vaccines with the focus on bioinformatics-driven acquisition, 

manipulation and analysis of data related to the immune system and causative agents 

of diseases, such as viruses, bacteria, parasites and tumor, among others (Figure 8.1). 
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Figure 8.1: Vaccine informatics research. Large amount of data from genomics, 
proteomics and functional studies of the immune system and disease agents are 
stored in various data sources. Bioinformatics approaches are used to support 
collection, management, and systematic analysis of the data (including 
simulation of processes, generation of hypothesis and experimental design to test 
the hypothesis). The use of bioinformatics approaches in combination with 
experimental validation accelerates the discovery and facilitates better 
understanding of the components of the immunome. This may lead to new 
insights that may be utilized to enrich the data sources, better understand the 
immunome, aid in identification of vaccine targets, or clinical applications. 
Computational supports are used to pre-screen vaccine targets from the 
immunome and facilitate subsequent experimental design to test the targets. The 
results from the experiments performed may be feedback to the computational 
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models to further refine them. Candidate targets identified proceed into clinical 
trials and may eventually be used for vaccine production. Vaccine development, 
being a combinatorial problem, will benefit significantly from computational 
support. 

 

Vaccine informatics, still in its infancy, already has the potential to 

revolutionize the process of vaccine design for the development of new, safe, and 

effective vaccines. The use of bioinformatics approaches in combination with 

experimental validation enable large number of laboratory experiments to be avoided, 

thus, accelerating vaccine research and diminishing discovery cost. Currently, major 

bioinformatics developments in vaccine research include support in managing and 

analysing large quantities of data, modeling of the immune system, analysing the 

diversity of disease-agents and complexity of the human immune system, and high-

throughput screening of candidate vaccine targets. Future developments include 

advanced applications in addressing complex immunome-related problems, both at 

cellular and system level, and capitalizing on accumulated data, information and 

knowledge in vast repositories. Efforts are on the way to build virtual immune system 

by progressively adding together models representing each known facet of antigen 

presentation (Larsen et al., 2005; Petrovsky et al., 2003). 

ImmunoGrid, an effort to simulate the processes of the mammalian immune 

system at the molecular, cellular and tissue levels using Grid technologies, is a step 

forward towards the development of a virtual immune system (www.immunogrid.org) 

(Pappalardo et al., 2009). Doing so would be trying to match the complexity of the 

real immune system and this will greatly assist our understanding of not only normal 

functioning of the immune system but also will help elucidate how immunization 

affects immune function. Better understanding of the components of the human 

immunome offers a great promise for development of effective vaccines. Never 
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before the quest for deciphering the fine details of initiation, regulation and 

modulation of the immune responses has been based more on accumulated knowledge 

and less on hit-and-miss approach of yesteryears. 

Future vaccines will be minimalistic in approach by focusing on key parts of 

the pathogen, such as regions containing epitopes that cover antigenic diversity and, 

thus, will target immunologically similar subgroups of the human population and 

multiple pathogen variants. This is evident from the trend observed in evolution of 

vaccine strategies, which has seen a shift from whole organisms to recombinant 

proteins, and further towards the ultimate in minimalist vaccinology, the 

peptide/epitope/multi-epitope. The minimalist approach is also expected to cover the 

safety concerns that are associated with the traditional vaccine approach of using 

whole organism (Sette and Fikes, 2003; Dertzbaugh, 1998). Vectored vaccines, 

suitable for ‘combination immunization’ that are produced by recombinant DNA 

technology and contain multivalent minimal antigens to protect against multiple 

infections, are considered to be the future of vaccinology (Kutzler and Weiner, 2008). 

The author foresees that the future will bring increased integration of vaccine 

research with advances in immunology, molecular biology, genomics, proteomics, 

informatics, and high-throughput instrumentation, collective defined as the emerging 

field of “vaccinomics”, which is hailed to be responsible for the next 'golden age' in 

vaccinology (Poland et al., 2008). Awareness of the novel technological possibilities 

in vaccine research is also expected to grow. Future vaccinology will be based on 

detailed understanding of immune function, optimal stimulation of immune responses 

(using adjuvants) and precise mapping and rational selection of immune targets 

(Brusic et al., 2005). To achieve this, vaccine development will routinely be 

conducted through large-scale functional studies supported by genomics, proteomics, 
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and informatics techniques prior to clinical trials. This will provide an increased range 

of immune targets for vaccine design. The author expects the emergence of new 

generation of vaccines to be personalised to both the genetic make-up of the human 

population and of the disease agents. In summary, vaccinology will experience rapid 

progress and will eventually deliver benefits to patients from improved diagnosis, 

treatment and prevention of diseases. 

 

8.4 Conclusions 
 

Bioinformatics is essential for the analysis and interpretation of complex and large 

quantity of biological data generated by functional studies and high throughput 

technologies. It is used to propose the next sets of experiments and, most importantly, 

to derive better understanding of biological processes. The number of viral sequence 

data in public databases is increasing rapidly. Experimental approaches to study this 

large data pool for the development of immune interventions, such as vaccines, 

against the viruses are time-consuming, costly and almost impractical. Through 

combination of bioinformatics and experimental approaches, it is possible to select 

key experiments and help optimize experimental design. Computer algorithms are 

increasingly used to speed-up the process of knowledge discovery by helping to 

identify critical experiments for testing hypothesis built upon the result of 

computational screening. A number of successful examples for application of 

computer models to study immunological problems have been described in (Brusic et 

al., 2005). Such examples illustrate the power of computational approach to complex 

problems involving potentially vast datasets with potential biases, errors and 

discrepancies. 
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This thesis focused on a systematic bioinformatics approach to analyzing 

antigenic diversity of targets of cellular immune responses (T-cell epitopes) in 

reported sequences of the four DENV serotypes. Analysis of antigenic diversity 

presents us with a unique opportunity to improve our understanding of the immune 

response to viral variants and aid in identification of peptide targets for vaccine 

formulation. Comprehensive DENV sequence data was collected, filtered of errors, 

and grouped before any analysis. A simple, generic and systematic bioinformatics 

methodology developed was applied for the analysis of antigenic diversity of T-cell 

epitopes in DENV datasets for the proteins of the four serotypes. Antigenic diversity 

analysis showed that the number of unique protein sequences required to represent 

complete antigenic diversity of short peptides in DENV was significantly smaller than 

that required to represent complete protein sequence diversity. Short-peptide antigenic 

diversity showed an asymptotic relationship to the number of unique protein 

sequences, indicating that for large sequence sets (~200) the addition of new protein 

sequences has marginal effect to increasing antigenic diversity. A near-linear 

relationship was observed between the extent of antigenic diversity and the length of 

protein sequences, suggesting that, for the practical purpose of vaccine development, 

antigenic diversity of short peptides from DENV can be represented by short, 

conserved regions of sequences (~<100 aa) within viral antigens that are specific 

targets of immune responses (such as T-cell epitopes specific to particular HLA 

alleles), in particular promiscuous T-cell epitopes. This provided evidence that there 

are limited numbers of antigenic combinations in protein sequence variants of a viral 

species and that short, conserved regions of the viral protein are sufficient to cover 

antigenic diversity of T-cell epitopes. The methodology for analysis of antigenic 
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diversity has direct application to the analysis of other viruses, such as influenza A 

virus and human immunodeficiency virus (HIV). 

Based on the insights gained from the analysis of antigenic diversity, the 

author identified and characterized DENV peptides that cover antigenic diversity 

(PEs) – conserved, short viral sequence fragments in the DENV proteome that are 

promiscuous T-cell epitopes. A large-scale identification and analysis of 

evolutionarily highly conserved amino acid sequences of the entire DENV proteome, 

with a focus on sequences of nine amino acids or more, and thus immune-relevant as 

potential T-cell epitopes was undertaken. Forty-four (44) pan-DENV sequences of at 

least nine amino acids were highly conserved and identical in 80% or more of all 

recorded DENV sequences, and the majority were found to be immune-relevant by 

their correspondence to known or putative HLA-restricted promiscuous T-cell 

epitopes. These sequences are potential PEs as they potentially cover both the 

diversity of the DENV and variations in immune system among individuals (HLA 

polymorphism). The conservation of these sequences through the entire recorded 

DENV genetic history suggests that they are likely to remain conserved in the future 

and supports their possible value for diagnosis, prophylactic and/or therapeutic 

applications. 

The combination of bioinformatics and experimental approaches applied 

herein provides a novel pipeline for large-scale and systematic analysis of PEs of 

other pathogens, such as for rapidly mutating viruses, including influenza A virus and 

HIV. This approach provides an experimental basis for the design of pathogen 

specific, T-cell epitope peptide-based vaccines that are targeted to majority of the 

genetic variants of the pathogen, and are effective for a broad range of differences in 

HLAs among the global human population. 
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 The generic nature and usefulness of the approach to flaviviruses was 

demonstrated through its customized application to WNV for identification and 

characterization of PEs, which allowed comparative analysis of the characteristics of 

PEs between pathogens of interest. In addition, conservation pattern analysis of the 

PEs of DENV with corresponding sequences of 28 other flaviviruses revealed 

complex pattern of evolution at the PE sites. 

The work described in this thesis, application of bioinformatics to the first step 

in exploring the potential of sequence data for vaccine discovery, is a step forward for 

the field of reverse vaccinology as it enables the systematic screening and analyses of 

pathogen data in the context of the immune system, which would otherwise be 

impossible to carry out experimentally, due to the large combinatorial diversity 

possible between the numerous pathogen sequences and the highly polymorphic HLA 

binding partners. It therefore significantly reduces the efforts and cost of 

experimentation, while providing for systematic screening. We are entering a new era 

of vaccine immunomics synergistically powered by integration of informatics and 

other advances in immunology, molecular biology, genomics, proteomics, high-

throughput instrumentation, providing for detailed understanding of immune function, 

optimal stimulation of immune responses (using adjuvants) and precise mapping and 

rational selection of immune targets that cover antigenic diversity. This all is expected 

to lead towards the development of new generation of vaccines, personalised to both 

the genetic make-up of the human population and of the pathogen. The author of this 

thesis believes that his contributions will convert into practical vaccine solutions and 

hopes that, soon, a novel vaccine formulation that can protect against DENV diseases 

will be available to the public. 
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8.5 Future work 
 

In this thesis, to cover DENV antigenic diversity, peptide sequences common across 

the four serotypes and immunologically relevant as promiscuous epitopes (pan-DENV 

sequences) were identified and characterized. An advantage of these sequences is that 

they exhibit none to negligible variant representation. Further, utilizing pan-DENV 

sequences specific to the virus is beneficial than those that are not because of the low 

probability of contribution of altered peptide ligand effect from other flaviviruses. 

An alternative strategy to the utility of pan-DENV sequences for covering of 

antigenic diversity is to identify conserved, serotype specific peptide sequences that 

contain HLA supertype-restricted epitopes. The rationale behind this strategy is that 

pan-DENV sequences still pose a risk for altered ligand effect, although minimal; 

only two pan-DENV sequences were completely conserved (100% representation) 

and had zero variants. T-cell epitope sequences that are specific to each serotype, are 

not likely to share cross-reactivity between them, and their high intra-serotype 

conservation will provide high coverage of its variants. Such epitope sequences are 

hypothesized to cover antigenic diversity of each serotype and yet avoid the 

possibility of potential variants resulting in altered ligand effect because of the 

significant sequence difference between the serotypes (Rothman, 2004). This 

approach has been suggested by few researchers (Mongkolsapaya et al., 2006; 

Mangada and Rothman, 2005; Mongkolsapaya et al., 2003; Kurane et al., 1998) based 

on their experimental observation supporting the notion that highly or completely 

conserved, serotype-specific epitopes are attractive for dengue vaccine. This approach 

is particularly advantageous for highly diverse viruses, such as HIV, for which there 

are only few peptide sequences highly conserved across the different clade groups 
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(unpublished data from our group). The author plans to identify and characterize these 

sequences for DENV as part of his future research work. 

The two contrasting strategies provide options to vaccine developers for the 

search of candidate vaccine targets. Given the large number of DENV sequence, the 

significant heterogeneity between the serotypes, and the diversity of the immune 

system, identifying such conserved, serotype-specific promiscuous epitopes 

experimentally is a challenging task. The author proposes application of the 

bioinformatics pipeline developed herein, which is suitable for such large-scale 

analysis, to systematically screen and select such peptide sequences for experimental 

validation. For the identification of conserved, serotype specific sequences, the 

AVANA component of the pipeline will be expanded to include the search 

methodology for such sequences (see example in Figure 8.2), in addition to the 

current pan-serotype approach. 

Having identified all such peptides, the author then would analyse the 

frequency or representation of the sequences within the corresponding serotype 

dataset to filter out sequences not highly or completely represented within the 

serotype. The ensuing list of sequences would then be subjected to prediction of T-

cell epitopes in the context of various HLA class I and II supertypes, by use of 

prediction algorithms described herein. The structural-functional relevance of the 

sequences and their conservation in other non-dengue viruses would also be examined 

using the methodology defined in this thesis. The final set of sequences will then be 

subject to experimental validation for their immunological relevance. 
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Figure 8.2: An example of application of AVANA to identify characteristic sites 
between sequence alignments of DENV-1 and DENV-2 envelope proteins. Spikes 
indicate sites with mutual information value of 1 and characteristic to the 
dataset. Mutual information is a measure of the relationship between two 
variables, and is derived by comparing the entropies of the datasets. 
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Appendices 



Appendix 1: Catalogue of experimentally mapped DENV T-cell epitopes in humans* 
 

protein 
Epitope  

Type of cellular 
immune response¶ 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received¥ 
Reference (s) 

# Sequence (amino acid position) 

C 

1 DENV-2: PFNMLKRERNRVSTVQQLTK (12-31) 

Not available Not available Not available Simmons et al., 2005   

2 DENV-2: RVSTVQQLTKRFSLGMLQGR (22-41) 

3 DENV-4: KGPLRMVLAFITFLR (41-55) 
DENV-4: VLAFITFLR (47-55) CD4+ CTL DPw4¢ DENV-4 Gagnon et al., 1996 

 

4 DENV-2: TAGILKRWGTIKKSKAINVL (62-81) 
CD4+ 

(helper/cytotoxic 
not specified) 

Not available Not available Simmons et al., 2005 

5 DENV-1: LRGFKKEISNML (81-92) CD4+ 
(helper/cytotoxic 

not indicated) 
DPw4 DENV-4 Mangada and Rothman, 2005 6 DENV-2: LRGFRKEIGRML (81-92) 

7 DENV-3: LKGFKKEISNML (81-92) 

8 

DENV-4: LIGFRKEIGRML (80-91) 
CD4+

(helper/cytotoxic 
not indicated) 

DPw4 DENV-4 Mangada and Rothman, 2005 

DENV-4: LIGFRKEIGRMLNIL (81-95) 
DENV-4: FRKEIGRML (84-92) 
DENV-4: FRKEIGRM (84-91) 
DENV-4: GFRKEIGR (83-90) 

CD4+ CTL DPw4, DR1 DENV-4 Gagnon et al., 1996 

preM 

1 DENV-2: MSSEGAWKHVQRIETWILRH (20-39) 

Not available Not available Not available Simmons et al., 2005 
  

2 DENV-2: QRIETWILRHPGFTMMAAI (30-49) 

3 DENV-2: LGELCEDTITYKCPLLRQNE (41-60) 
CD4+ 

(helper/cytotoxic 
not specified) 

Not available Not available Simmons et al., 2005 

 



Dengue 
protein 

Epitope  
Type of cellular 

immune response 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received 
Reference (s) 

# Sequence (amino acid position) 

E 

1 DENV-2: FVEGVSGGSWVDIVL (11-25) 

Not available 
Not 

available 
Not available Simmons et al., 2005 

  
2 DENV-2: SGGSWVDIVLEHGSC (16-30) 

  
3 DENV-2: LRKYCIEAKLTNTTT (56-70) 

  
4 DENV-2: TLVTFKNPHAKKQDV (136-150) 

  
5 DENV-2: VTMECSPRTGLDFNE (181-195) 

  
6 DENV-2: MENKAWLVHRQWFLD (201-125) 

  
7 DENV-2: KKQDVVVLGSQEGAM (246-260) 

 
8 DENV-1: FLDLPLPWT (213-221) 

CD8+ A*0201 DENV-1, -2, -3 Bashyam et al., 2006 
9 DENV-2: FLDLPLPWL (213-221) 

10 DENV-3: FFDLPLPWT (211-219) 

11 DENV-4: FFDLPLPWL (213-221) 
 

12 DENV-1,-2,-3: ILGDTAWDF  
(414-422/414-422/412-420) CD8+ B*07 DENV-2, -4 Simmons et al., 2005 

13 DENV-4: ILGETAWDF (414-422) 

 
 
 
 
 
 
 
 
 



Dengue 
protein 

Epitope  
Type of cellular 

immune response 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received 
Reference (s) 

# Sequence (amino acid position) 

NS3 

1 DENV-3: SVKKDLISY (71-79) CD8+ B*62 DENV-3 Zivny et al., 1999 

  
2 DENV-3: IRYQTTATK (241-249) 

CD4+ CTL DRB*1501£ DENV-3 Zeng et al., 1996   
3 DENV-3: RKYLPAIVRE (202-211) 

  
4 DENV-2: GLRTLIAPTRVVAA (215-229) 

Not available 
Not 

available 
Not available Simmons et al., 2005 

  
5 DENV-2: IRYQTPAIRAEHTGR (240-254) 

  
6 DENV-2: LSPVRVPNYNLIIMD (270-284) 

  
7 DENV-2: VPNYNLIIMDEAHFT (275-289) 

  
8 DENV-2: LIIMDEAHFTDPASI (280-294) 

  
9 DENV-2: EAHFTDPASIAARGY (285-299) 

  
10 DENV-2: EMGEAAGIFMTATPP (305-319) 

  
11 DENV-2: AGIFMTATPPGSRDP (310-324) 

  
12 DENV-2: KKVIQLSRKTFDSEY (380-394) 

  
13 DENV-2: NDWDFVVTTDISEMG (400-414) 

  
14 DENV-2: GDLPVWLAYRVAAEG (540-554) 

  
15 DENV-2: KLKPRWLDARIYSDP (590-604) 

  
16 DENV-2: WLDARIYSDPLALKE (595-609) 



Dengue 
protein 

Epitope  
Type of cellular 

immune response 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received 
Reference (s) 

# Sequence (amino acid position) 

NS3 

17 DENV-1: GTSGSPIVNRE (133-143) 
DENV-1: GTSGSPIVNR (133-142) CD8+ A*11 

Not available 
Mongkolsapaya et al., 2003 

18 DENV-2: AVSLDFSPGTSGSPI (125-139) Not available 
Not 

available 
Simmons et al., 2005 

19 DENV-2: GTSGSPIIDKK (133-143) 
DENV-2: GTSGSPIIDK (133-142) 

CD8+ A*11 

Not available Mongkolsapaya et al., 2003 20 DENV-2: GTSGSPIVDRK (133-143) 
DENV-2: GTSGSPIVDR (133-142) 

21 DENV-2: GTSGSPIVDKK (133-143) 
DENV-2: GTSGSPIVDK (133-142) 

22 
DENV-3: GTSGSPIINRE (133-143) DENV-3 Sanchez et al., 2006 

DENV-3: GTSGSPIINRE (133-143) 
DENV-3: GTSGSPIINR (133-142) 

Not available Mongkolsapaya et al., 2003 

23 DENV-4: GTSGSPIINRK (133-143) 
DENV-4: GTSGSPIINR (133-142) 

  
24 DENV-1: NREGKIVGLYGNGVV (141-155) 

CD4+ 
(helper/cytotoxic 

not indicated) DRB*1501 
DENV-3 Mangada and Rothman, 2005 

25 DENV-2: DKKGKVVGLYGNGVV (141-155) 

26 DENV-3: NREGKVVGLYGNGVV (141-155) 

27 
DENV-4: NRKGKIVGLYGNGVV (141-155) 

DENV-4: VIGLYGNGV (146-154) CD4+ CTL DENV-3 Kurane et al., 1995 

  
28 DENV-1: RKLTIMDLHPGSGKT (186-200) 

CD4+ 
(helper/cytotoxic 

not indicated) 

Not 
available 

DENV-4 Mangada and Rothman, 2005 
29 DENV-2: RKLTIMDLHPGAGKT (186-200) 

30 DENV-3: RNLTIMDLHPGSGKT (187-201) 

31 DENV-4: KRLTIMDLHPGAGKT (186-200) 
  

32 DENV-1: PTRVVASEMAEALKG (223-237) CD4+

(helper/cytotoxic 
not indicated) DRB*1501 

DENV-3 Mangada and Rothman, 2005 

33 
DENV-3: PTRVVAAEMEEAMKG (224-238) 

DENV-3: LAPTRVVAAEMEEAM (221-235) CD4+ CTL DENV-3 Kurane et al., 1998 



Dengue 
protein 

Epitope  
Type of cellular 

immune response 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received 
Reference (s) 

# Sequence (amino acid position) 

NS3 

34 

DENV-2, -4: PTRVVAAEMEEALRG  
(223-237/223-237) 

CD4+

(helper/cytotoxic 
not indicated) 

DRB*1501 DENV-3 Mangada and Rothman, 2005 

DENV-4: LAPTRVVAAEMEEAL (221-235) 
DENV-4: APTRVVAAE (222-230) 
DENV-4: LAPTRVVAAEME (221–232) 

CD8+ B*07 

DENV-2 Mathew et al., 1998,  

DENV-4: LAPTRVVAAEME (221-232) DENV-4 
Zivna et al., 2002,  

Mathew et al., 1998,  

DENV-4: LAPTRVVAAEMEEAL (221-235) 
DENV-4: VVAAEMEE (226-233) 
DENV-4: TRVVAAEMEEA (224-234) 

CD4+ CTL DRB*1501 DENV-3 Kurane et al., 1998 

  

35 

DENV-2: LRGLPIRYQTPAIRA (235-249) Not available 
Not 

available 
Not available Simmons et al., 2005 

DENV-2: EALRGLPIR (233-241) CD8+ A33 Not available 
Simmons et al., 2005,  

Loke et al., 2001 

36 DENV-3: AMKGLPIRY (235-243) CD8+ B*62 DENV-3 Zivny et al., 1999 
  

37 DENV-1: HTGKEIVDLMCHATF (252-266) CD4+ 
(helper/cytotoxic 

not indicated) 
DPw2€ DENV-3 

Mangada and Rothman, 2005/ 
Kurane et al., 1993 

38 

DENV-2, -3, -4: HTGREIVDLMCHATF  
(251-265/252-266/251-265) 

DENV-3: EIVDLMCHAT (255-264) CD4+ CTL DPw2 DENV-3 
Kurane et al., 1993,  

Okamoto et al., 1998 

  

39 DENV-1: WITDFPGKTVW (351-361) CD4+ CTL DRB*1501 DENV-3 Zeng et al., 1996 

40 DENV-2: TVWFVPSIK (358-366) CD8+ A*11 Not available 
Simmons et al., 2005,  

Loke et al., 2001 

41 DENV-3: GNEWITDFVGKTVWF (348-362) 
DENV-3: WITDFVGKTVW (351-361) CD4+ CTL DRB*1501 DENV-3 Zeng et al., 1996 

 



Dengue 
protein 

Epitope  
Type of cellular 

immune response 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received 
Reference (s) 

# Sequence (amino acid position) 

NS3 

42 DENV-1, -3: TPEGIIPAL 
(500-508/500-508) 

CD8+ B35 DENV-4 
Zivny et al., 1995,  

Livingston et al., 1995 43 DENV-2: TPEGIIPSM (500-508) 

44 DENV-4: TPEGIIPTL (500-508) 
  

45 DENV-2: GESRKTFVE (527-535) 
CD8+ 

B*07 DENV-1 Zivna et al., 2002 

46 DENV-3: GESRKTFVEL (528-537) B60 DENV-3 Sanchez et al., 2006 
  

47 DENV-1: FQYSDRRWCF (555-564) 

CD8+ A*24 

DENV-2 Simmons et al., 2005 

48 
DENV-2: INYADRRWCF (555-564) DENV-2, -4 Simmons et al., 2005 

DENV-2: NYADRRWCF (556-564) Not available Loke et al., 2001 

49 DENV-4: ISYKDREWCF (555-564) DENV-4 Simmons et al., 2005 

50 DENV-1: KEGERKKLRPRWLDA (584-598) 
CD4+

(helper/cytotoxic 
not indicated) 

Not 
available 

DENV-4 Mangada and Rothman, 2005 

51 DENV-2: EGERKKLKPRWLDAIY (585-599) Not available 

Not available 

Simmons et al., 2005 

52 DENV-2: KEGERKKLKPRWLDA (584-598) CD4+ 
(helper/cytotoxic 

not indicated) 
Mangada and Rothman, 2005 53 DENV-3: KEGEKKKLRPRWLDA (585-599) 

54 DENV-4: REGEKKKLRPRW*DAR (584-599) 

 
 
 
 
 
 
 
 
 



Dengue 
protein 

Epitope  
Type of cellular 

immune response 

HLA 
restricting 
molecule 

Serotype of 
infection or of 

vaccine received 
Reference (s) 

# Sequence (amino acid position) 

NS4a 

1 DENV-1: MLLALIAVL (56-64) 

CD8+ A*0201 DENV-1, -2, -3 Bashyam et al., 2006 
2 DENV-2: LLLTLLATV (56-64) 

3 DENV-3: LLLGLMILL (56-64) 

4 DENV-4: MLVALLGAM (56-64) 

5 DENV-2: LATVTGGIFLFLMSGRGIGK (61-80) Not available Not 
available 

Not available Simmons et al., 2005 

  

NS4b 

1 DENV-1: VLMLVAHYA (112-120) 

CD8+ A*0201 DENV-1, -2, -3 Bashyam et al., 2006 

2 DENV-2: FLLVAHYAI (112-120) 

3 DENV-3: VLLLVTHYA (111-119) 

4 DENV-4: LVMLLVHYA (108-116) 

    
5 DENV-1: ILLMRTTWA (182-190) 

6 DENV-2: VLLMRTTWA (181-189) 

7 DENV-3: LLLMRTSWA (181-189) 

8 DENV-4: LLLMRTTWA (178-186) 
  

NS5 
1 DENV-2: DVFFTPPEK (131-139) 

CD8+ A*11 Not available Loke et al., 2001     
2 DENV-2: YILRDVSKK (517-525) 

 
¶: This refers to the type of T-cell (either CD4+ or CD8+) used in the experiment to study the immunogenicity of the DENV peptide.  
¥: This refers to the serotype of the DENV vaccine received by the human subject or the serotype of the virus that infected the patient. 
€: DPB1*0201-02 is serologically defined as DPw2 
£: The HLA allele DRB1*1501 is serologically defined as DR15 or DR2 
¢: DPB1*0401-02 is serologically defined as DPw4 
*: The undergraduate attachment student to our lab, Mr. Lam Jian Hang, assisted with the construction of the catalogue and analysis of the data therein. 



Appendix 2: Annotation errors in DV records collected from the NCBI Entrez 
protein database. 
 

DV1 entry Error/discrepancy description 
AAK29447  The position of the C terminal end of the protein NS4B is mis-

annotated. Instead of 2293 it should be 2493. Evidence by 
sequence similarity to other strains. 

 The position of the N-terminal of the protein NS5 is mis-
annotated. Instead of 2294 it should be 2494. Evidence by 
sequence similarity to other strains. 

A42551  The C-terminal position of the precursor membrane protein 
region has been mis-annotated. It should be 205..280 instead 
of 205..281. Evidence by sequence similarity to other strains. 

 The N-terminal position of the envelope protein region has 
been mis-annotated. It should be 281..774 instead of 282..774. 
Evidence by sequence similarity to other strains. 

 The C-terminal position of the NS1 protein region has been 
mis-annotated. It should be 775..1126 instead of 775..1127. 
Evidence by sequence similarity to other strains. 

 The N-terminal position of the NS2a protein region has been 
mis-annotated. It should be 1127..1344 instead of 1128..1344. 
Evidence by sequence similarity to other strains. 

P33478  The C-terminal position of the NS1 protein region has been 
mis-annotated. It should be 775..1126 instead of 775..1127. 
Evidence for this can be found in Fu et al., (1992). 

 The N-terminal position of the NS2a protein region has been 
mis-annotated. It should be 1127..1344 instead of 1128..1344. 
Evidence for this can be found in Fu et al., (1992). 

AAN03445  Under the field “Features”, we see the following statement: 
 Protein         1..3392 
 /product="envelope glycoprotein" 
 The statement is not correct because envelope glycoprotein is 

only a part of the whole polyprotein. Instead of envelope 
glycoprotein it should have been “polyprotein” as in entry 
AAO47361 (GI:34596500) 

AAB70694  The N-terminal position of the capsid protein region has been 
mis-annotated. It should be 1..114 instead of 2..114. Evidence 
by sequence similarity to other strains. 

AAB70696  The N-terminal position of the capsid protein region has been 
mis-annotated. It should be 1..114 instead of 2..114. Evidence 
by sequence similarity to other strains. 

 The C-terminal position of the precursor membrane protein 
region has been mis-annotated. It should be 115..280 instead 
of 115..278. Evidence by sequence similarity to other strains. 

 The C-terminal position of the mature membrane protein 
region has been mis-annotated. It should be 206..280 instead 
of 206..278. Evidence by sequence similarity to other strains. 

 The N-terminal position of the envelope protein region has 
been mis-annotated. It should be 281..775 instead of 279..775. 



Evidence by sequence similarity to other strains. 
AAB70695  The N-terminal position of the capsid protein region has been 

mis-annotated. It should be 1..114 instead of 2..114. Evidence 
by sequence similarity to other strains. 

 The C-terminal position of the precursor membrane protein 
region has been mis-annotated. It should be 115..280 instead 
of 115..278. Evidence by sequence similarity to other strains. 

 The C-terminal position of the mature membrane protein 
region has been mis-annotated. It should be 206..280 instead 
of 206..278. Evidence by sequence similarity to other strains. 

 The N-terminal position of envelope protein region has been 
mis-annotated. It should be 281..775 instead of 279..775. 
Evidence by sequence similarity to other strains. 

DV2 entry Error/discrepancy description 
AAL00888  The position of the C-terminal of the capsid protein is mis-

annotated. It should be 1..114 instead of 1..150. Evidence by 
sequence similarity to other strains. 

 The position of the N-terminal of the precursor membrane 
protein is mis-annotated. It should be 115..280 instead of 
151..280. Evidence by sequence similarity to other strains. 

CAD31751  The protein 115..280 should be annotated as prM protein 
instead of envelope protein. 

 The protein 281..774 should be annotated as envelope protein 
instead of prM protein. 

 The position of the C-terminal of the envelope protein is mis-
annotated. It should be 281..775 instead of 281..774. Evidence 
by sequence similarity to other strains. 

 The position of the N-terminal of the NS1 protein is mis-
annotated. It should be 776..1127 instead of 775..1127. 
Evidence by sequence similarity to other strains. 

 The position of the C-terminal of the envelope protein is mis-
annotated. It should be 1346..1475 instead of 1346..1474. 
Evidence by sequence similarity to other strains. 

 The position of the N-terminal of the NS3 protein is mis-
annotated. It should be 1476..2093 instead of 1475..2093. 
Evidence by sequence similarity to other strains. 

AAA42941  The N-terminal position of the capsid protein region has been 
mis-annotated. It should be 1..114 instead of 2..114. Evidence 
by sequence similarity to other strains. 

 The position of the C-terminal of the NS4a protein is mis-
annotated. It should be 2094..2243 instead of 2094..2379. 
Evidence by sequence similarity to other strains. 

 The position of the N-terminal of the NS4b protein is mis-
annotated. It should be 2244..2491 instead of 2380..2491. 
Evidence by sequence similarity to other strains. 

DV3 entry Error/discrepancy description 
P27915,  
AAA99437 and  
GNWVD3 

 All the three entries have NS1/NS2a and NS4a/NS4b 
junctions mis-annotated; the amino acid sequence at these 
junctions in the three entries were not similar to those 



described in Osatomi et al. (1990). 
DV4 entry Error/discrepancy description 

AAB28474  The position of the C-terminal of the capsid protein is mis-
annotated. It should be 1..113 instead of 1..110. Evidence by 
sequence similarity to other strains. 

 The position of the N-terminal of the precursor membrane 
protein is mis-annotated. It should be 114..279 instead of 
112..279. Evidence by sequence similarity to other strains. 

AAA42964  The position of the C-terminal of the envelope protein is mis-
annotated. It should be 280..774 instead of 280..733. Evidence 
by sequence similarity to other strains. 

 The position of both the N and C termini of the NS1 protein is 
mis-annotated. It should be 775..1126 instead of 734..1184. 
Evidence by sequence similarity to other strains. 

 The position of both the N and C termini of the NS2a protein 
is mis-annotated. It should be 1127..1344 instead of 
1185..1343. Evidence by sequence similarity to other strains. 

 The position of both the N and C termini of the NS2b protein 
is mis-annotated. It should be 1345..1474 instead of 
1344..1473. Evidence by sequence similarity to other strains. 

 The position of both the N and C termini of the NS3 protein is 
mis-annotated. It should be 1475..2092 instead of 1474..2091. 
Evidence by sequence similarity to other strains. 

 The position of both the N and C termini of the NS4a protein 
is mis-annotated. It should be 2093..2242 instead of 
2092..2374. Evidence by sequence similarity to other strains. 

 The position of both the N and C termini of the NS4b protein 
is mis-annotated. It should be 2243..2487 instead of 
2092..2374. Evidence by sequence similarity to other strains. 

 The position of both the N and C termini of the NS5 protein is 
mis-annotated. It should be 2488..3387 instead of 2487..3386. 
Evidence by sequence similarity to other strains. 

P09866  The position of the C-terminus of the NS1 protein is mis-
annotated. It should be 775..1126 instead of 775..1185. 
Evidence by sequence similarity to other strains. 

 The position of the N-terminus of the NS2a protein is mis-
annotated. It should be 1127..1344 instead of 1186..1344. 
Evidence by sequence similarity to other strains. 

 The position of the C-terminus of the NS4a protein is mis-
annotated. It should be 2093..2242 instead of 2093..2375. 
Evidence by sequence similarity to other strains. 

 The position of the N-terminus of the NS4b protein is mis-
annotated. It should be 2243..2487 instead of 2376..2487. 
Evidence by sequence similarity to other strains. 

GNWVDF  The position of the C-terminus of the NS1 protein is mis-
annotated. It should be 774..1125 instead of 774..1184. 
Evidence by sequence similarity to other strains. 

 The position of the N-terminus of the NS2a protein is mis-
annotated. It should be 1126..1343 instead of 1185..1343. 



Evidence by sequence similarity to other strains. 
 The position of the C-terminus of the NS4a protein is mis-

annotated. It should be 2092..2241 instead of 2092..2374. 
Evidence by sequence similarity to other strains. 

 The position of the N-terminus of the NS4b protein is mis-
annotated. It should be 2242..2486 instead of 2375..2486. 
Evidence by sequence similarity to other strains. 
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Appendix 3: Molecular location of 19 pan-DENV sequences (in red) on the 
protein's 3-D structure. These sequences were mapped on the available 
crystallographic models of the E ectodomain (PDB Accession No. 1OAN; 394 out 
of 493-495 residues), NS3 (1BEF and 2BMF, 181 and 451 out of 618-619 residues, 
respectively) and NS5 fragments (1R6A, 295 out of 900-904 residues). The major 
portions of eleven of the 19 pan-DENV sequences were buried (NS3-
148GLYGNGVVT156, 256EIVDLMCHATFT267, 284MDEAHFTDP292, 
296AARGYISTRV305, 313IFMTATPPG321, 357GKTVWFVPSIK367, 
406VVTTDISEMGANF418, and 491EAKMLLDNI499; NS5-
79DLGCGRGGWSYY90, 141DTLLCDIGESS151 and 209PLSRNSTHEMYW220), 2 
were partially buried/exposed (NS3-46FHTMWHVTRG55 and 
537LMRRGDLPVWL547) and the remaining 6 were exposed (E-
97VDRGWGNGCGLFGKG111 and 252VLGSQEGAMH261; NS3-
189LTIMDLHPG197 and 383VIQLSRKTFD392; NS5-6GETLGEKWK14 and 
104TKGGPGHEEP113) at the surface of the corresponding structures. 



 
1) E(97VDRGWGNGCGLFGKG111) 2) E(252VLGSQEGAMH261) 

3) NS3(46FHTMWHVTRG55) 4) NS3(148GLYGNGVVT156) 

5) NS3(189LTIMDLHPG197) 6) NS3(256EIVDLMCHATFT267) 

7) NS3(284MDEAHFTDP292) 8) NS3(296AARGYISTRV305) 

9) NS3(313IFMTATPPG321) 

 

10) NS3(357GKTVWFVPSIK367) 

 
 



11) NS3(383VIQLSRKTFD392) 12) NS3(406VVTTDISEMGANF418) 

13) NS3(491EAKMLLDNI499) 14) NS3(537LMRRGDLPVWL547) 

15) NS5(6GETLGEKWK14) 16) NS5(79DLGCGRGGWSYY90) 

17) NS5(104TKGGPGHEEP113) 18) NS5(141DTLLCDIGESS151) 

19) NS5(209PLSRNSTHEMYW220)

 



Appendix 4: Candidate putative HLA supertype-restricted binding nonamer peptides in pan-DENV sequences, predicted by 
immunoinformatic algorithms. 
 

DENV 
protein 

Pan-DENV sequence and the predicted 
HLA supertype-restricted binding 

nonamer(s) a 

HLA supertype-restriction of predicted nonamer peptideb 

Class Ic Class IId 

NetCTL Multipred ARB Multipred TEPITOPE

E 97VDRGWGNGCGLFGKG111  
         99RGWGNGCGL107 B7 - - - -
           100GWGNGCGLF108 A24 - - - -

NS1 12ELKCGSGIF20

12ELKCGSGIF20 A26, B8, B62 - - - -
25VHTWTEQYKFQ35 
    26HTWTEQYKF34 A1, A24, A26, B8, B27, B58, B62 - - - -
193AVHADMGYWIES204 
193AVHADMGYW201 A26, B58 - - - -
     194VHADMGYWI202 A24, B39 - - DR -
      195HADMGYWIE203 A1 - - - -
229HTLWSNGVLES239 
229HTLWSNGVL237 A1, B8, B39, B62 - - - -
         231LWSNGVLES239 - - - - DR
325GEDGCWYGMEIRP337 
325GEDGCWYGM333 B44 - - - -
        328GCWYGMEIR336 - - A3 - -

NS3 46FHTMWHVTRG55 
46FHTMWHVTR54 B39 A3 - DR -
    47HTMWHVTRG55 - A3 - - -
189LTIMDLHPG197 
189LTIMDLHPG197 - - - DR DR
256EIVDLMCHATFT267 
256EIVDLMCHA264 A26 A2 - - -
    257IVDLMCHAT265 - - - DR -



      258VDLMCHATF266 B8, B44 - B44 DR -
           259DLMCHATFT267 - A2 A2 - -
296AARGYISTRV305 
296AARGYISTR304 A3 A3 A3 - -
   297ARGYISTRV305 B27 - - - -
313IFMTATPPG321 
313IFMTATPPG321 - - - DR DR
357GKTVWFVPSIK367 
    358KTVWFVPSI366 A2, A24, A26, B58 A2 A2 - -
         359TVWFVPSIK367 A3 A3 A3 - -
383VIQLSRKTFD392 
383VIQLSRKTF391 B7, B8, B62 - - DR -
    384IQLSRKTFD392 - - - DR -
406VVTTDISEMGANF418 
406VVTTDISEM414 A26, B62 - - DR -
     407VTTDISEMG415 - - - DR -
          408TTDISEMGA416 A1 - - - -
                410DISEMGANF418 A1, A26, B62 - - - -
537LMRRGDLPVWL547 
537LMRRGDLPV545 A2, B8, B62 - A2 DR -
  538MRRGDLPVW546 B27 - - - -
         539RRGDLPVWL547 B27, B39 - - - -

NS4a 126QRTPQDNQL134 
126QRTPQDNQL134 B27, B39 - - - -

NS4b 35PASAWTLYAVATT47 
   36ASAWTLYAV44 A1, A2 A2 A2 - -
        37SAWTLYAVA45 - A2 A2 - -
                39WTLYAVATT47 - A2 A2 DR -
118HYAIIGPGLQAKATREAQKR137

118HYAIIGPGL126 A24, B39 - - - -
     119YAIIGPGLQ127 - - - DR DR
          120AIIGPGLQA128 - A3 - - -
              121IIGPGLQAK129 A3 A3 - - -
                               126LQAKATREA134 B62 - A2 DR -



                      127QAKATREAQ135 B8 - - - -
                                       128AKATREAQK136 B27 A3 - - -
                                             129KATREAQKR137 - A3 - - -
139AAGIMKNPTVDGI151 
              142IMKNPTVDG150 - A3 - DR -
                143MKNPTVDGI151 - - B7 DR -
223ANIFRGSYLAGAGL236 
223ANIFRGSYL231 B7 - A2 - -
    224NIFRGSYLA232 A2 A3 A2, A3 - -
         225IFRGSYLAG233 - - - DR -
           226FRGSYLAGA234 B27 A2 A2 DR DR
                   228GSYLAGAGL236 B39, B44, B62 - - - -

NS5 6GETLGEKWK14 
6GETLGEKWK14 B44 - - - -
79DLGCGRGGWSYY90 

        81GCGRGGWSY89 A1, B62 - - - -
        82CGRGGWSYY90 A1, A26, B62 - - - -
141DTLLCDIGESS151 
   142TLLCDIGES150 - - A2 - -
        143LLCDIGESS151 - - - DR -
209PLSRNSTHEMYW220 
    210LSRNSTHEM218 B7, B58, B62 - B7 DR -
        211SRNSTHEMY219 A1, B8, B27 - - - -
           212RNSTHEMYW220 B58 - - - -
342AMTDTTPFGQQRVFKEKVDTRT363

    343MTDTTPFGQ351 A1 - - - -
             345DTTPFGQQR353 - A3 A3 - -
           346TTPFGQQRV354 A1, A26 - - - -
                      347TPFGQQRVF355 B7, B8 - B7 - -
                          348PFGQQRVFK356 - A3 - - -
                              349FGQQRVFKE357 - - - DR -
                                  350GQQRVFKEK358 A3, B27 A3 - - -
                                                    354VFKEKVDTR362 - A3 - - -
450CVYNMMGKREKKLGEFG466 
450CVYNMMGKR458 A3 A3 A3 - -



     451VYNMMGKRE459 - - - DR -
          452YNMMGKREK460 - A3 A3 DR DR
              453NMMGKREKK461 A3 A3 A3 - -
                   454MMGKREKKL462 B8 A2 - - -
                                   457KREKKLGEF465 A1, B8, B27 - - - -
                        458REKKLGEFG466 - - B44 - -
468AKGSRAIWYMWLGAR482 
    469KGSRAIWYM477 B58 - - - -
         470GSRAIWYMW478 B58 - - - -
              471SRAIWYMWL479 B27, B39 - - - -
              473AIWYMWLGA481 A2 - A2 - -
                          474IWYMWLGAR482 - - - DR -
531YADDTAGWDTRIT543 
531YADDTAGWD539 - - - DR -
             534DTAGWDTRI542 A1, A26 A2 - - -
568IFKLTYQNKVV578 
568IFKLTYQNK576 A3, A24 - - - -
  569FKLTYQNKV577 A2 A2 A2 DR -
      570KLTYQNKVV578 A2 A2 - - -
597DQRGSGQVGTYGLNTFTNME616

         599RGSGQVGTY607 A1, B58, B62 - - - -
                  601SGQVGTYGL609 B39 - - - -
                               604VGTYGLNTF612 B58, B62 - - DR -
                                    605GTYGLNTFT613 - - A2 - -
                          606TYGLNTFTN614 A24 - - - -
                                            607YGLNTFTNM615 A26 - - DR -
658RMAISGDDCVVKP670 
   659MAISGDDCV667 - - A2, B7 - -
          660AISGDDCVV668 A2 A2 A2 - -
              661ISGDDCVVK669 A3 A3 - - -
707VPFCSHHFH715 
707VPFCSHHFH715 - - A3 DR -
765LMYFHRRDLRLA776 
765LMYFHRRDL773 B39, B8, B62 - - DR DR
    766MYFHRRDLR774 A3 A3 A3 DR -
          767YFHRRDLRL775 A1, A24, B8, B39 A2 - DR -



              768FHRRDLRLA776 - - - DR -
790PTSRTTWSIHA800 
790PTSRTTWSI798 A1, A24 A2 - - -
       792SRTTWSIHA800 B27 - - - -

 

a Amino acid positions of the pan-DENV sequences and the predicted nonamers are numbered according to the sequence alignments of the 4 DENV types 
b HLA supertype-restrictions that were predicted by at least two prediction models are highlighted in bold 
c Peptides specific to HLA class I supertypes were predicted by use of NetCTL (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58 

 and B62), ARB (A2, A3, B44, and B7) and Multipred (A2 and A3) 
d Sequences identified as specific to class II were predicted by use of TEPITOPE (DR) and Multipred (DR) as described in methods 



Appendix 5: Intra-type representation of candidate putative HLA supertype-
restricted nonamer peptides predicted by immunoinformatics algorithms. 
 

DENV 
protein 

Pan-DENV sequence and the putative 
HLA supertype-restricted nonamer 

peptide(s)a 

Intra-type representation (%)b and total sequences 
analyzed (#)c 

DENV-1 DENV-2 DENV-3 DENV-4 

E 97VDRGWGNGCGLFGKG111  
         99RGWGNGCGL107 98%(580) 98%(811) 100%(372) 100%(320)
           100GWGNGCGLF108 99%(580) 98%(811) 100%(372) 95%(320)

NS1 12ELKCGSGIF20  
12ELKCGSGIF20 99%(366) 95%(603) 83%(201) 99%(141)
25VHTWTEQYKFQ35  
    26HTWTEQYKF34 99%(350) 96%(555) 100%(197) 95%(140)
193AVHADMGYWIES204  
193AVHADMGYW201 100%(104) 95%(197) 98%(117) 100%(28)
     194VHADMGYWI202 100%(104) 96%(197) 98%(117) 96%(28)
         195HADMGYWIE203 100%(104) 97%(197) 98%(117) 96%(28)
229HTLWSNGVLES239  
229HTLWSNGVL237 98%(124) 97%(215) 97%(117) 100%(28)
        231LWSNGVLES239 97%(126) 97%(215) 98%(117) 100%(28)
325GEDGCWYGMEIRP337  
325GEDGCWYGM333 98%(112) 98%(202) 98%(113) 100%(28)
        328GCWYGMEIR336 100% (104) 99%(197) 100%(115) 100%(28)

NS3 46FHTMWHVTRG55  
46FHTMWHVTR54 100%(89) 100%(132) 100%(68) 100%(28)
    47HTMWHVTRG55 100%(89) 100%(132) 100%(68) 100%(28)
189LTIMDLHPG197  
189LTIMDLHPG197 100%(97) 99%(141) 100%(97) 100%(29)
256EIVDLMCHATFT267  
256EIVDLMCHA264 99%(98) 100%(137) 100%(103) 100%(29)
    257IVDLMCHAT265 99%(98) 100%(137) 100%(103) 100%(29)
      258VDLMCHATF266 99%(98) 100%(137) 100%(103) 100%(29)
          259DLMCHATFT267 99%(98) 100%(137) 100%(103) 100%(29)
296AARGYISTRV305  
296AARGYISTR304 97%(90) 100%(135) 97%(74) 100%(27)
     297ARGYISTRV305 97%(90) 100%(135) 97%(74) 100%(27)
313IFMTATPPG321  
313IFMTATPPG321 100%(90) 100%(135) 100%(74) 100%(27)
357GKTVWFVPSIK367  
    358KTVWFVPSI366 99%(90) 100%(135) 99%(181) 96%(27)
        359TVWFVPSIK367 99%(90) 100%(135) 100%(181) 100%(27)
383VIQLSRKTFD392  
383VIQLSRKTF391 81%(90) 99%(135) 99%(181) 100%(27)
    384IQLSRKTFD392 81%(90) 99%(135) 98%(181) 100%(27)
406VVTTDISEMGANF418  
406VVTTDISEM414 98%(90) 99%(135) 98%(181) 100%(27)
    407VTTDISEMG415 98%(90) 99%(135) 99%(181) 100%(27)
        408TTDISEMGA416 98%(90) 100%(135) 99%(181) 100%(27)
               410DISEMGANF418 98%(90) 100%(135) 99%(181) 100%(27)
537LMRRGDLPVWL547  
537LMRRGDLPV545 99%(89) 100%(133) 99%(181) 93%(27)
    538MRRGDLPVW546 99%(89) 100%(133) 99%(181) 93%(27)
          539RRGDLPVWL547 100%(89) 100%(133) 99%(181) 93%(27)

NS4a 126QRTPQDNQL134  
126QRTPQDNQL134 98%(87) 100%(126) 100%(70) 100%(26)



NS4b 35PASAWTLYAVATT47  
    36ASAWTLYAV44 100%(89) 100%(127) 100%(70) 100%(27)
         37SAWTLYAVA45 100%(89) 100%(127) 100%(70) 100%(27)
                 39WTLYAVATT47 100%(89) 100%(127) 100%(70) 100%(27)
118HYAIIGPGLQAKATREAQKR137  
118HYAIIGPGL126 100%(89) 97%(127) 100%(70) 98%(109)
    119YAIIGPGLQ127 100%(89) 97%(127) 100%(70) 98%(109)
        120AIIGPGLQA128 100%(89) 97%(127) 100%(70) 98%(109)
             121IIGPGLQAK129 100%(89) 97%(127) 100%(70) 99%(109)
                             126LQAKATREA134 99%(89) 97%(127) 100%(70) 100%(109)
                                 127QAKATREAQ135 99%(89) 95%(127) 100%(70) 100%(109)
                                      128AKATREAQK136 99%(89) 95%(127) 100%(70) 100%(109)
                                           129KATREAQKR137 99%(89) 95%(127) 100%(70) 100%(109)
139AAGIMKNPTVDGI151  
             142IMKNPTVDG150 96%(89) 98%(127) 97%(70) 100%(109)
               143MKNPTVDGI151 98%(89) 98%(127) 97%(70) 100%(109)
223ANIFRGSYLAGAGL236  
223ANIFRGSYL231 100%(87) 100%(129) 100%(70) 98%(109)
     224NIFRGSYLA232 100%(87) 100%(129) 100%(70) 100%(109)
          225IFRGSYLAG233 100%(87) 100%(129) 100%(70) 100%(109)
            226FRGSYLAGA234 100%(87) 100%(129) 97%(70) 100%(109)
                    228GSYLAGAGL236 100%(87) 100%(129) 97%(70) 100%(109)

NS5 6GETLGEKWK14  
6GETLGEKWK14 92%(87) 98%(131) 100%(70) 100%(109)
79DLGCGRGGWSYY90  
        81GCGRGGWSY89 100%(87) 98%(130) 100%(78) 100%(27)
         82CGRGGWSYY90 100%(87) 98%(130) 100%(80) 100%(27)
141DTLLCDIGESS151  
    142TLLCDIGES150 100%(87) 100%(130) 100%(74) 100%(27)
        143LLCDIGESS151 100%(87) 100%(130) 100%(74) 100%(27)
209PLSRNSTHEMYW220  
   210LSRNSTHEM218 100%(87) 100%(130) 100%(70) 100%(27)
       211SRNSTHEMY219 100%(87) 100%(130) 100%(70) 100%(27)
          212RNSTHEMYW220 100%(87) 100%(130) 100%(70) 100%(27)
342AMTDTTPFGQQRVFKEKVDTRT363  
     343MTDTTPFGQ351 100%(87) 98%(126) 99%(165) 96%(27)
               345DTTPFGQQR353 100%(87) 100%(126) 100%(165) 96%(27)
                    346TTPFGQQRV354 100%(87) 100%(126) 100%(165) 96%(27)
                     347TPFGQQRVF355 100%(87) 100%(126) 100%(157) 96%(27)
                         348PFGQQRVFK356 100%(87) 100%(126) 100%(157) 96%(27)
                            349FGQQRVFKE357 100%(87) 100%(126) 100%(157) 100%(27)
                              350GQQRVFKEK358 100%(87) 100%(126) 99%(157) 100%(27)
                                                354VFKEKVDTR362 100%(87) 100%(126) 99%(157) 100%(27)
450CVYNMMGKREKKLGEFG466  
450CVYNMMGKR458 100%(87) 95%(126) 97%(155) 100%(27)
    451VYNMMGKRE459 100%(87) 95%(126) 97%(155) 100%(27)
         452YNMMGKREK460 100%(87) 97%(126) 97%(155) 100%(27)
             453NMMGKREKK461 100%(87) 97%(126) 97%(155) 100%(27)
                 454MMGKREKKL462 100%(87) 94%(126) 97%(155) 100%(27)
                                457KREKKLGEF465 100%(87) 97%(126) 99%(155) 100%(27)
                        458REKKLGEFG466 100%(87) 97%(126) 99%(155) 100%(27)
468AKGSRAIWYMWLGAR482  
     469KGSRAIWYM477 98%(87) 99%(126) 99%(155) 100%(27)
         470GSRAIWYMW478 98%(87) 100%(128) 99%(155) 100%(27)
             471SRAIWYMWL479 98%(87) 100%(128) 100%(155) 100%(27)
             473AIWYMWLGA481 98%(87) 100%(128) 99%(157) 100%(27)
                         474IWYMWLGAR482 97%(87) 100%(128) 99%(157) 100%(27)
531YADDTAGWDTRIT543  
531YADDTAGWD539 100%(87) 100%(128) 99%(157) 100%(27)



             534DTAGWDTRI542 100%(87) 100%(128) 99%(157) 100%(27)
568IFKLTYQNKVV578  
568IFKLTYQNK576 100%(87) 98%(130) 97%(159) 100%(27)
  569FKLTYQNKV577 100%(87) 97%(130) 98%(159) 100%(27)
     570KLTYQNKVV578 100%(87) 97%(130) 98%(159) 100%(27)
597DQRGSGQVGTYGLNTFTNME616  
         599RGSGQVGTY607 100%(87) 88%(130) 98%(159) 100%(27)
                601SGQVGTYGL609 100%(87) 88%(130) 98%(159) 100%(27)
                            604VGTYGLNTF612 100%(87) 88%(130) 97%(159) 100%(27)
                                 605GTYGLNTFT613 100%(87) 88%(114) 99%(158) 100%(27)
                                     606TYGLNTFTN614 100%(87) 98%(130) 99%(159) 100%(27)
                                         607YGLNTFTNM615 98%(87) 98%(130) 99%(159) 100%(27)
658RMAISGDDCVVKP670  
  659MAISGDDCV667 100%(87) 100%(130) 97%(159) 100%(27)
         660AISGDDCVV668 100%(87) 100%(130) 97%(159) 100%(27)
              661ISGDDCVVK669 100%(87) 100%(130) 97%(159) 100%(27)
707VPFCSHHFH715  
707VPFCSHHFH715 98%(87) 100%(130) 100%(159) 96%(27)
765LMYFHRRDLRLA776  
765LMYFHRRDL773 100%(87) 98%(130) 99%(159) 100%(27)
    766MYFHRRDLR774 100%(87) 98%(130) 99%(159) 100%(27)
          767YFHRRDLRL775 100%(87) 98%(130) 99%(159) 100%(27)
              768FHRRDLRLA776 100%(87) 98%(130) 98%(159) 100%(27)
790PTSRTTWSIHA800  
790PTSRTTWSI798 99%(87) 98%(128) 98%(157) 100%(27)
       792SRTTWSIHA800 99%(87) 98%(128) 100%(157) 100%(27)

 

a Amino acid positions of the pan-DENV sequences and the predicted nonamers are numbered 

according to the sequence alignments of the 4 DENV types 
b Rounded to whole number 

c The total number of sequences analyzed (2005 dataset) may not match the total number of sequences 

collected for each protein because both partial and full-length sequences were used for the sequence 

alignments, with the results that some regions have more sequence information than others 

 



Appendix 6: The localization of pan-WNV sequences (in purple) on the three 
dimensional structure of the respective WNV proteins (E - 2HG0, NS3 - 2IJO 
and NS5 -2HFZ). Abbreviations: (E) major portion exposed, (P) partially 
exposed, (B) major portion buried. 
 
 

 
1. E1-11 (E) | 2. E104-117 (P) | 3. E293-301 (E) | 4. E338-356 (E) 
 

1a 1b

2a 2b

3a 3b

4a

4b



 
5. E370-381 (P) | 6. NS320-29 (E) | 7. NS352-61 (E) | 8. NS363-72 (P) | 9. NS374-83 (B) 

5a 5b

6a 6b

7a 7b

8a 8b

9a 9b



10. NS3108-119 (E) | 11. NS3131-142 (B) | 12. NS3145-157 (P) | 13. NS3161-171 (P) | 14. NS5318-335 (E) 

10a 10b

11a 11b

12a 12b

13a 13b

14a 14b



15. NS5340-368 (E) | 16. NS5375-384 (P) | 17. NS5440-449 (E) | 18. NS5472-500 (P) | 19. NS5504-519 (P) 

15a 15b

16a

16b

17a 17b

18a 18b

19a 19b



20. NS5533-545 (P) | 21. NS5548-557 (E) | 22. NS5571-585 (B) | 23. NS5596-618 (P) | 24. NS5620-631 (B) 

20a 20b

21a 21b

22a 22b

23a 23b

24a 24b



25. NS5662-680 (P) | 26. NS5689-702 (E) | 27. NS5704-721 (E) | 28. NS5741-767 (P) | 29. NS5769-789 (B) 

25a 25b

26a 26b

27a 27b

28a 28b

29a 29b



 

30. NS5792-803 (P) 
 

30a 30b



Appendix 7: Percentage representation of pan-WNV sequences in other flaviviruses. 
 

WNV 
protein Pan-WNV sequence 

Species 
(#) a 

Percentage representation (%) | Total number of sequences analyzed b 

DENV JEV LIV OMSK PV LEV TBEV YFV 

prM 125-ESWILRNPGYALVA-138 5 25|524     100|29   

158-LLLLVAPAYS-167 7  98|100       
E 104-GCGLFGKGSIDTCA-117 31 52|1295 99|245 100|15   100|97 98|150 77|163

293-LKGTTYGVC-301 1  1|256       

370-ELEPPFGDSYIV-381 11 40|1402 98|253    94|77   

417-LGDTAWDFGS-426 9 84|1296 96|252    100|77   

449-LFGGMSWITQGL-460 5  99|244    100|77   
NS1 114-GWKAWGKSI-122 2  95|58       

195-HSDLSYWIES-204 4  95|57    100|27   

209-TWKLERAVLGEVKSCTWPETHTLWG-233 6  100|57    100|27   

276-DFDYCPGTTVT-286 4  2|58    96|27   

313-CRSCTLPPLR-322 6 92|335 2|58       

328-GCWYGMEIRP-337 10 97|329 98|58    100|27   
NS2a 4-DMIDPFQLGL-13 3  12|58       
NS2b 12-GLMFAIVGGLAELD-25 3  100|55       
NS3 1-GGVLWDTPSP-10 1 32|247        

145-DVIGLYGNGVIMP-157 4 9|258        

191-VLDLHPGAGKTR-202 11 40|255     100|26   

235-ALRGLPIRY-243 2 40|255        

256-EIVDVMCHATLTHRLMSPHRVPNYNLF-282 25  100|53    100|26 100|17 5|22 

288-HFTDPASIAARGYI-301 12 80|245 98|53    100|26  100|22

310-AAAIFMTATPPG-321 11 100|245 100|53    96|26   

357-GKTVWFVPSV-366 8 99|275        



WNV 
protein 

Pan-WNV sequence 
Species 

(#) a 

Percentage representation (%) | Total number of sequences analyzed b 

DENV JEV LIV OMSK PV LEV TBEV YFV 

408-TTDISEMGANF-418 34 99|275 100|53    100|26 100|17  

451-TAASAAQRRGR-461 29 72|273 100|53    100|26 94|17  

526-LRGEERKNFLE-536 2  2|53    100|26   

540-TADLPVWLA-548 3  100|53       

563-WCFDGPRTNT-572 1  100|53       
NS4a 43-ALEELPDALQT-53 3  100|52       

115-MIVLIPEPEKQRSQTDNQLA-134 10 35|239 100|52    100|26   
NS4b 138-AQRRTAAGIMKN-149 10 69|248 100|52    100|26   

156-VATDVPELER-165 3  100|52       
NS5 79-DLGCGRGGWCYYMATQK-95 36 99|246 94|52   88|17 100|27 100|31 100|21

107-GPGHEEPQLVQSYGWNIVTMKS-128 6      96|27   

141-DTLLCDIGES-150 13 99|245 2|52      100|21

208-RNPLSRNSTHEMYWVS-223 30 99|244    100|17 96|27 100|17 100|21

235-MTSQVLLGRMEK-246 1  100|52       

259-NLGSGTRAVG-268 5  100|52       

299-NHPYRTWNYHGSY-311 5      100|26   

318-SASSLVNGVVRLLSKPWD-335 6  100|52    100|26   

340-VTTMAMTDTTPFGQQRVFKEKVDTKAPEP-368 30 100|306 100|52   100|27 100|26 65|17 100|21

375-VLNETTNWLW-384 1  100|52       

404-KVNSNAALGAMFEEQNQW-421 6  92|52    96|26   

451-TCIYNMMGKREK-462 34 99|299 98|52   84|19 96|26 88|17 100|21

472-GSRAIWFMWLGARFLEFEALGFLNEDHWL-500 55 99|304 100|52    100|29 100|18 100|22

504-NSGGGVEGLGLQKLGY-519 9  2|52       

533-YADDTAGWDTRIT-545 59 100|300 98|52  100|13 94|17 100|27 100|18 100|22

548-DLENEAKVLE-557 2  100|52       



WNV 
protein 

Pan-WNV sequence 
Species 

(#) a 

Percentage representation (%) | Total number of sequences analyzed b 

DENV JEV LIV OMSK PV LEV TBEV YFV 

571-IELTYRHKVVKVMRP-585 10  98|52    100|27   

596-ISREDQRGSGQVVTYALNTFTNL-618 61 3|302 100|52  100|13 94|17 100|27 100|18 100|22

662-RMAVSGDDCVVKPLDDRFA-680 30 98|303 100|52   94|17 100|27  95|22 

689-MSKVRKDIQEWKPS-702 9  96|52    96|27   

704-GWYDWQQVPFCSNHFTEL-721 7 68|303 98|52       

741-GRARISPGAGWNVRDTACLAKSYAQMW-767 9  98|53    100|27   

769-LLYFHRRDLRLMANAICSAVP-789 45 100|302 100|53    96|28   

792-WVPTGRTTWSIH-803 38      100|27 92|24  
 

a The species column indicates the total number of viral species that share the pan-WNV sequence 
b Percentage representation of WNV sequences in other viral species is only shown for species with at least a total of 10 sequences reported at NCBI Entrez protein database. 

These viral species include: DENV, Dengue virus type 1, 2, 3 or 4; JEV, Japanese encephalitis virus; LIV, Louping ill virus; OMSK, Omsk hemorrhagic fever virus; PV, 

Powassan virus; LEV, St. Louis encephalitis virus; TBEV, Tick-born encephalitis; and YFV, Yellow fever virus. However, despite having a total of ≥ 10 sequences reported, 

some of these viruses had less than 10 of the relevant conserved sequence (indicated by cells shaded in grey). Empty cells indicate no match between the pan-WNV 

sequences and the Flavivirus.  

 



Appendix 8: Putative HLA supertype-restricted binding nonamer peptides in pan-WNV sequences, predicted by immunoinformatics 
algorithms (NetCTL, Multipred (MP), ARB and TEPITOPE (TP)). 
 

WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

prM 125-ESWILRNPGYALVA-138  

  126-SWILRNPGY-134 A1     A24 A26             B62                 

   127-WILRNPGYA-135                                     DR   

    128-ILRNPGYAL-136   A2       B7 B8         B62             DR   

     129-LRNPGYALV-137               B27             A2       DR   

      130-RNPGYALVA-138                             A2           

 158-LLLLVAPAYS-167  

 158-LLLLVAPAY-166 A1   A3   A26   B8       B58 B62             DR DR 

  159-LLLVAPAYS-167                             A2       DR DR 

E 1-FNCLGMSNRDF-11  

 1-FNCLGMSNR-9                               A3     DR   

 104-GCGLFGKGSIDTCA-117  

    107-LFGKGSIDT-115                                     DR   

 293-LKGTTYGVC-301  

 293-LKGTTYGVC-301                                     DR   

 338-SVASLNDLTPVGRLVTVNP-356  

 338-SVASLNDLT-346                             A2           

   340-ASLNDLTPV-348   A2                     A2   A2           

         346-TPVGRLVTV-354           B7 B8           A2   A2           

 370-ELEPPFGDSYIV-381  

  371-LEPPFGDSY-379 A1                 B44   B62                 

 449-LFGGMSWITQGL-460  

 449-LFGGMSWIT-457                                     DR   

  450-FGGMSWITQ-458                                       DR 

    452-GMSWITQGL-460   A2         B8         B62     A2           

NS1 58-RSVSRLEHQMW-68  

  59-SVSRLEHQM-67         A26           B58 B62                 



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

   60-VSRLEHQMW-68                     B58                   

 154-EVEDFGFGL-162  

 154-EVEDFGFGL-162 A1       A26       B39                       

 195-HSDLSYWIES-204  

 195-HSDLSYWIE-203 A1                                       

  196-SDLSYWIES-204                                   B44     

 209-TWKLERAVLGEVKSCTWPETHTLWG-233  

 209-TWKLERAVL-217       A24     B8   B39                       

  210-WKLERAVLG-218                                     DR   

   211-KLERAVLGE-219                         A2               

    212-LERAVLGEV-220                   B44                     

     213-ERAVLGEVK-221               B27                         

       215-AVLGEVKSC-223                         A2               

        216-VLGEVKSCT-224                         A2               

         217-LGEVKSCTW-225                     B58                   

          218-GEVKSCTWP-226                   B44                     

            220-VKSCTWPET-228                                     DR   

               223-CTWPETHTL-231 A1 A2             B39   B58   A2               

                224-TWPETHTLW-232       A24             B58                   

 276-DFDYCPGTTVT-286  

  277-FDYCPGTTV-285                             A2     B44 DR   

 313-CRSCTLPPLR-322  

 313-CRSCTLPPL-321               B27 B39                       

  314-RSCTLPPLR-322     A3                         A3         

 328-GCWYGMEIRP-337  

 328-GCWYGMEIR-336                               A3         

NS2a 4-DMIDPFQLGL-13  

  5-MIDPFQLGL-13 A1 A2             B39   B58   A2   A2           

 69-NSGGDVVHLALMATF-83  

 69-NSGGDVVHL-77                 B39                       

   71-GGDVVHLAL-79                 B39                       



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

    72-GDVVHLALM-80                                   B44     

      74-VVHLALMAT-82                                     DR DR 

       75-VHLALMATF-83       A24     B8 B27 B39                   DR   

NS2b 1-GWPATEVMTA-10  

  2-WPATEVMTA-10           B7                     B7   DR   

 12-GLMFAIVGGLAELD-25  

  13-LMFAIVGGL-21   A2           B27       B62 A2   A2       DR DR 

   14-MFAIVGGLA-22                                     DR   

    15-FAIVGGLAE-23                                     DR DR 

     16-AIVGGLAEL-24   A2     A26 B7           B62 A2   A2           

      17-IVGGLAELD-25                                     DR   

 32-PMTIAGLMF-40  

 32-PMTIAGLMF-40 A1     A24             B58 B62                 

 108-SAYTPWAILPS-118  

 108-SAYTPWAIL-116           B7     B39   B58 B62                 

   110-YTPWAILPS-118                             A2       DR DR 

NS3 52-TTKGAALMSG-61  

 52-TTKGAALMS-60                           A3             

 63-GRLDPYWGSV-72  

 63-GRLDPYWGS-71               B27                         

  64-RLDPYWGSV-72 A1 A2                         A2           

 74-EDRLCYGGPW-83  

  75-DRLCYGGPW-83               B27                         

 108-NVQTKPGVFKTP-119  

 108-NVQTKPGVF-116 A1     A24   B7 B8         B62                 

  109-VQTKPGVFK-117     A3                     A3         DR   

   110-QTKPGVFKT-118                           A3             

 131-PTGTSGSPIVDK-142  

    134-TSGSPIVDK-142     A3                     A3             

 145-DVIGLYGNGVIMP-157  

  146-VIGLYGNGV-154                             A2       DR   



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

   147-IGLYGNGVI-155                                     DR   

    148-GLYGNGVIM-156   A2                   B62                 

     149-LYGNGVIMP-157                                     DR   

 161-YISAIVQGERM-171  

 161-YISAIVQGE-169                         A2           DR   

  162-ISAIVQGER-170     A3                     A3   A3     DR   

   163-SAIVQGERM-171         A26           B58                   

 235-ALRGLPIRY-243  

 235-ALRGLPIRY-243 A1   A3   A26             B62   A3             

 256-EIVDVMCHATLTHRLMSPHRVPNYNLF-282  

 256-EIVDVMCHA-264         A26               A2               

  257-IVDVMCHAT-265                                     DR   

   258-VDVMCHATL-266             B8     B44               B44     

    259-DVMCHATLT-267                           A3 A2           

     260-VMCHATLTH-268     A3                 B62 A2     A3     DR DR 

      261-MCHATLTHR-269     A3                       A2 A3     DR   

       262-CHATLTHRL-270                 B39                       

        263-HATLTHRLM-271           B7 B8                           

         264-ATLTHRLMS-272                           A3             

          265-TLTHRLMSP-273                         A2               

           266-LTHRLMSPH-274     A3                         A3     DR   

             268-HRLMSPHRV-276               B27 B39       A2               

               270-LMSPHRVPN-278                                     DR   

                271-MSPHRVPNY-279 A1   A3   A26           B58 B62                 

                  273-PHRVPNYNL-281                 B39                       

                   274-HRVPNYNLF-282 A1     A24     B8 B27 B39                       

 288-HFTDPASIAARGYI-301  

  289-FTDPASIAA-297 A1 A2                         A2           

     292-PASIAARGY-300 A1                                       

      293-ASIAARGYI-301                               A3         

 310-AAAIFMTATPPG-321  



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

 310-AAAIFMTAT-318           B7                 A2           

    313-IFMTATPPG-321                                     DR DR 

 337-QTEIPDRAWN-346  

 337-QTEIPDRAW-345                     B58                   

 357-GKTVWFVPSV-366  

  358-KTVWFVPSV-366   A2     A26           B58   A2   A2           

 385-QLNRKSYETEYPKCKN-400  

 385-QLNRKSYET-393                         A2 A3             

   387-NRKSYETEY-395 A1           B8 B27                         

     389-KSYETEYPK-397     A3         B27           A3   A3         

       391-YETEYPKCK-399                   B44                     

 408-TTDISEMGANF-418  

 408-TTDISEMGA-416 A1                                       

   410-DISEMGANF-418 A1       A26             B62                 

 422-RVIDSRKSVKP-432  

 422-RVIDSRKSV-430           B7           B62 A2               

  423-VIDSRKSVK-431     A3                     A3             

 451-TAASAAQRRGR-461  

 451-TAASAAQRR-459     A3                     A3   A3         

   453-ASAAQRRGR-461                           A3   A3         

 526-LRGEERKNFLE-536  

 526-LRGEERKNF-534               B27                         

  527-RGEERKNFL-535             B8                           

 540-TADLPVWLA-548  

 540-TADLPVWLA-548 A1                           A2           

 563-WCFDGPRTNT-572  

 563-WCFDGPRTN-571                                     DR   

NS4a 19-KTWEALDTMYVVATA-33  

 19-KTWEALDTM-27   A2     A26           B58   A2   A2           

  20-TWEALDTMY-28 A1                                       

   21-WEALDTMYV-29                   B44         A2     B44 DR DR 



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

    22-EALDTMYVV-30   A2     A26               A2               

     23-ALDTMYVVA-31 A1 A2                     A2   A2           

      24-LDTMYVVAT-32                                   B44 DR   

       25-DTMYVVATA-33         A26                   A2           

 43-ALEELPDALQT-53  

 43-ALEELPDAL-51   A2             B39       A2               

   45-EELPDALQT-53                   B44                     

 101-GTKIAGMLLLSLL-113  

 101-GTKIAGMLL-109 A1                                       

  102-TKIAGMLLL-110         A26       B39       A2               

   103-KIAGMLLLS-111     A3                   A2   A2           

    104-IAGMLLLSL-112   A2       B7                         DR DR 

 115-MIVLIPEPEKQRSQTDNQLA-134  

 115-MIVLIPEPE-123                                     DR   

  116-IVLIPEPEK-124     A3                     A3   A3         

    118-LIPEPEKQR-126                           A3   A3         

           125-QRSQTDNQL-133               B27 B39                       

NS4b 68-TSLTSINVQASAL-80  

  69-SLTSINVQA-77   A2                     A2   A2           

   70-LTSINVQAS-78                                     DR DR 

    71-TSINVQASA-79         A26                   A2           

     72-SINVQASAL-80           B7 B8         B62 A2               

 138-AQRRTAAGIMKN-149  

 138-AQRRTAAGI-146                       B62 A2               

  139-QRRTAAGIM-147               B27                         

   140-RRTAAGIMK-148               B27           A3             

    141-RTAAGIMKN-149     A3                                   

 156-VATDVPELER-165  

 156-VATDVPELE-164                                     DR   

  157-ATDVPELER-165 A1                         A3   A3         

 208-VTLWENGASSVWNATTAIGLCH-229  



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

  209-TLWENGASS-217                         A2   A2           

   210-LWENGASSV-218                         A2               

    211-WENGASSVW-219                   B44 B58 B62                 

        215-ASSVWNATT-223 A1                                       

          217-SVWNATTAI-225   A2     A26 B7           B62 A2   A2           

            219-WNATTAIGL-227                             A2       DR   

              221-ATTAIGLCH-229 A1   A3                     A3   A3         

NS5 60-AKLRWLVER-68  

 60-AKLRWLVER-68               B27           A3             

 79-DLGCGRGGWCYYMATQK-95  

   81-GCGRGGWCY-89 A1                                       

    82-CGRGGWCYY-90 A1       A26             B62                 

     83-GRGGWCYYM-91               B27                         

         87-WCYYMATQK-95     A3                     A3   A3     DR   

 107-GPGHEEPQLVQSYGWNIVTMKS-128  

 107-GPGHEEPQL-115           B7                             

     111-EEPQLVQSY-119         A26         B44                     

         115-LVQSYGWNI-123   A2                     A2   A2       DR   

          116-VQSYGWNIV-124                       B62     A2       DR   

            118-SYGWNIVTM-126       A24         B39                       

             119-YGWNIVTMK-127               B27                         

 141-DTLLCDIGES-150  

  142-TLLCDIGES-150                             A2           

 152-SSAEVEEHRT-161  

 152-SSAEVEEHR-160                           A3   A3         

 168-VEDWLHRGP-176  

 168-VEDWLHRGP-176                   B44                     

 208-RNPLSRNSTHEMYWVS-223  

    211-LSRNSTHEM-219           B7         B58 B62         B7   DR   

     212-SRNSTHEMY-220 A1           B8 B27                         

      213-RNSTHEMYW-221                     B58                   



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

 235-MTSQVLLGRMEK-246  

 235-MTSQVLLGR-243 A1   A3                   A2 A3 A2 A3         

    238-QVLLGRMEK-246     A3                     A3   A3         

 259-NLGSGTRAVG-268  

 259-NLGSGTRAV-267   A2                     A2   A2           

 299-NHPYRTWNYHGSY-311  

 299-NHPYRTWNY-307 A1                                       

    302-YRTWNYHGS-310               B27                     DR   

     303-RTWNYHGSY-311 A1   A3   A26   B8 B27     B58 B62   A3   A3         

 318-SASSLVNGVVRLLSKPWD-335  

 318-SASSLVNGV-326   A2                     A2   A2           

  319-ASSLVNGVV-327 A1                                       

   320-SSLVNGVVR-328                           A3   A3         

    321-SLVNGVVRL-329 A1 A2     A26       B39     B62 A2   A2           

     322-LVNGVVRLL-330   A2                   B62 A2   A2       DR   

      323-VNGVVRLLS-331                                     DR DR 

         326-VVRLLSKPW-334           B7           B62             DR DR 

          327-VRLLSKPWD-335                                     DR DR 

 340-VTTMAMTDTTPFGQQRVFKEKVDTKAPEP-368  

 340-VTTMAMTDT-348                                     DR   

    343-MAMTDTTPF-351 A1     A24   B7 B8       B58 B62         B7   DR   

      345-MTDTTPFGQ-353 A1                                       

        347-DTTPFGQQR-355                           A3   A3         

         348-TTPFGQQRV-356 A1       A26                               

          349-TPFGQQRVF-357           B7 B8         B62         B7       

           350-PFGQQRVFK-358                           A3             

            351-FGQQRVFKE-359                                     DR   

             352-GQQRVFKEK-360     A3         B27           A3             

                 356-VFKEKVDTK-364                           A3             

 375-VLNETTNWLW-384  

 375-VLNETTNWL-383   A2             B39     B62 A2   A2           



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

  376-LNETTNWLW-384 A1                   B58                   

 404-KVNSNAALGAMFEEQNQW-421  

 404-KVNSNAALG-412                           A3             

  405-VNSNAALGA-413                             A2       DR DR 

   406-NSNAALGAM-414         A26                               

    407-SNAALGAMF-415         A26             B62                 

       410-ALGAMFEEQ-418                         A2               

          413-AMFEEQNQW-421                     B58 B62 A2 A3             

 440-EREAHLRGEC-449  

  441-REAHLRGEC-449                   B44                     

 451-TCIYNMMGKREK-462  

 451-TCIYNMMGK-459         A26                 A3   A3         

  452-CIYNMMGKR-460     A3                     A3   A3         

   453-IYNMMGKRE-461                                     DR   

    454-YNMMGKREK-462                           A3   A3     DR DR 

 472-GSRAIWFMWLGARFLEFEALGFLNEDHWL-500  

 472-GSRAIWFMW-480                     B58                   

  473-SRAIWFMWL-481               B27 B39                       

    475-AIWFMWLGA-483   A2                         A2           

     476-IWFMWLGAR-484                               A3     DR   

      477-WFMWLGARF-485       A24     B8         B62             DR   

       478-FMWLGARFL-486   A2         B8         B62     A2       DR DR 

         480-WLGARFLEF-488 A1     A24     B8         B62 A2           DR   

            483-ARFLEFEAL-491             B8 B27 B39 B44                     

              485-FLEFEALGF-493 A1                     B62             DR   

               486-LEFEALGFL-494                   B44         A2           

                 488-FEALGFLNE-496                   B44                 DR   

                   490-ALGFLNEDH-498                               A3         

                    491-LGFLNEDHW-499                     B58                   

                     492-GFLNEDHWL-500       A24           B44                     

 504-NSGGGVEGLGLQKLGY-519  



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

 504-NSGGGVEGL-512                 B39                       

     508-GVEGLGLQK-516     A3                     A3             

      509-VEGLGLQKL-517                   B44                     

        511-GLGLQKLGY-519 A1   A3                 B62                 

 533-YADDTAGWDTRIT-545  

 533-YADDTAGWD-541                                     DR   

    536-DTAGWDTRI-544 A1       A26               A2               

 548-DLENEAKVLE-557  

 548-DLENEAKVL-556                         A2               

 571-IELTYRHKVVKVMRP-585  

 571-IELTYRHKV-579                   B44               B44 DR   

  572-ELTYRHKVV-580             B8           A2               

   573-LTYRHKVVK-581     A3                     A3   A3     DR   

    574-TYRHKVVKV-582       A24                 A2               

     575-YRHKVVKVM-583             B8 B27 B39                   DR DR 

      576-RHKVVKVMR-584                           A3             

 596-ISREDQRGSGQVVTYALNTFTNL-618  

     600-DQRGSGQVV-608                       B62                 

       602-RGSGQVVTY-610 A1   A3         B27     B58 B62                 

         604-SGQVVTYAL-612           B7 B8   B39                       

           606-QVVTYALNT-614                           A3             

            607-VVTYALNTF-615 A1     A24 A26 B7         B58 B62             DR   

             608-VTYALNTFT-616                             A2       DR   

              609-TYALNTFTN-617       A24                                 

               610-YALNTFTNL-618 A1 A2   A24 A26 B7 B8   B39 B44     A2   A2       DR   

 620-VQLVRMMEGEGV-631  

 620-VQLVRMMEG-628                                     DR DR 

   622-LVRMMEGEG-630                                     DR   

    623-VRMMEGEGV-631                                     DR DR 

 662-RMAVSGDDCVVKPLDDRFA-680  

  663-MAVSGDDCV-671                             A2   B7       



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

   664-AVSGDDCVV-672                         A2   A2           

      667-GDDCVVKPL-675                   B44               B44     

         670-CVVKPLDDR-678                           A3             

          671-VVKPLDDRF-679                       B62                 

 689-MSKVRKDIQEWKPS-702  

   691-KVRKDIQEW-699                     B58 B62                 

    692-VRKDIQEWK-700               B27           A3         DR   

      694-KDIQEWKPS-702                                   B44     

 704-GWYDWQQVPFCSNHFTEL-721  

  705-WYDWQQVPF-713 A1     A24     B8   B39                   DR   

     708-WQQVPFCSN-716                                     DR   

      709-QQVPFCSNH-717                       B62       A3         

       710-QVPFCSNHF-718 A1     A24 A26             B62                 

        711-VPFCSNHFT-719                                 B7   DR   

          713-FCSNHFTEL-721 A1           B8   B39 B44     A2   A2           

 741-GRARISPGAGWNVRDTACLAKSYAQMW-767  

 741-GRARISPGA-749               B27                         

  742-RARISPGAG-750           B7                             

   743-ARISPGAGW-751               B27                         

     745-ISPGAGWNV-753 A1                           A2           

           751-WNVRDTACL-759                 B39           A2       DR   

            752-NVRDTACLA-760                         A2   A2           

             753-VRDTACLAK-761 A1             B27                         

              754-RDTACLAKS-762                                   B44     

               755-DTACLAKSY-763 A1       A26             B62                 

                  758-CLAKSYAQM-766   A2     A26   B8           A2               

                   759-LAKSYAQMW-767                     B58               DR   

 769-LLYFHRRDLRLMANAICSAVP-789  

 769-LLYFHRRDL-777             B8                       DR DR 

  770-LYFHRRDLR-778                           A3         DR   

   771-YFHRRDLRL-779       A24     B8   B39       A2           DR   



WNV Protein Pan-WNV Sequence 

HLA Supertype-Restriction of Predicted Nonamer Peptide a 

Class I Class II 

NetCTL MULTIPRED ARB MP TP 

A1 A2 A3 A24 A26 B7 B8 B27 B39 B44 B58 B62 A2 A3 A2 A3 B7 B44 DR DR 

    772-FHRRDLRLM-780             B8                       DR   

     773-HRRDLRLMA-781               B27                         

      774-RRDLRLMAN-782               B27                         

        776-DLRLMANAI-784             B8           A2               

         777-LRLMANAIC-785                                     DR DR 

          778-RLMANAICS-786     A3                   A2 A3             

           779-LMANAICSA-787   A2                   B62 A2   A2       DR DR 

            780-MANAICSAV-788   A2                     A2   A2           

 792-WVPTGRTTWSIH-803  

 792-WVPTGRTTW-800           B7         B58 B62                 

  793-VPTGRTTWS-801           B7                             

   794-PTGRTTWSI-802       A24                                 
 

a Putative supertypes-restrictions of nonamer sequences with concurring predictions from at least two prediction tools are highlighted in grey. Hotspots with at least three 

sequential nonamers overlapping by eight amino acids, found in 7 of the 78 pan-WNV sequences, are each indicated by a box. 



Appendix 9: Phylogenetic relationship of (A) polyprotein proteome sequences of selected 29 flaviviruses and B) sequences in the proteins 
of these flaviviruses that corresponded to 41 of the 44 pan-DENV sequences. The evolutionary relationship of the proteins containing 
these pan-DENV sequences is also provided in panel B. The pan-DENV sequences 296AARGYISTRV305 (NS3) and 
35PASAWTLYAVATT47 (NS4b) were excluded from the analysis because of technical difficulty in generating their trees using the 
alignment data extracted from the flaviviruses. In addition, the pan-DENV sequence 383VIQLSRKTFD392 (NS3) was ignored because the 
corresponding sequence in the DENV1 strain was a variant 
 



A) Evolution of full polyprotein proteome of selected Flaviviruses 

 



B) Evolution of E protein of selected Flaviviruses 
 

 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence E 97VDRGWGNGCGLFGKG111 

 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence E 252VLGSQEGAMH261 

 



Evolution of NS1 protein of selected Flaviviruses 

 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 12ELKCGSGIF20 

 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 25VHTWTEQYKFQ35 

 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 193AVHADMGYWIES204 

 
 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 229HTLWSNGVLES239 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 266GPWHLGKLE274 

 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 294RGPSLRTTT302 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS1 325GEDGCWYGMEIRP337 

 



Evolution of NS3 protein of selected Flaviviruses 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 46FHTMWHVTRG55 
 

 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 148GLYGNGVVT156 

 

 
 
 
 
 
 



 
 
Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 189LTIMDLHPG197 

 

 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 256EIVDLMCHATFT267 
 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 284MDEAHFTDP292 
 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 313IFMTATPPG321 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 357GKTVWFVPSIK367 

 



  
Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 406VVTTDISEMGANF418 

 

  



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 491EAKMLLDNI499 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS3 537LMRRGDLPVWL547 

 

 



Evolution of NS4a protein of selected Flaviviruses 
 

 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS4a 126QRTPQDNQL134 

 



Evolution of NS4b protein of selected Flaviviruses 
 

 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS4b 118HYAIIGPGLQAKATREAQKR137 

 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS4b 139AAGIMKNPTVDGI151 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS4b 213FWNTTIAVS221 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS4b 223ANIFRGSYLAGAGL236 

 



Evolution of NS5 protein of selected Flaviviruses 
 

 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 6GETLGEKWK14 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 79DLGCGRGGWSYY90 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 104TKGGPGHEEP113 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 141DTLLCDIGESS151 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 209PLSRNSTHEMYW220 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 302TWAYHGSYE310 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 342AMTDTTPFGQQRVFKEKVDTRT363 

 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5450CVYNMMGKREKKLGEFG466 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 468AKGSRAIWYMWLGAR482 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 505SGVEGEGLH513 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 531YADDTAGWDTRIT543 

 
 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 568IFKLTYQNKVV578 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 597DQRGSGQVGTYGLNTFTNME616 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 658RMAISGDDCVVKP670 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 707VPFCSHHFH715 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 765LMYFHRRDLRLA776 

 

 
 
 
 
 
 



Evolution of sequences in selected Flaviviruses corresponding to the pan-DENV sequence NS5 790PTSRTTWSIHA800 

 

 
 


