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SUMMARY

It is well-established that dynamically compensated (model-based) force /

motion controller strategy provides better performance than the standard Pro-

portional - Integral - Derivative (PID) controller. However, the dynamic model

and parameter values, especially for a real robot, are very difficult to identify

precisely. Therefore a fast and cost-effective adaptive method is highly desired.

The main objective in this thesis deals ultimately with the Neural Network

(NN) adaptive control for parallel force and motion in the operational space

formulation. The operational space formulation, capable of providing unified

force motion control and tracing contoured surface withoutthe need for the

knowledge of the surface geometry, is selected as the working platform. In this

thesis, all the proposed neuro-adaptive control strategies were constructed in

operational space formulation.

The development of this thesis is presented in incremental manner: (1) mo-

tion only neuro-adaptive control, (2) motion only neuro-adaptive control with

velocity observer (since our physical robot does not have a joint velocity feed-

back), (3) force and motion neuro-adaptive control which, and accompanied by

(4) neuro-adaptive impact force control.

All the proposed strategies assume no prior knowledge of therobot dynam-

ics where the NN weights were initialized with zero. Lyapunov stabilities show-

ing bounded stability of the tracking errors and NN weight errors were also
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provided for all the proposed strategies. The proposed strategies were not only

shown to be stable in real-time implementation on PUMA 560, but also pro-

duced comparable performances to those of the well-tuned inverse dynamics

control strategies.
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NOMENCLATURE

The main notations used in this thesis are compiled below:

η the uncertainties in the robot dynamic model, (m×

1), in operational space.

Γ generalized joint space force vector, (n× 1).

Λ1,Λ2,Λi (m × m) positive diagonal matrices in operational

space, used as control gains.

Ω, Ω̄ (m × m) selection matrices, to properly select the

axes assigned for translation/rotation (motion con-

trol) and those for force/moment (force control).

π a (13n× 1) vector of actual dynamic parameters.

σ(·) a vector where each element is differentiable func-

tion, such as sigmoid and hyperbolic functions.

τ fric the joint space joint friction vector, (n× 1).

τ vis, τ cou, τ sti, τ dec components ofτ fric: the viscous friction, coulomb

friction, stiction, and Stribeck effect, respectively,

(n× 1).



x

τvis,M a positive scalar upper bound of‖τ vis‖.

τcou,M a positive scalar upper bound of‖τ cou‖.

τsti,M a positive scalar upper bound of‖τ stiexp(−τ decq̇
2)‖.

τ x the operational space joint friction vector, (m× 1).

a scalar variablea (lower case, regular font).

a a vectora (lower case, bold font).

a(q, q̇) a vectora where each element is a function of vector

q and vectorq̇.

A a matrixA (upper case, bold font).

Am, AM minimum and maximum eigenvalues of any positive

definite general matrixA, respectively.

B(q, q̇) the joint space Coriolis and Centrifugal matrix, (n×

n).

Bx(q, q̇) the operational space Coriolis and Centrifugal ma-

trix, (m×m).

Bx,M a positive scalar upper bound of‖Bx(q, q̇)‖.

fcontact contact forces/moments exerted by the effector onto

environment, (m× 1).

fsensor force sensor reading offcontact by force/torque sen-

sor, (m× 1).

F the generalized operational space force vector, (m×

1).
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g(q) the joint space gravity vector in joint space, (n× 1).

gx(q) the operational space gravity vector, (m× 1).

gM a positive scalar upper bound of‖gx(q)‖.

h The sliding friction vector, (m× 1).

hvis,hcou,hsti,hdec components ofh: the viscous friction, coulomb

friction, stiction, and Stribeck effect, respectively,

(m× 1).

hvis,M a positive scalar upper bound of‖hvis‖.

hcou,M a positive scalar upper bound of‖hcou‖.

hsti,M a positive scalar upper bound of‖hstiexp(−hdecq̇
2)‖.

J the geometric Jacobian matrix, (m× n).

Ke a (m×m) linear (hence diagonal) spring matrix re-

lating the operational space coordinates and the con-

tact forces; it is positive definite.

Kv,Kp,KI (m×m) positive diagonal matrices, used as control

gains.

LD,LP (m×m) positive diagonal matrices, used as control

gains.

m the number of degree-of-freedom of the operational

space coordinates, (m ≤ 6).

M(q) the joint space inertia (or kinetic energy) matrix,

(n× n).

Mx(q) the operational space inertia (or kinetic energy) ma-

trix, (m×m).
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Mx,m,Mx,M the positive lower and upper bounds of‖Mx(q)‖,

respectively.

n the number of joints.

N1, N2 andN3 the number of neurons in layers 1, 2 and 3, respec-

tively, for an NN output vector.

N1,N2 andN3×N4 the number of neurons in layers 1, 2 and 3, respec-

tively, for an NN output matrix.

pi
j a (3 × 1) position vector describing the position of

frame{j} expressed in frame{i}.

q, q̇, q̈ joint space coordinates, with its first and second

derivatives, respectively, (n× 1).

Ri
j a (3 × 3) rotation matrix describing the orientation

of frame{j} expressed in frame{i}.

s1, s2, s3 the 1st, 2nd, and3rd (3 × 1) column vectors of a

rotation matrixRi
j.

V a scalar, denotes a Lyapunov function.

V the optimum first-to-second layer node weights,

(N2 ×N1).

V̂, Ṽ the estimate ofV and the error betweenV andV̂,

respectively.

VM , V̂M , ṼM positive scalar upper bounds ofV, V̂, Ṽ, respec-

tively.

W the optimum second-to-third layer node weights,

the size can be (N3 × N2), to accommodate an

(N3 × 1) NN output vector, or (N3 × N4 × N2),

to accommodate an (N3 ×N4) NN output matrix.



xiii

Ŵ,W̃ the estimate ofW and the error betweenW andŴ,

respectively.

WM , ŴM , W̃M positive scalar upper bounds ofW,Ŵ,W̃, respec-

tively.

x, ẋ, ẍ the operational space coordinates, with its first and

second derivatives, respectively, (m× 1).

xd, ẋd, ẍd the desired operational space coordinates, with its

first and second derivatives, respectively, (m× 1).

Y(q, q̇, q̈) the joint spacen× 13n regression matrix of dy-

namic parameters.

Ȳ(q, q̇, q̈) the operational spacem× 13n regression matrix of

dynamic parameters.

Z the definition ofZ = diag[W,V].

Ẑ, Z̃ the estimate ofZ and the error betweenZ and Ẑ,

respectively.
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CHAPTER 1

INTRODUCTION

1.1 Background and Problem Definition

Robotic manipulators have been used for industrial automation. The classi-

cal example is the assembly line in the automotive industry where cars in the

production are placed and positioned at exact locations on aconveyor belt for

manipulators to operate on the cars for operations such as welding and pick-

and-place as shown in Fig. 1.1(a) and 1.1(b).

Up to present, however, in practice many robotics tasks including those in the

(a) Six-axis robots used for welding. (b) An industrial robot operating in a
foundry.

Figure 1.1: Industrial manipulators (http://en.wikipedia.org/wiki/In-
dustrial robot).



1.1 Background and Problem Definition 2

industrial automation, utilize simple independent joint space strategy using Pro-

portional - Integral - Derivative (PID) control method. Other applications de-

scribed in task space, in general, cannot be easily accommodated by joint space

control. The task space motion control, done at end-effector of the robot, is a

significant topic in the study of robotics as it can relate thenatural spatial frames

of human-related tasks, as shown in [1]. Task space also accommodates the in-

teractive control (compliant motionor force-motioncontrol), which enables the

effector to provide an interaction capability of the effector with its environment,

such as: to apply static force needed for a manufacturing process (e.g. grinding,

polishing), part-mating, or dealing with geometric uncertainty of the workpiece

by establishing controlled contact forces [2].

Compliant motion control strategies basically can be grouped into two major

mainstreams: the stiffness/impedance control [3, 4] and the parallel (or, simul-

taneous), force and motion control [5, 6, 7, 8, 9].

The impedance control is basically position control which is manipulated to ex-

ert the force produced onto the working surface. This is achieved if an accurate

stiffness of the environment (serial stiffness of the end-effector and the surface)

is known and an accurate desired trajectory can be designed based upon known

surface’s geometry of which deflection can be computed. And therefore the

force produced equals to deflection times the stiffness. However, in practice the

accuracy of the stiffness and the desired trajectory according to surface geome-

try, is hard to be achieved. And therefore it cannot provide reliable performance.

The parallel force-motion control uses the contact force feedback from the force

/ torque sensor mounted in the robot. It was shown in [10], that the parallel
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force-motion strategy produces superior performance thanthat of the impedance

control strategy. Note that the force/torque sensor can be used in impedance

strategy, however, it serves as a reading only, not a feedback.

The parallel force and motion strategies can then be furtherdistinguished into

two categories: (1) the coupled motion and force subsystems[5, 6], and (2)

the decoupled motion and force subsystems [7, 8, 11, 9], where the latter is

expected, theoretically, to give better performance sincethe motion and force

subsystems are separated.

The first strategy is the operational space formulation for unified motion/force

control [8]. The operational space formulation does not require the knowledge

of the exact contact surface geometry and it was shown to perform successfully

in many real-time experimentations such as an industrial polishing task of an un-

known surface [12]. It is also established that the operational space formulation

provides an elegant handling of highly redundant and branching mechanisms

[13].

The second strategy is the reduced state position/force control of constrained

robot [9]. The reduced state position/force control requires the contact sur-

face geometry of a particular surface. However, this geometric constraint poses

a difficult problem for implementation, because: the surface geometry is re-

quireda priori, afterwards some mathematical transformations are to follow,

consequently a different surface would require a differentset of transforma-

tions. Therefore, so far works based upon this framework aremostly done in

simulation studies using up to 3 DOF manipulators or real-time experiments on

simple planar surfaces. In operational space framework, surface geometry is not
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needed and all mathematical transformations are consistent. Note that, manual

inspection to determine the normal direction of the surfaceis still required for

the operational space framework. However, precise or analytical surface geo-

metric is not required. For example, the surfaceF (x, y, z) = c has its normal

vector equals to∇F = (
∂F

∂x
,
∂F

∂y
,
∂F

∂z
). In the application, robot operator will

determine whether the orientation of the end-effector is within acceptable range

of ∇F or not.

To achieve each own performance, both frameworks do not use PID control

strategy, but rather model-based (computed torqueor inverse dynamics) control.

It is well known that PID control limits the task flexibility because it is only

tuned for a particular set of the robotic task dynamics (which is configuration

dependent). If the perfect model of the robot dynamics exists and is employed,

then the inverse dynamics control strategy would perfectlycancel the robot dy-

namics, leading to the perfect tracking performance in robot motion control.

The manipulator model refers to the closed-form Lagrange formulation (or the

recursive Newton-Euler formulation; however, in this thesis we mainly use and

focus on the Lagrange formulation) and joint friction dynamics. The Lagrange

dynamics correlates with the robot inertial parameters (11 for each link) which

are: one element of the link mass, three elements of the first moments (by prod-

uct of the link mass times the coordinates of the center-of-mass), six elements

of the inertia tensor and one element of the motor inertia. The joint friction

dynamics correlates with the joint friction parameters.

The Lagrangian derivation dynamics model basically involves two basic steps:
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1. First is the symbolic derivation of the kinetic/ inertia matrix, Coriolis/

centrifugal matrix and gravity vector through the closed-form Lagrange

energy formula. Several approaches to derive the robot dynamic model

symbolically were presented in [14, 15, 16, 17, 18, 19, 20, 21]. Inclusive

in this derivation is the simplification procedure, which isneeded to meet

the requirement of the real-time deterministic sampling time for real-time

implementation.

The simplification procedure includes:

• Common sub-expression elimination: by eliminating intermediate

expressions, the total arithmetic operations can be further reduced

[22, 23, 19, 24], however, so far these proposed procedures are still

heuristic and manual;

• Reducing the number of standard inertial parameters (13n×1, where

n is the number of joints) into a minimum set of parameters [25,26,

27, 28, 29, 30], however, so far these proposed procedures are not

yet full automatic

It is well established that for a real robot with more than three degrees of

freedom, the expressions of robot dynamic model are extremely complex,

therefore, it makes the simplification procedure is not an easy task.

2. Secondly, the parameters of the model have to be estimated.

The most basic method is by physical experiments. By dismantling the

robot and isolating each link, the link’s inertial parameters could be ob-

tained by physical experiments [19]. However, this physical experiment
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procedure, is tedious and error prone; and it is practical only when per-

formed before the robot assembly by the manufacturer.

A more practical procedure is by the off-line system identification. By

exploiting the linearity-in-parameter(LIP) property of robot dynamic

model, regression analysis of the collected input/output data (the robot

is moved into certain trajectories) can be performed by using the least-

square-estimationprocedure to identify the robot dynamic parameters

[31, 32, 33, 24, 34].

Furthermore, joint friction identification depends on ambient condition. There-

fore, ideally, to produce accurate result it must be performed every time prior

to the operation of the robot. Several joint friction identification by physical

experiments has been reported such as [24, 35, 36].

By-and-large, robot dynamics derivation and identification have been the ma-

jor obstacle for real robotic manipulator implementation (or any other mecha-

nisms). It is therefore desirable to obtain an adaptive strategy.

1.2 Main Objective

The focus task is compliant motion when a desired force is exerted to the surface

while the end-effector moves according to the desired motion tangent to the

surface.

The following specifications are desired:
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Robot
(actual)

Robot
(estimated)

+ -

q, q̇, q̈Γ
Γ̂

Γ̃

Parameter
estimation

Γ qqd Robot
(actual)

Model-based
control

(a) (b)

Figure 1.2: Indirect adaptive control: (a) off-line systemIdentification (b)
model-based control.

1. All adaptive control strategies do not requirea priori knowledge of the

manipulator dynamics.

2. The knowledge of surface geometry is not needed.

3. All control strategies are expected to provide equivalent performance of

that of dynamics compensated strategy.

4. All control strategies should be able to be implemented onthe real robotic

manipulator. The test bed would be the PUMA 560 industrial robotic arm.

In this thesis, all strategies are limited for non-redundant manipulator only.

1.3 Summary of Related Works

We review briefly some literature. Earlier works [37, 38, 39,40, 41] exploit the

linearity-in-parameter (LIP) property of robot dynamic model and use the least-

square-estimation method to identify the robot parameters, where the model-

based control can then be implemented afterward. Hence thismethod is often

referred asoff-line identification method orindirect LIP adaptive control.
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The architecture of the indirect method can be shown as a two-step process (Fig.

1.2). The linear-in-parameter model of robot dynamics can be shown as follows

Γ = Y(q, q̇, q̈) π (1.1)

whereΓ ∈ ℜn is the actual joint torque vector andY(q, q̇, q̈) ∈ ℜn×13n is

the measured regression matrix (computed from joint positions, velocities and

accelerations) andπ ∈ ℜ13n is the vector of the actual dynamic parameters.

Note that, the thirteen dynamic parameters, with respect toJointi, are comprised

of the standard inertial parameters and the joint friction parameters, as follows:

• The (11× 1) standard inertial parameters are defined as follows: the mass

of Link i (scalar), three components of the first moment of inertia of Link

i, six components of the inertia tensor of Linki and the moment inertia of

the motor (scalar).

• The (2 × 1) joint friction parameters are comprised with the viscous and

Coulomb friction terms. Only viscous and Coulomb terms are included,

in order to preserve the linearity-in-parameter property.

Now, let’s consider the most general off-line identification method based upon

the least-square-estimation procedure as in [31, 32, 34], that is: if we move

the robot through certain trajectories atN time instantst1, t2, . . . , tN , then the

over-determined actual system can be written as

ΓN =




Γ(t1)

Γ(t2)
...

Γ(tN )



=




Y(q(t1), q̇(t1), q̈(t1))

Y(q(t2), q̇(t2), q̈(t2))
...

Y(q(tN), q̇(tN ), q̈(tN ))



π = YN π. (1.2)



1.3 Summary of Related Works 9

And the over-determined estimated system can be written as

Γ̂N =




Γ̂(t1)

Γ̂(t2)
...

Γ̂(tN )



=




Y(q(t1), q̇(t1), q̈(t1))

Y(q(t2), q̇(t2), q̈(t2))
...

Y(q(tN), q̇(tN ), q̈(tN ))



π̂ = YN π̂. (1.3)

Therefore, by evaluating the cost function

‖Γ̃N‖T = Γ̃T
N Γ̃N = 0, (1.4)

whereΓ̃ = Γ − Γ̂ is the error between the actual and estimated joint torque

vectors,Γ, Γ̂, respectively, therefore the estimated dynamic parameters, π̂, can

be obtained as follows

π̂ = (YT
N YN)

−1 YT
N ΓN . (1.5)

A similar procedure by measuring the lumped inertias, instead of the joint torques,

was presented in [33, 24]; however, essentially, it also usethe regression analy-

sis method.

Subsequently, it is then clear that off-line identificationis not practical. The

cycle time of robotic usage is relatively not short i.e. clearly if there are changes

in the dynamics, then one must redo the identification procedure. Therefore,

some researchers preferred to have anon-line identification method to directly

adapt the control, as shown in Fig. 1.3. This method is often referred asdirect

LIP adaptive control.

Earlier works on direct LIP adaptive control initially can only achieve the adap-

tive control without parameter estimation [42, 43, 44, 45],where only the tra-

jectory tracking errors are guaranteed to converge (asymptotic stability) while
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Parameter
estimation

Γ qqd Robot
(actual)

Adaptive
control

+

- Γ̂

Γ̃
+

-

q̃

Figure 1.3: Direct adaptive control.

the parameter errors can be only ensured to be bounded (bounded stability) i.e.

the estimated parameters cannot be guaranteed to converge to their true values,

regardless whether optimal trajectories are given or not.

Finally, [46] proposed the adaptive control with parameterestimation (in Fig.

1.3). It can be shown that the trajectory tracking errors areguaranteed to con-

verge and the parameter errors can be guaranteed to convergeif exciting tra-

jectories are given. In the case the exciting trajectories are not given, then the

parameter errors can only be guaranteed to be bounded.

Some challenges in implementing LIP direct adaptive strategy are:

1. The first is similar to the previous classical model (with kinetic, Coriolis

/ centrifugal matrices and gravity vector), which is about the LIP model

symbolic derivation involving two factors: (i) the LIP model formulation

and (ii) the simplification procedure.

A relatively complete treatment on the LIP model formulation based upon

Lagrangian formalism, including motor inertia parameter,can be found in

[47]. However, the motori is restricted to be located on Linki−1. Hence,

the whole LIP formulation must be reformulated.
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Therefore, the present challenge is the availability of a systematic LIP

model formulation and its simplification. This problem is presently the

main bottleneck in this methodology.

2. Secondly, the regression matrixY(q, q̇, q̈) used in direct adaptive control

with identification [46] requires the availability of jointvelocities and ac-

celerations, which are often not available in industrial robots. Obtaining

these variables through filtering often produces noisy signals. Several al-

gorithms were proposed to provide the needed matrix withoutthe need of

the joint accelerations, as in [48, 49, 50, 51, 52].

3. Thirdly, the need for optimal (exciting) trajectories in order to make the

parameters converge rapidly. The optimal trajectories arethose that ex-

cite all possible dynamics of the manipulator. It is also often described

asdynamically richtrajectories. Derivation of optimal trajectories gen-

erator algorithm were proposed by [53, 54, 55, 56], however,these pro-

posed trajectory generator algorithms are still relatively a complex pro-

cess. (From practical side, if exciting trajectories cannot be determined,

then any working trajectories can be used directly, where the performance

of the tracking errors can be verified afterward.)

4. Additionally, extension to operational space in direct method can be shown

to be more complex as further transformations are required to obtain the

operational space matrices and vectors [8, 47] from the joint space dy-

namics. One must derive a separate linear dynamic model in operational

space, should one use the direct approach. Note that this extension can

still be done indirectly by performing parameter estimation in joint space
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(either using on-line or off-line method), then employing model-based

control in operational space. However, since the operational space control

is non-adaptive, one needs to redo the joint space parameteridentification

procedure whenever necessary.

Recent experimental indirect methods on higher (>= 6) DOF robots were shown

in [57, 58, 59]. However, albeit numerous theoretical and fundamental works

have been proposed, experimental works in both indirect or direct methods on

higher (>= 6) DOF robots are still relatively far and few.

By-and-large, the expressions of robot dynamic model are extremely complex,

especially for higher (>= 6) DOF robots. It makes the derivation and simpli-

fication procedure are not an easy task. A recent work even assumed the robot

dynamic model to be a linear system model; where for ease of parameter iden-

tification, it includes only joint friction model [60].

Therefore, cheaper alternative than direct or indirect LIPadaptive controls, if

any, is desirable.

Neural-network (NN) strategies then were explored as meansof nonlinear sys-

tem identification [61] and robot control strategy [62, 63, 64, 65, 66, 67]. The

NN theorem dictates that given unlimited number of hidden layer nodes, three-

layer NN with ideal weights can approximate any function given the neural nets

were properly trained without the need for an exact model. Assummarized

by [68], similar with the LIP adaptive control strategies, NN adaptive control

strategies can be categorized as: indirect NN adaptive control where system

identification must be performed a priori, and direct NN adaptive control.



1.3 Summary of Related Works 13

Despite promising results early studies lacked the mathematical proof of stabil-

ity for the proposed control algorithms. This posed a problem in ensuring the

reliability of the approach as arbitrary learning rules of the NN weights could

lead into instability of the closed-loop system as observedby [69]. Therefore

the main challenge in designing a neural-network, whether it is used as a con-

troller, classifier or identifier, is to define a learning rulewhich is easy-to-use

and can guarantee stability of the overall system with no strong constraints.

Subsequently, linear-in-parameter Neural Networks strategy (LPNN or two-

layer NN) with Lyapunov stability, analysis was proposed for nonlinear system

identification in [70, 71] and for robotic control in [72, 73]. However, LPNN

strategy requires that suitable basis functions must be first selected (e.g. radial

basis function (RBF)), which in practice this constraint ishard to satisfy.

To confront this deficiency, a three-layer joint space NN adaptive robot motion

control was proposed by Lewiset. al. [74, 75]. It has several interesting charac-

teristics:

1. The proposed strategy does not have strong constraints and was also shown

to have a satisfactory performance,

2. The formulation was developed based upon well known jointspace LIP

adaptive robotic controller proposed by Slotine and Li’s [45, 76, 46],

3. Off-line learning is not needed and the NN weights are initialized with

zero,

4. A Lyapunov analysis is provided to show bounded stabilityfor both the
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tracking errors and NN weight errors.

These characteristics made this strategy very attractive for practical implemen-

tation. However, the work [74, 75] was only validated through a simulated study

of a 2 DOF robot in joint space. Therefore, it is interesting to develop this strat-

egy into operational space formulation with real-time implementation.

Several works of neuro-adaptive compliant motion, based-upon [9], then fol-

lowed such as [77, 78, 79], however, all these works requiredthe contact sur-

face geometry to be known. Hu [80], based upon model-based equivalent in

[81], proposed a full NN based adaptive control to overcome the requirement of

the contact surface geometry. However, this strategy required a 2 dimensional

virtual constraint plane to be known, which in practice would be limiting the

dexterity of the effector movement within 2D constraint plane. More recent

neuro-adaptive control works attempted to adaptively accommodate the con-

tact surface geometry through impedance control [82, 83] and compliant motion

based approach [84, 85], however, all these works required the contact surface

normal direction to be known. Some recent works were proposed for compliant

motion law [86, 87]; however, they are not an adaptive strategy, but based upon

model-based Lagrangian strategy.

An NN adaptive algorithm designed for the compliant motion control on an

unknown contact geometry was presented in [88], where an additional vision

system was required to extract the surface geometry information. However, it

was done in simulation where the extracted geometry information was already

obtained. In reality, this extraction might not be easily obtained. Furthermore,
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the real time setup could be more complicated with an additional vision system.

All previously mentioned NN algorithms were mainly validated through simu-

lated robots of up to 3 DOFs, where only [77, 80] were validated by real-time

experiments of a real 2 DOF robot.

1.4 Main Methodology

It is previously shown that the recent works on neuro-adaptive control failed

to overcome the problem of the knowledge of the contact surface geometry.

However, it is established that:

• The operational space formulation provides a natural framework, not only

the free-motion control, but also for the parallel force andmotion control

(compliant motion) as well, without requiring the knowledge of the con-

tact surface geometry.

The drawback of this framework, however, is that it requiresa priori

knowledge of the manipulator dynamics, which is difficult toobtain.

• The neuro-adaptive control in [74, 75] was shown to have a satisfactory

performance, without prior knowledge of the robot dynamics..

Therefore, our main methodology is to combine the joint space neuro-adaptive

strategy by [74, 75] with the unified force/motion formulation in the operational

space.
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1.5 Summary of Contributions

The contributions of this Ph.D work are the development of the following con-

trol algorithms that do not rely on knowledge of robot dynamics and environ-

ment geometry:

• The Operational Space Neuro-Adaptive Motion Control:

In the first formulation, the original approach [74, 75] was extended into

operational space motion only framework. It was shown in simulation

study that a comparable performance, with that of the Lagrangian dynam-

ics.

However, it was shown that its performance on real-time experimentation

was found to be inferior to the simulation equivalents.

A separate Lyapunov analysis was presented to show that the estimated

velocity signals, obtained by approximation through the filtered backward

difference of the displacement feedback, are not suitable replacements to

the non-existing actual velocity signals for the proposed adaptive motion

strategy in real-time implementation.

• The Operational Space Neuro-Adaptive Motion Control with Velocity

Observer:

In the second formulation, an improved formulation of NN motion con-

trol with velocity observer, to overcome the absence of an actual velocity

signal in the real robot, was introduced.
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It can be shown in real-time implementation that the performance of the

NN motion controller with velocity observer strategy is better than that of

the NN motion control (where filtered velocity is used to fill the absence

of the actual velocity). Also, the improved NN formulation yielded a

comparable performance to that of the Lagrangian dynamics strategy.

• The Operational Space Neuro-Adaptive Force and Motion Control

with Velocity Observer, coupled with The Operational SpaceNeuro-

Adaptive Impact Force Control:

In the third formulation, the NN force/ motion formulation with velocity

observer, for compliant motion, was proposed. An NN adaptive impact

strategy is also proposed to complement the main strategy.

It can be shown that the proposed neuro-adaptive compliant control yielded

comparable performance with that of Lagrangian dynamics strategy.

Lyapunov stability proofs for all algorithms are also provided, together with

experimental verification.

1.6 Organization of Thesis

The development of this thesis was presented in incrementalmanner starting

from the neuro-adaptive task space free motion up to the neuro-adaptive com-

pliant motion control:

• Chapter two presents background on robot kinematics, dynamics and the

operational space formulation.
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• Chapter three presents the review of the existing adaptive control works as

follows: the joint space direct LIP adaptive control, the operational space

direct LIP motion control and the original joint space NN based adaptive

control.

• Chapter four presents a neuro-adaptive motion controller in the opera-

tional space by extending and improving the original three-layer NN adap-

tive joint space motion control by [74, 75] into operationalspace frame-

work [8]. Several useful end-effector properties to develop the proposed

formulation were also introduced.

The stability analysis of the proposed strategy was presented. Simulated

and real time comparison to the performance of the Lagrangian dynamics

and the PD-plus-gravity motion control strategies were also presented. It

was shown in simulation that a comparable performance, withthat of the

Lagrangian dynamics, was achieved, but has the advantage ofno a priori

knowledge of dynamics is required.

However, it was shown that its performance on real-time experimentation

was found to be inferior to the simulation equivalents. A separate Lya-

punov analysis reveals that, the filtered velocity signals,obtained by ap-

proximation through the filtered backward difference of thedisplacement

feedback, are not suitable replacements to the non-existing actual velocity

signals for the proposed adaptive motion strategy in real-time implemen-

tation (physically PUMA 560 does not have joint velocity sensor).

• Chapter five presents a neuro-adaptive motion control strategy with ve-

locity observer. This work was extended from previous formulation in
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Chapter three, to overcome the absence of the actual velocity signal in the

real-time experimentation. The stability analysis of the proposed strategy

was also presented.

It can be shown in real-time implementation that the performance of the

NN motion controller with velocity observer strategy, where it takes only

position feedback, is better than that of the NN motion control (where

filtered velocity is used to replace the actual velocity).

It also yielded, in real-time, a comparable performance to that of the La-

grangian dynamics strategy, but has the advantage of no a priori knowl-

edge of dynamics is required.

• Chapter six presents a neuro-adaptive force and motion control strategy

with velocity observer, which was extended from Chapter four. The sta-

bility analysis of the proposed strategy was presented in this chapter. An

adaptive impact strategy and its stability analysis to complement the main

strategy were also given.

It is shown that the proposed neuro-adaptive compliant control yielded

comparable performance with that of Lagrangian dynamics strategy, but

has the advantage of no a priori knowledge of dynamics is required.

• Chapter seven presents a consolidated view on how to combineoverall

algorithms for a multi-task operation.

A case study is presented where two main tasks are: (i) a circular compli-

ant motion, followed by (ii) a circular free motion.
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• Chapter eight presents summary of contributions and suggestions for fu-

ture works.
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CHAPTER 2

MANIPULATOR KINEMATICS AND THE
OPERATIONAL SPACE FORMULATION

2.1 Chapter Overview

This chapter covers the necessary background on robot kinematics, dynamics

[89, 90, 47] and the operational space formulation [8, 91] asour working plat-

form.

2.2 Direct Kinematics

A manipulator is treated as a structure of an open kinematic chain of n+1 links,

articulated through n rotational (revolute) and/or linear(prismatic) joints hav-

ing one degree of freedom. Let’s define as illustrated in Fig.2.1, Frame{i}

(Oi,xi,yi, zi), attached to Jointi, be such a frame with the origin atOi and

xi,yi, zi are its unit vectors, and let thezi is along the axis of Jointi. The kine-

matic relationship (the position and orientation) betweentwo coordinate frames
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Figure 2.1: An open kinematic chain.

attached to two adjacent joints,i − 1 and i, can then be described by the ho-

mogenous matrix transformation between Frame{i− 1} and Frame{i} is

Ti−1
i (qi) =




cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1




(2.1)

whereαi−1, ai−1, θi, di are Denavit-Hartenberg (DH) parameters according to

[89]. The dependent variableqi equals toθi, or di, depending on rotational or

linear joint, respectively.

In this thesis, our test bed is PUMA 560 and the DH parameters of PUMA 560

are provided in Appendix A.1. Note, the homogenous matrix transformation

(2.1) can also be written as

Ti−1
i (qi) =


Ri−1

i (qi) pi−1
i (qi)

0 1


 (2.2)

whereRi−1
i is a(3× 3) rotational matrix andpi−1

i is a(3× 1) positional vector

of Frame{i} expressed in Frame{i− 1}.
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2.2.1 End-effector Representation

As shown in Fig. 2.1, for task application, it is more convenient to place the end-

effector frame at Frame{E} at different location with Frame{n}. Therefore,

by exploiting (2.2) and the open kinematic chain concept, then the orientation

and position in Cartesian space of the Frame{E} expressed with respect to the

base frame, Frame{0}, can be obtained as

TE(q) = T1(q1) T
1
2(q2) . . .Tn

E(qn) =



RE(q) pE(q)

0 1



 (2.3)

wherepE is a(3× 1) position vector of Frame{E} in the Frame{0}

pE(q) =
(
px(q) py(q) pz(q)

)T
(2.4)

AndRE is a(3× 3) rotational matrix of Frame{E} in the Frame{0}

RE(q) =
(
s1(q) s2(q) s3(q)

)
(2.5)

wheres1, s2, s3 ∈ ℜ3 are the orientation of the unit vectorsxE ,yE , zE, respec-

tively, as shown in Fig. 2.1. The vectorq ∈ ℜn is defined as ajoint space

coordinate vector, withn as the number of degree-of-freedom of the joint space

coordinates.

We can then define theend-effector configuration parameters, xrep ∈ ℜmrep, as

xrep =



xp

xr



 (2.6)
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where the positional representationxp to describepE and the orientational rep-

resentationxr to describeRE. Among various possible selections for the posi-

tional representationxp and the orientational representationxr, the most straight-

forward representations are based on the direct use of the elements of (4 × 4)

homogenous transformation matrix, such as:

• Cartesian coordinates:wherexp exactly equals topE :

xp = pE =
(
px(q) py(q) pz(q)

)T
∈ ℜ3 (2.7)

• Direction Cosines:wherexr is obtained by stacking ups1, s2, s3 into one

(9× 1) vector

xr =
(
sT1 (q) sT2 (q) sT3 (q)

)T
∈ ℜ9. (2.8)

Note that physically, in 3D space, there are, at most, three positions in

x, y, z direction and, at most, three orientations inx, y, z direction. There-

fore, a(3 × 1) vectorxp representation by Cartesian coordinates in (2.7)

can be seen as a minimal representation of the position of theend-effector.

While, a(9× 1) vectorxr representation by direction cosines in (2.8) can

be seen as a non-minimal representation of the orientation of the end-

effector. Thereforemrep = 12.

2.3 Differential Kinematics

In this section, differential kinematics is presented to describe the the relation-

ship between the joint velocities and the end-effector velocities. We present first

the differential kinematics model of the end-effector representation.
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Let direct kinematics is described byxrep = k(q). Therefore, by differentiating

the direct kinematics function with respect to joint variables, it can be obtained

∂xrep

∂q
= Jrep(q) (2.9)

whereJrep(q) denotes a(mrep× n) analyticalJacobian matrix whose elements

are defined as:

Jrepij (q) =
∂ki(q)

∂qj
, i = 1, . . . , mrep, j = 1, . . . , n. (2.10)

Differentiating the left and right side of (2.9) with timet, it can be obtained the

representation differential kinematic model, as

ẋrep =



ẋp

ẋr



 = Jrep(q) q̇. (2.11)

Note, however, the representation differential kinematicmodel (2.11) is non-

minimal (the orientational representation velocity is a(9 × 1) vector). It is

therefore desirable to obtain a differential kinematic model with minimal repre-

sentation.

It can be shown, by usinggeometric technique[47], that each joint velocity con-

tributes to the end-effector linear and angular velocity. This leads to establishing

thebasic differential kinematic model, with minimal representation, describing

the relationship between the joint velocities and the end-effector linear and an-

gular velocities, expressed in Frame{0} in Fig. 2.2, as

ẋ =


v

ω


 = J(q) q̇ (2.12)
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Figure 2.2: End-effector velocities.

where the matrixJ(q) ∈ ℜm×n denotes thegeometricJacobian.

The effector velocity,ẋ consists of a vectorv to denote a max(3 × 1) linear

(translational) velocity vector as

v =
(
vx(q) vy(q) vz(q)

)T
(2.13)

and a vectorω to denote a max(3× 1) angular (rotational) velocity vector as

ω =
(
ωx(q) ωy(q) ωz(q)

)T
. (2.14)

The vectorẋ ∈ ℜm, with (m ≤ 6), is then defined as theoperational space

coordinate vector, withm as the number of degree-of-freedom of the opera-

tional space coordinates and it is also independent of end-effector configuration

parameters.

Note, for a manipulator, whose the number of degree-of-freedom of the oper-

ational space coordinates is less than the number of its joints i.e. m < n, is
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defined as a redundant manipulator. And for a manipulator with the same num-

ber of joints and the operational space coordinates, is defined as non-redundant

manipulator i.e.m = n. Throughout this thesis, our test bed is the PUMA 560,

wherem = n = 6 is non-redundant. The basic JacobianJ(q) is computed as

J(q) =


JP1

. . . JPn

JO1
. . . JOn


 (2.15)

andJPi
∈ ℜmP×1 andJOi

∈ ℜmO×1, with mP , mO ≤ 3, are defined as

JPi
=

{
s3i for a prismatic joint

[s3×] (pE − pi) for a revolute joint
(2.16)

JOi
=

{
0 for a prismatic joint

s3i for a revolute joint
(2.17)

where the3× 3 skew-symmetric matrix operator[s×] is defined as



0 −sz sy
sz 0 −sx
−sy sx 0


 . (2.18)

Note that, it is possible to expressJ(q) in frame{E} using the following trans-

formation

JE(q) =


RE 0

0 RE


J, (2.19)

therefore, by usingJE(q) (2.19), the end-effector linear and angular velocity

can be expressed in Frame{E} as

ẋE =


vE

ωE


 = JE(q) q̇. (2.20)
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2.3.1 Ep andEr Jacobian

It can be shown in [91] that it is possible to relate the end-effector operational

space velocity with the representation velocity as follows

ẋrep = E ẋ (2.21)

or,

ẋp

ẋr


 =


Ep 0

0 Er




v

ω


 . (2.22)

The matrixEp ∈ ℜmP×mP relates the operational space linear velocity,v, with

the end-effector translational velocitẏxp. In generalmP ≤ 3, however for a

full 3D space translational motion,mP = 3. Therefore, ifxp is chosen as the

Cartesian coordinates representation (2.7), we have

ẋp = v =
(
ṗx(q) ṗy(q) ṗz(q)

)T
, (2.23)

then,Ep is simply an identity matrix of size(3 × 3). The matrixEr ∈ ℜ9×mO

relates the operational space linear velocity,ω, with the end-effector angular

velocity, ẋr. In generalmO ≤ 3, however for a full 3D space rotational motion,

mO = 3. Therefore, ifxr is chosen as the direction cosines representation (2.8),

thenEr can be determined as follows [91]

Er(xr) =




−[s1×]

−[s2×]

−[s3×]


 . (2.24)
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Figure 2.3: Operational frames assignment

2.4 The Operational Space Formulation

The operational framework perceives the operation of a manipulator at some

point attached to the end-effector, where the task is specified. This point is

called theoperational point, and for convenience the origin of Frame{E}, OE,

can be selected as the operational point as illustrated in Figure 2.3. At point

OE is also attached Frame{0′}(OE, x0, y0, z0), which is parallel with the base

frame {0}(O0, x0, y0, z0). This shows that the operational space parameters,

depending on implementation, can be expressed in to base Frame{0} or Frame

{E}.

Note that, the operational space dynamics of the end-effector can be derived

from both therepresentation differential kinematic model(2.11) or thebasic

differential kinematic model(2.12), or (2.20).

It can be shown in [47] that, the operational space dynamics based upon the
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representation differential kinematic model can provide only the motion formu-

lation. However, the operational space dynamic based upon the basic differen-

tial kinematic model can be shown to provide a unified framework for the the

free-motion (motion only) formulation and the parallel force-motion formula-

tion [8, 91].

Let us now explain what the operational space formulation is, starting with the

free-motion formulation.

2.4.1 Unconstrained Motion Formulation

Before we discuss the end-effector unconstrained motion dynamics, let us present

the joint space dynamics of the manipulator; this describescompletely the dy-

namics of the system. The joint space dynamics for any manipulator, where no

interaction exists with the environment, can be described as follows [89, 47, 90,

91]

M(q)q̈+B(q, q̇)q̇+ g(q) + τ fric(q̇) = Γ (2.25)

whereq ∈ ℜn denotes the vector of joint space coordinates andΓ ∈ ℜn denotes

the vector of generalized joint space force. The Lagrangianjoint space matrices

and vectors:M(q) ∈ ℜn×n,B(q, q̇) ∈ ℜn×n, g(q) ∈ ℜn, andτ fric(q̇) ∈ ℜn de-

note the inertia matrix, Coriolis/centrifugal matrix, gravity vector and joint fric-

tion vector, respectively. Joint friction vectorτ fric(q̇) can be defined as in [92]

τ fric(q̇) = τ visq̇+
[
τ cou + τ stiexp(−τ decq̇

2)
]

sgn(q̇) (2.26)

where sgn(q̇) = +1,−1, 0 if q̇ = positive, negative and zero, respectively and
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τ vis, τ cou, τ sti, andτ dec ∈ ℜn are the viscous friction, coulomb friction, static

friction (stiction) and Stribeck effect, respectively.

By using the basic differential kinematic model (2.12) and its derivative, it is

possible to transform the joint space dynamics (2.25) into the unconstrained

motion (free-motion, or simply, motion) of the effector dynamics of a non-

redundant manipulator in the operational space defined as

Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) = F (2.27)

where the vectorF ∈ ℜm denotes the generalized forces in the operational

space. The operational space matrices and vectorsMx(q) ∈ ℜm×m,Bx(q, q̇) ∈

ℜm×m, gx(q) ∈ ℜm andτ x(q, q̇) ∈ ℜm denote the inertia, Coriolis/centrifugal,

gravity and joint friction dynamical terms expressed in operational space, re-

spectively, for a non-redundant manipulator in non-singular configuration. These

operational space dynamic terms can be obtained from the joint space equiva-

lents as [47]:

Mx(q) = J−T(q)M(q)J−1(q) (2.28)

Bx(q, q̇) = [J−T(q)B(q, q̇)−Mx(q)J̇(q, q̇)]J
−1(q) (2.29)

gx(q) = J−T(q)g(q) (2.30)

τ x(q, q̇) = J−T(q)τ fric(q̇) (2.31)

When all the dynamic terms are known a priori, the inverse dynamics motion

control can be designed for (2.27) as in [8]

F = Mx(q)F
∗
motion +Bx(q, q̇)ẋ + gx(q) + τ x(q, q̇) (2.32)
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where

F∗
motion = ẍd +Kvėx +Kpex (2.33)

whereex = xd − x andėx = ẋd − ẋ denote the operational space position and

velocity tracking errors, respectively; andxd, ẋd andẍd are the desired opera-

tional space trajectories. Details on the operational signals making upF∗
motion is

provided in Appendix B.1.

Note that the controller (2.32) is similar to the well known the joint space

computed-torque control, except it is now done in operational space. Thus, to

show the stability is quite straightforward. Combining (2.27) and (2.32), yields

the following second-order closed-loop equation

ëx +Kvėx +Kpex = 0 (2.34)

Hence with proper choice ofKp,Kv, ast → ∞, ėx, ex → 0.

2.4.2 Constrained Motion Formulation

The effector dynamics of a non-redundant manipulator interacting with the en-

vironment (constrained motion or compliant motion dynamics) in operational

space can be written as

Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) +Ωh(ẋ) + Ω̄fcontact= F (2.35)

where the operational space matrices and vectorsMx(q) ∈ ℜm×m, Bx(q, q̇)

∈ ℜm×m, gx(q) ∈ ℜm andτ x(q, q̇) ∈ ℜm are similar with (2.28) – (2.31),

with now there is an additional term: the vectorf ∈ ℜm represents the contact
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force vector exerted by the effector onto the contact surface. The relationship

between the operational space coordinates and the contact forces can be safely

assumed to be represented by a simple linear spring model

fcontact= Ke δx = Ke(x− xinit) (2.36)

wherexinit is the end-effector position when in contact with the surface with

zero contact force, andKe is defined as the linear spring matrix. This linear

spring model is applied to both translational and rotational degrees of freedom

of the manipulator. Therefore, the first and second derivatives of (2.36) can be

obtained as

ẋ = K−1
e ḟcontact (2.37)

ẍ = K−1
e f̈contact. (2.38)

For ease of explanation, let’s assume that we have a full 3D space translational

and rotational motion i.e.mP , mO = 3, which can be achieved by a non-

redundant manipulator with six DOF, therefore we havem = mP + mO ≡

n = 6.

In the operational space formulation, compliant motion canbe achieved by de-

coupling between the axes assigned for translation/rotation (motion control) and

to those for force/moment (force control). This is achievedby using selection

matrices,Ω andΩ̄, constructed as6× 6 matrices as in the original formulation
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in [8]:

Ω =


(RE)

T ΣF RE 0

0 (RE)
T ΣM RE




Ω̄ =


(RE)

T Σ̄F RE 0

0 (RE)
T Σ̄M RE




(2.39)

whereRE is the appropriate rotational matrix to transform the reference frame

in the base frame,{0}, to the end-effector frame,{E}. Furthermore

ΣF =




σfx 0 0

0 σfy 0

0 0 σfz


 , Σ̄F = I3×3 −ΣF

ΣM =




σmx
0 0

0 σmy
0

0 0 σmz


 , Σ̄M = I3×3 −ΣM

(2.40)

in whichσfx , σfy , σfz are given the value1 for free-motion and0 for constrained

motion i.e. translational motion control and force control, respectively. Simi-

larly, σmx
, σmy

, σmz
are given the value1 and0 to represent free and constrained

rotation i.e. rotational motion control and moment control, respectively.

Note that, (2.39) is true when the operational space coordinates are expressed in

to Frame{0}. However, it is possible to express all operational space variables

in Frame{E} i.e. RE = I, therefore, in this thesis,Ω andΩ̄ can be simplified

as follows

Ω =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


 , Ω̄ =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0


 . (2.41)
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Figure 2.4: Compliant motion at the effector frame{E}(OE, xE, yE, zE).

Therefore, specifically in our implementation, all operational space dynamics

and coordinates are expressed in Frame{E} and for convenience the superscript

‘E’ is dropped.

Compliant motion in the operational space can then be shown as follows: as

shown in Fig. 2.4, using selection matricesΩ andΩ̄ (2.41), we can have force

control alongzE axis(Fz), and the moment controls alongxE, yE axes(Mx,My),

respectively. By controllingMx,My to zeroes, then the effector axiszE can be

controlled to be always normal to the surface and it can move on the surface’s

curvature accordingly by translational motion control alongxE , yE axes. There-

fore the surface’s geometry is not needed.

As in motion control equivalent, similarly, when all the dynamic terms are

known a priori, the inverse dynamics parallel force-motioncontrol can be de-

signed for (2.35) as in

Mx(q)(ΩF∗
motion + Ω̄F∗

force) +Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) + fsensor= F

(2.42)
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with theF∗
motion is the same as in (2.33), whileF∗

force is defined as

F∗
force =− ẋ +Kp ef +KI

∫

t

ef dt

=K−1
e ėf +Kp ef +KI

∫

t

ef dt

(2.43)

whereef = fd − f and ėf = −ḟ = −Ke ẋ are the force tracking errors,

wherefd is a constant desired active-force. The vectorfsensor ∈ ℜm denotes

the force/moment readings at the tip of the end-effector, expressed in Frame

{E}, where it can be assumed thatfsensorequals tofcontact.

Therefore, by combining (2.35) and (2.42), taking into account selection ma-

tricesΩ andΩ̄ in (2.41), the motion and force closed-loop subsystems can be

obtained as

Ω(ëx +Kvėx +Kpex) = 0 (2.44)

Ω̄(−K−1
e f̈ +K−1

e ėf +Kpef +KI

∫

t

ef dt) = 0 (2.45)

The stability analysis for the closed-loop motion subsystem has been discussed

in Section 2.4.1. For the closed-loop force subsystem, using (2.36)–(2.38), it

can be shown as

ëf + ėf +Ke Kpef +Ke KI

∫

t

ef dt = 0 (2.46)

Hence with proper and tunable gainsKp,KI, then ast → ∞, ef → 0.

2.5 Torque/Force Relationship

In the real time implementation, the actuators of the robot only take the gen-

eralized joint forcesΓ. Therefore, the generalized operational space control
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signalF must be converted into the generalized joint space equivalent. For a

non-redundant manipulator, the generalized joint forcesΓ is given by the rela-

tionship [8, 47]

Γ = JT(q)F (2.47)

where it is then sent into the actuators of the robot.
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CHAPTER 3

ADAPTIVE CONTROL REVIEW

3.1 Chapter Overview

In this chapter we present a critical review of the existing adaptive control of

robot manipulators of the following works: (i) the joint space direct LIP adaptive

control, (ii) the operational space direct LIP motion control, and (iii) the original

joint space NN based adaptive control.

3.2 Joint Space Direct LIP Adaptive Control

In this section, we present the concept and stability analysis of the LIP direct

adaptive control in joint space [46]. We first introduce someuseful properties of

the joint space dynamic to be used later for control development and the stability

analysis.

Note, unless otherwise specified, in this thesis all vector/matrix norms are de-

fined as Frobenius norm‖ · ‖F , which is: the square-root of the sums of the

square of individual element of a matrix / vector.

The Frobenius norm of vectora ∈ ℜm is defined as

‖a‖ =

√√√√
m∑

i

a2i (3.1)
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The Frobenius norm of matrixA ∈ ℜm×n is defined as

‖A‖ = trace(ATA) =

√√√√
n∑

j

m∑

i

a2ij (3.2)

Also the Frobenius inner product of two matricesA,B ∈ ℜm×n can be defined

as

〈A,B〉 = trace(ATB) =

n∑

j

m∑

i

aijbij (3.3)

3.2.1 Properties of Joint Space Dynamics

Property 3.2.1 The joint space kinetic energy matrixM(q) ∈ ℜn×n is sym-

metric and positive definite matrix, and therefore all its eigenvalues are posi-

tive. It follows from Rayleigh-Ritz theorem [93] that: any positive definite ma-

trix A satisfiesAm ≤ ‖A‖ ≤ AM , whereAm, AM > 0 denote the minimum

and maximum eigenvalues ofA, respectively. ThereforeM(q(t)) is lower and

upper-bounded by its global minimum and maximum eigenvalues alongt ≥ 0,

respectively, as:

Mm ≤ ‖M(q(t))‖ ≤ MM , t ≥ 0 (3.4)

whereMm = min(λmin(M(q(t)))) > 0 andMM = max(λmax(M(q(t)))) >

0, whereλmin(·) and λmax(·) denote the minimum and maximum eigenvalue

operators, respectively.

Property 3.2.2 The joint space Coriolis / centrifugal matrixB(q, q̇) is upper-

bounded [47]

‖B(q, q̇)‖ ≤ BM q̇M (3.5)
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whereBM is a positive scalar constant. Notėq can be assumed to bounded

since in reality saturation occurs on the maximum velocity of the motor [47].

Property 3.2.3 The joint space gravity vectorg(q) is upper-bounded [47]

‖g(q)‖ ≤ gM < ∞ (3.6)

Property 3.2.4 As shown in [90], the joint friction forces,τ fric(q̇) (2.31), are

bounded in magnitude

‖τ visq̇‖ ≤ τvisM q̇M (3.7)

‖τ cousgn(q̇)‖ ≤ τcouM
(3.8)

‖τ stiexp(−τ decq̇
2)sgn(q̇)‖ ≤ τstiM (3.9)

Property 3.2.5 The matrixṀ(q)− 2B(q, q̇) is a skew-symmetric matrix [90],

hence given any joint space vectorz ∈ ℜn, it satisfies

zT
(
Ṁ(q)− 2B(q, q̇)

)
z = 0. (3.10)

3.2.2 LIP Model and Direct LIP Adaptive Control

In this section, we first review the linearity property of robot dynamics, the direct

LIP adaptive control, and then the closed-loop error dynamics. And finally, we

will present the stability analysis. The joint space dynamics (2.25), considering

only joint viscous and coulomb friction vectors, can be written as

Γ = M(q)q̈ +B(q, q̇) + g(q) + τ visq̇ + τ cou sgn(q̇) (3.11)
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Note that, (3.11) was obtained by considering only joint viscous and coulomb

friction vectors in order to achieve the linearity property, therefore (3.11) can be

shown in linear-in-parameter model as follows [94, 47]

Γ = Y(q, q̇, q̈) π (3.12)

whereY(q, q̇, q̈) ∈ ℜn×13n is the calculable regression matrix andπ ∈ ℜ13n is

the vector of actual dynamic parameters. Note that (3.12) can be expanded as

follows



Γ1

Γ2

...

Γn



=




yT
11 yT

12 · · · yT
1n

yT
21 yT

22 · · · yT
2n

...
...

. . .
...

yT
n1 yT

n2 · · · yT
nn







π1

π2

...

πn




(3.13)

whereπi is a (13× 1) vector of actual inertial parameters defined as follows

πi = [mli mli lCix mli lCiy mli lCiz Ī
i
lixx

Ī iliyy Ī
i
lizz

Ī ilixy Ī
i
liyz

Ī ilixz Imi
τvisi τcoui

]T

for i = 1, . . . , n

(3.14)

In details, the inertial parameters are defined as follows:

• mli is the mass of Linki (scalar).

• mli lCix mli lCiy mli lCiz are the components of the first moment of inertia

of Link i, which are obtained by multiplying the link mass with the3× 1

position vector

rii,Ci
=
(
lCix lCiy lCiz

)T
(3.15)

which is defined as the center-of-mass of linki with respect to framei.
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• The variablesĪ ilixx, Ī
i
liyy

, Ī ilizz, Ī
i
lixy

, Ī iliyz , Ī
i
lixz

are defined as

Ī ilixx = I ilixx +mli(l
2
Ciy

+ l2Ciz
) (3.16)

Ī iliyy = I iliyy +mli(l
2
Cix

+ l2Ciy
) (3.17)

Ī ilizz = I ilizz +mli(l
2
Cix

+ l2Ciy
) (3.18)

Ī ilixy = I ilixz +mli(lCix + lCiy) (3.19)

Ī iliyz = I iliyz +mli(lCiy + lCiz) (3.20)

Ī ilixz = I ilixz +mli(lCix + lCiz) (3.21)

which is obtained from the following computation

Īili = Iili +mliS(r
i
i,Ci

)TS(rii,Ci
) (3.22)

where

Iili =




I ilixx −I ilixy −I ilixz

−I ilixy I iliyy −I iliyz

−I ilixz −I iliyz I ilizz


 (3.23)

is the inertia tensor of the center-of-mass of Linki, expressed in framei.

AndS(rii,Ci
) is a3× 3 skew-symmetric operator matrix defined as

S(rii,Ci
) =




0 −lCiz lCiy

lCiz 0 −lCix

−lCiy lCix 0


 (3.24)

given a3× 1 vectorrii,Ci
=
(
lCix lCiy lCiz

)T
.

• Imi
is a scalar motor inertia about its axis of rotationzmi

. It is taken from

the(3, 3) element of the motor inertia tensorImi
mi

as follows:
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q̈d, q̇d,qd Γ
Robot

q, q̇

param.

updates

Joint space LIP

adaptive control

-
+

Figure 3.1: The joint space direct LIP adaptive control structure.

Assuming the rotor has symmetric mass distribution about its axis of rota-

tion and selecting a proper frame, the motor inertia tensorImi
mi

, expressed

in its own framemi, can be written as

Imi
mi

=




Imi
mixx

0 0

0 Imi
miyy

0

0 0 Imi
mizz


 (3.25)

It can be shown in [47] that, out of three elements of the motorinertia

tensor, onlyImi
mizz

will contribute into the kinetic energy. Therefore, only

Imi
mizz

is taken into account. To simplify the notation, the scalarImi
mizz

is

written asImi
.

The control law, as shown in Fig. 3.1, is defined as

Γ = M̂(q)Γ∗ + B̂(q, q̇)q̇r + ĝ(q) + τ̂ visq̇r + τ̂ cou sgn(q̇) (3.26)

The following termsq̇r andΓ∗ are defined as

q̇r = q̇d +Λe (3.27)

Γ∗ = q̈r +Λr (3.28)
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with the computable terms are defined for computingΓ∗ as

q̈r = q̈d +Λė (3.29)

r = q̇r − q̇ = ė+Λe (3.30)

whereΛ ∈ ℜn×n is a positive diagonal matrix,e = qd − x andė = q̇d − ẋ are

the joint space position and velocity tracking errors, respectively, withqd, q̇d

andq̈d are the desired joint space trajectories. A relationship(̃·) = (·) − (̂·) is

defined wherẽ(·) is the estimation error dynamics,(·) is the actual dynamics,̂(·)

is the estimated dynamics, which will be estimated by the estimated LIP model.

Note that, in the implementation, by exploiting its linear model form in (3.12),

the controller (3.26) can be simply implemented as

Γ = Y(q, q̇, q̇r, q̈r) π̂ (3.31)

whereπ̂ ∈ ℜ13n is the vector of estimated inertial parameters. Combining the

joint space dynamics (3.11) and direct LIP adaptive control(3.26), and taking

into account the first derivative of (3.30), the closed-looperror dynamics can be

obtained as as

M(q)ṙ = −M(q)Λr −B(q, q̇)r+ η (3.32)

where the uncertaintiesη is defined as

η = M̃(q)Γ∗ + B̃(q, q̇)q̇r + g̃(q) + τ̃ visq̇r + τ̃ cou sgn(q̇) (3.33)

which can be written using LIP form (3.12) as

η = Y(q, q̇, q̇r, q̈r) π̃. (3.34)
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whereπ̃ ∈ ℜ13n is the vector of closed-loop error dynamics parameters. Sub-

stituting (3.34) into the closed-loop error dynamics (3.32), yields

M(q)ṙ = −M(q)Λr −B(q, q̇)r+Y(q, q̇, q̇r, q̈r) π̃. (3.35)

3.2.3 Stability Analysis

The chosen Lyapunov function candidate for the closed-looperror dynamics

(3.35) with the uncertaintiesη (3.34), is

V (r, π̃) =
1

2
rTM(q)r+

1

2
π̃TP−1π̃ (3.36)

whereP ∈ ℜ13n×13n is a constant positive diagonal matrix. Therefore the time

derivative of (3.36) can be obtained as

V̇ (r, π̃) = rTM(q)ṙ +
1

2
rTṀ(q)r+ π̃TP−1 ˙̃π (3.37)

Next, we substitute the closed-loop dynamics (3.35) with the uncertaintiesη

(3.34) and also take into account Property 3.2.5 intoV̇ (r, π̃) of (3.37), to obtain

V̇ (r, π̃) = −rTM(q)Λr+ π̃T
(
P−1 ˙̃π +Y(q, q̇, q̇r, q̈r)r

)
(3.38)

Now, if we introduce the parameter updates as

˙̂π = P
(
YT(q, q̇, q̇r, q̈r) r+YT

f (q, q̇) Γ̃f

)
(3.39)

whereYf(q, q̇) andΓ̃f are computed as

Yf(q, q̇) = G(s)Y(q, q̇, q̈) (3.40)
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and

Γ̃f = Γf − Γ̂f = Yf(q, q̇) π̃ (3.41)

whereΓf andΓ̂f are computed as

Γf = G(s)Γ (3.42)

Γ̂f = Yf(q, q̇) π̂ (3.43)

Note that,G(s) is a strictly stable Laplace filter, such as a first order filter

G(s) =
α

s+ α
, α > 0. It can be shown [48, 49] thatYf(q, q̇) is free from

the acceleration signals. Other works to avoid calculatingthe joint accelera-

tions with different kind of technique, characteristics and requirements were

presented in [95, 50, 51, 52]. Henceforth, we can writeV̇ (r, π̃) (3.38) as

V̇ (r, π̃) = −rTM(q)Λr− π̃TYT
f (q, q̇) Yf(q, q̇)π̃ ≤ 0. (3.44)

It can be shown later on thatt → ∞, r → 0, from (3.30) impliese, ė → 0.

While t → ∞, π̃ → 0 can only be achieved if only exciting trajectories are

given. In the case the exciting trajectories are not given, then the parameter

errors can only be guaranteed to be bounded. Note when the (3.39) employs a

constant gainP, then the estimation term (the second term) is often referred as

gradientestimator.

Now, we are ready to show the stability analysis in details. First, we need to

invoke Barbalat’s lemma [93] (pp. 123) that if:

• V is bounded ast → ∞, and
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• V̈ is bounded,

thenV̇ → 0 ast → ∞. The first condition can be provided by noticingV̇ ≤ 0

in (3.44) andV is lowerbounded by zero in (3.36), thereforeV is bounded as

t → ∞. Therefore we are left with proving the boundedness ofV̈ .

The expression of̈V can be established from (3.44) as

V̈ = −2 rTM(q)Λṙ − rTṀ(q)Λr− 2 π̃TYT
f Ẏf π̃ − 2 π̃TYT

f Yf
˙̃π.

(3.45)

The boundedness of̈V can be shown as follows:

• SinceV̇ ≤ 0 (3.38) andV (3.36) is lower bounded by zero,V tends to

a constant ast → ∞ and thereforeV remains boundedfor t ∈ [0,∞].

SinceV is bounded andM(q) cannot be zero by Property 3.2.1, therefore

from (3.36),r andπ̃ is bounded. The boundedness ofr infers the bound-

edness ofe andė. The boundedness ofe, ė and the trajectoriesqd, q̇d, q̈d

(by design), infers the boundedness ofq, q̇, q̇r, q̈r.

• Ṁ(q) =
dM(q)

dq
q̇ can be shown to be bounded sinceM(q) and q̇ are

bounded, respectively, by Property 3.2.1 and previous point.

• The closed-loop error dynamics (3.35) can be written as

M(q)ṙ+M(q)Λr +B(q, q̇)r = Y(q, q̇, q̇r, q̈r) π̃. (3.46)

Therefore, from properties 3.2.1, 3.2.2 and 3.2.3 and 3.2.4, it can be in-

ferred thatY(q, q̇, q̈) is bounded.
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The boundedness ofY(q, q̇, q̇r, q̈r) can be inferred from the bounded-

ness ofY(q, q̇, q̈) andq̇r, q̈r (first point). Using (3.46), the boundedness

of Y(q, q̇, q̇r, q̈r) and the boundedness ofr and π̃ (first point), results

ṙ is bounded.

•

Ẏf =
d(Yf(q, q̇))

dt
=

s α

s+ α
Y(q, q̇, q̈) (3.47)

SinceY(q, q̇, q̈) and
s α

s+ α
are bounded, thereforėYf is bounded.

• The boundedness of˙̃π can be directly obtained from (3.39).

Therefore all the terms making up̈V (3.45) are bounded, therefore by using

Barbalat’s lemma, we can obtain:

V̇ → 0 ast → ∞ ⇒ r → 0 andYf(q, q̇) π̃ → 0 as t → ∞. Or, in other

words:

• The convergence ofr, which implies the convergence ofe, ė.

• The convergence ofYf(q, q̇)π̃.

However, this does not guarantee the convergence ofπ̃.

The convergence of̃π can be shown as follows [93]: pre-multiplying

Yf(q, q̇) π̃ → 0 with YT
f (q, q̇), then integrating it over timet, result

∫ r=t

0

YT
f (q, q̇)Yf(q, q̇) π̃ dr → 0 (3.48)

thus the only way to to enforcẽπ → 0 is to make

∫ r=t

0

YT
f (q, q̇)Yf(q, q̇) dr > 0. (3.49)
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This condition is where the matrixYf(q, q̇) needs to be persistently exciting,

therefore the parameter errorπ̃ will converge to zero, complete proof can be

shown in [96, 97].

In practical side, this means that the trajectory tracking errors are always guar-

anteed to converge and for the parameter errors are only guaranteed to converge

if only exciting trajectories are given. In the case the exciting trajectories are

not given, then the parameter errors can only be guaranteed to be bounded.

Note that the following aspects are still preferable to be incorporated: (1) two

simplified dynamic models for the control and parameter identification, to meet

the requirement of the real-time deterministic sampling time (note, ideally, iden-

tification model must be acceleration free), and (2) optimaltrajectory, to enforce

the convergence of the dynamic parameters.

3.3 Operational Space Direct LIP Adaptive Mo-
tion Control

For ease of perusal, let’s reproduce the end-effector motion dynamics of the

non-redundant manipulator (2.27) in Chapter two, which canbe described as

F = Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) (3.50)

where the operational space matrices and vectorsMx(q) ∈ ℜm×m, Bx(q, q̇)

∈ ℜm×m, gx(q) ∈ ℜm, τ x(q, q̇) ∈ ℜm are similar with (2.28) – (2.31), respec-

tively, with slight modification onτ x(q, q̇) as follows:

τ x(q, q̇) = J−T(q) (τ visq̇+ τ cou sgn(q̇)) (3.51)
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Figure 3.2: The operational space direct LIP adaptive motion control structure.

where it is obtained by considering only viscous and coulombterms in order to

achieve the linearity property.

As the LIP joint space equivalent, by using the linearity property, the operational

space dynamics (3.50) can be shown to be linear-in-parameter as follows

F = Ȳ(q, q̇, q̈) π. (3.52)

which can be expanded as



F1

F2

...

Fm



=




yT
11 yT

12 · · · yT
1n

yT
21 yT

22 · · · yT
2n

...
...

. . .
...

yT
n1 yT

n2 · · · yT
nn







π1

π2

...

πn




(3.53)

whereȲ(q, q̇, q̈) ∈ ℜm×13n is the operational space regression matrix andπ ∈

ℜ13n is the vector of actual inertial parameters, with each elementπi ∈ ℜ13 has

been described in (3.14).

The operational space LIP adaptive force-motion control law, as shown in Fig.

3.2, can be defined as

F = M̂x(q)F
∗
motion + B̂x(q, q̇)ẋr + ĝx(q) + τ̂ x(q, q̇) (3.54)
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The following termsẋr andF∗
motion are defined as

ẋr = ẋd +Λe (3.55)

F∗
motion = ẍr +Λr (3.56)

with the computable terms are defined for computingF∗
motion as

ẍr = ẍd +Λė (3.57)

r = ẋr − ẋ = ė+Λe (3.58)

whereΛ ∈ ℜm×m is a positive diagonal matrix,e = xd −x andė = ẋd − ẋ are

the operational space position and velocity tracking errors, respectively ,xd, ẋd

andẍd are the desired operational space trajectories.

Note that, in the implementation, by exploiting the linearity-in-the-parameter

model form in (3.52), the controller (3.54) can be simply implemented as

F = Ȳ(q, q̇, ẋr,F
∗
motion) π̂. (3.59)

Combining the operational space motion dynamics (3.50) anddirect LIP adap-

tive control (3.54), and taking into account the first derivative of (3.58), the

closed-loop error dynamics can be obtained as

Mx(q)ṙ = −Mx(q)Λr−Bx(q, q̇)r+ η (3.60)

where the uncertaintiesη is defined as

η = M̃x(q) F
∗
motion + B̃x(q, q̇) ẋr + g̃(q) + τ̃ x(q, q̇). (3.61)
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which can be written using LIP form (3.12) as

η = Ȳ(q, q̇, ẋr,F
∗
motion) π̃. (3.62)

Substituting (3.62) into the closed-loop error dynamics (3.60), yields

Mx(q)ṙ = −Mx(q)Λr −Bx(q, q̇)r+ Ȳ(q, q̇, ẋr,F
∗
motion) π̃. (3.63)

The chosen Lyapunov function candidate for the closed-looperror dynamics

(3.63) with the uncertaintiesη (3.62), is

V (r, π̃) =
1

2
rTMx(q)r+

1

2
π̃TP−1π̃ (3.64)

whereP ∈ ℜ13m×13m is a constant positive diagonal matrix. Now, if we intro-

duce the parameter updates as

˙̂π = P
(
ȲT(q, q̇, ẋr,F

∗
motion) r+ ȲT

f (q, q̇) F̃f

)
(3.65)

Note that, the parameter updates (3.65) is similar as in [98], however, the second

term is not included in [98].

Next,Ȳf(q, q̇) andF̃f in (3.65) are computed as follows:

Ȳf(q, q̇) = G(s)Ȳ(q, q̇, q̈) (3.66)

and

F̃f = Ff − F̂f = Ȳf(q, q̇) π̃ (3.67)

whereFf andF̂f are computed as

Ff = G(s)F (3.68)

F̂f = Ȳf(q, q̇) π̂. (3.69)
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Then by using similar procedure like in Section 3.2.3, it canbe shown that

V̇ (r, π̃) =− rTMx(q)Λ r− π̃TȲT
f (q, q̇) Ȳf(q, q̇)π̃ (3.70)

It can be shown using Barbalat’s lemma as in Section 3.2.3 that ast → ∞, r →

0. Therefore, fromr (3.58) impliese, ė → 0. For π̃ → 0 can only be achieved

if only exciting trajectories are given. In the case the exciting trajectories are

not given, then the parameter errors can only be guaranteed to be bounded.

Clearly, this operational space extension requires the construction of

Ȳ(q, q̇, q̈) (3.52) andȲf(q, q̇) (3.66), which obviously are more complex than

the joint space equivalent.

Note that, a cheaper alternative over direct LIP strategy inoperational space can

be achieved by employing parameter estimation (either using on-line or off-line

method) in joint space. Then non-adaptive model-based control is employed

in operational space by transforming the joint space model into the operational

model equivalents via (2.28) – (2.31). However, since the operational space con-

trol is non-adaptive case, therefore one needs to redo the joint space parameter

identification procedure, whenever necessary.

3.4 The Original Joint Space NN Adaptive Motion
Control

For ease of perusal, let’s reproduce the joint space dynamics in (2.25)

M(q)q̈+B(q, q̇)q̇+ g(q) + τ fric(q̇) = Γ (3.71)
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whereq ∈ ℜn denotes the vector of joint space coordinates andΓ ∈ ℜn denotes

the vector of generalized joint space force. The Lagrangianjoint space matrices

and vectors:M(q) ∈ ℜn×n, B(q, q̇) ∈ ℜn×n, g(q) ∈ ℜn, andτ fric(q̇) ∈ ℜn

denote the inertia matrix, Coriolis/centrifugal matrix, gravity vector and joint

friction vector as in (2.31).

Next, we present the original joint space NN motion control [74, 75] as

F = Kvr+ υ + f̂ (3.72)

whereKv ∈ ℜn×n is a positive diagonal matrix,υ is an× 1 robust term vector

to be defined later and the term̂f is an× 1 vector defined as

f̂ = M̂(q)q̈r + B̂(q, q̇)q̇r + ĝ(q) + τ̂ (q, q̇). (3.73)

Note in (3.73), a relationship̃(·) = (·)− (̂·) is defined wherẽ(·) is the estimation

error dynamics,(·) is the actual dynamics,̂(·) is the estimated dynamics, which

will be estimated by the estimated NN model. The following terms are also

defined

q̇r = q̇d +Λe (3.74)

q̈r = q̈d +Λė (3.75)

r = ė+Λe (3.76)

whereΛ ∈ ℜn×n is a positive diagonal matrix,e = qd − x and ė = q̇d − ẋ

are the joint space position and velocity tracking errors, respectively,qd, q̇d and

q̈d are the desired joint space trajectories. The original joint space NN motion

control [74, 75] can be shown in Fig. 3.3.
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Figure 3.3: The original joint space NN motion control structure.

Next, combining the joint space dynamics (3.71) and NN adaptive motion con-

trol (3.72), and taking into account (3.76), the closed-loop error dynamics can

be obtained as

M(q)ṙ+Kvr+B(q, q̇)r+ υ = η; (3.77)

where the uncertaintiesη in joint space is defined as

η = M̃(q)q̈r + B̃(q, q̇)q̇r + g̃(q) + τ̃ (q, q̇) (3.78)

and if written in lumped vectors as

η = f − f̂ . (3.79)

3.4.1 Three-Layer Neural Networks

As shown in Fig. 3.4, in general, a three-layer neural network is defined such

that N1, N2 andN3 are the number of neurons in layer 1, layer 2, layer 3,

respectively.z ∈ ℜN1 is the NN input-layer vector,σ ∈ ℜN2 is the NN hidden-

layer vector andu ∈ ℜN3 is the NN output-layer vector.vkl is the first-to-second

layer weights, withl = 1, . . . , N1 as the input-layer index andk = 1, . . . , N2

as the hidden-layer index;θk is the threshold offset, andwik is second-to-third
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layer weights for output vector, withi = 1, . . . , N3 as the output-layer index.

Functionσ(·) is defined to be differentiable throughout, such as sigmoid and

hyperbolic functions. In this thesis, sigmoid functionσ(s) = 1/(1+ exp−(a×s))

is selected. Therefore each element of output vectoru can be expressed as

ui =

N2∑

k=1

wik σk

(
N1∑

l=1

vklzl + θk

)
; i = 1, . . . , N3, (3.80)

Equation (3.80) can be written in a simplified manner in vector-and-matrix form

as in [99] as

u = WT σ
(
VTz

)
(3.81)

with W ∈ ℜN3×N2 ,V ∈ ℜN2×N1 . NoteN3 can be determined from the robot

DOF, therefore for non-redundant manipulator with 6 DOF then N3 = n = 6.

Also, the addition of the scalarθk, in (3.81), has been included in theVTz term.

This can be done by appending the vectorθT (where each element isθk) as the

first row ofV and an element containing ‘1’at the beginning of vectorz.

3.4.2 Uncertaintiesη in NN terms

The uncertaintiesη as lumped vectors as in (3.78) is

η = f − f̂ (3.82)

From NN theory, given an adequate number of hidden layer nodes,N2, a three

layer NNs with ideal weights is capable of approximating anyfunction [100,

101]. In practice, however, there are only limited number ofhidden layer nodes,

therefore the actual termf as a whole, for a given number of hidden neurons,
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Figure 3.4: Three-layer NN structure (with output vector).

can be described by three-layer NNs with constantoptimumweightsV,W and

a vector of the lumped approximation errorε ∈ ℜn as follows

f(z) = WTσ(VTz) + ε (3.83)

And the selected NN input vectorz in [74, 75] is

z ≡ [eT ėT xT
d ẋT

d ẍT
d ]

T. (3.84)

Likewise the estimated function̂f(z), can be described by the estimated weights

V̂,Ŵ as follows

f̂(z) = ŴTσ(V̂Tz) (3.85)

Therefore, using (3.83) and (3.85),η (3.86) can be written as

η = WTσ(VTz)− ŴTσ(V̂Tz) + ε (3.86)

To computeη (3.86), it is necessary to compute the general expression of
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WTσ(VTz) - ŴTσ(V̂Tz), which can be manipulated, as

WTσ(VTz)− ŴTσ(V̂Tz)

= WTσ(VTz)− ŴTσ(V̂Tz)−WTσ(V̂Tz) +WTσ(V̂Tz)

= W̃Tσ(V̂Tz) +WT
(
σ(VTz)− σ(V̂Tz)

)
(3.87)

whereW̃ andṼ are defined as the NN weight errors.

Therefore, first, we need to compute the error of the sigmoid function as follows

σ̃ = σ(VTz)− σ(V̂Tz) (3.88)

From the Taylor series expansion, we have

σ(k)
∣∣
k=k̂

= σ(k̂) +
dσ(k)

dk
(k− k̂) +O(k− k̂) (3.89)

whereO(k − k̂) denotes the higher order terms. Note thatσ′(k) = dσ(k)
dk

∣∣
k=k̂

,

and becauseσ is differentiable,σ′ exists. Henceσ(VTz)
∣∣
VTz=V̂Tz

in (3.88)

can be written as

σ(VTz) = σ(V̂Tz) + σ′(V̂Tz)ṼTz+O(ṼTz) (3.90)

To simplify the notations, it is defined thatσ = σ(VTz), σ̂ = σ(V̂Tz), and

σ = σ̂ + σ̃. Therefore, using (3.90),̃σ (3.88) can be rewritten as:

σ̃ = σ(VTz)− σ(V̂Tz) = σ̂′
ṼTz+O(ṼTz), (3.91)

Substituting (3.91) into (3.87) and some manipulations, yield:

W̃Tσ̂ +WTσ̃ = W̃T(σ̂ − σ̂′V̂Tz) + ŴTσ̂′ṼTz+ W̃Tσ̂′VTz

+WTO(ṼTz)
(3.92)
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Substituting (3.92) intoη in (3.86), we obtain

η = W̃T(σ̂ − σ̂′
V̂Tz) + ŴTσ̂′

ṼTz+ ζ (3.93)

where the termζ is defined as

ζ = W̃Tσ̂′VTz+WTO(ṼTz) + ε (3.94)

Now, to ease for later developments let’s defineZ = diag[W,V], such that

‖Z‖ =
√

‖W‖2 + ‖V‖2 ≤ ZM . (3.95)

whereZM is a positive scalar constant. Note,W,V are upper-bounded since

the actual dynamic is bounded.

It was shown in [74, 75] thatζ can be shown to be bounded as follows

‖ζ‖ ≤ C0 + C1 ‖Z̃‖+ C2 ‖Z̃‖ ‖r‖ (3.96)

with C ′
is are positive constants.

3.4.3 Stability Analysis of the Original Approach

The chosen Lyapunov function candidate for the closed-looperror dynamics

(3.77), with the uncertaintiesη (3.93), is

V (r, Z̃) =
1

2
rTM(q)r+

1

2

n∑

i=1

W̃T
i F−1

i W̃i +
1

2

N2∑

k=1

ṼT
k G−1

k Ṽk (3.97)

whereW̃i ∈ ℜN2 , Ṽk ∈ ℜN1 are column vectors andF−1
i ∈ ℜN2×N2 ,G−1

k ∈

ℜN1×N1 are positive diagonal matrices.
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Taking the derivative ofV (r, Z̃)with respect to time then substituting the closed-

loop error dynamics (3.77),η (3.93) and Property 3.2.5 intȯV (r, Z̃) (3.97),

results

V̇ (r, Z̃) = −rTKvr− rTυ + rTζ +ψ (3.98)

whereψ is defined as

ψ =

n∑

i=1

W̃T
i

(
F−1

i
˙̃
Wi + σ̂ ri − σ̂′

V̂z ri

)

+

N2∑

k=1

ṼT
k

(
G−1

k

˙̃
Vk + z σ̂′

k(
m∑

i=1

Ŵikri)

) (3.99)

Now, if we introduce the weight updates as follows

˙̂
Wi = Fi(σ̂ ri − σ̂′

V̂z ri − κ‖r‖Ŵi), (3.100)

˙̂
Vk = Gk(z σ̂

′
k (

m∑

i=1

Ŵik ri)− κ‖r‖V̂k). (3.101)

and take into account− ˙̃
W =

˙̂
W, sinceW̃ = W− Ŵ andW is constant, then

ψ (3.99) can be expressed as:

ψ = κ‖r‖
n∑

i=1

W̃T
i Ŵi + κ‖r‖

N2∑

k=1

ṼT
k V̂k (3.102)

≤− κ‖r‖‖Z̃‖2 + κ‖r‖‖Z̃‖ZM (3.103)

where (3.103) is obtained by making use of the following

〈W̃,Ŵ〉 =
n∑

i=1

W̃T
i Ŵi, (3.104)

〈Ṽ, V̂〉 =
N2∑

k=1

ṼT
k V̂k (3.105)

〈Z̃, Ẑ〉 = 〈Ṽ, V̂〉+ 〈W̃,Ŵ〉 ≤ ‖Z̃‖ZM − ‖Z̃‖2. (3.106)
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Therefore, usingψ (3.103),ζ (3.96), Property 3.2.1 and defining the robust term

as follows

υ = Kz(‖Ẑ‖+ ZM) r (3.107)

whereKz is a positive scalar constant, then it is possible to showV̇ (r, Z̃) in

(3.98) as

V̇ (r, Z̃) ≤−Kv,m‖r‖2 −Kz(‖Ẑ‖+ ZM)‖r‖2

+ C0‖r‖+ C1‖Z̃‖‖r‖+ C2‖Z̃‖‖r‖2

− κ‖r‖‖Z̃‖2 + κ‖r‖‖Z̃‖ZM

(3.108)

It was assumed in [74, 75] that it is known thatKz > C2, and since‖Ẑ‖+ZM >

‖Z̃‖, therefore the termKz(‖Ẑ‖ + ZM)‖r‖2 will cancel the termC2‖Z̃‖‖r‖2,

thus

V̇ (r, Z̃) ≤ −‖r‖
[
Kv,m‖r‖+ κ‖Z̃‖ (‖Z̃‖ − ZM

2
)− C0 − C1‖Z̃‖

]
(3.109)

or, by definingC3 = ZM + C1/κ, we can simplify further

V̇ (r, Z̃) ≤ −‖r‖
[
Kv,m‖r‖ − C0 + κ(‖Z̃‖ − C3

2
)2 − κC2

3

4

]
(3.110)

Therefore,V̇ (r, Z̃) < 0 if

‖r‖ >
C0 + κC2

3/4

Kv,m

≡ br, or (3.111)

‖Z̃‖ >

√
C0

κ
+

C2
3

4
+

C3

2
≡ bZ̃ (3.112)

then by applying the Lyapunov’s extension theorem [102] then ast → ∞, the

errors‖r‖ and‖Z̃‖ will be bounded, within the boundary ofS, as depicted in
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C0/Kv,m

V̇ < 0

‖r‖

‖Z̃‖

br

V̇ >=< 0

b
Z̃

S

Figure 3.5:V̇ (r, Z̃) regions of the original joint space NN adaptive motion con-
trol.

Fig. 3.5. By using bounded-input-bounded-output (BIBO) property, a bounded

inputr in (3.76), yields bounded outputsė ande.

The evolution of the error signals based upon bounded stability can be explained

as in [102], as follows: suppose the errors start within the boundary ofS,

then when they start leaving the boundary ofS since theV (r, Z̃) is decreasing

(V̇ (r, Z̃) < 0) hence the errors cannot leave the boundary ofS. Now, suppose

the errors start at outside the boundary ofS then they tend to go to the equilib-

rium sinceV (r, Z̃) is decreasing. However, they cannot go to the equilibrium,

but only up to entering the boundary ofS and once they enter the boundary of

S, we have already shown that they are bounded.

Some notes are in order:

• It was shown in the stability analysis that one of the terms ofζ,C2‖Z̃‖‖r‖,

will be canceled by the robust termυ = Kz(‖Ẑ‖ + ZM)‖r‖, under as-

sumptionKz > C2. In other wordsC2, C1, C0 must be known.
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However, in practice we don’t knowC2, C1, C0 nor we want to compute

them, as it is not coherent with the adaptive control philosophy.

• Implementingυ with exorbitantly largeKz might not be suitable for tran-

sient condition, albeitC2‖Z̃‖‖r‖ might be truly canceled.

• Therefore, in our approach (the modified version of the original approach),

the robust termυ (3.107) is simply omitted and none of the terms ofζ will

be canceled. Thereforeζ must contain as many as possible the weight er-

rors. Henceforth, we suggest to rewriteη (3.93) as

η = W̃Tσ̂ + ŴTσ̂′
ṼTz+ ζ (3.113)

where the un-cancelable “whole” errorζ is defined as

ζ = W̃Tσ̂′ṼTz+WTO(ṼTz) + ε. (3.114)

We will use the forms in (3.113) and (3.114) throughout our modified

approach in the next chapter on Section 4.4.

In the next chapter, we will present our modified NN adaptive motion control

implemented in the operational space framework.
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CHAPTER 4

NN ADAPTIVE MOTION CONTROL

4.1 Chapter Overview

In this chapter, the operational space NN adaptive motion control is presented.

The proposed control law is based upon the original NN adaptive joint space

control [74, 75], extended into the operational space free motion formulation

[8].

Further, some adjustments are needed in the original control law, so that it be-

comes more applicable and robust for real-time implementation (note that the

original work was only implemented in simulation). The stability analysis of

the proposed strategy is also presented in this chapter.

Several useful properties of the end effector dynamics to develop the proposed

formulation within the operational space are introduced inthis chapter. Simu-

lated and real-time comparison to the performance of the Lagrangian dynamics

and the PD-plus-gravity control strategies were also presented.

The preliminary study of this chapter was presented in [103].
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4.2 End-effector Motion Dynamics

For controller formulation later, the end-effector free motion dynamics of the

non-redundant manipulator (2.27) is reproduced, for ease of perusal, as

Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) = F (4.1)

wherex ∈ ℜm and q ∈ ℜn denote the operational and joint space coor-

dinates, respectively, where for a non-redundant manipulator m = n. The

matricesMx(q) ∈ ℜm×m andBx(q, q̇) ∈ ℜm×m represent the inertia and

the Coriolis/centrifugal terms, respectively, while vectors gx(q) ∈ ℜm and

τ x(q, q̇) ∈ ℜm denote the gravity and joint friction forces, respectively. The

vectorF ∈ ℜm is the operational space generalized forces.

First, the end-effector properties useful for developing the proposed algorithms

need to be introduced, as the previous properties in Section3.2.1 are only appli-

cable for joint space dynamics.

4.3 Properties of the End-Effector Dynamics

Property 4.3.1 The operational space kinetic energy matrixMx(q) ∈ ℜm×m,

due to (2.28) which is valid for all non-singular configurations and the fact

that joint space kinetic energyM(q) > 0, is symmetric and positive definite

matrix and therefore all its eigenvalues are positive. It follows from Rayleigh-

Ritz theorem [93] that: any positive definite matrixA satisfiesAm ≤ ‖A‖ ≤

AM , whereAm, AM > 0 denote the minimum and maximum eigenvalues ofA,



4.3 Properties of the End-Effector Dynamics 66

respectively. ThereforeMx(q(t)) along t ≥ 0 is lower and upper-bounded by

its global minimum and maximum eigenvalues, respectively,as:

Mx,m ≤ ‖Mx(q(t))‖ ≤ Mx,M , t ≥ 0 (4.2)

whereMx,m = min(λmin(Mx(q(t)))) > 0 andMx,M = max(λmax(Mx(q(t))))

> 0, whereλmin(·) andλmax(·) denote the minimum and maximum eigenvalue

operators, respectively.

Property 4.3.2 The operational space Coriolis and centrifugal matrix can be

expressed as a function ofq andẋ since

Bx(q, ẋ) = [J−T(q)B(q, ẋ)−Mx(q)J̇(q, ẋ)]J
−1(q). (4.3)

Note,B(q, ẋ) and J̇(q, ẋ) as functions ofq and ẋ can be obtained directly by

using the facṫq = J−1(q) ẋ intoB(q, q̇) andJ̇(q, q̇), respectively.

Property 4.3.3 The operational space Coriolis and centrifugal matrix

Bx(q, ẋ) can be shown to be upper-bounded

‖Bx(q, ẋ)‖ ≤ Bx,M ẋM (4.4)

whereBx,M is a positive scalar constant. This can be obtained directlyby sub-

stituting the properties in joint space that‖B(q, q̇)‖ ≤ BM q̇M and‖J̇(q, q̇)‖ ≤

J̇M q̇M (BM , J̇M are positive scalar constants) and the factq̇ = J−1(q) ẋ. Note

q̇ can be assumed to bounded since in reality saturation occurson the maximum

velocity of the motor [47], thereforėx is bounded.



4.3 Properties of the End-Effector Dynamics 67

ẍd, ẋd,xd F
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Figure 4.1: The operational space NN motion control structure.

Property 4.3.4 The operational space gravity vectorgx(q) (2.30) is upper-

bounded:

‖gx(q)‖ ≤ gM < ∞ (4.5)

Property 4.3.5 For non-redundant robot,̇Mx(q)−2Bx(q, q̇) is a skew-symmetric

matrix [98, 90], hence given an operational space vectorz ∈ ℜm, it satisfies

zT
(
Ṁx(q)− 2Bx(q, q̇)

)
z = 0. (4.6)

Therefore, it can also be written, using Property 4.3.2, as

zT
(
Ṁx(q)− 2Bx(q, ẋ)

)
z = 0. (4.7)

Property 4.3.6 It can be shown for non-redundant robot [104], given any two

operational space vectorsy, z ∈ ℜm, thatBx(q, ẋ) satisfies

Bx(q,y)z = Bx(q, z)y. (4.8)
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4.4 The Modified NN Adaptive Motion Control Law

Next, we present the operational space NN motion control lawin Fig. 4.1, as

we can see the adaptation from the joint space equivalent is straightforward

F = M̂x(q)F
∗
motion + B̂x(q, q̇)ẋr + ĝx(q) + τ̂ x(q, q̇) (4.9)

whereẋr andF∗
motion are defined as

ẋr = ẋd +Λe (4.10)

F∗
motion = ẍr +Λr (4.11)

and the computable terms are defined to computeF∗
motion as

ẍr = ẍd +Λė (4.12)

r = ẋr − ẋ = ė+Λe (4.13)

whereΛ ∈ ℜm×m is a positive diagonal matrix,e = xd − x and ė = ẋd − ẋ

are the operational space position and velocity tracking errors, withxd, ẋd and

ẍd are the desired operational space trajectories. Note that the estimated NNs

within (4.9) will be introduced modularly (not as one lumpedvector) i.e. there

will be two estimated NN output matriceŝMx(q), B̂x(q, q̇) ∈ ℜm×m and two

estimated NN output vectorŝgx(q), τ̂ x(q, q̇) ∈ ℜm.

Now, let’s list the differences between our modified approach with the original

approach:

• The robust termυ is omitted. In the original approach, the robust term

υ = Kz(‖Ẑ‖ + ZM) r is used to cancelC2‖Z̃‖‖r‖, which is part of
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‖ζ‖ (please see (3.96)). However, in reality, we don’t knowC2, C1, C0.

Therefore the robust termυ is not needed.

• The estimated NNs are introduced modularly, not as one lumped vector,

and the NN input is defined appropriately to dependent variable, for in-

stance the input for̂Bx(q, q̇) is defined aszB = [qT q̇T]T. The reason

behind the modularity with proper inputs is that it is expected that the

NNs can learn more appropriately than one lumped NN vector NNwith

arbitrary input.

• It can be seen that the controller is only using estimated NNsand there-

fore, the standard PD termKvr “seems ”to be omitted.

However, it can be shown to be similar, as in [93], ifKv equates to

Kv ≡ Mx(q)Λ (4.14)

and thereforeKv andMx(q)Λ all satisfy as positive diagonal matrices.

The closed-loop error dynamics for the ideal case can be shown as

Mx(q)ṙ+Mx(q)Λr+Bx(q, q̇)r = 0. (4.15)

And the Lyapunov function is chosen as

V (r) =
1

2
rTMx(q)r (4.16)

Substituting the closed-loop error dynamics (4.15) intoV̇ (r), and taking

into account Property 4.3.5, we obtain

V̇ (r) =− rTMx(q)Λr + rT
(
Ṁx(q)−Bx(q, q̇)

)
r

=− rTMx(q)Λr ≤ 0

(4.17)
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Where it can be shown using Barbalat’s lemma [93] thatt → ∞, r → 0,

from (4.13) implyinge, ė → 0.

By combining the operational space motion dynamics (4.1) with the NN adap-

tive motion control (4.9), and taking into account the first derivative of (4.13),

the closed-loop error dynamics can be obtained as

Mx(q)ṙ+Mx(q)Λr +Bx(q, q̇)r = η; (4.18)

where the uncertaintiesη is defined as

η = M̃x(q)F
∗
motion + B̃x(q, q̇)ẋr + g̃x(q) + τ̃ x. (4.19)

4.4.1 Three-Layer Neural Networks

This section is an extension from Section 3.4.1. It explainsthe construction of

NN as an output matrix, as estimated matrices are required inour controller.

Each element of output matrixU ∈ ℜN3×N4 can be expressed as

uij =

N2∑

k=1

wijk σk

(
N1∑

l=1

vklzl + θk

)
;

i = 1, . . . , N3, j = 1, . . . , N4

(4.20)

where now second-to-third layer weights iswijk with i = 1, . . . , N3, j =

1, . . . , N4 are the output-layer indices. Similarly, (4.20) can be written in a

vector-and-matrix form as

U = WT σ
(
VTz

)
(4.21)

where nowW ∈ ℜN3×N4×N2 ,V ∈ ℜN2×N1 . For a non-redundant manipulator

with 6 DOFN4 = N3 = m = 6.
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4.4.2 Uncertaintiesη in NN terms

The procedure is similar to Section 3.4.2. However since it is now done in

modular fashion, therefore we will present it completely inthis section. This

section also serves as a foundation for later algorithms. Using the relationship

of error dynamics(̃·) = (·)− (̂·), the uncertaintiesη in (4.19) can be written as

η = (Mx(q)− M̂x(q))F
∗
motion + (Bx(q, q̇)− B̂x(q, q̇))ẋr

+ (gx(q)− ĝx(q)) + (τ x(q, q̇)− τ̂ x(q, q̇))
(4.22)

From NN theory, given an adequate number of hidden layer nodes,N2, a three

layer NNs with ideal weights is capable of approximating anyfunction [100,

101]. In practice, however, there are only limited number ofhidden layer nodes,

thus the dynamical termsMx(q), Bx(q, q̇), gx(q), andτ x(q, q̇), for a given

number of neurons, can be described by three-layer NNs with constantoptimum

weightsVp,Wp and approximation errorεp, with the subscriptp = M,B, g, τ

representing the individual dynamical terms:

Mx(q) = WT
M σM(VT

M zM) + εM (4.23)

Bx(q, q̇) = WT
B σB(V

T
B zB) + εB (4.24)

gx(q) = WT
g σg(V

T
g zg) + εg (4.25)

τ x(q, q̇) = WT
τ στ (V

T
τ zτ ) + ετ (4.26)

Similarly, the estimated dynamic termŝMx(q), B̂x(q, q̇), ĝx(q), andτ̂ x(q, q̇)

are described by the estimated weightsV̂p,Ŵp, with subscriptp = M,B, g, τ .

It is clear that thatMx(q),Bx(q, q̇), gx(q) can be been shown to be bounded

by Properties 4.3.1, 4.3.3, 4.3.4, respectively. The boundedness ofτ x(q, q̇) can
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be shown by using Property 3.2.4 and the fact that‖J−1(q)‖ is bounded for

non-singular configuration. Therefore, the optimum weights Wp,Vp and the

approximation errorεp (with subscriptp = M,B, g, τ ) from (4.23)-(4.26), are

also upper-bounded.

For ease of later developments, let us defineZ = diag[W,V] to be upper-

bounded as follows

‖Z‖ =
√

‖W‖2 + ‖V‖2 ≤ ZM (4.27)

whereZM is a positive scalar constant,W = diag[WM ,WB,Wg, Wτ ] and

V = diag[VM ,VB,Vg,Vτ ].

Now, for ease of presentation, the following generic NN expressions are defined:

Lp = WT
p σp(V

T
p zp)

L̂p = ŴT
p σp(V̂

T
p zp)

L̃p = Lp − L̂p;

(4.28)

whereLp, L̂p, andL̃p represent the optimum, estimated, and error, of the respec-

tive terms. Hence, using the generic NN expressions, the uncertainties (4.22)

can be written as

η = (LM − L̂M)F∗
motion + (LB − L̂B)ẋr + (Lg − L̂g) + (Lτ − L̂τ ) + ε

(4.29)

where the total approximation errorε = εM F∗
motion + εB ẋr + εg + ετ ≤ εM

(since the actual dynamics are bounded). To computeη (4.29), it is necessary



4.4 The Modified NN Adaptive Motion Control Law 73

to compute the generic formLp − L̂p, which can be manipulated, as follows

Lp − L̂p = WT
p σ(V

T
p zp)− ŴT

p σ(V̂
T
p zp)

= WT
p σ(V

T
p zp)− ŴT

p σ(V̂
T
p zp)−WT

p σ(V̂
T
p z) +WT

p σ(V̂
Tzp)

= W̃T
p σ(V̂

T
p zp) +WT

p

(
σ(VT

p zp)− σ(V̂T
p zp)

)

(4.30)

Therefore, first, we need to compute the error of the sigmoid function as:

σ̃ = σ(VTz)− σ(V̂Tz). (4.31)

From the Taylor series expansion, we have

σ(k)
∣∣
k=k̂

= σ(k̂) +
dσ(k)

dk
(k− k̂) +O(k− k̂) (4.32)

whereO(k − k̂) denotes the higher order terms. Note thatσ′(k) = dσ(k)
dk

∣∣
k=k̂

,

and becauseσ is differentiable,σ′ exists. Henceσ(VTz)
∣∣
VTz=V̂Tz

in (4.31)

can be written as

σ(VTz) = σ(V̂Tz) + σ′(V̂Tz)ṼTz+O(ṼTz) (4.33)

To simplify the notations, it is defined thatσ = σ(VT
p z), σ̂ = σ(V̂Tz), and

σ = σ̂ + σ̃. Therefore, using (4.33),̃σ (4.31) can be rewritten as:

σ̃ = σ(VTz)− σ(V̂Tz) = σ̂′ṼTz+O
(
ṼTz

)
. (4.34)

The substitution of (4.34) into (4.30) yields:

Lp − L̂p = W̃T
p σ̂p +WT

p σ̃p = W̃T
p σ̂p +WT

p

[
σ̂′

pṼ
T
p zp +O(ṼT

p zp)
]

= W̃T
p σ̂p + (ŴT

p + W̃T
p )
[
σ̂′

pṼ
T
p zp +O(ṼT

p zp)
]

=
(
W̃T

p σ̂p + ŴT
p σ̂

′
pṼ

T
p zp

)
+
(
W̃T

p σ̂
′
pṼ

T
p zp +WT

pO(ṼT
p zp)

)
.

(4.35)
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Using the general expression (4.35), the uncertaintiesη in (4.29) can be written

as

η = ξ + ζ (4.36)

This division is needed because in the Lyapunov analysis (Section 4.4.3), it

becomes evident that onlyξ term can be manipulated by the weight updates

˙̂
W,

˙̂
V. The termξ is defined as

ξ =
(
W̃T

M σ̂M

)
F∗

motion +
(
W̃T

Bσ̂B

)
ẋr + W̃T

g σ̂g + W̃T
τ σ̂τ

+
(
ŴT

M σ̂
′
MṼT

MzM

)
F∗

motion +
(
ŴT

Bσ̂
′
BṼ

T
BzB

)
ẋr

+ ŴT
g σ̂

′
gṼ

T
g zg + ŴT

τ σ̂
′
τ Ṽ

T
τ zτ

(4.37)

and the “whole”NN errorsζ is defined as

ζ =
(
W̃T

M σ̂
′
MṼT

MzM

)
F∗

motion +
(
W̃T

Bσ̂
′
BṼ

T
BzB

)
ẋr

+ W̃T
g σ̂

′
gṼ

T
g zg + W̃T

τ σ̂
′
τ Ṽ

T
τ zτ

+
(
WT

MO(ṼT
MzM)

)
F∗

motion +
(
WT

BO(ṼT
BzB)

)
ẋr

+WT
g O(ṼT

g zg) +WT
τ O(ṼT

τ zτ ) + ε

(4.38)

Note that, the terms in (4.38) is similar with (3.114).

Now, it can be shown, in incremental manner, thatζ andξ possess some upper-

boundedness that are useful for the stability analysis to follow in Section 4.4.3.

To prove this, we need the boundedness of the generic expression (4.35)

‖Lp − L̂p‖ =
∥∥∥
(
W̃T

p σ̂p + ŴT
p σ̂

′
pṼ

T
p zp

)
+
(
W̃T

p σ̂
′
pṼ

T
p zp +WT

p O(ṼT
p zp)

)∥∥∥
(4.39)

Clearly, the boundedness depends solely onW̃ andṼ, this is because the other

terms:



4.4 The Modified NN Adaptive Motion Control Law 75

• the optimum weightsWp,Vp and approximation errorεp are upper-bounded,

and

• σ andσ̂ are bounded for differentiable functions like sigmoid, tanh, RBF

functions.

From the definition of the NN weight errors,̃W = W − Ŵ, we have

‖W̃‖ ≤ ‖W‖+ ‖Ŵ‖ (4.40)

The boundedness of the NN weight errorsW̃ in (4.40) depends solely on the

boundedness of the weight estimatêW, since‖W‖ is upper-bounded. Note

although‖Ŵ‖ is positive,Ŵ is not necessarily a positive definite matrix i.e.

its eigenvalues could be negative, zero or positive. Therefore Rayleigh-Ritz

theorem is not applicable since the minimum and maximum positive eigenvalues

do not exist.

However, it can be shown that the boundedness ofW̃ can be achieved by simply

combining the Frobenius norm definition and limitinĝW in the implementation.

From the norm definition of‖Ŵ‖, for a 3D output matrixU ∈ ℜN3×N4×N2 (for

a 2D output matrixN4 = 1):

‖Ŵ‖ =

√√√√
N3∑

i

N4∑

j

N2∑

k

ŵ2
ijk . (4.41)

In the implementation,̂W andV̂ can be limited as follows:

if (‖Ŵ‖ > ŴM), then ˙̂wijk = 0, and

if (‖V̂‖ > V̂M), then ˙̂vkl = 0
(4.42)
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with ŴM > 0 andV̂M > 0, thereforeŴ andV̂ are upper bounded as follows

‖Ŵ‖ ≤ŴM , and

‖V̂‖ ≤V̂M .

(4.43)

Since‖W̃‖ ≤ ‖W‖+ ‖Ŵ‖ and‖Ṽ‖ ≤ ‖V‖+ ‖V̂‖ therefore

‖W̃‖ ≤ W̃M , and

‖Ṽ‖ ≤ ṼM

(4.44)

with W̃M > 0 andṼM > 0.

Furthermore, it follows that the overall estimated NN weights,Ẑ, and NN weight

errors,Z̃, are to be upper bounded as

‖Ẑ‖ ≤ ẐM (4.45)

‖Z̃‖ ≡ ‖Z‖ + ‖Ẑ‖ ≤ ZM + ẐM ≡ Z̃M (4.46)

with ẐM > 0, Z̃M > 0.

Substituting (4.44) into (4.39), results the generic expression‖Lp−L̂p‖ in (4.39)

is upper-bounded as

‖Lp − L̂p‖ ≤ (L̃p)M . (4.47)

where(L̃p)M > 0.

Now, seeing the uncertaintiesη in (4.36) with (4.47), and also exploitingF∗
motion

(4.11) andẋr (4.13), we can write

‖η‖ ≤ (L̃M )M ‖F∗
motion‖+ (L̃B)M ‖ẋr‖+ (L̃g)M + (L̃τ )M + εM

≤ (L̃M )M (‖ẍr‖+Λ‖r‖) + (L̃B)M (‖r‖+ ‖ẋ‖) + (L̃g)M + (L̃τ )M

+ εM
(4.48)
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Note thatẍr in (4.12) can be assumed to be bounded since the desired trajecto-

ries ẍd, ẋd,xd are bounded by design,x is bounded by the workspace andẋ is

bounded by motor speed limit.

Thereforeη can be shown to be bounded as follows

‖η‖ ≤ C0 + C1 ‖r‖. (4.49)

whereC0, C1 > 0. And sinceη = ξ+ ζ, then clearly the following inequalities

are true

‖ξ‖ ≤ C0 + C1 ‖r‖ (4.50)

‖ζ‖ ≤ C0 + C1 ‖r‖. (4.51)

4.4.3 Stability Analysis of Our Modified Approach

For the proposed motion control (4.9), let the weight updates be:

˙̂wMij
= FMij

(σ̂M ri F
∗
motionj − κ‖r‖ŵMij

) (4.52)

˙̂vMk
= GMk

(zM σ̂′
Mk

(
m∑

i=1

m∑

j=1

ŵMijk
ri F

∗
motionj)− κ‖r‖v̂Mk

) (4.53)

˙̂wBij
= FBij

(σ̂B ri ẋrj − κ‖r‖ŵBij
) (4.54)

˙̂vBk
= GBk

(zB σ̂
′
Bk

(

m∑

i=1

m∑

j=1

ŵBijk
ri ẋrj)− κ‖r‖v̂Bk

) (4.55)

˙̂wgi = Fgi(σ̂g ri − κ‖r‖ŵgi) (4.56)

˙̂vgk = Ggk(zg σ̂
′
gk

(

m∑

i=1

ŵgik ri)− κ‖r‖v̂gk) (4.57)

˙̂wτi = Fτi(σ̂τ ri − κ‖r‖ŵτi) (4.58)

˙̂vτk = Gτk(zτ σ̂
′
τk
(

m∑

i=1

ŵτik ri)− κ‖r‖v̂τk) (4.59)
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with κ is a positive constant. And the estimated NN weight updates:˙̂wMij
∈

ℜN2 , ˙̂vMk
∈ ℜN1,M , ˙̂wBij

∈ ℜN2, ˙̂vBk
∈ ℜN1,B , ˙̂wgi ∈ ℜN2 , ˙̂vgk ∈ ℜN1,g , ˙̂wτi ∈

ℜN2 , ˙̂vτk ∈ ℜN1,τ are all column vector. And the adaptive gains:F−1
Mij

∈

ℜN2×N2, . . . ,F−1
τi

∈ ℜN2×N2 andG−1
Mk

∈ ℜN1,M×N1,M , . . . ,G−1
τk

∈ ℜN1,τ×N1,τ

are all positive diagonal matrices. The following indices are defined:i, j =

1, . . . , m are output-layer indices,k = 1, . . . , N2 is the hidden-layer index,

where to simplify the implementation, the hidden-node sizeN2 is set the same

for all dynamic terms. WhileN1,M , N1,B, N1,g, N1,τ are the respective input-

node sizes.

Proposition 4.4.1 With the assumptions that:

1. the controller gainΛ meets the condition

Λm >
C1

Mx,m

(4.60)

whereC1 > 0,Λm = min(Λ) andMx,m = min(λmin(Mx(t)));

2. ẐM , the upper-bound of the estimated NN weights,Ẑ, satisfies

ẐM <

√
C0

κ
; (4.61)

whereC0, κ > 0; and

3. the initial condition of̃Z satisfies

‖Z̃(0)‖ < Z̃M ; (4.62)

whereZ̃M is the upper-bound of the NN weight errors,Z̃;
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then using the proposed motion control(4.9)and the NN weight updates(4.52)-

(4.59), it can be shown by Lyapunov’s Extension Theorem [102], thatas t →

∞ the errors‖r‖ and ‖W̃‖, ‖Ṽ‖ will be bounded to be within the enclosing

boundaryS, which is defined by enclosing regionV̇ (r, Z̃) < 0.

Proof 4.4.1 The chosen Lyapunov function candidate for the closed-looperror

dynamics(4.18), with the uncertaintiesη (4.36), is

V (r, Z̃) =
1

2
rTMx(q)r

+
1

2

m∑

i=1

m∑

j=1

w̃T
Mij

F−1
Mij

w̃Mij
+ . . .+

1

2

m∑

i=1

w̃T
τi
F−1

τi
w̃τi

+
1

2

N2∑

k=1

ṽT
Mk

G−1
Mk

ṽMk
+ . . .+

1

2

N2∑

k=1

ṽT
τk
G−1

τk
ṽτk

(4.63)

where the NN weight errors:̃wMij
∈ ℜN2 , ṽMk

∈ ℜN1,M , w̃Bij
∈ ℜN2 , ṽBk

∈

ℜN1,B , w̃gi ∈ ℜN2, ṽgk ∈ ℜN1,g , w̃τi ∈ ℜN2, ṽτk ∈ ℜN1,τ are all column vectors.

Next, we substitute the closed-loop error dynamics(4.18), Property 4.3.5 and

also take into accountη (4.36), with the definitionξ (4.37)and the knowledge

‖ζ‖ ≤ C0 + C1‖r‖ (4.51), into V̇ (r, Z̃) of (4.63), to obtain

V̇ (r, Z̃) ≤ −rTMx(q)Λr+ C1 ‖r‖2 + C0 ‖r‖+ψ (4.64)
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where the lump parameterψ in (4.64)is defined as

ψ =

m∑

i=1

m∑

j=1

w̃T
Mij

(
F−1

Mij

˙̃wMij
+ σ̂M ri F

∗
motionj

)

+

N2∑

k=1

ṽT
Mk

(
G−1

Mk

˙̃vMk
+ zM σ̂′

Mk
(

m∑

i=1

m∑

j=1

ŵMijk
ri F

∗
motionj)

)

+

m∑

i=1

m∑

j=1

w̃T
Bij

(
F−1

Bij

˙̃wBij
+ σ̂B ri ẋrj

)

+

N2∑

k=1

ṽT
Bk

(
G−1

Bk

˙̃vBk
+ zB σ̂

′
Bk
(

m∑

i=1

m∑

j=1

ŵBijk
ri ẋrj)

)

+

m∑

i=1

w̃T
gi

(
F−1

gi
˙̃wgi + σ̂gri

)

+

N2∑

k=1

ṽT
gk

(
G−1

gk
˙̃vgk + zg σ̂

′
gk
(

m∑

i=1

ŵgikri)

)

+

m∑

i=1

w̃T
τi

(
F−1

τi
˙̃wτi + σ̂τri

)

+

N2∑

k=1

ṽT
τk

(
G−1

τk
˙̃vτk + zτ σ̂

′
τk
(

m∑

i=1

ŵτikri)

)
.

(4.65)

Usingξ in (4.37), it can be demonstrated thatψ in (4.65)is made up of ˙̃W, ˙̃
V

andrTξ. The idea is to cancelrTξ with ˙̃
W, ˙̃V. Furthermore,− ˙̃

W =
˙̂
W, since

W̃ = W − Ŵ andW is constant. With the weight updates(4.52)– (4.59), ψ

becomes

ψ = κ‖r‖
m∑

i=1

m∑

j=1

w̃T
Mij

ŵMij
+ . . .+ κ‖r‖

m∑

i=1

w̃T
τi
ŵτi (4.66)

+ κ‖r‖
N2∑

k=1

ṽT
Mk

v̂Mk
+ . . .+ κ‖r‖

N2∑

k=1

ṽT
τk
v̂τk

≤− κ‖r‖‖Z̃‖2 + κ‖r‖‖Z̃‖ZM (4.67)
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Equation(4.67)is obtained by combining all the inner products as

〈W̃,Ŵ〉 =
m∑

i=1

m∑

j=1

w̃T
Mij

ŵMij
+ . . .+

m∑

i=1

w̃T
τi
ŵτi (4.68)

〈Ṽ, V̂〉 =
N2∑

k=1

ṽT
Mk

v̂Mk
+ . . .+

N2∑

k=1

ṽT
τk
v̂τk (4.69)

〈Z̃, Ẑ〉 = 〈Ṽ, V̂〉+ 〈W̃,Ŵ〉 (4.70)

whereẐ = Z− Z̃, and therefore

〈Z̃, Ẑ〉 = 〈Z̃,Z〉 − ‖Z̃‖2 ≤ ‖Z̃‖‖Z‖ − ‖Z̃‖2 ≤ ‖Z̃‖ZM − ‖Z̃‖2. (4.71)

Substitutingψ in (4.67)and Property 4.3.1, it is possible to showV̇ (r, Z̃) (4.64)

that

V̇ (r, Z̃) ≤ −‖r‖
[
(Mx,m Λm − C1)‖r‖ − C0 + κ(‖Z̃‖ − ZM

2
)2 − κZ2

M

4

]

(4.72)

whereΛm andMx,m are as defined in(4.60), note(Mx,m Λm − C1) > 0 due to

hypothesis(4.60). Hence,V̇ (r, Z̃) < 0, as depicted in Fig. 4.2, if

‖r‖ >
C0 + κ Z2

M/4

(Mx,m Λm − C1)
≡ br, or (4.73)

‖Z̃‖ >

√
C0

κ
+

Z2
M

4
+

ZM

2
≡ bZ̃ . (4.74)

Applying the Lyapunov’s Extension Theorem [102] then ast → ∞, the errors

‖r‖ and ‖Z̃‖ can be shown to be bounded withinS, as follows: suppose the

errors can be shown to start within the boundary ofS, i.e. ‖r(0)‖ < br and

‖Z̃(0)‖ < bZ̃ , then they start their course towards the enclosing boundary S

and when they start leaving the boundary ofS since theV (r, Z̃) is decreasing
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C0

(Mx,mΛm−C1)

V̇ < 0

‖r‖

‖Z̃‖

br

V̇ >=< 0

b
Z̃

S

Z̃M

Figure 4.2:V̇ (r, Z̃) regions of the modified NN adaptive motion control strategy.

(V̇ (r, Z̃) < 0) hence the errors cannot leave the boundary ofS. Now, suppose

the errors start at outside the boundary ofS then they tend to go to the equilib-

rium sinceV (r, Z̃) is decreasing. However, they cannot go to the equilibrium,

but only up to entering the boundary ofS and once they enter the boundary of

S, we have already shown that they are bounded.

Using bounded-input-bounded-output (BIBO) property, it can be shown that a

bounded inputr in (4.13)yields lim
t→∞

e, ė that are bounded.

The next part of the proof is to demonstrate the necessity of hypothesisẐM >
√

C0

κ
in (4.61). Note that,Z̃, in its course towards the enclosing boundaryS,

cannot violateZ̃M , otherwise the Lyapunov’s Extension Theorem is no longer

applicable. In other words,̃ZM in (4.46)must satisfy

Z̃M ≡ ZM + ẐM > bZ̃, (4.75)
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Therefore, it can be shown that if the following is satisfied

ZM + ẐM >

√
C0

κ
+ ZM > bZ̃ or, (4.76)

ẐM >

√
C0

κ
(4.77)

thenZ̃M > bZ̃ is also satisfied.

Further, the initial condition‖Z̃(0)‖ can be less or greater thanbZ̃ , however in

order to comply with the Lyapunov’s Extension Theorem, it must be less than

Z̃M . The last part of the proof is to demonstrate hypothesis‖Z̃(0)‖ < Z̃M in

(4.62)is to be satisfied in practical implementation.

By definitionZ̃ = Z − Ẑ, therefore it is possible to initialize the estimated NN

weights with zeroes,‖Ẑ(0)‖ = 0, therefore we can have

‖Z̃(0)‖ = ‖Z‖ ≤ ZM < bZ̃ < Z̃M . (4.78)

Note that, theoretically, there is no initial condition requirement forr, however,

in practical implementation, it is dangerous to set the desired trajectory further

away from the initial end-effector pose i.e.‖r(0)‖ starts with large value. In

other words, it is a lot safer to set‖r(0)‖ as small as possible.

It can be shown in the implementation that, it is possible to set r(0) = ẋd(0)−

ẋ(0)+Λ1e(0)+Λi e(0) ∆t in (4.13)to be as small as possible through setting

the initial points of the desired trajectory equals to the initial end-effector pose

i.e. ẋd(0) = ẋ(0) = 0, xd(0) = x(0), resulting in ė(0) = 0 and e(0) = 0.

Therefore,

‖r(0)‖ = 0 < br. (4.79)
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(Therefore, it can be seen that the initial conditions,‖r(0)‖ and ‖Z̃(0), start

within the boundary ofS).

It should be noted that:

• It can be seen from (4.73), in steady-state sense, that arbitrarily small

tracking errorr can be obtained by setting larger min(Λ). However, care

must be exercised as setting too largeΛ will affect the transient stability

performance.

• Choosing the controller gains,Λ, and the parameter update gains,F and

G matrices, is currently by trial-and-error. In previous simulation studies

for a two-link planar manipulator in joint space framework:Λ is chosen

to be5I and30I in [45] and5I in [74].

• Recently, there are some preliminary works in optimal adaptive control

that can also accommodate the adaptation of the controller gain,Λ, and

parameter update gains,Gp,Fp with subscriptp = M,B, g, τ . One is

in nonlinear system [105] and another for linear system [106]. Works to

accommodate optimal adaptive control for robotic are stillin progress.

4.5 Computational Cost

In this section, the computational cost of the proposed NN adaptive strategy

is compared with a pure PD control and the classical inverse dynamics strat-

egy. The total computational cost of the proposed NN adaptive strategy can be
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shown to be about 163800 arithmetic computations. Inclusive in the presented

number are the weight updates and the final computation to obtain the general-

ized operational space forces (the final computation between of the inertia and

the Coriolis/centrifugal matrices andF∗
motion, ẋr, respectively, with addition of

the gravity and joint friction vectors).

In comparison with pure PD control (18 arithmetic operations), the computa-

tional cost of proposed NN adaptive strategy is indeed higher. However, it is the

nature for the type of dynamics compensation to require additional computa-

tion, such as [23] (655 arithmetic operations). Further computation is naturally

expected for the adaptive strategy type such as LIP adaptivecontrol, since ob-

viously an adaptation is required. On the other side, however, the proposed NN

adaptive strategy does not need the dynamics derivation andits required simpli-

fication procedure. Naturally, convenience comes with a cost.

Therefore, the proposed NN adaptive strategy relies on the computer’s speed. It

can be shown that today’s PC is quite fast and cheap enough. For instance, our

presented method is implemented on a PC with a single-core 32-bit Pentium IV

3.2GHz using Windows XP (which is relatively cheap in the year 2009 - 2010).

Further, as suggested in [91], the required frequency of theNN compensation

(200Hz) can be shown to be only1/5 of the main sampling frequency (1kHz).
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4.6 Performance Evaluation

The proposed strategy (4.9) is studied through simulation and real-time imple-

mentation on a PUMA 560 robot. In addition to the proposed NN adaptive mo-

tion control in this chapter, two other types of control strategies are performed

for comparison: (i) the Lagrangian dynamics motion control(2.27) – without

friction compensation, and (ii) Proportional-plus-Derivative (PD) control with

gravity term compensation.

A positional periodic circular trajectory – 75 mm radius and2 second period –

with a constant orientation for the effector was set as the desired trajectories for

all cases (simulation and real-time implementation). The initial posture of the

robot is shown in Fig. 4.3 with the end-effector pointing down and the elbow is

Figure 4.3: The free-motion setup using PUMA 560 robot.
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up.

Performances were recorded in term of: (i) desired trajectories alongxE andyE

axes (the desired trajectory alongzE is constant), and (ii) position errors along

xE, yE, zE.

The planning strategy was carried out as follows: The weights of the proposed

NN adaptive motion controller (4.9) were initialized with zero values. Off-line

learning simply using the same circular periodic trajectory was performed (for

about 5 passes) to achieve an acceptable performance. The NNweights were

saved and used to obtain the tracking performances (both simulation and real-

time implementation).

4.6.1 Robot Simulation

The proposed NN motion control (4.9) is validated with a 6 DOFPUMA 560

robot dynamic simulator. The Lagrangian dynamics model of PUMA 560 by

[19] plus joint model are utilized in the dynamic simulator.Note that joint

model is not included in the model-based (Lagrangian only) motion control.

For practical purpose, the Lagrangian dynamics controllerdoes not include the

joint friction model, as in the original operational space formulation [8]. Joint

friction model (unlike Lagrangian model), varies with timeand ambient param-

eters, and therefore, it must be performed every time prior the operation of the

robot. In practical side using Lagrangian dynamics only control: that once a

control engineer has obtained the Lagrangian dynamics, then one can easily im-

plement it (where its stability analysis and controller design are well established)
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Lagrangian
dynamics motion

control

PD + gravity
motion control

NN motion
control

max(‖epos‖) (mm) 3.45 18.07 6.63

Table 4.1: Performance comparison in term of the maximum of the magnitude
of the end-effector position tracking errors in simulationstudy.

and to obtain reasonable real time experimental results as shown in [107, 12].

There is a more sophisticated model-based motion control by[108], where an

adaptive joint friction compensation is added into Lagrangian model to give

improved performance over the Lagrangian only dynamic controller. However,

its formulation and stability analysis are rather different and relatively more

involved than the original formula [8].

The simulation study performances in term of the magnitude (square root) of

the end-effector position tracking errors
(
‖epos‖ =

√
e2pos,x + e2pos,y + e2pos,z

)
of:

(i) the Lagrangian dynamics control, (ii) the PD + gravity control and (iii) the

proposed NN adaptive motion control are shown in Fig. 4.4, Fig. 4.5 and Fig.

4.6, respectively.

Table 4.1 shows that the proposed NN control strategy, without prior knowledge

of the robot dynamics, yields comparable performance to that of the Lagrangian

dynamics strategy (without joint friction compensation).The bounded stability

of the norms of the estimated NN weights is shown in Fig. 4.7.
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Figure 4.4: Simulation study using Lagrangian dynamics motion control.
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Figure 4.5: Simulation study using PD + gravity motion control.
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Figure 4.6: Simulation study using NN adaptive motion control.
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The following gains are set for the simulation study of the proposed NN adap-

tive motion control (4.9):κ = 0.1, Λ1 = Λi = 30I ∈ ℜm×m, F−1
Mij

= I ∈

ℜN2×N2,F−1
Bij

= I ∈ ℜN2×N2,F−1
gi

= 10I ∈ ℜN2×N2 ,F−1
τi

= 10I ∈ ℜN2×N2 .

Note, the hidden-layer sizeN2 = 10 is chosen throughout this thesis.
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‖ŴV ‖

‖V̂V ‖

0 20 40 60
2

3

4

5

6

7

8
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Figure 4.7: Simulation study history of the estimated NN weights of the NN
motion controller.
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4.6.2 Real-time Robot Experiment

The real-time performances of the Lagrangian dynamics control, the PD + grav-

ity control and the proposed NN adaptive motion control are shown in Fig. 4.8,

Fig. 4.9 and Fig. 4.10, respectively. Also the real-time implementation videos

are provided in:

• http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/

Freemotion control Dyn.MPG

• http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/

Freemotion control PD.MPG

• http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Freemotion control NN BD.MPG

All the gains are similar with those in Section 4.6.1, with the difference isΛ =

20I.

Fig. 4.10 and Table 4.2 show that the maximum error produced by the NN

controller in real-time is a bit larger than that by the simulation study.

Note that all real-time implementations were implemented real-time on a PUMA

560, which does not provide joint velocity feedback. The joint velocities ˙̂q are

obtained by employing backward difference algorithm of joint positionsq, in

conjunction with low pass filter. Hence, only the estimated operational space

velocities ˙̂x are available, usinĝ̇x = J(q) ˙̂q. The filtered velocity signals,̂̇q and

˙̂x, were used for all controllers. It will be revealed that thiscondition affects the

performance of the proposed NN adaptive motion controller.

The evolution of the norms of the estimated NN weights (usingfiltered velocity)

seems to be bounded in Fig. 4.11; this is because, in the implementation, for

http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_PD.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_PD.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_BD.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_BD.MPG
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Lagrangian
dynamics motion

control

PD + gravity
motion control

NN motion
control with

filtered velocity

max(‖epos‖) (mm) 7.90 11.40 28.80

Table 4.2: Performance comparison in term of the maximum of the magnitude
of the end-effector position tracking errors in real-time study.

the estimated NN weights are upper bounded by using dead-zone procedure. It

was found in the experiments that, without the upper bounds,the estimated NN

weights can be unbounded.

In the next Section 4.7, the estimated NN weights cannot be shown to be guar-

anteed, theoretically.
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Figure 4.8: Real-time study using Lagrangian dynamics motion control.
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Figure 4.9: Real-time study using PD + gravity motion control.
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Figure 4.10: Real-time study NN adaptive motion control with filtered velocity.
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‖Ŵg‖, ‖V̂g‖ vs. Time

Time (second)

 

 

‖Ŵg‖
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Figure 4.11: Real-time study history of the estimated NN weights of the NN
motion controller with filtered velocity.
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4.7 Analysis NN Adaptive Motion Control using
Filtered Velocity

It is shown in the preliminary study in Section 4.6.1 that theperformance on

simulation was found to be comparable with that of model-based control, how-

ever, performance on real-time experimentation was found to be inferior to the

simulation study equivalent. Note that, physically, the PUMA 560 does not have

joint velocity sensor.

To fill the non-existing actual velocity in the real-time experimentation, the esti-

mated joint velocities,̂̇q, are obtained by employing backward difference algo-

rithm between the currentq(t) and the previousq(t − 1) actual joint positions,

which then followed by low pass filter (LPF). Hence, only the estimated opera-

tional space velocities,̂̇x, since ˙̂x = J(q) ˙̂q, are available. The filtered velocity

signals, ˙̂q and ˙̂x, were used for all controllers in real-time implementationin

Section 4.6.2.

In this section, it can be shown by Lyapunov analysis that thefiltered velocity

signals,˙̂q and ˙̂x, are not suitable replacements to the non-existing actual velocity

signals for the proposed adaptive strategy in (4.9).

To properly represent the situation in real-time experiments, the NN adaptive

controller in (4.80) can be re-written using estimated velocity signals, ˙̂q and ˙̂x,

as

F = Mx(q)F
∗
motion + B̂x(q, ˙̂q)ẋr + ĝx(q) + τ̂ x(q, ˙̂q) (4.80)
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whereẋr andF∗
motion are defined as

ẋr = ẋd +Λe (4.81)

F∗
motion = ẍ′

r +Λr̂ (4.82)

with the following computable terms are defined to computeF∗
motion as

ẍ′
r = ẍd +Λ(ẋd − ˙̂x) (4.83)

r̂ = ẋr − ˙̂x = ẋr − ẋ + ˙̃x (4.84)

whereΛ ∈ ℜm×m is a positive diagonal matrix,e = xd − x is the operational

space position tracking error, withxd, ẋd and ẍd are the desired operational

space trajectories. The velocity estimation error is defined between the actual

and estimated velocity, as̃̇x = ẋ− ˙̂x. It follows that from the first derivative of

(4.84) and (4.83), we have

ẍ′
r − ẍ = ẍr − ẋ+Λ ˙̃x = ˙̂r− ¨̃x +Λ ˙̃x. (4.85)

Combining the operational space motion dynamic (4.1) with the operational

space NN motion control using filtered velocity (4.80), and taking into account

(4.85) and Property 4.3.2, the closed-loop error dynamics can be obtained as

Mx(q)( ˙̂r− ¨̃x) =−Mx(q)Λr̂−Mx(q)Λ ˙̃x−Bx(q, ˙̂x)ẋr +Bx(q, ẋ)ẋ

+ τ x(q, q̇)− τ x(q, ˙̂q) + η

(4.86)

where the uncertainties of the system,η, expressed as

η = M̃x(q)F
∗
motion + B̃x(q, ˙̂q)ẋr + g̃x(q) + τ̃ x(q, ˙̂q). (4.87)
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From Property 3.2.4, it is shown that

τ x(q, q̇)− τ x(q, ˙̂q) = J−T[τvis ˙̃q+ τcou(sgn(q̇)− sgn( ˙̂q))

+ τ stiexp(−τdecq̇
2)sgn(q̇)− τ stiexp(−τdec ˙̂q

2)sgn( ˙̂q)].
(4.88)

Using Property 4.3.6 and from (4.84) it can be drawn thatẋr − ẋ = r̂ − ˙̃x,

andBx(q, ˙̂x)ẋr − Bx(q, ẋ)ẋ in the closed-loop error dynamics (4.86) can be

manipulated such as

= Bx(q, ẋ− ˙̃x)(ẋd +Λė)−Bx(q, ẋ)ẋ

= Bx(q, ẋ)(ẋr − ẋ)−Bx(q, ẋr) ˙̃x

= Bx(q, ẋ)(r̂− ˙̃x)−Bx(q, ẋr) ˙̃x.

(4.89)

Substituting (4.89) into (4.86), yields the closed-loop error dynamics, that is

useful for Lyapunov analysis, as

Mx(q)( ˙̂r− ¨̃x) =−Mx(q)Λr̂ −Mx(q)Λ ˙̃x−Bx(q, ẋ)(r̂− ˙̃x) +Bx(q, ẋr) ˙̃x

+ τ x(q, q̇)− τ x(q, ˙̂q) + η.

(4.90)

Similar with Section 4.4.2,Mx(q), Bx(q, ˙̂q), gx(q), andτ x(q, ˙̂q) in η (4.87)

can be described as follows

Mx(q) = WT
M σM(VT

M zM) + εM (4.91)

Bx(q, ˙̂q) = WT
B σB(V

T
B zB) + εB (4.92)

gx(q) = WT
g σg(V

T
g zg) + εg (4.93)

τ x(q, ˙̂q) = WT
τ στ (V

T
τ zτ ) + ετ (4.94)

Likewise, the estimated dynamic termŝMx(q), B̂x(q, ˙̂q), ĝx(q), andτ̂ x(q, ˙̂q)

are described by estimated weightsV̂p,Ŵp with subscriptp = M,B, g, τ .
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As in Section 4.4.2,Mx(q),Bx(q, ˙̂q), gx(q), τ x(q, ˙̂q) can be shown to be

bounded by Properties 4.3.1, 4.3.3, 4.3.4, 3.2.4, respectively, and the fact˙̂q

bounded because it is obtained from the backward differencebetween the cur-

rent and previous actual positionq(t) andq(t− 1), which are bounded by joint

limitation.

Therefore, the optimum weightsWp,Vp and the approximation errorεp (with

subscriptp = M,B, g, τ, h) from (4.91)-(4.94), are also upper-bounded.

Using similar development and simplified notationsσ ≡ σ(VTz), σ̂ ≡ σ(V̂Tz),

andσ = σ̂ + σ̃ as in Section 4.4.2, the uncertaintiesη (4.87) can be written as

η = ξ + ζ (4.95)

This division is needed because onlyξ term can be manipulated by the weight

updates ˙̂W,
˙̂
V as will be shown in Section 4.7.1.

The termξ is defined as

ξ =
(
W̃T

M σ̂M

)
F∗

motion +
(
W̃T

B σ̂B

)
ẋr + W̃T

g σ̂g + W̃T
τ σ̂τ

+
(
ŴT

M σ̂′
M ṼT

M zM

)
F∗

motion +
(
ŴT

B σ̂
′
B ṼT

B zB

)
ẋr

+ ŴT
g σ̂

′
g Ṽ

T
g zg + ŴT

τ σ̂
′
τ Ṽ

T
τ zτ

(4.96)

and the “whole”NN errorsζ is defined as

ζ =
(
W̃T

M σ̂′
M ṼT

M zM

)
F∗

motion +
(
W̃T

B σ̂
′
B ṼT

B zB

)
ẋr

+ W̃T
g σ̂

′
gṼ

T
g zg + W̃T

τ σ̂
′
τṼ

T
τ zτ

+
(
WT

M O(ṼT
M zM)

)
F∗

motion +
(
WT

B O(ṼT
B zB)

)
ẋr

+WT
g O(ṼT

g zg) +WT
τ O(ṼT

τ zτ ) + ε

(4.97)
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where the total approximation errorε = εM F∗
motion + εB ẋr + εg + ετ ≤ εM

(since the actual dynamics are bounded).

Note that, the driving signalṡxr (4.81) andF∗
motion (4.82), used in (4.96) and

(4.97), are different thaṅxr andF∗
motion in Section 4.4.2.

As in Section 4.4.2, the uncertaintiesη (4.95) can be seen to be bounded with

the generic expression‖Lp− L̂p‖ ≤ (L̃p)M in (4.47) and alsoF∗
motion (4.82) and

ẋr in (4.84), as follows

‖η‖ ≤ (L̃M )M ‖F∗
motion‖+ (L̃B)M ‖ẋr‖+ (L̃g)M + (L̃τ )M + εM

≤ (L̃M )M (‖ẍ′
r‖+Λ‖r̂‖) + (L̃B)M (‖r̂‖+ ‖ ˙̂x‖) + (L̃g)M + (L̃τ )M

+ εM
(4.98)

Note thatẍr in (4.12) can be assumed to be bounded since the desired trajecto-

ries ẍd, ẋd,xd are bounded by design,x is bounded by the workspace and the

filtered estimated velocitŷ̇x is bounded, since it is obtained from̂̇x = J ˙̂q.

Thereforeη can be shown to be bounded as

‖η‖ ≤ C0 + C1 ‖r̂‖. (4.99)

whereC0, C1 > 0. And sinceη = ξ+ ζ, then clearly the following inequalities

are true

‖ξ‖ ≤ C0 + C1 ‖r̂‖ (4.100)

‖ζ‖ ≤ C0 + C1 ‖r̂‖. (4.101)

Note that, the definition of̂r (4.84) in this section, is differentwith the definition

of r in Section 4.4.2.



4.7 Analysis NN Adaptive Motion Control using Filtered Velocity 104

4.7.1 Stability Analysis using Filtered Velocity

The chosen Lyapunov function candidate for the closed-looperror dynamics

(4.90), with the uncertaintiesη (4.95), can be chosen as

V (r̂, ˙̃x, Z̃) =
1

2
(r̂− ˙̃x)TMx(q)(r̂− ˙̃x)

+
1

2

m∑

i=1

m∑

j=1

w̃T
Mij

F−1
Mij

w̃Mij
+ . . .+

1

2

m∑

i=1

w̃T
τi
F−1

τi
w̃τi

+
1

2

N2∑

k=1

ṽT
Mk

G−1
Mk

ṽMk
+ . . .+

1

2

N2∑

k=1

ṽT
τk
G−1

τk
ṽτk

(4.102)

where the NN weight errors:̃wMij
∈ ℜN2 , ṽMk

∈ ℜN1,M , w̃Bij
∈ ℜN2 , ṽBk

∈

ℜN1,B , w̃gi ∈ ℜN2, ṽgk ∈ ℜN1,g , w̃τi ∈ ℜN2 , ṽτk ∈ ℜN1,τ are all column vec-

tor. And the adaptive gains:F−1
Mij

∈ ℜN2×N2 , . . . ,F−1
τi

∈ ℜN2×N2 andG−1
Mk

∈

ℜN1,M×N1,M , . . . ,

G−1
τk

∈ ℜN1,τ×N1,τ are all positive diagonal matrices. The following indices are

defined:i, j = 1, . . . , m are output-node indices,k = 1, . . . , N2 is the hidden-

node index. WhileN1,M , N1,B, N1,g, N1,τ are respective input-node sizes.

Next, we substitute the closed-loop error dynamics (4.86),Property 4.3.5 and

also take into accountη (4.95), with the definitionξ (4.96) and the knowledge

‖ζ‖ ≤ C0 + C1 ‖r̂‖ (4.101), intoV̇ (r, Z̃) of (4.102), to obtain

V̇ (r̂, ˙̃x, Z̃) ≤− r̂TMx(q)Λr̂+ ˙̃xTMx(q)Λ ˙̃x

+ (r̂T − ˙̃xT)Bx(q, ẋr) ˙̃x

+ (r̂T − ˙̃xT)(τ x(q, q̇)− τ x(q, ˙̂q))

+ C0 ‖r̂‖+ C0 ‖ ˙̃x‖+ C1 ‖r̂‖2 + C1 ‖r̂‖ ‖ ˙̃x‖+ψ

(4.103)
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where the lump parameterψ in (4.103) is defined as

ψ =

m∑

i=1

m∑

j=1

w̃T
Mij

(
F−1

Mij

˙̃wMij
+ σ̂M (r̂i − ˙̃xi) F

∗
motionj

)

+

N2∑

k=1

ṽT
Mk

(
G−1

Mk

˙̃vMk
+ zM σ̂′

Mk
(

m∑

i=1

m∑

j=1

ŵMijk
(r̂i − ˙̃xi) F

∗
motionj)

)

+

m∑

i=1

m∑

j=1

w̃T
Bij

(
F−1

Bij

˙̃wBij
+ σ̂B (r̂i − ˙̃xi) ẋrj

)

+

N2∑

k=1

ṽT
Bk

(
G−1

Bk

˙̃vBk
+ zB σ̂

′
Bk
(

m∑

i=1

m∑

j=1

ŵBijk
(r̂i − ˙̃xi) ẋrj)

)

+

m∑

i=1

w̃T
gi

(
F−1

gi
˙̃wgi + σ̂g(r̂i − ˙̃xi)

)

+

N2∑

k=1

ṽT
gk

(
G−1

gk
˙̃vgk + zg σ̂

′
gk
(

m∑

i=1

ŵgik(r̂i − ˙̃xi))

)

+

m∑

i=1

w̃T
τi

(
F−1

τi
˙̃wτi + σ̂τ (r̂i − ˙̃xi)

)

+

N2∑

k=1

ṽT
τk

(
G−1

τk
˙̃vτk + zτ σ̂

′
τk
(

m∑

i=1

ŵτik(r̂i − ˙̃xi))

)
.

(4.104)

Usingξ (4.96), it can be demonstrated thatψ (4.104) is made up of ˙̃W, ˙̃
V and

(r̂ − ˙̃x)Tξ. The idea is to cancel(r̂ − ˙̃x)Tξ with ˙̃
W, ˙̃V. However onlyr̂ is

available, hence onlŷrTξ can be canceled bẏ̃W, ˙̃V.
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Therefore, if we introduce the weight updates as follows

˙̂wMij
= FMij

(σ̂M r̂i F
∗
motionj − κ‖r̂‖ŵMij

) (4.105)

˙̂vMk
= GMk

(zM σ̂′
Mk

(
m∑

i=1

m∑

j=1

ŵMijk
r̂i F

∗
motionj)− κ‖r̂‖v̂Mk

) (4.106)

˙̂wBij
= FBij

(σ̂B r̂i ẋrj − κ‖r̂‖ŵBij
) (4.107)

˙̂vBk
= GBk

(zB σ̂
′
Bk

(
m∑

i=1

m∑

j=1

ŵBijk
r̂i ẋrj)− κ‖r̂‖v̂Bk

) (4.108)

˙̂wgi = Fgi(σ̂g r̂i − κ‖r̂‖ŵgi) (4.109)

˙̂vgk = Ggk(zg σ̂
′
gk

(
m∑

i=1

ŵgik r̂i)− κ‖r̂‖v̂gk) (4.110)

˙̂wτi = Fτi(σ̂τ r̂i − κ‖r̂‖ŵτi) (4.111)

˙̂vτk = Gτk(zτ σ̂
′
τk
(

m∑

i=1

ŵτik r̂i)− κ‖r̂‖v̂τk) (4.112)

and take into account− ˙̃
W =

˙̂
W, sinceW̃ = W − Ŵ andW is constant, and

the knowledge‖ξ‖ ≤ C0+C1 ‖r̂‖ in (4.100) and some inner products in (4.68)

– (4.71), thenψ (4.104) can be expressed as:

ψ ≤− κ ‖r̂‖ ‖Z̃‖2 + κ ‖r̂‖ ‖Z̃‖ ZM − ˙̃xT ξ

≤− κ ‖r̂‖ ‖Z̃‖2 + κ ‖r̂‖ ‖Z̃‖ ZM + C0 ‖ ˙̃x‖+ C1 ‖r̂‖ ‖ ˙̃x‖
(4.113)

The substitution ofψ (4.113) intoV̇ (r, Z̃) (4.103), yields

V̇ (r̂, ˙̃x, Z̃) =− r̂T Mx(q)Λr̂+ ˙̃xT Mx(q)Λ ˙̃x + (r̂T − ˙̃xT)Bx(q, ẋr) ˙̃x

+ (r̂T − ˙̃xT)(τ x(q, q̇)− τ x(q, ˙̂q))

+ C0 ‖r̂‖+ 2 C0 ‖ ˙̃x‖+ C1 ‖r̂‖2 + 2 C1 ‖r̂‖‖ ˙̃x‖

− κ‖r̂‖‖Z̃‖2 + κ‖r̂‖‖Z̃‖ZM

(4.114)

The terms in (4.114) can be analyzed for its boundedness. Thefollowing terms,
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using Property 4.3.1, can be written as

−r̂TMx(q)Λr̂ ≤ −Mx,mΛm ‖r̂‖2 (4.115)

˙̃xTMx(q)Λ ˙̃x ≤ Mx,MΛM ‖x̃‖2 (4.116)

whereMx,m = λmin(Mx(q)),Mx,M = λmax(Mx(q)), Λm = min(Λ),ΛM =

max(Λ).

The next term in (4.114), using Property 4.3.3, can be written as:

‖(r̂T − ˙̃xT)Bx(q, ẋr) ˙̃x‖ ≤ (‖r̂T‖+ ‖ ˙̃x‖) ‖Bx(q, ẋr)‖ ‖ ˙̃x‖ ≤

‖r̂‖‖ ˙̃x‖ Bx,M

(
‖r̂‖+ ‖ ˙̃x‖+ ẋM

)
+ ‖ ˙̃x‖2 Bx,M

(
‖r̂‖+ ‖ ˙̃x‖+ ẋM

) (4.117)

This is due from (4.84)‖ẋr‖ = ‖r̂+ ˙̂x‖ = ‖r̂+ ẋ− ˙̃x‖ ≤ ‖r̂‖+ ‖ẋ‖+ ‖ ˙̃x‖ ≤

‖r̂‖+ ‖ ˙̃x‖+ ẋM .

And the termτ x(q, q̇)− τ x(q, ˙̂q) in (4.114) can be shown to be bounded by

‖τ x(q, q̇)− τ x(q, ˙̂q)‖ ≤ (τfric)M (4.118)

which is obtained from (4.88), Property 3.2.4 and the followings:

1. ‖J−Tτ visJ
−1 ˙̃x‖ is bounded becauseτ vis is bounded (as shown in (3.7)),

‖J−1‖ is bounded for non-singular configuration of the manipulator and

it was assumed that‖ ˙̃x‖ is bounded.

2. ‖τ cou(sgn(q̇)−sgn( ˙̂q))‖ is bounded becauseτ cou is shown to be bounded

in (3.8) and because(sgn(q̇i)− sgn( ˙̂qi)) is bounded.

3. ‖τ sti(exp(−τdecq̇
2)sgn(q̇)− exp(−τ dec

˙̂q2)sgn( ˙̂q))‖ is bounded becauseτ sti

is shown to be bounded in (3.9) and because both sgn(·) and exp−|a| are

bounded.
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Substituting (4.115) – (4.118) intȯV (r̂, ˙̃x, Z̃) in (4.114), yield

V̇ (r̂, ˙̃x, Z̃) ≤− (Mx,mΛm − C1)‖r̂‖2 +Mx,MΛM‖x̃‖2

+ ‖r̂‖‖ ˙̃x‖
(
Bx,M(‖r̂‖+ ‖ ˙̃x‖+ ẋM) + 2 C1

)

+ ‖ ˙̃x‖2 Bx,M(‖r̂‖+ ‖ ˙̃x‖+ ẋM)

+ ((τfric)M + C0) ‖r̂‖+ ((τfric)M + 2 C0) ‖ ˙̃x‖

− κ‖r̂‖‖Z̃‖2 + κ‖r̂‖‖Z̃‖ZM

(4.119)

DefiningyT =
[
r̂T ˙̃xT

]
, thenV̇ (r̂, ˙̃x, Z̃) in (4.119) can be written as

V̇ (y, Z̃) ≤− yTΨy +

[
(τfric)M + C0 0

0 (τfric)M + 2 C0

]
y

− κ‖Z̃‖2 + κ‖Z̃‖ZM

(4.120)

where

Ψ =

[
Mx,mΛm − C1 −1

2
p

−1
2
p −p−Mx,MΛM

]
(4.121)

with p is defined as

p = Bx,M(‖r̂‖+ ‖ ˙̃x‖+ ẋM ) + 2 C1 (4.122)

Note that, the positivity of the first diagonal ofΨ, (Mx,m Λm − C1) can be

achieved by settingΛm >
C1

Mx,m

. However, unfortunately, the matrixΨ in

(4.120) is not positive definite since its second diagonal element is negative,

hence the existence of an enclosing regionV̇ < 0 had failed to be established

and therefore bounded stability cannot be achieved.

In practice,|Ψ| depends on the quality of the filtered velocity feedback obtained,

i.e. |Ψ| < 0 for ˙̃x 6= 0, or, |Ψ| > 0 for ˙̃x = 0 especially when the robot is not

moving (hence it is bounded stable as shown in Section 4.4.3), and therefore
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stability and unstability could alternate. This also explains why, in real-time,

the controller gainΛ = 20I that can be selected is lower than that in simulation

(Λ = 30I), this is due to the quality of the velocity feedback signal that can be

obtained.

It is therefore signifies the need of an improved formulationto overcome the

deficiency of actual velocity feedback by providing the enclosing regionV̇ < 0,

where bounded stability can be ensured.

4.8 Conclusion

At this point, it is possible to conclude that:

• it is feasible in simulation study to construct an NN adaptive controller in

operational space, without any prior knowledge of the system dynamic,

with a potential performance comparable to that of Lagrangian dynamics

strategy (without joint friction compensation), however

• it does highlight the problem in real robot implementation where joint

velocity feedback does not exist. It was shown that the filtered velocity

signal feedback can significantly affect the performance ofthe adaptive

NN controller.

Therefore, in the next chapter, a controller with velocity observer strategy is

proposed to address this limitation.
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CHAPTER 5

NN ADAPTIVE MOTION CONTROL WITH VELOCITY
OBSERVER

5.1 Chapter Overview

In this chapter, an NN adaptive motion control in operational space with veloc-

ity observer is presented, to overcome the absence of an actual velocity signal in

the real robot. This work was extended from the previous formulation in Chap-

ter three, by taking into account the model-based motion control with velocity

observer in joint space introduced by [109].

The stability analysis of the proposed strategy is presented in this chapter. The

improved NN formulation was validated with a six DOF PUMA 560manipula-

tor in real-time experiment.

It is worth to mention that a NN adaptive motion control with velocity observer

in joint space was presented in [110]; it is based upon the model-based controller

with velocity observer by [111]. However, the proposed approach by [110] still

requires the knowledge of kinetic energy matrix. Also, a model-based motion

control with velocity observer in operational space was presented in [92] where

the joint friction model is estimated adaptively, giving a more improved perfor-

mance than the Lagrangian only dynamics controller. However, its formulation
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and stability analysis are rather different and relativelymore involved than the

original operational space Lagrangian dynamics formulation [8].

Another algorithm, the projection algorithm can be used to achieve faster con-

vergence rate for the estimated parameters for LIP case [112, 113] or NN weights

for NN case [114] (by de-correlating the system inputs). Projection algorithm

can be seen as an improvement from a working algorithm / strategy. However,

it is not a solution for a non-working algorithm.

Thus, our approach is to propose a solution for a non-workingNN adaptive

motion control in real time implementation by introducing the NN adaptive mo-

tion controller with velocity observer. Note that, it is still theoretically feasible,

though, to improve the NN adaptive motion controller - observer with the pro-

jection algorithm.

The preliminary work of this chapter was presented in [115],where the more

complete version is presented in [116].

5.2 End-effector Motion Dynamics

To ease the formulation development in this chapter, let’s reproduce the end-

effector motion dynamics of the non-redundant manipulator(2.27) in Chapter

Two, which can be described as

Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) = F (5.1)

wherex ∈ ℜm and q ∈ ℜn denote the operational and joint space coor-

dinates, respectively, where for a non-redundant manipulator m = n. The
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ẍd, ẋd,xd

x

F Fwd

Kin.

NN

controller

observer

Robot
q

NN

weight

updates

x

Figure 5.1: The operational space NN motion NN controller-observer structure.

matricesMx(q) ∈ ℜm×m andBx(q, q̇) ∈ ℜm×m represent the inertia and

the Coriolis/centrifugal terms, respectively, while vectors gx(q) ∈ ℜm and

τ x(q, q̇) ∈ ℜm denote the gravity and joint friction forces, respectively. The

vectorF ∈ ℜm is the operational space generalized forces.

5.3 NN Adaptive Motion Controller - Observer For-
mulation

5.3.1 NN Adaptive Motion Controller-Observer

In this section, a NN adaptive motion controller with velocity observer is pro-

posed. The controller-observer structure is shown in Fig. 5.1. The control law

is defined as:

F = M̂x(q)F
∗
motion + B̂x(q, ẋ0)ẋr + ĝx(q) + τ̂ x(q, ˙̂q) (5.2)

whereẋr, ẋ0 andF∗
motion are defined as



5.3 NN Adaptive Motion Controller - Observer 113

ẋr = ẋd +Λ1(xd − x̂) (5.3)

ẋ0 = ˙̂x−Λ2x̃ (5.4)

F∗
motion = ẍr +Λ1(r1 + r2) (5.5)

with the computable terms to computeF∗
motion are defined as

ẍr = ẍd +Λ1(ẋd − ˙̂x) (5.6)

r1 + r2 = ẋr − ẋ0 (5.7)

It follows from (5.7) that we can write

r1 + r2 = (ẋr − ẋ) + (ẋ− ẋ0), (5.8)

where it can be defined

r1 = ẋr − ẋ = ė+Λ1e+Λ1x̃ (5.9)

r2 = ẋ− ẋ0 = ˙̃x+Λ2x̃. (5.10)

Note:Λ1,Λ2 ∈ ℜm×m are positive diagonal matrices,e = xd−x andė = ẋd−ẋ

are defined as the position and velocity tracking errors, respectively, andxd, ẋd

andẍd are the desired operational space trajectories. The estimated position and

velocity errors,̃x = x − x̂ and ˙̃x = ẋ − ˙̂x, denote the difference between the

actual position and velocityx, ẋ and the estimated position and velocityx̂, ˙̂x,

respectively. The computation to obtainx̂ andx̃ will be given on Section 5.4.
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Combining the robot dynamics (5.1) and the proposed controller (5.2), and tak-

ing into account the first derivative of (5.9) and Property 4.3.2, ageneral closed-

loop dynamicsis obtained as:

Mx(q)ṙ1 =−Mx(q)Λ1 (r1 + r2)−Bx(q, ẋ0)ẋr +Bx(q, ẋ)ẋ

+ τ x(q, q̇)− τ x(q, ˙̂q) + η
(5.11)

where the uncertainties of the system,η, expressed as

η = M̃x(q)F
∗
motion + B̃x(q, ẋ0)ẋr + g̃x(q) + τ̃ x(q, ˙̂q). (5.12)

andτ x(q, q̇)−τ x(q, ˙̂q) is similar with (4.88), however it is reproduced for ease

of perusal as

τ x(q, q̇)− τ x(q, ˙̂q) = J−T[τvis ˙̃q + τcou(sgn(q̇)− sgn( ˙̂q))

+ τ stiexp(−τdecq̇
2)sgn(q̇)− τ stiexp(−τ dec

˙̂q2)sgn( ˙̂q)].
(5.13)

The general closed-loop dynamics (5.11) cannot be used directly into stabil-

ity analysis. It must be converted into useful controller closed-loop dynamics

(Section 5.3.2) and observer closed-loop dynamics (Section 5.3.3):

5.3.2 Controller closed-loop dynamics

Using (5.9), (5.10) and Property 4.3.6,Bx(q, ẋ0)ẋr −Bx(q, ẋ)ẋ in (5.11) can

be rearranged such that

= Bx(q, ẋ− r2)(r1 + ẋ)−Bx(q, ẋ)ẋ

= Bx(q, ẋ)r1 −Bx(q, ẋr)r2.
(5.14)

Substituting (5.14) into the general closed-loop dynamics(5.11) yields the use-

ful controller closed-loop dynamics:

Mx(q)ṙ1 =−Mx(q)Λ1(r1 + r2)−Bx(q, ẋ)r1 +Bx(q, ẋr)r2

+ τ x(q, q̇)− τ x(q, ˙̂q) + η
(5.15)
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5.3.3 Observer closed-loop dynamics

An observer can be designed as in [109]:

˙̂x = ẋ− ˙̃x = z+ (lD +Λ2)x̃ (5.16)

ż = ẍr + (lD ·Λ2)x̃ (5.17)

wherelD = diag(lD,ii > 0) ∈ ℜm×m. Combining the first derivative of (5.16)

with (5.17), and taking into account the first derivative of (5.9), results in:

¨̃x+ (lD +Λ2) ˙̃x+ (lD ·Λ2)x̃ = −(ẍr − ẍ) = −ṙ1. (5.18)

Substituting (5.10) and its derivative into the left-hand-side (LHS) of (5.18) and

multiplying both sides withMx(q), yield

Mx(q)ṙ2 +Mx(q)lDr2 = −Mx(q)ṙ1 (5.19)

Using (5.9), (5.10) and Property 4.3.6,Bx(q, ẋ0)ẋr −Bx(q, ẋ)ẋ in (5.11) can

be manipulated such that

= Bx(q, ẋ0)(r1 + ẋ)−Bx(q, ẋ0 + r2)ẋ

= Bx(q, ẋ0)r1 −Bx(q, ẋ)r2.
(5.20)

Substituting (5.20) into the general closed-loop dynamics(5.11) yields

−Mx(q)ṙ1 = Mx(q)Λ1(r1 + r2) +Bx(q, ẋ0)r1 −Bx(q, ẋ)r2

− (τ x(q, q̇)− τ x(q, ˙̂q))− η
(5.21)

Substituting (5.21) into (5.19), theobserver closed-loop dynamicscan be ob-

tained as:

Mx(q)ṙ2 =− (Mx(q)lD −Mx(q)Λ1)r2 +Mx(q)Λ1r1

−Bx(q, ẋ)r2 +Bx(q, ẋ0)r1 − (τ x(q, q̇)− τ x(q, ˙̂q))− η.
(5.22)
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It can be shown that, the model-based equivalent [109] of themotion control

(5.2) with its observer (5.16) - (5.17), i.e.η = 0 in (5.15) and (5.22), showed

that the local asymptotic stability can be achieved.

5.3.4 Uncertaintiesη in NN terms

Now, similar with Section 4.4.2,Mx(q), Bx(q, ẋ0), gx(q), andτ x(q, ˙̂q) in η

(5.12) can be described as follows

Mx(q) = WT
M σM(VT

M zM) + εM (5.23)

Bx(q, ẋ0) = WT
B σB(V

T
B zB) + εB (5.24)

gx(q) = WT
g σg(V

T
g zg) + εg (5.25)

τ x(q, ˙̂q) = WT
τ στ (V

T
τ zτ ) + ετ (5.26)

Similarly, the estimated dynamic termŝMx(q), B̂x(q, ẋ0), ĝx(q), andτ̂ x(q, ˙̂q)

are described by estimated weightsV̂p,Ŵp, with subscriptp = M,B, g, τ .

It is clear thatMx(q) andgx(q) can be been shown to be bounded by Prop-

erties 4.3.1 and 4.3.4, respectively. Using Property 4.3.3, the boundedness of

Bx(q, ẋ0) depends on‖ẋ0‖ (5.4), which in turn depends on‖ ˙̂x‖, ‖x̂‖ and‖x‖:

x is directly bounded by the workspace. The estimated velocity, ‖ ˙̂x‖, can be

assumed to be bounded,‖ ˙̂x‖ ≤ ˙̂xM , since in the implementation it is possible

to set− ˙̂xM ≤ ˙̂x ≤ ˙̂xM . This implies that‖x̂‖ is bounded since it is obtained

from ˙̂x (see Section 5.4. Computation of Estimated Operational Space Coordi-

nates). Therefore‖ẋ0‖ is bounded. The boundedness ofτ x(q, ˙̂q) can be shown

by using Property 3.2.4 and the fact that‖J−1(q)‖ is bounded for non-singular

configuration anḋ̂x is bounded, implyinġ̂q is bounded. Therefore, the optimum
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weightsWp,Vp and the approximation errorεp (with subscriptp = M,B, g, τ )

from (5.23)-(5.26), are also upper-bounded.

Using similar development and simplified notationsσ ≡ σ(VTz), σ̂ ≡ σ(V̂Tz),

andσ = σ̂ + σ̃ as in Section 4.4.2, the uncertaintiesη (5.12) can be written as

η = ξ + ζ. (5.27)

This division is needed because onlyξ term can be manipulated by the weight

updates ˙̂W,
˙̂
V as will be shown in Section 5.3.5.

The termξ is defined as

ξ =
(
W̃T

M σ̂M

)
F∗

motion +
(
W̃T

Bσ̂B

)
ẋr + W̃T

g σ̂g + W̃T
τ σ̂τ

+
(
ŴT

M σ̂
′
MṼT

MzM

)
F∗

motion +
(
ŴT

Bσ̂
′
BṼ

T
BzB

)
ẋr

+ ŴT
g σ̂

′
gṼ

T
g zg + ŴT

τ σ̂
′
τṼ

T
τ zτ

(5.28)

and the “whole”NN errorsζ is defined as

ζ =
(
W̃T

M σ̂
′
MṼT

MzM

)
F∗

motion +
(
W̃T

Bσ̂
′
BṼ

T
BzB

)
ẋr

+ W̃T
g σ̂

′
gṼ

T
g zg + W̃T

τ σ̂
′
τ Ṽ

T
τ zτ

+
(
WT

MO(ṼT
MzM)

)
F∗

motion +
(
WT

BO(ṼT
BzB)

)
ẋr

+WT
g O(ṼT

g zg) +WT
τ O(ṼT

τ zτ ) + ε

(5.29)

where the total approximation errorε = εM F∗
motion + εB ẋr + εg + ετ ≤ εM

(since the actual dynamics are bounded). Note that, the driving signalsẋr (5.3)

andF∗
motion (5.5), used in (5.28) and (5.29), are different withẋr andF∗

motion in

Section 4.4.2.

As in Section 4.4.2, the uncertaintiesη (5.27) can be seen to be bounded with

the generic expression‖Lp − L̂p‖ ≤ (L̃p)M in (4.47) and alsoF∗
motion (5.5) and



5.3 NN Adaptive Motion Controller - Observer 118

ẋr in (5.7), as follows

‖η‖ ≤ (L̃M)M ‖F∗
motion‖+ (L̃B)M ‖ẋr‖+ (L̃g)M + (L̃τ )M + εM

≤ (L̃M)M (‖ẍr‖+Λ1(‖r1‖+ ‖r2‖)) + (L̃B)M (‖r1‖+ ‖r2‖+ ‖ẋ0‖)

+ (L̃g)M + (L̃τ )M + εM
(5.30)

Note thatẍr in (5.6) can be assumed to be bounded since the desired trajecto-

ries ẍd, ẋd,xd are bounded by design,x is bounded by the workspace andx̂ is

bounded due tȯ̂x can be shown to be bounded. Andẋ0 in (5.4) can be shown to

be bounded due tô̇x andx̂ can be shown to be bounded.

Thereforeη can be shown to be bounded as

‖η‖ ≤ C0 + C1 (‖r1‖+ ‖r2‖). (5.31)

whereC0, C1 > 0. And sinceη = ξ+ ζ, then clearly the following inequalities

are true

‖ξ‖ ≤ C0 + C1 (‖r1‖+ ‖r2‖) (5.32)

‖ζ‖ ≤ C0 + C1 (‖r1‖+ ‖r2‖). (5.33)

Note that, the definitions ofr1 (5.9) andr2 (5.10) in this section, are different

with the definition ofr in Section 4.4.2.

For ease of later developments, let us defineZ = diag[W,V] to be upper-

bounded as follows

‖Z‖ =
√

‖W‖2 + ‖V‖2 ≤ ZM (5.34)

whereZM is a positive scalar constant,W = diag[WM ,WB,Wg, Wτ ] and

V = diag[VM ,VB,Vg,Vτ ].
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5.3.5 Stability Analysis

For the motion control (5.2) and the observer (5.16), (5.17), let the NN weight

updates be provided as

˙̂wMij
= FMij

(σ̂M (r1,i + r2,i) F
∗
motionj − κ ŵMij

) (5.35)

˙̂vMk
=GMk

(zM σ̂′
Mk

(
m∑

i=1

m∑

j=1

ŵMijk
(r1,i + r2,i) F

∗
motionj) (5.36)

− κ v̂Mk
)

˙̂wBij
= FBij

(σ̂B (r1,i + r2,i) ẋrj − κ ŵBij
) (5.37)

˙̂vBk
=GBk

(zB σ̂
′
Bk

(
m∑

i=1

m∑

j=1

ŵBijk
(r1,i + r2,i) ẋrj)− κ v̂Bk

) (5.38)

˙̂wgi = Fgi(σ̂g (r1,i + r2,i)− κ ŵgi) (5.39)

˙̂vgk =Ggk(zg σ̂
′
gk

(
m∑

i=1

ŵgik (r1,i + r2,i))− κ v̂gk) (5.40)

˙̂wτi = Fτi(σ̂τ (r1,i + r2,i)− κ ŵτi) (5.41)

˙̂vτk =Gτk(zτ σ̂
′
τk
(

m∑

i=1

ŵτ ik
(r1,i + r2,i))− κ v̂τk) (5.42)

with κ is a positive constant. And the estimated NN weight updates:˙̂wMij
∈

ℜN2 , ˙̂vMk
∈ ℜN1,M , ˙̂wBij

∈ ℜN2, ˙̂vBk
∈ ℜN1,B , ˙̂wgi ∈ ℜN2 , ˙̂vgk ∈ ℜN1,g , ˙̂wτi ∈

ℜN2 , ˙̂vτk ∈ ℜN1,τ are all column vector. And the adaptive gains:F−1
Mij

∈

ℜN2×N2, . . ., F−1
τi

∈ ℜN2×N2 andG−1
Mk

∈ ℜN1,M×N1,M , . . . ,G−1
τk

∈ ℜN1,τ×N1,τ

are all positive diagonal matrices. The following indices are defined:i, j =

1, . . . , m are output-layer indices,k = 1, . . . , N2 is the hidden-layer index,

where to simplify the implementation, the hidden-node sizeN2 is set the same

for all dynamic parameters. WhileN1,M , N1,B, N1,g, N1,τ are the respective

input-node sizes.
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Proposition 5.3.1 Lety = [rT1 rT2 ]
T. With the assumptions that:

1. the controller gainΛ1 and the observer gainlD meet the conditions

Λ1,m >
C1

Mx,m

(5.43)

lD,m >
Mx,M Λ1,M + 3 C1

Mx,m

(5.44)

whereC1 > 0, Λ1,m = min(Λ1), Λ1,M = max(Λ1), Mx,m =

min(λmin(Mx(t))), Mx,M = min(λmax(Mx(t))) andlD,m = min(lD);

2. yM , the upper-bound constraint ofy, and, ẐM , the upper-bound of the

estimated NN weights,̂Z, satisfy

yM > by (5.45)

ẐM >

√
((τfric)M + 3 C0)2

4 κ Ψm

(5.46)

whereC0, κ > 0, (τfric)M is the upper-bound of‖τ x(q, q̇) − τ x(q, ˙̂q)‖,

Ψm = min(Ψ) withΨ is to be defined in(5.60), andby is to be defined in

(5.64); and

3. both initial conditions ofy andZ̃ satisfy

‖y(0)‖ < yM (5.47)

‖Z̃(0)‖ < Z̃M (5.48)

whereZ̃M is the upper-bound of the NN weight errors,Z̃;

then using the proposed motion control(5.2), the observer(5.16)– (5.17)and

the NN weight updates(5.35)-(5.42), it can be shown by Lyapunov’s Exten-

sion Theorem [102] that ast → ∞, the errors‖r1‖, ‖r2‖ and ‖W̃‖, ‖Ṽ‖
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will be bounded by enclosing boundaryS, which is defined by enclosing region

V̇ (y, Z̃) < 0.

Proof 5.3.1 The chosen Lyapunov function candidate for the closed-looperror

dynamics(5.15)and (5.22), with the uncertaintiesη (5.27), is

V (r1, r2, Z̃) =
1

2
rT1Mx(q)r1 +

1

2
rT2Mx(q)r2

+
1

2

m∑

i=1

m∑

j=1

w̃T
Mij

F−1
Mij

w̃Mij
+ . . .+

1

2

m∑

i=1

w̃T
τi
F−1

τi
w̃τi

+
1

2

N2∑

k=1

ṽT
Mk

G−1
Mk

ṽMk
+ . . .+

1

2

N2∑

k=1

ṽT
τk
G−1

τk
ṽτk

(5.49)

where the NN weight errors:̃wMij
∈ ℜN2 , ṽMk

∈ ℜN1,M , w̃Bij
∈ ℜN2 , ṽBk

∈

ℜN1,B , w̃gi ∈ ℜN2, ṽgk ∈ ℜN1,g , w̃τi ∈ ℜN2 , ṽτk ∈ ℜN1,τ are all column vector.

Next, we substitute the closed-loop error dynamics(5.15), (5.22), Property 4.3.5

and also take into accountη (5.27), with the definitionξ (5.28)and the knowl-

edge‖ζ‖ ≤ C0 + C1(‖r1‖+ ‖r2‖) (5.33), into V̇ (r1, r2, Z̃) of (5.49), to obtain

V̇ (r1, r2, Z̃) ≤− rT1Mx(q)Λ1r1 − rT2 (Mx(q)lD −Mx(q)Λ1)r2

+ rT1Bx(q, ẋr)r2 + rT2Bx(q, ẋ0)r1

+ (rT1 − rT2 ) (τ x(q, q̇)− τ x(q, ˙̂q))

+ C0‖r1‖+ C0‖r2‖+ C1‖r1‖2 + 2 C1‖r1‖‖r2‖+ C2‖r2‖2

+ψ

(5.50)
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where the lump parameterψ in (5.50)is defined as

ψ =

m∑

i=1

m∑

j=1

w̃T
Mij

(
F−1

Mij

˙̃wMij
+ σ̂M (r1,i − r2,i) F

∗
motionj

)

+

N2∑

k=1

ṽT
Mk

(
G−1

Mk

˙̃vMk
+ zM σ̂′

Mk
(

m∑

i=1

m∑

j=1

ŵMijk
(r1,i − r2,i) F

∗
motionj)

)

+

m∑

i=1

m∑

j=1

w̃T
Bij

(
F−1

Bij

˙̃wBij
+ σ̂B (r1,i − r2,i) ẋrj

)

+
N2∑

k=1

ṽT
Bk

(
G−1

Bk

˙̃vBk
+ zB σ̂

′
Bk
(

m∑

i=1

m∑

j=1

ŵBijk
(r1,i − r2,i) ẋrj)

)

+

m∑

i=1

w̃T
gi

(
F−1

gi
˙̃wgi + σ̂g (r1,i − r2,i)

)

+

N2∑

k=1

ṽT
gk

(
G−1

gk
˙̃vgk + zg σ̂

′
gk
(

m∑

i=1

ŵgik (r1,i − r2,i))

)

+
m∑

i=1

w̃T
τi

(
F−1

τi
˙̃wτi + σ̂τ (r1,i − r2,i)

)

+

N2∑

k=1

ṽT
τk

(
G−1

τk
˙̃vτk + zτ σ̂

′
τk
(

m∑

i=1

ŵτ ik
(r1,i − r2,i))

)
.

(5.51)

Usingξ (5.28), it can be demonstrated thatψ (5.51) is made up of ˙̃
W, ˙̃

V and

(r1 − r2)
T ξ. The idea is to cancel(r1 − r2)

T ξ with ˙̃
W, ˙̃V. Unfortunately,

only (r1 + r2) can be computed (see(5.7)), hence onlyrT1 ξ can be canceled

by ˙̃
W, ˙̃V. With the weight updates˙̂W,

˙̂
V (5.35) – (5.42) (note that− ˙̃

W =

˙̂
W, sinceW̃ = W − Ŵ andW is constant), and taking into consideration

‖ξ‖ ≤ C0 + C1(‖r1‖+ ‖r2‖) (5.32),ψ (5.51)can be expressed as:

ψ = κ

m∑

i=1

m∑

j=1

w̃T
Mij

ŵMij
+ . . .+ κ

N2∑

k=1

ṽT
τk
v̂τk − 2 rT2 ξ

≤− κ‖Z̃‖2 + κ‖Z̃‖ZM + 2 C0‖r2‖+ 2 C1‖r1‖‖r2‖+ 2 C1‖r2‖2.
(5.52)

Equation(5.52)is obtained by using the inner products in(4.68)– (4.71).
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The substitution ofψ (5.52)into V̇ (r1, r2, Z̃) (5.50), yields

V̇ (r1, r2, Z̃) ≤− rT1 (Mx(q)Λ1)r1 − rT2 (Mx(q)lD −Mx(q)Λ1)r2

+ rT1Bx(q, ẋr)r2 + rT2Bx(q, ẋ0)r1

+ (rT1 − rT2 ) (τ x(q, q̇)− τ x(q, ˙̂q))

+ C0‖r1‖+ 3 C0‖r2‖+ C1‖r1‖2 + 4 C1‖r1‖‖r2‖+ 3 C1‖r2‖2

− κ‖Z̃‖2 + κ‖Z̃‖ZM

(5.53)

The terms in(5.53)can be analysed for its boundedness: The following terms,

using Property 4.2, can be written as:

−rT1Mx(q)Λ1r1 ≤−Mx,m Λ1,m‖r1‖2 (5.54)

−rT2 (Mx(q)lD −Mx(q)Λ1)r2 ≤− (Mx,mlD,m −Mx,MΛ1,M)‖r2‖2 (5.55)

whereΛ1,m,Λ1,M ,Mx,m,Mx,M , lD,m are as defined in(5.43)and (5.44).

The next terms, by taking into account Property 4.3.3, can bewritten as:

‖rT1Bx(q, ẋr)r2‖+ ‖rT2Bx(q, ẋ0)r1‖

≤‖r1‖‖r2‖Bx,M(‖r1‖+ ‖r2‖+ 2ẋM).
(5.56)

This is due to the factṡxr = r1 + ẋ in (5.9)andẋ0 = ẋ− r2 in (5.10).

And the final term,τ x(q, q̇) − τ x(q, ˙̂q), had been shown to be bounded in

(4.118), however, it is reproduced here for ease of perusal:

‖τ x(q, q̇)− τ x(q, ˙̂q)‖ ≤ (τfric)M . (5.57)

which is obtained from(5.13), Property 3.2.4 and the followings:
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1. ‖J−Tτ visJ
−1 ˙̃x‖ is bounded becauseτ vis is bounded (as shown in(3.7)),

‖J−1‖ is bounded for non-singular configuration of the manipulator and

it was assumed that‖ ˙̃x‖ is bounded.

2. ‖τ cou(sgn(q̇)−sgn( ˙̂q))‖ is bounded becauseτ cou is shown to be bounded

in (3.8)and because(sgn(q̇i)− sgn( ˙̂qi)) is bounded.

3. ‖τ sti(exp(−τdecq̇
2)sgn(q̇)− exp(−τ dec

˙̂q2)sgn( ˙̂q))‖ is bounded becauseτ sti

is shown to be bounded in(3.9) and because both sgn(·) and exp−|a| are

bounded.

Substituting(5.54)–(5.57)into V̇ (r1, r2, Z̃) in (5.53), we have

V̇ (r1, r2, Z̃) ≤− (Mx,m Λ1,m − C1) ‖r1‖2

− (Mx,mlD,m −Mx,MΛ1,M − 3 C1) ‖r2‖2

+ ‖r1‖‖r2‖ [Bx,M(‖r1‖+ ‖r2‖+ 2ẋM) + 4 C1]

+ ((τfric)M + C0) ‖r1‖+ ((τfric)M + 3 C0) ‖r2‖

− κ‖Z̃‖2 + κ‖Z̃‖ZM .

(5.58)

Defining yT =
[
rT1 rT2

]
, V̇ (r1, r2, Z̃) (5.58)can be written as

V̇ (y, Z̃) ≤− yTΨy +

[
(τfric)M + C0 0

0 (τfric)M + 3 C0

]
y

− κ‖Z̃‖2 + κ‖Z̃‖ZM ,

(5.59)

where

Ψ =

[
(Mx,m Λ1,m − C1) −1

2
p

−1
2
p (Mx,mlD,m −Mx,MΛ1,M − 3 C1)

]
(5.60)

p = Bx,M(‖r1‖+ ‖r2‖+ 2ẋM ) + 4 C1. (5.61)

The matrixΨ (5.60)is greater than zero (positive definite) if

p < 2
√
(Mx,m Λ1,m − C1)(Mx,mlD,m −Mx,M Λ1,M − 3 C1); (5.62)
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where the right-hand side is positive due to hypotheses(5.43)and(5.44). Equa-

tion (5.59)can be written as

V̇ (y, Z̃) ≤−Ψm

[
‖y‖ − (τfric)M + 3 C0

2Ψm

]2
− κ

[
‖Z̃‖ − ZM

2

]2

+
((τfric)M + 3 C0)

2

4Ψm

+
κZ2

M

4

(5.63)

Hence,V̇ (y, Z̃) < 0, as depicted in Fig. 5.2, if

‖y‖ >

√
((τfric)M + 3 C0)2

4Ψ2
m

+
κZ2

M

4Ψm

+
(τfric)M + 3 C0

2Ψm

≡ by, or (5.64)

‖Z̃‖ >

√
((τfric)M + 3 C0)2

4 κ Ψm

+
Z2

M

4
+

ZM

2
≡ bZ̃ (5.65)

Applying the Lyapunov’s Extension Theorem [102] then ast → ∞, the errors

‖y‖ and‖Z̃‖ can be shown to be bounded withinS, as follows:

Suppose the errors start within the boundary ofS, i.e. ‖y(0)‖ < by and

‖Z̃(0)‖ < bZ̃ , then they start their course towards the enclosing boundary S

sinceV̇ (y, Z̃) can not be guaranteed to be less than zero, within this bound-

ary. However, when they are leaving the boundary and entering the region

V̇ (y, Z̃) < 0, they will return to the boundary. Now, suppose the errors start at

outside the boundary ofS then they tend to go to the equilibrium sinceV (y, Z̃)

is decreasing. However, they cannot go to the equilibrium, but only up to enter-

ing the boundary ofS and once they enter the boundary ofS, we have already

shown that they are bounded.

Using bounded-input-bounded-output (BIBO) property, it can be shown that a

boundedr2 in (5.10), yields bounded outputs̃̇x and x̃. Bounded inputr1 to-

gether withx̃ in (5.9)yield lim
t→∞

e, ė that are bounded.
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((τfric)M+3C0)
ψm

V̇ < 0

‖y‖

‖Z̃‖

by

V̇ >=< 0

b
Z̃ZM Z̃M

yM

S

Figure 5.2: V̇ (y, Z̃) regions of the NN adaptive motion control with velocity
observer.

The next part of the proof is to demonstrate the necessity of hypothesisyM > by

in (5.45)andẐM >
√

((τfric)M+ 3 C0)2

4 κ Ψm
in (5.46), as follows:

• The errory can be shown to be upper-bounded by combining(5.62)and

the definition ofp in (5.61):

‖r1‖+ ‖r2‖ < 2(1/Bx,M [
√
α− 4 C1]− ẋM) (5.66)

whereα = (Mx,m Λ1,m −C1)(Mx,mlD,m −Mx,M Λ1,M − 3 C1) > 0 due

to hypothesis(5.43)and (5.44), and it is still true that

‖y‖ =
√
‖r1‖2 + ‖r2‖2 <

√
2(1/Bx,M [

√
α− 4 C1]− ẋM) ≡ yM

(5.67)

where the right-hand side of(5.67)can be defined as the upper-bound of

y. The last equation signifies the need of hypothesisyM > by in (5.45);

sincey, in its course towards the enclosing boundaryS, cannot violate

the constraintyM , otherwise, the Lyapunov’s Extension Theorem is no

longer applicable.
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• Note that,Z̃, in its course towards the enclosing boundaryS, cannot vi-

olateZ̃M , otherwise the Lyapunov’s Extension Theorem is no longer ap-

plicable. In other words,̃ZM in (4.46)must satisfy

Z̃M ≡ ZM + ẐM > bZ̃, (5.68)

Therefore, it can be shown that if the following is satisfied

ZM + ẐM >

√
((τfric)M + 3 C0)2

4κΨm

+ ZM > bZ̃ or, (5.69)

ẐM >

√
((τfric)M + 3 C0)2

4κΨm

(5.70)

thenZ̃M > bZ̃ is also satisfied.

Further, the initial condition‖y(0)‖ can be less or greater thanby, however in

order to comply with the Lyapunovs Extension Theorem, it must be less than

yM . Similarly, ‖Z̃(0)‖ must be less thañZM . The last part of the proof is to

demonstrate hypotheses‖y(0)‖ < yM in (5.47)and‖Z̃(0)‖ < Z̃M in (5.48)are

to be satisfied in practical implementation:

1. In the implementation, it is possible to set‖y(0)‖ to be as small as pos-

sible. As‖y‖ =
√

‖r1‖2 + ‖r2‖2, obtaining as small‖y(0)‖ as possible

can be achieved through:

• From (5.10), r2(0) = ˙̃x(0)+Λ2x̃(0): it is acceptable to assume that

the end-effector starts from stationary. Setting˙̂x(0) = ẋ(0) = 0

results in ˙̃x(0) = 0. Setting the initial estimate ofx equal to the

actual end-effector pose, i.e.x̂(0) = x(0), results in zero estimation

error x̃(0) = 0. Hence,r2(0) = 0.
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• From (5.9), r1(0) = ẋd(0)− ẋ(0) +Λ1e(0) +Λ1x̃(0) +Λie(0)∆t:

as in the previous point,̃x(0) = 0. The initial point of the de-

sired trajectory can be set equal to the initial end-effector pose i.e.

ẋd(0) = ẋ(0) = 0, xd(0) = x(0), resulting in ė(0) = 0 and

e(0) = 0. Hencer1(0) = 0.

Therefore,

‖y(0)‖ = 0 < by < yM . (5.71)

2. By definitioñZ = Z− Ẑ, therefore it is possible to initialize the estimated

NN weights with zeroes,‖Ẑ(0)‖ = 0, therefore we can have

‖Z̃(0)‖ = ‖Z‖ ≤ ZM < bZ̃ < Z̃M . (5.72)

It can be seen that the initial conditions,‖y(0)‖ and‖Z̃(0)‖, start within the

boundary ofS.

5.4 Computation of Estimated Operational Space
Coordinates

Note that the the estimated velocities˙̂x are prescribed in operational space. And

for the proposed controller observer we need to obtainx̃ = x− x̂. However, the

problem is we cannot do direct integration of˙̂x to obtainx̂. In this section, we

also show how to obtaiñx.

First, we need to calculate the estimated joint velocity, which for non-redundant

manipulator is given by the formula

˙̂q = J−1(q) ˙̂x (5.73)
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Now we can integratė̂q to get the estimated joint positionsq̂.

Then, we can compute forward kinematics to obtain the estimated end-effector

configuration parameterŝx ≡ T(q̂), by using (2.7) and (2.8), which consists

the estimated position and rotation of the end-effector

x̂ =

[
x̂p

x̂r

]
. (5.74)

The positional estimated errors,x̃p, can be calculated as

x̃p = xp − x̂p, (5.75)

and the rotational estimated errors,δφ, can be computed as

δφ = −1

2
([s1×] ŝ1 + [s2×] ŝ2 + [s3×] ŝ3) (5.76)

by using the actual orientationxr =
[
sT1 (q) sT2 (q) sT3 (q)

]T
and estimated

orientationx̂r =
[
ŝT1 (q) ŝT2 (q) ŝT3 (q)

]T
. The operator[s×], is a3 × 3 skew-

symmetric matrix defined as

[s×] =




0 −sz sy
sz 0 −sx
−sy sx 0


 (5.77)

given a3× 1 vectors =
(
sx sy sz

)T
. Finally the close form of the positional

and rotational estimated error can be written as

x̃ =
[
x̃T
p δφT

]T
. (5.78)
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5.5 Real-time Robot Experiment

The proposed NN motion control with velocity observer (5.2)is validated with

the 6 DOF PUMA 560 manipulator, which does not have velocity feedback

sensors, in real-time experiment.

Similar setup as in previous chapter is set as follows:

• A positional periodic circular trajectory – 75 mm radius and2 second

period – with a constant orientation for the effector was setas the desired

trajectory.

• The initial posture of the robot is shown in Fig. 4.3 where theend-effector

pointing down and the elbow is up.

• Performances were recorded in term of: (i) desired trajectories alongxE

andyE axes, and (ii) position errors alongxE, yE, zE.

The real-time implementation video of the proposed NN adaptive motion controller-

observer (5.2) is provided in:

http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Freemotion control NN obs.MPG

The planning strategy is similar as previously: the weightsof the proposed NN

adaptive motion controller with velocity observer (5.2) were initialized with

zero values. Off-line learning simply using the same circular periodic trajec-

tory was performed (for about 5 passes) to achieve an acceptable performance.

The recorded weights were then used for the performance shown in Fig. 5.3.

http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_obs.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_obs.MPG
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Control type Lagrangian
dynamics

NN controller w/
filtered vel.

NN controller w/
vel. obs.

max(‖epos‖) (mm) 7.90 28.80 6.80

Table 5.1: Performance comparison in term of the maximum of the magnitude
of the end-effector position tracking errors in real-time study.

Table 5.1 shows that the proposed NN controller with velocity observer yields

comparable performance to that of the Lagrangian dynamics strategy (with-

out joint friction compensation). Also notice that the performance of the NN

controller-observer strategy is better in comparison withthe NN strategy with-

out velocity observer. The bounded stability of the norms ofthe estimated NN

weights is shown in Fig. 5.4.

The following gains are set for the proposed NN adaptive motion controller-

observer (5.2):κ = 0.1, Λ1 = Λi = 30I ∈ ℜm×m, F−1
Mij

= I ∈ ℜN2×N2 ,F−1
Bij

=

I ∈ ℜN2×N2,F−1
gi

= 10I ∈ ℜN2×N2,F−1
τi

= 10I ∈ ℜN2×N2, Λ2 = 0.200I ∈

ℜm×m andlD = 400I ∈ ℜm×m.
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Figure 5.3: Real-time study NN adaptive motion control withvelocity observer.
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Figure 5.4: Real-time study history of the estimated NN weights of the NN
motion controller with velocity observer.
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5.6 Conclusion

In this chapter, the NN adaptive operational space motion formulation with ve-

locity observer (5.2) was developed and validated through real-time experiment.

It can be concluded that the proposed strategy produces:

• a comparable performance to that of the Lagrangian dynamicsstrategy in

real-time experiment.

• better performance than that of the NN motion control (4.80)(where fil-

tered velocity is used to replace the actual velocity).

Therefore, the outcome of the study is a promising alternative, for real-time

robotic implementation, to the Lagrangian dynamic strategy, in term of without

the need of deriving and identifying Lagrangian dynamics.

In the next chapter, the current strategy which is done in free motion will be

extended into the full unified force-motion control strategy in the operational

space framework.
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CHAPTER 6

NN ADAPTIVE FORCE-MOTION CONTROL WITH
VELOCITY OBSERVER

6.1 Chapter Overview

In this chapter, a NN adaptive force and motion control in operational space

(with velocity observer) is presented. This work is extended from previous for-

mulation in Chapter four, by incorporating selection matricesΩ andΩ̄ (2.41)

which are instrumental in decoupling force and motion subsystems in opera-

tional space formulation. A NN adaptive impact strategy is also proposed to

dissipate the impact force produced after the end-effectorhits the working sur-

face from using NN adaptive motion control. Lyapunov stability analyzes for

both NN adaptive force-motion and impact control are also presented.

Real-time experimentations were performed on a PUMA 560 robot, with com-

parison to the performance of a well-tuned Lagrangian dynamics control. It can

be shown that the proposed strategy yielded comparable performance to that of

the Lagrangian dynamics strategy. An adaptive impact strategy and its stabil-

ity analysis, to complement the proposed strategy in real-time experiment, were

also given.

Details can also be found in [117].
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6.2 End-effector Constrained Motion Dynamics

To ease the formulation development in this chapter, let’s reproduce the end-

effector constrained motion dynamics of the non-redundantmanipulator inter-

acting with the environment (2.35) in Chapter two, which canbe described as

Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) + fcontact= F (6.1)

where the vectorf ∈ ℜm, as in (2.36), represents the contact force vector exerted

by the effector onto the contact surface. The operational space matrices and

vectorsMx(q) ∈ ℜm×m, Bx(q, q̇) ∈ ℜm×m, gx(q) ∈ ℜm andτ x(q, q̇) ∈ ℜm

are identical with (2.28) – (2.31), respectively.

The constrained motion equation (6.1) needs to be rearranged to accommodate

the proposed controller-observer formulation. Using selection matricesΩ andΩ̄

in (2.41), and Property 4.3.2Bx(q, ẋ) = Bx(q, q̇), then the effector constrained

dynamic (6.1) can be written as

Mx(q)(Ωẍ + Ω̄ẍ) +Bx(q, ẋ)(Ωẋ+ Ω̄ẋ) + gx(q) + τ x(q, q̇) + fcontact= F

(6.2)

6.3 NN Adaptive Force-Motion Control - Observer
Formulation

6.3.1 NN Adaptive Force-Motion Controller-Observer

In this section, the NN adaptive force - motion controller with velocity observer

is proposed. The controller-observer structure is shown inFig. 6.1. To start, the
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ẍd, ẋd,xd

x

F Fwd

Kin.
Robot

q

NN

weight

updates

x

NN

force-motion

controller

observer

Figure 6.1: The operational space NN force - motion controller-observer struc-
ture.

control law is defined as:

F = M̂x(q)(ΩF∗
motion + Ω̄F∗

force) + B̂x(q, ẋ0)(Ωẋr + Ω̄ḟr)

+ ĝx(q) + τ̂ x(q, ˙̂q) + fsensor

(6.3)

whereẋ0, ẋr, ḟr,F
∗
motion andF∗

force are defined as

ẋr = ẋd +Λ1(xd − x̂) (6.4)

= ẋd +Λ1ex +Λ1x̃

ẋ0 = ˙̂x−Λ2x̃ (6.5)

ḟr = K−1
e (Λ1ef +Λi

∫ τ=t

0

ef dτ) (6.6)

F∗
motion = ẍr +Λ1(rx1 + rx2) (6.7)

F∗
force = f̈ ′r +Λ1(rf + rx2) (6.8)

with the computable terms to computeF∗
motion andF∗

force are defined as
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ẍr = ẍd +Λ1(ẋd − ˙̂x) (6.9)

rx1 + rx2 = ẋr − ẋ0 (6.10)

f̈ ′r =−Λ1ẋ0 +K−1
e Λief (6.11)

rf + rx2 = ḟr − ẋ0 (6.12)

It follows from (6.11) that we can write

f̈ ′r =−Λ1ẋ+Λ1( ˙̃x+Λ2x̃) +K−1
e Λief

= f̈r +Λ1rx2

(6.13)

where it can be defined

f̈r =−Λ1ẋ+K−1
e Λief = K−1

e Λ1ėf +K−1
e Λief (6.14)

confirming the derivative of (6.6).

It follows that from (6.10), (6.4) and (6.5) we can write

rx1 + rx2 = (ẋr − ẋ) + (ẋ− ẋ0), (6.15)

where it can be defined

rx1 = ẋr − ẋ = ėx +Λ1ex +Λ1x̃ (6.16)

rx2 = ẋ− ẋ0 = ˙̃x+Λ2x̃. (6.17)

It follows from (6.12), (6.6) and (6.5) that we can write

rf + rx2 = (ḟr − ẋ) + (ẋ− ẋ0), (6.18)
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where it can be defined

rf = ḟr − ẋ =− ẋ +K−1
e (Λ1ef +Λi

∫ τ=t

0

ef dτ)

=K−1
e ėf +K−1

e (Λ1ef +Λi

∫ τ=t

0

ef dτ).

(6.19)

whereΛ1,Λ2,Λi ∈ ℜm×m are positive diagonal matrices,ex = xd − x and

ėx = ẋd − ẋ are the trajectory tracking errors andxd, ẋd andẍd are the desired

operational space trajectories. The estimated errors between the actual terms

x, ẋ and their estimateŝx, ˙̂x are defined bỹx = x − x̂ and ˙̃x = ẋ − ˙̂x, re-

spectively. The computation to obtain̂x andx̃ is given already on Section 5.4.

ef = fd − f andėf = −ḟ = −Ke ẋ are the force tracking errors, wherefd is a

constant desired active-force. Note that the linear springmatrixK−1
e is assumed

to be known, however, in the implementation it can be seen as tunable gain i.e.

a positive diagonal matrix.

Now, combining robot dynamics (6.2) and the proposed controller (6.20), and

taking into account (6.13) and the first derivatives of (6.16), (6.19) and also

Property 4.3.2, ageneral closed-loop dynamiccan be obtained as

Mx(q)(Ωṙx1 + Ω̄ṙf) =−Mx(q)Λ1(Ωrx1 + Ω̄rf )−Mx(q)Λ1(I+ Ω̄)rx2

−Bx(q, ẋ0)(Ωẋr + Ω̄ḟr) +Bx(q, ẋ)(Ωẋ+ Ω̄ẋ)

+ (τ x(q, q̇)− τ x(q, ˙̂q)) + η

(6.20)

where uncertaintiesη

η = M̃x(q)(ΩF∗
motion + Ω̄F∗

force) + B̃x(q, ẋ0)(Ωẋr + Ω̄ḟr)

+ g̃x(q) + τ̃ x(q, ˙̂q).
(6.21)

andτ x(q, q̇) − τ x(q, ˙̂q), is similar with (4.88), however it is reproduced for
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ease of perusal as

τ x(q, q̇)− τ x(q, ˙̂q) = J−T[τvis ˙̃q + τcou(sgn(q̇)− sgn( ˙̂q))

+ τ stiexp(−τdecq̇
2)sgn(q̇)− τ stiexp(−τ dec

˙̂q2)sgn( ˙̂q)].
(6.22)

The general closed-loop dynamics (6.20) cannot be used directly into stability

analysis. It must be converted into useful closed-loop controller (Section 6.3.2)

and observer (Section 6.3.3) dynamics:

6.3.2 Controller closed-loop dynamics

Using (6.16), (6.17), (6.19) and Property 4.3.6,Bx(q, ẋ0)(Ωẋr + Ω̄ḟr)−

Bx(q, ẋ)(Ωẋ+ Ω̄ẋ) in (6.20), can be arranged such that

= Bx(q, ẋ)(Ωrx1 + Ω̄rf )−Bx(q,Ωẋr + Ω̄ḟr)rx2 (6.23)

Substituting it into (6.20), yields thecontroller closed-loop dynamicsas

Mx(q)(Ωṙx1 + Ω̄ṙf) =−Mx(q)Λ1(Ωrx1 + Ω̄rf )−Mx(q)Λ1(I+ Ω̄)rx2

−Bx(q, ẋ)(Ωrx1 + Ω̄rf ) +Bx(q,Ωẋr + Ω̄ḟr)rx2

+ (τ x(q, q̇)− τ x(q, ˙̂q)) + η.

(6.24)

6.3.3 Observer closed-loop dynamics

An observer can be designed (based upon [109]):

˙̂x = ẋ− ˙̃x = z+ (lD +Λ2)x̃ (6.25)

ż = Ωẍr + Ω̄f̈ ′r + ((lD ·Λ2))x̃ (6.26)

− Ω̄Λ1

[
Ω(rx1 + rx2) + Ω̄(rf + rx2)

]
,
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wherelD = diag(lD,ii > 0) ∈ ℜm×m. Combining the first derivative of (6.25)

with (6.26), and taking into account (6.13) and the first derivatives of (6.16),

(6.19), yield
¨̃x+ (lD +Λ2) ˙̃x+ ((lD ·Λ2))x̃ =−Ω(ẍr − ẍ)− Ω̄(f̈r − ẍ)− Ω̄Λ1rx2

+ Ω̄Λ1

[
Ω(rx1 + rx2) + Ω̄(rf + rx2)

]

=− (Ωṙx1 + Ω̄ṙf) + Ω̄Λ1(Ωrx1 + Ω̄rf )

(6.27)

Substituting (6.17) and its derivative into the left-hand-side (LHS) of (6.27) and

multiplying both sides withMx(q), yield

Mx(q)ṙx2 +Mx(q)lDrx2 =

−Mx(q)(Ωṙx1 + Ω̄ṙf) +Mx(q)Ω̄Λ1(Ωrx1 + Ω̄rf).
(6.28)

Using (6.16), (6.17), (6.19) and Property 4.3.6,Bx(q, ẋ0)(Ωẋr + Ω̄ḟr)−

Bx(q, ẋ)(Ωẋ+ Ω̄ẋ) in (6.20), can be arranged such that

= Bx(q, ẋ0)(Ωrx1 + Ω̄rf )−Bx(q, ẋ)rx2 (6.29)

Substituting it with into the general closed-loop dynamics(6.20), yields

−Mx(q)(Ωṙx1 + Ω̄ṙf) = Mx(q)Λ1(Ωrx1 + Ω̄rf ) +Mx(q)Λ1(I+ Ω̄)rx2

+Bx(q, ẋ0)(Ωrx1 + Ω̄rf )−Bx(q, ẋ)rx2

− (τ x(q, q̇)− τ x(q, ˙̂q))− η
(6.30)

Substituting (6.30) into (6.28), theobserver closed-loop dynamicscan be ob-

tained as:
Mx(q)ṙx2 =−Mx(q)(lD −Λ1(I+ Ω̄))rx2

+Mx(q)Λ1(I+ Ω̄)(Ωrx1 + Ω̄rf)

−Bx(q, ẋ)rx2 +Bx(q, ẋ0)(Ωrx1 + Ω̄rf )

− (τ x(q, q̇)− τ x(q, ˙̂q))− η.

(6.31)
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6.3.4 Uncertaintiesη in NN terms

Similar with Section 4.4.2,Mx(q), Bx(q, ẋ0), gx(q) andτ x(q, ˙̂q) in η (6.21)

can be described as follows

Mx(q) = WT
M σM(VT

M zM) + εM (6.32)

Bx(q, ẋ0) = WT
B σB(V

T
B zB) + εB (6.33)

gx(q) = WT
g σg(V

T
g zg) + εg (6.34)

τ x(q, ˙̂q) = WT
τ στ (V

T
τ zτ ) + ετ (6.35)

Similarly, the estimated dynamic termŝMx(q), B̂x(q, ẋ0), ĝx(q), τ̂ x(q, ˙̂q) are

described by the estimated weights{V̂p}, {Ŵp}, with subscriptp = M,B, g, τ .

Similar with Section 5.3.4,Mx(q),Bx(q, q̇), gx(q), τ x(q, ˙̂q) can be shown to

be bounded. Therefore, the optimum weightsWp,Vp and the approximation

error εp (with subscriptp = M,B, g, τ ) from (6.32)-(6.35), are also upper-

bounded.

Using similar development and simplified notationsσ ≡ σ(VTz), σ̂ ≡ σ(V̂Tz),

andσ = σ̂ + σ̃ as in Section 4.4.2, the uncertaintiesη (6.21) can be written as

η = ξ + ζ (6.36)

This division is needed because onlyξ term can be manipulated by the weight

updates ˙̂W,
˙̂
V as will be shown in Section 6.3.5.



6.3 NN Adaptive Force-Motion Control - Observer 143

The termξ is defined as

ξ =
(
W̃T

M σ̂M

)
(ΩF∗

motion + Ω̄F∗
force)

+
(
W̃T

Bσ̂B

)
(Ωẋr + Ω̄ḟr)

+ W̃T
g σ̂g + W̃T

τ σ̂τ

+
(
ŴT

M σ′
MṼT

M zM

)
(ΩF∗

motion + Ω̄F∗
force)

+
(
ŴT

B σ
′
BṼ

T
B zB

)
(Ωẋr + Ω̄ḟr)

+ ŴT
g σ

′
gṼ

T
g zg + ŴT

τ σ
′
τ Ṽ

T
τ zτ

(6.37)

and the “whole”NN errorsζ is defined as

ζ =
(
W̃T

M σ′
MṼT

M zM

)
(ΩF∗

motion + Ω̄F∗
force)

+
(
W̃T

B σ
′
BṼ

T
B zB

)
(Ωẋr + Ω̄ḟr)

+ W̃T
g σ

′
gṼ

T
g zg + W̃T

τ σ
′
τ Ṽ

T
τ zτ

+
(
WT

MO(ṼT
M zM)

)
(ΩF∗

motion + Ω̄F∗
force)

+
(
WT

BO(ṼT
B zB)

)
(Ωẋr + Ω̄ḟr)

+WT
g O(ṼT

g zg) +WT
τ O(ṼT

τ zτ )

+ ε

(6.38)

where the total approximation errorε = εM(ΩF∗
motion + Ω̄F∗

force) + εB(Ωẋr +

Ω̄ḟr) + εg + ετ ≤ εM (since the actual dynamics are bounded).

Note that, the driving signalṡxr (6.4) andF∗
motion (6.7), used in (6.37) and

(6.38), are different witḣxr andF∗
motion in Section 4.4.2.

As in Section 4.4.2, the uncertaintiesη (6.36) can be shown to be bounded by

using‖Lp − L̂p‖ ≤ (L̃p)M in (4.47) and alsoF∗
motion (6.7),F∗

force (6.8) andẋr

defined in (6.10),̇fr defined in (6.12), as follows
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‖η‖ ≤ (L̃M)M
∥∥(ΩF∗

motion + Ω̄F∗
force)

∥∥+ (L̃B)M

∥∥∥(Ωẋr + Ω̄ḟr)
∥∥∥

+ (L̃g)M + (L̃τ )M + εM

≤ (L̃M)M

∥∥∥[Ω (ẍr +Λ1(rx1 + rx2)) + Ω̄ (f̈ ′r +Λ1(rf + rx2))]
∥∥∥

+ (L̃B)M
∥∥[Ω (rx1 + rx2 + ẋ0) + Ω̄ (rf + rx2 + ẋ0)]

∥∥

+ (L̃g)M + (L̃τ )M + εM

(6.39)

Note thatẍr (6.9) can be assumed to be bounded since the desired trajectories

ẍd, ẋd,xd are bounded by design,x is bounded by the workspace and˙̂x can be

shown to be bounded. Anḋx0 in (6.5) can be shown to be bounded due to˙̂x and

x̂ can be shown to be bounded. Andf̈ ′r in (6.11) can be shown to be bounded

sinceẋ0 can be shown to be bounded,fd is bound by design andf can be safely

assumed to be bounded. Now, for ease of representation, let’s define

r1 = Ωrx1 + Ω̄rf (6.40)

r2 = rx2 (6.41)

therefore

r1 + r2 = (Ωrx1 + Ω̄rf ) + (Ωrx2 + Ω̄rx2). (6.42)

Henceη, by taking into account (6.42), can be shown to be bounded as

‖η‖ ≤ C0 + C1

∥∥[Ω (rx1 + rx2) + Ω̄ (rf + rx2)]
∥∥

≤ C0 + C1 (‖r1‖+ ‖r2‖).
(6.43)

whereC0, C1 > 0. And sinceη = ξ+ ζ, then clearly the following inequalities

are true

ξ ≤ C0 + C1 (‖r1‖+ ‖r2‖) (6.44)

ζ ≤ C0 + C1 (‖r1‖+ ‖r2‖). (6.45)
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Note that, the definitions ofr1 (6.40) andr2 (6.41) in this section, are different

with the definitions ofr1 (5.9) andr2 (5.10) in Section 5.3.4.

For ease of later developments, let us defineZ = diag[W,V] to be upper-

bounded as follows

‖Z‖ =
√

‖W‖2 + ‖V‖2 ≤ ZM (6.46)

whereZM is a positive scalar constant,W = diag[WM ,WB,Wg,Wτ ] and

V = diag[VM ,VB,Vg,Vτ ].

6.3.5 Stability Analysis

For the force - motion controller (6.3) and the observer (6.25), (6.26), let the NN

weight updates be provided as

˙̂wMij
= FMij

(σ̂M (r1,i + r2,i) (Ωj F
∗
motion,j + Ω̄j F

∗
force,j)− κ ŵMij

) (6.47)

˙̂vMk
= GMk

(zM σ̂′
Mk

(

m∑

i=1

m∑

j=1

ŵMijk
(r1,i + r2,i)(ΩjF

∗
motion,j + Ω̄jF

∗
force,j))

(6.48)

− κ v̂Mk
)

˙̂wBij
= FBij

(σ̂B (r1,i + r2,i) (Ωj ẋr,j + Ω̄j ḟr,j)− κ ŵBij
) (6.49)

˙̂vBk
= GBk

(zB σ̂
′
Bk

(

m∑

i=1

m∑

j=1

ŵBijk
(r1,i + r2,i) (Ωj ẋr,j + Ω̄j ḟr,j)) (6.50)

− κ v̂Bk
)

˙̂wgi = Fgi(σ̂g (r1,i + r2,i)− κ ŵgi) (6.51)

˙̂vgk = Ggk(zg σ̂
′
gk

(

m∑

i=1

ŵgik (r1,i + r2,i))− κ v̂gk) (6.52)

˙̂wτi = Fτi(σ̂τ (r1,i + r2,i)− κ ŵτi) (6.53)

˙̂vτk = Gτk(zτ σ̂
′
τk
(

m∑

i=1

ŵτ ik
(r1,i + r2,i))− κ v̂τk) (6.54)
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with κ is a positive constant. And the estimated NN weight updates:˙̂wMij
∈

ℜN2 , ˙̂vMk
∈ ℜN1,M , ˙̂wBij

∈ ℜN2, ˙̂vBk
∈ ℜN1,B , ˙̂wgi ∈ ℜN2 , ˙̂vgk ∈ ℜN1,g , ˙̂wτi ∈

ℜN2 , ˙̂vτk ∈ ℜN1,τ are all column vector. And the adaptive gains:F−1
Mij

∈

ℜN2×N2, . . ., F−1
τi

∈ ℜN2×N2 andG−1
Mk

∈ ℜN1,M×N1,M , . . . ,G−1
τk

∈ ℜN1,τ×N1,τ

are all positive diagonal matrices. The following indices are defined:i, j =

1, . . . , m are output-layer indices,k = 1, . . . , N2 is the hidden-layer index,

where to simplify the implementation, the hidden-node sizeN2 is set the same

throughout. WhileN1,M , N1,B, N1,g, N1,τ are the respective input-node sizes.

Proposition 6.3.1 Lety = [rT1 rT2 ]
T. With the assumptions that:

1. the controller gainΛ1 and the observer gainlD meet the conditions

Λ1,m >
C1

Mx,m

(6.55)

lD,m >
Mx,M Λ1,M + 3 C1

Mx,m

(6.56)

whereC1 > 0, Λ1,m = min(Λ1), Λ1,M = max(Λ1), Mx,m =

min(λmin(Mx(t))), Mx,M = min(λmax(Mx(t))) andlD,m = min(lD);

2. yM , the upper-bound constraint ofy, and, ẐM , the upper-bound of the

estimated NN weights,̂Z, satisfy

yM > by (6.57)

ẐM >

√
((τfric)M + 3 C0)2

4 κ Ψm

(6.58)

whereC0, κ > 0, (τfric)M is the upper-bound of‖τ x(q, q̇) − τ x(q, ˙̂q)‖,

Ψm = min(Ψ) withΨ is to be defined in(6.72), andby is to be defined in

(6.76); and
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3. both initial conditions ofy andZ̃ satisfy

‖y(0)‖ < yM (6.59)

‖Z̃(0)‖ < Z̃M ; (6.60)

whereyM is the upper-bound ofy and Z̃M is the upper-bound of the NN

weight errors,Z̃;

then using the proposed motion control(6.3), the observer(6.25)– (6.26)and

the NN weight updates(6.47)-(6.54), it can be shown by Lyapunov’s exten-

sion theorem [102] that ast → ∞, the errors‖r1‖, ‖r2‖ and ‖W̃‖, ‖Ṽ‖

will be bounded by enclosing boundaryS, which is defined by enclosing region

V̇ (y, Z̃) < 0.

Proof 6.3.1 The chosen Lyapunov function candidate for error dynamics(6.24)

and (6.31), with the uncertaintiesη (6.36), is

V (r1, r2, Z̃) =
1

2
rT1Mx(q)r1 +

1

2
rT2Mx(q)r2

+
1

2

m∑

i=1

m∑

j=1

w̃T
Mij

F−1
Mij

w̃Mij
+ . . .+

1

2

m∑

i=1

w̃T
τi
F−1

τi
w̃τi

+
1

2

N2∑

k=1

ṽT
Mk

G−1
Mk

ṽMk
+ . . .+

1

2

N2∑

k=1

ṽT
τk
G−1

τk
ṽτk

(6.61)

where the NN weight errors:̃wMij
∈ ℜN2 , ṽMk

∈ ℜN1,M , w̃Bij
∈ ℜN2 , ṽBk

∈

ℜN1,B , w̃gi ∈ ℜN2, ṽgk ∈ ℜN1,g , w̃τi ∈ ℜN2, ṽτk ∈ ℜN1,τ are all column vector.

Next, we substitute the closed-loop dynamics(6.24), (6.31), Property 4.3.5 and

also take into accountη (6.36), the definitionξ (6.37)and the knowledge‖ζ‖ ≤
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C0+C1(‖r1‖+ ‖r2‖) (6.45)and also we take the fact thatΩAΩ̄ = Ω̄AΩ = 0

for any positive diagonal matrixA, into V̇ (r1, r2, Z̃) of (6.61), to obtain

V̇ (r1, r2, Z̃) =− rT1Mx(q)Λ1r1 − rT2Mx(q)(lD −Λ1)r2

+ rT1Bx(q,Ωẋr + Ω̄ḟr)r2 + rT2Bx(q, ẋ0)r1

+ (rT1 − rT2 )(τ x(q, q̇)− τ x(q, ˙̂q))

+ C0‖r1‖+ C0‖r2‖+ C1‖r1‖2 + 2 C1‖r1‖‖r2‖+ C2‖r1‖2

+ψ

(6.62)

where the lump parameterψ in (6.62)is defined as

ψ =
m∑

i=1

m∑

j=1

w̃T
Mij

(
F−1

Mij

˙̃wMij
+ σ̂M (r1,i − r2,i)(Ωj F

∗
motion,j + Ω̄j F

∗
force,j)

)

+

N2∑

k=1

ṽT
Mk

(G−1
Mk

˙̃vMk
+ zM σ̂′

Mk
(

m∑

i=1

m∑

j=1

ŵMijk
(r1,i − r2,i)

(Ωj F
∗
motion,j + Ω̄j F

∗
force,j)))

+

m∑

i=1

m∑

j=1

w̃T
Bij

(
F−1

Bij

˙̃wBij
+ σ̂B (r1,i − r2,i)(Ωj ẋr,j + Ω̄j ḟr,j)

)

+

N2∑

k=1

ṽT
Bk
(G−1

Bk

˙̃vBk
+ zB σ̂

′
Bk
(

m∑

i=1

m∑

j=1

ŵBijk
(r1,i − r2,i)

(Ωj ẋr,j + Ω̄j ḟr,j)))

+

m∑

i=1

w̃T
gi

(
F−1

gi
˙̃wgi + σ̂g (r1,i − r2,i)

)

+
N2∑

k=1

ṽT
gk

(
G−1

gk
˙̃vgk + zg σ̂

′
gk
(

m∑

i=1

ŵgik (r1,i − r2,i))

)

+
m∑

i=1

w̃T
τi

(
F−1

τi
˙̃wτi + σ̂τ (r1,i − r2,i)

)

+

N2∑

k=1

ṽT
τk

(
G−1

τk
˙̃vτk + zτ σ̂

′
Mk

(

m∑

i=1

ŵτ ik
(r1,i − r2,i))

)

(6.63)
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Usingξ (6.37), it can be demonstrated thatψ (6.63) is made up of ˙̃
W, ˙̃

V and

(r1 − r2)
T ξ. The idea is to cancel(r1 − r2)

T ξ with ˙̃
W, ˙̃V. Unfortunately,

only (r1 + r2) can be computed (see(6.42)), hence onlyrT1 ξ can be canceled

by ˙̃
W, ˙̃V. With the weight updates˙̂W,

˙̂
V (6.47) – (6.54) (note that− ˙̃

W =

˙̂
W, sinceW̃ = W − Ŵ andW is constant), and taking into consideration

‖ξ‖ ≤ C0 + C1(‖r1‖+ ‖r2‖) (6.44),ψ (6.63)can be expressed as:

ψ = κ
m∑

i=1

m∑

j=1

w̃T
Mij

ŵMij
+ . . .+ κ

N2∑

k=1

ṽT
τk
v̂τk − 2 rT2 ξ

≤− κ‖Z̃‖2 + κ‖Z̃‖ZM + 2 C0‖r2‖+ 2 C1‖r1‖‖r2‖+ 2 C1‖r2‖2.
(6.64)

Note, equation(6.64)is obtained by using the inner products in(4.68)– (4.71).

The substitution ofψ (6.64)into V̇ (r1, r2, Z̃) (6.62), yields

V̇ (r1, r2, Z̃) =− rT1Mx(q)Λ1r1 − rT2Mx(q)(lD −Λ1)r2

+ rT1Bx(q,Ωẋr + Ω̄ḟr)r2 + rT2Bx(q, ẋ0)r1

+ (rT1 − rT2 )(τ x(q, q̇)− τ x(q, ˙̂q))

+ C0‖r1‖+ 3 C0‖r2‖+ C1‖r1‖2 + 4 C1‖r1‖‖r2‖+ 3 C1‖r2‖2

− κ‖Z̃‖2 + κ‖Z̃‖ZM

(6.65)

The following terms, using Property 4.2, can be written as:

−rT1Mx(q)Λ1r1 ≤−Mx,m Λ1,m‖r1‖2 (6.66)

−rT2 (Mx(q)lD −Mx(q)Λ1)r2 ≤− (Mx,mlD,m −Mx,MΛ1,M)‖r2‖2 (6.67)

whereΛ1,m,Λ1,M ,Mx,m,Mx,M , lD,m are as defined in(6.55)and (6.56).

The next terms, by taking into account Property 4.3.3, can bewritten as:

‖rT1Bx(q,Ωẋr + Ω̄ḟr)r2‖+ ‖rT2Bx(q, ẋ0)r1‖

≤‖r1‖‖r2‖Bx,M(‖r1‖+ ‖r2‖+ 2ẋM).
(6.68)
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This is due to the facṫxr = rx1 + ẋ in (6.16), ḟr = rf1 + ẋ in (6.19) and

ẋ0 = ẋ− rx2 in (6.17).

The remaining two terms can be shown to be bounded as:

‖τ x(q, q̇)− τ x(q, ˙̂q)‖ ≤ (τfric)M . (6.69)

which is obtained from(6.22), Property 3.2.4 and the followings:

1. ‖J−Tτ visJ
−1 ˙̃x‖ is bounded becauseτ vis is bounded (as shown in(3.7)),

‖J−1‖ is bounded for non-singular configuration of the manipulator and

it was assumed that‖ ˙̃x‖ is bounded.

2. ‖τ cou(sgn(q̇)−sgn( ˙̂q))‖ is bounded becauseτ cou is shown to be bounded

in (3.8)and because(sgn(q̇i)− sgn( ˙̂qi)) is bounded.

3. ‖τ sti(exp(−τdecq̇
2)sgn(q̇)− exp(−τ dec

˙̂q2)sgn( ˙̂q))‖ is bounded becauseτ sti

is shown to be bounded in(3.9) and because both sgn(·) and exp−|a| are

bounded.

Substituting(6.66)–(6.69)into V̇ (r1, r2, Z̃) in (6.65), we have

V̇ (r1, r2, Z̃) ≤− (Mx,m Λ1,m − C1) ‖r1‖2

− (Mx,mlD,m −Mx,MΛ1,M − 3 C1) ‖r2‖2

+ ‖r1‖‖r2‖ [Bx,M(‖r1‖+ ‖r2‖+ 2ẋM) + 4 C1]

+ ((τfric)M + C0) ‖r1‖+ ((τfric)M + 3 C0) ‖r2‖

− κ‖Z̃‖2 + κ‖Z̃‖ZM .

(6.70)
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Defining yT =
[
rT1 rT2

]
, V̇ (r1, r2, Z̃) (6.70)can be written as

V̇ (y, Z̃) ≤− yTΨy +

[
(τfric)M + C0 0

0 (τfric)M + 3 C0

]
y

− κ‖Z̃‖2 + κ‖Z̃‖ZM ,

(6.71)

where

Ψ =

[
(Mx,m Λ1,m − C1) −1

2
p

−1
2
p (Mx,mlD,m −Mx,MΛ1,M − 3 C1)

]
(6.72)

p = Bx,M(‖r1‖+ ‖r2‖+ 2ẋM) + 4 C1. (6.73)

The matrixΨ (6.72)is greater than zero (positive definite) if

p < 2
√
(Mx,m Λ1,m − C1)(Mx,mlD,m −Mx,M Λ1,M − 3 C1); (6.74)

where the right-hand side is positive due to hypotheses(6.55)and(6.56). Equa-

tion (6.71)can be written as

V̇ (y, Z̃) ≤−Ψm

[
‖y‖ − (τfric)M + 3 C0

2Ψm

]2
− κ

[
‖Z̃‖ − ZM

2

]2

+
((τfric)M + 3 C0)

2

4Ψm

+
κZ2

M

4

(6.75)

Hence,V̇ (y, Z̃) < 0, as depicted in Fig. 6.2, if

‖y‖ >

√
((τfric)M + 3 C0)2

4Ψ2
m

+
κZ2

M

4Ψm

+
(τfric)M + 3 C0

2Ψm

≡ by, or (6.76)

‖Z̃‖ >

√
((τfric)M + 3 C0)2

4κΨm

+
Z2

M

4
+

ZM

2
≡ bZ̃ (6.77)

Applying the Lyapunov’s extension theorem [102] then ast → ∞, the errors

‖y‖ and‖Z̃‖ can be shown to be bounded withinS, as follows:

Suppose the errors start within the boundary ofS, i.e. ‖y(0)‖ < by and

‖Z̃(0)‖ < bZ̃ < Z̃M , then they start their course towards the enclosing bound-

ary S and when they start leaving the boundary ofS since theV (y, Z̃) is de-

creasing (̇V (y, Z̃) < 0) hence the errors cannot leave the boundary ofS. Note,
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((τfric)M+3C0)
ψm

V̇ < 0

‖y‖

‖Z̃‖

by

V̇ >=< 0

b
Z̃ZM Z̃M

yM

S

Figure 6.2: V̇ (y, Z̃) regions of the proposed NN adaptive force and motion
strategy.

however, in its course towards the enclosing boundaryS, the errory cannot vi-

olate the constraint‖y‖ < yM , therefore it signifies the last hypothesisby < yM

in (6.57), as shown in Fig. 6.2. Now, suppose the errors start at outside the

boundary ofS then they tend to go to the equilibrium sinceV (y, Z̃) is decreas-

ing. However, they cannot go to the equilibrium, but only up to entering the

boundary ofS and once they enter the boundary ofS, we have already shown

that they are bounded.

Using bounded-input-bounded-output (BIBO) property it can be shown that a

bounded inputr2 = rx2, in (6.17), yields bounded outputs̃̇x and x̃. Bounded

inputr1 (6.40)yields bounded outputΩrx1 andΩ̄rf . Bounded inputΩrx1 (6.16)

together with boundedΩx̃ yield lim
t→∞

Ωex,Ωėx that are bounded. Similarly, by

using BIBO property and and taking into account the final-value-theorem (FVT)

of Laplace transform, it can be shown that a bounded inputΩ̄rf in (6.19)yields

error signals lim
t→∞

Ω̄ef = 0 andΩ̄ėf ,
∫ τ=t

0
Ω̄ ef dτ that are bounded.

The next part of the proof is to demonstrate the necessity of hypothesisyM > by
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in (6.57)andẐM >
√

((τfric)M+ 3 C0)2

4 κ Ψm
in (6.58), as follows:

• The errory can be shown to be upper-bounded by combining(6.74)and

the definition ofp in (6.73):

‖r1‖+ ‖r2‖ < 2(1/Bx,M [
√
α− 4 C1]− ẋM) (6.78)

whereα = (Mx,m Λ1,m −C1)(Mx,mlD,m −Mx,M Λ1,M − 3 C1) > 0 due

to hypothesis(6.55)and (6.56), and it is still true that

‖y‖ =
√
‖r1‖2 + ‖r2‖2 <

√
2(1/Bx,M [

√
α− 4 C1]− ẋM) ≡ yM

(6.79)

where the right-hand side of(6.79)can be defined as the upper-bound of

y. The last equation signifies the need of hypothesisyM > by in (6.57);

sincey, in its course towards the enclosing boundaryS, cannot violate

the constraintyM , otherwise, the Lyapunov’s Extension Theorem is no

longer applicable.

• Note that,Z̃, in its course towards the enclosing boundaryS, cannot vi-

olateZ̃M , otherwise the Lyapunov’s Extension Theorem is no longer ap-

plicable. In other words,̃ZM in (4.46)must satisfy

Z̃M ≡ ZM + ẐM > bZ̃, (6.80)

Therefore, it can be shown that if the following is satisfied

ZM + ẐM >

√
((τfric)M + 3 C0)2

4κΨm

+ ZM > bZ̃ or, (6.81)

ẐM >

√
((τfric)M + 3 C0)2

4κΨm

(6.82)

thenZ̃M > bZ̃ is also satisfied.
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Further, the initial condition‖y(0)‖ can be less or greater thanby, however in

order to comply with the Lyapunovs Extension Theorem, it must be less than

yM . Similarly, ‖Z̃(0)‖ must be less thañZM . The last part of the proof is to

demonstrate hypotheses‖y(0)‖ < yM in (6.59)and‖Z̃(0)‖ < Z̃M in (6.60)are

to be satisfied in practical implementation:

1. In the implementation, it is possible to set‖y(0)‖ to be as small as possi-

ble. As‖y‖ =
√

‖r1‖2 + ‖r2‖2 comprisesr2 = rx2 andr1 = Ωrx1+Ω̄rf ,

obtaining as small‖y(0)‖ as possible can be achieved through:

• The logic to makerx1 andrx2 as small as possible can be shown to

be similar as in Section 5.3.5:

– From (6.16), rx2(0) = ˙̃x(0) + Λ2x̃(0): in practice, the force-

motion control follows the impact control, which will make the

system into low velocitẏx(0) ≈ 0. Setting ˙̂x(0) = 0 results in

˙̃x(0) = ẋ(0)− ˙̂x(0) ≈ 0. Setting the initial estimate ofx equal

to the actual end-effector pose, i.e.x̂(0) = x(0), results in zero

estimation error̃x(0) = 0. Hence,r2(0) ≈ 0.

– From (6.17), rx1(0) = ẋd(0) − ẋ(0) + Λ1ex(0) + Λ1x̃(0) +

Λiex(0)∆t: as in the previous point,̃x(0) = 0 and ẋ(0) ≈ 0.

The initial point of the desired trajectory can be set asẋd(0) =

0 andxd(0) = x(0), resulting inėx(0) = ẋd(0)− ẋ(0) ≈ 0 and

ex(0) = 0. Hencerx1(0) ≈ 0.

• From (6.19), rf (0) = −ẋ(0) + K−1
e (Λ1ef (0) + Λief (0)∆t): as in

the first point,ẋ(0) ≈ 0. The initial point of the desired force can be
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set equal to the actual force i.e.fd(0) = f(0), resulting inef (0) = 0.

Hencerf(0) ≈ 0.

Therefore,

‖y(0)‖ ≈ 0 < yM . (6.83)

2. Hypothesis‖Z̃(0)‖ < Z̃M in (6.60)can be equally satisfied, if the follow-

ing condition from(4.46)is satisfied

‖Z̃(0)‖ ≡ ‖Z(0)‖+ ‖Ẑ(0)‖ ≤ ZM + ẐM ≡ Z̃M , or (6.84)

‖Ẑ(0)‖ ≤ ẐM . (6.85)

In the implementation, the last equation can be achieved by simply initial-

izing the NN force - motion weights (in this section) with theNN impact’s

stabilized weights as follows

Ẑ(0)force-motion= Ẑimpact, (6.86)

where in practice,‖Ẑ‖impact can be limited by design i.e.‖Ẑ‖impact ≤ ẐM .

6.4 NN Adaptive Impact Control Formulation

For fully automatic application, force - motion control cannot be implemented

directly after motion control. When the end-effector hits the working surface

(contact state) it will produce impact force which need to bedissipated. In

this section we propose NN adaptive impact force control, based upon motion

dynamics as

Mx(q)ẍ+Bx(q, q̇)ẋ+ gx(q) + τ x(q, q̇) = F (6.87)
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The NN adaptive impact control law is proposed as

F =− M̂x(q)Λ ẋ+ ĝx(q) + τ̂ x(q, q̇) (6.88)

Note that we use impact control in short period to dissipate the impact force

as quickly as possible, thus the availability of the actual velocity ẋ is assumed

(although in practice it is obtained from filtered backward difference of joint

position).

Combining the manipulator dynamics (6.87) and the proposedimpact control

(6.88), yields

Mx(q)ẍ = −Mx(q)Λ ẋ−Bx(q, q̇)ẋ+ η; (6.89)

where the uncertainties of the systemη

η = M̃x(q)Λ ẋ+ g̃x(q) + τ̃ x(q, q̇). (6.90)

6.4.1 Uncertaintiesη in NN terms

Now, similar with Section 4.4.2,Mx(q), gx(q), andτ x(q, q̇) in η (6.90) can

be described as follows

Mx(q) = WT
M σM(VT

M zM) + εM (6.91)

gx(q) = WT
g σg(V

T
g zg) + εg (6.92)

τ x(q, q̇) = WT
τ στ (V

T
τ zτ ) + ετ (6.93)

Similarly, the estimated dynamic termŝMx(q), ĝx(q), and τ̂ x(q, q̇) are de-

scribed by estimated weightŝVp,Ŵp with subscriptp = M, g, τ .
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Similar with Section 4.4.2,Mx(q), gx(q), τ x(q, ˙̂q) can be shown to be bounded.

Therefore, the optimum weightsWp,Vp and the approximation errorεp (with

subscriptp = M, g, τ ) from (6.91)-(6.93), are also upper-bounded.

Using similar development and simplified notationsσ ≡ σ(VTz), σ̂ ≡ σ(V̂Tz),

andσ = σ̂ + σ̃ as in Section 4.4.2, the uncertaintiesη (6.90) can be written as

η = ξ + ζ. (6.94)

This division is needed because onlyξ term can be manipulated by the weight

updates ˙̂W,
˙̂
V as will be shown in Section 6.4.2.

The termξ is defined as

ξ =
(
W̃T

M σ̂M

)
Λẋ+ W̃T

g σ̂g + W̃T
τ σ̂τ

+
(
ŴT

M σ̂
′
MṼT

MzM

)
Λẋ+ ŴT

g σ̂
′
gṼ

T
g zg + ŴT

τ σ̂
′
τṼ

T
τ zτ

(6.95)

and the “whole”NN errorsζ is defined as

ζ =
(
W̃T

M σ̂
′
MṼT

MzM

)
Λẋ + W̃T

g σ̂
′
gṼ

T
g zg + W̃T

τ σ̂
′
τṼ

T
τ zτ

+
(
WT

MO(ṼT
MzM)

)
Λẋ+WT

g O(ṼT
g zg) +WT

τ O(ṼT
τ zτ ) + ε

(6.96)

As in Section 4.4.2, the uncertaintiesη (6.94) can be seen to be bounded with

the generic expression‖Lp − L̂p‖ ≤ (L̃p)M in (4.47), as follows

‖η‖ ≤ (L̃M )M Λ‖ẋ‖+ (L̃g)M + (L̃τ )M + εM (6.97)

Note thatẋ is bounded by motor speed limit. Thereforeη can be simply shown

to be bounded as

‖η‖ ≤ C0 + C1 ‖ẋ‖. (6.98)
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whereC0, C1 > 0. And sinceη = ξ+ ζ, then clearly the following inequalities

are true

‖ξ‖ ≤ C0 + C1 ‖ẋ‖ (6.99)

‖ζ‖ ≤ C0 + C1 ‖ẋ‖. (6.100)

Let us redefine in this sectionZ = diag[W,V] to be upper-bounded as follows

‖Z‖ =
√

‖W‖2 + ‖V‖2 ≤ ZM (6.101)

whereZM is a positive scalar constant,W = diag[WM ,Wg, Wτ ] andV =

diag[VM ,Vg,Vτ ].

6.4.2 Stability Analysis

For the proposed impact control (6.88), let the weight updates be provided as:

˙̂wMij
= FMij

(σ̂M ẋi Λjj ẋj − κ‖ẋ‖ŵMij
) (6.102)

˙̂vMk
=GMk

(zM σ̂′
Mk

(
m∑

i=1

m∑

j=1

ŵMijk
ẋi Λjj ẋj)− κ‖ẋ‖v̂Mk

) (6.103)

˙̂wgi = Fgi(σ̂g ẋi − κ‖ẋ‖ŵgi) (6.104)

˙̂vgk =Ggk(zg σ̂
′
gk

(

m∑

i=1

ŵgik
ẋi)− κ‖ẋ‖v̂gk) (6.105)

˙̂wτi = Fτi(σ̂τ ẋi − κ‖ẋ‖ŵτi) (6.106)

˙̂vτk =Gτk(zτ σ̂
′
τk
(

m∑

i=1

ŵτ ik
ẋi)− κ‖ẋ‖v̂τk) (6.107)

with κ is a positive constant. And the estimated NN weight updates:˙̂wMij
∈

ℜN2 , ˙̂vMk
∈ ℜN1,M , ˙̂wgi ∈ ℜN2 , ˙̂vgk ∈ ℜN1,g , ˙̂wτi ∈ ℜN2 , ˙̂vτk ∈ ℜN1,τ are all

column vector. And the adaptive gains:F−1
Mij

∈ ℜN2×N2 , . . . ,F−1
τi

∈ ℜN2×N2
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andG−1
Mk

∈ ℜN1,M×N1,M , . . . ,G−1
τk

∈ ℜN1,τ×N1,τ are all positive diagonal matri-

ces. The following indices are defined:i, j = 1, . . . , m are output-layer indices,

k = 1, . . . , N2 is the hidden-layer index, where to simplify the implementation,

the hidden-node sizeN2 is set the same throughout. WhileN1,M , N1,g, N1,τ are

the respective input-node sizes.

Proposition 6.4.1 With the assumptions that:

1. the controller gainΛ meets the condition

Λm >
C1

Mx,m

(6.108)

whereC1 > 0,Λm = min(Λ) andMx,m = min(λmin(Mx(t)));

2. ẐM , the upper-bound of the estimated NN weightsẐ, satisfies

ẐM >

√
C0

κ
; (6.109)

whereC0, κ > 0; and

3. the initial condition of̃Z satisfies

‖Z̃(0)‖ < Z̃M ; (6.110)

Z̃M is the upper-bound of the NN weight errors,Z̃;

then using the proposed motion control(6.88)and the NN weight updates(6.102)-

(6.107), it can be shown by Lyapunov’s extension theorem [102] that as t → ∞,

the errors‖ẋ‖ and‖W̃‖, ‖Ṽ‖ will be bounded by enclosing boundaryS, which

is defined by enclosing regioṅV (ẋ, Z̃) < 0.
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Proof 6.4.1 The chosen Lyapunov function candidate for error dynamics(6.89),

with the uncertaintiesη (6.94), is

V (ẋ, Z̃) =
1

2
ẋTMx(q)ẋ

+
1

2

m∑

i=1

m∑

j=1

w̃T
Mij

F−1
Mij

w̃Mij
+

1

2

m∑

i=1

w̃T
gi
F−1

gi
w̃gi +

1

2

m∑

i=1

w̃T
τi
F−1

τi
w̃τi

+
1

2

N2∑

k=1

ṽT
Mk

G−1
Mk

ṽMk
+

1

2

N2∑

k=1

ṽT
gk

G−1
gk

ṽgk +
1

2

N2∑

k=1

ṽT
τk
G−1

τk
ṽτk

(6.111)

where the NN weight errors:̃wMij
∈ ℜN2, ṽMk

∈ ℜN1,M , w̃gi ∈ ℜN2 , ṽgk ∈

ℜN1,g , w̃τi ∈ ℜN2 , ṽτk ∈ ℜN1,τ are all column vector.

Next, we substitute the closed-loop dynamics(6.89), Property 4.3.5 and also

take into accountη (6.94), with the definitionξ (6.95)and the knowledge‖ζ‖ ≤

C0 + C1‖r‖ (6.100), into V̇ (r, Z̃) of (6.111), to obtain

V̇ (ẋ, Z̃) ≤ −ẋTMx(q)Λẋ+ C1 ‖r‖2 + C0 ‖r‖+ψ (6.112)

where the lump parameterψ in (6.112)is defined as

ψ =
m∑

i=1

m∑

j=1

w̃T
Mij

(
F−1

Mij

˙̃wMij
+ σ̂M ẋi Λjj ẋj

)

+

N2∑

k=1

ṽT
Mk

(
G−1

Mk

˙̃vMk
+ zM σ̂′

Mk
(

m∑

i=1

m∑

j=1

ŵMijk
ẋi Λjj ẋj)

)

+
m∑

i=1

w̃T
gi

(
F−1

gi
˙̃wgi + σ̂g ẋi

)

+

N2∑

k=1

ṽT
gk

(
G−1

gk
˙̃vgk + zg σ̂

′
gk
(

m∑

i=1

ŵgik ẋi)

)

+

m∑

i=1

w̃T
τi

(
F−1

τi
˙̃wτi + σ̂τ ẋi

)

+

N2∑

k=1

ṽT
τk

(
G−1

τk
˙̃vτk + zτ σ̂

′
τk
(

m∑

i=1

ŵτik ẋi)

)
.

(6.113)
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Usingξ in (6.95), it can be demonstrated thatψ in (6.113)is made up of ˙̃W, ˙̃
V

andrTξ. The idea is to cancelrTξ with ˙̃
W, ˙̃V. Furthermore,− ˙̃

W =
˙̂
W, since

W̃ = W − Ŵ andW is constant. With the weight updates(6.102)– (6.107),

ψ becomes

ψ = κ‖ẋ‖
m∑

i=1

m∑

j=1

w̃T
Mij

ŵMij
+ κ‖ẋ‖

m∑

i=1

w̃T
gi
ŵgi + κ‖ẋ‖

m∑

i=1

W̃T
τi
w̃τi

+ κ‖ẋ‖
N2∑

k=1

ṽT
Mk

v̂Mk
+ κ‖ẋ‖

N2∑

k=1

ṽT
gk
v̂gk + κ‖ẋ‖

N2∑

k=1

ṽT
τk
v̂τk

≤− κ‖ẋ‖‖Z̃‖2 + κ‖ẋ‖‖Z̃‖ZM

(6.114)

Equation(6.114)is obtained by combining all the inner products as

〈W̃,Ŵ〉 =
m∑

i=1

m∑

j=1

w̃T
Mij

ŵMij
+

m∑

i=1

w̃T
gi
ŵgi +

m∑

i=1

w̃T
τi
ŵτi (6.115)

〈Ṽ, V̂〉 =
N2∑

k=1

ṽT
Mk

v̂Mk
+

N2∑

k=1

ṽT
gk
v̂gk +

N2∑

k=1

ṽT
τk
v̂τk (6.116)

〈Z̃, Ẑ〉 = 〈Ṽ, V̂〉+ 〈W̃,Ŵ〉 (6.117)

whereẐ = Z− Z̃, and therefore

〈Z̃, Ẑ〉 = 〈Z̃,Z〉 − ‖Z̃‖2 ≤ ‖Z̃‖‖Z‖ − ‖Z̃‖2 ≤ ‖Z̃‖ZM − ‖Z̃‖2. (6.118)

Substitutingψ (6.114)and Property 4.3.1, it is possible to showV̇ (ẋ, Z̃) (6.112)

that

V̇ (ẋ, Z̃) ≤ −‖ẋ‖
[
(Mx,m Λm − C1)‖ẋ‖ − C0 + κ(‖Z̃‖ − ZM

2
)2 − κZ2

M

4

]

(6.119)

whereΛm andMx,m are as defined in(6.108), note(Mx,m Λm−C1) > 0 is due

to hypothesis(6.108). Hence,V̇ (ẋ, Z̃) < 0, as depicted in Fig. 6.3, when

‖ẋ‖ >
C0 + κZ2

M/4

(Mx,m Λm − C1)
≡ bẋ, or (6.120)

‖Z̃‖ >

√
C0

κ
+

Z2
M

4
+

ZM

2
≡ bZ̃ (6.121)
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C0

(Mx,mΛm−C1)

V̇ < 0

‖ẋ‖

‖Z̃‖

bẋ

V̇ >=< 0

b
Z̃

S

Z̃M

Figure 6.3: V̇ (ẋ, Z̃) regions of the proposed NN adaptive impact strategy.

Applying the Lyapunov’s extension theorem [102] then ast → ∞, the errors

‖ẋ‖ and‖Z̃‖ can be shown to be bounded within the boundary ofS, as follow:

Suppose the errors start within the boundary ofS, i.e. ‖ẋ(0)‖ < bẋ and

‖Z̃(0)‖ < bZ̃ , then they start their course towards the enclosing boundary S

sinceV̇ (ẋ, Z̃) can not be guaranteed to be less than zero, within this bound-

ary. However, when they are leaving the boundary and entering the region

V̇ (ẋ, Z̃) < 0, they will return to the boundary. Now, suppose the errors start at

outside the boundary ofS then they tend to go to the equilibrium sinceV (ẋ, Z̃)

is decreasing. However, they cannot go to the equilibrium, but only up to enter-

ing the boundary ofS and once they enter the boundary ofS, we have already

shown that they are bounded.

The next part of the proof is to demonstrate the necessity of hypothesisẐM >
√

C0

κ
in (6.109). Note that,Z̃, in its course towards the enclosing boundaryS,

cannot violateZ̃M , otherwise the Lyapunov’s Extension Theorem is no longer

applicable. In other words,̃ZM in (4.46)must satisfy

Z̃M ≡ ZM + ẐM > bZ̃, (6.122)
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Therefore, it can be shown that if the following is satisfied

ZM + ẐM >

√
C0

κ
+ ZM > bZ̃ or, (6.123)

ẐM >

√
C0

κ
(6.124)

thenZ̃M > bZ̃ is also satisfied.

Further, the initial condition‖Z̃(0)‖ can be less or greater thanbZ̃, however

in order to comply with the Lyapunovs Extension Theorem, it must be less than

Z̃M . The last part of the proof is to demonstrate hypothesis‖Z̃(0)‖ < Z̃M in

(6.110) is to be satisfied in practical implementation. This hypothesis can be

equally achieved, if the following condition from(4.46)is satisfied

‖Z̃(0)‖ ≡ ‖Z(0)‖+ ‖Ẑ(0)‖ ≤ ZM + ẐM ≡ Z̃M , or

‖Ẑ(0)‖ ≤ ẐM .
(6.125)

In the implementation, the last equation can be achieved by simply initializing

the NN impact weights with the bounded weights of the NN free motion con-

troller - observer (in Section 5.3.5) as follows

Ẑ(0)impact = Ẑmotion. (6.126)

Note: theoretically and practically, there is no initial condition requirement for

ẋ. The purpose of impact control is to stabilize the system from whatever its

initial velocity is into low velocity.
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6.5 Real-time Robot Experiment

The proposed NN adaptive force - motion controller with velocity observer (6.3)

is validated with the 6 DOF PUMA 560 manipulator (which does not have veloc-

ity feedback sensors). For comparison purpose, the Lagrangian dynamics force

- motion control (2.35), without friction compensation, isalso implemented.

The setup is set as follows:

• A positional periodic circular trajectory – 75 mm radius and2 second

period – with a constant orientation for the effector was setas the desired

trajectory.

• A horizontal plane surface is used for this compliant motionexperiment

as shown in Fig. 6.4, with the end-effector pointing down andthe elbow

is up.

• Performances were recorded in term of: (i) desired trajectories alongxE

andyE axes, and (ii) position errors alongxE andyE, (iii) normal force

Fz with desired 20N normal force, and (iv) the zero-moment controlsMx

andMy.

Note that there is a more sophisticated model-based force - motion control by

[118], where an adaptive joint friction compensation and a velocity observer

are added along with the Lagrangian dynamics control, giving more improved

performance than the Lagrangian dynamics controller along. However, its for-

mulation and stability analysis are rather different and relatively more involved
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than the original formula [8]. Also, the compliant motion requires a proper

planning strategy that needs to be met.

In compliant motion, we cannot directly apply the force - motion control. It

is equally important to design a proper planning for the force - motion control

to deliver the compliant motion. For the ease of implementation, the original

Lagrangian dynamics operational space force - motion formulation [8] was em-

ployed and complemented with the model-based impact force control strategy

as in [12].

The planning design for NN adaptive strategies can be described as follows: (i)

the NN weights were initialized with the recorded weights ofthe NN adaptive

motion controller with velocity observer (5.2) in Chapter 5, then followed by (ii)

the NN adaptive impact control in (6.88) and then followed by(iii) the circular

Figure 6.4: The compliant motion setup using PUMA 560 robot.
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Errors Lagrange dynamics
force - motion

NN force - motion
controller - observer.

max(
√

e2pos,x + e2pos,y) (mm) 13.68 19.41

Fz,error (N) 28.0 17.0

Mx,error (N-m) 0.7 1.0

My,error (N-m) 0.8 1.0

Table 6.1: Real-time compliant motion performance comparison.

compliant motion using NN adaptive force - motion control in(6.3).

The performances of the Lagrangian dynamics force - motion control are shown

in Fig. 6.5 and Fig. 6.6. While the performances of the proposed NN adaptive

force - motion controller-observer are shown in Fig. 6.7 andFig. 6.8. The

bounded stability of the norms of the estimated NN weights isshown in Fig.

6.9.

It can be shown in Table 6.1, that the performances of the NN adaptive experi-

ments were comparable with those of the Lagrangian dynamicsstrategy:

1. In term of position errors alongxE andyE axes and zero-moment controls

(Mx,My): both strategies produced relatively similar performances.

2. In term of the normal force error the NN adaptive strategy can be shown

to produce smaller error (17 N) in comparison with the that ofLagrangian

dynamics strategy (28 N).
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Figure 6.5: Motion control performance of the operational space Lagrangian
dynamics force - motion control.
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Figure 6.6: Force/moment control performance using the operational space La-
grangian dynamics force - motion control.
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Figure 6.7: Motion control performance using the operational space NN adap-
tive force - motion control with velocity observer.
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Figure 6.8: Force/moment control performance using the operational space NN
adaptive force - motion control with velocity observer.
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The following gains are set for the proposed NN adaptive motion controller-

observer (6.3):κ = 0.1, Λ1 = Λi = 30I ∈ ℜm×m, F−1
Mij

= I ∈ ℜN2×N2 ,F−1
Bij

=

I ∈ ℜN2×N2,F−1
gi

= 10I ∈ ℜN2×N2,F−1
τi

= 10I ∈ ℜN2×N2, Λ2 = 0.200I ∈

ℜm×m and lD = 400I ∈ ℜm×m. And K−1
e = diag(1.0e−4, 1.0e−4, 1.0e−4,

6.0e−3, 6.0e−3, 6.0e−3).
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‖ŴM ‖

‖V̂M‖

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
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Figure 6.9: Real-time history of the estimated NN weights ofthe compliant
motion NN adaptive strategy.
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The real-time implementation videos of (i) the Lagrangian dynamics force-

motion control and (ii) the proposed NN adaptive force-motion controller-observer

(6.3) are provided in:

• http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/

Compliantmotion Dyn.MPG

• http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Compliantmotion NN.MPG

6.6 Conclusion

In this chapter, the NN adaptive force-motion control with velocity observer in

operational space was derived and validated through real-time experiment.

It can be concluded that the proposed NN adaptive compliant motion formula-

tion is cost-effective and practical for real-time experiment, where the following

characteristics can be shown:

1. no dynamic model is needed,

2. no environment geometry is needed,

3. no exciting trajectories are needed, and

4. the performance of the proposed NN adaptive force-motionstrategy can

be shown to be better than that of Lagrangian only dynamics strategy.

In the next chapter, we will present a consolidation view on how to combine

overall algorithms for a multi-task operation i.e. compliant motion↔ free mo-

tion.

http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Compliant_motion_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Compliant_motion_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Compliant_motion_NN.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Compliant_motion_NN.MPG
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CHAPTER 7

CONSOLIDATED VIEW OF THE NN-BASED
ALGORITHMS

7.1 Chapter Overview

In this chapter, we provide a consolidated view on how to combine overall al-

gorithms for a multi-task operation. Without a right planning, a multi-task op-

eration might not work properly, therefore, it is importantto design carefully

a proper plan for a multi-task operation. A case study is presented, where two

main tasks are: (i) a circular compliant motion, followed by(ii) a circular free

motion.

7.2 Planning Strategy

A planning strategy (presented in Fig. 7.1) for a sequentialtask, where two main

tasks at concern are a circular compliant motion and a circular free motion, can

be designed as follows: the robot starts from stationary, then the end-effector

descends linearly into the working surface, impact controlis then applied, and

then the NN compliant motion control is executed, then the end-effector retracts

linearly, then after it achieved stationary position, the NN free motion control

can be executed, where afterward the end-effector becomes stationary again.
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NN motion

controller-observer

linear motion (down).

NN impact

control.

NN force/motion

controller-observer

circular motion.

NN motion

controller-observer

linear motion (up).

NN motion

controller-observer

stationary.

NN motion

controller-observer

stationary.

NN motion

controller-observer

circular motion.

Figure 7.1: A sequential compliant motion and free motion planning.

The overall details can be described as follows:

• The NN motion controller-observer (5.2), which is initialized with the

recorded weights of circular free motion, is used to providea stationary

position.

• The NN motion controller-observer (5.2) is then used to provide a de-

scending linear motion.

• The NN impact control (6.88) is then applied to dissipate theimpact en-

ergy.

• The NN compliant motion (6.3) is then used to provide a circular compli-

ant motion. The initial desired normal force can be set equalto the actual

force, fd(0) = f(0). After the compliant motion finished its task, then



7.3 Real-time Performance 175

the desired normal force is set to zero to prepare for the retracting of the

end-effector.

• The NN motion controller-observer (5.2) is then used to provide a ascend-

ing linear motion.

• The NN motion controller-observer (5.2) is then used to provide a station-

ary position.

• The NN motion controller-observer (5.2) is then used to provide a circular

free motion.

• The NN motion controller-observer (5.2) is then used to provide a sta-

tionary position, where either a free motion or compliant motion can be

repeated.

The real-time implementation video of this two-task planning is provided in:

http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Consolidated2 tasks.MPG

7.3 Real-time Performance

The performance results of the two-task planning are shown as follows:

• For the compliant motion (task 1), the performances were recorded in Fig.

7.2 in term of: (i) normal forceFz with desired 20N normal force, and (ii)

the zero-moment controlsMx andMy.

http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Consolidated_2_tasks.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Consolidated_2_tasks.MPG
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Type of task Performances

Fz,error = 15.0 (Newton)

Task 1: Compliant motion control Mx,error = 1.2 (Newton-meter)

My,error = 0.8 (Newton-meter)

Task 2: Free-motion control max(‖epos‖) = 5.45 (mm)

Table 7.1: Real-time performance of two-task planning.

• For the free-motion (task 2), performances were recorded inFig. 7.3 in

term of: (i) desired trajectories alongxE andyE axes, and (ii) position

errors alongxE, yE, zE.

The overall performance results are tabulated in Table 7.1:(i) for compliant

motion the maximum normal force and tangential errors are: 15.0 (Newton), 1.2

(Newton-meter) and 0.8 (Newton-meter), respectively, and(ii) for free-motion,

the maximum of the magnitude of the end-effector position tracking errors is

5.45 (mm).

The bounded stability of the norms of the estimated NN weights is shown in

Fig. 7.4.
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Figure 7.2: Force/moment control performance (task 1).
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Figure 7.4: Real-time history of the estimated NN weights along the two-task
planning.
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CHAPTER 8

CONCLUSIONS

8.1 Summary of Contribution

In this thesis, we have developed several stable operational space NN adaptive

formulations, where the ultimate focus is the compliant motion formulation.

It has been shown that the proposed NN adaptive compliant motion (force /

motion) formulation has the following characteristics:

1. no dynamic model is needed,

2. no environment geometry is needed,

3. no exciting trajectories are needed, and

4. the performance of the proposed strategy is comparable with that of La-

grangian dynamics strategy.

Therefore, it can be concluded that the proposed NN adaptivecompliant motion

(force / motion) formulation can be considered to be cost-effective and practical,

especially, when the Lagrangian dynamics for a particular robot is not available

handily. Notice that the NN motion and force-motion control(with velocity

observer) can be implemented directly into real-time implementation.

The detailed contributions of this Ph.D work are as follows:
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• In the first step, the original NN adaptive approach in joint space [74, 75]

was improved and extended into the operational space NN motionformu-

lation. Several useful properties of the end effector dynamics were intro-

duced to accommodate later developments.

It was shown in simulation that a comparable performance, with that of

the Lagrangian dynamics, was achieved, but has the advantage of no a

priori knowledge of dynamics is required. However, it was shown that its

performance on real-time experimentation was found to be inferior to the

simulation equivalents.

• A separate Lyapunov analysis was presented to show that the filtered ve-

locity signals, ˙̂q and ˙̂x (obtained by approximation through the filtered

backward difference of the displacement feedback) are not suitable re-

placements to the non-existing actual velocity signals forthe proposed

adaptive motion strategy (previous point) in real-time implementation.

• In the second step, an NN adaptive motion control with velocity

observerwas proposed to overcome the absence of the actual velocity

signal in the real-time experimentation.

It can be shown in real-time implementation that the performance of the

NN motion controller with velocity observer strategy is better than that

of the NN motion control (where filtered velocity is used to replace the

absence of the actual velocity). It also yielded, in real-time, a comparable

performance to that of the Lagrangian dynamics strategy.

• In the third step, the NN adaptive force and motion control in
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operational space(with velocity observer) was built upon the developed

NN motion controller-observer in the second step.

Additionally, an NN adaptive impact strategyis also developed to com-

plement the main strategy.

• The planning strategy to interactively use NN adaptive motion and force-

motion formulation was also provided.

Note, Lyapunov stability proofs together with experimental verification for all

formulations are provided. And all the real-time implementation videos are

accessible in the following link:

http://guppy.mpe.nus.edu.sg/dandy/index.html

8.2 Future Work Possibilities

In this section we will discuss some possibilities for future works.

The works on this thesis cover mainly extending and improving the original NN

adaptive control [74, 75] into ultimately the full force andmotion control in

operational space formulation in real-time implementation for a real robot.

It can be seen that, although, so far the proposed neuro-adaptive strategies

showed comparable real-time performances with those of Lagrangian dynam-

ics strategy, they cannot really outperform the inverse dynamics strategies. This

is clearly because the stability for all the proposed strategy can be achieved only

as bounded stability.

http://guppy.mpe.nus.edu.sg/dandy/index.html
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Technically speaking, the non-parametric structure of NN really forbids getting

the convergence (asymptotic) stability, since there is always excess the whole

error”ζ”, which results from the difference between the system’s structure and

the NN structure. Coupled with the weight updates, it results bounded stability.

A more fundamental strategy to provide NN strategy with asymptotic stability

(or maybe smaller bound), is not addressed in this thesis andis still an open

problem for future research.

However, the proposed NN adaptive formulations in this thesis can be seen as a

practical formulations for motion and compliant motion, respectively, when the

Lagrangian dynamics for a particular robot is not available.

Based upon author’s current knowledge, the most possible choice to remove

completely the excess error”ζ” (and therefore to achieve asymptotic stability) is

by using the linear-in-parameter (LIP) methodology as shown in the joint space

direct LIP adaptive control in Chapter three, since the controller parameterized

structure matches the robotic parameterized structure.

However the methodology requires the following developments:

• The availability of an-easy-to-use simplification procedure to provide

a simplified dynamic model.

To meet the requirement of the real-time deterministic sampling time the

direct LIP adaptive control (Chapter three) requires the computation of the

simplified dynamic models for the control and the parameter estimation.

It is well established that for a real robot with more than three degrees of
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freedom, the expressions of robot dynamic model are extremely complex.

It makes the simplification procedure is not an easy task. Further, a sys-

tematic and easy-to-use simplification procedure based upon Lagrangian

formalism is yet to be invented.

Therefore, the present challenge is the availability of a systematic and

easy-to-use procedure based upon Lagrangian formalism, for the dynamic

model simplification. This problem is presently the main bottleneck in

this methodology.

Note that to achieve the first step, a symbolic software generator, based

upon Lagrangian dynamics, is required to derive the un-simplified LIP

model and the kinetic, coriolis/ Centrifugal matrices and gravity vector.

A mathematical package such as MathematicaR© can be used.

• An easy-to-use excitation formulation to make the parameters to con-

verge more rapidly.

At this current point, research on an easy-to-use and stablemethod for

generating exciting trajectory is currently still in progress.

• Last but not least, it might be interesting to put everythingtogether within

the optimal LIP adaptive framework [105, 106]. Presently, selecting

the controller gains and the parameter update gains is by trial-and-error.

Extended developments subsequently can be made as follows:

• the operational space free motion and to force / motion control , and
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• another set of improved formulations of previous point, forboth free mo-

tion and force/motion control with velocity observer, might be needed to

confront the lack of actual velocity signal in real-time implementation.

Given time and resources, the author believes that this methodology can be de-

veloped and implemented in near future.

In scenarion, where the Lagrangian dynamics for a particular robot is not avail-

able (therefore simulation study cannot be performed), it is possible to make the

proposed operational space NN adaptive formulation supporting the develop-

ment of the direct LIP adaptive control in real-time robot implementation. Once

the operational space NN adaptive formulation is ready, then we can add the

direct LIP adaptive control in operational space.

Note that, the NN adaptive formulation or the direct LIP adaptive in operational

space, mentioned so far, are only with respect to non-redundant manipulators.

Further development for redundant manipulators (> 6 DOF) is highly possible.

We will present in brief (since it might require another one PhD. work) the

possible development of the NN adaptive case for redundant manipulators, as

follows:

The effector motion dynamics of a non-redundant manipulator can be expressed

as the followings [47, 8, 91]:

Γ = JT(q)F+ (I− JT(q) J#T

(q))Γ0 (8.1)

whereΓ is the joint space dynamics as in (2.25),F ∈ ℜm is the operational

space generalized forces (acting as control input),Γ0 ∈ ℜn×n is thenull space
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torque vector (also control input) andJ#T

(q) is thedynamically consistent in-

verseJacobian defined as

J#T

= Mx(q) J(q) M
−1(q) (8.2)

whereMx(q) of a redundant manipulator is defined as [47, 8, 91]

Mx(q) = (J(q)M−1(q)JT(q))−1. (8.3)

The following steps are in order:

1. designingF, J#T

andΓ0, to obtain useful closed-loop dynamics for Lya-

punov analysis.

2. designing the weight updates within Lyapunov analysis.

The development toward the NN adaptive compliant motion fora redundant

manipulator then proceeds similarly as in this thesis as follows:

• NN motion control, assuming actual velocity is available,

• NN motion control, with velocity observer, to overcome the absence of

the actual velocity signal in the real-time experimentation, and

• NN force-motion control with velocity observer.

Similarly, the direct LIP adaptive control in operational space for a redundant

manipulator can be developed in similar fashion by taking into account the LIP

model.
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[74] F. L. Lewis, A. Yeşildirek, and K. Liu, “Multilayer neural-net robot con-

troller with guaranteed tracking performance,”IEEE Trans. Neural Net-

works, vol. 7, no. 2, pp. 388–399, Mar. 1996.

[75] F. L. Lewis, S. Jagannathan, and A. Yeşildirek,Neural Network Control
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APPENDIX A

PUMA 560 FRAMES AND JACOBIAN

A.1 Frame Assignment for PUMA 560

Figure A.1: Frame Assignment for PUMA 560 in the experiment.
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Table A.1: The DH parameters for PUMA manipulator

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 -90 0 d2 θ2
3 0 a2 d3 θ3
4 90 a3 d4 θ4
5 -90 0 0 θ5
6 90 0 0 θ6

The numerical values for the Denavit-Hartenberg parameters of PUMA 560 are:

a2=0.4318 m,a3=-0.0203 m,d2=0.2435 m,d3=-0.0934,d4=0.4331m [19].
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APPENDIX B

COMPUTING F∗
motion

B.1 ComputingF∗
motion

In the following, the computation ofF∗
motion is presented. Further details can

be found in [91]. In general, since the operational space coordinates consists of

translational and rotational motions, therefore,F∗
motion consists of two types of

control forces: one is force control to control translational motion and the other

one is moment control to control rotational motion.

Let’s assume that the desired positional and rotational representation trajecto-

ries,xp,d, ẋp,d, ẍp,d ∈ ℜ3 andxr,d, ẋr,d, ẍr,d ∈ ℜ9, respectively, are provided by

trajectory generator. Note that,xr,d, ẋr,d, ẍr,d equals to

xr,d =
(
(s1)

T
d (s2)

T
d (s3)

T
d

)T
(B.1)

ẋr,d =
(
(ṡ1)

T
d (ṡ2)

T
d (ṡ3)

T
d

)T
(B.2)

ẍr,d =
(
(s̈1)

T
d (s̈2)

T
d (s̈3)

T
d

)T
(B.3)

Also, let’s assume that we have a full 3D space translationaland rotational mo-

tion i.e.mP , mO = 3. Then,F∗
motion can be computed as

F∗
motion =

{
F∗

motion = ẍp,d +Kv(ẋp,d − ẋp) +Kp(xp,d − xp)

M∗
motion = ω̇d +Kv(ωd − ω) +Kp eorient

(B.4)

where all necessary terms are computed as:
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• xp andxr can be obtained from the direct kinematics.

• ẋp andω can be obtained from the basic differential kinematics
(
ẋp

ω

)
= J(q) q̇. (B.5)

• eorient is theinstantaneous angular errorwhich can be obtained from the

following:

eorient =
1

2
([s1×] (s1)d + [s2×] (s2)d + [s3×] (s3)d) (B.6)

where3× 3 skew-symmetric matrix operator[s×] is defined as



0 −sz sy
sz 0 −sx
−sy sx 0


 . (B.7)

• The desired angular velocity,ωd, can be obtained by

ωd = E+
r (xr,d) ẋr,d (B.8)

where

E+
r (xr,d) =

1

2

(
[(s1)d×] [(s1)d×] [(s3)d×]

)
. (B.9)

• The desired angular acceleration,ω̇d, can be obtained by

ω̇d =
1

2
E+

r (xr,d) ẍr,d +RT(xr,d ,ωd) ẋr,d (B.10)

where

RT(xr,d ,ωd) =




((s1)
T
d ωd) I3×3

((s2)
T
d ωd) I3×3

((s3)
T
d ωd) I3×3




. (B.11)

And clearly,ẍd, ėx, ex (2.33) are defined as

ẍd =

(
ẍp,d

ω̇d

)
, ėx =

(
ẋp,d − ẋp

ωd − ω

)
, ex =

(
xp,d − xp

eorient

)
. (B.12)
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