
WORKFLOW-DRIVEN DESIGN CHAIN MANAGEMENT FOR

COLLABORATIVE ENGINEERING OF TECHNOLOGY-INTENSIVE

PRODUCT

XIONG XIAOHUA
(B.Eng., M.Eng., Huazhong Univ. of Science & Technology, P.R.China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48632426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I would like to gratefully acknowledge the enthusiastic supervision of my supervisors,

Dr. Liu Zhejie from the Data Storage Institute (Singapore) and Professor Wong Yoke

San from the National University of Singapore. Their enthusiasm, inspiration and

great effort lead me through the whole research process.

Many thanks are given to the members of Magnetic Recording Channel division,

especially Li Jiangtao, Long Haohui, for their kind help during the period of my stay

in Data Storage Institute.

Finally, I would like to thank my family. The encouragements and supports from my

parents and brothers give me the strength to head forward. My wife, Wang Li, her

understanding and accompanying get me through the difficult times. To them I

dedicate this thesis.

 I

Table of Contents

Acknowledgement .. I

Table of Contents ..II

Summary.. IV

List of Figures.. VI

List of Tables .. VIII

Chapter 1. Introduction...1

1.1 Background and Research Motivation...1

1.2 Research Objectives...4

1.3 Organization of Thesis...4

Chapter 2. Literature Review ...6

2.1 Integrate Distributed Collaborative Design with Workflow Technology............6

2.2 Distributed Collaborative Design Review ...8

2.3 Workflow Management Systems...12

2.3.1 Basic Concepts..13

2.3.2 Related Work on Workflow Management System (WFMS)......................16

2.3 Summary ..20

Chapter 3. Workflow-driven Framework ...21

3.1 Requirement Analysis..21

3.2 System Architecture...23

3.3 Workflow Meta-model...26

3.3.1 Process Meta-model..28

3.3.2 Organization Meta-model ...31

3.4 Workflow-driven Communication...35

3.4.1 Communication in Design Process ...36

 II

3.4.2 State-oriented Communication ...40

3.5 Related Issues...44

3.5.1 Service Registration ..44

3.5.2 Design Session Management ..45

3.6 Summary ..48

Chapter 4. Dynamic Workflow Change Management ...49

4.1 Introduction..49

4.2 Related works...53

4.3 Problem Statement ...54

4.4 Mechanism...57

4.5 Exception handling ..61

4.6 Implementation ..62

4.7 Conclusion ...68

Chapter 5. Prototype Implementation ...70

5.1 System Functions ...70

5.2 System Architecture...73

5.3 Case Study - Design of Head and Media ...74

5.4 Summary ..81

Chapter 6. Conclusion and Future Work..82

6.1 Contributions..82

6.2 Directions for Future Work..84

References...86

Appendix...94

 III

Summary

Due to increasing global competition, collaborative product design is envisaged as the

strategy to reduce cost, ensure quality, and shorten time-to-market, especially for

technology-intensive products, such as hard disk drives. It can enable teams of

designers across enterprise boundaries to address total lifecycle issues at early design

phases. In order to support such type of design processes, a distributed collaborative

environment is necessary, in which the effectiveness of teams will translate directly to

improved cost savings and competitiveness.

Workflow management system is a technology that has received much attention in

recent years. It can streamline, coordinate and monitor an organizational process

involving human and automated tasks spread across multiple enterprises with

heterogeneous (existing and new) computing environments.

Adopting workflow management technology can greatly improve distributed

collaborative design efficiency. In this thesis, a distributed collaborative design

framework that is based upon and driven by workflow is presented. Under this

framework, the design process can be effectively organized, executed, controlled and

monitored at workflow management level, leading to short time-to-market which is a

key factor for the success of a new product. The allocation of resources, such as

material, human, software, etc., can also be optimized so that the development cost

will be lowered.

In this framework, process modeling, process dynamics and information exchange are

of major concern because these are the basic parts for constructing such a design

environment. The process modeling is discussed with respect to process meta-model

 IV

and organization meta-model. As to the process communication, the asynchronous

and synchronous communications involved within intra- and inter-processes are

examined. To adapt to the frequent changes occurring in design activities, dynamic

process management is proposed to minimize the cost of changing processes.

Combined with workflow technology, a workflow-driven communication method

supporting process modeling and efficient information exchange between tasks is

studied. Furthermore, dynamic workflow is investigated as one major difficulty in

implementing this framework.

The research work in this thesis has special reference to the design chain activities for

development of hard disk drive products at component, sub-system and system levels.

 V

List of Figures

Figure 1. 1 Establishment of Workflow Management Framework5

Figure 2. 1 A Distributed Collaborative Design Scenario ...8

Figure 2. 2 Structure of Hard Disk Drives...9

Figure 2. 3 Workflow Concepts...14

Figure 2. 4 Functional Components of WFMS..16

Figure 2. 5 Workflow Integration Requirements...19

Figure 3. 1 Process-guided Distributed Collaborative Design.....................................22

Figure 3. 2 Workflow-based Distributed Collaborative Design Framework...............23

Figure 3. 3 Structure of Workflow Engine ..25

Figure 3. 4 Meta-model-centered Workflow Model Definition27

Figure 3. 5 Use Case Diagram of Operation..28

Figure 3. 6 Constructs of Process Meta-model..30

Figure 3. 7 Detailed Definition of Process Concepts...30

Figure 3. 8 The XML Schema for Roles Defined..34

Figure 3. 9 Constructs of Organization Meta-model ...35

Figure 3. 10 Detailed Definition of Organization Concepts ..35

Figure 3. 11 Communication Framework..39

Figure 3. 12 Workflow Instance State Change Diagram ...41

Figure 3. 13 Workflow Task State Change Diagram...42

Figure 3. 14 Relationship between Workflow Engine and Task Engine.....................44

Figure 3. 15 Process Composed by Sessions ...47

Figure 3. 16 Centralized Coordination Mechanism (CCM) ..47

Figure 4. 1 Old Workflow Model ..66

 VI

Figure 4. 2 New Workflow Model...67

Figure 5. 1 Workflow-driven System Architecture ...74

Figure 5. 2 Combination of Head and Media [64]...75

Figure 5. 3 Design Process of Media ...76

Figure 5. 4 A Distributed Collaborative Head/Media Design Scenario77

Figure 5. 5 Workflow Model Definition..78

Figure 5. 6 Detailed Process of Media Design ..79

Figure 5. 7 System Snapshots ..81

 VII

List of Tables

Table 2. 1 Dependencies and Coordination Process..17

Table 3. 1 State_Event Table ...43

Table 3. 2 Service Registration Form ..45

Table 4. 1 Change Management in SmarTeam..52

Table 4. 2 Instance States...68

 VIII

Introduction

Chapter 1. Introduction

Confronted with global competition and rapidly changing customer requirements,

manufacturers face an increasingly arduous task in developing new products. Product

development is becoming more reliant on geographically dispersed, multi-disciplinary

designers during design, manufacturing, and delivery processes. Collaborative

product design has been the perceived strategy for the companies. Because the

activities of the design process determine both product competitiveness and cost in

collaborative commerce, collaborative product development is receiving much

attention. By making the entire collaborative product design process work more

effective, manufacturers are taking a vantage position to manage product quality, cost

and time-to-market.

The research effort presented in this thesis involves the development of a workflow-

driven distributed collaborative engineering design and analysis framework.

Workflow technology is introduced to organize, execute, control and monitor the

product development process, leading to short time-to-market and lower cost.

1.1 Background and Research Motivation

Under the environment that is increasingly globalized, the design of complex artifacts

and systems requires the collaboration of multidisciplinary design teams using various

commercial and non-commercial engineering tools, such as CAD/CAE tools,

modeling, simulation and optimization software, engineering database, and

knowledge-based systems. Individuals or individual groups of multidisciplinary

design teams usually work in parallel and separately with various engineering tools,

which are located at different sites, often for quite a long time. At any moment,

 1

Introduction

individual members may be working on different versions of a design or viewing the

design from various perspectives, at different levels of details. These mean that design

work may be distributed either physically (e.g. it may be carried out at different places)

or temporally (e.g. it may be carried out at different times).

In order to facilitate the aforementioned design process, it is necessary to have an

efficient distributed collaborative design environment. This environment should not

only automate individual tasks, in the manner of traditional computer-aided

engineering tools, but also enable individual members to communicate with one

another, share information and knowledge, collaborate and coordinate their activities

within the context of related design projects.

A large number of papers on distributed collaborative design have been published.

Numerous commercial products are also available on the market, which implement

partial features of distributed collaboration concepts. In [3], the research on

distributed collaborative design falls into two categories. The first one tries to offer

the theoretical models. For example, in [4] a distributed object-based modeling and

evaluation (DOME) framework for product design was proposed. Also Case and Lu

proposed a discourse model used in software environments that provides automation

support for collaborative engineering design [5]. The second category tries to

implement the idea of distributed collaborative design in a practical way. In [6] a

prototype was proposed to implement web-enabled feature-based modeling in a

distributed environment. Cybercut is one of the first web-based design systems for

fabrication, which was developed at the University of California at Berkeley [7]. An

agent-based prototype implementation was proposed in the design of a portable CD

player [8]. To seamlessly share CAD information across an enterprise, major CAD

 2

Introduction

suppliers have introduced a software system called product development management

[9, 10, and 11].

While much of previous research has focused on the development of technology and

tools to support distributed design, there is a lack of awareness and understanding of

the entire design process. This thesis concerns the development of design support at

the process level.

Since design is a complex process, process control should be an indispensable part

during the construction of distributed collaborative design framework. Workflow

management system is a technology that has received much attention in recent years.

It can streamline, coordinate and monitor an organizational process involving human

and automated tasks spread across multiple enterprises with heterogeneous (existing

and new) computing environments. The basic idea in workflow management is to

capture formal descriptions of the processes and to support the automatic enactment

of the processes based on these formal descriptions. It can meet requirements

proposed by distributed collaborative design very well.

The motivation for conducting research into distributed collaborative design using

workflow is summarized in two ways:

- The benefits of distributed collaborative design are potentially great;

- Workflow technology can effectively support process management that cannot

be provided by traditional technology.

 3

Introduction

1.2 Research Objectives

In contrast to the ongoing research efforts that emphasize more on technology and

tools, the proposed research focuses on the process level. The overall aim of the

research is to develop a workflow-driven infrastructure supporting process

management for distributed collaborative design teams. This comprises the following

objectives:

- Identification of requirements in distributed collaborative design activities

with respect to process control;

- Construct an infrastructure supporting distributed collaborative design by

using workflow technology;

- Application of such infrastructure to collaborative product design process in

practice to demonstrate the feasibility of the proposed method.

In order to construct such a workflow-driven infrastructure, process modeling, intra-

and inter-process communications are discussed and analyzed in detail.

1.3 Organization of Thesis

The thesis is organized in following order:

In Chapter 2, firstly we discuss the feasibility of adopting workflow technology in

distributed collaborative design with respect to design process management, including

process modeling, process communication and monitoring. Then a detailed literature

review of distributed collaborative design and workflow technology will be given.

Also the source, benefits and existing research of each are presented.

 4

Introduction

In Chapter 3, the requirement of distributed collaborative design is analyzed in detail.

And then based on the results of analysis, a workflow-driven infrastructure is

proposed. The two main parts constructing the infrastructure, namely workflow

modeling and process communication mechanism, are studied. The related issues,

such as service management and session management, are also discussed in this

chapter.

The dynamic workflow is discussed in chapter 4. A dynamic workflow change

management method based on workflow instance is proposed to resolve the dynamic

changes that happen in the design process frequently.

In Chapter 5, a design scenario is presented as a case study using the proposed

infrastructure and technologies combined with CoCADE (a distributed CAD/CAE

tool).

Chapter 6 summarizes the results of the presented work. The future research direction

is also given.

The establishment of such a workflow management framework is shown in Figure 1.1.

Combination with

COCADE

WF-driven
Framework

Workflow
Model

Communication
Mechanism

Service
Management

Process
Meta-model

Organization
Meta-model

Dynamic
Workflow

 Session
Management

Figure 1. 1 Establishment of Workflow Management Framework

 5

Literature Review

Chapter 2. Literature Review

The practice of distributed collaborative design is ever increasing. Advances in the

computing world and particularly the creation and growth of the Internet in the past

few years have facilitated the growth of distributed design teams and distributed work.

However, the practice is often inefficient [25, 26, and 27]. At the same time,

workflow technology has been more and more widely used as an effective process

management tool for rapid development. In this chapter, we will discuss the feasibility

of adopting workflow technology in distributed collaborative design environment in

detail. Related work is also presented.

2.1 Integrate Distributed Collaborative Design with

Workflow Technology

Many of the current distributed collaborative design processes, whilst well defined,

are either implicit in the operation of the organization or only informally recorded.

This lack of explicit representation makes it difficult to carry out collaboration among

different participants who may be dispersed geographically, to track the progress of

active processes, to modify ongoing processes in response to situational changes, or to

adopt newly defined processes. Assurance that processes are executed successfully

and efficiently is often difficult or impossible to obtain.

The workflow community advocates the use of explicit models and representations of

processes, along with automated tools to support the activation and ongoing

management of workflow processes. Structured management of processes can provide

benefits in several ways. Articulation of explicit processes can help to standardize

 6

Literature Review

operation, thus reducing the likelihood of introduced errors. Explicitly represented

processes can be tuned to improve efficiency and effectiveness. Automated tools for

process management hold promise for deeper insight into current and planned

operations, through the provision of timely updates on progress and status. Such

enriched understanding of operation processes will lead to better-informed decision-

making by users. Automation can also provide adaptive capabilities that enable agility

of operation and more effective use of resources. Such characteristics are critical for

operation in dynamic environments where requirements and conditions can change

rapidly and unpredictably.

Recently, in order to make the product design processes more efficient, a Design

Chain Operations Reference (DCOR) Model has been launched by The Supply Chain

Council, which is one of the industry’s leading professional organizations responsible

for the Supply Chain Operations Reference (SCOR) Model (http://www.supply-

chain.org/). DCOR can be used to analyze a company’s design chain processes to

determine where weaknesses exist, identify principal process elements found

throughout the design chain and link them to performance attributes and metrics. It

will serve users the need to evaluate their processes and their current practices, and to

assess gaps and requirements. It can be seen that as an effective process management

method, workflow technology can play an important role in the establishment of

DCOR. This is also one of the contents of the further research work.

In the following section, the literature review of these two domains is presented.

 7

Literature Review

2.2 Distributed Collaborative Design Review

The need for distributed collaborative design can be readily justified, as the

complexity of design continues to increase, demanding larger teams and higher

productivity. Furthermore, the current shortage of qualified design engineers requires

companies to search for manpower from different parts of the world, and in many

cases it is more convenient not to relocate them. In addition, there is the need for

experience sharing among members of the design team. Figure 2.1 shows a scenario

of distributed collaborative design.

Figure 2. 1 A Distributed Collaborative Design Scenario

By adopting distributed design, great benefits can be obtained, e.g., shorter product

development cycle, better product design and manufacturability, the lower cost of

 8

Literature Review

product development. For technology-intensive product, the benefits can be more

obvious. As shown in Figure 2.2, a hard disk drive contains many parts. During the

design process, many engineers from multiple disciplines are needed. The participants

involved in the design are closely interdependent and interactional. Many parts are

also highly technology-intensive, such as head, media, PCB and spindle motor.

Figure 2. 2 Structure of Hard Disk Drives

Arising from the need for distributed and collaborative design, many research works

have already been done. Most of these researches have focused on the role of tools

and technology. Within the commercial domain, collaborative design tools are

common within the AEC (Architecture, Engineering, Construction) sector as redlining

and mark-up tools. More sophisticated tools include Magics Communicator from

Materialise (www.materialise.be/communicator/) and Co-Create’s OneSpace

(www.cocreate.com/) which allow dispersed designers to share design models and

modify design work synchronously. Dedicated collaboration tools used to bring

distant people together include NetMeeting from Microsoft

(www.mircosoft.com/windows/netmeeting/default.asp) and Groove Networks’

 9

http://www.materialise.be/communicator/
http://www.cocreate.com/
http://www.mircosoft.com/windows/netmeeting/default.asp

Literature Review

Groove (www.groove.net/) which provide different channels for communication and

support for storing information. Shared workspaces such as Portfolio Wall

(www.aliaswavefront.com/) allow designers to share ideas, primarily within the

product design environment. Much of the research within the collaboration tools

domain comes from CSCW (Computer Supported Cooperative Work), yet lacks the

sophistication of commericial tools. The Grouplab research group at Calgary have

developed Groupware tools such as the Notification Collage

(www.cpsc.ucalgray.ca/grouplab/) that lets people post multimedia items to a

communal, distributed bulletin board. Within the design field, [33] proposes a data

visualization tool to improve communication in distributed product development.

 Technology has progressed dramatically in recent years. Cheng and Kvan in [34]

state the importance of collaboration structure in “finding the best fit between

technology and group design for design collaboration”, adding factors that include

collaborators’ profiles, mutual value of produced information and logistical

opportunities. Further, [35] describes 13 communication roles that support design

collaboration, stating that they could form the basis for prescriptive design methods

which support communication. These roles focus on interaction and knowledge

exploration. They exist within several sub-groups or boundary types including

organization, task and discipline. Such distinctions highlight important contexts

within the communication domain. Other research has aimed to develop support for

collaborative design. [36] proposes a framework for a collaborative design

environment which has three major components: a shared workspace, application

domain and data management facility. [37] studies designers’ information access and

storage to implement IT support. Such studies highlight the importance of building a

sufficient knowledge and information infrastructure for design work.

 10

http://www.groove.net/
http://www.aliaswavefront.com/
http://www.cpsc.ucalgray.ca/grouplab/

Literature Review

However, certain applications have attempted to cater for a wide range of activities

without taking into account of the specific requirements of the design process. As to

the design process control level, established design processes from [38], [39] and

French [40] are still pervasive in distributed work and although powerful, were not

designed with distributed design specifically in mind. The Process Handbook at MIT

(http://ccs.mit/edu/ph/) includes both design and non-design processes to resolve

collaborative conflicts. Concurrent engineering processes also exist which may be

used to rationalize distributed team effort. In [41], Prasad details processes for

complexity, performance and planning that may be used to support distributed and

collaborative design.

There are few cases of collaboration or communication processes specifically for

design work. Lu and Cai in [42] propose a model specifically to manage different

perspectives and design conflicts. Other research has focused on different areas of

collaborative design such as negotiation [43] while Vadhavkar and Pena-Mora in [44]

look at organizational processes as part of their team interaction space. McGrath in

[45] focuses on the interaction and performance of groups and Olson et al. [46] focus

on the effects of technology on group work. Lipnack and Stamps in [47] write on the

concept of virtual teams while DeSanctis and Monge in [48] review communication

processes for virtual organizations within the computer-mediated communication field.

With the emergence of workflow technology, the above-mentioned state can be

changed. By using workflow technology, the distributed collaborative design process

can be effectively controlled and managed.

 11

http://ccs.mit/edu/ph/

Literature Review

2.3 Workflow Management Systems

Workflow management has received much attention in recent years. It aims to

streamline, coordinate and monitor an organizational process involving human and

automated tasks spread across multiple enterprises with heterogeneous (existing and

new) computing environments.

Workflow management systems (WFMS) are software systems where processes are

modeled and enacted and are called workflows. Workflow modeling consists of

creating formal descriptions of workflows, called workflow models, which capture

various aspects of workflows, including the steps to be carried out, assignment of the

steps to processing entities, and relationships that exist among the steps, such as

control and data flow. Workflow enactment involves the coordination and control of

the execution of the different workflow steps according to the corresponding

workflow models. Apart from the modeling and enactment of workflows, WFMS

often provide additional functionality, such as monitoring tools that allow users to

keep track of currently executing workflows and facilities that allow users to analyze

workflow models as well as workflow executions.

By providing the aforementioned functionalities, WFMS can greatly benefit the

product development process occurring in a distributed collaborative environment.

The benefits can be divided into business-related and technology-related. One of the

obvious key business-related benefits is the reduction of lag time in routing work

tasks among people. This may result in increased productivity and reduced costs.

Concerning the technology-related benefits, WFMS can be regarded as meta-

programming tools that can be used to develop flexible distributed application, where

the basic instructions used are autonomous, heterogeneous applications.

 12

Literature Review

2.3.1 Basic Concepts

Workflow management involves the modeling and enactment of workflows. A

workflow can be either basic or complex with the latter consisting of further sub-

workflows. Thus we can use activities with arbitrary granularity to express the whole

workflow, which means an activity can be a trivial task such as a simple file saving

operation or it can be a complex task, such as a part design or subassembly process.

Activities are executed by processing entities, which may be people or software tools.

Figure 2.3 shows the details of some workflow concepts.

In this figure:

- Process is what is intended to happen

- Process Definition is a representation of what is intended to happen

- Process Instance is a representation of what is actually happening

- Work Item is a task allocated to a workflow participant

- Invoked Application is a computer tool/application used to support an activity

 13

Literature Review

Process

Process Definition W orkflow Managem ent System

Activities Process Instances

Activity Instances

Manual Activities Autom ated Activities

W ork Item s Invoked
Applications

Sub-Processes

Is defined in a Is managed by

Composed of

Used to manage and
create

Which may be

or During execution are
represented by

Which include

Include one or more

And/Or

Manage

Figure 2. 3 Workflow Concepts

Workflow Modeling

Workflow modeling denotes the creation of a workflow type, which is a formal

description of various aspects of a workflow, such as the activities to be carried out,

identified processing entities performing the activities, and dependencies/relationships

among the activities (e.g., data flow among the activities). An arbitrary number of

instances can be created from a workflow type.

Workflow Enactment

Workflow enactment involves the coordination of the execution of the activities that

workflows consist of according to the workflow model. More precisely - since

processing entities carry out activities, workflow enactment requires coordination

among the processing entities in executing the activities.

 14

Literature Review

Workflow Management System

The Workflow Management Coalition (WfMC), a standardization organization,

defines a WFMS as “a system that defines, creates, and manages the execution of

workflows through the use of software, running on one or more workflow engines,

which is able to interpret the process definition, interact with workflow participants,

and where required, invoke the use of IT tools and applications”.

A WFMS consists of two main functional components: a build-time component and a

run-time component (as shown in Figure 2.4). The build-time component provides

support for the development and persistent storage of workflow types. It offers to the

workflow modeler a workflow modeling language in which workflow types can be

expressed through appropriate tools, such as editors, browsers, and parsers/compilers.

Besides workflow modeling, the WFMS should also support organizational modeling,

which includes the specification of information about processing entities. Furthermore,

organizational relationships among actors may have to be defined in order to enable

the specification of activity assignment to actors based on organizational relationships,

which can also be very useful in automatic workflow modeling. Besides the

aforementioned functionality, the build-time component may provide additional

facilities to simulate workflow executions and analyze workflow types.

The run-time component focuses on the execution of the workflow. It supports the

creation and enactment of workflow instances according to the workflow types

created with the build-time component. During workflow enactment, the run-time

component interacts with the actors in order to ensure that the workflows are executed

as prescribed by the corresponding workflow types. The WFMS usually provides

monitoring tools that allow the workflow administrator to keep track of the execution

 15

Literature Review

progress of workflows. Also, logs about workflow executions are recorded by the

WFMS for the purpose of identifying bottlenecks, improving workflow types, etc.

B uild-tim e
C om ponent

R un-tim e
C om ponent

W ork flow
M ode l

O rgan iza tiona l
D ata

W orkflow
E nactm ent

D ata

W orkflow
A dm in istra tor

W orkflow
M odele r

A cto r
(M anua l)

A ctor
(A u tom atic)

W orkflow M anagem ent S ystem

Figure 2. 4 Functional Components of WFMS

2.3.2 Related Work on Workflow Management System (WFMS)

Workflow management systems have received widespread attention since the advent

of this technology in the late 1980s. The association for Information and Image

Management (AIIM) (http://www.aiim.org/) estimated the worldwide revenue for

workflow technologies to grow from $4.3bn in 2000 to $8.3bn in 2003 at a

compounded annual growth rate of 31%. Recently, WFMSs have spread beyond the

administrative environment and can also be found as embedded software components,

which enhance existing application packages (e.g., ERP systems) as well as

infrastructure components (such as application servers) with process management

functionality.

In this section, we discuss two particular aspects of WFMSs: Coordination and

integration.

 16

Literature Review

WFMS as Coordinating Systems

From a conceptual perspective, the purpose of a WFMS is the coordination of all

entities involved in the execution of a defined process. Coordination can be defined as

the management of dependencies between activities. In [60], the authors classified

dependencies and related coordination processes in a framework shown in Table 2.1.

Table 2. 1 Dependencies and Coordination Process

Dependency Description Coordination Process

Prerequisite An activity depends on the

output of another activity

Activity ordering

Shared Resource Multiple activities require the

same resource

Resource allocation

Simultaneity Two activities must be

performed at the same time

Activity synchronization

Task/Subtask Top-level goal is dependent on

the achievement of other goals

Goal decomposition

WFMSs address these dependencies through their coordination functions. Prerequisite

dependencies between activities are managed through the supervision of control and

data flows. Shared resources are managed through scheduling and staff resolution

mechanisms. Task/Subtask dependencies are addressed through the hierarchical

composition and decomposition of workflow models. Simultaneity constraints are

observed through event-based synchronization of processes and activities. Through

the automation of these coordination functions, WFMSs support several efficiency

goals of the enterprise, such as process efficiency, resource efficiency, motivation

efficiency, etc.

 17

Literature Review

It is apparent that the benefits of WFMSs increase with the number of coordination

tasks that can be automated through a workflow system. The number of coordination

tasks varies with the granularity of the components controlled through the workflow

system as well as with the type of the process controlled by the workflow system.

WFMS as Integration Systems

Integration is regarded as one of the primary goals during information system design.

Literally, integration means to form, coordinate, or blend something into a functioning

or unified whole with existing segregation. Two distinct types of integration can be

distinguished:

1. Integration through connection. This occurs if a new system is created through

the creation of links between disparate, but logically connected entities or sub-

systems. Typically this is an ex-post integration of existing systems, such as

the integration of enterprise applications through a WFMS.

2. Integration through combination. This occurs if similar system elements are

combined, thus leading to a decreased number of elements and relationships

within the system (in the sense of abstraction). Typically this form of

integration happens during the conceptual design phase of an information

system, for example the development of a complex application with an

integrated workflow layer for the transport of application data.

In [61], the author names reduction of redundancy, increased system consistency and

integrity, and better decision support through timely information supply as the main

goals of integration efforts. Integration can be characterized by the information type,

object, direction, scope, and realization of integration. In terms of the dimensions of

 18

Literature Review

integration, data integration, function integration, process integration, and object

integration can be distinguished. Integration can extend across an organization

horizontally (such as cross-organizational processes), or vertically (such as reporting

data flow up the organizational hierarchy).

The design of a WFMS creates integration requirements that can be internal and

external. Internal integration requirements concern those systems that a WFMS needs

to be connected to, in order to ensure the functionality of the core workflow system.

External integration requirements exist with regard to systems that either invoke the

workflow system from the outside (embedded usage), or systems that are invoked by

the WFMS.

Figure 2.5 summarizes the internal and external integration requirements of WFMS.

Figure 2. 5 Workflow Integration Requirements

Existing Systems

More than a concept, there are already some existing systems which can support the

management of a process, such as NELSIS [13], Ulysses [14] & Odyssey [15], WELD

 19

Literature Review

[16], OmniFlow [17] and ASTAI(R) [18]. But these systems have shortcoming

individually. For example, in NELSIS, each activity abstracts the (partial)

functionality of an automation tool, as well as controls its execution parameter. Also

hierarchical description of activities is also supported. But the human actions are not

included in the framework. The resources are also not effectively arranged around the

related activities. In Odyssey, the plan created by the Minerva module needs to be

defined carefully and all the related data need to be included at the design phase. It

does not support dynamic change; thus, it is not flexible enough for the design process

that is full of changes. The absence of the capability supporting dynamic changes

fully can also be found in the PDM systems that are available commercially, e.g.,

SmarTeam. In this thesis, these problems are to be addressed.

2.3 Summary

In this chapter, we describe and review distributed collaborative design and workflow

technology. Reasons are also given for combining workflow technology with

distributed collaborative design. It is obvious that to accommodate engineering design

containing complex CAD/CAE activities, the WFMS should employ workflow

technology as a coordination tool as well as an integration tool. It should be able to

not only coordinate design tasks and processes, but also integrate the available

CAD/CAE tools into the design environment.

In the following chapter, an infrastructure driven by workflow technology is proposed

to support distributed collaborative design well.

 20

Workflow-driven Framework

Chapter 3. Workflow-driven Framework

In this chapter, a framework that supports distributed collaborative design is proposed,

which is built upon and driven by workflow. Then the workflow modeling and

communication are detailed as two main parts of the framework. The dynamic

characteristic of this framework is also studied.

3.1 Requirement Analysis

According to [19], the requirements for the distributed collaborative design enterprise

architecture include the following:

1. Have an Internet-base architecture

2. Manage/track concurrent change in a non-obtrusive manner

3. Mange product configuration across multiple organizations

4. Find and retrieve managed objects across multiple organizations

5. Rapidly define, create, and manage design objects and processes

6. Rapidly integrate legacy tools

7. Trade off conceptual designs at the system level

8. Support multiple design representation and views

9. Capture a product’s behavior and its properties

10. Share objects over the Internet

11. Put constraints and rules on the objects

12. Capture design rationale

13. Capture requirement of a design

14. Have interoperability standards, such as PDM enablers and CORBA

 21

Workflow-driven Framework

Among these requirements, only the 5th point is about process management. But we

can see that all the other points can be well organized around the process management.

It can be process-guided as Figure 3.1 shows.

Figure 3. 1 Process-guided Distributed Collaborative Design

- Process management layer. This layer is at the top level. It will manage the

whole design process, including the definition, control, simulation and monitor

of the process. The process information will be stored in the process database.

- Communication layer. This layer is under the control of the process

management layer. It includes the communication between process layer and

application layer, as well as the communication happening at the application

layer.

- Application layer. The layer will carry out the design tasks. It integrates

different application software tools and human activities. These design tasks

are to be organized by the process management layer. The information

exchange is implemented through the communication layer. The generated

design results will be stored in the application database.

 22

Workflow-driven Framework

Through effective support of process management, enterprise resources can be

allocated to each process activity optimally.

3.2 System Architecture

The workflow-driven distributed collaborative design system framework can be

constructed which uses the workflow as its backbone (see Figure 3.2). In such a

framework, the workflow is: Event-driven, Constraint-triggered, and Decision-pushed,

automated design process. The focused issues of this framework are: data sharing,

work coordination, design quality control, accelerated design process and better

understanding between participants.

Figure 3. 2 Workflow-based Distributed Collaborative Design Framework

 23

Workflow-driven Framework

In the framework shown in Figure 3.2, each WFMS group residing in different

domains has a representative workflow engine. Such a representative workflow

engine has an interface to communicate with other representative workflow engine.

Through it, the information exchange between different domains can be implemented.

In a workflow domain, the interactions happening between different WFMSs are

realized by their workflow engines. Compared with the communication between

different domains, the communication happening here is at a low level with the same

meaning.

For a separate workflow system, the interactions between different tasks are carried

out by their task engines, which will be discussed next. Such a workflow system is

connected with a process database and a service manager. The process database is

used to store the process information of the workflow, such as process states, process

users, process resources and other log information. These data will be used to monitor

and optimize the process performance. The service manager stores the information

about services provided by the different engineers. It can be regarded as a service

broker. When a task requests a CAD/CAE service, it inquires the service manager. If

the service exists, the request will be sent to the provider and the results will be

returned to the task. The application database is used to store the data generated by the

application tools.

A workflow engine is shown in Figure 3.3.

 24

Workflow-driven Framework

P ro c e s s H a n d le r

R u le s H a n d le r

S ta te H a n d le r

W o rk L is t

M a in ta in w o rk flo w
c o n tro l d a ta

In v o k e a p p lic a tio n s

Figure 3. 3 Structure of Workflow Engine

In Figure 3.3, the process handler, rules handler and state handler are the three main

parts of the workflow engine.

1. Process handler

It provides flow control over business processes and practices of mission-

critical applications.

2. Rule handler

It enables users to enter, manage and easily change the business policies. It

consists of 3 parts:

- Rule Manager

This is responsible for collecting the business rules that should be executed

by the workflow engine on behalf of the consumer prior to transitioning to

a new state in a given workflow activity.

- Rule

This one stores all information about a rule that is to be executed by the

workflow engine prior to state transition.

 25

Workflow-driven Framework

- Rule Args

This is used to hold additional data required by a business rule in order to

perform rule validation

These three classes will be what a developer interacts with in order to create and

manage custom business rules

3. State handler

When an event e is invoked on a workflow instance I, the following algorithm is

executed:

- The current state Scurrent is determined

- The transition t from Scurrent to Snext which has the event e is determined

- If t is not exactly defined, an exception is thrown

- All conditions of t are validated

- If all conditions are complied, the transition t fires

- All assignments of t are executed

- The workflow instance I is advanced to the state Snext

3.3 Workflow Meta-model

A meta-model is a precise definition of the constructs and rules needed to build

specific models within a domain of interest [63].

Workflow meta-model is fundamental to the study of a workflow system. It is a

representational language by which to express workflow models (to be described in

detail in the following contents). From Figure 3.4, we can see that all the other models

are derived from their meta-model. The meta-model determines how information is

organized, stored and accessed in the system, how well data integrity can be

 26

Workflow-driven Framework

maintained, and how easily the existing model can be extended to accommodate new

needs.

Organization
Model

Organization
Metamodel

Process
Model

Task
Specification

Role

Workflow
Metamodel

Workflow
Model

Process
Metamodel

Assignment

Figure 3. 4 Meta-model-centered Workflow Model Definition

In a workflow meta-model,

- A task is a definite piece of work.

- A role is a logical abstraction of one or more physical actors, usually in terms

of functionality.

- A process model is an abstraction of processes. It emphasizes the coordination

of tasks by highlighting their interdependence.

- An organization model is an abstraction of organizations.

- A workflow model combines a process model and an organizational model.

 27

Workflow-driven Framework

In this section, requirements for workflow meta-model are first discussed from two

aspects: process meta-model and organization meta-model. And then the meta-model

that can fulfill these requirements is proposed by using UML technology.

3.3.1 Process Meta-model

Requirements

According to the analysis of the development process, the use case diagram is shown

in Figure 3.5.

A dm in istra to r

D e fine P rocess V erify P rocess C hange P rocess S im ula te P rocess E xecute P rocess M onito r P rocess

A ctor

Figure 3. 5 Use Case Diagram of Operation

The basic scenarios that can be extracted from the use case diagram include:

- Administrator can define, verify, change, simulate, execute and monitor all

processes

- Actor can only simulate and execute processes.

In Figure 3.5, the process is the center of all operations. The requirements for the

workflow meta-model concerning the modeling of the process aspect are identified as

follows:

 28

Workflow-driven Framework

- Specification of atomic and composite processes. As a basic requirement, a

process meta-model should support the specification of the basic tasks or

services that the processing entities provide. Furthermore, a process meta-

model should also support the specification of composite processes, which are

aggregates of basic tasks.

- Composition of processes. Concerning the specification of composite

processes, it is essential that a process meta-model supports the composition of

new processes out of existing ones.

- Local structuring of process. A process can be very complex and may consist

of a large number of tasks. Therefore, a process model should provide

mechanisms that can bring tasks together into a group.

Modeling Concepts

Figure 3.6 illustrates the constructs of the process meta-model. The central part of the

process meta-model is the process definition, which is abstracted as a textual and an

interface. The interface defines the aspects that are visible to other workflow

definitions and can be referred to by them. A process definition is either a task,

representing a basic activity, or a compound process definition. And the compound

process definition in turn can be either a sub-process or a task-group. A task-group

structures parts of a compound process definition, without in turn being a full-fledged

process.

 29

Workflow-driven Framework

Figure 3. 6 Constructs of Process Meta-model

The detailed definition of concepts composing process is shown in Figure 3.7.

Task
id
name
description
state
precedingTasks
succeedingTasks
precedingTaskgroups
succeedingTaskgroups
failureProcessors
parentProcess
subProcess
processingTime
earliestStartingTime
latestFinishingTime
plannedStartingTime
plannedFinishingTime
startingTime
finishingTime
users
resources
documents
taskType

add()
getState()
remove()
setState()

Subprocess:
Process

Taskgroup
id
name

addTask()
removeTask()
opname()
isFinished()

Process
id
name
description
state
tasks
earliestStartingTime
latestFinishingTime
plannedStartingTime
plannedFinishingTime
startingTime
finishingTIme
users
resources
documents

add()
getState()
getTasks()
removeTask()

Figure 3. 7 Detailed Definition of Process Concepts

 30

Workflow-driven Framework

Among these classes, the task class is the one that is used to construct the other

classes.

In the definition of process concepts, some attributes and operations are important for

the implementation of dynamic changes of processes:

- Time attributes are very important. It can serve as a time stamp that can help

to form a dynamic workflow, and is very useful when failure happens during

the execution of workflow instance. Among these time attributes, finishing

time can be used as a trigger to implement dynamic changes of workflow

model.

- State. This attribute is used to indicate the state of the task or the process. The

state of a task-group should be determined by the combination of tasks

included in the task-group. The state can be one of these: not available,

waiting, ready, working, suspended, aborted, obsolete and finished. The

change of state can also trigger the dynamic change of tasks or processes.

- Add and remove operations. These operations can be called during build time

or run time. When they are called by a workflow engine during the execution

of processes, processes configurations are altered, which means that the

dynamic changes of processes have happened.

3.3.2 Organization Meta-model

Requirements

Since certain processing entities may have overlapping or identical capabilities, there

might be more than one processing entities that are able to execute a given activity.

 31

Workflow-driven Framework

Thus, for each activity that can potentially be executed by more than one processing

entities, the question arises at runtime, as to which processing entity that the activity

should actually be executed. A simple approach is to assign each activity to a specific

processing entity prior to runtime. Such an approach, however, is very inflexible and

has several drawbacks. For instance, in case the processing entity that an activity has

been assigned to is unavailable at runtime, the activity will not be executed although

another processing entity that could execute it might be available. In general, the

assignment of activities to processing entities should be possible on the basis of:

- Individual properties of processing entities

- Relationships between processing entities and organization entities (such as

other processing entities, groups or roles)

In order to support the specification of activity assignment based on the above aspects,

the organization meta-model has to support the modeling of processing entities, the

properties of processing entities, and relationships that exist among processing entities.

Most existing approaches either do not support organization modeling at all or use a

fixed organization model. Many WFMSs provide a role concept for organization

modeling, where a role contains a set of characteristics and capabilities of a set of

processing entities such that each processing entity can play one or more roles. Here a

new definition for role is proposed to avoid the case that activities are not directly

associated with processing entities but with roles. It has the following features:

- It is generic, in the sense that it is not tightly bound to a specific process, but

expresses general properties that can be used in different processes.

 32

Workflow-driven Framework

- Then, it is related to contexts. For example, any person in an organization that

is authorized to do the same thing will play the same role, but in different

phases, the same role may use different resources. So this means that the role

may be imposed specific rules or some local capabilities by each phrase or

each process.

- Finally, the role should have a standard list of Input/Output parameters to

provide services. In this way, the roles can be understood by one another.

Otherwise, the interaction between them will be difficult.

The XML expression of role definition is shown in Figure 3.8. There are three main

parts that have to be specified in the XML Schema of a role, following the model

described above:

- The basic information. This part includes the information used to identify the

role, and to specify a context for such role.

- The provided services. Each role providers are expected to provide some

services. Each service is characterized by a name, an input list and an output

list.

- The allowed actions. These actions are used to carry out a task related to a role.

An action is characterized by a name and a description. Moreover, two

elements are used to specify the execution condition of an action and the

content of such an action.

 33

Workflow-driven Framework

Figure 3. 8 The XML Schema for Roles Defined

Modeling Concepts

We view an organization as a set of organization entities (such as processing entities,

groups and roles), and a set of organization relationships that exist among the roles to

which organization entities belong.

As illustrated in Figure 3.9, an organization entity defines a name, a set of attributes

and a role, where an attribute definition is a pair (attribute name, attribute type). An

organization relationship specifies a name and associates two or more roles. Since the

kinds of entities and relationships may differ considerably from organization to

organization, the organization model is not fixed and the specification of user-defined

organization entity and relationship is supported.

 34

Workflow-driven Framework

O rgan iza tion

O rgan iza tion en tity O rgan iza tion re la tionsh ip

A ttr ibu te D e fin tion

R o le

1

0 ..*

1

0 ..*

1

1 ..*

0 ..1

2 ..*

Figure 3. 9 Constructs of Organization Meta-model

The detailed definition of concepts for composing an organization is shown in Figure

3.10. Among the operations of each class definition, there are add and remove

operations, which allow the instances of these classes to be changed dynamically.

Organization E ntity
n ame
d escript ion
role
p rocess es
t asks

a ddTask()
rem oveTask ()
a ddProcess ()
rem oveProcess()

Role

Res ource

Org aniz ati on

addE ntity ()
rem oveE ntity ()
getRelationship()
setRelationship()

Organizaiton
Relationship

addRole()
rem oveRole()

Figure 3. 10 Detailed Definition of Organization Concepts

3.4 Workflow-driven Communication

Design is a highly diverse social activity, especially for distributed collaborative

design. Its success depends in part, on the effectiveness of communication channels

between members of the design team. The diversity of activity together with ever

challenging customer requirements leads to teams greater in size and complexity with

 35

Workflow-driven Framework

higher levels of knowledge requirements. So it is necessary for the team members to

understand each other very well through effective communication. Furthermore, the

reliance on communication increases in distributed scenarios – problems including the

inability to make decisions, misunderstanding, and poor quality of work can be

attributed to poor or inefficient communication.

3.4.1 Communication in Design Process

Much of current communication happening during communication process is either

synchronous or asynchronous. When synchronous communication is used, the maker

of a request waits for the recipient to finish. This is the model of telephone calls and

procedure calls. Synchronous communication has the advantage that the requestor has

an easy time knowing what a response is about, but the disadvantage that the

requestor has to wait for the answer (when it could be doing other things). In an

asynchronous communication, a requestor sends off a request and then continues

about its business. This is like a letter or event-based messaging system.

Asynchronous communication has the advantage that the requestor can continue

processing while the request is being handled, but the disadvantage that there is no

simple way to match responses to the requestor's code.

In [24], the communication flow within a distributed collaborative design process in

an industrial company was investigated. One major finding is that asynchronous

communication tools are found to be significantly more prevalent than synchronous

tools.

This phenomenon can be explained by the slight time difference and the difficulty

inherent in the availability of dispersed colleagues. More significantly, it may be that

 36

Workflow-driven Framework

the bulk of the subject of interaction is only supplementary to the ongoing design

activity with only periods of core designing done distributively, especially in a

synchronous mode. Such rules can also be found in other kinds of distributed

collaborative design environments.

In addition, many of today’s collaborative tools, such as video conferencing tools, are

highly interactive and only support formal meetings. Although video conferencing is

an important part of a collaborative environment, much of the collaboration requires

more informal and asynchronous mechanisms. Especially when collaborations are

worldwide and often extend beyond normal working hours, asynchronous

communication becomes critical.

In the distributed collaborative design environment that is driven by workflow

technology, in order to facilitate the asynchronous communication between

participants, the following issues should be carefully considered in the WFMS:

- The communication model

- The communication protocol

- The communication framework

- The communication path

Communication Model

There are several types of communication models.

Direct Method Call

 37

Workflow-driven Framework

In remote procedure calls (RPC), distributed objects access one another through direct

method calls. This was very common in early distributed systems: a central lookup

service provides a client with the location, methods, and method parameters with

which to execute an operation. An RPC schema is typically effective for small

synchronous systems of objects [60].

Task-based Message

A second model uses task-based messages, whereby the code to complete a task is

given from the client to a remote object. The remote object then executes the code

inside the task, presumably more effectively due to its specialized resources. An

example of such a system can be found in the Java-RMI tutorial.

Event-based Message

Event-based message is a communication model in which distributed objects access

one another through events that are passed from suppliers to consumers. This is

necessary for systems in which asynchronous communications are needed. Events

may be used in a push model, in which they are broadcast by the supplier; or they may

be used in a pull model, in which the consumer requests the events.

In general, there are three classes of events in such systems:

1. Internal events (e.g. events generated by activities like activity finished)

2. Clock events (generated by an external clock)

3. Administrative events (generated by a user, e.g. start process)

In a design environment where most of the communications are asynchronous, the

event-based messaging model is adopted in this thesis.

 38

Workflow-driven Framework

Communication Protocol

As we know, design is a complex process with multiple activities. Different engineers

perform different tasks in the design process, and data must flow among these

engineers to ensure that the overall design is free from discrepancies. If the required

software is not available locally, engineers must be able to find the software and

operate it remotely. Moreover, in a dynamic product development environment, new

engineers or those with different expertise may join the product design team, and they

must be able to access the design process instantly, anytime and anywhere. Therefore

the software framework must be web-based. HTTP is a most common communication

protocol on the web. Because it is ubiquitous and widely supported, it is a reasonable

option for building distributed systems.

Communication framework

To support multi-level communication, a hierarchical communication framework can

be established, as shown in Figure 3.11.

Figure 3. 11 Communication Framework

In this framework, interactions exist among tasks residing in each process, and also

among workflow engines (representing different processes). The communication

 39

Workflow-driven Framework

between workflow processes will be executed by workflow engine, while the

communication between tasks is carried out by task engine by using the

request/response mode.

Communication Path

Regarding the paths routed in the communication process, the backup and recovery of

communication should be carefully considered. This is not the focus in this thesis and

will not be discussed.

3.4.2 State-oriented Communication

Although there is much development in workflow technology, there are not many

research efforts focusing on the aforementioned asynchronous communications.

Furthermore, most of the existing communication mechanisms are at the process level

rather than the task level. These mainly concerned the communication and connection

between different WFMSs that reside in different domains while the means to

implement asynchronous communication between tasks are not studied deeply. Here a

state-oriented communication mechanism is proposed to solve this problem. The basic

concept of this mechanism is that the communication between tasks is determined and

triggered by the states of the tasks. The workflow process is executed through the

change of each task’s state. These changes happen as a result of the communication

between tasks.

But firstly, we introduce the state changes that can happen to workflow instances and

workflow tasks.

 40

Workflow-driven Framework

Workflow Instance State Change

During each phase of its enactment, a workflow instance maintains a well-defined

state. This state may be modified through the workflow engine or through an external

entity interacting with the workflow engine. Figure 3.12 shows the state model of a

workflow instance in the form of a UML state diagram. The model is composed of the

two super-states “doing” and “done”. A workflow instance in the state “doing” can be

manipulated through the workflow engine or an external entity, while a workflow

instance in the state “done” is finished and cannot be reactivated.

A “doing” workflow instance can be finished either by completion, or by forced

termination. In the latter case, the resulting state can be aborted, if running activities

at times of the cancellation command were allowed to complete. If the cancellation of

the workflow instance leads to the immediate cancellation of running activity

instances, the resulting state is terminated (also known as forced abort).

ready

suspended

runn ing

S
ta

rt

suspend
resum e

term inated

aborted

fin ished

term inate

abort

com ple te

instantia te

D oing D one

Figure 3. 12 Workflow Instance State Change Diagram

 41

Workflow-driven Framework

Workflow Task State Change

Similar to workflow instances, each task instance follows a lifecycle that can be

described using a state diagram. Figure 3.13 shows the state-change-diagram for a

typical task instance. Like the state-change-diagram of the workflow instance, this

model consists of several nested states. A task instance is either in the state “doing”,

and can be started, suspended etc., or it is in the state “done”, if it has been completed

or aborted. Upon activation by the workflow engine, a task instance is in the state

ready, indicating that it is ready for execution.

If the task instance is assigned to an arbitrary number of workflow participants (i.e.,

via a role or an organizational entity such as a department), the task instance will be

visible to all authorized participants through a work item on their shared work list.

Once a participant selects the work item representing the task instance for further

processing, the task instance changes into the running state. A running task may be

suspended and resumed an arbitrary number of times.

ready

suspended

running

S
ta

rt

suspend
resume

aborted

finished

abort

complete

activate

Doing

Done

Figure 3. 13 Workflow Task State Change Diagram

 42

Workflow-driven Framework

Different communications take place according to the state of tasks. Therefore a state-

event table (see Table 3.1) that includes pairs of state and event is needed. Compared

with the workflow engine that is in charge of the whole workflow, here we use a task

engine which is embedded in a task to maintain such a table and manage the behavior

of each task.

Table 3. 1 State_Event Table

State Event
Send_NAInfo() Not Available
On_NA()
Send_ReadyInfo() Ready
On_Ready()
Send_SuspendedInfo() Suspended
On_Suspended()
Send_RunningInfo() Running
On_Running()
Send_AbortedInfo() Aborted
On_Aborted()
Send_FinishedInfo() Finished
On_Finished()

Here Send_XXInfo() means that the task engine sends its state information to the

workflow engine after every defined period for the purpose of external control.

On_XX() event happens when the task reaches a certain state, and it will be

explained and executed by the task itself.

In Table 3.1, according to the available states of each task, sub-process and process,

more events can be defined. These events will be used to trigger the target workflow

tasks. Users can decide on the contents of these events and sequentially control the

execution of the workflow process. By these user-defined events, continuous and

asynchronous communications can be implemented.

 43

Workflow-driven Framework

In this manner, the workflow engine just needs to manage the states of each task.

Each task is an autonomous processing cell. So the workload of the workflow engine

can be greatly lightened, and the network traffic will also not be heavy. The

relationship between the workflow engine and the task engine is shown in Figure 3.14.

W o rk flow E ng ine

T ask 1 T ask 2 T ask n

T ask
E n g in e

T ask
E n g in e

T ask
E n g in e...

Figure 3. 14 Relationship between Workflow Engine and Task Engine

The workflow administrator can control the whole workflow process by managing the

workflow engine. When a task’s behavior needs to be modified manually, the

administrator can change its state stored in the workflow engine. Then the state-

change message will be transferred to the task and change the task’s action. In this

way, the administrator can control the process at a higher level. It will be more

convenient and easier.

3.5 Related Issues

3.5.1 Service Registration

To integrate the CAD/CAE tools provided by the dispersed users, the framework

supports the registration of these services.

Engineers who wish to provide services over the Internet should fill the registration

form which will be stored by the service manager. The engineer must define the

 44

Workflow-driven Framework

service name, and program script to be executed by remote request, and input operator

name, service type, and description of the service. The registration form is shown in

Table 3.2.

Table 3. 2 Service Registration Form

Service Element Value
Service Name CAX
Server Information IP address
ClassPath Path of exexcution file
Script Macro instruction
Operator User
Service Type Automatic/Manual
Description

In automatic service type, the application tool executes the user-defined script with a

remote method invocation call. Otherwise, it prompts a notifying dialog box to inform

the engineer that a request has arrived from another engineer.

The services provided can be changed, e.g., engineer can just drop the service from

service table, or register a new service. So both external and internal services can be

integrated into the system dynamically, contributing to the scalability of this

framework. By using the service registration mechanism, this framework can be more

extensible and more powerful.

3.5.2 Design Session Management

In order to carry out distributed collaborative design effectively, network-based

sessions are established in distributed product design environment to support reliable

collaboration between geographically dispersed engineering teams. In a collaborative

session, different engineers can share the common data and communicate with each

other through conferencing tools, such as email, instant messaging tools, etc.

 45

Workflow-driven Framework

Traditionally, a session refers to the process that a group of users connect from

various locations to work together on shared data or use conferencing tools to

communicate ideas. However, collaborative product design activities include

asynchronous activities as well as synchronous activities. Dependencies exist between

sequential activities, that is, even if one may work as an individual to perform an

asynchronous collaboration activity, he still works on shared resources which may

affect other collaboration activities. In addition, the functions of traditional network-

based sessions have to be extended in order to facilitate both design and analysis

activities, such as providing co-modeling, visualization of meshing result and

engineering data. Thus, the definition of session for collaborative product design may

be extended as: The process in which multi-disciplinary designers, who may be from

geographically dispersed locations, work together to design a product or analyze

engineering results, synchronously or asynchronously, with the help of collaboration

tools.

Here the session can be classified into two types: short session and long session. A

short session means the session including just one activity, such as defining product

functions. While a long session means the session that includes two or more activities,

such as design of product geometry model which needs CAD design, CAE analysis

and simulation.

In this way, a session can be represented by an activity or a sub-process (or process, if

this process includes just one session), and the workflow of design is then composed

by sessions (see Figure 3.15). The session management can also be the management

of an activity or a process. When a design workflow model is instantiated, a process,

including corresponding activities, is created. Then as a workflow node is activated,

 46

Workflow-driven Framework

the session responsible for executing this node is invoked automatically. Thus

dispersed designers can join this session to complete the activity collaboratively. If it

is a short session, the task engine can handle the events and communication

happening in the session. If this activity includes a long session, the communication

between task engines is needed and the workflow engine will control these

interactions.

Start Activity1 End

Session1 Session2 Session3

Activity2 Activity3 Activity4 Activity5

Figure 3. 15 Process Composed by Sessions

During the execution of a session, two kinds of concurrency happen which should be

considered carefully. One kind is the concurrency taking place in the session. This

issue has been discussed in [59] which incorporates a centralized coordination

mechanism (CCM) (see Figure 3.16) and a synchronization scheme to solve this

problem.

Figure 3. 16 Centralized Coordination Mechanism (CCM)

 47

Workflow-driven Framework

Another kind of concurrency is taking place between several sessions. As a workflow

model can be used by multiple workflow instances, which leads to call for several

sessions of the same type. It is possible that these sessions invoke an application tool

and other resources, or write/read same data at the same time. Thus a mechanism

should be used to coordinate these synchronous operations. The process handler

embedded in the workflow engine can handle it based on a first-come-first-serve

protocol. For example, when session A calls a CAD tool, the process handler registers

this session firstly, and then invokes the CAD tool for session A. As session B needs

to use this CAD tool, the process handler checks its register list and let session B wait

until session A ends the usage of this CAD tool. By this means, all the sessions can be

served.

3.6 Summary

In this chapter, requirements are analyzed. Then a workflow-based design framework

is proposed. This framework takes full advantage of workflow technology and is

extensible and flexible. To implement this framework, workflow meta-model and

state-oriented communication are discussed in detail. Then the related issues: service

registration and session management are also presented. This framework can

effectively support distributed collaborative design and deal with the problems that

possibly happen in engineering design process. In the next chapter, the dynamic

feature of the design process is to be studied in detail.

 48

Dynamic Workflow Change Management

Chapter 4. Dynamic Workflow Change Management

Typically, the design process is constantly changing, such as new customer

requirements have to be met, business processes are reengineered, or new legal

requirements to change the way the design is carried out. All these factors can greatly

affect the execution of the design process. These dynamic changes can be more

frequent in a distributed and collaborative environment, especially for the technology-

intensive product development. Current workflow management systems are capable

of handling static business processes. However, dynamic workflow change has not

been addressed by most workflow management systems. The inability to support

dynamic workflow change compromises the application of workflow system in

certain scenarios.

Therefore, to fully facilitate a design process, the proposed framework must be able to

fulfill dynamic change requirements. In this chapter, an approach is proposed to

facilitate efficient management of dynamic workflow change by minimizing

unnecessary or repeat execution of tasks after the change takes effect. In addition,

limitation of the approach is discussed.

4.1 Introduction

As a tool to model, execute and control business processes, a workflow management

system can computerize business processes as workflows, store them in a database,

and carry them out by a workflow engine.

From the perspective of organizations adopting workflow solutions to manage

business processes, these business processes should be as static as possible since:

 49

Dynamic Workflow Change Management

(1) A business process is typically executed in many cases where its static nature

makes these related cases foreseeable;

(2) Dynamic behaviors of business processes make involved elements, including

human, equipment, and information, difficult to handle since these elements

are initially designed to cope with the specified process.

Therefore, organizations take very cautious measures to define their business

processes and seldom change them. In accordance with the abovementioned fact, most

workflow management solutions are designed to cope with business processes in

static manner, e.g., a workflow template for a business process is defined and

executed till its completion. There is not much functionality provided by these

solutions to handle dynamic behaviors, such as changes of the running workflow on-

the-fly.

Unfortunately, process change does exist in real business environment due to two

reasons:

(1) At design time, the specification of the workflow is not complete due to lack

of knowledge and at run time errors may happen;

(2) While during the execution of the workflow instances, changes occur causing

various problems, such as breakdowns, reduced quality of services, and

inconsistencies.

Therefore, the system should be ready to handle these undesirable events related to

the dynamic aspects of workflows.

 50

Dynamic Workflow Change Management

Once process changes occur, new workflow templates are defined for all new process

cases. However, it is critical to handle existing cases based on old workflow templates.

Basically, there are 4 possible policies to follow:

(1) Forward recovery. These old cases are aborted and handled outside of the

workflow management system;

(2) Backward recovery. These old cases are stopped and restarted according to the

new workflow template;

(3) Proceed. These old cases proceed as if the change has not occurred. New

cases are executed based on the new template;

(4) Transfer. These old cases are transferred to the new workflow template and

executed.

Most workflow management systems are able to implement the first three policies in

various degrees. The example illustrated in Table 4.1 shows how forward recovery,

backward recovery and proceed policies are realized in a PDM system, SmarTeam.

However, the forth policy, transfer, is not effectively supported in SmarTeam. Before

applying the new workflow template, the old instance has to be stopped, followed by

a restart. Restarting a workflow may lose some key runtime information since the

state of the workflow instance is refreshed to the original value. More importantly,

some completed tasks have to be carried out unnecessarily after restarting the

workflow instance. If the affected workflow instance is complex and involves a

number of external collaborators, substantial business cost will be incurred.

 51

Dynamic Workflow Change Management

Table 4. 1 Change Management in SmarTeam

Forward

recovery

The administrator stops the workflow and handles the change manually.

Backward

recovery

The administrator stops/deletes the associated process, defines the new

workflow template, associates the process with the new template, and

initiate the process. If the stopped process on the old template causes

anything that needs to be cleared, the administrator does it manually.

Proceed The administrator does not do anything to the associated process.

Therefore, dynamic workflow change management comes in as a potential solution. A

dynamic change can happen on a single workflow instance or a set of instances under

their common workflow template. A workflow management system, if it supports

dynamic workflow change, can either modify the affected instance without restarting

it, or re-initiate it from the new workflow template while minimizing the work to be

performed by affected users. The first method is instance-based while the second is

template-based (schema evolution).

In this thesis, an approach is proposed to address template-based dynamic workflow

change instead of instance-based change. This is based on an industrial practice that a

new workflow instance is initiated from its template, instead of another workflow

instance. The approach is implemented in a popular PDM system SmarTeam to

demonstrate its feasibility.

 52

Dynamic Workflow Change Management

This chapter is organized as below: firstly related works on dynamic workflow change

are introduced; then the proposed approach is presented; the following part gives

implementation details and examples; and finally the summary of the work.

4.2 Related works

Existing works on workflow can be classified into the following categories: (1)

modeling technologies, (2) analysis and verification, (3) design and implementation,

and (4) workflow change.

In these four topics, dynamic workflow change still remains an unsolved problem.

Casati et al. [50] proposed a method to facilitate change of workflow schemas by

applying a complete, minimal and consistent set of modification primitives. His

analysis was performed at theoretical level and did not provide implementation details.

Van der Aalst adopted the concept of workflow inheritance to handle dynamic

workflow change [51, 52]. A limitation of his approach is that changes only happen to

workflows with inheritance relationship. Shingo defined the cost of dynamic

workflow change as change times to evaluate the performance of basic workflow

changes [53]. Ellis presented Petri-Net based approach to handle dynamic changes in

workflow systems [54]. He also reported ML-DEWS as a modeling language to

support dynamic workflow changes [55]. Reichert et al. developed a method,

ADEPT-flex, to facilitate dynamic changes of workflow [56, 57]. In his work, three

kinds of dynamic changes were discussed, namely, insertion of tasks, deletion of tasks,

and change of task sequences.

Most of existing researches on dynamic workflow change focus on theoretical aspects.

Due to lack of research addressing implementation issues, present commercial

 53

Dynamic Workflow Change Management

solutions are not capable to manage dynamic workflow change. Therefore, it is

significant to investigate how to make the dynamic workflow change management

happen in actual environments.

4.3 Problem Statement

As a computerized business process, a workflow can be modeled by a number of

formal ways. In this thesis, however, a simple representation is adopted for simplified

algorithm and straightforward implementation. With respect to simple representation,

a workflow W can be denoted as a set of nodes:

 W (1) }{nN ==

Here a node n stands for a tuple ({ , with t denoting a task, denoting a

user, and c denoting a connector of the specified node.

}){},{}, cut u

),,(nnrEach connector c is also denoted as a tuple c es= where r is the response of

, is the node from which the connector starts, and is the node to which ends. c n n cs e

During the execution of a workflow, the users of an active workflow node perform

tasks specified in the node and issue responses to all following nodes based on the

completion of these tasks. If all tasks are completed successfully, the response is

positive, normally indicated by ‘accept’. If some problems are encountered, the users

issue negative response, normally indicated by ‘reject’, to notify other users, pre-

defined by the workflow, to re-perform their tasks.

Note that the above description is to a large degree simplified to focus on control logic

of workflow. In a complete workflow model, however, there are other essential

 54

Dynamic Workflow Change Management

properties mentioned in chapter 3, including (1) document, (2) resource, and (3) event

logic. Document is the information attached to specific nodes or passed between two

nodes. In most cases, the output information from a preceding node is the input

information to a succeeding node. Resource refers to equipments or facilities occupied

by a node when the node is being executed by its users. Event logic is a set of pre-

defined actions triggered by events associated with a node. Normally, event logic is

implemented as scripts that are associated with specific nodes and managed by

workflow management system.

Here the primary object is to develop an approach to manage dynamic workflow

change from the perspective of workflow control logic; so document, resource and

event logic are not considered.

In actual manufacturing environment, once a workflow instance gets initiated, it

cannot be changed without being stopped first. At the moment of stopping, the

workflow instance can be represented as below:

 W uaf (2) NNN UU=

Here, denotes all finished nodes, N denotes all active nodes, or nodes being

executed, and N denotes all unreached nodes. N actually defines a `front' of the

current workflow.

fN

N

a

u a

For each node n f∈ , a specific amount of business cost is rendered for the

execution of all tasks of n by its users. The cost may include components like time

spent and resources consumed. Therefore, the total cost incurred at the specific

 55

Dynamic Workflow Change Management

moment, namely the sum of cost for each finished node, can be represented as

following:

 ∑
∈ fNn

nsS)(=

oooo

o o

o

..

 (3)

Once a workflow instance is subject to a dynamic change, it has to be shut down,

attached with a new workflow template, and re-started. Under the new template, the

workflow instance can be denoted as below:

 (4) UU uaf NNNW =

Here . However, in case that the new workflow instance W has some nodes

which have been executed in W , e.g., , there is the possibility that some

tasks need not to be re-executed. Therefore, the problem can be stated as identification

of nodes that satisfy three conditions:

∅=fN

∅≠IWN f

N

(1) These nodes exist in both old and new workflow instances;

(2) They have been executed in the old workflow instance;

(3) The results associated with these nodes in the old workflow instance can be

reused in the new workflow instance without having their users carry out their

tasks again.

In this way, the cost of re-executing the new workflow can be reduced to

 ∑ ∑
∈ ∈

o

Wn Nn

nsnsS
..

)()(−= (5)

 56

Dynamic Workflow Change Management

Obviously, to achieve maximum business benefit upon the dynamic change of

workflow, as many nodes in should be identified as possible.
..
N

Another indicator for efficiency of dynamic workflow change management is defined

as below:

o

W

N
e

f

f =

o

→

n

n

 (6)

4.4 Mechanism

Given workflow template W and , for a node , there are two

possibilities:

o

W
o

IWNn f∈

(1) It can be bypassed;

(2) It has to be re-executed.

A bypass-able node n can be denoted as n . To determine if n can be bypassed, the

following fact is introduced.

Fact 1 A node is by-passable iff the following two conditions are satisfied:

(1) All preceding nodes of n are by-passable;

(2) And has been executed in the old workflow instance W .

 57

Dynamic Workflow Change Management

Here, a preceding node of n sits between and , the start node of the workflow.

The preceding node of n can be denoted as . If n and are directly

connected, is an immediate preceding node of n and denoted as .

n n

'' '

•

o

o

WN ⊂

∅←N

o o

ooo

truef ←

o

falsef ←

o

N∈

0

nnn →: n

'n nnn →'' :

Therefore, the algorithm for identifying all by-passable nodes in W is straightforward

as below:

In the above algorithm, a set of by-passable node in the new workflow instance

Algorithm 1. Identify by-passable nodes in new workflow W

Obtain f

f {Initially there is no by-passable node}

Set as by-passable and add it into 0n fN

Set node pool }{ 0nWN p −←

Set flag

while and do ∅≠pN truef =

for all do pNn∈

if n then f

 58

Dynamic Workflow Change Management

Build preceding node set for node }:{ nnn →''

o

o o

truef

n

if then fNnnn ∈∈∀ ''' :}{

Remove from to n pN fN

Set n as by-passable

 ←

end if

end if

end for

end while

o

1− 1

W is returned. The workflow engine can set the state of these nodes to ‘finished’ and

users associated with these nodes need not re-perform their tasks in the new workflow

instance.

The algorithm sets up a node pool and scans all nodes inside the pool repeatedly to

identify and remove out by-passable nodes. In the worst case, the algorithm has to

scan the pool N times while the size of the pool starts with −N and ends with

, where N refers to the number of nodes in the workflow instance. Therefore, the

algorithm has a complexity, which is not computationally optimal.

0

)(2nO

In general, the number of nodes in a workflow is less than 100; so algorithm

complexity is not a major issue. However, in certain cases, more efficient searching

 59

Dynamic Workflow Change Management

approach is preferred and the connecting information kept in each node can be

exploited to expedite identification of all by-passable nodes. An alternate algorithm is

proposed as below.

The complexity of the second algorithm depends on the topology of the processed

workflow. In the best case where the workflow has a linear structure, the algorithm

can finish with O complexity. In the worst case where the workflow has a

balance-tree-like topology, the complexity goes up to O .

)(n

)lg(nn

o

n

f 0

0=f

o

o

1←f

Based on the above approaches, the change of a workflow template can be reflected

into all instances under the template and the cost for users to carry out their finished

tasks in the new workflow has been reduced as suggested in equation 5.

Algorithm 2. Identify by-passable nodes in new workflow W

Require: a node as the parameter

Require: a global flag with initial value

if then

Set ∅←fN

Set current node 0nn ←

end if

 60

Dynamic Workflow Change Management

if and then fNn∈
→•

o

o

o

→∀ '' : nnn

Add into n fN

Build the following node set of nN n

for all do nNn∈

Set n as the parameter and fork a thread of this algorithm

end for

end if

Correctness of state of all nodes in the new workflow instance after the dynamic

change takes effect is guaranteed since the algorithm will not bypass a node unless all

of its preceding nodes get bypassed.

4.5 Exception handling

The general scenario of for a template-based workflow change, or schema evolution,

is to apply the new workflow template on all running workflow instances under the

original workflow template. In a workflow system, the transfer proceeds in the

following steps:

(1) Create the new template 'T based on old one T

(2) Find all instances { initiated from }: TWW < T

(3) Apply 'T to all instances of }{W

 61

Dynamic Workflow Change Management

In certain cases, it is necessary just to transfer part of { into the new template.

Therefore, the above process should be changed as below:

}W

(1) Create the new template 'T based on old one T

(2) Find all instances { initiated from T }: TWW <

''

'

(3) Identify all instances to undergo transfer }}{:{ WWW ∈

(4) Apply T to all instances of }{W

In above approach, step (3) can be operated manually by an administrator.

However, a mechanism is preferred to enable automatic identification of instances for

transfer.

4.6 Implementation

The algorithm is implemented as a program running at the server side of this

workflow management system. When it runs, the following steps are executed:

(1) Start the workflow engine and create necessary data sets;

(2) Obtain a flow process instance by its ID;

(3) Obtain the current workflow template of flow process and the new workflow

template;

(4) Save the current workflow in memory and attach the new workflow template

to the flow process;

 62

Dynamic Workflow Change Management

(5) Apply the algorithm to determine bypass-able nodes in the new workflow

instance;

(6) Initiate the new workflow instance and execute by-passable nodes one by one

at back end;

(7) Release the modified flow process for user access.

To execute a work node in a program without user intervention, the program needs to

log on to the system as a regular user specified in the work node. To execute all by-

passable nodes, the program should keep a list of user login information (user name

and password) for all these nodes. However, this approach is not secure since

sensitive information such as password should be stored only in the central user

database of the system, instead of other places.

Further more, frequent login actions via different users compromise the performance

of the program and the system. In addition, the system has no knowledge about the

context of execution of a specific node: whether it is executed by a user normally, or

by the managing program automatically.

To facilitate automatic execution of by-passable nodes, a new user, Dynamic

Workflow Manager, is created and added into each node of all workflow templates as

an executor. Hence, the dynamic workflow program can execute bypass-able nodes

under the user ‘Dynamic Workflow Manager’ without keeping logging in and out.

When implementing the proposed algorithm, an essential step is to determine if a

node of the new workflow template can also be found in the old workflow template.

Virtually, this process compares the node n with each node of the old workflow

template. The comparison is property-wise since it checks each key property of node

n

'n

 63

Dynamic Workflow Change Management

n 'n n 'n

n 'n

1=

 in node . If and have same values for a set of common key properties, these

two nodes can be deemed identical.

'n

'n

In the proposed workflow environment, only the name and tasks are checked as key

properties since they directly indicate the nature of their work node. The comparison

procedure is described as below:

Procedure NodeComparison(,)

 {return value with 0 indicating different and 1 identical} r

if and have different names then n

0=r

n

0=r

n

'n

0=r

else if and have different number of tasks then

else

for all task t of do

if t cannot be found in then

end if

end for

end if

 64

Dynamic Workflow Change Management

To demonstrate the application of the developed program, one example is given to

simulate the scenarios of real dynamic workflow change.

Company ABC runs business in multiple regions. In each region, a branch is

established to handle marketing and product support. To consistently manage

operations of all its branches, the headquarter (HQ) standardizes its business

processes and makes them mandatory to adopt in all these branches. To enable such

process management, a workflow management system proposed is set up at HQ site.

It manages all product- and process- related data and staff in branches can access the

data via web.

Specifically, HQ defines a standard process for problem handling. It requires that all

branches should apply this process to handle problems encountered by their customers.

The process is implemented as a workflow template in the workflow system, as

illustrated in Figure 4.1. When staff in one branch receives a problem from customer,

they initiate a process based on the workflow template and follow it till its completion.

 65

Dynamic Workflow Change Management

Figure 4. 1 Old Workflow Model

Following the template, a problem is handled in two major steps, problem solving and

on-site realization, after it is found and formulated. In the workflow, problem solving

involves several steps and thus is represented by a compound node which serves as a

nesting node containing several tasks. At the moment of opening a case, subsidiaries

need to report the case to HQ. When closing the case, subsidiaries should also archive

related documents in HQ database.

The HQ manages all instances related to the problem handling process. To adapt to

the new business environment, HQ decides to change the problem handling process in

all its subsidiaries.

 66

Dynamic Workflow Change Management

Figure 4. 2 New Workflow Model

There are 188 instances under the old template and they need to be transferred to the

new template, as shown in Figure 4.2. The Table 4.2 below shows the states of all

these instances before and after the transfer, in terms of:

(1) - instance number n

N

P

o

o

(2) - finished nodes before transfer f

(3) - finished percentage before transfer f

(4) - finished nodes after transfer fN

(5) - finished percentage after transfer fP

 67

Dynamic Workflow Change Management

Based on the data in the table, it is clear that tasks performed in early stages can be

preserved after the transfer as the modifications happen in late stage of the workflow

template.

Table 4. 2 Instance States

n fN fP o

fN
o

fP

11 0 0% 0 0%

4 1 7% 1 7%

14 2 14% 2 14%

30 3 21% 3 21%

18 4 29% 4 29%

5 5 36% 5 36%

2 6 43% 6 43%

1 7 50% 7 50%

5 8 56% 8 56%

2 9 42% 8 56%

11 10 71% 8 56%

7 11 79% 8 56%

8 12 86% 8 56%

23 13 93% 8 56%

47 14 100% 8 56%

4.7 Conclusion

In this chapter, an approach to facilitate dynamic workflow change is presented and

implemented. The approach identifies work tasks, which have been finished before

 68

Dynamic Workflow Change Management

the change and can be preserved after the change, and holds their states without

human intervention. Therefore, there is no need to re-execute these tasks and this

feature is efficient in a large collaborative environment where a lot of parties are

involved in the affected workflow.

The presented approach can be improved if the following further works can be done:

(1) Handling difficult issues such as script associated with affected work nodes;

(2) Capability to cope with other aspects such as document and resource;

(3) Mechanism to make this approach more robust and hassle-free in case of

exception;

(4) Flexibility to incorporate various policies for dynamic workflow management.

 69

Prototype Implementation

Chapter 5. Prototype Implementation

5.1 System Functions

The workflow-driven distributed collaborative design system provides the underlying

process, session and data management that enable distributed collaborative design to

take place within an integrated product development team. In this system, an

integrated, hierarchical set of design automation tools have been developed and

incorporated.

The concept of operation for the enterprise framework includes the ability to execute

project plans, expressed as workflows, by teams of engineers. Execution of a

workflow by a member of a design team initiates control commands to a CAD/CAE

tools as relevant for the particular workflow step. This execution also initiates data

transactions with the enterprise product data management system, local data

management systems, and library systems, as relevant for the particular workflow step.

In addition, the system couples project management tools with the design

environment, which receives regular status updates as workflow steps are executed.

This process facilitates effective, non-interfering project management.

Users execute the workflows using enterprise resource and knowledge management

tools, which link to tools, data access mechanisms, and other services. This process

allows designers to operate at a higher level of abstraction, allowing them to focus on

the real design tasks instead of tool and data management, which significantly

improves their productivity.

 70

Prototype Implementation

To support workflow usage, multiple workspace views for the environment should be

provided. These views include:

1. Tool and application workspace;

2. A data workspace for product and reuse information;

3. Project/workflow workspaces.

The resources, data objects, and application available to particular engineers are

determined by their identity and role in an authorization hierarchy implemented in the

enterprise system.

Workflow management in the system comprises methods and tools to provide the

project team with an environment that facilitates day-to-day work. A workflow-driven

mechanism is provided. The workflow models are instantiated as workflows in the

workflow management tool. The workflow captures:

1. Process steps and their precedence relationships;

2. Roles of personnel authorized/required to perform work;

3. Information objects involved (created, used, modified, destroyed, etc.) in the

process step;

4. Tools to be launched or controlled at each step.

The WFMS graphically represents the workflows of a project (defined by workflow

editor), enforces workflow use and tracks status of the workflows (carried out by

workflow engine). Each activity in a workflow may be associated with multiple tools.

An activity can be instantiated in two ways:

 71

Prototype Implementation

1. Clicking on the box representing the activity in a workflow by users;

2. Activating automatically by workflow engine, once specific conditions are

satisfied.

When users exit the activity, the status of the activity is recorded. The workflow

engine decides whether an activity is to be launched or not, based on the status of the

activities that precede it in the workflow and the availability of the resources required.

The workflow engine provides for pre-condition and post-condition scripts of the

activities in a workflow. Examples of these activities include functions, such as

checking for the existence of data objects, or translating data objects to the

appropriate formats. As such, this removes the necessity of having to invoke those

functions as required responsibilities for the design engineers, thereby enabling

significant productivity improvement through increased focus on design tasks. Project

engineers or supervisors (playing an administrator role) would normally be

responsible for design and implementation of project plans based on workflows by

using the system.

The workflows are hierarchical (including tasks, task groups, sub-process, etc.) and

represent the various disciplines, particularly those associated with technology-

intensive product design. They consist of reusable workflow segments, which can be

combined in various configurations to address specific project needs. These segments

consist of multiple process steps, each of which is also reusable. Option is made

available to a user to make use of the workflow elements in current form to develop

process plans based on a combination of reused workflow segments, individual

process steps, and possible custom user steps.

 72

Prototype Implementation

The functionalities of the workflow system include: access controls, hierarchical

workflow modeling capability, verification of workflow model, capability to track

status of a project, project management interfaces and simulation of workflows. The

workflow system also helps to capture useful metrics for projects. The metrics that

should be collected include:

1. Time spent in a step;

2. Tool usage;

3. Person(s) performing the step.

5.2 System Architecture

By combining with the existing COCADE environment [59], the architecture of the

prototype implementation is shown in Figure 5.1. In this architecture, a 3-tier

structure is employed.

 73

Prototype Implementation

Figure 5. 1 Workflow-driven System Architecture

Such a 3-tier structure has the following advantages:

1. It is easier to modify or replace any tier without affecting the other tiers;

2. Separating the application and database functionality means better load

balancing;

3. Adequate security policies can be enforced within the server tiers without

hindering the clients.

In this framework, the workflow server and the coordination server are responsible for

the implementation of business logic. They are the center of the whole system. XML

files will carry out the communications between these two servers. As the focus of

this thesis, the workflow sub-part adopts J2EE as its framework, which includes

workflow clients, a web server, a workflow server and a data repository. The

workflow clients are implemented by JAVA Applet which is embedded in Internet

pages and explained by the Internet browser. JSP and servlet components residing in

the web server are used to connect with the back-end server and generate the Internet

pages that are to be shown to the clients. The workflow server is responsible for the

modeling and execution of workflows, and returns results to the clients. As to the data

repository, it stores all the specified information that is generated during design

processes.

5.3 Case Study - Design of Head and Media

Hard disk drive is a technology-intensive product, and it is a very important industry

in Singapore. Head and media are essential parts in a hard disk drive. These two parts

 74

Prototype Implementation

are high-technology intensive and also closely coupled. Figure 5.2 illustrates the

working mechanism of head and media in detail.

Figure 5. 2 Combination of Head and Media [64]

Following is a writing sequence:

1. The drive channel module receives data in binary form from the computer and

converts them into a current in the head coil.

2. The interaction of the magnetic field generated by the current and the media

results in magnetization of the media, whose direction depends on the

direction of the current in the coil.

The reading process includes excitation of the current in the head coil when the head

“senses” changes in the magnetic flux. The read voltage pulses at the flux transitions

are then translated into sequences of bits of 0 and 1.

After checking the working process of the head and media, and understanding the

interdependency between them, the design process for each part can be determined.

Figure 5.3 shows the design process of the media. Firstly, the geometric model is

 75

Prototype Implementation

created as the description of its specification. Then the seeds are generated on the

geometric model. According to the distribution of seeds, the irregular grain structure

can be obtained. After this step, the geometry is extruded from 2D to 3D. The

microtrack model for the simulation of transition jitter noise and other effects can then

be established.

Figure 5. 3 Design Process of Media

The design process of the head is similar to the design of the media. These design

processes will be executed by engineers from different disciplines, such as material,

electronics, magnetics, and aerodynamics etc. These engineers are often at different

locations. Their work needs to be organized effectively and efficiently so that the

design can be finished on time and good product quality can be achieved.

By using the aforementioned workflow-driven framework, we can get the general

process of a head and media design scenario (see Figure 5.4). The workflow

administrator distributes the tasks to the engineers according to the pre-defined

workflow template. During the design process, the workflow management system will

serve as a back-end server and provide real-time process management, including

instance initialization, instance execution and dynamic workflow management, etc.

 76

Prototype Implementation

The practical design activities will be carried out by the COCADE system that is

installed on each computer. Part of the process information, e.g., task state and

available resource, is shared by the two kinds of systems.

Figure 5. 4 A Distributed Collaborative Head/Media Design Scenario

The detailed design process is shown below:

Workflow Model Definition

In this case, the workflow model is firstly created with consideration of the following:

- The requirements of product design and product specification;

- Appropriate knowledge that can be used to enhance the workflow process;

- The most efficient and useful methods of integrating and transferring

knowledge;

- The needs of distributed designers and the required modes of communication.

 77

Prototype Implementation

Figure 5. 5 Workflow Model Definition

As shown in Figure 5.5, the task attributes, such as state, users, resources, documents,

time requirements, etc., are described. The possible dependencies are evaluated in the

workflow model and corresponding solutions are described as new tasks. Some tasks

can also be a sub-process which includes several detailed sub-tasks. For example, the

media design task can be shown in further details as shown in Figure 5.6.

A major task of the workflow model administrator is to predict as much as possible

the potential interdependent tasks in the product modeling stage and computing stage.

This can help to avoid conflicts and errors occurring in the product development

process in the earlier stage, and save time and resources. After completion of the

process definition, an XML file is created by the workflow engine to record all

necessary information related to the design process. This file will be the template of

instances of the head/media design process. It can be modified by the workflow

administrator, and also reused by other similar design processes.

 78

Prototype Implementation

Figure 5. 6 Detailed Process of Media Design

Workflow Instance Execution

Before a practical design process can start, the pre-defined workflow model should be

instantiated. Then a process instance will be created which follows the workflow

model. In this case, the whole design flow is:

At the very beginning, the start node is activated. Then the next node’s state is

transferred to ready state. If this node can get enough resources as described in its

attribute table, it is ready to go. The workflow administrator can set it as automatic

node or manual mode. If it is automatic, this node can immediately run; otherwise, it

should wait for a run command. When it is in the running state, its task engine will

monitor its request as well as its state. As a service is requested, the task engine will

send the request to the workflow engine. Then the workflow engine will communicate

with the service manager and look up the service table. While the service name is

searched and found, the service parameters will be passed from the task engine to the

 79

Prototype Implementation

workflow engine, and then to the service manager. The service manager invokes the

remote method provided by the application tools and feedbacks the results to the task.

Beside the asynchronous communication between tasks, the involved participants can

also create synchronous collaborative session to carry out some design tasks in the

same workplace when intensive interactions are necessary. They work intensely with

one another, observing and understanding each other’s intentions. All participants

contribute with their special expertise at moments when they have the appropriate

knowledge to handle the situations.

By adopting the aforementioned steps, a head/media design process, which is carried

out by dispersed engineers from multiple disciplines, can be completed.

Workflow Model Evaluation

After the completion of the design process, the performance of the workflow model

can be evaluated by analyzing the log data stored in the process database. Different

views of the model’s performance can be created, e.g., the diagram of execution time

of every activity for each instance can be plotted, the designer can identify the activity

that is most time-consuming, and the one that is the bottleneck of the process, etc. In

this way, the workflow model can be modified and improved.

By combining with COCADE system, the whole design process can be defined and

executed. Figure 5.7 shows the snapshots of the results of the system. They are the

mesh (left) and computed results of magnetization distribution (right).

 80

Prototype Implementation

Figure 5. 7 System Snapshots

5.4 Summary

This chapter presents an overview of the prototype system that has been developed to

validate the concepts proposed in this thesis. The prototype consists mainly of a build-

time component and a run-time component. The build-time component provides a

graphical user interface through which the workflow modeler can create, browse and

update the workflow model. The run-time component mainly supports the

functionality to enact the workflows, and call the CAD/CAE services provided by

different engineers.

 81

Conclusion and Future Work

Chapter 6. Conclusion and Future Work

This chapter summarizes the contributions during the course of the research and the

directions for possible future work.

6.1 Contributions

The major contribution resulting from the research presented in this thesis consists of

three major parts. Firstly, a workflow-driven infrastructure has been proposed that can

effectively support distributed collaborative design process. Secondly, a workflow

meta-model used to construct the distributed collaborative design process is

introduced. It allows various aspects of design processes to be captured. Thirdly, the

communication method has been investigated and a workflow-driven communication

approach to better support the aforementioned infrastructure has been suggested.

The workflow-based infrastructure can effectively manage the distributed

collaborative design activities and resources. In comparison with existing

infrastructures, the workflow-based infrastructure has the following distinguishing

features:

1. Process control. The infrastructure supports the effective control of distributed

collaborative design process. By using WFMSs, design processes residing in

different and distributed domains can be connected together. The

representative workflow engines are selected to be responsible for the

connection. For the tasks in the same process, the workflow engine of the

process coordinates the behaviors of each task and interacts with the process

database and service manager.

 82

Conclusion and Future Work

2. Service management and session management. The engineers define and

register their own services via the service manager. The CAD/CAE

application tools also occupy a place in the service table to be queried and

called by the requesters. Services can be added and removed via the service

table. By effectively organizing and automatically invoking design sessions,

the design environment can be set up quickly. Thus the design time is vastly

shortened. And the concurrency happening between the sessions can be

controlled by the workflow engine.

3. Dynamic features. As all the workflow models and workflow instances are

stored in the process database, the workflow engine can compare the current

model with the new model when changes occur. The design processes do not

need to pause for a long time to accommodate the new changes that take place

dynamically. Once the workflow engine completes the verification, checking

and comparison of new model, the work that has been done can be resumed

and a lot of resources can be saved.

4. Simulation functions. Before the actual design activities, if the design process

can be simulated, the deficiency can be found at early stage and the process

can be improved. To implement this function, the rule handler needs to be

developed further to accommodate the user-defined events and deal with

exceptions. It will also be the emphasis of future work.

Because the workflow model has to be modeled well to suit the distributed

collaborative environment, the workflow meta-model is established by considering

the process meta-model and organization meta-model. These meta-models are

 83

Conclusion and Future Work

explicitly defined in UML diagrams. In addition, the role-based organization model

has been given in detail.

The communications between tasks and WFMSs are also discussed. A workflow-

driven approach is used to carry out the communications. To support asynchronous

communication, different communication models are compared and the event-based

model is adopted. The states of tasks, subprocesses, and processes are used to drive

the occurrences of user-defined events. A task engine as well as workflow engine is

proposed to manage the state-oriented communication through the user-defined state-

event table.

Finally, the feasibility of the main concepts presented in this thesis has been

demonstrated by the implementation of a prototype.

6.2 Directions for Future Work

In the following, several directions for possible future work are identified.

Support of Multiple Workflow Modelers

In the distributed collaborative environments, multiple persons might be involved in

the workflow modeling. Thus, adequate support for the development of multiple

workflow modelers should be provided. To address this problem, the concepts of

workspaces could be used. Workplaces are named repositories for artifacts, where

workspaces differ according to the extent of access to the contents of the workspace.

Artifacts can be moved among workspaces by check-in/check-out operations.

 84

Conclusion and Future Work

Workflow Network Construction

The WFMSs in the distributed collaborative environments form a workflow network.

Such a network integrates all aspects of the design process. The proposed

infrastructure is a part of this network. To construct a complete and robust network,

more detailed studies should be done.

Authorization Constraints

It is usually not desirable that all users can perform such tasks as model modification

or service changes. Rather, each user should only be allowed to carry out a well-

defined scope of tasks. In this respect, authorization constraints should be definable

which are enforced by the WFMS. Thus the approach presented in this thesis may be

extended with the aforementioned concepts.

Prototype System

Some functions are not completed in the system presented in this thesis, e.g., the

interaction between workflow engines and the workflow simulation that is an

important part of the WFMS. The system still needs to be enhanced and developed

further.

Integration with Design Chain Operation Reference (DCOR) Model

As DCOR is a rather newly launched model for design process management,

workflow technology can surely find its place in integration with DCOR. It can

contribute to the establishment of this model, in terms of model definition, model

monitoring and model evaluation. All these can be studied in the further research.

 85

References

References

[1] Tian, G.Y., Taylor, D. Design and Implementation of a Web-based Distributed

Collaborative Design Environment. In Proc. 5th International Conference on

Information Visualisation, IEEE, 2001, London, UK, pp. 703-707.

[2] MacGregor, S.P., Thomson, A.I., and Juster, N.P. A Case Study on Distributed,

Collaborative Design: Investigating Communication and Information Flow. In

Proc. 6th International Conference on CSCW in Design, London, Ontario, July

2001, pp. 249 – 254.

[3] Qiuli Sun, Kurt Gramoll. Internet-based Distributed Collaborative

Environment for Engineering Education and Design. In Proc. 2001 American

Society for Engineering Education Annual Conference & Exposition.

[4] Gun-Dong F. Pahng, Nicola Senin, David Wallace. Modeling and Evaluation

of Product Design Problems in a Distributed Design Environment. In Proc.

1997 ASME Design Engineering Technical Conferences, September 1997,

Sacramento, California.

[5] Michael P Case and Stephen C-Y Lu. Discourse Model for Collaborative

Design. Computer-Aided Design, Vol. 28, No. 5, pp. 333-345. 1996.

[6] Lee, J. Y., Kim, H., and Han, S. B. Web-enabled Feature-based Modeling in a

Distributed Design Environment. In Proc. 1999 ASME Design Engineering

Technical Conference, September 1999, Las Vegas, Nevada.

[7] Charles S. Smith and Paul K. Wright. Cybercut: A Networked Manufacturing

Service. In Proc. 1st International Conference on Managing Enterprises-

Stakeholders, Engineering, Logistics and Achievement, July 1997,

Loughborough Univ. UK.

 86

References

[8] Toshiki Mori and Mark R. Cutkosky. Agent-based Collaborative Design of

Parts in Assembly. In Proc. 1998 ASME Design Engineering Technical

Conferences, September 1998, Atlanta, Georgia.

[9] http://www.ptc.com, January 2001.

[10] http://www.enovia.com/, January 2001.

[11] http://www.sdrc.com/, January 2001.

[12] Li, L., Chenhui Yang, Tangqiu Li. Managing Dynamic Shared State in Virtual

Space for Collaborative Design. In Proc. 6th International Conference on

Computer Supported Cooperative Work in Design, July 2001, Ont., Canada,

pp. 61-65.

[13] Van Der Wolf, P., Bingley, P. Dewilde, P. On the Architecture of a CAD

Framework: The NELSIS Approach. In Proc. 1st European Design

Automation Conference, 1990, pp. 29-33.

[14] Bushnell, M., Director, S.W. Automated Design Tool Execution in the Ulysses

Design Environment. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, March 1989, pp. 279-287.

[15] Brockman, J.B., Director, S.W. A Schema-Based Approach to CAD Task

Management. In Proc. 3rd IFIP WG 10.2 Workshop on Electronic Design

Automation Frameworks, 1992.

[16] Chan, F., Spiller, M., Newton, R. WELD – An Environment for Web-Based

Electronic Design. In Proc. The International Conference on Computer Aided

Design, 1998, pp. 146-151.

[17] Lavana, H. A Universally Configurable Architecture for Taskflow-Oriented

Design of a Distributed Collaborative Computing Environment. 2000. PhD

 87

References

Thesis – Electrical and Computer Engineering, North Carolina State University,

Raleigh.

[18] C-Lab. Astai(R). Available at http://www.c-lab.de/astair/.

[19] John Welsh, Dr. Bipin Chadha, Jeffreay Stavash. Distributed Collaborative

Design Approach to Address Total Ownership Costs. MCE (Mission Critical

Enterprise) Systems Symposium, May 1999.

[20] Hammer, M., Champy, J. Reengineering the Corporation: The Manifesto for

Business Revolution. New York: Harper Business, 1993.

[21] Barua, A.C, Sophie Lee, H. and Whiston, A. B. The Calculus of Reengineering.

Information Systems Research, pp. 409-428. 1996.

[22] David Hollingsworth. Workflow Management Coalition The Workflow

Reference Model. Available at http://www.wfmc.org.

[23] Shung-Bin Yan and Feng-Jian Wang. A Cooperative Framework for Inter-

Organizational Workflow System. In Proc. 27th Annual International

Computer Software and Applications Conference, November 2003, Dallas,

Texas, pp. 64-71.

[24] Steven P. MacGregor, Avril I. Thomson, Neal P. Juster. A Case Study on

Distributed, Collaborative Design: Investigating Communication and

Information Flow. The Sixth International Conference on Computer Supported

Cooperative Work in Design Advance Program, June 2001, Ont., Canada.

[25] Lindemann, U., R. Anderl, H.Gierhardt and G. M. Fadel. 24hr Design and

Development – An Engine Design Project. In Proc. CoDesigning 2000, Sept.

2000, Coventry, UK.

 88

http://www.c-lab.de/astair/
http://www.wfmc.org/

References

[26] Vadhavkar, S. Team Interaction Space Effectiveness for Globally Dispersed

Teams: Theory and Case Studies. Doctor of Science Thesis, Massachusetts

Institute of Technology. 2001.

[27] Larsson, A., P. Torlind, A. Mabogunje and A. Milne. Distributed Design

Teams: Embedded One-on-One Conversations in One-to-Many. In Proc.

Common Ground: Design Research Society International Conference, 2002,

London, UK.

[28] MacGregor, S. P., A. I. Thomson and N. P. Juster. Information Sharing Within

a Distributed, Collaborative Design Process: A Case Study. In Proc. ASME

Design Engineering Technical Conference, September 2001, Pittsburgh,

Pennsylvania.

[29] MacGregor, S. P., A. T. Thomson and N. P. Juster. A Multi-level Process

Based Investigation of Distributed Design. In Proc. Engineering Design

Conference 2002, July 2002, KCL, London.

[30] Scrivener, S. A. R., D. Harris, S. M. Clark, T. Rockoff and M. Smyth. Design

at a Distance via Real-time Designer-to-designer Interaction. Design Studies.

Vol. 14, No. 3, pp. 261-282.

[31] Huang, J. Knowledge Sharing and Innovation in Distributed Design:

Implications of Internet-based Media on Design Collaboration. In Proc. Design

Computing on the Net’99 (DCNet’99), 1999, Sydney, Australia.

[32] Eisenstein, P. The parts Come Together. Professional Engineering: 31.

[33] Hietikko, E. and E. Rajaniemi. Visualised Data-tool to Improve

Communication in Distributed Product Development Projects. Journal of

Engineering Design, Vol. 11, No, 1, pp. 95-101.

 89

References

[34] Cheng, N. and T. Kvan. Design Collaboration Strategies. In Proc. 5th

International Conference, August 2000, Ampt van Nijkerk, pp. 62-73.

[35] Sonnenwald, D. H. Communication Roles That Support Collaboration During

the Design Process. Design Studies, Vol. 17, No. 3, pp. 277-301. 1996.

[36] Maher, M. L. and J. H. Rutherford. A Model for Synchronous Collaborative

Design Using CAD and Database Management. Research in Engineering

Design, Vol. 9, No. 2, pp. 85-98. 1997.

[37] Court, A. W., S. J. Culley and C. A. McMahon. The Influence of Information

Technology in New Product Development: Observations of an Empirical

Study of the Access of Engineering Design Information. International Journal

of Information Management, Vol. 17, No. 5, pp. 359-375. 1997.

[38] Pahl, G. and W. Beitz. Engineering Design - A Systematic Approach. London:

SpringerVerlag. 1988.

[39] Pugh, S. Total Design: Integrated Methods for Successful Product Engineering.

Wokingham: Addison-Wesley. 1991.

[40] French, M. J. Conceptual Design for Engineers. London: SpringerVerlag. 1999.

[41] Prasad, B. Concurrent Engineering Fundamentals: Integrated Product and

Process Organization. New Jersey: Prentice-Hall. 1996.

[42] Lu, S. C and J. Cai. A Collaborative Design Process Model in the

Sociotechnical Engineering Design Framework. Artificial Intelligence for

Engineering Design, Analysis and Manufacture, Vol. 15, pp. 3-20. 2001.

[43] Adelson, B. Developing Strategic Alliances: A Framework for Collaborative

Negotiation in Design. Research in Engineering Design, Vol. 11, No. 3, pp.

133-144. 1999.

 90

References

[44] Vadhavkar, S. and F. Pena-Mora. Empirical Studies of the Team Interaction

Space: Designing and Managing the Environments for Globally Dispersed

Teams. International Workshop on the Role of Empirical Studies in

Understanding and Supporting Engineering Design Work, NIST, Gaithersburg,

MD, USA. 2002.

[45] McGrath, J. E. Groups: Interaction and Performance. New Jersey: Prentice-

Hall. 1984.

[46] Olson, J., G. Olson, M. Storrosten and M. Carter. Groupwork Close Up: A

Comparison of the Group Design Process with and without a Simple Group

Editor. ACM Transactions on the Information Systems, Vol. 11, No. 4, pp.

321-348. 1993.

[47] Lipnack, J. and J. Stamps. Virtual teams: People Working Across Boundaries

with Technology. New York: John Wiley & Sons. 2000.

[48] DeSanctis, G. and P. Monge. Communication Processes for Virtual

Organizations. Organization Science, Vol. 10, No. 6, pp. 693-703. 1999.

[49] Tagg, R. Workflow in Different Styles of Virtual Enterprise. In Proc.

Workshop on Information Technology for Virtual Enterprise (ITVE 2001).

January 2001, Gold Coast, Australia.

[50] F Casati, S Ceri, B Pernici, G Pozzi. Workflow Evolution. In Proc. 15th

International Conference on Conceptual Modeling, ER'96, Cottbus, Germany,

pp. 438-455.

[51] W M P Van Der Aalst, T Basten. Inheritance of Workflows: An Approach to

Tackling Problems Related to Change. Theoretical Computer Science, Vol.

270, No. 1-2, pp. 125-203. 2002.

 91

References

[52] W M P Van Der Aalst. How to Handle Dynamic Change and Capture

Management Information? An Approach Based on Generic Workflow Models.

International Journal of Computer Systems, Science, and Engineering, Vol. 16,

No. 5, pp. 295-318. 2001.

[53] Shingo Yamaguchi, Qi-Wei Ge, Minoru Tanaka. Performance Evaluation on

Change Time of Dynamic Workflow Changes. IEICE Transactions, Vol. E83-

A, No. 11, pp. 2177-2187. 2000

[54] Clarence Ellis, Karim Keddara, Grzegorz Rozenberg. Dynamic Change within

Workflow Systems. In Proc. Conference on Organizational Computing

Systems, 1995, CA, USA, pp. 10-18.

[55] Clarence Ellis, Karim Keddara. ML-DEWS: Modeling Language to Support

Dynamic Evolution within Workflow Systems. Computer Supported

Cooperative Work, Kluwer Academic Publisher 9, 2000, pp. 293-333.

[56] Manfred Reichert, Peter Dadam. ADEPTflex-supporting Dynamic Changes of

Workflows without Losing Control. Journal of Intelligent Information Systems,

Vol. 10, No. 2, pp. 93-129. 1998.

[57] Manfred Reichert, Peter Dadam. Framework for dynamic changes in workflow

management systems. In Proc. 8th International Conference and Workshop on

Database and Expert Systems Applications (DEXA'97), 1997, Toulouse, pp.

42-48.

[58] Hoque, R. CORBA for Real Programmers. Academic Press/Morgan Kaufmann.

1999.

[59] D. W. Sun, L. W. Ruan, Z. J. Liu, J. M. Zhao, W. F. Lu and X. G. Ming.

Concurrency in a Distributed Collaborative CAD/CAE Environment. In Proc.

 92

References

11th ISPE International Conference on Concurrent Engineering: Research and

Applications, July 2004, Singapore.

[60] Malone, T. W., Crowston, K. What is Coordination Theory and How Can It

Help Design Cooperative Work Systems. In Proc. the conference on

Computer-supported cooperative work, 1990, Los Angels (CA), pp. 357-370.

[61] Rosemann, M., zur Muehlen, M. Evaluation of Workflow Management

Systems - a Meta Model Approach. The Australian Journal of Information

Systems, Vol. 6, No. 1, pp. 103-116. 1998.

[62] Jim Farley. Java Distributed Computing. Cambridge: O’Reilly. 1998.

[63] http://www.meta-model.com/.

[64] Jinghuan Chen, Jaekyun Moon, and Kia Bazargan. A Reconfigurable FPGA-

Based Readback Signal Generator For Hard-Drive Read Channel Simulator. In

Proc. of the 39th Design Automation Conference (DAC 2002), June 2002,

New Orleans, LA, pp. 349-354.

 93

Appendix

Appendix

List of Publications

I co-authored the following technical papers:

1. D.W.Sun, X.H.Xiong, L.W.Ruan, Z.J.Liu, J.M.Zhao, Y.S.Wong, “Workflow-

driven collaborative session management in product life cycle management

via internet”. Paper presented in IEEE Engineering Management Conference

IEMC 04, Singapore, Oct 2004.

2. D.W.Sun, X.H.Xiong, L.W.Ruan, Z.J.Liu, J.M.Zhao, W.F.Lu, X.G.Ming,

“Concurrency in a distributed collaborative CAD/CAE environment”.

Submitted to ASME Journal of Product Research for publication.

3. Z.M.Qiu, Y.S.Wong, X.H.Xiong, Z.J.Liu, “Workflow Instance Transfer for

Dynamic Workflow Change Management”. Submitted to International Journal

of Computing & Information Science in Engineering.

4. X.H.Xiong, Z.J.Liu, and Y.S.Wong, “Collaborative CAE Oriented Software

Development for Electromagnetic Design and Analysis”. Submitted to IEEE

Computational Magnetics Conference 2005.

 94

	WORKFLOW-DRIVEN DESIGN CHAIN MANAGEMENT FOR COLLABORATIVE EN
	XIONG XIAOHUA

	Acknowledgement
	Table of Contents
	Summary
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Background and Research Motivation
	1.2 Research Objectives
	1.3 Organization of Thesis

	Chapter 2. Literature Review
	2.1 Integrate Distributed Collaborative Design with Workflow
	2.2 Distributed Collaborative Design Review
	2.3 Workflow Management Systems
	2.3.1 Basic Concepts
	Workflow Modeling
	Workflow Enactment
	Workflow Management System

	2.3.2 Related Work on Workflow Management System (WFMS)
	WFMS as Coordinating Systems
	WFMS as Integration Systems
	Existing Systems

	2.3 Summary

	Chapter 3. Workflow-driven Framework
	3.1 Requirement Analysis
	3.2 System Architecture
	3.3 Workflow Meta-model
	3.3.1 Process Meta-model
	Requirements
	Modeling Concepts

	3.3.2 Organization Meta-model
	Requirements
	Modeling Concepts

	3.4 Workflow-driven Communication
	3.4.1 Communication in Design Process
	Communication Model
	Communication Protocol
	Communication framework
	Communication Path

	3.4.2 State-oriented Communication
	Workflow Instance State Change
	Workflow Task State Change

	3.5 Related Issues
	3.5.1 Service Registration
	3.5.2 Design Session Management

	3.6 Summary

	Chapter 4. Dynamic Workflow Change Management
	4.1 Introduction
	4.2 Related works
	4.3 Problem Statement
	4.4 Mechanism
	4.5 Exception handling
	4.6 Implementation
	4.7 Conclusion

	Chapter 5. Prototype Implementation
	5.1 System Functions
	5.2 System Architecture
	5.3 Case Study - Design of Head and Media
	Workflow Model Definition
	Workflow Model Evaluation

	5.4 Summary

	Chapter 6. Conclusion and Future Work
	6.1 Contributions
	6.2 Directions for Future Work

	References
	Appendix
	List of Publications

