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SUMMARY 
 

Depression commonly affects women, particularly during their childbearing year and after 

childbirth. The rate of new psychiatric episodes in women increased markedly in the first 

few months after childbirth with 10 % of mothers experiencing postnatal depression. The 

issue of prescribing antidepressant drugs during lactating is clinically important, but also 

complex, because the decision on medication during the postpartum period is a difficult 

balancing act between maternal and infant safety. Data for some drugs are completely 

lacking and that for other drugs, information is only available for single dose or short-term 

studies or case reports. Therefore, the in vitro prediction of drug milk-to-plasma 

concentration ratio (M/P) will be of great value.  

 

The present study was thus carried out to examine the relationship between in vitro and in 

vivo drug distribution, using sertraline and bupropion as the two model antidepressant 

drugs, and rabbit as an in vivo model, with the main objectives as follows. Firstly, to 

explore possible factor(s) that may affect in vitro drug milk distribution of sertraline and 

bupropion (BUP), and secondly, to study the effect of different stages of lactating period 

on in vivo and in vitro milk plasma distribution.  

 

A stability-indicating High Performance Liquid Chromatograph (HPLC) assay for BUP 

was developed to determine the milk and plasma concentrations of BUP in the presence of 

its degradation products. The method was validated to be specific and accurate, and was 

successfully applied to in vivo pharmacokinetic study, in vitro milk: plasma distribution, 

and in vitro protein binding determination. 
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A new relationship between log milk:lipid partition coefficient (log ) and 

physicochemical parameters, such as molecular weight hydrophilic-lipophilic balance 

(MW_HLB), volumetric hydrophilic-lipophilic balance (V_HLB), percent hydrophilic 

surface area (HSA), was developed and validated with regard to M/P ratio prediction 

using 55 selected drugs and relevant literature data. When compared to the conventional 

relationship of log  and LogP (log octanol:water apparent partition coefficient). The 

prediction of M/P ratio based on the former appeared to perform better than that based the 

latter. 

fk

fk

 

The in vivo experimental (M/P ratio) and in vitro data obtained in the present study 

suggest that the stage of lactating period has a great effect on the drug milk:plasma 

distribution. Thus it is better to avoid breastfeeding in early lactating period by mothers 

who are on medication and have a higher M/P ratio during the colostrum period. 
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 CHAPTER 1 

INTRODUCTION 

1.1. General Introduction 

Depression is one of the most common forms of mental disorder in the general population, 

affecting about 15% of the general population and accounting for approximately 10% in 

primary care1.  

 

In any given one-year period, 9.5 percent of the population, or about 18.8 million 

American adults, suffer from a depression2. The economic cost for this disorder is high, 

but the cost in human suffering cannot be estimated.  

 

Diagnostic and Statistical Manual IV (DSM IV)3, published by the American Psychiatric 

Association, was adopted for the diagnosis of depression. It describes 3 unipolar disorders 

including major depressive disorder, dysthymic disorder and depressive disorder not 

otherwise specified.  

 

For a diagnosis of a major depression, five (or more) of the following symptoms must 

have been present nearly every day during the same two-week period and represent a 

change from previous functioning. At least one of the symptoms is either depressed mood 

or loss of interest or pleasure in daily activities3. 

1. Depressed mood most of the day. 

2. Markedly diminished interest or pleasure in (almost) all activities most of the 

day. 
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3. Significant weight loss (when not dieting) or gain (eg, greater than 5% of body 

weight in a month), or change in appetite. 

4. Insomnia or hypersomnia. 

5. Psychomotor agitation or retardation (observable by others). 

6. Fatigue or loss of energy. 

7.  Feelings of worthlessness or inappropriate guilt. 

8. Diminished ability to think or concentrate, or indecisiveness. 

9. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation, a 

specific suicidal plan, or suicide attempt. 

 

In addition, the symptoms should:   

1. Not meet the criteria for a mixed mood episode. 

2. Cause clinically significant distress or impairment in social, occupational, or 

other important areas of functioning. 

3.  Not be due to the direct physiologic effects of a substance (eg, an abused drug, 

a medication) or a general medical condition. 

4. Not be better accounted for by bereavement (i.e., a diagnosis of depression can 

be considered if, after the loss of a loved one, symptoms persist for longer than two 

months or are characterized by marked functional impairment, morbid preoccupation with 

worthlessness, suicidal ideation, psychotic symptoms, or psychomotor retardation). 

 

Depression is often a correlation of physical illness or can be a direct response to illness. It 

can also be the result of the changes in life circumstances, interpersonal disorder or loss, 

and intrapsychic conflict. Very often, a combination of genetic, psychological, and 
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environmental factors is involved in the onset of a depressive disorder4. Depression strikes 

women twice as often as it does men5.There is also a higher incidence of depression in 

married women with children than in childless married women6. Many hormonal factors 

may contribute to the increased rate of depression. In women particularly such factors as 

menstrual cycle changes, pregnancy, miscarriage, postpartum period, pre-menopause, and 

menopause. It has long been recognized that women are more liable to become depressed 

during the postpartum period7. The hormonal and physical changes, as well as the added 

responsibility of a new life, can be factors that lead to postpartum depression in some 

women. 

 

1.2. Postpartum depression (PPD)  

At least one in ten women experiences depression in the weeks or months after the birth of 

a baby. While many recover spontaneously within a few months, one-third to one-half still 

have features of depression 6 months after delivery, and some go on to develop a chronic 

or recurrent mood disorder8,9. Depression in the early postpartum months can have 

important effects on the mother and her baby, and on other family relationships10.  

 

1.2.1. Classification 

Three types of postpartum disorder have been defined: posrpartum blues (also known as 

maternal or baby blues), postpartum neurotic depression (also known as puerperal 

neurosis) and puerperal psychoses.  

Postpartum blues occur in about 50% to 70% of puerperal women11,12. The syndrome is 

transitory, resolving spontaneously within a few hours to 2 weeks13. It is characterized by 
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intermittent mild fatigue, crying, anxiety, difficulty of thinking clearly and sleep 

disturbances. 

Postpartum depression begins within the first four weeks postpartum. It is said to affect 

10% of all childbearing women14,15. The syndromes disable the patient for more than 2 

weeks and is characterized by a depressed mood and difficulty coping, particularly within 

the infant16. 

Psychoses occur in 1 to 2 per 1000 postpartum women; they may present as schizophrenic 

or affective disorders or as confusional state17. Due to the relatively rare occurrence of this 

disorder and the absence of specific symptoms, puerperal affective psychosis is treated 

similar to non puerperal affective psychosis18.  

 

1.2.2. Etiology 

There are many factors that may contribute to the increase in pregnancy-associated 

affective syndromes. Hormonal factors play a major role in influencing central nervous 

functioning. Women who develop PPD may be particularly sensitive to the marked 

hormonal changes associated with the pregnancy. Of course, other factors are also 

important such as genetics, socioeconomic issues, stress, and emotional support system for 

the new mother19,20. 

 

1.2.3. Diagnosis  

The DSM-IV-TR4 does not classify postpartum psychiatric disorders as diagnostic 

categories but allows the specifier "with postpartum onset" to be applied to major 

depressive disorder, bipolar disorder (type I or II) and brief psychotic disorder if the onset 
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of symptoms occurs within the four weeks following childbirth. The DSM-IV-TR does 

not allow the specifier to be applied to other psychiatric disorders. 

 

1.2.4. Treatment  

Postpartum depression is successfully treated with medications, psychotherapy, or a 

combination of both21,22. Pharmacologic treatment is preferred to psychotherapeutic 

intervention in patients with more severe or chronic symptoms, prior episodes or family 

histories, or a prior response to treatment. Medications have the advantage of being less 

costly and time-consuming. 

 

There are several types of antidepressant medications used to treat depressive disorders. 

These include newer medications chiefly the selective serotonin reuptake inhibitors 

(SSRIs), the tricyclics, and the monoamine oxidase inhibitors (MAOIs). The SSRIs and 

other newer medications that affect neurotransmitters such as dopamine or norepinephrine 

generally have fewer side effects than tricyclics23. 

 

Pharmacologic treatment of depressive disorders during the postpartum period creates a 

dilemma for women who are breast-feeding. The safety of antidepressant therapy in this 

population is not completely known partly because infants are not allowed to breastfeed in 

many studies evaluating drug excretion in breast milk24. 

 

1.3. Antidepressant drugs 

The vulnerable for psychiatric illness during the 3 months after delivery raises the 

possibility that psychotropic medications will be administrated25,26. In postpartum 
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depression, antidepressant drugs are frequently prescribed for lactating women yet this 

poses problems for those mothers who wish to breast-feed their babies27,28. These drugs 

(as listed in Table 1.1) and often their metabolites, especially if pharmacologically active, 

are lipid-soluble and are excreted into breast milk29 . So it is of importance to monitor 

those drug concentrations in breast milk. Almost all the antidepressant studies have been 

found in breast milk and the milk-to-plasma ratio is typically ≥130. However, for the use 

of antidepressant drugs in breast-feeding women, the current data do not warranty any 

absolute recommendation. The Committee on Drugs of the American Academy of 

Pediatrics classifies antidepressant as “drug whose effect on nursing infants is unknown 

but may be of concern”31. Thus, the decision to treat a breast-feeding woman with 

antidepressants must be a case-specific risk-benefit assessment pending the accumulation 

of experience and data. 

 

Table 1.1. Antidepressant class 

Class Tricyclic 
antidepressants 

Selective serotonin 
Reuptake inhibitors 

Others 

Drugs Amitriptyline 
Nortriptyline 
Imipramine 
Desipramine 
Clomipramin 

Doxepin 

Fluoxetine 
Fluvoxamine 
Paroxetine 
Sertraline 

Citalopram 

Bupropion 
Mianserin 

Venlafaxine 

 

SSRIs are often used as the first-line antidepressant due to their favorable side effect 

profile, ease of use and proven efficacy23. Most of SSRIs, such as fluoxetine, fluvoxamine, 

paroxetine and citalopram, have been extensively studied in our laboratory, with respect to 

their physiochemical properties and in-vitro milk plasma distribution. Therefore, sertraline, 
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one of the remaining SSIRs yet to be scrutinized, was studied in this project. Another 

antidepressant drug, bupropion, as a unique antidepressant of the aminoketon class, was 

also chosen as a model drug to study the various factors that may affect the milk plasma 

distribution.  

 

1.3.1. Sertraline  

Sertraline (1S-cis)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-

naphthalenamine; C17H17Cl2N) is a 1-aminotetrahydronaphthalene that selective inhibits 

serotonin uptake into presynaptic nerve sites and is used in the treatment of depression32.   

 

 

Figure 1.1. Chemical structure of sertraline. 

 

It is highly bound to plasma proteins particularly albumin α1 acid glycoprotein; levels of 

the latter protein are increased in depression33. Following absorption, sertraline undergoes 

extensive metabolism. Partial demethylation occurs to form the primary metabolite, 

demethyl-sertraline, a clinically inactive compound. It was reported that multiple forms of 

YP, including CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, are involvled in 

er 

C

the sertraline N-demethylation in human liver microsomes. The amine is furth
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metabolized to the α-hydroxy ketone34. Conjugated metabolites, sertraline carbamoyl-O-

glucuronide, are then excreted via the u etabolites via bile . Its 

physicochemical properties and pharmacokinetic para  in Table 1.2.  

Table 1.2. The physiochem acokinetic parame

Physiochemical properties 

rine, and unconjugated m 32

meters are listed

 

ical properties and pharm ters of sertraline 

Character Molecular Formula pKa Molecular 
ht 

Solubility LogP Ref. 
Weig

We base  In water:  
slightly soluble 

high 32 ak   C17H17Cl2N 8.9 342.7

Ph acoarm kinetic parameters 
Tma hr) ein 

binding (%)
Cl/Fc (L/hr) Clinical 

plasma level 
Half-lifed

(t1/2, hr) 
Ref. a ( Vd/F b (l/kg) Protx

(ng/ml) 
6-8 20 99 96 10-60 25-26 35 

Notes:  

b. volume of distribution 

d. elimination half life 

 

 tablet45. The lowest 

amounts are found in an hour prior to taking the Zoloft, which is usually a once-a-day 

medication. Overall, nursing infants receive less than 0.3 percent of mothers’ dose, even 

after adjusting for their weight46. No adverse events have been reported. Where studied, 

a. time to reach peak drug concentration 

c. total body clearance 

 

There have been several reports published with regard to the use of sertraline during 

breastfeeding36-43 (see Table 1.3). Some studies have shown that sertraline (Zoloft) could 

not even be found in breast milk44. We now know that the drug is present in tiny amounts. 

The highest concentrations are found in hindmilk (the high-fat milk that follows the initial 

foremilk, which contains more water) 7-10 hours after taking the
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developm

20

ental milestones have proceeded on cour though one baby has been found 

who had blood concentrations of Zoloft at half its m s levels47. 

se, al

other'
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Ta . /serum e o tr e in breast-feeding mothers and their nt

C tr
g/ml) 

ble 1 3. Reported plasma  l vels f ser

oncen ation 
(n

alin infa s  

No.
of 

cas

Infant age 
at dos
(weeks

ea

s) 

M a

Maximum Observed 
milk Con. (ng/ml) 

M/Pb Infant plasma o
serum conc. 

(ng/ml) 

m  a fe s.  

es 

Dose 
(mg/d) e 

) 

Tim   
(day

ilk Plasm

r Co ments nd Re rence

1 0 3,7 0 c 4 43 0.65 
  

4.5 No detectable or very w n  i nt

 

 1 0  1 3   8  lo conce tration n infa  
plasma  
48

11 5 1 1
73

94

S c S 17
DS 2

S  2.3 
DS 1.4

S: <3.0 
DS: <10.0  

 2 -150 4-14  
 

>14 S 7-
1  
DS 22-
2  

 25.3
DS 62 

3 
94 

 
49

 

9 0
8) 

S   S: 
DS: 2-3 

a a ve

 

 5 -200 4-22 
 

19 
(7-4

  77 c

DS 118
2 Metabolite was found in infants’ plasm nd ha  a 

mean concentration of 3ng/ml 
50

8 .  
1)

) 

65d

DS 8
S: 
1.93e

DS: 
1.64 
(AUC)

 etabolite were detected in infant 

 

 1 05
mg/kg/d 

23 
(8-6  

9 
(5.7-
18.2

  S 
5 

No drug or its m
plasma. 
51

10 150 >14 7
(7.3-
207) 

9
(
6

c  
a  d

52 

 4  0 
17-
2.7) 

207 1.76 The dose of drug to which the infant was exposed was 
calculated, which was less than 2% of m ternal ose. 

14 25  c  
s 

S   

c

4

  S: <2.5 
DS: <5.0 

53 -200 26.3 6-16
week

 : 30.7

DS: 
5.3 

Note  S al D e th rtraline
a: tim p ; :P ratio; c: average data; d: estimated data; e: A a v

s: SER, S: ertr ine; S: D sme ylse
e after treatment when sam ling b: M

; 
UC b sed alue 



1.3.2. Bupropion 

Bupropion ((R,S)-1-(3-Chlorophenyl)-2-[(1,1-dimethylehty)amino]-1-propanone 

roc ue class. It differs from o

t is  a m ne ox and s little or n  

of re ke o ep rot ain osomes54

appears to be particularly effective in hypersomniac, hyperphagic unipolar depression 

41 as 3 metabolites: hydroxybupropion, 

eobu ropion. The first 2 metabolites are active, with 50% of 

55

parameters of bupropion are summarized in Table 1.4. 

hyd hloride) is a uniq  antidepressant of the aminoketon ther 

depressant drugs that i  not onami idase inhibitor exert o

inhibition upta of n repin hrine or se onin in rat br  synapt . It 

and in bipolar depression . The drug h

thr propion and erythrobup

the activity of the parent drug . The physiochemical properties and pharmacokinetic 

 

Figure 1. 2. Chemical structures of bupropion 

ee Table 1.5). Simultaneously milk and 

aternal plasma samples obtained after dose administration demonstrated that 

 

Briggs and colleagues56 reported bupropion excretion into breast milk in a 37-year-old 

woman receiving 100mg three times daily (s

m

bupropion was consistently present in greater amount in milk as compared to plasma, 

with a M/P ratio ranging from 2.51 to 8.58. Bupropion accumulates in human breast 

milk, more than other antidepressants, with concentration more than twice that found 

in mother’s blood. Buproprion has not been detected in the infant's blood, though it 

accumulates in small amounts there, if any. 
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Table 1.4. The physiochemical properties and pharmacokinetic parameters of 

 
Bupropion 

Physiochemical properties 
Character Molecular Formula pKa Molecular 

weight 
Solubility LogP Ref. 

Weak base C13H18CINO·HCl 7.9 276.2 In water: < 1 in 3 high 32 
Pharmacokinetic parameters 

Oral 
ailability (F) 

T
bioav

a  b C 
max  

(hr) 
Vd/F  (l/kg) Protein 

binding (%)
Clinical plasma 

level (ng/ml) 
Half-life
(t , hr) 

Ref. 
1/2

>95% 1-3 27-63 75-85 10-50 14 32 
(8-24) 

Notes:  
a. time to reach peak drug concentration 
b
c

. volume of distribution 

. elimination half life  

Table 1.5.

No. 
of cas

Dose Infant age  Time Concentration Maximum  

 Concentration 
(ng/ml) 

M/P Comments  
and  

References. 

 Reported plasma/serum levels of bupropion in breast-feeding mothers and their infants 

es (mg/d) at dose 
 

a

(days) (ng/ml) Observed 
 Milk 

b

1 300 14 14 26.9 c 121.8 c 0.189 B: 

0.09-0.11 

No drug or metabolite 

 

months   2.5-8.58 
HB: 

TB: 
1.23-1.57 

 found in the infant’s 
plasma. 
57

 
Notes: BUP, B: Burpopion; HB: hydroxybupropion; TB: threohydrobupropion 
a: time after treatment when sampling; b: M:P ratio; c: average data 

 

1.4. Benefits of breast feeding 

Breast-feeding is an essential physiologic process that provides nutrition to the infant. 

ther and infant58-63  

k as the best and only source of nutrition necessary for 

e infant during the first 6 months of life25. Breast-feeding also appears to provide 

protection against sudden infant death syndrome, the development of food allergies 

It is beneficial to both mo

 

The usefulness of breast milk offers not only essential nutrition for the infant, but also 

protection against infection and other immunology disorder61. The American Academy 

of Pediatrics endorses breast mil

th
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and some chronic diseases including childhood-onset diabetes mellitus, lymphoma, 

ulcerative colitis, and Crohn’s diseases25,62,64.  

 

Women who breast-feed their infants experience a number of health benefits such as 

less postpartum blood loss and more rapid uterine involution, earlier return to 

repregnancy weight, concurrent fertility reduction, lower risks of breast and ovarian 

se reasons, it is often 

ontraindicated in case of maternal drug use in the lactating period. In many cases, 

to nutrients such as proteins, fats, 

ugars, minerals, and vitamins, there are antibodies, hormones and growth factors. The 

p

cancer, and probable protect against osteoporosis and adult-onset obesity25,62.  

 

In addition, breast-feeding has been shown to enhance mother-infant bonding and may 

enhance both maternal self-esteem and self-efficacy by allowing a mother to provide 

very personal and optimal nourishment to her infant60.  

 

Although breastfeeding is now widely accepted for tho

c

concentrations of drug in breast milk have not been measured and M: P ratio may vary 

due to the changes of milk composition in different lactation period. Thus, it is often 

difficult to assess the risk to the infant of exposure to these agents through nursing.  

 

1.5. Milk Composition 

The composition of milk is very complex. In addition 

s

major components, which affect drug distribution into milk, are the aqueous itself, the 

lipid content and the proteins63. 
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The fat component of milk is composed of a complex mixture of lipids. Triglycerides 

are the major type of lipid in milk fat65. Milk lipid content increases during the time 

course of lactation from around 2.9 % in early milk to 5.4 % in mature milk. Lipid 

composition also changes during breast-feeding . These effects can alter M/P ratio, 

caseins and aqueous whey proteins, present in the ratio of about 40:60. The 

predominant casein of human milk is β-casein, which forms micelles of relatively 

small volume and produces a soft, flocculent curd in the infant's stomach. The major 

whey proteins are α-lactalbumin, lactoferrin, secretory IgA, and serum albumin with a 

large number of other proteins present in smaller amounts

65

but the extent of these appears to be minimal.  

 

Proteins account for approximately 75 % of the nitrogen-containing compounds in 

breastmilk. The proteins of breastmilk can be divided into two categories: micellar 

constituents change during the lactation period and differ between individual mothers. 

There are several factors that are known to influence the concentration of breastmilk 

onstituents in predictable ways67. These include stage of lactation, breastfeeding 

utine, parity, age, and other maternal characteristics, regional differences, and in 

ome situations, season of the year and maternal diet. 

uman lactation can be divided into 3 identifiable stages that differ in the composition 

nd volume of milk produced: colostrums, transitional, mature68. Colostrums, a milk-

ke fluid produced during first few days of lactation, is significantly different from 

ature milk that it contains 2-4 times more protein but has relatively low 

66.  

 

The composition of breastmilk is not uniform, and the concentrations of many of its 

c

ro

s

 

H

a

li

m
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concentrations of fat, lactose, and vitamin B169. The milk produced between colostrum 

and mature stages is transitional is ap rom 7  

postpartum to 2 weeks postpartum. entration of 

unoglobulin rotein hereas the lactose, fat and total caloric 

ilk is produced from ately 15 days after 

ntil n o ding tmilk com

also changes during the course of lactation, although not as markedly as in the early 

weeks . Mature milk has a greater amount of carbohydrate and fat and less protein 

. e, the t  conten  milk is 9-12 , but 

s74. It is thinner and watery and can be divided into hindm k and 

 The m hich comes at the start of the feed, is called foremilk. Foremilk, 

tery uish in color, has a low level of fat and is high in lactose, sugar, 

protein, vitamins, minerals and water. Hindmilk, the milk which comes later in a feed, 

is richer in fat and this extra fat makes it look whiter than foremilk75. Table 1.6 lists the 

milk composition variances during postpartum period60,76.  

 

 

 

 

 

 

 

milk, which proximately f  to 10 days

 Its content gradually changes. The conc

imm s and total p  decreases, w

content increases70. Mature m  approxim

delivery up u  the terminatio f the breastfee . Mature breas position 

71-73

than colostrum For exampl otal protein t of mature  g/l

35 g/l in colostrum il

foremilk. ilk, w

which is wa and bl
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Table 1.6. Milk composition variances during postpartum period 

Colostrum 

post partum) 

Transitional 

(6-10 days post 

Mature milk 

months post 

Reference 
 

 
(first 5 days milk 

partum) 

(15 days to 15 

partum) 
p

  
H 7.26±0.22 7.05±0.14 7.08±0.10 76 

P
g/dl) 

Casein (g/dl)  76

 
W

 
 76 

 
Cre
% 

6.47±2.01 7.01±1.62 6.83±1.64 76 

Seru
(g/l)

  

Fat 3.6 3.8  60 

Lipi 3.16 3.49 4.14  60 

rotein (total, 1.84±0.38 1.52±0.15 1.22±0.20  76 

 
0.369±0.175 0.344±0.116 0.238±0.085  

hey (g/dl) 1.47±0.27 1.18±0.21 0.98±0.21 

amatocrit, 

m albumin   
 
(g/dl) 2.9 

d (g/dl) 
 

Breastmilk contains a unique combination gredients, differing f he milks of 

other mammals in both the concentration and the nature of its many components. In 

rient 

laboratory species . 

 

72,79. In comparison with the 

position of human milk, rabbit milk is quite concentrated, high in fat and protein, 

 of in rom t

common with the milk of other primates, human milk has low energy and nut

density compared to the milks of most other mammals, except for a high density of 

carbohydrates77. In addition, the daily output of the major nutrients in milk relative to 

the size of the mother is lower in humans than in other mammals, especially dairy and 

78

The composition of rabbit's milk, which we used in our in vivo experiment, is different 

from that of human milk as shown in Table 1.7

com
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and very low in sugar.  For example, human milk contains 1.2 % protein, minus 0.3 % 

on-protein nitrogen, which leaves 0.9 %, while rabbit's milk contains 10 times as 

uch protein. Due to this reasons, the absolute M/P ratios determined in rabbit may 

iffer greatly from those in humans. However, the rabbit model we used in this study 

was to examine the changes in physiological factors during the lactating period, which 

ay affect the transfer of drug into milk.  This in vivo study will allow to correlate in 

itro with in vivo data and thus to validate the in vitro M: P ratio prediction method. 

   Table 1.7. Average milk compositions of human and rabbit 
 

Percent composition 

n

m

d

m

v

  

Constituent 
Human Rabbit 

Water (g/dl) 87.6 67.2 
Solids (g/dl) 12.4 40.8 
Protein (g/dl) 
                    Casein (g/dl) 
                   Whey (g/dl) 

1.0 
      0.4 
      0.6 

13.9 
         19.7 
          4.0 

Lipids (g/dl) 3.8 18.3 
Fat (g/dl) 3.8 13.9 
Carbohydrates (g/dl) 7.0 2.1 
Ash (g/dl) 0.2 1.8 
pH  7.0 NA 

NA: data not available 

 

.6. Factors affecting drug transfer into human milk and exposure to infants 

he mechanisms by which medications are transferred into breastmilk are no different 

from those governing passage into any other maternal body fluid or organ system. 

ost drugs are transferred across membranes by passive diffusion, reaching 

oncentration equilibrium with the concentration in the blood80,81.  

 in breast milk and the dose consumed by infant: 

aternal factors, physiochemical properties of the drug, milk factors and drug 

isposition in the sucking infant (Figure. 1.4)63,82-88. 

1

T

M

c

 

Several factors affect drug excretion

m

d
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Figure 1.3. Schematic presentation of determinants of drug concentration in milk and  
 
potential exposure of the infant 
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1.6.1. M

s well as route of 

drug a

ribution, 

metabo

 

 important factors influencing drug excretion into milk are the 

hysiochemical features of the compound89,90. These factors include the drug’s 

e degree to which the drug is bound to plasma and milk proteins, 

aternal factors 

Compliance, bioavailability in mother, the dosage, and frequency a

dministration affects the magnitude and duration of drug passage into breast 

milk. After maternal intake, the pharmacokinetic principles of absorption, dist

lism and excretion of drugs will play a role in the determination of drug levels 

in the milk83. 

1.6.2. Drug factors  

The most

p

molecular weight, th

its solubility in lipids and in water, degree of ionization, its pH factor, its half-life and 

its milk/plasma ratio (Figure 1.3)85. 

 

 

Figure 1.4. Drug transfer between plasma and milk 
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Following are the general guidelines apply to drug factors85: 

1. The lower the drug’s molecular weight, the more easily it passes into a 

other’s milk. Drug with a high molecular weight (>200) are restricted from passing 

lasma (pH7.4). 

6. The longer the half-life of the drug, the greater the risk of accumulation in 

and in 

 

1.6.3. Milk factors 

omposition of breastmilk changes greatly from the initial colostrum to mature 

e, lipophilic drugs such as diazepam are likely to be present in greater 

quantity in the milk of women who have been breastfeeding for several months than in 

the milk of women who have rece wever, is 

greater in colostrum than it is in mature milk87,88. 

m

into human milk. 

2. The more a drug bind to plasma protein, the less likely it freely diffuses 

through the alveolar membranes into breastmilk.  

3. The more lipid-soluble of a drug, the greater the quantity transferred and the 

faster it transfers into breastmilk.  

4. The greater the proportions of the drug in a nonionized form, the more 

readily it diffuses across the lipid cellular membrane and into milk.  

5. Drugs that are weak bases tend to concentrate more in breastmilk. This is 

because human milk is usually more acid (pH7.0-7.4) than is p

the mother and in the infant.  

7. The higher Mu/Pu ratio, the greater the amount of the drug found in milk 

The Mu/Pu ratio refers to the concentration of the protein-free fractions in milk 

plasma.  

The c

milk. For exampl

ntly given birth. Protein concentration, ho
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Even during a single breastfeeding session, milk composition will vary, with milk 

expressed towards the end of a feeding having a greater fat content. Blood flow to the 

breast as well as differences between milk and blood pH affect drug transfer and cause 

trapping" of drugs that are weak bases within the milk already produced81. 

ug. Also, the sucking patterns, duration of feeding 

nd volume consumed play a role in determining the amount of drug ingested. Once 

 the infant’s bloodstream to exert systemic toxicity91-

1.7. Theoretical models 

Excretion of drug in milk depends on pla

usion is the most common 

mechanism by which drugs pass from bloodstream in to milk. Only unbound, 

nonionized drug can cross biological membrane. Its concentration difference across the 

n to milk. Therefore, the drug 

binding to plasma and milk proteins and solubility in milk fat determine its milk-to-

tion63. Most 

 

1.7.1. Unbound drug distribution model 

The stead-state distribution of unbound drug between milk and plasma (Mu/Pu ratio) 

may be predicted using a rearrangement of the Henderson-Hasselbach equation. 

"

 

1.6.4. Infant factors 

The age and maturity of the beast-feeding infant are important in light of the risks and 

benefits of maternal ingestion of a dr

a

ingested, the drug must cross into

94. 

 

sma protein binding, ionization, molecular 

weight and pharmacokinetics of the drug. Passive diff

lipid membrane regulates the amount of drug excreted i

plasma drug concentra drugs have a milk-to-plasma drug ratio of 1:1 or 

less, while some 25 percent of ratios lie between 1:1 and 2:1.  
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For acid drugs, 

)(

)(

101
101 pKapHm

u

u

P
M −

+
+

=
     (Eq. 1.1) 

and  

For basic drugs, 

pKapHp−

)(

)(101 pHmpKa
uM −+
=

101 pHppKaP −+
      (Eq. 1.2) 

Where pHm and pHp refer to the pH of milk and plasma, respectively.  These 

equations predict that the Mu/Pu ratio will s 

 neutral drugs86. 

 

This equation adequately predicts the experimental ratio of unbound drug in m

 

Phase distribution model 

u

be <1 for acid drugs and >1 for basic drug

and equal to 1 for

ilk to 

unbound drug in plasma, but it does not predict the M/P ratio for most drugs. The M/P 

ratio is more clinically relevant, since this value can be used to determine the infant 

drug dose administered via nursing. 

1.7.2. 

Fleishaker et al76 propose to predict the M/P ratio of a drug based on the above 

mentioned principles by using the following phase distribution model: 

)/(, MSffP un
mmu

un

=
      (Eq. 1.3) 

The S/M ratio is calculated using the following equation: 

, ffM ppu

)1(1
1

, −+
=

fmu kfctM
S

      (Eq. 1.4)  

while the milk:lipid partition coefficient, kf is given by: 
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   SMmu

mf

Cf
C

k
,

=
       (Eq. 1.5)  

Where f

f

un

the skim milk-to-whole milk ratio, ct is the creamatocrit ratio, Cmf is the concentration 

in milk fat, and Csm the concentration in skim milk. This model reflects the M/P ratio 

1.7.3. Membrane diffusional model 

plasma and the pKa of the compound to include two other factors which can affect the 

rse a lipid bilayer: molecular weight (M ) and the octanol-

water partition coefficient, or log P. Using regression analysis of M/P ra d 

parameters for 20 acidic and 15 basic drugs, the following regression 

equations were found to explain 65 % and 64 % of the variance, respectively: 

For acidic drugs, 

u is the fraction of unbound drug, f  is the fraction of unionised drug, S/M is 

under steady state conditions such as multiple oral dosing.  

 

Meskin and Lien88 extended the consideration of the pH difference between milk and 

ability of a molecule to trave

tios an

physicochemical 

PMW
P
M log185.0−

  

or basic drugs, 

162.0068.2log −=
   (Eq. 1.6a) 

F

D
UP

P
M log128.0−

     (Eq. 1.6b) 
log153.0265.0log −=

Where U/D is the ratio of undissociated (unionized) to dissociated (ionized) drug. The 

reasonable predictions in this case may be due to the fact that log P and molecular 

weight have been shown to affect protein binding and would be likely to affect 

partitioning into milk fat. 

 

1.7.4. log-transformed phase distribution model 
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For comparison of the phase distribution model (equation 1), the log-transformed 

phase distribution model was proposed by Atkinson and Begg94. Rather than used the 

measurements of protein binding in skim milk and partitioning into milk fat, they 

employed the relationships between milk and plasma protein binding91 and between 

the milk: ultrafiltrate partition coefficient and log P30. The resulting equation was: 

⎥⎦

⎤

⎣

⎡ ×+
⎠
⎞

⎝
⎛×=

muu

upu k
P

Mf
P
M 045.0955.0

,

,

    (Eq. 1.7
⎢ ⎟⎜ ff

) 

here fu,m  and  fu ,p refer to the unbound fractions in milk and plasma, Mu/Pu is the 

trations in milk and plasma predicted from the Henderson-

W

ratio of unbound concen

Hasselbach equation, and fk   is milk: lipid partition coefficient92.  

88.0log29.1log −= pk f       (Eq. 1.8) 

The phase distribution model resul  in t overestim r 

 

Regression analysis was conducted for acidic and basic drugs separately, with the 

following equations:  

For acid drugs, 

ted sligh ates of the M/P ratio fo

acidic drugs and underestimation of M/P ratios for basic drugs. 

KfP
M

P
M 40.0ln −= pu

u

u ln54.1ln69.0)ln(36.95 , −−+
   (Eq. 1.9a) 

For basic drugs, 

KfP
M

P
M

pu
u

u ln5.0ln9.0)ln(3.2025.0ln , +++=
         (Eq. 1.9b) 

f
Where K is defined as: K = mu , .              

 
 

kf 045.05.0 +
  (Eq. 1.10) 

95
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1.7.5. Structural models 

Agatonovic-Kustrin et al.
 

/P ratio based on the basic structural, chemical, and physical properties of a 

olecule. Data from 60 compounds were used in this analysis. Sets of data for 50 

t into the physiological processes that affect drug 

ansfer into milk. Thus, some combination of in vitro experiments, in vivo studies, and 

odeling approaches will be necessary to describe a drug’s M/P ratio in humans. 

.7.6. Exposure models 

he ultimate goal in determining the M/P ratio is to predict the exposure of a human 

infant to drugs via breast milk. The ilk may be calculated as 

PMCDose ×= /inf
              (Eq. 1.11) 

93 employed an artificial neural network to allow prediction 

of the M

m

compounds were used in training and testing the network outputs; 10 compounds were 

used for external validation. Compared with the log transformed phase distribution 

model. The neural network showed less predictive error and method bias. 

 

Both the log phase distribution model and the artificial neural network perform fairly 

well in predicting M/P in humans in the absence of experimental data. However, they 

cannot account for deviations from expected behavior due to active transport processes. 

In addition, they do provide insigh

tr

m

 

1

T

 dose in human m

ss
p milkV×

    

Where ss
pC  is the average concentration at steady state in maternal plasma. M/P is the 

M/P ratio based on AUC values in both fluids, and milkν  is the volume of milk ingested 

by the infant, which is approximately 150 ml/kg/day94.   
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If clearance in the infant (Cinf) is known, the average systemic exposure to the infant 

may be calculated as:  

inf

infint

Cl
FDose

C
×

=
         (Eq.1.12) 

inf

%100inf ×=
mat

DoseRD
        (Eq. 1.13) 

Where C

Dose

us in vitro, and in vivo and predictive models have been established 

 estimate M/P ratio, but no model is accurate enough in predicting the amount of 

 

inf is infant drug concentration in plasma, Finf is the infant oral 

bioavailability and Clinf is the infant total drug clearance.  

 

Prediction of the exact infant dose and exposure is difficult, as nursing times in relation 

to maternal dosing will vary, as will the volume of milk be consumed at any particular 

feeding. 

 

Over the past decades, our knowledge about the factors that affect the milk plasma 

distribution was increased. However, for most drugs, its milk plasma distribution ratios 

are unknown. Vario

to

drug transfer into milk. For this, a combination of in vitro experiments and in vivo 

studies in animal models should be conducted to determine whether a particular 

compound would show high milk to plasma ratio in human milk, and thus be a 

potential risk to the nursing infant. 
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CHAPTER 2 
 

AIM and OBJECTIVES 
 

The postnatal period is a time of increased onset and relapse of depression. It poses a 

clinical dilemma, as many mothers requiring medication will also choose to breast feed 

their infants. Any decision to institute treatment for depression must weigh the benefits 

of maternal treatment against the potential harm to the breastfeeding mother of 

withholding medication which may improve her illness. For the neonate, one must 

balance the risk of medication exposure against the benefit of receiving breast milk. 

 

The amount of free drug available for transport depends on the drug physiochemical 

properties, degrees of plasma and milk protein binding, the plasma and milk pH .  

Another factor affecting excretion of drugs is the time when breast-feeding occurs, as 

the milk composition and its pH value change at different lactating period. The basic 

drugs with low plasma, but high milk, protein binding tends to concentrate more in 

milk. In the same way, the milk with lower pH and higher protein content can trap 

more basic drugs. Therefore, the potential risk to infant may be greater when the drug 

is administrated in transitional stage, whose milk pH value is lower than that in 

colostrum stage. As currently reported data on drug milk plasma distribution was not 

24

m experiments carried out under controlled conditions and did not take the 

tage of lactation period into account. We can assume that the conclusion 

ade about whether the drug exposed to infants is safe or not is quite arbitrarily. 

ilk plasma distribution and the infant exposure with 

ill be helpful in the determination of the safety of 

ant.  

 

obtained fro

different s

m

Hence, a prediction of drug m

respect to different lactating period w

the drug in inf

 38



There are various methods for predicting M/P, which involve in vitro experiments in 

ammary cell monolayer, assessment of drug binding to plasma and milk protein and 

pid, in vivo experiments in animals, and regression models based on a compound’s 

hysicochemical characteristics94. The in vitro predictive models, although consider 

e change of milk pH and protein content, can not mimic the in vivo dynamic 

ehaviour, and hence lack the accuracy in the prediction of milk/plasma distribution. 

hus, a correlation of in vivo drug milk:plama distribution studies in animal models 

ith data obtained from in vitro experiments can be established and may enable to 

etermine whether a particular compound will show a high milk to plasma ratio in 

uman milk, and thus be a potential risk to the nursing infant. 

he aim of this work was to correlate the M/P ratio obtained by using revised 

regression model and in vitro experiment with that obtained by conducting the in vivo 

studies in lactation rabbit. Also, as the m ontent and eliminating 

capacity in mothers vary within lactation period; assessment was made to evaluate the 

relative risks to infant taking antidepressant via breastfeeding at different stages of 

lactation period. Two antidepressant drugs, sertraline and bupropion, were selected as 

model drugs as they are two commonly used antidepressants for women who 

encountered depression. For the re dies, the prediction was made by 

finding drug’s physiochemica k and plasma, as well as the 

drug p g the 

 by Atkinson’s model and our proposed made of 50 drugs. Various 

m

li

p

th

b

T

w

d

h

 

T

ilk protein, lipid c

gression model stu

l properties and the pH of mil

rotein binding data. Prediction performance was evaluated by comparin

M/P ratio obtained

factors, such as milk pH, protein content and protein composition, which may affect 

the transfer of antidepressant, were studied by in vitro experiments. In in vivo studies, 

the lactation rabbit was used to compare the M/P ratio obtained in colostrum and 
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mature stages. Furthermore, an attempt was made to correlate the M/P ratio with 

changes of milk protein, pH and lipid content both in vivo and in vitro. 
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CHAPTER 3 

A NOVEL METHOD  

FOR DRUG MILK-TO-PLASMA RATIO PREDICTION 

3.1. Introduction 

Breastfeeding provides important benefits to mother and infant and should be strongly 

encouraged as the optimal infant feeding choice for most infants95. However, 

prescription and nonprescription medications are commonly used by women who 

breast-feed their infants. Drug ingested by a lactating mother would be expected in 

human milk to some extent and be ingested by a breast-feeding infant. The 

concentration in the milk is related to the maternal plasma concentration, reflected in 

the often-quoted milk to plasma concentration (M/P) ratio. This ratio is reliable when it 

comes from studies where areas under the concentration-time profiles have been 

a (

[Eq. 3.1] and fraction unbound in milk ( ) may be calculated by the established 

measured over a whole dose interval. Unfortunately, there are many drugs for which 

the M/P ratio is not known. Therefore, the ability to predict the approximate amount of 

drug that might be present in milk from the drug structure would be very useful in the 

clinical setting. 

Phase distribution models are proposed by Fleishaker96 [Eq. 1.3, 1.4] to predict the 

M/P ratio when steady-state plasma concentration achieves. These models are based on 

the assumption that only the unbound and unionized form of the drugs, which are 

located in the aqueous phase of the plasma and milk, can diffuse across mammary 

membranes.  

The fraction unbound in plasm ) can be calculated from the protein binding (PB) pf

fm
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relationship92 [Eq. 3.2]. The milk:lipid partition coefficient (  ), which can be 

 the oil/water partition coefficient (LogP) [Eq. 3.3]. 

     (Eq.3.1) 

fk

calculated from

pf =1-(%PB/100)  

mf  = 45.045.04

450

)1094.6( p

.
p

f+× −
     (Eq.3.2) 

88.029.1log −= LogPk       (Eq.3.3) 

f

This equation [Eq. 3.3] is derived from experimental data of 16 drugs by linear 

regression92. The LogP values of these 16 drugs range from 0.29 to 3.11. However, for 

those drugs with logP values more than 3.11, the equation may not be effectively in 

prediction their log value, thus the prediction of the M/P ratio will be negatively 

based on its structure but also makes the prediction of M/P more simply and accurately. 

The growth in drug discovery has increased the demand for rapid and efficient 

methods to estimate M/P ratio and other physiochemical properties from molecular 

structure. The physical and chemical properties of a drug are a function of its 

molecular structure. 

Finding one or more molecular descriptors to explain variation in the physical or 

chemical properties of a group of analogues develops quantitative structure-property 

relationship (QSPR) and quantitative structure-activity relationship studies (QSAR)97. 

A relationship, once quantified, can be used to estimate the properties of other 

f

f

affected. Evaluation of the model by comparison of the predicted M/P value with 

literature milk:plasma area under the curve (AUC) ratios indicated that this method 

tends to over predict those drugs whose LogP values are more than 3.11. Moreover, the 

logP data are obtained only through literature search. However, there are still some 

drugs whose LogP data are unknown and must be obtained experimentally. In this 

study, we propose a new method, which not only enable us to calculate LogP values 

k
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molecules simply from their structure and without the need for experimental 

determinations or synthesis. A number of commercial software products for physical 

property prediction exist. Experimental determination of such properties can be time 

onsuming and in some cases, being subject to experimental variation and errors. 

successfully been used to model physicochemical98-101, 

3.2. Methods 

The computational works were performed on a Pentium PC running the Windows 

2000 operating system. Statistical analyses were done using SPSS 10.0 for windows 

 (Physical 

Properties! Pro) was used for calculating relevant physical drug properties from 

3.2.2. Sources of Data 

Data for drug M/P ratio and pharmacokinetic parameters were obtained from the 

terature and used as the basis for comparison of calculated M/Ppre (predicted M/P 

/Pobs (observed M/P value).  Those drugs that are likely to excrete into 

milk and to be administrated by lactating women are selected. Drug structures were 

c

These methods have 

physiological102, spectroscopic103 and toxicity104-106 properties of organic compounds.  

A goal in this study design was to develop alternative physiochemical factors other 

than LogP to be incorporated into the phase distribution model to enable better 

prediction of the milk:plasma distribution (M/P) ratio. 

 

3.2.1. Equipment 

(SPSS Inc., USA) for model building. WindowChem Software ChemSW

molecular structures. 

 

li

value) with M

drawn using WindowChem Software ChemSW.  The structure was then optimized by 

geometry minimizing. Upon minimizing, their physiochemical properties were 
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calculated. For those basic drugs with milk: lipid partition coefficient (Log ) and 

skim to whole milk (S/M) ratio data, their physiochemical properties: LogP, molecular 

weight hydrophilic-lipophilic balance (MW r h

balance (V_HLB), percent hydrophilic surface area (HSA), water solubility (WS) and 

solubility parame e c

 

3.2

Correlation analyses were performe e

including pKa, LogP, V_HLB, MW W  S at c

obtained were com

/P ratio predictions were made using the phase distribution model based on the 

ssessed as follows: 

fk

_HLB), volumet ic hydrophilic-lipop ilic 

ter (SP), w re cal ulated.  

.3. Log k  -Physiochemical Relationship  f

fk  d between log and physiochemical param ters 

_HLB, S and P. The correl ion coeffi ients 

pared.  

 

3.2.3. M/P Prediction 

M

reported plasma protein binding and pKa, as well as Log p, V_HLB, MW_HLB, WS 

or SP, assuming that pH=7.4 in plasma, pH=7.1 in milk and creamatocrit=0.088. 

The f  values were used to calculate the corresponding f values, using equation 3.2.  

 

3.2.4. Data Analysis 

Prediction performance was assessed in terms of accuracy (mean prediction error, 

MPE) and precision (root mean square prediction error, RMSE) by comparing 

predicted M/P values of 55 basic drugs with the respective reported M/P values. 

Accuracy, or mean prediction error, was a

p m

Accuracy=1/N∑
N

=i 1
prediction error        (3.4)  
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Precision, or mean square prediction error, was assessed as follows: 

Precision=[1/N∑
=

er  1/2   (3

 

3.3. Results  

Eight basic drugs were ied deriv relatio s een th

physiochemical properties: LogP, molecular weight hyd ilic-lipophilic balanc

(MW ), vol p lip bal ), p t h ph

surface area (HSA), water solubility (WS) and solubility parameter (SP). (Table 3.1) 

 

Table 3.1 L a te ysio ical p rty ues of  sele ba

model drugs 
Drug og MW W HL L HSA bility( l)

N

i 1
(prediction ror) ] 2     .5)  

st du   to e ns iph be wt L go fk  and eir 

roph e 

_HLB umetric hydro hilic- ophilic ance (V_HLB ercen ydro ilic 

. og fk  and c lcula d ph chem rope  val  8 cted sic 

Log k f    L P  M B V H B %  Solu g/ SP 

Diaz aep m  .8 84. .60 0 .403 3E 21.638107 ,a 2 2 2 800 6 8 2.9 0 72  8.1 -05 4.330

Propran l 8 .4 59.3 8.723 97 .548 79E 22.686

03 10.924 51.669 2.21E+01 23.691

Verapamil 2.02092 2.22 454.600 8.804 6.175 26.449 1.13E-03 20.772

Imipramine 2.24092 2.43 280.400 4.568 2.312 10.897 1.25E-04 21.510

92 -0

luphenazine 2.320  2.58 437.529 7.094 6.979 38.812 3.96E-07 24.986

Chlorpromazine 2.93092 2.92 318.870 4.017 2.296 10.949 6.59E-05 24.217

o ol 1.17310 ,a 1 5 2 48  6. 4 63  4. -01 

Atenolol 0.581  0.16 266.340 1292 .7

Pirenzepine -1.460 .47 351.400 17.376 17.311 77.030 1.97E-04 24.722

92F

a. The values were calculated using the following Eq. 

)1(1
1

, −+
=

fmu kfctM
S

  
 

Bivariate correlations were used to derive Pearson’s correlation coefficient, assuming 

that each pair of variables is a bivariate normal distribution. Two-tailed p<0.05 was 

used for statistical significance. Table 3.2 summarized the correlations of Log with fk
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LogP, MW_HLB, volum ic _HLB, HSA, WS and SP.  It was showed that among 

all the physiochem l parameters, LogP, MW_HLB, V_HLB and HSA were found 

etr  V

ica

2

Table 3.2. Correlations og and other physiochemical values obtained by 

BLE SP Log

well correlated with Log fk (r =0.926, 0.954, 0.921, 0.925 respectively), with their 

respective relationships as described by Eqs. (3.6)-(3.9). The range values of LogP, 

MW_HLB, V_HLB and HAS obtained were from -0.47-2.92, 4.568-17.376, 2.296-

10.924 and 10.949-77.030 respectively.  

 

f

SPSS 
k between L

 LogP MW HLB_MW HLB_V HSA SOLU
fk

LOG p Pearson 
Corr

1.000 .186 -.945** -.931** -.888 -.511 -.175 .926**
elation ** 

 Sig. (2-t .660 .000 .196 ailed) . .001 .003 .678 .001 
 N 8 8 8 8 8 8 8 8 

MW Pe  
Corr

. 1.0 3 .0 -.353 064  arson
elation

186 00 .051 .12 75 -. .154

 Sig. (2-t ) 2 . .391 80  ailed .660 . .905 .77 860 .8 .717
 N 8 8 8 8 8 8 8 8 

HLB_MW Pearson 
Corr

-.945 .051 1.000 .978** .962 .363 .246 -.954 
elation ** ** ** 

 Sig. (2-ta d) . .9 0 .0 .377  ile 000 05 . .00 00 .557 .000
 N 8 8 8 8 8 8 8 8 

HLB_V Pe  
Corre

- .1 .978** 1.000 .9 .312 .326  arson
lation

.931
** 

23 73
** 

-.921
** 

 Sig. (2-tailed) .001 .772 .000 . .000 .452 .431 .001 
 N 8 8 8 8 8 8 8 8 

HSA Pe  
elation

-
** 

.0 .962** .973** 1 .310 49  
** 

arson
Corr

.888 75 .000 .4 -.925

 Sig. (2-t ) . .8 0 .455 65  ailed 003 60 .000 .00 . .2 .001
 N 8 8 8 8 8 8 8 8 

SO Pe  
Corre

- -.3 2 .3 1.000  LUBLE arson
lation

.511 53 .363 .31 10 .082 -.252

 Sig. (2-t . .3 2 . .  ailed) 196 91 .377 .45 455 .848 .547
 N 8 8 8 8 8 8 8 8 

SP Pe  - -.0 6 .4 .082 000  arson
Correlation

.175 64 .246 .32 49 1. -.277

 Sig. (2-t . .8  . .848 .  ailed) 678 80 .557 .431 265 .507
 N 8 8 8 8 8 8 8 8 

Log k  f Co
Pearson 
rre

.926 .154 -.954** -.921** -.925 -.252 -.277 1.000 
lation ** ** 

 Sig. (2-tailed) .001 .717 .000 .001 .001 .547 .507 . 
 N 8 8 8 8 8 8 8 8 

**  was sign  a .01 (2- ). 
* as signi t at 05 l 2-t . 
 
 

 Correlation ificant t the 0  level tailed
 Correlation w fican  the 0. evel ( ailed)
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. Lo .32 =0.926)                          (3.6) 
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gure 3.2. Plot of LFi og calculated MW_HLB value. Equation of best-fit line 
2

fk  vs  
was as follows:  Log fk =4.018-0.296xMW_HLB   (r =0.954)   (3.7) 

-2

-1 0
0
1

Lo

2f

3

10

_HLB

gK

4

5 15 20

V

 

lot of g calcu  V_HLB value. Equation of best fit line was
as g =3.157-0.247x LB (r2= )   .8) 
Figure 3.3.  P Lo fk  vs  lated  

 follows: Lo fk V_H 0.921  (3
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Fig Plot of c ted HS ue. Equ  of bes ine was 
fo 3-0.0 SA   (r 25)   .9) 
 

T d va es o electe drugs redicto ables us

in redic ulsant, epressa

an  and a amine drugs, with wn re  M/P Table 

summarized the cal M/P  compa  the ob d M/P d f 55 ba

drugs using LogP, M LB, V_HLB and HSA methods  Figure 3.9).  T

MPE and RMSE of M/P prediction values obtained were showed in Table 3.5.  

Ta ugs an ctor v s used P ratio ctions.

      P gP LB B H

ure 3.4.   Log k f  vs  alcula A val ation t fit l as 
llows: Log f =3.46k 58xH 2=0.9   (3

able 3.3 liste rious valu f 55 s d basic and p r vari ed 

 M/P ratio p tion.  These 55 basic drugs included anticonv  antid nt, 

tiarrhythmic ntihist  othe kn ported r . atios 3.4 

culated values red to serve ata o sic 

W H_  (see s 3.5- he 

ble 3.3. Dr d pre id ariable  in M/  predi  

 Drugs ka* P.B.*
pf  mf Lo M HW_ V_ HL SA 

Analgesics & antipyretics 
Codeine 8.2 0.07  0.96 .14 2  22.79 

7 0.30  0.9 .28 1  36.06 
0.997 0.6 .9 2 8 52.54 

.20  0.9 .09 1 5 49.68 
Anti

0.93 1 6.6 4.01
Morphine .93 0.70 6 1 9.6 7.64
Tolmetin 3.5 0.003 6 1 12.5 11.2

Paracetamol 9.5 0 0.80 6 1 12.7 10.8
biotics 

M  2.62 0.10  0.9 6 0 83.58 
 0.93 .41 1  38.22 

 0.50 0.95 2.7 11.61 10.04 53.27 
Py .87  0.91 .72 3  37.22 

 0.94 .94 4 3 60.70 
Bro

etronidazole 0.90 6 0.3 18.2 17.9
P  3 0.80 

Dapsone 1.3 0.50
raziquantel 0.20 2 8.9 6.99

riomethamine 7.3 0
1.7 0.70 

0.13 2 7.7 6.63
Rifampin 0.30 2 14.7 13.3

nchodilators 
Theophylline 8.8 0.56 0.44 0.95 -0.32 20.00 21.07 100 

 0.96 .39 7 1 67.09 
Cardiovascular drugs 

Terbutaline 8.8 0.20 0.80 1 16.7 15.6

Atenolol 9.6 0.05 0.95 0.96 0.73 12.70 10.92 51.67 
Metoprolol 9.5 0.12 0.88 0.96 1.79 10.56 8.30 39.06 
Mexiletine 8.4 0.65 0.35 0.94 2.35 6.59 4.69 29.49 
minoxidil 4.6 0.00 1.00 0.96 2.84 13.30 10.91 52.94 
Nadolol 9.67 0.30 0.70 0.96 0.49 10.42 8.85 46.94 

Oxprenolol 9.5 0.75 0.25 0.93 2.28 11.54 9.10 40.36 
Propranolol 9.5 0.90 0.10 0.90 2.8 8.72 6.97 36.55 
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Miscellaneous ‘social’ drugs 
Caffeine 13.9 0.35 0.65 0.96 -0.52 19.69 19.94 89.10 
Nicotine 3.2 0.05 0.95 0.96 1.82 9.38 7.02 26.91 

Antithyroid agents 
Propylthiouracil 7.5 0.80 0.20 0.93 0.99 14.94 12.68 59.98 

Antiepileptic drug 
Carbamazepine 13.94 0.75 0.25 0.93 2.45 6.95 4.99 29.30 

Clobazam 6 0.65 0.35 0.94 2.20 9.12 7.87 42.13 
Clonazepam 1.5 0.85 0.15 0.92 3.54 8.25 6.70 41.86 
Diazepam 3.3 0.97 0.03 0.84 4.18 6.61 4.94 27.40 
Lorazepam 1.3 0.90 0.10 0.90 3.90 6.92 565 32.93 
Nitrazepam 3.2 0.87 0.13 0.91 3.02 10.10 8.03 46.56 
Lamotrigine 5.5 0.55 0.45 0.95 2.22 8.69 8.74 48.61 
Zonisamide 10.2 0.45 0.55 0.95 1.50 12.83 11.39 63.17 

Antidepressant drugs 
Amitriptyline 9.4 0.95 0.05 0.87 4.52 3.61 2.02 10.86 
Nortriptyline 9.5 0.92 0.08 0.89 4.16 19 2.18 18.7. 
Imipramine 9.7 0.85 0.15 0.92 4.00 2.31 10.90 

48.61 
17.31 

 0.83 0.17 0.92 2.86 4.84 2.97 16.27 
uoxetine 8.7 0.87 0.13 0.91 4.19 5.44 4.68 27.62 

Fluvoxamine 8.7 0.77 0.23 0.93 3.11 6.41 5.55 32.84 
Paroxetine 9.9 0.95 0.05 0.87 3.25 11.30 10.33 45.44 
Sertraline 8.9 0.98 0.02 0.82 4.49 1.96 1.17 16.51 

Citalopram 9.5 0.75 0.25 0.93 3.37 6.42 5.02 24.59 
Bupropion 7.9 0.80 0.20 0.93 2.87 4.68 2.50 17.21 
Mianserin 7.05 0.96 0.04 0.86 3.99 5.91 4.01 18.70 
Venlafaxin 9.4 0.27 0.73 0.96 3.86 5.12 2.26 14.98 
Trazadone 4.6 0.93 0.07 0.89 3.95 12.06 11.12 47.04 

Antiarrhythmic drugs 

3.
4.57 

Desipramine 9.8 0.90 0.10 0.90 3.64 4.21 2.49 
Clomipramine 9.9 0.975 0.03 0.93 2.09 4.96 3.57 

Doxepin 9.1
Fl

Quinidine 4.2 0.83 0.17 0.92 1.34 9.01 6.60 29.85 
Procainamide 9.2 0.15 0.85 0.96 3.11 11.66 9.70 44.81 
Disopyramide 8.4 0.58 0.42 0.95 3.11 11.02 8.90 41.34 

Mexiletine 8.4 0.65 0.35 0.94 3.31 6.59 4.69 29.51 
Flecainide 9.3 0.61 0.39 0.94 3.40 10.33 10.41 42.93 
Verapamil 8.6 0.90 0.10 0.90 3.44 8.80 6.18 26.45 
Diltiazem 7.7 0.85 0.15 0.92 0.27 10.48 9.08 41.37 

Histamine H 2 -receptor antagonist 
Cimetidine 7.1 0.19 0.81 0.96 0.14 18.49 17.91 78.91 
Ranitidine 2.3 0.15 0.85 0.96 1.07 16.2  15.22 68.72 
Famotidine 7.1 0.17 0.83 0.96 0.14 18.99 19.17 88.62 

.7

0

Nizatidine 2.1 0.30 0.70 0.96 2.30 16.20 15.23 68 2 
Data are from109 Therapeutic Drugs, Dollery C, New York; Edinburgh: Churchill 
Livingstone, 1999 
 

 Observed and predicted M/P values using LogP (Eqs.3.5 & 3.6), MW_HLB 
(Eq.3.7), V_HLB (Eq.3.8) and HSA (Eq.3.9) methods 

Observed 
M/P 

Predicted 
by Eq. 3.5 

Predicted 
by Eq.3.6 

Predicted 
by Eq. 3.7 

Predicted 
by Eq.3.8 

Predicted 
By Eq.3.9 

Table 3.4.

              M/P 
Drugs 
Analgesics & antipyretics 

Codeine 2.16 110 1.69 0.21 1.51 1.90 1.70 
Morphine 2.46 110 1.48 2.15 2.80 3.20 3.74 
Tolmetin 0.0055 111 0.014 0.01 0.0047 0.0048 0.0048 

Paracetamol   0.81110 1.53 2.31 1.76 1.93 2.05 
Antibiotics 

Metronidazole 0.98112 1.85 0.93 0.86 0.86 0.86 
Praziquantel 0.28113 0.60 2.28 0.62 0.67 0.51 
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Dapsone 0.35114 3.36 10.61 0.65 0.69 0.58 
Pyriomethamine 5.46115 0.52 4.16 1.07 0.73 0.52 

Rifampin 0.2116 10.02 10.85 0.30 0.31 0.31 
Bronchodilators 

Theophylline 0.76117 0.43 0.85 0.83 0.83 0.83 
Terbutaline 1.04 118 1.41 3.06 1.50 1.52 1.54 

Cardiovascular drugs 
Atenolol 2.32, 4.5 

119,120 
56.03 2.21 2.09 2.27 2.28 

Metoprolol 2.81, 3.6 
119,120 

9.21 6.06 2.86 3.62 4.08 

Mexiletine 1.48 121 3.07 6.70 7.47 6.47 3.96 
Minoxidil 0.76 122 

 
2.94 28.93 1.05 1.02 1.17 

Nadolol 4.6 123 6.12 1.51 2.38 2.47 2.00 
Oxprenolol 0.29,0.45 

124,125 
0.93 4.33 0.66 0.84 1.06 

Propranolol 0.32,0.76 1.97 5.27 0.67 0.59 

M

0.68 
126,127 

iscellaneous ‘social’ drugs 
Caffeine 0.51128 23.89 1.25 1.24 1.24 1.24 
Nicotine 2.92129 24.05 3.46 2.36 3.11 7.58 

Antithyroid agents 
Propylthiouracil 0.23130 0.37 0.43 0.32 0.33 0.33 

Antiepileptic drug 
Carbamazepine 0.41131 11.79 6.12 4.49 4.17 3.03 

Clobazam 0.13132 4.04 2.70 1.02 0.87 0.69 
Clonazepam 0.3133 38.12 21.00 0.64 0.57 0.29 
Diazepam 0.16134 8.36 18.08 0.34 0.26 0.23 
Lorazepam 0.22135 45.59 31.90 0.92 0.61 0.42 
Nitrazepam 0.27136 5.40 5.64 0.25 0.30 0.20 
Lamotrigine 0.68 137 5.03 3.53 1.55 0.83 0.61 
Zonisamide 0.93138 5.80 2.37 1.21 1.26 1.11 

Antidepressant drugs 
Amitriptyline 1.07-1.62 

139 
61.74 130.37 7.88 4.09 6.06 

Nortriptyline 0.68-0.88 
140 

54.52 91.24 16.67 5.98 3.51 

Imipramine 1 141 75.90 121.29 12.44 10.42 18.10 
Desipramine 1.2 142 31.09 35.43 10.54 6.31 4.44 

Clomipramine 1.2 143 0.93 0.30 1.61 0.88 1.31 
144 .11 

.87 
Fluvoxamine 0.30 

146 
28.38 23.92 5.61 2.84 1.86 

Paroxetine 0.39147 9.42 7.21 0.15 0.14 0.16 
Sertraline 1.93 148 26.21 47.97 9.49 2.60 1.15 

Citalopram 1.8 149 46.33 47.47 6.21 4.09 5.24 
Bupropion 8.58 150 14.77 10.95 13.62 11.05 9.35 
Mianserin 2.2 151 11.94 20.64 0.91 0.73 1.15 

Venlafaxine 2.5152 248.52 424.44 41.79 52.11 51.49 
Trazodone 0.14153 12.48 25.07 0.09 0.09 0.11 

Antiarrhythmic drugs 

Doxepin 1.08  15.20 10.09 11.70 8.16 10
Fluoxetine 0.28145 85.21 157.97 5.94 2.48 1

Quinidine 0.71154 0.57 0.32 0.50 0.67 0.98 
Procainamide 4.3 155 92.11 88.29 2.14 2.45 2.68 
Disopyramide 0.4 156 46.09 41.99 1.17 1.41 1.59 

Mexiletine 1.48157 53.39 55.97 7.47 6.47 3.96 
Flecainide 0.891 158 71.43 78.85 1.36 1.01 1.39 
Verapamil 0.6159 21.93 21.70 0.63 0.92 1.64 
Diltiazem 0.98 160 0.23 0.27 0.43 0.43 0.50 
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Histamine H 2 -receptor antagonist 
Cimetidine 1.7 161 0.63 1.09 1.03 1.03 1.03 
Ranitidine 0.25-7162 1.57 1.21 0.82 0.83 0.83 
Famotidine 0.14-1.78 

162 
0.65 1.11 1.05 1.05 1.05 

Nizatidine 1.0-4.983 8.22 6.34 0.68 0.68 0.69 
 

Eq. 3.5
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Figure 3.5. Plot of predicted M/P ratios (by LogP method-using reported Eq)
bserved M/P

vs  
o  ratios  

 

Eq. 3.6
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Figure 3.6. Plot of predicted M/P ratios (by LogP method-using newly derived Eq.) vs  
observed M/P ratios 
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Eq. 3.7
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Figure 3.7. Plot of predicted M/P ratios (by MW_HLB method) vs  observed M/P 
ratios 
 

Eq. 3.8
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Figure 3.8. Plot of predicted M/P ratios (by V_HLB method)  observed M/P ratios 
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Eq. 3.9
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3.6), 
W_HLB (Eq.3.7), V_HLB (Eq.3.8) and HSA (Eq.3.9) methods 

 3.5 Eq.3.6 Eq. 3.7 Eq.3.8 Eq.3.9 

Figure 3.9. Plot of predicted M/P ratios (by HAS method) vs  observed M/P ratios 

 

Table 3.5. MPE and RMSE for predicted M/P ratios using LogP (Eqs.3.5 & 
M
 
 Eq.
MPE 27.3+11.08 32.6+13.1 2.61+1.17 1.86+0.88 1.81+0.94 
RMSE 49.7+1732.3 59.0+2051.8 5.1+18.9 3.79+13.92 3.97+16.28 
 

3.4. Discussion 

The drugs studied are widely varied with their structures and respective 

physiochemical properties.  The LogP values computed are comparable with literature 

values. For most drugs, the milk: lipid partition coefficient (Log fk ) are not known but 

can be predicted from the LogP92.  

 

Due to the pH gradient between plasma and milk, weakly acidic drugs are less 

concentrated than weak basic (alkaline) drugs in milk. Weakly basic drugs can become 

ion-trapped in milk as physicochemical structure of the drug changes (extensive 

ionization), and prevents its passive diffusion back into the maternal circulation.  
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The acid drugs such as ampicillin arbenicillin (M/P 0.02)164 are not 

included in this study to der H of milk is relatively low 

(pH6.8-7.1) and only sm ilk The 

predicted drug concentration for such drugs in milk lipid would be negligible. 

 

A are a measure of drug lipophilicity or hydrophobicity properties. 

ue to the drugs’ 

 (M/P 0.04)163, c

ive relationship because the p

all amount of acid drugs can be excreted into m

LogP, HLB and HS

Lipophilicity is approximately correlated to passive transport across cell membranes 

and the ability of a compound to partition through a membrane. Drugs are expected to 

partition into milk in accordance with their lipid characteristics. High lipid solubility 

favors drug partitioning into milk fat from plasma, reducing the amount of drug in milk 

available for its diffusion back into plasma. Therefore, as HLB and HSA increase, the 

log M/P tends to increase.  

 

Drug molecular weight is a measure of a molecular size. Medications with a low 

molecular weight that are unionized and liphophilic will be excreted into breast milk to 

a higher extent.  

 

Comparison of MPE and RMSE values indicates that prediction of M/P ratio based on 

either V_HLB, MW_HLB or HSA performs better than that based on Log p in the 55 

drugs examined.  However, the proposed methods still cannot predict well in some 

drugs. Sometimes, the difference is significant. This may be d

physiochemical values that are not within the range of MW_HLB, V_HLB or HSA of 

the 8 selected basic model drugs, from which we used to derive the relationship. 

Nevertheless, for drugs with different physiochemical properties, prediction of the M/P 

values based on V_HLB, MW_HLB or HSA is still pretty well compared to that based 
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on Log p. The prerequisite is that one of its physiochemical properties should be 

similar to that of the model drugs.  Each of MW_HLB, V_HLB or HSA equations has 

its own fitting range and may complement each other to predict drug M/P ratio and get 

better results. The prediction of drug M/P ratio should follow the following steps: (I) 

obtain the drug’s chemical structure, (II) draw structure by using software ChemSW, 

II) calculate various physiochemical parameters, (IV) check the range of the different 

parameters and find the proper equation, and (V) calculate the M/P value. 

 

Unlike the previously reported method for M/P prediction, the novel method described 

here does not require experimental parameters and could provide a quick assessment of 

potential risk associated with breast-feeding for drugs with unknown M/P ratios.  

 

3.5. Conclusion 

We have established relationships of log with V_HLB, MW_HLB and HSA values. 

rived allow estimation of milk:lipid partition 

165

account other factors like V_HLB, MW_HLB or HSA values does help to increase the 

accuracy of predictions. However, the relationship derived based on the 8 model 

pounds is most likely not sufficient to describe drug transfer into breast milk by all 

possible routes. Furthermore, uncritical use of data sets compiled from the literature is 

associated with the risk of possibly erroneous values. 

(I

fk  

The corresponding equations de

coefficient based on drug’s V_HLB, MW_HLB or HSA value, and either one of which 

incorporates with the phase distribution model of Fleishaker , enables estimation of 

M/P ratio. Unlike previously reported models, the model described here does not 

require experimental parameters and could potentially provide a useful prediction of 

M/P ratio of new drugs. The improved model for M/P prediction that takes into 

com
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CHAPTER 4 

IN VITRO STUDY OF 

SERTRALINE AND BUPROPION BREAST MILK 

4.1. Introduction 

Many women will experience depression during pregnancy or postpartum and the 

administration of antidepressant drugs while breast feeding is of great concern to both 

mothers and physicians, because this requires the knowledge of the extent to which 

drugs are excreted into breast milk. The milk to plasma concentration ratio (M/P) is 

used as an index of the extent of drug excretion in milk and thus is crucial in 

estimating the dose ingeste

DISTRIBUTION 

 

d by the infant so that infant exposure and the potential for 

dverse effects can be assessed. Most antidepressant drugs pass into breast milk to 

rough passive diffusion166. The amount of drug excreted into breast milk 

rotein binding, ionization, 

re generally lacking due to ethical and 

eir postpartum period are liable to suffer from 

epression, they are likely to be treated by antidepressant drugs. SER, a SSRI, is one of 

pressive illness, while BUP is a novel 

a

some extent th

depends on the characteristics of the drug, such as plasma p

and lipophilicity167. The in vivo M/P data a

experimental constraint, and very often, the available data are based on the taking of 

opportunistic samples, with consequent compromise in experimental design and 

quality of data obtained. Such lack of information may lead to the inaccuracy in 

assessing the risk of drug exposure to infant. Hence, the in vitro determination of drug 

transfer to milk will be a useful tool in in vivo M/P ratio prediction.  

Sertraline (SER) and Bupropion (BUP) are two antidepressant drugs selected in this 

study as model drugs. As women in th

d

the first-line drugs used for the treatment of de
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antidepressant that offers a similar side effect profile without sexual dysfunction 

compared to SSRIs. The present in vitro study was thus carried out on M/P distribution 

of SER and BUP. The effect of different stages of a lactating period on M/P ratio was 

examined. Perhaps, the information obtained would be helpful to both patients and 

doctors in evaluating drug safety on suckling infant. 

 
4.2. Materials  

4.2.1. Chemicals and Reagents 

Sertraline hydrochloride was obtained as a free sample from Pfizer Company (USA). 

Bupropion hydrochloride was purchased from Sigma-Aldrich (Singapore). Imipramin 

and Tradozone used as internal standards for sertraline and bupropion, respectively, 

obtained from 

ealthy nursing mother according to the protocol approved by the ethical committee of 

ngapore. They were stored in aliquots at –20ºC before 

were obtained from Sigma-Aldrich (Singapore). Acetonitrile (HPLC grade) was 

purchased from Mallinckrodt Baker, Inc (Paris, Kentucky). Methanol, n-heptane, 

ethylacetate, phosphoric acid and hydrochloride (37 %), all of analytical reagent grade, 

were obtained from Lab-Scan Analytical Science (Dublin, Ireland).  

 

Plasma was obtained from healthy volunteers. Human breast milk was 

h

the National University of Si

being used in experiments. Human albumin used was a 4.5 % solution (Zenalb ®, Bio 

Products Laboratory, Herts, UK) purchased from National University Hospital 

Pharmacy (Singapore). Whey and casein were purchased from Sigma Chemical Co. (St. 

Louis, MO, USA), which were extracted from bovine milk.  

 

4.2.2. Apparatus 
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The HPLC analysis was performed on a Shimadzu LC-10AT gradient liquid 

chromatography connected to a Shimadzu SPD-10AVP detector set at a wavelength of 

54nm. (Shimadzu Corporation, Japan). A Waters XTerra® Phenyl 5µm column (4.6 x 

n, Milford, Massachusetts), with a guard column and in-

e the compounds. Ultrafiltration was performed using 

.3. Methods 

ethod for Sertraline and Bupropion 

2

150mm) (Waters Corporatio

line filter, was used to separat

Microcon® YM-3 Centrifugal Filter Devices with a nominal molecular weight limit of 

3000 (Millipore Corporation, Bedford, USA) in a Beckman Avanti J-18.1 centrifuge. 

Equilibrium dialyses were performed using a five 1-ml semi-microcells equilibrium 

dialyser (Spectrum Medical Industries Inc., Los Angeles, USA) consisting of five 

Semi-Micro Teflon dialysis cells, stoppers, six stainless steel spacers, three knurled 

nuts, a clear plastic water bath, a base plate and Spectra/Por 3 membrane with a 

molecular cut-off of 3500. 

 

4

4.3.1. HPLC assay m

4.3.1.1. HPLC assay method for Sertraline 

The high performance liquid chromatography with UV detector was used for 

determination of sertraline in biological fluids. The mobile phase for the separation of 

sertraline and imipramine (as IS) consisted of acetonitrile-30mM sodium phosphate 

buffer (40:60), which was adjusted to pH 3.00+0.05 with 85 % phosphoric acid. The 

mobile phase was filtered with a 0.20µm filter membrane (Nylon, 47mm, phenomenex, 

USA) prior to its use. The pump was set at a flow rate of 1ml/min. The peak was 

detected at the wavelength of 225nm.  

 

4.3.1.2. HPLC assay method for Bupropion  
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The high performance liquid chromatography with UV detector was employed for 

quantifying bupropion in biological fluids. The mobile phase for the separation of 

bupropion and tradozone (as IS) consisted of acetonitrile-50mM sodium phosphate 

buffer (21:79), which was adjusted to pH 3.00+0.05 with 85 % phosphoric acid. The 

mobile phase was filtered with a 0.20µm filter membrane (Nylon, 47mm, phenomenex, 

USA) prior to its use. The pump was set at a flow rate of 1.2ml/min. The peak was 

detected at wavelength of 248nm. 

 

4.3.2. Calibrations of sertraline and bupropion in plasma, skim milk, plasma 

ultrafiltrate and skim milk ultrafiltrate.  

Standard calibrations were performed in plasma, skim milk, plasma ultrafiltrate and 

kim milk ultrafiltrate. Appropriate volumes of 1 to 20 µg/ml drug and 20 µl of 10 

dded to 100 µl of ultrafiltrate, or 200 

4.3.3. Protein binding study 

Protein binding study was carried out by ultrafiltration, with the ultrafiltration device 

wer molecular weight compounds like plasma 

er molecules like plasma proteins. The 

weight cut-off 3000). The unit was centrifuged at 7000 g for 45 minutes at 37 C. The 

s

µg/ml internal standard working solution were a

µl plasma or skim milk to give a desired range of standard concentration. After subject 

to extraction procedure, the samples were analyzed and the inter-day and intra-day 

precision was estimated. The limit of detection was determined as well. 

 

consisting of 2 reservoirs that allows lo

water and drug to pass through but retains larg

ultrafiltrate of plasma or skim milk was obtained by pipetting 450ul of plasma or skim 

milk sample (with drug spiked) or blank (without drug spiked) into the upper 

compartment of each Amicon YM3 ultrafiltration unit (Amicon, USA, molecular 

˚
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ultrafiltrate obtained was then subject to the assay procedure. The blank ultrafiltrate 

was used as a baseline control. 

 

4.3.4. Sample preparation 

4.3.4.1. Plasma and Albumin 

For plasma binding studies, 10mM phosphate buffer of pH7.4 was prepared. Plasma 

as diluted with the buffer to give protein concentration ranging from 6.25 % to 100 

0 %, 100 %) of the original plasma. The blank plasma or 

removing the creamed fat layer, the remaining part was then divided into 

o portions. The pH of each portion was adjusted to 6.4 or 7.4, using 0.01M HCL or 

skim milk was then diluted with the phosphate buffer to yield a 

s 

w

% (6.25 %, 12.5 %, 25 %, 5

albumin was spiked with drug (sertraline or bupropion) to give a concentration of 0.1 

µg/ml. Ultrafiltration was carried out by pipetting 450 µl of spiked plasma or albumin 

into the upper compartment of each Amicon YM3 ultrafiltration unit and then 

centrifuged at 7000g at 37˚C for 45 minutes. The ultrifitrate in the lower reservoir was 

collected and analyzed. 

 

4.3.4.2. Skim milk 

Skim milk was prepared by centrifuging the whole milk at 20000g for 20 minutes at 

20˚C. After 

tw

NaOH. The 

concentration of 50 % and 100 % of the original skim milk. The blank skim milk wa

spiked with sertraline or bupropion to give a concentration of 0.1 µg/ml. 

Ultracentrifuge was carried out by pipetting 450 µl of spiked milk into the upper 

compartment of each Amicon YM3 ultrafiltration unit and then centrifuged at 7000g at 

37˚C for 45 minutes. The ultrifitrate in the lower reservoir was collected and analyzed. 

 

 60



4.3.4.3. Whey and casein 

The averaged total protein concentration in milk was found to be 10.3 g/L168. As whey 

accounts for 60 % to 80 % of total milk proteins168, whey solutions containing protein 

oncentrations representing 60 %, 70 % and 80 % of total milk protein were prepared 

of whey in milli-Q water. As casein accounts for the 

remaining total milk proteins, casein solutions containing protein concentrations 

representing 20 %, 30 % and 40 % of total milk protein were prepared by dissolving 

suitable amount of casein in pH 6.4 or pH 7 4 10mM phosphate buffer. Both whey and 

casein solutions were adjusted to pH 6.4 and pH 7.4, using 0.1M NaOH and 0.1M HCl. 

The blank whey and casein solutions were then spiked with drug (sertraline or 

bupropion) to give an expected concentration of 1.0 µg/ml. 

 whey and casein 

uitable amounts of albumin, whey and casein were dissolved in phosphate buffer of 

oncentrations during the 3 stages of a lactation 

and adjusted to pH 6.4 and pH 7.4, using 0.1M NaOH and 0.1M HCl. 

 

hole milk was divided into 2 portions and the pH of each was adjusted to pH 6.4 or 

ilk was then 

original concentration. The blank whole milk specimens were spiked with drug 

c

by dissolving suitable amount 

 

4.3.4.4. Mixture of albumin,

S

pH 6.4 or pH 7.4 to represent protein c

period, i.e., colostrum, transitional and mature stages26. The protein mixtures were 

spiked with drug (sertraline or bupropion) to give a desired concentration of 1.0 µg/ml 

4.3.5. Determination of S/M ratio 

W

pH 7.4 using 0.1M NaOH and 0.1M HCl. The pH-adjusted whole m

diluted with phosphate buffers of pH 6.4 or pH 7.4 to give 50 % or 100 % of the 
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(sertraline or bupropion) to give a desired concentration. The spiked whole milk 

samples were then subject to centrifugation at 20000g for 20 minutes at 20oC to 

separate the creamed fat from the skim milk. Creamatocrit ratio (ct) was determined by 

the ratio of the volume of milk fat to the volume of skim milk. The skim milk layer 

was subject to HPLC analysis. S/M ratio was calculated by taking the ratio of the drug 

oncentration in skim milk to the drug concentration in whole milk. 

r bupropion) to give a desired 

oncentration. Plasma to skim milk dialysis was carried out by setting up the dialyzer. 

 milk (at pH7.4 or 6.4) and spiked plasma were introduced into 

etermination of sertraline and bupropion. 

oth intra-day and inter-day variations of the drugs were less than 10 % (Table 4.1). 

ection was calculated using the equation, LOD = 3.3δ/S, where δ 

c

 

4.3.6. Equilibrium dialysis 

The cut pieces of Spectra Por/3 membranes were soaked in distilled water for at least 

15 minutes, followed by soaking in 30 % ethanol for a further 30 minutes. After 

rinsing with distilled water, the membranes were soaked in phosphate buffer solution 

for 40 minutes. Plasma was spiked with drug (sertraline o

c

Each dialysis cell containing two reservoirs was separated by a semi-permeable 

membrane. 1ml of skim

their respective reservoirs.  The cells were incubated in water bath of 37˚C and rotated 

for 5 hours. 

 

4.4. Results  

4.4.1. HPLC assay of sertraline and bupropion in different biological specimens 

HPLC permitted a relatively fast and reliable d

B

The limit of det

represents the standard deviation of the response (residual δ of the regression line) and 

S denotes the slope of the calibration curve. The LOD for sertraline and bupropion was 
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2.34ng/ml and 15.86ng/ml in plasma, while in skim milk they are 1.19ng/ml and 

9.46ng/ml respectively. The method developed in the study was adequate to quantify 

sertraline and bupropion in all biological specimens. 

 

4.4.2. Protein binding studies 

4.4.2.1. Plasma and albumin 

Five dilutions of plasma and albumin with buffer to give protein concentration of 6.25 

%, 12.5 %, 25 %, 50 % and 100 % of the original plasma protein and albumin 

concentration were assessed for the fraction of unbound sertraline and bupropion. As 

shown in Table 4.2, the results showed that the fraction of unbound drug decreased 

with an increase in protein concentration, and the fraction of unbound drug appeared to 

be inversely proportional to the natural logarithm of plasma protein and albumin 

concentration (Figures 4.1).  

 

4.4.2.2. Skim milk, whey and casein 

Skim milk was adjusted to pH 6.4 and pH 7.4 and subsequently diluted with buffer to 

give skim milk concentration of 50 % and 100 %. As shown in Table 4.3, at a lower 

pH of 6.4, fraction of unbound drug was higher. Fraction of unbound drug was also 

higher when skim milk was diluted to 50 % of its original concentration. Fraction of 

unbound drug increased as concentration of whey or casein decreased. A lower milk 

pH also resulted in higher fraction of unbound drug  

 

4.4.2.3. Mixture of albumin, whey and casein 

Milk protein concentration is the highest in colostrum, and then declines rapidly over 

15 days postpartum to reach the relatively constant levels of mature milk. The main 
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changes are in the concentrations of proteins specific to milk, namely whey and casein, 

while albumin content remains relatively constant throughout lactation82. Fraction of 

unbound drug was the highest in mature milk and the lowest in colostrum because 

colotrum milk contains more protein than mature milk. There was lower binding to the 

milk proteins at the lower milk pH (Table 4.4). 

 

4.4.2.4. Determination of S/M ratio 

The S/M ratio was found to be lower at milk pH of 7.4 compared to pH 6.4 (Table 4.6). 

As more drugs were unionized at the higher pH, it resulted in more drugs partitioning 

into the milk lipid layer. Thus, milk lipid partition coefficient values were higher at 

milk pH 7.4. As the concentration of whole milk was halved, milk lipid partition 

coefficient values decreased while S/M ratio increased.  

 

4.4.2.5. Transfer of sertraline and bupropion from plasma to skim milk by 

equilibrium dialysis 

The results of dialysis of drugs containing plasma against skim milk are shown in 

.5. Discussion 

Breast-feeding was widely accepted as it offers variaty benefits to both infants and 

mother. However, it may pose a risk to infant when mother was given some 

Table 4.5. The post-dialysis plasma and skim milk samples were assessed for the 

amount of drugs. The mean Sm/P ratios were higher when skim milk concentration 

was 100 %. Fraction of unbound drugs in plasma and skim milk was higher at pH 6.4 

compared to pH 7.4. It appeared that more drugs were transferred into milk from 

plasma at pH6.4 compared to pH7.4 studied.  

 

4
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medications while breast feeding. Basic drugs, such as antidepressants, tend to 

concentrate in milk compare to acidic drugs. Hence, the knowledge of the extent to 

which antidepressant drugs are excreted into milk is necessary so that the infants’ 

xposure to drug and the potential for its adverse effects can be assessed. As both milk 

 pH differ in different lactating period, the study of the factors 

ilk also changed considerably with the 

hange of pH and dilution (Table 3.3). At a lower pH of 6.4, fractions of unbound 

drugs were higher. This could be due to the total contribution of ionisable groups in the 

protein molecule. As the acidic groups (glutamic acid, tyrosine and aspartic acid)168 

present in the protein molecule are responsible for the binding of basic drugs. These 

groups become less ionized at a lower pH, thus binding of an ionized basic drug to 

them by electrostatic forces decreased, resulting in an increase in the fraction of 

unbound drug. At 50 % protein binding was lower at both pH due to a lower number of 

available binding sites.  

 

e

composition and

affecting the transfer of basic drugs to breast milk will be helpful in the determination 

of the amount of drugs in milk and estimate the safety of drug ingestion in different 

lactation time.  

 

For the protein binding studies, the mean fraction of sertraline and bupropion unbound 

in plasma was determined to be 5.34 % and 12.7 % respectively. These indicate that 

the plasma protein binding of sertraline and bupropion in about 94.66 and 87.3 %, 

which are comparable to the literature report32. The major binding protein in plasma 

appeared to be albumin, judging from the albumin binding values.  

 

Sertraline and bupropion binding in skim m

c
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Compared to the protein binding of drugs in plasma, the binding in human milk was 

/L) is less than in plasma 

(74.6 g/L). This was supported by the experimental findings where fractions of 

unbound drugs were higher in mi n in plasm Fraction o und drugs also 

increased with decreasing skim mil ey and case  concentrat

/P ratio at milk pH of 

 milk concentrations of 100 % and 50 %, and at different drug 

concentration levels. M/P ratios determ  at ski ilk pH 6.4 which was higher 

comp  to at milk  7.4. This c be explained using the pH partitioning theory. 

ertraline and bupropion are weak base drugs, which were more unionized in pH 7.4 in 

lasma, resulting in more drugs partitioning into breast milk. The lower pH of 6.4 in 

milk caused the drug to be ionize reater exte  than whe H was 7.4. As 

the ionized form was less lipophilic compared to th nionized f hose weak base 

ru ld not pa through th mmary alveolar membrane easily and were 

 

M/P ratio decreased with the dilution of skim milk. Fraction of unbound sertraline and 

bupropion were higher when skim concentrati was 50 %, ing in more free 

asic drugs. Only free drugs exert diffusion pressure across the mammary alveolar 

membrane, with free drug in milk existing in equilibrium with free drug in plasma. 

Since fewer drugs were bound to milk proteins at 50 % skim milk, total amount of 

drugs present in skim milk would be lower, resulting in a lower M/P ratio. 

 

much lower because skim milk contains less protein (10.3 g

lk tha a. f unbo

k, wh in ions. 

Equilibrium dialysis was carried out to determine the in-vitro M

6.4 and 7.4, skim

ined m m

ared pH ould 

S

p

d to a g nt n milk p

e u orm, t

d gs cou ss e ma

trapped in the milk, resulting in higher M/P ratio.  

milk on result

b
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The in vitro M/P ratio was compared with the in vivo data and the ratio predicted by 

n vitro M/P values were quite 

close to the in vivo value.  

 

4.6. Conclusion 

We ha ied different fac at may affect the drug milk plasma distribution. A 

action of unbound drug was 

l is determine k pH, protein con  as protein 

composition will affect the M/P ratio.  

As basi s are known to  higher potenti ncentrate in bre k, the 

study was carried out mainly for basic drugs. Consequently, the M/P ratio determined 

as its own pitfall. As it is only a ratio, it does not provide adequate information for the 

actual concentration of drug in milk. Thus, a careful monitor the clinical status of 

infant who is breast-fed by mother taking antidepressant will be necessary.  

An in vivo study, combined with in vitro investigation, will be helpful in increasing the 

predictability for future clinical application.  

 

Fleishaker’s model (Table 4.7). It was found that the i

ve stud tors th

relationship between free protein concentration and fr

estab ished. It d that mil centration, as well

c drug have a al to co ast mil

h
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Table 4.1. Validation of HPLC assay 

(a) Validation of HPLC assay of sertraline extracted from plasma 

Intra-day Inter-day Conc. 
(µg/ml) n CV (%) n CV (%) 

0.2 5 0.33 3 3.00 
0.8 5 3.40 3 3.89 
1.5 5 2.29 3 4.97 

Mean 5 2.0 3 3.95 
 
(b) Validation of HPLC assay of sertraline extracted from skim milk 

Intra-day Inter-day 
 

Conc. 
(µg/ml) n CV (%) n CV (%) 

0.2 5 0.81 3 1.33 
0.8 5 0.38 3 1.92 
1.5 5 7.20 3 6.00 

Mean 5 2.79 3 3.08 
 
(c) Validation of HPLC assay of bupropion extracted from plasma 

Intra-day Inter-day 
 

Conc. 
(µg/ml) n CV (%) n CV (%) 

0.2 5 3.81 3 6.06 
0.8 5 5.36 3 10.6 
2.0 5 1.36 3 3.82 

Mean 5 3.51 3 6.82 
 
(d
 

) Validation of HPLC assay of bupropion extracted from skim milk 

Intra-day Inter-day Conc. 
(µg/ml) n CV (%) n CV (%) 

0.2 5 1.58 3 1.67 
0.8 5 10.1 3 1.84 
2.0 5 5.46 3 7.41 

Mean 5 5.71 3 3.64 
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Table 4.2. Protein binding study in plasma and albumin 

(a) Protein binding of Sertraline in plasma and albumin 

Plasma Albumin Fraction unbound 
(g/l) (g/l) Plasma Albumin 
64.4 50 0.0534 0.101 
32.2 25 0.124 0.134 
16.1 12.5 0.144 0.264 
8.05 6.25 0.246 0.519 
4.025 3.125 0.421 0.848 

 
(b) Protein binding of bupropion in plasma and albumin 
 

Plasma Albumin Fraction unbound 
(g/l) (g/l) Plasma Albumin 
64.4 50 0.127 0.427 
32.2 25 0.210 0.561 
16.1 12.5 0.343 0.680 
8.05 6.25 0.577 0.773 
4.025 3.125 0.878 0.939 
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Figure 4.1. Relationship between fraction of unbound drugs and plasma protein 

 

 

 

 

(a) Relationship between fraction of unbound SER and plasma protein concentration 
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Table 4.3. Protein binding in skim milk, whey and casein 

(a) Protein binding of sertraline in skim milk 

pH n rac
(mean ± SD) 

Dilution 
(% original) 

F tion unbound ( muf , ) 

7.4 2 0  0.010 0.408 ± 38 
 2 50 0.489 ± 0.016 

  0  0
 2 0 0

6.4 2 10 0.537 ± .027 
5 0.736 ± .105 

 
(b) otein bin ing of ra he se

n pH . 
 

Fr nboun
) 

Pr d  s rte line in w y and ca in 

Protei  n Conc
(g/l)

action u d  
(mean±SD

2 6.18 0.604 ± 0.052 
2 7.21 0.518 ± 0.023 

7.4

 0.435 ± 0.020 
 0.771 ± 0.032 

2 7.21 0.604 ± 0.021 

Whey 

6.4 

0.479 ± 0.038 
2 2.06 0.517 ± 0.003 

 

2 
2 

8.24
6.18

2 8.24 

2 044 
7.4 

2 4.12 0.355 ± 0.040 
2 0.535 ± 0.057 
2  0.445 ± 0.015 

Casein 

6.4 

2 0.396 ± 0.038 

3.09 0.415 ± 0.

2.06 
3.09
4.12 

 
(c) Pr ein binding of Buprop n in k 
 

pH n on 
inal

tion d ) 
(m D) 

ot  io skim mil

Diluti
(% orig ) 

Frac  unboun ( muf ,

ean±S
7.4 2  0.323 ± 0.005 100

 2  0.479 ± 0.031 
6.4 2  0.660 ± 0.043 

2  0.843 ± 0.055 

50
100

 50
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(d) Protein binding of bupropion in whey and casein 

Protein H on
(g/l) 

un
(mean ± SD) 

 p  n C c. Fraction unbo d  

2 6.18 0.815 ± 0.033 
2 7.21 0.699 ± 0.036 

7.4

. 0.578 ± 0.037 

. 0.920 ± 0.004 

. 0.813 ± 0.074 

y 

6.4 

. 0.734 ± 0.014 

. 0.792 ± 0.021 

 

2 8 24 
2 6 18 
2 7 21 

Whe

2 8 24 
2 2 06 
2 3. 0.733 ± 0.041 

7.4 

. 0.623 ± 0.056 

. 0.946 ± 0.018 

. 0.840 ± 0.030 

Casein 

6.4

. 0.788 ± 0.041 

09 
2 4 12 
2 2 06 
2 3 09 

 

2 4 12 
 

Table 4.4. Protein binding study at different stages in vitro 

(a  bin er f ri it

Protein com  

) Protein ding of s traline in di ferent lactational pe ods in v ro 

positionLactational period 
Casein 
(g/dl

Whey 
(g/d

Album
(g/d

pH Fraction unbound
(mean ± SD) 

=2) 
 

) l) 
in

l) (n
Colostrum 0.380 1.335 0.0 ± 0.009 

 ± 0.005 
5 7.4 

6.4 
0.054 
0.0983

Transitional 0.344 1.18 0.05 ± 0.012 
± 0.025 

7.4 
6.4 

0.114 
0.144 

Mature 0.23 0.9 0. ± 0.010 
± 0.006 

8 8 05 7.4 
6.4 

0.206 
0.246 

 

(b) Pr tein bindin of bupropi  in the t al s in 

Protein composition 

o g on  differen lactation  period vitro  

Protein 
Casein
(g/dl) 

Casein
(g/dl) 

Casein
(g/dl) 

Protein 
composition

Protein composition
(mean ± SD) 

(n=2) 
Colostrum 0.380 0.380 0.380 7.4 

6.4 
0.487 ± 0.032 
0.626 ± 0.113 

Transitional 0.344 0.344 0.344 7.4 
6.4 

0.556 ± 0.014 
0.694 ± 0.019 

Mature 0.238 0.238 0.238 7.4 
6.4 

0.669 ± 0.002 
0.755 ± 0.069 
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Table 4.5. Plasma to Milk Partition studies: Effects of pH and skim milk 
concentrations (% of normal) on the observed in-vitro M/P ratio 

rtraline (0.087ug/ml) 
 

ost

(a) Observed in-vitro M/P ratio of se

P -dialysis conc
(µg/ml) 

Fraction unbound Spiked
plasm
conc 

l) 

kim
ilk 

pH Plas

Sm/P

a Skim  

Observed 
M/Pa

 
a 

Diluted S
m

(µg/m

 

ma Skim 
milk 

 
 

Plasm

0.087 100  6. 029 0% 4 0. 2 0.0615 .474 0.588 
   0.496 

 
5)0.0304 0.0613 

0.021
(0.000  

0.325 
(0.0919) 0.584 

  7. 028 04 0. 7 0.0583 .406 0.575 
   022 00. 1 0.0653 .338 0.478 
   0.315 

 
4)

0.0220 0.0697 

0.018
(0.001  

0.22 

0.446 
0.087 50 % 6.4 0.0157 0.0656 0.239 0.254 

   0.0187 0.0712 0.262 
0.545 
(0.0919) 0.278 

  7.4 0.0158 0.0784 0.201 0.233 
   0.0148 0.0686 0.206 0.239 
   .012 0.172 

 

0.37 
(0.0424) 

0.199 0 9 0.0753 
 

( bserve itro M o o 021
 

sis c
l) 

b) O d in-v /P rati f sertraline (0. ug/ml) 

Post-dialy onc 
(µg/m

Spiked 
plasma 
conc 
g/ml) 

iluted m 
k 
 S

 

(µ

D Ski
mil
pH Plasma kim 

milk 

Sm/P
 

Observed 
M/Pa

0.021 100 % 6.4 0.0071 0.0151 0.473 0.558 
   0.0076 0.0161 0.471 0.555 
   0.0065 0.0154 0.423 0.598 
  7.4 0.0071 0.0192 0.368 0.520 
   0.0067 0.0178 0.377 0.533 

0.021 50 % 6.4 0.0059 0.0215 0.275 0.292 
   0.0071 0.0187 0.378 0.401 
  7.4 0.0043 0.0234 0.184 0.212 
   0.0045 0.0205 0.218 0.353 
   0.0051 0.0189 0.268 0.311 
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(c) Observed in-vitro M/P ratio of bupropion (0.14ug/ml) 
 

s conc
(µg/ml) 

Fraction unbound Post-dialysiSpiked Diluted Skim 
plasma 

c
(µg/ml) 

milk 
a

Sm/P 
 

Pla m  

Observed 
M/Pa

con  pH Plasm Skim 
milk 

sma Ski

0.14 0.0370 0.0382 1.031 2.014  100 % 6.4 
   8 0.0418 28 

0.23 0.695 
(0.0778) 1.812 0.038 0.9

  7.4 5 0.0442 80 1.599 0.034 0.7
   4 0.0407 20 1.681 0.033 0.8
   7 0.0377 67 

0.17 0.465 

1.777 0.032 0.8
(0.0636) 

0.14 50 % 6.4 0.0299 0.0528 0.565 0.897 
   0.0265 0.0562 0.472 

0.84 
 0.749 

  7.4 0.762 0.02 0.0489 0.409 
    0.554 0.0188 0.0632 0.298 
    

 

 
0.575 0.0171 0.0554 0.309 

0.550 
(0.127)

 

(d) l) 
 

Observed in-vitro M/P ratio of bupropion (0.0744ug/m

Post-dialysis conc
(µg/ml) 

Spiked 
plasma 

iluted S
pH 

Sm/P 
 

conc 
(µg/ml) 

Plasma Skim 
milk 

Observed 
M/Pa

D kim milk

0.0744 100 % 6.4 0.025 0.027 0.920 1.797 
   0.019 0.021 0.904 1.767 
  7.4 0.022 0.027 0.814 1.668 
   0.026 0.035 0.759 1.556 
   0.023 0.032 0.739 1.515 

0.0744 50 % 6.4 0.0152 0.0294 0.518 0.822 
   0.0187 0.0349 0.535 0.850 
  7.4 0.0107 0.0328 0.326 0.607 
   0.0095 0.0346 0.275 0.511 
   0.0109 0.0364 0.300 0.559 

a: calculated by taking the ratio of Sm/P to S/M 
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Table 4. 6. Fat partitioning of drug milk (n=2) 

(a) Fat partition stud

pH 

 (mean ± SD) (mean ± SD) 

kf
c

s in human whole 

ies of sertraline 

[Whole milk] 
(% of normal) 

cta [SER] in SM S/M fu,m
b

6.4 100 0.092 0.849±0.177 0.849±0.177 0.537±0.027 0.331

 50 0.060 0.942±0.130 0.942±0.130 0.736±0.105 0.084

7.4 100 0.088 0.707±0.136 0.707±0.136 0.408±0.038 1.016

 50 0.054 0.863±0.096 0.863±0.096 0.489±0.016 0.325

 

 

pH [Whole milk] 

(b) Fat partition studies of bupropion 

(% of normal) 
cta [BUP] in SM S/M 

±

fu,m
b kf

c

 (mean ± SD) (mean  SD) 

6.4 100 0.092 0.512± 0.012 0.512± 0.012 0.660±0.043 2.951

 50 0.058 0.63±0.003 0.63±0.003 0.843±0.055 1.226

7.4 100 0.087 0.488±0.005 0.488±0.005 0.323±0.005 1.590

 50 0.054 0.537±0.042 0.537±0.042 0.479±0.031 1.023

ct = creamatocrit, [SER] = sertraline concentration in µg/ml, [BUP] = bupropion 

fraction unbound in skim milk, kf = milk lipid partition coefficient 
concentration in µg/ml, SM = skim milk, S/M = skim milk-whole-milk ratio, fu,m = 

a: calculated using: 

  
milkwholeofVol
fatmilkofVolct =  

b: values obtained from skim milk protein binding studi s (e Table 3.3)  

: calculated using: c

 
SMmu

mf
f

C
k =  

where C  = concentration in milk fat, C = concentration in skim milk 

Cf ,

mf sm 
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Table 4.7. Prediction of M/P ratio using Fleishaker’s and our proposed model  

(a) Prediction of M/P ratio of sertraline 

pH Concentration 

(% of normal) 

In-vitro  Predicted M/P using Reported in-
 

of milk  M/P ratioa Fleishaker’s modelb vivo M/P ratio 

6.4 100 0.577 2.11 
 50 0.304 1.39 

7.4 100 0.510 0.34 
 50 0.258 0.23 

 
0.65-1.93 
[169,170] 

 
(b) Prediction of M/P ratio of bupropion 
 
pH Concentration 

of milk  
(% of normal) 

In-vitro  
M/P ratioa

Predicted M/P using 
Fleishaker’s modelb

Reported in-
vivo M/P ratio 

6.4 100 1.848 4.61 
 50 0.830 2.93 

7.4 100 1.636 1.26 
 50 0.595 0.77 

 
2.5-8.58 

[171] 

a: values
b: calculated using equations 2.1-2.5 

 obtained from Plasma to Milk Partition studies (Table 4.5) 
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CHAPTER 5 

DEGRADATION KINETIC STUDY  

AND STABILITY-INDICATING ASSAY OF BUPROPION 

 

 a highly metabolized compound in humans. Its three major basic metabolites 

re erythroamino alcohol (EB), threoamino alcohol (TB), and the hydroxy (HB] 

everal methods were described for the estimation of BUP in human plasma or serum. 

ith dual-wavelength ultraviolet detection175, 

cs 

f the cited HPLC methods for the determination of BUP in the presence of its 

 And no detailed studies have been performed to study the 

equilibrium dialysis in our lab. The reported degradation studies, however, appear to 

5.1. Introduction 

Bupropion (BUP), dl-2-tert-butylamino-3’-chloropropiophenone, is a second-

generation clinically efficacious antidepressant agent172. The structure formula was 

shown in figure 1.2. It is a structurally novel, nontricyclic antidepressant and appears 

to be particularly effective in hypersomniac, hyperphagic unipolar depression and in 

bipolar depression173. 

BUP is

a

metabolites174. 

 

S

These include HPLC w

radioimmunoassay176, gas chromatography using nitrogen phosphorous detection177, 

gas chromatography combined with mass spectrometry178. 

 

No evaluation has yet been demonstrated about the stability indicating characteristi

o

degradation products.

stability of bupropion except for one paper which reported the stability of bupropion in 

plasma179. The published data179 consistent with our findings when we conducted 
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be quite preliminary, because the stability of BUP was studies only in plasma and the 

degradation kinetic has not been fully investigated. Thus, we further investigated the 

tability of BUP in plasma and milk specimens under different temperature and studied 

 

drochloride was purchased from Sigma Chemicals (Singapore ). 

cetonitrile (HPLC grade) was purchased from Mallinckrodt Baker, Inc (Paris, 

ethylacetate, phosphoric acid and hydrochloride (37 

ation of stock solution  

s

its degradation kinetics.

 

5.2. Materials and Methods 

5.2.1. Materials 

Bupropion hy

A

Kentucky). Methanol, n-heptane, 

%), all of analytical reagent, were obtained from Lab-Scan Analytical Science (Dublin, 

Ireland) 

 

5.2.2. HPLC assay method for Bupropion 

HPLC analysis were performed using an isocratic high-performance liquid 

chromatograph (Shimadzu 2010A, Japan) equipped with an autosampler (Shimadzu, 

Japan) and UV detector. The chromatographic analysis was performed in a 5cm 

Ultrasphere ODS column (25mm x 4.6mm i.d.) from Algilent. The mobile phase 

consisted of acetonitrile-50mM sodium phosphate buffer (21:79), which was adjusted 

to pH 3.00±0.05 with 85 % phosphoric acid. The mobile phase was filtered with 0.20 

µm filter membrane (Nylon, 47mm, phenomenex, USA). The pump was set at a rate of 

1.2 ml/ml. The detect wavelength was set at 248nm. 

 

5.2.3. Prepar
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An accurate weight of BUP power 1mg was transferred into a 10-ml volumetric flask, 

dissolved and diluted to volume with distilled water (0.1mg/ml). The solution was 

freshly prepared for the study. 

 

5.2.4. Calibration curve of BUP 

Aliquots of 10-100 µg/ml of the stock solution were transferred into 1 ml vials and 

diluted with distilled water. An accurate volume (20 µl) of each solution was injected 

into HPLC using autosampler and analyzed under he described chromatographic 

conditions. The peak area (PA) of BUP was calculated by the instrument software. 

Calibration curves were constructed by plotting PA values versus concentrations of 

BUP. 

 

5.2.5. Stability study of BUP in aqueous media.  

The degradation of BUP HCl was studied under different conditions as follows  

re  

d sealed in the glass tubes, which were 

 of 

 

5.2.5.1. Effect of temperatu

Solutions of 1µg/ml of BUP was prepared an

kept at a thermostatically controlled water bath at 23 ºC, 37ºC, 60ºC, and 80ºC±0.2ºC 

for the appropriate period of time. 20 µl of solutions were taken out at  0, 1, 3, 5, 11hr 

and analyzed using HPLC for an estimation of the remaining amount of bupropion.  

 

5.2.5.2. Effect of pH 

The standard solution was diluted with 0.01N HCl, 0.01NaOH or distilled water in 

order to make acidic, basic or neutral solution, respectively, with a concentration
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1µg/ml. The acid, basic and neutral solution were sealed in glass tubes and incubated at 

olutions of 1µg/ml of BUP was prepared and sealed in the glass tubes. The tube were 

e tube were wrapped with aluminum foil to protect the 

c strength 
 

he effect of the ionic strength on the stability of BUP was investigated by adding 1 % 

 adjusted pH to 12.0. 

 sealed and 

5.3.1 High-performance Liquid chromatographic analysis 

25ºC ±0.2ºC and subjected to HPLC analyses at different time point. 

 

5.2.5.3. Effect of light 

S

exposed to the light. Half of th

solution from light and were used at the control group. The study was conducted at 

25ºC ±0.2ºC. 

 

5.2.5.4. Effect of Ioni

T

(W/V) to the 0.01M phosphate buffer solutions and

 

5.2.6. Stability study of BUP in plasma and milk 

The degradation of BUP HCl was studied in plasma and milk at room temperature 

(25ºC ±0.2ºC ) and 37ºC ±0.2ºC respectively. The plasma and skim milk were spiked 

with bupropion to give a concentration of 1µg/ml and 1ml of plasma and milk sample 

was added to an 2 ml plastic vials respectively. Some of the vials were

placed in a thermostatically controlled water bath, which set temperature at 37ºC 

±0.2ºC . The others were kept at room temperature (25ºC ±0.2ºC). An aliquot of 100µl 

sample was removed at each predetermined checkpoint. The remaining bupropion in 

the solution was assayed with the established stability-indicating HPLC assay method.   

 

5.3 Results  
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The HPLC procedure was optimized to develop a stability method. The chromatograph 

showing the stability indicating nature of HPLC were demonstrated by forcibly 

egrading 1µg/ml BUP solutions (temperature 37 ºC, 60 ºC, 80 ºC). After incubated in 

apparent interference from 

 min. The 

eak purity of BUP was examined by a photodiode array UV-Vis detector by 

V spectra with that of the pure drug. It is showed that there are no 

The stability of bupropion was investigated under different pH values. It is shown that 

in acidic and neutral aqueous solutions, there is no apparent degradation of BUP under 

room temperature. While under basic condition, BUP degraded rapidly (Figure 5.2.). 

We can conclude that bupropion was more stable in acidic environment than in pH7.0 

or basic condition (pH2>pH7>pH12).  This finding may also be helpful in the 

formulation of bupropion tablet. The acidic environment provided in the tablet can 

improve stability and further minimizing degradation of bupropion hydrochloride.  

 

d

high temperature, the peak area of BUP decreased without 

the degradation products. As the degradation process was fast, the peak area of the 

predominant peak of BUP was rapidly diminishing while the putative product was 

progressively increased (Figure 5.1). The retention time of BUP was 8.24

p

comparing the U

overlaps between the peak of degradation products and the peak of the sample. The 

linearity of calibration curve of peak area versus BUP concentration was demonstrated 

by an excellent correction coefficient (γ2=0.9993) (Y=36949X-9194.5). The intra-day 

and inter-day precision (n=5) of the HPLC method were shown in Table 5.1. The limit 

of detections in plasma and skim milk were 19.5 and 9.5ng/ml, respectively. 

 

5.3.2. Degradation of BUP 

5.3.2.1. Bupropion stability at different pH 
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5.3.2.2. Light 

There are no significant differences between the light-protected and light-exposed 

BUP solution (P>0.05). No apparent degradation of the light-exposed BUP solution 

was observed under the room temperature. 

 

5.3.2.3. Ionic strength effect 

The effect of ionic strength on the degradation of bupropion was shown on Table 4.2. 

rall degradation constant was calculated from 

e linear decrease of the logarithm of BUP concentration with time. The concentration 

2

gradation of BUP in the temperature range of 

3ºC-80ºC.The activation energy of degradation was 19.03kal/mol from the slope of 

ctivation energy maintained constant at the temperature range from 

It is observed that there are no statistically significant differences between two groups 

(P>0.05), which indicate that ionic strength have no significant effect on the 

degradation of BUP. 

 

5.3.3. Stability kinetics studies of BUP in water 

The temperature dependence degradation was examined at the temperature range 23ºC 

to 80ºC. This study was intended to validate the proposed HPLC method as a stability 

indicating method and to obtain useful information about the degradation kinetics of 

BUP. At constant temperature, the ove

th

versus time plots at various temperatures for BUP is shown in Figure 5.3.  

Arrhenius plot of log (rate constant) versus the reciprocal of absolute temperature (in K) 

is show in Figure 5.4. The linearity (γ =0.9538) of the plot had a good indication of 

invariant activation energy for the de

2

this plot. If the a

23ºC to 80ºC, the degradation energy maintained constant of BUP in aqueous solution 
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at room temperature could be estimated as 0.0015h-1, which gave an estimation of a 

half-life of 19.46 days. 

 

5.3.4. The degradation of BUP in plasma and skim milk 

The degradation of bupropion was investigated in plasma and skim milk at room 

temperature (25ºC±0.2ºC) and 37ºC. It was found that the half life of bupropion in 

lasma pH 7.68 was 32.5 hours for 25 degree and 12.4 hours for 37 degree.  

.4. Discussion 

 selective high-performance liquid chromatographic for the stability-indicating 

etermination of bupropion in the presence of its degradation products is demonstrated. 

he developed method was specific, accurate and reproducible. The stability of 

upropion was investigated as a function of pH, temperature, light intensity and ionic 

trength. Bupropion was found to undergo fast degradation under high temperature, 

nd it is more sensitive in basic conditions, but it is stable in acidic medium. The 

inetic study of the degradation follows an apparent first-order reaction.  

Furthermore, the stability of bupropion was investigated in plasma, skim milk, skim 

milk (adjusted to pH6.4) and skim milk (adjusted to pH7.4). The degradation kinetics 

was studied in these biologic samples. From the comparison of the degradation rate of 

BUP in pH6.4 skim milk and pH7.4 skim milk, we can conclude the BUP was more 

stable in environment of slight acidity than in alkalized environment (Table 5.3). 

Therefore, the increase in pH value with increase in storage time and temperature 

would have promoted the temperature-dependent degradation of BUP.  

 

p

 

5

A

d

T

b

s

a

k
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Laizure et al179 compared the stability of bupropion in different pH plasma samples 

and reported that BUP half-life in pH 7.4 plasma stored at 22 and 37 degrees was 54.2 

and 11.4 h, respectively. These findings consistent with our results, which indicate the 

half-life in plasma pH 7.68 was 32.5 hours for 25 degree and 12.4 hours for 37 degree. 

The current studies have expanded upon this finding and have shown that basic 

edium can markedly accelerate the degradation of bupropion.  

inetic study, 

s age sage esign. ilibrium  B

plasma sample should be incubated in water bath maint ning tem t 3

several hours. From current study, the degradation of BUP would be considered under 

uch condition. For the clinical pharmacokinetics studies, the blood sample should be 

collected, centrifuge and the plasma frozen immediately after collection. In addition, 

the information provided in this study would be also helpful in the dosage form design 

and development. Some stabilizer can be used to provide an acid environment for the 

compound to increase its storage time.  

 

Another finding is that Bupropion degraded more rapidly in biological samples than in 

at other factors, 

e 

s are not fully discovered.  

 
5. onclusion

T stability o investigated using a sta ting HPLC procedure. 

his method permits detection and quantification of BUP in the presence of its 

m

 

The knowledge of the stability of BUP is essential for the pharmacok

ample stor  and do  form d As in the equ  study of

perature a

UP, the 

ai 7ºC for 

s

water under same pH values. From this, we can make an assumption th

besides pH, may control the degradation of bupropion. Unfortunately, the underlin

mechanism

 

5 C s 

he f BUP was bility-indica

T
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degradation products. The kinetic studies indicate that BUP undergoes fast degradation 

under high temperature. It’s degradation followed first-order rates, fitting Arrhenius 

kinetics. And it is sensitive to basic environment than to acidic condition. The 

degradation rate of BUP in plasma and milk was much higher than in water under 

same pH and temperature. Therefore, the low pH and temperature favor the stability of 

BUP.  
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Figure 5.1. HPLC chromatograms o
 

Table 5.1. Validation of HPLC assa
 

LOD LOQ 
(ng/ml) (ng/ml) 

Specimen 

  
Plasma 

 
15.9 46.7 

Skim milk 9.5 28.5 
 

 

(A)
 

(B) 

(C) 

 

f BUP at 80˚C at (A) zero time; (B) 3hr; (C) 5hr 

y of bupropion in biological samples 

Recovery (%) 
Bup Tra 

Intra-day Inter-day

  
precision 
(CV) (%) 

 
precision 
(CV) (%)

64.7 65.6 3.51 6.82 

77.7 75.2 5.71 3.64 
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Figure 5.2. Stability of BUP under acidic, neutral and basic condition 

Table 5.2. Effect of ionic strength on the stability of BUP in pH12 phosphate buffer 

Percent remaining 

 

 
Time 
(h) 0.01M phosphate buffer 0.01M phosphate buffer + 10 % NaCL 

0 100 100 
1 90.3 + 0.63 91.2 +1.28 
3 80.9 + 0.41 74.0 + 3.6 
6 29.3 + 1.70 24.6 + 1.2 

10 23.1 + 1.09 17.4 + 2.48 
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Figure 5.3. Apparent first-order reaction of BUP in aqueous solution at different 

temperature 
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Figure 5.4. Arrhenius plot of log (rate constant) versus the reciprocal of absolute 
mperature  

 

n rate and t1/2 of bupropion in human plasma and skim 

te

Table 5.3. Observed degradatio

milk at 25 and 37°C 
 

Room (25°C) Water bath (37°C)  
k (h )×10 t-1 -2 -1 -2

1/2  (h) k (h ) ×10 t1/2 (h) 
Water 
(pH6.26) 

0.17 407.6 0.41 169.0 

Plasma 
(pH7.68  ) 

2.13 32.5 5.45 12.7 

Skim milk 
(pH6.06   ) 

1.36 51.0 4.67 14.8 

Skim milk 
(pH6.4) 

0.97 71.4 5.18 13.4 

Skim milk 
(pH7.4) 

1.06 65.4 6.49 10.7 

 

Table 5.4. The activation energy (Ea) of bupropion in different biological medium 

 Water 

(pH6.26) 

Plasma 

(pH7.68 ) 

Skim milk 

(pH6.06) 

Skim milk 

(pH6.4) 

Skim milk 

(pH7.4) 

Ea(kal.mol-1) 19.03 60.13 78.96 107.2 116.0 
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CHAPTER 6 

IN VIVO STUDY OF BUPROPION DISTRIBUTION  

INTO RABBIT MILK 

6.1. Introduction 

Bupropion (BUP) is one of the effective drugs for the treatment of depression180. Its 

low side-effect profile suggests that it will have important clinical advantages over 

tricyclic antidepressants . As a consequence, it may be necessary to treat nursing 

women with bupropion. 

The milk distribution of bupropion was not fully discovered, in fact, there is only one 

reference in the literature about the use of bupropion in a nursing mother. The data 

shows that bupropion is freely diffusible in milk. However, the information was based 

on only one case report and lacks the ability to predict the risk to infant under all 

circumstances .  

It is suggested that no model can accurately predict the M/P ratio for every compound 

by itself. Some combination of those approaches might be useful for the prediction of 

drug transfer into milk. For this, the combination of in vivo data with in vitro model 

established may enable the accurate prediction the M/P ratio, hence the infants’ dose.  

 

6. 2. Materials and Methods 

was purchased from Sigma Chemicals (Singapore). 

6.2.2. Animals 

181,182

183

6.2.1. Materials 

Bupropion hydrochloride was extracted from tablet (Zyban, 50mg/tablet). Trazodone 
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Pregnant New Zealand White rabbits (Body weight 3.0-4.0kg) were purchased from 

Laboratory Animal Center, Singapore. All procedures involving animals were 

approved by the Institution Animal Care and Use Committee of this center. Animals 

were acclimatized in our laboratory 7 days before delivery. During this period, does 

arately in cages with  controlled light cycle (12/12h). 

ns in different stages were spiked with drugs to give an expected 

oncentration of 1µg/ml. The spiked whole milk samples were then subjected to 

.2.5. Blood and milk pH determination 

were housed sep

 

6.2.3. Protein binding Determination 

In vitro protein binding of bupropion in rabbit plasma and skim milk is measured by 

ultrafiltration as described by Aramayona et al184. 

 

6.2.4. Skimmed-to whole (S/M) milk ratio determination 

The milk specime

c

centrifugation at 20000g for 20 minutes at 20oC to separate the creamed fat from the 

skim milk. Creamatocrit ratio (ct) was determined by the ratio of the volume of milk 

fat to the volume of skim milk. The skim milk layer was subjected to HPLC analysis. 

S/M ratio was calculated by taking the ratio of the drug concentration in skim milk to 

the drug concentration in whole milk. 

 

6

Plasma and milk pH were measured using Beckman Φ110 ISFET pH meter (Beckman 

Instruments, INC, USA).  
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6.2.6. Pharmacokinetic Study 

Milk and blood sampling was carried out on the 3rd (colostrums) and 15th (mature) day 

of lactating. The drug (30mg/kg) was administered as i.v. bolus dose via marginal ear 

vein. Serial blood samples (0.5ml) was drawn into heparinised syringe before starting 

the kinetic study and at 0.125, 0.25, 0.5, 1, 2, 3, 4 and 6 and 8 hrs after drug 

administration and are always replaced with an equal volume of saline solution. Serial 

milk samples will be drawn before starting the kinetic study and will also be taken at 

the sampling time described above after drug administration by manual expression into 

 centrifuge tube connected to a vacuum system. At each time, the gland is emptied as 

he pharmacokinetic profile of bupropion in lactating rabbits following intravenous 

The area under the plasma concentration-time curve (AUC) was calculated by 

trapezoidal rule with extrapolation to infinity. 

The observed milk-to-plasma ratio(M/P) was calculated using equation 5.1 

M/Pobs=AUCm/AUCp.                (Eq. 6.1) 

 

a

completely as possible. The blood and milk samples were stored frozen at -20°C until 

analysis. 

 

6.2.7. Data Analysis 

T

administration is described in the form of two-compartment model.  

Xp 
X0

K12

Xc

 K20
K21

K10 
K21 
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6.3. Results 

6.3.1. Physiology properties of plasma and milk in rabbit 

Table 5.1 summarized the different values of pH, protein content, creamatocrit and 

/M in rabbit plasma and milk. It is found that in rabbit, the pH value increased from 

th the findings in human breast milk, 

whose pH also increase from colostrum to matu

 

6.3.2. In vivo studies 

The pharmacokinetic parameters of BUP plasma concentration-time iv 

administration in lact  rabbits were d using n ear regression analysis 

and single iv bolus two-compartmen deling (W nlin, v fic 

Consulting Inc., Apex, NC, USA).). Th  course of plasma concen s and 

milk concentration of BUP following a single iv bolus dose of 30 mg/kg (n=2) is 

illustrated in Figure 5.1a-5.1d. 

The volume of distribution, calculated by use of the area method, ranged from 1.54 to 

4.43 l·kg-1 (Table 5.2). BUP was 74.6 % bound in the plasma of the lactating doe 

(Table 6.1). The AUC found in milk was almost ten times higher than that described 

for plasma in colostrum stage; while in mature period, the milk-to-plasma ratio is less 

The milk pharmacokinetic parameters can be observed in Table 6.3. The maximal 

concentration was 18.4ng/ml and was observed within two hours. After that time, the 

linear phase of elimination from milk began, and was found not to be significantly 

different from the elimination rate constant calculated in plasma (Figure 6.1).  

S

colostrum to mature period. This trend agrees wi

re.  

 curve after 

ating derive on lin

t mo inNo 1.1, Scienti

e time tration

than two. S/W calculated for BUP indicated that more than half of the drug remained 

in skimmed milk.  
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6.4. Discussion 

Studies of drug transfer into milk are hampered by the wide species variability in the 

protein and lipid content of milk. Laboratory animals, such as rabbits, produce milk 

with much higher lipid and protein content than human milk (Table 2.6). Therefore, 

the M/P ratios measured in rabbit may differ greatly from those in humans. However, 

the rabbit model used in this study was to study the effect of different lactating periods, 

 

When BUP was administered to the lactating rabbit as a bolus dose of 30mg/kg body 

weight, the drug was just detected in milk at the first sample time and the reached its 

maximal concentration in milk within two hours. The results of the present study agree 

well with the only other available data, which relate to the concentrations in milk and 

serum following the treatment of a lactating woman with 100mg BUP three times 

odel for distribution of antidepressant across biological membranes 

has drawn attention in recent years in an attempt to predict milk using easy and 

inexpensive in vitro experiments, which have been conducted in our lab. Thus, the 

diffusional model incorporated the pH partition theory, milk and plasma protein 

binding, and drug partitioning into milk fat as control factors in the M/P ratio was used 

to predict the milk-to-plasma ratio186. However, the prediction was based on theoretical 

study and does not correlate with the in vivo data as the in vivo data obtained was 

hanging of lactating period may influence the milk plasma distribution which can be 

as well as the change of physiology conditions, in the milk transfer and prediction the 

infant exposure.  

daily185.  

 

The diffusional m

always based on case report and lack the experiment control. For example, the 

c
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predicted by phase distribution model. However, the prediction may not accurate 

ecause the drug action in body is a dynamic process. For this, an in vivo and in vitro 

orrelation must be established to enable better prediction of drug milk plasma 

istribution.  

 have been demonstrated187 that BUP is metabolized in many tissues to HB (hydroxy 

etabolite) or TB (Threohydro metabolite), so it is possible that BUP may also be 

etabolized in milk or in the mammary gland. For this reason, complementary studies 

The M/P ratio determined in colostrum period was about 6 times higher than that in 

mature stage [Table 6.4], this may due to the increase of pH olostrum t ture 

 It is suggest he adm n of bup in early la period 

ore risk t nt than the later stage.  

UP  to diffusion use freely into fter its i.v. a istration 

ls because of 

otential risk to their offspring. I n that M:P ratio in early lactation stage was 

 then lat owev

 by severa  such as rsing schedule relati aternal dosing 

e of elim  pattern s, neonatal bioavailabi d the neonatal 

u  its body

 

b

c

d

 

It

m

m

on BUP metabolism in these tissues should be also carried out in the future study. 

 

 from c o ma

period. ed that t inistratio ropion ctation 

may pose m o infa

 

In conclusion, B seems milk a dmin

to the lactating rabbit, so this drug should not be given to nursing mamma

p t is show

much higher er stage. H er, neonatal exposure to BUP via suckling will be 

influenced l factors  the nu ve to m

schedule, typ ination in dam lity an

ability to remove dr g from . Thus, the high M/P ratio does not guarantee the 

high drug concentrat  infant. N eless, the drug should be used with caut

during lactation because of the potential for adverse effect.  

ion in everth ion
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Table 6.1. Parameters in rabbit milk and plasma 

Rabbit   
ean 1 2 M

pH 7.47 7.45 7.46±0.014 
Protein content(g/dl) 5.84 5.55 5.70±0.205 

Plasma 

fu 25 25.2 25.35±0.212 .5 
pH 6 6.99 6.97±0.035 .94 
fu 20.5 19.7 20.1±0.566 

S/M 0 0.3 0.30±0.010  .288 02 

Colo

Cr 1 13 13.1±0.141 

strum 

 3.2 .0 
pH 7 7.3 7.36±0.085  .42 0 
fu 24.1 24.7 24.4±0.424 

S/M 0.435 0.498 0.467±0.045 

Mature 

Cr 12.2 12.2 12.2 
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Figure 6.1a. Semilogarithmic plot of concentration vs. time for bupropion in milk a

lasma
nd 

 after intraveneous administration of bupropion (30mg/kg) to lactating rabbit (I) p
in colostrum stage. 
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igure 6.1b. Semilogarithmic plot of concentration vs. time for bupropion in milk and 

plasma after intraveneous administration of bupropion (30mg/kg) to lactating rabbit (I) 
 mature stage. 
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Figure 6.1c. Semilogarithmic plot of concentration vs. time for bupropion in milk and 
plasma after intraveneous administration of upropion (30mg/kg) to lactating rabbit (II) 
in colostrum stage. 
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Figure 6.1d. Semilogarithmic plot of concentration vs. time for bupropion in milk and 
plasma after intraveneous administration of bupropion (30mg/kg) to lactating rabbit (II) 
in Mature stage. 
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Table 6.2. Individual and mean pharmacokinetic parameters in plasma determined 

 
after iv. bonus of 30mg/kg BUP.  

(a) Pharmacokinetic parameters determined for 2 rabbits in colostrum stage 

 Rabbit   
 1 2 Mean SD 

C0 (µg/ml) 19.4 7.11 13.3 8.69 
α(min-1) 0.0547 0.0218 0.038 0.023 
β(min-1) 0.0018 0.0032 0.0025 0.00099 
t1/2α (min) 12.7 31.77 22.2 13.5 
t1/2β (min) 83.7 218.1 150.9 95.0 
AUC (µg/ml-1min) 684.9 384.5 534.7 212.4 
CL (ml/minkg) 43.8 78.0 60.9 24.2 
Vd (l·kg ) 1.55 4.34 2.95 1.97 -1

 
(b) Pharmacokinetic parameters determined for 2 rabbits in mature stage 

 Rabbit   
 

 1 2 Mean SD 
C0 (µg/ml) 18.0 7.48 12.7 7.43
α(min-1) 0.0489 0.047 0.048 0.0013
β(min-1) 0.0062 0.012 0.0091 0.0041
t1/2α (min) 14.2 14.7 14.4 0.38
t1/2β (min) 112.2 57.8 85.0 38.4
AUC (µg/ml-1min) 726.9 396.7 561.8 233.5
CL (ml/minkg) 41.3 75.6 58.5 24.3
Vd (l•kg-1) 1.67 4.12 2.90 1.73

α andβare the exponents that were fitted by winonlin, t1/2α= distribution half-life; 

the plasma concentration vs. time curve; and CL= body clearance 

 

g/kg BUP 

(a) Pharmacokinetic parameters determined for 2 rabbits in colostrum stage 

 Rabbit   

t1/2β = elimination half-life; Vd= apparent volume of distribution; AUC= area under 

 

Table 6.3. Individual and mean pharmacokinetic parameters in milk determined after 
iv. bonus of 30m
 

 1 2 Mean SD 
Cmax(µg/ml) 15.9 20.9 18.4 3.5 

tmax(min) 37-125 71-140 / / 
λmilk(min-1) 0  0.0008 0.004 0.0052 .0046

t1/2λmilk (min) 173.3 133 153.15 28.5 
AUC (µg/ml-1min) 7594 3871 5733 2633 
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(b) Pharmacokinetic parameters determined for 2 rabbits in mature stage 

 Rabbit   
 1 2 Mean SD 

Cmax(µg/ml) 11.4 4.4 7.9 4.9 
tmax(min) 25-35 7-35 / / 
λmilk(min-1) 0.0015 0.009 0.0053 0.005 

t λmilk (min) 462 77 270 272 1/2
AUC (µg/ml-1min) 1408 646 539 1027 
Cmax = maximum experimental
verapamil concentration was observed; 

 milk concentration; tmax = the time where maximum 
λmilk = slope of the elimination 

ime c rve; t1
ilk concentration vs. tim

urve 
 

n SD 

phase of the verapamil milk concentration vs. t u /2λmilk = elimination half-
 milk; AUC= area under the curve of the BUP m e life from

c

Table 6.4. The in vivo values of  M/P for bupropion  

M/P 1 2 Mea
Colostrum 11.08775 14.90897 12.99836 2.702012

Mature 1.936993 1.628435 1.782714 0.218184
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CHAPTER 7 

 THE EFFECT OF LACTATION STAGE ON THE MILK-TO-

 
Drugs pass from plasma to milk despite the biolog

PLASMA RATIO AND THE PREDICTION OF INFANT 

EXPOSURE: AN IN VITRO AND IN VIVO EVALUATION 

ical filtration system and are 

bioavailable to the infant, presenting a potential danger188,189. To determine the 

magnitude of the risk, it is necessary to know the amount of drug excreted into milk. 

The drug milk plasma distribution ratio is affected by drug dosage, proportion bound 

in plasma190, maternal clearance rate, half-life of the drug, molecular weight, lipid 

solubility, degree of ionization, pH difference between plasma and milk composition162. 

Due to the pH gradient between plasma and milk (the mean pH of milk is lower than 

that of plasma), weak basic drugs, such as antidepressant, are more ionized in milk and 

can become ion-trapped in milk.  

 

Breast milk is a dynamic body fluid whose composition changes throughout lactation. 

Hence, the M/P ratio may affected by the changing of milk composition191, as milk pH, 

fat and protein concentration are affected by the time of day, diet, the stage during a 

single feeding, and possibly which breast was milked191. More dramatic changes in 

milk composition occur in the first several weeks postpartum (Table 7.1). The 

alternation in milk composition may affect antidepressant drug concentration in breast 

milk, thereby placing the infant at increased risk of exposure to these drugs.  
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7.1. Prediction of M/P ratio for sertraline and bupropion during different 

lactation periods 

o determine the effect of lactation stage on M/P ratio, five lactation periods were 

 breast 

ilk is not known, a predictive relationship between the two would enable the 

   

T

chosen to calculate the M/P ratio by using parameters obtained from literature and 

experiment (Table 7.1).  

The phase distribution model was used to calculate the M/P ratio (Eq. 1.1).  The S/M 

ratio is calculated using equation 1.2.  

As protein binding of most drugs in plasma is known while protein binding in

m

estimation of the appropriate protein binding of any drug in milk. Thus, in our 

proposed relationship, total protein concentration in plasma and milk, and 2 correction 

factors, fpH and fcor are incorporated in the calculation of fraction unbound in milk to 

account for the differences in total milk concentration and milk pH. The equation is 

given by: 

)(
1

1

1

,

,

,

,

corpt

pHmt

pu

pu fpf−
+

=

where P

,mu

fpf

f                   (Eq. 7.1) 

2

fpH  : 

f

   log kf =1.29Log p -0.88                               (Eq. 7.4) 

t,m is the total protein concentration in milk, and Pt,p is the total protein 

concentration in plasma.  

The fcor and fpH values for basic drugs are predicted using the following relationships: 

   log  fcor = 0.42 log p – 0.12                                (Eq. 7.2) 

As fpH was found to correlate well with Papp, (r  = 0.9991, n = 6, Figure 6.1)) the 

following equation is used to predict 

   fpH  = 0.033Papp +1.0688         (Eq. 7.3) 

while log k   is predicted using: 
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As shown from Table 6.2, M/P ratio decreased with the change of lactation period, 

hich consistent with our in vio findings.  

rom our prediction of M/P ratio for bupropion and the case report [], it may safely be 

oncluded that it is better to avoid bupropion administrated in the early lactation period, 

e., the first two weeks.  

7.2. Prediction of relative dose exposure to infants 

he ingestion of drugs via milk feeding must be considered as a potential hazard for 

neonates . The elimination of drugs from eonates seems to be lower than in adults, 

and thus, neonatal clearance could have clinical importance. Furthermore, most drug-

meta g enzymes are either not pres t or have only limited activity at birth, 

developing at different stages of life depending on the species . Indeed, deficient 

d  m ixed-fun ase activity h eported d

e first month of life in rabbits194. These fa ts suggest that the dim nished elimination 

capacity of newborns could result in greater exposure than that predicted from m k 

values alone195. Thus, it is necessary to consider increasin  the infa

estimating the consequences of drug intake through breast milk. 

 

he potential risk of sertraline and bupropion to infant was accessed using using M/P 

p sed model. The M/P ratio and likely dose in three 

s re-term and f m infants were predicted. It is shown 

that M se with the ch tion stage, which agrees with our 

finding bbit. The M/ 13.0 in colostrum stage, while it 

ecreased to 1.78 in mature stage (Table 7.3).  

w

F

c

i.

 

T

192  n

bolizin en

193

evelopment of icrosomal m ction oxid as been r uring 

th c i

il

g age of nt in 

T

ratios predicted using our pro o

tages of lactation in both p ull-ter

/P ratio decrea a ctange of la

s in lactating ra P ratio was 

d
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The three stages of lactation coincide with the infant’s stage of development. For 

erm 

fant is about 33 % of maternal’s clearance, while it is approximately equal to the 

maternal’s clearance in the late stage on (grea 0 days). Thus, infants 

exposed after the first five to six mon ear drugs ingested via 

 Table 6.5, where the average drug concentration in 

e was more than 

3.49-81.6µg/kg for sertraline. These data demonstrate that with increasing infant age, 

infant dose and plasma concentrations decrease, leading to lesser risk to infants. From 

these estimations, it is apparent that mother should not breast feeding their baby during 

early postpartum period, especially in colostrum stage. However, There are significant 

differences in the functioning of drug metabolism pathways in the neonatal and young 

infant[16]. Also, drug delivery to the infant may also be altered by change in the 

intestinal tract, especially in the maturation of the gut epithelium [17]. In addition, there 

are development changes in bile salt formation and gastric pH [18]. These factors may 

influence the amount of drug absorbed, as well as the ultimate plasma concentration. 

The existing data on drug excretion in breast milk are valuable but require critical 

analysis and careful interpretation to get any clinical significance for nursing infants 

and neonates.  

 

Our estimation, based on predicted M/P ratios and infants’ pharmacokinetic parameters, 

is an attempt to assess the excretion of drugs into infants from the early stage of post 

partum to the later. All of infant drug concentrations are well below the therapeutic 

instance, in the early stage of lactation (the first 60 days), the clearance in a full-t

in

of lactati ter than 18

ths may be better able to cl

breast milk. This was reflected in

the infant of a few days old was more than 10times higher than when h

180 days old. Predicted infant dose varies from 15.3-102.9µg/kg for bupropion and 
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range and the relative dose estim

i

 

P

r

104

ated in rabbit baby is also small (Table 7.3), which 

ndicates that the amount of drug ingested by the infant could be insignificant.  

ostnatal maturation of pharmacokinetic processes has significant implications with

espect yst d and/o f the 

newborn and young infant. Functional immaturity of absorption, distribution, 

metabolism and excretion processes contri e dif ed 

between newborns, infants and adults196. The anatomical and functional immaturity of 

the org a

potential risk to themselves when ingested some antidepressant drugs. An assessment 

of the apeu f cy x t s  a b to t 

drugs will require a careful consideration of t development of pharmacokinetic 

processe How r e e t  ag   p

p ess plasma levels of a compound are poorly understood. Clinical antidepressant 

acokintics/pharmacodynamic studies in infant will help to establish establish 

e e  e  to i e to t a newbo r ng i t

nc  d ion to tre ursing m rs with antide sants sho  be based 

 risk to benefit assessment for each patient. Substantial risk of untreated depression 

r  

to s emic exposure levels an  the safety r efficacy o  a drug in 

bute to th ferent responses observ

ans nd other biochemical and physiological processes of infants poses a 

ther tic e fica or to ican usceptibility of new orn antidepressnan

he 

s. 

 on 

eve , th ffec s of e-related changes
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mor
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y = 0.033x + 1.0688
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Table 7. 1. Composition of breast milk in the different lactational periods 

Lactational 
period 

[91,197,198] 

pH 
 

[199,200] 

rote tration 
(g/l)  

[198,201] 
(g/l)  
[202] 

ct 
 

[76,198] 

re 7 Rela ions  between  and Papp asic pH 6.4 

 
ncenP in co Fat concentration 

Early 
Colostrum 
(1-4 days) 

 
Transitional 
(5-14 days) 

 

(60-180 days) 
 

L
(>180 days) 

 

 
 

6.63 – 6.72

 
6.72 – 6.78

 
 

8 – 
 
 

6.97 –  

 
 
 

12 – 14 

6 – 12 
 

–
 
 

– 10 
 

 

 
 

43 – 47 

 
47 – 51 

 
 

 – 5
 
 

58 – 7
 

 
0.035 

 
 

0.045 
 
 

0.055 
 
 

0.058 
 
 

0 1 

 Mature 
(15-60 days) 

 
ull F

ate 

 

6.4 – 6.63 

 

6.7 6.97

 7.6

 
– 6015 

 
 

 
 12 6 

8 

39 – 43 

 

51 8 

7 .070

 

 E f 89

CL 

Table 7. 2.
 
Infant post-conceptual age 

stimation o  CLinf  

28-34 weeks 0.1 x CLmat
34-40 ee  mat w ks 0.33 x CL
40-44 weeks 0.5 x CLmat
44-68 weeks 0.66 x CLmat
> 68 weeks CLmat

 

 

 



 

Table 7.3.
rabbit baby 
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 Estimation of likely rabbit baby exposure in the 2 stages of lactation in 

Stage M/Pa Cmat 
(ng/ml) 

Rabbit baby Dose 
(µg/day) 

RD%f

Colostrum 13.0 342.1b 22.24d 0.022 
Mature 1.78 356.1c 12.28e 0.012 

a: get from experiment data 
b: Dose=30mg/kg, CL/F=12.4l/h 
c: Dose=30mg/kg, CL/F=12.3l/h 
d: Assuming that the volume of milk taken by rabbit baby is 5ml/day 
e: Assuming that the volume of milk taken by rabbit baby is 20ml/day 
f: Calculated using equation 1.13. 
 



Table 7.4. Prediction of M/P ratio in the different stages of lactation 
(a) Prediction of M/P ratio of sertraline 
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(b) Prediction of M/P ratio of bupropion 

 pH
 

Pt,m(g/l) ct f un a 

(× -2
LogP b fpH

c f d Logkf
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f u pKa-pH) 
b: calculated using: Po/w,app = Po/w, true x fun
c: calculated using: fpH = 0.0703Papp – 0.0335 
d: calculated using: log fcor = 0.4132 logP – 0.1192  
e: calculated using: log kf = 1.29LogPapp -0.88    
f: calculated using: 

)(
1

1

1

,

,

,

,
,

corpt

pHmt

pu

pu
mu

fp
fp

f
ff

−
+

=

 = 1/(1 + 10n

 

a: calculated using: 
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 Estim  of lactation in pre-term and full-term
(a) Estimation of likely infant exposure in pre-term  and full-term infants when maternal dosage is 50mg and 200mg for sertraline 
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Estimation of likely infant exposure in pre-term  and fu  infants when maternal dosage is 200mg and 800mg for bupropion
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a: calculated using equations 1.11 where, CLmat /F= 101.4 l/h, assuming that the volume 
of milk taken by infant is 150ml/kg/day 
b: calculated using equation 1.12, the therapeutic concentration of sertraline in maternal 
plasma is: 10-60ng/ml. 
c: CL  = 0.1 x CL  corresponding to infant post-conceptual age of 28-34 weeks 

e: CLinf = CL  corresponding to infant post-conceptual age of > 68 week 
f: calculated using equations 1.11 where, CLmat /F= 127.7 l/h, assuming that the volume 
of milk taken by infant is 150ml/kg/day 

h: CLinf
i: CLinf -68 weeks 
j: CLinf = CLmat corresponding to infant post-conceptual age of > 68 weeks 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

inf mat
d: CLinf = 0.5 x CLmat corresponding to infant post-conceptual age of 40-44 weeks 

mat

g: calculated using equation 1.12, the therapeutic concentration of bupropion in maternal 
plasma is: 10-50ng/ml. 

 = 0.33 x CLmat corresponding to infant post-conceptual age of 34-40 weeks 
 = 0.66 x CLmat corresponding to infant post-conceptual age of 44
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