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SUMMARY 

This thesis concerns the modeling of the Weibull family to lifetime data, studies 

the statistical properties of the distributions, and considers the parameter 

estimation based on a complete or censored sample. Related issues such as model 

selection, evaluating mean residual life and burn-in time are addressed as well. 

In our research, the modified Weibull distribution and odd Weibull distribution 

are studied. As an important step in Weibull analysis, model characterization 

provides insight into the properties and applicability to model data of the 

distributions. For the distributions considered, we describe the important statistics 

and distribution functions, both in analytical and numerical ways. 

Parameter estimation is crucial for the model to be built and is often a difficult 

problem, especially for distributions with more than 2 parameters. In this thesis, 

maximum likelihood estimation is studied in detail. Several techniques regarding 

this estimation method are proposed to simplify computation, which help look 

into the existence and uniqueness properties of the estimators. Another estimation 

method called Markov chain Monte Carlo is used to estimate the parameters of 

the modified Weibull distribution and is found to outperform MLE in several 

aspects when the prior is independent generalized uniform and the size of sample 

data is small. A graphic parameter estimation method is proposed for the odd 

Weibull distribution. The method is especially useful when the shape parameters 

are negative. 
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Chapter 1. Introduction 

Probabilistic and stochastic models have been derived and used to model 

randomness of real life problems, such as the Bernoulli distribution to model 

winning times in a gamble and the Poisson distribution to model arrivals of buses 

in a crossing during a time interval. Ever since the introduction of the Weibull 

distribution by Professor Waloddi Weibull (Weibull, 1939) and the fitting of the 

distribution to some field data (Weibull, 1951), the Weibull distribution has been 

extensively studied and applied to model physical attributes of systems or parts of 

systems, especially failure times. 

 

Using Weibull analysis techniques to investigate the life mechanism of a system 

starts with gathering failure data of the system in concern, exploring the data, 

finding a suitable probabilistic distribution, possibly a Weibull related distribution, 

to model the data, estimating the model parameters, and finally making 

descriptions of the unknown or future life behavior of the system. 

 

The reason that the Weibull distribution is favored as a good alternative for 

modeling life data mainly relies on of its flexibility. It can exhibit three different 

kinds of failure rates – increasing, constant and decreasing – which are the 

elementary components of any real life failure rate. Failure rate evaluates the 

proneness of a system to fail as time goes by, so it is often an important indicator 
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which attracts attentiveness. An increasing failure rate suggests a “better new than 

old” life mode for a system or that the system is currently within its wear-out 

period of the life cycle. A constant failure rate means that the system is “as good 

as new” or it is undergoing a period when failures only come from random events 

rather than systematic change of the system quality. A decreasing failure rate 

hints a “better old than new” life mode for the system or that failures result from 

“infant mortality” and the failure rate decreases since defective items are moved 

out from the population. 

 

However, in many cases, the life behavior of mechanic or electronic systems 

cannot be suitably described by a monotonic failure rate. Instead, some other 

patterns of failure rate such as upside-down unimodal shape and bathtub or “U” 

shape are frequently encountered. Bathtub shaped failure rate is very common 

among the life modes of modern systems, such as computer processors. A typical 

bathtub curve composes of three phases: the first part is monotonically decreasing, 

known as infant mortality; the second part is constant at a relatively low level, 

known as random failure period; and the last part is monotonically increasing, 

known as wear-out period. When the system exhibits a unimodal or bathtub 

shaped failure rate, the Weibull distribution is not able to adequately model the 

life behavior. In such case, more sophisticated models are needed. 
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A simple generalization of the Weibull distribution can be done by model mixture 

(Mendenhall and Hader, 1958; Kao, 1959; Castet and Saleh, 2009), risk 

competing (David, 1970), model multiplying (Jiang and Murthy, 1995
(1)

, 1997), 

or Weibull sectioning (Kao, 1959; Mann et al., 1974). Compared to these 

manipulations involving more than one Weibull distribution, in recent years, a 

few extensions, of the Weibull distribution have been proposed and applied to life 

time data analysis, such as inverse Weibull (Drapella, 1993), exponentiated 

Weibull (Mudholkar and  Srivastava, 1993, 1995), generalized Weibull 

(Mudholkar and Kollia, 1994; Mudholkar et al., 1996), additive Weibull (Xie et al. 

1996), extended Weibull (Marshall and Olkin, 1997; Nandi and Dewan, 2010), 

Weibull extension (Xie et al., 2002), modified Weibull (Lai et al., 2003), odd 

Weibull (Cooray, 2006), and flexible Weibull (Bebbington et al., 2007
(1)

), etc. 

Except the inverse Weibull, these newly proposed models commonly have 3 

model parameters, with one additional parameter to the traditional 2-parameter 

Weibull distribution, and because of their non-piecewise and non-log-piecewise 

properties, parameters of these models based on complete or censored sample data 

are able to be estimated in a statistical point of view. All these generalization 

models of the Weibull distribution, together with the traditional 2 or 3-parameter 

Weibull, form a family named the “Weibull family”, and all these models are 

called in a joint name “Weibull models” (Murthy et al., 2004
(1)

). 
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In using the Weibull models to model system life, a very important step is to 

estimate the model parameters based on a sample data. Except for methods which 

are universally used for all statistical distributions, such as maximum likelihood 

estimation (MLE) (Cohen, 1965; Lemon, 1975; Yang and Xie, 2003; Tang et al., 

2003; Ng, 2005; Carta and Ramirez, 2007; Yang and Lin, 2007; Balakrishnan and 

Kateri, 2008; Jiang et al., 2010; Krishnamoorthy et al., 2009; Tan, 2009), 

Bayesian estimation (Nassar and Eissa, 2004; Kaminskiy and Krivtsov, 2005; 

Pang et al., 2005; Singh et al., 2005; Banerjee and Kundu, 2008; Gupta et al., 

2008; Jiang et al., 2008
(1)

; Kundo, 2008; Zhao et al., 2008; Touw, 2009), moment 

estimation (White, 1969; Cran, 1988; Rekkas and Wong (2005), Cao, 2005; 

Gaeddert and Annamalai, 2005; Nadarajah and Gupta, 2005; Merganič and Sterba, 

2006; Nadarajah and Kotz, 2007; Carrasco et al., 2008), and percentile estimation 

(Dubey, 1967; Wang and Keats, 1995; Chen, 2004; Marks, 2005; Cao and 

McCarty, 2006; Chen and Chen, 2009), a graphic method called WPP (Weibull 

probability plot) is very popular for Weibull models. Contrasting to the other 

estimation methods stated above, as a graphic realization of least squares 

estimation (LSE), WPP is easy to implement and hence is appreciated among 

practitioners. Early contributions of this method track back to Weibull (1951), and 

Benard and Bos-Levenbach (1953). Recent discussions of WPP and LSE can be 

found in Hossain and Howlader (1996), Lu et al. (2004), Zhang et al. (2006)
(1)

, 

Zhang et al. (2006)
(2)

, Zhang et al. (2007), Jiang et al. (2008)
(2)

, Jukić et al. 
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(2008), Tiryakioglu and Hudak (2008), Cousineau (2009), Marković et al. (2009), 

Bhattacharya and Bhattacharjee (2009), etc. 

 

The Weibull distribution often cited by researchers is the 3-parameter Weibull 

distribution, while the “standard Weibull distribution” (page 10, Murthy et al., 

2004
(2)

), with the location parameter equal to 0, is the 2-parameter special case. 

However, there are usually no rigorous different notations for the two 

distributions, because if the location parameter is known, the 3-parameter Weibull 

distribution can be shifted horizontally to the 2-parameter Weibull distribution, 

and as such many authors do not intentionally use “2-parameter” or “3-parameter” 

to discriminate the two distributions in their works, as long as no confusion will 

be caused. In the rest of the thesis, “the Weibull distribution” specifically denotes 

the 2-parameter Weibull distribution, unless otherwise stated. 

 

1.1 Modeling of the Weibull Models to Life Data 

The Weibull models, including the Weibull distribution and the generalizations of 

the Weibull distribution, are useful for modeling life data with different failure 

rates. As stated in Murthy et al. (2004)
(1)

, a typical empirical modeling process 

involves three steps: 

1. Model selection;  

2. Estimation of model parameters;  
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3. Model validation description.  

 

The model selection step is important as one requires a thorough preliminary 

analysis of the data and good understanding of the candidate models so that he is 

able to able to find out the most appropriate model to fit the data and model the 

life mode of the system. 

 

Effective model selection is composed of two sides, data side and model side. On 

the data side, one usually carries out a preliminary analysis with the data, 

including computing a few sample statistics and drawing some different plots to 

measure the variability and pattern of the data. TTT (total time on test) and WPP 

are such useful tools for the Weibull models. According to Barlow and Campo 

(1975) and Bergman and Klefsjo (1984), the shape of the failure rate curve of the 

data uniquely determines the shape of the empirical TTT plot, and thus from the 

TTT plot one can know whether a model with a monotonic, unimodal or bathtub 

shaped failure rate is suitable for the data. The other plot WPP was originally 

developed for the Weibull distribution, but has since been used for all Weibull 

models. WPP makes a simple transformation on the data and the empirical 

probability, detects the discrepancy of the sample data against the Weibull 

distribution, and obtains estimates of the parameters through trial-and-error (if the 

discrepancy is small enough) or assist selecting a model from rest of the Weibull 

family (if the discrepancy is large). 
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On the model side, one needs to get a clear picture of the statistical characteristics 

of the candidate models to decide which of the models are suitable for modeling 

the given sample data and how the models can be used for the purpose of 

application, including estimation and prediction. Besides the basic statistics such 

as mean, variance and modes, characteristics of statistical models include the 

shapes of probability density function (PDF), failure rate function (FRF) and 

mean residual life (MRL), as well as some statistical inference procedures and 

goodness-of-fit tests. For the Weibull models, FRF (Murthy et al., 2004
(1)

) and 

MRL (Lai et al., 2004; Xie et al., 2004) are useful pattern indicators. FRF figures 

the risk of immediate failure at any time and if relating the shape of it to the 

empirical TTT plot of sample data, the appropriateness of modeling using the 

distribution can be roughly verified. Compared to FRF, MRL summarizes the 

trend of residual life, and has special importance if remaining using time of the 

system is of interest or in actuarial study where human life expectancy is crucial 

to life insurance policies. 

 

Lai et al. (2003) proposed the modified Weibull distribution by introducing 

another shape parameter to the traditional Weibull distribution. The distribution 

has an advantage of being able to model bathtub shaped failure data, and the 

model parameters can be estimated easily based on WPP. Lai et al. (2004) studied 

the shapes of FRF and MRL of the distribution and claimed that the “model is 
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very flexible for modeling different reliability situations”. In the other research 

paper focusing on the relationship between FRF and MRL of several 

generalizations of the Weibull distribution, Xie et al. (2004) delved in the change 

points of the two functions and calculated the length of the flat portion of FRF 

under different parameter sets. Regarding parameter estimation, Ng (2005) 

discussed ML estimation and confidence intervals of the modified Weibull 

parameters for progressively type-2 censored samples, and concluded that MLE 

performs better than LSE based on a simulation study. In Bebbington et al. (2008), 

the authors obtained the estimate of the turning point of MRL via first estimating 

the model parameters using MLE method. Carrasco et al. (2008) proposed a 

regression model considering this modified Weibull distribution. Despite the 

volume of available works on the modified Weibull distribution, an overall 

statistical characterization which is useful for application and referencing is still 

lacking. In the first part of this thesis, a systematic study of the statistical 

characteristics and parameter estimation procedures is carried out. 

 

As a newly proposed generalization of the Weibull distribution, the odd Weibull 

(Cooray, 2006) has been shown to be able to exhibit monotonic, unimodal and 

bathtub shaped failure rate. Another favorable merit of the model is that when its 

FRF is bathtub shaped, the second portion of curve could be quite flat and long, 

which is a good property in application. However, its complicated form of PDF 

makes ML estimation of the model parameters not stable, sometimes even 
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unreachable. In such case, a good graphic method can help find acceptable 

estimates of the model parameters, for application or starting point of further 

investigation. In this thesis, a statistical characterization of the odd Weibull 

distribution is done, and a graphic parameter estimation method is proposed to 

replace WPP. 

 

1.2 Observed Fisher Information Matrix and Uniqueness of 

MLE 

The Fisher information, firstly introduced by R. A. Fisher in the 1920s, is the 

amount of information in a single sample about the unknown parameters of the 

distribution, or the likelihood function. When considering estimation of the model 

parameters, from the Cramer-Rao inequality, the inverse of the Fisher information 

matrix is the lower bound of the error variance of the unbiased estimators of the 

parameters of the given distribution, and is the asymptote of the variance-

covariance matrix of MLE of the model parameters under some regularity 

conditions. However, for many statistical distributions, the calculation of the 

Fisher information matrix could be quite troublesome because of the complexity 

of PDF and the high dimensionality of the parameter vector. In such case, the 

Fisher information matrix is usually replaced by its approximate at the MLE point, 

the Observed Fisher Information matrix, which is the inverse matrix of the minus 

second derivatives of the log-likelihood function. Compared to the Fisher 
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information matrix, the Observed Fisher Information matrix is relatively easy to 

calculate and meaningful in real application (Efron and Hinkley, 1978). 

 

Gertsbakh and Kagan (1999) proved that the Weibull distribution can be 

characterized by the Fisher information lack-of-memory property in type-1 

censored data. Zheng (2001) obtained a similar result in type-2 censored data case 

by expressing the Fisher information matrix of the Weibull distribution using FRF. 

Zheng and Park (2004) extended the result to multiply censored and progressively 

censored data. Gupta and Kundu (2006) compared the Fisher information matrix 

of the generalized exponential (GE) and Weibull distributions for complete and 

type-1 censored data, observed that due to right censoring the loss of information 

of the Weibull distribution is much more than the GE model, and concluded that 

for some data sets if the asymptotic variances of the median estimators and the 

average asymptotic variances are of interest, the GE distribution is preferred to 

the Weibull distribution. Borzadaran et al. (2007) derived entropy, variance, 

Fisher information, and analog of the Fisher information for some Weibull known 

families, including the Weibull family, and set up links between the measures for 

the families. 

 

An issue related to ML estimation of the model parameters of statistical 

distributions is the existence and uniqueness of the estimators for a given sample 

data. A simple transformation on the likelihood equations of the Weibull 
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distribution was used in Farnum and Booth (1997) to prove the existence and 

uniqueness of MLE of the model parameters. Wang and Fei (2003) proved in a 

tampered failure rate model, MLE of the shape parameter of the Weibull 

distribution exists and is unique. Mittal and Dahiya (1989) showed that MLE do 

not always exist for the truncated Weibull distribution. The MLE of the log-

logistic parameters for right censored sample data were proven to uniquely exist 

in Gupta et al. (1999), and the result was generalized to grouped data case in 

Zhou et al. (2007). A similar result was obtained for the Normal distribution in 

Balakrishnan and Mi (2003), and in Mi (2006) the discussion was even extended 

to location-scale distributions for complete and partially grouped data. 

 

Existing literature on the Fisher information of the Weibull distribution mainly 

focuses on the relationship between the Fisher information matrix and the Weibull 

distribution properties. The description of the matrix and the calculation involved 

in approaching MLE of parameters of the Weibull models remain untouched. In 

addition, although the existence and uniqueness of several 2-parameter 

distributions have been studied, no research work is available for multi-parameter 

distributions, such as 3-parameter generalizations of the Weibull distribution. A 

study taking into account the calculation of the elements of the Observed Fisher 

Information matrix and the relationship between this matrix and the property of 

MLE of the parameters of some Weibull models would be worthwhile. In this 

thesis, a technique of simplifying the calculation involved in the Observed Fisher 
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Information matrix and the accompanying application in proving the existence 

and uniqueness of MLE will be narrated and illustrated. 

 

1.3 Bayesian Estimation and MCMC Algorithm 

Bayesian theory suggests inferring truth of the probability of a statistical model by 

updating information in light of new observations on the base of a prior. 

Following this theory, Bayesian estimation of parameters of statistical 

distributions involves a prior of the parameters and a posterior with data 

information added in. 

 

Bayesian estimation for the scale and shape parameters of the Weibull distribution 

was developed in Canavos and Tsokos (1973) by assuming independent prior 

distributions. The authors compared the performance of the Bayesian estimators 

and MLE through a simulation study and found that MSE (mean squared error) of 

Bayesian estimators are significantly smaller than those of MLE. For the 3-

parameter Weibull distribution, Smith and Naylor (1987) pointed that ML 

estimation are not stable in the sense that small changes in the likelihood may 

correspond to large changes in the parameters, while the choice of priors does not 

make much influence on the Bayesian estimates as long as the priors are flat 

enough. Because of the mathematical intractability of the posterior expectations 

of the parameters of the 3-parameter Weibull distribution, Sinha and Sloan (1988) 
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proposed the use of Bayesian linear estimators to approximate. Tsionas (2002) 

considered Bayesian estimation of the parameters and reliability function of the 

Weibull mixture distribution. Nassar and Eissa (2004) and Singh et al. (2005) 

discussed the problem of Bayesian parameter estimation under LINEX loss 

functions for the exponentiated Weibull distribution. Touw (2009) presented a 

study on Bayesian estimation for parameters of mixed Weibull models. 

 

In many cases, when PDF of the statistical distribution is complex, obtaining the 

Bayesian estimates of the model parameters by direct calculating the posterior 

expectations is very time consuming or coarse, e.g. when the sample size is large 

and the posterior PDF of the parameters are so steep that integration over the 

parameter space is subject to substantial error. In such case, an algorithm called 

MCMC (Markov chain Monte Carlo) is useful. MCMC methodology provides a 

convenient and efficient way to sample from a high dimensional distribution, and 

obtain estimates of the parameters from the Markov chain formed. Following 

MCMC algorithm, Green et al. (1994) modeled tree diameter data with the 3-

parameter Weibull distribution and indicated the advantage of MCMC to MLE 

that the former guarantees a positive estimate for the location parameter while the 

latter does not. Pang et al. (2001) dealt wind speed data with the 3-parameter 

Weibull distribution using MCMC techniques and highlighted the flexibility of 

the method that any quantity of interest regarding the distribution or parameters 

can be easily processed under the frame. Bayesian estimation via MCMC 
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sampling of the coefficient of variation for the 3-parameter Weibull distribution 

was studied in Pang et al. (2005). Gong (2006) estimated mixed Weibull 

distribution parameters using SCEM-UA method adopting MCMC theory, and 

showed that the estimates of the parameters are more accurate than MLE for the 

automotive data. Gupta et al. (2008) used MCMC method to estimate the model 

parameters of the Weibull extension distribution. As an application in clinical 

study, Zhao et al. (2008) constructed Bayesian model for the Weibull distribution 

and used MCMC simulation method to estimate the model parameters. 

 

Despite the advantage of the Bayesian estimation stated in the literature, for the 

Weibull models except the traditional 2 or 3-parameter Weibull, this estimation 

method is not extensively used. In this thesis, Bayesian estimation of the 

parameters of the modified Weibull distribution is studied by adopting MCMC 

theory, and the estimation performance is compared with MLE. 

 

1.4 Research Objective 

The main purpose of this study is to develop a systematic statistical analysis, 

including parametric characterization and parameter estimation, of the modified 

Weibull distribution, which is a very useful generalization of the Weibull 

distribution. In addition, the odd Weibull distribution, another 3-parameter 

generalization of the Weibull distribution, will be studied in detail and applied to 
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real life data analysis. As the most wildly used member of the Weibull family, the 

3-parameter Weibull distribution always has intricacy in its parameter estimation. 

As such, a detailed literature survey of the available estimation methods will be 

done, and a discussion on the maximum probability estimation (MPE) for the 

distribution will be initiated. 

 

Chapter 2 presents the general background of the Weibull models and some 

related topics such as properties of the models, application to life data and 

parameter estimation methods. 

 

The modified Weibull has both the Weibull distribution and type-1 extreme value 

distribution as special cases, and is able to model increasing, decreasing, constant 

and bathtub shaped failure rate data. Several aspects of the distribution have been 

covered by researchers, but a comprehensive statistical analysis of the distribution 

is still lacking. In Chapter 3, a systematic structural analysis of the distribution is 

carried out and some interesting issues related to the modeling of the distribution 

to life data are explored. We also included the discussion of MPE of the 

parameters of the 3-parameter Weibull distribution as a section of this chapter. 

 

When analyzing the properties of MLE of the parameters of statistical 

distributions, the Observed Fisher Information matrix, which is the approximate 

of the Fisher information matrix at the MLE point, is usually seen as the variance-
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covariance matrix of MLE. For the 3-parameter generalizations of the Weibull 

distribution, the calculation of the Observed Fisher Information matrix and related 

issues are seldom considered. However, as a matter of fact, a study of the 

simplification of this matrix does not only save calculation time, but also shed 

light to the variability of MLE of the parameters, as well as help look into the 

existence and uniqueness properties of the estimates. Chapter 4 conducts a general 

study of the Observed Fisher Information matrix for a class of distributions and 

the application of the result to the modified Weibull distribution to prove the 

existence and uniqueness of MLE of the model parameters for complete or 

progressively type-2 censored data. Using the techniques proposed, a study of the 

existence and uniqueness properties of the MLE of the modified Weibull 

distribution is carried out. The two properties are important because they ensure 

that usual optimization methods are able to locate the estimates that maximize the 

log-likelihood function, and statistical inferences can be drawn from the fact that 

the estimates are asymptotically normally distributed. To get the results, the 

parameter space is slacked before the analysis, and the non-negativity constraints 

are re-imposed afterwards. 

 

Chapter 5 provides a Bayesian estimation of the parameters of the modified 

Weibull distribution. Bayesian methods have been shown in the literature to have 

some preferable qualities as compared to the MLE for the Weibull parameters. In 

this chapter, Gibbs sampler, as one of the MCMC simulation methods, is used to 
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produce the Bayesian estimators of the model parameters. To overcome the 

difficulty in sampling from the posterior conditional distributions, a technique 

called adaptive rejection sampling is applied. The Bayesian estimators obtained in 

this way are compared with MLE, and they are shown to have smaller MSE than 

their counterparts. 

 

After the study of modified Weibull distribution is completed, the properties of 

another recently proposed model, the odd Weibull distribution, are investigated in 

Chapter 6. A detailed statistical characterization of the distribution is done. WPP 

parameter estimation is carried out and shown to perform well. Burn-in and useful 

period related issues are discussed. 

 

Chapter 7 concludes current research works and discusses some possible future 

research topics. 
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Chapter 2. Literature Review 

2.1 Weibull Models 

As quoted in Murthy et al. (2004)
(1)

, basically there are two different approaches 

used for life data modeling, theory based modeling and empirical modeling. As 

the name stands, theory based modeling has the assumption that the mechanism of 

the system in research is known thoroughly or partially so that a theory based 

model which fits the life mode of the system can be built. However, due to the 

complicated manufacturing procedures of modern units and their multi-layer 

structures, mathematically and physically precise models for their life modes are 

impossible or very hard to construct. In such case, empirical modeling is useful 

for researchers to develop a suitable model for the system based on the 

information included in a given sample of data, or help look into the operation 

mechanism of the system so that a theory based model can be formed. 

 

Empirical data modeling involves an explorative analysis of the data, and then 

choosing the suitable statistical distribution out of a number of candidate models. 

One of the most important families of such candidate distributions with wide 

applicability is the Weibull family. The first modeling of the Weibull distribution 

to engineering data dates back to Weibull (1951). Since the advent and popularity 

of the Weibull distribution in life data analysis prompted by Professor Weibull 
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himself and the followers, in order to widen the applicability of Weibull analysis, 

many generalizations of the Weibull distribution, called the Weibull models, have 

been proposed and studied. These Weibull models can exhibit various shapes of 

FRF, not only monotonic but also unimodal and bathtub shaped, which are very 

common FRF shapes of modern mechanic and electronic units, such as computer 

processors. 

 

The cumulative distribution function (CDF) of the 3-parameter Weibull 

distribution is as follows 

( )





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





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 −
−−=

β

α
τt

tF exp1 , τ≥t                                                                  (2.1) 

where 0>α , 0>β  and −∞>>∞ τ  are called the scale, shape and location 

parameters respectively. 

 

When the location parameter τ is equal to 0 or after the Weibull variable 

undergoes a horizontal shift of -τ, the 3-parameter Weibull distribution reduces to 

the Weibull distribution 
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Estimation of the shape and scale parameters of the Weibull distribution has 

shown to be relatively easy. In contrast, with the inclusion of the additional 
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location parameter τ, estimation of the parameters of the 3-parameter Weibull 

becomes much more complicated. Focus is on designing feasible and efficient 

estimation procedures recently. A survey on the various estimators and their 

properties will be presented in the final section of this chapter. 

 

From the taxonomy of Murthy et al. (2004)
(1)

, frequently used Weibull models 

can be roughly classified into 3 different types according to the different 

procedures of generalization, type-1 from direct transformation of the Weibull 

variable, type-2 from transformation of the Weibull distribution function, 

sometimes with one or more additional parameters, and type 3 involving more 

than one Weibull distribution or distribution from type-1. 

 

Type-1 Weibull models are the basic members of the Weibull family, including 

the Weibull distribution (Weibull, 1939, 1951; Murthy et al., 2004(1); Dodson, 

2006), type-1 extreme value distribution (White, 1969; Kotz and Nadarajah, 2000; 

De Haan and Ferreira, 2006), and inverse Weibull distribution (Drapella, 1993; 

Khan et al., 2008). These distributions have been extensively studied and applied 

to practical application. 

 

Type 3 Weibull models are composed of one or more Weibull or inverse Weibull 

distributions, members including Weibull or inverse Weibull mixture 

(Mendenhall and Hader, 1958; Kao, 1959; Chen et al., 1989; Jiang and 
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Kececioglu, 1992; Jiang and Murthy, 1995; Nagode and Fajdiga, 2000; Sultan et 

al., 2007; Mosler and Scheicher, 2008; Touw, 2009), Weibull or inverse Weibull 

competing risk (David, 1970; Jiang and Murthy, 1997
(1)

, 2003; Davison and Neto, 

2000; Jiang et al., 2001; Balasooriya and Low, 2004; Bousquet et al., 2006; 

Pascual, 2007, 2008), Weibull or inverse Weibull multiplicative (Jiang and 

Murthy, 1995, 1997
(2)

), and Weibull sectional (Kao, 1959; Mann et al., 1974; 

Jiang et al., 1999). These Weibull models are flexible at modeling life data, but 

due to the difficulty involved in analytic parameter estimation such as MLE, 

graphic parameter estimation methods resorting to WPP are often employed in 

practice. 

 

Type-2 Weibull models are mostly newly proposed models. They are derived 

from the Weibull distribution, with one or more additional parameters, and 

therefore are able to exhibit a wider range of shapes of FRF. In addition, unlike 

type 3 Weibull models which contain coefficient parameters weighing the 

importance of the submodels, type-2 Weibull models do not have the difficulty in 

ML estimation procedure caused by estimating these parameters, so statistical 

properties of MLE and then other characteristics of the models can be studied 

conveniently and systematically. Because of these advantages of type-2 Weibull 

models, they attract a lot of research attention and application interest. The main 

part of the thesis will be centered on some of type-2 Weibull models, so in the 

next section a detailed literature review on the relevant models will be given, but 
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before that we will briefly survey the existing research on the other models. To 

highlight the relationship between the models and the Weibull distribution, we use 

( )tG  to denote CDF of the models and ( )tF  to denote CDF of the Weibull 

distribution. 

 

2.1.1 Exponentiated Weibull 

The exponentiated Weibull distribution was proposed by Mudholkar and 

Srivastava (1993). CDF of the distribution is 

( ) ( )[ ]
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tFtG exp1 , 0≥t                                                  (2.3) 

with 0>ν  the additional parameter. When 1=ν , the exponentiated Weibull 

reduces to the Weibull distribution. 

 

As stated in Mudholkar et al. (1995), FRF of the exponentiated Weibull 

distribution can exhibit monotonic, unimodal and bathtub shapes. Statistical 

properties and parametric characterization of the distribution were investigated in 

Mudholkar and Hutson (1996) and Nassar and Eissa (2003). Nadarajah and Gupta 

(2005) and Choudhury (2005) considered the derivation of the moments. Ashour 

and Afify (2007) considered the analysis under type-1 progressive interval 

censoring and derived the ML estimators and the corresponding asymptotic 

variances. Jiang and Murthy (1999) presented a graphic study of the distribution 
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and proposed to use WPP to estimate the model parameters. Bayesian parameter 

estimation was studied in Cancho et al. (1999), Cancho and Bolfarine (2001), 

Nassar and Eissa (2004), and Singh et al. (2005). Ortega et al. (2006) adapted 

local influence methods to detect influential observations with exponentiated 

Weibull regression models for censored data. As a practical application in 

software reliability study in Ahmed et al. (2008), the exponentiated Weibull 

distribution was incorporated into the modeling process and the researchers found 

that the proposed software reliability growth model is wider and effective SRGM. 

 

2.1.2 Generalized Weibull 

Mudholkar and Kollia (1994) proposed a generalization of the Weibull 

distribution, which they called the generalized Weibull family. CDF is 

( ) ( )[ ] λααλ
11

111 ttG +−−=                                                                           (2.4) 

where ∞<<∞− λα , . 

 

Another slightly different version with three model parameters was proposed in 

Mudholkar et al. (1996) 

( ) ( )[ ] λασλ
11

11 ttG −−=                                                                               (2.5) 

where ∞>σα , , ∞<<∞− λ . This model reduces to the Weibull distribution as 

0→λ . 
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According to Mudholkar and Kollia (1994) and Mudholkar et al. (1996), the 

supports for both CDF are dependent on the sign of the parameters, instead of 

invariably on the positive real line. Regarding the shape of FRF, Mudholkar et al. 

(1996) indicated that FRF of the latter model can exhibit monotonic, unimodal 

and bathtub shapes. However, there seems that no discussion on the shape of FRF 

of the former model (2.4) is available yet. 

 

2.1.3 Additive Weibull 

The additive Weibull distribution was proposed by Xie and Lai (1996). CDF is 

( ) ( ) ( ){ }db
ctattG −−−= exp1 , 0≥t                                                               (2.6) 

where 0, ≥ca , 1>b , 10 << d . The model reduces to the Weibull distribution 

when either a  or c  equals to 0. 

 

FRF of this model is not only able to be monotonic, but also bathtub shaped. 

 

The additive Weibull distribution is essentially a special case of the 2-component 

Weibull competing risk distribution of which one shape parameter is larger than 1 

and the other smaller than 1, but its good property in describing bathtub shaped 

failure rate data and the application of the simplified version makes it an 

important generalization of the Weibull distribution, and so we put it here as a 

member of the type-2 Weibull models for a more detailed literature survey. 
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Motivated by the idea of Xie and Lai (1996), Wang (2000) proposed the additive 

Burr XII distribution, which is also able to describe bathtub shaped failure rate 

data. Lai et al. (2004) recommended adding a constant random failure term to the 

additive Weibull distribution to achieve a better fit to some data. Bebbington et al. 

(2006) proposed using the curvature of FRF to evaluate the length of the useful 

period for a bathtub curve of the additive Weibull.  Bebbington et al. (2007(2)) 

showed that the addition of a constant competing risk to the additive Weibull can 

lead to complex effects on the mean residual life, which may be of great use in 

actuarial and reliability studies. 

 

2.1.4 Extended Weibull 

The extended Weibull distribution was proposed by Marshall and Olkin (1997). 

CDF is 

( ) ( )
( ) ( )tFtF

tF
tG

ν+
= , 0≥t                                                                               (2.7) 

where ( )tF  and ( )tF  are a Weibull CDF and its corresponding survival function 

(SF), and ν  is the additional parameter. This model reduces to the Weibull 

distribution when 0=ν . 
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Marshall and Olkin (1997) studied FRF of the extended Weibull distribution and 

showed that except for monotonic shape, FRF of the model can exhibit 

increasing-decreasing-increasing and decreasing-increasing-decreasing shapes. 

However, no exactly unimodal or bathtub shaped failure rate curve can be 

achieved. Marshall and Olkin (1997) proved the geometric-extreme stability 

property of the model, which could be a favorable feature for practical application. 

Hirose (2002) derived log-likelihood function and likelihood equations for the 

extended Weibull distribution and showed the usefulness of the model for fitting 

breakdown voltage data. Ghitany et al. (2005) presented another derivation of the 

model and discussed the application to censored data. Adamidis et al. (2005) 

proposed to use EM algorithm to estimate the model parameters when ( )tF  is an 

exponential CDF. Sankaram and Jayakumar (2007) showed that the extended 

Weibull distribution satisfies the property of proportional odds function and then 

gave a physical interpretation of the model. Zhang and Xie (2007) described a 

graphic parameter estimation method for the model, and discussed application 

related issues such as burn-in time and replacement time determination. 

 

Motivated by the idea of Marshall and Olkin (1997), Jayakumar and Mattew 

(2006) extended the Burr type-2 distribution, Ghitany et al. (2007) the Lomax 

distribution, and Ghitany and Kotz (2007) the linear failure rate distribution. 
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2.1.5 Weibull Extension 

The Weibull extension distribution was proposed by Xie et al. (2002). CDF is 

( ) ( )[ ]{ }βαλα tetG −−= 1exp1 , 0≥t                                                               (2.8) 

where 0,, >βαλ . 

 

When 1=α , the model reduces to the 2-parameter model of Chen (2000); when 

∞→α , the model reduces to the Weibull distribution. 

 

Xie et al. (2002) showed that FRF of the Weibull extension distribution can 

exhibit monotonic and bathtub shapes. Tang et al. (2003) carried out a detailed 

statistical analysis of the Weibull extension distribution. Nadarajah and Gupta 

(2005) derived explicit algebraic formulas for the moments of the distribution. 

Wu et al. (2004) proposed an exact statistical test for the shape parameter of the 

model of Chen (2000). Gupta et al. (2008) carried out a Bayesian estimation of 

the model parameters using Markov chain Monte Carlo simulation, and observed 

that the in spite the model cannot provide good fit to the higher order observations 

which are responsible for the increasing part of the hazard rate, it behaves quite 

well overall. 

 

2.1.6 Flexible Weibull 

Bebbington et al. (2007(1)) proposed the flexible Weibull distribution. CDF is 
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( ) ( )ttetG βα −−−= exp1 , 0>t                                                                        (2.9) 

where 0, >βα . When 0=β , the model reduces to the Type-1 extreme value 

distribution, and thus may be regarded as a generalization of the Weibull 

distribution. 

 

Bebbington et al. (2007
(1)

) proved that FRF of the distribution can exhibit 

increasing, increasing average, and increasing-decreasing-increasing, called 

modified bathtub, shapes. Bebbington et al. (2007
(2)

) constructed a competing risk 

model involving a flexible Weibull distribution and an exponential distribution, 

and showed that the new model performs well for human mortality data. 

 

2.1.7 Model by Dimitrakopoulou et al. (2007) 

Dimitrakopoulou et al. (2007) proposed a 3-parameter generalization of the 

Weibull distribution. CDF of the distribution is 

( ) ( )( )αβλttG +−−= 11exp1 , 0>t                                                               (2.10) 

where 0, >βα  are shape parameters and 0>λ  is a scale parameter. The model 

reduces to the Weibull distribution when 1=α . 

 

As stated in the above, the motivation of the distribution comes from evaluating 

the reliability of a series system. FRF of the distribution was shown to be able to 
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exhibit monotonic, unimodal and bathtub shapes. Likelihood equations were 

derived. 

 

2.2 Modified Weibull and odd Weibull 

2.2.1 Modified Weibull Distribution 

As one of the type-2 Weibull models, the modified Weibull distribution (Lai et al. 

(2003)) attracts some interest among researchers and practitioners because of its 

ability in modeling bathtub shaped failure rate data, simplicity and flexibility of 

FRF and ease of handling parameter estimation using least squares method. CDF 

of this distribution is 

( ) { }tbeattG λ−−= exp1 , 0≥t                                                                      (2.11) 

where 0>a , 0, ≥λb . 

 

The distribution function once appeared in an earlier paper Gurvich et al. (1997), 

but with different parameterization. In the paper, the first and second moments of 

the distribution were derived, but without explicit forms, and a least squares 

parameter estimation method was formulated. However, the model is not exactly 

the same as the modified Weibull since Gurvich et al. (1997) did not confine the 

parameter λ  to be positive. When 0<λ , the support of the CDF does not cover 

the positive half of the real line, but only a portion (from 0 to a finite value). In 
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fact, negative estimates of λ  were yielded in Gurvich paper when fitting the 

model to glass fiber data, which was the motivation of the research. Therefore, it 

is inaccurate to say the two models are identical (Nadarajah and Kotz, 2005). 

 

According to Lai et al. (2003), the distribution is able to model monotonic and 

bathtub failure rate data. The model has the Weibull and Type-1 extreme value 

distributions as special cases, and is an approximation of the Beta-Integrated 

distribution in the limit case. Lai et al. (2003) depicted FRF and WPP plotting for 

this distribution, and suggested a multiple linear regression method to estimate the 

model parameters based on a sample data. The log-likelihood function and 

likelihood equations for complete data were derived in the paper, and MLE 

procedures were briefly stated. In Lai et al. (2004), the relationship between FRF 

and MRL was visibly demonstrated, and the modified Weibull distribution was 

claimed to be very flexible for modeling different reliability situations. 

 

Ng (2005) carried out an MLE study of the model parameters for progressively 

type-2 censored data, and suggested transformed confidence intervals for the 

parameters based on asymptotic lognormality could achieve higher coverage 

probabilities than traditional confidence intervals based on asymptotic normality, 

since the parameters are assumed to be positive. Regarding the performances of 

parameter estimation methods, Ng (2005) showed that MLE performs better than 

LSE, for both bias and MSE. As to censoring schemes, progressively type-2 
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censoring schemes are better than conventional type-2 censoring, from the 

estimation point of view. 

 

Xie et al. (2004) proposed the difference between the turning points of FRF and 

MRL as a measure of the flatness of the constant period of a bathtub curve, and 

showed that for the modified Weibull, this criterion is in line with another one 

which measures flatness with the length of the period whose failure rate is within 

a tolerance interval of the minimum failure rate. 

 

Bebbington et al. (2008) investigated the performance of MLE of the turning 

point of FRF for this distribution and constructed a confidence interval for the 

estimator based on asymptotic normality.  

 

2.2.2 Odd Weibull Distribution 

The odd Weibull distribution was recently proposed in Cooray (2006). CDF is 

( ) ( )
( ) ( )tFtF

tF
tG θθ

θ

+
= , 0≥t                                                                         (2.12) 

where ∞<<∞− θ  is the additional parameter. If 0>θ , ( )tF  and ( )tF  are a 

Weibull CDF and the corresponding SF, while if 0<θ , ( )tF  and ( )tF  are 

inverse Weibull CDF and SF. The model reduces to the Weibull distribution when 

1=θ  and inverse Weibull distribution when 1−=θ . 
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As described in Cooray (2006), the model originated from evaluating the 

randomness of the odds of death using the Weibull distribution. It is capable of 

modeling monotonic, unimodal and bathtub shaped failure rate data, and the 

advantage of the model over some other Weibull models is that the second portion 

of the bathtub curve of FRF could be quite flat and long, which is a favorable 

feature for real data modeling. 

 

Regarding parameter estimation, the log-likelihood function was set up for right 

censored data in Cooray (2006). The inverse property of MLE was shown, which 

could be useful when the odd Weibull densities are non-unimodal. TTT 

transforms were employed to help determine the shape of FRF and test the 

goodness-of-fit against exponentiality null hypothesis, and a simulation study was 

done to tabulate the upper percentage points of the TTT test statistic. 

 

Despite the good properties of the distribution, except Cooray (2006), few works 

have been done to its statistical characteristics and parameter estimation, partly 

because the form of the distribution function and failure rate function are 

complicated. In order to cover this gap, a study of the important statistical 

characteristics and an alternative graphic parameter estimation method is 

presented in this thesis. 
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2.3 Parameter Estimation Methods 

The Weibull models are widely applied to life data analysis for all kinds of 

systems. As a normal procedure for empirical modeling, after a model is chosen 

to characterize the life mode of the system, model parameters are estimated with a 

given sample data set. 

 

Sample data could be complete or censored. There are several different 

classifications of censoring (Murthy et al., 2004
(2)

) 

• Right, left, or interval censoring 

• Type-1 time based censoring, type-2 failure based censoring, or random 

censoring 

• Single or multiple censoring 

 

Censoring is an important and often used technique in practice to save time and 

cost, yet effective in investigating the life behavior of a system. In the perspective 

of reliability study, right type-1 and type-2 censoring, random censoring, interval 

censoring (grouped data) are of particular interest. 

 

To handle data with different failure patterns and censoring schemes, for different 

models in assumption, a few traditional parameter estimation methods have been 

applied and studied for the Weibull models, as well as some initiative methods 

been developed. 
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Priority of the estimation methods is not fixed. For a particular model with a 

certain data censoring scheme, a method may behave better than others in 

consideration of bias, but performs poorer in the criterion of dispersion. A method 

could produce an estimate that is both accurate and precise, but the difficulty and 

computing time involved in the search of the estimate may offset the benefit. In a 

word, none of the estimation methods is universally and overwhelming best. For 

the Weibull models, a lot of research has been done to study the properties of the 

estimators, compare the advantages and disadvantages of the estimation methods, 

and providing solutions that could increase the performance. In the following part 

of this section, we give a literature survey on this subject. 

 

2.3.1 Method of Moments 

The method of moments makes use of sample moments such as mean and 

variance to estimate the model parameters. 

 

The mean and variance of a Weibull variable are Gamma functions of the model 

parameters, so it is impossible to give moment estimators for the parameters with 

closed forms. However, iterative procedures can be applied to numerically obtain 

the estimates. Situation is similar for the 3-parameter Weibull distribution, except 

that the third moment skewness needs to be evaluated. 
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A critical drawback of the method of moments for parameter estimation is its 

inability for censored data (Murthy et al., 2004
(2)

)). This disadvantage hinders its 

application in lifetime study. 

 

For discussions on this topic, see Menon (1963), Cohen et al. (1984), Cran (1988), 

Rekkas and Wong (2005), Cao (2005), Gaeddert and Annamalai (2005), 

Nadarajah and Gupta (2005), Merganič and Sterba (2006), Nadarajah and Kotz 

(2007), Carrasco et al. (2008)
 
etc. 

 

2.3.2 Method of Percentiles 

Another parameter estimation method initiating from the relationship between the 

distribution functions and the model parameters is the method of percentiles. 

 

To estimate the two parameters of the Weibull distribution, at least two 

percentiles are needed, while for the 3-parameter Weibull, at least three are 

needed. Hassanein (1971) obtained the best linear unbiased estimates with 2, 4 

and 6 sample percentiles and discussed optimum spacing of the sample 

percentiles for the Weibull distribution assuming the shape parameter known. 
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Selection of the percentiles is pivotal to the performance of the estimators. Under 

different conditions, percentiles estimators with different probabilities were 

discussed in Menon (1963), Dubey (1967), Zanakis (1979), Wang and Keats 

(1995) and Marks (2005). 

 

Chen (2004) and Chen and Chen (2009) employed the pivotal property of the 

parameters embedded in the relationships of percentiles of the 3-parameter 

Weibull distribution, and proposed a simulation based method of constructing 

confidence intervals and point estimate of the location parameter. 

 

2.3.3 Maximum Likelihood Estimation 

Since the invention of this method by Sir. R. A. Fisher in the early part of last 

century, ML estimation has been one of the most popular parameter estimation 

methods for statistical distributions. The idea of MLE is to maximize the 

likelihood function, which is the joint probability function of the available data 

under a statistical distribution whose parameters are unknown, by changing the 

values of the model parameters, and then find the parameter estimates. 

 

Under mild regularity conditions, the MLE has the inverse of the Fisher 

information matrix as the asymptotic variance-covariance matrix. Statistical 

inferences can be drawn from the normal distribution assumption of the 
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estimators, and thus confidence intervals, statistical significance tests, etc can be 

constructed. In addition, from the Cramer-Rao theory, the variance of a MLE is 

asymptotically the smallest, as compared to other unbiased estimators. Another 

advantage is that unlike the two methods reviewed above, MLE works well with 

censored data. 

 

For the Weibull distribution, some earlier works (Kao, 1958; Cohen, 1965; 

Thoman et al., 1970; Engelhardt and Bain, 1974; etc) built the foundation of ML 

estimation procedures and properties. Among them, Cohen (1965) derived the 

likelihood function and equations for complete and right censored sample data, 

recommended iterative procedures to solve the likelihood equations, and used the 

Observed Fisher Information matrix to approximate the variance-covariance of 

the estimators. Thoman et al. (1969) and Watkins (1996) investigated the bias of 

MLE of the Weibull parameters and Ross (1996), Montanari et al. (1997), Hiross 

(1999), Yang and Xie (2003), Yang et al. (2003, 2007), and Ferrari et al. (2007) 

presented several methods to reduce the bias. 

 

For the 3-parameter Weibull distribution, Harter and Moore (1965) derived the 

log-likelihood function and likelihood equations, and indicated that when the 

value of the shape parameter is less than 2, MLE may not exist because of the 

irregularity of the likelihood function. Also see Blischke (1974) for further details. 

To deal with the difficulty in convergence of MLE searching, several techniques 
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and modified estimators were proposed (Lemon, 1975; Cohen and Whiten, 1982; 

Balakrishnan and Kateri, 2008; Cousineau, 2009
(1)

; etc). 

 

ML estimation is widely used for other models of the Weibull family. For more 

details, see the literature listed under the specific distributions in Section 2.2. 

 

Another topic regarding MLE with theoretic and application importance is the 

existence and uniqueness of the estimators. For the Weibull distribution, a 

simplification of the likelihood equations can easily lead to the proof of this 

property of MLE (e.g. see Farnum and Booth (1997)). Wang and Fei (2003) 

proved the MLE of the shape parameter of the Weibull distribution is unique in a 

multiple step-stress accelerated life test. To overcome the difficulty of ML 

estimation, Hirose and Lai (1997) reparameterized the 3-parameter Weibull 

distribution and embedded it in a large family. However, for distributions with 

more complicated CDF, other techniques are needed. 

 

Makelanen et al. (1981) proved that to verify the fact that MLE of the parameters 

of a distribution exist and are unique, one just needs to show that the Hessian 

matrix of the log-likelihood is negative definite and the likelihood is constant on 

the boundary of the parameter space. Following this track, Gupta et al. (1999) 

proved MLE of the parameters of the log-logistic distribution for right censored 

sample data uniquely exist. Zhou et al. (2007) generalized the result to the same 
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distribution for grouped data. A similar result was obtained for the Normal 

distribution in Balakrishnan and Mi (2003). Mi (2006) even extended the 

discussion to a much broader distribution class, location-scale families, for 

complete and partially grouped data. 

 

However, till now there have been no works on the existence and uniqueness 

properties of the ML estimators of the parameters of Weibull generalization 

models, which we think poses a theoretical necessity. This consideration leads to 

the study of the MLE of the parameters of the modified Weibull distribution 

presented in this thesis. It should be noted that the approach we proposed could 

easily be extended to other 3 parameter generalization models of the Weibull 

distribution. 

 

2.3.4 Least Squares Estimation and Weibull Probability Plot 

LSE is obtained by minimizing the sum of squared errors between the sample data 

and the fitted distribution function. This estimation method is very popular for 

model fitting, especially in linear and non-linear regression. As a graphic 

realization of LSE, WPP is easy for implementation and so attract a lot of interest 

among practitioners and researchers. The first application of WPP appeared in 

Weibull (1951), in which the parameter estimation of the case studies was done 

by manual curve fitting. 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

40 

 

 

Due to the importance in application, LSE and WPP have been studied 

extensively (Kao, 1959; Bain and Antle, 1967; Hossain and Howlader, 1996; etc). 

However, similar to MLE, LSE for Weibull parameters are always biased. To 

decrease the bias, several approaches have been tried by researchers (White, 1969; 

Bergman, 1986; Lu et al., 2004; Hung and Liu, 2005; Wu et al., 2006; Zhang et 

al., 2006(1), 2006(2), 2007; etc). 

 

As a graphic approach, WPP has its advantages over analytical methods such as 

MLE and moment estimation, due to its visualization capability and even more 

importantly, the ease of implementation when numerical computations involved 

in the analytical methods are complicated or unstable. In this thesis, a trial-and-

error WPP based method is proposed to estimate the parameters of the odd 

Weibull distribution, which we believe is of practical importance when the model 

is used in real data analysis. 

 

2.3.5 Bayesian Estimation and Markov Chain Monte Carlo 

From the view of frequentists, probability is interpreted as the degree to which an 

event is believed to happen. To estimate the model parameters of a statistical 

distribution, Bayesian approach starts with assigning a prior distribution to the 
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parameters, and then calculates the estimates based on the posterior distribution in 

which the information contained in the realizations has been added. 

 

The selection of the prior distribution affects the performance of the estimators. 

At the beginning of the Bayesian procedure, if some historical data of the system 

or expert opinion exist, one can incorporate these messages into the prior 

distribution to show some pre-knowledge of the parameters. When no or very 

little information about the parameters is known, uninformative priors are often 

used (see Gelman et al. (2004) for example). 

 

For the Bayesian estimation of Weibull parameters, the prior distribution was 

extensively discussed (Canavos and Tsokos, 1973; Sinha and Sloan, 1988; 

Kaminskiy and Krivtsov, 2005; Zhang and Meeker, 2005; etc). 

 

Usually numerical methods are needed when the posterior distribution of the 

parameters is hard to derive directly. Dellaportas and Wright (1991) discussed the 

problems for the Weibull parameters and proposed an approximation for the 

posterior mean with Gauss-Hermite method. See Singh et al. (2005) and Nassa 

and Eissa (2004) for the numerical evaluation of Bayesian estimates for the 

parameters of the exponentiated Weibull distribution. 
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Another approach to deal with this problem is resorting to the MCMC algorithm 

(Metropolis et al., 1953; Hastings, 1970). 

 

MCMC methodology provides a convenient and efficient way to sample from 

complex, high dimensional statistical distributions. As one of the MCMC methods, 

Gibbs sampler generates a sequence of samples from the joint distribution of the 

random variables, for the purpose of approximating the joint distribution or 

computing expected values relating to the distribution (Gilks et al., 1995). This 

sampling scheme was first introduced by Geman and Geman (1984), but the 

applicability to statistical modeling for Bayesian computation was demonstrated 

by Gelfand and Smith (1990). 

 

To see if the observations generated from the sampling does follow the underlying 

distribution after running long enough, the convergence of the Gibbs sampler has 

to be checked. Several evaluation methods have been proposed (Gelfand and 

Smith, 1990; Casella and George, 1992; etc). 

 

The application of Gibbs sampler in parameter estimation of the Weibull models 

is very popular among recent years. Green et al. (1994) discussed parameter 

estimation for the 3-parameter Weibull distribution, and showed that when 

handling tree diameter data, ML estimation for the location parameter has a large 

chance to be negative, which contradicts the fact, while if given a proper prior 
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distribution, the estimate generated from Gibbs sampling is always positive. Pang 

et al. (2007) claimed that MCMC is quite versatile and flexible for estimating the 

parameters of the 3-parameter Weibull distribution, and showed that these Gibbs 

estimators perform better than ML estimation, in the consideration of flexibility 

and the ease of constructing exact probability intervals. Pang et al. (2005) studied 

the interval estimation of the coefficient of variation (CV) for several statistical 

models, and indicated that the Gibbs estimators behave well even when the 

distribution is quite skewed, and the convergence of the Markov chain to a 

stationary process is reasonably fast. When both the Weibull and lognormal 

distributions are suitable to model a given data set, Upadhyay and Peshwani 

(2003) recommended using the Gibbs sampler to choose the right model through a 

simulation based Bayesian study. For the exponentiated Weibull distribution, 

Cancho and Bolfarine (2001) estimated the parameters and carried out model 

selection against other distributions via Gibbs sampling. Gupta et al. (2008) did a 

Bayesian analysis of the Weibull extension distribution and deployed a hybrid 

strategy to carry out the MCMC estimation. See Kottas (2006), Gupta et al. 

(2008), Kundo (2008), Zhao et al. (2008) for some other recent discussions. 

 

An important step in Gibbs sampling is to sample from the posterior distribution. 

Since in most cases the distribution is so complicated that it is difficult or 

impossible to sample directly, rejection sampling techniques are required. For 

Gibbs sampling from a distribution which is complicated in form and evaluation 
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of the density function is computationally expensive, Gilks and Wild (1992) 

introduced a rejection sampling scheme, called adaptive rejection sampling. This 

sampling technique is suitable for any univariate log-concave PDF. The 

advantage of adaptive rejection sampling is that it is adaptive: both the envelope 

function and the squeezing function converge to the target density function as 

sampling proceeds, and the reconstructions of the envelope function and the 

squeezing function only need negligible computational cost, thus it is very 

efficient compared to direct sampling or traditional rejection sampling. 

 

Despite the volume of MCMC estimation of Weibull related model parameters, 

few systematic simulation works are available regarding the comparison of the 

efficiency and effectiveness between this method and the others. In this thesis, an 

application of MCMC estimation is carried for the modified Weibull distribution 

and a simulation design is made. 

 

2.4 Parameter Estimation for 3-Parameter Weibull 

As indicated previously, MLE of the parameters of the 3-parameter Weibull 

distribution does not satisfy the so-called regularity conditions, in the sense that 

when the shape parameter β<1, the likelihood function is not bounded so MLE do 

not exist, while when 1≤β<2, MLE of the parameters exist but do not follow an 

asymptotic normal distribution and are inefficient, and only when β>2, the 
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distribution function is regular and MLE of the model parameters exist and are 

consistent (see Rockette et al. (1974), Smith (1985), Kantar and Senoglu (2008) 

and Cousineau (2009)). 

 

There is a lot of literature on the estimation of the 3-parameter Weibull 

parameters. Earlier study dates back to Harter and Moore (1965), Dubey (1966, 

1967), Lemon (1975), Zanakis (1979), Smith and Naylor (1987), etc. More recent 

works are mainly summarized in the review articles as follows. 

 

Tang (2003) highlighted the practical importance of the failure-free life (FFL), 

which is essentially the value of the location parameter τ, of the 3-parameter 

Weibull distribution, and implemented two estimation procedures, D-Method 

from Drapella (1999) and LSE, using Excel
TM

 Solver in two case studies. The 

discussion was enlightening and showed that the proper identification of the 

presence of such factor is beneficial and may lead to in-depth findings of the 

underlying principle of the lifetime system. 

 

Assuming the shape parameter known, Kantar and Senoglu (2008) treated the 3-

parameter Weibull distribution with only two unknown parameters. The authors 

reviewed nine estimators, namely MLE, method of moments, maximum product 

of spacing (Cheng and Amin, 1983), modified MLE I, II (Cohen and Whitten, 
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1982), Tiku’s modified MLE (Tiku, 1967), LSE, weighted LSE (Swain et al., 

1988) and percentile estimators (Kao, 1958). 

 

Cousineau (2009) reviewed some estimation methods for fitting the 3-parameter 

Weibull distribution, namely maximum product of spacing (Cheng and Amin, 

1983), weighted MLE (Cousineau, 2009
(1)

), method of moments (Harter and 

Moore, 1965), and claimed that all these methods are superior to MLE. 

 

In the rest of this section, we will briefly review some of the abovementioned and 

other methods. 

 

2.4.1 D-Method 

In Drapella (1999) and O’Connor (2002), the following equation is obtained by 

introducing the WPP transformation ( )( )ii tRy ˆlnln −= , where ( )itR̂  is an estimate 

of the survivability at time ti, 
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where j<k<l. 

 

It should be noted that in (2.13) there is only one unknown parameter τ. Upon 

solving for τ, the estimates of α and β can be easily obtained. 
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As indicated in Tang (2003), a critical drawback of this method is that the result 

relies on the choice of j, k and l, and it is difficult to determine which sets are 

optimal. 

 

From the similar idea, Chen and Chen (2009) designed a simulation-based 

confidence interval construction method for the location parameter τ. The authors 

defined a function of τ as 

( ) ( ) ( )
( ) ( )

( ){ } ( ){ }
( ){ } ( ){ }ββ
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It can be seen that when α, β and τ are the correct model parameters, ( )τω  is 

parameter free, due to the fact that ( ){ }βατ−it  is simply the order statistic from 

the standard exponential distribution. In addition, ( )τω  increases in τ. Hence, by 

simulating samples from the standard exponential distribution and calculating 

( ) ( )
( ) ( )jk

kl

zz

zz

lnln

lnln

−

−
=ω  for all the samples, a confidence interval of τ can be 

constructed based on ( )τω  in that ( )( ) αωτωω αα −=<<− 1Pr 221 , and the 

corresponding upper and lower limit of τ being identified as 

 ( )
2121 αα ωτω −− =  and ( ) 22 αα ωτω =                                                            (2.15) 
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From their simulation study, Chen and Chen (2009) also found the optimal 

selection of j, k and l as j=1, l=n and k=[(n+2)/3], where n is the sample size and 

[(n+2)/3] denotes the integral part of (n+2)/3. 

 

2.4.2 Least Squares Estimation 

LSE has always been a popular method for the Weibull family distributions. For 

the 3-parameter Weibull distribution, LSE aims to minimize the sum of squared 

error 

( ) ( ) ( )[ ]2

,,
lnlnminarg~,

~
,~ ∑ −−= αβτβτβα

τβα it                                                (2.16) 

 

Denoting ( ) ( )ττ −= ii tx ln , from the linear regression theory, α~  and β
~

 can be 

expressed as functions of τ, and incorporating them back into (2.16) we can obtain 

an optimization problem with only a variable τ. Upon solving the problem, 

estimates of the three parameters can be obtained. 

 

Tang (2003) proposed a variant of the objective function by defining 

( ) ( )( ) β
β

1
ˆln ii Rz −= , where iR̂  is the estimated survivability at time ti 

( ) ( ) ( )[ ]2
minarg

~
∑ −−= ββαβτβ

β ii zt                                                         (2.17) 

where ( )βα  and ( )βτ  are functions of β. 
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The advantage of the above estimation is that, in applications such as accelerated 

testing, “… it is desirable to have a common estimate of β…” (Tang, 2003). 

 

A disadvantage of the ordinary LSE is that the estimation error is often larger than 

that of MLE. To reduce the error, weighted LSE are designed. 

 

For the Weibull distribution, Swain et al. (1988) suggested the weights to be 

( ) ( )
( )1

21
2

+−
++

=
ini

nn
wi                                                                                       (2.18) 

 

Instead, Hung (2001) suggested the weights to be 
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With these weight factors incorporated into (2.16), weighted LSE objective is 

revised as 

 ( ) ( ) ( )[ ]2

,,
lnlnminarg~,

~
,~ ∑ −−= αβτβτβα

τβα ii tw                                           (2.20) 

 

From the simulation comparison study, Hung (2001) showed the squared error 

loss of the weighted LSE universally smaller than that of the ordinary LSE. 
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More discussions on ordinary LSE and weighted LSE for the 3-parameter Weibull 

distribution can be found in Jukić et al. (2008), Marković et al. (2009), et al. 

 

2.4.3 Maximum Product of Spacing 

To avoid inconsistencies which could be encountered when maximizing the log-

likelihood function with β<1, Cheng and Amin (1983) proposed to replace the 

likelihood function with the probability function, namely the spacing function, 

which is defined as 
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The MPS estimates of the parameters are obtained by maximizing the geometric 

mean of these spacings 
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Cheng and Amin (1983) discussed the sufficiency, consistency and asymptotic 

efficiency properties of the MPS estimators, and proved that they are better 

estimators than the MLE in terms of these properties for the 3-parameter Weibull 

distribution. Through a simulation study, Cousineau (2009) showed MPS 

estimators perform better than MLE in terms of bias and squared error. 
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Extensions on this method are discussed in Ghosh and Jammalamadaka (2001), 

Heathcote et al. (2002, 2004) and Cousineau et al. (2004). 

 

2.4.4 Bayesian and Other Methods 

Smith and Naylor (1987) compared the different behaviors of MLE and Bayesian 

estimators of the parameters of the 3-parameter Weibull distribution in detail, and 

concluded that the Bayesian method has a practical advantage, that it does not 

depend on the asymptotic of the log-likelihood function and has the freedom to 

choose different priors for the ease of numerical implementations. 

 

As a numerical realization of the Bayesian method, MCMC techniques for fitting 

the 3-parameter Weibull distribution to tree diameter data was discussed in Greet 

et al. (1994). See Pang et al. (2005) and Zhao et al. (2008) for other applications 

of MCMC to the 3-parameter Weibull distribution. 

 

Recent discussions on other estimation methods for the 3-parameter Weibull 

distribution include Lockhart and Stephens (1994), Hirose (1996, 2002), Offinger 

(1998), Tiku and Akkaya (2004), Cao and McCarty (2006), Balakrishnan and 

Kateri (2008), Cousineau (2009
(1)

). 
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Chapter 3. Statistical Analysis of the Modified 

Weibull Distribution 

In the field of reliability study, an important topic is to model the life behavior of 

the system with a suitable statistical distribution. Among the various distributions 

already studied, the Weibull distribution has been proven to be flexible and 

versatile at describing monotonic failure rate data. However, for many modern 

complex systems which exhibit unimodal or bathtub shaped failure rates, the 

Weibull distribution is inadequate. In order to extend its application, 

generalizations of the Weibull distribution have been proposed. Among them the 

3-parameter Weibull models are of much interest since these models are more 

flexible than the Weibull distribution at modeling non-monotonic failure rate data, 

and they have only one additional parameter as compared to the Weibull 

distribution, which keeps as much simplicity as possible for model analysis and 

data fitting. 

 

The modified Weibull distribution (Lai et al., 2003) is one of such Weibull 

models. The CDF of this distribution is 

( ) { }tbeattG λ−−= exp1 , 0≥t                                                                          (3.1) 

where 0>a , 0, ≥λb , but b and λ cannot be zero at the same time. 
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When 0=λ , the modified Weibull reduces to the Weibull distribution; when 

0=b , it reduces to the type-1 extreme value distribution and the support extends 

to the whole x axis. The modified Weibull distribution is also the asymptotic 

approximation of the Beta-Integrated distribution (Lai et al., 2003). 

 

FRF of the modified Weibull distribution is able to exhibit monotonic and bathtub 

shapes. Several research papers have addressed the parameter estimation and 

burn-in related issues of the distribution, but little study has been carried out to 

look into the statistical properties, which is a prerequisite for the distribution to be 

applied to real lifetime data modeling. In this chapter, a systematic structural 

statistical analysis of the distribution is presented, discussion including moments, 

PDF and FRF. After the statistical analysis, iterative steps of obtaining parameter 

MLE under a progressively type-2 censoring scheme are described, and model 

selection method using a chi-square test is proposed. To illustrate the application 

of the distribution, two examples of modeling lifetime data are presented. At the 

end of this chapter, a tentative study of maximum probability estimation (MPE) of 

the 3-parameter Weibull parameters is presented. 

 

3.1 Statistical Properties 

The SF is 

( ) ( ) { }tbeattGtG λ−=−= exp1                                                                       (3.2) 
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PDF and FRF are accordingly 

( ) ( ) { }tbtb eatettbatg λλλ −+= − exp1                                                                (3.3) 

( ) ( )
( )

( ) tb ettba
tG

tg
th λλ 1−+==                                                                          (3.4) 

 

3.1.1 Moments 

The kth moment of a modified Weibull random variable is 
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For 0≥t , ( ) ( )battG −≤ exp , so 
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Denoting [ ] 1µµ ′== TE as the mean, the kth central moment is 
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kk µµ ′<  is also finite. 

 

From (3.5) and (3.6), the raw moments and central moments are not able to be 

expressed in closed form and have to be evaluated numerically. 
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However, the following property of a modified Weibull variable is useful in 

studying the central moments. 

 

Lemma 3.1. If T follows a modified Weibull distribution with parameters (a, b, λ), 

then λT is also modified Weibull distributed, but with parameters (a/λ
b
, b, 1). 

 

Proof: ( ) 






 >=>
λ

λ
t

TtT PrPr  
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
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
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
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
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−= λ
λ

λ

tb

e
t

aexp                   







−= tb

b
et

a

λ
exp                  . Q.E.D. 

 

While a scaling transformation changes the mean of the variable proportionally, it 

changes variance quadratically, hence keeps skewness and kurtosis intact. 
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Ignoring the scaling effects, we fix λ at 1, change a and b simutaneously and 

tabulate these basic statistics of the modified Weibull variable in the following 

table 3.1. 

 

Table 3.1 Mean, variance, skewness and kurtosis of modified Weibull for different 

parameters 

a b 0.1 0.2 0.5 1.0 2.0 5.0 

0.1 Mean 

Var 

Skew 

Kurt 

1.7769 

0.9848 

-0.1874 

-0.8244 

1.7340 

0.8836 

-0.1725 

-0.7941 

1.6223 

0.6499 

-0.1444 

-0.7074 

1.4837 

0.4111 

-0.1402 

-0.5770 

1.3195 

0.1950 

-0.2123 

-0.3593 

1.1464 

0.0479 

-0.4789 

0.1642 

0.2 Mean 

Var 

Skew 

Kurt 

1.2089 

0.7318 

0.1537 

-0.9766 

1.1958 

0.6518 

0.1463 

-0.9287 

1.1609 

0.4727 

0.1147 

-0.8046 

1.1177 

0.2981 

0.0428 

-0.6506 

1.0687 

0.1456 

-0.1191 

-0.4236 

1.0236 

0.0396 

-0.4775 

0.3206 

0.5 Mean 

Var 

Skew 

Kurt 

0.5828 

0.3644 

0.8117 

-0.3344 

0.6039 

0.3301 

0.7404 

-0.3901 

0.6561 

0.2507 

0.5565 

-0.4952 

0.7168 

0.1695 

0.3204 

-0.5501 

0.7887 

0.0930 

0.0051 

-0.4581 

0.8782 

0.0304 

-0.4354 

0.0963 

1.0 Mean 

Var 

Skew 

Kurt 

0.2526 

0.1438 

1.6371 

2.0603 

0.2853 

0.1391 

1.4393 

1.4545 

0.3729 

0.1227 

0.9997 

0.3869 

0.4819 

0.0971 

0.5564 

-0.2692 

0.6149 

0.0630 

0.0972 

-0.4479 

0.7802 

0.0247 

-0.4179 

0.0481 

2.0 Mean 

Var 

Skew 

Kurt 

0.0712 

0.0312 

3.2686 

11.8823 

0.0974 

0.0358 

2.6579 

7.7631 

0.1821 

0.0452 

1.5899 

2.4579 

0.3057 

0.0487 

0.8103 

0.2360 

0.4718 

0.0409 

0.1850 

-0.4082 

0.6918 

0.0200 

-0.4019 

0.0431 

5.0 Mean 

Var 

Skew 

Kurt 

0.0039 

0.0008 

12.0332 

179.739 

0.0106 

0.0017 

7.2333 

66.3643 

0.0533 

0.0068 

2.7278 

9.5261 

0.1533 

0.0157 

1.1568 

1.2717 

0.3251 

0.0216 

0.2910 

-0.2256 

0.5884 

0.0149 

-0.3832 

0.0244 
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The general patterns of these statistics can be exhibited graphically. For example, 

for a = 0.1, the following figure shows the trends as b increases 
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Figure 3.1 Mean, Variance, Skewness and Kurtosis of a MW Variable as b Increases, a = 0.1 

 

From another perspective, fixing b = 5.0, as a increases, changes of these statistics 

are exhibited in the following figure 
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Figure 3.2 Mean, Variance, Skewness and Kurtosis of a MW Variable as a Increases, b = 5.0 
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Overall, the trends of these statistics are summarized as follows 

1. When a<0.5, mean decreases as b increases; when a≥0.5, mean increases as b 

increases; mean is decreasing in a. 

2. When a<2, variance decreases as b increases; when a≥0.5, variance increases 

as b increase; variance is decreasing in a. 

3. Skewness decreases in b but increases in a; and the modified Weibull 

distribution could be either positive skew (skewed to the left) or negative 

skew (skewed to the right). 

4. When a<1, kurtosis increases as b increases; when a≥1, kurtosis decreases as 

b increases; kurtosis basically increases in a. 

 

3.1.2 Probability Density Function 

Differentiating PDF ( )tg  in (3.3) with respect to t  yields 

( ) { }( ) ( )[ ]beattbeateattg tbtbtb −−+−= − λλλ λ 1exp'
22                                        (3.7) 

 

When 0>t , the sign of ( )tg '  is determined by the sign of  

( ) ( ) ( ) beattbtK tb −−+= λλ 1
2

                                                                       (3.8) 

 

If we let tx λ=  and bac λ= , then 

( ) ( ) ( ) becxxbtK xb −−+= 1
2

                                                                         (3.9) 
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We discuss the following different cases: 

1. 0=λ : In this case the modified Weibull reduces to the Weibull distribution. 

Then ( )tg  is monotonically decreasing if 1≤b  and is unimodal if 1>b , with 

mode 

b

b

b
aT

1
1







 −
=∗                                                                                            (3.10) 

 

2. 0=b : In this case it reduces to the type-1 extreme value distribution. Then 

( )tg  is monotonically decreasing if 1≥a  and is unimodal if 1<a , with mode 








=∗

a
T

1
log

1

λ
                                                                                            (3.11) 

Note in this case the support of CDF is the whole real line, but ∗T  is always 

positive. 

 

3. 10 << b : From (3.8) ( ) 00 2 <−= bbK ; as t  increases, ( )tK  increases, but 

whether ( )tK  can be larger than 0 depends on the value of c (if c is small, there 

may be a ∗T  that ( ) 0=∗TK ; if c is large, such ∗T  does not exist); ( ) −∞=
∞→

tK
t
lim . 

In other words, if c is small, ( )tK  is initially negative, then positive, and finally 

negative; if c is large, ( )tK  is invariably negative. However, there seems to be no 

simple explicit relationship between the value of b and threshold value of c. 
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( ) ∞=
→

tg
t 0
lim  and ( ) 0lim =

∞→
tg

t
. In both cases of c large or small, ( )tg  is S-shaped. 

If c is small, ( )tg  is initially decreasing and finally decreasing, but with a 

transitional period where it is increasing; if c is large, ( )tg  is monotonically 

decreasing. 

 

4. 1=b : From (3.8) ( ) 00 =K ; as t  increases, ( )tK  increases and reaches its 

maximum at ∗T , and then decreases; ( ) −∞=
∞→

tK
t
lim . In a word, ( )tK  is unimodal, 

initially positive and then negative. 

 

( ) ag =0  and ( ) 0lim =
∞→

tg
t

. ( )tg  is unimodal in such case. 

 

5. 1>b : From (3.8) ( ) 00 2 >−= bbK ; ( ) −∞=
∞→

tK
t
lim . ( )tK  is initially positive 

and then negative, so ( )tg  is unimodal. 

 

Figure 3.1 shows some typical shapes of PDF with different parameters 
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                   a=1, b=0.5, λ=12 (c=0.2887)                                      a=1, b=0.5, λ=1 (c=1) 

 
                               a=1, b=1, λ=1                                                          a=1, b=2, λ=1  

Figure 3.3 Plots of PDF of the modified Weibull distribution for different parameters 

 

3.1.3 Failure Rate Function 

Differentiating FRF ( )th  with respect to t, equation (3.4) yields 

( ) ( ){ }btbeatth tb −+= − 22' λλ                                                                         (3.12) 

 

The different shapes of FRF have been studied in Lai et al. (2003). We summarize 

the results here. 
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1. 1≥b , ( ) 0' >th  for all 0>t , so ( )th  is monotonically increasing. ( ) 00 =h  if 

1>b , ( ) abh =0  if 1=b ; and ( ) ∞=
∞→

th
t
lim . 

2. 10 << b , 0>λ , ( ) 0' <th  for 
λ

bb
tt

−
=<≤ ∗0 , ( ) 0' =∗th , and ( ) 0' >th  

for ∗> tt . ( ) ∞=
→

th
t 0
lim , ( ) ∞=

∞→
th

t
lim . ( )th  is bathtub shaped, with 

λ
bb

t
−

=∗  

being the change point. 

3. 10 << b , 0=λ , ( ) 0' <th  for all 0>t , so ( )th  is monotonically decreasing. 

( ) ∞=
→

th
t 0
lim  and ( ) 0lim =

∞→
th

t
. 

4. 0=b , ( ) 0' >th  for all ∞<<∞− t , so ( )th  is monotonically increasing. 

( ) 0lim =
−∞→

th
t

 and ( ) ∞=
∞→

th
t
lim . 

 

Figure 3.2 shows some typical shapes of FRF with different parameters 

 

 
                              a=1, b=1, λ=1                                                         a=1, b=0.5, λ=1 
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                             a=1, b=0.5, λ=0                                                         a=1, b=0, λ=1 

Figure 3.4 Plots of FRF of the modified Weibull distribution for different parameters 

 

3.2 Statistical Inferences 

For the modified Weibull distribution, the WPP transformation ( )tx log= , 

( )( )( )tFy −−= 1loglog  yields 

( ) ( )tbtay explog λ++=  

which is a nonlinear relationship, but with relatively simpler form as compared to 

that of other Weibull related distributions, such as exponentiated Weibull (Jiang 

and Murthy, 1999), which cannot be expressed in a multi-linear expression. 

 

Lai et al. (2003) discussed the graphic method of implementing WPP and an 

alternative plot and the analytic method applying multiple linear regression 

analysis to estimate the model parameters. 
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3.2.1 Maximum Likelihood Estimation 

A more rigorous method is maximum likelihood (ML) estimation. Ng (2005) 

derived the likelihood equations and second derivatives of the log-likelihood 

function with regard to the parameters in the case of progressively type-2 

censored data, and recommended an iterative procedure to obtain the MLE of the 

model parameters. We write the log-likelihood function, likelihood equations and 

second derivatives of the log-likelihood function here as reference. 

 

Let mttt <<< L21  denote the failure times of the items and mrrr <<< L21  be 

the numbers of censored items at the corresponding failure times. The underlying 

log-likelihood function is 

( ) ( ) ( )( ) 







= ∏

=

m

i

r

ii

i
batFbatfCbaL

1

,,|,,|log,, λλλ  

( ) ( ) ( ) ( ) ( )∑∑∑∑
====

+−+++−++=
m

i

tb

ii

m

i

i

m

i

i

m

i

i
ietratbttbamC

1111

1loglog1loglog
λλλ

                                                                                                                           (3.13) 

where ( )( ) ( )mi rrmnrrnrnnC −−−−−−−−−= KK 12121  and is usually 

neglected in analysis. 

 

Under mild regularity conditions (Gong and Samaniego, 1981; Godambe, 1960), 

the maximum of ( )λ,,baL  in (3.13) occurs when its derivatives are equal to 0. 

The likelihood equations are derived by taking differentiates of ( )λ,,baL  with 

respect to a, b and λ 
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( ) 01
1
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∂
∂

∑
=

m

i

tb

ii
ietr

a

m

a

L λ                                                                       (3.14) 

( ) ( ) 0log1
1

log
111

=+−
+

+=
∂
∂

∑∑∑
===

m

i

i

tb

ii

m

i i

m

i

i tetra
tb

t
b

L
iλ

λ
                            (3.15) 
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tb
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L λ

λλ
                                          (3.16) 

 

The second derivatives of ( )λ,,baL  with regard to a, b and λ are 

22

2

a

m

a

L
−=

∂
∂

                                                                                                 (3.17) 
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( )∑
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∂ m
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                                                                     (3.20) 

( )∑
=

++−=
∂∂
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The Hessian matrix of ( )λ,,baL  is 

( ) ( )
( ) ( )',,,,

,,
,,

2

λλ
λ

λ
baba

baL
baH

∂∂
∂

=                                                                    (3.23) 
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To get the MLE of the model parameters, an iterative procedure is needed here 

since equations (3.14) – (3.16) do not have closed form solutions. Methods of 

iteration include Newton-Raphson (Jennrich and Sampson, 1976), and 

Expectation Maximization (Dempster et al, 1977). 

 

In our current research, the Newton-Raphson iteration method is used to obtain 

the parameter estimates. The algorithm is comprised of the following steps, 

 

0. Use LSE or some other proper estimates of the parameters as starting point of 

iteration, denote the estimates as ( )000 ,, λba , and set k=0; 

 

1. Calculate ( )( )kkk baba LLL λλ ,,
,, , which is the derivative vector of ( )λ,,baL  with 

regard to a, b and λ, at point ( )kkk ba λ,, ; 

 

2. Calculate Hessian matrix ( )kkk baH λ,, , and the inverse ( )kkk baH λ,,1− ; 

 

3. Update ( )λ,,ba  as 

( ) ( ) ( )( ) ( )kkkbabakkkkkk baHLLLbaba
kkk

λλλ πλ ,,,,,,,, 1

,,111

−
+++ −= ; 
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4. Set k=k+1, and then go back to step 1. Continue the iterative steps until 

( ) ( )kkkkkk baba λλ ,,,, 111 −+++  is smaller than a threshold value.  

 

The final estimates of ( )λ,,ba  are the MLE of the parameters, denoted as ( )λ̂,ˆ,ˆ ba . 

 

At the MLE point ( )λ̂,ˆ,ˆ ba , the negative Hessian matrix ( ) ( )λ
λ ˆ,ˆ,ˆ

,,
ba

baH−  is called 

the Observed Fisher Information matrix and its inverse is the asymptotic 

approximate of the variance-covariance matrix of ( )λ̂,ˆ,ˆ ba  under normality 

approximation. 

 

3.2.2 Statistical Decision 

To test if the modified Weibull distribution is a more appropriate model, than the 

Weibull or type-1 extreme value distribution, to model a set of data, one can use 

the likelihood ratio test. 

 

When the null hypothesis is the Weibull distribution, the test statistic is given as 

( ) ( ){ }1111
ˆ,ˆˆ,ˆ,ˆ2 baLbaL −=Λ λ                                                                          (3.24) 

where ( )baL ,1
 is the log-likelihood function under the null hypothesis (2-

parameter Weibull) and ( )11
ˆ,ˆ ba  are the MLE of ( )baL ,1 , and ( )λ̂,ˆ,ˆ baL  is the log-

likelihood of the modified Weibull, which is the alternative hypothesis. 
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According to Akaike (1974), under the null hypothesis, 1Λ  is asymptotically 

distributed as chi-square 2

qp−χ  distribution, where p is the number of unknown 

parameters of the distribution in the alternative hypothesis, and q is the number of 

unknown parameters in the null hypothesis. Therefore, in this case, 
1Λ  is 

asymptotically distributed as 2χ . With a given significance level α, one should 

reject the null assumption if 
1Λ is larger than ( )

2

αχ , the upper ( )α−× 1100  

percentile point of a chi-square variable, or otherwise do not reject the assumption. 

 

However, it should be noted that when MLE of the parameters are used to 

compute the 2χ  statistic for goodness of fit test, the test statistic stochastically 

dominates that would be expected under the chi-square theory (Chernoff and 

Lehmann, 1954), and the result is the probability of rejection, when the null 

hypothesis if true, is greater than the desired significance level. 

 

Similarly, when the null hypothesis is type-1 extreme value distribution, the test 

statistic is 

( ) ( ){ }2222
ˆ,ˆˆ,ˆ,ˆ2 λλ aLbaL −=Λ                                                                        (3.25) 

where ( )λ,2 aL  is the log-likelihood function under the null hypothesis (type-1 

extreme value) and ( )
22

ˆ,ˆ λa  are the MLE of ( )λ,2 aL . 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

69 

 

 

Under the null hypothesis, 2Λ  is also asymptotically distributed as chi-square 2χ  

distribution. Therefore we can make statistical decisions based on the asymptotic 

distribution. 

 

3.3 Illustrative Examples 

3.3.1 Aarset Data 

The light bulb lifetime data from Aarset (1987) is often cited by researchers as a 

good example with bathtub shaped failure rate (e.g. Xie et al. (2002), Lai et al. 

(2003)). Since this data set will be used several times in the thesis, we put it here 

for reference 

 

Table 3.2 Lifetimes of 50 devices 

0.1 0.2 1 1 1 1 1 2 3 6 

7 11 12 18 18 18 18 18 21 32 

36 40 45 46 47 50 55 60 63 63 

67 67 67 67 72 75 79 82 82 83 

84 84 84 85 85 85 85 85 86 86 

 

 

Due to the S-shape of the TTT plot, the data exhibit a bathtub shaped failure rate 

(Aarset, 1987). 
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Figure 3.5 TTT transformation of the Aarset data 

 

Using the modified Weibull distribution to model the data, Lai et al. (2003) 

obtained the parameter estimates using a regression procedure 

( ) ( )01512.0,389.0,0876.0
~

,
~

,~ =λba , and Ng (2005) obtained the MLE 

( ) ( )02332.0,355.0,0624.0ˆ,ˆ,ˆ =λba . Both estimates of the shape parameter b 

support the assumption of bathtub shaped FRF. The following figure presents the 

fit of the modified Weibull distribution in a WPP plot 
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Figure 3.6 Goodness of fit of the modified Weibull to Aarset data 

 

The model fits the data well, though it does not capture the pattern perfectly. The 

following figure exhibit the fits of the other two popular models, the 

exponentiated Weibull and the Weibull extension, both with MLE as model 

parameters. 

 

Figure 3.7 Goodness of fit of the modified Weibull (solid), exponentiated Weibull (dashed) 

and Weibull extension (dotted) 
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However, it is quite difficult to say which model fits the data better than the others. 

In chapter 6 we will have more details on the comparison and there we will find 

that another newly proposed model, the odd Weibull, fit the data far better. 

 

Assuming a progressively type-2 censoring scheme for this data set, where only 

35 failures are observed, 43 =r , 410 =r , 323 =r , 433 =r  and 0=ir , 

3533 ,23 ,10 ,31 ≤≠≤ i . A progressively type-2 censored sample is obtained by 

censoring a predetermined number of units, once a failure or a number of 

consecutive failures happen. This scheme differs from a traditional type-2 

censoring scheme in that it provides more flexibility, and retains more 

information from the experiment with the same cost (e.g. Bairamov, 2006). 

 

Table 3.3 Simulated progressively type-2 censored sample 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

ti 0.1 0.2 1 2 3 6 7 11 12 18 21 32 36 40 45 46 47 50 

ri 0 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  

ti 55 60 63 63 67 72 75 79 82 82 83 84 84 84 85 86 86  

ri 0 0 0 0 3 0 0 0 0 0 0 0 0 0 4 0 0  
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By maximizing ( )λ,,baL  iteratively, the MLE are obtained as 

( ) ( )0263.0,3398.0,0376.0ˆ,ˆ,ˆ
000 =λba  and the likelihood is ( ) -170.65ˆ,ˆ,ˆ =λbaL , 

and the approximates of variance are ( ) 4

0 10*1718.4ˆvar
−=a , ( ) 0206.0ˆvar 0 =b  

and ( ) 5

0 10*3.7684ˆvar −=λ . 

 

To see if it is necessary to use the modified Weibull distribution instead of 

Weibull, assuming the Weibull distribution as the underlying model, then the 

parameter estimates are ( ) ( )044.1,0128.0ˆ,ˆ
11 =ba  and the maximized likelihood is 

( ) -181.21ˆ,ˆ
111 =baL . Hence the test statistic 

( ) ( )[ ] 8415.312.21ˆ,ˆˆ,ˆ,ˆ2 2

05.01111 =>=−=Λ χλ baLbaL  at 0.05 significance level, so 

the null hypothesis is rejected. Therefore, we claim that the modified Weibull 

distribution provides a better fit for the data than the Weibull distribution. 

 

Alternatively, assuming the type-1 extreme value distribution as the underlying 

model, then the parameter estimates are ( ) ( )0385.0,0639.0ˆ,ˆ
22 =ba  and the 

maximized likelihood is ( ) 181.02ˆ,ˆ
222 =caL . The test statistic 

8415.394.20 2

05.01 =>=Λ χ . Hence, at the 0.05 significance level, we can also 

claim that the modified Weibull provides a better fit for the data than the type-1 

extreme value distribution. 
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3.3.2 Kumar Data 

The time between successive failures data (in hours) of load-haul-dump machines 

for loading rock in underground mines were gathered and studied in Kumar et al. 

(1989). The following table contains this data set. 

 

Table 3.4 Time between successive failures of LHD machines 

16 39 71 95 98 110 114 226 294 344 

555 599 757 822 963 1077 1167 1202 1257 1317 

1345 1372 1402 1536 1625 1643 1675 1726 1736 1772 

1796 1799 1814 1868 1894 1970 2042 2044 2094 2127 

2291 2295 2299 2317       

 

 

The TTT plot also has an S-shape, so the failure rate function has a bathtub shape, 

and then we can use the modified Weibull distribution to fit the data. 

 

Figure 3.8 TTT transformation of the Kumar data 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

75 

 

 

MLE of the model parameters of a modified Weibull distribution fitting are 

( ) ( )0011.0,4322.0,007.0ˆ,ˆ,ˆ =λba , which support the assumption that FRF is 

bathtub shaped. The following figure shows the fit of the modified Weibull model. 

 

 

Figure 3.9 Goodness of fit of the modified Weibull to Kumar data 

 

3.4 Maximum Probability Estimation for 3-Parameter 

Weibull 

As a generalization of MLE, the maximum probability estimation (MPE) method, 

which was introduced by Weiss and Wolfowitz (1967), does not have some of the 

intrinsic inadequacies of the general MLE method, most importantly the 

prerequisite of “regularities class”. MPE raised a lot of interest during the 60s’ 

and 70s’ and was discussed in detail by Weiss and Wolfowitz (1970), Kuβ (1972), 
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Dudewicz (1973), Wegner (1976), Roussas (1977), Akahira (1991), etc. However, 

during the recent years, there seems to be no updated research and application 

around this method. 

 

It is well known that for the 3-parameter Weibull distribution (2.1), when the 

shape parameter β<1, the likelihood function is not bounded so MLE do not exist, 

when 1≤β<2, MLE of the parameters exist but do not satisfy the usual regularity 

conditions and hence are inefficient, and only when β>2, the distribution function 

is regular and MLE of the model parameters exist and are consistent (see Rockette 

et al., 1974; Smith, 1985; and Kantar and Senoglu, 2008). The CDF of this 

distribution is put down below for reference 

( )



















 −
−−=

β

α
τt

tF exp1  

 

The difficulties in ML estimation of the parameters of the 3-parameter Weibull 

distribution and the ways to circumvent them have been reviewed in Chapter 2. 

 

Since researchers claim that MPE is able to derive parameter estimates even when 

the underlying distribution does not meet the regularity conditions, in this section 

we will formulate the estimation procedure for the parameters of the 3-parameter 

Weibull distribution and study the characteristics of the estimators. 
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Given an underlying PDF ( )θ|tf , where θ is the unknown or partially unknown 

parameter vector and Θ is the corresponding parameter space, and a sample of 

data { }nttt ,,, 21 L  from the distribution, MLE of the parameters are obtained by 

maximizing the likelihood function ( ) ( )∏
=

=
n

i

in tftttl
1

21 |,,,| θθ L  over the 

parameter space Θ, that is 

( )ntttl ,,,|maxargˆ
21 Lθθ

θ Θ∈
=                                                                         (3.26) 

 

Instead of directly maximizing ( )ntttl ,,,| 21 Lθ , MPE method estimates the 

parameters via maximizing the integral of ( )ntttl ,,,| 21 Lθ  over the neighborhood 

of each Θ∈θ , that is 

( )
( )

θθθ
θθ

dxxxl
R

n∫
Θ∈

= ,,,|maxarg
~

21 L                                                              (3.27) 

where ( ) { }dR <−= θθθθ '|'  and d is a proper constant. 

 

For the 3-parameter Weibull distribution, since the “non-regularity” occurs on the 

location parameter τ, to make things simpler, the first step to study this problem 

would be to estimate τ, assuming the other two parameters α and β are known. 

 

If we estimate τ using by (3.27), the computation would be very difficult.  This is 

because as sample size n increases, the likelihood function ( )τl  would become 
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quite steep and hence make the integration computationally intractable. Therefore, 

as what is always done in ML estimation, we can modify the formula to maximize 

the integral of the log-likelihood instead of likelihood itself 

{ }
( )

( )
τττ

ττ
dtttL

R

n
tt n

∫
<

= ,,,|maxarg~
21

,,min 1

L

L

                                                             (3.28) 

where ( ) ( ) ( ) ∑∑
==








 −
−−−+−=

n

i

i
n

i

in

t
tnntttL

11

21 log1loglog,,,|

β

α
τ

τβαββτ L  is 

the log-likelihood function. 

 

Let ( ) { }nrnrR <−<−= ττττ '|'  where r is a small positive number. For 

{ } nrtt n −< ,,min 1 Lτ , omitting irrelevant terms, the integral of the log-

likelihood function ( )τL  can be expressed as 

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

( )∑∑∑

∑∑
+

+

+−
+

−−−−−−−

−−
+

++−+−−=

1

1

1

1
log1         

1

1
log1

β

β

β

β

τ
βα

ττβ

τ
βα

ττβτ

nrtnrtnrt

nrtnrtnrtH

iii

iii

  

  (3.29) 

 

To maximize (3.29), we differentiate ( )τH  with respect to τ 

( ) ( ) ( ) ( )

( ) ( ) ( )∑∑

∑∑

−−−+−−−

+−+−−−=

β

β

β

β

τ
α

τβ

τ
α

τβτ

nrtnrt

nrtnrtH

ii

ii

1
log1            

1
log1'

                     (3.30) 
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When β>1, ( )τ'H  it monotonically decreasing and has a unique zero point within 

{ }( )nrniti −=∞− ,,1,min, L . Hence ( )τH  has a unique local maximum, which 

is the MPE.  

 

In contrast, when β<1, ( ) 0' >τH  for all { } nrtt n −< ,,min 1 Lτ , so ( )τH  is 

monotonically increasing and is unbounded as r approaches 0. 

 

To conclude, when β≥1, the MPE of τ exists and is unique. When β<1, the MPE 

of τ does not exist. 

 

It turns out that our procedure for pursuing the MPE of the location parameter τ 

does not always guarantee the existence of the estimator, and hence is not usable 

unless β≥1. Nevertheless, our main purpose of this section is to bring attention 

from researchers to MPE, and hopefully in the future applicable estimation 

procedures can be generated based on this method. 

 

3.5 Summary 

In this chapter, the moments, PDF and FRF of the modified Weibull distribution 

are discussed. The log-likelihood function, likelihood equations and second 

derivatives of the log-likelihood are derived, and the iterative procedures for 

approaching the MLE of the model parameters are described. The likelihood-ratio 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

80 

 

test is employed to make statistical decisions between the modified Weibull 

distribution and its special cases, the Weibull and type-1 extreme value 

distributions. A practical example is presented to illustrate the use of the 

distribution to model real lifetime data and the adaptability of the distribution to 

bathtub shaped failure rate data. At the final part, MPE method is studied and 

applied to the estimation of the parameters of the 3-parameter Weibull 

distribution. 
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Chapter 4.  On the Existence and Uniqueness of 

the MLE of the Modified Weibull Distribution 

Given a set of sample data and data-fit statistical distribution, the MLE of the 

parameters of the distribution are obtained by maximizing the log-likelihood 

function. For distributions with more than one model parameter, iterative 

procedures are often needed to carry out the maximization. In the iterative steps, 

the property of the matrix composing of the second derivatives of the log-

likelihood function with respect to the parameters, called the Hessian matrix, is 

very important. Besides, if the MLE of the parameters exist, the minus of the 

Hessian matrix at the MLE point is the Observed Fisher Information matrix and 

its inverse is the approximate variance-covariance matrix of the MLE. 

 

In this chapter, we discuss the problem involved in the computation of the 

Observed Fisher Information matrix and the MLE for a broad class of the Weibull 

models, and then we apply the techniques developed to study the ML estimation 

procedures and properties of the model parameters of the modified Weibull 

distribution. 

 

Part of the content is published in Jiang et al. (2010). 

 

Consider the class of distributions introduced by Gurvich et al. (1997), 
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( ) ( ){ }taMtG −−= exp1                                                                                  (4.1) 

where 0>a  is a model parameter and ( )tM  is an increasing function of t with or 

without parameters. 

 

When ( ) ttM = , ( )tG  is the exponential CDF; when ( ) bttM =  with a parameter b, 

( )tG  is the Weibull CDF; when ( ) ( )bttM exp= , ( )tG  is the type-1 extreme value 

CDF. If ( )tM  is a function with two or more parameters, ( )tG  could represent a 

broad class of distributions, including the Weibull extension (Xie et al., 2002) and 

the modified Weibull (Lai et al., 2003). 

 

4.1 Simplification of Observed Fisher Information Matrix 

In this section we consider ( )cbtM ,|  (which is abbreviated as ( )tM  in the 

following) with two parameters b and c, so CDF ( )tG  of (4.1) has three 

parameters in all. Taking the derivative of ( )tG  with respect to t we obtain PDF 

of the distribution 

( ) ( ) ( ){ }taMtamtg −= exp                                                                              (4.2) 

where ( ) ( )tM
t

cbtm
∂
∂

=,| , and we write it as ( )tm  in the following text. 

Then the log-likelihood function with a complete sample nttt ,,, 21 L  (though right 

censoring is essentially the same) is 
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( ) ( )( ) ( )∑∑ −+= ii tMatmancbaL loglog,,                                                 (4.3) 

 

Differentiating ( )cbaL ,,  with respect to a, b and c and equating the derivatives to 

zero, we obtain the likelihood equations 

( ) 0=−=
∂
∂ ∑ itM

a

n

a

L
                                                                                   (4.4) 

( ) ( )
( )

0=+−=
∂
∂

∑∑
i

ib

ib
tm

tm
tMa

b

L
                                                                (4.5) 

( ) ( )
( )

0=+−=
∂
∂

∑∑
i

ic

ic
tm

tm
tMa

c

L
                                                                (4.6) 

where ( ) ( )tM
b

tM b ∂
∂

= , ( ) ( )tM
c

tM c ∂
∂

= , ( ) ( )tm
b

tmb ∂
∂

=  and ( ) ( )tm
c

tmc ∂
∂

= . 

 

Take second derivatives 

22

2

a

n

a

L
−=

∂

∂
                                                                                                   (4.7) 

( ) ( )
( )

( )
( )∑∑∑ 








−+−=

∂

∂
2

2

2

i

ib

i

ibb
ibb

tm

tm

tm

tm
tMa

b

L
                                          (4.8) 

( ) ( )
( )

( )
( )∑∑∑ 








−+−=

∂

∂
2

2

2

i

ic

i

icc

icc
tm

tm

tm

tm
tMa

c

L
                                          (4.9) 

( )∑−=
∂∂

∂
ib tM

ba

L2

                                                                                      (4.10) 

( )∑−=
∂∂

∂
ic tM

ca

L2

                                                                                      (4.11) 
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( ) ( )
( )

( ) ( )
( )[ ]∑∑∑ −+−=

∂∂
∂

2

2

i

icib

i

ibc

ibc
tm

xmtm

tm

tm
tMa

cb

L
                                 (4.12) 

where bbM , bcM , ccM , bbm , bcm  and ccm  are the second and mixed partial 

derivatives of ( )tM  and ( )tm  with regard to b and c, respectively. 

 

The Observed Fisher Information matrix is the negative Hessian matrix at the 

MLE point ( )cba ˆ,ˆ,ˆ  

( ) ( )
( ) ( ) ( )cba

cbacba

cbaL
cbaHI

ˆ,ˆ,ˆ

2

',,,,

,,
ˆ,ˆ,ˆ

∂∂
∂

−=−=                                                    (4.13) 

 

At MLE ( )cba ˆ,ˆ,ˆ , likelihood equations (4.4) – (4.6) hold. From (4.5) and (4.6) 

( ) ( )
( )∑∑ =

i

ib

ib
tm

tm

a
tM

1
                                                                              (4.14) 

( ) ( )
( )∑∑ =

i

ic

ic
tm

tm

a
tM

1
                                                                              (4.15) 

 

When ( )tM  is a multinomial, exponential or some other functions of t, as in the 

modified Weibull and Weibull extension cases, 
( )
( )tm

tmb  and 
( )
( )tm

tmc  in equations 

(4.14) and (4.15) are usually simpler than ( )tM b  and ( )tM c  because high order 

or exponential terms of t approach 0 after the dividing operation. Therefore, we 
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can simplify the computation of (4.10) and (4.11) and thus the Observed Fisher 

Information matrix I by introducing (4.14) and (4.15) 

( )
( )∑−=

∂∂
∂

i

ib

tm

tm

aba

L 12

                                                                                  (4.16) 

( )
( )∑−=

∂∂
∂

i

ic

tm

tm

aca

L 12

                                                                                   (4.17) 

 

However, this simplification procedure only makes sense at the MLE point. When 

( ) ( )cbacba ˆ,ˆ,ˆ,, 000 ≠ , equations (4.14) and (4.15) generally do not hold. In such 

cases, (4.16) and (4.17) also do not hold. Consequently, the simplification can 

only be used for the computation of the approximated variance-covariance matrix 

of the MLE. In the next section 4.2, another technique is proposed to handle the 

problem encountered in the MLE searching procedure. 

 

Given a complete sample nttt ,,, 21 L  from the modified Weibull, the log-

likelihood function (3.12) as shown in chapter 3 is 

( ) ( ) ( ) ∑∑∑∑ −+++−+= itb

iiii etatbttbanbaL
λλλλ loglog1log,, (4.18) 

 

At the MLE point, equation (4.14) and (4.15) are 

∑∑∑ +
+

= i

i

i

tb

i t
atba

tet i log
111

log
λ

λ                                                   (4.19) 
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∑∑∑ +
+

=+
i

i

itb

i t
atb

t

a
et i

111

λ
λ

                                                              (4.20) 

 

It is obvious that the right sides of equations (4.19) and (4.20) are easier to 

compute than the left sides. Substituting them into (4.16) and (4.17), we obtain 

∑∑ −
+

−=
∂∂

∂
i

i

t
actbaba

L
log

1112

                                                             (4.21) 

∑∑ −
+

−=
∂∂

∂
i

i

i t
actb

t

aca

L 112

                                                                   (4.22) 

 

4.2 Simplification of the Log-likelihood Function 

The evaluation of the MLE of the parameters usually involves iterative steps 

when there are more than one model parameters. In such case, the maximization 

process continues until all the likelihood equations are satisfied. However, this 

process is often not easy and needs a lot of numerical computation, and even 

worse sometimes the process does not converge. In this section, a technique is 

proposed to help deal with this problem and is shown to be useful for a broad 

class of distributions. 

 

We extend the class (4.1) a bit to accommodate more distributions 

( ) ( ){ }taMtG −−= exp1  or ( ) ( )[ ]{ }a
tMtG −−= exp1                                   (4.23) 
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where ( )tM  is an increasing function of t with parameter vector θ but without a. 

(4.23) implies a log-linear relationship between CDF or SF of the aiming 

distribution and CDF or SF of the distribution without parameter a. The 

exponentiated Weibull belongs to this class of distributions. 

 

Now the log-likelihood function for the former case of (4.23) is (for the latter case 

the discussion is similar, so we omit it here for brevity) 

( ) ( )( ) ( )∑∑ −+= ii tMatmanaL loglog,θ                                                 (4.24) 

 

Similarly, likelihood equations are derived 

( ) 0=−=
∂
∂ ∑ itM

a

n

a

L
                                                                                 (4.25) 

( ) ( )
( )

0
/

/ =+−=
∂
∂

∑∑
i

i

i
tm

tm
tMa

L θ

θ
θ

                                                              (4.26) 

Note that (4.26) may be composed of several equations, depending on the 

dimensionality of θ . 

 

At the MLE point ( )θ̂,â , equation (4.25) holds (since 0
22

2

<−=
∂

∂

a

n

a

L
), so 

( )∑
=

itM

n
a                                                                                                 (4.27) 

 

Substituting (4.27) into (4.26), we obtain the following equation(s) 
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( )
( )

( )
( )

0
//

=+−=
∂
∂

∑∑
∑

i

i

i

i

tm

tm

tM

tMnL θθ

θ
                                                             (4.28) 

 

It automatically follows that equations (4.25) and (4.26) are equivalent to (4.27) 

and (4.28). 

 

Based on (4.28), omitting the constant term nnn −log , we write the concentrated 

log-likelihood function 

( ) ( )[ ] ( )[ ]∑∑ +−=∗
ii tmtMnL loglogθ                                                       (4.29) 

 

We say a log-likelihood function can achieve its regular maximum when at the 

MLE point the corresponding derivatives of the log-likelihood function with 

respect to the parameters are equal to zero, i.e. likelihood equations hold. 

 

Lemma 4.1 Maximizing ( )θ,aL  is equivalent to maximizing ( )θ∗L . Hence, the 

MLE of θ  in ( )θ,aL  are the same as the MLE of ( )θ∗L . 

 

Proof: Suppose ( )11 ,θa  maximize ( )θ,aL . Let Θ  denote the parameter space of 

θ . If Θ∈2θ  maximizes ( )θ∗L  and ( ) ( )12 θθ ∗∗ > LL , we let 
( )

2

2

θ
∑

=
itM

n
a , 

then 
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( ) ( )( ) ( )( ) ntmtMnnnaL ii −+−= ∑∑
22

logloglog, 22 θθ
θ  

                     ( )2log θ∗+−= Lnnn  

                     ( )1log θ∗+−> Lnnn  

                     ( )11 ,θaL=  

The last equality holds because of (4.27). 

 

This contradicts the assumption that ( )11 ,θaL  is the maximum, so 1θ  maximizes 

( )θ∗L . 

 

On the contrary, suppose ∗
1θ  maximizes ( )θ∗L , then ( )∗∗

11 ,θa  maximize ( )θ,aL , 

where 
( )

∗∑
=∗

1

1

θitM

n
a . Otherwise, if ( )∗∗

22 ,θa  maximize ( )θ,aL  and 

( ) ( )∗∗∗∗ > 1122 ,, θθ aLaL ,  from (4.27) we have 
( )

∗∑
=∗

2

2

θitM

n
a , and then 

( ) ( )( ) ( )( )∑∑ ∗∗ +−=∗∗

22

loglog2 θθ
θ ii tmtMnL  

                 ( )( ) ( )
∗∗ ∑∑ −++−= ∗

22

logloglog 2 θθ ii tMatmannnn  

                 ( )∗∗+−= 22 ,log θaLnnn  

                 ( )∗∗+−> 11 ,log θaLnnn  

                 ( )∗∗= 1θL  

 

This contradicts the assumption that ( )∗∗
1θL  is the maximum, so ( )∗∗

11 ,θa  

maximize ( )θ,aL . Q.E.D. 
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4.3 Log-Likelihood Function of the Modified Weibull 

Distribution 

A log-likelihood function ( )θL  is said to have a local maximum at point θ̂ , if 

there exists some 0>ε , such that ( ) ( )θθ LL ≥ˆ  for Θ∈θ  when εθθ <− ˆ , where 

Θ  is the parameter space of the distribution function. If ( )θL  has only one local 

maximum, then ( )θ̂L  is the unique maximum. If for all Θ∈θ , ( ) ( )θθ LL ≥ˆ , then 

θ̂  is called the global maximum point of ( )θL . Obviously, a unique maximum is 

also a global maximum, but a global maximum is not necessarily the unique local 

maximum. 

 

As pointed out by Makelainen et al. (1981), the occurrence of several local 

maxima of the likelihood would result in the unwanted situation that 

“summarization of the data by means of a maximum likelihood estimate and its 

asymptotic variance could be very misleading”. Examples of this case include the 

2-parameter Cauchy distribution (Barnett, 1966). In addition, conventional 

asymptotic inferential procedures require that the global maximum point be 

located as an interior solution to the likelihood equations. Therefore, for the sake 

of simple numerical optimization of the likelihood and statistical inference of the 

parameters, analytical results regarding the uniqueness property of the MLE is of 

practical importance. 
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For the modified Weibull distribution, Ng (2005) discussed ML estimation of the 

model parameters for progressively type-2 censored data. The paper 

recommended iterative steps for the MLE searching, but did neither verify that the 

procedure can reach the estimate, nor prove that the estimates obtained by solving 

the likelihood equations maximize the log-likelihood. Bebbington et al. (2008) 

showed that the determinant of the Fisher information matrix is not everywhere 

positive, so claimed that the MLE of the parameters of the modified Weibull 

distribution do not always exist. However, this assertion is not accurate. In the rest 

of this chapter, the techniques developed above are applied to the modified 

Weibull distribution to prove the existence and uniqueness of the MLE of the 

model parameters. 

 

Progressively type-2 censoring is a natural generalization of the complete and 

single right censoring schemes, but has a lot of practical applications. Given any 

progressively type-2 censored sample data { }mtt <<L1  { }mrr ,,1 L , the log-

likelihood function under modified Weibull assumption is 

( ) ( ) ( ) ( ) ( ) ( )∑∑∑∑
====

+−+++−+=
m

i

tb

ii

m

i

i

m

i

i

m

i

i
ieatrtbttbambaL

1111

1loglog1log,,
λλλλ

                                                                                                                           (4.30) 
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We make a natural assumption that not all it  are identical, so 2≥m . In fact m  

has to be at least 3 in order to be large enough to validate the parameter estimation 

endeavor. 

 

Substituting 

( )∑
=

+
=

m

i

tb

ii
ietr

m
a

1

1
λ

into (4.30), the log-likelihood function ( )λ,,baL  

is transformed to with only two unknown parameters 

( ) ( ) ( ) ( ) 



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
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+−+−++= ∑∑∑∑
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i
ietrmttbtbbL

1111

1loglog1log,
λλλλ (4.31) 

 

From Lemma 4.1, maximizing ( )λ,,baL  is equivalent to maximizing ( )λ,bL∗ . 

 

Before going into the details of ( )λ,bL∗ , we present the results of Makelainen et 

al. (1981) as preliminaries. 

 

4.4 Preliminaries 

According to the result in Makelainen et al. (1981), in order to prove the MLE of 

the log-likelihood function ( )θL  exist and are unique, one needs to show ( )θL  is 

constant on the boundary of the parameter space and its Hessian matrix is 

negative-definite everywhere. That is, 

( ) ( )
'

2

θθ

θ
θ

∂∂
∂

=
L

H                                                                                              (4.32) 
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- The determinant of the upper left 1-by-1 corner of ( )θH  is negative; 

- The determinant of the upper left 2-by-2 corner of ( )θH  is positive ; 

- The determinant of the upper left 3-by-3 corner of ( )θH  is negative; 

- … 

 

In the single dimensional case, the above condition says that ( )θL  has the same 

values or limits in its both tails (constant on the boundary) and it is concave 

everywhere (Hessian matrix negative-definite). 

 

In the multiple dimensional case, concavity is replaced by negative-definiteness. 

 

We found that the Hessian matrix ( )λ,,baH  as shown in (3.22) is not everywhere 

negative-definite, which is also observed by Bebbington et al. (2008), though 

what they considered was the Expected Fisher Information matrix, instead of the 

Observed Fisher Information matrix, which is negative Hessian. 

 

However, as will be seen in the next section, the transformed Hessian matrix 

( )λ,bH ∗  is indeed negative-definite everywhere. 
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4.5 Existence and Uniqueness of MLE 

Deriving (4.31) with respect to b and λ, we have the new likelihood equations 
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                                       (4.34) 

 

It should be noted here that a λ which makes (4.34) true could be negative. Hence, 

we extend the parameter space 
1Θ  of the log-likelihood function ( )λ,bL∗  

( ){ }0,:,1 ≥=Θ λλ bb                                                                                    (4.35)  

to data dependent 

( ){ }mitbb i ,,1,0:, L=>+=Θ∗ λλ                                                            (4.36) 

 

Hence, the boundary of the new parameter space ∗Θ  is 

{ } { } ( ){ } ( ){ }1,0:,,0:, tbbtbbbb m λλλλλλ −=>∪−=>∪∞=∪∞==Θ∂ ∗   (4.37) 
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4.5.1 Constancy on the Boundary 

In this section, we will show that ( )λ,bL∗  approaches ∞−  on each part of the 

boundary. 

 

Lemma 4.2 If 2≥m , ( ) −∞=∗

−>∞→
λ

λ
,suplim bL

mtbb
. 

Proof: From (4.31), given 0>b , we have 
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    (4.38) 

Note mt  is the largest observed failure time. 

 

Let ( ) ( ) ( ) mm

m

i

i

m

i

imb tmtmbttbtbmg λλλλ −−+−++= ∑∑
==

loglog1log
11

          (4.39) 

 

Then the maximum of ( )λbg  achieves at the point ∗λ  where ( ) 0' =∗λbg , or 

m

m

i

im

t

b

tmt

m
−

−
=

∑
=

∗

1

λ                                                                                   (4.40) 

 

We have 
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Let ( ) xxxs log1 +−= , ( ) 01
1

' >−=
x

xs  for 10 << x , so ( ) ( ) 01 =< sxs  for 

10 << x . 

 

Hence, because 
1ttm >>L , we have 

0loglog
111

<



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Therefore, ( ) −∞=
−>∞→

λ
λ

b
tbb

g
m

suplim , and since ( ) ( ) ( )mb rmgbL +−<∗ 1log, λλ , 

( ) −∞=∗

−>∞→
λ

λ
,suplim bL

mtbb
. Q.E.D. 

 

Lemma 4.3 If 2≥m , ( ) −∞=∗

−>∞→
λ

λλ
,suplim

1

bL
tb

. 

The proof is similar to lemma 4.2, so omitted here. Q.E.D. 

 

Lemma 4.4 ( )
( ){ }

−∞=
−=>

∗

mtbbb
bL

λλ
λ

,0:,
, . 
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Proof: This is true because ( ) ( ){ } −∞=+
−=> mtbbbmtb

λλ
λ

,0:,
log  and other terms are 

infinite. Q.E.D. 

 

Lemma 4.5 ( )
( ){ }

−∞=
−=>

∗

1,0:,
,

tbb
bL

λλλ
λ . 

Proof: This is true because ( ) ( ){ } −∞=+
−=> 1,0:,1log

tbb
tb

λλλ
λ  and other terms are 

infinite. Q.E.D. 

 

Theorem 4.6 If 2≥m , 
( )

( ) −∞→∗

Θ∂→
λ

λ
,lim

,
bL

b
, then the log-likelihood function is 

constant on the boundary ∗Θ∂  of the parameter space ∗Θ . 

Proof: This is the direct result of lemmas 4.2 – 4.5. Q.E.D. 

 

4.5.2 Negative-Definiteness of Hessian Matrix H*(b,λ)  

Differentiating (4.33) and (4.34) with respect to b  and λ , we get the second and 

mixed derivatives 
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                                                                                                                     (4.43) 
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Then the Hessian matrix is 
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Lemma 4.7 The upper left 1-by-1 corner 
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 is negative. 

Proof: We write (4.43) here 
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Applying the Cauchy-Schwarz inequality, that is 

( ) ( )( )∑∑∑ ≤ 222

iiii baba  
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Lemma 4.8 If 2≥m , ( )( ) 0,det >∗ λbH  for ( ) ∗Θ∈λ,b . 

Proof: To simplify notation, the following symbols are used: 
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In sum, 032
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This completes the proof of lemma 4.8. Q.E.D. 

 

Lemmas 4.7 and 4.8 lead to the following theorem 4.9. 

 

Theorem 4.9 The Hessian matrix ( )λ,bH ∗  is negative-definite at every point of  

( ){ }mitbb i ,,1,0:, L=>+=Θ∗ λλ . 

 

4.5.3 Existence and Uniqueness of MLE 

From theorem 4.6 and 4.9, and the theorem of Makelainen et al. (1981), the 

existence and uniqueness of the MLE of parameters ( )λ,b  for the log-likelihood 

function ( )λ,bL∗  is guaranteed. We have the following main result of this chapter. 
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Theorem 4.10 Given a progressively type-2 censored sample { }mtt <<L1  

{ }mrr ,,1 L , where 3≥m , the MLE of the parameters of the modified Weibull 

distribution exist in the parameter space 

( ){ }mitbaba i ,,1,0,0:,, L=>+>=Θ λλ  and are unique. 

Proof: This is simply because â  is determined by b̂  and λ̂ . Q.E.D. 

 

Theorem 4.10 shows that given any progressively type-2 censored sample, for the 

modified Weibull distribution we can define a new parameter space Θ  which 

includes the original one ( ){ }0,0,0:,,0 ≥≥>=Θ λλ baba  as subspace. With 

such definition, the MLE of the parameters exist and are unique. 

 

As can be seen, for some sample data, the obtained MLE may not necessarily 

reside in 0Θ . In such case, the likelihood equations (3.13), (3.14) and (3.15) do 

not have common non-negative solutions and the fitted modified Weibull model 

with these MLE is not suitable to model lifetime data. However, we can treat it as 

a constraint optimization problem subject to inequality constraints 

0,0,0 ≥≥> λba  and get the MLE satisfying these regularity conditions which 

maximize the log-likelihood. 
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4.6 Illustrative Examples 

In this section we present several examples to show that given progressively type-

2 censored samples the MLE of the modified Weibull parameters exist and are 

unique. 

 

4.6.1 Data from Aarset (1987) 

It was shown in Aarset (1987) that the TTT plot of the lifetimes of the 50 devices 

indicates a bathtub-shaped failure rate, thus it is appropriate to use the modified 

Weibull distribution to model the data. The dataset is given as follows. 

 

From table 3.2, we can see that many data coincide, which means that the data 

might be treated as progressively type-2 censored sample in table 3.3. Hence, 35 

failure times can be withdrawn from the table, and the numbers of censored units 

are 43 =r , 410 =r , 323 =r , 433 =r , and 33 ,23 ,10 ,3 ,0 ≠= iri . 

 

Maximizing the log-likelihood function subject to the non-negative constraints, 

the MLE of the parameters are ( ) ( )398,0.02630.0376,0.3ˆ,ˆ,ˆ =λba .  

 

To show the pattern of the likelihood, we plot the log-likelihood function ( )λ,bL∗  

in the neighborhood of the MLE ( ) ( )2630.3398,0.0ˆ,ˆ =λb . Since the MLE of b  
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and λ  are 0.3398  and 0.0263  respectively, the plotting area of the two 

parameters is confined to a subspace ]1.0,0[]1,0[ ×  of the first quadrant. In order 

to describe the likelihood, we draw two plots, a surface plot and a contour plot. 

 

 

          Figure 4.1 Surface plot of L1(b, λ)                        Figure 4.2 Contour plot of L1(b, λ) 

 

From the two plots, it is easy to see that ( )λ,bL∗  has only one local maximum in 

the area ]1.0,0[]1,0[ × , and it spreads out to the whole [ ) [ )∞×∞ ,0,0  space like 

climbing down a hill. 

 

4.6.2 A Simulated Example 

As another illustrative example, we generated a progressively type-2 censored 

sample of size 30, where ( )3385.9,2069.6,0952.4,2781.3,8784.1,2719.1=t  and 

( )4,4,4,4,4,4=r  with model parameters ( ) ( )1.0 ,1 ,1.0,, =λba . 
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Constraint optimization yields MLE ( ) ( )0,6729.1,014.0ˆ,ˆ,ˆ =λba , and the log-

likelihood at this point is -23.4387. However, we note that the likelihood 

equations (4.33) and (4.34) do not hold when ( ) ( )0,6729.1ˆ,ˆ =λb . Therefore, we 

extend the parameter space to ∗Θ  and maximize ( )λ,bL∗  in this region. ( )λ,b  

that maximize ( )λ,bL∗  are located at ( ) ( )0189.0,7621.1ˆ,ˆ
11 −=λb . At this point the 

likelihood equations hold and the log-likelihood is -23.4353. 

 

It is interesting to see that the “regular” MLE ( )11
ˆ,ˆ λb  that maximize the log-

likelihood and also maintain the likelihood equations are not in the first quarter of 

the λ−b  space, so these parameters ( ) ( )0189.0,7621.1,0136.0ˆ,ˆˆ
111 −=λba  are not 

suitable for the modified Weibull distribution to model lifetime data. The 

appropriate estimates of the parameters are ( ) ( )0,6729.1,014.0ˆ,ˆ,ˆ =λba , which 

reduce the modified Weibull to the Weibull distribution. 

 

4.7 Negative MLE 

As we have shown in the previous section, it is possible that the estimates 

obtained by directly maximizing the log-likelihood function (4.31) over the 

parameter space Θ  do not conform to the non-negativity conditions of the model 

parameters, i.e. either 0ˆ <b  or 0ˆ <λ . Therefore constraint optimization 

techniques are required to ensure the parameter estimates are non-negative. In this 
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section, we will do a simulation study to look into this phenomenon and discuss 

the relationship between the percentage of 0 estimated values, which refers to the 

negative estimates if they were obtained by directly maximizing the log-

likelihood, and the magnitudes of the parameter settings and sample sizes. 

 

We note that if T follows a modified Weibull distribution with parameters (a, b, λ), 

then Ta b1  is also modified Weibull distributed, but with model parameters (1, b, 

λa
-1/b

). This is because 

( ) ( )
( )tab

bb

b

et

taTtTa
1

exp                    

PrPr 11

−

−=

>=> −

λ
 

 

Since rescaling a random variable T and a random sample t does not alter the 

estimation of b and changes the estimate of λ proportionately, we can simplify the 

simulation by generating data from parameters (1, b, λ), only changing the values 

of b and λ, and estimating the parameters based on these generated samples. 

 

The values of the parameters b and λ are picked from (0.1, 0.2, 0.5, 1, 2) × (0.1, 

0.2, 0.5, 1, 2), and for each pair of the parameters, we generate 5000 samples with 

sample size of 10, 20, 50 and 100. We calculate the maximum likelihood 

estimates of the parameters for each of the samples and count the number of 

estimates which are zero. The simulation results are as follows (since â  must be 

positive, it is not included in the following tables). The figure in the upper right 
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corner of each cell is the number of instances where 0ˆ =b , while the figure in the 

lower left corner is the number of instances where 0ˆ =λ , out of 5000. 

 

Table 4.1 Number of Zero Estimates for Sample Size 10 

            b 

 λ 

0.1 0.2 0.5 1 2 

0.1               1 

    1 

               0 

    28 

             0 

    533 

            13  

  1458 

             24 

  2049 

0.2               0        

    4 

               0 

    32 

             3 

    491 

            10 

  1263 

             35 

  1934 

0.5               1 

    3 

               0 

    25 

             2 

    416 

             8 

  1107 

             44 

  1777 

1               0 

    4 

               1 

    30 

             5 

    321 

             8 

  1031 

             90 

  1743 

2               0 

    2 

               0 

    31 

             1 

    365 

             8 

   985 

             158 

  1669 

 

Table 4.2 Number of Zero Estimates for Sample Size 20 

            b 

 λ 

0.1 0.2 0.5 1 2 

0.1               0 

    0 

               0 

    2 

             0 

    314 

            0  

  1303 

             6 

  1981 

0.2               0         

    0 

               0 

    2 

             0 

    237 

            0 

  1042 

             2 

  1851 

0.5               0 

    0 

               0 

    0 

             0 

    139 

            1 

  807 

             3 

  1648 

1               0 

    0 

               0 

    1 

             0 

    108 

            5 

  625 

             7 

  1526 

2               0 

    0 

               0 

    0 

             0 

    97 

            4 

   557 

             21 

  1389 

 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

108 

 

 

Table 4.3 Number of Zero Estimates for Sample Size 50 

            b 

 λ 

0.1 0.2 0.5 1 2 

0.1               0 

    0 

              0 

    0 

             0 

    80 

            0  

  1075 

             0 

  1925 

0.2               0         

    0 

              0         

    0 

             0 

    28 

            0 

  702 

             0 

  1689 

0.5               0 

    0 

              0 

    0 

             0 

    6 

            0 

  353 

             0 

  1344 

1               0 

    0 

              0 

    0 

             0 

    2 

            0 

  209 

             0 

  1025 

2               0 

    0 

              0 

    0 

             0 

    1 

            0 

  125 

             1 

  841 

 

 

Table 4.4 Number of Zero Estimates for Sample Size 100 

            b 

 λ 

0.1 0.2 0.5 1 2 

0.1               0 

    0 

              0 

    0 

             0 

    7 

            0  

  836 

             0 

  1859 

0.2               0         

    0 

              0         

    0 

              0         

    0 

            0 

  419 

             0 

  1563 

0.5               0 

    0 

              0 

    0 

              0 

    0 

            0 

  101 

             0 

  976 

1               0 

    0 

              0 

    0 

              0 

    0 

            0 

  34 

             0 

  608 

2               0 

    0 

              0 

    0 

              0 

    0 

            0 

  12 

             0 

  455 
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From the tables above, we can observe that as the value of λ increases, the number 

of zero estimates of b increases but that of λ decreases. While as the value of b 

increases, the numbers of zero estimates of b and λ both increases. 

 

The following figures are the illustrations of the parameter estimates of the 

samples generated from a parameter setting a=1, b=1, λ=0.1 and sample size n=50 

 

Figure 4.3 Parameter Estimates of a 

 

 
Figure 4.4 Parameter Estimates of b 
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Figure 4.5 Parameter Estimates of λ 

 

4.8 Summary 

In this chapter we examine the log-likelihood function of a class of distributions, 

which includes many useful models for lifetime data analysis, such as the Weibull 

distribution and the modified Weibull. A simple technique is proposed to simplify 

the computation of the elements of the Observed Fisher Information matrix. In 

addition, the form of the class of distributions makes it possible to decrease the 

number of variables in the log-likelihood function. 

 

Using the techniques developed, maximum likelihood estimation of the model 

parameters of the modified Weibull distribution with progressively type-2 

censored samples is studied. The property of the log-likelihood function is 

investigated by introducing the simple transformation to decrease the 

dimensionality of the parameter vector while keeping the analysis tenable. 
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Existence and uniqueness of the MLE of the model parameters are proved. 

However, we found that the unique MLE that maximize the log-likelihood 

function may not be appropriate estimates of the parameters of the modified 

Weibull distribution to model lifetime data, and non-negative constraints have to 

be imposed on the parameters. Several examples are presented to illustrate the 

uniqueness property of the MLE. 
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Chapter 5. MCMC Estimation of Modified Weibull 

Parameters 

ML estimation of the model parameters of statistical distributions is 

straightforward, and under mild regularity conditions the estimates are 

asymptotically unbiased. However, when the sample size is small, the MLE for 

the Weibull parameters are usually quite biased (Watkins, 1996; Montanari et al., 

1997). Based on the pivotal property of the Weibull parameters discovered by 

Thoman et al. (1969), several methods have been proposed to reduce the bias 

(Ross, 1996; Montanari et al., 1997; Hiross, 1999; Yang and Lin, 2007). 

 

For the modified Weibull distribution with 3 model parameters, such techniques 

are not readily available and even if they exist it would involve too many factors 

to make the implementation complicated. As an alternative to ML estimation, we 

consider the Bayesian method employing the Markov chain Monte Carlo (MCMC) 

techniques and compare its estimation accuracy and dispersion against MLE. 

 

As a family of the powerful tools for sampling from multivariate statistical 

distributions, Bayesian methods implemented through MCMC have been 

developed and applied to estimate the model parameters based on a complete or 

censored sample. Merits of MCMC estimation for the Weibull parameters have 

been discussed in Green et al. (1994) and Pang et al. (2005, 2007). Advantages of 
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MCMC estimation over other estimation methods include small bias when the 

sample size is not large, ease of constructing exact probability intervals, and 

convenience of incorporating prior/expert information into consideration, etc. 

 

Another advantage of MCMC estimation is discussed in Green et al. (1994), who 

showed that the MLE of the location parameter of the 3-parameter Weibull 

distribution has a large chance to be negative, hence fails to meet the condition 

the true underlying distribution, but MCMC estimate can always be positive with 

a proper choice of the prior distribution. For the modified Weibull distribution, in 

chapter 4 we have shown that direct maximization of the log-likelihood function 

could yield negative estimates of the parameter λ, which are not suitable for 

modeling life time data. 

 

In this chapter, we study the Gibbs sampler for the parameters of the modified 

Weibull distribution based on a Bayesian framework and make a comparison 

between these estimates and the MLE regarding their bias and variability. 

 

The content of the current chapter is published in Jiang et al. (2008)
(1)

. 
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5.1 Bayesian Model 

For the modified Weibull distribution, the Bayesian model is constructed by 

specifying a prior distribution for a, b and λ, and then multiplying with the 

likelihood function to obtain the posterior distribution function. Given a complete 

sample of data ( )ntttt ,,, 21 L= , the likelihood function is 

( ) ( )( ) { }∑∑∏∏ −+=
−

itb

ii

b

ii

n etatttbatbal
λλλλ exp;,,

1
                       (5.1) 

  

Denote the prior of a, b and λ as ( )λ,,bap . The joint posterior distribution is 

( ) ( ) ( )λλλ ,,;,,|,, baptbaltbap ∝                                                                  (5.2) 

 

Here the prior distribution is given in advance, usually based on prior information 

of the parameters, which is from historical data, previous experiences and expert 

suggestions, but sometimes the choice of prior is just for mathematical 

convenience. For the current model, since there are no constraints for the 

parameters except for non-negativity, and we have no reason to prefer one value 

over another for each of the parameters, it is convenient to assume independent 

generalized uniform distributions on the positive supports for the three parameters, 

i.e. ( ) ( ) ( ) ( )λλ pbpapbap =,, , ( ) ( ) ( ) 1∝== λpbpap , 0,,0 ≥> λba . In such case, 

the joint posterior PDF is proportional to the likelihood function 

( ) ( )( ) { }∑∑∏∏ −+∝
−

itb

ii

b

ii

n etatttbatbap
λλλλ exp|,,

1
                     (5.3) 
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5.2 Gibbs Sampler Parameter Estimation 

5.2.1 Steps of Gibbs Sampling 

As introduced in Gelfand and Smith (1990) and Ibrahim et al. (2001), the steps of 

using Gibbs sampler to draw samples of the parameters from the Bayesian 

posterior distribution are sequentially sampling from the full conditional 

distribution of each parameter based on the given samples of other parameters. 

For the modified Weibull Bayesian model (5.3), letting ( )tbapa ,,| λ , 

( )tabpb ,,| λ  and ( )tbap ,,|λλ  denote the full conditional CDF of a, b and λ, the 

steps can be described as follows: 

(0) Arbitrarily choose an starting point ( )000 ,, λba , and set k=0; 

 

(1) Generate ( )111 ,, +++ kkk ba λ  as follows: 

a. Sample 1+ka  from ( )tbap kka ,,| λ ; 

b. Sample 1+kb  from ( )tabp kkb ,,| 1 λ+ ; 

c. Sample 1+kλ  from ( )tbap kk ,,| 11 ++λλ . 

 

(2) Set k=k+1, and then go to step (1). Continue the iterative steps until a 

predetermined number of runs is reached. 

 

Under mild regularity conditions, Geman and Geman (1984) showed that 
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( )kkk ba λ,,  converge to the true values of ( )λ,,ba  in distribution as k approaches 

infinity. Therefore, we can make inferences about the parameters with the Markov 

chain obtained, such as estimation by taking the average of the corresponding 

values in the chain. However, in normal conditions, the successive observations 

are not independent in a Markov chain. If an independent identically distributed 

(iid) sample is needed, suitably spaced observations may be required, say every 

40th (Green et al., 1994). In addition, a suitable burn-in is needed to diminish the 

influence of the starting values of the parameters. To check the convergence of 

the Markov chain, in most cases where the computational cost is not too high to 

afford, it is preferred to run the Gibbs sampler several times with different starting 

points and check whether after a sufficiently long run the different Markov chains 

will converge to the same stationary distribution (Gelfand and Smith, 1990). 

 

5.2.2 Adaptive Rejection Sampling 

An important step in Gibbs sampling is to sample from the full conditional 

distributions. Since in most cases the distributions are so complicated that it is 

difficult or impossible for direct sampling, rejection sampling techniques are 

required. Gilks and Wild (1992) introduced an adaptive rejection sampling 

scheme for Gibbs sampling when the target distribution is complicated and 

evaluation of the full conditional PDF is computationally expensive. This 

sampling method is an extension of the rejection sampling and is suitable for any 
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log-concave PDF, i.e. 
( )

0
log

2

2

<
∂

∂

θ
θf

. The advantage of the adaptive rejection 

sampling scheme is that it is adaptive: the envelope function converges to the 

target conditional PDF as sampling proceeds, and the reconstructions of the 

envelope function and the squeezing function only need negligible computational 

cost, thus it is very efficient compared to direct sampling or traditional rejection 

sampling. Denote ( ) ( )( )θθ fr log= . The steps of adaptive rejection sampling can 

be described as 

 

0. Determine ( )kkT θθθ ,,, 21 L=  as the set of three or four initial abscissae for 

( )θr , where ( ) 0' 1 >θr  and ( ) 0' <kr θ , k=3 or 4. Define the envelope function 

of ( )θr  as ( )θku , which is a piecewise linear function, with each linear part 

being the tangent of ( )θr  at the abscissa; 

 

1. Define the envelope function of ( )θr  as ( )θku , which is a piecewise linear 

function, with each linear part being the tangent of ( )θh  at the abscissa in kT ; 

 

2. Define ( )θks  as PDF being proportional to ( ){ }θkuexp  

( ) ( ){ }
( ){ }∫

=
''exp

exp

θθ
θθ

du

u
s

k

k
k                                                                (5.4) 
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3. Sample a value θ* from ( )θks  and a value w independently from uniform(0,1) 

distribution. Perform the following rejection test: 

If ( ) ( ){ }**exp θθ kuhw −≤ , then accept θ*; 

otherwise reject θ*. 

 

4. If θ* is accepted in step 3, θ* is the observation wanted and then the sampling 

process is stopped. Otherwise, include θ* in 
kT  to form 

1+kT , rearrange the 

elements of 
1+kT  in ascending order, then let 1+= kk , go back to step 1 and 

run through all the steps left. 

 

5.2.3 Convergence Diagnostics 

When using the Gibbs sampler method to estimate the model parameters, an 

important practical issue has to be considered, i.e. convergence diagnostics of the 

Markov chain. Convergence of the Markov chain ensures that the distribution 

estimated is a proper approximate of the target distribution. 

 

Research papers on this topic are of vast volume, e.g. Baftery and Banfield (1991), 

Gelman and Rubin (1992), Casella and George (1992), Roberts and Smith (1994), 

Zellner and Min (1995), Cowles and Carlin (1996), Belisle (1998), etc. 

 

Among the various methods, the one proposed by Gelman and Rubin (1992) is the 
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most popular. The method involves two steps. The first step is to generate m sets 

of starting points of the Gibbs sampler. The second step is to simulate Markov 

chains for each of the starting points, for the desired number of iterations, say 2n. 

Convergence is monitored by estimating the following shrink factor, 

2

11ˆ
−








 +
+

−
=

df

df

W

B

mn

m

n

n
R  

where B is the variance between the means of the m Markov chains, W is the 

average of the m within-chain variances, and df is the degree of freedom of the 

Student’s t distribution, which is approximated by the last n observations of the 

first Markov chain. The Gibbs sampler is deemed to converge when this shrink 

factor is close to 1. 

 

5.2.4 Gibbs Estimation of Parameters of the Modified Weibull 

Given a complete sample of lifetime data { }ntttt ,,, 21 L= , the full conditional 

PDF of a is 

( ) ( )
( )tbp

tbap
tbapa

|,

|,,
,,|

λ
λ

λ =  

                          ( )tbap |,, λ∝  

                          ( )tbaL ;,, λ∝                                                                              (5.5) 

 

The first proportionality follows because ( )tbp |,λ  is the joint posterior of b and 

λ, so no term involving a exists in ( )tbp |,λ , and the second proportionality is 
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based on the fact that the prior is generalized uniform distributed. In other words, 

(5.5) means 

( ) { }∑−∝ itb

i

n

a etaatbap
λλ exp,,|                                                               (5.6) 

 

Similarly, the full conditional PDF of b and λ are respectively 

( ) ( )( ) { }∑∏∏ −+∝
−

itb

i

b

iib etattbtabp
λλλ exp,,|

1
                                  (5.7) 

( ) ( ) { }∑∑∏ −+∝ itb

iii etattbtbap
λ

λ λλλ exp,,|                                      (5.8) 

 

It is easy to see that the full conditional PDF of a is a Gamma distribution with 

the scale parameter ∑ itb

i et
λ

 and shape parameter n+1. Therefore it is convenient 

to generate an observation of a from (5.6). 

 

No similar simple distributions are available for b and λ. Though, we can apply 

the adaptive rejection sampling technique to draw observations from ( )tabpb ,,| λ  

and ( )tbap ,,|λλ . In the beginning, the usage of the technique has to be validated, 

i.e. the two PDF are log-concave. 

 

Theorem 5.1 The full conditional PDF ( )tabpb ,,| λ  and ( )tbap ,,|λλ  are both 

log-concave. 
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Proof: 
( )( ) ( )∑ ∑∑ −+

+
=

∂

∂
i

tb

ii

i

b tetat
tbb

tabp
i loglog

1,,|log λ

λ
λ

 

( )( ) ( ) 0log
1,,|log 2

2

2

2

<−








+
−=

∂

∂
∑ ∑ i

tb

i

i

b teta
tbb

tabp
iλ

λ
λ

 

 

Similar log-concavity property holds for ( )tbap ,,|λλ  

( )( )( )
∑∑∑ +−+

+
=

∂

∂
itb

ii

i

i etat
tb

ttbap λλ

λλ
λ 1,,|log

 

( )( )( )
0

,,|log 2

2

2

2

<−








+
−=

∂

∂
∑∑ + itb

i

i

i eta
tb

ttbap λλ

λλ
λ

. Q.E.D. 

 

Hence we can use the highly efficient adaptive rejection technique presented 

above to generate random observations from ( )tabpb ,,| λ  and ( )tbap ,,|λλ . 

 

We run the Gibbs sampler in the procedure presented in section 5.2.1 and with the 

adaptive rejection sampling technique presented in section 5.2.2. With any 

arbitrary starting values of the parameters, we find that very quickly the Markov 

chain converges to a steady state. Therefore, discarding the first few observations 

as burn-in, we can use the remaining observations in the Markov chain to 

calculate the estimates and probability intervals of the parameters. 
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5.3 Illustrative Example 

In this section, we present an example to illustrate the estimation procedures 

discussed in this chapter. The lifetime data are from Aarset (1987). 

 

In our study, based on the assumption that these data are from the modified 

Weibull distribution, we run the Gibbs sampler to generate 3 Markov chains at the 

length of 30,000 with different starting points of parameters. Doing convergence 

diagnostics following the Gelman and Rubin (1992) procedure, we find that the 

Markov chains converge together to a stationary process after approximately 2000 

observations. Therefore, burn-in of 5000 observations is more than enough to 

erase the effect of starting point. For one of the Markov chains, discarding the 

first 5000 and taking every 10th as iid observations, this step serving for the 

purpose of diminishing the autocorrelation, we can plot the empirical distributions 

of the model parameters and thus give their estimates and probability intervals. 

 

The Gibbs estimates of the parameters are: ( ) ( )0.0229,0.3493,0.0604,, =λ
)))

ba . 

 

A ( )%1100 α−  probability interval for any parameter may be estimated by taking 

the 2/100α th and ( )2/1100 α− th percentiles of the generated sample. Table 5.1 

lists the 90% and 95% probability intervals for the three parameters. 
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Table 5.1 Gibbs Estimates and Two-Sided 90% & 95% Probability Intervals for a, b, and λ 

Parameter Estimate 90% P.I. 95% P.I. 

a 0.0604 [0.0332, 0.1235] [0.0287, 0.1413] 

b 0.3493 [0.1925, 0.5210] [0.1643, 0.5560] 

λ 0.0229 [0.0154, 0.0307] [0.0139, 0.0321] 

 

 

As a reference, the maximum likelihood estimates and confidence intervals based 

on a progressively Type-2 right censoring scheme for the same data are in table 

5.2 (see Ng (2005)). 

 

Table 5.2 MLE and Two-Sided 90% & 95% Confidence Intervals for a, b, and λ 

Parameter Estimate 90% C.I. 95% C.I. 

a 0.0714 [0.0354, 0.1444] [0.0309, 0.1652] 

b 0.398 [0.2419, 0.6564] [0.2198, 0.7222] 

λ 0.01702 [0.0084, 0.0256] [0.0068, 0.0273] 

 

 

From table 5.1 and table 5.2, we can see that point estimates of the parameters 

obtained in both methods are close to each other. Regarding the interval estimates, 

contrary to our intuition, the length of the Gibbs sampler probability intervals is 

smaller than that of the MLE confidence intervals, for each of the three 

parameters on both 90% and 95% significance levels. 
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In the following section, a simulation study is done to look into the biasness and 

dispersion, and hence the probability interval properties, of the estimators. 

 

5.4 Simulation Study 

A Monte Carlo simulation study is conducted to compare the performance of 

Gibbs estimators (MCMCE) and MLE of the model parameters of the modified 

Weibull distribution. For each of the following sets of parameters, we simulated 

1000 sets of data with sample sizes n=20, 50, 100 and 200, respectively, and 

based on each data set we computed MLE and MCMCE for the model parameters. 

The priors of the parameters are generalized uniform distributions. In order to 

obtain MCMCE, we run the Gibbs sampler to construct Markov chains at the 

length of 500. 

1) a=0.5, b=1.0, λ=0.1; 

2) a=1.0, b=0.5, λ=0.1; 

3) a=0.5, b=1.0, λ=0.2; 

4) a=1.0, b=0.5, λ=0.2. 

 

As stated in section 5.3, we find that the starting values of the parameters do not 

affect the convergence of the Markov chain. Therefore, to minimize the influence 

of the choice of starting points and reduce the running time of the simulation 
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routine, we choose the true values of the parameters as the starting values and do 

not consider burn-in. 

 

We take mean as the estimates of the parameters a, b, and λ, since the empirical 

posterior distributions of them are all fairly symmetric. 

 

The following tables list the results of the simulation study. Denote ( )λ̂,ˆ,ˆ ba  as 

MLE and ( )λ
)))

,,ba  as MCMCE. Bias and MSE are calculated for each of the 

parameter sets and sample sizes. 

 

Table 5.3 Comparison of MLE and MCMCE for (a, b, λ)=(1, 0.5, 0.1) 

n  Bias a MSE a Bias b MSE b Bias λ MSE λ 

 

20 

MLE θ̂  

MCMCEθ
)

 

-0.0641 

0.0276 

0.1754 

0.1298 

-0.0978 

0.0484 

0.2735 

0.2108 

0.1262 

0.0039 

0.2063 

0.0123 

 

50 

MLE θ̂  

MCMCEθ
)

 

-0.0331 

0.0117 

0.1129 

0.0888 

-0.0478 

0.0215 

0.1839 

0.13550 

0.0567 

0.0031 

0.1216 

0.0182 

 

100 

MLE θ̂  

MCMCEθ
)

 

-0.0138 

0.0072 

0.0799 

0.0651 

-0.0142 

0.0149 

0.1402 

0.1008 

0.0235 

0.0011 

0.0785 

0.0252 

 

200 

MLE θ̂  

MCMCEθ
)

 

-0.0089 

0.0013 

0.0582 

0.0482 

-0.0035 

0.0117 

0.1077 

0.0816 

0.0122 

0.0014 

0.0582 

0.0306 
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Table 5.4 Comparison of MLE and MCMCE for (a, b, λ)=(0.5, 1, 0.1) 

n  Bias a MSE a Bias b MSE b Bias λ MSE λ 

 

20 

MLE θ̂  

MCMCEθ
)

 

-0.0739 

0.0592 

0.3060 

0.2405 

-0.0088 

0.0458 

0.1272 

0.1166 

0.0829 

0.0028 

0.1732 

0.0201 

 

50 

MLE θ̂  

MCMCEθ
)

 

-0.0109 

0.0407 

0.2000 

0.1734 

0.0047 

0.0255 

0.0824 

0.0758 

0.0222 

-0.0008 

0.0763 

0.0280 

 

100 

MLE θ̂  

MCMCEθ
)

 

-0.0098 

0.0174 

0.1413 

0.1265 

0.0023 

0.0134 

0.0614 

0.0569 

0.0130 

0.0021 

0.0520 

0.0320 

 

200 

MLE θ̂  

MCMCEθ
)

 

-0.0046 

0.0069 

0.0996 

0.0962 

0.0008 

0.0056 

0.0421 

0.0413 

0.0063 

0.0027 

0.0330 

0.0283 

 

 

Table 5.5 Comparison of MLE and MCMCE for (a, b, λ)=(0.5, 1, 0.2) 

n  Bias a MSE a Bias b MSE b Bias λ MSE λ 

 

20 

MLE θ̂  

MCMCEθ
)

 

-0.0543 

0.0321 

0.1881 

0.1263 

-0.0503 

0.0787 

0.3159 

0.2360 

0.1371 

0.0018 

0.2751 

0.0331 

 

50 

MLE θ̂  

MCMCEθ
)

 

-0.0191 

0.0203 

0.1268 

0.0951 

-0.0151 

0.0401 

0.2094 

0.1541 

0.0458 

-0.0043 

0.1528 

0.0489 

 

100 

MLE θ̂  

MCMCEθ
)

 

-0.0025 

0.0178 

0.0944 

0.0766 

-0.0016 

0.0248 

0.1659 

0.1285 

0.0161 

-0.0063 

0.1099 

0.0605 

 

200 

MLE θ̂  

MCMCEθ
)

 

-0.0026 

0.0094 

0.0687 

0.0614 

0.0001 

0.0161 

0.1250 

0.1097 

0.0070 

-0.0054 

0.0815 

0.0632 
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Table 5.6 Comparison of MLE and MCMCE for (a, b, λ)=(1, 0.5, 0.2) 

n  Bias a MSE a Bias b MSE b Bias λ MSE λ 

 

20 

MLE θ̂  

MCMCEθ
)

 

-0.0284 

0.0912 

0.3379 

0.2514 

0.0105 

0.0563 

0.1496 

0.1308 

0.0880 

0.0005 

0.2188 

0.0483 

 

50 

MLE θ̂  

MCMCEθ
)

 

-0.0115 

0.0516 

0.2026 

0.1767 

0.0047 

0.0288 

0.0995 

0.0931 

0.0316 

-0.0004 

0.1120 

0.0602 

 

100 

MLE θ̂  

MCMCEθ
)

 

-0.0011 

0.0303 

0.1614 

0.1517 

0.0032 

0.0153 

0.0675 

0.0654 

0.0156 

0.0018 

0.0805 

0.0614 

 

200 

MLE θ̂  

MCMCEθ
)

 

-0.0065 

0.0085 

0.1126 

0.1121 

0.0013 

0.0071 

0.0481 

0.0485 

0.0085 

0.0033 

0.0533 

0.0501 

 

 

For the comparison of the estimates, we observe the following: 

▪ For estimation of a, though for some cases the bias of MLE is smaller than 

MCMCE, MCMCE has overwhelming advantage over MLE in the index of 

MSE. Therefore, MCMCE is more stable than MLE, despite when the sample 

size is large (say, larger than 100), MLE is less biased than MCMCE. In 

general, MCMCE is better than MLE in estimating a. Another interesting 

observation is that MLE consistently underestimates a (bias is negative), 

while MCMC overestimates (bias is positive). 

 

▪ For estimation of b, similar to the cases of estimating a, MCMCE is better 

than MLE in general. 
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▪ For estimation of λ, MCMCE is always better than MLE. 

 

▪ When the sample size is small (say, less than 100), MCMCE behaves better 

than MLE in both indexes, bias and MSE. The advantage of MCMCE over 

MLE is especially remarkable in the estimation of parameter λ. 

 

▪ We can easily obtain the probability intervals for the parameters through 

MCMCE from the empirical distributions of the parameters. Contrastingly, 

the construction of confidence intervals involved in MLE needs the local 

estimate of the asymptotic variance-covariance matrix of MLE, or the 

Observed Fisher Information matrix. Therefore, the calculation of probability 

intervals for MCMCE is easier and may be more accurate. 

 

Based on the simulation results, we suggest the use of MCMCE instead of MLE 

for parameter estimation when the sample size is not very large (say, less than 

100). When the sample size is large, MCMCE is still more stable (smaller 

variability) than MLE, but the bias is larger. 

 

When considering computational cost, MCMCE has no advantage over MLE, 

since the generalization of the Markov chain usually takes far more time than the 

optimization procedure needed in maximizing the log-likelihood function. To 
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make a good choice between MCMCE and MLE, decision makers are suggested 

to take into account the pros and cons of the both methods. 

 

5.5 Summary 

Gibbs sampler, as one of the MCMC algorithms, is introduced to estimate the 

parameters of the modified Weibull distribution based on a Bayesian framework. 

The adaptive rejection sampling technique is used to sample from the full 

conditional distributions of the parameters. Gibbs estimation is compared with 

ML estimation for several different parameter sets and sample sizes, and it is 

found that the former outperforms the latter for small samples and has the 

advantage of being easy to construct probability intervals. 
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Chapter 6. Statistical Characterization and 

Parameter Estimation of Odd Weibull 

Based on the idea of evaluating the distribution of the “odds of death” of a 

lifetime variable, the odd Weibull distribution proposed by Cooray (2006) has 

recently been shown to be useful for testing goodness-of-fit of the Weibull and 

inverse Weibull. The model is also very versatile in modelling lifetime data 

because its failure rate function can be increasing, decreasing, constant, bathtub 

shaped and unimodal. In this chapter, a detailed parametric characterization of the 

statistical properties of this distribution is carried out. Shapes of WPP with 

different model parameters are presented and the graphic parameter estimation 

steps are iterated. Burn-in and useful period related issues of the bathtub shaped 

failure rate curve are discussed. An application example is shown to illustrate the 

parameter estimation procedure and the superior fit of the model for some real 

data to the other 3-parameter generalizations of the Weibull distribution. 

 

CDF of this distribution is 

( ) ( )( ) 1

111
−







 −+−=

βαθtetF , ∞<< t0                                                        (6.1) 

 

with 0>θ  the scale parameter and 0>αβ  the shape parameters. Note that when 

1=β , ( )tF  is CDF of Weibull, and when 1−=β , it is CDF of inverse Weibull. 
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The quantile function can be shown to be 

( ) ( )( )( )( ) αβθ
11

11ln uuuQ −+=                                                                      (6.2) 

 

Starting from a Weibull distribution ( )tFW  (when the shape parameters α  and β  

are positive), the odd Weibull CDF can be expressed as 

( ) ( )
( ) ( )( )ββ

β

tFtF

tF
tF

WW

W

−+
=

1
                                                                           (6.3) 

while if starting from an Inverse Weibull ( )tFI
 (when the shape parameters α  

and β  are negative), the odd Weibull CDF is 

( ) ( )
( ) ( )( ) ββ

β

−−

−

−+
=

tFtF

tF
tF

II

I

1
                                                                         (6.4) 

 

Taking derivative of the distribution function with respect to t , PDF and then 

FRF can be obtained respectively 

( ) ( ) ( )( ) ( )( ) 2
1

111
−−






 −+−















=
β

θ
β

θθ
α

ααα

θ
αβ ttt eee

t

t
tf                               (6.5) 

( ) ( ) ( )( ) ( )( ) 1
1

111
−−






 −+−















=
β

θ
β

θθ
α

ααα

θ
αβ ttt eee

t

t
th                                (6.6) 

 

As the name stands, the odd Weibull distribution originates from the idea of 

evaluating the “odds of death” of a Weibull or Inverse Weibull random variable 
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(Cooray, 2006). The logit function, i.e. the logarithm of the odds, of CDF of the 

odd Weibull distribution can be written as the product of the logit function of the 

corresponding Weibull or Inverse CDF and the shape parameter β  or β−  

( )( ) ( )
( )

( )
( )

( )( )tF
tF

tF

tF

tF
tF W

W

W logit
1

log
1

loglogit ββ =
−

=
−

=  

or           ( )( ) ( )
( )

( )
( )

( )( )tF
tF

tF

tF

tF
tF I

I

I logit
1

log
1

loglogit ββ −=
−

−=
−

=  

 

This relationship between the odd Weibull and the Weibull/Inverse Weibull 

distribution may be useful in logistic regression analysis of some lifetime data. 

 

However, up to now little research has been done to investigate the behaviors of 

this new model. It is often helpful to study the statistical properties and parameter 

estimation of a distribution before it is widely used to model real data. Therefore, 

the purpose of this chapter is to provide a systematic characterization of the basics 

of the odd Weibull model. 

 

The content of the current chapter is published in Jiang et al. (2008)
(2)

. 
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6.1 Statistical Characteristics 

6.1.1 Shape of Failure Rate Function 

The shape of FRF is important for modeling lifetime data. Compared to the 

Weibull distribution which has monotonic failure rate, the odd Weibull 

distribution is able to exhibit monotonic, bathtub-shaped, unimodal and some 

other failure rate shapes. 

 

As from (6.6), the form of FRF is complicated, so analytic methods such as 

studying the derivative can be useful to get information of the shape of FRF. 

 

Taking logarithm on ( )th  and differentiating the function with respect to 

( )αθtz = , we obtain 

( )( )( ) ( ) ( ) ( ) ( )( )β
β

α
α

θ
αβ

11log1log1log
1

loglog −+−−−++
−

+






= zz

z eezzth  

 

We can learn the monotonicity property of ( )th  via examining the sign of the 

derivative 

( )
( ) ( )( )β

β
β

α
α

111

1111log

−+−

−−−
+

−
=

∂
∂

zz

zz

ee

ee

zz

h
                                                        (6.7) 

 

As z  increase from 0 to ∞  (infinity), we have 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

134 

 

1. z1  decreases from ∞  to 0. Therefore, if 1>α , 
z

11

α
α −

 decreases from ∞  to 

0; if 10 <<α , 
z

11

α
α −

 increases from ∞−  to 0; if 0<α , 
z

11

α
α −

 decreases 

from ∞  to 0. 

2. Denote ( ) ( )
( ) ( )( )β

β
β

111

11

−+−

−−−
=

zz

zz

ee

ee
zg . If 1>β , ( )zg  decreases from ∞  to 0; if 

10 << β , ( )zg  increases from ∞−  to 0; if 0<β , ( )zg  increases from ∞−  

to 0. 

 

 

From 1 and 2, it is obvious that when 1>α  and 1>β , it follows 0
log

>
∂

∂
z

h
 and 

then ( )th  is monotonically increasing; while when 10 <<α  and 10 << β , it 

follows 0
log

<
∂

∂
z

h
 and then ( )th  is monotonically decreasing. 

 

Regarding the shapes of ( )th  when α  and β  take different values, according to 

Cooray (2006), it is very difficult to do the classification analytically, and 

boundary lines have to be obtained numerically. The author showed that when 

( )0,0 << βα , ( )1,1 >> αβα , ( )1,1 << αβα , ( )1,1 ≤> αβα  and ( )1,1 ≥< αβα , 

the shapes are unimodal, increasing, decreasing, bathtub and unimodal, 

respectively. Typical shapes of FRF are exhibited in the following figure. 
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Figure 6.1 Shapes of failure rate function. Unimodal (dashed line), increasing (dotted line), 

decreasing (dot dashed line), and bathtub shaped (dark line) 

 

It was also indicated that in the regions of ( )1,1 >> αβα  and ( )1,1 << αβα , ( )th  

may have some other shapes. Numeric analysis shows that the “other shapes” are 

S and inverse-S, which appear in the two regions when the model shape 

parameters α  and β  are near the boundary line 1=αβ . These are the only 

shapes that have been observed. 

 

The following figures exhibit the shapes of FRF near the boundary line 1=αβ . 
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                               (a) α<1, αβ<1                                                      (b) α>1, αβ>1 

Figure 6.2 FRF for (α<1, αβ<1) and (α>1, αβ>1) when αβ is close to 1 

 

6.1.2 Tails of Failure Rate Function 

The left and right tails of FRF determine the aging behavior of the model during 

the infant and elderly periods, so are important for the application of the 

distribution to lifetime data. 

 

When 0,0 >> βα , as 0→t , ( ) αβαβ θαβ 1−≈ tth ; as ∞→t , ( ) αα θαβ 1−≈ tth . 

When 0,0 << βα , as 0→t , ( ) ( ) αθβα θαβ
α

tetth 1−≈ ; as ∞→t , ( ) tth αβ≈ . 

 

Therefore, the pattern of the left tail ( 0→t ) is classified as follows: 

1) 1,0,0 <>> αββα , ( ) ∞→th , the left tail is unbounded. 

2) 1,0,0 =>> αββα , ( ) θ1→th . 

3) 1,0,0 >>> αββα , ( ) 0→th . 
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4) 0,0 << βα , ( ) 0→th , since ( )( ) ( ) ( ) ( ) −∞→+−=− αθβα θβα
α

ttet t ln1ln 1 . 

 

The pattern of the right tail ( ∞→t ) is similarly classified: 

1) 0,10 ><< βα , ( ) 0→th . 

2) 0,1 >= βα , ( ) αθβ→th  

3) 0,1 >> βα , ( ) ∞→th , the right tail is unbounded. 

4) 0,0 << βα , ( ) 0→th . 

 

The interesting case is 0,1 >= βα . With such parameters, as ∞→t , FRF ( )th  

approaches a finite horizontal line αθβ=y . As pointed out in Bain (1978), in 

many cases the lifetime of units in a regular maintenance program has a FRF that 

reaches a stable condition after sufficient long time because of proper 

maintenance. To model such a life behavior, the Weibull distribution is not a good 

choice, but the odd Weibull distribution could be. 

 

6.1.3 Moments 

The k-th moment of the random variable from the odd Weibull distribution is 

given by 

( ) ( )∫
∞ −=

0

1 dttFtkTE kk  
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( )( )

( )( )∫
∞

−

++

+
=

0

1

11

1log
dy

yy

yk
kk

β

α

α
θ

                                                                       (6.8) 

 

The moments cannot be obtained in closed form, so have to be computed 

numerically. 

 

As shown in (6.8), if α  is a positive integer and 1=β , the α -th moment is 

( )
( )∫

∞
=

+
=

0 2
1

1 ααα θθ dy
y

TE                                                                      (6.9) 

 

6.1.4 Extreme Value Property 

Let 
nTTT ,,, 21 L  be a random sample from the odd Weibull distribution, and let 

nnnn TTT ::2:1 ≤≤≤ L  denote the sample order statistics. Also, let 

nnnn UUU ::2:1 ≤≤≤ L  denote the order statistics from a uniform [ ]1,0  distribution. 

From the quantile function (6.2), the order statistics niT :  have the form 

( )( )( )( ) αβθ
11

::: 11ln ninini UUT −+=                                                              (6.10) 

 

It is well known that both nnU :1  and ( )nnUn :1−  converge in distribution to the 

standard exponential random variable Z . We have the following: 

 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

139 

 

Theorem 6.1. If 0,0 >> βα , as ∞→n  

αβαβ θ 1

:1

1 ZTn D

n →                                                                                     (6.11) 

( )
αα

α

αβ
θ

β
θ

11:

11 lnln
ln

Zn
Tn D

nn −→−−
                                                           (6.12) 

Proof: As from equation (6.10) 

( )( )( )( ) αβθ
11

:1:1:1 11ln nnn UUT −+=  

 

Expanding ( )uu −1  at 0=u , we see that 

( ) ( )21 uOuuu +=−  

which implies that 

( )( )( )( ) ( ) ( )( )αβαβαβαβ θθ
12

:1

1

:1

11

:1:1

1 11ln nnnn nUOnUUUn +=−+  

 

Therefore, as ∞→n , ( ) αβαβαβ θθ 11

:1:1

1 ZnUTn D

nn →≈ , and the asymptotic 

distribution of 
nTn :1

1 αβ  is Weibull. 

Again, from equation (6.10) 

( )( )( )( ) αβθ
11

::: 11ln nnnnnn UUT −+=  

 

Expanding ( )( )( )β1
11ln uu −+  at 1=u , we see that 

( )( )( ) ( ) ( )uOuuu −+−−=−+ 11ln111ln
1 ββ
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Let ( )( )nnUny :1ln −= , we have 

( ) ( )
( )

y
n

ynn
→

−−
− αα

αα

11

11

ln

lnln
 as ∞→n  

 

Therefore, as ∞→n , ( )
αα

α

αβ
θ

β
θ

11:

11 lnln
ln

Zn
Tn D

nn −→−−
. Because Zln  follows 

an extreme value distribution, ( ) α
α

β
θ

1:

11 ln
ln

n
Tn nn −−

 is asymptotically extreme 

value distributed. 

 

Theorem 6.2. If 0,0 << βα , as ∞→n  

( )
( ) ( ) αα

α

βα
θ

β
θ

11:1

11 lnln
ln

−
−→

−
−− Zn

Tn D

n                                                    (6.13) 

αβαβ θ 1

:

1 −− → ZTn D

nn
                                                                                (6.14) 

 

The proof is similar to that of theorem 6.1. Contrary to the case with positive 

shape parameters, the asymptotic distribution of ( )
( ) α

α

β
θ

1:1

11 ln
ln

−
−− n

Tn n  is extreme 

value distribution, and 
nnTn :

1 αβ−  is asymptotically inverse Weibull distributed. 
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6.2 WPP Plotting 

In Weibull analysis, WPP is a very convenient and useful tool in model selection 

and parameter estimation. When a Weibull distribution is fitted to a sample data 

set, WPP can show whether Weibull fitting is suitable or not, as well as provide 

estimates of the parameters. 

 

As to Weibull related distributions, WPP parameter estimation is quite crude, 

because eyeball observation and nonlinear regression based on asymptotic 

approximates are required. Nevertheless, WPP can also serve as a good tool for 

model selection and a starting point of more refined analytic parameter estimation 

methods such as MLE or Bayesian estimation. See Jiang and Murthy (1999) and 

Zhang and Xie (2007) for example. 

 

For the odd Weibull distribution, WPP transformations yield: 

tx ln= , ( )( )( )tFy −−= 1lnln                                                                      (6.15) 

 

Put CDF (6.1) in and we obtain 

( )





















 −+=

β
θ

α

11lnln
x

eey                                                                      (6.16) 

 

This is a smooth curve and denote it as C . 
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6.2.1 Weibull Case α>0, β>0 

1) For 0→t ( −∞→x ) 

In this case, ( )( ) ( )αββ
θ θ

α

te t +≈−+ 111 . Hence, as 0→t  

( )( ) ( )( ) ( )θαβθ αββθ α

lnln   11lnln −=≈












 −+= xtey t                            (6.17) 

 

This is a straight line and let 
1L  denote it. 

1L  intercepts x -axis at θln0 =x , and 

its slope is αβ . 

 

2) For ∞→t  ( ∞→x ) 

In this case, ( )( ) ( )αα θβ
β

θ tt ee ≈−+ 11 . Hence, as ∞→t  

( )( ) ( )( ) ( )( )θαβθβ αβθ α

lnlnln   11lnln −+=≈












 −+= xtey t                (6.18) 

 

This is also a straight line and let 
2L  denote it. The y -coordinate of the 

intersection of 2L  with vertical line 3L : θln=x  is βln0 =y , and the slope of 2L  

is α . 

 

The following figure shows the typical WPP plot for the odd Weibull distribution 

with positive shape parameters. When 10 << β , C  is convex; when 1>β , C  is 

concave. 
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                (a) Typical WPP plot for 0<β<1                            (b) Typical WPP plot for β>1 

Figure 6.3 WPP plot of odd Weibull with positive shape parameters 

 

6.2.2 Inverse Weibull Case α<0, β<0 

1) For 0→t ( −∞→x ) 

In this case, we have ( )( ) ( )αα θβ
β

θ tt ee +≈−+ 111 . Therefore, as 0→t  

( )( ) ( )( ) ααθβθα θβ
αβ

xtt eeey =≈












 −+= ln11lnln                                    (6.19) 

 

2) For ∞→t  ( ∞→x ) 

In this case, ( )( ) ( )αββ
θ θ

α

te t ≈−+ 11 . Therefore, as ∞→t  

( )( ) ( )( ) ( ) ( )( )θαβθαβ
β

θ α

lnlnlnlnln11lnln −+=≈












 −+= xtey t          (6.20) 
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WPP plotting for the odd Weibull distribution with negative shape parameters 

does not yield linear asymptotes in either tail. Therefore, it is not able to use WPP 

to fit an odd Weibull distribution with negative shape parameters to a sample data. 

Figure 6.4 shows a typical WPP plot in such case. Note here WPP is only able to 

exhibit a concave shape.  

 

 

Figure 6.4 WPP plot of odd Weibull with negative shape parameters 

 

6.3 Modeling a Sample Data Set 

Normally fitting a Weibull-related distribution to a sample data set and using 

WPP to estimate the model parameters is composed of two stages. The first stage 

is plotting the data on a WPP paper; the second stage is estimating the parameters 

by checking the slope and intersection of the asymptotes. 
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When using WPP to estimate the parameters of the odd Weibull distribution for a 

sample data set, because of the different shapes of the plot (see section 6.2), one 

first needs to determine whether the shape parameters are positive or negative. As 

mentioned in Cooray (2006), one can draw a TTT plot (see Aarset (1987), Barlow 

and Campo (1975), Bergman and Klefsjo (1984)) to determine the shape of the 

failure rate. Then the shape parameters α  and β  of the distribution can be 

located into the corresponding region from the shape of FRF according to the 

classification discussed in section 6.1.1. Moreover, specifically for the odd 

Weibull distribution, it is easy to check the sign of the shape parameters on a 

WPP plot. If the WPP curve C  is concave, its right tail is asymptotically 

horizontal, and left tail is asymptotically vertical, then the shape parameters α  

and β  could be negative. Otherwise, α  and β  must be positive. 

 

6.3.1 Weibull Case α>0, β>0 

Assuming the shape parameters are positive, we can perform the parameter 

estimation procedure in the following steps: 

 

Stage 1: Plotting WPP for the data 

1. Rearrange the data so that 
it , ni ,,1 L=  is in increasing order; 

 

2. Compute 
ix  and 

iy , ni ,,1 L= , as follows 
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itx ln= , ( )( )( )itRy lnln −=                                                                         (6.21) 

where ( )itR  is the empirical survival function at it . The computation of ( )itR  

depends on the type of data (complete, censored). For details, see Nelson (1982). 

If the data is complete, a good estimator is ( ) ( ) ( )4.07.0 ++−= nintR i . 

 

3. Plot iy  vs. ix  to generate WPP. 

If the fitting plot to the sample data has a shape similar to either one in Figure 6.2, 

the data can be properly modeled by an odd Weibull distribution with positive 

shape parameters. An obvious property is that the WPP plot is convex or concave, 

with linear asymptotes in both tails. Otherwise, the odd Weibull distribution is not 

an appropriate model, or the shape parameters of the fitted odd Weibull 

distribution are negative. The latter case will be discussed in the next section. 

 

Stage 2: Parameter estimation 

If stage 1 shows that an odd Weibull distribution with positive shape parameters 

is suitable for modelling the data, then the model parameters can be estimated 

using the following steps: 

 

4. Fit a straight line 1L  to the left side of the WPP plot. From equation (6.17), the 

slope of 1L  yields βα
~~ . 
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5. Fit a straight line 2L  to the right side of the WPP plot. From equation (6.18), 

the slope of 2L  yields α~ . Using this α~  and βα
~~  obtained in step 4, we get β

~
. 

 

 

6. Vertically move 
2L  by β

~
ln−  to generate another line 3L . 3L  is parallel to 

2L , and its functional form is ( )θβ ln−= xy . The x -axis of the intersection 

of 1L  and 3L  yields θ
~

ln , then accordingly θ
~

. 

 

When estimating θ , it is important to ensure that the intersection point lies on the 

x -axis. To satisfy this condition, some adjustment of 
1L  and 

3L (
2L ) may be 

needed. For example, if the intersection is under x -axis, then we do the following 

 

7. Move the line with the larger slope to the right and/or the line with the smaller 

slope to the left until the intersection point is on the x -axis, whilst ensuring 

both or either of  1L  and 2L  still fit the tails of the WPP curve C  well. 

 

8. If the revised 1L  and/or 2L  do not fit C  well, then adjust the slope(s) of the 

unfitted line(s) and then go back to step 4 or 5 and through 6 and 7 to estimate 

the parameters. 
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The above steps may be required to repeat several times until good estimates can 

be reached. 

 

The graphic parameter estimation approach is able to give accurate estimates to 

the parameters of the Weibull distribution (e.g. Weibull (1951)). However, to 

Weibull-related distributions, the graphic approach is generally crude, since it is 

based on observation and some measures of approximating asymptotes to the real 

lines are inevitable. Nevertheless, the plotting and estimation are helpful for 

identifying the intrinsic life mode in the data and doing model selection (e.g. 

Murthy et al. (2004)
(2)

). In addition, the estimates obtained in graphic approach 

can be used as starting point to obtain more refined estimates using statistical 

methods such as maximum likelihood. 

 

6.3.2 Inverse Weibull Case α<0, β<0 

As discussed above, when failure rate of the data has a unimodal shape or WPP of 

the data is concave, the shape parameters of the fitted odd Weibull distribution are 

probable to be negative, but could still be positive. In such case, one can still use 

the WPP method introduced in section 6.3.1 to estimate the model parameters, 

and see whether the model is well fitted or not. If not, one has sufficient reason to 

doubt the assumption of positive shape parameters, and then can use the inverse 
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property introduced by Cooray (2006) to transform the data so that WPP 

parameter estimation steps are still useful. 

 

Cooray (2006) shows that if a random variable X  follows odd Weibull 

distribution with parameters ( )000 ,, θβα , X1  is still odd Weibull distributed, and 

the distribution parameters ( )111 ,, θβα  have the following relationship with 

( )000 ,, θβα  

01 αα −= , 
01 ββ −= , 

01 1 θθ =                                                                    (6.22) 

 

From this property, if the failure rate or WPP of a sample data set indicates the 

shape parameters of the odd Weibull distribution are negative, one can invert the 

data 
1x , 

2x ,…, nx  to 
11 x , 

21 x ,…, nx1 , and then plot WPP for { }nxx 1,,1 1 L  

and estimate the model parameters following the steps as iterated in section 6.3.1. 

If appropriate estimates of ( )111 ,, θβα  are obtained, then the original parameters 

( )000 ,, θβα  can be easily estimated from (6.22). Otherwise, the odd Weibull 

distribution is not an appropriate model for the data and one should try other 

models. 
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6.4 Optimal Burn-In Time and Useful Period 

As discussed in the above, when 1>α , 1≤αβ , the odd Weibull family is flexible 

at describing bathtub shaped failure rate data. In this section, some important 

characteristics of the bathtub curve are discussed. 

 

For a product lifetime exhibiting a bathtub shaped failure rate, an important issue 

is to determine the optimal burn-in time. A common method is to find the time 

where the corresponding MRL achieves its maximum (Lai et al. (2004), 

Bebbington et al. (2006)). MRL ( )tµ  is defined as 

( )
( )( )
( )tF

dttF
t t

−

−
=
∫
∞

1

1
µ                                                                                    (6.23) 

 

By differentiating ( )tµ  with respect to t , the point ∗t  which maximizes ( )tµ  can 

be found and it is defined in Mi (1995) as a good choice of optimal burn-in time. 

 

Gupta and Akman (1995) proved that for a lifetime distribution, if FRF ( )th  is 

bathtub shaped and ( ) µ10 >h , where µ  is the mean time to failure, the 

corresponding MRL ( )tµ  is unimodal with a unique maximum point. For the odd 

Weibull distribution, when ( )th  exhibits a bathtub shape, ( ) ∞=0h , so ( )tµ  is 

unimodal shaped with a unique change point. At the maximum point ∗t , ( ) 0' =tµ , 

from Muth (1977), there exists a relationship between ( )tµ  and ( )th  
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( ) ( ) ( ) 01||' =−= ∗∗
tt

thtt µµ                                                                           (6.24) 

 

For the odd Weibull distribution, when the shape parameters 1>α , 1≤αβ , FRF 

(6.6) is bathtub-shaped, so with the transformation ( )αθtz =  

( ) ( ) ( ) 1111'
1

1
1

1
−



 −+−=

−∞−
−

∫ dxeeezt
z

xzz

α

α ββα
α

αβµ                                  (6.25) 

 

Denote ∗
1z  as the zero point of (6.25), and then the change point ∗t  is 

( ) α
θ

1

1

∗∗ = zt                                                                                                  (6.26) 

 

The change point or optimal burn-in time ∗t  does not have a closed form, but it is 

unique and can be obtained via numeric methods, such as Newton method.  

 

The following figure shows how ( )tµ  and ( )th  behave for different parameters, 

with the maximum point ∗t  of ( )tµ  indicated. 
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                        (a) β=0.01, θ=1                                                            (b) α=5, θ=1 

Figure 6.5 Typical FRF and MRL curves of odd Weibull 

 

Besides the optimal burn-in time, the length of the useful period or the random 

risk period of the bathtub curve is important for application. This is because a 

product with bathtub shaped failure rate is only stable during the useful period, 

thus it is usually considered the longer this period is the better. Bebbington et al. 

(2006) defines the terms useful period and conservative useful period based on the 

curvature of ( )th  and studies the useful periods of the Additive Weibull 

distribution. These definitions are intuitively acceptable, but for most bathtub 

shaped FRF, the curvature is too complicated to deal with. Another definition was 

given in Xie et al. (2004). The authors propose to use the relative difference 

between the unique change points of FRF ( )th  and MRL ( )tµ  as an indicator of 

the length of the useful period. When ( )th  exhibits a bathtub shape, Mi (1995) 

proves the corresponding ( )tµ  has a unique change point before ( )th , and hence 
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the measure proposed in Xie et al. (2004) is well defined. In the current paper, we 

consider Xie’s evaluation of the length of useful period. 

 

The relative difference is defined as 

∗

∗∗ −
=

b

tb
d                                                                                                   (6.27) 

where ∗b  is the unique change point or minimum of FRF, and ∗t  is the unique 

change point of MRL. 

 

To find ∗b , differentiate ( )( )thlog  with respect to z , we have 

( )( ) ( ) ( )
( )β

β

ββ
α

α

11

1

1
11

11log
1

−+

−
−

−
−++

−
=

∂
∂

−

z

zz

z

z

e

ee

e

e

zz

th
                            (6.28) 

 

Denote ∗
2z  as the zero point of (6.28), then the change point ∗b  is 

( ) α
θ

1

2

∗∗ = zb                                                                                                 (6.29) 

 

Similar to ∗t , the change point ∗b  of the FRF does not have closed form, but 

numerically reachable. 

 

According to Xie et al. (2004), the useful period is defined as 

( ) ( ) ( ){ }∗+≤ bhktht 1|                                                                                    (6.30) 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

154 

 

where k  is a tolerant index. Denote the length of the useful period as l . 

 

It is straightforward that the useful period is proportional to the scale parameter θ . 

Hence the relative difference d  is independent of θ , and the length of useful 

period l  is proportional to θ . 

 

A numerical study is carried out to investigate the relationship between the shape 

parameters and ∗t , ∗b , d , l . The value of the scale parameter θ  is fixed at 1 in 

the numerical study. α range from 1.2 to 10, and β ranges from 1/10α to α, in 

order to guarantee the condition αβ≤1. Results are summarized in the flowing 

tables. 

 

Table 6.1 Change points of MRL 

β 
α 

1/10α 1/5α 3/10α 2/5α 1/2α 3/5α 7/10α 4/5α 9/10α α 

1.2 0.5841 0.6305 0.6404 0.6315 0.6082 0.5704 0.5144 0.4313 0.2983 0.0141 

1.5 0.3307 0.3838 0.4029 0.4036 0.3906 0.3649 0.3252 0.2672 0.1796 0.0065 

2 0.2012 0.2508 0.2730 0.2796 0.2746 0.2591 0.2324 0.1914 0.1279 0.0001 

2.5 0.1516 0.1980 0.2207 0.2295 0.2278 0.2166 0.1952 0.1607 0.1051 0.0001 

3 0.1253 0.1693 0.1920 0.2018 0.2017 0.1926 0.1737 0.1422 0.0902 0.0001 

4 0.0977 0.1380 0.1600 0.1705 0.1718 0.1645 0.1479 0.1190 0.0701 0.0001 

5 0.0829 0.1215 0.1419 0.1526 0.1542 0.1478 0.1320 0.1042 0.0571 0.0006 

6 0.0738 0.1117 0.1296 0.1402 0.1423 0.1360 0.1209 0.0939 0.0482 0.0022 

7 0.0689 0.1012 0.1201 0.1322 0.1343 0.1274 0.1127 0.0859 0.0412 0.0062 

8 0.0657 0.0980 0.1179 0.1241 0.1273 0.1195 0.1055 0.0791 0.0375 0.0101 

9 0.0625 0.0920 0.1105 0.1224 0.1224 0.1153 0.0995 0.0767 0.0322 0.0169 

10 0.0585 0.0897 0.1083 0.1167 0.1185 0.1098 0.0965 0.0733 0.0323 0.0254 
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From table 6.1, we can see that the change point ∗t  of MRL decreases as α 

increases; while as β increase, it initially increases and then decreases, with the 

maximum of each row highlighted in the table.  It is interesting to note that when 

α is large (larger than 3), the maximum of ∗t  is achieved when β=1/2α. It is also 

observed that when αβ is close to 1 (the last column), ∗t  is very small, which 

means that the optimal burn-in time is very short or can be neglected. 

 

Table 6.2 Change points of FRF 

β 
α 

1/10α 1/5α 3/10α 2/5α 1/2α 3/5α 7/10α 4/5α 9/10α α 

1.2 1.7818 1.7312 1.5600 1.4238 1.3048 1.192 1.0753 0.9412 0.7627 0.4386 

1.5 1.3839 1.2709 1.1774 1.0942 1.0157 0.9375 0.8550 0.7621 0.6476 0.4801 

2 1.0606 1.0069 0.9570 0.9088 0.8607 0.8110 0.7577 0.6980 0.6267 0.5319 

2.5 0.9429 0.9089 0.8756 0.8422 0.8079 0.7718 0.7327 0.6888 0.6370 0.5707 

3 0.8886 0.8639 0.8390 0.8135 0.7870 0.7587 0.7278 0.6931 0.6525 0.6017 

4 0.8456 0.8296 0.8131 0.7958 0.7775 0.7577 0.736 0.7116 0.6833 0.6489 

5 0.8336 0.8217 0.8093 0.7962 0.7821 0.7669 0.7502 0.7315 0.7098 0.6838 

6 0.8321 0.8226 0.8126 0.802 0.7907 0.7783 0.7647 0.7495 0.7320 0.7112 

7 0.8348 0.8269 0.8185 0.8096 0.8000 0.7896 0.7781 0.7653 0.7506 0.7334 

8 0.8391 0.8323 0.8251 0.8175 0.8092 0.8002 0.7903 0.7792 0.7666 0.7518 

9 0.8441 0.8382 0.8318 0.8251 0.8178 0.8098 0.8011 0.7914 0.7803 0.7674 

10 0.8493 0.8440 0.8383 0.8323 0.8257 0.8186 0.8108 0.8021 0.7923 0.7809 

 

In contrast to ∗t , the change point ∗b  of FRF decreases as β increases; while as α 

increases, it initially decreases and then increases, with the minimum of each 

column highlighted. It is also observed that ∗b  does not change as much as ∗t  

when the values of α and β are altered, so it is not as important as the latter in 

determining the pattern of relative difference d and the length of useful life l. 
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Table 6.3 Relative Difference between the Change Points 

β 
α 

1/10α 1/5α 3/10α 2/5α 1/2α 3/5α 7/10α 4/5α 9/10α α 

1.2 0.6722 0.6358 0.5895 0.5565 0.5339 0.5215 0.5216 0.5417 0.6089 0.9679 

1.5 0.7610 0.6980 0.6578 0.6311 0.6154 0.6108 0.6196 0.6494 0.7226 0.9865 

2 0.8103 0.7509 0.7147 0.6924 0.6810 0.6805 0.6933 0.7257 0.7959 0.9999 

2.5 0.8392 0.7821 0.7479 0.7274 0.7180 0.7194 0.7336 0.7667 0.8350 0.9999 

3 0.8590 0.8040 0.7712 0.7520 0.7436 0.7461 0.7613 0.7948 0.8618 0.9999 

4 0.8844 0.8337 0.8032 0.7857 0.7790 0.7828 0.7990 0.8328 0.8975 0.9998 

5 0.9006 0.8521 0.8246 0.8083 0.8028 0.8073 0.8241 0.8575 0.9196 0.9991 

6 0.9113 0.8642 0.8405 0.8252 0.8200 0.8252 0.8419 0.8748 0.9341 0.9969 

7 0.9175 0.8776 0.8533 0.8367 0.8322 0.8387 0.8552 0.8877 0.9451 0.9916 

8 0.9218 0.8823 0.8571 0.8482 0.8426 0.8507 0.8665 0.8984 0.9511 0.9865 

9 0.9259 0.8903 0.8671 0.8517 0.8503 0.8576 0.8758 0.903 0.9587 0.978 

10 0.9311 0.8938 0.8708 0.8598 0.8565 0.8659 0.8809 0.9087 0.9592 0.9675 

 

The relative difference d increases as α increases; while as β increases, it initially 

decreases and then increases, with the minimum of each row highlighted. This 

pattern is reasonable in considering that ∗b  is not as volatile as ∗t , and hence the 

change of 
∗

∗∗ −
=

b

tb
d  is more dependent on the latter factor ∗t . 
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Table 6.4 Length of the Useful Period 

β 
α 

1/10α 1/5α 3/10α 2/5α 1/2α 3/5α 7/10α 4/5α 9/10α α 

1.2 1.6419 1.3345 1.2104 1.1374 1.0921 1.064 1.0471 1.0365 1.0250 1.0090 

1.5 0.8844 0.8065 0.7570 0.7229 0.6985 0.6807 0.6679 0.6596 0.6573 0.6786 

2 0.5440 0.5220 0.5063 0.4952 0.4875 0.4830 0.4818 0.4847 0.4947 0.5243 

2.5 0.4179 0.4099 0.4045 0.4013 0.4002 0.4012 0.4050 0.4125 0.4266 0.4560 

3 0.3526 0.3500 0.3489 0.3493 0.3512 0.3549 0.3611 0.3707 0.3862 0.4143 

4 0.2847 0.2861 0.2884 0.2917 0.2962 0.3022 0.3102 0.3212 0.3372 0.3626 

5 0.2486 0.2514 0.2549 0.2592 0.2646 0.2713 0.2799 0.2912 0.3067 0.3299 

6 0.2254 0.2288 0.2328 0.2375 0.2433 0.2503 0.2590 0.2701 0.2850 0.3065 

7 0.2088 0.2124 0.2167 0.2216 0.2275 0.2345 0.2432 0.2541 0.2684 0.2885 

8 0.1961 0.1999 0.2042 0.2092 0.2151 0.2221 0.2307 0.2413 0.2551 0.2740 

9 0.1859 0.1898 0.1942 0.1992 0.2051 0.2120 0.2204 0.2307 0.2440 0.2621 

10 0.1776 0.1814 0.1858 0.1908 0.1966 0.2035 0.2117 0.2218 0.2347 0.2520 

 

The length of the useful period l decreases as α increases; while as β increases, it 

initially decreases and then increases. It is also observed that l  has a similar 

pattern as the absolute difference between ∗t  and ∗b , which is the length of the 

period in which FRF ( )th  does not change dramatically. 

 

From figure 6.5, we also observe that the flat portion of ( )th  tends to be low with 

small α  and small β . Therefore, there exists a trade-off between the length of 

the useful period and the level of ( )th  during this period. In order to achieve a 

longer useful period, a unit having an odd Weibull distributed lifetime with small 

α  and large β  is preferred, while if the level of the random failure rate during 
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the useful period is of most interest, a product having an odd Weibull lifetime 

model with small α  and small β  is more desirable. 

 

6.5 An Illustrative Example 

The sample cited in Cooray (2006) from Aarset (1987) contains 50 device failure 

data. The TTT plot shows that the data have a bathtub-shaped failure rate. 

Therefore, the odd Weibull distribution may be suitable to model the data and the 

shape parameters should be in the region 1>α  and 10 ≤< αβ . 

 

WPP plotting for the data is displayed in figure 6.6. Fit two straight lines to both 

sides of the curve: 

1L : 49.254.0 −= xy , 
2L : 3364.7 −= xy                                                   (6.31) 

 

From 1L  and equation (6.17), 54.0
~~ =βα . From 2L  and equation (6.18), 

64.7~ =α , and then 071.0
~

=β , so 
3L  is 355.3064.7 −= xy . The intersection 

point of 
1L  and 

3L  is ( )371.0,925.3 − . Since the point lies under the x -axis and 

the slope of 
3L  is larger than 

1L , we need to shift 
3L  to the right and/or 

1L  to the 

left. Empirical experience shows that shifting 
1L  horizontally to the left by 0.638 

lifts the intersection point to the x -axis and also ensures 
1L  still fits the left tail of 

C  well. See the following two figures. 
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(a) Fit to WPP L1: y=0.54x-2.49, L2: y=7.64x-33. (b) Fit to WPP L1: y=0.54x-2.146, L2: y=7.64x-33. 

Figure 6.6 WPP and linear approximations 

 

After the adjustment, WPP estimates of the model parameters can be obtained as 

635.50
~

 ,071.0
~

 ,64.7~ === θβα . These estimates are quite close to the MLE 

obtained in Cooray (2006) 509.53ˆ ,0921.0ˆ ,9657.6ˆ === θβα . The ML is thus 

the log-likelihood at the MLE point ( ) 88.215,ˆ, −=θβα
))

L . The TTT plot and WPP 

plot are illustrated in Figure 6.7. 
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              (a) TTT plot of the device failure data.             (b) WPP plot of the device failure data. 

Figure 6.7 Modelling the Aarset (1987) device data with odd Weibull 

 

To see whether the effort of modelling the data with a distribution having an 

additional shape parameter β  to the 2-parameter Weibull distribution is 

worthwhile or not, we can do likelihood ratio test. The null hypothesis is 1=β , 

and the RML is defined as 

( ) ( )[ ]θβαθα ˆ,ˆ,ˆ,1,ln2 LL
))

−=Λ                                                                      (6.32) 

where ( )θα
))

,  are MLE of the parameters of the fitted Weibull distribution and 

( )θα
))

,1,L  is the corresponding ML. 

 

For this data set, ( ) ( )913.44,949.0, =θα
))

 and ( ) 002.241,1, −=θα
))

L . Hence, the 

likelihood ratio is 404.50=Λ , and the corresponding p-value is 1.25*10-12. 

Under 99.9% significance level, we can reject the null hypothesis and conclude 

that the odd Weibull distribution provides a better fit to the data than the 

parameter Weibull distribution. 
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However, this conclusion may not be so convincing considering that the data 

exhibits a bathtub-shaped failure rate, while the Weibull distribution cannot 

produce such failure rate curve. To compare the goodness-of-fit of the odd 

Weibull distribution to this dataset with other bathtub-shaped Weibull-related 

distributions, we use the ML indexes. The exponentiated Weibull (Mudholkar and 

Srivastava (1993)), Weibull extension (Xie et al. (2002)) and modified Weibull 

(Lai et al. (2003)) are considered for the comparison. 

 

Firstly, the MLE of the parameters of the exponentiated Weibull distribution 

obtained in Mudholkar and Srivastava (1993) are ( ) ( )023.91,146.0,69.4ˆ,ˆ,ˆ =γβα , 

and the corresponding ML is ( ) 114.229ˆ,ˆ,ˆ
1 −=γβαL .  Secondly, the MLE of the 

parameters of the Weibull extension distribution obtained in Tang et al. (2003) 

are ( ) ( )00876.0,588.0,747.13ˆ,ˆ,ˆ =λβα , and the corresponding ML is 

( ) 647.231ˆ,ˆ,ˆ
2 −=λβαL . Finally, the MLE of the parameters of the modified 

Weibull distribution obtained in Ng (2005) are ( ) ( )02332.0,355.0,0624.0ˆ,ˆ,ˆ =λβα , 

and the corresponding ML is ( ) -227.155ˆ,ˆ,ˆ
3 =λβαL . All these MLs are smaller 

than the ML ( ) -215.800ˆ,ˆ,ˆ =θβαL  of odd Weibull fit. Therefore, if ML is 

considered as the indicator of goodness-of-fit, the odd Weibull performs the best 

among the four generalizations of the parameter Weibull distribution to model the 

lifetime data. 
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The following figure is plotted to illustrate the difference of fitting by the several 

lifetime distributions. 

 

 

      (a) WPP of odd Wb, Weibull and Exp Wb.     (b) WPP of odd Wb, Mod Wb Ext and Mod Wb. 

Figure 6.8 Comparison of fit among different distributions 

 

It is easy to see from the above figure that the odd Weibull distribution provides 

far better fit than the other candidates to the empirical WPP. 

 

With the odd Weibull parameter estimates obtained, the lifetime of the devices 

can be modeled 

( )

1ˆ
ˆ

ˆ
exp11

−

































+−=

βα

θ

t
tF                                                                     (6.33) 
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From (6.25), (6.26), (6.27) and (6.28), the change points of ( )th  and ( )tµ  are 

obtained numerically, 41.9823=∗b  and 6.5607=∗t , and hence 0.8535=d . So 

the optimal burn-in time based on the criterion of maximizing mean residual life 

is 6.5607=∗t , the useful period for a 20% tolerance index k  is between time 

27.2652 and 52.4744, and the length 25.2092=l . 

 

 

        (a) MRL µ(t) and its change point t*  (b) FRF h(t), b*, optimal burn-in time and useful period 

Figure 6.9 MRL and FRF of the fitted odd Weibull model 

 

6.6 Summary 

In this chapter, the statistical properties of the newly proposed odd Weibull 

distribution are studied. This model is generated by evaluating randomness of the 

“odds of death” of a Weibull or inverse Weibull variable. WPP, the commonly 

used technique in Weibull analysis, is plotted for the distribution and used to 

obtain crude estimates of the parameters for a given sample data set. Finally, 

optimal burn-in and useful period related issues are discussed for the bathtub 



MODIFIED WEIBULL DISTRIBUTIONS IN RELIABILITY ENGINEERING 

164 

 

shaped failure rate curve. Numerical results support the conclusion that the 

random risk period of the bathtub shaped failure rate curve of the odd Weibull 

distribution is flat and long in most cases. 
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Chapter 7. Conclusion and Future Work 

The main focus of the work presented in this thesis is to study the statistical 

properties of the Weibull models which can describe bathtub shaped failure rate 

data and parameter estimation problem associated with these models. This chapter 

summarizes the results of the research work and discusses their limitations and 

implications. Recommendations on further research and practical application are 

also presented. 

 

7.1 Research Results 

Weibull analysis is a powerful tool for analyzing lifetime data. Using the Weibull 

models to fit lifetime data is composed of data collection, model selection, 

parameter estimation and model application. In this thesis, a statistical 

characterization of the modified Weibull (Lai et al., 2003) and odd Weibull 

(Cooray, 2006) is carried out and parameter estimation of the model parameters is 

discussed. 

 

In Chapter 3, a detailed description of the important statistics and distribution 

functions of the modified Weibull distribution is presented. ML estimation 

procedure and usage of the likelihood-ratio test to make decisions regarding 

model choice is described. It is found that with the accelerating parameter λ, the 
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modified Weibull distribution does not only extend the application of the Weibull 

and type-1 extreme value distributions to more monotonic FRF shapes, but also 

fits well to a variety of bathtub shaped failure rate data. In addition, due to the 

simple form of the distribution function, WPP and linear regression can both be 

applied to estimate the model parameters with a complete sample. All these 

benefits of the modified Weibull distribution makes it a good generalization of the 

Weibull distribution to model lifetime data, especially those with bathtub shaped 

failure rate. 

 

Despite the convenience at application, graphic parameter estimation methods 

such as WPP are usually only able to produce very crude estimates when 

approximation or trial-and-error tests are needed. In such case, ML estimation 

would perform much better. The first half of Chapter 4 considers the log-

likelihood function and Observed Fisher Information matrix for a class of 

distributions with a certain form. A technique is proposed to simplify the 

computation of the Observed Fisher Information matrix for the 3-parameter 

members of the class and another technique is proposed to decrease the number of 

unknown parameters in the log-likelihood function. Both techniques are useful in 

the consideration of computation and the latter one can also play a role in 

investigating the property of MLE for the members in the class. 
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Usually ML estimation is carried out by researchers to estimate model parameters 

of a statistical distribution without verifying the validity of doing so. However, 

sometimes this is risky that unexpected outcomes such as inability of convergence 

and multiple local maxima would be encountered. Fortunately, experiences show 

that MLE of the modified Weibull distribution exist and are unique. In the second 

half of Chapter 4, we examine and transform the log-likelihood function of the 

modified Weibull distribution via using the technique proposed earlier, and 

successfully prove the preferable properties of MLE of the modified Weibull 

parameters. 

 

Under mild regularity conditions, MLE is asymptotically unbiased and the most 

efficient. However, for small size samples MLE is sometimes not as good as other 

estimation methods. Besides, for a parameter with small value as compared to 

others, bias of MLE could be so large that is several times of the true value. In 

such case, MCMC simulation provides less dispersed estimators, as well as easily 

constructed probability intervals. Chapter 5 narrates the details of obtaining 

MCMCE, compares the estimators with MLE and concludes that MCMC 

estimation for the parameters of the modified Weibull distribution is a good 

alternative to MLE for small size samples and can provide empirically exact 

probability intervals. 
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As a recently introduced Weibull model, the odd Weibull distribution is able to 

exhibit monotonic, unimodal and bathtub shaped failure rate. A detailed statistical 

characterization of this distribution is carried out in Chapter 6. WPP method is 

applied to estimate the model parameters, and it is shown that the estimation 

procedure is consistent and can achieve its unique stable point. Burn-in and 

related issues of the bathtub shaped failure rate curve are discussed, and the 

second portion of the curve is found to be flat and long, which makes the odd 

Weibull distribution a flexible and adaptable model for bathtub failure rate data. 

 

7.2 Future Research 

Rather than MLE and Bayesian estimation, there are still other parameter 

estimation methods. For the 3-parameter Weibull distribution, MPE seems to a 

good alternative and generalization of MLE. Future study of this method on the 3-

parameter Weibull distribution would yield estimators that always exist and are 

consistent. For parameter estimation of the modified Weibull distribution, though 

multiple or nonlinear regression is thought to be crude, certain measures such as 

weighted least square may be taken to correct the error and reduce the bias. In 

addition, bias correction measures have been proposed to MLE of the Weibull 

parameters, so similar studies might be extended to MLE of the modified Weibull 

parameters. 
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The dimension decreasing technique proposed in Chapter 4 has only been applied 

to the Weibull and modified Weibull distributions, but the application can be 

extended to help investigate ML estimation of the parameters of other 

distributions such as the exponentiated Weibull (Mudholkar and Srivastava, 1993) 

and Weibull extension (Xie et al., 2002). 

 

Confidence interval estimation is another important topic associated with the 

parameters of statistical distributions. Except for the MLE based normality 

approximation and MCMC simulation based empirical probability interval 

construction, the conditional (Lawless, 1973; Maswadah, 2003) and unconditional 

(Thoman et al., 1969) confidence intervals are interesting alternatives. The 

conditional method introduces a set of ancillary statistics, formulate conditional 

PDF to the parameters, and integrate the functions to get upper and lower bounds 

of the confidence intervals. The unconditional method makes use of the pivotal 

property of the parameters of the Weibull distribution and constructs the 

confidence intervals via Monte Carlo simulation. Chen (2004) and Chen and Chen 

(2009) did a good study of the simulation based confidence interval construction 

for the location parameter of the 3-parameter Weibull distribution, and their idea 

dates back to Thoman et al. (1969). Further discussions on the use of the methods 

for other members of the Weibull family would certainly be beneficial. 
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Combination of two or more models is usually a fast and easy way to generate 

new useful models, and this pattern of model building has straightforward 

physical or mechanical explanations, so is of vast application in real data 

modeling. For system life modeling, though combinations of the Weibull 

distribution has been studied extensively, few works are extended to the other 

members of the Weibull family. Bebbington et al. (2007
(2)

) studied the effect on 

MRL and the change points after adding a constant competing risk to a bathtub 

FRF. Because of the diversity of application and less difficulty in parameter 

estimation than other multi-parameter distributions, various combinations of 

different Weibull models are worth constructing and further exploring. 
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