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ABSTRACT 

 
This thesis presents a beamforming ultra-wideband transmitter capable of providing very 

fine angular resolution for imaging applications in the frequency range of 3-5GHz. This 

beamforming UWB transmitter employs baseband processing to save area and power. 

The transmitter uses a novel digital delay calibration technique to obtain the precise delay 

difference. The digital delay calibration system consists of a serial to parallel 

programming interface (SPI), a digital calibration Finite State Machine (FSM), a 

fractional-N sigma-delta delay locked loop ( DLL) and a (Successive Approximation 

Register) SAR delay locked loop. The sigma-delta delay locked loop will provide fine 

delay resolution as well as large delay range required in beamforming applications. This 

analog delay is then converted to a digital code word with the help of a SAR DLL. The 

FSM stores the digital code words corresponding to different delay values. These digital 

code words are then applied to a beam former delay subsystem to generate baseband 

signals with precise delay difference. The UWB pulse is generated from these signals 

with the help of all-digital UWB transmitters. The whole transmitter architecture is 

implemented in 0.13µm CMOS process. It provides a delay resolution of less than 10ps 

and consumes about 35.4mW of power from a 1.2V supply. The all-digital UWB 

transmitter implemented in the design provides the flexibility to shape the output UWB 

pulse and consumes 80pJ/pulse. 
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CHAPTER 1 : INTRODUCTION 
 

  

Ultra-Wideband (UWB) technology is an emerging field of research. This field has 

gained a lot of focus in recent years, especially after the Federal Communications 

Commission (FCC) approved the use of 3.1-10.6GHz band for unlicensed 

communication using UWB. UWB has many appealing features such as robustness, 

flexibility, high data-rate capability as well as high-precision ranging capability. These 

features make it very attractive for applications like radar, imaging, wireless USB, sensor 

networks, RFID tags etc. In radar and imaging applications, Impulse Radio UWB (IR-

UWB) is carving a place for itself because of the ranging resolution it can provide. UWB 

is emerging as a low cost and high data rate alternative in the field of wireless 

communications [1]. This chapter provides an introduction to UWB, its applications and 

outlines the important contributions of this thesis.  

 

1.1 UWB and its applications  

Recognizing the potential advantages of ultra-wideband (UWB) communication, Federal 

Communications Commission (FCC) issued a report that permitted the use of 3.1 to 

10.6GHz spectrum for UWB wireless communication [9]. According to the FCC, a signal 

is considered ultra-wideband if it has a fractional bandwidth greater than 0.2 or has an 

absolute -10dB bandwidth greater than or equal to 500MHz.The fractional bandwidth is 

defined as the ratio of -10dB bandwidth of the signal to its centre frequency.  
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The 802.15.3a task group had categorized UWB into two categories, i.e. the Orthogonal 

Frequency Division Multiplexing (OFDM) standard and the Impulse Radio UWB (IR-

UWB) standard. The OFDM standard has been adopted by Wi-media alliance for 

implementing high data rate communication. The IR-UWB standard is very useful for 

energy efficient designs. Low data rate transmitters with low energy consumption have 

been built using the IR-UWB proposal [2, 3]. 

 

Some of the applications that can benefit from low power, low cost and high data rate 

provided by UWB are Wireless Personal Area Network (WPAN) applications which 

provide wireless connectivity to all personal computing devices, consumer electronics 

and mobile devices. The maximum data rate that can be achieved on a RF link is given by 

the Shannon capacity theorem as 

)1log( SNRBWC ,        (1.1) 

where, C is the channel capacity, BW is the bandwidth and SNR is the signal to noise 

ratio. The wide bandwidth offered by UWB helps to attain a high data rate which is 

required for high-speed data transfer applications. The low power and low data rate 

applications like sensors and biomedical applications exploit the low energy consuming 

architectures of the IR-UWB. It is very useful in RFID tags for patient and asset tracking 

in hospitals. In radar and imaging applications, IR-UWB is very attractive because of the 

ranging resolution it can provide. It is very useful for range finders and biomedical 

imaging [5]. Ranging resolution is the minimum separation distance between the two 

objects that can be detected by the radar system. The ranging resolution is given by 

BW

c
R

2
           (1.2) 
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where, BW is the bandwidth of the signal and c is the speed of light.  

Since UWB signals provide the user a potentially wide bandwidth, the ranging resolution 

that can be obtained could be very good. By utilizing the 7.5 GHz bandwidth from 3.1-

10.6GHz, resolution as low as 2cm can be achieved.  

UWB is considered for a wide range of applications as shown in Figure 1.1 [33]. 

 

 

Figure 1.1: Applications of UWB in short range wireless communications and ranging 

[33] 

UWB and radar based imaging are used in military applications [4]. UWB imaging is also 

used for detecting cardiac and pulmonary signals generated from the heart and lungs [8]. 

 

1.2 Motivation 

UWB has a very high-precision ranging capability. This is predominantly the driving 

force for using UWB in imaging and ranging applications. In a typical imaging system, a 
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transmitter would transmit an electromagnetic pulse train towards objects of interest. A 

receiver would collect the signals that are reflected and/or scattered from the objects as 

shown in Figure 1.2. 

 

Figure 1.2: Typical imaging system 

 

 The magnitude and shape of the received signals and their time of arrival are used to 

identify the target and its relative distance and speed respectively [5]. Beamforming helps 

to focus the beam in a particular direction as indicated in Figure 1.3. This helps in 

improving the spatial resolution of the image. The electromagnetic beam can be scanned 

mechanically or electronically to improve spatial coverage.  

 

 

Figure 1.3: Beamforming in imaging system 

 

An antenna array capable of electronic beam steering can adapt and focus its Radio 

Frequency (RF) beam at specific directions [1]. This helps to locate targets in radar and 

Tx Rx 

d 
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imaging systems. Angular resolution is defined as minimum angle by which the beam can 

be steered. Systems capable of providing very fine beam steering are needed for the high 

precision imaging applications. This thesis presents a beamforming ultra-wide band 

transmitter architecture capable of providing high angular and depth resolutions required 

for the imaging systems in the frequency range of 3-5GHz. 

 

1.3 Thesis contribution 

The major contributions of this thesis are   

1. A novel beamforming ultra-wideband transmitter architecture capable of 

achieving very fine beam steering angles. 

2. A novel digital delay calibration technique that uses a digital FSM, sigma-delta 

delay locked loop, SAR delay locked loop and a vernier delay line to generate the 

precise delay required for beam forming. This helps to calibrate and control the 

beam angle and the centre frequency of the UWB transmitter. 

3. An improved pulse shaping logic circuit which provides additional flexibility to 

control the shape of the output UWB signal. 

 

1.4 Thesis organization 

This thesis presents a beamforming UWB transmitter implemented in 0.13µm IBM 

CMOS process. The organization of this thesis would be as follows. Chapter 2 provides 

the basic theory and advantages of beam forming in UWB. Chapter 3 reviews the existing 

beamforming UWB transmitter architectures. The proposed beamforming UWB 
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transmitter architecture is presented in chapter 4. Chapter 5 presents the CMOS 

implementation of the transmitter and chapter 6 concludes with a summary. 
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CHAPTER 2 : UWB BEAMFORMING 
 

 

2.1 Advantages of UWB Beamforming 

The power that can be emitted in the approved UWB band from 3.1GHz to 10.6GHz is 

very limited. The FCC limits for indoor communications are indicated in Table 2.1 [9] 

while the indoor emission mask of UWB is shown in Figure 2.1. 

Table 2.1: FCC emission limits for indoor UWB [9] 
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Figure 2.1: Indoor UWB emission mask 

In order to avoid interference to other existing narrow band systems, FCC has restricted 

the output power that can be transmitted from an UWB system. Because of this low 
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output power restriction, the coverage in an UWB system is limited to only a few meters. 

However, this disadvantage of UWB can be overcome by using beamforming.  

 

For a given power level at the receiver, the power that has to be generated in a phased 

array system is lower than in an isotropic system. In an N-element transmitter radiating P 

watts of power, the total power in the focused direction will be N
2
P. The N

2
 factor is due 

to the coherent addition of the electromagnetic waves in the desired direction [10]. 

Beamforming can provide 20log(N) improvement in transmitter EIRP where N is the 

number of antenna elements used in the system. 

 

Besides improving the range, beamforming can also minimize the interference to other 

narrow band systems. It can also avoid narrow band interferers at the receiver [10]. 

Beamforming helps to obtain the theoretically achievable highest data rate. The range and 

data rate obtained in beamforming transmitters are higher than their single antenna 

counterparts [11]. 

 

When compared to narrow band systems, beamforming in UWB also provides an 

additional degree of freedom in choosing the antenna spacing. In case of a narrow band 

system the antenna array factor is given by the equation  

)2/)sinsin((

)2/)sin(sin(
)(

kdN

kdN
AF        (2.1) 

where,  is the polar co-ordinate, N is the number of antenna elements, d is the spacing 

between the antenna elements,  is the angle at which the main lobe of the  beam is 
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focused and   k is the propagation vector of the transverse electromagnetic wave and it is 

related to the wavelength( ) by  

2
k           (2.2) 

This is a very well known equation for the antenna pattern of a narrow band system. An 

analysis of this equation would show that the antenna pattern would have side lobes and 

grating lobes. To obtain minimum side lobes, the antenna spacing has to be half-

wavelength ( /2).  

 

The array pattern equation for a Gaussian UWB signal is obtained in [13-15] and the 

approximate array pattern expression for the UWB signal is indicated in [4] and the 

equation is as follows 

))2/(sin(

))2/(sin(
)(

TcL

TcLerf
AF        (2.3) 

where,  is the polar co-ordinate, c is the velocity of light, T  is the pulse width and L is 

the antenna array length. For an antenna array with N elements each separated by a 

distance of d, the array length is given by  

dNL )1(           (2.4) 

The polar plot of the array factors given by equations 2.1 and 2.3 for the narrow band and 

the broad band systems respectively were obtained using MATLAB and the result is as 

shown Figure 2.2. 

 

 



 10 

 

Figure 2.2: Comparison of UWB and narrow band array pattern 

 

It can be clearly seen that the UWB beamforming array pattern does not have the grating 

lobes and side lobes that are present in narrowband systems [4]. Therefore, it is no longer 

necessary to restrict the antenna spacing to half-wavelength spacing. Larger spacing can 

be used for obtaining higher spatial selectivity [5]. 

 

2.2 UWB beamforming system basics and requirements 

The properties of UWB beamforming systems have been discussed in the literature [13-

15]. In an UWB beamforming system consisting of a linear array of antennas, the 

scanning angle depends on the spacing between antenna elements and the radio pulse 

width (∆T) of the UWB signal. The angle between the direction where the beam is 

focused normal to the antenna array is indicated as   as shown in Figure 2.3.  
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Figure 2.3: UWB beamforming system. 

 

In a linear array of antennas, with a spacing of d between the antenna elements, in order 

to achieve a maximum signal in the direction , the relative delay between the signals fed 

to the adjacent antenna elements is given by 

cd /)sin(         (2.5) 

where, c is the velocity of electromagnetic wave in free space. 

 

UWB arrays require true time-delay elements to steer the RF beam as indicated in the 

Figure 2.4. The delay difference between the adjacent antenna paths decides the scanning 

angle. 
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Figure 2.4: UWB array with true time-delay element 

 

The requirements for the design of true time-delay elements for an UWB beam forming 

system were summarized as follows [1]: 

1) The relative time-delay between adjacent antenna elements should be a fraction of the 

pulse width of the UWB radio pulses to steer a fine scanned angle. Longer delays are 

required for wider scanned angles. 

2) The true time-delay element should be variable to change the scanned angle 

adaptively; hence, electronic control is desirable. 

3) Timing jitter or deviation of the true time-delay element should be minimized. 

These requirements listed for the design of true time-delay elements, serve as guideline in 

selecting the architecture for beamforming UWB transmitter.  

Variable True Time Delay 

element 

d 

 min 

 max 

+2  

+  

 

+3  
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CHAPTER 3 : EXISTING BEAMFORMING UWB 

TRANSMITTER ARCHITECTURES 
 

3.1 Literature Review   

Electronic beam steering in UWB phased array transmitters can be done in baseband or 

RF. The following summarizes some of the existing beamforming UWB transmitter 

architectures and investigates their advantages and disadvantages. 

 

In design [16], beamforming was implemented by connecting the true time-delay 

elements between the transceiver and power splitter/combiner. The delay elements were 

implemented using passive elements like RC or transmission line components. But 

obtaining a large delay using transmission line components consumes a large area and is 

not economical. 

 

Figure 3.1: UWB beamforming system from [4] 

 

 The UWB beam former in [4], implemented in 0.18 m BiCMOS SiGe process can 

obtain a ranging resolution of 20mm and an angular resolution of 7 degrees. This 
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architecture employs trombone delay elements at the RF path as depicted in Figure 3.1. 

The beamformer can provide a maximum delay of 64ps with a step size of 4ps. The 

trombone delay elements were constructed using lumped LC. This chip has an area of 

2.25mm
2 

and consumes 87.5mW from a 2.5V supply. The major drawbacks of this 

scheme are the huge area due to inductors and the large power required for compensating 

the loss incurred by the LC delay elements.  

 

Ultra-wideband timed array receiver implemented in [5] uses a path-sharing delay 

architecture. This beamforming system has a resolution of 15ps and can provide 11 

angles with 9 degrees of spatial resolution. The delay line was implemented using fully 

differential constant –k LC ladder. Each ladder section provides a resolution of 7.5ps. 

This chip suffers from the same drawbacks as [4].  It has a die area of 9.92mm
2 

and 

consumes 555mW of power. 

 

 

Figure 3.2: Electronic beam steering subsystem from [1] 
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In an effort to reduce the die area and power consumption, electronic beam steering in 

UWB phased array transmitter was implemented at baseband [1]. As shown in Figure 3.2, 

the beam steering subsystem consisted of a digital PLL that controlled a variable delay to 

provide the required phase shift. The input baseband signal was delayed using this beam 

steering subsystem. The relative delay between the paths decides the beam angle and 

these delayed signals were directed to an external UWB pulse forming network to 

produce the UWB pulses. This beam steering system was implemented in 0.25 m 

process and it can produce a delay in the range of 100ps to 500ps. The system can obtain 

a delay step size of 100ps and a minimum scan angle of 9 degrees per step with an 

antenna spacing of 18cm. It consumes about 100mW of power and has an area of 

0.9mm
2
.  The main drawbacks of this architecture are the higher jitter and poorer 

resolution due to the employed PLL for delay control.  

 

The UWB timed array transmitter implemented in [6] uses the path-sharing architecture 

at baseband to provide the delay. This architecture uses long and short inverter chain 

paths to obtain the delay difference between the adjacent channels. The delay resolution 

obtained is 180ps with a maximum delay of 880ps. With an antenna spacing of 30cm, this 

design can steer the beam with an angular resolution of 10 degrees within a range of 

60degrees. However, there is no mechanism to change or tune the delay of the inverter 

chains to compensate for PVT variations and the achievable delay resolution is limited to 

180ps. In addition, it requires phase shifters to align the VCO phases which might not be 

trivial. The UWB pulse forming switch employed in this architecture also leads to 

undesirable LO leakage to the output of the transmitter.  
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By investigating these architectures, it is clear that beamforming UWB transmitters 

utilizing baseband processing is advantageous in terms of both area and power. However, 

they mainly suffer from poor delay resolution. On the other hand, beamforming 

transmitters utilizing RF processing will result in better delay resolution but they demand 

larger area and power consumption.   

 

This calls for the development of a beamforming UWB transmitter with baseband 

processing, which can provide good delay resolution. The better the delay resolution the 

better will be the angular resolution. For example, with an antenna spacing of 18cm and a 

delay resolution of 20ps, scanning angle resolution of the order of 2 degrees can be 

achieved. 

 

This work presents a beamforming UWB transmitter architecture dedicated to achieve 

good angular resolution without too much power and area penalty. 
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CHAPTER 4 : BEAMFORMING UWB TRANSMITTER 

ARCHITECTURE 
 

This chapter presents the proposed beamforming UWB transmitter architecture. The 

whole transmitter was modeled and proven in the MATLAB simulation. 

4.1 Beamforming UWB transmitter architecture 

The proposed architecture employs baseband processing and improves the delay 

resolution to obtain good angular resolution. This architecture will result in a compact 

design. The proposed architecture is shown in Figure 4.1. 

 

Figure 4.1: Proposed beamforming UWB transmitter architecture. 
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The proposed architecture consists of a beam former delay subsystem to generate the 

delay required for beamforming. To generate the beamforming delays, the vernier delay 

line architecture was chosen. This architecture is quite popular [23, 24] to generate delay 

in the range of picoseconds. The concept is based on the fact that the delay difference 

between two paths can generate picoseconds delay. The digitally controlled delay 

elements used in the beam former subsystem have been designed to generate delay 

difference in the range of 0-600ps. These digitally controlled delay cells have been 

designed to give a resolution of the order of 5-10 picoseconds per bit change in the input 

digital code word. In order to generate the accurate delay, calibration is required.  

 

The digital calibration circuitry consists of a fractional-N sigma-delta DLL and a 

Successive Approximation Register controlled DLL (SAR DLL). The sigma-delta DLL 

architecture can provide fine delay resolution as well as large delay range required for the 

beamforming subsystem. The PVT variations will be compensated through the digital 

calibration employing sigma-delta DLL.  In order to minimize the power consumption, 

sigma-delta DLL is only used for the calibration phase and will be turned off 

subsequently.   The calibration result will be captured by the additional SAR DLL. The 

SAR DLL will convert the analog delay calibrated by sigma-delta DLL into a digital code 

word through a digital calibration FSM.  The code words obtained from the calibration 

will then be used to control the beam former delay subsystem and generate the required 

delay difference.  

 

A baseband signal fed to the beam former delay subsystem will produce four delayed 

signals and the relative delay between the signals will decide the angle of the main beam.  
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These delayed signals are fed to the all-digital UWB transmitters that generate the 

required IR-UWB pulses. IR-UWB pulses are generated by combining the edges that are 

output from a transmitter delay line [2]. The centre frequency of the UWB pulse depends 

on the delay generated by the transmitter delay line. A delay line that is controlled by 

sigma-delta DLL would provide the precise delay required by these systems and the 

edges can be combined as in [2] to produce the IR-UWB pulses with desired centre 

frequency. The generated pulses need further shaping in order to be FCC compliant. 

Hence, the digital power amplifier with capacitively controlled pulse shaping driver 

architecture [3] is adopted with a new pulse shaping logic circuit to obtain the required 

pulse shaping. The architecture has the flexibility to control most of the parameters of the 

output pulse, there by giving the flexibility to obtain a FCC compliant UWB pulse.  The 

choice of these architectures was based on considerations of power and area.  

 

Figure 4.2: UWB pulse and its spectrum from MATLAB simulations 
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The whole transmitter was modeled in MATLAB and the pulse shape of the signal and its 

spectrum are as shown in Figure 4.2. The pulse shaping implemented in the MATLAB 

model was just a four level pulse shaping. The spectrum obtained is not FCC compliant. 

Changing the pulse shape further can result in a FCC compliant spectrum. 

 

The MATLAB simulations of the sigma-delta DLL shows accurate control of the delay. 

Hence, by using this new architecture, a delay resolution of the order of 5-10ps can be 

obtained in the MATLAB simulation.  This results in minimum steering angle of close to 

1 degree with an antenna spacing of 18cm. The beam steering obtained in the MATLAB 

model for some angles are shown in Figure 4.3. 

 

Figure 4.3: UWB beam steering from MATLAB simulations 
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If the CMOS delay resolution is relaxed to 20ps, the corresponding angular resolution 

would be 2 degrees. In the next section a detailed description of the various blocks, their 

workings and the MATLAB results will be presented.  

 

4.2 Detailed description of the blocks in the proposed architecture 

4.2.1 Beamforming delay subsystem 

In order to steer the beam through an angle of 0 to 90 degrees, (though 90 degrees is not 

feasible due to the beam spreading) with a particular antenna spacing, the required delay 

range can be calculated using the equation (2.5). With an antenna spacing of 18cm, the 

required delay range is from 0-600ps.To get an angle of 0, the relative delay should be 

zero ps. This is not achievable using a single delay cell. Using a single delay element to 

generate the beamforming delay limits the delay resolution to the minimum delay 

achievable in the process. Hence, the vernier delay line architecture is adopted to 

overcome this limitation. In the vernier delay line architecture, the delay resolution 

depends on the delay difference between the paths. It depends on how fine the delay in a 

path can be tuned with respect to the other. The delay difference between the delay cells 

determines the delay resolution. Since a very fine tuning of the delay is needed, a 

digitally controlled current starved inverter was used. Current starved inverter can 

generate the required fine delay. The delay tree structure used in this design is shown in 

Figure 4.4. 
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Figure 4.4: Beamforming delay subsystem 

 

The delay cells indicated by solid lines are controlled by one set of digital code words 

and the delay cells in dotted lines are controlled by another set of code words. But these 

delay cells are identical. When both the delay elements have the same input code word, a 

relative delay of close to zero ps can be obtained in the design. When the delay of the two 

delay elements differ by 10ps then the relative delay between each path will be this delay 

difference of 10ps. The delay resolution that can be obtained depends on the minimum 

delay difference that can be obtained between the two delay elements. With this 

architecture, delay in the order of tens of picoseconds can be obtained which is a 

significant improvement compared to [1]. The beam forming delay tree can generate a 

delay difference in the range of 0-300ps. To double this range, additional set of delay 

elements as indicated within the dotted rectangular boxes in Figure 4.4 are used, to obtain 
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the required delay range of 0-600ps. The range can be selected with the help of a range 

select input. In order to provide the accurate delay, the help of the digital calibration 

system with the fractional-N sigma-delta DLL and SAR DLL is required. 

 

4.2.2 Fractional –N sigma-delta delay lock loop 

The requirements of the true time-delay elements were listed in Chapter 2. From the 

requirements, it can be seen that to implement a beamforming UWB system, the timing 

jitter should be minimized. In [1], a digitally controlled PLL was used to control the delay 

line. But when compared to PLL, DLL has no cycle to cycle jitter. The DLL is more 

stable than PLL and easier to design [34].Hence, using a DLL instead of a PLL can 

improve the jitter performance. A DLL normally locks to one period of the reference 

clock. It can provide the required delay based on the reference clock period and the 

number of delay elements used. With a fixed frequency reference signal, the number of 

delay elements determine the phase resolution that can be obtained in a delay locked 

loop. A large number of delay cells are needed to obtain a very fine resolution.  

 

Fractional-N PLLs were designed to obtain higher frequency resolution [18]. And sigma 

–delta fractional-N PLLs were used to randomize the division ratio to eliminate the 

spurious tones as well as achieving better frequency resolution[19].  Same concepts can 

also be applied to the DLL to improve the delay resolution. The architecture of the sigma- 

delta DLL used in this transmitter is shown in Figure 4.5. 
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Figure 4.5: Fractional-N sigma-delta DLL architecture 

 

A DLL normally would adjust the delay line to provide one cycle delay. The fractional-N 

sigma-delta DLL is similar to a normal DLL except that the sigma-delta modulator 

controls the feedback clock. The multi-phase clocks produced by the DLL are fed to a 

multiplexer that is controlled by the sigma-delta modulator. The output of this 

multiplexer is fed to the PFD. This DLL is based on the principle that the sigma-delta 

modulator controls the feedback clock from the VCDL and hence it controls the number 

of delay cells. The sigma-delta modulator would generate an average feedback clock 

controllable by the modulator input. Based on the average feedback clock generated, the 

DLL would settle to produce the delay. Therefore by controlling the average number of 

delay cells present in the DLL loop, the desired delay can be generated. The primary 

advantage of using the fractional-N sigma-delta delay locked loop is that it has the 

capability to generate a fractional delay without the need of additional phase interpolator. 

It also does not require a long delay chain to produce delay with very fine resolution. For 

example, with a reference clock frequency of 200 MHz and a delay line consisting of 20 
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delay cells, by using the output phases from delay cells 8 to 20, delay per cell in the range 

of 625ps to 250ps can be obtained respectively. By averaging the phases with a sigma-

delta modulator that can generate 16 average phases, a theoretical delay resolution in the 

order of 5ps can be achieved. 

 

4.2.3 Sub-block models of sigma-delta DLL 

4.2.3.1 Voltage controlled delay line (VCDL) 

The DLL consists of an analog voltage controlled delay line covering the range of delay 

required for beamforming. This work uses 20 delay cells to obtain the required delay 

range and resolution for beamforming. The delay cells are identical and the voltage from 

the loop filter controls the delay.  

 

Figure 4.6: VCDL used in sigma-delta DLL. 

 

The delay model in MATLAB simulations is assumed to have a nominal delay of 200ps 

and a gain of 1ns/volt. The nonlinearity of the delay line transfer characteristic does not 

affect the operation of the DLL. Hence, a simple current starved inverter delay is 

sufficient for the purpose. 
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4.2.3.2 Sigma-delta modulator 

The DLL uses a second order sigma-delta modulator to produce the average feedback 

clock. The noise shaping provided by the sigma-delta is higher with higher order 

modulators.  However, using a higher order modulator in the DLL would require a higher 

order loop filter which might render the loop unstable. Hence, a second order sigma-delta 

modulator with a 2-bit quantizer is used in the design which can switch between 4 phases 

of the clock signals to produce the average feedback clock.  

 

Figure 4.7: 2
nd

 order sigma-delta modulator 

 

The pseudo-random noise was added to dither the output of the sigma-delta modulator to 

eliminate the spurious tones. The presence of spurious tones would worsen the jitter 

performance. The simulated output spectrum of the sigma-delta modulator block is as 

shown in Figure 4.8. 
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Figure 4.8: 2
nd

 order sigma-delta modulator spectrum 

 

 

The sigma-delta DLL shown in figure 4.5 was constructed in MATLAB. The sigma-delta 

modulator takes two inputs. The „SEL‟ input is used to choose the group of clock phases 

for averaging. The „SDIN‟ will set the average value. The „SDIN‟ can take values in the  

range of -8 to 7 and the sigma-delta modulator can produce 16 different average phases 

by controlling the average number of delay cells in the DLL loop. The mapping between 

the inputs „SDIN‟, „SEL‟ and the average number of delay cells is given by  

Avg. No. of delay cells (ND) =7+SEL+ (8+SDIN)/16    (4.1) 

and the delay generated per delay cell is given by  

Delay/cell (D) = TREF/ND        (4.2) 

where, TREF is the period of the reference clock and ND is the average number of delay 

cells. This design uses a reference clock with a period of 5ns. The delay corresponding to 

different modulator control words are shown in Table 4.1 
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Table 4.1: Sigma-delta delay lock loop – MATLAB simulation results 

SDIN SEL 

Avg. No. of 

delay cells 

Expected 

delay(ps) 

MATLAB 

simulation (ps) 

0 1 8.5 588.2 588.6 

-5 2 9.1875 544.2 544.4 

-8 4 11 454.5 454.8 

-2 5 12.375 404.0 404.6 

-4 7 14.25 350.8 351.0 

-8 10 17 294.1 294.3 

 

The results of the sigma-delta DLL obtained from MATLAB simulation for a particular 

input of   -2, 5 are shown in Figure 4.9. This result depicts that the sigma-delta DLL 

settles down and produces a delay of 404.6ps per delay element corresponding to the 

input. This clearly shows that the fractional-N sigma-delta DLL architecture can generate 

fractional values of delay and the resolution no longer depends on the number of delay 

elements in the delay line.  
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Figure 4.9: Fractional-N sigma-delta DLL settling and delay generation 

 

 

4.2.4 SAR delay lock loop 

Successive Approximation Register controlled (SAR) DLLs are very popular in digital 

delay lock loop architectures [21, 22]. A SAR digital delay lock loop uses a binary search 

algorithm to find the digital code word that would generate the required delay. 

 

Using the sigma-delta DLL directly to generate the delay required for beamforming 

would require the delay lock loop to run continuously. This results in power 

consumption. To minimize the power consumption, a SAR delay lock loop is coupled 

with the sigma-delta delay lock loop to convert the analog delay into a digital code word.  
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Figure 4.10: SAR DLL architecture 

 

 

First, the sigma-delta delay lock loop will generate the desired precise delay for 

calibration. The SAR DLL compares the reference clock signal with the delayed signal 

obtained from sigma-delta DLL. The SAR will output the digital control word that will 

produce the delay that closely matches the delay produced by the sigma-delta DLL. The 

mismatch will be due to the limited resolution of the digital delay element employed in 

the SAR DLL. In order to minimize the mismatch, the digital delay element designed for 

the SAR DLL should have a very good delay resolution.  The resulting control word can 

then be stored in the registers after calibration and used for controlling the beamforming 

transmitter.   After calibration, both sigma-delta DLL and SAR DLL can be turned off.  

This will minimize the power consumption. 

 

4.2.5 All-digital UWB transmitter block 

The objective of this project was to develop a beamforming ultra-wideband transmitter. 

The beamforming is implemented in baseband as discussed in the previous sections. 

Now, an all-digital UWB transmitter that can form the UWB pulses and deliver to the 
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antenna is required. There are several architectures which generate FCC compliant UWB 

pulses for transmission. Pulse shaping is one of the prominent techniques adopted to 

obtain an UWB pulse compliant to the FCC mask. 

 

In [25], the transmitter generates an amplitude modulated UWB signal by multiplying 

baseband signal with an UWB monocycle train. The major drawback of this architecture 

is the leakage of the LO signal to the output which requires lowering of output power to 

meet the FCC mask. The architecture in [27] uses a phase lock loop with LC VCO and 

FIR filters to generate a FCC compliant UWB pulse. However, it is very power 

consuming and not suitable for burst mode operation due to long start-up delay in PLL.  

Tuned amplifiers with LC pulse shaping ladder can easily achieve spectral compliance 

but with significant area and power penalty [26]. The pulse shaping and power amplifier 

can also be implemented digitally by using a triangular pulse generator [28]. However, 

this architecture needs an external balun to form the UWB pulse. 

 

The architecture in [2] is energy efficient and combines the edges from the output of a 

delay line to form the UWB pulse, but it needs an external filter to make the UWB pulse 

FCC compliant. The architecture in [3] is an all-digital architecture, which does not need 

any external filter or balun to form the UWB pulse and is energy efficient. The all-digital 

UWB transmitter implemented in this work uses a combination of both these 

architectures. This architecture consists of a digitally controlled delay line calibrated by 

the digital calibration subsystem. The UWB pulse is formed by combining the edges that 

are output from this delay line.  Pulse shaping is done with help of a pulse shaping logic 

circuit that generates signals to control the pulse shape and a dual capacitively coupled 
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digital power amplifier. The pulse shaping logic circuit used in this transmitter provides 

more flexibility to tune the pulse shape when compared to the logic implemented in [3].   

The advantage of using this architecture is that it does not need any inductor or external 

balun to form the UWB pulses and hence is less area consuming, which is critical for a 

beamforming transmitter. The architecture used to implement the all-digital UWB 

transmitter block is shown in Figure 4.11. 

 

Figure 4.11: All-digital UWB transmitter architecture 
 

The reason for using the delay line and edge combiner to form UWB pulse instead of 

using the ring oscillator as in [3] is that the delay line can be accurately calibrated with 

the help of the sigma-delta delay lock loop. Hence, the centre frequency can be controlled 

precisely. Also, the DLL jitter is better than the ring oscillator jitter [34]. 
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This architecture can control the number of pulses that should be formed per bit at the 

output. The shape of the pulses can be controlled with help of the pulse shaping logic and 

the power amplifier. The gain is also tunable giving us a flexibility to change all 

parameters of the output pulse to obtain the FCC compliant UWB pulse. 
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CHAPTER 5 : CMOS IMPLEMENTATION 
 

 

The beamforming UWB transmitter was implemented in IBM 0.13µm CMOS process. 

This chapter gives the details of the implementation as well as the results obtained from 

Cadence simulations. 

 

5.1 Digital delay element for beam former subsystem 

The 7-bit digital delay element was implemented as a current starved inverter with digital 

PMOS switches (only 6-bit control is shown in Figure 5.1 for simplicity). The delay 

element was designed as per the guidelines indicated in [31]. 

 

Figure 5.1: Digital delay element for beam former subsystem architecture (6-bits) 

 

This architecture of using a current source to set the current for the delay element is more 

robust in terms of the temperature and process variations [31]. It is better than controlling 
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the delay by just varying the size of the switches. The resolution of the digital delay 

element determines the achievable resolution.  

 

Since fractional–N sigma-delta delay locked loop can generate a delay with precise delay 

resolution, the bottleneck is the resolution provided by the digital delay element. 

Resolution in the order of 5-10ps is required for the current system. The current starved 

delay element has a nonlinear characteristic with respect to the current. Hence, resolution 

of the order of 5-10ps is not obtainable at low currents. The curve is as shown in Figure 

5.2.  
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Figure 5.2: Delay vs. Current in current starved inverters 

 

In order to overcome this nonlinearity and obtain a more linear curve which can provide a 

delay resolution of about 5-10ps, additional transistors were added to make the 

characteristics more linear.  
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The following procedure was adopted to obtain the sizing for the transistors. The required 

delay range for the digital delay element is from 300ps to 600ps. Taking into account the 

process variations; the delay element was designed in the typical corner with a margin to 

satisfy a range of 200ps to 790ps. This margin helps to obtain the required delay range in 

all process corners. A resolution of 10ps is needed for the beam forming system to steer 

the beam by 1 degree. To achieve this, a resolution of the order of 5ps is needed from the 

digital delay element. Hence, the number of bits required to cover the delay range of 200 

to 790ps in typical corner with a resolution of 5ps is determined to be 7 bits. 

 

With 7 bits of control, there are 128 combinations for the input. The delay range to be 

achieved was broken down into four groups. The maximum and minimum delay for each 

range was calculated based on the total maximum delay and the resolution to be obtained.  

The 5 bits controlling each range was then designed based on the procedure in [31]. Then 

the transistors controlling the four groups were merged appropriately to obtain the 

complete 7-bit controlled digital delay element. The resulting delay element has a delay 

characteristic that is more linear than the conventional characteristics. 

 

This linearization of the delay characteristics was done by just adding a few more 

transistors. These transistors need to be added only for the biasing circuit that would 

generate the biasing voltage for the current starved inverters. They need not be replicated 

in each delay cell. The delay cells will consist of just the current starved inverter section 

with the current mirror section as indicated in the Figure 5.1 by the rectangular dotted 

box. This linearization guarantees a resolution of 5-10ps as required by the system. The 
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delay line was simulated in various temperatures and corners, and it covers the range of 

300-600ps in all temperatures and corners. The result is shown in Figure 5.3.  
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Figure 5.3: Cadence corners/temperatures simulation of digital delay element 
 

This delay cell will also be used in SAR DLL for beamforming delay calibration.  

  

5.2 Fractional –N sigma-delta delay lock loop 

5.2.1 Phase frequency detector and startup circuit 

In the sigma-delta delay locked loop, a phase frequency detector is used to compare the 

phases between the reference clock and the output feedback clock. The phase frequency 

detector implemented is a conventional phase frequency detector consisting of two D 

flip-flops and a nand gate as shown in Figure 5.4. 
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Figure 5.4: Conventional phase frequency detector 

 

 

The phase frequency detector (PFD) generates the UP and DN signals based on the phase 

difference between the reference clock and the feedback clock. When both the reference 

clock and feedback clock are in phase, the UP and DN signals generated from the PFD 

will have the same pulse width. This is the smallest pulse width that these signals can 

have. This smallest pulse width has been designed to be around 250ps to avoid dead-zone 

problem. This normal phase frequency detector suffers from the false lock problem 

because of the limited initial condition. Hence, a start controlled circuit is necessary to set 

the initial condition of the phase frequency detector [29]. 

 

Figure 5.5: PFD and start-controlled circuit 
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The start controlled circuit was adopted from [29]. The addition of this start control 

circuit sets the initial condition. When the „startb‟ signal is low the two clocks are masked 

off. Hence, the PFD is disabled. When the „startb‟ signal goes high the two clocks 

propagate to the PFD for comparison. Also, the „setupb‟ signal is used to pull the initial 

filter voltage to VDD through a PMOS transistor.  This sets the initial delay at the 

minimum value, since higher control voltage gives lower delay.  

 

Figure 5.6: Simulation of start controlled circuit with PFD 

 

 

The simulation result of the start controlled circuit with the PFD is indicated in Figure 

5.6. The start controlled circuit avoids the false lock problem that would exist otherwise. 

 

5.2.2 Charge pump  

The charge pump circuit converts the phase difference to a current. Based on the UP and 

DN signals from the phase detector, the charge pump circuit will provide the current to 
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charge or discharge the loop filter and thereby generating the control voltage VCTRL. The 

charge pump circuit used here is adopted from [29] and its schematic is shown below.  

  

Figure 5.7: Schematic of charge pump adopted from [29]. 

 

 

The charge pump uses long length transistors to obtain good mirroring of current. The 

switches controlled by the UP and DN signals uses smaller length transistors (0.5µm) to 

provide faster switching with lesser parasitic capacitances. This charge pump design 

mitigates charge injection errors induced by the parasitic capacitance of the switches and 

current source transistors [30]. The charge pump implemented in the design uses a 

current of 80µA. 

 

5.2.3 Loop filter 

The loop filter used is a passive second order filter network consisting of a resistor and 2 

capacitors as indicated in Figure 5.8. 
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Figure 5.8: Loop filter 

 

 

The transfer function of the loop filter is given by 
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The transfer function of a DLL is given in [30] as  

)())()(()( sFIKFsDsDsD CPVCDLREFOIO       (5.2) 

Substituting the filter transfer function in the above equation and simplifying produces    
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The above equation can be simplified by assuming that the second pole is far apart from 

the first pole. The two poles of the equation are given by 

1

1
C

IKF CPVCDLREF

P          (5.4) 

and 

2

2

1

RC
P            (5.5) 

The first pole is also called the loop bandwidth. The loop bandwidth of the DLL 

determines the jitter performance of the DLL. To obtain less jitter, the loop band width 

should be small. Normally a loop bandwidth of the order of one-tenth of the reference 
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frequency is used. This design has a charge pump current of 80µA, a reference frequency 

of the 200MHz is used and the KVCDL gain of the analog delay element is approximately 

1.7ns/V.Hence with a capacitor (C1) of 160pF, the loop bandwidth is given by  

kHzf P
BW 27

2

1          (5.6) 

Such a low value of loop bandwidth is selected to obtain a low value of jitter. The 

capacitor C2 is chosen to be one-tenth of C1 and the resistor is chosen to keep the second 

pole far from the first pole. The value of the resistor used in the design is 12k . This 

gives a second pole frequency of 828kHz. 

 

5.2.4 Voltage controlled delay line 

The voltage controlled delay line (VCDL) is one of the important blocks of a DLL. The 

performance of the VCDL is very critical as it directly affects the jitter performance of 

the DLL. Since a sigma-delta DLL is a feedback loop, it will always settle to give the 

required delay. The non-linearity in the characteristics of the delay element does not 

affect the performance of the DLL greatly. Hence, the analog voltage controlled delay 

line required in the sigma-delta DLL was designed using voltage controlled current 

starved inverters as shown in Figure 5.9. 
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Figure 5.9: Schematic of voltage controlled delay element 
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Figure 5.10: Cadence corners/temperatures simulation of voltage controlled delay cell 

 

 

The delay cells have been sized to obtain the required delay range of 300-600ps. The 

delay element was simulated in various process corners and temperatures. As illustrated 
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by the Figure 5.10, this delay cell is able to cover the required delay range. Hence, the 

sigma-delta DLL can provide the required delay in spite of PVT variations. 

 

5.2.5 Sigma-delta modulator 

The second order digital sigma-delta modulator was built using verilog. The adders 

needed to implement the sigma-delta modulator have been designed as carry look-ahead 

adders. Carry look-ahead adders operate very fast and provide the capability for the 

sigma-delta modulator to operate at very high frequencies. In the current design the 

sigma-delta modulator operates at a frequency of 200MHz. The pseudo-random noise 

generator used to randomize the sigma-delta modulator output is designed as a 25-bit 

linear feedback shift register that implements the generator polynomial (z
25

+z
22

+1).  The 

verilog code of the sigma-delta modulator was used in Cadence mixed signal simulations.  

 

5.3 SAR delay lock loop 

The SAR delay lock loop is a digital delay lock loop that converts the analog delay into a 

digital code word. The SAR DLL consists of a SAR controller and a digital delay line. 

This design uses two SAR DLLs namely, the beamforming SAR DLL and the transmitter 

SAR DLL. The digital delay line in the beamforming SAR DLL consists of 5 delay cells 

that resemble the delay cells used in the beam former subsystem. The digital delay line in 

transmitter SAR DLL is made up of 16 delay cells that replicate the transmitter delay 

line. During the calibration of the beam former subsystem and the transmitter, the 

respective SAR DLL is used. A simple D flip-flop serves as phase comparator for the 

DLL. This design uses a 7-bit SAR controller to determine the digital code word 
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corresponding to the delay generated by the sigma-delta DLL. The SAR controller is 

shown below [21].  

 

Figure 5.11: SAR controller 
 

The output of 5
th

 delay cell of the sigma-delta DLL is fed to the SAR DLL. The SAR 

controller was custom designed in Cadence. The 7-bit SAR controller will control the 

digital delay line. It will try and produce the closest matched delay as generated by the 

sigma-delta delay lock loop and obtain the corresponding digital code word.  

 

5.4 Digital calibration circuit 

The digital calibration FSM was built in verilog. The FSM has registers that can be 

programmed through the serial to parallel interface. Based on the programming, the FSM 

will calibrate the beamforming delay subsystem and it will also calibrate the transmitter 

delay cell to produce the required centre frequency. The FSM implemented in verilog is 

depicted in Figure 5.12. 
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Figure 5.12: Digital calibration FSM 

 

 

The FSM consists of 7 states.  The descriptions of these states are as follows. 

INITIALIZE: The FSM enters this state as soon as the system is reset. It remains in the 

same state until the calib_start bit is set. 

 

START_CALIB: After programming the required calibration configuration and 

providing the inputs needed for calibration, the calib_start bit is set and the FSM reaches 



 47 

this state. If the calibration is complete, then the FSM stays in the same state. If 

calibration is not complete, then the FSM checks the calibration that needs to be done and   

proceeds to the LOAD_IP state. The FSM also resets the sigma-delta DLL and SAR DLL 

in this state. 

 

LOAD_IP: This is the load input state. In this state the inputs needed for generating the 

required delay are fetched from the registers and the FSM provides them to the sigma-

delta DLL and activates the latter. The FSM remains in the same state until the sigma-

delta DLL settles. After the sigma-delta DLL settles the FSM proceeds to the 

START_SAR state. 

 

START_SAR: This state activates the SAR DLL and waits for the SAR DLL to lock. 

Once it locks, the FSM obtains the digital code word corresponding to the required delay. 

It then moves to the RECORD_DATA state. 

 

RECORD_DATA: This state records the digital code word obtained for the required 

delay into the register files. It waits about 10 cycles before proceeding to the next state. 

 

DEC_COUNT: This state decrements the calibration counter for every set of input that 

has been calibrated by the FSM. The calibration becomes complete when the calibration 

counter reaches zero. 
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WAIT1: The FSM waits for one clock cycle in this state before proceeding to the 

START_CALIB state. This additional wait is to give sufficient time for the decrement 

operation to happen.  

 

The inputs to the sigma-delta DLL control the beam former subsystem delay and the 

transmitter centre frequency. By programming the input, the centre frequency can be 

selected to be 3.5 GHz, 4 GHz or 4.5 GHz. The delay difference of the two delay 

elements used in the beam former subsystem can be controlled and hence the beam 

steering angle can be controlled. The calibration system feeds the digital code words to 

the beam forming delay subsystem and the transmitter. These in turn, generate four UWB 

signals with the desired centre frequency each separated by the required delay difference. 

Inputs corresponding to different delay values and three centre frequencies can be 

provided to the calibration FSM. From the results of the calibration obtained, the delay 

difference and the centre frequency to be used can be chosen. The complete digital 

calibration algorithm is summarized with help of a flowchart shown in Figure 5.13. 
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Figure 5.13: Digital calibration algorithm 
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The serial to parallel interface and the calibration algorithm were developed in verilog 

and they were implemented in FPGA and tested. The verilog models were also ported to 

Cadence. The digital calibration algorithm was verified in Cadence SpectreVerilog mixed 

signal simulation and was able to provide the required transmitter delay and beamforming 

delay code words. The sigma-delta DLL generates a delay in the range of 300ps to 600ps 

per delay cell, but the transmitter delay cell generates a delay in the range of 90 to 150ps. 

Hence, to utilize the same delay range generated by 5 delay cells of the sigma-delta DLL 

to calibrate the transmitter centre frequency, the SAR DLL compares the analog delay 

with the delay generated by 16 delay cells of the transmitter SAR delay line. The relation 

between the sigma-delta DLL inputs and the expected transmitter delay per cell can be 

obtained by  

Transmitter delay/cell= 5(Delay/cell)/16      (5.6) 

where, Delay/cell is given by equation 4.2. 

The results obtained from Cadence simulation for the transmitter centre frequency 

calibration are tabulated in Table 5.1. 

Table 5.1: Transmitter delay centre frequency calibration from Cadence 

 

SEL SDIN 

Expected 

centre 

frequency 

(GHz) 

Expected 

delay 

in ps 

Transmitter 

Delay Digital 

Codeword 

Obtained 

delay(ps) 

Obtained 

centre 

frequency 

(GHz) 

3 6 3.5 143.68 1011111 140 3.57 

5 -2 4.0 126.26 1010010 123 4.06 

7 -8 4.5 111.61 1001100 109 4.59 
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These results demonstrate the capability of the transmitter to generate the precise centre 

frequency. The results for the beamforming delay obtained for different modulator 

control words are as follows 

 

Table 5.2: Beamforming delay calibration results from Cadence 

 

SEL SDIN 

Avg. No of delay 

cells 

Exp. 

delay/cell 

in ps 

Obtained 

Delay/cell in 

ps 

Digital 

Codeword 

2 -6 9.125 547.95 540 1010001 

2 -4 9.250 540.54 530 1001111 

5 -2 12.375 404.04 398 0110100 

5 0 12.500 400.00 392 0110011 

10 -8 17.000 294.12 292 0010111 

10 -5 17.1875 290.91 287 0010011 

 

The Cadence simulation result obtained for a particular input of 5, -2 is depicted in Figure 

5.14. The obtained delay between the reference signal and sigma-delta DLL output is 

2.007ns. This is the delay of 5 delay cells. Hence, the delay of one delay cell produced by 

sigma-delta DLL is 401.4ps. The delay between reference signal and the output of SAR 

DLL is 1.99ns. Hence, the delay of one delay cell generated by the SAR DLL is 398ps 

which is very close to the required delay of 404ps differing by just the digital delay 

resolution.  
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Figure 5.14: Fractional-N sigma-delta & SAR calibration result from Cadence 

 

 

 
Figure 5.15: Fractional-N sigma-delta –settling of control voltage 

 

The settling of the loop filter control voltage is shown in Figure 5.15. In order to speed up 

the simulation, the filter voltage was set at 1V instead of 1.2V.  
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Figure 5.16: Digital code word from SAR DLL (MSB bottom -LSB top) 

 

 

The figure 5.16 illustrates the digital code word obtained from the SAR DLL. Thus, the 

obtained digital code word for the required delay is 0110100. This digital code word is 

stored by the FSM.  

 

The inputs to the sigma-delta DLL were varied to generate all possible delay values that 

can be generated by the system within the range of 300ps to 600ps. The delay difference 

between the different delay values obtained from the sigma-delta DLL and SAR DLL for 

adjacent inputs is plotted against the delay in Figure 5.17 
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Figure 5.17: Delay resolution of Sigma-delta and SAR DLL 

 

This plot clearly depicts the capability of the system to generate very fine delay. From the 

plot, it can be observed that both the sigma-delta DLL and the SAR DLL can generate a 

delay resolution of less than 10ps. Hence, the beam former delay subsystem with the 

vernier delay architecture can provide a delay resolution of less than 10ps.   

 

5.5 All-digital UWB transmitter 

5.5.1 Transmitter delay line 

The digital transmitter consists of 7-bit digitally controlled pseudo differential current 

starved inverter delay line. This is based on reference [2]. This delay line uses only the 

sizing of the switches to control the delay. The switches are binary weighted. 
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Figure 5.18:  7-bit digitally controlled transmitter delay from [2] 
 

No current source is used in this delay line in order to avoid static power consumption in 

the transmitter. The delay cell was designed to provide a delay in the range of 90ps to 

150ps in all temperatures and corners. The cross coupled inverters connected at the 

output helps in regeneration and are used to equalize the rise and fall time of the signals 

[2]. The edges from the delay line are masked to control the pulse width of the output. 

With a 32-stage delay line, the pulse width can be tuned from 500ps to 4ns. 

 

5.5.2 Edge combiner 

The state preserving edge combiner was adopted from [12]. This edge combiner can work 

up to 5GHz. The edge combiner is shown in Figure 5.19. 



 56 

 

Figure 5.19: Time interleaved edge combiner from [12] 

 

 

After reset, the node A is charged to VDD and node B is discharged to ground. The node 

C is discharged to ground and the NMOS transistor M2 turns on. When a positive edge 

comes, it creates pulse of width equal to three inverter delays. This pulse will turn on the 

transmission gate for a short period and the node A will now discharge through the 

transmission gate and the NMOS transistor M2 to ground. Once the node A voltage 

reaches VDD-Vtp of the PMOS transistor, M3 turns on and the output node C is charged 

up and this will change the value stored by the latch at C to high. Once C becomes high, 

Q becomes low. It will turn on the PMOS transistor M1 and turn off the NMOS transistor 

M2, and node A is charged back to VDD. When the next edge comes, the transmission 

gate is on and the node B is charged through the transmission gate and the PMOS M1 to 

VDD. Once the node B voltage crosses the Vtn of the NMOS transistor, M4 turns on. 

This pulls the node C to ground and changes the value of the latch at node C to low and 
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hence Q becomes high. Now the PMOS transistor M1 turns off and the NMOS transistor 

M2 turns on, and the same process repeats itself for every positive edge fed to the 

combiner. The delay of the transmitter delay cell decides the centre frequency of the 

transmitter. The edge combiner combines these delayed edges to produce the UWB pulse. 

 

 

Figure 5.20: UWB pulse generation 

 

 

Each edge combiner cell combines 8 edges to produce a pulse train. These pulses are then 

passed through a xor tree to produce the desired UWB signal.  

 

5.5.3 Digital PA and pulse shaping 

One of the power hungry blocks in a UWB transmitter is the power amplifier. Hence, an 

energy efficient power amplifier is needed. In [3], they employ a digital power amplifier 

(PA) using capacitively coupled pulse shaper for BPSK signal generation. The 

architecture is all-digital and is energy efficient. In their architecture, they use ring 

oscillator to generate the RF pulses. A pulse shaping circuitry is used to provide pulses to 

the digital PA to shape the output pulse. It uses just two capacitors to generate the 

required UWB pulse and is thus area efficient. Therefore, the same architecture is 

adopted with modifications to the pulse shaping logic to give more freedom in controlling 

the shape of the generated UWB pulse.  

Edge Combiner 

fcentre=1/(2*delay per stage) 
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Figure 5.21: Dual capacitively coupled digital PA from [3] 

 

 

The pulse shaping logic implemented in this design generates 7 pulse shaping signals. In 

comparison to the pulse shaping logic implemented in [3], the pulse shaping logic used in 

this design provides additional flexibility to control the amplitude of each pulse 

individually. This modification was primarily done, because the UWB signal generated 

with dual capacitively coupled digital power amplifier would result in an asymmetric 

UWB pulse signal. This asymmetry is due to the change in average DC value of the 

capacitors during pulse generation. The individual amplitude control of each pulse of the 

output UWB signal helps in overcoming this issue. It also provides more flexibility in 

obtaining a FCC compliant UWB pulse.  

 

The basic concept on which the capacitively coupled pulse shaper [3] works is that when 

two pulses with in-phase RF components and out of phase common mode components 

are provided to the capacitors, the common mode components cancel each other and the 
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RF components propagate to the output. The digital PA circuits consist of tri-state 

inverters and pulse shaping is obtained by controlling number of inverters that are ON at 

a particular time.  

 

Figure 5.22: Pulse shaping logic 

 

 

The edge combiner generates the RF pulse signal. Feeding the same RF pulse signal to 

both top and bottom paths of the digital PA ensures the in-phase RF signal. The 

differential baseband is generated by ensuring that the outputs of the two PAs are at 

opposite supply rails immediately before and after pulse generation [7]. The pulse 
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shaping logic will generate the signals PS1 to PS7 as shown in Figure 5.22. These pulse 

shaping signals along with edge combiner output are fed to the digital PA. Since both 

capacitors are charging and discharging at the same rate, they approach the same average 

value during pulse generation. This can be seen as a low frequency transient at the two 

nodes A and B. However, the changes in average value in both paths are same.  If the two 

paths match, then the low frequency transients get attenuated giving the output UWB 

pulse at node C with lesser low frequency components [7].  The shape of the pulse can be 

altered by selecting the number of inverters that would be ON at a particular time through 

the MUX network [7]. The result obtained with a simple four level shaping of the output 

pulse from Cadence simulation is as shown in Figure 5.23. The loading of the output 

antenna was modeled with a 50 ohms resistor in the simulations. 

 
Figure 5.23: UWB four level pulse and pulse shaping signals generated in Cadence 
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The power spectral density (PSD) plot provided by Cadence will produce the spectrum in 

terms of dBm/Hz . To obtain the PSD in terms of dBm/MHz, a value of 60dBm needs to 

be added to the spectrum of the signal. The resulting spectrum of the signal is shown in 

Figure 5.24. The UWB spectral mask is drawn to show the relative suppression that is 

required to meet the specifications. 

 

Figure 5.24: Spectrum of the four level UWB pulse generated in Cadence 

 

The spectrum of the output pulse is still not compliant to the FCC mask. The pulse 

spectrum violates the mask by about 8dB in the GPS band. The system provides the 

flexibility to control the output pulse shape, pulse width and gain. One such pulse 

obtained by varying the pulse shape and width is shown in Figure 5.25.  
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Figure 5.25: Spectrum of the UWB pulse generated in Cadence 

 

 

The spectrum of this pulse is better than the spectrum of the signal with four level pulse 

shaping, as it violates the GPS band only by about 4dB. With the level of 

programmability offered by the system to control the shape, width and gain of the pulse it 

should be possible to satisfy the UWB mask without using any external filters. The mux 

network provides the flexibility to digitally control the pulse shape. It provides 2
28

 

combinations to tune the pulse shape and make it FCC compliant. 

 

5.6 Full system simulation results and discussion 

The complete digital calibration system was simulated using Cadence mixed signal 

SpectreVerilog simulator. The results obtained from the digital calibration system were 

given to beamforming UWB transmitter consisting of beam forming delay subsystem and 
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four all-digital UWB transmitters to obtain the required beamforming UWB output. The 

digital calibration system was programmed for three different configurations, providing a 

delay difference of 10, 0 and 600ps. 

 

Table 5.3: Inputs used configure the delay difference 

 

Configuration 

Delay 

difference 

in ps 

Centre 

Frequency 

In GHZ 

SEL SDIN 

Avg. No. 

of delay 

cells 

Exp. 

delay/cell 

in ps 

1 10 3.5 

4 0 11.5 434.78 

4 -4 11.25 444.44 

2 0 4 

4 0 11.5 434.78 

4 0 11.5 434.78 

3 600 4 

9 0 16.5 303.03 

1 -3 8.3125 601.50 

 

In the first configuration, the digital calibration system was programmed to provide an 

UWB pulse with a centre frequency of 3.5GHz. The beam forming delays were chosen to 

provide a delay difference of 10ps. The SEL and SDIN inputs were used to set the beam 

forming delay difference at 10ps. The inputs used and the expected delay values are 

indicated in Table 5.3. From the table, it can be observed that the expected delay 

difference between the two delay values is around 10ps. Thus, the beamforming UWB 

transmitter is expected to provide four UWB signals with a relative delay of 10ps. 
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Figure 5.26: Digital calibration result for a configuration to obtain 10ps delay difference 

 

 

The result of the digital calibration system is shown in Figure 5.26. The calibration 

system obtained the digital code words to set the transmitter centre frequency and the 

delay difference of the beamforming delay subsystem. The digital code word 

(delay_tran_code) to be used to set the centre frequency at 3.5 GHz is obtained as 5F 

(1011111). The digital code words (delay1_code and delay2_code) for the 2 delay values 

to be used for the beamforming delay subsystem are obtained as 3A (0111010) and 3C 

(0111100). Feeding these code words to the beamforming UWB transmitter the resulting 

output is shown in Figure 5.27. 
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Figure 5.27: Simulated output of the four UWB transmitters showing 13ps delay 

difference 

 

The simulation result illustrates that the system is able to generate four UWB pulses with 

a delay difference between them close to 13ps. The delay difference between the signals 

decides the beam angle. The obtained delay difference value is very close to the 

theoretically expected delay difference value of 10ps. With an antenna spacing of 18cm, a 

delay difference of 13ps corresponds to a steering angle of close to 1.3 degrees. Thus, the 

above simulation clearly depicts the capability of the architecture to obtain delay 
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difference in the range of picoseconds. The centre frequency of the UWB pulse obtained 

can be verified by looking at the spectrum of the pulse depicted in Figure 5.28. 

 

Figure 5.28: Spectrum of UWB pulse showing the centre frequency is 3.581GHz. 

 

The obtained centre frequency of 3.581GHz is quite close to the required centre 

frequency of 3.5GHz. The centre frequency is off from the desired centre frequency by 

just 2.3%. 

 

In the second configuration, the system is configured to provide the same digital code 

word for both the delay elements of the beamforming delay subsystem. Hence, a delay 

difference very close to 0ps can be obtained. The centre frequency in this case was 

configured to be 4GHz.  
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Figure 5.29: Digital calibration result for a configuration to obtain 0ps delay difference 

 

 

The simulation result obtained from the digital calibration system is shown in Figure 

5.29. The result obtained by providing the same digital code word to beamforming delay 

subsystem of the beamforming UWB transmitter is depicted in Figure 5.30. 

 

Figure 5.30: Simulated output of the four UWB transmitters showing 0ps delay 

difference 

 



 68 

The output UWB pulses obtained from the four transmitters have been superimposed in 

Figure 5.30. The perfect overlapping of these signals shows that the delay difference 

between them is close to 0ps. 

 

In the third configuration, the system was configured to provide a delay difference of 

600ps with a centre frequency of 4GHz. From Table 5.3, it can be observed that the 

inputs used in this case correspond to a delay difference of close to 300ps. By using the 

range select signal in the beam forming subsystem, the delay range has been doubled to 

provide the 600ps delay difference. The simulation result of the digital calibration system 

obtained for this configuration is depicted in Figure 5.31. 

 

Figure 5.31: Digital calibration result for a configuration to obtain 600ps delay 

difference 

 

 

The UWB pulses obtained from the transmitter for this configuration are exhibited in 

Figure 5.32. 
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Figure 5.32: Simulated output of the four UWB transmitters showing 597ps delay 

difference 

 

This result illustrates that the delay difference obtained between the paths is close to 

597ps. This value is very close to the expected delay difference of 600ps. The spectrum 

of the output pulse indicated by Figure 5.33 shows the centre frequency to be 4.074GHz. 

The centre frequency in this case is off by just 2%. 
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Figure 5.33: Spectrum of UWB pulse showing the centre frequency is 4.074GHz. 

 

 

Thus, the UWB beamforming transmitter has the capability to generate a delay difference 

in the range of close to 0ps to 600ps. It can achieve a delay resolution of less than 10ps. It 

can also operate in three bands with centre frequencies of the 3.5,4 and 4.5GHz and the 

spectrum of the UWB pulses obtained with these centre frequencies have been 

superimposed and is depicted in Figure 5.34. 
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Figure 5.34: Spectrum of the output pulse with three different centre frequencies 

 

 

Table 5.4: Power consumption of the blocks of all-digital UWB transmitter 

 

BLOCK Power Consumption 

Transmitter delay Line 0.50mW 

Edge Combiner 1.43mW 

Pulse shaping logic 1.08mW 

Digital PA with mux network 0.99mW 

Total power 4.00mW 

 

The power consumption of the various blocks of a single all-digital UWB transmitter 

implemented in this design is listed in Table 5.4. The tabulated power consumption is the 

average power estimated at a data rate of 50MHz assuming a data stream with equal 

number of ones and zeros with OOK modulation. The output UWB pulse has a voltage 

swing of 927mV with a pulse width of 1.75ns. Obtaining such a high output voltage is 
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essential to increase the transmission distance. A comparison of the simulated results of 

the proposed all-digital UWB transmitter with the other existing UWB transmitters is 

presented in Table 5.5.  

 

Table 5.5: Comparison of a single all-digital UWB transmitter with other UWB 

transmitters 

Ref. process 
Vdd 

[V] 

Data 

Rate  

[MHz] 

Modulation 

Output 

pulse 

Voltage 

Vp-p 

[mV] 

Power 

[mW] 

E/pulse 

[pJ] 

[25] 0.18 m 1.8 50 OOK 35 12.6 252 

[26] 0.18 m 1.8 400 PPM 210 46 90 

[27] 90nm 1.0 1800 BPSK+PPM 220 227 126 

[28] 0.18 m 2.2 36 BPSK 640 29.7 825 

[35]* 0.13 m 1.2 160 BPSK+PPM 450 10 62.5 

[36]* 0.18 m 1.8 1000 OOK 1.8 50 50 

[37] 0.18 m 1.5 200 OOK 110 3.4 16.8 

[2] 90nm 1.0 10 

PPM+DB-

BPSK 

600 .47 47 

[7] 90nm 1.0 15.6^ PPM+BPSK 600 4.4 17.5 

This work 

(simulated) 

0.13 m 1.2 50 OOK 927 4 80 

*only pulse generator 

^transmits a burst of 16 pulses. The value indicated is for a single pulse. 
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The energy per pulse parameter is defined as the ratio of power consumption to the data 

rate. From the comparison, it can be seen that the proposed all-digital UWB transmitter 

used in this work consumes lesser power than most of the other transmitters. It also 

consumes lesser energy per pulse than some of the other existing transmitters. In [35, 36], 

the power value mentioned here is only for the pulse generator. Though the architectures 

[35, 36, 37] consume lesser energy per pulse, they need either an inductor or a balun to 

form the UWB pulse which might incur large area penalty for beamforming applications. 

The primary advantage of the all-digital UWB transmitter used in this work is that it 

avoids the use of inductors and hence would consume less area. This is very crucial for 

beam forming applications, where multiple instances of the transmitter are required. A 

comparison with [2, 7] shows that the architectures used in them consume lesser 

energy/pulse than the transmitter used in the current design. This may be attributed to the 

better process and lower supply voltage used by these designs. 

  

The beamforming delay subsystem consumes 4.86mW of power and the whole 

beamforming UWB transmitter consisting of four all-digital UWB transmitters and the 

beamforming delay subsystem consumes about 35.4mW of power. This value does not 

include the power consumption of the digital calibration system.  The simulation results 

have already demonstrated the capability of the proposed beamforming UWB transmitter 

to generate a delay resolution of less than 10ps. A comparison of this beamforming UWB 

transmitter with the other existing beamforming UWB transmitters is presented in Table 

5.6. 
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Table 5.6: Comparison with other beamforming UWB transmitters 

 

 
[4] [5]* [1] [6] 

This 

work(simulated) 

Implementation 

of beamforming 
RF RF Baseband Baseband Baseband 

Delay element 

architecture 

Trombone 

delay 

element 

Path 

sharing-

Constant 

k-LC 

Ladder 

Phase 

shifter 

controlled 

by PLL 

Path 

sharing-

inverter 

chain 

Vernier delay 

cell calibrated 

by DLL 

Delay 

resolution 
4ps 15ps 100ps 180ps <10ps 

Angular 

scanning 

resolution 

7  9  9  10  <1 ^ 

Area 2.25mm
2
 9.92mm

2
 .9mm

2
 - N/A 

Power 87mW 555mW 100mW - 35.4mW 

Antenna 

spacing 
10mm 3cm 18cm 30cm 18cm^ 

*receiver 

^theoretically estimated values 

 

From the comparison, it can be observed that the proposed beamforming UWB 

transmitter architecture is capable of generating a delay resolution of less than 10ps. This 

resolution is better than value achieved by existing beamforming transmitters that utilize 

baseband processing. Thus, with the simulated delay resolution of less than 10ps and by 

assuming an antenna spacing of 18cm, a theoretical angular resolution of less than 1 
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degree can be achieved. This value is at least 9 times better than [1]. Also, the simulated 

power consumption of the transmitter is lower than all of the other transmitters indicated 

in the table. The delay resolution generated by this transmitter is comparable to the 

resolution generated by transmitters implementing beamforming at RF. The current 

design uses an architecture which does not require any inductors. Hence, it would not 

require a huge area as the architectures described in [4, 5]. 
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CHAPTER 6 : CONCLUSION 
 

 

6.1 Thesis summary 

Ultra-wide band technology is appropriate for a wide variety of applications. The wide 

bandwidth offered by the technology makes it suitable for high precision imaging and 

ranging applications. The use of IR-UWB signaling results in energy efficient 

architecture. These advantages offered by UWB provide more freedom to the designer to 

build a beamforming transmitter architecture which would occupy less area and consume 

low power.  

 

This thesis presented the design and implementation of a beamforming UWB transmitter 

architecture that has the capability to provide very good angular resolution. The system 

utilized a novel digital delay calibration system to obtain a very fine delay resolution. The 

delay resolution demonstrated by the transmitter in simulations is of the order of 10ps 

which gives an angular resolution in the order of 1 degree. This is a significant 

improvement over the existing beamforming transmitters. The back bone for achieving 

such a good delay resolution was the capability provided by the sigma-delta DLL, SAR 

DLL and vernier delay cell to produce a very precise delay. The transmitter operates in 

the 3-5GHz low band of UWB as specified by the IEEE802.15.4a proposal. The 

transmitter can operate with centre frequencies of 3.5,4 and 4.5GHz. The non-coherent 

signaling used in the transmitter relaxes the centre frequency tolerances. The transmitter 

also provides more flexibility to shape the output pulse to obtain a FCC compliant UWB 

signal without the need for an external filter. The whole architecture does not require any 

inductors or external filters to obtain the UWB pulse, thereby resulting in a compact 
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design. The beamforming UWB transmitter consumes a power of about 35.4mW in 

simulation. This value is lower than most of the existing beamforming UWB transmitters. 

The single all-digital UWB transmitter used in this design achieves an energy efficiency 

of 80pJ/pulse when operating at a data rate of 50Mbps.  

 

6.2 Future recommendations 
 

UWB radios are an active area of research and offers potential solution for wireless 

communications, sensor, biomedical and imaging applications.  The beamforming UWB 

transmitter presented in this thesis offers a solution for high precision imaging 

applications. Currently, the output UWB pulse generated violates the FCC mask. But this 

beamforming UWB transmitter has the flexibility to achieve a FCC compliant UWB 

pulse. Various combinations of pulse shapes can be tried out to obtain a FCC compliant 

UWB pulse. A Monte-Carlo simulation of the digital power amplifier can give clear 

picture of the variation of the output spectrum with mismatches. The current transmitter 

design supports only OOK modulation. If the transmitter supports PPM and BPSK 

modulations then it could help to improve the spectral characteristics of the output.  

Although the energy per pulse of the all-digital UWB transmitter is comparable to most 

of the existing transmitter architectures; there are still rooms for optimization. The edge 

combiner and the pulse shaping logic blocks used in this design can be optimized to 

obtain a more energy efficient transmitter. The sigma-delta modulator and the digital 

calibration subsystem were implemented using verilog. The digital synthesis of these 

blocks would give a better estimate of the angular resolution capability of the 

beamforming transmitter.  
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The mask layout of the entire UWB beamforming transmitter still needs to be done to 

fully verify the concept through post layout simulation and actual chip testing.  
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APPENDIX  A: MATLAB MODELS AND CODES 
 

The entire beamforming UWB transmitter was modeled using MATLAB-SIMULINK. 

The model was split into two: namely, digital calibration subsystem model and the 

beamforming UWB transmitter model. These models developed in SIMULINK, are 

depicted in the following figures. The digital calibration subsystem model is shown in 

Figure A.1 

 

 

Figure A.1: Digital calibration subsystem -SIMULINK model 

 

This consists of a sigma-delta DLL and a SAR DLL. It basically takes the input to the 

sigma-delta DLL and produces the required analog delay. The SAR DLL then obtains the 

digital code word that would produce this delay. The sigma-delta DLL model is 

illustrated in Figure A.2.  
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Figure A.2: Sigma-delta DLL-SIMULINK model 
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The sigma-delta DLL generates the required analog delay. It takes two inputs namely, 

„sdin‟ and „sel_in‟ that decide the analog delay to be generated. The SAR DLL shown in 

Figure A.3 obtains the digital code word that needs to be used to obtain a delay close to 

the delay generated by the sigma-delta DLL. The SAR DLL converts the digital code 

word into a decimal value and provides it to the output.  

 

Figure A.3: SAR DLL –SIMULINK model 

 

The inputs corresponding to various delay values are provided with help of a script and 

the corresponding delay generated by the sigma-delta DLL, the output digital delay value 

and the digital code word generated by the SAR DLL are recorded by the script. These 

values are then used in the beamforming UWB transmitter model. The code listing of the 

MATLAB script is as follows.  

 

 



 86 

digital_calibration_script.m

 

 

 

The digital code words obtained from the digital calibration subsystem are used as inputs 

to the beamforming UWB transmitter model depicted in Figure A.4. 

 

Figure A.4: Beamforming UWB transmitter –SIMULINK model 

 

The model has a delay tree and four UWB transmitters to form the UWB pulses with a 

four level pulse shaping. The delay tree model is shown in Figure A.5. 

clear; 

add_in_array= [enter inputs corresponding to various delays]; 
sdin_array=[enter inputs corresponding to various delays]; 
   for index= 1:1:length(adin_array) 
        index 
        add_in=add_in_array(1,index); 
        sdin=sdin_array(1,index); 
        tic 
        sim('digital_calibration'); % Starts Simulink simulation 
        toc 
        len_a=length(ana_del); 
        len_d=length(digi_del); 
        len_c=length(digi_cod); 
        div(index,1)=6+mean(sdout1); 
        digital_code(index,1)=digi_cod(len_c); 
        analog_delay(index,1)=ana_del(len_a)*1e12; 
        digital_delay(index,1)=digi_del(len_d)*1e12; 
        jit(index,1)=analog_delay(index,1)-

digital_delay(index,1); 
end 
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Figure A.5: Delay tree-SIMULINK model 

 

 

The delay tree basically takes in the digital code words corresponding to the required 

delay difference. It has a „sel‟ input that is used to double the delay difference range when 

needed. It generates the desired delay difference between the four output paths. The four 

UWB transmitters are modeled as indicated by Figure A.6.  
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Figure A.6: 4xUWB transmitter-SIMULINK model 

 

Each transmitter has a pulse generator that generates an output pulse with 4GHz 

frequency. The pulse width can be also be controlled by the transmitter. The output 

pulses are fed to the four level pulse shaper block that generates the output UWB pulse 

with four amplitude levels. The inputs to the beamforming UWB transmitter are provided 

with help of a script. The script sets the delay difference of the model to various values 
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and determines the beam angle. It plots the corresponding antenna pattern. It also obtains 

the spectrum of the output UWB pulse. The code listing of the script is given below. 

 

Beamforming_UWB_transmitter_script.m 

ne=4;%number of antenna elements 
delay_code=[enter delay codes corresponding to various delays]; 
 delay1=delay_code(1,1); 
 for i=1:1:1 
 sel=0; 
  if(i>60) 
      sel=1; 
      delay2=delay_code(1,i-60); 
  else 
    delay2=delay_code(1,i);  
 end 
tic; 
sim('uwb_transmitter_sys_erf'); % Starts Simulink simulation 
toc; 
delay=max(delay_out) 
%---------------------------------------------------------------- 
 %PLOT Antenna pattern at the estimated angle 
 %--------------------------------------------------------------- 
beta0=asin(3*1e8*delay/0.18)*180/pi 
angles_arr(i,1)=beta0; 
eps=0.0000001; 
beta=0:pi/10791:2.*pi; 
beta0= beta0*pi/180.; 
var=sin(beta)-sin(beta0); 
T=471e-12; %Pulse width of the signal 
c=3e8; %velocity of light   
L=54e-2; %antenna length with 18cm spacing 
num=erf(1.77*L.*var*.5/(T*c)); 
if(abs(num)<=eps) 
    num=eps; 
end 
den=(1.77*L.*var*.5/(T*c)); 
if(abs(den)<=eps) 
    den=eps; 
end 
pattern=num./den; 
maxval=max(abs(pattern)); 
pattern=abs(pattern./maxval); 
emod=abs(pattern); 
Figure(1) 
polar(beta,abs(pattern)) 
end 

 

 

      
%------------------------------------------------------------------ 
 %PLOT THE SPECTRUM OF THE SIGNAL 
 %------------------------------------------------------------------ 
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Fs = 1/1e-12; %sampling rate 
Ts = 1/Fs %sampling time interval 
Tstop=10e-9; 
t = 0:Ts:Tstop; %sampling period 
n = length(t); %number of samples 
L=length(out); 
for i=1:1:L 
 z(i,1)=out(1,1,i); 
end 
y= z; 
[YfreqDomain,frequencyRange] = positiveFFT(y,Fs); 
Figure(2); 
plot(frequencyRange,20*log10(abs(YfreqDomain)));  
xlabel('Freq (Hz)') 
ylabel('magnitude in Db') 

 
title('spectrum using FFT') 
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APPENDIX  B: VERILOG CODES 
 

The second order sigma-delta modulator and the digital calibration FSM with the serial to 

parallel interface (SPI) were built using verilog and the code listing of these blocks are 

given below. 

 

Sigma–delta modulator verilog code 

 
//Verilog HDL for "sig_del_mod2", "del_sig_mod2" "verilog" 
 
`timescale 1ns/10ps 
 
//4-bit adder 
module cla4 (a,b,cin,sum,cout,P,G); 
input [3:0] a,b;//input 
input cin;    //input carry 
output P;   //group propagate 
output G;   //group generate 
output[3:0] sum; 
output cout; 
wire P; 
wire G; 
wire P_0,P_1,P_2,P_3; 
wire G_0,G_1,G_2,G_3; 
wire c0,c1,c2,c3; 
assign P_0 = a[0]^b[0]; 
assign P_1 = a[1]^b[1]; 
assign P_2 = a[2]^b[2]; 
assign P_3 = a[3]^b[3]; 
assign G_0 = a[0]&b[0]; 
assign G_1 = a[1]&b[1]; 
assign G_2 = a[2]&b[2]; 
assign G_3 = a[3]&b[3]; 
assign P = P_0 & P_1 & P_2 & P_3; 
assign G = G_0 & P_1 & P_2 & P_3 |G_1 & P_2 & P_3 | G_2 & P_3 | G_3; 
assign c0 = G_0 | P_0 & cin; 
assign c1= G_1 | P_1 & G_0 | P_0 & P_1 & cin; 
assign c2 = G_2 | G_1 & P_2 | G_0 & P_1 & P_2 | cin & P_0 & P_1 & 
P_2; 
assign c3 = G_3 | G_2 & P_3 | P_3 & P_2 & G_1 | P_3 & P_2 & P_1 & 
G_0 | P_3 & P_2 & P_1 & P_0 & cin; 
assign sum[0] = P_0 ^ cin; 
assign sum[1] = P_1 ^ c0; 
assign sum[2] = P_2 ^ c1; 
assign sum[3] = P_3 ^ c2; 
assign cout = c3; 
endmodule 
 
 
////////////////////////////////////////////////////////////// 
//              16 bit carry look ahead adder               // 
////////////////////////////////////////////////////////////// 
 
module cla16 (a,b,cin,sum,cout16); 
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input [15:0] a,b; //input 
input cin;        //input carry 
output[15:0] sum; //sum 
output cout16;      //16 bit output carry 
wire[15:0] sum; 
wire ca1,ca2,ca3,ca4; 
 
 
cla4 CLA4_1(.sum(sum[3:0]),.cout(cout0),.P(P_0),.G(G_0),.a(a[3:0]),.b(b[3:0]),.cin(cin)); 
cla4 CLA4_2(.sum(sum[7:4]),.cout(cout1),.P(P_1),.G(G_1),.a(a[7:4]),.b(b[7:4]),.cin(ca1)); 
cla4 CLA4_3(.sum(sum[11:8]),.cout(cout3),.P(P_2),.G(G_2),.a(a[11:8]),.b(b[11:8]),.cin(ca2)); 
cla4 CLA4_4(.sum(sum[15:12]),.cout(cout4),.P(P_3),.G(G_3),.a(a[15:12]),.b(b[15:12]),.cin(ca3)); 
 
assign ca1 = cin & P_0 |G_0; 
assign ca2 = cin & P_0 & P_1 | G_0 & P_1 | G_1; 
assign ca3 = G_2 | G_1 & P_2 | G_0 & P_1 & P_2 | cin & P_0 & P_1 & P_2; 
assign ca4 = G_3 | P_3 & G_2| P_3 & P_2 & G_1| P_3 & P_2 & P_1 & G_0 | P_0 & P_1 & P_2 & P_3 & cin; 
assign cout16=ca4; 
endmodule 
 
 
/////////////////////////////////////////////////////////////// 
//                z/(z-1) accumulator                        // 
//                1/(1-(1/z))                                // 
/////////////////////////////////////////////////////////////// 
module accumulator1 (x, clk, rstb, y); 
input   [15:0] x;//input 
input          clk, rstb; 
output  [15:0] y; //output 
 
wire    [15:0] y; 
wire    [15:0] sum; 
wire           nc; 
reg     [15:0] yd;   //output after 1 unit delay 
 
always @(posedge clk or negedge rstb) 
if (!rstb) 
  yd <= 16'b0000000000000000; 
else 
  yd <= y; 
 
cla16 CLA16_1 (x, yd, 1'b0, y, nc); 
 
endmodule 
 
/////////////////////////////////////////////////////////////// 
//                1/(z-1) accumulator                        // 
///////////////////////////////////////////////////////////////   
module accumulator2 (x, clk, rstb, y); 
input   [15:0] x; 
input          clk, rstb; 
output  [15:0] y; 
 
reg     [15:0] y; 
wire    [15:0] sum; 
buf     (tie0, 1'b0); 
wire           nc; 
 
always @(posedge clk or negedge rstb) 
if (!rstb) 
  y <= 16'b0000000000000000; 
else 
  y <= sum; 
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cla16 CLA16_1 (x, y, 1'b0, sum,nc); 
endmodule 
 
/////////////////////////////////////////////////////////////// 
//            16bit Quantizer                                // 
/////////////////////////////////////////////////////////////// 
 
module quantizer(quant_in,sel_in,resolution,rstb,quant_out,fb); 
input [15:0]quant_in; 
input [5:0]sel_in; 
input [15:0]resolution; 
input rstb; 
output[5:0]quant_out; 
output[15:0]fb; 
wire [15:0]resolution; 
wire [15:0]resolution_n = ~(resolution)+1; 
wire [15:0]half_res = resolution/2;  
reg  [15:0]fb; 
reg  [5:0]quant_out;  
wire [15:0] fb0 = 16'd24; 
wire [15:0] fb1 = 16'd8; 
wire [15:0] fb2 = -16'd8; 
wire [15:0] fb3 = -16'd24; 
 
always @(rstb or quant_in) 
if (!rstb) begin 
    fb = 16'b0000000000001000; 
    quant_out  = 6'd0+sel_in; 
end  
else begin 
    fb = quant_in[15] ? (quant_in >= resolution_n ? fb1 : fb0) : 
                 (quant_in >= resolution ? fb3 : fb2) ; 
    quant_out  = quant_in[15] ? (quant_in >= resolution_n ? (6'd1+sel_in) : (6'd0+sel_in)) : 
                 (quant_in >= resolution ? (6'd3+sel_in) : (6'd2+sel_in)) ; 
end 
endmodule 
 
/////////////////////////////////////////////////////////////// 
//     Pseudo random noise generator                        // 
////////////////////////////////////////////////////////////// 
module prn_generator(clk,rstb,prn); 
input clk; 
input rstb; 
output prn; 
reg [24:0]regis; //25 registers for the shift register 
reg g25;         //generate term g25 for the polynomial 
wire prn = regis[0]; 
 
/// the polynomial is {z^25+Z^22+1} i.e g25=g22^g0. 
//initial state is 25'b1;   
 
always @ (posedge clk or negedge rstb) 
begin 
  if(!rstb)begin 
   regis=25'b0000000000000000000000001; 
 end else begin 
   g25=regis[22]+regis[0]; 
   regis={g25,regis[24:1]}; 
 end 
end 
 
endmodule 
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/////////////////////////////////////////////////////////////// 
//         Delta sigma modulator 2nd order                   // 
/////////////////////////////////////////////////////////////// 
  
 module del_sig_mod2(mod_in,sel_in,resolution,rstb,clk,mod_out); 
  input [15:0]mod_in; 
  input [5:0]sel_in; 
  input [15:0]resolution; 
  input rstb; 
  input clk; 
  output[5:0]mod_out; 
  
   
  wire prn; 
  wire   [15:0] acc1_in, acc2_in, acc1_out, acc2_out, quant_in, fb,prn_gain; 
 
  reg    [5:0]  mod_out; 
  wire    [5:0]  mod_out_temp; 
  wire [15:0]resolution_n = ~(resolution)+1; 
  assign prn_gain= prn?16'd4:-16'd4; 
   
always @(posedge clk or negedge rstb) 
  if(!rstb) begin 
    mod_out=6'b00_0010; 
  end else begin  
    mod_out=mod_out_temp; 
end 
 
always @(posedge clk) 
   $display ("(%0t) DS => pn_out: %0d res: %0d mod_in: %0d fb: %0d acc1_in: %0d acc1_out: %0d 
quant_in: %0d quant_out: %0d mod_out:%b ", 
              $time, $signed(prn_gain), resolution, $signed(mod_in), $signed(fb), 
              $signed(acc1_in), $signed(acc1_out), $signed(quant_in), mod_out_temp, mod_out); 
   
  cla16 A1         (.a(mod_in)  ,.b(fb),.cin(1'b0),.sum(acc1_in),.cout16()); //fb inverted and cin=1 for 2's compl 
  accumulator1 ac1 (.x(acc1_in), .clk(clk), .rstb(rstb),.y(acc1_out)); 
  cla16 A2         (.a(acc1_out),.b(fb),.cin(1'b0),.sum(acc2_in),.cout16());//fb inverted and cin=1 for 2's compl 
  accumulator2 ac2 (.x(acc2_in), .clk(clk), .rstb(rstb),.y(acc2_out)); 
  prn_generator prn1 (.clk(clk),.rstb(rstb),.prn(prn)); 
  cla16 A3         (.a(acc2_out),.b(prn_gain),.cin(1'b0),.sum(quant_in),.cout16());   
  quantizer quant1 
(.quant_in(quant_in),.sel_in(sel_in),.resolution(resolution),.rstb(rstb),.quant_out(mod_out_temp),.fb(fb));    
  endmodule 

 

 

 

Digital calibration FSM with SPI verilog code 

//Verilog HDL for "digital_calib_blocks", "digital_calibration" "verilog" 
`timescale 1ns/100ps 
 
/******************************************************************************************** 
    SPI Slave 
*********************************************************************************************/ 
module spi_slave_new_protocol_comp(rstb, SCK, SIMO, SOMI, SS_BAR, address, data_in, 
       data_out,read_write_bar,write_strobe); 
input rstb; 
input SCK;  
input SIMO; 
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output SOMI; 
input SS_BAR; 
output [14:0] address; 
output [7:0] data_in; 
input [7:0] data_out; 
output read_write_bar; 
output write_strobe; 
 
reg [7:0] data_in; 
reg [14:0] shift_in; 
reg [7:0] shift_out; 
reg [4:0] bit_count; 
 
wire read_strobe; 
wire write_strobe; 
wire [7:0] data_out; 
 
reg [14:0] address; 
reg read_write_bar; 
reg shifted; 
 
//bit count counts the no of bits shifted in or posedge SS_BAR 
always@(negedge rstb or negedge SCK or posedge SS_BAR) begin 
 if(~rstb) 
   bit_count <=  0; 
 else if(SS_BAR) 
   bit_count <=  0;  
 else if(~SS_BAR && shifted) 
   bit_count <=  bit_count + 5'd1; 
 else 
  bit_count <=  bit_count;  
end 
 
 
//shift register 
always@(negedge rstb or posedge SCK) begin 
 if(~rstb) 
  begin 
   shift_in <=  0; 
   shifted <=  0; 
  end 
 else if(~SS_BAR) 
  begin 
   shift_in <=  {shift_in[14:0], SIMO};  
   shifted <=  1; 
  end 
 else 
  begin 
   shift_in <=  shift_in; 
   shifted <=  0; 
  end 
end 
 
//this is for reading the data 
always@(negedge rstb or negedge SCK) begin 
 if(~rstb) 
  shift_out <=  8'h00; 
   else if(SS_BAR) 
  shift_out <=  8'h00; //do not shift when SS_BAR deasserted 
 else if(bit_count == 15 && read_write_bar) 
  shift_out <=  data_out; 
 else  
  shift_out <=  shift_out << 1; 
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end 
 
 
bufif1 b1(SOMI, shift_out[7], ~SS_BAR); 
 
//address register 
 
always@(negedge rstb or posedge SCK) begin 
if(~rstb) 
 address <=  0; 
else if(bit_count == 5'd15) 
 address <=  {shift_in[13:0], SIMO}; 
else 
 address <=  address; 
end 
 
//data register 
always@(negedge rstb or posedge SCK) begin 
if(~rstb) 
 data_in <=  8'b0; 
else if(bit_count == 5'd23 && ~read_write_bar) 
 data_in <=  {shift_in[6:0], SIMO}; 
else 
 data_in <=  data_in; 
end 
 
 
 
//read_write_bar-decides if it is a read or write 
always@(negedge rstb or posedge SCK) begin 
if(~rstb) 
 read_write_bar <=  0; 
else if(bit_count == 15) //saves read_write_bar at the second earliest time 
 read_write_bar <=  shift_in[14]; 
else if(bit_count == 0) //reset the read_write_bar 
 read_write_bar <=  0; 
else 
 read_write_bar <=  read_write_bar; 
end 
 
assign write_strobe = (bit_count == 5'd23) & ~read_write_bar; 
//assign read_strobe = (bit_count == 5'd15) & read_write_bar ; 
endmodule 
   
/******************************************************************************************** 
    TRANSMITTER REGISTERS AND FSM 
*********************************************************************************************/ 
module trans_reg_fsm_comp( rstb, SCK, address, data_in, data_out, 
read_write_bar,write_strobe,clk,sd_out,sel_out,dc_in, 
dc_tran_in,rst_sar,rst_tran_sar,rst_sd,delay1_code,delay2_code,delay_tran_code,mask,shape); 
//SERIAL INTERFACE PORT DECLARATIONS 
input rstb; 
input SCK; 
input [14:0] address; //15 bits of addressable 8 bit registers 
input [7:0] data_in; //stores data to be written 
output [7:0] data_out; //stores data to be loaded to shift register 
input read_write_bar; 
input write_strobe; 
 
//FSM INTERFACEport declarations 
 //rstb ALREADY DECLARED 
input clk;      
input [6:0] dc_in;  
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input [6:0] dc_tran_in;  
output [15:0]sd_out; 
output [7:0]sel_out; 
output rst_sar; 
output rst_tran_sar; 
output rst_sd; //active low 
output [6:0]delay1_code; 
output [6:0]delay2_code; 
output [6:0] delay_tran_code;  
output [31:0]mask; 
output [83:0]shape; 
 
 
//registers for serial interface 
reg [7:0] data_out; 
 
//registers for FSM output 
reg [15:0]sd_out; 
reg [7:0]sel_out; 
reg rst_sar; 
reg rst_tran_sar; 
reg rst_sd;      //active low reset 
reg [6:0]delay1_code; 
reg [6:0]delay2_code; 
reg [6:0] delay_tran_code;  
 
//32 bit mask register to control the pulse width 
reg [31:0]mask; 
 
//84 bit shape register to control the pulse shape 
reg [83:0]shape; 
 
//FSM registers and variables 
reg [2:0] state; 
reg [2:0] next_state; 
reg [7:0]index;  
reg rst_cnt; 
reg  state3_4; 
reg  state4_5; 
reg  state5_6; 
reg[15:0] count_clk; 
 
//register files  
reg [7:0] disable_calib_fc_reg;//enable/disable centre freq. calib. 
reg [7:0] sd_in_cal_fc1;//sd input for 3.5g calib. 
reg [7:0] sd_in_cal_fc2;//sd input for 4g calib. 
reg [7:0] sd_in_cal_fc3;//sd input for 4.5g calib. 
reg [7:0] sel_in_cal_fc1;//add input(selects the phase group) for 3.5g calib. 
reg [7:0] sel_in_cal_fc2;//add input(selects the phase group) for 4g calib. 
reg [7:0] sel_in_cal_fc3;//add input(selects the phase group) for 4.5g calib. 
reg [7:0] dc_out_fc1;//calibrated 3.5g fc code 
reg [7:0] dc_out_fc2;//calibrated 3.5g fc code 
reg [7:0] dc_out_fc3;//calibrated 3.5g fc code 
reg [7:0] calib_start_reg;//initates calibration 
reg [7:0] calib_status_reg;//records calib. status 
reg [7:0] calib_count_reg;//counter for number of input calibrations 
reg [7:0] enable_dc_fc_calib;//enable/disable delay/fc calibration 
reg [7:0] delay1_offset_addr;//select the out for delay 1 for BF subsystem 
reg [7:0] delay2_offset_addr;//select the out for delay 2 for BF subsystem 
reg [7:0] centre_freq; //sets the centre freq to 3.5,4 or 4.5GHz 
reg [7:0] wait_calib_sd_cycle_l;//time for sd dll to settle 
reg [7:0] wait_calib_sd_cycle_m;//time for sd dll to settle 
reg [7:0] wait_calib_sar_cycle_l;//time for sar dll to settle 
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reg [7:0] wait_calib_sar_cycle_m;//time for sar dll to settle 
reg [7:0] bypass_calib_reg;//bypass calibration in case of problem 
reg [7:0] delay1_byp;//code for delay 1 when by passed 
reg [7:0] delay2_byp;//code for delay 2 when by passed 
reg [7:0] tran_fc_code_byp;//centre. freq code when by passed 
 
reg [7:0]sd_in_arr[0:31];//sd dll modulator inputs 
reg [7:0]sel_in_arr[0:31];//phase group selection inputs 
reg [7:0]dc_out_arr[0:31];//calibrated digital code word output 
 
//32-bit mask registers  
 
reg [7:0]mask0; 
reg [7:0]mask1; 
reg [7:0]mask2; 
reg [7:0]mask3; 
 
reg [7:0]shape0; 
reg [7:0]shape1; 
reg [7:0]shape2; 
reg [7:0]shape3; 
reg [7:0]shape4; 
reg [7:0]shape5; 
reg [7:0]shape6; 
reg [7:0]shape7; 
reg [7:0]shape8; 
reg [7:0]shape9; 
reg [7:0]shape10; 
 
 
//internal variables 
reg [15:0]wait_sd_cycle; 
reg [15:0]wait_sar_cycle; 
reg [15:0]wait_record_cycle; 
reg[7:0] delay1_tmp; 
reg[7:0] delay2_tmp; 
reg [7:0]temp_ip; 
reg dc_fcbar_cycle; 
reg [7:0] calib_count; 
 
 
 
////////////////////////-----------Serial interface starts here----------------//// 
  
//SERIAL REGISTERS DEFAULT VALUES 
parameter  disable_calib_fc_reg_default = 8'h05; 
parameter  sd_in_cal_fc1_default        = 8'h06; 
parameter  sd_in_cal_fc2_default        = 8'hfe; 
parameter  sd_in_cal_fc3_default        = 8'hf8; 
parameter  sel_in_cal_fc1_default       = 8'h03; 
parameter  sel_in_cal_fc2_default       = 8'h05; 
parameter  sel_in_cal_fc3_default       = 8'h07; 
parameter  dc_out_fc1_default           = 8'h00; 
parameter  dc_out_fc2_default           = 8'h00; 
parameter  dc_out_fc3_default           = 8'h00; 
parameter  calib_start_reg_default      = 8'h00; 
parameter  calib_status_reg_default     = 8'h00; 
parameter  calib_count_reg_default      = 8'h02; 
parameter  enable_dc_fc_calib_default   = 8'h03; 
parameter  delay1_offset_addr_default   = 8'h00; 
parameter  delay2_offset_addr_default   = 8'h01; 
parameter centre_freq_default           = 8'h01;  
parameter wait_calib_sd_cycle_l_default = 8'h60; 
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parameter wait_calib_sd_cycle_m_default = 8'h09; 
parameter wait_calib_sar_cycle_l_default= 8'hc8; 
parameter wait_calib_sar_cycle_m_default= 8'h00; 
parameter bypass_calib_reg_default       = 8'h00; 
parameter delay1_byp_default             = 8'h00; 
parameter delay2_byp_default             = 8'h00; 
parameter tran_fc_code_byp_default       = 8'h00; 
 
//write into register 
always@(negedge rstb or negedge SCK) begin 
 if(~rstb) begin 
   //reset all registers to default value; 
     disable_calib_fc_reg[7:0] <=disable_calib_fc_reg_default;  
     sd_in_cal_fc1[7:0]         <= sd_in_cal_fc1_default; 
     sd_in_cal_fc2[7:0]         <= sd_in_cal_fc2_default; 
     sd_in_cal_fc3[7:0]         <= sd_in_cal_fc3_default; 
     sel_in_cal_fc1[7:0]        <= sel_in_cal_fc1_default; 
     sel_in_cal_fc2[7:0]        <= sel_in_cal_fc2_default; 
     sel_in_cal_fc3[7:0]        <= sel_in_cal_fc3_default; 
     calib_start_reg[7:0]           <= calib_start_reg_default ; 
     calib_count_reg[7:0]           <= calib_count_reg_default; 
     enable_dc_fc_calib[7:0]    <= enable_dc_fc_calib_default; 
     delay1_offset_addr[7:0]    <= delay1_offset_addr_default; 
     delay2_offset_addr[7:0]    <= delay2_offset_addr_default; 
     centre_freq[7:0]           <= centre_freq_default           ;  
     wait_calib_sd_cycle_l[7:0] <= wait_calib_sd_cycle_l_default ; 
     wait_calib_sd_cycle_m[7:0] <= wait_calib_sd_cycle_m_default ; 
     wait_calib_sar_cycle_l[7:0]<= wait_calib_sar_cycle_l_default; 
     wait_calib_sar_cycle_m[7:0]<= wait_calib_sar_cycle_m_default; 
     bypass_calib_reg[7:0]      <= bypass_calib_reg_default       ; 
     delay1_byp[7:0]            <= delay1_byp_default             ; 
     delay2_byp[7:0]            <= delay2_byp_default             ; 
     tran_fc_code_byp[7:0]          <= tran_fc_code_byp_default       ; 
     //////////////////initialize arrays////////////// 
      
     //delay code inputs 
     sd_in_arr[0]<=8'h00; 
     sd_in_arr[1]<=8'hfc; 
     sel_in_arr[0]<=8'h04;  
     sel_in_arr[1]<=8'h04;  
      
     mask0 <=8'hff; 
     mask1 <=8'hff; 
     mask2 <=8'h00; 
     mask3 <=8'h00; 
      
 
     shape0<=8'hb6;    
     shape1<=8'hdd; 
     shape2<=8'hb6;      
     shape3<=8'h24; 
     shape4<=8'hb9; 
     shape5<=8'h6d;     
     shape6<=8'h92; 
     shape7<=8'h94; 
     shape8<=8'h24; 
     shape9<=8'h00; 
     shape10<=8'h00; 
      
      
    end else if((write_strobe))begin 
    case(address) 
     15'd7   : disable_calib_fc_reg[7:0] <= #1 data_in; 
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     15'd8   : sd_in_cal_fc1[7:0]         <= #1 data_in; 
      15'd9   : sd_in_cal_fc2[7:0]         <= #1 data_in; 
      15'd10  : sd_in_cal_fc3[7:0]         <= #1 data_in; 
      15'd11  : sel_in_cal_fc1[7:0]        <= #1 data_in; 
      15'd12  : sel_in_cal_fc2[7:0]        <= #1 data_in; 
      15'd13  : sel_in_cal_fc3[7:0]        <= #1 data_in; 
      15'd17  : calib_start_reg[7:0]       <= #1 data_in; 
      15'd19  : calib_count_reg[7:0]       <= #1 data_in; 
      15'd20  : enable_dc_fc_calib[7:0]    <= #1 data_in; 
      15'd21  : delay1_offset_addr[7:0]    <= #1 data_in; 
      15'd22  : delay2_offset_addr[7:0]    <= #1 data_in; 
      15'd23  : centre_freq[7:0]           <= #1 data_in; 
      15'd24  : wait_calib_sd_cycle_l[7:0] <= #1 data_in; 
      15'd25  : wait_calib_sd_cycle_m[7:0] <= #1 data_in; 
      15'd26  : wait_calib_sar_cycle_l[7:0]<= #1 data_in; 
      15'd27  : wait_calib_sar_cycle_m[7:0]<= #1 data_in; 
      15'd28  : bypass_calib_reg[7:0]      <= #1 data_in; 
      15'd29  : delay1_byp[7:0]            <= #1 data_in; 
      15'd30  : delay2_byp[7:0]            <= #1 data_in; 
      15'd31  : tran_fc_code_byp[7:0]      <= #1 data_in; 
             
      //sd_inputs – similar code is used for the remaining 30 registers 
      15'd32  : sd_in_arr[0]<= #1 data_in; 
      15'd33  : sd_in_arr[1]<= #1 data_in; 
       
       
      //sel_inputs - similar code is used for the remaining 30 registers 
      15'd64  : sel_in_arr[0]<= #1 data_in; 
      15'd65  : sel_in_arr[1]<= #1 data_in; 
       
       
      //mask registers 
      15'd128 : mask0 <= #1 data_in; 
      15'd129 : mask1 <= #1 data_in; 
      15'd130 : mask2 <= #1 data_in; 
      15'd131 : mask3 <= #1 data_in;  
       
      //shape registers 
      15'd132 :shape0 <= #1 data_in; 
      15'd133 :shape1 <= #1 data_in;          
      15'd134 :shape2 <= #1 data_in; 
      15'd135 :shape3 <= #1 data_in;  
      15'd136 :shape4 <= #1 data_in; 
      15'd137 :shape5 <= #1 data_in;  
      15'd138 :shape6 <= #1 data_in;  
      15'd139 :shape7 <= #1 data_in;  
      15'd140 :shape8 <= #1 data_in;  
      15'd141 :shape9 <= #1 data_in;                     
      15'd142 :shape10 <= #1 data_in;  
       
   endcase 
 end 
end  
//------end of writing into register ----------//////// 
 
//reading from register 
always@(posedge read_write_bar or posedge SCK)begin 
     
 if(read_write_bar) 
 begin   
  case(address)  
      15'd7   : data_out <= disable_calib_fc_reg[7:0];      
      15'd8   : data_out <= sd_in_cal_fc1[7:0];     
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      15'd9   : data_out <= sd_in_cal_fc2[7:0];  
      15'd10  : data_out <= sd_in_cal_fc3[7:0];     
      15'd11  : data_out <= sel_in_cal_fc1[7:0];     
      15'd12  : data_out <= sel_in_cal_fc2[7:0];     
      15'd13  : data_out <= sel_in_cal_fc3[7:0];     
      15'd14  : data_out <= dc_out_fc1[7:0];         
      15'd15  : data_out <= dc_out_fc2[7:0];        
      15'd16  : data_out <= dc_out_fc3[7:0];         
      15'd17  : data_out <= calib_start_reg[7:0];        
      15'd18  : data_out <= calib_status_reg[7:0];       
      15'd19  : data_out <= calib_count_reg[7:0];        
      15'd20  : data_out <= enable_dc_fc_calib[7:0]; 
      15'd21  : data_out <= delay1_offset_addr[7:0]; 
      15'd22  : data_out <= delay2_offset_addr[7:0]; 
      15'd23  : data_out <= centre_freq[7:0];  
      15'd24  : data_out <=  wait_calib_sd_cycle_l[7:0]; 
      15'd25  : data_out <= wait_calib_sd_cycle_m[7:0]; 
      15'd26  : data_out <= wait_calib_sar_cycle_l[7:0]; 
      15'd27  : data_out <=  wait_calib_sar_cycle_m[7:0]; 
      15'd28  : data_out <= bypass_calib_reg[7:0]; 
      15'd29  : data_out <=  delay1_byp[7:0]; 
      15'd30  : data_out <=  delay2_byp[7:0]; 
      15'd31  : data_out <= tran_fc_code_byp[7:0]; 
        
       
      //sd_inputs similar code is used for the remaining 30 registers 
      15'd32  : data_out <= sd_in_arr[0]; 
      15'd33  : data_out <= sd_in_arr[1]; 
       
       
      //sel_inputs -similar code is used for the remaining 30 registers 
      15'd64  : data_out <= sel_in_arr[0]; 
      15'd65  : data_out <= sel_in_arr[1]; 
         
 
      //dc_output -  similar code is used for the remaining 30 registers 
      15'd96  : data_out  <= dc_out_arr[0]; 
      15'd97  : data_out  <= dc_out_arr[1]; 
 
      //mask registers 
      15'd128 : data_out  <= mask0;  
      15'd129 : data_out  <= mask1; 
      15'd130 : data_out  <= mask2;  
      15'd131 : data_out  <= mask3;  
       
      //shape registers 
      15'd132 :data_out  <= shape0;  
      15'd133 :data_out  <= shape1;           
      15'd134 :data_out  <= shape2;  
      15'd135 :data_out  <= shape3;   
      15'd136 :data_out  <= shape4;  
      15'd137 :data_out  <= shape5;   
      15'd138 :data_out  <= shape6;       
      15'd139 :data_out  <= shape7;  
      15'd140 :data_out  <= shape8;  
      15'd141 :data_out  <= shape9;        
      15'd142 :data_out  <= shape10;        
 
                 
    default : data_out  <= 0; 
  endcase 
 end else 
 begin 
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     data_out<=data_out;    //removing this line will hold the data on to the bus 
 end 
end//always 
///end of reading from register  
  
  
 ////////////////-------------------END OF serial interface--------//////////////////// 
  
 ///////////////-------------------FSM starts --------------------//////////////////// 
  
  
  
  
 //FSM STATES 
parameter  [2:0]  INITIALIZE     =3'b000;  
parameter  [2:0]  START_CALIB    =3'b001; 
parameter  [2:0]  LOAD_IP        =3'b010; 
parameter  [2:0]  START_SAR      =3'b011; 
parameter  [2:0]  RECORD_DATA   =3'b100; 
parameter  [2:0]  DEC_COUNT     =3'b101; 
parameter  [2:0]  WAIT1          =3'b110; 
integer i; 
 
always@(posedge clk)begin 
dc_fcbar_cycle=calib_status_reg[0] & calib_status_reg[1] & calib_status_reg[2]; 
end 
 
always@(posedge clk)begin 
wait_sd_cycle<={wait_calib_sd_cycle_m,wait_calib_sd_cycle_l}; 
wait_sar_cycle<= {wait_calib_sd_cycle_m,wait_calib_sd_cycle_l}+ 
{wait_calib_sar_cycle_m,wait_calib_sar_cycle_l}; 
wait_record_cycle<={wait_calib_sd_cycle_m,wait_calib_sd_cycle_l}+ 
{wait_calib_sar_cycle_m,wait_calib_sar_cycle_l}+15'd10; 
end 
 
always@( negedge rstb or posedge clk)begin 
 if(~rstb)  
 begin 
  calib_count<=0; 
  index<=0; 
  calib_status_reg<=8'h00; 
 end  
 else if(~calib_start_reg[0]) 
 begin 
     index<=0;  
     calib_count<= calib_count_reg; 
     calib_status_reg[0]<=1'b0; 
     calib_status_reg[1]<=1'b0;  
     calib_status_reg[2]<=1'b0;    
     calib_status_reg[3]<=1'b0;  
  if(disable_calib_fc_reg[0]) 
     calib_status_reg[0]<=1'b1; 
  if(disable_calib_fc_reg[1]) 
     calib_status_reg[1]<=1'b1; 
  if(disable_calib_fc_reg[2]) 
     calib_status_reg[2]<=1'b1;    
       
 end 
 else if(state==DEC_COUNT)  
 begin 
      if(~dc_fcbar_cycle & enable_dc_fc_calib[0]) 
    begin 
    calib_count<=calib_count; 
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    end 
    else if(enable_dc_fc_calib[1]) 
    begin 
    index<= index+1; 
    calib_count <= calib_count-1;   
    end 
    else 
    begin 
      calib_count<=calib_count;  
        end 
        /////////////////////     
    if(~dc_fcbar_cycle & enable_dc_fc_calib[0])begin     
    if(~calib_status_reg[0])begin 
    calib_status_reg[0]<=1'b1; 
    end else if (calib_status_reg[0] & ~calib_status_reg[1])begin 
    calib_status_reg[1]<=1'b1;     
    end else if (calib_status_reg[0] & calib_status_reg[1] & 
~calib_status_reg[2])begin 
    calib_status_reg[2]<=1'b1;  
    end  
       end 
 end//else if(state==DEC_COUNT) begin 
 else if(state==WAIT1) 
 begin 
    if(calib_count==0) 
  begin 
        calib_status_reg[3]<=1'b1; 
    calib_count<=calib_count; 
  end 
   end 
   else  
 begin 
  calib_count<=calib_count; 
 end 
  
 
end 
   
 
 
always@(negedge rst_cnt or posedge clk)begin 
if(~rst_cnt)begin 
  count_clk=16'd0; 
  state3_4=0; 
  state4_5=0; 
  state5_6=0; 
 
end else begin 
  count_clk=count_clk+1; 
if(count_clk > wait_sd_cycle)   
  state3_4=1; 
if(count_clk > wait_sar_cycle )  
  state4_5=1; 
if(count_clk > wait_record_cycle)   
  state5_6=1; 
end 
end 
 
//state machine uses sequential logic (blocking statements) 
always@(state or calib_start_reg[0] or dc_fcbar_cycle or calib_status_reg[3] or calib_status_reg[0] or 
calib_status_reg[1] or calib_status_reg[2] or state3_4 or   state4_5  or state5_6  )begin 
//state transistions 
case(state) 
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   INITIALIZE: 
   begin 
      next_state=START_CALIB;  
   end 
   START_CALIB  : begin 
    if(calib_start_reg[0] ==1'b1) begin  
         if((~dc_fcbar_cycle & enable_dc_fc_calib[0]) || (calib_count>0 & enable_dc_fc_calib[1] & 
~calib_status_reg[3]))begin 
            next_state=LOAD_IP; 
         end else begin 
           next_state=START_CALIB;  
         end       
      end else begin 
    next_state=START_CALIB;  
    end 
   end 
    
   LOAD_IP  :begin 
      if(state3_4)begin 
      next_state=START_SAR; 
      end else  begin  
      next_state=LOAD_IP;  
      end     
  end 
   
       
      
   START_SAR: begin 
      if(state4_5)begin 
      next_state=  RECORD_DATA; 
      end else begin 
      next_state=START_SAR;     
      end 
  end 
   RECORD_DATA :begin 
      if(state5_6)begin 
      next_state=DEC_COUNT; 
      end else begin 
      next_state=  RECORD_DATA; 
      end 
  end 
                     
     
DEC_COUNT: begin 
          next_state=WAIT1;    
end 
 
WAIT1:next_state=START_CALIB;      
endcase                       
                
end 
 
 
 
 
 
always@(negedge rstb or posedge clk)begin 
//signal transistions 
 if(~rstb)begin 
  state<=INITIALIZE; 
 end else begin 
  state <=next_state; 
 end 
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end 
 
//combinational logic so use non blocking statements 
always@(state)begin 
//it is always better to create a neg edge on rst_cnt to reset it properly 
case (state) 
  INITIALIZE: 
  begin 
      rst_sd=1'b1; 
      sd_out=16'd0; 
      sel_out=8'd0;  
  end 
     
  START_CALIB:begin 
      rst_cnt=1'b0; 
      rst_sd=1'b0; 
      rst_sar=1'b0; 
      rst_tran_sar=1'b0; 
  end 
  LOAD_IP: 
  begin 
      rst_cnt=1'b1; 
      rst_sd=1'b0; 
      if(~dc_fcbar_cycle & enable_dc_fc_calib[0])begin 
         if(~calib_status_reg[0])begin 
         /////////////////////////////////////// 
            if(sd_in_cal_fc1[7]) 
            sd_out={8'b1111_1111,sd_in_cal_fc1};    
            else 
            sd_out={8'b0000_0000,sd_in_cal_fc1};  
         /////////////////////////////////////// 
         sel_out=sel_in_cal_fc1; 
         rst_tran_sar=1'b0; 
         rst_sd=1'b1; 
         end else if (calib_status_reg[0] & ~calib_status_reg[1])begin 
          /////////////////////////////////////// 
            if(sd_in_cal_fc2[7]) 
            sd_out={8'b1111_1111,sd_in_cal_fc2};    
            else 
            sd_out={8'b0000_0000,sd_in_cal_fc2};  
         /////////////////////////////////////// 
         sel_out=sel_in_cal_fc2; 
         rst_tran_sar=1'b0;       
         rst_sd=1'b1; 
         end else if (calib_status_reg[0] & calib_status_reg[1] & ~calib_status_reg[2])begin 
         /////////////////////////////////////// 
            if(sd_in_cal_fc3[7]) 
            sd_out={8'b1111_1111,sd_in_cal_fc3};    
            else 
            sd_out={8'b0000_0000,sd_in_cal_fc3};  
         ///////////////////////////////////////     
 
         sel_out=sel_in_cal_fc3; 
         rst_tran_sar=1'b0; 
         rst_sd=1'b1; 
         end  
     end else begin 
          
         /////////////////////////////////////// 
            temp_ip=sd_in_arr[index]; 
            if(temp_ip[7]) 
            sd_out={8'b1111_1111,sd_in_arr[index]};    
            else 
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            sd_out={8'b0000_0000,sd_in_arr[index]};  
         ///////////////////////////////////////   
          
        sel_out=sel_in_arr[index]; 
        rst_cnt=1; 
        rst_sar=0; 
        rst_sd=1; 
    end 
                      
  end       
  START_SAR:begin 
     if(~dc_fcbar_cycle & enable_dc_fc_calib[0])begin 
      rst_tran_sar=1'b1; 
      end else begin 
      rst_sar=1'b1;     
      end 
   
  end      
  RECORD_DATA:begin  
      if(~dc_fcbar_cycle & enable_dc_fc_calib[0])begin 
   
         if(~calib_status_reg[0])begin 
         dc_out_fc1={1'b0,dc_tran_in}; 
         end else if (calib_status_reg[0] & ~calib_status_reg[1])begin 
         dc_out_fc2={1'b0,dc_tran_in};      
         end else if (calib_status_reg[0] & calib_status_reg[1] & ~calib_status_reg[2])begin 
         dc_out_fc3={1'b0,dc_tran_in};   
         end   
     end else begin 
     dc_out_arr[index]={1'b0,dc_in}; 
     end 
      
   end 
  DEC_COUNT:begin 
      rst_sd=1'b0;  
end 
endcase 
end 
 
////-----------------------End of FSM ---------------------------/////////// 
 
 
always@(posedge clk)begin 
   if(~bypass_calib_reg[0]) begin 
    delay1_tmp<=dc_out_arr[delay1_offset_addr]; 
    delay2_tmp<=dc_out_arr[delay2_offset_addr]; 
   end else begin 
    delay1_tmp<=delay1_byp; 
    delay2_tmp<=delay2_byp; 
   end   
end 
 
always@(posedge clk)begin 
    delay1_code<=delay1_tmp[6:0]; 
    delay2_code<=delay2_tmp[6:0]; 
    mask={mask3,mask2,mask1,mask0}; 
    shape={shape10[3:0],shape9,shape8,shape7,shape6,shape5,shape4,shape3,shape2,shape1,shape0};     
end 
 
     
always@(posedge clk)begin 
   if(~bypass_calib_reg[0])begin 
      case(centre_freq[1:0]) 
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          2'b00:delay_tran_code<=dc_out_fc1[6:0]; 
          2'b01:delay_tran_code<=dc_out_fc2[6:0]; 
          2'b10:delay_tran_code<=dc_out_fc3[6:0]; 
          2'b11:delay_tran_code<=dc_out_fc1[6:0]; 
          default:delay_tran_code<=dc_out_fc1[6:0]; 
      endcase 
   end else begin 
   delay_tran_code<=tran_fc_code_byp[6:0]; 
   end 
end 
    
 
endmodule   
 
/******************************************************************************************** 
 DIGITAL CALIBRATION 
*********************************************************************************************/ 
 
module digital_calibration_comp(SCK,SS_BAR,SIMO,SOMI,clk,dc_in,dc_tran_in,sd_out,sel_out, 
rst_sar,rst_tran_sar,rst_sd,delay1_code,delay2_code, 
delay_tran_code,resolution,rstb,mask,shape); 
 
//serial interface 
input SCK; 
input SS_BAR; 
input SIMO; 
output SOMI; 
 
//parallel calibration interface 
input clk; 
input [6:0] dc_in;  
input [6:0] dc_tran_in;  
output [15:0]sd_out; 
output [5:0]sel_out; 
output rst_sar; 
output rst_tran_sar; 
output rst_sd;  
output [6:0]delay1_code; 
output [6:0]delay2_code; 
output [6:0] delay_tran_code;  
output [15:0] resolution; 
output [31:0]mask; 
output [83:0]shape; 
 
input rstb; 
wire [15:0] resolution; 
wire SCK; 
wire SIMO; 
wire SOMI; 
wire SS_BAR; 
wire clk; 
wire [14:0] address; 
wire [7:0] data_out; 
wire[7:0] data_in; 
wire write_strobe; 
wire [6:0] dc_in;  
wire [6:0] dc_tran_in;  
wire [15:0]sd_out; 
wire [5:0]sel_out; 
wire rst_sar; 
wire rst_tran_sar; 
wire rst_sd; 
wire[6:0]delay1_code; 
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wire [6:0]delay2_code; 
wire [6:0] delay_tran_code;  
wire rstb; 
wire [7:0]sel_out_temp; 
wire [31:0]mask; 
wire [83:0]shape; 
 
assign sel_out= sel_out_temp[5:0]; 
assign resolution=16'd16; 
 
spi_slave_new_protocol_comp s1(rstb, SCK, SIMO, SOMI, SS_BAR, address, data_in, 
       data_out,read_write_bar,write_strobe);  
      
 
trans_reg_fsm_comp t1( .rstb(rstb), 
               .SCK(SCK), 
               .address(address),  
               .data_in(data_in), 
               .data_out(data_out),  
               .write_strobe(write_strobe), 
               .read_write_bar(read_write_bar) , 
               .clk(clk), 
               .sd_out(sd_out), 
               .sel_out(sel_out_temp), 
               .dc_in(dc_in), 
               .dc_tran_in(dc_tran_in), 
               .rst_sar(rst_sar), 
               .rst_tran_sar(rst_tran_sar), 
               .rst_sd(rst_sd), 
               .delay1_code(delay1_code), 
               .delay2_code(delay2_code), 
               .delay_tran_code(delay_tran_code), 
               .mask(mask), 
               .shape(shape)); 
 
 
endmodule 

 

 

 

 


