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SUMMARY

It is well-established that dynamically compensated (nhbdsed) force /
motion controller strategy provides better performan@ntthe standard Pro-
portional - Integral - Derivative (PID) controller. Howay¢he dynamic model
and parameter values, especially for a real robot, are vifigult to identify
precisely. Therefore a fast and cost-effective adaptivihateis highly desired.

The main objective in this thesis deals ultimately with theukal Network
(NN) adaptive control for parallel force and motion in theecgtional space
formulation. The operational space formulation, capalblproviding unified
force motion control and tracing contoured surface withthigt need for the
knowledge of the surface geometry, is selected as the wpatform. In this
thesis, all the proposed neuro-adaptive control strategiere constructed in
operational space formulation.

The development of this thesis is presented in incremeraaier: (1) mo-
tion only neuro-adaptive control, (2) motion only neuraptive control with
velocity observer (since our physical robot does not hawsard yelocity feed-
back), (3) force and motion neuro-adaptive control whictd accompanied by
(4) neuro-adaptive impact force control.

All the proposed strategies assume no prior knowledge afahet dynam-
ics where the NN weights were initialized with zero. Lyapustabilities show-

ing bounded stability of the tracking errors and NN weighbes were also
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provided for all the proposed strategies. The proposetkgies were not only
shown to be stable in real-time implementation on PUMA 564, ddso pro-
duced comparable performances to those of the well-tunestsa dynamics

control strategies.



NOMENCLATURE

The main notations used in this thesis are compiled below:

A17A27A’i

o)

T fric

T visy Tcous T stisy T dec

the uncertainties in the robot dynamic modet,

1), in operational space.

generalized joint space force vector, X 1).

(m x m) positive diagonal matrices in operational
space, used as control gains.

(m x m) selection matrices, to properly select the
axes assigned for translation/rotation (motion con-
trol) and those for force/moment (force control).

a (13n x 1) vector of actual dynamic parameters.

a vector where each element is differentiable func-
tion, such as sigmoid and hyperbolic functions.

the joint space joint friction vectorp(x 1).
components ofri.: the viscous friction, coulomb
friction, stiction, and Stribeck effect, respectively,

(n x 1).
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7—cou,M
Tsti,M

Tx
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A
Am; AM

B(q,q)

Bx(q,q)

Bx,M

fCO ntact

fsensor

a positive scalar upper bound [pf s |-

a positive scalar upper bound [6f ., ||

a positive scalar upper bound [pf ,,;exg ~Tdecd’) .

the operational space joint friction vector, (x 1).
scalar variable (lower case, regular font).

a vectora (lower case, bold font).

a vectora where each element is a function of vector
q and vectorq.

a matrixA (upper case, bold font).

minimum and maximum eigenvalues of any positive
definite general matriA, respectively.

the joint space Coriolis and Centrifugal matri®,x

the operational space Coriolis and Centrifugal ma-
trix, (m x m).

a positive scalar upper bound B, (q, q)||-

contact forces/moments exerted by the effector onto
environment, . x 1).

force sensor reading dfonact by force/torque sen-
sor, n x 1).

the generalized operational space force vecto (

1).
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hvi57 hcou; hsti; hdec

hvis,M
hcou,M

hsti,M

KvaKpuKI

LD7 LP

the joint space gravity vector in joint space,X 1).

the operational space gravity vector,  1).

a positive scalar upper bound [pd«(q)||.

The sliding friction vector, . x 1).

components oth: the viscous friction, coulomb
friction, stiction, and Stribeck effect, respectively,
(m x 1).

a positive scalar upper bound |d, ;s |-

a positive scalar upper bound |fi.., ||

a positive scalar upper bound |gi,,;exg Pae4)||,

the geometric Jacobian matrixp(x n).

a (m x m) linear (hence diagonal) spring matrix re-
lating the operational space coordinates and the con-
tact forces; it is positive definite.

(m x m) positive diagonal matrices, used as control
gains.

(m x m) positive diagonal matrices, used as control
gains.

the number of degree-of-freedom of the operational
space coordinatesy( < 6).

the joint space inertia (or kinetic energy) matrix,
(n x n).

the operational space inertia (or kinetic energy) ma-

trix, (m x m).
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Mx,mu Mx,]%

n

Ni, Ny and N3

Nla N2 andN3><N4

p;
q,9,9

R;

S1, S2, S3

the positive lower and upper bounds |#¥1.(q)||,
respectively.

the number of joints.

the number of neurons in layers 1, 2 and 3, respec-
tively, for an NN output vector.

the number of neurons in layers 1, 2 and 3, respec-
tively, for an NN output matrix.

a (3 x 1) position vector describing the position of
frame{j} expressed in frame}.

joint space coordinates, with its first and second
derivatives, respectivelyp(x 1).

a (3 x 3) rotation matrix describing the orientation
of frame{j} expressed in frame}.

the 1¢¢, 274 and 3™ (3 x 1) column vectors of a
rotation matrixR?.

a scalar, denotes a Lyapunov function.

the optimum first-to-second layer node weights,
(Ny x Ny).

the estimate oV and the error betweeW andV,
respectively.

positive scalar upper bounds &, V,V, respec-
tively.

the optimum second-to-third layer node weights,
the size can beN; x N,), to accommodate an
(N3 x 1) NN output vector, or {3 x Ny x Ny),

to accommodate anV x /N4) NN output matrix.



Xiii

W, W

WM7 W]\47 WM

the estimate ofV and the error betweeéW andW,
respectively.

positive scalar upper bounds W, W, W, respec-
tively.

the operational space coordinates, with its first and
second derivatives, respectively; (x 1).

the desired operational space coordinates, with its
first and second derivatives, respectivety, X 1).

the joint spacen x 13n regression matrix of dy-
namic parameters.

the operational space x 13n regression matrix of
dynamic parameters.

the definition ofZ = diagW, V.

the estimate o and the error betwee# and Z,

respectively.
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CHAPTER 1

INTRODUCTION

1.1 Background and Problem Definition

Robotic manipulators have been used for industrial autematThe classi-
cal example is the assembly line in the automotive industmgre cars in the
production are placed and positioned at exact locations @meaeyor belt for

manipulators to operate on the cars for operations such EBngeand pick-

and-place as shown in Fig. 1.7(a) and 1..1(b).

Up to present, however, in practice many robotics tasksitinof those in the

(a) Six-axis robots used for welding. (b) An industrial robot operating in a
foundry.
Figure 1.1: Industrial manipulators  (http://en.wikipadirg/wiki/In-

dustrialrobot).
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industrial automation, utilize simple independent jojpése strategy using Pro-
portional - Integral - Derivative (PID) control method. @thapplications de-
scribed in task space, in general, cannot be easily accormewhty joint space
control. The task space motion control, done at end-effexftthe robot, is a
significant topic in the study of robotics as it can relatertheiral spatial frames
of human-related tasks, as shownlin [1]. Task space alsorancdates the in-
teractive control¢ompliant motioror force-motioncontrol), which enables the
effector to provide an interaction capability of the effaatith its environment,
such as: to apply static force needed for a manufacturinggsso(e.g. grinding,
polishing), part-mating, or dealing with geometric unaerty of the workpiece

by establishing controlled contact forces [2].

Compliant motion control strategies basically can be geaumto two major
mainstreams: the stiffness/impedance control[3, 4] aegtrallel (or, simul-

taneous), force and motion control [5/ 6| 7., 8, 9].

The impedance control is basically position control whmianipulated to ex-
ert the force produced onto the working surface. This isead if an accurate
stiffness of the environment (serial stiffness of the efidetor and the surface)
is known and an accurate desired trajectory can be desigrsatilupon known
surface’s geometry of which deflection can be computed. Awdefore the
force produced equals to deflection times the stiffness. d¥ew in practice the
accuracy of the stiffness and the desired trajectory acogtd surface geome-

try, is hard to be achieved. And therefore it cannot provédi@ble performance.

The parallel force-motion control uses the contact foreelback from the force

/ torque sensor mounted in the robot. It was showriin [10} the parallel
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force-motion strategy produces superior performancetthetrof the impedance
control strategy. Note that the force/torque sensor cansied in impedance

strategy, however, it serves as a reading only, not a fe&dbac

The parallel force and motion strategies can then be fudistinguished into
two categories: (1) the coupled motion and force subsys{em&], and (2)
the decoupled motion and force subsystems [7, 8/ 11, 9], evtier latter is
expected, theoretically, to give better performance stheemotion and force

subsystems are separated.

The first strategy is the operational space formulation fofied motion/force
control [E]. The operational space formulation does notregthe knowledge
of the exact contact surface geometry and it was shown tomeuccessfully
in many real-time experimentations such as an industriggipag task of an un-
known surface [12]. It is also established that the openatispace formulation
provides an elegant handling of highly redundant and briagcinechanisms

[13].

The second strategy is the reduced state position/forceat@f constrained

robot [9]. The reduced state position/force control reggiithe contact sur-
face geometry of a particular surface. However, this genmebnstraint poses
a difficult problem for implementation, because: the swefgeometry is re-
quireda priori, afterwards some mathematical transformations are tovipll
consequently a different surface would require a diffeisatt of transforma-
tions. Therefore, so far works based upon this frameworkrasstly done in

simulation studies using up to 3 DOF manipulators or reaktexperiments on

simple planar surfaces. In operational space frameworfasigeometry is not
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needed and all mathematical transformations are consistete that, manual
inspection to determine the normal direction of the suriac#ill required for
the operational space framework. However, precise or &nalysurface geo-

metric is not required. For example, the surfdde, y, z) = ¢ has its normal
OF OF OF

o By 0z
determine whether the orientation of the end-effector thiwiacceptable range

vector equals to/ F' = ( . In the application, robot operator will

of VF or not.

To achieve each own performance, both frameworks do not UBecéntrol
strategy, but rather model-basediiputed torquer inverse dynamigscontrol.
It is well known that PID control limits the task flexibilitydzause it is only
tuned for a particular set of the robotic task dynamics (Wh&configuration
dependent). If the perfect model of the robot dynamics sxst is employed,
then the inverse dynamics control strategy would perfeztycel the robot dy-

namics, leading to the perfect tracking performance in raf@ion control.

The manipulator model refers to the closed-form Lagrangeddation (or the
recursive Newton-Euler formulation; however, in this isege mainly use and
focus on the Lagrange formulation) and joint friction dynesn The Lagrange
dynamics correlates with the robot inertial parametéist¢r each link) which
are: one element of the link mass, three elements of the fostents (by prod-
uct of the link mass times the coordinates of the center-a$s) six elements
of the inertia tensor and one element of the motor inertiae jomt friction

dynamics correlates with the joint friction parameters.

The Lagrangian derivation dynamics model basically ingsltwo basic steps:
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1. First is the symbolic derivation of the kinetic/ inertiaatrix, Coriolis/
centrifugal matrix and gravity vector through the closedif Lagrange
energy formula. Several approaches to derive the robotrdynaodel
symbolically were presented in [14,/15, 16| 17,[18,/19/ 2(, Rlusive
in this derivation is the simplification procedure, whicmeeded to meet
the requirement of the real-time deterministic samplinggtior real-time

implementation.

The simplification procedure includes:

e Common sub-expression elimination: by eliminating intedmate
expressions, the total arithmetic operations can be furéduced
[22,23,[19] 24], however, so far these proposed procedueestid

heuristic and manual;

e Reducing the number of standard inertial parameteys X 1, where
n is the number of joints) into a minimum set of parameters|£5;,
27,128, 29| 30], however, so far these proposed procedueescar

yet full automatic

It is well established that for a real robot with more tharethdegrees of
freedom, the expressions of robot dynamic model are extyeroenplex,

therefore, it makes the simplification procedure is not ay ¢ask.

2. Secondly, the parameters of the model have to be estimated

The most basic method is by physical experiments. By disingrthe
robot and isolating each link, the link’s inertial paramsteould be ob-

tained by physical experiments [19]. However, this phylsesgeriment
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procedure, is tedious and error prone; and it is practichl when per-

formed before the robot assembly by the manufacturer.

A more practical procedure is by the off-line system idecdifion. By
exploiting thelinearity-in-parameter(LIP) property of robot dynamic
model, regression analysis of the collected input/out@t& dthe robot

is moved into certain trajectories) can be performed bygithe least-
square-estimatiorprocedure to identify the robot dynamic parameters

[31,[32/33[ 24, 34].

Furthermore, joint friction identification depends on aemticondition. There-
fore, ideally, to produce accurate result it must be peréafravery time prior
to the operation of the robot. Several joint friction idécation by physical

experiments has been reported such as [24, 35, 36].

By-and-large, robot dynamics derivation and identificatimve been the ma-
jor obstacle for real robotic manipulator implementation &ény other mecha-

nisms). It is therefore desirable to obtain an adaptiveesisa

1.2 Main Objective

The focus task is compliant motion when a desired force igedéo the surface
while the end-effector moves according to the desired maimgent to the

surface.

The following specifications are desired:
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A
r Robot .48 Robot i
(actual) l (estimaged)

Parameter
estimation

~ dd Model-based T Robot q
r control (actual)
oo
(@) (b)

Figure 1.2: Indirect adaptive control: (a) off-line systddentification (b)
model-based control.

1. All adaptive control strategies do not requaeriori knowledge of the

manipulator dynamics.
2. The knowledge of surface geometry is not needed.

3. All control strategies are expected to provide equivigbanformance of

that of dynamics compensated strategy.

4. All control strategies should be able to be implementethemeal robotic

manipulator. The test bed would be the PUMA 560 industriabta arm.

In this thesis, all strategies are limited for non-redurtcaanipulator only.

1.3 Summary of Related Works

We review briefly some literature. Earlier works [37] 38,138,/41] exploit the
linearity-in-parameter (LIP) property of robot dynamic deband use the least-
square-estimation method to identify the robot parametehere the model-
based control can then be implemented afterward. Hencenthilsod is often

referred a®ff-line identification method oindirect LIP adaptive control.
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The architecture of the indirect method can be shown as astejpprocess (Fig.

[1.2). The linear-in-parameter model of robot dynamics aashown as follows
I'=Y(qqq)n (1.1)

whereT’ € R" is the actual joint torque vector ard(q, q,q) € R™**" is
the measured regression matrix (computed from joint possti velocities and
accelerations) and € R'*" is the vector of the actual dynamic parameters.
Note that, the thirteen dynamic parameters, with respelditd:, are comprised

of the standard inertial parameters and the joint frictiarapeters, as follows:

e The (11 x 1) standard inertial parameters are defined as follows: tlesma
of Link 7 (scalar), three components of the first moment of inertiaiok L
1, Six components of the inertia tensor of Lihknd the moment inertia of

the motor (scalar).

e The @ x 1) joint friction parameters are comprised with the viscond a
Coulomb friction terms. Only viscous and Coulomb terms actuded,

in order to preserve the linearity-in-parameter property.

Now, let’s consider the most general off-line identificatimethod based upon
the least-square-estimation procedure as in [[31| 32, B4}, is: if we move
the robot through certain trajectories/@ttime instants, ¢, .. ., ty, then the

over-determined actual system can be written as
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And the over-determined estimated system can be written as

T'(t;) Y (q(t1),q(ty), qa(t1))
b f(.tQ) _ Y(q(tz)aq.(b)afi(b)) A —Yyr  (13)
_f‘(tN)_ _Y(Q(tN)u q<tN)7 Q(tN>>_

Therefore, by evaluating the cost function

ITy|"=TN Tn =0, (1.4)

whereI’ = T' — I is the error between the actual and estimated joint torque
vectors,I', T, respectively, therefore the estimated dynamic parametercan

be obtained as follows
7=(YyYyn) 'Yy Ty, (1.5)

A similar procedure by measuring the lumped inertias, axte the joint torques,
was presented in [33, 24]; however, essentially, it alsaliseegression analy-

sis method.

Subsequently, it is then clear that off-line identificatismot practical. The
cycle time of robotic usage is relatively not short i.e. digd there are changes
in the dynamics, then one must redo the identification proed Therefore,
some researchers preferred to haveasline identification method to directly
adapt the control, as shown in Fig. 11.3. This method is ofédéerred aglirect

LIP adaptive control.

Earlier works on direct LIP adaptive control initially canlg achieve the adap-
tive control without parameter estimation [42) 43| 44, Ahere only the tra-

jectory tracking errors are guaranteed to converge (asymptability) while
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Figure 1.3: Direct adaptive control.

the parameter errors can be only ensured to be bounded (bdstability) i.e.
the estimated parameters cannot be guaranteed to conedigarttrue values,

regardless whether optimal trajectories are given or not.

Finally, [4€] proposed the adaptive control with parametstimation (in Fig.
[1.3). It can be shown that the trajectory tracking errorsga@ranteed to con-
verge and the parameter errors can be guaranteed to coniesgating tra-
jectories are given. In the case the exciting trajectoriesnat given, then the

parameter errors can only be guaranteed to be bounded.

Some challenges in implementing LIP direct adaptive sjsasee:

1. The first is similar to the previous classical model (withdtic, Coriolis
/ centrifugal matrices and gravity vector), which is abdw tIP model
symbolic derivation involving two factors: (i) the LIP mddermulation

and (ii) the simplification procedure.

A relatively complete treatment on the LIP model formulatbased upon
Lagrangian formalism, including motor inertia parametan be found in
[47]. However, the motofis restricted to be located on Lirk- 1. Hence,

the whole LIP formulation must be reformulated.
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Therefore, the present challenge is the availability of stayatic LIP
model formulation and its simplification. This problem ispently the

main bottleneck in this methodology.

2. Secondly, the regression mathiXq, q, q) used in direct adaptive control
with identification [46] requires the availability of joinelocities and ac-
celerations, which are often not available in industriddats. Obtaining
these variables through filtering often produces noisyagrSeveral al-
gorithms were proposed to provide the needed matrix wittieuheed of

the joint accelerations, as in [48,/149, 50| 51, 52].

3. Thirdly, the need for optimakkciting trajectories in order to make the
parameters converge rapidly. The optimal trajectorieslawse that ex-
cite all possible dynamics of the manipulator. It is alsenftlescribed
asdynamically richtrajectories. Derivation of optimal trajectories gen-
erator algorithm were proposed hy [53, 54| 55, 56], howabese pro-
posed trajectory generator algorithms are still relagivaelcomplex pro-
cess. (From practical side, if exciting trajectories cdriv@determined,
then any working trajectories can be used directly, whezgotrformance

of the tracking errors can be verified afterward.)

4. Additionally, extension to operational space in direetinod can be shown
to be more complex as further transformations are requoebtain the
operational space matrices and vectors [8, 47] from thd gpace dy-
namics. One must derive a separate linear dynamic modelarabpnal
space, should one use the direct approach. Note that tleesah can

still be done indirectly by performing parameter estimaiio joint space
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(either using on-line or off-line method), then employingadel-based
control in operational space. However, since the operaligpace control
is non-adaptive, one needs to redo the joint space paraidetgification

procedure whenever necessary.

Recent experimental indirect methods on higher(6) DOF robots were shown
in [57,/58,[59]. However, albeit numerous theoretical antihmental works
have been proposed, experimental works in both indirectrectdmethods on

higher (~= 6) DOF robots are still relatively far and few.

By-and-large, the expressions of robot dynamic model airemrely complex,
especially for higherx= 6) DOF robots. It makes the derivation and simpli-
fication procedure are not an easy task. A recent work evemesthe robot
dynamic model to be a linear system model; where for easerafpter iden-

tification, it includes only joint friction model [60].

Therefore, cheaper alternative than direct or indirect &éRaptive controls, if

any, is desirable.

Neural-network (NN) strategies then were explored as meanenlinear sys-
tem identification([611] and robot control strategy [62] 63,65, 66! 6/7]. The
NN theorem dictates that given unlimited number of hiddgretanodes, three-
layer NN with ideal weights can approximate any functioregivthe neural nets
were properly trained without the need for an exact model. s&&marized
by [68], similar with the LIP adaptive control strategied\ Mdaptive control
strategies can be categorized as: indirect NN adaptivera@onhere system

identification must be performed a priori, and direct NN dotl@pcontrol.
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Despite promising results early studies lacked the mattieat@roof of stabil-
ity for the proposed control algorithms. This posed a pnabie ensuring the
reliability of the approach as arbitrary learning rules lué NN weights could
lead into instability of the closed-loop system as obsetwe{9]. Therefore
the main challenge in designing a neural-network, whethisrused as a con-
troller, classifier or identifier, is to define a learning rwhich is easy-to-use

and can guarantee stability of the overall system with mngticonstraints.

Subsequently, linear-in-parameter Neural Networks egsat(LPNN or two-
layer NN) with Lyapunov stability, analysis was proposedrfonlinear system
identification in [70, 71] and for robotic control in [72, [Z3However, LPNN
strategy requires that suitable basis functions must kesttected (e.g. radial

basis function (RBF)), which in practice this constrainiéd to satisfy.

To confront this deficiency, a three-layer joint space NNpgigta robot motion
control was proposed by Lewt. al. [74,[75]. It has several interesting charac-

teristics:

1. The proposed strategy does not have strong constraohtgasalso shown

to have a satisfactory performance,

2. The formulation was developed based upon well known jgatce LIP

adaptive robotic controller proposed by Slotine and Li%,[46,46],

3. Off-line learning is not needed and the NN weights ardalied with

Zero,

4. A Lyapunov analysis is provided to show bounded stabitityboth the
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tracking errors and NN weight errors.

These characteristics made this strategy very attraativpriictical implemen-
tation. However, the work [74, 75] was only validated thrbagsimulated study
of a 2 DOF robot in joint space. Therefore, it is interestioglévelop this strat-

egy into operational space formulation with real-time iexpentation.

Several works of neuro-adaptive compliant motion, bagmehu9], then fol-
lowed such as [77, 78, 79], however, all these works requineccontact sur-
face geometry to be known. HU [80], based upon model-basewagnt in
[81], proposed a full NN based adaptive control to overcameae&quirement of
the contact surface geometry. However, this strategy redua 2 dimensional
virtual constraint plane to be known, which in practice wbbk limiting the
dexterity of the effector movement within 2D constraintra More recent
neuro-adaptive control works attempted to adaptively acoodate the con-
tact surface geometry through impedance contral [82, 8@ampliant motion
based approach [84, 185], however, all these works requireddntact surface
normal direction to be known. Some recent works were prapémecompliant
motion law [86/ 87]; however, they are not an adaptive sggteut based upon

model-based Lagrangian strategy.

An NN adaptive algorithm designed for the compliant motiamtcol on an
unknown contact geometry was presented_in [88], where aitiawaia vision

system was required to extract the surface geometry infoomaHowever, it
was done in simulation where the extracted geometry infoonavas already

obtained. In reality, this extraction might not be easilyasbed. Furthermore,
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the real time setup could be more complicated with an additivision system.

All previously mentioned NN algorithms were mainly validdtthrough simu-
lated robots of up to 3 DOFs, where only [77] 80] were validdig real-time

experiments of a real 2 DOF robot.

1.4 Main Methodology

It is previously shown that the recent works on neuro-agleptontrol failed
to overcome the problem of the knowledge of the contact sarfgeometry.

However, it is established that:

e The operational space formulation provides a natural fveonle, not only
the free-motion control, but also for the parallel force amation control
(compliant motion) as well, without requiring the knowledgf the con-

tact surface geometry.

The drawback of this framework, however, is that it requiaepriori

knowledge of the manipulator dynamics, which is difficulbtatain.

e The neuro-adaptive control in [74,]75] was shown to have iafaatory

performance, without prior knowledge of the robot dynamics

Therefore, our main methodology is to combine the joint spa@uro-adaptive
strategy byl[74, 75] with the unified force/motion formudatiin the operational

space.
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1.5 Summary of Contributions

The contributions of this Ph.D work are the development efftilowing con-
trol algorithms that do not rely on knowledge of robot dynesnand environ-

ment geometry:

e The Operational Space Neuro-Adaptive Motion Control:

In the first formulation, the original approach [74, 75] wasemded into
operational space motion only framework. It was shown inuation
study that a comparable performance, with that of the Lagesmndynam-
ics.

However, it was shown that its performance on real-time erpntation

was found to be inferior to the simulation equivalents.

A separate Lyapunov analysis was presented to show thastimeated
velocity signals, obtained by approximation through thterfdd backward
difference of the displacement feedback, are not suitagklcements to
the non-existing actual velocity signals for the proposealpdive motion

strategy in real-time implementation.

e The Operational Space Neuro-Adaptive Motion Control with Velocity

Observer:

In the second formulation, an improved formulation of NN raotcon-
trol with velocity observer, to overcome the absence of anawelocity

signal in the real robot, was introduced.
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It can be shown in real-time implementation that the pertoroe of the
NN motion controller with velocity observer strategy isteethan that of
the NN motion control (where filtered velocity is used to filetabsence
of the actual velocity). Also, the improved NN formulatiorelgled a

comparable performance to that of the Lagrangian dynartiategy.

e The Operational Space Neuro-Adaptive Force and Motion Conbl
with Velocity Observer, coupled with The Operational Space\euro-

Adaptive Impact Force Control:

In the third formulation, the NN force/ motion formulationtiv velocity
observer, for compliant motion, was proposed. An NN adapitivpact

strategy is also proposed to complement the main strategy.

It can be shown that the proposed neuro-adaptive complientital yielded

comparable performance with that of Lagrangian dynamiesgesyy.

Lyapunov stability proofs for all algorithms are also pmbetd, together with

experimental verification.

1.6 Organization of Thesis

The development of this thesis was presented in incrememdaher starting
from the neuro-adaptive task space free motion up to theoredaptive com-

pliant motion control:

e Chapter two presents background on robot kinematics, digsaand the

operational space formulation.
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e Chapter three presents the review of the existing adaptiveal works as
follows: the joint space direct LIP adaptive control, theergiional space
direct LIP motion control and the original joint space NN éasdaptive

control.

e Chapter four presents a neuro-adaptive motion contrallehé opera-
tional space by extending and improving the original tHegeer NN adap-
tive joint space motion control by [74, [75] into operatiosphce frame-
work [8]. Several useful end-effector properties to depdlwe proposed

formulation were also introduced.

The stability analysis of the proposed strategy was preser&imulated
and real time comparison to the performance of the Lagrarmdyaamics
and the PD-plus-gravity motion control strategies were plesented. It
was shown in simulation that a comparable performance, téhof the
Lagrangian dynamics, was achieved, but has the advantageapriori

knowledge of dynamics is required.

However, it was shown that its performance on real-time grpEntation
was found to be inferior to the simulation equivalents. Aasefe Lya-
punov analysis reveals that, the filtered velocity signaliéained by ap-
proximation through the filtered backward difference of dsplacement
feedback, are not suitable replacements to the non-exiatitual velocity
signals for the proposed adaptive motion strategy in lie@-tmplemen-

tation (physically PUMA 560 does not have joint velocity ser).

e Chapter five presents a neuro-adaptive motion controlegfyatvith ve-

locity observer. This work was extended from previous fdatian in
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Chapter three, to overcome the absence of the actual wetogital in the
real-time experimentation. The stability analysis of thepgosed strategy

was also presented.

It can be shown in real-time implementation that the pertoroe of the
NN motion controller with velocity observer strategy, whértakes only
position feedback, is better than that of the NN motion aanfwhere

filtered velocity is used to replace the actual velocity).

It also yielded, in real-time, a comparable performancé&b of the La-
grangian dynamics strategy, but has the advantage of n@a fmowl-

edge of dynamics is required.

e Chapter six presents a neuro-adaptive force and motionalasitategy
with velocity observer, which was extended from Chapter.fdine sta-
bility analysis of the proposed strategy was presentedigctimpter. An
adaptive impact strategy and its stability analysis to dement the main

strategy were also given.

It is shown that the proposed neuro-adaptive compliantrobgtelded
comparable performance with that of Lagrangian dynamiegesiy, but

has the advantage of no a priori knowledge of dynamics isiredju
e Chapter seven presents a consolidated view on how to conoberall
algorithms for a multi-task operation.

A case study is presented where two main tasks are: (i) al@rcampli-

ant motion, followed by (ii) a circular free motion.
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e Chapter eight presents summary of contributions and stiggegor fu-

ture works.
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CHAPTER 2

MANIPULATOR KINEMATICS AND THE
OPERATIONAL SPACE FORMULATION

2.1 Chapter Overview

This chapter covers the necessary background on robot kitesndynamics
[89,190, 47] and the operational space formulation [8, 91dwasworking plat-

form.

2.2 Direct Kinematics

A manipulator is treated as a structure of an open kinembaamoof n+1 links,
articulated through n rotational (revolute) and/or linganismatic) joints hav-
ing one degree of freedom. Let’s define as illustrated in Bdl, Frame{i}

(0;,x;,yi,2;), attached to Joint, be such a frame with the origin &; and
X;,Yi, Z; are its unit vectors, and let the is along the axis of Joint The kine-

matic relationship (the position and orientation) betweremcoordinate frames
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Figure 2.1: An open kinematic chain.

attached to two adjacent joints,— 1 andi, can then be described by the ho-
mogenous matrix transformation between Frgme 1} and Framgi} is

cos b; — sin 6; 0 i1

i sinf; cosa;_; cosb;cosa;_; —sina;_; —d;sino;_q
T, (¢:) = ) ) )
sin#;sinco;_y cosb;sina;_; cosoy;_1  d;cos ;g

0 0 0 1
(2.2)
wherea;_1,a;_1,0;,d; are Denavit-Hartenberg (DH) parameters according to
[89]. The dependent variablg equals tad;, or d;, depending on rotational or

linear joint, respectively.

In this thesis, our test bed is PUMA 560 and the DH parameteP&MA 560
are provided in Appendix’Al1. Note, the homogenous mataxgformation

(2.1) can also be written as

i Rz}l(%‘) pﬁfl(%)
T (q) = (2.2)
0 1
whereR! ! is a(3 x 3) rotational matrix ang. ' is a(3 x 1) positional vector

of Frame{:} expressed in Framg — 1}.
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2.2.1 End-effector Representation

As shown in Fig[ 211, for task application, it is more conesrito place the end-
effector frame at Fram¢E} at different location with Framén}. Therefore,
by exploiting [2.2) and the open kinematic chain concemnttihe orientation
and position in Cartesian space of the Frai&¢ expressed with respect to the

base frame, Framf}, can be obtained as

Tu(a) = Ti(n) Th(@) .. Thig,) = R};(q) qu) (2.3)

wherepy isa(3 x 1) position vector of Fram¢E} in the Frame{0}

pe(@) = (p(a) py(a) pz(q))T (2.4)

And R is a(3 x 3) rotational matrix of Fram¢E} in the Frame{0}

Re(a) = (si(a) sa(a) ss()) (2.5)

wheres;, s,, 53 € R? are the orientation of the unit vectots, yx, z 5, respec-
tively, as shown in Fig[.2]1. The vectgr € R" is defined as goint space
coordinate vector, with as the number of degree-of-freedom of the joint space

coordinates.

We can then define thend-effector configuration parametess,, € ", as

X
Xrep = ’ (2.6)

Xy
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where the positional representatiento describepx and the orientational rep-
resentatiorx, to describeR z. Among various possible selections for the posi-
tional representatior, and the orientational representation the most straight-
forward representations are based on the direct use of ¢neealts of { x 4)

homogenous transformation matrix, such as:

e Cartesian coordinates:wherex, exactly equals t@y:

xp =P = (@) py@ pela) €% @7)

¢ Direction Cosines:wherex, is obtained by stacking ug, s, s3 into one

(9 x 1) vector
T
x. = (sf(a) sia) si(@) €® (28)

Note that physically, in 3D space, there are, at most, thos#ipns in
x,y, z direction and, at most, three orientations:iny, z direction. There-
fore, a(3 x 1) vectorx, representation by Cartesian coordinates$ inl (2.7)
can be seen as a minimal representation of the position efitiesffector.
While, a(9 x 1) vectorx, representation by direction cosines[in (2.8) can
be seen as a non-minimal representation of the orientafidheoend-

effector. Thereforen,e, = 12.

2.3 Differential Kinematics

In this section, differential kinematics is presented teai#oe the the relation-
ship between the joint velocities and the end-effectoraitks. We present first

the differential kinematics model of the end-effector esgantation.



2.3 Differential Kinematics 25

Let direct kinematics is described Iy, = k(q). Therefore, by differentiating

the direct kinematics function with respect to joint vates) it can be obtained

= Jrep(Q) (2-9)

whereJep(q) denotes dmyep x 1) analyticalJacobian matrix whose elements

are defined as:

Oki(q)
6qj ’

Jrepij(q) = i=1,...,Mep j=1,...,n. (2.10)
Differentiating the left and right side df (2.9) with tinteit can be obtained the

representation differential kinematic modas

X
%ep= | | = Jrep(a) - (2.11)

Xy

Note, however, the representation differential kinematmdel (2.11) is non-
minimal (the orientational representation velocity ig9%x 1) vector). It is
therefore desirable to obtain a differential kinematic elagith minimal repre-

sentation.

It can be shown, by usingeometric techniqufg7]], that each joint velocity con-
tributes to the end-effector linear and angular velocityisTeads to establishing
the basic differential kinematic modekith minimal representation, describing
the relationship between the joint velocities and the dfetwr linear and an-

gular velocities, expressed in Frarf&} in Fig.[2.2, as

x=| |=Jaaq (2.12)
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Figure 2.2: End-effector velocities.

where the matrixJ(q) € R™*" denotes thgeometricJacobian.

The effector velocityx consists of a vectov to denote a ma® x 1) linear

(translational) velocity vector as

v=(ula) @ vl@) (2.13)

and a vectow to denote a mg® x 1) angular (rotational) velocity vector as

w=(wl@) @@ wl@) (2.14)

The vectorx € R, with (m < 6), is then defined as theperational space
coordinate vector, withn as the number of degree-of-freedom of the opera-
tional space coordinates and it is also independent of #adter configuration

parameters.

Note, for a manipulator, whose the number of degree-ofdivee of the oper-

ational space coordinates is less than the number of itssjag m < n, is
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defined as a redundant manipulator. And for a manipulatdr thi same num-
ber of joints and the operational space coordinates, isettfs non-redundant
manipulator i.emm = n. Throughout this thesis, our test bed is the PUMA 560,

wherem = n = 6 is non-redundant. The basic Jacobidn) is computed as

J(q) = T (2.15)

andJp. € Rmr*tandJy, € Rmo*L, with mp, mp < 3, are defined as

: for a prismatic joint
Tp =% prismate ) (2.16)
[s3x] (pp — pi) for arevolute joint
0 for a prismatic joint
Jo, = P - 2.17)
s3, for arevolute joint
where the3 x 3 skew-symmetric matrix operat@sx| is defined as
0 —s. sy
S, 0 —s.. (2.18)
—8y S 0

Note that, it is possible to expredsq) in frame{E} using the following trans-
formation
5 R 0
J%(q) = J, (2.19)
0 RF

therefore, by using®(q) (2.19), the end-effector linear and angular velocity

can be expressed in FraiE} as

% = = J%(q) q. (2.20)
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2.3.1 E,andE, Jacobian

It can be shown in [91] that it is possible to relate the erfdetbr operational

space velocity with the representation velocity as follows

or,
X E, 0 v
Pl=1("" . (2.22)
X, 0 E, w

The matrixE, € R™7*"? relates the operational space linear velooitywith
the end-effector translational velociy,. In generalmp < 3, however for a
full 3D space translational motiom;» = 3. Therefore, ifx, is chosen as the

Cartesian coordinates representation|(2.7), we have

$p=v=(pula) @ (@) (2.23)

then,E, is simply an identity matrix of sizé3 x 3). The matrixE, € R9*™o
relates the operational space linear veloacity,with the end-effector angular

velocity, x,.. In generalny < 3, however for a full 3D space rotational motion,

mo = 3. Therefore, ifx, is chosen as the direction cosines representdfioh (2.8),

thenE, can be determined as follows [91]

B (x) = | ~[s2x] |- (2.24)
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Figure 2.3: Operational frames assignment

2.4 The Operational Space Formulation

The operational framework perceives the operation of a pudaior at some
point attached to the end-effector, where the task is spdcifiThis point is
called theoperational pointand for convenience the origin of Frafig}, O,

can be selected as the operational point as illustratedgaré&iZz.3. At point

Ok is also attached Frami@'} (Okg, xo, yo, 20), Which is parallel with the base
frame {0}(Oy, xo, yo, 20). This shows that the operational space parameters,

depending on implementation, can be expressed in to baseKfg or Frame

{E}.

Note that, the operational space dynamics of the end-eff@zn be derived
from both therepresentation differential kinematic mod@.11) or thebasic

differential kinematic moddP.12), or [2.2D).

It can be shown in [47] that, the operational space dynamasedb upon the
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representation differential kinematic model can providly ¢he motion formu-
lation. However, the operational space dynamic based upobasic differen-
tial kinematic model can be shown to provide a unified franméwor the the
free-motion (motion only) formulation and the paralleldermotion formula-

tion [8,/91].

Let us now explain what the operational space formulatipetarting with the

free-motion formulation.
2.4.1 Unconstrained Motion Formulation

Before we discuss the end-effector unconstrained motioaiycs, let us present
the joint space dynamics of the manipulator; this descrdoespletely the dy-
namics of the system. The joint space dynamics for any méatiguwhere no
interaction exists with the environment, can be descrilsddliows [89, 47| 90,
91]

M(q)q + B(q,q)a + g(q) + Tric(q) =T (2.25)
whereq € R" denotes the vector of joint space coordinateslargdR™ denotes
the vector of generalized joint space force. The Lagrangisw space matrices
and vectorsM(q) € ", B(q,q) € """, g(q) € R", andric(q) € R™ de-
note the inertia matrix, Coriolis/centrifugal matrix, gitg vector and joint fric-

tion vector, respectively. Joint friction vectek: (q) can be defined as ih [92]

T fric (q) = Tvisq + T cou + Tstiexrf_Tdecq%] Sgr(q) (226)

where sgfy) = +1,—1,0 if ¢ = positive, negative and zero, respectively and
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Tisy Teous Tsti» ANAT 4. € R™ are the viscous friction, coulomb friction, static

friction (stiction) and Stribeck effect, respectively.

By using the basic differential kinematic model (2.12) atedderivative, it is
possible to transform the joint space dynamics (2.25) ihto unconstrained
motion (free-motion, or simply, motion) of the effector é&mics of a non-

redundant manipulator in the operational space defined as

My (q)% + Bx(q, @)% + gx(q) + 7x(q,q) = F (2.27)

where the vectolF € R™ denotes the generalized forces in the operational
space. The operational space matrices and vebig(g) € R™*™, Bx(q,q) €
RrRrxm e (q) € R™ andTy(q, q) € R™ denote the inertia, Coriolis/centrifugal,
gravity and joint friction dynamical terms expressed in rapienal space, re-
spectively, for a non-redundant manipulator in non-siagobnfiguration. These
operational space dynamic terms can be obtained from thegpace equiva-

lents as|[47]:

My (q) = I~ (q)M(q)J ' (q) (2.28)
By(q,q) =[J7(@)B(q, q) - Mx(@)J(q, 9 (a)  (229)
g«(q) = I " (q)g(q) (2.30)
Tx(q, @) = I~ (@) Tric (q) (2.31)

When all the dynamic terms are known a priori, the inverseadyios motion

control can be designed fdr (2]27) aslin [8]

F = Mx(q)F} cion + Bx(a, @)% + g«(q) + 7x(q, q) (2.32)



2.4 The Operational Space Formulation 32

where

* _
Fmotion -

xXq + Kyex + Kpex (2.33)

wheree, = x; — x andeé, = x,; — x denote the operational space position and
velocity tracking errors, respectively; amg, x; andx, are the desired opera-
tional space trajectories. Details on the operationaladggmaking ug* IS

motion

provided in AppendiXxBJ1.

Note that the controller (2.82) is similar to the well knowmretjoint space
computed-torque contrpexcept it is now done in operational space. Thus, to
show the stability is quite straightforward. Combiniig?). and [2.3R), yields

the following second-order closed-loop equation

8x + Kyéy + Kpey =0 (2.34)

Hence with proper choice d&,, K, ast — oo, éx,ex — 0.

2.4.2 Constrained Motion Formulation

The effector dynamics of a non-redundant manipulator autemg with the en-
vironment (constrained motion or compliant motion dynasjin operational

space can be written as

Mx(q)x + Bx(q7 q)X + gx(q) + Tx(q7 q) + Qh(X) + chontact: F (235)

where the operational space matrices and ved®fg$q) € R™*", Bx(q,q)

e ™M g (q) € R™ and7y(q,q) € R™ are similar with [2.28) -[(2.31),

with now there is an additional term: the vecfoe R™ represents the contact
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force vector exerted by the effector onto the contact sarfate relationship
between the operational space coordinates and the coataesfcan be safely

assumed to be represented by a simple linear spring model

feontact= K. 0x = Ke(X - Xinit) (2-36)

wherexi,; IS the end-effector position when in contact with the swefadth
zero contact force, anK, is defined as the linear spring matrix. This linear
spring model is applied to both translational and rotatiolegrees of freedom
of the manipulator. Therefore, the first and second devigatof [2.36) can be

obtained as
5( == Kgl fcontact (2.37)

X = Ke_l fcontact (2-38)

For ease of explanation, let's assume that we have a full 3Desfranslational
and rotational motion i.e.mp, mo = 3, which can be achieved by a non-
redundant manipulator with six DOF, therefore we have= mp + mo =

n = 6.

In the operational space formulation, compliant motion lsarachieved by de-
coupling between the axes assigned for translation/astétnotion control) and
to those for force/moment (force control). This is achietagdusing selection

matrices 2 and(2, constructed a6 x 6 matrices as in the original formulation
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in [8]:
o [(Re)™ 37 Re 0o |
0 (Re)" Xm Re
_ _ (2.39)
o [(Re)™ S5 Re 0o |
] 0 (Re)" S Re|

whereRg is the appropriate rotational matrix to transform the reffiee frame

in the base fram¢0}, to the end-effector framdE}. Furthermore

_me 0 0
Sp=|0 o5 0|, Br=Ihs—Zr
0 0 op
) (2.40)
-amm 0 0
YXu=1|0 Om, 0O 72M:I3><3_2M
I 0 0 o,

inwhichoy, , oy, , 0y, are given the valug for free-motion and for constrained
motion i.e. translational motion control and force contrelspectively. Simi-
larly, oy, o, » o, @re given the valugé and0 to represent free and constrained

rotation i.e. rotational motion control and moment contrespectively.

Note that,[(2.39) is true when the operational space coatelirare expressed in
to Frame{0}. However, it is possible to express all operational spacalies

in Frame{E} i.e. Rg = I, therefore, in this thesi§2 andQ2 can be simplified

as follows
100000 000000
010000 000000
000000 ~ o0 100 0
Q=1000000/> =000100 (2.41)
000000 0000710
000001 000000
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Figure 2.4: Compliant motion at the effector fragte} (O, zg, ye, 2e).

Therefore, specifically in our implementation, all opevatl space dynamics
and coordinates are expressed in Frdiapand for convenience the superscript

‘E’ is dropped.

Compliant motion in the operational space can then be shewpllws: as
shown in Fig[ 2.4, using selection matric®sand(2 (2.41), we can have force
control alongzg axis(F,), and the moment controls along, ye axes(M,,, M,),
respectively. By controllingl/,, M, to zeroes, then the effector axis can be
controlled to be always normal to the surface and it can mowvtne surface’s
curvature accordingly by translational motion controkejo ., vz axes. There-

fore the surface’s geometry is not needed.

As in motion control equivalent, similarly, when all the é&mic terms are

known a priori, the inverse dynamics parallel force-motoamtrol can be de-

signed for[(2.3b) as in

Mx(q)(Qanotion + QFForce) + Bx(q7 q)X + gx(q) + TX(q7 q) + fsensor: F
(2.42)
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with theF ... is the same as in(2.B3), whil& . is defined as
F%korce :—X+erf—|—K1 /Efdt
k (2.43)
=K. é + Kper + Kp /efdt
t
wheree; = f; — f ande; = —f = —K_ x are the force tracking errors,

wheref; is a constant desired active-force. The vedigfsor € R denotes
the force/moment readings at the tip of the end-effectopressed in Frame

{E}, where it can be assumed tHat,sorequals tdfeontact

Therefore, by combinind (2.85) and (2142), taking into actoselection ma-
tricesQ and€? in (2.41), the motion and force closed-loop subsystems ean b
obtained as

Q(éy + Kyéy + Kpey) =0 (2.44)

Q(—Ke_l f—l— Ke_léf + erf + KI /ef dt) =0 (245)

t

The stability analysis for the closed-loop motion subsyshas been discussed
in Section 2.411. For the closed-loop force subsystem guiB6)-{(2.3B), it

can be shown as

8¢ + é¢ + K. Kper + K, Kj / er dt =0 (2.46)

t

Hence with proper and tunable gaiKs,, Ky, then ag — oo, ef — 0.

2.5 Torque/Force Relationship

In the real time implementation, the actuators of the rolmy take the gen-

eralized joint forced™. Therefore, the generalized operational space control
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signal F must be converted into the generalized joint space equitzaleor a
non-redundant manipulator, the generalized joint fodces given by the rela-
tionship [8/47]

r=J"q)F (2.47)

where it is then sent into the actuators of the robot.
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CHAPTER 3

ADAPTIVE CONTROL REVIEW

3.1 Chapter Overview

In this chapter we present a critical review of the existidgative control of
robot manipulators of the following works: (i) the joint sedirect LIP adaptive
control, (ii) the operational space direct LIP motion cohtand (iii) the original

joint space NN based adaptive control.

3.2 Joint Space Direct LIP Adaptive Control

In this section, we present the concept and stability amatysthe LIP direct
adaptive control in joint space [46]. We first introduce sameful properties of
the joint space dynamic to be used later for control devekgrand the stability

analysis.

Note, unless otherwise specified, in this thesis all vestatvix norms are de-
fined as Frobenius nornh- ||, which is: the square-root of the sums of the

square of individual element of a matrix / vector.

The Frobenius norm of vectare 1™ is defined as

m

lal| = | Y a2 (3.1)

i
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The Frobenius norm of matriA € R"™*" is defined as

|A|| = trac6 ATA) = (3.2)

Also the Frobenius inner product of two matricksB € R™*"™ can be defined

as

<A, B> = traCQATB) = i i aijbij (33)

3.2.1 Properties of Joint Space Dynamics

Property 3.2.1 The joint space kinetic energy mati(q) € R™*" is sym-
metric and positive definite matrix, and therefore all itgexvalues are posi-
tive. It follows from Rayleigh-Ritz theorem [93] that: anggitive definite ma-
trix A satisfiesA,, < [|A| < Ay, whereA,,, Ay, > 0 denote the minimum
and maximum eigenvalues Af, respectively. Therefor®I(q(t)) is lower and
upper-bounded by its global minimum and maximum eigensallengt > 0,
respectively, as:

M, < [[M(q(t))]| < My, t>0 (3.4)

whereM,,, = min(Ani,(M(q(?)))) > 0 and My, = maxAne.(M(q(?)))) >
0, where\,.;,(-) and \,,...(-) denote the minimum and maximum eigenvalue

operators, respectively.

Property 3.2.2 The joint space Coriolis / centrifugal matri(q, q) is upper-

bounded([47]

IB(a, @)|| < B qm (3.5)
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where B), is a positive scalar constant. Notgcan be assumed to bounded

since in reality saturation occurs on the maximum velocitshe motor [47].

Property 3.2.3 The joint space gravity vect®(q) is upper-bounded [47]

lg(a@)| < gu < o0 (3.6)

Property 3.2.4 As shown in[[90], the joint friction forcesric(q) (2.31) are

bounded in magnitude

”Tvisq” g Tm’sM qM (37)
||TcouSgr(q)|| < Teouns (3.8)
|7 si€xB e sgn(@) || < Tutins (3.9)

Property 3.2.5 The matrixM(q) — 2B(q, q) is a skew-symmetric matrix [90],

hence given any joint space vectoe R”, it satisfies

2" <M(q) — 9B(q, q)) z=0. (3.10)
3.2.2 LIP Model and Direct LIP Adaptive Control

In this section, we first review the linearity property of ablblynamics, the direct
LIP adaptive control, and then the closed-loop error dyamAnd finally, we
will present the stability analysis. The joint space dyrnesP.25), considering

only joint viscous and coulomb friction vectors, can be tentas

I'= M(q)q+ B(q,q) + g(q) + Tvisq + Teou SINQ) (3.11)
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Note that, [(3.111) was obtained by considering only jointeiss and coulomb
friction vectors in order to achieve the linearity propetherefore[(3.111) can be

shown in linear-in-parameter model as follows|[94, 47]

I'=Y(q,q,9) = (3.12)

whereY (q, q, q) € R"**" is the calculable regression matrix amds R'*" is

the vector of actual dynamic parameters. Note that [3.12)oeaexpanded as

follows
-Fl- _lel Yiz y?”- -71'1-
| y%ﬂ y%rz y%rn 2 (3.13)
_Fn_ _yg1 YEQ ygn_ M

wherer; is a (13 x 1) vector of actual inertial parameters defined as follows

_ Tl Tl Tl Ti Ti Ti ) T
™ = [mli mlilcﬂ»‘ mlilciy mlilciz ]lixa: Iliyy Ilizz Ilixy ]liyz ]lixz Imz Tuis; TCOUi]

fori=1,...,n
(3.14)

In details, the inertial parameters are defined as follows:

e my, is the mass of Link (scalar).

o mylc,. my,lc,, mu,lc,, are the components of the first moment of inertia
of Link ¢, which are obtained by multiplying the link mass with the 1

position vector

. T
r;7Ci = (lCZ:E lciy lciz) (315)

which is defined as the center-of-mass of linkith respect to frame.
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e Thevariablesl; . I} .1} ... I} .. I} ,.. I .. are defined as
[w = Lipw + 0, (18, + 16,.2) (3.16)
Iy =1Ly +mu (G, + 1) (3.17)
I} = 1+, (18, + 12, (3.18)
Iy = T+, (lowe + loyy) (3.19)
Iy =1+ (ley + le,2) (3.20)
I = 1) e + (e + lo2) (3.21)

which is obtained from the following computation

where
L=\-I, I, -L, (3.23)

is the inertia tensor of the center-of-mass of Linkxpressed in frame

And S(r} ) is a3 x 3 skew-symmetric operator matrix defined as

0 _lCiz lCiy
Sric)=1| le, 0 —low (3.24)

~low o 0
. y T
given a3 x 1 vectorr; ., = ([Cﬂ loyy lciz> :

e [,,, Is a scalar motor inertia about its axis of rotatigp. It is taken from

the (3, 3) element of the motor inertia tenskf: as follows:
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4

. F A
Joint spage LIP Robot -39
adaptive/ control

Eldaéldaqd

param.
P updates

Figure 3.1: The joint space direct LIP adaptive controlctite.

Assuming the rotor has symmetric mass distribution abewbits of rota-
tion and selecting a proper frame, the motor inertia teigarexpressed

in its own framem,, can be written as

m 0 0

m;xx

Lh=10 1Im. 0 (3.25)
0o 0 Im

m;zz

It can be shown in[[47] that, out of three elements of the motertia
tensor, onlyl;:_ will contribute into the kinetic energy. Therefore, only

I, is taken into account. To simplify the notation, the scdlfy, . is

m;zz

written as/,,,,.

The control law, as shown in Fig._3.1, is defined as

T = M(q)T* + B(q, Q) + &(q) + Tuislr + Teou SINQ) (3.26)

The following termsy, andI'™* are defined as

qr = qq + Ae (3.27)

T* = §, + Ar (3.28)
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with the computable terms are defined for compulitigas

qr = qa + Aé (3.29)

r=¢, —q=eé-t+Ae (3.30)

whereA € R"*" is a positive diagonal matrix, = q; — x ande = g, — x are
the joint space position and velocity tracking errors, eespely, withqg, qq
andg, are the desired joint space trajectories. A relationghip= (-) — () is
defined wheré-) is the estimation error dynamids) is the actual dynamicﬁf,)
is the estimated dynamics, which will be estimated by thieneged LIP model.
Note that, in the implementation, by exploiting its lineaoael form in [3.12),

the controller[(3.26) can be simply implemented as

I'=Y(q,9,9,,q,) 7 (3.31)

wheresr € R'3" is the vector of estimated inertial parameters. Combinieg t
joint space dynamic$ (3.111) and direct LIP adaptive cor@d8), and taking
into account the first derivative df (3130), the closed-leomr dynamics can be

obtained as as

M(q)r = —M(q)Ar — B(q,q)r + 7 (3.32)
where the uncertaintiegis defined as
1 =M(a)I" + B(q, 4)4, + &(q) + Tuislr + Teou SIG) (3.33)

which can be written using LIP forri(3.112) as

n=Y(q,q,4q,4q,) 7 (3.34)
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wheres € R!3" is the vector of closed-loop error dynamics parameters- Sub

stituting (3.34) into the closed-loop error dynamics (3, 3elds

M(q)i = —M(q)Ar — B(q,q)r + Y(q,q, 4y, G,) 7. (3.35)

3.2.3 Stability Analysis

The chosen Lyapunov function candidate for the closed-lwpr dynamics

(3.38) with the uncertaintieg (3.34), is

TP % (3.36)

N | —

whereP € R1¥"<13" js a constant positive diagonal matrix. Therefore the time

derivative of [3.36) can be obtained as

. 1 . .
V(r,7) = r"M(q)t + 3 r'M(q)r + 7#"P ' (3.37)

Next, we substitute the closed-loop dynamics (B.35) with tihcertainties)
(3:32) and also take into account Propérty 3.2.5 Inte, 7) of (3.31), to obtain

V(e #) = r"M(@Ar + 7" (P'% + Y(q.4.¢.4)r)  (3.38)

Now, if we introduce the parameter updates as

& =P (Y"(a,d,4,4) r+ Yf(a,) T) (3.39)

whereY s(q, q) andff are computed as

Yi(a,4q) =G(s)Y(q, 4, 4) (3.40)
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and

L;=T;-T;=Y(qa7 (3.41)

wherel'; andT'; are computed as

Ty =G(s)T (3.42)

IVER GICNE, (3.43)

Note that,G(s) is a strictly stable Laplace filter, such as a first order filter
G(s) = Si%, a > 0. It can be shown [48, 49] thaf ;(q, q) is free from
the acceleration signals. Other works to avoid calculativegjoint accelera-
tions with different kind of technique, characteristicddaequirements were

presented i [95, 50, 51, 52]. Henceforth, we can write, 7) (3.38) as

V(r, @) = —r"™M(q)Ar — #" Y[ (q,¢) Y(q,q)7 < 0. (3.44)

It can be shown later on that— oco,r — 0, from (3.30) impliese,é — 0.
While t — oo, — 0 can only be achieved if only exciting trajectories are
given. In the case the exciting trajectories are not giveantthe parameter
errors can only be guaranteed to be bounded. Note wheh @) @mploys a
constant gaiP, then the estimation term (the second term) is often redeaise

gradientestimator.

Now, we are ready to show the stability analysis in detailsstFwe need to

invoke Barbalat’'s lemma[93] (pp. 123) that if:

e I/ is bounded as — oo, and
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e V is bounded,

thenV — 0 ast — oo. The first condition can be provided by noticifiig< 0
in (3.44) andV is lowerbounded by zero i (3.86), therefdreis bounded as

t — oo. Therefore we are left with proving the boundednesk of

The expression of” can be established from (3144) as

V =—-2r"M(q)At — r"™M(q)Ar - 2 7TY] Y7 -2 7Y} Y,
(3.45)

The boundedness &f can be shown as follows:

e SinceV < 0 (3:38) andV (3.36) is lower bounded by zer®, tends to

a constant a8 — oo and thereford/ remains boundeébr ¢ € [0, o0].

SinceV is bounded an®/1(q) cannot be zero by Propeity 3.2.1, therefore
from (3.36),r and# is bounded. The boundednessrafnfers the bound-
edness ok andé. The boundedness ef ¢ and the trajectorieq,, 44, G4

(by design), infers the boundednessyof, q.., g,

dM(q)
dq

bounded, respectively, by Propelty 3]12.1 and previoustpoin

* M(q) =

g can be shown to be bounded sirleEq) andq are

e The closed-loop error dynamids (3135) can be written as

M(q)r + M(q)Ar + B(q,q)r = Y(q,9,4,,q,) 7. (3.46)

Therefore, from propertids 3.2[1, 3.2.2 and 3.2.3[and3iRc&n be in-

ferred thatY (q, q, q) is bounded.
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The boundedness & (q, g, q,, G.) can be inferred from the bounded-

ness ofY (q, q, q) andq,, 4, (first point). Using[(3.46), the boundedness
of Y(q,q,q,,q,) and the boundedness ofand 7 (first point), results

r is bounded

: d(Yys(q,q) sa o
Y, = — Y 3.47
f 0 P (9,9, 4) (3.47)

S«

SinceY(q, q,q) and
S

n are bounded, therefof¥  is bounded
o i Btk

e The boundedness af can be directly obtained frorh (3139).

Therefore all the terms making up (3.45) are bounded, therefore by using

Barbalat's lemma, we can obtain:

V - 0ast - oo=r — 0andY,(q,q) ® — 0ast — oo. Or, in other

words:

e The convergence af, which implies the convergence efe.
e The convergence of ;(q, ).

However, this does not guarantee the convergenée of

The convergence af can be shown as follows [93]: pre-multiplying

Y;(q,q) ® — 0 with Y} (q, q), then integrating it over timg result

r=t
/0 Y;(q,4)Ys(q,q) 7 dr —0 (3.48)

thus the only way to to enforcg — 0 is to make

r=t
| Yi@ayiaa>o (3.49)
0
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This condition is where the matriX ;(q, q) needs to be persistently exciting,
therefore the parameter errarwill converge to zero, complete proof can be

shown in [96/ 97].

In practical side, this means that the trajectory trackimgrs are always guar-
anteed to converge and for the parameter errors are onlaigpesd to converge
if only exciting trajectories are given. In the case the &mgitrajectories are

not given, then the parameter errors can only be guarantdssititounded.

Note that the following aspects are still preferable to lmrporated: (1) two
simplified dynamic models for the control and parametertifieation, to meet
the requirement of the real-time deterministic samplinggt{note, ideally, iden-
tification model must be acceleration free), and (2) optimagéctory, to enforce

the convergence of the dynamic parameters.

3.3 Operational Space Direct LIP Adaptive Mo-
tion Control

For ease of perusal, let’'s reproduce the end-effector matiomamics of the

non-redundant manipulatdr (2]27) in Chapter two, whichlmadescribed as

F = My (q)%X + Bx(q, q)% + gx(a) + 7x(q,q) (3.50)

where the operational space matrices and ved®fgsq) € R, Bx(q,q)

€ Rpmxm gx(q) c %m) Tx(q’ q) € R™ are similar with KZB) —[]Z31), respec-

tively, with slight modification onr,(q, q) as follows:

Tx(a, ) = J77(Q) (Tvis@ + Teou SINQ)) (3.51)
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4
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control
L param.
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Figure 3.2: The operational space direct LIP adaptive matantrol structure.

where it is obtained by considering only viscous and coultanims in order to

achieve the linearity property.

As the LIP joint space equivalent, by using the linearitygany, the operational

space dynamic$ (3.50) can be shown to be linear-in-paramefellows

F=Y(q,q d) . (3.52)

which can be expanded as

F Yh o Yiz - Y1Tn U
F. Yar Yar 0 You| | W
I R : ? (3.53)
_F m | _ygl yg2 T ygn_ | T |

whereY (q, ¢, q) € R™*13" is the operational space regression matrix and
R13" is the vector of actual inertial parameters, with each etdme € R!3 has

been described i (3.114).

The operational space LIP adaptive force-motion contns) &s shown in Fig.

3.2, can be defined as

~

F = My (q)Foion + Bx (@, @)%, + &x(q) + Tx(a, 4) (3.54)
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The following termsk,. andF* are defined as

motion

X, = %4+ Ae (3.55)

*
Fmotion

=%, + Ar (3.56)

with the computable terms are defined for compulitig,., as

%, = %4+ Aé (3.57)

r=x,—x=¢e+ Ae (3.58)

whereA € R™*™ is a positive diagonal matrix, = x; — x andé = x; — x are
the operational space position and velocity tracking srnaspectively x4, X4

andx, are the desired operational space trajectories.

Note that, in the implementation, by exploiting the linéain-the-parameter

model form in [(3.5R), the controllelf (3.54) can be simply lerpented as

F=Y(q4q%,F:..) & (3.59)

motion

Combining the operational space motion dynandics (3.50)damdt LIP adap-
tive control [3.54), and taking into account the first detixa of (3.58), the

closed-loop error dynamics can be obtained as

Mx(q)r = —Mx(q)Ar — Bx(q,q)r + 7 (3.60)

where the uncertaintiegis defined as

N = My (q) Firotion + Bx(a, @) %, + &(q) + 7x(q, 4). (3.61)
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which can be written using LIP forri(3.12) as

N =Y(q, 4, %, Fjpiion) . (3.62)

motion

Substituting[(3.62) into the closed-loop error dynamic8@3}, yields

M, (q)F = —M,(q)Ar — By (q,q)r + Y(q, 4, %, F* i) 7 (3.63)

The chosen Lyapunov function candidate for the closed-kwpr dynamics

(3.63) with the uncertaintieg (3.62), is

1
V(r, @) =5 r'Mx(q)r +

5 P % (3.64)

1
2
whereP ¢ R13mx13m s g constant positive diagonal matrix. Now, if we intro-

duce the parameter updates as

7 =P (Y7(4, 6% Fhgion) * + Y7 (0, 0) Fy ) (3.65)
Note that, the parameter updates (8.65) is similar as in f@8jever, the second
term is not included in [98].
Next, Y (q, ¢) andF; in (3.65) are computed as follows:

Y(q,q) = G(s)Y(q, 4, §) (3.66)

and
Ff:Ff—Ff:Yf(q,Q)ﬁ' (367)
whereF ; andF; are computed as

F; =G(s)F (3.68)

Fy=Y¢(q,q) 7 (3.69)
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Then by using similar procedure like in Section 3.2.3, it barshown that

Vi, @) =—r"My(@)Ar — 7 Y} (q,q) Ys(q,a@)7 (3.70)

It can be shown using Barbalat's lemma as in Sed¢fion3.2t&#ta— oo, r —
0. Therefore, fromr (3.58) impliese,é — 0. Forw — 0 can only be achieved
if only exciting trajectories are given. In the case the gxgitrajectories are

not given, then the parameter errors can only be guaranteselhounded.

Clearly, this operational space extension requires thetoaction of
Y (q,q,q) 352) andY ;(q, ¢) (8.68), which obviously are more complex than

the joint space equivalent.

Note that, a cheaper alternative over direct LIP strategypgrational space can
be achieved by employing parameter estimation (eitheigusmline or off-line
method) in joint space. Then non-adaptive model-basedaoistemployed
in operational space by transforming the joint space madelthe operational
model equivalents via (2.28) E(2]31). However, since theragional space con-
trol is non-adaptive case, therefore one needs to redo iiesjpace parameter

identification procedure, whenever necessary.

3.4 The Original Joint Space NN Adaptive Motion
Control

For ease of perusal, let’s reproduce the joint space dyrsami@.25)

M(q)d + B(q,9)q + g(q) + Tric(q) =T (3.71)
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whereq € R" denotes the vector of joint space coordinateslargdR™ denotes
the vector of generalized joint space force. The Lagrangigwh space matrices
and vectorsM(q) € £"*", B(q,q) € ", g(q) € R", andTsic(q) € R”

denote the inertia matrix, Coriolis/centrifugal matrixagity vector and joint

friction vector as in[(Z.31).

Next, we present the original joint space NN motion contrd,[75] as
F=K,r+v+f (3.72)

whereK, € R"*" is a positive diagonal matrix; is an x 1 robust term vector

to be defined later and the teffiis an x 1 vector defined as

~

f = M(q)d, + B(q, @), + &(q) + 7(q, q). (3.73)

Note in [3.73), a relationship) = (-) — (*) is defined wher¢) is the estimation
error dynamics(-) is the actual dynamic$f,) is the estimated dynamics, which

will be estimated by the estimated NN model. The followingre are also

defined
d = 4 + Ae (3.74)
qr = qq+ Aé (3.75)
r=¢e+ Ae (3.76)

whereA € R"*" is a positive diagonal matrixx = q; — x ande = qq — x
are the joint space position and velocity tracking erragspectivelygq,, g4 and
qq are the desired joint space trajectories. The originak jgirace NN motion

control [74]75] can be shown in Fig._B.3.
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Figure 3.3: The original joint space NN motion control sture.

Next, combining the joint space dynamits (3.71) and NN adajphotion con-
trol (3.72), and taking into accourt(3]76), the closedpleoror dynamics can
be obtained as

M(q)t + Kyr + B(q,q)r + v =n; (3.77)
where the uncertaintiegin joint space is defined as

n =M(q)q, + B(q,q)q, +&(q) + 7(q,q) (3.78)

and if written in lumped vectors as

n=f—f. (3.79)

3.4.1 Three-Layer Neural Networks

As shown in Fig[3 4, in general, a three-layer neural netvimidefined such
that N;, N, and N3 are the number of neurons in layer 1, layer 2, layer 3,
respectivelyz € RV is the NN input-layer vectogr € 12 is the NN hidden-
layer vector andh € i3 is the NN output-layer vectory, is the first-to-second
layer weights, with = 1,..., N; as the input-layer index anid = 1,..., N,

as the hidden-layer index; is the threshold offset, and,, is second-to-third
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layer weights for output vector, with= 1, ..., N3 as the output-layer index.
Functiono(-) is defined to be differentiable throughout, such as sigmaili a
hyperbolic functions. In this thesis, sigmoid functiefs) = 1/(1 + exp~(@**))
is selected. Therefore each element of output vacican be expressed as

N N1

u; :Zwik o <kal2’1 + 0k> c1=1,...,Ns, (3.80)

k=1 =1
Equation[(3.80) can be written in a simplified manner in veatud-matrix form
asin[99] as

u=W'o (V'z) (3.81)

with W ¢ RVsxN2 vV ¢ RN2*M | Note N3 can be determined from the robot
DOF, therefore for non-redundant manipulator with 6 DOMthg = n = 6.
Also, the addition of the scala, in (3.81), has been included in the'z term.
This can be done by appending the ve@br(where each element &) as the

first row of V and an element containing ‘1’at the beginning of veetor
3.4.2 Uncertaintiesn in NN terms

The uncertaintieg as lumped vectors as in (3178) is

n=f—f (3.82)

From NN theory, given an adequate number of hidden layers)ddg a three
layer NNs with ideal weights is capable of approximating &nyction [100,
101]. In practice, however, there are only limited numbdridtien layer nodes,

therefore the actual terfhas a whole, for a given number of hidden neurons,
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Figure 3.4: Three-layer NN structure (with output vector).

can be described by three-layer NNs with constatiimumweightsV, W and

a vector of the lumped approximation ereoe R" as follows
f(z) = Wro(V'z) + ¢ (3.83)
And the selected NN input vectarin [74,75] is
T . .T T T

z=[e" e x) x; %] (3.84)

Likewise the estimated functidifz), can be described by the estimated weights
V, W as follows

f(z) = W'a(V'z) (3.85)
Therefore, usind (3.83) and (318%),(3.86) can be written as

n= Wlo(V'z) - Wle(V'z) + ¢ (3.86)

To computen (3.86), it is necessary to compute the general expression of
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W7o (VTz) - WTe(VTz), which can be manipulated, as
W'l (VTz) - WTa(VTz)
=W'e(V'z) - WTa(V'2) = WTe(VT2) + Wia(VTz) (3.87)
=Wlo(VTz) + WT (U(VTZ) — O'(VTZ))
whereW andV are defined as the NN weight errors.

Therefore, first, we need to compute the error of the sigmaidtion as follows

&=0(V'z) - o(V'2) (3.88)

From the Taylor series expansion, we have

do (k)
dk

ok)|, . =ok) + (k — k) + O(k — k) (3.89)

whereO (k — k) denotes the higher order terms. Note thrék) = 92|

and because is differentiable,o’ exists. Hencer(VTz)\VTZZVTZ in (3.88)

can be written as

o(V'z) =0 (V'2) + o' (VT2)VTz + O(V'z) (3.90)

To simplify the notations, it is defined that = o(V"z), 6 = o(V"z), and

o = ¢ + o. Therefore, usind (3.90y (3.88) can be rewritten as:

6 =0(V'z)—o(V'2)=6'VTz+0(V'2), (3.91)

Substituting[(3.91) intd (3.87) and some manipulationsldyi

W's + WP =W 6 —6'VT'2) + Wie'Viz + WTe'VTz
i (3.92)
+WTO(VTz)
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Substituting[(3.92) inte) in (3.86), we obtain

~

n=W%'6—-6V'2)+ W'6'VTz +¢ (3.93)

where the terng is defined as

¢=WT'e'Viz - WIO(VTz) + ¢ (3.94)

Now, to ease for later developments let’s defhe- diag[W, V], such that

1Z] = VIWIE + [VI? < Zus. (3.95)

whereZ,, is a positive scalar constant. No®/, V are upper-bounded since

the actual dynamic is bounded.
It was shown in[[74, 75] thag can be shown to be bounded as follows
I¢II < Co + Cu |1 Z]| + Co | Z]] [Ix] (3.96)

with C!s are positive constants.
3.4.3 Stability Analysis of the Original Approach

The chosen Lyapunov function candidate for the closed-lwpr dynamics

(3.77), with the uncertaintieg (3.93), is

n Ny
1 1 < -1 - 8
V(r,Z) = 5rTM(q)H5 > W?Fi’lWiJré > VIG.'V, (397)
=1 k=1

whereW,; ¢ ®Y2 V, € R are column vectors anBl; ' ¢ RV2*Nz2 G ¢

RN1>N gre positive diagonal matrices.
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Taking the derivative oF (r, Z) with respect to time then substituting the closed-

loop error dynamics(3.77); (3.93) and Property 3.2.5 int@ (r, Z) 3.97),

results

V(r, Z) = r'Kyr—rfo+ri¢+ 9 (3.98)

wherev) is defined as

’lp: ZW;F <FZ_1V~VZ—|—6'7’Z—&/VZ7’Z>
i=1

Ny . (3.99)
k=1 =1
Now, if we introduce the weight updates as follows
W, = Fi(6 7 — 6'Vzrs — rl|r|W)), (3.100)
Vi = Gi(z6, () War:) — kl[r|[Vy). (3.101)

i=1

and take into accountW = W, sinceW = W — W andW is constant, then

1 (3.99) can be expressed as:

n No

¥ =kllr]| > WIW, + k]| Y ViV (3.102)
=1 k=1

< — &l IZI* + sllr |1 Z[| Zas (3.103)

where [(3.10B) is obtained by making use of the following

(W, W) => WIW,, (3.104)
=1
~ N2 ~
(V,V)=> ViV, (3.105)
k=1

(Z,Z) = (V,V) + (W, W) < |ZI| Zy — |1Z]". (3.106)
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Therefore, using (3.103),¢ (3.96), Propertyy 3.211 and defining the robust term
as follows

v=K.(|Z| + Zu) (3.107)

where K, is a positive scalar constant, then it is possible to shiw, Z) in

(3.98) as
V(r,Z) < — Kyl = K.(|Z]| + Zar) x|

+ Colrll + CLIZ| I + CallZ x| (3.108)
= &lellIZ]* + k|1 Z]| Zp
It was assumed in [74, 75] that it is known tHét > C,, and since|Z||+ Z,; >

|Z||, therefore the terni (||Z|| + Zu)|r||? will cancel the termC, || Z||||r||?,

thus

L . .7 3
V(0,2 < el [ ool + o121 (121 - 51 - Go - izl @109)

or, by definingCs = Z); + C4/k, we can simplify further

L - C KkC?2
V2 < il [ Kunlell - o+ (1] - G2 - "] (@10
ThereforeV (r,Z) < 0 if
Co + vC2/4
e > =——3— ;fi Ay o (3.111)
. G, 2 C
1Z]| > ?0+Z3+73 = b, (3.112)

then by applying the Lyapunov’s extension theorem [102htast — oo, the

errors||r|| and ||Z| will be bounded, within the boundary &, as depicted in
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Figure 3.5:V(r, Z) regions of the original joint space NN adaptive motion con-
trol.

Fig.[3.5. By using bounded-input-bounded-output (BIBQ)party, a bounded

inputr in (38.76), yields bounded outputsande.

The evolution of the error signals based upon bounded gtatain be explained

as in [102], as follows: suppose the errors start within tbargary ofS,
then when they start leaving the boundarySo§ince thel/(r, Z) is decreasing
(V(r, Z) < 0) hence the errors cannot leave the boundar§.oNow, suppose
the errors start at outside the boundarySahen they tend to go to the equilib-
rium sinceV (r, Z) is decreasing. However, they cannot go to the equilibrium,
but only up to entering the boundary §fand once they enter the boundary of

S, we have already shown that they are bounded.

Some notes are in order:

e Itwas shown in the stability analysis that one of the termes 6% || Z | ||z ||,
will be canceled by the robust term = K. (||Z|| + Zu)||r|, under as-

sumptionk’, > (5. In other words's, Cy, Cy must be known.
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However, in practice we don’t know,, C;, Cy nor we want to compute

them, as it is not coherent with the adaptive control phipdso

e Implementingv with exorbitantly largefl<, might not be suitable for tran-

sient condition, albei€’,||Z||||r|| might be truly canceled.

e Therefore, in our approach (the modified version of the aabapproach),
the robust termv (3.107) is simply omitted and none of the termg afill
be canceled. Therefoemust contain as many as possible the weight er-

rors. Henceforth, we suggest to rewrijé3.93) as
n=W'6+W'6'VTz+¢ (3.113)
where the un-cancelable “whole” err¢iis defined as
¢=WTe'Viz4+ WTO(VTz) + €. (3.114)

We will use the forms in[{3.113) an@(3.114) throughout ourdified

approach in the next chapter on Secfiod 4.4.

In the next chapter, we will present our modified NN adaptivaion control

implemented in the operational space framework.
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CHAPTER 4

NN ADAPTIVE MOTION CONTROL

4.1 Chapter Overview

In this chapter, the operational space NN adaptive motiorrobis presented.
The proposed control law is based upon the original NN adaptint space

control [74,[75], extended into the operational space freéian formulation

8.

Further, some adjustments are needed in the original ddatrpso that it be-
comes more applicable and robust for real-time implem@amdgnhote that the
original work was only implemented in simulation). The slipanalysis of

the proposed strategy is also presented in this chapter.

Several useful properties of the end effector dynamics velde the proposed
formulation within the operational space are introducethia chapter. Simu-
lated and real-time comparison to the performance of thedragan dynamics

and the PD-plus-gravity control strategies were also prtese

The preliminary study of this chapter was presented in|[103]
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4.2 End-effector Motion Dynamics

For controller formulation later, the end-effector freetman dynamics of the

non-redundant manipulatdr (2]27) is reproduced, for ebpernisal, as

My (q)% + Bx(q, @)% + gx(q) + 7x(q,q) = F (4.1)

wherex € R™ andq € R" denote the operational and joint space coor-
dinates, respectively, where for a non-redundant maniputa = n. The
matricesM,(q) € R andByx(q,q) € R™*™ represent the inertia and
the Coriolis/centrifugal terms, respectively, while \@stg,(q) € R™ and
Tx(q,q) € R denote the gravity and joint friction forces, respectivelihe

vectorF € R™ is the operational space generalized forces.

First, the end-effector properties useful for developimg proposed algorithms
need to be introduced, as the previous properties in Segfibh are only appli-

cable for joint space dynamics.

4.3 Properties of the End-Effector Dynamics

Property 4.3.1 The operational space kinetic energy matik (q) € R™*™,
due to(2.28) which is valid for all non-singular configurations and thecfa
that joint space kinetic energyl(q) > 0, is symmetric and positive definite
matrix and therefore all its eigenvalues are positive. ltdes from Rayleigh-
Ritz theorem[[93] that: any positive definite matéxsatisfiesA,, < ||A|| <

Ay, whereA,,, Ay, > 0 denote the minimum and maximum eigenvalues,of
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respectively. Therefor®1,(q(¢)) alongt > 0 is lower and upper-bounded by

its global minimum and maximum eigenvalues, respectiasly,

whereM,, ,, = min(A,,;,(Mx(q(t)))) > 0 and M, y = max A\, (Mx(q(t))))
> 0, where\,,;,, () and \,,...(-) denote the minimum and maximum eigenvalue

operators, respectively.

Property 4.3.2 The operational space Coriolis and centrifugal matrix cam b

expressed as a function gfandx since

Bx(a,%) = [J7"(q)B(q, %) — Mx(q)J(a,%)]T7"(q). (4.3)

Note, B(q, x) andJ(q, x) as functions ofq andx can be obtained directly by

using the factj = J~'(q) x into B(q, ¢) andJ(q, q), respectively.

Property 4.3.3 The operational space Coriolis and centrifugal matrix

B«(q, x) can be shown to be upper-bounded

IBx(a,%)|| < Beom @m0 (4.4)

whereB, ) is a positive scalar constant. This can be obtained dirdaylgub-
stituting the properties in joint space thaB (q, ¢)|| < B da and||J(q, )| <
Jur dar (Bas, Jur are positive scalar constants) and the fgcte J—'(q) x. Note
g can be assumed to bounded since in reality saturation ocutee maximum

velocity of the motor [47], thereforg is bounded.
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Figure 4.1: The operational space NN motion control stmgctu

Property 4.3.4 The operational space gravity vectgr(q) (2.30)is upper-
bounded:

lgx(Q)|| < gm < o0 (4.5)

Property 4.3.5 For non-redundant roboMx(Q)—QBx(q, q) is a skew-symmetric

matrix [98,/90], hence given an operational space veetar R, it satisfies

27 (Mx(q) — 9B, (q, q)) z=0. (4.6)

Therefore, it can also be written, using Propdrty 4.3.2, as

2" (Mx(q) — 9B,(q, >'<)> z = 0. 4.7)

Property 4.3.6 It can be shown for non-redundant robot [104], given any two

operational space vectorg, z € R™, thatB,(q, x) satisfies

By(q,y)z = Bx(q,2)y. (4.8)
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4.4 The Modified NN Adaptive Motion Control Law

Next, we present the operational space NN motion controlitaig. [4.1, as

we can see the adaptation from the joint space equivaletraigistforward

~

F = My (q)Foion + Bx(@, @)%, + &<(q) + Tx(a,4) (4.9)

wherex, andF* are defined as

motion
X, = %4 + Ae (4.10)

*
Fmotion

— % + Ar (4.11)

and the computable terms are defined to compute, ,, as

%, = %+ Aé (4.12)

r=x,—x=¢e+ Ae (4.13)

whereA € R™*™ is a positive diagonal matrixg = x; — x ande = x; — x
are the operational space position and velocity trackingrerwithx,, x; and
X, are the desired operational space trajectories. Notetiratgtimated NNs
within (4.9) will be introduced modularly (not as one lumpegttor) i.e. there
will be two estimated NN output matric@d, (q), Bx(q, q) € ®™™ and two

estimated NN output vectogs (q), 7x(q, q) € R™.

Now, let’s list the differences between our modified apphoaith the original

approach:

e The robust termv is omitted. In the original approach, the robust term

v = K,(|Z|| + Zy) r is used to cancel,||Z||||r||, which is part of
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<]l (please sed (3.96)). However, in reality, we don’t knGw C, Cp.

Therefore the robust term is not needed.

e The estimated NNs are introduced modularly, not as one ldmpetor,
and the NN input is defined appropriately to dependent vijdbr in-
stance the input foBy(q, ) is defined az; = [qT ¢%]T. The reason
behind the modularity with proper inputs is that it is exgecthat the
NNs can learn more appropriately than one lumped NN vectomhNiN

arbitrary input.
e It can be seen that the controller is only using estimated Aitnkthere-
fore, the standard PD terl, r “seems "to be omitted.

However, it can be shown to be similar, as/in/[93]Ki{ equates to

K, = M,(q)A (4.14)

and therefordK, and M, (q)A all satisfy as positive diagonal matrices.

The closed-loop error dynamics for the ideal case can bershsw

Mx(q)t + Mx(q)Ar + Bx(q,g)r = 0. (4.15)

And the Lyapunov function is chosen as

V(r) = %rTMX(q)r (4.16)
Substituting the closed-loop error dynamics (%.15) Wita), and taking

into account Properfy 4.3.5, we obtain

V(r) = = r"My(a)Ar + 17 (My(q) - Bx(q, @) ) r i

= —1"M,(q)Ar <0
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Where it can be shown using Barbalat’s lemima [93] that co,r — 0,

from (4.13) implyinge, &€ — 0.

By combining the operational space motion dynaniicg (4.1h tie NN adap-
tive motion control[(4.B), and taking into account the firetidative of (4.18),

the closed-loop error dynamics can be obtained as

Mx(q)r + Mx(q)Ar + Bx(q, q)r = n; (4.18)

where the uncertaintiegis defined as

1 = My(@)F}otion + Bx(d, @)%, + 8x(q) + 7« (4.19)
4.4.1 Three-Layer Neural Networks

This section is an extension from Section 3.4.1. It expl#wesconstruction of
NN as an output matrix, as estimated matrices are requirediircontroller.

Each element of output matri¥ ¢ V2> can be expressed as
N2 Nl
Ujj = Zwijk O (Z Vg2 + 9k> ;
— P (4.20)
i=1,...,Ns, j=1,....,N,

where now second-to-third layer weightsas;, with ¢ = 1,..., N3, j =
1,..., N, are the output-layer indices. Similarly, (4120) can be teritin a

vector-and-matrix form as
U=W"0o (V') (4.21)

where nowW ¢ RNsxNaxNz2 'y ¢ RN2xN - For a non-redundant manipulator

with 6 DOF N, = N3 = m = 6.
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4.4.2 Uncertaintiesn in NN terms

The procedure is similar to Sectign 314.2. However since mow done in
modular fashion, therefore we will present it completelythis section. This
section also serves as a foundation for later algorithm#dJibe relationship

of error dynamicg-) = (-) — (-), the uncertaintieg in (.19) can be written as

~ ~

n = (Mx(q) — Mx(q))Frotion + (Bx(a, @) — Bx(q,q))x,
(4.22)

A

+ (gx(q) — 8x(q)) + (Tx(q, @) — Tx(q,q))

From NN theory, given an adequate number of hidden layers)ddg a three
layer NNs with ideal weights is capable of approximating &myction [100,
101]. In practice, however, there are only limited numbdridfien layer nodes,
thus the dynamical termdI,(q), Bx(q,q), gx(q), and7«(q, q), for a given
number of neurons, can be described by three-layer NNs withtanoptimum
weightsV,,, W, and approximation erraf,,, with the subscripp = M, B, g, 7

representing the individual dynamical terms:

My (q) = Wi, on(Viy 21) + e (4.23)
By(q,q) = Wy o5(Vyzp) + €5 (4.24)
gx(q) = W;F ag(Vg zy) + €4 (4.25)
Tx(q,q) = W7 0,(V] 2,) +e, (4.26)

Similarly, the estimated dynamic terMd,(q), Bx(q, 4), &x(q), and#x(q, q)

are described by the estimated weighits W, with subscripp = M, B, g, 7.

It is clear that thaiVi(q), Bx(q, q), gx(q) can be been shown to be bounded

by Propertie§ 4.311,4.3/3,4.8.4, respectively. The bedndss of-,(q, ¢) can
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be shown by using Properfy 3.2.4 and the fact {hht'(q)|| is bounded for
non-singular configuration. Therefore, the optimum wesgWi,, V,, and the

approximation erroe,, (with subscriptp = M, B, g, 7) from (4.23){4.26), are

also upper-bounded.

For ease of later developments, let us defhhe= diagW, V| to be upper-

bounded as follows

12 = VIWIPR + [V]? < Zu (4.27)

where Z), is a positive scalar constary = diagW,,, Wz, W,, W] and

V = dlag[VM, VB, Vg, VT]

Now, for ease of presentation, the following generic NN esgions are defined:
L,=W, 0,(V) z,)

L, =W, 0,(V) z,) (4.28)

L

p =Ly — Ly;

whereL,, L,, andL, represent the optimum, estimated, and error, of the respec-

tive terms. Hence, using the generic NN expressions, thertaioties [(4.22)
can be written as

~

n= (LM - ]ZM)F;knotion + (LB - f‘B)XT + (Lg - Lg) + (LT - fJT) +€
(4.29)

where the total approximation errer= ey F; ion + €5 X + €5+ €, < eum

(since the actual dynamics are bounded). To comgui.29), it is necessary
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to compute the generic foriia, — L,,, which can be manipulated, as follows

L,—L,= W, o(V,z,) — Wga(vgzp)
=W o(V,z,) - Wga(vgzp) - WpTO'(ng) + WpTJ(Vsz)

= Wga(vgzp) + W, <U(ngp) — a(vgzp)>
(4.30)

Therefore, first, we need to compute the error of the sigmaidtion as:

c=0(V'z) —a(V'z). (4.31)

From the Taylor series expansion, we have

- do(k)

(k- k) + O(k — k) (4.32)

whereO(k — k) denotes the higher order terms. Note thik) = 971

}k k’

and because is differentiable,o’ exists. Hencef(VTz)]VTz:VTz in (4.31)

can be written as

o(V'z) =0 (V'2) + o' (VT2)VTz + O(V'z) (4.33)

To simplify the notations, it is defined that = o(V'z), 6 = o(V'z), and

o = o + . Therefore, usind (4.33% (4.31) can be rewritten as:

cd=0c(V'z) - J(VTZ) =6'VTz+0 (vTZ> . (4.34)

The substitution of.(4.34) int_(4.B0) yields:
L,—L, WTap +W?h 2 Op = Wt pOp+ VVT [&;VPTZP + O(\?gzp)}

— W6, + (W + W) [&’ Va, + O(VTZP)}

= (W6, + Wio,Viz,) + (Wi, V g, + WIO(Viz,).
(4.35)
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Using the general expressidn (4.35), the uncertainties(4.29) can be written

as

n=£+¢ (4.36)

This division is needed because in the Lyapunov analysisti8€4.4.3), it
becomes evident that only term can be manipulated by the weight updates
W, V The term¢ is defined as
&= (Whow) Fiion + (Whes) % + Wie, + Ws,
+ (W64 VEiaar) Froson + (Whe5VEzs) %, (4.37)
+ W6/ Vi, + W6/ V]z,
and the “whole”NN errorg is defined as
¢= (WL&/MVLZM> Flotion (WEUBVBZB)
+ W6, Viz, + Wi6 V]z,
(4.38)
+ (WHO(VE2a1) ) Fiagion + (WEO(VEz2)) %,

+WJIO(Vizg) + WIO(Vz,) + e
Note that, the terms i (4.88) is similar with (3.114).

Now, it can be shown, in incremental manner, ihand& possess some upper-

boundedness that are useful for the stability analysisltosWian Section(4.4.B.

To prove this, we need the boundedness of the generic eiqmeds35)
I, = Lyll = || (Wi, + Wia,Via,) + (Wie,Viz, + WiO(Viz,))|
(4.39)

Clearly, the boundedness depends solelymndV, this is because the other

terms:
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¢ the optimum weight®,, V,, and approximation errar, are upper-bounded,

and

e o andea are bounded for differentiable functions like sigmoid,taRBF

functions.

From the definition of the NN weight error8y = W — W, we have

W] < W]+ W] (4.40)

The boundedness of the NN weight errdfé in (4.40) depends solely on the
boundedness of the weight estima&¥, since|[W|| is upper-bounded. Note
although||W/|| is positive, W is not necessarily a positive definite matrix i.e.
its eigenvalues could be negative, zero or positive. ThoeeeRayleigh-Ritz
theorem is not applicable since the minimum and maximuntipegigenvalues

do not exist.

However, it can be shown that the boundedne3&/afan be achieved by simply
combining the Frobenius norm definition and limiti¥g in the implementation.
From the norm definition of W ||, for a 3D output matrilJ e RN *N+xN2 (for

a 2D output matrixV, = 1):

N3 Nji No

W= Y>> a2, . (4.41)
7 J k

In the implementationW andV can be limited as follows:

if (|W|| > Wy), theni;, = 0, and
. (4.42)
if (HVH > VM), then@kl =0
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with TW,; > 0 andV,; > 0, thereforeW andV are upper bounded as follows

IW|| <Wy,, and
(4.43)
[V <V
Since|[W|| < [|[W|| + W] and|V| < V]| + || V|| therefore
W| < Wy, and
W] < Wy (4.44)

V]| < Vs
with W,; > 0 andVy, > 0.

Furthermore, it follows that the overall estimated NN wesg#, and NN weight
errors,Z, are to be upper bounded as
I1Z|| < Z (4.45)

1ZI| = | ZIl + 12| < Zas + 2 = Zna (4.46)

with Zy; > 0, Zy; > 0.

Substituting[{4.24) intd (4.39), results the generic esgi@n||L, —L, || in (Z.39)

is upper-bounded as

L, — L]l < (Lp)ar- (4.47)

where(L,)a > 0.

Now, seeing the uncertaintigan (4.36) with [4.47), and also exploitirg, ..,

(4.11) andx, (4.13), we can write
7l < (Lan) s [ Frotionll + (Le)ar 1%+ (Lg)ar + (Lo)ar +em

< (Lan)ar (Il + Allel) + (La)ar (el + 110D + (Lg)ar + (Le)as

+Eem
(4.48)
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Note thatk, in (4.12) can be assumed to be bounded since the desirectdraje
riesx,, X4, x4 are bounded by desigg,is bounded by the workspace ards

bounded by motor speed limit.

Thereforen can be shown to be bounded as follows

Inll < Co + Cy [Jr] (4.49)

whereCy, C; > 0. And sincen = £ + ¢, then clearly the following inequalities

are true

1€l < Co+ Cy ||r]| (4.50)

I€II < Co + C ([ (4.51)
4.4.3 Stability Analysis of Our Modified Approach

For the proposed motion contr@l (4.9), let the weight upsiats

Wi, = Far, (601 73 Frgtion; — 5Tl Wag,,) (4.52)

m m
Vir, = G (2y Gy, ZZUJMM Ti Footionj) — £llTlVar,)  (4.53)

=1 J:

WB;; :FBU(&B T :trj —I{HI'HVAVBU) (454)
‘;,Bk = Gp, (ZB &/Bk (Z ZwBijk T iTj) - H”r”\/\,Bk) (4.55)
i=1 j=1
Vlvgi =Fy, (64 — |rllwg,) (4.56)
‘;’gk = Gy, (7 &/gk (Z g,y 7i) — K[| Vg,) (4.57)
=1
‘;AVTz' = FTi(&T Ty — HHI‘HWT) (458)

Ve =Gr (2, 6 (O i, i) — &[r[[¥,) (4.59)
=1
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with x is a positive constant. And the estimated NN weight updaﬁag;j €
RNV Vg, € RV Wp € RNV, € RVB W, € RV v, € RVo, w,, €
RN2 v, e RV~ are all column vector. And the adaptive gainE;jij €
RNV>Ne - FCL e RVN and Gyl o€ RV GI e RV N
are all positive diagonal matrices. The following indices defined:i,j =

1,...,m are output-layer indiceg; = 1,..., N, is the hidden-layer index,
where to simplify the implementation, the hidden-node $¥zas set the same

for all dynamic terms. WhileV, 5s, N1 5, N1 4, N1, are the respective input-

node sizes.

Proposition 4.4.1 With the assumptions that:

1. the controller gainA meets the condition

&
Mx,m

Ap > (4.60)

whereC; > 0, A, = min(A) and M, ,, = MiN(A:,(Mx(2)));
2. Zu, the upper-bound of the estimated NN weigHtssatisfies

Iy < ,/@; (4.61)
K

whereCy, k > 0; and

3. the initial condition ofZ satisfies

1Z(0)]| < Zar; (4.62)

whereZ,, is the upper-bound of the NN weight errof,



4.4 The Modified NN Adaptive Motion Control Law 79

then using the proposed motion contfdld) and the NN weight updat€4.52)
(4.59) it can be shown by Lyapunov’s Extension Theorem|[102], disat —
oo the errors||r|| and ||[W]|, | V|| will be bounded to be within the enclosing

boundarysS, which is defined by enclosing regidf(r, Z) < 0.

Proof 4.4.1 The chosen Lyapunov function candidate for the closed-¢oogy
dynamics(4.18) with the uncertaintiegy (4.38) is

V(r,Z) = = r"My(q)r

1 m m - 1 m
- i Fof W 4. =Y WEF W,
+2;];wa Mg Wity 7+ +2;W“ n VT (4.63)
N2 1 N2
+5 2V G Ve + o5 ) Y GV
k=1 k=1

where the NN weight errorsi,;,, € R, vy, € RVM wp e RV v, €

RNLE Wy, € RN v, € RV w,, € RV2 v, € RV~ are all column vectors.

Next, we substitute the closed-loop error dynanf&48) Property[4.3.b and

also take into account) (4.36) with the definitior¢ (4.37)and the knowledge

I¢]| < Co + Cy||r|| @51) into V(r, Z) of (&63) to obtain

V(r,Z) < —x"M,(q)Ar + Cy ||r||*> + Cp [|r]| + 2 (4.64)
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where the lump parametef in (4.64)is defined as

m

J— =T -1 = 5 *
’lp = E WMij (FMZJ WMz’j +opmT; Fmotionj)
m

No
+ VL | Gyt v, +za 6y ( g, i FE o)
M, M, Y My M Y g, M;jk Tt + "motionj

i=1 j=1

m
+ Wg B Wp, +Op Ty
Bij Bij Bij B i rJ

(4.65)

Usingé€ in (4.37) it can be demonstrated thdt in (4.68)is made up ofV;V, \%
andr™¢. The ideais to cancal’¢ with W, V. Furthermore,—W = W since
W = W — W andW is constant. With the weight updat@s52)- (@.59) v
becomes

=kl > D Wi, W, + 0| Y Wiw,  (4.66)
i=1

i=1 j=1
N2 N2

T DR PR SRS Y )
k=1 k=1

< = &l Z]* + sllrl1Zl| Z) (4.67)
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Equation(4.67)is obtained by combining all the inner products as

(W W) =" Wiy Wy, ...+ > Wiw, (4.68)
i=1 j=1 i=1
o 2 No
(V, V)= 90V +... Y iy, (4.69)
k=1 k=1
(Z,Z) = (V,V) + (W, W) (4.70)

whereZ = Z — Z, and therefore

S ~ =12 ~ ~ 2 ~ ~ 2
(2,2) = (2,2) — |ZI° < |21 2]l - 1ZI <1202y — | ZI°.  (4.72)

Substitutingp in (@.67)and Property4.3]1, itis possible to shdWr, Z) (@.64)
that

ZM HZ?W

V(r,2) < =|lr]| | (Mo A = Co)rl| = Co + w(1Z]] = 57)* = =

(4.72)

whereA,,, and M, ,,, are as defined iif4.60) note(M,, ,,, A,, — C1) > 0 due to

hypothesig4.60) HenceV (r,Z) < 0, as depicted in Fig. 412, if

CQ + K Z]2\J/4
> =b,., or 4.73
Il > s (4.73)
~ C 72 Z
I1Z]| > ?O+TM+7M =b,. (4.74)

Applying the Lyapunov’s Extension Theorem [102] then as oo, the errors
|r|| and ||Z|| can be shown to be bounded with#h as follows: suppose the
errors can be shown to start within the boundary&fi.e. ||r(0)| < b, and
IZ(0)|| < b, then they start their course towards the enclosing boupdar

and when they start leaving the boundarysince thel/ (r, Z) is decreasing
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—»>
I1Z]

Figure 4.2:V (r, Z) regions of the modified NN adaptive motion control strategy.

(V(r, Z) < 0) hence the errors cannot leave the boundansoiNow, suppose
the errors start at outside the boundary®then they tend to go to the equilib-
rium sinceV (r, Z) is decreasing. However, they cannot go to the equilibrium,
but only up to entering the boundary §fand once they enter the boundary of

S, we have already shown that they are bounded.

Using bounded-input-bounded-output (BIBO) propertyam e shown that a

bounded input in @)yieldstlim e, € that are bounded.

The next part of the proof is to demonstrate the necessitypdthesisZ,; >
,/% in (4.61) Note that,Z, in its course towards the enclosing boundaty
cannot violateZ,,, otherwise the Lyapunov’s Extension Theorem is no longer

applicable. In other words?,, in (@.46)must satisfy

7 = Zyg + Zyg > by, (4.75)
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Therefore, it can be shown that if the following is satisfied

. [C
Ty + Zyg >\ =+ Zyr > by o, (4.76)
K
. C
Zy > 4| — (4.77)
K

thenZ,; > b is also satisfied.

Further, the initial condition|Z(0)|| can be less or greater thar,, however in
order to comply with the Lyapunov’s Extension Theorem, istnine less than
Zy. The last part of the proof is to demonstrate hypothéi€))|| < Z,; in

(4.62)is to be satisfied in practical implementation.

By definitionZ = Z — Z, therefore it is possible to initialize the estimated NN

weights with zeroedZ(0)|| = 0, therefore we can have

1ZO0)|| = |Z]| < Zn < bz < Zu. (4.78)

Note that, theoretically, there is no initial condition r@gement forr, however,
in practical implementation, it is dangerous to set the gabtrajectory further
away from the initial end-effector pose i.ér(0)|| starts with large value. In

other words, it is a lot safer to sé¢ir(0)|| as small as possible.

It can be shown in the implementation that, it is possiblestar ) = x,(0) —
x(0)+ A1e(0) + A; e(0) At in (4.13)to be as small as possible through setting
the initial points of the desired trajectory equals to théial end-effector pose
i.e. x4(0) = %(0) = 0, x4(0) = x(0), resulting iné(0) = 0 ande(0) = 0.
Therefore,

x(0)]] = 0 < b,. (4.79)
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(Therefore, it can be seen that the initial conditiofjs(0)| and ||Z(0), start

within the boundary of).

It should be noted that:

e It can be seen fron_(4.73), in steady-state sense, thatailyitsmall
tracking errorr can be obtained by setting larger rod). However, care
must be exercised as setting too lamgavill affect the transient stability

performance.

e Choosing the controller gaind,, and the parameter update gaiRsand
G matrices, is currently by trial-and-error. In previous slation studies
for a two-link planar manipulator in joint space framework:is chosen

to be5I and30I in [45] and5I in [74].

e Recently, there are some preliminary works in optimal aslaptontrol
that can also accommodate the adaptation of the contraier 4, and
parameter update gain&,, F,, with subscriptp = M, B, g,7. One is
in nonlinear system [105] and another for linear system [10#rks to

accommodate optimal adaptive control for robotic are istijrogress.

4.5 Computational Cost

In this section, the computational cost of the proposed Naptde strategy
is compared with a pure PD control and the classical inveysamics strat-

egy. The total computational cost of the proposed NN adestirategy can be
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shown to be about 163800 arithmetic computations. Inctusivthe presented
number are the weight updates and the final computation tirotite general-
ized operational space forces (the final computation betwé¢he inertia and

the Coriolis/centrifugal matrices arif x,., respectively, with addition of

otion»

the gravity and joint friction vectors).

In comparison with pure PD control (18 arithmetic operasijprihe computa-
tional cost of proposed NN adaptive strategy is indeed mighewever, it is the
nature for the type of dynamics compensation to requiretiahdil computa-
tion, such as [23] (655 arithmetic operations). Further gotation is naturally
expected for the adaptive strategy type such as LIP adapiiviol, since ob-
viously an adaptation is required. On the other side, howéve proposed NN
adaptive strategy does not need the dynamics derivationaretjuired simpli-

fication procedure. Naturally, convenience comes with & cos

Therefore, the proposed NN adaptive strategy relies ondhepater’s speed. It
can be shown that today’s PC is quite fast and cheap enouglndtance, our
presented method is implemented on a PC with a single-cobétF2ntium 1V

3.2GHz using Windows XP (which is relatively cheap in thery2@09 - 2010).
Further, as suggested in |91], the required frequency oftRecompensation

(200Hz) can be shown to be only5 of the main sampling frequency (1kHz).
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4.6 Performance Evaluation

The proposed strategly (4.9) is studied through simulatiwhraal-time imple-
mentation on a PUMA 560 robot. In addition to the proposed d&jdive mo-
tion control in this chapter, two other types of control sttaes are performed
for comparison: (i) the Lagrangian dynamics motion con(goE7) — without
friction compensation, and (ii) Proportional-plus-Dative (PD) control with

gravity term compensation.

A positional periodic circular trajectory — 75 mm radius ghdecond period —
with a constant orientation for the effector was set as tisael trajectories for
all cases (simulation and real-time implementation). Trhgal posture of the

robot is shown in Fig._413 with the end-effector pointing adoand the elbow is

Figure 4.3: The free-motion setup using PUMA 560 robot.
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up.

Performances were recorded in term of: (i) desired trajexz@longre andyg

axes (the desired trajectory alongis constant), and (ii) position errors along

ZTE, YE, ZE-

The planning strategy was carried out as follows: The wsigihthe proposed
NN adaptive motion controllef (4.9) were initialized witarp values. Off-line
learning simply using the same circular periodic trajegctwas performed (for
about 5 passes) to achieve an acceptable performance. Theelgilits were
saved and used to obtain the tracking performances (bothlagiion and real-

time implementation).

4.6.1 Robot Simulation

The proposed NN motion contrdl (4.9) is validated with a 6 DRBFMA 560
robot dynamic simulator. The Lagrangian dynamics modell@MR 560 by
[19] plus joint model are utilized in the dynamic simulatdiote that joint

model is not included in the model-based (Lagrangian onlgdionm control.

For practical purpose, the Lagrangian dynamics contrdibe&s not include the
joint friction model, as in the original operational spacenfiulation [8]. Joint
friction model (unlike Lagrangian model), varies with tiraed ambient param-
eters, and therefore, it must be performed every time phierojperation of the
robot. In practical side using Lagrangian dynamics onlytican that once a
control engineer has obtained the Lagrangian dynamics,dhe can easily im-

plement it (where its stability analysis and controllerigasire well established)
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Lagrangian PD + gravity NN motion
dynamics motion| motion control control
control
max(||eposl|) (Mm) 3.45 18.07 6.63

Table 4.1: Performance comparison in term of the maximunh@ihagnitude
of the end-effector position tracking errors in simulatgtady.

and to obtain reasonable real time experimental results@sgrsin [107] 12].

There is a more sophisticated model-based motion contrfil®], where an
adaptive joint friction compensation is added into Lagrangmodel to give
improved performance over the Lagrangian only dynamicrotlet. However,
its formulation and stability analysis are rather diffdrand relatively more

involved than the original formula[8].

The simulation study performances in term of the magnitsdgdre root) of

the end-effector position tracking err(r#eposn = \/ Cposz T Cposy T 6[2305;2> of:
(i) the Lagrangian dynamics control, (ii) the PD + gravitynoo| and (iii) the
proposed NN adaptive motion control are shown in Fig] 4.4, [Bi5 and Fig.

[4.8, respectively.

Table[4.1 shows that the proposed NN control strategy, withdor knowledge
of the robot dynamics, yields comparable performance tiodhthe Lagrangian
dynamics strategy (without joint friction compensatioffe bounded stability

of the norms of the estimated NN weights is shown in Eigl 4.7.
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Figure 4.4: Simulation study using Lagrangian dynamicsiomotontrol.
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Figure 4.5: Simulation study using PD + gravity motion cohtr
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The following gains are set for the simulation study of thegmsed NN adap-

tive motion control[4.B):x = 0.1, A; = A, = 30I € R™™, F;j] =1c

RNz Bl =T e RN FL = 101 € RN Fo = 101 € RN,

Note, the hidden-layer siz¥, = 10 is chosen throughout this thesis.

HW]\{ H HV]\[H vs. Time

7
St — Wl
al — = Vull
37 oo
2 L L
0 20 40 60

Time (second)

HWgHv HVQH vs. Time

8
7W
6,
— Wl
57 ~
- = IVl
4,
3,
2 L L
0 20 40 60

Time (second)

15

0.5

2

8W

Wi Il, V]| vs. Time

|

— Wy

- =l | -

0 20 40 60
Time (second)

HWT P ”VT” vs. Time

— W=

= Vil

N AT NN T N, T S

0 20 40 60
Time (second)

Figure 4.7: Simulation study history of the estimated NN gi#s of the NN

motion controller.



4.6 Performance Evaluation 93

4.6.2 Real-time Robot Experiment

The real-time performances of the Lagrangian dynamicsabiihe PD + grav-
ity control and the proposed NN adaptive motion control &ui@w in Fig.[4.8,
Fig. [4.9 and Fig["4.10, respectively. Also the real-time lienpentation videos

are provided in:

e http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamasetl/
Freemotion.controLDyn.MPG

e http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamasetl/
FreemotioncontrolPD.MPG

e http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/
FreemotioncontroLNN_BD.MPG
All the gains are similar with those in Sectibn 416.1, witl thfference id =

201.

Fig. [4.10 and Table"4.2 show that the maximum error produgeth& NN

controller in real-time is a bit larger than that by the siatidn study.

Note that all real-time implementations were implemenézd-time on a PUMA
560, which does not provide joint velocity feedback. Thejaielocitiesq are
obtained by employing backward difference algorithm ohjgiositionsq, in
conjunction with low pass filter. Hence, only the estimatpérational space
velocitiesx are available, using = J(q) §. The filtered velocity signalg; and
x, were used for all controllers. It will be revealed that thisdition affects the

performance of the proposed NN adaptive motion controller.

The evolution of the norms of the estimated NN weights (u§iteyed velocity)

seems to be bounded in Fig._4.11; this is because, in the ingpltation, for


http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_PD.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Free_motion_control_PD.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_BD.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_BD.MPG

4.6 Performance Evaluation 94

Lagrangian PD + gravity NN motion
dynamics motion| motion control control with
control filtered velocity
max(||eposl|) (Mm) 7.90 11.40 28.80

Table 4.2: Performance comparison in term of the maximunh@ihagnitude
of the end-effector position tracking errors in real-tinedy.

the estimated NN weights are upper bounded by using deaglfpacedure. It
was found in the experiments that, without the upper bouthésgstimated NN

weights can be unbounded.

In the next Sectioh 417, the estimated NN weights cannot besto be guar-

anteed, theoretically.
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4.7 Analysis NN Adaptive Motion Control using
Filtered Velocity

It is shown in the preliminary study in Sectidbn 4]6.1 that gegformance on
simulation was found to be comparable with that of modekdasontrol, how-
ever, performance on real-time experimentation was foarigketinferior to the
simulation study equivalent. Note that, physically, theMPAJ560 does not have

joint velocity sensor.

To fill the non-existing actual velocity in the real-time expnentation, the esti-
mated joint velocitiesg, are obtained by employing backward difference algo-
rithm between the currenr(t) and the previoug(¢ — 1) actual joint positions,
which then followed by low pass filter (LPF). Hence, only tistimated opera-
tional space velocitie;, sincex = J(q)q, are available. The filtered velocity
signals,g andx, were used for all controllers in real-time implementation

Sectiof 4.6.12.

In this section, it can be shown by Lyapunov analysis thafittezed velocity
signalsq andx, are not suitable replacements to the non-existing acalatity

signals for the proposed adaptive strategy inl(4.9).

To properly represent the situation in real-time experiteethe NN adaptive
controller in [.8D) can be re-written using estimated gitjosignals ¢ andx,

as

F = My (q)Foion + Bx(a, )%, + &x(q) + Tx(q, 4) (4.80)
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wherex, andF* are defined as

motion

X, = %4 + Ae (4.81)

*
Fmotion

=% + AP (4.82)

with the following computable terms are defined to comitg,,.., as

X = %4+ A%y — X) (4.83)

P=% —X=% —X+X (4.84)

whereA € R"™*™ is a positive diagonal matrix; = x,; — x is the operational
space position tracking error, witk,;, x;, andx,; are the desired operational
space trajectories. The velocity estimation error is definetween the actual

and estimated velocity, as= x — x. It follows that from the first derivative of

(4.84) and[(4.83), we have

X —% =% —X+AX =T —x + AX. (4.85)

T

Combining the operational space motion dynarhicl(4.1) wlth éperational

space NN motion control using filtered velocity (4.80), aaking into account

(4.88) and Property 4.3.2, the closed-loop error dynarmaoshe obtained as
M, (q)(F — X) = — My(q)A# — My (q)Ax — Bx(q, X)%, + Byx(q, X)%

A~

+7x(q,q) — Tx(q,q) +n
(4.86)

where the uncertainties of the systepmexpressed as

N = My (@) Fotion + Bx(q, @)%, + &<(a) + 7x(q, Q). (4.87)
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From Property 3.214, it is shown that
T, @) — Toc( @, @) = I [70158 + Teou(SOM(E) — SONG))
+ 7 iexp e sgr(q) — uexg e sgnd)
(4.88)

Using Property 4.316 and from (4]84) it can be drawn that- x =  — X,
andB,(q, X)x, — By(q, X)x in the closed-loop error dynamids (4186) can be
manipulated such as

= By(q, % — X)(%4 + Aé) — Bx(q,%)x

= By (q,%)(%, — %) — Bx(q, %)X (4.89)

= By (q, %) (F — X) — Bx(q, X, )X.

Substituting [(4.89) into[ (4.86), yields the closed-loopoerdynamics, that is
useful for Lyapunov analysis, as
M, (q)(F — %) = — Myx(q)Af — My(q)Ax — By(q, %)(F — %) + Bx(q, %)%
+7x(4, ) — Tx(q,9) + 7.
(4.90)
Similar with SectioiZ412M,(q), Bx(q, q), gx(q), and7,(q,q) in n @81)

can be described as follows

My (q) = Wi, on (Vi 2u) + e (4.91)
Bi(a,d) = W; o5(VE 75) + €5 (4.92)
gx(q) =W, o,(V, z,) + ¢, (4.93)
™x(4,0) = Wl 0.(V] z,) +e, (4.94)

A A~

Likewise, the estimated dynamic terdv, (q), By(q, ), 8x(q), and+(q, q)

are described by estimated weights, W,, with subscripp = M, B, g, 7.
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As in Section[4.4]2M,(q), Bx(q, él), gx(q), Tx(q, él) can be shown to be
bounded by Propertids 4.8[1. 4J33, 4.3.4, 3.2.4, respiygtiand the fact

bounded because it is obtained from the backward differeertween the cur-
rent and previous actual positiefit) andq(¢ — 1), which are bounded by joint

limitation.

Therefore, the optimum weigh¥/,,, V,, and the approximation erreat, (with

subscriptp = M, B, g, 7, h) from (4.91){4.94), are also upper-bounded.

Using similar development and simplified notatiens= o(V'z), 6 = o(V™z2),

ando = ¢ + & as in Section 4.412, the uncertaintig$4.87) can be written as

n=&+¢ (4.95)

This division is needed because oglyerm can be manipulated by the weight

updateﬂ/’, V as will be shown in Sectidn4.7.1.

The term¢ is defined as
&= (W o) Fiion + (Wh ) 60 + W6, + W6,
+ <W}4 &y Vi ZM) Fotion + (Wg 6’ Vi ZB) Xy (4.96)
+ W, 6, Viz,+ WI6 Vg,
and the “whole”NN errorg is defined as
¢ = (W 6 Vi 201) Frion + (W 6% Vi 2) %,
+ W6,V iz, + Wl6 V] 2,
(4.97)
+ (W5 O(VE 200)) Figion + (WEO(VE 2)) %,

+WIO(V]z) +WIO(VFz)+e
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where the total approximation errer= ey F; ... +ep X, + €, + €, < en

(since the actual dynamics are bounded).

Note that, the driving signals, (4.81) andF: (4.82), used in[{4.96) and

motion

(4.97), are different thag, andF? in Sectio 4.4.P2.

motion

As in Sectiori 4.4)2, the uncertaintigs(4.93) can be seen to be bounded with

the generic expressidiL, — L, || < (L,)y in @47) and als&*,;,, @82) and
x, in (4.84), as follows

Il < (Lar)ar 1Frotionll + (Li)ar 15[l + (Lg)ar + (L) + en
< (L) (I3 1+ ALEID + (Ls)ar (I + XD + (Zg)ar + (Lo)ae

+Em
(4.98)

Note thatk, in (4.12) can be assumed to be bounded since the desirectdraje
ries x4, X4, x4 are bounded by desigs, is bounded by the workspace and the

filtered estimated velocity is bounded, since it is obtained fragn=J q.

Thereforen can be shown to be bounded as

Inll < Co + Cy [|2]] (4.99)

whereCy, C; > 0. And sincen = £ + ¢, then clearly the following inequalities
are true

€]l < Co + Cu |7 (4.100)

IS < Co+ Ch |2 (4.101)

Note that, the definition af (4.84) in this section, is differentith the definition

of r in Section 4.4.2.
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4.7.1 Stability Analysis using Filtered Velocity

The chosen Lyapunov function candidate for the closed-lwpr dynamics

(4.90), with the uncertaintieg (4.95), can be chosen as

V(% Z) = %(f — ™M (q)(F — %)

1 m m ~ ~ m ~ B ~
OIS W, F S, LY W R
i=1 j=1 i=1
1 No N2
~T -1 = ~T 1 ~
+5 2 Vi G Vet 5 ) Y GV
k=1 k=1
(4.102)

where the NN weight errorsiv,;,, € R, vy, € RVM wp e RV v, €
RVLE W, € RV v, € RV w, € RV v, € RV~ are all column vec-

tor. And the adaptive gain&,, € RV .. F ! € RV andG;, €

%Nl,lw X N1, M
S

G.! € RM-*M.r are all positive diagonal matrices. The following indices a
defined:i, 7 = 1,...,m are output-node indices,= 1,..., N, is the hidden-

node index. WhileV, s, N1 g, N1 4, N1, are respective input-node sizes.

Next, we substitute the closed-loop error dynamics (4.Bé&perty(4.35 and
also take into account) (4.95), with the definitior¢ (4.96) and the knowledge
I<]l < Co + Cy ||#]] @I01), intoV (r, Z) of (@102), to obtain

V(#,%,Z) < — "M, (q)A# + x"M,(q)Ax

' ‘ (4.103)
+ (f'T - )NCT)(TX(% q) — 7x(q,q))

+ Co [17]] + Co X[l + Cu [|F[|* + Co 2] [1x]| + %
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where the lump parameterin (4.103) is defined as
'l,b - Z Zvv;&u (F]T/flz] GVMM + &M (722 - :i‘l) Frﬁotionj)

Ny m m
~T -1 g ~l 2 : § : A o = *
+ Vi, GMk Vuy, +Zm UMk< WM, i, (TZ' - xl) Fmotionj)

i=1 j=1

+3°S W (F;jj Wp, + 65 (7 — i) x]>

(4.104)

Usingé¢ (4.98), it can be demonstrated thatd.104) is made up oﬁv, V and
(i — %)T¢. The idea is to cancdli — %)T¢ with W, V. However onlyi is

available, hence only*¢ can be canceled b\jV, \7
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Therefore, if we introduce the weight updates as follows

W = FM (O'M T Fmotlon] H"f"WM) (4105)

Var, = G, (201 67y, ZZ’LUMM Fi Frotionj) — KlEVar,)  (4.106)

i=1 j=1
Wp, = Fp, (65 7 v — k[|E]|Wg,) (4.107)
Vs, = Gp,(zp 67, (Xm: Em:wBijk Py i) — K|E)Vs,) (4.108)
i=1 j=1
W, = F,,(6, 7 — r||t]|W,,) (4.109)
Vg, = Gy, (2, 6, (Xm: Wy, 7i) — K||[F]|V,,) (4.110)
=1
W, =F. (6, 7 — k||F][W,) (4.111)
= Gy 6%, (i, 1) — sl (4.112)

and take into accountW = W sinceW = W — W andW is constant, and
the knowledgg|&|| < Cy+ C, ||t in (4.100) and some inner products(in (4.68)
— (4.171), then) (4.104) can be expressed as:

¥ <~k F1ZIP + s 2] 1ZI] Z — xT €
] ~ ‘ ‘ (4.113)
< = &I IZI* + & (B IZ]] Zas + Co [Ix]| + Cu [J2]] %]

The substitution ofp (@II3) intoV (r, Z) @.103), yields
V(#,x,Z) = — T My(q)Af + x" M, (q)Ax + (#T — x7)By(q, %,)x
+ (0" = x")(1x(q, q) — Tx(q, 4))
+Co [[E[l +2 Co [Ix]| + Cy [B[|* + 2 Cy [|7]][1%]

— k| BHZI* + £ #II1Z] Zas
(4.114)

The terms in[(4.114) can be analyzed for its boundednessfollbeing terms,
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using Propertj 4,311, can be written as

X "My (q)Ax < My Ay ||%)? (4.116)

WhereMz,m = )\mzn(MX(q))aMm,M = )\maz(Mx(q))a Am = mln(A)uAM =
max(A).
The next term in[(4.114), using Propelty 413.3, can be wridis

1" = x")By(q, %)x[| < (87| + [[x]]) [Bx(aq, %) [[x]| <
. ‘ (4.117)
IEHI%]| Baar (I[E 1% 4 dar) + (1%I? Baar (2] + (1% + 2r)

This is due from[@B4)x,|| = ||t + x| = ||F +x —x|| < ||F]| + [|%] + ||x] <
][+ (1] + @ar-

A

And the termr,(q,q) — 7x(q, q) in (4.114) can be shown to be bounded by

7 (s @) — T, )| < (Thic) ar (4.118)
which is obtained fron{(4.88), Propefty 3.2.4 and the follays:

1. ||J-Tr,;,J'x|| is bounded because,;, is bounded (as shown if_(3.7)),
|J~1|| is bounded for non-singular configuration of the manipulated

it was assumed thdli|| is bounded.

2. || Teou(sgM(q) —sgn(q))| is bounded because,,, is shown to be bounded

in (3.8) and becaus@sgr(g;) — sgr¢;)) is bounded.

3. |7 s (expTecd?) sgn(¢) — exg T4 sgn(q))|| is bounded because,;
is shown to be bounded i (3.9) and because botk sgnd exp!®! are
bounded.
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Substituting[Z.115) (4.118) intd (i, x, Z) in (£.113), yield
V(£,%,Z) < — (MymAm — CO)|[B[* + My arAar || %]

RN (Bear(lE] + %I+ dar) +2 C1)
+ 1xl? B (1] + X[ + dar) (4.119)
+ ((7iic)ar + Co) 1]l + ((7ire)ar + 2 Co) |X|

— KEIZI* + slIFHZ] Zas

Definingy™ = [+ %], thenV(¢,x, Z) in (4.119) can be written as

Viy.2)<—yhuy e [l e 0 s 4120
— Kl|Z|P* + K[|Z]| Zn
where
= {Mmfgp_ G L _Eﬁ’M AM} (4.121)
with p is defined as
p = Bou (B +11X]| + dar) +2Cy (4.122)

Note that, the positivity of the first diagonal &, (M, ,, A,, — C;) can be

Cy

achieved by setting\,,, > . However, unfortunately, the matri in

(4.120) is not positive definite since its second diagonaineint is negative,
hence the existence of an enclosing regior: 0 had failed to be established

and therefore bounded stability cannot be achieved.

In practice,|¥| depends on the quality of the filtered velocity feedback ioletd,
i.e. |¥| < 0forx # 0, or, |¥| > 0 for x = 0 especially when the robot is not

moving (hence it is bounded stable as shown in Sectionl4.4rR) therefore
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stability and unstability could alternate. This also expdawhy, in real-time,
the controller gaim. = 201 that can be selected is lower than that in simulation
(A = 30I), this is due to the quality of the velocity feedback sigattcan be

obtained.

It is therefore signifies the need of an improved formulatorovercome the
deficiency of actual velocity feedback by providing the esaig regiorl/ < 0,

where bounded stability can be ensured.

4.8 Conclusion

At this point, it is possible to conclude that:

e itis feasible in simulation study to construct an NN adaptientroller in
operational space, without any prior knowledge of the systignamic,
with a potential performance comparable to that of Lagramgiynamics

strategy (without joint friction compensation), however

¢ it does highlight the problem in real robot implementatiohene joint
velocity feedback does not exist. It was shown that the &tterelocity
signal feedback can significantly affect the performancéhefadaptive

NN controller.

Therefore, in the next chapter, a controller with velocibyserver strategy is

proposed to address this limitation.
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CHAPTER 5

NN ADAPTIVE MOTION CONTROL WITH VELOCITY
OBSERVER

5.1 Chapter Overview

In this chapter, an NN adaptive motion control in operati@pace with veloc-
ity observer is presented, to overcome the absence of aal @elocity signal in
the real robot. This work was extended from the previous tdaton in Chap-
ter three, by taking into account the model-based motiotrobwith velocity

observer in joint space introduced by [109].

The stability analysis of the proposed strategy is preskintéhis chapter. The
improved NN formulation was validated with a six DOF PUMA S&@nipula-

tor in real-time experiment.

It is worth to mention that a NN adaptive motion control witlacity observer
injoint space was presentediin [110]; itis based upon theairoalsed controller
with velocity observer by [111]. However, the proposed apgh by [110] still

requires the knowledge of kinetic energy matrix. Also, a sldzhsed motion
control with velocity observer in operational space wasented in[[92] where
the joint friction model is estimated adaptively, giving ama improved perfor-

mance than the Lagrangian only dynamics controller. Howétgeformulation



5.2 End-effector Motion Dynamics 111

and stability analysis are rather different and relativalyre involved than the

original operational space Lagrangian dynamics formaiali3].

Another algorithm, the projection algorithm can be usedduieve faster con-
vergence rate for the estimated parameters for LIP case@T11E2or NN weights
for NN case([114] (by de-correlating the system inputs).jéttion algorithm
can be seen as an improvement from a working algorithm /esfyatHowever,

it is not a solution for a non-working algorithm.

Thus, our approach is to propose a solution for a non-workihyadaptive
motion control in real time implementation by introducimmg tNN adaptive mo-
tion controller with velocity observer. Note that, it islstheoretically feasible,
though, to improve the NN adaptive motion controller - olsemwith the pro-

jection algorithm.

The preliminary work of this chapter was presented_in [118jere the more

complete version is presented in [116].

5.2 End-effector Motion Dynamics

To ease the formulation development in this chapter, lefsaduce the end-
effector motion dynamics of the non-redundant manipul@d27) in Chapter

Two, which can be described as

My (q)% + Bx(q, @)% + gx(q) + 7x(q,q) = F (5.1)

wherex € R™ andq € R" denote the operational and joint space coor-

dinates, respectively, where for a non-redundant maniputa = n. The
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X
v A

id, }.(d, Xd NN F Robot q Fwd

™ conffoller] ’ ™ Kin.
observer

NN «
» weight =
updates

Figure 5.1: The operational space NN motion NN controlleseyver structure.

matricesM,(q) € R™*™ andBy(q,q) € R™ ™ represent the inertia and
the Coriolis/centrifugal terms, respectively, while \@stg,(q) € R™ and
Tx(q,q) € R denote the gravity and joint friction forces, respectivelihe

vectorF € R™ is the operational space generalized forces.

5.3 NN Adaptive Motion Controller - Observer For-
mulation

5.3.1 NN Adaptive Motion Controller-Observer

In this section, a NN adaptive motion controller with vetgabbserver is pro-
posed. The controller-observer structure is shown in [Eifj. $he control law

is defined as:

~

F = M (Q)Foion + B, %0)%, + &x(q) + 7x(q, ) (5.2)

wherex,., x, andF* are defined as

motion
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= %+ A(a— %) (5.3)
%o = X — A% (5.4)
F}ootion = Xr + Ay(r +132) (5.5)

with the computable terms to computg, ;.. are defined as

%, = %q+ A1(Xq — %) (5.6)

ry +r9 = Xr — 5(0 (57)

It follows from (5.7) that we can write

r; +ro = (X, — %) + (X — Xq), (5.8)

where it can be defined

r :XT—X:e—f—Ale—'—Ali (59)

r's = X — Xo = X + AsX. (5.10)

Note: A1, A; € ™™ are positive diagonal matrices = x;—x andé = x;—x
are defined as the position and velocity tracking errorpeetsvely, andk,, x4
andx, are the desired operational space trajectories. The dstipasition and
velocity errorsx = x — x andx = x — x, denote the difference between the
actual position and velocity, x and the estimated position and velocityx,

respectively. The computation to obtairandx will be given on Sectioh 514.
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Combining the robot dynamick (5.1) and the proposed cdatr@.2), and tak-
ing into account the first derivative ¢f (5.9) and Prop&rf.2, ageneral closed-

loop dynamicss obtained as:
M, (q)t1 = — My (q)A1 (r1 +12) — By(q, X0)X, + Bx(q, X)x

' (5.112)
+ Tx<q7 q) - Tx<q7 él) + n
where the uncertainties of the systepmexpressed as
TI = Mx(q>F;knotion + Bx(q7 X0>X’I" + gx(q> + %X<q7 Q) (512)

~

andr(q,q) — Tx(q, q) is similar with (4.88), however it is reproduced for ease

of perusal as

A~

Tx(q7 q) - Tx(q7 q) = J_T[Tvisél + Tcou(sgr(q) - Sgr(d))

+ 7 yexp T sgr(q) — T uexg e sgn(§)].
(5.13)

The general closed-loop dynami¢s _(8.11) cannot be usedtlgiiato stabil-

ity analysis. It must be converted into useful controlleyseld-loop dynamics

(Sectiori 5.3.2) and observer closed-loop dynamics (SEBL®.3):

5.3.2 Controller closed-loop dynamics

Using (5.9), [(5.10) and Propeiffy 2.8B,(q, Xo)x, — Bx(q,x)x in (5.11) can

be rearranged such that
= Bx(q,x — 13)(r1 + %) — Bx(q, %)x
(5.14)
= Bx(q7 X)rl - Bx<q7 Xr>r2-

Substituting[(5.14) into the general closed-loop dynarf®cEl) yields the use-

ful controller closed-loop dynamics

My (q)t1 = — My (q)Aq(r; +1r2) — Bx(q,%x)r1 + By(q, %19
. (5.15)

+ 7x(q,q) — Tx(q,q) + 1
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5.3.3 Observer closed-loop dynamics

An observer can be designed as in [109]:

x=x—x=12z+ (Ip+ Ay)X (5.16)

z2=3% + (Ip - Ag)X (5.17)

wherelp, = diag(lp;; > 0) € ®™*™. Combining the first derivative of (5.116)

with (5.17), and taking into account the first derivative[@®), results in:

X+ (Ip+ A)x + (Ip - Ag)x = — (%, — %) = —1. (5.18)
Substituting[(5.100) and its derivative into the left-hagide (LHS) of [(5.18) and
multiplying both sides withM, (q), yield

M, (q)ts + My (q)lprs = —My(q)1; (5.19)
Using (5.9), [(5.10) and Propeiity 4.BB,(q, X¢)x, — Bx(q, %)% in (6.11) can

be manipulated such that

- Bx(q7 XO)(rl + X) - Bx(q7 XO + rQ)X

(5.20)
= Bx(q, %0)r1 — Bx(q, X)r2.
Substituting[(5.20) into the general closed-loop dynarfBcEl) yields
—ML(q)t1 = Mx(q)Ai(r1 +12) + By(q,%Xo)r1 — By(q, X)12
(5.21)

A

— (tx(q,9) — 7x(q,4)) — 7

Substituting [(5.21) into[(5.19), thebserver closed-loop dynamican be ob-

tained as:
M, (q)rs = — (Mx(q)lp — Mx(q)Aq)rs + My (q)A;r;

— B, (q, X)rs + By (q, %0)r1 — (Tx(q, @) — Tx(q, Q) — 7.
(5.22)
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It can be shown that, the model-based equivalent/[109] ohtb&on control

(5.2) with its observer (5.16) E(5.117), i.¢ = 0 in (5.18) and[(5.22), showed

that the local asymptotic stability can be achieved.

5.3.4 Uncertaintiesn in NN terms

A

Now, similar with Sectio 4.412MI«(q), Bx(q,%o), gx(q), andrx(q,q) in n

(5.12) can be described as follows

M, (q) = Wi, on (Vi 21) + en (5.23)
Bi(q,%) = Wy op(V zp) + €5 (5.24)
gx(a) =W, 0,(V, z,) +¢, (5.25)
Te(a,q) =Wl o, (V]z,) +e, (5.26)

A

Similarly, the estimated dynamic teriv, (q), Bx(q, Xo), 8x(q), and+«(q, §)

are described by estimated weights, W,,, with subscripp = M, B, g, .

It is clear thatM,(q) andgx(q) can be been shown to be bounded by Prop-
erties[4.3.11 and 4.3.4, respectively. Using Property ¥tB& boundedness of
By (q, %o) depends otix,|| (5.4), which in turn depends dfx||, ||x|| and||x||:

x is directly bounded by the workspace. The estimated vgi,oH:ﬁH, can be
assumed to be boundelk| < )/, since in the implementation it is possible
to set—i,, < x < 1. This implies that|x|| is bounded since it is obtained
from x (see Sectioh 5l4. Computation of Estimated Operationat&Sgaordi-
nates). Thereforgx,|| is bounded. The boundednessmfiq, ) can be shown

by using Propert{f 3.214 and the fact thidt"!(q)|| is bounded for non-singular

configuration and is bounded, implyingj is bounded. Therefore, the optimum
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weightsW,, V,, and the approximation erret, (with subscripp = M, B, ¢, 7)

from (5.23)-(5.26), are also upper-bounded.
Using similar development and simplified notatiens= o(V™'z), 6 = o(V'z),

ando = ¢ + & as in Section 4.412, the uncertaintigg5.12) can be written as

n=§+¢. (5.27)

This division is needed because oglyerm can be manipulated by the weight

update§5\7, V as will be shown in Sectidi5.3.5.

The term¢ is defined as
€= (Whon) Froson + (Whos) %, + Wie, + Wie,
+ (WhEh Vizu) Froen + (WEGHVEzs) %, (5.28)
+ W6, Vi, + Wi6' Via,
and the “whole”NN errorg is defined as
¢ = (WL&’MVLZM) Froo4 (WBanng) X,
+ W6, Viz,+ Wie'V]z,
(5.29)
+ (WHO(VE201)) Fiason + (WEO(VE25)) %,

+WIO(Vizy) + WIO(V z,) + e

where the total approximation errer= ey F; ... +ep X, + €, + e, < en
(since the actual dynamics are bounded). Note that, thendrsignalsx, (5.3)
andF: ..., (6.8), used in[(5.28) and (5.29), are different withandF:, .., in

Sectioi 4.41.

As in Sectiori4.4)2, the uncertaintigs(5.27) can be seen to be bounded with

the generic expressidiL, — L, | < (L,) in @41) and als@* .., (5.3) and
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%, in (8.1), as follows
11l < (Lar)ar | Fsotionll + (Le)ar 1%l + (Lg)ar + (Lo)ar + ear
< (Lan)ar (% 1+ Aa(lleall + le2l)) + (Lo)ar (el + 2] + [15%oll)

+ (Lg)ar + (Lo +em
(5.30)

Note thatx, in (5.8) can be assumed to be bounded since the desiredtdrajec
riesx,, X4, x4 are bounded by desigg,is bounded by the workspace ards
bounded due t& can be shown to be bounded. Aiglin (5.4) can be shown to

be bounded due t® andx can be shown to be bounded.

Thereforen can be shown to be bounded as
[nll < Co+ Cu (Jlra]] + [[r2]]). (5.31)

whereCy, C; > 0. And sincen = £ + ¢, then clearly the following inequalities
are true
1€]1 < Co + Cy ([l + [Ir2]]) (5.32)

I€IF < Co + Cr (flrafl + Ir2)- (5.33)

Note that, the definitions af, (5.9) andr, (5.10) in this section, are different

with the definition ofr in Sectior 4.4.2.

For ease of later developments, let us defthe= diagW, V| to be upper-

bounded as follows

12 = VIWIR + [VI? < Zu (5.34)

where Z,, is a positive scalar constary = diagW,,, Wz, W,, W] and

V= dlag[VM, Vg, Vg, VT]
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5.3.5 Stability Analysis

For the motion control(5]12) and the obsener (5.16), (5.lEf)the NN weight

updates be provided as

War, = Fag, (60 (rei + 724) F;lotionj — K Wa,,) (5.35)

Var, = Gar (Zar 6y, ( Em: Em: e (P1i +720) Fiotion;) (5.36)
— K V) o

Wp, = Fp, (65 (1, +72:) @0 — K Wp,,) (5.37)

m

Wp,,, (11, +7T24) Tp;) — K VB,) (5.38)

zyk

Ms

vp, = GBk Zp O'B}C

i=1 j=1

W, = F,, (64 (115 4 724) — K Wy,) (5.39)

Vo, = Gy, (24 6 (O 1y, (r1i+12:)) — K Vg,) (5.40)
=1

Wy, =F, (6, (r1;+72:) — K Wi, (5.41)

V., =Gy (2, 67, (i Wy (P14 127)) — K Vo) (5.42)

with x is a positive constant. And the estimated NN weight updaﬁt‘:;ﬁ;j €
RN Vg, € RV Wp € RNV, € RVB W, € RV v, € RVo,w,, €
RNz, v, € RV~ are all column vector. And the adaptive gairE;jij €

RN2xNz R

Ti

Le RN and G e RV N G e RV N
are all positive diagonal matrices. The following indices defined:i,j; =
1,...,m are output-layer indiceg; = 1,..., N, is the hidden-layer index,
where to simplify the implementation, the hidden-node $¥zas set the same

for all dynamic parameters. Whil®/, »;, Ny 5, N1 4, N1, are the respective

input-node sizes.
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Proposition 5.3.1 Lety = [r] rJ]*. With the assumptions that:

1. the controller gainA; and the observer gail, meet the conditions

C
At > M;:m (5.43)
IDm Mo /}\}M +3G (5.44)

whereC; > 0, Ay, = Min(Ay), Ay = maxAy), My, =

MIiN( i (Mx(2))), Mz = MiN(Aa. (Mx(2))) andip ., = min(lp);

2. yu, the upper-bound constraint of, and, Z,,, the upper-bound of the

estimated NN weight&,, satisfy

Ym > by (545)

s \/ (7aic)ar + 3 Co)? (5.46)

4kV¥,,

whereCo, & > 0, (riic)as is the upper-bound dfr(q, ) — Tx(a. a)ll,
U, = min(¥) with ¥ is to be defined ii5.60), andb, is to be defined in
(5.64) and

3. both initial conditions of andZ satisfy

[y O < yn (5.47)

1Z(0)]| < Zs (5.48)
whereZ,, is the upper-bound of the NN weight errof,

then using the proposed motion cont(®I2), the observe5.18)—- (5.17)and
the NN weight update.35)(5.42) it can be shown by Lyapunov’s Exten-

sion Theorem[[102] that ast — oo, the errors||r||, ||r2|| and [|[W|], ||V]|
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will be bounded by enclosing bounda$y which is defined by enclosing region

V(y,Z) < 0.

Proof 5.3.1 The chosen Lyapunov function candidate for the closed-¢oogy

dynamicg5.15)and (5.22) with the uncertaintieg (5.27) is

~ 1 1
V(ri,re,Z) = 5 ri My (q)r; + D) ry My (q)rs
1 m m ~ B ~ 1 m ~ B ~
S R e
i=1 j=1 i=1
1 N2 1 N2
~T (~— T -1
- 9 ZVMk GMk VM, + + 9 Vo GTk Vi
k=1 k=1

(5.49)

where the NN weight errorsiv,;,, € R, vy, € RVoM wp € RV vp, €

RNLE W, € RV2 v, € RMo w,, € RY2 v, € RV~ are all column vector.

Next, we substitute the closed-loop error dynanficis) (5.22) Propertyi4.3.6
and also take into account (5.27) with the definitior¢ (5.28)and the knowl-

edge||¢|| < Co + Ci(||r1]| + [|Ir2]|) B33) into V(ry, s, Z) of (5.49) to obtain
V(ry,r5,2) < —rfMy(q)Arry — 13 (My(q)lp — My (q)Ay)rs
+ 11 By(q, %, )13 + 15 Bi(q, Xo)1)
+(rf = 13) (x(q, @) — 7x(q,a))
+ Collra]| + Collrall + Crllre[|* + 2 Cullra [ [[ra| + Collr|?

+
(5.50)
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where the lump parametef in (5.50)is defined as

m m

_ =T -1 & - *
Y= Z Z Wy (FMij Wty + O (11— T2) Fmotionj)

i=1 j=1

N m m
Z < -1z A 2 :} : . *

+ Vi, GMk Vi, + Zp O-Mk( WM, (7"171' - T2,i) Fmotionj)
k=1

i=1 j=1

(5.51)

Using ¢ (5.28) it can be demonstrated thgt (5.51)is made up ofW, V and
(r; — rp)T & The idea is to cancelr; — ry)T & with W,V Unfortunately,
only (r; + ry) can be computed (se€.1)), hence onlyr{ ¢ can be canceled
by W, V. With the weight update®, V (535)— (5.42) (note that—W —
W sinceW = W — W and W is constant), and taking into consideration

1€]] < Co + Ci(|re]| + [Ir=]]) B.32) ¥ (B.51)can be expressed as:

m m No
Y=kY Y Wi W, 4. e ViV, —21] &
4 £ (5.52)

— K|ZI* + KI|Z| Zas + 2 Collral| + 2 Cu 1| [fral| + 2 Culfrz 1.

IN

Equation(5.52)is obtained by using the inner products{&8)— (4.71)
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The substitution o (5.52)into V (ry, 1, Z) (5.50) yields

V(ry,ra, Z) < — rf (Myx(q)A1)ry — 13 (My(q)lp — My (q)Ay)rs
+ 11 By(q, %, )15 + 15 By (q, X0)1)
+ (] = 13) (Tx(q, @) — Tx(q, @)
+ Collra]l + 3 Collrall + Crllra[|* + 4 Cu[ea [ [[va]] + 3 Ch[Jr2f?

— k|| ZI* + )| Z)| Zu
(5.53)

The terms inG.53) can be analysed for its boundedness: The following terms,

using Property 42, can be written as:
_I'?Mx(Q)Alrl S - Mz,m /\1,erl||2 (554)

—r3 (My(q)lp — My (q)A))re < — (Myplpm — My arAyar)|r2l)* (5.55)

whereA; ., Ay v, My, Mo, Lp . are as defined ifg.43)and (5.44)

The next terms, by taking into account Propérty 4.3.3, cawfitten as:

e By (q, X, )ra|| + |1 Bx(q, Xo)r1]|
(5.56)
<|le1 |2l Bear (Nlxa | + [rall 4+ 24 2r).

This is due to the facts, = r; + x in (6.9)andx, = x — ry in (5.10)

~

And the final term;«(q,q) — 7x(q,q), had been shown to be bounded in

(4.118) however, it is reproduced here for ease of perusal:

|mx(a,q) — 7x(a, Q)H < (Ttic ) - (5.57)

which is obtained fronf5.13) Property(3.2.4 and the followings:
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1. [|[J-"r,,J'x|| is bounded because,;, is bounded (as shown iB.7)),
|J~Y| is bounded for non-singular configuration of the maniputatod

it was assumed thaltx|| is bounded.

2. || Teou(sgM(q) —sgn(q))|| is bounded because,,, is shown to be bounded

in 3.8) and becausésgn(¢;) — sgr(g;)) is bounded.

3. |7 u(expTe4)sgn(q) — expTe<4")sgn(q))|| is bounded because,;;
is shown to be bounded {8.9) and because both s@gn and exp*! are

bounded.
Substituting5.52)+G.517)into V (ry, ry, Z) in (5.53) we have
V(rl, ro, Z) < — (Mg Ay — C) |1
— (Manlpm — My arha v — 3 Cy) [[rs?
+ [[ra 2|l [Bepr([feall + [[r2ll + 224) + 4 C1] - (5.58)
+ ((7iric )as + Co) |lrall + ((7iic ) ar 4 3 Co) |||
— || Z))* + KI|Z[| Zas-

Defining y* = [r r}], V(ri,12, Z) (558)can be written as

. ~ i + C 0

174 ,Z < _ TlII + (TfI’IC)M 0 :|

(v.2)< -y ¥y 0 (tric)ar + 3 Co| Y (5.59)
— || Z|)* + &||ZI| Z ),
where
(MxmAlm_Ol) _lp :|

U — ; ; 2 5.60
{ —%p (Mz,mlD,m - Ma:,MAl,M -3 01) ( )
p = Bom(l[r1ll + [lr|l + 22ar) +4 Ch. (5.61)

The matrix® (5.60)is greater than zero (positive definite) if

p < 2\/(Mz,m Al,m — Ol)(Mm,mlD,m — MLM Al,M -3 Ol), (562)
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where the right-hand side is positive due to hypoth¢sgt)and (5.42) Equa-

tion (6.59)can be written as

. ~ Thi +30,1° ~ Zul?
V.2) < - W, Iy - P20z - 2]
| e (5.63)
I ((Tfrlc)M +3 O) 4 K4y
iV, A

Hence,V (y,Z) < 0, as depicted in Fig_ 512, if

HyH >\/((7—fric)M +3 00)2 /{/212\/[ i (Tfl’iC)M +3 CO

= r .64
402, v, 20, by or - (5.64)

. I +3C)?2 23, 7
2] >\/ (e 3G 2y Ty, 569

Applying the Lyapunov’s Extension Theorem [102] thern as oo, the errors

|y|| and||Z|| can be shown to be bounded witkSipas follows:

Suppose the errors start within the boundary&fi.e. |y(0)|| < b, and
|1Z(0)|| < by, then they start their course towards the enclosing boupdar
sinceV (y, Z) can not be guaranteed to be less than zero, within this bound-
ary. However, when they are leaving the boundary and ergetiie region
V(y,Z) < 0, they will return to the boundary. Now, suppose the erroastsit
outside the boundary & then they tend to go to the equilibrium siric¢y, Z)

is decreasing. However, they cannot go to the equilibrium omly up to enter-

ing the boundary of and once they enter the boundary&fwe have already

shown that they are bounded.

Using bounded-input-bounded-output (BIBO) propertyam e shown that a
boundedr, in (5.10) yields bounded outputs and%x. Bounded input; to-

gether withx in @)yieldtlim e, e that are bounded.
—00
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Figure 5.2: V(y, Z) regions of the NN adaptive motion control with velocity
observer.

The next part of the proof is to demonstrate the necessitypthesis/y, > b,

in (548)and Zy, > / (M)t 20" in (5.28) as follows:

e The errory can be shown to be upper-bounded by combiiffk§2)and

the definition op in (5.61)

[zl + flr2ll < 2(1/Bem[Va —4 Ci] = du) (5.66)

wherea = (Mx,m Al,m — Cl)(Mx,mlD,m — Mx,M Al,M -3 Cl) > 0 due

to hypothesigs.43)and (5.44) and it is still true that

Iyl = Vel + [rall? < V2(1/Bea[vVa — 4 Ci) — in) = yu
(5.67)

where the right-hand side db.67)can be defined as the upper-bound of
y. The last equation signifies the need of hypothesgis> b, in (5.45)
sincey, in its course towards the enclosing bound&rycannot violate
the constrainty,,, otherwise, the Lyapunov’s Extension Theorem is no

longer applicable.
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e Note that,Z, in its course towards the enclosing boundaycannot vi-
olate Z,,, otherwise the Lyapunov’s Extension Theorem is no longer ap

plicable. In other wordsZ,, in (4.48)must satisfy

7y = Zyg + Zyg > by, (5.68)

Therefore, it can be shown that if the following is satisfied

N . 2

ot + I > \/((Tf“)ﬁ; 3C0)° | Zys > by of, (5.69)
. . 2
It > \/((Tfr'cﬁ\; 3 Co) (5.70)

thenZ,; > by is also satisfied.

Further, the initial condition||y (0)|| can be less or greater thah, however in
order to comply with the Lyapunovs Extension Theorem, ittinedess than
ya. Similarly, | Z(0)|| must be less thaf,;. The last part of the proof is to
demonstrate hypothesgg(0)|| < yu, in G.47)and||Z(0)|| < Z), in (5.48)are

to be satisfied in practical implementation:

1. In the implementation, it is possible to §gt(0)|| to be as small as pos-

sible. As|ly|| = +/||r1]|? + ||r2]|?, obtaining as smally(0)| as possible
can be achieved through:

e From(G.10) r,(0) = x(0) + A2x(0): it is acceptable to assume that
the end-effector starts from stationary. Settitn@) = x(0) = 0
results inx(0) = 0. Setting the initial estimate of equal to the
actual end-effector pose, i.2(0) = x(0), results in zero estimation

error x(0) = 0. Hencer,(0) = 0.
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e From(.9), r1(0) = %4(0) —%x(0) + A1e(0) + A;x(0) + Ae(0)At:
as in the previous pointg(0) = 0. The initial point of the de-
sired trajectory can be set equal to the initial end-effeqtose i.e.
%4(0) = %(0) = 0, x4(0) = x(0), resulting iné(0) = 0 and

e(0) = 0. Hencer,(0) = 0.

Therefore,

Iy (0)[ =0 < b, < yar. (5.71)

2. By definitionZ = Z — Z, therefore it is possible to initialize the estimated

NN weights with zeroe$Z(0)|| = 0, therefore we can have

1Z(0)]| = 1Z]| < Zu < bz < Zur. (5.72)

It can be seen that the initial conditioniy (0)|| and ||Z(0)|, start within the

boundary ofS.

5.4 Computation of Estimated Operational Space
Coordinates

Note that the the estimated velocitiesre prescribed in operational space. And
for the proposed controller observer we need to ol®ainx — x. However, the
problem is we cannot do direct integrationsofo obtainx. In this section, we

also show how to obtaiR.

First, we need to calculate the estimated joint velocityicwtfior non-redundant

manipulator is given by the formula

a=1J"(aq)x (5.73)
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Now we can integraté to get the estimated joint positions

Then, we can compute forward kinematics to obtain the estichend-effector
configuration parametess = T(q), by using [2.7) and_(218), which consists

the estimated position and rotation of the end-effector
L%
X = [XJ . (5.74)

The positional estimated errots,, can be calculated as

X, = Xp — Xp, (5.75)

and the rotational estimated errofgs, can be computed as

56 = (X180 + [s2x)8 + [sx] ) (5.76)

by using the actual orientation, = [sT(q) s (q) sg(q)}T and estimated
orientationg, = [§7(q) §I(q) &I(q)] . The operatofsx], is a3 x 3 skew-

symmetric matrix defined as
sx]=1 s, 0 —s, (5.77)

given a3 x 1 vectors = (sm Sy sZ)T. Finally the close form of the positional

and rotational estimated error can be written as

x= [T 6p"] . (5.78)
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5.5 Real-time Robot Experiment

The proposed NN motion control with velocity obsenjer (5s2yalidated with
the 6 DOF PUMA 560 manipulator, which does not have veloattgdback

sensors, in real-time experiment.

Similar setup as in previous chapter is set as follows:

e A positional periodic circular trajectory — 75 mm radius ahdecond
period — with a constant orientation for the effector wasasethe desired

trajectory.

e The initial posture of the robot is shown in Fig. 4.3 wheredhd-effector

pointing down and the elbow is up.

e Performances were recorded in term of: (i) desired trajeg@longze

andyg axes, and (ii) position errors along, yg, ze.

The real-time implementation video of the proposed NN adaiotion controller-

observer[(5.2) is provided in:

http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Freemotion.controLNN_obs.MPG

The planning strategy is similar as previously: the weiglfithe proposed NN
adaptive motion controller with velocity observér (5.2) revénitialized with

zero values. Off-line learning simply using the same cacyderiodic trajec-
tory was performed (for about 5 passes) to achieve an addepiarformance.

The recorded weights were then used for the performancersimokig.[5.3.


http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_obs.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Free_motion_control_NN_obs.MPG
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Control type Lagrangian NN controller w/ | NN controller w/
dynamics filtered vel. vel. obs.
max(|leposl|) (mm) 7.90 28.80 6.80

Table 5.1: Performance comparison in term of the maximunh@ibagnitude
of the end-effector position tracking errors in real-tinedy.

Table[5.1 shows that the proposed NN controller with vejocliserver yields
comparable performance to that of the Lagrangian dynantresegy (with-
out joint friction compensation). Also notice that the peniance of the NN
controller-observer strategy is better in comparison Wit NN strategy with-
out velocity observer. The bounded stability of the normthefestimated NN

weights is shown in Fid. 54.

The following gains are set for the proposed NN adaptive emotiontroller-
observerl(ER)x = 0.1, Ay = A; = 30T € ™™, F, =T e RVM Fpl =
I e RN F T =101 € RN F2L = 101 € RNz, Ay = 0.2001 €

™ andlp = 4001 € ™™,
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Figure 5.3: Real-time study NN adaptive motion control wieocity observer.



5.5 Real-time Robot Experiment 133
[Warl, [[Varl| vs. Time WA I, |V vs. Time
12 ; ; w w ; ; w w
ol — Wl | — Wy ||
- = [Vl 0.81 - = Wl
8,
0.6}
WW
6, 4
0.4r
4+t
P I e S 0.2
0 ol

0 10 20 30 40 50

Time (second)

IWll, [ Vgll vs. Time

— Wl ]
— Il

0 10 20 30 40 50

Time (second)

0 10 20 30 40 50

Time (second)

HWTH7 HVTH vs. Time

— W |
|

0 10 20 30 40 50

Time (second)

Figure 5.4: Real-time study history of the estimated NN \u&sgof the NN
motion controller with velocity observer.
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5.6 Conclusion

In this chapter, the NN adaptive operational space motiomddation with ve-

locity observer[(5]2) was developed and validated throeghtime experiment.

It can be concluded that the proposed strategy produces:

e a comparable performance to that of the Lagrangian dynastriategy in

real-time experiment.

e better performance than that of the NN motion confrol (4 @Mere fil-

tered velocity is used to replace the actual velocity).

Therefore, the outcome of the study is a promising alteveatfior real-time
robotic implementation, to the Lagrangian dynamic stnategterm of without

the need of deriving and identifying Lagrangian dynamics.

In the next chapter, the current strategy which is done ia fretion will be
extended into the full unified force-motion control strateg the operational

space framework.
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CHAPTER 6

NN ADAPTIVE FORCE-MOTION CONTROL WITH
VELOCITY OBSERVER

6.1 Chapter Overview

In this chapter, a NN adaptive force and motion control inrapenal space
(with velocity observer) is presented. This work is extahftem previous for-
mulation in Chapter four, by incorporating selection nes2 andQ (2.41)

which are instrumental in decoupling force and motion setesys in opera-
tional space formulation. A NN adaptive impact strategylso groposed to
dissipate the impact force produced after the end-effdaterthe working sur-
face from using NN adaptive motion control. Lyapunov sip#énalyzes for

both NN adaptive force-motion and impact control are algsented.

Real-time experimentations were performed on a PUMA 560t;,0lith com-
parison to the performance of a well-tuned Lagrangian dyoesoontrol. It can
be shown that the proposed strategy yielded comparablerpeahce to that of
the Lagrangian dynamics strategy. An adaptive impactegiyaand its stabil-
ity analysis, to complement the proposed strategy in iea-experiment, were

also given.

Details can also be found in [117].
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6.2 End-effector Constrained Motion Dynamics

To ease the formulation development in this chapter, lefsaduce the end-
effector constrained motion dynamics of the non-redundsamtipulator inter-

acting with the environmenft (2.85) in Chapter two, which bardescribed as

Mx(Q)X + Bx(q7 q)X + gx(Q) + Tx(q7 Q) + feontact= F (6.1)

where the vectof € R, as in[2.36), represents the contact force vector exerted
by the effector onto the contact surface. The operationatespnatrices and
vectorsM,(q) € R, Bx(q,q) € R, g«(q) € R andtx(q,q) € R™

are identical with[(2.28) 4(2.831), respectively.

The constrained motion equatidn (6.1) needs to be reardaiogeccommodate
the proposed controller-observer formulation. Usingatede matrice$2 andQ
in (2.41), and Properfy 4.3R,(q, X) = B«(q, q), then the effector constrained

dynamic [6.1) can be written as

M (q) (2% + QX) + Bx(q, %) (2% + QX) + gx(q) + 7x(q,q) + fcontact(: F)
6.2

6.3 NN Adaptive Force-Motion Control - Observer
Formulation

6.3.1 NN Adaptive Force-Motion Controller-Observer

In this section, the NN adaptive force - motion controllettwielocity observer

is proposed. The controller-observer structure is shovign6.1. To start, the
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X

oo ) q FWd
Xd, Xd, Xd RObOt >
Kin.
NN
» Weight | X
updates

Figure 6.1: The operational space NN force - motion cordratbserver struc-
ture.

control law is defined as:

F= MX (q><QF>rknotion + QF%korce> + Bx(q7 X0><QXT + er)

| (6.3)
+ 8x(a) + Tx(q, @) + fsensor
wherexg, %, f,, F*, ..., andF _ are defined as

Xr = Xd + A1 (Xd - f() (64)

= Xd + Alex + A1)~(
%o =% — Ap%k (6.5)

T=t

.r = Ke_l(Alef + AAZ / €ef dT) (66)

0
F;knotion = )"(1" + Al (rxl + I'x2> (67)
F;korce = f; + A1 (rf + rX2) (68)

andF; _ are defined as

force

with the computable terms to compuié,

otion
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%, = %4 + Ay (kq — X) (6.9)
Iyl + I'x2 = X, — X (610)
= — A%+ K 'Asep (6.11)
I +I'yo = fr — XO (612)
It follows from (6.11) that we can write
f; = — A1X + A1 (f( -+ AQ)N() + K;lAief
) (6.13)
=f, + Airye
where it can be defined
f.=— Ax+ K 'Ajer = KZ'A e + K ' Ajer (6.14)
confirming the derivative of (616).
It follows that from [6.10),[(6}4) and (6.5) we can write
Ix] +Tx2 = (Xr - X) + (X - XO)? (615)
where it can be defined
ry1 — X’r‘ —X = éx + Alex + A1)~( (616)
I'vo = X — Xg = X + AsX. (6.17)
It follows from (6.12), (6.6) and(6l5) that we can write
re + Iyo = (£, — %) + (%X — Xo), (6.18)
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where it can be defined

T=t
e = fr—X:—X—FKel(Alef—FAi/ ede)
o, (6.19)
= Kgl éf + K;l(Alef + JXZ / er dT)
0

whereA, Ay, A; € R™*™ are positive diagonal matrices, = x; — x and
éx = X4 — X are the trajectory tracking errors arg, x; andx, are the desired
operational space trajectories. The estimated errorsdegtvihe actual terms
x,x and their estimateg, x are defined bk = x — x andx = x — x, re-
spectively. The computation to obtainandx is given already on Sectidn %.4.
er = f; — f andé; = —f = —K_ x are the force tracking errors, whefigis a
constant desired active-force. Note that the linear spriagix K_! is assumed
to be known, however, in the implementation it can be seenrsblie gain i.e.

a positive diagonal matrix.

Now, combining robot dynamic§ (6.2) and the proposed cdiatr@6.20), and
taking into account[{6.13) and the first derivatives [of (§,1(6.19) and also

Property 4.3.2, general closed-loop dynaméan be obtained as

M, (q)(Qiy + Qig) = — M (q) A1 (Qry + Qrg) — M, (@)A1 (T4 Q)ryo

— By (q, %) (2%, + Of,) + By(q, x) (2% + Q%)

+ (Tx(q7 q) - Tx(q7 Q)) +n
(6.20)

where uncertaintieg

n= Mx<q)(Qanotion + QF%korce) + Bx<q7 XO)(QXT + er)
‘ (6.21)
+8x(a) + 7x(a, Q).

A

andTx(q,q) — 7x(q,q), is similar with [4.88), however it is reproduced for
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ease of perusal as

T (A, @) = (A @) = T T [7000G + Teou(SGNG) — SGNQ))

+ T exp Tt sgn(q) — 7 exp T sgn(q)].
(6.22)

The general closed-loop dynami€s (6.20) cannot be usedtigiiato stability
analysis. It must be converted into useful closed-looprodiet (Sectiori 6.312)

and observer (Section 6.8.3) dynamics:

6.3.2 Controller closed-loop dynamics

Using (6.186),(6.17) [(6.19) and Propelfy 4135,(q, %o ) (2%, + Qf,) —
B, (q, x)(Qx + Ox) in (6.20), can be arranged such that

= By (q, X)(Qry; + Qr¢) — By(q, Qx, + Qf )1y (6.23)

Substituting it into[(6.20), yields theontroller closed-loop dynamiess
M, (q)(Qy; + Qi) = — My (q) AL (Q2ryg + Qre) — My (q) AL (T + Q)rye

- Bx(q7 X)(erl + QI‘f) + Bx(q7 QXT + er)rx2

A~

+ (Tx(q,9) — 7x(q,9)) + 7.

(6.24)
6.3.3 Observer closed-loop dynamics
An observer can be designed (based uponl|[109]):
x=x—x=2z+ (Ip+ Ay)X (6.25)
7= Q%, + Qf + ((Ip - Ay))x (6.26)

— QA [Q(I'x1 + o) + Q(re + I'xz)] )
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wherelp = diaglp; > 0) € R™*™. Combining the first derivative of{6.25)
with (€.26), and taking into accourif_(6]13) and the first \dives of [6.16),

(6.19), yield
X+ (Ip+A)x+ ((Ip - A))x = — Q(%, — %) — Q(f, — %) — QA Ty

+ QA [Q(rxl + Tx2) + Q(rs + I'xz)]

= — (Qf’xl + Qrf) + QAl(erl + Qrf)
(6.27)

Substituting[(6.1]7) and its derivative into the left-haside (LHS) of [6.2I7) and

multiplying both sides withM, (q), yield
Mx(q>i‘x2 + Mx(q>lDrx2 =

. . . (6.28)
— ML (q) (01 + Q) + My (q) QA (Qry; + Qry).
Using [6.16),[(6.17) [(6.19) and Propelfy 413%,(q, %o ) (Q2x, + Qf,) —
B, (q, x)(Qx + Ox) in (6.20), can be arranged such that
= B, (q, X0)(Qry; + Qr¢) — By(q, X)ryo (6.29)

Substituting it with into the general closed-loop dynan{@&20), yields
—M,(q) (51 + Q1) = My (q) A1 (Qryg + Qre) + My (@)A1 (I + Q)ryo

+ Bx<q7 XO)(erl + Qrf) - Bx<q7 X>rx2

— (rx(q,4) — 7x(a.4)) —n
(6.30)

Substituting [(6.30) into(6.28), thebserver closed-loop dynamican be ob-

tained as:
My (q)Fx2 = — My (q)(1p — A (I + Q))ryo

+ Mx(q)Al (I + Q)(erl + Qrf)
) (6.31)
- Bx(q7 X)rx2 + Bx(qu XO)(erl + QI‘f)

A

— (tx(q,9) — 7x(q,4)) — 0.



6.3 NN Adaptive Force-Motion Control - Observer 142

6.3.4 Uncertaintiesn in NN terms

Similar with Sectioi 4.412M,(q), Bx(q,%o), gx(q) and7x(q, §) in n 6.21)

can be described as follows

M, (q) = Wi, o0 (Vi zar) + enr (6.32)
B.(q,%) = W o5(Vy 25) + €5 (6.33)
gx(q) = W:qr 0'9(quF z,) + &4 (6.34)
Te(q,q) =W o (V] z.) + e, (6.35)

~

Similarly, the estimated dynamic teriv,(q), Bx(q, Xo), &x(q), 7x(q, q) are

described by the estimated weigh, }, {W,}, with subscripp = M, B, g, 7.

A

Similar with Section 5.3]4M,(q), Bx(q, q), gx(q), Tx(q, @) can be shown to

be bounded. Therefore, the optimum weighs, V,, and the approximation

error e, (with subscriptp = M, B, g, 7) from (6.32)-(6.35), are also upper-
bounded.

Using similar developmentand simplified notatiens= o(V'z), 6 = o(V'2),

ando = ¢ + & as in Sectiof 4.4]12, the uncertaintig$6.21) can be written as

n=&+¢ (6.36)

This division is needed because oglyerm can be manipulated by the weight

updateﬂ/’, V as will be shown in Sectidn 6.3.5.
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The term¢ is defined as
& = (W) (QFfion + W)
+ (v”vg&B) (Qx, + Of,)
+W,6,+Wle,
(6.37)
+ (Wi o Vi 21 ) (QF5on + OF)
+ (Wh o,V 25) (0%, + Of,)
+ VV;F o"g\}g z,+ W!o' V5z,
and the “whole”NN errorg is defined as
¢ = (Wi 4 Vi 201 ) (i + W)
+ (Wh oV 25) (0%, + Of,)
+W!lolViz,+ W!ol V] z,
+ (WHO(VE 21) ) (QFpion + QW) (6.38)
+ (WEO(VE 25)) (9%, + Qf)
+WIO(V] z,) + WIO(V] z,)

+€

where the total approximation errer= &, (QF} ion + QFL ) +€5(Q%, +

force

Qf,) + e, + e, < e (since the actual dynamics are bounded).

Note that, the driving signalg, (6.4) andF* (©6.1), used in[(6.37) and

motion

(6.38), are different witk, andF* in Sectiof 4.4,

motion

As in Sectiori 4.4]2, the uncertaintigs[6.36) can be shown to be bounded by

using||L, — L,|| < (L) in @47) and als&;,,,, 6.1),F},.. 6.8) andx,
defined in[(6.2D)f, defined in[(6.12), as follows



6.3 NN Adaptive Force-Motion Control - Observer 144

Inll < (Lan)as ([P jpoion + Ve[| + (Ls)ar || (2%, + Q)

motion

+ (Lg)ar + (Le)y + e

< (Lol 192 6o+ A (1 + 1) + Q2 (£ + A (e +1,0))] | (6:39)

+ (Lp)m ||[[ (rx1 + T2 + %0) + Q (v + T2 + X0)] |

+ (Ly)ar + (Lo)as +em
Note thatx, (6.9) can be assumed to be bounded since the desired tragscto
%4, X4, X4 are bounded by desigs,is bounded by the workspace agdan be
shown to be bounded. And, in (6.5) can be shown to be bounded dug tand
x can be shown to be bounded. Aﬁdin (6.11) can be shown to be bounded
sincex, can be shown to be boundef is bound by design anfican be safely

assumed to be bounded. Now, for ease of representatiagidthe

r; = Qry + Qrg (6.40)
o =Txo (641)

therefore
1] + 1o = (Qryg + Qrg) + (Qryo + Oryo). (6.42)

Hencen, by taking into accouni(6.42), can be shown to be bounded as
Inl] < Co+ C1 ||[ (rx1 + rx2) + Q (¢ + ry0)] |
(6.43)
< Co + C1 ([[ra]] + [|r2]).
whereCy, C; > 0. And sincen = £ + ¢, then clearly the following inequalities

are true

§ < Co+ Cy ([[ral| + [r2]]) (6.44)

¢ < Co+Cy (IIea] + [l (6.45)
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Note that, the definitions af; (6.40) andr, (6.41) in this section, are different

with the definitions of; (5.9) andr, (5.10) in Section 5.314.

For ease of later developments, let us defhe= diagW, V| to be upper-

bounded as follows

1]l = VIWIPZ+[IV]? < Zy (6.46)

where Z,, is a positive scalar constariy = diagW,;, Wz, W,, W] and

V = dlag[VM, VB, Vg, VT]
6.3.5 Stability Analysis

For the force - motion controllelf (6.3) and the observer§p.6.26), let the NN

weight updates be provided as

VAVMi' = FMz’j (&M (Tl,i + rQ,l’) (QJ Frtlotion,j + Qj Ffj;rce,j> -k VAVMW) (647)
Vi = Gor(zar &y, O tary, (11 + 12,0 Fngtion; + 5 Froree ;)
i=1 j=1

(6.48)

— kK ‘A/Mk)

Wa, =Fp, (65 (rii+r2:) ( dnj + Q frj) — 5 W) (6.49)
Vg, = Gp, (25 6%, (O g, (ri+r2) (Qd;+Q; fry)  (6.50)
=1 j=1

J

—KVp,)
W, = F,, (64 (115 4 724) — K W,,) (6.51)
Vo, = Gy, (29 64 (O g, (r1i+12:)) — K Vy,) (6.52)
=1
Wy, =F, (6, (r1; 4 ra5) — K Wy,) (6.53)
Vo, = G, (2, 67 (i Wy (r1+724)) — K Vry) (6.54)

=1
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with x is a positive constant. And the estimated NN weight updaﬁag;j €
RNV Vg, € RV Wp € RNV, € RVB W, € RV v, € RVo, w,, €
RN2, v, € RV~ are all column vector. And the adaptive gairE;jij €
RV>Ne - FCL e RV and Gyl o€ RV GI e RV N
are all positive diagonal matrices. The following indices defined:i,j =
1,...,m are output-layer indiceg; = 1,..., N, is the hidden-layer index,

where to simplify the implementation, the hidden-node $¥zas set the same

throughout. WhileV; 5/, Ny 5, N1 4, N1 are the respective input-node sizes.
Proposition 6.3.1 Lety = [r] r}]*. With the assumptions that:

1. the controller gainA; and the observer gail, meet the conditions

C
My m
My Mo+ 3C
My

At > (6.55)

(6.56)

lD,m

whereCy > 0, Ay, = Min(Ay), Ay = maxAy), My, =
MIiN(Apin (Mx(2))), My pr = Min(A\e.(Mx(2))) andip ., = min(lp);

2. yu, the upper-bound constraint of, and, Z,;, the upper-bound of the

estimated NN weight&,, satisfy

A ((Tfric)M +3 00)2

~

whereCy, k > 0, (7iic)m 1S the upper-bound dfr«(q, q) — 7x(q, q)||,

U, = min(¥) with ¥ is to be defined i6.72), andb, is to be defined in

(6.76) and
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3. both initial conditions of andZ satisfy

Iy (Ol <ym (6.59)

1Z(0)]| < Zs; (6.60)

wherey,, is the upper-bound aof and Z,, is the upper-bound of the NN

weight errors Z;

then using the proposed motion cont(®l3), the observels.25)- (6.26)and
the NN weight update.47)(6.54) it can be shown by Lyapunov’s exten-
sion theorem[[102] that ast — oo, the errors||ry||, ||r2| and [[W]], || V]|
will be bounded by enclosing boundasy which is defined by enclosing region

V(y,Z) < 0.

Proof 6.3.1 The chosen Lyapunov function candidate for error dynarf@czt)

and (6.31) with the uncertaintieg (6.36) is

1
V(ry,re,Z) = r?Mx(q)rl + 5 ry My (q)rs
1 m m ~ ~ m ~ ~
S Ed o LR
i=1 j=1 i=1
1 N2 N2
+5 2 Vi Gu Va5 D Ve Gl
k=1 k=1
(6.61)

where the NN weight errorsi,;,, € R, vy, € RVoM wp e RV v, €

RNLE W, € RV2 v, € RN W, € R v, € RVr are all column vector.

Next, we substitute the closed-loop dynanf&g4) (6.31) Property{(4.3.6 and
also take into account (6.36) the definitiore (€.37)and the knowledgg(|| <
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Co+ Cy(||lr1|| + ||r2])) E48)and also we take the fact thAQ = QAQ =0
for any positive diagonal matriA, into V (ry, r,, Z) of (6.61) to obtain
V(ry,re,Z) = — rIM,(q) At — ra My (q)(1p — Ap)rs

+ ry B (qa QXT + er)rQ + rng(qa XO)rl

+ (I‘;F - rg)(Tx(qa q) - Tx<q7 (1))
+ Collr1|| + Collra|| + Cillr1|* + 2 Cy||ry || Ir2]| + Collra|)?

+
(6.62)

where the lump parametep in (6.62)is defined as

’(‘b Z Z ( 7, L Mij _'_ &M (rl,z’ - 7’271‘)(9 Frtlotlon] + Q Fforce ]))

=1 j=1

No m m
T (G-1 % L
+ ) Vi (Gal Vg, + 2 60, (O 0D i, (r1 — 12.)

k=1 i=1 j=1

QJ Frirklotion,j + Qj F&ce,j)))

+ Z ZVVIT% (F W, + 65 (1 — 1) (Y dy 4+ Q fm))

~~

i=1 j=1
Ny m
+Y VL (GE v, +2zp 6 ( Wg,., (rii—T24)
By, B, ¥ Bk B Yp, Bijr \"'1i 23
h—1 i=1 j=1

Q iy + Q5 1))

m
~T (-1 & .
- Z W, (ng Wy, + 0 (11 — T2,i))
i=1

N "

+) <G;k1 Vo, 20 67 (D g, (r1i — m)))
k=1 i=1
m

. ].:‘_1 VLVT. + &T (Tli — 7’271‘))

~~

(6.63)
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Using ¢ (6.37) it can be demonstrated that (6.63)is made up ofVLV, V and
(r; — rp)T & The idea is to cancelr; — ry)T & with W,V Unfortunately,
only (r; + ry) can be computed (se6.42), hence onlyT ¢ can be canceled
by VV,V With the weight update‘év,{f (©.47) - (6.542) (note that—W —
W sinceW = W — W and W is constant), and taking into consideration

€l < Co+ Ci(lra] + IIra) BE3) v EB)can be expressed as:

m m Na
_ =T o ST ¢ T
’(,b—/ig E WMijWMij‘i_..._'_K)E Vo Vo, —215 &
k=1

i=1 j=1

(6.64)
< — k|| Z|* + £l|Z|| Zar + 2 Collral| + 2 Ch[|r ||| ra]| + 2 Ch[|r21*.

Note, equatiorf6.64)is obtained by using the inner products(68)- (4.71)

The substitution ok (6.62)into V (ry, s, Z) (6.62) yields
V(rl, ro, Z) = — 1 My(q)Air; — s My (q)(Ip — Ay)ry

+ rrerX(qv QXT + er)rQ + rng(qa XO)rl
+ (rrlr - rg)(TX(qv q) - Tx(q7 Q))
+ Collr1|| + 3 Col[r2]l + Cil[re]]? + 4 Cyl[re][|[r2]] + 3 Cyllrz|)?

— k| Z)* + K| Z)| Zu
(6.65)

The following terms, using Propefty 4.2, can be written as:

—r{ My (q)Airy < — My Al (6.66)

—1;5 (M (q)lp — My(q)A1)ry < — (Mo mlpm — Mo arAiar) vzl (6.67)

whereA ., A1, My, Moo, Up, @re as defined i6.53)and (6.56)

The next terms, by taking into account Propérty 4.3.3, cawfitten as:

Y By (q, %, + Qf, )ra | + [[r3 By (q, %o)14 |
(6.68)
<o [[lr2l Bear(llral + [lral] 4 22 a0).



6.3 NN Adaptive Force-Motion Control - Observer 150

This is due to the fack, = ry + x in 6.18) f. = r¢y + x in (6.19) and

Xo = X — Ixz In (6.17)

The remaining two terms can be shown to be bounded as:

||Tx(q7 q) - Tx(q7 éﬂ” < (Tfric)M- (669)

which is obtained fronf6.22), Property(3.2.4 and the followings:

1. [|[J-"r,,J x| is bounded because,;, is bounded (as shown i3.7)),
|J~Y| is bounded for non-singular configuration of the maniputatod

it was assumed thaltx|| is bounded.

2. || Teou(s9M(q) —sgn(q))|| is bounded because,,, is shown to be bounded

in (3.8) and becausésgn(¢;) — sgr(g;)) is bounded.

3. |7 a(expTed"sgn(q) — exp-Te4")sgn(q))|| is bounded because,;
is shown to be bounded {8.9) and because both s@n and exp*! are

bounded.

Substituting[6.66)(6.69)into V (r, ry, Z) in (6.63) we have

V(ry,ry, Z) < — (Mg Ay — C1) [|re|]?
— (Mymlpm — My Ay ar — 3 Cy) ||ra?
+ [[ea 2|l [Besr (ool + [[r2ll 4+ 224) + 4 C1] - (6.70)
+ ((7tric )ar 4 Co) [Iral| + ((Tiic)ar + 3 Co) [|r2|

— K| ZII* + KI|Z|| Zar.
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Defining y* = [r r}], V(r1, 12, Z) (€.70)can be written as

5 )ar + C 0
Viy,Z) < — Ty + (Tfrlc)M 0 :|
(v.2) = =y ¥y 0 (tric)ar + 3 Co| Y (6.71)
— || Z|)* + &||ZI| Z 1,
where

(MxmAlm_Cl) _lp :|
U — ; ) 2 6.72
[ —%p (Mm,mlD,m - Mz,MAl,M -3 01) ( )
p = By u([[ra]l + [[r2ll + 22ar) + 4 Ch. (6.73)

The matrix® (6.72)is greater than zero (positive definite) if

p< 2\/(Mz,m Al,m - Ol)(Mm,mlD,m - Mz,M Al,M -3 Ol)a (674)

where the right-hand side is positive due to hypoth¢géf)and (6.56) Equa-

tion (6.71)can be written as

. Tric)m + 3 Co1? - Zul?
Viy.2) <= 0 Iyl - REE Nz - 2]
(rie)ar +3 Co)? w22 (6.79)
+ fric ) M 0 + M
iV, A
HenceV (y, Z) < 0, as depicted in Fig_612, if
) 2 Z2 )
Iyl >\/((T”'C)JZ\; 3Co) o (T”'C);”\If 5% _y, or (6.76)
5 ((tric)m +3Co)? | Z3;  Zu
y/ S+ —— =b; 6.77
1Z]] >\/ P T Z (6.77)

Applying the Lyapunov’s extension theorem [102] thert as oo, the errors

ly|| and || Z|| can be shown to be bounded witlfinas follows:

Suppose the errors start within the boundary&fi.e. |y(0)|| < b, and

|1Z(0)|| < by < Zy, then they start their course towards the enclosing bound-

ary S and when they start leaving the boundaryssince theV (y, Z) is de-

creasing ¥ (v, Z) < 0) hence the errors cannot leave the boundangoNote,
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m

Figure 6.2: V(y, Z) regions of the proposed NN adaptive force and motion
strategy.

however, in its course towards the enclosing boundgrthe errory cannot vi-
olate the constrainty|| < ya, therefore it signifies the last hypothesjs< y,
in (6.57) as shown in Fig[ 6]2. Now, suppose the errors start at oattie
boundary ofS then they tend to go to the equilibrium sincéy, Z) is decreas-
ing. However, they cannot go to the equilibrium, but only agehtering the
boundary ofS and once they enter the boundary&fwe have already shown

that they are bounded.

Using bounded-input-bounded-output (BIBO) property i ¢ shown that a
bounded input, = ry., in (6.17) yields bounded outputs andx. Bounded
inputr; (6.40)yields bounded outp@r,; andQre. Bounded inpufir,, (6.18)
together with boundef2x yieldtlirgo Qe,, Neé, that are bounded. Similarly, by
using BIBO property and and taking into account the finalkueatheorem (FVT)
of Laplace transform, it can be shown that a bounded ifpeitin (6.19)yields

error signalstlim Qe = 0 and Qeéy, fOT:t Q e dr that are bounded.
—00

The next part of the proof is to demonstrate the necessitypfthesis;y, > b,
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in &57)andZ,; > \/W in (6.58) as follows:

e The errory can be shown to be upper-bounded by combiifé@4)and

the definition o in (6.73)
[r1]] + [r2]] < 2(1/Bou[Va — 4 C1] = d) (6.78)

wherea = (Mx,m Al,m — Cl)(Mx,mlD,m — Mx,M Al,M -3 Cl) > 0 due

to hypothesig6.55)and (6.56) and it is still true that

Iyl = Vel + [[rall? < V2(1/Boa[Va — 4 Ci) — iin) = ym
(6.79)

where the right-hand side dB.79)can be defined as the upper-bound of
y. The last equation signifies the need of hypothesgis> b, in (6.57)
sincey, in its course towards the enclosing bound&hycannot violate
the constrainty,,, otherwise, the Lyapunov’s Extension Theorem is no

longer applicable.

e Note that,Z, in its course towards the enclosing bound&ycannot vi-
olate Z,;, otherwise the Lyapunov’s Extension Theorem is no longer ap

plicable. In other wordsZ,, in (4.48) must satisfy

Zn = Zag + Zag > by, (6.80)

Therefore, it can be shown that if the following is satisfied

. i 3 Cy)?
AT AT ((rie s +3 Co) + Zy > by or, (6.81)
4k,
. . 2
Ty > ((Thic)ar + 3 Co) (6.82)
4k,

thenZ,, > by is also satisfied.
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Further, the initial condition||y(0)|| can be less or greater thah, however in
order to comply with the Lyapunovs Extension Theorem, ittinedess than
ya. Similarly, | Z(0)|| must be less thai,;. The last part of the proof is to
demonstrate hypothesgs(0)|| < ya in ©.59)and||Z(0)|| < Zu in (6.60)are

to be satisfied in practical implementation:

1. In the implementation, it is possible to §&t(0)|| to be as small as possi-

ble. Aslly|| = /[Ir1]|2 + ||r2||2 comprises, = ry, andr; = Qr,+Qry,

obtaining as small|y(0)|| as possible can be achieved through:

e The logic to make,; andr,, as small as possible can be shown to

be similar as in Section 5.3.5:
— From (6.18), r(0) = x(0) + Ay%(0): in practice, the force-

motion control follows the impact control, which will makest
system into low velocity(0) ~ 0. Settingx(0) = 0 results in
x(0) = %(0) — %(0) ~ 0. Setting the initial estimate of equal
to the actual end-effector pose, i®(0) = x(0), results in zero
estimation errorx(0) = 0. Henceyr,(0) ~ 0.

— From (€17) rx1(0) = %4(0) — %(0) + Ajex(0) + A;x(0) +
Aex(0)At: as in the previous point(0) = 0 andx(0) ~ 0.
The initial point of the desired trajectory can be setg$0) =
0 andx4(0) = x(0), resulting inéx(0) = x4(0) —x(0) ~ 0 and

ex(0) = 0. Hencery, (0) ~ 0.

e From (€19) r¢(0) = —x(0) + K_*(A1e¢(0) + Ase(0)At): asin

the first pointx(0) ~ 0. The initial point of the desired force can be
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set equal to the actual force i.&,(0) = £(0), resulting ine¢(0) = 0.

Hencer¢(0) ~ 0.

Therefore,

[y (0)]| = 0 < yar. (6.83)

2. HypothesigZ(0)|| < Z, in (6:60)can be equally satisfied, if the follow-

ing condition from(4.48)is satisfied

1Z()| = 1ZO)]| + 1Z(0)|| < Zur + Zns = Zs, OF (6.84)

1Z(0)]| < Zas. (6.85)

In the implementation, the last equation can be achievedbylg initial-
izing the NN force - motion weights (in this section) with i impact’'s

stabilized weights as follows

Z (0)sorce-motion= Zimpact, (6.86)

where in practice||Z||impactcan be limited by design i.4Z||impact < Zas-
6.4 NN Adaptive Impact Control Formulation

For fully automatic application, force - motion control caot be implemented
directly after motion control. When the end-effector hhe tworking surface
(contact state) it will produce impact force which need todiesipated. In

this section we propose NN adaptive impact force contradetdaupon motion

dynamics as

My (q)% + Bx(q, @)% + gx(q) + 7x(q,q) = F (6.87)
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The NN adaptive impact control law is proposed as

~

F = — M, (q)A X + &,(q) + 7x(q, 4) (6.88)

Note that we use impact control in short period to dissiph&impact force
as quickly as possible, thus the availability of the actubuity x is assumed
(although in practice it is obtained from filtered backwaiffedence of joint

position).

Combining the manipulator dynamids (6.87) and the propasgdct control
(6.88), yields

Mx(q)x = —Mx(q)A x — Bx(q, q)x + n; (6.89)

where the uncertainties of the system

1 = M, (q)A X + 8.(q) + Tx(q,q). (6.90)

6.4.1 Uncertaintiesn in NN terms

Now, similar with Sectio 4.412M«(q), gx(q), andT«(q, q) in n ©.90) can

be described as follows

M, (q) = Wy, om (Vi zu) + € (6.91)
gx(q) =W, 0 ,(V, z,) + ¢, (6.92)
Tx(q,q) = W 0,(V] 2,) + &, (6.93)

Similarly, the estimated dynamic ternd., (q), gx(q), and#4(q, q) are de-

scribed by estimated weights,, W, with subscripty = M, g, 7.
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Similar with Section 4. 412V, (q), gx(q), 7x(q, q) can be shown to be bounded.
Therefore, the optimum weigh®/,,, V,, and the approximation errat, (with

subscripty = M, g, 7) from (6.91)-(6.98), are also upper-bounded.

Using similar development and simplified notatienss o(V'z), 6 = o(V™2),

ando = ¢ + & as in Sectiof 4.4]12, the uncertainti¢$6.90) can be written as

n=£&+¢. (6.94)

This division is needed because oglyerm can be manipulated by the weight

updategfv, V as will be shown in Sectidi6.2.2.

The term¢ is defined as

¢ = (WL&@ Ax+W'e,+W's,

) ) ) (6.95)
+ (Whoh Vi) Ax+ Wie, Vi, + Wi/ Via,
and the “whole”NN errorg is defined as
¢ = (WhohViau) Ax+ W6, Viz, + Wi, Via,
(6.96)

+ (WLO(\N/LZM)) Ax+WIO(VTz,) + WIO(VTz,) + ¢

As in Sectiori 4.4]2, the uncertaintigs(6.94) can be seen to be bounded with

the generic expressidiL, — L,|| < (L,) in @.47), as follows

1l < (Lar)ar A%+ (Lg)ar + (Lo + en (6.97)

Note thatx is bounded by motor speed limit. Therefayean be simply shown

to be bounded as

[nll < Co+ Cy |[]]. (6.98)
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whereCy, C; > 0. And sincen = £ + ¢, then clearly the following inequalities
are true

1€]] < Co + C1 I%]] (6.99)

1¢] < Co+ Cy |1%])- (6.100)

Let us redefine in this sectidh = diagW, V| to be upper-bounded as follows

1Z]) = VIWI?+ I VI? < Zu (6.101)

where Z,, is a positive scalar constar¥y = diagW,;, W,, W,| andV =

diagV, Vg, V,].

6.4.2 Stability Analysis

For the proposed impact contrbl (6188), let the weight upslae provided as:

Wity = Far, (6 i Mgy ity — wl|%[[War,) (6.102)
Var, = Gy (21 6, QD Wy, @i Ay iy) — wl%[[Var,)  (6.103)
i=1 j=1

W, = F, (6, & — K|%||W,,) (6.104)

‘Lfgk =Gy, (z, &lgk (Z W, @) — K[[%[|Vg,) (6.105)
=1

w, =F, (6, & — k||%[|W,,) (6.106)

Ve =G (2. 6%, (O Wo, i) — K%V, (6.107)
=1

with x is a positive constant. And the estimated NN weight updaséeﬁl;j €
RV2 vy, € RV W, € RV v, € RV w € R v, € RV are all

column vector. And the adaptive gainB;, € RN . F T € R
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andG;; € RV G e RVL-Mr are all positive diagonal matri-
ces. The following indices are defined; = 1, ..., m are output-layer indices,
k=1,..., Ny isthe hidden-layer index, where to simplify the impleméiota,
the hidden-node siz&, is set the same throughout. Whi\g ,;, N, 4, N, are

the respective input-node sizes.

Proposition 6.4.1 With the assumptions that:

1. the controller gainA meets the condition

&

A, >
Mx,m

(6.108)

whereC; > 0, A,,, = min(A) and M, ,,, = min( A, (Mx(%)));
2. Zur, the upper-bound of the estimated NN weidhtsatisfies
AT \/%; (6.109)
whereCy, k > 0; and
3. the initial condition ofZ satisfies

1ZO)| < Zus; (6.110)

Z is the upper-bound of the NN weight erro#s,

then using the proposed motion cont@I88)and the NN weight updat¢6.102)
(6.107) it can be shown by Lyapunov’s extension theofem![102] that-a oo,
the errors||x|| and||W||, || V| will be bounded by enclosing boundasywhich

is defined by enclosing regidn(x, Z) < 0.
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Proof 6.4.1 The chosen Lyapunov function candidate for error dynaf@ics)

with the uncertainties) (6.94) is

-1
V<X7 Z) = ikTMx(q>X
1 m m ~
DI S A POl
i=1 j=1
1 N2 No
+5 2V ngkvMﬁQngkavgﬁ Zv G 'v,,
k=1 k=1
(6.111)

where the NN weight errorsw,;,, € RV, v, € RV w,, € RV v, €

RN w,, € RV2, v, € RN~ are all column vector.

Next, we substitute the closed-loop dynanf&89) Property[4.3.6 and also
take into account; (6.94) with the definitiorg (6.95)and the knowledgg(|| <

Cy + Cy||r|| (6I00) into V (r, Z) of (6.111) to obtain

V(%,Z) < =X"Mx(q) A% + C [[r[* + Co [|r| + 4 (6.112)

where the lump parametef in (6.112)is defined as

=33 Wl (F]\‘j” War, + 6ar i Ay :@)

(6.113)
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Using¢ in (6.95) it can be demonstrated thatin (6.113)is made up ofW, \%
andr™¢. The ideais to cancal™¢ with W, V. Furthermore—~W — W since
W = W — W and W is constant. With the weight updat@&102)- (6.107)

1) becomes

m m m mo
Y= wlI%| Y Y Wiy, War, + wIIX| Y W, + wll%] Y Wi
i=1 i=1

=1 j=1
No No Na
R[N Vh Van + RIRIY Vg g+ wlIXI DYV
k=1 k=1 k=1

< — K|XINZIP + &lI%[[[|1Z]| Zp
(6.114)

Equation(6.114)is obtained by combining all the inner products as

(W W) =N Wi Way, + > Wow, + > Wiw, (6.115)
=1 j=1 i=1 i=1
~ No Na No
(VV) =D Vv, + ) Vave + Y _Viv, (6.116)
k=1 k=1 k=1
(Z,Z) = (V,V) + (W, W) (6.117)

whereZ = Z — Z, and therefore
SRS - ~ 2 - -2 - -2
(Z2,Z) = (2.Z) —|Z|” <||Z||1Z|| — | Z||” < ||Z||Zs — ||Z)".  (6.118)

Substitutingp (6.113)and Property4.3]1, it is possible to shéwx, Z) (6.112)
that

e : : = Z kZ3
V(5,2) < — %] | (Magn A — Co)lil| = Co + w(|Z] — 2227 - “2M
(6.119)

whereA,,, and M, ,,, are as defined i1§6.108) note(M,, ,,, A, — C1) > 0is due

to hypothesig6.108) Hence,V (%, Z) < 0, as depicted in Fig_6!3, when

. Co —|—/€Z]2\/[/4
— b, o 6.120
Il > el (6.120)
. Co 722, 7
12l > /=2 + 5+ 5 =ty (6.121)
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by 2, 12l

Figure 6.3:V (x, Z) regions of the proposed NN adaptive impact strategy.

Applying the Lyapunov’s extension theorem [102] thert as oo, the errors

|%|| and ||Z|| can be shown to be bounded within the boundarg ads follow:

Suppose the errors start within the boundary&fi.e. ||x(0)|| < b; and
IZ(0)|| < b, then they start their course towards the enclosing boupdar
sinceV (x, Z) can not be guaranteed to be less than zero, within this bound-
ary. However, when they are leaving the boundary and ergetiie region
V(x, Z) < 0, they will return to the boundary. Now, suppose the erroastsit
outside the boundary & then they tend to go to the equilibrium sinceéx, Z)

is decreasing. However, they cannot go to the equilibriwm omly up to enter-

ing the boundary of and once they enter the boundary&fwe have already

shown that they are bounded.

The next part of the proof is to demonstrate the necessitypdthesisZ,, >
/£ in (6.109) Note that,Z, in its course towards the enclosing boundaty
cannot violateZ,,, otherwise the Lyapunov’s Extension Theorem is no longer

applicable. In other words?,, in (@.46)must satisfy

7y = Zag + Zag > by, (6.122)
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Therefore, it can be shown that if the following is satisfied

. C
ATESATES \/?O + Zy > by or, (6.123)
AT \/@ (6.124)

KR

thenZ,; > by is also satisfied.

Further, the initial condition||Z(0)|| can be less or greater thahy,, however
in order to comply with the Lyapunovs Extension Theoremustrbe less than
Zu. The last part of the proof is to demonstrate hypoth@&i€))| < Zy, in
(6.110)is to be satisfied in practical implementation. This hypsibean be
equally achieved, if the following condition fro@h.46)is satisfied
1Z(0)[| = ZO)]| + IZ(0)|| < Zas + Zas = Zus, OF
) ) (6.125)
1Z(O)[| < Zas.

In the implementation, the last equation can be achievedrbplg initializing
the NN impact weights with the bounded weights of the NN fig@gomcon-

troller - observer (in Section 5.3.5) as follows

A

Z(O)impact = Zmotion- (6126)

Note: theoretically and practically, there is no initial dition requirement for
x. The purpose of impact control is to stabilize the systemnfvchatever its

initial velocity is into low velocity.
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6.5 Real-time Robot Experiment

The proposed NN adaptive force - motion controller with e@pobserver((6.3)
is validated with the 6 DOF PUMA 560 manipulator (which doesimave veloc-
ity feedback sensors). For comparison purpose, the Lagnanignamics force

- motion control[(2.35), without friction compensationgiso implemented.

The setup is set as follows:

e A positional periodic circular trajectory — 75 mm radius ahdecond
period — with a constant orientation for the effector wasasethe desired

trajectory.

e A horizontal plane surface is used for this compliant mogaperiment
as shown in Figl_6l4, with the end-effector pointing down threlelbow

is up.

e Performances were recorded in term of: (i) desired trajext@longee
andyg axes, and (ii) position errors along andyg, (iii) normal force
F, with desired 20N normal force, and (iv) the zero-moment cst\/,

and),.

Note that there is a more sophisticated model-based foraaiomcontrol by
[118], where an adaptive joint friction compensation andetoeity observer
are added along with the Lagrangian dynamics control, gintore improved
performance than the Lagrangian dynamics controller alétmyvever, its for-

mulation and stability analysis are rather different aridtheely more involved
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than the original formula |8]. Also, the compliant motiorguéres a proper

planning strategy that needs to be met.

In compliant motion, we cannot directly apply the force - mntcontrol. It
is equally important to design a proper planning for the édorenotion control
to deliver the compliant motion. For the ease of impleméntatthe original
Lagrangian dynamics operational space force - motion féatimn [8] was em-

ployed and complemented with the model-based impact favo&a strategy

asin[12].

The planning design for NN adaptive strategies can be dextas follows: (i)
the NN weights were initialized with the recorded weightsted NN adaptive

motion controller with velocity observer(5.2) in Chagtéttten followed by (ii)

the NN adaptive impact control i (6.188) and then followed(iny the circular

&

Figure 6.4: The compliant motion setup using PUMA 560 robot.
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Errors

Lagrange dynamics
force - motion

NN force - motion
controller - observer.

max( e%osm + egosy) (mm)

Fz,error (N)
M, error (N-m)
My,error (N'm)

13.68
28.0
0.7
0.8

19.41
17.0
1.0

1.0

Table 6.1: Real-time compliant motion performance congoari

compliant motion using NN adaptive force - motion contro{&i3).

The performances of the Lagrangian dynamics force - motoitrol are shown
in Fig.[6.5 and Fig[L6]6. While the performances of the prepddsN adaptive
force - motion controller-observer are shown in Flg.16.7 &gl [6.8. The
bounded stability of the norms of the estimated NN weightshiswn in Fig.

6.9.

It can be shown in Table 8.1, that the performances of the Naytace experi-

ments were comparable with those of the Lagrangian dynastriategy:

1. Interm of position errors along: andye axes and zero-moment controls

(M., M, ): both strategies produced relatively similar performance

2. In term of the normal force error the NN adaptive strategy loe shown
to produce smaller error (17 N) in comparison with the thdtagfrangian

dynamics strategy (28 N).
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Xref, Yref vs. Time
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Figure 6.5: Motion control performance of the operationzdce Lagrangian
dynamics force - motion control.
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Fz vs. Time
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(b) Tangential moments reading alongandye axes.

Figure 6.6: Force/moment control performance using theatjgmal space La-
grangian dynamics force - motion control.
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Figure 6.7: Motion control performance using the operati@pace NN adap-
tive force - motion control with velocity observer.
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Fz vs. Time
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Figure 6.8: Force/moment control performance using theatjpmal space NN
adaptive force - motion control with velocity observer.
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The following gains are set for the proposed NN adaptive oemotontroller-
observerl[(68)x = 0.1, Ay = A; = 30T € ™™, F, =T e RVM Fpl =
I e RV F ol =10 € RN F2T = 101 € RNz, Ay = 0.2001 €
Rrm andlp = 4001 € ™. And K;! = diag(1.0e7,1.0e4,1.0e74,

6.0e73,6.0e73,6.0e3).

[War |, || Vas]| vs. Time W I, |V || vs. Time
12 ; ; w T 1 T T : . r
ol —— Wl || —— Vx|
= Vadll 0.8y - = Wl
8,
0.6} 1
6 4
0.4r 1
I 7 \_/j\/ﬂ_/m—/f\
ST ) 0.2 1
0 ) ) ) ) ) ol=——= - - ‘7 )
0 10 20 30 40 50 0 10 20 30 40 50
Time (second) Time (second)
IWyll, [Vl vs. Time [W- [, [[V7]| vs. Time
7
sl AN ol — W |]
- = IVl - VR

0 10 20 30 40 50 0 10 20 30 40 50
Time (second) Time (second)

Figure 6.9: Real-time history of the estimated NN weightsh®f compliant
motion NN adaptive strategy.
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The real-time implementation videos of (i) the Lagrangigmamics force-
motion control and (ii) the proposed NN adaptive force-motontroller-observer

(6.3) are provided in:

¢ http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamaset)/
Compliantmotion Dyn.MPG

e http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Compliantmotion.NN.MPG

6.6 Conclusion

In this chapter, the NN adaptive force-motion control withocity observer in

operational space was derived and validated through irealéxperiment.

It can be concluded that the proposed NN adaptive compliatiom formula-
tion is cost-effective and practical for real-time experimty where the following

characteristics can be shown:

1. no dynamic model is needed,
2. no environment geometry is needed,
3. no exciting trajectories are needed, and

4. the performance of the proposed NN adaptive force-mdimategy can

be shown to be better than that of Lagrangian only dynamiasesy.

In the next chapter, we will present a consolidation view ow lto combine
overall algorithms for a multi-task operation i.e. comptianotion«> free mo-

tion.


http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Compliant_motion_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/Dynamics-based/Compliant_motion_Dyn.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Compliant_motion_NN.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Compliant_motion_NN.MPG
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CHAPTER 7

CONSOLIDATED VIEW OF THE NN-BASED
ALGORITHMS

7.1 Chapter Overview

In this chapter, we provide a consolidated view on how to dombverall al-
gorithms for a multi-task operation. Without a right plamgi a multi-task op-
eration might not work properly, therefore, it is importaatdesign carefully
a proper plan for a multi-task operation. A case study iseatsd, where two
main tasks are: (i) a circular compliant motion, followed @y a circular free

motion.

7.2 Planning Strategy

A planning strategy (presented in Hig.]7.1) for a sequeta&ld, where two main
tasks at concern are a circular compliant motion and a @rdtge motion, can
be designed as follows: the robot starts from stationasy, tine end-effector
descends linearly into the working surface, impact congréhen applied, and
then the NN compliant motion control is executed, then theeeffector retracts
linearly, then after it achieved stationary position, thid flee motion control

can be executed, where afterward the end-effector becamtessry again.
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|

|
| NN motion NN motion :
: controller-observer ««——— controller-observer | |
| stationary. circular motion. :

|
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|
| l

|
| NN motion NN motion :
: controller-observer controller-observer | |
. [linear motion (down). stationary. |

|
|

|
| l

|
3 |
| NN impact NN motion |
: control. (.:ontroller—‘observer |
‘ linear motion (up). |

|
|

|
| l

|
\ NN force/motion :
: controller-observer |
I circular motion. :

|

Figure 7.1: A sequential compliant motion and free motianping.

The overall details can be described as follows:
e The NN motion controller-observelr (5.2), which is initdd with the
recorded weights of circular free motion, is used to proddsationary

position.

e The NN motion controller-observelr (5.2) is then used to wewa de-

scending linear motion.

e The NN impact control(6.88) is then applied to dissipateithpact en-

ergy.

e The NN compliant motior(6]3) is then used to provide a cacabmpli-
ant motion. The initial desired normal force can be set etjutile actual

force, £;(0) = £(0). After the compliant motion finished its task, then



7.3 Real-time Performance 175

the desired normal force is set to zero to prepare for thagetg of the

end-effector.

e The NN motion controller-observér (5.2) is then used to tea ascend-

ing linear motion.

e The NN motion controller-observér (5.2) is then used to e station-

ary position.

e The NN motion controller-observér (5.2) is then used to e circular

free motion.

e The NN motion controller-observer (5.2) is then used to @ewa sta-
tionary position, where either a free motion or compliantiomcan be
repeated.

The real-time implementation video of this two-task plarmnis provided in:

http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/

Consolidated_tasks.MPG

7.3 Real-time Performance

The performance results of the two-task planning are sh@falws:

e For the compliant motion (task 1), the performances werercesz in Fig.
[7.2 in term of: (i) normal forcé”, with desired 20N normal force, and (ii)

the zero-moment control®/, andM,.


http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Consolidated_2_tasks.MPG
http://guppy.mpe.nus.edu.sg/dandy/Videos/NN-based/Consolidated_2_tasks.MPG
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Type of task Performances

F, error = 15.0 (Newton)
Task 1. Compliant motion control M, error = 1.2 (Newton-meter)

My error = 0.8 (Newton-meter)

Task 2: Free-motion control max||epos||) = 5.45 (mm)

Table 7.1: Real-time performance of two-task planning.

e For the free-motion (task 2), performances were recorddedgn[7.3 in
term of: (i) desired trajectories along and ye axes, and (ii) position

errors alongeg, e, 2.

The overall performance results are tabulated in Table {)1for compliant
motion the maximum normal force and tangential errors aed (Newton), 1.2
(Newton-meter) and 0.8 (Newton-meter), respectively, @hdor free-motion,
the maximum of the magnitude of the end-effector positi@cking errors is

5.45 (mm).

The bounded stability of the norms of the estimated NN waightshown in

Fig.[7.4.
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Figure 7.2: Force/moment control performance (task 1).
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CHAPTER 8

CONCLUSIONS

8.1 Summary of Contribution

In this thesis, we have developed several stable operaspaae NN adaptive

formulations, where the ultimate focus is the compliantioroformulation.

It has been shown that the proposed NN adaptive complianiomgtorce /

motion) formulation has the following characteristics:

1. no dynamic model is needed,
2. no environment geometry is needed,
3. no exciting trajectories are needed, and

4. the performance of the proposed strategy is comparaltetiat of La-

grangian dynamics strategy.

Therefore, it can be concluded that the proposed NN adagivgliant motion
(force / motion) formulation can be considered to be cofgetive and practical,
especially, when the Lagrangian dynamics for a particabot is not available
handily. Notice that the NN motion and force-motion contfwith velocity

observer) can be implemented directly into real-time impatation.

The detailed contributions of this Ph.D work are as follows:
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¢ In the first step, the original NN adaptive approach in jopace [74, 75]

was improved and extended into the operational space NNomiatimu-

lation. Several useful properties of the end effector dyioarwere intro-

duced to accommodate later developments.

It was shown in simulation that a comparable performanc#) thiat of
the Lagrangian dynamics, was achieved, but has the adwaofago a
priori knowledge of dynamics is required. However, it waewh that its
performance on real-time experimentation was found to feior to the

simulation equivalents.

e A separate Lyapunov analysis was presented to show thattdredi ve-
locity signals,q andx (obtained by approximation through the filtered
backward difference of the displacement feedback) are witdlde re-
placements to the non-existing actual velocity signalstifigr proposed

adaptive motion strategy (previous point) in real-time liempentation.

¢ In the second step, an NN adaptive motion control with vé&joci

observerwas proposed to overcome the absence of the actual velocity

signal in the real-time experimentation.

It can be shown in real-time implementation that the pertoroe of the
NN motion controller with velocity observer strategy is teetthan that
of the NN motion control (where filtered velocity is used tpleece the
absence of the actual velocity). It also yielded, in realetj a comparable

performance to that of the Lagrangian dynamics strategy.

¢ In the third step, the NN adaptive force and motion control in
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operational spac@with velocity observer) was built upon the developed

NN motion controller-observer in the second step.

Additionally, an NN adaptive impact strateggy also developed to com-

plement the main strategy.

e The planning strategy to interactively use NN adaptive oroéind force-

motion formulation was also provided.

Note, Lyapunov stability proofs together with experiméwnexification for all
formulations are provided. And all the real-time implensiun videos are

accessible in the following link:

http://guppy.mpe.nus.edu.sg/dandy/index.html

8.2 Future Work Possibilities

In this section we will discuss some possibilities for fetuvorks.

The works on this thesis cover mainly extending and imprgtie original NN
adaptive controll[74, 75] into ultimately the full force anabtion control in

operational space formulation in real-time implementafar a real robot.

It can be seen that, although, so far the proposed neurdiaelegtrategies
showed comparable real-time performances with those ofdragan dynam-
ics strategy, they cannot really outperform the inverseadyigs strategies. This
is clearly because the stability for all the proposed sfiatan be achieved only

as bounded stability.


http://guppy.mpe.nus.edu.sg/dandy/index.html
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Technically speaking, the non-parametric structure of Bally forbids getting
the convergence (asymptotic) stability, since there isaggrexcess the whole
error”¢”, which results from the difference between the systemigsire and

the NN structure. Coupled with the weight updates, it resodtunded stability.

A more fundamental strategy to provide NN strategy with gstatic stability
(or maybe smaller bound), is not addressed in this thesidsastlll an open

problem for future research.

However, the proposed NN adaptive formulations in thisithean be seen as a
practical formulations for motion and compliant motiorspectively, when the

Lagrangian dynamics for a particular robot is not available

Based upon author’s current knowledge, the most possild&etio remove
completely the excess errd¢” (and therefore to achieve asymptotic stability) is
by using the linear-in-parameter (LIP) methodology as showthe joint space
direct LIP adaptive control in Chapter three, since the rbletr parameterized

structure matches the robotic parameterized structure.

However the methodology requires the following developtsen

e The availability of an-easy-to-use simplification procedte to provide

a simplified dynamic model.

To meet the requirement of the real-time deterministic damgpime the
direct LIP adaptive control (Chapter three) requires thapatation of the

simplified dynamic models for the control and the parametémeation.

It is well established that for a real robot with more tharethdegrees of
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freedom, the expressions of robot dynamic model are extyeroenplex.
It makes the simplification procedure is not an easy taskthEyra sys-
tematic and easy-to-use simplification procedure based bpgrangian

formalism is yet to be invented.

Therefore, the present challenge is the availability of stesyatic and
easy-to-use procedure based upon Lagrangian formalistinga@lynamic
model simplification. This problem is presently the maintleoieck in

this methodology.

Note that to achieve the first step, a symbolic software ggoaerbased
upon Lagrangian dynamics, is required to derive the un-siieqgh LIP
model and the kinetic, coriolis/ Centrifugal matrices amavity vector.

A mathematical package such as Mathem&Hazan be used.

e An easy-to-use excitation formulation to make the parametes to con-
verge more rapidly.
At this current point, research on an easy-to-use and stabtbod for

generating exciting trajectory is currently still in pregs.

e Last but not least, it might be interesting to put everythioggether within
the optimal LIP adaptive framework [105,[106]. Presently, selecting

the controller gains and the parameter update gains isddyatnd-error.

Extended developments subsequently can be made as follows:

¢ the operational space free motion and to force / motion cbnand
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e another set of improved formulations of previous point,doth free mo-
tion and force/motion control with velocity observer, midge needed to

confront the lack of actual velocity signal in real-time ilmentation.

Given time and resources, the author believes that thisadetbgy can be de-

veloped and implemented in near future.

In scenarion, where the Lagrangian dynamics for a particolaot is not avail-
able (therefore simulation study cannot be performed3,poissible to make the
proposed operational space NN adaptive formulation suipgothe develop-
ment of the direct LIP adaptive control in real-time roboplementation. Once
the operational space NN adaptive formulation is readyn the can add the

direct LIP adaptive control in operational space.

Note that, the NN adaptive formulation or the direct LIP &adagin operational
space, mentioned so far, are only with respect to non-reahtndanipulators.

Further development for redundant manipulator$(DOF) is highly possible.

We will present in brief (since it might require another oneDP work) the
possible development of the NN adaptive case for redundanipulators, as

follows:

The effector motion dynamics of a non-redundant manipulza be expressed

as the followings/[4/7,18, 91]:

T = J"(q)F + (I - 3" (q) J*" ()T (8.2)

whereT is the joint space dynamics as [n (2.25),c R™ is the operational

space generalized forces (acting as control indig)e R™*™ is thenull space
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torque vector (also control input) add " (q) is thedynamically consistent in-

verseJacobian defined as

J# = My(q) J(q) M~'(q) (8.2)

whereM, (q) of a redundant manipulator is defined las [47, 8, 91]
M (q) = (J(@M " (q)I " (a)) " (8.3)

The following steps are in order:

1. designingF, J#' andT,, to obtain useful closed-loop dynamics for Lya-

punov analysis.

2. designing the weight updates within Lyapunov analysis.
The development toward the NN adaptive compliant motionafaedundant
manipulator then proceeds similarly as in this thesis devid:

e NN motion control, assuming actual velocity is available,

e NN motion control, with velocity observer, to overcome thesence of

the actual velocity signal in the real-time experimentatand

e NN force-motion control with velocity observer.

Similarly, the direct LIP adaptive control in operationgbse for a redundant
manipulator can be developed in similar fashion by takirig account the LIP

model.
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APPENDIX A

PUMA 560 FRAMES AND JACOBIAN

A.1 Frame Assignment for PUMA 560

Figure A.1: Frame Assignment for PUMA 560 in the experiment.
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Table A.1: The DH parameters for PUMA manipulator

a1 ai—y dp 0
0 0O 0 o
-90 0 dy 6
0 Q9 d3 03
90 as d4 94
-90 0O 0 6
90 0 0 6

OO WN PP —

The numerical values for the Denavit-Hartenberg pararaete?UMA 560 are:

a2=0.4318 mga3=-0.0203 m»,=0.2435 md3=-0.0934,,=0.4331m([19].
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APPENDIX B

COMPUTING F7

motion

B.1 Computing F*

motion

In the following, the computation df; ..., iS presented. Further details can
be found in[91]. In general, since the operational spacedinates consists of
translational and rotational motions, therefdre, ..., consists of two types of
control forces: one is force control to control translaibmotion and the other

one is moment control to control rotational motion.

Let's assume that the desired positional and rotationaksgmtation trajecto-
res, X, 4, Xp.d, Xpa € N> andx, 4, %,.4, %4 € R, respectively, are provided by

trajectory generator. Note that, 4, x, 4, X, 4 €quals to

Xa = ((51)F (s2)7 (s3)F)" (B.1)
%a=((81)0 (82)7 (8a)0)" (B.2)
%.0=((8)F (825 ()5 (B.3)

Also, let's assume that we have a full 3D space translatiandlrotational mo-

tioni.e.mp, mp = 3. Then,F* can be computed as

motion

F;knotion — rTwi)tion = j:(p,d + Ky (Xp,d — )'(p) + Kp (Xp,d - Xp) (B.4)
motion —  Wd T Ky (wd - w) + Kp €orient

where all necessary terms are computed as:
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motion

x, andx, can be obtained from the direct kinematics.

x, andw can be obtained from the basic differential kinematics

%,\ :

(5) - 3aa ©9
eorient IS theinstantaneous angular erraxhich can be obtained from the
following:

1
eorient:§ ([s1%x] (s1)a + [s2%] (s2)a + [s3%] (S3)a) (B.6)

where3 x 3 skew-symmetric matrix operatfx| is defined as

0 —s, sy
S, 0 —s:]. (B.7)
—5y Sy 0

The desired angular velocity,;, can be obtained by

Wy = E:— (Xr,d> Xr,d (B8)

where
B (0a) = 5 ((500x] [50ax] [s9)ax)) . (B9

The desired angular acceleratian;, can be obtained by

1
Wy = 5E:(xr,d) %4+ R (Xpa , wa) Xrg (B.10)
where
((81)4 wa) Isxs
RY (%, 4, wq) = ((82)7 wa) Ly | - (B.11)

((s3)g wa) Isxs

And clearly, x4, é,, ex (2.33) are defined as

.. X . X,q — X X, 4 — X
o= ("7, ex = (" TP ex= ("7 "7}, (B.12)
Wy Wy — W €orient
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