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Abstract 

Orthodontics is one of the specialized fields of dentistry, which is concerned with the 

growth, and development of the dentition and course, the treatment of irregularities 

that can occur. Orthodontists are interested in evaluating geometric parameters to 

describe teeth and malocclusions occurring in teeth. Traditionally, orthodontists use 

plaster models to study these parameters; they use such tools as hand caliper-and-ruler 

measurements to manually measure sizes, shapes and distances. Tooth brackets are 

often used to correct misalignments and malocclusions. The decision of selecting a 

tooth bracket for a specific tooth has been an empirical activity of the orthodontists. 

Traditional diagnoses require tedious work, and the results are not always satisfactory. 

 

Computer vision techniques together with 3D scanning and visualization tools enable 

the orthodontists to evaluate and compute geometric measurements and also to decide 

the best-fit tooth bracket easily and more accurately. This thesis describes work that 

applies 3D computer vision techniques for the surface matching of tooth bracket 

surfaces and tooth surfaces from 3D scanning of tooth models and tooth bracket 

surfaces, 3D visualization of tooth models, manual segmentation of tooth surfaces, 

and finally a technique of matching the tooth bracket surfaces and tooth surfaces. 

These works will help the orthodontists to choose a precise and even customized tooth 

bracket to fit a specific tooth surface.  
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CHAPTER 1 

INTRODUCTION 

 
Orthodontics is a branch of dentistry concerned with correcting and preventing 

irregularities of the teeth and poor occlusion. The goal of orthodontic treatment is to 

reposition the teeth into a proper bite (occlusion) while maintaining or improving a 

person’s appearance. The practice of orthodontics requires professional skill in the 

design, application and control of corrective appliances (fixed and removable) to 

bring teeth, lips and jaws into proper alignment and achieve facial balance. 

Orthodontists often use tooth brackets to help align irregular teeth. An important 

consideration is therefore the matching of tooth brackets to tooth surfaces. This 

consideration requires surface analysis of tooth bracket surface and tooth surface.  

 

To aid the orthodontists in the treatment and diagnosis of misalignment and 

malocclusion, the surface patches of tooth bracket and tooth surface have to be 

analyzed. The work presented in this thesis has two main objectives. The first object 

is to develop a suite of tools and programs to automatically analyze the plaster models 

taken from a patient. These proposed computer-vision based tools and programs will 

eventually be incorporated into a larger system capable of complete tooth diagnosis 

and description. The other objective is to use the extracted tooth surface and tooth 

bracket surface to compute similarity measurements [26] in order to find a best fit of 

the tooth brackets to the tooth surfaces and subsequently to help in designing 

customized tooth brackets and other orthodontics devices. Current orthodontics 

devices depend on coarse models that seldom take into account differences in shape 

geometry of tooth surfaces found in people belonging to different ethic groups for 
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example, and orthodontists currently depend on their experiences in their diagnoses 

and treatments.  

 

1.1 The Role of Computer Vision in Orthodontics 

 

 Orthodontists routinely diagnose malocclusion and plan treatment based on 

information gathered from clinical examination and evaluation of records. Of the 

records taken, photographic representation of the patients’ face, the cephalogram and 

the plaster model are essential aids in diagnosis and treatment planning. Cephalogram 

is the most common radiographic view used for facial analysis derived from the 

relative geometry between identified landmarks on the X-ray images. The plaster 

dental-moulds are taken directly from the patients’ mouth. Plaster models are widely 

used by dentists and clinics in day-to-day diagnosis of orthodontic problems and are 

invariably the first step in realizing treatment. Orthodontists usually use tooth brackets 

in the treatment of misalignment and malocclusion. There are several commercial 

available sets of tooth brackets, and the selection of a tooth bracket to put on a 

patient’s tooth is an empirical activity of the orthodontists. This activity results in 

inherent error because of lack of complete information of the tooth bracket and tooth 

surface.  

 

In the early years of computer vision, the shape information of three-dimensional 

objects was obtained using camera images that are two-dimensional projections of 

three-dimensional objects. There have been a few attempts at automating the tasks 

related to orthodontic treatment evaluation. These include using wax-wafer 

alternatives to plaster moulds [35], detecting interstices on wax-wafer imprints [36], 
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and detection of cups and other important surface features, again on wax-wafer 

imprints [37]. A substantial amount of work has addressed issues related to 

segmentation [37,38,39], which is an orthodontics problem. Computer modeling 

techniques for describing the tooth surface have been suggested in [40,41]. Finite 

element methods for discussing the mechanical properties of tooth brackets have been 

discussed in [42,43]. Because of the lack of depth information about the objects in the 

scene, the proposed approaches suffer from difficulties especially when there are such 

problems as significant lighting variations, complex shape of the objects, etc. In 

recent years, due to the advances in three-dimensional scanning technology and 

various shape recovery algorithms, digitized three-dimension surface data have 

become widely available. 

 

To aid orthodontists in deciding which tooth bracket is best fit to a specific tooth 

surface, surface analysis of tooth bracket surface and tooth surface has to be 

conducted. A suitable surface representation of the tooth bracket surface and tooth 

surface should be applied and later on surface matching can be carried out. The main 

objective of the work described in this thesis is to design a system capable of 

producing customized tooth brackets from a three-dimensional mould taken from a 

patient’s jaw. The methodology suggested can be easily ported to a clinical setting 

eliminating the need for extensive background support from technical personal. The 

computer vision based technique, described in this thesis has good accuracy, which is 

limited by the resolution of the acquisition device, the laser scanners.   
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Towards the achieving the main objective of the work, tools related to the 

visualization of tooth models, segmentation of tooth surface from a tooth model, and 

the visualization of tooth bracket surfaces, have been developed. .  

 

1.2   Previous Work  

 

The key point in the matching of tooth bracket surface to tooth surface, is to find a 

good representation of the surfaces and then the surface matching can be conducted. 

Applications of surface matching can be classified into two categories. The first 

category is surface registration [26]. Surface registration can be roughly partitioned 

into three issues: choice of transformation, elaboration of surface representation and 

similarity criterion, and matching and global optimization. The first issue concerns the 

assumptions made about the nature of relationships between the two modalities. The 

second issue determines what type of information that needs to be extracted from the 

3D surface, which typically characterize their local or global shape, and how we 

organize this representation of the surface, which will lead to improve efficiency and 

robustness in the last stage. The last issue pertains to how we exploit this information 

to estimate transformation which best aligns local primitives in a globally consistent 

manner or which maximizes a measure of the similarity in global shape of two 

surfaces. The registration of 3D surfaces is dealt extensively in machine vision and 

medical imaging literature as industrial inspection, surface modeling and mesh 

watermarking [26]. The second category is object recognition with the goal of 

locating and/ or recognizing an object in a cluttered scene. Robot navigation is one of 

the application examples in this category.  
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A considerable amount or research has been conducted on comparing 3D free-from 

surfaces.  The approaches used to solve the problem can be classified into two 

categories according to methodology. Approaches in the first category try to create 

some form of representation for input surfaces and transform the problem of 

comparing input surfaces to the simplified problem for comparing their 

representations. These approaches are used most often in model-based object 

recognition. In contrast, approaches in the second category work on the input surface 

data directly without creating any representation. One data set is aligned to the other 

by looking for the best rigid transformation. These approaches are most used in 

surface registration. 

In our work, two kinds of laser scanners are used. One is the Cyberware Laser 

Scanner; the scanner scans the model and gives out the triangular mesh objects. The 

other scanner in the Mechanical Engineering Lab provides explicit 3D points from 

which a 3D model can be constructed. In [3], Partial Differential Equation 

parameterization and neural network Self Organizing Maps parameterization were 

developed for the parameterization stage. The Gradient Descent Algorithm and 

Random Surface Error Correction were developed and implemented for the surface 

fitting stage.  

 

Many local representations are primitive based. In [9], model surfaces are 

approximated by linear primitives such as points, lines and planes. The recognition is 

carried out by attempting to locate the objects through a hypothesis-and-test process. 

In [5], super segments and splashes are proposed to represent 3D curves and surface 

patches with significant structural changes. A splash is a local Gaussian map 

describing the distribution of surface normals along a geodesic circle. Since a splash 
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can be represented as a 3D curve, it is approximated by multiple line fitting with 

differing tolerances. In [4], a three-point-based representation is proposed to register 

3D surfaces and recognize objects in clustered scenes. On the scene object, three 

points are selected with the requirement that (1) their curvature values can be reliably 

computed; (2) they are not umbilical points; and (3) the points are spatially separated 

as much as possible. In [4], a curved or polyhedral 3D object is represented by a mesh 

that has nearly uniform distribution with known connectivity among mesh nodes. A 

shape similarity metric is defined based on the 2L distance between the local 

curvature distributions over the mesh representations of the two objects. 

 

 One major approach to surface matching is based on matching individual surface 

points in order to match complete surfaces. Two surfaces are said to be similar when 

many points from the surfaces are similar. By matching points, we are breaking the 

problem of surface matching to many smaller problems. Stein and Medioni [5] 

recognized 3D objects by matching points using structuring indexing and their 

“splash” representation. Similarly, Chua and Jarvis [6] match points to align surfaces 

using principal curvatures. In [7] and [8], spin-image is used to compare the similarity 

of two surfaces. Spin-images are simply transformations of the surface data; they are 

created by projecting 3D points to 2D images, spin-images do not impose a 

parametric representation on the data, so they are able to represent surfaces of general 

shape. Instead of looking for primitives and feature points at some part of the object 

surface with significant structure changes, a Spin-image is created for every point of 

the object surface as a 2D description of the local shape at that point. Given an 

oriented point on the surface and its neighborhood of a certain size, the normal vector 

and tangent plane are computed at that point. Then the shape of the neighborhood is 
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described by the relative positions of the vertices in the neighborhood to the central 

vertex using the distances to the normal and tangent plane. A Spin-image is a 2D 

histogram of those distances. Good recognition results in complex scenes using Spin-

Images are reported in [10]. However, Spin-images are not well understood at a 

mathematical level and they discard one dimension information of the underlying 

surfaces, namely, Spin-images do not preserve the continuity of the surfaces.  

Among 3D surface registration algorithms, Iterative Closet Point (ICP) plays an 

important role. In [14], the ICP shape matching algorithm is proposed. ICP handles 

the full 6-degree of freedom, and it is independent of shape representation. It does not 

require preprocessing of 3D point data, such as smoothing, as long as the number of 

statistical outliers is near zero. Although this approach guarantees finding the local 

minimum of the registration error, it requires good initial estimate of the 

transformation in order to find the global minimum. Another limitation of this 

approach is that it cannot handle two surfaces, that only partially overlap. A heuristic 

method was proposed in [16] to overcome partially overlapping difficulty. A K-D tree 

structure was also used in [16] to accelerate the process of finding the closet point. 

Unlike the ICP approach, an algorithm is proposed in [17] to increase the accuracy of 

registration by minimizing the distance from the scene surface to the nearest tangent 

plane approximating the model surface. In order to reduce computation complexity, 

control points are selected for registration instead of using the entire data set of the 

model surface. However, this may not work well on surfaces with no control points 

selected on some of their parts that have significant structure changes. Moreover, this 

approach also requires a good initial estimate of the transformation. In [23], surfaces 

are approximated by constructing a hierarchy of Delaunay triangulations at different 
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resolution levels. In summary, in order for the surface registration algorithms to work 

well, a good initial estimate of the transformation is usually required.  

 

1.3 Problem Definition in Orthodontics Work 

 

In our orthodontics experiments, the tooth models are scanned using the CyberWare 

Laser Scanner. The tooth surface is then segmented from the tooth models. The set of 

tooth brackets is scanned using MAHR OMS 400 Multi-Sensor Coordinate Measuring 

Machine and tooth bracket surfaces are extracted.  The surface patches are 

represented by triangular meshes in the 3D space.  

 

We construct the Harmonic Maps of the tooth surfaces and tooth bracket surfaces, 

which are then used to generate the Harmonic Shape Images of the surfaces. The 

Harmonic Shape Images of the tooth bracket surface and tooth surface are compared 

to find the best fit.  

 

1. 4 Thesis Overview 

 
Remain chapters of the thesis are summarized as follows.  

 

Chapter 2 provides a brief introduction to the orthodontics work.  Chapter 3 describes 

the visualization of the tooth models and tooth bracket surfaces and describes in detail 

the 3D acquisition system used to digitize the dental plaster cast.  Chapter 4 describes 

in detail the generation of Harmonic Maps and Harmonic Shape Images. Chapter 5 

describes the matching of Harmonic Shape Images, the resampling of Harmonic 
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Shape Images, the relocating of the resampling points. Chapter 6 describes the how 

the Harmonic Shape Images are applied in the matching of the tooth surfaces and the 

tooth bracket surfaces. The results of the matching are discussed. Chapter 7 concludes 

this thesis by summarizing our contributions and describing possible future research 

in this area.   
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CHAPTER 2 

BACKGROUND ON ORTHODONTICS  

 
One major consideration of orthodontics is the use of special devices, also called 

appliances, to move teeth or adjust the underlying bone. Dental braces are used to 

straighten crooked teeth, align upper and lower jaws, and improve the aesthetics of 

smiles and faces. Teeth can be moved by a number of various removable appliances 

or by fixed braces, depending on the kind of problem that was originally present. 

 

Fixed braces usually include metal bands that are cemented to the molars, and metal 

brackets that are directly bonded or glued to the enamel of front teeth (incisors and 

bicuspids). Fixed braces, as the name suggests, are not removable by the patients. A 

stainless steel arch wire is used to connect the bands and the brackets in each arch 

(one for the upper teeth and one for the lower teeth).  

 

2.1   Basic Dental Terminology 

 

Here is a brief description of the often-used terms. 

Mandible:  The lower jaw; the inferior maxilla. 

Maxillary:   Pertaining to the upper teeth.  

Malocclusion: Poor positioning or inappropriate contact between the 

teeth on closure. 

Buccal:  Pertaining or directed toward the cheek. 
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Bracket:   A metal or ceramic part that is glued onto a tooth and 

serves as a means of fastening the arch wire.  

Braces:  Orthodontics appliances used to correct dental 

irregularities; consists of many brace-pads (brackets), 

and a supporting arch wire.  

 

Fig 2.1 Arrangement and surface of teeth 

 
2.2   Bracket Design and Placement Issues 

 

When an orthodontic force is applied to a tooth over a period of time, the tooth moves 

owing to resorption (dissolving) of the underlying alveolar bone on the pressurized 

side and apposition of new bone tissue on the opposite side. This is the theory behind 
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making use of a host of orthodontics appliances to correct tooth alignment and 

malocclusion problems. Fixed appliances remain the most popular choice of an 

orthodontic appliance because of their effectiveness and precision in tooth movement.  

 

This thesis discusses the surface analysis of the bracket surface that actually sits on a 

tooth’s lateral (or buccal) surface. Most orthodontists prescribe a “standard” bracket 

to a patient that does not always take into account the shape surface of an individual 

tooth. The methodology applied in the thesis makes it simpler for the orthodontists in 

their diagnoses and treatment. Bracket placement is normally done on the intersection 

of the Long Axis of the Clinical Crown (LACC) and the Mid-Transverse Plane (also 

called the Andrews Plane). The LACC is a longitudinal line and is easily marked------

it divides a single tooth sagittally into two sections, left and right. The Clinical Crown 

refers to the portion of dental crown that is visible above the gums. The Mid-

Transverse Plane divides this Clinical Crown into transversely into two sections, 

upper and lower.  

       

Fig 2.2 Positioning of tooth brackets 

 

2.3   Overview of the Solution to the Surface Matching Problem  

 

The purpose of this study is to develop a set of tools and software programs to help 

the orthodontists in several ways as the visualization of 3D scenes, and selection of 
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best-fit tooth bracket to the tooth surface. The key point of the problem lies in 3D free 

form surfaces matching. Difficulties of matching 3D free-form surfaces include the 

following: Topology, Resolution, Connectivity, Pose and Occlusion. The two surfaces 

to be matched may have different topologies. The topology issue is difficult to address 

when trying to conduct global matching between two surfaces. Generally speaking, 

the resolutions of different digitized surfaces are different. The resolution problem 

makes it difficult to establish correspondences between two surfaces, which in turn, 

results in the difficulty of comparing the two surfaces. Even if the resolution of the 

two sampled surfaces is the same, in general, the sampling vertices on one surface are 

not exactly the same as that on the others. For arbitrary triangular meshes, the 

connectivities among vertices are arbitrary. Even if two surfaces have same number of 

vertices, they may still have different connectivities among vertices. This is in 

contrast to images. An image has a regular m by n matrix structure. The 

connectivities are the same for all pixels (pixels on the boundary have the same 

connectivity pattern as well). When conduct template matching, the correspondences 

between two images can be naturally established. It has been mentioned that there is 

no prior knowledge about the positions of the two surfaces in 3D space. Therefore, 

unlike conduct template matching of images, there is no natural coordinate system for 

aligning two surfaces. Although an exhaustive search strategy could be used to find 

the transformation in the six-dimensional space, it is computationally prohibitive 

without a good initial estimate of the transformation. Either self-occlusion or 

occlusion due to other objects is a common phenomenon in real scenes. When 

comparing two images, if occlusion is present in one image, then some robust 

techniques maybe used to discount the corresponding part in another image, so that 

only the non-occluded parts of the two images are taking into account in template 
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matching. Here, it is important to notice that the occlusion does not change any of the 

remaining part of the images. Therefore, the comparison result of the two images will 

not be affected by occlusion as long as the occluded part can be correctly detected and 

discounted. In contrast to comparing 2D images, matching 3D free-form surfaces is 

far more complicated when occlusion is present in the scene. Model-based matching 

is a common framework for solving the 3D surface-matching problem. Although a 

considerable amount of work has been done in developing representations for 3D 

free-form surfaces, the problem of developing occlusion-robust representation is still 

open. Occlusion is not encountered in our work, because the tooth surfaces and tooth 

bracket surfaces are all intact without occlusion after we scan the tooth models and 

the tooth bracket surface, and extract tooth surfaces from the tooth model.  

 

In [26], the surface-matching problem is investigated using a mathematical tool called 

harmonic maps. Harmonic maps are used for studying the mapping between different 

metric manifolds from an energy minimization point of view. A surface representation 

called harmonic shape images [26] is generated to represent and match 3D free-form 

surfaces. The basic of harmonic shape images is to map a 3D surface patch (the 

definition of surface patch is defined in Chapter 4) with disc topology to a 2D domain 

and encode the shape information of the surface patch into the 2D image. This 

simplifies the surface-matching problem to a 2D image-matching problem. Harmonic 

shape images, which are well defined mathematically, have the following advantages: 

(I) preserve both the shape and continuity of the underlying surfaces; (II) robust to 

occlusion; (III) independent of any specific sampling scheme.  

 

The work described in this thesis involves the following:  
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•Segmentation of tooth surface. 

•Scanning of tooth models and tooth bracket surfaces to obtain 3D 

representation.  

•Construct the Harmonic Maps of the tooth surfaces and tooth bracket 

surface. 

•Construct Harmonic Shape Images of the surface patches.  

•Carry out surface matching by comparing the Harmonic Shape Images, and 

computing similarity measurements.  

 

 

2.4   Manual Segmentation of Tooth Surface from Tooth models 

 

In order to compare the similarity of the tooth surface and the tooth bracket surface, 

individual tooth surface is manually segmented. There are two major steps in the 

manual segmentation of tooth surface:  

 
1. Surfaces patches containing an individual tooth surface are extracted 

from the tooth model using OpenGL Selection mode. When the left 

mouse button is pressed, the surrounding area of the clicked point is 

selected.  

2. Extract the tooth surface from the tooth surface patch obtained in step 1. 

This extraction deals with some mathematical computation. 

 

2.4.1 On OpenGL 
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OpenGL is a low-level graphics library specification. OpenGL makes available to the 

programmers a small set of geometric primitives------- points, lines, polygons, images 

and bitmaps. OpenGL provides a set of commands that allow the specification of 

geometric objects in two or three dimensions, using the provided primitives, together 

with commands that control how these objects are rendered into the frame buffer.  

The OpenGL API was designed for use with the C and C++ programming languages, 

but there are also bindings for a number of other programming languages such as 

Java, Tcl, Ada and FORTRAN. The OpenGL specification is operating system and 

windowing independent. It relies on windowing system for window management, 

event handling, color map generation, etc.  

 

OpenGL is a software interface to graphics hardware. This interface consists of about 

120 distinct commands, which you use to specify the objects and operations needed to 

produce interactive three-dimensional applications. OpenGL has a built in selection 

mechanism that allows users to select then modify objects from the screen and 

manipulate them. More details of OpenGL can be referred to OpenGL Programming 

Guide or the “Red Book”[27].  

 

2.4.2   Extraction of Surface Patches Containing Individual Tooth Surface 

 

Our application should allow the user to identify objects on the screen and then to 

move, modify, delete or otherwise manipulate those objects. Since objects drawn on 

the screen typically undergo multiple rotations, translations, and perspective 

transformations, it is difficult to determine which object a user is selecting in a 3-
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dimensional scene. OpenGL provides a selection mechanism that automatically 

indicates which objects are drawn inside a specific region of the window.  

 

Typically in our case, when we are trying to use the OpenGL selection mechanism to 

extract the surface patches from the tooth model, first we draw our scene into the 

frame buffer and then enter selection mode and redraw the scene. Once in the 

selection mode, however, the contents of the frame buffer don’t change until we exit 

selection mode. When exiting, OpenGL returns a list of primitives (in our case, 

triangles) that would intersect the viewing volume. Each primitive (triangle in our 

case) that intersects the viewing volume causes a selection hit. The list of triangles is 

actually returned as an array of integer-valued names and related data—the hit 

records—that correspond to the current contents of the name stack. In our selection 

application, each triangle of the tooth model is named with an integer number from 1 

to n , where n is the number of triangles in the tooth model. Then we construct the 

name stack by loading names onto it as we issue triangle-drawing commands while in 

selection mode. Thus, when the list of names is returned, we can use it to determine 

which triangle might have been selected on screen. Fig 2.3 shows us one surface patch 

containing an individual tooth surface. The surface patch is in red color for better 

visualization. Fig 2.4 shows the surface patch extracted from the tooth model. With 

the surface patch available, we can go on to manually segment the individual tooth 

surface. 
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Fig 2.3 Extraction of surface patch containing an individual tooth surface 

 

 

Fig 2.4 The surface patch extracted from the tooth model 

 

2.4.3   Manual Segmentation of Tooth Surface 

 

There are two steps in manually segmenting the tooth surface from the tooth surface 

patch. Firstly, numerous points are selected along the edges of the tooth surface; the 

point selection process is also in the OpenGL selection mode and the selected points 

are saved in the name stack. Because in our selection application, only graphic 

primitives can be selected and saved in the name stack, in our case, the triangles, the 

center points of the selected triangles in the name stack are saved as the edge points of 

the tooth surface. Fig 2.5 shows how the edge points are selected in our application. 
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Fig 2.5 points selection along the edge of the tooth surface 

Secondly, the triangles that are contained inside the edges of the tooth surface are 

extracted and saved as the individual tooth surface. Fig 2.6 shows us the segmented 

tooth surface. 

 

 

Fig 2.6 Segmented tooth surface 
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CHPATER 3  

VISUALIZATION OF TOOTH MODELS AND 

TOOTH BRACKET SURFACE 

 
Visualization of tooth models and tooth bracket surfaces is of great importance in 

helping the orthodontists with their diagnoses and treatment. In this work, tooth 

models and tooth brackets are scanned using laser scanners, which enables good 

visualization results. We use OpenGL as the main interface to visualize the 3D objects, 

some details about OpenGL are briefed in 2.4.1.  

 

3.1 3D Data Acquisition System 

 

We use Cyberware 3D scanner Model 3030 HIREZ as the 3D data 

acquisition system and the motion platform Model MM for the scanning 

of tooth models and Mahr OMS 400 Multi-Sensor Coordinate Measuring 

Machine for the scanning of tooth brackets. Using active range finding 

technique, this Cyberware 3D data acquisition system is capable of 

giving 3D scans with high resolution and accuracy.  The specifications 

of this system are found to be acceptable for use in the study.  This 

section briefly describes the principle behind the 3D scanner Model 3030 

HIREZ and gives the specification of the 3D data acquisition system.  

The last part touches on the data format of the digitized 3D data. 
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3.1.1 Cyberware 3D Digitizing System 
 

Cyberware Model 3030 HIREZ is a rugged, self-contained optical range-finding 

scanner whose high sensitivity accommodates varying lighting conditions and surface 

properties.  Together with the Cyberware motion platform Model MM which can 

translate and/or rotate the object to enable the scanner to capture different viewpoints, 

the 3D scanner can capture the shape of the entire object.  The scanning process and 

the movement of the motion platform are performed entirely under software control  

 

Model 3030 HIREZ operates on the principle of triangulation to obtain 

range images.  Triangular meshes are then created from these images for 

surface rendering.  When the object is scanned in different orientations, 

registration is required to merge the data obtained for the different 

orientations.  The scanning of an object in different orientations is 

necessary because the motion platform does not allow six degrees of 

freedom.  It offers only translation and rotation around one axis.  

Typically, cylindrical and translational scans are taken from the object.  

To capture the top and underside surfaces of the object, the object has to 

be re-orientated on its side to “expose” these surfaces.  Subsequently, 

another set of cylindrical and translational scans are taken again.  To 

match the object data from the two different orientations, registration is 

performed.  The creation of the triangle meshes and registration of the 

range images form an area of active research.   
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3.1.2 Active Optical Triangulation 
 
Active optical triangulation is one of the most common methods for acquiring range 

data.  The basic principle is simple. The scanner has an illuminant which projects a 

pattern of light on the object.  This pattern of light will be observed by a sensor that is 

off axis to the direction of light, as shown in Fig 3.1.  Knowing the positions of the 

illuminant and the sensor, the intersection of the projected light direction and the 

sensor viewing direction gives the “depth” (distance of object from the scanner) 

value. 

 

 

 

 

 

 

 

Fig  3.1. Optical triangulation geometry.  The angle θ is the triangulation 

angle.  

 

In the Cyberware Model 3030 HIREZ scanner, the illuminant is a stripe of laser light.  

This laser stripe is created by spreading the laser beam using a cylindrical lens.  The 

light that is reflected off the object will be captured by a 3D charged-coupled device 

(CCD) matrix.  The accuracy of the range data depends on the proper interpretation of 

the imaged light reflections.  The problem is locating the center of the sensor, which 

should map to the center of the illuminant, on the imaged data.  Typically, statistical 

parameters such as mean, median or peak of the imaged light has been used as 

Surface

Illuminant

Sensor

θ
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representative of the center.  Once a proper interpretation is chosen the CCD image 

will show the depth data as imaged by the laser stripe.  A typical CCD image is shown 

in Fig 3.2.  Combining multiple frames of the CCD images, as the object is moved 

through the laser stripe, gives the full range image.  

 

 

Fig 3.2. A typical CCD image.   

 

3.1.3 Specifications of the Scanner System 

 

The Cyberware 3D data acquisition system consists of two hardware components: the 

scanner and the motion platform.  The object of interest, the dental cast, is small 

enough to fit in the field of view of scanner.  The specification that is of interest is the 

spatial resolution.  The scanner is capable of digitizing the shape of an object in (x, y, 

z) co-ordinates.  The spatial resolution is given as follows:  

x   :   0.5mm to 2mm, depends on platform speed 

y   :   0.313mm 

z   :   0.05 to 0.2 mm, depends on surface quality 
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The spatial resolution given for the x-axis can actually be decreased to obtain a finer 

resolution.  The x-axis is along the translational direction of the motion platform and 

hence resolution is determined by the platform speed.  By taking rotational scans, the 

x-axis resolution can be reduced as illustrated in Fig 3.3.  The magenta line shown in 

Fig. 3.3 indicates the laser stripe during the first scanning process.  After the first 

scan, the rectangle object is rotated and scanned the second time.  The green line 

denotes the laser stripe during the second scan.  The results of the two scans show that 

the x-axis resolution is reduced but not uniform.  The resolution enables a reasonable 

digitization of the dental plaster cast.  

 

 

Fig 3.3. x-axis resolution reduction through rotational scans. 

 

Together with the motion platform model MM which is capable of translational and 

rotational movements around one axis, the scanner system is able to scan the shape of 

the entire dental cast.  The 3D (x, y, z) data is transferred to the Silicon Graphics IRIS 
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workstation via an Ethernet link.  Fig 3.4 shows a picture of the Cyberware 3D data 

acquisition system.   

 

Fig 3.4. Cyberware 3D data acquisition system. 

 

3.1.4 3D Data Format 

 

After digitization, the raw output of the scanner are data points defined in terms of the 

Cartesian coordinates (x, y, z).  The concept of triangular meshes where the surface of 

the object is represented by many smaller triangular meshes (3 points to form a plane, 

i.e. surface) is used for surface rendering in the Cyberware system.  Hence the 

Cybeware system gives the scanned output data in terms of the (x, y, z) points set and 

the set of triangular meshes.   

 

The shape of the object is defined by the Cartesian points which form the raw data.  

The surface information in terms of the triangular meshes will only be useful for 

processing purpose if their normal vectors (vectors perpendicular to the triangular 

meshes) are computed.  A normal vector of a triangular mesh basically indicates the 

direction that the mesh is pointing to.  In this study, the points form the crucial 

information and techniques were designed to work on them.   

 

In our work, we scanned the dental casts using the Cyberware 3D data acquisition 

system. But the tooth brackets are too small to be scanned by the Cyberware 3D data 

acquisition system; we used the OMS 400 Multi-Sensor Coordinate Measuring 

Machine to scan the tooth brackets.  

odel 3030 HIREZ Cyberware Motion Platform Model MM
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3.1.2 Mahr OMS 400 Multi-Sensor Coordinate Measuring Machine 

 

Mahr OMS 400 Multi-Sensor Coordinate Measuring Machine (OMS 400) is a lab 

grade multi-sensor system with quality lab standard, high precision and rapid measure 

speed. OMS 400 integrates with three measuring sensors: optical, laser and touch 

probe. Together with NT software, OMS 400 can provide 3D assessment of all kinds 

of parts and applications. The scanning process and the movement of the motion 

platform are performed entirely under software control.  

 

 

 

 

 

 

 

Fig 3.5 (a) Conventional Laser       (b) MAHR Laser  

 

The MAHR LASER system and the optical sensor have a common optical path 

guaranteeing offset free measurements between the two sensors. The MAHR LASER 

operates with a programmable intensity control which adapts the laser to the various 

material surfaces and enables measurements even on polished glass, ceramic or metal 

surfaces where conventional triangular laser systems fail. Fig 3.5 shows a 

conventional laser and a MAHR laser. Fig 3.6 shows a picture of the MAHR OMS 

400 Multi-Sensor Coordinate Measuring Machine.  

Laser beam 
Laser beam 

Scanner Scanner 
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Fig 3.6 MAHR OMS 400 Multi-Sensor Coordinate Measuring Machine 

 
In our work, the object of interest, the tooth bracket, is small enough to fit in the field 

of the view of the scanner. After digitization, the raw output of the scanner are data 

points defined in terms of the Cartesian coordinates (x, y, z). Unlike the Cyberware 

system, which can give out the data points and the triangular meshes of the surface, 

the OMS system only gives out the data points.  

 

 
3.2 Visualization of Tooth Models and Tooth Bracket Surfaces 

 

3.2.1 Visualization of Tooth Models 

 

We developed a VRML based environment of visualization and selection. The 

environment is also capable of the functions to allow a better view of the tooth 

models: rotation, zoom (in and out), and translation if necessary. Fig 3.6 and Fig 3.7 
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visualize a tooth model in high resolution and low resolution. The difference between 

high resolution and low resolution is that the tooth model scanned in high resolution 

has more triangles, which gives more detailed quality. 

 

Fig 3.6 High-resolution tooth model 

 

Fig 3.7 Low-resolution tooth model 

 

3.2.2 Visualization of Tooth Bracket Surfaces 

 

The laser scanner in 3.1.2 can only scan individual points on the surface in lines from 

left to right and from top to bottom. The output file of the scanning gives us the x , y , 

z coordinates of the points on the tooth bracket surface. Fig 3.8 shows a typical tooth 

bracket surface.  
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Fig 3.8 A typical tooth bracket surface and a tooth bracket 

In this chapter, the 3D data acquisition system is described. The visualization of tooth 

models and tooth bracket surfaces is also described. In next chapter, we will go down 

to the construction of the Harmonic Map of the surface patches (in our case, tooth 

surface patch and tooth bracket surface patch) and later on to the similarity 

comparison of tooth surface and tooth bracket surface.  
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CHAPTER 4  

GENERATION OF HARMONIC SHAPE IMAGES 

 
In this thesis, harmonic maps are used to conduct surface matching between a single 

tooth brackets surface and a single tooth surface. The idea of using harmonic maps to 

conduct surface matching is partly inspired by the work in the computer graphics field 

done by Zhang Hebert [26]. In order to compare the similarity of the two surfaces, 

Harmonic Shape Images of the two surfaces, are created using harmonic maps. In this 

chapter, we discuss the background, and the core steps of the generation process, 

interior mapping, boundary mapping, and different schemes for approximating the 

curvature at each surface vertex, will be discussed next in detail in the following 

sections. 

 

4.1 Harmonic Maps 

 

A map NMu →: , between two compact Riemannian manifolds, is a harmonic map 

if it is a critical point for the energy functional 

M
M

ddu µ
2

∫ . 

The norm of the differential du  is given by the metric on M and N and Mdµ is the 

measure on M. Typically the class of the allowable maps lies in a fixed homotopy 

class of maps. The Euler-Lagrange differential equation for the energy functional is a 

non-linear elliptic partial differential equation. For example, when M is the circle, 

then the Euler-Lagrange equation is the same as the geodesic equation. Hence, u is a 
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closed geodesic if u is harmonic. The map from the circle to the equator of the 

standard 2-sphere is a harmonic map, and so are the maps that take the circle and map 

it around the equator n times, for any integer n. Note that these all lie in the same 

homotopy class. A higher dimensional example is a meromorphic function on a 

compact Riemann surface, which is a harmonic map to the Riemann sphere. A 

harmonic map may not always exist in a hotomopy class, and if it does it may not be 

unique. 

 

A harmonic map between Riemannian fields can be viewed as a generalization of a 

geodesic when the domain dimension is one, or of a harmonic function when the 

range is a Euclidean space. The theory of harmonic maps studies the maps between 

two manifolds from an energy point of view. Formally, let (M,g) and (N,h) be two 

smooth manifolds of dimensions m and n respectively, and let φ  : (M,g) → (N,h) be a 

smooth map. Let ( )ix , i = 1,…, m and ( )∂y  ∂  = 1,…, n be local coordinates around x 

and φ (x), respectively. Take ( )ix  and ( )∂y  of M and N at corresponding points under 

the map φ  whose tangent vectors of the coordinate curves are ix∂∂ and αy∂∂ , 

respectively. Then the energy density of φ  is defined as 

( )φ  = 
2
1 ∑

=

m

ji

ijg
1,

( )φφφ
αβ

βα

βα

h
xx

n

ji∑
= ∂∂

∂∂
1,

                 (4.1.1) 

In the equation above, ijg and αβh  are the components of the metric tensors in the 

local coordinates on M and N respectively. The energy of φ  in local coordinates is 

given by the number 

( )φE  = ( ) gve∑ φ  
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if φ  is of class C 2 , ( )φE  < ∞ , and φ  is an extremum of the energy, then φ  is called a 

harmonic map and satisfies the corresponding Euler lagrange equations. In the special 

case in which M is a surface D of disc topology and N is a convex region P in E 2 , the 

following problem has a unique solution. 

 

4.2 Interior Mapping 
 

 

The theory of harmonic maps has been briefly reviewed in section 4.1. It is clear that 

the solution to harmonic maps is the solution to a partial differential equation. Our 

work involves discrete tooth surfaces and tooth bracket surfaces, it is clear that the 

solution to harmonic maps of surface patch is the solution to a partial differential 

equation. Because the computation cost of a solution to a partial differential equation 

is so high, it would be more appropriate and practical that some approximations be 

made to compute the harmonic maps. 

 

Let ( )RvD ,  be a 3D surface patch (the definition of 3D surface patch can be found in 

[26]) with central vertex v and radius R measured by surface distance. The 

computation of surface distance is a non trivial and will be discussed in the following 

sections. Let P be a unit disc in a two-dimensional plane. Let D∂  and P∂ be the 

boundary of D and P, respectively. Let iv , ni ,.....1= , be the interior vertices of D. 

The interior mapping φ  maps ,iv  ni ,.....1= , onto the interior of the unit disc P with a 

given boundary mapping b: PD ∂→∂ , φ  is obtained by minimizing the following 

energy functional. 
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( )
} ( ){
∑

∈

−=
DEdgesji

jiijkE
,

2

2
1 φφφ                   (4.2.1) 

In (3.2.1), for the simplicity of notation, iφ and jφ are used to denote ( )ivφ  and 

( )jvφ which are the images of the vertices iv and jv on P under mapping φ . The 

values of iφ and jφ define the mapping φ  and ijk serve as spring constants which will 

be discussed shortly.  

 

An instance of the function ( )φE can be interpreted as the energy of a spring system 

by associating every edge in D with a spring. Then the mapping problem from D to P 

can be considered as adjusting those springs when flattening them down onto P. If the 

energy of D is zero, then the energy increases when the mesh is flattened down onto P 

because all the springs are deformed. Different ways of adjusting the spring lengths 

correspond to different mappings φ . The best φ  minimizes the energy functional 

( )φE . 

 

The minimum of the energy functional E ( )φ  can be found by solving a sparse linear 

least-square system for the values ( )iφ . Taking the partial derivative of E ( )φ  with 

respect to ( )iφ , ni ,.....1= and make it equal to zero yield the following equations: 

( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ....,+−+−+−=

∂
∂ likkikjik

i
E

ilikij φφφφφφ
φ

φ  

= ( ) ( )( )
} }

nijik
iRingofji

ij ,...,1,0
1,

==−∑
−∈

φφ     (4.2.2) 

The equation (4.2.2) can be rewritten as: 

22 nxnxnxn bXA =                              (4.2.3) 
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In equation (4.2.3), ( ) ( )[ ] ( ) ( ) ( )[ ]ii
T

nx yxinX φφφφφ ,,,.....12 == . 2nxX denotes the 

unknown coordinates of the interior vertices of D to P under mapping φ . Because 

nxnA contains the connectivity information of the surface patch ( )RvD , , it is a sparse 

matrix which has the following structure. 

 

Fig 4.1 Structure of the Matrix nnA ×  

 If D is to be considered as a bi-directional graph (will be discussed shortly), nxnA can 

be interpreted as the adjacency matrix of D. All the diagonal entries of nxnA are non 

zero. For an arbitrary row i in nxnA , if vertex iv is connected to vertices jv and mv , 

then only the jth and mth entries in row i are non zero. Similarly, the ith entries in row 

j and row m are also non zero.  

 

The boundary conditions are accommodated in the matrix 2nxb . In 2nxX , if a vertex 

iv is connected to boundary vertices, then its corresponding entry i in 2nxb  is weighted 

by the coordinates of those boundary vertices. Otherwise the entries in 2nxb are zero.  
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A detail example of the entries in 2nxb , nxnA  and 2nxX will be given in the computation 

process of the harmonic map of an individual tooth surface shortly in the following 

sections.  

 

The computation of the above equations requires the construction of D into a bi-

directional graph. The adjacency list structure is selected to construct the graph. 

Matrix nxnA  is constructed according to this adjacency list. 

 

There are different ways of defining the spring constants ijk  in equation (4.2.1). One 

way to define ijk  is as in equation (4.2.4)[26] 

( ) ( )ljlimjmiij eectgeectgk ,, θθ +=                         (4.2.4) 

in which ( )mjmi ee ,θ  and ( )ljli ee ,θ  are defined in Fig 4.2.  

 

 

 

 

 

 

 

 

 

Fig 4.2 Definition of spring constants using angles 

The intuition behind this definition is that long edges subtending to big angles are 

given relatively small spring constants compared with short edges that subtend to 
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small angles. This definition of the spring constants also means that long edges will 

remain long in the harmonic map image while short edges will remain short. From the 

discussion above, it can be seen that the energy functional (4.2.1) tries to preserve the 

ratio of edges lengths on the original surface patch ( )RvD ,  by defining the spring 

constants as in (4.2.4). Given a specific sampling of the surface patch (such as the 

WRL file format which we use to represent the tooth surface patch and the tooth 

bracket surface patch), the ratio of edge lengths is closely related to the shape of the 

surface patch. Thus, by preserving the ratio of edge lengths, the interior mapping φ  

preserves the shape of the surface match when mapping it down to unit disc P. 

Inevitably, there will be a distortion when mapping ( )RvD ,  on to P. Best mapping φ  

minimizes this distortion.  

 

In order to preserve the ratio of edge lengths, another way to define the spring 

constants is to use the inverse of the edge length as shown in equation (4.2.5).  

                                                        
ij

ij e
k 1=                                                 (4.2.5) 

As in equation (4.2.4), the springs associated with long edges will have smaller spring 

constants compared with the springs associated with short edges.  

 

In [28], it has been shown that there is little difference between the harmonic shape 

images resulted from the two approaches to defining the spring constants and no 

evidence has been found that one approach is better than the other. In our project, the 

inverse of edge lengths (4.2.5) is used because of its simplicity and convenience to 

work in programming.  
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4.3 Boundary Mapping 

 

As discussed in section 4.2, the unit disc P is selected to be the target domain of the 

harmonic mapping. In this section, the construction of boundary mapping, which 

maps the boundary of ( )RvD ,  onto the boundary of P is discussed.  

 

The construction of boundary mapping is illustrated in Fig.4.3. The vectors and 

vertices in this figure should be defined first here. O is the central vertex of the 

surface patch ( )ROD ,  and ,O  is the central vertex of the unit disc P. 5,....1,, =ivi  are 

the boundary vertices of the surface patch ( )ROD , . For some boundary vertices, for 

example, 4,...1, −ivi , the distance between any of them and the central vertex O is 

equal to R; these vertices are called radius boundary vertices. For other vertices, such 

as 5v , the distance between any of them and the central vertex O is less than R: these 

vertices are called occluded boundary vertices. Radius boundary vertices are 

determined by the radius of the surface patch, while occluded boundary vertices are 

determined either by self-occlusion or by occlusion by other objects. In our practice,  

there is clearly no occlusion by other objects, so occluded boundary vertices are 

determined by self-occlusion. The vector r
i

v from the central vertex O to a radius 

boundary vertex, e.g. 4,...1, −ivi , is called a radius vector, while the vector o
jv from 

the central vertex O to an occluded boundary vertex, e.g. 5v , is called an occlusion 

vector.  
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Fig 4.3 Illustration of boundary mapping 

The angles in Fig 4.3 are defined as followed. Angles 4,...1, =iiα are the angles 

between two adjacent radius boundary vectors Ovr
i and Ovr

i 1+ . Angles 2,1, =jjβ  are 

the angles between two adjacent occlusion boundary vectors, or one occlusion 

boundary vector and one adjacent radius boundary vector, in an occlusion range. An 

occlusion range is an occlusion vector sequence, except for the first vector and the last 

vector. For example, ( )ror vvv 411 ,,  in Fig.4.3 is an occlusion vector sequence. The sum 

of jβ over an occlusion sequence is the angle iα formed by the first and last radius 

boundary vectors, for example, the sum of jβ  over ( )ror vvv 411 ,,  is 1α . 

 

The construction of the boundary mapping is made up of two steps. At the first step, 

the radius boundary vertices are mapped onto the boundary of the unit disc P. In 

Figure 4.3.1, vectors 4,...1, =iv r
i are mapped to 4,...1,

,

=iv r
i . It is quite clear that once 

the angles iθ are determined, the positions of 4,...1,
,

=iv r
i  are easily computed. iθ is 

computed as follows: 
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                                         π
α

αθ 2

1
∑

=

= n

k
k

i

i                                    (4.3.1) 

At the second step, the occlusion boundary vertices are mapped onto the interior part 

of the unit disc P. In Fig.4.3, vector ov1 is mapped to 
,

1
ov . It can be shown that once the 

angles jϕ and the radii jr  are determined, the positions of o
jv are easily computed. jϕ  

Is computed as follows: 

in

m
m

j
j α

β

β
ϕ

∑
=

=

1

                                  (4.3.2) 

in which n is the number of angles within the occlusion range, iα is the angle 

corresponding to the occlusion range. jr is defined as follows: 

( )
R

Ordist
r j

j

,
=                                    (4.3.3) 

In which ( )Ordist j , is the surface distance between the occlusion vertex o
jv  and the 

central vertex O. R is the map radius of the surface patch. 

 

The intuition behind the boundary mapping is that the ratio of the boundary edge 

lengths is preserved as much as possible on the boundary of P. This is consistent with 

the way interior mapping is constructed. Therefore, the harmonic mapping minimizes 

the shape distortion when mapping the surface patch ( )RvD , to the unit disc P . In 

Figure (4.3), angles 4,...1, =iiα and angles 2,1, =jjβ are surface angles. The 

computation of 4,...1, =iiα and 2,1, =jjβ  is non trivial job, so a simplification is 

conducted in our project to make the computation easier. For any arbitrary boundary 

vertex, either a radius boundary vertex r
i

v , or a occlusion boundary vertex o
jv , the 
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positions of the corresponding mapping points on the unit disc P, 
,r

iv or 
,o

jv can be 

computed as follows:  

( ) ( )
( ) ROvEdist

OvdistOvdistx
coordx

i

ii

×
×

=
,

, ,                                   (4.3.4) 

  
( ) ( )

( ) ROvEdist
OvdistOvdisty

coordy
i

ii

×
×

=
,

,,
                                 (4.3.5) 

in which coordx and coordy are the x and y coordinates of the mapping points onto 

the boundary of the unit disc P. ( )OvEdist i , is the Euclidean distance between the 

boundary vertices of the surface patch ( )RvD ,  and the central vertexO . ( )Ovdistx i ,  

and ( )Ovdisty i ,  is defined as follows:  

                                ( ) xOxvOvdistx ii .., −=                                          (4.3.6) 

( ) yOyvOvdisty ii .., −=                                            (4.3.7) 

in which xvi. and yvi. are the x and y coordinates of the boundary vertices of the 

surface patch ( )RvD , respectively. xO. and yO.  are the x and y coordinates of the 

central vertex O respectively.  

 

The interior mapping and boundary mapping mentioned in section 4.2 and section 4.3 

require the construction of the bi-directional graph of the surface patch ( )RvD ,  and 

the computation of surface distance between two arbitrary points on the surface patch. 

We will discuss these in detail in the following sections. 
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4.4 Bi-directional Graph of the Surface Patch D(v,R) and its 
Adjacency List 
 

It is possible to represent graphs in computer memory with a variety of different of 

data structures. One strategy is to use an Adjacency Matrix. An adjacency matrix is a 

two dimensional array in which the row and column headers represent different 

vertices in the graph. A one-way edge between two arbitrary connect vertices is 

denoted by a positive value in the corresponding array position. In a weighted graph 

the value stored in the each array location corresponds to the weight or cost of each 

particular edge. If an edge is bi-directional, it has two entries in the matrix. One entry 

represents the (source destination) route while the other handles the (destination 

source) return route.  

 

Another method for representing graphs is as a more complicated Linked List 

structure. Each vertex in the graph is a node in a master linked list. Another linked list 

emanates from each vertex node and denotes the vertices directly adjacent to a given 

source vertex. This method, often called an Adjacency List, is more space efficient 

than the adjacency matrix for graphs, which do not have many edges.  

 

In our work, the tooth surface meshes and tooth bracket surface meshes are stored as 

the WRL file format. As mentioned in the previous chapters, the surface meshes are 

represented by thousands of triangles. It is quite natural for us to construct a weighted 

bi-directional graph representation of the surface meshes. The vertices of the graph 

represent the vertices of the triangles in the surface mesh. The length of the 

corresponding triangle side denotes the weight of each edge. Adjacency list is used to 

represent the weighted bi-directional graphs of the surface meshes. 
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In order to represent the tooth surface mesh (or tooth bracket surface mesh), following 

rules are applied to create the weighted bi-directional graph: 

1.  Read in the WRL file representing the tooth surface 

2.  Search through the triangles that make up the surface mesh to obtain all the 

vertex nodes of the graph. 

3.  For each vertex node iv of the graph, check the triangles of the surface 

mesh and find those triangles with one of its vertices being iv . Check the 

sides of those triangles to find the adjacent vertex nodes of iv , thus 

constructing the adjacency list of iv .  

4.  Compute the lengths of the sides of those triangles and set them to be the 

weighted value of the corresponding edges.  

5. After the construction of the weighted bi-directional graph, the surface 

distance of two arbitrary vertices on a given surface mesh is computed.  

 

4.5 The Computation of Surface Distance of Two Arbitrary Vertices on a Given 

Surface Mesh 

 
 
As mentioned before, the construction of boundary mapping and interior mapping 

requires the computation of surface distance of two arbitrary vertices on a given 

surface mesh. In our work, upon the construction of the weighted bi-directional graph, 

we can compute the central vertex node of the surface mesh. It can be shown that the 

construction of the boundary mapping requires the computation of the surface 

distance from the boundary vertex nodes to the central vertex node.  
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In our work, we conducted the surface distance computation in two different ways. If 

the resolution of the surface mesh is high enough to tolerate the error of Dijkstra 

Algorithm, the algorithm is applied in the construction of the harmonic maps, which 

gives good results [29,30]. For better accuracy, we applied another method z-

coordinate projection method, which also gives satisfactory results.  

 

Dijkstra Algorithm (named after its discover, E.W. Dijkstra) solves the problem of 

finding the shortest path from a point in a graph (the source) to a destination. It can be 

found that the shortest paths from a given source to all points in a graph in the same 

time, and hence this problem is sometimes called the single-source shortest paths 

problem.  

 
 
4.5.1 Z-coordinate projection method 
 

If the resolution of the surface mesh is not high enough, the computation of surface 

distance using Dijkstra Algorithm will not be so accurate. The Z-coordinate 

projection method overcomes the problem.  
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Fig 4.4 Mesh grid of the projection of surface mesh on a plane 

As shown in Fig 4.4, the first step is to construct a mesh grid of the surface mesh’s 

projection onto a plane. The mesh grid is constructed as follows: for an arbitrary grid 

point on the mesh grid, v , with xv , yv , zv  denotes the x, y, z coordinates respectively, 

the z coordinate preserves the curvature information of the surface mesh. The 

dimension of the mesh grid can be computed as:  

 x_dimension= ( ) xresolutionxx _minmax ÷−  

 y_dimension= ( ) yresolutionyy _minmax ÷−  

Where xmax , ymax , xmin , ymin  denotes the max x, y coordinates and min x, y 

coordinates of the vertices on the surface mesh respectively. xresolution _ and 

yresolution _ denotes the resolution on the x, and y coordinates. For tooth bracket 

surface mesh, xresolution _  is set to 0.1 and yresolution _  is set to 0.2. For grid 

point v , suppose that v  is the ith and jth point on the x and y coordinates 

respectively: 
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xresolutionixvx ∗+= min  

yresolutionjyvy ∗+= min  

As for the computation of zv , we can project v back to the surface mesh, based on the 

availability of xv and yv , and we can either choose the z coordinates of the nearest 

vertex on the surface mesh to projection or we can use the weighted value of the z 

coordinates of the k nearest points to the projection.  

 

As for the surface distance from two arbitrary vertices on the surface mesh, i.e. nm, , 

Fig 4.5 gives the method to compute the surface distance.  

 

Fig 4.5 Computing the surface distance 

In Fig 4.5, m , n  are two arbitrary vertices on the surface mesh, ,m and ,n are the 

projection points of m and n onto the mesh grid respectively. ,p  is the center point of 

the line between ,m  and ,n . The coordinates of ,p  can be easily obtained from the 

coordinates of ,m  and ,n . p is the corresponding vertex of ,p  on the surface mesh. 
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The coordinates of p  can be computed as mentioned above. So the surface distance 

between m and n can be approximated as: 

),(),(),( nptSurfacedispmtSurfacedisnmtSurfacedis +=  

If ),( pmtSurfacedis and ),( nptSurfacedis are small enough, they can be replaced by 

the line distances between m , p and n , p respectively.  

 

In our implementation, we divided the distance between ,m and ,n by 100. The 

surface distance computed is more accurate than the surface distance computed by 

Dijkstra Algorithm.  

 

4.6 The Generation of Harmonic Shape Images 

 

In earlier sections, we discussed how to define a surface patch and to obtain its 

harmonic image. In this section, we explain how to construct the harmonic shape 

image from its harmonic image.  

 

As explained before, an important property of harmonic image is the one-to-one 

correspondence between the vertices on the surface patch ( )RvD ,  and those on its 

harmonic image ( )( )RvDHI , . This means that, all distribution functions defined on a 

surface patch can be recorded accordingly on its harmonic image. In other words, 

harmonic images provide a general framework for representing distribution functions 

defined on surfaces, e.g. surface normal, shape, color, texture. To describe the shape 

of free-form surfaces, shape information, e.g., curvature is stored at each vertex of the 

harmonic image ( )( )RvDHI , . The resultant image is called a harmonic shape image, 
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which is denoted as ( )( )RvDHSI , . If texture information is stored on ( )( )RvDHI , , the 

resultant image is called a harmonic texture image.  

 

Curvature is a shape descriptor of surfaces. However, there are two difficulties of 

computing curvature. First we deal with discrete surfaces. The other is that computing 

curvature involves computing the second order derivatives, which are sensitive to 

noise. One way to address these issues is that smooth surface can be fit to the 

triangular mesh locally so that the curvature can be computed. This approach can be 

computationally expensive because of non-linear minimization. Another approach is 

to approximate the curvature distribution function using discrete curvature. In the 

following sub-sections, three different approaches for computing discrete curvature 

are discussed.  

 

4.6.1 Simplex Angle 

 
 
The first discrete curvature, Simplex Angle proposed in [31], is used to describe the 

shape at each vertex in a mesh with the appropriate regularities. A topology constraint 

on the mesh requires that each vertex has three neighboring vertices. Another 

requirement is that the projection of each vertex onto the place formed by its three 

neighboring vertices should coincide with the center of the triangle formed by those 

three vertices. Suppose P  is a vertex on a given mesh M  and 1P , 2P , 3P  are its 

neighboring vertices. The Simplex Angle at P is defined in Fig 4.6.  
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Fig 4.6 Definition of Simplex Angle 

 
In Fig 4.6 (a), O  is the center of the sphere circumscribed to the tetrahedron 

( )321 ,,, PPPP . Z is the line passing through the center O and through the center of the 

circle circumscribed to the tetrahedron ( )321 ,,, PPPP . Consider the cross section of 

the surface by the plane ∏ containing Z and P . The intersection of ∏ with the 

tetrahedron is a triangle. One vertex of the triangle is P , and the edge opposite to P  

is in the plane formed by ( )321 ,, PPP (Fig.4.6 (b)). The angle 0φ , between the two 

edges of the triangle intersecting at P  is defined to be the Simplex Angle at P .  

 

One issue that should be noted when computing Simplex Angle is that, for arbitrary 

triangular meshes, the connectivities among the vertices are arbitrary, e.g., a vertex 

can have any number of neighboring vertices. However, in order to compute Simplex 

Angle, each vertex must have three neighboring vertices. In order to address the 

connectivity issue, it is necessary to compute Simplex Angle for the dual mesh of the 
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given mesh. The dual mesh is obtained by taking the center of each triangle on the 

given mesh and connecting the centers of neighboring triangles as shown in Fig 4.7. 

The Simplex Angle for each vertex on the dual mesh angle can be computed as long 

as it has three neighboring vertices. In fact, it is the Simplex Angle for each face on 

the original mesh. The Simplex Angle at each vertex of the original mesh can be taken 

as the average of the Simplex Angles of the faces intersecting at the vertex.  

 

Fig 4.7. The duel mesh of a given triangular mesh. The solid lines represent the 

original triangular mesh. The dashed lines represent the duel mesh. 

 

4.6.2 Complete Angle 

 
 
The second method for computing discrete curvature is to use the complete angles 

[32] at each vertex of the triangular mesh (Fig 4.8). The complete angle at a vertex is 

defined to be 
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Fig 4.8. Definition of discrete curvature using complete angles 

 

 ∑
=

=
m

i
i

1

θθ  (4.6.1)  

in which m is the number of neighboring vertices around v . The discrete curvature 

c is defined to be  

 θπ −= 2c  (4.6.2)  

The definition in Fig.4.8 does not give the sign of the discrete curvature at v , i.e., it 

describes how much the surface is curved at v , but does not indicate whether the 

surface is locally convex or concave. Similar to computing the Simplex Angle at v , 

the sign of c  can be determined by taking the average of the Simplex Angles of the 

faces intersecting at v .  

 

Attention should be paid to the boundary vertices when computing the discrete 

curvature using Fig.4.8. Because the angles are not complete for the boundary 

vertices, their curvature values should be labeled invalid.  
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4.6.3 Weighted Dot Product of Normals  

The third method for computing discrete curvature is to use area-weighted dot product 

of normals as illustrated in Fig 4.9. This discrete curvature is defined for each face of 

a given triangular mesh. For a face f with surface normal N , its local neighborhood 

with a certain size is defined first. Then for each triangle in this neighborhood, 

compute the dot product of its normal iN  with N and weight the dot product with its 

area iA . The curvature of f is defined to be 

 

Fig 4.9. Illustration of defining discrete curvature using area-weighted dot 

product of normals.  

 
( )

∑

∑

=

=

•
= m

i
i

m

i
ii

A

NNA
c

1

1  (4.6.3)  

This definition can be interpreted using the concept of normal curvature. By taking 

the weighted average of the dot product of normals, the definition in equation (4.6.3) 

measures the change of the surface normal in all directions. Using the area of each 



 
------------------------------------------------------------------------------------------------------- 

 - 56 -

triangle as the weight takes into account the sampling resolution. Similar to the 

definition in 4.6.2, this definition does not give the sign of the curvature. The sign can 

be determined using the same method as that used to compute the Simplex Angle. 

After the curvature is computed for each face on a given mesh, the vertex curvature 

values can be computed by taking the average of the values of the faces intersecting at 

that vertex. Again, triangle area can be used to weight the average.  

 

Using the above three definitions for discrete curvature, the Harmonic Shape Images 

of the surface mesh can be computed. In [26], it can be seen that all three definitions 

reflect same shape features. Similar to the result found in [26] and [33], the Simplex 

Angle is better than the Complete Angle at differentiating shapes with small variation. 

In our implementation, because we deal with surface meshes with boundaries, we use 

weighted dot product of normals to construct the harmonic shape image. 

 

4.7 Complexity Analysis 

 

Suppose there are in  triangles formed by n vertices on the input surface D . ∂ is the 

ratio between the boundary vertices and n . en  is the number of edges in D . rn  

denotes the number of resampling vertices in 2-D domain P . In general, rn  is about 

the same as n . Table 4.1 lists the main functions in generating Harmonic Shape 

Images along with their computation complexities.  
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Table4.1: Functions and their computation complexity 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

Function Complexity 

ConstructEdgeListonSurface ( )( )ee nnO log  

ConstructBoundaryMapping ( ) ( )( )nnOnO e αα log+  

ConstrucInteriorMapping ( ) ( )( )( )nnO αα −− 1log1  

ResampleInputSurface ( )rnO  

ComputeShapeInvariant ( )rnO  
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CHAPTER 5  

MATCHING HARMONIC SHAPE IMAGES 

 
From the generation process of Harmonic Shape Images, it can be seen that they are 

no different from D2  images except that they are not in m-by-n-pixel format. Both 

horizontal and vertical scanning of HSIs can result in such a format. This 

implementation issue will be discussed later in this chapter. For now, Harmonic Shape 

Images are considered to be the same as general D2  images. The comparison of two 

Harmonic Shape Images can be performed using the normalized correlation (5.1.1): 

 

( )( ) ( )( )∑ ∑∑ ∑
∑ ∑∑

−×−

−
=

2222
)2,1(

iiii

iiii

QQNPPN

QPQPN
HSIHSIR                     (5.1.1) 

 
in equation (5.1.1), 1HSI  and 2HSI are two Harmonic Shape Images, ip  and iq  are 

corresponding pixels in 1HS and 2HS , respectively. N is the number of 

correspondences.  

 

It has been discussed in Chapter 4 that there may be a planar rotation difference 

between two Harmonic Shape Images due to different choices of the starting vertex of 

the boundary mapping. This rotation difference needs to be found by the matching 

process. This means that the correlation coefficient between two surface patches is a 

function of the rotation angles θ  between their Harmonic Shape Images:  

( )( )θ
θ

RHSHSR max)2,1( =    (5.1.2) 
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The most discrete approach work is as follows: Given two surface patches 1S and 2S , 

compute their Harmonic Images 1HS , 2HS  respectively. Compute the Harmonic 

Shape Images 1HSI  of 1HS  and fix it. Then rotate 2HS  starting at 0 degree, 

incrementally increase the angle until the angles reaches π2 . At each rotation angle, 

compute the Harmonic Shape Image rHSI 2  from rHS2  and compute the normalized 

correlation coefficient ( )θR  between 1HSI  and rHSI 2 . The maximum ( )θR  is the 

correlation coefficient between 1S  and 2S .  

 

As discussed in Chapter 4, surface continuity is preserved in Harmonic Shape Images. 

This property makes the correspondence problem trivial, which means that no extra 

computation is needed in order to establish the correspondence between two surface 

patches after their Harmonic Shape Images are matched. The reason is as follow: the 

correlation-based image matching establishes the correspondence between two 

Harmonic Shape Images naturally. Because each vertex on the Harmonic Shape 

Images has its correspondence on the original surface patch, the correspondences 

between the two Harmonic Shape Images are also the correspondences between the 

vertices on the two surface patches.  

 

5.1 Shape Similarity Measure 

 

The comparison of two Harmonic Shape Images has been discussed in the previous 

section. Suppose that we have another surface patch 3S  and we compare it to 1S , and 

we get the correlation coefficient )3,1( HSIHSIR . Now we want to know which 

surface patch, 2S  or 3S  is more similar to 1S  in shape. The answer is easy since we 
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will choose the surface patch that has a greater correlation coefficient with 1S . 

However, if we have a large number of surface patches and we need to find out which 

one is most similar to a specified surface patch, using a simple threshold would not be 

an adequate answer. In this case, we would need a more sophisticated measurement in 

order to determine how similar the most promising surface patch is to the specified 

patch. This measurement is called a shape similarity measure. It is defined using the 

normalized correlation coefficient R between two Harmonic Shape Images.  

 

( )
( )2,11

2,11ln)2,1(
HSIHSIR
HSIHSIRSSC

−
+=   (5.2.1) 

The above similarity measure is a heuristic loss function that will return a high value 

for two highly correlated Harmonic Shape Images. The change of variables, a 

standard statistical technical [34] performed by the hyperbolic arctangent function on 

the right hand side of equation (5.2.1), transforms the correlation coefficient into a 

distribution that has better statistics properties, namely, the variance of the 

distribution is independence of R . In this case, the variance of the transformed 

correlation coefficient becomes ( )3/1 −N , in which N is the number of 

correspondence in the two Harmonic Shape Images [34].  

 

In the experiment to explain how to use the shape similarity measure [26], it can be 

seen that we can choose the surface patch with the greatest shape similarity measure. 

However, this does not tell us how good this match is or how well it is distinguished 

from the other matches. Therefore, instead of using a simple threshold, a statistical 

method [34] is used to automatically detect the best match and determine how good 
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the match is. According to this method, good matches correspond to the outliers of a 

given histogram.  

 

5.2 Resampling Harmonic Shape Images 

 

As an implementation issue, it has been mentioned in Section 5.1 that a horizontal and 

vertical scanning of Harmonic Shape Images need to be done in order to request them 

using the usual m -by- n -pixel format. This step is called resampling Harmonic Shape 

Images.  

 

A unit grid is created and overlaid on the Harmonic Shape Images. Then the curvature 

value for each of the points on the unit grid is determined by interpolating the 

Harmonic Shape Images. For an arbitrary point ( )jiu ,  on the grid, its curvature value 

( )jic ,  is interpolated using: 

( ) ( ) ( ) ( )210, vcvcvcjic γβα ++=            (5.3.1) 

in which 0v , 1v , 2v  are the vertices of the triangle in the Harmonic Shape Image that 

( )jiu ,  falls in. α , β  and γ are the barycentric coordinates of ( )jiu ,  in the triangle 

( )210 ,, vvv  and they satisfy the constraint: 

0..,1 ≥=++ γβαγβα    (5.3.2) 

 
5.2.1 Resampling Resolution 

 
There are few issues that need to be discussed with respect to the resampling process. 

In order to not lose the shape information of the original surface, the resolution of the 

resampling grid should not be lower than that of the triangular mesh. Suppose that the 
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size of the resampled Harmonic Shape Image is NN × , N is determined according to 

the following: 

⎡ ⎤vnN =                                                        (5.3.3) 

in which vn  is the number of vertices on the triangular mesh and the function ( )xceil  

means to obtain the nearest integer which is not greater than vn . When there are 

two surface patches, with mN  and vN  vertices, respectively to be compared, N  is 

selected to be the larger one between mN  and vN .  

 

5.2.2 Locating Resampling Points 

 
The second issue is how to efficiently locate the resampling points on the Harmonic 

Shape Image. As discussed earlier in this section, the curvature value of a resampling 

point is interpolated using its barycentric coordinates of the triangle in which it falls. 

So there is the issue of locating the triangle in which the resampling point falls. 

 

The criterion for locating the right triangle is to compute the barycentric coordinates 

for the resampling vertex in each triangle on the surface patch. If the barycentric 

coordinates satisfy equation (5.3.2), then the resampling vertex falls into that triangle. 

The barycentric coordinates can be obtained by solving the following equations. Let 

2,1,0),,( =iyx ii  denote the coordinates of the resampling vertex u . Then the 

following equations hold: 

1
210

210

=++
=++
=++

γβα
γβα
γβα

yyyy
xxxx

    (5.3.4) 

equation (5.3.4) can be written in matrix form as equation (5.3.5). 
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The unknown vector [ ]Tαβγ can be solved as follows: 
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    (5.3.6) 

According to the way the interior mapping is constructed, there should not be any 

degenerated triangles. This means that the matrix in (5.3.6) always has full rank.  
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CHAPTER 6 

MATCHING TOOTH BRACKET SURFACES TO 

TOOTH SURFACES 

 
The concept of Harmonic Shape Images, how to generate Harmonic Maps, Harmonic 

Shape Images and how to match Harmonic Shape Images, has been discussed in 

previous chapters. In this Chapter, we will apply the Harmonic Shape Images to the 

tooth surfaces and tooth bracket surfaces, and try to find a best match of the tooth 

bracket surface out of a set of tooth bracket to one specified tooth surface.  

 

6.1 The construction of Harmonic Shape Images of the tooth surface and tooth bracket 

surface 

 
The procedure of the generation of the Harmonic Shape Images of the tooth surfaces 

and tooth bracket surfaces is as follows: 

1. Construct the bi-directional graph of the specific surface. 

2. Use Dijkstra or z-coordinate projection methods to compute the surface 

distance of the points on the surface mesh. 

3. Compute the Harmonic Mapping of the surface. 

4. Compute the Harmonic Shape Image of the surface using the distribution 

functions. 
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Fig 6.1 shows an arbitrary tooth surface patch. Fig 6.2 shows the Harmonic Map of 

the tooth surface patch in Fig 6.1. Fig 6.3 shows an arbitrary tooth bracket surface. 

Fig 6.4 shows the Harmonic Map of the tooth bracket surfaces in Fig 6.3.  

 

Fig 6.1 An arbitrary tooth surface 

 

 

Fig 6.2 Harmonic Map of the tooth surface 
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Fig 6.3 An arbitrary tooth bracket surface 

. 

 

Fig 6.4 Harmonic Map of the tooth bracket surface 

 
6.2 Matching Tooth Surfaces and Tooth Bracket Surfaces 

 

The matching procedure of tooth surfaces and tooth brackets surfaces is outlined as 

follows:  the Harmonic Shape Image of every tooth bracket surface is computed and 

stored. Then every tooth bracket surface is compared to the tooth surface by 

comparing their Harmonic Shape Images, and the shape similarity value is computed.  
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In [26], four properties of the Harmonic Shape Images have been analyzed. The four 

properties are discriminability, stability, robustness to resolution, and robust to 

occlusion. In our project, there is no occlusion problem encountered considering the 

scanning of tooth models and tooth bracket surfaces. One of the important properties 

of shape representation is its ability to discriminate surfaces of different shapes. This 

is referred as the discriminability of the representation. Stability is another important 

property of Harmonic Shape Images. Unlike discriminability which measures the 

capability of discriminating different shapes, stability measures the capability of 

identifying similar shapes. It has been discussed that Harmonic Shape Images do not 

depend on any specific sampling strategy, e.g., uniform sampling. For a given surface, 

as long as the sampling rate is high enough such that the shape of the surface can be 

sufficiently represented, its Harmonic Shape Image is also accurate enough for 

surface matching. It should be noted that the comparison of Harmonic Shape Images 

does not require that the two surface patches have the same sampling frequency. In 

practice, it is rare for discrete surfaces to have exactly the same sampling frequency. 

In our project, the robustness to resolution is especially important because the tooth 

models and tooth brackets are scanned using different laser scanners. One important 

property for surface representation is its robustness to occlusion, i.e., correct matching 

result should still be obtained even when the surfaces being compared are not 

complete. In our project, the tooth surface patches and tooth bracket surface patches 

are all complete, so we will not encounter occlusion problems.  

 

In this chapter, twenty tooth bracket surface patches are presented and the Harmonic 

Shape Images of each tooth bracket surface are compared with the Harmonic Shape 
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Images of one specific tooth surface. The values of the shape similarity measure are 

computed and listed in Table 6.1.  

 

Table 6.1 shows that the shape similarity measure of tooth bracket surface patch 12 is 

2.9833, greater than other tooth bracket surface patches. Because the tooth bracket 

surface patches are similar in their shape, the values of the shape similarity measure 

do not differ much from one another. It can be seen that due to the scanning error of 

the tooth brackets, there are some considerations that the result may have errors.  

Table 6.1 values of the shape similarity measurements 

 

 

 

 
 
 
 

 

 

 

Tooth bracket number 
 

1 2 3 4 5 

Shape similarity measurement 
 

2.3112 2.358 2.2604 2.4171 2.5026 

Tooth bracket number 
 

6 7 8 9 10 

Shape similarity measurement 
 

2.5345 2.737 2.6501 2.8249 2.7605 

Tooth bracket number 
 

11 12 13 14 15 

Shape similarity measurement 2.9064 2.9833 2.8476 2.8351 2.6633 

Tooth bracket number 
 

16 17 18 19 20 

Shape similarity measurement 
 

2.6507 2.2099 2.1651 1.8743 1.9004 
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CHAPTER 7 

 
CONCLUSION  

In conclusion, the work presented in this thesis was an attempt to study the various 

ways in which the practice of orthodontics could benefit from the advancement of 

computer vision. It was seen that orthodontists largely use conventional techniques for 

routine diagnoses and treatment. Dentists seldom are concerned about shapes, sizes 

and measurements of teeth, and other geometric parameters. This work has produced 

a surface matching strategy together with a complete 3D visualization of the dental 

plaster cast that will help the orthodontists in deciding which tooth bracket should be 

put on to the surface of an individual tooth.  

 

In this study, our main focus was on the problem of tooth brackets. In the practice of 

orthodontics, fixed appliances like tooth brackets are a common means to achieve 

appropriate movements to align and re-position teeth. However, due to lack of 

complete information about the tooth bracket surfaces, the selection of tooth bracket 

to put onto a tooth surface is an empirical activity of the orthodontists. We proposed a 

set of tools that can help the orthodontists in extracting the tooth surface interested 

from a dental plaster cast and use the tooth surface to compare with the tooth bracket 

surface.  

 

The work presented in this thesis is not complete due to lack of tooth brackets. Future 

work may include: matching tooth brackets to the teeth of different ethical groups, 

which will help the orthodontists a lot in their dental practice, designing tooth 

brackets according to the tooth surface shape of the patient, which means an 

individual patient may have his unique tooth brackets. 
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