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by  
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DS-CDMA code assignments have been introduced as a solution for the hidden and 

exposed terminal problems for Ad Hoc Networks. Our works present new DS-CDMA 

multi-code assignment protocols and algorithms. The proposed multi-code assignment 

schemes are able to satisfy the receivers’ bit rate, eliminate collisions and limit the effects 

of Multiple Access Interference (MAI). We introduce code assignment protocols for both 

centralized and distributed Ad Hoc Networks. We present analytical and simulation 

results for the proposed code assignments. 
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Summary 

 

 

In this thesis we introduce different multi-code assignment algorithms for centralized and 

distributed Direct Sequence Code Division Multiple Access (DS-CDMA) Ad Hoc 

Networks. These algorithms are able to eliminate collisions and limit the effect of 

Multiple Access Interference (MAI). 

 

Chapter 1 briefly introduces the existing wireless communication networks that we have 

today. Subsequently, the concept of ad hoc network and the issues to be considered in 

developing a reliable Multiple Access Control (MAC) protocol are given.  

 

Chapter 2 shows how spread spectrum techniques can be used as modulation and 

multiple access tools for ad hoc networks. We present the multiple access problem in a 

DS-CDMA environment and give some important results. Subsequently, we show the 

different code assignment strategies used for a DS-CDMA ad hoc network to limit or 

eliminate collisions. We illustrate the mapping of the code assignment problems into 

graph coloring problems and highlight the importance of efficient code assignment 

protocol and algorithm during the correction process.  

 

In Chapter 3, we introduce a code assignment scheme which can be used for a centralized 

or a small distributed network. We formulate the multi-code assignment problem and its 



 xvii

constraints using a Pairwise Oriented Code Assignment (POCA) strategy. Subsequently, 

a code assignment algorithm and a token passing protocol are presented for a small sized 

network. The scheme is able to control and correct the combined transmission power and 

the set of PN sequences assigned to each transmitter-receiver pair. We then propose a 

code diversity technique using the multiple code assignment to limit MAI. Thereafter, 

simulation results are presented. Finally, we conclude the chapter and draw the limitation 

of our system.  

 

Chapter 4 introduces a new code assignment protocol and algorithm for a distributed 

Transmitter Oriented Code Assignment (TOCA) ad hoc network. This protocol must 

ensure that only one violating node amongst its 2-hop neighbors including itself corrects 

its PN sequences at a time. In the correction process, three different types of messages are 

exchanged among the nodes: the Code Assignment Message (CAM), the Pre-Code 

Assignment Message (PCAM) and the Pre-Code Assignment Message Acknowledgment 

(PCAM_ACK). The message pair PCAM-PCAM_ACK is used to lock the 1-hop 

neighbors of a violating node to ensure that the previous condition is met. We define a 

strategy to guarantee that at least the highest priority nodes amongst their 2-hop 

neighbors including themselves are correcting their PN sequences during the correction 

period. CAM messages are used for 1-hop and 2-hop code assignment updates. 

Subsequently, a new algorithm is presented which assigns to each transmitter the “best 

PN sequences” to limit collisions and MAI. We show the impact of the number of code 

sequences available, the transmission power and the mobility of nodes on the correction 

process.  



 xviii

Chapter 5 presents the implementation of the first real time simulation for a TOCA ad 

hoc network using the event-oriented simulator OMNeT++.  

 

Chapter 6 concludes this thesis by summarizing the contributions made to the research 

community and by giving possible directions for future work. 



 

 1

 

Chapter 1 Introduction 

 

 

In the first chapter, we give a brief introduction of modern wireless networks and key 

issues. Section 1.1 briefly gives the background of modern wireless communication 

systems. Section 1.2 describes the concept of ad hoc networks. Section 1.3 discusses the 

challenges involved in the design of Multiple Access Control (MAC) protocols in ad hoc 

networks. Finally, Section 1.4 presents the different contributions made for the research 

community as well as the organization of this thesis. 

 

1.1. The Wireless Revolution  

1.1.1. Cellular Networks  

The wireless revolution started in the 1990s, when mobile phones were introduced in the 

market and changed our way of communicating with one another. Ever since, different 

cellular protocol standards such as Global System for Mobile Communication (GSM) and 

Code Division Multiple Access (CDMA) [RAP02] have appeared. The increasing 

popularity of mobile phones has surpassed that of traditional corded phones, and this 

number continues to escalate. New applications have since appeared, with the biggest 

success being the introduction of Short Message Service (SMS).  
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With the advancement in Internet technologies, customers’ needs have evolved with more 

and more people wanting to stay connected through the Internet by way of emails and 

other messaging applications. Consequently, voice, video and data packets need to be 

carried over the cellular network. Further, different operators worldwide have been 

upgrading their networks from the 2nd to the 3rd generation to provide users with more 

possibilities by increasing the throughput of the network. With a much faster connection 

to the Internet and access to multimedia sources, mobiles phones today serve as personal 

computers, giving users the ability to watch videos, listen to music, enjoy video-

conferences, and surf the Internet, in addition to making calls.   

 

1.1.2. Non-Cellular Networks  

While 3rd generation cellular networks have been delayed by excessive bandwidth 

frequency license and infrastructure costs, Wi-Fi also known as 802.11, uses a free 

bandwidth frequency and has a low infrastructure cost which provides broadband Internet 

access  to users within a dozen to hundreds meters from designated Wi-Fi spots.  

 

Wi-Fi technology has conquered the cities across the world such as Seoul, New York, 

Paris, and Singapore where the laptop or PDA users of the Wi-Fi networks receive 

broadband access to the Internet in waiting areas, business centers, a restaurant tabletop, 

hotel rooms or any other area within a venue in which Wi-Fi coverage is available.  
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1.2. Ad Hoc Networks  

In [CHL03], a mobile ad hoc network is an autonomous system of mobile nodes 

connected by wireless links forming an arbitrary graph. Nodes are free to join, leave, 

move and organize themselves arbitrarily; thus, the mobile ad hoc network’s topology 

may change rapidly and unpredictably. Its distributed structure obliges the nodes to be 

used as routers forwarding each other’s messages to their final destinations. Such a 

network may be fully autonomous or connected to the larger Internet. It requires no prior 

investment in fixed infrastructure installation and little effort for its deployment.  

 

There are a number of situations in which ad hoc networks are more adequate than 

installing fixed infrastructure. In sparse areas or for volatile networks, ad hoc networks 

have been proven to be cost effective. In disaster recovery, fixed infrastructure 

installation exists but cannot be depended on; thus, these networks are the only possible 

solution. Finally, at home or in the office, ad hoc networks which require no 

configuration are valid substitutes for local area networks.   

 

Unfortunately, ad hoc networks are more difficult to implement than fixed networks. 

Nodes share the common wireless medium which distributed or random access protocols 

need to be defined resulting in poorer resources usage than centralized systems. Further, 

nodes’ double capability as end-users and routers strongly increases the consumption of 

the limited power supply of the battery.  
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1.3. Multiple Access Control  

In an ad hoc network, a node can be in the transmission range of multiple users or 

neighbors. In the case where users are sharing a single channel for transmission, if one 

neighbor is transmitting to a receiver and the others are kept idle at the same time, the 

packet will be received successfully, otherwise, if multiple neighbors are transmitting 

simultaneously to a receiver, packet collisions will occur. To completely eliminate the 

occurrence of packet collisions, nodes need to be aware of which of their two-hop 

neighbors are transmitting at any time. Unfortunately, such accurate information is 

impossible to obtain in an ad hoc network.   

 

1.3.1. Hidden Terminal Problem  

The hidden terminal problem results from the fact that two neighbors of a given node 

might not possibly hear each other. The problem occurs when the two nodes have a 

distance of two hops. Take for example Figure 1-1. The nodes A and C are neighbors of 

node B, but node A is not within the transmission range of node C and vice-versa. 

Therefore, when node A is transmitting, node C cannot sense it. Assuming now that node 

C starts transmitting simultaneously; thus the two packets from node A and node C will 

collide at node B. node A is said to be hidden from node C. Such a situation is a waste of 

channel capacity because the channel has been used for transmission but no packet has 

been received successfully.  
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Figure 1-1 -The hidden terminal problem: A is “Hidden” from C 

 

1.3.2. Exposed Terminal Problem  

The second problem which might arise is “the exposed terminal problem”. It results from 

the fact that a node which is transmitting may cause its neighbors to stay idle, even 

though the transmission from one of its neighbors may not disrupt the reception of the 

current transmitting packet. An example is given in Figure 1-2. Suppose that two nodes B 

and C are within each other’s range, with node B transmitting to node A. node C wants to 

transmit to node D. The nodes A and D cannot hear the nodes C and B respectively. Node 

C will detect that the channel is busy and will not transmit even though transmission 

between the nodes C and D will not interfere with the communication between the nodes 

B and A. Node C is said to be exposed to node B. Contrary to the hidden terminal 

problem, in the exposed terminal problem, there is an underutilization of the channel. 

 

A B C 

Transmission range  
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Figure 1-2-The exposed terminal problem: C is “exposed” to the node B 

 

1.3.3. Random MAC Protocols  

In a wireless communication system, multiple users are sharing the same medium for 

transmission; its control is managed via the Multiple Access Control (MAC) Protocol. 

ALOHA, the first MAC protocol for a packet radio network was introduced by N. 

Abramson [ABR70] in 1970. In ALOHA, packets are sent without prior channel sensing. 

The packet has a vulnerability period twice the size of the packet transmission time (a 

packet will not overlap another packet only if it is transmitted before or after the time 

duration of the packet). As a result the maximum throughput is very low (18% of the 

channel capacity). In Slotted-ALOHA [ABR73], nodes start transmitting packets only at 

the beginning of each time slot; thus, the vulnerability period is reduced to the size of the 

packet transmission time. As a result, Slotted-ALOHA compared to ALOHA, improves 

the maximum throughput but requires for nodes to be synchronized.  

 

The Carrier Sense Multiple Access (CSMA) protocol [TOB75-1, TOB75-2] is a more 

sophisticated MAC protocol in which a node will first sense the channel and start 

transmitting only when the channel is idle. CSMA with collision detection (CSMA/CD) 

protocol improves CSMA by incorporating a special jamming signal at each receiver. 

 
A B C 

Transmission range  

D 
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When a node is receiving two or more packets simultaneously, it will notify all users of 

the correction using this jamming signal. Retransmission schemes which improve 

channel utilization are the non-persistent, the 1-persistent and the p-persistent CSMA. 

However, the hidden and exposed terminal problems occur. 

 

The Floor Acquisition Multiple Access (FAMA) is a generic term introduced by [FUL98] 

to describe channel acquisition strategies in order to eliminate the hidden and the exposed 

terminal problems by exchanging handshake packets or/and using busy tones. Before 

transmitting a packet, a node needs to acquire control of the channel in a manner that no 

collision will occur. However, the different FAMA algorithms which have been proposed 

involve a large exchange of header in the network which might considerably reduce the 

capacity of the channel.  

 

1.3.4. Controlled MAC Protocols  

In Frequency Division Multiple Access (FDMA) and Time Division Multiple Access 

(TDMA), the medium is respectively subdivided into non-overlapping frequency bands 

and timeslots. In FDMA, each node is transmitting through a narrow frequency band 

which results in greater vulnerability to multipath fading effects. In TDMA, every node 

must be synchronized otherwise different node’s timeslot might overlap causing 

collisions.   

 

 Unlike FDMA and TDMA, Code Division Multiple Access (CDMA) [SCH77] divides 

the medium by using Pseudo Noise (PN) or code sequences. Each transmitter will 
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modulate its data signal using its assigned PN sequence and access the channel in a 

random manner. Different transmitting signals overlap both in time and frequency. A 

receiver demodulates the different incoming signals according to the assigned PN 

sequence. With users being able to simultaneously access the medium in a completely 

random manner in time and frequency, CDMA is a perfect candidate for use in ad hoc 

networks. Controlled MAC protocols aim to assign users available channels for 

transmission to entirely eliminate collisions. Such algorithms have been generalized in 

[RAM99].  

 

1.4. Organization of the Thesis and Contributions  

In this thesis, we will introduce, analyze and discuss new code assignment protocols and 

algorithms for Direct Sequence Code Division Multiple Access (DS-CDMA) mobile ad 

hoc networks.  

 

Chapter 2 discusses the importance of spread spectrum techniques in ad hoc networks. 

We then present the multiple access problem in a DS-CDMA environment and give some 

important results. Subsequently, the different code assignment strategies proposed will be 

introduced. Finally, we will present in greater detail, the different protocols that have 

been developed in the past.  

 

Chapter 3 presents our first solution to the multi-code assignment problem for a 

centralized or a small ad hoc network. The code assignment algorithm assigns to each 

transmitter-receiver pair a certain transmission power and a set of PN sequences to 
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minimize the total power consumption of the system and satisfy the bit rate requirement 

of each pair. At the receiver, MAI and the effects of fading are mitigated using a code 

diversity technique.  

 

Chapter 4 introduces an adaptive multi-code assignment scheme at the transmitter end to 

ensure better response to the needs of different nodes. In this scheme, when a code 

violation is detected, the node moves into a correction phase to replace the violating PN 

sequences. A protocol has been developed to avoid the situation of having two nodes, 

which are two-hop apart, changing their PN sequences at the same time. Code selection is 

done via the code assignment algorithm which assigns to nodes, the “best PN sequences” 

from an initial set of PN sequences, in order to limit collisions and MAI in the network.  

 

Chapter 5 presents in detail, the implementation of the adaptive multi-code assignment 

scheme proposed in Chapter 4 using the event simulator OMNeT++. 

 

Finally, Chapter 6 summarizes the important contributions of this thesis and also 

discusses future work directions. 



 

 10

 

Chapter 2 Spread Spectrum and Ad Hoc 

Network 
 

 

In this chapter, we begin with a discussion on the use of spread spectrum techniques as 

modulation and multiple access tools for mobile ad hoc networks. Spread spectrum 

communication was first introduced for military applications. Communications between 

transmitters and receivers are done by modulating data signals on a wideband carrier, and 

consequently the transmitted signal bandwidth is much larger than the data signal 

bandwidth. A spread spectrum-based CDMA system allows multiple transmitters to 

transmit simultaneously and each receiver to receive from many users. In such a system, 

multiple access results in random errors at the physical layer due to mutual interference 

[PUR77-1, PUR77-2, YAO77]. With efficient error control codes, for example, turbo 

code [PRO02], these errors may be efficiently corrected if the Signal to Interference plus 

Noise Ratio (SINR) is greater than a certain threshold. However, a spread spectrum 

system demands a more complex implementation for modulation and demodulation of 

the PN sequences.  

 

Section 2.1 introduces the Direct Sequence Code Division Multiple Access (DS-CDMA) 

concept and highlights some important results. In Section 2.2, we present the code 

assignment problem for DS-CDMA ad hoc networks. The different strategies to solve 
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this problem are presented. Further, in Section 2.3, a discussion on related work will be 

conducted. Finally, Section 2.4 concludes this chapter.  

 

2.1. DS-CDMA an Overview 

2.1.1. Model and Assumption    

In a spread spectrum-based DS-CDMA system using BPSK as a modulation technique, 

the received signal at the reference receiver 0 from the kth transmitter amongst K users 

simultaneously transmitting is given by  

 

 ,0 ,0( ) . ( ). ( ).cos( )k k k k k k k c ks t P a t b t tτ τ τ ω φ− = − − +  (2.1) 

 

where cω  is the common center frequency, ( )ka t  is the PN sequence assigned to the kth 

user, ( )kb t  is the data sequence of the kth user, ,0kP  is the received signal after path loss of 

the kth user at the reference receiver 0, kφ  is the carrier phase offset of the kth user relative 

to a reference transmitter 1, kτ  is the delay of the kth user relative to a reference 

transmitter 1.  

 

( )ka t  and ( )kb t  are both binary sequences with values from the set { }1, 1+ − . The PN 

sequence  ( )ka t  can be written 
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 { }, ,( ) ( )                1, 1
ck k i T c k i

i

a t a p t iT a
+∞

=−∞

= − ∈ + −∑  (2.2) 

 

where cT  is the chip duration of the PN sequence. ( )Tp t  is the unit pulse function of 

width T, and is defined by 

 

 
1       if  [0, ]

( )
0      elsewhereT

t T
p t

⎧ ∈⎪⎪=⎨⎪⎪⎩
 (2.3) 

 

Further, the ( )ka t  are periodic sequences of period c bMT T=  and satisfy 

 
 , . ,              k M l j k ja a l+ = ∀ ∈  (2.4) 

 

where M is the number of chips of the PN sequences and bT  is the bit period when the 

PN sequences ( )ka t  are repeated. The data sequence ( )kb t  is given by  

 

 { }, ,( ) ( )                1, 1
bk k i T b k i

i

b t b p t iT b
+∞

=−∞

= − ∈ + −∑  (2.5) 

 

Figure 2-1 shows the block diagram of an asynchronous multiple access DS-CDMA 

system where the reference receiver 0 is synchronized with the 1st transmitter, so that we 

can write 1 0τ =  and 1 0φ = . 
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1 0
Delay
τ =

k

Delay
τ

K

Delay
τ

∑

[0, ]bt T
dt

∈
∫

cos( )ctω

cos( )c ktω φ+

cos( )c Ktω φ+

cos( )ctω

1( )b t

( )kb t

10,1,aZ

( )Kb t

1,0 1( )P a t

,0 ( )k kP a t

,0 ( )K KP a t

1( )a t

( )n t

Radio channel 

1,0 ( )s t

,0 ( )k ks t τ−

,0 ( )K Ks t τ−

0 ( )r t

Correlation receiver reference 0  

Figure 2-1 - Block diagram for a DS-CDMA multiple access system model in an AWGN channel 

 

From Figure 2-1, the received signal at the input of the correlation receiver 0 can be 

expressed as   

 0 ,0
1

( ) ( ) ( )
K

k k
k

r t s t n tτ
=

= − +∑  (2.6) 

 

where ( )n t  is the additive white Gaussian noise with variance 0

2
N  and zero mean.  
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A more detailed description can be found in [SCH77]. 

 

2.1.2. Average SINR for an Asynchronous DS-CDMA System  

Michael Pursley [PUR77-1, PUR77-2] conducted in-depth analysis of multiple access 

communication using spread spectrum technique. In particular, he closed-form derived 

expressions for the average Signal to Interference plus Noise Ratio (SINR) and the Bit 

Error Rate (BER) for an asynchronous DS-CDMA system. Further, in [YAO77], some 

analyses have been done for code design based on the average cross-correlation between 

the PN sequences. 

 

In [PUR77-1], the average 
10,1,aSINR  corresponding to the signal transmitted by the 1st 

user matched filtered by the receiver 0 using the PN sequence 1( )a t  is given by 

 

 
1

1

1,0
0,1,

0
,0 ,3

2

1 .
6 k

a K

k a a
k b

P
SINR

NP r
M T=

=
+∑

 (2.7) 

 

where 
1,ka ar  is the mean cross-correlation between the PN sequences ( )ka t  and 1( )a t  used 

by the kth and the 1st transmitters respectively. The full derivation of (2.7) is given in 

Appendix A.  
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2.1.3. Cross-Correlation Parameters  

In the previous section, we have given a simple expression for the average SINR for an 

asynchronous CDMA system. As can be seen, the average SINR depends on the 
1,ka ar . 

The average 
1,ka ar  give indication of the quality of the PN sequences family used. In 

[KAR92], numerical evaluation of the cross correlation parameters presented in 

Appendix A is given and summarized in table 2-1.  

 

Table 2-1- Cross-correlation parameters for CDMA code families adapted from [KAR92] 

Family M ,k la ar  ,2 (0)
k la aµ  , (1)

k la aµ  22M  

2

,

,

2
100%k l

k l

a a

a a

r M

r

−
×

 
       
Gold 31 1674 1926 -256 1922 15% 
m-sequence  31 1742 1918 -176 1922 10% 
       
Gold 63 7398 8286 -888 7938 7.3% 
Kasami(S)  63 6982 6958 24 7938 14% 
Kasami(L) 63 8686 7982 704 7938 8.6% 
m-sequence  63 8006 8110 -104 7938 0.8% 
       
Gold 127 33682 32742 940 32258 4.2% 
m-sequence  127 30902 31406 -504 32258 4.4% 
       
Kasami(S)  255 138310 132430 5880 130050 6.0% 
Kasami(L) 255 132322 138246 -5924 130050 1.7% 
m-sequence  255 132206 132830 -624 130050 1.6% 
       
Gold 511 536642 518198 18444 522242 2.7% 
m-sequence  511 487430 488718 -1288 522242 7.1% 
       
Gold 1023 2093414 2125342 -31928 2093058 0.02% 
Kasami(S)  1023 2094766 2116766 -22000 2093058 0.08% 
Kasami(L) 1023 2154770 2093302 61468 2093058 2.9% 
m-sequence  1023 2059262 2049982 9280 2093058 1.6% 
       
Gold 2047 8175130 8140742 34388 8380418 2.5% 
m-sequence  2047 8460494 8460494 42160 8380418 0.9% 
       
Kasami(S)  4095 32789578 32789578 -567852 33538050 2.3% 
Kasami(L) 4095 34645122 34645122 745292 33538050 3.2% 
m-sequence  4095 33725918 33725918 115744 33538050 0.6% 
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2.2. Code Assignment in Ad Hoc Network  

2.2.1. Strategies for Code Assignment  

DS-CDMA code assignment schemes require that nodes are transmitter, receiver or 

transmitter-receiver agile. A node is said to be transmitter, receiver, or transmitter-

receiver agile when it is able to transmit, receive, or transmit and receive over a multitude 

of PN sequences, respectively. Proper code assignment schemes are needed to eliminate 

hidden terminal problems. Different strategies will be analyzed and discussed in detail in 

the following sections. 

   

2.2.1.1. CCA  

The simplest code assignment protocol, the Common Code Assignment (CCA), uses a 

common spreading code for transmission and reception of all packets. Collisions are 

reduced in CCA-ALOHA compared to non-spreading ALOHA. If two transmitted 

packets are overlapping in time and received in an asynchronous mode, they might not 

collide. The receiver will be synchronized with the first arriving packet. The second 

packet will have the same effect at the receiver as MAI and will not be received. In this 

way, the number of collisions is reduced. In addition, the system has a simple 

implementation [ABR94]. 
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2.2.1.2. RandCA 

In [PUR87, ABR94], the Random Code Assignment (RandCA) scheme uses a bank of 

spreading codes for transmission. A node will select a PN sequence randomly from the 

PN sequence bank to transmit packets, and at the intended receiver, all the packets 

received are demodulated using the same PN sequence. RandCA does not require any 

control protocol; however, the design of the receiver has a complexity which increases 

with the size of the bank. Usually the random code assignment is coupled with a channel 

access protocol. The most commonly used protocols are the slotted or non-slotted 

ALOHA.  

  

2.2.1.3. ROCA 

The Receiver Oriented Code Assignment (ROCA) scheme of [SOU88] assigns for each 

receiver, a PN sequence. When a packet needs to be sent, the node tunes its PN sequence 

for transmission to the desired receiver’s PN sequence assigned by the ROCA scheme. 

The transceivers are said to be transmitter agile. Unfortunately, collisions can only be 

reduced but not completely eliminated; when two nodes are transmitting to the same 

receiver simultaneously, collisions occur. However, its hardware implementation is 

simple (because each node only has to listen to the nodes transmitting over its assigned 

PN sequences) and therefore less costly.  
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2.2.1.4. TOCA 

The Transmitter Oriented Code Assignment (TOCA) scheme introduced by Makansi 

[MAK87], assigns a PN sequence for each transmitter. The transceiver is said to be 

receiver agile. Multiple users can transmit simultaneously to the same receiver which 

tunes its PN sequences for reception to different transmitters. The TOCA scheme has the 

advantage of authorizing multiple user communication and can entirely eliminate 

collisions. But, it requires more complex implementation than the ROCA scheme. 

   

2.2.1.5. POCA 

The Pairwise-Oriented Code Assignment (POCA) scheme of [HU93] assigns a PN 

sequence to each transmitter-receiver pair or link. For communication to be established, 

both transmitter and receiver have to tune their PN sequence for transmission and 

reception to the PN sequence assigned for the pair. The transceiver is said to be receiver-

transmitter agile. POCA has the same capability as TOCA to eliminate collisions, but its 

implementation is much more complex and therefore much more costly.  

 

2.2.2. Graph Coloring Problem  

The code assignment problem can be mapped to a graph coloring problem. The network 

can be described as a graph ( , )G V E , where V  is the ensemble of vertices or nodes and 

E  is the ensemble of edges or links. An element e E∈ , can also be defined as { , }e s d= , 

where ,s d V∈  . The bank of PN sequences available is defined by { }
1

N

j j
C c

=
=  where N 
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is the cardinality of C. We define the ensemble of x-hop neighbors of the node u (y is a x-

hop neighbor of u, if y can reach u through x distinct hops) as  

 

 { }x ( ) :  is a x-hop neighbor of M u y V y u= ∈  (2.8) 

 

and the ensemble of adjacent links of the link l as  

 

 { }( ) :  L l e L e l= ∈ ∩ =∅  (2.9) 

 

2.2.2.1. ROCA and TOCA Multi-Code Mapping 

In TOCA and ROCA schemes, the number of collisions is minimized by assigning 

distinct pairs of two-hop neighbors, distinct PN sequences. Therefore, TOCA and ROCA 

problems can be reduced to the same graph coloring problem. The TOCA problem is 

equivalent to find subsets ( )T
iPN C⊂  such that   

 

 
( ) ( )

( ) ( )
2

                         

                , ( )

T T
i i

T T
i j

PN w i V

PN PN i V j M i

⎧⎪ = ∀ ∈⎪⎪⎨⎪ ∩ =∅ ∀ ∈ ∀ ∈⎪⎪⎩
 (2.10) 

 

where ( )T
iw  is the number of PN sequences required by the ith transmitter and ( )T

iPN  is the 

set of PN sequences assigned to the ith transmitter. 

 

Similarly, ROCA problem is to find subsets ( )R
iPN C⊂  such that   
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( ) ( )

( ) ( )
2

                         

                , ( )

R R
i i

R R
i j

PN w i V

PN PN i V j M i

⎧⎪ = ∀ ∈⎪⎪⎨⎪ ∩ =∅ ∀ ∈ ∀ ∈⎪⎪⎩
 (2.11) 

 

where ( )R
iw  is the number of PN sequences required by the ith receiver and ( )R

iPN  is the 

set of PN sequences assigned to the ith receiver. Figure 2-2 depicts a TOCA and ROCA 

single code assignment for a given graph.  

 

 

Figure 2-2-TOCA and ROCA single code assignment using 6 PN sequences 

 

2.2.2.2. POCA Multi-Code Mapping  

In the POCA scheme, the hidden terminal problem is totally eliminated by assigning 

distinct pairs of adjacent transmitter-receiver links, distinct PN sequences. The POCA 

problem is equivalent to find subsets ( )P
lPN C⊂  such that   
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( ) ( )

( ) ( )

                         

                , ( )

P P
l l

P P
l e

PN w l E

PN PN l E e L l

⎧⎪ = ∀ ∈⎪⎪⎨⎪ ∩ =∅ ∀ ∈ ∀ ∈⎪⎪⎩
 (2.12) 

 

where ( )P
lw  is the number of PN sequences required by the lth link, and ( )P

lPN  is the set 

of PN sequences assigned to the lth link. Figure 2-3 depicts a POCA single code 

assignment for an arbitrary graph.  

 

 
Figure 2-3 - POCA single code assignment using 6 PN sequences 

 

2.2.2.3. Graph Coloring Bounds 

[HU93, MAK87] have given lower and upper bound on the number of PN sequences 

needed for the single code assignment problem in order to completely eliminate packet 

collisions. In [BAT99], the number of PN sequences needed for a violation-free TOCA 

network has been studied through simulation. A violation occurs when the conditions 

(2.10), (2.11) or (2.12) are not satisfied for the TOCA, ROCA or POCA schemes, 

respectively.  
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Theorem 1: For a violation-free TOCA or ROCA network, the minimal number of PN 

sequences needed must be at least equal or greater than the maximal degree ∆  of the 

network.   

 

Proof: Any node has at most ∆  neighbors. Each distinct neighbor must be assigned a 

distinct PN sequence to satisfy the condition (2.10) or (2.11) and the Theorem 1 follows.  

 

Theorem 2: if ( 1) 1N ≥∆ ∆− +  and each user is assigned one PN sequence, a violation-

free TOCA or ROCA network can be guaranteed.  

 

Proof: Any node has at most ( 1)∆ ∆−  two-hop neighbors. Due to the constraints given 

in (2.10) and (2.11) for TOCA and ROCA schemes, any node must be assigned a distinct 

PN sequence from its two-hop neighbors. If each 2-hop neighbor uses a unique PN 

sequence and the number of PN sequences available is greater than ( 1)∆ ∆− , then the 

node at hand will always have at least one PN sequence available to choose from C and 

the Theorem 2 follows.  

 

Theorem 3: For a POCA network, the minimal number of code sequences needed to 

eliminate the hidden terminal problem has to be at least ∆ .   

 

Proof: All the edges emanating from or terminating at any node, must be assigned distinct 

PN sequences to satisfy the POCA constraint in (2.12) and the Theorem 3 follows.  
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Theorem 4: if 1N ≥∆+  and each link is assigned one PN sequence, a violation-free 

POCA network can be guaranteed. 

 

 The proof for Theorem 4 can be found in [MIS92].   

 

In [MIS92], a heuristic approach is used to find the perfect solution using 1∆+  PN 

sequences. However, the construction of the solution is time consuming with high 

complexity. The frequent topological changes imply excessive number of re-computation 

for code assignments among the nodes within the network; thus, the algorithm [MIS92, 

HU93] can only be implemented for a centralized or a static network.  

 

Hu [HU93] has implemented a fast code assignment algorithm for POCA-based networks 

for the number of PN sequences 2( 1) 1N ≥ ∆− + . This number is more suitable for the 

code correction process, in which one link can correct its code sequence without 

imposing a change for other links as Theorem 4 implies.  

 

Theorem 5: If 2 1N ≥ ∆−  and each link is assigned one PN sequence, a violated link 

can correct its PN sequence without imposing a change for other links . 

 

Proof: Any link has at most 2( 1)∆−  adjacent links. Due to the constraints given in 

(2.12) for the POCA scheme, any link must be assigned a distinct PN sequence from its 

adjacent links. If each adjacent link uses a unique PN sequence and the number of PN 
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sequences available is greater than 2( 1)∆− , then the link at hand will always have at 

least one PN sequence available to choose from C and the theorem 5 follows.  

  

2.3. Related Work  

2.3.1. Centralized Algorithms  

A centralized algorithm assumes the existence of a super node which has the knowledge 

of the network’s topology. The super node can be selected by leader election [NAK00, 

NAK02] and is informed by other nodes of any change in the topology. The super node 

watches the network and corrects PN sequences when violations are sensed. Thus, 

centralized algorithms are only practically viable in small networks with relatively slow 

motion. In such cases, centralized code assignment algorithms produce better 

performances than distributed versions.  

 

In [MAK87], the procedure for code assignment in an arbitrary network is given by: 1) 

Choose randomly a node in the network, and assign it the code sequence 1c . 2) Choose 

randomly an unassigned node, and try to assign it the code sequence 1c ; if any of its two-

hop neighbors have already been assigned the code sequence 1c , then try with the code 

sequence 2c . Continue until a valid code is found. 3) Repeat until all the nodes have a 

code sequence.  
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Makansi [MAK87] has also proposed a perfect code assignment scheme for networks 

with special topologies using the minimal number of code sequences ∆ . The algorithm 

extracts a 2-hop cell for which its replication can generate the complete topology of the 

network. Subsequently, it assigns a code sequence for each element of the 2-hop cell 

using ∆  code sequences ensuring that no code violation occurs after the cell replication 

process to construct the complete network. This code assignment algorithm guarantees a 

violation-free TOCA network using ∆  code sequences for special topologies such as the 

bus, the hexagonal and the grid networks. 

 

In [MAK87], the TOCA scheme and a channel access protocol are used jointly. Before 

transmitting a data packet, the pair messages Ready-to-Send (RTS) and Clear-to-Send 

(CTS) are exchanged between the transmitter and the receiver to verify that the receiver 

is idle.  

 

In [HUN92], Hung proposed a code assignment algorithm which requires less PN 

sequences than the Dsatur algorithm. The algorithm ranks the nodes in order of 

decreasing degrees, it first assigns the node with the maximum degree with the code 

sequence 1c  and its neighbors with the code sequences 2c  to 1c∆+ . Subsequently, it 

assigns a code sequence to the other ranked nodes, in order to minimize the number of 

code sequences currently used and the binding function of each node which represents 

the degree of freedom left for the code assignment of its remaining 1-hop and 2-hop 

neighbors. 
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In [HU93], the TOCA algorithm presented differs from [MAK87] by fixing the number 

of PN sequences available to ( 1) 1∆ ∆− +  where ∆  is the maximal degree of the 

network. The algorithm follows these 4 steps: 1) Select any node without a code 

sequence, 2) Remove from the set of code sequences available the sequences used by its 

two-hop neighbors 3) Select randomly a code sequence from this set. 4) Continue until all 

nodes are assigned a code sequence.  

 

[HU93] introduced two POCA algorithms using 1∆+  and 2( 1) 1∆− +  code sequences. 

The first algorithm using 1∆+  code sequences is a very complex heuristic involving 

multiple code sequence permutations among links. This algorithm is detailed in [MIS92]. 

The second algorithm using 2( 1) 1∆− +  code sequences does not require any code 

sequence permutation among links. The algorithm is described as follows: 1) Select any 

link without a code sequence. 2) Remove from the set of code sequences available the 

sequences used by its adjacent links. 3) Select randomly a code sequence from this set. 4) 

Continue until all links are assigned a code sequence.  

 

Wu [WU02] proposed a combined code assignment and power control scheme for POCA 

networks. This scheme aims to minimize the total power consumption or the congestion 

level of the network.  
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2.3.2. Distributed Algorithms  

 [HU93] derived algorithms for TOCA initialization and correction processes. The TOCA 

initialization process is used to initialize quickly the network by assigning a code 

sequence to each node. One of his algorithms is the sink tree algorithm which will be 

described and discussed in Section 4.2.3. The TOCA correction process is used to correct 

the PN sequences of violating nodes. [HU93] introduced two protocols for the code 

correction process: the token-passing and the deadlock-free orientation protocols. The 

two protocols are used to avoid that a pair of two-hop neighbors are correcting their PN 

sequence simultaneously in which another violation might occur. This experience is 

called deadlock. Using the token passing algorithm, a node can only change its own code 

sequence when it receives a token packet containing enough information for the node to 

select a new code sequence. The deadlock orientation protocol specifies the correcting 

chain of potentially conflicting nodes in such a way that no deadlock can occur. The code 

assignment used is similar to the centralized algorithm previously introduced by [HU93]. 

  

 [BER95] introduced another distributed TOCA algorithm which minimizes the number 

of PN sequences used. The algorithm follows the 3 steps: 1) each node assigns to itself 

the lowest indexed code sequence which is not used by any of its 2-hop neighbors with 

lower identification (ID). It then informs its 1-hop and 2-hop neighbors of its code 

assignment by sending a Code Assignment Message (CAM). 2) If a CAM packet is 

received from a 2-hop neighbor with a lower ID sharing the same code sequence, the 

node will subsequently correct its code sequence following the 1st step. 3) The code 



Chapter 2: Spread Spectrum and Ad Hoc Network 
  

 28

assignment algorithm is completed when the node and its 2-hop neighbors with lower ID 

are assigned a code sequence.  

 

Such code assignment scheme is not suitable for mobile ad hoc networks due to its high 

complexity, where frequent topological changes occur. 

 

[GAR97] introduced a combined code assignment and channel access protocol scheme.  

In this scheme, the transmitter and receiver exchanges the pair RTS-CTS packets on the 

control channel before transmitting a burst packet. The code assignment of the transmitter 

is set in the RTS. Upon its reception, the idle intended receiver generates the CTS packet 

and tunes its correlation receiver to the code sequence for the burst packet reception. 

Nonetheless, by using a handshaking with TOCA or POCA, the system looses its multi-

user capability to receive multiple packets from non-overlapping code sequences.  

 

2.4. Conclusion  

In this chapter, we gave an overview of the DS-CDMA system. We then introduced and 

discussed the existing code assignment strategies which limit collisions for ad hoc 

networks. We have shown that only POCA and TOCA can completely overcome the 

hidden and exposed terminal problems. In related works, the focus has been on a single 

code assignment model. Also, mobility in ad hoc networks has most of the time been 

omitted, and therefore, a correction process when code violation occurs has almost never 

been discussed. Only [HU93, GAR97] pointed out the problem of graph re-coloring and 

designed protocols to correct code sequence violations. 
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Chapter 3 Multi-Code Assignment for 

Small POCA Networks 
 

 

In this chapter, we propose a novel DS-CDMA code assignment scheme for small POCA 

networks. Multi-PN sequences are assigned for each transmitter-receiver pair to satisfy its 

bit rate requirement. Code assignment and power control are combined to eliminate 

collisions, to mitigate the effects of MAI and fading and to minimize the overall power 

consumption in the ad hoc network.   

 

3.1. Model and Assumption 

3.1.1. The DS-CDMA Model  

We consider a DS-CDMA ad hoc network system; the network can be represented as a 

collection of K transmitter-receiver pairs which communicate simultaneously [WU02]. 

We denote by ,j k∂ , the shortest path in number of hops between the node j and k, and by 

jh ,  ,max{ : }j j kh k V= ∂ ∈ . The ‘leader node’ [LIN97][NAK02] is chosen as the node 

which minimizes the jh .  minh  is defined by  

 

 min min( )jj V
h h

∈
=  (3.1) 
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where V is the ensemble of nodes in the ad hoc network. If min 3h ≤ , pseudo-

synchronization can be done amongst the nodes in the ad hoc network [ROM01].  

 

For the entire system, the set of PN sequences { }
1

N

j j
C c

=
=  is available for the code 

assignment where the normalized PN sequences are defined by  

 

 { }, ,
1

1 ( )      with 1; 1       
M

j j i Tc c j i
i

c c p t iT c j N
M =

= − = − + ∀ ≤∑  (3.2) 

 
 

where M is the number of chips of the PN sequence, ( )Tp t  the pulse function of 

parameter T and Tc the chip duration.  

 

In the pseudo-synchronization condition, the code sequences are assumed to be 

orthogonal and are normalized, the PN sequences satisfy the condition  

 

 ,            ,j i ijc c j i Nδ= ∀ ≤  (3.3) 

 

where  . ,  .  represents the scalar product and  ijδ  is defined by  

 

 
0
1ij

if i j
if i j

δ
⎧ ≠⎪⎪=⎨⎪ =⎪⎩

 (3.4) 



Chapter 3: Multi-Code Assignment for Small or Centralized POCA Network 
  

 31

 
 

Each kth transmitter-receiver pair is assigned the subset ( )P
kPN  of cardinal ( )P

kw  from C. 

For better clarity, the subset ( )P
kPN  is simplified to kPN  and its cardinal to kw . We 

introduced the code assignment vector { } 1

N
k ki i

ϕ
=

Ψ =  associated with the kth transmitter-

receiver pair and its elements are given by  

 

 ,

1       if 
0       otherwise 

i k
k i

c PN
ϕ

⎧ ∈⎪⎪=⎨⎪⎪⎩
 (3.5) 

 

The transmission power of the kth transmitter is denoted by kP , and the path loss between 

the kth  transmitter and the lth  receiver, is represented by klG . A method to obtain the klG  

will be introduced in the following section. Finally, the variance of the additive white 

Gaussian noise for the kth channel is denoted by 2
kσ . The kth correlation receiver is 

comprised of kw  matched filters; each of them is matched to a distinct code sequence 

,k ipn . The received signals are synchronized by each matched filter. It is assumed that 

each of the wk channels are weighted with the same weight 1

kw
. Thus, we can express the 

signal to interference plus noise ratio kSINR  associated to the kth transmitter–receiver pair 

as 

 
( ) 2

.
1 . . .

k kk
k

T
j jk j k k

j Kk
j k

P GSINR
P G

w
σ

≤
≠

=
Ψ Ψ +∑

 (3.6) 
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where TA  is the transposition of the vector A.  

 

3.1.2. Formulation of the Power Control Problem 

In an ad hoc network, the power consumption of the whole system has to be minimized 

according to the SINR constraint of each kth receiver k kSINR γ≥ , where kγ  represents 

the SINR threshold of the kth pair. The power control problem is to determine the best 

subset kPN  and transmission power kP  in order to minimize the total power 

consumption while satisfying the SINR requirement, i.e. 

 

 minimize     such that     k k k
k K

P SINR k Kγ
≤

≥ ∀ ≤∑  (3.7) 

  

[WU02] expressed the condition in (3.7), using the K K×  matrix F and the vectors of 

dimension K,  u and P  by 

 

 ( ).I F P u− ≥  (3.8) 

 

where the elements kjF  of F are defined by 
( ). T

jk k j k
kj

kk k

G
F

G w
γ Ψ Ψ

= , the elements ju  of u 

by 
2

j j
j

jj

u
G
γ σ

= , P  is the transmission power vector of elements jP , and I denotes the 

K K×  identity matrix.  
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From (3.8) and assuming that the matrix I F−  has an inverse, the optimal vector power 

optP  is given by  

 

 1( )optP I F u−= −  (3.9) 

 

In our simulations, ( ) 1I F −−  always exists, and thus justifies this assumption.  

 

3.2. Minimizing the Power Consumption  

Using the Taylor series expansion for equation (3.9), we can derive  

 

 1
1 11 1

1

( ) ( )
K

k
k

P I F u I F u u Fu−

=

= − ≈ + = +∑  (3.10) 

 

where 
1

 .  denotes the 1-norm, i.e. the sum of the absolute value of the elements of the 

vector. This approximation is true only if the maximum eigenvalue of F is much smaller 

than 1. Then, minimizing 
1

K

k
k

P
=
∑  is equivalent to solve the weighted total squared cross-

correlation (WTSC) minimization problem [WU02] by minimizing 
1

Fu . The WTSC 

problem is given by  
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 ( )1
minimize minimize . T

jk j k
k K j K

j k

Fu ν
≤ ≤

≠

⇔ Ψ Ψ∑∑  (3.11) 

 
 

where 
2

jk k j j
jk

kk k jj

G
G w G

γ γ σ
ν = . 

 

3.3. Code Assignment Algorithms   

We define the subset 'C  of the set C of PN sequences available, as the ensemble of code 

sequences currently not being used in the network. The subset 'E  of the ensemble E of 

transmitter-receiver pairs in the network represents the ensemble of links which have 

already been assigned code sequences. By analyzing the WTSC problem, we see that if 

j k≠ , the kth transmitter corrupts the communication between the jth pair, and 

conversely, the communication between the kth pair is also corrupted by the jth 

transmitter. The total interference between these two transmitter-receiver pairs can be 

represented by the sum jk kjν ν+ .  

 

3.3.1. Code Initialization 

The leader node initializes the code assignment for each transmitter-receiver pair using 

the code initialization algorithm. In this section, the knowledge of the jkν  by the leader 

node is assumed. The leader initializes 'C C=  and 'E =∅ . The code initialization 

algorithm is a heuristic given by  
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1. Sort the transmitter-receiver pairs in ascending order according to the measure 

jk kj
j K
j k

ν ν
≤
≠

+∑  , and let u(1), u(2), …, u(K) be an enumeration of pairs with respect 

to this order.  

2. For each k from 1 to K,  

If ( 'C  is not empty) 

The code sequences of the set ( )u kPN  are chosen randomly from 

'C . Then, set  ( )' ' u kC C PN= −  and { }' ' ( )E E u k= ∪ . 

else  

Compute the total interference vector ( )u kI  defined in (3.12) and 

extract the set ( )u kPN  from C satisfying (3.13). Then, set 

{ }' ' ( )E E u k= ∪ . 

3. When the entire system has satisfied their required number of distinct PN 

sequences, we extracted the transmission power vector optP  from (3.9) . 

  

We define the total interference vector ( )u kI  of dimension N  associated with the u(k)th 

link which each of its elements ( ),u k lI  represents the possible total interference between 

the u(k)th transmitter-receiver pair and the other pairs of E’ by choosing the PN 

sequence lc . These elements ( ),u k lI  are defined by  
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 ( ), , ( ) ( ),
l j

u k l j u k u k j
j L c PN

I ν ν
∈ ∩ ∈

= +∑  (3.12) 

 
 

The PN sequences chosen minimize the possible total interference between the u(k)th link 

and the other links of E’. ( )u kPN  satisfies the condition given by  

  

 
( )

( ), ( ), ( )    such that  
l u k l

u k l u k l u k
c PN c X

I I X PN X C
∈ ∈

≤ = ∀ ⊂∑ ∑  (3.13) 

 

Practically, the PN sequences corresponding to the lowest elements of the vector  ( )u kI  

are chosen.  

 

3.3.2. Code Correction  

The code correction process is used to re-adjust the code assignment and the transmission 

power of each link. This process is executed by the transmitter-receiver link itself. We 

suppose that the jkν  are known by each transmitter-receiver pair. The code correction 

algorithm is reduced to the steps 2 and 3 of the initialization process.  

 

3.4. The Token Circulation  

In this section, we describe how a token ring may be used to disseminate topology 

information to the transmitter-receiver pairs in the network, to detect new users in the 

network, and to schedule the PN sequence updates for each pair. 
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3.4.1. Assumptions and Definitions  

We assume that the graph constituting the receivers is connected, i.e., a path exists 

between every pair of receivers so that if one receiver leaves or joins the network, the 

graph will still be connected. Furthermore, every receiver is able to sense a signal from 

any sender. 

 

We assume that a network layer routing exists, and that all nodes are able to update their 

neighbor table. By using this table, a sender will be able to find other nodes which are 

waiting to forward packets.  

 

[MAL01] introduced several algorithms for applying the token ring to ad hoc networks 

such as the Local Recency (LR) algorithm. The LR algorithm will be used on a dedicated 

channel, i.e., a unique PN sequence is dedicated for the token ring.   

 

A virtual ring is a ring that connects all the users together, satisfies the connectivity of the 

graph and minimizes the number of passages through each node. A round is completed 

when the entire group of users has been visited by the token. The following token ring 

algorithm implements a virtual ring.  
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3.4.2. Token Ring Algorithm 

The leader node, i.e. the first receiver, initializes the token, communicating to its sender 

that the token is held. The other receivers sense the signal of the first sender and keep this 

path loss information. The leader node refers to its neighbors table, and sends the token to 

the other nodes following the LR-algorithm.  

 

The other receiver nodes follow these instructions: 

1. Waits for the reception of the token packet.  

2.  Communicates to its sender that the token is held. 

3. The sender sends its identification to all receivers who, upon sensing it, obtain 

the path loss information.  

4. The token holder puts its path loss information obtained previously onto the 

token.  

5. Sends the token following the LR-algorithm. 

 

After the initialization round, the token containing the path loss information is received 

by the leader node. By using the code initialization algorithm, the leader node initializes 

the combined PN sequences and transmission power assigned for each transmitter-

receiver pair and puts this information onto the token. During the second round, each 

transmitter-receiver pair extracts their code assignment and transmission power. 

Subsequently, the token continually visits the receivers one by one, and in that way the 

path loss information is continuously shared amongst them. When a violation occurs, a 
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node, upon reception of the token, will correct its PN sequences by using the code 

correction algorithm and pass the token with its code assignment information.  

 

3.5. Mitigating the MAI and the Fading Effects  

In this section, we present a method to mitigate MAI and fading effects by using a code 

diversity technique.  

 

A simple technique is deployed [SEK99]; the data information is sent through the 

different channels used by the transmitter-receiver pair. The received signals from the 

different branches are multiplied with the PN sequences allocated to them; each 

autocorrelation detector is synchronized with each transmitted signal. The output signal 

from the autocorrelation detector matched with the PN sequence ,k lpn  of the kth 

transmitter is denoted by 
,, , k lk k pnZ  which is composed of the desired signal, MAI, noise, 

plus a fading component. The expression of the 
,, , k lk k pnZ  can be found in Section 2.1.1.  

In [SEK99], a weight 
,, , k lk k pnα  is assigned to the lth channel of the kth transmitter; the 

channel with the greatest output is assigned the heaviest weight. 
,, , k lk k pnα  are defined by 

 

 ,

,
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, ,
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k l
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where kw  denotes the number of PN sequences assigned to the kth transmitter-receiver 

pair. From (3.14), we can derive the weighted decision static ,k kZ  at the kth receiver given 

by  

 
, ,, , , , ,

1..
k l k l

l

k k k k pn k k pn
l w

Z Zα
=

= ∑  (3.15) 

 
The kth receiver uses a simple threshold decision given by the rule  

 

 ,

,

1      if 0
( )

1      if 0
k k

k
k k

Z
b t

Z

⎧− ≤⎪⎪=⎨⎪+ >⎪⎩
 (3.16) 

 
 

where ( )kb t  is the data bit chosen after evaluation of ,k kZ . The case 0kZ =  can be 

neglected due to its null probability.  

 

3.6. Simulation and Performance  

In our simulation, 12, 16, 24 and 32 pairs are drawn randomly on a rectangle of width and 

length of 100 units. The distance between each transmitter-receiver pair is chosen 

randomly to be less than 10 units. The reference gain G is chosen to be equal to 10 units2. 

The ijG  are equal to the gain G divided by the square of the distance between the ith  

transmitter and the jth receiver. The variance of the white Gaussian Noise is set to 0.1, and 

the received SINR threshold of each receiver takes a value from the set 

{ }10, 6, 3,0, 3, 6, 10kγ = − − − + + + . The number of PN sequences assigned to each 

transmitter-receiver pair is 3. The PN sequences are the Walsh code sequences of length 
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64.  The number of available sequences is chosen from the set { }10, 20,30N = . To take 

into consideration, the effects of MAI in our simulations, a random delay is assigned to 

each interfering transmitter. Transmissions on an AWGN channel as well as a Rice 

channel of parameter 2 0.1aσ =  (average scattered power due to multipath) with BPSK 

modulation were simulated. The simulations were conducted using 1000 bits each trail, 

and each trial were repeated 100 times. We compare our multi-PN sequence scheme with 

the single branch model for which each transmitter-receiver pair is assigned a distinct PN 

sequence and uses power control for transmission. 

 

 
   (a)      (b) 

Figure 3-1 BER gain and power cost vs. received SINR threshold for 32 transmitter-receiver pairs  

 

Figure 3-1 shows the BER gain and the transmission power cost by using our scheme 

over the single branch model for 32 transmitter-receiver pairs. In Figure 3.1 (a), the 

proposed code assignment reduces the BER in both conditions (AWGN and Rice) up to a 

certain point, 6dBkγ = , beyond which, the BER increases, thus manifesting the so called 

near-far problem for CDMA. In the proposed scheme where the number of transmitters is 
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multiplied by 3, the near-far problem for CDMA is experienced for lower kγ  than the 

single branch system. In Figure 3-1 (b), this problem is emphasized. The total 

transmission power of the proposed system increases faster than the total transmission 

power of the single branch system. The increase in the number of PN sequences available 

in the system will reduce the number of collisions as this number increases with the 

number of transmitters in the network.  

 

 
  (a) AWGN channel    (b) Rice channel 

 
(c) 

 
Figure 3-2 BER gain and power cost vs. received SINR threshold for 30 PN sequences used  
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Figure 3-2 shows the BER gain and the power cost using 30 PN sequences for the code 

assignment. Through an AWGN and a Rice fading channel, the BER gain increases up to 

6dBkγ = , and beyond this point, this number decreases. As we can see, the proposed 

code assignment has a higher BER gain for a Rice fading channel where the code 

diversity scheme is used to mitigate fading effects. The power cost increases faster when 

the number of transmitter-receiver pairs increases, thus manifesting the near-far problem.   

 

3.7. Conclusion  

This chapter describes and analyzes a novel PN sequence assignment scheme for a DS-

CDMA ad hoc network using code diversity technique. The advantage of this model 

compared to the scheme which assigns one PN sequence to each user, is the mitigation of 

the effect of MAI and fading and a flexible bit rate allocation. The proposed architecture 

ensures minimal total power consumption and a significant improvement of the BER for 

the entire system. The system is composed of two phases: the initialization and the 

correction phases.   

 

We notice that our algorithm is more suitable for networks with slow or reasonable 

mobility like sensor networks and small sized networks to avoid excessive adjustments 

for the set of PN sequences and the power transmission of each transmitter-receiver pair. 

Unfortunately, because of its global approach, the complexity of our algorithm will 

increase with the number of users. 
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Chapter 4 Distributed Multi-Code 

Assignment for TOCA Network 
 

 

In this chapter, we introduce an adaptive multi-code assignment scheme for DS-CDMA 

ad hoc networks. This scheme is using the proposed distributed Code Correction Protocol 

(CCP) to avoid the situation of having two nodes, which are two-hop apart, correcting 

their PN sequences at the same time. Subsequently, we introduce a new code assignment 

algorithm which assigns for each node the “best PN sequence” to limit collisions and 

MAI.  

 

Section 4.1 introduces the concept of multi-code assignment for a TOCA system. Section 

4.2 presents initialization protocols for a TOCA system. Section 4.3 describes existing 

protocols used during the code correction process in a TOCA system. Section 4.4 

presents the distributed CCP protocol for the correction process. Section 4.5 discusses the 

complexity of the proposed protocol. Section 4.6 presents a new code assignment 

algorithm which limits the number of packets loss due to collisions and MAI. In Section 

4.7, the simulation for the ad hoc network using the CCP protocol is presented.  Section 

4.8 and Section 4.9 discusses respectively the impact of the transmission power and the 

velocity on the performance of the system. Finally, Section 4.10 concludes this chapter. 
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4.1. Multi-Code Assignment for a TOCA System  

In Section 2.2.1, we showed that TOCA and POCA schemes are the only two code 

assignment schemes able to eliminate the hidden and exposed terminal problems. We 

have also demonstrated that the TOCA scheme has a simpler implementation than the 

POCA scheme. For these reasons, the TOCA scheme has attracted our attention for 

distributed ad hoc networks.  

 

4.1.1. The TOCA Layering Model  

In the simplified OSI model, a mobile host can be represented by 4 layers: the Physical, 

the MAC, the Routing, and the Application layer. In a TOCA network, the color module 

is implemented at the MAC level and is used to ensure that the node has no violation with 

its 2-hop neighbors. Figure 4-1 depicts the modified OSI model for a TOCA scheme.   

 

MAC Layer 

Application Layer 

Network Layer 

Physical Layer 

Color Module

 

Figure 4-1 - Simplified OSI Model for a TOCA scheme 
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4.1.2. Number of PN Sequences Assigned per Transmitter  

For a non-adaptive code assignment scheme, the number of PN sequences assigned for 

each node is decided in advance and does not vary with the condition of the network.  

 

In an adaptive code assignment scheme, the number of PN sequences to be assigned for 

each transmitter depends on its needs. These needs represent the quality of service which 

must be provided for each user by the adaptive TOCA scheme. They can be quantified as 

the number of packets loss, the packet transmission delay, the number of neighbors, or 

the bandwidth needed.  

 

4.1.3. Information Storage for TOCA 

In a TOCA scheme, each node needs to know the code assignment information 

concerning itself, its one hop and its two-hop neighbors. Each 1-hop table element 

contains the node’s address, priority, PN sequences used for transmission, its expiration, 

and the node’s 1-hop neighbors information (address, priority and PN sequences). Figure 

4-2 presents the data storage information for a TOCA scheme.  
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Own information

Address:
Priority :
PN sequences :
Neighbors : 

1-hop neighbors

Address:
Priority :
PN sequences : 
Neighbors :
Expiration : 

2-hop neighbors 

Address:
Priority :
PN sequences :  

Figure 4-2 - TOCA data storage 

 

The node stores the information concerning itself, its 1-hop and its 2-hop neighbors. 

Therefore, the maximal number em  of table entries which must be stored by each node 

for a TOCA scheme is given by  

 

 
2

( 1) 1

1
em =∆ ∆− +∆+
=∆ +

 (4.1) 

 

where ∆  is the maximal degree of the ad hoc network. 

 

4.2. Code Initialization Protocol 

Code initialization has been widely studied in [HU93, MAK87, KIM91, HUN92, BER95 

CID89, and GAR97]. It is employed to initialize the TOCA ad hoc network by assigning 

each user a PN sequence for transmission. Upon its completion, communications between 
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nodes can start. Thus, this process must be quick and have low complexity due to its one 

time usage.  

 

4.2.1. Random Initialization  

In the random initialization process, each node selects randomly its PN sequences from 

the set of code sequences available { }
1

N

j j
C c

=
=  and subsequently informs its 1-hop and 

2-hop neighbors of its choice. The random initialization is a fast and simple process but 

only gives a rough code assignment where many violations may occur. When the random 

code initialization is completed, violating nodes move to the correction process to re-

adjust their PN sequences for transmission. Due to its zero-complexity, the random 

initialization has been chosen for our protocol. 

  

4.2.2. Least PN Sequences Algorithms   

In [MAK87, KIM91, BER95], many algorithms were presented for the code initialization 

process. The objective of those algorithms is to find a code assignment using the least 

number of PN sequences N  which satisfies the condition in Section 2.2.2.3. The code 

initialization process completely eliminates the hidden terminal problem but has the 

disadvantage of being time and memory consuming. Some of those algorithms are 

described in Section 2.3.  
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4.2.3. Sink-Tree Coloring Algorithm  

[HU93] introduced the sink-tree coloring algorithm as a code initialization process. The 

distributed algorithm gives a quick but rough code assignment for the network which can 

reduce the possible number of violations compared to the random initialization process. 

The algorithm supposes the existence of a k-hop leader election [NAK00, NAK02] where 

k denotes the maximal number of hops between any node and its leader. First, the leaders 

randomly initialize their PN sequences. The leaders then propose to each of their 1-hop 

neighbors a set of PN sequences which limit the number of violations. The initialization 

(INIT) packets, which contain the code assignment information of its originator as well as 

the proposed code assignment for its 1-hop neighbors, are broadcasted to their neighbors. 

The initialization chain thus starts.  

 

When an unassigned node receives an INIT packet, it selects the proposed code 

sequences from the INIT packet. The node then broadcasts the INIT packet containing 

the code assignment information for its unassigned 1-hop neighbors. The initialization 

process is completed when every node is assigned a code sequence. The sink tree 

algorithm is executed in a parallel and distributed manner with the advantage of not being 

time consuming. However, this process presents two drawbacks. First, the algorithm is a 

relatively complex mechanism involving a specific control packet for a one-time usage. 

Second, a k-hop leader election is needed to ensure that the entire network will be 

initialized. The sink tree algorithm is presented in Figure 4-3.  
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void Color::CodeInitialization()

     for (each table Element of the 1-hop table)

             TableElement* e = new TableElement(); 

  if (e has no color)

if (e is a 2 hop neighbors)

             choose randomly a color which is not used by a 1-hop neighbors or itself  from the set C; 

                           else 

                                         choose randomly a color which is not used by a 1-hop neighbors from the set C ;

 

Figure 4-3 - Sink tree algorithm 

 

Where the number of PN sequences available N is assumed to satisfy the condition given 

by the theorem 2 in Section 2.2.2.3.  

 

4.3. Existing Code Assignment Protocols 

The code assignment protocol controls and corrects PN sequence violations in the ad hoc 

network. For an effective code sequence correction, it is primordial to avoid the situation 

of having two nodes, which are two-hop apart, changing their PN sequences at the same 

time which a deadlock may occur.  

 

4.3.1. Highest Priority Approach  

A simple code assignment protocol has been introduced by Garcia-Luna-Aceves 

[GAR97]. It requires the perfect capture of code assignment tables and that N is at least 

( 1) 1∆ ∆− + . When a pair of 2-hop neighbors is sharing the same PN sequence, the 

highest priority node will re-adjust its PN sequence while the other violating node keeps 

it. The main drawback is that a pair of violating 2-hop neighbors may not share the same 



Chapter 4: Distributed Multi-Code Assignment for TOCA Network 
  

 51

PN sequence and in this case if the pair is choosing simultaneously the same sequence, 

another violation will occur.  

    

4.3.2. Chain Re-Coloring Approach  

Hu [HU93] introduced a chain re-coloring approach to prevent a pair of 2-hop neighbors 

from correcting their PN sequences simultaneously. A conflicting node will collect chain 

information concerning its violating 2-hop neighbors and will wait for the violating 2-hop 

neighbors with higher priority to correct their PN sequence before starting its own 

correction. However, this approach has two drawbacks. The first drawback is the 

collection of correction chain amongst violating nodes. The second drawback is that 

during the correction process the chain information earlier collected might be inaccurate. 

This might be experienced in the case of long correction chain in a frequent changing 

topology.  

 

4.4. The Code Correction Protocol (CCP) 

The different drawbacks from the two existing protocols for TOCA mobile ad hoc 

networks have motivated our work to develop the Code Correction Protocol (CCP) for 

the correction process. The CCP protocol is a competitive-based protocol more dynamic 

than the chain re-coloring protocol which ensures that a pair of violating 2-hop neighbors 

is not correcting its PN sequences simultaneously. The CCP protocol combined with the 

adaptive multi-code assignment algorithm presented in Section 4.6 introduces the first 

solution to the adaptive multi-code assignment problem. 
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4.4.1. CCP Description  

We first define the two time constants 0t  and 1t , respectively representing the maximum 

transmission delay and the maximum random time between transmissions of two distinct 

control packets. x ( )M A  is the ensemble of x-hop neighbors of node A previously defined 

in Section 2.2.2.1. We assume that control packets are transmitted over a CCA channel 

using a smaller bandwidth independent of the data channel in order to keep nodes 

reactive enough to topology changes. Therefore, the node can for example transmit a data 

packet and at the same time receive or transmit a control packet. The narrowband control 

channel and the wideband data channel are not overlapping in frequency to avoid 

interference between them. A random access ALOHA with the parameter t1 is used to 

limit control packet collisions.  

 

The CCP protocol is composed of two phases. 

 

The 1st phase consists for nodes to keep track of changes of the code assignment of their 

1-hop and 2-hop neighbors. The Code Assignment Message (CAM) has been modified 

from [GAR97] for this purpose. The CAM packet contains the source information similar 

to [GAR97] and its 1-hop neighbors’ information. The CAM packet is sent periodically 

like a conventional HELLO packet. When a violation is sensed, the node moves to the 2nd 

phase.  
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In the 2nd phase which corresponds to the correction phase, a violating node, say node A, 

must ensure that none of its 2-hop neighbors is correcting its PN sequences 

simultaneously. Node A initializes a correction by broadcasting a Pre-Code Assignment 

Message (PCAM), and subsequently, waits for the collection of the Pre-Code Assignment 

Message Acknowledgments (PCAM_ACK) from 1( )M A  during the 

Wait_For_PCAM_ACK period. The node B of 1( )M A , which has received the PCAM 

packet from node A, will generate a PCAM_ACK packet to inform 1( )M B  about the 

possible agreement of node B with the correction of node A. Node A is said to be the 

locker of node B, if node B has agreed with the correction of node A for the Locked_Time 

period. During this period, node B can not be locked by another node. Now supposing 

that node B has received PCAM packets from several nodes of 1( )M B  during the 

Locked_Time period, the node with the highest priority which has transmitted a PCAM 

packet to node B is called the HighestPriority node of node B. The PCAM packet 

processing is depicted in Figure 4-5.  When node A has locked 1( )M A  it can proceed to 

the correction of its PN sequences and broadcast a CAM packet to 1( )M A  and 2 ( )M A . 

Table 4-1 presents the structure of the CCP messages and Figure 4-4 illustrates the CCP 

mechanism. 

 
Table 4-1-CCP messages structure 

CAM PCAM PCAM_ACK 

scrAddress 
scrPriority 
scrPNSequences 
Neighbors 

•  Address 
•  Priority 
•  PNSequences 

scrAddress 
scrPriority 

scrAddress 
lockerAddress 
HighestPriorityAddress 
HighestPriority 
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PCAM PCAM_ACK CAM

PCAM PCAM_ACK CAM

Locked_Time

Wait_For_PCAM_ACK Back_Off T2

PCAM PCAM_ACK CAM CAM channel

Node A

Node BCAM

T3'

Rand[0,t1]t0

t0t0t0t0 Rand[0,t1]

Rand[0,t1]

Rand[0,t1]

Rand[0,t1]

Rand[0,t1]Rand[0,t1] Rand[0,t1]

 
Figure 4-4 – CCP mechanism 

 
 
 

 
Figure 4-5- PCAM packet processing 

 

In CCP, each node follows the 5 back off rules to ensure efficient correction amongst 

violating nodes. This procedure guarantees that at least the violating nodes corresponding 

to the HighestPriority nodes for all their 1-hop neighbors correct their PN sequences. 

1.         When a PCAM packet is received
        If the node has not been locked, initialize the parameters:

locked for the Period _
locked=true;

                                locker=scrAddr

Locked Time
→

;
HighestPriority=scrPriority;
HighestPriorityAddr=scrAddr;

 
        Else,

locked=true;
locker=scrAddr;
if(scrPriority>HighestPriority)

Highest
            

                                

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

→

Priority=scrPriority;
HighestPriorityAddr=scrAddr;

elseif(scrPriority=HighestPriority
           HighestPriorityAddr<scrAddr)
             HighestPriorityAddr=scrAddr;
else
            keep the same

⎧⎪⎪⎨⎪⎪⎩

∩

PCAM_ACK parameters;

2. Generate and Broadcast the PCAM_ACK packet.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪
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These rules are given below according to the 4 back off time constants T1, T2, T3 and 

T4.  

 

1st rule: Upon sensing a violation and if no code sequence is available for the correction, 

the node backs off for the period T4. If a PCAM_ACK packet is received during this 

period and the remaining back off time is shorter than the period T1, the node will back 

off for another period T1. 

 

2nd rule: When no correction has been attempted and a PCAM_ACK packet is received, 

the node backs off for the period T1 where the nodes will not attempt any future 

correction. If another PCAM_ACK packet is received during this period, the node will 

back off for another period T1. 

 

3rd rule: At the end of the Wait_For_PCAM_ACK period, a node which attempted and 

failed to lock all its 1-hop neighbors will back off for the period T2 if it is the 

HighestPriority node of all its 1-hop neighbors.  

  

4th rule: At the end of the Wait_For_PCAM_ACK period, a node which attempted and 

failed to lock all its 1-hop neighbors, will back off for the period T3 if it is not the 

HighestPriority node of all its 1-hop neighbors.  
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5th rule: At the end of a back off period and if a “better” code assignment exists, the node 

attempts a new correction by sending a PCAM packet. The concept of “better” code 

assignment will be introduced in Section 4.6.  

 

With reference to Figure 4-4 and the 5 back off rules, the abovementioned time constants 

are given by     

 

 __ _ _ 2 0 1 PCAM ACKWait For PCAM ACK t t= × + +∂  (4.2) 

 

 __ 2 0 2 1 PCAM ACK CAMLocked Time t t= × + × +∂ +∂  (4.3) 

 

 2 3 1 2 0 2 CAMT t t= × + × + ×∂  (4.4) 

 

 _3' 4 0 4 1 2PCAM CAM PCAM ACKT t t= × + × +∂ + ∂ +∂  (4.5) 

 

 3 2 3'T T T= +  (4.6) 

 

 _1 2 3' PCAM PCAM ACKT T= × −∂ −∂  (4.7) 

 

where X∂  is defined as the time duration (ratio between the size of the packet and bit rate 

of the channel) of the packet X. The period T3’ represents the period where a node 

corrects its violation after having successfully locked its 1-hop neighbors.  The back off 
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period T4 is chosen independently from the other time constants. The entire CCP protocol 

is described in Figure 4-6 and Figure 4-7.  
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Figure 4-6 - Control and data messages management 
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Figure 4-7 - Self messages management 

 

4.4.2. Correctness of the Protocol  

To prove the correctness of the protocol, a few assumptions are made: 
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i. When two nodes A and B have the same priority, node A is said to have a higher 

priority than B, if the A’s ID is lower B’s ID.  

ii. A node which is correcting its PN sequences has an accurate coloring table.  

iii. During the time 2 3'T×  when a node is correcting its PN sequences; there is no 

change of connectivity with its 1-hop and 2-hop neighbors.  

 

Theorem 1: If a pair of violating 2-hop neighbors is correcting their violations 

sequentially, then no deadlock will occur.  

 

Proof: Suppose that a node is correcting its PN sequences during T3’, after this period all 

its 1-hop and 2-hop neighbors will be informed of its new code assignment. 

Subsequently, all its 2-hop neighbors can proceed to a correction without a deadlock. The 

theorem 1 follows.  

 

Theorem 2: The highest priority node of a correction chain is the HighestPriority node of 

all its 1-hop neighbors.  

 

Proof:  A correction chain is defined by violating nodes separated in pairs by 2-hops and 

have attempted a correction by sending a PCAM packet. Suppose that the highest priority 

node of the chain which is also by definition the highest priority node amongst its 

violating 2-hop neighbors including itself has sent a PCAM packet, then given the 3rd 

back up rule, the Theorem 2 follows.  
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The converse is not true in general. This can be shown with an example. Supposing a 

chain with 4 elements with priority 2-1-2.5-2, the element on the right is the 

HighestPriority node of all its 1-hop neighbors, however is it is not the highest priority of 

the chain.  

 

Theorem 3: The HighestPriority node of all its 1-hop neighbors is guaranteed to 

successfully correct its PN sequences after the period 2 3'T× .  

 

Proof: If the HighestPriority node has transmitted a PCAM packet, two cases can happen 

after the WAIT_FOR_PCAM_ACK period: 1) the node has locked all its 1-hop neighbors, 

or 2) the node has not locked all its 1-hop neighbors. In the first case, the node proceeds 

to transmit a CAM packet to its 1-hop and 2-hop neighbors during the period T2. In the 

second case, given the 2nd, 3rd and 4th back up rules, the HighestPriority node backs off 

for the period T2 while its violating 2-hop neighbors which have failed to locked their 1-

hop neighbors for the period T3 and the other 2-hop neighbors for the period T1. Thus, 

the HighestPriority node is the only node to transmit a PCAM packet amongst its 2-hop 

neighbors including itself and correct its PN sequence during the period T3’ and the 

Theorem 3 follows.  

 

As we can see, CCP is a competitive-based protocol which does not require any prior 

information for the correction process. When violations occur, nodes compete to lock 

their 1-hop neighbors; the nodes which succeed can subsequently correct their PN 

sequences and the nodes which fail back off to give priority to the highest priority nodes 
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to correct their PN sequences. Corrections are done sequentially until violations are 

completely eliminated. The back off strategy used improves the code assignment by 

allowing the nodes which have a code sequence available for correction to correct their 

violation. In a frequent topology changing ad hoc network, CCP is more efficient than the 

chain re-coloring approach.  

  

4.4.3. Example  

In this section, CCP is presented in the example given by Figure 4-8. We consider a 

network constituting of 10 nodes in which 4 nodes are under violation. The node with 

lower ID had a higher priority than a node with greater ID.  

 

 
Figure 4-8 - Example of the correction process using CCP 

 

1st Attempt at t=0, A, F, I and D initialize their PCAM packet and after the 

WAIT_FOR_PCAM_ACK period, the PCAM originators receive PCAM_ACK packets 

from their 1-hop neighbors with the following information 



Chapter 4: Distributed Multi-Code Assignment for TOCA Network 
  

 62

 

Table 4-2- PCAM_ACK information after WAIT_FOR_PCAM_ACK at 1st attempt 

PCAM 
Originator 

PCAM_ACK 
Originator (From) 

Locker Highest Priority Highest Priority 
Address 

A B(A), H(A), B(F), H(F) A, A, A, A A, A, A, A A, A, A, A 

F B(A), B(F), E(F), G(F), 
G(I), E(D) 

A, A, F, F, F, F A, A, F, F, F, D A, A, F, F, F, D 
 

I H(A), G(F), J(I), H(I), 
G(I) 

A, F, I, A, F A, F, I, A, F A, F, I, A, F 

D E(F), C(D), E(D) F, D, F F, D, D F, D, D 

 
 

A is the only node to successfully lock its 1-hop neighbors; it proceeds to the correction 

of its PN sequences and transmits a CAM packet. D is the HighestPriority node for 

1( )M D  backs off for the period T2. F and I which are not the HighestPriority nodes of all 

their 1-hop neighbors back off for the period T3.   

 

At 3't T= , D transmits a PCAM packet and receives PCAM_ACK packets with the 

information  

 

Table 4-3-PCAM_ACK information at t = T3' 

PCAM 
Originator 

PCAM_ACK 
Originator (From) 

Locker Highest Priority Highest Priority 
Address 

D E(D), C(D) D, D  D, D D, D

 

D successfully locks its 1-hop neighbors, corrects its PN sequences and transmits a CAM 

packet.  
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2nd Attempt at 2 3't t= × , F and then I transmit their PCAM packet and receive 

PCAM_ACK packets with the information  

 

Table 4-4- PCAM_ACK information at the 2nd attempt 

PCAM 
Originator 

PCAM_ACK 
Originator (From) 

Locker Highest Priority Highest Priority 
Address 

F B(F), E(F), G(F), G(I) F, F, F, F F, F, F, F  F, F, F, F 
 

I G(F), J(I), H(I), G(I) F, I, I, F F, I, I, F F, I, I, F 

 

F successfully locks its 1-hop neighbors, subsequently proceeds to the correction of its 

PN sequences, and finally, generates its CAM packet. The correction of F will correct at 

the same time the code violation of I. However, I still backs off for another T3. The 

correction of the violating nodes is fully completed at 3 3't T= × .  

 

4.5. Complexity of a Correction Chain of Length L  

To evaluate the complexity of the proposed algorithm, we want to estimate the number of 

control messages exchanged and the correction time needed to correct a correction chain 

of length L. The worst case will give an upper bound of the two numbers. Consider a 

chain with nodes sorted in increasing priorities, in which the highest priority node 

amongst its violating 2-hop neighbors including itself is the highest priority element of 

the correction chain, and suppose that during their first attempt to lock their one-hop 

neighbors, none of them succeeds. Consequently, there is only one correction after the 

period 2 3'T× . At the first attempt, L PCAM packets are sent and each node which 

receives the PCAM will generate a PCAM_ACK packet. At the second attempt, only the 
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highest priority node locks the channel by sending a PCAM packet and subsequently 

broadcasts a CAM packet to its 1-hop and 2-hop neighbors. Therefore, the number Ln  of 

control messages exchanged in the network for the correction of one element of the chain 

if  1L>  is given by  

 

 
. 1 1

( 1).( 2)
Ln L L

L
= +∆ + +∆+ +∆
= ∆+ +

 (4.8) 

 

where ∆  is the degree of the network as previously defined.  

 

The total number of control messages LN  sent for a chain of length 1L>  is given by   

 

 2..

( 1)( 4)( 1)
2

L l
l L

N n

L L
=

=

∆+ + −=

∑
 (4.9) 

 

 

The total number of control messages LN  exchanged among nodes for the correction of a 

chain of length L is thus upper bounded by 
( ) 21

.
2

L
⎛ ⎞∆+ ⎟⎜ ⎟Ο⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

.  

 

The maximum time LT  required for the correction process to be completed, given a chain 

of length L is  
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 2.( 1). 3'LT L T= −  (4.10) 

 

4.6. TOCA and Code Assignment Algorithm 

In the previous section, we have presented the CCP protocol that ensures that only one 

node is changing its set of PN sequences amongst its two-hop neighbors including itself. 

This function is vital for an effective code assignment. Hu [HU93] and Low [LOW03] 

have seen that a perfect dimensioning of the ensemble C of PN sequences available is 

difficult to obtain in a mobile ad hoc network where the degree of the network ∆  varies 

frequently. The dimensioning becomes yet impossible for an adaptive code assignment in 

which Quality of Service (QOS) is considered. In addition, the set C is usually fixed in 

advance and limited by the specifications set by the manufacturer of the mobile device 

and not by the administrator of the ad hoc network if it exists. 

   

4.6.1. Definitions, Assumptions and Goals  

We consider K identical nodes in the network. Each node has knowledge of the set 

{ } 1

N
i i

C c
=

=  of PN sequences available as well as the average cross-correlation matrix 

( )CC N N× . Each element of the matrix ( ),i j N N
cc

×
 is defined as follows 

 

 ( ), ,3

, ,

1
             ,6 i ji j c c

i j j i

cc r
i j N NM

cc cc

⎧⎪⎪ =⎪⎪ ∀ ∈ ×⎨⎪⎪ =⎪⎪⎩

 (4.11) 
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where M is the length of the PN sequences and ,i jc cr  represents the average cross 

correlation function between the sequence ic  and jc .  

 

If the nodes are using the CCP protocol, we have shown that at most one user is 

correcting its PN sequences amongst its 2-hop neighbors including itself. We assume that 

received signals from the transmitters at a distance of 2-hop and beyond are negligible 

compared to received signals from transmitters 1-hop away. We assume also that during 

the correction process, the node has perfect knowledge of the code assignment of its 1-

hop and 2-hop neighbors.  

 

The goal of the code assignment algorithm is to assign to each user the “best PN 

sequence possible” in order to limit collisions as well as MAI.  

 

4.6.2. The Collision Cost Function   

The correcting node will choose the “best PN sequences” in order to limit the number 

collisions. As we can see, for a given node, the code assignment of each of its two-hop 

neighbors has a direct effect on its number of collisions. Consider the worst case scenario 

where node j is transmitting to node l and all the 1-hop neighbors of l are simultaneously 

transmitting, as depicted by Figure 4-9. 
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Figure 4-9 Maximum collisions and interferences at reception 

 

We give a simple heuristic approach to solve the code correction problem. As we have 

seen in Section 2.2.1.4, the receiver is made of a bank of matched filters, each one being 

matched to a particular PN sequence. A collision occurs, when a node has been 

synchronized to one packet on a given channel and at the same time another packet is 

received through the same channel. In a synchronous system, both packets will collide 

causing both to be dropped. In an asynchronous system, only the last incoming will be 

dropped. In either case, node j which is changing its PN sequences should be the PN 

sequences least used by the neighbors of node l to limit collisions at that node. To express 

this condition mathematically, we use the code assignment vector { } 1

N
k ki i

ϕ
=

Ψ =  

associated to the kth transmitter given by  

 

 ,

1       if 
0       otherwise 

i k
k i

c PN
ϕ

⎧ ∈⎪⎪=⎨⎪⎪⎩
 (4.12) 

 

j 

l 

i 
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We can define the collision cost vector ,j lΠ  associated to the jth transmitter and the lth 

receiver as the sum of the code assignment vector for each kth transmitter ( k j≠ ) 

neighbor of the lth receiver, i.e.  

  

 
1

,
( )

j l k
k M l
k j
∈
≠

Π = Ψ∑  (4.13) 

 

where x ( )M l  is the ensemble of x-hop neighbors of the lth node as previously defined. 

The overall collision cost vector associated to the jth transmitter is given by  

 

 
1

1 1

,
( )

( ) ( )

j j l
l M j

k
l M j k M l

k j

∈

∈ ∈
≠

Π = Π

= Ψ

∑

∑ ∑  (4.14) 

 

Finding the best PN sequences possible to minimize the number of collisions is then 

reduced to select the PN sequences corresponding to the lowest collision cost elements. A 

simple heuristic is thus obtained 

 

1. Compute the collision cost vector jΠ  

2. Select randomly the PN sequences corresponding to the lowest elements of jΠ .  

3. Update the set { }, 1

jw

j j n n
PN pn

=
=  of PN sequences assigned to the jth transmitter.   
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4.6.3. The MAI Cost Function 

In the previous section, we introduced a new heuristic which finds the best set of PN 

sequences to minimize collisions. The code assignment algorithm can be improved in 

order to minimize the undesirable effect of MAI when possible. Choosing a PN sequence 

for a transmitter has its influence on the MAI level at each of its 1-hop neighbor 

receivers.  

 

From Figure 4-9, suppose that node j is changing its code sequence ,1jpn , we can express 

the worst case SINR at the lth receiver by choosing the PN sequence ,1jpn  for the jth 

transmitter as 

  

 
,1

, ,1

1

,
, ,

0
, ,3

( ) 1  if  
2  if 

1 .
6

j

k m j

k
k

j l
l j pn

k l pn pn
k M l m w k j b

m w k j

P
SINR NP r

M T∈ ≤ ≤ ≠
≤ ≤ =

=
+∑ ∑

 (4.15) 

 
 

where ,j lP , 0N  , bT  , M and 
, ,1,k m jpn pnr  are as defined in Section 2.1.2 and kw  is the number 

of PN sequences assigned to the kth transmitter.  

 

Thus, the additional MAI at the lth receiver due to choosing ,1jpn  for the jth transmitter in 

the 
,1, , jl j pnSINR  is given by  
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,1 , ,1

1

, , , ,3
( ) 1   

2   

1 .
6j k m j

k
k

l j pn k l pn pn
k M l m w if k j

m w if k j

MAI P r
M ∈ ≤ ≤ ≠

≤ ≤ =

= ∑ ∑  (4.16) 

 

Now if we suppose that the lth receiver is matched to the PN sequence ,k mpn  of the kth 

transmitter, by deriving the expression of 
,, , k ml k pnMAI , we can derive the additional 

interference created by the jth transmitter by choosing ,1jpn  is given by  

  

 
, ,1 ,1 ,, , , , , ,3

1 .
6k m j j k ml k pn j pn j l pn pnP r

M
Φ =  (4.17) 

 

The overall additional interference at the lth receiver 
,1, , jj l pnΤ  due to choosing ,1jpn  for 

the jth transmitter is then given by   
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 (4.18) 

 

By summing over all the 1( )l M j∈ , we can extract the overall additional interference at 

,1, jj pnΤ  associated to jth the transmitter by choosing ,1jpn , given by   
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We denote by { }, 1i

N

j j c i=
Τ = Τ  the overall additional interference vector associated to jth 

transmitter given by 

  

 ( )( )
1 1

, ,
( ) ( )

.j k l j l k
l M j k M l

P P CC
∈ ∈

Τ = + Ψ∑ ∑  (4.20) 

 

where the N N×  matrix CC and the vector kΨ  are defined respectively in (4.11) and 

section 4.6.2.  

 

Making the reasonable assumption that the received power level for each transmitter-

receiver pair is identically and randomly distributed with mean ( ),j l meanP PΕ =  and that 

the  ,j lP  are bounded by two positive constants (the case in which the distance between 

the transmitter-receiver null is excluded). We can derive { }( ),|j j lPΕ Τ   as the mean 

vector jΤ  conditioned by the received power levels ,j lP  by    

 

 { }( ) ( )( )
1 1

, , ,
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By taking the expectation over the received power levels ,j lP , we can expressed the mean 

value ( )jΕ Τ  as  

 

 

( ) ( ) ( )( )( )
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where jΤ  represents the simplified MAI cost vector associated to the jth transmitter. The 

PN sequence corresponding to the lowest element jΤ  is chosen for the code assignment. 

This code sequence minimizes the MAI associated to the jth transmitter. 

 

To take into consideration, the effects of the MAI during the code assignment, the 

following heuristic algorithm may be used 

 

1. Compute the jΠ  and jΤ  cost vectors.  

2. Select the PN sequence x jc PN∉  corresponding to the lowest elements of jΠ .  If 

more than one PN sequence exist, select the PN sequence corresponding to the 

lowest element of jΤ .  

3. Repeat step 1-3 until the number of PN sequences for the jth transmitter is 

satisfied.  
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4. Update jPN  for transmission. 

 

In this section, we have proposed two heuristic algorithms for the code assignment 

problem. From an initial set of PN sequences C, the best code sequence which minimizes 

the number of collisions is extracted and selected. If more than one PN sequence is 

available, then the PN sequence which minimizes the MAI is chosen.  

 

4.7. Simulation and Parameters  

Simulations have been conducted using the simulator OMNeT++ [VAR] and the mobility 

framework developed by the TKN group in Technische Universität Berlin [LOB]. 100 

nodes have been simulated in a 1000x1000 m2 field. Each node has been assigned a 

single PN sequence for transmission. Random initialization is used in our system; the 

proposed code assignment scheme is compared to the random code assignment scheme 

using the same set C of PN sequences available. We use the Gold code family of length 

127 for which the average cross correlation is set equal to 0.003 (see Table 2.1). The 

Signal to Noise Ratio is defined by the relation  

 

 0
dB 0

0

. .10 log 72.6dB 10logbG P TSNR P
N

⎛ ⎞⎟⎜ ⎟= = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 (4.23) 
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where 0P  is the common transmission power of the node, G  is the reference path loss 

gain and 0

2
N  is the AWGN variance. The received power between the ith transmitter and 

the jth receiver is defined by the relation  

 

 0
,

,

.
i j

i j

G PP
d α=  (4.24) 

 

where α  is the path loss coefficient set equal to 3.5 and ,i jd  is the distance between the 

ith transmitter and the jth receiver. The other parameters are given in the Table 4-5.  

 

Table 4-5- Parameters for the TOCA ad hoc network simulation 

Transceiver Parameters   

 
Data packet size  4168 bits
Control Packet  50 bits
Data packet interval   0.2 s
Cam Interval   1 s
Data bit rate   100Kbs
Control bit rate   10Kbs
SNR threshold 0γ  6dB
Update Interval Mobility 0.5s
Delete Period  1.2 s
Cross Correlation variance 0.003
 Random time t1  0.02s
Wait_For_PCAM_ACK  0.025s
Locked_Time 0.05s
T1 0.2s
T2 0.07s
T3 0.17s
T4 1s
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The model used for our mobility pattern is the Constant Speed Mobility model [LOB]. In 

this model, the user defines a velocity for each host and an update interval; it then 

calculates a random target destination for the host to reach. By considering the velocity 

and the update frequency component it computes the number of steps and each step-size 

to reach the destination. At every update interval, each node computes its new position 

and updates the display. Once the target position is reached the node re-calculates a new 

random target. 

 

4.8. Influence of the Transmission Power 

The first set of simulations is aimed to show the influence of the transmission power on 

the performance of the proposed system. In this model, we set the mobility velocity to 

5m.s-1 for { }5,10,15, 20N =  and vary 0P  from 1mW to 5mW. The graphs are plot 

against the average number of neighbors captured by each node when the transmission 

power varies. The average number of neighbors is computed and extracted from the 

coloring table of each node. Its capture is not perfect and varies according to the 

frequency of update and the expiration time of each entry in the table. Nevertheless, the 

coloring table gives us a reliable indicator on the number of neighbors a node has as its 

transmission power changes. Figure 4-10 depicts the average number of neighbors as the 

transmission power varies. 



Chapter 4: Distributed Multi-Code Assignment for TOCA Network 
  

 76

 

Figure 4-10-Average number of neighbors vs. Transmission power 0P  

 

4.8.1. Correction Process  

 
(a)      (b) 

Figure 4-11 - PCAM sent and time needed per correction vs. Number of neighbors ∆  

 

Figure 4-11 describes the number of PCAM packets sent (a) and the time needed per 

correction (b) as the average number of neighbors ∆  varies. For N=5, we observe that 

both number of PCAM packets and time per correction are very large. It is due to the fact 
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that the instantaneous number of violated nodes is very high. It is impossible for nodes to 

find an available PN sequence to correct their violation; thus, nodes retransmit PCAM 

packets to correct their violation without success. Nodes select at each attempt the “best 

code sequence” to limit the number of collisions in the network. For { }10,15, 20N = , the 

number of PCAM packets sent per correction is relatively low and increases slowly as ∆  

increases. This is due to the fact that the increase of ∆  also rises the number of PN 

sequences needed to guarantee a violation-free network, from Theorem 2 in Section 

2.2.3, this number must be at least greater than ∆ . The time needed for each correction 

follows the same trend as the number of PCAM packets sent. For ∆  = 5.29, the system 

achieves a very reasonable correction time of 1.22s, 0.59s and 0.13s, for 

{ }10,15, 20N = , respectively.  

    

 

   (a)      (b) 

Figure 4-12 –Number of corrections and time correction ratio vs. Number of neighbors ∆  

 

Figure 4-12 depicts the accumulated number of corrections (a) and the accumulated time 

correction ratio (b) for each node as ∆  varies. The increase of ∆  will increase the 
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instantaneous number of violations which will therefore increase the accumulated number 

of corrections needed when correction is possible ( { }10,15, 20N = ). In parallel, the 

faster is a correction, the higher is achieved the number of corrections. Therefore, the 

accumulated number of corrections (a) behaves similarly to the time needed per 

correction depicted in Figure 4-11 for { }10,15, 20N = . (b) represents the ratio between 

the accumulated time for correction and the simulation time. As we can see, this ratio 

increases with ∆ .  
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4.8.2. Packets Loss and Received  

 
   (a)       (b) 

 
(c) 

Figure 4-13 - Packets loss ratio vs. Number of neighbors ∆  

 
Figure 4-13 depicts the ratio between the number of packets loss and the number of 

packets received as ∆  varies. (a) and (b) depict the packet loss ratio due to collision and 

to MAI for low { }5,10N =  and high { }15, 20N = . As we can see, the packets loss ratio 

due to collisions increases with ∆  while the packets loss ratio due to MAI is stable. We 
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can also observe that, for low N, the packets loss ratio due to collisions dominates the 

packets loss due to MAI, and for high N, this domination is inverted. The plot (c) depicts 

the accumulated number of packets loss as ∆  varies. The proposed code assignment 

reduces immensely the number of packets loss compared to the random code assignment. 

E.g. at  ∆  = 5.29, the proposed code assignment scheme reduces the number of packets 

loss by 34%, 70%, 89% and 90% over the random code assignment (RandCA presented 

in 2.2.1.2) schemes for {5,10,15,20}N = .  

 

 
 Figure 4-14 – Throughput vs Number of neighbors ∆   

 

Figure 4-14 shows that the number of packets received per second increases steadily 

when  ∆  increases. Both the proposed code assignment and random assignment have the 

same behavior when ∆  is low. As ∆  increases, the proposed code assignment scheme 

has much better performances than the random code assignment scheme. At  ∆  = 5.29, 

the proposed code assignment scheme has a throughput of 17.78 packets/s for 10N =  
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and is greater than the throughput of the random code assignment scheme of 17.21 

packets/s for 20N = . The throughputs for { }15, 20N =  of the proposed code 

assignment scheme essentially coincide.  

 

We observe that, for 10N = , the proposed code assignment scheme has satisfactory 

performance for the correction process. However, the number of code re-adjustments 

increases considerably with ∆ . This number can be reduced by increasing N which 

results in an increase of the mobile host design complexity.  

 

4.9. Influence of the Velocity 

The second experiment conducted aims to show the impact of mobility on the 

performance of the system using the proposed code assignment scheme compared to the 

random code assignment scheme. We vary the velocity of each node between -11m.s  and 

-110m.s  and set 0 3mWP = . 
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4.9.1. Number of Neighbors  

 
Figure 4-15 – Average number of neighbors captured at transmitter vs. Speed   

 

Figure 4-15 shows that the average number of neighbors captured by each node increases 

with the velocity. The node has the illusion that it has more neighbors than it actually has. 

Because the expiration time of each link has been kept fixed, fast moving node might be 

connected and then disconnected to a node in a short period of time. Consequently, the 

coloring tables are less accurate. To fix this problem, the frequency of update of each link 

must be greater and the expiration time for each link must be reduced when the average 

velocity increases.   
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4.9.2. Correction Process  

 
(a)      (b) 

Figure 4-16 - PCAM and time needed per correction vs. Speed 

 

Figure 4-16 shows the number of PCAM packets sent and the time needed per correction 

as the velocity varies. We observe that nodes with higher velocities can help the 

correction process. When no code is available for correction, the motion of a node might 

correct the violation or free a PN sequence for use in the code correction process. For 

example, when a violation occurs and no code is anymore available, mobility can change 

the connectivity of nodes, this might have the effect of disconnecting two violated nodes 

or freeing a color for correction. This shows that the proposed protocol reacts efficiently 

to the frequent changes in topology. 
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(a)      (b) 

Figure 4-17 –Accumulated number of corrections and time correction ratio vs. Speed 

 

Figure 4-17 depicts the accumulated number of corrections and the time correction ratio 

for each node as the velocity varies. The faster is a correction, the higher is achieved the 

number of corrections. Therefore, the accumulated number of corrections (a) behaves 

oppositely to the time needed per correction. The accumulated number of corrections and 

the time correction ratio of each node increase with the velocity. This is due to the fact 

that the topology changes more frequently and therefore nodes need more corrections.   

 

As the speed increases, more corrections will be needed as the topology changes more 

frequently. In the other hand, the speed helps violated node to correct their PN sequences. 

The increase in the number of PN sequences available in the system will decrease the 

number of corrections and control packets exchanged in the system.  
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4.9.3. Packet Loss and Throughput 

 
(a)      (b) 

 
    (c) 

Figure 4-18 –packets loss ratio vs. Speed  

 

Figure 4-18 depicts the ratio between the number of packets loss and the number of 

packets received successfully as the velocity varies. As we can see in (a) and (b), the 

packets loss ratio due to MAI and the packets loss ratio due to collisions for the random 

code assignment system are stable, while these number increases for the proposed code 

assignment when the velocity increases. It is due to the difficulty for nodes to obtain 
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accurate coloring tables for high velocity. We can also observe that, for low N, the 

packets loss ratio due to collisions dominates the packets loss due to MAI, and for high 

N, the domination is inverted.  

 
Figure 4-19 – Number of packets received per second vs. Speed 

 

Figure 4-19 compares the number of packets received per second of the proposed code 

assignment scheme and the random code assignment scheme as the velocity varies. This 

figure reveals that the number of packets received per second using the proposed code 

assigned decreases slowly as the velocity increases while this number is steady for the 

random code assignment.  

 

The second set of simulation has only confirmed the tradeoff created by node mobility 

between the hardware complexity (number of PN sequences available N) and the 

software complexity (number of control packets exchanged due to corrections).  
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4.10. Conclusion  

In this chapter, we have demonstrated the importance of the correction process over the 

initialization process. We have introduced the CCP protocol and algorithms for the code 

assignment problem. The CCP protocol ensures that only one violating node is correcting 

its PN sequences at a time amongst its 2-hop neighbors including itself. When a node has 

locked its 1-hop neighbors using CCP, it proceeds to the correction of its violation in 

which the “best PN sequences” are chosen to limit collisions and MAI. 

  

We have also demonstrated the existence of a trade off between hardware and software 

complexity through simulation. The set of PN sequences available must be large enough 

to avoid too many code sequence re-adjustments and to limit the number of control 

packets exchanged in the network.   

 

With the latest progress in CDMA and multi-user detection, the adaptive multi-code 

assignment for ad hoc networks can become a reality. Using the same mobile device for 

any type of applications and networks, users will be able to be connected to a third 

generation network (WCDMA or CDMA2000) and switch to an ad hoc network or a 

WLAN spot when available by using the proposed multi-code assignment scheme. 
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Chapter 5 Implementation of a TOCA 

Mobile Ad Hoc Network with OMNeT++ 
 

 

This Chapter presents the implementation of the CCP protocol and the code assignment 

algorithm proposed for a real time mobile ad hoc network using OMNeT++. 

 

Section 5.1 gives a short introduction of OMNeT++ as well as the mobility framework 

used for our simulation. Section 5.2 then presents the design of the mobile host for a 

TOCA system. Finally, Section 5.3 describes the channel control used and analyses the 

complexity of the simulator.  

 

5.1. OMNeT++ and Mobility Framework  

OMNeT++ is an event simulator developed in the University of Budapest by Varga 

[VAR]. It is an open-source software entirely coded in C++ and used for an graphical 

interface a tcl/tk environment. In 2004, the University of Berlin introduced to OMNeT++ 

programmers a new framework for wireless communication [LOB] which can be used to 

simulate ad hoc or centralized access point networks.  
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5.2. The mobile Host 

We modified the mobile host structure from [LOB] by introducing the Color Module 

which is implemented at the MAC layer. Figure 5-1 depicts the design of the mobile host 

in OMNeT++.  

 

Mobile Host 

ChannelControl 

MAC Layer 

Application Layer 

Network Layer 

Color Module

Mobility

Decider

SINR evaluator 

Physical layer 

Channel Access

 
Figure 5-1 Design of the mobile host in OMNeT++ 

 

5.2.1. The Physical Layer  

The physical layer is divided into two layers: the SINR evaluator and the Decider layers.  
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5.2.1.1. The SINR Evaluator  

For reception, the SINR evaluator is used to simulate the transmission delay and calculate 

the different SINR levels associated to a received packet. When a packet p is received, it 

is held in the container MessageBuffer during its time duration expressed as 

( )
p

sizePacket p
bitRate

∂ = , where sizePacket(p) denotes the size of the packet p and bitRate is 

the bit rate of the channel. For each packet p, it is associated a list SINRlist(p) which 

stores the different SINR levels computed during its time duration. At any time a new 

packet is received, the SNR evaluator re-computes the SINR levels of the packets 

contained in MessageBuffer. The SINR level of each packet p is given by 

 

 
0

' { }

( )( )
( ')

level

p MessageBuffer p b

P pSINR p Ncc P p
T∈ −

=
× +∑

 (5.1) 

 

where P(p) is the received power associated to the packet p and cc is defined as the 

average value of the elements of the cross-correlation matrix CC defined in Section 4.6.1.  

 

When the packet p is received from a channel already used by another packet p’ 

contained in MessageBuffer with an initial 0( ')levelSINR p γ≥  and if its initial SINR level 

satisfies 0( )levelSINR p γ≥ , then the packet p is said to be collided.  
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When the time duration of the packet p in MessageBuffer has expired, the packet p which 

does not satisfy 0
0

( )P p
N

γ≥  or is collided is deleted at the SINR evaluator. Otherwise, the 

packet p is sent to the Decider with its SINRlist(p).  

 

For transmission, when a packet p is received from the MAC layer, the SINR evaluator 

puts the packet p in a transmission buffer and waits for each packet 'p  which is currently 

in MessageBuffer with an initial 0( ')levelSINR p γ≥  to be completely received. The packet 

p is then un-buffered and broadcasted using the PN sequence pn(p) associated to the 

packet p by the MAC layer to all its interfering neighbors. Node A and node B are said to 

be two interfering neighbors when their distance is at most the maximum inference 

distance maxinterferenced  given by  

 

 
1

0
maxinterference /10

.
10sat

P Gd
α⎡ ⎤

⎢ ⎥=
⎢ ⎥⎣ ⎦

 (5.2) 

 

where 0 , ,  and P G α  are constant defined in Section 4.7 and sat is the saturation 

coefficient of the receiver and it is set equal to -110dB.  

 

5.2.1.2. The Decider  

When the packet p is received from the SNR evaluator, the decider extracts its associated 

SINRlist(p). It verifies that all the ( )levelSINR p  from SINRlist(p) are greater than 0γ . If 
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this condition is satisfied, the packet p is then sent to the MAC layer; otherwise, the 

packet is said to be corrupted by MAI and subsequently deleted.  

 

5.2.2. The MAC Layer  

At the MAC layer, when a data packet is received, the MAC layer compares the packet’s 

destination and its address; if the address matched then the packet is sent to the Network 

layer otherwise it is deleted. When a control packet is received, it is sent for processing to 

the Color module following the CCP protocols presented in Section 4.4.   

 

When a packet p is received from the Network layer, the MAC layer decides with which 

PN sequences pn(p) the packet p will be transmitted. The packet p with its PN sequence 

information pn(p) is then sent to the SINR evaluator level for transmission.  

 

5.2.3. The Network and the Application Layer  

In our work, we have focused our interest on the MAC and the Physical layers. 

Therefore, the Network and Application layers have been implemented with only 

elementary functions. The Network layer sends packets to its lower and upper layers and 

the Application layer only generates data packets following an exponential law, with 

mean µ  and counts the number of data packets successfully received.  
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5.3. The Channel Control  

The ChannelControl is responsible for connecting nodes within a distance lower than the 

maxinterferenced  and disconnecting them when their distance is greater than maxinterferenced . At 

any motion, the system needs to update the connections between hosts. The system 

computes the distance between every pair of the K hosts in the network. This operation 

has a complexity of 2( )KΟ .  

 

 
Figure 5-2- OMNeT++ with 30 nodes 
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Chapter 6 Conclusion 

 

 

In this thesis, we introduced new multi-code assignment protocols and algorithms for DS-

CDMA ad hoc networks. We analyzed and compared different strategies used for a code 

assignment scheme and showed that only TOCA and POCA can completely eliminate the 

hidden terminal problem. We also highlight the importance of the code correction process 

over the initialization process for a code assignment scheme. We have as well 

demonstrated the impact of the number of PN sequences available in the system on the 

performances of the code assignment scheme. 

 

In our first contribution, we have presented a new multi code assignment scheme for 

small sized POCA networks which is able to combine code assignment and power control 

together to prevent collisions and to mitigate MAI and fading. 

 

In our second contribution, we have presented a new distributed and adaptive code 

assignment protocol for TOCA ad hoc networks. Each violating node, with the CCP 

protocol, utilizes their 1-hop neighbors as locker avoiding that one of its 2-hop neighbors 

is correcting simultaneously its PN sequences. When the locking process is successful, 

the violating node moves to the correction of its PN sequences by using the proposed 
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code assignment algorithm which selects the “best code sequences” to limit collisions and 

MAI. An analysis of the proposed scheme as well as a discussion on the impact of the 

transmission power and the mobility are given. A tradeoff created by node mobility 

between the hardware complexity (number of PN sequences available) and the software 

complexity (number of control packets exchanged due to corrections) has also been 

demonstrated.  

  

In the last contribution, we have implemented the first real time simulator for TOCA 

mobile ad hoc networks for OMNeT++.  

 

Mobility has emphasized the difficulty for nodes to obtain accurate tables. This problem 

could be included and discussed in the first orientation of our future work. Also, the code 

assignment scheme which assigns for each transmitter the “best PN sequences” may 

result in 2-hop neighbors sharing identical PN sequences for transmission when no more 

code is available for correction. In the second orientation, to provide better throughput, a 

node may then adapt its arrival rate of data packet with the number of 2-hop neighbors 

which are sharing the same PN sequences [SHA03, YUE02]. In the third orientation, the 

roaming between TOCA ad hoc networks and other existing networks may also be 

studied. 
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Appendix A – Derivation of Average SINR 

for an Asynchronous DS-CDMA System 
 

 

Appendix A derives a simple expression of the average SINR for an asynchronous DS-

CDMA system presented in chapter 2. We present some results extracted from [PUR77-

1, PUR77-2]. 

 

We consider K simultaneous transmitters. The kth transmitter is assigned a PN sequence 

for transmission ( )ka t  as defined in Section 2.1. The signals from the K transmitters 

arrive simultaneously at the reference receiver 0. At the receiver 0, the received signal is 

given by  

 

 
0 ,0
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 (A.1) 

 

where ( )n t , ,0 ( )ks t , ,0kP , ( )kb t , ( )ka t  , kτ , and kφ  are defined in Section 2.1.  
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At the reference receiver 0, the received signal is multiply by the code sequence of the 

desired user and then integrated over one bit period Tb. Assuming that the desired user is 

the 1st transmitter for example and that the reference receiver 0 is delay and phase 

synchronizes with the desired user ( 1 10 and 0τ φ= = ). Thus we can obtain the static 

decision for the transmitted bit 1( )b t  from the 1st transmitter as  

 

 
10,1, 0 1

0

( ) ( ) cos( )
bT

a cZ r t a t t dtω= ∫  (A.2) 

 

Substituting (A.1) in (A.2), the static decision for the transmitted bit 1( )b t  can be 

obtained as  
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We can extract from (A.3),  the desired signal component 
10,1,aD  of the 1st transmitter, the 

multiple access interference (MAI) component 0,1, 1aMAI , and the thermal noise 

component η . The static decision can be written as  
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1 1 10,1, 0,1, 0,1,a a aZ D MAI η= + +  (A.4) 

 

The desired signal component is given by  
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 (A.5) 

 

The thermal noise η  is expressed as  
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from (A.6), we can derive the mean of η  as  
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where [ ]( ) 0n tΕ = .  

 

The variance of η  is given by  
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 (A.8) 

 
 

where ( )tδ  is the Dirac function which takes the value 1 for t=0 and 0 elsewhere.  

  

We are now considering the MAI component which can be written as the sum of 

interference created at the reference receiver 0 matched with the 1st transmitter with the 

PN sequence 1( )a t  by each of the kth transmitter using the PN sequence ( )ka t  for k from 

2 to K is given by  

 

 
1 10,1, 0,1, , ,

2...
ka a k a

k K

MAI
=

= Φ∑  (A.9) 
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The interference created by the kth transmitter 
10,1, , , ka k aΦ  is given by   
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Due to the fact that the chips ( )kb t  and ( )ka t  are rectangular and that 1
c

bT
ω , we can 

write  
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 (A.11) 

 

By introducing the two elements { } [ [0,..., -1 and 0,k k cl M Tε∈ ∈ , which satisfy the 

condition k k c kl Tτ ε= + , we can extract the Figure A-1 which represents the relative 

delay between the received signals from the kth transmitter and the 1st transmitter.  
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Figure A-1- Relative delay between the received signals from the kth and the 1st transmitters  

 

From Figure A-1 and (A.11) we can then write  
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 (A.12) 

 

[PUR77-1, PUR77-2] defined functions to simplify the expression of the 
10,1, , , ka k aΦ  which 

are given by  
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i. The discrete aperiodic cross-correlation function of the sequences  { } 1

, 0

M

k k j j
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−

=
=  

is defined by  
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ii. The even periodic cross-correlation function of the sequences { } 1

, 0

M

k k j j
a a

−

=
=  is 

defined by : 
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iii. The odd periodic cross-correlation function of the sequences { } 1

, 0

M

k k j j
a a

−

=
=  is 

defined by  

 

 , , ,( ) ( ) ( )
k i k i k ia a a a a al C l C l Nθ = − −  (A.15) 

 

iv. The cross-correlation parameters , ( )
k ia a lµ  is defined by 
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v. the average cross correlation parameters ,k ia ar  is given by  
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From (A.12) and (A.13), we can derive the expression  
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We assume now that the ( )k bb nT  are random variable identically distributed on { 1, 1}+ −  

and independents, we have then the relations  
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We can write using (A.19) 
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From (A.20), by assuming that kφ  is uniformly distributed over [ ]0, 2π , we can write:  
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Finally, the average Signal to Interference plus Noise Ratio from the first transmitter 

10,1,aSINR  at the reference receiver 0 matched with the code sequence 1( )a t  is given by 
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 (A.22) 

 
 

 


