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SUMMARY 
 

The construction industry is renowned for its poor safety records. One of the main 

strategies that can help to improve the safety performance of the industry is to ensure 

continual improvement of project safety management systems (SMS). This research 

proposes two levels of safety knowledge feedback that can facilitate the continual 

improvement of SMS. The first level of feedback refers to effective and thorough 

incident investigation after incident occurrence. The incident investigation should lead to 

an evaluation and improvement of the SMS that had failed and caused the incident. The 

second level of feedback is focused on ensuring that valuable safety knowledge in the 

form of safety plans and incident investigation reports are made available and useable for 

new project safety planning processes. Effective implementation of the second level of 

feedback would facilitate transfer of safety knowledge across projects and learning from 

past mistakes. 

To facilitate the two levels of feedback, this research developed an incident 

causation model, known as the Modified Loss Causation Model (MLCM), which can be 

used to structure a thorough incident investigation process (first level of feedback) and 

act as a knowledge framework that facilitates the feedback of safety knowledge during 

new project safety planning (second level of feedback). The MLCM had been developed 

based on an in-depth literature review and evaluation of 140 actual accident cases 

obtained from Singapore’s Ministry of Manpower. 

To realize the second level of feedback, a novel case-based reasoning (CBR) 

approach of risk assessment was developed. The CBR approach was designed to facilitate 

the Job Hazard Analysis (JHA) method of risk assessment so that the approach is aligned 
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with the norm of structuring construction project plans based on activities. The key 

components of the CBR approach are: (1) a detailed MLCM-based knowledge 

representation scheme that can be used to capture and abstract key safety knowledge 

from incident cases and past risk assessments, (2) a case retrieval mechanism based on 

customized similarity scoring functions, (3a) hazard identification adaptations that 

facilitate automatic deletion of irrelevant parts of retrieved cases and integration of all 

relevant cases, and (3b) risk analysis adaptation that uses the Bayesian approach to 

integrate both subjective and objective estimates of likelihood to produce a balanced 

estimation of risk values.  

The CBR approach is implemented in a prototype system known as the Safety 

Knowledge Management System (SKMS). The prototype SKMS was applied on a case 

study to validate the proposed concepts. The case study is based on a typical work 

scenario in the construction industry and the case base contained 59 incident cases and 10 

risk assessments obtained from different industry sources. The case study shows that 

based on the relatively small amount of cases, the SKMS is able to retrieve and fully 

utilize available cases to produce a reasonably thorough risk assessment tree. The case 

study also demonstrates that a balanced estimation of risk based on both objective and 

subjective sources can be derived and used to systematically prioritise safety efforts on 

site.  
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Chapter 1  

INTRODUCTION 

1.1 Poor Safety Performance in the Construction Industry 

Safety has always been a perennial problem in the construction industry. In the 

United States, it was reported that the construction industry accounted for 20% of all 

occupational fatalities, when they made up only 5% of the United States work force 

(National Safety Council 1997). In Kuwait, the industry accounts for 42% of all 

occupational fatalities (Kartam and Bouz 1998) and in Hong Kong the industry accounts 

for more than a third of all industrial accidents over the last ten years (Tam and Fung 

1998). In Singapore, 29% of industrial workers are employed in the construction industry 

and they accounted for a disproportionate 40% of the industrial accidents (MOM 2001). 

These studies show that the construction industry has a disturbingly poor safety 

performance, which translates into much human suffering. 

Moreover, the economic cost of an accident is enormous. Based on a study by 

USA’s Center to Protect Workers' Rights (CPWR 1993), the average annual cost of 

construction accidents (direct and indirect costs) in the United States was estimated to be 

US$7 billion to US$17 billion. In addition, Everett and Frank (1996) highlighted that the 

cost of accidents and injuries has risen from a level of 6.5% of construction costs in 1982 

to between 8% and 15% during the 1990s. 
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1.2 The Need for Continual Improvement and Feedback 

Capabilities 

To improve the industry’s safety performance, one main strategy would be to 

ensure continual improvement of safety management systems (SMS) of construction 

projects. Based on the definition given in British Standard (BS) 8800 (BSI 1996), SMS 

can be thought of as an interdependent set of preventive measures, which is targeted at 

maintaining and improving safety performance within an organization. SMS is essentially 

based on the risk management process (BSI 2000) as illustrated in Figure 1.1, which 

consists of four interdependent components: hazard identification, risk analysis, risk 

control selection and risk control implementation and maintenance. In this research, the 

first two components, i.e. hazard identification and risk analysis are defined as risk 

assessment, and the first three components, i.e. risk assessment and risk control selection, 

are defined as safety planning (see Figure 1.1). 

 

Hazard
Identification Risk Analysis

Select
Risk

Control

Implementation
& Maintenance

Risk Assessment

Safety Planning

Risk Management  
Figure 1.1 Basic Risk Management Model 
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As shown in Figure 1.2, there are two improvement loops that could be employed 

to support continual improvement of an SMS. The two loops are facilitated by risk 

control maintenance and incident investigation respectively. Risk control maintenance is 

proactive, providing feedback based on pre-planned monitoring and inspection activities, 

whereas incident investigation is activated only when some kind of physical failure or 

injury occurs (an incident). Even though the incidents might not result in death or injuries, 

there would usually be some losses in terms of lost time or damage to property, both of 

which are also highly undesirable. Thus, incident investigation should not be used as the 

primary continual improvement measure. 

 

 
Figure 1.2 Feedback mechanisms to facilitate continual improvement 
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However, due to the ex post facto nature of the information gathered during an 

investigation, incident investigation information tends to be evidence-based and more 

convincing. Thus, the information gathered from incident investigations have tremendous 

value in facilitating improvement of the safety management of construction projects. In 

order to fully exploit incident investigation information, the incident investigation system 

should be carefully planned such that it can facilitate feedback at two levels; firstly, 

feedback to the SMS that had failed (thus causing the incident), and secondly, feedback 

to the safety planning of future projects (Figure 1.2). 

The first level of feedback is within the same project and is more straightforward. 

The key is to ensure a thorough investigation that identifies the relevant SMS failures so 

that appropriate improvement to the SMS can be made.  

The second level of feedback is not constrained within a single project. It requires 

the retrieval of relevant safety knowledge from a safety knowledge base, and its 

adaptation for use in the safety planning of new projects. Safety planning relies heavily 

on the experience and competency of the safety planning team. The processes of 

identifying hazards, assigning appropriate level of risk and selecting the most efficient 

control requires extensive field knowledge and experience. Valuable sources of such 

experience can be derived from investigation of past incidents. Besides incident 

investigation information, another possible source of knowledge that should be included 

in the second level of feedback is the safety plans of past projects. Each safety plan 

contains possible hazards and proposed risk control measures. Such safety knowledge 

should also be stored in the knowledge base so that future safety planning teams can 

retrieve them for adaptation and further improvement.  
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However, Henderson et al. (2001) identified that most of the companies surveyed 

(across industries) view incident investigation as a stand alone process that is decoupled 

from risk management and other proactive measures. Furthermore, the study also showed 

that there is a lack of computer-based system to manage incident investigation 

information. With a lack of computer based repositories and linkage between risk 

assessment and incident investigation, companies as a whole are not able to carry out the 

two levels of feedback proposed in this research. Furthermore, based on the literature 

review carried out during this research (to be discussed in chapter 2), it is evident that 

there is a definite lack of tools to assist companies in realising the two levels of feedback.  

1.3 Objectives of Research 

This research project aims to provide the necessary framework, concepts and 

procedures to implement the two levels of feedback effectively and efficiently. The 

research will develop a prototype system known as the Safety Knowledge Management 

System (SKMS) and the prototype SKMS will be implemented in a case study to verify 

the research findings. The SKMS’s main purpose is to facilitate the systematic recording 

and feedback of safety knowledge to improve the effectiveness of safety planning. The 

key sources of safety knowledge that the SKMS works on include incident cases and past 

safety plans. Through intelligent retrieval and adaptation of past experiences, the SKMS 

facilitates systematic organisational learning to prevent recurrence of past mistakes and 

encourages reuse and improvement of past safety plans.  

This research is focused on the hazard identification and risk evaluation portions, 

i.e. risk assessment, of the risk management process (see Figure 1.1). However, the 
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concepts and methodologies developed in this research will also be the basis for the risk 

control component of the SKMS. The objectives of this research are as follows: 

1. to develop an incident causation model and a common knowledge representation 

scheme to abstract and capture safety knowledge in incident investigation reports and 

past safety plans;  

2. to propose an intelligent retrieval method that can automatically identify and retrieve 

relevant past experiences; 

3. to propose adaptation strategies to contextualise the retrieved cases for: (a) hazard 

identification, and (b) risk analysis; and 

4. verify the developed and proposed concepts and methodologies through a prototype 

SKMS, which will be implemented in a case study. 

The objectives can be better understood with reference to Figure 1.2. The incident 

causation model acts as the common underlying framework for both incident 

investigation and safety planning. It models how and why incidents occur and identifies 

key knowledge elements that should be captured and utilised during safety planning and 

incident investigations. The knowledge representation scheme developed based on the 

incident causation model provides the actual knowledge base structure that will be 

implemented in the prototype SKMS.  

Objectives 2 and 3 focus on developing the retrieval and adaptation components 

of a proposed SKMS. Through the retrieval and adaptation of past experiences, the 

second level of feedback can then be achieved. To demonstrate the feasibility of the 

proposed approach, a prototype SKMS will be developed and verified through a case 

study (Objective 4). 
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To further clarify the objectives, the components of the SKMS are illustrated in 

the data flow diagrams (DFD) of Figures 1.3 and 1.4. The context level DFD (Figure 1.3) 

shows that the SKMS interacts with two key interfaces, incident investigation and safety 

planning. Incident investigation acts as a source of data for the SKMS, where 

investigation reports are fed into the SKMS. On the other hand, safety planning teams use 

adapted solutions from the SKMS, and at the same time they also provide the completed 

safety plans as input to the case base. Thus, safety planning acts both as a sink interface 

and a source interface. 

 

Based on the literature review (chapter 2) on Information Technology (IT) and 

Artificial Intelligence (AI), Case Based Reasoning (CBR) (sub-branch of AI) has similar 

foundational principles as the proposed approach and will be able to facilitate the 

development of the SKMS. Thus, the key components of the prototype SKMS were 

developed based on CBR concepts. 
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Figure 1.3 Context level data flow diagram of the SKMS 
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Figure 1.4 Level 1 data flow diagram of the SKMS 
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Figure 1.4 shows the level 1 DFD of the SKMS, which is an expansion of the 

context level DFD in Figure 1.3. As can be seen, the SKMS has several inter-

connecting codification, retrieval and adaptation processes. These processes 

correspond to the key components of a CBR approach, which includes knowledge 

representation, retrieval, and adaptation. The SKMS also contains two key knowledge 

repositories: the incident knowledge base and the safety plan knowledge base. These 

knowledge bases correspond to the case base component of a CBR system. 

In order for the SKMS to retrieve relevant incident cases and relevant past 

safety plans, proper codification and indexing of the cases in the knowledge base are 

important. Each case will have to be abstracted into a manageable codified form, with 

the appropriate indexes tagged to the case to facilitate retrieval. Besides codification, 

the retrieval mechanism also requires careful considerations. In order to recall 

sufficient and appropriate cases the retrieval mechanism must be able to handle 

inexact matching intelligently. Past cases that are retrieved will need to be adapted to 

the current context in order for the past knowledge to be more tailored to the present 

context. 

All three key activities of a safety planning process, i.e. hazard identification, 

risk evaluation, and risk control selection, requires retrieval and adaptation processes. 

These retrieval and adaptation processes are inter-dependent and similar in principle. 

Thus, the key SKMS components developed for risk assessment will also be 

applicable for the risk control component that is not covered in this thesis. 

1.4 Scope of Research 

As implied in the earlier sections, this research is focused on the construction 

industry, but the findings and contributions of this research will still be relevant to 

other industries. Furthermore, despite the broad concepts proposed for risk control 
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selection this research is primarily confined to the area of risk assessment (see Figure 

1.1), i.e. hazard identification and risk analysis.  

1.5 Research Methodology 

Research methodology is made up of two main components: (a) research 

design, and (b) methods of data collection. As indicated in Figure 1.5, research design 

is essentially the plan for getting from the research question (or objectives) to the 

conclusion (Tan 2004). With reference to Figure 1.5, the research designs would then 

be required for the validation of: (a) the MLCM, and (b) the proposed CBR approach 

to construction safety risk assessment. 

The research design for the validation of the MLCM is more of a case study 

approach and the method of data collection is essentially analysis of past documents. 

140 randomly selected accident investigation reports were obtained from the Ministry 

of Manpower and the MLCM framework was applied on each of the accident 

investigation reports to codify and structure key safety information. Each report acts 

as a case to test the usefulness of the MLCM framework in codifying accident 

investigation information. Furthermore, the statistics aggregated from the 140 cases 

also served to validate the effectiveness of the MLCM framework in generating 

meaningful statistics. It is noted that unlike other research designs involving case 

studies, this portion of the research used a relatively large number of cases to validate 

the MLCM. However, the large number of cases is warranted because statistics need 

to be generated from the cases studies for analysis. Furthermore, it may be argued that 

the 140 cases is still a relatively small sample (as in most case studies) compared to 

the wide variety of construction incidents. 
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part of the research, two main types of data were collected: incident cases and risk 

assessment reports. The incident cases were obtained from the Land Transport 

Authority (LTA), and the risk assessment reports were obtained from several sources, 

such as contractors and the LTA. Thus the method of data collection was mainly 

analysis of past documents, but interviews were also conducted with experienced 

safety practitioners to ensure completeness of the documents. Typically interviews 

were conducted to determine likelihood estimates that were missing in some risk 

assessment reports.  

The case study validated the proposed approach by demonstrating how the 

proposed approach can be applied to develop a reasonably in-depth risk assessment 

tree for a typical construction activity. Although the data used in the case study was 

small, the proposed approach was able to be studied in detail to surface the 

advantages and limitations of the different components of the approach. The case 

study also showed how the outputs of the approach can be utilised to facilitate 

prioritisation of risk control efforts. 

1.6 Organisation of Thesis 

This research will first present the literature review on relevant works in risk 

assessment and also knowledge management tools in chapter 2. Chapter 3 will present 

the Modified Loss Causation Model (MLCM), which acts as the broad knowledge 

framework of the SKMS’s knowledge repositories. Chapter 4 will discuss how 

incident cases and safety plans are codified and indexed to facilitate the retrieval and 

adaptation processes. Chapter 4 will also show how similarity scores are calculated 

based on the proposed knowledge codification and indexing methods. Chapter 5 

focuses on how the retrieved cases are adapted to assist risk assessment teams in 

hazard identification and risk analysis. Chapter 6 will present a case study to 
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demonstrate how the concepts presented in earlier chapters are utilised to carry out an 

actual risk assessment process. Finally, chapter 7 will conclude the thesis and provide 

suggestions for further research and development. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a broad review of literature in the areas of risk assessment 

and computer-based feedback tools. The review is aimed to understand the various types 

of risk assessment methodologies and assess the strengths and weaknesses of different 

computer-based feedback tools and technologies. It is noted that subsequent chapters will 

also present reviews of literature relevant to the content of the chapters. 

2.2 Review of Risk Assessment Methodologies 

Due to the higher risks involved in industries like the petrochemical and nuclear 

industries, these industries have developed a large portion of the available risk 

assessment methodologies (Kumamoto and Henley 1996). However, regardless of the 

differences in approaches or industries, most, if not all, risk assessment methodologies 

are similar in terms of basic principles and contain the key components described in 

Figure 1.1, i.e. hazard identification and risk analysis. Several risk assessment 

methodologies include risk control selection as a part of risk assessment, but in this 

research risk control selection is treated as an individual component of safety planning. 

Risk assessment methodologies range from quantitative to qualitative types. 

Quantitative methods usually quantify the risk values based on measurable frequency and 

severity scales, while qualitative methods uses broad non-measurable categories to 

indicate the level of risk, frequency and severity. Quantitative methods include methods 
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such as failure modes and effects analysis (FMEA), fault tree analysis (FTA), event tree 

analysis (ETA) and probabilistic risk analysis (PRA). Qualitative methods include 

methods like hazard and operability study (HAZOP), what-if analysis, and job hazard 

analysis (also known as job safety analysis) (Harms-Ringdahl 1993; Ayyub 2003). 

However, whether the risk assessment method is quantitative or not often depends on 

whether the risk assessment team utilises a quantitative scale when estimating frequency 

and severity values. Thus, traditionally qualitative methods can be easily converted into 

quantitative methods and vice versa. 

Some of the more common risk assessment methods will be reviewed in more 

detail. These risk assessment methods include: (1) fault tree analysis and event tree 

analysis, (2) FMEA and HAZOP, (3) what-if analysis, and (4) job hazard analysis. 

2.2.1 Fault tree analysis and event tree analysis  

H. A. Watson of the Bell Telephone Laboratories developed fault tree analysis 

(FTA) between 1961 and 1962. It is widely used in the safety engineering discipline to 

deduce the causes of system failures (Livingston et al. 2001) and it has been known to be 

capable of analysing engineering systems systematically using both quantitative and 

qualitative approaches (Kumamoto and Henley 1996). 

A fault tree model is a graphical model that displays the various logical 

combinations of component failures that can result in a failure event (also known as top 

event). There are various types of gates that allow the user to determine the conditions 

that would allow an event to occur. If the frequencies of the events in a fault tree are 

available, then the likelihood of the failure event can be calculated objectively. However, 
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even if actual frequencies are not available, subjective estimates of the frequencies can 

also be given to allow quantitative analysis. 

Event tree analysis (ETA) is usually used to study accidental events in a complex 

engineering system (Kumamoto and Henley 1996). It is based on forward logic, such that 

it identifies the range of possible subsequent events following an initiating event. These 

subsequent events focus on the reliability of accident preventing safety systems or failure 

probability of engineering components. The probability of each event is estimated and the 

overall reliability of the system can be quantified. 

The FTA and ETA are usually conducted hand-in-hand and together they provide 

a structured risk assessment. Essentially FTA and ETA adopt a “divide and conquer” 

approach that breaks up the system into hierarchies. Such an approach allows meticulous 

analysis to be executed.  

2.2.2 Failure Modes and Effects Analysis (FMEA), and Hazard and 

Operability Study (HAZOP) 

Failure Modes and Effects (FMEA) and Hazard and Operability Study (HAZOP) 

are similar risk assessment approaches. Both adopt a systematic component-by-

component evaluation of an engineering system, where the effects, probability and 

severity of a failure of a component are identified (Redmill et al. 1999; Kumamoto and 

Henley 1996). 

In a FMEA the components of a system are listed and the possible failure modes 

are identified for each component. The analysis also identifies the causes of failures and 

then the possible effects of the failures. The probability of the failure mode and the 

severity of the effects are also assessed. Criticality analysis (CA) is then carried out on 
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the FMEA, where criticality is a relative measure of the consequences of a failure mode 

and its frequency of occurrences. It is noted that the criticality measure is very similar to 

the definition of risk in most risk assessment methodologies.  

Besides the component-based structure, another key characteristic of HAZOP is 

that it focuses on the use of standardised guide words and process parameters. A HAZOP 

team will develop the list of guidewords and process parameters prior to the actual study. 

During the actual study, the effects of the various combinations of the guidewords and 

process parameters will be analysed. HAZOP is well used in the chemical industry and a 

detailed study can last two to three weeks. 

2.2.3 What-if analysis 

What-if analysis uses a creative team brainstorming "what if" questioning 

approach to the examination of a process to identify potential hazards and their 

consequences (Crawley and Tyler 2003). Hazards are identified, existing safeguards 

noted, and qualitative severity and likelihood ratings are assigned to aid in risk screening. 

Questions that begin with "what-if" are formulated by the risk assessment team members 

experienced in the process or operation, preferably in advance. The basic steps involved 

in a what-if analysis are: (1) collect and study background information, (2) conduct 

preliminary site visits using interviews and “walk-throughs”, (3) design and prepare 

preliminary “what-ifs” as “seed” questions, (4) facilitate analysis sessions to identify and 

evaluate hazards/ accident scenarios, and (5) documentation and recommendations. 

The what-if analysis is a simple and relatively straightforward risk analysis 

method that can be readily used in most work situations. However, the flexibility of the 
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method also results in a lack of rigid structure to guide the assessment, and hence the 

method is not suitable for inexperienced risk assessment teams. 

2.2.4 Job hazard analysis (JHA) 

The JHA is another widely used technique that is flexible and usually qualitative. 

The JHA concentrates on the job tasks performed by a person or a group (Harms-

Ringdhal 1993). The JHA begins by separating the job into specific and significant job 

steps. The hazards and possible incidents that can occur are then identified. The risks 

posed by the hazards and possible incidents are then estimated either qualitatively or 

quantitatively. Finally, appropriate risk controls are then developed to reduce or eliminate 

the risks to an acceptable level. 

The JHA is a very suitable technique for the construction industry, because the 

industry is project-based and does not have a fixed working environment or facilities. In 

contrast to risk assessment methods that focus on systems and their components, JHA 

provides an appropriate structure for construction risk assessment. Moreover, the 

construction industry has traditionally used activities for project and work planning 

purposes. Thus by adopting the JHA approach, the safety plans developed can be more 

easily integrated into the overall project plans.  

In later chapters, the JHA will be used as the basic risk assessment methodology 

for the SKMS. Useful features like the use of sequential events in ETA and the use of 

standardised guidewords as in HAZOP will also be incorporated into the JHA method for 

coding the knowledge in the SKMS. The integrated JHA will be based on the incident 

causation model developed in this research. Chapter 3 will present the risk assessment 

methodology in the framework of the proposed incident causation model. 
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2.3 Review of Relevant Computer-Based Tools for the Construction 

Industry 

Kletz (1994) and Kjellèn (2000) have called for the use of IT to facilitate 

feedback and learning from past incidents and knowledge. However, based on the study 

by Henderson et al. (2001), only 15% of the companies (across industries) surveyed use a 

primarily computer based system to store incident investigation information, and only 

24% of the companies use information from incident investigations to conduct their risk 

assessment or safety planning. Since the construction industry has one of the poorest 

safety records, it can be inferred that the above mentioned deficiencies are even more 

severe in this industry. Indeed, based on the literature review conducted during this 

research, publications on computer based construction safety management tools are rarely 

found.  

The review of construction safety literature from 1994 till 2003 (past ten years) 

through the Science Citation Index Expanded (Thomson ISI 2003) shows that there had 

been only two construction safety-related publications that researched on computer-based 

tools serving some knowledge management purposes. These two research studies were 

conducted by Kartam (1997) and Hadikusumo and Rowlinson (2002) respectively, and 

they will be discussed in the following sub-sections. 

2.3.1 IKIS-Safety 

Kartam (1997) worked on the development of the key concepts for a prototype 

system known as the integrated knowledge-intensive prototype system for construction 

safety and health performance control (IKIS-Safety). IKIS-Safety relies heavily on a 

Database Management System (DBMS) as its knowledge base. The IKIS-Safety was 
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intended to integrate the safety DBMS with a critical path method (CPM) scheduling 

software, such that for each activity in the scheduling software the relevant safety 

information in the knowledge base would be tagged onto the activity. Safety activities 

could also be inserted as an activity in the schedule if the activity is deemed to require 

visibility. 

Kartam’s work aimed to provide relevant legislation and experts’ 

recommendations to the project manager through retrieval based on exact matching of 

indexes like activity code. The IKIS-Safety is a potentially useful tool because project 

managers are provided with the relevant information for different types of activities on 

the project schedule. However, the tool is not meant to act as a feedback tool that helps 

organisations learn from safety knowledge stored in the organisation. Furthermore, the 

retrieved information will tend to contain precision error (Kjellèn 2000), because the 

retrieval based on only one exactly matched index may not be able to draw out sufficient 

relevant information.  

2.3.2 Design-for-Safety-Process Tool 

Hadikusumo and Rowlinson (2001) attempted to develop a visualization software 

known as the design-for-safety-process (DFSP) tool. The DFSP tool is meant to facilitate 

the hazard identification process during the design phase, so that designers can eliminate 

or minimise the hazards that constructors face during the construction phase. In 

comparison to 2D plans and drawings, a visualisation tool that is able to represent the 

construction process dynamically will help designers identify hazards much more 

effectively. 
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The DFSP tool has three key components: (1) the virtually real construction 

model, (2) virtual reality functions, and (3) safety knowledge database. The construction 

model refers essentially to the construction components of the entity to be built, and the 

virtual reality functions such as collision detection and terrain following are usually 

available in commercial visualisation tools. The safety knowledge database in the DFSP 

tool contains information on construction components/ object types, which acts as the 

indices for safety knowledge like potential hazards and accident precautions. In this way, 

users will be alerted of potential hazards and relevant precautions during the simulation 

of the construction process. 

In the context of this thesis, the DFSP tool is similar to the IKIS-Safety in 

implementation. Even though DFSP tool and IKIS-Safety facilitate safety management 

and planning, they do not attempt to facilitate the feedback of safety knowledge as 

proposed in this research. From the angle of retrieval strategy, both employ a DBMS as 

the safety knowledge base and safety information are retrieved based on exact matching 

of indexes such as activity code and component type. Due to the shortcoming of 

traditional database-style retrieval, DFSP tool and IKIS-Safety can easily miss out on 

relevant hazards or safety information. This point will be further discussed in the next 

section. 

2.4 Tools for Management of Safety Knowledge 

The field of knowledge management (KM) arose from the needs of modern 

companies to acquire, capture, access and reuse knowledge so that they can act 

intelligently in a sustained manner (Fowler 2000; Wig 1993). A large portion of the 

KM’s development had been initiated by the business-oriented organisations seeking 
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ways to face the challenges of the ever-changing business environment. However, KM 

concepts can be applied in almost any type of organisation and for a multitude of 

organisational functions and purposes. 

In most KM applications technology is an important aspect. This is because 

technology serves both as an instrument for knowledge possession and creation and as a 

possible contributor to the knowledge proliferation and utilisation processes (Hammer 

and Champy 1993; Davenport and Beers 1995; McQueen and Kock 1996; Davenport 

1997; Brown and Duguid 1998). Due to the pivotal role of technology in KM, a large 

variety of computer based systems have been developed over the years to perform 

various KM functions. This is in striking contrast to the construction industry. 

The KM systems can be based on Artificial Intelligent (AI) tools and Information 

Technology (IT) like Database Management Systems (DBMS), Knowledge-Based Expert 

System (KBES), Artificial Neural Network (ANN) tools, and Case-Based Reasoning 

(CBR) systems (CBRS) (Baets 1998). Each type of technology has its own strengths and 

weaknesses. Therefore different KM functions, knowledge sources and system 

environments will call for different types of technology to be applied. 

2.4.1 Database Management Systems 

A DBMS is defined as software designed to assist in maintaining and utilising 

large collections of data (Ramankrishnan and Gehrke 2000). Due to its known robustness, 

efficiency and easy administration, it is widely used in managing data for various 

purposes, ranging from financial analyses, to maintenance of personnel information in 

organisations.  
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However, as mentioned earlier, DBMS as a KM tool has limitations in terms of its 

retrieval capabilities. Kjellè (2000) broadly described the use of a DBMS to facilitate the 

abstraction of information from an incident database. He identified two main types of 

error in carrying out a query on the DBMS. Type I-error concerns with the degree of 

retrieval, i.e. wanted data not found, and type II-error concerns with the degree of 

precision, i.e. data obtained are not the wanted data. The reduction of the two types of 

errors is, to a certain extent, conflicting. Kjellè (1987) found that a skilled user would 

achieve a higher degree of retrieval through use of free-text searches, as compared to 

fixed alternatives, but he commented that the higher degree of retrieval might still be at 

the cost of lower degree of precision. 

Watson (1997) further elaborated the retrieval problems in DBMS. He highlighted 

that DBMS is not able to handle fuzzy matches well, and a lot of real world problems 

require such fuzzy matching capability. A DBMS mainly uses keyword search, wildcards 

and logical operators to handle ambiguous search. These DBMS search methods are 

fairly efficient in handling well-defined and straightforward problems, but in complex 

searches, such as in the case of the safety planning tasks that the SKMS aims to facilitate, 

a more flexible and intelligent search method is needed so that similar concepts or 

relevant hazards which may be relevant to a specific case are reviewed. 

2.4.2 Knowledge-Based Expert System 

Knowledge-Based Expert System (KBES) is one of the earliest forms of AI tools. 

It is characterised by its use of large bodies of domain knowledge, facts and procedures 

gleaned from human experts that have proved useful for solving typical problems in their 

domain (Dym and Levitt 1991). The knowledge captured in a classical KBES is usually 
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in the form of IF-Then rules abstracted from experts. By capturing the IF-Then rules and 

relevant facts into the knowledge base, an inference engine can be used to help non-

experts to gain access to invaluable expert knowledge, and hence improve the quality and 

efficiency of work. 

The chemical industry has made numerous attempts in developing KBES to 

improve and automate hazard identification (Catino and Ungar 1995; Chae and Yoon 

1994; Suh et al. 1997a, 1997b; Vaidhyanathan and Venkatasubramanisn 1996; Weatherill 

and Cameron 1989). The impetus for these KBES is mainly to shorten the time taken for 

detailed hazard analyses. As in most KBES, these systems are usually based on experts’ 

context-specific causation models and a knowledge representation scheme that is unique 

to the scope of the research. For instance, the automatic hazard analyser (AHA) 

developed by Kang et al. (1999) is based on several knowledge bases that contain 

information like the spatial arrangement of process units, the connective relation among 

process units and hazardous characteristics of materials. Furthermore, the inference 

process is linked to the process units of the plant. Thus the knowledge and inference 

process of these KBES is only applicable to the intended area of application and is not 

easily adapted to other applications. 

KBES is also known for its difficulty in implementation. The acquisition of expert 

knowledge is often tedious and labour intensive (Holland 1986). More often than not, 

KBES developers and researchers are bogged down by the knowledge acquisition phase, 

because knowledge engineers need to spend a large amount of time to elicit and abstract 

expert knowledge from tacit form to explicit form and finally to rules suitable for use in 

KBES.  
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Furthermore, the level of difficulty is magnified due to the characteristics of the 

construction industry. Even though there are a large number of KBES developed in the 

construction industry Mohan (1990) and Li (1996) noted that the changing environment 

of the construction industry makes it unsuitable for systems or tools to be bound by the 

rules in most KBES. That is because frequent changes in the environment may result in 

errors in the inference process and time-consuming maintenance of the rules. Tah and 

Howes (1998) even felt that despite the large number of KBES developed in the 

construction industry, they have failed to make an impact. 

Moreover, KBES is also unsuitable for the SKMS because it requires clear rules 

that relate cause and effect. However, there is no incident causation theory that can 

reliably relate causes and effects of construction incidents. Thus, the rules developed may 

not be robust enough to allow a KBES to facilitate the safety planning process. 

2.4.3 Artificial Neural Networks 

Artificial Neural Networks (ANN) has the ability to abstract information from a 

pool of incomplete experiences, generalise and apply the learned knowledge in new 

situations (Kasabov 1999). ANN is based on an information-processing paradigm 

inspired by the way the densely interconnected, parallel structure of the human brain 

processes information (Russel and Norvig 1995). Each ANN consists of a number of 

nodes or units connected by links. Each link has a numeric weight associated with it, and 

these weights can be updated to align the network with the inputs that it receives from 

input nodes. 

ANN had been widely used to analyse complex information to identify patterns 

and produce networks that has the ability to estimate likely output relevant to 
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construction projects. For example, Chua et al. (1997) utilised the ANN approach to 

model construction budget performance. The network developed by Chua et al. (1997) 

can be used by construction companies to evaluate management strategies and make 

resource allocation decisions. Another study by Hegazy and Ayed (1998) also used the 

ANN approach to estimate the cost of highway projects. In their study, the advantage of 

ANN is that it is able to handle the complexity in cost estimation, which contrasted with 

the limitations of regression models. 

However, ANN has several drawbacks. Firstly, the training process of the ANN is 

not transparent, making it hard for users to trace and understand the rationale of the 

output (Hegazt et al. 1994). In this way, even though knowledge is captured in the form 

of the ANN, it is not easily transferred to humans. In the case of the SKMS, 

comprehension of the output is very important because the safety planning team will need 

to be able to understand the safety plans in order to implement the safety plans effectively. 

Secondly, the ANN training process requires much trial and error, and the learning 

algorithm needs to be carefully selected. Hence, the training of the ANN also requires 

certain amount of expertise. Thirdly, ANN is more suited for quantitative data, rather 

than symbolic and qualitative data, which make up most of the knowledge used by the 

SKMS. Even though it is possible to quantify qualitative data by imposing a linear or 

even fuzzy scale, this will introduce potential bias into the network. Hence, the ANN will 

not be a suitable technology for the SKMS. 

2.4.4 Case-Based Reasoning Systems 

Case based reasoning (CBR) is a relatively new branch of AI, but in recent years 

there had been an increase in uptake of CBR concepts (Watson 1997). CBR has its root in 
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psychological theory of human reasoning, which has the intuitive paradigm that humans 

solve new problems by recalling past experiences (Mount and Liao 2001). Referring to 

Figure 2.1, a CBR system (CBRS) has three key processes: (1) case representation and 

indexing, (2) retrieval of cases, and (3) case utilisation and adaptation (Kolodner 1993). 

Case representation and indexing is the process of codifying the lessons that a case 

teaches and the context in which the case can teach its lessons. Retrieval of cases is the 

process of searching and determining relevance of past cases in the case base. Case 

utilisation and adaptation refers to the process of making changes to the retrieved cases to 

suit the new situation and harnessing the retrieved knowledge to meet the purpose of the 

users. However, currently a large number of CBRS do not have an adaptation module 

(Cunningham and Bonzano 1999), and the reason for this is that the context and purpose 

of the users may be too complex for simple adaptation strategies. 
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Figure 2.1 Case-based reasoning process 
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CBR is usually applied in “weak theory” domains where the key causal 

relationship and interactions is uncertain or too complex to be modelled effectively. Early 

developments in CBRS resulted in a wide range of tools such as Cyrus (Kolodner 1984), 

MEDIATOR (Simpson 1985), CHEF (Hammond 1986a), PERSUADER (Sycara 1987), 

HYPO (Ashley 1988), CASEY (Koton 1989) and JULIA (Hinrichs 1992). These early 

tools are applied in domains like law, cooking, legal disputes, labour mediation and 

medicine, where a large amount of judgement and intuition is needed to make decisions 

and the available information are usually not numerical. 

CBR concepts had also been successfully applied in different engineering fields, 

for example Chua and Li (2001) applied CBR concepts to the construction contract 

bidding process. They adopted CBR concepts because CBRS is able to simultaneously 

process a large number of highly interrelated variables to arrive at a decision. Liao et al. 

(2000) also investigated the usefulness of a CBRS by developing a diagnostic system that 

identifies failure mechanisms of engineering components. Their study shows that the 

CBRS outperformed rule-based (KBES) and ANN systems. CBRS had also been applied 

in various areas of the construction industry, for example, structural design (Gero 1990; 

Marha and Garza 1996), industrial building design (Börner 1995), office design (Pearce 

et al. 1992), building regulation interpretation (Yang and Robertson 1994), contractor 

prequalification (Ng et al. 1998) and material selection (Dutton and Maun 1997).  

Despite its usefulness, Ong (2002) noted that CBR is not advantageous if the 

domain is well-understood and well-structured, where rules can be easily defined. 

Domains and tasks that do not require heuristics, but instead needs specific models for 

causal reasoning are also not suitable for a CBRS. Furthermore, there should also be 
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sufficient cases, because the usefulness of a CBRS is dependent on the quality and 

availability of cases. Thus, the suitability of a CBRS for a particular problem domain has 

to be carefully assessed prior to development.  

In comparison to the other discussed technologies and in view of the context of 

the SKMS, a CBRS appears to be the most feasible form of technology. This is because 

the sources of safety knowledge, which includes incident cases and past safety plans, are 

naturally episodic and found in the form of cases, where each case contains information 

on the hazards and events related to a specific work situation. These cases are also readily 

available because for more serious cases, government agencies will be required to 

investigate the incidents. Besides, it is also becoming a norm for construction companies 

to have procedures in place to ensure that safety plans are produced prior to actual 

commencement of work, and that most incidents are recorded and investigated.  

A CBRS also has intelligent and fuzzy retrieval capabilities, which allows the past 

knowledge to be retrieved even if the new situation is not exactly the same as the case’s 

situation. This capability is important because most construction work situations are 

unique and retrieval based on exact matching will result in relevant knowledge to be 

overlooked. Thus, comparing with a classical DBMS, CBRS will have significant 

advantages. 

In comparison to KBES, CBRS also proves to be a better choice because, unlike 

KBES, it is meant to function in “weak theory” domains. Furthermore, CBRS is also 

relatively easy to maintain, because cases can be easily deleted or added without affecting 

the performance of the system. Thus, a CBRS is more suited to the dynamic nature of the 

construction industry. 
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In terms of comprehensibility of output, a CBRS has significant merits as 

compared to an ANN. When past cases are retrieved, a user can easily comprehend the 

rationale of the retrieval based on the matching of the indeces of the case and the specific 

knowledge enclosed in the case. This advantage places CBRS as a more desirable choice 

than ANN. Besides this, the safety knowledge available to the SKMS is qualitative and 

symbolic. Hence, ANN will not be able to easily manage the qualitative data effectively 

and reliably. This is in contrast to CBRS’s ability to handle qualitative and symbolic data. 

 

2.5 Conclusions 

The literature review shows that there are many possible risk assessment 

methodologies and the methodologies range from quantitative to qualitative methods. 

These methodologies are essentially the same in terms of basic principles. Since most 

construction projects use activities or tasks as the main planning variable, the job hazard 

analysis (JHA) was deemed to be a suitable technique to be applied in the SKMS. 

However, the relevant characteristics of other risk assessment methodologies will also be 

incorporated into the JHA. 

Besides that, based on the literature review it can be concluded that there is a lack 

of efficient and effective computer based tools to facilitate the reuse of safety knowledge 

in construction safety planning. Only two computer-based tools are considered related to 

the context of this research, but both tools do not directly facilitate feedback of safety 

knowledge. Furthermore, the two computer-based tools employ DBMS style retrieval to 

retrieve safety knowledge. Such an approach is deemed to be inapt for the complex 

functions of the SKMS.  
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The review of KM literature shows that commonly used artificial intelligence 

tools and information technology used are database management system, knowledge-

based expert system, artificial neural network and case-based reasoning system. Each 

type of technology had has its own distinctive strengths and weaknesses. A comparison 

of the needs of the SKMS to the characteristics of each type of technology shows that 

CBRS is the most appropriate technology for developing the framework that will 

facilitate feedback of past safety knowledge to improve construction safety planning 
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Chapter 3  

THE MODIFIED LOSS CAUSATION MODEL 

3.1 Introduction 

This chapter presents the Modified Loss Causation Model (MLCM), which acts as 

the underlying framework for the SKMS. The chapter will first review relevant works in 

incident causation models and then the MLCM will be introduced. Subsequently, the 

application of the MLCM in incident investigation (first level of feedback) and safety 

planning (second level of feedback) will be discussed. 

3.2 Relevant Works 

Following the seminal work by Heinrich (1939), numerous other incident 

causation models (also known as accident causation models) have been developed. These 

incident causation models differ in many fundamental ways and may be classified based 

on their area of application, general structure and key characteristics. The relevant 

incident causation models are categorized into three general categories: energy transfer 

models, individual specific models, and systemic models.  

The energy transfer models, as the name implies, focus on the transmission of 

uncontrolled energy from the source to the victim. The energy transfer model developed 

by Haddon (1980) has much relevance to this study. Haddon developed the model and 

proposed ten basic prevention strategies based on the points of intervention, i.e., the 

energy source, the barriers (between victim and energy source) and the victim. The model 

is very useful in categorizing the types of preventive measures, but by itself the model 
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does not provide a suitable feedback-oriented framework for incident investigation and 

safety planning. 

Individual specific models are models that place emphasis on individuals that 

contributed to the incident in a direct way. These models identify the causes and effects 

of erroneous acts by individuals (usually front-line workers). They (for example, Kerr 

1950, Kerr 1957, and Hinze 1997) usually focus on psychological and behavioral aspects 

of humans. However, these models do not emphasise the role of the organization and the 

safety management system (SMS). Therefore, individual specific models do not explicitly 

facilitate continual improvement of SMS. 

Systemic models refer to models that highlight the role of the organization and its 

systems in the causation of the incident. Henderson et al. (2001) regarded a system-based 

approach as one of the requirements of a successful incident investigation, and this view 

is reflective of the current underlying concept of incident causation. Numerous systemic 

models have been developed over the years, for example, Management Oversight Risk 

Tree (MORT) (Johnson 1980), contributing factors in accident causation (CFAC) model 

(Sanders and Shaw 1988), pathogen model (Reason 1990), Whittington et al.’s (1992) 

model, Loss Causation Model (Bird and Germain 1996), accident root causes tracing 

model (ARCTM) (Abdelhamid and Everett 2000) and Constraint-Response Model (Suraji 

et al. 2001). In these models the organization as a whole plays an important part in the 

causation of an incident. However, these causes are generally latent (Reason 1993), that 

is, these causes or failures reside in the organization and only when local triggers (or 

immediate causes) arise, incidents may occur. These models also implicitly or explicitly 

reinforce the concept of multiple-causation, where the cause of an incident does not lie in 
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one line of causation, but often branch out into multiple levels of factors. Due to the 

emphasis on contributions of the organization, systemic models provide the basic 

framework for the development of the proposed incident causation model.  

3.3 The MLCM 

The proposed incident causation model, the Modified Loss Causation Model 

(MLCM) depicted in Figure 3.1, is primarily based on the Loss Causation Model (LCM) 

by Bird and Germain (1996) and useful features of various incident causation models that 

are reviewed. The MLCM also incorporated insights obtained from the evaluation of 140 

fatal accident cases. The 140 fatal accident cases will be discussed in more detail in the 

next section. 

The LCM, which is the basis for the MLCM, has several useful characteristics. 

One of the main merits of the model is that it promotes proactive thinking (Covey 1989) 

on the part of management, which in turn facilitates feedback. In particular, the model 

identifies “Lack of control” as the fundamental source of incident occurrence, hence 

prompting investigators to end each incident investigation with an examination of the 

Safety Management System (SMS). The model, therefore, encourages organizations to 

accept the responsibility to respond to incidents and not blame it on individuals or 

physical conditions. In this way, each time an incident occurs the planned SMS will be 

reviewed and compared with the causation factors identified to determine whether there 

is a lack of measures to control the occurrence of the causation factor, an inadequacy in 

the planned risk control, or whether the planned measures were inadequately executed. In 

this way, systemic actions can then be implemented to remove flaws in management 

system and organisational culture. 
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Another useful characteristic of the LCM is that it clearly identifies and 

distinguishes immediate causes and underlying factors (also known as basic causes). The 

immediate causes are the triggers that directly lead to the incident sequence, whereas the 

underlying factors are factors that contribute indirectly to the occurrence of the 

immediate causes. The underlying factors are usually hidden in the organization and are 

hard to detect. They are also often contributory in nature and their determination may 

have to depend on investigators’ subjective judgment, but their clear identification can 

usually lead to more significant improvements in safety performance. In the LCM, 

immediate causes are classified into substandard/unsafe conditions and 

substandard/unsafe acts, which refer to the respective physical conditions and human 

behaviours that do not meet safety requirements and can directly cause incident 

occurrences. Underlying factors are also categorized into two sub-categories, personal 

factors and job (or system) factors. Personal factors are defined as factors related to 

individual’s capability, knowledge, skills, attitude and motivation. On the other hand, job 

factors refer to factors related to work or task definition and execution, for example 

inadequate leadership and/or supervision, inadequate engineering and inadequate work 

standards.  

Modifications to the LCM have been made to achieve the objectives of this 

research and the modified version of the LCM, the MLCM, is presented in Figure 3.1. 

The MLCM is composed of five main components, namely: situational variables, incident 

sequence, immediate causes, SMS failures and underlying factors (Goh and Chua 2002, 

Chua and Goh 2004b).  
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The component “situational variables” has been included into the model because 

for each chain of incident causation there is a need to identify the critical characteristics 

of the context or situation in which the incident occurred. In this way, the information and 

learning points derived from the incident investigations can be more easily identified and 

applied to similar contexts or situations across different construction projects. This is 

especially valuable to an industry which is project-based in nature so that the experience 

gleaned from one project can be transferred to other projects. Moreover, these situational 

variables serve as indices for maintaining the incident investigation information in the 

safety knowledge database and for retrieval of related incident experience for safety 

planning.  

The situational variables can also act as stratifying or categorical variables during 

data analysis of incident statistics, so as to allow meaningful comparison of statistical 

results. For instance, the number of incidents can be stratified based on the type of work 

executed prior to the incident. Statistics based on the type of work will provide insights 

on the contribution of different work types to the occurrence of incidents. Some of the 

possible categories of situational variables are listed in Figure 3.1.  

The second component of the MLCM, the incident sequence, is based on 

Haddon’s (1980) energy transfer model and is made up of the breakdown event, contact 

event and consequences. The breakdown event is defined as an initiating point of loss of 

control of a source of energy or substance that, without an intervening event, will lead to 

the occurrence of a contact event. In contrast, contact event is an event where the victim 

comes into contact with the source of energy or substance. The consequences refer to the 

undesirable effects of the incident, for example, property loss, number of man-days lost 
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and type of injuries. It is beneficial to define incidents based on the incident sequence 

structure so that causal factors and safety measures can be classified systematically into 

three levels of intervention and causation, namely, post-contact, pre-contact and 

prevention levels (refer to Figure 3.1).  

During incident investigation, the incident sequence structure of the MLCM will 

prompt investigators to broaden their scope of investigation, and not end an investigation 

prematurely. For example, when a worker loses balance and falls off the edge of a 

building, an investigator could easily state that the “main cause” of the accident is due to 

the fact that the worker was not wearing safety belt. Even if the underlying factors and 

the SMS failures that had contributed to the contact event (falling from height, 

subsequently striking the ground) were identified, the knowledge would only prevent the 

recurrence of the contact event, but not the breakdown event (loss of balance, in this 

instance). To better improve the SMS, the factors that contributed to the occurrence of the 

breakdown event, contact event and the consequences of the incident should be identified. 

Similarly, safety planning should also be based on the three levels of intervention to 

identify sufficient measures to prevent and mitigate the consequences of the breakdown 

events and contact events. 

The third and fifth components of the MLCM are the immediate causes and 

underlying factors, respectively. Unlike the LCM, which only has personal factors in the 

underlying factors, the MLCM include personal factors in both immediate causes and 

underlying factors. This is to prevent difficulties in classification of personal factors, 

particularly in cases where the identified personal factors do not fit the definition of 

underlying factors. For instance, when a worker committed a substandard act by climbing 
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up the bracings of an access scaffold, and it was identified that the personal factor that led 

to this substandard act is improper motivation to save time and effort. Under the LCM the 

personal factor will have to be classified as an underlying factor. However, this 

classification will not fit the definition of underlying factors, which are organisational 

and/or contributory in nature. In the MLCM, personal factors that lead to substandard acts 

of front line operatives are separated from personal factors that influence SMS failures 

and job factors. In this example, an underlying personal factor could be the lack of 

experience of the safety planning team to develop adequate measures (SMS failure) to 

deal with the improper motivation (immediate personal factor) that led to the substandard 

act. Furthermore, organisational factors are also included in the underlying factors to take 

into account its effects on SMS. Organisational factors include factors like poor safety 

culture and inappropriate organisational structure.   

The fourth component of the MLCM is SMS failures, which can be further 

classified into: lack of measures, inadequate execution and inadequate measure. This 

component is similar to the “lack of control” component in the LCM, but in the MLCM 

the SMS failure is identified prior to the underlying factors, which is the reverse of the 

LCM approach. After attempts to apply the LCM approach in this study, it was realised 

that the classification of SMS failures is often a prerequisite to the identification of job 

factors, thus leading to the order proposed in the MLCM. This investigation approach 

will be elaborated subsequently. 

Another feature of the MLCM is the explicit identification of directions of 

influence and causation between the various types of factors. In the MLCM (Figure 3.1), 

substandard acts can be influenced by substandard conditions and vice versa; substandard 
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acts can also be caused by personal factors. In the model, SMS failures can lead to the 

occurrence of immediate causes of an incident, and underlying factors are deemed to 

contribute to the failure of the SMS. Within underlying factors, job factors influence 

personal and organisational factors, and vice versa. These possible directions of influence 

and causation form part of the MLCM framework for incident investigation and safety 

planning. 

3.4 Application in Incident Investigation 

Incident investigation is a key process in the first level of feedback, i.e. feedback 

to the Safety Management System (SMS) that failed (see Figure 1.2). The MLCM can be 

utilized to facilitate and improve the investigation process. The following sub-sections 

show how the MLCM can be used to guide incident investigation, provide a structure for 

the incident investigation information and also codify the information to facilitate 

statistical analysis and storage in the knowledge base. 

3.4.1 MLCM Investigation Approach 

In order to facilitate the first level of feedback, the MLCM is designed to guide 

incident investigation to uncover SMS failures and underlying factors. Based on the 

MLCM, the flow chart depicted in Figure 3.2 is developed to illustrate the MLCM 

approach to identification of SMS failures and underlying factors. 

The first step in the investigation would be to identify the situational variables, 

incident sequence and immediate causes. This initial information is usually the focus of 

current investigation approaches. However, in order to ensure improvement in the SMS, 

root causes have to be uncovered. Thus, in the MLCM approach, the relevant 
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Figure 3.2 The MLCM Investigation Flow Chart 
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safety measures that could have prevented the immediate causes are identified based on 

the situational variables, incident sequence and immediate causes. If no relevant measures 

exist, then there is a failure in the SMS of the “lack of measures” type and the 

investigation will focus on identifying the underlying factors that lead to this failure, and 

subsequently propose appropriate safety measures to prevent a recurrence. If relevant 

safety measures exist, the execution of the measures will be evaluated based on the 

planned procedures.  

When there are no deviations from the planned procedures, the adequacy of the 

planned measures is next evaluated. For any measures that are inadequate, the 

investigators will determine the underlying factors that led to the SMS failure and 

recommend appropriate ramifications. Otherwise, the investigators will re-evaluate their 

assessment of the incident, since from a proactive mindset few or no incidents are 

unpreventable. 

If the deviations from the planned procedures had contributed or caused the 

incident, then there is an inadequate execution of the planned measures so that the 

underlying factors causing the SMS failure have to be detected, and the rectifications 

made. On the other hand, when the deviations do not contribute to the incident directly, 

there is a need to assess the adequacy of the planned measures and the risk posed by the 

deviation. 

3.4.2 Structure for Incident Investigation Information 

In this sub-section, a case study will be presented to illustrate the usefulness of the 

MLCM in providing a structure for the information derived from an investigation. The 

case is based on an actual fatal incident investigated by the Singapore’s Ministry of 
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Manpower, Occupational Safety Department. The incident shown schematically in Figure 

3.3, occurred during a lifting operation, which involved the use of a crawler crane. The 

crawler crane driver was requested to lift a bundle of rebars to the fourth level of a 

building under construction. During the lifting operation the victim was doing some 

general work on the fourth level of the building under construction; the location was near 

to where the rebars were to be placed. When the boom angle of the crane reached 

approximately 60°, the overload alarm sounded and the crane operator lowered the load 

quickly. In the process of releasing the hoist rope, the crawler crane tilted and the boom 

hit the access scaffold. As a result, the bundle of rebars fell onto the victim, who was 

killed on the spot. 
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Figure 3.3 Schematics of incident case study 
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The information from the incident investigation can be structured based on the 

MLCM as depicted in Figure 3.4. The key situational variables of the incident are the 

type of work (lifting operation), type of interacting work (general work), type of 

equipment/plant (crawler crane), type of structure (access scaffold (nearby)) and type of 

materials (rebars). The death of the general worker (consequence) is due to him being 

struck by the falling rebars (contact event), which had fallen due to the crawler crane 

losing its stability (breakdown event). The crawler crane and the nearby access scaffold 

were also damaged due to the breakdown event (consequence).  

The investigation report revealed no information at the pre-contact and post-

contact levels. There had been no investigation on what could have prevented the contact 

event to occur (pre-contact level measures) even after the breakdown event had occurred, 

and what was done to deal with the emergency (post-contact level measures) after the 

contact event had taken place. However, the investigator did identify causal factors at the 

prevention level. The substandard act was the overloading of the crawler crane, and the 

personal factor leading to the substandard act was the crane operator’s underestimation of 

the load. The investigation revealed a lack of explicit measures in the SMS to prevent the 

occurrence of the immediate causes. If there had been lifting supervisors appointed and 

proper measures to ensure that the weight of the load was clearly communicated and 

determined prior to the lift, the incident could have been prevented. However, the 

investigation did not attempt to determine the job, personal or organisational factors for 

the lack of measures, which would constitute the underlying factors for the SMS failures. 
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Figure 3.4 Application of MLCM to structure incident investigation information 

 

From the case study, it can be seen that if the MLCM investigation approach had 

been adopted and applied during the investigation, the level one feedback (feedback to 

improve the SMS that failed) would be achieved. Even though the investigator did 

identify the type of SMS failure (lack of measures) at the prevention level, the 

investigator did not identify the underlying factors that contributed to the failure of the 

SMS, which is essential to ensure improvement of the SMS. Identifying deep-rooted job, 
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personal and organisational factors is difficult, but it is only through their identification 

that effective strategies can be implemented to ensure improvement of the SMS.  

Furthermore, if the investigation had been carried out based on the MLCM 

approach, pre-contact and post-contact measures could then be identified or improved. 

Based on the preceding case, for example, if there had been a lack of measures at the pre-

contact level, the investigator could recommend danger areas to be clearly identified or 

even barricaded during lifting operations. In this way, the contact event of worker being 

struck by falling loads could be prevented. 

3.4.3 MLCM Taxonomy 

To facilitate storage of safety knowledge structure based on the MLCM, a set of 

taxonomy has been developed from the literature review and the study of 140 incident 

investigation cases obtained from the Ministry of Manpower (MOM), Occupational 

Safety Department (OSD) (Chua and Goh 2004a). The 140 incident cases have at least 

one fatality each. Fatal cases were chosen because these cases involve a more thorough 

investigation and hence contain more details for analysis. It is noted that even though 

only fatal cases were used, the same set of taxonomy can also be applied to non-fatal and 

non-injury incidents. Furthermore, the MLCM taxonomy is designed to be generic, so as 

to cover various types of construction situations and factors. This generic set of taxonomy 

is then customised to facilitate knowledge representation in the SKMS (see chapter 4). 

A thorough review on existing incident taxonomies and classifications was 

conducted with the aim to identify suitable categorisations for each of the components in 

the MLCM. Most of the available taxonomies lack a strong underlying incident causation 

model (Hinze et al. 1998; Kartam and Bouz 1998; Feyer and Williamson 1991; Sawacha 
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et al. 1999), making the logic structure of these taxonomies harder to grasp. Bird and 

Germain (1996), and Gordon (1998) developed taxonomies that were relatively 

comprehensive, but not tailored to the context of construction industry. As a result there 

are difficulties in classifying the incident information in some categories, especially the 

job-related factors which differ from the construction context. Furthermore, some parts of 

the taxonomies were split into very detailed factors without sub-categorisations. 

Categorising incident investigation information into detailed factors allows more specific 

knowledge to be gained, but more often than not, such a categorisation approach causes 

data to be too sparse and hence resulting in difficulty in retrieval and reuse of past safety 

knowledge. Whittington et al. (1992) proposed a set of taxonomy based on the 

construction industry; this set of taxonomy is very useful for the development of the 

MLCM taxonomy. However, due to the difference in the underlying incident causation 

model and research objectives, their taxonomy was adopted with many modifications. 

There were also several works in the human error areas (Reason 1990; Rasmussen 

1982) where the classification requires cognitive information that is frequently missing or 

inconclusive in construction accident investigation reports. These classifications often 

require expertise and resources that are not readily obtainable in the construction industry. 

However, human error classifications that focus on behavioural aspects, for example the 

taxonomy developed by Swain and Guttman (1983), can be more easily adapted into the 

substandard act component of the MLCM. 

A draft set of taxonomy based on the taxonomy used by OSD and the literature 

review was first used to analyse forty accident cases. Following that, the taxonomy was 

evaluated and changes were made based on the evaluation. During the actual analysis, the 
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taxonomy was constantly re-evaluated and minor changes were made as and when it was 

deemed necessary. The main categorisation of the taxonomy is summarised in Figure 3.5, 

and the full list of taxonomy is shown in Appendix 1. 

In the MLCM taxonomy presented in Figure 3.5, the type of work that the main 

participants of the incident were involved in is used as the situational variable. The SMS 

components stated in the SMS failures section is based on the SMS elements described in 

Singapore’s code of practice for SMS for construction worksites (CP79) (PSB 1999). If 

necessary the section on SMS failures can be replaced by the main elements of any 

organisation’s SMS structure. 

The results of the study on the 140 fatal accident cases are depicted in the eight 

histograms (Figures A2.1 to A2.8) in the Appendix 2. The eight histograms show the 

distribution of the type of work (situational variable), contact event, breakdown event, 

substandard acts, substandard physical conditions, immediate personal factors, job factors 

based on job functions and job factors related to site management. 

Figure 3.6 shows a summary of the results depicting the main contributors in each 

component of the MLCM. In terms of type of work that resulted in fatal accidents, 

structural work and architectural/renovation/finishing work made up 57.9%. The results 

might be affected by the more frequent occurrence of the two types of work. Still, the 

figure warrants greater attention to be given to both types of work. 
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1. Situational Variables- Type of Work 

1.1 Architectural/Renovation/Finishing work 1.2 Building services work   
1.3 Geotechnical work 1.4 Material/equipment handling/transportation 
1.5 Plant/ machinery/ equipment maintenance/ dismantling 

/installation  
1.6 Structural work  

1.7 Other types of work  
2. Types of Contact Event 

2.1 Fall of person- Person struck object 2.2 Struck by falling objects   
2.3 Striking against or struck by objects 2.4 Caught in or between objects  
2.5 Over-exertion or strenuous movements  2.6 Exposure/contact with extreme temp/pressure 
2.7 Exposure/contact with electric current 2.8 Exposed to harmful substances/radiations 
2.9 Other types of incidents  

3. Types of Breakdown Event 

3.1 Collapse/toppling of object 3.2 Lost of balance- Fall of person  
3.3 Object fall off surface 3.4 Loss control of plant/vehicle (Runaway plant/vehicle) 
3.5 Collision between objects 3.6 Failure of equipment (breakage) 
3.7 Fire/explosion 3.8 Other types of breakdown event 

4. Types of Substandard Physical Conditions (Immediate Causes) 

4.1 Substandard plant/machinery/equipment/tools 4.2 Substandard construction material  
4.3 Substandard structures/parts of structure 4.4 Substandard work environment  
4.5 Other substandard physical condition   

5. Types of Substandard Acts (Immediate Causes) 

5.1 Extraneous Acts 5.2 Improper equipment usage  
5.3 Inappropriate response to emergency 5.4 Omission of basic safety measures 
5.5 Spatial error  5.6 Improper work procedure 
5.7 Other substandard acts   

6. Types of Personal Factors (Immediate Causes and Underlying Factors) 

6.1 Lack of knowledge/skill 6.2 Mental/psychological factors 
6.3 Improper motivation 6.4 Physical/physiological factors  
6.5 Other personal factors   

7. Types of SMS Failures (Refer to CP 79 for detailed clauses) 

(A) Lack of measure (B) Inadequate measure (C) Inadequate execution 
7.1 Safety policy 7.2 Safe work practices  
7.3 Safety training 7.4 Group meetings  
7.5 Incident investigation and analysis  7.6 In-house safety rules and regulations  
7.7 Safety promotion  7.8 Evaluation, selection and control of sub-contractors  
7.9 Safety inspections  7.10 Maintenance regime for all machinery and equipment  
7.11 Hazard analysis  7.12 The control of movements & use of haz. subst. & 

chem. 
7.13 Emergency preparedness  7.14 Occupational health program 

8. Types of Job Factors (Underlying Factors) 

8.1 Factors related to designers 8.2 Factors related to operatives 
8.3 Factors related to project management/corporate  8.4 Factors related to site management  
8.5 Other job factors   

9. Types of Organisational Factors (Underlying Factors) 

9.1 Poor safety and/ or organisational culture 9.2 Inappropriate organisational structure 
9.3 Lack of organisational learning 9.4 Lack of stable workforce 
9.5 Lack of formal and informal communication structure 9.6 Other organisational factors 

Figure 3.5 Main headings of the MLCM taxonomy 
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- Improper equipment
usage (22.8%)

Substandard Physical
Conditions

- Structure/ parts of
structure (69.1%)

Personal Factors
- Lack of knowledge/

skill (52.5%)
- Mental/ psychological

factors (30%)

Lack of information

Safety Management System Failures

Underlying Factors

Job Factors
- Site Management (80.3%)

Personal Factors
- Lack of information

 

Figure 3.6 Summary of findings from 140 fatal accident cases 
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With respect to incident sequence, the distribution of the type of contact event is 

in line with results presented in several other studies based in different countries (Hinze, 

et al., 1998; Jeong, 1998; Kartam and Bouz, 1998). Referring to Figure 3.6, fall of person 

is the main type of contact event in construction industry (55%). Struck by falling object 

is the next highest occurring type of incident, but at a relatively lower frequency of 19.3%. 

As for breakdown event, collapse of object (36.4%) is the main type of breakdown event 

with the next highest occurrence being lost of balance (29.3%). Intuitively, the findings 

makes sense, as the high occurrence of lost of balance and collapse of objects naturally 

leads to a high occurrence of fall of persons and struck by falling objects. 

Findings on substandard acts reveal a high percentage of omission of basic safety 

measures (41.2%) like the wearing of personal protective equipment (PPE) and checking 

of the vehicle’s rear before reversing. The other main substandard act is improper 

equipment usage (22.8%); some common examples are workers using defective mobile 

scaffolds for work, and using employee lifts to transport construction materials. With 

respect to substandard physical conditions, the main violation is in substandard 

structure/parts of structure (69.1%). This usually refers to lack of safety structures like 

guardrails or barriers for open sides of buildings and shoring for trenches.  

Relating to immediate personal factors, the main causes are lack of knowledge or 

skills (52.5%) and mental/psychological factors (30%). These personal factors are usually 

related to the substandard acts of operatives and workers instead of other job categories. 

This would indicate that training and education of operatives can be a vital link in 

reducing substandard acts and physical conditions. However, deeper analysis of the 

factors would be needed to identify the appropriate strategies.  
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From the analysis it is identified that there is insufficient information on the types 

of SMS failures. The accident investigators had not explicitly defined which part of the 

SMS is related to the incident. This shows a lack of effort in focusing on the SMS during 

the investigations. 

For underlying factors, the investigators only identified the job factors. No 

information on personal factors that influenced those contributory underlying job factors 

was available. Most of the job factors belong to the category of site management (80.3%).  

The high concentration of site management factors shows that site management plays an 

important role in construction safety. A more detailed analysis is depicted in A2.8 of 

Appendix 2. The top three factors with the highest occurrence are: failure to ensure 

proper work practices/monitor site work (17.3%), inadequate inspection (16.3%) and 

failure to obtain/allocate adequate/proper physical resources (14.3%). The results also 

imply that there are some procedures and safety measures in place, but there is a lack of 

enforcement and proper execution. This shows that when there is a lack of close 

supervision on site and inadequate provision of physical resources to operatives (workers, 

technicians and plant operators), the SMS can fail, resulting in substandard acts by 

operatives and the occurrence of substandard physical conditions. 

It can be seen that the accident/incident investigation focuses primarily on the 

identification of incident sequence and immediate factors. The lack of identification of 

specific SMS components that failed, represents a missed opportunity to improve the 

SMS so that the recurrence of similar accidents can be alleviated. Similarly, underlying 

personal and organisational factors were also not identified, and this lack of 
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understanding of underlying factors can lead to ineffective safety strategies being adopted, 

which is detrimental to site safety performance.  

The analysis has shown that the MLCM and its taxonomy could be used to 

systematically codify incident cases to reveal useful information and statistics that could 

be utilised to facilitate safety planning. More specifically, the codified incident 

information and statistics helps the safety planning team to: (1) identify hazards, (possible 

hazardous types of work and incident sequences), (2) assess the risk (likelihood and 

severity) of the hazards based on statistical frequency, and (3) understand the immediate 

causes, SMS failures, and underlying causes so as to design and plan appropriate safety 

measures to reduce or eliminate the risks.  

3.5 Application in Safety Planning 

The proposed safety planning process is also structured based on the MLCM so 

that the knowledge stored in incident cases can be retrieved and reused. To demonstrate 

how the MLCM can facilitate the second level of feedback, i.e. utilisation of past safety 

knowledge in safety planning (see Figure 1.2), a safety planning process for a 

hypothetical case is illustrated below.  

3.5.1 Risk Assessment 

Figure 3.7 shows a risk assessment of a lifting operation based on the MLCM 

framework. The situational variables are deliberately made to be similar to the incident 

case study presented earlier (Figure 3.4), which is highly probable as the situation is 

relatively common. Based on the situational variables, a risk assessment tree, structured 

similarly to the event tree analysis methodology, can be developed. The risk assessment 
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tree is comprised of the possible incident sequences and their possible consequences. The 

incident sequences can be inserted based on past incident cases or safety plans. For 

instance, the shaded boxes in Figure 3.7 show the incident sequence and consequences of 

the previously discussed incident being inserted into the risk assessment tree. The process 

of forming the various branches of the risk assessment tree is in fact the SKMS hazard 

identification process, which will be elaborated in chapter 4. 

The assignment of probabilities of occurrence for each event (P(B1), P(C12) and 

P(CSQ123) for the breakdown event, contact event and consequence respectively) can be 

based on subjective sources such as expert judgment or objective observations of actual 

incidents. The use of objective observations will require a large amount of data and an 

effective retrieval and adaptation system, which are rarely available currently. On the 

other hand, a purely subjective assignment of probability will reduce the credibility of 

risk assessment. The objective in the proposed MLCM-based approach is to integrate the 

observed incidents into the subjective probabilities assigned. The Bayesian approach 

(Ang and Tang 1975) can be used to provide this integration so that the prior subjective 

probabilities can be revised with observed occurrence of the events from incident 

investigations. A detailed discussion of the application of Bayesian statistics and SKMS 

risk evaluation will be covered in chapter 5.  

This feedback of incident investigation information is facilitated by the common 

structure in both incident investigation and safety planning, through the consistent use of 

the MLCM. As a result, an augmenting tree can be developed based on past investigation 

cases to supplement the risk assessment tree. Figure 3.8 shows an example of such an 

augmenting tree developed for painting work based on the 140



 

 

Figure 3.7  Risk assessment based on MLCM 
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investigation cases. The figure summarizes the incident sequences of past painting 

work incidents and their corresponding number of occurrences. For instance, out of 

the ten accident cases related to painting work, five cases have a breakdown event of 

the “Lost balance” category, two cases of the “Loss control of transport/plant” 

category, and the remaining three of the “Collapse of temporary structure” category. 

Further classification could also be made to provide more details on the category of 

the breakdown event. For example, out of the three cases with breakdown event of the 

“Collapse of temporary structure” category, two involved a lifting platform and one 

involved a mobile access scaffold. Similarly, contact event and consequences for each 

of the incidents can also be classified based on the set of MLCM taxonomy, and the 

number of occurrences in each category can be determined as depicted in Figure 3.8. 

During risk assessment, the augmenting tree serves to facilitate the identification of a 

possible incident sequence (breakdown event, contact event and consequences), and 

ensures that past incident occurrences will not be overlooked.  Furthermore, the 

assignment of probability of occurrence can also be guided by relative frequencies 

derived from the numbers denoted in the augmenting tree, thus providing a more 

objective basis for probability figures. 

Lifting
Platform

Mobile access
scaffold

Unknown/
OthersSlipped

2 1 23
Lifting

Platform
Lifting

Platform
Mobile access

scaffold
Mobile access

scaffold

Unknown/
Others

Unknown/
OthersSlipped

2 1 23

Painting Work 10
Type of Tasks
(Situational Variables) Painting Work 10Painting Work 10

Collapse of
temporary structure

Loss control of
transport/plant

Lost
balance

3 2 5
Breakdown Events

Collapse of
temporary structure

Collapse of
temporary structure

Loss control of
transport/plant
Loss control of
transport/plant

Lost
balance

Lost
balance

3 2 5

Fall of
person

Caught in or
between objects

2 1

8 2

23

2

Contact Events

Fall of
person
Fall of
person

Caught in or
between objects

Caught in or
between objects

2 1

8 2

23

2

 

Figure 3.8 Augmenting tree developed based on 140 accident cases 
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Similarly, past risk assessment trees developed in past safety plans can also be 

reused in the same way augmenting trees are used. In this way, incident sequences 

that had never occurred before, but were identified by previous safety planning teams, 

will also be included. Furthermore, the probabilities assigned in a past risk assessment 

tree can be used to provide the prior estimates of probability or frequency values of 

incident events. These prior estimates can then be updated based on available 

objective data using the Bayesian approach as mentioned earlier. 

3.5.2 Risk Control Selection 

Figure 3.9 shows the risk control selection at the preventive level for a 

possible breakdown event, “Loss of crane stability”, during the crane-lifting operation 

presented in the earlier section on risk assessment (see Figure 3.7). In order to select 

the relevant risk controls, the immediate causes of the breakdown event are first 

identified based on an approach similar to the preceding risk assessment. Due to the 

similarity of the situational variables and breakdown event between the past case of 

Figure 3.4 and the new case described in Figures 3.7 and 3.9, the findings from the 

investigation of the past case may be utilised. In particular, the immediate causes 

identified, i.e. the substandard act “Overloading” due to the personal factor, 

“Underestimation of load” is included as a possible immediate cause of the 

breakdown event “loss of crane stability” in the new case.   

Furthermore, the preventive measures recommended by investigators are also 

retrieved. In this example, the retrieved preventive measures include procedures to 

ensure that weight of load is communicated prior to lifting, and also the appointment 

of a lifting supervisor (general preventive measure). In this way, preventive measures
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Figure 3.9 Risk control selection based on MLCM 

 

need not be developed from scratch; instead if possible, they could be retrieved from 

past incident investigations when the situational variables for the new case resemble 

those of past cases. These measures would usually be practical and effective since 

they have been implemented before. Moreover, the retrieved measures can be adapted 

to better accommodate any unique situation of the present case, and also improved on, 

if necessary. It should be noted that the safety planning team need not be constrained 

by past cases and they can also identify immediate causes, and corresponding 

measures based on their knowledge and experience. For instance, the substandard 

condition, “Poor ground conditions”, and corresponding control measures such as 
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checking of ground conditions by lifting supervision and use of steel plates as footing, 

(Figure 3.9) could have been identified and planned based on pre-emptive evaluation 

of the situation. 

The above discussed approach can also be adopted for the other levels of 

intervention, i.e. pre-contact and post-contact levels. In this way a thorough and 

systematic SMS can be developed.  

As in the case of risk assessment, past safety plans can also be retrieved and 

reused in the same way past incident cases are reused. The reuse of past safety plans 

will allow safety knowledge of other safety planning teams to be utilised and possibly 

filling in gaps that occurs due to the lack of incident cases in certain areas. 

Furthermore, the example only shows an incident case being retrieved. In an actual 

situation, more than one incident case together with past safety plans can be included 

or addressed. As the organisation accumulates more safety plans and incident cases, 

the number of retrieved and utilised cases will increase. Through the organisational 

learning process of “remembering” and applying past safety knowledge, the quality 

and efficiency of the safety planning process will improve over time. 

3.6 Conclusions 

This chapter presented an incident causation model, the Modified Loss 

Causation Model (MLCM), which is meant to facilitate feedback at two levels, firstly, 

to the SMS that had failed, and secondly, to the safety planning process for future 

construction projects. Through the two levels of feedback, construction SMS, and 

hence safety performance of the industry, can be continually improved.  

In order to achieve the two levels of feedback, the MLCM is designed to 

provide a systematic and logical structure for both incident investigation and safety 

planning, such that if the MLCM is applied consistently, the depth and breadth of both 
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the processes will be ensured. Through the use of the MLCM as a common model for 

incident investigation and safety planning, incident investigation information and past 

safety plans can be retrieved and utilised in new safety plans. To facilitate the storage 

and feedback of safety knowledge structured based on the MLCM, a set of taxonomy 

was also developed. The taxonomy was successfully applied on 140 fatal accident 

cases and it will be used to guide the development of the knowledge representation 

scheme in chapter 4. 

However, in order to fully exploit the ideas and concepts illustrated in this 

chapter, a computer-based system will have to be developed. Thus the subsequent 

chapters will present the various components of the SKMS which will facilitate the 

risk assessment process detailed in Section 3.5.1. The SKMS components presented in 

this thesis will also form the basis for the implementation of risk control selection 

process discussed in Section 3.5.2. 
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Chapter 4  

KNOWLEDGE REPRESENTATION AND CASE RETRIEVAL 

4.1 Introduction 

The Modified Loss Causation Model (MLCM) is meant to act as a common 

knowledge framework for the SKMS. However, for the SKMS to be implemented based 

on Case-based reasoning (CBR) concepts, an integrated and detailed knowledge 

representation scheme has to be developed. This knowledge representation scheme is 

very important because it forms the basis for both case retrieval and adaptation (chapter 

5). 

This chapter is organised into two main portions. The first portion presents the 

knowledge representation scheme employed to abstract knowledge in incident cases and 

past risk assessment trees. The knowledge representation scheme is implemented in a 

relational database and the design of the database will be presented. The second portion 

details the case retrieval mechanism and how it is implemented in the SKMS. The 

discussion on case retrieval will be focused on the similarity scoring functions. 

4.2 Knowledge Representation of Incident Cases and Risk 

Assessment Trees  

In Case-based Reasoning (CBR), a case usually contains two broad types of 

knowledge: (1) the lessons that it teaches, and (2) the context in which it can teach those 

lessons (Kolodner 1993). In this research, the “lessons” that each case teaches consists of 

the incident sequences and the risk (probability × severity) posed by them, whereas the 
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context is described by the situational variables (refer to Figure 3.1). Both types of 

knowledge have to be represented carefully to ensure appropriate retrieval, adaptation 

and application of past cases. 

4.2.1 Modelling Approach for the Lessons Learned 

For a number of CBR concepts that handle real world problems, cases are made 

up of several inter-dependent sub-lessons or sub-cases. Kolodner (1993) identified two 

possible approaches in modelling and utilising these sub-cases. The first approach splits 

and stores a case or episode into independent smaller cases that are sub-parts, or snippets, 

of the original case (Kolodner 1988). Each snippet is a set of specific knowledge with its 

own indices so that these snippets can be retrieved separately from the main case that it 

belongs to. The snippets are then pieced together to form a relevant “lesson” for the user. 

Links between snippets and the overall case may need to be preserved to maintain the 

structure of the reasoning and also the completeness of each full episode. The second 

approach employs monolithic cases which are essentially “large” cases that keep all the 

snippets intact during retrieval. The “large” case’s indices can be clearly associated to 

different snippets of the case so as to allow removal of irrelevant snippets after retrieval.  

Even though the two approaches are different, both agree that each “large” case 

can be separated into snippets. In the context of the SKMS, a “large” case would 

naturally refer to a risk assessment tree or an incident case. Within each “large” case, 

incident events (breakdown event, contact event or consequence) would be a suitable 

snippet, because they form the most basic knowledge blocks of any incident sequence. 

An incident case would contain only one incident sequence, i.e. one breakdown event, 

one contact event and their consequences, while a risk assessment tree would contain a 
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set of incident sequences that forms a tree structure (see Figure 3.7). However, both 

incident cases and the risk assessment tree can be easily represented by incident events. 

The main difference between the two approaches occurs during retrieval. For the 

monolithic case approach, the risk assessment tree or incident cases are retrieved and then 

irrelevant incident events are removed or adapted to improve relevance. On the other 

hand, the snippet approach retrieves only relevant incident events and uses these incident 

events for risk assessment. Past researches (for example Redmond 1990a, 1992, Kolodner 

and Simpson 1989) have shown that both representation approaches are feasible. 

The monolithic approach was implemented in the SKMS because it was 

recognised that case representation is at best an abstraction of a real-world episode, and it 

would be more prudent to keep a “large case” intact and not separated into sub-cases or 

snippets. In this way, subtle details within a complete case which could have been missed 

if the case has been separated into snippets will be made available to the human user. 

Furthermore, the monolithic approach also reduces the computational cost of retrieval, 

because the number of cases to be searched and assessed increases tremendously when 

each snippet is treated as an individual case. Besides, it is also more natural for risk 

assessment teams and incident investigators to view each incident or risk assessment as 

an episode or scenario. However, it is noted that both approaches are viable and the 

snippets approach could still be implemented. 

4.2.2 Modelling Approach for the Context of Lessons Learned 

The modelling of the context in which the lessons are applicable in is also known 

as the indexing problem. The indexing problem can be tackled at two levels, firstly, 

selection of an appropriate indexing vocabulary, and secondly, the selection of specific 
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indices for each case (Kolodner 1993). Indexing vocabulary is a set of possible 

descriptors that can be used to index all the cases in the case base, while indices are 

specific descriptors that designate the situations under which the case is relevant. In this 

research the indexing vocabulary will correspond to the situational variables of the 

MLCM (see Figure 3.1). 

4.2.2.1 Indexing Vocabulary 

In the SKMS, the risk assessment process is based on the Job Hazard Analysis 

(JHA) (also known as Job Safety Analysis) approach. Thus, the indexing vocabulary is 

designed to be able to support the JHA’s structure.  

A JHA is a common safety planning technique that is focused on a specific job 

and the analysis begins by separating the job into specific job steps. For example, a lifting 

operation of precast element (the job) can be separated into five basic job steps: (1) 

position lifting gear over precast element, (2) rig-up precast element, (3) lifting and 

positioning of precast element, (4) un-rig precast element, and (5) lifting of lifting gear 

away from precast element. Each job step is then evaluated for the possible hazards and 

their risks. Subsequently, relevant risk controls are then selected to eliminate or reduce 

the risk. Since incidents usually occur during a specific job step at some stage in an 

activity, an indexing vocabulary that can describe the situational variables of a job step 

during JHA can also be used to describe the context of an incident.  

In this research, the indexing vocabulary employed is based on the following 

linguistic structure: 

Action(s) executed on object(s)-worked-on using resource(s) at location(s) with nearby 

object(s) and nearby action(s)
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For example, when the indexing vocabulary is applied on the example given in 

Section 3.4.2 (chapter 3), the situational variables would be: Lifting operation (Action) 

executed on rebars (object-worked-on) using crawler crane (resource) at unspecified 

(location) with nearby access scaffold (nearby object) and general work (nearby action). 

Each of the underlined italics terms in the above linguistic structure are in fact 

potential sources of harm that can contribute to the occurrence of incident sequences in a 

job step. As highlighted in chapter 3, “harm” is usually due to an uncontrolled source of 

energy or substance being released. Logically, this source of energy or substance would 

originate from: (1) human actions that are applied during some course of work (“action” 

or “nearby action”), (2) any object or substance that was used to facilitate work, was 

acted upon or spatially close to the human action (“object-worked-on”, “resource” or 

“nearby object”), or (3) the environment or location in which the job was being executed 

in (“location”). Thus, the indexing vocabulary used in this research, “action”, “object-

worked-on”, “resource”, “location”, “nearby object”, and “nearby action”, also 

corresponds to hazards that can lead to occurrence of incident sequences. 

4.2.2.2 Indices 

During the indexing of a particular case, not all six types of indexing vocabulary 

have equal importance in relation to the lessons of the case. For instance, Figure 4.1 

shows an accident case based on an actual accident report obtained from Singapore’s 

Land Transport Authority. The accident occurred during the lifting of a precast segment 

that was lowered into an excavated area. Timbers were being used to act as cushions or 

pads to protect the precast segments. After the rigger rigged up the precast segment, the 

crane lifted the precast segment. However, the crane operator and rigger did not realise 
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that a piece of the timber cushion (2” × 2” × 2 feet) was stuck onto the precast segment. 

As the precast segment was being lifted the timber cushion fell off (breakdown event) 

and struck the rigger (contact event), causing his nose to bleed and hence 0.5 man-days 

lost (consequences). 

 

Incident SequenceSituational Variables

Action: Lift

Object-worked-on: 
Precast Segment

Resource: Crane

Location: Excavation 
area

Nearby object: 
Unknown

BE: 
Cushioning 
timber fall 

from height

CE: Rigger 
struck by 

falling 
cushioning 

timber

CSQ: Rigger’s 
Nose bleeding 
(0.5 Man-days 

lost)
Nearby action: 

Unknown

 

Figure 4.1 Example of indices chosen for an incident sequence 
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The situational variables of the case are represented in the left portion of Figure 

4.1, which can also be expressed in the following job step description: 

Lifting of precast segment using crane at excavation area (with unknown nearby object 

and unknown nearby action). 

However, as indicated by the arrows in Figure 4.1, only the action, object-

worked-on and resource are related to one or more of the incident events. In this 

particular case, the breakdown event, “Cushioning timber fall from height”, could only 

have happened when the lifting action was executed and that the cushioning timber was 

present. Furthermore, the cushioning timber was present mainly due to the object-

worked-on, i.e. the precast segment. Hence, for the breakdown event, the indices or 

necessary situational variables are the action (lift) and the object-worked-on (precast 

segment). It is noted that despite the fact that the crane is also a resource, it is not related 

to the breakdown event directly or indirectly. Thus, crane was not a necessary situational 

variable. 

Similarly, the contact event, “Rigger struck by falling cushioning timber”, could 

only have occurred because the rigger and the falling cushioning timber were present.  

The rigger was present because he was involved in the preparation for the lifting of the 

precast segment using the crane, while the necessary situational variables for the falling 

cushioning timber are related to those of the breakdown event. Hence, besides the action 

(lift) and object-worked-on (precast segment), the necessary situational variables for the 

contact event will also include the resource (crane).  

Thus, as a whole, action (lift), object-worked-on (precast segment) and resource 

(crane) are important situational variables for the case. However, not all of these indices 
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are of equal importance, for instance, in the earlier example of Figure 4.1, the resource, 

crane, is not a necessary situational variable for the breakdown event (BE) (therefore no 

arrow linking crane and the BE), and it is also not the only necessary situational variable 

for the contact event (CE) (action and object-worked-on are also necessary situational 

variables for the CE). Thus the importance of the resource to the whole case is relatively 

lower than the action and object-worked-on situational variables, which are necessary 

situational variables for both BE and CE. Other non-missing situational variables such as 

“Location- Excavation Area” are not necessary situational variables for any incident 

events and thus have low weights. Still these situational variables provide contextual 

information that would give a richer picture of the case. A match on these contextual 

situational variables would also mean higher similarity, but such similarity is of lower 

significance and it should not cause distortion in the similarity scoring function. During 

retrieval, the differences in importance of different situational variables need to be 

accounted for and this will be discussed in a later section. 

There can be more than one value for each type of situational variable. For 

example, an action that uses two resources or handles two objects-worked-on 

simultaneously will require more than one resource or object-worked-on to be indexed. 

Besides, the links between the situational variables and each individual incident event 

(snippets) will have to be maintained, so that the relevance of a specific event can be 

assessed during adaptation. The specifics of adaptation processes will be covered in 

chapter 5. 
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4.2.3 Implementation of the SKMS Case Base 

The case base of the SKMS is implemented in Microsoft Access 2002 (MS 

Access), which is a relational database management system (RDBMS) that has a 

programming language called Visual Basic for Applications (VBA) embedded in it. MS 

Access and VBA are relatively easy to use and have various functions to facilitate quick 

prototyping. By implementing the case base in MS Access, other components of the 

SKMS such as the similarity scoring functions can also be developed using VBA. 

Figure 4.2 shows the core relational design for the SKMS case base. Each case’s 

situational variables are stored in the table, “tblSitVar”, using attribute-value pairs, 

“SitVar” and “SitVarValue”.  “tblEvent” represents an individual event of an incident 

case, i.e. it is a snippet of the case. Each event is linked to other events through the 

“PreEventID” field to form the risk assessment tree or incident sequence, i.e. the “large 

case”. The same “attribute-value pair” approach is adopted for the representation of the 

incident sequences of cases, where “EventType” is the “attribute” and “EventValue” 

contains the “value”. The “EventValue” is broadly based on the taxonomy described in 

Appendix 1, while the “EventType” can be breakdown event, intermediate event, contact 

event or consequence. Intermediate event is very similar to a breakdown event, but it 

occurs as a result of a breakdown event and prior to a contact event. It was included to 

allow more flexibility during modelling of incident sequences. 
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tblCase

PK CaseID

Date
CaseTitle
CaseType
CaseDescr
Picture
Stored
JSSeqNo

FK1 JobID

tblEvent

PK EventID

FK1 CaseID
FK2 PreEventID

EventType
EventValue
Lambda
VarOfLambda
EventDescr

tblSitVar

PK SitVarID

FK1 CaseID
SitVar
SitVarValue
Impt
IndexDescr

tblJob

PK JobID

Date
JobTitle
JobDescr
Contract

tblEventIndex

PK,FK1 EventID
PK,FK2 SitVarID

Impt

 

Figure 4.2 Relational Design of the SKMS Case Base 

 

Another important field in the table “tblEvent” is the field, “Lambda”. It is the 

estimated frequency rate of occurrence, λ , of an event, which is the number of incidents 

per 50,000 man-hours worked. λ represents the estimated frequency or likelihood of 

occurrence of job steps or incident events, and it is necessary for the estimation of the 

risk of different incident sequences. Accompanying λ is the field, “VarOfLambda”, 

which stores the variance of λ, and is also necessary for the Bayesian updating of 

likelihood estimates. Chapter 5 will elaborate on how λ and the variance are utilised 

during risk analysis. 
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As can be observed in Figure 4.2, each event is also related to specific indices of 

the “large case” through the link table, “tblEventIndex”. This many-to-many relationship 

allows adaptation to be done on the “large case” to make sure that irrelevant parts of the 

“large case” can be removed. The adaptation process will be presented in chapter 5. 

4.3 Case Retrieval 

In a CBRS, the knowledge representation scheme directly affects the quality of 

case retrieval and hence the overall effectiveness of the system. In the SKMS, cases are 

represented and retrieved using the monolithic approach. The following subsections will 

present how the earlier discussed knowledge representation approach is employed in the 

proposed case retrieval strategy. 

4.3.1 Overview of Case Retrieval Approaches 

Retrieval of past cases is one of the most important processes of any CBRS. The 

quality of retrieval directly affects the relevance of retrieved cases and hence the overall 

quality of the reminding capability of a CBRS. Two main types of retrieval approaches 

are usually employed: indexing approaches and similarity scoring (or distance-based) 

approaches (Liao et al. 1998).  

Indexing approaches organise cases based on an indexing structure that is derived 

using various machine learning methods, for example decision tree, neural network and 

clustering algorithms. During the retrieval, the system will then traverse the indexing 

structure and search for the stored cases that match the input case’s indices. However, to 

develop the indexing structure, there is a need for a relatively large number of cases 

which  should cover as wide a spectrum of cases as possible. In most organisations, there 
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may not be a sufficient number and variety of cases to meet this requirement. Besides, 

indexing approaches generally require a clear output or outcome variable so as to allow 

the indexing structure to learn from the outcome of past cases. In the case of the SKMS, 

there is no clear outcome variable that allows a decision tree or neural network to be built. 

Furthermore, to ensure that the indexing structure is relevant and effective, the indexing 

structure may have to be retrained or redeveloped when the case base grows. This 

requires more effort in maintenance and may defeat some of the benefits of a CBRS. 

Thus, indexing approaches are not suitable to be applied in the SKMS. 

CBRS are also sometimes known as “similarity-searching systems” (Liao et al. 

2000), that is because most CBRS use the similarity scoring approach. Similarity scoring 

approaches compute a quantitative distance or similarity score between the input case and 

each stored case during retrieval. The similarity score is used to determine relevance of 

stored cases and realise inexact matching, where the higher the similarity score the more 

relevant the stored case. Subsequently, the top K number of cases will be retrieved for 

utilisation or further adaptation. Thus, the similarity scoring approach is also known as 

the K nearest neighbours (KNN) retrieval. The key advantage of using similarity score is 

the flexibility of the approach. Furthermore, the approach can even be applied on 

relatively small case bases.  

Similarity scores are usually determined at two levels: local similarity and global 

similarity (Empolis Knowledge Management 2001). Local similarity refers to the 

similarity between the values of a particular attribute (or situational variable, in the case 

of the SKMS) of two cases. On the other hand, global similarity refers to the similarity 

between two cases. Local similarity is usually determined using a similarity function, and 
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global similarity is determined through a weighting function that places different 

importance on local similarity scores of different attributes. The determination of global 

similarity score will be discussed subsequently in this chapter. 

A wide range of similarity functions have been developed and utilised in 

numerous fields such as machine learning, data mining, and statistics to determine local 

similarity. Similarity functions can be categorised based on the type of attributes that it 

operates on. The categories generally include interval-scaled, ratio-scaled, binary, 

nominal, and ordinal attributes (Han and Kamber 2001).  

Interval-scaled attributes are basically continuous measurements on a linear scale. 

Examples of interval-scaled attributes include such things as length in kilometres, height 

in metres and weight kilograms. Ratio-scaled attributes refer to attributes that are 

measured based on a nonlinear scale, such as an exponential scale. A binary attribute is 

an attribute that has only two possible values: 0 or 1. For example, the attribute 

“CaseType” of the table “tblCase” in Figure 4.2 can be represented as a binary attribute, 

where the possible values are “incident” (0) or “risk assessment tree” (1). Nominal 

attributes can be considered as an extension of binary attribute, where the key difference 

is that a nominal attribute can have more than two possible values or state. For example, 

the situational variable, resource, can have a very large number of possible values, 

ranging from crane, to pneumatic breaker to arc-welding set. It is noted that all the 

indices in the SKMS that are used to determine similarity scores are nominal attributes. 

These attributes are the various situational variables that are represented using the 

attribute-value pair, “SitVar”-“SitVarValue” (Figure 4.2). Lastly, ordinal attributes or 

more specifically discrete ordinal attributes, are nominal attributes that are ordered in a 
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meaningful sequence. An example of an ordinal attribute would be size, which can have 

the possible values, small, medium and large. 

4.3.2 Similarity Functions for Nominal Attributes 

Most nominal attributes employ taxonomy-based approaches for similarity 

assessment, where a taxonomy tree (Empolis Knowledge Management 2001; Cognitive 

Systems 1992) or an abstraction hierarchy (Kolodner 1993) is the basis of the similarity 

score. Figure 4.3 shows an example of a taxonomy tree that is developed based on 

Illingworth’s (2001) categorisation of construction plants. For taxonomy-based 

approaches, the degree of similarity between two values is determined based either on the 

distance of the most specific common abstraction (MSCA) of the two values or the 

specificity of the MSCA. The MSCA can be defined as the most specific or lowest level 

value on a taxonomy tree that is linked to the two values that are assessed for their 

similarity. For example, with reference to Figure 4.3, the MSCA for “wheel barrows” and 

“concrete pumps” is “on-site material handling”. Generally, the nearer or more specific 

the MSCA, the more similar the two values are.  

For the specificity approach, local similarity score can be assigned arbitrarily 

based on how specific a MSCA is. For instance, with reference to Figure 4.3, all plants 

that share the MSCA, “Three-dimensional horizontal plane”, can be assigned a local 

similarity score of 0.6, and all plants that share the MSCA, “Crane”, can be assigned a 

local similarity score of 0.8 to reflect the fact that “Crane” is a more specific abstraction 

than “Three-dimensional horizontal plane”.  



 

 

Figure 4.3 A taxonomy tree for construction plants (Illingworth 2001) 
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In contrast, the distance approach is usually based on Equation (4.1), 

 

LSS (V1, V2) = 1- {1 × [ (L1 + L2) / (LT1 + LT2) ] }   ( 4.1 ) 

 

where LSS (V1, V2) is the local similarity score between values V1 and V2, L1 (L2) is the 

number of links between the MSCA and V1 (V2), and LT1 (LT2) is the total number of 

links between V1 (V2) and the top node.  

Essentially, Equation (4.1) determines the LSS between two values based on the 

number of links or distance from the MSCA in relation to the distance of the values from 

the top node. For example, with reference to Figure 4.3, the LSS between an excavator 

(V1) and platform hoist (V2) would be 0.29 (MSCA = “On-site material handling”, L1 = 3, 

L2 = 2, LT1 = 4 and , LT2 = 3), while an excavator (V1) and a mobile crane (V2) will have 

a similarity of 0.75 (MSCA = “Cranes”, L1 = 1, L2 = 1, LT1 = 4 and , LT2 = 4). 

Both distance approach and specificity approach are not able to handle situations 

where a value can be classified in more than one way. This is due to the nature of 

taxonomy trees, which usually have strict classification rule for each value, i.e. each 

value can only be linked to one higher node. The problem is illustrated in Figure 4.3, a 

lorry mounted crane can be considered both as a crane and a lorry, and therefore it can be 

classified both under crane or lorry. If the lorry mounted crane is classified under both 

crane and lorry, there will be more than one possible LSS when the lorry crane is 

compared to another value. This would then cause ambiguity as to which LSS should be 

adopted. A taxonomy-based approach, therefore, is suitable only when the possible 
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values can be uniquely classified, but this is often not the case in most real world 

problems where values usually have more than one way of classification.  

In several CBR applications, nominal attributes are also transformed into binary 

attributes by creating a new binary attribute for each of the possible nominal values (Yau 

and Yang 1998; Liao et al. 2000; Han and Kamber 2001). For example, Yau and Yang 

(1998) transformed the attribute “Soil Strength” into eleven binary attributes, such as 

“Soil_Strength_Soft” and “Soil_Strength_M_Firm”, each with possible values of “0” and 

“1”. Another alternative similarity assessment approach commonly adopted is the use of 

tables or rules to directly assign similarity scores between each possible pair of values 

(Karim and Adeli, 2003; Luu et al. 2003). However, such approaches are only feasible if 

the possible values of each attribute are minimal, and do not require a large number of 

binary attributes or unwieldy tables or rules. 

Another possible approach is to evaluate the sub-attributes or sub-concepts of 

each of the values (Domeshek 1991b; Kolodner 1993). Kolodner (1993) gave an example 

of how different dishes can be compared based on the ingredients (sub-concepts) that 

they share and the ingredients that they differ. The local similarity score can then 

computed using the following equation (Liao et al., 1998), 

 

  LSS (V1, V2) = α × common / (α × common + β × different)  ( 4.2 ) 

 

where common (different) represents the number of sub-concepts that are shared (not 

shared) between V1 and V2, and α and β are corresponding weights for common and 
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different. It is noted that “common” can also be termed as intercept (∩) and “common + 

different” can also be interpreted as union (U) (Cognitive Systems 1992). 

The sub-concepts approach is flexible and does not require taxonomy trees to be 

developed explicitly. Values do not need to be strictly defined under any category, but 

rather each value is represented by a list of sub-concepts. However, Equation (4.2) does 

not take into account the difference between specific and general sub-concepts. This is 

detrimental to the accuracy of the similarity score because a match on a more specific 

sub-attribute should indicate a higher similarity, while a match on a more general sub-

attribute should carry less significance. 

4.3.3 Similarity Scoring in the SKMS 

Based on the above discussion, it is apparent that none of the local similarity 

assessment functions or approaches are directly germane to the context of the SKMS. 

Thus, a modified approach that is based on the sub-concept approach has been developed. 

For the proposed approach, a semantic network (Russel and Norvig 1995), instead of a 

taxonomy tree, is constructed for various situational variables. An example of a semantic 

network for the situational variable “Action” is shown in Figure 4.4. A semantic network 

is an extension of a taxonomy tree, where the key difference is that nodes in a semantic 

network can have more than one parent. For example, the node “(2) Move” of Figure 4.4 

has two parent nodes, “(1-1) Human” and (1-2-5) Self-propelled object”. The semantic 

network allows for more flexibility during classification of concepts or sub-concepts and 

would not have the problem of a taxonomy tree where each value can only have one 

parent node. 
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Figure 4.4 Semantic network for situational variable “Action” 
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The semantic networks are constructed based on the procedure depicted in the 

flowchart of Figure 4.5. A case base is first constructed based on more than 100 incident 

cases taken from the Safety Information System of Singapore’s Land Transport Authority 

(LTA) and 10 risk assessment trees obtained from the Mine Safety and Health 

Administration (MSHA 2004), LTA and various construction contractors. The incident 

and risk assessment tree case base is then queried and all the possible values for each 

situational variable are collated. Each of the values is then given a working definition that 

highlights the key characteristics of the value that distinguishes it from the other possible 

values, and at the same time emphasises the usual types of hazardous object, energy or 

harmful substance associated with the value. For example, the value, “Lift” of the 

situation variable “Action” is defined as, “to move an object from a lower to a higher 

position, hence accumulating gravitational potential energy and producing kinetic energy 

during the movement.” This definition highlights the nature of the action, and at the same 

time makes reference to the type of energy or harmful substance that is produced or 

accumulated during the action.  

Based on the working definitions, the values are then compared and contrasted to 

identify similar and contrasting sub-concepts that the values represent. These sub-

concepts are then repeatedly evaluated to identify more specific concepts. Related sub-

concepts are then linked together by an arrow, where the arrow points from the more 

general sub-concept to the more specific sub-concept. As mentioned earlier, in a semantic 

network a lower level sub-concept can be linked to more than one parent. However, such 

multiple linkages can cause the semantic network to be complex and incomprehensible, 

and is avoided whenever possible.  
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Figure 4.5 Flowchart for construction of taxonomy tree 
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The semantic networks developed represent all the possible sub-concepts for each 

situational variable. Each value can then be represented by a list of sub-concepts picked 

off from the corresponding semantic networks. For example, Figure 4.6 shows the list of 

sub-concepts for the values “Hack”, “Excavate” and “Extract” of the situational variable 

“Action”. 

In order to differentiate the sub-concepts in terms of specificity and importance, a 

weight is assigned to each of the nodes (see Figure 4.4). The weights assigned are not the 

same as the similarity values that are assigned to the MSCA or nodes in a taxonomy tree. 

Instead, they range from 0.1 to 0.5, and are assigned based on the guiding principle that 

nodes that are higher, or closer to the root, are more influential on the categorisation of 

values. These higher nodes are generally given higher weights. Another principle is that 

sub-concepts that are more directly related to potential hazards are also given higher 

weights. The weights for the sub-concepts of the situational variable “Action” is 

indicated by the bold decimals above the corresponding nodes (see Figure 4.4). Thus the 

weights can be viewed as the incremental similarity due to a match on the sub-concept 

represented by the node.  

It is noted that situational variables that refer to the same fundamental subjects 

share the same semantic network. For example, objects-worked-on, resources and nearby 

objects share the same semantic network, because all three situational variables refer to 

physical construction-related objects. For the prototype SKMS, three semantic networks 

had been developed besides the semantic network for the situational variable “Action” 

(Figure 4.4). The other two semantic networks are depicted in Appendix 3. It is noted that 



 

 

Figure 4.6 Sub-concepts for the values “Hack”, “Extract” and “Excavate” under situational variable “Action” 83 



the semantic network for the situational variable “location” is very small and forms only 

a taxonomy tree (see Figure A3.2 of Appendix 3). This is due to the low number of cases 

with the situational variable “location”. When more cases is added into the case base the 

semantic network for “location” will also grow correspondingly. 

With the semantic networks, the local similarity scores between values V1 and V2 

can then be calculated based on the following equation, 

 

LSS (V1, V2) = ∑wci / (∑wci + ∑wdj)    ( 4.3 ) 

 

where i = 1, 2, … common, j = 1, 2, … different, wci is the weight of the common sub-

concept i, and wdj is the weight of the sub-concept j that belongs only to either V1 or V2. 

Therefore, Equation (4.3) is still based on Equation (4.2), but instead of operating on the 

numbers of intercepting and non-intercepting sub-concepts, the equation makes use of the 

weights assigned in the semantic networks for the determination of the LSS. 

Equation (4.3) can be demonstrated using a simple example based on Figure 4.6. 

The LSS for the values “Excavate” (V1) and “Extract” (V2) can be calculated using 

Equation (4.3) as follows: 

 

LSS(V1,V2)  = (0.4 + 0.4 + 0.5 + 0.4 + 0.3) / [(0.1 + 0.3 + 0.1 + 0.4 + 0.3 + 0.1) + (0.4 

+ 0.4 + 0.5 + 0.4 + 0.3)] 

= 2 / (2 + 3.3) = 0.606 

 The LSS for the values “Excavate” (V1) and “Hack” (V3) can also be calculated as 

follows: 
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LSS(V1,V3)  = (0.5 + 0.4 + 0.3 + 0.1) / [(0.4 + 0.4 + 0.4 + 0.3 + 0.3 + 0.1) + (0.5 + 0.4 

+ 0.3 + 0.1)] 

= 1.3 / (1.9 + 1.3) = 0.406 

 

The comparison above shows that “Excavate” is more similar to “Extract” than to 

“Hack”, which is logical because both excavation and extraction usually involves moving 

of objects for the purpose of separating them from other objects. Even though, hacking 

also has the purpose of separating objects, it employs a (very) high frequency impact 

force to achieve that. So that, the hazards that hacking pose is generally different from 

that of excavation and extraction. 

4.3.4 Global Similarity Score 

The Global Similarity Score (GSS) is the overall similarity score between any two 

cases. During retrieval, the GSS is computed to determine the similarity between the 

input case and each of the stored cases. Most CBRSs compute GSS based on a weighted 

sum of the LSS of all the attribute-value pairs of the compared cases.  

The following equation can be used for the computation of the GSS between two 

cases, C1 and C2, 

 

  GSS (C1, C2) = ∑(wi × LSSi) / (∑wi)  i = 1, 2, …, n  ( 4.4 ) 

 

where wi is the corresponding weight of attribute i, LSSi the local similarity score for C1’s 

and C2’s values for the attribute i (refer to Equation (4.3)), and n the number of attributes. 
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For the SKMS, the attributes will refer to the six situational variables discussed in earlier 

sections. 

The key issue in the calculation of the GSS is the determination of the weights for 

the different attributes, i.e. wi. Various approaches have been adopted to establish the 

most suitable set of weights, but two of the most common approaches are, user-

assignment and pre-assignment. The former approach is simply to allow users to assign 

the appropriate weights based on their assessment of the context of the problem. This 

approach is more appropriate if the users have the required level of expertise to make the 

necessary judgements. An example of the user-assignment approach can be found in 

Karim and Adeli (2003), where the Traffic Engineers using the CBRS are allowed to 

input the weights before the retrieval. On the other hand, pre-assignment approaches use 

fixed sets of weights that were determined based on different methods. For example, 

Chua et al. (2001) and Park and Han (2002) employed the Analytic Hierarchy Process 

(AHP) to determine the set of pre-assigned weights. Other methods to determine the pre-

assigned set of weights also include optimisation methods like Genetic Algorithm (Zhang 

1998) and Gradient Descent Method (Yau and Yang 1998). The pre-assignment approach 

can also be based on experts’ subjective opinion. The advantage of the pre-assignment 

approach is that novice users need not assign the weights and focus only on providing the 

necessary information to describe the input case. However, this approach decreases the 

flexibility that might be needed to express the peculiarity of different input cases. 

Due to the wide range of possible types of work situations and activities in 

construction projects, the importance of the situational variables would vary depending 

on the context of the case so that the pre-assignment approach appears to be impractical 
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for the SKMS. It is very difficult to assign a fixed set of weights for such a large and 

varying domain. Thus, the user-assignment approach has been adopted for the SKMS. 

However, in contrast to the conventional user-assignment approach, where end users of 

the system assign the weights (or importance ratings), in the SKMS, the weights are 

assigned by incident investigators or risk assessment teams when they input the cases into 

the SKMS. This would allow the GSS calculated to better reflect the relevance of the 

incident sequence(s) to the input case. The proposed approach is feasible because 

incident investigators and risk assessment teams are usually required to record their 

findings and plans. Thus the assignment of importance rating will be operationally 

possible. Besides, the incident investigators and risk assessment teams should have 

sufficient expertise to assign the importance ratings. 

The importance rating for each of the situational variables is stored in the “Impt” 

field of the table “tblSitVar” (see Figure 4.2). The rating is based on a Likert 5-point 

scale (see Table 4.1), where “1” would mean that the attribute-value pair is of low 

importance to the case, such as situational variables that provide only contextual 

information. On the other end of the scale, a “5” would indicate that the case’s 

occurrence is highly dependent on that situational variable. The assignment of importance 

is also related to the selection of indices discussed in Section 4.2.2.2.  

In contrast, for a conventional user-assigned approach it will be difficult for 

inexperienced users to assign the importance weights of the situational variables because 

they would not know the possible incident sequences that the situational variables might 

lead to. Even for experienced users the assignment of weights might be tedious and 

defeat the purpose of the SKMS, because they will have to first identify possible incident 
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sequences and then assign the weights based on the number of incident events that is 

linked to each situational variable. 

 

Table 4.1 Likert 5-point scale for assessment of importance of each necessary situational variable 

Very 
Unimportant 

Unimportant Neither 
Important Nor 
Unimportant 

Important Very 
Important 

1 2 3 4 5 
 

4.3.5 Implementation of Case Retrieval in SKMS 

Even though the SKMS retrieves both incident cases and past risk assessment 

trees to support risk assessment, both types of cases are retrieved using the retrieval 

process and the same LSS and GSS functions. The basic input for the retrieval process is 

the description of the current risk assessment context based on the set of situational 

variables described in Section 4.2. Each situational variable and its corresponding value 

are captured as an attribute-value pair. Hence, the input case is basically made up of a set 

of attribute-value pairs. As discussed earlier, only applicable situational variables need to 

be used and each situational variable can have more than one value. If the input case has 

more than one value for a particular situational variable, the value with the highest LSS 

will be used for the computation of the GSS. Chapter 6 will further illustrate how the 

GSS is computed. 

In the prototype SKMS, incident cases with GSS greater than the user-specified 

GSS threshold, SSGT, will be retrieved. For the prototype SKMS, the value of 0.6 is set as 

the default value for SSGT. However, users can always increase the SSGT to achieve 

higher relevance of retrieved cases or lower the SSGT to ensure that there are more 
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retrieved cases for utilisation. On the other hand, only the highest scoring risk assessment 

tree is retrieved and used in safety planning. The approach can be easily extended to 

retrieve more than one risk assessment tree and integrate all retrieved risk assessment 

trees using a similar methodology for the adaptation of incident cases.  

Due to the novelty of the approach, available CBR shells are not able to facilitate 

the proposed approach. Thus, programming was done using Visual Basic for 

Applications (VBA) to create the necessary functions for LSS and GSS calculations. 

Details of the developed prototype will be further discussed in chapter 6. 

4.4 Conclusions 

This chapter discussed two of the most important and inter-dependent components 

of any CBRS, the knowledge representation and case retrieval components. The 

knowledge representation is structured based on two types of knowledge, the lessons 

learned and the context of the lessons learned or indices. The lessons learned were 

modelled as a “large case” with the snippets of the case being linked to the indices to 

allow for adaptation after retrieval. The indices correspond to the situational variables 

described in the Modified Loss Causation Model (MLCM) described in chapter 3. The 

proposed knowledge representation scheme is implemented in a relational database. 

Case retrieval consists of two main parts, the determination of the Local 

Similarity Score (LSS) and the computation of the Global Similarity Score (GSS) based 

on the LSS. In the SKMS, the LSS is calculated using a weighted sub-attributes approach 

that is dependent on a series of semantic networks. The LSS are then combined through a 

weighting function to compute the Global Similarity Score (GSS). As opposed to the 

convention of having end users assigning the weights for the different attributes, the 
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proposed approach adopted in the SKMS requires weights to be assigned during the input 

of the stored case, which allows for more appropriate assessment of importance of the 

situational variables.  
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Chapter 5  

ADAPTATION AND UTILISATION OF RETRIEVED CASES 

5.1 Introduction 

Through the knowledge representation scheme and case retrieval mechanism, 

presented in the earlier chapter, a most similar risk assessment tree and a set of 

relevant incident cases has been retrieved to support the risk assessment process. 

Regardless of retrieval mechanism, retrieved cases always have the potential of 

containing irrelevant portions that should not be directly applied to the new case. In 

CBR, this problem is dealt with through various adaptation strategies and methods.  

Kolodner (1993) proposed ten adaptation strategies, which are further 

classified under substitution, transformation and other methods. Substitution methods 

substitute the retrieved case’s values with more appropriate values based on other 

relevant cases or some pre-determined model. On the other hand, transformation 

methods employ deletion or addition of relevant information to modify the retrieved 

lessons learned. Adaptation strategies classified under other methods are usually 

domain-specific and may be more complex, for example case-based adaptation, which 

retrieves and utilises the adaptation steps of past adaptation that were implemented 

(Vong et al. 2002).  

It is possible to implement the various types of adaptation strategies proposed 

by Kolodner (1993) using some form of rules (Bergmann and Wilke 1998). For 

instance, the CBR Works development shell, Empolis Knowledge Management 

GmbH (2001) makes use of rules with a set of preconditions and corresponding 

conclusions to execute all adaptations. The set of preconditions are a conjunction of 

conditions that the retrieved case and/or input case must meet before the 
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corresponding conclusions or list of actions is fired. Such rule-based adaptation is 

widely applied in different CBRS, for example Luu et al. (2003), Suh et al. (1998), 

and Sinha and May (2001). 

However, it is noted that besides the types of adaptation strategies proposed by 

Kolodner (1993), the possible range of adaptation strategies is very wide. Adaptation 

is a very generic and high level process that can be implemented through any rational 

and sound method. For instance numerous CBRS have used different mathematical or 

statistical formulae for adaptation purposes (Chua et al. 2001; Suh et al. 1998). Other 

tools like genetic algorithm, decision tree, neural network, and statistical models can 

also be implemented to adapt the retrieved cases.  

To meet the aims and suit the context of the SKMS, a novel adaptation 

strategy has been developed herein. The adaptation process is separated into two main 

steps: (1) adaptation during hazard identification, and (2) adaptation during risk 

analysis. Subsequent sections will present the adaptation process in detail. 

5.2 Adaptation During Hazard Identification 

Hazard identification is the process of identifying the “things” of a certain 

situation that can cause harm, who (or what) can be harmed and how the harm occurs 

(BSI 1996). In the context of the SKMS, the “situation” refers to the job step that the 

user is planning for and the “things” that can cause harm, or hazards,  would refer 

specifically to each of the situational variables describing the job step, i.e. “action”, 

“object-worked-on”, “resource”, “location”, “nearby object”, and “nearby action”. 

The retrieved incident sequences provides information on how harm occurs, while 

information on who (or what) can be harmed are contained in consequences. However, 

for simplicity sake, the prototype SKMS has focused on severity of the harm and has 

omitted information on the possible victims or objects that can be damaged. This 
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information can be easily included without any significant change in the design of the 

case base and the same principles and methods of implementation discussed herein 

still apply. 

Even though the incident sequences of retrieved incident cases and risk 

assessment tree contain incident events relevant to the current context, there are 

portions of the retrieved cases which may not be applicable to the current situation 

and these must be removed. Furthermore, the retrieved incident cases will have to be 

incorporated into the risk assessment tree to produce a single adapted risk assessment 

tree that is relevant to the case in view. 

The adaptation method used during SKMS’s hazard identification belongs to 

the transformation type, but unlike classical transformation methods, the 

transformation adaptation employed is executed in two main steps. The first step 

focuses on the retrieved risk assessment tree, where the risk assessment tree is pruned 

to delete irrelevant incident events. The second step focuses on the set of retrieved 

incident cases, where the retrieved incident cases are trimmed to remove irrelevant 

incident events and then integrated into the risk assessment tree. 

5.2.1 Adaptation of Retrieved Risk Assessment Tree 

The adaptation of the retrieved risk assessment tree is based on the comparison 

of the indices of individual incident events in the risk assessment tree with the set of 

situational variables of the input case. The indices of incident events are subsets of the 

indices of the retrieved case. If any of the indices of an incident event is not similar 

(LSS < 0.6) to the corresponding situational variable of the input case, the incident 

event will be deleted.  

An example of the proposed pruning adaptation is shown in Figure 5.1. 



 

 

Figure 5.1 Example of a risk assessment tree being pruned 94 



The inverted tree structure in Figure 5.1 represents the risk assessment tree that is 

being retrieved. The set of indices for the risk assessment tree is shown at the top of 

the inverted tree. The job step is a steel pipe cutting work that uses arc-welding 

equipment. The activity was executed in a temporary shed and near an excavator. For 

clarity sake, the consequences of each of the contact events are not presented in the 

risk assessment tree.  

For illustration purposes, three events as highlighted in the figure are labelled 

for discussion. The indices of Events 1, 2 and 3 are presented in the different call-out 

boxes. Events 1 and 2 are breakdown events and Event 3 is a contact event. During 

adaptation, the relevance of incident events in the risk assessment tree is ascertained 

by determining the degree of match between indices of each corresponding event with 

the input case’s situational variables.  

As illustrated, Event 1 is pruned off because its Resource index, “Resource = 

Arc-welding set”, is dissimilar (LSS = 0.1 < 0.6) to the corresponding index of the 

input case, i.e. “Resource = Handheld rebar cutter”. As reflected in Figure 5.1, all 

events that follow Event 1 are also deleted. This is because each preceding event acts 

as a necessary condition for its following events. Thus once the preceding event is 

deleted, the subsequent events that are linked to it are also deleted.  

On the other hand, the relevant Action and Object-worked-on indices of Event 

2, “Action = Cutting” (LSS = 1) and “Object-worked-on = Steel Pipe” (LSS = 0.65), 

are similar (LSS ≥ 0.6) to the corresponding situational variables of the input case, 

“Action = Cutting” and “Object-worked-on = Reinforcement Bar” respectively. Thus, 

Event 2 is deemed to be a possible incident event in the new situation and is not 

deleted. Accordingly, Event 2 of the adapted tree will be updated with the 
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corresponding situational variables of the input case, namely “Action = Cutting” and 

“Object-worked-on = Reinforcement Bar”. 

Similar to Event 1, Event 3 was deleted because its Resource index, “Resource 

= Arc-welding set”, is dissimilar (LSS = 0.1 < 0.6) to the corresponding index of the 

input case, i.e. “Resource = Handheld rebar cutter”. The deletion was made despite its 

preceding event being accepted. This shows that even though the preceding event is a 

necessary condition for Event 3 to be accepted, it is not a sufficient condition that 

guarantees its acceptance. 

As can be seen from the above example, only events with indices that matched 

(LSS ≥ 0.6) with the corresponding indices of the input case, for instance Event 2, 

will be accepted. In the example, Events 1 and 3 only have one index and the events 

were deleted when their only index was dissimilar to the corresponding index of the 

input case. In the situation when an event has more than one index, the event will also 

be deleted when any one of its indices failed to match with the corresponding index of 

the input case. Indices, like preceding events, are necessary conditions for an event to 

be accepted so that whenever one of these necessary conditions is not met the event 

will be deleted. 

5.2.2 Adaptation of Retrieved Incident Cases 

The adaptation of retrieved incident cases is executed after the retrieved risk 

assessment tree had been pruned. The adaptation is performed in two parts. The 

incident cases are first pruned to remove irrelevant incident events. Subsequently, 

incident events that are relevant but not identified earlier are inserted into the risk 

assessment tree.  

The pruning of the incident cases is done in the same way as in the pruning of 

the risk assessment tree, but the insertion of the incident cases requires some 
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additional checks. The incident event identified from the incident cases may have 

already been included in the retrieved risk assessment tree, and its insertion will cause 

duplication of incident sequences. Such duplication is not permissible because of the 

assumption of mutual exclusivity in the events for probabilistic analysis required in 

the risk analysis subsequently.  

Although these duplicated events are not inserted, they hold important 

frequency or likelihood data that will be utilised during risk analysis using the adapted 

risk assessment tree (to be covered in Section 5.3). The link between the duplicated 

event and the corresponding event in the adapted risk assessment tree is maintained 

using the table “tblRelvEvent” as depicted in Figure 5.2. In this way, it is also 

possible to retrieve the past event or even the full incident case to provide justification 

for the adapted risk assessment tree. 

 

 

Figure 5.2 Table “tblRelvEvent” inserted to allow retrieval of likelihood data during risk analysis 
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The procedure for incorporating the incident cases into the risk assessment 

tree is illustrated with a hypothetical example depicted in Figure 5.3. The left hand 

side of Figure 5.3 shows a risk assessment tree that has been retrieved and pruned. On 

the right hand side are two incident cases, incidents 1 and 2, which have been 

retrieved based on similarity to the input case with situational variables shown at the 

top of the retrieved risk assessment tree.  

Incidents 1 and 2 are based on actual incident cases obtained from the Land 

Transport Authority with a GSS of 1. All the incident events of the two incidents have 

the index “Resource = Pneumatic breaker”, while the contact event of incident 1 has 

two other indices, “Action = Hack” and “Object-worked-on = Concrete column”. 

Consequently, all the incident events are relevant to the input case (LSS = 1 ≥ 0.6 for 

all events), so that no pruning of incident events was necessary. In the case where the 

incident events are irrelevant, the pruning process will be based on the same 

procedure described in Section 5.2.1, by which the event nodes with LSS < 0.6 will be 

removed along with its child event nodes. 

To insert the retrieved and relevant incident cases, all associated incident 

events are checked for duplication. An event is deemed to be duplicated when it 

occurs under the same preceding event (or root node for the case of breakdown events) 

and has the same event value. In the case of incident 2 (refer to Figure 5.3), when the 

system identifies that the breakdown event “Pneumatic breaker bounced off” is a 

duplicate, the breakdown event was not inserted. The system then continues to check 

the subsequent events of the duplicated event in the incident case. The subsequent 

events will still be inserted if they are not duplicated. In this example, the contact 

event of incident 2 was compared with the contact events under the duplicated 

breakdown event, “Pneumatic breaker bounced off”, in the retrieved risk assessment 



 

 

Figure 5.3 Example of incident cases being integrated in to a risk assessment tree 

99 



tree. Since the contact event, “Operator struck by pneumatic breaker”, is also 

duplicated, the contact event of incident 2 is not inserted.  

5.3 Adaptation during Risk Analysis 

Following hazard identification, risk analysis is carried out to assess the risk of 

the job step. Risk is generally defined as 

 

Risk = P  S         ( 5.1 ) 

 

where P is the probability (or likelihood) of occurrence of “harm” and S is the 

expected severity of the “harm” (BSI, 1996, Baker et al., 1995, Redmill et al., 1999). 

In the SKMS, risk analysis is conducted based on the risk assessment tree 

created during hazard identification. Figure 5.4 shows a simplified risk assessment 

tree with all the likelihood and severity values necessary to calculate the risk of the 

job step. At the top of the risk assessment tree is a set of situational variables that 

defines the job step. The parameter λ represents frequency of incident for the job step, 

and it has the unit number of incident per 50,000 man-hours worked (no. per 50,000 

mhr). Furthermore, each of the incident events in the risk assessment tree has a 

conditional probability value, for example P(B1|SV), P(C11|SV,B1) and 

P(S113|SV,B1,C11), where SV refers to situational variables of the job step, B the 

breakdown event, C the contact event, and S the severity of the consequences of the 

preceding incident events. For clarity of presentation, intermediate events were not 

added into the Figure 5.4. During implementation, the intermediate events can be 

easily inserted with no significant changes in terms of principles and methodology.  

The severity values are measured in terms of man-days lost (MDL), but any 

other quantitative measurements of severity, including subjective estimates can be 
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used. As can be observed in Figure 5.4, severity can be classified into four categories. 

The four categories are based on Singapore’s Land Transport Authority’s (LTA) 

categorization, which are “None”, “Minor”, “Major” and “Fatal”. The four categories 

corresponds to 0 MDL, 1-3 MDL, ≥ 4 MDL (but not fatal) and 6000 MDL 

respectively. It is noted that 6000 MDL is based on a common rule of thumb used in 

Singapore. LTA’s categorization was based on Singapore’s definition of reportable 

cases, where all incidents which results in more than 3 days medical leave or more 

than 24-hours hospitalization will have to be reported to the Ministry of Manpower 

(MOM).  

Based on the risk assessment tree and the various likelihood parameters, the 

overall risk of the job step can be calculated as follows, 
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where  the expected severity of the contact event Cij, 

 the expected severity of the breakdown event Bi, and 

 is the expected severity of the job step in the event that 

incidents occur. It can be observed that equation (5.2) is an expansion of equation 

(5.1). 
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Figure 5.4 Risk assessment tree with various likelihood values 
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5.3.1 Adaptation for Estimation of Likelihood Values 

In order to estimate the various likelihood values, two main sources of 

information, subjective and objective sources, are exploited. The SKMS retrieves both 

subjective and objective sources during retrieval. The most relevant risk assessment 

tree will usually contain subjective estimates provided by a previous risk assessment 

team. The subjective estimates can also be provided by the current risk assessment 

team and both current and previous subjective estimates can be averaged. These 

subjective sources will be based on the judgement, experience and knowledge of 

current or previous risk assessment team. However, subjective estimates had been 

known to be especially susceptible to various biases (Sanders and McCormick, 1992).  

On the other hand, the set of relevant incident cases will contain objective 

likelihood estimates determined based on dates of incident occurrence and man-hours 

worked data of past projects. However, due to the fact that incidents are relatively rare 

events and that construction activities are seldom exactly the same, objective sources 

are often insufficient to produce statistically significant evaluations. 

To overcome the above mentioned problems, the SKMS adapts the retrieved 

cases by integrating the subjective estimates from the retrieved risk assessment tree 

with the objective values from the set of relevant incident cases using the Bayesian 

approach (Ang and Tang 1975). The Bayesian approach is a systematic technique to 

incorporate objective data like incident occurrence data into subjective information, 

such as judgement, experience and intuition. The Bayesian approach is unconstrained 

by the size of incident data. Even in the event of no incidents, or having data based on 

a limited time frame, the approach can still be employed to “update” prior estimates. 

Furthermore, the Bayesian approach fits seamlessly into the proposed continual 

learning framework.  
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As opposed to classical statistics, the Bayesian method assumes that unknown 

parameters of a distribution are also random variables with their own distributions and 

the fundamental equation in the Bayesian approach is the simple but powerful Bayes’ 

Theorem,  

 

       P(A|B)P(B) = P(B|A)P(A)        ( 5.3 ) 

 

which will be elaborated in later sections. However, in order to apply the Bayesian 

approach, a suitable probability distribution function (PDF) based on a statistical 

model of construction incidents is adopted. 

5.3.2 Statistical Model of Construction Incidents 

The underlying assumption of a statistical model of construction incidents is 

that the occurrences of construction incidents are random. However, random does not 

refer to “without cause” or “unaffected by human actions”, but instead it refers to the 

presence of variations. Variation means that two situations with similar characteristics 

will not guarantee the same outcome (Montgomery and Runger 1999). Randomness 

of incident occurrence has been highlighted in several incident causation models 

using different names like “window of accident opportunity”, “chance” and “luck” 

(Ramsey 1985; Sanders and Shaw 1988; Reason 1990; McKinnon 2000). Hence, to 

allow the Modified Loss Causation Model (MLCM) to be employed as the basis for 

the statistical model an additional “chance” component had been inserted to reflect the 

random nature of incident occurrence (see Figure 5.5) (Chua and Goh 2004c).  
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Figure 5.5 Simplified version of the Modified Loss Causation Model with an additional “Chance” 

component 

 

Generally, modelling construction incident occurrences statistically will allow 

systematic characterization and analysis of the risk posed by construction incidents. A 

statistical approach presents a stable and sound foundation provided by mathematical 

boundaries and reasoning, thus improving the effectiveness of safety management. 

However, there has been a lack of formal studies to model construction incident 

occurrence statistically. Most of the past statistical studies on construction incidents 

(Jeong 1998; Cattledge et al., 1996; Kartam and Bouz 1998; Hinze, et al. 1998; 

Larsson and Field 2002) have been focused on summarising incident data obtained 

from different sources. 

In contrast, traffic safety and reliability engineering researchers had utilised 

numerous probability distributions to model the occurrence of incidents in their 

respective areas, and one of the most commonly used is the Poisson distribution 

(Bendell 1991; Mordarres et al. 1999; Fridstrom, et al. 1995). However, because of 

differences in the environment, scale and nature of the processes, it would be prudent 

to verify that the distributions, in particular the Poisson distribution, are suitable for 

modelling the occurrence of construction incidents. 
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From a statistical point of view, the MLCM can be reorganised and interpreted 

as in Figure 5.6, wherein the model is now separated into two key components, 

namely the random component and the systematic component. The random 

component is inherent or objective, that is, the randomness is irremovable and 

uncontrollable. It is usually described by a probability density function (PDF),  

 

f (Φ, t) = P(X=x) ( 5.4 )  

 

where Φ is a vector representing the parameters of the PDF, t the amount of exposure, 

for instance time or man-hours worked, X a random variable representing the number 

of incidents for t exposure, and x a specific value of X, e.g. a specific number of 

incidents for t exposure. 

 

Random ComponentSystematic Component

Distribution 
Parameters

Φ(S.V., SMS)

Situational Variable 
(S.V.)

Quality of Safety 
Management 

System (SMS)

No. of incident occ.
P(X=x)=f (Φ(S.V., SMS),t)

Frequency of 
Immediate 

Causes

Underlying 
Factors

 

Figure 5.6 Statistical model of construction incident based on the MLCM 

 

The systematic component, on the other hand, comprises the conditions or 

factors that are relatively controllable, and these would be the factors in the process 

system that influence the values of the parameters, Φ, of the PDF in Equation (5.4). 

As depicted in Figure 5.6, Φ is a vector of parameters that are influenced by a set of 
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systematic independent variables. In the MLCM, these variables are broadly defined 

as situational variables and the quality of the SMS, which can be further categorised 

into more detailed variables. Even though immediate causes and underlying factors 

also influence Φ, they have been excluded and deemed to be represented by SMS 

quality, since they are highly correlated with the SMS quality. This will remove 

multi-collinearity problems in the model and retain the independence assumption 

required in many statistical methods. Moreover, among the three variables, 

quantitative measures of the SMS quality appear to be more readily available due to 

the rising trend of utilising quantitative SMS audit checklists in the construction 

industry. 

The PDF (function f (·) in Equation (5.4)) that describes the random nature of 

construction incident occurrence is fundamental to the model.  The choice of the PDF 

will define Φ, and hence the complexity of the statistical analyses. The range of 

possible PDFs is very wide, but ideally it should be simple to use and practical. On 

this count, the Poisson distribution is definitely one of the most preferred PDFs, as it 

only has one parameter. Its suitability to model the randomness of construction 

incident occurrence will be verified subsequently. 

5.3.2.1 The Poisson Process Model 

Based on the context of this research, the Poisson process can be considered as 

a type of counting process with the random variable X(t) (t≥0), representing the total 

number of construction incidents that had occurred up to time t. In the broader sense, 

the variable t need not be time, but can be any continuum such as space and man-

hours worked (number of workers × average number of hours worked). In comparison 

to conventional time intervals, man-hours worked will be able to better reflect the 

amount of activity on site, which in turn, directly reflects the risk exposure, and hence 
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the probability of incident occurrence. Thus, man-hours worked has been used for the 

statistical model presented herein.  

If construction incident occurrence follows a Poisson process, an interval of t 

man-hours worked can be partitioned into n number of subintervals of small enough 

length (t/n) such that there is at most one incident within each subinterval. This 

innocuous condition is necessary to facilitate the derivation of the Poisson distribution 

based on the binomial distribution, and it is a reasonable assumption in the 

construction context. For instance, an appropriate subinterval would be one man-

minute worked or even one man-second worked, that is, the probability that there is 

more than one incident occurrence in an infinitesimally small interval is zero. 

Another assumption in the Poisson process is the mutual independence of the 

number of incidents in disjointed intervals. This assumption is reasonable in the case 

of a construction project which is composed of many workers performing diverse 

activities at any time.  

Consequently, in a Poisson distribution, the number of incident occurrences in 

an interval t, X(t), with λ (> 0) as the mean number of incidents in t man-hours 

worked, can be represented by the probability mass function1 (PMF) 
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===  ( 5.5 ) 

 

                                                 

1 Generally, Probability Mass Function can be interpreted as the PDF of discrete random 

variables. 
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Equation (5.5) is based on the assumption that λ is constant. If this assumption 

is relaxed such that the probability of one incident in an interval is not constant, but a 

function of independent variables (Fridstrom et al., 1995) such as situational variables 

and SMS quality, then the PMF is modified as 
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In this case, the distribution is known as the non-homogeneous Poisson distribution 

(Ross, 2000). With reference to the model depicted in Figure 5.6, function f (·) in the 

figure would refer to the non-homogeneous Poisson distribution in Equation (5.6), 

with λ(SV,SMS) as the corresponding Φ(SV,SMS). It is noted that generally the SV 

and SMS of construction projects can vary as construction work progresses, but these 

variations are usually not significant. Hence, in most situation Equation (5.5), i.e. a 

homogeneous Poisson distribution, would be an adequate model. 

The Poisson distribution was validated based on the incident data of fourteen 

contracts obtained from the LTA (Chua and Goh 2004c). Two goodness-of-fit tests, 

chi-square goodness-of-fit test (Conover 1980; Bendel, 1991) and the dispersion test 

(Cox and Lewis 1966; Nicholson 1985, 1986; Nicholson and Wong 1993), were 

applied on the data sets. The goodness-of-fit tests show that all the contracts can be 

modelled by the homogeneous Poisson distribution except for one of the contracts 

(Contract A), which requires the non-homogeneous Poisson distribution. It was 

identified that the failure of Contract A to fit the homogeneous Poisson distribution 

could be attributed to a change in the nature of work during the project or due to 

significant improvement in the SMS following the occurrence of earlier incidents. 
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Such major changes were not observed in the other 13 contracts. Thus, it can be 

generally accepted that the homogeneous Poisson distribution can be applied to model 

construction incident occurrence. The details of the analyses can be found in 

Appendix 4. 

5.3.2.2 Partitioned Poisson Model 

The earlier section shows that construction incident occurrence can be 

modelled by the homogeneous Poisson distribution. Thus, with the partitioned 

property of the Poisson process the distribution for categorized sub-processes can then 

be easily derived. Some possible categories include type of job step, type of incident 

or severity of incident. In general, it cannot be assumed that the distribution of 

incident occurrence for the categorized sub-processes will share the same distribution 

as the overall project, and even then, the parameters for the sub-processes are not 

readily available from the parameter for the overall project. The partitioned property 

of the Poisson model, however, implies that the sub-processes for various 

categorisations are also Poisson distributed and their parameters can be easily derived 

(Ross 2000; Wolff 1989). This is conditional on the assumption that the categorisation 

of these incidents is random. That is, the probability of an incident being classified as 

a category, say category “A”, is independent of its sequence, and categorisation of the 

preceding incident. Of particular interest to this research is the categorisation based on 

the type of job step, which is essentially defined by the set of situational variables 

depicted at the top of the inverted tree of Figure 5.4. Since the situational variables are 

low level descriptions of construction work, such that they are generally applicable to 

most possible types of site activities, it is reasonable to assume that the type of job 

step of an incident is random.  
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Figure 5.7 illustrates the concept of a partitioned Poisson process. The 

combined process can be visualised to be composed of several sub-processes defined 

by the possible values of a categorisation. The random variable Xij is the number of  
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Figure 5.7 Partitioning a Poisson process into sub-processes 

 

incident occurrences of sub-process j (j = 1 to m) in interval i (i = 1 to n). For an 

interval i, say i = 1, the total number of construction incident occurrence, X1, is the 

sum of X1j of all the sub-processes. If the estimated mean arrival rate of construction 

incidents for a project is Tλ , the distribution of a particular sub-process j will also be 

Poisson distributed with mean arrival rate given by 

 

Tjj EEP λλ ×= )|(  ( 5.7 ) 
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where P(Ej|E) is the probability of the categorisation given that an incident has 

occurred, Ej being the categorization of the sub-process j. P(Ej|E) can be estimated as 

the relative frequency of Ej, i.e. number of incidents of category Ej/total number of 

incidents. For a mutually exclusive and collectively exhaustive categorization of the 

sub-processes,  

 

 ( 5.8 ) ∑=
j jT λλ

 

When applied to the context of this research, each project’s incident 

occurrence process can be visualised to be made up of two sub-processes: (1) 

incidents that occurred in SV similar to the input case, and (2) incidents that occurred 

in SV not similar to the input case. 

Furthermore, based on Equation (5.8) and the assumption that each of sub-

processes is statistically independent, the variances of the rates of incident occurrence 

are related based on Equation (5.9), 

 

∑=
j jT VarVar )()( λλ  ( 5.9 ) 

 

Equations (5.8) and (5.9) represent two simple, but important conditions that 

should be satisfied by the risk assessment tree. However, during hazard identification, 

incident events are pruned and inserted. Such alterations of the risk assessment tree 

cause inconsistency with Equations (5.8) and (5.9), because it implies removal and 

addition of sub-processes. The inconsistencies can be easily removed by adjusting the 
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values of each process according to its sub-processes by applying Equations (5.8) and 

(5.9). The adjustment will be illustrated in the case study of the next chapter. 

5.3.3 Bayesian Approach for Adaptation of Likelihood Values 

Based on the establishment of the Poisson model of construction incidents and 

utilisation of the partitioned property of the Poisson process, it was derived that 

incident occurrence for each input case can be modelled by the Poisson distribution. 

Having determined the distribution of incident occurrence, it is then possible to 

implement the Bayesian approach to integrate subjective and objective likelihood or 

frequency values. 

As mentioned earlier, the Bayesian approach treats the parameters of 

distribution as a random variable and hence each parameter will also have its own 

distribution. Accordingly, if )(λf ′  is the prior (initial estimated) distribution of the 

incident rate, λ, the posterior (revised) distribution )(λf ′′  after incorporating incident 

observations may be obtained through Bayesian updating as 

 

)(')()('' λλλ fkLf =          ( 5.10 )  

 

where L(λ) is the likelihood of observing the incident set assuming )(λf ′ , and in 

which k is the normalising constant given by 
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Since construction incidents may be modelled as a Poisson process, it is 

convenient to assume a gamma distribution for λ in order to form a conjugate pair 

with the Poisson distribution (Ang and Tang 1975; Modarres et al. 1999). A conjugate 

pair will permit significant mathematical simplification to Equation (5.11) above, and 

both )(λf ′  and )(λf ′′  will take the same gamma distribution but with different 

values for the shape parameter, κ, and scale parameter, 1/υ. In this way, if κ ′  and υ′  

are the corresponding prior estimates of the parameters, the revised parameters would 

be  

 

κ′′ = κ′ + x          ( 5.12 ) 

υ′′ = υ′ + t           ( 5.13 ) 

 

where x is the number of incidents recorded in t intervals (of 50,000 mhr). Moreover, 

the parameters κ and υ of the gamma distribution are related to its mean and variance 

by the following relations: 

 

λ = κ/υ            ( 5.14 ) 

Var(λ) = κ/υ2            ( 5.15 ) 

 

Thus, the prior estimate of the mean rate of incident occurrence, λ ′ , may be 

easily revised to λ ′′  through the above relations using κ ′′  and υ ′′ . However, as 

presented in Figure 5.6,  λ is influenced by SMS quality and SV. Thus the information 

used for the estimation and updating of λ has to be of similar SMS quality and project 
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level SV, e.g. project type. If the full statistical model is developed, more detailed 

adaptation can actually be developed to estimate and adapt λ . At this stage, only 

information obtained from projects of similar SMS quality and project type are used 

in the Bayesian updating. It is noted that even though it is possible to include these 

variables during retrieval, inclusion of these variables might cause possible incident 

sequences to be eliminated, and hence not identified during hazard identification. 

Thus, it is more prudent to impose these conditions only during risk analysis. 

The Bayesian approach can be illustrated with a hypothetical example based 

on a common construction scenario. Suppose a risk assessment team is conducting 

risk assessment for a precast column installation activity and one of the job steps has 

the following situational variables (SVs): 

 Lifting of precast columns using tower crane and lifting gears at near 

structures with nearby concreting truck and concreting work.  

With this set of SVs for the input case, a risk assessment tree and a set of 

relevant incident cases can be retrieved. The retrieved cases are assumed to belong to 

projects with similar SMS quality and project type. In this way all the retrieved cases 

can be used to update the likelihood values.  

Supposedly, during risk analysis, one of the incident sequences in the retrieved 

risk assessment tree, IS1, is duplicated by the two retrieved incident cases, ICa and 

ICb , where ICa and ICb are retrieved from Project A, which is the only project in the 

case base. Figure 5.8 shows the occurrence of ICa and ICb on the project timeline (in 

50,000 mhr intervals). As can be observed in Figure 5.8, the Poisson process 1 

represents the incident occurrences of Project A. This Poisson process can be 

separated into two sub-processes, process 11 and 12, where process 12 represents 

incidents with similar SV as the input case of this example and having the same 
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incident sequence as that of IS1, while process 11 represents all other incident 

occurrences.  

 

 

Figure 5.8 Poisson processes of Project A 

 

Being the first occurrence in process 12, the t for ICa, ta, is simply the total 

mhr between the start of the project till the date of occurrence of ICa. The t for 

subsequent incidents, such as ICb, will be determined based on the mhr between 

occurrences. This is based on one of the  assumptions of the Poisson process that any 

interval could be partitioned into small intervals that are independent (Montgomery 

and Runger 1999), such that the t for each event is independent of earlier t-values, and 

every time an event occurs the “Poisson clock” is set back to zero (Antelman 1997). 

However, due to the fact that ICb, is the last occurrence in process 12, tB (tB = tb + tn) 

instead of tb (see Figure 5.8) is recorded as its t-value. This is to account for the non-

occurrence of incidents between the occurrence of ICb and the end of the project. This 

approach is also consistent with concept of Poisson sampling (Antelman 1997), where 

the period of observation, T, is fixed. The fixed T implies that the period of non-

occurrence just before the end of observation is also taken into consideration. 
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The t-values of the incident cases are then used to update the frequency values 

attached to the relevant leaf nodes of the risk assessment tree. The update is applied 

on the leaf nodes because in a risk assessment tree the leaf nodes’ frequency values 

describe the frequency of occurrence of the intersection of the leaf node and all its 

higher nodes, i.e. the whole incident sequence. In this example, suppose that the prior 

likelihood estimate is λ ′ = 0.01 per 50,000 mhr, and the coefficient of variance 

(C.O.V.) is 33%. 

For this example, say ta = 30, tb = 20, tn = 18 and tB = tb + tn = 38 (see Figure 

5.8). The number of incident cases would correspond to x (=2) in Equation (5.12), 

while ta + tB (= 68) or the total project mhr of the case base would correspond to t of 

Equation (5.13). With the above information, it is then possible to derive the updated 

or posterior mean arrival rate, λ ′′ , as follows: 

Using Equations (5.14) and (5.15), C.O.V. = λλ /)(Var  = 0.33 

  33.0)'/'/('/' 2 =υκυκ  

  33.0'/1 =κ  

  κ′ = 9.183 

Substituting κ’ = 9.183 and λ ′ = 0.01 into Equation (5.14) would yield, 

  υ′ = κ′ / λ ′  = 918.3 

Substituting κ′ = 9.183, υ′ = 918.3, x = 2, and t = 68 into Equations (5.12) and 

(5.13), the revised parameters would be 

κ′′ = κ′ + x = 9.183 + 2 = 11.183 

υ′′ = υ′ + t =  918.3 + 68 = 986.3 

Therefore from Equation (5.14) and (5.15), λ ′′ = κ′′/υ′′ = 0.01134, updated 

Var(λ) = κ′′/υ′′2 = 1.150 × 10-05 and C.O.V. = 29.9%. As can be observed λ ′′ is 
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slightly higher than λ ′  and the C.O.V. had decreased. This is because the objective 

data has a frequency rate higher than the subjective estimates, and the Bayesian 

approach allows the two estimates to be integrated systematically so as to achieve a 

balance. Furthermore, the reduction in C.O.V. shows that the uncertainty in the prior 

estimates is decreased due to the inclusion of objective data. 

In the event that the case base has multiple projects with the same SMS quality 

and project type as the input case, the x and t values for a particular branch of the risk 

assessment tree will be based on all projects. x (Equation (5.12)) will be the total 

number of retrieved incident cases (GSS ≥ 0.6) with the same incident sequence and t 

(Equation (5.13)) will be the total mhr of all the relevant projects. This means that the 

non-occurrence (x = 0) of a particular incident sequence in a project will also be 

accounted for in the adaptation.  

All the leaf nodes of the risk assessment tree can also be updated in the same 

manner as shown above. Once all the leaf nodes of the risk assessment tree have been 

updated, the frequency values and variances of the rest of the tree can then be easily 

derived based on Equations (5.8) and (5.9). Each node’s frequency value and variance 

are updated based on the summation of the frequency values and variances of its child 

nodes respectively. In this way the updating will be done in a bottom-up manner. The 

bottom-up propagation will be further illustrated in chapter 6. 

Once all the frequency values of a risk assessment tree are adapted, Equation 

(5.2) can then be used to ascertain the level of risk of the job step. The risks posed by 

different incident events can also be determined by aggregating the risk values of 

incident events contained in the corresponding sub-trees under the relevant incident 

event. These lower level risks can then assist the risk assessment team in identifying 

the higher risk incident events for more focused risk control selection. A case study 
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will be illustrated in the next chapter to validate and further clarify the proposed 

approach. 

5.4 Conclusions 

This chapter has presented important adaptation concepts to facilitate the risk 

assessment process. The adaptation strategy is separated into two main parts to 

facilitate hazard identification and risk analysis sequentially. During hazard 

identification the focus is on facilitating hazard identification by ensuring that 

irrelevant incident events of the retrieved risk assessment tree and incident cases are 

pruned off. Furthermore, an approach has been devised to integrate the incident cases 

and risk assessment tree. During the integration, special attention is paid to the careful 

retention of frequency data of retrieved cases so that they can be utilised for the 

adaptation of likelihood values for risk analysis purposes. 

After hazard identification, an adapted risk assessment tree is produced, and 

the next task is to estimate all the likelihood values attached to each of the incident 

event. The estimation is based on the Bayesian approach, which allows both 

subjective data found in the retrieved risk assessment and the objective data found in 

the retrieved incident cases to be integrated and produce a more balanced estimation. 

However, in order to apply the Bayesian approach a statistical interpretation of 

construction incidents is warranted. Thus, a Poisson model of incident occurrence was 

validated using goodness-of-fit tests applied on actual incident data. The simple, but 

powerful, Poisson model provides the basis for the proposed adaptation approach of 

frequency values, which basically uses subjective estimates of the frequency values as 

the prior estimates and these estimates are integrated systematically with relevant 

objective data to produced more balanced posterior estimates. 
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As in the case of retrieval functions (chapter 4), the programming language 

Visual Basic for Applications (VBA), which is part of Microsoft Access, was used to 

create the necessary functions to implement the adaptation processes presented.  
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Chapter 6  

VALIDATION CASE STUDY 

6.1 Introduction 

This chapter presents a case study to validate the key concepts presented in the 

earlier chapters. The validation is based on the demonstration of how a risk 

assessment tree can be constructed based on past experiences and hence achieving the 

desired feedback and learning process proposed. In the case study, the prototype 

SKMS will show how cases modelled in the proposed knowledge representation 

framework can be retrieved and adapted to produce a final risk assessment plan that 

facilitates identification of possible hazards and analysis of the corresponding risks. 

6.2 Case Base for Case Study 

The case base utilised in the case study consists of two types of cases: incident 

cases and risk assessment trees. The incident cases were obtained from the Land 

Transport Authority’s (LTA) Safety Information System (SITS). All the cases belong 

to the same project and to ensure the integrity of the cases, the details of the incident 

cases were verified through interviews with relevant site personnel and review of 

appropriate site documents. It is noted that the number of cases does not affect the 

essence of the case study because the key purpose is to validate the feasibility of the 

proposed concepts and methodologies. Furthermore, all CBRS are learning systems 

that accumulate knowledge as more experiences are being accumulated and are 

capable of fully utilising available knowledge. Thus the case study also demonstrates 

how a “young” CBRS can still produce valid and useful risk assessment plans. 
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The incident cases in the case base belong to a railway project and it involves 

construction of precast viaducts and above ground train stations. The contract has a 

total of 59 reported incidents after 1,444,8300 mhr of work (project duration of 3 

years and 9 months). Figure 6.1 shows the distribution of the incident cases in terms 

of severity measured by number of man-days lost. As can be observed, most of the 

incident cases (39 cases or 66.1%) are less than 3 MDL and are not required to be 

reported to the authorities. There are 20 cases (33.9%) which are required by law to be 

reported to the Ministry of Manpower (MOM). Among these MOM reportable cases 

there is a case with fatality, where one worker was killed. The incident cases occurred 

in a wide variety of types of activity, such as soil boring, hoisting, concreting and 

manual handling work. Such variety is advantageous because it forms a rich source of 

knowledge.  
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Figure 6.1 Distribution of incident severity in terms of man-days lost 

 

Besides the 59 incident cases, the case base also contains ten risk assessment 

trees (see Table 6.1). The risk assessment trees are based on the safety documents 
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obtained from numerous sources, which included main contractors’ safety 

management systems, tender documents submitted to LTA, and training materials of 

Mine Safety and Health Administration (MSHA 2004). The knowledge representation 

process was carried out based on the representation scheme proposed in chapter 4 and 

in consultation with two experienced construction safety practitioners with at least 8 

years of construction safety experience each. The safety experts were asked to verify 

the content of the cases and provide inputs like assignment of subjective likelihood 

values and appropriate indexes whenever necessary.  

 

Table 6.1 Case titles of risk assessment trees in case base 

No. Case Title 

1 Gas-cutting in confined space (tank) 
2 Rigging up precast element 
3 Lift precast wall using crawler crane 
4 Arc welding of suspended pipes in trench 
5 Concreting work using bucket 
6 Lowering pipe into trench using excavator 
7 Loading truck with soil using excavator 
8 Concrete breaking 
9 Frame scaffold erection 
10 Gas-cutting of H-pile 

 

6.3 Case Study 

The job scenario that is being assessed in the case study is based on a common 

site activity as shown in Figure 6.2. The picture (Figure 6.2) was taken on an actual 

construction site in Singapore and it shows part of a material delivery activity where 

the lorry crane is in the process of unloading a bundle of timber strips. The case study 
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will show how a risk assessment tree is created for this work activity based on the 

available knowledge stored in the incident cases and risk assessment trees. 

 

 

Figure 6.2 Scenario for the risk assessment case study 

 

6.3.1 Case Retrieval 

Figure 6.3 shows the graphical user interface (GUI) in the prototype SKMS 

that is used for the input and viewing of both cases stored in the case base (stored 

cases) and the current case (input case). As shown in Figure 6.3, the top portion of the 

GUI contains details of the current case and there are also several command buttons 

that executes the retrieval and adaptation functions. The bottom portion of the GUI 

contains a subform that would contain the incident events of the case. These incident 
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events can be easily transferred to graphical and visualisation tools, such as Microsoft 

Visio, to create a more visual form of the incident sequences. 

 

 

For retrieval of 
risk assessment 
trees 

For retrieval 
of incident 
cases 

Adaptation 
buttons 

Continuous 
subform to 
store incident 
events 

Figure 6.3 Graphical user interface for both input and stored cases 

 

Figure 6.4 shows the GUI used to store the situational variables and indexes of 

stored and input cases. As discussed in chapter 4, incident investigators and risk 

assessment teams will assign weights to reflect relative importance of different 

situational variables of a stored case in the field “numImpt”. These weights are used 

for the calculation of global similarity scores between the input case and each stored 

case in the case base. End users using the system to carry out risk assessment will not 

be required to assign the weights for the input case. 
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Figure 6.4 Graphical user interface for situational variables and indexes 

 

For this case study, the input situational variables are shown in Figure 6.4. The 

set of situational variables is based on the following description of the job step, 

“Unloading of Timber strip (Bundle) using Chain sling and Lorry crane at Site 

entrance with nearby Plants/ vehicles.”  

Table 6.2 shows the global similarity scores (GSS) between the input case and 

each of the 10 risk assessment trees stored in the case base. Intuitively from the 

descriptions of the case, the risk assessment trees with GSS>0.5 is more similar to the 

input case as compared to risk assessment trees with GSS<0.5. Table 6.3 shows a 

detailed breakdown of the local similarity scores (LSS) between the input case and the 

most similar (i.e. retrieved) risk assessment tree. The input case and the retrieved case 

are very similar in terms of action, nearby object and one of the resources used 

(Excavator and Lorry Crane). The high GSS is contributed by the high weights for the 

situational variables with high LSS. It is highlighted that case number 3 also has a 

relatively high GSS, and it is possible that both cases 6 and 3 are relevant to the input 

case. This point will be further discussed in Section 6.4. 
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Table 6.2 The global similarity scores of all risk assessment trees in the case base 

No. Case Title GSS 

6 Lowering pipe into trench using excavator 0.61 

3 Lift precast wall using crawler crane 0.59 

7 Loading truck with soil using excavator 0.51 

5 Concreting work using bucket 0.39 

2 Rigging up precast element 0.27 

4 Arc welding of suspended pipes in trench 0.24 

8 Concrete breaking 0.15 

9 Frame scaffold erection 0.10 

10 Gas-cutting of H-pile 0.10 

1 Gas-cutting in confined space (tank) 0.05 

 

Table 6.3 Local similarity scores of retrieved risk assessment tree 

Value Situational 
Variables Stored Case Input Case LSS Weights 

Weighted 
LSS 

Action Lower Unload 0.73 5 3.64 
Location Trench Site entrance 0.00 2 0.00 
Nearby Object Plants/ vehicles Plants/ vehicles 1.00 3 3.00 

Object-worked-on Pipe 
Timber strip 
(Bundle) 0.11 2 0.21 

Resource Lifting gear Chain sling 0.60 2 1.20 
Resource Excavator Lorry crane 0.80 3 2.40 

   Total: 17 10.45 
 

 

As mentioned in chapter 4, when the input case has more than one value for a 

particular situational variable, the highest LSS value will be used for the calculation 

of the GSS. In this case study, the input case has two resources, “Chain sling” and 

“Lorry crane”. Thus, when the index of the stored case, “Resource = Excavator”, is 

compared with the two Resource indexes of the input case, “Resource = Chain Sling” 

and “Resource = Lorry crane”, the corresponding LSS are 0.09 and 0.80 respectively. 

Therefore, the index with higher LSS, i.e. “Lorry crane”, is used to match against the 
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Figure 6.5 shows the distribution of the GSS of all the incident cases in the 

case base. As can be observed, the majority of the stored cases, or 32 (54%) cases, 

have GSS between 0 and 0.2. Besides that, another 22 cases (37%) have GSS between 

0.2 and 0.6. In contrast, only 5 cases or 8.5% has GSS ≥ 0.6. Table 6.4 shows the GSS 

and LSS of the incident cases with GSS ≥ 0.6. These cases were returned for 

adaptation. Cases 1153 and 141 occurred during lifting work using mobile plants, case 

230 occurred during unloading of material, and cases 160 and 292 are related to 

mobile plants that were used during construction activities.  

stored case’s “Excavator”. Similarly, for the stored case’s other Resource index, 

“Resource = Lifting gear”, the chain sling with an LSS of 0.6 is used for the matching. 
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Figure 6.5 Distribution of GSS of incident cases 
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Table 6.4 Local similarity scores of retrieved incident cases 

Values 
No. GSS Case Title 

Situational 
Variables Stored Case Input Case LSS Weights 

Weighted 
LSS 

160        0.86 Worker injured by 
forklift Resource Forklift Lorry crane 0.86 5 4.32

Action Unload Unload 1.00 5 5.00 
Object-
worked-on I-beams Timber strip (Bundle) 0.18 3 0.53 230 0.78 Finger trapped between I-

beams during unloading 
Resource Lorry crane Lorry crane 1.00 3 3.00 

292        0.77 Worker injured while 
coming down from lorry Resource Lorry Lorry crane 0.77 5 3.86

Action Lift Unload 0.73 4 2.91 
Object-
worked-on 

Precast parapet 
wall Timber strip (Bundle) 0.07 1 0.07 

Resource Crane Lorry crane 0.64 3 1.91 
1153 0.74 Parapet wall fall from 

height while lifting 

Resource Chain sling Chain sling 1.00 4 4.00 
Action     Lift Unload 0.73 4 2.91
Object-
worked-on I-beam Timber strip (Bundle) 0.20 2 0.40 141  0.67 Worker injured by I-

beam during lifting 
Resource Mobile crane Lorry crane 0.91 3 2.73 
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6.3.2 Hazard Identification 

During hazard identification, the key aim is to identify possible incident 

sequences that can occur during the execution of the job step described in the input 

case. The retrieved risk assessment tree and incident cases will first be adapted by 

pruning off irrelevant incident events. Following that the incident cases and risk 

assessment tree will be integrated. 

Figure 6.6 shows the retrieved risk assessment tree being pruned (the critical 

index with the lowest LSS for each event is noted). A total of seven incident events 

(breakdown, intermediate and contact events) were being removed. The breakdown 

events (BEs), “Soil structure collapse” (Event 221) and “Soil/ objects fall into trench/ 

excavation” (Event 224) were deleted because one of the indexes of these BEs, 

“Location = Trench” (index (3)), is not similar (minimum LSS = 0) to the Location 

index of the input case “Location = Site entrance” (index (c)). Since the events 

following the two BEs were conditional on the occurrence of the BEs, these 

subsequent events were also deleted. The contact event (CE), “Cut by lifted object” 

(Event 195) is also deleted because one of the event’s indexes (index (2)), “Object-

worked-on (OWO) = Pipe” is dissimilar (minimum LSS = 0.11 < 0.6) to the OWO of 

the input case (index (b)), “Timber strip (Bundle)”. The rest of the incident events 

were not removed because the minimum LSS is at least 0.6 or higher. 

The set of five retrieved incident cases of Table 6.4 are shown in Figure 6.7. 

None of the incident cases need to be pruned because all the incident events’ indexes 

are matched by the input case’s indexes, i.e. minimum LSS ≥ 0.6. The incident cases 

were then checked for duplication with the incident sequences in the adapted risk 

assessment tree. As indicated in Figure 6.7, five of the incident events were duplicated 

(not including consequence events), while the remaining five were not identified in 



 

131 Figure 6.6 Retrieved risk assessment tree being pruned 

 



 

 

Figure 6.7 Incident sequences of the retrieved incident cases 
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the risk assessment tree and were hence inserted. Links to the duplicated events were 

maintained to ensure that their frequency can still be retrieved during risk analysis. 

The risk assessment tree containing the full set of identified incident sequences 

is shown in Figure 6.8. The shaded incident events are based on the retrieved incident 

cases. All of the contact events also has a set of consequence events described by five 

severity categories in terms of man-days lost (MDL): (1) < 1 MDL, (2) 1-3 MDL, (3) 

4-10 MDL, (4) > 10 MDL, and (5) fatal (F). The consequence events are essential for 

the risk analysis described in the next section. 

6.3.3 Risk Analysis 

The SKMS risk analysis process aims to estimate the likelihood or frequency 

values for each of the incident event in the adapted risk assessment tree (see Figure 

6.8) based on both subjective and objective sources. The Bayesian approach is used to 

integrate the subjective and objective estimates to arrive at a more balanced 

estimation. However, prior to the Bayesian updating, the likelihood values in the 

retrieved risk assessment tree have to be fine-tuned to account for the adaptation 

during hazard identification. 

As noted in chapter 5, the retrieved cases that are used for risk analysis should 

have similar SMS quality and project type as that of the input case. This is to ensure 

the relevance of the likelihood values in the cases. In the case study, the SMS quality 

and project types of the input case and stored cases are deliberately similar to simplify 

the case study. Since the incident cases were obtained from a railway construction 

project with an above average SMS, the input case is assumed to have the same 

characteristics. Similarly, during the assignment of likelihood values for the stored 

risk assessment trees, the safety experts were asked to assume the same context. In 

this way, all the likelihood values can be utilised during risk analysis. The frequency
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Figure 6.8 Risk assessment tree after hazard identification adaptation 134



data of cases belonging to projects with dissimilar SMS quality and/or project will 

have to be filtered off. 

6.3.3.1 Adjustment of likelihood values to ensure consistency 

Due to the removal and insertion of incident events during hazard 

identification adaptation, the likelihood values of the retrieved risk assessment tree 

will have to be adjusted to ensure consistency with Equations (5.8) and (5.9). The 

equations are based on the validated Poisson distribution, its assumption of statistical 

independence and the partitioned Poisson Model (refer to chapter 5). The following 

equations are replicates of Equations (5.8) and (5.9), 

 

∑=
j iji λλ            ( 6.1 ) 

       ∑=
j iji VarVar )()( λλ          ( 6.2 ) 

 

where iλ is the mean frequency of process i measured in number of incident per 

50,000 mhr, ijλ is the mean frequency of sub-process ij, Var(λi) is the variance of λi, 

and Var(λij) is the variance of λij.  

With reference to Figure 6.9 (a blown up of Figure 6.6), under the BE, “No 

BE” 1(Event 194), there are three possible CEs, “Cut by object” (Event 195), “Struck 

by lifted object” (Event 197) and “Person struck by plant/ vehicle” (Event 198). When 

the CE, “Cut by object” (Event 194) was deleted, 194λ and Var(λ194) have to be 

                                                 

1 “No BE” refers to an incident that occurs with a direct contact event and no observable 

breakdown event. 
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adjusted so that 198197194 λλλ +=  and Var(λ194) = Var(λ197)+ Var(λ198), in accordance 

to Equation (6.1) and Equation (6.2). After the preceding incident event of the deleted 

incident event had been adjusted, the adjustment is then propagated towards the root 

node of the tree, thus ensuring the consistency for the whole tree.  

 

 

Figure 6.9 Adjustment of likelihood to account for deleted incident event 

 

Besides adjustments for deleted incident events, inserted incident events will 

also require similar modifications. For example, with reference to Figure 6.10 (a 

blown up of Figure 6.8), the safety expert retained the prior subjective values of 

events 197 and 198, and estimated that the ratio of the likelihood values of Events 476 

(inserted event), 197 and 198 to be 2 : 3 : 1. This yields a subjective estimate of 

0.0041 incidents per 50,000 mhr for 476λ , which is in-between 197λ = 0.0062 incidents 

per 50,000 mhr and 198λ  = 0.0021 incidents per 50,000 mhr. The safety expert also 

assigned a coefficient of variation (C.O.V.) of 33.33% (or 1/3) to reflect his 

uncertainty and this gives Var(λ476) = 1.88e-006. With the inserted Event 476, 

012.00041.00021.00062.0194 =++=λ  and Var(λ194) = 4.76e-005 + 1.58e-005 + 

1.88e-006 = 6.53e-005. The remaining events of the risk assessment tree shown in 
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Figure 6.8 are also treated similarly. The λ and Var(λ) of the entire adjusted risk 

assessment tree can be found in Figures A5.1 to A5.9 of Appendix 5 and Tables A6.1 

to A6.4 of Appendix 6.  
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Event 194- BE: No BE

 <λ197> = 0.0062; Var(λ197) =4.76e-005
Event 197- CE: Struck by lifted object

Adjusted: 
<λ194> = <λ197> + <λ198> + <λ476> = 0.012
Var(λ194) = Var(λ197) + Var(λ198) + Var(λ476) 

     = 6.53e-005

 <λ476> = 0.0041; Var(λ476) = 1.88e-006
Event 476- CE: Fingers trapped in lifted 

object(s)

Inserted
 <λ476> = 0.0041; Var(λ476) = 1.88e-006

 based on assessment by safety expert

 

Figure 6.10 Adjustment of likelihood to account for inserted incident event 

 

6.3.3.2 Bayesian updating 

The next stage of the risk analysis is to update the prior subjective estimates of 

incident events in the finalised risk assessment tree by integrating the relevant 

retrieved data with the subjective estimates through the Bayesian approach. The 

Bayesian approach is based on the following set of equations, which were discussed 

in chapter 5 and replicated here for easy reference. 

 

λ = κ/υ           ( 6.3 ) 

Var(λ) = κ/υ2           ( 6.4 ) 

 κ′′ = κ′ + x          ( 6.5 ) 
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υ′′ = υ′ + t           ( 6.6 ) 

 

where κ and υ are the parameters of the gamma-distributed λ, x refers to the number 

of actual incident occurring in t intervals (50,000 mhr per interval). It is noted that 

variables with an apostrophe (′) refers to prior estimates, whereas variables with a 

double apostrophe (′′) refers to posterior or updated estimates. 

In this case study, the case base contains incident cases of only one project. 

Thus, the t-value (Equation (6.6)) used in the Bayesian updating of the leaf nodes of 

the risk assessment tree will be the project’s total mhr, which is 279 (50,000 mhr 

intervals). The leaf nodes refer to either consequence events (CSQ) or contact events 

(CE) of “No CE” type (see Figure 6.8). In terms of x-values (Equation (6.5)), out of 

the 84 leaf nodes, only five (Event ID = 206, 790, 844, 849 and 856) have one 

relevant incident case each (x = 1), and the rest have none (x = 0). Using Equations 

(6.3) to (6.6) and the calculation method presented in Section 5.3.3, the updated 

frequency values and variances of the leaf nodes are presented in Tables A6.1 to A6.3.  

Subsequently, to ensure consistency with Equations (6.1) and (6.2), the 

updated frequency value and variance are propagated from the leaf nodes towards the 

root node of the risk assessment tree. During the propagation, the frequency values 

and variances of the parent nodes are updated to be equal to the sum of its child 

nodes’ values. The propagation process is similar to the adjustment of likelihood 

values discussed in Section 6.3.3.1. The updated frequency values and variances of all 

the incident events are shown in Tables A6.1 to A6.5, while Table A6.6 of Appendix 

6 contains the changes in the values of respective incident events.  

If the severity categories can be assigned a severity value, risk values can be 

computed. In this case study, the severity categories are based on the number of man-
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days lost (MDL). As be seen in Figure 6.8, the severity categories are “<1 MDL”, “1-

3 MDL”, “4-10 MDL”, “>10 MDL” and “Fatal (F)”. Based on consultations with 

safety experts, a quantified value is then assigned to each category to reflect the 

relative severity of each category (see Table 6.5). For non-fatal categories, i.e. “<1”, 

“1-3”, “4-10” and “>10”, the quantified value is based on the expected MDL of the 

category. For the fatal category, the value of 100 was assigned to reflect the high 

severity of an incident with fatality, but at the same time not cause risk values to be 

overly-sensitive to frequency estimates of fatal categories. It was noted that 

Singapore’s Ministry of Manpower (MOM) assigns an arbitrary value of 6000 MDL 

for each fatal incident for their calculation of incident statistics, but the large value 

might cause bias in the calculation of risk values and was not used in this research. 

The severity categories and values may be modified to reflect an organisation’s 

perception of the relative impact of the various severity categories. 

 

Table 6.5 Quantified severity value for severity categories used in the case study 

Severity Category Quantified Severity 
< 1 MDL 0.5 
1-3 MDL 2 
4-10 MDL 7 
>10 MDL 20 

Fatal 100 
 

The updated risk assessment tree can then be used to determine the overall risk 

of the job step and the individual risk of different incident events. That is, 

 

])([)()()()( ∑ ∑∑∑ ••••=
i l ijklijklk ijkj iji SPSCPIPBPSVRisk λ   ( 6.7 ) 
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where SV refers to the set of situational variables that represents the job step, λ is the 

mean incident occurrence rate of the job step, Bi refers to breakdown event i, Iij refers 

to intermediate event j under Bi, Cijk refers to contact event k under Iij, and Sijkl refers 

to severity category l under Cijk.  

Equation (6.7) can also be interpreted as,  

 

))()()()(()( ∑ ∑ ∑ ∑ •••••=
i j k l ijklijklijkiji SSPCPIPBPSVRisk λ   ( 6.8 ) 

 

where )]()()()([ ijklijkiji SPCPIPBP ••••λ  refers to the expected frequency of Sijkl, or 

ijklλ . In this way, the risk of the job step can be determined based on the following 

equation, 

 

)()( ∑ ∑ ∑ ∑ •=
i j k l ijklijkl SSVRisk λ          ( 6.9 ) 

 

Thus, the risk of the job step can be determined by simply summing up the 

risk values ( ijklijkl S•λ ) of all the consequence events in the risk assessment tree. This 

is advantageous because the SKMS keeps track of the expected frequency of incident 

events and not the probability values.  

Likewise, the risk of different incident events can be determined by summing 

up the risk values of all the consequence events under it. For instance, the risk of 

breakdown event i,  

 

∑∑∑ •=
j k l

ijklijkli SBRisk )()( λ            ( 6.10 ) 

 

140 



In terms of severity, four of the breakdown events (BEs) have decreased 

severity (Event ID = 194, 203, 207, and 424), one has increased severity (Event ID = 

434) and three have no change (Event ID = 199, 210, and 214). The severity of Events 

199, 210 and 214 did not change because all the leaf nodes under these BEs were 

updated with the same set of data (x = 0 and t = 278.966) and all the frequency value 

changed proportionately. This maintained the distribution of the various severity 

categories and hence the expected severity is unchanged. On the other hand, Event 

194, 203, 207, 424 and 434 each has one leaf node updated with the data, x = 1 and t 

= 278.966. In this way, the distribution of the severity category is altered and hence it 

results in changes to the expected severity. It is noted that only Event 434 has 
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Based on the frequency estimates and severity values, the risk values of all the 

incident events and the overall risk of the job step was determined and recorded in 

Tables A6.1 to A6.5 of Appendix 6. For easy reference and discussion, Table 6.6 

shows the prior and posterior frequency, variance, severity and risk values of the 

overall job step and breakdown events. Table 6.7 shows the change (posterior – prior) 

in the various values after the risk analysis adaptation.  

With reference to Table 6.6, the job step’s risk value before and after Bayesian 

update is 0.0525 and 0.0293 respectively. Table 6.7 shows the effect of the Bayesian 

updating in more detail. As can be seen, all the frequency values and variances 

decreased. The drop in frequency is due to the lowered frequency values of most of 

the leaf nodes (refer to Tables A6.1 to A6.3 of Appendix 6), which decreased because 

most of the objective data has a lower frequency than the prior estimates. The 

reduction in variance reflects a higher certainty on the estimation of the various λ  

due to the integration of objective data into prior subjective estimation.  



 

Table 6.6 Prior and posterior frequency, variance, severity and risk values of overall job step and breakdown events 

Prior Posterior 

ID 
Event  
Type Event Value λ ′  Var(λ) E(Sev) Risk λ ′′  Var(λ) E(Sev) 

 
Risk 

840     Root Root 0.0525 3.49E-04 26.7 1.40 0.0293 5.57E-05 21.4 0.626
194        BE No BE 0.0123 6.53E-05 16.9 0.209 0.00666 8.03E-06 14.7 0.0982
199 BE Lifted object struck nearby object 0.0055 4.23E-05       35.3 0.194 0.00174 4.26E-06 35.3 0.0614
203 BE Lifting gear failure 0.0128 9.87E-05 33.6    0.430 0.00651 1.59E-05 20.9 0.137
207 BE Lifted object dislodged 0.00914 7.05E-05 33.6    0.307 0.00535 1.31E-05 27.4 0.146
210      BE Plant/vehicle topple 0.00183 1.41E-05 23.5 0.0429 0.00058 1.42E-06 23.5 0.0136
214 BE Collision between plants/vehicles 0.00365        2.82E-05 24.8 0.0906 0.00116 2.84E-06 24.8 0.0287
424 BE Runaway plant/ vehicle 0.00365 1.48E-06 23.1    0.0843 0.00365 1.33E-06 21.5 0.0783
434 BE Person fall from plant/vehicle 0.00365 2.82E-05       12.0 0.0440 0.00361 8.83E-06 17.4 0.0629

 

Table 6.7 Difference between prior and posterior frequency, variance, severity and risk values of overall job step and breakdown events 

Difference (Posterior – Prior Estimates) 
Event ID Event Type Event Value λ  Var(λ) E(Sev) Risk 

840     Root Root -0.0233 -2.93E-04 -5.27 -0.776
194    BE No BE -0.00567 -5.73E-05 -2.18 -0.111 
199 BE Lifted object struck nearby object   -0.00374 -3.80E-05 0 -0.132
203 BE Lifting gear failure -0.00629 -8.28E-05 -12.7 -0.294 
207 BE Lifted object dislodged -0.00379    -5.74E-05 -6.24 -0.161
210    BE Plant/vehicle topple -0.00125 -1.27E-05 0 -0.0293
214 BE Collision between plants/vehicles   -0.0025 -2.54E-05 0 -0.0618
424 BE Runaway plant/ vehicle -7.2E-06 -1.54E-07 -1.61 -0.00603 
434 BE Person fall from plant/vehicle -4.8E-05 -1.94E-05 5.40 0.0189 142



increased severity. This is due to increased frequency value for leaf node 856 (see 

Table A6.3 of Appendix 6), which has a severity category, “>10” (severity value = 20) 

(refer to Table 6.5), that is higher than the initial expected severity of Event 434 

(E(Sev) = 12.05) (see Table 6.6). The higher frequency of leaf node 856 causes the 

expected severity to be swayed towards the severity value of 20. The adjustment is 

expected because the knowledge of a high severity incident resulting from a BE will 

logically cause the expected severity to be adjusted upward. For Events 194, 203, 207, 

and 424, the expected severity decreased because the data x = 1 and t = 278.966 was 

updated on a leaf node that has a lower severity value than its initial severity value. 

Table 6.7 also shows that the overall risk values of all the BEs have decreased 

and hence the risk of the job step has also decreased. This is expected because the 

severity and frequency of all the BEs, with the exception of Event 434’s severity 

value, have been updated to a lower value. In the case of Event 434, the risk value has 

increased slightly because the increase in the severity value (+44.8%) is more than the 

decrease in the frequency value (-1.1%) 

To clearly identify and evaluate the risk levels of various job steps and 

incident events, a risk contour plot can be created. A risk contour plot is usually based 

on a risk matrix, such as the one shown in Table 6.8, which was developed based on 

the severity and frequency categories of Tables 6.5 and 6.9 respectively. The 

frequency categories of Table 6.9 were based on the categories used by LTA and the 

λ  values were determined using the average mhr per month for LTA projects 

captured in the SITS between 1998 and 2002. The set of λ  values were also verified 

with safety experts. Table 6.8 also shows the acceptability levels of various risk 

values assigned by one of the safety experts who participated in the case study. The 

risk contour of Figure 6.11 is developed based on the risk matrix of Table 6.8.  
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Table 6.8 A risk matrix developed for the case study 

Likelihood 

Severity 
Improbable  

(0.0127) 
Remote 
(0.0254)

Occasional 
(0.0762)

Probable 
(0.152) 

Frequent 
(0.915) 

Fatal (100) 1.270 2.54 7.62 15.2 91.5
> 10 MDL (20) 0.254 0.508 1.52 3.05 18.3
4-10 MDL (7) 0.0889 0.178 0.534 1.07 6.40
1-3 MDL (2) 0.0254 0.0508 0.152 0.305 1.83
< 1 MDL (0.5) 0.00635 0.0127 0.0381 0.0762 0.457
   

Unacceptable - Underlined Undesirable - Shaded   
Acceptable - Italics Tolerable - Bold   

 

Table 6.9 Quantified likelihood (λ) value for various frequency categories 

Likelihood Definition (Expected frequency) 
λ (Incident per 

50,000 mhr) 
Frequent 1 incident monthly       0.915  
Probable 1 incident 6 monthly       0.152  
Occasional 1 incident yearly       0.0762  
Remote 1 incident 3 yearly       0.0254  
Improbable 1 incident 6 yearly       0.0127  

Note: The λ-values are calculated based on 54,665 mhr per month, which is the average mhr per month 
for LTA projects captured in the SITS (1998-2002) 
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Figure 6.11 A risk contour plot indicating different levels of risk acceptability 
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To demarcate the acceptability of different risk values, the highest risk value 

in the respective expert-assigned acceptability categories are used to determine the 

boundaries (see Table 6.8). This is to ensure that the risk values between the lowest 

risk value of a less acceptable category and the highest risk value of a more acceptable 

is classified as the less acceptable category. For instance, with reference to Table 6.8, 

the highest risk value in the “Undesirable” category is 1.07 (“Probable” and “4-10 

MDL”) and the lowest risk value in the “Unacceptable” category is 1.23. Based on the 

convention adopted, the risk values between these two values will be conservatively 

classified as “Unacceptable” and the boundary between the “Unacceptable” and 

“Undesirable” categories is demarcated by the risk value 1.07. The same approach is 

also used to determine the other boundaries.  

The apriori and aposteriori risk values of the job step and incident events 

derived from the risk analysis can then be plotted on the risk contour plot (see Figure 

6.12) for further analysis. In this way, the activities with unacceptable and undesirable 

risk levels can be easily identified and prioritised for risk control selection and 

implementation. 

6.4 Discussions 

Generally, the case study had demonstrated that the prototype SKMS is able to 

facilitate feedback of safety knowledge through the proposed case representation 

scheme, retrieval mechanism and adaptation strategies. The resulting risk assessment 

tree is a combination of the knowledge gleaned from past experiences and the user’s 

input. 
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Figure 6.12 Risk contour plot with prior and posterior risk values of job step and incident events146



6.4.1 Retrieval 

The proposed retrieval method utilises the knowledge stored in the semantic 

networks and the weights captured in past cases to measure similarity between stored 

cases and the input case. The LSS and GSS are then used to identify and retrieve 

relevant stored cases. Both LSS and GSS are important information to the users 

because they provide specific information on why a stored case is relevant. The user 

can easily understand the rationale of the retrieval by assessing the LSS and GSS of 

each case. The transparent approach also allows users to evaluate the appropriateness 

of the retrieval and make adjustments whenever necessary.   

As compared to manual search, or database keyword search, the proposed 

retrieval mechanism has obvious advantages. Most importantly, the similarity scoring 

approach allows similar (but not exactly matching) cases to be retrieved and utilised. 

It is evident from Table 6.4 that all the retrieved incident cases do not have exactly 

matching indexes as the input case (GSS < 1). Thus, if an exact matching approach is 

used these similar cases would not have been retrieved and important information on 

hazards and risk would be lost.  

The case study also showed that users only need to describe the situational 

variables of the input case and relevant cases can be retrieved. This characteristic 

allows less experienced personnel to be able to produce detailed risk assessment trees 

with more convincing risk values. Furthermore, the threshold similarity score used to 

demarcate relevant cases is adjustable. Therefore, users can always vary the threshold 

to reach a balance between relevance and number of retrieved cases. 
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6.4.2 Hazard Identification 

The similarity scoring approach simulates human cognition by retrieving 

similar cases for reuse, but these past cases may contain irrelevant portions that 

should be trimmed away. Thus, as demonstrated in the case study, the risk assessment 

tree is pruned to remove incident events deemed to be irrelevant. The rationale for the 

adaptation is transparent and can be modified by the user when necessary. For 

example, in the case study the contact event, “Cut by object”, was deleted because the 

index of the incident event, “Object-worked-on (OWO) = Pipe” has a low LSS with 

the input case’s situational variable, “OWO = Timber strip (bundle)”. The user may 

still want to include the incident event because he might regard it as a possible 

incident event even if the OWO is a bundle of timber strips. Since each adaptation is 

based on the LSS, the user can easily review and verify the basis of hazard 

identification adaptation.  

Besides pruning, the hazard identification adaptation also includes integration 

or insertion of incident cases into the retrieved risk assessment tree. The adaptation 

strategy ensures that relevant incidents cases that are not already in the risk 

assessment tree are inserted. In this way, risk assessment teams will always be 

reminded of relevant incident occurrences, allowing measures to be implemented to 

prevent recurrence. 

6.4.3 Risk Analysis 

The SKMS risk analysis approach first ensures that the likelihood values in the 

retrieved risk assessment tree is consistent throughout the tree, and then the prior 

likelihood estimates are integrated systematically with objective estimates from 

incident cases. This approach ensures that the prior estimates are balanced with 

objective data that would have been considered statistically insignificant if used on its 
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own. The Bayesian approach also facilitates continual learning because it allows the 

likelihood estimates to become more objective progressively through integration of 

objective data at each update. 

In this case study, the job step’s risk value before Bayesian update is 1.402 

and after the Bayesian update the risk value is 0.626 (refer to Table 6.6). As can be 

observed from the risk contour plot of Figure 6.12, the prior risk value of the job step 

was in the “Unacceptable” region, but after the Bayesian updating, the risk level was 

adjusted to be in the “Undesirable” region. This reduction shows that the prior 

frequency and severity estimates might be on the high side.  

As presented in Section 6.3.3.2, the subjective prior frequency estimate of 

0.0525 is reduced because the objective data (x = 5 and t = 279) gives a lower 

frequency estimate of 0.0179 (x/t). Thus, when the subjective and objective estimates 

are integrated the posterior frequency is 0.02925, which is in-between the subjective 

and objective estimates. Similarly, as noted in 6.3.3.2, the expected severity of the job 

step is reduced because most of the retrieved incident has a lower severity value than 

the prior expected severity of corresponding breakdown events. This was verified 

with the safety expert who had given the prior estimates. He agreed that his estimation 

tends to be more conservative which could have led to higher prior values. Hence, the 

case study has shown that the Bayesian approach was able to systematically balance 

the conservative estimation with actual observations obtained from the incident cases.  

The main purpose of the risk contour plot of Figure 6.12 is to allow the risk 

assessment team to easily identify high risk job steps and spend more resources to 

reduce the risk levels of these job steps. The risk contour plot can also facilitate 

evaluation of the change in frequency, severity and risk of the overall job step and the 

various incident events. Risk assessment teams can easily determine the reasons for 
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changes in risk values. For instance, a horizontal shift in the risk values on the plot 

indicate that the change in risk is due to a change in frequency only. Besides that, the 

contour plot also allows the risk assessment team to quickly identify high risk BEs to 

focus on to decrease the risk level of the job step. Furthermore, if the risk assessment 

team chooses to focus on high severity events (e.g. Events 199 and 207) in the same 

risk category, these events can also be easily identified through the plot.  

In the case study, all the stored cases can be used for the Bayesian updating 

because the SMS quality and project type is similar to that of the input case. This is 

necessary to ensure consistency with the proposed Poisson model (see Figure 5.11). 

This constraint can be easily overcome as the case base grows, because in any 

learning process the initial stage is usually tougher, but once more knowledge is 

gained, the system will be able to deal with a larger variety of situations.   

6.5 Conclusions 

The case study had demonstrated how the proposed methodologies and 

concepts will work in a realistic scenario. The case study also showed how the 

calculated risk assessment tree and risk values can be utilised to facilitate prioritising 

of risk control efforts. One of the key advantages of the SKMS is that users can easily 

understand its retrieval and adaptation decisions and modify whenever necessary.  

The SKMS will be able to facilitate feedback of past safety experiences to 

improve the current risk assessment process. The feedback helps users to identify 

possible hazards, prevent recurrence of past incidents, provide a basis for likelihood 

assessment and improve efficiency of the risk assessment process. Such feedback is 

important in ensuring continual improvement and organisational learning.  
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Chapter 7  

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The basic purpose of this research is to encourage continual improvement of 

construction projects’ safety management systems (SMS) through learning from past 

experiences. To enable construction companies to learn from safety knowledge 

accumulated in the form of incident cases and past safety plans, this research developed a 

novel case-based reasoning (CBR) approach to safety planning. The proposed approach 

models and stores safety knowledge in the appropriate knowledge framework, and fully 

utilises them during safety planning through unique retrieval and adaptation strategies. 

This research had been focused on feedback of safety knowledge to the risk assessment 

component (hazard identification and risk analysis) of a safety planning process. 

However, the principles and methodologies developed are also applicable to the risk 

control selection component.  

To achieve the desired feedback of safety knowledge during risk assessment, the 

following research components had been developed. 

1. The Modified Loss Causation Model (MLCM) is meant to cover a wider scope than 

facilitating the proposed CBR approach to risk assessment. The MLCM is able to 

facilitate thorough incident investigation and hence facilitate the feedback of safety 

knowledge to improve the SMS that had failed and caused the incident. This provides 

the first level feedback. More importantly, the MLCM acts as a common knowledge 

structure for both incident investigation and safety planning. In this way, safety 
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knowledge can then be utilised to improve safety planning for new projects. This 

facilitates the second level feedback which will benefit safety planning across 

projects. 

2. To implement the broad structure provided by the MLCM in the prototype CBR 

system, known as the Safety Knowledge Management System (SKMS), a detailed 

knowledge representation scheme was developed to abstract and capture safety 

knowledge in incident cases and past risk assessments. The knowledge representation 

scheme was necessary because the CBR system requires a specific framework to 

implement the retrieval and adaptation processes. The monolithic case approach, as 

opposed to a snippets approach, was adopted to facilitate the development of the 

knowledge representation scheme. The monolithic case approach is advantageous 

because cases are kept intact and not separated into sub-cases or snippets as in the 

latter approach. In this way, subtle details within a complete case which could have 

been missed if the case has been separated into snippets will be made available to the 

human user. Besides, the monolithic case approach is also computationally less 

expensive than the snippets approach. However, it was acknowledged that a snippets 

approach is fundamentally similar to the monolithic approach and can also be applied. 

The knowledge representation scheme was designed to facilitate the Job Hazard 

Analysis (JHA) process, where the situational variables or indexing vocabulary 

describe key parts of a job step. For each stored case, suitable situational variables are 

chosen to act as the indexes, which are necessary prerequisites for the case retrieval 

process. The situational variables also represent the possible hazards in the work 
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scenario and the types of situational variables include: “Action”, “Object-worked-on”, 

“Resource”, “Location”, “Nearby object” and “Nearby action”. 

3. Through the knowledge representation scheme, an intelligent retrieval method that 

can automatically identify and retrieve relevant cases was created. The retrieval 

method is based on customised local and global similarity scoring functions that suits 

the context of the SKMS. The local similarity score (LSS) between two situational 

variables is calculated using the degree of match of weighted sub-concepts. The sub-

concepts are important concepts related to hazardous objects, energies or harmful 

substances that have implications on the safety or risk of a job step. To facilitate the 

determination of weights of the sub-concepts, semantic networks of sub-concepts had 

been developed for different situational variables. The sub-concepts nearer to the root 

node of the semantic network (i.e. more general) or more directly related to potential 

hazards are assigned higher weights. The global similarity score (GSS) of the input 

case and each stored case is calculated using a weighting function applied on the LSS 

of relevant situational variables. Unlike conventional GSS functions, the weights are 

assigned when the cases are stored into the case base, instead of during retrieval. In 

the context of the SKMS, the weights assigned to the various situation variables 

reflect the importance of each variable in relation to the specific case. In this way, the 

GSS computed will be able to better reflect the relevance of each stored case during 

retrieval. 

4. Adaptation strategies had also been developed to contextualise the retrieved cases for 

hazard identification and risk analysis. During hazard identification, adaptation 

strategy is meant to improve the relevance of the risk assessment tree by removing 
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irrelevant incident events of the retrieved cases. Furthermore, the adaptation 

mechanism also integrates all retrieved cases into one single risk assessment tree. The 

integrated risk assessment tree containing all the identified incident sequences is then 

utilised for risk analysis purposes. The adaptation strategy during risk analysis utilises 

the Bayesian approach, such that subjective and objective estimates of likelihood are 

integrated to provide a more realistic likelihood values. The Bayesian approach also 

facilitates continual improvement because subjective prior estimates can be improved 

whenever new incident cases are incorporated into the prior estimates. The reviewed 

likelihood values are then used to determine risk values for different job steps and 

incident events. 

The abovementioned research components had been implemented in a prototype 

SKMS that is applied on a case study based on a typical construction work scenario. The 

case study utilises a case base with 59 actual incident cases from a single past project and 

10 risk assessment trees obtained from safety experts, the Land Transport Authority 

(LTA) of Singapore, various main contractors and Mine Safety and Health 

Administration (MSHA 2004) of the United States. The results of the case study 

demonstrated that the proposed CBR approach to risk assessment can produce a 

reasonably thorough and well-balanced risk assessment tree through feedback of safety 

knowledge despite the relatively small size of the case base. This shows that the approach 

is able to capitalise on available knowledge and maximise their benefits. More project 

data, can subsequently be integrated and will improve the risk assessment. 

The resulting risk assessment tree includes possible incident sequences identified 

by previous risk assessment team and actual incident occurrences contained in relevant 
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incident cases. During retrieval, the most relevant risk assessment tree (GSS = 0.61) and 

five incident cases (GSS ≥ 0.6) were retrieved. The risk assessment tree was pruned to 

remove seven incident events that were considered irrelevant to the input case. 

Furthermore, the five incident cases also helped to identify new incident sequences, 

where five previously unidentified incident events were inserted. This shows that it is 

possible for safety and risk assessment teams to miss out certain incident sequences, 

especially when there are tight time constraints. Another five incident events of the 

retrieved incident cases duplicated incident events already identified in the risk 

assessment tree. These duplicated incident events contain important frequency data that 

are utilised during risk analysis. Thus the risk assessment tree is effectively based on 

reused or fed back safety knowledge and it successfully highlighted actual past 

occurrences to prevent recurrence.  

Furthermore, the estimated risk values of the case study are also determined based 

on the integration of both retrieved risk assessment tree (subjective source) and incident 

cases (objective source). The prior estimated risk value of the job step was 1.402, and 

after the risk analysis adaptation, the risk value was lowered to 0.626. The risk 

acceptability level was thus amended from “Unacceptable” to “Undesirable” level. The 

change in risk level is a result of the integration of knowledge gleaned from both 

objective and subjective sources. In the case study, the subjective source tends towards 

the conservative end, while the objective source is only based on a single project. On its 

own both might not be able to provide a balanced estimate. Hence, by integrating both 

estimates, the Bayesian update provided a more realistic estimate of the risk of job steps 

and its incident events.  
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The case study also demonstrated how a risk contour plot can be utilised to aid 

prioritisation of risk control selection and implementation efforts. The contour plot, 

which is based on a risk matrix developed with the help of safety experts, allows ra isk 

assessment team to quickly recognise the risk acceptability of different activities, job 

steps, and incident events. Furthermore, severity and frequency values can also be 

quickly evaluated to allow the risk assessment team to understand the nature of the risk. 

The risk contour plot also facilitates understanding of the impact of Bayesian updating. 

The risk assessment team can observe the relative positions of the prior and posterior risk 

values on the plot and easily deduce the change in severity and frequency values that 

caused the change in the risk levels. This understanding allows further modifications 

based on the judgement of the risk assessment team. 

7.2 Limitations and Recommendations 

This research had spearheaded a worthwhile direction in construction safety and 

developed a novel CBR approach for risk assessment, but more can still be done to build 

on the foundations provided by this research to further improve effective feedback of 

safety knowledge. The following limitations and/or recommendations are noted and 

discussed. 

1. In this research, only the most relevant risk assessment tree is retrieved to facilitate 

risk assessment. However, to ensure that more possible incident sequences are 

identified, it may be desirable to utilise all relevant risk assessment trees. This would 

mean that the risk assessment trees will have to be integrated into a single risk 

assessment tree. The integration of risk assessment trees is similar to the insertion of 

incident cases into the most similar risk assessment tree, but this operation has a 
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relatively high computational cost. That is because the number of comparison 

between incident events belonging to different risk assessments can be very large. 

Future research can explore more efficient indexing algorithms to reduce the 

computational cost involved in the integration process. 

2. The SKMS is a learning system that needs to accumulate more cases to ensure that it 

is able to provide relevant knowledge. Nevertheless, the case study demonstrated that 

a “young” SKMS is able to capitalise on small amount of available knowledge and 

provide reasonably thorough assessment of the hazards and risk in a realistic scenario. 

Still, to ensure that the SKMS can cover a wide array of work situations, consistent 

efforts will be needed to build, codify and store cases into the case base. These efforts 

may be minimised by integrating the knowledge representation efforts into existing 

safety planning and incident investigation processes, so that safety knowledge can be 

directly captured from the risk assessment tree and incident cases. These efforts are 

definitely worthwhile because they will significantly increase the utility of the stored 

safety knowledge and prevent the phenomenon of “data graveyard” where large 

amount of data is stored but serve no substantial purposes. 

3. One of the key assumptions of the partitioned property of the Poisson model is that 

the categorisation of an incident is random. As indicated in chapter 5, this assumption 

is reasonable because the set of situational variables are low level descriptions of 

construction work, such that it is generally applicable to most possible types of site 

activities. However, in the event that a specialised type of work is executed within a 

specific period of the project, the actual start and end date of the activity need to be 

recorded to allow accurate estimation of incident frequency or likelihood values. If 

 157 



the actual work period is not specified, the likelihood estimation during risk analysis 

would be deflated erroneously due to the utilisation of the whole project timeline 

instead of the shorter work period of the specialised activity. Once the correct work 

period is identified, the rest of the computation for the adaptation of likelihood value 

would be similar to the proposed methods discussed in chapters 5 and 6. Furthermore, 

it is noted that the Poisson model is only a rough approximation of construction 

incident occurrence and it may be problematic when representing projects near 

deadlines, with tight budgets and schedules. It is recommended that more data to be 

collected to further validate the Poisson model. Other more sophisticated distributions 

should also be examined and tested for their ability to model a wider variety of 

construction projects, especially those with significant resource constraints. 

4. In a well-managed project there should be proper and consistent reporting of incidents 

and the problem of non-reporting should be minimal. This is especially so for 

incidents with higher severity, because these incidents are usually legally required to 

be reported to the authorities (such as severity > 3 MDL in the case of Singapore). In 

the situation where non-reporting of incidents is of concern, the concept of partitioned 

Poisson can also be used to account for unreported incidents. This is achieved by 

assuming that incidents are randomly partitioned into unreported and reported 

incidents. If the probability of an incident being reported is pr then the true 

distribution of incident occurrence can be estimated by a Poisson distribution with 

parameter λ /pr, where λ  is the estimated mean occurrence rate of reported incidents. 

λ  can be obtained based on the risk analysis process presented earlier. The 

estimation of pr can be based on expert opinion or statistical studies similar to the 
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study by Alsop and Langley (2001) on traffic incidents. Another possible approach is 

to assign a value for pr based on the situational variables and each incident sequence 

in the risk assessment tree (refer to Figure 7.1). Thus,  

 

pr  = P(r|SV,Bi,Cj,Sk)     ( 7.1 ) 

 

where r is the event when an incident is reported, SV the situational variables, Bi the 

breakdown event i, Cj the contact event j, and Sk the severity category j. In this way, 

the risk assessment team will assign a specific pr for each branch of the risk 

assessment tree. These pr refer to the probability values at the bottom of the risk 

assessment tree in Figure 7.1. The risk analysis adaptation is then applied on the r 

(reported) event of the branches instead of the consequence events to obtain the 

frequency of the r event, 
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rλ . The frequency of each consequence event is then 

estimated based on rλ /pr. Subsequently the updated frequency values are then 

propagated towards the root node as discussed in chapters 5 and 6. 
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Figure 7.1 Risk assessment tree to account for non-reporting of incidents 
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Appendix 1 

THE MODIFIED LOSS CAUSATION MODEL (MLCM) 

TAXONOMY 
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Table A1.1 Taxonomy for Situational Variables (Type of work) 

1. Situational Variables- Type of Work 

1.1 Architectural/Renovation/Finishing work 
1.1.1 Roofing work 
1.1.2 Finishing work 
1.1.3 Plastering 
1.1.4 Painting 
1.1.5 Installation of non structural component -
1.1.6 Other A/R/F work 

1.2 Building services work   
1.2.1 Electrical work 
1.2.2 Piping work 
1.2.3 Air-con dismantling/installation 
1.2.4 Other building services work 

 

1.3 Geotechnical work 
1.3.1 Excavation work 
1.3.2 Trench work 
1.3.3 Tunnelling work 
1.3.4 Piling work 
1.3.5 Other Geotechnical work 

1.4 Material/equipment handling/transportation 
1.4.1 Operation of vehicle/transport 
1.4.2 Lifting/lowering 
1.4.3 By Crane 
1.4.4 By other equipment/plant 
1.4.5 Manual handling 
1.4.6 Other Material/equipment H/T 

1.5 Plant/ machinery/ equipment maintenance/ dismantling 
/installation  

1.5.1 Dismantling of P/M/E 
1.5.2 Servicing of P/M/E 
1.5.3 Installation of P/M/E 

1.6 Structural work  
1.6.1 Concreting 
1.6.2 Installation of precast components 
1.6.3 Demolition of structural components 
1.6.4 Erection/dismantling of formwork/falsework 
1.6.5 Erection/dismantling of lifting platform 
1.6.6 Erection/dismantling of mobile working platform 
1.6.7 Erection/dismantling of temporary access scaffold 
1.6.8 Other structural work 

1.7 Other types of work 
1.7.1 Marine construction 
1.7.2 Reclamation work 
1.7.3 Housekeeping work 
1.7.4 Movement around site 
1.7.5 Other operations of vehicle not elsewhere classified 
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Table A1.2 Taxonomy for Types of Contact Event 

2. Types of Contact Event 

2.1 Fall of person 
2.1.1 Struck ground 
2.1.2 Struck sharp object 
2.1.3 Struck other objects 

2.2 Struck by falling objects  
2.2.1 Earth, rocks, stones etc. 
2.2.2 Structure (parts of building, temporary structure, 

etc) 
2.2.3 Equipment 
2.2.4 Construction materials 
2.2.5 Other struck by falling objects 

2.3 Striking against or struck by objects 
2.3.1 Striking against stationary objects (excluding fall of 

persons) 
2.3.2 Striking against moving objects (excluding fall of 

persons) 
2.3.3 Struck by moving objects 

2.3.3.1 Flying fragments and other small objects 
2.3.3.2 Plant/ machinery/ equipment/ vehicle 
2.3.3.3 Lifted object 
2.3.3.4 Other moving objects 

2.3.4 Cut by object 
2.3.5 Other striking against or struck by objects 

2.4 Caught in or between objects  
2.4.1 Caught in an object 

2.4.1.1 Plants/vehicles 
2.4.1.2 Other objects 

2.4.2 Caught between stationary object and moving 
object 

2.4.3 Caught between moving objects 
2.4.4 Other caught in or between objects 

2.5 Over-exertion or strenuous movements  
2.5.1 Over-exertion in lifting objects 
2.5.2 Over-exertion in pulling or pushing objects 
2.5.3 Over-exertion in handling or throwing objects 
2.5.4 Other over-exertion or strenuous movements 

2.6 Exposure/contact with extreme temp/pressure 
2.6.1 Exposure to high heat atmosphere or environment 

(excluding fire/explosion) 
2.6.2 Exposure to cold atmosphere or environment 
2.6.3 Contact with extreme hot substances or objects 
2.6.4 Contact with extreme cold substances or objects 
2.6.5 Other exposure/contact with extreme 

temperature/pressure 
2.7 Exposure/contact with electric current 2.8 Exposed to harmful substances/radiations 

2.8.1 Contact by inhalation, ingestion or absorption of 
harmful substances 

2.8.2 Exposure to radiations 
2.8.3 Contact with corrosive substances 
2.8.4 Other type of exposure to harmful 

substances/radiations 
2.9 Other types of incidents 

2.9.1 Drowning 
2.9.2 Other types of incidents not elsewhere classified 
2.9.3 Unclassifiable incidents due to lack of information 

 

 

Table A1.3 Taxonomy for Types of Breakdown Event 

3. Types of Breakdown Event 

3.2 Lost of balance- Fall of person  
3.2.1 Slipped 
3.2.2 Stepped into space 
3.2.3 Stepped on fragile material 
3.2.4 Tripped 
3.2.5 Other types of lost of balance 
3.2.6 Unknown type of lost of balance 

3.3 Object fall off surface 
3.3.1 Object slipped off surface 
3.3.2 Object under hoist dislodged 
3.3.3 Object fall into depth 

3.3.3.1 Soil structure/ excavation 
3.3.3.2 Manhole 
3.3.3.3 Other types of depth 

3.3.4 Other types of fall off surface 
3.4 Loss control of plant/vehicle (Runaway plant/vehicle) 

3.1 Collapse/toppling of object 
3.1.1 Plant/machinery (including parts of 

machinery)/equipment 
3.1.2 Soil structure (Earth, rocks, stones etc.) 
3.1.3 Structure under work 
3.1.4 Temporary structures 

3.1.4.1 Access scaffold 
3.1.4.1.1 Non-mobile access scaffold 
3.1.4.1.2 Mobile access scaffold 
3.1.4.1.3 Working platforms on access scaffold 
3.1.4.1.4 Other access scaffold 

3.1.4.2 Formwork/falsework 
3.1.4.3 Lifting platform 
3.1.4.4 Working platforms (excluding working 

platforms on access scaffold) 
3.1.4.5 Other temporary structure 

3.1.5 Other types of collapses 3.5 Collision between objects 
3.5.1 Lifted objects 
3.5.2 Plant/vehicles 
3.5.3 Other moving objects 

3.6 Failure of equipment (breakage) 3.7 Fire/explosion 
3.8 Other types of breakdown event  
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Table A1.4 Taxonomy for Types of Substandard Physical Conditions (Immediate Causes) 

4. Types of Substandard Physical Conditions (Immediate Causes) 

4.1 Substandard plant/machinery/equipment/tools 
4.1.1 Defective plant/machinery/equipment/tools 
4.1.2 Lack of proper safety feature 
4.1.3 Other substandard 

plant/machinery/equipment/tools 

4.2 Substandard construction material  
4.2.1 Improper chemical composition 
4.2.2 Other substandard construction material 

4.3 Substandard structures/parts of structure 
4.3.1 Lack of proper safety structure 
4.3.2 Insufficient structural capacity 
4.3.3 Defective/damaged structure/parts of structure 
4.3.4 Other substandard structures/parts of structure 

4.4 Substandard work environment  
4.4.1 Slippery conditions 
4.4.2 Tripping conditions 
4.4.3 Congestion/restrictive conditions 
4.4.4 Poor weather conditions 
4.4.5 Lack of insulation against high energy source 

4.4.5.1 Electrical energy 
4.4.5.2 Heat energy 
4.4.5.3 Lack of heat energy 
4.4.5.4 Other sources of energy 

4.4.6 Poor ventilation 
4.4.7 Lack of proper warning signs/signals 
4.4.8 Other substandard work environment conditions 

4.5 Other substandard physical condition   
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Table A1.5 Taxonomy for Types of Substandard Acts (Immediate Causes) 

5. Types of Substandard Acts (Immediate Causes) 

5.1 Extraneous Acts 
5.1.1 Horseplay 
5.1.2 Under influence of alcohol/drugs 
5.1.3 Other extraneous acts 

5.2 Improper equipment usage  
5.2.1 Inappropriate activation of control 
5.2.2 Making safety device inoperative 
5.2.3 Servicing equipment in operation 
5.2.4 Using defective equipment 
5.2.5 Using equipment for inappropriate 

purpose/situation 
5.2.6 Lack of control of equipment or machinery 
5.2.7 Using the right equipment but in the wrong manner 
5.2.8 Other improper equipment usage 

5.3 Inappropriate response to emergency 
5.3.1 Inappropriate emergency response 
5.3.2 Inappropriate response to prevent incident 
5.3.3 Other inappropriate response to emergency 

5.4 Omission of basic safety measures 
5.4.1 Failure to check  
5.4.2 Failure to secure/back-up 
5.4.3 Failure to use PPE 

5.4.3.1 Failure to use 
5.4.3.2 Failure to use in proper manner 

5.4.4 Failure to warn 
5.4.5 Other omission of basic safety measures 

5.5 Spatial error  
5.5.1 Failure to use proper access/egress 
5.5.2 Improper placement of objects 
5.5.3 Improper position/location for task 
5.5.4 Other spatial errors 

5.6 Improper work procedure 
5.6.1 Failure to perform a procedure/steps of a procedure 
5.6.2 Mismatch of workers’ capacity and demands of 

procedure 
5.6.3 Operating without proper authority/permission 
5.6.4 Perform procedure in the wrong sequence 
5.6.5 Perform wrong/inappropriate procedures/steps 
5.6.6 Other improper work procedures 

5.7 Other substandard acts   

 
Table A1.6 Taxonomy for Types of Personal Factors (Immediate Causes and Underlying Factors) 

6. Types of Personal Factors (Immediate Causes and Underlying Factors) 

6.1 Lack of knowledge/skill 
6.1.1 Lack of experience/practice/performance 
6.1.2 Inadequate orientation 
6.1.3 Inadequate initial/update training 
6.1.4 Other lack of knowledge/skill 

6.2 Mental/psychological factors  
6.2.1 Emotional factors 
6.2.2 Mental fatigue 
6.2.3 Inadequate mental capability 
6.2.4 Poor judgement 
6.2.5 Confusing instructions 
6.2.6 Distracting events 
6.2.7 Others 

6.3 Improper motivation 
6.3.1 Mismatch of safe performance and 

reward/punishment 
6.3.2 Excessive frustration 
6.3.3 Inappropriate attempt to save time of effort or 

avoid discomfort 
6.3.4 Inadequate discipline 
6.3.5 Inappropriate peer pressure 
6.3.6 Improper supervisory example 
6.3.7 Inadequate performance feedback 
6.3.8 Others 

6.4 Physical/physiological factors  
6.4.1 Inadequate physical/physiological capabilities 
6.4.2 Physical fatigues 
6.4.3 Injury/illness 
6.4.4 Other physical/physiological factors 

6.5 Other personal factors   
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Table A1.7 Taxonomy for Types of SMS Failures (PSB 1999) 

7. Types of SMS Failures 

(A) Lack of measure (B) Inadequate measure (C) Inadequate execution 
7.1 Safety policy 

7.1.1 Safety Organisation 
7.1.2 Policy Review 

7.2 Safe work practices  
7.2.1 Application of Safe work practices 
7.2.2 Permit-to-work system 
7.2.3 Statutory requirements 

7.3 Safety training 
7.3.1 Identification of training needs 
7.3.2 Training for management personnel 
7.3.3 Training for supervisory personnel 
7.3.4 Training for workers 
7.3.5 Training records 

7.4 Group meetings  
7.4.1 Safety committee meeting 
7.4.2 Tool box meetings and safety briefings 
7.4.3 Coordination meeting 

7.5 Incident investigation and analysis  
7.5.1 Identification and record of incidents 
7.5.2 Investigation of incidents 
7.5.3 Analysis of incident statistics 

7.6 In-house safety rules and regulations  
7.6.1 In-house rules and regulations 
7.6.2 Training and review of rules and regulations 
7.6.3 Safety sign 

7.7 Safety promotion  
7.7.1 Promotional activities 
7.7.2 Safety bulletin boards 
7.7.3 Recognition of good safety performance 
7.7.4 Records of promotion activities 

7.8 Evaluation, selection and control of sub-contractors  
7.8.1 Evaluation of sub-contractors 
7.8.2 Selection of sub-contractors 
7.8.3 Control of sub-contractors 

7.9 Safety inspections  
7.9.1 Competency of safety inspectors 
7.9.2 Inspection methodology 
7.9.3 Follow-up system 

7.10 Maintenance regime for all machinery and equipment  
7.10.1 Maintenance program 
7.10.2 Competency of maintenance program 

7.11 Hazard analysis  
7.11.1 Hazard analysis plan 
7.11.2 Hazard analysis method 
7.11.3 Hazard analysis report 

7.12 The control of movements & use of haz. subst. & 
chem. 

7.12.1 Management of hazardous substances and 
chemicals 

7.13 Emergency preparedness  
7.13.1 Emergency plan 
7.13.2 Emergency team 
7.13.3 Emergency drills and exercises 

7.14 Occupational health program 
7.14.1 Hearing conservation program 
7.14.2 Respiratory protection program 
7.14.3 Training and education 
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Table A1.8 Taxonomy for Types of Job Factors (Underlying Factors) 

8. Types of Job Factors (Underlying Factors) 

8.1 Factors related to designers 
8.1.1 Inadequate structural capacity 
8.1.2 Lack of consideration for site safety 
8.1.3 Lack of communication of design to Site 

Management 
8.1.4 Other factors related to designers 

8.2 Factors related to operatives 
8.2.1 Non-compliance to SM’s instructions 
8.2.2 Poor communication between operatives 
8.2.3 Failed to perform to standard or expected 

competency 
8.2.4 Failure to feedback to SM on problems 
8.2.5 Other factors related to operatives 

8.3 Factors related to project management/corporate  
8.3.1 Lack of commitment to safety 
8.3.2 Lack of financial support for safety efforts 
8.3.3 Lack of communication of safety priority to site 

management 
8.3.4 Lack of audit on site safety 
8.3.5 Other factors related to project 

management/corporate 

8.4 Factors related to site management  
8.4.1 Failure to construct according to 

designers’/manufacturers’ design 
8.4.2 Failure to identify /analyse hazards 
8.4.3 Failure to manage identified unacceptable hazards 
8.4.4 Failure to obtain/allocate adequate/proper resources 

8.4.4.1 Human resources 
8.4.4.2 Physical resources 
8.4.4.3 Other resources 

8.4.5 Failure to set up proper safe work procedures 
8.4.6 Failure to communicate safe work 

procedures/hazards 
8.4.7 Inadequate supervision of site activities 

8.4.7.1 Failure to monitor site progress 
8.4.7.2 Failure to ensure compliance to safe work 

procedures 
8.4.7.3 Inadequate inspection of constructed 

components 
8.4.8 Violation of safe work procedures 
8.4.9 Failure to delegate/coordinate site work 
8.4.10 Lack of proper maintenance of physical resources 

8.4.10.1 Temporary structures 
8.4.10.2 Plant 
8.4.10.3 Equipment 
8.4.10.4 Other physical resources 

8.4.11 Other factors related to site management 
8.4.11.1 Over-emphasis on production goals 
8.4.11.2 Others 

8.5 Other job factors  
8.5.1 Poor work communication between jobs 
8.5.2 Other job factors not elsewhere classified 

 

 

Table A1.9 Taxonomy for Types of Organisational Factors (Underlying Factors) 

9. Types of Organisational Factors (Underlying Factors) 

9.1 Poor safety and/ or organisational culture 9.2 Inappropriate organisational structure 
9.3 Lack of organisational learning 9.4 Lack of stable workforce 
9.5 Lack of formal and informal communication structure 9.6 Other organisational factors 

 

 

 177 



178 

 

 

 

 

 

 

 

Appendix 2 

STATISTICAL RESULTS OF ANALYSIS ON 140 FATAL 

ACCIDENTS 
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Figure A2.1 Distribution of type of work 
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Figure A2.2 Distribution of type of contact event 
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Figure A2.3 Distribution of type of breakdown event 
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Figure A2.4 Distribution of type of substandard acts 
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Figure A2.5 Distribution of type of substandard physical conditions 
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Figure A2.7 Distribution of type of job factors base on job function 

Figure A2.6 Distribution of types of immediate personal factors 
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Figure A2.8 Distribution of type of job factors related to site management 
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Appendix 3 

SEMANTIC NETWORKS 
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Figure A3.1 (a) Semantic network for situational variable "Objects" – sub-concepts related to 
physical attributes 
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Figure A3.1 (b) Semantic network for situational variable "Objects" – sub-concepts related to 
functions 
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Figure A3.2 Taxonomy tree for situational variable “Location” 
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Appendix 4 

VALIDATION OF THE POISSON DISTRIBUTION FOR 

CONSTRUCTION INCIDENTS 
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VALIDATING THE POISSON MODEL FOR CONSTRUCTION INCIDENTS 

Data source 

The data for this study has been obtained from the Safety Department of the Land 

Transport Authority (LTA) of Singapore. Since 1998, the LTA has implemented a 

computerised system called the Safety Information System (SITS) to capture 

information on incidents that occurred on LTA construction sites. The SITS contains 

incidents of all severity, from incidents with no injury to incidents involving fatalities, 

and LTA had been nurturing a transparent and non-penalising culture where reporting 

of these incidents is greatly encouraged. This approach had helped them to collect a 

relatively large amount of incident information.  

 

Table A4.1 List of contracts chosen for analysis 

Contract Contract Description 
A Above ground construction 
B Above ground construction 
C Other underground construction work 
D Underground station construction 
E Underground station construction 
F Underground station construction 
G Underground station construction 
H Underground station construction with tunnelling work 
I Underground station construction with tunnelling work 
J Underground station construction with tunnelling work 
K Underground station construction with tunnelling work 
L Underground station construction with tunnelling work 
M Underground station construction with tunnelling work 
N Underground station construction with tunnelling work 

 

In all, fourteen contracts with sufficient data points for statistical inference 

were chosen for the analysis as depicted in Table A4.1. All fourteen contracts are part 

of the Mass Rapid Transit (MRT) or Light Rail Transit (LRT) construction projects 

that either have been recently completed or are still on-going. Most of the contracts 

involve construction of railway stations, and the majority of the stations are 
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underground. Besides construction of underground stations, Contracts H to N also 

include considerable tunnelling work. Unlike the other underground construction 

contracts, Contract C involves the construction and installation of railway components 

in the underground tunnels. The above ground construction contracts include 

construction of above ground stations, train depot for parking and maintenance of the 

trains, and viaducts for the railway system.  

Furthermore, to minimise effects due to instability in the reporting and 

recording of incidents during the early stage of implementing SITS in the projects, 

initial data of about 100,000 man-hrs have been removed from each contract. This 

corresponds to between 4-6 months of the contracts. The data during this period has 

demonstrated exceptionally high variance or exceptionally low number of incidents, 

and would introduce unnecessary noise into the analysis, if included. These contracts 

are generally over 3.5 years long, involving several million man-hrs so that the data 

discarded represents only a small portion of the project. 

Goodness-of-fit Test 

The appropriateness of the Poisson distribution in modelling the random component 

of incident causation has been tested using the chi-square goodness-of-fit test 

(Conover, 1980; Bendell, 1991) and the dispersion test (Cox and Lewis, 1966; 

Nicholson, 1985; Nicholson and Wong, 1993). The former is one of the most 

commonly used tests to determine the goodness-of-fit of a distribution to some 

observed data, in which each data point is assumed to be an independent observation 

of the random variable X(t). The statistic, T, for this test follows the chi-square 

distribution and is given by  
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where, Oi is the number of observed data in class i of the data (e.g., class i may be the 

class with xi number of incidents in the time intervals observed), and Ei the expected 

number of observed data in that class as given by the Poisson distribution so that, 

 

Ei = pi   ΣOi      (A4.2 ) 

 

in which, pi is the probability that X(t) = xi, given by Eq. (1). 

The classes for the test have been designed carefully to ensure that the 

assumptions of the test are not violated.  For example, small values of the expected 

number Ei of observed data in class i can lead to poor match between the chi-square 

distribution and the actual distribution of T. This problem is resolved by applying a 

conservative rule of thumb proposed by Cochran (1954), in which the expected 

number of occurrences in each class must be greater than one, and more than 80% of 

the expected number of occurrences in all classes must be greater than 5. If the 

expected number of occurrences in a class is too low, the class is merged with 

adjacent classes to increase the Ei (Montgomery and Runger, 1999). 

Dispersion Test 

A key characteristic of the Poisson process is that the mean rate of arrival, λ, is equal 

to the standard deviation. As demonstrated by Bendell (1991), the chi-square test is 

not able to detect whether the sample's coefficient of variation (standard 

deviation/mean) is significantly different from unity. Instead, the dispersion test 
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(Nicholson, 1985; Nicholson and Wong, 1993; Cox and Lewis, 1966) has been 

utilized to validate this aspect of the model. The statistic, H, for this test also has a 

chi-square distribution and is given by 
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where xi is the number of incident occurrences in the time interval i, and x  the 

average number of incident occurrence in an interval, with c being the number of 

intervals in the sample. 

In the analysis, the time interval size of 50,000 man-hours worked was chosen 

arbitrarily to ensure meaningful aggregation of incident occurrences. It is sufficiently 

small to prevent loss of information when incident counts are merged into large 

intervals. On the other hand, the intervals are not too small as to cause significance of 

errors contained in data to be amplified.  In this regard, all the samples obtained for 

the contracts have more than adequate number of intervals and incidents necessary for 

a valid test. Specifically, the number of time intervals range from 44 to over 500 (see 

Table A4.2) and minimum number of incidents in the samples is 37, well exceeding 

the recommended minimum of 20 and 33, respectively (Nicholson and Wong, 1993). 

 

DISCUSSION OF RESULTS 

The results of the above tests are shown in Table A4.2 as P-values corresponding to 

the probabilities for the chi-square of the respective computed T and H statistics. 

Evident from Table A4.2, the data from all the contracts except for Contract A, have 
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their P-values well exceeding 0.01, indicating that the distribution of the observed 

data corresponds well to that of a Poisson process. Closer analysis of the observed 

data in Contract A also shows that the Poisson process would be equally valid, as 

discussed shortly. 

 

Table A4.2 Analysis results based on complete contract data 

Contract 
Dispersion 

test P-
value 

Chi-square 
test P- 
value 

Mean 
arrival 
rate  λ̂

Coeff. of 
Variance 

No. of 
Intervals of 
50,000 mhr 

A 0.002 0.005 0.209 1.190 532 
B 0.529 0.948 0.154 0.989 188 
C 0.719 0.635 0.455 0.892 66 
D 0.055 0.396 0.551 1.239 98 
E 0.238 0.437 0.795 1.145 44 
F 0.562 0.792 0.295 0.972 105 
G 0.058 0.101 0.748 1.216 115 
H 0.169 0.445 0.605 1.093 210 
I 0.016 0.476 0.851 1.243 175 
J 0.056 0.012 0.416 1.209 125 
K 0.065 0.100 1.258 1.238 89 
L 0.043 0.594 1.024 1.279 85 
M 0.337 0.882 0.689 1.053 103 
N 0.034 0.288 1.255 1.284 94 

 

The mean arrival rates, , range from 0.154 to about 1.26 incidents per 50,000 

man-hrs worked at the sites. This mean arrival rate is a parameter of the Poisson 

process that is dependent on the systematic factors contributed by the situational 

variables and the quality of SMS, as expressed in Figure 5-6 of Chapter 5. Generally, 

it can be observed from Table A4.3 that the contracts with only above ground 

construction (Contracts A and B) have the lowest incidents in contrast to the contracts 

with tunneling works, which would have greater exposure to risks having an average 

mean rate of 0.871 incidents per 50,000 man-hrs worked. On average, the contracts 

with underground station works alone are intermediate with an average mean rate of 

0.597 incidents per 50,000 man-hrs worked. The dispersion of the mean rates within 

λ̂
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each category of works may be attributed to the other systematic factors, including 

SMS quality. A precise correlation of the mean arrival rates to the systematic factors 

warrants a more detailed study which is presently outside the scope of this paper. 

 

Table A4.3 Contract descriptions based on ranked arrival rates 

Contract 
Mean 
arrival 
rate,  λ̂

Contract Description 

B 0.154 Above ground construction 
A 0.209 Above ground construction 
F 0.295 Underground station construction 
J 0.416 Underground station construction with tunnelling work 
C 0.455 Other underground construction work 
D 0.551 Underground station construction 
H 0.605 Underground station construction with tunnelling work 
M 0.689 Underground station construction with tunnelling work 
G 0.748 Underground station construction 
E 0.795 Underground station construction 
I 0.851 Underground station construction with tunnelling work 
L 1.024 Underground station construction with tunnelling work 
N 1.255 Underground station construction with tunnelling work 
K 1.258 Underground station construction with tunnelling work 

 

 

With respect to Contract A, which failed the homogeneous Poisson 

distribution test above, an analysis of the incident rate over time shows that there was 

a significant reduction in the rate of incidence after interval 120 on Figure A4.1 

depicting the number of incidents over time intervals of 50,000 man-hrs worked. 

Additional tests were performed by dividing the sample into 2 segments separating 

the difference. Three possible separation points were chosen to ensure that there are at 

least 34 incidents in each segment. These results are shown in Table A4.4, showing 

that the Poisson process, albeit a non-homogeneous one, is indeed valid as well. The 

average mean rate for the initial stages of the project was about 0.40 incidents per 

50,000 man-hrs worked, compared to the significantly reduced mean rate of about 
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0.12 incidents per 50,000 man-hrs worked. This reduction could be attributed to the 

difference in the nature of work of the first part involving some basement construction 

or due to significant improvement in the SMS following the occurrence of earlier 

incidents. 
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Figure A4.1 Time series plot of number of incidents per 50,000 man-hours for contract A 

 

Table A4.4 Additional tests’ results for contract A 

Separation 
point (interval 

no.) 
Sub-
set 

Dispersion 
test P-
value 

Chi-
square 
test P- 
value 

Mean 
arrival 
rate,  λ̂

Coeff. of 
Variance 

No. of 
Intervals of 
50,000 mhr 

a 0.064 0.037 0.469 1.196 130 140 
b 0.794 0.678 0.124 0.782 402 
a 0.025 0.021 0.388 1.225 170 180 
b 0.687 0.859 0.124 0.967 362 
a 0.037 0.063 0.357 1.182 210 220 
b 0.477 0.955 0.112 1.002 322 
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Appendix 5 

RISK ASSESSMENT TREE AFTER HAZARD IDENTIFICATION 

ADAPTATION 
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Figure A5.1 Risk assessment tree after hazard identification adaptation 
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Figure A5.2 Incident events under breakdown event “No BE”
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Figure A5.3 Incident events under breakdown event “Lifted object struck nearby object” 
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Figure A5.4 Incident events under breakdown event “Lifting gear failure” 
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Figure A5.5 Incident events under breakdown event “Lifted object dislodged” 
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Figure A5.6 Incident events under breakdown event “Plant/vehicle topple” 
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 203  
Figure A5.7 Incident events under breakdown event “Collision between plants/ vehicles” 
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Figure A5.8 Incident events under breakdown event “Runaway plant/ vehicle” 
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Figure A5.9 Incident events under breakdown event “Person fall from plant/vehicle” 
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RESULTS OF BAYESIAN UPDATING 
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Table A6.1 Bayesian updating of leave nodes 

Event Type Pre-Event ID Event ID Event Value x t λ ′  
Initial 
Var(λ) λ ′′  Updated Var(λ) 

CSQ 197 757 <1 0 278.966 0.001645 1.269E-05 0.0005217 1.277E-06
CSQ  197 758 1-3 0 278.966 0.002056 1.586E-05 0.0006522 1.596E-06
CSQ  197 759 4-10 0 278.966 0.001234 9.518E-06 0.0003913 9.577E-07
CSQ  197 760 >10 0 278.966 0.000822 6.345E-06 0.0002609 6.385E-07
CSQ  197 761 Fatal 0 278.966 0.000411 3.173E-06 0.0001304 3.192E-07
CSQ 198 763 <1 0 278.966 0.000137 1.058E-06 4.348E-05 1.064E-07
CSQ 198 764 1-3 0 278.966 0.000274 2.115E-06 8.695E-05 2.128E-07
CSQ 198 765 4-10 0 278.966 0.000411 3.173E-06 0.0001304 3.192E-07
CSQ 198 766 >10 0 278.966 0.000548 4.23E-06 0.0001739 4.257E-07
CSQ 198 767 Fatal 0 278.966 0.000685 5.288E-06 0.0002174 5.321E-07
CE   199 202 No CE 0 278.966 0.000685 5.288E-06 0.0002174 5.321E-07
CSQ 200 769 <1 0 278.966 0.000183 1.41E-06 5.797E-05 1.419E-07
CSQ 200 770 1-3 0 278.966 0.000365 2.82E-06 0.0001159 2.838E-07
CSQ 200 771 4-10 0 278.966 0.000548 4.23E-06 0.0001739 4.257E-07
CSQ 200 772 >10 0 278.966 0.000731 5.64E-06 0.0002319 5.675E-07
CSQ 200 773 Fatal 0 278.966 0.000914 7.05E-06 0.0002898 7.094E-07
CSQ  201 775 <1 0 278.966 0.000137 1.058E-06 4.348E-05 1.064E-07
CSQ  201 776 1-3 0 278.966 0.000274 2.115E-06 8.695E-05 2.128E-07
CSQ  201 777 4-10 0 278.966 0.000411 3.173E-06 0.0001304 3.192E-07
CSQ   201 778 >10 0 278.966 0.000548 4.23E-06 0.0001739 4.257E-07
CSQ  201 779 Fatal 0 278.966 0.000685 5.288E-06 0.0002174 5.321E-07
CE 203 206 No CE 1 278.966 0.002132 1.645E-05 0.0031239 7.646E-06
CSQ  205 781 <1 0 278.966 0.000711 5.484E-06 0.0002254 5.518E-07
CSQ  205 782 1-3 0 278.966 0.001421 1.097E-05 0.0004509 1.104E-06
CSQ  205 783 4-10 0 278.966 0.002132 1.645E-05 0.0006763 1.655E-06
CSQ  205 784 >10 0 278.966 0.002843 2.193E-05 0.0009017 2.207E-06
CSQ  205 785 Fatal 0 278.966 0.003553 2.742E-05 0.0011272 2.759E-06
CE 207 209 No CE 0 278.966 0.001523 1.175E-05 0.0004831 1.182E-06

 207

 



Table A6.2 Bayesian updating of leave nodes (cont’d) 

Event Type Pre-Event ID Event ID Event Value x t λ ′  
Initial 
Var(λ) λ ′′  Updated Var(λ) 

CSQ 208 787 <1 0 278.966 0.000508 3.917E-06 0.000161 3.941E-07
CSQ  208 788 1-3 0 278.966 0.001015 7.834E-06 0.0003221 7.882E-07
CSQ  208 789 4-10 0 278.966 0.001523 1.175E-05 0.0004831 1.182E-06
CSQ 208 790 >10 1 278.966 0.002031 1.567E-05 0.0030917 7.567E-06
CSQ 208 791 Fatal 0 278.966 0.002538 1.958E-05 0.0008051 1.971E-06
CE 210 213 No CE 0 278.966 0.000203 1.567E-06 6.441E-05 1.576E-07
CSQ  211 793 <1 0 278.966 0.000217 1.671E-06 6.87E-05 1.682E-07
CSQ  211 794 1-3 0 278.966 0.000271 2.089E-06 8.588E-05 2.102E-07
CSQ  211 795 4-10 0 278.966 0.000108 8.356E-07 3.435E-05 8.408E-08
CSQ  211 796 >10 0 278.966 0.000162 1.253E-06 5.153E-05 1.261E-07
CSQ  211 797 Fatal 0 278.966 5.41E-05 4.178E-07 1.718E-05 4.204E-08
CSQ 212 799 <1 0 278.966 5.41E-05 4.178E-07 1.718E-05 4.204E-08
CSQ 212 800 1-3 0 278.966 0.000108 8.356E-07 3.435E-05 8.408E-08
CSQ 212 801 4-10 0 278.966 0.000162 1.253E-06 5.153E-05 1.261E-07
CSQ 212 802 >10 0 278.966 0.000217 1.671E-06 6.87E-05 1.682E-07
CSQ 212 803 Fatal 0 278.966 0.000271 2.089E-06 8.588E-05 2.102E-07
CE    214 220 No CE 0 278.966 0.000665 5.128E-06 0.0002108 5.159E-07
CE 215 722 No CE 0 278.966 8.31E-05 6.41E-07 2.635E-05 6.449E-08
CSQ   216 805 <1 0 278.966 1.66E-05 1.282E-07 5.27E-06 1.29E-08
CSQ   216 806 1-3 0 278.966 6.65E-05 5.128E-07 2.108E-05 5.159E-08
CSQ   216 807 4-10 0 278.966 8.31E-05 6.41E-07 2.635E-05 6.449E-08
CSQ   216 808 >10 0 278.966 3.32E-05 2.564E-07 1.054E-05 2.58E-08
CSQ  216 809 Fatal 0 278.966 4.98E-05 3.846E-07 1.581E-05 3.87E-08
CSQ 217 811 <1 0 278.966 2.22E-05 1.709E-07 7.027E-06 1.72E-08
CSQ 217 812 1-3 0 278.966 4.43E-05 3.418E-07 1.405E-05 3.44E-08
CSQ 217 813 4-10 0 278.966 6.65E-05 5.128E-07 2.108E-05 5.159E-08
CSQ 217 814 >10 0 278.966 8.86E-05 6.837E-07 2.811E-05 6.879E-08
CSQ 217 815 Fatal 0 278.966 0.000111 8.546E-07 3.513E-05 8.599E-08

 208

 



Table A6.3 Bayesian updating of leave nodes (cont’d) 

Event Type Pre-Event ID Event ID Event Value x t λ ′  
Initial 
Var(λ) λ ′′  Updated Var(λ) 

CE   218 723 No CE 0 278.966 0.000266 2.051E-06 8.432E-05 2.064E-07
CSQ 219 817 <1 0 278.966 7.09E-05 5.469E-07 2.248E-05 5.503E-08
CSQ 219 818 1-3 0 278.966 0.000142 1.094E-06 4.497E-05 1.101E-07
CSQ 219 819 4-10 0 278.966 0.000213 1.641E-06 6.745E-05 1.651E-07
CSQ 219 820 >10 0 278.966 0.000284 2.188E-06 8.994E-05 2.201E-07
CSQ 219 821 Fatal 0 278.966 0.000354 2.735E-06 0.0001124 2.752E-07
CE   424 841 No CE 0 278.966 0.001566 6.361E-07 0.001407 5.133E-07
CE 434 842 No CE 0 278.966 0.001044 8.058E-06 0.0003313 8.108E-07
CSQ  469 847 <1 0 278.966 0.000139 5.655E-08 0.0001251 4.562E-08
CSQ  469 843 1-3 0 278.966 0.000278 1.131E-07 0.0002501 9.124E-08
CSQ 469 844 4-10 1 278.966 0.000418 1.696E-07 0.00074 2.699E-07
CSQ  469 845 >10 0 278.966 0.000557 2.262E-07 0.0005003 1.825E-07
CSQ 469 846 Fatal 0 278.966 0.000696 2.827E-07 0.0006253 2.281E-07
CSQ 476 848 <1 0 278.966 0.000685 3.131E-07 0.0006078 2.463E-07
CSQ 476 849 1-3 1 278.966 0.001142 5.218E-07 0.0014183 5.747E-07
CSQ 476 850 4-10 0 278.966 0.000914 4.175E-07 0.0008104 3.284E-07
CSQ 476 851 >10 0 278.966 0.001142 5.218E-07 0.0010131 4.105E-07
CSQ 476 852 Fatal 0 278.966 0.000228 1.044E-07 0.0002026 8.21E-08
CSQ  479 853 <1 0 278.966 0.000696 5.372E-06 0.0002208 5.405E-07
CSQ  479 854 1-3 0 278.966 0.00087 6.715E-06 0.000276 6.756E-07
CSQ  479 855 4-10 0 278.966 0.000522 4.029E-06 0.0001656 4.054E-07
CSQ 479 856 >10 1 278.966 0.000174 1.343E-06 0.0025028 6.126E-06
CSQ 479 857 Fatal 0 278.966 0.000348 2.686E-06 0.0001104 2.703E-07
CSQ 750 835 <1 0 278.966 6.65E-05 5.128E-07 2.108E-05 5.159E-08
CSQ 750 836 1-3 0 278.966 0.000133 1.026E-06 4.216E-05 1.032E-07
CSQ 750 837 4-10 0 278.966 0.000332 2.564E-06 0.0001054 2.58E-07
CSQ 750 838 >10 0 278.966 0.000266 2.051E-06 8.432E-05 2.064E-07
CSQ 750 839 Fatal 0 278.966 0.000199 1.538E-06 6.324E-05 1.548E-07
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Table A6.4 Initial frequency, variance, severity and risk values of incident events 

Event ID Pre-Event ID Event Type Event Value λ ′  
Initial 
Var(λ) 

Initial 
E(Sev) 

Initial 
Risk 

840 Root Root Root 0.05254 3.49E-04 26.6835 1.401957
194 840 BE No BE 0.01234 6.53E-05 16.9296 0.208836
199 840 BE Lifted object struck nearby object 0.00548 4.23E-05 35.3208 0.193645
203 840 BE Lifting gear failure 0.01279 9.87E-05 33.6389 0.430322
207 840 BE Lifted object dislodged 0.00914 7.05E-05 33.6389 0.307373
210 840 BE Plant/vehicle topple 0.00183 1.41E-05 23.4519 4.29E-02
214 840 BE Collision between plants/vehicles 0.00365 2.82E-05 24.7832 9.06E-02
424 840 BE Runaway plant/ vehicle 0.00365 1.48E-06 23.0667 8.43E-02
434 840 BE Person fall from plant/vehicle 0.00365 2.82E-05 12.0476 4.40E-02
479 434 CE Person struck ground 0.00261 2.01E-05 16.8667 4.40E-02
469 424 CE Struck by plant/ vehicle 0.00209 8.48E-07 40.3667 8.43E-02
219 218 CE Person struck by falling object 0.00106 8.20E-06 40.3667 4.29E-02
216 215 CE Operator/worker caught in plant/vehicle 0.00025 1.92E-06 25.5667 6.37E-03
217 215 CE Person pinned by plant/vehicle 0.00033 2.56E-06 40.3667 1.34E-02
215 214 IE Plant/ vehicle topple 0.00066 5.13E-06 29.7708 1.98E-02
218 214 IE Lifted object dislodged 0.00133 1.03E-05 32.2933 4.29E-02
750 214 CE Operator/worker caught in plant/vehicle 0.001 7.69E-06 27.9667 2.79E-02
211 210 CE Operator/worker caught in plant/vehicle 0.00081 6.27E-06 12.4 1.01E-02
212 210 CE Person pinned by plant/vehicle 0.00081 6.27E-06 40.3667 3.28E-02
208 207 CE Person struck by falling object 0.00761 5.88E-05 40.3667 0.307373
205 203 CE Person struck by falling object 0.01066 8.23E-05 40.3667 0.430322
200 199 CE Person struck by falling object 0.00274 2.12E-05 40.3667 0.110654
201 199 CE Person struck by plant/ vehicle 0.00206 1.59E-05 40.3667 0.082991
197 194 CE Struck by lifted object 0.00617 4.76E-05 11.5333 7.11E-02
198 194 CE Person struck by plant/ vehicle 0.00206 1.59E-05 40.3667 0.082991
476 194 CE Fingers trapped in lifted object(s) 0.00411 1.88E-06 13.3056 5.47E-02
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Table A6.5 Updated frequency, variance, severity values and risk of incident events 

Event ID Pre-Event ID Event Type Event Value λ ′′  
Updated 
Var(λ) 

Updated 
E(Sev) 

 
Updated 
Risk 

840 Root Root Root 0.02925 5.57E-05 21.4098 0.626135
194 840 BE No BE 0.00666 8.03E-06 14.7467 0.098226
199 840 BE Lifted object struck nearby object 0.00174 4.26E-06 35.3208 0.061426
203 840 BE Lifting gear failure 0.00651 1.59E-05 20.9827 0.136501
207 840 BE Lifted object dislodged 0.00535 1.31E-05 27.3946 0.146453
210 840 BE Plant/vehicle topple 0.00058 1.42E-06 23.4519 1.36E-02
214 840 BE Collision between plants/vehicles 0.00116 2.84E-06 24.7832 2.87E-02
424 840 BE Runaway plant/ vehicle 0.00365 1.33E-06 21.46 7.83E-02
434 840 BE Person fall from plant/vehicle 0.00361 8.83E-06 17.4439 6.29E-02
479 434 CE Person struck ground 0.00328 8.02E-06 19.2079 6.29E-02
469 424 CE Struck by plant/ vehicle 0.00224 8.17E-07 34.9349 7.83E-02
219 218 CE Person struck by falling object 0.00034 8.26E-07 40.3667 1.36E-02
216 215 CE Operator/worker caught in plant/vehicle 7.9E-05 1.93E-07 25.5667 2.02E-03
217 215 CE Person pinned by plant/vehicle 0.00011 2.58E-07 40.3667 4.25E-03
215 214 IE Plant/ vehicle topple 0.00021 5.16E-07 29.7708 6.28E-03
218 214 IE Lifted object dislodged 0.00042 1.03E-06 32.2933 1.36E-02
750 214 CE Operator/worker caught in plant/vehicle 0.00032 7.74E-07 27.9667 8.84E-03
211 210 CE Operator/worker caught in plant/vehicle 0.00026 6.31E-07 12.4 3.19E-03
212 210 CE Person pinned by plant/vehicle 0.00026 6.31E-07 40.3667 1.04E-02
208 207 CE Person struck by falling object 0.00486 1.19E-05 30.1159 0.146453
205 203 CE Person struck by falling object 0.00338 8.28E-06 40.3667 0.136501
200 199 CE Person struck by falling object 0.00087 2.13E-06 40.3667 0.0351
201 199 CE Person struck by plant/ vehicle 0.00065 1.60E-06 40.3667 0.026325
197 194 CE Struck by lifted object 0.00196 4.79E-06 11.5333 2.26E-02
198 194 CE Person struck by plant/ vehicle 0.00065 1.60E-06 40.3667 0.026325
476 194 CE Fingers trapped in lifted object(s) 0.00405 1.64E-06 12.175 4.93E-02
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Table A6.6 Change (posterior – prior) in frequency, variance, severity and risk values of incident events 
Change (Posterior – Prior Estimates) 

Event ID Pre-Event ID Event Type Event Value λ  Var(λ) E(Sev) Risk 
840  Root Root Root -0.02329 -2.93E-04 -5.2737 -0.77582
194 840 BE No BE -0.00567 -5.73E-05 -2.1829 -0.11061
199 840 BE Lifted object struck nearby object -0.00374 -3.80E-05 0 -0.13222
203 840 BE Lifting gear failure -0.00629 -8.28E-05 -12.656 -0.29382
207 840 BE Lifted object dislodged -0.00379 -5.74E-05 -6.2443 -0.16092
210 840 BE Plant/vehicle topple -0.00125 -1.27E-05 0 -2.93E-02
214 840 BE Collision between plants/vehicles -0.0025 -2.54E-05 0 -6.18E-02
424 840 BE Runaway plant/ vehicle -7.2E-06 -1.54E-07 -1.6067 -6.03E-03
434 840 BE Person fall from plant/vehicle -4.8E-05 -1.94E-05 5.39626 1.89E-02
479 434 CE Person struck ground 0.00067 -1.21E-05 2.3412 1.89E-02
469 424 CE Struck by plant/ vehicle 0.00015 -3.08E-08 -5.4318 -6.03E-03
219 218 CE Person struck by falling object -0.00073 -7.38E-06 0 -2.93E-02
216 215 CE Operator/worker caught in plant/vehicle -0.00017 -1.73E-06 0 -4.35E-03
217 215 CE Person pinned by plant/vehicle -0.00023 -2.31E-06 0 -9.16E-03
215 214 IE Plant/ vehicle topple -0.00045 -4.61E-06 0 -1.35E-02
218 214 IE Lifted object dislodged -0.00091 -9.22E-06 0 -2.93E-02
750 214 CE Operator/worker caught in plant/vehicle -0.00068 -6.92E-06 0 -1.90E-02
211 210 CE Operator/worker caught in plant/vehicle -0.00055 -5.64E-06 0 -6.88E-03
212 210 CE Person pinned by plant/vehicle -0.00055 -5.64E-06 0 -2.24E-02
208 207 CE Person struck by falling object -0.00275 -4.69E-05 -10.251 -0.16092
205 203 CE Person struck by falling object -0.00728 -7.40E-05 0 -0.29382
200 199 CE Person struck by falling object -0.00187 -1.90E-05 0 -0.07555
201 199 CE Person struck by plant/ vehicle -0.0014 -1.43E-05 0 -0.05667
197 194 CE Struck by lifted object -0.00421 -4.28E-05 0 -4.86E-02
198 194 CE Person struck by plant/ vehicle -0.0014 -1.43E-05 0 -0.05667
476 194 CE Fingers trapped in lifted object(s) -6E-05 -2.37E-07 -1.1306 -5.37E-03
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