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Summary 

Direction finding is of great interest in many applications such as GPS (Global 

Positioning System), radar, sonar and wireless communication systems.  In smart 

antenna systems, the direction of users is an important factor to increase the capacity, 

and an antenna array is usually used at the base station to estimate and track the direc-

tion of users. 

Conventional direction finding methods solve the problem of direction-of-arrival 

(DOA) estimation for narrowband signals, and usually these methods require that the 

number of array elements be larger than the number of signal sources.  In military 

communications and some short-range wireless communication systems (e.g. Blue-

tooth), frequency hopping technique is widely used.  In such systems, it is difficult to 

equip a large size antenna array.  Therefore, it is necessary to solve the direction 

finding problem for the frequency hopping systems by using an antenna array with a 

lesser number of elements. 

In this thesis, a new method is proposed to estimate and track the directions of 

frequency hopping signals under multipath propagation.  Only the power of trans-

mitted signal is needed to be known in this method.  With a two-element array at the 

receiver, the objective function is established by minimizing the differece between the 

estimated correlations and the measured correlations of the received signals.  The 



 ix 

Gauss-Newton algorithm is utilized to find the optimum parameters including direc-

tions.  Compared with an existing method, the proposed method has more accurate 

converged results.  Additionally, the new method is easy to implement as analog de-

vices can be used to measure the correlations of received signals.   

Future work can be carried out to reduce the computational complexity by de-

creasing the number of unknown parameters.  Further analysis can be done in the 

tracking scenario if more parameters vary with respect to time or hops.
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Chapter 1 

Introduction 

Direction finding is of great research interest for decades.  It has been widely 

used in many applications such as sonar, radar and communication systems.  With 

the rapid development of wireless communication, smart antenna is an important re-

search area due to the fast increasing number of users and the requirement on high bit 

rate data service.  To provide enough capacity, the position information of users is a 

crucial factor for smart antenna systems [1], which is quite different from former 

wireless communication systems.  Hence, the algorithms for direction finding and 

source localization need to be more computationally efficient as the number of users 

increases.  Many different scenarios should also be considered. 

 

1.1 Evolution of Wireless Communication Systems 

Wireless communication has been developed for many years.  Before 1960s, 

mobile users communicated with each other by amplitude modulation (AM) or fre-

quency modulation (FM) radio which cannot connect to the public switched telephone 

network (PSTN).  In 1960s and 1970s, Bell Laboratories developed the cellular con-

cept which makes the wide use of wireless communication become possible.  The 

first generation of mobile communication systems is analog system that is widely 
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used in 1980s such as European Total Access Cellular System (ETACS) and Ad-

vanced Mobile Phone System (AMPS) in North America [2].  These two systems use 

frequency division multiple access (FDMA) to maximize capacity. 

In 1990s, the digital system GSM (Global System for Mobile) was deployed to 

replace ETACS system in Europe and it is accepted worldwide except North America 

and Japan which developed USDC (U.S. Digital Cellular) and PDC (Pacific Digital 

Cellular) systems respectively [2].  One of the common features of these systems is 

that TDMA (Time Division Multiple Access) is used in place of analog FDMA.  

Given the application of digital signal processing and speech coding technology, the 

second generation mobile communication systems have better voice quality and larger 

capacity than analog systems. 

In 1993, Qualcomm Inc developed a cellular system based on code division mul-

tiple access (CDMA) [2].  This is the start of the third generation mobile communi-

cation systems.  CDMA systems have better interference resistance, larger capacity 

and are more power efficient than former systems.  Furthermore, it also can provide 

high bit rate data service to satisfy the increasing requirements on wireless broadband 

access service. 

Direction estimation is of importance in these communication systems.  For 

example, in a cellular mobile system, the inter-user interference degrades the per-

formance severely.  Using an antenna array at the base station will solve this prob-

lem.  The receiving array can be steered in the direction of one user at a time, while 
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nulling interference from other users at the same time [8].  This is indeed one of the 

motivations of smart antenna technology. 

 

1.2 Introduction to Smart Antenna Technology 

The purpose for developing smart antenna technology is to meet the capacity de-

mands of cellular mobile system.  In traditional systems, users communicating 

through the same base station are separated by frequency (FDMA), by time (TDMA), 

or by code (CDMA), while smart antennas add a new way, by space, which make us-

ers in the same cell communicate with base station via the same physical channel.  

Therefore the capacity of smart antenna systems is much larger than that of traditional 

technologies.  Another improvement is that the power consumption in smart antenna 

systems is much lower [1].  In GSM and CDMA systems, base station antennas are 

omnidirectional or sectored.  Therefore, some of the power is wasted as it is radiated 

to other directions than to the desired users, and it also will be experienced as inter-

ference by other users.  The antenna patterns of smart antennas are not fixed but can 

adapt to the current situation by maximizing the antenna gain in the desired direction 

and minimizing the radiation pattern in the interference direction at the same time.  

Thus the interference from other users is significantly reduced to the desired user and 

the base station is more power efficient.  It also should be noted that the smart an-

tenna system not only includes the radiating elements but also consists of a combin-

ing/dividing network and a control unit.  The control unit implements the intelli-
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gence of smart antennas. 

Smart antenna technology is not fully commercially available now.  In practice, 

it has been in testbeds already.  Ericsson built a test system for smart antenna base 

stations in 1998.  Another test system is Tsunami II, a project of the European 4
th

 

framework program.  And a smart antenna base station is built to perform trials in 

different environments.  Similar works have also been carried out in other countries 

including U.S. [3], Canada, Japan [4] and Korea [5]. 

 

1.3 Direction Finding and Source Localization 

A number of position location systems have been developed over years.  Among 

these systems, Global Positioning System (GPS) is the most popular radio navigation 

system for its worldwide availability, high accuracy and low cost.  The theory of 

GPS is easy to understand.  The satellites are equipped with highly precise clocks 

and the signal transmitted from satellites contains the clock information.  An accu-

rate clock at the receiver measures the time delay between the signals leaving the sat-

ellites and arriving at the receiver.  If the signals of three satellites are available, the 

coordinates (latitude, longitude and altitude) of the receiver are easy to calculate via 

triangulation [6]. 

Another important source localization method uses the cellular mobile system in-

stead of satellite system to estimate the position of mobile terminals.  The idea is 
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similar to the theory of GPS.  The signal transmitted by the mobile terminal is re-

ceived by multiple base stations, and the position of mobile can be determined by 

DOA (Direction of Arrival) or TDOA (Time Difference of Arrival) estimation meth-

ods.  The difference between localization in the cellular mobile system and GPS is 

that the GPS receiver calculates the coordinates itself by using the received data from 

the satellites, but it is the base stations to compute the position of the mobile in the 

cellular mobile localization [7].  Compared with GPS, localization in cellular mobile 

system can be implemented at the base stations, which makes the standard mobile 

terminal be tracked without extra costs for consumers.  Another advantage of cellu-

lar localization is that the mobile service providers can determine the capacity needs 

of a particular area so that they can adjust the networks accordingly. 

 

1.4 Source Localization using DOA, TOA and TDOA 

In the cellular mobile systems, the source localization can be accomplished by 

DOA, TOA (time of arrival) and TDOA estimation methods.  To do position location 

via DOA estimation, at least two base stations are needed for 2-dimensional localiza-

tion.  The position of the mobile can be found at the intersection of the two lines as 

shown in Fig. 1.1.  In Fig. 1.1, A and B are two base stations and P is the mobile.  If 

the base stations can estimate the direction of the signal from mobile P, it is easy to 

see that the position of the mobile is the intersection of AP and BP. 
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The source localization via TOA method requires at least three base stations for 

3-dimensional positioning.  Because the electromagnetic waves have a constant 

propagation speed (normally it is the speed of light), the distances d1, d2, d3 between 

the mobile target and the three base stations can be calculated given the estimation of 

the TOAs.  The mobile must lie on a sphere of radius di from the corresponding base 

station.  Thus the position of the mobile is the intersection of these three circles.  

However, the TOA method imposes a rigorous requirement for the clock synchroniza-

tion (e.g., 1µs timing error would result in 300m position error), and it requires the 

transmitting signal contains time information as well.  Thus TDOA method is more 

commonly used instead of TOA method. 

A(x1,y1)

B(x2,y2)

C(x
3
,y

3
)P(x

P
,y

P
)

1

2

3

 

Fig. 1.1 Localization via DOA in two-dimension. 

 

TDOA is the time difference at which the signal arrives at multiple base stations.  

For example, if the transmitted signal of the mobile arrives at two base stations at t1 

and t2, respectively, the TDOA is 
12 tt − .  If the TDOA has been measured, the mo-

bile target should lie on a hyperbola (for 2-dimension) or hyperboloid (for 

3-dimension) whose foci are the locations of the base stations.  Thus, the position of 

the mobile is determined by the unique intersection of these hyperbolas. 
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1.5 Organization of the Thesis 

In this thesis, we concentrate on the direction estimation problem for frequency 

hopping signals, and a new method is proposed to track multipath frequency hopping 

signals. 

In Chapter 2, several popular methods for DOA estimation are addressed includ-

ing maximum likelihood methods, subspace methods and beamforming techniques.  

The model of frequency hopped signals under multipath propagation is discussed as 

well. 

The objective function of the proposed method is derived in Chapter 3.  Several 

searching methods are studied including steepest descent method, Newton’s method, 

Gauss-Newton method and alternating minimization method.  At the end of this 

chapter, the detailed algorithm is proposed to solve the objective function of our 

method. 

In Chapter 4, simulation is performed for the new method in both stationary and 

slow moving scenario.  To enable the comparison with another method-the FHML 

(Frequency Hopping Maximum Likelihood) method, Monte-Carlo experiments are 

done for both methods in the same scenario.   

Finally, conclusions are drawn in Chapter 5 based on the analysis in preceding 
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chapters.  Further extensions of this research work are suggested. 
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Chapter 2 

Direction Estimation using Antenna Array 

2.1 Introduction to DOA Estimation Methods 

In the previous chapter, we have introduced several source localization methods 

using DOA, TOA and TDOA.  The direction parameters are usually estimated with 

an antenna array which has a certain geometric shape, and the estimation task is per-

formed by exploiting the data collected at different sensors.  The uniform linear ar-

ray (ULA) and the uniform circular array (UCA) are the most regularly used, and they 

have been proven useful for the source localization in sonar, radar [8] and mobile 

communications [27][28]. 

In this chapter, the signal model is introduced first.  Then several classical 

methods are discussed including spectral-based methods and the maximum likelihood 

(ML) methods.  The spectral-based methods include beamforming techniques and 

subspace methods.  In these methods, some spectrum-like functions of the parameter 

of interests are formed and the location of the highest peaks of the function is the re-

sult of the estimation task.  In the ML methods, usually a brute force search is used 

to find the optimum parameters.  Compared with spectral-based methods, the ML 

methods are more computationally expensive but the results of ML methods are more 

accurate. 
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2.2 Signal Model for DOA Estimation 

Before we introduce the signal model, some assumptions are made as follows. 

a) The spacing of adjacent antennas is small enough so that there is no amplitude 

difference between the received signals at contiguous antennas. 

b) The signal of interests is a narrowband signal, which means the bandwidth of the 

signal is much smaller than the carrier frequency. 

c) There is no mutual coupling effect between array elements. 

d) The transmitter is a far-field source and the transmitted signal is plane wave when 

it arrives at the receiving array [8]. 

 

Fig. 2.1 Two-dimensional array geometry. 

 

In Fig. 2.1, the transmitted signal ( )ts  arrives at the sensor with angle-of-arrival 

θ.  The coordinates vector of the sensor is ( )T
, lll yx=r .  The origin O is taken as 

the reference and the signal at the origin O is 

( ) ( ) tj cetstE
ω=,0                                                 (2.1) 

where πω 2/ccf =  is the carrier frequency. 

 Thus, the received signal at the sensor is 

( ) ( ) ( )[ ]θθω sincos
, llc yxktj

l etstE
+−=r                                      (2.2) 

Emitter 

Sensor 
Y 

X 

rl 

θ 

s(t) 

d 

O 
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where λπ /2=k  is the wave number, and λ is the wavelength. 

Equation (2.2) is obviously true because the wave arrives at the sensor earlier 

than it arrives at the origin by a distance d, where θθ sincos ll yxd += .  Thus, the 

phase of the signal at the sensor is 




 + θθ sincos ll yxk  earlier than the phase at the 

origin.  Furthermore, if a flat frequency response, say ( )θlg , is assumed for the 

sensor over the bandwidth, the measured output should be multiplied by a gain (or 

attenuation) factor ( )θlg  [8].  Then (2.2) becomes 

( ) ( ) ( ) ( )[ ] ( ) ( )tsaegtstx l

yxktj

ll
llc θθ θθω == +− sincos

                         (2.3) 

 

Fig. 2.2 ULA array geometry. 

For a ULA array as Fig. 2.2 shows, the model of received signal can be derived 

similarly.  Assume that all array elements have the same frequency response, 

i.e. ( ) ( ) ( ) ( )θθθθ gggg L ==== −110 ...  and the element 0 is taken as the reference. 

The array output is 

( ) ( ) ( )tsθt ax =                                                   (2.4) 

where ( ) ( ) ( ) ( )[ ]T

120 ... txtxtxt L−=x , d is the distance between two adjacent array 

elements, and 

( ) ( ) ( )[ ]Tsin1sin ...1 θθθ kdLjjkd
eegθ −−−=a .                           (2.5) 
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The DOA defined in (2.4) is the clockwise angle from Y axis to the direction of 

signal propagation.  The vector ( )θa  is named steering vector (or array propagation 

vector, action vector).  In (2.4), only one source is considered.  If there are more 

than one source, (2.4) becomes 

( ) ( ) ( )∑
=

=
M

m

mm tsθt
1

ax                                              (2.6) 

where M is the number of sources or paths.  To write (2.6) in a compact form, we 

can define a steering matrix and a vector of signal as follows 

( ) ( ) ( ) ( )[ ]Mθθθ aaaθA ...21=                                   (2.7) 

( ) ( ) ( ) ( )[ ]T

21 ... tststst M=s .                                    (2.8) 

If additive noise is added at the array elements, the commonly used model can be 

shown as follows 

( ) ( ) ( ) ( )ttt nsθAx += .                                            (2.9) 

We also assume that the number of signal sources is less than the number of 

antenna elements throughout this thesis, i.e. M<L.  Now, we have derived the signal 

model for the DOA estimation and array processing. 

 

2.3 Signal Model under Multipath Propagation 

When signal is propagated over a multipath channel, the received signal will be a 

superposition of several replica of the transmitted signal with different time delay.  
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Suppose the transmitted signal is 

( ) ( )[ ]tfj

l
cetsts

π2
Re=                                             (2.10) 

where ( )tsl  is the baseband signal, cf  is carrier frequency.  The signal passes 

through multiple paths, each with a propagation delay and an attenuation factor.  The 

delay and the attenuation factor may vary with time, which is dependent on the 

propagation medium [9].  So the received signal should be 

( ) ( ) ( )[ ]∑ −=
n

nn ttsttx τα                                         (2.11) 

where ( )tnα  and ( )tnτ  are the channel attenuation factor and the propagation time 

delay with respect to nth path respectively.  Substituting (2.10) into (2.11), the re-

ceived signal becomes 

( ) ( ) ( ) ( )[ ] 
















−= ∑ − tfj

n

nl

tfj

n
cnc ettsettx

πτπ τα 22
Re .                      (2.12) 

From (2.12), we can see that the baseband part of the received signal is 

( ) ( ) ( ) ( )[ ]∑ −= −

n

nl

tfj

nl ttsettr nc τα τπ2
.                                (2.13) 

So the channel impulse response can be described as follows 

( ) ( ) ( ) ( )[ ]∑ −= −

n

n

tfj

n tettc nc ττδατ τπ2
; .                               (2.14) 

It also should be noted that all derivations above are based on discrete multipath 

channel.  In this thesis, the continuous case is not considered. 

The multipath channel will cause the fading problem.  Suppose ( ) 1=tsl  for all 

t in previous equations, the received signal is given by 

( ) ( ) ( ) ( ) ( )∑∑ −− ==
n

tj

n

n

tfj

nl
nnc etettr

θτπ αα 2
.                           (2.14) 
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Since ( )tnθ  varies quickly, the received signal may be very small when the vectors 

( ) ( )tj

n
net

θα −
 are adding destructively.  At other times the received signal ( )trl  may 

be large when the vectors ( ) ( )tj

n
net

θα −
 are adding constructively.  So the amplitude 

of received signal may vary quickly, which terms signal fading. 

 

2.4 Introduction to Frequency Hopping Systems 

Frequency hopping (FH) is one of the spread spectrum techniques.  In a FH sys-

tem, the channel bandwidth is divided into a sequence of frequency slots.  The 

transmitted signal may occupy one or more of the frequency slots for a signal symbol.  

Usually, the frequency slots for each signal symbol are selected pseudorandomly ac-

cording to the output of a PN generator [9]. 

Assume ( )tp  is a basic pulse shape of duration hT  (hop time), frequency 

modulation has the form 

( ) ( ) ( )[ ]∑ −= +

n

h

tfj
nTtpetc nn φπ2

Re                                   (2.16) 

where nf  is pseudorandomly generated sequence and nφ  is the byproduct of the 

modulation process. 

At the receiver, usually there is also an identical PN generator which is synchro-

nized with the one at the transmitter.  It is used to remove the psedorandom fre-

quency introduced in the transmitter.  For the modulation techniques, FSK is more 

often used although the performance of FSK is not better than that of PSK in additive 
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white Gaussian noise (AWGN) channel.  This is because it is difficult to maintain 

phase coherence of the hopping frequencies as the frequency of transmitted signal is 

hopped from one to another over a wide band channel. 

 
Fig. 2.3 Block diagram of a FH spread spectrum system 

The FH rate is usually selected to be either equal to the symbol rate or faster than 

symbol rate.  If there are multiple hops for one symbol duration, it is called fast fre-

quency hopping (FFH) signal.  On the other hand, if the hopping rate is equal to or 

slower than the symbol rate, it is called slow frequency hopping (SFH) signal.  In 

this thesis, only SFH signal is considered. 

 

2.5 DOA Estimation Methods 

Before introducing the classic methods, the statistics of the received signal should 

be checked.  When a ULA is used, the covariance matrix of the received signal is 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }tttttt HHHH nnAssAxxR EEE +==                    (2.17) 

where ( ) ( ) ( ) ( )[ ]Mθθθ aaaθA ...21=  is defined in (2.7). 

The source signal covariance matrix is 
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( ) ( ){ }tt HssP E=                                                (2.18) 

and the noise covariance matrix is 

( ) ( ){ } Inn 2E σ=tt H
.                                                   (2.19) 

Here, we assume the noises at all sensors have a common variance 2σ  and are mu-

tually independent, also we assume that the mean of noise vector ( )tn  is zero.  This 

is usually called spatially white.  Furthermore, the source covariance matrix is often 

assumed to be nonsingular (it may be singular in the case of coherent signal) or near 

singular for highly correlated signal. 

The spectral factorization of the covariance matrix of received signal is very im-

portant, and it can be in the following representation 

HH UUΛIAPAR ⋅=+= 2σ                                      (2.20) 

where U is a unitary matrix and { }Lλλλ ...diag 21=Λ  is a diagonal matrix of 

eigenvalues and we assume that 0...21 >≥≥≥ Lλλλ .  

It is noted that any column vector orthogonal to the columns of matrix A is an ei-

genvector of R with eigenvalue 2σ .  This is easy to show.  Assume vector q is or-

thogonal to A.  Thus, right multiply (2.20) at both sides by q, we 

have ( ) qqIAPARq 22 σσ =+= H . Obviously q is an eigenvector of R with eigen-

value 2σ .  Also there are ML −  linearly independent such vectors.  The rest of 

the eigenvalues are larger than 2σ . So we can partition the eigenvectors into two 

groups- noise eigenvectors (corresponding to eigenvalues equal to 2σ ) and signal 

eigenvectors (corresponding to eigenvalues larger than 2σ ).  Hence, (2.20) becomes 
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H

nnn

H

sss UΛUUΛUR +=                                       (2.21) 

where nn IΛ 2σ= , and the dimension of nI  is ML − .  Because all noise eigen-

vectors are orthogonal to A, the columns of sU  must span the range space of A and 

those of nU  span its orthogonal complement.  The projection operators of these 

signal and noise subspaces are 

( ) HHH

ss AAAAUUΠ
1−

==                                      (2.22) 

( ) HH

s

H

nn AAAAIUUΠ
1−⊥ −== .                                (2.23) 

where the dimension of sI  is M. 

Now, we have a receiving array to receive emitter signals and use these signals to 

estimate the DOA parameters.  The received signal is given as a finite data set ( ){ }tx  

sampled at Nt ,...,2,1= .  In the previous formulations, the statistical expectation of 

( )tx  is used, which requires infinite data samples.  In practice, equation below is 

used to replace the expectation 

( ) ( )∑
=

=
N

t

H
tt

N 1

1ˆ xxR .                                            (2.24) 

Similarly (2.24) becomes 

H

nnn

H

sss UΛUUΛUR ˆˆˆˆˆˆˆ += .                                     (2.25) 

 In this thesis, those equations introduced above are important and will be fre-

quently used.  We will introduce the beamforming technique first. 
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2.5.1 Beamforming Techniques 

The idea behind beamforming method is that the estimated DOA (if it is correct) 

will result in maximum output power given a series of observed data [8].  The array 

output is  

( ) ( ) ( )ttxwty
H

L

l

ll xw==∑
=1

*
.                                      (2.26) 

Given the observed data, the output power is 

( ) ( ) ( ) ( ) wRwwxxww ˆ11

11

2 H
N

l

HH
N

l

tt
N

ty
N

P === ∑∑
==

                  (2.27) 

where R̂  is defined in (2.24).  Since ( ) ( ) ( ) ( )ttst nθax += , we have 

( ) ( ){ } ( ) ( ){ }

( ) ( ){ }22
22

Emax

EmaxEmax

wθaw

wxxwwxxw

w

ww

σ+=

=

H

HHHH

ts

tttt

               (2.28) 

Here, we assume that the additive noise is white.  Another assumption is that the 

norm of w is constrained to 1=w .  Thus we can find the result of w 

( )

( ) ( )θaθa

θa
w

H
BF =                                             (2.29) 

Substituting (2.29) into (2.27), the spatial spectrum of the beamforming technique 

is obtained 

( ) ( ) ( )
( ) ( )θaθa

θaRθa
θ

H

H

BFP
ˆ

= .                                          (2.30) 

The steering vector ( )θa  takes the form 

( ) ( )[ ]φφ 1...1 −= Ljj
eeθa                                       (2.31) 

where  
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θ
ω

θφ sinsin d
c

kd −=−= .                                      (2.32) 

Thus the DOA can be estimated by finding the peaks of ( )θBFP . 

The drawback of beamforming technique is that the resolution is highly depend-

ent on the array structure.  It cannot distinguish two closely spaced sources no matter 

how many observed data samples are used.  Usually the angles of arrival should 

have at least L/2π  difference (in radian, L is the distance between two adjacent an-

tennas). 

To ease the resolution limitation of the above beamformer, an improved beam-

former was proposed by Capon [8].  The optimization problem is re-formulated as 

follows 

( )w
w

Pmin                                                     (2.33) 

subject to  

( ) 1=θaw H .                                                   (2.34) 

where ( )wP  is defined in (2.27). 

The Capon’s method attempts to minimize the power contributed by noise and 

signal coming from other angles, while a fixed power is maintained in the directionθ .  

The optimal w can be found using Lagrange multipliers, and it is as follows 

( )
( ) ( )θaRθa

θaR
w

1

1

ˆ

ˆ

−

−

=
HCAP .                                          (2.33) 

Substituting (2.33) into (2.31), we obtain following spatial spectrum 
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( )
( ) ( )θaRθa

θ
1ˆ

1
−

=
HCAPP .                                        (2.34) 

The Capon’s method exploits every degree of freedom to concentrate the received 

energy along one direction as shown by the constraint condition.  So it has a better 

resolution than conventional beamforming technique.  It also can be interpreted as 

the Capon’s method is more focused on minimizing the power in the directions where 

there are sources other than desired one.  This method is computationally easy to 

implement because only the autocorrelation matrix is needed to be estimated to evalu-

ate the spectral density.  However, the Capon’s method is still dependent on the array 

aperture and the signal to noise ratio (SNR) [8]. 

 

2.5.2 Subspace Methods 

Now we will introduce subspace methods.  The subspace methods exploit the 

eigen-structure of the covariance matrix of received signal.  One of the most famous 

subspace methods is the MUSIC (Multiple Signal Classification) algorithm [10]. 

In the previous content, we noted that the structure of the covariance matrix of the 

received signal with white noise assumption implies such spectral decomposition as 

below 

H

nn

H

sss

H UUUΛUIAPAR 22ˆ σσ +=+=                          (2.37) 

Here we assume HAPA  is of full rank, so the diagonal matrix 
sΛ contains the M 

largest eigenvalues whose eigenvectors span a signal space.  Because the eigenvec-
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tors in nU  are orthogonal to A, we will have 

( ) 0=θ
H

n aU ,  { }Mθθθ ,...,1∈                                     (2.38) 

To obtain unique DOA estimates, the receiving array is usually assumed to be 

unambiguous, which implies that any collection of L steering vectors corresponding to 

distinct DOA kθ  forms a linearly independent set ( ) ( ){ }Laa θθ ,...,1  (because M < L).  

Thus HAPA  is of full rank if the source covariance matrix P has full rank.  Then 

Mθθ ,...,1  are the only possible solutions to the relation. 

In practice, we use ( ) ( )∑
=

=
N

t

H
tt

N 1

1ˆ xxR  instead of the statistical expectation of 

source covariance matrix.  The eigenvectors are separated into the signal and the 

noise eigenvectors.  The orthogonal projector onto the noise subspace is estimated as 

H

nnUU ˆˆˆ =Π ⊥                                                  (2.39) 

The objective function of MUSIC is  

( ) ( ) ( )
( ) ( )θaθa

θaθa
θ

⊥Π
=

ˆH

H

MP                                           (2.40) 

Equation (2.40) will have peaks around the true DOAs as (2.38) implies.  The 

performance improvement of the MUSIC method was so significant that it replaced 

most preceding methods.  Particularly, the accuracy of estimation can be very high 

for this method if the data collection is sufficiently large or SNR is high enough and 

the signal model is adequately accurate.  Thus the MUSIC algorithm has statistically 

consistent estimates (consistency means the estimates converges to the true value 

when the number of data tends to infinity) compared with the beamforming tech-
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niques.  However, the MUSIC method still has its limitations that it is difficult to 

distinguish closely spaced sources in small samples and in low SNR scenarios.  And 

the MUSIC method also does not perform well for highly correlated signals.  For the 

case of coherent signals (two signals are coherent if one is a scaled and delayed ver-

sion of the other), the covariance matrix will no longer be of full rank and the MUSIC 

method fails to result in consistent estimates [11]. 

 

 

 

Fig. 2.4 Subarray structure for spatial smoothing technique. 

To solve the problem of DOA estimation for coherent signals, some methods are 

developed to de-correlate the signals.  One spatial smoothing method [12] proposed 

by Shan et al is based on averaging of the covariance matrix of identical overlapping 

arrays.  This method needs the array elements have a periodic structure, such as 

ULA.  Let a ULA with L identical array elements be divided into overlapping for-

ward sub-arrays of size q as shown in Fig. 2.5.  The kth forward sub-array is formed 

by { }1,..., −+ kqk  array elements, where { }1,...,2,1 +−= qLk .  Then the signal 

received by the kth sub-arrays is 
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( ) ( ) ( ) ( )ttt
kf

k nsAFx += −1                                          (2.41) 

where ( )1−kF  is the (k-1)th power of the diagonal matrix 





















=

−1

2

1

...00

............

0...0

0...0

Mj

j

j

e

e

e

φ

φ

φ

F                                       (2.42) 

where 
c

d
f i

i

θ
πφ

sin
2= . 

Thus the covariance matrix of the kth forward sub-arrays is 

( ) ( )( ) IAFRAFR s

211 σ+= −− HHkkf

k                                  (2.43) 

Combining all subarrays’ covariance matrices, a forward averaged spatially 

smoothed covariance matrix fR is obtained 

( ) ( )( )

IAAR

IAFRFA

RR

s

2

2
1

1

11

1

1

1

1

1

1

σ

σ

+=

+








+−
=

+−
=

∑

∑
+−

=

−−

+−

=

Hf

s

H
qL

k

Hkk

qL

k

f

k

f

qL

qL

                    (2.44) 

where  

( ) ( )( )∑
+−

=

−−

+−
=

1

1

11

1

1 qL

k

Hkkf

s
qL

FRFR s .                               (2.45) 

For MqL ≥+− 1 , the covariance matrix f

sR  will be nonsingular even if the 

received signals are coherent. Then conventional MUSIC method can be applied to 

find the DOA.  If there are M DOAs to estimate, the number of subarrays should be 

more than 1+M .  Thus the number of array elements should be more than 2M.  

The spatial smoothing method has the similar computational efficiency of 

one-dimensional search.  A backward averaged spatially smooth method can be de-
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veloped similarly and it can be combined with forward averaged spatial smoothing to 

reduce the requirements on the number of array elements.  We also should note that 

the spatial smoothing techniques need a ULA.  If more general arrays are used, some 

sort of transformation should be done to the received signals. And the transformation 

may require some a priori knowledge of signal sources [8]. 

2.5.3 Maximum Likelihood (ML) Method 

To estimate directions of highly correlated or coherent signals, parametric array 

signal processing methods are developed, which can more fully exploit the data model.  

ML methods can solve the problem of direction finding for coherent signals but they 

always need a multidimensional search to find the estimates as the tradeoff for in-

creased efficiency and robustness.  Here we still use ULA as the receiving array. 

In the data model (2.9), we assumed that the additive noise is a stationary Gaussian 

white random process.  If the signal is deterministic, for an observation x which is 

the function of the signal and noise parameter Θ , the joint probability distribution 

function of x can be regarded as a function of noise vector Θ .  Let us use ( )Θl  to 

denote the probability density function and it is also called the likelihood function.  

Since the noise is a white Gaussian process with 2σ variance, the received signal is 

also a white Gaussian process with mean value of ( ) ( )tsθA  and 
2σ variance.  So the 

likelihood function can be shown to be 

( )
( )

( ) ( ) ( )

2

1

2

2

22

1
σ

πσ

∑

=
=

−

−

N

t

tt

LN
el

sθAx

Θ                                   (2.46) 
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For convenience, the likelihood function is usually replaced by the log-likelihood 

function, which is given by 

( )
( ) ( ) ( )

2

1

2

2
ln

σ
σ
∑

=

−

−−=

N

t

tt

NLL

sθAx

Θ                              (2.47) 

In (2.47), some parameter-independent terms are ignored.  To compute the ML esti-

mator, the log-likelihood function is maximized with respect to the unknown parame-

ters.  Fixing θ and s, the maxima with respect to 2σ  is given by  

( ) ( ) ( )∑
=

−=
N

t

opt tt
NL 1

22 1
sθAxσ                                    (2.48) 

Substituting (2.48) into (2.47) and ignoring the constant terms, the likelihood estima-

tor is obtained from following maximization problem 

( ) ( ) ( )

( ) ( ) ( )
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,

minarg

lnmaxargˆ

sθAx

sθAxθ

Sθ

Sθ

                           (2.49) 

Fixing θ , the minima with respect to ( )ts  is given by 

( ) ( ) ( )ttopt xθAs +=                                              (2.50) 

where  

( ) ( ) ( )( ) ( )θAθAθAθA HH 1−+ =                                      (2.51) 

is the pseudo-inverse of ( )θA . 

Substituting (2.50) into (2.49), the ML estimator is given by 

( ) ( ) ( )
















−= ∑

=

N

t

tt
1

2

,
minargˆ sθPxθ

Sθ
                                (2.52) 

where ( ) ( ) ( ) ( )( ) ( )θAθAθAθAθP HH 1−
= .  The DOAs can be found by using a mul-
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tidimensional search. 

The ML estimator also can be written in the form of [13] 

( ){ }{ }

( )








−=

−=

∑
=

N

tN 1

2
ˆ1

minarg

ˆTrminargˆ

RΠI

RΠIθ

A
θ

A
θ

                                  (2.53) 

where  

( ) ( )∑
=

=
N

t

H
tt

N 1

1ˆ xxR ,                                            (2.54) 

( ) ( )θAθAΠA

+= .                                              (2.55) 

This is because for any vector x, { }Hxxx Tr
2

= .  Here Tr denotes the trace of a ma-

trix. 

An interpretation for (2.53) is that the observed signals ( )tx  are projected to a 

model subspace orthogonal to all signal components, and the power of projected sig-

nal is measured.  The ML estimator approaches to minimum power when the pro-

jector removes all the true signals ( 0
ˆ θθ→ ).  But when finite samples are used to 

estimate the signal covariance matrix R̂ , the result of estimator will have a certain 

bias with respect to the true DOAs.  The bias will converge to zero if the number of 

samples is increased to infinity [8]. 

To find the optimization results of (2.53), a non-linear M-dimension search has to 

be performed.  Given a set of initial guess value of unknown parameters, some 

search methods such as steepest descent method, Gauss-Newton method can be ap-

plied to find the optimum values.  But if the initial guess is not accurate enough, the 



 27 

search procedure may converge to a local minimum instead of the desired global 

minimum.  We can use spectral-based method to give a rough estimation and then 

use this rough estimation as the initial guess for ML estimator. 

2.6 Summary 

DOA estimation is an important problem in radar, sonar and other localization 

systems.  Beamforming techniques estimate directions by maximizing the output 

power of an antenna array.  These techniques are easy to implement, but they do not 

have a sufficiently high resolution and it is also difficult for them to distinguish 

closely spaced signal sources.  Furthermore, the performance of beamforming tech-

niques degrades quickly at low signal-to-noise ratio when compared with other meth-

ods. 

 Subspace methods provide better performance as they exploit the eigen-structure 

of the covariance matrix of received signals.  Most subspace methods are consistent 

methods, implying that the estimations converge to the true values of parameters as 

the number of samples tends to infinity.  The resolution of subspace methods is 

much higher than that of beamforming techniques.  However, it is not easy for con-

ventional subspace methods to estimate the directions of highly correlated signals, 

especially the coherent signals which would cause the rank of the covariance matrix 

of the received signal to be deficient.  However, the forward and backward spatial 

averaging method based on subspace methods can be applied to distinguish coherent 

sources.  The spatial smoothing method is to split the ULA into a number of over-
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lapping sub-arrays and the steering vectors for sub-arrays are identical up to different 

scalings, and then take the average of the sub-array covariance matrices.  The for-

ward spatial smoothing method needs 2M array elements to solve M DOAs [12].  If 

forward and backward spatial smoothing methods are combined together, M
2

3
 ele-

ments are needed to solve M coherent DOAs [14]. 

Maximum likelihood (ML) method is a powerful tool to solve any type of estima-

tion problem provided that the joint probability distribution of observed data is known.  

The ML method requires doing a non-linear multidimensional search to find the esti-

mates.  Steepest descent method, Gauss-Newton method and other search methods 

can be applied to do this search.  Usually the initial guess is important to apply these 

search methods because they may converge to a local minimum, so spectral-based 

methods can be used to find a rough estimate as the initial guess for ML estimator. 
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Chapter 3 

Frequency Hopping Correlation (FHC) Method to Track 

Multipath Signals for Frequency Hopping System 

3.1 Introduction to the DOA estimation for frequency hopping system 

In this chapter, we will discuss the problem of estimating and tracking the direc-

tions for multipath signals in frequency hopping systems.  In the conventional DOA 

estimation methods, the steering vector may not change with respect to time, but in a 

frequency hopping system the steering vector changes with respect to time or hops as 

the frequency of transmitted signal varies with respect to time.  Therefore the con-

ventional methods may not solve the DOA for the frequency hopping system directly.  

For example, given an ULA as the receiving array, the received signal is 

( ) ( ) ( )tsθt ax =                                                   (3.1) 

where  

( ) ( )
( )

T
sin

2
1sin

2

...1 







=

−−− θ
π

θ
π

θ
d

c

f
Ljd

c

f
j

eegθa .                       (3.2) 

It is clear that the steering vector is dependent on the frequency. 

Some techniques have been developed for the DOA estimation in frequency hop-

ping systems.  In [15], Wong proposed an eigen-value decomposition based method 

for wideband fast frequency hopping signals.  This method needs an electromagnetic 
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sensor as the receiving array.  This is because the steering vector of electromagnetic 

sensors is not dependent on frequency.  Therefore the conventional method is appli-

cable.  However, the electromagnetic sensors are expensive and difficult to manu-

facture.  In [16] Liu et al proposed a method based on signal spectral entropy to es-

timate the hop instant and the least square method is applied to estimate direction for 

hop-free data.  This method jointly estimates frequency and direction based on hop 

detection but it does not consider the multipath.  In [29] Fuchs proposed a method to 

estimate time delay and number of paths for multipath sources, but it is not applicable 

for the frequency hopping signals.   For the well known maximum likelihood 

method [25] and the conventional least square method [26], the transmitted signal is 

required to be known.  And all these methods need a large size antenna array at the 

receiver. 

The proposed FHC method can estimate and track the directions of multipath sig-

nals in frequency hopping systems with a two-element array. 

3.2 Signal Model for the FHC method 

 

Fig. 3.1 Receiving array structure. 
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Let us consider a scenario where there is only one far-field transmitter and the 

receiving array is a two-element array with half wavelength spacing.  The quadrature 

modulated transmitted signal is a hop sequence given by 

( ) ( ) ( ) ( )
d

tj
hTtuetstd hc −⋅= +ωω

                                      (3.3) 

where 
π

ω

2

h
hf = is the hop frequency, 

π

ω

2

c
cf = is the carrier frequency, ( )ts  is the 

complex baseband signal, dT  is the hop duration, and h is the hop index. 

For simplificity, the received signals can be considered hop by hop.  So for a 

certain hth hop, the transmitted signal is  

( ) ( ) ( )tj

hh
hcetstd

ωω += .                                            (3.4) 

Here, we assume that there are some identical data packets for each hop.  This as-

sumption is reasonable as these packets may be the address headers or the synchroni-

zation bits.  For example, the Bluetooth standard specifies that 72 bits are used as 

access code and 54 bits are used as header information in each packet [17], and the 

access code is used for synchronization and is the same for all packets.  In SFH 

based PCS system, there are also specifications similar [18] to those of Bluetooth.  

Thus it is reasonable to assume that there are some identical data for each hop.  This 

assumption also implies that the transmitted signal is a slow frequency hopping (SFH) 

signal, so it can be guaranteed that there is more than one bit in each hop.   We also 

have another assumption that the hop instant and frequencies are known.  Thus, (3.4) 

can be written as 

( ) ( ) ( )tj

h
hcetstd

ωω +=                                               (3.5) 
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If the transmitted signal passes through p paths, the received signals at two an-

tennas are 

( ) ( ) ( )( ) ( )tqetsgtx phc tj
P

p

ph 1

1

0

1 +=
−+

−

=

∑
τωω

                                 (3.6) 

( ) ( ) ( ) ( )( ) ( )tqetsgtx
htj

P

p

ph

pphc

2

1

0

2 +=
−−+

−

=

∑
βτωω

                             (3.7) 

where ( )
( )

c

hd
h

p

p

θ
β

sin
= ，c is the speed of light, ( )hpθ  is the angle of arrival of 

the pth path and it changes with respect to time or hops, pj

pp eg
φ

ρ=  is the complex 

channel attenuation factor of the pth path, pρ  and pφ  are amplitude and phase of 

pg  respectively, ( )tq1  and ( )tq2  are uncorrelated white Gaussian noise. 

The received signal is down converted and passes a bandlimted filter.  We have 

( ) ( ) ( ) ( )tqeetsetx
P

p

jtjj

ph

phchp

1

1

0

1 +=∑
−

=

+− τωωωφ
ρ                            (3.8) 

( ) ( ) ( ) ( )( ) ( )∑
−

=

++−
+=

1

0

22

P

p

hjtjj

ph tqeetsetx pphchp βτωωωφ
ρ                         (3.9) 

It should be noted that the hopping frequency is not removed at the receiver, which is 

different from ordinary frequency hopping receivers.  This is because some features 

of the hopping frequency will be exploited in the proposed method. 

The power and cross correlation of received signals are given by 

( )[ ] ( ) ( ) 1

2

2
1

0

2

1 EE n

P

p

jj

ph Ptseetx phcp +⋅= ∑
−

=

+− τωωφ
ρ                       (3.10) 

( )[ ] ( ) ( )( ) ( ) 2

2

2
1

0
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1 EE n

P

p

hjj

ph Ptseetx pphcp +⋅= ∑
−

=

++− βτωωφ
ρ                   (3.11) 
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(3.12) 

where 1nP  and 2nP  are powers of ( )tq1  and ( )tq2 , respectively. 

3.3 Formulation of the FHC method 

 

Fig. 3.2 System Structure for one hop 

The objective function is formulated by minimizing the difference between the 

measured correlations of the received signals and their estimated values.  In Fig. 3.2, 

the power and cross correlation of received signal can be measured by using analog 

correlators.  Then an adaptive estimator is used to estimate the unknown parameters.  

By using least square method, the objection function is established as shown in (3.13). 
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(3.13) 

In (3.13) [ ]T

21 nn PP∆τ∆φθρη =  is the parameter vector to estimate, 
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[ ]010201 ... ττττττ −−−= −P∆τ  is the relative time delay vector, 

[ ]110 ... −= pρρρρ , [ ]010201 ... φφφφφφ −−−= −p∆φ  are amplitude and 

phase vectors of channel attenuation factors respectively, [ ]110 ... −= Pθθθθ  is 

the DOA vector, 1nP  and 2nP  are the estimated powers of the white noise at two 

receiving antennas, hr1 , hr2  and hc  are measured signals’ power and cross correla-

tion, respectively of the hth hop, k is an integer and increased by one along hops, N is 

the number of hops used in one iteration.  It is easy to see that the objective function 

is zero when the estimated parameters are at their true values for the stationary FH 

signals (stationary means the emitter does not move). 

For each single hop, the objective function is periodic with respect to ∆τ  and is 

not resolvable.  The objective function can be written as 

( ) ( ) ( ) ( )[ ]∑
+

=

++=
Nk

kh

hhh LLLf
2

3

2

2

2

1 ηηηη                             (3.14) 

If only one hop frequency is used, the first term of (3.13) will be 

( ) ( ) ( ) 111

2

2
1

0

1 E1 rPtseeL n

P

p

jj

p

pcp −+⋅= ∑
−

=

+− τωωφ
ρη                      (3.15) 

We note that ( )η1L  is periodic with respect to the time delay vector ∆τ  and the 

period is 
1

1

2

ωω

π

+
=

c

T .  Thus the optimum value can not be found in the one hop 

case because many values other than the true value are also optimum values for the 

objective function.  Fig. 3.3 shows a two-path case with carrier frequency at 30MHz. 

01 τττ −=∆ .  The true value of τ∆  is 
5105.0 −×  seconds. 
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Fig. 3.3 The objective function w.r.t τ∆  with one hop frequency 
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Fig. 3.4 The objective function w.r.t τ∆  with two hop frequencies 

However, for another hop with different hop frequency 2f , the period of ( )η1L  
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changes to 
2

2

2

ωω

π

+
=

c

T .  If more hops are combined together, ( )∑
2

1 ηL  may not 

be periodic because the common multiples of these hop frequencies may not exist.  

Even when only two hop frequencies are used and they have a common multiple, the 

least common multiple may be very large if the hop frequencies are well selected.  

Then there will be no other optimum values around the true value.  Fig. 3.4 shows a 

two-path case when two hops are combined together.  Parameters are the same as the 

one hop case.  Therefore we can use hops 1, 2,…, N in the first iteration, then use 

hops 2,3,…, N+1 in the next iteration and continue in this manner.  The objective 

function is formulated as in (3.13).  Usually N is chosen to be two or three. 

 

3.4 Search Methods 

3.4.1 Steepest Descent Method 

The objective function is a non-linear least square function, and the optimum 

values can be found by using some search methods.  Steepest Descent method, 

Newton method and Gauss-Newton method are all widely used in optimization prob-

lems.  First, we will introduce Steepest Descent method, which is one of the funda-

mental procedures for minimizing a differentiable convex function of several vari-

ables.  Because the gradient of a function or a surface is the vector that points to the 

maximum increase in the value of the function or the surface, it is obvious that mov-

ing along the opposite direction means going towards the minimum [19].  The 
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Steepest Descent method converges to a point with zero gradient.  In Fig.3.5, the el-

lipses are the contours of ( )21 , xxf .  It shows that how the Steepest Descent method 

works.  The formulation of Steepest Descent method is  

( ) ( ) ( )xxx x fnn ∇−=+ µ1                                         (3.16) 

where n is the iteration index, µ  is a small number to control the step size. 

 

Fig. 3.5 Illustration of steepest descent method.   

The method of Steepest Descent performs very well in early stages of the search 

process if the initial point is well selected (this means the initial point is on the convex 

surface around the optimum value).  However, as a stationary point is approached, 

the method usually behaves poorly.  This is because when the step size is relatively 

big, the iteration result will be oscillatory around the optimum point in the later stage 

of iterations.  But if the step size is very small, the number of iterations from initial 

value to optimum point will be extremely large.  Therefore the method of Steepest 

Descent is suitable for a problem where some a prior information of the minimum is 

known so that a good initial value and step size can be selected to solve the problem. 
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3.4.2 Newton’s Method 

The Newton’s method is a procedure that deflects the steepest descent by premul-

tiplying it by the inverse of the Hessian matrix. 

( ) ( ) ( ) )(

11 nfnn xxx xHxx =
− ∇−=+                                   (3.17) 

where ( ) ( ) ( ) ( )
T
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H  is the Hessian matrix of ( )xf . 

The Newton’s method is applicable to the same scenario of the steepest descent 

method and it has a quadratic convergence for quadratic surfaces, which is much 

faster than the steepest descent method.  The Newton’s method is derived from the 

second order Taylor expansion 

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]nnnnnfnff xxxHxxxxxxx x −⋅⋅−+−⋅∇+≈
TT

2

1
  (3 . 1 8 ) 

In the Newton’s method, the value of x of the next iterate is obtained from the 

minimizer of ( )xx ∆+f .  If the Hessian matrix is positive definite [20], the function 

( )xf  will have a unique minimum that can be obtained by solving  

( ) ( )[ ] ( )[ ] ( )[ ] 0=−⋅+∇=∇ nnnff xxxHxx xx                          (3.19) 

Then we have 

( )[ ] ( ) )(

11

nfnf xxxHxHx =
−− ∇−=∇−=∆                               (3.20) 
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Although the Newton’s method has a better convergence behavior than steepest 

descent does, it also has some drawbacks.  One is the computation for the Hessian 

matrix is very complex if the size of parameter vector ( nxx ,...,1 ) is too large.  The 

calculation of the inversion of the Hessian matrix has to do 3
n  multiplications.  

Another drawback is that the Hessian matrix may be singular during the iteration, or 

the searching direction ( ) )(

1

nf xxxH =
− ∇−  may not be a descent direction.  To im-

prove the Newton’s method, many techniques are developed based on Newton’s 

method. 

 

3.4.3 Gauss-Newton Method 

The Gauss-Newton method is suitable for small-residual non-linear least square 

problems.  It is based on the Newton’s method.  The meaning of small-residue will 

be explained later. 

Usually the least square method is used in data-fitting problems.  Suppose a 

physical process is modeled by a nonlinear function φ  that depends on parameter 

vector x  and time t.  If 
ib  is the actual output of the system at time 

it , then the 

residue is ( ) ( ) iii btL −= ,xx φ , which is the difference between the predicted value φ  

and observed output ib .  When the residue is small or closed to zero, the problem is 

called small-residue nonlinear least square problem.  A least square equation is 

formulated based on this difference 
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( ) ( ) 2

22

1
xlx =f                                                (3.21) 

where ( ) ( ) ( )[ ]T

1 ... xxxl nll= .  

The first order derivative of ( )xf  with respect to ix  is 

( ) ( ) ( )xlxlx xx ⋅∇=∇
T

f                                         (3.22) 

where ( ) ( ) ( )[ ]T,...,
1

xxxx fff
ixx ∇∇=∇ , ( ) ( ) ( )[ ]T...

1
xlxlxlx nxx ∇∇=∇ , 

( ) ( ) ( )[ ]T1 ...
1

xxxl nxxx ll
nk

∇∇=∇ . 

The Hessian matrix is also the second order derivative of ( )xf , and it is given by 

( ) ( ) ( ) ( ) ( )∑
=

∇+∇⋅∇=∇
n

i

ii llf
1

2T2
xxxlxlx xxxx                           (3.23) 

In many practical circumstances, the first term ( ) ( )xlxl xx ∇⋅∇
T

 of the Hessian 

matrix is more important than the second term, especially when the residuals ( )xil  

are small enough at the optimum values.  To be more specifically, the small-residual 

problem is defined such that for all x closed to the optimum solution, the quantities 

( ) ( )xx x ii ll
2

∇  are small compared to the smallest eigenvalue of ( ) ( )xlxl xx ∇⋅∇
T

. 

The Gauss-Newton method is developed to solve the small-residual least square 

problem.  In Gauss-Newton method, the second term of the Hessian matrix is ig-

nored in (3.23) for its value is relatively small.  Then we only substitute the first term 

of (3.23) and (3.22) into the formulation of Newton’s method and we get 

( ) ( ) ( ) ( )nn llnn xxxx
+

−=+ '1                                       (3.24) 

where  

( ) ( ) ( )[ ] ( )T

xxx xxxx nnnn llll ∇⋅∇⋅∇=
−+ 1T'                              (3.25) 
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is the Moore-Penrose pseudo-inverse of the matrix ( )nl xx∇ . 

We can see that ( )nl x  is closed to zero when nx is around its optimum value.  

Thus ( ) ( )nn ll xx xx ∇⋅∇
T

 will be singular and it is impossible to calculate its inversion 

and the Gauss-Newton method is not applicable.  A method to solve this problem is 

to add an identity matrix nS  multiplied by a scalar with small values. in the 

Gauss-Newton iteration equation 

( ) ( ) ( ) ( )[ ] ( ) ( )nnnnn llllnn xxSxxxx
T

xxx ⋅∇⋅+∇⋅∇−=+
−1T

1               (3.26) 

The purpose of nS  is to guarantee fast convergence and avoid the matrix singularity 

in the matrix inversion. 

To apply the Gauss-Newton method in our problem, it should be made sure that 

our problem meets the required conditions of Gauss-Newton method.  The objective 

function (3.13) can be written as 

( ) ( )∑∑=
h i

hiLf
2

, ηη                                            (3.27) 

where ( )ηiL  is the ith summation term of (3.13) respectively. 

We can see that ( )ηhiL ,  are all closed to zero if η  is around its optimum value.  

This means our problem is a small-residual problem.  Thus Gauss-Newton method 

can be applied to it.  If we define ( ) ( ) ( ) ( )[ ]T

321 ηηηη LLLL = , the Jacobian matrix 

of ( )ηL  is  

( ) ( )
( )

( )
( )

T

...
1 









∂

∂

∂

∂
=

n

LL
J

η

η

η

η
η                                      (3.28) 

The parameter vector η  is updated in the following manner 
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( ) ( )kkk1k ηηηη LJ
+

+ −=                                        (3.29) 

where ( ) ( ) ( )( ) ( )T1T

kkkk ηξηηη JJJJ
−+

+= , ξ  is an identity matrix multiplied by a 

scalar with small values. 

Given an appropriate initial value of η, the converged result will be the optimum 

value of η. 

 

3.4.4 Alternating Minimization Method 

In many cases, a multi-dimensional search is needed to find the optimized values.  

Sometimes there may be a variable whose gradient is quite close to zero that the ob-

jective function is very flat with respect to this variable.  If joint search methods 

(steepest descent method, Newton’s method, etc) are used in this case, the parameters 

may converge very slowly.  The alternating minimization method is suitable to solve 

this problem.  Let us see how the alternating minimization method works. 

Suppose we have an objective function given by 

( )ηη
η

fminarg=                                                (3.30) 

where [ ]T

21 ... nηηη=η .  Given an initial value ofη , the first iteration is done 

with respect to 1η  until it is converged while other parameters are held fixed, then 

the second iteration is done to 2η  until it is converged with other parameter fixed 

and continue in this manner.  That is, the value of iη  at the (k+1)th iteration is ob-

tained by solving the following one-dimensional minimization problem: 
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( ) ( )( )i

k

i

k

i f
i

ηη
η

,minarg
1

η=
+

                                       (3.31) 

where 
( )k

iη  denotes the ( ) 11 ×−n  vector of pre-computed parameters, 

( ) ( ) ( ) ( ) ( )[ ]k

n

k

i

k

i

kk

i ηηηη ,...,,,..., 111 +−=η                                (3 .32) 

The difference between alternating minimization method and direct minimization 

method (steepest descent method, Newton’s method, etc) is that the alternating mini-

mization method progresses towards the bottom of ( )ηf  along parallel line to the 

axes [21], as Fig. 3.6 shows a two-dimensional case.  We can see that the two pa-

rameter declines to the minimum alternately but in the traditional steepest descent 

method the parameters directly declines to the minimum.  We also can group the pa-

rameters into several groups and do similar routines as mentioned above. 

 

Fig. 3.6 Two-dimensional case of Alternating Minimization method. 

 

3.5 Highly Oscillation problem 

All search methods we introduced above require that the objective function is 
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convex or the initial guess is close enough to the optimum value.  However, our ob-

jective function (3.13) is not convex but highly oscillatory with respect to the relative 

time delay ∆τ .  However, it is difficult to apply the search methods directly because 

the converged value may be a local minimum instead of the global minimum.  We 

can see this problem in Fig. 3.7.  Fig. 3.7 is plotted for a two-path case with the 

carrier frequency at 30MHz.  Two hop frequencies are used in the objective function.  

It is clear the objective function is highly oscillatory and it is difficult to choose a 

suitable initial value for parameter vectorη . 
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Fig. 3.7 The highly oscillatory objective function w.r.t time delay. 

Although the objective function is highly oscillatory with respect to relative time 

delay, the distance between two adjacent local minima can be approximated.  Here 

we still consider a two path case and 
011 τττ −=∆=∆τ .  Suppose only two hop 

frequencies are used, 1ω and 2ω , and the first term of (3.13) is 
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( ) ( ) ( )

( )[ ] ( )∑
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The power measurement hr1  is 

[ ] ( ) T1

22

TTT1T0

2

T1

2

T01 Ecos2 nhh Ptsr +⋅∆−∆++= ταφρρρρ         (3.34) 

where hch ωωα += , subscript T denotes the optimum value of corresponding pa-

rameter. 

Without loss of generality we assume ( ) 1E
2

=ts , which means the power of 

transmitted signal is a constant.  Then, substituting (3.34) into (3.33), we have 

( )
[ ]

[ ]

( ) ( )( )

( ) ( )( ) 
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(3.35) 

where m, n are constants. 

Taking differentiation to (3.33) with respect to relative time delay τ∆ , we have 

( ) ( ) ( )( ) ( )∑
=

∆ ∆∆+∆−−=∇
2

1

1010T1 sincos2cos4
h

hhhh anmf ταρρταρρτατ η   (3.36) 

To find the local extrema (minima and maxima) of ( )ηf , the first order deriva-

tive should be zero.  Since the difference between 1α  and 2α  is small, we assume 

21 αα ≈  and we also assume ( ) ( )T2T1 coscos τατα ∆≈∆ .  After trigonometric func-

tion transformation, (3.36) becomes 
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( ) ( ) 0cos
2

cos
2

cos
2

sin 21
212121 =
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From (3.37) it is obvious that ( ) 0=∇∆ ηfτ  when 0
2

sin 21 =







∆

+
τ

αα
.  Thus 

the approximated distance between two adjacent local extrema of ( )ηf  is 

212

1

fff c ++
.  Then the distance between two contiguous local minima is 

( ) ( )21

2

ffff
d

cc

lm
+++

= .                                       (3.38) 

Similarly we can show that the other two terms of the objective function (3.13) 

have the same property.  Expand the three terms of Eq. (3.13).  We can see τ∆  

appears only at the index of 
( ) τωω ∆+− hcj

e .  It is easy to validate that the period of each 

single term of the objective function with respect to τ∆  is 
1

1

ff c +
 when only one 

frequency 1f  is used.  This is because 
( )

( ) 








+
+∆+−

∆+− = 1
1

1

1

ff
j

j c
c

c ee
τωω

τωω
.  Then when 

only frequency 2f is used, the period will be 
2

1

ffc +
.  So if 1f  and 2f  are used 

together, the distance between two adjacent local minima of the objective function 

should be a value between 
1

1

ff c +
 and 

2

1

ffc +
.  Since we are trying to obtain a 

rough value of the period with respect to τ∆ , it is reasonable to use 

( ) ( )21

2

ffff cc +++
 as the estimates of the time delay τ∆ . 

Furthermore, if more than two hop frequencies are combined to formulate the 

objective function, we can find this distance as well and it is generally 
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( ) ( )ncc

lm
ffff

n
d

++++
=

...1

.                                   (3.39) 

Therefore, the distance between two local minima is inverse proportional to the 

average frequency of all hop frequencies. 

 

3.6 Detailed Algorithm of the FHC method 

Recall the objective function (3.13) 
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To find the optimum values of unknown parameters, a multi-dimensional search 

is needed.  The objective function is also highly oscillatory with respect to relative 

time delay.  We will use a method which combines alternating minimization method, 

steepest descent method and Gauss-Newton method to solve this problem.  Let us 

consider a two-path case, the parameter vector is 

[ ]211010 nn PPφτθθρρ ∆∆=η .  The parameters can be grouped into 

two groups: one is τ∆ , the other is [ ]211010 nn PPφθθρρ ∆ , then alter-

nating minimization can be applied.  If the initial value of τ∆  is well selected, usu-
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ally Gauss-Newton method combined with alternating minimization method can find 

the optimized η  in several hundreds iterations (or hops).  However, because the 

objective function is highly oscillatory, it is difficult to obtain a good initial value of 

τ∆  so that the search method may converge to local minimum easily.  Therefore we 

have to use other method to solve this problem.  An intuitive solution is to exploit 

the quasi-periodic feature of the objective function w.r.t τ∆ .  When steepest descent 

method is applied to find a local minimum w.r.t. τ∆ , we may find other adjacent lo-

cal minima w.r.t τ∆  with following steps. 

1) Given an initial value of τ∆ , use steepest descent method to get a converged 

value ( )1τ∆ . 

2) Approximate the adjacent local minima by exploiting the feature that the distance 

between two local minima is about 
( ) ( )ncc

lm
ffff

n
d

++++
=

...1

 if n hop fre-

quencies are used in the objective function. 

( ) ( ) ( )[ ]nfff nc

kk
/.../1ˆ

1

1 +++±∆=∆ −ττ                           (3.42) 

In order to avoid the heavy computation, the search for local minima (include the 

global minimum) is limited in a range that 
( )

ba
k

≤∆≤ 1τ .  This range [a,b] 

should guarantee that it contains the global minimum. 

3) Use the first order Taylor expansion of ( )ηfτ∆∇  to find a more precise local 

minimum around ( )kτ∆ .  That is 

( )( )k
aaf τττ ∆−∆+≈∇∆ 10

                                       (3.43) 

where ( )kfa
τττ ∆=∆∆∇=0  , ( )kfa

τττ ∆=∆∆∇= 2

1 . 
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Let (3.43) be zero, a more precise local minimum around ( )kτ∆  is approximated 

[22], and we will have 

( ) ( )kk aa ττ ∆+−=∆ 10 /ˆ                                          (3.44) 

4) Go back to step 2) until ( )kτ̂∆  or ( )kτ∆  exceed the range [a,b].   

With above procedures we will obtain all local minima in the range [a,b].  We 

can substitute these local minima into the objective function and choose the one 

which minimizes the objective function as the refined initial value of τ∆ .  This re-

fined initial value of τ∆  is enough close to the true value of the time delay so that 

the Gauss-Newton method can be directly applied.  The above procedure is to esti-

mate adjacent local minimum after one local minimum is found, to refine the result of 

step 2) by using Taylor expansion, and to estimate other local minima one by one. 

To apply the Gauss-Newton method, we adjust the objective function a little by 

taking the square of the original objective function (3.13).  The new objective func-

tion is ( ) ( ) 2
ηη fF = .  Using the refined initial values and applying the 

Gauss-Newton method with modified objective function, we have 

( ) ( ) ( )( ) ( )( )kfkkk ηηfηη
+

−=+ '1                                  (3.45) 

where ( )( ) ( )( ) ( )( )[ ] ( )( )H

n

H
kkkk ηfSηfηfηf '

1
'''

−+
+= , and the first order derivative 

vector is given by  

( )( ) ( )( ) ( )( )
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Simulation for the proposed algorithm will be shown in next chapter. 
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3.7 Summary 

In this chapter, the FHC method is proposed to track and estimate the direction of 

multipath signals for frequency hopping systems.  The least square method is used to 

establish the objective function by minimizing the difference between estimated cor-

relations and measured correlations.  Since the objective function is highly oscilla-

tory with respect to the time delay parameters, a pre-processing is used to find refined 

initial values for the time delay.  The Gauss-Newton method is applied to search the 

optimum values for unknown parameters.  We choose the Gauss-Newton method 

because the steepest descent method has a zigzag problem and the Newton’s method 

requires the Hessian matrix of unknown parameters is positive definite.  The simula-

tion study for the proposed method and comparison with other techniques will be dis-

cussed in the next chapter. 
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Chapter 4 

Simulation Study of the FHC method 

In this chapter, simulation results will be presented to illustrate the performance 

of the FHC method.  The proposed method is compared with the frequency hopping 

maximum likelihood method (FHML method) [23].  First we will describe the simu-

lation scenario. 

 

4.1 Simulation Scenario 

In the simulation, we consider a frequency hopping system with a center fre-

quency at MHz30=cf .  The signal is transmitted from one far field source.  The 

receiving array is a two-element array with half wavelength spacing of d=5m.  The 

32 hopping frequency channels occupy 8MHz bandwidth and have 0.25MHz channel 

spacing from 26MHz to 34MHz.  The minimum frequency separation between adja-

cent hops is 0.75MHz by referring the IEEE Standard 802.11.  Then a hop sequence 

with 32 hop frequencies is formed and it is transmitted repeatedly.  Table 4.1 is an 

example of the hop sequence. 

The transmitted baseband signal ( )ts  in the objective function (3.13) is assumed 

to be one, which implies that the transmitted signal is same for all hops so that the 
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power ( ) 2
tsE  of sampled signal are same for all hops.  With this assumption, the 

transmitted signal is ( ) ( )tj

h
hcets

ωω += .  In the simulation, only this part is generated 

for convenience. 

 

 

 

Tab. 4.1 An example of hop sequence 

The number of paths is assumed to be two, and the time delay for two paths are 

µs50 =τ  and µs101 =τ  respectively.  The channel attenuation factors are 

5.0

0 75.0 jeg =  and 1

1 85.0 jeg = .  Therefore the amplitude and phase difference be-

tween 0g and 1g  are 75.00 =ρ , 85.01 =ρ  and 5.0=∆φ  respectively.  The di-

rections of two paths are o300 =θ and o501 =θ  for the stationary case, and we will 

discuss the moving case later.  The signal to noise ratio (SNR) is defined as 

( )ns PP /log10SNR 10=                                           (4.1) 

where sP  is the average power of the received signal of the whole hop sequence 

while nP  is the noise power.  For each hop, 256 samples are taken with a sampling 

frequency MHz8=sf  to measure the power and cross correlation of the received 

signal.  So the time duration for each hop is 32µs.  In practice, analog correlators 

can be used to measure the correlations of received signals. 

 Ch.1-6 Ch.7-12 Ch.13-18 Ch.19-24 Ch.25-30 Ch.31-32 

26.25 32.25 30.5 28.75 27.0 33.0 

27.25 33.25 31.5 29.75 28.0 34.0 

28.25 26.5 32.5 30.75 29.0 

29.25 27.5 33.5 31.75 30.0 

30.25 28.5 26.75 32.75 31.0 
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The waveform of the received signal (real part) at two antennas is shown in Fig. 

4.1.  It is plotted when SNR=20db.  The power and cross correlation of the received 

signals are plotted hop by hop in Fig. 4.2 and Fig. 4.3. 
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Fig. 4.1 Waveform of the received signals with AWGN. 

It can be seen from Fig. 4.2 that the noise power contributes a lot in the power of 

the received signals.  In Fig. 4.3, the cross correlation of received signals of two an-

tennas is plotted in real part and imaginary part respectively.  Theoretically, the cross 

correlation of noise free signals should be same as that of the signal with additive 

white noise.  However, we can see small difference between the cross correlation of 

noise-free signals and that of signals with white noise in Fig. 4.3.  This is because 

the samples of received signals are limited. 
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Fig. 4.2 Power of the received signals with AWGN and without AWGN 
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Fig. 4.3 Cross correlation of the received signals 
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4.2 Simulation of Estimating the Directions of Stationary FH signals 

The initial parameter vector is set as follows  

( ) [ ]T5 0140.001405.01052.054.0472788.078.00ˆ −×= ooη  

At the first step, a refined initial value of τ∆  is calculated by applying (3.42), (3.43) 

and (3.44).  Then the Gauss-Newton method is applied directly as follows 

( ) ( ) ( )( ) ( )( )kkkk ηfηfηη
+

⋅−=+ '1 µ                                  (4.2) 

where  

( )( ) ( )( ) ( )( )[ ] ( )( )H

n

H
kkkk ηfSηfηfηf '

1
'''

−+
+= .                        (4.3) 

The small scaled identity matrix nS  is set to be ( )77 10,...,10 −−diag .  The step 

size is 3.0=µ .  Two successive hops are used to generate one result. 
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(d) 1θ  vs. number of hops 
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(f) Pn1 vs. number of hops 
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Fig. 4.4 Convergence figures of FHC method for Stationary Case 
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Fig. 4.4 shows the converged parameters of the FHC method in the stationary 

case when SNR=20dB.  The solid lines are iteration results generated by the 

Gauss-Newton method.  The dotted lines are the true values of unknown parameters.  

We can see the direction parameters converge to their true values after 200 iterations. 

 

4.3 Simulation of Tracking Slow Moving FH signals 

In this section, we will present the simulation result of tracking slow moving FH 

signals.  For slow moving FH signals, the directions of received signals change with 

respect to hop (or time) slowly.  Here we assume that the directions are changing as 

follows 

( ) ( )500/2sin300 hh πθ += o                                         (4.4) 

( ) ( )350/2sin501 hh πθ += o
                                        (4.5) 

where h is the hop index.  Other parameters are fixed and are the same as the sta-

tionary case.  Because two hops are used to generate one result in our method, the 

converged value of the direction is between the angle of current hop and the angle of 

next hop.  Since the directions change slowly, this difference may be very small.  

Thus we can still track the moving directions.  Fig. 4.5 is the convergence figures of 

the FHC method for slow moving FH signals when SNR=20db.  The solid lines are 

the results of the FHC method while the dotted lines are the true values of unknown 

parameters.  It is clear that the iteration results of directions can track the moving 

directions. 
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(c) 0θ  vs. number of hops 
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(e) τ∆  vs. number of hops 
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 Fig. 4.5 Convergence figures of FHC method for Slow Moving Case 

 

4.4 FHML (Frequency Hopping Maximum Likelihood) method 

4.4.1 Introduction to the FHML method 

The FHML (Frequency Hopping Maximum Likelihood) method [23] is proposed 

by Zhi et al.  The idea is to use two contiguous hops to obtain a structure which can 

apply the maximum likelihood method.  In the FHML method, the receiving antenna 

is also a two-element array.  The received signal can be formulated as follows 
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where 
( ) ( )[ ]T11 pphpphphph βτjαβτjατjατjα

p eeee
+−+−−− ++=S , hch ωωα += , h is the hop in-

dex and 
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e

e

e

e
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ω

ω

ω

ω

D .                                    (4.7) 

The parameter vector is 

[ ]T

1010 −−= PP ,β,,β,τ,τ LLη                                         (4.8) 

Equation (4.6) can be written in the form of 

( ) ( )GηSDX n
n =                                                 (4.9) 

where ( ) [ ]10 ,, −= PSSηS L , [ ]T

10 ,, −= Pgg LG . 

In the presence of independent receiver noise, the received signal vector becomes 

( ) ( ) ( )nn
n VGηSDX +=                                          (4.10) 

where ( )0V ,…, ( )1−NV  are independent noise vectors with zero mean and a co-

variance vector I2σ .  The likelihood function of received signals is  

( )
( )

( ) ( )∑
=

−

=

−−
1

0

2

2
2

1

4

2

1
N

n

n
n

N
ef

GSDX

η
η

σ

σπ
                               (4.11) 

The unknown parameters can be found by maximizing the likelihood function.  

From (4.11), this is equivalent to minimizing the objective function 

( ) ( ) ( )∑
−

=

−=
1

0

21 N

n

n
n

N
GηSDXηψ                                   (4.12) 

The gradient of ( )ηψ  with respect to G  is 

( ) ( ) ( ) ( ) ( )[ ]∑
−

=

−=∇
1

0

HH2 N

n

n
n

N
GηSXDηSηGψ                           (4.13) 
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Let (4.13) be zero, the likelihood estimator for G  is 

( ) DXηSG
+

=ˆ                                                  (4.14) 

where ( ) ( ) ( )[ ] ( )ηSηSηSηS H1H −+
=  and ( ) ( )∑

−

=

=
1

0

H1 N

n

n

D n
N

XDX . 

Substituting the estimator of G  into (4.12), we have 

( ) ( ) ( ) ( ) 
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−

=

HH
1

0

1
trace DD

N

n

nn
N

XXηPXXηψ                        (4.15) 

where ( ) ( ) ( )+
= ηSηSηP . 

The maximum likelihood estimator of η  is then given by 

( ) 2
minargˆ ηη
η

l=                                               (4.16) 

where  

( ) ( ) Dl XηPη ⊥=                                                (4.17) 

( ) ( )ηPIηP −=⊥ .                                              (4.18) 

The solution for η̂  can be obtained by applying Gauss-Newton method 

( ) ( ) ( ) ( )[ ]{ } ( )[ ] 22

ˆ
ˆˆˆ1ˆ klklkk k ηηηη η ⋅∇⋅−=+

+

µ                        (4.19) 

where ( ) ( )[ ]{ }+

∇
2

ˆ
ˆ klk ηη  is Moore-Penrose pseudo-inverse of ( ) ( )[ ] 2

ˆ
ˆ klk ηη∇ . 

The derivative of the objective function is given by 
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4.4.2 Simulation of the FHML method 

To compare the FHML method with the FHC method, the simulation scenario of 

the FHML method is completely same as that of the FHC method.  The initial pa-

rameters are set at [ ]T4727µs05.10µs05.5 oo=η .  The step size is 5.0=µ . 

SNR=20dB.  Each step of the iteration uses two successive hops to generate one re-

sult.  Fig. 4.6 and Fig. 4.7 show the algorithm performance in stationary case and 

slow moving case, respectively. 
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(a) 0τ  vs. number of hops 
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(d) 1θ  vs. number of hops 

Fig. 4.6 Convergence figure of stationary case for FHML method. 
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Fig. 4.7 Convergence figure of slow moving case for FHML method. 

It is shown that the FHML method performs well both in estimating directions of 

stationary FH signals and tracking slow moving FH signals.  We will compare the 

converged results of the FHML method with the FHC method in next section. 

4.5 Comparison between FHML method and FHC method 

To compare the converged results of the FHML method and the FHC method, the 

average variances of the angle-of-arrivals 0θ  and 1θ  are measured after they have 

converged in the stationary case.  As shown in Fig. 4.4 and Fig. 4.6, it is obvious that 

0θ  and 1θ  converge after 300 iterations.  The variances of converged values are 

calculated from the 350th iteration to the last iteration.  Fifty Monte Carlo runs are 

done and we take the average of the fifty variances for both methods at a given SNR. 
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(a) Variances of converged values of θ0 at different SNR 
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(b) Variances of converged values of θ1 at different SNR  

Fig. 4.8 Variances of converged values of θ vs. SNR. 

Fig. 4.8 shows the results at SNR=0dB, 5dB, 10dB, 15dB and 20dB respectively.  

The asterisk and plus signs denote the average variances of the converged θ at the 

corresponding SNR.  We can see that the variances of converged values for the FHC 
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method is much smaller than that of the FHML method when SNR is low while they 

are comparable at SNR=20dB.  Thus the converged values of directions of the FHC 

method are more accurate than that of the FHML method at low SNR. 

Other advantages of the FHC method are that only the power of transmitted sig-

nal is needed to be known and the correlations of received signal can be measured by 

analog devices. 

 

4.6 Summary 

In this chapter, simulation results of the FHC method are presented, and it is 

compared with the FHML method.  It is shown that the converged results of the new 

method are more accurate than that of the FHML method.  Furthermore, only the 

power of transmitted signal is needed to be known for the proposed method.  The 

FHC method is easy to implement as analog devices can be used to measure the cor-

relations of received signals. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

Direction finding and DOA estimation are used in various applications.  In mili-

tary communications and some short-range wireless communication systems, fre-

quency hopping techniques are widely used.  Some work has already been done to 

estimate directions for the frequency hopping signals.  However, the multipath prob-

lem is not considered in these methods.  Therefore, in communication systems where 

multipath propagation exists, these methods may be not effective.  Furthermore, a 

large size antenna array (the number of array elements is larger than the number of 

signal sources) is needed at the receiver, which is difficult to install on the mobile de-

vices. 

In this thesis, the Frequency Hopping Correlation (FHC) method is proposed to 

solve the problem of direction finding for the frequency hopping signals under multi-

path propagation using a two-element array.  By minimizing the difference between 

the estimated correlations and the measured correlations of received signals, the ob-

jective function is established.  Generally, the objective function is highly oscillatory 

with respect to time delay parameters.  Thus a pre-processing is used to obtain re-
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fined initial values of the time delays.  Then the Gauss-Newton algorithm is used to 

find the optimum parameters including directions.  The simulation results show that 

the FHC method is effective for both stationary and slow moving frequency hopping 

signals. 

Furthermore, the FHC method is compared with the FHML method.  When the 

Gauss-Newton algorithm is applied to both methods, the converged values of direc-

tion parameters of the FHC method are more accurate than those of the FHML 

method.  The new method has another advantage that the correlations can be meas-

ured by analog devices. 

 

5.2 Future Work 

The FHC method needs to be improved in the following aspects.  First, the 

number of unknown parameters may be reduced so that the Jacobian matrix in the 

Gauss-Newton method could have a smaller dimension.  This is to reduce the com-

putation complexity of the FHC method. 

Second, in the slow moving case it is assumed that only the direction parameters 

change with respect to hops.  In practice, other parameters (e.g. time delay) may 

change with respect to hops or time as well.  More analysis can be carried out for 

this problem in the future. 
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