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Abstract

Abstract

Advances in cognitive neuroscience, brain imaging and signal processing technologies

provide us with an increasing array of diagnostic and therapeutic technologies for neuro-

logical disorders. Some important application areas of neurological therapy include: brain

tumors, developmental disorders, epilepsy, motor neuron diseases, muscular dystrophies,

neurogenetic disorders, pain, Parkinson’s pathology and stroke.

In this thesis, neurological therapies which consist of advanced engineering technologies

such as brain imaging, signal processing, pattern recognition, intelligent control, and ad-

vanced robotics are presented for motivating future development of neurological therapies.

Three major neurological disorders - epilepsy, stroke, and autism are studied, and neuro-

logical therapies are proposed as aid in the treatment of these neurological disorders. By

investigating the characteristics of these neurological disorders, pattern recognition based

brain signal processing approaches, and multimodal human robot interaction (HRI) based

advanced robotics are presented for neurological therapies of these neurological disorders.

The first application is the detection and prevention of epilepsy. For detection of epileptic

seizures, a new electroencephalography (EEG)-based brain state identification method is

presented. Several statistical features which are specifically suited for detection of epileptic
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Abstract

spike waves are derived and support vector machine (SVM) is used to classify the low-

dimensional features. It is illustrated by experimental evaluation that the proposed method

is a promising way for automatic seizure detection. Once epileptic states are identified

from normal states of epilepsy patients, the problem of controlling the synaptic plasticity to

constrain bursting activity in epileptic seizures can be addressed by a direct drug injection

or electrical stimulation of related brain region. With a good understanding of dynamical

changes in the brain during seizures onset and the mechanisms that cause these changes,

a model based control is designed to develop close-loop stimulation system for brain states

restoration in epileptic seizures onset. Numerical simulations are carried out to illustrate

the effectiveness of the proposed controls.

Another important application is stroke rehabilitation. Clinical studies have shown that

robotic rehabilitation helps to improve impairment of the upper limb after chronic stroke.

Recently, brain computer interface (BCI)-based robotic rehabilitation is introduced which

directly translates brain signals that involve motor or mental imagery into commands for

controlling the robot and bypasses the normal motor output neural pathways. In this work,

a human-friendly interactive robot is developed as a visual and motion feedback for BCI

system to help the patients to be more cognitively engaged in rehabilitative training process.

For the BCI system, a feature fusion of common spatial pattern (CSP) and autoregressive

(AR) spectral analysis is proposed to extract features from EEG signal with left hand

movement imagination or right hand movement imagination for further classification of

these two brain states. Quadratic discriminant analysis (QDA) is utilized as classifier for

the combined feature vectors. The feature fusion method is proved to outperform each of

the single-feature extraction algorithms in motor imagery BCI system through both off-line

x
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and real-time experiments.

Finally, social therapy of autism is studied based on some well-developed hypothesis of

cognitive and social science. An interactive robot, RoBear, is developed with multimodal

HRI to help autistic children become more socially engaged. Under the multimodal HRI

framework we proposed in this study, RoBear is able to identify the face and voice, and sen-

sitive to the emotional change of the human working with it. Scale invariant neighborhood

linear embedding (SINLE) is proposed for sound source recognition motivated by neigh-

borhood linear embedding (NLE) and scale adaptation of human’s perception. Weighted

locally linear embedding (WLLE) motivated by weighted distance measurement and locally

linear embedding (LLE) is proposed for feature extraction of face images to obtain more

compact and low-dimensional representations. WLLE is demonstrated to outperform sev-

eral well-known face recognition algorithms through extensive experiments. For the social

rehabilitation process, training scenarios are designed based on hypotheses of cognitive sci-

ence and social psychology, in the form of games between child and robot. During the

interaction between child and robot, the robot will elicit physical and psychological states

of the child, followed by therapy of management according to social norms.

Through these neurological therapies based on brain signal processing and advanced

robotics, how advanced engineering technologies such as brain imaging, signal processing,

pattern recognition, intelligent control, and advanced robotics allow for effective design

of therapeutic schemes achieving brain states restoration are shown for motivating future

development concerning the spectrum of neurological therapy.
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Chapter 1

Introduction

1.1 Background and Motivation of Research

In recent years, brain signal processing has received much attention and many significant

advances have been made in this field. Brain signal processing refers to investigations on

analysis, extraction, enhancement, detection, localization, recognition and classification of

brain signals and patterns. Due to the complexity and nonlinear characteristic of brain sig-

nal, research on brain signal processing is still focusing on development of the fundamental

data analysis methodologies. A great number of research articles, books, reporting algo-

rithms, and applications within the fields of analysis and recognition of brain signals and

patterns have been published in various journals and conferences. How to make a good use

of brain signal sensing and processing technologies in real world for practical applications

is still an open problem.

Among the well-known applications of brain signal processing, neurological therapy is
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1.2 Brain Imaging Techniques

one of the most important and promising areas. Neurological therapy, also called neu-

rological rehabilitation, refers to a series of diagnostic and therapeutic technologies for

neurological disorders. Advances in cognitive neuroscience, brain imaging and engineering

technologies such as signal processing and pattern recognition provide us with an increas-

ing array of necessary technologies for novel neurological therapy. However, because many

aspects of neurological functioning and illness are not yet fully understood, it is still chal-

lenging to aid the treatment of neurological diseases by the available brain signal processing

and pattern recognition technologies for obtaining optimal effect of neurological therapy.

This research aims to develop fundamental brain signal processing and pattern recog-

nition algorithms. Furthermore, based on current advances in robotics, interactive robot

with multimodal HRI is developed and applied for designing novel neurological therapeutic

schemes. Through presentation of three different applications in neurological therapy, how

advanced engineering technologies such as brain imaging, signal processing, pattern recog-

nition, intelligent control, and advanced robotics allow for effective design of therapeutic

schemes that achieve brain states restoration are shown for motivating future development

concerning the spectrum of neurological therapy.

1.2 Brain Imaging Techniques

During the past decade, a number of techniques have been developed for brain activities

monitoring and recording based on different bio-sensors, and can be classified into two main

classes of invasive or non-invasive.

Invasive methods refer to intracranial methods for measuring brain activities, which

2



1.2 Brain Imaging Techniques

is called electrocorticography (ECoG) or intracranial EEG (I-EEG). In these methods,

electrodes are implanted intracranially in either single cortical area or multiple areas si-

multaneously. A single area method records neuronal activity from a specific area. These

methods are usually used in some BCI applications [1,2] or some medical diagnosing applica-

tions [3–6]. These methods suffer from instability related to variability of neuronal activity

and changes in the sampled populations of neurons. This problem can be conquered by

utilizing a multiple recording method, which can take in the advantages of distributed in-

formation of the whole brain, so that it can provide stable signals for controlling prosthesis

with multiple degree of freedom and other complicated mechatronics systems [7–14], or gain-

ing fundamental knowledge for analysis of the human neural network mechanism [15, 16].

However, the invasive methods for monitoring brain activity are not easily acceptable for

their possible dangers caused by brain intrusion. Furthermore, the huge quantity of data

to be processed bring in computational complexity for implementation.

The non-invasive ways include, but are not limited to: EEG that directly measures

the electrical activity of the brain; magnetoencephalographic (MEG) that measures the

magnetic fields produced by electrical activity in the brain; functional magnetic resonance

imaging (fMRI) and near infrared spectroscopy (NIRS) which detect changes of blood oxy-

gen levels in active brain areas; and a series of nuclear medical imaging techniques such

as positron emission tomography (PET) and single photon emission computed tomography

(SPECT). Different from intracranial methods, most of the non-invasive methods are only

brain function tests and gross correlates of brain activity. Compared to the invasive brain

imaging techniques, the major advantage of non-invasive techniques is that it requires no

brain surgery operation, and avoids the risk of possible dangers. The spatial resolution, time

3



1.2 Brain Imaging Techniques

resolution [17–19], hardware complexity and cost [18] of these brain imaging techniques are

briefly presented in Fig. 1.1.

Spatial
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Figure 1.1: Core features comparison of brain imaging techniques

Among these methods, PET as well as SPECT is partially invasive as it requires ra-

dioactive injection which may have potential harm to human, though no surgery operation

is needed [20, 21]. fMRI does not require radioactive injection but still causes exposure

to X-rays. It can record on a spatial resolution in the region of 3-6 millimeters, but with

relatively poor temporal resolution compared to EEG. This may result from that fMRI

measures blood activity which has a slower response while EEG measures electrical/neural

activity directly with fast response.

NIRS is typically used in pharmaceutical, medical diagnostics such as blood sugar and

oximetry, food and agrochemical quality control, and combustion research. To apply NIRS

as an alternative and direct way of brain functional imaging is a relatively novel idea.

NIRS has a few merits like high degree of flexibility, high biochemical specificity, and high
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sensitivity in detecting small substance concentrations [22]. Similar to EEG, NIRS also has

the disadvantage of low spatial resolution. Despite this limitation, the advantages of NIRS

make it a promising way of brain functional imaging. Recently, it was claimed in [23–25]

that the optical response of NIRS denoting brain activation can be used as an alternative to

electrical signals as EEG, with the intention of developing a more practical and user-friendly

BCI.

MEG hardware is helmet-shaped and contains as many as 300 sensors, covering most

of the head. Because the MEG, like EEG, measures the electrical activity of the neurons

directly, it promises extremely high temporal resolution (better than 1 ms), which is compa-

rable with that of intracranial electrodes. Additionally, MEG offers better spatial resolution

than EEG, although not as good as PET, SPECT and fMRI. It is completely non-invasive,

and there is no possible damage by radioactive injection or exposure to X-rays and magnetic

fields as opposed to PET and SPECT. Moreover, the biosignals measured by MEG do not

depend on head geometry as much as EEG does. Because of these merits, MEG becomes

a rapidly growing and increasingly popular brain imaging technique. MEG shares several

disadvantages with EEG. The unique disadvantage of MEG compared with EEG is that

MEG hardware is extremely expensive, and it requires a magnetically shield room, adding

to the expense and hindering the feasibility of this imaging technique.

Compared to the techniques mentioned above, EEG has several strong features as a

tool for exploring brain activity. Compared to fMRI, which has time resolution between

seconds and minutes, EEG has a much higher temporal resolution and is capable of detecting

electrical activity changes in the brain on a millisecond time scale. Furthermore, EEG

measures the brain’s electrical activity directly, while other methods are indirect markers
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of brain electrical activity by recording changes in blood flow (e.g., SPECT, fMRI, NIRS)

or metabolic activity (e.g., PET). The need for subject to hold still in EEG experiment is

perhaps less stringent than in fMRI and NIRS. Compared to MEG, EEG is inexpensive

and has no requirement for shield environment, so that it holds promises for developing low

cost and portable brain monitoring system.

EEG used to be an important clinical tool for diagnosing, monitoring and managing

neurological disorders such as epilepsy, stroke, brain tumours, migraine headaches, Parkin-

son’s disease, etc. Recently, because of its non-invasive characteristic and less stringent

requirement for experiment subject, EEG has become a popular tool for neuroscience re-

search. For example, a lot of cognitive research is conducted with EEG using the event

related potential (ERP), which is obtained by averaging the EEG signal from each of the

trials within a certain condition. Besides, a lot of research has been done to transfer this

former medical technique to novel BCIs development [26–28].

The disadvantages of EEG include the poor spatial resolution, inability to measure

activity in subcortical structures, the constraint of assuming a single source of brain activity

at any time instant, and the impossibleness to reconstruct a unique intracranial current

source for a given EEG signal since EEG is a measurement of the combined electrical

activities of massive neuronal populations. Despite these limitations, the advantages of

EEG such as non-invasiveness, relatively low cost and portability make it well suited for

brain monitoring in the case that high spatial resolution and sensitivity are not required.

Consequently, EEG is commonly used in neurological therapies to reduce the cost, enhance

convenience and improve the feeling of patients.
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1.3 Neurological Therapy

Neurological therapy, also called neurological rehabilitation, refers to a series of diagnostic

and therapeutic technologies which can be used in rehabilitation of neurological disorders.

Although many aspects of neurological functioning and illness are not yet fully under-

stood, neurologists have an increasing array of diagnostic and therapeutic technologies from

which to choose. Clinical study generally applies directly to mechanisms of the diseases of

the nervous system which may then be translated into studies of brain imaging techniques,

brain signal processing techniques, and discovery of revolutionary therapies such as electri-

cal stimulation for epilepsy treatment and robotic rehabilitation for motor recovery. Some

important neurological therapy include: epilepsy, stroke, motor neuron diseases, muscular

dystrophies, brain tumors, developmental disorders, pain, Parkinson’s pathology and etc.

In following subsections, three major neurological disorders and their therapeutic related

issues are introduced and discussed.

1.3.1 Epilepsy Treatment

Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked

seizures [29]. These seizures are transient signs and symptoms of abnormal, excessive or

synchronous neuronal activity in the brain [30]. About 50 million people worldwide have

epilepsy.

The diagnosis of epilepsy typically includes neurological examination, routine EEG,

Long-term video-EEG monitoring, neuropsychological evaluation, and neuroimaging such

as MRI, SPECT, PET. fMRI and MEG are also used as supplementary tests in some
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epilepsy centers. Among these methods, because of its non-invasiveness, relatively low cost

and portability, EEG monitoring is commonly used as a helpful tool for seizures diagnosis

and detection [3, 5, 6, 31–33].

The mainstream treatment of epilepsy is anticonvulsant medications. Often, anticonvul-

sant medication treatment will be lifelong and can have major effects on quality of life. Since

the introduction of the first antiepileptic drug, bromides, in 1857, many effective antiepilep-

tic drugs have been found, such as Primidone, Carbamazepine, Clonazepam, Ethoxuximide,

Valproate, etc. Unfortunately, epilepsy is usually only controlled, but not cured with medi-

cation. Even worse, over 30% of people with epilepsy do not have seizure control even with

the best available medications [34,35]. Moreover, it was reported in a European survey [36]

that there is at least one anticonvulsant related side effect in 88% of patients with epilepsy.

Surgical treatment may be considered as an alternative way to cure epilepsy by remov-

ing a focal abnormal part of the brain tissue through surgery operation. Neurosurgical

operations for epilepsy can be palliative, reducing the frequency or severity of seizures. For

some patients, an operation can be curative. It is a good option for patients whose seizures

remain resistant to treatment with anticonvulsant medications and have a focal abnormality

that can be located and therefore removed. The goal of epilepsy surgery is to locate the loci

of the epileptic abnormality and remove the relative brain tissue, yet whether the removal

of brain tissue will affect normal brain function has not been fully investigated.

Recently, several electrical stimulation treatments have been developed [37–39] to be

reasonable alternatives of surgical treatment when the patient is reluctant to any required

invasive monitoring, or when there are multiple epileptic foci, although the success rates

are not usually equal to that of epilepsy surgery. Vagus nerve stimulation (VNS) which
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involves implanting a computerized electrical stimulator of the vagus nerve was reported to

be helpful for patients with localization-related epilepsies and patients with certain gener-

alized epilepsies like Lennox-Gastaut syndrome [37]. Responsive neurostimulation system

(RNS) consists of a computerized electrical device implanted in the skull with electrodes

implanted in presumed epileptic foci within the brain [38, 39]. The RNS contains several

brain electrodes and device with seizure-detection software. Different from the VNS that

stimulates the vagus nerve at preset intervals and intensities of current, the RNS only deliv-

ers a small electrical charge to the epileptic focus when the seizure-detection device detects

abnormal signal transmitted from the brain electrodes. As such, it was claimed that the

RNS is a more effective method with less side effects to brain. Deep brain stimulation

(DBS) [40] consists of computerized electrical device implanted in the chest in a manner

similar to the VNS, but electrical stimulation is delivered to deep brain structures through

depth electrodes implanted through the skull. The efficacy of the VNS, RNS and DBS in

localization-related epilepsies is still under investigation.

Besides, there are many other treatments for epilepsy. A special high fat, low carbo-

hydrate diet can be helpful in the treatment of children with severe, medically-intractable

epilepsies, but the mechanism of action is unknown. Avoidance therapy consists of minimiz-

ing or eliminating triggers in patients whose seizures are particularly susceptible to seizure

precipitants. The warning system contains a seizure response dog trained to summon help

or ensure personal safety when a seizure occurs. Rarely, a dog may develop the ability to

sense a seizure before it occurs, but this is not suitable for every one and not all dogs can

be so trained. A possible alternative is the electronic form of seizure detection which is

currently under investigation [5, 6, 31,33,41].
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1.3.2 Stroke Rehabilitation

Stroke is the third leading cause of death and the leading cause of severe disabilities all

over the world [42]. About 40% of stroke survivors are left with some degree of impairment,

which creates a burden for the stroke survivors and to societies. In Singapore, stroke has

an estimated prevalence rate of 4.05% [43]. About 25% of people who suffered stroke will

survive for at least a year, but around 50% of stroke survivors will have moderate to severe

disabilities relating to movement, cognition, speech and activities of daily living. Stroke

affects the quality of life of the survivors in their daily functioning in the workplace, home,

and community.

Recovery from stroke can be distinguished in terms of motor recovery and functional

recovery [44]. Motor recovery refers to improvements in the strength, speed or accuracy of

arm and leg movements. Functional recovery refers to improvement in performance such as

self-care and walking. Motor recovery is the basis of function recovery. It can occur as a

result of natural recovery and stimulated recovery involving rehabilitation interventions.

The principle behind motor recovery is brain plasticity - the reorganization of brain

tissue [45, 46]. In the past, the complex wiring of the adult human brain was thought to

be fixed. Presently, it is known that the human brain is dynamically changing at all times

throughout its lifespan [47]. Based on the key aspects of brain plasticity, the fundamental

functions of the healthy brain are no different from those in stroke patients who have a

lesser complement of intact neural pathways. Hence, the brain is capable of adjusting itself

and undergoes plastic changes in reaction to brain injury.
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With effective rehabilitation, stroke patients could partially regain their functional im-

pairment and continue with their activities of daily living. Rehabilitation is the processes

involving professionals such as doctors, nurses, therapists, social service staff and psycholo-

gists to improve the quality of life for people facing daily living difficulties caused by chronic

diseases [48]. Physical therapy is the de facto motor rehabilitation [49], which involves hu-

man therapists to assist patients in recovering their motor ability. However, physiotherapies

are currently labor intensive and expensive [50]. Furthermore, the maximum effectiveness

of the existing physiotherapy approaches is rapidly being reached. This has resulted in a

pressing need for new therapeutic strategies to take advantage of recent advances in tech-

nology in order to optimize productivity and functional outcome on the rehabilitation of

stroke patients.

The infancy of therapeutic robotics began around the last decade. Although the appli-

cation of robotics to rehabilitation has a longer history, the substantial increase of research

in the recent years is due to a significant shift away from assistive technology for people

with disabilities towards therapeutic technology to support and enhance clinicians produc-

tivity and effectiveness to facilitate the patients recovery [51]. The robotic rehabilitation

devices offer a way to precisely control and measure rehabilitation therapy. Modern robotic

stroke rehabilitation alleviates the labor-intensive aspects of physical rehabilitation by hu-

man therapists [52]. Studies have shown that effective movement therapy can be delivered

from robots [51]. Rehabilitation programs that incorporate robotic and information technol-

ogy can ameliorate the increasing burden on manpower by automating parts of the process

that are repetitive and time-consuming. Additionally, robots are able to provide consistent

training in an efficient manner, and pervasive and accurate monitoring of the progress of
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patients.

In current robotic rehabilitation approaches, the robot provides assistive actions based

solely on the motor output variables such as the position of the robot but not the cognitive

processes that drive and monitor voluntary movements [51]. The assumption is that the

patient is well motivated towards the therapy and fully utilizing the neural mechanisms

pertaining to motor intention and attention. For typical robot-aided rehabilitation involving

reaching movements of the paretic limb, in the absence of any motor output from the

patients within a time limit, the robot automatically moves the patients’ limb to the target

and back. In this case, it is difficult to judge objectively whether the patient is cognitively

involved in the process.

For a more holistic approach, the mind robot approach synergizes non-invasive BCI

technology with robot-assisted rehabilitation to enable relevant cognitive processes to be

detected and monitored [53]. This is motivated by the recent advent of BCI technology

that enables the translation of thoughts and intents of humans to actions by machines.

1.3.3 Autism Therapy

Autism is a brain development disorder characterized by impaired social interaction and

communication, and by restricted and repetitive behavior. These signs all begin before a

child is three years old. Autism involves many parts of the brain but how this occurs is not

well understood [54]. About 0.1 % of people worldwide have autism, with about four times

as many males as females.

Social deficits distinguish autism and the related autism spectrum disorders (ASD)

from other developmental disorders [55]. People with autism have social impairments and
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often lack the intuition about others that many people take for granted. Unusual social

development becomes apparent early in childhood. Parents usually notice signs in the first

two years of their child’s life [56]. The signs usually develop gradually, but some autistic

children first develop more normally and then regress [57].

The main goals of treatment of ASD are to lessen associated deficits and family distress,

and to increase quality of life and functional independence. No single treatment is best,

and treatment is typically tailored to the child’s needs [56]. Available approaches include

applied behavior analysis, developmental models, structured teaching, speech and language

therapy, social skills therapy, and occupational therapy [56].

Besides behavioral treatment, many medications are used to treat ASD symptoms that

interfere with integrating a child into home or school when behavioral treatment fails [55,

58–60]. But the medications may have adverse effects [56], and there is no known medication

relieves autism’s core symptoms of social and communication impairments [61].

Many alternative therapies and interventions are available, but few of them are sup-

ported by scientific studies [62, 63]. Treatment approaches have little empirical support in

quality-of-life contexts, and the success measures of the treatment lack predictive validity

and real-world relevance [64]. Furthermore, although most alternative treatments have only

mild adverse effects, some may place the child at risk [65,66]

Recently, robot assisted autism therapies were proposed. Studies showed that individ-

uals with social-cognitive disabilities, including autistic children, tend to be more receptive

to robots than to human beings [67]. In [68], some mobile and interactive robots, including

Roball and Tito, were used for building interaction between autistic children and robots for

fostering children’s selfesteem. A creature-like robot, Muu, has been developed in [69] for
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observing how autistic children spontaneously collaborate with the robot in shared activ-

ities such as arranging colored blocks. In [70], social robots have been used for the study

of children’s social development, and found that autistic children interacting with a robot

showed positive proto-social behaviors such as touching, vocalizing, smiling, which were

rare in their daily life.

1.4 Objectives and Scope of the Thesis

There is a long history of investigation on neurological disorders. A variety of treatments

like medication, surgery and physical therapy have been developed for neurological disor-

ders. However, most of the existing neurological therapies are labor intensive and expensive,

and the maximum effectiveness of the existing approaches is rapidly being reached. Fur-

thermore, because many aspects of neurological functioning and illness are not yet fully

understood, there is no clear design target for treatment of neurological disorders nor any

reliable standard to gauge its effectiveness. These resulted in a pressing need for new ther-

apeutic strategies to take advantage of recent advances in engineering technologies in order

to optimize productivity and functional outcome in the neurological therapy. It is promising

and challenging to involve the available advanced engineering technologies in the treatment

of neurological disorders.

The general objectives in this thesis are to develop preliminary works using advanced

engineering techniques for future development concerning the spectrum of neurological ther-

apies and to investigate the most important modules of the neurological therapy in three
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different real-world applications: detection and treatment of epilepsy; mind robotic reha-

bilitation for stroke; and social therapy for autism.

Specifically, this thesis aims to

(i) design a detection and prevention scheme for treatment of epilepsy. Statistical meth-

ods and effective machine learning algorithms such as feature extraction and classifi-

cation are utilized in EEG signal processing for automatic seizures detection. After

detection of seizures, a nonlinear closed-loop control scheme is designed for automatic

drug delivery or electrical stimulation to prevent seizures based on a good understand-

ing of dynamical changes of brain in seizures onset and the mechanisms that cause

these changes.

(ii) develop a mind robotic rehabilitation system for recovery of stroke. This novel reha-

bilitation is based on advanced robotics and BCI technology. A human-friendly robot

is designed for motor rehabilitation to help the stroke patients with regular training

at home in a more convenient way. In addition, the robotic rehabilitation is combined

with motor imagery based BCI technology to let the patients be cognitively involved

in the training process.

(iii) investigate child robot interaction and develop an interactive pet robot for social ther-

apy of autism. The interactive pet robot is developed based on multimodal HRI which

consists of real-time vision system for human face detection and recognition, and audio

system for sound source recognition. Based upon these human identification technolo-

gies, an individualized treatment plan can be applied for each patient after in-depth
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evaluation of the patients’ needs and goals. A training scheme of child robot inter-

action is designed for social therapy of autistic children to help them communicated

better in social life.

The work presented in this thesis is problem oriented and dedicated to the fundamental

academic exploration of pattern recognition algorithms and control designs for brain signal

processing and multimodal HRI in developing interactive robot for neurological therapy.

For the fundamental academic research on pattern recognition, we mainly focus on

feature extraction, and propose several manifold learning algorithms like CSP, WLLE, NLE

and SINLE for novel feature extraction of (i) EEG signal for detecting brain state and (ii)

image and sound data for multimodal HRI. Classification is also an important aspect in

pattern recognition. A well-designed classifier may significantly improve the final results of

pattern recognition, but since the optimization of classifier is not within the scope of the

thesis, we do not propose nor utilize more effective classifier in our study. Instead, we use

some simple and standard classifiers such as SVM, BPNN and QDA to evaluate our feature

extraction algorithms.

Practical implementation of these algorithms to develop effective neurological therapeu-

tic schemes is also discussed for three neurological disorders - epilepsy, stroke and autism.

These applications are chosen to be presented because their treatments cover most of the

important modules in neurological therapy like medical diagnosis, medication optimization,

motor rehabilitation and social therapy. Many other neurological disorders like brain tu-

mors, developmental disorders, muscular dystrophies, neurogenetic disorders, pain, Parkin-

son’s pathology are also worth investigating, but these are not within the scope of this
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thesis.

1.5 Thesis Outline

This thesis is organized as follows:

In Chapter 2, with the review and extension of existing methods for detection of

epileptic seizures, a novel EEG based brain-state identification method is presented for

automatically detecting epileptic seizure. The automatic detection of seizures is realized by

feature extraction algorithms and classification algorithms. Numerous statistical features

from both time domain and frequency domain are extracted. SVM and BPNN are used

as classifier. These algorithms are evaluated and compared through experiments on two-

channels I-EEG data obtained from Swiss mice.

In Chapter 3, the problem of controlling the synaptic plasticity to constraint bursting

activity in epileptic seizures is addressed by designing a closed-loop control strategy for a

direct drug injection or electrical stimulation of related brain region. The control strategy

is designed on the basis of a good understanding of dynamical changes in seizures onset

and the mechanisms that cause these changes. Dynamic properties of the model describing

interaction between synaptic strength and the intracellular calcium concentration [Ca2+]i

are explored, and nonlinear control design is presented through backstepping.

In Chapter 4, a human-friendly mind robotic rehabilitation is developed for regular

training of stroke rehabilitation. The mind robotic rehabilitation is developed based on

non-invasive motor imagery based BCI technology. For the BCI system, the usage of a

spatial filtering algorithm, CSP, is proposed for feature extraction which maximize the
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discrimination of two different brain states, left hand movement imagination and right

hand movement imagination. Furthermore, a feature fusion of feature vectors from both

CSP and AR spectral analysis can obviously improve the performance of the BCI. QDA is

applied to classify the combined feature vectors into left or right motor imagery categories.

An interactive robot is developed as a visual and motion feedback for BCI to make the user

more cognitively engaged into rehabilitative training process.

In Chapter 5, social therapy of autism is studied for research and development of

an interactive robot pet, RoBear, to help autistic children becoming more socially engaged.

RoBear is developed based on well understanding of autism from neuroscience and cognitive

science point of view and advanced robotics technology with multimodal HRI. Under a

multimodal HRI framework, RoBear is able to identify the face and voice and sensitive to

the emotion change of the patients working with it. The RoBear with multimodal HRI is

responsive to the physical and psychological states of the patients and detects both implicit

and explicit communication from the human to determine its own behavior.

In Chapter 6, under the multimodal HRI framework proposed in Chapter 5, an intelli-

gent audio human detection system that is able to recognize user’s voice is introduced. The

sound sources recognition is realized using an unsupervised learning algorithm, NLE, which

is able to extract the intrinsic features such as neighborhood relationships, global distri-

butions and clustering property of a given data set. Additionally, motivated by the scale

adaptation of human’s perception, several scale invariant metrics are designed to enhance

the intrinsic feature extraction performance of NLE.

In Chapter 7, under the multimodal HRI framework proposed in Chapter 5, a real-time

vision system for detecting and recognizing human face from real environment is introduced.
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Firstly, the human face is detected using Adaboost-based Haar-Cascade classifier, and then

extreme learning machine (ELM) is used to improve the real human face detection. Sec-

ondly, feature extraction algorithm like LLE and WLLE are proposed and utilized for finding

compact and distinctive descriptors of face image for face recognition.

Finally, Chapter 8 summarizes the work presented in this thesis. It concludes this

thesis and highlights the major contributions. It also discusses the limitations of this thesis

and suggests future research directions that can be extended from the current research

results.
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Detection and Prevention of

Epilepsy
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Chapter 2

Automatic Detection of Epileptic

Seizures in EEG Signal

2.1 Introduction

Epilepsy is one of the most common neurological disorders affecting almost 1% of the pop-

ulation worldwide. This disorder is normally characterized by the abnormal synchronized

firing of a large number of neurons. The large synchronized event is known as a seizure,

paroxysmal discharge, or ictal event.

Initially, the epilepsy research community shared low confidence in the prediction of

seizures because that seizures were highly random phenomena without any prior indica-

tion of occurrence. But over time, many research groups have observed clinical symptoms

and quantitative measures that foreshadow seizure onsets. With the intent to foster more

proactive means of treating epilepsy, such findings have invoked interesting discussion and

methods for seizure prediction. To date, precursor detection schemes have been focused
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on spikes, sharp waves, or combinations of spikes and sharp waves as an event of interest.

Prospective studies on prediction of epileptic seizures have been published in peer-reviewed

journals. These methods include time-domain analysis of EEG signal by statistical anal-

ysis and characteristics computation [33], frequency-domain analysis by decomposing the

EEG signal into components of different frequencies [5, 6, 71], non-linear dynamics and

chaos theory [41, 72], and intelligent systems such as artificial neural network and other

artificial-intelligence structures [31]. Over the past 30 years, seizure detection technology

has matured. Despite impressive advances, all reported approaches suffer from some prob-

lems, such as the requirements of careful patient-specific tuning; the requirement of a priori

localization of the seizure focus; and the need of large quantity of seizure data, which is

expensive to collect.

Techniques for overcoming some or all of these limitations hold promise for developing

more precise and widely applicable methods to control or eliminate seizures. In this work,

we propose a technique for automatic seizures detection. Numerous energy based features

revealed in the literature are used to serve as possible inputs to the classification algorithm,

such as SVM and BPNN. SVM classification is an unsupervised approach, which is one of

its most important advantages. An unsupervised approach allows for uniform treatment

of seizure detection and prediction, and offers many advantages for implementation [3].

For the unsupervised approach, there is no need to perform supervised, patient-specific

tuning during training. Furthermore, the assumption that seizures are electrographically

homogeneous, which is often needed in training of classifier due to very small data sets, is

relaxed.

We evaluate the proposed feature extraction algorithms using two-channels I-EEG data
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obtained from Swiss mice. A comparison of classifiers between SVM and BPNN is presented

to show the advantages of SVM algorithm for detecting epileptic spike wave discharge in

EEG time series.

The contributions in this Chapter lies in

(i) thoroughly analyzing the long term EEG signal recording from experiment mice, la-

beling EEG signal according to revised criteria of kindling model, and windowing the

raw data with the stationary unchanged;

(ii) feature extraction for the time series of EEG signal based on numerous features derived

from time domain analysis, frequency domain analysis, and nonlinear dynamics; and

(iii) utilizing unsupervised SVM classifier to automatically detect seizures onset. It is com-

pared to BPNN through experiments and demonstrated to have better performance.

2.2 Methods

2.2.1 Data Acquisition

Pilocarpine Treatment

Male Swiss mice weighing 25-30g were used for the study according to the established pro-

cedures in [73,74]. Mice were given a single subcutaneous injection of methyl-scopolamine

nitrate (1mg/kg) 30 min before the injection of either saline in the control or pilocarpine

in the experimental group. In the latter group, the mice received a single i.p. injection of

300mg/kg pilocarpine and experienced acute status epilepticus (SE). All experiments were

approved by the Tan Tock Seng Hospital, National Neuroscience Institute, Institutional
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Animal Care and Use Committee. In the handling and care of all animals, the guidelines

for animal research of NIH were strictly followed. Efforts were made throughout the study

to minimize animal suffering and to use the minimum number of animals.

EEG and Video Recording

For EEG and video monitoring, 14 experimental mice at 2 months after inducing pilo-

carpine and 2 age-matched control mice were used. EEG data were recorded continuously

(24 hrs/day) using TSE EEG Telemetry System (TSE Technical and Scientific Equipment

GmbH, Germany) according to the protocols used in our previous study [73]. In brief, two

leads of the transmitter were connected to two tiny screws which were fixed on the skull

2.3 mm posterior the bregma and 2mm lateral to the midline, and then consolidated with

cyanoacrylate and dental acrylic cement (Boswarth Company, USA) under deep anesthe-

sia with hydrochloride (40mg/kg). The transmitter has a built-in 1000-times amplification

capacity with input voltage range of 3µV to 0.7mV , and frequency ranges from 0.4 to

60Hz. The signal from transmitter was transmitted wirelessly to the receiver which was

then digitized (sampling frequency 50Hz) and stored in a personal computer. EEG and

digital video acquisition monitoring (Chateau digital surveillance network system, Chateau

Technical Corp, Singapore) were done continuously 24 hrs/day (12 hr light on/ 12 hr light

off), and all data were stored in computer for further processing and analysis.

A Traditional Technique of Manual Seizure Detection

All recorded EEG data were first assessed manually which contains 2 steps: the observation

of the raw EEG signal; and the careful watching of the subjects appearance on simultaneous
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recorded video. Though the manual observation is a crude method, it confirmed all obvious

epilepsy on the EEG signal and the time and duration of those epilepsy occurrences. The

key points we need to observe in a raw EEG signal are basically on (i) the base line, (ii) the

background noise level, (iii) the presence of any artifact, (iv) the change of amplitude and

(v) the change of frequency. We observed all these points upon performing the four steps

described below:

(i) display (plot) the EEG signal in 1 to 2 hours epoch basis which gives an idea on

signal’s base line and background noise level. It also helps to locate and mark the

artifact on the signal, if any. The artifact signal exhibits extra ordinary high voltage

- mostly signal’s peak is truncated.

(ii) mark the time point where the appearance of the EEG signal is different from its

background noise level, and also mark background noise signal for comparison. This

type of signal marking reduces the burden of checking a vast number of data points

which mostly shows the background noise signal.

(iii) divide the marked signal points into consecutive 1s epochs to make it easy to observe

interictal spike and its rate of presence, and

(iv) display in a view of 10 to 20 second plot, if it shows high rate of spike or signal peak

in 1s epoch plot.

According to traditional technique, an epoch of EEG signal is assumed containing seizure

signal when the neuron fires repeatedly with a frequency of greater than or equal to 5 Hz,

and the appearance of EEG signal changes: the amplitude of peak to peak amplitude
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increases or decreases, and the inter-spike interval becomes shorter.

For the video assessment, we watched the entire recorded video and marked the EEG

recording time where we found any obvious behavior changes which can be ranked as stages

4 and 5 according to revised criteria of kindling model [75]: rearing (stage 4) and falling

or lose of posture (stage 5). Through the manual observation, we confirmed the obvious

seizures onset in the EEG signal and the raw EEG data were labeled according to the time

and duration of those epilepsy occurrences.

2.2.2 Signal Preprocessing

During a seizures, the repeated spikes are normally observed in EEG signal up to 16 Hz

[76–78]. But depending on the subject and activation of seizures, the lower and higher

frequency components are also observed in EEG signals [78]. In this work, we concentrate

on the EEG signal within the frequency band of 8-16 Hz, which normally contains the most

information for detection of seizures. As a result, the raw EEG signal is band-pass filtered

between 8-16 Hz using equiripple FIR filter, and sampled at 50 Hz.

Furthermore, to extract most valuable features, it is important to maintain stationarity

of the data segment. Statistical tests reveal quasi-stationarity of the EEG signal anywhere

from 1 s to several minutes [79]. Since seizures spread so quickly, a displacement as small

as possible that does not provide too much variability is desired. The raw data are divided

into consecutive 1 s epochs. The epoch-divided sections of each channel of the EEG signal

x(n), n = 1, 2, · · · , (N−1)O+D are arranged as the columns (pattern vectors) of an D×N

matrix X, where D is the dimension (number of samples) of each pattern vector, N is the

26



2.2 Methods

number of patterns, and O is the delay between patterns.

X =

































x(1) x(O + 1) · · x[(N − 1) ·O + 1]

x(2) x(O + 2) · · x[(N − 1) ·O + 2]

· · · · ·

· · · · ·

x(D) x(O +D) · · x[(N − 1) ·O +D]

































(2.1)

Motivated by analysis on stationarity and redundancy in [79], we divide the EEG signal

into 1 s epoches, say, D = 50 since the sampling rate is 50 Hz. We choose O = N/2 (overlap

of half of the samples between consecutive pattern vectors). Such short and overlapped

windows ensure that all transient events will be completely represented and dominant in at

least one of the patterns, yet they are long enough to characterize the main rhythms of the

on-going EEG signal.

2.2.3 Feature Extraction

A number of promising feature extraction methods, each with different theoretical bases,

have demonstrated usefulness in seizure prediction. Iasemidis and Sackellares applied non-

linear dynamical techniques, principal Lyapunov exponent (PLE), for prediction the begin-

ning of seizures [80]. Some considered exhaustive search and genetic approach for feature

selection [81], however, the optimal results can only be obtained by testing 850 features us-

ing genetic algorithm and 4300 features using the exhaustive search, thus the computational

complexity is really a problem. Numerous features revealed in the literature are considered

from time domain analysis, frequency domain analysis, and nonlinear dynamics [3, 82, 83].

Selected features are chosen to be computationally efficient and have potential for on-line
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implementation in low-power, implantable environments. The five selected features derived

from the I-EEG for this analysis are described below.

(i) Mean value:

M(n) =
1

N

nN
∑

i=(n−1)N+1

|x(i)| (2.2)

(ii) Curve length:

This feature was originally introduced by Olsen as the “line length” prior to being

described as the “curve length” in [32]. The mathematical representation of the curve

length in its discrete form is

CL(n) =
1

N

n(N−D)+D
∑

i=1+(n−1)(N−D)

|x(i− 1)− x(i)| (2.3)

where CL(n) is the running curve length of the time series x(n), N is the length of

the sliding observation window expressed in number of points, n is the discrete time

index, and D is the overlap. The curve length is useful for observing amplitude and

frequency changes and dimensionality of the signal.

(iii) Accumulated energy:

Let the sequence x(n) be a preprocessed and fused input signal, then the instantaneous

energy of x(n) is given by x2(n). Considering that a sliding window is used, the energy

of the signal becomes the average power over the window mathematically defined as

E(n) =
1

N

nN
∑

i=(n−1)N+1

x2(i) (2.4)
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where N is the size of the sliding window expressed in number of points; n is the

discrete time index. If an overlap of D points is allowed, then the average energy

becomes

ED(n) =
1

N

n(N−D)+D
∑

i=(n−1)(N−D)+1

x2(i) (2.5)

where ED is the average energy or moving average of the power with D points of

overlap. An overlap of 100 points (0.5 s overlap) is used in this work.

(iv) Average nonlinear energy:

This algorithm was presented by Kaiser who was searching for a measure of energy

proportional to both signal amplitude and frequency [84]. For the input signal x(n),

in its discrete form, the nonlinear energy (NE) operator is represented by

NE(n) = x2(n)− x(n− 1)x(n+ 1) (2.6)

The NE is an instantaneous feature, such that it provides one value for each value

of original data. After the NE is obtained, the feature is weighted with a Hanning

window; then the mean of the windowed data, NEw(n), is taken over the desired

sliding window. After windowing, the average nonlinear energy is then

ANE(n) =
1

N

n(N−D)+D
∑

i=1+(n−1)(N−D)

NEw(i) (2.7)

where ANE(n) is the average NE at time n; N is the desired window length; D is

overlap in number of point; and i is discrete time index. The algorithm is sensitive to

both amplitude and frequency changes, and is computationally efficient and simple to

calculate.
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(v) Six Power:

It is found that sixth power is empirically useful for observing small amplitude dif-

ferences in the I-EEG. The sixth power is the sixth power of each data point and is

expressed as:

SPD(n) =
1

N

n(N−D)+D
∑

i=1+(n−1)(N−D)

x6(i) (2.8)

where SPD(n) is the running sixth power of the time series x(n), N is the length of

the sliding observation window, and n is the discrete time index.

2.2.4 Classification

Support Vector Machine

SVM are widely used for learning classifiers and regression models. Its theoretical support

is from statistical learning theory. The SVM empirically works very well, at least for some

classes of problems, provide a good generalization performance on pattern classification

problems despite the fact that it does not incorporate problem-domain knowledge. As an

unsupervised approach, SVM has many important advantages. An unsupervised approach

allows for uniform treatment of seizure detection and prediction without supervised, patient-

specific tuning during training. Also, the assumption that seizures are electrographically

homogeneous, which is often needed in classifier training due to very small data sets, is

relaxed.

The objective of SVM is to find an optimal hyperplane that correctly classifies points as

much as possible and separates the points of two classes as far as possible. Given the training

sample {xi, di}Ni=1, where xi ∈ Rm is the ith sample and di ∈ {−1, 1} is the corresponding
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desired output. Using a discriminant function

g(x) = wTx+ b (2.9)

and choose a weight vector w ∈ Rm and bias b ∈ R such that















g(xi) = wTxi + b ≥ 0, for di = +1

g(xi) = wTxi + b < 0, for di = −1

(2.10)

The equation

g(x) = wTx+ b = 0 (2.11)

is called the equation of the hyperplane that separate the two class of response. If p ∈ Rm

is an arbitrary point in the hyperspace, the distance of the point p from the hyperplane can

be expressed to be ρ = wT p
|w| + b

|w| = g(x)
|w| .

The objective is to find the optimal weight vector w ∈ Rm and bias b ∈ R such that

for a given sample {xi, di}Ni=1, we want the nearest sample is at least some desired distance

away from the hyperplane,

ρ =
1

|w| (2.12)

Hence, the condition in (2.10) can be rewritten as















g(xi) = wTxi + b ≥ 1, for di = +1

g(xi) = wTxi + b < −1, for di = −1

(2.13)

In this condition, the distance between the margins of the two classes is

2ρ = 2/|w| (2.14)
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The condition can also be written as

dig(xi) = di(w
Txi + b) ≥ 1, for i = 1, 2, . . . , N (2.15)

Fig. 2.1 shows the geometry of SVM in feature space.

Support Vectors

b
‖w‖

1
‖w‖

Figure 2.1: Geometry of SVM in feature space with the hyperplane.

The objective is, for a given sample T = {xi, di}Ni=1, to find an optimal hyperplane such

that the condition in (2.15), and the separation margin should be as large as possible. From

the define the margin distance in (7.10), we know that maximizing the separation margin

can be achieved by minimizing |w|.

Therefore, the constrained optimization problem can be defined as follows,

Definition 2.1. Given the training sample xi, di
N
i=1, find the optimum values of the weight

vector w, and bias b such that they satisfy the constrains

dig(xi) = di(w
Txi + b) ≥ 1, for I = 1, 2, . . . , N (2.16)

and the weight vector w minimizes the cost function

Φ(w) =
1

2
wTw (2.17)
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To solve this, use the method of Lagrange multipliers.

J(w, b, α) =
1

2
wTw −

N
∑

i=1

αi[di(w
Txi + b)− 1] (2.18)

In this Lagrangian function, we should minimize J(w, b, α) with respect to w and b,

while maximize J(w, b, α) with respect to α.

Thus, the constrained condition is

∂J(w, b, α)

∂w
= w −

N
∑

i=1

αidixi = 0 (2.19)

∂J(w, b, α)

∂b
=

N
∑

i=1

αidi = 0 (2.20)

where ∂
∂w =

[

∂
∂w1

∂
∂w2
· · · ∂

∂wm

]

.

With regard to the optimization with respect to the Lagrange multiplier λi, we re-

formulate J(w, b, α) using the duality theorem. From (2.18), we can re-write the Lagrangian

function to

J(w, b, α) =
1

2
wTw −

N
∑

i=1

αi[di(w
Txi + b)− 1] (2.21)

=
1

2
wTw −

N
∑

i=1

αidiw
Txi

−b
N
∑

i=1

αidi +
N
∑

i=1

αi (2.22)

From (2.20) we know the third term on the right hand side of (2.22) is zero. And from

(2.19), we have

1

2
wTw =

1

2

N
∑

i=1

N
∑

j=1

αiαjdidjx
T
i xj (2.23)
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and

N
∑

i=1

αidiw
Txi =

N
∑

i=1

N
∑

j=1

αiαjdidjx
T
i xj (2.24)

Hence, (2.22) can be re-written as

Q(α) =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjdidjx
T
i xj (2.25)

Therefore, the problem can be re-formulated into: Given the training sample {xi, di}Ni=1, find

the lagrange multiplier {αi}Ni=1 that maximize the objective function (2.25). And subject

to the constraints
∑N

i=1 αidi = 0 and αi ≥ 0, for i = 1, 2, . . . , N.

Solving (2.25) will find that most αi = 0, except for the support vectors. Hence the

solution for w can be solved by (2.19) to be

w =
N
∑

i=1

αidixi (2.26)

And the bias term can be solved to be b = di − wTxi.

Artificial Back Propagation Neural Network

Artificial neural networks (ANN) are used as a powerful means in engineering area espe-

cially after the development in computer technology. The fundamental characteristic of the

neural networks is an adaptive, non-algorithmic and parallel-distributed memory [85]. Ar-

tificial neural networks are modeled by inspiring from biological neural system and have a

more simple structure. Many neural networks were developed for resembling several known

characteristics of biological neural networks such as learning and reacting. Some charac-

teristics, however, are realized with an engineering approach instead of neuropsychological

one [86].

34



2.2 Methods

For the pattern recognition procedure, a three layer feed forward networks (see Fig.

2.2) employing the back propagation learning algorithm, called BPNN will be applied. The

features matrix can be directly used as the input to the ANN, each column of this matrix

is an input pattern of the neural network. As such, the number of input nodes is equal to

the length of feature vector. And there is only one output node to give the classification

result. After training, the parameters of the network could be decided and used to classify

other data.
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Figure 2.2: Structure of three-layer perceptron neural network.

Consider this multilayer perceptron neural network in Fig. 2.2, the back-propagation

algorithm is derived to minimize energy of the instantaneous error

Eq =
1

2
(dq − x(3)

out)
T (dq − x(3)

out) =
1

2

n3
∑

j=1

e2qj (2.27)

Update law of the synaptic weights can be derived as

w
(s)
ji (k + 1) = w

(s)
ji (k) + η(s)δ

(s)
j x

(s−1)
out,i (2.28)

where

δ
(s)
j = (dqj − x(s)

out,j)φ
′(v

(s)
j ) (2.29)
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for output layer;

δ
(s)
j =

(

ns+1
∑

k=1

δ
(s+1)
k w

(s+1)
kj

)

φ′(v
(s)
j ) (2.30)

for hidden layer.

2.3 Experimental Evaluation

2.3.1 Simulation Study

In this section we use five data sets including normal EEG signal and epileptic spike-

wave discharge signal to study the classification effect of the SVM algorithm, and compare

it with that of BPNN. These five EEG signals to be studied can be downloaded from

www.vis.caltech.edu/ rodri. We thank Gilles van Luijtelaar and Joyce Welting for allowing

their usage and distribution.

Among the five data, each sample contains 5 s of a two-channel EEG recording at

the left and right frontal cortex of male adult WAG/Rij rats (a genetic model for human

absence epilepsy). Signals were referenced to an electrode placed at the cerebellum, they

were filtered between 1-100 Hz and digitized at 200 Hz. Sample A corresponded to a normal

EEG and samples B, C, D and E contained epileptic spike-wave discharges. Details on the

recordings as well as on the physiological results can be obtained from [87].

Two samples of the EEG signal are plotted as in Fig. 2.3, while Fig. 2.3(a) is the

normal EEG signal and Fig. 2.3(b) is the EEG signal containing epileptic spike waves.

From the EEG signal display, we can directly observe some discriminative characteristics of

the signal, e.g., amplitude, frequency, etc. The five statistical features described in Section

2.2.3 are used as inputs to SVM and BPNN.
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(a) Time series waveform of data set A
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(b) Time series waveform of data set B

Figure 2.3: EEG data for simulation study

Table 2.1 provides a summary of the detection results obtained in this simulation study.

In this table, every row demonstrates the results of each sample data from sample A to

sample E. Columns show number of total epochs of each sample; the number of normal

epochs (Nn); the number of seizures epochs (Nsz); and accuracy rate of SVM and BPNN

classification respectively.

Table 2.1: Statistics and classification results of simulation study

Sample Epoch Nn Nsz Accuracysvm Accuracybp

A 38 38 0 1.0000 0.9737
B 38 0 38 1.0000 0.8947
C 38 0 38 1.0000 0.9737
D 38 0 38 1.0000 0.8684
E 38 0 38 1.0000 0.8684

In the simulation, training is performed using a group of random data sets combine

with normal EEG and spike-wave EEG. Testing is performed on sample A to Sample E.

According to the simulation result in Table 2.1, it is obvious that SVM classifier has a

very good performance of 100% accuracy rate for this simple case with artifact free data.

However the BPNN does not have as good performance as SVM with the accuracy rate of
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the five sample between 86.8%-97.4%.

2.3.2 Experimental Results

Long term I-EEG signal (24hrs), recorded from both normal mice and pilocarpine treated

mise who were freely moving are used to test our seizure detection approach. The sampling

rate is 50Hz, and it is a large amount of data in a whole day’s record. We choose a couple

of epoches containing both normal EEG and epileptic EEG, and label them based on the

observation of EEG signal and the video records.

In this experiment, we select two 600 sec (30000 samples) epoches as the train data to

verify the effectiveness of our detection algorithm, one is in normal state and another one is

in seizure. We also choose another 600 sec (30000 samples) I-EEG data with both epileptic

and normal states as test data for validation.

Two epoches of the EEG data are plotted as in Fig. 2.4. Fig. 2.4(a) is the epoch of

normal EEG signal and Fig. 2.4(b) is the epoch of EEG signal labeled as seizures onset.
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(a) Normal state EEG data
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(b) Seizures onset EEG data

Figure 2.4: EEG signal recorded from mice

For all the EEG signals, we first rearrange signals to 1 s windows with 0.5 s overlap. Each
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epoch containing 30000 samples is rearranged into 1199 pattern vectors with dimension of

50. The statistical features are extracted for each pattern vector. The feature vector

consists of the selected statistical features (as mentioned in Section 2.2.3) are then classified

by specific classification method like SVM and BPNN.

Table 2.2 provides a summary of the detection results obtained in this experiment. In

this table, columns show number of total epochs of each sample; the number of normal

epochs (Nn); the number of seizures epochs (Nsz); and accuracy rate of SVM and BPNN

classification respectively.

Table 2.2: Statistics and classification results of experiment on mice data

Sample Epoch Nn Nsz Accuracysvm Accuracybp

Training Sample 2398 1199 1199 0.9708 0.9475
Testing Sample 1199 599 600 0.9541 0.8829

According to the experimental result in Table 2.2, we can conclude that SVM classifier

outperforms BPNN in both training and testing phases in classification of I-EEG data

collected from mice.

2.4 Conclusion

Traditional approaches to seizure detection have many limitations such as the need to collect

precise mark of seizure data for training; requirement of patient-specific parameter tuning

for detection; and the need that seizures are electrographically homogeneous. In this work,

we presented a new, EEG-based, brain-state identification method for detecting epileptic

seizures. To automatically classify the EEG signals and diagnose the epileptic seizures, we
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firstly used some statistical features to obtain low-dimensional representatives of the raw

EEG data. The features which capture the most important features to differentiate epileptic

and normal states are linear separable and easy to be classified. SVM and BPNN were used

to classify the linear separable features. Through these manipulations, seizures onset states

were identified from normal states of the epilepsy patients. Real-time EEG signals recorded

from mice were used for experimental evaluation to show the advantages of the proposed

algorithms.
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Chapter 3

Intelligent Close-loop Control for

Epilepsy Prevention

3.1 Introduction

Among the treatment methods for epilepsy, neurosurgery is suitable for patients for whom

a defined resectable seizure focus can be identified, and vagal nerve stimulation for a small

percentage of patients who are not adequately controlled by existing antiepileptic drugs

(AED) [37]. However, for most patients, pharmacotherapy is still considered to be the

mainstay of treatment.

Since the introduction of the first antiepileptic drug, bromides, in 1857, many effec-

tive antiepileptic drugs have been found,such as Primidone, Carbamazepine, Clonazepam,

Ethoxuximide, Valproate, etc. Unfortunately, such systemic drug therapy is not an ideal

treatment because systemic side effects prohibit use of very high concentrations of the

antiepileptic drug at the seizure focus. This problem, however, can be surmounted by local
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injection of an antiepileptic drug directly into a seizure focus. Many previous studies have

demonstrated the ability to stop seizures in animal models with injection of antiepileptic

medication directly into the seizure focus [88–90]. These novel direct delivery may ensure

better drug efficacy and also avoid potential problems of whole-brain and systemic toxicity.

Recently, a variety of new strategies have been employed or proposed to reduce the

frequency and severity of neocortical seizures [38,39,41,88,91]. Among the most promising

are implantable devices that deliver local therapy, such as direct electrical stimulation or

chemical infusions, to affected regions of the brain [38]. Among these therapies, most are

open loop systems that operate based on the amplitude and duration of stimulation set

by the medical doctor. It therefore strongly suggests that more intelligent “closed loop”

seizure prevention based upon understanding of mechanisms underlying seizure generation

and thorough investigation on the dynamic changes in the brain with seizures are urgently

needed.

Restoration of disordered states in brain for therapeutic purpose can be viewed as a

control problem. Motivated by previous works on both modeling of synaptic plasticity in

neuronal network [92, 93] and nonlinear control [94–96], we investigate the dynamics of

synaptic plasticity in neural network and design a closed loop drug delivery strategy by

model-based feedback control design to obtain maximum efficiency while keeping a low

toxicity level. By exploring the dynamic properties of the system, the model of synaptic

plasticity is divided into two subsystems. The stability of the first subsystem is thoroughly

analyzed and the control law for the second subsystem is designed via backstepping. This

study demonstrate that intelligent control can help in fast design of drug delivery schemes

for epilepsy once a pertinent model of the involved biological mechanism is available. To
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the best of our knowledge, there are few works dealing with epilepsy treatment using such

kind of control therapy in the literature.

The contributions in this Chapter lies in

(i) the combination of biomodeling and nonlinear control design in helping fast design of

drug delivery schemes achieving therapy of epilepsy;

(ii) the division of the original synaptic plasticity system into two subsystems to make the

system become strict feedback form so that the backstepping procedure applicable;

and

(iii) the feedback control design by utilizing backstepping method for the case with pa-

rameters known; the adaptive control design for the case with parameters unknown.

3.2 Problem Formulation

In this work, we shall investigate the problem of treating seizures by controlling the synaptic

plasticity model to restore disordered states in the brain. The simplified mathematical

model describing the dynamic interaction between intracellular calcium concentration and

synaptic plasticity has been proposed in [93] and drawn from [92].

For the convenience of control design, we can rewrite the model in [93] as follows

ẋ1 = f1(x3)− g1(x3)x1 (3.1)

ẋ2 = f2(x2) + g2(x2)x3 (3.2)

ẋ3 = f3(x2, x3)− u (3.3)
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where

f1(x3) =

e80(x3−0.55)

1+e80(x3−0.55) + 0.25
(

1− e80(x3−0.35)

1+e80(x3−0.35)

)

1 + 10
0.001+x3

3

(3.4)

g1(x3) =
1

1 + 10
0.001+x3

3

(3.5)

f2(x2) = −p2x2 (3.6)

g2(x2) = p1(1− x2) (3.7)

f3(x2, x3) = p2p3x2 − p1p3x3(1− x2)− p4
x3

x3 + p5
(3.8)

x1, x2 and x3 are the state variables, pi (i = 1, 2, · · · , 5) are constant parameters, u is

the control variable.

Table 3.1: Description of variables and parameters in synaptic plasticity model

Variables/Parameters Description

x1 synaptic strength
x2 fraction of buffer that are occupied by Ca2+

x3 intracellular calcium concentration
p1 forward binding rates
p2 backward binding rates
p3 total concentration of the buffer
p4 rate of calcium removal by Ca2+ pump
p5 modifier of calcium removal by Ca2+ pump
u control signal, u = −αICa + INMDA

The definitions according to the model in [92], [93] are given in Table 3.1, and their

chemical properties and interpretation are described as follows:

(i) In this synaptic plasticity model, synaptic strength x1 is controlled by the intracellular

calcium concentration x3;

(ii) Intracellular calcium dynamics are described by (3.2) and (3.3), and p3 is the total

concentration of the buffer, x2 represents the fraction of buffer that are occupied by
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Ca2+, p1 and p2 are forward and backward binding rates respectively;

(iii) INMDA and ICa are currents carried by Ca2+ ions through the N-methyl-D-aspartate

(NMDA) Receptor channels and by voltage dependent calcium channels (VDCC); and

(iv) p4 represents rate of calcium removal by Ca2+ pump, and p5 is the modifier in the

Ca2+ pump expression.

Seizure is a disturbance of the neuronal electrochemical activity whereby a set of neurons

suddenly produce a repetitive, synchronous discharge. It has been proved that non-synaptic

neural plasticity (i.e. calcium dependent afterhyperpolarization in neurons) can regulate the

frequency of the dominant rhythm in EEG, while synaptic potentiation may be responsible

for irregular bursting prior to seizure termination [93], [97]. The underlying hypothesis is

that synaptic potentiation and afterhyperpolarization (which regulates patterns of neuronal

bursting) play significant roles in alteration of neural rhythmic activity during seizures.

Therefore, synaptic strength is a critical factor in regulating seizure. By decreasing the

synaptic strength, we aim to restore the neural rhythmic activity. Thus further modeling

must take into account the way in which the synaptic strength acts on regulate neural

rhythmic.

Translated into control terms, the problem here is to act upon a system in order to

modify the biological properties (strength, concentration or amplitude etc.) to make it

closer to a behavior considered as “normal”.

From the models, it is reasonable to think of modifying calcium concentration by NMDA

receptor channels current INMDA and voltage dependent calcium channels current Ica, which

45



3.3 Control Design Methods

can be chosen as control signals and become negative and positive feedback signal respec-

tively. However, INMDA and Ica can be acted upon by more conventional means: drugs,

such as calcium channel blockers (CCBs) and antiepileptic drugs etc., which are known to

have an influence on ICa and INMDA [88]. Accordingly, we do not consider the underlying

mechanism of the relationship between drugs and these two kinds of currents, and suppose

a parameter u = −αICa +INMDA that we are able to vary as a control signal. From a strict

automatic control point of view, we are now dealing with a nonlinear system with three

state variables x1, x2, x3 and one control variable u.

3.3 Control Design Methods

Let x0 = [x10 x20 x30]
T ∈ R3

≥0 denote the health value. Consequently, the control objective

is to force x to converge to x0. We introduce the external control agent u to reduce the

strength of synaptic plasticity for preventing the seizures. Before proceeding further, we

need to study the properties of the system.

3.3.1 Nonnegativity

For the synaptic plasticity system, it is easy to prove that the states of this system are

nonnegative. To show this, the following Lemma is needed:

Lemma 3.1. For a, b ∈ R, ab
a+b < a and ab

a+b < b, if a+ b > 0.

From the chemical property, we know the variables x1(t) > 0, x2(t) > 0, x3(t) > 0, ∀t,

which will also be proved mathematically later. Therefore, we can assume that the initial

values xi(0) > 0, i = 1, 2, 3.
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According to Lemma 3.1, we can see that in (3.4), the term e80(x3−0.35)

1+e80(x3−0.35) < 1. And it is

easy to show that if x3 > 0, we have that

f1(x3) > 0 (3.9)

g1(x3) > 0 (3.10)

From (3.1), we know that ẋ1(t) > 0 whenever x1(t) approaches 0. Consequently, if

x1(0) > 0, x1(t), ∀t, will never be negative.

Similarly, from (3.2), because the parameters p1 and p2 are positive constants, and

assume x2(0) > 0, we know that ẋ2(t) > 0 whenever x2(t) approaches 0. From equation

(3.3), we know that with a suitable designed u, ẋ3(t) > 0 whenever x3(t) approaches 0.

Therefore, if x1(0) > 0, x2(0) > 0 and x3(0) > 0, x1(t), x2(t) and x3(t) will always be

positive, ∀t > 0. The following properties can be obtained.

Property 3.1. From system (3.1)-(3.2)-(3.3), it is noted that if xi(0) > 0, then xi(t) > 0

∀t > 0, i = 1, 2, 3.

3.3.2 Stability Analysis for the Synaptic Plasticity Model

From (3.1), it is noted that x1 depends only on x3, and thus the stabilization of x1 relies

on the proof of the stability of x3. This is because the synaptic strength x1 is controlled by

the intracellular calcium concentration x3. For stability analysis, let us present the follow-

ing technical lemma on bounded input and bounded output property for stable dynamic

inequalities.

Lemma 3.2. Consider the continuous functions y(t) ≥ 0, ∀t ∈ R+ with y(0) bounded. If
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the function y(t) satisfies the following inequality:

ẏ(t) ≤ −λ(t)y(t) + v(t) (3.11)

where λ(t) is a positive continuous function with a lower bound (λ(t) ≥ λmin > 0), and

v(t) is a nonnegative continuous function with a upper bound, we can conclude that y(t) is

bounded.

Proof: Define λmin to be the greatest lower bound of λ(t), and vmax to be the smallest

upper bound of v(t). According to (3.11), we can obtain

ẏ(t) ≤ −λ(t)y(t) + v(t) ≤ −λminy(t) + v(t) (3.12)

Multiplying both sides by eλmint [98], (3.12) becomes

d

dt
(y(t)eλmint) ≤ v(t)eλmint (3.13)

Integrating it over [0, t], we have

y(t) ≤ y(0)e−λmint + e−λmint

∫ t

0
v(t)eλminτdτ

≤ y(0)e−λmint + e−λmintvmax

∫ t

0
eλminτdτ

= y(0)e−λmint +
vmax

λmin
(1− e−λmint)

≤ y(0)e−λmint +
vmax

λmin

≤ y(0) +
vmax

λmin
(3.14)

Therefore, we can conclude that y(t) is bounded. 2
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Since f1(x3) and g1(x3) are monotonic nondecreasing continuous function, and as dis-

cussed in (3.9) and (3.10), f1(x3) > 0, g1(x3) > 0 and g1(0) = 1
10001 , together with

lim
x3→∞

f1(x3) = 1 (3.15)

lim
x3→∞

g1(x3) = 1 (3.16)

we know that f1(x3) and g1(x3) are upper and lower bounded by

0 < f1(x3) < 1 (3.17)

1

10001
< g1(x3) < 1 (3.18)

From Property 3.1, x1 > 0, ∀t > 0. According to Lemma 3.2, and from (3.1), we can

conclude that x1(t) is bounded.

3.3.3 Non-adaptive Control Design for Intracellular Calcium Dynamic

Examining the synaptic plasticity system, it can be seen that (3.2) and (3.3) are in the

strict feedback form, and backstepping design can be directly applied.

To show it clearly, equations (3.2) and (3.3) are written as:

ẏ1 = f3(y1) + p1g3(y1)y2 (3.19)

ẏ2 = f4(y1, y2)− u (3.20)

where

f3(y1) = −p2y1 (3.21)

g3(y1) = (1− y1) (3.22)

f4(y1, y2) = p2p3y1 − p1p3y2(1− y1)−
p4y2

y2 + p5
(3.23)
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In this section, the controller design is developed based on backstepping. Backstepping

is a standard design procedure for handling systems in strict feedback form, which use

intermediate control to handle unmatched uncertainties and final control to be designed at

the last step.

Step 1

Consider Subsystem (3.19)-(3.20). Define z1 = y1 − y10. Its derivative is given by

ż1 = ẏ1 = −p2(z1 + y10) + p1(1− z1 − y10)(z2 + y20 + α) (3.24)

where z2 = y2 − y20 − α, and α is the virtual control to be defined later.

Choose the Lyapunov function candidate

V1 =
1

2
z2
1 (3.25)

Its derivative is given by

V̇1 = z1ż1

= −c1z2
1 + c2z1 + (p1 − p1y10)z1z2 − p1z

2
1z2 + p1z1(1− y1)α (3.26)

where c1 = p2 + p1y20, and c2 = p1y20 − p2y10 − p1y10y20.

Theorem 3.1 (Young’s inequality). Let f be a real-valued, continuous, and strictly increas-

ing function on [0, c], with c > 0. If f(0) = 0, a ∈ [0, c], and b ∈ [0, f(c)] , then

∫ a

0
f(x)dx+

∫ b

0
f−1(x)dx ≤ ab (3.27)

where f−1(·) is the inverse function of f(·) . Equality holds iff b = f(a). Taking the

particular function f(x) = xp−1 gives the special case
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ap

p
+

(

p− 1

p

)

b
p

p−1 ≤ ab (3.28)

which is often written in the symmetric form

ap

p
+
bq

q
≤ ab (3.29)

where a, b > 0, p > 1 and

1

p
+

1

q
= 1 (3.30)

Using Young’s inequality presented above [99–101] , we have

V̇1 ≤ −c1z2
1 +

c22ǫ

2
+
z2
1

2ǫ
+ (p1 − p1y10)z1z2 − p1z

2
1z2 + p1z1(1− y1)α (3.31)

where ǫ is an arbitrary small constant.

In reality, y1 is small. If we can guarantee y1 ≪ 1, which will be proved later, then we

can choose the well defined virtual control,

α =
−z1

2ǫp1(1− y1)
(3.32)

Accordingly, equation (3.31) becomes

V̇1 ≤ −c1z2
1 +

c22ǫ

2
+ (p1 − p1y10)z1z2 − p1z

2
1z2 (3.33)

The first term is stabilizing because c1 = p2 + p1y20 > 0, and the rest terms
c22ǫ
2 + (p1 −

p1y10)z1z2 − p1z
2
1z2 will be handled in the next step.
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Remark 3.1. For the original V̇1 function (3.26), a virtual control α = 1
p1(1−y) (−c2−kz1),

where k > 0, can be easily found to eliminate the c2z1 term and obtain a stable term

−(c1 + k)z2
1 . However, if α contains the term −c2

p1(1−y) , it can never converge to zero. Since

z2 = y2 − y20 −α, our objective of y2 converge to y20 cannot be obtained even when z2 = 0.

By utilizing Young’s inequality, the
z2
1

2ǫ term is formed, the virtual control can be chosen as

α = −z1
2ǫp1(1−y1) , therefore it can converge to zero when z1 converges to zero. In that case, y2

will converge to y20 if z2 converge to zero.

Step 2

Since z2 = y2 − y20 − α, the derivative of z2 is expressed as

ż2 = ẏ2 − α̇

= p2p3y1 − p1p3y2(1− y1)−
p4y2

y2 + p5
− u+

−2p1(1− y1)− 2p1z1
4ǫp2

1(1− y1)2
ẏ1 (3.34)

For (3.24) and (3.34), we shall now design the control law u to render the time derivative

of a Lyapunov function negative definite. Consider the Lyapunov function candidate

V2 = V1 +
1

2
z2
2 (3.35)

According to (3.33) and (3.34), its derivative is

V̇2 = V̇1 + z2ż2

≤ −c1z2
1 +

c22ǫ

2
+ z2[(p1 − p1y10)z1 − p1z

2
1 +

p2p3y1 − p1p3y2(1− y1)− p4
y2

y2 + p5

+
−2p1(1− y1)− 2p1z1

4ǫp2
1(1− y1)2

ẏ1 − u] (3.36)
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It is easy to see that the well defined control

u = (p1 − p1y10)z1 − p1z
2
1 + p2p3y1 − p1p3y2(1− y1)

− p4
y2

y2 + p5
+
−2p1(1− y1)− 2p1z1

4ǫp2
1(1− y1)2

ẏ1 + c3z2 (3.37)

leads to

V̇2 ≤ −c1z2
1 − c3z2

2 +
c22ǫ

2
(3.38)

Consequently, by choosing a suitable small ǫ, it follows from LaSalle-Yoshizawa Theorem

[102, 103] that (z1, z2) approach the set Ω : {(z1, z2) ∈ R × R | V̇2 = 0} [104]. In view of

z1 = y1−y10, z2 = y2−y20−α and α = −z1
2ǫp1(1−y1) , we can conclude that for bounded initial

conditions, all signals in the closed-loop system remain bounded, and the output tracking

error y(t) − y0 converges to a neighborhood around zero by appropriately choosing design

parameters [105]. The previous assumption that y1 ≪ 1 is also guaranteed to assure the

well defined virtual control.

Remark 3.2. We proved in Remark 3.1 that α → 0 when z1 converges to zero. However,

z1 and z2 only converge to a neighborhood around zero actually, such α does not converge

to zero but a neighborhood around zero, too. Without using the method discussed in Remark

3.1, z1 and z2 may converge to zero, but since y2−y20 = z2+α, y2 will be more different from

the healthy value y20. Since we pay more attention to the state of Calcium concentration

y2, we choose this trade-off between convergency of y1 and y2.

3.3.4 Adaptive Control Design for Intracellular Calcium Dynamic

For complex biological systems, the values of parameters are usually difficult to be precise.

As a consequence, the model must have a fairly general structure and the control strategy
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must be robust with respect to uncertainties of model parameters. Therefore, finding a

robust adaptive control for the unknown parameters case is necessary for the implementation

in real therapy procedure.

Assume that pi, (i = 1, . . . , 5), are unknown, considering the plant (3.19)-(3.20), we

find that it is difficult to obtain an adaptive control for plant (3.19)-(3.20) because of the

nonlinear element y2

y2+p5
, which is not in linear-in-the-parameters (LIP) form. This unknown

function can be approximated by function approximation.

The radial-basis function neural network (RBFNN) is usually used as a tool for modeling

nonlinear functions because of its good capabilities in function approximation [106]. In this

work, the following RBFNN [107] is used to approximate the continuous function h(Z):

Rq → R

hnn(Z) = W TS(Z) (3.39)

where the input vector Z ∈ Ω ⊂ Rq, weight vector W = [w1, w2, . . . , wl]
T ∈ Rl, the NN node

number l > 1; and S(Z) = [s1(Z), . . . , sl(Z)]T , with si(Z) being chosen as the commonly

used Gaussian functions, which have the form

S(Z) = exp

[−(Z − µi)
T (Z − µi)

η2
i

]

(3.40)

where µi = [µi1, µi2, . . . , µiq]
T is the center of the receptive field and ηi is the width of the

Gaussian function.

It has been proven that network (3.39) can approximate any continuous function over

a compact set ΩZ ⊂ Rq to arbitrary any accuracy as

h(Z) = W ∗TS(Z) + ǫ,∀Z ∈ ΩZ (3.41)
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where W ∗ is ideal constant weights, and ǫ is the approximation error.

Assumption 3.1. There exists ideal constant weights W ∗ such that |ǫ| ≤ ǫ∗ with constant

ǫ∗ > 0 for all Z ∈ Ωz.

The ideal weight vector W ∗ is an artificial quantity required for analytical purposes.

W ∗ is defined as the value of W that minimizes |ǫ| for all Z ∈ ΩZ ⊂ Rq. In general, the

ideal NN weight, W ∗, is unknown though constant, its estimate, Ŵ , is used for controller

design as will be shown later.

Once the function approximation problem is solved, control design can proceed. At first,

we make the following assumptions for the uncertainties in system (3.19)-(3.20), which will

be used throughout the chapter.

Assumption 3.2. Considering that g3(y1) is strictly positive since y1 ≪ 1, we suppose that

there exist constant g31 ≥ g30 > 0 such that g31 ≥ g3(y1) ≥ g30 > 0, ∀y1 ∈ Ω ⊂ R.

Assumption 3.3. There exist constant g3d > 0 such that |ġ3(y1)| ≤ g3d, ∀y1 ∈ Ω ⊂ R

In this section, we present robust adaptive neural control design for system (3.19)-(3.20)

in strict-feedback form. By combining backstepping methodology with adaptive neural

design, we propose a smooth adaptive neural control for system (3.19)-(3.20). The detailed

design procedure is described in the following steps.

Step 1

Define z1 = y1 − y10. Its derivative is given by

ż1 = ẏ1 = f3(y1) + p1g3(y1)y2 (3.42)
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By viewing y2 as a virtual control input, there exists a desired feedback control

α∗
1 = −c1z1 −

f3(y1)

p1g3(y1)
(3.43)

where c1 > 0 is a design constant.

Since f3(y1) and p1g3(y1) are unknown, the desired feedback control α∗
1 cannot be im-

plemented in practice. The unknown nonlinearity h1(Z1) = f3

p1g3
, which is a continuous

function of y1, can be approximated by an RBF neural network W T
1 S1(Z1), i.e.

h1(Z1) = W ∗T
1 S1(Z1) + ǫ1 (3.44)

where Z1 = y1 ∈ R, W ∗
1 denotes the ideal constant weights, and |ǫ1| ≤ ǫ∗1 is the approxima-

tion error with constant ǫ∗1 > 0.

Since y2 is only taken as a virtual control, not as the real control input for the z1

subsystem, by introducing the error variable z2 = y2−y20−α1, the practical virtual control

α1 is chosen as

α1 = −c1z1 − Ŵ T
1 S1(Z1) (3.45)

where Ŵ1 is the estimate of the neural network to be tuned online. The ż1 equation becomes

ż1 = p1g3(y1)(z2 + y20 + α1 +
f3(y1)

p1g3(y1)
)

= p1g3(y1)(z2 + y20 − c1z1 − W̃ T
1 S1(Z1) + ǫ1) (3.46)

where W̃1 = Ŵ1 −W ∗
1 .

Choose the Lyapunov function candidate

V1 =
1

2p1g3(y1)
z2
1 +

1

2
W̃ T

1 Γ−1
1 W̃1 (3.47)
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where Γ1 = ΓT
1 > 0 is an adaptation gain matrix.

The derivative of V1 is given by

V̇1 =
z1ż1
p1g3

− ġ3z
2
1

2p1g
2
3

+ W̃ T
1 Γ−1

1
˙̂
W1

= z1z2 − c1z2
1 + z1(ǫ1 + y20)−

ġ3z
2
1

2p1g2
3

+ W̃ T
1 Γ−1

1 [
˙̂
W1 − Γ1S1(Z1)z1] (3.48)

Let c1 = c10 + c11, with c10 and c11 > 0. According to Assumptions 3.2 and 3.3, we

obtain the following inequalities

−c11z2
1 + z1(ǫ1 + y20) ≤

(ǫ1 + y20)
2

4c11
(3.49)

−(c10 +
ġ3

2p1g
2
3

)z2
1 ≤ −(c10 −

g3d

2p1g
2
30

)z2
1 (3.50)

We can obtain

V̇1 ≤ z1z2 +
ǫ∗21
4c11

− c∗10z2
1 + W̃ T

1 Γ−1
1 [

˙̂
W1 − Γ1S1(Z1)z1] (3.51)

where ǫ∗1 = ǫ1 + y20, and c10 is chosen such that c∗10 = c10 − g3d

2p1g2
30
> 0, therefore this term

is stabilizing, and the rest terms will be handled in the next step.

Step 2

The derivative of z2 = y2 − y20 − α1 is expressed as

ż2 = ẏ2 − α̇1

= f4(y1, y2)− u− α̇1 (3.52)

From equation (3.45), it can be seen that α1 is a function of y1 and Ŵ1. Thus, α̇1 is

given by

α̇1 =
∂α1

∂y1
ẏ1 +

∂α1

∂Ŵ1

˙̂
W1

=
∂α1

∂y1
[f3(y1) + p1g3(y1)y2] + ψ (3.53)
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Note that α̇1 is unknown because it contains unknown nonlinear functions in ẏ1, however,

it does not matter as the unknown terms can be elegantly handled in the next step.

By noting u is the control input to stabilize the system, there exists a desired feedback

control

u∗ = z1 + c2z2 + f4(y1, y2)− α̇1 (3.54)

where f4(y1, y2) is an unknown function. Utilizing an RBF neural network W T
2 S2(Z2) to

approximate the unknown nonlinearity denoted as h2(Z2), i.e.

h2(Z2) = f4(y1, y2)− α̇1

= W ∗T
2 S2(Z2) + ǫ2 (3.55)

where Z2 = [y1, y2,
∂α1
∂y1

, ψ]T ∈ R4, W ∗
2 is the ideal constant weights, and |ǫ2| ≤ ǫ∗2 is the

approximation error with constant ǫ∗2 > 0.

The actual control input u is chosen as

u = z1 + c2z2 + Ŵ T
2 S2(Z2) (3.56)

Thus, the ż2 equation becomes

ż2 = f4(y1, y2)− α̇1 − u

= −z1 − c2z2 − W̃ T
2 S2(Z2) + ǫ2 (3.57)

Consider the Lyapunov function candidate

V2 = V1 +
1

2
z2
2 +

1

2
W̃ T

2 Γ−1
2 W̃2 (3.58)

where Γ2 = ΓT
2 > 0 is an adaptation gain matrix. The derivative of V2 is
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V̇2 = V̇1 + z2ż2 + W̃ T
2 Γ−1

2
˙̂
W2

≤ ǫ∗21
4c11

− c∗10z2
1 + W̃ T

1 Γ−1
1 [

˙̂
W1 − Γ1S1(Z1)z1]−

c2z
2
2 + z2ǫ2 + W̃ T

2 Γ−1
2 [

˙̂
W2 − Γ2S2(Z2)z2] (3.59)

let c2 = c20 + c21, with c20 and c21 > 0.

Consider the following adaptation law

˙̂
W1 = Γ1[S1(Z1)z1 − σ1Ŵ1] (3.60)

˙̂
W2 = Γ2[S2(Z2)z2 − σ2Ŵ2] (3.61)

and the following inequalities

−c21z2
2 + z2ǫ2 ≤ ǫ22

4c21
(3.62)

−σ1W̃
T
1 Ŵ1 ≤ −σ1‖W̃1‖2

2
+
σ1‖W ∗

1 ‖2
2

(3.63)

−σ2W̃
T
2 Ŵ2 ≤ −σ2‖W̃2‖2

2
+
σ2‖W ∗

2 ‖2
2

(3.64)

the derivative of V2 becomes

V̇2 ≤ −c∗10z2
1 − c20z2

2 +
ǫ∗21
4c11

+
ǫ22

4c21
− σ1‖W̃1‖2

2
+

σ1‖W ∗
1 ‖2

2
− σ2‖W̃2‖2

2
+
σ2‖W ∗

2 ‖2
2

(3.65)

Theorem 3.2. Consider the closed-loop system containing the plant (3.19)-(3.20), the con-

troller (3.56), and the NN weight updating laws (3.60) and (3.61). Assume there exist suf-

ficiently large compact sets Ω1 ∈ R1, Ω2 ∈ R4, such that Z1 ∈ Ω1 and Z2 ∈ Ω2 for all t ≥ 0,

for bounded initial conditions, all signals in the closed-loop system remain bounded, and the
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output tracking error y(t) − y0 converges to a neighborhood around zero by appropriately

choosing design parameter [105].

Proof: Let δ =
ǫ∗21
4c11

+
ǫ22

4c21
+

σ1‖W ∗

1 ‖
2

2 +
σ2‖W ∗

2 ‖
2

2 . If we choose c∗10 >
γ

2p1g30
, c20 >

γ
2

and choose σi and Γi such that σi ≥ γλmax{Γ−1
i }, i = 1, 2, then from (3.65) we have the

following

V̇2 ≤ − γ

2p1g30
z2
1 −

γ

2
z2
2 −

γW̃ T
1 Γ−1

1 W̃1

2
− γW̃ T

2 Γ−1
2 W̃2

2
+ δ

≤ −γ
[

1

2p1g3
z2
1 +

1

2
z2
2 +

W̃ T
1 Γ−1

1 W̃1

2
+
W̃ T

2 Γ−1
2 W̃2

2

]

+ δ

≤ −γV2 + δ (3.66)

Thus, z1, z2, Ŵ1 and Ŵ2 are uniformly ultimately bounded. Since z1 = y1− y10 and y10

is a constant, we can conclude that y1 is bounded. From z2 = y2−y20−α1, and the definition

of virtual control α1 in (3.45), we also can conclude that y2 remains bounded. Using (3.56),

we conclude that control u is also bounded. Thus, all the signals in the closed-loop system

remain bounded.

Let ρ = δ
γ > 0, then (3.66) satisfies

0 ≤ V2(t) < ρ+ (V2(0)− ρ)e−γt (3.67)

From (3.67), we have

1

2p1g3
z2
1 +

1

2
z2
2 < ρ+ (V2(0) − ρ)e−γt < ρ+ V2(0)e

−γt (3.68)

Define g∗ = max{1, ḡ12}, where ḡ12 is the upper bound of p1g3, we have

1

2g∗

2
∑

i=1

z2
i ≤

1

2p1g3
z2
1 +

1

2
z2
2 < ρ+ V2(0)e

−γt (3.69)
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leads to

2
∑

i=1

z2
i < 2g∗ρ+ 2g∗V2(0)e

−γt (3.70)

which implies that given µ >
√

2g∗ρ, there exists T such that for all t ≥ T , the tracking

error satisfies

|zi(t)| < µ (3.71)

where µ is the size of a residual set which depends on the NN approximation error ǫi

and controller parameters ci, σi and Γi. 2

As proved in [105], in this adaptive neural network control, we only need bounded initial

conditions and bounded states (all states of the control system are proved to be bounded

in [105]) to ensure the convergency of the outputs. In other words, the initialization and

persistence excitation are not a problem.

3.3.5 Complete Control

For the whole system, the stability of subsystem (3.19)-(3.20) assures that x2 → x20, x3 →

x30 as t → ∞. Therefore, the convergence of x3 makes x1 converge to a healthy value,

such that the disordered states are restored and the whole system is stable. Consequently,

the disordered states in brain are restored to a normal rhythm and the bursting activity in

epileptic seizures is constrained.
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3.4 Simulation Study

3.4.1 Known Parameters Case

To simulate the calcium dynamics, buffer dynamics and synaptic plasticity strength, the

values of the parameters used are: y10 = 1 × 10−5 mol/L, y20 = 10−7 mol/L, p1 = 108,

p2 = 100, p3 = 3 × 10−5, p4 = 1.8 × 10−5, and p5 = 5× 10−8 [92], and Healthy(y1) = y10,

Healthy(y2) = y20. The initial conditions are y1(0) = 2× 10−5, y2(0) = 2× 10−5.

To verify the effectiveness of the proposed approach, we add the control algorithm

designed in section 3.3.3 to form the closed loop system. Dynamics of buffer and calcium

are shown in Fig. 3.1(a). As shown in Fig. 3.1(a), the states y1, y2 asymptotically regulate

to y1 = y10 and y2 = y20 respectively, all the states remain bounded and the control action

u is bounded as shown in Fig. 3.1(b), too.

The overall strength of a connection between neurons is represented by a single synaptic

weight parameter. According to the state of calcium, the state of synaptic strength can

also be calculated using equation (3.1). The dynamic of synaptic strength is shown in Fig.

3.1(c). From Fig. 3.1(c) we can see that with the controller we design, the synaptic strength

decreases to a low level, which means synaptic depression between neurons.

3.4.2 Unknown Parameters Case

In this case, pi (i = 1, 2, . . . , 5) are assumed to be unknown. The simulation parameters are:

y10 = 1 × 10−5 mol/L, y20 = 10−7 mol/L, and the initial conditions are y1(0) = 2 × 10−5,

y2(0) = 2× 10−5.

With the control and adaptive algorithm designed in section 3.3.4, the simulation results
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Figure 3.1: Simulation results of the known-parameters case

of the adaptive control system are shown in Figs. 3.2(a), 3.2(c) and 3.2(b). Dynamics of

buffer and calcium concentration are shown in Fig. 3.2(a). According to the state of calcium

concentration, the state of synaptic strength is calculated and shown in Fig. 3.2(c).

As shown in Fig. 3.2(a), states y1 and y2 converge to the healthy values y10 and y20,

respectively, while the control signal remains bounded as shown in Fig. 3.2(b). The synaptic

strength, x1, shown in Fig. 3.2(c), decreases to a low level.
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Figure 3.2: Simulation results of the unknown-parameters case

3.4.3 Simulation of Synchronized Bursting Activity

To show the synchronized bursting pattern of seizures and its constraint, we use spatially

distributed single compartment neurons neural networks model. The detailed method has

been described in [108]. The network consists of an array of up to 250 × 250 neurons

connected locally. Each neuron is connected with two neurons randomly chosen from eight

neighbors. The single neurons model is drawn from [92]. The results of Section 3.4.1 and

Section 3.4.2 are used as the value of synaptic strength in this simulation.

In [108], the simulation results in the full array of neurons suggest that the spread of
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firing activity and the velocity of spread are dependent on the strength of the connection,

i.e., the synaptic strength. For that reason, decrease of synaptic strength might have effects

on constraint of the bursting activity in seizures. This is also demonstrated in our simulation

results.

The simulated local field potential is shown in Figs. 3.3(a) and 3.3(b). The former used

synaptic strength which resulted from non-adaptive method, and the latter used the result

of adaptive control. From Figs. 3.3(a) and 3.3(b), we can see that the seizure is constrained

corresponding to the decrease of synaptic strength.
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Figure 3.3: Simulated local field potentials

3.5 Discussion

Based on the developed control strategy, a closed loop drug deliver system is designed to

obtain maximum efficiency while keeping a low toxicity level. Since the direct drug injec-

tion technology bypasses the systemic circulation, it may allow higher local concentrations

without systemic side effects, and do not require penetration of the blood-brain barrier,
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nor systemic safety. Due to these reasons, the closed-loop, automatic direct drug injection

system is promising for the treatment of focal epilepsy.

The significant progresses in measurement of cell signals and concentrations make it

reasonable to think that the state variables in our study, intracellular calcium concentra-

tion, and fraction of calcium buffer, are measurable. In the past years, many genetically

targetable fluorescent indicators are developed [109–111], for example, fluorescent proteins

that change color upon binding Ca2+ [112,113], which is one of the most important dynamic

signals in many types of cells, especially neurons. Although there are several measurement

techniques to evaluate experimentally these concentrations, it may have a high cost or not

applicable for real time measurement. Consequently, an important problem is that to es-

timate the states by using the output and control signal based on the information of the

synaptic plastic dynamical model, in other words, design an observer. We will address the

observer design problem in our next study to make the closed-loop automated drug delivery

scheme more implementable in real epilepsy patients.

In this chapter, we transpose the control problem of antiepileptic drugs’ dose to the

value of INMDA and Ica, but do not consider the underlying mechanism of the relationship

between drugs and these two kinds of currents. This means further modeling should take

into account the way in which the injected drug acts on control parameter u. This is in

itself quite an involved problem, and we do not consider it in the present work. We suppose

we can directly change the value of u, and because u = −αICa + INMDA, we can allow

it to vary between positive and negative value. In simulation, the values of u depends on

calculation of the control algorithm designed in section 3.3.

It seems that current rapid progress in biology and medicine, especially the biosensor,
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drug design and biomodeling etc., will make it possible in an everyday closer perspective to

complete models such as the one under study here, and open a new and very exciting field

for control theory application.

3.6 Conclusion

In this chapter, the dynamic properties of the synaptic plasticity model were studied. By

exploiting the system properties, the system was regrouped into two subsystems and one

was in strict feedback form. The control strategy was designed via backstepping. For the

unknown-parameters case, an adaptive neural control was designed. The proposed control

was able to drive all the positive states asymptotically to the normal values, therefore

restored the brain activities to a normal behavior. Simulation results illustrated the stability

of the closed-loop system and the constraining of bursting activity in epileptic seizures.

Through this study, we conclude that nonlinear control and adaptive control can be applied

to biological system models to bring about a fast and systematic way to help designing

therapeutics schemes.
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Part II

Mind Robotic Rehabilitation of

Stroke
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Chapter 4

Motor Imagery BCI-based Mind

Robotic Rehabilitation

4.1 Introduction

Stroke is a neurological disorder that causes severe disabilities or death [42]. Fortunately,

stroke patients could partially regain their functional impairment and continue with their

activities of daily living with effective rehabilitation. Traditionally, physical therapy is the

de facto motor rehabilitation for stroke patients [49]. It involves human therapists for as-

sisting stroke patients to recover their motor ability. However, physiotherapies are currently

labor intensive and expensive [50]. Furthermore, hospitals and medical specialists become

insufficient to support these patients suffering from stroke with rehabilitation treatment. A

recent innovation in rehabilitation is robot-assisted rehabilitation. Several research studies

have reported significant improvements on robotic rehabilitation outcome based on clin-

ical measures [51, 114–117]. However, most of the designs still remain at the laboratory
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prototype stage, and the appearance of these rehabilitation robots is not human-friendly.

Thus there is increasing demand to develop human-friendly rehabilitation robots for stroke

patient to have regular rehabilitation training at home. In this study, we aim to develop

a human-friendly and interactive rehabilitation robot based on BCI technology, which is

called mind rehabilitation robot.

BCI technology enables the translation of thoughts and intents of humans to actions

by machines. Recently, motivated by the advances of BCI technology, BCI-based robotic

rehabilitation is introduced [53], which can be called mind robotic rehabilitation. The

mind robotic rehabilitation directly translates brain signals that involve motor or mental

imagery into commands for controlling the robot and bypasses the normal motor output

neural pathways. Hence this mind robot rehabilitation approach provides a means for stroke

patients to use motor imagery to help them recover limb movement.

Studies have shown that distinct brain signals such as event-related desynchronization

(ERD) or event-related synchronization (ERS) [118] are detectable from EEG for both real

and imagined motor movements in healthy subjects [118–121]; as well as from NIRS [122].

Hence motor imagery brain-computer interface (MI-BCI) [123–125] which translates the

imagination of movements into commands, provides a promising neural communication

system for stroke patients who suffer from motor disabilities [126,127].

In this study, based on background of motor rehabilitation and robotic rehabilitation,

a recently developed mind robot rehabilitation is presented based on a non-invasive motor

imagery-based BCI. We propose a way to analyze EEG data using feature fusion of CSP

algorithm and AR spectral analysis, and classification algorithm, QDA, for classifying the

combined features. The EEG analysis algorithms are evaluated by both off-line experiment
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4.2 Training Scenario with Human-friendly Interactive Rehabilitate Robot

using some well-known open source data and a real-time experiment on the human-friendly

interactive rehabilitation robot we developed.

The contributions in this Chapter lies in

(i) A human-friendly rehabilitation robot called mind rehabilitation robot is developed

for training stroke patients at home as an assistive treatment instead of labor intensive

and expensive hospital treatment.

(ii) Feature fusion of features derived from both CSP algorithm and AR spectral analysis

is proposed, which outperforms each of the single-feature extraction methods and

significantly improves BCI performance.

(iii) Both off-line experiment using some well-known data set and a real-time experiment

on the mind rehabilitation robot we developed are performed. Experimental results

are evaluated to demonstrate the performance of proposed EEG analysis algorithms.

4.2 Training Scenario with Human-friendly Interactive Re-

habilitate Robot

The mind robotic rehabilitation system, which consists of a BCI system, a human friendly

bear robot, and the subject, is shown in Fig. 4.1.

The framework and major function of the robotic rehabilitation system as well as the

main modules of the BCI system are briefly shown in Fig. 4.2.

There are mainly two phases in the implementation of mind robotic rehabilitation. The

first stage is the model training phase. This phase aims to obtain the best discriminative
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4.2 Training Scenario with Human-friendly Interactive Rehabilitate Robot

Figure 4.1: Mind robotic rehabilitation system

parameters, including power band of bandwidth filter, the order of AR model, and projection

matrix in CSP algorithm that give the best classification accuracy. The second stage is to

perform the real-time experiment based on the model derived from the training phase.

The human-friendly bear robot can interactively act corresponding to the control signal

obtained from the BCI system. There are three simple actions - head shaking, left arm

shaking and right arm shaking, which correspond to wrong detection of motor imagery,

correct detection of left hand movement imagination and right hand movement imagination,

respectively.

Based on this characteristic, there are two ways of using the mind robotic rehabilitation.

The first is training the motor imagery with the visual feedback from the bear robot. The

cute appearance of the robot can make the training less boring and help the patient to be

more cognitively engaged. The second is the motor training with physical action. Under

this scenario, the patient makes a handclasp with the bear. In this way, when the bear takes
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Figure 4.2: Framework of mind robotic rehabilitation system

the action of hand shaking, the physical training of patient’s upper limb is also performed

at the same time. As such, the patient has extensive exercises of the brain as well as the

muscles during the rehabilitation training.

In conventional BCIs using EEG technology, the lengthy training periods involved for

proficient usage can often lead to frustration and anxiety on the part of the user. The

proposed interactive robot may solve this problem. We argue that this human-friendly

robotic rehabilitation, which is relatively low cost, can make the user more engaged in

rehabilitative training during the human robot interaction. This system has the potential

to offer an assistive home program as aid to labor intensive and expensive hospital treatment

for stroke patients.
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4.3 Data Preprocessing by Band-Pass Filtering

The first stage of in the EEG analysis is to decompose the EEG data into frequency bands

by band-pass filtering.

In this work, we adopt several sub-band filters as the data preprocessing for CSP al-

gorithm, which ranges from 4 Hz to 28 Hz [128] with bandwidth of 4 Hz using optimal

equiripple FIR filter. The filter which has 1 Hz transition width, 0.1 pass-band ripple and

0.0001 stop-band ripple, is designed using Parks-McClellan algorithm. The raw EEG signal

is then convolved with the filter to obtain desired time-series data that contain information

in the specified frequency band for further analysis in CSP algorithm.

For the AR modeling, raw EEG data is filtered using optimal equiripple FIR filter with

the band width of 4-30 Hz, 0.1 passband ripple, 0.0001 stopband ripple and 1 Hz transition

width. The band width 4-30 Hz is selected because it encompasses the alpha and beta

frequency bands, which contain rich information on motor activity [129].

4.4 Feature Extraction and Feature Fusion

In motor imagery-based BCI, numerous methods have been proposed as filters to extract

feature patterns from EEG signal. One of the promising and commonly used methods

is CSP analysis which uses covariance to design common spatial patterns based on the

simultaneous diagonalization of two covariance matrices. Since CSP algorithm is optimal for

the discrimination of two populations, it is well suited for discrimination mental states that

are characterized by motor imagery. In other words, it utilizes spatial pattern classification

to determine spatial filters that maximize the variance of signals of left trials and at the
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same time minimize the variance of signals of right trials.

But because the CSP method is very sensitive to artifacts, the motor imagery based

BCI system using CSP method will have a high false alarm rate, that’s to say, during the

on-line operation of the BCI, even when the subject is not responding, the system may give

a right or left command. Some preliminary work has solved this problem by performing a

weighted spatial averaging of the EEG to reduce the influence of artifacts [130].

In this study, we try to solve this problem in another way by combining two different

feature extraction algorithms, the spatial filter CSP and a temporal filtering algorithm AR

spectral analysis. The feature fusion of both CSP derived features and AR derived features

is utilized for later classification of motor imagery EEG signal in both model training and

real time implementation.

4.4.1 Common Spatial Patterns Analysis

The CSP technique [131] is able to determine spatial filters that maximize the variance of

signals of one condition and at the same time minimize the variance of signals of another

condition. In other words, the CSP algorithm gives spatial filters based on a discriminative

criterion. The decomposition (or filtering) of the EEG leads to new time series, which are

optimal for the two population. The patterns are designed such that the signal results from

the EEG filtering with the CSP has maximum variance for left trials and minimum variance

for right trials or vice versa.

In this way, the difference between left and right populations is maximized, and the

only information contained in these patterns is where the variance of the EEG varies most

when comparing two conditions. As such, CSP filters are well suited to discriminate mental
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states that are characterized by motor imagery [53,128,130]. The CSP filters are commonly

utilized in BCI systems, most of which are calculated individually for each subject on the

data of a calibration measurement. In [130], subject-specific spatial patterns are derived

by common spatial patterns to be weighted for each electrode according to its importance

to the discrimination task and suppress noise in individual channels by using correlations

between neighboring electrodes. In [124], subject independent features by CSP are uti-

lized to develop a non-invasive BCI system with fast acquisition of effective performance in

untrained subjects.

The goal of CSP algorithm is to design spatial filters that lead to new time series whose

variances are optimal for the discrimination of two classes of EEG [132]. From technical

point of view, the CSP algorithm gives a projection matrix W T ∈ RN×N (N denotes the

number of channels), that projects the signal x(t) ∈ RN from original sensor space to

y(t) ∈ RN in a surrogate sensor space, as:

y(t) = Wx(t) (4.1)

Usually, we call each row vector wj ∈ RN , j = 1, 2, . . . , N of W a spatial filter and

each column vector aj ∈ RN , j = 1, 2, . . . , N of the matrix A = W−1 ∈ RN×N a spatial

pattern. In [131], the authors showed that two pairs of vectors (w, a) that correspond to the

largest and the smallest eigenvalues for one subject topographically mapped onto a scalp

and demonstrated that the interpolation of the value of the components of vectors wj , and

aj at electrode positions can be somehow related to the neurophysiological understanding

of ERD/ERS for motor imagination.
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Through a optimized spatial filter, the filtered signal y(t) in (4.1) have maximized dif-

ferences in the variance of the two classes of EEG measurements. Let X1 and X2 be the

data matrices of a short segment of the band-pass filtered EEG signals under two different

conditions, i.e., left hand or right hand imagination, respectively. X1 and X2 ∈ RN×D,

where N denotes the number of channels, and D denotes the number of samples in a trial

in each channel. In training phase, given Qi trials of EEG signal Xi, i = 1, 2 for left hand

movement imagination and right hand movement imagination, the corresponding estimates

of the average normalized covariance matrices Σi ∈ RN×N can be obtained by

Σi =
1

Qi

∑

Qi

Xi(Xi)T

trace[Xi(Xi)T ]
, i ∈ {1, 2} (4.2)

Then the CSP analysis is given by the simultaneous diagonalization of two covariance

matrices.

WΣiW T = Λi (4.3)

where Λi (i = 1, 2), is a diagonal matrix and Λ1+Λ2 = I. Note that λi
j = wi

jΣ
i(wi

j)
T (i = 1, 2

and j = 1, 2, . . . N) is the corresponding j-th diagonal elements of Λi, and λ1
j +λ2

j = 1, since

λi
j is in fact the variance of yj in condition i in the corresponding surrogate space of xj, a

large value of λ1
j close to one indicates that the corresponding spatial filter wj yields high

variance in condition 1 and a low variance in condition 2, and vice versa.

Technically, the simultaneous diagonalization can simply be achieved by solving the

generalized eigenvalue problem

Σ1W T = ΛΣ2W T (4.4)

using the command [W T ,Λ] = eig(Σ1,Σ2) in MATLAB, where Λ is a diagonal matrix of

generalized eigenvalues λj , and W T is a full matrix whose columns are the corresponding
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eigenvectors to fulfill (4.4). Since λj = λ1
j/λ

2
j , based on the former analysis, the largest and

smallest diagonal elements in Λ are corresponding to the spatial filters which keep most

discriminative information.

Mathematically, the problem can be solved by singular value decomposition, as for the

composite spatial covariance is given by

Σc = Σ1 + Σ2 = U cψ(U c)T (4.5)

where U c is a matrix of normalized eigenvectors with corresponding matrix of eigenvalues,

ψ. We then define a whitening transformation as

P =
√

ψ−1(U c)T (4.6)

This transformation equalizes the variances in the space spanned by U c, so that the

CSP can be extracted based on the simultaneous diagonalization of whitened covariance

matrices for Σ1 and Σ2

Σ̂1 = PΣ1P T

Σ̂2 = PΣ2P T

and the decomposition maximizes the differentiation between two groups of data can be

done by calculating orthogonal matrix B and diagonal matrix f ,

Σ̂1 = BfBT

Σ̂2 = B(1− f)BT

With this, we have the CSP projection matrix

W = BTP (4.7)
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and the spatial mapping of t-th trial of EEG signal as

y(t) = Wx(t) (4.8)

For classification, the features of each single-trials are calculated as the log-variance in

CSP projected signals. Since the largest and smallest diagonal elements in Λ are corre-

sponding to the spatial filters which keep most discriminative information, in other words,

the first r and the last r rows of W would contain the most discriminative information, only

2r (r is usually chosen as 2) patterns are used. The variance features are approximately

chi-square distributed, and taking logarithm makes them similar to Gaussian distributions

so that a linear classifier can be used for classifying the features. Therefore, feature vector

of t-th trial EEG signal is generated as follows:

Ft = log
var[yj(t)]

∑

j var[yj(t)]
, j = 1, . . . , r,N − r + 1, . . . , N (4.9)

There are 2r features for each sub-band. As there are 6 sub-bands after the band pass

filtering as mentioned above in Section 4.3, 6× 2r features can be derived each single trail

of EEG.

4.4.2 Autoregressive Spectral Analysis

Besides CSP algorithm, attenuation or increase of localized neural rhythmic due to actual

and imagined motor activity can also be detected by observing the change in band power

[133, 134]. Before the band power spectral analysis, the raw EEG time series is convolved

with the band-pass filter mentioned in Section 4.3. The estimate Power Spectral Density

(PSD) of the filtered signal is then calculated through autoregressive (AR) spectral analysis.
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Filtering before estimating its PSD is important because noisy data (contains high frequency

component, i.e., more than 30 Hz) will affect the AR modeling accuracy.

A proper order of the AR model should be examined to ensure good modeling quality.

In this study, AR model of 8 is selected and it is consistent with other works [135,135,136].

Yule-Walker method [137] is used to estimate the AR parameters. The estimated AR pa-

rameters are then used to calculate estimated PSD of the EEG signal. The power spectrum

is given by

Pxx(f) =
σ2

‖1 +
∑p

k=1 ap(k)e−j2πfk‖2 (4.10)

where ap(k) denotes the estimates of the AR parameters obtained using Yule-Walker method,

σ2 is the variance of the white noise, and p denotes the order of AR model.

The discriminative band normally lies within 8 to 25 Hz [120]. Since the most important

brain activities during motor imagery are within the α and β range, the power spectral

density is calculated in 4 frequency ranges: 8 − 10 Hz, 10 − 12 Hz for α; and 20 − 24

Hz, 24 − 28 Hz forβ. Let d0 represents the beginning of band power, bw represents the

selected bandwidth, Pxx represents the power spectral density estimation obtained using

Yule-walker’s method. The selected range of band power Pb for one channel EEG can be

calculated as

Pb =

d0+bw
∑

d0

Pxx (4.11)

The band power Pb is used as feature for classification, and the feature vector consists

of Pb of four different frequency band range in two channel of EEG signal, C3 and C4. As

such, 8 features in total are extracted from one trial of EEG signal. This 8-elements feature
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vector is then appended to the 6×2r-element feature vector Fi derived from CSP algorithm

to form a fused feature, which can be denoted as Fcombined.

4.5 Classification by Quadratic Discriminant Analysis

Using the combined feature vector, Fcombined, QDA [138] is used for classification. Quadratic

discriminant analysis (QDA) is closely related to linear discriminant analysis (LDA), the

difference is in QDA there is no assumption that the covariance of each of the classes is

identical.

The classifier works by estimating the probability that an observation, x, belongs to each

class, k, and then selects the class with the highest probability. The posterior probability

of each class k is given as

Pr(k) =
fk(x)πk

∑k
j=1 fj(x)πj

(4.12)

where fk(x) is the probability density function of data in class k, and πk is the prior

probability of class k.

Assume all the classes have multivariate normal distribution, the probability density

function of data in class k is given as,

fk(x) =
1

(2π)p/2‖Σk‖1/2
e−

1
2
(x−µk)T Σ−1

k
(x−µk) (4.13)

where p is the dimension of x, µk =
∑

xi∈k
xi

Nk
is the Gaussian mean of data in class k, and

covariance matrix Σk =
∑

xi∈k(xi − µk)(xi − µk)
T .

The prior probability of class k can be estimated as

πk =
Nk

N
(4.14)
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Ignore the same denominator of posterior probability for each class, if we take the log

of the numerator and ignore the constant (2π)p/2 in the density function, we can get the

quadratic discriminant function:

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)

T Σ−1
k (x− µk) + log πk (4.15)

Then, the class for a observation x can be selected as the class with the highest score

according the the discriminant function.

4.6 Experimental Evaluation

This section reports an empirical evaluation of the proposed EEG analysis algorithms for

BCI-based mind robotic rehabilitation. The EEG analysis algorithms are evaluated by both

off-line experiment using some well-known open source data and a real-time experiment on

the human-friendly interactive rehabilitation robot developed.

4.6.1 Data Acquisition

To evaluate our method, we first use dataset III from BCI competition II 2002 [139] for

off-line training experiment. The experiment consisted of 7 runs with 40 trials each. Each

trial was 9 s in length. The first 2 s was quiet, followed by an acoustic stimulus indicating

the beginning of the trial at t = 2 s. A cross “+” was displayed for 1s followed by an arrow

(left or right) at t = 3 s. The subject was asked to move a bar into the direction of the cue.

The recording was made using a G.tec amplifier and a Ag/AgCl electrodes. Three bipolar

EEG channels (anterior ‘+’, posterior ‘-’) were measured over C3, CZ and C4. The EEG

signal was sampled at 128 Hz and it was filtered between 0.5 and 30 Hz.
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In the real-time implementation, the EEG signal was acquired at sampling frequency 128

Hz by a wireless EEG acquisition system, Bioradio150 Kit by Clevemed. Three electrodes

were positioned at C3, C4 and CZ according to the international 10-20 standard electrode

placement. There were 200 trials for training and each trial lasted for 9 seconds with a cue

of left or right arrow to remind the subject. After training, real-time testing was performed

based on the data analysis model obtained from the training phase. For each trial, a 1

second windowing was used. These time segments are well-chosen so that each segment

contains most of the useful information. It should neither be too long to be unstationary

nor too short to have incomplete information.

4.6.2 Off-line Training Experimental Results

Although in Chapter 2, SVM gives good results for epilepsy detection, for this study, the

SVM cannot perform well to classify the motor imagery signals. The classification results

are shown in Table 4.1.

Table 4.1: The classification accuracy obtained by SVM classifier
Subject (number of training trials) Accuracy Rate (CSP+AR)

subject 1 (200) 0.5182
subject 2 (200) 0.4
subject 3 (200) 0.5556

BCI competition 2, dataset III 0.6124

To improve the experimental results, in this experiment, QDA classifier is used instead

of SVM. We compare the classification accuracy in the training phase between CSP method,

AR spectral analysis method, and the feature fusion with both CSP features and AR feature.

A 10×10 fold cross validation is used to obtain the classification accuracy, as shown in Fig.

4.3 and Table 4.2.
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Figure 4.3: Classification accuracy for off-line training

Table 4.2: The classification accuracy (mean ± standard deviation) in off-line training
Subject (number of training trials) CSP only AR only CSP+AR

subject 1 (200) 0.7758 ± 0.0172 0.656 ± 0.0168 0.8814 ± 0.0122
subject 2 (200) 0.8063 ± 0.0188 0.6281 ± 0.0219 0.8809 ± 0.0146
subject 3 (200) 0.7859 ± 0.0194 0.6016 ± 0.0184 0.8762 ± 0.0149

BCI competition 2, dataset III 0.9054 ± 0.0139 0.7819 ± 0.0233 0.9513 ± 0.0109

As a reference information, the maximum accuracy rate obtained by the winners of BCI

competition 2, dataset III is 89.29%. The cross validation results suggest that the fusion

method does provide an improvement in classification accuracy as shown in Fig. 4.3 and

Table 4.2.

4.6.3 Real-time Testing Experimental Results

A comparison of the classification accuracy in the real-time testing phase between CSP

method, AR spectral analysis method and the feature fusion with both CSP features and

AR feature is also performed. The testing data directly use the data analysis model derived

from the training phase to obtain the label of left/right hand movement imagination. The

results are shown in Fig. 4.4 and Table 4.3.

84



4.7 Discussion

Figure 4.4: Classification accuracy for real-time testing

Table 4.3: The real-time testing accuracy
Subject (Number of test trials) CSP only AR only CSP+AR

subject 1 (30) 0.6 0.6667 0.7667
subject 2 (30) 0.5667 0.5667 0.6667
subject 3 (30) 0.6667 0.6 0.6

The results suggest that the fusion method also outperforms single feature extraction

algorithm in real-time testing phase as shown in Fig. 4.4 and Table 4.3.

4.7 Discussion

The fusion method aims to provide as many features as possible for the classifier in order to

improve the accuracy. CSP method contains information on spatial distribution while AR

method captures changes in band power due to brain activities. Thus, the combination of

the two may offer more useful discriminative information for classification of the EEG data.

Evidence suggests that BCI robotic rehabilitation resulted in greater motor improve-

ments than standard robotic rehabilitation. However, the results are currently inconclusive

due to the large variations in motor improvements in both groups and the limited number
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of stroke patients recruited for the study. A final conclusive result could be drawn from a

larger scale study. Nevertheless, the outcome of this preliminary study is promising as it

demonstrated the role of the mind robot approach in neurological rehabilitation.

4.8 Conclusion

In this chapter, a human robot interface called mind robotic rehabilitation was developed

based on BCI technology for regular training of neurological rehabilitation for stroke pa-

tients. A human-friendly interactive robot was used as a visual and motion feedback for

BCI to make the user better engaged into rehabilitative training during the human robot

interaction. Feature fusion of CSP algorithm and AR spectral analysis was proposed. QDA

was used as classifier to classify the combined feature vectors. Off-line experiment and real-

time implementation were performed using some well-known open source data and real-time

recording data. The experimental results demonstrated that feature fusion significantly im-

proved BCI performance.
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Part III

Social Therapy of Autism
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Chapter 5

RoBear with Multimodal HRI for

Social Therapy of Autism

5.1 Introduction

According to some earlier research [140], the social-emotional disorder of autistic children

may be caused by badly developed connections between brain cells in the social brain region.

Prevention and rehabilitation of this disorder may rely on social training, which is effective

for development of neuron connections in the social brain region. In this chapter, social

training scenarios are designed based on well-known hypotheses of cognitive science and

social psychology, in the form of interactive games between robot and patient. During

the social rehabilitation process, robot will automatically identify patient and elicit certain

information of that patient, followed by therapy of management according to societal norms.

In view of the growing problem of autism among children today, the proposed interactive

robot for social therapy is primarily envisioned as a valuable tool that will better the lives
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of children with autism, by facilitating the learning of social norms and preparing them

for future integration into society. Apart from autism, it can also be further developed for

other forms of social-emotional disorders, for example, depression, anxiety, or utilized as

an educational tool for training normal children during their social-emotional development

period and as a social companion to enhance social skills.

The contributions in this Chapter lies in

(i) An interactive robot pet, RoBear, is developed based on a good understanding of

autism-related hypotheses of neuroscience and cognitive science to help autistic chil-

dren. The robotic social therapy can reduce the cost for hospital training while helping

reinforced learning of the social skill.

(ii) A multimodal HRI framework is proposed, and several important modules of the

multimodal HRI is presented. With the multimodal HRI, RoBear has potential to act

as a social companion of autistic children.

(iii) A social training schemes for social-emotional development of autistic children is pro-

posed as the form of child robot interaction.

5.2 Hypotheses of Human Social-Emotional Development

Knowledge of what social and emotional activities have to do with the brain could has a

great impact on improving human social development. Only by understanding how the

brain acquires and lays down information and skills will we be able to help people make

good use of and adapt to social communication.
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Autism is a life-long developmental disorder that affects 0.2-0.6% of the population.

Autism is a social-emotional developmental disorder that impairs the ability to communicate

and socialize. Autistic children experience social impediments of varying degrees, including

fear of social interaction, lack of empathy for other individuals, and difficulties in managing

emotional response to stimuli from environment. To be concise, the core feature of autistic

disorders is the failure of perfectly ordinary social communication at all ages and all levels

of ability [140].

In [141], the authors explored a phenomenon showing that an extensive vocabulary, and

self-taught reading skills are common in autistic children who usually got a low score in IQ

test though. This phenomenon suggests that the brain is specialized into different modules,

and only some but not all brain systems are disrupted in autism.

One controversial and still speculative idea is that the brain of the newborn infant comes

equipped with various star-up mechanisms. These enable fast-track learning in particularly

important domains. In autism, one or more of these modules may be faulty [140]. However,

some researchers prefer to think that specialization is an outcome of development and

not its staring point. In [142, 143], the authors suggest that brain development is not

explained well by start-up kits and modules, but that instead, experience itself will lead to

the gradual development of modules in the adult brain. This hypothesis can be explained

by development of human brain modules.

Before discussing the development of human brain, some assumptions derived from

neuroscience need to be presented.

Assumption 5.1. In normal brain development, connections between brain cells (synapses)

at first multiply, and are then pruned away according to how much they are used. [67, 140,
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144]

Assumption 5.2. Appropriate synaptic pruning does not occur in brain of those with

social-emotional disorder.

Assumption 5.3. As soon as a baby is born, its brain connections start growing and

changing. Which connections survive and grow and which fade away and die is determined

partly by the genes the baby inherits from its parents and partly by the baby’s early experi-

ences [140].

Based on these assumptions, children should be exposed to all kinds of experiences to

build the related ability. In [145], it is claimed that the synaptic of the brain region in

charge of the social ability will lead to gradual development by related experience. The

production of synapses in the brain is strongly linked to the ability to learn. The studies on

development of auditory cortex, primary visual cortex, and middle frontal gyrus [146, 147]

may implicate similar developing pattern of brain region related to social ability.

Children, especially those in the first year of life, develop the capability for social commu-

nication through physical and social interactions with their caregivers and toys [67,148,149].

The three stages of social development in a supportive environment during the first year of

life are as follows:

(i) In the first three months, the child establishes eye contact with the caregiver, as shown

in Fig. 5.1.

(ii) From three to nine months, the caregiver can observe active response of the child,

and the child gradually learns to predict the caregiver’s behavior, which makes the

interaction more sociable. This is simply demonstrated in Fig. 5.2.
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(iii) Over nine months, the child and caregiver will successfully form a joint attention.

This is usually initiated by the caregiver sharing the awareness and perception of the

target through vocalization or facial expressions, as shown in Fig. 5.3

Figure 5.1: Eye contact

Figure 5.2: Actively responds

Figure 5.3: Joint attention

In summary, touch, eye contact, and joint attention are fundamental behaviors that

maintain child-caregiver interactions and establish a basis for empathetic understanding of
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each other’s mental states [148,150]. A Child and a caregiver spatially and temporally cor-

relate their attention and emotions, referring to each other’s subjective feelings of pleasure,

surprise, or frustration [151–153]. All such successful social-emotional communications are

helpful for children to learn social skills [152–154], since experience itself will lead to the

gradual development of modules in the brain [142, 143]. Connections between brain cells

increase and decrease according to how much they are used. In [155–158], it is suggested

that there are specific brain regions which are active when individuals engage in social ac-

tivity, called the social brain. The target of this study can be simply presented as “training

the social brain”.

5.3 Interactive Social Robot for Training the Social Brain

5.3.1 Child-Robot Interaction

Studies showed that individuals with social-cognitive disabilities, including autistic children,

tend to be more receptive to robots than human beings [67]. Several mobile and interactive

robots were utilized to build interaction between autistic children and robots for the study

of children’s social development [68–70]. Studies showed that autistic children interacting

with robots exhibited positive proto-social behaviors such as touching, vocalizing, smiling,

which were rare in their daily life. A possible explanation for these facts lies in the simple

and cute appearances of the social robots, which make the social robots commonly seem

more harmless and acceptable to children. Also, by discarding traditional complex phys-

ical structure of robot like humanoid robot and android robot, social robots convey less

information so that even the children with autism will not be confused by overwhelming
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information.

Assumption 5.4. People normally have a social filter that extracts the basic information

such as “attention” and “emotion” from the large quantities of raw information produced

by other’s behavior, as shown in Fig. 5.4. It is also assumed that this kind of social brain

function in autistic children is possibly disabled, which result in an information overload so

that the autistic children cannot handle it and get confused, as shown in Fig. 5.5. [67]

Figure 5.4: The social filter in typically developing children

Figure 5.5: Dysfunction of social filter in autistic children

The possibly simple and modular function and emotion expression of social robot may

open a bypass channel directly transmit robots’ attention, emotion, touch, eye contact,

which is simple and comprehensible information for the autistic children so that their con-

fusions caused by overwhelming information are avoided, as shown in Fig. 5.6.
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Figure 5.6: Bypass channel for social brain training by social robot

It has been demonstrated that early behavioral or cognitive intervention can help autistic

children gain self-care, social, and communication skills. As such, it is promising to develop

effective child-robot interaction that helps autistic children to acquire key social skills that

allow them to integrate better with society.

5.3.2 Development of the Interactive Bear Robot

In neurological therapy for autism, an individualized treatment plan should be established

for each patient after an in-depth evaluation of the patient’s needs and goals. To maximize

progress, patients receive individualized treatment by the same therapist. However, the

hospital treatment of autism is expensive. In [159], a study estimated an average lifetime

cost of $3.66 million. In [160], a study found a 14% average loss of annual income in

families of children with autism. As an alternative way, home programs are also helpful for

reinforced learning of the social skill. As such, there is increasing need of more effective

and low cost autism therapy to help the autistic children to be better engaged in society to

increase quality of life and to lessen the associated deficits and distress of family.

A possible solution is the interactive robot. In [67], the author claimed that a humanoid
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robot Infanoid, with an anthropomorphic but highly mechanistic appearance, conveyed an

overwhelming amount of information to children under three years of age. It was also found

that children’s attention is often attracted by moving parts, especially the hands, fingers,

eyes, and eyebrows. Effort is required to integrate the qualitative movements into some

holistic recognition of a social agent.

To encourage children to engage robots naturally, the aesthetic appearances of robots

should be designed. Additionally, the robot should be designed for safe and compliant

interactions with humans. Inspired by these observations, appearance of social robot for

children should be simple and cute, without complicated physical and mechanistic structure.

The popular humanoid and android robot is not suitable here. In our study, an interactive

social robot with a cute and attractive bear appearance is designed as illustrated in Fig.

5.7. This robot is named “RoBear”.

Figure 5.7: Appearance of RoBear

With the rapid developments in the fields of sensing technologies and robotics, there is an

increasing need for interactive social robots to employ a multimodal HRI to obtain natural,
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human like communication capabilities [161,162]. There are several core and indispensable

modules in the making of multimodal HRI, including human identification, flexible dialog

and speech understanding, human like facial expressions, and emotional interaction, etc.

The multimodal HRI can enable robots to interact and communicate between themselves,

with humans, and with the environment, so that it can work as an ideal alternative caregiver

of autitic children.

Fig. 5.8 shows an overview of the modules employed for multimodal HRI. In this work,

several moduls would be integrated on RoBear for real-time multimodal HRI which can

help to train the social ability of autistic children.

Platform
Hardware Implementation/ 
Electronics/ Actuation/ 
Engineering Design

Perception

Artificial Intelligence

AffectiveSciences

Social Behavioral Response
Natural Speech Processing
Social Spaces/ Comfort Zones
Handshaking
Responding with Different Poses
Tracking and Identification of Users

Path Planning 
Obstacle Avoidance

Planning

Multimodal HRIMultimodal HRI

Directed Focus/ Attention

Emotional Responses

Sensing

Microphone

Camera

Touch Sensor

EEG Electrodes

Sound Recognition
Visual Detection
Face Recognition
Hand Gestures
Body Language Interpretation
Brain State Identification

Figure 5.8: Overview of the core technologies involved in multimodal HRI

The most important modules of RoBear are presented as follows.
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Touch Reaction

A low cost touch sensing system is developed to enable RoBear to sense and react to

a human’s touch. A recognition system is designed to accurately interpret the human’s

intention to offer a handshake and respond to the offer, mimicking the socially accepted

behavior associated with the initiation handshaking. Additional considerations include

the decision to continue or terminate the handshaking process. A pressure sensor in the

abdomen of the bear will sense the hit, then the bear will react mimicking human.

Sound Localization

Effective sound localization allows robots to focus their attention on pertinent objects within

their environment much like how humans act. Sound localization is a listener’s ability to

identify the location or origin of a detected sound or, the methods in acoustical engineering

that simulate the placement of an auditory cue in a virtual 3D space. In this study, sound

localization serves as an enabling technology to realize a human-like behavior in RoBear.

During conversations, it is natural and polite for the listener to face the speaker. Through

research on sound localization techniques, this behavior is replicated in RoBear. The de-

tailed algorithms and implementations for sound localization were presented in [163,164].

Voice Recognition and Conversation

Speech is the most common and natural form of communication between humans. However,

natural speech is difficult for robots to understand during human-robot communications. To

develop a natural and human-centric robot, we seek to empower RoBear with speech capa-

bilities, whereby RoBear is able to understand simple phrases and commands and respond
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accordingly either through speech or actions. Through the integration of a limited speech

recognition module and speech synthesis module, RoBear is equipped with a vocabulary of

up to 40 phrases to be able to maintain simple conversations with its user.

On the other hand, because autistic children with different neurological problems will

have different kinds and levels of difficulties during social activity, each of then should be

treated differently. As such, a very important aspect in developing RoBear for autistic

children is the ability to identify people. The ability to identify people allows the robot to

authenticate user and provide separate services for each user. An intelligent robot auditory

perception system is developed to robustly detect and identify human’s voice from a variety

of background sounds by sound resource recognition algorithms. The objective of sound

source recognition for audio human detection is to identify human’s voice among a group of

sound sources for robot to communicate and cooperate with people. The detailed methods of

sound recognition for intelligent robot auditory perception system are presented in Chapter

6.

Vision System for Human Face Detection and Recognition

Besides the sound recognition for human identification, a real-time robot vision is devel-

oped for detecting and recognizing human face. The vision system consists of a normal

camera that is placed in the RoBear. The human face is detected using Adaboost-based

Haar-Cascade classifier, and then Extreme learning machine (ELM) is used to improve the

real human face detection. Feature extraction algorithm, Weighted locally linear embed-

ding (WLLE) are utilized for finding compact and distinctive descriptors for face images

to recognize human face. The detailed algorithms and implementations are presented in
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Chapter 7.

Human Facial Expression Recognition

Due to the important roles facial expressions play in human expression of emotions and

non-verbal communications, it is not sufficient for RoBear to just display its own emotions.

To make RoBear truly interactive, it is necessary to build a facial expression recognition

system for RoBear to understand subtle changes in its user’s facial expression and react

accordingly. The detailed facial expression recognition framework was illustrated in [165].

Robotic intelligence and control

To provide interactive responses to users in real time, feedback control is required for various

actuators in the robot. Control and decision-making issues that need to be addressed include

stability and safety, robustness to uncertainties, as well as additional difficulties due to the

inclusion of human users in the loop, abrupt changes in human intentions, and time delays

in interactions from computational and signal processing. The system needs to respond

with minimal delay in computational processing so as not to disrupt the natural flow of

communication between user and robot.

5.4 Training Scheme for Social-Emotional Development

For the social rehabilitation process, training scenarios designed based on well-known knowl-

edge of cognitive science and social psychology, in the form of games between the robot and

children, are carried out. During the social rehabilitation training, the robot elicits certain

physical and psychological states in the subject, followed by specific therapy of management
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according to societal norms.

The training scenarios are designed according to some basic stages of social development

adopted from cognitive science and social science.

5.4.1 Eye Contact

The vision system of the bear can detect and recognize human face and act responsively by

tracking the face through controlled slow movement of the bear’s head for centering the face

in the camera view. As such, the bear will turn its head to face child, once he gazes at the

bear. This response of bear works like eye contact apparently. To encourage children for

the eye contact, the bear will say “hello” to children once their gaze is on it for more than

5 seconds, which is also a natural response in human social environment. The eye contact

action between child and bear is shown in Fig. 5.9

Figure 5.9: Eye contact between child and RoBear
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5.4.2 Touch Reaction

Touch is an important aspect of human social interactions and communications. A social

behavior related to touch is handshaking. Although not a universal form of greeting, hand

shaking is still recognized as one of the most commonly used greeting in the world today

and it is commonly associated with the demonstration of good will between the two parties.

The bear robot is designed to have the ability to react to handshaking and touching on its

abdomen. During this training, the caregiver can demonstrate the touch reaction of the

bear to children and then let them try it themselves. The touch reaction and handshaking

with interactive social robot are shown in Fig. 5.10.

Figure 5.10: Touch reaction and handshaking with RoBear

5.4.3 Vocal Communication

Speech is the most common and natural form of communication between humans. To

build an effective conversation skill is important for children’s social-emotional development,

thus it is natural and important to contain the vocal communication in the social-emotional
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training for children. In this study, the bear is empowered with speech capabilities, whereby

the bear is able to understand simple phrases and commands and respond accordingly either

through speech or actions. According to Assumption 5.4, children with autism cannot

handle the massive information brought by other’s complex behavior, so the conversation

between children and bear should be really simple and fixed without confusion. Based on

this observation, a simple conversation scenario is built for training autistic children.

In the human robot interaction through conversation, the bear can make some dialogue

as follows:

(i) Introduction:

• Bear: Hello! My name is Teddy. What’s your name?

• Child: My name is John.

• Bear: Nice to meet you, John! Let me sing a song for you.

• Child: Thank you!

• Bear: (Singing)

In this conversation, the bear will only start singing if the child gives some vocal

reaction. If the child keeps silence, the bear will repeat the question.

(ii) Requisition:

• Bear: Can you pass me a banana?

• Child: (pass the banana)

• Bear: This is a banana. Thank you!

or
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• Child: (pass the apple)

• Bear: No, this is an apple.

This process is illustrated in Fig. 5.11.

Figure 5.11: Conversation interaction with RoBear

All these conversations should be demonstrated by the caregiver at the beginning of the

training, and then done by children. Through repeated exercise of listening and speaking,

the child may gradually become more conformable in vocal communication.

5.5 Conclusion

In this chapter, the development of an interactive robot pet, RoBear, for social therapy of

autism was presented. The RoBear was developed based on knowledge of cognitive and

social science, by combining multimodal HRI and pattern recognition algorithms. Through

implementation of a variety of social-emotional training for children, we found RoBear is an

ideal robot companion for children, and even has potential for helping autistic children. The

ongoing research is aimed at testing the interactive robot pet, RoBear, on autistic children
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to evaluate the effectiveness of the proposed methods and training scheme. We should also

test our underlying assumptions about social interaction and development, and broadening

our understanding of human social behavior on the neuroscience, cognitive science and

social science level. Another future research may be building user-friendly hardware for

EEG-based BCI system and developing empathetic social robot. This empathetic robot

should rely primarily on EEG-based BCI technology to extract information of the mental

and emotional state of the subject.
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Chapter 6

Sound Source Recognition for

Human Robot Interaction

6.1 Introduction

In last chapter, the development of an interactive pet robot is proposed based on multimodal

HRI. The ability to identify people is essential for robot to communicate and cooperate

with people in HRI. This ability allows the robot to authenticate user and provide separate

services for each user. In this chapter, we focus on one of the important human identification

technologies, the intelligent auditory perception system to robustly detect and identify

human’s voice from a variety of background sounds.

The intelligent audio system for sound source recognition is implemented on RoBear

proposed in last chapter. In order to obtain a similar model as a human-human interaction

model, we designed a human-like perception system with two cameras and two microphones,

to imitate human perceptual capabilities.
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Auditory system analysis is experiencing a surge of research activities in the literatures

[166–169]. The objective of sound source recognition for audio human detection is to identify

human’s voice among a group of sound sources. However, one of the difficulties for sound

source processing is that sound is a kind of high dimensional signal. Therefore, dimension

reduction is critical for convenience of subsequent operations such as classification and

clustering of the sound data. Thus, it is helpful to find a way to reduce its dimension while

extracting most of its feature. For robot to identify individuals, we propose a machine

learning algorithm, SINLE to do dimension reduction as well as feature extraction.

Using the proposed algorithm, we construct the interesting sound source recognition

system for identifying human, and apply it to a multimodal HRI platform, the RoBear.

By utilizing the two microphones in RoBear, we can implement the proposed algorithm

for real-time sound source processing and provide the robot with the ability to distinguish

users.

The contributions in this Chapter lies in

(i) A novel voice recognition method is presented for developing robust auditory system

for human robot interaction.

(ii) Unsupervised learning algorithm, neighborhood linear embedding (NLE), is proposed

to discover the intrinsic relationship among a set of voice data.

(iii) Motivated by scale adaptation of human’s perception, scale-invariant metrics are de-

signed and used to greatly improve the clustering property of the NLE.
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6.2 Methods

6.2.1 Neighborhood Linear Embedding for Feature Extraction

Locally linear embedding (LLE) [170] is an unsupervised manifold learning algorithms which

can be used for internal feature extraction and dimension reduction. The unsupervised

property of LLE makes it especially suitable for sound source recognition without prior

knowledge of the number and nature of sound sources. LLE algorithm contains three

major steps: (i) constructing nearest neighborhood for expressing a data point as linear

combination of its neighbors; (ii) obtaining the optimal reconstruction weight matrix by

minimizing the difference between the data point and the linear combination of its neighbors;

and (iii) mapping the original high-dimensional data to low-dimensional embedding using

the reconstruction weights. The detailed algorithm is presented in Appendix A.

Based on the observation that neighbor selection is a critical process in the manifold

learning algorithm such as LLE, we have proposed a modified algorithm named NLE [171].

It is an adaptive scheme that selects neighbors according to the inherent properties of the

input data substructures to solve the problem of redundancy presented in the structure and

isolated nodes that result from unsuitable neighbor selection.

The key idea of NLE is to use a criterion for neighborhood selection that avoids redun-

dancy. In the LLE algorithm, each data point is expressed as a linear combination of its

neighbors. If a neighbor is quite similar to another neighbor, it may be redundant in this

combination. We define a similarity measure for two samples, xi and xj (xi, xj ∈ RD), by

ζi∼j =
1

e̺(xi,xj)
, (6.1)

where ̺(xi, xj) is a function (possibly a metric) measuring the distance between xi and xj .
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Some properties of this similarity measure are:

(i) ζi∼j is maximized, i.e., 1, if ̺(xi, xj) = 0. It indicates that xi and xj are identical,

and xi can be fully represented or approximated by xj.

(ii) ζi∼j is minimized, i.e., 0, if ̺(xi, xj) → +∞, which means that xj is totally different

from xi. Thus, point xj has no contribution to the presentation of xi.

(iii) ζi∼j decreases monotonically with respect to ̺(xi, xj). It means that the further xj is

from xi, the less contribution of xj to the representation of xi.

These properties provide an evaluation about how much xj can be used to approximate

xi. If xj is the nearest point to xi, ζi∼j is of the maximum value as compared to those

of other points. Therefore, we should always include the nearest point to xi as one of

its neighbors. If a new point, say xk, is considered to be a neighbor of xi, we need to

evaluate the additional information provided by xk to avoid any redundancy in the overall

representation of xi. This evaluation is obtained based on the following assumptions:

A1: If xk coincides with xj , xk can be fully represented by xj. It has no contribution to the

approximation of xi and should be discarded to avoid redundancy of xi representation.

A2: Point xk is a new neighbor of xi if it is more similar to xi than xj . Mathematically,

this condition can be expressed by ζi∼k ≥ γζj∼k, where γ is a constant.

A3: Point xk has the same similarity to both xi and xj if ̺(xi, xk) and ̺(xj, xk) is large

compared to ̺(xi, xj).

From these assumptions, an algorithm for the neighborhood phase of manifold learning

can be summarized as,
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(i) If xj is the closest point to xi, it is assumed to be a neighbor of xi. Thus Ωi = j

initially.

(ii) For xk and non-empty neighborhood Ωi we update Ωi according to

Ωi =















Ωi ∪ xk, if ̺(xj , xk) ≥ ̺(xi, xk) + ln γ, ∀xj ∈ Ωi

Ωi, otherwise.

(6.2)

When this algorithm is used to construct the Ωi in the LLE algorithm we call the

resulting compound algorithm NLE. The constant γ must be fed to the algorithm. Moreover,

it is reasonable to simply set γ = 1, which means that xi is more similar to xj than to xk

if ̺(xi, xj) < ̺(xi, xk).

The performance of the LLE and NLE algorithms can be greatly affected by the distance

metric used. To improve the performance of LLE and NLE for sound source recognition, we

propose scale invariant distance measures motivated by the human’s perceptional capability

of adapting to scale changes. The scale invariant distance measures, which are robust to

scale changes, have potential for developing computer perception dealing with signal scaling.

6.2.2 Scale Invariant Distance Measures

Many early works on metric optimization were presented, such as optimal metric for k-

nearest neighbor density estimation [172], optimal local metric [173] and optimal global

metric [174]. Based on the idea that a robust similarity measures should recognize an

object with scaling, we propose scale invariant distance measures which are robust to scale

changes. In most of the literature, researchers focus on rotation invariant analysis, but are

less concerned about scale invariance. However, scale invariance is quite important since

all natural signals are subject to scale transformations, due to distance from the sensor, as
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well as optical or acoustical zooming. This means that we can automatically adapt to the

scale changes of items viewed by our visual systems. It provides further motivation for the

development of computer perception dealing with signal scaling.

Given two high dimensional data points, say, x and y, the distance d(x, y) between these

two should preferably represent their qualitative similarity. The simplest distance measure

that can be used is the standard Euclidean metric given by

d2(x, y) =

√

√

√

√

D
∑

i=1

(x[i]− y[i])2, (6.3)

where D is the dimension of input data. It is a special case of the more general Minkowski

metric

dk(x, y) = (
D
∑

i=1

(x[i]− y[i])k)
1
k , (6.4)

where k is a natural number or possibly infinity. For the Euclidean and Minkowski metrics,

the distance may be much larger between two similar but high amplitude signals than

between two weak but less similar signals. This may cause wrong interpretation of the

data’s qualitative similarity. To combat this kind of problem, we propose scale-invariant

distance measures for the LLE and NLE algorithms. In this section, we will look at several

distance measures which are scale-invariant in the sense that they obey the condition

d(x, y) = d(ax, ay), (6.5)

where a is a constant.

The motivation of the scale-invariant distance measure is demonstrated in Fig. 6.1. It is

known that the human visual system can utilize scale information in the perception of visual

expansion without estimation of optic flow [175]. This means that we can automatically
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adapt to the scale changes of items viewed by our visual systems. Motivated by this scale

adaptation of human’s perception, the distance measures which are robust to scale changes

are proposed.

����������

|xi − xj|

|xi + xj |/2

observation point

object with invariant length

Figure 6.1: Illustration of invariant distance measure

A distance measure is said to be a metric if it obeys the following three requirements ,

(i) d(x, y) ≥ 0 and = 0 only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).

The third requirement is known as the triangle inequality, and it is what distinguishes a

metric from an arbitrary distance measure. Indeed, many distance measures employed in

pattern recognition do not obey it. An example is the cosine similarity measure,

dcos(x, y) = arccos(
xTy

‖x‖‖y‖ ). (6.6)

It is easy to choose x and y so that the triangle inequality is violated.

Another scale-invariant distance measure that actually is a metric is given by

dy(x, y) =
‖x− y‖
‖x‖+ ‖y‖ . (6.7)

The proof that dy(·, ·) does indeed satisfy all three requirements can be found in [176].
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In addition to not being a metric, the cosine similarity measure (6.6) has another un-

desirable property. Changing a single coordinate in the vector x may have a high impact

on dcos(x, y) since the angle may be changed with as much as 180 degrees. This problem

is not entirely avoided with the metric dy(x, y) since it is also essentially angular, although

the normalization is different.

As an alternative to these cross-bin distance measures one may use single-bin distance

measures which do not encounter the mentioned problems. One such distance measure is

given by

dabs(x, y) =

D
∑

i=1

|x[i]− y[i]
x[i] + y[i]

|. (6.8)

Lemma 6.1. dabs(x, y) is a metric in R+.

Proof: The first two requirements to be a metric are obviously fulfilled. For the third

requirement, we first introduce an R1 metric. It is straightforward that d(x, y) =
∣

∣

∣

x−y
x+y

∣

∣

∣
is a

metric in R+. An easy proof exists and a very similar R1 metric is employed in [177]. As

such, we have

|x[i] − y[i]|
x[i] + y[i]

+
|y[i] − z[i]|
y[i] + z[i]

≥ |x[i]− z[i]|
x[i] + z[i]

. (6.9)

Based on this inequality (6.9), we can obtain the following straightforwardly.

D
∑

i=1

∣

∣

∣

∣

x[i]− y[i]
x[i] + y[i]

∣

∣

∣

∣

+

D
∑

i=1

∣

∣

∣

∣

y[i]− z[i]
y[i] + z[i]

∣

∣

∣

∣

≥
D
∑

i=1

∣

∣

∣

∣

x[i]− z[i]
x[i] + z[i]

∣

∣

∣

∣

. (6.10)

2

Another quite similar distance measure is

dsqrt(x, y) =

√

√

√

√

D
∑

i=1

(
x[i]− y[i]
x[i] + y[i]

)2. (6.11)
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Lemma 6.2. dsqrt(x, y) is a metric in R+.

Proof: The first two requirements to be a metric are obviously fulfilled. For the third

requirement, we have the mathematic proof as follows:

[dsqrt(x, y) + dsqrt(y, z)]
2

=

D
∑

i=1

(

x[i]− y[i]
x[i] + y[i]

)2

+

D
∑

i=1

(

y[i]− z[i]
y[i] + z[i]

)2

+2

√

√

√

√

D
∑

i=1

(

x[i]− y[i]
x[i] + y[i]

)2 D
∑

i=1

(

y[i]− z[i]
y[i] + z[i]

)2

. (6.12)

Based on Holder’s inequality,

∣

∣

∣

∣

∣

i
∑

1

aibi

∣

∣

∣

∣

∣

≤
(

i
∑

1

|ai|p
)1/p( i

∑

1

|bi|q
)1/q

(6.13)

where 1
p + 1

q = 1, p > 1, q > 1, we can obtain that

[dsqrt(x, y) + dsqrt(y, z)]
2

≥
D
∑

i=1

(

x[i]− y[i]
x[i] + y[i]

)2

+
D
∑

i=1

(

y[i]− z[i]
y[i] + z[i]

)2

+2

D
∑

i=1

∣

∣

∣

∣

x[i]− y[i]
x[i] + y[i]

y[i]− z[i]
y[i] + z[i]

∣

∣

∣

∣

=
D
∑

i=1

(

x[i]− y[i]
x[i] + y[i]

+
y[i]− z[i]
y[i] + z[i]

)2

≥
D
∑

i=1

(

x[i]− z[i]
x[i] + z[i]

)2

= [dsqrt(x, z)]
2. (6.14)

2
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6.3 Experimental Results

In order to test the clustering properties of the NLE algorithm with scale invariant distance

measures we have tried it on a set of sound data that are distinguished easily by human ear

and a set of artificial voice data.

The set of sound data contains three totally different data that can be easily distin-

guished by human ear: music, noise, and human speech. We aim to investigate whether the

NLE algorithm can distinguish them. As shown in Figs 6.2(a) and 6.2(b), the result using

scale invariant metric dabs(·, ·) in both neighborhood and reconstruction phase of the NLE

algorithm is much more superior than the result of Euclidian Metric d2(·, ·).
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(a) NLE applied to sound data using d2(·, ·) in
both neighborhood and reconstruction phase
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(b) NLE applied to sound data using dabs(·, ·)
in both neighborhood and reconstruction phase

Figure 6.2: Experimental results of sound data

The set of artificial voice data contains Microsoft Sam, Microsoft Mary and Microsoft

Mike, which are built in Microsoft Windows system. We let each artificial voice read the

same 8 words: hello, good, happy, beautiful, knowledge, property, attractive and informa-

tion. Then we use the NLE algorithm with Euclidian metric d2(·, ·) and NLE algorithm with

scale invariant metric dcos(·, ·) to extract 2D features the three different voices, respectively.
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The simulation results for the artificial voice data are shown in Figs. 6.3 and 6.4,

where the shape of points represents the voice of different speaker, and the color of points

represents different words. For this simple data set, each algorithm can give satisfactory

result as in Figs. 6.3 and 6.4. However it is obvious that the NLE algorithm with scale

invariant distance measure dcos(·, ·) gives better result. From Fig. 6.4, we see that the

2D embeddings of the artificial voice data using dcos(·, ·) preserve clusters features quite

clearly and the voices of different speakers are linear separable for classification. However,

the one using d2(·, ·), shown in Fig. 6.3, has some overlaps among the three clusters in the

2D embeddings, which cause difficulty for accurately classifying the three different artificial

voices.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2
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−0.5
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1
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1 hello 1
2 good 1
3 happy 1
4 beautiful 1
5 knowledge 1
6 property 1
7 attractive 1
8 information 1
9 hello 2
10 good 2
11 happy 2
12 beautiful 2
13 knowledge 2
14 property 2
15 attractive 2
16 information 2
17 hello 3
18 good 3
19 happy 3
20 beautiful 3
21 knowledge 3
22 property 3
23 attractive 3
24 information 3

Figure 6.3: NLE applied to artificial voice data using d2(·, ·) in both neighborhood and
reconstruction phase
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1 hello 1
2 good 1
3 happy 1
4 beautiful 1
5 knowledge 1
6 property 1
7 attractive 1
8 information 1
9 hello 210 good 2
11 happy 2
12 beautiful 2
13 knowledge 2
14 property 2
15 attractive 2
16 information 2
17 hello 3
18 good 3
19 happy 3
20 beautiful 3
21 knowledge 3
22 property 3
23 attractive 3
24 information 3

Figure 6.4: NLE applied to artificial voice data using dcos(·, ·) in reconstruction phase

6.4 Conclusion

In this chapter, we proposed an unsupervised learning algorithm which can be used as a

novel voice recognition method for detecting human’s voice in human robot interaction. The

algorithm, named NLE, is able to discover the intrinsic relationship among a set of voice

data. To improve the clustering property of NLE, scale-invariant distance measures, which

were motivated by the scale adaptation of human’s perceptual functions, were proposed and

utilized. Through the simulation study, we concluded that the performance of clustering

strongly depends on how distance between neighbor points is measured. The scale invariant

neighborhood linear embedding (SINLE) can be applied to robots for improving auditory

system of HRI because of its potentials for robust sound recognition and identification.
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Chapter 7

Human Face Detection and

Recognition for Human Robot

Interaction

7.1 Introduction

One of the most important human robot interactions is the human identification technology.

Many technologies such as face recognition, iris recognition, voice recognition are helpful

to distinguish people. This chapter focuses on one of the important human identification

technologies, the intelligent facial vision system to robustly detect and recognize human

face from a variety of real environment.

Facial vision system has attracted considerable attention in many practical applications

[178, 179] because they are critical parts in the whole robot system and directly lead to
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whether robots are interactive communication in the social environment. A facial vision

system is normally divided into two main modules: face detection and face recognition.

Face detection as the first module in a facial vision system is the problem of determining

whether or not a sub-window of an image belongs to the set of face images. Face recognition

focuses on classifying the set of face images of different people to identify them.

Among a variety of face detection methods, one of the most impressive studies is Ad-

aBoost algorithm [180, 181], which uses the concept of an “integral image”, along with a

rectangular feature representation and an AdaBoost algorithm as its learning method, to

detect faces at 15 frames per second. This represents an improvement in the computation

time of an order of magnitude over previous implementations of face detection algorithms.

One disadvantage of the AdaBoost algorithm is that it cannot distinguish face-like images

from the real face images because those face-like images may pass every stage. To con-

quer this problem, we consider applying neural networks to face detection due to their

approximation capability. However, drawback of neural network is that the network ar-

chitecture has to be extensively tuned (number of layers, number of nodes, learning rates,

etc) to reach satisfactory performance. Due to the random character of hidden neurons,

ELM breaks through the drawback of conventional neural network algorithms, and has been

proven to be an effective method to make neural networks achieve a better generalization

performance at a fast learning speed. Thus, it is natural to combine ELM algorithm and

Viola and Jones’s work to exclude those false face images. The ELM not only improves the

face detection accuracy, but also retains the real-time learning speed at the same time.

The second module of the facial vision system is face recognition. In recent decades, a

variety of pattern recognition methods have been applied to this field [178, 179, 182–187].
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Among these methods, manifold learning algorithm like LLE has its own advantages because

it is an unsupervised learning algorithm. On one hand, it do not need training samples,

which is especially helpful for small sample size of the face pattern’s distribution. On the

other hand, it only has one simple parameter, K number of neighbors selected, to be chosen,

which makes it easy for application. However, the performance of LLE declines when the

data are not well and uniformly distributed. Another problem is that the algorithm is not

robust to parameter changes. To combat these problems, we proposed WLLE [187] which

may have better performance for complicated data set such as face images.

In summary, the facial vision system is designed to detect human faces and extract

those faces from the background environment, then recognize the detected faces based on

an existing face data set, with a high accuracy and feasible learning speed.

The contributions in this Chapter lies in

(i) Utilization of active vision to make robot better understand the environment and

increasing target resolution for higher level tasks such as recognition and classification;

(ii) Combination of two precise filters, corner detection filter and ELM, with the Adaboost

algorithm to improve the accuracy of the Haar-Cascade Classifier for face detection;

(iii) WLLE is proposed for face recognition and compared with several well-known algo-

rithms. An improvement of classification rate is shown in experimental results, which

indicates the better performance of WLLE algorithm in face recognition.
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7.2 System Description

The proposed facial vision system consists of a normal camera that is placed in the RoBear,

which serves as a sensor to capture the images, as shown in Fig. 7.1.

Figure 7.1: Robot facial vision system based on robot mounted cameras

The camera in the bear robot is able to interact with the environment to optimize

the face recognition procedure by zooming in and focusing on the face region to obtain a

higher resolution picture after a face is detected; and tracking the specific person after the

face is recognized. Without an expensive 3D stereo triangulation for person tracking, the

zooming-in and tracking operation are simply and efficiently achieved through mechanical

control algorithm. Once human’s face is detected precisely by face detection module, the

mechanical control of robot mounted camera is triggered to zoom in around the face region.

Before the zoom-in operation takes action, the bear’s head needs to turn left and right

and move up and down until the subject’s face is in its center. By accurately tracking the

selected region while continuously updating the position of camera’s current center view,

121



7.3 Face Detection Module

the center of camera will effectively converge to selected region, i.e., the human face. Then,

the zooming in function of the camera is triggered to obtain high resolution picture of the

detected face, which is used as input of the face recognition module.

The real-time facial vision system contains two main modules: face detection module

and face recognition module. The major process is briefly demonstrated in Fig. 7.2.

Figure 7.2: Main process of the facial vision system

7.3 Face Detection Module

Face detection as a computer vision task has many applications [188, 189]. It is directly

relevant to the face recognition problem and human-computer interfaces. The face detection

problem can be defined as follows: given any image input, which could be a digitized

video signal or a scanned photograph, the system determines whether or not there are

human faces in the image, and if there are, the system returns their locations. Since face
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locations in the image are random and unpredictable, a well designed face detection system

normally requires a high frame rate, a low false detection accuracy, a wide range of working

environment, and the ability to cope with different scale, location, orientation, occlusion

and lighting conditions.

In this work, AdaBoost-based face detector which employs Haar-like classifiers in a

cascade structure is used to cope with the accuracy and robustness problem against ob-

servations with varying environments and illumination conditions [180, 181, 190–195]. The

cascade classifier is a binary classification function based on the statistical technique, which

can effectively extract faces from background images at a very rapid speed. The cascade

classifier is trained to reject the non-face images, while allowing all the faces to pass to the

next stage of cascade.

7.3.1 Haar-Cascade Classifier

The face detector firstly determines the initial location of the faces based on the Haar-like

features, available in OpenCV [196]. The statistical model consisting of a cascade of boosted

classifiers is trained using face and non-face examples with fixed size. For any new image

input, a small sliding window scans the whole image and obtains the fixed-sized gray-scale

patches and then each image patch is classified by the Cascade Classifier as either face or

non-face. To deal with varying facial size, the coordinates of all rectangles of Haar-like

features are repeatedly scaled. A large number of features are applied to different positions

in the same rectangular sub-image. The detailed implementation of Haar-Cascade classifier

is described as follows.

Firstly, a set of features are computed very rapidly at many scales by the integral image
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representation for images. The integral image can be computed from an image using a few

operations per pixel. Once computed, these Haar-like features can be rapidly computed at

any scale or location in constant time. In this work, the 4 Haar-like features used are shown

in Fig 7.3.

Figure 7.3: Four rectangle Haar-like features.

Secondly, a simple and efficient classifier is constructed by selecting a small number of

important features using AdaBoost [197]. A simple AdaBoost is modified to select features:

the number of Haar-like features is very large in any image sub-window, thus the learning

process must exclude a large majority of the features to ensure fast classification. In the

AdaBoost algorithm, it is constrained that each weak classifier can only depend on a single

feature. As a result, each stage of the boosting process, which selects a new weak classifier,

can be viewed as a feature selection process.

Finally, the weak classifiers are boosted into a stronger classifier in a cascade structure

which dramatically increases the speed of the detector by focusing attention on promising

regions of the image. By adopting simple-to-complex strategy, most non-face candidates
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are rejected in earlier layer of cascade with little computation costs.

A given feature value is the weighted sum of pixels over the whole area added to the

weighted sum over the dark regions of the Haar feature. A simple decision tree classifier,

which refers to a weak classifier, processes the feature value. A complex classifier is itera-

tively built as a weighted sum of weak classifiers using the Adaboost, an adaptive boosting

procedure. The boosting algorithm for training a strong classifier is a weighted linear com-

bination of N weak classifier. For given sample image dataset, (xi, yi)
N
i=1, where yi = 0, 1

is the label for negative and positive samples, the algorithm can be described as follows:

(i) Initialize the weights w1,i = 1
2m ,

1
2l for yi = 0, 1, where m and l are the number of the

negative and positive samples, respectively.

(ii) Normalize the weights wt for t = 1, · · · , T , to make it a probability distribution.

wt,i =
wt,i

∑t
j=1wt,j

(7.1)

Then select the best weak classifier with respect to the weighted error

εt = min
f,p,θ

∑

i

wi|h(xi, f, p, θ)− yi| (7.2)

where a weak classifier h(x, f, p, θ) consists of a feature f , a threshold θ and a polarity

p indicate the direction of the inequality:

h(x, f, p, θ) =























1, pf(x) < pθ

0, other

(7.3)

Here x is a 24 × 24 pixel sub-window of an image. After that, choose the classifier

ht(x) = h(x, ft, pt, θt) where ft, pt and θt are the minimizers of εt.
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Defining βt = εt

1−εt
, and update the weights:

wt+1,i = wt,iβ
1−ei
t (7.4)

where ei = 0, if sample xi is classified correctly; otherwise, ei = 1.

(iii) By defining αt = log 1
βt

, the final strong classifier is:

C(x) =























1,
∑T

t=1 αnht(x) ≥ 1
2

∑T
t=1 αt

0, other

(7.5)

7.3.2 Precise Face Detector

In the last section, a Haar-Cascade classifier with AdaBoost for detecting human face is

described. However, one disadvantage of the cascade structure is that the cascade structure

cannot distinguish face-like images from the real face images. The lack of non-face image

database can result in a wrong classification since a non-face but face-like image may satisfy

all the criteria of real face in each single stage of the cascade structure so that it can be

misclassified as a real face image. In order to improve the face detection accuracy, corner-

finding method and neural network method are applied to remove face-like images from the

real face images.

Corner Detection

Corner detection or the more general terminology interest point detection is an approach

used in computer vision systems to extract certain kinds of features and infer the contents

of an image. A corner can be defined as the intersection of two edges or as a point where

there are two dominant and different edge directions in a local neighborhood of the point.
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The corners with big eigenvalues in the image can be found by calculating the first-order

derivative of every pixel of the image to compare with the derivative of its 3 × 3 pixel

neighborhood. Consider that a real face image normally includes more corners due to facial

complexity, the number of all the corners counted in the image is compared to the predefined

threshold to make decision of whether or not it is a real face image. If the number of corner

is smaller than the predefined threshold, the image is assumed to be a false face image;

otherwise, the image is real face image.

However, it is noted that many face-like images normally include a large number of

corners, thus only corner finding filter cannot totally remove face-like images from the

real face images. To further improve the face detection accuracy, false face images can be

removed using neural network filter.

Extreme Learning Machine for Fake Face Removal

Neural networks have been applied successfully in many pattern recognition problems due to

their approximation capability [198–201]. Since face detection can be treated as a two class

pattern recognition problem, various neural network architectures have been proposed. The

advantage of using neural networks for face detection is the feasibility of training a system

to automatically capture the complex class relationship of face patterns.

Among all the face detection methods that used neural networks, one of the most signif-

icant works is presented in [202,203]. A multilayer neural network is used to learn the face

and nonface patterns from face/nonface images. There are two major components: neural

networks to detect face patterns and a decision making module to render the final decision.

The first component is a neural network that receives a 20×20 pixel region of an image and
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outputs a score ranging from -1 to 1. Given a test pattern, the output of the trained neural

network indicates a nonface or face pattern. To detect faces anywhere in an image, the

neural network is applied at all image locations. To detect faces larger than 20× 20 pixels,

the input image is repeatedly subsampled, and the network is applied at each scale. In

each training image, the eyes, tip of the nose, corners, and center of the mouth are labeled

manually and used to normalize the face to the same scale, orientation, and position. The

second component is to merge overlapping detection and arbitrate between the outputs of

multiple networks. Simple arbitration schemes such as logic operators are used to improve

performance.

However, one drawback of this method is that the network architecture has to be exten-

sively tuned (number of layers, number of nodes, learning rates, etc) to reach an exceptional

performance. Thus the computation is both time and memory intensive.

Recently, random thinking is successfully applied to neural networks, i.e., ELM [204,205].

Different from common understanding on neural networks, such neural networks not only

provide a better generalization performance at a fast learning speed, but still retain universal

approximation capability despite the fact that hidden neurons are randomly generated.

Without calculating the parameters of hidden neurons, neural networks with random hidden

neurons can achieve good generalization performance at a fast speed. A large number of

simulation results also demonstrate that ELM can outperform many popular algorithms

like BP, SVM and etc [204, 205]. Therefore, it is natural to consider applying the random

neural network to the active facial vision system for replacing traditional neural network

methods.

For easy and clear presenting, the symbol of neural networks and the ELM algorithm
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will be briefly introduced.

The output of an standard single hidden layer feedforward network (SLFN) with L

hidden nodes can be represented by fL =
∑L

i=1 βig(ai, bi,x), where ai and bi are the learning

parameters of hidden neurons and βi is the weight connecting the i-th hidden neuron to

the output neurons; g(ai, bi,x) is the output of the i-th hidden neuron with respect to the

input x. From a network architecture point of view, two main SLFN network architectures,

additive neurons and kernel neurons, have been investigated. For the additive neurons,

the activation function g(x) : R → R takes the form g(ai, bi,x) = g(aix + bi), where

ai ∈ Rn is the weight vector connecting the input layer to the i-th hidden neuron, and

bi ∈ R is the bias of the i-th hidden neuron; aix denotes the inner product of vectors ai

and x in Rn. For the kernel neurons, the activation function g(x) : R → R takes the form

g(ai, bi,x) = g(bi‖x−ai‖), where ai ∈ Rn is the center of the i-th RBF neuron and bi ∈ R+

is the impact of the i-th RBF neuron. R+ indicates the set of all positive real value.

For a series of N arbitrary distinct training samples (xi, ti), i = 1, · · · , N , where xi =

[xi1, xi2, · · · , xin]T ∈ Rn is an input vector and ti = [ti1, ti2, · · · , tim]T ∈ Rm is a target

vector. A standard SLFN with L hidden neurons with activation function g(x) can be

expressed as
L
∑

i=1

βig(ai, bi,xj) = oj, j = 1, · · · , N,

where oj is the actual output of SLFN. As mentioned before, g(ai, bi,xj) may be additive

model or RBF model.

A standard SLFN with L hidden neurons can learn N arbitrary distinct samples (xi, ti),

i = 1, · · · , N , with zero error means that there exist parameters ai and bi, for i = 1, · · · , L,
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such that
N
∑

i=1

‖oi − ti‖ = 0.

Therefore our ideal objective is to find proper parameters ai and bi such that

L
∑

i=1

βig(ai, bi,xj) = tj, j = 1, · · · , N,

The above N equations can be expressed as

Hβ = T (7.6)

where β = [β1, · · · , βL]T , T = [t1, · · · , tN ]T and

H =

















g(a1, b1,x1) · · · g(aL, bL,x1)

...
. . .

...

g(a1, b1,xN ) · · · g(aL, bL,xN )

















N×L

(7.7)

where the matrix H is called as the hidden layer matrix of the SLFN.

When the number of neurons L is equal to the number of samples N , neural networks

can precisely express observed samples. However, the number of hidden nodes is normally

much less than the number of distinct training samples, i.e., L ≪ N . It means that H

is a nonsquare matrix. It is noted that neural networks with randomly generating {ai, bi}

and determining βi by Moore-Penrose generalized inverse β = H†T [206,207] can approach

training target with small errors [204, 205]. This fast learning algorithm is so called ELM.

The learning procedures of ELM can be summarized in the following steps:

ELM Algorithm:

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N} and L hidden neurons

(i) Assign random parameters ai and bi, for i = 1, · · · , L.
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(ii) Calculate hidden layer matrix H.

(iii) Calculate the hidden-to-output weights by β = H†T, where H† denotes Moore-

Penrose generalized inverse of H.

As mentioned above, ELM will be applied to the active facial vision system for detect-

ing human faces in grey level images. The system works by scanning an image for face-like

patterns at many possible scales and uses ELM as its classification algorithms to determine

the appropriate class (face or non-face). It handles faces over a wide range of scales and

works under varying lighting conditions, even with moderately strong shadows. Face de-

tection is a natural and challenging problem for demonstrating and testing the potentials

of ELM. There are many other object classes and phenomena in the real world that share

similar characteristics with face images. A successful and general methodology for finding

faces using ELM should generalize well for other spatially well-defined pattern and feature

detection problems. The detailed process is that: we treat each image as a vector in a

high-dimensional space, and then ELM is applied to the set of training images to produce

a hidden matrix H. Lastly, the hidden-to-output weights by β = H†T, where the elements

of T belong to -1 or +1.

In Fig. 7.4, images are represented as points in a two-dimensional space. ELM is used to

approximate the boundary function to separate real face patterns from fake face patterns.

After this process, the system removes all the non-face patterns. Then, the face detection

module finishes its work and passes face patterns into the face recognition module.
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Figure 7.4: Real faces and fake faces are separated by neural networks

7.3.3 Experimental Results

In this experiment, ELM and AdaBoost are combined to improve the face detection accu-

racy, and the real-time speed are maintained at the same time.

First, AdaBoost of Viola-Jones is implemented using training examples, where positive

face images are coming from the UMIST face database [208] and negative background

from http://face.urtho.net/. Then profile face-images set is used to test the algorithm.

Fig. 7.5(a) shows the face detection result of AdaBoost of Viola-Jones, from which we

can find that the detection result using only AdaBoost includes many fake face or face-

like objects. To overcome this problem, ELM is used as a filter to exclude those face-like

objects. Fig. 7.5(b) illustrates the detection result of combining AdaBoost and ELM.

From the comparison of Fig. 7.5(a) and Fig. 7.5(b), it can be concluded that through the

ELM filter, those face-like objects are removed and the face detection accuracy is improved.

However, as shown in Fig. 7.5(b), the face of the mannequin cannot be filtered out by ELM
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filter because of its similar 3D features as human’s face. This kind of problem can be solved

by using a stereo camera as presented in [209].

(a) AdaBoost without ELM

(b) AdaBoost with ELM

Figure 7.5: Experimental results of face detection module

7.4 Face Recognition Module

Face recognition is one of the most popular research topics in pattern recognition during

this decade [182–184,210,211]. It can be widely used in entertainment, information security,

intelligent robotics and so on. Recently, great development has been done by researchers
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on both algorithm and system.

7.4.1 Dimension Reduction Algorithm for Feature Extraction

A critical part in face recognition is the dimension reduction algorithm for feature extraction.

In this area, global feature extraction algorithm such as principal components analysis

(PCA), linear discriminant analysis (LDA) and all the methods based on combination of

these two gave many good results in applications on facial recognition [210,211]. Later, as a

nonlinear extension of PCA, kernel principal components analysis (KPCA) [212] has shown

significant advantages on data representation for clustering and classification of complicated

facial data set. Based on the very observation that null subspace contains useful information

for clustering, in [213], Lu et. al proposed kernel direct discriminant analysis (KDDA),

which is combination of KPCA and direct linear discriminant analysis (DLDA). Another

combination of LDA and KPCA, called complete kernel fisher discriminant (CKFD), has

been proposed in [214]. All these kernel based methods have a major disadvantage that the

selection of kernel function and their parameters are usually obtained by trial and error or

based on experience, which greatly weakens the practical value of these methods. Moreover,

the final projection is related to all the training samples, so that the requirement for training

samples is usually strict.

Compared to these kernel based methods, LLE has its own advantages. Because of its

unsupervised property, it do not need training samples. This property makes LLE especially

suitable for face recognition with small sample size. Furthermore, it only has one parameter

to be chosen, K, number of neighbors selected. The detailed LLE algorithm is presented in

Appendix A.
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To combat the problem that the performance of LLE declines when the data distribution

is deformed, WLLE is proposed [187] which may have better performance for complicated

data set such as face images.

7.4.2 Weighted Locally Linear Embedding

The neighbor finding process of LLE is usually carried out using a grouping technique

such as K nearest neighbors (KNN) or choosing neighbors within a ball of fixed radius

(ǫ-neighborhoods) based on Euclidean distance for each data point in the given data set.

After carefully considering the LLE and NLE’s neighbor selection criterion, we propose a

new algorithm by using weighted distance measurement in neighbor searching. The new

algorithm can solve the problem of redundancy in LLE and avoid NLE’s problem that no

enough data are chosen as neighbors at the same time.

In the data manipulation like nearest neighbor searching, each datum can be regarded as

the center of a probability distribution and the similarity of its neighbors to the datum can

be measured by Euclidean distance with the assumption that samples are well-distributed.

However, because of the attraction, repulsion, strengthening effect and weakening effect

between data, the standard normal distributions will be greatly deformed. Obviously, ne-

glecting such a deformation and still using the standard Euclidean distance to measure

the similarity will lead to performance decline. As mentioned in [215], the data set should

be sufficient and well-sampled, otherwise the performance of LLE algorithm will not be

good enough. For example, as illustrated in Fig. 7.6, the samples are not well-distributed,

data density changes sharply within a small area, the query point is marked by a cross,

and its neighbors marked by circles. We use ǫ-neighborhoods algorithm to finding nearest
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neighbors of the query point from its neighbors. For this deformed distribution data set,

ǫ-neighborhoods method based on standard Euclidean distance measurement selects neigh-

bors from a single direction, and these neighbors are closely gathered. Obviously, if we use

these chosen neighbors to reconstruct the query point, the information captured in this di-

rection will have serous redundancy; at the same time, no information from other directions

are reserved for query point reconstruction. These chosen neighbors cannot represent and

reconstruct the query point well, most internal features and intrinsic structure will be lost

after dimension reduction by LLE.

Figure 7.6: Select nearest neighbors using ǫ-neighborhoods algorithm by Euclidean distance

(solid line) and weighted distance (dash line).

To solve this problem, we introduce the weighted distance measurement motivated

by [216]. The main idea of the weighted distance measurement is giving a different but

appropriate distance scale to each prototype to make the distance measure more reasonable

for representing the global distribution of the data set. Fig. 7.6 shows the advantages of

this scaled adaptive distance measurement. The modified ǫ-neighborhoods method based

on weighted distance measurement select neighbors more reasonable than the one based on
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standard Euclidean distance by giving the distance measurement from neighbor point with

high density a larger weight scaling, while those with low density a smaller weight scaling.

Thus, the previous redundancy and deficiency problem can be solved.

To find the suitable adaptive weight scaling, we first construct a simple yet effective

transformation to simulate the possible deformation of data distribution.

Definition 7.1. (Deformed Distribution) Consider a d-dimensional random vector Y =

(Y1, Y2, . . . , Yd)
T that takes a standard D dimensional normal distribution N(0, I), that is,

it has a probability density function

f(y) =
1

(2π)d/2
e−1/2yT y (7.8)

Let a random vector X be defined by the transformation

X = (a+ b
Y T τ

‖Y ‖ )Y (7.9)

where Y denotes the original well-distributed data set, a > b ≥ 0 are the parameters that

reflect overall scale and orientation of distribution, τ is a normalized vector denoting the

deformation orientation, ‖Y ‖ =
√
Y TY , and X represent the deformed distribution with

parameters a and b in the direction τ , denoted as X = Dd(a, b, τ) [216].

According to the definition, a deformed distribution biases towards a specific direction,

which makes it an eccentric distribution. In this case, the Euclidean distance is not suitable

to describe the similarity between two data directly, since the assumption those data are

well-distributed is dissatisfied. Instead, we firstly restore the deformation by an inverse

transformation Y = X/(a+ b cos θ), and then measure the distance. We call this weighted

distance measurement. This weighted distance redresses the deformation and should be

more suitable to describe the similarity for data set that are not well-distributed.
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Definition 7.2. (Weighted Distance) Assume that x0 ∈ Rd is the center of a deformed

distribution Dd(a, b, τ). The weighted distance from a point x ∈ Rd to x0 is defined to be

Dist(x0, x) =
‖x− x0‖

a+ b (x−x0)T τ
‖x−x0‖

(7.10)

or

Dist(x0, x) = ‖x− x0‖/(a + b cos θ) (7.11)

where θ is the angle between vectors x−x0 and τ , and 1
a+b cos θ is the weight of the distance

from x to x0 [216].

One disadvantage of the weighted distance measurement is just a weighted distance, but

not a metric, since Dist(x0, x) may not equal to Dist(x, x0) under the definition of weighted

distance. In fact, it has been discussed in [217] that non-Euclidean or non-metric measures

can be informative in statistical learning algorithms.

To facilitate parameter estimation for weighted distance, we first present some proper-

ties.

Theorem 7.1. If a random vector X = Dd(a, b, τ), then E(X) = c1bτ and E(‖x‖) = c2a,

where c1 and c2 are constants.

c1 = 21/2 Γ((d+ 1)/2)

Γ(d/2)d
(7.12)

c2 = 21/2 Γ((d+ 1)/2)

Γ(d/2)
(7.13)

where Γ is the Gamma function Γ(k) =
∫∞
0 tk−1e−tdt, (k > 0) [216].

For an arbitrary sample xi ∈ D, we assume that it represents a deformed distribution

and is the origin of this deformed distribution. Then, we use its k-nearest neighbors Xi =

138



7.4 Face Recognition Module

{xi1, xi2, . . . , xik} to estimate the parameters of the deformed distribution, that is, ai, bi

and τi.

First, we calculate the difference between a sample and all its k-nearest neighbors,

Vi = {vi1, vi2, . . . , vik}, where vij = xij − xi, j = 1, 2, . . . , k. Then, we use Ĝi and L̂i, which

are the center of mass and the averaged vector length of Vi:

Ĝi =

k
∑

j=1

vij/k (7.14)

L̂i =

k
∑

j=1

‖vij‖/k (7.15)

to estimate E(X) and E(‖X‖), respectively. According to Theorem 7.1, we obtain an

estimation to ai, bi and τi:

âi =
L̂i

c2
(7.16)

b̂i =
‖Ĝi‖
c1

(7.17)

τ̂i =
Ĝi

‖Ĝi‖
(7.18)

The weighted distance can measure similarity more reasonably for the deformed-distributed

data set than standard Euclidean distance and is suitable for many distance based meth-

ods. Accordingly, we propose a novel dimension reduction algorithm, WLLE which use

weighted distance measurement instead of standard Euclidean distance measurement in

LLE algorithm so that it can improve the dimension reduction and internal feature extrac-

tion performance especially for the deformed distributed data.

The whole procedure of dimension reduction as well as the construction of weighted

distance measurement in WLLE algorithm are detailed in Algorithm 1.
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Algorithm 1 Weighted Locally Linear Embedding Procedure

Phase 1: Construct Weighted Distance
Given a raw high dimensional data set D = {xi}, i = 1, 2, . . . , N , xi ∈ RD, and a parameter
kw, for an arbitrary datum xi ∈ D,
1: Find kw-nearest neighbors Xi = {xi1, xi2, . . . , xikw

}, Xi ⊂ D.
2: Obtain Vi, vij = xij − xi, j = 1, . . . , kw.
3: Calculate Ĝi and L̂i, according to equations (7.14) and (7.15).
4: Estimate ai, bi, τi by using Ĝi and L̂i, according to equations (7.16), (7.17) and (7.18).

Phase 2: Search Neighborhood
For an arbitrary datum xi ∈ D, i = 1, 2, . . . , N , find k-nearest neighbors based on the
weighted distance
1: Calculate the weighted distance from xi to ∀xj ∈ D, j 6= i according to equation (7.10).
2: Find the k-nearest neighbor Xj = {xj1, xj2, . . . , xjk}, Xj ⊂ D, which satisfy

Dist(xj , xi) < Dist(xk, xi) (7.19)

for ∀xj ∈ Xj , ∀xi ∈ D and ∀xk ∈ D /∈ Xj

Phase 3: Calculate Optimal Reconstruction Weights
1: Compute local covariance matrix as (A.6).
2: Regulate the local covariance matrix according to equation (A.10).
3: Compute the reconstruction weights according to equation (A.9).

Phase 4: Compute Low Dimensional Embedding
1: Construct a symmetric N ×N matrix according to equation (A.15).
2: Calculate eigenvalues and eigenvectors of the symmetric matrix (A.15).
3: Obtain low dimensional embedding using bottom d+1 eigenvectors (according to small-

est d+ 1 eigenvalues) of matrix (A.15).

7.4.3 Experimental Results

Classification of Different Faces

To demonstrate the face recognition performance of WLLE and compared to other well-

known methods for face recognition, in this section, we utilize the UMIST face database

[208, 218] for experiment, which consists of 564 images of 20 people in PGM format, ap-

proximately 220 x 220 pixels in 256 shades of grey, covering a range of poses from profile to

frontal views. Subjects cover a range of race/sex/appearance. The original 220× 220 PGM

format face images were cropped to 112 × 92 images, a standardized image size commonly

used in face recognition experiment. In our experiment, we extract a typical subset of the
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UMIST face database, which contains face images of 5 different individuals, each individual

has 20 face images covering range from profile to frontal views. As such, the subset we used

in this experiment are 100 samples with dimensionality of 10304 in 5 classes (different in-

dividuals). Six types of low dimensional representations are produced from the face images

subset by using different feature extraction algorithms, PCA, KPCA, KDDA, WLLE, LLE

and NLE. For PCA, KPCA and KDDA, all of the face images in subset are used in both the

training procedure to generate subspaces and the testing procedure to project them onto

the generated subspaces. For each image, its projections in the first two most important

features bases are visualized in the first row of Fig. 7.7. For WLLE, LLE, and NLE, the

high dimensional face image data are mapped into 2D embeddings, which are shown in the

second row of Fig. 7.7.

The low-dimensional representations produced by the algorithms are quite different.

Among them, the KDDA-based result and WLLE-based result showed better clustering

property, but the other four algorithms result in some overlapping between different classes

of the face data, which may make them nonseparable. In particular, the result of KDDA

is fairly linear separable, which may result from its separability criteria based algorithm.

Unlike the diffuse shape of the five classes in result by KDDA, the result by WLLE gives a

parallel shape of the five classes. Although there is no overlapping between different classes,

the short distance between clusters indicates that the WLLE-based feature representation

is less linear separable than the KDDA-based result. Overall, simple inspection of Fig. 7.7

indicates that the feature representations produced by KDDA and WLLE outperform, in

view of separability, the ones produced by PCA, KPCA, LLE and NLE. This will be later

proved by feeding these 2D features obtained by six algorithms into a simple SVM classifier.
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Figure 7.7: Dimension reduction result of UMIST face data by six different methods

Since the objective of this experiment is to compare the performance of different feature

extraction algorithms, we keep the parameters of SVM unchanged during all the experi-

ments. The performance is evaluated using average error rate obtained by dividing total

number of misclassifications by product of number of samples and number of runs. Eight

runs for each algorithm is conducted and 10× 10 fold cross validation is used to obtain the

generalized error rate.

Noting that the performance of kernel based methods is greatly affected by the kernel

function chosen and the parameter changes of the function, we use a RBF kernel function

for both KPCA and KDDA, and record the error rate with different kernel parameter, the

scale value σ2 for RBF kernel. Fig. 7.8 shows the error rates and computational cost as
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functions of σ2 within the rage from 1e2 to 1e7 for algorithms KPCA and KDDA. Either

error rate or computational cost indicate that the KDDA algorithm outperforms KPCA.

The only parameter for LLE based methods is the number of neighbors, K. As such, we

record the error rate with different K for LLE and WLLE algorithm. The NLE algorithm

does not need to choose parameter K. Fig. 7.9 shows the error rates and computational cost

as functions of K within the rage from 8 to 88 for algorithms WLLE and LLE. Although the

computational cost of WLLE is higher than LLE, the error rate shows that the classification

performance of WLLE outperforms that of LLE.
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Figure 7.8: Comparison of error rates and computational cost as functions of σ2 for KPCA

and KDDA

143



7.4 Face Recognition Module

0 10 20 30 40 50 60 70 80 90
−5

0

5

10

15

20

25

30

Number of Neighbors K

E
rr

or
 R

at
e 

(%
) 

   
   

   
C

om
pu

ta
tio

na
l C

os
t (

se
c)

 

 
error rate of WLLE
computational cost of WLLE
error rate of LLE
computational cost of LLE

Figure 7.9: Comparison of error rates and computational cost as functions of K for WLLE

and LLE

Table 7.1 shows the optimal parameter ranges, average computational cost and average

error rate. From Table 7.1, it can be easily observed that PCA is the most simple algorithm

but the classification performance is not satisfactory. KDDA has low computational cost

and excellent classification performance, and is the best algorithm for this face recognition

problem. KPCA and NLE have high computational costs and average classification error

rates. WLLE shows good performance for classification, but the computational cost is

relatively high compared to KDDA and LLE. Although the smallest error rates for WLLE

and LLE are almost the same, we can see from Fig. 7.9 that WLLE gives the optimal

performance for a much larger range of parameter than LLE, which means WLLE is more

robust to parameter changes than LLE.
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Table 7.1: Comparisons of classification error rates and computational time

Algorithm Parameter Computational Time (S) Error Rate

PCA N.A. 0.5 47%

KPCA σ2 : 2e2 ∼ 8e2 16.5 10%

KDDA σ2 ≥ 2e2 1.7 0%

LLE K : 24 ∼ 36 2.4 1%

WLLE K : 24 ∼ 72 13.3 0%

NLE N.A. 11.5 8%

Manifold Learning of Different Poses of A Face

In next simulation study, the feature extraction algorithms are used to find the coherent

relationship among a set of face images [219]. This data set contains N = 698 gray images

at a resolution of 64 × 64 with different poses from left side view through front view to

right side view of the same face. The input datum xi of X is constructed by formatting the

image pixel column by column from left to right and concatenate them to form a column

vector.

The computed 2-Dimensional embeddings by WLLE are shown in Fig. 7.10, several

face images are shown next to the corresponding embedding point. These embeddings form

an arch-bridge shape. To a certain extent, it is identical to the motion trajectory of the

faces. From the left end of the arch, through middle peak till the right end of the arch, the

embeddings are corresponding to the left pose face, front face and right pose face. Although

the face images are high dimensional data, the 2D embeddings of the face images are related
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to meaningful attributes of the motion of the subject head in the images. Thus, if a new face

image is given, we can compute its corresponding embedding and identify the face direction

by finding its position in Fig. 7.10.

For comparison, the same data are also processed by PCA, KPCA and KDDA, which

are shown in Figs. 7.11, 7.12, 7.13, respectively. All of them show some patterns according

to the different poses of face images. The PCA and KPCA map the left and right views

of the face to the top and bottom part of the embedding, respectively. KDDA maps the

left and right views of the face to the top right and bottom left part of the embedding,

respectively. Simple inspection of Figs. 7.10-7.13 indicates that WLLE extracts a smoother

and meaningful string of manifold for the images of different poses.
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Figure 7.10: 2D embeddings of different pose face images by WLLE
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7.5 Conclusion

In this chapter, an active vision system for identifying humans’ faces from background

and recognizing the faces was presented. Haar-Cascade classifier and precise face detector

were used to do the face detection. Feature extraction algorithm, LLE and WLLE have

been utilized for finding compact and robust feature descriptor to do face recognition. The

proposed robot vision system for human detection and recognition was thoroughly evaluated

in experiments, which demonstrated the effectiveness of the face detection module and face

recognition module.
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Chapter 8

Conclusions and Future work

The work presented in this thesis focused on both fundamental academic exploration of

patter recognition algorithms and practical implementation of the algorithms for developing

effective neurological therapeutic schemes. In this chapter, the results of the research work

described in the previous chapters are summarized and the major contributions of this work

are reviewed. Suggestions for future work are also presented.

8.1 Conclusions and Contributions

The thesis has covered advanced engineering technologies like brain imaging and process-

ing technologies, intelligent control designs and advanced robotics as aid in the treatment

of several different neurological disorders, including epilepsy, stroke, and autism. In this

thesis, an attempt has been made to develop necessary techniques and demonstrate the-

oretically and empirically that the proposed methods serve as promising technologies for

future neurological therapy strategies design.
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8.1 Conclusions and Contributions

(i) Part I of the thesis has been dedicated to detection and prevention of epileptic seizures.

• An automatic detection of epilepsy was proposed based on EEG signal processing.

The automatic seizure detection consists of feature extraction and classification.

In this research, several statistical features were proposed for feature extraction.

SVM and BPNN were applied as classifier. These algorithms were evaluated

and compared through experiments on two-channels I-EEG data obtained from

Swiss mice. The experimental results demonstrated the merits of the proposed

methods.

• Upon detection of seizures, we addressed the problem of controlling the synaptic

plasticity to constrain bursting activity in epileptic seizures. A closed-loop con-

trol strategy was designed for a direct drug injection or electrical stimulation of

related brain region on the basis of a good understanding of dynamical changes

in seizures onset. The closed-loop system was demonstrated to be globally sta-

ble. Simulation studies were carried out to show the effectiveness of the control

for stopping the bursting activity in brain with epilepsy. Through this study,

we have shown how advanced nonlinear control techniques allow for effective de-

sign of drug injection or electrical stimulation schemes for achieving brain states

restoration.

(ii) Part II of the thesis has been dedicated to mind robotic rehabilitation of stroke.

• Mind robotic rehabilitation was developed based on non-invasive motor imagery

based BCI technology and a human-friendly interactive robot. The mind robotic
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rehabilitation was designed for stroke patients to do regular rehabilitation train-

ing at home. A human-friendly interactive robot was developed as a visual and

motion feedback for BCI system to make the patients more cognitively engaged

in rehabilitative training process. For the BCI system, we used a spatial fil-

tering algorithm, CSP, for discriminative feature extraction of EEG signal with

left hand movement imagination and right hand movement imagination. Fur-

thermore, a feature fusion of CSP and AR spectral analysis was proposed and

proved to have obvious improvement for the performance of BCI system. QDA

was utilized as classifier for the combined feature vectors. The proposed fea-

ture fusion method was evaluated by both off-line and real-time experiments and

compared to single-feature extraction methods. The experimental results demon-

strated that the feature fusion method outperformed each of the single-feature

extraction algorithms.

(iii) Part III of the thesis has been dedicated to social therapy of autism.

• An interactive robot pet, RoBear, was developed to help autistic children based

on a good understanding of autism-related hypothesis of neuroscience and cog-

nitive science, and advanced robotics technology with multimodal HRI. A mul-

timodal HRI framework was proposed, under which the RoBear was able to

identify the face and voice and sensitive to the emotional change of the patients

working with it. The RoBear was designed to be responsive to the physical and

psychological states of the patients and capable of detecting both implicit and
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explicit communication from the patients to determine its own behavior. We ar-

gue that RoBear is promising for providing individualized and empathetic social

companion for children, elderly and socially disabled people, and is especially

well suited for social therapy of autistic children.

• Under the multimodal HRI framework mentioned in Chapter 5, an intelligent

audio human detection system was introduced to recognize human voice and

identify it from background sound. An unsupervised learning algorithm NLE

was proposed for sound sources recognition. NLE is a variant of LLE algorithm,

which can address the trail and error problem for finding neighborhood in LLE.

Additionally, motivated by the scale adaptation of human’s perception, several

scale invariant metrics were designed to enhance the intrinsic feature extraction

performance of NLE. The NLE and SINLE were shown to outperform the original

LLE algorithm through the experimental results on both artificial and real-world

sound data.

• Under the multimodal HRI framework proposed in Chapter 5, we introduced a

real-time vision system for detecting and recognizing human face from real envi-

ronment. Adaboost-based Haar-Cascade classifier was used for human face detec-

tion. ELM was used to further remove the non-face images. For face recognition,

we conducted extensive experiments on different face data set, using dimension

reduction algorithm like LLE, WLLE and other famous feature extraction algo-

rithms for face image. Furthermore, we did a thorough comparison between the

proposed WLLE algorithm and other famous feature extraction algorithms for

face image. The experimental results demonstrated that the WLLE algorithm
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outperformed the other algorithms, which may be caused by the new neighbor

selection criterion we proposed. The WLLE is a promising way to extract useful

features for recognition of face images.

8.2 Limitations and Future Work

Based on review of the limitations of this research work, the research topics that are rec-

ommended for further investigation are presented.

• Although evidence suggests that brain signal processing techniques and interactive

robotics resulted in significant improvements in neurological therapy, the results are

currently inconclusive due to the large variations in neurological improvements in both

groups and the limited number of patients recruited for current study. Furthermore,

the work proposed in this thesis is weak on the experimental validation due to diffi-

culties in obtaining human EEG data and experiment subjects for testing our systems

because of some ethic issues. A conclusive result could be drawn from a larger scale

study through collaboration with hospitals and other neuroscience research groups.

Nevertheless, the outcome of this preliminary study is promising as it demonstrated

the role of the engineering approaches in neurological therapy.

• The use of EEG technique is limited by two issue. The first is the requirement of

electrically-conductive gel for a good connection between the sensors and the scalp,

which is time-consuming and limits the realizable density of sensors on the scalp and

EEG recording time. The second limiting issue with typical EEG systems is that they

are not portable due to the mass of wires connecting the sensor to computer. Thus,
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it would be a future work to design active electrode (also called “dry electrode”) with

low impedance which does not requires conductive gel, and to develop wireless EEG

device with wireless capability for EEG signal acquisition. These improvements of

EEG device may lead to the transfer of EEG technique from usage under laboratory

settings to daily usage of seamless and minimally obtrusive neural signal acquisition in

neurological therapy. Furthermore, we may also investigate more effective algorithms

to minimize the number of required EEG electrodes.

• In this thesis, we only focused on utilizing pattern recognition algorithm, in particular,

feature extraction algorithm, and interactive robotics for developing novel neurolog-

ical therapeutic schemes. However, a number of other engineering technologies can

be applied to enhance the effectiveness of neurological therapy. These technologies

for future study include intelligent control, network communications, advanced clas-

sification algorithms, etc. Sensor fusion for brain monitoring is also a future trend of

this research. For instance, since the MEG and EEG complement each other, their

combined usage may greatly improve our understanding of what is occurring in the

brain, and provide more practical brain monitoring for neurological therapy.

• In this thesis, the multimodal HRI for robotic rehabilitation of neurological disorder

was developed based on robot audio and vision system and a motor imagery based

BCI. Future direction of research includes the detection of attention and emotional

states of the patient using BCI for a more holistic approach towards mind robotic

rehabilitation in order to address the neuropsychological issues in addition to the

physiological aspects of rehabilitation for an optimal therapy. Specifically, for social
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therapy of autism, a BCI based emotion detection method should be developed to

complement the facial expression based emotion detection to develop empathic robot

pet for optimal social training of autistic children. However, a challenging issue is

in how to achieve reliable emotion detection accuracy with a small number of EEG

sensors for minimally obtrusive brain signal acquisition from autistic children who are

reluctant to be physically touched.
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Appendix A

Local Linear Embedding (LLE)

The problem LLE attempts to solve is: given a set X = [x1, x2, . . . , xN ], where xi(i =

1, . . . , N) is ith node on a high dimensional manifold embedded in RD, i.e., xi ∈ RD, and

then find a set Y = [y1, y2, . . . , yN ] in Rd, where d≪ D such that the intrinsic structure in

X can be represented by that of Y . This can be done using three major steps.

A.1 Neatest Neighborhood Construction

We firstly attempt to express data point xi as a linear combination of its k nearest neighbors

xj, j = 1, 2, . . . , k.

x̂i =
∑

j∈Ωi

wijxj, (A.1)

where Ωi is the neighborhood of sample xi. The neighborhoods can be constructed according

to a KNN rule or to consist of all points inside a ball around xi with radius ǫ (known as ǫ-

neighborhoods [220]). In the original algorithm the standard Euclidean metric based KNN

is used to select the nearest neighbors. However, many other novel approaches can be
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A.2 Optimization of Reconstruction Weights

utilized for constructing neighborhoods to form new method.

A.2 Optimization of Reconstruction Weights

Once the data point xi is expressed as a linear combination of its k nearest neighbors

xj, j = 1, 2, . . . , k, the optimal weight matrix wij for data reconstruction can be obtained

by minimizing the approximation error cost function

ǫ(Wi) =
∑

i

dW



xi,
∑

j∈Ωi

wijxj





2

, (A.2)

subject to the constraints

j /∈ Ωi ⇒ wij = 0 (A.3)

∑

j∈Ωi

wij = 1, (A.4)

where wi = [wi1, . . . , wik] is the weights connecting sample xi to its neighbors. The function

dW (·, ·) is an appropriate distance measure. The first constraint says that only data points

in the neighborhood of data point xi should be used in the reconstruction of x̂i, while the

second constraint imposes invariance to translation.

To see how a closed form solution can be obtained, we use Euclidean metric as dW (·, ·)

for example. In order to use a Lagrange multiplier ηi, we rewrite the approximation error

cost function (A.2) as:

ǫ(Wi) = ‖xi − x̂i‖

=

∥

∥

∥

∥

∥

∥

xi

∑

j∈Ωi

wij −
∑

j∈Ωi

(wijxj)

∥

∥

∥

∥

∥

∥

=
∑

j∈Ωi

wij

∑

k∈Ωi

wik(xi − xj)
T (xi − xk). (A.5)
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A.3 Mapping to Low-dimensional Embedding

By defining

Ci(j, k) = (xi − xj)
T (xi − xk) (A.6)

and applying a Lagrange multiplier ηi, the approximation error becomes

ǫ(Wi) =
∑

j∈Ωi

wij

∑

k∈Ωi

wikCi(j, k) + ηi(
∑

j∈Ωi

wij − 1). (A.7)

The optimal weights are found by requiring the partial derivatives with respect to each

weight wij to be zero,

∂ǫ(Wi)

∂wij
= 2

∑

k∈Ωi

wikCi(j, k) + ηi = 0, ∀j ∈ Ωi. (A.8)

By setting the value of ηi, the desired solution wi is found by simply solving the equations,

∑

k∈Ωi

Ci(j, k)wik = 1, (A.9)

and then re-scale the weights so that they sum to one.

In unusual cases, it can arise that the matrix (A.6) is singular or nearly singular. In

that case, the least square problem for finding the weights does not have a unique solution.

As such, in order to guarantee numerical stability we regulate C by

Ci(j, k)← Ci(j, k) + ηrI, (A.10)

where ηr << trace(C) is a small constant to be defined as part of the algorithm. I is

identical matrix.

A.3 Mapping to Low-dimensional Embedding

The final step of LLE is to compute a low dimensional embedding of the high dimensional

inputs xi based on the reconstruction weights wij . The high dimensional data are mapped
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A.3 Mapping to Low-dimensional Embedding

into the low dimensional space Rd by requiring reconstruction to work as well as possible.

This leads to another minimization problem [171]. The low dimensional outputs yi, i =

1, 2, . . . , N are found by minimizing the cost function,

Φ(Y ) =
∑

i

dW



yi,
∑

j∈Ωi

wijyj





2

, (A.11)

where Y = [y1, . . . , yN ] consists of the data points embedded into the low dimensional space.

This minimization problem is not well-posed without further constraints. Zero mean and

unity covariance is used in the LLE algorithm to make the problem well-posed. In other

words Y should obey the constraints

N
∑

i=1

yi = 0 (A.12)

1

N
Y Y T = I, (A.13)

where 0 is a vector with all elements being zero, and I is a identical matrix. The first con-

straint is to assure that coordinates yi can be translated by a constant displacement without

affecting the cost, while the second constraint imposes unit covariance of the embedding

vectors.

For the case that dW (·, ·) is the Euclidean metric, rewrite cost function on matrix form

as:

Φ(Y ) = Tr
[

(Y −YW)T(Y −YW)
]

= Tr
[

(Y −YW)(Y −YW)T
]

= Tr
[

Y(I−W)(I−W)TYT
]

= Tr
[

YMYT
]

, (A.14)
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A.3 Mapping to Low-dimensional Embedding

where the symmetric matrix

M = (I −W )(I −W )T . (A.15)

The minimum of Φ(Y ) in Equation (A.14) subject to the constraint of Equation (A.13) can

be obtained by finding the d smallest eigenvectors of M . The minimal value of Φ(Y ) equals

the sum of the eigenvalues of M . Notice that

M1 = (I −W )(I −W )T1 = 0, (A.16)

due to the requirement
∑

j∈Ωi
wij = 1. Therefore the smallest eigenvalue is automatically

zero with corresponding eigenvector 1. Since the eigenvectors are mutually orthogonal, it

fulfills the constraint of Equation (A.12). To summarize, the d dimensional embedding

Y ∈ Rd×N consists of eigenvector number 2, . . . , d+ 1 as its rows.
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