
I

AN ARCHITECTURE FOR CONTEXT-AWARE APPLICATIONS

WANG XIAOHANG
(B. Sc., Huazhong University of Science and Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48632508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

ACKNOWLEDGEMENTS

I wish to extend my sincerest gratitude to my supervisors, Daqing Zhang and Jin Song

Dong, for their encouragement, ideas, and support in bringing this work to completion. I

am grateful to all my friends in Institute for Infocomm Research, for their help and ideas

throughout the course of my work. I would also like to acknowledge the support from the

National University of Singapore and Institute for Infocomm Research through a graduate

research scholarship that has made my graduate studies and research possible. I would

like to thank my family, and my girlfriend, Yuhui, for their understanding and support

during the past two years.

III

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...II

TABLE OF CONTENTS..III

LIST OF FIGURES ...V

LIST OF TABLES ...VII

ADDITIONAL PUBLICATIONS ...VIII

SUMMARY..X

CHAPTER 1 INTRODUCTION...1

1.1 UBIQUITOUS COMPUTING...1
1.2 CONTEXT-AWARE C OMPUTING...2

1.2.1 What is Context? ..2
1.2.2 What is Context-Awareness?...4

1.3 CHALLENGES IN BUILDING CONTEXT-AWARE APPLICATIONS...6
1.4 RESEARCH CONTRIBUTIONS...9
1.5 OUTLINE .. 10

CHAPTER 2 BACKGROUND AND RELATED WORK ... 11

2.1 CONTEXT-R ELATED PROJECTS .. 11
2.1.1 Application -Oriented Projects ... 11
2.1.2 System-Oriented Projects ... 14
2.1.3 Discussion of Related Work... 17

2.2 RESOURCE DISCOVERY IN UBIQUITOUS COMPUTING ENVIRONMENT..................................... 19
2.3 SEMANTIC WEB OVERVIEW ... 21

2.3.1 Semantic Web Standards .. 22
2.3.2 Jena2 Semantic Web Framework.. 24

2.4 THE ROLE OF SEMANTIC W EB IN CONTEXT-AWARE COMPUTING... 26
2.5 SUMMARY... 28

CHAPTER 3 CONTEXT MODEL... 29

3.1 ONTOLOGY-BASED APPROACH TO CONTEXT MODELING... 29
3.2 PRIMITIVE CONTEXTUAL ENTITIES ... 30
3.3 DESIGNING THE CONTEXT MODEL.. 31
3.4 APPLYING THE CONTEXT MODEL...34
3.5 SUMMARY... 36

CHAPTER 4 AN ARCHITECTURE FOR CONTEXT-AWARE APPLICATIONS.......... 38

4.1 REQUIREMENTS.. 38
4.2 ARCHITECTURE OVERVIEW .. 41
4.3 CONTEXT WRAPPER .. 42
4.4 CONTEXT AGGREGATOR... 43
4.5 CONTEXT KNOWLEDGE BASE .. 44
4.6 CONTEXT REASONER .. 45

IV

4.7 CONTEXT QUERY ENGINE .. 46
4.7.1 Query Specification ... 47

4.8 SUMMARY... 48

CHAPTER 5 IMPLEMENTATION OF SEMANTIC SPACE.. 49

5.1 COMPONENTS IN SEMANTIC SPACE... 49
5.2 WRAPPER .. 51

5.2.1 Context Triple ... 52
5.2.2 Developing Wrappers.. 53
5.2.3 Accessing Wrappers .. 57

5.3 SERVER .. 62
5.3.1 Implementation of Inference-Enabled Continuous Query.. 62
5.3.2 Accessing Server Functionality... 64

5.2 APPLICATION.. 68
5.3 SUMMARY... 68

CHAPTER 6 CASE STUDY: SITUAWAREPHONE .. 70

6.1 GENERAL DESIGN PROCESS ... 70
6.2 INTRODUCTION T O SITUAWAREPHONE ... 71
6.3 IMPLEMENTATION.. 72

6.3.1 Context Modeling... 73
6.3.2 Wrapper Development .. 73
6.3.3 Application Development ... 78

6.4 SUMMARY... 81

CHAPTER 7 CONCLUSIONS AND FUTURE WORK.. 83

7.1 CONCLUSION .. 83
7.2 FUTURE WORK...85

APPENDIX A JENA RDQL GRAMMAR ... 87

APPENDIX B JENA RULE SYNTAX.. 89

BIBLIOGRAPHY.. 90

V

LIST OF FIGURES

FIGURE 1: A SAMPLE RDQL QUERY SPECIFICATION .. 25

FIGURE 2: A SAMPLE INFERENCE RULE IN JENA2 RULE SYNTAX 26

FIGURE 3: UPPER-LEVEL CONTEXT ONTOLOGY AND EXTENDED CONTEXT ONTOLOGIES. 32

FIGURE 4: A PARTIAL XML REPRESENTATION OF UCLO... 33

FIGURE 5: XML REPRESENTATION OF T HE INSTANCE DESCRIBING A USER.................... 35

FIGURE 6: XML REPRESENTATION OF T HE INSTANCE DESCRIBING A

SCHEDULEDACTIVITY .. 36

FIGURE 7: SEMANTIC SPACE ARCHITECTURE FOR CONTEXT -AWARE APPLICATIONS....... 42

FIGURE 8: SPECIFICATION FOR AN EXAMPLE INFERENCE-ENABLED CONTINUOUS Q UERY .. 48

FIGURE 9: INTERACTION BETWEEN WRAPPERS, APPLICATIONS AND SE RVER

ARCHITECTURE 51

FIGURE 10: XML AND TRIPLE SERIALIZATION OF THE WEATHER CONTEXT 52

FIGURE 11: TRIPLE PATTERNS FOR (A) LOCATION WRAPPER & (B) WEATHER WRAPPER.. 53

FIGURE 12: CLASSES AND INTERFACE FOR WRAPPER DEVELOPMENT 55

FIGURE 13: EXAMPLE OF THE LOCATION WRAPPER FOR RFID TRACKING SYSTEM......... 57

FIGURE 14: CLASSES AND INTERFACE FOR ACCESSING WRAPPERS................................ 58

FIGURE 15: EXAMPLE OF AN APPLICATION ACCESSING A WRAPPER 60

FIGURE 16: APPLICATION CODE DEMONSTRATING THE ACCESS OF LOCATION WRAPPER 61

FIGURE 17: PROCESS FOR INFERENCE-ENABLED CONTINUOUS QUERY 63

FIGURE 18: CLASSES AND INTERFACE FOR ACCESSING SERVER FUNCTIONALITY........... 65

FIGURE 19: EXAMPLE APPLICATION REGISTERING THE QUERY OF USER’S SITUATION 67

FIGURE 20: PHYSICAL DEPLOYMENT OF SITUAWAREPHONE ... 75

VI

FIGURE 21: GUI FOR PROVIDING USER PROFILE AND SIMULATE THE LOCATION CHANGE

OF PEOPLE ... 76

FIGURE 22: GUI S FOR SIMULATING THE DETECTION OF MOVING OBJECTS, NOISE LEVEL,

DOOR STATUS OF A ROOM, AS WELL AS THE STATUS OF A DEVICE 77

FIGURE 23: GUI FOR SUPPLYING ACTIVITY-RELATED CONTEXT 77

FIGURE 24: QUERY SPECIFICATIONS OF SITUAWAREPHONE 79

FIGURE 25: SNAPSHOTS OF SITU AWAREPHONE RUNNING ON SONY-ERICSSON P900....... 80

VII

LIST OF TABLES

TABLE 1: FEATURES OF PRIMITIVE CONTEXTUAL ENTITIES ... 31

VIII

ADDITIONAL PUBLICATIONS

1. Xiaohang Wang, Daqing Zhang, Jinsong Dong, Chungyao Chin and Sanka Ravipriya

Hettiarachchi. Semantic Space: A Semantic Web Infrastructure for Smart Spaces. In

IEEE Pervasive Computing, Vol. 3, No. 2, 2004.

2. Xiaohang Wang, Daqing Zhang, Tao Gu and Hung Keng Pung. Ontology-Based

Context Modeling and Reasoning Using OWL. In Workshop on Context Modeling

and Reasoning at IEEE International Conference on Pervasive Computing and

Communication (PerCom'04), 2004, Florida.

3. Daqing Zhang, Zhengning Dai, Xiaohang Wang, Xiao Ni and Song Zheng. A New

Service Delivery and Provisioning Architecture for Home Appliances. In

International Conference on Smart Homes and Health Telematics (ICOST2004),

2004, Singapore.

4. Daqing Zhang, Xiaohang Wang, Kai Hackbarth. OSGi-Based Service Infrastructure

for Context-Aware Automotive Telematics. In IEEE Vehicular Technology

Conference (VTC Spring 2004), 2004, Italy.

5. Tao Gu, Hung Keng Pung, Daqing Zhang, Xiaohang Wang. A Middleware for

Context-Aware Mobile Services. In IEEE Vehicular Technology Conference (VTC

Spring 2004), 2004, Italy.

6. Tao Gu, Xiaohang Wang, Hung Keng Pung, Daqing Zhang. An OWL-Based Context

Model in Intelligent Environments. In Communication Networks and Distributed

Systems Modeling and Simulation Conference (CNDS'04), 2004, California.

IX

7. Daqing Zhang, Xiaohang Wang, Karianto Leman and Weimin Huang. OSGi-Based

Service Infrastructure for Context-Aware Connected Homes. In International

Conference on Smart Homes and Health Telematics (ICOST2003), 2003, France.

X

SUMMARY

The recent convergence of ubiquitous computing and context-aware computing has seen a

considerable rise in interest in applications that exploit aspects of the contextual

environment to offer services, present information, tailor application behavior or trigger

adaptation. However, as a result of the lack of generic mechanisms for supporting

context-awareness, context-aware applications remain very difficult to build and

developers must deal with a wide range of issues related to representing, sensing,

aggregating, storing, querying and reasoning of context. In order to remedy this situation,

there is a need for better understanding of the design process associated with context-

aware applications, architectural support for the entire context processing flow, and

improved programming abstractions that ease the prototyping of applications.

This research in context-aware computing has focused on the architectural support for

context-aware application development. This dissertation presents a set of requirements

for context-aware applications, based on which we introduced and implemented our

architectural support, including an ontology-based context model, a context-aware

architecture (namely Semantic Space) and a set of programming abstractions . This

architectural support along with an identified design process makes it easier to build

sensor wrappers that provide context and context-aware applications that use context. The

case study, SituAwarePhone, validates our work, and illustrates, in concrete form, the

process and issues involved in the design of context-aware software.

1

CHAPTER 1

INTRODUCTION

1.1 Ubiquitous Computing

The availability and advance of new computing and communication devices, as well as

the increased connectivity between these devices are enabling new opportunities for

people to utilize computers anywhere and anytime. This recently started era is referred to

as Ubiquitous Computing, which was first introduced by Weiser in “The Computer for

the 21st Century” [1]. By Weiser, ubiquitous computing aims to enhance computer use by

making computers available throughout the physical world, but making them effectively

invisible to the user. Ubiquitous computing can be characterized by two main attributes:

• Ubiquity: Human-computer interactions are not channeled through a single machine.

Access to computation is shift from dedicated computing machinery to ubiquitous

computing capabilities embedded in our everyday environments.

• Transparency: Computation is non-intrusive and is as invisible and as integrated into

the background of the physical environments. To avoid increasingly sophisticated

interaction between users and machines, and to allow user s to concentrate on their

tasks, computation should be distraction-free to the largest extend.

Ubiquitous computing is a phenomenon of incorporating processing and communication

capabilities into physical environments. Its major focus is to empower physical

environments and to enhance human’s interactive experience with them.

2

1.2 Context-Aware Computing

Ubiquitous computing envisions invisible computing and smooth human-computer

interactions. Making computing invisible is not a matter of the physical deployment of

computers; it is about how users perceive their interactions with computers. To achieve

invisibility in the sense of user’s perception, the interaction has to be seamlessly

integrated with users’ primary task, that is, users can focus on the tasks themselves rather

than the interactions with the tools that help them in the tasks.

Typical computer systems are generally conceptualized as input/output systems, which

heavily rely on explicit user input. This traditional model is being seen as too restrictive

in ubiquitous computing environments : users might have to spend excessive efforts in

giving input to multiple devices with heterogeneous interfaces. In contrast, ubiquitous

computing systems need to help users achieve their tasks without drawing focus away.

When computing and communication power is embedded in the physical world, users,

computers, environments, social activities and their relationships with each other can all

be rich source of context information. Using this information we can make computer

systems context-aware to minimize or even eliminate explicit user interaction. Therefore,

context-aware computing emerged from the field of ubiquitous computing as a technique

for imbuing applications with an awareness of their surroundings and situations, in order

to achieve transparent interaction.

1.2.1 What is Context?

The term “context” is widely used with different meaning. The following definitions from

WordNet [2] provide a generic understanding of the meaning of context in English:

3

Context: 1. discourse that surrounds a language unit and helps to

determine its interpretation, 2. the set of facts or circumstances that

surround a situation or event.

In the scope of ubiquitous computing, the understanding of context is different to that in

English. Despite of the appearance of context-aware computing in recent years, the

concept of context remains ill-defined. Most of the initial efforts for defining context in

ubiquitous computing were specific for certain kinds of context, for example, location and

time. Schilit et al. [3] claimed that the important aspects of context were the user location

and identities of nearby people. Brown et al. [4] and Ryan et al. [5] gave their definition

in terms of examples of context information instead of generalizing the concept. Since the

number of examples that can be given is limited, the application of this definition is also

limited. Context has also been characterized as an applications’ environment and situation

[6] and as a combination of features of the execution environment including computing,

user and physical information [7]. Generalized from previous work [8], Dey offers the

following definition, which is perhaps now the mot widely-accepted:

Context: any information that can be used to characterize the situation of

an entity. An entity is a person, place or object that is considered relevant

to the interaction between a user and an application, including the user

and the application themselves.

In this thesis, we adopt Dey’s definition as a reference. Apart from the philosophical

discussion on the semantic of context, there are some primitive forms of context that

developers agree on. Taking an object-oriented approach, we identify three classes of

physical objects (user, location, computing entity) and one class of conceptual objects

(activity) that characterize a ubiquitous computing environment. Linked together, these

objects form the skeleton of a contextual environment. They also provide primary indices

4

into associated contextual information, For example, given a location, we can acquire

related context such as indoor temperature, noise level, people and activity inside. The

identification of primary context forms the basis for our context model (CHAPTER 3).

1.2.2 What is Context-Awareness?

Context-aware computing was first introduced by Schilit and Theimer [3] in 1994 to be

software that “adapts according to its location of use, the collection of nearby people and

objects, as well as changes to those objects over time”. Since then there have been

numerous attempts to give context-aware computing a definition, most of which were

specific to application’s characteristics, such as the adaptation, reactivity, responsiveness

and sensitiveness to context. For instance, Pascoe et al. [9] define context-aware

computing to be the ability of computing devices to detect and sense (sensitiveness),

interpret and respond to (reactivity) aspects of a user’s location environment and

computing devices. In [4], context-aware applications are defined as applications that

dynamically change or adapt their behavior based on the context of the application and

the user. Fickas et al. [10] define context-aware applications (called environment-direct

applications) to be applications that monitor changes in the environment and adapt their

operation according to predefined or user-defined guidelines.

Dey et al. [11, 12] claimed it was necessary to give a more generic definition, which is

not bound to a specific characteristic (ad aptation, reactivity, responsiveness or

sensitiveness). Dey’s definition states that “a system is context-aware if it uses context to

provide relevant information and/or services to the user, where relevancy depends on the

user’s task”. According to this inclusive definition, the only requirement to be a context-

aware application is to use context, and features like adaptation, reactivity, responsiveness

and sensitiveness to context are not mandatory. This definition covers a broader range of

5

applications, for instance, applications that do not adapt to context but simply present the

context to the user, or applications that do not sense context but make use of context

detected by other computing entities. We consider this generic and inclusive definition of

context-aware computing as a reference for our work.

To help define the filed of context-aware computing, Dey has given a generic taxonomy

to the use of context-awareness: presentation of context and services to a user, automatic

execution of a service, and tagging of context to information for later retrieval [12].

Context Presentation refers to applications that simply display context information to

users, for example, an application displaying GPS coordinates to its user as she moves.

Automatic execution refers to context-triggered actions, which is the ability to execute or

modify a service automatically based on the context. Examples of applications exhibit ing

this behavior can be a tourist application capable of automatically displaying pages of

tourist information as users approach particular attractions [13]. Contextual tagging is the

ability to associate data with related context. The [14] argues that context can be a

powerful cue for recalling past events, for example, when a user is trying to recall a

particular document they were editing previously, they may not be able to remember the

name of the document, but are more likely to remember that the document was presented

at a particular meeting on a particular day with certain colleagues present.

The application of context-awareness has almost unlimited possibilities. To make it more

concrete, we list some other examples of context-aware applications in ubiquitous

computing environment:

• Location-based applications that allow users to be informed when interested things

(ATM, supermarket, restaurants, etc.) or their friends are close to them ;

• Bus tracking applications that allow users to keep track of the buses in service, for

6

example, when a bus is approaching the bus stop and how many seats is available;

• Health-care applications that monitors the health condition of elderly and warns health

givers when detecting medical emergencies;

• Emergency applications that warns residents when detecting abnormal condition

(smoke, high temperature, window breaking, etc.);

• Context-aware reminder applications that allow users to set reminders to be triggered

according to the occurrence of context events;

• Smart mobile phone application that proactively adjust profile (set vibration, change

ring volume, redirect call, etc.) to user’s situation (meeting, sleeping, working, etc.)

• Appliance control applications that automatically control appliances (adjust

temperature and lightening of room, tune volume of A/V devices, etc.) based on

residents’ preference.

1.3 Challenges in Building Context-Aware Applications

Context-aware computing has been drawing much attention from researchers for nearly a

decade. However context-aware applications will never be easily built or widely available

to everyday users until following research issues can be fully addressed:

• How to acquire context?

The problem of acquiring context is a prerequisite for any context-aware applications.

Context acquisition can be seen as the process that captures the condition of the

execution environment, converts this information into machine-understandable form,

and creates a digital surrogate for real world contextual environment. Approaches to

acquire context are manifold and include employing heterogeneous hardware sensors,

7

software information providers, and predictive approaches such as inferring user’s

situation or activity. A necessary property of context acquisition is the reusability of

sensors.

• How to represent context?

The problem of representing context is present throughout the entire data flow of

context-aware applications, from acquisition, delivery, interpretation, to usage. Raw

context data obtained from various sources comes in heterogeneous formats, and

applications without prior knowledge of the context representation can’t use the data.

Hence, an interoperable smart space requires a way to explicitly represent context

meanings (or semantics) so that independently developed applications can easily

understand them. Previous systems based on ad hoc data models lack in flexibility and

expressiveness to represent context, and also fall short in sharing context between

different applications as there is no agreement on the representation scheme. We need a

systematic approach to model context, allowing better expression of their

characteristics and better support for data interoperability.

• How to deliver context?

The delivery of context to applications consists of two problems. The first problem is

how to extract a subset of context based on a well-understood information need. For a

rich set of context acquired in the contextual environment, it is not practical or

desirable to transfer the all context just to use only a small amount of context out of it.

Hence query should be the basis for accessing context. The second problem is how to

make context available to applications . Some application can use a simple request-

response paradigm where an application poses a query and a server generates a finite

result set. However other applications may require context be sent continuously

whenever it changes . The support for query and notification mechanisms should be

8

abstract enough to hide low-level processing and communication. In that way

application developers can easily implement applications without dealing with

underlying details .

• How to infer higher-level context?

Higher-level context such as “What is the user doing?” and “What is the activity in the

room?” augments context-aware applications by providing summary descriptions about

a user’s state and execution surroundings. Usually such abstract information can not be

directly recognized by sensors. Instead, higher-level context can be inferred from basic

sensed context. For example, an application wants to deduce user’s current situation. It

could examines whether a given person is currently engaged in a meeting on the basis

of location and schedule— if he’s in the meeting location and the current time is within

the meeting’s scheduled interval, he’s likely to be at meeting. Providing a flexible

support for context inference will make the implementation of context-aware

applications much easier.

• How to support application development?

Context-awareness is an enabling technology for ubiquitous computing, so it is

commonly required when building ubiquitous computing applications . Suppose that

researchers or developers want to prototype a ubiquitous computing application, and

that their current interest is in the application’s functionality— not the specific

distributed architecture and underlying processing of its implementation. To build

ubiquitous computing applications efficiently, w e need to provide system-level support

for context-awareness, including the abstraction of programming model and context

data model. Currently many efforts in different aspects of context-awareness are being

duplicated, as common problems have to be solved over and over again in each

application. Providing a general-purpose system support for context acquisition,

9

context representation, context delivery, context inference and context use will make

the process of implementing context-aware applications much simpler .

1.4 Research Contributions

The thesis addresses several important issues in the field of context-aware computing.

The main area of work is on context modeling, architectural support, and programming

abstractions. The major contributions of the thesis are:

• An ontology-based modeling approach for support ing explicit context representation in

term of ontology instances.

• A generic architecture for supporting the acquisition, aggregation, management,

inference, and querying of context.

• A set of programming abstractions and their Java implementations for support ing the

implementation of sensor wrappers and the prototyping of context-aware applications.

• The implementation of a novel context-aware application (SituAwarePhone) that

validates and evaluates our architectural support.

The first contribution lies in a novel context modeling approach that allows context to be

explicitly described so that independently-developed systems can share context. In our

modeling approach, Web Ontology Language (OWL [15]) is adopted as representation

language to enable expressive context description and data interoperability of context.

The second contribution lies in the generic architecture (Semantic Space) and

programming abstractions that provides application designer with a flexible mechanism to

build sensor wrappers and prototype context-aware applications. The functionality

encapsulated in the architecture handles the common, time-consuming and low-level

10

details in context-aware computing, allowing designers to concentrate on the application

logic while only need a few lines of code to access and use context. One of the novelties

is the leverage of Semantic Web technologies (query, inference and knowledge base) to

enable the management, query and inference of context. Semantic Space architecture

presented in this thesis is designed to be applicable to all ubiquitous computing

applications that can usefully benefit from context-awareness. To demonstrate the

provided leverage, and to evaluate and validate the principal research contribution of our

work, we describe a case study involving the development of a prototypical context-

aware application (SituAwarePhone) using Semantic Space.

1.5 Outline

The thesis develops in the following way. CHAPTER 2 reviews the related research for

this work. This includes an in-depth discussion on existing context-aware applications

and demonstrates the potential improvements. CHPATER 3 discusses advantages of the

ontology-based approach to modeling context, and presents the design of the context

model. The use of this model is also demonstrated by examples. CHAPTER 4 establishes

a set of requirements for the architecture designed for context-aware application

development. These required features are then incorporated into the Semantic Space, a

generic architecture for context-aware applications. CHAPTER 5 presents the

implementation of Semantic Space. Semantic Space not only contains implementation of

components but also includes a set of APIs for integrating sensors and creating context-

aware applications. This chapter also introduces the provided programming abstractions

that facilitate context-aware application design. CHAPTER 6 describes the use of

Semantic Space in creating a novel context-aware application, namely SituAwarePhone,

to evaluate the suitability of our architectural solution. Finally, CHAPTER 7 contains a

summary and conclusion with suggestions for future research.

11

CHAPTER 2

BACKGROUND AND RELATED WORK

The design of a new architecture that supports the building and evolution of context-

aware applications must naturally leverage off of the work that preceded it. The purpose

of this chapter is to describe previous research in the field of context-aware computing.

This chapter will focus on both context-aware applications and existing architectural

support for building applications. This chapter also gives an introduction to service

discovery and Semantic Web technologies that play an important role in our proposed

Semantic Space architecture.

2.1 CONTEXT-RELATED PROJECTS

Many projec ts have investigated context-aware computing; the following sections provide

an overview of larger research efforts where context-awareness is a central concern.

2.1.1 Application-Oriented Projects

Many ubiquitous computing projects in the past decade have studied application-oriented

approaches to context-aware computing. These projects focused on exploiting interesting

application-dependent features of context-awareness.

2.1.1.1 Active Maps

Work on the Active Badge system [16] at Cambridge AT&T Labs is generally considered

as the starting point for context-aware computing, to be more specific, location-aware

computing. Active Badges are small devices worn by users that transmit a unique

12

identifier periodically. Sensors deployed on ceilings detect the location of the badge and

therefore determine their wearers within the building. Active Badges have been

successfully applied by Active Map [3]. The Active Map annotates the graphical floor

plans with location information gathered from users and devices (e.g. printers), displaying

enhanced map to user so that they can determine to use nearest devices. This project is

among the first works to utilized context in ubiquitous computing environment, but the

context involved is limited to location information.

2.1.1.2 CyberDesk

The CyberDesk[17] was developed at Georgia Tech’s GVU to automatically integrate

Web-based systems with context information. CyberDesk uses context related to users’

activity to integrate software modules, for example, a user highlighting a particular

appointment with a colleague from the diary will be suggested with a number of services.

This system is able to interpret the appointment and extract the relevant context that is

used by context-aware applications, for example, searching for selected text using a Web

search engine, looking up the name in address book, or sending an email to a person.

However, the system is very limited in the types of context and does not support multiple

simultaneous applications.

2.1.1.3 EasyLiving

The EasyLiving project [18] developed at Microsoft Research focuses on the supporting

technologies for intelligent environments, in particular the support for coherent user

experience in interacting with a devices based on their presence. EasyLiving encapsulates

hardware device control, internal device logic and user interface presentation as basic

13

component abstractions. All components register with a lookup service and expose a set

of attributes so that other components can interact with them. A major focus of this work

is location modeling. EasyLiving represents information about the physical relationships

between people, devices and places. Its approach uses software components to decouple

the sensors from the application, and to provide transparent communications and device

discovery mechanisms. As part of the project, an intelligent space prototype has been

created to demonstrate several applications including the teleporting of desktops among

available displays and dynamic room controllers that provide context-aware access to

devices based on location. EasyLiving extensively studied the dynamic discovery of

sensors and automatic configuration of devices, but it does not explicit ly support the

querying and inference of context.

2.1.1.4 CoolTown

CoolTown [19] developed by HP is an Web-based system to support “Web presence” for

people, places and things by associating each real world object with a Web resource.

Each real-world object is assigned with a Web resource that is automatically correlated

with its physical presence. Cooltown primarily supports the display of context to users,

for example, a user carrying a PDA electronically picks up URLs for the places traveled

through and browses related information from their associated Web pages . The main

component of the CoolTown architecture is a Place Manager that maintains a directory

with the description of the people and objects physically present in a given location. As

people and devices move, the state of the directory is updated to represent the current

state of the place at any point in time. The CoolTown project successfully created a

combined digital and physical Web, however it clearly has limitations. It does not support

the structured definition of context. Instead, it allows arbitrary Web description of context.

14

Context aggregation and querying are also outside the scope of this project.

2.1.2 System-Oriented Projects

While most of application-oriented projects related to context-aware computing relied on

ad hoc architectures and representations, it was soon recognized that a system-oriented

support was key to facilitating practical application development and deployment. In this

section we discuss a few projects that specifically address the scalability and flexibility of

context-aware applications.

2.1.2.1 Context Toolkit

The Context Toolkit [12] developed at Georgia Tech’s GVU aims to separate context

acquisition from the actual use of context. The Context Toolkit supports the acquisition

and delivery of context using three types of programming abstractions . Context Widgets

are components that provide applications with access to context sensed from their

operating environment. They free applications from the context acquisition process by

hiding the complexity of the sensors’ details . Each widget encapsulates state and a set of

event callbacks. The state is comprised of context that applications can access through

subscription. Callbacks represent the types of events that the widget can use to notify

subscribing applications. The Widget also maintains contextual state allowing external

components to retrieve context information. Context Aggregators are used to collect the

entire context about a particular entity such as a user or a room. It is responsible for

subscribing to all widgets of interest and acts as a proxy to the application, collecting

information for that particularly entity. Context Interpreters are responsible for the

interpretation of context information. They transform between different representations

formats or fuse different context into new high-level context.

15

As the seminal work in providing architectural support for context-aware computing, the

Context Toolkit is a starting point for developers to build context-aware applications in a

systematic way. However, Context Toolkit applies a simple context specification

mechanism based on attribute-value pairs, which falls short in expressiveness of

represent ing features of context (rich typing of context, relation between different context,

etc.). While it is convenient for applications to select desired context using simple

attribute-value matching, this approach offers little control because of the limited

expressiveness in selective access. Moreover, the implementation of interpreters requires

low-level programming when the application needs to infer a new type of high-level

context.

2.1.2.2 Context Fabric

The Context Fabric project [20] at UC Berkeley developed a service-oriented context-

aware infrastructure. Context Fabric provides two fundamental built- in services, namely

event service and query service, to support the acquisition and retrieval of context.

Context Fabric uses an entity-relationship based context model to represent four kinds of

context-related concepts: entities, attributes, relationships, and aggregates. Context about

each kind of entities are assigned network-addressable logical storage units called

infospaces that can be queried by applications. The Context Fabric allows application to

specify a high-level query, and based on the type of requested context, it automatically

constructs a data-flow path by selecting operators from a repository. As context is

encoded in XML, Context Fabric employs XPath as the query language.

Context Fabric’s entity-relationship based context modeling approach takes a step

forward than Context Toolkit in supporting more expressive representation of context.

While it supports automatic path composition of context processing operators, this

16

approach also restrict the expressiveness of context query due to the limited

expressiveness of type matching. Moreover, Context Fabric lacks in the support for the

inference of implicit context.

2.1.2.3 Solar

The Solar project [21] of Dartmouth College developed a graph-based programming

abstraction for context aggregation and dissemination. A Solar architecture has two kinds

of clients: Sensors as data sources and applications as data sinks. A sensor may publish a

data stream, by pushing data items called events into Solar. Some sensors also may have a

pull interface that allows users to query its current state. Applications ask Solar to find

specified sensors and to execute application-supplied data-fusion operators to compute

context. An operator is an independent data processing module that takes one or more

data sources as input and acts as another data source. A number of event processing and

routing mechanisms are designed to avoid redundant computation at intermediate nodes

for aggregation and interpretation, and reduce data transmission in large-scale context-

aware system.

Unlike the centralized design of Context Aggregators in the Context Toolkit, Solar

support the aggregation and dissemination of context using distributed event graph. This

approach eliminates the dependence on central control components, thereby helping to

achieve a high level of scalability in gathering and delivering context. Similar to the

specification language of the Context Toolkit, Solar also uses an attribute-value based

context description scheme, leading to the limited expressiveness in context

representation. In addition, the need for an application to poll a sensor to determine when

an interesting change has occurred is an unnecessary burden for application developers.

17

2.1.2.4 TEA

The Technology for Enabling Awareness[22] approaches to systematically supporting

context-awareness involving the conversion from low-level sensor data to abstract

contextual information, for example, transforming sensors values such as “number of user

>2”, “light = 90%”, “noise = 75%” into situation such as “at meeting”. This is achieved

through the Layered Perception Architecture, which consists of three layers: sensor layer,

cue layer and context layer. Output from sensors (layer 1) is regarded as low level and

requires transformations or filters before being understandable to applications.

Transformation of raw sensor data is preformed in the cues layer (layer 2), where the

output is a better interpretation of the data. The context layer (layer 3) involves the

mapping of cues to abstract situation, which forms the focus of the TEA approach. The

context layer enables applications to utilize the abstract context in order to adapt their

behaviors.

TEA’s cues and situation abstractors provide a separation of concerns between how

context is acquired and how it is used by applications. However, there is limited support

for specifying what context an abstractor or application is interested in. Also, there is

almost no support for the explicit representation and expressive querying of context.

2.1.3 Discussion of Related Work

In the previous sections, a range of characterizations and definitions for context-aware

systems has been surveyed and analyzed. We categorize context-related research projects

into application-oriented projects and system-oriented projects. The problems of

application-oriented projects lie in ad hoc architectures and limited support for flexibility,

scalability and interoperability. Related research suggests software architectures and

programming abstractions to ease the use of context when developing context-aware

18

applications.

Most recent context-related architectures have realized the importance of providing

abstract context acquisition mechanisms that is, decoupling low -level sensing and actual

context use. A common method is to provide developers with a set of reusable

components (in form of application programming interfaces) that support their

implementation tasks in sensing and handling context. Our work resembles these projects

in providing a level of abstraction between sensors and context-aware applications

(CHAPTER 4).

Current approaches to context representation generally lack of expressive power and

formal foundation. Most early projects uses attribute-value pair (AVP) based data model

to describe context, consequently, simple attribute matching is the only choice to the

context query support. Even though Context Fabric uses a more expressive entity-

relationship (E-R) model to model context and XPath to query context, it still has

problem in supporting interoperability and data sharing across independently-developed

systems. Therefore the potential improvement here is to develop an expressive context

model that can support flexible query and data interoperability of context. To advance this

matter an ontology-based context model was developed and is presented in CHAPTER 3.

The ultimate goal of using context is to make available to the system a representation of

the real-world situation. The gap between sensor data and higher-level situation has to be

filled by context inference mechanisms. Related research realizes context inference using

technologies ranging from simple format mapping to machine learning based

interpretation. However, these projects use hard coding approaches, that is, they do not

provide any generic mechanism for writing rules about context or inferring higher-level

context in a structured format. In Semantic Space, the use of ontology to handle context

lends itself directly to using logic rules to automate inference process. Using rule-based

19

inference, application developers can script rules, but write application code, to deduce

higher-level context.

Ubiquitous computing environment is comprised of large amounts of frequently changing

context; hence continuous update of new context to applications is especially useful for

context delivery. Besides simple query-response mechanisms, some projects applied

subscription-based context delivery protocols. However, none of previous systems

provides support for both the continuous notification and expressive query of context. We

advance this matter by providing continuous query support (CHAPTER 4). Applications

can register very expressive queries that specify their interests over changing context; the

query service continuously filters and synthesizes incoming context from sources, and

delivers streaming results to the appropriate applications .

2.2 RESOURCE DISCOVERY IN UBIQUITOUS COMPUTING
ENVIRONMENT

Networked devices, ranging from tiny sensors to powerful devices provide a variety of

contextual information. It is very important to dynamically locate and configure these

context providing devices (or rather their software wrappers). Current research in

resource (or service) discovery protocols make devices and services hosted by them easier

to use; they facilitate interaction between computing entities, with an aim to approach

zero-configuration overhead and therefore free users from administrative and

configuration work. General-purpose support for resource discovery provides a basis for

the realization of the dynamic discovery of context providers. We will now briefly review

some of the general-purpose discovery protocols : SLP, Jini and UPnP. The following

section looks at each of them in turn.

• Service Location Protocol

20

Service Location Protocol (SLP) [23] is an IETF standard for enabling IP -based

applications to automatically discover the location of a service. The SLP defines three

“agents”: User Agents (UA) that perform discovery on behalf of client software,

Service Agents (SA) that advertise the location and attributes on behalf of services, and

Directory Agents (DA) that store information about the services announced in the

network. SLP has tw o different modes of operation: when a DA is present, it collects

all service information advertised by SAs and the UAs unicast their requests to the DA,

and when there is no DA, the UAs repeatedly multicast the request they would have

unicast to a DA. SAs listen for these multicast requests and unicast their responses to

the UA.

• Jini

Jini [24] is a service discovery protocol developed by Sun Microsystems. Its goal is to

enable truly distributed computing by representing hardware and software as Java

objects that can form themselves into communities, allowing objects to access services

on a network in a flexible way. Service discovery in Jini is based on a directory service,

similar to the Directory Agent in SLP, named the Jini Lookup Service (JLS). JLS is

necessary to the functioning of Jini, and clients should always discover services using

it and can not access services directly.

• Universal Plug and Play

Universal Plug and Play(UPnP) is an architecture for peer-to-peer network connectivity

of devices and computers. It’s introduced as an extension to the Intel’s plug and play

peripheral model In UPnP, a device can dynamically join a network, obtain an IP

address, convey its capabilities upon request, and learn about the presence and

capabilities of other devices. Finally, a device can leave a network smoothly and

automatically without leaving any unwanted state behind [25].

21

Simple Service Discovery Protocol (SSDP) [26] was created as a lightweight discovery

protocol for UPnP, and it defines a minimal protocol for multicast-based discovery.

SSDP can work with or without its central directory service. When a service wants to

join the network, first it sends an announcement message to notify its presence to the

rest of the devices. This announcement may be sent by multicast, so all other clients

(each with an UPnP control point) will see it. After the client has retrieved a

description of the device, it can send control message to a device’s service using

remote procedure call. Control messages are expressed in XML using the Simple

Object Access Protocol (SOAP).

Unlike Jini and SLP which rely on centralized directory mechanism, UPnP does not

require the presence of a central point. The support for peer-to-peer connectivity is

desired in ubiquitous computing environment. From a system implementation

perspective, the programming of UPnP services is language independent. Therefore we

apply UPnP in our architecture to support the automatic discovery of context providing

components.

2.3 SEMANTIC WEB OVERVIEW

Today's World Wide Web infrastructure is moving towards the Semantic Web vision that

aims to make Web resources more readily accessible to automated processes by adding

metadata annotations that describe their content [27]. In this way, the Semantic Web can

allow both humans and computers to make use of data in ways that previously haven't

been possible.

There have been a wide range of applications growing from Semantic Web technologies.

According to [28], current Semantic Web-enabled software applications include:

• Content creation that allows authors to connect metadata (subject, creator, location,

22

language, copyright status, or any other terms) with documents, making the new

enhanced documents searchable;

• Content management that allow large-scale Web sites to be managed dynamically

according to content categories customized for the site managers;

• Resource description and discovery that allow organizations to integrate enterprise

applications, publishing and subscriptions using flexible semantic models;

• Data reuse that standardizes RDF and OWL based data models, allowing data reuse

from diverse sources .

The potential of Semantic Web can never be limited to the above mentioned applications .

In this thesis, we exploit the use of Semantic Web technologies in a new area – context-

aware computing. In this thesis, we will present a software architecture that makes use of

Semantic Web technologies to support explicit representation, expressive querying, and

rule-based inference of context in ubiquitous computing environment. Before we start to

present the details of our system, we give an overview of the Semantic Web technologies.

2.3.1 Semantic Web Standards

The essence of the Semantic Web is a set of standards for the exchange of descriptions of

Web entities and their relationships, together with a set of supporting tools that provide a

federated ontology-based approach to knowledge management. To fully realize Semantic

Web, a number of standards (XML, RDF, RDFS, DAML, OIL, OWL, etc.) for describing

and exchanging machine-understandable content have been developed. Among various

standards, the W3C Consortium announced final approval of two key standards: the

Resource Description Framework (RDF) and the Web Ontology Language (OWL) [28].

RDF and OWL provide a standardized framework for asset management, enterprise

23

integration and the sharing and reuse of data on the Web.

• XML

At the foundation, XML provides a set of rules for creating vocabularies that brings

structure to both documents and data on the Web. XML also gives clear rules for

syntax when XML Schemas serve as a method for composing XML vocabularies.

XML is a powerful, flexible surface syntax for structured documents; however it does

not impose semantic constraints on the meaning of documents.

• RDF

RDF [29] is a standard a way for making simple descriptions about Web content. Built

based on XML which is used for syntax, RDF contains a clear set of rules for

providing simple descriptive information at semantic level. RDF Schema (RDFS) then

provides a way to combine multiple RDF descriptions into a single vocabulary.

RDF is based on a concrete formal model that uses directed graphs for representing the

semantics of metadata. The core of every RDF expression is in a (subject, predicate,

object) triple. Every triple consist of the subject (resource being described), predicate

(named property), and object (the value of this property). Resources and predicates are

represented by URIs. This abstract syntax of RDF is serialized using several alternative

concrete syntaxes, like RDF/XML [30], N3[31], N-Triple[32].

• OWL

OWL [15] by its nature is to develop domain-specific vocabularies through the use of

ontology. Within the domain of knowledge representation, the term ontology refers to

the formal, explicit description of concepts, which are often conceived as a set of

entities, relations, instances, functions, and axioms. Ontology can encode knowledge in

a domain and also knowledge that spans different domains , thereby enabling a level of

knowledge reuse.

24

Among Semantic Web standards, OWL provides a language for formally defining

structured, Web-based ontologies which delivers richer integration and interoperability

of data among descriptive communities. OWL builds on RDF and RDFS and adds

formal vocabulary for describing properties and classes, for example, whether a class is

equivalent to or disjoints with another class, whether a property is transitive, symmetric,

functional or inverse to another property.

OWL provides three increasingly expressive sublanguages: OWL Lite, OWL DL and

OWL Full. OWL Lite supports classification hierarchy and simple constraints. OWL

DL supports maximum expressiveness while retaining computational completeness (all

conclusions are guaranteed to be computable) and decidability (all computations will

finish in finite time). OWL DL includes all OWL language constructs, but they can be

used only under certain restrictions (for example, while a class may be a subclass of

many classes, a class cannot be an instance of another class). OWL DL is so named

due to its correspondence with description logics, a field of research that has studied

the logics that form the formal foundation of OWL. OWL Full is designed for

maximum expressiveness and the syntactic freedom of RDF with no computational

guarantees. OWL Full allows an ontology to augment the meaning of the pre-defined

(RDF or OWL) vocabulary. Reasoning mechanism will not be able to support

complete reasoning for all features of OWL Full.

2.3.2 Jena2 Semantic Web Framework

Jena2 is a software framework developed by Hewlett-Packard Labs Bristol for building

Semantic Web applications [33]. It is an implementation for W3C’s Semantic Web

recommendation, provides a programmatic environment for RDF and OWL, including the

support for expressive RDF query, generic rule-based inference, and scalable persistent

storage.

25

The heart of the Semantic Web recommendations is the RDF Graph [29], as a universal

data structure that consists of a set of triples. Jena similarly has the Graph as its core

abstraction for manipulating RDF and OWL. The key supports of Jena2 include:

• RDF and OWL API

Jena2 supports flexible presentations of RDF graphs to application programmer s. This

allows easy access to and manipulation of data in RDF graphs, enabling programmers

to navigate the triple structure in an abstract way. Particularly, the Model API presents

the graph using the terms and concepts from the RDF recommendations, and the

Ontology API presents the graph using concepts from OWL and RDFS.

• RDQL Query Language

Jena2 supports RDQL (RDF Data Query Language [34]), the de facto reference

implementation of RDF query language. This allows programmers to define declarative,

SQL-styled query statements to extract information from a RDF graph.

An RDQL consists of a graph pattern expressed as a list of triple patterns. Each triple

pattern is comprised of named variables and RDF values(URIs or literals). An RDQL

query can additionally have a set of constraints on the values of those variables, and a

list of the variables required in the answer set. Figure 2 shows a self-explanatory

RDQL query asking “all the rooms with temperature below 20 degree”. The detailed

grammar of RDQL is listed in APPENDIX A.

Figure 1: A sample RDQL query specification

• Scalable RDF Persistence

The Jena2 persistence subsystem implements an extension to the Model API that

SELECT ?room
WHERE (?room, rdf:type, ss:Room),
 (?room, ss:hasTemperature, ?temperature)
AND (?temperature < 20)
USING ss FOR <http://www.i2r.org.sg/semanticspace#>,
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

26

provides scalable persistence for RDF models through use of a back-end database. It

also supports a fast-path capability for RDQL queries that dynamically generates SQL

queries within a relational database.

• Rule-Based Inference

The Jena2 reasoner subsystem includes a generic rule based inference API together

with configured rule sets for RDFS and for the OWL Lite. These reasoners can be used

to construct inference models which show the RDF statements entailed by the data

being reasoned over.

This general-purpose inference engine supports forward chaining reasoning that allows

developers to define their own horn-logic rules. The rule specification comprises a list

of antecedents (body) and a list of consequents (head). Each element in the head or

body is a set of conjunctive triple patterns, that is, a triple of nodes to represent

constant URI, literal graph nodes, as well as variables or wildcards. For example,

Figure 2 shows a rule expressing the fact that, given “which room is the user in?” and

“which building is the room a part of?” we can derive “which building is the user in?”.

The detailed rule syntax of Jena2 inference engine is given in APPENDIX B.

Figure 2: A sample inference rule in Jena2 rule syntax

2.4 THE ROLE OF SEMANTIC WEB IN CONTEXT-AWARE COMPUTING

Semantic Web enables both humans and computers to exchange and process data in ways

that previously haven't been possible. While the Semantic Web standards and the

supporting tools are originally designed for Web-based applications , we show that it is

well suited to many requirements of ubiquitous computing environments.

type(?user,User) ∧ type(?room,Room) ∧ type(?building,Building) ∧
locatedInRoom(?user,?room) ∧ isPartOf(?room,?building)
=>locatedInBuilding(?user, ?building)

27

From a representation point of view, using ontologies to model context in ubiquitous

computing environments offers several advantages . First, OWL is an expressive language

that can be used to describe rich features of context (e.g., various types of entities,

properties of entities , relationships between entities, and constraints on this information).

By allowing ubiquitous computing entities to share a common understanding of the

structure of context, OWL ontologies can enable independent-developed applications to

share and interpret contexts based on their semantics, even when these applications don’t

have predefined agreements on how they should interoperate. Additionally, ontologies’

hierarchical structure lets application developers reuse domain ontologies (for example,

of people, devices, and calendar) in describing context and build a practical context

model without starting from scratch. Further more, because context described in

ontologies have explicit semantic representations, ontology-described context lends itself

directly to the use of knowledge base to support expressive query and automated

inference.

When context is represented in OWL/RDF, we can leverage Semantic Web tools to

facilitate different management and processing tasks for context-aware applications. By

applying Semantic Web inference engine, context-aware applications can use specific

logic rules to deduce implicit, higher -level context from explicit, lower -level context.

Taking this approach, developers can customize context inference simply by defining

rules. Further more, Semantic Web query service can be leveraged to facilitate expres sive

context query, allowing applications to access context through the use of declarative

queries.

Another important role of Semantic Web lies in the context acquisition. While Semantic

Web is the most effective medium for people to get information, it also can be seen as a

rich context source for all kinds of context-aware applications. As the Semantic Web

28

matures, the future Web will be populated with vast amount of explicit represented

information that will be invaluable for acquiring context. Given the interoperability of

ontologies, Semantic Web annotations such as street directories, restaurant menus and

personal profiles can be incorporated into ubiquitous computing applications as useful

context.

The application of Semantic Web can never be limited to Web-based systems, it also has

great potential in ubiquitous computing, specifically context-aware computing. In this

paper, we will present our approach to exploit the use of Semantic Web technologies in

building a software architecture for context-aware applications.

2.5 SUMMARY

This CHAPTER has presented a comprehensive survey of research projects related to

context-aware computing. Application-oriented projects tend to offer ad hoc, application-

specific mechanisms to application design and, in general, often neglect the support for

flexibility, scalability and interoperability of context-aware systems. System -oriented

projects specifically address the architectural solution for context-aware applications. We

have learned quite a bit from previous work. As we will see in CHAPTER 4, based on we

extract from related work a set of design requirements that would be useful across all

context-aware applications. They include context capture, explicit representation, context

inference, expressive query, continuous delivery, dynamic discover and programming

abstraction.

Apart from related work, this chapter also introduced background knowledge about

Semantic Web, which is a part of the enabling technologies for context-awareness in our

approach. Following chapter will present the use of Semantic Web standards to design an

ontology-based context model.

29

CHAPTER 3

CONTEXT MODEL

Context representation is an important part of ubiquitous computing environment, and an

appropriate context model is the basis for context representation. There are different kinds

of context with different characteristics and complex interrelationships. A generic

architecture for context-awareness should use a systematic approach for context model

that expressively captures the rich features of context. Furthermore, the determination of

the context model should consider data interoperability issues, since the context-aware

architecture is expected to support independent ubiquitous computing applications. In

addition, the context model should be extensible to allow adding new kinds of context

that have not been anticipated during the architecture design. In this chapter , we present

an ontology-based context model that can fulfill the above requirements.

3.1 ONTOLOGY-BASED APPROACH TO CONTEXT MODELING

Within the domain of knowledge representation, the term ontology refers to the formal

and explicit description of domain concepts, which are often conceived as a set of entities,

relations, instances, functions, and axioms. Among Semantic Web standards, OWL is

used to define and instantiate ontologies that let distributed computing entities exchange

and process information based on a common vocabulary. We observed that using

ontologies to model contexts in pervasive computing environments offers several

advantages:

• OWL is a structured representation language that is sufficiently expressive to describe

rich features of context, including types of contextual entities, properties of entities,

relationships between entities, and constraints on entities and relationships.

30

• By allowing ubiquitous computing entities to share a common understanding of

context structure, OWL ontologies enable applications to process contexts based on

their semantics.

• Ontologies’ hierarchical structure lets developers reuse domain ontologies (for example,

of people, devices, and activities) in describing context and build a practical context

model without starting from scratch. The ontology approach is extensible to add new

concepts about context in a hierarchical manner.

• Because context described in ontologies have explicit semantic representations,

Semantic Web tools such as declarative query, logic inference, and knowledge base

can be directly leveraged. Incorporating these tools into context-aware architecture

facilitates context management and processing.

3.2 PRIMITIVE CONTEXTUAL ENTITIES

With the increase of complexity in ubiquitous computing environment, it is useful to

identify general context that is applicable to context-aware applications. Taking an object-

oriented modeling approach, we have identif ied three classes of physical entities (user,

location, computing entity) and one class of conceptual entity (activity) that play an

critical role in characterizing a ubiquitous computing environment. Properties of these

entities , as well as the relationships between them, form the skeleton of a general

contextual environment. Furthermore, primitive contextual entities can provide indices

into associated context, for example, given a location, we can acquire related context such

as the temperature and noise level of it, people and activity inside it, and so on. The

identification of primary contextual entities forms the basis for our ontology-based

context model.

31

To model primitive context, the context model should be able to represent intrinsic

context, that is , attribute of a contextual entity (e.g., a user’s name) as well as extrinsic

context, which is a relationship between entities (e.g., a user is in a location). Additionally,

the context model needs to represent static pieces of context (e.g., an email address of a

user) that don’t change or change slowly, as well as dynamic context (e.g., a user’s

location) which changes often. The desired features of context modeling are summarized

in Table 1.

Table 1: Features of Primitive Contextual Entities

 Static / Intrinsic Dynamic / Intrinsic Static / Extrinsic Dynamic/ Extrinsic

U
se

r

name, SSN ,
address, e-mail,
DoB , title

heart beat rate, blood
pressure, temperature,
situation(e.g. meeting,
sleeping), mood

a user is a friend of
another user, a user
owns a device, a
user is licensed to
use a software

a user is in a
location, a user is in
the same location
with another user, a
user is involved in
an activity

L
oc

at
io

n

name, size
coordinates,
type(e.g. district ,
building, room),

temperature, light,
noise, door status
(open, closed), number
of users in the room

a room is a part of
building, a location
is disjoint with
another location

a room is occupied
by user(s), a room is
hosting activity(s), a
location is equipped
with device(s)

C
om

p.

E
nt

ity

name, mode,
product sn, type,
capability
attributes

status(e.g. whether a
PowerPoint is running,
whether a mobile
phone is being used)

a device is own by a
user, a software is
licensed to a user

a device is within a
room, a device is
being used in an
activity

A
ct

iv
it

y

name, time,
type(e.g.
meeting,
sleeping, taking
call, discussing)

status(e.g. obsolete
activity, ongoing
activity, future
activity)

attendees, location,
involved computing
entity(e.g. projector,
PowerPoint)

attendee(s) currently
present at the
activity

3.3 DESIGNING THE CONTEXT MODEL

Ubiquitous computing environments cover a range of environment types such as homes,

offices, workplaces, classrooms, and vehicles. Instead of trying to completely model all

types of context in different kinds of contextual environments with varying features , we

32

define an Upper-Level Context Ontology (ULCO) to provide a set of basic concepts

common across different environment types. Among different types of context, we

choose to model primitive contextual entities and a set of their sub-classes in

ULCO(Figure 3).

Figure 3: Upper-level context ontology and extended context ontologies

We use OWL to express ontologies of the context model. Description of context is

structured owl:Class, each of which describing a physical or conceptual object in the

contextual environment. Each class is associated with its attributes (represented in

owl:DatatypeProperty) and relationships with other classes (represented in

owl:ObjectProperty) to describe both intrinsic and extrinsic context. The built- in

property rdfs:subClassOf creates a easy way for developers to add new context

hierarchically. Following shows the partial OWL/XML representation of UCLO.

33

Figure 4: A partial XML representation of UCLO

OWL can describe concepts that are more expressive than entity-relationship models –

OWL can include formal restriction and characteristics on classes and properties,

enabling the expression of more features about context. In the XML segment described in

Figure 4, we define the class IndoorLocation and the class OutdoorLocation to be

disjoint to guarantee that an indoor place cannot simultaneously be an instance of an

01.<!-- name space and ontology definition-->
02.<rdf:RDF
03. xmlns=”http://www.i2r.org.sg/semanticspace#”
04. xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
05. xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
06. xmlns:owl=”http://www.w3.org/2002/07/owl#”
07. xml:base="http://www.i2r.org.sg/semanticspace#">
08.<owl:Ontology
09. rdf:about=”http://www.i2r.org.sg/semanticspace#”
10. dc:title="Semantic Space's Upper-Level Context Ontology "/>
11.<!-- partial definition of classes -->
12.<owl:Class rdf:ID="ContextEntity"/>
13.<owl:Class rdf:ID="Location">
14. <rdfs:subClassOf rdf:resource="#ContextEntity"/>
15.</owl:Class>
16.<owl:Class rdf:ID="IndoorLocation">
17. <rdfs:subClassOf rdf:resource="#Location"/>
18.</owl:Class>
19.<owl:Class rdf:ID="OutdoorLocation">
20. <rdfs:subClassOf rdf:resource="#Location"/>
21. <owl:disjointWith rdf:resource="#IndoorLocation"/>
22.</owl:Class>
23....
24.<owl:Class rdf:ID="User">
25. <rdfs:subClassOf rdf:resource="#ContextEntity"/>
26.</owl:Class>
27.<!-- partial definition of properties-->
28.<owl:ObjectProperty rdf:ID="locatedIn">
29. <rdfs:domain>
30. <owl:Class>
31. <owl:unionOf rdf:parseType="Collection">
32. <owl:Class rdf:about="#User"/>
33. <owl:Class rdf:about="#Activity"/>
34. <owl:Class rdf:about="#Device"/>
35. </owl:unionOf>
36. </owl:Class>
37. </rdfs:domain>
38. <rdfs:range rdf:resource="#Location"/>
39. <owl:inverseOf rdf:resource="#contains"/>
40.</owl:ObjectProperty>
41.<owl:DatatypeProperty rdf:ID="SSN">
42. rdf:type rdf:resource=
43. "http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
44. <rdfs:domain rdf:resource="#User">
45. <rdfs:range rdf:resource=
46. "http://www.w3.org/2001/XMLSchema#string"/>
47.</owl:DatatypeProperty>
48.</rdf:RDF>

34

outdoor location (line 21). We also define the attribute SSN of the class User to be

InverseFunctionalProperty so that it can be used as a unique key for identification of a

user (line 43).

To let developers customize the context model for a particular ubiquitous computing

environment, ULCO allows the definition of new concepts in term of subclasses to

complement the upper-level classes. A new application that needs additional classes can

obtain them by inheritance from the ULCO classes, forming an Extended Context

Ontology, as Figure 3 shows. This lets application developers easily build detailed context

models for a new contextual environment. Moreover, by providing shared terms and

definitions for context, ULCO supports better interoperability between extended

ontologies.

Knowledge reuse is one important advantage of ontologies. When defining context

ontologies, w e integrated consensus domain ontologies such as friend-of-a-friend (FOAF,

xmlns.com/foaf/0.1), RCAL Calendar (www.daml.ri.cmu.edu/Cal), and FIPA Device

Ontology (www.fipa.org/specs/fipa00091/XC00091D.html) into ULCO to model

context about user, activity, and device respectively. These well-defined ontologies

provide generic vocabularies that suit context ontologies’ requirements - we need only

add additional properties useful to ubiquitous computing environments. For example,

FOAF defines simple relationship between people (that is, friendOf), but we extend it

to support richer properties such as supervisorOf, studentOf, and colleagueOf to

describe specific information.

3.4 APPLYING THE CONTEXT MODEL

The nature of context representation is to create a digital surrogate for real world

contextual environment. Using the context model, we represent context as ontology

35

instances and associated properties (context markups), which applications can

semantically understand and process.

Context often originates from diverse sources, leading to dissimilar approaches to

generating context markups. Static context such as a person’s name and scheduled

seminar time have relatively slow change rates, and users often supply th is information.

Users also usually generate markups of static context. For example, we use a Web-based

application that let users create online profiles based on the ontology class User defined

in the context model. Figure 5 shows the context markup that describes static context

about user XiaohangWang. (Throughout the thesis, we assume www.i2r.org.sg/

semanticspace# as the default base namespace.)

Figure 5: XML representation of the instance describing a User

Each OWL instance has a unique URI, and context markups can link to external

definitions that are not directly included through these URIs. For example, the URI

www.i2r.a-star.edu.sg/SemanticSpace#XiaohangWang refers to the user w e just

defined, and the URI www.i2r.a-star.edu.sg/SemanticSpace#Room209 refers to a

specific room defined elsewhere.

Some static context is not directly inputted by users, but extracted from software

resources. For example, to generate context markup for scheduled activit ies, we make use

of Retsina Semantic Web Calendar Agent (http://www.daml.ri.cmu.edu/Cal), which

automatically transforms event schedules from Microsoft’s Outlook2000 into instances of

<User rdf:about=”XiaohangWang”>
<name>Xiaohang Wang</name>
<mbox>xwang@i2r.org.sg</mbox>
<homepage rdf:resource=”www.i2r.org.sg/~xiaohangWang”/>
<office rdf:resource=”#Room209”/>
<mobilePhone>6789</mobilePhone>
<supervisorOf rdf:resource=#DaqingZhang”/>
<supervisorOf rdf:resource=#JinsongDong”/>
<!-—More properties not shown in this example—->

</User>

36

ontology class ScheduledActivity, as Figure 6.

Figure 6: XML representation of the instance describ ing a ScheduledActivity

Hardware and software information sources usually provide dynamic context such as

user’s location, current time, noise, or temperature. For dynamic context that change

frequently, automated programs are involved in marking up this information. Consider

the RFID (Radio Frequency Identification) location system that we developed to tracks

users’ indoor location by detecting the presence of body-worn tags. When the user

XiaohangWang enters Room209, the RFID sensor could detect his presence and

automatically compose the following context markup.

3.5 SUMMARY

This chapter argued the advantages of ontological approach to context modeling, and

presented an ontology-based context model that essentially enables the formal, explicit

representation of context. To achieve better extensibility and interoperability, the context

model is designed into a two-level hierarchy. Upper-level context ontology provides a

standard vocabulary modeling primitive contextual entities that are common across all

context-aware applications. Developer could further extend the upper-level ontology with

additional classes and properties , forming an extended context ontology to detail a

<ScheduledActivity rdf:id=" http://www.i2r.org.sg/event#040809a">
<title>Semantic Space Introduction</title>
<description>An infrastructure for context-awareness</description>
<startTime>20040809T090000</startTime>
<endTime>20040809T110000</endTime>
<hasLocation rdf:resource="#MeetingRoom609"/>
<attendee rdf:resource="#XiaohangWang”/>
<attendee rdf:resource="#YuhuiWu”/>
<!—-More attendees are not shown in this example—->

</ScheduledActivity>

<User rdf:about=”#XiaohangWang”>
<locatedInRoom rdf:about=”#Room209”/>

</User>

37

specific contextual environment. In Semantic Space, sensor input and other contextual

data are transformed into semantic markups based on the context ontology before flow ing

to the context infrastructure and applications. In this way, context can be semantically

exchanged between independently -developed systems. Furthermore, this approach creates

an opportunity for us to incorporate Semantic Web technologies , such as query, inference

and knowledge base, into the context architecture to support processing and management

tasks.

38

CHAPTER 4

AN ARCHITECTURE FOR CONTEXT-

AWARE APPLICATIONS

An architectural support for context-aware applications should provide generic

functionality to address the necessary requirements of context-aware computing. The goal

of this chapter is to identify these essential requirements and presents a generic context

architecture that both provides necessary features and programming abstraction. This

architecture incorporates technologies from Semantic Web community in efficiently

supporting various tasks in context-awareness. More precisely, the context infrastructure

is designed to provide application developers with a convenient mechanism for

supporting context-awareness through an appropriate set of abstractions for integrating

sensors and building applications.

4.1 REQUIREMENTS

This section uses observations obtained from context-rela ted projects and our context-

aware connected home project[35] to establish a generic set of requirements for

supporting context-aware applications within ubiquitous computing environment. The

objective of this analysis is to identify the core architectural features required by a context

architecture to better facilitate context-awareness.

• R1: Context Capture

The first step to use context is to capture context from the contextual environment.

This introduces a requirement to support a wider variety of context sensed from both

physical and virtual world. Physical context includes anything that can be sensed by

39

hardware devices such as RF devices or environment sensors. Virtual context refers to

context obtained through the use of software components, for example, monitoring

keyboard activity, device status or processor load.

• R2: Explicit Representation

Raw context obtained from sources comes in heterogeneous formats, and applications

without prior knowledge of its representation can’t use this data. Therefore, an

interoperable system support for context-aware applications requires a way to

explicitly represent context’s meanings (or semantics) so that independently developed

applications can easily understand them.

• R3: Context Inference

For applications to successfully utilize context in a meaningful way, inference of

higher-level context is required. Higher-level context (e.g. what is the user doing? w hat

is the activity in the room?) augments context-aware applications by providing

summary descriptions about a user’s state and surroundings. As sensor devices can’t

directly recognize such context, the context architecture should provide a support for

applications to infer this information from basic sensed context.

• R4: Expressive Query

While the contextual environments may maintain a large amount of context, a

particular context-aware application only needs to selectively access a subset of the

context. The context architecture should be able to answer expressive queries that can

well specify application’s context need - for example, “who is in the room with the

user?”, “w hen will the meeting the user is attending end?”. Query involves application

developers defining their context need using declarative query specification.

• R5: Continuous Delivery

40

In a highly dynamic ubiquitous computing environment, the delivery of context based

on request-response mode is not able to continuously feed applications with up-to-date

context; application developers have to handle this problem by polling context sources

in an ad hoc manner . To advance this matter, the context architecture should support

continuous context delivery mechanism in which applications register query

specifications, and a continuous query engine filters the query result to deliver

streaming context to applications.

• R6: Dynamic Discovery

The dynamism of ubiquitous computing environment influence the need to support

discovery and configuration of context sources (or their software wrappers). When a

new context source joins the contextual environment, the context architecture and

applications should be able to locate and access it , and when the context source leaves

the contextual environment, applications should be aware of its unavailability to avoid

stale information. A dynamic discovery mechanism should include support for the

discovery life cycle presented in CHAPTER 2, including advertisement and discovery.

• R7: Persistent Storage

Exploiting context through persistence involves useful information being gathered

from the contextual environment and stored for later retrieval. Persistence can be

exploited by applications themselves to infer new knowledge or establish trends.

Consider a tour guide application, location of users can be persistently stored and later

utilized to determine the popular sites within the city and information that is often

requested at those sites.

• R8: Programming Abstraction

Context-aware applications must be able to utilize a wide range of computing devices,

communications and sensing technologies and implement their own functionalities

41

irrespective of the underlying architecture. To ease the development of, a system

support for context-awareness needs a set of programming abstractions to decouple

enabling mechanisms with application’s functionality. These programming abstractions

allow developers to implement context-aware applications and to integrate sensor

components in a simple way without dealing with low -level processing.

4.2 ARCHITECTURE OVERVIEW

Based on the requirements specified in the previous section, the remainder of this chapter

introduces the key components of Semantic Space architecture before detailing the design

of a prototype implementation. Semantic Space provides a generic architectural support

that allows context to be represented as semantic markups that applications can easily

interpret. It enables applications to access context using queries, and support the inference

of higher-level context from basic context using logic rules. One such architecture is

maintained in each smart space (or contextual environment), which is often bound by the

physical space in a non-restricted way. For example, two or more rooms may be joined to

form a smart space, or a single room may be split into multiple smart spaces.

Semantic Space architecture consists of collaborating components, as shown in Figure 7

Context Wrappers obtain raw data from software and hardware sensors, transform this

information into semantic representation and publish it for other components to access.

Context Aggregator discovers distributed wrappers, gathers context from them and

updates Context Knowledge Base (KB) asynchronously. Context KB dynamically links

context into a single coherent data model, and provides interfaces for context reasoner

and context query engine to manipulate stored context. Context Reasoner is a rule-based

inference engine that can infer higher-level context from stored context. Context Query

Engine is responsible for handling quer ies about both stored context and inferred, higher-

42

level context.

Figure 7: Semantic Space architecture for context-aware applications

4.3 CONTEXT WRAPPER

Context wrappers obtain raw context information from various sources such as hardware

sensors and software programs and transform them into context markups. Some context

wrappers, including the location context wrapper, the environment context wrapper

(which gathers environmental information such as temperature, noise, and light from

embedded sensors), and the door status context wrapper (which reports the open or closed

status of doors in each room), work with the hardware sensors deployed in the smart

space. Software-based context wrappers include the activity context wrapper, which

extracts schedule information from Microsoft’s Outlook 2000; the device context wrapper,

which monitors the status of different networked devices (such as voice over IP or mobile

phones); the application context wrapper, which monitors the status (idle, busy, closed) of

43

applications such as JBuilder, Microsoft Word, and RealPlayer from their CPU usage;

and the weather context wrapper, which periodically queries a Weather Web Service

(www.xmethods.com) to gather local weather information.

All context wrappers are self-contained and self-configured components that support a

unified interface for obtaining context from sensors and providing context markups to

applications and aggregator. We implemented these wrappers as Universal Plug and Play

services that can dynamically join a local network, obtain IP addresses, and multicast

their presence for others to discover. Context wrappers can publish context, and

applications can register to be notified of context changes detected by the wrapper.

The use of context wrapper provides an abstract programming abstraction for context

acquisition - it helps to (i) hide the specifics of input sensors and software from the

application developer, (ii) allow changes with minimal impact on applications, and (iii)

provide reusable building blocks. Besides the abstract programming model, the role of

context wrapper in transforming raw context into semantic markups is very important in

that independently developed applications are able to understand and process context

based on its semantics.

4.4 CONTEXT AGGREGATOR

Context aggregator discovers context wrappers and gathers context markups from them.

The need for aggregation comes in part from the distributed nature of context, as context

must often be retrieved from distributed sensors via software components. Rather than

have an individual context-aware application access each distributed wrappers in turn,

aggregator gather all context markups, making distributed context available within a

single point. Hence the use of aggregator provides an additional separation of concerns

between context acquisition and actual context use. A part from separation of concerns,

44

context aggregation is critical for supporting knowledge-based management and

processing tasks, such as expressive query and logic inference of context.

We implemented the context aggregator as an UPnP control point that inherits the

capability to discover wrappers and subscribe to context changes. Once a new wrapper is

attached to the smart space, aggregator will discover it and register to published context.

Whenever a wrapper detects the change of context, aggregator is notified and then asserts

updated context markups into context KB.

4.5 CONTEXT KNOWLEDGE BASE

Residing in each smart space, context KB provides support for scalable storage and

knowledge management of context. A context KB stores the extended context ontology

for that particular contextual environment and context markups that are either given by

users or gathered from distributed wrappers. It dynamically links context ontology and

context markups into a single semantic model and provides an interface for the query

engine and reasoner to manipulate correlated context.

It is important to note that context knowledge base is different from a relational database

that purely supports storage and query. From a knowledge management perspective,

“data” of context is low-level facts provided by input sources . When data is connected

based on relations, it can answer the “who”, “when”, “what”, “where” questions of

context, for example, “where is the user”, “who is in the room”, “when will the activity

begin”. However, according to Ackoff’s classic definition, “knowledge” is the application

of data and information that is able to answer “how -to” questions [36]. A knowledge base

allows the inference of implicit information from explicit one, for example, if the context

KB (coupled with inference engine) knows “the user is in the meeting location” and “the

current time is within the meeting’s scheduled interval”, it then can deduce that “the user

45

is at the meeting”.

Contexts in ubiquitous computing environment display very high change rates, so the

context aggregator must regularly update the context KB with fresh contexts. The scope

of contexts that the context KB manages also changes depending on the availability of

wrappers. Application developers can add a new wrapper to expand the scope of context

in a contextual environment or remove an existing wrapper when the contexts it provides

are no longer needed. The aggregator monitors the wrappers’ availability and manages

the scope of contexts in the context KB. When a context wrapper joins the smart space,

the context aggregator adds the provided context to the context KB, and when the

wrapper leaves, the aggregator deletes the contexts it supplied to avoid stale information.

4.6 CONTEXT REASONER

The context reasoner is responsible for inferring higher-level contexts from basic sensed

contexts stored in the context KB. Because Semantic Space explicitly represents context,

existing general-purpose reasoning engines can directly process this information, making

it easy for developers to realize application-specific inferences sim ply by defining

heuristic rules. The use of context reasoner helps to separate the implementation of

context inference from individual applications, thus frees application developers from

writing code to perform reasoning.

A most important feature of ubiquitous computing applications is customizability. In the

same smart space, different applications may define dissimilar (sometimes conflicting)

rules for inferring a given type of higher -level context. Since application-specific rules

may generate conflicting results, the context reasoner doesn’t assert inferred contexts into

the context KB, thus avoiding conflict in the coherent model. When an application needs

certain higher-level context, it submits a set of rules to the context reasoner, which applies

46

them to infer higher-level context on the application’s behalf, then keeps the newly

inferred context in a temporary model without storing them in the context KB. The

temporary model then can be accessed by the context query engine to provide higher-

level context to the requesting application.

Our current system applies Jena2 to support forward-chaining reasoning over the OWL-

represented context. To perform context inference, an application developer needs to

provide horn-logic rules for a particular application based on its needs. The context

reasoner is responsible for interpreting rules , connecting to context KB, evaluating rules

against stored context, and providing interface for the query engine to access inferred

result. For example, developers can define application-specific rules to infer a user’s

likely situation based on context about user, activity and location. The following rule

examines whether a given person is currently engaged in a meeting on the basis of

location and schedule— if he’s in the meeting location and the current time (returned by

currentDateTime()) is within the meeting’s scheduled interval, he’s likely to be at the

meeting.

4.7 CONTEXT QUERY ENGINE

Context query engine is responsible for handling expressive query from applications and

updating applications with up-to-date query result on a continuous basis. Unlike request-

response paradigm where an application poses a query and a query engine processes

generate a finite result set, context query engine allow s applications to register logical

specifications of interest over changing context and receive streaming results

type(?user,User) ∧ type(?event,Meeting) ∧ location(?event,?room) ∧
locatedIn(?user,?room) ∧ startDateTime(?event,?t1) ∧
endDateTime(?event,?t2) ∧ lessThan(?t1,currentDateTime()) ∧
greaterThan(?t2,currentDateTime())=>situation(?user,AtMeeting)

47

asynchronously.

Furthermore, an application may seek higher-level context (e.g. user situation, room

activity) that is not directly available in context KB. In this case, context query engine

interfaces with context reasoner to derive higher-level context. For instance, an

application seeking user’s situation context needs to provide context query engine with

two parameters – the query statement specifying application’s context ual interests and the

logic rules defining the desired way to derive user situation. Upon requested, context

query engine will add the application’s request in its registration table. To answer the

query, the engine first triggers context reasoner to generate the inferred result , from which

it then extracts user situation by query processing.

In Semantic Space, we name the above-described support as Inference-enabled

continuous query, which provides a federated support for expressive query, continuous

delivery and context inference.

4.7.1 Query Specification

Semantic Space defines a simple specification language for developers to create

inference-enhanced continuous query. The specification has the following form.

Application developers can define such queries by combining an ordinary query with the

inference rule set and additional temporal annotations . The query will become effective at

the time given by start. The parameter interval indicates how often the query is to be

executed. If the interval is not zero, the inference and query will be triggered whenever

context KB is updated. Queries will be deleted from the context query engine

{CREATE query}
[TRIGGER [rule 1][rule 2]...[rule n]]
[START start]
[EVERY interval]
[EXPIRE expiration]

48

automatically after their expiration time indicated by expiration. The query

specification can be associated with logic rules (given by TRIGGER) for inferring higher-

level context based on application’s need. For example, the example in Figure 8 specifies

the query for XiaohangWang’s situation, which will be automatically executed every 60

seconds during 20040809T090000 and 20040809T190000.

Figure 8: Specification for an example inference-enabled continuous query

4.8 SUMMARY

This chapter established the architectural requirements for supporting context-aware

applications. Following on from these requirements, the chapter then introduced Semantic

Space, the generic context-aware architecture that satisfies these identified requirements.

In essence, the architecture focuses on providing a level of abstraction between sensors,

context infrastructure, and context-aware applications. The design included a description

of the constituent components which can be used together to support context-aware

applications designed for ubiquitous computing environments. The following chapter

details the implementation of the Semantic Space architecture and, in addition, describes

how to integrate sensor systems and build context-aware applications using this

architecture.

CREATE
SELECT ?situation
WHERE (<ss:XiaohangWang>, <ss:hasSituation>, ?situation),
USING ss FOR <http://www.i2r.org.sg/semanticspace#>

TRIGGER
[type(?user,User) ∧ type(?event,Meeting) ∧ location(?event,?room)
∧locatedIn(?user,?room) ∧ startDateTime(?event,?t1)∧
endDateTime(?event,?t2) ∧ lessThan(?t1,currentDateTime()) ∧
greaterThan(?t2,currentDateTime())=>situation(?user,AtMeeting)]
/* More rules are not shown in this example*/

START 20040809T090000
EVERY 60
EXPIRE 20040809T190000

49

CHAPTER 5

IMPLEMENTATION OF SEMANTIC

SPACE

The previous chapter demonstrated the need for an architectural support for context-

aware applications and introduced the key components of Semantic Space. The prototype

Semantic Space introduced demonstrates a more flexible approach to context-aware

application design and systematically supports the features described in section 4.1.

Semantic Space is designed to provide the application developer with a convenient

mechanism for supporting the entire processing flow, from context capture, aggregation,

inference, query, to delivery.

This chapter considers the Semantic Space from an engineering perspective and describes

the prototype implementation in detail including application programming interfaces and

specifications. The Semantic Space consists of an embodiment of the previously defined

architecture and a set of well-defined APIs for supporting the integration of sensors and

the development of context-aware applications. Semantic Space architecture was

primarily written in Java with roughly 7900 lines of code (except third-party components

like Jena2 and JDBC). In this discussion of Semantic Space, we will describe how

applications use the architecture, the design of components and how they support the

design process and required features.

5.1 COMPONENTS IN SEMANTIC SPACE

Based on the deployment of software components, classes of Semantic Space are grouped

into three categories: classes for context wrappers, classes for server architecture, and

classes for context-aware applications . Components therefore are grouped into three

50

packages: (i) sg.org.i2r.semanticspace.wrapper, (ii) sg.org.i2r.semanticspace.

server and (iii) sg.org.i2r.semanticspace.application. Among them, package

wrapper consists of API for implement ing software wrapper that automatically integrate

context sources into Semantic Space; package server contains server-side components

that provides essential context functionality (aggregation, storage, inference, query, etc.)

together with interfaces used to interact with wrappers and applications; package

application consists of API that enable distributed applications to access server

architecture and wrappers. These components make up the programming abstraction for

context-aware application development, allowing developers to think of building context-

aware applications in terms of independent logical blocks.

Figure 9 shows how wrappers, applications and the server architecture in the Semantic

Space interact with each other. Wrappers are self-contained and self-described

components which execute independently without the server architecture, allowing other

components discover and subscribe to them using simple interfaces. When wrappers are

instantiated, they announce their availability and publish context in form of triples such

that other components can select and subscribe to the wrappers with required context.

Aggregator in the server architecture discovers all wrappers in the contextual

environment asynchronous ly. To keep context KB consistent with wrappers, aggregator

listens to wrapper advertisements and subscribes to new context whenever a wrapper is

available. Applications have two basic approaches to retrieve context they need.

Applications which make use of context with simple form can directly contact wrapper(s)

using subscription-based interface. In this way, applications should specify their

contextual interests in form of triple patterns, based on which pattern matching is

performed to select the appropriate wrapper . Otherwise, applications with complex

context needs, such as the expressive query about correlated context and inference of

higher-level context, have to access the functionality provided by the server architecture;

51

they contact the server , register inference-enabled continuous query, and receive updated

query result from the server asynchronously.

Figure 9: Interaction between wrappers, applications and server architecture

In the remainder of this section, we will discuss these components in detail and describe

how they are used by programmers to facilitate context-aware application development.

5.2 WRAPPER

To support the dynamic nature of ubiquitous computing environment, wrapper are

designed to aid applications utilize context efficiently whilst offering support for

flexibility. In more detail, w rappers acquire captured data from sensor, transform them

into semantic markups and publish them for distributed components to access. On the

other hand, applications can search for particular wrappers based on their contextual

interests, subscribe to the wrappers and get updated asynchronously. To allow for

flexibility, application developers may decide at design time which wrappers to utilize

without explicitly binding an application to a particular underlying technology. For

52

example, an application that makes use of location as a form of context could be designed

to search the wrapper based on the semantics of context, while the underlying detection

and identification technologies (e.g. user login, face recognition, RFID) are transparent to

applications. This approach removes coupling between applications and sensors.

5.2.1 Context Triple

To support explicit representation of context, wrappers need to transform sensor data into

context markups based on shared ontologies. As described in section 3.4, context

markups flowing within the Semantic Space architecture are described in ontology

instances, which can be serialized using alternative concrete syntaxes including

RDF/XML and RDF/N-Triple. For example, a piece of context markup expressing the

weather forecast of a city is serialized into XML (Figure 10 (a)) and triple format (Figure

10 (b)).

Figure 10: XML and triple serialization of the weather context

In Semantic Space, wrappers publish context markups in form of triples , and other

components can search for wrappers based on the matching of triple patterns. A triple

pattern is a (subject, predicate, object) comprised of named variables and RDF

values (URIs and literals). To explicitly describe wrapper’s capability, each wrapper is

associated one or more triple patterns to specify the types of provided context. These

triple patterns will be used as service descript ion in wrapper advertisement and discovery.

For example, Figure 11 shows that the location wrapper can be described by a single

<City rdf:id=”http://...#Singapore”>
<highTemperature>36</highTemperature>
<lowTemperature>28</lowTemperature>
<weatherType rdf:resource=”http://...#Sunny”/>

</City>
(a)

(<http://...#Singapore> <http://...#highTemperature> “36”)
(<http://...#Singapore> <http://...#lowTemperature> “28”)
(<http://...#Singapore> <http://...#weatherType> <http://...#Sunny>)
(b)

53

triple pattern, while the weather wrapper has to be specified by multiple triple patterns.

Once a wrapper is started, it periodically sends advertisement message (with triple

patterns) on the local network. Due to multicast and the periodic messages, applications

are notified about the presence of a wrapper, followed by the process of triple pattern

matching and context subscription.

Figure 11: Triple patterns for (a) location wrapper and (b) weather wrapper

5.2.2 Developing Wrappers

This section describes the API for wrapper development, and demonstrates the

application of this API in efficiently building a sample wrapper for the RFID location

tracking system.

5.2.2.1 Wrapper API

The sg.org.i2r.semanticspace.wrapper package provides a set of classes and abstract

interface (Figure 12) that can be used by application developers to implement a wrapper

in a highly-structured, object-oriented way.

Class Wrapper represents the key object to construct a wrapper, which is associated with

a set of ContextTriple objects specifying the provided context and an UpdateHandler

object implementing actions for context update. Because Wrapper is designed to sub-

class from standard UPnP service, it automatically inherits the communication and

discovery functionalities, being able to support the advertisement and removal of

wrappers from the network.

(?user, <http://...#locatedInRoom>, ?room)
(a)
(?city, <http://...#highTemperature>, ?high_temp)
(?city, <http://...#lowTemperature>, ?low_temp)
(?city, <http://...#weatherType> ?weather_type)
(b)

54

Class ContextTriple represents an individual context triple published by the wrapper.

While wrappers can provide multiple types of context, subscribing component could be

only interested in a subset of them. For example, a wrapper may return three types of

context triples , but the subscriber may only be interested in two. Therefore context

subscription is based on context triples. The specification of ContextTriple requires

compulsory parameters (triple_pattern) and two optional parameters (subject_type,

object_type). Given these parameters, context discovering components are able to

search context triples based on their context needs. This class provides methods to add

and remove subscription, as well as to update subscribers when context changes.

The developer needs to implement the UpdateHandler interface in order to communicate

with sensors and transform acquired data into context triples. To handle simultaneous

updates from sensors, UpdateHandler uses a multithreaded server. When it receives

sensor update event, the server’s current thread handles the new request and it forks a new

thread to listen for future event. Most commonly, each time the sensor senses new data,

the UpdateHandler determines whether the new data is significant - this is a wrapper-

specific decision. If the data is significant, all subscribers are notified with the updated

context triple. Implementation of the UpdateHandler interface is dependent on

underlying sensing technology applied to obtain data. However, wrapper outputs context

in form of triples so as to provide a programming abstraction to hid e implementation

details from application developers.

55

Figure 12: Classes and interface for wrapper development

5.2.2.2 Wrapper API in Use

A simple example demonstrating the use of wrapper API for building the wrapper for

RFID tracking system is shown in Figure 13. In this example, the location wrapper is

package sg.org.i2r.semanticspace.wrapper;

/* Define a context wrapper*/
public class Wrapper {

/*Specify advertisement delay. A delay of 0 halts wrapper
 *advertisement, default value is 60 seconds */
 public void setAdvertiseInterval(int advertisement_interval);

/*Specify a implementation of the update handler */
 public void setUpdateHandler(UpdateHandler handler);

/*Define a context triple */
 public ContextTriple getContextTriple(String triple_pattern,
 String subject_type,
 String object_type);
/*Publish a context triple */
 public void addContextTriple(ContextTriple triple);

/*Cancel the publishing of a context triple */
 public void removeContextTriple(ContextTriple triple);
}

/* Define a context triple published by wrapper */
public class ContextTriple {

/*Instantiate a context triple */
 public ContextTriple(String tripple_pattern,
 String subject_type,
 String object_type);

/*Add a subscription */
 public void addSubscription(String host, int port);

/*Cancel a subscription */
 public void removeSubscription(String host, int port);

/*Update all subscribing components when value of triple changes */
 public void updateSubcribers(String subject_value,
 String object_value);
}

/* Define a interface for handling context update*/
public interface UpdateHandler {

/* Handler callback method for the update of context triple(s)*/
 public void processContextUpdate();

/* Get the reference of the wrapper*/
 public Wrapper getWrapper();
}

56

used to determine when an individual wearing a RFID tag is present at a room deployed

with a RFID sensor. First step to develop a wrapper is to instantiate the Wrapper object

(line 03). The developer then creates the ContextTriple object, indicating the triple

pattern, subject type and object type to describe the type of provided context (line 04 -

07). Although this example only shows a single context triple, there would be multiple

context triples associated with a wrapper (e.g. the weather forecast example in Figure 11

is involved in three triples).

The wrapper needs to implement UpdateHandler interface using specific code to

communicate with the sensor system and to transform sensed data into context triple. In

this case, we implement the abstract interface using the class LocationUpdate-

HandlerImpl (line 18). The callback method processUpdate() listens to location

event from the RFID tracking system, parses incoming message to set the context triple,

and notifies all components subscribing to the triple(line 28 - 31). In this example, a

large portion of the code is dedicated to communicating with specific sensor systems,

while the developer only needs to write about 30 lines of code to realize wrapper’s

generic functionality. This demonstrates the leverage provided by Semantic Space’s

programming abstraction in integrating sensor systems.

57

Figure 13: Example of the location wrapper for RFID tracking system

5.2.3 Accessing Wrappers

This section describes the API for context -aware applications to discover and access distributed

wrappers, and demonstrates the use of the API with an example application that accesses the

location wrapper described earlier.

5.2.3.1 Wrapper Access API

The wrapper access API is a part of the sg.org.i2r.semanticspace.wrapper package,

which that can be used by developers to implement a context-aware application that

utilizes wrappers. Figure 14 shows the classes (Discoverer and TripleProxy) and the

abstract interface (UpdateListener) needed in accessing wrapper functionality.

01. public class LocationWrapper {
 public LocationWrapper() {
 Wrapper wrapper = new Wrapper();
 wrapper.addContextTriple(new ContextTriple(

05. "(?,<http://www.i2r.org/sg.semanticspace#locatedInRoom>,?)",
 "<http://www.i2r.org.sg/semanticspace#User>",
 "<http://www.i2r.org.sg/semanticspace#Room>"));
 LocationUpdateHandlerImpl handler = new

LocationUpdateHandlerImpl();
10. wrapper.setUpdateHandler(handler);

 wrapper.setAdvertiseInterval(60);
 wrapper.start();
 }
 public static void main(String[] args) {

15. new LocationWrapper();
 }
}

public class LocationUpdateHandlerImpl implements UpdateHandler{
ContextTriple location_triple;

20.String USER;
String ROOM;
 public void processContextUpdate() {
 location_triple = getWrapper().getContextTriple(
 "(?,<http://www.i2r.org.sg/semanticspace#locatedInRoom>,?)",

25. "<http://www.i2r.org.sg/semanticspace#User>",
 "<http://www.i2r.org.sg/semanticspace#Room>"));
 while (true) {

 /*Sensor-specific code for
 1. Listen for event from RFID tracking system
30. 2. Parse event message and get USER and ROOM*/

 location_triple.updateSubcribers(USER, ROOM);
 }
 }
}

58

Figure 14: Classes and interface for accessing wrappers

Class Discoverer enables applications to discover context wrappers. The class allows

applications to not have to know a priori the wrapper’s network address. It also allows

them to more easily adapt to changes in the dynamic environment, as new components

may appear and old components may disappear at any time. This class inherits the

package sg.org.i2r.semanticspace.application

/* Define a context discoverer*/
public class Discoverer {

/* Search a context triple and return a proxy/
 public TripleProxy searchContextTriple(String triple_pattern,
 String subject_type,
 String object_type);

/* Search all context triples and return a collection of proxies*/
 public Collection searchAllContextTriples();
}

/* Define the proxy object of a context triple*/
public class TripleProxy {

/* Get triple pattern*/
 public String getTriplePattern();

/* Get the type of subject*/
 public String getSubjectType();

/* Get the type of the object*/
 public String getObjectType();

/* Get the value of the subject*/
 public String getSubjectValue();

/* Get the value of the object*/
 public String getOjectValue();

/* Set the update listener to handle context update event*/
 public void setUpdateListener(UpdateListener listener);
}

/* Interface to be implemented to handle context update event*/
public interface UpdateListener {

/* Listener callback for handling context update event*/
 public void contextUpdated();

/* Get the proxy of the updated context triple*/
 public TripleProxy getUpdatedTripleProxy();
}

59

functionality of UPnP control point to listen for the advertisement message sent by

context wrappers and perform matchmaking on triple patterns to find required context

triples. The discovery of context is based on context triples. There are two ways to search

for context triple: a specific context triple or all context triples . Typically, an individual

application uses the method searchContextTriple() to search for specific triples that

match its context needs. Similar to the specification of context triples, application’s

context needs is also specified by triple pattern, type of subject and type of object.

Because the server architecture needs to find all context within the contextual

environment, this class provides the method searchAllContextTriples() for the

context aggregator to discover all available context triples.

Class TripleProxy is the proxy representation of a context triple on application side.

TripleProxy is instantiated by the method Discoverer.searchContextTriple(),

which returns a proxy object for the matched context triple. This class provides methods

to inspect meta-information including triple pattern, subject type and object type. Each

TripleProxy is bound with an UpdateListener object.

The developer needs to implement the UpdateListener interface for each TripleProxy,

realizing the functionality of the context-aware application. Most commonly, whenever

the wrapper-side ContextTriple is updated by sensor data, the correspondent

TripleProxy will be notified and its UpdateListener determines how to act upon this

context change. Implementation of the UpdateListener interface depends on the

application’s functionality. However, the structured interface provides a programming

abstraction for the application to access context wrappers.

5.2.3.2 Wrapper Access API in Use

An example demonstrating the discovery and subscription process for the location

60

wrapper described earlier is shown in Figure 15. The location subscriber is a context-

aware application that utilizes the location w rapper (described in section 5.2.2.2) to

acquire user’s room-level location. Most commonly the wrapper access process consists

of following steps: (1) the wrapper periodically multicasts its advertisement messag e

which contains meta-information about the context triple(s) it publishes; (2) the

application receives wrapper’s advertisement message and subscribes to the context

triple(s) that match its contextual interests; (3) the underlying sensor system detects the

change of context (in this case, the presence of a user in a room); (4) the wrapper filters

sensor data, updates corresponding context triple based and notifies subscribing

applications. Actual code of the example is given in Figure 16.

Figure 15: Example of an application accessing a wrapper

In application development, LocationSubscriber first instantiates the Discoverer

(line 03), which is then used to locate the context triples that are of interest to them. In

this case, it specifies the application’s context needs by providing triple pattern

((?,<http://www.i2r.org.sg/semanticspace#locatedInRoom>,?)), type of subject

(<www.i2r.org.sg/semanticspace#User>) and type of object (<www.i2r.org.sg/

semanticspace#Room>). The Discoverer uses this information to search for context

triple and returns a proxy of the matched triple (line 04). The application then binds the

61

triple proxy with an UpdateListener interface to handle incoming context update (line

09).

To realize context-aware behavior of the application, the developer needs to implement

UpdateHandler interface to decide the actions upon context. Here the class

LocationUpdateListenerImpl is created (line 19) with the callback method

contextUpdated() listens to context update event sent by the wrapper and perform

application-specific action on this information (line 19 - 27).

Although this example only shows the application discovering and subscribing to a single

context triple, there would be applications that need to utilize several triples published by

different wrappers within the contextual environment. The code to implement the access

of multiple triples would be similar except that there would be multiple

Discoverer.searchContextTriple() method calls and UpdateListener.

contextUpdated() callback needs to handle notification from multiple context triples.

01.public class LocationSubcriber{
 public LocationSubscriber() {
 Discoverer discoverer = new Discoverer();
 TripleProxy location_triple_proxy =

05. discoverer.searchContextTriple(
 "(?,<http://www.i2r.org.sg/semanticspace#locatedInRoom>,?)",
 "<www.i2r.org.sg/semanticspace#User>",
 "<www.i2r.org.sg/semanticspace#Room>");
 location_triple_proxy.setUpdateListener(new

10. LocationUpdateListenerImp());
 }
 public static void main(String[] args) {
 new LocationSubscriber();
 }

15.}
public class LocationUpdateListenerImp implements UpdateListener {
 String USER;
 String ROOM;
 public void contextUpdated() {

20. if (getUpdatedTripleProxy().getTriplePattern().equals
("(?,<http://www.i2r.org.sg/semanticspace#locatedInRoom>,?)")){
 USER = getUpdatedTripleProxy().getSubjectValue();
 ROOM = getUpdatedTripleProxy().getObjectValue();

 /*application-specific code to implement context-aware
25. behavior. The example simply displays received context*/

 System.out.println(USER + "is in " + ROOM);
 }
 }
}

62

Figure 16: Application code demonstrating the access of location wrapper

5.3 SERVER

Apart from the wrapper abstraction we described in section 5.2, Semantic Space also has

a server architecture and an application programming interface for accessing server

functionality. As described in CHAPTER 4, the server architecture support richer

functionality, including context aggregation, persistent storage, context inference,

expressive query and continuous delivery, to complement individual wrappers. It consists

of four collaborating components. Context aggregator is responsible for discovering and

subscribing to all context triples asynchronously , and keeps updating the context KB

when it receives context update. Context KB dynamically links the context ontology and

gathered context triples into a single semantic model to support expressive query and

logic inference of context. Context KB stores context persistently in the relational

database. Context reasoner supports rule-based inference to generate higher-level context

from basic context stored in KB. Context query engine provides the support for inference-

enabled continuous query as described in section 4.7.1. It handles expressive queries to

extract context from KB, keeps notifying applications whenever query results change, and

triggers context reasoner to execute inference if the application seeks higher-level context.

Semantic Space logically encapsulates underlying processes into a single architecture and

provides applications with a simple interface to access server functionality. This approach

offloads the burden of complex management and processing tasks from individual

applications, thereby offering a programming abstraction for application development.

5.3.1 Implementation of Inference-Enabled Continuous Query

The interface between applications and server is query. To give the details of the support

63

for inference-enabled continuous query, we describe the typical process for an application

asking for higher-level context from the server (Figure 17). The example application

(SituationQueryer) needs to be notified when the situation of XiaohangWang changes. It

expresses this context needs in form of the query specification (Figure 8, section 4.7.1),

providing the RDQL statement and a set of inference rules. One of the rules examines

whether a people is engaged in a meeting on the basis of location and meeting schedule -

if he’s in the meeting location and the current time is within the meeting’s scheduled

interval, he’s likely to be at the meeting.

Figure 17: Process for inference-enabled continuous query

The following lists the interaction between the example application and different

components. (1) To utilize server functionality, the application first registers the query

64

specification with the server architecture. (2) When a relevant wrapper (e.g. the location

wrapper) has new incoming data from the sensor system, for example, “XiaohangWang is

present at the meeting location Room233”, it updates the context triple that represents this

sensor data. (3) The wrapper then notifies all subscribing components (context aggregator

and individual applications) with the updated context triple. (4) When context aggregator

receives the location change, it submits this information to context KB for update. (5)

Once context KB finishes the location update in its persistent storage, it notifies context

query engine with a KB update event. (6) Because the application needs higher-level

context, query engine calls context reasoner to apply context inference. (7) Context

reasoner evaluates the application-supplied rule set to generate an inferred result, and

keeps it in a temporary KB model. In this case, the situation of user XiaohangWang is

determined to be AtMeeting. (8) Context query engine will be notified when the

inference finishes. (9) It then extracts the desired context (XiaohangWang’s situation) by

querying the temporary KB model. It is also responsible for destructing the temporary KB

model after the query finishes. (10) Finally, context query engine compares the new result

with the old one, and only sends the changed query result the application.

5.3.2 Accessing Server Functionality

Semantic Space has a simple application programming interface for distributed

applications to access server functionality. Through the use of this API, a level of

programming abstraction and flexibility is provided to application developers capable of

supporting the following features: to facilitate the inference of higher -level context, to

selectively access context using expressive query, to support multiple applications

accessing the server simultaneously, to reduce the burden of developers to deal with

context. This section presents the API and also demonstrates its use with an example

context-aware application.

65

5.3.2.1 Server Access API

The server access API is a part of the sg.org.i2r.semanticspace.wrapper package,

which is used to implement a context-aware application that utilizes server functionality.

Figure 18 shows the included classes and the abstract interface.

Figure 18: Classes and interface for accessing server functionality

package sg.org.i2r.semanticspace.application
/*Define an context-aware application*/
public class Application {

/*Instantiate an application, connect to the server*/
 public Application(IP server_host, PORT server_port);

/*Register an Inference-Enabled Continuous Query and return QUERY_ID*/
 public QUERY_ID submitQuery(Query query);

/*Set QueryListener interface to handle the update of query result*/
 public void setQueryListener(QueryListener listener);
}

/*Asynchronous mode query (Inference-Enabled Continuous Query)*/
Public class Query {
 Public Query(String query_statement, /*RDQL query statement*/
 String rule_set, /*Jena2 rule set, null if no inference required*/
 DateTime start_time, /*Start time, null if start immediately*/
 int interval, /*Interval, zero if query is triggered by event*/
 DateTime end_time); /*End time, null if infinite*/

/*Synchronous mode query (query-response mode)*/
 Public Query(String query_statement, /*RDQL query statement*/
 String rule_set);/*Rule set, null if no inference required*/
}

/*Define the object for query result*/
Public class QueryResult {

/*Get the value of the i-th variable*/
 Public Object getVariable(int i);

/*Get QUERY_ID of the query*/
 Public Object getQID();
}

/*Interface to be implemented to handle the update of query result */
public interface QueryListener {

/*Callback method that handles query update*/
 public void resultUpdated();

/*Get the QueryResult that represents the incoming query update*/
 public QueryResult getUpdatedResult();

/*Get a reference of the application bound with this QueryListener*/
 public Application getApp();
}

66

Class Application is the representation of a context-aware application. The application

uses the method submitQuery() to register a query with server . This method returns the

QUERY_ID, a unique string generated by server to identify the query. The application

should be bound with a QueryListener to handle the asynchronous notification of result

from server.

Class Query is used to specify the application’s context needs . Semantic Space support

two distinct query modes : synchronous mode is used to extract context from server in a

query-response manner, and asynchronous mode (or inference-enabled continuous query)

is used for server to push streaming results to the application on a continuous basis.

Accordingly, there are two constructers: the synchronous query constructor needs the

information about query statement and inference rule set (if context inference is involved),

the continuous query constructer should be provided with additional temporal annotations.

The result of query is represented by class QueryResult represents. QueryResult

records the variables given in SELECT field of RDQL statement. The method

getVariable(int i) is used to retrieve the i-th variable in the result.

The developer needs to implement the QueryListener interface for the application,

handling the continuous update of each query. Whenever the server detects new result of

a registered query, the application will be notified and its QueryListener determines

how to act upon the change of query result. Implementation of this interface depends on

the application’s context-aware behavior.

5.3.2.2 Server Access API in Use

To demonstrate use of server access API in application development, we consider the

implementation of the SituationQueryer example as described in section 5.3.1. The

program code of this application is show in Figure 19.

67

Figure 19: Example application registering the query of user’s situation

The application’s executable class SituationQueryer is extended from the class

Application, inher iting the generic functionality of query registration and notification.

The application first instantiates the Application object (line 04), and creates a Query

object to represent its context needs (line 10). In this case, the Query object specifies a

RDQL statement to query XiaohangWang’s situation, a rule set to infer user’s situation,

and temporal annotations to define the activation time, deactivation time and execution

interval of the query. Because the application wants to receive new query result whenever

it is available, the execution interval is set to zero. The Query object is then submitted to

server for registration (line 15). To handle update events, the developer binds the

application with an implementation of the abstract QueryListener interface (line 16).

The implement of the QueryListener interface is responsible for realizing the application

01.public class SituationQueryer extends Application {
 public QUERY_ID qid;
 public SituationQueryer (IP server_ip, PORT server_port) {
 Application(server_ip, server_port);

05. String SituationQuery =
 "SELECT ? situation
 WHERE(<ss:XiaohangWang>,<ss:hasSituation>,?situation)
 USING ss FOR <http://www.i2r.org.sg/semanticspace#>";
 String SituationRuleSet = "[][][]"; //refer to section

10. Query query = new Query(SituationQuery,
 SituationRuleSet,
 new DateTime(20040809T090000),
 0,
 new DateTime(20040809T190000));

15. qid = submitQuery(query);
 query.setQueryListener(new SituationListenerImp());

 }
 public static void main(String[] args) {
 new SituationQueryer(192.168.137.199, 900);

20. }
 }
public class SituationListenerImp implements QueryListener {
 String SITUATION;
 public void resultUpdated() {

25. QueryResult result = getUpdatedResult();
 if(result.getQID.equals(getApp().qid)){

 SITUATION = (String) result.getVariable(1);
 /*Application-specific code to implement situation-awareness.
 *This example simply display the update of user situation */
30. System.out.println(“Xiaohang’s situation is”+SITUATION);

 }
 }

68

context-aware behavior. Here the class SituationListenerImpl is created (line 22)

with the callback method contextUpdated() handling the notification of query result

asynchronously (line 24 - 31).

Although this example only show s the application making use of a single query, there

would be applications that need multiple queries for different context. The application

code to deal with multiple queries w ould be similar except that there would be multiple

query registrations and the QueryListener.resultUpdated() callback needs to handle

result update from all queries .

5.2 APPLICATION

A described earlier, the sg.org.i2r.semanticspace.application package offers

complementary programming abstractions for applications to use context – triple

subscription (section 5.2.3) or query registration (section 5.3.2). Typically, the application

with simple context needs may discover and subscribe to appropriate triples published by

individual wrappers. If the application deals with expressive query or higher-level

inference, it can contact the server architecture to utilize inference-enabled continuous

query. We have implemented two set of Java APIs (wrapper access API and server access

API) to support the two programming abstractions respective ly, such that application

programmers can prototype a context-aware application in a highly-structured way.

5.3 SUMMARY

This chapter has described the design and implementation of the Semantic Space

architecture to provide developers with a useful mechanism for integrating sensor systems

and building context-aware applications . The key features of Semantic Space architecture

are:

69

• A set of programming abstractions enabling developers to think of designing sensor

components and context-aware applications in terms of logical building blocks .

• A Java API implementation for supporting the rapid prototyping of context wrappers

and context-aware applications.

• Utilization of Semantic Web technologies (inference, query, and knowledge base) in

realizing the explicit representation, expressive query and logical inference of context.

• The support for inference-enabled continuous query that provides a federated solution

for query, inference and event notific ation.

The author believes that these features provide a solution to the problem of supporting

context-aware applications designed for use in ubiquitous computing environments. The

following chapter evaluates our architecture through the development of a real ubiquitous

computing application (SituAwarePhone).

70

CHAPTER 6

CASE STUDY: SITUAWAREPHONE

This chapter illustrates how the context model and Semantic Space architecture described

in the previous chapters can be used to author a novel prototype context-aware

application. The main contributions of this chapter are twofold. First, the general process

to build a context-aware application using Semantic Space is introduced and illustrated by

examples. Second, the principal research contributions of this thesis (i.e., the

aforementioned modeling approach and architectural support for context-aware

application development) are evaluated and validated.

6.1 GENERAL DESIGN PROCESS

This section gives the general process that the application developer needs to go through

to build a context-aware application.

1. Context Modeling

1.1 Determine the collection of context that is required by the context-aware

application to fulfill its functionality.

1.2 If the upper-level context ontology (UCLO) is not sufficient to model all features

of the required context, extend UCLO by adding application-specific ontology

classes and properties to model these features.

2 Wrapper Development

2.1 If the required context is not available, choose the appropriate physical or software

sensor providing it .

2.2 Define triple pattern(s) that acts as the logical representation of the context.

2.3 Follow the design rational described in section 5.2.2 to build the wrapper using

Wrapper API, implement the UdateHandler interface to acquire data by using the

sensor-specific communication interface.

3 Application Development

3.1 Get the required context

71

3.1.1 If the application wants to make use of individual wrappers to obtain context

in simple form

3.1.1.1 Specify the context needs in form of triple pattern(s).

3.1.1.2 Use Wrapper Access API (section 5.2.3) to discover and subscribe

to wrapper(s) that match the application’s requirement.

3.1.2 If the application has complex context needs and requires expressive query

and (or) context inference

3.1.2.1 Specify the context needs in form of RDQL queries.

3.1.2.2 If the application seeks higher-level context that is not directly

recognizable from sensors, define rules for inferring this

information from sensor-supplied context.

3.1.2.3 Use Server Access API (section 5.3.2) to register inference-enabled

continuous query.

3.2 Realize the context-aware behavior by implementing the corresponding interfaces

(UpdateListener or QueryListener) with application-specific code.

To implement the example context-aware application, section 6.4.1 to 6.4.2 will present

the respective outcomes of these phases. Before that we introduce the motivations and

features of the example.

6.2 INTRODUCTION TO SITUAWAREPHONE

The widespread use of mobile phones makes voice communication available anytime,

anywhere, but also raises many social problems when, for example, phones ring during

meetings or important face-to-face conversations. Normally users often have to configure

the settings of mobile phones according to their circumstances to avoid inappropriate

usage. However, manual configuration causes frequent interactions with mobile phone,

imposing significant user distractions. To advance this matter, we developed a context-

aware application, SituAwarePhone (Situation-Aware Phone), which automatically adapts

mobile phone profiles to the changing situations while minimizing disruption. In this case,

72

user’s situation is used as a form of higher-level context to adapt the behavior of the

mobile phone. For example, if a user is determined to be in a meeting then a silent mode

may be automatically selected which re-directs all incoming calls to voice mail. However,

a user walking in an outdoor environment will have the mobile phone configured so that

the volume is set to maximum and the vibrating alert turned on.

To access the situation context, SituAwarePhone registers query with Semantic Space

architecture, which in turn notifies the phone with the changes of user’s situation on a

continuous basis. SituAwarePhone also may query other types of context that helps in

adaptation. For example, it queries the end time of the meeting the user is engaged in to

schedule a callback to the caller, or it takes account of the caller’s identity and identities

of other people in a conversation to decide whether to let the call interrupt it.

One of the key requirements of SituAwarePhone is the support for user customizability.

Customizability is achieved not only by allowing the users to specify how the mobile

phone should response to the incoming call in each situation, but also by allowing them to

define their own situation inference rule set for the specific contextual environment and

application scenarios .

6.3 IMPLEMENTATION

This section presents the outcomes of the design process (section 6.1) in prototyping

SituAwarePhone. Along with implementation details , we will also discuss the systematic

support provided by Semantic Space for context-aware application development.

73

6.3.1 Context Modeling

Because SituAwarePhone prototype is initially designed for use in I2R workplace, we

need to add additional classes and properties to ULCO in order to model this particular

contextual environment. As shown in the top right of Figure 3, the extended context

ontology includes the following features. The class Room is classified into detailed types

including LabRoom, MeetingRoom, WashRoom , Lounge, Pantry and PrintingRoom.

To describe typical activities that happen in the I2R workplace, the abstract class

ScheduledActivity has concrete sub-classes such as Meeting, WeeklyDiscussion ,

Seminar and Interview. Similarly , the class AdHocActivity is sub-classed by

MeetingSupervisor, AdHocDiscussion , TakingPhoneCall and so on. To take

account of context about devices and applications involved in the application scenarios,

we create sub-classes of ComputingEntity , such as MobilePhone, FixedPhone ,

MS_PointPoint, MS_Word and Borland_JBuilder.

The hierarchical structure of ontologies makes it easy for developers to add application-

specific concepts about context. When the application evolves and needs more context

types, we can fulfill the application’s modeling requirement by extending the abstract

classes in ULCO.

6.3.2 Wrapper Development

The second step in the design process involves in choosing necessary sensors and

building software wrappers to provide the collection of context identified in modeling

phase. Generally, different kinds of context can be either obtained from physical sensors

or inputted by software sensors. The following sub-sections will present how to build

wrappers for SituAwarePhone.

74

6.3.2.1 Wrapper for Physical Sensors

There are several types of sensor systems that need to be integrated into the prototype for

providing required context, such as location of people, location of mobile phones, status

of phones (available/busy/off), status of doors (open/closed), noise level of rooms, and so

on. As shown in Figure 20, the deployed sensor systems include X-10 door sensors, noise

sensors, Bluetooth mobile phone tracking system, and RFID user tracking system.

Accordingly we created context wrappers which transform sensor data into context triples

for Semantic Space architecture and context-aware applications to use.

Semantic Space allows developers to use an efficient and highly-structured way to write

software wrappers, by leveraging off of the Wrapper API. For example, the location

wrapper described in 5.2.2.2 only required about 30 lines of code (out of a total of 1600

lines) to deal with generic functionalit ies, such as wrapper advertisement, subscription,

and notification. The standard API also makes it very easy to change the underlying

technology used in context sensing. We were able to swap the implementation of the

location wrapper entirely when we went from using simulated software sensor (Figure 21

in section 6.3.2.2) to using RFID technology and vice-versa, without changing a line of

code in the context-aware application. This ability allows us to easily evolve our systems,

in terms of the sensing technologies, and to prototype with a variety of sensors.

75

Figure 20: Physical deployment of SituAwarePhone : (a) networked sensors and

devices; (b) RFID user tracking system

6.3.2.2 Wrappers for Software Sensors

A non-functional requirement of Semantic Space is to support the early prototyping of

context-aware applications, even in the absence of physical sensors. Prototyping a new

application is often barriered by sensors that are not available for use. In normal cases, if

the required sensors are not available, we either have to drop the application idea or

determine how to build it without having the necessary sensors. To this end, Semantic

Space allows the use of software sensors that collect user input from GUIs to simulate

physical sensors. This approach makes it convenient for developers to prototype novel

applications in its early stage.

Figure 21 shows a GUI that simulates the RFID user tracking system described earlier.

The GUI displays a number of rooms and allow s the user to choose one in order to

indicate his current location. The simulated GUI input is transformed into context triples

(shown in the bottom of the GUI) that can be processed by the architecture and

76

applications. Because the wrappers for software sensor have the same interfaces as the

wrappers for physical sensors, an application can use either interchangeably, regardless of

the underlying sensor used, without any change to application code. We also developed

other software sensors that are useful to SituAwarePhone. Figure 22 shows a GUI that is

used to detect the presence of objects (users and devices), noise level and door status for a

room, as well as to simulate the status changes of a device. Figure 23 shows a GUI used

by users to edit calendar event for providing activity-related context. By treating the GUIs

as sensors and wrapping them with the standard interface, the application can be

prototyped and tested. When suitable physical sensors become available, they can be

deployed without requiring any change to the application.

Figure 21: GUI for providing user profile and simulate the location change of people

77

Figure 22: GUIs for simulating the detection of moving objects, noise level, door
status of a room, as well as the status of a device

Figure 23: GUI for supplying activity-related context

78

6.3.3 Application Development

The final step of the design process is application development. Because SituAwarePhone

involves in query and inference, we design it to get context from the server architecture.

Therefore, the developer’s efforts in this phase can be divided into two parts: the

specification of context needs (in form of inference-enabled continuous query), and the

implementation of context-aware behavior.

6.3.3.1 Specifying Context Needs

The most important context used by SituAwarePhone is the situation of a user, which is a

higher-level context that has to be inferred from other basic context obtained from sensors.

In order to be notified with the changing situations, the application needs to register an

inference-enabled continuous query with context query engine, specifying the query

statement, situation inference rule set, and temporal information. Figure 24 (a) shows a

query specification with a reference rule set to infer a user’s situation from basic context

about User (such as type, identity and relationships with others), Activity (such as type

and time interval), Location (such as meeting location, office location, and other people

at the same location), and ComputingEntity (such as status and ownership). In using

SituAwarePhone, users can either choose to apply the reference rule set, or customize the

rule set based on their own needs.

Besides continuous query, SituAwarePhone also uses simple (synchronous) quer ies to get

other context that is useful in profile adaptation. For example, Figure 24 (b) shows the

query used to get the end time of the meeting the user is currently engaged in to schedule

a callback to the caller.

79

Figure 24: Query specifications of SituAwarePhone: (a) inference-enabled continuous

query for XiaohangWang’s situation; (b) simple query for the meeting’s end time

CREATE
SELECT ?situation
WHERE (<ss:XiaohangWang>, <ss:hasSituation>, ?situation),
USING ss FOR <http://www.i2r.org.sg/semanticspace#>

TRIGGER
[AtMeeting:
type(?user,User ∧ type(?event,Meeting) ∧ type(?user, user)∧
location(?event,?room) ∧ locatedIn(?user, ?room) ∧
startDateTime(?event,?t1) ∧ endDateTime(?event, ?t2) ∧
lessThan(?t1,currentDateTime()) ∧ reaterThan(?t2,currentDateTime())

=>situation(?user, AtMeeting)
][TakingPhoneCall:
type(?user,User) ∧ type(?phone,MobilePhone) ∧
owner(?phone, ?user) ∧ status(?phone, Busy)

=>situation(?user, TakingPhoneCall)
][AtWriting:
type(?user,User) ∧type(?app,MS_Word) ∧ registeredUser(?app, ?user)
∧ status(?app, ?busy)
 =>situation(?user, AtWriting)
][AtProgramming:
type(?user, User) ∧ type(?app, Borland_JBuilder) ∧
registeredUser(?app, ?user) ∧ status(?app,?busy)
 =>situation(?user, AtProgramming)
][AtLunch:
type(?user,User) ∧ locatedIn(?user,I2R_Canteen) ∧
greaterThan(currentTime(),12:00:00) ∧
lessThan(currentTime(), 13:30:00)
 =>situation(?user, AtLunch)
][UsingWashroom:
type(?user,User) ∧ type(?room,Washroom) ∧ locatedIn(?user, Washroom)

=>situation(?user, UsingWashroom)
][MeetingSupervisor:
type(?user,User) ∧supervisorOf(?user2,?user) ∧ office(?user2,?room)
∧ locatedIn(?user,?room) ∧ locatedIn(?user2,?room) ∧
doorStatus(?room,closed) ∧ noiseLevel(?room,?x) ∧ greaterThan(?x, 60)
 =>situation(?user, MeetingSupervisor)
]

START NOW
EVERY 0 /*Executed immediately when context KB is updated*/
EXPIRE NEVER
(a)

SELECT ?endTime
WHERE (?event, <rdf:type>, <ss:Meeting>),
 (?event, <ss:hasLocation>, ?room),

(<ss:Xiaohang>), <ss:locatedIn>, ?room),
(?event, <ss:start>, ?startTime),
(?event, <ss:end>, ?endTime)

AND (startTime < currentDateTime() && endTime > currentDaytime())
USING ss FOR <http://www.i2r.a-star.org.sg/semanticspace#>,
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
(b)

80

6.3.3.2 Implementing Situation -Aware Behavior

Upon the reception of situation context, certain functionality should be provided to

determine the situation-aware behavior to perform as well as indicate how the behavior

should be executed. This last step is the main emphasis in building SituAwarePhone.

Figure 25 shows the snapshots of the prototype implementation.

Figure 25: Snapshots of SituAwarePhone running on Sony-Ericsson P900 mobile
phone: (a, b) profile customization for each situation; (c) connection establishment with

Semantic Space architecture; (d) automatic profile adaptation in situation change

SituAwarePhone supports the customization of situation-aware behaviors through the use

of simple GUIs, as shown in Figure 25(a, b). Based on J2ME API, we have implemented

a set of mobile phone functions (e.g. silence, vibration, volume control, call forwarding

81

and SMS notification), from which users can choose an appropriate combination for use

in different situations. Another consideration for the situation-aware behavior is the

balance between the autonomy of the application and sufficient degree of user control. It

is commonly agreed that human users should be retained in the decision loop of context-

aware applications , while absolute autonomy is undesirable in most cases [37]. As shown

in Figure 25(c), SituAwarePhone is designed to notif y (using vibration) the user when his

situation is determined to be different, presenting a recommended profile for this new

situation and allowing them to decide the acceptance or denial of automatic adaptation

within a given period.

6.4 SUMMARY

The realization of the SituAwarePhone prototype used as a case study demonstrated the

practical benefits of Semantic Space detailed in the previous chapters when applied to a

sophisticated context-aware application. The primary advantage of Semantic Space is that

the programming abstractions and architectural components make the prototyping of

context-aware applications easy. More specifically, Semantic Space encapsulates a rich

set of functionalizes into the server architecture and provides a uniform interface for

gathering context from sensors and disseminating context to applications. The API

significantly reduces the workload of context-aware application developers. In the

prototyping of SituAwarePhone, we wrote n lines of Java code, out of which less than 100

lines are used for handling context. Hence, the developer can concentrate on the details of

the application and not worry about the details of acquiring and processing context.

Furthermore, the implementation details for specific sensors are hidden with the access to

functionality obtained through standard interfaces. Since the provision, management and

use of context are controlled through the specification of context ontologies , there is no

inherent coupling between any particular application and components (the server

82

architecture or individual wrappers) offering the context of interest. Therefore, Semantic

Space supports context sharing across a variety of independently developed components.

The final chapter presents the conclusions of this thesis before identifying several areas of

future work, some of which are currently in progress at Institute for Infocomm Research

(I2R) and build upon the ideas presented in this thesis.

83

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis has described a context modeling approach and architecture that support the

design, implementation, and execution of context-aware applications. In this final chapter,

we summarize our research and briefly describe some areas that merit future research.

7.1 CONCLUSION

This thesis has investigated the use of a generic architecture as a mechanism to support

context-aware applications destined for use in ubiquitous environments. More specifically,

this thesis has identified and considered a set of requirements for the architectural support

for context-aware application development. Based on the identified requirements, an

ontology-based context model, a prototype architecture, as well as a set of programming

abstractions has been introduced and detailed. The architectural support has been

evaluated using the SituAwarePhone as a case study, a fully operational context-aware

mobile application affording personalized profile configuration and situat ion-based

profile adaptation.

CHAPTER 1 introduced the concept of ubiquitous computing, following which the terms

context and context-awareness were presented. We then presented the difficulty for

individual applications to make use of context. Therefore, by providing flexible

mechanisms to support common functionality and rapid prototyping will eventually lead

to a further understanding of this area.

CHAPTER 2 presented a survey of the two main research areas (context-aware

computing and Semantic Web) which this thesis combines. Related work ranged from

projects that used no supporting abstractions for application development to those that

84

provided systematic support. We learned merits from this study, but also identified

potential improvements. Furthermore, we discussed the advantages of utilizing Semantic

Web technologies (ontology, query, inference, knowledge base) in supporting context-

aware applications.

CHAPTER 3 introduced our ontology-based approach to context modeling. We presented

the design of a two-layer context model, which consists of a standard upper-level context

ontology for modeling generic contextual concepts and a set of extended context

ontologies for describing application-specific contextual features. This model provides a

basis for the explicit representation of context, and makes possible the utilization of

inference, query and knowledge base in supporting context processing tasks.

CHAPTER 4 explored the use of a generic architecture, namely Semantic Space, for

supporting the development of context-aware applications. Initially, a comprehensive set

of requirements was derived by analyzing the key aspects detailed in related work.

Following this, we described the high-level design of Semantic Space, consisting of a set

of collaborating components for supporting the identified requirements.

CHAPTER 5 described the implementation of Semantic Space architecture designed to

provide application programmers with a convenient and flexible mechanism for dealing

with context-aware applications targeted at ubiquitous computing environments.

Semantic Space not only offers the implementation of architectural components, but also

provides a set of programming abstractions in the form of APIs for building sensor

wrappers and context-aware applications that get context either from individual wrappers

or the server architecture.

In CHAPTER 6, we presented important practical results gained through the use of the

context model and Semantic Space architecture in the implementation of a novel context-

85

aware application, SituAwarePhone. We presented the general design rational for

prototyping context-aware applications, and then illustrated the process and issues

involved in application development by example.

In summary, the contributions of this thesis are:

• A novel ontology-based context modeling approach for supporting the explicit

representation of context;

• The identification of architectural requirements to support the building of context-

aware applications, resulting in the Semantic Space architecture that provid es this

support;

• A set of programming abstractions, implemented in the form of APIs, to facilitate the

development of sensor wrappers and the design of context-aware applications;

• The implementation of a novel mobile context-aware application, SituAwarePhone, to

validate and evaluate the architectural support provided by Semantic Space.

7.2 FUTURE WORK

We envision several enhancements to Semantic Space. Currently, the system uses the

local-area-network discovery protocol, UPnP, to dynamically locate and access context

wrappers. In practical deployment, multiple smart spaces that belong to different users or

parties with private context might share the same local network. This presents many

opportunities for context misuse from both fraudulent context sources and misbehaving

applications. To address privacy concerns, we’ll incorporate endpoint authentication into

the wrapper discovery process [38]. Each component is associated with a URI and public -

key certificate, which can be used to prove its identity to all other components. Enabled

86

by component authentication, context-aware applications can specify both the context

wrappers they trust and those they have access to, thus restricting access of private

context to appropriate components.

We also plan to provide support for uncertain context, because dynamic context aren’t

always precisely obtained from sensors. Using the OWL ontology’s probabilistic

extension [39] we’re working on extending context ontologies to capture uncertainty and

give Semantic Space the ability to handle it. Enhanced context ontologies will support

probabilistic querying with respect to the quality of context (e.g. granularity, precision,

freshness, and level of confidence) and the inference of uncertain context using

mechanisms such as probabilistic logic, Bayesian networks, and fuzzy logic.

Another potential improvement is context validation. Because context that flows within

Semantic Space is formally represented as ontology instances, we can utilize rule-based

reasoning to check the logical correctness of context and determine whether certain

properties on context are fulfilled. For example, people are likely to agree on that “the

doors and windows must not be locked when heavy smoke is detected in a room with

people inside”. We therefore can set a property on context (status of door, status of

windows, smoke in a room, people in a room) can be formally expressed in term of

logical rule(s). If the reasoning (applying property checking rules) over the collected

context indicates the violation of this context property, certain actions (e.g. unlocking

doors and windows, alerting people) should be automatically carried out to handle this

revealed error. Context validation is especially valuable in the contextual environments

with mission-critical tasks such as emergency, security, and health-care.

87

APPENDIX A

JENA RDQL GRAMMAR

CompilationUnit ::= Query <EOF>
CommaOpt ::= (<COMMA>)?
Query ::= SelectClause (SourceClause)?

TriplePatternClause (ConstraintClause)?
(PrefixesClause)?

SelectClause ::= (<SELECT> Var (CommaOpt Var)* | <SELECT>
<STAR>)

SourceClause ::= (<SOURCE> | <FROM>) SourceSelector
(CommaOpt SourceSelector)*

SourceSelector ::= QName
TriplePattern
Clause

::= <WHERE> TriplePattern (CommaOpt
TriplePattern)*

ConstraintClause ::= <SUCHTHAT> Expression ((<COMMA> |
<SUCHTHAT>) Expression)*

TriplePattern ::= <LPAREN> VarOrURI CommaOpt VarOrURI CommaOpt
VarOrConst <RPAREN>

VarOrURI ::= Var
 | URI
VarOrConst ::= Var
 | Const
Var ::= "?" Identifier
PrefixesClause ::= <PREFIXES> PrefixDecl (CommaOpt PrefixDecl)*
PrefixDecl ::= Identifier <FOR> <QuotedURI>
Expression ::= ConditionalOrExpression
ConditionalOr
Expression

::= ConditionalAndExpression (<SC_OR>
ConditionalAndExpression)*

ConditionalAnd
Expression

::= StringEqualityExpression (<SC_AND>
StringEqualityExpression)*

StringEquality
Expression

::= ArithmeticCondition (<STR_EQ>
ArithmeticCondition | <STR_NE>
ArithmeticCondition | <STR_MATCH>
PatternLiteral | <STR_NMATCH>
PatternLiteral)*

Arithmetic
Condition

::= EqualityExpression

Equality
Expression

::= RelationalExpression (<EQ>
RelationalExpression | <NEQ>
RelationalExpression)?

Relational
Expression

::= AdditiveExpression (<LT> AdditiveExpression |
<GT> AdditiveExpression | <LE>
AdditiveExpression | <GE>
AdditiveExpression)?

Additive ::= MultiplicativeExpression (<PLUS>

88

Expression MultiplicativeExpression | <MINUS>
MultiplicativeExpression)*

Multiplicative
Expression

::= UnaryExpression (<STAR> UnaryExpression |
<SLASH> UnaryExpression | <REM>
UnaryExpression)*

UnaryExpression ::= UnaryExpressionNotPlusMinus
 | (<PLUS> UnaryExpression | <MINUS>

UnaryExpression)
UnaryExpression
NotPlusMinus

::= (<TILDE> | <BANG>) UnaryExpression

 | PrimaryExpression
PrimaryExpression ::= Var
 | Const
 | <LPAREN> Expression <RPAREN>
Const ::= URI
 | NumericLiteral
 | TextLiteral
 | BooleanLiteral
 | NullLiteral
NumericLiteral ::= (<INTEGER_LITERAL> |

<FLOATING_POINT_LITERAL>)
TextLiteral ::= (<STRING_LITERAL1> | <STRING_LITERAL2>)

(<AT> Identifier)? (<DATATYPE> URI)?
PatternLiteral ::=
BooleanLiteral ::= <BOOLEAN_LITERAL>
NullLiteral ::= <NULL_LITERAL>
URI ::= <QuotedURI>
 | QName
QName ::= <NSPrefix> ':' (<LocalPart>)?

Unlilke XML Namespaces, the local part is
optional

Identifier ::= (<IDENTIFIER> | <SELECT> | <SOURCE> | <FROM>
| <WHERE> | <PREFIXES> | <FOR> | <STR_EQ> |
<STR_NE>)

89

APPENDIX B

JENA RULE SYNTAX

Rule := bare-rule .
 or [bare-rule]
 or [ruleName : bare-rule]

bare-rule:= term, ... term -> hterm, ... hterm /*forward rule*/

or term, ... term <- term, ... term /*backward rule*/

hterm := term
 or [bare-rule]

term := (node, node, node) /*triple pattern*/
 or (node, node, functor) /*extended triple pattern*/
 or builtin(node, ... node)

/*invoke procedural primitive*/

functor := functorName(node, ... node)/*structured literal*/

node := uri-ref /*e.g. http://foo.com/eg */
 or prefix:localname /*e.g. rdf:type */
 or ?varname /*variable*/
 or 'a literal' /*either a string or a number*/
 or number /*e.g. 42 or 25.5*/

90

BIBLIOGRAPHY

1. M. Weiser. The Computer of the 21st Century. Scientific American, 94-100,

September 1991.

2. WordNet: A Lexical Database for the English Language. URL:

http://www.cogsci.princeton.edu/~wn/

3. B. Schilit, M. Theimer. Disseminating Active Map Information to Mobile Hosts.

IEEE Network, 8, No. 5, 22-32, 1994.

4. P.J. Brown, J.D. Bovey, X. Chen, Context-Aware Applications: From the Laboratory

to the Marketplace. IEEE Personal Communications, 4, 58-64, 1997.

5. N. Ryan, J. Pascoe, D. Morse. Enhanced Reality Fieldwork: the Context-Aware

Archaeological Assistant. Computer Applications and Quantitative Methods in

Archaeology. 1998.

6. P.J. Brown. The Stick-e Document: A Framework for Creating Context-Aware

Applications. In Proceedings of the Electronic Publishing ’96, 259-272, 1996.

7. B.N. Schilit, N. Adams, R. Want. Context-Aware Computing Applications , In

Proceedings of IEEE Workshop on Mobile Computing Systems and Applications .

1994.

8. A.K. Dey. Understanding and Using Context. Personal and Ubiquitous Computing,

Special issue on Situated Interaction and Ubiquitous Computing. 2001.

9. J. Pascoe. The Stick-e Note Architecture: Extending the Interface beyond the User, In

Proceedings of the International Conference on Intelligent User Interfaces, 1997.

10. S. Fickas, G. Kortuem, Z. Segall. Software Organization for Dynamic and Adaptable

Wearable Systems. In Proceedings of First International Symposium on Wearable

Computers (ISWC’97). 1997.

91

11. A.Dey, G. Abowd. Towards a Better Understanding of Context and Context-

Awareness. Workshop on the What, Who, Where, When and How of Context-

Awareness at CHI 2000. 2000.

12. A.K. Dey. Providing Architectural Support for Building Context-Aware Applications .

Doctoral Dissertation, Georgia Inst. Technology. 2000.

13. N. Davies, K. Mitchell, K. Cheverst, and G.S. Blair. Developing a Context Sensitive

Tourist Guide. Technical Report of Computing Department, Lancaster University.

1998.

14. M. Lamming, M. Flynn. Forget-me-not: Intimate Computing in Support of Human

Memory. In Proceeding of International Symposium on Next Generation Human

Interfaces. 1994.

15. D.L. McGuinness, F. van Harmelen. OWL Web Ontology Language Overview. W3C

Recommendation. 2004.

16. A. Harter et al. The Anatomy of a Context-Aware Application. In Proceeding of 5th

International Conference of Mobile Computing and Networking (MobiCom 99), 59–

68. 1999.

17. A.K. Dey, G.D. Abowd, A. Wood. CyberDesk: A Framework for Providing Self–

Integrating Context–Aware Services. Knowledge Based Systems 11(1). 3-13. 1998.

18. B. Brumitt et al. EasyLiving: Technologies for Intelligent Environments. In

Proceeding of 2nd International Symposium on Handheld and Ubiquitous Computing

(HUC 2000). 12–29. 2000.

19. T. Kindberg et al., People, Places, Things: Web Presence for the Real World. In

Proceeding of 3rd IEEE Workshop Mobile Computing Systems and Applications

(WMCSA 2000). 2000.

20. J.I. Hong, J.A. Landay. An Infrastructure Approach to Context-Aware Computing.

Human-Computer Interaction, vol. 16. 2001. p. 97.

21. G. Chen. Solar: Building a Context Fusion Network for Pervasive Computing. Ph.D.

Dissertation, Department of Computer Science, Dartmouth College, August 2004.

92

22. A. Schmidt. Ubiquitous Computing - Computing in Context. Ph.D. Dissertation,

Department of Computer Science, Lancaster University. November, 2002.

23. E. Guttman, C. Perkins, J. Veizades, M. Day., Service Location Protocol. Version 2.

RFC 2608, June 1999.

24. Sun Microsystems. Jini Architecture Specification - 1.0. Technical Report of Sun

Microsystems, January 1999.

25. Microsoft Corporation. UPnP Device Architecture Specification. Technical Report of

Microsoft Corporation. November 1999.

26. Y.Y. Goland, , T. Cai, P. Leach, Y. Gu, S. Albright. Simple Service Discovery

Protocol 1.0: Operating without an Arbiter . Internet-draft draftcai-ssdp-v1-03.txt,

work in progress, October 1999.

27. T. Berners-Lee et al. The Semantic Web. Scientific America, May 2001.

28. World Wide Web Consortium. RDF and OWL as Semantic Web Recommendations .

URL: http://www.w3.org/2004/01/sws-pressrelease. html.en 2004.

29. G. Klyne and J.J. Carroll, eds. Resource Description Framework (RDF): Concepts

and Abstract Syntax. W3C Recommendation, 2004.

30. D. Beckett RDF/XML Syntax Specification (Revised). W3C. February 2004.

31. T. Berners-Lee, Primer: Getting into RDF & Semantic Web using N3. W3C. 2000.

32. J. Grant, D. Beckett. RDF Test Cases. W3C. February 2004.

33. J.J. Carroll, et al. Jena: Implementing the Semantic Web Recommendations . In

Proceedings of 13th International World Wide Web Conference. New York. 2004.

34. L. Miller, A. Seaborne, A. Reggiori. Three Implementations of SquishQL, a Simple

RDF Query Language. In Proceeding of First International Semantic Web Conference,

Italy, 2002.

35. D. Zhang, X. Wang, et al., OSGi Based Service Infrastructure for Context Aware

Connected Homes. In Proceeding of First International Conference on Smart Homes

and Health Telematics (ICOST2003), France, 2003

93

36. R. L. Ackoff. From Data to Wisdom. Journal of Applies Systems Analysis, p 3-9.

1989.

37. B.N. Schilit, D.M. Hilbert, J. Trevor. Context-Aware Communication. IEEE Wireless

Communication. 9(5)46-54. 2002.

38. S.E. Czerwinski et al. An Architecture for a Secure Service Discovery Service. In

Proceeding of 5th Annual ACM/IEEE Int ernational Conference of Mobile Computing

and Networking (MobiCom 99), 1999.

39. Z. Ding, Y. Peng. A Probabilistic Extension to Ontology Language OWL. In

Proceeding of 37th Hawaii International Conference of System Sciences (HICSS 04),

2004.

