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SUMMARY 

 

It is now well established that chemotherapy-induced reduction in tumor load is a 

function of apoptotic cell death, orchestrated by intracellular caspase proteases.  

However, the effectiveness of some of these therapies is blunted by mutations 

affecting specific effectors genes controlling and/or regulating apoptotic signaling. 

Therefore, there has been a surge of activity around identification of novel pathways 

of cell death, which could function in tandem with or in the absence of efficient 

apoptotic machinery.  In this regard, recent evidence has highlighted the existence of 

a novel, caspase-independent cell death pathway, termed autophagy, which is 

activated in response to growth factor deprivation or upon exposure to genotoxic 

compounds. It should be noted that autophagy has been described as a cell survival 

mechanism as well as a death execution pathway. Using a novel small molecule 1,3-

dibutyl-2-thiooxo-imidazolidine-4,5-dione (C1), which is a strong inducer of 

intracellular hydrogen peroxide (H2O2), this work demonstrated the simultaneous 

induction of non-canonical autophagy and apoptotic cell death in human colorectal 

carcinoma cells. It was later discovered that the ability of C1 to induce autophagy is 

not limited to a single cell line. Of importance, this study supported the existence of 

non-canonical autophagy induced by C1. Whereas, silencing of the integral mediator 

of autophagy, beclin1 did not provide protection against autophagy or cell death, Atg 

7 or Ulk1 knock-down significantly abrogated C1-induced autophagy. In the current 

study, the induction of autophagy and apoptosis was found to be mutually exclusive. 

Despite this fact, early H2O2 production was critical in controlling the induction of 

autophagy and apoptosis via activation of extracellular regulated kinase (ERK) and c-

Jun N-terminal kinase (JNK). Inhibition of ERK and JNK virtually completely 



 xii

blocked drug-induced autophagy and apoptosis. Interestingly, inhibition of JNK 

activity reversed C1-induced increase in Atg7 expression, indicating that JNK may 

regulate the autophagic pathway by activating Atg7. On the other hand, this study also 

uncovered a novel role of ERK in mediating p53 suppression which is integral in the 

induction of autophagy. This work implicates ERK and JNK in the induction of non-

canonical autophagy and apoptotic cell death by a small molecule compound, and 

underscores the plausibility of these proteins as targets in cancer therapy. In particular, 

the ability of ERK inhibitor to attenuate cell death in metastatic and highly malignant 

tumor cells presented an alternative mechanism for tumor eradication. 
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INTRODUCTION 

 

PART I:  PROGRAMMED CELL DEATH  

Programmed cell death  (PCD) was discovered in the 19th century, first 

described during amphibian metamorphosis (Reviewed in (Jacobson et al., 1997). 

Since its discovery, tremendous progress has been made in understanding PCD. To 

date, PCD has been linked to various physiological and pathological states. Its 

definition has also been modified to refer to any form of cell death that is mediated 

by an intracellular death program (Jacobson et al., 1997). Therefore, though 

apoptosis represents a well established form of cell death, other cell death pathways 

have gained prominent interest over the years. These non-apoptotic cell death 

pathways include necrosis, autophagy and mitotic catastrophe. 

 

1.1 Necrosis 

 Necrosis has been viewed as a passive, uncontrolled and accidental form of 

cell death. Recent advancements in the field, however, propagated the notion that 

necrosis is a more defined and well controlled cell death. Necrotic cell death is 

characterized by several morphological distinctions, such as cytoplasmic swelling 

and loss of plasma membrane integrity (Zong and Thompson, 2006). Accompanying 

these necrotic phenotypes include biochemical alterations in terms of mitochondrial 

depolarization, activation of DNA repair protein poly (ADP-ribose) polymerase 

(PARP) and intracellular production of reactive oxygen species (ROS) (Zong and 

Thompson, 2006). 
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 Identification of key molecular players in the regulation of necrosis has 

unravelled the complexity and intricacy of the programmed necrotic network. In 

many experimental systems, exposure of cells to tumor necrosis factor- α (TNF-α) 

culminates in necrotic phenotypes only in the background of caspase inhibition 

(Grooten et al., 1993; Vercammen et al., 1998). Moreover, the presence of the pan-

caspase inhibitor, benzyoxycarbonyl valanyl alanyl-fluoromethylketone (zVAD-fmk) 

invariably potentiates the necrotic death pathway, indicating that necrosis serves as a 

back up death effector mechanism in the event of caspase inhibition or deficiency 

(Vercammen et al., 1998). Loss of function experiments of receptor interacting 

protein 1 (RIP1) have also confirmed the role of RIP1 as a central initiator of 

necrosis (Harper et al., 2003; Holler et al., 2000). In addition, it was discovered that 

full length RIP1 is essential in the induction of necrosis, while cleaved fragment of 

RIP1 by caspase-8 sensitizes the cells to apoptosis (Lin et al., 1999). These results 

placed RIP1 at the cross-road of apoptotic and necrotic signaling, indicating that 

RIP1 is a key molecule in mediating the cross-talk between these two prominent cell 

death pathways. 

 Stimulation of cells with excessive amount of ROS is invariably linked to 

necrotic cell death. ROS mediates cellular damage such as lipid oxidation or DNA 

damage, and is also capable of promoting necrotic influx of calcium (Ca2+), further 

potentiating the necrotic response (Golstein and Kroemer, 2007; Morgan et al., 

2008). DNA damage due to excessive ROS trigger may lead to hyperactivation of 

PARP, and in this process β-nicotinamide adenine dinucleotide (NAD), the substrate 

for poly(ADP-ribosyl)ation is depleted (van Wijk and Hageman, 2005). 
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Concomitantly, cellular adenosine triphosphate (ATP) level is depleted, as aerobic 

glycolysis is dependent on NAD (D'Amours et al., 1999). In relation to this, massive 

Ca2+ influx could also lead to enhanced nitric oxide synthase (NOS) activity 

(Dawson et al., 1991), as well as activating intracellular phospholipases and 

proteases (Festjens et al., 2006), invoking damage to cellular constituents and 

compromising membrane integrity.  

   

1.2 Mitotic Catastrophe 

 Strictly speaking, mitotic catastrophe could not be categorized as a form of 

cell death; rather, it represents an irreversible trigger for cell death. Morphologically, 

mitotic catastrophe is characterized by enlarged cells, multiple micronuclei and 

decondensed chromatin (Roninson et al., 2001; Swanson et al., 1995). Mitotic 

catastrophe is a result of aberrant chromosome segregation, culminating in the failure 

to undergo mitosis (Castedo et al., 2004a). Accordingly, mitotic catastrophe is 

frequently induced by chemotherapeutic agents such as vincristine and daunorubicin, 

causing DNA damage and deranged spindle formation (Castedo et al., 2004b). 

Certainly, inability of the cells to activate proper DNA damage check points and 

ensuing DNA repair mechanisms contribute to the culmination of mitotic 

catastrophe. This is particularly relevant to cancer cells as they generally exhibit 

deficiencies in cell cycle check point control.  

 It is thus unsurprising that the cell cycle regulators and kinases have been 

implicated in mitotic catastrophe. The Cdk1/cyclin B1 complex activation is 

necessary for cell cycle progression from G2 to M phase and their degradation by 
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anaphase promoting complex (APC) is essential for progression into anaphase (Nigg, 

2001). Premature entry of active Cdk1/cyclin B1 complex into the nucleus has been 

found to be associated with premature chromatin condensation (Fotedar et al., 1995; 

Porter et al., 2003). Indeed, various cases of mitotic catastrophe were linked to an 

increase in nuclear cyclin B1 (Chan et al., 1999; Yoshikawa et al., 2001).  

 In human cells, checkpoint kinase 2 (Chk2) was found to be a major protector 

from mitotic catastrophe. Inhibition of Chk2 facilitated the induction of mitotic 

catastrophe and sensitized cancer cells to apoptosis (Castedo et al., 2004c). The 

negative regulator of caspase-dependent apoptosis, survivin has also been implicated 

in mitotic catastrophe. Survivin was found to be a substrate of Cdk1 as well as a 

binding partner of aurora B kinase (Bolton et al., 2002). Survivin-Aurora B complex 

is essential for the spindle assembly checkpoint by overseeing the chromosome 

segregation process (Lens and Medema, 2003).  

 

1.3 Apoptosis 

Apoptosis represents one of the most prominent PCD pathways and it was 

first described in the 1970s to illustrate a specific type of cell death which occurs 

during normal development and tissue homeostasis (Kerr et al., 1972). Apoptosis has 

since been discovered as an essential component in various physiological functions 

such as embryonic development and immunity (Zimmermann et al., 2001). The 

elimination of unwanted cells by apoptosis serves important functions, which 

includes sculpting structures, deletion of unwanted structures, control of cell 

numbers, removal of harmful or damaged cells and production of differentiated cells 
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(Jacobson et al., 1997). Therefore, deregulation of apoptosis has been linked to 

various disease pathologies, including neurodegenerative diseases, autoimmunity and 

cancer (Okada and Mak, 2004). Cells undergoing apoptosis frequently display 

classical morphological characteristics such as cellular shrinkage, chromatin 

condensation, DNA fragmentation and membrane blebbing (Kerr et al., 1972). In 

addition, apoptosizing cells usually form apoptotic bodies which are rapidly 

phagocytosed by neighboring macrophages without eliciting an inflammatory 

response (Jacobson et al., 1997).   

 

1.3.1 Molecular mechanisms of apoptosis 

 The remarkably uniform morphological and biochemical hallmarks of 

apoptotic cell death across tissues and animal models suggest an existence of a highly 

regulated and controlled cell death programme within the cell. Central to the 

apoptotic mechanisms are a group of cysteine proteases called caspases, which are 

the principle executioners of apoptotic cell death. Caspases are high specificity 

proteases, cleaving substrates with tetra- or pentapeptide recognition sequences at the 

aspartic residues (Green and Evan, 2002). To avoid detrimental effects to the cell, 

caspases are synthesized as inactive zymogens called pro-caspases, which undergo 

proteolytic cleavage to form mature proteases. In mammalian cells, caspases are 

divided into two major groups. The first being the ‘initiator’ caspases, exemplified by 

caspases 8 and 9, are being activated via oligomerization and autoactivation in 

response to upstream death signals. The ‘executioner’ caspases, such as caspases 3, 6 

and 7 are being activated by the initiator caspases by proteolytic cleavage. The 
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executioner caspases, in turn, cleave other downstream substrates and their activation 

is largely responsible for most of the morphological hallmarks associated with 

apoptosis. One of the well described substrate of caspase 3 is the nuclease inhibitor 

inhibitor of caspase-activated Dnase (iCAD). Cleavage and inactivation of iCAD by 

caspase 3 results in the liberation of caspase activated Dnase (CAD) and ultimately 

leads to DNA fragmentation (Enari et al., 1998). The effector caspases also mediate 

the membrane blebbing phenomenon by activating several adaptor proteins such as 

Rho-associated kinase 1 (ROCK1), p-21 activated kinase (PAK) and gelsolin. 

(Coleman et al., 2001; Kothakota et al., 1997; Rudel and Bokoch, 1997) 

 

1.3.2 Extrinsic and intrinsic apoptotic pathways 

 Apoptotic cascade is mediated through two major pathways of apoptosis, 

namely the extrinsic and intrinsic cell death pathways. The extrinsic pathway is 

engaged by ligation of death ligands to the cell surface death receptors. Some ligands 

which have been identified to date include Fas ligand, TNF-related apoptosis 

inducing factor (TRAIL) and TNF, which binds to specific death receptors such as 

FAS, TNF Receptor (TNF R) and Death Receptors 4 (DR4) and 5 (DR5) 

(Thornberry and Lazebnik, 1998). Efficient ligand and receptor binding mediates the 

activation of Death Inducing Signaling Complex (DISC), via the recruitment of the 

adaptor protein Fas-associated death domain-containing protein (FADD) to the 

cytoplasmic tail of the death receptors (Budihardjo et al., 1999). FADD connects 

caspase 8 to the DISC through interaction of their respective death- effector domain 
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(DED). The induced proximity of caspase 8 molecules resulted in their autoactivation 

(Hengartner, 2000). 

 BH3 interacting domain death agonist (Bid), a BH3 domain containing 

member of the B-cell lymphoma protein 2 (Bcl-2) family, transmits the death signals 

from the extrinsic pathway to the intrinsic pathway of apoptosis. Bid can be cleaved 

by caspase 8 to form truncated Bid (t-Bid), which then translocates to the 

mitochondria to elicit mitochondrial outer membrane permeabilization (MOMP) (Li 

et al., 1998). Effects of t-Bid on the mitochondria are predominantly due to its ability 

to activate pro-apoptotic Bcl-2 family members Bcl-2 associated X protein (Bax) and 

Bcl-2 antagonist/killer (Bak), leading to their oligomerization on the mitochondrial 

membrane (Korsmeyer et al., 2000). These signals mediate the release of a critical 

apoptogenic factor, cytochrome c from the mitochondria to the cytosol (Wei et al., 

2001). An array of biochemical events eventually leads to the formation of a large 

holoenzyme, apoptosome, which comprises of cytochrome c, dATP, apoptotic 

protease activating factor-1 (Apaf-1) and caspase 9. Association of caspase 9 with the 

apoptosome leads to its activation by mean of conformational change (Rodriguez and 

Lazebnik, 1999). Notably, catalytic processing of caspase 9 does not determine its 

activity, unlike other caspases (Stennicke et al., 1999).  

 The interaction between Bcl-2 family members governs the mitochondrial 

death signals. Based on structural and functional similarities, the Bcl-2 family 

members are divided into three classes. Class I consists of anti-apoptotic proteins 

such as Bcl-2, Bcl-xL, Bcl-w and Mcl-1. Class II and III contains pro-apoptotic 

members, including Bax and Bak (Adams and Cory, 1998). Apart from neutralizing 
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the actions of anti-apoptotic Bcl-2 family members, Bax and Bak could also form 

heterodimers, which interacts with the mitochondrial permeability transition pore 

(PTP) to induce cytochrome c release. The anti-apoptotic Bcl-2 and Bcl-xL block 

cytochrome c release by either binding directly to one of the subunits of the PTP, 

Voltage dependent anion channel (VDAC) or heterodimerize with Bax or Bak 

(Narita et al., 1998; Shimizu et al., 1999). 

 The existence of caspase-independent pathway in apoptosis reveals the 

importance of apoptotic regulation in cellular homeostasis. One of the key regulators 

of caspase-independent pathway is endonuclease G (endoG), which is a 

mitochondrial specific nuclease responsible for chromatin DNA fragmentation (Li et 

al., 2001). Similar to cytochrome c, second mitochondrial activator of caspases/ 

direct IAP-binding protein with low pI (SMAC/DIABLO) is also a potent 

apoptogenic factor which is released from the mitochondria to the cytosol upon 

induction of apoptosis. Pro-apoptotic activity of SMAC is mainly due to its 

inhibitory effect on inhibitor of apoptosis (IAP), preventing IAP from inactivating 

caspase 9 (Du et al., 2000). In addition, apoptosis inducing factor (AIF) could also 

translocate from the mitochondria to the nucleus during apoptosis induction. The 

action of AIF is independent of caspase activation and could trigger DNA 

fragmentation leading to nuclear apoptosis (Susin et al., 1999). 
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Figure 1: Two major apoptotic death signaling pathways in the cell. The 

extrinsic death pathway is exemplified by binding of CD95 ligand to CD95 death 

receptor, while the intrinsic or mitochondrial apoptotic signaling is usually a result of 

cellular insults such as DNA damage. The two pathways are interlinked by Bid, 

which could be cleaved by caspase-8 and subsequently promote mitochondrial 

cytochrome c release. (Hengartner, 2000) 
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1.3.3 Apoptosis: A barrier to cancer 

 Acquired resistance to apoptosis represents a hallmark of most, if not all types 

of cancer. The discovery of Bcl-2 as a proto-oncogene further associates evasion of 

apoptosis to tumorigenesis. Various studies have lent support to this hypothesis. Bcl-

2 is upregulated in follicular lymphoma following chromosomal translocation 

(Tsujimoto et al., 1987). In addition, overexpression of Bcl-2 prevents apoptotic cell 

death in hematopoietic cell lines following growth factor withdrawal (Vaux et al., 

1988). High Bcl-2 level confers growth advantage to human B and T lymphoblasts 

(Tsujimoto, 1989). Moreover, mice overexpressing both Bcl-2 and v-myc 

myelocytomatosis viral oncogene homolog (avian) (myc) develop tumors much 

faster than myc-overexpressing mice alone (Strasser et al., 1990). It is now clear that 

instead of driving cell proliferation, Bcl-2 exerts its pro-survival effects by 

abrogating cell death responses (Johnstone et al., 2002). 

 The importance of apoptosis in circumventing tumor growth is further 

substantiated with the discovery of p53. Mutation of the tumor suppressor gene, p53 

results in loss of p53 protein in more than 50% of human cancers (Harris, 1996). To 

this end, p53 has been recognized as the ‘guardian of the genome’ as it plays a vital 

role in the regulation of cell cycle and apoptosis. p53 directly mediates apoptotic 

response in abnormally proliferating cells or damaged cells. The ability of p53 to 

transcriptionally activate an array of apoptotic genes contribute to its pro-apoptotic 

role. These ‘p53-inducible genes’ (PIGS) include APAF1, BAX, FAS, NOXA and 

p53-upregulated mediator of apoptosis (PUMA) (Polyak et al., 1997; Yu et al., 1999; 

Zhao et al., 2000). In addition, a transcriptionally independent role of p53 in 
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apoptosis has also been documented, which involves subcellular localization of p53 

and its association with apoptotic proteins such as Bax and PUMA (Chipuk et al., 

2008; Chipuk and Green, 2004; Schuler and Green, 2001) 

    

1.4 Autophagy 

 

1.4.1 Role of autophagy in human physiology and pathology 

 Evolutionarily, autophagy is a bulk degradation process which is highly 

conserved among eukaryotes. Since its discovery back in the 1960s, autophagy has 

been regarded as a non-selective cellular clearance mechanism. Nonetheless, interest 

in autophagy research has increased tremendously since a decade ago, and many 

important findings have been discovered in relation to autophagy in health and 

diseases. 

 Coined by Christian de Duve, who pioneers on lysosomal work, autophagy 

literally means ‘self-eating’ whereby cellular constituents and damaged organelles 

are being degraded by a sequential, dynamic process via the formation of 

autophagosomes (De Duve and Wattiaux, 1966). Autophagy is further divided into 

various subtypes, which includes chaperone-mediated autophagy, microautophagy 

and macroautophagy (Levine and Klionsky, 2004). Chaperone-mediated autophagy 

is a form of selective autophagy in which long-lived proteins with specific 

pentapeptide motif are being targeted for degradation. Microautophagy involves the 

direct engulfment of the damaged organelles by the vacuolar membrane through 

invagination and/protrusion. In contrast, macroautophagy involves the formation of a 
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double membrane vesicle called the autophagosomes, in which sequestration of long-

lived proteins and organelles take place (Klionsky and Emr, 2000). During 

macroautophagy, dynamic rearrangements of the cytoplasmic membranes occur, and 

though not fully understood; the major molecular events have been uncovered and 

will be discussed in greater lengths in the following sections. In this study, the term 

“macroautophagy” is hereafter referred to as autophagy.  

 

1.4.2 Molecular mechanisms of autophagy 

In response to autophagic signals, including but not limited to nutrient 

starvation, growth factor withdrawal, genotoxic stress and chemotherapeutic drug 

treatments, autophagic process will be initiated. An isolation membrane, also known 

as the phagophore, is formed to enwrap cytoplasmic proteins and organelles to form 

the autophagosomal structures. The autophagosomes undergo a series of maturation 

process before its fusion with the lysosomes to form autolysosomes.  

One of the key players involved in the regulation of autophagy is the Ser/Thr 

kinase mammalian target of rapamycin (mTOR) (Funakoshi et al., 1997; Kamada et 

al., 2000). mTOR is a major negative regulator of autophagy. Under nutrient-rich 

condition, mTOR is responsible for the hyperphosphorylation of Atg13, which would 

then dissociate from Atg1 kinase and Atg13 (Abeliovich et al., 2003; Matsuura et al., 

1997). In contrast, when mTOR is inhibited, Atg13 remains hypophosphorylated, 

allowing its association with Atg1 and Atg17, thereby allowing the formation of a 

multiprotein complex to initiate the autophagic process. 
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 The activity of the Atg13 – Atg1 multiprotein complex drives the vesicle 

nucleation step of the phagophore. A prominent feature in this step involves the 

formation of another multiprotein complex, comprising of Beclin1 (mammalian 

homologue of Atg6), UV irradiation resistance-associated tumour suppressor gene 

(UVRAG), p150 kinase and mammalian VPS34. This multiprotein complex aids in 

the activation of VPS34, a Class III PI3 kinase, resulting in the formation of 

phosphatidylinositol-3-phosphate (PtdIns3P) (Kihara et al., 2001; Nice et al., 2002). 

 During the vesicle elongation steps, a series of conjugation machineries take 

place leading to the formation of autophagosomes. The first conjugation pathway 

involves the conjugation of Atg12 to Atg5, via the intermediacy of Atg10 and the E1-

like enzyme Atg7 (Mizushima et al., 1998; Ohsumi, 2001). This pathway resulted in 

the formation of an Atg12-Atg5-Atg16 homotetramer (Mizushima et al., 1999). The 

second conjugation system starts with the proteolytic activity of Atg4, which cleaves 

the C-terminal region of Atg8, allowing the action of Atg7 for the conjugation of 

Atg8 and Atg3. Finally, a lipid, phosphatidylethanolamine (PE), is being conjugated 

to Atg8 (Ohsumi, 2001). 

 Both Atg12-Atg5-Atg16 complex and Atg8-PE are found at the pre-

autophagsomal structure (PAS), and are believed to play critical role in vesicle 

biogenesis (Kim et al., 2002). Atg12-Atg5- Atg16 complex are found at the 

phagophore, but not at the completed autophagosomes. Atg8-PE, however, are 

localized in both outer and inner membrane of the autophagosomes (Kabeya et al., 

2000). This characteristic enables Atg8-PE to be utilized as a functional marker of 

autophagy. Consistent with this, Atg8 levels increase during starvation-induced 
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autophagy, and its amount are closely correlated with the number of autophagosomes 

(Kirisako et al., 1999). After the execution of autophagy, Atg8 in the outer 

autophagosomes membranes are being recycled to the cytosol, while those in the 

inner membranes are being degraded in the autolysosomes (Kirisako et al., 1999). 

 The whole process of autophagosome formation is elegantly described in 

yeast, the model organism for autophagy. However, the autophagic system in higher 

eukaryotes appears to be highly regulated and similar to its yeast counterparts. In the 

mammalian system, there are a few mammalian homologs of yeast Atg8, including 

gamma-aminobutyric acid receptor-associated protein (GABARAP), golgi-associated 

ATPase enhancer of 16 kDa (Gate-16) and microtubule associated protein 1 light 

chain 3 (MAP1LC3, hereafter referred to as LC3) (Kabeya et al., 2004). Among 

these proteins, LC3 is most extensively studied and its induction is highly correlative 

to autophagic signaling, similar to yeast Atg8. 
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Figure 2: Two conjugation systems involved in autophagosome formation. The 

pathway on the left denotes Atg12-Atg5 conjugation, and on the other side, Atg8-PE 

conjugation pathway. The two pathways are both dependent on Atg7, which is an E1 

ubiquitin-activating enzyme homolog. Both pathways eventually result in the 

formation of multiprotein conjugates, which localizes at the PAS. (Yorimitsu and 

Klionsky, 2005) 
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1.4.3 Autophagy in health and diseases 

 During normal cellular homeostasis, autophagy occurs at basal level to 

degrade abnormal cellular constituents, thereby contributing to the physiological 

adaptations of eukaryotes. Thus, it is unsurprising that various cellular stimuli, 

including nutrient depletion, hypoxia, high temperature and genotoxic stress 

invariably lead to autophagic induction. In fact, autophagy serves as an important 

cellular adaptation response in normal development and differentiation. In three 

different model organisms, S. cerevisiae, D. discoideum and C. elegans, ATG genes 

are essential in their differentiation process (Melendez et al., 2003; Otto et al., 2003; 

Tsukada and Ohsumi, 1993). During neonatal birth, autophagy is induced after trans-

placental nutrient withdrawal to maintain cellular survival and in this situation, mice 

deficient in Atg5 die one day after delivery (Kuma et al., 2004). By employing GFP-

LC3 staining in various tissues, autophagy is observed in skeletal muscle, liver, heart 

and podocytes in kidney upon nutrient withdrawal of 24 hours (Mizushima et al., 

2004). 

 While normal autophagy is essential for homeostatic maintenance of a 

healthy individual, aberrations in autophagy have also been implicated in various 

disease pathologies.  

 

1.4.4 Autophagy and cell death 

 While basal autophagy constitutes an important survival mechanism towards 

cellular insults, paradoxically autophagic induction has also been associated with cell 

death. Persistent autophagy in response to cellular stress states serves as a potent 
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death signal, as in the case of therapy-induced autophagy, a specific non-apoptotic 

death pathway triggered upon exposure to chemotherapeutic compounds (Amaravadi 

and Thompson, 2007). The latter forms the basis for the identification of type- II cell 

death, characterized by excessive autophagosome formation (Scott et al., 2007; Yu et 

al., 2006).  

It is intriguing that a cytoprotective mechanism in one setting could mediate 

cell killing in other circumstances; hence involvement of autophagy in cell death has 

remained the controversial debates of current literature reviews.  Therefore, it is of 

paramount importance to have proper guidelines for the definition of type-II cell 

death. Type-II cell death, or autophagic cell death is defined as a cell death 

mechanism where macroautophagy represents the only executioner of cell death, 

without any involvement of type-I apoptotic cell death and/ type-III necrotic cell 

death (Scarlatti et al., 2009). A mere observation of autophagic phenotype is not 

sufficient to attribute the cell death as autophagic cell death. In many instances, 

autophagososome formation alone may represent a cellular adaptation response to 

cellular insults, and should not be interpreted as an evidence of cell death (Maiuri et 

al., 2007). In addition, inhibitors of autophagy have also been shown to display 

pleiotropic, non-specific effects (Klionsky et al., 2008). It is thus, imperative; for any 

studies which aim to address a positive role of autophagy in cell death, to 

demonstrate that RNA-mediated silencing of ATG genes confers protection to cell 

death.  

Though type-II cell death is classified as cell death devoid of caspase 

involvement, in many instances autophagy occur simultaneously with apoptosis. A 
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few possible scenarios may arise from this phenomenon. Autophagy may be 

accompanying the cell death but is not involved in the execution of cell death 

(Klionsky et al., 2008). In this instance autophagy may serve as the last desperate 

attempt by the cells to recover cellular viability. In other instances autophagy may 

serve as a signal to trigger the cell death cascade or contribute to the cell death 

response (Hippert et al., 2006). In the latter situation, the cell death could be 

classified as autophagy-dependent cell death. 

In the in vivo setting, there are several examples showing a positive role of 

autophagy in cell death. In a Drosophila melanogaster larval salivary gland system, 

autophagic induction by over-expression of Atg1 was shown to be sufficient to 

induce caspase-independent cell death (Berry and Baehrecke, 2007). Coincidentally, 

in another in vivo model, loss of UNC-51 (C. elegans ortholog of Atg1) suppresses 

necrotic cell death (Samara et al., 2008). These two studies elegantly demonstrate 

that inhibition of crucial autophagy genes rescue cell death, rendering evidence that 

autophagy could indeed be a cell death executioner. Nevertheless, other in vivo 

evidence of autophagy regulation of cell death has been lacking, most likely due to 

limited number of studies involving in vivo models in autophagic cell death. This 

situation is of striking disparity with the pro-survival role of autophagy, which has 

been supported by various in vivo and in vitro studies.  

Despite the scarcity of in vivo studies, there are more evidences in cultured 

mammalian cells which highlight the pro-death role of autophagy. In mouse L929 

fibroblastic cells, gene silencing of Atg7 or Beclin1 reduces the extent of 

nonapoptotic cell death induced by the pan-caspase inhibitor, zVAD (Yu et al., 
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2004). Similarly, caspase inhibition also leads to autophagic cell death due to 

autophagic degradation of catalase and ROS accumulation (Yu et al., 2006). 

Interestingly, several studies support the notion that excessive autophagy invariably 

leads to cell death. Beclin1 mutants, which are defective in binding with Bcl-2, 

induce higher levels of autophagy than wild type Beclin1, and correspondingly, 

increase cell death in MCF-7 cells (Pattingre et al., 2005). Loss of cell viability 

induced by mutant Beclin1 could be effectively rescued by siRNA against Atg5. 

Similarly, direct induction of Atg1 results in high levels of autophagy in D. 

melanogaster. Activation of autophagic pathway then sets the stage for apoptotic cell 

death to occur, which could be blocked by mutant Atg8a (Scott et al., 2007).  

 

1.4.5 Non-canonical autophagy  

The activation of the canonical autophagy pathway is critically under the 

control of the BH-3 only Bcl-2 interacting protein, Beclin1 (Aita et al., 1999). 

Beclin1 was identified as a haplo-insufficient tumor suppressor, monoallelically 

deleted in 40% to 75% of sporadic breast, ovarian and prostate cancers (Boya et al., 

2005). Notably, recent evidence has unraveled a novel autophagic cell death pathway 

wherein Beclin1 is completely dispensible (Yano et al., 2007). This could be of 

paramount importance as the execution of non-canonical autophagy in cancer cells 

bearing a Beclin1 knockout phenotype, could represent a novel and effective strategy 

to induce cancer cell death (Scarlatti et al., 2008). Using a model of neurotoxin-

induced cell death, Zhu et al showed that the existence of autophagic vacuolizations 

was independent of Beclin1 (Zhu et al., 2007). Similarly, in a breast cancer cell 
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model, the phytoalexin resveratrol was found to induce non-canonical autophagy, 

which was dependent on inhibition of mTOR signaling (Scarlatti et al., 2008). 

 

1.4.6 Inducers and regulators of autophagy 

1.4.6.1 Atg proteins 

Advancement in the field of autophagy is greatly accelerated through the 

discovery of a series of autophagy-related (ATG) genes. To date, there are at least 31 

ATG genes in yeast, and their gene products are mainly involved, though not 

exclusively, in the vesicle biogenesis pathway of autophagosome (Yorimitsu and 

Klionsky, 2005). Though the initial studies of the autophagic pathway was explored 

in yeast, the mammalian homologs of the yeast ATG genes has gradually been 

discovered, and this has led to tremendous understanding of the mammalian 

autophagic system (Meijer and Codogno, 2004). Interestingly, the two diverse 

systems have strikingly similar molecular machineries in autophagic regulation, 

suggestive of a highly conserved autophagic adaptation pathway which is essential 

for the well being of an organism. In the mammalian system, most of the ATG genes 

identified, and their products are crucial components of the autophagic system, 

mainly being involved in the regulation of autophagic induction, vesicle nucleation, 

vesicle expansion and the retrieval process (Maiuri et al., 2007). Most of the ATG 

genes which have been extensively studied were discussed in the previous section. 

Among the ATG genes being identified, Beclin1 (mammalian homolog of Atg6) has 

drawn heightened interest as it was identified as a haploinsufficient tumor suppressor 

in a variety of tumor cell lines, being monoallelically deleted in 40-75% of sporadic 
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human breast, ovarian and prostate cancers (Saito et al., 1993; Yue et al., 2003). 

Beclin1 was originally identified as an interacting partner of Bcl-2 in a yeast two-

hybrid screening of adult mouse brain library (Liang et al., 1998). Following its 

discovery, several reports have linked Beclin1 induction to suppression of 

tumorigenesis with a correlating lower level of Beclin1 in activating human tumors 

(Liang et al., 1999; Qu et al., 2003). Interestingly, mammalian Beclin1 belongs to the 

BH3 only protein of the Bcl-2 family members (Oberstein et al., 2007). Apart from 

its canonical role in the vesicle nucleation step of autophagosome formation, Beclin1 

was found to be the interacting partner of Bcl-2 and Bcl-xL, and their interaction has 

intricately linked the Bcl-2 family members to the autophagic pathway (Oberstein et 

al., 2007; Pattingre et al., 2005). 

 

1.4.6.2. PI3-Kinase-Akt-MTOR pathway 

As discussed in the previous section, mTOR is a major negative regulator of 

autophagy. It controls the nucleation step of autophagosome formation. In the 

mammalian system, two classes of PI3-kinase complexes are implicated in 

autophagy. Class I PI3-kinase is an upstream activator of mTOR, and its activation 

which subsequently leads to Akt hyperactivation, has been shown to downregulate 

autophagic response (Coward et al., 2009). Indeed, Akt inhibition has invariably 

linked to a heightened autophagic response (Degtyarev et al., 2009; Degtyarev et al., 

2008). Conversely class III PI3-kinase was shown to be similar to yeast VPS34, it is 

involved in the crucial step of the formation of a multiprotein complex with Beclin1 

and UVRAG. In accordance to this, class III PI3-kinase activity was demonstrated to 
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be important in autophagic induction (Petiot et al., 2000). Thus, it could be deduced 

that a substantial amount of PI3-kinase- Akt pathways on autophagy converged on 

the activity of mTOR. How then, does mTOR display such strong suppression on 

autophagy? Recent report highlighted a direct evidence of mTOR phosphorylation on 

mammalian Atg13 and ULK1 (mammalian homolog of Atg1), thereby inhibiting the 

binding of ULK proteins with FIP200 (Ganley et al., 2009; Jung et al., 2009). 

Importantly, mTOR was found to be incorporated into the ULK1-Atg13-FIP200 

complex in a nutrient-dependent manner, thus highlighting its role as a major 

suppressor during the induction point of autophagy (Hosokawa et al., 2009). 

 

PART II: REACTIVE OXYGEN SPECIES 

Among the several effector mechanisms involved in the control and 

regulation of cell death pathways, including apoptosis and autophagy, is the cellular 

redox status.  The redox status of the cell is determined by the balance between the 

rates of production and breakdown of reactive oxygen and/or nitrogen species (ROS; 

RNS) (Orrenius, 2007), such as superoxide anion (O2
•ˉ), hydrogen peroxide (H2O2), 

hydroxyl radical (OH•), nitric oxide (NO•) and hypochlorus acid (HOCl) (Kamata et 

al., 2005). The term ‘reactive’ is relative, for example O2
•ˉ and H2O2 are more 

selective in their reactions with other biological molecules, while OH˙ is highly 

reactive and reacts quickly with molecules surrounding its vicinity (Halliwell B, 

2007).  

The Free Radical Theory of Oxygen Toxicity states that the deleterious effect 

of oxygen is derived from the conversion of oxygen to partially reduced form of 
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oxygen, such as O2
•ˉ (Fridovich, 1995). Since the inception of this theory in 1954, 

numerous discoveries have been made towards understanding ROS. It is now widely 

recognized that ROS plays a pleiotropic role in mammalian physiology, exerting both 

beneficial and harmful effects to an organism in a context dependent manner. In 

normal circumstances, the generation of ROS is tightly regulated by enzyme 

complexes, such as nitric oxide synthase and NADPH (nicotinamide adenine 

dinucleotide phosphate) oxidase complex (Halliwell B, 2007). ROS production has 

been shown to play critical role in cellular physiology. At physiological 

concentration, ROS mediates cellular defenses against pathogen infections and is 

involved in numerous signaling pathways (Sauer et al., 2001). On the contrary, 

excessive stimulation of ROS production could result in oxidative stress, leading to 

deleterious damage to cells and macromolecules (Buccellato et al., 2004). Damage to 

macromolecules such as proteins, lipids and DNA could result in perturbations of 

their normal cellular functions (Mates and Sanchez-Jimenez, 1999).  Thus, 

overproduction of ROS has been implicated in various disease models. The delicate 

balance between amount of ROS produced and antioxidant defences in organisms 

affects the well being of an organism, and is brought about by various ‘redox-

regulation’ mechanisms in the cells.  

 

2.1 Superoxide anion 

O2
•ˉ is produced by one electron addition to the ground state O2 molecule 

(Halliwell B, 2007). In aqueous solution, O2
•ˉ does not react with most biological 

molecules (Halliwell B, 2007). In aerobic systems, O2
•ˉ can be produced in the cells 
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through many sources. The mitochondrial electron transport chain is suggested to be 

the most important source of O2
•ˉ production, through leakage of electrons from the 

ETC (electron transport chain) component to O2 (Turrens, 2003). Phagocytic cells 

produce O2
•ˉ by utilizing the nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase complex for reduction of O2 during respiratory burst (Halliwell B, 2007). O2 

can also undergo auto-oxidation reactions with biologically important molecules to 

yield O2
•ˉ (Kirsch et al., 2003). Thus, O2

•ˉ has been regarded as one of the primary 

free radical formed from the reduction of O2. Once O2
•ˉ is formed, it could react with 

other molecules to further generate other types of ROS, via various enzyme or metal-

catalyzed reactions (Kamata and Hirata, 1999). O2
•ˉ undergoes dismutation reaction 

to yield H2O2 via the action of superoxide dismutase (SOD) enzyme, and SOD 

represents one of the main antioxidant defense mechanisms in mammalian cells.  

 

2.2 Hydrogen peroxide 

 H2O2 is one of the most important non-radicals in the field of ROS. H2O2 is 

poorly reactive; it does not react with DNA, lipids and most proteins even at high 

concentration (Halliwell B, 2007). H2O2 is only a weak oxidizing or reducing agent. 

It is thus, unsurprising that H2O2 can act as a signaling molecule in the various signal 

transduction pathways. However, H2O2 readily diffuses across cell membranes and 

between organelles (Henzler and Steudle, 2000), and could react with iron and 

copper ions to form the deleterious OH• (Spencer et al., 1995). At low levels, H2O2 

has been reported to have proliferative effects on the cells (Burdon, 1995). When 

being administered at 10 to 100 µM range, H2O2 is toxic to certain cells by activating 
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apoptosis (Burdon, 1995). Higher concentrations would result in necrotic phenotypes 

of the cells.  

 In addition to SOD, H2O2 could also be generated by several different 

enzymes, including xanthine, urate and monoamine oxidases (Halliwell B, 2007).  In 

addition, H2O2 could be generated from oxidation reactions of flavanoids and 

ascorbate (Long et al., 2000). One of the major organelle involved in producing H2O2 

is the mitochondria, by dismutation of O2
•ˉ from the electron transport chain (Boveris 

and Cadenas, 2000). 

Though O2
•ˉ and H2O2 are not particularly reactive, interaction between these 

two molecules yield the highly reactive OH•
, which is responsible for the destructive 

effects on biological molecules such as DNA, proteins and lipids. Indeed, OH• is 

responsible for most of the damage incurred in cells treated with H2O2 (Spencer et al., 

1995). In addition, H2O2 could also react with metal ions such as iron or copper to 

generate OH• via Fenton or Haber-weiss reactions (Freeman and Crapo, 1982). 

 

2.3 Intracellular antioxidant defense mechanisms 

 Intracellular concentrations of ROS are determined by the rates of ROS 

production and the rates of ROS elimination by antioxidant defences. Therefore, 

redox regulation represents an important safeguard mechanism to protect living 

organisms from oxidative stress. In vivo, various systems are in place to ensure that 

defense mechanisms are being activated when harmful situation arises for the cells. 

These antioxidant mechanisms are broadly divided into enzymatic and non-

enzymatic antioxidant defences (Halliwell, 1999). Some of the important enzymatic 
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antioxidants include SOD, gluthathione peroxidase (GPx) and catalase. Non-

enzymatic antioxidants in the like of gluthathione, carotenoids, flavonoids, ascorbate, 

α-tocopherol are essential to minimize the adverse effects of ROS on cellular 

physiology.  

 The superoxide theory of oxygen toxicity states that O2
•ˉ is the main 

contributor of oxygen toxicity and thus, highlighting the importance of SOD in 

cellular defenses (Fridovich, 1995). SOD efficiently catalyses the removal of O2
•ˉ in 

the cells, by accelerating the dismutation of O2
•ˉ to H2O2. Copper- and zinc- 

containing superoxide dismutase (CuZn SOD) are mainly found in the cytosol of 

animal cells, while manganese SOD (MnSOD) are almost entirely located in the 

mitochondria (Okado-Matsumoto and Fridovich, 2001).  

 Dismutation of O2
•ˉ results in the formation of H2O2. H2O2 can be effectively 

converted into molecular oxygen and water through the enzymatic activity of catalase 

(Lardinois, 1995). All animal organs contain catalases, with the highest amount 

found in the liver (Lardinois, 1995). In animal cells, catalases are mainly found in the 

peroxisomes, which are also the sites of H2O2 production (Halliwell B, 2007).  

 Glutathione (GSH) is ubiquitously found in animals, plants and aerobic 

bacteria. It is also present in various cellular compartments including cytosol, nucleus 

and mitochondria and serves important antioxidant functions in these compartments. 

GSH is reduced to GSSG by the action of GPx, thereby facilitating the conversion of 

H2O2 to water (Kosower and Kosower, 1978). In addition, GSH could also directly 

scavenge OH• and singlet oxygen (Halliwell B, 2007). 
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2.4 Reactive Oxygen Species and Cell Death  

 ROS has been widely regarded as an effector mechanism of cell death. 

Numerous studies have provided evidence that inducers of apoptotic cell death also 

turn out as generators of ROS (Haddad, 2004). Correspondingly, amelioration of 

ROS generation by antioxidants attenuates the cell death progression. In most 

experimental systems, ROS production does not directly lead to cell death. In turn, 

ROS serves as important signaling molecule in the activation of the apoptotic 

signaling cascade (Mates and Sanchez-Jimenez, 2000). In the in vitro models, 

exogenous addition of oxidants culminates in the accumulation of oxidative stress 

leading to cell death. Exposure to high level of oxidative stress results in cellular 

injury in the form of macromolecular damage. In addition, cellular antioxidant 

defenses are depleted following excessive oxidative insults, thereby lowering 

threshold for apoptosis to occur (Kong et al., 2000). 

 Ionizing and UV irradiation trigger apoptosis through induction of H2O2 and 

OH• production. Cellular response to H2O2 is largely dependent on the concentration 

of oxidant. Low to medium H2O2 concentration frequently results in apoptosis, while 

excessive amount of H2O2 exposure invariably leads to necrotic cell death. It has 

been reported that H2O2-induced cell death is dependent on mitochondrial 

permeabilization and cytochrome c release, eventually resulting in caspase activation 

(Haddad, 2004; Kannan and Jain, 2000). Exogenous addition of H2O2 or drug-

induced H2O2 production in cancer cells is frequently accompanied by a drop in pHi, 

thereby creating a permissive intracellular milleu for apoptotic cell death (Pervaiz 

and Clement, 2002b). Another mechanism which has been proposed for H2O2-
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mediated cell death involves the activation of apoptosis signal-regulating kinase 1 

(ASK1), which could undergo dimerization upon H2O2 treatment to the cells (Gotoh 

and Cooper, 1998). 

Numerous findings have demonstrated a direct association between ROS and 

the death receptor signaling pathways. Exogenous addition of ROS or the utilization 

of ROS-generating compounds have been shown to upregulate CD95 and TRAIL 

death receptors. Arsenic trioxide, which could induce intracellular ROS production, 

activates nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) 

transcription factor which in turn facilitates the transcription of CD95 (Woo et al., 

2004). In addition, ROS could signal for CD95 clustering at the cell membrane, 

which is inhibited by antioxidants treatment (Huang et al., 2003). Fas- stimulated 

ROS production is critical in apoptosome formation in Jurkat T cells, subsequently 

promoting caspase-9 and caspase-3 activation (Sato et al., 2004). Uncoupling of 

oxidative phosphorylation by using carbonyl cyanide m-chlorophenylhydrazone 

(CCCP) results in mitochondrial ROS formation, thereby sensitizing human colon 

carcinoma cells to TRAIL-induced release of Smac/DIABLO and caspase-3 

activation (Izeradjene et al., 2005). 

As discussed previously, mitochondria is the major site of ROS production in 

the cell (Jezek and Hlavata, 2005). Thus, it is logical to deduce that ROS generated 

within mitochondria could represent an important regulatory axis in mitochondrial-

dependent cell death. Indeed, ROS generation could target the mitochondrial 

membrane permeabilization, thereby facilitating cytochrome c release and 

downstream cell death effectors activation. In addition, H2O2 has been shown to be 
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an important signaling molecule in triggering Bax translocation to the mitochondria, 

through enhancing cytosolic acidification of tumor cells (Ahmad et al., 2004b). 

Interestingly, H2O2-mediated Bax translocation results in increased H2O2 amount in 

the mitochondria, further amplifying the death signals. Acidification of the 

intracellular milleu provides a more conducive environment for efficient caspase 

activation (Hirpara et al., 2001). H2O2- induced apoptosis is ablated by 

overexpression of Bcl-2 in tumor cells (Clement et al., 2003). In correlation with the 

abovementioned studies, protective role of Bcl-2 in intracellular acidification-

mediated cell death is due to a slight elevation of O2
•ˉ and intracellular pH (Pervaiz 

and Clement, 2002b). Conversely, by means of decreasing the intracellular 

concentration of O2
•ˉ, Bcl-2- overexpressing cells are being sensitized to drug- 

induced apoptosis (Clement et al., 2003). These observations lend credence to a 

regulatory role of O2
•ˉ and H2O2 in determining sensitivity of tumor cells to drug-

induced apoptosis. 

   

PART III: MAPK SIGNALING PATHWAYS 

   Cellular response to environmental changes requires an intricate balance of a 

wide range of intracellular signaling networks. Cells have the ability to adapt to 

extracellular and intracellular alterations such as growth factors, cytokines, ligand 

binding, cellular matrix adhesion and nutritional cues (Davis, 2000). Cells also need 

to respond to physical fluctuations in temperature, pH and environmental stresses. 

Intracellular signaling pathways are interconnected and act in a cooperative manner 

to mount an appropriate response towards physiological demands of the cells. It is 
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thus not surprising that the integrated signaling networks control and regulate cellular 

physiology in terms of cell proliferation, differentiation and cell death. 

  Of the major intracellular signaling pathways, mitogen activated protein 

kinases (MAPK) is shown to be important in mitigating cellular responses. To this 

end, MAPK have been identified to be evolutionarily conserved among eukaryotes. 

Evolutionarily, MAPK are organized into three-tier kinase signaling module, 

comprising of Mitogen activated protein kinase kinase kinase (MAPKKK), Mitogen 

activated protein kinase kinase (MAPKK) and MAPK (Johnson and Lapadat, 2002). 

Signal transduction which relays through the MAPK signaling module eventually 

leads to the translocation of MAPK into the nucleus and activate transcription factor. 

Thus, MAPK activation plays an integral role in the regulation of gene expression. 

Activation of the MAPK cascade is achieved through sequential phosphorylation of 

the MAPK signaling components (Wada and Penninger, 2004).  

  Genetic studies in the yeast Saccharomyces cerevisiae have led to the 

identification of five MAPK modules which are involved in mating, osmoregulation, 

sporulation, cell wall remodeling and filamentation (Schaeffer and Weber, 1999). In 

mammals, three MAPK modules have been identified, and are named after the last 

kinase in the series. Each MAPK is activated by dual phosphorylation of a tripeptide 

motif, Thr-Xaa-Tyr (Johnson and Lapadat, 2002). Though each MAPK carries out 

unique biological functions, there is overlapping of the components of the three 

distinct MAPK modules.  
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Figure 3: MAP kinase signaling modules. The MAPK are activated via dual 

phosphorylation of Thr and Tyr residues by MAPKK, which are in turn 

phosphorylated by MAPKKK. This linear diagram is a simplified representation of 

the signaling modules, and it should be noted that the complexities and cross-talk 

often exists between the various modules depending on the specific cellular context. 

(Johnson and Lapadat, 2002) 
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3.1 The ERK signaling cascade 

 ERK is encoded by 2 different genes, ERK1 and ERK2, which give rise to 

two main proteins, p44 and p42 (Boulton et al., 1991). It was previously described 

that ERK1 and ERK2 shares 84% homology and have overlapping functions (Lloyd, 

2006).  

 As a critical MAPK involved in the integration of cellular signaling network, 

it is unsurprising that ERK has been documented to play a diverse role in various 

cellular and physiological processes. ERK was shown to be functionally important in 

cell cycle control, differentiation, migration, proliferation, survival signaling, cellular 

senescense and migration (Rubinfeld and Seger, 2005). Given that ERK could 

mediate numerous physiological functions, it is unsurprising that ERK is implicated 

in multiple disease pathologies, such as cancer, diabetes and cardiovascular diseases.  

 ERK could be activated in response to a diverse range of extracellular factors, 

which includes growth factors, cytokines and neurotransmitters (Chang et al., 2003). 

These signals are transmitted via cell surface receptors, such as G- protein coupled 

receptors (GPCR), integrin receptors and tyrosine kinase receptors before being 

relayed through the ERK signaling cascade (Ramos, 2008). In a typical ERK 

signaling cascade, binding of extracellular ligands to the cell surface receptors would 

result in the receptor activation, followed by recruitment of adaptor proteins, such as 

Grb2, which would then bind to the Guanine exchange factors (GEF) of small GTP 

binding proteins. Activated GEF would in turn lead to activation of the small 

GTPases, such as Ras (Omerovic et al., 2007). Stimulation of Ras initiates the 

sequential activation of ERK signaling cascade, by transmitting the signals to 
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MAPKKK. MAPKKK, such as Raf-1, is then being recruited to the plasma 

membrane and mediates the activation of MEKs, including MEK1 and MEK2 

(Fukuda et al., 1997). Activation of MEKs is mediated by phosphorylation at their 

signature Ser-Xaa-Ala-Xaa-Ser/Thr motif in the activation loop (Ramos, 2008). 

MEK activation represents a critical regulatory domain of ERK signaling as MEK1 

and MEK2 display exceptionally high specificity towards native form of ERK (Seger 

et al., 1992). Another high degree of specificity lies in the fact that phosphorylation 

by MEK is the only upstream mechanism in vivo which can lead to ERK 

phosphorylation (Rubinfeld and Seger, 2005). MEKs are dual specificity protein 

kinases, being able to phosphorylate ERK at Thr and Tyr residues of the Thr-Glu-Tyr 

motif at their activation loop (McKay and Morrison, 2007). Once activated, ERK 

could undergo dimerization as well as translocation to the nucleus. Apart from 

activation of transcription factors residing in the nucleus, a multitude of intracellular 

targets have also been identified as ERK’s substrates. 

 

3.2 Substrates of ERK 

 ERK is known as ‘proline-directed’ kinase, for its ability to phosphorylate 

Ser/Thr residues that are followed by Pro. In general, ERK recognises the consensus 

sequence Pro-Leu-Ser/Thr-Pro, though other sequences have also been identified 

previously (Gonzalez et al., 1991). Therefore, ERK have been shown to have a broad 

range of substrates pool. 

 One group of the best studied substrates of ERK is the nuclear transcription 

factors. The ternary complex factors (TCFs), is a class of transcription factors with 
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members such as Elk-1, SAP-1 and SAP-2, which are known ERK substrates 

(Pearson et al., 2001). ERK-mediated phosphorylation of Elk-1 occurs on the C-

terminus transactivating domain of Elk-1, and is able to potentiate the formation of 

ternary complexes (Gille et al., 1995).  

 In addition, another important class of transcription factors, namely activator 

protein-1 (AP-1) family of transcription factors were also identified to be ERK’s 

targets. Among which, c-Jun, c-Fos and ATF-2 have all been shown to be 

phosphorylated by ERK (Morton et al., 2003; Murphy et al., 2002). Notably, 

phosphorylation of c-Jun by ERK occurs at the C-terminus inhibitory sites, 

preventing c-Jun from binding to the DNA, as opposed to transactivating domain in 

the case of JNK. This seems to suggest an opposing function for these Map kinases, 

at least in terms of regulation of c-Jun.  

 Apart from nuclear proteins, many cytosolic proteins have been identified as 

ERK targets. The kinases ribosomal S6 kinase (RSK), mitogen and stress-activated 

protein kinase (MSK) and Map kinase interacting kinase (MNK) are downsteam 

substrates of ERK and may serve to relay the propagating signals to mediate a wide 

array of cellular responses (Roux and Blenis, 2004). In addition, ERK also mediate 

the phosphorylation of cytoskeletal proteins, such as synapsin 1, vinexin and paxillin 

(Jovanovic et al., 1996; Ku and Meier, 2000; Mitsushima et al., 2004). Importantly, 

the evidences of ERK in mediating phosphorylation of its upstream activators such as 

Raf, MEKs and the guanine nucleotide exchange factor, son of sevenless (SOS) 

suggest that feedback inhibition is a regulatory mechanism in ERK signaling 

pathway (Dougherty et al., 2005; Eblen et al., 2004; Langlois et al., 1995).  



 35

3.3 ERK and oncogenesis 

 Activation of the canonical MEK-ERK pathway has been classically linked to 

proliferation and oncogenic transformation. Several lines of evidence are in support 

of this. Activation of the ERK cascade has been associated with tumor promotion, in 

both in vitro and in vivo models (Kyriakis et al., 1992; Sobczak et al., 2008). 

Conversely, inhibition of the ERK pathway could effectively contain tumorigenic 

progression (Murphy et al., 2006; Ouyang et al., 2006). MEK1, which directly 

activates ERK, has also been implicated in malignant transformation. The findings on 

the effect of constitutive activation of MEK1 in the induction of oncogenesis, 

coupled with dominant negative form of MEK1 which reversed tumor formation, 

have indicated a direct role of ERK in the regulation of neoplasia (Cowley et al., 

1994; Manser et al., 1994; Seger et al., 1994). More importantly, ERK activation is 

often induced by mitogenic signals, and could lead to transcription factor activation. 

Thus, ERK signaling has been shown to integrate mitogenic signals to induce 

oncogenic transformation. For instance, activation of Elk-1 by ERK could lead to 

induction of c-fos, which is a transcription factor predominantly associated with cell 

growth and cell cycle progression (Marais et al., 1993; Whitmarsh et al., 1995).  

  

3.4 Erk and cell death 

 While it is true that the current literature has attributed a pro- growth and 

proliferation role to ERK activation, it is not queer that in certain cellular systems, 

ERK has also been demonstrated to participate in cell death. It should be an 

important note, however, that the association between ERK and induction of 
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apoptosis is by no means as established as its role in proliferation and oncogenic 

transformation. There are many correlative evidences between ERK and cell death, 

but the molecular mechanisms detailing the interactions between the two remained 

poorly understood.  

 Regardless of the ambiguity in relation to dual roles of ERK in survival and 

death, it is at least certain that DNA damage-induced ERK activation invariably 

culminates in a cell death response. Various DNA damaging agents, such as 

etoposide, cisplastin and UV irradiation could stimulate ERK activity, and altering 

the state of ERK activation ultimately lead to a reduction or complete cessation of the 

apoptotic response, placing ERK as a central feature of DNA damage-induced cell 

death (Lee et al., 2000; Tang et al., 2002; Wang et al., 2000). 

 Interestingly, ROS production has been shown to be a critical event leading to 

DNA damage. Along the same line, the ability of various DNA damaging drugs in 

triggering apoptosis has been attributed to an overwhelming production of ROS (Kim 

et al., 2005b). In view of the fact that ERK inhibition could abrogate ROS-mediated 

cell death in many circumstances, it is not impossible that the DNA damage-induced 

signaling pathway is dependent on ERK status in certain cases (Dong et al., 2004; 

Wang et al., 2000).  

 Apart from DNA damaging agents, Fas was also shown to be an activator of 

ERK and expectedly, abrogation of ERK also attenuated Fas-mediated cell death 

signaling (Goillot et al., 1997; Holmstrom et al., 2000). Nevertheless, as mentioned 

previously, progress in cell death research involving ERK have been lagging due to 

the lack of molecular evidences supporting ERK’s involvement in cell death. 



 37

3.5 ERK and autophagy 

 Though the involvement of ERK in autophagy is not as established as other 

major regulators of autophagy, such as JNK and Bcl-2, there are several lines of 

evidence indicating a relationship between ERK and autophagy.  

 Most of the current literatures have pointed to a positive regulatory role for 

ERK in regulating autophagy. The positive association linking ERK and autophagy 

have been demonstrated in studies involving TNF-α-induced autophagy (Cheng et 

al., 2008; Sivaprasad and Basu, 2008), as well as in neurotoxin-induced autophagic 

cell death (Zhu et al., 2007). These studies demonstrated a role for ERK in 

autophagic-mediated cell death. Similarly, ERK was implicated in starvation-induced 

autophagy leading to a cytoprotective response (Ogier-Denis et al., 2000). It is 

noteworthy that while consequences of ERK-elicited autophagy vary among different 

model systems, all of the studies mentioned above demonstrated an unequivocal role 

of ERK in autophagy by showing that pharmacological inhibition of ERK was found 

to be sufficient to impede autophagic progression.  

 At the molecular level, several mechanisms have been delineated with regards 

to ERK-mediated autophagy. One of the mechanisms involves phosphorylation and 

activation of Gα-interacting protein by ERK, which could then kick start the 

initiation process of autophagy (Ogier-Denis et al., 2000). Another recent publication 

has described a unique, dual role of ERK in mediating autophagy (Wang et al., 

2009). The findings in this paper showed that moderate activation of ERK can lead to 

a moderately high level of Beclin1, which results in protective autophagy. On the 



 38

other hand, sustained activation of ERK causes high level of Beclin1 which is 

responsible for destructive autophagy (Wang et al., 2009). 

 

3.6 The JNK/SAPK signaling cascade 

  The c-Jun NH2-terminal kinase (JNK), otherwise known as the stress-

activated protein kinase (SAPK) is activated by dual phosphorylation at specific Thr-

Pro-Tyr residues (Davis, 2000). JNK is commonly stimulated by various cytokines 

and environmental stressors, including UV radiation, oxidative stress and osmotic 

stress (Weston and Davis, 2002; Weston et al., 2002). JNK was initially identified as 

a “p54- microtubule associated protein” which was activated following 

cyclohexamide treatment (Kyriakis and Avruch, 1990). Soon after, JNK was found to 

be a specific kinase responsible for the transcription factor, c-Jun activation by 

binding to the N-terminus activation domain of c-Jun (Hibi et al., 1993). The ability 

of JNK to activate c-Jun is due to the kinase activity of the protein, being able to 

phosphorylate c-Jun on Ser-63 and Ser-73 residues (Pulverer et al., 1991).  

  c-Jun belongs to the activator protein-1 (AP-1) transcription factor family. 

Phosphorylation of c-Jun by JNK on the N-terminus transactivation domain results in 

induction of c-Jun expression (Ip and Davis, 1998; Smeal et al., 1991). Apart from 

activating c-Jun, JNK also phosphorylates other AP-1 proteins, including JunB, JunD 

and activating transcription factor 2 (ATF-2) (Ip and Davis, 1998). Most of the 

cellular effects brought about by JNK have been attributed to its ability to 

transcriptionally activate AP-1. 
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  JNK proteins are encoded by three different genes, Jnk1, Jnk2 and Jnk3. Jnk1 

and Jnk2 are ubiquitously expressed, while Jnk3 expression is tissue specific, mainly 

being restricted to the brain, heart and testis (Kyriakis et al., 1994; Weston et al., 

2002; Yang et al., 1997). Alternative splicing of these three genes results in ten 

isoforms of JNK (Gupta et al., 1996). JNK proteins are expressed as the short form 

(46 kDa) and long form (54 kDa) isoforms, with the latter having a COOH terminal 

extension (Pulverer et al., 1991). The different isoforms of Jnk genes appear to 

encode for different splice variants which differ in their substrate recognition and 

activation profile. 

 JNK mediates diverse roles in response to cellular stress. The exact biological 

outcome derived from JNK activation is often stimulus-specific and context-specific. 

Nevertheless, JNK has been implicated in various cellular processes such as 

apoptosis, autophagy, diabetes, metabolism and lifespan (Weston and Davis, 2007). 

In line with the scope of this study, the role of JNK in autophagy, cell death and 

tumorigenesis will be discussed in the following sections. 

 

3.7 JNK and apoptotic cell death 

 Numerous experimental evidences have suggested that JNK can function as a 

pro-apoptotic kinase. Firstly, association studies with either dominant negative or 

gain-of-function components of the JNK pathway confirmed the contribution of JNK 

in promoting apoptosis (Xia et al., 1995; Yang et al., 1997). In addition, genetic 

studies involving Jnk1, Jnk2 or Jnk3 genes have established a stimulatory role for 

JNK in neuronal apoptosis (Kuan et al., 2003; Tournier et al., 2000).  
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 One of the main discoveries with regard to JNK and apoptosis involved the 

interplay between JNK and NFκB pathway. TNF-α is a pro-inflammatory cytokine 

which could induce apoptosis or survival in a context dependent manner. It is 

generally suggested that TNF-α only induce apoptosis when NFκB activation is 

inhibited (De Smaele et al., 2001; Kamata et al., 2005; Sakon et al., 2003). The state 

of NFκB activation determines the temporal activation of JNK (Cavigelli et al., 1996; 

Liu et al., 1996). When the components of NFκB activation is deficient, in the case 

of IKK or Rel A deletion, JNK could be activated in a prolonged and sustained 

manner, thereby promoting apoptosis (Maeda and Karin, 2003). Though these studies 

demonstrated an integral role of JNK and NFκB in determining cell fate in TNF- α- 

induced apoptosis, the crucial players involved in this interplay are still at large. 

Several candidates have been suggested to mediate NFκB- induced JNK inhibition, 

including X-linked inhibitor of apoptosis protein (XIAP), growth arrest and DNA 

damage 45 (GADD45) and the MAPKK, MKK7 (De Smaele et al., 2001; Tang et al., 

2001). 

 One way to determine the role of JNK in apoptosis was to investigate the 

interactions between JNK and the components of the apoptotic pathway. Thus, 

numerous studies were carried out to determine potential targets of JNK in the 

apoptotic signaling. Fas-L was shown to be one of the downstream targets of JNK 

and following its induction, apoptotic death signaling was enhanced (Faris et al., 

1998; Kasibhatla et al., 1998; Lin et al., 1998). On a separate note, JNK has also been 

shown to phosphorylate murine p53 on Ser-34 residues in an in vitro model (Milne et 

al., 1995). In addition, human p53 was also identified as a JNK substrate (Fuchs et 
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al., 1998a; Fuchs et al., 1998b). In stress-induced apoptosis, p53 phosphorylation by 

JNK led to inhibition of p53 degradation, leading to p53 stabilization (Fuchs et al., 

1998b). In another setting, interaction of JNK and c-Myc was found to contribute to 

apoptosis (Noguchi et al., 1999). JNK was previously shown to phosphorylate c-Myc 

on Ser-62 and Thr-71 residues (Noguchi et al., 1999). The involvement of JNK in c-

Myc- induced apoptosis was further strengthened by dominant negative experiments 

of JNK.  

 In the exploration of mechanisms involved in JNK-mediated apoptosis, 

experimental evidences seemed to point to the mitochondria as a critical point of 

regulation. Jnk null MEFs were unable to induce MOMP or cytochrome c release, 

suggesting that JNK may be an intrinsic component of the mitochondrial death 

pathway (Tournier et al., 2000). Indeed, JNK activation has been linked to effective 

cytochrome c release from the mitochondria (Hatai et al., 2000). This phenomenon 

might be linked to c-Jun activation, as mutations of JNK phosphorylation sites on c-

Jun partially impaired UV-induced apoptosis (Behrens et al., 1999). Another possible 

mechanism for JNK-induced cytochrome c release involved the action of JNK on the 

Bcl-2 family members. It was proposed that JNK was responsible for the 

phosphorylation of Bcl-2 and Bcl-xL in both in vitro and in vivo systems, and this 

was postulated to be inhibitory to their function as anti-apoptotic regulators 

(Maundrell et al., 1997; Yamamoto et al., 1999). Along similar lines, JNK’s 

contribution in mitochondrial death pathway could be linked to the production of 

jBid, which is a novel cleaved fragment of Bid (Deng et al., 2003). jBid was 
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produced following prolonged activation of JNK, and was found to be effective in 

the release of mitochondrial SMAC, thereby activating the intrinsic death pathway.  

 Targeted disruption of Jnk genes represents a useful approach in detecting 

alterations in apoptotic components. Research involving Jnk1-/-Jnk2-/- mouse 

embryonic fibroblasts (MEFs) provided a powerful model in the investigations of 

JNK-induced apoptosis (Tournier et al., 2000). Jnk null MEFs were fully capable in 

the execution of Fas-induced cell death, indicating a dispensable role of JNK in death 

receptor-mediated apoptosis in MEFs. In contrast, Jnk null MEFs failed to promote 

stress-induced apoptosis and these cells could not execute efficient caspase 

activation. These studies provide useful insights on the apoptotic response mediated 

by JNK signaling circuitry.  

 

3.8 JNK and autophagy 

 In addition to the many complexities in JNK-regulated pathways, many 

reports have associated an increase in JNK activity to autophagic regulation. JNK 

was first shown to be critical for zVAD-induced cell death in L929 cells, and JNK 

inhibition suppressed the extent of autophagosome formation and cell death (Yu et 

al., 2004). In addition, neurotoxin-induced autophagic death was associated with 

JNK and c-Jun activation (Borsello et al., 2003). In a different setting, JNK activity 

was found to be essential in ER stress-induced autophagy (Ogata et al., 2006). 

However, in this model, induction of JNK-dependent autophagy was shown to be 

important for cell survival.  
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 While the earlier studies have unravelled a role for JNK kinase in the 

regulation of autophagy, the molecular mechanisms involving JNK was 

undetermined in these studies. Most of the studies presented an association of JNK 

and autophagy through the utilization of specific inhibition of JNK kinase activity via 

pharmacological inhibitors, such as SP600125 and U0126, or gene silencing 

technology targeted against JNK 1/2.  

 Recent data has pointed to Beclin1-Bcl2 complex as a putative JNK target. 

Under non-starvation condition, Beclin1 was found to be able to bind to Bcl-2, and 

their interaction was shown to be an important inhibitory function of Bcl-2 to keep 

the autophagic response in check (Pattingre et al., 2005). One of the earliest 

mechanisms of JNK identified in the modulation of autophagy was associated with 

its extra-nuclear function. Specifically, JNK1 was identified to be the kinase 

responsible for Bcl-2 phosphorylation, resulting in the disruption of Beclin1-Bcl-2 

complex, thereby promoting starvation-induced autophagy (Wei et al., 2008a). Apart 

from the inactivation of protein complex from outside of the nucleus, transcriptional 

activity of the JNK signaling pathway was found to be crucial in increasing Beclin1 

expression in the activation of autophagic cell death (Li et al., 2009; Park et al., 

2009).  

 Despite the numerous studies linking JNK and autophagy, the mechanism of 

action involved in JNK signalling with regard to autophagy has been limited to Bcl-2 

and Beclin1 regulation. Efforts to decipher the specific stimulus and context within 

which JNK activation was induced and the eventual purpose of JNK-mediated 

autophagic signaling remained an interesting biological function to be explored. 
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3.9 JNK and cell survival 

 Conventionally, JNK has been regarded as a pro-apoptotic kinase, supported 

by the bulk amount of data in the literature showcasing its pro-death activity. The 

literature provided in the previous section is definitely not an exhaustive list which 

demonstrated an association of JNK and cell death. In spite of the acceptance of JNK 

as a death-promoting protein, it is unsurprising that on the other hand, evidence 

supporting a pro-survival role of JNK has also been demonstrated. Consistent with 

this, many extracellular stimuli which activate JNK could also directly result in cell 

survival. For instance, TNF-α-induced JNK activation in fibroblasts was linked to 

cell survival and completely independent of the cell death pathway (Liu et al., 1996). 

JNK activation has also been demonstrated to be crucial for integrin- mediated 

cellular survival (Almeida et al., 2000). In addition, another convincing evidence 

linking JNK to anti-apoptosis came from the studies on Jnk deletion mutants. Jnk1 

and Jnk2 null mice were prone to apoptosis in the forebrain and hindbrain regions, 

indicating that JNK could be involved in mitigating the survival response in these 

brain regions during development (Kuan et al., 1999; Sabapathy et al., 1999). In view 

of the pleiotropic roles of JNK in cell signaling, it should be borne in mind that the 

exact outcome associated with JNK activation is often dependent on the specific 

circumstances.  
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3.10 JNK and tumorigenesis 

 The activity of JNK is intricately linked to cell death and cell survival. Thus, 

studies which implicate JNK in carcinogenesis are also mainly based on these two 

cellular responses.  

 An important line of evidence in JNK-mediated oncogenic transformation 

comes from JNK’s ability to phosphorylate the transcription factor c-Jun. Oncogenic 

transformation induced by Ras requires c-Jun and this phenomenon could be 

effectively ablated via c-Jun mutation on sites that are phosphorylated by JNK 

(Nateri et al., 2005). In addition to this, JNK have been implicated in various studies 

which employed tumor promoters and chemical carcinogens (Chen et al., 2001; 

Sakurai et al., 2006). These studies have proposed that JNK represents an ideal anti-

tumor target as suppression of JNK activity could restrict tumor growth and 

proliferation. 

 In contrast, several other studies have established a tumor suppressor role for 

JNK. The rationale in search of a tumor suppressor gene in the JNK pathway lies in 

the argument that if JNK was implicated in apoptosis, then at least one of the 

components of the JNK pathway should be a putative tumor suppressor. The most 

realistic candidates would be the Jnk1 or Jnk2 genes; however, as these genes are 

largely functionally redundant, it is highly unlikely that they could act as tumor 

suppressors. In this regard, MKK4, which acts upstream of both JNK and p38 in the 

MAPK signaling module, was identified as a candidate tumor suppressor gene (Su et 

al., 1998; Teng et al., 1997). Loss of function mutations of MKK4 have been 
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identified in various cancers (Su et al., 1998; Su et al., 2002). In addition, epigenetic 

loss of MKK4 has also been associated with increased metastasis of ovarian and 

prostate carcinomas (Xin et al., 2004; Yamada et al., 2002). However, it should be 

clear that though MKK4 represents an ideal anti-tumor target, its effect should not be 

attributed solely to its link with JNK, as it could also mediate p38 activation.   
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MATERIALS & METHODS 

 

In this study, the properties of C1 as an anti-tumor compound were being evaluated. 

In particular, the cellular response triggered by C1 was assessed. Various methods of 

detecting autophagy and apoptosis, as well as general cell proliferation were 

employed to determine the cellular processes involved in C1-treated cells. In 

addition, examinations of the cellular signaling pathways were carried out with 

inhibitors and RNAi-mediated silencing of the Map kinase family members, ERK 

and JNK. These experimental methods are summarized as below:  

 

1 Synthesis and analysis of the small molecule compound C1: 

The small molecule compound 1, 3-dibutyl-2-thiooxo-imidazolidine-4, 5-dione, 

herein referred to as C1, was synthesized as follows: Oxalyl chloride was added to 1, 

3-dibutyl-2-thiourea (10 mM) in anhydrous ether in a round bottom flask under 

stirring. The reaction mixture was stirred for 1 to 2 hours at ambient temperature and 

then poured into saturated NaHCO3. The product was extracted with 3X ethyl 

acetate. The ethyl acetate layer was then washed with distilled water and then brine 

water. Ethyl acetate was then dried with anhydrous Mg2SO4 and removed under 

reduced pressure. The purification through flash chromatography (ethyl 

acetate:hexane) afforded the yellow oil product. The oily product was solidified in a 

refrigerator. The compound was then analyzed by HNMR, C NMR and MS and 

results are presented as follows: Name: 1,3-dibutyl-2-thiooxo-imidazolidine-4,5-

dione; Color: Orange; FT-IR (in CH2Cl2):  2875-2960 cm
-
 (Aliphatic CH), 1770 
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(C=O), 1410 (C=S); 
1
HNMR (in CDCL3): δ = 0.95 9 (t, J=7.3Hz, 6H, 4’-CH3), 1.34 

(sext, J=7.7 Hz, 4H, 3’-CH2), 1.67 (quint, J=7.2 Hz, 4H, 2-CH2) 3.93 (t, J=7.5 Hz, 

4H, 1’-CH2); C NMR (in CHCl3): δ = 13.54 (C4’), 19.90 (C-3’), 29.72 (C-2’), 41.83 

(C-1’), 155.35 (C-4.5), 180.63 (C-2); Mass m/z (%): 242 (100) [M+], 209 (26) [M+ -

HS], 187(22); MF C11H18N2O2S calculated 242.34, Found 243.34. 

Yield:  95% 

 

2 Tumor cell lines: 

HCT116 colorectal carcinoma cells were generously provided by Dr. Bert Vogelstein 

(The Johns Hopkins University School of Medicine, Baltimore, MD) and maintained 

in McCoy 5A (Gibco Invitrogen Corporation, Carlsbad, CA) supplemented with 10% 

fetal bovine serum FBS), 1% L-glutamine, and 1% S-Penicillin (Hyclone, Thermo 

Scientific, Waltham, MA) in a 37°C incubator with 5% CO2. HeLa cervical 

carcinoma, A549 small cell lung carcinoma, M14 melanoma, SHEP1 and SHSY5Y 

neuroblastoma cell lines were obtained from ATCC and maintained in DMEM 

(Hyclone) supplemented with 10% FBS. MCF-7, T47D, and MDA-MB-231 breast 

cancer cell lines were from American Type Culture Collection (ATCC) and cultured 

in RPMI (Hyclone) supplemented with 10% FBS. HK-1, C666-1 nasopharyngeal 

carcinoma cell lines, gifted by Dr. Lo Kwok-wai (The Chinese University of Hong 

Kong) and Dr. Hsieh Wen-son (Johns Hopkins Singapore), were maintained in RPMI 

supplemented with 10% FBS.  
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3 Reagents and chemicals: 

The pan-caspase inhibitor, ZVAD-FMK, and the caspase 3 and 9 inhibitors (DEVD-

fmk and VEHD-fmk) were obtained from Alexis Biochemicals, Lausen, Switzerland. 

The JNK inhibitor (SP600125), the ERK inhibitor (PD98059), bovine catalase, N-

acetyl-cysteine, MG132, cyclohexamide, actinomycin D, crystal violet, and MTT 

were purchased from Sigma Aldrich, St. Louis, MO. 

 

4 Plasmids and siRNAs: 

The plasmid pGFP-rLC3 was a generous gift from Professor T. Yoshimori (National 

Institute of Genetics, Shizuoka, Japan). siRNAs for Beclin1, Atg7, JNK1/2, ERK1/2 

and ULK-1 were obtained from Dharmacon Technologies (Thermo Scientific, MA).  

The pCINeoEV empty vector and pCINeo+Cat containing the full-length human 

catalase gene were a gift from Dr. Marie-Veronique Clément (Department of 

Biochemistry, National University of Singapore). 

 

5 Amplification and purification of plasmids 

Amplification of plasmids was carried out by using NucleobondTM DNA purification 

kit according to the manufacturer’s manual. Briefly, 100 µl of Escherichia coli 

(E.coli) competent cells were incubated with 100 ng of each plasmid at 4 °C for 3 

min before being subjected to heat-shock treatment for 1 min at 37 °C, then being 

incubated at 4 °C again for 5 mins. The cells were then added to 900 µl of super 

optimal catabolite repression (SOC) buffer and the mixture were incubated at 200 
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rpm for 30 mins in a 37 °C bacterial incubator with 5% CO2. Next, 100 µl of the 

mixture were plated on lysogeny broth (LB) plates which was prepared with 

Ampicillin antibiotics, then being incubated at 37 °C for 16 hours. A mini culture 

was made by selecting a single cell colony from the agar plate and incubating it with 

4 ml of LB medium containing ampicilin antibiotic for 16 hours at 37 °C. Following 

which, the mini culture was transferred to a maxi culture by adding 1 ml of mini 

culture to 250 ml of LB medium containing ampicilin antibiotic and the mixture 

broth was incubated for 16 hours at 37 °C. Next the maxi culture was being 

centrifuged at 2500 rpm for 30 min at 4 °C. The E. coli pellet was resuspended with 

10 ml S1 buffer provided by the manufacturer and then lysed with 10 ml S2 buffer. 

The resultant supernatant was incubated for 10 min at 4 °C before being neutralized 

with 10 ml S3 buffer and subjected to centrifugation again at 12,000 rpm for 45 min 

at 4 °C. Next the supernatant was allowed to be filtered through NucleobondTM ion-

exchange column which was pre-equilibrated with 5 ml N2 buffer. When all volume 

has passed through the column, 12 ml of N3 buffer was being run through the 

column twice. The plasmids were then eluted with 12 ml of N5 buffer followed by 

precipitation with 8.4 ml of isopropanol before being centrifuged at 11,500 rpm for 

30 mins at 4 °C. For the purification process, the plasmids were resuspended with 

1:10 volume 5 M NaCl and 2 volume 95% vol/vol ethanol before being transferred to 

-80 °C for 30 mins. After incubation, the mixture was centrifuged at 14,000 rpm for 

30 mins at 4 °C and the resulting pellet was washed with 70% vol/vol ethanol twice. 

The pellet was allowed to be air-dried before it was resuspended in 100 µl of sterile 

RNAse free water.  
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6 Analysis of DNA by Southern blotting 

For nucleotide analysis, the plasmids were being digested with restriction 

endonucleases (RE) by incubating 25 µl of each plasmid with 2.5 µl of RE buffer and 

0.5 µl of RE for 1 hr at 37 °C. Next 1 µl of DNA loading dye was added to 25 µl of 

RE digestion product before being subjected to 10% agarose gel with 1% ethidium 

bromide (EtBr). When the DNA fragments were well separated, the gel was 

visualized with an ultraviolet illuminator and the nucleotide fragments were 

analysed. 

  

7 Transient transfection of plasmids: 

For transient expression, HCT116 cells grown at 50% confluency in 6-well plate 

transfected with 8 µg of pGFP-LC3 or pCINeoEV or pCINeo+Cat plasmids in 

Optimem1TM medium (Invitrogen Corporation, Carlsbad, CA) without serum using 

the Superfect transfection reagent (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. Briefly, 10 µl of Superfect were mixed with 226 µl of 

plain Mc Coy’s medium and being vortexed for 10 secs. Then 8 µg of plasmid was 

being added to the transfection mixture and being incubated at 37 °C for 20 mins. 

After that, the transfection mixture was added with additional 300 µl of plain Mc 

Coy’s and 500 µl of each transfection mixture was being added drop-wise to each 

well. The plasmids were allowed to be incubated for 48 hours before being subjected 

to various treatments and analysis of protein expression by Western blots.    
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8 Transient silencing of messenger RNA:  

For knockdown of gene expression, 50 nM siRNA (Beclin1 siRNA, or JNK1/2 

siRNA, or ERK1/2 siRNA, or Atg7 siRNA, or ULK-1 siRNA) was transfected into 

cells in Optimem1TM medium using the Dharmafect1 reagent (Dharmacon) according 

to the manufacturer’s instructions. Briefly, 2 µl Dharmafect1 reagents was added to 

200 µl of Optimem1 and the mixture was vortexed for 10 seconds before being 

incubated for 10 min at 37 °C. In another tube, 50 nM of siRNA was resuspended in 

200 µl of Optimem1. Similarly, this mixture was also vortexed and incubated as the 

same condition as the previous mixture, and being added drop-wise to the first tube. 

Next, 400 µl of the final transfection mix was added drop-wise to the respective well.  

After transfection with the plasmid or siRNA, cells were cultured in 10% serum for 

48 hours before the assessment of protein expression by Western blotting. 

 

9 Drug treatments: 

Various drugs and inhibitors were used in this study as useful tools to investigate 

relevant pathways involved as well as to explore the mechanisms related to C1-

induced cellular responses. The timing and dosage for each drug has been optimized 

and subsequent experiments were repeated by following the exact condition for drug 

treatments to minimize variability in experimental setup. The procedures for drug 

treatments are summarized as follows: 

C1 treatments at various doses were administered according to the methods described 

in the respective figure legends. Catalase, actinomycin D and cycloheximide were 
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added 1 hour while NAC and MG132 were pre-incubated for 2 hours prior to C1 

treatment.  

  

10 Cell viability and tumor colony forming assays: 

Cell viability following drug exposure was determined by the MTT assay as 

described previously. Briefly, 1x106 cells/well were seeded onto 6 well plates and 

exposed to C1 for 18-24 hours before being trypsinized, washed with cold PBS, and 

incubated with MTT [3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; 

Sigma Aldrich] for 2 hours.  The formazan crystals were then being dissolved with 

Sorenson’s glycine and DMSO (Sigma Aldrich, St. Louis, MO) and absorption was 

measured with a TECAN spectrophotometer at 570nm. For colony forming assays, 

10,000 cells were plated in petri dishes and grown for 2 weeks. The plates were then 

stained with crystal violet solution (Sigma Aldrich, St. Louis, MO) and colonies were 

scored manually as described previously.  

 

11 Western blotting: 

Whole cell protein extracts were isolated using 1 X RIPA lysis buffer (50mM Tris-

HCl, pH 7.4, 150mM NaCl, 0.25% deoxycholic acid, 1% NP-40, 1mM EDTA and 

protease inhibitors (Calbiochem, San Diego, CA). Equal amounts of protein from the 

total cell lysates (30 to 120µg/lane) was separated by sodium dodecyl sulfate (10%, 

12% or 15%) polyacrylamide gel electrophoresis gels (SDS-PAGE; BioRad 

Laboratories), transferred to PVDF membrane (BioRad Laboratories) using wet 

transfer (BioRad Laboratories). The membranes were blotted with 1:1000 dilution of 
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the primary antibodies specific for Bax, LC3, Caspase- 9, β-actin, GAPDH, ULK1 

(Santa Cruz Biotechnology), Beclin1, ATG7, ATG12, ATG5, Cytochrome C, JNK, 

p-JNK, c-JUN, p-c-JUN, Bid (Cell Signaling Technology), Caspase 3 (Upstate, 

Millipore Corporation), Caspase 8, Smac, anti-poly(ADP-ribose) polymerase (BD 

Pharmingen) and Catalase (Calbiochem) overnight at 4 °C. After overnight 

incubation with the primary antibodies, the membranes were being washed with 1X 

TBS with 0.1% Tween-20 for 3 times and then blotted again with respective 

secondary isotype specific antibodies tagged with horseradish peroxidase (Thermo 

Scientific Pierce, Rockford, IL). Bound immuno-complexes were detected using 

WEST PICO Chemiluminescence substrate (Thermo Scientific Pierce, Rockford, IL) 

on Kodak films.  

 

12 Immunoflurorescence for GFP-LC3:  

Following transfection with pGFP empty vector or pGFP-rLC3, cells were incubated 

with C1 for 6 to 24 hours and visualized by a fluorescent microscope (Eclipse 

TE2000-S, Nikon) using excitation wavelength of 488nm and emission wavelength 

of 525nm. 

 

13 Propidium Iodide staining for DNA fragmentation:  

Briefly, 1x106 cells/ml were fixed with 70% vol/vol ethanol, and stained with 

propidium iodide (Sigma Aldrich, St Louis, MO) for DNA content analysis. At least 

10,000 events were analyzed by flow cytometry (Coulter EPICS Elite ESP) with the 

excitation set at 488 nm and emission at 610 nm. Histogram data indicating 
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percentage of cells with sub-diploid DNA are shown and are mean ± SD of three 

independent observations. 

 

14 Flow cytometric analysis of intracellular ROS: 

For determination of intracellular H2O2, cells were tripsinized, washed with 1 X PBS 

and loaded with 5 µmol/L of the redox sensitive dye 5-(and-6)-chloromethyl-2-,7-

dichlorofluorescin diacetate (CM-H2DCFDA) (Molecular Probes, Invitrogen 

Corporation) at 37°C for 15 minutes. Then the stained cells were washed again with 

1 x PBS and resuspended with 500 ml of plain medium and analyzed by flow 

cytometry (Coulter EPICS Elite ESP) using an excitation wavelength of 488 nm and 

emission wavelength of 525 nm. CM-H2DCFDA is a cell permeable dye which could 

be cleaved by intracellular asterases to CM-H2DCF to prevent its backflow into the 

extracellular medium. It could be oxidized by intracellular oxidants to yield C-DCF 

which could be detected by flow cytometry. 

 

15 O2
•
ˉ measurement by MitoSox

TM
 RED 

Detection of intra-mitochondrial O2
- was performed by loading cells with the cationic 

redox sensitive probe hexyl triphenylphosphonium cation (TPP+)- HE, otherwise 

known as MitoSoxTM RED MITOCHODNRIAL O2
- INDICATOR (Molecular 

Probes, Invitrogen Corporation) at 37°C for 15 minutes and analyzed by flow 

cytometry (Coulter EPICS Elite ESP) using an excitation wavelength of 590nm and 

emission of 619nm.  At least 10,000 events were analyzed. MitoSoxTM RED is a cell 
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permeable dye which could be targeted to the negatively charged mitochondrial 

membrane whereby the HE moiety could then be oxidized by O2
-. 

 

16 Heavy membrane fractionation:  

HCT116 cells treated with C1 for 6, 12 and 24hrs were suspended in 10 volume of 

Buffer A for 30 min and homogenized with a Dounce Homogenizer (Sartorius AG).  

Homogenates were centrifuged at 300g for 10mins at 4oC.  Supernatants were further 

centrifuged at 25,000g for 45mins at 4oC to collect the mitochondrial pellets.  The 

mitochondrial pellets were lysed in standard 1xRIPA lysis buffer and the 

supernatants were used as the cytosolic fractions. The resultant fractions would then 

be separated by SDS-PAGE followed by Western blotting to determine subcellular 

distribution of various proteins. 

 

17 Subcellular fractionation for nuclear preparation: 

Following drug treatments, HCT116 were harvested from petri dish by tripsinization 

and subjected to centrifugation at 1,500g for 3 min. The pellet was resuspended in 

400 µl of Nuclear Buffer and incubated on ice for 15 min. After that, 25 µl of NP-40 

was added to the cell suspension and vigorous vortexing was carried out for 10 sec. 

The cell suspension was then being centrifuged at 14,000 rpm for 30 sec at 4 °C. The 

supernatant (cytosolic fraction) was transferred to a clear centrifuge tube and stored 

at -80 °C. The pellet containing nuclear fraction was resuspended with 50 µl of ice 

cold Buffer C and incubated for 15 min at 4 °C before being kept at -80 °C. The 
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fractions were then subjected to SDS-PAGE and Western blotting as described in 

Materials & Methods. 

 

18 Electron microscopy: 

Cells were fixed overnight in 2.5% glutaraldelhyde in 0.1M phosphate buffer (pH 

7.2), before being post-fixed in 1% OsO4 for 1 hour. Next, cells were dehydrated in 

ethanol series and embedded in Spurr’s resin.  Ultra thin sections were stained with 

uranyl acetate and lead citrate and observed under a JEOL JEM-1230 transmission 

electron microscope.  

 

19 Buffers and stock solutions used in the study: 

 
Catalase 

Catalase was freshly prepared by weighing out 7000 units/ml and dissolved in plain 
Mc Coy’s medium. 
 
NAC 

NAC was prepared as 2 mM stock was prepared freshly prior to drug treatment. 

SP600125 

SP600125 was prepared as a stock solution of 20 mM by dissolving it with DMSO. 
 
PD98059 

PD98059 was prepared as a stock solution of 20 mM by dissolving it with DMSO. 

MTT 

MTT was freshly dissolved in plain Mc Coy’s medium to a stock concentration of 5 
mg/ml. 
 
Propidium iodide dye 

PI stock solution (50X) was dissolved in sodium citrate buffer (38 mM) to a stock 
concentration of 0.5 mg/ml and kept in 4 °C and prevented from light exposure. 
PI: RNAse A solution was freshly prepared with 1/50 volume of PI and 1/40 volume 
of RNAse A stock solution in 38 mM sodium citrate buffer. 
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RNAse A 

RNAse A was dissolved in 10 mM Tris-HCl (pH 7.5) and 15 mM NaCl to a stock 
concentration of 10 mg/ml and kept at -20 °C. 
 

RIPA lysis buffer 

RIPA lysis buffer was prepared with 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% v/v 
Nonidet P40, 1% v/v deoxycholic acid,  0.1%  v/v SDS, 1 mM EDTA. Before use, 
the buffer was supplemented with protease inhibitors (1 mM PMSF, 10 µg/ml 
Aprotinine, 20 µg/ml Pepstatin A) and phosphatase inhibitors (1 mM NaF, 1 mM 
Na3VO4). 
 
Running Buffer for SDS-PAGE 

Running buffer for SDS-PAGE was prepared by adding 60 g Tris-base 60, 288 g of 
Glycine, 20 g of SDS and dissolved in 2 L of dH2O. 
 
Transfer buffer for western blot: 1X (5L) 

Transfer buffer was prepared by adding 12.1 g Tris-base, 57.84 g Glycine, 1 L 
methanol to a total volume of 5 L with dH2O. 
 
Laemmli loading buffer: 5X (10 ml) 

Tris-HCl pH 6.8 3.1 ml (1 M), SDS 1 g (10%), glycerol 2 ml (20%), β-
Mercapthoethanol 2.5 ml (25%), Bromophenol Blue (BPB) 0.01 g (0.1%), 2.4 ml 
dH2O. 
 
Buffer A for heavy membrane fractionation: 

50 mM PIPES-KOH pH 7.4, 220 Mm mannitol, 68 mM sucrose, 50 Mm KCl, 5 mM 
EGTA, 2 mM MgCl2, 1 mM DTT. Before use, the buffer was supplemented with 
protease inhibitors (1 mM PMSF, 10 µg/ml Aprotinine, 20 µg/ml Pepstatin A) and 
phosphatase inhibitors (1 mM NaF, 1 mM Na3VO4). 
 
Sorenson’s Glycine Buffer 

Sorenson’s Glycine buffer was prepared as 0.1 mM NaCl and 0.1 M Glycine (pH 
10.5) in distilled water and stored at 4 °C. 
 
Buffer A for nuclear fractionation: 

Buffer A for nuclear fractionation was prepared using 10 mM Hepes pH 7.9, 10 mM 
KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT and resuspended with dH2O. 
Before use, 0.5 mM of PMSF was added.  
 
Buffer C for nuclear fractionation: 

Buffer C was prepared with 20 mM Hepes pH 7.9, 50 mM NaCl, 1 mM EDTA, 1 
mM EGTA, 1 mM DTT and resuspended with dH2O. Before use, 0.5 mM of PMSF 
was added. 
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TBS 

TBS was prepared as 500 ml 1 M Tris HCl (pH 7.4) with 87.6 g of NaCl in 10L of 
distilled water and stored at room temperature. 
 
 
TBST 

TBST was prepared as 2 L TBS with 2 ml of Tween-20 and stored at room 
temperature. 
 
20 Statistical Analysis: 

Experimental differences were tested for statistical significance using Student’s t-

test. P value of <0.05 was considered as significant. 
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RESULTS 

PART 1: C1 INDUCES CELL DEATH AND MOMP IN HUMAN TUMOR 

CELLS 

 

1.1 C1 induces reduction of cell viability and colony formation in HCT116 

cells  

 Merodantoin (Hereafter referred to as C1) is a small molecule compound with 

a molecular weight of 242. C1 was originally purified from the photooxidation of 

merocyanine 540. The chemical structure of C1 is N,N'-Dibutyl-thio-4,5-

imidazolindion (Figure 4). To explore the death inducing ability of C1, a dose 

response curve against HCT116 human colorectal carcinoma cells was obtained.  To 

do so, cells were treated with increasing concentrations of C1 for 24 hours and 48 

hours, before being harvested for determination of cell viability. Cell viability is 

assessed by MTT assay. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) is a standard colorimetric assay, which capitalizes on the fact that live cells 

contain active mitochondrial reductase enzymes. These mitochondrial enzymes 

catalyze the reduction of MTT dye to an insoluble formazan. The purple formazan 

was solubilized with dimethylsulfoxide (DMSO) and Sorenson’s Glycine buffer into 

a colored solution. Absorbance of this solution was then measured with a 

spectrophotometer at 570 nm. Cell viability was determined by percentage of 

absorbance value with regard to untreated control sample. Exposure of tumor cells to 

increasing concentrations (25-200 µg/ml) of C1 resulted in a dose-dependent 
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decrease in cell viability at 24 hours with the LD50 of ~100 µg/ml (Figure 5). At low 

doses of 25 and 50 µg/ml, there was minimal reduction in cell viability while at 200 

µg/ml, more than 70% of the cells were not viable. The experiment was also 

performed at 48 hours to assess the effect of C1 drug at late time point. However, 

treatment of HCT116 cells by C1 at 48 hours was proven to be highly toxic and 

produced massive cell death regardless of the dose of C1. Therefore, treatment of 

HCT116 cells by C1 for 48 hours did not produce a dose response curve, unlike the 

treatment of 24 hours. This result is not unsurprising considering that cell death 

hallmarks were evident at 18 – 24 hours time point, which will be discussed in the 

next section. Having established the cell killing ability of C1, it is of paramount 

importance to determine whether C1 also retards the long term colony forming 

abilities of tumor cells. This is to ensure that anticancer drugs are not only effective 

in inducing cell death, but also impede the colony formation in long term cultures. 

Thus, cells were treated for 24 hours with 25-100 µg/ml of C1 and long-term colony 

forming ability was assessed after 14 days. Results showed a significant reduction in 

clonogenic ability at 25 and 50 µg/ml and a complete cessation of colony formation 

at 100 µg/ml (Figure 6). 
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Figure 4: Chemical structure and molecular weight of the small molecule 

compound. 1,3- dibutyl-2-thio-oxo-imidazolidine-4,5-dione (C1)  
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Figure 5: C1 induces reduction of cell viability in HCT116 colorectal cells.  

HCT116 cells were treated with increasing concentrations of C1 (25 µg/ml to 100 

µg/ml) for 18 hours and cell survival was assessed by the MTT assay as described in 

Materials and Methods. 
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Figure 6: Exposure of HCT116 cells to C1 induces reduction in clonogenic 

ability of tumor cells. Following exposure to C1 for 18 hours, HCT116 cells were 

harvested and the number of cells in each sample was counted. 10,000 cells were 

seeded onto each well of 6-well plates for assessment of colony formation. 2 weeks 

later, wells were stained with crystal violet stain for 15 minutes before being washed 

away followed by colony counts. 
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1.2 C1 triggers MOMP in HCT116 cells 

 Having ascertained that C1 has a potent death inducing ability in tumor cells, 

the mechanisms of C1-induced cell death were investigated. Defects in apoptotic 

pathways have been recognized as one of the prime causes for cancer resistance. To 

assess whether C1 also activates the mitochondrial pathway, the subcellular 

translocation of apoptogenic factors were assessed. Upon incubation with C1 from 6, 

12 to 24 hours, HCT116 cells were being harvested and subjected to homogenization 

and differential centrifugation. The resultant heavy membrane fractions, which are 

enriched with mitochondria as well as the cytosolic fractions were being assessed by 

Western blots. Results showed that incubation of cells with C1 triggered 

mitochondrial outer membrane permeabilization (MOMP) as evidenced by the 

translocation of cytochrome c and Smac, and the reciprocal translocation of Bax and 

Bid to the mitochondria in a time dependent manner (Figure 7). 
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Figure 7: C1 triggers MOMP in HCT116 cells. Cells were treated with C1 (100 

µg/ml) for 6, 12 and 24 hours, and sub-cellular fractions were obtained as described 

in Materials and Methods. Proteins from cytosolic and mitochondrial fractions were 

subjected to Western blot analysis using anti-Bax, anti-Smac, anti-Cytochrome C, 

and anti-Bid antibodies. Anti β-actin was used as a loading control. 
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1.3 C1 triggers efficient caspase processing in HCT116 cells 

 Processing of pro-caspases into active form are important mechanisms to 

ensure maximal activation of both initiator and executioner caspases (Rupinder et al., 

2007). Indeed, efficient processing of caspases by oligomerization has been shown to 

enhance their proteolytic activity (Fuentes-Prior and Salvesen, 2004). Despite this 

fact, many apoptogenic factors may culminate in apoptotic cell death without the 

involvement of caspases. The existence of efficient caspase processing can be 

investigated through analysis of caspase cleavage by Western blot. To determine if 

the major executioner of apoptosis, caspases were being implicated in C1-induced 

cell death, caspases 3, 8 and 9 processing were investigated. Caspase 3 cleavage 

(p19, p17 fragments) was evident following 12 hours of C1 treatment, and peaks at 

24 hours (Figure 8). Similarly, caspase 9 processing followed the same trend as 

caspase 3 (Figure 8). Intriguingly, caspase 8 processing was also detected, but its 

activation profile was similar for both 12 hours and 24 hours time point (Figure 8). 

Collectively, these data suggested an involvement of caspases in the activation of 

death signaling pathways by C1. 
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Figure 8: C1 triggers efficient caspase processing in HCT116 cells. Lysates from 

cells treated with C1 (100 µg/ml) for various time intervals were probed for 

processing of caspases 3, 9 and 8 via Western blotting.  
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1.4 Apoptotic cell death induced by C1 is caspase-dependent 

 To further substantiate the existence of apoptosis in these cells, poly (ADP-

ribose) polymerase (PARP) cleavage was investigated. PARP has been shown to be 

primarily cleaved by caspase-3, one of the major executioner caspases responsible 

for various morphological hallmarks of apoptosis (Nicholson et al., 1995). PARP 

cleavage is also a central morphological hallmark of apoptosis as cleavage of PARP 

into 86 and 24 kDa fragments inactivates the enzyme and results in its loss of DNA 

repair function (Berger and Petzold, 1985). Exposure of HCT116 cells to C1 for 24 

hours resulted in PARP cleavage at 89 kDa (Figure 9). To investigate the 

involvement of caspases in this model, cells were pre-incubated with the pan-caspase 

tetrapeptide inhibitor, zVAD-fmk for one hour before the addition of C1. Total cell 

lysates were then being analysed for PARP cleavage. As seen in Figure 9, zVAD-

fmk treatment completely abolished the effect of PARP cleavage induced by C1.  

 In addition, cell cycle analysis was performed on C1-treated cells. Propidium 

iodide (PI) staining is commonly used to assess cell cycle profile by way of 

intercalation of the PI dye with DNA. The intensity of fluorescence emitted is 

proportional to the amount of dye being incorporated into the DNA and could be 

detected by flow cytometry analysis (Suzuki et al., 1997). Particularly relevant to 

apoptosis are the existence of sub-G1/ sub-diploid population of cells which falls at 

the left side of the G1 peak. The sub-G1 population consists of the cells with 

fragmented DNA. Thus, uptake of PI dye by these cells is much less than cells with 

normal DNA content. To perform cell cycle analysis, cells were being treated with or 

without zVAD-fmk for an hour, followed by C1 treatment for either 24 hours or 48 
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hours. Harvested cells were then being permeabilized and fixed, before being stained 

with PI. Analysis of cell cycle revealed 19% of the cells with sub-G1 population 

following C1 treatment for 24 hours, which was significantly increased to 52% upon 

incubation for 48 hours and blocked in the presence of the pan-caspase inhibitor 

(Figure 10). Taken together, these data demonstrated an existence of caspase-

dependent apoptotic cell death elicited by the novel small molecule, C1, exemplified 

by caspase activation, PARP cleavage, DNA fragmentation and release of 

apoptogenic factors from the mitochondria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71

 

 

 

 

                                   

 

                                         

 

Figure 9: PARP cleavage induced by C1 is caspase- dependent. HCT116 cells 

were treated with (A) C1 (50 µg/ml or 100 µg/ml) or (B) in the presence or absence 

of zVAD-fmk (50 µM) for 12 and 24 hours and cleavage of PARP was evaluated by 

western blotting. 
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Figure 10: C1-induced DNA fragmentation is a caspase- dependent process. 

Cells were treated with C1 (100 µg/ml) in the presence or absence of zVAD (50 µM) 

and cell cycle profiles were obtained by PI staining as described in Materials and 

Methods. Data are representative of 3 different independent results.   
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1.5 zVAD-fmk, but not Necrostatin A, inhibits C1-induced reduction in cell 

viability  

 In this model, apoptotic cell death, as evidenced by PARP cleavage and 

increase in sub-G1 fraction, was dependent on caspase activation. Nonetheless, the 

reduction in cell proliferation may indicate multiple forms of cell death phenotypes. 

Apoptosis may constitute the sole pathway in C1-induced cell death, or it could co-

exist with other modes of programmed cell death. To determine this, cell viability 

assay was carried out by incubating the pan-caspase inhibitor, zVAD-fmk prior to C1 

treatment. Cells pre-treated with zVAD displayed higher survival rate than cells 

treated with C1 alone. Intriguingly, while zVAD inhibited the effect of C1 on PARP 

cleavage and DNA fragmentation (sub-G1), it only partially provided protection from 

C1-induced cell death (Figure 11A). These data indicate that C1-induced cell death 

might involve caspase-independent pathways, in parallel or distinct from apoptosis. 

To investigate that, the effect of the necrosis inhibitor, necrostatin A, on C1-induced 

cell death was evaluated. Necrostatin A was reported to inhibit necrosis by inhibiting 

the loss of mitochondrial membrane potential as well as blocking RIP1 activation. 

Results show that necrostatin A had no effect on C1-induced cell death, thereby 

ruling out the involvement of necrosis (Figure 11B). 
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Figure 11: zVAD-fmk, but not Necrostatin A, inhibits C1-induced reduction in 

cell viability. (A) HCT116 cells were pre-incubated with zVAD (50 µM) for 1 hour 

before exposure to C1 (100 µg/ml for 18 hours) and survival was assessed by the 

MTT assay. (B) Cells were pre-incubated with necrostatin (50 µM for 1 hour) before 

exposure to C1 (100 µg/ml) and survival was assessed 18 hours later by the MTT 

assay.  
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PART II: INDUCTION OF NON-CANONICAL AUTOPHAGY BY C1 

 

2.1 Autophagosome formation is a morphological hallmark of C1-treated cells 

 Having shown that zVAD and necrostatin A were unable to rescue cells 

completely from C1-induced cell death, electron microscopic analysis of cell 

morphology following exposure to C1 was performed. HCT116 cells were being 

treated with C1 (100 µg/ml for 12 hours and 24 hours) before being fixed, 

dehydrated and sectioned for EM analysis. Intriguingly, exposure of cells to C1 

resulted in the formation of autophagosomes and autophagic vacuoles, reminiscent of 

autophagy (Figure 12). The appearance of autophagosomes, which are double 

membrane-bound vesicles of 300 – 900 nm in diameter, is one of the morphological 

characteristics of autophagy (Yorimitsu and Klionsky, 2005). As depicted in Figure 

12, autophagosome formation can be detected upon 24 hours of incubation with C1.  
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Figure 12: Autophagosome formation is a morphological hallmark of C1-

treated cells. HCT116 cells were treated with C1 (100 µg/ml) for 24 hours, fixed and 

viewed under an electron microscope as described in Materials and Methods 

(Magnification X 40,000). Arrows indicate the presence of autophagosomes and 

autophagic vacuoles in C1-treated cells.  
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2.2 Detection of LC3II accumulation and translocation to the mitochondria in 

C1-treated cells 

 Several ways of autophagosome measurement exists, and is not limited to 

direct detection of autophagosomal structures via EM imaging. Other methods of 

autophagy analysis include detection of LC3 lipidation on Western blots and 

fluorescent GFP-LC3 imaging. Intrigued by the large amount of autophagosomes 

present in C1-treated cells, it is logical to probe into other mechanistic detail of 

autophagic induction in this system. To gain further insight into the autophagic 

pathway, the increased expression of MAP1 LC3II (herein referred to as LC3II), a 

bona fide marker of autophagy was evaluated. LC3II is the cleaved product of LC3I 

mediated by Atg4, and following the proteolytic cleavage, it is readily conjugated to 

the lipid phosphatidylethanolamine (PE) (Kabeya et al., 2000). In contrast to other 

protein complexes which also localizes to the pre-autophagosomal structures (PAS), 

LC3II accumulates at the intermediate vesicles and also the completed 

autophagosome (Kirisako et al., 1999). Thus, LC3II is widely used as an autophagic 

marker in mammalian system. To assess the lipidation of LC3, increase in LC3II 

protein level was being examined in a time kinetics experiment. Indeed, elevated 

accumulation of LC3II was observed following incubation with C1 in a time-

dependent manner (Figure 13A). Interestingly, LC3II level diminished at 48 hours 

post treatment, which may indicate completion of the autophagic degradation 

process, with accompanying breakdown and recycling of the cargo. Of particular 

note, it was identified for the first time LC3II enrichment in the heavy membrane 

fractions following drug treatment, suggesting its localization to the mitochondria 
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(Figure 13B). This may indicate the presence of mitochondrial engulfment by the 

autophagic vacuoles. 
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Figure 13: Detection of LC3II accumulation and translocation to the 

mitochondria in C1-treated cells. (A) Lysates of cells treated with C1 (100 µg/ml) 

for 12, 24 and 48 hours were probed for LC3II using a specific antibody (14 kDa) 

that has higher affinity for LC3II than the other LC3 forms. (B) Western blotting 

analysis of LC3II within cytosolic and mitochondrial fractions of cells following 

exposure to C1 for 12 to 24 hours. 
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2.3 C1-treated GFP-LC3 transfected cells display punctate staining reminiscent 

of autophagic phenotype 

 Next, HCT116 cells were transfected with a plasmid encoding GFP-LC3 and 

immunofluorescence was performed following exposure to C1.  GFP-LC3 plasmid is 

a construct of LC3 protein with a fluorescent protein, GFP. GFP-LC3 has been 

widely used as a method to monitor autophagy via fluorescence microscopy. The 

cells which express GFP-LC3 exhibit diffuse green GFP staining, and the 

fluorescence pattern could be converted to punctate staining during the induction of 

autophagy, due to LC3II aggregation on the autophagosomes. To determine 

autophagosome formation, GFP-LC3 or GFP plasmid alone were being transfected 

into the cells with the cationic-lipid mediated delivery method. Drug treatment was 

administered for the indicated time points 48 hours post transfection. Whereas the 

distribution of LC3-GFP in non-treated cells displayed a diffuse pattern, exposure to 

C1 for 6 hours resulted in a green punctate staining, indicative of LC3II 

accumulation within the autophagosomal membranes (Figure 14).  
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Figure 14: C1-treated GFP-LC3 transfected cells display punctate staining 

reminiscent of autophagic phenotype. Cells were transiently transfected with GFP-

Vector or LC3-GFP for 48 hours before exposure to C1 for 24 hours and analyzed 

using a fluorescence microscope. Arrows point to the punctate staining indicating 

LC3 II aggregation into autophagosomes as opposed to diffuse staining in untreated 

cells.  (Mag: 40,000X)   
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2.4 Treatment of HCT116 cells with C1 increases expression of Atg7 and 

conjugation of Atg12-Atg5  

 In order to further examine C1-induced autophagy in greater detail, protein 

expression levels of Atg7, 5, and 12 were also assessed in response to C1 treatment. 

The protein expression of Atg7, a critical E1-like enzyme responsible for the 

conjugation of Atg5 to Atg12 as well as partially involved in the conjugation of 

phosphatidylethanolamine (PE) to LC3 was evaluated. A significant increase in 

expression of Atg7 was observed upon exposure (6-24 hours) of cells to C1 (Figure 

15). Atg12-Atg5 conjugation represents one of the two important ubiquitin-like 

conjugation systems involved in the generation of autophagosomes (Maiuri et al., 

2007). In some systems where free Atg5 could be detected, the amount of conjugated 

Atg12-Atg5 increases in response to autophagic signals. Thus monitoring 

conjugation of Atg12-Atg5 is frequently used as a measurement of autophagy.  In the 

current model, an increase in Atg5 expression in a time dependent manner from 12 

hours to 24 hours, with a concomitant decrease in Atg12 level were being detected 

(Figure 15). The decrease in Atg12 expression at the late time points (12-24 hrs) 

when Atg5 expression was increased is in agreement with similar data indicating 

Atg5-Atg12 conjugation.  
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Figure 15: Treatment of HCT116 cells with C1 increases expression of Atg7 and 

conjugation of Atg12-Atg5. Following C1 exposure (100 µg/ml) for various time 

points, from 30 minutes to 24 hours, cell lysates were probed for Atg7, Atg5 and 

Atg12 by Western blotting.  Note the decrease in Atg12 and the reciprocal increase in 

Atg5 indicating conjugation of Atg12 to Atg5.   
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2.5 Increase in LC3 Lipidation in response to C1 treatment is a general 

phenomenon across cell lines 

 To provide evidence that the induction of autophagy by C1 was not exclusive 

to HCT116 cells, 9 other cancer cell lines from different lineages were investigated. 

These cells include melanoma M14 cells, lung carcinoma A549, cervical cell HeLa, 

neuroblastoma SHEP-1 and SH-SY5Y, nasopharyngeal carcinoma C666-1, HK-1 

and three different breast cancer cell lines MCF-7, T47D and MDA-MB231 cells. In 

all cell lines LC3II formation were observed in a dose-dependent manner, being 

exposed with C1 from 25 – 200 µg/ml (Figure 16). Notably most of the cell lines 

displayed observable LC3 lipidation when being treated with 100 µg/ml of C1, which 

was in agreement with the effective dose required to induce autophagy in HCT116 

cells. These observations confirmed that C1 is a potent autophagic inducer in a 

variety of tumor cells. Interestingly, across the breast cancer cell lines there were 

varying degrees of LC3II formation with regard to C1 treatment. It appears that 

MCF-7 had the lowest level of LC3II accumulation, followed by T47D while MDA-

MB-231 was most responsive to C1 treatment. This observation is intriguing as both 

T47D and MDA-MB-231 cells are both highly invasive and metastatic cancer cell 

lines, while MCF-7 is a non-invasive cancer cell line.  
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Figure 16: Increase in LC3 lipidation in response to C1 treatment is a general 

phenomenon across cell lines. Cervical cancer cells HeLa, nasopharyngeal 

carcinoma HK-1, C666-1, breast cancer cells MCF-7, T47D, MDA-MB-231, lung 

carcinoma A549, neuroblastoma cells SHEP1, SH5YSY and melanoma M14 cells 

were treated with various concentrations of C1 for 24 hours and total cell lysates 

were probed for LC3 II and β-actin by Western blotting. 
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2.6 Beclin1 is not involved in C1-induced autophagy 

 Beclin1 was shown to be one of the most important ATG genes, being 

involved in the initial steps of autophagosome formation. Intriguingly, the discovery 

of a non-canonical pathway in autophagy which is not dependent on Beclin1 has 

raised interesting question on the biological role of Beclin1 in the induction of 

autophagy (Scarlatti et al., 2008). In order to address this issue, Beclin1’s role in C1-

induced autophagy was determined. To do so, Beclin1 expression level in total 

lysates was first assessed. Interestingly, despite the formation of autophagosomes and 

increase in LC3II formation, the expression of Beclin1 did not increase significantly, 

but if anything, after 12 hours following drug exposure Beclin1 level was 

significantly reduced in whole cell lysates (Figure 17A). Since protein expression 

level may not always correlate with its activity, the involvement of Beclin1 was 

further investigated by evaluating the effect of siRNA-mediated gene silencing of 

Beclin1 on C1-induced autophagy. Beclin1 mRNA was being silenced with 100 nM 

of siBeclin1 by using the DharmaFECT1 siRNA transfection reagent, after which the 

expression level of Beclin1 and the accumulation of LC3II were being assessed with 

western blotting. Beclin1 expression was efficiently silenced with 100 nm of 

siBeclin1; however knock down of Beclin1 failed to inhibit LC3II accumulation 

induced by C1 (Figure 17B). Similarly when the cell lysates were being assessed by 

the MTT assay, silencing of Beclin1 could not rescue cells from the death triggering 

activity of the small molecule compound (Figure 17C). Collectively, these data argue 

in favor of an existence of a non-canonical autophagy pathway whereby Beclin1 is 

completely dispensable. 
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Figure 17: Beclin1 is not involved in C1-induced autophagy. (A) Lysates from 

cells exposed to 100 µg/ml of C1 for 2, 6, 12, and 24 hours were subjected to 

Western blot analysis using anti-Beclin1. Anti-β-actin was used as the loading 

control. (B) HCT116 cells were transiently transfected with siRNA against Beclin1 

for 48 hours followed by exposure to C1 (100 µg/ml) for 24 hours. Lysates were then 

probed for LC3II using a specific antibody. Knockdown of Beclin1 was confirmed 

by immuno-blotting. GAPDH expression was used as a loading control. (C) Cells 

were transiently transfected with siRNA against Beclin1 for 48 hours and then 

treated with C1 for 18 hours. Survival was assessed by the MTT assay. 
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2.7 Increase in LC3II is dependent on ATG genes 

 To determine whether other crucial components of the autophagic pathway 

were involved in C1-induced autophagy, gene knockdown of ATG7 was performed. 

As Atg7’s presence is integral to two integral conjugation machineries in autophagy 

(Yorimitsu and Klionsky, 2005), silencing of Atg7 is expected to suppress the 

autophagic response. Following 48 hours of siATG7 transfection of HCT116 cells, 

C1 (100 µg/ml) treatment was administered for 24 hours. The resultant cells were 

then harvested for Western blotting. In contrast to the redundancy of Beclin 1, the 

presence of ATG7 siRNA significantly decreased the LC3 II accumulation induced 

upon C1 exposure while the apoptotic signal (PARP cleavage) remained unchanged 

(Figure 18). Corroborating these findings are results obtained with gene knockdown 

of the UNC-51 like kinase (ULK1; mammalian homolog of yeast Atg1), which is 

crucial in controlling the induction stage of autophagy. Similar to the results obtained 

with ATG7 silencing, the presence of ULK1 siRNA inhibited LC3II formation in this 

model but did not have any effect on the processing of PARP (Figure 19).  Taken 

together, these data provided strong evidence that exposure of HCT116 cells to C1 

triggered non-canonical autophagy, but involved the intermediacy of the ubiquitin 

E1-like enzyme Atg7 and ULK1. Interestingly, these findings also suggested that 

retardation of autophagic signals do not affect caspase-dependent apoptosis, 

indicating that these two pathways are mutually exclusive and may operate parallel to 

each other.  
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Figure 18: Increase in LC3II is dependent on ATG 7 gene. HCT116 cells were 

transiently transfected with siRNA against ATG7 for 48 hours followed by exposure 

to C1 (100 µg/ml) for 24 hours. Lysates were then probed for LC3II using a specific 

antibody. Knockdown of each gene was confirmed by immuno-blotting. GAPDH 

expression was used as a loading control. 
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Figure 19: RNAi-mediated silencing of ULK1 could revert the increase in LC3 

lipidation in C1-treated cells. HCT116 cells were transiently transfected with 

siRNA against ULK1 for 48 hours followed by exposure to C1 (100 µg/ml) for 24 

hours. Lysates were then probed for LC3II using a specific antibody. Knockdown of 

each gene was confirmed by immuno-blotting. GAPDH expression was used as a 

loading control. 
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2.8 Autophagy process mediated by C1 is insensitive to 3-MA treatment 

 The existence of a Beclin1- independent autophagy pathway was reported to 

be refractory to the Class III PI3 kinase inhibitor, 3-methyladenine (3-MA), routinely 

used as a pharmacological inhibitor of canonical autophagy (Yano et al., 2007).  

Class III PI3 Kinase, or hVPS34, is known to positively regulate autophagy by 

generating phosphatidylinositol-3-phosphate (PtdIns(3)P). 3-MA has been shown to 

be a general PI3 kinase inhibitor, in other words, it could inhibit both Class I and 

Class III PI3 kinase activity (Petiot et al., 2000). The two classes of PI3 kinase 

enzymes have vastly different roles, with Class I having a negative regulatory role in 

autophagic sequestration, while Class III actively promotes autophagic sequestration 

(Kondo et al., 2005). That being said, the reason why 3-MA is still being widely used 

as an autophagic inhibitor is because the class III enzymes are usually found to act 

downstream of Class I enzymes. To corroborate the data on non-canonical, Beclin1-

independent autophagy, 3-MA pre-treatment for 1 hour (5 or 10 mM) was being used 

to inhibit the autophagic process, prior to addition of C1 for 18 hours.  Indeed, a 

priori treatment of cells with 3-MA (5 or 10 mM) had virtually no effect on LC3II 

accumulation induced by C1 (Figure 20).  
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Figure 20: Autophagy process mediated by C1 is insensitive to 3-MA treatment. 

HCT116 cells were pre-incubated with 3-MA (5 or 10 mM) for 1 hour before 

exposure to 100 µg/ml of C1 for 18 hours.  Lysates were then immuno-blotted with 

anti-LC3. β-actin expression was probed as a loading control.   
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2.9 Inhibition of caspase activity does not affect LC3 lipidation elicited by C1 

 The interrelationship between autophagy and apoptosis is a complex issue. 

Despite the many experimental endeavours made in addressing this issue, the 

existence of a link between autophagy and apoptosis remained controversial. 

Pertaining to this, the findings presented in the previous section suggested that 

inhibition of autophagy did not affect apoptotic outcome. In order to ascertain that 

apoptosis and autophagy is mutually exclusive, the reverse experiment was 

conducted. Inhibition of caspases by pharmacological inhibitor zVAD, caspase 3 or 

caspase 9 inhibitors was performed to investigate their effects on LC3II induction. 

Pre-treatment of HCT116 cells with these inhibitors did not affect the level of LC3 

lipidation as assessed by Western blot, despite their effectiveness in the prevention of 

PARP cleavage induced by C1 (Figure 21). These results suggested that blocking the 

apoptotic pathway did not alter the autophagic response, and thus strongly 

recommend that the two integral cellular pathways are mutually exclusive to each 

other, specifically in the context of C1-induced cellular responses.  
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Figure 21: Inhibition of caspase activity does not affect LC3 lipidation elicited 

by C1. Cells were pre-incubated with zVAD (50 µM) or caspase 3 inhibitor (DEVD; 

20 µM) or caspase 9 inhibitor (LEHD; 20 µM) followed by treatment with 100 µg/ml 

of C1 for 24 hours.  Cell lysates were probed for cleavage of PARP and LC3II 

formation by Western blotting. 

 

 

 

 

 



 94

PART III: MODULATION OF AUTOPHAGY AND APOPTOSIS BY ROS 

 As discussed previously in the Introduction session, a complex relationship 

between ROS and various cellular processes existed. Unsurprisingly, the intracellular 

redox status has also been intricately linked to apoptosis and autophagy. Given the 

close interplay between ROS, autophagy and apoptosis, it was a logical progression 

to examine the role of ROS in the activation of cellular signaling pathways by C1. 

  

3.1 C1 triggers mitochondrial superoxide production in HCT116 cells 

 In order to determine the relevance of ROS in this system, intracellular ROS 

production was being assessed with redox-sensitive dye. To do so, a fluorescent 

probe, MITOSOXTM Red, was being used to measure mitochondrial O2
•ˉ level 

following incubation with C1 (15 min, 1hr, 3hr, 6hr).  MITOSOXTM Red selectively 

detects mitochondrial O2
•ˉ as it is specifically targeted to the mitochondria of live 

cells. MITOSOXTM Red is cell permeable and once inside the mitochondria, it will 

be oxidized by O2
•ˉ and emits red fluorescence, with emission wavelength at 510 nm 

and excitation at 580 nm. This dye is also specific to O2
•ˉ as it is less prone to 

oxidation by other ROS molecules. Following incubation of MITOSOXTM Red (5 

µM) for 15 minutes, HCT116 cells are being analyzed with the Fluorescence 

Activated Cell Sorter (FACS). Results showed a significant increase in mitochondrial 

O2
•ˉ  levels, as early as 15 minutes post-treatment, which was sustained for 1 hour 

and began to decrease at 3 hours (Figure 22), indicative of an existence of 

mitochondrial O2
•ˉ accumulation upon C1 treatment.  
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Figure 22: C1 triggers mitochondrial superoxide production in HCT116 cells.  

1X106 cells were incubated with 100 µg/ml of C1 for 15 min to 6 hours and intra-

mitochondrial O2
•ˉ was determined using the fluorescent dye MitoSoxTM RED 

Mitochondrial O2
•ˉ Indicator. Data are representative of 3 different independent 

results. 
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3.2 Increase in intracellular H2O2 production following C1 treatment in 

HCT116 cells 

 As O2
•ˉ does not readily cross membranes, it is highly unlikely that the 

mitochondrial O2
•ˉ detected by MITOSOXTM Red could transverse from the 

mitochondria to the cytosol and thereby eliciting its downstream signaling effect. 

Moreover, the presence of MnSOD in the mitochondria could mediate the conversion 

of O2
•ˉ to H2O2.  Being a polar molecule, H2O2 can diffuse within the cells in vivo, 

and has also been shown to transverse the membrane water channels, aquaporin 

(Henzler and Steudle, 2000). To confirm the presence of ROS in the cells, the redox-

sensitive probe, CM-DCHF-DA is utilized in this study. CM-DCHF-DA is cell 

permeable and once it enters live cells, it can be hydrolysed by cellular esterases to 

form DCFH. Oxidation of DCFH by cellular oxidants leads to the formation of 

fluorescent DCF (Halliwell and Whiteman, 2004), which could be detected by flow 

cytometry. Incubation of HCT116 cells with C1 at various time points (15 min to 3 

hours) resulted in the right-ward shift in fluorescence, indicating an increase in 

intracellular ROS production (Figure 23). Moreover, treatment of 100 µg/ml of C1 

for 6 hours resulted in a less significant fluorescence shift, as compared to 3 hours of 

C1 treatment at the same dosage (Figure 23). These results were indicative of an 

early burst of ROS production, which could not be sustained for a prolonged time. 

 An important cautionary note in working with DCFDA probe is that it is a 

measurement of general ROS production, and is not exactly specific for any single 

type of oxidant. Many ROS/RNS such as H2O2, OH•
 and ONOO¯ can oxidize 

DCFDA, and the extent of oxidation is also dependent on other factors, such as the 
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intracellular metal ions concentrations (Halliwell B, 2007). To circumvent this 

problem, catalase was used in conjunction with C1 treatment to check for the 

specificity of ROS produced. Catalase is a specific antioxidant which converts H2O2 

to water and ground-state O2 through the dismutation reaction. As shown in Figure 

23, pre-incubation of catalase (7000 units/ml) for 15 minutes reverted the production 

of ROS induced by C1, indicating that the signal was due to H2O2 generation.   

 Apart from catalase, another important type of enzyme which could remove 

intracellular H2O2 is the peroxidase. N-acetyl-L-cysteine (NAC) was typically used 

as an H2O2 scavenger. NAC can be hydrolysed to cysteine, which is the precursor of 

gluthathione (GSH). In addition, the antioxidant properties of NAC has also 

attributed to its ability to scavenge H2O2 directly (Halliwell B, 2007). To test out the 

effect of removing H2O2 in the system, NAC (200 µM) was pre-incubated with the 

cells for 2 hours to remove the oxidants, followed by C1 treatment. Indeed, the 

existence of NAC suppressed the production of ROS triggered C1, similar to the 

effect of catalase pre-incubation (Figure 24).  
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Figure 23: Increase in intracellular H2O2 production following C1 treatment in 

HCT116 cells. HCT116 cells (1X106) were treated with C1 (100 µg/ml) at varying 

time points. Subsequently intracellular H2O2 was detected by DCHF-DA loading and 

analyzed by flow cytometry as described in Materials and Methods. Data are 

representative of 3 different independent results. 
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Figure 24: Exogenous addition of catalase and NAC abrogated C1-induced ROS 

production. HCT116 cells were pre-incubated with catalase (7000 units/ml) for 1 

hour or NAC (200 µM) for 2 hours before treatment with C1 (100 µg/ml for 3 hours) 

and intracellular H2O2 was determined by flow cytomtery using DCHF-DA loading. 

Data are representative of 3 different independent results. (Figure legend: Solid fill: 

Medium; Black: C1; Green: C1 + NAC; Blue: NAC) 
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3.3 Transient overexpression of human catalase suppresses C1-induced ROS 

production 

 One of the important aspects of this thesis is based on the ability of C1 drug 

to generate intracellular ROS. Thus, multiple ways of scavenging ROS ought to be 

performed to show a direct correlation between the production of ROS and its role in 

modulating the cell death signaling pathways. While exogenous addition of catalase 

to the culture medium is a good way to check for H2O2 production, this method may 

not be the most effective way in scavenging H2O2. Catalase itself is a large protein of 

approximately 256 kDa and is unable to enter the cells to scavenge the intracellular 

H2O2. Thus, exogenous addition of catalase results in the localization of catalase in 

the extracellular milleu, and will only react with H2O2 which diffuses out from inside 

the cell, thereby lowering the intracellular amount of H2O2. Often, overnight 

incubation of catalase powder into the cells resulted in reduced activity of this 

compound due to its degradation. To circumvent this problem, an array of catalase 

doses have been tested out to synchronize the ideal dose for short term and long term 

assays, and the final dose has been fixed at 7000 units/ml of catalase concentration. 

In addition, in search of a more effective way in lowering intracellular H2O2 level, 

cells were transiently transfected with a plasmid encoding human catalase gene and 

exposed to C1. Cells transfected with pC1Neo empty vector exhibited an increase in 

ROS production, in both C1-treated and H2O2-treated cells as compared to the 

untreated controls. In contrast, catalase-overexpressing cells were markedly resistant 

to the increase in ROS triggered by C1, as assessed by CM-DCHF-DA staining 

(Figure 25). 
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Figure 25: Transient overexpression of human catalase abrogated C1-induced 

ROS production. ) HCT116 cells were transiently transfected with 8 µg of 

pCINeoEV or pCINeo+CAT for 48 hours and treated with C1 (100 µg/ml for 3 

hours) and intracellular H2O2 was determined by flow cytometry analysis. The 

catalase protein expression level was shown on the top left panel and depicts 

successful catalase transfection. Data are representative of 3 different independent 

results. 
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3.4 Catalase pre-treatment or overexpression confers protection against C1-

mediated PARP cleavage 

 After determining the ability of C1 in generating intracellular ROS, the next 

logical question is whether the production of ROS was integral in the execution of 

cell death. To do this, inhibition of ROS production was performed by way of an 

ROS scavenger to lower the intracellular ROS and also through a more specific 

method of lowering intracellular H2O2, by transient over-expression of catalase in the 

cells. Indeed, catalase pre-incubation as well as transient overexpression of plasmid 

containing human catalase gene inhibited C1-induced PARP cleavage, a marker of 

caspase 3 activation (Figure 26). These data demonstrated the critical role of ROS in 

the induction of apoptosis by C1, lending credence to an antitumor role of ROS by 

effectively inducing apoptotic cell death. 
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Figure 26: Catalase pre-treatment or Overexpression conferred protection 

against C1-mediated PARP cleavage. HCT116 cells were pre-incubated with 

catalase (7000 units/ml for 1 hour) or were transiently transfected with pCINeoEV or 

pCINeo+CAT before exposure to C1 (100 µg/ml for 24 hours), and total cell lysates 

were probed for PARP cleavage by Western blotting. 
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3.5 Antioxidants pre-treatment or catalase overexpression inhibits LC3II 

accumulation induced by C1 

 Having observed the involvement of ROS in C1- induced apoptotic signaling, 

the link between ROS and autophagy was investigated. To that end, the effect of 

scavenging ROS on C1-induced LC3II formation was assessed. Similar to apoptotic 

assays, pre-incubation of ROS scavengers, catalase and NAC were performed as 

described previously. Following these assays, catalase overexpression was also 

carried out in order to further affirm the role of ROS in terms of autophagic 

regulation. Results showed that addition of exogenous catalase or its transient 

overexpression as well as pre-incubation of cells with NAC significantly blocked 

LC3II accumulation induced by C1 (Figure 27).  These data strongly suggest the 

involvement of ROS in C1-induced autophagy. 
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Figure 27: Antioxidants pre-treatment or catalase overexpression inhibits LC3II 

accumulation induced by C1. Cells were pre-incubated with catalase (7000 units/ml 

for 1 hour) (A) or NAC at 200 µM (B) or were transiently transfected with 

pCINeoEV or pCINeo+CAT (C) before exposure to C1 (100 µg/ml for 24 hours), 

and total cell lysates were probed for LC3II accumulation by Western blotting. 

GAPDH was assessed as a loading control. 
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3.6 C1 induces ERK and JNK phosphorylation with a concomitant decrease 

in MKP1 protein expression 

 ROS has been shown as a potent regulator of MAP kinase family members 

(Kamata et al., 2005; Temkin and Karin, 2007; Westwick et al., 1994). Intrigued by 

the robust activation of ROS in our system, activation of MAPK family members 

was investigated. Firstly, phosphorylation of ERK was detected in a time-dependent 

manner, which peaked at 3 hours and subsided at late time points (Figure 28A). In 

addition, JNK phosphorylation at Thr 183 and Tyr 185 was assessed in whole cell 

lysate from C1-treated cells (0.5 to 24 hours).  Robust activation of JNK 

(phosphorylation) was detected as early as 30 minutes and was sustained for 24 hours 

after the stimulus, while no detectable difference in total JNK levels was observed 

(Figure 28A). Stimulated by these findings, the involvement of downstream effectors 

of JNK activation, in particular the transcription factor c-Jun was investigated. c-Jun 

is phosphorylated by JNK at Ser-73 and Ser-63 residues. Therefore, a kinetic analysis 

of c-Jun phosphorylation by Western blotting in total cell lysates was performed. 

Indeed, total c-Jun levels as well as phosphorylation at Ser-73 residue were detected 

as early as 30 minutes upon C1 treatment and persisted throughout the time course of 

24 hours (Figure 28A). MKP1, the downstream inhibitory phosphatase of MAPK had 

been shown to be an important determinant in JNK-induced cell death (Kamata et al., 

2005). Sustained JNK activation was suggested to be due to MKPs oxidation by 

ROS. It is thus highly likely that prolonged JNK activation induced by C1 is linked 

to a concomitant decrease in MKP1 protein level. Indeed, an examination on MKP1 

level revealed a significantly lower MKP1 level in C1-treated cells (Figure 28B). 
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Figure 28: C1 induces phosphorylation of JNK, c-Jun and ERK kinases as well 

as decrease in MKP1 protein expression. HCT116 cells were exposed to 100 µg/ml 

of C1 for the indicated time points and   total cell lysates were subjected to Western 

blotting for the detection of (A) phospho-JNK, total JNK, phospho-c-JUN, phospho-

ERK, total ERK and (B) MKP1. β-actin was probed for equal loading. (NS:non-

specific band) 
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3.7 Inhibition of ROS production decreases JNK and ERK phosphorylation 

Having shown earlier that JNK and ERK were robustly activated by C1 and 

that ROS production is a critical signal for autophagy and apoptosis, the impending 

question is whether ROS production and MAPK activation is linked in any way. As 

ROS has been shown to be the activating signal for Map kinases, the connection 

between C1-induced ROS production and Map kinase activation was first 

investigated. To do so, the effect of scavenging ROS on C1-induced activation of 

MAP kinases and c-Jun was analyzed. Exogenous addition of antioxidants was first 

performed to determine the sensitivity of Map kinases to ROS inhibition. For catalase 

pre-incubation, the dose for catalase powder was fixed at 7000 units/ml which was 

the same for all other catalase experiments. Cell lysates were then harvested 3 hours 

post incubation with C1, which correlates to their maximal activation time point. 

Figure 5B showed that the presence of catalase (7000 Units/ml) abrogated C1-

induced JNK, ERK and c-Jun phosphorylation (Figure 29A and 29C). Similar results 

were obtained upon pre-incubation of cells with NAC or upon transient transfection 

of cells with human catalase gene (Figure 29B). Taken together, these findings 

clearly highlighted the involvement of ERK and JNK in the biological activity of C1 

and strongly implicated ROS in this signaling pathway.  
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Figure 29: Inhibition of ROS production decreases JNK, c-Jun and ERK 

phosphorylation. Cells were pre-incubated for 1 hour with 7000 units/ml of catalase 

or 200 µM NAC (A) or transiently transfected with pCINeoEV or pCINeo+CAT (B) 

before exposure to C1 (100µg/ml for 3 hours). Total cell lysates were probed for the 

detection of phospho-JNK and phospho-c-JUN by Western blotting. GAPDH and β-

actin were used, respectively as the loading control. (C) Cells were pre-incubated for 

1 hour with 7000 units/ml of catalase before being assessed for phospho- ERK level. 

β-actin was used as the loading control.  
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PART IV: ERK AND JNK ACTIVATION ARE INTEGRAL IN THE 

MODULATION OF CELL DEATH AND AUTOPHAGY 

 

4.1 The presence of ERK inhibitor and JNK inhibitor protect against C1-

induced cell death 

Having shown that ERK and JNK were downstream targets of ROS which 

were both activated following C1 exposure, the next logical step would be to dissect 

the physiological functions brought about by the activation states of these MAPKs. 

 One of the predominant effects of C1 on tumor cells was the execution of cell 

death signaling pathway. To investigate on this, the ability of pharmacological 

inhibitors of ERK and JNK in affecting the cell death read outs was first carried out. 

For the inhibition of ERK, a cell permeable inhibitor, PD98059 was being utilized in 

this system. PD98059 is a specific MEK1 inhibitor and has been shown to be 

selective in the suppression of ERK signaling pathway. MEK1 is the specific 

MAPKK for ERK activation by inducing phosphorylation of Thr and Tyr residues at 

the activation loop of the kinase domain. PD98059 exerts its inhibitory effect by 

binding to inactive form of MEK1 and thus, preventing MEK1 from being activated 

by upstream regulators (Rosen et al., 1994). A dose response analysis of PD98059 

was first carried out to establish the effective dose for ERK inhibition. Though the 

recommended IC50 dose of PD98059 for the inhibitory activity against MEK1 are 

around 5-10 µM, a dose response experiment is critical due to cell line variations. To 

perform the dose response experiment, HCT116 cells were being incubated with 

various doses of PD98059 (5 – 20 µM) for one hour prior to C1 treatment of 3 hours. 
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It was determined that 20 µM of PD98059 for 1 hour is most effective in inhibiting 

ERK phosphorylation (Figure 30A).  

Similarly, SP600125 was being selected as the pharmacological inhibitor 

against JNK. SP600125 (MW=220) is a reversible, competitive inhibitor of JNK with 

a high selectivity against JNK kinase (Bennett et al., 2001). It was shown to be a 

potent inhibitor of JNK which blocks the phosphorylation of various JNK targets, 

including c-Jun and Cox-2 (Bennett et al., 2001). To establish the effective dose for 

JNK inhibition, SP600125 at two different doses was incubated for one hour 

followed by C1 addition. c-Jun phosphorylation was used as a read out for JNK 

activation and 5 µM of SP600125 was selected for future experiments for JNK 

inhibition (Figure 30B). 

 Next, the effect of the respective ERK and JNK inhibitors on cell death was 

being investigated. Inhibition of JNK activity partially protected against C1-induced 

reduction in cell proliferation (Figure 31). Intriguingly, as compared to SP600125, 

PD98059 was found to be much more effective in the rescue of cell death (Figure 

31). The conventional dogma has established that JNK and ERK mainly display 

opposing roles in terms of cell death regulation, with JNK being mainly involved in 

cell death while ERK generally have an anti-apoptotic characteristic. Nevertheless, 

the results in this study suggested that ERK could also act as a potent cell death 

mediator. In fact, the inhibitory effect brought about by ERK inhibition was much 

more pronounced than inhibition of JNK. To further study this, the effect of Map 

kinases inhibition on long term cultures were also assessed. Here, a similar trend was 

depicted; while JNK inhibition significantly rescued the reduction in colony 
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formation triggered by C1, ERK suppression resulted in a more dramatic effect on 

cellular proliferation (Figure 32). To ascertain that Map kinases not only affect 

general cell proliferation and colony formation but also specifically mediate 

apoptotic cell death, the same experiment setting were repeated and tested for PARP 

cleavage via western blotting. Indeed, JNK and ERK inhibition significantly reduced 

the extent of PARP cleavage induced by C1 treatment (Figure 33). Taken together, 

these results indicated an integral regulatory role of the Map kinases, ERK and JNK 

in inducing cell death.  
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Figure 30: Establishment of effective dose for Map kinase inhibition. Cells were pre-

incubated with (A) PD98059 (PD) or (B) SP600125 (SP) for 1 hour at various doses 

as indicated prior to C1 treatment (100 µg/ml for 3 hours). Activation profile of ERK 

and c-Jun was determined by Western blots. 
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Figure 31: The presence of ERK inhibitor and JNK inhibitor protected against 

C1-induced reduction in cell proliferation. Cells were pre-incubated with 

SP600125 (SP; 5 µM) or PD98059 (PD; 20µM) for 1 hour before treatment with 100 

µg/ml of C1 for 24 hours and cell survival (MTT assay) was determined as described 

in Materials and Methods. 
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Figure 32: Inhibition of JNK and ERK effectively enhance clonogenic activity of 

C1-treated cells. HCT116 cells were pre-incubated with (A) SP600125 (SP; 5 µM) 

or (B) PD98059 (PD; 20 µM) for 1 hour before treatment with 100 µg/ml of C1 for 

24 hours and tumor colony formation were determined as described in Materials and 

Methods.           
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Figure 33: JNK and ERK inhibitors decrease the extent of PARP cleavage in 

C1-treated cells. HCT116 cells were pre-treated with JNK inhibitor, SP600125 (SP; 

5 µM) or ERK inhibitor PD98059 (PD; 20 µM) for 1 hour before treatment with 100 

µg/ml of C1 for 24 hours. Subsequently total cell lysates from these cells were 

probed for cleavage of PARP by Western blotting. 
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4.2 Pharmacological inhibition of ERK and JNK effectively suppress 

autophagic hallmarks in tumor cells 

Given that exposure of cells to C1 resulted in simultaneous induction of 

autophagy and apoptosis, the next question is whether ERK and JNK activation were 

also central to the autophagic inducing activity of C1. To that end, recent evidence 

has implicated JNK activation in autophagy (Yu et al., 2004). Indeed, pre-incubation 

of cells with the JNK inhibitor SP600125, and ERK inhibitor PD98059, respectively, 

significantly blocked LC3II formation induced by C1 (Figure 34). Importantly, 

inhibition of JNK also reduced the increase in Atg7 expression (Figure 34). These 

data point to a central role for JNK and ERK activation downstream of ROS 

production in the induction of autophagy and apoptosis upon exposure of cancer cells 

to C1. In addition, the effect of JNK inhibition on autophagy was assessed by 

electron microscopy. Indeed, in addition to suppression of LC3 II, SP600125 also 

reduced the amount of autophagic vesicles (autophagosomes and autophagic 

vacuoles) induced by C1 (Figure 35). 
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Figure 34: JNK and ERK inhibitors suppress LC3II accumulation induced by 

C1. HCT116 cells were pre-treated with (A) JNK inhibitor, SP600125 (SP; 5 µM) or 

(B) ERK inhibitor PD98059 (PD; 20 µM) for 1 hour before treatment with 100 µg/ml 

of C1 for 24hours. Subsequently total cell lysates from these cells were probed for 

LC3 and Atg7 expression level by immunoblotting. 
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Figure 35: Pre-incubation of JNK inhibitor attenuates autophagosome 

formation in HCT116 cells. Cells were pre-incubated with SP600125 (SP; 5 µM for 

1 hour) before exposure to C1 (100 µg/ml for 24 hours) and then were fixed and 

viewed by electron microscopy as described in Materials and Methods (Mag: 

40,000X). 
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4.3 RNAi- mediated silencing of ERK inhibits PARP cleavage and LC3 

lipidation in HCT116 cells 

 In view of the fact that pharmacological inhibition of a cellular target may not 

be the best experimental model to work with, it is integral to show inhibition of a 

certain pathway by way of RNAi-mediated gene silencing. In this regard, knockdown 

of ERK mRNA is not only able to corroborate the inhibitor studies; it will also 

provide greater insights into the molecular mechanisms of ERK-elicited cellular 

responses. In accordance to the inhibitor studies, silencing of both ERK1 and ERK2 

genes proved to be effective in the suppression of PARP cleavage induced by C1 

(Figure 36). These data highlight the essentiality of ERK1 and ERK2 genes in 

controlling the apoptotic cell death pathway. In addition, the effect of silencing ERK 

on LC3 lipidation was also investigated. The data suggested that ERK2 silencing was 

able to abrogate LC3II accumulation, while silencing of ERK1 had no appreciable 

effect on LC3II accumulation. 
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Figure 36: RNAi- mediated silencing of ERK inhibit PARP cleavage and LC3 

lipidation in HCT116 cells. Cells were being silenced with ERK1, ERK2 or 

scrambled siRNA according to Materials & Methods, and allowed to recover for 48 

hours post transfection. Cells were then subjected to C1 treatment for 18 hours before 

being harvested and analysed by western blot.  

 

 

 

 

 



 122

 

 

4.4 RNAi- mediated silencing of JNK also inhibit PARP cleavage and LC3 

lipidation in HCT116 cells 

 Similarly, JNK silencing was also performed to further investigate its effect 

on apoptosis and autophagy. JNK silencing was carried out by using the 

DharmaFECT1 transfection reagent and C1 treatment (100 µg/ml for 18 hours) was 

administered 48 hours post-transfection. Successful knockdown of JNK was 

confirmed by expression level of total JNK protein (Figure 37). The findings suggest 

that silencing of JNK inhibited PARP cleavage, corroborating the effects of 

mitigating cell death via pharmacological inhibition of JNK (Figure 37). On the other 

hand, siJNK also rendered the cells more resistant to autophagy as assessed by LC3II 

accumulation (Figure 37).  
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Figure 37: RNAi- mediated silencing of JNK inhibits PARP cleavage and LC3 

lipidation in HCT116 cells. Cells were being silenced with JNK siRNA or 

scrambled siRNA according to Materials & Methods, and allowed to recover for 48 

hours post transfection. Cells were then subjected to C1 treatment for 18 hours before 

being harvested and analysed by western blot by using PARP and LC3II specific 

antibodies. Expression of total JNK was probed to assess for successful silencing 

while GAPDH was used as loading control. 
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4.5 Inhibition of mRNA and protein synthesis attenuates LC3II 

accumulation 

 To provide further insights into the operational mechanisms on the autophagy 

pathway, the effect of transcriptional and translational inhibition was evaluated. To 

inhibit mRNA synthesis, actinomycin D was used to block the transcription of DNA. 

Actinomycin D is able to bind to DNA at the transcription initiation complex and 

thereby, preventing elongation of DNA strand by RNA polymerases (Sobell, 1985). 

Similarly, cycloheximide was utilized to block protein synthesis in the cells by way 

of inhibiting translational elongation. These inhibitors were pre-incubated in the cells 

for 1 hour to allow their inhibitory effect to take place prior to C1 addition for 18 

hours. Results demonstrated that both actinomycin D and cycloheximide were able to 

suppress LC3II accumulation induced by C1 (Figure 38). This is suggestive of the 

involvement of protein synthesis in modulating an autophagic response in C1-treated 

cells. Furthermore, these data corroborated the earlier findings on the activation of a 

transcriptional pathway involving c-Jun activation.  
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Figure 38: Inhibition of mRNA and protein synthesis attenuates LC3II 

accumulation. HCT116 cells were being treated with (A) mRNA synthesis inhibitor, 

actinomycin D (AD) or (B) protein synthesis inhibitor, cyclohexamide (CHX) for the 

indicated doses prior to C1 treatment at 100 µg/ml for 18 hours. Harvested cells were 

being assessed by Western blots for LC3II protein level.  
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4.6 C1 induces translocation of JNK to the nucleus 

 One of the major effects of JNK on cellular homeostasis is due to its ability to 

activate transcription factors. In accordance to this, c-Jun phosphorylation was 

detected in response to C1 treatment, implicating that JNK directly activates c-Jun. 

To test out whether JNK’s ability in activating transcription factors is mediated by its 

translocation into the nucleus, subcellular distribution of JNK was being assessed by 

Western blot. In order to so, subcellular fractions of nuclear-rich extracts and 

cytosolic fractions were obtained by homogenization and differential centrifugation 

according to an established protocol, as described previously. As with most 

fractionation procedures, the purity of the individual fractions need to be stringently 

maintained to avoid contaminants carried over from different fractions. It is thus of 

utmost importance to optimize the existing standard protocols to better suit respective 

cell lines and model systems. In addition, the purity of the fractions was also assessed 

by using resident nuclear protein, PARP. Results showed that JNK’s translocation 

from the cytosol to the nucleus was being detected in C1-treated cells, in a time 

dependent manner (Figure 39). 
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Figure 39: C1 induces translocation of JNK to the nucleus. HCT116 cells were 

treated with C1 (100 µg/ml) for various time points from 1 hour to 6 hours before 

being subjected to differential centrifugation and subcellular fractionation. The 

resultant cytosolic and nuclear fractions were assessed by Western blots to determine 

JNK’s distribution in these compartments by using a specific antibody against 

phosphorylated JNK. Detection of PARP was performed as a purity control and β-

actin was used as loading control. 

 

 

 

 



 128

4.7 PD98059 effectively inhibits cytochrome c and bax translocation in C1-

treated cells 

 In the quest to explore the mechanisms of ERK-dependent apoptotic cell 

death, mitochondrial pathway of apoptosis was being investigated. A heavy 

membrane fraction, being enriched with mitochondria was being obtained following 

PD98059 pre-treatment and C1 exposure. This heavy membrane fraction, together 

with the cytosolic fraction were being analysed concurrently on Western blot to 

assess any changes in the subcellular distribution of bax and cytochrome c. It was 

observed that C1 induced efficient bax translocation from the cytosolic fraction to the 

mitochondria, with a reciprocal translocation of cytochrome c (Figure 40). More 

importantly, inhibition of ERK activity by PD98059 almost completely abolished the 

translocation of these apoptogenic factors. These data indicated that the effects of 

ERK on C1-elicited cell death may involve the intrinsic mitochondrial pathway.  
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Figure 40: PD98059 effectively inhibits cytochrome c and bax translocation in 

C1-treated cells. PD98059 (PD, 20 µM) was added to HCT116 cells for an hour 

followed by C1 incubation for 18 hours. Cell lysates were being subjected to 

subcellular fractionation to obtain cytosolic fraction and heavy membrane fraction, 

which is enriched with mitochondria. These fractions were being used for Western 

blotting for the detection of cytochrome c and bax with their respective antibody as 

described in Materials & Methods. VDAC was used to assess the purity of the 

fractions, and GAPDH was used as loading control.  
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4.8 Pharmacological inhibition of ERK also rescued C1-induced reduction in 

cell viability in MDA-MB-231 cells, but not in MCF-7 cells 

 The major effects in inducing autophagy and apoptosis by C1 were mediated 

by ERK, and attenuation of ERK signaling effectively abrogated both signaling 

pathways. To confirm that the integral role of ERK in cell death is not limited to one 

specific cell line, two other breast cancer lines were being tested for the sensitivity to 

ERK inhibition by PD98059. In order to circumvent the probability of cell line 

variations, dose response analysis was carried out once again to select the effective 

dose for these breast cancer cells. In order to assess cell survival, PD98059 (5 µM, 10 

µM, 20 µM) was pre-incubated for an hour before C1 incubation for 18 hours, 

followed by MTT assessment as per described in materials and methods. It was 

found that PD98059 effectively blocked cell death induced by C1 in MDA-MB-231 

cells, while MCF-7 was completely refractory to PD98059 treatment (Figure 41). 

These results suggest that ERK inhibition could effectively inhibit cell death in tumor 

cells of different lineages; however, it raised an interesting question on the 

insensitivity of MCF-7 cells to the same treatment. An analysis of the three cell lines 

used in this study revealed an inherent difference of the Ras status. Interestingly, both 

HCT116 and MDA-MB-231 cells harbour oncogenic Ras mutation, while MCF-7 

contains normal Ras gene. Moreover, the indication that PD98059 is only effective in 

systems with oncogenic Ras status could have direct implication in anticancer 

therapy.   
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Figure 41: Pharmacological inhibition of ERK rescued C1-induced reduction in 

cell viability in MDA-MB-231 cells, but not in MCF-7 cells. (A) MDA-MB-231 

and (B) MCF-7 breast cancer cells were pre-treated with various doses of PD98059 

(PD; in µM) for an hour, before being exposed to C1 for 18 hours. Cell survival was 

then assessed by MTT assay. 
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4.9 A possible mechanism of ERK-mediated LC3 lipidation: Involvement of 

p53 

 

4.9 C1 induces p53 downregulation in HCT116 cells 

 Since its discovery nearly 30 years ago, p53 has been unequivocally proven to 

be one of the most prominent tumor suppressors that are frequently mutated in 

human tumors.  In order to assess the role of p53 in the current model, a protein 

expression profile of p53 was analysed following C1 treatment. It is intriguing to find 

out that p53 expression was reduced when the cells were exposed to C1, in a time- 

dependent as well as dose-dependent manner. Reduction in p53 protein expression 

was most prominent at late time points, ranging from 12 to 24 hours (Figure 42). As 

HCT116 harbours wild type p53 alleles, this result could indicate a dispensable role 

of p53 in terms of regulation of cell death and autophagy brought about by C1. 
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Figure 42: C1 induces p53 downregulation in HCT116 cells. p53 expression was 

verified by western blot following C1 treatment at various time points, (A) from 30 

minutes to 24 hour at 100 µg/ml of C1 and (B) at various doses, from 25 µg/ml to 

100 µg/ml. 
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4.10 Downregulation of p53 protein expression could be restored by pre-

treatment of proteasomal inhibitor 

 Previously, depletion of p53 has been associated with the activation of murine 

double minute 2 (MDM2) , an E3 ubiquitin ligase which mediates p53 ubiquitination 

and subsequently, targeting p53 to the proteasomal degradation pathway. To verify 

that loss of p53 in C1-treated cells was attributed to proteasomal degradation, a 

specific proteasomal inhibitor, MG132, was utilized to investigate this. MG132 is a 

specific and cell-permeable inhibitor of proteasome, which could impair the 

degradation of ubiquitin-conjugated proteins. By pre-incubating the cells with two 

different doses of MG132 (1.25 µM, 2.5 µM) for 2 hours, loss of p53 expression 

induced by C1 was completely restored (Figure 43). This result indicated that 

downregulation of p53 protein level elicited by C1 was intricately linked to the 

proteasomal degradation pathway.  
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Figure 43: Downregulation of p53 protein expression can be restored by pre-

treatment of proteasomal inhibitor. HCT116 cells were pre-incubated with the 

proteasomal inhibitor, MG132 (1.25 µM, 2.5µM) for 1 hour before being triggered 

with C1 (100 µg/ml) for 18 hours. Cell lysates were harvested by tripsinization 

before being subjected to SDS-PAGE and Western blotting. p53 expression level was 

assessed using an α-p53 antibody.  
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4.11 Inhibition of proteasomal degradation impedes LC3II accumulation 

induced by C1 

 Stimulated by the findings that proteasomal inhibition could affect p53 

stabilization in the cells, it is interesting to know that whether this, in any way is 

linked to the autophagic induction in C1-treated cells. This is especially relevant 

according to a previous report highlighting a unique role brought about by p53 

inhibition which promotes autophagy (Tasdemir et al., 2008). In the said study, 

depletion, deletion or inhibition of p53 serves as a signal for autophagy progression. 

More importantly, inducers of autophagy, such as nutrient deprivation and rapamycin 

invariably caused p53 depletion. It is thus likely that C1 may act in a similar manner 

as these autophagic inducing agents. Indeed, induction of LC3II accumulation by C1 

was effectively blocked in cells pre-treated with MG132 (Figure 44). This data is 

negatively correlated with p53 status in the cells, and suggests correlative evidence 

between p53 depletion and autophagic induction. 
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Figure 44: Inhibition of proteasomal degradation impedes LC3II accumulation 

induced by C1. Following MG132 pre-treatment for 1 hour at 1.25 µM or 2.5 µM, 

cells were treated with or without C1 (100 µg/ml) for 18 hours. Total lysates were 

collected for Western blot assessments, and LC3II protein expression was observed 

with α-LC3 antibody.  
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4.12 Decrease in p53 protein expression and increase in LC3 lipidation are 

controlled by ERK signaling 

 The Ras-Raf-MEK-ERK signaling pathway was shown to be a regulatory 

factor for p53-Hdm2 auto-regulatory feedback loop (Phelps et al., 2005). The MEK 

kinase, which directly acts upstream of ERK, was suggested to play a homeostatic 

role in maintaining the balance between p53 and human double minute 2 (Hdm2)  by 

regulating the nuclear export of hdm2 mRNA, thereby suppressing p53-induced cell 

cycle arrest and apoptosis (Phelps et al., 2005). This study provides evidence that 

ERK signaling pathway may regulate p53 level in a completely opposite way. siRNA 

targeted against ERK2 effectively restored downregulation of p53 brought about by 

C1 treatment at 18 hours (Figure 45). In contrast, LC3II expression was effectively 

inhibited following ERK2 silencing (Figure 45). As the depletion of total p53 level is 

important for autophagy progression, and ERK2 activation is a potent signal for 

autophagy, these data are suggestive of an integral role mediated by ERK-induced 

p53 downregulation in autophagy.  
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Figure 45: Decrease in p53 protein expression and increase in LC3 lipidation 

are controlled by ERK signaling. Cells were being silenced with ERK2 or 

scrambled siRNA according to Materials & Methods, and allowed to recover for 48 

hours post transfection. Cells were then subjected to C1 treatment for 18 hours before 

being harvested and protein expression of p53, LC3II and ERK1/2 were analysed by 

Western blot. GAPDH level was used as loading control. 
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DISCUSSION 

 

1 Cell death pathways activated by C1 in HCT116 cells 

This is a report on a novel anti-cancer compound, C1, triggered cell death 

with hallmarks of apoptosis, and significantly inhibited clonogenic capacity of 

HCT116 cells.  Intriguingly, pre-treatment of cells with the pan-caspase inhibitor, 

zVAD-fmk, failed to rescue colony formation, despite blocking apoptotic features. 

Similarly, the necrosis inhibitor, necrostatin, had no effect of C1-induced cell death, 

thereby suggesting the existence of alternative cell death mechanism(s) in 

conjunction with apoptosis. Electron microscopic and biochemical analysis revealed 

a morphological phenotype consistent with autophagy. Of note, neither the 

pharmacological inhibition of apoptosis (zVAD-fmk) nor autophagy (3-MA) was 

able to salvage cells from the effect of C1, suggesting that both pathways were 

essential in the regulation of cell death. 

 

2 Autophagic signaling induced by C1 follows a non-canonical pathway 

The tumor suppressor protein Beclin1 has been shown to play a critical role in 

autophagy execution and its knockdown blocks autophagic cell death (Yue et al., 

2003).  However, using a model of neurotoxin-induced cell death, Zhu et al showed 

that the existence of autophagic vacuolizations was independent of Beclin1 (Zhu et 

al., 2007). Similarly, in a breast cancer cell model, the phytoalexin resveratrol was 

found to induce non-canonical autophagy, which was dependent on inhibition of 

mTOR signaling (Scarlatti et al., 2008). The data presented here clearly indicate that 



 141

gene silencing of Beclin1 neither inhibited autophagy nor rescued human cancer cells 

from C1-induced death. Although the functional relevance of autophagy as a cell 

survival response or a death execution mechanism is still being debated, recent 

evidence tends to favor the model whereby autophagy in the non-canonical settings is 

invariably associated with cell death (Scarlatti et al., 2008). Of note, Beclin1 

expression was significantly lower in tumor cells undergoing C1-induced autophagy, 

which begs the question whether this is a general feature of non-canonical autophagy 

or an unrelated event exclusive to this system. In addition to the redundancy of 

Beclin1, the requirement of the class III PI3 kinase was also questionable as 

inhibition of its activity by 3-MA did not significantly rescue autophagic phenotype 

in C1-treated cells. This is also in line with the observations reported with 

resveratrol-induced autophagy (Scarlatti et al., 2008).  Contrary to the effect of 

beclin1 knockdown, silencing of Ulk1 (homolog of yeast Atg 1) or Atg7 impeded 

autophagic signaling, thus proving that these two proteins remained as essential 

mediators even in non-classical autophagy. However, it remains to be determined 

whether the multi-protein complex in the vesicle nucleation step is still being formed, 

regardless of the redundancy of Beclin1 in C1-induced autophagy.   

 

3 Autophagy and apoptosis are independent of each other but controlled 

by upstream ROS production 

In several settings, autophagic signaling sets the stage for apoptosis to occur, 

while in others inhibition of autophagy triggers an apoptotic cell death program 

(Boya et al., 2005; Gonzalez-Polo et al., 2005). It was shown here that C1-induced 
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cell death could be orchestrated through multiple signals that are independent of each 

other. Although apoptosis inhibitors effectively blocked caspase-dependent cell 

death, there was virtually no effect of these inhibitors on the autophagic pathway. 

Reciprocally, gene silencing of Atg7 or Atg1 reduced the extent of autophagic 

induction, but apoptotic signaling remained unaffected.  While the downstream 

signaling for each pathway appears to be autonomous, the upstream trigger 

controlling the induction of each of these signals is an early increase in intracellular 

ROS production, which drives ERK and JNK activation.  

 

4 Photoactivation as a cancer treatment modality 

 This study focused on the biological activity of a photoactivated product, 

Merodantoin, or Compound 1 (C1). Previously, photoactivation was used as a 

treatment modality for certain cancers (Hsi et al., 1999). Photoactivation is a therapy 

in which certain bacteria, viruses and cancer cells are targetted to photoactive 

compounds and at the same time, exposure to light (Oleinick and Evans, 1998). This 

treatment modality was termed photodynamic therapy (PDT). However, with time, 

PDT was proven to be a cumbersome process as it requires simultaneous exposure of 

the biological system to both photoactivated compound and light (Gulliya et al., 

1990). Due to this limitation, PDT was only suitable for treatments of solid tumors 

and purging of bone marrow for transplantation (Hsi et al., 1999; Mulroney et al., 

1994). To circumvent this problem, our group had devised a process to preactivate 

the compound by exposure to light before it was used as a therapeutic agent (Gulliya 

et al., 1990). In this way, the biological activity of the compound can be separated 
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from the photoactivation process. This method of activation of photodynamic 

compound was then termed ‘preactivation’ (Pervaiz et al., 1993). 

 To test out the concept of preactivation, a lipophilic polymethine dye 

merocyanine 540 (MC540) was used as a test compound. MC540 was initially 

discovered as a photosensitizer which showed high selectivity for tumor cells, 

especially useful in killing lymphoma and leukemic cells (Easton et al., 1978; Sieber, 

1987). Preactivated MC540 (pMC540) was remarkably effective in targeting tumor 

cells, activating apoptosis in a variety of cancer cells while showing minimal toxicity 

in normal blood mononuclear cells (Gulliya and Pervaiz, 1989; Itoh et al., 1993; 

Sieber et al., 1987). In vivo, pMC540 was proven to be more effective than non-

preactivated MC540 compounds in prolonging the lifespan of L1210 leukemic mice 

(Pervaiz, 2001).  

 Though preactivation solved the limitations of PDT, pMC540 had a short 

storage limit of 30 days and was prone to degradation (Moan and Berg, 1991). The 

activity of pMC540 was also reduced drastically by 50% upon light exposure. In 

view of the fact that pMC540 is not a pure compound but contains a mixture of 

photoactivated products, our group set out to purify and identify the components of 

the preactivated compounds. Three pure products, as analyzed by mass spectrometry 

and NMR analysis were being extracted. These compounds were termed C1, C2 and 

C5 (Pervaiz et al., 1999b).  

 Further analysis of these compounds revealed that C1 and C2 were potent 

activators of the classical apoptotic pathways in promyelocytic leukemia cell line 

HL-60 (Pervaiz et al., 1999b). Cell death induced by these purified products was 
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exemplified by phosphatidylserine exposure, caspase-8 and -3 activation and 

cytosolic translocation of cytochrome c. Interestingly, C1-induced cytochrome c 

release was dependent on MOMP while C2 treatment did not result in MOMP and 

mitochondrial swelling, suggesting that the release of cytochrome c by C1 and C2 

were dependent on different mechanisms. 

 

5 Intracellular generation of H2O2 as a novel effector mechanism of cell 

death  

 It is now well established that the redox status and changes in intracellular 

milleu are important determinants of cell fate. It was previously documented that the 

activity of the purified photoactivated compound, C2 is dependent on its ability to 

generate intracellular H2O2 (Hirpara et al., 2001). Intriguingly, H2O2 production 

induced by C2 originated from the mitochondria. More importantly, mitochondrial-

derived H2O2 production subsequently resulted in intracellular acidification, which 

served as an effector mechanism for C2-induced apoptosis in HL-60 leukemic cells. 

In contrast, though C5 also induced cytochrome c release, it was unable to trigger 

cytosolic acidification and thus, elicited a marked reduced potency in caspase 

activation.  

 In search of a mechanistic explanation for cytosolic acidification, it was later 

discovered that H2O2 could act as an effector molecule in mediating Bax 

translocation in tumor cells (Ahmad et al., 2004b). By using either exogenous 

addition of H2O2 or drug-induced H2O2 production, H2O2-mediated cytosolic 

acidification was proven to be essential in the recruitment of mitochondrial pathway 
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in a variety of tumor cells (Ahmad et al., 2004b; Hirpara et al., 2001). Interestingly, 

in another study involving Resveratrol, the presence of low concentrations of 

Resveratrol reverted apoptotic hallmarks induced by anticancer drugs C2, vincristine 

or daunorubicin (Ahmad et al., 2004a). Low concentrations of Resveratrol resulted in 

elevation of intracellular O2
•ˉ dependent on the NADPH oxidase system, which 

blocked mitochondrial H2O2 production. Consequently, decreased intracellular H2O2 

levels also inhibited cytosolic acidification thereby resulting in a non-permissive 

environment for apoptotic signaling.  

 In addition, the ability of small molecular compounds to generate intracellular 

H2O2 was shown to be an effector mechanism in the sensitization of tumor cells to 

death receptor-mediated apoptosis. LY294002, a phosphotidylinositol-3-kinase 

(PI3K) inhibitor, and its inactive analog, LY303511, were found to sensitize tumor 

cells to drug-induced apoptosis by an elevation of intracellular H2O2 level in cervical 

carcinoma HeLa (Poh and Pervaiz, 2005). The increase in intracellular H2O2 level 

induced by these two compounds is independent of PI3K activity. In a neuroblastoma 

model, LY303511 was also found to be capable in sensitizing tumor cells to TRAIL-

induced apoptosis mediated by intracellular H2O2 generation (Shenoy et al., 2009). 

Notably, H2O2 elevation by the LY compound was an important signaling molecule 

in MAPK family members’ activation, leading to upregulation of death receptors and 

enhanced cell death response. 

 Apart from the activation of cell death by targeting the executioners of the 

cell death circuitry, apoptosis could also be achieved by downregulation of survival 

factors. The involvement of H2O2 in this setting was elegantly shown by 
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downregulation of protein kinase 2 (CK2), a serine/threonine kinase involved in cell 

growth and proliferation (Ahmad et al., 2006; Wang et al., 2006b). Chemical 

inhibition or antisense-mediated knockdown of CK2 elevates H2O2 production which 

sensitized ALVA-41 and PC-3 prostate cancer cells to apoptosis (Wang et al., 

2006a). 

 Collectively, these studies demonstrated a positive role for H2O2 in the 

modulation of cell death. Particularly, elevation of intracellular H2O2 level appears to 

be a common denominator in drug-induced apoptosis. The myriad ways of how H2O2 

could mediate apoptotic induction may contribute to its potency as an upstream 

mediator of cell death. 

 

6 Reactive oxygen species: A paradigm shift 

 As discussed previously in the Introduction section, the relationship between 

ROS and cell death is not always clear cut. Though it has been firmly established that 

high levels of ROS mediates cellular damage and apoptosis, in recent years there are 

emerging evidence to suggest a conflicting role of ROS with regard to oncogenesis. 

 The vast amount of evidence linking O2
•ˉ to growth and survival has led to a 

paradigm shift which involves a tight balance between O2
•ˉ and H2O2 in determining 

the cellular response (Pervaiz and Clement, 2002b). The ratio between H2O2 and O2
•ˉ 

is determined by the intracellular antioxidant defences and is maintained in a tightly 

regulated manner during normal homeostasis. A tilt of the balance to O2
•ˉ over H2O2 

favors cell survival by promoting cell proliferation or inhibiting apoptosis, thereby 

facilitating the process of tumorigenesis (Clement et al., 1998). In contrast, a slight 
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elevation of H2O2 with a concomitant decrease in O2
•ˉ level is prohibitive for 

oncogenesis by promoting the execution of apoptotic signals (Pervaiz and Clement, 

2002a; Pervaiz and Clement, 2002b). This is predominantly achieved via the effect of 

cytosolic acidification and suppression of O2
•ˉ accumulation. It is important to 

acknowledge that a slight tilt of the ratio between the two species is the key point of 

this theory; while in the case of overwhelming production of ROS, regardless of the 

species, will inadvertently be deleterious to the cells. 

 Currently, there is a huge body of evidence in support of the highly varied 

role of ROS in regulating cell metabolism. In particular, a mild elevation in O2
•ˉ level 

has been linked to cell proliferation and cell growth. This is mediated, in part, by the 

activity of O2
•ˉ in stimulating early growth-related genes such as c-jun and c-fos 

(Burdon, 1995). In addition, O2
•ˉ has also been linked to receptor tyrosine kinase 

(RTK) activation, which is a major proliferative signal involved in oncogenesis 

(Heffetz et al., 1990). Similarly, increase in O2
•ˉ was also found to be responsible for 

activation of transcription factors, such as AP-1 and NFκB, as well as in the 

activation of various ion channels such as Na+/H+ exchanger (NHE) membrane 

transport pumps (Droge, 2002; Sauer et al., 2001). The alterations in the intracellular 

O2
•ˉ level was invariably shown to lead to a mild “pro-oxidant” state in the cells, 

which is permissive for cell proliferation. 

 Interestingly, an increase in intracellular O2
•ˉ was shown to be critical in 

inducing the activity of Na+/H+ exchanger 1 (NHE1) gene promoter, leading to 

NHE1 expression, which strongly correlates to tumor cell’s resistance to apoptosis 

(Akram et al., 2006). In a separate study, inhibition of O2
•ˉ production overrode the 
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protection conferred by Bcl-2 and sensitized Bcl-2 over-expressing cells to drug-

induced apoptosis (Chen and Pervaiz, 2007). Along this line, Bcl-2 over-expression 

was able to generate a pro-oxidant state by constitutively increasing O2
•ˉ level in the 

cells leading to inhibition of cytosolic acidification. To further substantiate the role of 

O2
•ˉ in oncogenesis, constitutively active Rac-1 increased O2

•ˉ level and cytosolic 

pH, thereby conferring resistance of tumor cells to apoptosis (Pervaiz et al., 2001). 

Interestingly, treatment of cells with exogenous H2O2 concurrently led to a decrease 

in O2
•ˉ concentration accompanied by acidification of the intracellular milleu. 

 On the flip side, augmentation in intracellular O2
•ˉ level was also shown to be 

inhibitory for apoptosis. Over-expression of Cu/Zn SOD, which led to reduction of 

intracellular O2
•ˉ level, increased the sensitivity of tumor cells to chemotherapeutic 

drugs (Saito et al., 2003). The reverse experiment with SOD inhibitor, 

diethyldithiocarbamate (DDC), elevated O2
•ˉ concentration in the cells and reduced 

the extent of cell death induced by anti-cancer agents (Clement and Stamenkovic, 

1996). Similarly, O2
•ˉ elevation in M14 melanoma cells inhibited drug-induced 

apoptosis by decreasing the activity of caspase-3 (Pervaiz et al., 1999a).  

  

7 C1-induced ROS production is a signal for autophagy and apoptosis 

 The premise of this thesis centres on the ability of the small molecule 

compound, C1 in generating ROS as an intracellular messenger. In the current model, 

the outburst of ROS production occurred in a very early setting, within 15 minutes of 

incubation with C1. Utilizing a mitochondrial O2
•ˉ specific probe, O2

•ˉ was detected 

as one of the ROS species being produced. The burst of O2
•ˉ production increased 
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with time, which peaked at 1 hour time point and subsequently decreased over time. 

Similarly, ROS level was also significantly higher upon short time points of C1 

incubation, from 15 minutes to 3 hours, as labeled by CM-DCFHDA and detected by 

flow cytometric analysis. Importantly, utilization of H2O2-specific scavengers, 

catalase and transient over-expression of the catalase gene confirmed the role of 

H2O2 in this model. 

 An interesting question which arises from these observations is the 

proportional contribution of these ROS species in the signaling of C1-activated 

pathways. In view of the fact that O2
•ˉ detected in this model originated from the 

mitochondria, it is highly unlikely that O2
•ˉ, being a charged molecule, could 

efficiently translocate from the mitochondria to the cytosol and activate the 

downstream effectors, such as ERK and JNK, which are predominantly cytosolic 

proteins in their inactive form. O2
•ˉ generated from the mitochondrial electron 

transport chain is mainly released into the matrix, with a small proportion being 

released into the intermembrane space (Turrens, 2003). It is widely acknowledged 

that most of the O2
•ˉ being produced in the mitochondria undergoes dismutation 

reaction to H2O2 via the action of MnSOD (Halliwell B, 2007). Furthermore, the 

rapid decrease in O2
•ˉ level may suggest a heightened SOD activity in HCT116 cells. 

Therefore, it is most probable that H2O2 generated from O2
•ˉ dismutation was being 

translocated from the mitochondria to the cytosol. This is due to the fact that H2O2 

could freely transverse membranes. That being said, it remained possible that the 

source of H2O2 produced by C1 is generated by other enzyme systems, such as 

xanthine oxidase and monoamine oxidase.  
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8 ROS is a critical signal for the activation of Map Kinases  

 This study highlighted the role of ROS by demonstrating its ability to activate 

two members of the MAP kinase family, JNK and ERK. Indeed, generation of ROS 

induced by C1 could be effectively scavenged by exogenous addition or transient 

overexpression of catalase, strongly suggesting an involvement of H2O2 in the current 

model. The identification of ROS production is an important component in this work 

mainly due to the fact that ROS signaling eventually resulted in the activation of 

MAPKs, specifically ERK and JNK kinases, which are central to C1-induced 

autophagy and apoptotic cell death.  

 Oxidative stress has been associated with MAPK through various 

mechanisms. Oxidative stress-induced ERK kinase signaling has been documented in 

a variety of cell lines including hepatocytes, cardiomyocytes, fibroblast, smooth 

muscles and epithelial cells (Blanc et al., 2003; Buder-Hoffmann et al., 2001; Conde 

de la Rosa et al., 2006; Kim et al., 2001; Xiao et al., 2002). In addition, the myriad 

ways of how ROS could lead to ERK activation provide substantial insights on the 

significance of this pathway. It appears that during most circumstances, ERK 

activation by free radicals is mediated by an upstream effector involved in ERK 

signaling pathway. For instance, ROS could enhance epidermal growth factor (EGF) 

signaling by inducing EGF receptor phosphorylation and downstream activation of 

the Ras-RAF-MEK-ERK signaling pathway (Knebel et al., 1996). In addition, 

platelet-derived growth factor (PDGF) receptor and SRC kinases are known targets 

of oxidative stress, and are both capable of activating ERK (Knebel et al., 1996; Zou 
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et al., 1996). Moreover, nitric oxide may lead to ERK activation by causing 

nitrosylation of a critical cysteine residue in Ras protein (Lander et al., 1996). 

Pharmacological inhibitors of MEK1 and MEK2, such as U0126 and PD98059 

effectively inhibited ROS-induced ERK activation, rendering evidence that ROS acts 

via upstream mediators of ERK in inducing ERK activation (Lee et al., 2006; Lee et 

al., 2005). Interestingly, the data presented here coincide with these observations as 

pre-incubation of PD98059 completely abolished the extent of ERK phosphorylation 

induced by C1. 

 On the other hand, JNK activation was also shown to be mediated by various 

oxidants and ROS-inducing drugs including H2O2, arsenite trioxide, UV radiation 

and cadmium chloride (Conde de la Rosa et al., 2006; Dent et al., 2003; Leonard et 

al., 2004; Meier et al., 1996). Similar to ERK, a surge in JNK activity induced by 

ROS could be mediated by upstream modulators in the MAP kinase signaling 

pathway. Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK which 

mediates the activation of JNK and p38 Map kinases (Ueda et al., 2002). ASK1 is in 

turn regulated by the binding of reduced thioredoxin during normal states which, 

upon oxidative stress, becomes oxidized and dissociated from ASK1 (Saitoh et al., 

1998). The critical role of ASK1 in ROS-mediated apoptosis has been shown in both 

in vitro and in vivo settings (Yasinska et al., 2004). Mouse embryonic fibroblasts 

(MEFs) deficient in ASK1 activity was shown to be more resistant to oxidative 

stress-induced apoptosis while exhibiting a significantly lower level of JNK 

activation as compared to wild type MEFs (Matsukawa et al., 2004; Matsuzawa et 

al., 2002). One of the most potent activator of ASK1 is H2O2, and H2O2 production is 
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the mechanism of activation for various anti-cancer drugs in the regulation of ASK1-

mediated cell death (Goldman et al., 2004; Machino et al., 2003; Tobiume et al., 

2001). In this study, though the upstream mediator involved ROS-induced JNK 

activation is not known, ASK1 remained a highly probable target of ROS. Moreover, 

H2O2 was identified as one of the major species responsible for C1-induced cell 

death. ASK1 could represent a possible link between ROS and JNK activation, 

leading to downstream cellular responses. 

 To conclusively delineate the pathways involved in the anti-tumor activity of 

C1, ROS scavengers and transient over-expression of catalase were utilized in this 

study. Robust activation of ERK and JNK were dramatically reduced following 

inhibition of ROS production, indicating that ROS is the upstream mediator of 

MAPKs activation in this system.  

 Previously, various studies have demonstrated the role of inactivating 

phosphatases in the regulation of Map kinases. OH• could lead to attenuation of the 

MKP activity, thereby resulting in a surge in ERK activity (Whisler et al., 1995). In 

another model involving TNF-α- induced cell death, MKPs oxidation mediated by 

H2O2 was identified as the main mechanism of JNK-mediated cell death (Kamata et 

al., 2005). While the treatment of HCT116 cells by C1 also led to a reduction in 

MKP1 protein level, it remained to be investigated whether oxidation of MKPs is 

indeed responsible for ERK and JNK activation brought about by C1.  
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9 The role of ROS in modulating cell death: Involvement of ERK and JNK 

 The earlier part of the Discussion section had illustrated the myriad ways of 

utilizing ROS as an effector mechanism in inducing MAPKs activation. While the 

connection between ROS and MAPKs activation had been extensively studied, more 

importantly the physiological outcomes of their interaction need to be deciphered.  

 The effects of ROS production in carcinogenesis are manifested in many 

ways, depending on the stimulus and the rate of ROS production. ROS could play a 

stimulatory role in oncogenesis, and this is mainly propagated through ROS-

stimulation of the Ras-Raf-Mek-ERK pathway (Jiang et al., 2005). One of the 

downstream targets of this pathway is the transcription factor promoter specificity 

protein 1 (Sp1), which has been shown to be phosphorylated by ERK (Yagoda et al., 

2007). Following its activation, Sp1 mediates the upregulation of vascular 

endothelial growth factor (VEGF) which, in turn, contributes to angiogenesis (Banan 

et al., 2001). In addition to this, the Ras signaling pathway also contributes to 

oncogenesis by activation of the PI3 kinase- Akt axis, the major survival factors in 

the cells (Shelton et al., 2004; von Gise et al., 2001).  

 In contrast to the widely known cancer promoting effects in oxidative stress-

induced Ras-ERK signaling pathway, a tumor suppression role of ROS has also been 

reported. In these settings it is generally believed that the anti-tumor activity of ROS 

is attributed to its ability to engage JNK and p38 signaling pathways with the 

eventual execution of apoptosis. The p38 Map kinase pathway negatively regulates 

tumorigenesis by its activating role in replicative senescence, contact inhibition, 

DNA damage responses and apoptosis (Han and Sun, 2007; Ren et al., 2009). In the 
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current study, the presence of p38 is ruled out as its activation was not significantly 

observed in C1-treated cells. In contrast, ROS-induced JNK activation turned out to 

be an important signaling mechanism in the modulation of cell death.  In addition, 

abrogation of ROS production by exogenous ROS scavengers and catalase over-

expression protected HCT116 cells against C1-induced cell death. A large body of 

evidence in the literature is in line with this finding. In a study utilizing pancreatic 

beta cells, synergistic activation of JNK was triggered by TNF-α and interferon 

gamma (IFN-gamma), and apoptosis induced in this system is dependent on JNK-

mediated p53 activation (Kim et al., 2005a). In exploring mechanisms of ROS 

accumulation-induced cell death, the apoptotic response was further amplified by c-

FLIP downregulation, accompanied by prolonged JNK activation (Nakajima et al., 

2008). H2O2- induced non-apoptotic cell death was mediated by JNK1 via its 

regulation on PARP-1 activation and phosphorylation (Zhang et al., 2007). 

Evidence presented here suggested that ROS-mediated JNK activation is in 

line with the current literature in its ability to induce apoptosis. On the other hand, 

although ROS-mediated ERK activation has often been linked to transformation and 

malignancy, the data in this study clearly showed otherwise. This study demonstrated 

a crucial role of ROS in modulating the ERK-mediated cell death pathway. 

Activation of ERK demonstrated an anti-tumor role of ROS which positively 

regulates cell death.  

 

10 ROS controls autophagic signals through MAPK 
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Classically, autophagy is described as a cellular clearance mechanism to 

remove damaged organelles and protein aggregates and thus serves as a 

cytoprotective mechanism to counteract oxidative stress in cells (Levine, 2005). In 

yeast, mitophagy occurs as a response to nitrogen starvation and is mediated through 

a regulator of oxidative stress, Uth1 gene (Kissova et al., 2004). On the other hand, 

reports have also shown that ROS could serve as signaling molecules that directly or 

indirectly activate autophagy. To that end, it has been shown that induction of 

autophagy resulted in selective degradation of catalase, leading to accumulation of 

mitochondrial ROS and ultimately cell death (Yu et al., 2006).  In a separate study, 

TNF-α was shown to increase the expression of Beclin1 by a ROS-dependent 

mechanism (Djavaheri-Mergny et al., 2006). By using mitochondrial electron 

transport chain inhibitors, Chen et al demonstrated the importance of mitochondrial 

ROS in the regulation of autophagic cell death. The existence of autophagic cell 

death in transformed and cancer cell lines was salvaged by the presence of tiron and 

over-expression of SOD2, indicating a role of O2
•ˉ to act as a second messenger in 

autophagic signaling (Chen et al., 2007). The findings reported here lend support to 

these observations by demonstrating the involvement of mitochondrial-derived ROS 

in C1-induced autophagy, as well as the inhibitory effect of H2O2 scavenger, catalase. 

To provide a link between C1-induced ROS production and autophagy, its ability to 

activate two members of the MAP kinase family, JNK and ERK, was highlighted. 

Indeed, generation of ROS induced by C1 could be effectively scavenged by 

exogenous addition or transient overexpression of catalase, strongly pointing to the 

involvement of H2O2 in the current model. Furthermore, LC3II accumulation could 
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also be abolished through the exogenous addition of or transient transfection with 

human catalase, suggesting a major signaling role of H2O2 in autophagy. This is 

consistent with a previous report on TNF-α induced accumulation of H2O2, which 

was shown to be responsible for autophagic cell death (Djavaheri-Mergny et al., 

2006). Indeed, H2O2 was also found to be an important mediator in starvation-

induced autophagy, through its activity in regulating Atg4 protease (Scherz-Shouval 

et al., 2007). Post-translational modification of Atg4 by oxidation greatly enhanced 

autophagosome formation in starvation-induced autophagy (Scherz-Shouval et al., 

2007). H2O2 and ROS-inducing agents, 2-methoxyestradiol (2-ME) was shown to 

trigger autophagic cell death in transformed and cancer cell lines, while it failed to 

induce autophagy in non-transformed cells (Chen et al., 2008). Therefore, it appears 

that redox-regulation of autophagy is largely dependent on the magnitude and the 

rate of ROS accumulation. Whether ROS involvement in autophagy represents a 

general mechanism in autophagic induction remains to be investigated. Nevertheless, 

this study highlighted the novel role of ROS in mediating MAPK activation, 

specifically in the signaling of ERK and JNK kinase pathways in the modulation of 

autophagy. 

  

11 ERK is a major mediator in C1-induced signaling pathways 

 This study reported the importance of the ERK signaling cascade in 

mediating C1-induced autophagy and apoptosis. Of note, ERK activation occurred in 

a transient manner. It was activated rapidly within a short span (30 minutes) of C1 

incubation, and the extent of ERK phosphorylation increased with time, peaked at 3 
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hours before it was gradually reduced. Despite the fact that ERK phosphorylation did 

not occur in a sustained and prolonged manner, ERK activation was able to exert 

important biological functions in the modulation of two critical physiological 

processes. It would be interesting to investigate further on the relationship between 

this mode of transient ERK activation and the biological impacts it transmits, if there 

is any. Furthermore, the ability of the MEK inhibitor, PD98059 to inhibit 

phosphorylation of ERK revealed that ERK activation by C1 was dependent on the 

sequential activation of the ERK signaling module, and suggested that ERK was not 

a direct target of ROS in this system. In the next section, the role played by ERK in 

controlling two different axes of cellular modalities, namely autophagy and 

apoptosis, will be discussed in detail. 

 

12 Modulation of apoptosis by ERK signaling 

 A general dogma surrounding the MAPK signaling cascade entails that ERK 

activation is associated with cell survival, whereas JNK and p38 control cell death. 

This dichotomy arises from the large body of data linking ERK activation to Ras-

induced transformation, cell proliferation and cell cycle progression (Dhillon et al., 

2007). This is no doubt an oversimplification on the roles of MAPKs, as the cell fate 

upon extracellular stimulus often depends on cell type and the specific cellular 

context.  

 With regard to the activation of cell death by C1, ERK activation was found 

to be indispensable. Inhibition of ERK phosphorylation by PD98059 virtually 

completely blocked various hallmarks of apoptosis. Furthermore, pharmacological 
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inhibition of ERK also impaired cytochrome c and Bax translocation, suggesting that 

the mitochondrial pathway could be a major target of ERK activation. More 

importantly, PD98059 treatment conferred significant protection against C1-induced 

reduction of colony formation, which underscored the tremendous implication for 

ERK as a novel target for anti-tumor therapy. Notably, gene-mediated silencing of 

ERK further corroborated the inhibitor studies, and highlighted the critical 

involvement of both ERK1 and ERK2 in the modulation of apoptosis.  

 In addition to HCT116 cells, the metastatic breast cancer cell line MDA-MB-

231 was also sensitive to inhibition of ERK. Serendipitously, both HCT116 and 

MDA-MB-231 cells harbour oncogenic K-Ras mutation. In contrast, MCF-7, which 

is a non-metastatic breast cancer cell line with normal Ras status, is refractory to 

PD98059 treatment. These results suggested a possible link between Ras status and 

sensitivity of cells to ERK activation. Furthermore, activating mutation of K-Ras is 

associated with 30% of human cancers, including colorectal carcinomas (Andreyev et 

al., 2001; Schubbert et al., 2007). It is thus promising that ERK activation by ROS-

dependent mechanisms in these Ras oncogene- transformed cells could specifically 

target these tumors to self destruction by activating their intrinsic programmed cell 

death. 

 Interestingly, activation of cell death by C1 is associated with a transient 

activation profile of ERK. On the other hand, oncogenic transformation and 

accelerated proliferation induced by ERK has been shown to be dependent on a 

constitutively activated signal of ERK (Oka et al., 1995). This is partly mediated 

through the promoting effects of ERK on cell cycle progression (Pages et al., 1993). 
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It remains a possible hypothesis that the transient activation of ERK induced by C1 

precludes the possibility of prolonged oncogenic induction, but is sufficient to 

activate cell death machineries for efficient apoptotic execution. Nevertheless, the 

feasibility of this proposal would need to be substantiated with more conclusive 

experimental evidences. 

 

13 Modulation of autophagy by ERK signaling 

Although the advancement in autophagy research has accelerated in recent 

years, the involvement of ERK in this field has not been studied in great depths. In 

particular, the mechanisms of ERK involvement in autophagy have not been 

extensively studied. Most of the studies in the current literature have pointed to a 

positive regulatory role of ERK in autophagy, though there are other studies which 

contradict this role. In a neuroblastoma model, ERK 1/2 activation was reported to be 

critical in neurotoxin-induced autophagic cell death (Zhu et al., 2007). The activity of 

ERK and JNK were also found to be important in TNF-α induced apoptotic and 

autophagic cell death in L929 cells (Cheng et al., 2008). Curcumin, a natural 

compound, induces autophagic cell death in an ERK-dependent manner (Aoki et al., 

2007). These studies have established a causal relationship between ERK activation 

and autophagy. However, in contrast to the interplay between JNK and autophagy, 

the exact role of ERK in autophagy has not been clearly defined. In this study, the 

association of ERK in autophagy was firmly established. Pharmacological inhibition 

of ERK almost completely abrogated the autophagic response triggered by C1, as 

determined by LC3II accumulation and EM analysis, implicating ERK in the 
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induction of autophagy. Genetic silencing of ERK also corroborated the inhibitor 

studies, further confirming a positive regulatory role of ERK in the induction of 

autophagy. Serendipitously, only ERK2 silencing could abrogate C1-induced LC3 

expression, excluding the role of ERK1 in controlling autophagy. This specificity in 

controlling autophagy indicated that, at least with regard to C1-induced autophagy, 

ERK1 and ERK2 are not exactly functionally redundant. This is consistent with a 

recent study on the mechanism of ERK2 localization to the mitochondria which was 

indispensable for mitophagy and autophagic cell death (Dagda et al., 2008). To date, 

it is as yet unclear as to whether the association of ERK activation with autophagy is 

a function of its ability to activate downstream transcription factors or an extra-

nuclear function of ERK. This study provided new insights into the molecular 

mechanisms of ERK-induced autophagy by identifying an association between ERK 

and p53. Previously, degradation of p53 was linked to an increased autophagic 

response, and p53 was suggested be a repressor of autophagy (Tasdemir et al., 2008). 

Here, a more upstream mechanism was identified in the heightened interest of p53-

mediated suppression of autophagy. C1 activation mediated a decrease in p53 protein 

expression, indicating redundancy of p53 in C1-induced cell death. Silencing of 

ERK2, which inhibited autophagy, also attenuated p53 downregulation. In addition, 

p53 level was restored by inhibition of proteasomal degradation. Similarly, 

proteasome inhibitors also decreased the extent of autophagy in C1-treated cells. 

Taken together, these data suggested that the activation of autophagy by C1 was in 

part, due to ERK activation and subsequent ERK-mediated p53 degradation by the 

proteosomal degradation pathway.  
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14 Targeting the ERK signaling pathway for cancer therapy 

 Over the years, the ERK signaling cascade has gained prominent interest as 

attractive targets for cancer therapy, due to the critical involvement of its components 

in the regulation of cell proliferation and tumor progression. Virtually all, if not most 

of the key components of the ERK MAPK pathway have been found to be either 

overexpressed in human cancers or have been identified as putative oncogenes. 

Receptor tyrosine kinases (RTK), which includes members such as epidermal growth 

factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), is 

one of the most upstream signal which activates the Ras-Raf-MEK-ERK signaling 

module. EGFR was found to be mutationally activated in many tumors (Baselga and 

Arteaga, 2005), and developments of monoclonal antibodies and small molecule 

inhibitors against aberrant hyperactivated EGFR are currently underway (Roberts and 

Der, 2007), with some of them already in clinical use for the treatment of EGFR-

detectable cancers.  

 Downstream of the receptor tyrosine kinase pathway, aberrant Ras signaling 

has also been detected in multiple malignancies. Ras has been proposed to be 

mutated in 30% of human cancers, with high prevalence in lung and colon cancers 

(Malumbres and Barbacid, 2003). In addition, germline mutations and genetic 

alterations of Raf have also lend credence to the efforts devoted into the inhibition of 

this particular pathway (Davies et al., 2002). 

 The findings generated from this study, however, cautioned against an over-

simplified approach in devising ERK signaling pathway as target-based therapies. 
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This study demonstrates that instead of propagating cell death, MEK inhibitors could 

be potent death suppressors. This observation suggests a novel feature of ERK away 

from its conventional dogma of anti-death and pro-survival roles. In particular, 

evidence presented here supports the notion that ROS-mediated ERK signaling could 

represent an attractive chemotherapeutic approach for cancer elimination, especially 

relevant to highly metastatic cancers harbouring oncogenic Ras mutations. 

Nevertheless, this study adds complexities to the seemingly straightforward 

properties of ERK-related therapies in cancer and suggests that any target based 

therapies should be carefully examined before its procession.  

 

15 Kinetics of JNK activation could determine the sensitivity of tumor cells 

to apoptosis 

 JNK activity alone may not be sufficient to determine the cell death response. 

It has been suggested that kinetics of JNK activation play a role in determining its 

biological function. Transient and modest JNK activation is required for liver 

regeneration (Schwabe et al., 2003), while sustained JNK activation caused by 

cytotoxic drugs or cellular insults has been shown to trigger apoptosis (Lin, 2003). 

Inhibition of dual specificity phosphatases, the MKPs, via oxidation of the critical 

cysteine residues by ROS, resulted in sustained JNK activation which was 

responsible for apoptotic cell death (Kamata et al., 2005). In contrast, NFκB could 

prevent sustained JNK activation via upregulation of ferritin heavy chain, a primary 

iron storage factor in the cells, leading to attenuated apoptosis (Pham et al., 2004). 

The data presented here is in agreement with recent reports highlighting the 
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importance of temporal activation of JNK in inducing apoptosis. In this study, 

sustained JNK activation was demonstrated following C1 incubation. A time kinetics 

analysis revealed that, although JNK phosphorylation was triggered almost 

immediately, within 30 minutes of drug treatment, the activation profile persisted 

throughout the time course of analysis. Correspondingly, MKP1 protein level was 

significantly downregulated at the time points when JNK phosphorylation was 

detected. It is hitherto unclear as to how different ROS levels could augment the 

extent and duration of JNK activation. Possibly, low levels of ROS production did 

not alter the MKP activity sufficiently resulting in transient JNK activation. In 

contrast, higher levels of ROS or a specific type of ROS is more efficient in 

mediating inhibition of MKP activity, leading to sustained JNK activation and 

apoptosis (McCubrey et al., 2006). In a separate study, c-FLIP downregulation was 

proposed as the mechanism responsible for prolonged JNK activation (Nakajima et 

al., 2008). This observation was also consistent with cleavage of MEKK1 in c-FLIP 

knockdown cells, providing an explanatory mechanism for prolonged JNK 

activation. 

 

16 Modulation of Apoptosis by JNK signaling 

 The involvement of MAPKs in apoptosis have been demonstrated in a variety 

of model systems including cytokines activation, oxidative stress and radiation (Bode 

and Dong, 2003; Kyriakis and Avruch, 2001; Rincon et al., 2001). Apart from 

transcriptional activation of c-Jun leading to induction of apoptotic genes such as 

Fas-L (Faris et al., 1998), a transcriptional independent role of JNK in apoptosis has 
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also been documented. This is largely documented via phosphorylation of pro or anti-

apoptotic proteins such as p53 and Bcl-2 (Maundrell et al., 1997; Milne et al., 1995). 

In this study, inhibition of JNK activation also attenuates apoptotic cell death. This 

was shown by inhibition of sub-G1 population, colony formation and cell death by a 

JNK inhibitor as well as by siRNA directed against JNK. Thus, we provide evidence 

that JNK represents an important mediator in controlling the apoptotic signaling 

cascade. Interestingly, it has been shown that JNK phosphorylation of Bcl-2 serves to 

promote autophagy and cell survival during early time points while delayed 

activation of JNK is a signal for apoptosis to occur (Wei et al., 2008b). In accordance 

with these findings, our findings demonstrate sustained and prolonged JNK 

activation, which may account for the differential cellular response brought about by 

C1. It is likely that early JNK activation signals for autophagy as an adaptive 

response to cellular stress while at the later time point, when the cells are 

overwhelmed by cytotoxic stimuli, JNK activation serves to switch the cells towards 

apoptotic cell death. 

 

17 Modulation of autophagy by JNK signaling 

 In this thesis the integral role of the Map kinases, ERK and JNK in mediating 

autophagy was highlighted. Activation of the JNK signaling pathway by ROS 

represents a novel mechanism of autophagic induction. Inhibition of JNK by its 

pharmacological inhibitor, SP600125, resulted in the reduction of LC3II protein 

expression. By gene-mediated knock-down experiments, JNK was found to be 

crucial for the regulation of C1-induced autophagy and apoptosis. Previously, JNK1 
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activity was demonstrated to be the key factor in starvation-induced autophagy, 

through phosphorylation of Bcl-2 and displacement of the Beclin1-Bcl-2 complex 

(Wei et al., 2008a). In contrast, this study did not implicate JNK1 in both autophagy 

and apoptosis, adding evidence to the JNK1/2 isoform specific roles in mediating 

cellular response (Bogoyevitch, 2006). It is hitherto unclear as to the cause of this 

disparity brought about by different JNK isoforms; however, it is apparent that the 

mode of actions and the effect of autophagic induction mediated by the different JNK 

isoforms were in stark contrast. To begin with, the extent of autophagic induction via 

drug-induced autophagy and starvation mediated autophagy may not be of the same 

magnitude. In addition, induction of c-Jun phosphorylation was found to be 

dependent on JNK activity. Moreover, pre-treatment of cells with cyclohexamide and 

actinomycin D reverted the increase in LC3II accumulation in C1-treated cells, 

indicating that the increased accumulation of LC3II might involve protein synthesis. 

A novel mechanism for JNK in autophagy was demonstrated in this study by 

showing that JNK inhibition could effectively augment Atg7 expression. This 

implies that autophagy-inducing activity of JNK was due to induction of the crucial 

mediator in autophagosome formation. Collectively, these data indicated that the 

regulation of autophagy by JNK could implicate the transcriptional activity of c-Jun. 

 JNK has been implicated in various models of autophagy in response to 

serum starvation, cytokines, growth factor withdrawal and neurotoxic drugs (Borsello 

et al., 2003; Jia et al., 2006; Li et al., 2006; Wei et al., 2008a). The myriad ways of 

JNK induction in autophagy may indicate that JNK is a core component in the 

autophagic signaling pathway. 
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CONCLUSION 

 

This is a novel report describing the ability of a small molecule compound to 

simultaneously activate autophagic as well as apoptotic signaling pathways in the 

same cell, and where autophagy appears to be fueling rather than abetting death 

signaling.  Interestingly, the fact that this small molecule compound functions in a 

manner independent of Beclin1, further testifies to its therapeutic potential in the 

clinical settings where the tumor suppressor Beclin1 is non functional or down-

regulated. In contrast, the involvement of two critical Atg genes, Atg7 and Ulk-1 was 

integral in C1-induced autophagy. This unique cell death odyssey of tumor cells, i.e., 

simultaneous autophagy and apoptosis, is not restricted to a particular cell type as 

evidenced by the induction of autophagy in a variety of tumor cell types. 

Furthermore, our work highlights the critical involvement of early ROS production 

and downstream ERK and JNK activation in the dual signaling triggered by C1. ROS 

represents a central initiator of the C1-elicited cellular signaling pathway, which 

kick-starts the autophagy and apoptosis process by simultaneously activating two 

critical members of the Map kinase family, ERK and JNK. A novel function of JNK 

in autophagy was linked to its involvement in the regulation of Atg7 expression. 

Similarly, ERK may constitute a major initiator of autophagy by mediating p53 

degradation, though further studies are required to delineate the role of ERK in 

autophagy. While JNK inhibition appears to be sufficient to suppress the death 

signals, ERK was found to be a greater factor in the determinacy of life and death. 

This is most intriguing in view of the fact that the ERK signaling pathway has been 
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largely associated with oncogenesis and cellular transformation. Suppression of ERK 

activity almost completely abolished cell death hallmarks, suggesting that ERK is a 

major pathway which integrates the signals transmitted by ROS. The data also 

implicate ERK in mediating the intrinsic mitochondrial pathway which could further 

amplify the death signals. The potency of ERK as a cell death mediator is not limited 

to one cell lineage and, more importantly, ERK was shown to be critical in cell 

lineages with active Ras mutation. These data portrayed a novel role of ERK in the 

modulation of cell fate. While ERK activation normally contributes to proliferation 

and malignancy, on the flip side ROS-mediated ERK stimulation could specifically 

target oncogenic Ras-associated tumor cells, placing ERK as an attractive target for 

circumventing highly malignant cancers. In addition, this study underscores the 

feasibility of ERK and JNK as novel targets of cancer therapy. Taken together, these 

data underscore the tremendous potential of this small molecule compound for 

enhancing our understanding of the intricate complexities between different networks 

of cell death, as well as for the therapeutic induction of cell death in tumors that are 

responsive to autophagic and/or apoptosis stimuli. 
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