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Summary 

 

Human motion capture (mocap) is recently gaining more and more attention in 

computer graphics and computer vision communities. The demand for a high 

resolution motion capture system motivates us to develop an unsupervised (i.e. no 

markers) video-based motion capture system with the aid of high quality 3D human 

body models.  

 

In this thesis, a practical framework for a 3D model-based human motion capture 

system is presented. We focus our attention on the self-calibration and 3-D modeling 

aspects of the system. Firstly, an effective linear self-calibration method for camera 

focal estimation based on degenerated Kruppa’s equations is proposed. The 

innovation of this method is that using the reasonable assumption that only the 

camera's focal length is unknown and that its skew factor is zero, the former can be 

obtained using a closed-form formula without the common requirement for additional 

motion-generated information. Experimental results demonstrate the robust and 

accurate performance of the proposed algorithm on synthetic and real images of 

indoor/outdoor scenes. Secondly, a novel point correspondence-based 3D human 

modeling scheme from uncalibrated images is proposed. Highly realistic 3D metric 

reconstruction is demonstrated on uncalibrated images through an automated 

matching process which does not require the use of any a priori information of or 

measurements on the human subject and the camera setup. Finally, an effective 

motion tracking scheme is developed using a novel scheme based on maximising the 
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overlapping areas between projected 2-D silhouettes of the utilised 3-D model and the 

foreground segmentation maps of the subject at each camera view. 
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Chapter 1 Introduction 
 
 
1.1 Motivation 

Human motion capture was first encountered by Eadweard Muybridge in his famous 

experiments entitled Animal Locomotion in 1887. He is considered to be the father of 

motion pictures for his work in early film and animation. The study included 

recording photographs of the subjects, at discrete time intervals, in order to visualise 

motion. In 1973 psychologist Johansson conducted his famous Moving Light Display 

(MLD) experiments with the visual perception of biological motion [1]. He attached 

small reflective markers to the joint locations of human subjects and recorded their 

motion. The experiment became the first few steps into what is becoming an ever 

increasingly popular research area: human motion capture. 

 

Human motion capture (mocap) can be defined as the process of recording a human 

motion event, modeling the captured movement and tracking a number of points, 

regions or segments corresponding to the movement over time. The goal of the 

process is to obtain a three-dimensional representation of the motion activity for 

subsequent analysis.  

 
Mocap, as a research area, is receiving increasing attention from several research 

communities. Today there is a great interest in the topic of motion capture and the 

number of papers published in this subject area grows exponentially. Computer vision 
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researchers, on one hand, are interested in mocap to build models of real-world 

scenes captured by optical sensors. Computer graphics researchers, on the other hand, 

are looking at mocap as an attractive and cost-effective way of replicating the 

movements of human beings or objects for computer-generated productions.  

 
Overall, the growing interest in human motion capture is motivated by a wide 

spectrum of applications involving automated surveillance, performance analysis, 

human computer interactions, virtual reality and computer generated animation. 

Automated surveillance provides the promise of unsupervised tracking of multiple 

subjects with intelligent detection of activities of interest. Performance analysis 

meanwhile is extremely useful in the clinical setting of physiotherapy and 

increasingly, in the field of movement analysis in sports. Understanding human 

computer interactions is the key in developing next generation man-machine 

interfaces which are natural and intuitive to use. Virtual reality applications 

meanwhile will be driven primarily by gaming where more enriched forms of 

interaction with other participants or objects will be possible by adding gestures, head 

pose and facial expressions as cues. Finally, computer generated animation, as we all 

know, is now a big and lucrative industry with its films depicting ever greater realism. 

 
The increasing sophistication of the above applications is pushing the performance 

envelope of motion capture, specifically towards ever higher resolution. To address 

the demand for higher resolution motion capture systems, one needs to produce 

higher quality 3D models in a more automated way. These factors provide the 

essential motivation for the work presented in this thesis - the development of an un-
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aided (i.e. no markers) video-based system that produces high resolution 3D human 

body models. 

 

1.2 Main Contributions of Thesis 

An outline of the main contributions of this thesis is as follows: 

 
1. A framework for practical optical motion capture is demonstrated 

A structure for practical 3D model-based motion capture is proposed and its 

implementation demonstrated. The structure comprises of three modules, namely 

calibration, modeling and tracking. The functionality of each module is defined and 

its implementation discussed in the thesis. The development tasks involved in the 

setup of an actual system based on this structure are also addressed. We believe that 

this motion capture framework provides useful pointers for practical industry 

implementation or for further research.   

 

2. A 3D human body modeling scheme based on camera focal length self-calibration 

is proposed 

We present a novel point correspondence-based scheme that creates accurate 3D 

shape models of a static human body from a pair of uncalibrated images. The method 

is based on the assumption that only the camera's focal length is unknown and that the 

skew factor is zero. The Kruppa's equations are decomposed into one quadratic and 

two linear equations. Thus the focal length of camera can be obtained in closed form. 

The advantage of our method is that no à priori information of the human subject or 

physical measurement on it is required. The procedure is simple, reliable and it 
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achieves realistic results. The automated matching process on the human body 

recovers point clouds that can be exported for editing, modeling or animation 

purposes.  

 

1.3 Thesis Outline 
 
This thesis consists of seven chapters, the organization of each is as follows: 

Chapter 1 introduces the motivation, objective, main contributions and outline of the 

thesis to the readers.  A survey of current related work is presented in chapter 2.  

Chapter 3 briefly explains the functional structure of the practical motion capture 

system developed. Each module of the structure will be discussed further in the 

subsequent chapters. Chapter 4 describes and evaluates a linear self-calibration 

method for camera focal length estimation based on degenerated Kruppa’s equations. 

In chapter 5, we describe the integration of this novel self-calibration technique 

within the system in the process of developing a novel point correspondence-based 

scheme for dense 3D human body modeling. The performance of the system in 

executing human body parts tracking over an entire video sequence is shown in 

chapter 6. We conclude the thesis in chapter 7. 
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 Chapter 2 Human Motion Capture: 
 A Review 

 
 
2.1 Literature Survey on Human Motion Capture  
 

This literature survey attempts to present recent developments and current state in the 

field of body analysis by the use of non-intrusive optical systems. It shows that 

various mathematical body models are used to guide the tracking and pose estimation 

processes. In the following sections, we will briefly describe different methods that 

have been used to extract human motion information without and with explicit 

models. Tracking from multiple cameras setup is also described afterwards. 

 

2.1.1 Approaches without explicit models 

One simple approach to analyse human movements is to describe them in terms of 

movements of simple low-level 2D features that are extracted from regions of interest. 

This approach thus translates the problem of human motion analysis to one of joint-

connected body parts identification and tracking. The tasks of automatically labeling 

body segments and locating their connected joints alone are highly non-trivial.  

 
Polana and Nelson’s work [2] is an example of point feature tracking. They assumed 

that the movements of arms and legs converge to those of the torso. Each monitored 

subject is bounded by a rectangular box, with the centroid of the bounding box being 

used as the feature to be tracked. Tracking could be done even when there are 
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occlusions between two subjects as long as the velocity of the centroids of the 

subjects could be differentiated. The advantage of this approach lies in its simplicity 

and its use of body motion information to solve the problem of occlusion occurence 

during tracking. The approach is however limited by the fact that it considers only 2D 

translation motion; furthermore, its tracking robustness could be further improved by 

incorporating additional features such as texture, colour and shape. 

 
Heisele et al. [3] used groups of pixels as basic units for tracking. Pixels are grouped 

through clustering techniques in a combined color (R, G, B) and spatial (x,y) feature 

space. The motivation behind the addition of spatial information is the added stability 

compared to if only colour features are used. Properties of the pixel groups generated 

are updated from one image to the next using k-means clustering. The fixed number 

of pixel groups and the enforcement of one-to-one correspondences over time make 

tracking straightforward. Of course, there is no guarantee that the pixel groups may 

remain locked onto the same physical entity during tracking but preliminary results of 

a pedestrian tracking experiment appear promising. 

 

Oren et al. [4] used Haar wavelet coefficients as low-level intensity features for object 

detection in static images; these coefficients are obtained by applying a differential 

operator at various locations, scales and orientations on the image grid of interest. 

During training, one is to select a small subset of coefficients to represent a desired 

object, based on considerations regarding relative coefficient strength and positional 

spread over the images of the training set. These wavelet coefficients are then trained 

on a support vector machine (SVM) classifier. During detection, the SVM classifier 
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operates on features extracted from window shifts of various sizes over the image and 

makes decisions on whether a targeted object is present. However, the technique can 

be only applied to detect front and rear views of pedestrians.  

 

Baumberg and Hogg [5], in contrast, applied active shape models to track pedestrians. 

Assuming the camera to be stationary, tracking can be initialised on foreground 

region which is achieved by background subtraction. Moreover, spatial-temporal 

control can be achieved using a Kalman filter.  

 

Blob representation was used by Pentland and Kauth et al. [6] as the way to extract a 

compact, structurally meaningful description of multi-spectral satellite (MSS) 

imagery. Feature vectors of each pixel are first formed by concatenating spatial 

coordinates to its spectral components. These pixel featutes are then clustered so that 

image properties such as color and spatial similarity combine to form coherent 

connected regions, or “blobs”. Wren et al. [7] similarly explored the use of blob 

features. In their work, blobs could be any homogenous areas in terms of colour, 

texture, brightness, motion, shading or any combination of these features. Statistics 

such as mean and covariance were used to model blob features in both 2D and 3D. 

The feature vectors of a blob consist of spatial (x, y) and colour (R, G, B) information. 

A human body is then constructed by blobs representing various body parts such as 

head, torso, hands, and feet while the surrounding scene is modeled as texture 

surfaces. Gaussian distributions are assumed for both the human body and the 



 8

background scene blob models. For pixels belonging to the human body, different 

body part blobs are assigned using a log-likelihood measure.  

 

Cheung et al. [8] meanwhile developed a multi-camera system that performed 3D 

reconstruction and ellipsoid fitting of moving humans in real time. Each camera is 

connected to a PC which extracts the silhouettes of the moving person in the scene. In 

this way, the 3D reconstruction is successfully achieved using shape from silhouette 

techniques. Ellipsoids become an effective tool to fit the reconstructed data. 

 

2.1.2 Model based approaches 

For model based approaches of human motion capture, the representation of the 

human body itself has steadily evolved from stick figures to 2D contours to 3D 

volumes as models become more complex. The stick figure representation is based on 

the observation that human motion is essentially the movement of the supporting 

bone structure while the use of 2D contours is directly associated with the projection 

of the human figure in images. Volumetric models, such as generalized cones, 

elliptical cylinders and spheres, meanwhile attempt to describe human body motion 

details in 3D and require far more parameters. Each of these approaches will be 

discussed as follows. 

 

2.1.2.1  Stick figure models 

Lee and Chen [9] recovered the 3D configuration of a moving subject using its 

projected 2D images. The method is computationally expensive as it searches all 
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possible combinations of 3D configurations given the known 2D projection and 

requires accurate extraction of 2D stick figures. Their model uses 17 line segments 

and 14 joints to represent the features of the human head, torso, hip, arms and legs. 

There are at least seven more features on the head, corresponding to the neck, nose, 

two eyes, two ears and chin, etc. It is assumed that the lengths of all rigid segments 

and the relative location of the feature points on the head are known in advance. After 

the feature points of the head are determined, possible locations of feature points for 

the other subparts can be determined from joint to joint in a transitive manner. 

 

Iwasawa et al. [10] described a novel real-time method which heuristically extracts a 

human body’s significant parts (top of the head and tips of hands and feet) from the 

silhouette acquired from a thermal image. The method does not need to rely on 

explicit 3D human models or multiple images from a sequence, and is robust against 

changes in environmental conditions. The human silhouette, which corresponds to the 

human body area in the thermal image, is extracted by certain threshold before its 

center of gravity is obtained from a distance-conpensated version of the image. The 

orientation of the upper half of the body (above the waist) is obtained based on the 

orientation in the previous frame. Significant points, namely the foot and hand tips 

and the head top are detected through a heuristic contour analysis of the human 

silhouette. Before processing can proceed, the very first frame needs to be calibrated. 

During calibration, the person needs to stand upright and keep both arms horizontal 

for significant body points to be extracted. For subsequent frames, main joint 
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positions are estimated based on detected positions of significant points which were 

obtained using a genetic algorithm based learning procedure. 

 

2.1.2.2 2D Contour models 

Leung and Yang [11] applied a 2D ribbon model to recognise poses of a human 

performing gymnastic movement. A moving edge detection technique is successfully 

used to generate a complete outline of the moving body. The technique essentially 

relies on image differencing and coincidence edge accumulation. Coincidence edges, 

namely edges of both the difference and the original image, capture the edges of 

moving objects. Faulty coincidence edges however appear when moving objects 

move behind stationary foreground objects. Effective tracking is used as the means to 

eliminate erroneous coincidence edges and to estimate motion from the outline of the 

moving human subject. The motion capture part consists of two major processes: 

extraction of human outlines and interpretation of human motion. For the first process, 

a sophisticated 2D ribbon model is applied to explore the structural and shape 

relationships between the body parts and their associated motion constraints. A 

spatial-temporal relaxation process is proposed to determine if an extracted 3D ribbon 

belongs to a part of the body or that of the background. In the end, a description of the 

body parts is obtained based on the structure and motion consistencies. This work is 

one of the most complete for human motion capture, covering the entire spectrum 

from low level segmentation to high level body part labeling. 

 

2.1.2.3 Volumetric models 
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The disadvantage of 2D models above is its restriction on the camera’s angle, so 

many researchers are trying to depict the geometric structure of human body in more 

detail using some 3D volumetric models. Rohr [12] applied eigenvector line fitting to 

outline the human image and then fitted the 2D projections into the 3D human model 

using a similar distance measure. In the same spirit, Wachter and Nagel [13] also 

attempted to establish the correspondence between a 3D human model connected by 

elliptical cones and a real image sequence. Both edge and region information were 

incorporated in determining body joints, their degrees of freedom (DOFs) and 

orientations to the camera by an iterated extended Kalman filter. 

 

Generally, works at recovering body pose from more than one camera have met with 

more success while the problem of recovering 3D figure motion from single camera 

video has not been solved satisfactorily. Leventon et al. [14] used strong priori 

knowledge about how humans move. Their priori models were built from examples 

of 3D human motion and they showed that à priori knowledge dramatically improves 

3D reconstructions. They first studied 3D reconstruction in a simplified image 

rendering domain where Bayesian analysis provided analytic solutions to figural 

motion estimation from image data. Using insights from this simplified domain, they 

operated on real images and reconstructed 3D human motions from archived 

sequences. The system accommodated interactive correction of 2D tracking errors, 

making 3D reconstruction possible even for difficult film sequences. 
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An important advantage of volumetric models is its ability to handle occlusion and 

obtain more significant data for action analysis. However, it is restricted to 

impractical assumptions of simplicity regardless of the body kinematics constraints, 

and has high computational complexity as well. 

 

2.1.3 Tracking from multiple perspectives 

The disadvantage of tracking human motion from a single view is that the monitored 

area is relatively small due to the limited field of view of a single camera. One 

strategy to increase the size of the monitored area is to mount multiple cameras at 

various locations around the area of interest. As long as the subject is within the area 

of interest, it will be imaged from at least one of the perspectives of the camera 

network. Tracking from multiple perspectives also helps solve ambiguities in 

matching when subject images are occluded from certain viewing angles. However, 

compared with tracking moving humans from a single view, establishing feature 

correspondence between images captured from multiple perspectives is more 

challenging. As object features are recorded from different spatial coordinates, they 

must be adjusted to the same spatial reference before matching is performed. 

 

Recent work by Cai and Agarwal [15] relied on using multiple points along the 

medial axis of the subject’s upper body as features to be tracked. These points were 

sparsely sampled and assumed to be independent of each other, thus preserving a 

certain degree of non-rigidity of the human body. Location and average intensity 

features of the points were used to find the most likely match between two 
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consecutive frames imaged from different viewing angles. Camera switching was 

automatically implemented based on the position and velocity of the subject relative 

to the viewing cameras. Using a prototype system equipped with three cameras, 

experimental results of humans tracking within indoor environments demonstrated 

qualified system performance with potential for real-time implementation. The 

strength of this approach lies in its comprehensive framework and its relatively low 

computational cost given the complexity of the problem. However, as the approach 

relies heavily on the accuracy of the segmentation results, more powerful and 

sophisticated segmentation methods are needed to improve performance.  

 

Iwasawa et al. [16] used a different approach and proposed a novel real-time method 

for estimating human postures in 3D using 3 CCD cameras that capture the subject 

from the top, front and side. The approach was based on an analysis of human 

silhouettes which were extracted through background subtraction. The centroid of the 

human silhouette was first obtained followed by the orientation of the upper half of 

the body above the waist. A heuristic contour analysis scheme was then used to detect 

representative points of the silhouettes, from which the positions of the major joints 

were estimated using learning based algorithm. Finally, to reconstruct 3D coordinates 

of the significant points, the appropriateness of each point within the three camera 

views were evaluated; two views were then used to calculate its 3D coordinates by 

triangulation. 
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Promising results have recently been reported on the use of depth data obtained from 

stereo cameras for pose estimation [17] [18]. The first attempt at using voxel data 

obtained from multiple cameras to estimate body pose has been reported in Cheung et 

al. [19]. A simple six-part body model was used for the 3D voxel reconstruction. 

Tracking was performed by assigning the voxels in the new frame the closest body 

part from the previous frame and by re-computing the new position of the body part 

based on the voxels associated with it. This simple approach however cannot handle 

two adjacent body parts that drift apart or moderately fast motions. Mikic et al. [20] 

meanwhile presented an integrated system for automatic acquisition of human motion 

and motion tracking using input from multiple synchronised video streams. Video 

frames are first segmented into foreground and background, with the 3D voxel 

reconstructions of the human body shape in each frame being computed from the 

foreground silhouettes. These reconstructions are then used as input to the model 

fitting and tracking algorithms. The human body model used consists of ellipsoids 

and cylinders and is described using the twists framework, producing a non-redundant 

set of model parameters. Model fitting starts with a simple body part localisation 

procedure based on template fitting and growing, which uses a prior knowledge of 

average body part shapes and dimensions. The initial model is then refined using a 

Bayesian network that imposes human body proportions onto the body part size 

estimates. The tracker is exactly an extended Kalman filter that estimates model 

parameters based on measurements made on the labeled voxel data. A special voxel 

labeling procedure that can handle large frame-to-frame displacements was finally 
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used to ensure robust tracking performance.   However, voxel-based approaches are 

restricted to their compulsory requirement of a large number of cameras. 

 

The method presented by Carranza et al. [21] used a detailed body model for motion 

capture as well as for rendering. Tracking was performed by optimising the overlap 

between the model silhouette projection and input silhouette images for all camera 

views. The algorithm is insensitive to inaccuracies in the silhouettes and does not 

suffer from robustness problems that commonly occur in many feature-based motion 

capture algorithms. As the fitting procedure works within the image plane only, 

reconstruction of scene geometry is not required. Indeed, many marker-free video-

based motion capture methods impose significant constraints on the allowed body 

pose or the tractable direction of motion; this system, in comparison, handles a broad 

range of body movements including fast motions. The motion capture algorithm also 

makes effective use of modern graphics processors by assigning error metric 

evaluations to the graphics board. 

 
Grauman et al.’s work [22] involved an image-based method to infer 3D structure 

parameters using a multi-view shape model. A probabilistic “shape+structure” model 

was formed using the probability density of multi-view silhouette contours 

augmented with 3D structure parameters (the 3D locations of key points on an object). 

Combined with a model of the observation uncertainty of the silhouettes at each 

camera, a Bayesian estimate of an object’s shape and structure was computed. Using 

a computer graphics model of articulated human bodies, a database of views 

augmented with the known 3D feature locations (and optionally joint angles, etc.) was 
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rendered. This is the first work that formulates a multi-view statistical image-based 

shape model for 3D structure inference.  The work also demonstrates how image-

based models can be learned from synthetic data, when available. The main strength 

of the approach lies in the use of a probabilistic multi-view shape model which 

restricts the object shape and its possible structural configurations to those that are 

most probable given the object class and the current observation. Thus even when the 

foreground segmentation results are poor, the statistical model can still infer the 

appropriate structure parameters. Finally as all computations are performed within the 

image domain, no model matching or search in 3D space is required. 

 

To summarise the literature survey, human motion capture has come a long way and 

the knowledge frontier of this domain has advanced tremendously. It is however a 

fact that the state-of-the-art in human motion capture is still unable to produce a full-

body tracker robust enough to handle real-world applications in real time. As a 

research area, 3D human motion capture and tracking is still far from being mature.  

Problems such as developing high resolution 3D human models, extracting precise 

joints position and analysing high-level motion remain largely unsolved. 

 
2.2 Application 
 
There are numbers of promising applications in the motion capture area in computer 

vision in addition to the general goal of designing a machine capable of interacting 

intelligently and effortlessly with a human-inhabited environment. The summary of 

the possible application is listed in Table 2.1. 
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Table 2.1 Application of motion capture techniques 

General domain 
 

Specific area 
 

Virtual reality        
 

- Interactive virtual worlds 

- Games 

- Virtual studios 

- Character animation 

- Teleconferencing (film, advertising, 

home-use, etc.) 

“Smart” surveillance systems 

- Access control 

- Parking lots 

- Supermarkets, department stores 

- Vending machines, ATMs 

- Traffic 

Advanced user interfaces 

- Social interfaces 

- Sign-languages translation 

- Gesture driven control 

- Signaling in high-noise environments 

(airports, factories) 

Motion analysis 

- Content-based indexing of sports video 

footage 

- Personlised training in golf, tennis, etc. 

- Choreography of dance and ballet 

- Clinical studies of orthopedic pat 

Model-based coding - Very low bit-rate video compression 

 
 

2.3 Existing Motion Capture Systems 
 
Nowadays, three main types of technology underlie most popular commercial human 

motion capture systems: 
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2.3.1 Magnetic systems 

Magnetic motion capture systems use a source element radiating a magnetic field and 

small sensors (typically placed on the body of the subject being tracked) that report 

their position with respect to the source. These systems are multi-source and very 

complex. They can track a number of points at up to 100 Hz, in ranges from 1 to 

beyond 5 metres, with accuracy better than 0.25 cm for position and 0.1 degrees for 

rotation. The two main manufacturers of magnetic mocap equipments are Polhemus 

( www.polhemus.com) and Ascension (www.ascension-tech.com). 

 

2.3.2 Mechanical Systems 

The monitored subject typically wears a mechanical armature fitted to his body. The 

sensors in a mechanical armature are usually variable resistance potentiometers or 

digital shaft encoders. These devices encode the rotation of a shaft as a varying 

voltage (potentiometer) or directly as digital values. The advantage of mechanical 

mocap systems is that they are free from external interference from magnetic fields 

and light. The main manufacturer of mechanical mocap equipments is Polhemus 

(www.polhemus.com). 

 

2.3.3 Optical systems 

Existing optical mocap systems utilise reflective or pulsed-LED (infrared) markers 

attached to joints of the subject’s body. Multiple infrared cameras are used to track 

the markers to obtain the movement of the subjecy. Post-processing and manual 

cleaning-up of the movement data are required to overcome errors (e.g. markers 
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confusion) caused by the tracker. The three main manufacturers of optical mocap 

equipments are Vicon (www.vicon.com), Peak Performance (www.peakperform.com) 

and Motion Analysis (www.motionanalysis.com).    

 

The advantages and disadvantages of the three motion capture systems above are 

listed in Table 2.2. 

 
Table 2.2   Pros and cons of different mocap systems 

 
Systems Advantages Disadvantages 

Magnetic 
Systems 

• Position and rotation are    

easily measured; 

• Orientation in space can 

be determined; 

• No constraints on tracked 

subject.  

• Distortion proportional to 

distance from tracked subject; 

• Noisier data; 

• Prone to interference from 

external magnetic fields; 

• Encumbrance generated by 

magnetic markers. 

Mechanical 
Systems 

• Free from external 

interference from 

magnetic fields and light 

• No awareness of ground, so 

there can be no jumping, plus 

feet data tend to “slide”; 

• Need frequent calibration; 

• Does not have notion of 

orientation; 

• Highly encumbering and range 

of motion limiting 

 
Optical 
Systems 

• Subject free to move as 

there are no cables 

connecting body to 

equipment; 

• Prone to light interference; 

• Self-occlusion of reflective 

markers; 

• Offset of reflective markers 



 20

• Multiple subjects can be 

measured at any one time;

• Good realism of detected 

movements. 

from joints and possibility of 

slippage; 

• Long and expert manual 

intervention is needed and 

accuracy is not high enough. 

 
 
It is interesting to note that human motion capture systems based on multiple cameras 

have yet to truly take off commercially and still remain in the realm of research for 

the time being. But as these systems possess most of the advantages of existing 

commercial systems with little or none of the disadvantages, they hold the greatest 

promise for flexible, scalable and high quality motion capture for the plethora of 

applications that are pushing the performance envelope of mocap systems as 

described in chapter 1.  
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Chapter 3 An Overview of Our 3D Model-
Based Motion Capture System 

 
 

3.1 Methodology 
 
With the rapid advancement in the fields of 3D computer vision and computer 

graphics, we now consider the development of a markerless vision system that has the 

potential to augment present mocap systems.  

 

The task of tracking motion is made more tractable if we can incorporate 3D shape 

models of the subject as prior knowledge to drive the tracking system. Used 

extensively in computer vision, this is a very powerful way to control a tracker’s 

stability and robustness. 

 

Our proposed system comprises the following components: 

i. 3D Puppet Model Building – building a suitable skeleton model of the 

subject; 

ii. Model Customization - devising a technique to customise parameters of 

the generic puppet model to fit the subject of interest; 

iii. Model Alignment - designing an input interface to align the model with the 

positions of the subject’s body parts within the initial video frame; 

iv. Tracking - developing a model-based tracker to capture the human motion; 
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v. Data Reporting - implementing a data-reporting module that displays and 

analyses the captured motion. 

 
3.2 System Overview 
 
This section provides the overview of our proposed 3D model-based human motion 

capture system. Details will be further presented in from chapter 4 to chapter 6. 

3.2.1 Summary 

 
Calibration                                  Modeling                                   Tracking 

 

 
Figure 3.1: Block diagram of system 

 
The block diagram of the proposed system is shown in Figure 3.1. Implementation of 

the system requires effective operation of three sub-systems: 

i. A calibration sub-system factoring in the imaging conditions. 

ii. A modeling sub-system which first builds a generic 3D puppet model and 

refining it based on anthropometrical data.  

iii. A tracking system which first pre-positions the puppet model during 

initiatisation and follows the subject’s movements thereafter. 

 

3.2.2 Camera network 

- Consider Imaging    

  Conditions 

- Actual Calibration 

3D Puppet Model 

   - Skeleton Design 

   - Skinning 

   - Improvements 

- Pre-Positioning 

- Active DOF and   

   Hierarchical   

   Tracking 
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The camera network comprises a set of fixed cameras (minimum three) that are 

arranged to maximize the view coverage of the subject. A PC is used to host the video 

capture card (which handles A/D conversion and image rendering) as well as the 

processing software.  

 

Off-the-self standard CCD cameras are used in contrast with pulsed infrared cameras 

used by most existing mocap system. The frame capture rate can be set at 25 frames 

per second, unless there is an explicit need to capture at higher frame rates. From our 

experience, a sufficiently high shutter speed (at least 1/500) is needed to obtain crisp 

images of very rapid movements. A gen-lick circuit helps synchronise the multiple 

cameras. 

 

3.2.3 Camera calibration 

Camera calibration is needed before subsequent processing can take place. 

Information that is needed at this stage is the 3D-2D correspondences which can be 

obtained using the 3D extrinsic and intrinsic camera parameters. A pinhole camera 

model is assumed. Details will be described in section 4.4. In our proposed self-

calibration scheme conventional calibration tools are no longer needed. 

 

3.2.4 3D puppet model construction 

The purpose of constructing a 3D puppet model is to precisely mimic the behavior of 

the subject so that robust quantitative data about the subject’s movements can be 

obtained. The unique property of the proposed model is that it comprises of two 
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components: the underlying skeleton and the external skin. These two components 

interact with each other, producing an integrative model that best represents the 

subject. 

 

The puppet model construction uses a generic human puppet provided by computer 

animation software, such as 3D Studio MAX, as its starting point. There are two 

approaches to further proceed. One alternative is to take anatomical measurements of 

the subject to parameterise the generic puppet model; this approach is called 

renormalisation. Renormalisation needs to be performed on both the skeleton and the 

skin. There are obvious problems with renormalising the skeleton component of the 

model because skeletons cannot be observed and measured directly, and thus 

intelligently estimated. The other alternative, the so-called image-based approach, 

uses a correspondence point scheme operating on multiple captured images of the 

subject to parameterise the 3D puppet model. This is a more flexible approach and the 

one we have chosen, details of which will be presented in chapter 5.  

 

3.2.5 3D Puppet pre-positioning 

This step is needed to initialise the positions of the different parts of the 3D puppet 

model to the positions of the subject’s corresponding body parts. Pre-positioning is 

typically implemented in a manual or semi-automatic way. Automated tracking of the 

various body parts of the subject can only take place after proper pre-positioning is 

achieved for the first image frame. An interactive software interface is about to be 

developed to facilitate model pre-positioning in an intuitive way.  
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3.2.6 Model-Based Tracking 

An articulated 3D human model is utilised to drive the body feature detection and 

movement tracking tasks. 3D tracking is then performed using an analysis by 

synthesis approach that guarantees stable and accurate performance over extended 

periods of time.  

 

3.2.7 Data Reporting 

3D rendering of the tracked skeleton and body surface should be performed with the 

following features displayed: 

i.  Segments of the body joints and the centre of mass; for position, 

displacement, velocity, acceleration and orientation analysis. 

ii. Rotational motions, including their angular velocity and acceleration. 

iii. Orthopedic angles for all body joints; for analysis or graphing. 

iv. Forces and moments on each body joint. 
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Chapter 4 Self-Calibration for Focal 
Length Estimation 

 
 
4.1 Introduction 
 
Camera calibration is the first module of our proposed human motion capture system; 

its role is to estimate the metric information of the camera. In other words, the 

module attempts to establish the relationship between the camera’s internal 

coordinate system and the coordinate system of the real world. It is therefore the 

logical first step for a calibrated motion capture system. Camera calibration can 

generally be achieved using two approaches: photogrammetric [23] and self-

calibration [24].  

 
A photogrammetric calibration approach uses a precise pattern with known metric 

information to calibrate a camera. This pattern is usually distributed over two or three 

orthogonal planes. Since the metric information of this pattern can be specified with 

precision, calibration could be done to a high degree of accuracy. Generation of such 

precise patterns, however, is often expensive and unfeasible for some applications. 

Furthermore, there may be cases where the camera metric information changes with 

time.  

 

Camera self-calibration addresses this exact need. The approach automatically 

calibrates a camera without the need for any à priori 3D information. The main 
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principle is to extract a camera’s intrinsic parameters (from which metric information 

could be derived) from several uncalibrated images captured by the camera. A self-

calibration approach typically relies on two or more captured images as the input and 

produces the camera's intrinsic parameters as the output. 

 
In this chapter, we propose a linear self-calibration approach for camera focal length 

estimation based on degenerated Kruppa’s Equations. Compared with other linear 

techniques, this method does not require any à priori information generated from 

motion. By using the degenerated equations (one quadratic and two linear) and 

making reasonable assumptions that only the focal length of the camera is unknown 

and that its skew factor is zero, the focal length can be calculated from a closed form 

formula. We will demonstrate the accuracy of this approach through experimental 

results based on both synthetic and real images of indoor and outdoor scenes and its 

effectiveness for 3D object reconstruction. 

 
4.2 Related Work 
 
Traditional camera self-calibration is highly non-linear as the constraint for a 

camera’s internal parameter matrix is quadratic [24]. As the solution for such non-

linear optimisation often falls into local minima, conventional approaches for camera 

self-calibration are often unsatisfactory [25]. 

 

Due to the above difficulty, there have been attempts to perform self-calibration using 

controlled motions of a camera. In [26], for example, self-calibration relies on a pure 

translational camera motion. As this approach makes it possible to derive much 
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information through a long duration of sequence capture, the estimation of the camera 

calibration matrix can be fairly robust. Furthermore, as the equation that constrains 

the calibration matrix is linear, most general linear models can be used. In [27], self-

calibration using both translational and rotational camera motions is considered. 

Since the implementation of the approach involves the use of a robot, the motion and 

orientation of the cameras can be accurately controlled. Self-calibration relying on 

pure rotational camera motion is described in [28]. In this case, point correspondences 

between two images are achieved through a conjugate of a rotation matrix, with the 

camera intrinsic parameter matrix being one such conjugating element. Consequently, 

eight point matches are enough to obtain the intrinsic parameter matrix.  

 
Recently, some other efforts have been made to linearise the Kruppa's equations 

which constrain the camera intrinsic parameter matrix. In [29], Ma finds the constant 

scaling factor for Kruppa's equations for two special motion cases. When translation 

is parallel to the rotation axis, the constant scale factor is given by the two norms of 

the conjugate of normalised epipoles. The conjugate factor here is the fundamental 

matrix. In the other case when translation is perpendicular to the rotation axis, the 

scaling factor is determined by one of the non-zero eigenvalues of the product 

between the normalised epipoles and the fundamental matrix. These constant scaling 

factors help provide the linear constraint for the camera intrinsic parameters.  

 

When some assumptions are made regarding the camera intrinsic parameters, closed 

form calibration equations could be obtained [30]. Making the reasonable 

assumptions that only the focal length of the camera’s lens is unknown and that its 
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skew factor is zero, we can degenerate Kruppa's equations to one quadratic and two 

linear equations without any à priori information from camera motion. The 

methodology of this approach will be explained in fuller detail and with more 

rigorous derivation and evaluation, compared to brief explanations of the method in 

our previous publication in [31]. Complementing experimental results are critical 

discussions and analysis of future work followed by concluding remarks. 

 

4.3 Background 
 
The pinhole camera model is widely used in computer vision area. It maps 3D 

projective spaces to 2D ones. In this model, the camera frame is determined by a 

coordinate system whose origin is the optical center of a camera and with one axis 

(usually the z axis) being parallel to the optical axis. The other two axes (x and y axes) 

are on planes orthogonal to the z axis. The two axes of captured image’s coordinate 

system are often assumed parallel to the x and y axes of the camera frame if optical 

distortion is ignored. Let a 3D point in the camera frame and its correspondent image 

be TzyxM ),,(=  and Tvum ),(=  respectively. The relationship between M  and m  is: 

                                        z
f

y
v

x
u

==                                                                       (4.1) 

where f is the focal length of the camera’s lens. In the same way, let TzyxM )1,,,(~
= and 

and Tvum )1,,(~ = denote the 3D homogeneous coordinates of M and m  respectively. 

(4.1) can then be denoted as: 
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with s being a scaling factor and 
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A  the camera intrinsic parameter matrix. 

If the origin of the image coordinate system is not the image center and lens distortion 

is taken into account, the intrinsic parameter matrix becomes 
⎥
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. In 

this case, [ ]Tvu 00  is called the principal point, the point of intersection between the 

optical axes and the image plane. α  meanwhile is the aspect ratio determining the 

extent of unequal sampling along the u and v directions, while γ  is the skew factor 

corresponding to a skewing of the coordinate axes. For a real CCD camera, it is 

unlikely that there is any unequal sampling or that the skew factor is anything other 

than 0. It is thus quite reasonable to assume that 0=γ  and 1=α . In most cases where 

high precision is not needed, it is also safe to assume the image center to be the 

location of principal point. Note that if we first subtract 0u and 0v  from the image 

coordinates, equation (4.2) still holds. 

 

In the case of a binocular stereo system, the coordinate system is usually set on one of 

the two camera frames. Let t and R denote the 3D translation vector and the rotation 

matrix respectively of the other camera with respect to the first; the two camera 

projection matrices, P1 and P2 can be written as: 
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                                  ]0|[1 IAP =          ]|[2 tRAP =  

where I is the 33 × identity matrix, 0 is the 3D zero vector and A is the cameras’ 

intrinsic parameter matrix as defined earlier.  

 
According to epipolar geometry, the relation of a pair of projection of the same 3D 

point is given by: 

                                              0~~
12 =mFmT                                                              (4.3) 

where F denotes the fundamental matrix, [ ]×t  the skew symmetric matrix of 

translation vector t, with [ ] 1−
×

−= RAtAF T if we assume that the two cameras have 

identical intrinsic parameters.    

  
Following the above notation, we have MPms ~~

111 =   and MPms ~~
222 =  where s1 and s2 

are scalar factors. The general form of the fundamental matrix in terms of the 

projection matrix then becomes +
×= 122 ][ PPesF  where s is a scalar factor, "+" 

denotes the pseudo inverse and 1
12

−+ = ARAPP . Then it is easy to produce the 

Kruppa's equation as:  

                           [ ] [ ] [ ] [ ]×××× == 2222 eAAeseCesFCF TT                                 (4.4)  

where 2e  is the right epipole, and as a reminder, F  the fundamental matrix and A the 

camera intrinsic parameter matrix. TAAC = represents the dual image of the absolute 

conic (DIAC). 

 
Kruppa’s equations are intimately connected with the absolute conic. The properties 

of this conic and its connection with calibration are now briefly introduced for the 

benefit of the reader. The absolute conic is a conic lying on the plane at infinity, 
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represented by the equation 0222 =++ zyx . The absolute conic does not contain any 

points with real coordinates as it is composed entirely of complex points. The image 

of the absolute conic in an image is however representable by a real 

symmetric 33× matrix. 

 
Let a point x be Tzyx ),,( . Its homogeneous coordinate system point Tzyx )0,,,(  is on 

the absolute conic if and only if x T x=0. Consider a camera projection matrix 

]|[ RtRAP −= . The point Tzyx )0,,,( on the absolute conic maps to 

u= ARzyxP T =)0,,,( x. Thus, x= 1−ART u, and the condition x T x=0 becomes 

u T 1−− ARRA TT u= u T 1−− AA T u=0. Thus, a point u is on the image of the absolute 

conic if and only if it lies on the conic represented by the matrix 1−− AA T . In other 

words, 1−− AA T is the matrix representing the image of the absolute conic. Taking 

inverses (dual conics) reveals that TAA is the dual image of the absolute conic. We 

will denote TAA by C . If C is known then the calibration matrix A may be retrieved 

by Choleski factorization.  

 
We have shown how the calibration matrix A  may be retrieved if the matrix 

C representing the DIAC is known. Conversely, if A is known, then TAAC = depends 

only on the calibration matrix, and not on the orientation R or the position t  of the 

camera. The DIAC is fixed under Euclidean motions of the camera. 

 
Equation (4.4) gives the general constraint for camera intrinsic parameter matrix. 

Since C is a symmetric matrix, (4.4) provides six equations to compute C. However, 

at most only two equations are independent. These six equations are quadratic in 
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terms of C and thus fourth order in terms of elements of A. The common way to 

compute A is to first obtain C by iterative estimation and to obtain A next by 

Cholesky decomposition.  

 
The objective of using the above derivation is to determine which two equations are 

independent. Hartley [32] decomposes Kruppa’s equations using singular value 

decomposition (SVD) into two equations.   

 
Suppose the singular value decomposition (SVD) of the fundamental matrix 

is TVUF Σ=  where [ ]321 uuuU = , [ ]321 vvvV = , and )0,,( badiag=Σ , a and b 

are the two singular values of F. Since the right epipole 32 )( uFnulle T == , the null 

space of FT, then [ ] TUMUe =×2 , where M  is the skew symmetric matrix for [ ]T100 . 

Hence after some mathematical manipulations, the Kruppa’s equations (4.4) becomes 

                                 CUMsMUCVV TT =∑∑                                                         (4.5) 

The LHS of (4.5) is 
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The RHS of (4.5) is  
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Only four elements in the matrix at the right end of both (4.6) and (4.7) are nonzero 

and (4.6) is a symmetry matrix, so (4.5) gives only two equations for constraining A.  

The final result is:  



 34

                                 
12

21

11

22
2

22

11
2

Cuu
Cvabv

Cuu
Cvvb

Cuu
Cvva

T

T

T

T

T

T

−
==                                (4.8) 

In this chapter, equation (4.8) is fundamental in calibrating the camera. Since (4.8) 

provides two independent equations and the number of unknown parameters in C is 

five, at least three images are needed to obtain C. 

 

4.4 Methodology 
 
4.4.1 Linearisation of Kruppa’s equations 

The simplified form of Kruppa's equations may be generated based on equation (4.8). 

The common method to obtain C is to initially estimate its parameters, then conduct 

non-linear optimisation methods to obtain more accurate results. Although equation 

(4.8) provides neat constraints on the camera’s intrinsic parameter matrix, it is not 

easy to solve for these parameters as multiple solutions exist for these quadratic 

equations. To illustrate: generally, three fundamental matrices or three images are 

needed to fully calibrate a camera. However, these three images represent six 

quadratic constraints. It is difficult to know whether these six constraints are 

independent. Even if they are actually independent, solutions from any five of the six 

constraints could lead to a total of 3225 =  possible solutions. We have to eliminate 

spurious solutions one by one. Thus it is not a particular promising approach. 

 
If we make the reasonable assumptions that only the focal length of the camera’s lens 

is unknown (but constant) and that its skew factor is zero, most of these 

complications disappear. Using these assumptions and with simple coordinate 

transformations, Kruppa's equations in (4.8) can be further linearised. Specifically, 
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we transform the image coordinates to reflect our assumptions of the aspect ratio 

being one and the principal point being at the image center. The new fundamental 

matrix is now 1−−=′ FTTF T , where F ′ and F are the new and the original 

fundamental matrices respectively, and T  the transformation matrix. Consider the 

singular value decomposition of F ′ , i.e. TUSVF =′ , equation (4.8) now yields: 
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where 'a , 'b  are the two singular values of F ′ and f  the focal length of the camera, 

iu  and iv are the i th and j th column of U and V respectively. 

 

Expanding the above equations, we further obtain: 
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Where iju  and ijv are the j th element of the vector iu  and iv  respectively. 

 

Because of the orthogonality of U andV , the three fractions are rewritten as: 
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where s  is a constant scalar factor. After rearranging equation (4.10), we obtain the 

same results of Sturm’s work [33] as shown in the following two linear equations: 
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and one quadratic equation: 
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From the above derivation, it is clear that when only the focal length is unknown, the 

Kruppa's equations can be further decomposed into one quadratic and two linear 

equations. Here we denote three parameters in the quadratic equation (4.14) 
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respectively. If 001.0)/( 2
3

2
2

2
1 <+ ccc , we can calculate the focal length from linear 

equations (4.12) and (4.13). Otherwise, the focal length may be thereby calculated by 

solving the quadratic equation (4.14). The spurious solution can be singled out due to 

the truth that the focal length should be positive and within certain range. 

4.4.2 Algorithm  

The block diagram of the developed algorithm is shown in Figure 4.1. It basically 

comprises three steps: feature detection, robust matching estimation and self-

calibration. As the first step toward image correspondence, Harris corner detection 

[34] is applied on a pair of images to detect feature points of interest. Next, a robust 

matching estimation technique [35] is implemented with the aim of finding sufficient 

corresponding points between the two images. The routine consists of cross- 

correlation matching, relaxation, RANSAC fitting and Least Median Square (LMedS) 

optimisation [36] for epipolar geometry estimation. These correspondences can also             
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Figure 4.1 Algorithmic block diagram 

 

be established manually especially when the base line of the two images is long. For 

self-calibration, it is important to note that if radial distortion is significant, it should 

be corrected at this stage. After any needed distortion correction, the fundamental 

matrix for each pair of images is obtained. Lastly, the focal length of the camera is 

estimated using the linearised Kruppa’s equations.  

 

4.5 Experimental Results 

We have carried out a large number of experiments to study the performance of the 

algorithm and examine its robustness and accuracy. Section 4.5.1 presents the results 

Feature 
Detection 

Images 

Harris 
Corner 

Detection  

Robust Matching 
Estimation  

Cross-
correlation

RANSAC

Least Median 
Square 

Relaxation

Fundamental 
Matrix 

Computation 

Linearise 
Kruppa’s 
Equations 

Radial 
Distortion 
Correction

Self-
calibration

    Focal length 



 38

of experiments using a synthetic object. Experiments on real images are conducted 

next and their results are reported in Section 4.5.2. Finally, the utility of the algorithm 

in performing a 3D reconstruction of a real object is demonstrated in Section 4.5.3. 

 

4.5.1 Experiments involving a synthetic object  

4.5.1.1 Synthetic object and image 

The configuration of this experiment is shown in Figure 4.2. The synthetic ‘object’ is 

a composition of points on two planar grids at a 135° angle with each other. There are 

a total of 120 points within each grid. The object is placed at a distance of 1000 units 

from the camera center. The ground truth of the camera's intrinsic parameters 

is: 600=f , 3200 =u , 2400 =v  , and the skew factor 0=γ . 

 

                            

Figure 4.2   The synthetic object 
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4.5.1.2  Performance with respect to different levels of Gaussian noise  

It can be shown that the coplanarity of optical axes is the singularity of the two views 

calibration algorithm [33]. In our design therefore, the optical axes of our two-camera 

system are never exactly coplanar. For this experiment, the image coordinates of the 

grid points are perturbed by independent Gaussian noise with mean of 0 and a 

standard deviation of σ pixels. σ varies from 0.1 to 2.0 pixel. For each noise level, a 

total of 100 trials are performed; in other words, there are 50 calibration results for 

each σ value. The average of these 50 estimations is then taken as the estimated 

calibrated focal length with respect to the noise level. Finally, this estimated focal 

length value is compared with the ground truth for further analysis. 

 

The relation between the relative error of the focal length estimation and noise level is 

shown in Figure 4.3. It can be seen that the relative error of focal length is quite low 

(mostly around 2%) and it increases slowly with the noise level. 

                            

Figure 4.3   Relative error of focal length estimation with respect to different 

Gaussian noise levels 
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4.5.2 Experiment involving real images 

4.5.2.1 Camera setup 

A Canon A75 digital camera is used to capture images at 640×480 resolution. The 

camera is first calibrated using a photogrammetric calibration algorithm [23] with 

four images of a highly accurate calibration grid. Using this approach, the calculated 

camera focal length of 692 pixels is employed as the “ground truth” for the following 

experiments. 

 

4.5.2.2  Calibration with real images of an indoor scene 

For this experiment, one cup and one box are placed together. We can move the 

camera close to the objects in order to capture enough features. A total of four images 

of the subjects are taken. Two of them are shown in Figure 4.4 with the calibrated 

results presented in Table 4.1.  Entries in the “image pair used” column in Table 4.1 

(and the subsequent Table 4.2 is in the same layout) refer to particular image pairs 

used as inputs to the calibration algorithm. From the results in Table 4.1, we can see 

that the maximum relative error is about 32 pixels or about 4.6%. 

 

 

 

 

 

 

Figure 4.4   Some images of the indoor scene 
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Table 4.1   Focal length estimation in an indoor scene 

Image pair used Focal 

length 

ground 

truth 
1&2 1&3 1&4 2&4 3&4 

692.0 670.1 702.5 660.4 680.4 708.1 

 

4.5.2.3 Calibration with real images of outdoor scene 

We used the same camera setting to take four images of an outdoor scene. Two of 

them are shown in Figure 4.5; the scene being a building. The focal length estimated 

results based on the scene are presented in Table 4.2. Although the same camera 

setting is used, the outdoor scene is much more complex than the earlier indoor one. 

Hence we can see that the maximum relative error is up to about 77 pixels, or about 

11.1%. In Figure 4.5, we find that the building is of a large depth variety. It may lead 

to serious problems for matching (A little displacement in an image contributes to a 

great a displacement in the 3D world).  

 

        

Figure 4.5   Some images of the outdoor scene 
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Table 4.2   Focal length estimation in an outdoor scene 

Image pair used  Focal 

length 

ground 

truth 

1&2 1&3 1&4 2&3  2&4 

692.0 721.5 696.4 631.9 719.5 769.1 

 

Therefore, variation in object depths is one main factor affecting the accuracy of the 

calibrated results.    

 

4.5.3 3D reconstruction of objects 

The application of the self-calibration focal length estimation algorithm can be 

demonstrated by using it to perform a 3D reconstruction of a paper box. Firstly, we 

implement the techniques described in [37] to recover the scene's structure. A 

triangular mesh is then semi-automatically adjusted to the reconstructed 3D points 

and used to create a textured VRML model.  

 
The final 3D rendition of the reconstructed object is shown in Figure 4.6. Due to the 

sparseness of extracted points of interest, there are some triangular meshes across the 

ridge of the box. Some visual artefacts on the ridge are inevitably produced. Despite 

these limitations, the 3D reconstruction is qualitatively correct. For example, the top 

view of the reconstructed result as depicted in figure 4.6(b) indicates that the two 

planes of the box form an approximate 90- degree angle corresponding to the truth. 
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(a) An original image of the box to be reconstructed 

 

               

(b) Rendition of 3D reconstruction (left: side view; right: top view) 

Figure 4.6   3D model reconstruction results 

 

4.6 Discussion and Future Work 

In the above experiments, we first demonstrate the robustness of our self-calibration 

focal length estimation algorithm on a synthetic image in the presence of Gaussian 

noise. Next, we show that the algorithm can be used for both real indoor and outdoor 

scenes although performance of the algorithm for the latter suffered some degradation. 

Although the overall results are probably not as good as those obtained using 

traditional photogrammetric calibration method involving calibration grids [23], the 
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accuracy of the calibrated estimation is still reasonable given its ease of 

implementation. We believe that the algorithm will help increase the possibilities for 

applications requiring automatic structure from motion. Finally, we demonstrated the 

algorithm’s application for 3D object reconstruction. 

 
As for future work in the area, firstly, although the self-calibration algorithm works 

well, embedding bundle adjustment techniques [38] in our algorithm could increase 

the estimation accuracy of the camera's intrinsic parameters. To ensure stable results, 

singularities in the case of coplanar optical axes must be avoided. Automated 

detection and prompting when two input images are close to generating generic 

singularities [33] could be added.  One practical solution to avoid singularities is: 

after taking the first image, face the camera to the same point in the scene and tilt the 

camera slightly upwards or downwards before capturing the second image. 

 
Secondly, the number of correspondence matches obtained using epipolar geometry 

estimation is still limited. One can however perform dense matching after the epipolar 

geometry is established. This is an important future work for more realistic 3D object 

reconstruction.  

 
In addition to future work of somewhat incremental nature above, one can also 

question the fundamental assumptions made by the algorithm. For example, the focal 

length of the camera may not be constant. For added adaptivity and intelligence, 

camera zoom and the different camera focus operations need to somehow be taken 

into account during the calibration process. Finally, one should not forget that 3D 

modeling, not calibration, is the ultimate objective. Problems should thus be 
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evaluated from a systematic perspective: this includes considering the inter-

dependency of tasks such as image feature extraction, correspondence matching, 

camera self-calibration, structure from motion and dense model reconstruction.  

 

4.7 Conclusion 

This chapter presents and evaluates a new linear approach of self-calibration for 

camera focal length estimation. The method is based on the reasonable assumptions 

that among the camera’s intrinsic parameters, only the focal length is unknown and its 

skew factor is zero. In this case, the Kruppa's equations, which are popularly used to 

self-calibrate a camera, are shown to decompose into one quadratic and two linear 

equations. The first advantage of these equations is that they may produce closed 

form solutions. The second advantage is that the common requirement of à priori 

information generated by camera motion is no longer needed. Our experimental 

results demonstrate the robust and accurate performance of the proposed algorithm on 

a synthetic image and real images of indoor/outdoor scenes. Finally, the algorithm’s 

application for 3D object reconstruction is shown. In the next chapter, we will apply 

techniques developed here for 3D human body modeling. 
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Chapter 5   3D Human Body Modeling 

 
 
5.1 Introduction 

Recent advances in human body modeling, which is evolving fast, promises to open a 

wide variety of new applications, particularly those that require 3D information of the 

human body. Examples of such applications [39] include fitting of virtual clothes, 

anatomical medical diagnosis and drug therapy assessment, virtual actors in film and 

video post-production, ergonomic workspace design and many others.  In short, 3D 

human body modeling has great potential in many applications that benefit from a 

digital 3D model of a human being. 

 

The generation of 3-D human body models from uncalibrated image sequences 

remains a challenging problem although it has been actively investigated in recent 

years. An area of particular interest is the modeling of real human individuals. In this 

chapter, we present a method for 3-D reconstruction of static human body parts using 

images acquired from a single digital camera. Based on the focal length self-

calibration approach described in chapter 4, a point correspondence-based scheme to 

build a dense 3D human body model is demonstrated. The method involves the 

following steps: image acquisition, camera self-calibration, dense point 

correspondence, metric reconstruction and 3D model building which is visualised as a 

3-D point ‘cloud’. The goal of the work presented here is to extract complete 3-D 
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surface information of a human being without any à priori information about the 

camera system or the person involved. 

 

5.2 Related Work 

In computer graphics there is a relentless pursuit of ever more realistic modeling of 

human body geometries and human motions for applications [39] like gaming, virtual 

reality and computer animation that demand highly realistic Human Body Models 

(HBMs). At present, the process of generating realistic human models is still very 

human labour intensive and so their application is therefore currently limited to the 

lucrative movie industry where HBMs’ movements are predefined, well studied and 

painstakingly manually produced. Fully automatic rendition of highly realistic and 

fully configurable HBMs is still an open research problem. A major constraint 

involved is the computational complexity to produce realistic models with ‘natural 

behaviors’.  

 

Lately, a computer vision approach [40] [41] is increasingly being used for automatic 

generation of HBMs, processing video captured image sequences by incorporating 

and exploiting prior knowledge of human appearance. In contrast to computer 

graphics, computer vision approaches concentrate more on efficient rather than 

accurate models for human body modeling, The challenge is to improve the accuracy 

of the computer vision based HBMs with the objective of realizing fully automated 

rendition of highly realistic and fully reconfigurable HBMs. 
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Different 3D representations and mathematical formalisms have been proposed in the 

literature to model both the structure and movements of a human body. An HBM can 

be generally represented as a chain of rigid bodies, called links, interconnected to one 

another by joints. Links are typically represented as sticks [42], polyhedrons [43] 

generalised cylinders [44] or superquadrics [45]. A joint interconnects two links by 

means of rotational motions about the axes of rotation. The number of independent 

rotation parameters will define the degrees of freedom (DOF) associated with a given 

joint.  

 

In summary, the different approaches to 3D human modeling are essentially based on 

three main modes of data capture: laser scanner based systems, computer graphics 

based systems and image-based systems. 

 

The most traditional mode of 3D human modeling typically utilise 3D laser scanners 

like Vitus, WB4 and 3-D Full Body [46] [47]. Partial-body or full-body scanners are 

commonly used in different applications. They are particularly useful in producing 

anthropometrical data on the person involved, for example to support the work of 

designers in the automotive industry by optimising the interior of the vehicle from an 

ergonomic point of view. People have also been laser scanned for tailor-made 

clothing and some sculptors are known to use laser scanned data when creating their 

work of art. There is also a wide range of other applications where full-body scanners 

are used. 3D laser scanning has the advantages of being easy to control, user-friendly 

and able to generate highly accurate models of the human body. Additionally, the 

surface appearance (colour and texture) of the subject can be also obtained. The main 
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disadvantage of laser-based systems lies in the massive amount data generated for 

each scan. The huge computational costs involved in rendering and animating the 

captured/scanned individual make most applications unfeasible, thereby severely 

constraining its general applicability. 

 

Computer graphics based computer animation software, such as Maya, 3D Studio Max and 

Autocat that implement the modeling of a wide range of objects including the human 

body, is widely available. A full suite of polygons, NURBS and subdivision surface 

modeling tools can be utilised to obtain high resolution human body models. Smooth 

3D meshes and the various underlying human skeleton models empower these 

software tools to create, edit, render and animate human body models. However, as 

most systems do not directly integrate information acquired from actual objects or 

individuals, the generated models lack realism.  

 

In contrast with the above two systems, image-based systems were typically designed 

to generate novel new views of a real scene from camera captured input images of a 

particular view. However in the last few years, these systems are becoming 

increasingly popular as cost effective and flexible systems for 3D human body 

modeling.   

 

Carranza et al. [48] utilised a human shape model that is adapted to the observed 

person’s outline. Their scheme employs a shape-from-silhouette approach while 

avoiding the visual disturbing geometry errors in the form of plantom volumes or 
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quantisation artifacts. By employing multi-view texturing during rendering, time-

dependent changes in the human body surface can be reproduced with high fidelity. 

However, they do not incorporate explicit lambertian reflection properties when 

generating textures from the input video images.  

 

Remondino [49] meanwhile worked on analysing uncalibrated image sequences and 

creating 3-D shape models of static human bodies. A photogrammetric approach to 

extract camera calibration parameters is used. The proposed bundle adjustment with 

self-calibration is a powerful tool for calibration and systematic error compensation.  

However, as bundle adjustment requires both intrinsic and extrinsic parameters of the 

camera system as initial values, at least four points on the human body have to be 

chosen to compute approximations of the external orientation of the cameras.  

 

Using image-based visual hulls from multiple cameras, Wuermlin et al. [50] 

reconstructed a point-based representation of a person. Their proposed 3D Video 

Recorder methodology is a powerful framework for generating three–dimensional 

video. The 3D video concept is founded on point primitives that are stored in a 

hierarchical data structure. Limitations however include the poor quality of the 

underlying surface representation and the lack of precision of the reconstructed 

normal. Photometric calibration of the cameras for their point merging scheme might 

also improve the texture quality of their results. 
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In [51], a new technique is introduced for automatically building recognisable, 

dynamic 3D models of human individuals. A set of multi-view colour images of a 

person is captured from the front, sides and back by one or more cameras. Model-

based reconstruction of shape from silhouettes is used to transform a standard 3D 

generic humanoid model to approximate the person's shape and anatomical structure. 

Realistic appearance is achieved through colour texture mapping from the multi view 

images. The results show the reconstruction of a realistic 3D facsimile of the person 

suitable for animation in a virtual world.  

 

Despite the above efforts, 3D human modeling from uncalibrated images remains a 

challenging task. We, contributing to the advancement of knowledge in this frontier, 

propose a low-cost, robust and automatic scheme to generate realistic 3-D models of 

static human bodies from uncalibrated image sequences. The resulting 3-D point 

clouds can be easily exported to create a realistic surface model of an individual using 

3D processing software. This methodology differs from current state-of-the-art work 

in the simplicity of its operations while preserving the overall quality of the final 

reconstruction. 

 

5.3 Methodology 

 

 

 

Figure 5.1 Block diagram of the methodology of 3D human body modeling  
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The methodology for 3D human body modeling is summarised in Figure 5.1 and 

described in detail in the following sub-sections. 

 

5.3.1 Image acquisition 

A sequence of images (at least two images) covering different views of an 

individual’s body is acquired with an off-the-shelf digital camera. There should be 

some degree of overlap between adjacent images of the captured sequence. The 

camera’s intrinsic parameters are assumed to be fixed during the acquisition process. 

 

5.3.2 Camera self-calibration 

Precise 3D information from images can only be extracted when the camera is 

accurately calibrated. If the aspect ratio of the camera is assumed to be one, and even 

if its focal length is unknown, the epipolar geometry (specially the fundamental 

matrix F) and the camera’s intrinsic parameters may be calculated using the proposed 

focal length self-calibration approach described in chapter 4. Once the fundamental 

matrix has been obtained, it is used to establish a new set of correspondences using a 

correlation based approach that takes into account the recovered epipolar geometry. 

The matching approach that has been developed for human body modeling is a 

slightly modified version of the generic matching process described in the last chapter. 

In order to find possible matching partners in the second image for a corresponding 

feature point in the first image, the search should not deviate too far from the epipolar 

line in the second image.  

 

5.3.3 Dense correspondences 
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The typically small number of correspondence points is far from sufficient to 

construct a high resolution 3D human body model. Obtaining dense reconstruction 

could be achieved by interpolation, but this does not yield satisfactory result in 

practice. If some salient features are missed during the point matching process, they 

will not appear during the reconstruction, degrading the final result significantly. This 

problem may be solved using algorithms that can estimate correspondences for 

almost every point in the images [52] [53].  

 

The key to having sufficient matching points over a pair of images is to start with 

promising ‘seed points’. These seed points can be manually selected, generated semi-

automatically (defining them only in one image) or generated in a fully automated 

way. The manual mode is used for very difficult cases where the automatic modes are 

known to fail. In the semi-automated mode, seed points will be manually selected 

only for the first image; corresponding points in subsequent images are established 

automatically by searching for the best matching results along the epipolar line. This 

mode is most suitable for typical cases of static surface measurement: the process is 

sufficiently fast and provides freedom in choosing the best initial seed points. The 

fully automatic mode is needed for cases of dynamic surface measurement from 

multi-image video sequences, where the number of image sets processed is large.  

 

Starting from the seed points, sets of corresponding points grow automatically till the 

image is divided into polygonal regions. Point correspondence is based on the 

following scheme: starting from the location of the seed point, search is next 

performed for points located on a horizontal offset in the current image with 
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corresponding points in subsequent images using least squares matching. If the 

quality of the match is good, the location offset process continues horizontally until it 

reaches the region boundaries; if the quality of the match is not satisfactory, the 

algorithm automatically changes some parameters (e.g. smaller location offsets, 

moving vertically instead) before continuing with the matching process. The covering 

of the entire polygonal region of a seed point is thus achieved by a sequence of 

horizontal and vertical offsets. The process is the same for each polygonal region 

within an image.  

 

The complete matching process (definition of seed points, automatic matching) is 

flexible and can be performed without prior knowledge of camera orientation and 

calibration information. This functionality can be useful if the information is not 

accurate enough or even unknown. Obviously, in these cases, the robustness of the 

matching result will decrease somewhat but remains satisfactory overall. 

 

5.3.4 3D metric reconstruction 

After dense matching points are obtained, we may proceed to conduct the 3D 

reconstruction. The geometry of the real world is Euclidean. However, when we 

move from the 3-D world to 2-D images, depth is lost. Without some control points in 

the Euclidean space, there is no way to fully recover the Euclidean structure [38]. 

However, in many applications, it may not be essential that absolute geometry (i.e., 

the exact dimension and structure) of the real world be recovered. In fact, it might be 

sufficient to have simpler reconstructions of the world, accurate up to a scaling 

constant, i.e. a metric reconstruction.  
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Once the intrinsic parameters of the camera and feature matching points over a pair of 

images are given, 3D metric reconstruction can be implemented [38]. In the 3D 

metric structure, not only parallelism but also angles and ratios of lengths are 

preserved. Hence the structure is very similar to the real world; only the dimension of 

the scene is missing.  

 

When the intrinsic parameter matrix A is known, the fundamental matrix can be 

reduced to the essential matrix E, which is the ‘specialisation’ of the fundamental 

matrix F. The relation between E and F is given by: 

FAAE T=                                                   (5.1) 

The essential matrix has the property that rank(E)=rank(F)=2. The SVD of E takes 

the form of TVUdiag )0,1,1( , where U and V are two orthogonal matrices. Consider 

two cameras of a stereo rig, the first camera matrix is denoted as ]0|[IKP =  . There 

are then four possible choices for the second camera matrix P′: 

]|[ 3uUWV T  or ]|[ 3uUWV T −  or ]|[ 3uVUW TT  or ]|[ 3uVUW TT − , 

where 
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W , and 3u  is the third column of U . 

For the four possible forms of P′ above, only one of them can be used to produce 

reconstructed points in front of both the cameras. Trial testing with a single point 

would identify the correct camera matrix. This camera matrix solution leaves only 

one ambiguity: the scale of translation. In other words, knowledge of the camera's 

intrinsic parameters enables us to obtain the metric structure of the reconstructed 
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scene.  

 

Suppose that a point x in 3R  is visible in two images with its projections in these 

images denoted by u and u’ respectively. Besides, the two camera matrices P and P′, 

and u and u’ of each point x involved in the dense correspondence dataset are known. 

From these data, the two rays in space corresponding to the two image points can be 

computed. The triangulation problem [37] is to find the intersection of the two rays, 

i.e. the 3D point x in space. At first sight, this seems to be a trivial problem, since 

finding the intersection between two lines in space is nothing difficult. Unfortunately, 

in the presence of noise, these rays cannot be guaranteed to cross; we need to develop 

robust solutions under some assumed noise model. The algorithm in [36] is employed 

here to solve the triangulation problem and produce the resulting reconstructed 3D 

point.  

 

5.3.5 3D modeling building 

After obtaining ‘clouds’ corresponding to masses of reconstructed 3D points, we are 

able to build the 3D model of the human body. Exact visualisation with correct pixel 

colour may also be generated if each point of the model is re-projected to the image 

concerned before the corresponding colour of the image point is obtained.  

 

5.4 Experimental Results 

A Canon A75 digital camera is used to capture images at 640×480 resolution. Based 

on our self-calibration approach described in chapter 4, the calculated camera focal 
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length is 690 pixels. Using the same previous assumptions, the camera intrinsic 

matrix is 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
2406900
3200690

K . 

 

In experiment I, the images used for the reconstruction are shown in Figure 5.2. 

Following the procedure outlined in section 5.3, 137 feature points are automatically 

extracted and used for point correspondence. The related epipolar geometry can thus 

be obtained. A sample feature point is shown in green in the left image of figure 5.3; 

based on the calculated fundamental matrix, the corresponding epipolar line is drawn 

as shown in the right image. The fact that it passes through the exact location of the 

feature point provides good indication of the accuracy of the fundamental matrix 

calculation. 

       

Figure 5.2 Two images used for the reconstruction in experiment I 
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Figure 5.3 Epipolar line aligns with exact location of a feature point 

 

Figure 5.4 meanwhile illustrates two different viewpoints of the reconstruction 3D 

model of the human subject (2062 3D points).  

 

 

 

 

 

 

 
 

 

Figure 5.4 Recovered 3D point cloud of the human body (experiment I) 

 

For realistic visualisation, each 3D point of the cloud mass is back projected onto the 

first image of the pair to get the corresponding pixel color. Thus we are able to depict 

the 3D human body model in full colour as shown in Figure 5.5. 
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Figure 5.5 Reconstructed 3D human body model depicted in back-projected colour 
(experiment I) 

 

These steps are repeated for experiment II using a different subject in another setting. 

The two images, shown in Figure 5.6, are acquired using the same camera. A total of 

185 data points are found and used for feature matching in this experiment. The 

resulting 3D reconstructed model (2275 3D points) is shown in Figure 5.7 with its 

visualisation in full colour presented in Figure 5.8.  

    

Figure 5.6 Two images used for the reconstruction in experiment II 



 60

 

Figure 5.7 Recovered 3D point cloud of the human body (experiment II) 
 

                                          

Figure 5.8 Reconstructed 3D human body model depicted in back-projected colour 
(experiment II) 

 

 

5.5 Future Work 

To refine the 3D human body model, additional processing can be applied. For 

example, photogrammetric bundle adjustment with self-calibration [54] can help 

ensure more accurate camera calibration results compared with those obtained here. 

This would translate to more realistic 3D reconstruction results. The technique makes 
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use of the collinearity model, i.e. the fact that a point in object space, its 

corresponding point in the image plane and the projective center of the camera, all lie 

on a straight line. The standard form of these collinearity equations is: 

 

   W
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                                      (5.3)   

where: 

yx, are the point image coordinates; 

00 , yx  are the image coordinates of the principal point; 

c is the camera constant; 

ZYX ,, are the object points in real world coordinates;  

ijr is the element of the orthogonal rotation matrix R between image and object. 

 

The two collinearity equations above are first formed for each of the salient feature 

points found using the technique described in section 5.3.2; a system of equations is 

therefore built. These equations are non-linear with respect to the unknowns. In order 

to solve them with the least squares method, they must be linearised, thus requiring 

approximations. However, this approach requires information on both the camera’s 

internal and external parameter, which translates to approximations of the extrinsic 

parameters. To facilitate this, reference salient points on the human body or 

background have to be measured in order to obtain an approximation of the external 
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orientation of the cameras. In summary, photogrammetric bundle adjustment may 

ensure more accurate camera calibration results but a price has to be paid in the form 

of additional measurements using reference points.  

 

Two other aspects of our work concerning the modeling of the reconstructed 3D point 

cloud need to be further investigated: 

1) Generation of a polygonal surface: From the unorganized 3D data, a non-standard 

triangulation procedure is required. Algorithms that generate a correct triangulation 

and surface models allow editing operations, like point holes filling or polygon 

corrections. 

 
2) Fitting a predefined 3D human skeleton model: this procedure does not usually 

require the generation of a surface model and the reconstructed 3-D point cloud is 

used as basis for the fitting process. Figure 5.9 shows one example of a predefined 3D 

human skeleton model which we have implemented on the 3D Studio Max platform. 

Various techniques are needed to fit the reconstructed 3D data points onto appropriate 

locations along the skeleton model. 

 

Finally, we have only considered the case that two viewpoints are taken into account. 

If more images are involved, it is possible to generate more accurate 3D models with 

more sophisticated processing. Moreover, cases that the camera is still but the subject 

moving and that both camera and subject are moving also need to be further 

investigated. 
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Figure 5.9 Example of the pre-defined human skeleton model 

 

5.6 Conclusion 

3D human body modeling from uncalibrated image sequences forms the second 

module in our overarching human motion capture system. Based on self-calibration 

approach for focal length estimated described in chapter 4, we develop a point 

correspondence-based scheme to build a dense 3D human body model of the captured 

individual. This method basically comprises five steps of image acquisition, self 

calibration, dense point correspondence, metric reconstruction and 3D model building. 

 

Experimental results demonstrate the robustness and accuracy of the approach. Its 

simplicity makes it an attractive alternative for a number of potential applications. 

Moreover, it may be of high usefulness for the implementation of the third module of 

the proposed motion capture system: 3D human motion tracking. 
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Chapter 6 3D Human Motion Tracking 

 
 

6.1 Introduction 

At the heart of human motion capture is motion tracking. When we develop 

trajectories of key joints or establishing correspondence between semantically 

meaningful points on the human body in different views or frames, region-based 

approach with points and feature tracking may lead to an attractive and satisfactory 

solution. This 3D model-based module aims to track the body motion of the recorded 

person over time. With the aim of the works done in the previous chapters, a 

silhouette-based scheme is proposed in this chapter. After an initialisation step, the 

body pose parameters that maximize the overlap between projected model silhouettes 

and input foreground silhouettes are estimated for every time step. The idea will be 

further investigated and verified in the near future. 

 
6.2 Methodology  

6.2.1 Silhouette extraction 

The inputs to the motion parameter estimation are silhouette images of the moving 

person from the background pixel. From a sequence of video frames without a 

moving subject, the mean and standard deviation of each background pixel in each 

color channel are computed [55]. If a pixel differs in at least one color channel by 

more than an upper threshold from the background distribution, it is classified as 
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certainly belonging to the foreground. If its difference from the background is smaller 

than a lower threshold in all channels, the pixel is classified as certainly background. 

All other pixels are considered potential shadow pixels. 

 

For stationary cameras, we can use the static elements in a scene to help us 

discriminate foreground and background objects in a given image. Since the visible 

portions of the model will necessarily be in the foreground, background subtraction is 

an excellent way to prune the parameter space. Thus results improve with the 

incorporation of background subtraction [56]. 

 

For our proposed processing, background images are first separately captured. As a 

matter of fact, such background images could be generated automatically given 

enough footage of a scene; for each pixel, one could compute the median intensity 

value over time and consider this to be the background. In either case mentioned 

above, we can test whether any pixel in the source image, including foreground 

subjects, differs significantly from the corresponding pixel in the background image. 

The background subtraction criterion presumes that the areas of difference between 

the source and background images correspond with some portion of the model 

projection. Given that presumption, a background image can easily rule out many 

model configurations. 
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Figure 6.1  Setup of the cameras in the experiment 

 

In our test experiment, CMU MoBo Database [57] is applied to capture multi-view 

motion sequences of human body motion. In the test video, a subject (one person) 

walks on a treadmill positioned in the middle of the room. A total of three 

synchronized cameras are used to capture the motion. The setup of the cameras is 

depicted in Figure 6.1.  The resulting color images have a resolution of 640x480. The 

sequence is recorded at 20 frames / second.        

  

                 

(a)                             (b)                           (c) 

 

Camera 3

Camera 2

Camera 1
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(d)                              (e)                             (f) 

      

(g)                            (h)                             (i) 

        

(j)                            (k)                             (l) 

Figure 6.2  Silhouette extraction from three cameras 
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The silhouette extraction and background subtraction are the initial processing for the 

implementation of motion tracking. Figure 6.2 shows the results of our experiment 

using CMU MoBo Database. In Figure 6.2, images (a), (b) and (c) show the 

background images captured from three different cameras; Images (d) , (e) and (f) 

show the first of many input images from three cameras involved in the dataset; 

Images (g) , (h) and (i) show the results of per-pixel background subtraction from 

three different cameras, the foreground objects are extracted in this case; Images (j) (k) 

and (l) represent the silhouette images for the different cameras. If a pixel differs in at 

least one color channel by more than an upper threshold from the background mage, 

it is classified as certainly belonging to the foreground. If its difference from the 

background is smaller than a lower threshold in all channels, the pixel is classified as 

certainly background. Silhouette quality can be improved via subsequent 

morphological dilate and erode operations [58]  

6.2.2 Human body model 

 

Figure 6.3 Human body model and the underlying skeletal structure 



 69

The 3D body model (5600 triangles and 2894 vertices) used in the experiment is 

shown in Figure 6.3. It is a generic model consisting of a hierarchic arrangement of 

29 body segments (head, upper arm, torso etc.). The model’s kinematics is defined 

via an underlying skeleton consisting of 11 joints connecting bone segments. Spheres 

in Figure 6.3 indicate joints and the different parameterisations used: blue sphere is 3 

DOF ball joint and red sphere is 1 DOF hinge joint. The black sphere indicates the 

global position and orientation of the whole body model. Different joint 

parameterizations are used in different parts of the skeleton. Each limb, i.e. complete 

arm or leg, is parameterized via four degrees of freedom. This limb parameterization 

is chosen because it is particularly suitable for an efficient search of its parameter 

space which we will describe in Section 6.2.5. At every time instant, 24 parameters 

are needed to completely define a body pose. The surface of each body segment is 

represented by a closed triangle mesh.  

6.2.3 Energy function 

The error metric used to estimate the goodness of fit of the body model with respect 

to the video frames computes a pixel-wise exclusive-or operation between the image 

silhouette and the rendered model silhouette in each input camera view [59].  This 

process is demonstrated in Figure 6.4. The silhouettes are computed for the image and 

for one view of the 3D model and combined afterward. The energy function value is 

the sum of the non-zero pixels for every camera view after this pixel-wise boolean 

operation [59]. This error metric can thereby efficiently drive the model fit over a 

series of time steps. 
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Figure 6.4 Measuring the difference between the image (left) and one view of the 

model (right) by the area occupied by the XORed foreground pixels 

6.2.4 Model initialisation 

The motion capture is initialised using a set of silhouette images that show the human 

body in an initialisation pose. The ideal initialisation pose is one in which both the 

arms and legs are bent, allowing for simple identification of elbow and knee locations. 

From these silhouettes, a set of scaling parameters as well as a set of pose parameters 

is computed. The global model position can be chosen that produces the best fit 

according to the error measure described in Section 6.2.2. The fit can be improved by 
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optimizing over the pose parameters and joint scaling parameters in an iterative 

process that employs the same error measure. After initialisation, all scaling 

parameters are fixed, and continuous tracking is performed for all subsequent time 

steps.                                 

                             

 

Figure 6.5 Initialisation of the human body model 

In our experiment, the initial body configuration is only performed manually for the 

time being. The initial pose of the model is shown in Figure 6.5. The 3D human 

model (its textured version may be available from the further result of chapter 5) is 

superimposed in the foreground object presented in different images. On the platform 

of 3D Studio Max, three viewpoints are generated to show the initialisation of the 

human body. In this way, the 3D position and orientation of different parts of the 
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body can be therefore extracted. The new free-view human model is also rendered in 

the lower right image in Figure 6.5. This step would be the basis for the human body 

tracking over the video sequence. 3D reconstruction of the human body motion may 

be thus implemented. 

6.2.5 Motion parameter estimation 

After the initialisation, the model parameters for each time instant may be computed 

using an exhaustive minimization approach based on the previously described energy 

function. A straightforward approach would be to apply Powell’s method [60] to 

optimise over all degrees of freedom in the model simultaneously. This simple 

strategy, however, exhibits some of the fundamental pitfalls that make global 

optimisation infeasible. In the global case, the goal function reveals many erroneous 

local minima. Fast movements between consecutive time frames are almost 

impossible to resolve correctly. For every new time step, the optimisation uses the 

result from the previous frame as a starting point. For fast moving body segments, 

there will be no overlap between the starting model pose and the current time frame, 

and no global minimum can be found. Another problem may arise if one limb moves 

very close to the torso. 

 

To make the tracking procedure robust against these problems and to enable it to 

follow complex motions, we may split the parameter estimation into a sequence of 

optimisations on subparts of the body. 
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Temporal coherence can be exploited during the computation of the motion 

parameters. Starting from the body pose in the previous time step, the global 

translation and rotation of the model root are computed. The rotations of head and hip 

joints are then independently computed using an identical optimisation procedure. 

 

With the main body aligned to the silhouettes, the poses of the two arms and two legs 

can be found with independent optimisation steps. The final step in the sequence of 

optimisations is the computation of hand and foot orientation by optimizing over their 

local parameter space. 

 

Here we take the limb for example. Suppose the limb of the human model is 

determined by four degrees of freedom (DOFs), as shown in Figure 6.3, fitting an arm 

is a four-dimensional optimisation problem. The limb fitting employs the following 

steps. The parameter space is efficiently constrained by applying a global search on 

the four-dimensional parameter domain. The search samples the parameter space 

regularly and tests each sample for representing a valid arm pose. A valid pose is 

defined by two criteria. First, the wrist and the elbow must project into the image 

silhouettes in every camera view. Second, the elbow and the wrist must lie no less 

than certain distance from the axis of the bounding box defined around the torso 

segment of the model. For all detected valid poses, the error function is evaluated, 

and the pose possessing the minimal error is used as starting point for a downhill 

optimisation procedure [60]. The arm pose at the current time instant is the result of 

the downhill optimisation procedure. For all four arm parameters, the search space for 
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valid poses is adapted to the difference in the parameter values observed during the 

two preceding time steps, implicitly including the assumption of a smooth arm 

motion into the fitting procedure. 

 

In summary, the proposed overall silhouette-based motion parameter estimation has 

several advantages. The algorithm is not tied to any specific body model. More 

complex parameterizations or different surface representations could easily be used. 

Furthermore, the algorithm may scale to higher input image resolutions. Model fitting 

can be applied to lower resolution versions of the video frames by means of an image 

pyramid. On the whole, the proposed fitting procedure exhibits a high degree of 

robustness and efficiency and yet is comparably simple. 

 

6.3 Experimental Results 

Based on the methodology mentioned in section 6.2, full-body tracking is 

implemented with the results demonstrated in Figure 6.6. 
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Figure 6.6 Results of full-body tracking 

 

Figure 6.7 Free-view rendering of human motion (Frame 3) 

Frame14 

Frame15 
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With the obtained tracking results, we may render the animation of the walking 

process. Two individual free-view human models for both Frame 3 and Frame 12 are 

demonstrated in Figure 6.7 and Figure 6.8 respectively. 

        

Figure 6.8  Free-view rendering of human motion(Frame 12) 

 

6.4 Future Work 

This chapter presents the initial work in the human body tracking module in the 

whole motion capture system. The framework for the silhouette-based motion 

parameter estimation has been proposed. More experiments are about to be done in 

the near future. The common tracking algorithm like Kalman Filter [61] or 

Condensation [62] will also be imbedded in the procedure if needed. 

 

We have to admit that there are quite a few potential technical difficulties available. 

One of the most limiting characteristics in the video-based analysis system is the 

difficulty of initialisation. The current approach to 3-D reconstruction and tracking 
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requires a very accurate estimate of 3D position across multiple views. There exist no 

algorithms available today that can perform this task with sufficient regularity, 

reliability, and exactness. This initialisation is required not only for the sake of 

generating a consistent 3D point set, but also for building a semantically meaningful 

structure for the underlying human body. 

 

Incremental improvements to the tracking and further recognition algorithms may be 

possible; however, the greatest potential for future work is in the extension of the 

higher-level and more complicated activities and events. Even within the framework 

of 3D motion tracking, there is still substantial room for contribution simply by 

considering additional applications. Of particular interest may be the modeling of 

long-term interactions between multiple individuals or between individuals and their 

environment. 
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Chapter 7 Conclusion 
 
 
The thesis presented the development of a 3D model-based human motion capture 

system. A framework for practical optical motion capture was demonstrated. 

Basically, the whole system comprises three modules: calibration, modeling and 

tracking. In addition to the functionality of each subpart, the engineering tasks 

involved in the setup of the system were also addressed and evaluated.  

 

The thesis mainly focused on the calibration and 3D human body modeling 

subsystems while we also initialized the work on motion tracking part. An effective 

approach for camera's focal length calibration was proposed. The approach assumes 

only the camera's focal length is unknown and constant. The Kruppa's equations are 

thus able to be decomposed as two linear and one quadratic equations. In this case the 

closed form solution for camera calibration, without additional motion-generated 

information, was successfully obtained. The proposed algorithm could be 

implemented in an automatic way and it achieved robust and accurate performance on 

synthetic and real images of indoor/outdoor scenes. We also succeeded in developing 

a point correspondence-based modeling scheme to build a dense 3D shape model of a 

static human body from uncalibrated images. The automated matching process on the 

human body is able to implement highly realistic 3D metric reconstruction. In 

addition, no à priori information or measurement of the human subject and the camera 

setup is required. Finally, we presented a silhouette-based scheme in the motion 
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tracking module. The fit energy function may effectively drive the 3D human model 

to fit the exact position over time. Highly accurate motion tracking was successfully 

performed.  

 

The work presented here is not the end. Our final objective is to analyse the human 

body kinematics from multiple viewpoints using a high resolution 3D articulated 

human body model. To address the demand for a higher resolution motion capture 

system, it is required to produce high quality 3D shape model in a more automatic 

and realistic mode. The silhouette-based tracking module will be also further 

investigated to provide accurate human motion property. In the future, we will try to 

integrate the three modules, i.e. calibration, modeling and tracking, in a seamless 

video-based human motion capture system.  The system can then applied in various 

applications such as surveillance, performance analysis, virtual reality, human 

computer interactions and so on. 
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