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SUMMARY 

 

  Eubacterium coprostanoligenes has been found to be a cholesterol-reducing 

microorganism. To verify this, the bacteria were grown in Base Cholesterol Medium 

and its growth was studied by plating growing broth culture on agar solidified 

medium. It was found that cholesterol was not required for bacterial growth, and the 

growth was affected by lecithin, CaCl2 and pH of culture medium. In addition, being 

anaerobic, E. coprostanoligenes was found to survive when exposed to ambient air. 

Morphology of the bacterium was re-affirmed by confocal and transmission electron 

microscopy to be coccobacilloid.  

Cholesterol reduction activity in E. coprostanoligenes was studied using gas 

chromatography because of its practicality and accuracy. With this method, the 

conversion of cholesterol to coprostanol by E. coprostanoligenes was re-affirmed. 

The cholesterol reduction activity was found to be affected by lecithin, CaCl2 and pH 

of culture medium. In addition, the reaction could take place under aerobic condition. 

 Cholesterol reduction activity in E. coprostanoligenes was found to increase 

with increasing cholesterol concentration. A kinetics study of cholesterol reduction 

activity in these bacteria showed a Vmax of 14 µM cholesterol reduced/h and Km of 1 

mM cholesterol. The putative cholesterol reducing enzyme(s) appeared to be secreted 

constitutively and intracellularly. On the other hand, cholesterol reduction in E. 

coprostanoligenes was shown to take place via the indirect pathway. However, 

attempts to isolate the enzyme(s) by breaking bacterial cells were not successful. 
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INTRODUCTION 
 

 Hypercholesterolemia has been a major health problem particularly in 

developed countries. Being associated with coronary heart diseases (CHD), it can 

finally lead to death (Tell et al. 1994; Kromhout et al., 1995; Mann et al., 1997; 

Hegsted and Ausman, 1998). In Singapore, a quarter of the residents was found to 

have high total cholesterol levels (≥ 6.2 mmol/L) in the National Health Survey 

conducted in 1998 (Tan, 2000). Nevertheless, some reports have shown that the 

lowering of cholesterol levels could increase survival rate in CHD patients (Pederson, 

1994; Shepherd et al., 1995; Sacks et al., 1996). In view of this, various 

pharmacological agents (Hunninghake, 1990; März et al., 1997; Staels et al., 1998; 

Ros, 2000; Istvan, 2003) and dietary supplements (Crouse and Grundy 1979; Benitez 

et al., 1997; Howard and Kritchevsky, 1997; Danijela et al., 2003) have been 

developed with the chief aim of lowering plasma cholesterol levels. Statins have been 

established by far to be the most efficient cholesterol-lowering drug (Istvan, 2003). 

However, benefits aside, some of these agents (e.g. statins and fibrates) have been 

reported to incur side effects such as gastrointestinal disturbances and sleep disorders 

(Christian et al., 1998; Najib, 2002).  

 Cholesterol-reducing bacteria have the potential to serve as an alternative for 

cholesterol lowering (Dehal et al., 1991). These bacteria have the ability to convert 

cholesterol to coprostanol. Cholesterol-lowering ability is achieved as coprostanol is 

poorly absorbed in human intestines and would be excreted (Bhattacharyya, 1986). 

Cholesterol-reducing bacteria have been isolated from rat cecal contents (Eyssen et al., 

1973), faeces of human (Sadzikowski et al., 1977) and that of baboon (Brinkley et al., 

1982). These isolated cholesterol-reducing bacteria have been found to require 

plasmalogen for growth or for its cholesterol-reduction activity (Eyssen et al., 1973; 
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Sadzikowski et al., 1977; Brinkley et al., 1982). An exception however is 

Eubacterium coprostanoligenes, one of the isolated cholesterol-reducing bacteria, 

which has been established to not require plasmalogen for growth or cholesterol 

reduction activity (Freier et al., 1994). It was therefore a useful experimental 

microorganism to explore its cholesterol-lowering potential.   

 The aim of this project is to develop suitable methods to study factors 

affecting the growth and cholesterol reduction activity of E. coprostanoligenes. The 

information obtained from the study is prospected to be useful for future utilization of 

E. coprostanoligenes in cholesterol lowering in either the food or the pharmaceutical 

industry.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

2 LITERATURE REVIEW 
 

2.1 Cholesterol and health related issues 

Cholesterol homeostasis is maintained by balancing intestinal cholesterol 

absorption and endogenous cholesterol synthesis (Dietschy et al. 1993). Intestinal 

absorption of cholesterol shares complexity to that of triglycerides because both are 

water-insoluble molecules (Wilson and Rudel, 1994). Its absorption requires steps of 

emulsification, hydrolysis of ester bonds by specific pancreatic esterase, micellar 

solubilization, absorption in the proximal jejunum, re-esterification within the 

intestinal cells, and transport to the lymph in the chylomicrons (Wilson and Rudel, 

1994). Only 40 to 60 % of dietary cholesterol is absorbed independent of the amount 

ingested of up to 600 mg/day (Bosner et al., 1999) 

In addition to ingestion, cholesterol is synthesized and secreted from the liver 

as bile acids (Dietschy et al. 1993). A fraction of this biliary cholesterol is absorbed in 

the intestine due to the efficient re-absorption of bile acids. Dietary absorbed and 

endogenously synthesized cholesterol are transported as chylomicrons to liver where 

they are cleared efficiently for further processing (Dietschy et al., 1993). This process 

has been found to exert regulatory effects on whole-body cholesterol homeostasis 

(Dietschy et al., 1993). When the delivery of intestinal-absorbed cholesterol to the 

liver was increased, endogenous cholesterol synthesis is known to be inhibited in a 

proportional fashion with the increase in bile acids production. In this way, substantial 

variations of cholesterol intake induced minimal fluctuation in blood cholesterol level 

on human (Quintao et al., 1971). On the other hand, the response of blood cholesterol 

to changes in dietary cholesterol was found to vary between individuals (Lin and 

Cornor, 1980; Maranhao and Quintao, 1983). 
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Excess cholesterol from diet and bile acids are excreted in faeces (Dietschy et 

al. 1993). This cholesterol mass escaping intestinal absorption will be degraded to 

coprostanol through reduction of the double bond at C-5 by colonic bacteria before it 

is excreted (Macdonald et al., 1983). As such, it should be noted that the overall body 

cholesterol balance is kept mainly by matching cholesterol intake and synthesis with 

that of faecal loss. The latter is strictly dependent on intestinal cholesterol absorption 

which in turn is regulated by blood cholesterol levels (Dietschy et al. 1993). 

Cholesterol absorption appears to be a very specific process (Salen et al., 1970; 

Connor and Lin, 1981). Phytosterols like β-sitosterol, campesterol, and stigmasterol 

and marine sterols in shellfish have been found to be absorbed less efficiently (Salen 

et al., 1970; Connor and Lin, 1981). These sterols are structurally related to 

cholesterol differing only in the degree of saturation of the sterol nucleus or in the 

nature of the side chains at C-24. Absorption of β-sitosterol, which differed from 

cholesterol only by the addition of an ethyl group on C-24, was found to be less than 5 

% (Salen et al., 1970). 

Gender was found to be unrelated to the efficiency of cholesterol absorption 

(Bosner et al., 1999). On the other hand, cholesterol absorption has been proposed to 

be affected by genetics, physiology and dietary factors (Nestel et al., 1973; Vahouny 

et al., 1980; de Leon et al., 1982; Samuel et al., 1982; Watt and Simmonds, 1984; 

McMurry et al., 1985; Mahley, 1988; Thurnhofer et al., 1991; Ostlund et al., 1999). 

For example, studies have shown that polymorphism of apo E, a ubiquitous protein of 

lipid transport (Mahley, 1988) and mutation in the gene encoding for the putative 

intestinal cholesterol carrier protein (Thurnhofer et al., 1991) were genetic factors 

influencing cholesterol absorption. Physiologically, obesity was found to be 

negatively associated with absorption of cholesterol (Nestel et al., 1973). An increase 
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in the velocity of intestinal transit was associated with reduced cholesterol absorption 

and vice versa (de Leon et al., 1982). Detergent capacity of different types of bile 

acids in the enterohepatic circulation was also reported to influence cholesterol 

absorption (Watt and Simmonds, 1984). Increased fiber content in a meal would 

reduce cholesterol absorption due to physical interaction within the intestinal lumen 

(Vahouny et al., 1980) while the ingestion of cholesterol together with a significant 

amount of triglycerides in a diet facilitated cholesterol absorption (Samuel et al., 

1982).  

Hypercholesterolemia is a condition when the plasma cholesterol elevates 

above 6.2 mmol/L, as defined by the United States Department of Health and Human 

Services. A survey on cholesterol status among Singaporeans was conducted in 1998 

by the Epidemiology and Disease Control Department, Ministry of Health, Singapore. 

In a random sample of 4723 Singaporeans aged between 18 and 69 years, the survey 

found that a quarter (25.4 %) of them had high total cholesterol levels (≥ 6.2 mmol/L), 

35.3 % with borderline-high levels (5.2-6.2 mmol/L) and 39.3 % at desirable levels (< 

5.2 mmol/L) (Tan, 2000). The survey also showed that 94.8 % of Singapore residents 

had desirable HDL (High Density Lipoprotein)-cholesterol levels (≥ 0.9 mmol/L). On 

the other hand, 26.5 % of Singapore residents had high LDL (Low Density 

Lipoprotein)-cholesterol levels (≥ 4.1 mmol/L) and 30.2 % had borderline-high levels 

(3.3-4.1 mmol/L) (Tan, 2000). More males (27.3 %) than females (23.5 %) had high 

total cholesterol level. Overall, there was a significant increase in the age-

standardized prevalence of high blood cholesterol from 1992 to 1998 (19.4 % and 

25.4 %, respectively), mean total cholesterol (1992, 5.3 mmol/L; 1998, 5.5 mmol/L) 

and crude prevalence of high LDL-cholesterol (1992, 22.9 %; 1998, 26.5 %). There 
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was no significant difference in the overall age-standardized prevalence low HDL-

cholesterol (1992, 6.0 %; 1998, 5.2 %) (Tan, 2000). 

CHD have always been related to hypercholesterolemia (McNamara, 2000). 

Using simple regression analyses, dietary cholesterol has been found to be positively 

correlated to both plasma total cholesterol level and CHD incidence in many 

epidemiological studies (Hegsted and Ausman, 1988; Tell et al. 1994; Kromhout et 

al., 1995; Mann et al., 1997). 

Hegsted and Ausman (1988) reported that dietary cholesterol was significantly 

related to CHD incidence. Tell et al. (1994) revealed that elevated cholesterol level 

resulted in a thickened carotid artery wall, which gives rise to CHD. Kromhout et al. 

(1995) measured risk factors for CHD and suggested that dietary cholesterol was an 

important determinant of the differences in the population rates of CHD death. 

However, the authors also suggested that cholesterol intake could be a surrogate 

marker for two other factors which also contributed to increased CHD risk: a) a high 

intake of saturated fat resulting in elevated plasma cholesterol levels; and b) a dietary 

pattern low in fruits, grains and vegetables hence resulting in low intakes of B vitamin, 

antioxidants and dietary fiber. Mann et al. (1997) reported that the deleterious effect 

of dietary cholesterol appeared to be more important in cases of CHD than the 

protective effect of dietary fiber. In contrast, Esrey et al. (1996) and Ascherio et al., 

(1996) concluded that dietary fat and cholesterol intake were not significantly 

associated with CHD mortality. Lipid-heart hypothesis which proposes that elevated 

fat and cholesterol intake increase the risk of developing CHD might be overly 

simplistic. 

The evidence to establish the relationship between dietary cholesterol and 

CHD incidence has been complicated by the co-linearity of saturated fat with 



 7

cholesterol in the diet (Hegsted and Ausman, 1988; Kromhout et al., 1995; Mann et 

al., 1997). Eggs are high –cholesterol low-saturated fat food. Studies on egg 

consumption indicated that dietary cholesterol was not associated with risk of CHD 

(Dawber et al., 1982; Hu et al., 1999). The apparent association between total dietary 

cholesterol and CHD mortality rates was hence explained by the association between 

dietary saturated fat calories and dietary cholesterol, and the low fiber intakes in diets 

high in animal products (Ascherio et al., 1996; Hu et al., 1997; Hu et al., 1999).  

 Artaud-Wild et al. (1993) reported that different populations consuming diets 

with similar amount of cholesterol and saturated fat could incur different CHD 

incidence rates. It was shown that maintaining a high intake of cholesterol and 

saturated fat in the diet, people who consumed more plant foods, including small 

amount of vegetable oils, and more vegetable (more antioxidants) had lower rates of 

CHD mortality. Similarly, it has also been shown that patients who died from CHD 

had a lower vegetable food intake and a higher animal food intake than controls 

(Kushi et al., 1985).  

Even though plasma cholesterol response to dietary cholesterol is highly 

variable between individuals, the general consensus, as obtained from clinical trials of 

the effect of dietary cholesterol on plasma cholesterol, is that dietary cholesterol 

intake does exert a statistically significant, small effect on plasma cholesterol levels 

(Glatz et al., 1993).  

The quantitative importance of dietary fatty acids and cholesterol to blood 

concentrations of total, LDL-, and HDL-cholesterol was determined by Clarke et al., 

(1997). The study showed that total blood cholesterol was reduced by about 0.8 

mmol/L, with four fifths of this reduction being in LDL-cholesterol, when 60 % of 

saturated fats were replaced by unsaturated fats in a diet and cutting down 60 % of 
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dietary cholesterol. However, it should be hereby emphasized that the effects of 

dietary cholesterol on plasma total cholesterol cannot provide a true estimation of its 

effects on CHD risk since changes can occur in both the atherogenic LDL-cholesterol 

as well as in the anti-atherogenic HDL fraction. Numerous cholesterol feeding studies 

are supporting this notion since they suggest that LDL: HDL cholesterol ratio is 

unaltered by dietary cholesterol (Ginsberg et al., 1994; Ginsberg et al., 1995; Knopp 

et al., 1997).   

 Even though the relationship between dietary cholesterol and incidence of 

CHD remained elusive, many studies have shown that lowering the cholesterol level 

could increase survival rate in CHD patients (Pedersen, 1994; Shepherd et al., 1995; 

Sacks et al., 1996). Pedersen (1994) showed that lowering cholesterol level using 

simvastatin improved survival in CHD patients by 30 %. This finding was replicated 

when hypercholesterolemia patients with no history of myocardial infarction were 

administrated with pravastatin: a reduction in total mortality of 22 % and a reduction 

in CHD (fatal and non-fatal) of 31 % (Shepherd et al., 1995). The benefit of 

cholesterol-lowering therapy with pravastatin was also demonstrated in patients with 

CHD where 24 % reduction in CHD mortality was observed (Sacks et al., 1996).  

It was estimated that a long-term reduction in serum cholesterol concentration 

of 0.6 mmol/L (10 %) could lower the risk of heart disease by 50 % at age of 40, 

which could then fall to 20 % at age 70 (Law et al., 1994). In view of this, various 

pharmacological agents (Hunninghake, 1990; März et al., 1997; Staels et al., 1998; 

Ros, 2000; Istvan, 2003) and dietary supplements (Crouse and Grundy 1979; Benitez 

et al., 1997; Howard and Kritchevsky, 1997; Danijela et al., 2003) have been 

developed with the chief aim to lower plasma cholesterol level. 
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2.2 Pharmacological agents in cholesterol lowering 

Pharmacological agents commonly employed in the treatment of 

hypercholesterolemia include: 1) 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase inhibitors (or statins) (Istvan, 2003); 2) bile acid sequestrants 

(Packard and Shepherd, 1982; Ast and Frishman, 1990); 3) fibrates (Staels et al., 

1998); 4) ursodeoxycholic acid (Ros, 2000) and neomycin (Sedaghat et al., 1975); 

and 5) lifibrol (März et al., 1997). 

 The effectiveness of statins is related to the action of HMG-CoA reductase 

which converts HMG-CoA to mevalonate. This is a control step in the biosynthesis of 

cholesterol and inhibition of this enzyme will result in a decreased synthesis of 

cholesterol and other products downstream of mevalonate (Istvan, 2003). Statins are 

competitive inhibitors of HMG-CoA reductase (Istvan, 2003). They have been 

therapeutically used to reduce risk of CHD by reducing cholesterol synthesis and 

upregulating LDL receptors in the liver, consequently giving rise to a decreased level 

of circulating cholesterol (Istvan, 2003). Other anti-atherogenic effects of statins 

include: a) reduction of plasma viscosity and decreased platelet aggregation, b) 

production of a relaxing effect on smooth muscle that could potentially result in a 

reduction in blood pressure, and c) partially reverse vascular hyper-reactivity 

associated with hypercholesterolemia (Christian et al., 1998). The most important side 

effects associated with the use of statins are hepatotoxicity and myopathy. Other 

common adverse events include gastrointestinal disturbances, dyspepsia, myalgia, 

headache, sleep disorders and central-nervous-system disturbances (Christian et al., 

1998) 

 Not only is the hepatic synthesis of bile acids from cholesterol a major 

component of cholesterol homeostasis, it is also a major route of cholesterol excretion. 
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Bile acids sequestrants basically engaged in hepatic bile acid synthesis and excretion 

to reduce concentrations of plasma cholesterol (Packard and Shepherd, 1982; Ast and 

Frishman, 1990). Cholestyramine, a bile acids sequestrant, has been widely prescribed 

for the treatment of hypercholesterolemia (Hunninghake, 1990) and was reported to 

cause a 38 % decrease in cholesterol absorption (McNamara et al., 1980). 

Fibrates are useful in the treatment of hypercholesterolemia in that it can result 

in a substantial decrease in plasma triglycerides. It has been found to be able to 

decrease LDL cholesterol levels while increasing HDL cholesterol concentrations 

(Staels et al., 1998). Adverse effects of fibrates administration include gastrointestinal 

symptoms, cholelithiasis, hepatitis, myositis, and rash (Najib, 2002). The combination 

of fibrate and statin was found to provide complementary cholesterol lowering effects 

(Farnier et al., 2003). 

The fourth pharmacological agent commonly employed is ursodeoxycholic 

acid, which has the lowest micellar cholesterol-solubilizing ability of all common bile 

acids (Armstrong and Carey, 1982). Enrichment of endogenous bile acid pool with 

ursodeoxycholic acid was found to reduce both biliary cholesterol secretion and 

intestinal absorption as a result of inefficient cholesterol absorption (Fromm, 1984). 

Neomycin is a non-absorbable aminoglycoside antibiotic with cholesterol-lowering 

effect by interfering with the micellar solubilization of cholesterol in the digestive 

tract (Sedaghat et al., 1975).  

Last but not least, lifibrol {4-(4’-tert-butylphenyl)-1-(4’-carboxyphenoxy)-2-

butanol} has been found to reduce cholesterol absorption from the intestine. It was 

also shown to moderately decrease hepatic cholesterol biosynthesis and stimulate the 

expression of LDL receptors (März et al., 1997).  
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2.3 Dietary supplements in cholesterol lowering 

Dietary supplements with cholesterol-lowering property include: 1) plant 

sterols (Howard and Kritchevsky, 1997); 2) soy lecithin (Boststo et al., 1981; Wilson 

et al., 1998); 3) sucrose polyester (olestra) (Prince and Welschenbach, 1998); and 4) 

policosanol (Benitez et al., 1997; Canetti et al., 1997). 

Plant sterols (phytosterols), despite being synthesized in plants, are 

structurally similar to cholesterol. They are however minimally absorbed from the gut 

(Salen et al., 1970). Ingestion of free phytosterols, especially β-sitosterol, has been 

shown to reduce plasma cholesterol in both animals and humans (Howard and 

Kritchevsky, 1997). Saturated plant sterol derivatives (termed plant stanols) are 

produced by the hydrogenation of sterols (Howard and Kritchevsky, 1997). Addition 

of plant sterol or stanol to margarine spread reduced serum concentrations of LDL-

cholesterol and the risk of heart disease (Low, 2000; Neil and Huxley, 2002). The 

esterified forms of phytosterols have higher lipid solubility and could be used as 

cholesterol-lowering agents (Howard and Kritchevsky, 1997). The putative 

mechanisms by which plant sterols and stanols reduced serum cholesterol were found 

to include (a) inhibition of cholesterol absorption in the gastrointestinal tract by 

displacing cholesterol from micelles, (b) limiting the intestinal solubility of 

cholesterol, and (c) decreasing the hydrolysis of cholesterol esters in the small 

intestine (Ling and Jones, 1995). 

 Plasma cholesterol levels were also found to be significantly reduced when 

rats were fed with soy protein (Boststo et al., 1981). The cholesterol-lowering 

efficacy of a diet could be enhanced with the addition of soy lecithin (Wilson et al., 

1998). It has been found that the inclusion of soybean Leci-Vita, a product rich in 

polyunsaturated phospholipids (with 7 % lecithin, 17 % soy protein), to a diet 
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significantly reduced total and LDL-cholesterol in patients with elevated serum 

cholesterol while causing HDL-cholesterol to significantly increase (Danijela et al., 

2003). Jimenez et al. (1990) reported that the plasma lecithin-cholesterol-

acyltransferase (LCAT) activity increased when lecithin was administrated to 

hypercholesterolemic rats. Enhanced LCAT activity in turn increased the formation of 

mature HDL and cholesterol removal.  

 Olestra is prepared from sucrose and long-chain fatty acids from edible fats 

and oils such as soybeans, corns and cottonseeds (Prince and Welschenbach, 1998). It 

has the physical properties of fat but is unabsorbable and hence used exclusively as fat 

substitute in some commercial snacks (Prince and Welschenbach, 1998). A significant 

reduction in cholesterol absorption was observed when feeding olestra to human 

(Crouse and Grundy 1979). No toxicity of olestra was shown when fed to dogs 

(Miller et al., 1991). 

 Policosanol comprised of 8 higher aliphatic alcohols obtained from sugar cane 

(Saccharum officinarum) (Canetti et al., 1997). Studies have established the 

cholesterol lowering effect of policosanol in patients with hypercholesterolemia 

(Benitez et al., 1997; Canetti et al., 1997). No toxicity was observed even at high 

dosage of policosanol (Mesa et al., 1994).  

 

2.4 Sterol reductases 

 Sterol reductases, the enzymes that catalyze the reduction of C=C double bond 

of sterols have been widely studied (Bottema and Park, 1978; Wiłkomirski and Goad, 

1983; Dehal et al., 1991; Taton and Rahier, 1991; Kim et al., 1995; Smith, 1995; 

Holmer et al., 1998; Silve et al., 1998; Bae et al., 1999; Schrick et al., 2000). Among 

these, the enzyme catalyzing the reduction reaction of cholesterol was designated as 
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“cholesterol reductase” irrespective of the reaction mechanism and the biological 

source (Dehal et al., 1991). This enzyme was reported to convert cholesterol to 

coprostanol (Dehal et al., 1991). Though coprostanol is structurally similar to 

cholesterol, the former was found to be poorly absorbed by intestine (Bhattacharyya, 

1986). Cholesterol reductase is therefore an efficient way to lower cholesterol 

concentration. 

 Other than cholesterol reductase, 7-dehydrocholesterol reductase that catalyzes 

the reduction of C-7 double bond of 7-dehydrocholesterol to cholesterol was 

identified in microsomes of Zea mays (Taton and Rahier, 1991). Two genes, assigned 

as TM7SF2 and DHCR7, with strong sequence similarity to carboxyl-terminal 

domain of human lamin B receptor and 7-dehydrocholesterol reductase were 

described (Holmer et al., 1998). They were reported as human gene family encoding 

proteins that functioned in nuclear organization and/or sterol metabolism. The cDNA 

encoding rat 7-dehydrocholesterol reductase had since been cloned and sequenced 

(Bae et al., 1999). It appears to share a closed amino acid identity with mouse and 

human 7-dehydrocholesterol reductase and highly hydrophobic. Mutations in the 7-

dehydrocholesterol reductase gene have been known to give rise to Smith-Lemli-

Opitz Syndrome characterized by facial dysmorphisms, mental retardation and 

multiple congenital anomalies (Wassif et al., 1998; Waterham et al., 1998). 

C14-sterol reductase catalyzes the reduction of C8=C14 or C7=C14 double 

bond of sterols (Kim et al., 1995). It was identified in Saccharomyces cerevisiae 

(Bottema and Parks, 1978). Following that, it has been purified from rat microsomes 

and was found to be induced by cholesterol (Kim et al., 1995). Schizosaccharomyces 

pombe erg24 cDNA which encodes a C14-sterol reductase has been cloned and 

sequenced (Smith, 1995). It was found to bear significant homology with that of 



 14

Saccharomyces cerevisiae. Human lamin B receptor was suggested as a C14-sterol 

reductase because it restored the C14 reduction step when transformed in mutated 

Saccharomyces cerevisiae lacking C14-sterol reductase (Silve et al., 1998). FACKEL, 

a gene that required for organized cell division and expansion in Arabidopsis 

embryogenesis was found to encode a C14-sterol reductase (Schrick et al., 2000). The 

C14-sterol reductase activity was found to be inhibited by 15-azasterol (Bottema and 

Park, 1978), 7-aminocholesterol (Elkihel et al., 1994), fenpropimorph and tridemorph 

(Silve et al., 1998). 

 C25-sterol reductase, an enzyme that catalyzes the conversion of (24S)-24-

ethylcholesta-5,22,25-trien-3β-ol to (24S)-24-ethylcholesta-5,22-dien-3β-ol was 

identified in alga Trebouxia sp. (Wiłkomirski and Goad, 1983). Mutation in the C24-

sterol reductase gene was found to cause desmosterolosis, which is characterized by 

multiple congenital anomalies (Waterham et al., 2001). 23-Azacholesterol was found 

to inhibit C24-sterol reductase in Saccharomyces cerevisiae (Pierce Jr. et al., 1978). 

Genetic defects of sterol metabolism in humans and mice that involved impairment of 

sterol reductases has been discussed (Moebius et al., 1998). 

 

2.5 Cholesterol reductase in plants  

 Cholesterol functions in plants as hormone and hormone precursors, 

architectural components of membrane and have also been postulated to play a role in 

seed germination and plant growth (Grunwald, 1975). Generally speaking, the amount 

of cholesterol present in a given plant source is of no indication to its relative 

importance because the turnover rate of cholesterol is very high (Hefmann, 1984). 

 Examination of the structures of the various steroids formed from cholesterol 

by plants indicated that cholesterol must have undergone a series of oxidation and 
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reduction reactions in the process (Hefmann, 1984). The oxidation of cholesterol to 4-

cholesten-3-one was demonstrated in vitro with Solanum tuberosum and Cheiranthus 

cheiri leaves as well as with suspension cultures of Brassica napus and Glycine max 

(Hefmann, 1984). 4-Cholesten-3-one has been found to undergo reduction to 5α-

cholestan-3β-one in the presence of Strophanthus kombé, and Cheiranthus cheiri leaf 

homogenates. It is converted to 5α-cholestan-3β-ol in the suspension cultures of rape 

and soya cell (Hefmann, 1984). 5α-Cholestan-3β-ol (isomer of coprostanol) was 

found to be absorbed only half as efficiently as cholesterol by intestine 

(Bhattacharyya, 1986). 

 Various steroid transformations have been found to occur in plants (Hefmann 

et al., 1967; Lin et al., 1983). For example, in Lycopersicon pimpinellifolium, the 

C5=C6 double bond of cholesterol is reduced to form tomatidine (Hefmann et al., 

1967). Lin et al. (1983) observed that androst-4-en-3,17-dione was metabolized into a 

variety of steroids in cucumber plants (Cucumis sativum). Dehal et al. (1988, 1990a, 

1990b) studied the conversion of cholesterol to coprostanol in plants. The homogenate 

from young cucumber leaves was found to catalyze the reduction of 7 % of 

cholesterol to coprostanol (Dehal et al., 1988). Last but not least, partial purification 

of cholesterol reductase from alfalfa (Medicago sativa) leaves and identification of 

cholesterol reductase activity in pea (Pisum sativum) were also reported (Dehal et al., 

1990a, 1990b; Yang and Beitz, 1992).  

 

2.6 Cholesterol reductase in bacteria 

 In view of the fact that coprostanol is found in faeces, many attempts have 

been made to isolate bacteria capable of reducing cholesterol to coprostanol from 

human and animal faeces (Snog-kjaer et al., 1956; Crowther et al., 1973). Certain 
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anaerobic bacteria from human faeces are known to hydrogenate cholesterol in vitro 

(Snog-kjaer et al., 1956). On the other hand, microbial degradation of cholesterol and 

plant sterols have been found to occur in Mycobacterium sp. NRRL B-3683 and 

Mycobacterium sp. NRRL B-3805 producing androsta-1,4-diene-3,17-dione and 

androst-4-ene-3,17-dione (Marsheck et al., 1972). Cholesterol reduction by common 

intestinal bacteria such as Bifidobacterium, Clostridium, and Bacteriodes has also 

been reported (Crowther et al., 1973). Goddard and Hill (1974) found that bacterial 

flora in the guinea pig gut can degrade cholesterol. The in vivo reaction was abolished 

by pretreatment of the animals with antibiotics which suppressed the gut bacterial 

flora. On the other hand, degradation of cholesterol from liquid media was reported in 

fast-growing non-pathogenic mycobacteria (Av-Gay and Sobouti, 2000). 

 Wiggers et al. (1973) showed that despite the high cholesterol level (250 

mg/kg body weight daily) fed to calves, their plasma cholesterol was not higher than 

in grain-fed calves which had received no cholesterol in their diet. It was thus 

postulated that the cholesterol ingested had undergone microbial degradation in the 

ruminoreticulum. The postulation was confirmed by Ashes et al. (1978) who showed 

that cholesterol was hydrogenated by anaerobic incubation with sheep rumen fluid. 

The principal product of cholesterol hydrogenation was later identified to be 

coprostanol. 

 Microorganisms that have the ability to hydrogenate cholesterol to coprostanol 

have been isolated from rat cecal contents (Eyssen et al., 1973), the faeces of human 

(Sadzikowski et al., 1977) and that of baboon (Brinkley et al., 1982). The cholesterol-

reducing microorganism isolated from rat cecal contents, Eubacterium ATCC 21408, 

is an obligate anaerobe, measuring 0.3 to 0.5 µm by 1 µm in size, and is gram positive 

in very young culture. This strain is different from the previously described 
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Eubacterium in its requirement of cholesterol for growth (Eyssen et al., 1973). The 

bacteria are able to reduce C5=C6 double bond of cholesterol, campesterol, β-

sitosterol and stigmasterol to yield the corresponding 5β-saturated derivatives. No 

reduction reaction has been known to occur when 3-hydroxyl functional group was 

absent or altered (Eyssen et al., 1973). 

 An anaerobic, gram-positive diplobacillus that reduced cholesterol to 

coprostanol was also isolated from human faeces (Sadzikowski et al., 1977) and it 

was found to display similar characteristics to the cholesterol-reducing bacterium 

isolated from rat cecal contents by Eyssen et al. (1973). These anaerobes would not 

form colonies and were isolated and cultivated in an anaerobic medium containing 

homogenized pork brain (naturally high in cholesterol). They also required free or 

esterified cholesterol and alkenyl ether lipid (plasmalogen) for growth (Sadzikowski 

et al., 1977). 

 Nine strains of cholesterol-reducing bacteria have been isolated and 

characterized from faeces and intestinal contents of baboons (Brinkley et al., 1982). 

Unlike previously reported strains, these nine strains did not require cholesterol and 

plasmalogen for growth (Brinkley et al., 1982). However, only two strains reduced 

cholesterol in the absence of plasmalogen. These two strains also produce succinate as 

end product (Brinkley et al., 1982). 

 The role of cholesterol in growth of these organisms has not been reported. 

Eyssen et al. (1973) suggested that cholesterol could be the terminal electron receptor. 

However, all strains isolated from faeces and intestinal contents of baboons had not 

required cholesterol for growth (Brinkley et al., 1982). Therefore, an alternative 

electron would have to be used by these strains when cholesterol was not available 

(Brinkley et al., 1982). That aside, it has been reported that Eubacterium ATCC 
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21408 is able to grow well in standard brain medium (Eyssen et al., 1973). However, 

colonies of the bacteria did not develop on the media solidified with agar (Brinkley et 

al., 1980). Colonies of the bacteria were found to develop when cholesterol 

concentration was increased to 5 % (Brinkley et al., 1982) which suggested the 

importance of cholesterol in bacterial growth.  

The usual end product of microbial cholesterol reduction in soil and sediments 

was found to be 5α-cholestan-3β-ol while that in the intestine was coprostanol (5β-

cholestan-3β-ol) (Gaskell and Eglinton, 1975). Coprostanol, cholesterol, stigmasterol 

and β-sitosterol have been detected in natural water and sediments (Hassett and Lee, 

1977). Coprostanol, a ubiquitous organic residue in the soil, has been selected to be a 

biomarker of a variety of human activities such as settlement organization and 

manuring practices in archaeological study as it provides an indication of prior human 

settlement (Bethell et al., 1994). On the other hand, the faecal stanol/sterol ratio has 

been established to be a suitable parameter for the comparison of sewage 

contamination in sediments (Chan et al., 1998). The amount of coprostanol in urine 

collection tank can also be used as an indicator of faecal cross-contamination (Sundin 

et al., 1999). 

 The mechanism of cholesterol reduction to coprostanol has been studied 

(Schoenheimer, 1935; Rosenfeld et al., 1956; Björkhem and Gustafsson, 1971). 

According to Schoenheimer (1935), bacterial conversion of cholesterol to coprostanol 

involved the initial oxidation of cholesterol to 4-cholesten-3-one, followed by the 

successive reduction to coprostanone and finally to coprostanol. In contrast, 

Rosenfeld et al. (1956) eliminated the ketones from the pathway for coprostanol 

formation. This direct stereospecific reduction of the C5=C6 double bond was later 

invalidated by Björkhem and Gustafsson (1971) who demonstrated that conversion of 
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cholesterol into coprostanol by cecal contents of rat proceeded to at least 50 % by 

means of the formation of the intermediate 4-cholesten-3-one. 

 

2.7 Eubacterium coprostanoligenes  

 The cholesterol-reducing bacteria discussed in this literature review thus far 

require plasmalogen for growth or cholesterol-reduction activity (Eyssen et al., 1973; 

Sadzikowski et al., 1977; Brinkley et al., 1982). Plasmalogen was provided to the 

bacteria by the inclusion of brain extract in the growth medium (Mott and Brinkley, 

1979) which consequently made the culture medium viscous. This in turn made the 

separation of the bacteria from growth medium very difficult.  

 Freier et al. (1994) reported a new bacteria species, Eubacterium 

coprostanoligenes, which was isolated from hog sewage lagoon in Iowa, U.S.A. The 

coccobacilloid cells are small and occurred singly or in pair. They are nonmotile, 

gram positive and non-spore forming. Optimal growth and coprostanol production 

were reported to be at pH 7.0 and at 35 °C (Freier et al., 1994). These bacteria could 

metabolize lecithin, a substrate necessary for growth. Cholesterol was found to be 

reduced to coprostanol by the bacteria, but was not required for growth (Freier et al., 

1994). Unlike previously described cholesterol-reducing bacteria, plasmalogen was 

neither required for growth nor for cholesterol-reduction activity in this case. In 

addition, while the bacteria required anaerobic conditions to grow, they could survive 

long exposure to atmospheric oxygen for up to 48 hours (Freier et al., 1994). Li et al. 

(1995b) considered E. coprostanoligenes to be more amenable than previously 

studied cholesterol-reducing bacteria for application in the food and pharmaceutical 

industries. 
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 E. coprostanoligenes possesses phospholipase activity. It was suggested that 

the metabolites of phospholipase activity alter the bacterial membrane, thus increasing 

the accessibility of the cholesterol to cholesterol reductase (Freier et al., 1994). It was 

also suggested that calcium chloride in the growth medium provided the net positive 

charge required for phospholipase activity. The subsequent hydrolysis of 

phosphatidylcholine by phospholipase is either a cofactor or is directly involved in 

coprostanol formation (Freier et al., 1994). A resting-cell assay was established to 

evaluate the cholesterol reductase activity of E. coprostanoligenes (Li et al., 1995b). 

 The reduction mechanism of cholesterol to coprostanol by E. 

coprostanoligenes was studied by incubating the bacterium with a mixture of α- and 

β-isomers of [4-3H, 4-14C] cholesterol (Ren et al., 1996). The results suggested that 

the major pathway for cholesterol reduction in E. coprostanoligenes involved the 

intermediate formation of 4-cholesten-3-one and coprostan-3-one followed by the 

reduction of latter to coprostanol.  

 The hypocholesterolemic effect of E. coprostanoligenes has been studied in 

rabbits (Li et al., 1995a), laying hens (Li et al., 1996a) and germ-free mice (Li. et al., 

1998). Oral administration of the bacteria caused a significant hypocholesterolemic 

effect in rabbits (Li et. al, 1995a). The effect was explained by the conversion of 

cholesterol to coprostanol in the intestine. In laying hens, plasma cholesterol 

concentrations were not affected by the bacterial treatment despite an increase in the 

coprostanol-to-cholesterol ratio in faeces (Li et al., 1996a). The hypocholesterolemic 

effect of E. coprostanoligenes was found to be transient in germ-free mice as the 

bacteria did not colonize the intestine of the mice (Li. et al., 1998). 
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GROWTH OF EUBACTERIUM COPROSTANOLIGENES 

 

3.1 Introduction 

 E. coprostanoligenes was isolated by Freier et al. (1994). It was reported as a 

small, anaeorobic and gram-positive coccobacillus that was able to convert 

cholesterol to coprostanol. It showed optimal growth at pH 7 and at temperature of 35 

°C. Growth was not evident at pH 5.5 or 8 and at temperatures of 25 or 45 °C (Freier 

et al., 1994). Other than E. coprostanoligenes, cholesterol-reducing bacteria have also 

been isolated from rat cecal contents (Eyssen et al., 1973), faeces of human 

(Sadzikowski et al., 1977) and baboon (Brinkley et al., 1982). The requirement of a 

strict anaerobic condition posed an obstacle to the investigation of growth of these 

organisms (Eyssen et al., 1973; Sadzikowski et al., 1977; Brinkley et al., 1982). E. 

coprostanoligenes should be more easily studied since it was reported to survive 

exposure to air for up to 48 hours and not required plasmalogen for growth (Freier et 

al., 1994). 

 The objectives of this chapter are to study the growth of E. coprostanoligenes 

as well as various factors affecting its growth. The study would provide useful 

information on the growth behavior of these special bacteria and how its growth could 

be enhanced. 

 

3.2 Materials and Methods 

3.2.1 E. coprostanoligenes and Base Cholesterol Medium (BCM) 

 E. coprostanoligenes was purchased from American Type Culture Collection 

(ATCC Number: 51222, isolated from hog waste lagoon, Iowa). BCM was prepared 

by mixing cholesterol (2 g) and lecithin (1 g) with stirring in 200 ml of milli-Q water 

under nitrogen gas for 10 min, and subsequently combined with 800 ml of milli-Q 
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water dissolved with casitone (10 g), yeast extract (10 g), sodium thioglycollate (0.5 

g), CaCl2 (1 g) and resazurin (1 mg). The medium was adjusted to pH 7.5 with 5 M 

KOH and boiled under N2 until resazurin turned colorless before autoclaving at 121 

°C for 20 min. BCM was mixed well after autoclaving and placed in anaerobic 

chamber (Sheldon Manufacturing Inc., U.S.A.) before being inoculated with the 

bacteria. Cholesterol-free BCM was prepared with the same procedure without adding 

cholesterol. Bacterial cultures were maintained by weekly transfers of 20 ml bacterial 

culture to 200 ml fresh BCM.  

 

3.2.2  Plating of bacteria on agar solidified medium 

Agar solidified medium was prepared as BCM with the addition of 1.5 % (w/v) 

agar before autoclaving. About 25 ml medium was dispensed into each 90 mm 

diameter Petri dish.  Solidified medium were placed in anaerobic chamber for 2 hours 

to ensure a fully reduced (deoxygenation) state of medium. Bacterial culture (100 µl) 

was spread evenly on agar solidified medium with glass beads, and sealed with 

parafilm to avoid dehydration. The bacterial culture could be diluted to avoid 

overcrowding of colonies on surface of solidified medium. Inoculated plates were 

inverted and incubated overnight under anaerobic conditions at 37 °C. Colonies 

formed on surface of solidified medium were counted with naked eyes.  

To investigate the suitability of plate counting as a method to study growth of 

E. coprostanoligenes, bacterial culture was diluted at 103 to 108 times and inoculated 

on agar solidified medium in triplicate. To study the effect of cholesterol on growth of 

E. coprostanoligenes, agar solidified medium were prepared and inoculated with 

growing broth culture from BCM and cholesterol-free BCM. Inoculation and counting 

of colonies were conducted daily in triplicate until the growth of bacteria reached 
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death phase (as reflected by a decrease in the number of colonies on agar solidified 

medium).  

 

3.2.3 Microscopy study  

3.2.3.1 Confocal microscopy 

 Fresh culture was grown in liquid medium, pelleted by centrifuging at 10,000 

g, washed twice with 1 % (w/v) NaCl and suspended in the same solution. A drop of 

the suspended culture was transferred onto a slide with an inoculation loop and 

covered with a cover-slip. Images of E. coprostanoligenes observed in the 

transmission mode after excitation at 543 nm were captured with Zeiss LSM 510.  

 

3.2.3.2 Gram staining  

 Fresh culture was grown in liquid medium, pelleted by centrifuging at 10,000 

g, washed twice with 1 % (w/v) NaCl and suspended in the same solution. A drop of 

the suspended culture was transferred onto a slide with an inoculation loop and 

smeared into a very thin layer using a wooden stick. The culture was then air dried. A 

drop of crystal violet stain (2 g of crystal violet was dissolved in 20 ml of 95 % 

ethanol as solution A; 0.8 g of ammonium oxalate was dissolved in 80 ml of milli-Q 

water as solution B; solutions A and B were mixed and stored for 24 hours before use) 

was added over the dried culture for 10 seconds. Excess stain was then poured off. 

The culture was then further rinsed gently with a stream of water from a plastic water 

bottle.  

Iodine solution (1 g of iodine crystal and 2 g of KI were dissolved in 300 ml of 

milli-Q water) was added just enough to cover the culture and allowed to stand for 10 

seconds. After that, the iodine solution was poured off and the slide was rinsed with 
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water. A few drops of decolorizer (acetone/ethanol, 50:50 v/v) were added and 

allowed to trickle down the slide. The decolorizer was rinsed off with water after 5 

seconds. Rinsing was continued until the decolorizer was no longer colored as it 

flowed over the slide. The smear was counterstained with saffranin solution (2.5 g of 

saffranin O was dissolved in 100 ml of 95 % ethanol as stock solution; 10 ml of stock 

solution was diluted with 90 ml of milli-Q water as working solution) for 60 seconds. 

The saffranin solution was washed off with water and the slide was blotted dry. The 

specimen was examined under Olympus BH-2 light microscope. Images of stained 

cells were captured with Olympus CAMEDIA C-5050 Zoom digital camera. 

 

3.2.3.3 Transmission electron microscopy  

 Fresh culture was grown in liquid medium, pelleted by centrifuging at 10,000 

g, washed twice with 1 % (w/v) NaCl and suspended in the same solution. A drop of 

suspended culture was placed onto the Formvar-coated copper grid. One drop of 2 % 

(v/v) phospho-tungstate acid was added onto the copper grid and allowed to stand for 

1 minute. Excess stain was blotted dry and the copper grid was dried under table lamp 

for 3 min. The specimen was examined under Philips CM10 electron microscope.  

 

3.2.4 Factors affecting growth of bacteria 

BCM containing 1 mM cholesterol with a) lecithin concentrations varying 

from 0 to 10 g/l; b) CaCl2 (calcium chloride) concentrations varying from 0 to 10 g/l; 

and c) pH adjusted to 4, 5, 6, 6.5, 7, 7.5, 8, 9 and 10, were prepared and autoclaved, 

respectively. The media were then reduced in anaerobic chamber for 2 hours. Ten ml 

each of these media was inoculated with 1 ml of 24-hour-old culture (containing 

approximately 106 cells) and incubated at 37 °C in anaerobic chamber. Plate counting 
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was performed after 24 hours of incubation to study the growth of bacteria at different 

lecithin and CaCl2 concentrations and pH. Each test was carried out in triplicate.  

 

3.2.5 Aerotolerance of E. coprostanoligenes 

BCM containing 1 mM cholesterol with sodium thioglycollate concentrations 

varying from 0 to 5 g/l were prepared and autoclaved. The media were then reduced 

in anaerobic chamber for 2 hours. Ten ml of media containing different sodium 

thioglycollate concentrations was inoculated with 1 ml of 24-hour-old culture 

(containing approximately 106 cells) and incubated at 37 °C in anaerobic chamber. 

Plate counting was performed after 24 hours. Each test was carried out in triplicate  

 BCM with (0.5 g/l) and without sodium thioglycollate were prepared and 

autoclaved. Ten ml of each media was inoculated with 1 ml of 24-hour-old culture 

(containing approximately 106 cells) and incubated in anaerobic chamber at 37 °C. On 

the other hand, 10 ml of each media was exposed to ambient air (aerobic condition) 

by shaking in a shaker incubator for two hours. They were then inoculated with the 

same bacterial culture and incubated in the same shaker incubator at 37 °C. Plate 

counting was carried out every 12 hours for 60 hours. Each test was carried out in 

triplicate. 

 

3.2.6 Statistical analysis 

Where necessary, statistical tests were conducted using one-way ANOVA 

(Tukey’s Test) to determine if the treatments in each experiment were significantly 

different from one another at 95 % confidence level. 

 



 26

3.3 Results and Discussion 

3.3.1 Culture medium for E. coprostanoligenes  

E. coprostanoligenes was cultured in BCM which is a cloudy lipid suspension. 

Lecithin in BCM is required for growth of E. coprostanoligenes (Freier et al., 1994). 

Boiling the medium before autoclaving is an important step in the preparation of 

BCM as cholesterol and lecithin are not readily dissolved in the mixture. Boiling will 

enable a finer lipid suspension to be formed which might facilitate bacterial growth as 

lecithin would be then more accessible to the bacteria. Autoclaved medium was 

placed in the anaerobic chamber for at least two hours to ensure that the medium fully 

achieved a reduced state before inoculation with bacterial culture. In addition to 

anaerobic chamber, anaerobic jar can be used to generate anaerobic environment for 

culture of E. coprostanoligenes.  

 The yeast extract in BCM could provide a variety of organic nitrogenous 

constituents which would fulfill the general nitrogen requirement; plus, it also 

contains most of the organic growth factors likely to be required by E. 

coprostanoligenes. Sodium thioglycollate, a reducing agent, is necessary as it 

maintains the medium in reduced (deoxygenated) state to facilitate growth of 

anaerobic E. coprostanoligenes. Some other common reducing agents used in 

anaerobic culture include ascorbic acid, cysteine and dithiothreitol (Holland et al., 

1987). On the other hand, resazurin acts as indicator of deoxygenation of growth 

media (Holland et al., 1987). It will change from blue to pink (oxidized) to colorless 

(reduced) as an indication that deoxygenation has occurred. 
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3.3.2 Growth of bacteria 

3.3.2.1 Evaluation of solid plate counting  

As shown in Figure 3.1, as the bacterial culture was diluted, the number of 

colonies formed on solid agar plate was reduced accordingly. This method thus can be 

used to monitor growth of E. coprostanoligenes. Dilution of culture was necessary to 

avoid over-crowding of the colonies on the surface of solidified medium. It was found 

that only plates that contained 30 to 300 colonies should be considered for counting 

from a practical point of view. Colonies usually formed after 24 hours of incubation 

under anaerobic conditions. Surface colonies of E. coprostanoligenes on anaerobic 

plates were fine, round, white and powdery in texture with approximately 0.2 mm in 

diameter (Figure 3.2a to 3.2e).  

Plate count will measure only the living cells in a population, that is, those 

capable of reproduction (Ingraham and Ingraham, 1995). The indirect techniques that 

measure a property of the mass of cells in a population (e.g. turbidity, dry weight or 

metabolic activity) are not applicable for the present study of growth as BCM is a 

cloudy suspension.  

 

3.3.2.2 Growth patterns of E. coprostanoligenes 

 There was no significant difference in growth for the bacterial cultured in 

medium with or without cholesterol (Figure 3.3). This indicated that cholesterol was 

not necessary for growth of E. coprostanoligenes. Our observation agreed with that of 

Freier et al. (1994). 

E. coprostanoligenes culture grew through three distinct and sequential phases: 

the log, stationary and death phases (Figure 3.3). The lag phase characterized by slow 

microbial growth was not observed when the growth was monitored at a 24-hour  
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Fig 3.1: Solid plate counting as a method to monitor bacterial growth. Number of 
colony was plotted against dilution factor. Vertical bars denote SE (n=3). Growing 
broth culture was spread evenly on agar solidified medium, sealed, inverted and 
incubated at 37 °C overnight under anaerobic condition. Colonies formed were 
counted with naked eyes.  
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Figure 3.2: Colonies of E. 
coprostanoligenes on agar solidified 
medium at various dilutions: a) 104; 
b) 105; c) 106; d) 107 times dilution. 
Arrow indicates the only colony. e) 
close up of several colonies.  
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Fig. 3.3: Growth curve of E. coprostanoligenes cultured in BCM with and without 
cholesterol. Plate counting for viable cells was carried out daily for a period of 7 days. 
Vertical bars denote SE (n=3). 
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interval. The bacterial culture might have undergone the lag phase within the first 24 

hours. The log phase persisted for three days after which came the stationary phase. 

The bacteria underwent exponential growth during the log phase and achieved a 

population number of approximately 3 × 1012/ml culture. The stationary phase lasted 

for a day before the death phase characterized by a drastic decrease in number of 

viable cells. Doubling time is the period required for cells in a microbial population to 

grow, divide and to produce two new cells for each one that existed before (Ingraham 

and Ingraham, 1995). During the 72-hour log phase, E. coprostanoligenes culture has 

doubled 21 times which was equivalent to a doubling time of approximately 3 hours 

and 25 min, or 0.3 doubling per hour. 

 The bacteria in this study belong to the genus Eubacterium. It is a common 

genus in the intestinal flora (up to 1011 cells/ g of faeces). It has previously been found 

that E. ruminantium and E. aerofaciens constituted up to 7 % of bovine rumen flora 

and 10 % of human faeces, respectively (Holland et al., 1987). 

 

3.3.3 Microscopy study  

 Figure 3.4a and 3.4c show the confocal and transmission electron microscopy 

images of E. coprostanoligenes. The coccobacilloid cells were 0.5 to 0.7 µm in 

diameter and 1 to 1.2 µm in length. They occurred either singly or in pairs. These 

observations agreed well with that reported by Freier et al. (1994). E. 

coprostanoligenes were Gram positive (Figure 3.4b).  
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Fig. 3.4: Microscopy study of E. 
coprostanoligenes. a) Confocal 
microscopy. The arrow indicates a 
coccobacilloid cell. b): Gram stains. 
The arrow indicates a single cell. c): 
Transmission electron microscopy 
showing a bacterium.  
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3.3.4 Factors affecting growth of E. coprostanoligenes 

3.3.4.1 Effect of lecithin  

 The number of bacterial cells increased with increasing lecithin concentration 

and achieved optimal growth at 1 g/l with approximately 5.4×108 cells/ml culture 

(Figure 3.5). This was a 50-fold increase in number of cells compared to growth in 

BCM without lecithin. When lecithin concentration was increased to 5 g/l and greater, 

the culture media became very viscous which consequently resulted in a reduction of 

viable bacteria.  Freier et al. (1994) had reported that lecithin was metabolized in E. 

coprostanoligenes and was required for growth. However, bacterial growth was 

observed in our experiment even when lecithin was not supplied in culture medium. 

This could be due to the presence of any residual lecithin from inoculating culture.  

 The ability of E. coprostanoligenes to utilize lecithin could be conferred by 

lecithinase, which was probably a mixture of phospholipases (Ratledge, 1994). Freier 

et al. (1994) speculated that the product of phospholipase action might alter the 

bacterial membrane thereby increasing the accessibility of cholesterol to cholesterol 

reductase. These metabolites could also affect the micelle structure in which 

cholesterol was imbedded, which in turn increased the availability of cholesterol 

(Freier et al., 1994).  

 

3.3.4.2 Effect of CaCl2 

 Growth of E. coprostanoligenes was not significantly decreased at CaCl2 

below 2.5 g/l and was found to be in the range of 1.6 to 2.4×107 cells/ml culture 

(Figure 3.6). CaCl2 above 2.5 g/l severely reduced bacterial growth. The number of 

viable cells at 10 g/l CaCl2 was only one-sixth of that at 2.5 g/l. Freier et al. (1994) 

suggested that calcium ions were necessary as they supplied a net positive charge to 
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Fig 3.5: Effect of lecithin on growth of E. coprostanoligenes. Vertical bars denote SE 
(n=3). Different letters (above each bar chart) indicate significant difference between 
treatments (one-way ANOVA Tukey’s Test, 95 % confidence level). 
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Fig 3.6: Effect of CaCl2 on growth of E. coprostanoligenes. Vertical bars denote SE 
(n=3).  Different letters (above each bar chart) indicate significant difference between 
treatments (one-way ANOVA Tukey’s Test, 95 % confidence level). 
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lecithin which could then function as an activator of phospholipase enabling it to 

undertake lecithin hydrolysis. Flores-Díaz et al. (2004) had also reported that calcium 

ions played a key role in phospholipase in interaction with substrates in Clostridium 

perfringens. 

 

3.3.4.3 Effect of pH  

 There was no significant difference in growth of E. coprostanoligenes from 

pH 6 to 9 which was found to be in the range of 1.7 to 6.7×108 cells/ml culture 

(Figure 3.7a). Cell multiplication was not observed at pH 4 and 10 after 24 hours of 

incubation. On the other hand, Freier et al. (1994) reported optimal growth of E. 

coprostanoligenes at pH 7 to 7.5 and no growth at pH 5.5 or 8. 

 For those media showing growth of bacteria (media of pH 5 to 9), it was 

interesting to find out that the pH were shifted to the range of 6.4 to 7.1 after 24 hours 

of incubation regardless of the starting pH of culture media (Figure 3.7b). The pH 

shifted because E. coprostanoligenes might be releasing acid or alkali during its 

growth. 

 

3.3.5 Aerotolerance of E. coprostanoligenes 

 Growth of E. coprostanoligenes was not significantly affected when the 

bacteria were cultured in media with and without sodium thioglycollate, and under 

aerobic or anaerobic conditions (Figure 3.8). In all cases, the number of bacterial cells 

increased to 1.4 to 2.1×108 cells/ml culture after 24 hours of incubation. E. 

coprostanoligenes remained viable after 60 hours of exposure to ambient air. 

However, BCM incubated under anaerobic condition tended to have approximately 20 

% more viable cells than that under aerobic condition; and BCM without sodium 
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Fig 3.7: Effect of pH on growth of E. coprostanoligenes. a) Growth of bacteria in 
BCM of various pH. Vertical bars denote SE (n=3). Different letters (above each bar 
chart) indicate significant difference between treatments (one-way ANOVA Tukey’s 
Test, 95 % confidence level). b) pH of BCM before and 24 hours after inoculation of 
E. coprostanoligenes. Vertical bars denote SE (n=3). 
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Fig 3.8: Aerotolerance of E. coprostanoligenes cultured in BCM with and without 
sodium thioglycollate, under aerobic or anaerobic conditions. Vertical bars denote SE 
(n=3). No significant difference between treatments was found (one-way ANOVA. 
Tukey’s Test, 95 % confidence level). 
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thioglycollate would have approximately 25 % more viable cells. Sodium 

thioglycollate above 1 g/l in BCM severely reduced the number of viable E. 

coprostanoligenes by approximately 30 times (Figure 3.9). E. coprostanoligenes was 

reported to survive exposure to air for at least 48 hours (Freier et al., 1994). 

Sodium thioglycollate is a common reducing agent used in anaerobic culture. 

However, preparation of thioglycollate-containing media in the presence of oxygen 

might result in the formation of oxidized products, which may be toxic to some 

anaerobic bacteria (Holland et al., 1987). Hence, it was recommended that the 

reducing agent should be added only after the medium has been deoxygenated. Low-

toxicity cysteine was reported to be an alternative reducing agent in anaerobic culture 

and its slow reducing capability could be enhanced using illumination (Fukushima et 

al., 2002). 

 Aerotolerance of some anaerobic bacteria has been studied (de Macêdo Farias 

et al., 1999; Beerens et al., 2000; Farias et al., 2001). The atmospheric oxygen 

sensitivity of bacterial strains of genus Fusobacterium was heterogeneous (de Macêdo 

Farias et al., 1999). This heterogeneity in oxygen sensitivity could be due to 

difference in the origin of the bacteria (Beerens et al., 2000). It was also reported that 

varying aerotolerance capability was influenced by the isolation site, laboratory 

handling and growth stage. This capability could be important for the adaptation of 

bacteria to the environment (Farias et al., 2001). Hence, the aerotolerance capability 

of E. coprostanoligenes might be conferred by the nature of its isolation site which is 

not strictly anaerobic. 

Mechanisms of aerotolerance in Brachyspira hyodysenteriae (Stanton and 

Sellwood, 1999), Clostridium perfringens (Trinh et al., 2000) and Bacteroides fragilis 

(Rocha et al., 2003) have been studied. Anaerobic Brachyspira 
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Fig 3.9: Effect of sodium thioglycollate on growth of E. coprostanoligenes. Vertical 
bars denote SE (n=3). Different letters (above each bar chart) indicate significant 
difference between treatments (one-way ANOVA. Tukey’s Test, 95 % confidence 
level). 
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hyodysenteriae has been reported to metabolize oxygen through NADH oxidase. The 

NADH oxidase gene has been cloned and characterized (Stanton and Sellwood, 1999). 

An adaptive response to oxidative stress was suggested in Clostridium perfringens in 

which cells at stationary phase exhibited more resistance than cells in mid-exponential 

growth (Trinh et al., 2000). In addition, Bacteroides fragilis was shown to induce an 

array of genes including genes for catalase and superoxide dismutase producing more 

than 28 proteins when subjected to oxidative stress (Rocha et al., 2003). A regulator, 

OxyR, was identified to respond quickly to oxidative stress inducing the oxidative-

stress-response genes. This phenomenon was considered as a protective mechanism 

and metabolic adaptation (Rocha et al., 2003). The ability of E. coprostanoligenes to 

survive when exposed to oxygen might indicate the presence of such mechanisms. 

 

3.4 Concluding Remarks 

E. coprostanoligenes was successfully cultured and maintained in BCM. Solid 

plate counting, which indicates the number of viable cells, was found to be a reliable 

method to monitor the growth of these bacteria. E. coprostanoligenes was found to 

undergo three days of exponential growth before it reached stationary and death 

phases. In addition, cholesterol was found to have no effect on its growth.  

Colonies of E. coprostanoligenes on agar were fine, round, white and powdery 

in texture. Confocal and transmission electron microscopy revealed that the bacteria 

were coccobacilloid cells of 0.5 to 0.7 µm in diameter and 1 to 1.2 µm in length. The 

cells were gram positive. These features of E. coprostanoligenes agreed with the 

observation of Freier et al. (1994). 

Growth of E. coprostanoligenes was affected by lecithin, CaCl2 and pH of 

culture medium. The number of bacterial cells increased with increasing lecithin 
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concentration and achieved optimum at 1 g/l with approximately 5.4×108 cells/ml 

culture. No significant difference in growth was found for bacteria cultured in 

medium of CaCl2 below 2.5 g/l, and in medium of pH 6 to 9. E. coprostanoligenes 

was also found to survive when exposed to ambient air for at least 60 hours. 

The observations have provided useful information on the growth patterns and 

characteristics of E. coprostanoligenes and will enable us to manipulate the bacteria 

better. Further studies, however, are essential in order to comprehend lecithin 

metabolism and roles of various factors in growing E. coprostanoligenes. 

Experiments focusing on the cholesterol reduction activity of the bacteria are also 

important. 
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4 CHOLESTEROL REDUCTION ACTIVITY OF E. COPROSTANOLIGENES 

 

4.1 Introduction 

 E. coprostanoligenes was found to be able to convert cholesterol to 

coprostanol (Freier et al., 1994). This reaction involves the saturation of C5=C6 

double bond of cholesterol to form coprostanol. As the latter is poorly absorbed by 

human intestinal system (Bhattacharyya, 1986), E. coprostanoligenes holds promise 

for use in treating hypercholesterolemia. Knowledge of cholesterol reduction activity 

in E. coprostanoligenes is necessary for its future application. To date, cholesterol 

reduction activity in these bacteria was investigated using radiolabeled cholesterol 

incorporated with thin layer chromatography (Freier et al., 1994; Li et al., 1995b). 

The method is laborious and poses certain harm as radioisotope is involved. 

 The objective of this chapter is to develop a simple, accurate and reliable 

method to study cholesterol reduction activity. In doing so, the factors affecting the 

cholesterol reduction activity can be investigated. 

 

4.2  Materials and Methods 

4.2.1 Cholesterol measurement using Infinity® Cholesterol Reagent 
 
(a) cuvette method 

Cholesterol sample (10 µl) was added to 1 ml of Infinity® Cholesterol Reagent 

(Sigma Diagnostics®), mixed well and incubated at 37 °C in water bath for 5 min. 

Absorbance was then measured at 500 nm (DU® 640B, Beckman, U.S.A.). Calibration 

was performed using Cholesterol Calibrators (Sigma®) at 1, 2 and 4 g cholesterol/l.  
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(b) microtiter plate method 

 Cholesterol samples (10 µl) were added to 200 µl of Infinity® Cholesterol 

Reagent in a microtiter-plate well, mixed well and incubated at 37 °C in ELISA 

(SPECTRAMAX 340, Molecular Devices) reader for 5 min. Absorbance was then 

measured at 500 nm using ELISA reader. Calibration was performed using 

Cholesterol Calibrators at 1, 2 and 4 g cholesterol/l.  

 

4.2.2 Analysis of cholesterol reduction using thin layer chromatography (TLC) 

 Cholesterol, coprostanol, 5-cholesten-3-one, 4-cholesten-3-one and coprostan-

3-one of concentrations 0.1 to 5 mg/ml were prepared using chloroform: methanol 

(2:1, v/v) as solvent. Silica gel TLC plates were used without any pretreatment. Sterol 

of each concentration was then applied on TLC plates 2 cm from the bottom of the 

plates. Elution was carried out in glass tanks filled with approximately 50 ml of 

hexane: ethyl acetate (80:20, v/v). TLC was stopped after the solvent front had 

traveled 16 cm, which required about 70 min. The plates were sprayed with 10 % (v/v) 

sulfuric acid in 50 % (v/v) methanol followed by heating at 100 °C for 8 min to detect 

the sterols. Relative mobility, Rm, was calculated based on distance traveled by sterol 

divided by distance traveled by solvent front. 

 

4.2.3 Analysis of cholesterol reduction using gas chromatography (GC)  

HP-5 column (Agilent J&W, 30m × 0.32 mm i.d. × 0.25 µm) with 

polysiloxane stationary phase was installed to GC machine (HP 5890 series II) 

equipped with flame ionization detector. Injector and detector temperatures were set 

at 280 and 300 °C, respectively. Oven temperature was maintained isothermally at 

230 °C. Helium carrier gas was maintained at 1.7 ml/min. Cholesterol, coprostanol, 5-
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cholesten-3-one, 4-cholesten-3-one and coprostan-3-one at 1 mM in chloroform: 

methanol (2:1, v/v) were prepared separately. These sterol standards (0.5 µl) were 

then injected consecutively for GC analysis. Analysis was carried out in triplicates. 

Sterols were identified as peaks on chromatograms. Retention time is the time taken 

for sterol to appear as peak on chromatogram. Relative retention time, Rt, was 

calculated based on the retention time of each sterol divided by the retention time of 

cholesterol. Hence, retention time of cholesterol was taken as 1. As for the calibration 

of cholesterol and coprostanol, these sterols were dissolved separately in chloroform: 

methanol (2:1, v/v) at concentrations ranging from 0 to 2.5 mM and 0 to 1 mM, 

respectively. Sterol solutions (0.5 µl) were then injected consecutively for GC 

analysis. Calibration curves were plotted with area under peak against amount of 

sterol.  

 

4.2.4 Cholesterol reduction activity of E. coprostanoligenes 

 BCM containing 1 mM cholesterol was prepared and autoclaved. Ten ml of 

medium was dispensed in a tube and inoculated with 1 ml of 24-hour-old culture 

(approximately 106 cells). The culture was incubated at 37 °C under anaerobic 

conditions. Bacterial culture (1 ml) was withdrawn from the tube and extracted twice 

with two volumes of chloroform: methanol (2:1, v/v). The combined organic extracts 

were concentrated to 500 µl for analysis using GC according to the procedure outlined 

in section 4.2.3. The test was carried out for a period of 5 days in triplicate. 

Cholesterol and coprostanol in a sample were identified by comparing their 

respective retention times with that of standards obtained in section 4.2.3. For 

subsequent analysis, the interpretation of a chromatogram was based on “internal 

normalization” in which the areas under “cholesterol peak” and “coprostanol peak” in 
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a chromatogram were summed up and “normalized” to 100 %. Cholesterol and 

coprostanol were then reported as a percentage of the total.  

 

 

 

It was assumed that response factors for cholesterol and coprostanol were 

identical; the area of each peak divided by the sum of the areas of all peaks in the 

chromatogram represented the concentrations of the compounds directly. 

 

4.2.5 Effects of lecithin, CaCl2 and pH on cholesterol reduction activity 

BCM containing 1 mM cholesterol with a) lecithin concentrations varying 

from 0 to 10 g/l; b) calcium chloride concentrations varying from 0 to 10 g/l; and c) 

pH adjusted to 4, 5, 6, 6.5, 7, 7.5, 8, 9 and 10, were prepared and autoclaved, 

respectively. The media were then reduced in the anaerobic chamber for 2 hours. Ten 

ml each of these media was dispensed in a tube, respectively, and inoculated with 1 

ml of 24-hour-old culture (approximately 106 cells) and incubated at 37 °C in 

anaerobic chamber. One ml of bacterial culture was withdrawn from the tube after 24 

hours of incubation for sterol extraction and analysis using GC. Each test was carried 

out in triplicate. 

 

4.2.6 Cholesterol reduction activity of E. coprostanoligenes under aerobic 

condition 

BCM of 1 mM cholesterol with and without sodium thioglycollate were 

prepared and autoclaved. For each medium, one set was reduced in anaerobic 

chamber (anaerobic condition) with the other set exposed to ambient air (aerobic 

Cholesterol (%) 
Area under cholesterol peak 

Area under cholesterol peak + Area under coprostanol peak 
= × 100 % 
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condition) by shaking in a shaker incubator for two hours before being inoculated 

with E. coprostanoligenes. Ten ml of media in the anaerobic chamber and shaker 

incubator was dispensed into tube, respectively, and inoculated with 1 ml of 24-hour-

old culture (approximately 106 cells) and incubated at 37 °C. One ml of the bacterial 

culture was withdrawn from each tube at 12 hours interval for 60 hours followed by 

sterol extraction and analysis using GC. Each test was carried out in triplicate. 

 

4.3 Results and Discussion 

4.3.1 Development and optimization of analytical method for cholesterol 

reduction activity 

4.3.1.1 Cholesterol measurement using Infinity® Cholesterol Reagent 

Cholesterol measurements using Infinity® Cholesterol Reagent in cuvette and 

microtiter plate were compared. Cholesterol concentrations as low as 10 µg could be 

measured, with every 0.1 change in absorbance corresponded to approximately 0.6 µg 

of cholesterol (Figure 4.1a). On the other hand, analysis carried out in microtiter plate 

offered a ten times higher sensitivity (Figure 4.1b), and it used up only one-fifth of the 

amount of reagent required in cuvette assays for the same measurement.  In addition, 

measurement using microtiter plate had a higher throughput than cuvette because 96 

samples could be measured simultaneously. Therefore, cholesterol measurement using 

Infinity® Cholesterol Reagent in microtiter plate is recommended.  

Cholesterol analysis was generally accomplished using a three-enzyme assay 

and indicator method devised by Richmond (1973). The first enzyme, cholesterol 

esterase, freed the esterified cholesterol present in a sample. The free cholesterol was 

then subjected to oxidation by the second enzyme, cholesterol oxidase, releasing 

hydrogen peroxide at the same time. A peroxidase enzyme subsequently reduced the 
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Fig. 4.1: Cholesterol calibration curves using Infinity® Cholesterol Reagent based on 
the methods for a) cuvette, and b) microtiter plate. Vertical bars denote SE (n=3).  
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hydrogen peroxide produced. Reactivation of the peroxidase through oxidation of an 

indicator molecule produced a chromogen which, when measured, facilitated an 

indirect estimation of total cholesterol. Infinity® Cholesterol Reagent was based on 

the formulation of Allan et al. (1974) (Figure 4.2). The reagent allowed the direct 

measurement of the amount of cholesterol reduced in cholesterol-reduction 

experiments without the hassle of extracting sterols from reaction mixtures.  

 

  

 

 

 
 
Fig 4.2: Reaction of Infinity® Cholesterol Reagent. CE= Cholesterol esterase; CO= 
Cholesterol oxidase; POD= peroxidase; HBA= hydroxybenzoic acid; AAP= 4-
aminoantipyrine.  
 

 

4.3.1.2 Analysis of cholesterol reduction using TLC 

 Cholesterol and coprostanol were resolved on TLC plate eluted with hexane: 

ethyl acetate (80:20, v/v) (Figure 4.3). The proposed intermediates for cholesterol-

reduction pathway in E. coprostanoligenes, 5-cholesten-3-one, 4-cholesten-3-one and 

coprostanon-3-one (Ren et al., 1996), were also resolved (Figure 4.3). Cholesterol and 

coprostanol of as low as 1 µg could be detected on TLC (Table 4.1). The sensitivity of 

cholesterol, coprostanol and the intermediates is tabulated in Table 4.1. 5-Cholesten-

3-one, 4-cholesten-3-one and coprostan-3-one less than 100, 10 and 50 µg, 

respectively could not be detected.  

Tan et al. (1970) reported that coprostanol was not well separated from 

cholesterol on TLC eluted with solvent systems such as chloroform: ether (9:1, v/v), 

chloroform: methanol (9:1, v/v), hexane: ethyl acetate (1:1, v/v) and benzene: acetone 

Cholesterol 
esters 

CE
Cholesterol

Fatty acids 
+

4-cholesten-3-one 
+ HBA +AAP

Quinoneimine 
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+

CO
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Fig 4.3: TLC of cholesterol, coprostanol, 5-cholesten-3-one, 4-cholesten-3-one and 
coprostan-3-one eluted with hexane: ethyl acetate (80:20, v/v). a, b, c, d and e are 
spots of cholesterol, coprostanol, 4-cholesten-3-one, 5-cholesten-3-one and coprostan-
3-one, respectively. 
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Table 4.1: Relative mobility and sensitivity of cholesterol, coprostanol, 5-cholesten-3-
one, 4-cholesten-3-one and coprostan-3-one eluted with hexane: ethyl acetate (80:20, 
v/v) on TLC.  
 

Substance Relative mobility, Rm Sensitivity (µg) 

Cholesterol 0.47 ≥ 1 

Coprostanol 0.59 ≥ 1 

4-Cholesten-3-one 0.68   ≥ 10 
5-Cholesten-3-one 0.84     ≥ 100 

Coprostanon-3-one 0.86   ≥ 50 
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(4:1, v/v). On the other hand, Domnas et al. (1983) found that hexane/ ethyl acetate 

(9:1, v/v) was most effective in resolving cholesterol and coprostanol. A TLC plate, 

when pre-eluted with diethyl ether and using chloroform as developing solvent, was 

found to resolve cholesterol and coprostanol (Bethell et al., 1994). In a study of 

cholesterol utilization by mycobacterium, cholesterol degradation could be clearly 

shown on TLC plates eluted with cyclohexane/chloroform (1:1, v/v) (Av-Gay and 

Sobouti, 2000). However, all the TLC methods discussed above had not studied the 

resolution of cholesterol and coprostanol together with the three proposed 

intermediates, which was already achieved in our method. 

 The TLC method could be utilized to study cholesterol reduction activity in E. 

coprostanoligenes. One drawback of qualitative TLC is that the absolute amount of 

substances on TLC plates cannot be determined as spots were difficult to quantify. In 

addition, the spots did not remain for a long time and would fade off after 1 day. 

 

4.3.1.3 Analysis of cholesterol reduction using GC 

Cholesterol, coprostanol and coprostan-3-one were resolved as single and 

sharp peaks on GC chromatogram (Figure 4.4).  On the other hand, 5-cholesten-3-one 

and 4-cholesten-3-one appeared as a single peak. Attempts to resolve these two 

compounds by reducing the flow rate from 1.7 to 1 ml/ min and oven temperature 

from 230 to 200 °C were not successful.  This might be attributed to highly similar 

structure between the two compounds, which differs only in the position of C=C 

double bond at C-5 and C-4, respectively. In the GC, coprostan-3-one was eluted first, 

followed by coprostanol, cholesterol and lastly the two cholesten-3-ones. The 

retention time and relative retention time (Rt) of these sterols are tabulated in Table 

4.2. The calibration curves of cholesterol and coprostanol showed a linear pattern over 
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Fig 4.4: GC chromatogram showing peaks of sterol standards. Peaks a, b, c and d are 
coprostan-3-one, coprostanol, cholesterol and choleste-3-ones (4-cholesten-3-one and 
5-cholesten-3-one), respectively. 4-Colesten-3-one and 5-cholesten-3-one were not 
resolved. 0.5 µl of sterol standards containing 1 mM of each sterol were injected to 
HP5890 Series II gas chromatography and resolved using HP-5 column. Injector/ 
detector temperature: 280 °C/ 300 °C; Oven temperature: isothermal 230 °C.  Helium 
carrier gas: 1.7 ml/min. 
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Table 4.2: Relative retention times of cholesterol, coprostanol, 5-cholesten-3-one, 4-
cholesten-3-one and coprostan-3-one resolved with HP-5 capillary column in GC. 
Injector/ detector temperature: 280 °C/ 300 °C; Oven temperature: isothermal 230 °C.  
Helium carrier gas: 1.7 ml/min. 
 

Retention  Substance 

Time (min) 

Relative 
retention time, Rt 

Coprostanon-3-one 11.27 0.72 

Coprostanol 14.27 0.91 
Cholesterol 15.75 1.00 

4-Cholesten-3-one 21.39 1.36 

5-Cholesten-3-one 21.39 1.36 
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these two concentration ranges: 0 to 2.5 nmol and 0 to 1 nmol, respectively (Figure 

4.5). The method developed is sensitive as it can detect cholesterol and coprostanol of 

as low as 0.1 nmol. 

Successful separation of cholesterol and coprostanol based on GC required a 

high degree of efficiency because the two sterols differ in their molecular structure 

merely by the presence of a double bond (Tan et al., 1970). Cholesterol and 

coprostanol were only partially resolved in glass column packed with 3 % SE-30 on 

100-140 mesh Gas Chrom P (Rosenfeld et al., 1961) and 100-120 mesh Gas Chrom Q 

(Hassett and Lee, 1977). An almost complete resolution between cholesterol and 

coprostanol was achieved with the GC method developed by Tan et al. (1970) using 

combined OVTM-1 and OFTM-1 phases on a single column. GC equipped with glass 

column packed with 1.5% OVTM 17 on Chromosorb® W 80/100 mesh was used in the 

study of microbial degradation of sterols (Marsheck et al., 1972). 

The GC method developed by Marriott et al. (1998) had greatly improved the 

separation and resolution of cholesterol, coprostanol and plant sterols. The protocol 

involved supercritical fluid extraction, derivatization and GC analysis using a BPX5 

capillary column and electron capture detector. Complete separation was also 

achieved using HiCap CBP-1 capillary column (Yamaga et al., 2002) with 19-

hydroxycholesterol as the internal standard.  

Each compound analyzed with GC could be quantified. This would be useful 

in studying the conversion of cholesterol into coprostanol as well as the kinetics of 

cholesterol reduction reaction. 
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Fig. 4.5: GC calibration curves for a) cholesterol, and b) coprostanol. Vertical bars 
denote SE (n=3). 
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4.3.1.4 Summary of methods development  

 A summary of spectrophotometric and chromatographic methods for 

cholesterol-reduction study is shown in Table 4.3. Spectrophotometric and 

chromatographic approaches were investigated and compared for their suitability in 

cholesterol reduction study. Spectrophotometric method utilizing the Infinity® 

Cholesterol Reagent is useful because it is simple, direct and quantitative. However, 

the reagent cannot measure coprostanol, the end product of cholesterol reduction in E. 

coprostanoligenes. From the perspective of this project, it is seen as a disadvantage of 

using Infinity® Cholesterol Reagent. 

TLC and GC are able to detect cholesterol, the proposed intermediates and 

coprostanol in a sample. TLC has better throughput because as many as 20 samples 

can be analyzed at any one time. In contrast, samples in GC have to be run 

consecutively, which greatly reduces its efficiency. In our study, the time taken for 

each sample in TLC was lesser compared to GC even though post-elution treatment 

was required for spots visualization. In TLC, each sample took approximately 6 min 

when considering 70 and 50 min for running and post-elution treatment, respectively. 

Analysis of one sample alone in GC required approximately 25 min.  

Despite a lower efficiency and longer analysis time in GC, it represented a 

better choice in cholesterol reduction study because each substance in a sample could 

be quantified. With quantitative values, results obtained would be more accurate and 

reliable. Differences between treatments in an experiment could also be compared and 

reported. 
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Table 4.3: Summary of spectrophotometric and chromatographic methods for cholesterol-reduction study 

  Detectable substance       
Analysis   4-Cholesten-3-one    

  Cholesterol Coprostanol 5-Cholesten-3-one 
Coprostan-3-one 

Quantitative Sensitivity* 
(µg) 

Analysis time 
(min/ sample)

Spectrophotometry^ Yes No No Yes 1 5 
       

Chromatography       
TLC Yes Yes Yes No 1 6˜ 
GC Yes Yes Yes Yes 0.2 25 

 

*Based on coprostanol 

^Infinity® Cholesterol Reagent 

˜Based on a maximum of 20 samples in 120 min of running and post-elution treatment. 

 

 

58

 



 59

4.3.2 Cholesterol reduction activity of E. coprostanoligenes 

E. coprostanoligenes was found to reduce cholesterol when cultured in BCM 

containing 1 mM cholesterol. Using GC, it was observed that cholesterol reduction was 

accompanied with coprostanol formation (Figure 4.6a). Approximately 65 % of the 

conversion took place during the first two days of culture. Cholesterol reduction 

continued from day-3 to day-5 but the amount of conversion was not significant, with 

another 3 % of cholesterol being reduced. Active cholesterol reduction reaction took 

place at the exponential growth phase (Figure 3.3). Our findings re-affirmed the 

cholesterol reduction ability of E. coprostanoligenes reported by Freier et al. (1994). 

Conversion of cholesterol to coprostanol involves the reduction of the double 

bond at C-5 of the A ring of cholesterol and it is the most common reduction reaction that 

occurs with cholesterol (Hylemon and Harder, 1999). Anaerobic faecal bacteria from 

human intestine had been found to modify bile acids and steroids by deconjugation, 

dehydration, reduction and dehydroxylation (Holland et al., 1987). Besides E. 

coprostanoligenes, a denitrifying bacterium strain 72Chol was found to be able to convert 

cholesterol completely under anaerobic condition to carbon dioxide (Hylemon and 

Harder, 1999).  

Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic 

bacteria has been reviewed (Hylemon and Harder, 1999). Bile acids that were not 

reabsorbed through enterohepatic circulation were exposed to up to 400 different kinds of 

mostly obligate anaerobes in the colon. The predominant species are members of genera 

Bacteroides, Fusobacterium, Eubacterium and Clostridium which generated 15 to 20 

different bile acid metabolites (Hylemon and Harder, 1999). 
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Fig. 4.6: Cholesterol reduction activity of E. coprostanoligenes at 1 mM of cholesterol. a) 
Graph showing the conversion of cholesterol to coprostanol. Vertical bars denote SE 
(n=3). b) GC chromatogram showing the action of E. coprostanoligenes (i) before, and (ii) 
after the inoculation in BCM. Peaks a and b are cholesterol and coprostanol respectively. 
c) Molecular structures showing the reduction of cholesterol to coprostanol. 
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The conversion of cholesterol to coprostanol was thought to be carried out by 

cholesterol reductase (Dehal et al., 1991), which is yet to be characterized. However, 

many other steroid transforming reactions and enzymes had been studied in anaerobic 

bacteria particularly in the genus Eubacterium (Feighner et al., 1979; Glass and Burley, 

1984; Winter et al., 1984; Oda et al., 2001). For example, 21-dehydroxylase, extracted 

from Eubacterium lentum, is known to catalyze the conversion of 11-deoxycorticosterone 

to progesterone (Feighner et al., 1979). A 16- dehydroprogesterone reductase was 

assumed to be involved in the biotransformation of 16-dehydroprogesterone to 

isoprogesterone in intestinal Eubacterium sp. 144 (Glass and Burley, 1984). Another 

example is 7β-Hydroxysteroid dehydrogenase produced by Eubacterium aerofaciens, 

which was reported to reduce a double bond in methyl 7-ketolithocholate to methyl 

ursodeoxycholate (Oda et al., 2001). All these examples may indicate the possible 

existence of a sterol reductase in E. coprostanoligenes. 

  

4.3.3 Factors affecting cholesterol reduction activity 

4.3.3.1 Effect of Lecithin  

 Cholesterol reduction activity, as indicated by coprostanol production, increased 

with increasing lecithin concentration. In the absence of lecithin, conversion of 

cholesterol to coprostanol was not detected (Figure 4.7). Maximum coprostanol 

production was achieved when lecithin was increased to 5 g/l, which was up to 43 % 

increase compared to lecithin at 1 g/l (Figure 4.7). When the lecithin concentration was 

doubled to 10 g/l, the media became more viscous, but no further increase in coprostanol 

production was observed. 
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Fig 4.7: Effect of lecithin on cholesterol reduction activity of E. coprostanoligenes. 
Vertical bars denote SE (n=3). Numbers (above each bar chart) indicate relative activity 
with respect to that of 1 g/l (taken as 1). Different letters (above each bar chart) indicate 
significant different between treatments (one-way ANOVA Tukey’s Test, 95 % 
confidence level). 
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As discussed in Chapter 3, optimal bacterial growth was actually achieved at a 

lecithin concentration of 1 g/l. Lecithin concentration above that resulted in a reduction in 

the number of viable cells (Figure 3.5). This thus gives rise to the speculation that the 

increased cholesterol reduction at lecithin above 1 g/l was the effect of increased lecithin. 

Freier et al. (1994) had suggested that increased lecithin could increase lecithin digestion 

by the bacteria which could in turn increase cholesterol reduction activity. 

 

4.3.3.2 Effect of CaCl2 

 Increasing CaCl2 concentration caused an increase in cholesterol reduction with 

the optimum achieved at 1 g/l where 60 % of cholesterol was reduced. A further 

increased in CaCl2 concentration to 5 g/l showed no significant increase in cholesterol 

reduction (Figure 4.8). Cholesterol reduction was severely affected at 10 g/l CaCl2, with 

only 25 % of cholesterol being reduced. As discussed in Chapter 3, growth of E. 

coprostanoligenes was reduced at CaCl2 above 2.5 g/l (Figure 3.6). However, this 

reduction in growth did not affect the cholesterol reduction at 5 g/l CaCl2. 

 Freier et al. (1994) suggested that calcium ions supplied a net positive charge to 

lecithin which functioned as activator of phospholipase for lecithin hydrolysis. The 

metabolites of lecithin hydrolysis in turn played a role in cholesterol reduction. In present 

study, CaCl2 at 1 g/l could be just optimal to supply the net positive charge. CaCl2 

concentration above that would therefore not enhance cholesterol reduction. 
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Fig 4.8: Effect of CaCl2 on cholesterol reduction activity of E. coprostanoligenes. 
Vertical bars denote SE (n=3). Numbers (above each bar chart) indicate relative activity 
with respect to that of 1 g/l (taken as 1). Different letters (above each bar chart) indicate 
significant different between treatments (one-way ANOVA Tukey’s Test, 95 % 
confidence level). 
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4.3.3.3 Effect of pH  

 Cholesterol reduction activity was found to take place between pH 5 to 9. Optimal 

cholesterol reduction took place when BCM was adjusted to pH 7, with approximately 75 

% of cholesterol undergoing reduction (Figure 4.9). This observation agreed with that 

reported by Freier et al. (1994). While the activity was reduced almost by half when pH 

was adjusted to 5 from 7, no significant difference in cholesterol reduction was found in 

BCM at pH 7, 7.5 and 8. In addition, no cholesterol reduction was detected at pH 4 and 

10 (Figure 4.9), where bacterial growth was not evident (Figure 3.7). The discrepancy of 

the present findings with that of Freier et al. (1994) who found no cholesterol reduction 

taking place at pH 5.5 or 8 suggest that E. coprostanoligenes may be stable enough over a 

range of pH values to carry out cholesterol reduction. The stability of E. 

coprostanoligenes to carry out cholesterol reduction reaction over a wide range of pH is 

an advantage for its future application. 

 

4.3.4 Cholesterol reduction activity of E. coprostanoligenes under aerobic 

condition 

 No significant difference was found in cholesterol reduction for E. 

coprostanoligenes cultured in BCM with or without sodium thioglycollate, either under 

aerobic or anaerobic conditions. However, bacterial culture in BCM without sodium 

thioglycollate tended to reduce approximately 10 % more cholesterol than those cultured 

in media containing sodium thioglycollate (Figure 4.10).  
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Fig 4.9: Effect of pH on cholesterol reduction activity of E. coprostanoligenes. Vertical 
bars denote SE (n=3). Numbers (above each bar chart) indicate relative activity with 
respect to activity at pH 7 (taken as 1). Different letters (above each bar chart) indicate 
significant different between treatments (one-way ANOVA Tukey’s Test, 95 % 
confidence level). 
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Fig 4.10: Cholesterol reduction activity in E. coprostanoligenes cultured in BCM with 
and without sodium thioglycollate, under aerobic and anaerobic conditions. Vertical bars 
denote SE (n=3). 
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4.4  Concluding Remarks 

 Spectrophotometric determination of cholesterol reduction activity using Infinity® 

Cholesterol Reagent and chromatographic (TLC and GC) approaches in detecting 

cholesterol reduction activity were developed and compared. Each method had its 

advantages and disadvantages. After considering for reliability and accuracy, GC was 

evaluated as the best method despite requiring a longer analysis time. 

 E. coprostanoligenes were found to convert 65 % of cholesterol to coprostanol in 

BCM containing 1 mM cholesterol. This re-affirmed the cholesterol reduction property of 

E. coprostanoligenes reported by Freier et al. (1994). Lecithin, CaCl2 and pH of medium 

were found to affect cholesterol reduction activity. The activity increased with increasing 

lecithin concentration and maximum cholesterol reduction was achieved at 5 g/l of 

lecithin. CaCl2 of 1 g/l was found to be optimum for cholesterol reduction activity. In 

addition, the reaction could occur over a wide range of pH from 5 to 9, as well as in 

aerobic condition. 

The results obtained from this chapter have provided useful information on the 

cholesterol reduction properties of E. coprostanoligenes and formed a fundamental for its 

future application. Further studies, however, are essential in order to comprehend the 

cholesterol reduction mechanisms in relation to the overall metabolism of the bacteria.  
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5 PROPERTIES OF PUTATIVE CHOLESTEROL REDUCING ENZYME(S) 

 

5.1 Introduction 

 Literature on cholesterol reduction reaction of E. coprostanoligenes has been 

scarce since its isolation and characterization (Freier et al., 1994; Li et al., 1995b; Ren et 

al., 1996). An enzyme designated as cholesterol reductase was suggested to carry out the 

conversion of cholesterol to coprostanol in E. coprostanoligenes (Dehal et al., 1991). To 

date, it has not been characterized. Although the mechanisms underlying bacterial 

cholesterol reduction have been studied (Schoenheimer et al., 1935; Rosenfeld et al., 

1955; Björkhem and Gustafsson, 1971; Ren et al., 1996), two pathways of cholesterol 

reduction, the direct and the indirect pathways were proposed to take place in E. 

coprostanoligenes (Ren et al., 1996). In the direct pathway, cholesterol is converted 

directly to coprostanol. On the other hand, in the indirect pathway, it is transformed via 5-

cholesten-3-one, 4-cholesten-3-one and coprostan-3-one to coprostanol. 

 The objectives of this chapter are to study the properties of putative cholesterol 

reducing enzyme(s) as well as cholesterol reduction pathway in E. coprostanoligenes.  

  

5.2 Materials and Methods 

5.2.1 Kinetics of cholesterol reduction activity 

 BCM containing cholesterol of concentrations ranging from 0 to 2 mM were 

prepared (50 ml of each concentration) and autoclaved. The media were then reduced in 

an anaerobic chamber for 2 hours. The different media were dispensed into 10 ml per 

tube, respectively in triplicate, and inoculated with 1 ml of 24-hour-old culture 
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(containing approximately 106 cells) and incubated at 37 °C in anaerobic chamber. For 

each concentration, 1 ml of culture was withdrawn daily for sterol extraction and analysis 

using GC. Extraction and analysis were carried out for a period of 5 days.  

 

5.2.2 Induction of putative cholesterol reducing enzyme(s) 

E. coprostanoligenes was sub-cultured ten times in BCM without cholesterol. At 

every sub-culture, 200 ml fresh BCM were inoculated with 20 ml of 2-day-old culture 

(containing approximately 107 cells/ml). For the eleventh sub-culture, bacterial culture 

was incubated at 37 °C anaerobically for 24 hours followed by the addition of cholesterol 

suspension (193 mg of cholesterol and 97 mg of lecithin were boiled and mixed in 100 ml 

milli-Q water as stock cholesterol suspension of 5 mM) at a final concentration of 1 mM. 

The bacterial culture (1 ml) was then withdrawn at 0, 0.5, 1 and 2 hours of incubation for 

sterol extraction and analysis using GC. The test was carried out in triplicate. 

 

5.2.3 Secretion of putative cholesterol reducing enzyme(s) 

 BCM (50 ml) with (1 mM) and without cholesterol were prepared and autoclaved. 

The media were then reduced in an anaerobic chamber for 2 hours. The different media 

were dispensed into 10 ml per tube in triplicate and inoculated with 1 ml of 24-hour-old 

culture (containing approximately 106 cells) and incubated at 37 °C in anaerobic chamber. 

After 24 hours of incubation, tubes of culture were centrifuged at 14,000 g for 20 min. 

Supernatants harvested from culture with and without cholesterol were labeled as 

“Supernatant W” and “Supernatant W/O”, respectively.  Cholesterol suspension and 

NADH (10 mg of NADH was dissolved in 2.56 ml of milli-Q water to form 5 mM 
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NADH solution) were then added to both types of supernatants at a final concentration of 

1 mM of cholesterol and NADH. The mixtures were incubated at 37 °C under anaerobic 

condition. After 24 hours of incubation, 1 ml of mixture was withdrawn for sterol 

extraction and analysis using GC.  Bacterial culture (1 ml) from BCM containing 1 mM 

of cholesterol was used as control.  

 

5.2.4 Elucidation of cholesterol reduction pathway  

Sterol media (50 ml) containing 1 mM 4-cholesten-3-one, 5-cholesten-3-one or 

coprostan-3-one were prepared according to the procedure outlined in Section 3.2.1 by 

replacing cholesterol with the respective sterols. The prepared media were dispensed into 

10 ml per tube in triplicate and inoculated with 1 ml of 24-hour-old culture (containing 

approximately 106 cells) and incubated at 37 °C in an anaerobic chamber. From each type 

of sterol medium, 1 ml of culture was withdrawn daily for a period of 4 days for sterol 

extraction and analysis using GC. 

 

5.2.5 Inhibition of putative cholesterol oxidase activity  

 Cholesterol oxidase inhibitors (tridemorph, fenpropidin and fenpropimorph) were 

purchased from Sigma-Aldrich®. BCM (150 ml) containing 1 mM cholesterol was 

prepared and autoclaved. The media were then dispensed into 3 bottles of 50 ml/bottle 

and reduced in an anaerobic chamber for 2 hours. Tridemorph was then added to the 

media in the three separate bottles at three different concentrations of 50 mg/L, 100 mg/L 

and 200 mg/L, respectively. Medium in each bottle was then dispensed into 10 ml per 

tube in triplicate and inoculated with 1 ml of 24-hour-old culture (containing 
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approximately 106 cells) and incubated at 37 °C in an anaerobic chamber. After 24 hours 

of incubation, 1 ml of culture was withdrawn from each tube for sterol extraction and 

analysis using GC. Plate counting for viable cells was done at the same time in triplicate 

for each concentration. The same procedures were repeated for fenpropidin or 

fenpropimorph. Bacterial culture without inhibitor was used as control. 

 

5.3 Results and Discussion 

5.3.1 Kinetics of cholesterol reduction activity 

The kinetics of cholesterol reduction activity in E. coprostanoligenes was 

investigated in the present study. Cholesterol reduction activity was found to increase 

with increasing cholesterol concentration (Figure 5.1). Active cholesterol reduction took 

place during the first two days of incubation corresponding to the exponential growth 

phase of the bacteria after which the reduction activity tapered off. In our study, 73.6 % 

and 42.5 % of cholesterol were reduced in BCM containing 0.25 and 2 mM cholesterol, 

respectively. Freier et al. (1994) had reported the conversion of up to 90 % of cholesterol 

to coprostanol in BCM containing 5.2 mM cholesterol.  

Cholesterol was not completely reduced even when incubation was extended to 5 

days most likely because the bacteria have entered death phase after 4 days of culture and 

the number of cells would have declined sharply. As the growth of E. coprostanoligenes 

was not affected by cholesterol (Figure 3.3), the difference in the rate of cholesterol 

reduction is likely to be a direct effect of different in cholesterol concentrations.  

The Lineweaver-Burk plot was constructed based on the cholesterol reduction 

activity at day-1 (Figure 5.2). Vmax was calculated to be approximately 14 µM cholesterol  
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Fig. 5.1: Kinetics of cholesterol reduction of E. coprostanoligenes at different cholesterol 
concentrations. Vertical bars denote SE (n=3). 
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Fig. 5.2: Lineweaver-Burk plot for cholesterol reduction in E. coprostanoligenes. V and 
[S] denote initial velocity of cholesterol reduction and concentration of cholesterol, 
respectively. Vertical bars denote SE (n=3). 
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reduced/h. It was found that any further increase in cholesterol concentration did not 

increase the rate of cholesterol reduction. Km for cholesterol reduction in E. 

coprostanoligenes was calculated to be 1 mM cholesterol. 

 

5.3.2 Induction of putative cholesterol reduction enzyme(s) 

 The enzyme(s) responsible for cholesterol reduction appeared to be constitutively 

produced. This is postulated based on the fact that cholesterol reduction activity has 

already taken place as early as 30 min of incubation (Figure 5.3). The activity of 

inducible enzyme would only be detected 3 to 6 hours after the addition of substrate 

(Glass and Burley, 1984).  The reduction reaction appeared to proceed at a constant rate 

with 50 µM of cholesterol being reduced at 30 min and making up to 170 µM of 

cholesterol reduced in 2 hours. The present study showed that E. coprostanoligenes had 

not lost its capability for cholesterol reduction after being sub-cultured 10 times in 

cholesterol-free media.  

  

5.3.3 Secretion of putative cholesterol reduction enzyme(s) 

 Cholesterol reducing enzyme(s) appeared to be produced and retained 

intracellularly. Only 8 to 9 % of cholesterol was reduced in supernatants W and W/O 

compared to almost 60 % reduction in bacterial culture (Figure 5.4). Plate counting with 

the supernatants after 24-hour of incubation revealed the presence of E. 

coprostanoligenes at a magnitude of hundreds to a thousand cells. The insignificant 

cholesterol reduction in the supernatants could be attributed to the residual cells retained. 

Cholesterol did not induce extracellular secretion of enzyme(s) because no  
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Fig. 5.3: Constitutive secretion of cholesterol reducing enzyme(s) by E. 
coprostanoligenes. Vertical bars denote SE (n=3). 
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Fig. 5.4: Intracellular secretion of cholesterol reducing enzyme(s) by E. 
coprostanoligenes. Supernatants W and W/O were harvested from bacterial culture with 
and without cholesterol, respectively. Vertical bars denote SE (n=3). Numbers (above 
each bar chart) indicate concentrations. Different letters (above each bar chart) indicate 
significant difference between treatments (one-way ANOVA. Tukey’s Test, 95 % 
confidence level). 
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significant difference in cholesterol reduction was observed in supernatants obtained 

from media with (Supernatant W) and without (Supernatant W/O) cholesterol (Figure 

5.4). 

Enzyme that converts cholesterol to coprostanol has not been characterized. Since 

the cholesterol reducing enzyme(s) of E. coprostanoligenes was observed to be not 

secreted extracellularly, we postulated that the cholesterol reduction reaction took place 

either on the bacterial membrane (by membrane-bound enzyme) or within the bacterial 

cell (by cytoplasmic enzyme). Bacterial cells must be broken in order to isolate the 

enzyme(s). However, we lost the cholesterol reduction activity in our attempts to isolate 

the enzyme(s) using sonication, passage through a French pressure cell or enzymatic 

digestion of the bacterial membrane. The loss of activity could be due to disrupted 

membrane integrity.  

 

5.3.4 Cholesterol reduction pathway of E. coprostanoligenes 

The cholesterol reduction reaction with the intermediates of 5-cholesten-3-one, 4-

cholesten-3-one and coprostan-3-one as intermediates was verified in E. 

coprostanoligenes. Each of these intermediates was converted to coprostanol when 

incorporated in BCM in place of cholesterol (Figure 5.5). The reaction profile appeared 

to follow such a sequence: cholesterol → 5-cholesten-3-one → 4-cholesten-3-one → 

coprostan-3-one → coprostanol. This profile agreed with the indirect pathway of 

cholesterol reduction proposed by Ren et al. (1996). On the other hand, direct conversion 

of cholesterol to coprostanol could not be excluded in view of the fact that the 

intermediates were not detected in our experiments when cholesterol was reduced. 
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Fig. 5.5: Reduction of a) 5-cholesten-3-one; b) 4-cholesten-3-one; and c) coprostan-3-one 
to coprostanol by E. coprostanoligenes. The indirect pathway of cholesterol reduction 
was verified. Verticals bars denote SE (n=3). 
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In the reduction of 5-cholesten-3-one and 4-cholesten-3-one, coprostan-3-one was 

first detected followed by coprostanol. The reaction reached steady state after 2 days of 

incubation with a constant pool of coprostan-3-one. In the case of reduction of coprostan-

3-one, there was a transient increase of cholesten-3-ones before it was converted to 

coprostanol.   

 The results suggested the possible roles of enzymes that catalyzed the conversion 

of each intermediate to the subsequent one until coprostanol was formed. In the 

conversion of plant sterol to stanol, various enzymes have been reported for the 

conversion of the intermediates (Li et al., 1996b; Klahre et al., 1998; Noguchi et al., 

1999; Venkatramesh et al., 2003). A scheme for the conversion of plant sterol to stanol 

involving 3 different enzymes was proposed (Figure 5.6) (Venkatramesh et al., 2003). It 

is likely that these enzymes are also present in E. coprostanoligenes.  

Cholesterol oxidase from Brevibacterium sp. was found to have cholesterol 

reduction potential and could reduce up to 85.6 % of cholesterol in egg yolk (Lv et al., 

2002). This enzyme is well characterized to catalyze the conversion of cholesterol to 4-

cholesten-3-one via 5-cholesten-3-one (MacLachlan et al., 2000). It is likely to exist in E. 

coprostanoligenes catalyzing the conversion of cholesterol to 4-cholesten-3-one in the 

indirect pathway of cholesterol reduction.  However, cholesterol oxidase does not convert 

cholesterol to coprostanol. Other enzyme(s) may catalyze the conversion of 4-cholesten-

3-one leading to the formation of coprostanol after the initial action of cholesterol 

oxidase.  
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Fig 5.6: Proposed scheme for conversion of sterol to stanol in plants. Reactions 1 and 2 
are catalyzed by 3-hydroxysteroid oxidase, whereas reactions 3 and 4 are catalyzed by 
steroid 5α-reductase and 3-keto reductase, respectively (Venkatramesh et al., 2003). 
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5.3.4 Inhibition of putative cholesterol oxidase activity  

 Tridemorph, fenpropidin and fenpropimorph were reported to inhibit the 

conversion of cholesterol to 4-cholesten-3-one (Hesselink et al., 1990; MacLachlan et al., 

2000). In our experiment, Tridemorph at a concentration of up to 200 mg/l did not affect  

the activity significantly. Fenpropidin and fenpropimorph at 200 mg/l and 100 mg/l, 

respectively were found to reduce cholesterol reduction activity by 28 % (Figure 5.7). 

Plate counting, however, showed that bacterial growth was also inhibited by these 

inhibitors (Figure 5.8). Therefore, we could not confirm whether the depression of 

cholesterol reduction activity was due to the inhibition of cholesterol oxidase activity. 

Further increased of fenpropimorph to 2 g/l did not abolish cholesterol reduction activity 

(27 % remained). Cholesterol in this case might have been converted to coprostanol via 

the direct pathway of cholesterol reduction. 

 

5.4 Concluding Remarks 

Cholesterol reduction activity in E. coprostanoligenes was found to increase with 

increasing cholesterol concentration. Vmax and Km of cholesterol reduction activity in 

these bacteria were calculated to be 14 µM cholesterol reduced/h and 1 mM cholesterol, 

respectively. Cholesterol reducing enzyme(s) was shown to be secreted constitutively and 

intracellularly. Hence, the reaction site for cholesterol reduction was deduced to take 

place either in cytoplasm or bacterial membrane. However, attempts to isolate the 

enzyme(s) by disrupting E. coprostanoligenes cells were not successful.  

The indirect pathway of cholesterol reduction was verified in E. 

coprostanoligenes. Based on this pathway, cholesterol oxidase is likely to exist in these  
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Fig. 5.7: Inhibition of putative cholesterol oxidase activity in E. coprostanoligenes. 
Vertical bars denote SE (n=3). Numbers (above each bar chart) indicate cholesterol 
reduction activity relative to that of control (taken as 1). Asterisk (above each bar chart) 
indicates significant different between treatment and control (one-way ANOVA. Tukey’s 
Test, 95 % confidence level). 
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Fig. 5.8: Effect of tridemorph, fenpropidin and fenpropimorph on growth of E. 
coprostanoligenes. Vertical bars denote SE (n=3). Numbers (above each bar chart) 
indicate number of viable cell/ml relative to that of control (taken as 1). Asterisk (above 
each bar chart) indicates significant different between treatment and control (one-way 
ANOVA. Tukey’s Test, 95 % confidence level). 
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bacteria. However, this postulation could not be confirmed by inhibitor study. Further 

studies, however, are necessary in order to characterize the putative enzyme(s). 

Molecular cloning of cholesterol oxidase gene in E. coprostanoligenes could be a 

possible approach. 
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6 CONCLUSION 

 

This study is the first detailed investigation on the growth and cholesterol 

reduction activity of E. coprostanoligenes. The investigation began with the development 

of solid plate counting method to monitor growth of the bacteria, together with GC 

method to study its cholesterol reduction activity. Based on these methods, it was found 

that lecithin, CaCl2 and pH of culture medium affected growth and cholesterol reduction 

activity of E. coprostanoligenes differently. The bacteria showed optimal growth at 1 g/l 

of lecithin, 0.5 g/l of CaCl2 and at a wide pH range of 6 to 9. Maximum cholesterol 

reduction was found to take place at 5 g/l of lecithin, 1 g/l of CaCl2 and at pH 7. Besides, 

growth of these cholesterol-reducing bacteria was not induced by cholesterol, thereby 

ruling out the role of cholesterol as an energy source. E. coprostanoligenes was also 

found to survive exposed to ambient air for at least 60 hours retaining its cholesterol-

reducing ability at the same time.  

The morphology of E. coprostanoligenes was re-affirmed with the aid of confocal 

and transmission electron microscopy. These bacteria were coccobacilloid cells of 0.5 to 

0.7 µm in diameter and 1 to 1.2 µm in length.  

The cholesterol reduction activity in E. coprostanoligenes was further explored so 

as to obtain more knowledge for its future application. A kinetics study of cholesterol 

reduction activity in these bacteria showed a Vmax of 14 µM cholesterol reduced/h and Km 

of 1 mM cholesterol. Secretion of the putative cholesterol reducing enzyme(s) appeared 

to be constitutive and intracellular. Attempts made to isolate these enzyme(s) by lysing 

the bacterial cells were not successful. On the other hand, cholesterol reduction pathway 
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in E. coprostanoligenes was elucidated in the sequence of cholesterol → 5-cholestern-3-

one → 4-cholesten-3-one → coprostan-3-one → coprostanol. Postulation of cholesterol 

oxidase in the bacteria has yet to be confirmed. 

Further investigations could be carried out to confirm the existence of cholesterol 

oxidase in E. coprostanoligenes. Molecular cloning of cholesterol oxidase gene could be 

a possible approach. It would also be useful to isolate and characterize the enzyme(s) 

catalyzing the conversion of 4-cholesten-3-one to coprostanol. Encapsulation of these 

enzymes for hypercholesterolemia treatment could then be made possible if the enzyme(s) 

could be successfully isolated. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 89

REFERENCES 
 
 
Allain, C.C., Poon, L.S., Chan, C.S., Richmond, W., Fu, P.C. 1974. Enzymatic 
determination of total serum cholesterol. Clinical Chemistry, 20: 470-475. 
 
Armstrong, M.J., Carey, M.C. 1982. The hydrophobic-hydrophilic balance of bile salts. 
Inverse correlation between reverse-phase high performance liquid chromatographic 
mobilities and micellar cholesterol-solubilizing capacities. Journal of Lipid Research, 23: 
70-80. 
 
Artaud-Wild, S.M., Conner, S.L., Sexton, G., Conner, W.E. 1993. Differences in 
coronary mortality can be explained by differences in cholesterol and saturated fat intakes 
in 49 countries but not in France and Finland. A paradox. Circulation, 88: 2771-2779. 
 
Ascherio, A., Rimm, E.B., Giovannucci, E.L., Spiegelman, D., Stampfer, M., Willet, 
W.C. 1996. Dietary fat and risk of coronary heart disease in men: cohort follow up study 
in the United States. British Medical Journal, 313: 84-90. 
 
Ashes, J.R., Gulati, S.K., Cook, L.J., Mills, S.C., Scott, T.W. 1978. Ruminal 
hydrogenation of cholesterol. Journal of Lipid Research, 19: 244-249. 
 
Ast, M., Frishman, W.H. 1990. Bile acid sequestrants. Journal of Clinical Pharmacology, 
30: 99-106. 
 
Av-Gay, Y., Sobouti, R. 2000. Cholesterol is accumulated by mycobacteria but its 
degradation is limited to non-pathogenic fast-growing mycobacteria. Canadian Journal 
of Microbiology, 46: 826-831. 
 
Bae, S.H., Lee, J.N., Fitzky, B.U., Seong, J., Paik, Y.K. 1999. Cholesterol biosynthesis 
from lanosterol. Molecular cloning, tissue distribution, expression, chromosomal 
localization, and regulation of rat 7-dehydrocholesterol reductase, a Smith-Lemli-Opitz 
syndrome-related protein. Journal of Biological Chemistry, 274: 14624-14631. 
 
Beerens, H., Gavini, F., Neut, C. 2000. Effect of exposure to air on 84 strains of 
bifidobacteria. Anaerobe, 6: 65-67. 
 
Benitez, M., Romero, C., Mas, R., Fernandez, L., Fernandez, J.C. 1997. A comparative 
study of policosanol versus pravastatin in patients with type II hypercholesterolemia. 
Current Therapeutic Research, 58: 859-867. 
 
Bethell, P.H., Goad, L.J., Evershed, R.P. 1994. The study of molecular markers of human 
activities: the use of coprostanol in the soil as an indicator of human faecal material. 
Journal of Archaeological Science, 21: 619-632. 
 
 



 90

Bhattacharyya, A.K. 1986. Differences in uptake and esterification of saturated analogues 
of cholesterol by rat small intestine. American Journal of Physiology, 251: G495. 
 
Björkhem, I., Gustafsson, J.A. 1971. Mechanism of microbial transformation of 
cholesterol into coprostanol. European Journal of Biochemistry, 21: 428-432. 
 
Bosner, S.M., Lange, L.G., Stenson, W.F., Ostlund, R.E. 1999. Percent cholesterol 
absorption in normal women and men quantified with dual stable isotopic tracers and 
negative ion mass spectroscopy. Journal of Lipid Research, 40: 302-308. 
 
Boststo, E., Ghiselli, G.C., Gallikienl, M., Galli, G., Sirtori, C.R. 1981. Effects of dietary 
soy protein on liver catabolism and plasma transport of cholesterol in 
hypercholesterolemic rats. Journal of Steroid Biochemistry, 14: 1201-1207. 
 
Bottema, C.K., Parks, L.W. 1978. Delta14-sterol reductase in Saccharomyces cerevisiae. 
Biochimica et Biophysica Acta, 531: 301-307. 
 
Brinkley, A.W., Gottesman, A.R., Mott, G.E. 1980. Growth of Cholesterol-reducing 
Eubacterium on cholesterol-brain agar. Applied Environmental  Microbiology, 40: 1130-
1132. 
 
Brinkley, A.W., Gottesman, A.R., Mott, G.E. 1982. Isolation and characterization of new 
strains of cholesterol-reducing bacteria from baboons. Applied Environmental  
Microbiology, 43: 86-89. 
 
Canetti, M.M., Moreira, M., Mas, R., Illnait, J., Fernandez, L., Fernandez, J.C. 1997.  
Effects of policosanol on primary hypercholesterolemia: a 3-year open-extension follow-
up. Current Therapeutic Research, 58: 868-875. 
 
Chan, K., Lam, M.H.W., Poon, K., Yeung, H., Chiu, T.K.T. 1998. Application of fecal 
stanols and sterols in tracing sewage pollution in coastal waters. Water Research, 32: 
225-235. 
 
Christian, U., Jacobsen, W., Floren, L.C. 1998. Metabolism and drug interaction of 3-
Hydroxy-3-Methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the 
statins mechanistically similar? Pharmacology and Therapeutics, 80: 1-34. 
 
Clarke, R., Frost, C., Collins, R., Appleby, P., Peto, R. 1997. Dietary lipids and blood 
cholesterol: quantitative and meta-analysis of metabolic ward studies. British Medical 
Journal, 314: 112-117. 
 
Connor, W.E., Lin, D.S. 1981. Absorption and transport of shellfish sterols in human 
subjects. Gastroenterology, 81: 276-284. 
 
Crouse, J.R., Grundy, S.M. 1979. Effects of sucrose polyester on cholesterol metabolism 
in man. Metabolism, 28: 994-1000. 



 91

Crowther, J.S., Drasar, B.S., Goddard, P., Hill, M.J., Johnson, K. 1973. The effect of a 
chemically defined diet on the faecal floral and faecal steroid concentration. Gut, 14: 
790-793. 
 
Danijela, R.M., Vanja, R., Vesna, T., Marija, R., Gordana, R., Snežana, V., Ilona, E. 
2003. Effect of soybean Leci-Vita product on serum lipids and fatty acid composition in 
patients with elevated serum cholesterol and triglyceride levels. Nutrition Research, 23: 
465–477. 
 
Dawber, T.R., Nickerson, R.J., Brand, F.N., Pool, J. 1982. Eggs, serum cholesterol, and 
coronary heart disease. American Journal of Clinical Nutrition, 36: 617-625. 
 
de Leon, P.M., Iori, R., Barbolini, G., Pompei, G., Zaniol, P., Carulli, N. 1982. Influence 
of small-bowel transit time on dietary cholesterol absorption in human beings. New 
England Journal of Medicine, 307: 102-103. 
 
de Macêdo Farias, L., de Carvalho, M.A.R., Houw, H., de Oliveira, A.A.P., Rodrigues, 
P.H.,  de Farias, F.F., Nicoli, J.R., da Costa, J.E. 1999. Atmospheric oxygen sensitivity of 
Fusobacterium strains.  Anaerobe, 5: 157-159. 
 
Dehal, S.S., Beitz, D.C., Young, J.W. 1988. Discovery of cholesterol reductase activity in 
plant leaves. The Federation of American Societies for Experimental Biology Journal, 2: 
A582. 
 
Dehal, S.S., Freier, T.A., Young, J.W., Hartman, P.A., Beitz, D.C. 1991. A novel method 
to decrease the cholesterol content of foods. In: Haberstroh, C., Morris, C. (Editors), Fat 
and cholesterol-reduced foods: technologies and strategies, Portfolio Publishing 
Company, The Woodlands, Texas. pp: 202-220. 
 
Dehal, S.S., Osslund, B.A., Young, J.W., Beitz, D.C. 1990a. Partial purification and 
characterization of cholesterol reductase from alfalfa leaves (Medicago sativa). The 
Federation of American Societies for Experimental Biology Journal, 4: A423. 
 
Dehal, S.S., Young, J.W., Beitz, D.C. 1990b. Demonstration of cholesterol reductase in 
pea (Pisum sativum). The Federation of American Societies for Experimental Biology 
Journal, 4: A543. 
 
Dietschy, J.M., Turley, S.D., Spady, D.K. 1993.  Role of liver in the maintenance of 
cholesterol and low density lipoprotein homeostasis in different animal species, including 
human. Journal Lipid Research, 34: 1637-1659. 
 
Domnas, A.J., Warner, S.A., Johnson, S.L. 1983. Reversed-phase thin layer 
chromatography of some sterols. Lipids, 18: 87-89. 
 



 92

Elkihel, L., Soustre, I., Karst, F., Letourneux, Y. 1994. Amino- and 
aminomethylcholesterol derivatives with fungicidal activity. FEMS Microbiology Letters, 
120: 163-168. 
 
Esrey, K.L., Joseph, L., Grover, S.A. 1996. Relationship between dietary intake and 
coronary heart disease mortality: lipid research clinics prevalence follow-up study. 
Journal of Clinical Epidemiology, 49: 211-216. 
 
Eyssen, H.J., Parmentier, G.G., Compernolle, F.C. 1973. Biohydrogenation of sterols by 
Eubacterium ATCC21408-Nova Species. European Journal of Biochemistry, 36: 411-
421. 
 
Farias, F.F., Lima, F.L., Carvalho, M.A.R., Nicoli, J.R., Farias, L.M. 2001. Influence of 
isolation site, laboratory handling and growth stage on oxygen tolerance of 
Fusobacterium strains. Anaerobe, 7: 271-276. 
 
Farnier, M., Salko, T., Isaacsohn, J.L., Troendle, A.J., Dejager, S., Gonasun, L. 2003. 
Effects of Baseline Level of Triglycerides on Changes in Lipid Levels from Combined 
Fluvastatin+ Fibrate (Bezafibrate, Fenofibrate, or Gemfibrozil). American Journal of 
Cardiology, 92: 794–797. 
 
Feighner, S.D., Bokkenheuser, V.D., Winter, J., Hylemon, P.B. 1979. Characterization of 
a C21 neutral steroid hormone transforming enzyme, 21-dehydroxylase, in crude cell 
extracts of Eubacterium lentum. Biochimica et Biophysica Acta, 574: 154-163. 
 
Flores-Díaz, M., Thelestam, M., Clark, G.C., Titball, R.W., Alape-Girón, A. 2004. effects 
of Clostridium perfringens phospholipase C in mammalian cells. Anaerobe, 10: 115-123. 
 
Freier, T.A., Beitz, D.C., Li, L., Hartman, P.A. 1994. Characterization of Eubacterium 
coprostanoligenes sp. Nov., a cholesterol-reducing anaerobe. International Journal of 
Systemic Bacteriology, 44: 137-142. 
 
Fromm, H. 1984. Gallstone dissolution and the cholesterol--bile acid--lipoprotein axis. 
Propitious effects of ursodeoxycholic acid. Gastroenterology, 87: 229-233. 
 
Fukushima, R.S., Weimer, P.J., Kunz, D.A. 2002. Photocatalytic interaction of resazurin 
N-oxide with cysteine optimizes preparation of anaerobic culture media. Anaerobe, 8: 29-
34. 
 
Gaskell, S.J., Eglinton, G. 1975. Rapid hydrogenation of sterols in a contemporary 
lacustrine sediment. Nature, 254: 209-211. 
 
Ginsberg, H.N., Karmally, W., Siddiqui, M., Holleran, S., Tall, A.R., Blaner, W.S., 
Ramakrishnan, R. 1995. Increases in dietary cholesterol are associated with modest 
increases in both LDL and HDL cholesterol in healthy young women. Arteriosclerosis 
and Thrombosis, 15: 169-178. 



 93

Ginsberg, H.N., Karmally, W., Siddiqui, M., Holleran, S., Tall, A.R., Rumsey, S.C., 
Deckelbaum, R.J., Blaner, W.S., Ramakrishnan, R. 1994. A dose-response study of the 
effects of dietary cholesterol on fasting and postprandial lipid an lipoprotein metabolism 
in healthy young men. Arteriosclerosis and Thrombosis, 14: 576-586. 
 
Glass, T.L., Burley, C.Z. 1984. Biotransformation of 16-dehydroprogesterone by the 
intestinal anaerobic bacterium, Eubacterium sp. 144. Journal of Steroid Biochemistry, 21: 
65-72. 
 
Glatz, J.F., Turner, P.R., Katan, M.B., Stalenhoef, A.F., Lewis, B. 1993. Hypo- and 
hyperresponse of serum cholesterol level and low density lipoprotein production and 
degradation to dietary cholesterol in man. Annals of New York Academy of Sciences, 676: 
163-179. 
 
Goddard, P., Hill, M.J. 1974. The in vivo metabolism of cholesterol by gut bacteria in the 
rat and guinea-pig. Journal of Steroid Biochemistry, 5: 569-572. 
 
Grunwald, C. 1975. Plant sterols. Annual Review of Plant Physiology, 26: 209-236. 
 
Hassett, J.P., Lee, G.F. 1977. Sterols in natural water and sediment. Water Research, 11: 
983-989.  
 
Hefmann, E. 1984. Metabolism of cholesterol in plants. In: Nes, W.D., Fuller, G., Tsai, 
L.S. (Editors), Isopentenoids in plants, biochemistry and function, Mercel Dekker, New 
York. pp: 487-518. 
 
Heftmann, E., Lieber, E.R., Bennett, R.D. 1967. Biosynthesis of tomatidine from 
cholesterol in Lycopersicon pimpinellifolium. Phytochemistry, 6: 225-229. 
 
Hegsted, D.M., Ausman, L.M. 1988. Diet, alcohol and coronary heart disease in men. 
Journal of Nutrition, 118: 1184-1189. 
 
Hesselink, P.G.M., Kerkenaar, A., Witholt, B. 1990. Inhibition of microbial cholesterol 
oxidases by dimethylmorpholines. Journal of Steroid Biochemistry, 35 (1): 107-113. 
 
Holland, K.T., Knapp, J.S., Shoesmith, J.G. 1987. Types of anaerobic and 
microaerophilic bacteria. In: Holland, K.T. (Editor), Anaerobic bacteria, Chapman and 
Hall, New York. pp: 70-104. 
 
Holmer, L., Pezhman, A., Worman, H.J. 1998. The human lamin B receptor/sterol 
reductase multigene family. Genomics: 54: 469-476. 
 
Howard, B.V., Kritchevsky, D. 1997. Phytochemicals and cardiovascular disease. 
Circulation, 95: 2591. 
 



 94

Hu, F.B., Stampfer, M.J., Manson, J.E., Rimm, E., Coldiz, G.A., Rosner, B.A., 
Hennekens, C.H., Willett, W.C. 1997. Dietary fat intake and the risk of coronary heart 
disease in women. New England Journal of Medicine, 337: 1491-1499. 
 
Hu, F.B., Stampfer, M.J., Rimm, E.B., Manson, J.E., Ascherio, A., Colditz, G.A., Rosner, 
B.A., Spiegelman, D., Speizer, F.E., Sacks, F.M., Hennekens, C.H., Willett, W.C. 1999. 
A prospective study of egg consumption and risk of cardiovascular disease in men and 
women. Journal of American Medical Association, 281: 1387-1394. 
 
Hunninghake, D.B. 1990. Bile acid sequestrant therapy. Journal of Drug Development, 3: 
205. 
 
Hylemon P.B. and Harder J. 1999. Biotransformation of monoterpenes, bile acids, and 
other isoprenoids in anaerobic ecosystems. FEMS Microbiology Review, 22: 475-488. 
 
Ingraham, J.L. and Ingraham, C.A. 1995. The growth of microorganisms. In: Prentiss, H. 
(Editors), Introduction to microbiology, Wadsworth Publishing Company. pp: 191-213. 
 
Istvan, E. 2003. Statin inhibition of HMG-CoA reductase: a 3-dimentional view. 
Atherosclerosis Supplements, 4: 3-8. 
 
Jimenez, M.A., Scarino, M.L., Vignolini, F., Mengheri, E. 1990. Evidence that 
polyunsaturated lecithin induces a reduction in plasma cholesterol level and favorable 
changes in lipoprotein composition in hypercholesterolemic rats. Journal of Nutrition, 
120: 659–667. 
 
Kim, C.K., Jeon, K.I., Lim, D.M., Johng, T.N., Trzaskos, J.M., Gaylor, J.L., Paik, Y.K. 
1995. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic 
sterol 14-reductase. Biochimica et Biophysica Acta, 1259: 39-48. 
 
Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S., 
Chua, N. 1998. The Arabidopsis DIMINUTO/DWARF1 Gene Encodes a Protein Involved 
in Steroid Synthesis. The Plant Cell, 10: 1677-1690. 
 
Knopp, R.H., Retzlaff. B.M., Walden, C.E., Dowdy, A.A., Tsunehara, C.H., Austin, M.A., 
Nguyen, T. 1997. A double-blind, randomized, controlled trial of the effects of two eggs 
per day in moderately hypercholesterolemic and combined hyperlipidemic subjects 
taught the NCEP step I diet. Journal of American Collaborative Nutrition, 16: 551-561. 
 
Kromhout, D., Menotti, A., Bloembery, B., Aravanis, C., Blackburn, H., Buzina, R., 
Dontas, A.S., Fidanza, F., Giampaoli, S., Jansen, A. 1995. Dietary saturated and trans 
fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven 
Countries Study. Preventive Medicine, 24: 308-315. 
 



 95

Kushi, L.H., Lew, R.A., Stare, F.J., Ellison, C.R., el Lozy, M., Bourke, G., Daly, L., 
Graham, I., Hickey, N., Mulcahy, R., Kevaney, J. 1985. Diet and 20-year mortality from 
coronary heart disease. New England Journal of Medicine, 312: 811-818. 
 
Law, M.R., Wald, M.J, Thompson, S.G. 1994. By how much and how quickly does 
reduction in serum cholesterol concentration lower risk of ischemic heart disease? British 
Medical Journal, 308: 367-372. 
 
Li, L., Batt, S.M., Wannemuehler, M., Dispirito, A., Beitz, D.C. 1998. Effect of feeding 
of a cholesterol-reducing bacterium, of Eubacterium coprostanoligenes, to germ-free 
mice. Laboratory Animal Science, 48: 253-255. 
 
Li, L., Baumann, C.A., Meling, D.D., Sell, J.L., Beitz, D.C. 1996a. Effect of orally 
administered of Eubacterium coprostanoligenes ATC 51222 on plasma cholesterol 
concentration in laying hens. Poultry Science, 75: 743-745. 
 
Li, L., Buhman, K.K., Hartman, P.A., Beitz, D.C. 1995a. Hypocholesterolemic effect of 
Eubacterium coprostanoligenes ATC 51222 in rabbits. Letters in Applied Microbiology, 
20: 137-140. 
 
Li, L., Freier, T.A., Hartman, P.A. 1995b. A resting-cell assay for cholesterol-reductase 
activity in Eubacterium coprostanoligenes ATCC 51222. Applied Microbiology and 
Biotechnology, 43: 887-892. 
 
Li, J., Nagpal, P., Vitart, V., McMorris, T.C., Chory, J. 1996b.  A Role for 
Brassinosteroids in light-dependent development of Arabidopsis. Science, 272: 398-401.  
 
Lin, D.S., Cornor, W.E. 1980. The long term effects of dietary cholesterol upon the 
plasma lipids, lipoproteins and cholesterol absorption, and the sterol balance in man: the 
demonstration of feedback inhibition of cholesterol biosynthesis and increased bile acid 
excretion. Journal of Lipid Research, 21: 1042-1052. 
 
Lin, J.T., Palevitch, D., Heftmann, E. 1983. Reduction of androst-4-en-3,17-dione by 
growing cucumber plants. Phytochemistry, 22: 1149-1154. 
 
Ling, W.H., Jones, P.J. 1995. Enhanced efficacy of sitostanol-containing versus 
sitostanol-free phytosterol mixtures in altering lipoprotein cholesterol levels and 
synthesis in rats. Atherosclerosis, 118: 319-331. 
 
Low, M. 2000. Plant sterol and stanol margarines and health. British Medical Journal, 
320: 861–864. 
 
Lv, C., Tang, Y., Wang, L., Ji, W., Chen, Y., Yang, S., Wang, W. 2002. Bioconversion of 
yolk cholesterol by extracellular cholesterol oxidase from Brevibacterium sp.. Food 
Chemistry, 77: 457-463.  
 



 96

Macdonald, I.A., Bokkenheuser, V.D., Winter, J., Maclernon, A.M., Mosbac, E.H. 1983. 
Degradation of steroids in the human gut. Journal of Lipid Research, 24: 675-700. 
 
MacLachlan, J., Wotherspoon, A.T.L., Ansell, R.O., Brooks, C.J.W. 2000. Cholesterol 
oxidase: sources, physical properties and analytical applications. Journal of Steroid 
Biochemistry and Molecular Biology, 72: 169-195.  
 
Mahley, R.W. 1988. Apolipoprotein E: cholesterol transport protein with expanding role 
in cell biology. Science, 240: 622-630. 
 
Manchenko, G.P. 1994. General principles of enzyme detection on electrophoretic gels. 
In: Manchenko, G.P. (Editor), Handbook of detection of enzymes on electrophoretic gels, 
CRC Press, Florida. pp: 3-13. 
 
Mann, J.I., Appleby, P.N., Key, T.J., Thoorogood, M. 1997. Dietary determinants of 
ischaemic heart disease in health conscious individuals. Heart, 8: 450-455. 
 
Maranhao, R.C., Quintao, E.C.R. 1983. Long term steroid metabolism balance studies in 
subjects on cholesterol-free and cholesterol-rich diets: comparison between normal and 
hypercholesterolemic individuals. Journal of Lipid Research, 24: 167-173. 
 
Marriott, P.J., Jayasinghe, L.Y., Carpenter, P.D., Nichols, P.D., 1998. application of 
pentafluorophenyldimethylsilyl derivatization for gas chromatography- electron-capture 
detection of supercritically extracted sterols. Journal of Chromatography A, 809: 109-120. 
 
Marsheck, W.J., Kraychy, S., Muir, R.D. 1972. Microbial degradation of sterols. Applied 
Microbiology, 23: 72-77. 
 
März, W., Scharnagl, H., Winkler, K., Gierens, H., Nauck, M., Hoffmann, M., Klima, B., 
Schliack, M., Löser, R. Lang, G., Groβ, W., Wieland H. 1997. Lifibrol (K12.148): First 
member of a new class of hypolipidemic drugs? Atherosclerosis, 130 (Supp): S6. 
 
McMurry, M.P., Cornor, W.E., Lin, D.S., Cerqueira, M.T., Cornor, S.L. 1985. The 
absorption of cholesterol and the sterol balance in the Tarahumara Indians of Mexico fed 
cholesterol-free and high cholesterol diet. American Journal of Clinical Nutrition, 41: 
1289-1298. 
 
McNamara, D.J. 2000. Dietary cholesterol and atherosclerosis, Biochimica et Biophysica 
Acta, 1529: 310-320. 
 
McNamara, D.J., Davidson, N.O., Samuel, P., Ahrens, E.H. 1980. Cholesterol absorption 
in man: effect of administration of clofibrate and/or cholestyramine. Journal of Lipid 
Research, 21: 1058-1064. 
 



 97

Mesa, A.R., Mas, R., Nao, M., Hernandez, C., Rodeiro, I., Game, R., Garcia, M., Capote, 
A., Aleman, C.L. 1994. Toxicity of policosanol in beagle dogs: one-year study. 
Toxicology Letters, 73: 81-90. 
 
Miller, K.W., Wood, F.E., Stuart, S.B., Alden, C.L. 1991. 20-Month olestra feeding study 
in dogs. Food and Chemical Toxicology, 29: 427-435. 
 
Moebius, F.F., Fitzky, B.U., Lee, J.N., Paik, Y.K., Glossmann, H. 1998. Molecular 
cloning and expression of the human delta7-sterol reductase. Proceedings of the National 
Academy of Sciences of the United States of America, 95: 1899-1902. 
 
Mott, G.E., Brinkley, A.W. 1979. Plasmenylethanolamine: growth factor for cholesterol-
reducing Eubacterium. Journal of Bacteriology, 139: 755-760.  
 
Najib, J. 2002. Fenofibrate in the treatment of dyslipidemia: A review of the data as they 
relate to the new suprabioavailable tablet formulation. Clinical Therapeutic, 24: 2022-
2050. 
 
Neil, H.A.W. and Huxley, R.R. 2002. Efficacy and therapeutic potential of plant sterols. 
Atherosclerosis Supplements, 3: 11-15. 
 
Nestel, P.J., Schreibman, P.H., Ahrens, E.H. Jr. 1973. Cholesterol metabolism in human 
obesity. Journal of Clinical Investigation, 52: 2389-97. 
 
Noguchi, T., Fujioka, S., Takatsuto, S., Sakurai, A., Yoshida, S., Li, J., Chory, J. 1999. 
Arabidopsis det2 is defective in the conversion of (24 R)-24-methylcholest-4-en-3-one to 
(24 R)-24-methyl-5a-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiology, 
120: 833-839. 
 
Oda, S., Sugai, T., Ohta, H. 2001. Synthesis of methyl ursodeoxycholate via microbial 
reduction of methyl 7-ketolithocholate with Eubacterium aerofaciens JCM 7790 grown 
on two kinds of carbon and hydride sources, glucose and mannitol. Journal of Bioscience 
and Bioengineering, 91: 178-183. 
 
Packard, C.J. and Shepherd, J. 1982. The hepatobiliary axis and lipoprotein metabolism: 
effects of bile acid sequestrants and ileal bypass surgery. Journal of Lipid Research, 23: 
1081-1098. 
 
Pedersen, T.R., 1994. Randomized trial of cholesterol lowering in 4444 patients with 
coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet, 334: 
1383-1389.  
 
Pierce, H.D. Jr., Pierce, A.M., Srinivasan, R., Unrau, A.M., Oehlschlager, A.C. 1978. 
Azasterol inhibitors in yeast. Inhibition of the 24-methylene sterol delta24(28)-reductase 
and delta24-sterol methyltransferase of Saccharomyces cerevisiae by 23-azacholesterol. 
Biochimica et Biophysica Acta, 529: 429-437. 



 98

Price, N.C., Stevens, L. 1989. An introduction to enzyme kinetics. In: Price, N.C., 
Stevens, L. (Editors), Fundamentals of Enzymology. Oxford University Press, New York. 
pp: 136-180. 
 
Prince, D.M., Welschenbach, M.A. 1998. Olestra: a new food addictive. Journal of the 
American Dietetic Association, 98: 565-69. 
 
Quintao, E., Grundy, S.M., Ahrens, E.H. Jr. 1971. Effects of dietary cholesterol on the 
regulation of total body cholesterol in man. Journal of Lipid Research, 12: 233-247. 
 
Ratledge, C. 1994. Biodegradation of oils, fats and fatty acids. In: Ratledge, C. (Editor), 
Biochemistry of microbial degradation, Kluwer Academic Publishers, Boston. pp: 89-128. 
 
Ren, D., Li, L., Schwabacher, A.W., Young, J.W., Beitz, D.C. 1996. Mechanism of 
cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. 
Steroids, 61: 33-40. 
 
Richmond, W. 1973. Preparation and properties of a cholesterol oxidase from Nocardia 
sp. and its application to the enzymatic assay of total cholesterol in serum. Clinical 
Chemistry,19: 1350-1356. 
 
Rocha, E.R., Herren, C.D., Smalley, D.J., Smith, C.J. 2003. The complex oxidative stress 
response of Bacteroides fragilis: the role of OxyR in control of gene expression. 
Anaerobe, 9: 165-173. 
 
Ros, E. 2000. Intestinal absorption of triglyceride and cholesterol. Dietary and 
pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis, 151: 357-379. 
 
Rosenfeld, R.S., Hellman, L., Gallagher, T.F. 1956. The transformation of cholesterol-3d 
to coprostanol-d. Location of deuterium in coprostanol. Journal of Biological Chemistry, 
222: 321-323. 
 
Rosenfeld, R.S., Lebeau, M.C., Shulman, S., Seltzer, J. 1961. Analysis of fecal sterols by 
gas chromatography. Journal of Chromatography, 7: 293-296.  
 
Sacks, F.M., Pfefer, M.A., Moye, L.A., Rouleau, J.L., Rutherford, J.D., Cole, T.G., 
Brown, L., Warnica, J.W., Arnold, J.M.O., Wun, C.C., Davis, B.R., Braunwald, E. 1996. 
The effect of pravastatin on coronary events after myocardial infraction in patients with 
average cholesterol levels. New England Journal of Medicine, 335: 1001-1009. 
 
Sadzikowski, M.R., Sperry, J.F., Wilkins, T.D. 1977. Cholesterol-reducing bacterium 
from human feces. Applied Environmental  Microbiology, 34: 355-362. 
 
Salen, G., Ahrens, E.H. Jr., Grundy, S.M. 1970. Metabolism of β-sitosterol in man. 
Journal of Clinical Investigation, 49: 952-967. 
 



 99

Samuel, P., McNamara, D.J., Ahren, E.H. Jr., Crouse, J.R., Parker, T. 1982. Further 
validation of the plasma isotope ratio method for the measurement of cholesterol 
absorption in man. Journal of Lipid Research, 23: 480-9. 
 
Schoenheimer, R., Rittenberg, D., Graff, M. 1935. Deuterium as an indicator in the study 
of intermediary metabolism. IV The mechanism of coprosterol formation. Journal of 
Biological Chemistry, 111: 183-192. 
 
Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J., 
Jurgens, G. 2000. Genes and Development: 14: 1471-1484. 
 
Sedaghat, A., Samuel, P., Crouse, J.R., Ahrens, E.H. 1975. Effects of neomycin on 
absorption, synthesis and/or flux of cholesterol in man. Journal of Clinical Investigation, 
55: 12-21. 
 
Sewell, P.A., Clarke, B. 1991. Qualitative and quantitative analysis by chromatography. 
In: Chromatographic Separations. In: Kealey, D. (Editor), John Wiley & Sons, Singapore. 
pp: 147-191. 
 
Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., Macfarlane, P.W., 
McKillop, J.H., Packard, C.J. 1995. Prevention of coronary heart disease with pravastatin 
in men with hypercholesterolemia. New England Journal of Medicine, 333: 1301-1307. 
 
Silve, S., Dupuy, P.H., Ferrara P., Loison, G. 1998. Human lamin B receptor exhibits 
sterol C14-reductase activity in Saccharomyces cerevisiae. Biochimica et Biophysica 
Acta, 1392: 233-244. 
 
Smith, S. 1995. Cloning and sequence analysis of an ERG24 homolog from 
Schizosaccharomyces pombe. Gene: 155: 139-140.  
 
Snog-kjaer, A., Prange, I., Dam, H. 1956. Conversion of cholesterol into coprostanol by 
bacteria. Journal of General Microbiology, 14: 256-260. 
 
Staels, B., Dallongeville, J., Auwerx, J., Schoonjans, K., Leitersdorf, E., Fruchart, J.C. 
1998. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. 
Circulation, 98: 2088-2093. 
 
Stanier, R.Y., Ingraham, J.L., Wheelis, M.L., Painter P.R. 1986.  Microbial Growth. In: 
Stanier, R.Y., Ingraham, J.L., Wheelis, M.L., Painter P.R. (Editors), The Microbial World, 
Prentice-Hall, New Jersey. pp: 183-195 
 
Stanton, T.B., Sellwood, R. 1999. Cloning and characterization of a gene encoding 
NADH oxidase, a major mechanism for oxygen metabolism by the anaerobic spirochete, 
Brachyspira (Serpulina) hyodysenteriae. Anaerobe, 5: 539-546. 
 



 100

Sundin, K.A., Leeming, R.L., Stenström, T.A.B. 1999. Degradation of faecal sterols in 
urine for assessment of faecal cross-contamination in source-separated human urine and 
urine storage tank sediment. Water Research, 33: 1975-1980. 
 
Tan, B.Y. 2000. Highlights of the 1998 National Health Survey. Statistics Singapore 
Newsletter. 3-8. 
 
Tan, L., Clemence, M., Gass, J. 1970. Gas chromatography analysis of fecal pollution 
sterols on a single combined packed column. Journal of Chromatography, 53: 209-215. 
 
Taton, M., Rahier, A. 1991. Identification of delta 5,7-sterol-delta 7-reductase in higher 
plant microsomes. Biochemical and Biophysical Research Communications, 181: 465-
473. 
 
Tell, G.S., Evans, G.W., Folsom, A.R., Shimakawa, T., Carpenter, M.A., Heiss, G. 1994.  
Dietary fat intake and carotid artery wall thickness: the Atherosclerosis Risk in 
Communities (ARIC) Study. American Journal of Epidemiology, 139: 979-989. 
 
Thurnhofer, H., Schnabel, J., Betz, M., Lipka, G., Pidgeon, C., Hauser, H. 1991. 
Cholesterol transfer protein located in the intestinal brush border membrane. Partial 
purification and characterization. Biochimica et Biophysica Acta, 1064: 275-286. 
 
Trinh, S., Briolat, V., Reysset, G. 2000. Growth response of clostridium perfringens to 
oxidative stress. Anaerobe, 6: 233-240. 
 
Vahouny, G.V., Tombes, R., Cassidy, M.M., Kritchevsky, D., Gallo, L.L. 1980. Dietary 
fibers. V. Binding of the bile salts, phospholipids and cholesterol from mixed micelles by 
bile acid sequestrants and dietary fibers. Lipids, 15: 1012-1018. 
 
Venkatramesh, M., Karunanandaa, B., Sun, B., Gunter, C.A., Boddupalli, S., Kishore, 
G.M. 2003. Expression of a Streptomyces 3-hydrosteroid oxidase gene in oilseed for 
converting phytosterols to phytostanols. Phytochemistry, 62: 39-46.  
 
Wassif, C.A., Maslen, C., Kachilele-Linjewile, S., Lin, D., Linck, L.M., Connor, W.E., 
Steiner, R.D., Porter, F.D. 1998. Mutations in the human sterol delta7-reductase gene at 
11q12-13 cause Smith-Lemli-Opitz syndrome. American Journal of Human Genetics, 63: 
55-62. 
 
Waterham, H.R., Koster, J., Romeijn, G.J., Hennekam, R.C., Vreken, P., Andersson, H.C., 
FitzPatrick, D.R., Kelley, R.I., Wanders, R.J. 2001. Mutations in the 3beta-hydroxysterol 
Delta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of 
cholesterol biosynthesis.  American Journal of Human Genetics, 69: 685-694.  
 
 
 



 101

Waterham, H.R., Wijburg, F.A., Hennekam, R.C., Vreken, P., Poll-The, B.T., Dorland, L., 
Duran, M., Jira, PE., Smeitink, J.A., Wevers, R.A., Wanders, R.J. 1998. Smith-Lemli-
Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene. 
American Journal of Human Genetics, 63: 329-338. 
 
Watt, S.M. and Simmonds, W.J. 1984. Effect of taurin-conjugated bile acids on mucosal 
uptake and lymphatic absorption of cholesterol in rat. Journal of Lipid Research, 25: 448-
455. 
 
Wiggers, K.D., Jacobson, N.L., Getty, R., Richard, M. 1973. Mode of cholesterol 
ingestion and atherosclerosis in the young bovine. Atherosclerosis, 17:283-288. 
 
Wiłkomirski, B., Goad, L.J. 1983. The conversion of (24S)-24-ethylcholesta-5,22,25-
triene-3β-ol into poriferasterol, both in vivo and with a cell-free homogenate of the alga 
Trebouxia sp.. Phytochemistry, 22: 929-932. 
 
Wilson, M.D., Rudel, L.L. 1994. Review of cholesterol absorption with emphasis on 
dietary and biliary cholesterol. Journal of Lipid Research, 35: 943-955. 
 
Wilson, T.A., Meservey, C.M., Nicolosi, R.J. 1998. Soy lecithin reduces plasma 
lipoprotein cholesterol and early atherogenesis in hypercholesterolemic monkeys and 
hamsters: beyond linoleate. Atherosclerosis, 140: 147–153. 
 
Winter, J., O’Rourke-Locascio, S., Bokkenheuser, V.D., Mosbach, E.H., Cohen, B.I. 
1984. Reduction of 17-keto steroids by anaerobic microorganisms isolated from human 
fecal floral. Biochimica et Biophysica Acta, 795: 208-211. 
 
Yamaga, N., Ogura, Y., Islam, M.A., Matsuyama, H., Yamawaki, M., Kai, M., Yamada, 
K. 2002. Utility of 19-hydroxycholesterol as an internal standard compound for the 
quantitative determination of sterols using capillary gas chromatograph. Yonago Acta 
medica. 45: 27-33. 
 
Yang, J.B., Beitz, D.C. 1992. A fluorometric assay for cholesterol reductase activity. 
Analytical Biochemistry, 206: 246-250. 
 
 

 

 


