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Summary 

 

The main objective of this thesis is to develop the Damage Locating Vector 

(DLV) method further for structural damage detection by (a) extending its formulation 

to accommodate multi-stress state elements and the variation of internal forces and 

element capacity along element length; (b) proposing two schemes to identify damaged 

elements for the case of imperfect measurements; (c) proposing a simple algorithm to 

assess the severity of the identified damaged elements; (d) proposing two algorithms to 

detect damage for the case where the applied static and dynamic loads are unknown; 

(e) introducing an algorithm to identify faulty signals; and (f) integrating wireless 

sensor network into the DLV method where the issue of intermittent loss during 

wireless transmission of raw data packets from the sensor nodes to the base station is 

addressed. 

Firstly, the normalized cumulative energy (�CE) of each element is proposed as 

damage indicator instead of the normalized cumulative stress (�CS) in the original 

DLV method to extend to cases where the structure contains frame elements. Secondly, 

since measurement of input excitation is expensive or in some cases impossible, 

damage detection using the DLV method and unknown excitation is developed. For the 

static case, the unknown to be solved is limited to a fixed factor between the loading at 

the reference and the damaged states. This is practical since the magnitudes of the 

static loads when performing for the reference and the damaged states are usually 

constant for convenient implementation but need not be the same since they are 

performed at two different times which may be months or years apart. For the dynamic 

case, the structural stiffness matrix may be determined directly from the measured 

accelerations without knowing the details of the input excitations. By using the 
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Newmark-β method to relate velocity and displacement vectors at different time steps 

to the initial values, a system of nonlinear equations is formulated based on the 

equations of motion of the structure at different points in time. Newton-Raphson 

method is then used to solve the system of nonlinear equations with the stiffness 

coefficients as unknowns. Both algorithms assume that the locations of the actuators 

and sensors are known. Thirdly, two schemes are proposed to identify the actual 

damaged elements from a larger set of potential damaged elements (PDE) arising from 

imperfect data, namely, an intersection scheme and a two-stage analysis. The first 

algorithm, which is robust for cases where the number of sensors used is relatively 

large, makes use of the common elements in different sets of potential damaged 

elements computed based on various combinations of sensor readings to identify the 

actual damaged elements. The second algorithm, which is effective for cases where the 

number of sensors available is limited, locates possible damaged regions using the 

change in structural flexibility and then analyzes the damaged regions using the DLV 

method. Fourthly, an algorithm to assess the damage severity of the identified 

damaged elements is developed. In this algorithm, the first singular value of a 

flexibility matrix which is constructed using a numerical model of the structure is 

iteratively adjusted such that it corresponds to that derived from the measured data by 

changing the stiffnesses of the identified damaged elements using a penalty function 

method.  

Even though a robust damage detection algorithm is available, the damage 

detection results may still not be reliable if the sensor is faulty or data are of low 

quality. An algorithm is proposed to assess the quality of measured data (or the in-situ 

sensors) by making use of signals from various sets of sensors to form different 

flexibility matrices. Singular value decompositions are performed on these matrices to 
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identify the non-zero singular values (�ZV) and the relative quality among different 

sets can be deduced. The set which produces the smallest �ZV is considered as 

associated with healthy sensors and sensors which do not belong to this set may be 

considered as faulty. The algorithm can identify multiple faulty sensors simultaneously 

and is applicable for the cases where structure is either damaged or healthy. The 

feasibility of the algorithm is illustrated using simulated and measured data from a 3-D 

modular truss structure. 

Traditionally, to collect structural response data, either displacement transducers 

or accelerometers are employed. Wireless sensors are becoming popular as measured 

responses collected from conventional sensors wired to the data acquisition system can 

be costly to install and maintain, and may interfere with the operations of the structure. 

The transmission of individual packet of data from each sensor using radio frequency 

to the base station usually experiences intermittent loss based on commercially 

available system.  An algorithm to reconstruct the lost data values is introduced. 

Discrete Fourier transform (DFT) is employed to identify the significant frequencies of 

the measured data and the Fourier coefficients are determined by least-squares fit of 

the measured values in an iterative manner to reconstruct an approximated complete 

signal. The algorithm is found robust for the case where signals with 30% of lost data 

can be reconstructed with less than 10% ‘error’ in the lost portions. This approach is 

slightly different from the recent non-commercial systems where each sensor board is 

equipped with substantial memory and a firmware for DFT to pre-process the data 

before transmission. This recent innovation by other researchers also has limitations 

which have yet to be fully resolved. 

 The enhancements to the DLV method are illustrated using (a) simulated data 

from a 2-D warehouse structure which comprises truss elements as well as beam and 
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column elements with varied and constant cross-sectional areas; and (b) experimental 

data from two 3-D modular truss structures.   

Keywords: damage detection, damage locating vector, normalized cumulative energy, 

wireless sensor, transmission loss, sensor validation. 
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 CHAPTER 1 

I�TRODUCTIO� 

 

Our daily life depends heavily on infrastructures such as buildings, bridges, and 

offshore platforms. Through years of operation, these infrastructures may suffer from 

aging, corrosion, change in loading and environmental conditions, earthquake, and 

terrorist attack, leading to damage. Early detection of damage in infrastructures can 

help to increase the safety and reliability of existing structures, provide authorities with 

necessary measures to extend the service life of the infrastructures and reduce cost, or 

in some extreme cases, minimize catastrophic failures and loss of lives. Interests in 

monitoring the occurrence of damages as well as their severity can be substantiated by 

the intensity of research being carried out in recent years. Thorough review on the 

development of structural damage detection can be found in Doebling et al. (1996), 

Zou et al. (2000), Auweraer and Peeters (2003), Chang et al. (2003), Worden and 

Dulieu-Barton (2004), Alvandi and Cremona (2006), Kerschen et al. (2006), Yan et al. 

(2007), Worden et al. (2007), Worden et al. (2008), Nasrellah (2009), and Soong and 

Cimellaro (2009).  

In this chapter, the definition of damage and the different methods for structural 

damage detection are discussed. A review of published works in structural damage 

detection as well as their applicability and limitations is summarized, leading to the 

formulation of the objectives and scope of this study. This chapter ends with a 

description of the layout of this thesis. 
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1.1 DAMAGE I� STRUCTURE 

Damage in a system in general is a negative change introduced into the system. 

In civil engineering context, damage is defined as the degradation of material, the 

reduction in quality of boundary condition, or the breakage of connections. These 

damages are caused by many different sources such as corrosion, aging, earthquake, 

fire, and changes in loading and environmental conditions as lifestyle and technology 

advancements. 

Structural damage has been studied thoroughly and different classifications of 

structural damage have been proposed. Barer and Peters (1970) introduced six 

common types of damage, namely (1) brittle damage, (2) fatigue damage, (3) corrosion 

fatigue, (4) stress corrosion cracking, (5) crevice carrion, and (6) galvanic corrosion. 

Schiff (1990) proposed another classification of damage for structures comprising six 

different types of damages, namely (1) elastic damage, (2) damage of brittle material, 

(3) fatigue damage, (4) brittle damage, (5) damage due to elastic instability, and (6) 

damage due to excessive deflection.  

Detailed studies on various damages in structures have been performed to 

quantify the physical state of damage, its causes and effects. Damage in reinforced 

concrete structures under fire is found to be dependent on the bond characteristics, the 

length of elements, the behaviour of steel material, and the size of fire compartment 

(Izzuddin and Elghazouli, 2004; Elghazouli and Izzuddin, 2004; Wong, 2005; 

Kodur and Bisby; 2005). Damage in cold-formed beams and columns is attributed 

mainly to the local buckling effect which is usually not the case for hot-rolled 

beams and columns. The latter failure is usually attributed to the inadequate 

capacity of a section of structural members (Delatte, 2005). Damage in structures 

due to underground blast is found largely dependent on both spatial variation effect 
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and structure-ground interaction effect caused by blast-induced motion (Wu and 

Hao, 2005a-b). Damage in buildings under terrorist attacked by planes crashed is 

attributed not only to the impact by the airplanes but also the fire and the 

weakening of steel and concrete material under fire (Omika et al., 2005).  

The simplest way to simulate damage in numerical study is to reduce the 

Young’s moduli of members (Law et al., 1998) or element stiffness (Yang and 

Huang, 2007).  Although this does not cover all kinds of damage, it is sufficient for 

evaluation of many practical situations. Hence for experimental studies, most 

researchers either introduce a cut (Vo and Haldar, 2005) or change affected 

member from a larger cross-sectional area to a smaller cross-sectional area (Gao et 

al., 2007).  

The varying physical cause and development of damage in structure has partly 

resulted in different methods for structural damage detection being proposed by 

researchers. These various methods will be briefly reviewed in the following sections. 

 

1.2 LITERATURE REVIEW 

The aim of a structural damage detection tool can be classified into four levels 

(Doebling et al., 1996):  

(i) detect the presence of damage as it occurs,  

(ii) determine the location of the damage,  

(iii) assess the damage severity, and in some cases 

(iv) predict the remaining service life of the structure.  

To achieve this aim, identification methods and solution techniques have been evolved. 

The methods are generally classified into (a) non model-based and (b) model-based. 
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The solution techniques, which are commonly employed, include Least Square 

Estimation (LSE) method, Kalman Filter (KF) method, Extended Kalman Filter (EKF) 

method, Genetic Algorithm (GA) method. Predicting the remaining service life of the 

structure which is classified as a level (iv) stage of structural health monitoring (SHM), 

usually relates to structural design assessment, fatigue analysis, and fracture 

mechanics, and is only performed after structural damage detection has been 

completed and is not considered in this report. 

Non model-based methods employ response data obtained from two different 

states of the structure, reference and damaged, in order to detect and localize damage 

without involving a detailed analytical model of the structure and can usually achieve 

level (ii) solution, namely determining the location of damage. Model-based methods 

attempt to update the analytical model of the structure using measured response data at 

various states of the structure in order to assess structural damage.  Such methods are 

capable of assessing the damage severity, complete a level (iii) analysis. If an 

analytical model of the structure is not available, model-based methods can make use 

of analytical equations where the unknowns to be solved are parameters of the 

structure. The main difference between the two classes of methods is therefore the 

dependency on the parameterized analytical model or equations of the structure. Some 

of these identification methods and solution techniques for structural damage detection 

are briefly reviewed in the following. 

 

1.2.1 �on model-based damage detection 

Non model-based methods for structural damage detection may be the oldest 

methods to assess the damage of existing structures and are still commonly used today 

due to their simplicity. Looking at structural components to search for cracks and 
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damages is classified as visual inspection method (Bray and McBride, 1992; Dry, 

1996; Pang and Bond, 2005; Fraser, 2006). Listening to the audible variations in 

response to the tapping on structural surface to determine if voids or debonding exists 

is denoted as tap test (Cawley et al., 1991; Lipetzky et al., 2003). Visualizing the 

interior of structure to assess the existence of crack using X-ray or Gamma ray is 

grouped under the name of X-ray or Gamma ray methods (Jama et al., 1998; Balasko 

et al., 2004; Thornton, 2004). Measuring the state of stress using ultrasonic guided 

wave or eddy current can also locate cracks in structures (Green, 2004; Tsuda, 2006; 

Lee et al., 2006).  

With rapid advancement in information technology, sophisticated methods have 

been proposed to assess structural damage. Measuring the traveling time of a signal 

through existing structural component (Quek et al., 2003); identifying the presence of 

spikes or impulses in the time-frequency of a signal after performing wavelet 

transform (WT) or Hibert-Huang Transform (HHT) (Hou et al., 2000; Lu and Hsu, 

2002; Rajasekaran and Varghese, 2005; Yang et al., 2004; Xu and Chen, 2004) forms 

the basis of a class of methods to localize damage in structure and in some cases the 

severity and geometry of the damage. For example, Yang et al. (2003a-b) employed 

Hibert-Huang spectral analysis to identify linear structure and locate damage using 

either (i) normal modes, or (ii) complex modes. From the measured response data of a 

free vibration structure at only one DOF, empirical mode decomposition (EMD) is 

employed to identify modal responses. Hilbert transform is then performed on each 

modal response to estimate the instantaneous amplitude and phase angle time histories. 

Subsequently, the natural frequencies and damping ratios of the structure are identified 

using a linear least-squares fit procedure. When the measurements at all DOF of 

structure are available, by comparing the magnitudes and phase angles computed from 
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measurements at different DOF, structural mode shapes, physical mass, damping and 

stiffness matrices can be evaluated. To further demonstrate the feasibility of HHT 

technique to detect structural damage, Quek et al. (2003) used the signal after passing 

through the HHT algorithm to locate damages in beams and plates. The damage is 

detected based on simple wave propagation consideration using changes in flight 

times, velocities and frequencies. Some difficulties in applying the HHT technique 

were also discussed such as signal end effects, and the criterion to terminate the 

shifting process. From these studies, HHT appears to be a good signal processing tool 

for damage detection in dealing with actual measurements which contain noise.  

Methods using change in modal properties such as natural frequencies or mode 

shape to localize damage are also classified as non model-based methods (Yuen, 1985; 

Lin, 1995; Pandey et al., 1991; Khan et al., 2000). Because modal information reflects 

global properties, change in modal parameters might not be optimal to detect damage 

of a localized nature. Alternatively, change in mode shape curvature (Alampalli et al., 

1997; Wahab and De Roeck, 1999) and change in modal strain energy (Shi et al., 2000, 

2002) have also been utilized to detect damage. Moreover, model updating methods, 

which map the modal properties of an analytical model to the modal properties of the 

measured model for structural damage detection, have also been explored (Fritzen and 

Jennewein, 1998; Wahab et al., 1999; Halling et al., 2001). Since measuring natural 

frequencies alone is faster and more economical than measuring mode shape values, 

natural frequencies can be selected as variables to be updated (Maeck et al., 2000). To 

increase accuracy and speed up the solution process, combination of frequencies and 

mode shape values have been integrated into the objective function which needs to be 

updated (Jaishi and Ren, 2005). To relax mapping the analytical frequency and mode 

shape value of every mode to those of the synthesized model and to provide more 
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information within a desired frequency range, frequency response function (FRF) has 

been employed as updating variables (Cha and Tuck-Lee, 2000).  

Despite the successes of non model-based methods, there are concerns about 

their practicality in detecting structural damage. Visual inspection methods are 

subjective and dependent on experience of the inspectors and the results are 

significantly affected by environmental conditions such as temperature and humidity. 

Tap test is only applicable to assess local damage at the surface of the structure. X-ray, 

Gamma-ray, and ultrasonic guided wave methods require skilled engineers and raise 

great concerns about safety and health issues on the operators. Methods based on time 

traveling of guided signal or the presence of abrupt changes in decomposed signals are 

suitable for homogeneous components whereas practical issues with regards to 

composites has yet to be satisfactorily resolved. Methods based on change in modal 

parameters can only provide reliable results for some simple problems such as 

cantilever beam, simply supported beam, single bay truss structure, and cantilever 

plate (Tenek et al., 1995; Salawu and Williams, 1995; Swamidas and Chen, 1995; 

Ratcliffe, 1997; Farrar and James, 1997; Diaz and Soutis, 1999; Narayana and Jebaraj, 

1999; Ray and Tian, 1999; Qu et al., 2006). The modal-based methods have been 

found to be (i) dependent on the geometry of damage, and (ii) not sensitive to damage 

severity (Chen et al., 1995; Banks et al., 1996). Meanwhile, model updating methods 

which are based on modal parameters have difficulty providing accurate solutions 

because the objective function usually converges to a local maximum (Jaishi and Ren, 

2005). 

 



 8 

1.2.2 Model-based damage detection 

Model-based damage detection methods, which exploit the physical model of the 

undamaged structure or the analytical equations containing parameters to be identified, 

together with the response data at various states of the structure to assess structural 

damage, may overcome some limitations of non model-based methods such as the 

dependence on the experience of the inspectors, the restricted application on 

homogeneous structures. Model-based methods for structural damage detection can 

generally be classified into two approaches, namely (1) static response based methods; 

and (2) dynamic response based methods. 

(1) Detect damage using static response 

Methods using static response for identification of structural parameters and 

damage detection are amongst the simplest formulations (Liu and Chian, 1997; 

Sanayei and Saletnik, 1996a-b; Liang and Hwu, 2001). To generate structural 

deformations, a static load is utilized. Static response in term of either displacement or 

strain can be measured using displacement transducers or strain gauges, respectively. 

The damage identification problem is then converted into an optimization problem in 

which the objective function to be minimized is the error norm of structural 

equilibrium in terms of either nodal forces or nodal displacements, from which the 

structural parameters can be identified. By comparing the current structural parameters 

with those at the reference or undamaged state, damage elements, if any, and their 

severity can be assessed. Generally, the advantages of methods based on static 

response over those based on dynamic response are that (i) the model is simple; and 

(ii) data storage is manageable. No assumption on mass or damping is required, 

implying that less errors and uncertainties are introduced into the model.  The quantity 

of data captured is small compared to dynamic response data (Ling, 2004).  
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Sanayei and Scampoli (1991) mapped the analytical stiffness matrix which is 

derived from the finite element model (FEM) of the structure onto the measured 

stiffness matrix which is computed from the force and displacement measurements. 

The mapping process is performed by minimizing the difference in every component 

of the upper right triangle of the analytical stiffness matrix with its counterpart in the 

measured stiffness matrix. The variables to be identified are the structural parameters 

such as cross-sectional areas, moment of inertia. The optimization problem was solved 

by an iterative Least Square Estimation (LSE) algorithm from which structural 

parameters can be estimated. Numerical examples of a pier-deck model consisting of a 

doubly-reinforced orthogonal slab supported by cap beams showed its ability to 

estimate structural parameters correctly. The proposed method is found attractive due 

to its simplicity. However, the number of measured points should be larger than the 

number of unknown parameters to guarantee a proper solution. 

Banan et al. (1994a-b) proposed two algorithms to estimate the member 

parameters such as cross-sectional areas and Young’s moduli of a finite element model 

of the structure with known topology and geometry from measured displacements 

under known static load. The problem is transformed into a constrained optimization 

formulation in which the discrepancy between either displacements or forces of the 

finite element model and the measurements at the measured points is used as the 

objective function. The least square minimization of the objective function is solved by 

an iterative quadratic programming approach. The proposed method is capable of 

estimating structural parameters for the case of incomplete spatial measurements. 

Hjelmstad and Shin (1997) further developed the method to detect structural damage 

accounting for measurement errors using a Monte Carlo model. Although zero-mean 

white noise with root mean square (RMS) of 5% was introduced to all measurements, 
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multiple damaged elements can still be identified with high confidence (approximately 

96% probability). 

Despite the feasibility of methods based on static response to assess structural 

damage, they have yet to be widely used in practice. It may be attributed to the fact 

that (i) civil structures are usually large and/or complex with extremely high stiffnesses 

which may require exceptionally large static load to generate measurable deflections; 

(ii) reference locations are required to measure deflections which might be impractical 

to implement in reality for structures such as bridges, offshore platforms, and space 

structures; and (iii) static response based methods are sensitive to measurement errors.  

(2) Detect damage using dynamic response 

Methods to detect damage in structure based on dynamic response are 

widespread due to their significant advantages such as: (i) it is adequate to excite an 

existing structure with a small amplitude dynamic load (relative to the required 

magnitude of the static load) or in some circumstances, natural sources such as wind, 

earthquake, and moving vehicle can be employed; (ii) the use of acceleration responses 

eliminate the need for a fixed physical reference such as that required by measurement 

of deflection; and (iii) dynamic response based methods can accommodate higher level 

of measurement error compared to static response based methods or in some cases 

where the measurements are taken long enough, the effect of zero-mean white noise 

may automatically cancel out for some methods (Chang et al., 2003). Methods for 

structural damage detection using dynamic response can be further classified into: (a) 

methods using change in stiffness or flexibility matrix; (b) substructure methods; and 

(c) other methods.  

 (a) Methods using change in stiffness or flexibility matrix 
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Based on a numerical model of the structure with “original” values of the 

parameters, the structural stiffness/flexibility matrix can be computed. From the 

measured dynamic responses of structure, the “corresponding” structural 

stiffness/flexibility matrix can be formulated. If the two matrices are significantly 

different, it may be attributed to the presence of damage. The numerical 

stiffness/flexibility matrix is modified by changing the values of the structural 

parameters such that some criteria are satisfied. These modified values can then be 

used to deduce the elements that are damaged as well as their severity.   

Escobar et al. (2005) proposed a method to locate and estimate the severity of 

damage using changes in stiffness matrix. The latter is used with the penalty function 

method in an iterative scheme to estimate the change in stiffness contribution factor of 

each element to the global stiffness from the undamaged to the damaged state. 

Element(s) with large reduction of stiffness contribution factor over a period of time is 

classified as being damaged and the corresponding contribution factor is used to assess 

elemental damage severity. Three numerical examples, namely a ten-story one-bay 

frame, a ten-story five-bay frame and a two-storey 3-D one-bay by one-bay frame were 

used to illustrate the effectiveness of the proposed method. Damaged scenarios were 

generated by reducing the stiffness of affected columns from 10% to 45% while noise 

level of up to 10% was also introduced. The method has been shown to be capable of 

assessing both damaged elements and their severity accurately. However, the 

applicability of the method to detect damaged elements other than column elements 

such as beam and brace elements has not been addressed.  

Chase et al. (2005) also developed an algorithm for continuous monitoring of 

the state of a structure. It is assumed that mass and damping are time invariant while 

stiffness keeps changing from one time step to another. Shear structures of 4, 12 and 
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120 degrees of freedom (DOF) were utilized for both theoretical formulation and 

numerical simulation. The change in structural stiffness matrix (∆K) was divided into 

n (n is the number of stories) sub-matrices of the same size with the global stiffness 

matrix containing entry of 1, -1 and 0, each of which is multiplied by an unknown 

parameters αi (i = 1, 2,…, n). For instance, the change in structural stiffness matrix for 

a 3-DOF shear structure can be expressed as 

3

1 2 3

1

1 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 1 1

i i

i

α α α α
=

−     
     ∆ = ∆ = + − + −     
     −     

∑K K  (1.1) 

The unknowns αi at each time step are identified by utilizing adaptive recursive least 

squares filter based on the minimization of the discrepancy between applied force 

vector and the force calculated from structural responses. From the identified αi, the 

structural stiffness at each time step is estimated. The damaged elements and their 

severity are then extracted based on their contribution to the global stiffness (vector 

αi). Using a benchmark 3-D steel structure (4-story, each story 0.9 m tall, 2-bay by 2-

bay in plane each bay with 1.25m long), four damaged patterns were studied, namely 

(i) all braces in the 1st story removed; (ii) all braces in the 1st and the 3rd stories 

removed; (iii) one brace in the 1
st
 story removed; and (iv) one brace in each of the 1

st
 

and the 3rd stories removed. Results showed the feasibility and robustness of the 

method in detecting structural damage with short convergence time (maximum 

convergence time required is 1.56 seconds after damage occurred). However, the 

decomposition of the matrix of change in stiffness into n sub-matrices of the same size, 

the assumption of lumped mass matrix, and the assumption of damping as proportional 

to the stiffness matrix are suitable mostly for simple shear structures.  

To accurately construct the stiffness matrix from dynamic responses requires 

the excitation of both lower and higher modes which is difficult in practice (Pandey 
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and Biswas, 1994; Gao and Spencer, 2002). Hence, methods based on change in 

flexibility matrix which can bypass this difficulty have been proposed (Alvin et al., 

2003; Alvandi and Cremona, 2006). Pandey and Biswas (1994) used measured 

acceleration responses and applied load history to identify structural natural 

frequencies and mode shapes. Structural flexibility matrix can be constructed with high 

accuracy using only a few lower modes as follows 

2
1

1nm
T

i i

i iω=

= ∑F ψ ψ       (1.2) 

where F is the estimated flexibility matrix, ωi the i
th
 frequency, ψi the i

th
 mode shape, 

nm the number of modes used to form the flexibility matrix which is much smaller 

than the number of structural DOF. Based on the starting point where flexibility starts 

to change and the maximum change in flexibility coefficients between the intact and 

the damaged states, damage locations and severity can be monitored. For cantilever 

beam, the commencement of damage is identified by the starting point where 

flexibility starts to increase. For simply supported beam or free-free beam (after 

removing rigid body modes), maximum change in flexibility indicates the location of 

damage. A simply-supported beam was experimentally performed to illustrate its 

suitability for practical application. The applicability of the method for more complex 

structures has not been fully addressed. Bernal (2002) used the change in flexibility 

matrix to compute the so-called Damage Locating Vector (DLV) which is then used to 

localize damage. When the DLV is treated as a static force vector onto the reference 

structural model, zero-stress field is observed at the damaged regions, providing a 

means to identify structural damage. The method has been shown feasible both 

numerically and experimentally using truss structures (Bernal, 2002; Gao et al., 2007). 

It is attractive to observe that the method is applicable for both static and dynamic 
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response. However, performance of the method for structures comprising multi-stress 

state elements has not been fully addressed.  

 Despite the promising of the methods based on change in flexibility matrix to 

assess structural damage, it must be noted that (i) they are much less sensitive to the 

cases where damage is close to supports or damage located far away from excitation 

locations (Alvandi and Cremona, 2006); (ii) they require a large number of sensors 

(such that at least the first three modes are properly captured) to locate damaged 

regions correctly (Alvin et al., 2003); and (iii) their applicability to real and/or 

complicated structures which contain many DOF and elements remains of a great 

concern (Doebling, et al., 1996). Methods based on substructure concept, which may 

mitigate some of these difficulties will be reviewed next. 

(b) Substructure methods 

Recognizing that existing structures are usually large and/or complicated, 

substructure methods have been proposed to identify structural parameters on a “divide 

and conquer” principle (Koh et al., 1991; Koh et al., 1999). The structure is divided 

into substructures either with or without overlap. A set of equations of motion and 

observation equations is formulated for each substructure. This system of equations is 

solved using Extended Kalman filter with Weighted Global Iteration (EK-WGI) to 

obtain parameters of the substructures. The EK-WGI method requires measurements of 

displacements and velocities at all interface DOF in the first generation of substructure 

methods though accelerations are commonly measured in practice. This requirement is 

relaxed in Koh et al. (2003a-b) by the use of Genetic Algorithm (GA) to solve the 

above-mentioned system of equations, where acceleration measurements at all 

interface DOF are still required. This requirement is completely relaxed in Koh et al. 

(2003c) by employing GA algorithm to minimize the difference in the interface force 
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vectors which are formulated using different sets of measured responses. Michael 

(2006) further improved the substructure methodology to encompass the case of output 

only problem. However, measurements collocated with and adjacent to the DOF where 

the forces are applied are required.  

It is noted that all substructure methods have been proposed and illustrated using 

shear structures with both numerical and experimental examples, where identification 

of damage is limited to columns or story stiffnesses only. Application of substructure 

methods to detect damage in general frame structures which comprise beam, column 

and brace elements have not been fully addressed.  

(c) Other methods 

There are methods in the literature which cannot be classified easily into the 

above-mentioned two categories. These include optimization based methods, Neural 

Network (!!) based methods, output only methods, and nonlinear methods. These 

methods will be briefly reviewed in this section. 

Optimization based methods:  When excitation forces and structural responses 

at all DOF are available, an over-determined system of equations can be formulated 

based on the equations of motion of structure at different time steps to solve for 

unknowns including system mass, damping and stiffness coefficients. To solve this 

system of equations, many techniques are available and have been attempted, such as 

Least Square Estimation (LSE) method, Conjugate Gradients Square (CGS) method, 

Minimum Residual (MR) method, Generalized Minimum Residual (GMR) method, 

Quasi-minimal Residual (QR) method, based on which structural parameters can be 

estimated (Hac and Spanos, 1990). For the cases where only limited responses are 

measured, Kalman Filter (KF), which is a technique to minimize the estimated error 

covariance of state vectors (including velocities and displacements) using a predictor-



 16 

corrector type estimator, can be employed. The KF essentially contains two stages: 

time update and measurement update. The former projects the current state estimation 

ahead in time; the latter adjusts the projected estimation by the actual measurements at 

that time. When the system of equations contain nonlinear terms as commonly 

encountered in structural health monitoring problem since structural parameters are 

embedded into the state variables, Extended Kalman Filter (EKF) can be employed. 

The EKF is actually the KF where the model in real time (first stage) is linearized 

using previous estimation. However, when processing EKF algorithm, some poles 

corresponding to unknown structural parameters of the linearized state equations might 

lie on the imaginary axis, leading to unstable solution (Evensen, 1994). Unstable or 

even divergent results may also be observed if the system is highly nonlinear 

(Moradkhani et al., 2005). To overcome such limitation, Monte Carlo based KF, 

denoted as Ensemble Kalman Filter (EnKF), has been developed (Reichle et al., 2002; 

Moradkhani et al., 2005). In the EnKF model, the estimation of a priori model 

covariance is not required in the updating step (second stage). Instead, Monte Carlo 

method is used to approximate the error covariance evolution equation to forecast the 

error. However, the authors also acknowledge that computational intensity remains 

challenging for large systems.  

Alternatively, GA technique, which is a search machine that minimizes the 

difference between the measured and simulated signal (usually accelerations or nodal 

forces) based on the random variation and selection of a population of solutions, can be 

employed. The advantages of GA over traditional optimization techniques such as LSE 

and EKF are that (i) it can provide global optimal solution since it searches from a 

population of points rather than a single point; and (ii) it can be applied for 

discontinuous or discrete problems where derivation of objective function is expensive 
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or not available. Computational intensity is the only concern in the implementation of 

GA algorithm to real problems.  

�eural network methods: Neural network based methods rooted from the study 

of biological neurons in which measurements are matched to a set of trained samples 

representing different types of damage (Waszczyszyn and Ziemianski, 2001). Neural 

network based methods are particularly suitable for problems where significant data-

base on different damaged scenarios is available but explicit algorithm is not easy to 

obtain. However, the mapping process is only accurate if the pattern matches one of 

the samples in the training set. Training the !! with all possible damaged scenarios of 

a structure is time consuming if not impossible since the latter are practically infinite. 

To mitigate this limitation, support vector machine (SVM) is invoked as a mechanical 

learning system which uses a hypothetic space of linear function in a high dimensional 

feature space (Wang, 2005). Nevertheless, the extremely large size of the Kernel 

matrix, and the slow speed of the training and testing process still remain challenging 

for the popularity of the !! based methods. 

 Output only methods: Output only based methods have been developed to 

mitigate the requirement of input time history measurements since measuring input is 

sometimes expensive or impossible. Such methods can make use of natural sources to 

excite structures such as ambient vibration, and earthquake excitation. Many output 

only based methods have been developed, such as methods based on modal analysis 

(Beck and Jennings, 1980), methods based on Fourier analysis (Torkamani and 

Ahmadi, 1988), methods based on adaptive filtering (Safak, 1989 a-b), methods based 

on substructure concept (Michael, 2006). Amongst many of them, a finite-element 

based procedure to identify structural parameters and to assess damage severity at 

element level with unknown input excitation has been shown promising (Wang and 
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Haldar, 1994, 1997; Ling and Haldar, 2004; Vo and Haldar, 2005; Katkhuda and 

Haldar, 2005). From the response measurements, the error vector can be formulated 

using the equations of motion of the structure at different time steps (assuming that 

mass matrix is known) as follows 

 d= + + −E Md D d Kd fɺɺ ɺ  (1.3) 

where M, Dd, K are structural mass, damping, stiffness matrices, respectively; , ,d d dɺ ɺɺ  

the displacement, velocity, acceleration vectors, respectively; and f the input force 

vector. Since the input force vector is unknown, the first step of the algorithm is to 

estimate the input signal from initial guesses of the structural parameters and applied 

force. The second step of the algorithm is to estimate the structural parameters using 

the estimated load in the first step. The process is iterated until the estimated input 

signals converge with a pre-determined tolerance. Finally, the dynamic properties of 

the structure in terms of stiffness and damping at the element level are estimated. 

Performance of the method is illustrated through both numerical examples of shear 

buildings and frame structures with 5% noise, and experimental examples of a simply 

supported beam structure. It is interesting to realize that the proposed method is simple 

and robust even though the input excitation is unknown and limited measured 

responses are contaminated with noise. Further investigation on the performance of the 

proposed method has been carried out successfully on more complicated structures as 

reported in Haldar (2009 a & b), Haldar (2008), Katkluda and Haldar (2008), Martinez 

et al. (2008), giving the method a prospect of becoming a popular tool for structural 

damage detection. 

An alternative to the above class of methods was suggested by Quek et al. (1999) 

using an eigenspace algorithm for structural identification of tall buildings subjected to 

ambient excitations. This method requires only the measurement of response time-
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history which is then decomposed into subspace matrices using QR decomposition and 

Quotient SVD technique. Least Square approach is adopted to obtain a solution which 

is non-unique, and the desired solution is computed by applying similarity 

transformation. The advantages of the proposed method are that it is non-iterative and 

that the initial values for parameters are not required. The only disadvantage of this 

method is the requirement of measurement at all DOF of structure which might not be 

available in practice. 

A comparison between the cases of output-only versus input/output data 

processing for structural identification and damage assessment has been carried out by 

Mevel et al. (2006). The two methodologies were applied in both the subspace-based 

methods and error prediction methods using real in-flight measured data of an aircraft 

provided by Avions Marcel Dassault within the Eurêka project FLITE.  It is shown 

that the input/output methods perform better than the output-only methods using the 

real data in term of stability of system order identification. It is therefore recommended 

that input sensors should be used where possible and the trade-off is between increased 

estimation accuracy and sensor cost. 

 �onlinear methods: After damage occurs, structural responses are usually 

nonlinear such as the presence of cracks that open and close under operational loads, 

damage caused by losing joints and connections, damage caused by delamination in 

bonded layered materials, damage caused by material nonlinearity associated with 

excessive deformation. Hence, structural damage detection methods could be more 

practical if they take into account the nonlinear behavior of the structure. Many 

methods for structural damage detection accounting for nonlinear behavior of the 

structure have been explored, such as the restoring force surface method (Masri and 

Caughey, 1979; Crawley and Aubert, 1986), the gradient descent method (Nelles, 
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2001), and the EKF-based method (Nelles, 2001). Recently, Yang and his co-workers 

have developed a method to track the change in structural damping, mass and stiffness 

caused by damage which can account for the nonlinearity behavior of the structure 

using the LSE approach (Yang and Lin, 2004, 2005). In the proposed algorithm, the 

objective function needed to be minimized is the sum of relative change in the 

structural parameter vectors including stiffness, damping ratio, and mass when the 

structure changes from one time instant to the next. The idea behind the proposed 

algorithm is that the optimal solution of structural parameters should follow the most 

direct path (the path with minimum variation) from one time instant to another in order 

to get rid of oscillations in the results. Solving all optimization problems from the 

initial time step to the present time step, the changes in the values of the structural 

parameters with time can be tracked and deductions on structural damage can be made. 

It is interesting to observe that the proposed method is also applicable to track the 

gradual changes of structural parameters. A major limitation of the proposed 

methodology is the need to measure the structural responses at all DOF. To overcome 

this limitation, the sequential nonlinear least square estimation (SNLSE) algorithm was 

proposed (Yang et al., 2005; Yang et al, 2007; Yang and Huang, 2007). Unlike the 

traditional EKF method, the unknowns in terms of the structural parameters (θθθθ) and 

state vector (X) are estimated in two consecutive steps. In the first step, the structural 

parameters θθθθ are estimated using the LSE method based on the assumption that the 

state vector X is known. Because the state vector X is actually unknown, results in the 

first step produces θθθθ as a function of X. In the second step, the discrepancy between 

measured and estimated force vector is again minimized using recursive LSE (RLSE) 

method. Since θθθθ are functions of unknown state vector X, the objective function to be 

minimized in the second step is highly nonlinear with respect to X. The stability and 
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convergence of the proposed SNLSE method were demonstrated through numerical 

examples comprising 1, 2, and 5 DOF structures (Yang et al., 2005). It is appealing to 

find that the proposed SNLSE method is applicable to monitor both nonlinear elastic 

structures and nonlinear hysteretic structures. The proposed SNLSE method was then 

further applied to the case of unknown excitation and limited measured accelerations 

with excellent results as shown in Yang et al. (2007) and Yang and Huang (2007). 

However, the application of the proposed methodology to a more complicated 

structure other than spring-dash-pot and shear structures has not been investigated both 

numerically and experimentally. 

 Although much effort has been made to popularize the nonlinear based methods 

for structural damage detection, limitations still exist. Firstly, nonlinear damage 

detection methods lack generalization capacity. Each typical structure requires a 

specific nonlinear model. Hence, the solution is problem dependent. One technique 

which can perform well for this structure may not work for another (Farrar et al., 

2007). Secondly, nonlinear based methods are usually computationally cumbersome, 

expensive and require definitions of many input parameters. The more input 

parameters the methods require, the greater the dependence of the output on the input, 

leading to the reduction in their robustness. Thirdly, nonlinear based methods are 

exposed to limitation of mathematical framework since most of the available 

formulations have been developed based on linearity assumption such as the 

framework for vector space theory. Fourthly, technical limitation also poses a 

challenge on the evolution of nonlinear based methods. For example, the amplitude of 

excitation affects significantly the nonlinear behavior of the structure; combination of 

various sources of nonlinearity in a method for structural damage detection is 

questionable. 
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In summary, amongst all the methods for structural damage detection in the 

literature, the DLV method emerges as the potential one because it can be used with 

either static or dynamic responses; it can identify both single and multiple damaged 

elements; when using with dynamic responses, it is able to operate with approximate 

modal data and truncated modal basis. In the following section, the development of the 

DLV method over the past few years will be briefly reviewed. 

 

1.2.3 Detect damage using damage locating vector method 

Bernal (2002) proposed the DLV method for structural damage localization that 

belongs to the model-based approach. The method does not use the change in mode 

shapes or frequencies. Instead, a load vector that produces the same displacements at 

the reference and damaged states, the so-called DLV, is developed to identify damaged 

elements. In other words, no additional stresses are generated in damaged elements if 

the DLV is applied onto the reference structural model. This characteristic of the DLV 

is utilized to locate damaged elements. A systematic procedure to compute the DLV 

was introduced by Bernal and Gunes (2004). Performance of the DLV method has been 

illustrated both numerically and experimentally using truss structures (Bernal, 2002; 

Gao et al., 2007). However, only single damaged element was examined in the 

experiment, leaving the case of multiple damaged elements uncertain. 

Sim et al. (2008) further examined the efficiency of the DLV method under the 

presence of model uncertainties using 13 and 39 DOF plane truss structures. From the 

investigation, they recommended that the value of 0.1 should be taken as the threshold 

to classify damaged from undamaged elements with the probability of less than 5% of 

“false negative” (defined as when the damaged element is not present within the set of 

identified potential damaged elements) based on the assumption that the Young’s 
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moduli of all elements are statistically independent variables, each with a coefficient of 

variation, δE, of 10%. 

Recognizing the potential of the DLV method, improvements have been made to 

enhance its popularity. Firstly, it has been further developed to accommodate the case 

of unknown excitation by (i) using modal mass scaling from known mass perturbation 

(Bernal, 2004); (ii) constructing a matrix proportional to the flexibility matrix at sensor 

locations (Duan et al., 2005); (iii) assuming that the structural “mass” does not change 

when the structure changes from the reference to the damaged state (Gao and Spencer, 

2006); or (iv) using a structural stochastic model (Bernal, 2006). Secondly, it has been 

further developed to detect structural damage online by introducing the distributed 

computing strategy (DCS) (Gao, 2005). The concept of the DCS is that (i) a number of 

sensors close to each other are combined to form a local community in which one 

sensor is selected as the manager sensor; (ii) the manager sensor collects information 

from all sensors in the community and assess the “health” of structural members 

monitored by the community using the DLV method; and (iii) information about 

damaged elements monitored by the community is interacted with information of 

neighbouring communities before sending to the base station for decision making.  

Although huge effort has been made to popularize the DLV method as a tool for 

structural damage interrogation, further research is still needed to (i) apply the method 

to structures which comprise members with multi-stress state and varied cross-

sectional areas along element lengths; (ii) identify the actual damaged elements in the 

set of potential damaged elements (PDE) due to the lack of perfect and/or complete 

information; and (iii) assess the damage severity of identified damaged elements. 

In summary, significant progress has been made on the structural damage 

detection using either static or dynamic responses in the last two decades, fuelled in 
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part by the advancement in sensor and data acquisition technologies. In line with this, 

the recent development and application of wireless sensor technology in the context of 

damage detection would be a natural field of investigation with respect to the practical 

implementations. Robustness of a particular damage detection method may perhaps be 

increased by using better quality sensors that have been developed or methods to 

validate the quality of the sensor data before being used for damage identification 

would enhance confidence in detection technology. Literature review on these two 

aspects will be briefly introduced in the following two sections.  

 

1.2.4 Sensor validation 

To detect structural damage, structural responses need to be measured and their 

quality plays a crucial role on the accuracy of the damage detection result. Validating 

the quality of measured signals or the “health” of the in situ sensors is thus a 

challenging problem and has attracted many researchers (Qin et al., 1997; Leahy et al., 

1997; Friswell and Inman, 1999; Hsiao, 2005). A thorough review on the 

developments of sensor fault detection can be found in Feng et al. (2007). Various 

approaches can be employed to validate sensor integrity, such as using error function, 

Principle Component Analysis (PCA), or neural network (!!).  

Additive and multiplicative errors are two common manifestations of faults in 

sensors (Abdelghani and Friswell, 2004). The former, which may result for example 

from the direct current (DC) offsets in electronic equipments, is usually modeled as a 

constant amplitude shift in the signal. This additive amplitude shift is not known a 

priori. For multiplicative error, its amplitude is often proportional to the true value of 

the measured signal and may result from an error in the coefficient of the calibration 

equation, for example, an error in the slope of the fitted calibration line.  
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For a structure under zero-mean white noise excitations, its dynamic response 

usually has zero-mean over a sufficiently long period. This facilitates the estimation of 

the additive error
 
(Friswell and Inman, 1999; Abdelghani and Friswell, 2004). 

Specifically, from response measurements of ns sensors, response measurement of 

sensor j (j = 1, 2, …, ns) can be estimated using the remaining measurements of (ns - 

1) sensors. The difference between the measured and the estimated signal at sensor j 

produces the residual function for that sensor. If the mean value of the residual 

function for sensor j is significantly different from zero for a sufficiently long period, 

sensor j is classified as faulty. However, the threshold value to classify non-zero mean 

value of the residual function produced by a faulty sensor from the value produced by 

noise and uncertainties has not been clearly suggested.  

To detect multiplicative error, the concept of error function, which is commonly 

constructed by subtracting the measurements from the estimated values of a sensor 

based on readings of the remaining sensors, can be utilized. Abdelghani and Friswell 

(2007) assumed that if the structural modal matrix (ΦΦΦΦ) is available, the acceleration 

responses at all ns sensors can be estimated as 

 � †=Y ΦΦ Y  (1.4) 

where “ † ” represents the pseudo-inverse; Y and �Y  are the measured and estimated 

acceleration responses at all ns sensors. If sensor j is suspected as faulty, ΦΦΦΦ, Y and �Y  

are partitioned as follows 

 �
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�
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,  and 

j j j

    
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 (1.5) 
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where ΦΦΦΦj, Yj and 
�

jY  are the jth row and ΦΦΦΦ0, Y0 and 
�

0Y  the matrices containing the 

remaining rows of ΦΦΦΦ, Y and �Y , respectively. Two residual functions are defined as 

follows 

 �0
0 0j = −γ Y Y  (1.6) 

 � �†
0 00 0 0( )j = − = −ς Φ Φ Y Y Y Y  (1.7) 

where Y  is the estimated responses at all sensors except sensor j computed using 0Φ  

and 0Y . From Eqs. (1.6) and (1.7), the correlation index is proposed as 
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where E(.) denotes the expectation of (.). Faulty sensor is considered as associated with 

the maximum correlation index. Because only the maximum ρj is considered, only one 

faulty sensor can be identified at a time. In addition, a threshold is needed to 

distinguish ρj which results from faulty sensor from that resulting from noise and 

uncertainties.  

Li et al. (2007) defined the error function in a different manner. The set of ns 

sensors used is divided into two groups, namely functional and faulty, to identify the 

instances of failures for sensors in the faulty group. If sensor j belongs to the faulty 

group, the quality of the measurement by sensor j from time steps (k – p) to k can be 

assessed by forming the following matrix  
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 (1.9) 

where j

dy  are the readings of the suspected faulty sensor j; and 0

dy  the readings from 

the group of the working sensors. A similar matrix can be formed for the case where 

all sensors are healthy as 
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The SVD of j

uW  is given by 
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Pre-multiplying both sides of Eq. (1.11) by UT and invoking the orthonormal property 

of U gives 

 2

T j

u =U W 0  (1.12) 

Using column i of 2

T
U , the error function for the suspected sensor j can be defined as  

 2( )i T j

j d=e U W  (1.13) 

It can be seen that if all the sensors are healthy, then ej = 0 for all i because 
j

uW  

and j

dW  share the same base vector for the left singular value null space. The presence 

of non-zero values in ej indicates faults in sensor j. However, the issue of a non-zero 

criterion even if the sensor is healthy due to the presence of noise and uncertainties has 

not been fully addressed since no threshold has been suggested to demarcate non-zero 

values caused by faulty sensors from those caused by noise and uncertainties. 

Furthermore, the method requires the measurements where all of the sensors are in 

“healthy” conditions.  

Another attractive technique is the use of Principle Component Analysis (PCA) 

to detect, isolate and reconstruct faulty signal (Dunia et al., 1996; Pranatyasto and Qin, 

2001; Kerschen et al., 2005). The procedure proposed by Kerchen et al. (2005) starts 

by dividing the entire measured signal S0 (whose base vector can be computed) into 

nseg segments. The base vector for each of these segments Si (i = 1, 2, …, nseg) can 

also be computed. The angle between the base vector of the entire space S0 and that of 
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each subspace Si is computed. If the angle is greater than a pre-defined upper limit, 

there exists faulty signal in that segment and vice versa. To identify the portion of 

faulty signal, one segment of signal at a time is discarded from the entire analysis and 

the angle between the new base vectors of the entire space S0’ and each subspace Si’ is 

re-calculated. The angle should be minimal if the discarded signal is faulty. The 

advantages of this method are that it can work for nonlinear structural behavior and 

can also identify approximately the times when the faults occur. However, the method 

requires lengthy signal. In addition, since only one segment of signal is discarded from 

S0 and Si to formulate S0’ and Si’, only one segment of each faulty sensor can be 

identified at a time. The procedure of removing one segment at a time and reiterating 

can be too time-consuming that the method may lose its appeal for practical 

application. 

Neural network (!!) has also been employed to assess faulty sensors 

(Napolitano et al., 1998; Mesbahi, 2001; Rizzo and Xibilia, 2002, Campa et al., 2008). 

From the current measured data at all sensors, the reading of sensor j can be estimated 

as (Mesbahi, 2001) 

 ɵ 1 2

, ,

1 1
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k i k i j k jj

i k

y sig sig y W c W b
= =
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where ( ) 1/(1 )ysig y e−= + ; h and ns are the hidden and input nodes of the !!, 

respectively; yk the reading of sensor k (k = 1, 2, …, ns); and W
1
, W

2
, c, and b the 

network weights. The confidence level for the reading of sensor j, yj, can be defined as 
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A close to zero value of CLj implies that sensor j is faulty whereas a close to one value 

indicates that sensor j is healthy. The detection of faulty sensor procedure is integrated 
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into a 3-layer feed-forward artificial neural network which is trained using the back-

propagation method. The algorithm has been demonstrated to be able to perform online 

detection of faults for various types of sensors such as thermocouples, pressure 

transducers, and flow meters. However, the classification of a value which is close to 

one or zero has not been clearly suggested. 

Similarly, Campa et al. (2008) adopted !! to estimate the output of sensor j at a 

time instance as 
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2 2( ) / 2
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where yj is the measured data by sensor j at the current time instant; nf the number of 

basis functions for the !!; µi and σi the mean and variance of the ith basis function, 

respectively; and wi its weight. The residue for sensor j is defined as 

 ɵ
j j j

R y y= −  (1.17) 

When Rj exceeds a pre-defined threshold, sensor j is classified as faulty and vice versa. 

The procedure is embedded into a hybrid !! which comprises a radial basis function 

!! and a resource allocating network. The !! is trained using a set of measured data 

where different types of failures are artificially injected. The hybrid structure !! is 

particularly relevant when nonlinear characteristics are captured by the data. The 

method has been shown to be applicable for speed sensors, torque sensors, and 

pressure transducers. 

Recognizing that identifying the cause of the fault in a sensor is even more 

difficult than identifying the faulty sensor (Henry and Clarke, 1993), an attempt to 

assess the nature of the fault in the sensor, such as gain fault, bias fault, spike fault, and 

noise fault, has been carried out by Rizzo and Xibilia (2002) using !!. In this method, 

four criteria to assess displacement sensor j are proposed, namely, 
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(a) maximum value (together with the criterion (b) to assess gain and step faults) 

 max ( )j j
k

M y k =    (1.18) 

(b) average value (used in conjunction with (a)) 
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(c) maximum absolute difference value at one time step (to assess spike fault), and 

 max ( ) ( 1)j j j
k

P y k y k= − −  (1.20) 

(d) sum of FFT sample between frequencies f1 and f2 (to assess noise fault) 
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in which yj(k) is the measured displacement at discrete time index k by sensor j. From 

numerous sets of trained data, a multi-layer perceptron !! is trained and the ranges for 

these criteria are specified. If one or some criteria for sensor j are out of the specified 

ranges, sensor j is classified as faulty and the causes are identified. For example, if 

both the maximum and the average exceed their ranges, the sensor is classified as 

having gain and step faults; if the maximum difference absolute value at one time step 

exceeds its range, the sensor has a spike fault; if the sum of FFT sample between 

frequencies f1 and f2 exceeds its range, the sensor is considered as too noisy. If other 

combination of the criteria is satisfied, multiple causes of a faulty sensor can be 

identified accordingly. 

Despite recent rapid development in sensor validation algorithms, their 

application to enhance the reliability of damage detection remains challenging. Two 

major problems have not been fully addressed, namely (i) integrating the sensor 

validation algorithm to identify “unsuitable” signals besides detecting structural 

damage; and (ii) identifying multiple faulty sensors simultaneously. 
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1.2.5 Detect damage with wireless sensors 

In practical damage detection implementation, sensors are sparsely distributed 

over the structure to be monitored and wired to a central multi-channel data logging 

system. The cost of installing and maintaining such traditional wired sensors is high 

and they may interfere with the normal operations of the structure (Lynch, 2004). For 

example, to monitor a building, Celebi (2002) assessed that the average cost per sensor 

in a multi-channel system is US$5,000. To monitor the Tsing Ma suspension bridge in 

Hong Kong, a monitoring system containing more than 350 sensing channels costs 

more than US$8,000,000 (Farrar, 2001). To overcome such disadvantages of 

traditional wired sensors, wireless sensors are being implemented (Lynch et al., 2003; 

Lynch and Loh, 2006; Park et al., 2006; Spencer et al., 2008) and various 

improvements have been reported in the last few years such as the introduction of 

different transmission topologies, the improvement on the sampling frequency 

(Nagayama, 2007; Lynch, 2004; Hou et al., 2008). However, concerns about 

adaptation and practical implementation such as power supply, network management, 

cross-talk, data integrity and transmission speed remain challenging. Though the data 

captured on board by the wireless sensors has been digitized, transmitting data packets 

from various sensor nodes to the base station using radio frequency (RF) commonly 

experiences intermittent loss. The causes of data loss may be explained by (a) data 

packets from more than one sensor reach the base station simultaneously, (b) distances 

between the sensor nodes and the base station are out of the communication range, and 

(c) acknowledgement (ACK) messages of the lost packets are over-written. If the ACK 

messages indicating the lost packet numbers are not received by the sensor node, the 

lost packets are not resent. The quality of data received at the base station affects the 
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reliability of the structural health monitoring system and emerges as a major challenge 

in the integration of wireless sensors into an existing structural damage detection 

method. 

When transmitting the measured data from the sensor nodes to the base station, 

Nagayama (2007) noted that the percentage of data loss is random and can be as high 

as 86%. This poses a huge hurdle in enhancing a damage detection system using 

wireless sensors and must be overcome to a level that reliability of the entire system is 

acceptable at a practical level. Two improvements are being pursued to solve this 

problem. The first improvement is the introduction of more efficient transmission 

protocols through better hardware and software in the wireless sensor systems to bring 

down the percentage of loss data to a minimum (Lynch, 2004; Mechitov et al., 2004; 

Nagayama, 2007). Once the percentage of loss data is not large, then a second level of 

improvement becomes feasible, by adjusting the spurious or missing data values to 

match the overall characteristics of the intact portions of the signal (Marks, 1983; 

Yuito and Matsuo, 1989; Marvasti et al., 1992). 

With regards to the first level of improvement, Mechitov et al. (2004) proposed 

the use of tree topology with Mica2 mote sensors for reliable communication. In this 

topology, the sensor sends a group of data packets and then waits for the 

acknowledgement (ACK) message from the receiver. If the sender does not receive 

ACK message, the same group of packets is resent. Otherwise the sender moves on to 

send the next group of data packets. If one packet in the group is lost, all packets in 

that group are resent, reducing the efficiency of the proposed topology. For more 

efficient transmission topology, Nagayama (2007) proposed the Automatic Repeat 

reQuest (ARQ) prototype for data transmission problem. The idea behind the proposed 

prototype is that: (i) the sender transmits all data packets to the receiver; (ii) the 
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receiver stores all data in a buffer zone; and (iii) on receiving the last packet, the 

receiver sends message indicating which packets are lost to the sender and only those 

lost packets are resent. Advantage of the proposed prototype is that the number of 

ACK messages and the number of messages need to be resent is reduced significantly. 

However, this may be feasible for short records only and the maximum record length 

which this approach can provide reliable signal needs to be ascertained.  

With regards to the second level of improvement, Bhuptani and Khosla (2006) 

proposed the use of interpolation and extrapolation procedure based on least square 

approximation to estimate the lost values. Although the method is simple and able to 

provide reasonable estimates, it is unable to produce good results for cases of 

consecutive lost data points, as exhibited by the loss of an entire packet of data during 

transmission. Hsu and Lo (2006) proposed an iterative scheme using Fourier 

Transform and boundary-matched concept to estimate lost data. The measured signal is 

first pre-processed by superposing with a computed signal such that the periodicity and 

continuity conditions of the signal are satisfied. Discrete Fourier Transformed (DFT) is 

then performed on this signal to obtain the significant frequencies and the 

corresponding Fourier coefficients. Applying inverse DFT on the identified significant 

frequencies and the corresponding Fourier coefficients and then subtracting the added 

signal in the pre-processing step from the results, the lost data are estimated. The 

procedure is iterated until the discrepancy of estimated lost values between two 

consecutive iterations is negligible. Though the method is verified successfully using a 

sinusoid signal with rapid convergence speed, its applicability to signals containing 

consecutive lost values and the typical associated errors have not been investigated. 
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Although attempts have been made to integrate wireless sensors into damage 

detection systems, there are rooms for improvements to enhance its reliability in 

practical situations.  

 

1.2.6 Summary of findings 

From the above review, some non model-based methods, such as visual 

inspection method, tap test method, X-ray method, and Gamma-ray method, are found 

time consuming and labor intensive whereas some other non model-based methods, 

such as methods based on traveling time of guided signals and modal based methods, 

are found suitable for homogeneous and simple structures. Model-based methods using 

static response are usually found simple in formulation with few assumptions and 

should be utilized to explore the insights of newly developed methods. Whereas, 

model-based methods using change in the stiffness matrix may require the excitation to 

span over a wide range of frequencies to capture sufficient number of mode shapes 

which is hard to excite and control in practice. Methods based on the change in 

flexibility matrix necessitate a large number of sensors for precise evaluation of modal 

parameters, making the methods expensive for practical application. However, since 

the flexibility matrix can easily be obtained for a reduced-order model of the structure, 

change in flexibility-based methods can be employed to assess damaged regions with 

limited sensors. Methods based on substructure concept are only applicable for shear 

structures. Amongst all model-based methods for structural damage detection, the DLV 

method appears to be promising and has room for further development into a practical 

tool. It can be applied using either static or dynamic responses and can provide 

reasonable results with limited data since it possesses the advantage of the methods 
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based on change in flexibility matrix which requires the excitation of only few lower 

modes in order to estimate reasonably accurate flexibility matrix. 

Over a period of use, it is practically impossible to ensure that all the sensors are 

in good working condition.  Automatic detection of faulty sensors and/or contaminated 

data is needed in a structural health monitoring system. Pre-processing of the data 

through a sensor validation algorithm has been proposed but two major problems have 

not been fully addressed, namely (i) identifying faulty sensors besides detecting 

structural damage, and (ii) identifying multiple faulty sensors simultaneously.    

Using wired sensors in structures may not be always possible, or if possible may 

interfere with the normal operations of the structure. In addition, long wires are often 

needed and problems such as noise, integrity, maintenance and cost are real issues to 

content with. Additions and enhancements to a wired multi-channel system are often 

quite limited. Although wireless sensor network can overcome the problems and 

limitations associated with a wired system, there are practical issues that need to be 

addressed before it becomes an attractive alternative. One significant issue that needs 

to be addressed urgently is the enhancement of the quality of the data.  

 

1.3 OBJECTIVES A�D SCOPE OF STUDY 

The main objective of this thesis is to develop the DLV method further by (a) 

extending its formulation to include frame elements in the structure, (b) proposing a 

strategy to identify damaged elements for the case of imperfect measurements, (c) 

identifying faulty data/sensor in the context of the DLV method, and (d) integrating 

wireless sensor network into the method where the issue of intermittent loss of data is 

addressed. To achieve the main objective, the scope of this study includes the 

following. 
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1. Structures comprising frame and truss elements will be considered, namely a 2-D 

warehouse structure. Besides the different types of elements, the variation of 

internal forces and corresponding capacities within each component will be taken 

into account.  Both numerical and experimental examples will be used in this study 

for structures with single and multiple damaged elements. 

2. Imperfect information arising from noise and the limited number of sensors used 

will result in the DLV method liable to give inaccurate results or results that have 

poor resolution. Often, other elements besides those damaged are also identified as 

being damaged. Two schemes to identify the actual damaged elements from the set 

of potential damaged elements (PDE) will be proposed. The first scheme makes 

use of the intersection of available sets of PDE obtained from different 

combinations of number of sensors to filter out actual damaged elements. The 

second scheme first identifies damaged regions using the relative change in 

flexibility matrices and then zooms into each damaged region to locate the actual 

damaged elements using the DLV method. 

3. A simple algorithm to estimate the severity of damaged elements will be proposed 

and investigated. The flexibility matrix (Fn) which is constructed using numerical 

model of the structure at the reference state is mapped to the flexibility matrix (Fd) 

which is computed from measured data of the structure at the current (damaged) 

state by using penalty function method to minimize the difference between the first 

singular values of the two flexibility matrices. The variables to be estimated in the 

minimization process are the stiffnesses of the damaged elements. When Fn 

approaches Fd, the severity of the damaged elements could be assessed. Single and 

multiple damaged elements will be investigated using numerical data of a 2-D 

warehouse structure and experimental data of a 3-D modular truss structure. 
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4.  This study will extend the DLV method for cases where the loads, either static or 

dynamic, are not measured or known. For unknown static load cases, an algorithm 

will be proposed to estimate the ratio between the magnitudes of the static loads at 

the reference and damaged state, from which the DLV can be computed to assess 

structural damage. For unknown dynamic load cases, an algorithm to construct the 

structural stiffness matrix from response accelerations will be proposed. The 

algorithm makes use of Newmark-β method to relate the displacements and 

velocities between different time steps in terms of their initial values. This results 

in a system of nonlinear equations when equilibrium is imposed at all DOF, from 

which the stiffness matrix is formulated. Based on the change in stiffness matrix, 

the DLV can be calculated for damage localization purpose. 

5. An algorithm for sensor validation will be proposed where multiple faulty sensors 

can be identified simultaneously, to ensure the robustness of the DLV method. 

From all measured signals, combinatorial sets of the same number of signals are 

formed. For each set, the change in the flexibility matrix relative to that of the 

reference or undamaged structure is computed and singular value decomposition 

(SVD) is performed to estimate the number of non-zero singular values (!ZV). The 

set which produces the smallest !ZV is taken as associated with sensors considered 

to be healthy whereas sensors which do not belong to this combination are 

suspected to be faulty. The performance of the sensor validation algorithm will be 

illustrated using both simulated and experimental data obtained from a 3-D 

modular truss structure monitored by sensors, some of which are faulty. 

6. An algorithm to correct for packets of lost data as exhibited in wireless mote 

sensors will be proposed based on numerically simulated data and then illustrated 

using physically measured data. The algorithm is based on the concept of 
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significant frequencies in the signal whereby Fourier transform is used in a 

proposed iterative scheme. The numerical simulation will cover various possible 

scenarios to ensure that the algorithm is sufficiently robust. A 3-D modular truss 

structure using 7 wireless mote sensors including 1 base station will be physically 

experimented and the data examined for their percentage of losses and then 

corrected. The signals are then used to locate the damaged elements, if any.   

It should be mentioned that real experiments on existing infrastructures such as 

buildings, bridges, offshore platforms would be ideal but often the authorities do not 

allow or welcome such work being done on their structures. Furthermore, such 

experiments are expensive and difficult to control due to interference from the normal 

operations associated with such infrastructures. For this reason, the experiments are 

performed in the Structures and Concrete Laboratory within the Department of Civil 

Engineering at the National University of Singapore.   

 

1.4 ORGA�IZATIO� OF THESIS 

This thesis comprises six chapters. Chapter 1 summarizes the different types of 

damage in structures and the importance of structural damage detection in practical 

applications. Literature review on works related to structural damage detection is 

discussed, including the different approaches that have been taken, and the methods of 

solutions of equations that have been proposed. In particular, the work performed with 

respect to the DLV method is examined. Works related to sensor validation and the use 

of wireless sensors in structural health monitoring systems is reviewed. The objective 

and scope of this study are outlined.  

Chapter 2 presents the detection of structural damage using DLV and static 

response. The concept and physical discussion on the DLV method is first reviewed. 
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Enhancements to the DLV method are then presented to (i) extend the application of 

the DLV method to structures comprising multi-state stress elements; (ii) detect actual 

damaged elements when measurements are imperfect; (iii) differentiate between 

damaged and strengthened structure; (iv) assess the severity of the identified damaged 

elements; and (v) extend the DLV method to the case where the applied static load is 

unknown. Numerical and experimental examples of a 2-D warehouse structure and a 3-

D modular truss structure, respectively, are performed to assess the performance of 

these enhancements. 

Chapter 3 presents the application of the DLV method to detect structural 

damage using dynamic response with either known or unknown excitation. The 

formulation of either flexibility or stiffness matrix from structural dynamic responses 

is a critical component in the application of the DLV method using dynamic response. 

A procedure to form the flexibility matrix with respect to the sensor locations using the 

Eigensystem Realization Algorithm (ERA) and known excitation presented in Bernal 

and Gunes (2004) is summarized. An algorithm to formulate the structural stiffness 

matrix from acceleration responses only is then proposed. Besides, a simple algorithm 

for optimal sensor placement is proposed to (i) identify the optimal configuration to 

place the available sensors, and (ii) estimate the minimum number of sensors required 

by the DLV method for reliable damage detection results. The feasibility of these 

methodologies is illustrated numerically using simulated response from a 2-D 

warehouse structure and experimentally using measured data from a 3-D modular truss 

structure.  

Chapter 4 presents an algorithm for sensor validation in the context of the DLV 

method. What constitutes faulty sensor for both displacement transducers and 

accelerometers are defined. The application of SVD in the sensor validation algorithm 
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with different combinations of measurements to obtain the number of non-zero 

singular values (!ZV), from which faulty sensors are identified, is demonstrated. The 

feasibility of the proposed algorithm is illustrated using both simulated and 

experimental data from a 3-D modular truss structure.   

Chapter 5 presents the integration of wireless sensors into the DLV method to 

detect structural damage. Essential to the integration is the improvement of the quality 

of measured data after being transmitted from the sensor nodes to the base station. An 

algorithm to estimate lost values based on measured values using Fast Fourier 

Transform (FFT) and inverse FFT is proposed. Parametric study on the performance of 

the proposed algorithm is carried out numerically. The feasibility of the integration is 

then investigated experimentally using measured data from a 3-D modular truss 

structure with six wireless sensors and one base station. 

Chapter 6 summarizes the findings and conclusions of this study. The directions 

for further study are then proposed. 
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CHAPTER 2 

DAMAGE DETECTIO� VIA DLV  

USI�G STATIC RESPO�SES 

 

2.1 I�TRODUCTIO�  

The literature review in Chapter 1 highlighted that despite the effectiveness of 

the damage locating vector (DLV) method in assessing structural damage there exist 

challenges in its practical application. Firstly, the composite “stress” values to use 

within the DLV method framework have been illustrated for truss structures, but its 

extension to general structural type has not been fully addressed. For example, to 

assess damage in frame structure, all internal forces components such as moment, 

shear, axial force and their variation within each element length as well as their 

corresponding capacities must be considered. Secondly, the set of potential damaged 

elements (PDE) usually contains both actual damaged and some undamaged elements 

because the number of sensors available for structure damage detection does not cover 

all the structural DOF to satisfy the condition of observability. This is due either to the 

unavailability or malfunctioning of sensors. Some parts of the structure may not be 

accessible for monitoring.  Hence, detecting the actual damaged elements needs to be 

addressed. Thirdly, the DLV method has not been developed to assess the damage 

severity of the identified damaged elements. This limitation also exists in methods 

such as those based on change in mode shape and flexibility (Alvandi and Cremona, 

2006). 

In this chapter, the normalized cumulative energy (	CE) of each element is 

proposed as the criterion to determine the damaged elements based on the DLV 

method. This is an extension of the original DLV method where the normalized 
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cumulative stress (	CS) is used. To address the second limitation of the DLV method, 

two schemes to detect actual damaged elements are introduced. For the third 

limitation, a procedure to assess the severity of each identified damaged element is 

suggested where the penalty function method is adapted. Finally, an algorithm to 

detect structural damage using the DLV method with unknown static load is suggested. 

Numerical example of a 2-D warehouse structure and a laboratory experiment using a 

3-D modular truss structure are presented to illustrate the performance of the proposed 

enhancements to the DLV method. 

 

2.2 SUMMARY OF THE DLV METHOD 

2.2.1 Concept of DLV 

Consider a linear elastic structure with ns sensors attached. Let Fu and Fd denote 

the (ns × ns) flexibility matrices constructed with respect to the sensor locations for the 

reference and the altered structures, respectively. Assume that there exists a set of (ns 

× 1) static load P (≠ 0) such that when they are applied to the reference and the altered 

structures, the work done is identical; that is, 

( ) ( ) ( )0.5 0.5 or 0∆= − = =P F P P F P F F P F PT T

d u d u  (2.1) 

Equation (2.1) is satisfied if (i) F∆ = 0, or (ii) F∆ rank deficient and P is the basis 

of the null space of F∆. The first case implies Fu = Fd, which means that the structure is 

unaltered.  The latter implies that the changes are confined to elements whose energies 

are always zero under P. That is, P effectively does not induce any additional energy 

on the altered elements and is by definition a DLV. This is further elaborated in 

Appendix A. 
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2.2.2 Determination of DLV 

In general, P is extracted by performing singular value decomposition (SVD) on 

F∆ in Eq. (2.1), where the latter is the change in flexibility matrix with respect to the 

sensor locations from the reference to the altered state; that is, 

[ ] 1

1 0 1 0

0

T
SVD T T T

∆

 
 → ⋅ ⋅ =    

 

Σ 0
F U Σ V U U V V

0 Σ
  (2.2) 

in which ΣΣΣΣ is the singular value matrix, ΣΣΣΣ1 the sub-matrix of ΣΣΣΣ containing all non-zero 

singular values (	ZV), ΣΣΣΣ0 the sub-matrix of ΣΣΣΣ containing all zero singular values; and 

U and V the left and right singular matrices, respectively. Using the orthonormal 

property of V, 

[ ]1 0 1 0

T
T T  = V V V V I     (2.3) 

where I is the identity or unit matrix, and post-multiplying both sides of Eq. (2.2) by V 

gives 

     [ ] [ ]1 0 1 1∆ ∆ =F V F V U Σ 0     (2.4) 

From Eq. (2.4), 0∆ =F V 0 . Comparing with Eq. (2.1) implies 

0 0  or  DLV≡ ≡P V V      (2.5) 

In summary, F∆ is first computed and then decomposed to obtain V0 as the matrix of 

DLVs. 

The SVD performed using Eq. (2.2) is based on the change in flexibility matrix 

and the resulting DLV has force as the physical quantity. If the change in stiffness 

matrix is used instead, then the resulting DLV obtained after SVD has displacement as 

the physical quantity. The mathematical justification for this is given in Appendix B. 
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2.2.3 Physical meaning of DLV 

To provide physical insight into the DLV method, a numerical example using a 

simple truss containing two elements (see Fig. 2.1 ) is employed. At the reference 

state, both elements have the same Young’s modulus E1 = E2 = E, cross-sectional area 

A1 = A2 = A; and length L1 = L2 = 5 m. At the altered state, the cross-sectional area of 

element 1 is reduced to β1A (β1 < 1) all along the length of the element while the cross-

sectional area of element 2 remains unchanged.  Assume that two sensors are available 

to measure the displacements in both u1 and u2 directions where a unit load is applied 

to node 3 at u1 and u2 directions, one at a time.  

 

14
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6m

u

u

2
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#

#

- element number

- node number  
Fig. 2.1. Two-element truss structure 
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DLV

: displacement of node 3 at the undamaged state

: displacement of node 3 at the damaged state

: relative displacement of node 3 between the two states

: Damage locating vector

 
Fig. 2.2. Direction of DLV in relation with relative change in displacement vector 

 

The flexibility matrices with reference to the sensor locations for the reference 

(Fu) and the altered (Fd) states are formulated as 

1 1

1 1

1 1

1 1

3.47(1 ) 2.60(1 )

6.94 01 1
  and  

0 3.91 2.60(1 ) 1.95(1 )
u d

EA EA

β β
β β

β β
β β

+ − 
    = =  − +  
 
 

F F  (2.6) 

and the change in flexibility matrix between the two states is 

1

1

3.47 2.601

2.60 1.95
d u

EA

β
β∆

 −
= − =  

 
F F F     (2.7) 

Singular value decomposition of F∆ yields 

1

1

0.8 0.6 5.43 0 0.8 0.61

0.6 0.8 0 0 0.6 0.8

SVD T

EA

β
β∆

− − −     −
→ ⋅ ⋅ =      − − −     

F U Σ V  (2.8)  

Following Eqs. (2.4) and (2.5), the DLV is extracted as  

     [ ]0.6 0.8
T

DLV = −                 (2.9) 

The relative change in displacement at node 3 due to the 2 unit loads applying at node 

3 in u1 and u2 directions between the reference and the altered states is given by 
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[ ]1

1

1 1
6.07 4.55

1

T

EA

β
β∆ ∆

  −
= = 

 
d F     (2.10) 

Taking the scalar product of the DLV in Eq. (2.9) and d∆ in Eq. (2.10) gives 

[ ] 1

1

6.071
0.6 0.8 0

4.55

T
DLV

EA

β
β∆

 −
× = − × ≈ 

 
d    (2.11) 

implying orthogonality between the DLV and the relative displacement vector, as 

illustrated in Fig. 2.2.  In other words, the DLV is a set of forces such that the net work 

done on the reference and the altered structure is zero. 

 

2.3 FORMATIO� OF FLEXIBILITY MATRIX AT SE�SOR LOCATIO�S 

Consider an n-DOF structure with ns displacement sensors attached. Unless non-

contact laser instrument is used, displacement transducers can only be employed if 

there is a stiff or fixed reference frame on which they can be mounted. Nevertheless, 

assume that one can measure the displacements at all ns sensor locations when a load P 

is applied at DOF j where there is a sensor attached (j ∈ ns). The compatibility 

conditions at all DOF of the structure can be expressed as 

 =d F f  (2.12) 

where F is the (n × n) structural flexibility matrices; f = B2P the (n × 1) applied force 

vector in which B2 is the (n × 1) input influence matrix to map P to the structural DOF; 

and d the (n × 1) nodal displacement vector. Extracting the compatibility conditions at 

the ns sensor locations from Eq. (2.12) gives 
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⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮

⋯ ⋯

 (2.13) 
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where dij is the displacement at DOF i due to a load P and δij the displacement at DOF 

i due to a unit load applied to the structure at DOF j (i, j = 1, 2, …, ns). Equation (2.13) 

can be rewritten as 

 

1 1 1 1

2 2 2 2

/

/
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/

/

j j j j

j j j j

jj jj jj jj
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d P d P

δ δ
δ δ

δ δ

δ δ
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       
       
              

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

 (2.14) 

By shifting the load P through all the ns monitored DOF and measuring the 

corresponding displacement vectors at the ns sensor locations, all columns of the 

flexibility matrix with respect to the sensor locations (Fs) can be calculated and 

assembled as 
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 (2.15) 

If shifting the load through all the ns measured DOF is not possible but n sets of 

independent static load vectors are available, by changing the magnitude of the static 

load at a convenient DOF while leaving the magnitudes of the static load at the other 

DOF unchanged, the flexibility matrix with respect to the sensor locations can still be 

formulated using the measured displacements. 

It is noted that the formulation of flexibility matrix presented above is still valid 

if the application of a moment and the measurement of nodal rotation by angular 

sensor are available. Practically, nodal rotation measurement is usually difficult and 

expensive. To ease the implementation of the DLV method, this study considers the 

measurement of nodal displacements only.  
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2.4 �ORMALIZED CUMULATIVE E�ERGY AS DAMAGE I�DICATOR 

If column i of the DLV matrix is applied to the reference structure model, the 

energy induced in element j, denoted as jiΞ , can be computed as  

2 2 2

2 2 2
j j j

ji ji ji

ji

j j j j j jL L L

M Q 	
ds ds ds

E I G A E A
νΞ = + +∫ ∫ ∫    (2.16) 

where Mji, Qji, 	ji are internal moment, shear and axial force, respectively, within 

element j due to column i of the DLV; Lj its length; v its Poison’s ratio and EjIj, GjAj, 

EjAj  its flexural, shear, and axial stiffness, respectively, in which Ej is its Young’s 

modulus and Gj its shear modulus. Equation (2.16) takes into account the presence of 

different types of internal forces (Mji, Qji, 	ji) within element j and the variation of 

internal forces and element stiffness (EjIj, GjAj, EjAj) along the length the element. The 

cumulative energy of element j
 
due to the entire DLV matrix (V0) is  

1

ndlv

j jk

k=

Ξ = Ξ∑     (2.17) 

where ndlv is the number of columns in V0 and ndlv < ns. The normalized cumulative 

energy (	CE) of element j is defined as 

j
j

m

Ξ
Ξ =

Ξ
     (2.18) 

where ( )
 

maxm j
all j

Ξ = Ξ .  

In the case of truss structures, Eq. (2.16) becomes 

2 2

2

2 2 2
j

ji ji j j j

ji ji

j j j j jL

	 	 L A L
ds

E A E A E
σΞ = = =∫    (2.19) 

where σji is the stress induced in element j by column i of V0. Re-writing Eq. (2.19) 

gives 
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2 j

ji ji

j j

E

A L
σ = Ξ ×  (2.20) 

The normalized cumulative stress (	CS) of element j in the original DLV method 

proposed by Bernal (2002) is defined as 

 
 

1

  where  and  max( )
ndlv

j
j j jk m j

all j
km

σ
σ σ σ σ σ

σ =

= = =∑  (2.21) 

To visualize the relationship between 	CE and 	CS, consider the simplest case where 

the entire truss structure is composed of elements with the same modulus, length and 

cross-sectional area, and ndlv = 1. From Eqs. (2.17) - (2.21),  

 ( )2

j jσΞ =  (2.22) 

Other than this special case, theoretical comparison between 	CE and 	CS is not 

available, meaning that the 	CE and the 	CS are not the same. 

The set of PDE comprises those elements with 0Ξ =j . In reality, due to the 

presence of noise and uncertainties, the 	CE of damaged elements may not exactly be 

zero and a near-zero threshold is needed for practical applications. Based on the study 

by Sim et al. (2008), if the value of 0.1 is used as the 	CS threshold, then the 

probability of “false negative” (corresponding to the case when the damaged element 

is not within the set of identified PDE) is less than 5% assuming that the Young’s 

moduli of all elements are statistically independent variables, each with a coefficient of 

variation, δE, of 10%. The same basis is adopted in this study and the square value of 

the 	CS threshold value is employed as 	CE threshold.  Based on the limited 

numerical and experimental examples performed, the value of 0.01 has been shown to 

be robust.  

Integrating over element length to obtain jiΞ  may reduce the sensitivity of the 

damage indicator but makes the method manageable. Normalizing jiΞ  over the 
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element length may facilitate comparison between elements of different lengths, as 

will be illustrated in Section 2.9.2. 

 

2.5 DIFFERE�TIATI�G DAMAGED A�D STRE�GTHE�ED MEMBER 

Consider the truss structure in Section 2.2.3 where the DLV = [0.6 -0.8]
T
 has 

been computed. Applying the DLV to the reference structural model as a nodal load 

vector as shown in Fig. 2.3, the 	CE of the two elements can be computed as 

1 20;  1Ξ = Ξ =                  (2.23) 

from which element 1 is deduced as being damaged. It is noted that if the axial 

stiffness (EA) of element 1 is increased (strengthened), β1 > 1 and Eq. (2.7) still holds.  

Equation (2.8) becomes 

 1

1

0.8 0.6 5.43 0 0.8 0.61

0.6 0.8 0 0 0.6 0.8

SVD T

EA

β
β∆

− − −     −
→ ⋅ ⋅ =      − +     

F U Σ V  (2.24) 

leading to DLV = [-0.6  0.8]
T
. Hence, the results in Eq. (2.23) remain unchanged.  The 

question is how to determine whether the altered member is damaged or strengthened. 
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Fig. 2.3. Applying DLV onto reference structural model 
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From the identified flexibility matrices with respect to the sensor locations at the 

reference (Fu) and the damaged (Fd) states, an indicator to differentiate damaged and 

strengthened member is defined as 

 100%
d u

mm mm

u

mm

δ δ
δ

δ∆

−
= ×  (2.25) 

where 
 

( ) / max ( ) /d u u d u u

mm mm mm ii ii ii
all i

δ δ δ δ δ δ− = − , in which u

iiδ  and d

iiδ  are elements i on 

the diagonals of Fu and Fd, respectively; i = 1, 2, …, ns; m ∈ ns; and |(•)| the absolute 

value of (•). Since a unit load is applied one at a time directly onto the structure at 

DOF i to compute δ∆, the dominator in Eq. (2.25), 0u

iiδ ≠ . Tua (2005) noted that the 

flexibility of the structure increases with damage, resulting in δ∆ > 0; and the flexibility 

of the structure decreases with strengthening, resulting in δ∆ < 0. Hence, positive δ∆ is 

proposed to represent damaged structure and negative δ∆ is proposed to represent 

strengthened structure.  

For the truss used in Section 2.2.3, ( )1 10.5 1δ β β∆ = − . If 0 < β1 < 1, implying 

that the truss is damaged, δ∆ > 0. On the contrary, if β1 > 1, implying that the truss is 

strengthened, δ∆ < 0. 
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Fig. 2.4. 2-D warehouse structure 
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elements 7 & 14 damaged

threshold

element 7 damaged

threshold
Damaged structure

Strengthened structure

Damaged structure

Strengthened structure

(a)

(b)

1  
Fig. 2.5. Relationship between δ∆ and: (a) alteration in element 7 (β1); and (b) 

alteration in elements 7 (β1) and 14 (β2 = β1). (2-D warehouse structure; 0 < β1, β2 < 1: 

element damaged; 1 < β1, β2: element strengthened)  
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Table 2.1. Specifications for members of 2-D warehouse structure 

Height Width
Flange 

thickness

Web 

thickness

Young's 

modulus

Moment 

of inertia

Cross-

sectional area

(mm) (mm) (mm) (mm) (10
11

Nm
-2

) (10
-8

 m
4
) (10

-4
m

2
)

lower end 300 300 16 10 2.10 20982 122.8

upper end 450 300 16 10 2.10 51312 137.8

lower end 450 300 16 10 2.10 51312 137.8

upper end 600 300 16 10 2.10 97145 152.8

300 300 16 10 2.10 20982 122.8

500 300 16 10 2.10 64784 142.8

300 300 16 10 2.10 20982 122.8

2.10 4 2.0

Element numbers

1, 7

12, 18

Tubular sections

4, 15

19, 20, 21, 22

8, 9, 10, 11

2, 3, 5, 6, 13, 14, 

16, 17
 

 

For further illustration, a 2-D warehouse structure shown in Fig. 2.4 is 

considered. The specifications of the structural elements are listed in Table 2.1. 

Assuming that 10 displacement sensors are available to monitor horizontal 

displacements at nodes (4, 6, 8, 9, 10, 13) and vertical displacements at nodes (5, 7, 11, 

12). Two cases of alterations will be investigated, namely (a) element 7 is altered; and 

(b) elements (7, 14) are altered. Alteration in element 7 is simulated by multiplying its 

flexural stiffness (EI) along the length of the element with a coefficient β1 whereas 

alteration in element 14 is generated by multiplying its axial stiffness (EA) along the 

length of the element with a coefficient β2. For this illustration, results of δ∆ for some 

values of β2 = β1 ranging from 0.1 to 2 at the intervals of 0.1 are plotted in Fig. 2.5. 

From Fig. 2.5, if β1 < 1, meaning that the members are damaged, δ∆ > 0; if β1 > 1, 

meaning that the members are strengthened, δ∆ < 0. It is also observed that |δ∆| 

increases monotonically with the damage severity. In addition, increasing member 

stiffness results in smaller variation of |δ∆| compared to decreasing the same amount of 

member stiffness. For instance, increasing 50% flexural stiffness of element 7 results 

in variation of |δ∆| = 0.2% whereas decreasing 50% flexural stiffness of element 7 

results in variation of |δ∆| = 0.7%. The variation of |δ∆| is almost linear where the 
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members are strengthened or slightly damaged whereas δ∆ increases rapidly if damage 

severity is close to 100% (β1 is close to zero).  

 To investigate the presence of both damaged and strengthened members in the 

structure on δ∆, the same procedure as above is performed where β1 and β2 are varied 

from 0.1 to 2 at the intervals of 0.1. Results in Fig. 2.6 indicate that δ∆ can provide 

correct conclusion if both elements (7, 14) are damaged or strengthened 

simultaneously. For example, if both elements (7, 14) are damaged with β1 = β2 = 0.1, 

δ∆ = 35.0%; if both elements (7, 14) are strengthened with β1 = β2 = 2, δ∆ = -17.4%. 

However, if element 7 is damaged and element 14 is strengthened or element 7 is 

strengthened and element 14 is damaged, δ∆ cannot provide reliable conclusion. For 

instance, if element 7 is strengthened with β1 = 2 and element 14 is damaged with β2 = 

0.1, δ∆ = 34.9% and an incorrect conclusion that the structure is damaged will be 

issued; if element 7 is damaged with β1 = 0.1 and element 14 is strengthened with β2 = 

2, δ∆ = -17.3% and an incorrect conclusion that the structure is strengthened will be 

issued. 

In short, the procedure for structural damage detection includes two steps: (1) 

detect altered elements; and (2) differentiate whether the altered elements are damaged 

or strengthened. An indicator was proposed to address the latter and shown good 

performance for the case where structure is either damaged or strengthened. However, 

the indicator cannot provide reliable result if both damaged and strengthened members 

present simultaneously. Nevertheless, strengthening in an existing structure is usually 

done purposely and can be recorded. Identifying strengthened members is therefore 

less critical compared to identifying damaged members which are not known a priori. 

Hence, the major concern of this report is the identification of damaged elements in 

structure assuming that strengthen members if any are known before hand. The 



 55 

baseline data of the structure can be updated once repair is made and then use as that 

corresponding to the undamaged state so that the procedure presented in this thesis 

remains applicable. 
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Fig. 2.6. Relationship between δ∆ and alterations in elements 7 (β1) and 14 (β2). (2-D 

warehouse structure; 0 < β1, β2 < 1: element damaged; 1 < β1, β2: element 

strengthened)  
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2.6 IDE�TIFYI�G ACTUAL DAMAGED ELEME�TS 

2.6.1 Intersection scheme 

In the DLV method, if limited number of sensors are used, the set of PDE 

identified will contain both actual damaged and some undamaged elements (Bernal, 

2002). The intersection scheme is formulated to filter out the actual damaged elements 

by taking the intersection of all potential sets derived using data from various 

combinations of sensors. The scheme is summarized in Fig. 2.7. 

Starting with ns sensors, a set of PDE is first computed and denoted as the 

current intersected damaged set (IDS). Next, by using only data from ns-1 sensors 

which are close to members in the IDS set, another set of PDE can be identified. By 

taking the common elements from this PDE and the IDS, a new IDS is obtained. This 

procedure can be repeated for a different sets of ns-1 sensors (since there are ns 

possible sets of ns-1 sensors) to get a new IDS. If the old and the new IDS are 

identical, the elements in the IDS are identified as the actual damaged elements and the 

identification process is taken as completed. The process is also terminated if the new 

IDS is a null set, implying that there is no damaged element in the structure. If 2 

consecutive IDS are not identical and the combinations of ns-1 sensors are exhausted, 

then combinations of ns-2 sensors are next considered until the criterion of 2 

consecutive repeated IDS are met. The termination criterion can be increased to 

requiring higher number of consecutive identical IDS to ensure robustness of the 

method at the expense of computational cost. Based on extensive study with different 

numerical examples (see Section 2.9.1), including data with added noise, it is found 

that the 2 identical consecutive IDS criterion is robust.  

The scheme works provided that ns is greater than 2 since at least 2 

measurements are required to form a matrix before any SVD can be performed to 
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compute the DLV. With ns = 2, only 1 set of PDE can be computed and no subsequent 

combination of sensors is available to filter out the actual damaged elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Flow chart for intersection scheme to identify actual damaged elements 
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2.6.2 Two-stage analysis 

In structures with many elements and degrees of freedom (DOF), if the number 

of sensors used is small, the number of combinations to analyze before reliable results 

are obtained using the intersection scheme may be quite formidable.  Hence, a two- 

stage analysis is proposed whereby potential damaged regions are first identified based 

on the relative change in flexibility matrix and the individual regions are then analyzed 

using the DLV method to identify the actual damaged elements. 

For a structure with sensors attached at various locations, the sensors may be 

viewed as capturing information mostly of structural members in its vicinity.  If the 

perpendicular bisector between pairs of sensors are drawn, then the polygon around (or 

interval between) each sensor may be taken as the region covered by that sensor.  Any 

structural element encompassed or intersected by the polygon (or interval) is 

considered as significantly contributing to the data captured by the enclosed sensor 

relative to the other sensors. 

From the identified flexibility matrices with respect to the sensor locations at the 

reference (Fu) and the damaged (Fd) states, damaged region index vector is defined as 

 
1 2

100%
ns

δ δ δ δ∆ ∆ ∆ = × F ⋯  (2.26) 

where ( ) /d u u

i ii ii ii
δ δ δ δ∆ = − , in which u

iiδ  and d

iiδ  are elements i on the diagonals of Fu 

and Fd, respectively; and i = 1, 2, …, ns. Since the unit load is applied one at a time 

directly onto the structure at DOF i to compute component i of δF, the denominator in 

Eq. (2.26), 0u

iiδ ≠ . As the presence of damage in structure increases its flexibility, 

applying a unit load to DOF i at both the reference and damaged states gives 

u d

ii ii
δ δ≤ . Note that if u

iiδ  is negative, d

iiδ  is also negative, resulting in non-negative 

iδ ∆ . The vector δF will be null if there is no change in the structure from its reference 
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state.  Hence, any non-zero entry in δF indicates some form of damage. If the values in 

Eq. (2.26) are plotted on the structural layout, by comparing values between 

neighbouring sensor locations, local maxima can be identified, which is likely to 

indicate that there is(are) damaged element(s) in the region covered by the associated 

sensor. 
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Fig. 2.8. 3-D modular truss structure model 

 

Table 2.2. Summary of materials and geometries for 3-D modular truss members 

Truss 

members 
φ  

(mm) 
Thickness 

(mm) 

Length 

(mm) 
Quantity Material 

Elastic 

modulus 

(N/m2) 

Top flange 46 1.6 1000 15 Steel 2.1 × 1011 

Top flange 46 1.6 1414 4 Steel 2.1 × 10
11

 

Web 22 1.0 1000 42 Aluminum 6.8 × 1010 

Bottom flange 46 1.6 1000 21 Steel 2.1 × 1011 

Bottom flange 46 1.6 1414 6 Steel 2.1 × 10
11
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Table 2.3. Maximum coefficients of δF for 6.5% noise added: 3-D modular truss 

structure (structure healthy) 

Mean Standard deviation

1 [3,4,5,6,7,8,9,11,12,13,14,15] 30 0.0571 0.0288

2 [2,4,5,6,7,8,9,11,12,13,14,15] 30 0.0541 0.0165

3 [2,3,5,6,7,8,9,11,12,13,14,15] 30 0.0576 0.0235

4 [2,3,4,6,7,8,9,11,12,13,14,15] 30 0.0491 0.0217

5 [2,3,4,5,7,8,9,11,12,13,14,15] 30 0.0542 0.0185

6 [2,3,4,5,6,8,9,11,12,13,14,15] 30 0.0577 0.0238

7 [2,3,4,5,6,7,9,11,12,13,14,15] 30 0.0551 0.0225

8 [2,3,4,5,6,7,8,11,12,13,14,15] 30 0.0394 0.0211

9 [2,3,4,5,6,7,8,9,12,13,14,15] 30 0.0574 0.0259

10 [2,3,4,5,6,7,8,9,11,13,14,15] 30 0.0522 0.0212

11 [2,3,4,5,6,7,8,9,11,12,14,15] 30 0.0559 0.0186

12 [2,3,4,5,6,7,8,9,11,12,13,15] 30 0.0471 0.0205

13 [2,3,4,5,6,7,8,9,11,12,13,14] 30 0.0511 0.0204

14 [2,3,4,5,6,7,8,9,11,12,13,14,15] 30 0.0560 0.0213

Max (δ F)Number of 

samples
Sensors at nodes

Set 

No.

 
 

In practice, even if there is no damage in the structure, when a unit load is 

applied to both the reference and the damaged structures, non-zero entries in δF may 

still exist due to measurement inaccuracy and the presence of noise.  A near-zero 

threshold is therefore applied to ensure that healthy regions are not wrongly identified 

as damaged regions. This threshold is in fact problem dependent, and is a function of 

the type of structure and the number of sensors used. As an illustration, a 3-D modular 

truss comprising 88 elements and 28 nodes, pin-supported at the three bottom corners 

is used to generate structural flexibility matrices at sensor locations for both the 

reference (Fu) and the damaged (Fd) states. The truss model is shown in Fig. 2.8 and its 

members’ properties and geometries are given in Table 2.2. Thirteen displacement 

sensors are used to monitor the vertical displacements of all nodes at the lower chord 

of the truss. Consider the case when the truss is healthy (Fu = Fd) and monitored by 12 

sensors. It will be shown in Section 4.2.1 that the maximum noise level in the 

flexibility matrices which the DLV method can accommodate in this set-up before the 
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results become unreliable is 6.5%. In this example, zero-mean white noise with root 

mean square (RMS) of 6.5% are added to contaminate the simulated flexibility 

matrices, Fu and Fd, based on which the maximum entry of δF is computed. Since the 

true value is supposed to be zero, this maximum entry indicates the threshold beyond 

which the structure may be considered as damaged. The procedure is repeated 30 times 

and results are summarized in Table 2.3. The first 13 sets in Table 2.3 are for the case 

where 12 sensors are used and the maximum of the mean value is less than 0.059 with 

standard deviation less than 0.029.  A reasonable threshold of 0.06 may be used for 

this case, although one may argue that to increase robustness of the method, a 

threshold of 0.03 corresponding to one standard deviation below the mean may be 

applied as the demarcation criterion. If 13 sensors are used and the ultimate zero-mean 

white noise with RMS of 11.5% beyond which the DLV method can be considered 

unreliable is used to contaminate the flexibility matrices, the results in the last row of 

Table 2.3 indicate that the same threshold may still be used. If 7 sensors are used and 

the upper limit zero-mean white noises with RMS of 3.5% are added, the maximum of 

the mean value reduces to 0.044 with standard deviation of 0.013. A threshold of 0.03 

at approximately one standard deviation below the mean may be selected as the 

criterion to demarcate between a healthy and a potentially damaged structures. For 

specific applications, numerical simulations may first be performed introducing noise 

to the measured signal based on the data acquisition accuracy to estimate the 

appropriate threshold to adopt. 

It is possible that actual damaged elements may not be identified using the two-

stage analysis scheme if the effect of damage on the change in structural flexibility 

matrix is less than the near-zero threshold used. This usually corresponds to cases 

where the damage is minor to be of concerned, such as that due to fine cracks or slight 
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damage in non-critical elements. For example, for the 3-D modular truss with element 

86 damaged, using 12 sensors, the damage has to exceed 7% of the axial stiffness 

before the threshold of 0.03 is crossed.  

Using the change in flexibility matrix to identify possible damaged regions in the 

first stage has advantage over the use of change in mode shape commonly found in the 

literature. The latter is usually computed based on the difference between the identified 

mode shapes at the reference and damaged states. For example, Ewins (2000) defined 

the Coordinate Modal Assurance Criterion (COMAC) as 

 

( )

( ) ( )

2

1

2 2

1 1

( )

nm
u d

ij ij

j

nm nm
u d

ij ij

j j

i
=

= =

 
 
 =

   
   
   

∑

∑ ∑

Φ Φ

COMAC

Φ Φ

 (2.27) 

where 
ijΦ is mode shape value at coordinate i of mode shape j; nm the number of 

identified mode shapes; and superscripts u and d denote the reference and the damaged 

states. Component i of the COMAC should be unity if the structure is healthy. When 

component i of COMAC is different from unity, it gives an indication of a possible 

damaged region at the monitored coordinate i. However, the change in flexibility 

matrix increases monotonically with increasing severity of damage while the change in 

mode shape values is not necessarily monotonic, especially if damage is severe or 

covers a large area of the structure (Tua, 2005).   

In the second stage of the analysis, the DLV method is performed to identify a set 

of PDE which contains both the actual damaged and some undamaged elements. Since 

the presence of damaged elements will generate local maxima at the appropriate 

entries of δF, only those elements in the set of PDE corresponding to elements 

associated with the identified damaged regions in the first stage are confirmed as being 

damaged. 
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2.7 ASSESSI�G DAMAGE SEVERITY 

Performing the DLV method, the damaged elements can be identified. An 

iterative scheme adopting the penalty function method is used to assess the severity of 

the identified damaged elements in terms of axial stiffness for truss members and 

flexural stiffnesses for frame members. From the measured displacement responses, 

the structural flexibility matrix of its current state (Fd) is formulated following the 

procedure presented in Section 2.3. Based on the reference structure, a finite element 

(FE) model of the structure can be constructed. For the case where the stiffnesses of 

some elements are damaged, the same program is used with the modified stiffnesses to 

obtain the modified structural flexibility matrix, denoted as Fn. If there is only one 

damaged element then by direct computation based on a few postulated modified 

stiffness and checking whether Fn approaches Fd, the damage severity at the element 

level can be deduced. For the case where there are two or more damaged elements, Fn 

is mapped to Fd by minimizing the difference in some of their representative 

characteristics, such as eigenvalues and eigenvectors, in order to deduce damage 

severity of the damaged elements. However, eigenvalues and eigenvectors are found 

not sensitive to structural damage and for some cases non-uniqueness solution may be 

observed if the structure is symmetric (Lu and Law, 2007). Singular values of 

flexibility matrix, which are easy to compute and sensitive to the matrix disturbance, 

are explored in this section. The special characteristic of singular values of a matrix is 

that they are non-negative and are placed in decreasing order of magnitude. Under 

matrix disturbance, all singular values will be affected although the level of affection is 

not the same. Hence, to minimize the difference in singular values of Fn and Fd or to 

map Fn to Fd, the following three objective functions are considered, namely  
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(1) Mean of normalized difference in singular values of Fn and Fd 

 
1

( ) ( )1
100%

( )

ns
d n

i n

s i s i
z

ns s i=

−
= ×∑  (2.28) 

(2) Normalized difference in the first (maximum) singular values between Fn and Fd 

(since the first singular value of a matrix is the most affected singular value when the 

matrix is disturbed) 

 
(1) (1)

100%
(1)

d n

n
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(3) Root mean square of normalized difference in singular values of Fn and Fd 
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where sn(i) and sd(i) are the ith singular value of Fn and Fd, respectively; i = 1, 2, …, 

ns; and ns the number of sensors used. The results of the three above-mentioned 

objective functions for the 2-D warehouse structure (Fig. 2.4 and Table 2.1) and the 3-

D modular truss structure (Fig. 2.8 and Table 2.2) for the case of single damaged 

element are plotted in Figs. 2.9 and 2.10. In general, a reduction in element stiffness 

produces the maximum change in the second objective function. For example, for the 

2-D warehouse structure, the magnitudes of the three objective functions are 3.0%, 

7.2% and 6.3% (corresponding to 10% reduction in flexural stiffness of element 8), 

respectively, which is maximum at the second objective function. There are 4 elements 

which produce the largest magnitudes at the third objective function, namely elements 

(2, 3, 5, 6). For such cases, however, the difference in magnitudes between the second 

and the third objective functions are not significant.  
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Fig. 2.9. Objective function values for different damaged elements with 10% reduction 

in element stiffness of 2-D warehouse structure 

 

1 10 20 30 40 50 60 70 80 88
0

0.5

1

1.5

2

2.5

3

3.5

4

Element number

M
ag

n
it

u
d

e 
o

f 
o

b
je

ct
iv

e
 f

u
n

ct
io

n
 (

%
)

 

 

Objective function 1 - mean of normalized difference in singular values

Objective function 2 - normalized difference in the maximum (first) singular values

Objective function 3 - root mean square of normalized difference in singular values

 
Fig. 2.10. Objective function values for different damaged elements with 10% 

reduction in axial stiffness of 3-D modular truss structure 

 

 

 

 



 66 

 From the above observation, the change in the first singular value of a matrix is 

found the most sensitive to the disturbance of structural flexibility matrix caused by 

the presence of damage. Minimizing the difference between the first singular values of 

Fn and Fd is proposed as criterion to map Fn to Fd, resulting in the estimation of 

damage severity of the damaged elements. Therefore, normalized difference in the first 

singular values between Fn and Fd will be selected as the objective function to be 

minimized. 

The algorithm starts by forming a set of structural parameters θθθθ comprising 

stiffnesses of the nd identified damaged elements based on the reference structure as 

 [ ]1 2( ) ( ) ( )
T

ndEX EX EX=θ ⋯  (2.31) 

where (EX)i is the axial stiffness or the flexural stiffness of element i if element i is 

truss or frame element, respectively, in which i = 1, 2, …, and nd is the number of 

damaged elements. From θθθθ and measured displacement responses, Fn and Fd are 

formulated, based on which the objective function to be minimized z can be computed 

following Eq. (2.29). 

In penalty function method (Friswell and Mottershead, 1995), the objective 

function in Eq. (2.29) can be approximated by neglecting the higher order components 

as 

 z δ= ×S θɵ  (2.32) 

where S is the structural sensitivity matrix and δθθθθ the modification of θθθθ such that Fn 

approaches Fd. The structural sensitivity matrix can be computed as 

 
0 0 0 0

0 0 0 0

1 2( ) ( ) ( )

T

nd

z z z z z

EX EX EX

δ δ δ δ
δ δ δ δ

 ∂
≈ =  ∂  

S =
θ θ

⋯  (2.33) 
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where δθθθθ0
 is a small disturbance of θθθθ or 0 0 0 0

1 2
( ) ( ) ( )

T

nd
EX EX EXδ δ δ δ =  θ ⋯ ; 

in which 0( )iEXδ  is the small disturbance in stiffness of damaged element i; and δz
0
 

the variation of z due to the small disturbance δθθθθ0
. 

 To estimate δθθθθ, the discrepancy between the actual and the approximated 

normalized difference in maximum singular values of Fn and Fd is estimated as follow 

 z z zε δ= − = − ×S θɵ  (2.34) 

Applying least square estimation (LSE) method  on Eq. (2.34) gives  

 †zδ =θ S  (2.35) 

where “
†
” denotes pseudo-inverse. The stiffnesses of the nd damaged elements are 

updated as 

 δ= +θ θ θ  (2.36) 

The procedure is iterated until a pre-defined tolerance is reached, that is, 

 

1

100%

min

100%

T

T

i i

i

Tol
z z

z

δ δ

−

 ×
× 

× 
≤ 

− × 
 

θ θ

θ θ
 (2.37) 

where Tol is pre-defined tolerance; zi and zi-1 the values of the objective function at 

iterations i and i - 1. 

 It is noted that the number of variables to be estimated in the proposed procedure 

(nd) is much smaller compared to the number of variables to be estimated in other 

matching procedures available in the literature which includes all coefficients of 

stiffness and damping matrices (Liu and Shepard Jr., 2004; Chen and Li, 2004; Lu and 

Law, 2006, 2007), making it more feasible and robust. Besides, the computation of the 

singular values to evaluate the objective function in the current approach is more 
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computationally efficient compared to the computation of eigenvalues and 

eigenvectors adopted in the literature. 

 

2.8 DETECT DAMAGE WITH U�K�OW� STATIC LOAD 

To formulate the flexibility matrix using the measured displacements following 

the procedure presented in Section 2.3, a known static load is shifted through all 

monitored locations. Although the procedure can still be employed if the static load 

applied at each DOF is different, the static load is usually selected to be constant to 

ease the implementation and computation process. However, the magnitude of the 

static load need not be the same when performing for the reference and the damaged 

structures as they may be done at different times which may be months or years apart. 

In some extreme cases, the magnitudes of the static loads are even unknown. In such 

cases, modifications are required in order to perform the DLV method to assess 

structural damage. 

Let Pu and Pd denote the unknown static loads being applied onto the reference 

and the damaged structures, respectively, and that displacement responses at ns sensor 

locations are measured. The flexibility matrices with respect to the sensor locations for 

the reference (Fu) and the damaged (Fd) structures can be written as follows 

 

11 12 1

21 22 2

1 2

1 1

u u u

ns

u u u

ns

u u

u u

u u u

ns ns ns ns

d d d

d d d

P P

d d d

 
 
 = =
 
 
  

F U

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.38) 
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d d d
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 
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 
 
  
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⋯
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where u

ijd  and d

ijd  are the displacements at DOF i due to loads Pu and Pd at DOF j at 

the reference and the damaged states, respectively; superscripts u and d are associated 

with the reference and damaged states; and Uu and Ud the displacement matrices with 

respect to the sensor locations of the reference and the damaged structures, 

respectively, that is, 

 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

  and  

u u u d d d

ns ns

u u u d d d

ns ns

u d

u u u d d d

ns ns ns ns ns ns ns ns

d d d d d d

d d d d d d

d d d d d d

   
   
   = =
   
   
      

U U

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 (2.40) 

Based on measured displacements, Uu and Ud can be formulated following Eq. 

(2.40) whereas Fu and Fd are not computable since Pu and Pd are not known. Following 

Section 2.2.2, the DLV can not be computed since F∆ is not available. Equation (2.1) 

can be re-written here for easier reference  

 ( )d u ∆− =F F P F P = 0  (2.41) 

where P is DLV. Assume that there exists a constant α such that 

 u dP Pα=  (2.42) 

Multiplying both sides of Eq. (2.41) with Pu and invoking Eq. (2.42) gives 

 ( ) ( ) ( ) ( )u d u u d d u u d uP P P Pα α∆ ∆− = = → − = → − =F F P F P 0 F F P 0 U U P U P = 0 (2.43) 

where 

 d u uPα∆ ∆= − =U U U F  (2.44) 

From Eq. (2.44), performing SVD on U∆ and F∆ produces the same right singular 

matrix. Hence, the set of DLVs can also be computed by replacing F∆ by U∆ in Eqs. 

(2.2) - (2.5). The remaining requirement is to estimate α such that Eq. (2.42) is 

satisfied.  
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The distinguishing feature of α which satisfies Eq. (2.42) is that: if the structure 

is not damaged, U∆ = F∆ = 0; if the structure is damaged, F∆ is rank-deficient, hence 

following Eq. (2.44), U∆ = PuF∆ is also rank-deficient. In both cases, α which satisfies 

Eq. (2.42) produces the smallest summation of singular values of U∆ = αUd - Uu. Thus, 

α can be estimated by minimizing the following sum of singular values of U∆  

 
1

( )
ns

i

z s iα ∆
=

= ∑  (2.45) 

where s∆(i) is the ith singular value of U∆ = αUd - Uu. The minimization problem in 

Eq. (2.45) can be executed without any difficulty using the function ‘fminbnd’ in 

Matlab. Upon estimating α, the DLV set can be computed by replacing F∆ by U∆ in 

Eqs. (2.2) -(2.5). Consequently, the DLV method can be employed to detect structural 

damage. 

 

2.9 �UMERICAL A�D EXPERIME�TAL ILLUSTRATIO� 

Numerical example of a 2-D warehouse structure is performed to illustrate the 

	CE-based DLV method in Section 2.9.1. Experimental example of a 3-D modular 

truss structure is then carried out to assess the performance of the DLV method with 

measured data in Section 2.9.2. 

 

2.9.1 �umerical example 

A 2-D warehouse structure shown in Fig. 2.4 is simulated to generate 

displacement responses. The structure comprises (a) beams and columns with either 

constant or varied cross-sectional areas; and (b) truss members. The specifications of 

the structural members are listed in Table 2.1. Two cases of damage are investigated, 

namely (1) element 14 is damaged; and (2) elements (7, 14) are damaged. Damage in 
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element 7 is simulated by imposing a 20% reduction in its flexural stiffness for the 

whole length of the element whereas for element 14, a 20% reduction in axial stiffness 

along the whole length of the element is imposed to simulate its damage. Static loads 

Pu and Pd, assumed unknown, are applied on the reference and the damaged structures, 

respectively, and the horizontal displacement responses at nodes (4, 6, 8, 9, 10, 13) and 

vertical displacement responses at nodes (5, 7, 11, 12) are monitored.  By shifting Pu 

and Pd through all the monitored DOF, the displacements at sensor locations are 

recorded and shown in Table 2.4 based on which the displacement matrices Uu and Ud 

are formulated. The procedure presented in Section 2.8 is next employed to estimate α 

in Eq. (2.42). Upon estimating α = 2, the change in displacement matrix U∆ = αUd - Uu 

can be computed. Replacing F∆ by U∆ in Eqs. (2.2) - (2.5), a set of 9 DLVs is 

identified.  

i) Intersection scheme to identify actual damaged elements 

Applying the DLV set onto the reference structural model as nodal force vectors 

with respect to the sensor locations, the 	CE of all elements are evaluated and the set 

of PDE which includes elements (14, 17) is identified. Therefore, the current IDS 

contains elements (14, 17) and ne = 2. By omitting data from the sensor at node 4 

which is far away from elements (14, 17) in the current IDS, the flexibility matrices 

with respect to the remaining 9 sensor locations are computed from which a set of 8 

DLVs is identified. By applying these DLVs onto the reference structural model as 

nodal force vectors, the 	CE of all elements are computed and the set of PDE which 

contains element 14 is identified. Intersecting the set of PDE and the current IDS 

which contains elements (14, 17) produces element 14 as the new IDS (ne = 1). 

Similarly, by omitting the readings of the sensor at node 10, which is far away from 

elements 14 in the current IDS, instead of the sensor at node 4, another set of PDE 
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containing elements (12, 14, 16) is identified. Intersecting the identified PDE with the 

current IDS which contains element 14 only gives element 14 as the new IDS (ne = 1). 

Since the IDS is the same for 2 consecutive steps, the iteration is terminated and the 

actual damaged element 14 is identified correctly. The procedure is summarized in the 

upper portion of Table 2.5. Similarly for the case where elements (7, 14) are damaged, 

the feasibility of the intersection scheme is confirmed by the results in the upper 

portion of Table 2.6. 

 

Table 2.4. Simulated displacements for 2-D warehouse structure (10
-3

 mm) 

4 5 6 7 8 9 10 11 12 13

4 112.62 0.02 108.33 0.00 107.00 124.58 123.49 1.71 2.58 123.87

5 0.02 273.61 0.01 0.06 0.01 0.10 0.06 0.45 0.23 0.11

6 108.33 0.01 111.55 0.00 110.10 124.23 123.34 -0.47 2.46 123.63

7 0.00 0.06 0.00 273.61 -0.01 -0.06 -0.11 0.23 0.45 -0.11

8 107.00 0.01 110.10 -0.01 116.27 124.42 123.69 -0.41 0.23 123.91

9 124.58 0.10 124.23 -0.06 124.42 232.38 225.57 -19.64 19.03 227.83

10 123.49 0.06 123.34 -0.11 123.69 225.57 232.35 -19.06 19.72 227.81

11 1.71 0.45 -0.47 0.23 -0.41 -19.64 -19.06 103.67 -24.00 -18.90

12 2.58 0.23 2.46 0.45 0.23 19.03 19.72 -24.00 103.40 18.95

13 123.87 0.11 123.63 -0.11 123.91 227.83 227.81 -18.90 18.95 230.09

4 56.35 0.01 54.20 0.00 53.54 62.63 62.07 0.53 1.40 62.27

5 0.01 136.80 0.01 0.03 0.01 0.05 0.03 0.22 0.12 0.06

6 54.20 0.01 55.81 0.00 55.08 62.42 61.97 -0.53 1.33 62.12

7 0.00 0.03 0.00 136.80 0.00 -0.03 -0.05 0.11 0.22 -0.05

8 53.54 0.01 55.08 0.00 58.17 62.55 62.18 -0.53 0.23 62.29

9 62.63 0.05 62.42 -0.03 62.55 119.18 115.69 -12.70 10.52 116.87

10 62.07 0.03 61.97 -0.05 62.18 115.69 119.00 -12.32 10.84 116.78

11 0.53 0.22 -0.53 0.11 -0.53 -12.70 -12.32 54.60 -12.97 -12.29

12 1.40 0.12 1.33 0.22 0.23 10.52 10.84 -12.97 52.04 10.47

13 62.27 0.06 62.12 -0.05 62.29 116.87 116.78 -12.29 10.47 117.96

4 56.35 0.01 54.20 0.00 53.54 62.63 62.08 0.53 1.40 62.27

5 0.01 136.80 0.01 0.03 0.01 0.05 0.03 0.22 0.12 0.06

6 54.20 0.01 55.81 0.00 55.08 62.42 61.97 -0.53 1.33 62.12

7 0.00 0.03 0.00 136.81 0.00 -0.04 -0.06 0.11 0.25 -0.06

8 53.54 0.01 55.08 0.00 58.17 62.56 62.18 -0.53 0.23 62.30

9 62.63 0.05 62.42 -0.04 62.56 119.20 115.70 -12.69 10.48 116.89

10 62.08 0.03 61.97 -0.06 62.18 115.70 119.01 -12.32 10.81 116.79

11 0.53 0.22 -0.53 0.11 -0.53 -12.69 -12.32 54.60 -12.97 -12.29

12 1.40 0.12 1.33 0.25 0.23 10.48 10.81 -12.97 52.12 10.42

13 62.27 0.06 62.12 -0.06 62.30 116.89 116.79 -12.29 10.42 117.99
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Table 2.5. Damage detection of 2-D warehouse structure - Intersection scheme 

(element 14 damaged)  

Set of sensors includes sensors 

at nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

ns =10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 9  [14, 17]  [14, 17] 2

i =1 [5, 6, 7, 8, 9, 10, 11, 12, 13] 8 [14] 17 [14] 1

i =2 [4, 5, 6, 7, 8, 9, 11, 12, 13] 8 [12, 14, 16] [14] 1

i =3 [4, 6, 7, 8, 9, 10, 11, 12, 13] 8 [4, 14] [14] 1

i =4 [4, 5, 7, 8, 9, 10, 11, 12, 13] 8 [1, 2, 7, 14, 20] [14] 1

i =5 [4, 5, 6, 8, 9, 10, 11, 12, 13] 8 [12, 14] [14] 1

i =6 [4, 5, 6, 7, 9, 10, 11, 12, 13] 8 [14, 16] [14] 1

i =7 [4, 5, 6, 7, 8, 10, 11, 12, 13] 8 [14] [14] 1

i =8 [4, 5, 6, 7, 8, 9, 10, 11, 12] 8 [12, 14, 16] [14] 1

i =9 [4, 5, 6, 7, 8, 9, 10, 12, 13] 8 [12, 14] [14] 1

i =10 [4, 5, 6, 7, 8, 9, 10, 11, 13] 8 [14, 17] [14] 1

k
=

n
s

-1
=

9

 

 

Table 2.6. Damage detection of 2-D warehouse structure - Intersection scheme 

(elements 7 & 14 damaged)  
Set of sensors includes sensors 

at nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

ns =10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 9  [1, 4, 7, 13, 14]  [1, 4, 7, 13, 14] 5

i =1 [4, 5, 6, 7, 8, 9, 11, 12, 13] 8 [7, 12, 14] 1, 4, 13 [7,14] 2

i =2 [4, 5, 6, 7, 8, 10, 11, 12, 13] 8 [1, 7, 13, 14, 17] [7,14] 2

i =3 [5, 6, 7, 8, 9, 10, 11, 12, 13] 8 [2, 7, 8, 14] [7,14] 2

i =4 [4, 6, 7, 8, 9, 10, 11, 12, 13] 8 [3, 7, 14 [7, 14] 2

i =5 [4, 5, 7, 8, 9, 10, 11, 12, 13] 8 [2, 7, 8, 14] [7, 14] 2

i =6 [4, 5, 6, 8, 9, 10, 11, 12, 13] 8 [7, 14, 17] [7, 14] 2

i =7 [4, 5, 6, 7, 9, 10, 11, 12, 13] 8 [7, 13, 14, 17] [7, 14] 2

i =8 [4, 5, 6, 7, 8, 9, 10, 12, 13] 8 [3,7,12,14,19,21] [7, 14] 2

i =9 [4, 5, 6, 7, 8, 9, 10, 11, 13] 8 [7, 14] [7, 14] 2

i =10 [4, 5, 6, 7, 8, 9, 10, 11, 12] 8 [2,7,14,20] [7, 14] 2

k
=

n
s

-1
=

9

 

 

To demonstrate that two consecutive identical IDS is adequate to stop the 

iteration described in Section 2.6.1, the remaining 8 combinations resulting from 

omitting readings of one sensor at a time are considered and the identified PDE is 

listed in the lower portion of Table 2.5 for the case where element 14 is damaged. The 

IDS contains only element 14 for all cases, confirming the suitability of the proposed 

termination criterion.  The same computation is performed for the case where elements 



 74 

(7, 14) are damaged and yields the same conclusion as results shown in the lower 

portion of Table 2.6.  

To investigate the effect of noise on the performance of the proposed 

methodology, the above examples are used and zero-mean white noise with RMS 

equals to 5% of the RMS of the simulated displacements is added to all simulated 

response displacements to generate contaminated data. From contaminated data, the 

method presented in Section 2.8 is employed to identify the unknown constant α, from 

which ∆U is computed following Eq. (2.44).  Performing SVD on ∆U gives a set of 7 

DLVs. Applying these DLVs onto the reference structural model as nodal force vectors, 

the 	CE of all elements are computed and the first set of PDE comprising 6 elements 

(4, 6, 12, 13, 14, 17) is identified. These 6 elements are assigned as the current IDS (ne 

= 6). By omitting the readings of the sensor at node 4, which is not close to member of 

the current IDS, and employing the method in Section 2.8 on the remaining 9 sensor 

readings, ∆U is computed, based on which SVD is performed to identify another set 

containing 5 DLVs. Applying these DLVs onto the reference structural model as nodal 

force vectors, the 	CE of all elements are evaluated and the set of PDE which includes 

elements (1, 8, 10, 14) is identified. Taking the intersection between the set of PDE 

and the current IDS which contains elements (4, 6, 12, 13, 14, 17) gives element 14 as 

the new IDS (ne = 1). Similarly, by omitting the readings of the sensor at node 10 

which is not close to the only member of the current IDS instead of the sensor at node 

4, another set of PDE comprising elements (5, 14, 16) is identified. The intersection of 

the set of PDE and the current IDS which contains element 14 only produces element 

14 as the new IDS (ne = 1). Since the IDS for the 2 consecutive steps are identical, the 

iteration is stopped, concluding that the actual damage is in element 14. The procedure 

is summarized in the upper portion of Table 2.7. Performing the same procedure for 
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the other 8 combinatorial sets of sensors by dropping one sensor record each time, the 

results in the lower portion of Table 2.7 confirm that only element 14 is damaged, 

reinforcing the criterion of 2 consecutive identical IDS to stop the iteration in Section 

2.6.1. The same computation is performed for the case where elements (7, 14) are 

damaged and the results in Table 2.8 support the feasibility of the intersection scheme. 

 

Table 2.7. Damage detection of 2-D warehouse structure - Intersection scheme 

(element 14 damaged, 5% noise) 
Set of sensors includes sensors at 

nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

ns =10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 7 [4, 6, 12, 13, 14, 17]
[4, 6, 12, 

13, 14, 17]
6

i =1 [5, 6, 7, 8, 9, 10, 11, 12, 13] 5 [1,8,10,14] 4,6,12,13,17 [14] 1

i =2 [4, 5, 6, 7, 8, 9, 11, 12, 13] 5 [5,14,16] [14] 1

i =3 [4, 6, 7, 8, 9, 10, 11, 12, 13] 5 [14] [14] 1

i =4 [4, 5, 7, 8, 9, 10, 11, 12, 13] 5 [7, 14] [14] 1

i =5 [4, 5, 6, 8, 9, 10, 11, 12, 13] 5 [5,6,14] [14] 1

i =6 [4, 5, 6, 7, 9, 10, 11, 12, 13] 5 [10,11,12,14,15] [14] 1

i =7 [4, 5, 6, 7, 8, 10, 11, 12, 13] 5 [1,8,9,14,16,21] [14] 1

i =8 [4, 5, 6, 7, 8, 9, 10, 11, 12] 5 [14,15,19,20] [14] 1

i =9 [4, 5, 6, 7, 8, 9, 10, 12, 13] 5 [14,18] [14] 1

i =10 [4, 5, 6, 7, 8, 9, 10, 11, 13] 5 [7,14] [14] 1

k
 =

 n
s

 -
 1

 =
 9

 

 

Table 2.8. Damage detection of 2-D warehouse structure - Intersection scheme 

(elements 7 & 14 damaged, 5% noise) 
Set of sensors includes sensors 

at nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

ns =10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 9 [1,4,6,7,11,14,18,22] [1,4,6,7,11,14,18,22] 8

i =1 [4, 5, 6, 7, 8, 9, 11, 12, 13] 8 [2,5,7,12,14,15,16,21] 1,4,6,11,18,22 [7,14] 2

i =2 [4, 5, 6, 7, 8, 10, 11, 12, 13] 8 [1,3,7,11,13,14,17] [7,14] 2

i =3 [5, 6, 7, 8, 9, 10, 11, 12, 13] 8 [2,4,7,13,14,15,16,19,20] [7,14] 2

i =4 [4, 6, 7, 8, 9, 10, 11, 12, 13] 8 [2,3,5,7,8,12,14,17,21] [7, 14] 2

i =5 [4, 5, 7, 8, 9, 10, 11, 12, 13] 8 [2,7,13,14] [7, 14] 2

i =6 [4, 5, 6, 8, 9, 10, 11, 12, 13] 8 [3,7,14,17,19,20,21,22] [7, 14] 2

i =7 [4, 5, 6, 7, 9, 10, 11, 12, 13] 8 [5,6,7,13,14,17] [7, 14] 2

i =8 [4, 5, 6, 7, 8, 9, 10, 12, 13] 8 [3,7,8,9,12,14,15,16,17,18,19,21] [7, 14] 2

i =9 [4, 5, 6, 7, 8, 9, 10, 11, 13] 8 [7, 8,14] [7, 14] 2

i =10 [4, 5, 6, 7, 8, 9, 10, 11, 12] 8 [5,7,9,12,13,14,15,16,20] [7, 14] 2

k
=

n
s

-1
=

9

 

 

ii) Two-stage analysis to identify actual damaged elements 

For the cases where the number of sensors used is much smaller than the number 

of structural DOF, the number of combinations needed in the intersection scheme 

before reliable result is realized may be astounding. In such cases, the two-stage 
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analysis can be employed where damaged regions are identified in the first step by 

examining the change in flexibility matrix and then to zoom in the damaged regions to 

identify damaged elements by using the DLV method in the second step. Performance 

of the two-stage analysis in identifying damaged elements is examined next. 

Upon identifying α and ∆U, the damage region index vector (δF) has not been 

computed following Eq. (2.26) yet. If set Pd = 1, one obtains Pu = 2, the flexibility 

matrices at the reference and the damaged states can be computed using Eqs. (2.38) - 

(2.39), based on which Eq. (2.26) can be employed to obtain δF. In Fig. 2.4, the dash 

lines demarcate the regions “represented” by the corresponding displacement 

transducers. For example, the region for displacement transducer at node 11 is 

illustrated by the hatched area which includes elements (13, 14, 19, 20). 

Case of One Damaged Element 

For the case where element 14 is damaged, from the flexibility matrices with 

respect to the 10 sensor locations for both the reference and the damaged states, δF is 

computed and plotted in Fig. 2.11, where the maximum at a sensor location can be 

identified by examining the values for all the nearest sensors that encircle this location. 

For example at node 6, one has to compare its value against those at nodes (5, 7, 13), 

where it is obvious that its value is less than the value at node 13. On the other hand 

for node 11, its value is the largest compared to the values at its surrounding sensor 

nodes (5, 9, 13). The same procedure also yields the value at node 10 as the other local 

maximum. Hence, there are 2 possible damaged regions as represented by the regions 

corresponding to the 2 local maxima at nodes (10, 11). In the second step, performing 

SVD on the change in the flexibility matrix, a set of 9 DLVs is computed. Applying 

these DLVs onto the reference structure as nodal force vectors, the 	CE of all elements 

can be computed and the set of PDE which comprises elements (12, 14) is identified as 
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shown in the upper portion of Table 2.9. Although the set of PDE comprises elements 

(12, 14), only element 14 falls within the possible damaged regions identified in the 

first step and is therefore taken as being damaged. 
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Fig. 2.11. Damage indices for 2-D warehouse structure (element 14 damaged) 

 

Table 2.9. Damage detection of 2-D warehouse structure: Two-stage analysis scheme 
Damaged 

regions at nodes
Sensors at nodes

Element 14 

damaged
10, 11

[4, 5, 6, 7, 8, 9, 

10, 11, 12, 13]
12 14

Elements 7 & 

14 damaged
8, 11

[4, 5, 6, 7, 8, 9, 

10, 11, 12, 13]
1 7 12 14

Element 14 

damaged
10, 11

[4, 5, 6, 7, 8, 9, 

10, 11, 12, 13]
4 14 16 17

Elements 7 & 

14 damaged
8, 11

[4, 5, 6, 7, 8, 9, 

10, 11, 12, 13]
1 4 7 12 14 15 16 17 18

Potential damaged elements

5
%

 n
o
is

e
n
o

is
e 

fr
ee

 

 

Case of Two Damaged Elements 
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Similarly, for the case where elements (7, 14) are damaged, from the identified 

flexibility matrices with respect to the 10 sensor locations, δF is computed and shown 

in Fig. 2.12. Following the same procedure with the case where element 14 is 

damaged, 2 local maxima are identified, indicating 2 possible damaged regions around 

nodes (8, 11). The DLV method is then applied on the flexibility matrices obtained, 

giving the set of PDE containing elements (1, 7, 12, 14) as shown in the upper portion 

of Table 2.9. Element 7 is associated with the sensor at node 8 and element 14 is 

associated with the sensor at node 11 whereas elements (1, 12) are not associated with 

the 2 probable damaged regions. Hence, the two-stage analysis is able to identify the 

correct damaged elements in an efficient manner.  
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Fig. 2.12. Damage indices for 2-D warehouse structure (elements 7 & 14 damaged) 
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Case of Three Damaged Elements 

The methodology is applicable for more than 2 damaged elements.  The case 

where elements 7, 14 and 21 are damaged is illustrated. The computed δF values are 

plotted in Fig. 2.13 where 3 local maxima are observed at sensor nodes 8, 11 and 12. 

Applying the DLV method identifies correctly the 3 damaged elements. 
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Fig. 2.13. Damage indices for 2-D warehouse structure (elements 7, 14 & 21 damaged) 

 

Case of adjacent members damaged 

Since damage is reflected by the local maxima in the two-stage analysis scheme, 

it may be suspected that the presence of two or more adjacent damaged elements may 

not be detected. In order to investigate this allegation, two cases of adjacent damaged 

elements will be investigated, namely (1) elements (14, 20) damaged; and (2) elements 

(12, 13, 19) damaged. For consistency with the previous cases, damage in element 14 
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is simulated by reducing 20% its axial stiffness (EA) all along the length of the element 

whereas damage in elements 12, 13, 19 and 20 is simulated by reducing 20% of their 

flexural stiffnesses (EI) within the whole length of the elements. 

For case (1) where elements (14, 20) are damaged, from the flexibility matrices 

with respect to the 10 sensor locations for both the reference and the damaged states, 

δF is computed and plotted in Fig. 2.14 where a local maximum at node 11 is 

observed. Performing the DLV method in the second step of the two-stage analysis 

scheme gives elements (2, 14, 20) as the set of PDE which is shown in the upper 

portion of Table 2.10. However, only elements (14, 20) are classified as damaged since 

they fall within the identified damaged region is the first step.  Similarly, the adjacent 

damaged elements in case (2) can also be identified correctly using the two-stage 

analysis scheme as results shown in Fig. 2.15 and the lower portion of Table 2.10. 
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Fig. 2.14. Damage indices for 2-D warehouse structure (elements 14 & 20 damaged) 
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Fig. 2.15 Damage indices for 2-D warehouse structure (elements 12, 13&19 damaged) 

 

Table 2.10. Damage detection of 2-D warehouse structure: Two-stage analysis scheme 

Damaged regions 

at nodes
Sensors at nodes

Elements (14, 20) 

damaged
11

[4, 5, 6, 7, 8, 9, 

10, 11, 12, 13]
2 14 20

Elements (12, 13, 

19) damaged
4, 10, 11

[4, 5, 6, 7, 8, 9, 

10, 11, 12, 13]
12 13 19

Potential damaged elements

 

 

Damage Identification with 	oisy Data 

The above analysis assumes that the data captured is free of noise. In the case of 

noisy data, the threshold below which damaged regions may be wrongly identified has 

to be set, and the maximum error beyond which the DLV method is no longer robust 

needs to be estimated. For the case where element 14 is damaged with 20% reduction 

in axial stiffness, the simulated displacements at the 10 sensor locations are 

contaminated with zero-mean white noise for both the reference and the damaged 
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states.  The procedure presented in Section 2.8 is performed to estimate α, from which 

the change in displacement matrix is computed and the set of DLVs identified. 

Different cases of RMS value of the noise are studied, from 1% to 30% at intervals of 

0.5%. Applying the DLVs onto the reference structural model as nodal force vectors, 

the 	CE of all elements are computed and the set of PDE identified. It is observed that 

when the error exceeds 8.5%, element 14 is excluded from the set of PDE, leading to 

erroneous conclusion. Performing the same procedure for the single damaged element 

cases (each prescribed with 20% reduction in axial stiffness or flexural stiffness 

corresponding to truss or frame element to simulate damage) for all elements of the 2-

D warehouse structure, the results in Fig. 2.16 indicate a threshold of 8.5% for reliable 

detection. 
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Fig. 2.16. Thresholds for error in flexibility matrix below which the DLV method can 

accommodate for various single damaged elements (2-D warehouse structure) 

 

For the case where the structure is healthy, adding zero-mean white noise with 

RMS equal to 8.5% of the RMS of the flexibility matrices at both the reference and the 

damaged states to simulate contaminated flexibility matrices, non-zero entries in δF 
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can be computed and the maximum is recorded. The procedure is repeated 30 times 

and the mean maximum value of 0.023 is observed with standard deviation of 0.017. 

Hence, if a local maximum of δF is greater than 0.023 (or 0.006 if one standard 

deviation below the mean is advocated instead), then one may suspect that there is 

damage within the region associated with this local maximum.  

To investigate the feasibility of the two-stage analysis under noisy data, zero-

mean white noise with RMS equal to 5% of the RMS of the simulated displacements is 

added to all simulated displacements to generate contaminated data. The procedure 

presented in Section 2.8 is used to identify α. By setting Pd = 1, the flexibility matrices 

at the reference and the damaged states can be computed using Eqs. (2.38), (2.39) and 

(2.42). For the case where element 14 is damaged, the values of δF are computed and 

plotted in Fig. 2.17. The same 2 possible damaged regions are identified, namely 

corresponding to the sensors at nodes (10, 11), which agree with the case without noise 

in Fig. 2.11. With noise, the local maximum at node 11 becomes less distinctive. From 

the identified flexibility matrices at the reference and the damaged states, the DLV 

method is applied, giving a set of PDE which comprises elements (4, 14, 16, 17) as 

shown in the lower portion of Table 2.9. Of the 4 elements identified in the set of PDE, 

only element 14 falls within the probable damaged regions identified in the previous 

step and is therefore classified as damaged. Comparing with the results where there is 

no noise, the set of PDE is larger. If the noise level added is 10% instead of 5%, the 2 

damaged regions identified will be those corresponding to nodes (9, 10) instead of 

nodes (10, 11). Applying the DLV method in the second step yields incorrect results. 

Hence, it is essential to establish the tolerable noise level associated with the damage 

identification method used.  
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Fig. 2.17. Damage indices for 2-D warehouse structure (element 14 damaged, 5% 

noise) 

 

For the case where elements (7, 14) are damaged and 5% noise is added, the 

same 2 local maxima at nodes (8, 11) are identified with node 11 being less distinctive 

than that for the case without noise, as shown in Fig. 2.18. Based on the contaminated 

flexibility matrices, the DLV method produces 9 PDE, namely (1, 4, 7, 12, 14, 15, 16, 

17, 18) as shown in the lower portion of Table 2.9. The size of PDE set has increased 

from 4 for the case without noise to 9. Nevertheless, intersecting the set of PDE with 

the elements in the identified damaged regions gives elements (7, 14) as damaged. If 

the noise level is increased to 10% (beyond the 8.5% robustness limit discussed 

earlier), node 11 is no longer classified as associated with a damaged region, leading to 

inaccurate damage detection results. 
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Fig. 2.18. Damage indices for 2-D warehouse structure (elements 7 & 14 damaged, 5% 

noise) 

 

iii) Assessing damage severity 

After the damaged elements are identified, the damage severity can be assessed 

using the procedure presented in Section 2.7. For the case where element 14 is 

damaged, only one variable needs to be estimated, that is the axial stiffness of element 

14. Starting from the axial stiffness of element 14 at the reference state (EA)14 = 4.26 × 

10
7
 (N), the algorithm needed 5 iterations before Eq. (2.37) is satisfied with Tol = 10

-2
 

as shown in Fig. 2.19a. The identified stiffness of element 14 is (EA)14 = 3.46 × 10
7
 

(N) compared to the exact value of 3.44 × 10
7
 (N), which is less than 1% difference. In 

this case, the second equation of Eq. (2.37) governs. If the algorithm is continued, the 

variable monotonically approaches the exact value though the relationship between the 

number of iterations and the identified error is not linear. For example, at iteration 12
th

, 

the difference between the identified and the exact axial stiffness of element 14 is 

0.21%; that is, (EA)14 = 3.45 × 10
7
 (N).  
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Fig. 2.19. Relationship between estimated element stiffnesses and number of 

iterations: (a) element 14 damaged; and (b) elements 7 & 14 damaged 

 

For the case where elements (7, 14) are damaged, the unknowns to be estimated 

include the flexural stiffness of element 7 and the axial stiffness of element 14. 

Applying the procedure presented in Section 2.7 with the values of the stiffnesses of 

the damaged elements at the reference state as initial guess, the results obtained are 

plotted in Fig. 2.19b. If the tolerance of 10
-2

 is used to stop the iteration in Eq. (2.37), 6 

iterations are required. The identified stiffnesses of elements (7, 14) are (EI)14 = 6.12 × 

10
7
 (Nm

2
) and (EA)14 = 3.46 × 10

7
 (N) compared to the exact values of 3.44 × 10

7
 (N) 

and 6.07 × 10
7
 (Nm

2
), respectively, resulting in less than 1% difference. If the 

algorithm is continued, the stiffnesses of the damaged element approach the exact 

values monotonically, illustrating the stability of the procedure.  

The feasibility of the procedure is confirmed for the case where simulated 

displacements are contaminated with 5% noise based on the results shown in Fig. 2.20. 

With noise, it took the procedure more iterations to achieve the same pre-defined 

threshold value of 10
-2

 in Eq. (2.37). For example, for the case where element 14 is 
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damaged, 15 iterations are required whereas 13 iterations are required for the case 

where elements (7, 14) are damaged. Nevertheless, the procedure still provides 

reasonable results with the stiffnesses of the damaged elements monotonically 

approaching the exact values.  
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Fig. 2.20. Relationship between estimated element stiffnesses and number of iterations 

with 5% noise: (a) element 14 damaged; and (b) elements 7 & 14 damaged 

 

2.9.2 Experimental illustration 

The 3-D modular truss structure used in Section 2.6.2 is set up experimentally as 

shown in Fig. 2.21 to investigate the performance of the proposed methodologies. The 

geometries and mechanical properties of truss members are listed in Table 2.2. Two 

static loads are utilized to excite the truss at the reference (Fig. 2.21b) and the damaged 

(Fig. 2.21c) states. Thirteen 10 mm displacement transducers (model CDP) and a data 

logger (model TDS-303) are employed to monitor the vertical displacements of all 

nodes at the lower chords of the truss. Two cases of damage are investigated, namely 

(a) element 86 is damaged; and (b) elements (1, 86) are damaged. Damage is simulated 
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by changing the affected members from steel (EA = 4.26 × 10
7
 N) to aluminum (EA = 

4.51 × 10
6
 N) tubes (see Table 2.2 for the specifications of the tubes).  

 

 
Fig. 2.21. Experimental set-up: a) 3-D modular truss structure; b) static load at 

reference state; and c) static load at damaged state 

 

Shifting the static loads through all nodes at the lower chord of the truss, the 

displacements are measured and shown in Table 2. 11, based on which displacement 

matrices at the reference and the damaged states are formulated. Since the accuracy of 

the displacement transducer – data logger system is 10
-3

 mm, values in Table 2. 11 

have the accuracy of 10
-3

 mm. Besides, positive displacement is associated with 

downward displacement of a node. Under the application of the static load at some 

nodes, few nodes move upward, resulting in the presence of negative values in Table 2. 

11. Following the procedure presented in Section 2.8, α is estimated as 0.75. Applying 

SVD on U∆ which is computed using Eq. (2.44), the set of DLVs is identified.  
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Table 2. 11. Measured displacements for experimental truss (mm) 

2 3 4 5 6 7 8 9 11 12 13 14 15

2 2.061 0.637 -0.140 1.161 1.057 0.699 0.296 -0.044 0.409 0.370 0.660 0.743 0.349

3 0.637 1.062 0.637 0.458 0.651 0.743 0.651 0.458 0.418 0.629 0.719 0.629 0.418

4 -0.140 0.637 2.061 -0.044 0.296 0.699 1.057 1.161 0.349 0.743 0.660 0.370 0.409

5 1.161 0.458 -0.044 2.116 1.195 0.691 0.289 -0.109 0.872 0.997 0.849 0.663 0.400

6 1.057 0.651 0.296 1.195 1.733 1.095 0.691 0.289 1.060 1.475 1.423 1.085 0.646

7 0.699 0.743 0.699 0.691 1.095 1.673 1.095 0.691 0.883 1.423 1.681 1.423 0.883

8 0.296 0.651 1.057 0.289 0.691 1.095 1.733 1.195 0.646 1.085 1.423 1.475 1.060

9 -0.044 0.458 1.161 -0.109 0.289 0.691 1.195 2.116 0.400 0.663 0.849 0.997 0.872

10 0.409 0.418 0.349 0.872 1.060 0.883 0.646 0.400 2.659 1.799 1.332 0.906 0.484

12 0.370 0.629 0.743 0.997 1.475 1.423 1.085 0.663 1.799 3.553 2.216 1.389 0.906

13 0.660 0.719 0.660 0.849 1.423 1.681 1.423 0.849 1.332 2.216 3.551 2.216 1.332

14 0.743 0.629 0.370 0.663 1.085 1.423 1.475 0.997 0.906 1.389 2.216 3.553 1.799

15 0.349 0.418 0.409 0.400 0.646 0.883 1.060 0.872 0.484 0.906 1.332 1.799 2.659

2 2.781 0.892 -0.154 1.557 1.481 1.055 0.466 -0.049 0.605 0.607 1.086 1.105 0.524

3 0.892 1.472 0.892 0.623 0.962 1.152 0.962 0.623 0.634 0.988 1.228 0.988 0.634

4 -0.154 0.892 2.781 -0.049 0.466 1.055 1.481 1.557 0.524 1.105 1.086 0.607 0.605

5 1.557 0.623 -0.049 2.824 1.614 0.957 0.407 -0.142 1.180 1.363 1.192 0.917 0.550

6 1.481 0.962 0.466 1.614 2.468 1.729 1.079 0.407 1.542 2.215 2.347 1.696 0.989

7 1.055 1.152 1.055 0.957 1.729 2.691 1.729 0.957 1.398 2.322 3.010 2.322 1.398

8 0.466 0.962 1.481 0.407 1.079 1.729 2.468 1.614 0.989 1.696 2.347 2.215 1.542

9 -0.049 0.623 1.557 -0.142 0.407 0.957 1.614 2.824 0.550 0.917 1.192 1.363 1.180

10 0.605 0.634 0.524 1.180 1.542 1.398 0.989 0.550 3.651 2.602 2.143 1.411 0.750

12 0.607 0.988 1.105 1.363 2.215 2.322 1.696 0.917 2.602 5.130 3.664 2.245 1.411

13 1.086 1.228 1.086 1.192 2.347 3.010 2.347 1.192 2.143 3.664 6.016 3.664 2.143

14 1.105 0.988 0.607 0.917 1.696 2.322 2.215 1.363 1.411 2.245 3.664 5.130 2.602

15 0.524 0.634 0.605 0.550 0.989 1.398 1.542 1.180 0.750 1.411 2.143 2.602 3.651

2 2.781 0.893 -0.152 1.554 1.480 1.055 0.467 -0.048 0.602 0.603 1.086 1.104 0.523

3 0.893 1.474 0.896 0.615 0.958 1.152 0.964 0.625 0.627 0.977 1.228 0.985 0.633

4 -0.152 0.896 2.787 -0.063 0.459 1.054 1.484 1.562 0.512 1.086 1.087 0.603 0.603

5 1.554 0.615 -0.063 2.853 1.629 0.958 0.401 -0.152 1.204 1.402 1.190 0.927 0.554

6 1.480 0.958 0.459 1.629 2.476 1.730 1.076 0.401 1.555 2.235 2.346 1.701 0.992

7 1.055 1.152 1.054 0.958 1.730 2.691 1.729 0.957 1.399 2.323 3.010 2.322 1.398

8 0.467 0.964 1.484 0.401 1.076 1.729 2.469 1.616 0.985 1.689 2.347 2.213 1.541

9 -0.048 0.625 1.562 -0.152 0.401 0.957 1.616 2.827 0.542 0.904 1.193 1.360 1.179

10 0.602 0.627 0.512 1.204 1.555 1.399 0.985 0.542 3.671 2.635 2.142 1.419 0.754

12 0.603 0.977 1.086 1.402 2.235 2.323 1.689 0.904 2.635 5.183 3.662 2.258 1.417

13 1.086 1.228 1.087 1.190 2.346 3.010 2.347 1.193 2.142 3.662 6.016 3.663 2.143

14 1.104 0.985 0.603 0.927 1.701 2.322 2.213 1.360 1.419 2.258 3.663 5.133 2.603

15 0.523 0.633 0.603 0.554 0.992 1.398 1.541 1.179 0.754 1.417 2.143 2.603 3.651

D
is

p
la

ce
m

en
t 

tr
an

sd
u
ce

rs
 a

t 
n
o
d
es

Reference structure

Static load at node

Damaged structure (element 86 damaged)

Damaged structure (elements 1 & 86 damaged)

D
is

p
la

ce
m

en
t 

tr
an

sd
u
ce

rs
 a

t 
n
o
d
es

D
is

p
la

ce
m

en
t 

tr
an

sd
u
ce

rs
 a

t 
n
o
d
es

 

 

i) Intersection scheme to identify actual damaged elements 

Using 13 sensors 

For the case where element 86 is damaged, applying the set of DLVs onto the 

reference structural model as nodal force vectors at sensor locations, the 	CE of all 
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elements are computed and the set of PDE which comprises elements (4, 9, 56, 86) is 

identified. The current IDS therefore contains elements (4, 9, 56, 86) and ne = 4. By 

omitting the readings of the sensor at node 15 which is far away from the members of 

the current IDS set, the readings of the remaining 12 sensors are used to formulate the 

displacement matrices at the reference and the damaged structures. Performing SVD on 

U∆, a set of DLVs is identified and when applying onto the reference structural model 

as nodal force vectors yields a set of PDE comprising elements (20, 55, 73, 75, 81, 86). 

Intersecting the set of PDE and the current IDS which contains elements (4, 9, 56, 86) 

gives the new IDS with element 86 as the only member (ne = 1). Similarly, by omitting 

the readings of the sensor at node 9 which is far away from the members of the current 

IDS set instead of the sensor at node 15, another set of PDE comprising elements (41, 

45, 86) is identified. Intersecting the set of PDE and the current IDS which contains 

element 86 only gives element 86 as the new IDS (ne = 1). Since the IDS for 2 

consecutive steps are identical, the iteration is terminated, confirming that the actual 

damage is in element 86. The procedure is summarized in the upper portion of Table 

2.12. Similarly, for the case where elements (1, 86) are damaged, the feasibility of the 

intersection scheme is illustrated by the results summarized in the lower portion of 

Table 2.12.  
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Table 2.12. Damage detection of experimental truss structure - Intersection scheme (13 

sensors used) 
Set 

No.

Set of sensors includes 

sensors at nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

1 ns =13
[2,3,4,5,6,7,8,9,11, 

12,13,14,15]
10 [4,9,56,86] [4,9, 56,86] 4

2 i =1
[2,3,4,5,6,7,8,9,11, 

12,13,14]
9

[20,55,73,75, 

81,86]
4,9,56 [86] 1

3 i =2
[2,3,4,5,6,7,8,11, 

12,13,14,15]
9 [41,45,86] [86] 1

1 ns =13
[2,3,4,5,6,7,8,9,11, 

12,13,14,15]
9 [1,56,61,70]

[1,56,61, 

70,86]
5

2 i =1
[2,3,4,5,6,7,8,9,11, 

12,13,14]
8

[1,20,44,55, 

58,86]
56,61 [1,86] 2

3 i =2
[2,3,4,5,6,7,8,11, 

12,13,14,15]
8 [1,21,70,86] [1,86] 2
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Using 7 sensors 

If only 7 displacement transducers are available and are placed at nodes (3, 6, 7, 

8, 12, 13, 14) (see Fig. 2.8c), the intersection scheme is still applicable. For the case 

where element 86 is damaged, from measured displacements by the 7 sensors, the 

procedure presented in Section 2.8 is employed to estimate α = 0.75. Performing SVD 

on U∆, which is computed using Eq. (2.44), the set of DLVs is identified. By applying 

these DLVs onto the reference structural model as nodal force vectors at the sensor 

locations, the 	CE of all elements are computed and the set of PDE which comprises 

elements (16, 20, 37, 42, 50, 86) is identified. The current IDS therefore contains 

elements (16, 20, 37, 42, 50, 86) and ne = 6. By omitting readings of the sensor at node 

8 which is far away from the members of the current IDS, the readings of the 

remaining 6 sensors are used to compute U∆ in Eq. (2.44). Performing SVD on U∆, a 

set of DLVs is identified and applied onto the reference structure yields elements (17, 

19, 20, 21, 22, 27, 29, 86) as the set of PDE. Intersecting the PDE with the current IDS 

which includes elements (16, 20, 37, 42, 50, 86) produces elements (20, 86) as the new 

IDS (ne = 2). Similarly, by omitting the readings of sensor at node 6, which is far away 
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from elements (20, 86) in the current IDS, instead of the sensor at node 8, another set 

of PDE comprising elements (16, 17, 31, 86) is identified. Taking the intersection 

between the set of PDE and the current IDS which comprises elements (20, 86) gives 

the new IDS with element 86 as the only member (ne = 1). By omitting the readings of 

the sensor at node 3, which is far away from element 86 of the current IDS set, instead 

of the sensor at node 6, another set of PDE which comprises elements (21, 77, 86) is 

identified. Intersecting the PDE with the current IDS which comprises element 86 

produces element 86 as the new IDS (ne = 1). Since the IDS for 2 consecutive steps are 

identical, the iteration is taken as completed, identifying correctly element 86 as being 

damaged. The whole procedure is summarized in the upper portion of Table 2.13. 

Similarly for the case where elements (1, 86) are damaged and 7 sensors are used, the 

feasibility of the intersection scheme is reinforced by the results summarized in the 

lower portion of Table 2.13. It is observed that with fewer sensors used, more 

combinations of sensors are required before the damaged elements can be identified 

following the intersection scheme. 

 

Table 2.13. Damage detection of experimental truss - Intersection scheme (7 sensors 

used) 
Set 

No.

Set of sensors includes 

sensors at nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

1 ns =7 [3,6,7,8,12,13,14] 4
[16,20,37, 

42,50,86]

[16,20,37, 

42,50,86
4

2 i =1 [3,6,7,12,13,14] 3
[17,19,20,21, 

22,27,29,86]
16,37,42,50 [20,86] 2

3 i =2 [3,7,8,12,13,14] 3 [16,17,31,86] 20 [86] 1

4 i =3 [6,7,8,12,13,14] 3 [21,77,86] [86] 1

1 ns =7 [3,6,7,8,12,13,14] 4
[1,16,20, 66, 

77,86]

[1,16,20, 

66,77,86]
7

2 i =1 [3,6,7,12,13,14] 3
[1,16,17,59, 

60,84,86]
20,66,77 [1,16,86] 3

3 i =2 [3,7,8,12,13,14] 3
[1,18,19,20,  

53,82,86]
16 [1,86] 2

4 i =3 [6,7,8,12,13,14] 3 [1,20,37,86] [1,86] 2
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 ii) Two-stage analysis to identify actual damaged elements 

To mitigate the combining sensors process in the intersection scheme which is 

especially formidable for the cases where the number of sensors is small compared to 

the structural DOF, the two-stage analysis can be employed. Performance of the two-

stage analysis with measured displacement data is investigated in this section for two 

cases, namely 13 and 7 sensors are used. 

Similar to the numerical example, by setting Pd = 1, one obtains Pu = 0.75. The 

flexibility matrices at the reference and the damaged structures can be computed using 

Eqs. (2.38) - (2.39). 

Using 13 Sensors with Element 86 Damaged 

For case (a) where element 86 is damaged, δF is computed and plotted in Fig. 

2.22. It can be observed that the value at node 13 is the maximum compared to those at 

nodes (7, 12, 14), indicating the possibility of damage in the region defined by the 

sensor at node 13. Applying the DLV procedure, the set of PDE identified contains 4 

elements (4, 9, 56, 86) as shown in the upper portion of Table 2.14. Since only element 

86 is associated with the identified possible damaged region, it is assessed as damaged.  

 
Fig. 2.22. Damage indices for 3-D modular truss structure (element 86 damaged, 13 

sensors used) 
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Table 2.14. Damage detection of experimental truss: Two-stage analysis scheme 
Damaged 

regions at 

nodes

Sensors at nodes

Element 86 

damaged
13

[2, 3, 4, 5, 6, 7, 8, 9, 

11, 12, 13, 14, 15]
4 9 56 86

Elements 1 & 

86 damaged
2, 13

[2, 3, 4, 5, 6, 7, 8, 9, 

11, 12, 13, 14, 15]
1 12 22 27 86

Element 86 

damaged
13 [3, 6, 7, 8, 12, 13, 14] 16 20 37 42 50 86

Elements 1 & 

86 damaged
3, 13 [3, 6, 7, 8, 12, 13, 14] 1 16 20 66 77 86

Potential damaged elements

1
3
 s
e
n
s
o
rs
 u
s
e
d

7
 s
e
n
s
o
rs
 u
s
e
d

 

 

Using 13 Sensors with Elements (1, 86) Damaged 

Similarly for case (b) where elements (1, 86) are damaged, the values of δF are 

plotted in Fig. 2.23, which shows 2 local maxima at entries corresponding to sensors at 

nodes (2, 13), indicating 2 possible damaged regions. Performing the DLV method in 

the second stage analysis yields elements (1, 12, 22, 27, 48, 78, 86) in the identified set 

of PDE as shown in the upper portion of Table 2.14. However, only elements (1, 86) 

are classified as being damaged since they fall within the damaged regions identified in 

the first stage, which matches the actual situation.  
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Fig. 2.23. Damage indices for 3-D modular truss structure (elements 1 & 86 damaged, 

13 sensors used) 

 

Using 7 Sensors with Element 86 Damaged 

If only 7 displacement transducers are available and are placed at nodes (3, 6, 7, 

8, 12, 13, 14) (see Fig. 2.8c), the two-stage analysis scheme still works. For the case 

where element 86 is damaged, the values of δF are plotted in Fig. 2.24, where the 

region associated with sensor at node 13 is identified as possibly damaged. Employing 

the DLV method in the second stage analysis, the set of PDE comprising elements (16, 

20, 37, 42, 56, 86) is obtained as shown in the lower portion of Table 2.14. Of the 6 

elements identified, only element 86 is associated with the posible damaged region and 

hence classified as being damaged. Although the number of elements in the PDE 

increases with fewer sensors used, the method is still able to identify the damaged 

element correctly.  
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Fig. 2.24. Damage indices for 3-D modular truss structure (element 86 damaged, 7 

sensors used) 

 

Using 7 Sensors with Elements (1, 86) Damaged 

Similarly, for the case where elements (1, 86) are damaged, results plotted in Fig. 

2.25 show that the regions defined by the sensors at nodes (3, 13) are potentially 

damaged. The DLV analysis yields a set of PDE comprising elements (1, 16, 20, 66, 

77, 86) as shown in the lower portion of Table 2.14. However, only elements (1, 86) 

fall within the identified damaged regions and are hence classified as being damaged. 

Again, the size of PDE set increases as the number of sensors used decreases, while 

the method still yields reliable results.  
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Fig. 2.25. Damage indices for 3-D modular truss structure (elements 1 & 86 damaged, 

7 sensors used) 

 

iii) Assess damage severity 

For the case where element 86 is damaged, following the procedure presented in 

Section 2.7 using the axial stiffness of element 86 at the reference state as the initial 

guess, the computation results are summarized in Fig. 2.26a. It took the algorithm 9 

iterations before Eq. (2.37) is satisfied with Tol = 10
-2

. The identified axial stiffness of 

element 86 is (EA)86 = 4.57×10
6
 (N) compared to the exact values of 4.51×10

6
 (N), 

which is less than 2% difference. Similarly, the feasibility of the procedure is 

confirmed for the case where elements (1, 86) are damaged based on the results 

presented in Fig. 2.26b. 
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Fig. 2.26. Relationship between identified element stiffnesses and number of iterations 

for experimental truss: (a) element 86 damaged; and (b) elements 1 & 86 damaged 

 

To assess the effect of integrating over element length on the sensitivity of the 

damage indicator presented in Section 2.4, the 	CE of each element is compared with 

itself normalized by element length (denoted as 	CE1) for the case where element 86 

is damaged. Results in Fig. 2.27 show that both damage indicators, 	CE and 	CE1, 

provide the same set of PDE which comprises elements (4, 9, 56, 86) although 	CE1 

is a little more sensitive. This added sensitivity is not worth the increment in the 

computational process and is therefore not integrated in the DLV method. 
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Fig. 2.27. Comparison between 	CE and 	CE normalized over element length (	CE1) 

for experimental truss (13 sensors used) 
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2.10 CO�CLUDI�G REMARKS 

The basic concept of the DLV method is introduced and its physical insight is 

discussed based on which enhancements have been made. Firstly, the 	CE of each 

element is proposed as damage indicator after the DLV set is applied onto the reference 

structural model as nodal force vectors instead of the 	CS used in the original DLV 

method. The 	CE indicator extends the application of the DLV method to structures 

comprising elements with multi-stress state and varied cross-sectional areas along 

element lengths. Secondly, the sign of the maximum absolute value of the relative 

change in flexibility matrix is proposed as indicator to differentiate damaged and 

strengthened structures since the DLV method can only identify a set of potentially 

altered elements. Thirdly, two schemes are introduced to identify the actual damaged 

elements from the larger set of PDE which comprises both actual damaged and some 

undamaged elements due to imperfect measurements, namely the intersection scheme 

and the two-stage analysis. The former makes use of the intersection of different sets 

of PDE obtained by performing the DLV method for different combinations of 

measurements. The latter identifies the probable damaged regions first using the 

change in flexibility matrix. Then, the DLV analysis is employed to identify actual 

damaged elements in the damaged regions. Fourthly, a simple algorithm to estimate 

the severity of the damaged elements is proposed by adopting the penalty function 

method in an iterative scheme. The discrepancy between flexibility matrices is used to 

achieve this objective. Fifthly, an algorithm is proposed to detect structural damage 

using the DLV method with unknown static load. Essential to the algorithm is the 

determination of a constant α which relates the magnitudes of the static loads at the 

reference and the damaged states. Upon estimating α, the set of DLVs can be computed 

and the DLV analysis can be employed to interrogate structural damage.  
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Performance of the 	CE-based DLV method is investigated numerically using a 

2-D warehouse structure, which comprises frame and truss type elements with both 

constant and varied cross-sectional areas, for the case where the static loads at the 

reference and the damaged states are different and unknown. With 10 displacement 

sensors used and 5% noise, the intersection scheme can provide reliable results within 

3 combinations of sensors whereas damage severity of the damaged elements can be 

estimated with approximately 1% error within about 10 iterations. In an experiment of 

a 3-D modular truss structure, the intersection scheme can also identify the damaged 

elements correctly with 7 displacement transducers used and unknown static load. The 

number of combinations of sensors increases from 3 for the case where 13 sensors are 

used to 4 for the case where 7 sensors are used. Nevertheless, the damaged elements 

can still be identified correctly. The two-stage analysis can also identify the damaged 

elements correctly with 7 sensors used and unknown static load. Damage severity of 

the damaged elements can be achieved within 2% error in 15 iterations, illustrating the 

efficiency of the proposed damage severity assessment algorithm. 
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CHAPTER 3 

DAMAGE DETECTIO� VIA DLV  

A�D DY�AMIC RESPO�SES 

 

3.1 I�TRODUCTIO� 

Although methods based on static responses to detect structural damage are 

simple conceptually, they are used comparatively less often in practical application. It 

may be attributed to (1) the requirement of a stiff or fixed reference frame on which 

displacement transducers can be mounted to measure displacement responses; (2) the 

requirement of a large applied static load to actuate existing structures since their 

stiffnesses are usually high; (3) the shifting of heavy static load from one position to 

another to generate enough readings for the methods to work is time consuming and 

sometimes introduces uncertainties; and (4) the high sensitivity of the methods to the 

presence of noise and uncertainties. On the other hand, with the rapid advancement in 

hardware technology, data storage and computational time are not the major obstacles 

to prevent the privilege of methods based on dynamic responses to detect structural 

damage.  

In this chapter, the DLV method is adapted to assess structural damage using 

dynamic responses for two cases, namely (1) when the excitation is known; and (2) 

when the excitation is unknown. The application of the DLV method hinges on the 

computation of the flexibility or stiffness matrix from the dynamic responses. If the 

excitations force are measured, meaning that input is known, Eigensystem Realization 

Algorithm (ERA) (Juang and Pappa, 1985; Pappa et al., 1993; Juang, 1994) can be 

employed in conjunction with an algorithm to estimate the flexibility coefficients from 

state space results (Bernal and Gunes, 2004) to compute the flexibility matrix with 
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reference to the sensor locations. The procedure is summarized in Section 3.2. If the 

excitations forces are not measured, Section 3.3 presents an algorithm to estimate the 

stiffness matrix from acceleration responses. Upon obtaining the flexibility or stiffness 

matrix, the DLV method and the enhancements introduced in Chapter 2 can be utilized 

to assess structural damage.   

As the number and locations of sensors play an important role in improving the 

accuracy of damage detection results, an algorithm is proposed in Section 3.4 to (a) 

identify the optimal locations to place the available sensors; and (b) identify the 

minimum number of sensors which is required to obtain reliable damage detection 

results by the DLV method. 

 

3.2 FORMULATI�G FLEXIBILITY MATRIX WITH K�OW� EXCITATIO� 

3.2.1 Eigensystem realization algorithm 

Ho and Kalman (1965) may be the first researchers who introduced the principle 

of minimum realization theory which is the originality of the state space realization. 

The methodology has been substantially extended to identify modal parameters from 

noisy measurements and is called the Eigensystem Realization Algorithm (ERA). In 

this section, the well-known ERA algorithm is used to identify the second order modal 

model of a system from dynamic responses. Detail derivation of the ERA algorithm 

can be found in Juang and Pappa (1985) and Juang (1994). The key points of ERA 

algorithm which are used to derive the state space realization matrices from dynamic 

responses of a structure are summarized to facilitate the formulation of the flexibility 

matrix in the next section.  

For an n-DOF structure with r input excitation points, the equation of motion is 

represented by 
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d+ + =M d D d K d fɺɺ ɺ           (3.1) 

where M, Dd, K are the (n × n) mass, damping and stiffness matrices, respectively; 

,d dɺɺ ɺ  and d the (n × 1) acceleration, velocity and displacement vectors, respectively; 

and 2=f B u  the (n × 1) forcing vector in which u is the (r × 1) applied load vector and 

B2 the (n × r) input influence matrix characterizing the locations of inputs. 

In the continuous-time state-space model, Eq. (3.1) can be cast with the state 

vector x as the primary variable as (Juang and Pappa, 1985; Juang, 1994)  

 
c c= +x A x B uɺ  (3.2) 

where 
1 1 1

2

, ,c c

d

− − −

     
= = =     − −    

0 I 0 d
A B x

M K M D M B dɺ
            (3.3) 

Ac is the (2n × 2n) state matrix; Bc the (2n × r) input influence matrix; x the (2n × 1) 

state vector; and subscript c stands for continuous model. The output vector y for the 

case of ns output points can be written as (Juang and Pappa, 1985; Juang, 1994) 

    a v d= + + = +y C d C d C q Cx Duɺɺ ɺ            (3.4) 

where 1 1

d a v a d

− − = − − C C C M K C C M D  and 1

2a

−=D C M B ; Ca, Cv, Cd the (ns × 

n) output influence matrices for acceleration, velocity and displacement, respectively; 

C the (ns × 2n) output influence matrix for the state vector x; and D the (ns × r) direct 

transmission matrix (D will disappear if accelerations are not used as output 

measurements). The presence of D makes physical sense since a step changes in the 

input u will produce a step change in the acceleration of output vector y (Juang and 

Pappa, 1985; Juang, 1994).  

Equations (3.2) and (3.4) form the continuous-time state-space model of order 2n 

of the dynamic system (Juang and Pappa, 1985; Juang, 1994); that is 
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c c


= +

x = A x + B u

y Cx Du

ɺ
 (3.5) 

The discrete-time state space model for the system can be written as (Juang, 1994) 

( 1) ( ) ( )

( ) ( ) ( )

k k k

k k k

+ = +


= +

x A x Bu

y Cx Du
    (3.6) 

where 
0

;c c
t

t

c
e e d

τ τ
∆∆= = ×∫A A

A B B        (3.7) 

and the matrices A and B in Eq. (3.6), which have the same sizes with their counter 

parts in the continuous time state defined in Eq. (3.5), describe the input-output 

relationship through a discrete-time state vector x(k). Given a vector of discrete input 

u, the output measurement y can be obtained through Eq. (3.6). 

Juang and Pappa (1985) and Juang (1994) proposed an algorithm to calculate the 

realization matrices Ac, Bc and C from r input and ns output vectors, denoted as the 

ERA algorithm. The four major steps of the ERA algorithm are summarized next. 

Step 1: Compute the Markov Parameters 

To estimate the Markov parameters, the Fast Fourier Transform (FFT) can be 

employed on the input/output measurements to compute the Frequency Response 

Fuctions (FRFs) which are then used in the Inverse Discrete Fourier Transform (IDFT) 

to compute the sampled pulse response history. An alternative to the computation of 

the Markov parameters in frequency domain is the computation of the Markov 

parameters in time domain which is employed in the ERA algorithm (Juang and Pappa, 

1985; Juang, 1994). 

From the measured input and output signals, the Markov parameters can be 

calculated in either a direct or an indirect manner (Juang and Pappa, 1985; Juang, 

1994). In the direct approach, from the input and output measurements, the input 

matrix and output vector are formulated as 
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(0) (1) (4) ( 1)

0 (0) (3) ( 2)

0 0 (2) ( 3)

0 0 0 0 (0)
rξ ξ

ξ
ξ
ξ

×

− 
 − 
 = −
 
 
  

u u u u

u u u

U u u

u

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋱ ⋯

⋯

  (3.8) 

[ ](0) (1) (4) ( 1) ns ξξ ×= −y y y y y⋯ ⋯   (3.9) 

where ξ is the number of observation points per sensor (that is, points along the time 

axis); ns the number of output measurements; and r the number of inputs. Re-writing 

Eq. (3.6) in a matrix form using the expressions in Eqs. (3.8)-(3.9) gives 

     
( ) ( ) ( )

.
ns r rns ξ ξ ξξ × ××

=y Y U       (3.10) 

Equation (3.10) expresses the relationship between the input and output time history 

through Markov parameters (Y). The Markov parameters can then be retrieved as a 

least squares solution of Eq. (3.10) as (Juang and Pappa, 1985; Juang, 1994) 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )
( )

†. 0 1 2 1
ns r rns ns r ns r ns r ns r

ξ ξ ξξ
ξ

× ×× × × × ×

 
= = − 

  
Y y U Y Y Y Y⋯  (3.11) 

where the superscript “
†
” denotes pseudo-inversion. 

 Juang and Pappa (1985) pointed out that the drawback of the direct approach lies 

on the pseudo-inversion of the input matrix U which is usually ill-conditioned if the 

input signals are not rich in frequencies such as the case of sinusoid excitations. 

Furthermore, if ξ is too large as usually encountered for lightly damped system, the 

input matrix U also becomes ill-conditioned. To overcome this limitation, an observer 

matrix is introduced to Eq. (3.6) to form a stable discrete state-space model for the 

system to be identified (Juang and Pappa, 1985; Juang, 1994). 

In the indirect approach, a term G × y(k) is introduced to the right hand side of 

the first equation in Eq. (3.6) to yield (Juang and Pappa, 1985; Juang, 1994) 

( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( ) ( )1k k u k y k k k k k+ = + + − = + + + −x A B G Gy A GC x B GD u Gy  
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or     ( 1) ( ) ( )k k k+ = +x A x B v     (3.12) 

where , [ , ]= + = + −A A G C B B GD G , G the (2n × ns) arbitrary matrix chosen to 

make A  as stable as desired, and 

( )
( )

( )

k
k

k

 
=  

 

u
v

y
     (3.13) 

Mathematically, Eq. (3.12) is identical to the first equation of Eq. (3.6). 

However, the system matrices and the input vector in Eqs. (3.12) and (3.6) are 

different. Define 

[( ) ]

(0) (1) ( ) ( 1)

0 (0) ( 1) ( 2)

0 0 ( 2) ( 3)

0 0 0 (0) ( 1)
r ns p r

p

p

p

p
ξ

ξ
ξ
ξ

ξ
+ + ×

− 
 − − 
 = − −
 
 
 − − 

u u u u

v v v

V v v

v v

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋱ ⋯

⋯

 (3.14) 

where p is a sufficiently large number such that 0
k

≈A  for all time steps k p≥  which 

can be done since G can be arbitrarily chosen (Juang and Pappa, 1985; Juang, 1994). 

Equation (3.6) can be re-written as 

[( ) ] [( ) ]

( 1) ( ) ( )

ns r ns p r r ns p rns

k k k

ξξ × + + + + ××

 + = +

 = ×


x A x B v

y Y V
    (3.15) 

Equation (3.15) is an observer equation if the state x(k) is considered as an observer 

state vector and the parameters Y  of the system are therefore referred to as the 

observer Markov parameters (Juang and Pappa, 1985; Juang, 1994). The input-output 

description in matrix form becomes 

( ) ( [( ) ]) ([( ) ] )ns ns r ns p r r ns p rξ ξ
=

× × + + + + ×

y Y V
  (3.16) 

where [ ](0) (1) ( ) ( 1)p ξ= −y y y y y⋯ ⋯ , and 
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1

[ ... ]
p−

=Y D CB CAB CA B     (3.17) 

To solve for Y  uniquely and to minimize numerical error due to the 

computation of the pseudo-inversion, all rows of V must be linearly independent 

(Juang and Pappa, 1985; Juang, 1994). The least squares solution of Eq. (3.16) has the 

following form 

†
(0) (1) (2) ( )p = =  Y y V Y Y Y Y⋯    (3.18) 

where   (0) =Y D ; 
1

( )
k

k
−

=Y C A B ,…, 
1

( )
p

p
−

=Y C A B . 

Parameter k of the observer Markov parameter ( ( )kY ) can be partitioned as 

1 1 1( ) ( ) ( ) ( )
k k kk

− − − = = + + − + Y C A B C A GC B GD C A GC G   (3.19) 

(1) (2)

( ) ( ) ( )k k k = −  
Y Y Y  (k = 1, 2, …, p)  (3.20) 

The minus sign used for 
(2)

( )kY  in Eq. (3.20) is chosen such that 

(2) 1( ) ( )kk −= +Y C A GC G . It is observed that the first observer Markov parameter 

(0)Y  has a smaller size than the remaining observer Markov parameters. By induction, 

the relationship between the observer Markov parameters and the System Markov 

parameters can be obtained 

(0) (0)= =Y Y D       (3.21) 

(1) (2)

1

( ) ( ) ( ) ( )
k

i

k k k k i
=

 = − − ∑Y Y Y  Y  for k = 1, 2, …, p  (3.22) 

2

1

( ) ( ) )
p

i

k i k i
=

 = − − ∑Y Y  Y(  for k = p+1, p+2, …,  ∞  (3.23) 

Equation (3.23) implies that the system has only p independent system Markov 

parameters since Y(k) (k ≥ p+1) is a linear combination of its past p parameters, 

namely Yk-1, Yk-2, …, Yk-p.  
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 It is observed that the indirect approach can produce an observer with minimal 

residue in a least squares sense for a given input/output data measurements for the 

cases where measurements are contaminated with noise and uncertainties (Juang and 

Pappa, 1985; Juang, 1994). Hence, the indirect approach has two major advantages 

compared to the direct approach. Firstly, the number of independent Markov 

parameters is compressed by the introduction of an observer gain matrix G, resulting 

in a smaller size Hankel matrix (see next step) and enhancing the stability and reducing 

the amount of computation. Secondly, the increment in stability of the system by 

introducing an observer gain matrix allows the indirect approach to be applicable for 

the case of multiple input/output measurements to identify the system Markov 

parameters. In this study, the indirect approach is adopted to identify the system 

Markov parameters from the input/output measurements. 

Step 2: Form the Hankel Matrix 

Once the system Markov parameters Y is determined, the generalized Hankel 

matrix (of size α ns×β r) can be formed as follows (Juang and Pappa, 1985; Juang, 

1994) 

( ) ( 1) ( 2) ( 1)

( 1) ( 2) ( 3) ( )

( 1) ( 2) ( 3) ( 4) ( 1)

( 1) ( ) ( 1) ( 2)

k k k k

k k k k

k k k k k

k k k k

β
β

β

α α α α β

+ + + − 
 + + + + 
 − = + + + + +
 
 
 + − + + + + + − 

Y Y Y Y

Y Y Y Y

H Y Y Y Y

Y Y Y Y

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋱ ⋯

⋯

 (3.24) 

where α and β are chosen such that the rank of the Hankel matrix is not less than the 

order of the system (2n). Juang and Pappa (1985) suggested that α ≥ 2n, β ≥ 2n. The 

Hankel matrices for k = 1 and k = 2 are respectively  
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(1) (2) (3) ( )

(2) (3) (4) (1 )

(0) (3) (4) (5) (2 )

( ) ( 1) ( 2) ( 2)

β
β
β

α α α α β

 
 + 
 = +
 
 
 + + + − 

Y Y Y Y

Y Y Y Y

H Y Y Y Y

Y Y Y Y

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋱ ⋯

⋯

   (3.25) 

(2) (3) (4) ( 1)

(3) (4) (5) ( 2)

(1) (4) (5) (6) ( 3)

( 1) ( 2) ( 3) ( 1)

β
β
β

α α α α β

+ 
 + 
 = +
 
 
 + + + + − 

Y Y Y Y

Y Y Y Y

H Y Y Y Y

Y Y Y Y

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋱ ⋯

⋯

  (3.26) 

Note that Y(0) = D is not included in H(0), and if α ≥ 2n and β ≥ 2n, the matrix H(k-1) 

is of rank 2n.  

Step 3: Decompose the Hankel Matrix H(0) 

The ERA algorithm (Juang and Pappa, 1985; Juang, 1994) continues by 

factorizing the Hankel matrix H(0) using singular value decomposition, 

2 2 2(0)
SVD truncateT T

n n n→ →H U Σ V U Σ V    (3.27) 

where the columns of matrices U and V are orthonormal and ΣΣΣΣ is a matrix containing 

singular values 

2n 
=  

 

Σ 0
Σ

0 0
     (3.28) 

with 

1

2

2 1 2 2n

2

0

  in which  0

0

n

n

s

s
s s s

s

 
 
 = ≥ ≥ >
 
 
 

Σ ⋯
⋱

  (3.29) 

U2n and V2n are the orthonormal matrices formed by the first 2n columns of matrices U 

and V, respectively.  

Step 4: Construct the Realization Matrices 

The realization matrices can be estimated as follows (Juang and Pappa, 1985; 

Juang, 1994) 
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1/ 2 1/ 2 1/ 2 1/ 2

2 2 2 2 2 2 2 2
ˆ ˆˆ(1) ,  ,  T T T

n n n n n n r c ns n n

− −= = =A Σ U H V Σ B Σ V E C E U Σ   (3.30) 

where [ ] [ ] and  T T

ns ns ns ns ns r r r r rns ns rα β× ×
= =E I 0 0 0 E I 0 0 0⋯ ⋯ in which 

Ins, 0ns and Ir, 0r are (ns × ns) and (r × r) unit and zero matrices, respectively. The 

continuous time model can be obtained from the discrete time model through their 

relationship in Eq. (3.7), that is  

1log( )
  and  ( )

c c c
t

−= = −
∆

A
A B A I A B    (3.31) 

 Juang and Pappa (1985) and Juang (1994) showed that the major advantage of 

the ERA algorithm to identify the second order modal model of a system is that it does 

not require the a priori knowledge of the system order. For sufficiently low noise level 

data, the order of the estimated state matrix �( )A  is 2n. For the case of noise-free, 

performing SVD on the Hankel matrix reveals exactly 2n non-zero singular values 

(.ZV). With the presence of noise and measurement error, the Hankel matrix will 

usually be full rank which generally does not equal to the order of system under test. 

The purpose of the ERA algorithm is to realize a smoothed version of the system 

realization matrices which closely represents the major characteristics of the system 

under test. This can be achieved by truncating some relatively small singular values, 

say si+1, …, s2n of ΣΣΣΣ. These singular values usually contain more noise information than 

system information. In other words, the directions determined by si+1, …, s2n do not 

significantly affect the degrees of controllability and observability. The reduced model 

of order i after ignoring some small singular values (si+1, …, s2n) is called the robust 

controllability of the realized system (Juang and Pappa, 1985; Juang, 1994). 
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3.2.2 Formulation of flexibility matrix  

The structural flexibility matrices at the reference and the damaged states need to 

be formed based on sensor measurements to perform the DLV method. From response 

accelerations and measured excitations, the ERA algorithm presented in Section 3.2.1 

is employed to extract the state-space realization matrices of the structure, from which 

a procedure proposed by Bernal and Gunes (2004) is used to compute coefficients of 

the flexibility matrices. The latter involves three major steps, namely (a) expressing the 

structural flexibility matrix in term of complex modes; (b) determining the partitioned 

flexibility matrix from state-space realization; and (c) estimating the diagonal matrix 

containing the modal normalized constants. Each of these steps will be summarized 

briefly below as detail derivation can be found in Bernal and Gunes (2004). 

(a) Compute Structural Flexibility Matrix in term of Complex Modes 

The free vibration of an n-DOF structure can be described as  

 d+ + =Md D d Kd 0ɺɺ ɺ  (3.32) 

where the definitions of all variables are identical to those in Eq. (3.1). In general, the 

eigen-solution of Eq. (3.32) is complex. Let the (n × n) matrices of real eigenvalues 

and eigenvectors be denoted as ΛΛΛΛ and ψψψψ,  respectively. Equation (3.32) can be re-

written into a first-order matrix form as (Bernal and Gunes, 2004) 

 
d −   

=   
   

D M K 0
x x

M 0 0 M
ɺ  (3.33) 

where x is the state vector, 
T

T T =  x d dɺ . The eigenvalue and eigenvector matrices 

of Eq. (3.33) can be expressed respectively as (Bernal and Gunes, 2004) 

 
*

1 *
  and  

  
= =   

   
* *

Λ 0 ψ ψ
Λ Φ

0 Λ ψΛ ψ Λ
 (3.34) 

where superscript “
*
” denotes complex conjugate. Let 
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 -1 T

g

− 
=  

 

K 0
D Φ Φ

0 M
 (3.35) 

which is a diagonal matrix of modal constants. By noting that  

 
1 *

-1 * * *-1 *

T

g g

− −   −    
= = =      

      
*

F 0 ψ ψΛK 0 ψ ψ
ΦD Φ D

0 M ψ ψ Λ0 M ψΛ ψ Λ
 (3.36) 

one obtains (Bernal and Gunes, 2004) 

 *

*

T

g g= − = −
 

ϒ ϒ     

ψ
F ψ ψ D D

ψ
 (3.37) 

where  ϒ =  
*

ψ ψ  is the complex mode shapes of the structure. To obtain F, Dg 

needs to be estimated. 

(b) Partition Flexibility Matrix from State-Space Realization 

From Section 3.2.1, the realization matrices , , , , ,c cA B C D A B  have been 

identified using acceleration responses and measured input excitations. Performing 

Fourier transformation on the first equation of Eq. (3.5) yields 

 ( ) [ ] ( )1

c c c ci iω ω ω ω
−

= + ⇒ = −x A x B u x I A B u  (3.38) 

Substituting Eq. (3.38) into the second equation of Eq. (3.5) yields 

 [ ]{ }1
( ) ( )c ciω ω ω

−
= ⋅ − +y C I A B D u  (3.39) 

The Fourier transformation of the output vector can be expressed in terms of the 

displacement vector yD as 

 ( ) ( ) ( )p

Diω ω ω=y y  (3.40) 

where p = 0, 1 or 2 corresponds to the output measurement of displacement, velocity 

or acceleration, respectively. Substituting Eq. (3.40) into Eq. (3.39) gives 

 [ ]{ }11
( ) ( )

( )
D c cp

i
i

ω ω ω
ω

−
= ⋅ − +y C I A B D u  (3.41) 
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The flexibility matrix relates the inputs to the outputs at ω = 0 (Bernal and 

Gunes, 2004). By defining Fp as a suitable partition of the structural flexibility matrix 

F such that 

 (0) (0)D p=y F u  (3.42) 

one obtains 

 [ ]{ }1

0

1

( )
p c cp

Lim i
iω

ω
ω

−

→

 
= ⋅ − + 

 
F C I A B D  (3.43) 

i) If p = 0, namely output measurement is displacement, D = 0 

 ( ) 1 1

0
lim .p c c c ci
ω

ω
− −

→
 = − = − F C I A B CA B  (3.44) 

ii) If p = 1, namely output measurement is velocity, D = 0 

( ) ( ){ }1 2 2

0 0

1
lim . lim . .p c c c c c ci i

iω ω
ω ω

ω
− − −

→ →

  = − = − − = −   
F C I A B C I A I B CA B  (3.45) 

iii) If p = 2, namely output measurement is acceleration, D ≠ 0 

 
( )

( )
( )

( )

( )

1 2

2
0 0

3 3

0

1 1
lim . lim . . 0

2

1
lim 2 . . .

2

p c c c c

p c c c c

i i
ii

i

ω ω

ω

ω ω
ωω

ω

− −

→ →

− −

→

         = − + = − − +           

  = − = −   

F C I A B D C I A I B

F C I A I I B CA B

(3.46) 

From Eqs. (3.44)-(3.46),  

 ( 1)p

p c c

− += −F C A B  (3.47) 

(c) Compute Diagonal Matrix containing Modal Constants (Dg) 

Bernal and Gunes (2004) showed that the complex eigenvector ϒϒϒϒs for the 

reduced system, defined with respect to DOF at the sensor locations, can be obtained 

from the matrix C in Eq. (3.6) and the normalized complex mode shapes in Eq. (3.37) 

via 

 sϒ = ϒC  (3.48) 
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The flexibility matrix of the reduced system defined at the sensor locations can 

be retrieved following Eq. (3.37) as  

 T

s s g s= −ϒ ϒF D  (3.49) 

Expressing the state matrix Ac in term of its eigenvalues (ΛΛΛΛc) and eigenvectors 

(ϒc), Eq. (3.47) can be rewritten as follows 

 ( 1) 1 ( 1) 1p p

p c c c c s c c c

− + − − + −= − ϒ ϒ = −ϒ ϒF C Λ B Λ B  (3.50) 

Defining Bcc and T

scϒ  are the columns extracted from the columns of Bc and T

sϒ  

corresponding to the DOF where the actuators and sensors are collocated, respectively. 

By comparing the collocated columns of the flexibility matrices in Eqs. (3.49) and 

(3.50) gives (Bernal and Gunes, 2004) 

 
( 1) 1

c

T p
s g sc s c cc

− + −−ϒ ϒ = −ϒ ϒD Λ B  (3.51) 

or         
1( 1)

c

T p
g sc c cc

−− +ϒ = ϒD Λ B                    (3.52) 

From Eq. (3.52), the modal normalized constants matrix Dg can be calculated as 

(Bernal and Gunes, 2004) 

 ( 1) 1

1
(1) 0

(2)

0 (2 )

sc

sc

g c

sc

p
c cc

n

− + −

−
ϒ 

 ϒ = ϒ
 
 

ϒ 

D Λ B
⋱

 (3.53) 

where ( )sc kϒ , k = 1, 2, …, 2n, is the kth component of column vector T

scϒ . Upon 

estimating Dg, the flexibility matrix with respect to the sensor locations can be 

calculated following Eq. (3.49). 

 

3.3 FORMULATI�G STIFF�ESS MATRIX WITH U�K�OW� EXCITATIO� 

To formulate the flexibility matrix from measured accelerations with unknown 

excitation, Bernal (2004) proposed the use of a known disturbance mass added to the 
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structure to evaluate the change in eigensolution with the assumption that the change in 

structural frequency and mode shape are small under the disturbed mass. From the 

change in eigensolution due to known disturbed mass, the mass normalized constants 

are evaluated based on which the flexibility matrix is computed. Alternatively, Gao et 

al. (2006) assumed that change in the mass normalized constants matrix is negligible 

when structure changes from the reference to the damaged state. The known mass 

normalized constants at the reference state can therefore be used to compute the 

flexibility matrix at the damaged state. While the proposal by Bernal (2004) is 

inconvenience in practice, the proposal by Gao et al. (2006) may introduce error if the 

damage is severe. In this section, a direct method is proposed to formulate the 

structural stiffness matrix based solely on measured accelerations, assuming that the 

mass matrix is known. 

Consider an n-DOF structure with ns accelerometers attached. Assuming that r 

unknown input forces are actuating the structure, nc (≥ 0) of which are collocated with 

the sensors. The locations of sensors and input forces are assumed known. The 

equation of motion of the structure can be expressed as shown in Eq. (3.1) and is re-

written here for easier reference 

 d+ + =Md D d Kd fɺɺ ɺ  (3.1) 

If a sampling time interval of ∆t is used, then the structural displacement and 

velocity responses at time step j can be estimated using their values at step (j-1) 

through Newmark-β method as  

 
( )

( )
1 1

2 2

1 1 1

1

0.5

j j j j

j j j j j

t t

t t t

γ γ

β β

− −

− − −

 = + − ⋅∆ ⋅ + ⋅ ∆ ⋅


= + ∆ ⋅ + − ⋅ ∆ ⋅ + ⋅ ∆ ⋅

d d d d

d d d d d

ɺ ɺ ɺɺ ɺɺ

ɺ ɺɺ ɺɺ
 (3.54) 

where γ and β are the integration constants, taken as 0.50, 0.25γ β= =  which 

corresponds to the case of constant average acceleration within ∆t. Written in terms of 
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the initial conditions d1 and 1dɺ , and the accelerations (ns of which are measured and n-

ns of which are not measured and to be solved up to time step j), Eq. (3.54) becomes 

 

( )

( ) ( )

1

1 1 1

1

1 1

1 1 1 1 1 1

1 1

( 1) ( 1)

j

j i i

i

j j

j i i i i

i i

B

j t C B t j i

−

+
=

− −

+ +
= =


= + +



  = + − ∆ + + + ∆ − − + 

∑

∑ ∑

d d d d

d d d d d d d

ɺ ɺ ɺɺ ɺɺ

ɺ ɺɺ ɺɺ ɺɺ ɺɺ

 (3.55) 

where 2

1 10.5 , 0.25= ∆ = ∆B t C t . In theory, with k1 time steps of measured 

accelerations, k1n equations can be formulated using Eq. (3.1) as 

 

1 1 1 1

1 1 1 1

2 2 2 2

d

d

k d k k k

 + + =


+ + =


 + + =

Md D d Kd f

Md D d Kd f

Md D d Kd f

ɺɺ ɺ

ɺɺ ɺ

⋯⋯⋯⋯⋯⋯⋯⋯⋯

ɺɺ ɺ

 (3.56) 

where subscripts 1, 2, …, k1 denote time steps. Substituting Eq. (3.55) into Eq. (3.56), 

the unknowns in Eq. (3.56) include: (i) 2n initial conditions (d1 and 1dɺ  for each of the 

n-DOF); (ii) k1(n - ns) accelerations which are not measured; (iii) n(n + 1)/2 entries in 

each of Dd and K, both of which are symmetric matrices; and (iv) k1r unknown input 

forces. To solve for these unknowns and hence obtain K, the number of time steps of 

acceleration data required is 

 1 1 1 1

( 3)
( 1) ( - ) 2

n n
k n n n k n ns n k r k

ns r

+
≥ + + + + ⇒ ≥

−
 (3.57) 

Since Eq. (3.57) does not depend on the number of collocated sensor-actuator 

pairs (nc), the method overcomes the requirement that at least one collocated sensor-

actuator pair must exist in the original DLV method. Equation (3.56) is a system of 

nonlinear equations which can be solved by either the Secant method (Wolfe, 1959) or 

the Newton-Raphson method (Bathe, 1996). Since the Jacobian matrix can be 

computed directly, the Newton-Raphson method is employed using the parameters of 
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the structure at the reference state as initial guess for the unknowns in Dd and K to 

obtain the solution numerically. 

For a feel of the number of time steps required, a 10-DOF structure (n = 10), 

excited by 2 actuators (r = 2) and monitored by 3 sensors (ns = 3) gives k1 ≥ 130 

whereas a 50-DOF structure (n = 50), excited by 2 actuators (r = 2) and monitored by 

8 sensors (ns = 8) necessitates k1 ≥ 442. 

The above derivation assumes that (i) ns > r (or the number of unknown force 

time histories) and (ii) stiffness and damping do not change within these k1 time steps.  

If ns ≤ r or the locations of applied loads are not known, this method cannot be used. 

The smallest value for k1 is (n + 3).  For cases where ns is small and r is not much 

smaller than ns, k1 may be extremely large to make the method impractical. If stiffness 

and damping change slowly (less than 0.1% within k1 time steps), then the values 

computed are averaged values, otherwise the results may not accurately represent the 

stiffness and damping matrices of the damaged structure. If the measured time histories 

are long, then consecutive segments of k1 time steps of data may be used and the 

changes of Dd and K with time segments can be monitored.  In fact, how the damage 

evolves with time may be captured, or if only the final state is of interest, the final K 

values can be used with knowledge of whether it has stabilized. It is possible to track 

how damping and stiffness matrices vary with time in greater resolution by using a 

moving time segment at the expense of significantly larger computational effort.  

In formulating the algorithm to estimate the stiffness matrix from acceleration 

responses, the premise is that unknowns should not be unnecessarily introduced in 

large size problems to ensure that reliable results are obtained. Hence, it is formulated 

assuming that the mass matrix is known and is valid if the structure suffers from mild 

damage and no mass is added to or removed from the structure. In such case, the mass 
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matrix can be evaluated from a finite element model of the reference structure and then 

substituted into Eq. (3.56) to form a system of nonlinear equations to solve for the 

unknown coefficients in the stiffness and damping matrices. If the structure 

experiences significant change in the mass matrix, then the mass matrix coefficients 

also need to be estimated. The unknowns in Eq. (3.56) will increase by n(n + 1)/2 

entries and the number of time steps of acceleration data required to solve for the 

unknown becomes   

1 1 1 1

( 1) (3 7)
3 ( - ) 2

2 2( )

n n n n
k n k n ns n k r k

ns r

+ +
≥ × + + + ⇒ ≥

−
  (3.57a) 

 From Eq. (3.57), if the number of measured data points along the time axis (k1) is 

fixed, the number of required sensors can be computed as follows 

 
1

( 3)n n
ns r

k

+
≥ +  (3.58) 

Incorporating with the requirement of the intersection scheme in Section 2.6.1 to 

identify the actual damaged elements from the set of PDE, the minimal number of 

sensors used should be the maximum value of 3 and [r + n(n+3)/k1]. 

 

3.4 OPTIMAL SE�SOR PLACEME�T 

3.4.1 Background 

 The accuracy of the stiffness matrix identified using the procedure presented in 

Section 3.3 depends very much on the quality of the acceleration responses which 

substantially depend on the number, locations and directions of the sensors used. 

Optimal sensor placement has therefore attracted many researchers (Naimimohasses et 

al., 1995; Meo and Zumpano, 2005). The challenging problem of optimal sensor 

placement is to maximize damage information, that is, sensor locations should be 

chosen such that they produce reliable and sensitive information on the potential 
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damage of the structure which is not known a priori. To achieve that purpose, the 

general idea is to estimate the optimal number and locations of sensors such that the 

resulting measured data are most informative based on the simulated responses of the 

structure.  

To estimate the optimal number of sensors, sensors which correspond to the 

minimal contribution to a specified objective function will be deselected. For example, 

the Eigenvalue Vector Product (EVP) (Doebling, 1996) maximizes the vibration 

energy by eliminating sensors which are placed on the nodal lines of the vibration 

modes; the Effective Independence (EFI) method (Kammer and Brillhart, 1996) tries 

to maximize the Fisher information matrix determinant by omitting sensors which 

contribute the least to the first nm targeted mode shapes of the structure. These two 

classes of methods usually come up with a configuration of sensors which concentrates 

sensors into the high energy content regions, leading to inaccurate global information 

of the structures. Alternatively, Liu et al. (2008) used GA algorithm with the fitness 

function is Modal Strain Engergy (MSE) and Modal Assurance Criterion (MAC) to 

identify the optimal number of sensors. In particular, from a large number of sensors, 

mode shapes can be evaluated. By omitting sensor which affects the least on the 

estimated mode shapes, the new number of sensors is retrieved. The procedure is 

iterated until a pre-defined error is observed, resulting in optimal number and locations 

of sensors. However, computational intensive is the major obstacle in applying the 

method for large structure with many DOF. 

In the following section, an algorithm is proposed to address 2 issues, namely (1) 

with ns sensor available, find the optimal locations to place the sensors; and (2) find 

the minimal number of sensors such that damage detection result by the DLV method 
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is reliable. The algorithm is formulated within the frame work of structural damage 

detection using the DLV method. 

 

3.4.2 Optimal sensor placement algorithm 

Consider an n-DOF structure with ns sensors attached. The structural stiffness 

matrix can be formulated using its parameters at the reference state based on which an 

(ns × ns) stiffness matrix, which corresponds to the ns sensor locations, can be 

extracted and denoted as Ku. If the locations of the excitations are known, another 

stiffness matrix can be formulated following the procedure presented in Section 3.3 

using the ns simulated acceleration responses and denoted as Kn. The relationship 

between the number of sensors used and the error in the estimated stiffness matrix can 

be represented by 

 
2

1 1

1
u n

ns ns
ij ij

ns u
i j ij

r r
e

ns r= =

−
= ∑∑  (3.59) 

where 
u

ijr  and 
n

ijr  are the components at row i and column j of the stiffness matrices Ku 

and Kn, respectively.  

 For an n-DOF structure, there are n!/[ns!(n-ns)!] configurations where ns sensors 

can be located to monitor acceleration responses. The error in the estimated stiffness 

matrix for each configuration computed using Eq. (3.59) is used to identify the optimal 

locations of sensors. The configurations provide the smallest ens are selected as those 

which associated with the optimal sensor locations. To minimize the number of 

sensors used, the above procedure is repeated with one sensor is reduced after each 

iteration. The number of sensors is considered minimal if ens exceeds the limit error 

beyond which the DLV method cannot provide reliable results. The whole procedure is 

summarized in Fig. 3.1. 
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The procedure works provided that ns ≥ 2 since it is the requirement to formulate 

the stiffness matrix from acceleration responses presented in Section 3.3. Incorporating 

with the requirement of the Intersection Scheme in Section 2.6.1 gives ns ≥ 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Flow chart for optimal sensor placement 
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3.5 �UMERICAL A�D EXPERIME�TAL EXAMPLES 

Performance of the DLV method with known excitation can be found in Bernal 

(2002). This section investigates the performance of the DLV method with unknown 

excitation. 

 

3.5.1 �umerical example 

The 2-D warehouse frame structure used in Section 2.5 is considered here (see 

Fig. 2.4 and Table 2.1). The DOF of the structure are shown in Fig. 3.2. Two cases of 

damage are investigated, namely (a) element 14 is damaged; and (b) elements (7, 14) 

are damaged. Damage is simulated by imposing a reduction of 20% in the flexural 

stiffness (EI) of column element 7 all along its length whereas for truss member 14, a 

20% reduction in axial stiffness (EA) all along its length is imposed to simulate its 

damage. Zero-mean white noise load with RMS of 30 N shown in Fig. 3.3 is employed 

to excite the structure at node 9 horizontally. Acceleration responses horizontally at 

nodes (4, 6, 8, 9, 10, 13) and vertically at nodes (5, 7, 11, 12) are monitored using a 

sampling rate of 1kHz. These accelerations are employed directly to identify structural 

parameters without any post-processing process.  
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Fig. 3.2. DOF of 2-D warehouse structure 
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Fig. 3.3. Applied random load onto 2-D warehouse structure with sampling rate of 1 

kHz: (a) variation of magnitude with time, and (b) variation of power spectral values 

with frequencies 
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Fig. 3.4. Horizontal response accelerations at node 9: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies (structure healthy) 
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Fig. 3.5. Horizontal response accelerations at node 9: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies (element 14 

damaged) 
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Fig. 3.6. Horizontal response accelerations at node 9: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies (elements 7 & 14 

damaged) 

 

Horizontal acceleration responses at node 9 for different states of the structure 

are plotted in Figs. 3.3-3.6. Since the structure has 33 unrestrained DOF (n = 33), 

dynamically excited at 1 location (r = 1) and the acceleration responses are measured 
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by 10 accelerometers (ns = 10), each time segment requires 132 time steps following 

Eq. (3.57). There are 454 time segments altogether. Performing the proposed 

procedure in Section 3.3 for the three states where (1) the structure is healthy; (2) 

element 14 is damaged; and (3) elements (7, 14) are damaged, their corresponding 

structural stiffness matrices identified. From the change in structural stiffness matrix, 

the DLV set is calculated. The intersection scheme proposed in Section 2.6.1 is next 

employed to identify the actual damaged elements.  

For the case where element 14 is damaged, by applying the DLV set onto the 

reference structural model as nodal displacement vectors, the .CE of all elements are 

computed and the set of PDE which includes elements (14, 17) is identified. Therefore, 

the current IDS contains elements (14, 17) and ne = 2. By omitting data from readings 

of the sensor at node 4 which is far away from members of the current IDS, the 

stiffness matrix at the remaining 9 sensor locations is computed based on the 

remaining 9 sensor readings following the method in Section 3.3. Comparing the 

identified and the reference stiffness matrices, the change in the stiffness matrix is 

computed. By performing SVD on the change in the stiffness matrix, another set of 

DLVs is identified. By applying these DLVs onto the reference structural model as 

nodal displacement vectors, the .CE of all elements are computed and the set of PDE 

which contains element 14 is identified. Intersecting the set of PDE and the current 

IDS which contains elements (14, 17) produces element 14 as the new IDS (ne = 1). 

Similarly, by omitting the readings of the sensor at node 10, which is far away from 

the only member of the current IDS, instead of the sensor at node 4, another set of PDE 

containing elements (12, 14, 17) is identified. Intersecting the identified PDE with the 

current IDS which contains element 14 only gives element 14 as the new IDS (ne = 1). 

Since the IDS is the same for 2 consecutive steps, the iteration is terminated and 
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element 14 is identified correctly as the actual damaged element. The procedure is 

summarized in the upper portion of Table 3.1. Similarly for the case where elements 

(7, 14) are damaged, the feasibility of the method is confirmed by the results shown in 

the lower portion of Table 3.1. 

 

Table 3.1. Damage detection of 2-D warehouse structure (noise free) 

Set 

No.

Set of sensors 

includes sensors at 

nodes

PDE
Eliminated 

elements
IDS ne

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 

11, 12, 13]
 [14, 17]  [14, 17] 2

2 i =1
[5, 6, 7, 8, 9, 10, 

11, 12, 13]
[14] 17 [14] 1

3 i =2
[4, 5, 6, 7, 8, 9, 11, 

12, 13]
[12, 14, 17] [14] 1

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 

11, 12, 13]

 [1, 4, 7, 13, 

14]

 [1, 4, 7, 

13, 14]
5

2 i =1
[4, 5, 6, 7, 8, 9, 11, 

12, 13]
[7, 12, 14] 1, 4, 13 [7,14] 2

3 i =2
[4, 5, 6, 7, 8, 10, 

11, 12, 13]

[1, 7, 13, 

14, 17]
[7,14] 2

k
=

n
s

-1
=

9
k

=
n

s
-1

=
9
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1
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Effect of �oise on Damage Detection Results 

To investigate the effect of noise on the performance of the proposed 

methodology, the above example is used and zero-mean white noise with RMS of (i) 

5%, and (ii) 10% of the RMS of the response accelerations is added to all simulated 

response accelerations to generate contaminated responses. From contaminated 

responses, the method in Section 3.3 is employed again to compute the structural 

stiffness matrices for the three states where (1) the structure is healthy; (2) element 14 

is damaged; and (3) elements (7, 14) are damaged. From the change in structural 

stiffness matrix, SVD is employed to identify the set of DLVs. 

 For the case where element 14 is damaged and the acceleration responses contain 

5% noise, applying the identified DLVs onto the reference structure as nodal 
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displacement vectors, the .CE of all elements are computed and the first set of PDE 

which includes 6 elements (4, 6, 12, 13, 14, 17) is identified. These 6 elements are 

assigned the current IDS (ne = 6). By omitting the readings of the sensor at node 4, 

which is not close to members of the current IDS set, and employing the method in 

Section 3.3 on the remaining 9 sensor readings, the stiffness matrix with respect to the 

remaining 9 sensor locations is computed. Comparing the identified and the reference 

stiffness matrices, the change in the stiffness matrix is evaluated, based on which SVD 

is performed to identify another set of DLVs. Applying these DLVs onto the reference 

structural model as nodal displacement vectors, the .CE of all elements are evaluated 

and the set of PDE which includes elements (1, 8, 10, 14) is identified. Taking the 

intersection between the set of PDE and the current IDS which contains elements (4, 6, 

12, 13, 14, 17) gives element 14 as the new IDS (ne = 1). Similarly, by omitting the 

readings of the sensor at node 10, which is far away from the only member of the 

current IDS set, instead of the sensor at node 4, another set of PDE comprising 

elements (5, 14, 16) is identified. The intersection of the set of PDE and the current 

IDS which contains element 14 only produces element 14 as the new IDS (ne = 1). 

Since the IDS for 2 consecutive steps are identical, the iteration is stopped and element 

14 is classified as damaged which matches the actual simulation. The procedure is 

summarized in the upper portion of Table 3.2. The same computation is performed for 

the case of 10% noise and the results in the lower portion of Table 3.2 support the 

feasibility of the proposed methodology. Similar trends are observed for the case 

where elements (7, 14) are damaged and response accelerations are contaminated with 

noise where the results are presented in Table 3.3.  
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Table 3.2. Damage detection of 2-D warehouse structure (element 14 damaged, noise 

presence) 

Set 

No.

Set of sensors 

includes sensors at 

nodes

PDE
Eliminated 

elements
IDS ne

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 

11, 12, 13]

[4, 6, 12, 13, 14, 

17]

[4, 6, 12, 13, 14, 

17]
6

2 i  = 1
[5, 6, 7, 8, 9, 10, 11, 

12, 13]
[1, 8, 10, 14]

[4, 6, 12, 13, 

17]
[14] 1

3 i  = 2
[4, 5, 6, 7, 8, 9, 11, 

12, 13]
[5, 14, 16] [14] 1

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 

11, 12, 13]

[3, 8, 9, 13, 14, 16, 

18, 20, 21, 22]

[3, 8, 9, 13, 14, 16, 

18, 20, 21, 22]
10

2 i  = 1
[5, 6, 7, 8, 9, 10, 11, 

12, 13]
[1, 4, 7, 14, 17]

[3, 8, 9, 13, 16, 

18, 20, 21, 22]
[14] 1

3 i  = 2
[4, 5, 6, 7, 8, 9, 11, 

12, 13]
[5, 7, 14, 19] [14] 1

5
%
 n
o
is
e

k 
=

 n
s-

1
=

9

1
0
%
 n
o
is
e

k 
=

 n
s-

1
=

9

 

 

Table 3.3. Damage detection of 2-D warehouse structure (elements 7 & 14 damaged, 

noise presence) 

Set 

No.

Set of sensors includes 

sensors at nodes
PDE

Eliminated 

elements
IDS ne

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 11, 

12, 13]

[1, 4, 6, 7, 11, 14, 

18, 22]

[1, 4, 6, 7, 11, 14, 

18, 22]
8

2 i  = 1
[5, 6, 7, 8, 9, 10, 11, 

12, 13]

[2, 5, 7, 12, 14, 

15, 16, 21]

[1, 4, 6, 11, 18, 

22]
[7, 14] 2

3 i  = 2
[4, 5, 6, 7, 8, 9, 11, 12, 

13]

[1, 3, 7, 11, 13, 

14, 17]
[7, 14] 2

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 11, 

12, 13]

[1, 4, 6, 7, 12, 14, 

15, 16, 18, 22]

[1, 4, 6, 7, 12, 14, 

15, 16, 18, 22]
10

2 i  = 1
[5, 6, 7, 8, 9, 10, 11, 

12, 13]

[2, 5, 7, 11, 13, 

14, 20, 21]

[1, 4, 6, 12, 15, 

16, 18, 22]
[7, 14] 2

3 i  = 2
[4, 5, 6, 7, 8, 9, 11, 12, 

13]

[2, 3, 6, 7, 11, 13, 

14, 17, 21, 22]
[7, 14] 2

5
%
 n
o
is
e

k 
=

 n
s-

1
=

9

1
0
%
 n
o
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e

k 
=

 n
s-

1
=

9

 

 

Effect of Gradual Reduction in Element Stiffness on Damage Detection Results 

To investigate the feasibility of the algorithm presented in Section 3.3 in 

estimating the gradual change in structural parameters, two cases are simulated, 

namely (a) element 14 is gradually damaged; and (b) elements (7, 14) are gradually 

damaged. The speed of degradation in element stiffness is 3.78% per second (or 

equivalently 0.05% reduction in axial stiffness per measurement segment of 132 time 

steps for element 14 and 0.05% reduction in flexural stiffness per measurement 
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segment of 132 time steps for element 7). The same random load used above is 

employed to excite the structure. Acceleration responses at the same 10 DOF used 

above are monitored. For the case where element 14 is gradually damaged, performing 

the procedure presented in Section 3.3, structural stiffness coefficients are identified 

with time. Some selected coefficients are plotted in Fig. 3.7. From the difference in 

identified structural stiffness matrices at the first and the last time segments, the 

change in structural stiffness is evaluated based on which the DLV set is computed. 

Applying the DLV set onto the reference structural model as nodal displacement 

vectors, the .CE of all elements are computed and the set of PDE which includes 

elements (4, 14, 15) is identified as shown in the upper portion of Table 3.4. The 3 

elements are assigned as the current IDS (ne = 3). By omitting the readings of the 

sensor at node 13, another set of PDE containing elements (2, 5, 7, 13, 14, 19) is 

identified and intersected with the current IDS which contains elements (4, 14, 15) 

gives element 14 as the new IDS (ne = 1). By omitting the readings of the sensor at 

node 9 instead of the sensor at node 13, another set of PDE which comprises elements 

(4, 7, 14, 16, 19) is identified. Intersecting the set of PDE and the current IDS, which 

comprises element 14, produces element 14 as the new IDS (ne = 1). Hence, element 

14 is classified as being damaged following the criterion of 2 identical IDS. The same 

trend is also observed for the case where elements (7, 14) are gradually damaged based 

on the results shown in Fig. 3.8 and the lower portion of Table 3.4.  
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Fig. 3.7. (a) Variation of stiffness coefficients with time; and (b) gradient of variation 

of stiffness coefficients with time (element 14 damaged) 
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Fig. 3.8. (a) Variation of stiffness coefficients with time; and (b) gradient of variation 

of stiffness coefficients with time (elements 7 & 14 damaged) 
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Table 3.4. Damage detection of 2-D warehouse structure (gradual reduction in stiffness 

parameters) 

Set 

No.

Set of sensors includes 

sensors at nodes
PDE

Eliminated 

elements
IDS ne

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 11, 

12, 13]
[4, 14, 15] [4, 14, 15] 3

2 i  = 1
[4, 5, 6, 7, 8, 9, 10, 11, 

12]
[2, 5, 7, 13, 14, 19] [4, 15] [14] 1

3 i  = 2
[4, 5, 6, 7, 8, 10, 11, 12, 

13]
[4, 7, 14, 16, 19] [14] 1

1 ns =10
[4, 5, 6, 7, 8, 9, 10, 11, 

12, 13]

[2, 4, 6, 7, 13, 14, 

15, 17, 19, 20, 21]

[2, 4, 6, 7, 13, 14, 

15, 17, 19, 20, 21]
11

2 i  = 1
[4, 5, 6, 7, 8, 9, 10, 11, 

12]
[3, 7, 14, 16, 22]

[2, 4, 6, 13, 15, 

17, 19, 20, 21]
[7, 14] 2

3 i  = 2
[4, 5, 6, 7, 8, 10, 11, 12, 

13]

[3, 4, 5, 7, 14, 16, 

22]
[7, 14] 2
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Effect of Change in Mass of Damaged Elements on Damage Detection Results  

To investigate the effect of error induced by the change in the mass of the 

damaged elements on the damage detection results, the mass density of the damaged 

elements is reduced from 1% to 100% when the structure changes from the reference 

to the damaged states. The same excitation force in Fig. 3.3 is used to excite the 

structure and the same 10 acceleration responses horizontally at nodes (4, 6, 8, 9, 10, 

13) and vertically at nodes (5, 7, 11, 12) are monitored. The stiffness of the structure at 

the reference state can be formulated as before using the procedure presented in 

Section 3.3. For the case where element 14 is damaged, the procedure presented in 

Section 3.3 can also be employed to estimate the stiffness matrix with either unknown 

or known mass assumption. In the latter, the mass matrix of the structure at the 

reference state is used to estimate the stiffness matrix of the structure at both the 

reference and the damaged states. Comparison of some identified stiffness coefficients 

with the exact values is plotted in Fig. 3.9, indicating that the error due to the 

assumption that the mass does not change when the structure changes from the 

reference to the damaged state does not significantly affect the accuracy of the 

estimation results. It is observed that 100% reduction in mass density of element 14 
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results in approximately 0.6% error in the estimated stiffness matrix, which is 

acceptable in most damage detection methods. From the difference in the stiffness 

matrix between the reference and the damaged states computed using the assumption 

of known mass matrix, the intersection scheme is performed and the damaged element 

is identified correctly with identical results to the case where the mass of the damaged 

element is unchanged as shown in Table 3.1.  
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Fig. 3.9. Comparison between exact and estimated stiffness coefficients: (a) K(16,16); 

(b) K(32,32); and (c) and (d) error between exact and estimated stiffness coefficients 

for K(16,16) and K(32,32), respectively. Continuous line (): exact stiffness 

coefficients; dashed line (---): estimated stiffness coefficients assuming that mass is 

unknown; and dashed-dotted line (-⋅-): estimated stiffness coefficients assuming that 

mass is known (unchanged). 
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Fig. 3.10. Comparison between exact and estimated stiffness coefficients: (a) 

K(16,16); (b) K(32,32); and (c) and (d) error between exact and estimated stiffness 

coefficients for K(16,16) and K(32,32), respectively. Continuous line (): exact 

stiffness coefficients; dashed line (---): estimated stiffness coefficients assuming that 

mass is unknown; and dashed-dotted line (-⋅-): estimated stiffness coefficients 

assuming that mass is known (unchanged). 
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Similarly, for the case where elements (7, 14) are damaged, performing the same 

procedure as above, the results of some stiffness coefficients identified using the 

assumption that the mass matrix is unknown and known (unchanged) are compared 

with the exact values in Fig. 3.10. In this case, using unknown mass assumption to 

estimate stiffness matrix provides better results than using known (unchanged) mass 

assumption since the corresponding errors are 0.3% and 0.9% which is associated with 

the case of 100% reduction in mass density of the damaged elements. However, 

performing the intersection scheme, the damaged elements are still identified correctly 

with identical results to the case where the mass of the damaged elements are constant 

which is shown in Table 3.2.  

Performance of the Optimal Sensor Placement Algorithm 

To assess the performance of the optimal sensor placement presented in Section 

3.4, assuming that the maximum number of sensors available is 10, which are enough 

to place at all nodes of the structure, the requirements are (i) to identify the optimal 

locations to place the 10 sensors; and (ii) to identify the minimum number of sensors 

which can be used to obtain reliable damage detection results by the DLV method. 

Performing the algorithm in Section 3.4, the optimal locations to place the 10 available 

sensors are at DOF (10, 14, 16, 20, 22, 25, 28, 32, 35, 37) with the corresponding error 

of 0.12%. The summarized results for the optimal sensor placement are plotted in Fig. 

3.11 and Table 3.5. It is observed that the optimal configuration to place the sensors 

always includes the sensor collocated with the actuator. The maximum error in the 

identified stiffness matrix for the case where only 2 sensors are used is less than 5%. 

With only 2 sensors are available and placed at the optimal locations the actual 

damaged elements can still be identified correctly in the sets of PDE. For the case 

where element 14 is damaged and 2 sensors used, the set of PDE includes elements (2, 
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3, 4, 5, 8, 9, 10, 11, 13, 14) whereas the set of PDE comprises elements (2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 13, 14) for the case where elements (7, 14) are damaged and 2 sensors are 

used. However, no subsequent combination of sensors is available to filter out the 

actual damaged elements, resulting in false alarm.   
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Fig. 3.11. Relationship between number of sensors and error in the identified stiffness 

matrix for the optimal sensor placement of 2-D warehouse structure 

 

Table 3.5. Optimal sensor placement results for 2-D warehouse structure 

ns Sensors at DOF Sensors at nodes e ns  (%)

10 (10, 14, 16, 20, 22, 25, 28, 32, 35, 37) (4, 5, 6, 7, 8, 9, 10, 11, 12, 13) 0.1223

9 (10, 14, 20, 22, 25, 28, 32, 35, 37) (4, 5, 7, 8, 9, 10, 11, 12, 13) 0.1871

8 (10, 14, 22, 25, 28, 32, 35, 37) (4, 5, 8, 9, 10, 11, 12, 13) 0.2919

7 (10, 22, 25, 28, 32, 35, 37) (4, 8, 9, 10, 11, 12, 13) 0.4552

6 (10, 22, 25, 28, 32, 37) (4, 8, 9, 10, 11, 13) 0.7099

5 (10, 22, 25, 28, 37) (4, 8, 9, 10, 13) 1.1072

4 (10, 25, 28, 37) (4, 9, 10, 13) 1.7268

3 (25, 28, 37) (9, 10, 13) 2.693

2 (25, 28) (9, 10) 4.216  

 

3.5.2 Experiment example 

The 3-D modular truss used in Section 2.6.2 with specifications listed in Table 

2.2 is set-up in this experiment as shown in Fig. 3.12 to obtain acceleration responses. 

A shaker with capacity of 75 lbs (334 N) is employed to excite the truss through an 

amplifier with a capacity of 50 V. Vertical acceleration responses of all nodes at the 

lower chord of the truss are monitored using 13 accelerometers with capacity of 50 g, 



 135 

sampled at a rate of 1 kHz. Two cases of damage are investigated, namely (a) element 

86 is damaged; and (b) elements (1, 86) are damaged. Damage is simulated by 

changing the affected members from steel to aluminum tubes (refer to Table 2.2 for 

specifications of the tubes). 

 

 
Fig. 3.12. Experimental set-up 
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Fig. 3.13. Applied random load onto experimental truss with sampling rate of 1 kHz: 

(a) variation of magnitude with time, and (b) variation of power spectral values with 

frequencies (structure healthy) 
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Fig. 3.14. Applied random load onto experimental truss with sampling rate of 1 kHz: 

(a) variation of magnitude with time, and (b) variation of power spectral values with 

frequencies (element 86 damaged) 
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Fig. 3.15. Applied random load onto experimental truss with sampling rate of 1 kHz: 

(a) variation of magnitude with time, and (b) variation of power spectral values with 

frequencies (elements 1 & 86 damaged) 
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Fig. 3.16. Vertical response accelerations at node 7: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies (structure healthy) 
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Fig. 3.17. Vertical response accelerations at node 7: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies (element 86 

damaged) 
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Fig. 3.18. Vertical response accelerations at node 7: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies (elements 1 & 86 

damaged) 

 

Zero-mean white noise loads with RMS of 30 N are employed to excite the 

structure at node 7 vertically.  Three states are considered, where (i) the structure is 

healthy; (ii) element 86 is damaged; and (iii) elements (1, 86) are damaged. The 

applied loads are plotted in Figs. 3.13-3.15 and will be used later to compare the 
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structural damage detection results using the DLV method with known and unknown 

excitations. Vertical response accelerations at node 7 where there is a collocated 

sensor-actuator pair are plotted in Figs. 3.16-3.18 for the 3 different states of the 

structure.  

For the case where element 86 is damaged, from 13 measured accelerations, the 

procedure presented in Section 3.3 is employed to identify the structural stiffness 

matrices at the reference and damaged states. From the change in structural stiffness 

matrix, SVD is performed to identify a set of DLVs. Applying these DLVs onto the 

reference structure, the .CE of all elements are computed and the set of PDE which 

comprises elements (16, 44, 86) is identified. The current IDS contains 3 elements (16, 

44, 86) and ne = 3. By omitting the readings of the sensor at node 15 which is far away 

from members of the current IDS set, the structural stiffness matrix is identified based 

on the readings of the remaining 12 sensors. By comparing with the stiffness matrix at 

the reference state, the change in stiffness is computed based on which SVD is 

performed to identify another set of DLVs. Applying these DLVs onto the reference 

structure, another set of PDE which comprises elements (20, 55, 73, 75, 81, 86) is 

identified. Intersecting the set of PDE with the current IDS which contains elements 

(16, 44, 86) gives element 86 as the new IDS (ne = 1). Similarly, by omitting the 

readings of the sensor at node 9, which is far away from the only member of the 

current IDS set, instead of the sensor at node 15, another set of PDE which comprises 

elements (41, 45, 86) is identified. Intersection of the set of PDE and the current IDS 

which comprises element 86 only produces element 86 as the new IDS. Since the IDS 

for the 2 consecutive steps are identical, the iteration is terminated and element 86 is 

correctly identified as being damaged. The procedure is summarized in the upper 

portion of Table 3.6. Similarly, the feasibility of the methodology is confirmed for the 
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case where elements (1, 86) are damaged based on the results shown in the lower 

portion of Table 3.6.  

Table 3.6. Damage detection of 3-D modular truss structure 

Set 

No.

Set of sensors includes 

sensors at nodes
PDE

Eliminated 

elements
IDS ne

1 ns =13
[2, 3, 4, 5, 6, 7, 8, 9, 

11, 12, 13, 14, 15]
[16, 44, 86] [16, 44, 86] 3

2 i  = 1
[2, 3, 4, 5, 6, 7, 8, 9, 

11, 12, 13, 14]

[20, 55, 73, 

75, 81, 86]
[16, 44] [86] 1

3 i  = 2
[2, 3, 4, 5, 6, 7, 8, 11, 

12, 13, 14, 15]
[41, 45, 86] [86] 1

1 ns =13
[2, 3, 4, 5, 6, 7, 8, 9, 

11, 12, 13, 14, 15]

[1, 56, 61, 

70, 86]

[1, 56, 61, 70, 

86]
5

2 i  = 1
[2, 3, 4, 5, 6, 7, 8, 9, 

11, 12, 13, 14]

[1, 20, 44, 

45, 58, 86]
[56, 61, 70] [1, 86] 2

3 i  = 2
[2, 3, 4, 5, 6, 7, 8, 11, 

12, 13, 14, 15]

[1, 21, 70, 

86]
[1, 86] 2
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To compare the performance of the two procedures based on known and 

unknown excitations in assessing structural damage, the input excitations and response 

accelerations of the 13 accelerometers are fed in the procedure presented in Section 3.2 

to identify structural flexibility matrices with respect to the sensor locations for the 

reference and the damaged states. From the change in the flexibility matrix, SVD is 

performed to identify a set of DLVs. Applying these DLVs onto the reference structure 

as nodal force vectors at sensor locations, the .CE of all elements can be computed 

and the set of PDE is identified. For the case where element 86 is damaged, the .CE 

of all elements computed using the known and unknown input excitations are 

compared in Fig. 3.19a. With a threshold of 0.01 to discriminate the potential damaged 

elements from the undamaged elements, the 2 procedures produce the same set of PDE 

though the procedure based on known excitation is a little more sensitive. This result 

agrees well with the suggestion by Mevel et al. (2003) that the measured input 

excitations should be included where possible to enhance the reliability of the damage 
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detection results. The same conclusion is also observed for the case where elements (1, 

86) are damaged based on results in Fig. 3.19b. 
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Fig. 3.19. Comparison between .CE computed from known and unknown excitation 

for experiment truss: (a) element 86 damaged; and (b) elements (1, 86) damaged (13 

sensors used) 

 

Performance of the Optimal Sensor Placement 

To further investigate the performance of the optimal sensor placement for the 3-

D modular truss structure, the 13 sensors used in the experiment is considered as the 

maximum number of sensors available for measuring acceleration responses. The 

requirements are (i) to identify the optimal locations to place the 13 sensors; and (ii) to 

identify the minimum number of sensors which the DLV method can still provide 

reliable results. Two cases will be considered, namely (1) sensors can only be placed at 

the lower chord of the truss; and (2) sensors can be placed at both the lower and the 

upper chords of the truss.  

Performing the algorithm in Section 3.4, the optimal positions to place the 13 

sensors for cases (1) and (2) are at nodes (2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15) and 

(3, 6, 7, 8, 12, 13, 14, 20, 21, 24, 25, 26, 27), respectively, in vertical direction. The 
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minimal number of sensors can be used with the DLV method is 2 where the optimal 

locations to place the 2 sensors are at nodes (7, 13) in vertical direction and the 

corresponding error is approximately 3%. The summarized results for the optimal 

sensor placement are shown in Fig. 3.20 and Table 3.7. Comparison of the error using 

the same number of sensors for case (1) where the sensors can only be placed at the 

lower chord of the truss and case (2) where the sensors can be placed at both the lower 

and upper chords of the truss is shown in Fig. 3.21. It is observed from Fig. 3.21 that 

the difference between the errors of the two scenarios is negligible (less than 0.3%). 

Hence, for reliable damage detection results by the DLV method, the sensors can be 

placed at only the lower chord of the truss. In addition, the optimal locations to place 

the sensors always include the sensor collocated with the actuator.  
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Fig. 3.20. Relationship between number of sensors and error in the identified stiffness 

matrix for the optimal sensor placement for 3-D modular truss structure (sensors can 

only be placed at the lower chord of the truss) 
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Fig. 3.21. Comparison between number of sensors and estimated errors in stiffness 

matrix for the case where sensors can be placed at the lower chords only and the case 

where sensors can be placed at both the lower and the upper chords of the 3-D modular 

truss structure 
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Table 3.7. Optimal sensor placement for 3-D modular truss structure (upper portion: 

sensors placed at the lower chord of the truss; lower portion: sensors placed at both 

lower and upper chords of the truss) 
ns Sensors at DOF Sensors at nodes e ns  (%)

13 (6, 9, 12, 15, 18, 21, 24, 27, 33, 36, 39, 42, 45) (2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15) 0.0406

12 (9, 12, 15, 18, 21, 24, 27, 33, 36, 39, 42, 45) (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15) 0.0596

11 (9, 15, 18, 21, 24, 27, 33, 36, 39, 42, 45) (3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15) 0.0887

10 (9, 18, 21, 24, 27, 33, 36, 39, 42, 45) (3, 6, 7, 8, 9, 11, 12, 13, 14, 15) 0.1322

9 (9, 18, 21, 24, 33, 36, 39, 42, 45) (3, 6, 7, 8, 11, 12, 13, 14, 15) 0.1968

8 (9, 18, 21, 24, 36, 39, 42, 45) (3, 6, 7, 8, 12, 13, 14, 15) 0.2932

7 (9, 18, 21, 24, 36, 39, 42) (3, 6, 7, 8, 12, 13, 14) 0.4366

6 (18, 21, 24, 36, 39, 42) (6, 7, 8, 12, 13, 14) 0.6503

5 (18, 21, 24, 39, 42) (6, 7, 8, 13, 14) 0.9686

4 (18, 21, 24, 39) (6, 7, 8, 13) 1.4426

3 (18, 21, 39) (7, 8, 13) 2.1485

2 (21, 39) (7, 13) 3.206

13 (9, 18, 21, 24, 36, 39, 42, 60, 63, 72, 75, 78, 81) (3, 6, 7, 8, 12, 13, 14, 20, 21, 24, 25, 26, 27) 0.0818

12 (9, 18, 21, 24, 36, 39, 42, 60, 63, 75, 78, 81) (3, 6, 7, 8, 12, 13, 14, 20, 21, 25, 26, 27) 0.1119

11 (9, 18, 21, 24, 36, 39, 42, 60, 63, 75, 78) (3, 6, 7, 8, 12, 13, 14, 20, 21, 25, 26) 0.1564

10 (9, 18, 21, 24, 39, 42, 60, 63, 75, 78) (3, 6, 7, 8, 13, 14, 20, 21, 25, 26) 0.2188

9 (9, 18, 21, 24, 39, 60, 63, 75, 78) (3, 6, 7, 8, 13, 20, 21, 25, 26) 0.306

8 (18, 21, 24, 39, 60, 63, 75, 78) (6, 7, 8, 13, 20, 21, 25, 26) 0.4279

7 (21, 24, 39, 60, 63, 75, 78) (7, 8, 13, 20, 21, 25, 26) 0.5983

6 (21, 39, 60, 63, 75, 78) (7, 13, 20, 21, 25, 26) 0.8367

5 (21, 39, 60, 63, 75) (7, 13, 20, 21, 25) 1.1701

4 (21, 39, 60, 63) (7, 13, 20, 21) 1.6363

3 (21, 39, 63) (7, 13, 21) 2.2883

2 (21, 39) (7, 13) 3.206  

 

3.6 CO�CLUDI�G REMARKS 

The application of the DLV method to detect structural damage using dynamic 

responses is investigated for the case where the excitations are (i) known, and (ii) 

unknown. The difference between using dynamic responses from static responses in 

the DLV method to detect damage is the computation of the flexibility or stiffness 

matrix. The flexibility matrix can be obtained using the ERA algorithm in conjunction 

with an algorithm to compute flexibility coefficients from the realization matrices.  

Alternatively, the structural stiffness matrix can be computed from measured 

accelerations using the governing equations of motion and Newmark’s time integration 

relationships. In this case, gradual change in the structural parameters with time can be 

discerned. Comparing the .CE of all elements for the cases where the excitations are 
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known and unknown, it is found as expected that the procedure with known excitations 

is more sensitive. Measured input excitations therefore should be integrated to the 

damage detection process to enhance the reliability of the result.  

Numerical example of a 2-D warehouse structure showed that with unknown 

excitation, two damaged elements can be identified correctly using simulated 

accelerations which are contaminated with 10% noise. Besides, two elements with 

gradual reduction in element stiffnesses of approximately 4% per second can also be 

detected correctly. Assumption of known mass matrix is found reasonable in providing 

accurate estimations of the stiffness matrix for the cases where one or two elements are 

damaged, leading to significant reduction in the computation effort. The proposed 

method is also found applicable to identify two damaged elements using physically 

measured accelerations from an experiment of a 3-D modular truss structure. 

In addition, an algorithm for optimal sensor placement is proposed to (i) find the 

optimal locations to place the ns available sensors and (ii) find the minimum number 

of sensors which is required to obtain reliable results by the DLV method. It is 

observed that the sensor collocated with the actuator is always present in the optimal 

sensor placement configuration. With 2 sensors available and are placed at the optimal 

locations, the error in the identified stiffness matrix is less than 5% and the damaged 

elements are still identified correctly in the set of PDE. 
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CHAPTER 4 

SE�SOR VALIDATIO� WITH DLV METHOD 

 

4.1 I�TRODUCTIO� 

 The DLV method is a model-based damage detection method in which the 

current flexibility matrix of the structure is identified based on current measurements 

and compared against the corresponding values of the reference structure. If 

discrepancy occurs, either the structure is damaged or the data from the sensors 

contains error or both. The reliability of structural damage assessment results is 

therefore dependent both on the accuracy of the DLV method and the quality of the 

measured signals. To enhance the reliability of structural damage detection using the 

DLV method following the proposed framework for structural damage detection in Fig. 

4.1, the quality of measured signals (or in situ sensors) must be assessed a priori or in 

tandem with the detection. An algorithm for sensor validation in the context of 

structural damage detection using the DLV method is developed in this chapter. The 

objective of the algorithm is to identify measurements which are “suitable” to be used 

in the DLV method to detect structural damage. 

Effect of error in flexibility matrix on the damage detection results using the 

DLV method is first discussed in Section 4.2. Definition of faulty sensors is then 

introduced in Section 4.3. The definition is adapted to two common sensors, namely 

displacement transducers and accelerometers. The algorithm for sensor validation is 

introduced in Section 4.4. From available sensors, different sets containing the same 

number of sensors is formulated. Change in flexibility matrices corresponding to 

different sets are then calculated based on which SVD is performed to compute the 

number of non-zero singular value (�ZV). The set producing the smallest �ZV may be 
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considered as comprising all “healthy” sensors and those sensors which do not belong 

to that set are classified as faulty. The performance of the proposed algorithm is 

verified using both simulated and experimental data from a 3-D modular truss structure 

for both single and multiple simultaneous faulty sensors in Sections 4.5 and 4.6.  

 

 
Fig. 4.1. Proposed framework for structural damage detection 

 

4.2 EFFECT OF ERROR I� FLEXIBILITY MATRIX 

4.2.1 Effect on damage detection result 

To obtain DLV, flexibility matrix with respect to the sensor locations must be 

computed. From Eqs. (2.1) - (2.6) and (2.18) - (2.22), it can be observed that error in 

the flexibility matrix, if any, would propagate to the damage detection results. 

Performance of the DLV method under disturbance in the flexibility matrix is crucial 

and therefore will be investigated in this section.  

For illustration, the 3-D modular truss structure shown in Fig. 2.8 with 

specifications summarized in Table 2.2 is simulated to obtain displacement responses 

at all nodes of the lower chord from which the flexibility matrices at the reference and 

the damaged states are estimated. Damaged state of the truss is generated by imposing 

20% reduction in axial stiffness (EA) of element 86.  
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To investigate the effect of error in the flexibility matrix on the damage detection 

results, zero-mean white noises are added to both flexibility matrices. The DLV 

method is then performed using the contaminated flexibility matrices to identify a set 

of potential damaged elements (PDE). Of interest is the noise level beyond which the 

actual damaged element (element 86) is not a member of the PDE set, leading to 

erroneous damage detection results (Tran and Quek, 2006). For this purpose, various 

levels of noise are investigated, using a root mean square (RMS) value ranging from 

0% to 30% in steps of 0.5%. The results are summarized in Table 4.1 which suggests a 

threshold noise level of 6.5% below which the DLV method may still be reliable. This 

is an extremely important and desirable feature of the DLV method since error is 

always present in any type of measurement in reality. 

To investigate the variation of the threshold due to different damage severities, 

the entire range of reduction in axial stiffness of element 86 are generated and the same 

analysis as above performed. The results of one standard deviation below the mean 

plotted in Fig. 4.2 indicate that the threshold noise level of 6.5% can still be employed 

to differentiate the noise level below which the damage detection results by the DLV 

method can be reliable, provided that the damage severity is greater than 7%.  

To investigate the effect of different damaged elements on the threshold noise 

level, one element at a time is prescribed as damaged with the reduction in the axial 

stiffness ranging from 7% to 99%. The same procedure described above is performed 

to determine the threshold noise level and the results of one standard deviation below 

the mean are summarized in Fig. 4.3, indicating a threshold value of 6.5% for this 

structure with any one element damage of more than 7% reduction in its axial stiffness. 

Fig. 4.2 indicates that the error level threshold at which the DLV method can 

accommodate monotonically increases with the damage severity. Hence, if more than 
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one element is damaged, the error level of 6.5% in the flexibility is conservative and 

can be safely adopted. 

Table 4.1. Error level in flexibility matrices beyond which damaged element is not 

present in the identified PDE set (element 86 damaged) 

Mean
Standard 

deviation

One standard 

deviation 

below mean

1 [3,4,5,6,7,8,9,11,12,13,14,15] 30 9.4 2.9 6.5

2 [2,4,5,6,7,8,9,11,12,13,14,15] 30 11.3 3.8 7.5

3 [2,3,5,6,7,8,9,11,12,13,14,15] 30 11.1 3.1 8.0

4 [2,3,4,6,7,8,9,11,12,13,14,15] 30 10.0 3.5 6.5

5 [2,3,4,5,7,8,9,11,12,13,14,15] 30 11.8 2.8 9.0

6 [2,3,4,5,6,8,9,11,12,13,14,15] 30 10.3 3.8 6.5

7 [2,3,4,5,6,7,9,11,12,13,14,15] 30 13.7 3.2 10.5

8 [2,3,4,5,6,7,8,11,12,13,14,15] 30 13.1 4.1 9.0

9 [2,3,4,5,6,7,8,9,12,13,14,15] 30 14.6 4.1 10.5

10 [2,3,4,5,6,7,8,9,11,13,14,15] 30 13.1 3.6 9.5

11 [2,3,4,5,6,7,8,9,11,12,14,15] 30 10.9 3.4 7.5

12 [2,3,4,5,6,7,8,9,11,12,13,15] 30 13.7 4.2 9.5

13 [2,3,4,5,6,7,8,9,11,12,13,14] 30 12.5 4.0 8.5

Error level (%)

Sensors at nodesSet No.
No. of 
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Fig. 4.2. Error threshold in flexibility matrices below which the DLV method can 

accommodate for various damage severities 
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Fig. 4.3. Threshold error level in flexibility matrices below which the DLV method can 

accommodate (reduction in axial stiffness of each element ranging from 7% to 99%) 

 

4.2.2 Effect on the �ZV 

From Eq. (2.2), the DLV is identified by examining the Σ matrix and partitioning 

into a portion which contains the non-zero diagonal values (�ZV) and the remaining 

portion which contains zero diagonal values. Since Σ matrix is derived from the 

change in flexibility matrix, any �ZV implies either the presence of noise or damage. 

The issue to be examined here is the effect of noise on �ZV so that the presence of 

damage can be correctly ascertained. 

The 3-D modular truss structure shown in Fig. 2.8 is utilized again to generate 

displacement responses from which the flexibility matrices at the reference and the 

damaged states are estimated. For the case where element 86 is damaged with 20% 

reduction in axial stiffness, zero-mean white noise with RMS ranging from 0% to 6.5% 

are introduced to the flexibility matrices based on which SVD is performed and Σ 

recorded. Since the structure has one element damaged, only the first diagonal value is 

non-zero, the magnitude being dependent on the severity of damage. The magnitudes 
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of the other diagonal values are not only dependent on the noise level but also the 

number of sensors used. To mitigate the effect of the number of sensors used, the ratio 

between a diagonal value and the first diagonal value is selected as criterion to classify 

�ZV. Since the diagonal values are ordered in descending magnitude, the effect of 

noise may be studied by examining the ratio of the second diagonal value over the first 

diagonal value, which is plotted in Fig. 4.4a.  Earlier, it is concluded that the tolerable 

error in the flexibility matrix is 6.5%. Using this value in Fig. 4.4a suggests a threshold 

value of 0.01 beyond which the second value may be classified as non-zero.  

If one element at a time is prescribed as damaged with 20% reduction in the axial 

stiffness, Fig. 4.5  presents the threshold values for the cases where the error in the 

flexibility matrix is 0%, 2%, 4% and 6.5%. It is observed that the ratio between the 

second and the first diagonal values increases with higher error level in the flexibility 

matrix. Since 6.5% is the maximum error in the flexibility matrix below which the 

DLV method can be reliable, the mean value of 0.01 instead of the minimum value of 

0.008 for the ratio between the second and the first diagonal values is proposed to 

discriminate zero diagonal values from non-zero diagonal values. If the reduction in 

axial stiffness of element 86 is not 20%, the threshold can be computed following the 

same procedure. Results in Fig. 4.4b show that the ratio between the second and the 

first diagonals increases with damage severity. Since the maximum error level of 6.5% 

is used to contaminate the flexibility matrices, the value of 0.01 is still suggested to 

classify �ZV for cases of more than one damaged element because the ratio between 

the second and the first diagonal values monotonically increases with the severity of 

damage in element 86 as shown in Fig. 4.4b. 

If the structure is healthy and the signals are contaminated, all diagonal values 

are not exactly zero. To be consistent with the above derivation where the structure is 
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damaged and the data is contaminated, the ratio between a diagonal and the first 

diagonal is still used as criterion to classify �ZV. This makes the classification of �ZV 

independent from the structural status (healthy or damaged) which is not known a 

priori. Since 6.5% is the maximal noise level below which the DLV method can 

accommodate, it is used to contaminate the flexibility matrices based on which the 

ratio between a diagonal and the first diagonal is computed. The procedure is repeated 

30 times and results are presented in Table 4.2. Using the threshold value of 0.01 to 

classify �ZV, the number of �ZV obtained is 9 which means that the effect of noise on 

diagonal values is rather spread. This is different from the effect of structural damage 

which focuses on the first few diagonal values.  

In summary, unless structure is not damaged, all sensors are healthy and 

measured signals are free of noise, the �ZV will not be zero. A diagonal value in the 

singular value matrix will be classified as non-zero if it is greater than 0.01 times the 

first diagonal entry. 
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Fig. 4.4. Ratio between second and first diagonal values for: (a) 20% reduction in axial 

stiffness of element 86 with 0 to 6.5% error in flexibility matrices; (b) 6.5% error in 

flexibility matrices with damage severity ranging from 1 to 99% 
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Fig. 4.5. Ratio between second and first diagonal values for various damaged elements 

and error levels in flexibility matrices 
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Table 4.2. Ratios between a diagonal value and the first diagonal value (6.5% error 

added) 

Ratio
No. of 

samples
Mean

Standard 

deviation

One standard 

deviation below 

mean

s2/s1 30 0.900 0.225 0.675

s3/s1 30 0.453 0.112 0.341

s4/s1 30 0.265 0.065 0.200

s5/s1 30 0.158 0.038 0.120

s6/s1 30 0.094 0.024 0.071

s7/s1 30 0.050 0.013 0.037

s8/s1 30 0.026 0.007 0.020

s9/s1 30 0.013 0.003 0.010

s10/s1 30 0.007 0.002 0.006

s11/s1 30 0.004 0.001 0.003

s12/s1 30 0.001 0.000 0.001

s13/s1 30 0.000 0.000 0.000
 

 

4.3 DEFI�ITIO� OF FAULTY SE�SORS 

Two types of sensors are commonly used to measure structural responses, 

namely displacement transducers and accelerometers. Faulty sensors are generally 

perceived as those producing wild signals whereas in the context of structural health 

monitoring, they are referred to those which produces signals that deviate by a 

specified limit from the expected values. In this section, the limits to be specified are 

determined. 

 

4.3.1 Faulty displacement transducers 

For displacement readings, the procedure in Section 4.2 provides the threshold 

for deciding whether a sensor is unsuitable or “faulty” with respect to the DLV method.  

It should be noted that the user has to decide what the lowest tolerable damage level 

(7% in Section 3.2) is to arrive at the threshold. If the error in a displacement deviates 
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more than 6.5% from the true value, it is classified as faulty and vice versa. In practice, 

the true value is unknown and hence, the �ZV in the matrix of the change in flexibility 

is utilized to identify faulty displacement transducer, as presented in the Section 4.2. 

 

4.3.2 Faulty accelerometers 

Faults in accelerometers are manifested either by additive error or random error 

or both. Details for additive error are given in Abdelghani and Friswell (2004). 

Random error may arise from calibration, noise and environmental effects such as that 

due to background excitation. It may be modeled as a zero-mean white noise added to 

the exact signal. Random error may also be considered as an extension of 

multiplicative error (Abdelghani and Friswell, 2004). 

 From the measured accelerations, the flexibility matrix with reference to the 

sensor locations can be obtained by adopting the eigensystem realization algorithm 

(ERA) (Juang and Pappa, 1985; Pappa et al., 1993; Juang, 1994) in conjunction with an 

algorithm to estimate the flexibility coefficients from state space results (Bernal and 

Gunes, 2004). The 3-D modular truss structure used in Section 4.2 is utilized again to 

generate acceleration responses by applying a dynamic load vertically at node 7. The 

load is simulated by a zero-mean white noise with RMS amplitude of 100 N. The 

amplitude of the applied load is selected such that the RMS of acceleration responses 

are approximately 20 m/s
2
 which fall within the measurement range of the 

accelerometers used in this study (50 g). The vertical accelerations of all thirteen nodes 

at the lower chord of the truss are measured. Node 7 has a collocated sensor-actuator 

pair, which is the minimum requirement in the procedure to compute the flexibility 

matrix (see Fig. 2.8c for location of the nodes) (Bernal and Gunes, 2004). Damage in 

the structure is generated by a 20% reduction in the axial stiffness of element 86. By 
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varying the noise level such that the threshold error in the flexibility matrix established 

in Section 4.2 is reached, the error thresholds of the acceleration signals can be 

established. 

Additive error threshold  

If 0 ( )j ta  is the exact response acceleration at sensor j (j = 1, 2, …, ns) and wa is a 

constant signal with magnitude ranging from 0% to 10% RMS of 0 ( )j ta , the 

contaminated response acceleration at sensor j by additive error can be generated as 

 0( ) ( )j j at t= +a a w  (4.1) 

The flexibility matrix is then computed and compared with the known matrix. The 

procedure is repeated 30 times and the results are presented in Table 4.3. A reasonable 

threshold of 3.1% corresponding to one standard deviation below the mean is 

suggested as the additive error threshold beyond which the error in the identified 

flexibility matrix will exceed 6.5%. The variation of the additive error threshold with 

different single damaged member represented by 20% reduction in the axial stiffness is 

investigated using the same computational procedure with 30 runs. Results of one 

standard deviation below the mean are summarized in Fig. 4.6, indicating that the 

threshold of 3.1% additive error in the acceleration signals can still be employed to 

ensure reliable damage detection using the DLV method. 

To investigate the effect of damage severity on the threshold, the entire range of 

reduction in axial stiffness of element 86 are generated. The threshold additive error 

for each damage severity level is computed and plotted in Fig. 4.7a. When the damage 

is more severe, Fd increases, resulting in higher additive error level the procedure can 

tolerate to obtain the same error in the identified flexibility matrices. From Fig. 4.7a, 

the value of 3.1% is still suggested as the additive error threshold beyond which the 

results from the DLV method are significantly affected. Fig. 4.7a also indicates that the 
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additive error threshold increases monotonically with damage severity and hence may 

be adopted for cases where more than one element are damaged. 

It may be argued that the additive error threshold of 3.1% is too small to be 

practical. However, it is noted that the additive error is easier to detect being a DC shift 

by simple means and only small shift are harder to detect that methods, such as the one 

discussed here, are necessary. The proposed additive threshold is close to the 5% 

additive error employed by Friswell and Inman (1999) and Abdelghani and Friswell 

(2004). 

 

Table 4.3. Additive error level beyond which error in identified flexibility matrices 

exceeds 6.5% 

Mean
Standard 

deviation

One standard 

deviation 

below mean 

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 30 4.2 1.1 3.1

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 30 4.6 1.4 3.2

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 30 4.5 1.4 3.1

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 30 4.9 1.7 3.2

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 30 4.8 1.7 3.1

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 30 4.5 1.4 3.1

7 [1,2,3,4,5,6,7,9,10,11,12,13] 8 30 4 0.5 3.5

8 [1,2,3,4,5,6,7,8,10,11,12,13] 9 30 4.9 1.8 3.1

9 [1,2,3,4,5,6,7,8,9,11,12,13] 10 30 4.4 1.2 3.2

10 [1,2,3,4,5,6,7,8,9,10,12,13] 11 30 4.6 1.0 3.6

11 [1,2,3,4,5,6,7,8,9,10,11,13] 12 30 4.8 1.5 3.3

12 [1,2,3,4,5,6,7,8,9,10,11,12] 13 30 4.3 0.8 3.5

Set No. Sensor numbers
No. of 

samples

Additive error level (%)

Skipped 

sensors
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Fig. 4.6. Additive error thresholds in accelerations beyond which error in flexibility 

matrices will exceed 6.5% 
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Fig. 4.7. (a) Additive error and (b) random error thresholds beyond which errors in 

identified flexibility matrices exceed 6.5% for various damage severities in element 86 

 

Random error threshold  

Similar to the case of additive error, if 
0 ( )j ta  is the exact response acceleration 

measured by sensor j (j = 1, 2, …, ns) and wr(t) is a zero-mean white noise signal with 

RMS ranging from 0% to 60% RMS of 
0 ( )j ta , the contaminated response acceleration 

at sensor j by random error can be simulated as 

 0( ) ( ) ( )j j rt t t= +a a w  (4.2) 
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From the contaminated accelerations, the flexibility matrix is computed and compared 

with the known matrix. The procedure is repeated 30 times and the results are 

summarized in Table 4.4 where element 86 is damaged with 20% reduction in axial 

stiffness. The value of 29% corresponding to one standard deviation below the mean 

can be selected as the threshold random error beyond which error in the identified 

flexibility matrices will exceed 6.5%, leading to erroneous in the damage detection 

results by the DLV method. The same procedure is repeated 30 times for the case 

where one element at a time is prescribed as damaged with 20% reduction in axial 

stiffness. Results which correspond to one standard deviation below the mean are 

plotted in Fig. 4.8, indicating that the threshold random error of 29% in the measured 

accelerations can still be employed to ensure reliable results by the DLV method. 

The effect of damage severity on the random error threshold is similarly 

investigated by varying the reduction in the axial stiffness of element 86 and the results 

plotted in Fig. 4.7b. Similar to the case of additive error, the increment in damage 

severity makes Fd increase, leading to higher random error level the procedure can 

accommodate as shown in Fig. 4.7b. From Fig. 4.7b, the value of 29% is still 

suggested as threshold to demarcate the random error in the accelerations beyond 

which error in the identified flexibility matrix will exceed 6.5% and may lead to 

unreliable results from the DLV method (Tran and Quek, 2006). Results in Fig. 4.7b 

also indicate that the threshold random error increases monotonically with the damage 

severity of element 86, implying that the same threshold can be conservatively used if 

more than one element is damaged.  
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Table 4.4. Random error level beyond which error in identified flexibility matrices 

exceeds 6.5% 

Mean
Standard 

deviation

One standard 

deviation 

below mean

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 30 40.6 7.9 32.7

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 30 37.0 7.7 29.3

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 30 40.9 8.2 32.7

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 30 43.4 8.1 35.3

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 30 41.0 8.4 32.6

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 30 41.4 8.8 32.6

7 [1,2,3,4,5,6,7,9,10,11,12,13] 8 30 43.4 7.8 35.6

8 [1,2,3,4,5,6,7,8,10,11,12,13] 9 30 42.9 8.6 34.3

9 [1,2,3,4,5,6,7,8,9,11,12,13] 10 30 41.0 7.1 33.9

10 [1,2,3,4,5,6,7,8,9,10,12,13] 11 30 43.4 8.8 34.6

11 [1,2,3,4,5,6,7,8,9,10,11,13] 12 30 41.2 7.3 33.9

12 [1,2,3,4,5,6,7,8,9,10,11,12] 13 30 41.6 7.3 34.3

Set No. Sensor numbers
No. of 

samples

Random error level (%)

Skipped 

sensors
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Fig. 4.8. Random error thresholds in accelerations beyond which error in flexibility 

matrices will exceed 6.5% 

 

Hybrid error 

Both the additive and random errors can occur simultaneously.  To simulate this, 

all generated accelerations are shifted away by a value ranging from 0% to 3.1% to 

simulate additive error and zero-mean white noise with RMS ranging from 0% to 29% 

is added to generate random error. The contaminated acceleration at sensor j by hybrid 

error is modeled as 
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 0( ) ( ) ( )j j a rt t t= + +a a w w  (4.3) 

where the symbols have been defined earlier. From the contaminated signals, the 

flexibility matrix is computed and compared with the known matrix to evaluate the 

error. The procedure is repeated 30 times and the values of additive error and random 

error corresponding to one standard deviation below the means are recorded. The 

relationship between additive error and random error beyond which error in the 

identified flexibility matrix will be greater than 6.5% is plotted in Fig. 4.9. For 

example, if the additive error of sensor j is 2%, it will be classified as faulty if the 

random error in sensor j is greater than 22.4%. The above results assume that the error 

is present in all sensors, which can be conservatively applied to real practice where not 

all sensors will have the same degree of error. 

In summary, a displacement transducer is classified as faulty if its reading 

deviates by more than 6.5% from the exact value; an accelerometer is classified as 

faulty if its readings are shifted by more than 3.1% RMS from its exact values or if its 

noise level exceeds 29% RMS of the exact signal or any combination of additive and 

random errors that is outside the curve shown in Fig. 4.9. 
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Fig. 4.9. Relationship between additive and random errors beyond which errors in 

identified flexibility matrices exceed 6.5% 

 

4.4 SE�SOR VALIDATIO� ALGORITHM 

The sensor validation algorithm should start from the identified flexibility 

matrices obtained with reference to the ns sensor locations since this is the starting 

point of the DLV method irrespective of whether displacement transducers or 

accelerometers are used to measure structural responses. 

The algorithm starts by forming all sets containing (ns - 1) sensors. Next, the 

change in flexibility matrix with respect to the (ns - 1) sensor locations of each set is 

computed, based on which SVD is performed to identify the �ZV. The idea behind the 

sensor validation algorithm is that any significant error in the identified flexibility 

matrices will increase the �ZV. Hence, the set producing the minimum �ZV will 

contain all the “healthy” sensors and sensors which do not belong to this set may be 

classified as faulty. If more than one set, says �1 sets, produces the smallest �ZV, then 

the combinations of (ns - 2) sensors are next considered until the criterion that one set 

(�1 = 1) produces the smallest �ZV is met. The algorithm is also terminated if all sets 
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produce the same �ZV (�1 is assigned zero) or the remaining sensors for each set are 2. 

The former means that either all sensors are in good condition or they are all faulty 

(which is assumed unlikely). The latter implies that at least (ns - 1) sensors are faulty 

and it will be concluded that the data are unsuitable for damage assessment with the 

DLV method. The algorithm is summarized in Fig. 4.10. 

The algorithm works provided that ns is greater than 2 since at least 2 

measurements are required to form a matrix before any SVD can be performed to 

compute the �ZV. With ns = 2, only 1 set of sensors can be formulated and the �ZV 

cannot be compared to validate the sensors. This algorithm only assess whether the 

measurements can be used with the DLV method to obtain reliable damage detection 

results. It is unable to differentiate the types of errors, namely whether the error is an 

additive, random or hybrid. However, if an accelerometer is classified as faulty, the 

error will be either additive, random or hybrid as defined in Section 4.3.2. 
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Fig. 4.10 Flow chart for sensor validation algorithm 

* If all sets produce the same �ZV, �1 is assigned zero. 

 

4.5 DISPLACEME�T TRA�SDUCER VALIDATIO� 

4.5.1 �umerical example 

The 3-D modular truss structure shown in Fig. 2.8 with specifications of the truss 

members shown in Table 2.2 is used to generate displacement responses. Vertical 
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displacement responses of all 13 nodes at the lower chord of the truss are monitored. 

To generate displacement responses which fall within the range of the displacement 

transducers used (10 mm displacement transducers, model CDP), the magnitudes of 

the excited load is selected to be 921.5 N, resulting in displacement responses of 

approximately 2 mm. Damage in the truss is generated by equivalently imposing 20% 

reduction in axial stiffness of element 86. The reference or “healthy” state of the 

structure is associated with the case where all sensors are “healthy”; the damaged state 

of the structure is associated with the case where some sensors are faulty. Two cases of 

faulty sensors are investigated, namely (1) sensor 8 is faulty; and (2) sensors 8 and 10 

are faulty. Locations of sensors are given in Fig. 2.8c. The fault is generated by 10% 

positive shift of the readings of the affected sensors from the actual readings. At first, it 

is assumed that all “healthy” sensors are noise free. The presence of noise in the 

“healthy” sensors will be investigated later in this section. 

Sensor 8 faulty 

From 13 sensors, 13 sets of signal data each comprising 12 sensors are 

formulated. From the response displacements of each set, the flexibility matrices with 

respect to the sensor locations at both the reference and the damaged states are 

computed following the procedure presented in Section 2.3. From the difference in 

flexibility matrices, SVD is performed to identify the �ZV. The results in the upper 

portion of Table 4.5 show that only set number 8 produces the smallest �ZV = 1, 

implying that �1 = 1 and that set number 8 contains all healthy sensors. Sensor 8 which 

does not belong to set number 8 is suspected as faulty. To examine this result further, 

the sensor validation is performed on the 12 sensors belonging to set number 8. 

Similarly, 12 sets of signal data, each contains 11 sensors are formulated and the �ZV 

for each set identified. Results in the lower portion of Table 4.5 show that the �ZV 
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cannot be reduced to zero. Following the sensor validation algorithm, the 12 sensors 

are classified as healthy and the �ZV in the 12 sets at the lower portion of Table 4.5 

may be attributed to the presence of structural damage or the presence of measurement 

noise, reinforcing that set number 8 in the upper portion of Table 4.5 contains all 

healthy sensors and sensor 8 is faulty.  

 

Table 4.5. Sensor validation results (element 86 damaged, sensor 8 faulty, k = 1 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 2 8 [1,2,3,4,5,6,7,9,10,11,12,13] 1

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 9 [1,2,3,4,5,6,7,8,10,11,12,13] 2

3 [1,2,4,5,6,7,8,9,10,11,12,13] 2 10 [1,2,3,4,5,6,7,8,9,11,12,13] 2

4 [1,2,3,5,6,7,8,9,10,11,12,13] 2 11 [1,2,3,4,5,6,7,8,9,10,12,13] 2

5 [1,2,3,4,6,7,8,9,10,11,12,13] 2 12 [1,2,3,4,5,6,7,8,9,10,11,13] 2

6 [1,2,3,4,5,7,8,9,10,11,12,13] 2 13 [1,2,3,4,5,6,7,8,9,10,11,12] 2

7 [1,2,3,4,5,6,8,9,10,11,12,13]

1a [2,3,4,5,6,7,9,10,11,12,13] 1 7a [1,2,3,4,5,6,9,10,11,12,13] 1

2a [1,3,4,5,6,7,9,10,11,12,13] 1 8a [1,2,3,4,5,6,7,10,11,12,13] 1

3a [1,2,4,5,6,7,9,10,11,12,13] 1 9a [1,2,3,4,5,6,7,9,11,12,13] 1

4a [1,2,3,5,6,7,9,10,11,12,13] 1 10a [1,2,3,4,5,6,7,9,10,12,13] 1

5a [1,2,3,4,6,7,9,10,11,12,13] 1 11a [1,2,3,4,5,6,7,9,10,11,13] 1

6a [1,2,3,4,5,7,9,10,11,12,13] 1 12a [1,2,3,4,5,6,7,9,10,11,12] 1  

 

Sensors 8 and 10 faulty 

Following the same procedure as above, 13 sets each comprises 12 sensors are 

formulated to compute the corresponding flexibility matrices with respect to the sensor 

locations at the reference and the damaged states of the structure. From the difference 

in the flexibility matrices at each set, the �ZV is computed and shown in Table 4.6. Set 

numbers 8 and 10 produce the smallest �ZV = 2, implying that �1 = 2. Since there are 

more than 1 set producing the smallest �ZV, 78 combinatorial sets of 11 sensors are 

next considered. From each set of measurements, the flexibility matrices are computed 

for the reference and the damaged states of the structure based on which the �ZV is 

identified and shown in upper portion of Table 4.7. The �ZV is minimal for set number 
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65 where sensors 8 and 10 are not present, indicating that they may be faulty. For 

further investigation, the sensor validation algorithm is performed for the 11 sensors in 

set number 65. Results in the lower portion of Table 4.7 indicate that the �ZV for each 

set cannot be further reduced. Following the sensor validation algorithm, the 11 

sensors belonging to set number 65 in the upper portion of Table 4.7 are healthy, 

reinforcing that sensors 8 and 10 are in fact faulty. 

 

Table 4.6. Sensor validation results (element 86 damaged, sensors 8 & 10 faulty, k = 1) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 3 8 [1,2,3,4,5,6,7,9,10,11,12,13] 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 3 9 [1,2,3,4,5,6,7,8,10,11,12,13] 3

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 10 [1,2,3,4,5,6,7,8,9,11,12,13] 2

4 [1,2,3,5,6,7,8,9,10,11,12,13] 3 11 [1,2,3,4,5,6,7,8,9,10,12,13] 3

5 [1,2,3,4,6,7,8,9,10,11,12,13] 3 12 [1,2,3,4,5,6,7,8,9,10,11,13] 3

6 [1,2,3,4,5,6,8,9,10,11,12,13] 3 13 [1,2,3,4,5,6,7,8,9,10,11,12] 3

7 [1,2,3,4,5,6,7,9,10,11,12,13] 3  
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Table 4.7. Sensor validation results (element 86 damaged, sensors 8 & 10 faulty, k = 2) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [3,4,5,6,7,8,9,10,11,12,13] 3 40 [1,2,3,5,6,7,8,9,10,12,13] 3

2 [2,4,5,6,7,8,9,10,11,12,13] 3 41 [1,2,3,5,6,7,8,9,10,11,13] 3

3 [2,3,5,6,7,8,9,10,11,12,13] 3 42 [1,2,3,5,6,7,8,9,10,11,12] 3

4 [2,3,4,6,7,8,9,10,11,12,13] 3 43 [1,2,3,4,7,8,9,10,11,12,13] 3

5 [2,3,4,5,7,8,9,10,11,12,13] 3 44 [1,2,3,4,6,8,9,10,11,12,13] 3

6 [2,3,4,5,6,8,9,10,11,12,13] 3 45 [1,2,3,4,6,7,9,10,11,12,13] 2

7 [2,3,4,5,6,7,9,10,11,12,13] 2 46 [1,2,3,4,6,7,8,10,11,12,13] 3

8 [2,3,4,5,6,7,8,10,11,12,13] 3 47 [1,2,3,4,6,7,8,9,11,12,13] 2

9 [2,3,4,5,6,7,8,9,11,12,13] 2 48 [1,2,3,4,6,7,8,9,10,12,13] 3

10 [2,3,4,5,6,7,8,9,10,12,13] 3 49 [1,2,3,4,6,7,8,9,10,11,13] 3

11 [2,3,4,5,6,7,8,9,10,11,13] 3 50 [1,2,3,4,6,7,8,9,10,11,12] 3

12 [2,3,4,5,6,7,8,9,10,11,12] 3 51 [1,2,3,4,5,8,9,10,11,12,13] 3

13 [1,4,5,6,7,8,9,10,11,12,13] 3 52 [1,2,3,4,5,7,9,10,11,12,13] 2

14 [1,3,5,6,7,8,9,10,11,12,13] 3 53 [1,2,3,4,5,7,8,10,11,12,13] 3

15 [1,3,4,6,7,8,9,10,11,12,13] 3 54 [1,2,3,4,5,7,8,9,11,12,13] 2

16 [1,3,4,5,7,8,9,10,11,12,13] 3 55 [1,2,3,4,5,7,8,9,10,12,13] 3

17 [1,3,4,5,6,8,9,10,11,12,13] 3 56 [1,2,3,4,5,7,8,9,10,11,13] 3

18 [1,3,4,5,6,7,9,10,11,12,13] 2 57 [1,2,3,4,5,7,8,9,10,11,12] 3

19 [1,3,4,5,6,7,8,10,11,12,13] 3 58 [1,2,3,4,5,6,9,10,11,12,13] 2

20 [1,3,4,5,6,7,8,9,11,12,13] 2 59 [1,2,3,4,5,6,8,10,11,12,13] 3

21 [1,3,4,5,6,7,8,9,10,12,13] 3 60 [1,2,3,4,5,6,8,9,11,12,13] 2

22 [1,3,4,5,6,7,8,9,10,11,13] 3 61 [1,2,3,4,5,6,8,9,10,12,13] 3

23 [1,3,4,5,6,7,8,9,10,11,12] 3 62 [1,2,3,4,5,6,8,9,10,11,13] 3

24 [1,2,5,6,7,8,9,10,11,12,13] 3 63 [1,2,3,4,5,6,8,9,10,11,12] 3

25 [1,2,4,6,7,8,9,10,11,12,13] 3 64 [1,2,3,4,5,6,7,10,11,12,13] 2

26 [1,2,4,5,7,8,9,10,11,12,13] 3 65 [1,2,3,4,5,6,7,9,11,12,13] 1

27 [1,2,4,5,6,8,9,10,11,12,13] 3 66 [1,2,3,4,5,6,7,9,10,12,13] 2

28 [1,2,4,5,6,7,9,10,11,12,13] 2 67 [1,2,3,4,5,6,7,9,10,11,13] 2

29 [1,2,4,5,6,7,8,10,11,12,13] 3 68 [1,2,3,4,5,6,7,9,10,11,12] 2

30 [1,2,4,5,6,7,8,9,11,12,13] 2 69 [1,2,3,4,5,6,7,8,11,12,13] 2

31 [1,2,4,5,6,7,8,9,10,12,13] 3 70 [1,2,3,4,5,6,7,8,10,12,13] 3

32 [1,2,4,5,6,7,8,9,10,11,13] 3 71 [1,2,3,4,5,6,7,8,10,11,13] 3

33 [1,2,4,5,6,7,8,9,10,11,12] 3 72 [1,2,3,4,5,6,7,8,10,11,12] 3

34 [1,2,3,6,7,8,9,10,11,12,13] 3 73 [1,2,3,4,5,6,7,8,9,12,13] 2

35 [1,2,3,5,7,8,9,10,11,12,13] 3 74 [1,2,3,4,5,6,7,8,9,11,13] 2

36 [1,2,3,5,6,8,9,10,11,12,13] 3 75 [1,2,3,4,5,6,7,8,9,11,12] 2

37 [1,2,3,5,6,7,9,10,11,12,13] 2 76 [1,2,3,4,5,6,7,8,9,10,13] 3

38 [1,2,3,5,6,7,8,10,11,12,13] 3 77 [1,2,3,4,5,6,7,8,9,10,12] 3

39 [1,2,3,5,6,7,8,9,11,12,13] 2 78 [1,2,3,4,5,6,7,8,9,10,11] 3

1a [2,3,4,5,6,7,9,11,12,13] 1 7a [1,2,3,4,5,6,9,11,12,13] 1

2a [1,3,4,5,6,7,9,11,12,13] 1 8a [1,2,3,4,5,6,7,11,12,13] 1

3a [1,2,4,5,6,7,9,11,12,13] 1 9a [1,2,3,4,5,6,7,9,12,13] 1

4a [1,2,3,5,6,7,9,11,12,13] 1 10a [1,2,3,4,5,6,7,9,11,13] 1

5a [1,2,3,4,6,7,9,11,12,13] 1 11a [1,2,3,4,5,6,7,9,11,12] 1

6a [1,2,3,4,5,7,9,11,12,13] 1  
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Sensor validation with noisy data   

To investigate the effect of noise on the performance of the sensor validation 

algorithm, the above example is performed again where zero-mean white noise with 

RMS of 5% RMS of the displacement responses is added to all the displacement 

responses to generate contaminated data. For the case where sensor 8 is faulty, the 

�ZV for the 13 sets of 12 sensors are computed and shown in the upper portion of 

Table 4.8. Though the number of �ZV in set number 8 increases from 1 (corresponding 

to the case where the data is noise-free as shown in the upper portion of Table 4.5) to 

2, sensor 8 is still correctly identified as faulty since set number 8, which produces the 

smallest �ZV = 2, does not comprise sensor 8. This conclusion is reinforced by 

performing the sensor validation algorithm on the readings of the 12 sensors in set 

number 8. Results in the lower portion of Table 4.8 assure that sensor 8 is indeed 

faulty. Similar trend is also observed for the case where sensors 8 and 10 are faulty as 

the results shown in Tables 4.9-4.10. 

 

Table 4.8. Sensor validation results (element 86 damaged, sensor 8 faulty, k = 1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 3 8 [1,2,3,4,5,6,7,9,10,11,12,13] 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 3 9 [1,2,3,4,5,6,7,8,10,11,12,13] 3

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 10 [1,2,3,4,5,6,7,8,9,11,12,13] 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 3 11 [1,2,3,4,5,6,7,8,9,10,12,13] 3

5 [1,2,3,4,6,7,8,9,10,11,12,13] 3 12 [1,2,3,4,5,6,7,8,9,10,11,13] 3

6 [1,2,3,4,5,7,8,9,10,11,12,13] 3 13 [1,2,3,4,5,6,7,8,9,10,11,12] 3

7 [1,2,3,4,5,6,8,9,10,11,12,13] 3

1a [2,3,4,5,6,7,9,10,11,12,13] 2 7a [1,2,3,4,5,6,9,10,11,12,13] 2

2a [1,3,4,5,6,7,9,10,11,12,13] 2 8a [1,2,3,4,5,6,7,10,11,12,13] 2

3a [1,2,4,5,6,7,9,10,11,12,13] 2 9a [1,2,3,4,5,6,7,9,11,12,13] 2

4a [1,2,3,5,6,7,9,10,11,12,13] 2 10a [1,2,3,4,5,6,7,9,10,12,13] 2

5a [1,2,3,4,6,7,9,10,11,12,13] 2 11a [1,2,3,4,5,6,7,9,10,11,13] 2

6a [1,2,3,4,5,7,9,10,11,12,13] 2 12a [1,2,3,4,5,6,7,9,10,11,12] 2  

 



 169 

Table 4.9. Sensor validation results (element 86 damaged, sensors 8 & 10 faulty, k = 1) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 4 8 [1,2,3,4,5,6,7,9,10,11,12,13] 3

2 [1,3,4,5,6,7,8,9,10,11,12,13] 4 9 [1,2,3,4,5,6,7,8,10,11,12,13] 4

3 [1,2,4,5,6,7,8,9,10,11,12,13] 4 10 [1,2,3,4,5,6,7,8,9,11,12,13] 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 11 [1,2,3,4,5,6,7,8,9,10,12,13] 4

5 [1,2,3,4,6,7,8,9,10,11,12,13] 4 12 [1,2,3,4,5,6,7,8,9,10,11,13] 4

6 [1,2,3,4,5,6,8,9,10,11,12,13] 4 13 [1,2,3,4,5,6,7,8,9,10,11,12] 4

7 [1,2,3,4,5,6,7,9,10,11,12,13] 4  
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Table 4.10. Sensor validation results (element 86 damaged, sensors 8 & 10 faulty, k = 

1) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [3,4,5,6,7,8,9,10,11,12,13] 4 40 [1,2,3,5,6,7,8,9,10,12,13] 4

2 [2,4,5,6,7,8,9,10,11,12,13] 4 41 [1,2,3,5,6,7,8,9,10,11,13] 4

3 [2,3,5,6,7,8,9,10,11,12,13] 4 42 [1,2,3,5,6,7,8,9,10,11,12] 4

4 [2,3,4,6,7,8,9,10,11,12,13] 4 43 [1,2,3,4,7,8,9,10,11,12,13] 4

5 [2,3,4,5,7,8,9,10,11,12,13] 4 44 [1,2,3,4,6,8,9,10,11,12,13] 4

6 [2,3,4,5,6,8,9,10,11,12,13] 4 45 [1,2,3,4,6,7,9,10,11,12,13] 3

7 [2,3,4,5,6,7,9,10,11,12,13] 3 46 [1,2,3,4,6,7,8,10,11,12,13] 4

8 [2,3,4,5,6,7,8,10,11,12,13] 4 47 [1,2,3,4,6,7,8,9,11,12,13] 3

9 [2,3,4,5,6,7,8,9,11,12,13] 3 48 [1,2,3,4,6,7,8,9,10,12,13] 4

10 [2,3,4,5,6,7,8,9,10,12,13] 4 49 [1,2,3,4,6,7,8,9,10,11,13] 4

11 [2,3,4,5,6,7,8,9,10,11,13] 4 50 [1,2,3,4,6,7,8,9,10,11,12] 4

12 [2,3,4,5,6,7,8,9,10,11,12] 4 51 [1,2,3,4,5,8,9,10,11,12,13] 4

13 [1,4,5,6,7,8,9,10,11,12,13] 4 52 [1,2,3,4,5,7,9,10,11,12,13] 3

14 [1,3,5,6,7,8,9,10,11,12,13] 4 53 [1,2,3,4,5,7,8,10,11,12,13] 4

15 [1,3,4,6,7,8,9,10,11,12,13] 4 54 [1,2,3,4,5,7,8,9,11,12,13] 3

16 [1,3,4,5,7,8,9,10,11,12,13] 4 55 [1,2,3,4,5,7,8,9,10,12,13] 4

17 [1,3,4,5,6,8,9,10,11,12,13] 4 56 [1,2,3,4,5,7,8,9,10,11,13] 4

18 [1,3,4,5,6,7,9,10,11,12,13] 3 57 [1,2,3,4,5,7,8,9,10,11,12] 4

19 [1,3,4,5,6,7,8,10,11,12,13] 4 58 [1,2,3,4,5,6,9,10,11,12,13] 3

20 [1,3,4,5,6,7,8,9,11,12,13] 3 59 [1,2,3,4,5,6,8,10,11,12,13] 4

21 [1,3,4,5,6,7,8,9,10,12,13] 4 60 [1,2,3,4,5,6,8,9,11,12,13] 3

22 [1,3,4,5,6,7,8,9,10,11,13] 4 61 [1,2,3,4,5,6,8,9,10,12,13] 4

23 [1,3,4,5,6,7,8,9,10,11,12] 4 62 [1,2,3,4,5,6,8,9,10,11,13] 4

24 [1,2,5,6,7,8,9,10,11,12,13] 4 63 [1,2,3,4,5,6,8,9,10,11,12] 4

25 [1,2,4,6,7,8,9,10,11,12,13] 4 64 [1,2,3,4,5,6,7,10,11,12,13] 3

26 [1,2,4,5,7,8,9,10,11,12,13] 4 65 [1,2,3,4,5,6,7,9,11,12,13] 2

27 [1,2,4,5,6,8,9,10,11,12,13] 4 66 [1,2,3,4,5,6,7,9,10,12,13] 3

28 [1,2,4,5,6,7,9,10,11,12,13] 3 67 [1,2,3,4,5,6,7,9,10,11,13] 3

29 [1,2,4,5,6,7,8,10,11,12,13] 4 68 [1,2,3,4,5,6,7,9,10,11,12] 3

30 [1,2,4,5,6,7,8,9,11,12,13] 3 69 [1,2,3,4,5,6,7,8,11,12,13] 3

31 [1,2,4,5,6,7,8,9,10,12,13] 4 70 [1,2,3,4,5,6,7,8,10,12,13] 4

32 [1,2,4,5,6,7,8,9,10,11,13] 4 71 [1,2,3,4,5,6,7,8,10,11,13] 4

33 [1,2,4,5,6,7,8,9,10,11,12] 4 72 [1,2,3,4,5,6,7,8,10,11,12] 4

34 [1,2,3,6,7,8,9,10,11,12,13] 4 73 [1,2,3,4,5,6,7,8,9,12,13] 3

35 [1,2,3,5,7,8,9,10,11,12,13] 4 74 [1,2,3,4,5,6,7,8,9,11,13] 3

36 [1,2,3,5,6,8,9,10,11,12,13] 4 75 [1,2,3,4,5,6,7,8,9,11,12] 3

37 [1,2,3,5,6,7,9,10,11,12,13] 3 76 [1,2,3,4,5,6,7,8,9,10,13] 4

38 [1,2,3,5,6,7,8,10,11,12,13] 4 77 [1,2,3,4,5,6,7,8,9,10,12] 4

39 [1,2,3,5,6,7,8,9,11,12,13] 3 78 [1,2,3,4,5,6,7,8,9,10,11] 4

1a [2,3,4,5,6,7,9,11,12,13] 2 7a [1,2,3,4,5,6,9,11,12,13] 2

2a [1,3,4,5,6,7,9,11,12,13] 2 8a [1,2,3,4,5,6,7,11,12,13] 2

3a [1,2,4,5,6,7,9,11,12,13] 2 9a [1,2,3,4,5,6,7,9,12,13] 2

4a [1,2,3,5,6,7,9,11,12,13] 2 10a [1,2,3,4,5,6,7,9,11,13] 2

5a [1,2,3,4,6,7,9,11,12,13] 2 11a [1,2,3,4,5,6,7,9,11,12] 2

6a [1,2,3,4,5,7,9,11,12,13] 2  
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4.5.2 Experimental example 

The experimental truss in Section 2.9.2 is employed again to generate 

displacement responses (refer to Fig. 2.18 for the experimental truss and Table 2.2 for 

specifications of the truss members). The node and element numbers of the structure 

are given in Fig. 2.8. Thirteen 10 mm displacement transducers (model CDP) and a 

data logger (model TDS-303) are employed to monitor the vertical displacements of all 

nodes at the lower chords of the truss. The positions and numbers of the displacement 

transducers are shown in Fig. 2.8c. A static load of 921.5 N, which can create 

displacement responses of approximately 2 mm, is shifted through all the 13 monitored 

nodes at the lower chord of the truss at both the reference and the damaged states to 

generate displacement responses to estimate the flexibility matrices formulated with 

respect to the sensor locations. Damage in the truss is generated by changing element 

86 from steel to aluminum tube (specifications of the tubes are given in Table 2.2). 

From readings of the 13 displacement transducers, 13 sets of 12 accelerometers 

are formulated. Next, flexibility matrices with respect to the sensor locations of all 13 

sets are computed for both the reference and the damaged states of the structure. 

Singular value decompositions are then performed on the change in flexibility matrices 

to identify the �ZV and results are tabulated in Table 4.11. Because all sets of 12 

sensors produce the same �ZV = 2, �1 is assigned zero, indicating that all sensors are 

indeed healthy. 
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Table 4.11. Experimental results for sensor validation (element 86 damaged, k = 1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 2 8 [1,2,3,4,5,6,7,9,10,11,12,13] 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 9 [1,2,3,4,5,6,7,8,10,11,12,13] 2

3 [1,2,4,5,6,7,8,9,10,11,12,13] 2 10 [1,2,3,4,5,6,7,8,9,11,12,13] 2

4 [1,2,3,5,6,7,8,9,10,11,12,13] 2 11 [1,2,3,4,5,6,7,8,9,10,12,13] 2

5 [1,2,3,4,6,7,8,9,10,11,12,13] 2 12 [1,2,3,4,5,6,7,8,9,10,11,13] 2

6 [1,2,3,4,5,7,8,9,10,11,12,13] 2 13 [1,2,3,4,5,6,7,8,9,10,11,12] 2

7 [1,2,3,4,5,6,8,9,10,11,12,13]  

 

To further assess the performance of the sensor validation algorithm with 

measurement error using experimental data, 2 cases of faulty sensors are simulated, 

namely (1) fault in sensor 8; and (2) faults in both sensors 8 and 10. The fault is 

generated by multiplying the measured values with a constant of 1.5 (gain fault). 

Faulty sensors are associated with both the reference (“healthy”) and damaged states of 

the structure. In other words, measured displacements by faulty sensors at both the 

reference and the damaged states are affected by the faults.  

For the case where sensor 8 is faulty, 13 sets of 12 sensors are formulated and 

the flexibility matrices with respect to the sensor locations of all sets are computed, 

based on which the �ZV is identified and summarized in the upper portion of Table 

4.12. Since only set number 8 produces the smallest �ZV = 2 (�1 = 1), it comprises all 

healthy sensors and sensor 8 is suspected as faulty. This conclusion is confirmed by 

the results at the lower portion of Table 4.12 where the sensor validation algorithm is 

utilized to validate the 12 sensors in set number 8. Correct conclusion is also observed 

for the case where sensors 8 and 10 are faulty based on the summarized results in 

Tables 4.13-4.14. 
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Table 4.12. Experimental results for sensor validation (element 86 damaged, sensor 8 

faulty, k= 1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 4 8 [1,2,3,4,5,6,7,9,10,11,12,13] 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 4 9 [1,2,3,4,5,6,7,8,10,11,12,13] 4

3 [1,2,4,5,6,7,8,9,10,11,12,13] 4 10 [1,2,3,4,5,6,7,8,9,11,12,13] 4

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 11 [1,2,3,4,5,6,7,8,9,10,12,13] 4

5 [1,2,3,4,6,7,8,9,10,11,12,13] 4 12 [1,2,3,4,5,6,7,8,9,10,11,13] 4

6 [1,2,3,4,5,7,8,9,10,11,12,13] 4 13 [1,2,3,4,5,6,7,8,9,10,11,12] 4

7 [1,2,3,4,5,6,8,9,10,11,12,13]

1a [2,3,4,5,6,7,9,10,11,12,13] 2 7a [1,2,3,4,5,6,9,10,11,12,13] 2

2a [1,3,4,5,6,7,9,10,11,12,13] 2 8a [1,2,3,4,5,6,7,10,11,12,13] 2

3a [1,2,4,5,6,7,9,10,11,12,13] 2 9a [1,2,3,4,5,6,7,9,11,12,13] 2

4a [1,2,3,5,6,7,9,10,11,12,13] 2 10a [1,2,3,4,5,6,7,9,10,12,13] 2

5a [1,2,3,4,6,7,9,10,11,12,13] 2 11a [1,2,3,4,5,6,7,9,10,11,13] 2

6a [1,2,3,4,5,7,9,10,11,12,13] 2 12a [1,2,3,4,5,6,7,9,10,11,12] 2  

 

Table 4.13. Experimental results for sensor validation (element 86 damaged, sensors 8 

and 10 faulty, k = 1) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 4 8 [1,2,3,4,5,6,7,9,10,11,12,13] 3

2 [1,3,4,5,6,7,8,9,10,11,12,13] 4 9 [1,2,3,4,5,6,7,8,10,11,12,13] 4

3 [1,2,4,5,6,7,8,9,10,11,12,13] 4 10 [1,2,3,4,5,6,7,8,9,11,12,13] 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 11 [1,2,3,4,5,6,7,8,9,10,12,13] 4

5 [1,2,3,4,6,7,8,9,10,11,12,13] 4 12 [1,2,3,4,5,6,7,8,9,10,11,13] 4

6 [1,2,3,4,5,6,8,9,10,11,12,13] 4 13 [1,2,3,4,5,6,7,8,9,10,11,12] 4

7 [1,2,3,4,5,6,7,9,10,11,12,13] 4  
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Table 4.14. Experimental results for sensor validation (element 86 damaged, sensors 8 

& 10 faulty, k = 2) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [3,4,5,6,7,8,9,10,11,12,13] 4 40 [1,2,3,5,6,7,8,9,10,12,13] 4

2 [2,4,5,6,7,8,9,10,11,12,13] 4 41 [1,2,3,5,6,7,8,9,10,11,13] 4

3 [2,3,5,6,7,8,9,10,11,12,13] 4 42 [1,2,3,5,6,7,8,9,10,11,12] 4

4 [2,3,4,6,7,8,9,10,11,12,13] 4 43 [1,2,3,4,7,8,9,10,11,12,13] 4

5 [2,3,4,5,7,8,9,10,11,12,13] 4 44 [1,2,3,4,6,8,9,10,11,12,13] 4

6 [2,3,4,5,6,8,9,10,11,12,13] 4 45 [1,2,3,4,6,7,9,10,11,12,13] 3

7 [2,3,4,5,6,7,9,10,11,12,13] 3 46 [1,2,3,4,6,7,8,10,11,12,13] 4

8 [2,3,4,5,6,7,8,10,11,12,13] 4 47 [1,2,3,4,6,7,8,9,11,12,13] 3

9 [2,3,4,5,6,7,8,9,11,12,13] 3 48 [1,2,3,4,6,7,8,9,10,12,13] 4

10 [2,3,4,5,6,7,8,9,10,12,13] 4 49 [1,2,3,4,6,7,8,9,10,11,13] 4

11 [2,3,4,5,6,7,8,9,10,11,13] 4 50 [1,2,3,4,6,7,8,9,10,11,12] 4

12 [2,3,4,5,6,7,8,9,10,11,12] 4 51 [1,2,3,4,5,8,9,10,11,12,13] 4

13 [1,4,5,6,7,8,9,10,11,12,13] 4 52 [1,2,3,4,5,7,9,10,11,12,13] 3

14 [1,3,5,6,7,8,9,10,11,12,13] 4 53 [1,2,3,4,5,7,8,10,11,12,13] 4

15 [1,3,4,6,7,8,9,10,11,12,13] 4 54 [1,2,3,4,5,7,8,9,11,12,13] 3

16 [1,3,4,5,7,8,9,10,11,12,13] 4 55 [1,2,3,4,5,7,8,9,10,12,13] 4

17 [1,3,4,5,6,8,9,10,11,12,13] 4 56 [1,2,3,4,5,7,8,9,10,11,13] 4

18 [1,3,4,5,6,7,9,10,11,12,13] 3 57 [1,2,3,4,5,7,8,9,10,11,12] 4

19 [1,3,4,5,6,7,8,10,11,12,13] 4 58 [1,2,3,4,5,6,9,10,11,12,13] 3

20 [1,3,4,5,6,7,8,9,11,12,13] 3 59 [1,2,3,4,5,6,8,10,11,12,13] 4

21 [1,3,4,5,6,7,8,9,10,12,13] 4 60 [1,2,3,4,5,6,8,9,11,12,13] 3

22 [1,3,4,5,6,7,8,9,10,11,13] 4 61 [1,2,3,4,5,6,8,9,10,12,13] 4

23 [1,3,4,5,6,7,8,9,10,11,12] 4 62 [1,2,3,4,5,6,8,9,10,11,13] 4

24 [1,2,5,6,7,8,9,10,11,12,13] 4 63 [1,2,3,4,5,6,8,9,10,11,12] 4

25 [1,2,4,6,7,8,9,10,11,12,13] 4 64 [1,2,3,4,5,6,7,10,11,12,13] 3

26 [1,2,4,5,7,8,9,10,11,12,13] 4 65 [1,2,3,4,5,6,7,9,11,12,13] 2

27 [1,2,4,5,6,8,9,10,11,12,13] 4 66 [1,2,3,4,5,6,7,9,10,12,13] 3

28 [1,2,4,5,6,7,9,10,11,12,13] 3 67 [1,2,3,4,5,6,7,9,10,11,13] 3

29 [1,2,4,5,6,7,8,10,11,12,13] 4 68 [1,2,3,4,5,6,7,9,10,11,12] 3

30 [1,2,4,5,6,7,8,9,11,12,13] 3 69 [1,2,3,4,5,6,7,8,11,12,13] 3

31 [1,2,4,5,6,7,8,9,10,12,13] 4 70 [1,2,3,4,5,6,7,8,10,12,13] 4

32 [1,2,4,5,6,7,8,9,10,11,13] 4 71 [1,2,3,4,5,6,7,8,10,11,13] 4

33 [1,2,4,5,6,7,8,9,10,11,12] 4 72 [1,2,3,4,5,6,7,8,10,11,12] 4

34 [1,2,3,6,7,8,9,10,11,12,13] 4 73 [1,2,3,4,5,6,7,8,9,12,13] 3

35 [1,2,3,5,7,8,9,10,11,12,13] 4 74 [1,2,3,4,5,6,7,8,9,11,13] 3

36 [1,2,3,5,6,8,9,10,11,12,13] 4 75 [1,2,3,4,5,6,7,8,9,11,12] 3

37 [1,2,3,5,6,7,9,10,11,12,13] 3 76 [1,2,3,4,5,6,7,8,9,10,13] 4

38 [1,2,3,5,6,7,8,10,11,12,13] 4 77 [1,2,3,4,5,6,7,8,9,10,12] 4

39 [1,2,3,5,6,7,8,9,11,12,13] 3 78 [1,2,3,4,5,6,7,8,9,10,11] 4

1a [2,3,4,5,6,7,9,11,12,13] 2 7a [1,2,3,4,5,6,9,11,12,13] 2

2a [1,3,4,5,6,7,9,11,12,13] 2 8a [1,2,3,4,5,6,7,11,12,13] 2

3a [1,2,4,5,6,7,9,11,12,13] 2 9a [1,2,3,4,5,6,7,9,12,13] 2

4a [1,2,3,5,6,7,9,11,12,13] 2 10a [1,2,3,4,5,6,7,9,11,13] 2

5a [1,2,3,4,6,7,9,11,12,13] 2 11a [1,2,3,4,5,6,7,9,11,12] 2

6a [1,2,3,4,5,7,9,11,12,13] 2  
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4.6 ACCELEROMETER VALIDATIO� 

4.6.1 �umerical example 

The 3-D modular truss structure shown in Fig. 2.8 is used again to generate 

acceleration responses. The truss is excited by a vertical zero-mean white noise load at 

node 7 and vertical accelerations of all 13 nodes at the lower chord of the truss are 

monitored. To generate acceleration responses which fall within the range of the 

accelerometers used (50 g), the RMS of magnitudes of the excited load is selected to be 

100 N, resulting in acceleration responses of approximately 20 m/s
2
 in RMS amplitude. 

Damage in the truss is generated by equivalently imposing 20% reduction in axial 

stiffness of element 86. The reference or “healthy” state of the structure is associated 

with the case where all sensors are “healthy”; the damaged state of the structure is 

associated with the case where some sensors are faulty. Two cases of faulty sensors are 

investigated, namely (1) sensor 8 is faulty; and (2) sensors 8 and 10 are faulty. 

Locations of sensors are given in Fig. 2.8c. The fault in sensor 8 is simulated by 

adding a zero-mean white noise signal (random error) having RMS equals to 35% RMS 

of the actual signal  whereas the fault in sensor 10 is simulated by a positive shift 

(additive error) in its amplitudes by an amount equals to magnitude of 3.5% RMS of 

the actual signal. At first, it is assumed that all “healthy” sensors are noise free. The 

presence of noise in the “healthy” sensors will be investigated later in this section. 

Sensor 8 faulty 

From 13 sensors, 12 sets of signal data each comprising 12 sensors, which satisfy 

the minimum requirement that 1 sensor (sensor at node 7) is collocated with the 

actuator, are formulated. From the response accelerations of each set and the simulated 

excitation forces, the flexibility matrices with respect to the sensor locations at both the 
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reference and the damaged states are computed. Based on the difference in flexibility 

matrices, SVD is performed to identify the �ZV. The results in the upper portion of 

Table 4.15 show that only set number 7 produces the smallest �ZV (= 1), implying that 

�1 = 1 and that set number 7 contains all healthy sensors. Sensor 8 which does not 

belong to set number 7 is classified as faulty. For further investigation, the sensor 

validation is performed on the 12 sensors belonging to set number 7. Similarly, 11 sets 

of signal data, each containing 11 sensors and satisfying the requirement that at least 1 

sensor (sensor at node 7) is collocated with the actuator, are formulated and the �ZV 

for each set identified. Results in the lower portion of Table 4.15 show that the �ZV 

cannot be further reduced to zero. Following the sensor validation algorithm, the 12 

sensors in set number 7 are classified as healthy and the �ZV in the 11 sets at the lower 

portion of Table 4.15 may be attributed to the presence of structural damage or the 

round-off error, reinforcing that set number 7 in the upper portion of Table 4.15 

contains all healthy sensors, implying that sensor 8 is faulty.  

To investigate the robustness of the sensor validation algorithm, various zero-

mean white noise levels with RMS ranging from 1% to 100% are added to the 

generated acceleration at sensor 8 to simulate the fault. Performing the same 

computational procedure as above, the number of �ZV for 12 sets of 12 sensors are 

identified and plotted in Fig. 4.11. It can be observed that if the noise level is less than 

29%, all sensors are classified as healthy since all sets produce the same �ZV = 1 and 

hence �1 is set to zero. If the noise level in sensor 8 is greater than 30%, sensor 8 is 

classified as faulty since set number 7 is the only set producing the smallest �ZV = 1 

(�1 = 1). 
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Table 4.15. Sensor validation results (element 86 damaged, sensor 8 faulty, k = 1) 

Set 

No.
Sensor numbers

Skipped 

Sensors
�ZV

Set 

No.
Sensor numbers

Skipped 

Sensors
�ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 2 7 [1,2,3,4,5,6,7,9,10,11,12,13] 8 1

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 2 8 [1,2,3,4,5,6,7,8,10,11,12,13] 9 2

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 2 9 [1,2,3,4,5,6,7,8,9,11,12,13] 10 2

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 2 10 [1,2,3,4,5,6,7,8,9,10,12,13] 11 2

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 2 11 [1,2,3,4,5,6,7,8,9,10,11,13] 12 2

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 2 12 [1,2,3,4,5,6,7,8,9,10,11,12] 13 2

1a [2,3,4,5,6,7,9,10,11,12,13] 1 1 7a [1,2,3,4,5,6,7,10,11,12,13] 9 1

2a [1,3,4,5,6,7,9,10,11,12,13] 2 1 8a [1,2,3,4,5,6,7,9,11,12,13] 10 1

3a [1,2,4,5,6,7,9,10,11,12,13] 3 1 9a [1,2,3,4,5,6,7,9,10,12,13] 11 1

4a [1,2,3,5,6,7,9,10,11,12,13] 4 1 10a [1,2,3,4,5,6,7,9,10,11,13] 12 1

5a [1,2,3,4,6,7,9,10,11,12,13] 5 1 11a [1,2,3,4,5,6,7,9,10,11,12] 13 1

6a [1,2,3,4,5,6,9,10,11,12,13] 7 1  
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Fig. 4.11. Relationship between random error in sensor 8 and �ZV 

 

Sensors 8 and 10 faulty 

Following the same procedure as above, 12 sets each comprises 12 sensors are 

formulated to compute the corresponding flexibility matrices with respect to the sensor 

locations at the reference and the damaged states of the structure. From the difference 

in the flexibility matrices at each set, the �ZV is computed and shown in Table 4.16. 

Set numbers 7 and 9 produce the smallest �ZV = 2, implying that �1 = 2. Since there 
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are more than 1 sets producing the smallest �ZV, 66 combinatorial sets of 11 sensors 

(since sensor at node 7 is required to be present in all sets of sensors) are next 

considered. From each set of measurements, the flexibility matrices are computed for 

the reference and the damaged states of the structure based on which the �ZV is 

identified and shown in upper portion of Table 4.17. The �ZV is minimal for set 

number 53 where sensors 8 and 10 are not present, indicating that they are faulty. For 

further investigation, the sensor validation algorithm is performed for the 11 sensors in 

set number 53. Results in the lower portion of Table 4.17 indicate that the �ZV for 

each set cannot be further reduced. Following the sensor validation algorithm, the 11 

sensors belonging to set number 53 in the upper portion of Table 4.17 are healthy, 

reinforcing that sensors 8 and 10 are in fact faulty. 

To investigate the effect of additive error in sensor 10 on the sensor validation 

result, various additive errors ranging from 0% to 10% are employed to contaminate 

the simulated acceleration at sensor 10 whereas the random error in sensor 8 is kept 

constant at 35%. Following the above procedure by starting with k = 1, the �ZV for all 

12 sets of 12 sensors are computed and plotted in Fig. 4.12a. If the additive error in 

sensor 10 is less than 3.1%, only set number 7 produces the smallest �ZV =1 (�1 = 1), 

indicating that sensor 8 is faulty. If the additive error in sensor 10 is greater than 3.1%, 

set numbers 7 and 9 produce the same smallest �ZV = 2 (�1 = 2). Continuing the 

sensor validation algorithm with k = 2, 66 combinatorial sets of 11 sensors are 

formulated and the results of �ZV for set number 53 are plotted in Fig. 4.12b. Since 

sensors 8 and 10 do not belong to set number 53 which produces the smallest �ZV = 1 

(�1 = 1), they are correctly classified as faulty.   
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Table 4.16. Sensor validation results (element 86 damaged, sensors 8 & 10 faulty, k = 1) 
Set 

No.
Sensor numbers

Skipped 

sensors
�ZV

Set 

No.
Sensor numbers

Skipped 

sensors
�ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 3 7 [1,2,3,4,5,6,7,9,10,11,12,13] 8 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 3 8 [1,2,3,4,5,6,7,8,10,11,12,13] 9 3

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 3 9 [1,2,3,4,5,6,7,8,9,11,12,13] 10 2

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 3 10 [1,2,3,4,5,6,7,8,9,10,12,13] 11 3

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 3 11 [1,2,3,4,5,6,7,8,9,10,11,13] 12 3

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 3 12 [1,2,3,4,5,6,7,8,9,10,11,12] 13 3  

Table 4.17. Sensor validation results (element 86 damaged, sensors 8 & 10 faulty, k = 2) 
Set 

No.
Sensor numbers

Skipped 

sensors
�ZV

Set 

No.
Sensor

Skipped 

sensors
�ZV

1 [3,4,5,6,7,8,9,10,11,12,13] [1,2] 3 34 [1,2,3,5,6,7,8,10,11,12,13] [4,9] 3

2 [2,4,5,6,7,8,9,10,11,12,13] [1,3] 3 35 [1,2,3,5,6,7,8,9,11,12,13] [4,10] 2

3 [2,3,5,6,7,8,9,10,11,12,13] [1,4] 3 36 [1,2,3,5,6,7,8,9,10,12,13] [4,11] 3

4 [2,3,4,6,7,8,9,10,11,12,13] [1,5] 3 37 [1,2,3,5,6,7,8,9,10,11,13] [4,12] 3

5 [2,3,4,5,6,8,9,10,11,12,13] [1,7] 3 38 [1,2,3,5,6,7,8,9,10,11,12] [4,13] 3

6 [2,3,4,5,6,7,9,10,11,12,13] [1,8] 2 39 [1,2,3,4,6,8,9,10,11,12,13] [5,7] 3

7 [2,3,4,5,6,7,8,10,11,12,13] [1,9] 3 40 [1,2,3,4,6,7,9,10,11,12,13] [5,8] 2

8 [2,3,4,5,6,7,8,9,11,12,13] [1,10] 2 41 [1,2,3,4,6,7,8,10,11,12,13] [5,9] 3

9 [2,3,4,5,6,7,8,9,10,12,13] [1,11] 3 42 [1,2,3,4,6,7,8,9,11,12,13] [5,10] 2

10 [2,3,4,5,6,7,8,9,10,11,13] [1,12] 3 43 [1,2,3,4,6,7,8,9,10,12,13] [5,11] 3

11 [2,3,4,5,6,7,8,9,10,11,12] [1,13] 3 44 [1,2,3,4,6,7,8,9,10,11,13] [5,12] 3

12 [1,4,5,6,7,8,9,10,11,12,13] [2,3] 3 45 [1,2,3,4,6,7,8,9,10,11,12] [5,13] 3

13 [1,3,5,6,7,8,9,10,11,12,13] [2,4] 3 46 [1,2,3,4,5,6,9,10,11,12,13] [7,8] 2

14 [1,3,4,6,7,8,9,10,11,12,13] [2,5] 3 47 [1,2,3,4,5,6,8,10,11,12,13] [7,9] 3

15 [1,3,4,5,6,8,9,10,11,12,13] [2,7] 3 48 [1,2,3,4,5,6,8,9,11,12,13] [7,10] 2

16 [1,3,4,5,6,7,9,10,11,12,13] [2,8] 2 49 [1,2,3,4,5,6,8,9,10,12,13] [7,11] 3

17 [1,3,4,5,6,7,8,10,11,12,13] [2,9] 3 50 [1,2,3,4,5,6,8,9,10,11,13] [7,12] 3

18 [1,3,4,5,6,7,8,9,11,12,13] [2,10] 2 51 [1,2,3,4,5,6,8,9,10,11,12] [7,13] 3

19 [1,3,4,5,6,7,8,9,10,12,13] [2,11] 3 52 [1,2,3,4,5,6,7,10,11,12,13] [8,9] 2

20 [1,3,4,5,6,7,8,9,10,11,13] [2,12] 3 53 [1,2,3,4,5,6,7,9,11,12,13] [8,10] 1

21 [1,3,4,5,6,7,8,9,10,11,12] [2,13] 3 54 [1,2,3,4,5,6,7,9,10,12,13] [8,11] 2

22 [1,2,5,6,7,8,9,10,11,12,13] [3,4] 3 55 [1,2,3,4,5,6,7,9,10,11,13] [8,12] 2

23 [1,2,4,6,7,8,9,10,11,12,13] [3,5] 3 56 [1,2,3,4,5,6,7,9,10,11,12] [8,13] 2

24 [1,2,4,5,6,8,9,10,11,12,13] [3,7] 3 57 [1,2,3,4,5,6,7,8,11,12,13] [9,10] 2

25 [1,2,4,5,6,7,9,10,11,12,13] [3,8] 2 58 [1,2,3,4,5,6,7,8,10,12,13] [9,11] 3

26 [1,2,4,5,6,7,8,10,11,12,13] [3,9] 3 59 [1,2,3,4,5,6,7,8,10,11,13] [9,12] 3

27 [1,2,4,5,6,7,8,9,11,12,13] [3,10] 2 60 [1,2,3,4,5,6,7,8,10,11,12] [9,13] 3

28 [1,2,4,5,6,7,8,9,10,12,13] [3,11] 3 61 [1,2,3,4,5,6,7,8,9,12,13] [10,11] 2

29 [1,2,4,5,6,7,8,9,10,11,13] [3,12] 3 62 [1,2,3,4,5,6,7,8,9,11,13] [10,12] 2

30 [1,2,4,5,6,7,8,9,10,11,12] [3,13] 3 63 [1,2,3,4,5,6,7,8,9,11,12] [10,13] 2

31 [1,2,3,6,7,8,9,10,11,12,13] [4,5] 3 64 [1,2,3,4,5,6,7,8,9,10,13] [11,12] 3

32 [1,2,3,5,6,8,9,10,11,12,13] [4,7] 3 65 [1,2,3,4,5,6,7,8,9,10,12] [11,13] 3

33 [1,2,3,5,6,7,9,10,11,12,13] [4,8] 2 66 [1,2,3,4,5,6,7,8,9,10,11] [12,13] 3

1a [2,3,4,5,6,7,9,11,12,13] 1 1 6a [1,2,3,4,5,6,9,11,12,13] 7 1

2a [1,3,4,5,6,7,9,11,12,13] 2 1 7a [1,2,3,4,5,6,7,11,12,13] 9 1

3a [1,2,4,5,6,7,9,11,12,13] 3 1 8a [1,2,3,4,5,6,7,9,12,13] 11 1

4a [1,2,3,5,6,7,9,11,12,13] 4 1 9a [1,2,3,4,5,6,7,9,11,13] 12 1

5a [1,2,3,4,6,7,9,11,12,13] 5 1 10a [1,2,3,4,5,6,7,9,11,12] 13 1  
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Fig. 4.12. Relationship between additive error in sensor 10 and �ZV (35% noise in 

sensor 8) 

 

Sensor validation with noisy data   

To investigate the effect of noise on the performance of the sensor validation 

algorithm, the above example is performed again where zero-mean white noise with 

RMS of (i) 5%, and (ii) 10% RMS of the signal is added to all the response 

accelerations and the input force to generate contaminated data. For the case where 

sensor 8 is faulty, the �ZV for the 12 sets of 12 sensors are computed and shown in the 

upper portion of Table 4.18. Though the number of �ZV in set number 7 increases 

from 1 (corresponding to the case where the data is noise-free as shown in the upper 

portion of Table 4.15) to 2, sensor 8 is still correctly identified as faulty since set 

number 7, which produces the smallest �ZV = 2, does not comprise sensor 8. The same 

computation is performed for the case where 10% noise is added and sensor 8 is faulty. 

Results of the �ZV for all 12 sets of 12 sensors are shown in the lower portion of Table 

4.18. The increment of noise level from 5% to 10% make the number of �ZV in set 

number 7 increases from 2 to 3. Nevertheless, continuing with the sensor validation 
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algorithm, sensor 8 is still identified correctly as faulty. Similar trend is also observed 

for the case where sensors 8 and 10 are faulty as the results shown in Tables 4.19-4.20. 

In summary, using the threshold of 0.01 introduced in Section 4.3.2 to classify 

�ZV, the number of �ZV increases as the signals get noisier. However, faulty sensors 

can still be identified correctly following the proposed sensor validation algorithm. 

The sensor validation algorithm is able to accommodate the case where readings 

from each faulty sensor are: (i) positively shifted a value equal to 2.5% RMS of the 

measured signal; and (ii) added with a zero-mean white noise with RMS of 25% RMS 

of the measured signal (hybrid error). For the case where sensor 8 is faulty, performing 

the sensor validation algorithm, the computed �ZV for all 12 sets containing 12 

sensors in the upper portion of Table 4.21 identify that the fault is confined to sensor 8. 

For further validating the 12 sensors belonging to set number 7 which produces the 

smallest �ZV = 1, the 11 sets each contains 11 sensors are formulated. The �ZV for 

each set is then computed and shown in the lower portion of Table 4.21. Since all 11 

sets produce the same �ZV = 1, they are classified as healthy, confirming that sensor 8 

is faulty. The same trend is also observed for the case where both sensors 8 and 10 are 

faulty though the results are not presented here. 

 

Faulty sensor in undamaged structure 

The sensor validation algorithm can still work well for the case where the 

structure is not damaged. Performing the algorithm for the case where the structure is 

not damaged and sensor 8 is faulty, the �ZV for all 12 sets of 12 sensors are 

summarized in the upper portion of Table 4.22. Set number 7, which does not contains 

sensor 8, still produces the smallest �ZV = 0, implying that sensor 8 is faulty. 

Performing the sensor validation algorithm on the 12 sensors in set number 7 confirms 
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that they are indeed healthy as results shown in the lower portion of Table 4.22. If the 

simulated accelerations from “healthy” sensors are contaminated with 5% noise, the 

faulty sensor can still be identified correctly based on the results shown in Table 4.23. 

By removing the readings from faulty sensor 8, the DLV method is able to confirm that 

the structure is healthy as shown in Table 4.24 following the intersection scheme. 

Particularly, from the readings of the remaining 12 sensors, the change in flexibility 

matrix with respect to the sensor locations is computed and 10 DLVs are identified. 

Applying these DLVs onto the reference structural model as nodal force vectors 

produces elements (20, 55, 73) as the set of potential damaged elements (PDE). The 

current intersected damaged set (IDS) therefore contains elements (20, 55, 73) and ne 

= 3. By omitting the readings of the sensor at node 11, the readings of the remaining 

11 sensors are used to formulate the flexibility matrices at the reference and the 

damaged states. Performing SVD on the change in flexibility matrix, a set of 9 DLVs is 

identified and when applying onto the reference structural model as nodal force vector 

yields a set of PDE comprising elements (41, 45). Intersecting the set of PDE and the 

current IDS which contains elements (20, 55, 73) gives an empty set of IDS (ne = 0), 

indicating that no element is damaged. Correct conclusion is also observed for the case 

where sensors 8 and 10 are faulty although the results are not presented here. The 

results imply that the sensor validation algorithm can be integrated with the DLV 

method to identify signals that are corrupted besides performing damage detection.  
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Table 4.18. Sensor validation results (element 86 damaged, sensor 8 faulty, 5% & 10% 

noise, k = 1) 

Set 

No.
Sensor numbers

Skipped 

sensors
�ZV

Set 

No.
Sensor numbers

Skipped 

sensors
�ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 3 7 [1,2,3,4,5,6,7,9,10,11,12,13] 8 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 3 8 [1,2,3,4,5,6,7,8,10,11,12,13] 9 3

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 3 9 [1,2,3,4,5,6,7,8,9,11,12,13] 10 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 3 10 [1,2,3,4,5,6,7,8,9,10,12,13] 11 3

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 3 11 [1,2,3,4,5,6,7,8,9,10,11,13] 12 3

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 3 12 [1,2,3,4,5,6,7,8,9,10,11,12] 13 3

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 5 7 [1,2,3,4,5,6,7,9,10,11,12,13] 8 3

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 5 8 [1,2,3,4,5,6,7,8,10,11,12,13] 9 5

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 5 9 [1,2,3,4,5,6,7,8,9,11,12,13] 10 5

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 5 10 [1,2,3,4,5,6,7,8,9,10,12,13] 11 5

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 5 11 [1,2,3,4,5,6,7,8,9,10,11,13] 12 5

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 5 12 [1,2,3,4,5,6,7,8,9,10,11,12] 13 5

5% noise

10% noise
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Table 4.19 Numerical results for sensor validation (element 86 damaged, sensors 8 & 

10 faulty, 5% noise) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 5 7 [1,2,3,4,5,6,7,9,10,11,12,13] 3

2 [1,3,4,5,6,7,8,9,10,11,12,13] 5 8 [1,2,3,4,5,6,7,8,10,11,12,13] 5

3 [1,2,4,5,6,7,8,9,10,11,12,13] 5 9 [1,2,3,4,5,6,7,8,9,11,12,13] 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 5 10 [1,2,3,4,5,6,7,8,9,10,12,13] 5

5 [1,2,3,4,6,7,8,9,10,11,12,13] 5 11 [1,2,3,4,5,6,7,8,9,10,11,13] 5

6 [1,2,3,4,5,6,8,9,10,11,12,13] 5 12 [1,2,3,4,5,6,7,8,9,10,11,12] 5

1 [3,4,5,6,7,8,9,10,11,12,13] 5 34 [1,2,3,5,6,7,8,10,11,12,13] 5

2 [2,4,5,6,7,8,9,10,11,12,13] 5 35 [1,2,3,5,6,7,8,9,11,12,13] 3

3 [2,3,5,6,7,8,9,10,11,12,13] 5 36 [1,2,3,5,6,7,8,9,10,12,13] 5

4 [2,3,4,6,7,8,9,10,11,12,13] 5 37 [1,2,3,5,6,7,8,9,10,11,13] 5

5 [2,3,4,5,6,8,9,10,11,12,13] 5 38 [1,2,3,5,6,7,8,9,10,11,12] 5

6 [2,3,4,5,6,7,9,10,11,12,13] 3 39 [1,2,3,4,6,8,9,10,11,12,13] 5

7 [2,3,4,5,6,7,8,10,11,12,13] 5 40 [1,2,3,4,6,7,9,10,11,12,13] 3

8 [2,3,4,5,6,7,8,9,11,12,13] 3 41 [1,2,3,4,6,7,8,10,11,12,13] 5

9 [2,3,4,5,6,7,8,9,10,12,13] 5 42 [1,2,3,4,6,7,8,9,11,12,13] 3

10 [2,3,4,5,6,7,8,9,10,11,13] 5 43 [1,2,3,4,6,7,8,9,10,12,13] 5

11 [2,3,4,5,6,7,8,9,10,11,12] 5 44 [1,2,3,4,6,7,8,9,10,11,13] 5

12 [1,4,5,6,7,8,9,10,11,12,13] 5 45 [1,2,3,4,6,7,8,9,10,11,12] 5

13 [1,3,5,6,7,8,9,10,11,12,13] 5 46 [1,2,3,4,5,6,9,10,11,12,13] 3

14 [1,3,4,6,7,8,9,10,11,12,13] 5 47 [1,2,3,4,5,6,8,10,11,12,13] 5

15 [1,3,4,5,6,8,9,10,11,12,13] 5 48 [1,2,3,4,5,6,8,9,11,12,13] 3

16 [1,3,4,5,6,7,9,10,11,12,13] 3 49 [1,2,3,4,5,6,8,9,10,12,13] 5

17 [1,3,4,5,6,7,8,10,11,12,13] 5 50 [1,2,3,4,5,6,8,9,10,11,13] 5

18 [1,3,4,5,6,7,8,9,11,12,13] 3 51 [1,2,3,4,5,6,8,9,10,11,12] 5

19 [1,3,4,5,6,7,8,9,10,12,13] 5 52 [1,2,3,4,5,6,7,10,11,12,13] 3

20 [1,3,4,5,6,7,8,9,10,11,13] 5 53 [1,2,3,4,5,6,7,9,11,12,13] 2

21 [1,3,4,5,6,7,8,9,10,11,12] 5 54 [1,2,3,4,5,6,7,9,10,12,13] 3

22 [1,2,5,6,7,8,9,10,11,12,13] 5 55 [1,2,3,4,5,6,7,9,10,11,13] 3

23 [1,2,4,6,7,8,9,10,11,12,13] 5 56 [1,2,3,4,5,6,7,9,10,11,12] 3

24 [1,2,4,5,6,8,9,10,11,12,13] 5 57 [1,2,3,4,5,6,7,8,11,12,13] 3

25 [1,2,4,5,6,7,9,10,11,12,13] 3 58 [1,2,3,4,5,6,7,8,10,12,13] 5

26 [1,2,4,5,6,7,8,10,11,12,13] 5 59 [1,2,3,4,5,6,7,8,10,11,13] 5

27 [1,2,4,5,6,7,8,9,11,12,13] 3 60 [1,2,3,4,5,6,7,8,10,11,12] 5

28 [1,2,4,5,6,7,8,9,10,12,13] 5 61 [1,2,3,4,5,6,7,8,9,12,13] 3

29 [1,2,4,5,6,7,8,9,10,11,13] 5 62 [1,2,3,4,5,6,7,8,9,11,13] 3

30 [1,2,4,5,6,7,8,9,10,11,12] 5 63 [1,2,3,4,5,6,7,8,9,11,12] 3

31 [1,2,3,6,7,8,9,10,11,12,13] 5 64 [1,2,3,4,5,6,7,8,9,10,13] 5

32 [1,2,3,5,6,8,9,10,11,12,13] 5 65 [1,2,3,4,5,6,7,8,9,10,12] 5

33 [1,2,3,5,6,7,9,10,11,12,13] 3 66 [1,2,3,4,5,6,7,8,9,10,11] 5

(k
 =
 2
)

(k
 =
 1
)
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Table 4.20 Numerical results for sensor validation (element 86 damaged, sensors 8 & 

10 faulty, 10% noise) 

Set No. Sensor �ZV Set No. Sensor �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 7 7 [1,2,3,4,5,6,7,9,10,11,12,13] 5

2 [1,3,4,5,6,7,8,9,10,11,12,13] 7 8 [1,2,3,4,5,6,7,8,10,11,12,13] 7

3 [1,2,4,5,6,7,8,9,10,11,12,13] 7 9 [1,2,3,4,5,6,7,8,9,11,12,13] 5

4 [1,2,3,5,6,7,8,9,10,11,12,13] 7 10 [1,2,3,4,5,6,7,8,9,10,12,13] 7

5 [1,2,3,4,6,7,8,9,10,11,12,13] 7 11 [1,2,3,4,5,6,7,8,9,10,11,13] 7

6 [1,2,3,4,5,6,8,9,10,11,12,13] 7 12 [1,2,3,4,5,6,7,8,9,10,11,12] 7

1 [3,4,5,6,7,8,9,10,11,12,13] 7 34 [1,2,3,5,6,7,8,10,11,12,13] 7

2 [2,4,5,6,7,8,9,10,11,12,13] 7 35 [1,2,3,5,6,7,8,9,11,12,13] 5

3 [2,3,5,6,7,8,9,10,11,12,13] 7 36 [1,2,3,5,6,7,8,9,10,12,13] 7

4 [2,3,4,6,7,8,9,10,11,12,13] 7 37 [1,2,3,5,6,7,8,9,10,11,13] 7

5 [2,3,4,5,6,8,9,10,11,12,13] 7 38 [1,2,3,5,6,7,8,9,10,11,12] 7

6 [2,3,4,5,6,7,9,10,11,12,13] 5 39 [1,2,3,4,6,8,9,10,11,12,13] 7

7 [2,3,4,5,6,7,8,10,11,12,13] 7 40 [1,2,3,4,6,7,9,10,11,12,13] 5

8 [2,3,4,5,6,7,8,9,11,12,13] 5 41 [1,2,3,4,6,7,8,10,11,12,13] 7

9 [2,3,4,5,6,7,8,9,10,12,13] 7 42 [1,2,3,4,6,7,8,9,11,12,13] 5

10 [2,3,4,5,6,7,8,9,10,11,13] 7 43 [1,2,3,4,6,7,8,9,10,12,13] 7

11 [2,3,4,5,6,7,8,9,10,11,12] 7 44 [1,2,3,4,6,7,8,9,10,11,13] 7

12 [1,4,5,6,7,8,9,10,11,12,13] 7 45 [1,2,3,4,6,7,8,9,10,11,12] 7

13 [1,3,5,6,7,8,9,10,11,12,13] 7 46 [1,2,3,4,5,6,9,10,11,12,13] 5

14 [1,3,4,6,7,8,9,10,11,12,13] 7 47 [1,2,3,4,5,6,8,10,11,12,13] 7

15 [1,3,4,5,6,8,9,10,11,12,13] 7 48 [1,2,3,4,5,6,8,9,11,12,13] 5

16 [1,3,4,5,6,7,9,10,11,12,13] 5 49 [1,2,3,4,5,6,8,9,10,12,13] 7

17 [1,3,4,5,6,7,8,10,11,12,13] 7 50 [1,2,3,4,5,6,8,9,10,11,13] 7

18 [1,3,4,5,6,7,8,9,11,12,13] 5 51 [1,2,3,4,5,6,8,9,10,11,12] 7

19 [1,3,4,5,6,7,8,9,10,12,13] 7 52 [1,2,3,4,5,6,7,10,11,12,13] 5

20 [1,3,4,5,6,7,8,9,10,11,13] 7 53 [1,2,3,4,5,6,7,9,11,12,13] 4

21 [1,3,4,5,6,7,8,9,10,11,12] 7 54 [1,2,3,4,5,6,7,9,10,12,13] 5

22 [1,2,5,6,7,8,9,10,11,12,13] 7 55 [1,2,3,4,5,6,7,9,10,11,13] 5

23 [1,2,4,6,7,8,9,10,11,12,13] 7 56 [1,2,3,4,5,6,7,9,10,11,12] 5

24 [1,2,4,5,6,8,9,10,11,12,13] 7 57 [1,2,3,4,5,6,7,8,11,12,13] 5

25 [1,2,4,5,6,7,9,10,11,12,13] 5 58 [1,2,3,4,5,6,7,8,10,12,13] 7

26 [1,2,4,5,6,7,8,10,11,12,13] 7 59 [1,2,3,4,5,6,7,8,10,11,13] 7

27 [1,2,4,5,6,7,8,9,11,12,13] 5 60 [1,2,3,4,5,6,7,8,10,11,12] 7

28 [1,2,4,5,6,7,8,9,10,12,13] 7 61 [1,2,3,4,5,6,7,8,9,12,13] 5

29 [1,2,4,5,6,7,8,9,10,11,13] 7 62 [1,2,3,4,5,6,7,8,9,11,13] 5

30 [1,2,4,5,6,7,8,9,10,11,12] 7 63 [1,2,3,4,5,6,7,8,9,11,12] 5

31 [1,2,3,6,7,8,9,10,11,12,13] 7 64 [1,2,3,4,5,6,7,8,9,10,13] 7

32 [1,2,3,5,6,8,9,10,11,12,13] 7 65 [1,2,3,4,5,6,7,8,9,10,12] 7

33 [1,2,3,5,6,7,9,10,11,12,13] 5 66 [1,2,3,4,5,6,7,8,9,10,11] 7

(k
 =
 1
)

(k
 =
 2
)
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Table 4.21. Sensor validation results (element 86 damaged, sensor 8 faulty with hybrid 

error, k=1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 3 7 [1,2,3,4,5,6,7,9,10,11,12,13] 1

2 [1,3,4,5,6,7,8,9,10,11,12,13] 3 8 [1,2,3,4,5,6,7,8,10,11,12,13] 3

3 [1,2,4,5,6,7,8,9,10,11,12,13] 3 9 [1,2,3,4,5,6,7,8,9,11,12,13] 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 3 10 [1,2,3,4,5,6,7,8,9,10,12,13] 3

5 [1,2,3,4,6,7,8,9,10,11,12,13] 3 11 [1,2,3,4,5,6,7,8,9,10,11,13] 3

6 [1,2,3,4,5,6,8,9,10,11,12,13] 3 12 [1,2,3,4,5,6,7,8,9,10,11,12] 3

1a [2,3,4,5,6,7,9,10,11,12,13] 1 7a [1,2,3,4,5,6,7,10,11,12,13] 1

2a [1,3,4,5,6,7,9,10,11,12,13] 1 8a [1,2,3,4,5,6,7,9,11,12,13] 1

3a [1,2,4,5,6,7,9,10,11,12,13] 1 9a [1,2,3,4,5,6,7,9,10,12,13] 1

4a [1,2,3,5,6,7,9,10,11,12,13] 1 10a [1,2,3,4,5,6,7,9,10,11,13] 1

5a [1,2,3,4,6,7,9,10,11,12,13] 1 11a [1,2,3,4,5,6,7,9,10,11,12] 1

6a [1,2,3,4,5,7,9,10,11,12,13] 1  

 

Table 4.22. Sensor validation results (structure healthy, sensor 8 faulty, k = 1) 

Set 

No.
Sensors �ZV

Set 

No.
Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 1 7 [1,2,3,4,5,6,7,9,10,11,12,13] 0

2 [1,3,4,5,6,7,8,9,10,11,12,13] 1 8 [1,2,3,4,5,6,7,8,10,11,12,13] 1

3 [1,2,4,5,6,7,8,9,10,11,12,13] 1 9 [1,2,3,4,5,6,7,8,9,11,12,13] 1

4 [1,2,3,5,6,7,8,9,10,11,12,13] 1 10 [1,2,3,4,5,6,7,8,9,10,12,13] 1

5 [1,2,3,4,6,7,8,9,10,11,12,13] 1 11 [1,2,3,4,5,6,7,8,9,10,11,13] 1

6 [1,2,3,4,5,6,8,9,10,11,12,13] 1 12 [1,2,3,4,5,6,7,8,9,10,11,12] 1

1a [2,3,4,5,6,7,9,10,11,12,13] 0 7a [1,2,3,4,5,6,7,10,11,12,13] 0

2a [1,3,4,5,6,7,9,10,11,12,13] 0 8a [1,2,3,4,5,6,7,9,11,12,13] 0

3a [1,2,4,5,6,7,9,10,11,12,13] 0 9a [1,2,3,4,5,6,7,9,10,12,13] 0

4a [1,2,3,5,6,7,9,10,11,12,13] 0 10a [1,2,3,4,5,6,7,9,10,11,13] 0

5a [1,2,3,4,6,7,9,10,11,12,13] 0 11a [1,2,3,4,5,6,7,9,10,11,12] 0

6a [1,2,3,4,5,7,9,10,11,12,13] 0  
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Table 4.23. Sensor validation results (structure healthy, sensor 8 faulty, 5% noise, k = 

1) 

Set 

No.
Sensors �ZV

Set 

No.
Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 9 7 [1,2,3,4,5,6,7,9,10,11,12,13] 8

2 [1,3,4,5,6,7,8,9,10,11,12,13] 9 8 [1,2,3,4,5,6,7,8,10,11,12,13] 9

3 [1,2,4,5,6,7,8,9,10,11,12,13] 9 9 [1,2,3,4,5,6,7,8,9,11,12,13] 9

4 [1,2,3,5,6,7,8,9,10,11,12,13] 9 10 [1,2,3,4,5,6,7,8,9,10,12,13] 9

5 [1,2,3,4,6,7,8,9,10,11,12,13] 9 11 [1,2,3,4,5,6,7,8,9,10,11,13] 9

6 [1,2,3,4,5,6,8,9,10,11,12,13] 9 12 [1,2,3,4,5,6,7,8,9,10,11,12] 9

1a [2,3,4,5,6,7,9,10,11,12,13] 8 7a [1,2,3,4,5,6,7,10,11,12,13] 8

2a [1,3,4,5,6,7,9,10,11,12,13] 8 8a [1,2,3,4,5,6,7,9,11,12,13] 8

3a [1,2,4,5,6,7,9,10,11,12,13] 8 9a [1,2,3,4,5,6,7,9,10,12,13] 8

4a [1,2,3,5,6,7,9,10,11,12,13] 8 10a [1,2,3,4,5,6,7,9,10,11,13] 8

5a [1,2,3,4,6,7,9,10,11,12,13] 8 11a [1,2,3,4,5,6,7,9,10,11,12] 8

6a [1,2,3,4,5,7,9,10,11,12,13] 8  

 

Table 4.24. Damage detection results using Intersection Scheme and readings of 12 

healthy sensors 

Sensor numbers
Skipped 

sensors

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

ns =12 [1,2,3,4,5,6,7,9,10,11,12,13] 10 [20,55,73] [20,55,73] 3

k=ns- 1= 11 [1,2,3,4,5,6,7,10,11,12,13] 9 9 [41, 45] [20,55,73] [] 0  

 

4.6.2 Experimental example 

The experiment truss in Section 3.5 is employed again to physically generate 

acceleration readings (refer to Fig. 3.12 for the experimental truss and Table 2.2 for 

specifications of the truss members). The node and element numbers of the structure 

are given in Fig. 2.8. Thirteen 50 g accelerometers are used to physically measure 

acceleration responses at all nodes at the lower chord of the structure (see Fig. 2.8c for 

accelerometer numbers and positions). Zero-mean white noise load is generated by a 

shaker with capacity of 75 lbs (334 N) and is applied vertically onto the structure at 

node 7.  The RMS amplitude of the excited load is selected to be 100 N such that 

acceleration responses are within the measurement range of the accelerometers. 

Applied load onto the structure is measured by a force sensor with capacity of 100 lbs 
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(445 N). Damage in the structure is generated by changing element 86 from steel to 

aluminum tube (specifications of the tubes are given in Table 2.2). 

From 13 accelerometers, 12 sets of 12 accelerometers, each satisfying the 

requirement that 1 sensor (at node 7) is collocated with the shaker, are formulated. 

From the readings of the accelerometers and the force sensor, flexibility matrices with 

respect to the sensor locations of all 12 sets are computed for both the reference and 

the damaged states of the structure. Singular value decompositions are then performed 

on the change in flexibility matrices to identify the �ZV and results are tabulated in 

Table 4.25. Because all sets of 12 sensors produce the same �ZV = 2, �1 is assigned 

zero, indicating that all sensors are indeed healthy. 

 

Table 4.25. Experimental results for sensor validation (element 86 damaged, k = 1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 2 7 [1,2,3,4,5,6,7,9,10,11,12,13] 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 2 8 [1,2,3,4,5,6,7,8,10,11,12,13] 2

3 [1,2,4,5,6,7,8,9,10,11,12,13] 2 9 [1,2,3,4,5,6,7,8,9,11,12,13] 2

4 [1,2,3,5,6,7,8,9,10,11,12,13] 2 10 [1,2,3,4,5,6,7,8,9,10,12,13] 2

5 [1,2,3,4,6,7,8,9,10,11,12,13] 2 11 [1,2,3,4,5,6,7,8,9,10,11,13] 2

6 [1,2,3,4,5,6,8,9,10,11,12,13] 2 12 [1,2,3,4,5,6,7,8,9,10,11,12] 2  

 

To further assess the performance of the sensor validation algorithm with 

measurement error using experimental data, 2 cases of faulty sensors are simulated, 

namely (1) fault in sensor 8; and (2) faults in both sensors 8 and 10. Similar to 

Kerschen et al. (2005), the fault in sensor 8 is simulated by multiplying the measured 

signal with a constant of 1.5 (gain fault) whereas measured acceleration by sensor 10 is 

replaced by a zero-mean white noise sequence of the same RMS (failure) to generate 

sensor fault. Faulty sensors are associated with both the reference (“healthy”) and 

damaged states of the structure. In other words, measured accelerations by faulty 

sensors at both the reference and the damaged states are affected by the faults.  
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For the case where sensor 8 is faulty, 12 sets of 12 sensors are formulated and 

the flexibility matrices with respect to the sensor locations of all sets are computed, 

based on which the �ZV is identified and summarized in the upper portion of Table 

4.26. Since only set number 7 produces the smallest �ZV = 1 (�1 = 1), it comprises all 

healthy sensors and sensor 8 is classified as faulty. This conclusion is confirmed by the 

results at the lower portion of Table 4.26 where the sensor validation algorithm is 

performed to validate the 12 sensors in set number 7. Correct conclusion is also 

observed for the case where sensors 8 and 10 are faulty based on the summarized 

results in Tables 4.26-4.27. 

 

Table 4.26. Experimental results for sensor validation (element 86 damaged, sensor 8 

faulty, k= 1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 4 7 [1,2,3,4,5,6,7,9,10,11,12,13] 2

2 [1,3,4,5,6,7,8,9,10,11,12,13] 4 8 [1,2,3,4,5,6,7,8,10,11,12,13] 4

3 [1,2,4,5,6,7,8,9,10,11,12,13] 4 9 [1,2,3,4,5,6,7,8,9,11,12,13] 4

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 10 [1,2,3,4,5,6,7,8,9,10,12,13] 4

5 [1,2,3,4,6,7,8,9,10,11,12,13] 4 11 [1,2,3,4,5,6,7,8,9,10,11,13] 4

6 [1,2,3,4,5,6,8,9,10,11,12,13] 4 12 [1,2,3,4,5,6,7,8,9,10,11,12] 4

1a [2,3,4,5,6,7,9,10,11,12,13] 2 7a [1,2,3,4,5,6,7,10,11,12,13] 2

2a [1,3,4,5,6,7,9,10,11,12,13] 2 8a [1,2,3,4,5,6,7,9,11,12,13] 2

3a [1,2,4,5,6,7,9,10,11,12,13] 2 9a [1,2,3,4,5,6,7,9,10,12,13] 2

4a [1,2,3,5,6,7,9,10,11,12,13] 2 10a [1,2,3,4,5,6,7,9,10,11,13] 2

5a [1,2,3,4,6,7,9,10,11,12,13] 2 11a [1,2,3,4,5,6,7,9,10,11,12] 2

6a [1,2,3,4,5,7,9,10,11,12,13] 2  

 

Table 4.27. Experimental results for sensor validation (element 86 damaged, sensors 8 

and 10 faulty, k = 1) 

Set No. Sensors �ZV Set No. Sensors �ZV

1 [2,3,4,5,6,7,8,9,10,11,12,13] 4 7 [1,2,3,4,5,6,7,9,10,11,12,13] 3

2 [1,3,4,5,6,7,8,9,10,11,12,13] 4 8 [1,2,3,4,5,6,7,8,10,11,12,13] 4

3 [1,2,4,5,6,7,8,9,10,11,12,13] 4 9 [1,2,3,4,5,6,7,8,9,11,12,13] 3

4 [1,2,3,5,6,7,8,9,10,11,12,13] 4 10 [1,2,3,4,5,6,7,8,9,10,12,13] 4

5 [1,2,3,4,6,7,8,9,10,11,12,13] 4 11 [1,2,3,4,5,6,7,8,9,10,11,13] 4

6 [1,2,3,4,5,6,8,9,10,11,12,13] 4 12 [1,2,3,4,5,6,7,8,9,10,11,12] 4  
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Table 4.28. Experimental results for sensor validation (element 86 damaged, sensors 8 

& 10 faulty, k = 2) 

Set No. Sensors �ZV Set No Sensors �ZV

1 [3,4,5,6,7,8,9,10,11,12,13] 4 34 [1,2,3,5,6,7,8,10,11,12,13] 4

2 [2,4,5,6,7,8,9,10,11,12,13] 4 35 [1,2,3,5,6,7,8,9,11,12,13] 3

3 [2,3,5,6,7,8,9,10,11,12,13] 4 36 [1,2,3,5,6,7,8,9,10,12,13] 4

4 [2,3,4,6,7,8,9,10,11,12,13] 4 37 [1,2,3,5,6,7,8,9,10,11,13] 4

5 [2,3,4,5,6,8,9,10,11,12,13] 4 38 [1,2,3,5,6,7,8,9,10,11,12] 4

6 [2,3,4,5,6,7,9,10,11,12,13] 3 39 [1,2,3,4,6,8,9,10,11,12,13] 4

7 [2,3,4,5,6,7,8,10,11,12,13] 4 40 [1,2,3,4,6,7,9,10,11,12,13] 3

8 [2,3,4,5,6,7,8,9,11,12,13] 3 41 [1,2,3,4,6,7,8,10,11,12,13] 4

9 [2,3,4,5,6,7,8,9,10,12,13] 4 42 [1,2,3,4,6,7,8,9,11,12,13] 3

10 [2,3,4,5,6,7,8,9,10,11,13] 4 43 [1,2,3,4,6,7,8,9,10,12,13] 4

11 [2,3,4,5,6,7,8,9,10,11,12] 4 44 [1,2,3,4,6,7,8,9,10,11,13] 4

12 [1,4,5,6,7,8,9,10,11,12,13] 4 45 [1,2,3,4,6,7,8,9,10,11,12] 4

13 [1,3,5,6,7,8,9,10,11,12,13] 4 46 [1,2,3,4,5,6,9,10,11,12,13] 3

14 [1,3,4,6,7,8,9,10,11,12,13] 4 47 [1,2,3,4,5,6,8,10,11,12,13] 4

15 [1,3,4,5,6,8,9,10,11,12,13] 4 48 [1,2,3,4,5,6,8,9,11,12,13] 3

16 [1,3,4,5,6,7,9,10,11,12,13] 3 49 [1,2,3,4,5,6,8,9,10,12,13] 4

17 [1,3,4,5,6,7,8,10,11,12,13] 4 50 [1,2,3,4,5,6,8,9,10,11,13] 4

18 [1,3,4,5,6,7,8,9,11,12,13] 3 51 [1,2,3,4,5,6,8,9,10,11,12] 4

19 [1,3,4,5,6,7,8,9,10,12,13] 4 52 [1,2,3,4,5,6,7,10,11,12,13] 3

20 [1,3,4,5,6,7,8,9,10,11,13] 4 53 [1,2,3,4,5,6,7,9,11,12,13] 2

21 [1,3,4,5,6,7,8,9,10,11,12] 4 54 [1,2,3,4,5,6,7,9,10,12,13] 3

22 [1,2,5,6,7,8,9,10,11,12,13] 4 55 [1,2,3,4,5,6,7,9,10,11,13] 3

23 [1,2,4,6,7,8,9,10,11,12,13] 4 56 [1,2,3,4,5,6,7,9,10,11,12] 3

24 [1,2,4,5,6,8,9,10,11,12,13] 4 57 [1,2,3,4,5,6,7,8,11,12,13] 3

25 [1,2,4,5,6,7,9,10,11,12,13] 3 58 [1,2,3,4,5,6,7,8,10,12,13] 4

26 [1,2,4,5,6,7,8,10,11,12,13] 4 59 [1,2,3,4,5,6,7,8,10,11,13] 4

27 [1,2,4,5,6,7,8,9,11,12,13] 3 60 [1,2,3,4,5,6,7,8,10,11,12] 4

28 [1,2,4,5,6,7,8,9,10,12,13] 4 61 [1,2,3,4,5,6,7,8,9,12,13] 3

29 [1,2,4,5,6,7,8,9,10,11,13] 4 62 [1,2,3,4,5,6,7,8,9,11,13] 3

30 [1,2,4,5,6,7,8,9,10,11,12] 4 63 [1,2,3,4,5,6,7,8,9,11,12] 3

31 [1,2,3,6,7,8,9,10,11,12,13] 4 64 [1,2,3,4,5,6,7,8,9,10,13] 4

32 [1,2,3,5,6,8,9,10,11,12,13] 4 65 [1,2,3,4,5,6,7,8,9,10,12] 4

33 [1,2,3,5,6,7,9,10,11,12,13] 3 66 [1,2,3,4,5,6,7,8,9,10,11] 4  

 

4.7 CO�CLUDI�G REMARKS 

Definition of faulty displacement transducers and accelerometers in the context 

of the DLV method for structural damage detection was introduced in Section 4.3. 

Displacement transducers and accelerometers are classified as faulty if based on their 

readings error in the identified flexibility matrix exceeds 6.5%. An algorithm for 
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sensor validation was then developed in Section 4.4 to identify the “suitable” measured 

signals before further processing in the DLV method to detect structural damage. 

Center to the algorithm is the performance of SVD on different flexibility matrices 

formulated with respect to different sets containing the same number of sensors to 

identify the �ZV, based on which the relative quality among different sets of sensors is 

assessed. The set which produces the smallest �ZV is considered as containing all 

healthy sensors and sensors which do not belong to this set are suspected as faulty. 

The sensor validation algorithm is found applicable to identify both faulty 

displacement transducers and faulty accelerometers. With the presence of 5% noise in 

the simulated displacements, the 2 faulty displacement transducers can still be 

identified correctly. Whereas, 2 faulty accelerometers can also be assessed accurately 

for the case where all simulated accelerations are contaminated by 10% noise. The 

sensor validation algorithm is found applicable to identify faulty sensors for both 

cases, namely whether the structure is healthy or damaged. This characteristic of the 

sensor validation algorithm makes it possible to be integrated with the DLV method to 

identify signals that are not “suitable” besides performing damage detection. The 

performance of the sensor validation algorithm in detecting faulty displacement 

transducers and accelerometers are illustrated using experimental data from a 3-D 

modular truss structure where both gain fault, which is manifested by multiplying the 

actual measured signal with a constant of 1.5, and sensor failure, which is manifested 

by replacing actual measurement by a zero-mean white noise with the same RMS of 

magnitude, can be identified correctly. By ignoring completely the measurement of 

faulty sensors, structural parameters can still be identified correctly using the 

measurements of the remaining sensors. 
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Since the sensor validation algorithm is applicable on the measurement of each 

sensor, its accuracy does not depend on the type of the host structure. Nevertheless, for 

structures other than the 3D truss structure used in this study, the value of 7% for 

detectable level of damaged elements may be set differently, resulting in different 

threshold of noise level below which the damage detection results by the DLV method 

is still reliable. 
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CHAPTER 5 

DAMAGE DETECTIO� VIA DLV  

USI�G WIRELESS SE�SORS 

 

 

5.1 I�TRODUCTIO� 

For reliable damage detection results using the DLV method, adequate number of 

quality sensors must be used and these sensors are traditionally connected to data-

loggers or oscilloscopes with lengthy wires. The cost of installing and maintaining 

such wired sensors can be substantial and they may interfere with the normal 

operations of the structures (Lynch, 2004). The implementation of wireless sensors 

aims to overcome such difficulties.  

Wireless sensors are being implemented in many applications, including 

structural damage detection and various enhancements have been reported in the last 

few years such as the improvement on sampling rate (Hou et al., 2008), the 

improvement on transmission topology (Mechitov et al., 2004). Although measured 

data on board of sensors has been digitalized, when transmitting the raw measured data 

from the sensor nodes to the base station, Nagayama (2007) noted that the percentage 

of lost data is random and can be as high as 86%. Therefore, one challenge in the 

application of wireless sensors in structural damage detection is the improvement in 

the quality of measured data. In this chapter, the set-up of wireless sensor for data 

acquisition is presented in Section 5.2. A data reconstruction algorithm for wireless 

sensors is proposed to estimate lost values resulting from radio frequency (RF) 

transmission problem and will be presented in Section 5.3. Numerical examples are 

performed to assess the robustness of the algorithm in Section 5.4. Comparison with 
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the existing methods in estimating lost data of a signal is also performed to illustrate 

the advantages and limitations of the proposed algorithm. Finally, the performance of 

the lost data reconstruction algorithm and the feasibility of its integration with the DLV 

method to detect structural damage are examined using experimental data from a 3-D 

modular truss structure in Section 5.5. 

 

5.2 WIRELESS SE�SOR �ETWORK 

5.2.1 Hardware platforms 

 The Wireless Sensor Network (WSN) used in this study has been constructed 

using some modifications of the following hardware designed by the University of 

California Berkeley researchers and commercialized by Crossbow Technology, Inc: 

� MICAz mote: MICAz is the latest generation in the Mote families from 

Crossbow Technology. Each MICAz module (2400 MHz to 2483.5 MHz band) 

contains a microprocessor and a radio frequency transceiver. The onboard 

microprocessor (Atmega128L) is programmed using TinyOS-based application 

programs before implementation. The radio (Chipcon CC2420) facilitates 

communication between the sensor and the base station. MICAz supports up to 

250k bits/sec radio data rate, which is much higher than the previous version 

MICA2 with 38.4k bits/sec. The outdoor transmission range of MICAz mote is 

ranging from 75 m to 100 m. 

� MTS310 sensor and data acquisition board: MTS310 is a flexible sensor board 

with a variety of sensing modalities: microphone, sounder, light sensor, 

thermistor, 2-axis accelerometer, and 2-axis magnetometer. In this study, only 

the onboard accelerometer is used and all the other sensing modules are shut 

off to improve sampling rate.  The accelerometer on MTS310 sensor board is a 
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MEMS surface micro-machined 2-axis device, ADXL202JE. The 

accelerometer features a low current draw of less than 1mA. It provides an 

analog signal which is passed through an on-board 10-bit Analog to Digital 

Converter (ADC). 

� MIB520 USB interface board: MIB520 USB interface board is used to program 

or download compiled codes onto a MICAz mote. The MICAz mote has to be 

plugged onto the MIB520 board which is connected to the control PC via a 

USB port. The MICAz node when connected to the MIB520 USB interface 

board functions as a base station for data transfer.  

� A control computer (Windows based, 1GB or more of free space in destination 

drive, 550MB or more of space in C drive). 

Each sensor node is built by connecting a MICAz mote to a MTS310 board 

whereas a base station is built by connecting a MICAz mote to a MIB520 USB 

interface board. 

 

5.2.2 Software platforms 

 TinyOS developed by UC Berkeley is used as the primary operating system for 

the WSN. TinyOS architecture is a totally open source and can support an extensive 

variety of applications by providing tiny foot-print, event driven system, and several 

component libraries. This facilitates easy modification for specific applications with 

high efficiency and reliability. 

 Multi-hop protocol is adopted in this study, facilitating the use of mesh topology. 

Unlike the star topology in which each node only communicates with the base station, 

multi-hop protocol enables nodes to communicate with each other and send data, by 

hopping if necessary, to reach the destination node or the base station. Compared with 
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star topology, mesh topology achieves more reliable communication within the 

network as more than one communication channels can be utilized, and is especially 

useful for WSN in rough outdoor environment.   

 To implement multi-hop protocol, the MintRoute algorithm is employed herein. 

MintRoute is a pro-active routing protocol in which the nodes send periodic routing 

messages to declare their local states. It is widely used in single base mesh network, 

providing best-effort multi-hop convergence routing by managing the Neighborhood 

and Route Tables.  

 

5.2.3 Communication between sensor nodes and base station 

In the WSN used in this study, the base station sends a “start measurement” 

message to all the sensor nodes. Upon receiving the “start measurement” message, the 

sensor nodes start to sample accelerations at a user-defined sampling rate (in this case, 

100 Hz) based on their respective time delay values. The acceleration data are 

digitalized by an inherent ADC on each sensing node before transmitting to the base 

station. Each data packet containing four temporal data points is sent to the base station 

sequentially. The base station receives data and temporarily saves them in the MICAz. 

Acknowledgement (ACK) message indicating the data packet number will be sent 

back to the sensor nodes upon receiving the data packets. If the ACK message for a 

data packet is not received, the sensor node resends the lost data packet while 

continuously collects and saves the latest acceleration data in its flash memory. Upon 

receiving the “stop measurement” message from the base station, the sensor nodes stop 

sampling the accelerations. The communication between the sensor nodes and the base 

station is summarized in Fig. 5.1. Some possible causes for the loss of data during RF 

(in this case, 2.4 GHz) communication are: 
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� A number of wireless sensors send data packets at the same time, leading to 

clashes. 

� The distances between the sensor nodes and the base station are out of the 

communication range. 

� The acknowledgement (ACK) messages of the lost packets are lost. If the ACK 

messages indicating the lost packet numbers are not received by the sensor node, 

the lost packets are not resent. 

 The data loss phenomenon has been experimentally examined by Nagayama 

(2007). The loss percentage of 20% commonly found in the experiment can pose a 

huge challenge in the application of WSN for reliable structural damage detection 

(Nagayama, 2007). However, signal containing lost values is still better than totally 

faulty signal which is represented by a random time history since some characteristics 

of the signal may still be retrieved by some data processing procedures. Ongoing 

research has been carrying out to improve the hardware, software and transmission 

topology to mitigate the loss of data (Chintalapudj, 2006; Yang, 2007; Spencer et al., 

2008). In the next section, numerical reconstruction of lost data is explored in relation 

to structural damage identification using the DLV method. 
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Fig. 5.1. Flow chart for data transmission from sensor nodes to base station 

 

5.3 LOST DATA RECO�STRUCTIO� FOR WIRELESS SE�SORS 

In general, virtually all structural response signals can be decomposed into 

Fourier components at various discrete frequencies. On this basis, if the proportion of 

data that is lost is not significant, then reconstruction is possible by making use of the 
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available signal to identify the significant frequencies.  For example, for a signal with ξ 

equally-spaced points of which m measured points are intact and ξ-m points are lost, by 

setting the latter to zeroes, Fourier transform will yield coefficients (or power spectral 

values, PSV) at various frequencies. By classifying significant frequencies as those 

with PSV normalized by the maximum PSV exceeding a threshold of 1%, a set of nfreq 

number of significant frequencies can be filtered, where nfreq < 0.5ξ. This threshold of 

1% is selected on the basis that if the signal has no lost data, reconstructed signal using 

all significant frequencies and the corresponding Fourier coefficients will yield less 

than 1% error relative to the exact signal. 

Using these nfreq significant frequencies and the m measured signal values, a 

system of m simultaneous equations can be formed with the Fourier coefficients Ak 

corresponding to the significant frequencies as unknowns using the following 

relationship 
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where j denotes the imaginary unit. Physically, Eq. (5.1) is the inverse FFT to retrieve 

signal values at the nth discrete point from nfreq number of frequencies and their 

corresponding Fourier coefficients (Ak). The Fourier coefficients are determined by 

least-squares fit (requiring that m > nfreq or m > 0.5ξ), from which lost portions is 

estimated using Eq. (5.1) again. Replacing lost data values by estimated values, the 

complete reconstructed signal is obtained. Performing Fourier transform on the 

reconstructed signal, a new set of significant frequencies which may not be the same as 

the previously identified significant frequencies is calculated. This latest set of 

frequencies is then used as before to compute the Fourier coefficients based on least-

squares fit of the m measured data points. A new signal can then be reconstructed and 
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compared with the previously reconstructed signal. The relative difference, Rerr, 

between the two consecutive reconstructed lost portions of the signal is defined as  
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where 1,i i

k kg g −  are the estimated lost values at iterations i and (i-1), respectively. This 

procedure is iterated until Rerr is less than 1%. The proposed lost data reconstruction 

algorithm is summarized in Fig. 5.2. It is noted that the algorithm to reconstruct lost 

data presented here is performed individually for the signals of each sensor collected at 

the base station. 
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Fig. 5.2. Block diagram for lost data reconstruction algorithm 
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5.4 �UMERICAL EXAMPLES 

A simulated random signal shown in Fig. 5.3a containing 1600 data points, 

sampled at the rate of 1 kHz is considered. The number of data points for each 

transmission is 4. The frequency domain of the signal is plotted in Fig. 5.3b. 
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Fig. 5.3. Random signal with sampling rate of 1 kHz: (a) variation of magnitude with 

time, and (b) variation of power spectral values with frequencies 

 

Determining Significant Frequencies 

For determining whether a frequency is significant, a threshold of 1% for the 

ratio between its PSV and the maximum PSV in the signal is adopted. To estimate the 

error due to neglecting the insignificant frequencies, the signal with no missing data is 

Fourier transformed to identify significant frequencies and the corresponding Fourier 

coefficients. In theory, 800 frequencies and the corresponding Fourier coefficients can 

be identified based on 1600 data points. By using only the significant frequencies with 

their corresponding Fourier coefficients, a complete signal can be reconstructed using 

Eq. (5.1), and its relative error with respect to the exact signal is estimated using Eq. 

(5.2) (by taking the summation for all points since there is no lost data point). If the 

threshold of 1% is employed to demarcate the significant frequencies, 762 frequencies 
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(see Fig. 5.4a) are identified and used to reconstruct the signal, yielding a relative error 

of 0.9% (Fig. 5.4b). If a 5% relative error is considered acceptable, Fig. 5.4 indicates 

that a threshold of 20% to demarcate the significant frequencies is adequate. Zero error 

is obtained only if all frequencies (in this case, 800 frequencies) are used in the 

reconstruction process. Note that this relative error is the difference between the 

reconstructed and the exact complete signals and is different from that of Eq. (5.2) 

which is the relative difference of lost portions between two consecutive reconstructed 

signals. Nevertheless, this gives a sense of the minimum Rerr that can be imposed in 

the reconstruction procedure.  
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Fig. 5.4. Relationship between number of frequencies used and (a) relative power 

spectral values; and (b) relative error between reconstructed and exact signals 

 

To investigate the effect of the cut-off frequency threshold of 1% on the 

accuracy of the reconstructed signals with different lengths, the same procedure as 

above is performed on signals with 100, 200, 500, 1000, 3200, 6400 and 12800 data 
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points that are extracted or combined from the original signal in Fig. 5.3. The results in 

terms of the number of significant frequencies and relative error of the reconstructed 

signals are shown in Fig. 5.5. The relative error of the reconstructed signal estimated 

using Eq. (5.2) varies slightly from 0.88% to 0.93% whereas the number of significant 

frequencies is found almost proportional to the number of data points of the signal. 

From these results, the threshold value of 1% is still suggested to demarcate significant 

frequencies. 
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Fig. 5.5. Relationship between signal length and: (a) reconstruction error; and (b) 

number of significant frequencies 

 

Reliability of Reconstruction  

To study the reliability of the reconstruction methodology, the discrete signal in 

Fig. 5.3 is used again where random portions of the data are padded with zeroes to 

simulate loss of data packets during transmission (a multiplicative of 4 consecutive 

points are prescribed lost at a location). The reconstruction procedure is then 

performed and the relative error plotted in Fig. 5.6. With a threshold of 1% for both 

Rerr and the PSV to demarcate significant frequencies, the minimum relative error for 
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the lost portions achievable is 5%. For data loss beyond 28%, the relative error using 

this reconstruction procedure grows exponentially from 10%, beyond which it 

becomes unattractive for practical applications. Hence, this reconstruction procedure is 

practical for approximately m > 0.7ξ or less than 30% data is lost. The same signal is 

used to obtain results for thresholds of 10%, 2% and 0.5% for both the significant 

frequencies and Rerr. The results in Fig. 5.6 show that the accuracy of the 

reconstructed signal is improved significantly when the threshold is reduced from 10% 

to 2%, but only slightly when it is reduced from 2% to 0.5%. Thus, the proposed value 

of 1% appears adequate.  

To investigate the robustness of the 1% Rerr threshold to terminate the iteration 

in Eq. (5.2), the reconstruction process is iterated for 10, 20 and 50 additional cycles 

after the threshold of 1% is achieved. Results in Fig. 5.7 testify that the relative 

differences between the estimated lost portions at iterations i (at which the threshold of 

1% is reached) and the additional computation cycles of 10, 20 and 50 show little 

improvement, indicating that the 1% Rerr threshold is fairly optimal. Furthermore, the 

number of required iterations at which the Rerr threshold of 1% is reached is not 

proportional to the lost percentages. This phenomenon may be explained by the fact 

that the number of iterations required depends not only on the lost percentages but also 

on the distribution of the lost values along the signals. 
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Fig. 5.6. Relationship between lost percentage and Rerr for different thresholds 
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Fig. 5.7. Relative difference of lost portions with additional iterations 

 

Comparison with other Algorithms 

To further illustrate the effectiveness of the lost data reconstruction algorithm, 

the above-mentioned signal shown in Fig. 5.3 with different lost percentages (based on 

packet of 4 data points per transmission) is reconstructed using different methods, 

namely (i) linear interpolation method; (ii) cubic interpolation method; (iii) Hsu and 

Lo (2006) method; and (iv) the current method. Comparison of the reconstructed 

signals using different methods for the case of 20% lost data is shown in Fig. 5.8a with 

a zoom-in near 0.7s shown in Fig. 5.8b. The number of iterations required and the 
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relative error with respect to the exact signal for different methods are plotted in Fig. 

5.9. Because interpolation methods are non-iterative, the number of iteration required 

is stated as one. Due to the presences of consecutive lost points, cubic interpolation 

method produces larger error than linear interpolation method. This may be explained 

as follows: From 2 measured data points at the 2 ends of few consecutive lost points, 

linear interpolation method produces the estimated values which are almost the mean 

of the lost points. Cubic interpolation method, however, tries to make sure the 

smoothness of the estimated data at the 2 measured data points of the few consecutive 

lost points. Since cubic interpolation method does not produce any flexible point 

within these consecutive lost points, the estimated values lie on one side compared to 

the mean value, either above or below, resulting in larger error compared to the linear 

interpolation method. 

The two methods proposed by Hsu and Lo (2006) produce almost identical error 

although the number of iterations required is slightly different. The relative errors 

using the two methods proposed by Hsu and Lo (2006) are significantly improved 

compared to the two interpolation methods. This may be explained by the satisfaction 

of the periodic boundary conditions when Fourier transformed is employed on the pre-

processed signal which is generated by superposing the original signal with a pre-

computed signal. Subtracting the pre-computed signal from the reconstructed signal 

gives the estimated signal. Nevertheless, the relative errors using the two methods 

proposed by Hsu and Lo (2006) may still be too high for implementation in a SHM 

algorithm to assess structural damage since the minimum relative error achievable is 

approximately 20%. On the other hand, the current method produces a reasonable error 

of less than 10% where the lost percentage is less 30% and may be acceptable to many 

algorithms for structural damage detection.  
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Fig. 5.8. Comparison between exact and estimated signals using different methods 

(20% data lost) 
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Fig. 5.9. Relationship between lost percentages and: (a) number of iterations, and (b) 
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5.5 EXPERIME�TAL EXAMPLE 

A 3-D modular truss structure comprising 23 aluminum tubes and 1 pre-

tensioned cable is set up in this experiment as shown in Fig. 5.10. The geometrical and 

material properties of truss members are listed in Table 5.1 whereas element and node 

numbers are plotted in Fig. 5.11. Damage in the structure is simulated by cutting the 

pre-tensioned cable member mid-way through the test. Zero-mean white noise load 

with RMS of 50 N is generated using a shaker with capacity of 75 lbs (334 N) to act 

vertically on the truss at node 1. Acceleration responses are captured by 6 wireless 

sensors (locations are given in Fig. 5.10) and the corresponding lost percentages 

resulting from actual transmission loss (ranging from 19% to 25% are registered) are 

shown in the upper portion of Table 5.2. Examining the distribution of lost data 

packets along time axis, it is observed that the lost data packets are distributed 

randomly and are not synchronized among the 6 measurements.  

 

 
Fig. 5.10. Experimental set-up 
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Fig. 5.11. Element and node numbers for experimental truss 

 

Table 5.1. Geometric and material properties of truss members 

Aluminum tubular members Pre-tensioned cable members

Outside diameter, (mm) 20.0 4.0

Thickness, (mm) 1.0 -

Young's modulus, (N/m
2
) 6.8×10

10
1.6×10

11

Mass density, (kg/m
3
) 2690.0 7500.0

Pre-tensioned force, (N) - 2000.0  
 

Table 5.2. Computational details for signal reconstruction at 6 sensor nodes 

Node 1 Node 2 Node 4 Node 6 Node 7 Node 8

Number of lost points 352 380 392 376 304 372

Total number of points 1600 1600 1600 1600 1600 1600

Lost percentage (%) 22.00 23.75 24.50 23.50 19.00 23.25

Number of iterations 12 14 14 11 14 10

Number of frequencies 

used in the last iteration
479 467 495 367 479 343

Relative error at the last 

iteration (%)
0.62 0.33 0.55 0.72 0.87 0.83

 
Note: see Fig. 5.10 for sensor node locations 

 

With the lost percentage ranging from 19% to 25%, reconstruction error of lost 

portions is expected to fall between 8% and 9% based on Fig. 5.6. Performing the data 
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reconstruction algorithm in Section 5.3 on the measured signals, the number of 

iterations taken, the number of significant frequencies used and the relative error 

estimated for the last iteration are summarized in the lower portion of Table 5.2. It is 

observed that the number of iterations required is small, ranging from 10 to 14 and is 

not proportional to the lost percentage since the distribution of the lost data packets 

along the signal is another controlling factor. Results for the sensor at node 4 are 

demonstrated in Fig. 5.12, including an inset in Fig. 5.12a to show a segment of lost 

data. Fig. 5.12b gives a better indication of the locations of the lost data points based 

on the “corrected” values. Fig. 5.12c compares in frequency domain the raw signal 

against the reconstructed signal which shows no drastic change in the trend or general 

characteristics, as inherent in the proposed methodology.  

Since the accelerometers and the shaker are not synchronized, only the 

reconstructed accelerations are fed into the method proposed in Section 3.3 to identify 

structural stiffness matrix since the procedure to identify structural flexibility method 

presented in Section 3.2 requires the measurement of excitation. From the 

reconstructed accelerations, 15 segments each of which contains 109 time steps can be 

used to feed in the proposed algorithm in Section 3.3 to estimate the structural stiffness 

matrix coefficients and some selected results are plotted in Fig. 5.13. Of the 6 stiffness 

coefficients plotted in Fig. 5.13, only K88 shows significant reduction since its value is 

contributed directly by the stiffness of the pre-tensioned cable member which is cut. 

The cut made mid-way through the experiment and the resulting transient oscillations 

towards dynamical equilibrium of the new system is manifested by the varying 

stiffness coefficients estimated for time segments 7, 8, and 9 (from 7 to 11 seconds). 

The identified stiffness coefficients stabilized from segment 10 (11
th
 second) onwards.  
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Fig. 5.12. Accelerations at sensor node 4: a) variation of magnitude with time where 

lost values are padded with zeroes; b) variation of the difference in magnitude between 

measured and reconstructed signals with time; and c) variation of power spectral 

values with frequencies for measured and reconstructed signals 
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Fig. 5.13. Variation of structural stiffness coefficients with time 

 

Based on the identified stiffness coefficients at segments 1 (first) and 15 (last), 

the change in stiffness matrix is calculated from which the set of DLVs is identified. 

Applying these DLVs to the reference structural model as nodal displacement vectors, 

the �CE of all elements are computed and the set of PDE comprising elements (1, 8) is 

identified. The current IDS therefore comprises elements (1, 8), and ne = 2. By 

omitting readings of the sensor at nodes 9, which is far away from the members of the 

current IDS set, the readings of the remaining 5 sensors are used to estimate the 

structural stiffness matrix for different time segments. Comparing the stiffness 

matrices identified for the first and the last time segments, the change in the stiffness 

matrix is evaluated. Performing SVD on the change in stiffness matrix, a set of 3 DLVs 

is obtained and applied to the reference model as nodal displacement vectors. The set 

of PDE identified comprises elements (4, 5, 8, 12, 14). Taking the intersection between 

the set of PDE and the current IDS containing elements (1, 8) gives the new IDS with 

element 8 as the only member (ne = 1). Similarly, by omitting the readings of the 
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sensor at node 1, which is far away from the only member of the current IDS set, 

instead of the sensor at node 9, another set of PDE comprising elements (1, 4, 8, 12) is 

identified. Intersecting the set of PDE and the current IDS which contains element 8 

only gives element 8 as the new IDS (ne = 1). Since the IDS for 2 consecutive steps are 

identical, the iteration is terminated, and element 8 is concluded as damage. The whole 

procedure is summarized in Table 5.3.  

Table 5.3. Damage detection results for experimental truss structure 

Set of sensors includes 

sensors at nodes

No. of 

DLV
PDE

Eliminated 

elements
IDS ne

ns =6 [1, 2, 3, 5, 8, 9] 4 [1,8] [1, 8] 2

i =1 [1, 2, 3, 5, 8] 3 [4, 5, 8, 12, 14] 1 [8] 1

i =2 [2, 3, 5, 8, 9] 3 [1, 4, 8, 12] [8] 1k
=

n
s
-1
=
5

 

 

If the differences in the identified stiffness matrices at segments 8, 9 and 10 with 

respect to that at segment 1 are utilized to evaluate the change in structural stiffness 

matrix which is then employed in the DLV method, no damaged element is identified 

as results shown in Table 5.4 a-c as the structure is in the transient stage of damage. If 

the difference in the identified stiffness matrices at segments 11 and 1 is used in the 

DLV method instead, element 8 is correctly detected as damaged, shown in Table 5.4d. 

As another check, if the difference in the identified stiffness matrices between 

segments 7 and 1 is utilized to assess damage using the DLV method, no damaged 

element is detected which is rightly so since at time segment 7, the pre-tensioned 

member has not been cut yet. 
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Table 5.4 Detect damage in experiment truss using difference in stiffness matrices 

between data segments 1 and 8 (a); 9 (b); 10 (c); and 11 (d) 

Set 

No.
Sensors at nodes

1 [1, 2, 3, 5, 8, 9] 1 4 5 7 8 12

2 [1, 2, 5, 8, 9] 1 2 4 12

3 [1, 2, 3, 5, 8] 3 7 8 18 24

1 [1, 2, 3, 5, 8, 9] 1 6 7 8 24

2 [1, 2, 3, 5, 9] 14 15 16 17 18

1 [1, 2, 3, 5, 8, 9] 1 4 12

2 [1, 2, 3, 5, 8] 1 5 13 23

3 [1, 2, 5, 8, 9] 2 10 18 21

1 [1, 2, 3, 5, 8, 9] 1 8

2 [1, 2, 3, 5, 8] 5 8 14 15 16 17

3 [2, 3, 5, 8, 9] 1 4 8 12

(d
)

Potential damaged elements

(a
)

(b
)

(c
) 

 

 

For this example, measured accelerations with losses from the 6 wireless sensors 

(where the lost data values are padded with zeroes) are used in the algorithm proposed 

in Section 3.3 to identify stiffness coefficients at different time segments and selected 

results are plotted in Fig. 5.14. From the difference in stiffness matrices at the first (1) 

and last (15) segments no DLV set is calculated to perform damage assessment. It may 

be explained by the fact that poor quality of the measured signals propagates to the 

identified stiffness matrices through the proposed algorithm to compute the stiffness 

matrices proposed in Section 3.3. Based on the inaccurate identified stiffness matrices, 

no DLV can be calculated, illustrating the importance of the data loss reconstruction 

procedure. 
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Fig. 5.14. Variation of structural stiffness coefficients with time estimated from raw 

measured data (where lost values are padded with zeroes) 

 

5.6 CO�CLUDI�G REMARKS 

This chapter demonstrated that actual transmission loss in wireless sensor 

network can be as high as 25% and it is necessary to reconstruct the lost data before 

the signals can be used for reliable damage detection via the DLV method. Due to the 

presence of consecutive lost data points, methods for data loss reconstruction in the 

open literature such as by linear interpolation, cubic interpolation, methods proposed 

by Hsu and Lo (2006) are found not suitable for most algorithms for structural damage 

detection. On the other hand, the proposed Fourier-based lost data reconstruction 

algorithm with identified PSV and relative error thresholds of 1% is demonstrated to be 

feasible whereby data with approximately 30% transmission loss can be reconstructed 

with 10% relative error in the lost portions. Using a 3-D modular truss with 23 

aluminum tubes, one pre-tensioned cable member and 6 wireless sensors with 1 base 

station, it is demonstrated that the reconstructed signals when used with the DLV 

method is able to identify the damage element correctly. By using different segments 
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of the data, the results indicated that data close to the time of perturbation (or damage) 

should not be used as the effect of the damage may not be accurately detected during 

this brief transient stage. The experimental results also confirm the necessity of using 

the lost data reconstruction algorithm for wireless sensors to enhance the robustness of 

the DLV method for structural damage detection. 
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CHAPTER 6 

CO�CLUSIO�S A�D RECOMME�DATIO�S FOR 

FUTURE RESEARCH 

 

6.1 CO�CLUSIO�S 

To re-cap, the main objective of this research is to further develop the damage 

locating vector (DLV) method for structural damage detection accounting for: (a) 

structures comprising beam, column and truss elements with varied and constant cross-

sectional area; (b) the availability of either static or dynamic responses; (c) the 

availability of excitation measurements; (d) the limitation of number of sensors used 

due to unavailability and malfunctioning; (e) the quality of measured data; and (f) the 

loss of data during wireless transmission from sensor nodes to the base station. The 

work has been presented as following: 

The physical meaning of the DLV, its advantages and shortcomings are discussed 

and various enhancements to extend its practical applications beyond truss structures 

are detailed in Chapter 2. These enhancements include: (i) extending its formulation to 

accommodate multi-stress state elements and the variation of internal forces and 

capacity along the length of each element; (ii) proposing two schemes to identify 

damaged elements for the case of imperfect measurements; (iii) proposing a simple 

algorithm to assess the severity of the damage; and (iv) proposing an algorithm to 

detect damage for the case where the applied static load is unknown. Chapter 2 focuses 

on static responses whereas Chapter 3 is devoted to the use of dynamic responses for 

structural damage detection under the DLV framework. The difference between the use 

of static and dynamic responses is the formulation of flexibility/stiffness matrix from 

structural responses. Formulation of flexibility matrix from dynamic responses and 
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known excitation is summarized. An algorithm to formulate the stiffness matrix from 

acceleration responses only is proposed. Besides, a simple algorithm for optimal 

sensor placement is suggested to (i) identify the optimal configuration for placing the 

available sensors; and (ii) estimate the minimal number of sensors required for reliable 

damage detection results. For the methodology to work, reasonably good quality data 

must be available. Chapter 4 addresses the issue of validating the measured data where 

an algorithm is proposed to admit only “quality” data as input into the DLV method to 

enhance its reliability in the damage detection. With the advancement in sensor 

technology, wireless sensors will be a common component of most structural damage 

detection system in the near future. One critical issue at this stage is the loss of data 

packets during transmission. An algorithm to estimate lost values due to RF 

transmission is proposed in Chapter 5 and compared with other techniques available in 

open literature.  

The conclusions drawn based on the above study can be summarized as follows. 

1. From energy principle, it can be deduced that when the change in flexibility is used 

to compute the DLV, the latter has force as physical quantity. The force vector is 

orthogonal to the vector of the relative change in displacement vector from the 

reference to the damage state, formulated with respect to the sensor locations. If the 

change in stiffness is used to compute the DLV instead, the DLV is physically the 

displacement vector, which is orthogonal to the relative change in nodal force 

vector. 

2. The original DLV method has been applied to truss structures and this study has 

extended the formulation to include more general elements by proposing the 

normalized cumulative energy (�CE) as damage indicator.  The formulation caters 

for (i) different types of structural elements such as beam, column and truss 
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elements, (ii) variation of internal forces along the length of each element, and (iii) 

variation of capacity along the length of each element. The performance of the 

�CE-based DLV method has been illustrated using static responses simulated from 

a 2-D warehouse structure which comprises elements with multi-state stresses and 

varied cross-sectional areas. The method is workable for the case where 3 elements 

are damaged and the simulated data is contaminated with 5% noise. In an 

experiment of a 3-D modular truss structure comprising 88 members and 28 nodes, 

2 damaged elements can be identified correctly using measured data from 7 

displacement transducers.  

3. Due to the presence of noise and the use of limited number of sensors, not all 

identified elements are actually damaged. Two implementation schemes of the 

DLV method were proposed to filter out the actual damaged elements, namely, (i) 

an intersection scheme and (ii) a two-stage analysis.  The former makes use of the 

intersection of different identified sets of potential damaged elements derived using 

data from various combinations of sensors. The latter identifies possible damaged 

regions in the first stage using the relative change in flexibility matrix and then 

uses the DLV method in the second stage to identify damaged elements within the 

damaged regions. Though the two schemes are different in their approaches, they 

produced the same results for both the numerical and experimental examples. The 

performance of the two schemes has been illustrated using displacement responses 

simulated from the 2-D warehouse structure comprising frame and truss elements 

with varied and constant cross-sectional areas. With 10 displacement sensors used 

and 5% noise, the intersection scheme can provide reliable results within 3 

combinations of sensors. The two-stage analysis can identify the 3 damaged 

elements correctly using 10 displacement sensors. If the noise level in the 
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displacement data exceeds 10%, unreliable damaged detection results are observed. 

Furthermore, displacement responses from an experiment of the 3-D modular truss 

structure are employed to assess the performance of the two schemes. The 

intersection scheme can identify the 2 damaged elements correctly with 7 

displacement transducers used. However, the number of combinations of sensors 

increases from 3 for the case where 13 displacement transducers are used to 4 for 

the case where 7 displacement sensors are used. Nevertheless, the damaged 

elements can still be identified correctly. The two-stage analysis can also identify 

the 2 damaged elements correctly with 7 sensors used.  

4. The original DLV method has not been developed to assess the damage severity of 

the identified damaged elements. An algorithm to assess damage severities of the 

identified damaged elements was developed. Penalty function method has been 

adopted to minimize the difference between the first singular values of the two 

flexibility matrices with respect to the sensor locations. One flexibility matrix (Fn) 

is constructed using numerical model of the structure at the reference state. The 

other flexibility matrix (Fd) is computed from measured data of the structure at the 

current (damaged) state. In other words, Fn is mapped to Fd by adjusting the 

stiffnesses of the identified damaged elements. When Fn approaches Fd, the 

severity of the damaged elements is estimated. In the numerical example of the 2-D 

warehouse structure, using data with 5% noise, the damage severity of the 

damaged elements can be assessed with approximately 1% error within 10 

iterations. In the experimental example of the 3-D modular truss structure, using 

measured data from 7 displacement transducers, the damage severity of the two 

damaged elements can also be assessed within 15 iterations and approximately 2% 

error.  
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5. The magnitude of the static load, which is used to actuate the structure, needs not 

be the same when performing for the reference and the damaged structures as they 

may be done at different times which may be months or years apart. In some cases, 

the magnitudes of the static loads are not known. An algorithm was proposed to 

detect structural damage for such case where the ratio between the magnitudes of 

the static loads at the reference and the damaged state are estimated from measured 

displacements. Using this algorithm and the �CE-based DLV method, three 

damaged elements can be identified using simulated displacements which are 

contaminated with 5% noise in a numerical example of the 2-D warehouse 

structure where the applied static loads are unknown. Although the static loads at 

the reference and damaged states are unknown in the experiment of the 3-D 

modular truss structure, the two damaged elements can also be identified correctly 

using the proposed algorithm in conjunction with the �CE-based DLV method.  

6. Recognizing that measurement of the dynamic excitations is expensive, difficult or 

in some cases impossible, a direct method was proposed to identify structural 

stiffness matrix when the excitations are unknown and only limited acceleration 

responses are measured. Central to the method is the formulation of a system of 

nonlinear equations based on the equations of motion of structure at all DOF using 

Newmark-β method to relate the displacements and velocities between different 

time steps in terms of their initial values. This system of nonlinear equations is 

then solved using the Newton Raphson method to identify the structural stiffness 

matrix. The method works provided that at least two acceleration measurements 

are available. Integrating the direct method with the �CE-based DLV method, two 

damaged elements can be identified numerically using the 2-D warehouse 

structure. Furthermore, two elements with gradual reduction in element stiffnesses 
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(0.05% reduction in element stiffness per measurement segment) can also be 

identified correctly. In an experimental example of the 3-D modular truss structure, 

the two damaged elements can also be identified correctly using the direct method 

and the �CE-based DLV method. Comparing the �CE of all elements for the cases 

where the excitations are known and unknown, it is found as expected that the 

procedure with known excitations is more sensitive although the two methods can 

provide the same set of potential damaged elements for both cases. Measured input 

excitations therefore should be integrated to the damage detection process to 

enhance the reliability of the result.  

7. The reliability of a structural health monitoring system is very dependent on the 

quality of signals which are acquired and fed into the damage detection algorithm. 

Although the integrity of sensors can be assessed offline, the practical challenge is 

to be able to detect faulty signals as they are being collected and processed through 

a structural damage detection algorithm. This is important for cases where it is 

difficult to predict when severe or accidental loads occur to facilitate a priori 

validation of the sensors. An algorithm for sensor validation in the context of the 

DLV method for structural damage detection was devised to increase the reliability 

of the damage detection results. Using simulated data from the 3-D modular truss 

structure which is contaminated with 10% noise, the two faulty sensors can be 

identified simultaneously. Using physically measured data from the same 3-D 

modular truss structure, gain fault, which is manifested by multiplying the actual 

measurement with a constant of 1.5, and sensor failure, which is manifested by 

replacing actual measurement by a zero-mean white noise signal with the same 

RMS of the magnitude, can be also be identified correctly. The algorithm is 

necessary because (i) it is important to differentiate between structural damage and 
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the case of faulty sensors; and (ii) it would increase the reliability of damage 

detection result by using only “suitable” measurements in the damage detection 

computation.   

8. As wireless sensor technology has contributed to new developments in structural 

damage detection since there are significant advantages over wired sensors, the 

research and implementation of the DLV methodology have to take into account 

the possible use of wireless sensors and their associated practical issues. 

Transmitting data from various sensor nodes to the base station using radio 

frequency (RF) commonly experiences intermittent loss although the raw data on 

sensor nodes is digitalized. An algorithm was developed to reconstruct the lost data 

where wireless sensors are employed to collect acceleration responses. The 

algorithm makes use of frequencies which contribute significant amount of energy 

in the signal based on Fourier transform. As the amplitudes are uncertain due to 

lost data, the Fourier amplitudes are estimated based on least-squares fit of only the 

measured portions of the signal. The lost portions are reconstructed through inverse 

Fourier transform. The procedure is iterated until the discrepancy between the 

estimated lost portions of two consecutive iterations is below a set threshold. The 

proposed relative error thresholds of 1% was demonstrated to be feasible whereby 

data with approximately 30% transmission loss can be reconstructed with 10% 

relative error in the lost portions. Incorporating wireless sensors with the DLV 

method for structural damage detection is shown possible in an experimental 

example of a 3-D modular truss structure comprising 23 aluminum tubes and 1 pre-

tensioned where 6 wireless sensors and 1 base station are used. The actual 

transmission loss in the experiment can be as high as 25% whereas the damaged 

element can be identified correctly using the DLV method and reconstructed 
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accelerations. By using different segments of the data, the results indicated that 

data close to the time of perturbation (or damage) should not be used as the effect 

of the damage may not be accurately detected during this brief transient stage. The 

experimental results also confirm the necessity of using the lost data reconstruction 

algorithm for wireless sensors to enhance the robustness of the DLV method for 

structural damage detection. 

 

6.2 RECOMME�DATIO�S FOR FUTURE RESEARCH 

This study also brings to light four significant improvements on the DLV 

methodology that requires substantial work as summarized in the following. 

1. Though the proposed methodologies seem to work well with numerical or 

laboratory model, their performance in real environment has not been proved 

yet. It is the real conditions that may bring about other factors which might 

negatively affect the performance of the proposed methodologies such as wind, 

humidity and temperature. A full scale experiment on existing structures such 

as buildings, bridges, or offshore platforms is thus suggested for future study. 

Based on full scale experiment results on existing structures the need for 

adjustment on some proposed thresholds may emerge. However, to perform 

such experiment, two conditions need to be fulfilled. The first condition is the 

financial support since it may cost few millions US dollar per one experiment 

as acknowledged by Celebi (2002). The second condition is the permission of 

authorities who are in charge of the structures. The authorities often do not 

allow or welcome such work being done on their structures quoting safety and 

interference from the normal operations associated with such structures. 
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2. To further popularize wireless sensors, another way to mitigate the effect of 

data loss due to radio frequency (RF) transmission is to decentralize structural 

damage detection, limiting the amount of data to be wirelessly transmitted from 

the sensor nodes to the base station. In particular, local integrity of structure is 

expected to be analyzed at the sensor board and data transmission is required 

only if damage appears at the sensor locality.  To achieve this objective, two 

parallel works need to be fulfilled, namely (i) to develop a smart wireless 

sensors generation which can perform some engineering analysis; and (ii) to 

develop an algorithm to interrogate local integrity of structure using continuous 

measuring data from one sensor. The former is on-going at the University of 

Illinois at Urbana-Champaign (Spencer et al., 2008). The latter has just reached 

the stage of using measurements of some neighbouring sensors to assess local 

integrity of structure such as the introduction of the Distributed Computing 

Strategy, denoted as DCS, (Gao, 2005). However, if this algorithm is 

employed, communication among sensor nodes using RF transmission is still 

required and the lost data phenomenon still exists. Much effort is therefore 

expected before the latter is fully realized.  

3. To produce a commercial tool for online structural damage detection using the 

enhanced DLV method. Despite the fact that the proposed methodologies are 

automation in data analysis and applicable for online damage detection, a 

commercial tool for detecting damage of an existing structure has not been 

achieved yet at this stage. This work is expected to be time consuming and 

expensive since measured data from various simulated configurations of 

structures such as 3-D frame structures, plate and shell structures as well as 
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existing structures such as buildings, bridges, and offshore platforms is 

required to test the performance of such tool. 

4. For some large and/or complicated structures, the presence of damage in some 

elements may not significantly change the structural flexibility/stiffness matrix 

formulated with respect to the sensor locations to facilitate the computation of 

the DLV for damage interrogation purpose. In such cases, measured 

displacements and accelerations should be used in conjunction with measured 

strain to localize the damage. Incorporating strain measurement into the DLV 

method for damage localization is promising since the damaged structure may 

be best illustrated by the entire stress strain curve. The work is expected to be 

experimentally examined on existing structures where the local effect of few 

damaged elements is best manifested.  
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APPE�DIX A – DLV PROPERTY JUSTIFICATIO� 

 

 

A.1 Justification for the case of determinate structure 

Consider a determinate structure with two portions: (1) unaltered portion with 

ne1 elements and stiffnesses (EjIj)1, (GjAj)1, (EjAj)1 and length Lj1, where j = 1, 2, …, 

ne1; and (2) altered portion with ne2 elements, and length Lj2, where j = 1, 2, …, ne2. 

The stiffness of the altered portion are (EjIj)2, (GjAj)2, (EjAj)2 and (EjIj)3, (GjAj)3, (EjAj)3 

corresponding to the reference and the altered states. Assuming that if element j is 

damaged: (EjIj)2 > (EjIj)3, (GjAj)2 > (GjAj)3, (EjAj)2 > (EjAj)3 and the opposite holds if 

element j is strengthened. 

Assume that P is a (ns × 1) static load vector which satisfies Eq. (2.1); ns is the 

number of sensors attached to the structure to measure displacement responses; and Fu 

and Fd are the flexibility matrices formulated with respect to the sensor locations at the 

reference and the altered states, respectively. Since the structure is deterministic, 

applying P to the reference and the altered states at the sensor locations yields the same 

set of internal forces in the structure, denoted as Mj1, Qj1, �j1 and Mj2, Qj2, �j2  for the 

unaltered and the altered portions, respectively. The energy induced by the load P at 

the reference (Ξ1) and the altered (Ξ2) states can be expressed as follows 
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Subtracting Eq. (A.2) from Eq. (A.1), and using Eq. (2.1) gives 
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 If the altered elements are damaged, implying that (EjIj)2 > (EjIj)3, (GjAj)2 > 

(GjAj)3, (EjAj)2 > (EjAj)3 or 
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Each term in Eq. (A.3) is smaller than or equal to zero. Hence, Eq. (A.3) is satisfied if 

and only if Mj2 = 0, Qj2 = 0, �j2 = 0 for all j.  

If the altered elements are strengthened, implying that (EjIj)2 < (EjIj)3, (GjAj)2 < 

(GjAj)3, (EjAj)2 < (EjAj)3 or 
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 
 

. 

Each term in Eq. (A.3) is larger than or equal to zero. Thus, Eq. (A.3) is also satisfied 

if and only if Mj2 = 0, Qj2 = 0, �j2 = 0 for all j. 

The above derivations implied that  

 
( ) ( ) ( )

2 2 2

2 2 2 2 2 2

2 2 2

0, 0, 0
2 2 2

j j j

j j j j j j

L L Lj j j j j j

M M Q Q � �
ds ds ds

E I G A E A
ν= = =∫ ∫ ∫  (A.4) 
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which means that the energy induced by the load vector P satisfying Eq. (2.1), that is 

the DLV, in the altered element(s) at the reference state is zero. 

 

A.2 Justification for the case of indeterminate structure 

For indeterminate structures, applying a load vector P onto the reference and 

the altered structure will yield two different sets of internal forces. The derivation in 

Section A.1 is thus no longer applicable and modification is needed. In this section, an 

indeterminate structure with two portions, namely unaltered and altered, and with nr 

redundant connections is considered. Under a static load vector P satisfying Eq. (2.1), 

that is DLV, internal forces in the redundant connections are Ri1 and Ri2 for the 

reference and the altered structures, respectively, where i = 1, 2,…, nr.  

Internal forces of the indeterminate structural behavior under a static load vector 

P can be considered as combination of (1) internal forces of the determinate structure 

under P; and (2) internal forces of the determinate structure under Ri1 or Ri2 

corresponding to the reference or the altered structure. Hence, the derivation in Section 

A.1 is a special case of the derivation in this section with Ri1=Ri2=0 for all i. 

From the distribution of internal forces principle, if a static load P is applied onto 

the reference and the damaged structures, internal forces in the undamaged elements 

increase whereas internal forces in damaged elements decrease. Since the redundant 

connections are not damaged, they experience increment in internal forces, that is, Ri2 

≥ Ri1. In other words, internal forces (in term of absolute values) induced by Ri2 in 

every members of the determinate structure are greater than or equal to internal forces 

generated by Ri1. The opposite holds if the structure is strengthened.  

Applying the static load vector P onto the determinate structure, the internal 

forces of the unaltered and altered portions are Mj1P, Qj1P, �j1P,  and Mj2P, Qj2P, �j2P, 

respectively. Applying Ri1 onto the determinate structure, the internal forces of the 
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unaltered and altered portions are 
1 1 11 1 1, ,j j jM Q �R R R  and 

1 1 12 2 2, ,j j jM Q �R R R , 

respectively. Applying Ri2 onto the determinate structure, the internal forces of the 

unaltered and altered portions are 
2 2 21 1 1, ,j j jM Q �R R R

 and 
2 2 22 2 2, ,j j jM Q �R R R

, 

respectively. Hence, applying the static load vector P onto the indeterminate structure 

at the reference and the altered states, the corresponding energy are Ξ1 and Ξ2, 

respectively, where 
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 (A.6) 
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 (A.7) 

Subtracting Eq. (A.7) from Eq. (A.6), and using Eq.(2.1) gives 
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(A.8) 

If the structure is damaged, (EjIj)2 > (EjIj)3, (GjAj)2 > (GjAj)3, (EjAj)2 > (EjAj)3 or  
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term in Eq. (A.8) is smaller than or equal to zero. Thus, Eq. (A.8) is satisfied if and 

only if 2 0jM =P , 2 0jQ =P , 2 0j� =P , 
11 0jM =R , 

11 0jQ =R , 
11 0j� =R , 

21 0jM =R , 

21 0jQ =R , 
21 0j� =R , 

12 0jM =R , 
12 0jQ =R , 

12 0j� =R  for all j.  
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only if 2 0jM =P , 2 0jQ =P , 2 0j� =P , 
11 0jM =R , 

11 0jQ =R , 
11 0j� =R , 

21 0jM =R , 

21 0jQ =R
, 

21 0j� =R
, 

12 0jM =R
, 

12 0jQ =R
, 

12 0j� =R
 for all j.  

The above derivations imply that  
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or 
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or energy induced in the altered element(s) at the reference state by the static load 

vector P which satisfies Eq. (2.1), that is DLV, is zero.  
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APPE�DIX B – PHYSICAL PROPERTIES OF DLV 

 

 

B.1 Sub-problem 

Performing SVD on an (n × n) matrix A with rank rA gives 

 SVD T→A UΣV  (B.1) 

where 
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The transformation of column x vector to a column y vector through the 

transformation matrix A is expressed as 

 =y A x  (B.2) 

Invoking the definition of A in Eq. (B.1), Eq. (B.2) can be re-written as 
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 (B.3) 
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Because x is a column vector, vi is a row vector, and si is a scalar, Eq. (B.3) can be 

expanded as 
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Assuming that the input column vector x is equal to vi
T
, and invoking the orthonormal 

property of vi, that is, 
0 if 

.
1 if 

T

i j

i j
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≠
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=
v v , Eq. (B.4) can be expressed as 
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 (B.6) 

Remark:  

+ If the right singular vector vi of matrix A is considered input through the 

transformation in Eq. (B.2), output will be the left singular vector ui of matrix A scaled 

by singular value quantity si of matrix A. 

 

B.2 Main problem 

a. Apply a (ns × 1) load vector P to the reference and the altered structures and 

measure the corresponding (ns × 1) displacement responses du and dd at the ns sensor 

locations. Structural compatibility conditions at the sensor locations of the two states 

can be expressed respectively as follows 

 u u=d F P  (B.7) 
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and 

 d d=d F P  (B.8) 

where Fu and Fd are the (ns × ns) structural flexibility matrices formulated with respect 

to the sensor locations at the reference and the damaged states, respectively. 

Subtracting Eq. (B.7) from Eq. (B.8) gives 

 ( )   or  d u d u ∆ ∆− = − =d d F F P d F P  (B.9) 

Decomposing F∆ using SVD gives 

 1 1 1

SVD T

∆ →F U Σ V  (B.10) 

Equation (B.9) has the same form with the transformation of vector x to vector y 

in Eq. (B.2). Hence, employing the results of Section B.1 with v1i
T
 (v1i is row i of V1) 

as the input load vector P gives 

 1 1i i is∆ =d u  (B.11) 

where u1i is column i of U1; and s1i the ith singular value of ΣΣΣΣ1. If i = rA+1, rA+2, …, ns 

(rA is the rank of F∆) then s1i = 0, and thus d∆i = 0. In other words, the same static load 

vector P = v1i
T
 (i = rA+1, rA+2, …, ns) generates the same displacements at sensor 

locations at the two states of the structure. Those input force vectors P = v1i
T
 is called 

the load vectors in the DLV method proposed by Bernal (2002). 

b. Apply a (ns × 1) displacement vector d onto the ns sensor locations at the 

reference and the altered states while restrain the other DOF, the (ns × 1) nodal force 

vector with respect to the sensor locations at the two states are Pu and Pd, respectively. 

The compatibility conditions of the structure at the sensor locations for the two states 

can be expressed respectively as follows 

 u u=P K d  (B.12) 

and 
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 d d=P K d  (B.13) 

where Ku and Kd are the (ns × ns) structural stiffness matrices formulated with respect 

to the sensor locations at the reference and the altered states, respectively. Subtracting 

Eq. (B.13) from Eq. (B.12) gives 

 ( )    or   u d u d ∆ ∆− = − =P P K K d P K d  (B.14) 

Decomposing K∆ using SVD gives 

 
2 2 2

SVD T

∆ →K U Σ V  (B.15) 

Equation (B.14) has the same form with the transformation of vector x to vector y in 

Eq. (B.2). Hence, applying the results of Section B.1 with v2i
T
 as input displacement 

vector d (v2i is row i of V2) gives 

 2 2i i is∆ =P u  (B.16) 

where u2i is column i of U2; and s2i the ith singular value of ΣΣΣΣ2. If i = rA+1, rA+2, …, ns 

(rA is the rank of K∆) then s2i = 0, and thus P∆i = 0. In other words, the same 

displacement vector d = v2i
T
 (i = rA+1, rA+2, …, ns) creates the same nodal force 

vector at the sensor locations at the two states of the structure. Those input 

displacement vectors d = v2i
T
 are called the displacement vectors for the DLV method. 
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